Categoricity of Shimura Varieties

Sebastian Eterović

University of Oxford

PLS12, June 2019
Let $V(\mathbb{C}) \subseteq \mathbb{C}^n$ be an irreducible algebraic variety defined over a countable field F_0.
Let $V(\mathbb{C}) \subseteq \mathbb{C}^n$ be an irreducible algebraic variety defined over a countable field F_0.

Let F be an algebraically closed field of characteristic 0 with an embedding $F_0 \rightarrow F$. This defines a structure in the language $\mathcal{L}_{F_0} = \{+, \cdot, F_0\}$ which is the extension of the language of rings by a set of constants for F_0.

Let T be the complete first-order theory of V in this language. As $V(\mathbb{C})$ is bi-interpretable with F, then T has the same model-theoretic properties as ACF_0, in particular, it is uncountably categorical.
Let $V(\mathbb{C}) \subseteq \mathbb{C}^n$ be an irreducible algebraic variety defined over a countable field F_0.

Let F be an algebraically closed field of characteristic 0 with an embedding $F_0 \rightarrow F$. This defines a structure in the language $\mathcal{L}_{F_0} = \{ +, \cdot, F_0 \}$ which is the extension of the language of rings by a set of constants for F_0.

The set $V(F)$ (consisting of the F-points of V) can be interpreted over the \mathcal{L}_{F_0}-structure F. For every $m \geq 1$, every subvariety of $V(F)^m$ definable over F_0 is definable in the language \mathcal{L}_{F_0}.
Let $V(\mathbb{C}) \subseteq \mathbb{C}^n$ be an irreducible algebraic variety defined over a countable field F_0.

Let F be an algebraically closed field of characteristic 0 with an embedding $F_0 \to F$. This defines a structure in the language $\mathcal{L}_{F_0} = \{+, \cdot, F_0\}$ which is the extension of the language of rings by a set of constants for F_0.

The set $V(F)$ (consisting of the F-points of V) can be interpreted over the \mathcal{L}_{F_0}-structure F. For every $m \geq 1$, every subvariety of $V(F)^m$ definable over F_0 is definable in the language \mathcal{L}_{F_0}.

Let T be the complete first-order theory of V in this language. As $V(F)$ is bi-interpretable with F, then T has the same model-theoretic properties as ACF_0, in particular, it is uncountably categorical.
Quotient Varieties

Let $U \subseteq \mathbb{C}^n$ be a complex domain, and suppose that there is an action of a group Γ on U such that $V(\mathbb{C}) = \Gamma \backslash U$ is an algebraic variety.
Let $U \subseteq \mathbb{C}^n$ be a complex domain, and suppose that there is an action of a group Γ on U such that $V(\mathbb{C}) = \Gamma \backslash U$ is an algebraic variety.

Example

Let $\mathbb{H} \subset \mathbb{C}$ denote the upper half-plane. The group $SL_2(\mathbb{Z})$ acts on \mathbb{H} through Möbius transformations. The quotient $SL_2(\mathbb{Z}) \backslash \mathbb{H}$ is an algebraic variety isomorphic to \mathbb{C}.

Quotient Varieties

Let $U \subseteq \mathbb{C}^n$ be a complex domain, and suppose that there is an action of a group Γ on U such that $V(\mathbb{C}) = \Gamma \backslash U$ is an algebraic variety.

Example

Let $\mathbb{H} \subseteq \mathbb{C}$ denote the upper half-plane. The group $\text{SL}_2(\mathbb{Z})$ acts on \mathbb{H} through Möbius transformations. The quotient $\text{SL}_2(\mathbb{Z}) \backslash \mathbb{H}$ is an algebraic variety isomorphic to \mathbb{C}.

