Focal adhesions (FAs) are large, integrin-based protein complexes that link cells to the extracellular matrix (ECM). FAs form only when and where they are necessary to transmit force between the cellular cytoskeleton and the ECM, but how this occurs remains poorly understood. Talin is a 270-kDa adaptor protein that links integrins to filamentous (F)-actin and recruits additional components during FA assembly in a force-dependent manner. Cell biological and developmental data demonstrate that the third and C-terminal F-actin–binding site (ABS3) of talin is required for normal FA formation. However, purified ABS3 binds F-actin only weakly in solution. We used a single molecule optical trap assay to examine how and whether ABS3 binds F-actin under physiologically relevant mechanical loads. We find that ABS3 forms a catch bond with F-actin when force is applied toward the pointed end of the actin filament, with binding lifetimes >100-fold longer than when force is applied toward the barbed end. Long-lived bonds to F-actin under load require the ABS3 C-terminal dimerization domain, whose cleavage has been reported to regulate FA turnover. Our results support a mechanism in which talin ABS3 preferentially binds to and orient actin filaments with barbed ends facing the cell periphery, thus nucleating long-range order in the actin cytoskeleton. We suggest that talin ABS3 may function as a molecular AND gate that allows FA growth only when sufficient integrin density, F-actin polarization, and mechanical tension are simultaneously present.

Talin is a mechanosensitive adaptor protein that links integrins to the actin cytoskeleton at cell–extracellular matrix adhesions. Although the C-terminal actin-binding domain ABS3 of talin is required for function, it binds weakly to actin in solution. We show that ABS3 binds actin strongly only when subjected to mechanical forces comparable to those generated by the cytoskeleton. Moreover, the interaction between ABS3 and actin depends strongly on the direction of force in a manner predicted to organize actin to facilitate adhesion growth and efficient cytoskeletal force generation. These characteristics can explain how force sensing by talin helps to nucleate adhesions precisely when and where they are required to transmit force between the cytoskeleton and the extracellular matrix.

Significance

Precise and dynamically regulated force transmission between cells and the extracellular matrix (ECM) is a requirement for cell migration, tissue repair, and, more broadly, the construction of multicellular animal life. Adhesion to the ECM is mediated in large part by integrins, a family of heterodimeric transmembrane proteins that assemble into large adhesion complexes, here referred to generically as focal adhesions (FAs). FA assembly is precisely controlled, such that FAs form only when and where they are necessary to transmit force between the cytoskeleton and the ECM. However, the mechanism by which mechanical force regulates FA nucleation and growth remains poorly understood.

The C-terminal actin-binding domain ABS3 of talin is required for function and binding to actin in solution. We show that ABS3 binds actin strongly only when subjected to mechanical forces comparable to those generated by the cytoskeleton. Moreover, the interaction between ABS3 and actin depends strongly on the direction of force in a manner predicted to organize actin to facilitate adhesion growth and efficient cytoskeletal force generation. These characteristics can explain how force sensing by talin helps to nucleate adhesions precisely when and where they are required to transmit force between the cytoskeleton and the extracellular matrix.
Strikingly, we also observed that nearly all long (>0.5 s) binding events associated with a single actin filament were associated with load on only one of the two traps (Fig. 2). The consistency in the preferred direction of long-lived binding events was observed for a given actin filament across multiple platforms, indicating that this behavior did not reflect ABS3...
orientation on the surface. When we reversed the orientation of the actin filament by switching the position of the two beads in the optical traps, the preferred loading direction also switched. This result strongly suggested that the relationship between the polarity of the actin filament and the vector of applied force regulated the stability of the ABS3 to F-actin bond.

