A synthesis and review of medicinal uses, phytochemistry and biological activities of Markhamia zanzibarica

Alfred Maroyi*

Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

Article History:

Received on: 29 Jun 2020
Revised on: 27 Jul 2020
Accepted on: 06 Aug 2020

Keywords:

Bignoniaceae, indigenous knowledge, Markhamia zanzibarica, traditional medicine, tropical Africa

ABSTRACT

Markhamia zanzibarica (Bojer ex DC.) K. Schum. has been used in herbal medicine in tropical Africa since ancient times. *Markhamia zanzibarica* is indigenous to central, eastern and southern Africa. This extensive literature review synthesizes the information currently available on the medicinal uses, phytochemistry and biological activities of *M. zanzibarica*. The University library and electronic search engines Google Scholar, Scopus, Web of Science, ScienceDirect and PubMed were searched for pertinent information on the medicinal uses, phytochemistry and biological activities of *M. zanzibarica*. Traditionally, the species has been used as anthelmintic, and traditional medicine for backache, female reproductive problems, sexually transmitted infections, respiratory infections and gastro-intestinal problems. *In vitro* studies have confirmed the biological activities of *M. zanzibarica* which include antibacterial, antitubercular, antioxidant and cytotoxicity. Various phytochemicals such as alkaloids, anthraquinones, fatty acids, flavonoids, glycosides, phenolics, saponins, sterols, tannins and triterpenes have been isolated from *M. zanzibarica*. Documentation of the medicinal uses, phytochemistry and pharmacological properties of *M. zanzibarica* is essential as this information provides baseline data required for future research and development of health-promoting and pharmaceutical products. However, further pharmacological studies including phytochemical, toxicological, *in vitro* and *in vivo* experiments are needed to provide evidence for the clinical effectiveness of remedies prepared from the species.

*Corresponding Author
Name: Alfred Maroyi
Phone: +27406022322
Email: maroyi@ufh.ac.za

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v11i4.3260

© 2020 | All rights reserved.

INTRODUCTION

Markhamia zanzibarica (Bojer ex DC. K. Schum), is a shrub or small tree in the family Bignoniaceae. The family Bignoniaceae consists of 104 genera and 860 plant species which are usually trees, shrubs or lianas and rarely herbs (Fischer et al., 2004). The family *Markhamia*, consists of ten species, eight of these have been recorded in tropical Africa while two species have been recorded in southeast Asia (Fischer et al., 2004). The genus name *Markhamia* is in honour of Sir Clements Robert Markham (1830-1916), an English geographer, writer, traveller and explorer (Palmer and Pitman, 1972). The species name “zanzibarica” means from Zanzibar (Bruschi et al., 2011), an island regarded as a region of Tanzania. The synonyms of *M. zanzibarica* include *Dolichandrone hirsuta* Baker, *D. Latifolia* Baker, *M. acuminata* (Klotzsch) K. Schum., *M. Puberula* (Klotzsch) K. Schum., *M. Stenocarpa* (Baker) K. Schum., *M. Stenocarpa* (Baker) K. Schum., *M. Stenocarpa* (Seem.), *M. zanzibarica* (Bojer ex DC.) Seem., *Spathodea acuminata* Klotzsch, S. puberula
Medicinal use	Part used	Country	Reference
Abdominal pain	Bark and root decoction taken orally	Kenya and Tanzania	(Chhabra et al., 1987; Kigen et al., 2016)
Anthelmintic	Roots decoction taken orally	Kenya and Tanzania	(Kokwaro, 2009; Louppe et al., 2012)
Aphrodisiac	Roots mixed with those of Uvaria acuminata Oliv.	Kenya	(Kaingu et al., 2013a; Kaingu, 2016)
Backache	Root infusion taken orally	Malawi and South Africa	(Morris, 1996; Palgrave and Keith, 2002)
Breast cancer	Root infusion taken orally	Kenya	(Kaingu et al., 2014; Kaingu, 2016)
Constipation	Roots mixed with those of Albizia anthelmintica Brongn., Byrsocarpus bovinianus (Baill.) Baill., Carpolobia goetzei Güerke and Clausena anisata (Willd.) Hook. f. ex Benth.	Tanzania	(Chhabra et al., 1987)
Excessive bleeding during child birth	Bark and root infusion taken orally	Kenya	(Pakia et al., 2003; Kigen et al., 2016)
Female reproductive problems (abortifacient, contraceptive, bleeding during child birth, fibroids, infertility, menstrual problems and retained placenta)	Roots mixed with those of Salvadora persica L. and Uvaria acuminata	Kenya	(Kaingu et al., 2013b; Kaingu, 2016)
Gastro-intestinal problems (diarrhoea, dysentery and stomach problems)	Bark, leaf and root decoction taken orally	Botswana, South Africa and Tanzania	(Arnold and Gulumian, 1984; Hedberg and Staugård, 1989)
General pains	Root decoction taken orally	Mozambique	(Watt and Breyer-Brandwijk, 1962; Bruschi et al., 2011)

