Race, Income, and Survival in Stage III Colon Cancer: CALGB 89803 (Alliance)

Seohyuk Lee, BSc1; Sui Zhang, MS, MPP2; Chao Ma, MS2; Fang-Shu Ou, PhD3; Eric G Wolfe, MS3; Shuji Ogino, MD, PhD4; Donna Niedzwiecki, PhD5; Leonard B Saltz, MD6; Robert J Mayer, MD7; Rex B Mowat, MD8; Renaud Whittom, MD9; Alexander Hantel, MD10, Al Benson, MD11; Daniel Atienza, MD12; Michael Messino, MD13; Hedy Kindler, MD14; Alan Venook, MD15; Cary P. Gross, MD16; Melinda L. Irwin, PhD, MPH17; Jeffrey A Meyerhardt, MD, MPH17; Charles S. Fuchs, MD, MPH1,18,19

1 Yale School of Medicine, New Haven, CT, USA
2 Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
3 Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
4 Department of Oncologic Pathology, Dana-Farber/Partners CancerCare and Harvard Medical School, Boston, MA, USA; Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
5 Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
6 Memorial Sloan Kettering Cancer Center, New York, NY, USA
7 Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
8 Toledo Community Hospital Oncology Program, Toledo, OH, USA
9 Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
10 Loyola University Stritch School of Medicine, Naperville, IL, USA

© The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
Virginia Oncology Associates, Norfolk, VA, USA
Southeast Clinical Oncology Research Consortium, Mission Hospitals, Asheville, NC, USA
University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
University of California at San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
Yale School of Medicine, Department of Internal Medicine, New Haven, CT, USA
Yale School of Public Health, New Haven, CT, USA
Yale Cancer Center, Smilow Cancer Hospital and Yale School of Medicine, New Haven, CT, USA
Genentech, South San Francisco, CA, USA

Correspondence:
Charles Fuchs MD, MPH, 333 Cedar Street, New Haven, CT 06510; Phone: (203) 785–4371; Email: charles.fuchs@yale.edu
Abstract

Background: Disparities in colon cancer outcomes have been reported across race and socioeconomic status which may reflect, in part, access to care. We sought to assess the influences of race and median household income (MHI) on outcomes among colon cancer patients with similar access to care.

Methods: We conducted a prospective, observational study of 1206 stage III colon cancer patients enrolled in the CALGB 89803 randomized adjuvant chemotherapy trial. Race was self-reported by 1116 White and 90 Black patients at study enrollment; MHI was determined by matching 973 patients’ home zip codes with publicly-available United States Census 2000 data. Multivariate analyses were adjusted for baseline sociodemographic, clinical, dietary, and lifestyle factors. All statistical tests were 2-sided.

Results: Over a median follow-up of 7.7 years, the adjusted hazard ratios (HRs) for Blacks (compared to Whites) were 0.94 (95% confidence interval [CI] = 0.66–1.35; \(P = 0.75 \)) for disease-free survival, 0.91 (95%CI = 0.62–1.35; \(P = 0.65 \)) for recurrence-free survival, and 1.07 (95%CI = 0.73–1.57; \(P = 0.73 \)) for overall survival. Relative to patients in the highest MHI quartile, the adjusted HRs for patients in the lowest quartile were 0.90 (95%CI, 0.67–1.19; \(P_{\text{trend}} = 0.18 \)) for disease-free survival, 0.89 (95%CI = 0.66–1.22; \(P_{\text{trend}} = 0.14 \)) for recurrence-free survival, and 0.87 (95%CI = 0.63–1.19; \(P_{\text{trend}} = 0.23 \)) for overall survival.

Conclusion: In this study of patients with similar healthcare access, no statistically significant differences in outcomes were found by race or MHI. The substantial gaps in outcomes previously observed by race and MHI may not be rooted in differences in tumor biology, but in access to quality care.
Colorectal cancer (CRC) remains the third most common cancer and third leading cause of cancer-related deaths in the United States (U.S.), despite sustained improvements in CRC incidence, survival, and mortality over the past several decades. (1) Blacks experience the greatest CRC burden among all racial groups in the U.S., with almost 20% and 40% higher incidence and mortality rates, respectively, relative to Whites. (1) Beyond being more likely to be detected at a younger age, CRC in Blacks is also typically diagnosed at a more advanced stage, with lower rates of microsatellite instability, and with the tumor in a more proximal location, when compared to that in Whites. (2-4)

Data from national health surveillance statistics and individual studies indicate White CRC patients experience more favorable prognoses than Blacks (2, 5-10). A variety of biologic and sociodemographic factors have been proposed to contribute to this disparity, including age stratification (9, 11-15), comorbidities (16-20), genetic and biologic mediators (21-25), income (2, 18, 26), and tumor grade (27), location (9, 28), and staging (29, 30). A recent analysis from the Surveillance, Epidemiology, and End Results (SEER) Program found that Black CRC patients had a 32% higher mortality risk than Whites. (31) In addition to racial disparities, an assessment of 2019 U.S. cancer statistics observed a widening gap in CRC mortality across socioeconomic status (SES); compared to the most affluent U.S. counties, CRC mortality is now 35% higher in the poorest counties. (1)

Variations in the quality of cancer care provided to patients of racial minority and lower SES backgrounds may contribute to inferior outcomes. Black CRC patients have especially been reported to receive lower quality care than Whites. (32-34) Among CRC patients, Simpson et al. found that Blacks are less likely than Whites to receive a specialist consultation or multimodal
therapy, leading to a reduced survival rate that was, however, not statistically significant once adjusted for treatment differences. (35)

Given the inequalities experienced by colon cancer patients from underserved populations, we sought to assess the independent influences of race and median household income (MHI) on patient outcomes within a prospective cohort study nested in a randomized clinical trial (RCT) of adjuvant 5-fluorouracil-based therapy for stage III colon cancer. To our knowledge, this is the first investigation of racial and MHI disparities in CRC outcomes embedded in an RCT which additionally accounts for dietary and lifestyle factors beyond other clinical and sociodemographic variables. Careful and comprehensive documentation during the trial of patient performance status, pathologic stage, postoperative treatment, and dietary and lifestyle habits allowed concurrent effects of patient, disease, and treatment characteristics to be examined.

Methods

Study Population

Patients in this prospective cohort study were recruited from the U.S. and Canada as participants in the NCI-sponsored Cancer and Leukemia Group B (CALGB; now part of Alliance for Clinical Trials in Oncology) 89803 adjuvant chemotherapy trial for stage III colon cancer (ClinicalTrials.gov Identifier: NCT00003835), comparing weekly 5-fluorouracil (5-FU) and leucovorin to weekly 5-FU, leucovorin, and irinotecan. 1264 patients were enrolled between April 1999 and May 2001, after the first 87 patients of which the protocol was amended such that patients were required to complete a self-administered questionnaire examining diet and lifestyle behaviors twice: once midway through chemotherapy (4 months post-surgery; Questionnaire 1),
and again six months following chemotherapy treatment completion (14 months post-surgery; Questionnaire 2).

