Relationship between forest strata structure and regeneration in subtropical evergreen broad-leaved forest

Junsong Long¹², Mengping Tang¹²*¹

Abstract

Background: Regeneration is an extremely important and complex ecological process, which is disturbed by many factors. The current stand structure has an important influence on regeneration. The aim of this study is to provide theoretical reference for improving the regeneration capacity of subtropical evergreen broad-leaved forest and formulating management measures of regeneration restoration.

Methods: A permanent plot of 100m × 100m was set up in the evergreen broad-leaved forest of Tianmu Mountain National Nature Reserve, Zhejiang Province, China. The plot was divided into 25 survey units of 20m × 20m by the adjacent grid survey method, and all the trees in the plot were investigated. The tree height, DBH, crown width, density, species richness index, aggregation index, competition index and mingling of each forest stratum were used as the stand structure index. The tree height, DBH, crown width, density and species richness index of regeneration trees were used as regeneration indicators. Redundancy analysis (RDA) was used to explore the relationship between forest strata structure and regeneration of evergreen broad-leaved forest.

Results: In the whole stand, DBH, tree species richness index and crown width were the main structure factors affecting regeneration. In the upper forest stratum, the tree height was the main structure factor affecting regeneration. In the middle forest stratum, the tree species richness index and crown width were the main factors affecting regeneration. In the lower forest stratum, crown width, competition index, tree height and tree species richness index were the main factors affecting regeneration. The effects of tree species richness index and crown width on regeneration in the whole stand were mainly reflected in the middle and lower forest strata in each forest.

*Correspondence: tmpzafu@163.com
¹College of Environment and Resources, Zhejiang A&F University, Hangzhou, 311300, China;
²Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Hangzhou, 311300, China
Conclusions: The influencing order of each forest stratum structure on regeneration was: lower forest stratum > middle forest stratum > upper forest stratum. Different regeneration indicators had different responses to the main stand structure indices, while the young tree height and DBH, and the tree species diversity and density of regeneration trees were most affected by the main stand structure indices. In order to promote the regeneration of evergreen broad-leaved forest in the future, different management measures should be taken for different forest strata, and the threshold value of each index should be controlled.

Key words: subtropical evergreen broad-leaved forest; forest strata; stand structure; regeneration; redundancy analysis (RDA)

1. Introduction

Subtropical evergreen broad-leaved forest is one of the typical forest types in China, which plays an important role in protecting the environment and maintaining the global carbon balance and the sustainable development of human beings (Cao et al., 2010). However, due to the people's unreasonable development and utilization of forest resources in the early stage, the area of evergreen broad-leaved forest had been continuously reduced, resulting in the degradation of ecological functions and other problems (Song et al., 2005; Zhuo and Zheng, 2019). Natural regeneration is the main way of forest resources reproduction, which is particularly important for the restoration and protection of evergreen broad-leaved forest, and has great research and protection significance (Shi et al., 2014; Zhang et al., 2015). Natural regeneration is an extremely important and complex process of forest ecology, which goes through many growth stages (Chen et al., 2018). The success of each stage depends on many factors, so the research on the impact factors of natural regeneration had attracted people’s attention.

The current stand structure is one of the main driving factors of regeneration (Boyden et al., 2005; Tinya et al., 2019), which plays a key role in the succession and recovery of forest (Wan et al., 2019). The stand structure
includes non-spatial structure and spatial structure. Non-spatial structure index was used to describe the average characteristics of the stand, which was not affected by the relative position of neighborhood trees (Gong et al., 2009; Tang, 2010). In recent years, there had been much researches on the relationship between non-spatial structure index and regeneration. The smallest beech seedlings regeneration was determined by stand structure indices to a greater extent (Žemaitis et al., 2019). Stand density had no significant effect on the number, base diameter and height of Pinus tabulaeformis seedlings (Chen and Cao, 2014). With the increase of canopy density, the density of different regeneration trees showed different trends (Zhang et al., 2010; Huang et al., 2018). Too large tree basal area and tree height of forest were not conducive to regeneration trees growth (Graber, 1976; Ou et al., 2017). Because the forest vertical structure largely determines the differences in the distribution of resources such as water, heat, light and nutrients in the forest (Jiang et al., 2015), it has an important effect on species growth, reproduction, death and resource utilization (Latham et al., 1998; Hao et al., 2007; Zhang et al., 2016; Zhuang et al., 2017; Nasiri et al., 2018). Therefore, the impact of forest vertical structure on regeneration had become one of the focuses of many scholars. In the canopy vertical structure, impact of the middle and lower layers on regeneration diversity was significantly higher than upper layer (Zhou et al., 2017). The higher the forest vertical structure diversity is, the more the favorable regeneration trees are (Donoso and Nyland, 2005). Too large or too small crown index would inhibit regeneration density, while regeneration density had a weaker correlation with small tree proportions, but showed a significant positive correlation with large tree proportions (Zhang et al., 2010). Ou et al. (2017) considered that the crown index, large and small tree proportions had no significant effect on the number of Excentrodendron hsienmu seedlings, but the effect on the seedling diameter and tree height was significant. With the gradual improvement of forest management level, stand spatial structure based on the relationship of neighborhood trees is one of the research priorities (Gong et al., 2009; Jiang et al., 2018). A few scholars had carried out the research on the relationship between spatial structure based on the relationship of
neighborhood trees and regeneration, but most of their research used the artificially regeneration trees as object
trees. For example, Zhang et al. (2004) pointed out that medium mingling and random distribution were suitable
for artificial regeneration of *Pinus koraiensis* seedlings in the secondary forest. Luo et al. (2017) found that the
average DBH and tree height of *Pinus koraiensis* seedlings in all experiment sites increased with the increase of
opening degree in the same aspect. In summary, great achievements have been made on the impact of stand
structure on natural regeneration, but the density, basal area, large and small tree proportions, canopy density, tree
height and crown index of stand were mainly selected as stand structure indices in these studies, while few studies
have reported the relationship between horizontal spatial structure index (aggregation index, competition index,
imling, etc) and natural regeneration. Therefore, it is great theoretical and practical significance to study the
relationship between stand structure and natural regeneration by combining spatial structure with non-spatial
structure.

