Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist

Dayana E. Salas-Leiva 1,2✉, Eelco C. Tromer 2,3, Bruce A. Curtis 1, Jon Jerlström-Hultqvist 1, Martin Kolisko 4, Zhenzhen Yi 5, Joan S. Salas-Leiva 6, Lucie Gallot-Lavallée 1, Shelby K. Williams 1, Geert J. P. L. Kops 7, John M. Archibald 1, Alastair G. B. Simpson 8 & Andrew J. Roger 1✉

Cells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.
DNA replication, repair, and segregation are critically important and conserved processes in eukaryotes that have been intensively studied in model organisms. The initial step of DNA replication is accomplished by the replisome, a set of highly conserved proteins that is tightly regulated to minimize mutations. The replisome relies on the interactions between cis-acting DNA sequences and trans-acting factors that serve to separate the template and promote RNA-primed DNA synthesis. This occurs by the orderly assembly of the origin recognition (ORC), the pre-replicative (pre-RC), pre-initiation (pre-IC) and replication progression (RPC) complexes. The synthesis of DNA usually encounters disruptive obstacles as replication proceeds and can be rescued either through template switching via trans-lesion or recombination-dependent synthesis. Trans-lesion synthesis uses replicative and non-replicative DNA polymerases to bypass the lesion through multiple strategies that incorporate nucleotides opposite to it, while recombination-dependent synthesis uses nonhomologous or homologous templates for repair (reviewed in refs.). Recombination-dependent synthesis occurs in response to single- or double-strand DNA breakage. Other repair mechanisms occur throughout the cell cycle, fixing single-strand issues through base excision (BER), nucleotide excision (NER), or mismatch (MMR) repair, but they may also be employed during replication depending on the source of the damage. All of the repair processes are overseen by multiple replication checkpoints that permit or stall DNA replication and the progression of the cell cycle. During M-phase the replicated DNA has to form attachments with the microtubule-based spindle apparatus via kinetochores (KTs), large multi-subunit complexes built upon centromeric chromatin. Unattached KT catalyze the formation of a soluble inhibitor of the cell cycle, preventing precocious chromosome segregation, a phenomenon known as the spindle assembly checkpoint (SAC). Failure to pass any of these checkpoints (e.g., G1/S, S, G2/M, and SAC checkpoints reviewed in refs.) leads to genome instability and may result in cell death.

To investigate the diversity of DNA replication, repair, and segregation processes, we conducted a eukaryote-wide comparative genomics analysis with a special focus on metamonads, a major protist lineage comprised of parasitic and free-living anaerobes. Parasitic metamonads such as *Giardia intestinalis* and *Trichomonas vaginalis* are highly divergent from model system eukaryotes, exhibit a diversity of cell division mechanisms (e.g., closed/semi-open mitosis), possess metabolically reduced mitosomes or hydrogenosomes instead of mitochondria, and lack several canonical eukaryotic features on the molecular and genomic level. Indeed, recent studies show that metamonad parasites have secondarily lost parts of the ancestral DNA replication and segregation apparatuses. Furthermore, metamonad proteins are often highly divergent compared to other eukaryotic orthologs, indicating a high substitution rate in these organisms that is suggestive of error-prone replication and/or DNA repair. Yet, it is unclear whether the divergent nature of proteins studied in metamonads is the result from the host-associated lifestyle or is a more ancient feature of Metamonada. To increase the representation of free-living metamonads in our analyses, we have generated a high-quality draft genome assembly of *Carpediemonas membranifera*, a flagellate isolated from hypoxic marine sediments.

In this work, we show that many systems for DNA replication, repair, segregation, and cell cycle control are ancestral to eukaryotes and highly conserved. However, metamonads have secondarily lost a large number of components. Most remarkably, the free-living *Carpediemonas* species appear to be further reduced, lacking evidence of key proteins from the replisome and cell cycle checkpoints (i.e., including several from the KT and DNA repair pathways). We propose a hypothesis on how DNA replication may be achieved in these organisms.

Results

The *C. membranifera* genome assembly is complete. Our assembly for *C. membranifera* is very contiguous (Table 1) and has deep read coverage (i.e., median coverage of 150× with short reads and 83× with long reads), with estimated genome completeness of 99.27% based on the Merqury method. 97.6% of transcripts mapped to the genome along their full length with an identity of ≥95% while a further 2.04% mapped with an identity between 90–95%. The *C. membranifera* genome size is small compared to that of other free-living metamonads (e.g., *Kipferlia bialata*), has a high GC content (57.1%), and is among the most contiguous assemblies of any metamonads included in our study. The high contiguity of the assembly is underscored by the large number of transcripts mapped to single contigs (90.2%), and since the proteins encoded by transcripts were consistently found in the predicted proteome, the latter is also considered to be of high quality. We also conducted BUSCO analyses, with the foreknowledge that genomic streamlining typical in Metamonada has led to the loss of many conserved proteins. Our analyses show that previously completed metamonad genomes only encoded between 60 to 91% of the BUSCO proteins, while *C. membranifera* encodes a relatively high number of 89% of BUSCO proteins (Table 1, Supplementary Information, and Supplementary Data 1). In any case, our coverage estimates for the *C. membranifera* genome for short and long-read sequencing technologies are substantially greater than those found to be sufficient to capture genomic regions that otherwise would have been missed (i.e., coverage >52× for long reads and >60× for short reads).

