Ground state cooling of an ultracoherent electromechanical system

Seis, Yannick; Capelle, Thibault; Langman, Eric; Saarinen, Sampo; Planz, Eric; Schliesser, Albert

Published in:
Nature Communications

DOI:
10.1038/s41467-022-29115-9

Publication date:
2022

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Seis, Y., Capelle, T., Langman, E., Saarinen, S., Planz, E., & Schliesser, A. (2022). Ground state cooling of an ultracoherent electromechanical system. Nature Communications, 13(1), [1507]. https://doi.org/10.1038/s41467-022-29115-9
Ground state cooling of an ultracoherent electromechanical system

Yannick Seis, Thibault Capelle, Eric Langman, Sampo Saarinen, Eric Planz & Albert Schliesser

Cavity electromechanics relies on parametric coupling between microwave and mechanical modes to manipulate the mechanical quantum state, and provide a coherent interface between different parts of hybrid quantum systems. High coherence of the mechanical mode is of key importance in such applications, in order to protect the quantum states it hosts from thermal decoherence. Here, we introduce an electromechanical system based around a soft-clamped mechanical resonator with an extremely high Q-factor (>10^9) held at very low (30 mK) temperatures. This ultracoherent mechanical resonator is capacitively coupled to a microwave mode, strong enough to enable ground-state-cooling of the mechanics (\(n_{\text{min}} = 0.76 \pm 0.16\)). This paves the way towards exploiting the extremely long coherence times (\(t_{\text{coh}} > 100\) ms) offered by such systems for quantum information processing and state conversion.
The field of cavity electromechanics1,2 investigates mechanical resonators which are parametrically coupled to radio-frequency or microwave circuits. Analogous to cavity optomechanics3, this coupling is at the heart of a broad set of phenomena and techniques of interest in quantum science and technology. They range from ground-state cooling of the mechanics4–6, via entanglement and squeezing7–10, to coherent microwave-optical11,12 (see also ref.3 and references therein) and superconducting qubit-mechanical interfaces14–17.

For most of these applications, a long coherence time

\[T_{\text{coh}} = \frac{h Q}{k_B T_{\text{bath}}} = \frac{1}{n_{\text{th},m}}, \]

of the mechanical system is favorable. Here, \(Q = \Omega_m / \Gamma_m \) is the mechanical quality factor defined as the ratio of the mechanical (angular) frequency \(\Omega_m \) and its energy decay rate \(\Gamma_m \); \(T_{\text{bath}} \) the resonator’s bath temperature; \(h \) and \(k_B \) the reduced Planck and the Boltzmann constants, respectively; and \(n_{\text{th},m} \approx k_B T_{\text{bath}} / h \Omega_m \) is the equivalent occupation of the thermal bath.

For state-of-the-art electromechanical systems operated at millikelvin temperatures, typical Q-factors are \(\leq 10^8 \) and coherence times are at most 1 ms. This applies to a wide variety of systems, including aluminum vacuum gap capacitors6,11,12, metallized silicon nitride membranes6,11,20,21 and strings22, quantum acoustic devices14,16, as well as piezoelectrically coupled nanophononic crystals15,17. As a notable exception, \(Q \approx 10^9 \) has been reported for a metallized silicon nitride membrane in 201523. Its enhanced performance over similar devices6,11,20,21 might be linked to its particularly low operation temperature (~10 mK) and frequency (~100 kHz)—which, among other things, can make operation in the simultaneously overcoupled and resolved-sideband regime challenging.

On the other hand, recent progress in the design of mechanical systems has allowed reaching quality factors in excess of \(10^9 \) at megahertz frequencies24–29. At millikelvin temperatures, such ultra coherent mechanical devices can reach \(T_{\text{coh}} > 100 \) ms, some two orders of magnitude beyond the typical performance of state-of-the-art devices (provided excess dephasing27 is not an issue). However, so far, the mechanics1 coupling to microwave modes has either been extremely weak24, or absent because of lacking functionalization through e.g., metallization25–28. For this reason, these mechanical systems could not yet be harnessed in electromechanics.

