Acute kidney injury caused by administration of zaltoprofen in a cat

Woon-Bum Baek, Hak-Hyun Kim, Byeong-Teck Kang, Ji-Houn Kang*, Mhan-Pyo Yang

College of Veterinary Medicine and Veterinary Medical Center, Chungbuk National University, Cheongju 28644, Korea

(Received: August 10, 2016; Revised: November 24, 2016; Accepted: January 9, 2017)

Abstract: A 5-year-old, 2.7 kg, spayed female Scottish Fold cat presented with hematemesis after administration of oral zaltoprofen, a non-steroidal anti-inflammatory drug, by the owner. Diagnostic imaging and blood analyses indicated development of acute kidney injury (AKI) resulting from zaltoprofen ingestion. To correct dehydration and anemic conditions, the cat received intravenous fluid therapy with whole blood transfusion and peroral N-acetylcysteine. Clinical signs resolved, but persistent azotemia was unresolved indicating that AKI could progress to chronic kidney disease. This case suggests that although zaltoprofen may have low adverse effects on humans, administration of zaltoprofen in cats can have serious adverse effects.

Keywords: cats, non-steroidal anti-inflammatory agents, pyranoprofen, renal insufficiency

In veterinary and human medicines, non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used for their anti-inflammatory, analgesic, and antipyretic effects on acute and chronic pain [5, 8, 9]. The US Food and Drug Administration has recently approved the use of six NSAIDs (carprofen, meloxicam, tepoxalin, firocoxib, deracoxib, and etodolac) for degenerative joint disease and chronic pain in dogs [1, 5]. However, in cats, NSAIDs have severe adverse effects such as renal and hepatic toxicities [2-4, 8] due to low capacity of hepatic glucuronidation in cats compared to other species including dogs and humans. Hepatic glucuronidation is the major mechanism for the metabolism and excretion of these drugs [8]. Therefore, caution is needed when using NSIADs, and the increased monitoring and careful adjustment of therapy to find the lowest effective dose of NSAID are generally required in cats [13].

Zaltoprofen is a NSAID with strong inhibitory effect on acute and chronic inflammation. NSAIDs are classified according to their chemical structures or selective inhibition on cyclooxygenase (COX)-1 and COX-2. Zaltoprofen, a preferential COX-2 inhibitor, is used to treat arthritis and relieve inflammation and pain after surgeries in human medicine [6]. Due to its low adverse effect on gastric and intestinal mucosa [14], zaltoprofen has been increasingly used in humans. However, zaltoprofen has never been used in dogs and cats. There is no report on its efficacy, safety, or clinical toxicity of zaltoprofen in cats. Here, we describe a case of zaltoprofen toxicity in a cat.

A 5-year-old spayed female Scottish Fold cat weighing 2.7 kg presented with hematemesis and anorexia. The cat had a history of oral administration with zaltoprofen (Soletone 80 mg, CJ HealthCare, Korea) for treatment of stomatitis by the owner. Zaltoprofen (20 mg) was administered twice a day for 2 days before the presentation of hematemesis and anorexia. On physical examination, the cat appeared lethargic with prolonged capillary refill time and dehydrated over 7%. Initial diagnostic evaluation included complete blood count (CBC), serum biochemistry profile, urinalysis (Table 1), survey radiography, and abdominal ultrasonography. No abnormality in CBC, blood gas analysis, or coagulation panel was found. However, serum biochemistry revealed severe azotemia with hyperphosphatemia and increased amylase (2808 U/L; reference interval [RI], 433-1248 U/L) and lipase activities with high serum feline pancreas-specific lipase activity (Spec fPL: 6.4 µg/L; RI, ≤ 5.4 µg/L). On blood smears, Heinz body was not detected. Abdominal radiographs revealed enlarged kidneys (Fig. 1). Abdominal ultrasonography revealed increased cortical-medullary definition and echogenicity in both kidneys (Fig. 2) but a decreased echogenicity of the pancreas. These findings were suggestive of an onset of acute kidney injury (AKI) caused by zaltoprofen ingestion with acute pancreatitis (AP).