Table 1 Summary statistics of nuclear genomes of Metamonada species.

Taxa	Genome size (Mb)	Contigs	NSO (Kb)	GC (%)	Predicted proteins	BUSCO (genes)	BUSCO (%)
Trichomonas vaginalis	176.4	64,764	27.2	32.9	95,606	223	91
Monocercomonoides exilis	74.7	2095	71.4	37.4	16,780	224	91
Carpediemonas membranifera	24.2	69	905.8	57.1	8300	217	89
Carpediemonas frisia	12.6	3232	9.5	58.6	5695	184	75
Kipferlia bialata	51.0	11,563	10.5	47.8	27,389	207	84
Spirotrichomonas salmonicida	12.9	233	150.8	33.5	8354	152	62
Trepomonas sp. PC7	12.8	211	2762.4	49.2	5901	168	69
Giardia intestinalis A-50803	11.0	2931	36.6	46.9	4470	169	69
Giardia intestinalis B-50581	9.8	59	2398.6	54.7	4936	173	71

All the statistics were recalculated with Quast v5.0.2 for completion as not all of these were originally reported, and the BUSCO reference protein set corresponds to a maximum of 245 proteins.

Transcriptome data only.
paired-end reads, see ref. 21). All these various data indicate that the draft genome of *C. membranifera* is nearly complete; if any genomic regions are missing, they are likely confined to difficult-to-sequence repetitive regions such as telomeres and centromeres.

Note that a previous study conducted a metagenomic assembly of a related species, *Carpediemonas frisia*, together with its associated prokaryotic microbiota22. For completeness, we have included these data in our comparative genomic analyses (Table 1, Supplementary Information), although we note that the *C. frisia* metagenomic bin is based on only short-read data and might be partial.

To generate an up-to-date phylogenetic framework for our comparative genomic analyses, we conducted a phylogenomic analysis with a broad sampling of the Metamonada and selected outgroup taxa. The resulting topology (Supplementary Fig. 1) was highly supported and recovered the same within-group metamonad and forniculate relationships as previous analyses (see refs 22,23). Specifically, the two *Carpediemonas* species form a well-supported clade that emerges from the deepest division within Fornicata (i.e., the clade comprised of diplomonads, retortamonads, and *Carpediemonas*-like organisms (CLOs)). This analysis also demonstrates that, with the exception of *Trimastix* and *Paratrimastix*, metamonads form very long branches on the tree (i.e., ~1.5-fold to threefold longer than outgroup branches), with the diplomonad sequences being the most divergent.

Streamlining of the DNA replication apparatus in metamonads. The first step in the replication of DNA is the assembly of ORC which serves to nucleate the pre-RC formation. The initiator protein Orc1 first binds an origin of replication, followed by the recruitment of Orc 2–6 proteins, which associate with chromatin24. As the cell transitions to the G1 phase, the initiator Cdc6 binds to the ORC, forming a checkpoint control25. Cdt1 then joins Cdc6, promoting the loading of the replicative helicase MCM forming the pre-RC, a complex that remains inactive until the onset of the S-phase when the "firing" factors are recruited to convert the pre-RC into the pre-RC3–5. Additional factors join to form the RPC to stimulate replication elongation26. The precise replisome protein complement varies somewhat between different eukaryotes, suggesting that some of these proteins may not be essential or could indicate some degree of functional impairment. However, metamonads show more variation in ORC, pre-RC, and replicative polymerases (Fig. 1, Supplementary Information, and Supplementary Data 2). The presence-absence of ORC and Cdc6 proteins is notably patchy across Metamonada, but our workflow retrieved previously unreported Orc5 orthologs in *T. vaginalis* and *Monocercomonoides exilis* and additional members of the Orc1/Cdc6 protein family to those previously identified in *Giardia* (Supplementary Data 2 and Supplementary Fig. 2). Our detection of these homologs was facilitated by the broad amino acid sequence diversity encompassed by the taxa-enriched HMMs (Hidden Markov Models) that increased the sensitivity of our searches, enabling retrieval of these highly divergent homologs. Strikingly, whereas most metamonads retain up to two paralogs of the core protein family Orc1/Cdc6 (here called Orc1 and Orc1/Cdc6-like as their precise assignment is difficult, see Supplementary Fig. 3), plus some orthologs of Orc 2–6, all these proteins are absent in *C. membranifera* and *C. frisia* (Fig. 1 and Supplementary Data 2). The lack of all of these proteins in a eukaryote is unexpected, since their absence is expected to make the genome prone to double strand breaks (DSBs) and impair DNA replication, as well as interfere with other nonreplicative processes27. To rule out false negatives, we conducted further analyses using metamonad-specific HMMs, various other profile-based search strategies (Supplementary Information and Supplementary Data 3), tBLASTn v.2.7.128 searches (i.e., on the genome assembly and unassembled long reads), and applied HMMER v.3.1b25 searches on six-frame assembly translations. These additional methods were sufficiently sensitive to identify these proteins in all nuclear genomes we examined, with the exception of the *Carpediemonas* species and the highly reduced, endosymbiotically-derived nucleomorphs of cryptophytes and chlorarachniophytes (Fig. 1, Supplementary Information, and Supplementary Fig. 4). *Carpediemonas* species are, therefore, the only known eukaryotes to lack ORC and Cdc6.