In this study, the evergreen broad-leaved forest was divided into three forest strata in the plot. The non-spatial
structure index of each forest stratum was determined by survey data, spatial structure index was calculated by
using Voronoi diagram based on the relationship of neighborhood trees. Redundancy analysis was used to study
the relationship between stand structure indices and regeneration indicators. The main purposes of this study were
the following: (1) to understand the effect of dominant factors of whole forest structure and different forest stratum
structure on regeneration; (2) to reveal the response of regeneration trees at different growth stages to dominant
stand structure indices.

2. Methods

2.1. Study area

The study was conducted in the subtropical evergreen broad-leaved forest of Tianmu Mountain National
Nature Reserve, Zhejiang province, China. It is located at latitude 30°18′30″ to 30°24′55″N, longitude 119°24′11″
to 119°28′21″E. Mean annual temperature of study area ranges from 8.8°C to 14.8°C, mean annual rainfall ranges from 1390mm to 1870mm, mean annual solar radiation ranges from 3270MJ·m⁻² to 4460MJ·m⁻². With the elevation rising, soil type transits from subtropical red soil to wet temperate brown-yellow soil, with red soil below 600m, yellow soil between 600m and 1200m, brown-yellow soil above 1200m. Forest types are diverse, including evergreen broad-leaved forest, deciduous broad-leaved mixed forest, deciduous dwarf forest, coniferous broad-leaved mixed forest, bamboo forest, etc.

We selected a representative section in the evergreen broad-leaved forest of Tianmu Mountain National Nature Reserve, and a permanent plot of 100m × 100m was set up from July to August, 2005. This plot was divided into 25 survey units of 20m × 20m by the adjacent grid survey method (Fig.1). Each grid was used as the investigation unit to measure all the trees in the plot, record each tree species, Coordinates (x, y, z), DBH, tree height and crown width. The main tree species were *Cyclobalanopsis gracilis*, *Cyclobalanopsis glauca*, *Lithocarpus brevicaudatus*, *Litsea coreana*, *Cyclobalanopsis myrsinifolia*. Meanwhile, all regeneration trees were investigated in each grid, record each tree species, DBH, tree height and crown width. The main regeneration tree species were *Camellia fraterna*, *Cyclobalanopsis gracilis*, *Litsea coreana*, *Cyclobalanopsis glauca*, *Lithocarpus brevicaudatus*.

![Fig.1 3D terrain map of the 10000m² plot](image)

2.2. Vertical stratification
Zhou et al. (2019) improved the criterion of forest strata stratification of IUFRO, taking the stand dominance height(h) as the stratification basis. The average of the highest 50 tree heights was taken as the stand dominant height in the plot, and then the difference value (Δh) between the stand dominant height and the minimum tree height (h_{min}) was calculated. According to tree height (H), the trees with DBH \geq 5cm were divided into upper, middle and lower forest strata. Upper forest strata: $H > h_{\text{min}} + 2/3 \Delta h$, middle forest strata: $h_{\text{min}} + 1/3 \Delta h \leq H \leq h_{\text{min}} + 2/3 \Delta h$, lower forest strata: $H < h_{\text{min}} + 1/3 \Delta h$. The survey data calculated that the average stand dominant height was 17.2m, the minimum tree height was 1.5m and the difference value was 15.7m. Therefore, upper forest strata: $H > 12m$, middle forest strata: $6.7m \leq H \leq 12m$, lower forest strata: $H < 6.7m$.

2.3. Stand structure indices

2.3.1. Stand non-spatial structure indices

Trees with DBH $> 5cm$ were defined as large trees, and DBH, tree height, crown width, density and diversity index were selected to describe the characteristics of stand non-spatial structure. The tree species diversity index is used to describe the proportion of species to individuals in a biological community. The tree species richness index was calculated as (Liu et al., 2011):

$$ S = \frac{m - 1}{\ln(M)} $$

where, S is tree species richness index, m is the number of species in each grid, and M is the total number of individuals of all species in the plot.

2.3.2. Stand spatial structure indices

Mingling, competition index and aggregation index were selected to describe the characteristics of stand spatial structure, and Voronoi diagram based on the relationship of neighborhood trees was used to calculate the stand spatial structure indices, i.e. the trees of which the Thiessen polygons are adjacent to the Thiessen polygon of...
the object tree are regarded as neighborhood trees (Tang et al., 2007). To eliminate the edge effect, the
eight-neighborhood method was used to edge correction of the plot.

