Resumen

Objetivo: Determinar la capacidad genotóxica del anestésico sevofluorano en en células expuestas a radiación ionizante.

Métodos: La genotoxicidad del sevofluorane se determinó mediante el test del bloqueo citocinético de linfocitos humanos irradiados bloqueados con citochalasina. La capacidad citotóxica se determinó mediante el test de viabilidad celular e inhibición del crecimiento celular (MTT) en células PNT2 (epiteliales de próstata), comparando sus resultados con los inducidos por diferentes dosis de rayos X.

Resultados: Se ha determinado un efecto citotóxico del sevofluorane sobre las células PNT2 que presenta correlación con la dosis administrada y el tiempo de estudio utilizado ($p >0.001$), así como un efecto genotóxico con características dosis-dependientes ($p >0.001$). Sin embargo, con volúmenes de sevofluorane puro inferiores a 30 μL no encontramos efecto citotóxico sobre las células PNT2.

Conclusión: Sevofluorane muestra una significativa capacidad genotóxica in vitro determinada mediante el test de micronúcleos en linfocitos humanos irradiados con bloqueados citocinético mediante citochalsina.

Palabras clave: Genotoxicidad, cytotoxicidad, micronucleus, efectos de la radiación, sevofluoranel

Keywords: Anaesthesia, genotoxicity, micronucleus, radiation effects, sevofluorane

Abstract

Objective: To determine the in vitro toxicity of different concentrations of sevofluorane in cells exposed to X-ray.

Methods: The genotoxic effects of sevofluorane were studied by means of the micronucleus test in cytokeratin-blocked cells of irradiated human lymphocytes. Subsequently, its cytotoxic effects on PNT2 (normal prostate) cells was determined using the cell viability test (MTT) and compared with those induced by different doses of X-rays.

Results: A dose- and time-dependent cytotoxic effect of sevofluorane on PNT2 cells was determined ($p >0.001$) and a dose-dependent genotoxic effect of sevofluorane was established ($p >0.001$). However, at volumes lower than 30 μL of sevofluorane at 100%, a non-toxic effect on PNT2 cells was shown.

Conclusion: Sevofluorane demonstrates a genotoxic capacity as determined in vitro by micronucleus test in cytokeratin-blocked cells of irradiated human lymphocytes.
Introducción

El sevofluorano es un anestésico general ampliamente utilizado, especialmente aconsejado en los procedimientos quirúrgicos cortos y en cirugía ambulatoria1. Sus principales ventajas son la inducción rápida de la anestesia mientras se mantiene la respiración espontánea y su contribución a la estabilidad hemodinámica del paciente2. Su toxicidad fue inicialmente descubierta mientras se buscaban los efectos del sevofluorano en la función hepática3. Se ha implicado en la producción de metabólitos tóxicos, y en la inducción de hipertermia maligna4.

La exposición a la inhalación de anestésicos genera «activaciones» de pequeñas cantidades de especies reactivas de oxígeno (ROS), ya sea directamente, mediante la interacción con la cadena de transporte de electrones mitocondriales; o indirectamente, a través de una cascada de señalización en la que receptores-G acoplados con la cadena de transporte de electrones mitocondriales; o indirectamente, a través de pequeñas cantidades de especies reactivas de oxígeno (ROS), que la administración de diversas sustancias antioxidantes puede revertir.

La toxicidad del sevofluorano ha sido objeto de debate y su contribución a la estabilidad hemodinámica del paciente ha sido objeto de varias investigaciones. Se ha demostrado que el sevofluorano puede desencadenar una fuga de electrones desde la matriz mitocondrial interna y aumentar la generación de ROS5,6. El Sevofluorano también puede desencadenar directamente la formación de peroxinitritos y aumentar significativamente el H2O2 intracelular. Estos metadós oxidativos pueden contribuir al agotamiento del glutatión intracelular (GSH) en neutrófilos5. En neutrófilos polimorfonucleares periféricos tras 1 h de tratamiento. Por otra parte, también se ha demostrado la intensificación del agotamiento del glutatión intracelular (GSH) en neutrófilos. Estos resultados son importantes ya que demuestran el estrés oxidativo inducido por el sevofluorano que se realiza por medio del incremento de la concentración de ROS6,7.