DNA damage repair systems have undergone several modifications. DNA repair occurs continuously during the cell cycle depending on the type or specificity of the lesion. Among the currently known mechanisms are BER, NER, MMR, and DSB repair, with the latter conducted by either homologous recombination (HR), canonical nonhomologous end joining (NHEJ), or alternative end joining (a-EJ)7,13. MMR can be coupled directly to replication or play a role in HR. MMR, NHEJ, and NER are present in all studied taxa (Supplementary Data 2), although our analyses indicate that damage sensing and downstream functions in NER seem to be modified in the metamonad taxa *Parabasalia* and *Fornicata* due to the absence of the XPG and XPC sensor proteins.

DSBs are very dangerous for cells and can occur as a result of damaging agents or from self-inflicted cuts during DNA repair and meiosis. NHEJ requires the heterodimer Ku70–Ku80 to recruit the catalytic kinase DNA-PKcs and accessory proteins. Metamonads lack all of these proteins, as do a number of other eukaryotes investigated here and in ref. 30. The a-EJ system seems to be fully present in metamonads like *C. membranifera*, partial in others, and absent in parasitic diplomonads. NHEJ is thought to be the predominant mechanism for repairing DSBs in eukaryotes, but since our analyses indicate this pathway is absent in metamonads and a-EJ is highly mutagenic7, the HR pathway is likely to be essential for DSB repair in most metamonads. Repair by the HR system occurs through multiple sub-pathways that are influenced by the extent of the similarity of the DNA template or its flanking sequences to the sequences near the break. HR complexes are recruited during DNA replication and transcription and utilize DNA, transcript-RNA, or newly synthesized transcript-cDNA as a homologous template31–34. These complexes are formed by recombines from the RecA/Rad51 family that interact with members of the Rad52 family and chromatin remodeling factors of the Snf2/Swi2 subfamily. Although the recombines Rad51A–D are all present in most eukaryotes, we found a patchy distribution in metamonads (Supplementary Data 2 and Supplementary Fig. 5). All examined Fornicata have lost the major recombine Rad51A and have two paralogs of the meiosis-specific recombine Dmc1, as first noted in *Giardia intestinalis*. Dmc1 has been reported to provide high stability to recombination due to strong D-loop resistance to strand dissociation36. The recombination mediator Rad52 is present in most metamonads but Rad59 or Rad54 are not. Metamonads have no components of an ISWI remodeling complex yet retain a reduced INO80 complex. Therefore, replication fork progression and HR are likely to occur under the assistance of INO80 alone. HR requires endonucleases and exonucleases, and our searches for proteins additional to those from the MMR pathway revealed a gene expansion of the Flp proteins from the Rad2/XPG family in some metamonads. We also found proteins of the Pin1 helicase family that encompasses homologs that resolve R-loop structures, unwind DNA–RNA hybrids, and assists in fork progression in regular replication and HR37,38. Phylogenetic analysis reveals that although
Carpediemonas species have orthologs that branch within a metamonad group in the main PiF1 clade (Fig. 2), they also possess a highly divergent clade of PiF1-like proteins. Each Carpediemonas species has multiple copies of PiF1-like proteins that have independently duplicated within each species; these may point to the de novo emergence of specialized functions in HR and DNA replication for these proteins. Metamonads appear capable of using all the HR sub-pathways (e.g., classical DSB repair, single-strand annealing, and break-induced replication), but these are modified (Supplementary Data 2 and Supplementary Fig. 5). Overall, the presence-absence patterns of the orthologs involved in DSB repair in Fornicata point to the existence of a highly specialized HR pathway which is presumably not only essential for the cell cycle of metamonads.
but is also likely the major pathway for replication-related DNA repair and recombination.

Modified DSB damage response checkpoints in metamonads. Checkpoints constitute a cascade of signaling events that delay replication until DNA lesions are resolved. The ATR-Chk1, ATM-Chk2, and DNA-PKcs pathways are activated by the interaction of TopBP1 and the 9-1-1 complex (Rad9-Hus1-Rad1) for DNA repair regulation during replication stress and response to DSBs. The ATR-Chk1 signaling pathway is believed to be the initial response to ssDNA damage and be responsible for the coupling of DNA replication with mitosis, but when it is defective, the ssDNA is converted into DSBs to activate the ATM-Chk2 pathway. The DNA-PKcs act as sensors of DSBs to promote NHEJ, but we found no homologs of DNA-PKcs in metamonads, which is consistent with the lack of an NHEJ repair pathway in the group. All the checkpoint pathways described are present in humans and yeasts, while the distribution of core checkpoint proteins in the remaining taxa is patchy. Notably, Fornicata lack several of the proteins thought to be needed to activate the signaling kinase cascades and, while
orthologs of ATM or ATR kinases are present in some fornicates, there are no clear orthologs of Chk1 or Chk2 in metamonads except in *M. exilis* (Supplementary Data 2 and Supplementary Fig. 5). *Carpediemonas* species and *K. bialata* contain ATM and ATR but lack Chk1, Chk2, and Rad9. Diplomonads possess none of these proteins. The depletion of Chk1 has been shown to increase the incidence of chromosomal breaks and mis-segregation. All these absences reinforce the idea that the checkpoint controls in Fornicata are non-canonical.