Here, we realize an ultra coherent electromechanical system based on a soft-clamped silicon nitride membrane29. Following earlier work6,11,23, we functionalize it with a superconducting metal pad. This allows coupling it to a microwave resonator to implement the standard opto-mechanical Hamiltonian

\[\hat{H}_{\text{int}} = h g_0 a^\dagger \hat{a} (\hat{b} + \hat{b}^\dagger), \]

as shown in previous works1. Here, \(g_0/2\pi \) is the microwave frequency shift due to the zero-point fluctuation of the mechanical resonator, \(\hat{a}(\hat{b}) \) the photon (phonon) annihilation operator. Under a strong pump, the system is populated by a mean coherent field around which the Hamiltonian can be linearized to

\[\hat{H}_{\text{int}} \approx h g_0 \sqrt{n} (\delta a^\dagger + \delta a) (\delta b + \delta b^\dagger), \]

where \(n \) is the mean photon number in the cavity, and the annihilation operators are here small displacements around a mean coherent field. In this case, well-established concepts and methods of optomechanics as described, e.g., in ref.3 apply. In our work, we realize sufficient coupling strength to cool the mechanical mode to its quantum mechanical ground state. This implies that we have achieved a quantum cooperativity \(C_Q > 1 \) (ref.3) and heralds the possibility to deploy soft-clamped mechanical resonators for applications in quantum electromechanics.

Results

Electromechanical system. The system studied here is shown in Fig. 1. It consists of a 63-nm thick soft-clamped membrane made of silicon nitride25. A square portion of its central defect (an area of \(\sim 60 \times 60 \mu m^2 \)) is covered with a 50-nm thick layer of aluminum. This superconducting pad is placed, using a flip-chip assembly, closely above the capacitive electrodes of a planar loop-gap resonator fabricated from a 100-nm thick layer of NbTiN, forming a resonant LC circuit. The motion of the metallized membrane modulates the capacitance and in turn the resonance frequency of the microwave circuit, thereby forming a canonical electromechanical system6,11.

The device is read out by inductive coupling to a coaxial transmission line and is placed on a mechanical damper, for vibration isolation30, mounted on the mixing chamber plate of a dilution refrigerator (see “Methods” for details). From microwave reflection measurements performed by the vector network analyzer, we extract a cavity resonance frequency \(\omega_c/2\pi = 8.349 \text{ GHz} \), a total linewidth \(\kappa/2\pi = 240 \text{ kHz} \) and an outcoupling efficiency \(\eta = \kappa_	ext{es}/\kappa \simeq 0.8 \). With a mechanical mode at \(\Omega_m/2\pi = 1.486 \text{ MHz} \), the system is well sideband-resolved (\(\kappa < \Omega_m \)).

The soft-clamped membranes utilized in this work represent a new design of phononic membrane resonators, one which we find to have superior characteristics for electromechanical functionalization. Each membrane of this new design is referred to as a ‘Lotus’, inspired by the resemblance of the defect-defining perforations to the large petals of various species of lotus flowers. Not only do we observe that Lotus-class designs possess larger bandgaps, but they are capable of localizing a single out-of-plane mechanical mode centered in that enlarged bandgap, with maximum amplitude at the center of the defect. Importantly, this single mode remains well-isolated from the bandgap edges after aluminum metallization, as shown in Fig. 2. Finally, we find such metallized lotuses to be able to yield ultrahigh mechanical quality factors in excess of \(10^9 \) at cryogenic temperature, as measured by energy ringdown (see Fig. 2).