El estrés oxidativo inducido por el aumento de los niveles de ROS también es el mecanismo clásico por el cual las radiaciones ionizantes inducen su daño genotóxico. El test de microaurículas es un test que también puede utilizarse para evaluar este daño genotóxico8-9 tanto “in vivo” como “in vitro”. Además, usando esta técnica se han descrito los resultados que la administración de diversas sustancias antioxidantes tiene un efecto genoprotector contra el daño cromosómico inducido por la radiación ionizante9,10.

En este estudio pretendemos determinar un posible efecto genotóxico del sevofluorano mediante el ensayo de microaurículas. Para ello, vamos a cuantificar el número de microaurículas por cada 1.000 células binucleadas en muestras de sangre expuestas a sevofluorano y compararla con las muestras de sangre controles y expuestas a radiación ionizante, cuyo efecto genotóxico esta asumido por numerosos autores.

Materiales y Métodos

Productos químicos y reactivos

Sevofluorano se obtuvo de Abbot (Madrid, España) y se administró puro en diferentes volúmenes (5-40 µL). RPMI 1640, F10, PHA, DMSO, citocalasina B, estreptomicina, penicilina, fosfato salino tamponado (PBS) y 3-(4,5-dimetiltiazol-2-il) -2,5-tetrazolilo bromuro de difenil (MTT) para peros de incubación de 24, 48 y 72 h. Brevemente: los cultivos celulares se incubaron en 200 µL de medio y se dejaron adherir durante 24 h. Después del tratamiento con la dosis antes mencionadas de sevofluorano, y para los tiempos mencionados, se añadió medio de crecimiento suplementado y 50 µL de MTT (5 mg/mL) a cada pociol en placas de 96 pocios que se incubaron a 37° C durante 4 h en una atmósfera de CO2 al 5%. Posteriormente, las plcas se centrifugaron a 900 rpm durante 8 min para eliminar cuidadosamente el medio y el MTT no metabolizado y se añadieron 100 µL de DMSO a cada pociol para solubilizar el MTT adquirido por las células vivas. Tras agitar durante 50 mm a temperatura ambiente, las plcas se leyeron con un espectrofotómetro Multiskan® MCC/340P utilizando 570 nm para la lectura y 690 nm para las longitudes de onda de referencia. Los pocios de control negativo se utilizaron para determinar la línea de base cero. Cada experimento se repitó en tres ocasiones.

Efecto Genotóxico: MN (MNCB)

Las muestras de sangre y el procedimiento de irradiación: las muestras de sangre periférica humana fueron donadas por seis mujeres jóvenes supuestamente sanas no fumadoras que fueron heparinizadas. El sevofluorano se administró al 100% en tres volúmenes diferentes (5, 20 y 40 µL); 20 µL de RO (25 µM) y de DMSO (0.2%), respectivamente se añadieron a 2 mL de sangre para determinar sus posibles efectos genoprotectores y se incluyeron como controles positivos. Las muestras se homogeneizaron inmediatamente antes de la irradiación con rayos X.
Técnica de cultivo
El test de micronúcleos (MN) se llevó a cabo en linfocitos irradiados y bloqueados citocinéticamente tras la irradiación con rayos X (MNCB), siguiendo el método descrito por Fenech (1985)13 y adaptado por la Agencia Internacional de Energía Atómica (2011). Breve: las muestras de sangre (0.5 mL) se cultivaron a 37º C durante 72 h en 4.5 mL de medio F-10 que contenía suero bovino fetal al 15%, 1.6 µg/mL de fitohemaglutinina, 1% de penicilina/estreptomicina y 1 µg/mL de glutamina. Cuarenta y cuatro horas después de la iniciación de los cultivos de linfocitos, se añadieron 150 µL de citocalasina B a una concentración de 6 µg/mL. A las 72 h, los linfocitos se trataron con una solución hipotónica (KCl 0.075 M) durante 3 min y se fijaron usando metanol:ácido acético (3:1). Las preparaciones se secaron al aire y se tiñeron con May-Gruenwald Giemsa 24 h más tarde. Cada experimento se repitió en tres ocasiones.