Mingling is used to describe the degree of tree species spatial isolation in a forest, and is defined as the
proportion of neighborhood trees number that are not the same species as the object tree (Hui and Hu, 2001). The
complete mingling (hereinafter referred to as mingling) was calculated as (Tang et al., 2012):

\[M_i = \frac{1}{n_i} \sum_{j=1}^{n_i} V_{ij} \]

(2)

\[M_{ci} = \frac{1}{2} \left(D_i + \frac{c_i}{n_i} \right) \cdot M_i \]

(3)

where, \(M_i \) is the mingling of the object tree \(i \); \(M_{ci} \) is the complete mingling of the object tree \(i \); \(N_i \) is the number of
neighborhood trees; \(V_{ij} \) is a discrete variable, \(V_{ij} = 1 \) when the neighborhood tree \(j \) and the object tree \(i \) have
different tree species, otherwise \(V_{ij} = 0 \); \(c_i \) is the number of different tree species in pairs of neighborhood trees in
the spatial structure unit \(i \); \(D_i \) is the Simpson diversity index of the tree species in the spatial structure unit \(i \).

Competition index is used to describe the competitive relationship among trees within a forest. The Hegyi
competition index (hereinafter referred to as competition index) based on Voronoi diagram was calculated as
(Hegyi, 1974):

\[CI_i = \sum_{j=1}^{N_i} \frac{d_{ij}}{d_i \cdot L_{ij}} \]

(4)

\[CI = \frac{1}{Z} \sum_{i=1}^{Z} CI_i \]

(5)

where, \(CI_i \) is the competition index of object tree \(i \), \(L_{ij} \) is the distance between object tree \(i \) and neighborhood tree \(j \),
\(D_i \) is the DBH of object tree \(i \), \(D_j \) is the DBH of neighborhood tree \(j \), \(N_i \) is the number of neighborhood trees in the
spatial structure unit \(i \) where object tree \(i \) is located, \(Z \) is the number of object trees, \(CI \) is the stand competition
index.
Aggregation index is used to describe the spatial distribution patterns in forest, and is defined as the proportion of the average distance between object trees and their nearest neighborhood trees to the expected average distance under a random tree distribution pattern (Clark and Evans, 1954). It was calculated as:

\[
R = \frac{1}{N} \sum_{i=1}^{N} \frac{r_i}{\sqrt{F/N}}
\]

Where, \(R\) is the aggregation index, \(N\) is the number of trees in the plot, \(F\) is the plot area, and \(r_i\) is the distance from the object tree \(i\) to its nearest neighborhood tree.

2.4. Regeneration indicators

The trees with DBH < 5cm were defined as regeneration trees. According to the tree height and DBH, the regeneration trees were divided into three grades: seedlings, saplings and young trees. Seedlings: \(H \leq 1.5\)m, DBH < 1cm; Saplings: \(H \leq 1.5\)m, DBH ≥ 1cm; young trees: \(H > 1.5\)m, DBH < 5cm (Tang et al., 2006). The DBH, tree height, crown width, species richness index and number of regeneration trees were selected as regeneration indicators. The species richness index was calculated by using Eq. (1).

2.5. Data analyses

The software IBM SPSS Statistics 20 was used to analyze the differences of different forest strata structure. Redundancy analysis (RDA) is a direct gradient analysis method, which can intuitively analyze the complex relationship between multiple environmental factors and multiple species variables. The correlation between environmental factors and species variables is the product of the line length of species variables and the cosine of the angle between the environmental factors and species variables (Howard et al., 2012; Zhu et al., 2018). The stand structure indices were taken as environmental variables, and regeneration indicators as species variables, the relationship between them was analyzed using the software Canoco 5. Firstly, in order to select a suitable model for redundancy analysis, the data was subjected to the detrended correspondence analysis (DCA). When the
maximum gradient of the four axes was less than or equal to 3, the linear model was used; when the maximum
gradient was equal to or greater than 4, the unimodal model was used; when the maximum gradient was between 3
and 4, both models could be selected. Secondly, log transformation and centralization were performed on the
original data. Variance inflation factor (VIF) was used to test the multicollinearity between variables, and the
variance inflation factor was less than 20, which indicated that there was no multicollinearity among the stand
structure indices. The most significant stand structure indices affecting regeneration were screened out through
interactive forward selection. Finally, the specific relationship between the most significant stand structure indices
and regeneration indicators was further analyzed using “Multiple species response curve”.

3. Results

3.1. Differences in different forest strata structure

Stand structure characteristics of different forest strata are shown in Table 1. There were significant
differences among the different forest stratum structure index except the aggregation index (p < 0.05). The
mingling has significant differences between upper forest stratum and lower forest stratum, and no significant
differences between middle forest stratum and other forest strata. The species richness index has significant
differences between upper forest stratum and other forest strata, and no significant differences between middle
forest stratum and lower forest stratum. With the rise of forest strata, the mingling increased, and the competition
index and species richness index decreased. Therefore, it was reasonable to divide into three forest strata in this
subtropical evergreen broad-leaved forest.