In the intensive care unit, intravenous fluid therapy was promptly provided to correct azotemia. N-acetylcysteine (140 mg/kg then 70 mg/kg quarter [q] 4 h per orally [PO] for 5 doses; Muteran; HanWha Pharma, Korea) was given to the cat using a nasoesophageal tube [11]. Dehydration was corrected by administration of Hartmann’s solution (JW Phar-
maceutical, Korea) at a rate of 18 mL/kg/h for the first 6 h followed by the administration of 2.2 mL/kg/h of famotidine (0.5 mg/kg, intravenously [IV], q12h; Gaster; Dong-A Pharm, Korea), taurine (2 mL/cat, IV, q12h; Samyang Anipharm, Korea), and vitamin B (0.2 mL/cat, IV, q12h; Beecom-hexa; Yuhan, Korea). Cefotaxime (20 mg/kg, IV, q8h; Wooridul cefotaxime sodium; Wooridul Pharmaceutical, Korea) and metronidazole (7.5 mg/kg, IV, q12h; Trizele; JW Pharmaceutical) were prescribed due to concern of bacterial translocation. Maropitant (1 mg/kg, subcutaneous [SC], q24h; Cerenia; Zoetis, USA) was given for vomiting.

On day 3, despite critical supportive care, clinical signs including anorexia, depression, and melena were not improved and hematocrit was decreased to 7.6% (Table 1). Subsequently, a whole blood transfusion was given. Sucralfate (250 mg/cat, PO, q8h; Ulcermin; JW Pharmaceutical) was added. Clinical signs including anorexia, anemia, and depression were resolved. However, azotemia persistently showed in blood analyses. AKI appeared to be progressed the aspects of chronic kidney disease (CKD). At 10 months after presentation, the cat continued to do well clinically with CKD management.

Zaltoprofen has never been used to treat cats or dogs. In the present case, the administered dose of zaltoprofen was 14.81 mg/kg. Relatively few NSAIDs are licensed for feline use and their usage is generally limited to administration over a short period of time [7, 8]. Meloxicam is licensed as a single dose of 0.3 mg/kg SC for cat. In European Union, a much lower dosage of meloxicam at 0.05 mg/kg can be administered orally for long-term therapy with unrestricted duration [7]. In human medicine, zaltoprofen is a COX-2 preferential NSAID. It is known to have minimal adverse effect on gastric and small intestinal mucosa [14]. Therefore, the adverse events of zaltoprofen in humans might be lower than other NSAIDs. However, it is currently unclear whether these severe adverse effects are caused by dose-dependent problem or toxicity of zaltoprofen in cats after administration of

Table 1. Results of blood analyses obtained from a cat administered with zaltoprofen

Analytes	Reference range	Day 0	Day 1	Day 2	Day 3	Day 9	Day 10	Day 17	Day 45	Day 89
PCV	24–45%	25.8	22.1	19.9	7.6	23.2	19.9	12.0	32.8	33.8
Hemoglobin	8–15 g/dL	9.1	7.6	6.2	2.3	7.1	5.9	3.7	10.8	ND
Total Protein	5.5–7.1 mg/dL	6.0	5.1	5.5	4.3	6.9	6.2	4.6	7.7	6.5
Albumin	2.7–3.9 mg/dL	1.6	1.4	1.4	1.2	1.8	1.7	1.3	2.1	2.0
Globulin	2.8–3.2 mg/dL	4.4	3.7	4.1	3.1	5.1	4.5	3.3	5.6	4.5
AST	6–44 U/L	ND	ND	ND	68	48	ND	230	ND	31
ALT	20–107 U/L	60	70	49	68	166	465	ND	ND	ND
GGT	1–10 IU/L	ND	ND	ND	1	0	ND	2	ND	ND
ALP	23–107 U/L	11	12	29	79	46	125	ND	50	
Total Bilirubin	0.1–0.5 mg/dL	0.0	0.0	0.0	0.0	0.0	ND	0.0	ND	ND
BUN	18–33 mg/dL	248.2	179.5	90.5	45.9	118.1	62.6	29.8	35.9	34.5
Creatinine	0.7–1.8 mg/dL	17.9	13.7	4.4	1.8	3.3	4.3	3.3	2.4	

PCV, packed cell volume; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, γ-glutamyltransferase; ALP, alkaline phosphatase; BUN, blood urea nitrogen; ND, not determined.

![Fig. 1. Abdominal radiograph image obtained from a cat administered with zaltoprofen showing enlarged kidneys.](image1)

![Fig. 2. Ultrasonographic images of the right (A) and left kidneys (B) obtained from a cat administered with zaltoprofen.](image2)
Zaltoprofen toxicity in a cat