Eligibility required patients to have had: a complete surgical resection of the primary tumor within 56 days of trial enrollment; regional lymph node, but no distant, metastases; no prior chemotherapy or radiation treatment for the tumor; a baseline Eastern Cooperative Oncology Group (ECOG) performance status between 0 and 2; and sufficient bone marrow, hepatic, and renal functions. **Supplementary Figure 1** describes the derivation of the final sample sizes of 1206 and 973 patients included in this study for race and MHI analyses, respectively.

CALGB 89803 had long-term follow-up for disease recurrence and overall survival (OS) which continued for 5- and 7-years post-treatment, respectively. Follow-up examinations for disease recurrence occurred annually. OS was assessed via phone calls to patients and their family members as well as information from patient charts, with follow-up occurring every 3 months for the first 2 years, every 4 months for the next 2 years, and yearly for the last 3 years. The National Death Index was only used in cases of loss to follow-up. The last-patient-in for the trial was in April 2001, and the study was terminated in April 2009 with the long-term follow-up duration having been met.

Assessment of Patient Race, Insurance Status, and Median Household Income

The race and insurance status of each of the participating subjects were self-reported at the time of enrollment as, respectively, Black, White, Hispanic/Latino/Spanish origin, Asian, Native Hawaiian, Native American, Indian, Filipino, or Other, and private, Medicare/Medicaid/military, or self-pay/none/unknown. Analyses by race were limited to the
1206 subjects who were eligible for CALGB 89803 as described above and whose races were specified as either Black or White. Patients who reported a race other than Black or White were excluded due to very limited power in the other racial categories. MHI was determined by matching the zip codes of patient home addresses, self-reported at the time of enrollment, with publicly-available U.S. Census 2000 information. Analyses by MHI were limited to the 973 subjects who were eligible for CALGB 89803 as described above and whose MHI data were able to be matched with U.S. census information.

Dietary Assessment

Patients completed a validated food frequency questionnaire querying consumption of 131 items over the past 3 months, as previously described(36-39). Classification of patients between prudent and Western dietary patterns(40), characterized by high intakes of fruits and vegetables, poultry, and fish versus high intakes of meat, fat, refined grains, and dessert, respectively, was performed following techniques previously described(41). Body mass index (BMI), levels of engagement in physical activity, and consistent aspirin use – defined as any aspirin use reported both during (Questionnaire 1) and after completion of adjuvant chemotherapy (Questionnaire 2) – were also recorded.

Endpoints

The primary endpoint for this study was disease-free survival (DFS), defined as time from study enrollment to tumor recurrence, occurrence of a new primary colon cancer, or death consequent of any cause. Recurrence-free survival (RFS) was defined as time from study enrollment to tumor recurrence, occurrence of a new primary colon tumor, or death with
evidence of recurrence, censoring patients who died with no known tumor recurrence at the last
documented evaluation. OS was defined as the time from study enrollment to death due to any
cause.

Statistical Analysis

Findings from the CALGB 89803 trial for stage III colon cancer have previously been
described (48). As the two chemotherapy treatment arms demonstrated similar results, patient
data were combined from both treatment arms and analyzed for this study according to
categories of race or MHI quartiles. Baseline characteristics were compared between Whites and
Blacks and between patients from different income quartiles using Wilcoxon test for continuous
variables (age, MHI) and Chi-square or Fisher’s exact test for the remaining categorical
variables.

The Kaplan-Meier method was performed to estimate the distributions of survival times
according to race or MHI. Cox proportional hazards regression was used to determine the
associations between race (Black versus White) or MHI (quartiles) and survival outcomes,
controlling for potential confounders. The proportional hazards assumptions were graphically
assessed and met. Two models were built to incrementally examine the association between race
or MHI and the study endpoints. Model 1 was adjusted for age, and model 2 was adjusted for
age, sex, treatment arm, T-stage, number of positive lymph nodes, ECOG performance status,
tumor location, presence of clinical bowel obstruction or perforation, insurance status, consistent
aspirin intake, energy intake, BMI, physical activity, Western dietary pattern, and prudent dietary
pattern, where the last five variables were treated as time-varying covariates. We conducted
linear trend tests across quartiles of MHI by modeling MHI as a continuous variable and
assigning each subject the median value for their corresponding quartile. Tests of interaction between race or MHI and potential confounders were assessed by entering the cross product of race or MHI and the covariate of interest. All statistical tests were two-sided, and P values equal to or less than 0.05 were considered statistically significant. All analyses were conducted using SAS software (version 9.4; SAS Institute, Cary, NC).

Patient registration and clinical data collection were managed and their analyses performed by the Alliance Statistics and Data Center. The statistical analyses were based on the study database frozen on November 9, 2009. Data quality was ensured by review of data by the Alliance Statistics and Data Center and by the study chairperson following Alliance policies.

All patients signed study-specific informed consent, which was approved by the NCI Cancer Treatment Evaluation Program and each participating site’s institutional review board.

Results

Baseline Characteristics According to Race

Within our cohort, 92.5% self-identified as White and the remaining 7.5% as Black. Table 1 summarizes baseline clinical and sociodemographic characteristics of the study cohort according to race. Relative to Whites, Blacks were more likely to have a lower MHI, be female, have a proximal tumor, demonstrate a worse ECOG status, engage in less physical activity, and have a higher Western and a lower prudent dietary pattern.

Association Between Race and Cancer Recurrence or Mortality

Over a median follow-up of 7.7 years, we observed no statistically significant differences in DFS, RFS or OS between Blacks and Whites in either age-adjusted or multivariable analyses.
The distributions of disease-free, recurrence-free, and overall survival times by race are shown in **Figure 1**. As shown in **Table 2** and **Supplementary Figure 2**, the adjusted hazard ratios (HRs) for Blacks were 0.94 (95% confidence interval [CI] = 0.66–1.35; \(P=0.75 \)) for DFS, 0.91 (95% CI = 0.62–1.35; \(P=0.65 \)) for RFS, and 1.07 (95% CI = 0.73–1.57; \(P=0.73 \)) for OS, when compared to Whites.

Stratified Analyses of Race by Potential Effect Modifiers

We examined the influence of race on DFS across strata of other potential predictors of patient outcome (**Supplementary Table 1**). The association between race and patient outcome was not statistically significantly modified across all examined strata of patient, disease, and treatment characteristics. However, in these stratified analyses, statistical power to adequately detect differences was limited by the sample size, and such analyses should be considered exploratory.

Baseline Characteristics According to Median Household Income

Table 3 represents the baseline patient characteristics of the study cohort according to MHI quartiles. Relative to patients with a higher MHI, those with a lower MHI were more likely to be Black, demonstrate a worse ECOG status, and have a higher Western and a lower prudent dietary pattern, in addition to being less likely to possess private health insurance.