Continued on next page
Medicinal use	Part used	Country	Reference
Headache	Leaf infusion applied topically	South Africa	(Watt and Breyer-Brandwijk, 1962; Semenya and Maroyi, 2018)
Hernia	Root decoction taken orally	Tanzania	(Chhabra et al., 1987)
Oedema	Bark infusion taken orally	Kenya	(Kigen et al., 2016)
Oxyuriasis	Root decoction taken orally	Tanzania	(Chhabra et al., 1987)
Protective charm (against evil spirits)	Leaves	Tanzania	(Hilonga et al., 2019)
Psychiatric problems	Root decoction taken orally	Tanzania	(Chhabra et al., 1987)
Respiratory infections (cough, expectorant and pneumonia)	Bark and root infusion or decoction taken orally	Kenya, South Africa and Tanzania	(Arnold and Gulumian, 1984; Kokwaro, 2009)
Rheumatic fever	Roots mixed with those of Phyllanthus ovalifolius Forssk.	Malawi	(Morris, 1996)
Snake bite	Leaf and root decoction applied topically	Kenya	(Pakia et al., 2003; Dharani, 2019)
Sexually transmitted infections (syphilis and venereal diseases)	Bark decoction taken orally	Kenya and Tanzania	(Chhabra et al., 1987; Kokwaro, 2009)
Toothache	Bark decoction applied topically	Tanzania	(Watt and Breyer-Brandwijk, 1962; Kokwaro, 2009)
Uterus prolapse	Roots mixed with those of Vangueria infausta Burch. ssp. rotundata (Robyns) Verdc.	Tanzania	(Chhabra et al., 1991)
Yellow fever	Stem bark is mixed with that of Mangifera indica L., Maesopsis eminii Engl. and Erythrina abyssinica DC.	Tanzania	(Moshi et al., 2009)
Table 2: Nutritional and phytochemical composition of *Markhamia zanzibarica*

Nutritional or phytochemical component	Value	Plant part	Reference
Nutritional component			
Acid detergent fibre (%)	19.3–51.1	Leaves	and (Dierenfeld *et al.*, 1995)
Acid detergent bound protein (%)	1.8–2.0	Leaves	and (Dierenfeld *et al.*, 1995)
Ash (%)	4.8–10.8	Leaves	and (Dierenfeld *et al.*, 1995)
Calcium (%)	1.6	Leaves	and (Dierenfeld *et al.*, 1995)
Copper (µg/g)	11.0	Leaves	and (Dierenfeld *et al.*, 1995)
Crude protein (%)	9.0–16.3	Leaves	and (Dierenfeld *et al.*, 1995)
Iron (µg/g)	215.0	Leaves	and (Dierenfeld *et al.*, 1995)
Magnesium (%)	0.7	Leaves	and (Dierenfeld *et al.*, 1995)
Manganese (µg/g)	160.0	Leaves	and (Dierenfeld *et al.*, 1995)
Neutral detergent fibre (%)	38.2–66.9	Leaves	and (Dierenfeld *et al.*, 1995)
Phosphorus (%)	0.1	Leaves	and (Dierenfeld *et al.*, 1995)
Potassium (%)	0.8	Leaves	and (Dierenfeld *et al.*, 1995)
Sodium (%)	0.005	Leaves	and (Dierenfeld *et al.*, 1995)
Sulfuric acid lignin (%)	7.5–18.3	Leaves	and (Dierenfeld *et al.*, 1995)
α-tocopherols (µg/g)	13.5–94.1	Leaves	and (Dierenfeld *et al.*, 1995)
γ-tocopherols (µg/g)	1.0–1.7	Leaves	and (Dierenfeld *et al.*, 1995)
Water (%)	39.2–46.0	Leaves	and (Dierenfeld *et al.*, 1995)
Zinc (µg/g)	17.3	Leaves	and (Dierenfeld *et al.*, 1995)
Phytochemical component			
3',4',5,7-tetrahydroxy-5'-methoxy-flavanone	-	Leaves	(Gormann *et al.*, 2006)
5,7,3',5'tetrahydroxy flavanone	-	Aerial parts	(El-Kersh *et al.*, 2016)
Apigenin	-	Leaves	(Gormann *et al.*, 2006)
Apigenin 5-O-α-L-rhamnopyranosyl-7-O-ß-D-glucopyranoside	-	Leaves	(Gormann *et al.*, 2006)