In this case, AP was diagnosed with possible association with the ingestion of zaltoprofen. There are some possibilities that AP was developed in this case. First, zaltoprofen can trigger directly inhibition of prostaglandins, phospholipase A2, and neutrophil-endothelial interaction in the pancreas which plays an important role in the pathogenesis of AP in human medicine [10]. However, pancreatitis caused by zaltoprofen has not been reported in human medicine. Second, AP in cats is frequently associated with gastrointestinal tract disease and vomiting signs [12]. Thus, it is possible that AP is a complication caused by the administration of zaltoprofen. Thirdly, there was a possibility that AP would be a complication of AKI although further study would be necessary to clarify an association between AKI and the development of AP in dogs. In the present case, hematemesis and anemia were observed. Hematemesis could be resulted from gastrointestinal ulceration. It might have contributed to the development of anemia. It is well known that COX-2 preferential NSAIDs are less likely to cause gastrointestinal ulceration [10]. However, these drugs still have some activities against COX-1. Gastrointestinal ulceration and perforation can occur if these drugs are used inappropriately. Using NSAIDs in animals with poor visceral perfusion may also increase the risk of gastrointestinal ulceration. Therefore, the high-dose of zaltoprofen might have caused gastrointestinal ulceration, eventually progressing to anemia.

In conclusion, this case report describes the development of AKI, AP, and anemia resulting from zaltoprofen ingestion in a cat. Although zaltoprofen has low incidence of adverse effects in humans, zaltoprofen and other NSAIDs might have similar toxicities in cats.

Acknowledgments

This work was supported by the research grant of the Chungbuk National University in 2015.

References

1. Beale BS. Use of nutraceuticals and chondroprotectants in osteoarthritic dogs and cats. Vet Clin North Am Small Anim Pract 2004, 34, 271-289.
2. Court MH, Greenblatt DJ. Molecular genetic basis for deficient acetaminophen glucuronidation by cats: UGT1A6 is a pseudogene, and evidence for reduced diversity of expressed hepatic UGT1A isoforms. Pharmacogenetics 2000, 10, 355-369.
3. Gaunt SD, Baker DC, Green RA. Clinicopathologic evaluation of N-acetylcysteine therapy in acetaminophen toxicosis in the cat. Am J Vet Res 1981, 42, 1982-1984.
4. Hietanen E, Vainio H. Interspecies variations in small intestinal and hepatic drug hydroxylation and glucuronidation. Acta Pharmacol Toxicol (Copenh) 1973, 33, 57-64.
5. Innes JF, Clayton J, Lascelles BDX. Review of the safety and efficacy of long-term NSAID use in the treatment of canine osteoarthritis. Vet Rec 2010, 166, 226-230.
6. Ito A, Mori Y. Effect of a novel anti-inflammatory drug, 2-(10,11-dihydro-10-oxo-dibenzo[b,f]-thiepin-2-yl)proionic acid (CN-100), on the proteoglycan biosynthesis in articular chondrocytes and prostaglandin E2 production in synovial fibroblasts. Res Commun Chem Pathol Pharmacol 1990, 70, 131-142.
7. King JN, Hotz R, Reagan EL, Roth DR, Seewald W, Lees P. Safety of oral robenacoxib in the cat. J Vet Pharmacol Ther 2012, 35, 290-300.
8. Lascelles BD, Court MH, Hardie EM, Robertson SA. Nonsteroidal anti-inflammatory drugs in cats: a review. Vet Anaesth Analg 2007, 34, 228-250.
9. Luna SP, Basilio AC, Steagall PVM, Machado LP, Moutinho FQ, Takahira RK, Brandão CVS. Evaluation of adverse effects of long-term oral administration of carprofen, etodolac, flunixin meglumine, ketoprofen, and meloxicam in dogs. Am J Vet Res 2007, 68, 258-264.
10. Pezzilli R, Morselli-Labate AM, Corinaldesi R. NSAIDs and acute pancreatitis: a systematic review. Pharmaceuticals (Basel) 2010, 3, 558-571.
11. Richardson JA. Management of acetaminophen and ibuprofen toxicoses in dogs and cats. J Vet Emerg Crit Care 2000, 10, 285-291.
12. Simpson KW. Pancreatitis and triaditis in cats: causes and treatment. J Small Anim Pract 2015, 56, 40-49
13. Sparkes AH, Hei rne R, Lascelles BD, Malik R, Sampietro LR, Robertson S, Scher k M, Taylor P; ISFM and AAFP. ISFM and AAFF consensus guidelines: long-term use of NSAIDs in cats. J Feline Med Surg 2010, 12, 521-538.
14. Tsurumi K, Kyuki K, Niwa M, Mibu H, Fuji mura H. Pharmacological investigations of the new anti-inflammatory agent 2-{10,11-dihydro-10-oxo-dibenzo[b,f]thiepin-2-yl}proionic acid. 2nd communication: inhibitory effects on acute inflammation and prostaglandin-related reactions. Arzneimittelforschung 1986, 36, 1801-1805.
15. Weir MR. Renal effects of nonselective NSAIDs and coxibs. Cleve Clin J Med 2002, 69 (Suppl), SI53-58.