We next determined whether long-lived binding events corresponded to load oriented toward the F-actin barbed (+) or pointed (−) end by using a previously reported assay in which...
the polarity of a given actin filament is determined using the activity of a myosin VI construct (Fig. 2B) (22). (Myosin VI is a non-muscle myosin that moves toward the (−) end of F-actin.) ABS3 binding events longer than 0.48 s only occurred when force was applied toward the F-actin pointed (−) end (Fig. 2C). This asymmetry was so striking that we could infer the polarity of actin filaments in previous datasets with high confidence and in so doing quantify force-binding lifetime relationships relative to actin filament polarity (Fig. 2C). The difference in binding lifetimes was most striking for forces above 10 pN for which the difference in lifetimes was >100-fold (Fig. 2D). Only 125/777 (17%) of the detectable binding events occurred under (+) end-directed loads, suggesting that the measured asymmetry in lifetimes constitutes a lower limit.

To gain insight into the molecular mechanism of catch bond formation, we investigated the survival probabilities of bonds within single force bins. Only forces directed toward the pointed end resulted in sufficient binding events for analysis. We observed that the distribution of forces within each 1-pN bin fit better to a biexponential decay than a single exponential decay (SI Appendix, Fig. 4), indicating that there were at least two bound states with different characteristic bond lifetimes at each force (23).

The C-terminal dimerization domain (DD) of ABS3 is required for actin cosedimentation and for the function of ABS3 in vivo (8, 9, 16, 17), and antiparallel ABS3 dimers are observed to wrap around actin filaments when imaged by electron microscopy (8). To determine how this domain contributes to F-actin binding, we created a construct containing talin residues 2,293 to 2,493 that lacked the C-terminal DD termed ABS3ΔDD (Fig. 3A and SI Appendix, Fig. 5). Consistent with earlier reports, this construct cosedimented with F-actin weakly (SI Appendix, Fig. 6A). Moreover, we detected no binding events in the optical trap assay longer than 32 ms using the low-force assay (SI Appendix, Fig. 6B) and no binding under load that could be differentiated from negative controls. The lack of detectable binding by ABS3ΔDD in the optical trap assay suggested two nonexclusive possibilities for the role of the DD: the DD contributes to the strong binding of a single ABS3 to F-actin, and/or the recruitment of two ABS3 domains is required for binding under load. To distinguish between these possibilities, we first more closely examined the dimerization of ABS3, which had been reported to form a constitutive dimer (25). We used a fluorescence polarization assay to characterize the association of ABS3 with a fluorescently tagged DD peptide (amino acids 2,494 to 2,541). The association of these fragments was reversible, and quantification of the data yielded a dissociation constant KD = 1.9 ± 0.2 μM (Fig. 3B). Multimicro- molar KD values were also estimated for the ABS3 construct based on size-exclusion (SEC) multiple angle light scattering and native polyacrylamide gel electrophoresis experiments (SI Appendix, Fig. 7). In our hands, ABS3 dimerization is a dynamic equilibrium at micromolar concentrations.

Next, we created two constructs, termed N-terminal dimer (NTD)-ABS3 and NTD-ABS3ΔDD, in which split GFP (26) was used to make stable dimers of either ABS3 or ABS3ΔDD (Fig. 3A). NTD-ABS3ΔDD displayed some F-actin binding in the cosedimentation assay (SI Appendix, Fig. 6A). NTD-ABS3ΔDD also bound actin in the optical trap in the absence of load with a lifetime of 592 ± 5 ms. We observed no binding events longer than 0.8 s in the presence of applied force (SI Appendix, Fig. 8). Furthermore, no single actin filament sampled resulted in more than one binding event longer than 0.5 s, making the determination of the long-binding direction impossible for this dataset. Thus, N-terminal dimerization alone was not sufficient to rescue long-lived, polarized binding in the presence of load.