Impact of Income on Cancer Recurrence or Mortality

Over a median follow-up of 7.7 years, we observed no statistically significant differences in patient outcomes across MHI quartiles in either age-adjusted or multivariable analyses. The
distributions of disease-free, recurrence-free, and overall survival times by MHI are shown in Figure 2. As shown in Table 4 and Supplementary Figure 3, the fully adjusted HRs for patients in the lowest quartile of MHI were 0.90 (95% CI = 0.67–1.19; \(P_{\text{trend}}=0.18\)) for DFS, 0.89 (95% CI = 0.66–1.22; \(P_{\text{trend}}=0.14\)) for RFS, and 0.87 (95% CI = 0.63–1.19; \(P_{\text{trend}}=0.23\)) for OS, relative to patients in the highest quartile. Moreover, we examined the independent effect of insurance status (private/self-pay versus Medicare/Medicaid/military/other/none) on patient outcomes, and found no statistically significant associations between insurance status and cancer recurrence or mortality (Supplementary Table 2).

Stratified Analyses of Median Household Income by Potential Effect Modifiers

We further examined whether the influence of MHI on DFS differed across strata of other potential predictors of patient outcome (Supplementary Table 3). The association between MHI and patient outcome was not statistically significantly modified across most examined strata of patient, disease, and treatment characteristics. We did observe statistically significant interactions between income and number of positive lymph nodes (\(P_{\text{interaction}}=0.02\)) and between income and ECOG status (\(P_{\text{interaction}}=0.02\)), though these findings were not corrected for multiple hypothesis testing. As previously mentioned, in these stratified analyses, statistical power to adequately detect differences was limited by the sample size, and such analyses should be considered exploratory.

Joint Impact of Race and MHI on Cancer Recurrence or Mortality

Finally, in exploratory analyses, we examined the joint effect of both race and MHI on patient outcomes (Supplementary Table 4), and found no statistically significant associations.
Relative to Whites with a household income above the cohort median, Blacks with a household income below the cohort median did not experience statistically significant differences in DFS, RFS, or OS.

Discussion

In this prospective cohort of resected stage III colon cancer patients enrolled in a postoperative adjuvant chemotherapy clinical trial, neither race nor MHI was statistically significantly associated with an increased risk of cancer recurrence or mortality. These findings contrast with prior studies, including national surveillance data, which found CRC patients who are Black or from lower SES backgrounds generally experience worse outcomes(1). Our study is, to our knowledge, the first investigation into racial and MHI disparities in colon cancer outcomes embedded in an RCT that additionally accounts for dietary and lifestyle factors beyond other clinical and sociodemographic variables, thereby benefitting from a more robust multivariate analysis than prior studies.

A recent analysis of U.S. cancer statistics observed inequalities in CRC mortality not only by race, but also increasingly by SES.(1) Cancer mortality-associated SES disparities have worsened in the U.S. over the past 3 decades. For CRC, mortality rates in the early 1970s for men living in the least affluent counties were 20% lower than for those in affluent ones, but are now 35% greater.(1) Considered the most prominent trend reversal among all cancer types, this shift in CRC mortality has been cited to be, in part, a consequence of underserved populations experiencing slower receipt of treatment advances.(1) Indeed, both being Black and from a lower SES background have even been associated with reduced rates of receiving any cancer treatment(49). In that analysis, physicians treating low-income or predominantly Black patients
with colon cancer were found to be 30% and 22% less likely to adhere to guideline-recommended treatments relative to those treating high-income or no Black patients, respectively. (49)

Identifying and eliminating barriers to access of care is a critical priority in healthcare. In the context of the Department of Veterans Affairs hospital system – an equal-access healthcare setting – Akerley et al. found no differences in treatment or overall survival between Black and White male veterans (50). In a multisite NCI-sponsored clinical trial of patients with metastatic CRC, Blacks and Whites receiving standardized treatments experienced similar OS and time-to-progression rates. (51) Consistent with our study, other studies have found that CRC outcomes-associated racial disparities between Blacks and Whites are minimal or non-existent when treatment differences are eliminated (16, 18, 35, 52-54). Notably, Blacks and Whites in our cohort experienced similar outcomes despite Blacks having presented with a worse ECOG performance status and a greater likelihood of having proximal tumors, both of which are generally considered poor prognostic factors.

We directly examined the impact of diet and lifestyle factors, and found differences in dietary and lifestyle patterns between Blacks and Whites and between those from lower and higher MHI backgrounds. Such behaviors have long been demonstrated to influence CRC risk and outcomes (40, 55-61), and disparities in the prevalence of healthier lifestyle behaviors should be addressed.

Assessing relationships between race or MHI and colon cancer patient outcomes through an RCT offers several strengths. By studying patients enrolled in a clinical trial, we potentially reduced the biases introduced by differences in access to healthcare resources unavoidable in population-based cancer registries. Moreover, as all patients in this study met the same
enrollment criteria and received adjuvant 5-FU-based chemotherapy, confounding by patient characteristics or the nature of therapy were minimized. Finally, all patients had stage III colon cancer, minimizing the effect of disease stage heterogeneity on outcomes.

Our study is not without limitations. Among our cohort of 1206 patients, only 90 self-identified as Black. Patients who choose to enroll in clinical trials may differ from the general population: they must meet specific eligibility criteria, be chosen as appropriate candidates, and have the motivation to participate. Black patients who ultimately were not offered or had declined participation may be clinically significantly different from those who had participated; nonetheless, the overall outcomes for patients in this trial were comparable to those of a similarly-staged population in the SEER database. Moreover, CALGB 89803 enrolled patients from both community and academic centers across North America, thereby lowering the likelihood of biased sampling, and the cohort appears to have characteristics representative of the larger population of stage III colon cancer patients. MHI was determined indirectly using zip codes and publicly-available U.S. census data as a proxy. While individual, patient-specific income data would provide greater fidelity than zip code-block data, census-block data have identified important disparities in access to care and patient outcomes (62, 63). Given the observational nature of our study, we cannot completely exclude the possibility that the statistically non-significant associations found between race or MHI and patient outcomes are attributable to confounding variables or residual confounding. However, our findings remained consistent even after controlling for both known and suspected patient outcome predictors.

In conclusion, neither race nor MHI was statistically significantly associated with colon cancer recurrence or mortality in this cohort of stage III patients treated within an RCT. Our findings suggest the substantial gap in outcomes observed between White and Black CRC
patients and the growing disparity in outcomes across SES(1) may be rooted in differences in access to and receipt of quality care, rather than in tumor biology. Indeed, Adamson et al. recently found that Medicaid expansion under the Affordable Care Act reduced racial disparities in receiving timely cancer treatment(64). Our study highlights the need to improve access to quality care for patients across all segments of the population, and especially so for traditionally underserved populations. Efforts by the NCI and U.S. cancer centers to increase enrollment of underrepresented minorities(65, 66) into clinical trials(67-69) may help both to ensure the delivery of high-quality care to traditionally underserved populations and to allow for further examination of potential differences in treatment and tumor biology between diverse subgroups.