Recuento de micronúcleos
Se analizaron los cultivos por triplicado para cada volumen de sevofluorano o muestra estudiada. En cada una, se analizaron 3,000 células citocinéticamente bloqueadas (3,000 CB/muestra estudiada) para determinar la frecuencia de micronúcleos (MN/500 CB) que fueron examinadas por dos especialistas a doble ciego utilizando un microscopio óptico Zeiss (Oberkochem, Alemania), con un aumento de 400x para examinar las preparaciones y una amplificación de 100x para confirmar la presencia o ausencia de MN en las células, de acuerdo con criterios previamente recomendados8,9.

Irradiación
Las muestras fueron expuestas a rayos X con un aparato Andrex de SMART 200E (YXLON International, Hamburgo, Alemania) con 4.5 mA, 36 cm distancia foco objeto (FOD) y temperatura ambiente. Las dosis de radiación fueron monitorizadas mediante un dosímetro universal UNIDOS® con cámaras de ionización ambiente. Las dosis de radiación fueron monitorizadas mediante un dosímetro universal UNIDOS® con cámaras de ionización (PTW Farme ® TW 30010 (PTW-Freiburg, Freiburg, Alemania) en el interior de la cabina de irradiación y las dosis de rayos X fueron confirmadas posteriormente mediante dosímetros de termoluminiscencia (TLD) (GR-200®, Conqueror Electronics Technology Co. Ltd, China). Los TLDs fueron suministrados y medidos por el CIEMAT (Ministerio de Industria y Energía, España). En el ensayo de micronúcleos de linfocitos humanos con bloqueado citocinético (CBMN) se irradiaron con 2 Gy de rayos X, mientras que para obtener la curva de supervivencia celular y la cuantificación de la viabilidad celular (prueba de MTT) se administraron diferentes dosis de rayos X (5, 10, 15, 20 y 0 Gy como control).

Análisis estadístico
En el estudio de genotoxicidad, se ha determinado el grado de dependencia y correlación entre variables mediante análisis de varianza complementado por contrastes de medias (p <0.05). Las medias cuantitativas se compararon mediante análisis de regresión y correlación lineales. Además, se utilizó la fórmula descrita por Sarma y Kesavan (1993)15 para determinar la capacidad de protección mediante la expresión: Magnitud de Protección (%) = (Fcontrol irradiado – Firradiadas-tratadas) / Fcontrol irradiado x 100. Donde Fcontrol irradiado = frecuencia de MN en linfocitos de sangre no tratados pero irradiados y Firradiadas-tratadas = frecuencia de MN en linfocitos de sangre tratadas con las sustancias e irradiada. En los ensayos de citotoxicidad, se utilizó un análisis de varianza (ANOVA) de medidas repetidas para comparar los porcentajes de supervivencia celular en los cultivos con diferentes concentraciones de sevofluorano, complementado con la menor diferencia significativa analizada con contraste de pares y medias. Los análisis se llevaron a cabo mediante la transformación logarítmica de los datos para cumplir con las condiciones de ANOVA.

Figura 1. a) Efecto de diferentes volúmenes de sevofluorano sobre la viabilidad celular de las células PNT2. b) efectos de las dosis de radiación sobre la viabilidad celular de PNT2 después de 24 y 48 h de incubación. Los resultados se expresan como un porcentaje de células PNT2 supervivientes respecto al control (RO: ácido rosmarínico 25 µM irradiado e incubado durante 48 h; DMSO: dimetil sulfóxido al 0,2% irradiado e incubado durante 48 h) (1) p<0.001 versus control, (2) p<0.001 versus control irradiado.

Resultados
En los estudios de citotoxicidad, el tratamiento de células PNT2 con volúmenes crecientes de sevofluorano durante 24 y 48 h muestra una disminución de la viabilidad celular, dosis y tiempo dependiente (p <0.001) (Fig. 1a). Todos los volúmenes superiores a 30 µL de sevofluorano mostraron un grado significativo de citotoxicidad (Fig. 1a). La exposición a rayos X sola también muestra una disminución de la viabilidad celular, dosis y tiempo dependiente (p <0.001) (Fig. 1b). La administración de 20 µL de RO (25 µM) o DMSO (0,2%) antes de la irradiación con rayos X aumentó la supervivencia de las células PNT2 de forma significativa, lo que expresa una significativa capacidad radioprotectora (p <0.001) (Fig 1b).