For NTD-ABS3, forced N-terminal dimerization slightly increased no-load binding in the optical trap assay (SI Appendix, Fig. 6B) but did not significantly alter binding in the presence of load (Fig. 3C). This degree of similarity suggests that ABS3 also forms stable, load-bearing bonds to F-actin only when its C-terminal dimerization domain is present. Although it must be interpreted with care, we also did not observe substeps for the dissociation of ABS3 or NTD-ABS3 from F-actin, which if present would provide evidence for sequential unbinding of individual ABS3 domains. In total, a reasonable interpretation is that 1) definitively monomeric ABS3 (ABS3-ΔDD) binds F-actin only transiently under load, 2) the DD is required for stable F-actin binding under load, and 3) each dissociation step we observe reflects the coordinated detachment within our temporal resolution of an ABS3 dimer from F-actin. This is consistent with electron microscopy data in which antiparallel ABS3 dimers saddle actin filaments, but no ABS3 monomers are reported to bind (8). How the DD’s intrinsic actin-binding activity and its C-terminal dimerization dynamics contribute to ABS3’s load-dependent binding behavior has yet to be determined.

Interestingly, 6 to 10 pN of force, which in our experiments yields mean binding lifetimes of ∼10 s, would correspond to 3 to 5 pN of load per individual talin dimer half. This value is in good accord with measurements of typical loads borne by integrins in living cells (27) and by talin in proximity to ABS3 (28).

Discussion

Previous studies indicate that the talin-binding partner vinculin forms a directional catch bond with F-actin: like talin, the bond between vinculin and F-actin is stabilized when load is oriented toward the pointed end of the actin filament (22). However, both the force dependence and directional preference of ABS3 are different—the mean measured lifetime and the actin polarity preference each increase more than 100-fold under load, enhancements that are ~10-fold larger than those observed for vinculin. Indirect evidence suggests that talin ABS3 and vinculin may act in concert: knockdown of vinculin worsens ABS3 mutant phenotypes in mammalian cells in culture and in Dro sophila (17), and expression of constitutively active vinculin can compensate for ABS3 disruption in cell culture (14). Whether the talin ABS1 and ABS2 domains and, more broadly, the many other F-actin–binding proteins present at FAs show similar directional sensitivity is not known. However, at a conceptual level, this requires only a binding interaction with F-actin that is asymmetric with respect to the intrinsic polarity of the actin filament as, for example, is seen in the electron microscopy structures of ABS3 and the vinculin F-actin–binding domain bound to F-actin (8, 29). Based on these observations, it is interesting to speculate that asymmetric regulation of dissociation rates by force may be a general property of protein–actin bonds.

How exactly cells regulate the number, size, and placement of FAs has been unclear. As a partial answer, we speculate that ABS3 may function as a molecular AND gate that limits the formation of FAs to highly specific circumstances (Fig. 3D). As suggested previously, it is plausible that integrins must be of sufficient local areal density to anchor talin dimers at both N termini (30, 31). Furthermore, our results show that substantial, >5-pN loads are required for ABS3 to form long-lived bonds to F-actin. This condition requires that load-bearing connections between the ECM, integrin, and talin are intact and that the proximal ECM is sufficiently stiff to resist cell-generated forces. Finally, load must be oriented toward the F-actin pointed end. This stabilizes oriented F-actin that is under load due to either barbed-end polymerization forces or tension generated by non-muscle myosin II while allowing misoriented F-actin to escape.
Simulation suggests that the resulting polarization of F-actin can potentially drive cellular-scale organization of the actin cytoskeleton to generate efficient traction and produce directional cell migration (22, 32, 33). We therefore propose that the F-actin–binding properties of ABS3 have evolved to limit FA formation to when and where a force-transmitting anchorage between the cytoskeleton and the ECM is required. Further work is required to test this hypothesis with in vivo experiments and to test whether a similar form of autoregulation may apply to other cellular adhesion complexes.