Funding

This work was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers U10CA180821, U10CA180882, and U24CA196171 (to the Alliance for Clinical Trials in Oncology); UG1CA233180, UG1CA233327, UG1CA189858, UG1CA233290, U10CA180867, U10CA138561, U10CA180791, UG1CA233337, R01CA149222, and P30CA016359; U10CA180888 (SWOG); U10CA180820 and UG1CA233320 (ECOG-ACRIN). https://acknowledgments.alliancefound.org. Also supported in part by funds from Pharmacia & Upjohn Company (now Pfizer Oncology; to C.S. Fuchs), the Stand-Up-to-Cancer Colorectal Cancer Dream Team (C.S. Fuchs, Grant Number: SU2C-AACR-DT22-17), NIH R01 CA169141, NIH R01 CA118553, and NIH P50 CA127003 to C.S. Fuchs, and NIH R35 CA197735 to S. Ogino. Stand Up To Cancer is a division of the Entertainment Industry Foundation. Research grants are administered by the American Association for Cancer Research, the Scientific Partner of SU2C.
Notes

Role of the funder: The sponsors did not participate in the design or conduct of the study; collection, management, analysis, or interpretation of the data; or the preparation, review, or approval of the manuscript.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Disclosures: Charles Fuchs reports consulting role for Agios, Amylin Pharmaceuticals, Astra-Zeneca, Bain Capital, CytomX Therapeutics, Daiichi-Sankyo, Eli Lilly, Entrinsic Health, Evolveimmune Therapeutics, Genentech, Merck, Taiho, and Unum Therapeutics. He also serves as a Director for CytomX Therapeutics and owns unexercised stock options for CytomX and Entrinsic Health. He is a co-Founder of Evolveimmune Therapeutics and has equity in this private company. He had provided expert testimony for Amylin Pharmaceuticals and Eli Lilly. In March 2021, he became an employee of Genentech. The other authors have no relevant conflicts of interest.

Author contributions: Conceptualization: CF; Data Curation: SZ, CM; Formal Analysis: SZ, CM; Funding Acquisition: CF; Investigation: SL, CF; Methodology: CF; Validation: FO, EW; Visualization: SL, SZ, CM; Writing, Original Draft: SL, CF; Writing, Review & Editing: SL, SZ, CM, FO, EW, SO, DN, LS, RJM, RBM, RW, AH, AB, DA, MM, HK, AV, CP, MI, JM, CF.

Data Availability

Data are from the Alliance for Clinical Trials in Oncology. Investigators may request access to this data per Alliance protocol as outlined below and as detailed at
https://www.allianceforclinicaltrialsinoncology.org/main/public/standard.xhtml?path=%2FPublic%2FDatasharing. Per NCI National Clinical Trials Network (NCTN) guidelines, any investigator may submit a request for data from published Alliance or legacy ACOSOG, CALGB, or NCCTG trials. To submit a data request, the investigator should complete an Alliance Data Sharing Request Form and send it by e-mail to gro.NTCNecnail@stpecnoc. Once received, the request will be forwarded to the Alliance Statistics and Data Center (SDC). The SDC will confirm the availability of the data. Once the SDC confirms availability, the investigator will be asked to provide documentation of Institutional Review Board (IRB) approval or exemption from their institution, as well as to submit an Alliance data release agreement. Once the IRB documentation and the data release agreement are received from the requesting investigator, the SDC will be notified that the requested data may be released. Questions about the process may be directed to gro.NTCNecnail@stpecnoc.

References

1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for clinicians. 2019;69(1):7-34.

2 Dimou A, Syrigos KN, Saif MW. Disparities in colorectal cancer in African-Americans vs Whites: before and after diagnosis. World journal of gastroenterology. 2009;15(30):3734-3743.

3 Phipps AI, Lindor NM, Jenkins MA, et al. Colon and rectal cancer survival by tumor location and microsatellite instability: the Colon Cancer Family Registry. Diseases of the colon and rectum. 2013;56(8):937-944.
Venook AP, Niedzwiecki D, Innocenti F, et al. Impact of primary (1º) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance). *Journal of Clinical Oncology*. 2016;34(15_suppl):3504-3504.

Ollberding NJ, Nomura AM, Wilkens LR, Henderson BE, Kolonel LN. Racial/ethnic differences in colorectal cancer risk: the multiethnic cohort study. *International journal of cancer*. 2011;129(8):1899-1906.

Schenck AP, Peacock SC, Klabunde CN, Lapin P, Coan JF, Brown ML. Trends in colorectal cancer test use in the medicare population, 1998-2005. *American journal of preventive medicine*. 2009;37(1):1-7.

Ward E, Jemal A, Cokkinides V, et al. Cancer disparities by race/ethnicity and socioeconomic status. *CA: a cancer journal for clinicians*. 2004;54(2):78-93.

Robbins AS, Siegel RL, Jemal A. Racial Disparities in Stage-Specific Colorectal Cancer Mortality Rates From 1985 to 2008. *Journal of Clinical Oncology*. 2011;30(4):401-405.

Wallace K, Hill EG, Lewin DN, et al. Racial disparities in advanced-stage colorectal cancer survival. *Cancer Causes & Control*. 2013;24(3):463-471.

Cairns AL, Schlottmann F, Strassel PD, Di Corpo M, Patti MG. Racial and Socioeconomic Disparities in the Surgical Management and Outcomes of Patients with Colorectal Carcinoma. *World Journal of Surgery*. 2019;43(5):1342-1350.

Potosky AL, Harlan LC, Kaplan RS, Johnson KA, Lynch CF. Age, sex, and racial differences in the use of standard adjuvant therapy for colorectal cancer. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2002;20(5):1192-1202.
12 Jessup JM, Stewart A, Greene FL, Minsky BD. Adjuvant chemotherapy for stage III colon cancer: implications of race/ethnicity, age, and differentiation. *Jama.* 2005;294(21):2703-2711.

13 Phatak UR, Kao LS, Millas SG, Wiatrek RL, Ko TC, Wray CJ. Interaction between age and race alters predicted survival in colorectal cancer. *Annals of surgical oncology.* 2013;20(11):3363-3369.

14 Wallace K, Sterba KR, Gore E, et al. Prognostic factors in relation to racial disparity in advanced colorectal cancer survival. *Clinical colorectal cancer.* 2013;12(4):287-293.

15 Holowatyj AN, Ruterbusch JJ, Rozek LS, Cote ML, Stoffel EM. Racial/Ethnic Disparities in Survival Among Patients With Young-Onset Colorectal Cancer. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology.* 2016;34(18):2148-2156.