Reduction of mitosis and meiosis machinery in metamonads. Eukaryotes synchronize cell cycle progression with chromosome segregation by a KT-based signaling system called the SAC. Reduction of the SAC machinery is common in metamonads.
that is ancestral to all eukaryotes (Fig. 3a, b). KTIs primarily form microtubule attachments through the Ndc80 complex, which is connected through a large network of structural subunits to a histone H3-variant CenpA that is specifically deposited at centromeres. To prevent premature chromosome segregation, unattached KTIs catalyze the production of the mitotic checkpoint complex (MCC), a cytosolic inhibitor of the anaphase-promoting complex/cyclosome (APC/C), a large multi-subunit ubiquitin ligase that drives progression into anaphase by promoting the proteolysis of its substrates such as various Cyclins. Our analysis indicates the reduction of ancestral complexity of these proteins in metamonads (Fig. 3c, Supplementary Data 4, and Supplementary Fig. 6). Surprisingly, such reduction is extensive in *Carpediemonas* species. We found that most structural KT subunits, a microtubule plus-end tracking complex, and all four subunits of the Ndc80 complex are absent (Fig. 3c and Supplementary Fig. 6). None of our additional search strategies led to the identification of Ndc80 complex members, making *Carpediemonas* the only known eukaryotic lineage without it, except for kinetoplastids, which appear to have lost the canonical KT and replaced it by an analogous molecular system, although there is still some controversy about this loss. With such widespread absence of KT components it might be possible that *Carpediemonas* underwent a similar replacement process to that of kinetoplastids. We did however find potential for the centromeric histone H3-variant (CenpA) in *C. membranifera*. CenpA forms the basis of the canonical KT in most eukaryotes (Supplementary Fig. 7). On the other hand, the presence or absence of CenpA is often correlated with the presence/absence of its direct interactor CenpC. Similar to diplomonads, *C. membranifera* lacks CenpC and therefore the molecular network associated with KT assembly on CenpA chromatin may be very different.

Most metamonads encode all MCC components, but diplomonads lost the SAC response and the full APC/C complex. In contrast, only *Carpediemonas* species and *K. bialata* have MCC subunits that contain the conserved short linear motifs to potentially elicit a canonical SAC signal (Supplementary Fig. 8). Interestingly, not all of these motifs are present, and most are seemingly degenerate compared to their counterparts in other eukaryotic lineages (Supplementary Fig. 8c). Also, many other SAC-related proteins are conserved, even in diplomonads (e.g., Mad2 and MadBub). Furthermore, the cyclins in *C. membranifera*, the main target of SAC signaling, have a diverged destruction motif (D-box) in their N-termini (Supplementary Fig. 8c). Collectively, our observations indicate that *Carpediemonas* species could elicit a functional SAC response, but whether this would be KT-based is unclear. Alternatively, SAC-related genes could have been repurposed for another cellular function(s) in diplomonads. Given that ORC has been observed to interact with the KT (through chromosome condensation and segregation), centrioles, and promotes cytokinesis, the lack of Ndc80 and ORC complexes suggest that *Carpediemonas* species possess unconventional cell division systems.

Neither sexual nor parasexual processes have been directly observed in *Metamonada*. Nonetheless, our surveys confirm the conservation of the key meiotic proteins in metamonads, including Hap2 (for plasmogamy) and Gex1 (karyogamy). Unexpectedly, *Carpediemonas* species have homologs from the tmC family that acts in the cAMP signaling pathway specific for sexual development in *Dictyostelium* and sperm-specific channel subunits (i.e., CatSper α, β, δ, and γ) reported previously only in Ophisthokonta and three other protists. In opisthokhonts, the CatSper subunits enable the assembly of specialized Ca2+ influx channels and are involved in the signaling for sperm maturation and motility. In *Carpediemonas*, the tmC family and CatSper subunits could similarly have a role in signaling and locomotion pathways required for a sexual cycle. As proteins in the cAMP pathway and Ca2+ signaling cooperate to generate a variety of complex responses, the presence of these systems in *Carpediemonas* species but absence in all other sampled metamonads is intriguing and deserves further investigation. Even if these systems are not directly involved in a sexual cycle, the presence of Hap2 and Gex1 proteins is strong evidence that *C. membranifera* can reproduce sexually. Interestingly, based on the frequencies of single nucleotide polymorphisms, *C. membranifera* is predicted to be haploid (Supplementary Fig. 9). If this is correct, its sexual reproduction should include the formation of a zygote followed by a meiotic division to regain its haploid state.