Quotient varieties can have more interesting structures than just being algebraic varieties. In order to witness this with model theory, it helps to expand the language and make it two-sorted: $q : U \rightarrow V(\mathbb{C})$

- V has the language of algebraic varieties,
- U at least has the structure of a Γ-action,
- q is a function symbol invariant under Γ.
Let X^+ denote a complex domain and suppose that there is an algebraic group G defined over \mathbb{Q} such that $G(\mathbb{R})^+$ acts on X^+ through biholomorphisms. Under certain axioms on this data, one can find discrete subgroups $\Gamma < G(\mathbb{Q})^+$ such that $\Gamma \backslash X^+$ is a variety.
Let X^+ denote a complex domain and suppose that there is an algebraic group G defined over \mathbb{Q} such that $G(\mathbb{R})^+$ acts on X^+ through biholomorphisms. Under certain axioms on this data, one can find discrete subgroups $\Gamma < G(\mathbb{Q})^+$ such that $\Gamma \backslash X^+$ is a variety.

Choosing the axioms to be the axioms of *Shimura data*, the quotient $S(\mathbb{C}) := \Gamma \backslash X^+$ is called a *(connected)* Shimura variety.
Let X^+ denote a complex domain and suppose that there is an algebraic group G defined over \mathbb{Q} such that $G(\mathbb{R})^+$ acts on X^+ through biholomorphisms. Under certain axioms on this data, one can find discrete subgroups $\Gamma < G(\mathbb{Q})^+$ such that $\Gamma \backslash X^+$ is a variety.

Choosing the axioms to be the axioms of *Shimura data*, the quotient $S(\mathbb{C}) := \Gamma \backslash X^+$ is called a *(connected)* Shimura variety.

By some very deep theorems, Shimura varieties are canonically defined over a corresponding number field $E = E(G, X^+)$ called the *reflex field*.
Suppose $V \subseteq S$ is a subvariety such that one can find a subdomain $X_V^+ \subseteq X^+$ and an algebraic subgroup $H \leq G$ defined over \mathbb{Q}, so that (H, X_V^+) also satisfies the axioms of Shimura data.
Suppose $V \subseteq S$ is a subvariety such that one can find a subdomain $X_V^+ \subseteq X^+$ and an algebraic subgroup $H < G$ defined over \mathbb{Q}, so that (H, X_V^+) also satisfies the axioms of Shimura data.

Let $\Gamma^H = \Gamma \cap H(\mathbb{Q})$.
Suppose $V \subseteq S$ is a subvariety such that one can find a subdomain $X^+_V \subseteq X^+$ and an algebraic subgroup $H < G$ defined over \mathbb{Q}, so that (H, X^+_V) also satisfies the axioms of Shimura data.

Let $\Gamma^H = \Gamma \cap H(\mathbb{Q})$.

If $V(\mathbb{C}) = \Gamma^H \backslash X^+_V$, then we call V a special subvariety of S. We also call X^+_V a special domain for V.
Suppose $V \subseteq S$ is a subvariety such that one can find a subdomain $X^+_V \subseteq X^+$ and an algebraic subgroup $H < G$ defined over \mathbb{Q}, so that (H, X^+_V) also satisfies the axioms of Shimura data.

Let $\Gamma^H = \Gamma \cap H(\mathbb{Q})$.

If $V(\mathbb{C}) = \Gamma^H \backslash X^+_V$, then we call V a *special subvariety* of S. We also call X^+_V a *special domain* for V.

A 0-dimensional special subvariety of S is called a *special point*.
Let $p : X^+ \to S(\mathbb{C})$ be a Shimura variety. Choose $g_1, \ldots, g_n \in G(\mathbb{Q})^+$. Define:

$$p_g : X^+ \to S(\mathbb{C})^n$$

$$x \mapsto (p(g_1x), \ldots, p(g_nx)).$$

The image of p_g is a special subvariety of S^n which we denote Z_g.
Let \(p : X^+ \to S(\mathbb{C}) \) be a Shimura variety. We interpret this as a Shimura structure \(q : D \to S(F) \) using the language \(\mathcal{L} \) consisting of:

1. \(S(F) \) is interpreted as an algebraic variety over \(F_0 = E(\Sigma) \), where \(\Sigma \) is the set of coordinates of all special points of \(S(\mathbb{C}) \).
2. \(D \) is a set with an action of \(G(\mathbb{Q})^+ \) and also predicates \(D^V \subseteq D^m \) (for all \(m \geq 1 \)) interpreted as the special domains of a special subvariety \(V \).
3. \(q \) is a function.