En el estudio genotóxico, la frecuencia basal de MN/500 CB fue de 10±2 MN/500 CB para los controles no irradiados de
la radiación ionizante in vivo con rayos X14,15, e in vitro con radiación gamma10,12,16 tanto con dosis altas de radiación17 como en el umbral de sensibilidad del test (48 cGy)18,19. También hemos utilizado el ensayo de MN para determinar el efecto genoprotector de diferentes sustancias antioxidantes frente al daño cromosómico inducido por los rayos X in vivo en médula ósea de ratón (PCES)14,15 o in vitro con radiación gamma en cultivos de linfocitos bloqueados con citocalasina-B9,16,18 en presencia o ausencia de diferentes sustancias que proporcionan una protección química con/sin presencia de tioles10,14,15. Nuestros resultados en este estudio muestran capacidades genotóxicas similares a las descritas para los rayos X y unas capacidades genoprotectoras de las sustancias antioxidantes ensayadas similares a las que hemos descrito previamente, especialmente cuando los antioxidantes están presentes en el medio biológico antes de la irradiación in vivo en médula ósea de ratón10,14 e in vitro en linfocitos humanos bloqueados mediante citocalasina-B9,9.

Nuestros resultados en este estudio muestran un efecto genotóxico dosis-dependiente del sevofluorano determinado mediante el ensayo CBMN tras haber corregido las dosis de sevofluorano que eran citotóxicas en las curvas de supervivencia (MTT) en las células PNT2. Nosotros hemos identificado un efecto genotóxico del Sevofluorano con las características de un poderoso agente mutagénico y con características similares a las descritas para la radiación gamma o los rayos X.

En este sentido, los primeros estudios determinaron un incremento en la frecuencia de aparición de MN, por lo que se sugirió un posible efecto genotóxico del sevofluorano20. Sin embargo, otros estudios posteriores describieron resultados contradictorios. Se ha descrito un incremento de cromátides hermanas (SCE) en pacientes adultos sometidos a anestesia con sevofluorano durante 50 min de exposición a radiación gamma o los rayos X. Este incremento de SCE en el grupo expuesto a las sustancias anestésicas se obtuvo al compararlo con otro grupo de personal médico tomado como grupo control22; sin embargo, en otro estudio, el incremento de la SCE en niños sometidos a anestesia con sevofluorano durante 50 min de exposición no pudo establecer incremento significativo de MN, sumándose a algunas descripciones realizadas sobre personas ocupacionalmente expuestas a la inhalación de gases anestésicos y otros pacientes expuestos a sevofluorano23 en donde no se muestra efecto genotóxico.

Diferentes autores describen que los resultados obtenidos por el ensayo de MN (ensayo de CBMN y Comet) se contradicen con los obtenidos mediante el ensayo de SCE24. En estos estudios, el ensayo de MN bajo condiciones de exposición ocupacional con un nivel bajo de sevofluorano no se asocia con un aumento en la frecuencia de aparición de MN24. Nuestro estudio muestra que las dosis pequeñas de sevofluorano (5 µL) no son capaces de inducir un incremento en la frecuencia de MN, lo que podría interpretarse como que no tiene un efecto genotóxico a esta dosis. Sin embargo, nosotros hemos sugerido que el ensayo de MN tiene una limitación cuando se utiliza para evaluar la genotoxicidad del sevofluorano: el ensayo de MN tiene un umbral de sensibilidad muy alta (límite de detección), por lo que los agentes (químicos o físicos) que no son intensamente genotóxicos pueden no ser detectados. En realidad, el principal inconveniente del ensayo de micronúcleos (CBMN) está en la variabilidad de la frecuencia basal de micronúcleos,
por lo que sólo en la exposición a radiaciones ionizantes in vivo superiores a 20-30 cGy pueden ser detectadas por la técnica. Así, como también ocurre en nuestro estudio, agentes físicos o dosis ligeramente tóxicos de sevofluorano en exposiciones a corto plazo, pueden no inducir un incremento en la frecuencia de MN y tener un efecto genotóxico indetectable bajo numerosas condiciones experimentales, lo que podría llevar a la conclusión de que no tienen ninguna capacidad mutagénica o genotóxica