Acquisition of replication and repair proteins by lateral gene transfer. The absence of many components of canonical DNA replication, repair, and segregation systems in *Carpediemonas* species led us to investigate whether they had been replaced by analogous systems acquired by lateral gene transfer (LGT) from viruses or prokaryotes. We detected four Geminivirus-like replication initiation protein sequences in the *C. membranifera* genome but not in *C. frisia*, and helitron-related helicase endonucleases in both *Carpediemonas* genomes. All these genes were embedded in high-coverage eukaryotic scaffolds, yet all of them lack introns and show no evidence of gene expression in the RNA-Seq data. As RNA was harvested from log-phase actively replicating cell cultures, their lack of expression suggests it is unlikely that these acquired proteins were coopted to function in the replication of the *Carpediemonas* genomes. Nevertheless, the presence of Geminivirus protein-coding genes is intriguing as...
these viruses are known, in other organisms (e.g., plants, insects), to alter host transcriptional controls and reprogram the cell cycle to induce the host DNA replication machinery32,33. We also detected putative LGTs of Endonuclease IV, RarA, and RNase H1 from prokaryotes into a Carpediemonas ancestor (Supplementary Information and Supplementary Figs. 10, 11, 12). Of these, RarA is ubiquitous in bacteria and eukaryotes and acts during replication and recombination in the context of collapsed replication forks54. Interestingly, Carpediemonas appears to have lost the eukaryotic ortholog and only retains the acquired prokaryotic-like RarA, a gene that is expressed (i.e., transcripts are present in the RNA-Seq data). RNase Hs are involved in the cleavage of RNA from RNA:DNA hybrid structures that form during replication, transcription, and repair, and, while eukaryotes have a monomeric RNase H1 and a heterotrimeric RNase H2, prokaryotes have either one or both types. Eukaryotic RNase H1 removes RNA primers during replication and R-loops during transcription and also participates in HR-mediated DSB repair55. The prokaryotic homologs have similar roles during replication and transcription36. C. membranifera lacks a typical eukaryotic RNase H1 but has two copies of prokaryotic homologs. Both are located in scaffolds comprising intron-containing genes and have RNA-Seq coverage, clearly demonstrating that they are not from prokaryotic contaminants in the assembly.

Discussion

The reductive evolution of the DNA replication, repair, and segregation systems and the low retention of proteins in the BUSCO dataset in metamonads demonstrate that substantial gene loss has occurred (Supplementary Information), providing additional evidence for streamlining of gene content prior to the last common ancestor of Metamonada14-16. However, the patchy distribution of genes within the group suggests an ongoing differential reduction in different metamonad groups. Such reduction—especially the absence of systems such as the ORC, Cdc6, and Ndc80 complexes in Carpediemonas species—demands an explanation. Whereas the loss of genes from varied metabolic pathways is well known in lineages with different lifestyles57-59, loss of cell cycle, DNA damage sensing, and repair genes in eukaryotes is very rare. New evidence from yeasts of the genus Hanseniaspora suggests that the loss of proteins in these systems can lead to genome instability and long-term hypermutation leading to high rates of sequence substitution57. This could also apply to metamonads, especially fornicates, which are well known to have undergone rapid sequence evolution; these taxa form a highly divergent clade with very long branches in phylogenetic trees3,60 (Supplementary Fig. 1). Most of the genes that were retained by Metamonada in the various pathways we examined were divergent in sequence relative to homologs in other eukaryotes and many of the gene losses correspond to proteins that are essential in model system eukaryotes. Gene essentiality appears to be relative and context-dependent, and some studies have shown that the loss of “indispensable” genes could be permitted by evolving divergent pathways that provide similar activities via chromosome stoichiometry changes and compensatory gene loss57,58,61.

The patchy distribution of genes from different ancestral eukaryotic pathways suggests that the last common ancestor of Metamonada had a broad gene repertoire for maintaining varied metabolic functions under fluctuating environmental conditions offered by diverse oxygen-depleted habitats. Although the loss of proteins and genomic streamlining are well known in parasitic diplomonads4,15, the Fornicata, as a whole, tend to have a reduced subset of the genes that are commonly found in core eukaryotic pathways. In general, such gene content reduction can partially be explained as the result of historical and niche-specific adaptations62. Yet, given that (1) genome maintenance mostly depends on the cell cycle checkpoints, DNA repair pathways, and their interactions13,63, (2) several missing proteins related to these pathways were present in the last common ancestor of metamonads, (3) aneuploidy and high overall rates of sequence evolution have been observed in metamonads63,64, and (4) the loss of DNA repair genes can be associated with substantial gene loss and sequence instability that apparently boosts the rates of sequence evolution57, it is likely that genome evolution in the Fornicata clade, in particular, has been heavily influenced by their error-prone DNA maintenance mechanisms. The DNA replication, repair, and segregation systems are more complete in non-fornicate metamonads suggesting that genome evolution in these organisms has been less affected as consequence.