Stand	M	CI	R	N (no/ha⁻¹)	DBH (cm)	H (m)	W (m)	S
Whole	0.58±0.01ab	8.93±0.26b	0.95±0.02a	1629.00±102.38a	12.70±0.34c	7.17±0.17c	3.58±0.15c	3.72±0.20a
Upper	0.61±0.02a	4.13±0.50d	0.97±0.08a	139.00±19.10d	30.98±1.35a	14.80±0.41a	5.58±0.22a	0.86±0.14c
Middle	0.59±0.01ab	7.45±0.47c	0.92±0.04a	548.00±44.25c	15.83±0.63b	8.50±0.09b	4.18±0.21b	2.41±0.15b
Lower	0.57±0.01b	10.49±0.37a	0.97±0.03a	942.00±75.96b	8.20±0.23d	5.02±0.04d	2.92±0.09d	2.44±0.15b

Note: Different letters in the same column indicate a significant difference at the 0.05 level. M: mingling; CI: competition index; R: aggregation index; N: density; DBH: diameter at breast height; H: tree height; W: crown width; S: species richness index.
3.2. Effect of whole stand structure on regeneration

The results of RDA showed that 49.22% of the regeneration variation was explained by the whole stand structure with 25.23% of that variation being explained from first axis and 19.68% from second axis, indicating that the correlation between whole stand structure index and regeneration was mainly determined by the first axis and second axis. From the interactive forward selection results of whole stand structure indices, DBH, species richness index and crown width had the most significant effect on the regeneration, which the explained variations of regeneration were 18.4%, 9.4%, 7.2%, accounting for about 71.11% of the explained variation of the 8 whole stand structure indices (Table 2).

Name	Mean	Stand. dev.	Inflation factor	Explains %	Contribution %	F	P
Wh_D	12.69	1.68	3.78	18.4	36.1	5.2	0.006***
Wh_S	3.58	0.72	6.34	9.4	18.4	2.9	0.048***
Wh_W	3.72	0.96	3.97	7.2	14.1	2.3	0.07*
Wh_CI	8.63	2.16	2.30	5.7	11.1	1.9	0.126
Wh_R	1.00	0.22	3.21	3.9	7.6	1.3	0.256
Wh_H	7.11	0.82	5.21	2.6	5.1	0.8	0.422
Wh_M	0.57	0.07	2.10	2.4	4.8	0.8	0.484
Wh_N	1629.00	501.58	4.14	1.4	2.8	0.5	0.762

Note: Wh_M, Wh_CI, Wh_R, Wh_S, Wh_DBH, Wh_H, Wh_W, Wh_N denotes the mingling, competition index, aggregation index, species richness index, diameter at breast height, tree height, crown width and density of the whole stand.

The ordination diagram of RDA showed that the DBH and crown width of whole stand had a strong positive effect on sapling density and species richness index, and a strong negative effect on young tree height and DBH.
The species richness index of whole stand had a strong positive effect on seedling density and species richness index, and young tree density and species richness index (Fig. 2).

The specific effect of the dominant whole stand structure indices on regeneration is shown in Fig. 3. With the increase of the DBH in the whole stand, young tree height and DBH showed a decreasing trend, sapling species richness index showed an increasing trend, and sapling density showed a unimodal distribution. When the DBH of whole stand was between 13cm and 15cm, sapling density maintained a high response value, young tree height and DBH tend to change stably, and the increasing trend of sapling species richness index slowed down (Fig. 3A).

With the increase of the species richness index in the whole stand, seedling density and species richness index showed an increasing trend, and young tree density and species richness index showed a unimodal distribution. The young tree density and species richness index kept a high response value when the species richness index of whole stand was between 4 and 5 (Fig. 3B). With the increase of the crown width in the whole stand, young tree DBH and height showed a single valley distribution, while sapling density and species richness index showed a unimodal distribution. Young tree DBH and height maintained a small response value when the crown width was between 4m and 5.5m. The sapling density and species richness index maintained a high response value when the crown width of whole stand was between 4.5m and 6m (Fig. 3C).

3.3. Effect of forest strata structure on regeneration

3.3.1. Effect of upper forest stratum structure on regeneration
The results of RDA showed that 37.76% of the regeneration variation can be explained by the upper forest stratum structure index with 19.83% being explained by the first axis and 10.87% being explained by the second axis. It can be seen that RDA can better explain the relationship between upper forest stratum structure index and regeneration. The interactive forward selection results of upper forest stratum showed that the tree height was the most significant structure factor affecting regeneration, and the interpretation rate of regeneration was 13.9%, which accounts for about 36.81% of the total interpretive ability of the 8 upper forest stratum structure indices (Table 3).

According to the ordination diagram of RDA (Fig. 4), the tree height of the upper forest stratum had a greater positive effect on sapling density and species richness index, and a greater negative effect on seedling height and young tree height and DBH.

The seedling height decreased with the increase of tree height in the upper forest stratum. When the tree height of the upper forest stratum was between 12m and 16.5m, the young tree height and DBH had a single valley distribution, while sapling density and species richness index had a unimodal distribution. When the tree height of the upper forest stratum was between 16.5m and 24m, young tree height and DBH had a unimodal distribution, while sapling density and species richness index had a single valley distribution (Fig. 5).
3.3.2. Effect of middle forest stratum structure on regeneration

The redundancy analysis results of middle forest stratum structure and regeneration is shown in Table 4.