Posiblemente por ello, algunos autores han descrito la ausencia de efecto genotóxico de pequeñas dosis de sevofluorano utilizando el ensayo Cometa. Además, también se debe resaltar que aunque su capacidad para actuar como un disolvente para los anestésicos en los procedimientos de rutina, puede producir una disminución de la longitud del cometa dificultando la determinación de su efecto. En este estudio se describe que el consumo del ADN por sevofluorano no era diferente al observado para sus controles realizados con DMSO; y por lo tanto, concluyó que pequeñas dosis de sevofluorano no ejercen actividad genotóxica in vitro. Sin embargo, los autores también describen una disminución en la longitud media del cometa en una disolución con DMSO de anestésico, y sugieren que podrían explicarse de dos formas: (i) por la estabilización de las paredes celulares por el DMSO, o (ii) por la influencia inhibidora de la isoforma CYP2E del citocromo P450 responsable de la activación de componentes del sevofluorano y otros análogos.

Nuestros resultados con DMSO y con las dosis más bajas de sevofluorano (5 µL) son también similares entre sí y no presentan diferencias significativas. El DMSO es un potente antioxidante con las características clásicas similares a los radioprotectores más potentes que contienen azufre (thioles) y muestran una significativa capacidad de genoprotección, tanto in vivo como in vitro, disminuyendo el daño inducido por la radiación ionizante. Esta capacidad genoprotectora podría atribuirse a su capacidad antioxidante, eliminadora de radicales libres, en los sistemas biológicos cuando se administra antes de la irradiación. Dado que el efecto de sevofluorano también podría ser debido a la inducción de un estrés oxidativo, el DMSO utilizado para disolverlo podría ayudar a ocultar su efecto genotóxico sobre todo con las dosis más bajas de sevofluorano. Cuando las dosis de sevofluorano son suficientemente altas, provoca una genotoxicidad significativa in vivo que se asemeja con la respuesta descrita con el ensayo del Cometa, en donde se describe un aumento sustancial de la frecuencia de MN en linfocitos de sangre periférica en todos los grupos de animales expuestos. Nuestros resultados también demuestran una genotoxicidad significativa del sevofluorano cuando se administra a altas dosis, que alcanza un máximo de incremento de aparición de MN con dosis pre-tóxicas (40 µL); lo que es comparativamente muy parecido a la capacidad genotóxica inducida por la exposición a 2 Gy de rayos X.

Diferentes estudios han descrito que el pretratamiento con sevofluorano ayuda a la genoprotección frente a las especies reactivas de oxigeno (ROS). Pero además, el sevofluorano también puede desencadenar directamente la formación de peroxinitritos aumentando significativamente el H$_2$O$_2$ intracelular, el anión superóxido y los niveles de óxido nítrico (NO) en PMN tras 1 h de tratamiento, incrementando así el agotamiento de glutatión endógeno intracelular (GSH). Así, el estrés oxidativo sería el mecanismo de acción utilizado por el sevofluorano para inducir el daño cromosómico, de una forma similar al mecanismo de acción de los rayos X.

Nuestros resultados demuestran que el tratamiento combinado de sevofluorano+y rayos X produce un efecto aditivo o sinérico, lo que explicaría el aumento de la genotoxicidad observada en el presente estudio. Las especies reactivas derivadas del NO inhiben enzimas, fragmentan el ADN, modifican bases, destruyen los lípidos de membrana oxidándolos, y consumen antioxidantes celulares; lo que explica el efecto que hemos descrito en el tratamiento combinado de sevofluorano+IR. La GSH, el más importante antioxidant intracelular es considerado como un radioprotector por su capacidad para actuar como básico en un importante número de reacciones de desintoxicación. Una disminución de los niveles intracelulares de GSH, por lo tanto, aumenta la sensibilidad de las células a una posterior acción de la radiación. La observación de los resultados de nuestros tratamientos combinados utilizando sevofluorano e IR, sugiere que podría actuar el sevofluorano de una manera similar al efecto de radiosensibilización que se produce con el cisplatino cuando se administra junto con radiaciones ionizantes, como se ha descrito previamente por diferentes autores.