Continued on next page
Nutritional or phytochemical component	Value	Plant part	Reference
Apigenin-7-O-rutinoside	-	Aerial parts	(El-Kersh et al., 2016)
Campesterol (%)	0.003	Stem bark	(Khan and Mlungwana, 1999)
Eriocitrin	-	Leaves	(Gormann et al., 2006)
Hederagenin (%)	0.01	Leaves	(Gormann et al., 2004)
Hentriacontane (%)	2.9	Leaves	(Gormann et al., 2004)
Hexacosanoic (%)	0.1	Leaves	(Gormann et al., 2004)
Hexadecanoic (%)	0.2	Leaves	(Gormann et al., 2004)
Luteolin	-	Aerial parts and leaves	(Gormann et al., 2006; El-Kersh et al., 2016)
Luteolin-7-rutinosid	-	Leaves	(Gormann et al., 2006)
Luteolin-7-O-D-glucoside	-	Aerial parts	(El-Kersh et al., 2016)
Naringenin	-	Leaves	(Gormann et al., 2006)
Naringenin-7-rutinosid	-	Leaves	(Gormann et al., 2006)
Nigaichigoside F2	-	Aerial parts	(El-Kersh et al., 2016)
Nonacosane (%)	0.6	Leaves	(Gormann et al., 2004)
Octacosanol (%)	0.1	Leaves	(Gormann et al., 2004)
Octadecanoic (%)	0.1	Leaves	(Gormann et al., 2004)
Oleanolic acid (%)	23.1	Aerial parts and leaves	(Gormann et al., 2004; El-Kersh et al., 2016)
Oleic acid (%)	35.8	Aerial parts	El-Kersh et al. (2016)
Palmitic acid (%)	29.5	Aerial parts	El-Kersh et al. (2016)
Pentacosane (%)	23.2	Aerial parts	El-Kersh et al. (2016)
Phytol (%)	2.2	Aerial parts	El-Kersh et al. (2016)
Quadrangularic acid L	-	Aerial parts	El-Kersh et al. (2016)
Quadrangularic acid K	-	Aerial parts	El-Kersh et al. (2016)
β-Sitosterol (%)	0.01–12.8	Aerial parts and leaves	(Gormann et al., 2004; El-Kersh et al., 2016)
γ-Sitosterol (%)	0.004-14.0	Aerial parts and root wood	(Khan and Mlungwana, 1999; El-Kersh et al., 2016)
Squalene (%)	32.6	Aerial parts	El-Kersh et al. (2016)
Stigmasterol (%)	0.01–0.9	Aerial parts and leaves	(Gormann et al., 2004; El-Kersh et al., 2016)
Total flavonoid content (mg LE/g)	14.4	Aerial parts	El-Kersh et al. (2016)
Total phenolic content (mg GAE/g)	177.4	Aerial parts	El-Kersh et al. (2016)
Tritriacontane (%)	0.009–3.2	Leaves	(Khan and Mlungwana, 1999; Gormann et al., 2004)
Ursolic acid (%)	36.6	Aerial parts and leaves	(Gormann et al., 2004; El-Kersh et al., 2016)
Verbascoside	-	Aerial parts	El-Kersh et al. (2016)
Isoverbascoside	-	Aerial parts	El-Kersh et al. (2016)
Klotzsch, S. tenuifolia Bojer and S. zanzibarica Bojer ex DC. The English common names of M. zanzibarica include “bean tree”, “bell bean”, "golden bean tree” and “maroon bell-bean”. Markhamia zanzibarica is a slender, much-branched and sometimes straggling shrub or small tree with crooked branches growing up to 10 metres in height (Lovett et al., 2007). The bark is grey, smooth to rough, vertically and narrowly flaky and young branches with conspicuous lenticels. The leaves of M. zanzibarica are pinately compound with obovate leaflets. The leaf margins are smooth or toothed with attenuate apex and broadly tapering to rounded base. The flowers of M. zanzibarica vary from yellow densely flecked with maroon to dark maroon inside and paler outside, occurring in terminal or axillary racemes.

The fruit is a slender, pendulous capsule, hairless with pale dots or lenticils, splitting into two halves. Markhamia zanzibarica has been recorded in deep sand, rocky ridges, hill slopes and riverine fringes in dry evergreen coastal forest, dry lowland forest, woodland, bushveld, grassland, secondary bush at sea level to 1500 m above sea level (Diniz and Bignoniaceae, 1988; Bidgood et al., 2006). Markhamia zanzibarica is indigenous to Zimbabwe, Angola, Somalia, Botswana, Malawi, the Democratic Republic of Congo (DRC), Zambia, Kenya, Mozambique, Tanzania and Namibia (Diniz and Bignoniaceae, 1988; Bidgood et al., 2006). Markhamia zanzibarica is used as a non-alcoholic beverage or famine food in Namibia and South Africa (Fox and Young, 1982; Koenen, 2001). The leaves of M. zanzibarica are browsed by game and livestock (Komwihangilo et al., 1995; Mtengeti and Mhelela, 2006). The leaves of M. zanzibarica are sold as traditional medicines in informal herbal medicine markets in Tanzania (Hilonga et al., 2019). Therefore, this extensive review was undertaken to evaluate the medicinal uses, phytochemistry and biological activities of M. zanzibarica.