Origin-independent replication has been observed in the context of DNA repair (reviewed in ref. 3) and in origin-deficient or -depleted chromosomes in yeast65. These studies have highlighted the lack of (or reduction in) the recruitment of ORC and Cdc6 onto the DNA, but no study to date has documented regular eukaryotic DNA replication in the absence of genes encoding these proteins. While it is possible that highly divergent versions of ORC and Cdc6 are governing the recognition of origins of replication and replication licensing in Carpediemonas species, we have no evidence for this. Instead, our findings suggest the existence of an as-yet-undiscovered underlying eukaryotic system that can accomplish eukaryotic DNA replication initiation and licensing. The existence of such a system has in fact already been suspected given that: (1) OriC- or Ori 2-depleted human cells and mouse-Orc1 and fruit-fly ORC mutants are viable and capable of undergoing replication and endoreplication66-68 and (2) origin-independent replication at the chromosome level has been reported65,69,70. We propose a non-canonical DNA replication hypothesis in which Carpediemonas species utilize a replication system based on a Dmc1-dependent HR mechanism that is origin-independent, and mediated by RNA:DNA hybrids. Here, we first summarize evidence that such a mechanism is possible based on what is known in model systems and then present a model as to how it might occur in Carpediemonas.

During replication and transcription, the HR complexes, RNase H1, and RNA-interacting proteins are recruited onto the DNA to assist in its repair31. Remarkably, experiments show that HR is able to carry out full genome replication in archaea, bacteria, viruses, and linear mtDNA70-72, with replication fork progression rates that are comparable to those of regular replication74. A variety of cis and trans homologous sequences (e.g., chromatids, transcript-RNA, or -cDNA) can be used as templates24,33, and their length as well as the presence of one or two homologous ends likely influence a recombination execution checkpoint that decides which HR sub-pathway is utilized75. For example, in the absence of a second homologous end, HR by Rad51-dependent break-induced replication (BIR) can either use a newly synthesized DNA strand or independently invade donor sequences, such that the initial strand invasion intermediate creates a migrating D-loop and DNA is synthesized conservatively24,75. Studies have found that BIR does not require the assembly of an ORC complex and Cdc6 but the recruitment of the Cdc7, loading of MCM helicase, firing factors and repli-cative polymerases are needed for assembling the pre-RC complex24,75. The requirement of MCM for BIR was questioned, as Pif1 helicase was found to be essential for long-range BIR38. However, recent evidence shows that MCM is typically recruited for unwinding DNA strands during HR76 and is likely needed together with Pif1 to enhance processivity. All these proteins may also operate during origin-independent transcription-initiated replication (TIR), a still-enigmatic mechanism that
is triggered by DR-loops resulting from RNA:DNA and DNA:DNA hybrids during transcription9,10,77.

Considering the complement of proteins in *Carpediemonas* species discussed above, and that RNA:DNA hybrids are capable of promoting origin-independent replication in model systems10,32, we suggest that a Dmc1-dependent HR replication mechanism is enabled by an excess of RNA:DNA hybrids in these organisms. In such a system, DSBs generated in stressed transcription-dependent DR-loops77 could be repaired by HR with either transcript-RNA- or transcript-cDNA-templates and the de novo assembly of the replisome as in BIR (Fig. 4). The establishment of a replication fork could be favored by the presence of *Carpediemonas*-specific Pif1-like homologs, as these raise the possibility of the assembly of a multimeric Pif1 helicase with
Fig. 4 Hypothesis for Dmc1-dependent DNA replication in Carpediemonas. a Full chromosome replication starts at multiple DR-loops undergoing sense and antisense transcription and in a highly transcribed locus that experiences DNA breaks, triggering DSB checkpoint control systems to assemble HR complexes near the lesions. b Once the damage is processed into a DSB, end resection creates an overhang, and the strand is coated with replication protein A (RPA), and the recombination Dmc1. A recombination checkpoint decides the HR sub-pathway to be used, followed by the initiation and progression of DNA synthesis with the aid of Pif1 helicase. This leads to the establishment of a double Holliday Junction (HJ) which can be resolved by endonucleases (e.g., Mus81, Flap, and Mlh1/Mlh3). The lack of Chk1 may result in mis-segregation of DNA replication intermediates by Mus81-40. Given the shortness of the RNA or cDNA template, most possible HJ resolutions, except for the one depicted in the figure, would lead to the loss of chromosome fragments. The HJ resolution shown would allow steps shown in panel c. c A multimeric Carpediemonas Pif1-like helicase is bound to the repaired DNA as well as to the template. Here, the shortness of the RNA or cDNA template, most possible HJ resolutions, except for the one depicted in the figure, would lead to the loss of chromosome fragments. Dark blue fragments on ends of the bottom figure represent Okazaki fragments.