Los mecanismos de acción descritos en el estrés oxidativo, la formación de radicales libres y una caída en los niveles endógenos de antioxidantes celulares inducidos por el sevofluorano son similares a los mecanismos de acción descritos para explicar el efecto mutagénico de los rayos X y la radiación y con cesio radiactivo en lo que respecta a la muerte celular y a su capacidad genotóxica. Diferentes autores han sugerido el uso de suplementos alimentarios con antioxidantes para reducir el daño genotóxico causado por los gases anestésicos residuales en la exposición ocupacional, con objeto de reducir el efecto genotóxico y el estrés oxidativo producidos. Del mismo modo, otros autores también han descrito que el uso de diferentes sustancias antioxidantes incluidas dentro una la dieta humana (como conteniendo RO) puede ofrecer protección contra el daño biológico inducido por IR en los trabajadores expuestos a la radiación y pacientes sometidos a los exámenes radiológicos en radiodiagnóstico y medicina nuclear.

Conclusión

La administración in vitro de sevofluorano a dosis altas, aunque no tóxicas, es genotóxica para las células mostrando una capacidad genotóxica similar a la inducida por 2 Gy de rayos X.

Agradecimientos

Este estudio se ha realizado gracias a una beca del Programa National Español I + D del del Ministerio español de Ciencia y Tecnología CENIT denominado SENIFOOD; D. Achel forma parte de trabajo gracias a una beca predoctoral (GHA10021) de la Agencia Internacional de la Energía Atómica (IAEA); y A. Olivares gracias a una ayuda de investigación de la Fundación Séneca (Comunidad Autónoma de la Región de Murcia, España).

Conflictos de interés

Los autores declaran no tener conflictos de interés.
Bibliografía

1. Michel F, Constantin JM. Sevoflurane inside and outside the operating room. Expert Opin Pharmacother. 2009; 10: 861–87.

2. Goa KL, Noble S, Spencer CM. Sevoflurane in paediatric anaesthesia: a review. Paediatr Drugs. 1999; 1: 127–53.

3. Karabiyik L, Sardas S, Polat U, Kocaba SNA, Karakaya AE. Comparison of genotoxicity of sevoflurane and isoflurane in human lymphocytes studied in vivo. Mutat Res. 2001; 492: 99–107.

4. Migita T, Mukaida L, Kobayashi M, Hamada H, Kawamoto M. The severity of sevoflurane-induces malignant hyperthermia. Acta Anaesthesiol Scand. 2012; 56: 351–6.

5. Bienengraeter MW, Weihrauch D, Kersten JR, Papel PS, Warrtler DC. Cardio protection by colatyl anesthetics. Vagcal Pharmacol. 2005; 42: 243–52.

6. Brozovic G, Orsolic N, Rozgaj R, Kasuba V, Knezevic F, Knezevic AH, et al. DNA damage and repair after exposure to sevoflurane in vivo, evaluated in Swiss albino mice by the alkaline comet assay and micronucleus test. J Appl Genet. 2010; 51: 79–86.

7. Wong CH, Liu TZ, Chye SM, Lu FJ, Liu YC, Lin ZC, et al. Sevoflurane-induced oxidative stress and cellular injury in human peripheral polymorpho nuclear neutrophils. Food Chem Toxicol. 2006; 44: 1399–407.

8. Alcaraz M, Acevedo C, Castillo J, Benavente-García O, Armero D, Vicente V, et al. Liposoluble antioxidants provide an effective radioprotective barrier. Br J Radiol. 2009; 82: 605–9.

9. Alcaraz M, Armero D, Martínez-Beneyto Y, Castillo J, Benavente-García O, Fernández H, et al. Chemical genoprotection: reducing biological damage to as low as reasonably achievable levels. Dentomaxillofac Radiol. 2011; 40: 310–4.