41.45% of the regeneration variation can be explained by the four axes, 38.26% of the regeneration variation can be explained by the first two axes with 23.12% being explained by the first axis and 15.14% being explained by the second axis. This shows that the first two axes can better explain the relationship between middle forest stratum structure and regeneration. The significant structure factors were screened out by interactive forward selection as follow: the tree species richness index and crown width of the middle forest stratum, which explained 16.7% and 14.5% of the regeneration variation, accounting for about 75.27% of the total explained variation of the 8 middle forest stratum structure indices.

Name	Mean	Stand. dev.	Inflation factor	Explains %	Contribution %	F	P
Mid_S	2.4	0.7	3.8	16.7	39.0	4.6	0.006***
Mid_W	4.2	1.0	1.7	14.5	33.8	4.6	0.012**
Mid_D	15.8	3.1	1.8	4.2	9.7	1.4	0.262
Mid_M	0.6	0.1	1.9	2.5	5.7	0.8	0.434
Mid_CI	6.8	2.8	3.1	1.6	3.8	0.5	0.636
Mid_H	8.5	0.4	1.9	1.6	3.7	0.5	0.694
Mid_N	548.0	216.8	3.6	1.0	2.3	0.3	0.886
Mid_R	0.98	0.3	2.9	0.8	2.0	0.2	0.934

Axis 1	Axis 2	Axis 3	Axis 4
0.2312	0.1514	0.0182	0.0137

Note: Mid_M, Mid_CI, Mid_R, Mid_S, Mid_DBH, Mid_H, Mid_W, Mid_N denotes the mingling, competition index, aggregation index, species richness index, diameter at breast height, tree height, crown width and density of the Middle forest stratum.

The species richness index of the middle forest stratum had a larger positive effect on seedling species richness index and density, and the young tree species richness index and density. The crown width of the middle
forest stratum had a larger positive effect on sapling species richness index and density, and had a larger negative effect on young tree height, and sapling crown width and height (Fig. 6).

When the species richness index of the middle forest stratum was between 1 and 1.5, the young tree species richness index first increased after reaching the minimum value, the increasing rate of seedling density slowed down, and the increasing rate of young tree density accelerated. When the species richness index of the middle forest stratum increased to between 3 and 3.5, the young tree species richness index reached the maximum value, and the increasing rate of seedling density began to accelerate, the change of young tree density tended to be stable (Fig. 7A). With the increase of crown width in middle forest stratum, sapling crown width and young tree height showed a single valley distribution, the young tree density and species richness index showed a unimodal distribution. When the crown width of middle forest stratum was between 6m to 7m, the young tree height and sapling crown width reached the minimum value, and the sapling density and species richness diversity reached the maximum value (Fig. 7B).
3.3.3. Effect of lower forest stratum structure on regeneration

The redundancy analysis results of lower forest stratum structure and regeneration is shown in Table 5. 49.58% of the regeneration variation can be explained by the four axes, 43.78% of the regeneration variation can be explained by the first two axes with 30.09% being explained by the first axis and 13.69% being explained by the second axis. Therefore, the first two axes provided the optimal explanation for the variation in both lower forest stratum structure index and regeneration. From the forward selection results of lower forest stratum, the most significant structure factors affecting regeneration were: crown width, competition index, tree height and species richness index, which the explained variation of regeneration were 11.2%, 10.8%, 9.5%, 7.2%, accounting for 78.06% of the total explained variation of the 8 stand structure indices.

Name	Mean	Stand. dev.	Inflation factor	Explains %	Contribution %	F	P
Low_W	2.9	0.4	1.6	11.2	21.5	2.9	0.040**
Low_CI	10.3	3.3	1.6	10.8	20.9	3.3	0.034**
Low_H	5.0	0.2	1.3	9.5	18.3	2.6	0.044**
Low_S	2.4	0.8	3.6	7.2	13.8	2.3	0.070*
Low_M	0.6	0.1	2.1	3.9	7.4	1.3	0.280
Low_N	942.0	372.1	3.7	7.6	1.3	0.252	
Low_D	8.2	1.1	1.3	3.8	7.3	1.3	0.236
Low_R	1.0	0.3	2.1	1.6	3.1	0.5	0.688

	Axis 1	Axis 2	Axis 3	Axis 4
Eigenvalues	0.3009	0.1369	0.0423	0.0157

Note: Low_M, Low_CI, Low_R, Low_S, Low_DBH, Low_H, Low_W, Low_N denotes the mingling, competition index, aggregation index, species richness index, diameter at breast height, tree height, crown width and density of the lower forest stratum.

The crown width of the lower forest stratum had a greater positive effect on sapling density and species richness index and a greater negative effect on seeding density and species richness index, and young tree density...
and height. The competition index of the lower forest stratum had a greater negative effect on regeneration tree density and species richness index. The tree height of the lower forest stratum had a greater negative effect on sapling density and species richness index, and a positive effect on young tree height and DBH. The tree species richness index in the lower forest stratum had a greater positive effect on seeding and young tree density and species richness index (Fig. 8).