Calibrations. We establish the phonon occupation of the mechanical resonator via its equilibration to the controlled thermal bath provided in the cryostat. We drive the electromechanical system with a tone at angular frequency \(\omega_p \) red-detuned from the cavity resonance \(\Delta \equiv \omega_p - \omega_c = -\Omega_m < 0 \) at a fixed, low power (\(-45 \text{ dBm at the source} \)) such that dynamical backaction6 is negligible. Then, after further amplification and carrier cancellation (see “Methods”), we measure the spectral area occupied by the angular frequency \(\omega_p + \Omega_m \) for a range of sample temperatures as measured by the cryostat thermometer. At temperatures above \(\sim 200 \text{ mK} \) (see Fig. 3a), we observe a linear relationship between temperature and mechanical sideband area. This proportionality is interpreted as the sample being in a thermal equilibrium with the mixing chamber plate. Using Bose-Einstein statistics for thermal states \(n_{\text{th}} = (e^{\omega_p/\kappa T_{\text{bath}}} - 1)^{-1} \), we extract a calibration constant between mechanical sideband area and mechanical occupation in quanta. At temperatures below \(\sim 200 \text{ mK} \), dynamical backaction is small but nonnegligible (\(\lesssim 15\% \)). This has been corrected for, together with the temperature-dependent microwave and mechanical damping (see Supplementary Material). Figure 3a shows the resulting thermalization of the mechanical oscillator to the base plate of the cryostat. From this analysis, we infer that at the lowest cryostat temperature of 30 mK, the mechanical mode is coupled to a bath at \(T_{\text{bath}} \approx 80 \text{ mK} \).
Next, we calibrate the dynamical backaction by performing mechanical ringdown measurements under red-detuned microwave drives with varying powers. Figure 3b shows superimposed ringdown sequences under increasing microwave power. For these measurements, we initialize the mechanics into a large coherent state by phase modulation of the red-detuned pump (duration 10 s), then amplify this coherent state by placing the pump on the blue side of the cavity (duration 1.75 s). Finally, we let the mechanics ringdown for 600 s with the red-detuned microwave pump at power P varying from -80 to -10 dBm (at the output of the signal generator). We fit the ringdowns to exponential decays where the time constants are the inverse angular decay rates Γ_{eff}. The resulting decay rates as function of pump power are shown in Fig. 3c, together with a fit using the model

$$\Gamma_{\text{eff}}(P) = \Gamma_m + \Gamma_e(P) = \Gamma_m \left(1 + \frac{P}{P_0}\right).$$ \hfill (4)

Here, Γ_m is the intrinsic loss rate of the mechanical resonator, while $\Gamma_e(P)$ is the damping imparted by the dynamical backaction of the microwave mode3. We introduce P_0 as the power at which the pump-induced decay is equal to the intrinsic decay rate Γ_m. Note that P_0 depends on the cavity lineshape and the pump detuning from cavity resonance. At a cryostat temperature of 30 mK, we extract $\Gamma_m/2\pi = 1.0$ MHz, a quality factor $Q_m = \Omega_m/\Gamma_m = 1.5 \times 10^9$.
and $P_0 = -38.7$ dBm from the dataset shown in Fig. 3. We note that the quality factor is dependent on the sample temperature (see Supplementary for a systematic analysis). We perform ground-state cooling at the same temperature, allowing us to use the Γ_m and $\Gamma_m(P)$ obtained from this fit as fixed parameters in all further analysis.

Finally, from a standard calibration technique detailed in ref. 31, we extract a single-photon coupling rate $g_0/2\pi = 0.89 \pm 0.11$ Hz. From the same calibration, we obtain an overall electronic gain between the sample and the spectrum analyzer. From a complementary measurement of transmission of the entire setup, we can infer an attenuation of (66.5 ± 1) dB.

Ground-state cooling. To reduce the mechanical occupation of our mechanical resonator, we place a strong coherent pump on the red sideband of the microwave cavity ($\Delta = -\Omega_m$), in the same experimental conditions with which we calibrated the phonon occupation (see the “Calibrations” section).

In the resolved-sideband limit ($\kappa \ll \Omega_m$), which we reach in this experiment, and close to the cavity frequency ($|\omega - \omega_c| \ll \kappa$), the microwave power spectral density in units of noise quanta is then:

$$S[\omega] = n_{add} + 4\eta(\bar{n} + 1/2) + n_{th}^2 \Gamma_m \left(\frac{n_{th} + \frac{1}{2}}{(\Gamma_m + \Gamma_e)^2} \right)^2,$$

(5)

where we have defined $\bar{n} = \eta n_c + (1 - \eta) n_0$, with $\eta = \kappa_c/\kappa$,

$$n_c$$

is proportional to the mechanical bath occupation $n_{th} \gg \bar{n}$. This is the regime where we performed the calibrations presented in the section “Calibrations”.