10. Castillo J, Benavente-García O, Lorente J, Alcaraz M, Redondo A, Ortúñro A, et al. Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (procyanidins) from grape seeds (Vitis vinifera): Comparative study versus other phenolic and organic compounds. J Agr Food Chem. 2000; 48: 1738–45.

11. Castillo J, Benavente-García O, Del Baño MJ, Lorente J, Alcaraz M, Dato MJ. Radioprotective effects against chromosomal damage induced in human lymphocytes by gamma-rays as a function of polymerization grade of grape seed extracts. J Med Food. 2001; 4: 117–23.

12. Del Baño MJ, Castillo J, Benavente-García O, Lorente J, Martín-Gil R, Acevedo C, et al. Radioprotective-antigenic effects of Rosemary phenolics against chromosomal damage induced in human lymphocytes by gamma-rays. J Agric Food Chem. 2006; 54: 2064–8.

13. Fenech M, Morley A. Measurement of micronuclei in lymphocytes. Mutation Res. 1985; 147: 29–36.

14. Castillo J, Alcaraz M, Benavente-García O, Preedy VR, Watson RR, editors. Antioxidant and radioprotective effects of olive leaf extract. Olives and olive in health and disease prevention. Oxford: Academic Press; 2010. pp. 951–58.

15. Benavente-García O, Castillo J, Lorente J, Alcaraz M. Radioprotective effects in vivo of phenolics extracted from Olea europea leaves against X-rays-induced chromosomal damage: comparative study versus several flavonoids and sulphur-containing compounds. J Med Food. 2002; 5: 125–35.

16. Sánchez-Campillo M, Gabaldón JA, Castillo J, Benavente-García O, Del Baño MJ, Alcaraz M, et al. Rosmarinic acid, a photoprotective agent against UV and other ionizing radiations. Food Chem Toxicol. 2009; 47: 386–92.

17. Serna A, Alcaraz M, Navarro JL, Acevedo C, Vicente V, Canteras M. Biological dosimetry and Bayesian analysis of chromosomal damage in thyroid cancer patients. Radiat Prot Dosimetry. 2007; 19: 1–9.

18. Alcaraz M, Gómez-Moraga A, Dato MJ, Navarro JL, Canteras M. Efecto genotóxico inducido por la exposición a rayos X durante exploraciones complejas de radiodiagnóstico médico. Oncología. 2002; 25: 159–68.

19. Navarro JL, Alcaraz M, Gómez-Moraga A, Vicente V, Canteras M. Absence of chromosomal and genotoxic damage from the radiation dose administered in scintigraphic examinations. Rev Esp Med Nucl. 2004; 23: 174–82.

20. Robbiano L, Mereto E, Moraudo AM, Pastor P, Brambilla G. Increased frequency of micronucleated kidney cells in rats expressed to halogenates anesthetics. Mutat Res. 1998; 413: 1–6.

21. Luleci N, Sakarya M, Topçu I, Luleci E, Erincşler T, Solak M. Effects of sevoflurane on cell division and levels of sister chromatid exchange. Anesthesiol intensivemed Schmerzther. 2005; 40: 213–6.

22. Wiesner G, Hoerauf K, Salioegendofer K, Sodozyriski P, Hart M, Reudiger HW. High level but not low-level occupational exposure to inhaled anesthetics is associated with genotoxicity in the micronucleus assay. Anesth Analg. 2001; 92: 118–21.

23. Szyfter K, Szulc R, Mikstacki A, Stachecki I, Rydzanicz M, G. Increased frequency of micronucleated kidney cells in rats exposed to inhaled anesthetics is associated with genotoxicity in the micronucleus assay. Anesthesiol intensivemed Schmerzther. 2005; 40: 213–6.

24. Wiesner G, Schiewe-Langgartner F, Lindner R, Gruber M. Increased formation of sister chromatid exchanges, but not of micronuclei, in anaesthetists exposed to low levels of sevoflurane. Anaesthesia. 2008; 63: 861–4.

25. Vral A, Fenech M, Thierens H. The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure. Mutagenesis. 2011; 26: 11–7.