Fig. 8 RDA ordination diagram of lower forest stratum structure indices and regeneration

The specific effect of the main lower forest stratum structure indices on regeneration is shown in Fig. 9. When the crown width of the lower forest stratum was between 2.0m and 3.2m, the seeding density and species richness index, and sapling density and species richness index had a single valley distribution, and sapling density and species richness index reached the minimum value. When the crown width of the lower forest stratum was between 3.2m and 4.5m, the seeding density and species richness index, and sapling density and species richness index had a unimodal distribution, and sapling density and species richness index reached the maximum value (Fig. 9A). With the increase of competition index in the lower forest stratum, the seedling and sapling density and species richness index had a single valley distribution, the young tree density and species richness index showed downtrend. The seedling and sapling density and species richness index reached the minimum value when the
competition index in the lower forest stratum was between 13 and 16 (Fig. 9B). With the increase of tree height in
the lower forest stratum, the sapling density showed a decreasing trend, young tree DBH and sapling species
richness index showed a single valley distribution, and young tree height showed an increasing trend. The sapling
species richness index reached the minimum value when the tree height in the lower forest stratum was between
5m and 5.3m. The young tree DBH reached the minimum value when the tree height in the lower forest stratum
was between 4.8m and 5m (Fig. 9C). When the tree species richness index in the lower forest stratum was between
1.0 and 2.5, the young tree density showed an increasing trend, the seedling density and species richness index
showed a unimodal distribution, and young tree species richness index showed a single valley distribution. When
the tree species richness index in the lower forest stratum was between 2.5 and 4.0, the young tree density showed
a steady trend, the seedling density and species richness index showed a single valley distribution, young tree
species richness index showed a unimodal distribution, which species richness index reached the maximum value
(Fig. 9D).

Fig. 9 Regeneration response curves to the dominant lower forest stratum structure indices
4. Discussion

4.1. Effect of whole stand structure on regeneration

In the subtropical evergreen broad-leaved forest community, DBH, tree species richness index and crown width were the main whole stand structure indices affecting regeneration. The DBH and crown width of the whole stand could inhibit the individual size growth of regeneration trees, but to a certain extent could promote the regeneration of young tree density and species richness index, which is similar to the results of many scholars (Ou et al., 2017; Wu et al., 2019). It is generally believed that the larger DBH and crown width of the forest, the older stand age and the more mature seed trees in the forest, which can provide enough provenance for regeneration. Some researches showed crown width plays a role of shading and shelter for regeneration, and affects the growth of regeneration trees by changing habitat conditions such as light and humidity in the forest (Zhu et al., 2003; Yu et al., 2015; Huang et al., 2020). Our results clearly showed that the larger or smaller crown width of the whole stand could inhibit the regeneration of seedling density, sapling density and sapling species richness index, but could promote the growth of young tree height and DBH. Too small crown width causes abundant sunlight reaching the forest floor directly, some regeneration trees lose moisture easily and intolerant tree species may compete strongly with regeneration trees for the available resources, thereby reducing regeneration trees survival or growth (Lombaerde et al., 2019). If the crown width is too large, the photosynthesis of the regeneration trees is blocked and cannot grow well. Tree species richness was one of the main drivers affecting regeneration (Adam et al., 2013; Tinya et al., 2019). In this study, the species richness index of whole stand was positively correlated with the density and species richness of the regeneration trees. The reason may be that different tree species have different ways of regeneration (Shi et al., 2013), and the seed size and quality also have certain differences (Cheng et al., 2018), making them adaptable to different habitats. Therefore, in the regeneration management of subtropical evergreen broad-leaved forest in the future, the DBH, crown width and tree species richness index of the whole
stand can be reasonably regulated according to the needs of the management objectives, so as to promote the regeneration.

4.2. Effect of forest strata structure on regeneration

The vertical stratification of tree crowns is a forest attribute that influences both tree growth and understory community structure (Latham et al., 1998). In the upper forest stratum, the tree height was the main stand structure factor affecting regeneration. In the middle forest stratum, the tree species richness index and crown width were the main stand structure indices affecting regeneration. In the lower forest stratum, the crown width, competition index, tree height and species richness index were the main stand structure indices affecting regeneration. The crown width and tree species richness index in the middle and lower forest strata had significant effects on the regeneration, which is similar to that found by Zhou et al. (2017). Compared to the effects of each forest strata and the whole stand on the regeneration, it is observed that the tree species richness index and crown width of the whole stand play a shelter role for regeneration trees and provide the seed source of dominant tree species which mainly comes from the middle and lower forest strata. Because the main dominant tree species in the middle forest stratum and the lower forest stratum were *Cyclobalanopsis gracilis*, *Cyclobalanopsis glauca*, *Lithocarpus brevicaudatus*, *Camellia fraterna*, etc., which had a large number and strong natural regeneration ability. While the number of trees in the upper forest stratum was relatively small, in addition to *Cyclobalanopsis gracilis*, *Cyclobalanopsis glauca*, *Lithocarpus brevicaudatus*, there were also deciduous species and coniferous species, such as *Quercus fabri*, *Liquidambar formosana*, *Cunninghamia lanceolata*, *Torreya grandis*, etc. The opening degree of object tree represents the light intensity in the forest where the object tree is located, and is defined as the sum of the proportion of the distance between object tree and its neighborhood trees to the neighborhood tree height (Luo et al., 1984; Luo et al., 2017). This indicates that the light intensity of a certain site in the forest is largely determined by the neighborhood trees height and the distance between the neighborhood trees and object
trees. The tree height of the upper and lower forest strata had a significant impact on regeneration, because the tree height of the upper forest stratum is too high, which makes the light intensity and temperature increase in the forest, leading to the individual size growth of regeneration trees being inhibited. The increase of tree height of the lower forest stratum can provide the growth space for regeneration trees and reduce the competition for depletable resources, thus promote the individual size growth of regeneration trees. This research finding showed that the competition index of the lower forest stratum mainly affected the species richness index of regeneration trees. The smaller the competition index, the better the tree species diversity and density of regeneration. The smaller size and larger number of individuals in the lower forest stratum lead to the fierce competition for nutrients, living space and other resources by regeneration trees, which made the competition index of the lower forest stratum have significant effect on regeneration. The order of each forest stratum structure effect on regeneration was: lower forest stratum > middle forest stratum > upper forest stratum, which mainly affected the regeneration tree species richness index, as well as young tree height and DBH. Therefore, different management measures can be formulated for different forest strata to improve the regeneration ability or restoration of subtropical evergreen broad-leaved forest.