Our assay design uses fast ramp loading at \(\sim 3,000 \text{ pN} \cdot \text{s}^{-1} \) followed by constant stage position because this makes subsequent data analysis and model building more straightforward than in the case of experiments carried out with time-varying loads. Relatively few data comment directly on how talin ABS3 may be loaded in vivo. F-actin retrograde flow rates vary between and within cells, with some studies reporting flow rates ranging from 10 to as high as 600 nm \cdot \text{s}^{-1} (34). The latter velocity is comparable to that at which non-muscle myosin IIA is predicted to translocate F-actin at physiological temperature and low load (35). The stiffness of the molecular linkages that anchor talin ABS3 is not certain, but a reasonable value based on the stiffness of the talin rod domain is \(\sim 1 \text{ pN} \cdot \text{nm}^{-1} \), yielding predicted in vivo loading rates ranging from 10 to 600 pN \cdot \text{s}^{-1}. The properties of ABS3 may thus allow it to capture and anchor F-actin undergoing retrograde flow, consistent with the observation that ABS3 mutations that disrupt actin binding also prevent retrograde flow-dependent force transfer to the talin rod and talin-dependent slowing of lamellipodial actin flow (15). More broadly, the exponential increase in binding lifetimes with load (SI Appendix, Fig. 9) means that repeated interactions with F-actin will eventually result in an encounter in which an ABS3 dimer surpasses a threshold force and becomes stably attached to F-actin. Understanding how the dynamical properties of ABS3 and other F-actin–binding proteins influence the assembly and dynamics of FAs constitutes an interesting target for future investigations.

Materials and Methods

Constructs. The HaloTag-ABS3 expression vector was constructed by inserting the DNA encoding the HaloTag, a linker sequence, and the human talin-1 NTD-ABS3 construct (lavender) with mean lifetime (plotted in thick orange) and CI on the mean (plotted in thin orange) (20 data points per bin). \(n = 386 \) binding events, \(n = 18 \) dumbbells, \(n = 8 \) flow cells, \(N = 2 \) NTD-ABS3 preparations. (D) Model: Talin ABS3 only binds actin when the ECM-integrin-talin force transmission pathway is intact, and actin is under pointed-end-directed load. [Integrin cartoon modified from previous publication (24).] Consistent with electron microscopy data, talin is depicted as wrapping around actin filaments during strong binding (8).
C-terminal actin-binding domain (amino acids 2,293 to 2,541) into the pPROEX HTa expression vector to generate an in-frame fusion consisting of a 6xHis-tag, HaloTag, 12-residue linker (SGGLGSGGIGGGSGG), and ABS3. The GFP11-ABS3 vector was generated by insertion of the sequence for GFP11 and ABS3 into a pD444-NH: TS-His-ORF, EcoRI-Elec D expression vector to create an in-frame fusion of 6xHis-tag, a (GGSGG)x2 linker, GFP11, (GGSGG)x6, and ABS3. The GFP 1–10 OPT-HaloTag-ABS3 expression vector was generated by insertion of the sequence for GFP 1–10 OPT, HaloTag, and ABS3 into pD444-NH: TS-His-ORF, EcoRI-Elec D to create an in-frame fusion of 6xHis-tag, GFP 1–10 OPT, (GGSGG)x2, HaloTag, (GGSGG)x4, and ABS3. The HaloTag-ABS3/DD expression vector was generated from the HaloTag-ABS3 expression vector by the insertion of two stop codons before amino acid M2494 of the original talin-1 gene. The GFP11-ABS3/DD and GFP 1–10 OPT-HaloTag-ABS3/DD expression vectors were generated by site-directed mutagenesis of amino acid M2494 of the original talin-1 gene to generate a stop codon in its place.

Protein Preparation. The GFP11-ABS3 and GFP 1–10 OPT-HaloTag-ABS3 (and GFP11-ABS3/DD and GFP 1–10 OPT-HaloTag-ABS3/DD) were coexpressed in BL21 (DE3) Escherichia coli cultures to facilitate split GFP fusion and stabilization (26). All other constructs were expressed in BL21 (DE3) E. coli and induced with isopropyl β-D-thiogalactosidase. Proteins were purified via nickel-nitrilotriacetic acid affinity chromatography, ion exchange, and SEC before flash freezing for later use. Full details in SI Appendix, Extended Materials and Methods.

eGFP was purified and labeled with HaloTag Succinimidyl Ester (O4) Ligand (Promega, P6751) as previously described (22). Ligand labeling densities > 1 HaloTag ligand per eGFP were required for activity of the ABS3 construct.