At a higher cooperativity $C \approx \Gamma_m/\Gamma_e \gg 1$, the rate at which phonons are extracted from the resonators initially exceeds the rate at which new phonons are entering the resonator via the mechanical thermal bath. A new equilibrium is established at a reduced temperature of the mechanical resonator, corresponding to a reduced effective occupation $\bar{n} < n_{th}$. This appears as a decrease of the area under the mechanical spectrum.

At the highest cooperativities, the microwave noise starts to play a significant role. It originates either from the phase noise of the microwave source or from a cavity frequency noise. We see from Eq. (5) that the observed signal can then be a negative Lorentzian. This does not mean that the temperature of the mechanical mode is negative, but rather that the cross spectrum between the microwave noise in the cavity and the microwave noise transduced to mechanical noise changes the shape of the resulting signal. In this case, inference of the mechanical mode temperature requires the knowledge of the phase noise, which is given by the background of the signal (for $\Gamma_m + \Gamma_e \ll |\omega - \omega_c| \ll \kappa$):

$$S[\omega] = A + \alpha P,$$

(6)

where P is the pump power, $\alpha P = 4\eta^2 n_c \approx 4\eta \bar{n}$, and $A = n_{add} + 2n + 4\eta(1 - \eta)n_0 \approx n_{add}$. By fitting the model of Eq. (5) to the experimental spectra comprising both the mechanical feature and the background level, we obtain the parameters n_{th} and \bar{n}, respectively, at each power level (see Fig. 4). We can then compute the mechanical occupation as:

$$\bar{n} = \frac{\Gamma_m}{\Gamma_m + \Gamma_e} n_{th} + \frac{\Gamma_e}{\Gamma_m + \Gamma_e} \bar{n}.$$

(7)

The minimum inferred occupation is $\bar{n}_{min} = 0.76 \pm 0.16$. This final value is limited by the efficiency of the vibration isolation, which increases the mechanical bath temperature above the thermodynamic temperature (see “Methods”), and the microwave phase noise at the input of the system. Although an increase of the mechanical bath temperature can be observed for pump powers ≥ 0, the contribution of the phase noise is still dominant. Placing a microwave cavity filter at the output of the signal generator, absorbing pump phase noise around the electromechanical cavity resonance, did not improve the result. This suggests that the phase noise is limited by cavity noise rather than the phase noise of the microwave source.
The mechanical occupation calibrated in Fig. 3a along with the measured intrinsic mechanical decay rate furthermore allows us to estimate the mechanics’ quantum coherence time. Following Eq. (1), we extract $t_{\text{coh}} \approx 140 \text{ ms}$. This is three orders of magnitude larger than for state-of-the-art electromechanical systems. However, further work will be needed to fully confirm the coherence of the mechanical system, ruling out e.g., excess decoherence by dephasing.

At the highest input powers ($P = 10 \text{ dBm}$), we achieve a cooperativity $C = O(10^3)$ and an electromechanical damping on the order of $\Gamma_m/2\pi \sim 80 \text{ Hz}$. However, we estimate that the single-photon coupling rate g_0 might be increased by an order of magnitude by adjustment of the geometry, in particular the gap between the membrane electrode and its counterelectrodes. This would immediately boost the coupling (with $\Gamma_\text{m} \propto g_0^2$) and simultaneously alleviate the issues with microwave phase noise. Indeed, $g_0/2\pi = 7 \text{ Hz}$ and coupling rates well above 100 kHz have been demonstrated in a similar system. The challenge in transferring this result to our system lies in realizing similarly small capacitive gaps in spite of a significantly larger membrane size, posing stringent requirements on wafer flat- and cleanliness.