Let \(\text{Th}(p) \) be the complete first-order theory of \(p : X^+ \to S(\mathbb{C}) \) in this language.

Remark: Every special subvariety of \(S_m \) is definable over \(E(\Sigma) \).
Let $p : X^+ \to S(\mathbb{C})$ be a Shimura variety. We interpret this as a *Shimura structure* $q : D \to S(F)$ using the language \mathcal{L} consisting of:

1. $S(F)$ is interpreted as an algebraic variety over $F_0 = E(\Sigma)$, where Σ is the set of coordinates of all special points of $S(\mathbb{C})$.

Remark: Every special subvariety of S_m is definable over $E(\Sigma)$.
Shimura Structures

Let $p : X^+ \to S(\mathbb{C})$ be a Shimura variety. We interpret this as a *Shimura structure* $q : D \to S(F)$ using the language \mathcal{L} consisting of:

1. $S(F)$ is interpreted as an algebraic variety over $F_0 = E(\Sigma)$, where Σ is the set of coordinates of all special points of $S(\mathbb{C})$.
2. D is a set with an action of $G(\mathbb{Q})^+$ and also predicates $D_V \subseteq D^m$ (for all $m \geq 1$) interpreted as the special domains of a special subvariety V.

Remark

Every special subvariety of S^m is definable over $E(\Sigma)$.

S. Eterović (Oxford) Categoricity of Shimura Varieties June 2019 7 / 10
Let $p : X^+ \to S(\mathbb{C})$ be a Shimura variety. We interpret this as a *Shimura structure* $q : D \to S(F)$ using the language \mathcal{L} consisting of:

1. $S(F)$ is interpreted as an algebraic variety over $F_0 = E(\Sigma)$, where Σ is the set of coordinates of all special points of $S(\mathbb{C})$.
2. D is a set with an action of $G(\mathbb{Q})^+$ and also predicates $D_V \subseteq D^m$ (for all $m \geq 1$) interpreted as the special domains of a special subvariety V.
3. q is a function.
Let \(p : X^+ \to S(\mathbb{C}) \) be a Shimura variety. We interpret this as a Shimura structure \(q : D \to S(F) \) using the language \(\mathcal{L} \) consisting of:

1. \(S(F) \) is interpreted as an algebraic variety over \(F_0 = E(\Sigma) \), where \(\Sigma \) is the set of coordinates of all special points of \(S(\mathbb{C}) \).
2. \(D \) is a set with an action of \(G(\mathbb{Q})^+ \) and also predicates \(D_V \subseteq D^m \) (for all \(m \geq 1 \)) interpreted as the special domains of a special subvariety \(V \).
3. \(q \) is a function.

Let \(\text{Th}(p) \) be the complete first-order theory of \(p : X^+ \to S(\mathbb{C}) \) in this language.
Let \(p : X^+ \to S(\mathbb{C}) \) be a Shimura variety. We interpret this as a *Shimura structure* \(q : D \to S(F) \) using the language \(\mathcal{L} \) consisting of:

1. \(S(F) \) is interpreted as an algebraic variety over \(F_0 = E(\Sigma) \), where \(\Sigma \) is the set of coordinates of all special points of \(S(\mathbb{C}) \).
2. \(D \) is a set with an action of \(G(\mathbb{Q})^+ \) and also predicates \(D_V \subseteq D^m \) (for all \(m \geq 1 \)) interpreted as the special domains of a special subvariety \(V \).
3. \(q \) is a function.

Let \(\text{Th}(p) \) be the complete first-order theory of \(p : X^+ \to S(\mathbb{C}) \) in this language.