Actin Biotinylation Protocol. F-actin used in the optical trap assay was purified from rabbit skeletal muscle as previously described (36) and then biotinylated with custom software (MATLAB). The temporal boundaries of binding events were picked with custom software (MATLAB) and verified manually. The net force on the talin/F-actin bond is determined as described previously (22). When a binding event occurs, one of the beads is pulled further from its equilibrium position while the other bead either moves toward or falls into the center of its trap.

Net force applied to the ABS3-actin bond is thus calculated by adding the magnitudes of the force change observed for each bead during a binding event, consistent with force balance (22).

Reported force values associated with force-lifetime data are the mean force on the talin/F-actin bond during the binding event (either the single step or last step of multistep events). Binding events less than 20 ms were excluded from all analyses, as these were also observed in a minority of negative controls. Binding events shorter than the 150-ms stage oscillation pause time and longer than 20 ms were detected and reported. Rare binding events that were terminated coincidentally with the onset of stage oscillation (in which the stage erroneously started oscillating before the binding event ended) were excluded from the analysis.

Assignment of Actin Filament Polarity. Actin filament polarity was explicitly determined as described previously for a subset of the data in which flow cells were prepared with a myosin VI construct consisting of porcine myosin VI (residues 9 to 118) and Archaeoglobus fulgidus L7Ae (residues 9 to 118) with a C-terminal eYFP (38) on one-half of the flow cell (22). In this case, actin filaments were held above multiple myosin VI platforms, and the direction of myosin force generation was observed. The actin dumbbell was then moved to a location in the flow cell coated with ABS3, and the loaded optical trap assay was performed. Myosin stepping was observed to displace actin filaments in the same direction as strong ABS3 binding, indicating that ABS3 binding force is directed toward the pointed end of the actin filament for dumbbells measured with this assay. Controls are described in SI Appendix, Extended Materials and Methods.

Actin filament polarity was inferred for the remainder of the data in which no myosin VI was present. Filament polarity could be reliably determined for dumbbells for which we measured at least two binding events longer than 0.5 s. In these cases, actin filament polarity was assigned such that the longer mean lifetimes were associated with pointed-end-directed forces. Traces corresponding to actin dumbbells that yielded fewer than two long (>0.5 s) events were excluded from analysis for both ABS3 and NTD-ABS3 in the loaded assay, as the orientation of these filaments could not be clearly determined.

No-Load Optical Trap Assays. For the ABS3 and NTD-ABS3 constructs, the flow cell was prepared as for a loaded optical trap assay. A dumbbell was formed as described in Loaded Optical Trap Assay, and platform bead positions were assayed for specific binding activity with load. If binding was detected, the last binding event was allowed to terminate, and the stage oscillation was turned off. Without moving the dumbbell or stage, bead displacement data were then collected at a 40-kHz sampling rate.

Because both the ABS3/DD construct and eGFP-negative control produced no obvious specific binding in the presence of force, several platform beads in each of several flow cells were assayed at random.

Binding events were annotated from the above dataset as follows: The 40 kHz signal for each bead position was downsampled to 10 kHz, and a running SD for a 1.5-ms window was taken at every point. This SD trace was mean filtered over a 20-ms window, and binding was detected when the mean-filtered SD dipped below 64% of the average mean-filtered SD for the whole trace. Reported binding event length is the duration that the mean-filtered SD trace was continuously below 80% of the average mean-filtered SD for the whole trace.

Fluorescence Polarization Assay. Talin-1 dimerization domain peptide (amino acids 2,494 to 2,541) with an additional C-terminal Gly-Cys (denoted DD-GC) was labeled at the C terminus with Oregon Green 488 Maleimide and purified by running it on a peptide SEC column. The full protocol is described in SI Appendix, Extended Materials and Methods.