Potential applications of the platform introduced here include quantum memories for microwave quantum states, where they could replace or supplement less coherent ($t_{\text{coh}} \sim 10 \text{ ms}$), much more bulky microwave resonators. By combining this with an opto-mechanical interface, e.g., by introducing a second defect in the phononic crystal, such systems could form part of an electro-opto-mechanical transducer. One of its key figures of merit, namely the number of added noise quanta, falls proportionally with the coherence time of the mechanics. Furthermore, the high mechanical coherence immediately translates to an outstanding force sensitivity. This allows for the microwave mode to be used as a sensitive transducer for the motion induced by the physical system of interest, which could be anything from spins to dark matter. Nominally, the resonant force noise spectral density of the presented device is $F_{\text{m}} = (2m\Gamma_mg_0^0)T^{1/2} \approx 650 \text{ zN/Hz}^{1/2}$, assuming the mode mass of 15 ng estimated by COMSOL simulations. Finally, the membranes’ extremely long coherence time could enable electromechanical experiments to test fundamental physics. They may, for example, constrain the parameters of collapse models, such as the continuous spontaneous localization model (CSL), which is based on a nonlinear stochastic extension of the Schrödinger equation. Testing the effects of general relativity on massive quantum superpositions with such systems has also been proposed recently.

Methods

Sample fabrication. The planar microwave resonator is a patterned thin film of NbTiN sputtered by Star Cryoelectronics on a high-resistivity silicon wafer from Topsil. The superconductor is patterned with standard UV lithography and etched with an ICP recipe based on SF$_6$/O$_2$ at low power to avoid resist burning. Aluminum pillars define the flip-chip nominal separation, and we etch a recess into the resonator Si chip using the Bosch process to minimize the risk of the flip-chip contacting anywhere else than at the pillars. The membrane is made of stoichiometric high-stress silicon nitride patterned with standard UV lithography and etched with a CF$_4$/H$_2$-based ICP recipe on wafer front and back side. The membrane is released in a hot KOH bath. The membranes are then cleaned in a bath of piranha solution, broken off to individual chips, and metallized by shadow-masked e-beam evaporation of aluminum.

Fig. 4 Sideband cooling of the mechanics to its motional ground state. a Mechanical power spectral density (PSD) around the defect mode as the cooling power is increased: the peak first increases in height with measurement gain, then visibly broadens as cooling takes place. For readability, spectra are artificially offset downward and to the right in equal steps respectively as the power is increased. The dotted line is a guide to the eye for the location of the mechanical peaks. The inset depicts the scattering process due to the mechanics, which creates a sideband (small vertical red line) in the microwave cavity (green dip) at an angular frequency Ω_m above the pump tone (tall vertical red line). b At high pump powers, the cavity is populated due to the microwave phase noise: the noise occupancy is visible in the ‘squashing’ of the mechanical feature. The increased background level of the mechanical spectrum allows to extract the cavity occupation n. d The mechanical occupation, calibrated in number of motional quanta, reaches below one phonon by dynamical backaction cooling before being heated up by cavity occupation due to input phase noise. Error bars are std. dev. of the mechanical sideband area fits.
Received: 12 July 2021; Accepted: 28 February 2022; Published online: 21 March 2022