16 Dignam JJ, Colangelo L, Tian W, et al. Outcomes among African-Americans and Caucasians in colon cancer adjuvant therapy trials: findings from the National Surgical Adjuvant Breast and Bowel Project. *Journal of the National Cancer Institute.* 1999;91(22):1933-1940.

17 Hodgson DC, Fuchs CS, Ayanian JZ. Impact of patient and provider characteristics on the treatment and outcomes of colorectal cancer. *Journal of the National Cancer Institute.* 2001;93(7):501-515.

18 Le H, Ziogas A, Lipkin SM, Zell JA. Effects of socioeconomic status and treatment disparities in colorectal cancer survival. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.* 2008;17(8):1950-1962.
White A, Vernon SW, Franzini L, Du XL. Racial disparities in colorectal cancer survival: to what extent are racial disparities explained by differences in treatment, tumor characteristics, or hospital characteristics? *Cancer.* 2010;116(19):4622-4631.

Silber JH, Rosenbaum PR, Ross RN, et al. Racial disparities in colon cancer survival: a matched cohort study. *Annals of internal medicine.* 2014;161(12):845-854.

Brim H, Ashktorab H. Genomics of Colorectal Cancer in African Americans. *Next generation, sequencing & applications.* 2016;3(2).

Li E, Ji P, Ouyang N, et al. Differential expression of miRNAs in colon cancer between African and Caucasian Americans: implications for cancer racial health disparities. *International journal of oncology.* 2014;45(2):587-594.

Ashktorab H, Azimi H, Varma S, et al. Driver genes exome sequencing reveals distinct variants in African Americans with colorectal neoplasia. *Oncotarget.* 2019;10(27):2607-2624.

Lynn H, Sun X, Ayshiev D, et al. Single nucleotide polymorphisms in the MYLKp1 pseudogene are associated with increased colon cancer risk in African Americans. *PloS one.* 2018;13(8):e0200916.

Alexander D, Chatla C, Funkhouser E, Meleth S, Grizzle WE, Manne U. Postsurgical disparity in survival between African Americans and Caucasians with colonic adenocarcinoma. *Cancer.* 2004;101(1):66-76.

Du XL, Fang S, Vernon SW, et al. Racial disparities and socioeconomic status in association with survival in a large population-based cohort of elderly patients with colon cancer. *Cancer.* 2007;110(3):660-669.
27 Marcella S, Miller JE. Racial differences in colorectal cancer mortality. The importance of stage and socioeconomic status. *Journal of clinical epidemiology*. 2001;54(4):359-366.

28 Meguid RA, Slidell MB, Wolfgang CL, Chang DC, Ahuja N. Is there a difference in survival between right- versus left-sided colon cancers? *Annals of surgical oncology*. 2008;15(9):2388-2394.

29 Lai Y, Wang C, Civan JM, et al. Effects of Cancer Stage and Treatment Differences on Racial Disparities in Survival From Colon Cancer: A United States Population-Based Study. *Gastroenterology*. 2016;150(5):1135-1146.

30 Soneji S, Iyer SS, Armstrong K, Asch DA. Racial disparities in stage-specific colorectal cancer mortality: 1960-2005. *American journal of public health*. 2010;100(10):1912-1916.

31 Alshareef SH, Alsobaie NA, Aldehesi SA, Alturki ST, Zevallos JC, Barengo NC. Association between Race and Cancer-Related Mortality among Patients with Colorectal Cancer in the United States: A Retrospective Cohort Study. *International journal of environmental research and public health*. 2019;16(2).

32 Ball JK, Elixhauser A. Treatment differences between blacks and whites with colorectal cancer. *Medical care*. 1996;34(9):970-984.

33 Morris AM, Billingsley KG, Baxter NN, Baldwin L-M. Racial Disparities in Rectal Cancer Treatment: A Population-Based Analysis. *JAMA Surgery*. 2004;139(2):151-155.

34 Laiyemo AO, Doubeni C, Pinsky PF, et al. Race and colorectal cancer disparities: healthcare utilization vs different cancer susceptibilities. *Journal of the National Cancer Institute*. 2010;102(8):538-546.
35 Simpson DR, Martinez ME, Gupta S, et al. Racial disparity in consultation, treatment, and the impact on survival in metastatic colorectal cancer. *Journal of the National Cancer Institute*. 2013;105(23):1814-1820.

36 Meyerhardt JA. Assessment of a Dietary Questionnaire in Cancer Patients Receiving Cytotoxic Chemotherapy. *Journal of clinical oncology*. 2005;23(33):8453-8460.

37 Meyerhardt JA, Heseltine D, Campos H, et al. Assessment of a dietary questionnaire in cancer patients receiving cytotoxic chemotherapy. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2005;23(33):8453-8460.

38 Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. *Am J Epidemiol*. 1992;135(10):1114-1126; discussion 1127-1136.

39 Feskanich D, Rimm EB, Giovannucci EL, et al. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. *J Am Diet Assoc*. 1993;93(7):790-796.

40 Meyerhardt JA, Niedzwiecki D, Hollis D, et al. Association of Dietary Patterns With Cancer Recurrence and Survival in Patients With Stage III Colon Cancer. *Jama*. 2007;298(7):754-764.

41 Fung TT, Kashambwa R, Sato K, et al. Post diagnosis diet quality and colorectal cancer survival in women. *PloS one*. 2014;9(12):e115377.

42 Ogino S, Liao X, Imamura Y, et al. Predictive and prognostic analysis of PIK3CA mutation in stage III colon cancer intergroup trial. *Journal of the National Cancer Institute*. 2013;105(23):1789-1798.
Ogino S, Shima K, Meyerhardt JA, et al. Predictive and prognostic roles of BRAF mutation in stage III colon cancer: results from intergroup trial CALGB 89803. *Clinical cancer research : an official journal of the American Association for Cancer Research*. 2012;18(3):890-900.

Ogino S, Kawasaki T, Brahmandam M, et al. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. *The Journal of molecular diagnostics : JMD*. 2005;7(3):413-421.

Ogino S, Meyerhardt JA, Irahara N, et al. KRAS mutation in stage III colon cancer and clinical outcome following intergroup trial CALGB 89803. *Clinical cancer research : an official journal of the American Association for Cancer Research*. 2009;15(23):7322-7329.

Warren RS, Atreya CE, Niedzwiecki D, et al. Association of TP53 mutational status and gender with survival after adjuvant treatment for stage III colon cancer: results of CALGB 89803. *Clinical cancer research : an official journal of the American Association for Cancer Research*. 2013;19(20):5777-5787.

Bertagnolli MM, Niedzwiecki D, Compton CC, et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2009;27(11):1814-1821.

Saltz LB, Niedzwiecki D, Hollis D, et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon
cancer: results of CALGB 89803. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2007;25(23):3456-3461.