ABS3 was buffer exchanged into F-buffer at pH 7.2 by running over a Superdex 200 Increase column. Immediately before the fluorescence
polarization assay, ATP was added to a final concentration of 1 mM ATP. ABS3 was diluted in a 384-well plate (ref. no. 3575, Corning) in F-buffer, and labeled DD-GC was added to each well, including a well with no ABS3, to a final concentration of 25 nM labeled DD-GC. The 384-well plate was incubated overnight at 4 °C in the dark, and then fluorescence polarization measurements were made on a Synergy 2 plate reader (BioTek). Data were analyzed by subtracting fluorescence polarization from the control condition (labeled DD-GC with no ABS3) and fit to the equation

$$FP = \frac{B_{\text{max}} + M}{K_D + M^2}$$

where M denotes the undimerized ABS3 in the case of negligible DD-GC, and T is the total amount of ABS3 used. The above equalities assume that K_D is the dissociation constant describing the homodimerization of ABS3 as well as the heterodimerization of ABS3 and DD-GC.

Data Availability. Data plotted in figures have been deposited in GitHub, https://github.com/AlexDunnLab/Talin_ABS3_PNAS_2022 (39).

ACKNOWLEDGMENTS. We thank T. Omabegho and P. V. Ruigrok of the Bryant Lab (Stanford University) for providing the myosin VI protein construct. N.A.B. was supported by Training Grant T32 GM007276 from the NIH. L.M.O. was supported by a Graduate Research Fellowship from the NSF. Research reported in this publication was supported by a HHMI Faculty Scholar Award (A.R.D) as well as NIH Grant R01GM114462 to W.I.W. and A.R.D., R35GM130332 to A.R.D., and R35GM131747 to W.I.W. The contents of this publication are solely the responsibility of us and do not necessarily represent the official views of the National Institute of General Medical Sciences or NIH.