Methods

Sequencing, assembly, and protein prediction for C. membranifera. DNA and RNA were isolated from cultures of C. membranifera BICM strain (see details in Supplementary Information). Sequencing employed Illumina short paired-end and long read (Oxford Nanopore MinION) technologies. For Illumina, extracted, purified DNA and RNA (i.e., cDNA) were sequenced on the HiSeq 2000 (150 x 2 paired-end) at the Genome Quebec facility. Illumina reads were quality trimmed (Q = 30) and filtered for length (>40 bp) with Trimomatic v0.39. For MinION, the library was prepared using the 1D native barcoding genomic DNA (SQK-
LSK108 with EXP-NBD1103) protocol (NBE_9006_v103_revP_21Dec2016). The final library (1070 ng) was loaded on an R9.4 flow cell and sequenced for 48 h on the MinION Mk1B nanopore sequencer. Long read processing, genome assembly, and decontamination methodologies are reported in Supplementary Information. RNA-Seq reads were used for genome-independent assessments of the presence of the proteins of interest and to generate intron junction hints for gene prediction. For the independent assessments, we obtained both a de novo and a genome-guided transcriptome assembly with Trinity v2.5.8. Open reading frames were translated with TransDecoder v5.5.0 (www.github.com/TransDecoder) and were included in all of our analyses. Gene predictions were carried out as follow: repeat libraries were obtained and masked with RepeatModeler v1.0 and RepeatMasker v4.0.7 (www.repeatmasker.org). Then, RNA-Seq reads were mapped onto the assembly using Hisat2 v2.1.0, generating a bam file for GenMarkET 4.38. This resulted in a list of intron hints used to train Augustus v3.2.3. The genome-guided assembled transcriptome, genomic scaffolds, and the newly predicted proteomes were fed into the PASA v2.3.2 pipeline to yield a more accurate set of predicted proteins. Finally, the predicted proteome was manually curated for the proteins of interest.

Genome size, completeness, ploidy assessments, and phylogenetic placement
We estimated the completeness of the draft genome by (1) using the k-mer based and reference-free method Merqury v1.1, (2) calculating the percentage of transcripts that aligned to the genome, and (3) employing the BUSCO v3.0.2 framework. For method 1, all paired-end reads were used to estimate the best k-mer length using “match” mode databases necessary to nearly perfectly align a set of 303 transcripts were mapped onto the genome using BLASTn v2.7.1 and exonerate v2.54.1. For method 3, the completeness of the draft genome was evaluated in a comparative setting by including the metamonads and using the universal single-copy orthologs (BUSCO) from the Eukaryota (odb9) and protist databases (https://busco.ezlab.org), which contain 303 and 215 proteins, respectively. Each search was run separately on the assembly and the predicted proteome for all these taxa. Unfortunately, both BUSCO database searches yielded false negatives in that several conserved proteins publicly reported for T. vaginalis, G. intestinalis, and Spironucleus salmonicida were not detected due to the high divergence of metamonad homologs. Therefore, genome completeness was reassessed with a phylogeny-guided search (Supplementary Information).

The ploidy of C. membranifera was inferred by (i) counting k-mers with Merqury and (ii) mapping 615,266,290 Illumina short reads to the assembly with Bowtie v2.3.1 and then using ploidyNGS v3.0.6 to calculate the distribution of allele frequencies across the genome. A site was deemed to be heterozygous if at least two different bases were present and there were at least two reads with the different bases. Positions with less than 10x coverage were ignored. For completion, we also assessed the phylogenetic placement of C. membranifera and C. frisia within Metamonada as described in Supplementary Information.

Functional annotation of the predicted proteins
Our analyses included the genomes and predicted proteomes of C. membranifera (reported here) as well as published with HMMER. Also, as DNA replication and repair, mitosis and meiosis, and cell cycle checkpoints. For C. membranifera, we included the predicted proteome obtained from the initial BLASTp v2.7.1 (Supplementary Information), except for KT, SAC, and anaphase promoting complex-related genes (APC/C). For these, previously published HMMs with cut-offs specific to each orthologous group (see ref. 59) were used to query the proteomes with HMMER v3.1b2. A multiple sequence alignment that included the newly inferred hits was subsequently constructed with MAFFT v7.3079 and used in HMM searches for more divergent homologs. This process was iterated until no new significant hits could be found. As we were unable to retrieve orthologs of a number of essential proteins in the C. membranifera and C. frisia genomes, we embarked on additional more sensitive strategies to detect them using multiple different HMMs based on aligned homologs from archaea, metamonads, and broad samplings of taxa. Individual PFAM v33.1 domains were searched for in the genomes, proteome, and translated transcriptomes with e-value thresholds of 10-3 (Supplementary Information). To rule out that failure to detect these proteins was due to insufficient sensitivity of our methods when applied to them to highly divergent taxa, we queried 22 extra eukaryotic genomes with demonstrated high rates of sequence evolution, genome streaming, or unusual genomic structures (Supplementary Data 3, Supplementary Figure 4, and Supplementary Information). Possible non-predicted or mispredicted genes were investigated using tBLASTn searches of the genomic scaffolds, unassembled reads, and six-frame translation searches with HMMER. Also, DNA replication and repair genes could have been acquired by LGT into Carpediemonas species from prokaryotes or viruses, proteins from the DNA replication and repair complex whose partners were to