References

1. Lehnert, K. W. In Cavity Optomechanics: Nano- and Micromechanical Resonators Interacting with Light (eds Aspelmeyer, M., Kimpenp, T. J. & Marquardt, F.) 233–252 (Springer, 2014).
2. Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).
3. Aspelmeyer, M., Kimpenp, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
4. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).
5. Yuan, M., Singh, V., Blanter, Y. M. & Stee, G. A. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Nat. Commun. 6, 8491 (2015).
6. Noguchi, A. et al. Ground state cooling of a quantum electromagnetic system with a silicon nitride membrane in a 3D loop-gap cavity. New J. Phys. 18, 103036 (2016).
7. Palomaki, T. A., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Entangling mechanical motion with microwave fields. Science 342, 710–713 (2013).
8. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).
9. Ockeloen-Korppi, C. F. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556, 478–482 (2018).
10. Delaney, R. D., Reed, A. P., Andrews, R. W. & Lehnert, K. W. Measurement of motion beyond the quantum limit by transient amplification. PRL 123, 183603 (2019).
11. Andrews, R. W. et al. Reversible and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014).
12. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81 (2014).
13. Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).
14. Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).
15. Arrangoiz-Ariola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).
16. Brienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).
17. Mirhosseini, M., Sipahigil, A., Kalace, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).
18. Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013).
19. Weinstein, A. J. et al. Observation and interpretation of motional sideband asymptometry in a quantum electromechanical device. PRX 4, 041003 (2014).
20. Higginbotham, A. P. et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys. 14, 1038–1042 (2018).
21. Delaney, R. D. et al. Non-destructive optical readout of a superconducting qubit. Preprint at https://arxiv.org/abs/2110.09539 (2021).
22. Zhou, X. et al. Slowing, advancing and switching of microwave signals using circuit nanomechanoelectronics. Nat. Phys. 9, 179–184 (2013).
23. Yuan, M., Cohen, M. A. & Stee, G. A. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 10¹². Appl. Phys. Lett. 107, 263501 (2015).
24. Goeyarch, M. et al. Extremely high q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature. AIP Conf. Proc. 1633, 90–92 (2014).
25. Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracold nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).
26. Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).
27. MacCabe, G. S. et al. Nano-actuator resonator with ultra long phonon lifetime. Science 370, 840–843 (2020).
28. Beccari, A. et al. Strained crystalline nanomechanical resonators with ultralow dissipation. Nat. Phys. (2022).
29. Bereyi, M. J. et al. Hierarchical tensile structures with ultralow mechanical dissipation. Preprint at https://arxiv.org/abs/2103.09785 (2022).
30. de Wit, M. et al. Vibration isolation with high thermal conductance for a cryogen-free dilution refrigerator. Rev. Sci. Instrum. 90, 051112 (2019).
31. Gorodeytsia, M. L., Schliesser, A., Anetsberger, G., Deleglise, S. & Kippenberg, T. J. Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt. Express 18, 23236–23246 (2010).
32. Safavi-Naeini, A. H. et al. Laser noise in cavity optomechanical cooling and thermometry. New J. Phys. 15, 035007 (2013).
33. Reagor, M. et al. Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl. Phys. Lett. 102, 192604 (2013).
34. Catalini, L., Tsaturyan, Y. & Schliesser, A. Soft-clamped phononic dimers for mechanical sensing and transduction. Phys. Rev. Appl. 14, 014041 (2020).
35. Zeuthen, E., Schliesser, A., So rensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Quant. Sci. Technol. 5, 034009 (2020).
36. Fisch, R. et al. Spin detection with a micromechanical tramploline: towards magnetic resonance microscopy harnessing cavity optomechanics. New J. Phys. 21, 043049 (2019).
37. Kolata, J., Zilberberg, O., Degen, C. L., Chitra, R. & Eichler, A. Spin detection via parametric frequency conversion in a membrane resonator. Phys. Rev. Appl. 14, 014042 (2020).
38. Halg, D. et al. Membrane-based scanning force microscopy. Phys. Rev. Appl. 15, L021001 (2021).
39. Carney, D. et al. Mechanical quantum sensing in the search for dark matter. Quant. Sci. Technol. 6, 024002 (2021).
40. Bassi, A., Lohan, K., Sait, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).
41. Nimmrichter, S., Hornberger, K. & Hammerer, K. Optomechanical sensing of spontaneous wave-function collapse. Phys. Rev. Lett. 113, 020405 (2014).
42. Gily, M. F. & Stee, G. A. Superconducting electro-mechanics to test Diasi-Penrose effects of general relativity in massive superpositions. AVS Quant. Sci. 3, 035601 (2021).

Acknowledgements

The authors would like to acknowledge support by S. Cherednichenko of Chalmers University in early attempts of superconductor deposition. This work was supported by the European Research Council project Q-CEOM (grant no. 638765), the Danish National Research Foundation (Center of Excellence “Hy-Q”), the EU H2020 FET proactive project HOT (grant no. 732894), as well as the Swiss National Science Foundation (grant no. 177198). The project has furthermore received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 722092 (Marie Curie ETN - OMT) and the Marie Składowska-Curie grant agreement No. 801199.

Author contributions

Y.S. designed and fabricated the microwave circuit and flip-chip assembly, performed most of the experiments, and analyzed the data. T.C. designed the mechanical isolator, participated in the experiments, and characterization at an early stage. Y.S., T.C., and A.S. wrote the manuscript, which all authors revised. A.S. supervised the entire project.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29115-9.

Correspondence and requests for materials should be addressed to Albert Schliesser.

Peer review information Nature Communications thanks Gary Steele, Özgür Müstecaplıoglu and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29115-9