5. Conclusions

In this paper, redundancy analysis was used to study the relationship between different forest strata structure and regeneration, it can not only independently determine the contribution and explanation of each stand structure variable (Liu et al., 2011), but also reduce the number of stand structure variables that can effectively explain the regeneration variation. It can be seen from the ordination diagram of RDA that although the competition index of the whole stand and the crown width of the upper forest stratum had no significant effect on the regeneration, they had strongly correlated with sapling density and richness index. Hence the effect of non-significant stand structure indices on a certain regeneration indicator should not be neglected in the process of forest management.
The influencing order of each forest stratum structure on regeneration was: lower forest stratum > middle forest stratum > upper forest stratum. Different regeneration indicators had different responses to the main stand structure indices, while the young tree height and DBH, and the tree species diversity and density of regeneration trees were most affected by the main stand structure indices. In the whole stand, 49.58% of the regeneration variation was explained by stand structure indices, which indicated that the influence factors of regeneration were not only stand structure. Some studies had found that soil conditions had a significant effect on regeneration (Madson and Laisen, 1997; Liu et al., 2011), and different terrain factors also play an important role in the growth of regeneration trees (Tyagi et al., 2011; Kang et al., 2012; Redmond and Kelsey, 2018). Therefore, comprehensively understand the regeneration impact mechanism of subtropical evergreen broad-leaved forest is urgently needed in further study.

Acknowledgments

The authors thank the Tianmu Mountain National Nature Reserve Administration for their support during our research.

Author Contributions

Conceptualization, Junsong Long; Data curation, Mengping Tang; Formal analysis, Junsong Long; Funding acquisition, Mengping Tang; Investigation, Mengping Tang; Methodology, Junsong Long; Writing-original draft, Junsong Long; Writing-review & editing, Mengping Tang. All authors have read and agreed to the published version of the manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (31870617).

Availability of data and material
The data are available upon a reasonable request to the Authors.

Competing interests

The authors declare that they have no competing interests.

References

Adam R, Odor P, Boloni J (2013) The effects of stand characteristics on the understory vegetation in Quercus petraea and Q. cerris dominated forests. Community Ecology 1: 101-109.

Boyden S, Binkley D, Shepperd W (2005) Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest. Forest Ecology and Management 219: 43-55.

Cao FY, Qi CJ, Yu XL, Xu QJ, Cao JW, Xu YF (2010) Conservational significances of evergreen broad-leaved forests in Central-China and the strategy of their restoration and rehabilitation. Journal of Central South University of Forestry and Technology 30: 95-104.

Chen YM, Cao Y (2014) Response of tree regeneration and understory plant species diversity to stand density in mature Pinus tabulaeformis plantations in the hilly area of the Loess Plateau, China. Ecological Engineering 73: 238-245.

Cheng RM, Shen YF, Feng XH, Xiao WF, Wang N, Yang S, Guo Y (2018) Research review on forests natural regeneration. Journal of Zhejiang Agriculture and Forestry University 35: 955-967.

Clark PJ (1954) Distance to nearest neighbor as a measure of spatial relationships in population. Ecology 35: 445-453.

Donoso PJ, Nyland RD (2005) Seedling density according to structure, dominance and understory cover in old-growth forest stands of the evergreen forest type in the coastal range of Chile. Revista Chilena de Historia Natural 1: 51-63.

Gong ZW, Kang XQ, Gu L, Zhao JH, Zheng YF, Yang H (2009) Research methods on natural forest stand structure: a review. Journal of Zhejiang Forestry College 26: 434-443.

Graber WB (1976) Seedling input, death, and growth in uneven-aged northern hardwoods. Canadian Journal of Forest Research 3: 368-374.

Hao ZQ, Zhang J, Song B, Ye J, Li BH (2007) Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. Forest Ecology and Management 252: 11.

Hegyi (1974) A simulation model for managing perennial grass pastures.// Fries J Growth Models for Tree and Stand Simulation. Stockholm: Royal College of Forestry 74-90.

Howard JH, Baldwin RF, Brown BL (2012) Exploratory analysis for complex-life-cycle amphibians: revealing complex forest-reproductive effort relationships using redundancy analysis. Forest Ecology and Management 270: 175-182.