1. B. Klapholz, N. H. Brown, Talin – The master of integrin adhesions. J. Cell Sci. 130, 2435–2446 (2017).
2. A. del Rio et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).
3. M. Yao et al., The mechanical response of talin. Nat. Commun. 7, 11966 (2016).
4. M. Yao et al., Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 6410 (2014).
5. A. R. Gingras et al., Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J. Biol. Chem. 280, 37217–37224 (2005).
6. B. T. Goutl, J. Yan, M. A. Schwartz, Talin as a mechanosensing signaling hub. J. Cell Biol. 217, 3776–3784 (2018).
7. S. J. Smith, R. O. McCann, A C-terminal dimerization motif is required for focal adhesion targeting of Talin1 and the interaction of the Talin1 ULWQ module with F-actin. Biochemistry 46, 10886–10898 (2007).
8. A. R. Gingras et al., The structure of the C-terminal actin-binding domain of talin. EMBO J. 27, 458–469 (2008).
9. N. Bate et al., Talin contains a C-terminal calpain2 cleavage site important in focal adhesion dynamics. PLoS One 7, e34461 (2012).
10. G. Jiang, G. Giannone, D. R. Critchley, E. Fukumoto, M. P. Sheetz, Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).
11. G. Giannone, G. Jiang, D. H. Sutton, D. R. Critchley, M. P. Sheetz, Talin1 is critical for force-dependent reinforcement of intact integrin-cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol. 163, 409–419 (2003).
12. L. Aziitz et al., Cancer associated talin point mutations disorganize cell adhesion and migration. Sci. Rep. 11, 347 (2021).
13. P. M. Kopp et al., Studies on the morphology and spreading of human endothelial cells define key inter- and intramolecular interactions for talin1. Eur. J. Cell Biol. 89, 661–673 (2010).
14. P. Atherton et al., Vinculin controls talin engagement with the actinomysin machinery. Nat. Commun. 6, 10038 (2015).
15. T. P. Driscoll, S. J. Ahn, B. Huang, A. Kumar, M. A. Schwartz, Actin flow-dependent and -independent force transmission through integrins. Proc. Natl. Acad. Sci. U.S.A. 117, 32413–32422 (2020).
16. A. Franco-Cea et al., Distinct developmental roles for direct and indirect talin-mediated linkage to actin. Dev. Biol. 345, 64–77 (2010).
17. B. Klapholz et al., Alternative mechanisms for talin to mediate integrin function. Curr. Biol. 25, 847–857 (2015).
18. M. A. Senetar, S. J. Foster, R. O. McCann, Intracellular inhibition mediates the interaction of the ULWQ module proteins Talin1, Talin2, Hip1, and Hip2 with actin. Biochemistry 43, 15418–15428 (2004).
19. S. J. Franco, M. A. Senetar, W. T. N. Simonson, A. Huttunenlocher, R. O. McCann, The conserved C-terminal ULWQ module targets Talin1 to focal adhesions. Cell Motil. Cytoskeleton 63, 563–581 (2006).
20. J. Srivastava et al., Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proc. Natl. Acad. Sci. U.S.A. 105, 14436–14441 (2008).
21. C. D. Buckley et al., The minimal cadherin-catenin complex binds to actin filaments under force. Science 346, 1254211 (2014).
22. D. L. Huang, N. A. Bax, C. D. Buckley, W. I. Weis, A. R. Dunn, Vinculin forms a directionally asymmetric catch bond with F-actin. Science 357, 703–706 (2017).
23. W. Thomas et al., Catch-bond model derived from allostery explains force-activated bacterial adhesion. Biophys. J. 90, 753–764 (2006).
24. L. Zhu et al., Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. Nat. Commun. 8, 1744 (2017).
25. B. T. Goutl et al., The structure of an interdomain complex that regulates talin activity. J. Biol. Chem. 284, 15097–15106 (2009).
26. S. Cabantous, T. C. Terwilliger, G. S. Waldo, Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat. Biotechnol. 23, 102–107 (2005).
27. S. J. Tan et al., Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds. Sci. Adv. 6, eaaa0317 (2020).
28. P. Ringer et al., Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods. 14, 1090–1096 (2017).
29. L. Y. Kim et al., The structural basis of actin organization by vinculin and metavinculin. J. Mol. Biol. 428, 10–25 (2016).
30. P. Roca-Cusachs, N. C. Gauthier, A. Del Rio, M. P. Sheetz, Clustering of alphaSbeta1 integrins determines adhesion strength whereas alphaSbeta3 and talin enable mechanotransduction. Proc. Natl. Acad. Sci. U.S.A. 106, 16245–16250 (2009).
31. M. Schwartzman et al., Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett. 11, 1306–1312 (2011).
32. I. Thievens et al., Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. FASEB J. 13, 4555–4567 (2015).
33. A. Rahman et al., Vinculin regulates directional and cell polarity in two- and three-dimensional matrix and three-dimensional microtrack migration. Mol. Biol. Cell 27, 1431–1441 (2016).
34. P. Roca-Cusachs, T. Iskraitsch, M. P. Sheetz, Finding the weakest link: Exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125, 3025–3038 (2012).
35. N. Hultz, W. Steffen, S. Pathan-Chhatbar, M. H. Taft, D. J. Marstein, Load-dependent modulation of non-muscle myosin-2A function by tropomyosin 4.2. Sci. Rep. 6, 20554 (2016).
36. J. A. Spudich, S. Watt, The regulation of rabbit skeletal muscle contraction. l. Biochemical studies of the interaction of the tropomyosin-tropomin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971).
37. J. Sung, S. Sivaramakrishnan, A. R. Dunn, J. A. Spudich, Single-molecule dual-beam optical trap analysis of protein structure and function. Methods Enzymol. 475, 321–375 (2010).
38. T. Omabegho et al., Controllable molecular motors engineered from myosin and RNA. Nat. Nanotechnol. 13, 34–40 (2018).
39. L. M. Owen, N. A. Bax, W. I. Weis, A. R. Dunn, Talin_ABS3_PNAS_2022. GitHub. https://github.com/AlexDunnLab/Talin_ABS3_PNAS_2022. Deposited 10 February 2022.