References
1. Yeele, J. T., Deegan, T. D., Jarska, A., Early, A. & Dufley, J. F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015).
2. Parker, M. W., Botchan, M. R. & Berger, J. M. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 52, 107–144 (2017).
3. Shen, Z. & Prasanth, S. G. Emerging players in the initiation of eukaryotic DNA replication. Cell. Dev. 7, 22 (2012).
4. Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86, 417–438 (2017).
5. Riera, A. et al. From structure to mechanism-understanding initiation of DNA replication. Genes Dev. 31, 1073–1088 (2017).
6. Reusswig, K. U. & Pfander, B. Control of eukaryotic DNA replication initiation-mechanisms to ensure smooth transitions. Genes 10, 99 (2019).
7. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).
8. Wright, W. D., Shaw, S. S. & Heyer, W. D. Homologous recombination and the repair of DNA double-strand breaks. J. Biol. Chem. 293, 10524–10535 (2018).
9. Ravioity, B. & Welling, R. E. Non-canonical replication initiation: you’re fired! Genes 8, 54 (2017).
10. Stuckey, R., Garcia-Rodriguez, N., Aguilera, A. & Welling, R. E. Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proc. Natl Acad. Sci. USA 112, 5779–5784 (2015).
11. Musacchio, A. & Desai, A. A molecular view of kinetochore assembly and function. Bioch. 6, 5 (2017).
12. Hustedt, N., Gasser, S. M. & Shimada, K. Replication checkpoint: tuning and coordination of replication forks in S phase. Genes 4, 388–434 (2013).
13. Helleday, T. DNA damage repair, the good, the bad, and the ugly. EMBO J. 27, 589–605 (2008).
14. Adams, R. D. et al. Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and Pig). Genome Biol. Evol. 5, 2498–2511 (2013).
15. Xu, F. et al. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet. 10, e1004053 (2014).
16. Tanifuji, G. et al. The draft genome of Kipferlia biolata reveals reductive genome evolution in foraminifera parasites. PLoS ONE 13, e0194487 (2018).
17. Ocaña-Pallares, E. et al. Origin recognition complex (ORB) evolution is influenced by global gene duplication/loss patterns in eukaryotic genomes. Genes 10, 3878–3889 (2020).
18. van Hooft, J. J., Tromer, E. C., van Wijk, L. M., Snel, B. & Kops, G. J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 18, 1559–1571 (2017).
19. Hämälä, V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc. Natl Acad. Sci. USA 106, 3859–3864 (2009).
20. Rhein, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).
21. Eibert, M. T. W. et al. Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. Genome Biol. 20, 97 (2019).
22. Hamann, E. et al. Symbiotic linkage between predatory Carpediemonas and specific prokaryotic populations. ISME J. 11, 1205–1217 (2017).
23. Leger, M. M. et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 1, 0092 (2017).

24. Lydeard, J. R. et al. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 24, 1133–1144 (2010).

25. Liu, J. et al. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol. Cell 6, 637–648 (2000).

26. Georgescu, R. E. et al. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 4, e04988 (2015).

27. Popova, V. V., Brechalov, A. V., Georgieva, S. G. & Kopytova, D. V. Nonreplicative functions of the origin recognition complex. Nucleus 9, 460–473 (2018).

28. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

29. Eddy, S. R. Accelerated pro...
83. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
84. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
85. Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119 (2014).
86. Stanke, M., Schoffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinforma. 7, 62 (2006).
87. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
88. Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
89. Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 6, 31 (2005).
90. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 11, 35–35 (2012).
91. Correa Dos Santos, R., Goldman, G. H. & Riano-Pachon, D. M. ploidyNGS: visually exploring ploidy with next generation sequencing data. Bioinformatics 33, 2575–2576 (2017).
92. Tan-Wong, S. M., Dhir, S. & Proudfoot, N. J. R-Loops promote antisense transcription across the mammalian genome. Mol. Cell 76, 600–616 (2019), e606.
93. Mazina, O. M. et al. Replication protein A binds RNA and promotes R-loop formation. J. Biol. Chem. 295, 14203–14213 (2020).
94. Longhese, M. P., Plevani, P. & Lucchini, G. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol. Cell. Biol. 14, 7884–7890 (1994).
95. Guerrieri, A., Saveliev, V., Vyayhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

Acknowledgements

The majority of this work was supported by a Foundation grant FRN-142349, awarded to A.J.R. by the Canadian Institutes of Health Research. Archibald Lab contributions to this study were supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (RGPIN 05871-2014). E.C.T. acknowledges support from a Herchel Smith Postdoctoral Fellowship (University of Cambridge, UK), and the Dutch Science Organisation (VI.Veni.202.223). We would like to thank Ryan Wick for his helpful comments on genome assembly error correction.

Author contributions

D.E.S.-L. and A.J.R. conceived the study. J.J.-H. and M.K. grew cultures, extracted nucleic acids, and carried out in-house sequencing. D.E.S.-L., R.A.C., E.C.T., Z.Y., J.S.S.-L., L.G.-L., S.K.W., G.J.P.L.K., J.M.A., A.G.R.S., and A.J.R. analyzed and manually curated the genomic data. E.C.T. and D.E.S.-L. made the figures. D.E.S.-L. and A.J.R. led the writing of the manuscript with input from all authors. All documents were edited and approved by all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-26077-2.

Correspondence and requests for materials should be addressed to Dayana E. Salas-Leiva or Andrew J. Roger.

Peer review information Nature Communications thanks Hazal Kose, Feifei Xu and the other, anonymous, reviewer for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021, corrected publication 2021