Huang L, Zhu GY, Kang L, Hu S, Liu Z, Lu K (2019) Regeneration characteristics and related factors affecting saplings in Quercus spp. natural secondary forests in the Hunan Province, China. Acta Ecologica Sinica 39: 4900-4909.

Huang P, Liu YH (2018) Effects of stand structure and terrain factors on seedling regeneration of Pinus tabulaeformis forest in the Songshan National Nature Reserve, Beijing, Chinese Journal of Ecology 37: 1003-1009.

Huang RX, Jia XR, Liu T, Wu ZL, Xu MF, Su ZY (2020) Canopy structure and understory radiation dynamics of subtropical ecological public welfare forest. Journal of Northwest forestry University 35: 28-36.

Hui GY, Hu YB (2001) Measuring species spatial isolation in mixed forests. Forest Research 14: 23-27.

Jiang J, Lu YC, Pang LF, Zhang XQ, Li TT, Xing HT (2015) Structure of different stand layers and management optimization strategies in a Masson pine plantation in southern subtropical, China. Acta Ecologica Sinica 35: 44-50.

Jiang TS, Wang HZ, Dong LB, Chen Y, Liu ZQ (2018) Effects of different intermediate cutting intensities on the spatial structure of Larix gmelinii forest. Journal of Northeast Forestry University 46: 9-14+19.

Kang B, Wang DX, Li G, Gao YX, Zhang Y, Du YL (2012) Characteristics of seedlings regeneration in Quercus aliata var. acuteserrata secondary forests in Qinling mountains. Acta Ecologica Sinica 32: 2738-2747.

Latham PA, Zuuring HR, Coble DW (1998) A method for quantifying vertical forest structure. Forest Ecology and Management 104: 157-170.

Liu XZ, Lu YC, Zhou YH, Lei XD, Zhang XQ, Meng JH (2011) The influence of soil conditions on regeneration establishment for degraded secondary forest restoration, Southern China. Forest Ecology and Management 261: 1771-1780.

Lombaerde AD, Verheyen k, Calster HV, Baeten L (2019) Tree regeneration responds more to shade casting by the overstorey and competition in the understory than to abundance per se. Forest Ecology and Management 450: 117-129.

Luo Y, Shen HZ, Zhang P, Lin ZX, Qi LY (2017) Effect of aspect on the diameter at breast height and height growth of Pinus koraiensis under the different opening degrees. Forest Engineering 33: 5-10.

Luo YH, Chen QC, Zhang PY (1984) The spatial pattern of coniferous forest in Xinglong mountain and its strategies in using sun light energy. Acta Ecologica Sinica 4: 10-20.

Madson P, Laisen JB (1997) Natural regeneration of beech (Fagus sylvatica L.) with respect to canopy density, soil moisture and soil carbon content. Forest Ecology and Management 97: 95-105.

Nasiri N, Marvie Mohajer MR, Etemad V, Sefidi K, Mohammadi L, Gharehaghaji M (2018) Natural regeneration of oriental beech (Fagus orientalis Lipsky) trees in canopy gaps and under closed canopy in a forest in northern Iran. Journal of Forestry Research 29: 1075-1081.

Ou ZY, Pang SL, Tan QZ, Zheng W, He QF, Shen WH (2017) Effects of forest structure on natural regeneration of Excentrodendron hisienmu population in Southwest Guangxi, China. Chinese Journal of Applied Ecology 28: 3181-3188.

Redmonod MD, Kelsey KC (2018) Topography and overstory mortality interact to control tree regeneration in spruce-fir forests of the southern Rocky Mountains. Forest Ecology and Management 427: 106-113.
Shi LL, Luo ZR, Xia JT, Zhao WJ, Wu YG, Ding BY (2014) Woody seedling dynamics and the correlation between habitat and regeneration/mortality in a subtropical evergreen broad-leaved forest in China. Acta Ecologica Sinica 34: 6510-6518.

Shi ZJ, Gao XF, Wang YW (2013) Influential factors of natural regeneration of forest. Shanxi Forest Science and Technology 96-99.

Song YC, Chen XY, Wang XH (2005) Studies on evergreen broad-leaved of forests of China: a retrospect and prospect. Journal of East China Normal university 1: 1-8.

Shi Z, Gao XM, Wu YZ (2007) Intraspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram. Acta Ecologica Sinica 27: 4707-4716.

Shi ZQ, Fan SH, Shen HL, Yang WH, Zhao KZ, Qi LY (2004) Influence of the spatial structure of trees, etc. on the young trees. Beijing Forestry University 41: 66-75.

Shi Z, Gao XM, Wu YZ (2007) Intraspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram. Acta Ecologica Sinica 27: 4707-4716.

Shi Z, Gao XM, Wu YZ (2007) Intraspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram. Acta Ecologica Sinica 27: 4707-4716.

Shi ZQ, Fan SH, Shen HL, Yang WH, Zhao KZ, Qi LY (2004) Influence of the spatial structure of trees, etc. on the young trees. Beijing Forestry University 41: 66-75.

Shi Z, Gao XM, Wu YZ (2007) Intraspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram. Acta Ecologica Sinica 27: 4707-4716.

Shi Z, Gao XM, Wu YZ (2007) Intraspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram. Acta Ecologica Sinica 27: 4707-4716.