49 Popescu I, Schrag D, Ang A, Wong M. Racial/Ethnic and Socioeconomic Differences in Colorectal and Breast Cancer Treatment Quality: The Role of Physician-level Variations in Care. *Medical care*. 2016;54(8):780-788.

50 Akerley WL, 3rd, Moritz TE, Ryan LS, Henderson WG, Zacharski LR. Racial comparison of outcomes of male Department of Veterans Affairs patients with lung and colon cancer. *Archives of internal medicine*. 1993;153(14):1681-1688.

51 Sanoff HK, Sargent DJ, Green EM, McLeod HL, Goldberg RM. Racial Differences in Advanced Colorectal Cancer Outcomes and Pharmacogenetics: A Subgroup Analysis of a Large Randomized Clinical Trial. *Journal of Clinical Oncology*. 2009;27(25):4109-4115.

52 Polite BN, Sing A, Sargent DJ, et al. Exploring racial differences in outcome and treatment for metastatic colorectal cancer: results from a large prospective observational cohort study (BRiTE). *Cancer*. 2012;118(4):1083-1090.

53 Bach PB, Schrag D, Brawley OW, Galaznik A, Yakren S, Begg CB. Survival of blacks and whites after a cancer diagnosis. *Jama*. 2002;287(16):2106-2113.

54 Doubeni CA, Field TS, Buist DS, et al. Racial differences in tumor stage and survival for colorectal cancer in an insured population. *Cancer*. 2007;109(3):612-620.

55 Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. *Mol Nutr Food Res*. 2017;61(1):10.1002/mnfr.201500902.

56 Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. *Clin Colon Rectal Surg*. 2009;22(4):191-197.
Lee KJ, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S. Physical activity and risk of colorectal cancer in Japanese men and women: the Japan Public Health Center-based prospective study. *Cancer causes & control : CCC*. 2007;18(2):199-209.

Campbell PT, Cotterchio M, Dicks E, Parfrey P, Gallinger S, McLaughlin JR. Excess body weight and colorectal cancer risk in Canada: associations in subgroups of clinically defined familial risk of cancer. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology*. 2007;16(9):1735-1744.

Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. *Annals of oncology : official journal of the European Society for Medical Oncology*. 2014;25(7):1293-1311.

Meyerhardt JA, Giovannucci EL, Holmes MD, et al. Physical activity and survival after colorectal cancer diagnosis. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2006;24(22):3527-3534.

Meyerhardt JA, Sato K, Niedzwiecki D, et al. Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. *Journal of the National Cancer Institute*. 2012;104(22):1702-1711.

Berkowitz SA, Traore CY, Singer DE, Atlas SJ. Evaluating area-based socioeconomic status indicators for monitoring disparities within health care systems: results from a primary care network. *Health services research*. 2015;50(2):398-417.
Link-Gelles R, Westreich D, Aiello AE, et al. Bias with respect to socioeconomic status: A closer look at zip code matching in a pneumococcal vaccine effectiveness study. *SSM - Population Health*. 2016;2:587-594.

Adamson BJS, Cohen AB, Estevez M, et al. Affordable Care Act (ACA) Medicaid expansion impact on racial disparities in time to cancer treatment. *Journal of Clinical Oncology*. 2019;37(18_suppl):LBA1-LBA1.

Grant SR, Lin TA, Miller AB, et al. Racial and Ethnic Disparities among Participants in US-Based Phase 3 Randomized Cancer Clinical Trials. *JNCI Cancer Spectrum*. 2020.

Unger JM, Hershman DL, Osarogiagbon RU, et al. Representativeness of Black Patients in Cancer Clinical Trials Sponsored by the National Cancer Institute Compared With Pharmaceutical Companies. *JNCI Cancer Spectrum*. 2020;4(4).

Watanabe. Amid criticism, NCI tries to boost minority clinical-trial recruitment. *The Scientist (Philadelphia, Pa)*. 1996;10(7).

Brown. Scientists, African American clergy join forces for trial recruitment. *The Scientist (Philadelphia, Pa)*. 1997;11(4).

Underwood SM. Minorities, Women, and Clinical Cancer Research. *Annals of epidemiology*. 10(8):S3-S12.
Tables

Table 1. Baseline characteristics of 1206 stage III colon cancer patients by race.

Characteristic	Race			
	White (n=1116)	Black (n=90)	Total (n=1206)	
	Median age (Q1-Q3), y	61.0 (52.0-69.0)	58.0 (49.0-70.0)	61.0 (52.0-69.0)
Household income, Median(Q1-Q3)	41256.5 (35079.0-52561.0)	32338.0 (26757.5-38878.0)	40665.5 (33967.0-51668.0)	
Sex, No. (%)		0.04	0.04	0.04
Male	634 (56.8)	41 (45.6)	675 (56.0)	
Female	482 (43.2)	49 (54.4)	531 (44.0)	
Treatment arm, No. (%)		0.59	0.59	0.59
5-FU/LV	550 (49.3)	47 (52.2)	597 (49.5)	
IFL	566 (50.7)	43 (47.8)	609 (50.5)	
T-stage, No. (%)		0.19	0.19	0.19
T1-2	146 (13.3)	7 (8.3)	153 (13.0)	
T3-4	948 (86.7)	77 (91.7)	1025 (87.0)	
Missing	22	6	28	
Number of positive nodes, No. (%)		0.39	0.39	0.39
1-3	699 (63.5)	58 (68.2)	757 (63.9)	
4+	401 (36.5)	27 (31.8)	428 (36.1)	
Missing	16	5	21	
Performance status, No. (%)		0.002	0.002	0.002
ECOG 0	829 (75.5)	51 (60.0)	880 (74.4)	
ECOG 1,2	269 (24.5)	34 (40.0)	303 (25.6)	
Missing	18	5	23	
Clinical bowel obstruction or perforation, No. (%)		0.57	0.57	0.57
No	836 (74.9)	65 (72.2)	901 (74.7)	
Yes	280 (25.1)	25 (27.8)	305 (25.3)	
Tumor location, No. (%)		0.02	0.02	0.02
	Distal	Proximal	Missing	
--------------------------	------------	------------	-----------	
	471 (42.9)	25 (29.8)	496 (42.0)	
	626 (57.1)	59 (70.2)	685 (58.0)	
	19	6	25	

Insurance status, No. (%)

Private/self-pay	713 (63.9)	56 (62.2)	769 (63.8)
Medicare/Medicaid/military/other/none	403 (36.1)	34 (37.8)	437 (36.2)

Energy intake inFFQ1, No. (%)

Median (Q1-Q3)	1,970 (1,538-2,397)	1,604 (1,272-2,325)	
<Median	464 (49.4)	39 (57.4)	503 (50.0)
≥Median	475 (50.6)	29 (42.6)	504 (50.0)

BMI in FFQ1, No. (%)

Median (Q1-Q3)	27 (24-31)	28 (25-33)	
<Median	474 (50.5)	29 (42.6)	503 (50.0)
≥Median	465 (49.5)	39 (57.4)	504 (50.0)