Remark

Every special subvariety of \(S^m \) is definable over \(E(\Sigma) \).
$\text{Th}(p)$ is not uncountably categorical because there is no restriction on the sizes of the fibres of q. From construction, the fibres of p are all of size Γ, but as Γ is a countably infinite group, this condition cannot be stated in a first-order way.
Standard Fibres

$\text{Th}(p)$ is not uncountably categorical because there is no restriction on the sizes of the fibres of q. From construction, the fibres of p are all of size Γ, but as Γ is a countably infinite group, this condition cannot be stated in a first-order way.

Let SF be the $\mathcal{L}_{\omega_1,\omega}$-sentence:

$$\forall x, y \in D \left(q(x) = q(y) \implies \bigvee_{\gamma \in \Gamma} x = \gamma y \right).$$

Let $\text{Th}_{\text{SF}}(p) = \text{Th}(p) \cup \text{SF}$.
Let Γ' be a normal finite-index subgroup of Γ. This induces a natural map:

$$\Gamma' \backslash X^+ \xrightarrow{\psi} \Gamma \backslash X^+$$

whose fibres have a simply transitive action of Γ / Γ'.

Let $z' \in \Gamma' \backslash X^+$ and $z \in \Gamma \backslash X^+$ be such that $\psi(z') = z$. Let L be a finitely generated field extension of $E(\Sigma)$ over which z is defined. THEN $\text{Aut}(C / L)$ also acts on $\psi^{-1}(z)$ in a way that is compatible with the action of Γ / Γ'. Thus we get a homomorphism:

$$\rho_{z'} : \text{Aut}(C / L) \to \Gamma / \Gamma'.$$
Let Γ' be a normal finite-index subgroup of Γ. This induces a natural map:

$$\Gamma' \backslash X^+ \overset{\psi}{\rightarrow} \Gamma \backslash X^+$$

whose fibres have a simply transitive action of Γ/Γ'.

Let $z' \in \Gamma' \backslash X^+$ and $z \in \Gamma \backslash X^+$ be such that $\psi(z') = z$. Let L be a finitely generated field extension of $E(\Sigma)$ over which z is defined. THEN $\text{Aut}(\mathbb{C}/L)$ also acts on $\psi^{-1}(z)$ in a way that is compatible with the action of Γ/Γ'. Thus we get a homomorphism:

$$\rho_{z'} : \text{Aut}(\mathbb{C}/L) \rightarrow \Gamma/\Gamma'.$$
Repeat the construction of the homomorphism $\rho_{z'}$ for all finite-index normal subgroups of Γ, and choose the z' in a compatible way. We then get a homomorphism:

$$\text{Aut}(\mathbb{C}/L) \to \overline{\Gamma} := \lim_{\Gamma' \to \Gamma} \Gamma / \Gamma'.$$
Repeat the construction of the homomorphism $\rho_{z'}$ for all finite-index normal subgroups of Γ, and choose the z' in a compatible way. We then get a homomorphism:

$$\text{Aut}(\mathbb{C}/L) \to \overline{\Gamma} := \lim_{\Gamma' \to \Gamma} \Gamma / \Gamma'.$$

As it turns out (you can read my thesis), the uncountable categoricity of $\text{Th}_{SF}(p)$ is completely dependent on the behaviour of this last homomorphism, specifically on whether the image is open in $\overline{\Gamma}$ or not.
Repeat the construction of the homomorphism $\rho_{z'}$ for all finite-index normal subgroups of Γ, and choose the z' in a compatible way. We then get a homomorphism:

$$\text{Aut}(\mathbb{C}/L) \to \bar{\Gamma} := \varprojlim \frac{\Gamma}{\Gamma'}.$$

As it turns out (you can read my thesis), the uncountable categoricity of $\text{Th}_{SF}(p)$ is completely dependent on the behaviour of this last homomorphism, specifically on whether the image is open in $\bar{\Gamma}$ or not.

This last question is of great interest in number theory, and had already been independently considered by Richard Pink (2006), and in more specific cases, it is known as the Mumford-Tate conjecture (still, mostly open).