Boosting Energy Storage Performance of Low-Temperature Sputtered CaBi2Nb2O9 Thin Film Capacitors Via Rapid Thermal Annealing

Jing Yan
shan dong da xue: Shandong University

Yanling Wang
Amperex Technology Limited

Chun-Ming Wang
Shandong University

Jun Ouyang (✉ ouyangjun@qlu.edu.cn)
Qilu University of Technology (Shandong Academy of Sciences)
https://orcid.org/0000-0003-2446-2958

Research Article

Keywords: Bismuth layer-structured ferroelectrics (BLSFs), Calcium bismuth niobate (CaBi2Nb2O9), Nanograin films, Rapid Thermal Annealing (RTA), Energy storage, Fatigue-resistance

Posted Date: October 8th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-84796/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

CaBi 2 Nb 2 O 9 thin film capacitors were fabricated on SrRuO 3 -buffered Pt(111)/Ti/Si(100) substrates by adopting a two-step fabrication process. This process combines a low-temperature sputtering deposition with a rapid thermal annealing (RTA) to inhibit the grain growth, for the purposes of delaying the polarization saturation and reducing the ferroelectric hysteresis. By using this method, CaBi 2 Nb 2 O 9 thin films with uniformly distributed nanograins were obtained, which display a large recyclable energy density W rec ~69 J/cm 3 and a high energy efficiency η ~82.4%. A superior fatigue-resistance (negligible energy performance degradation after 10 9 charge-discharge cycles) and a good thermal stability (from -170 °C to 150 °C) have also been achieved. This two-step method can be used to prepare other bismuth layer-structured ferroelectric film capacitors with enhanced energy storage performances.

Full Text

This preprint is available for download as a PDF.

Figures

![Figure 1](image)

(a) XRD 2θ-scan patterns for CBNOA350, CBNOA700, and CBNO350-RTA thin films. (b) (c) (d) The surface and cross-sectional SEM images of the (b) CBNOA350, (c) CBNOA700 and (d) CBNO350-RTA films.
Figure 2

Room-temperature polarization-electric field (P-E) curves for the (a) CBNOA350 and (b) CBNO350-RTA thin films, and (c) (d) their corresponding energy storage performances. The red dashed-line curve in (b) is a representative P-E loop of the CBNOA700 film at its maximum applicable electric field (~ 1 MV/cm).
Figure 3

Room temperature (RT) switching current-electric field curves for (a) CBNOA350 and (b) CBNO350-RTA films under an applied electric field of ~2.76 MV/cm. (c) The schematic illustration of the linear dielectric (W_{ln}) and domain backswitching (W_{bs}) contributions to the recyclable energy density W_{rec} of the CBNO350-RTA thin film. (d) The contributions from W_{ln} and W_{bs} to W_{rec} as functions of the applied electric field (at RT).
Figure 4

(a) Frequency-dependent dielectric constant (ε_r) and loss tangent (tanδ) and (b) leakage current density of the CBNOA350, CBNO350-RTA and CBNOA700 films (at RT). (c) Recyclable energy storage density and energy efficiency as functions of charge-discharge cycles (at RT) for the CBNO350-RTA film, and the corresponding P-E hysteresis loops and performance stabilities ($W_{\text{rec}}/W_{\text{rec-1st circle}}$, $\eta/\eta_{1\text{st circle}}$) at different stages of the cycling test. (d) Thermal stabilities (W/W_{RT}, η/η_{RT}) of W_c, W_{rec} and η for the CBNO350-RTA film.