Physical activity in FFQ1, No. (%)

Median (Q1-Q3)	5.2 (1.4-15.6)	2.0 (0.25-6.5)	
<Median	457 (48.7)	46 (67.6)	503 (50.0)
≥Median	482 (51.3)	22 (32.4)	504 (50.0)

Western dietary pattern in FFQ1, No. (%)

Median (Q1-Q3)	-0.13 (-0.60-0.53)	-0.33 (-0.99-0.08)	
<Median	461 (49.1)	42 (61.8)	503 (50.0)
≥Median	478 (50.9)	26 (38.2)	504 (50.0)

Prudent dietary pattern in FFQ1, No. (%)

Median (Q1-Q3)	-0.18 (-0.59-0.40)	-0.45 (-0.79-0.41)	
<Median	460 (49.0)	43 (63.2)	503 (50.0)
≥Median	479 (51.0)	25 (36.8)	504 (50.0)

Consistent aspirin use (both FFQ1&2), No. (%)

			0.16					
Reason off study, No. (%)	No	Yes	Reason off study, No. (%)	Completed planned therapy	Recurrence or death	Adverse events	Others	
--------------------------	----	-----	--------------------------	--------------------------	--------------------	---------------	--------	
	859 (91.5)	66 (97.1)	925 (91.9)	833 (74.6)	55 (4.9)	76 (6.8)	152 (13.6)	
	80 (8.5)	2 (2.9)	82 (8.1)	66 (73.3)	3 (3.3)	1 (1.1)	20 (22.2)	172 (14.3)

0.03

*Missing value manipulation in following analysis: missing % is less than 5%, and there’s a majority category (%>60%), the missing values were recoded into the majority category (T-stage, number of positive nodes, performance status); No majority category (location, proximal or distal), the missing values were recoded as a separate indicator when using as covariates. 5-FU = 5-fluorouracil; LV = leucovorin; IFL = irinotecan, 5-fluorouracil, leucovorin; FFQ = food frequency questionnaire; BMI = body mass index

P-value based on Wilcoxon test for continuous variables (median household income and age); or Chi-square or Fisher’s exact test for categorical variables without missing category. All tests were two-sided.

T1-2 = level of invasion through the bowel wall not beyond the muscle layer; T3-4 = level of invasion through the bowel wall beyond the muscle layer.

Baseline performance status: Performance status 0 = fully active; Performance status 1 = restricted in physically strenuous activity but ambulatory and able to carry out light work; Performance status 2 = ambulatory and capable of all self-care but unable to carry out any work activities, up and about more than 50% of waking hours.
Table 2. Race, colon cancer recurrence, and mortality.

Outcome	White	Black	\(P^b\)
Disease-free survival			
No. of events/No. at risk	478/1116	37/90	0.99
Age-adjusted only, HR (95% CI)	Ref	1.00 (0.72 - 1.40)	
Multivariable adjusted, HR (95% CI) \(^a\)	Ref	0.94 (0.66 - 1.35)	0.75
Recurrence-free survival			
No. of events/No. at risk	407/1116	31/90	0.82
Age-adjusted only, HR (95% CI)	Ref	0.96 (0.67 - 1.38)	
Multivariable adjusted, HR (95% CI) \(^a\)	Ref	0.91 (0.62 - 1.35)	0.65
Overall survival			
No. of events/No. at risk	391/1116	33/90	0.40
Age-adjusted only, HR (95% CI)	Ref	1.16 (0.82 - 1.66)	
Multivariable adjusted, HR (95% CI) \(^a\)	Ref	1.07 (0.73 - 1.57)	0.73

\(^a\) Multivariable-adjusted model adjusted for age (continuous), sex (male, female), treatment arm, T-stage (T1-2, T3-4), number of positive nodes (1-3, 4+), performance status (ECOG 0, ECOG 1-2), tumor location (proximal, distal), clinical bowel obstruction or perforation (yes, no), valid FFQ1 (yes, no), consistent aspirin use (yes, no), insurance status (private/self-pay, Medicare/Medicaid/military/other/none), median household income (quartiles), time-varying energy intake, BMI, physical activity, Western dietary pattern, prudent dietary pattern (all time-varying variables are continuous). \(HR =\) Hazard Ratio; \(CI =\) Confidence Interval; ECOG = Eastern Cooperative Oncology Group; FFQ = Food Frequency Questionnaire; BMI = Body Mass Index

\(^b\) P-values were calculated from the two-sided Wald test while adjusting for covariates.
Table 3. Baseline characteristics of 973 stage III colon cancer patients by income quartile.

Characteristic	Total (n=973)	Income Quartile	P b			
		Q1 (n=243)	Q2 (n=243)	Q3 (n=244)	Q4 (n=243)	
Median Household income (Q1-Q3)	40542 (33891-51894)	30426 (27056-32083)	37264 (35604-38750)	45087 (42456-48392)	62325 (56876-70417)	
Median Age (Q1-Q3), y	61 (51-69)	62 (52-71)	63 (51-70)	61 (52-69)	59 (50-68)	-0.07
Race, No. (%)			<0.001			
White	846 (86.9)	180 (74.1)	214 (88.1)	228 (93.4)	224 (92.2)	
Black	84 (8.6)	48 (19.8)	19 (7.8)	12 (4.9)	5 (2.1)	
Other	43 (4.4)	15 (6.2)	10 (4.1)	4 (1.6)	14 (5.8)	
Sex, No. (%)			0.66			
Male	534 (54.9)	132 (54.3)	126 (51.9)	139 (57.0)	137 (56.4)	
Female	439 (45.1)	111 (45.7)	117 (48.1)	105 (43.0)	106 (43.6)	
Treatment arm, No. (%)			0.51			
5-FU/LV	489 (50.3)	127 (52.3)	122 (50.2)	113 (46.3)	127 (52.3)	
IFL	484 (49.7)	116 (47.7)	121 (49.8)	131 (53.7)	116 (47.7)	
T-stage, No. (%) c			0.65			
T1-2	134 (14.0)	39 (16.4)	31 (13.0)	31 (12.8)	33 (13.9)	
T3-4	824 (86.0)	199 (83.6)	208 (87.0)	212 (87.2)	205 (86.1)	
Missing	15	5	4	1	5	
Number of positive nodes, No. (%)			0.56			
1-3	618 (64.0)	151 (62.7)	162 (67.5)	157 (64.3)	148 (61.7)	
4+	347 (36.0)	90 (37.3)	78 (32.5)	87 (35.7)	92 (38.3)	
Missing	8	2	3	3	0.03	
---	---	---	---	---	---	
Performance status, No. (%) d	703 (72.9)	165 (68.8)	179 (74.6)	169 (69.3)	190 (79.2)	
ECOG 0	261 (27.1)	75 (31.3)	61 (25.4)	75 (30.7)	50 (20.8)	
ECOG 1,2	9	3	3	3	0.18	
Clinical bowel obstruction or perforation, No. (%)	733 (75.3)	185 (76.1)	192 (79.0)	172 (70.5)	184 (75.7)	
No	240 (24.7)	58 (23.9)	51 (21.0)	72 (29.5)	59 (24.3)	
Yes	411 (42.6)	99 (41.3)	102 (42.5)	105 (43.0)	105 (43.8)	
Tumor location, No. (%)	553 (57.4)	141 (58.8)	138 (57.5)	139 (57.0)	135 (56.3)	
Distal	9	3	3	3	0.95	
Proximal	347 (35.7)	103 (42.4)	97 (39.9)	79 (32.4)	68 (28.0)	
Insurance status, No. (%)	626 (64.3)	140 (57.6)	146 (60.1)	165 (67.6)	175 (72.0)	
Private/Self-Pay	347 (35.7)	103 (42.4)	97 (39.9)	79 (32.4)	68 (28.0)	
Medicare/Medicaid/military/other/none	0.003					
Energy intake in FFQ1	1,963 (1,517-2,418)	1,960 (1,473-2,403)	1,804 (1,406-2,258)	1,988 (1,548-2,391)		
Median (Q1-Q3)	403 (50.1)	96 (49.0)	95 (49.0)	116 (56.0)	96 (46.2)	
<Median, No. (%)	402 (49.9)	100 (51.0)	99 (51.0)	91 (44.0)	112 (53.8)	
≥Median, No. (%)	0.22					
BMI in FFQ1	27 (24-31)	27 (24-32)	28 (24-31)	27 (24-31)	0.88	
Median (Q1-Q3)	27 (24-31)	27 (24-32)	28 (24-31)	27 (24-31)	0.88	
Physical activity in FFQ1	0.07					
--------------------------	------					
Median (Q1-Q3)	-					
<Median, No. (%)	402 (49.9)					
≥Median, No. (%)	403 (50.1)					
Western dietary pattern in FFQ1	0.008					
Median (Q1-Q3)	-					
<Median, No. (%)	402 (49.9)					
≥Median, No. (%)	403 (50.1)					
Prudent dietary pattern in FFQ1	<0.001					
Median (Q1-Q3)	-					
<Median, No. (%)	402 (49.9)					
≥Median, No. (%)	403 (50.1)					
Consistent aspirin use (FFQ1&2), No. (%)	0.14					
No	731 (90.8)					
Yes	74 (9.2)					
Reason off study, No. (%)	0.78					
Completed planned therapy	721 (74.1)					
Recurrence or death	43 (4.4)					
Adverse events	64 (6.6)					
Others	145 (14.9)	38 (15.6)	43 (17.7)	31 (12.7)	33 (13.6)	
--------	------------	-----------	-----------	-----------	-----------	

\(^a \) Missing value manipulation in following analysis: missing % is less than 5% the missing values were recoded into the majority category (T-stage, number of positive nodes, performance status, tumor location). 5-FU = 5-fluouracil; LV = leucovorin; IFL = irinotecan, 5-fluorouracil, leucovorin; FFQ = food frequency questionnaire; BMI = body mass index

\(^b \) Two-sided \(P \)-value/corr based on (1) spearman correlation for age; or (2) \(P \)-value from Chi-square test for categorical variables without missing category.

\(^c \) T1-2 = level of invasion through the bowel wall not beyond the muscle layer; T3-4 = level of invasion through the bowel wall beyond the muscle layer.

\(^d \) Baseline performance status: Performance status 0 = fully active; Performance status 1 = restricted in physically strenuous activity but ambulatory and able to carry out light work; Performance status 2 = ambulatory and capable of all self-care but unable to carry out any work activities, up and about more than 50% of waking hours.
Table 4. Income quartile, colon cancer recurrence, and mortality.

Outcome	Income Quartile	P_trend^a			
	Q4	Q3	Q2	Q1	
Median household income (Q1-Q3)	62325 (56876-70417)	45087 (42457-48393)	37264 (35604-38750)	30426 (27056-32083)	
Disease-free survival					
No. of events/No. at risk	107/243	101/244	92/243	103/243	
Age-adjusted only, HR (95% CI)	Ref	0.91 (0.69 - 1.19)	0.80 (0.60 - 1.05)	0.94 (0.71 - 1.23)	0.35
Multivariable-adjusted HR (95% CI)	Ref	0.83 (0.63 - 1.10)	0.75 (0.56 - 0.99)	0.90 (0.67 - 1.19)	0.18
Recurrence-free survival					
No. of events/No. at risk	94/243	85/244	73/243	86/243	
Age-adjusted only, HR (95% CI)	Ref	0.88 (0.65 - 1.18)	0.73 (0.54 - 0.99)	0.91 (0.68 - 1.22)	0.21
Multivariable-adjusted HR (95% CI)	Ref	0.81 (0.60 - 1.09)	0.69 (0.50 - 0.94)	0.89 (0.66 - 1.22)	0.14
Overall survival					
No. of events/No. at risk	87/243	80/244	79/243	88/243	
Age-adjusted only, HR (95% CI)	Ref	0.88 (0.65 - 1.20)	0.83 (0.62 - 1.13)	0.97 (0.72 - 1.31)	0.59
Multivariable-adjusted HR (95% CI)	Ref	0.79 (0.58 - 1.08)	0.78 (0.57 - 1.06)	0.87 (0.63 - 1.19)	0.23

^a P_trend: linear effect with quartile medians. Test was two-sided. HR = Hazard Ratio; CI = Confidence Interval; ECOG = Eastern Cooperative Oncology Group; FFQ = Food Frequency Questionnaire; BMI = Body Mass Index

^b Multivariable-adjusted model adjusted for age (continuous), sex (male, female), treatment arm, T-stage (T1-2, T3-4), number of positive nodes (1-3, 4+), performance status (ECOG 0, ECOG 1-2), tumor location (proximal, distal, or missing), clinical bowel obstruction or perforation (yes, no), race (White, Black, other), valid FFQ1 (yes, no), consistent aspirin use (yes, no), time-varying energy intake, BMI, physical activity, Western dietary pattern, prudent dietary pattern (all time-varying variables are continuous), insurance status (private/self-pay, Medicare/Medicaid/military/other/none).
Figure legends

Figure 1. Survival outcomes by race from the Cancer and Leukemia Group B (CALGB) trial 89803. Kaplan–Meier curves of A) disease-free survival, B) recurrence-free survival, and C) overall survival of patients (n = 1206) after a median follow-up of 7.7 years.

Figure 2. Survival outcomes by income quartile from the Cancer and Leukemia Group B (CALGB) trial 89803. Kaplan–Meier curves of A) disease-free survival, B) recurrence-free survival, and C) overall survival of patients (n = 973) after a median follow-up of 7.7 years.
Figure 1

A

B

C

Figure 1
Figure 2