MATERIALS AND METHODS

The University library and electronic search engines Google Scholar, Scopus, Web of Science, ScienceDirect and PubMed were searched for pertinent information on the medicinal uses, phytochemistry and biological activities of M. zanzibarica. The keywords such as *Markhamia zanzibarica*, its synonyms, biological activities, phytochemistry, ethnopharmacology, toxicity, botany and ethnobotany were used separately and in combination used within the electronic databases of ScienceDirect, Scopus, PubMed, Web of Science and Google Scholar.

RESULTS AND DISCUSSION

Medicinal uses of Markhamia zanzibarica

The bark, leaf and root decoction or infusion of *M. zanzibarica* are mainly used as anthelmintic, and traditional medicine against backache, female reproductive problems, sexually transmitted infections, respiratory infections and gastro-intestinal problems (Table 1Figure 1). Other medicinal applications of *M. zanzibarica* supported by at least two literature reports include the use of the bark, leaf and root infusion or decoction as an aphrodisiac (Kaingu et al., 2013a; Kaingu, 2016), and traditional medicine for abdominal pains (Chhabra et al., 1987; Kigen et al., 2016), breast cancer (Kaingu et al., 2014; Kaingu, 2016), general body pains (Watt and Breyer-Brandwijk, 1962; Bruschi et al., 2011), headache (Watt and Breyer-Brandwijk, 1962; Semenya and Maroyi, 2018) and snakebite (Pakia et al., 2003; Dharani, 2019).

Nutritional and phytochemical composition of Markhamia zanzibarica

(Dierenfeld et al., 1995) investigated the nutritional properties of the leaves and twigs of *M. zanzibarica* (Table 2). Some health-promoting nutrients such as calcium, copper, crude fibre, iron, magnesium, manganese, phosphorus, potassium, proteins, sodium and zinc have been identified from the species, and these reports corroborate the utilization of *M. zanzibarica* as fodder for both game and livestock in tropical Africa (Komwihangilo et al., 1995; Mtengeti and Mhelela, 2006). Phytochemical compounds identified from the aerial parts, leaves, roots and root wood of *M. zanzibarica* include alkaloids, anthraquinones, fatty acids, flavonoids, glycosides, phenolics, saponins, sterols, tannins and triterpenes.

Pharmacological properties of Markhamia zanzibarica

(Mayekiso et al., 2009) evaluated the antibacterial activities of acetone leaf extracts of *M. zanzibarica* against *Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis* and *Enterococcus coli* using the following microdilution method. The extract exhibited activities against the tested pathogens with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml. (Mayekiso et al., 2009) also evaluated the antimycobacterial activities of acetone leaf extracts of *M. zanzibarica* against *Mycobacterium fortuitum* and *Mycobacterium smegmatis* using the serial microdilution method. The extract exhibited activities against the tested pathogens with MIC values as low as 0.02 mg/ml (Mayekiso et al., 2009).

5990 © International Journal of Research in Pharmaceutical Sciences
(El-Kersh et al., 2016) evaluated the antioxidant activities of n-hexane, ethyl acetate, butanol, chloroform and ethanol extracts of the aerial parts of M. zanzibarica using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay with ascorbic acid as standard. The ethyl acetate extract exhibited the highest activities with half-maximal inhibitory concentration (IC\textsubscript{50}) value of 154.6 μg/ml (El-Kersh et al., 2016).

(Khan and Mlungwana, 1999) evaluated the cytotoxicity activities of the compounds γ-sitosterol, campesterol and tritriacontane isolated from M. zanzibarica using the brine shrimp (Artemia salina) assay with lapachol as reference drug. The compound γ-sitosterol exhibited activities with the median lethal concentration (LC\textsubscript{50}) value of 4.0 ppm, which was lower than the LC\textsubscript{50} value of 5.0 ppm (Khan and Mlungwana, 1999). (McGaw et al., 2010) evaluated the cytotoxicity activities of acetone extracts of M. zanzibarica leaves against Vero kidney cells and bovine dermis cells. The extract exhibited activities with LC\textsubscript{50} values of less than 50.0 μg/ml against both cell types (McGaw et al., 2010; El-Kersh et al., 2016) evaluated the cytotoxicity activities of n-hexane, ethyl acetate, butanol, chloroform and ethanol extracts of the aerial parts of M. zanzibarica against the human cervical adenocarcinoma cell line (HeLa) using the sulforhodamine B colourimetric assay with doxorubicin as a positive control. The extracts exhibited activities with IC\textsubscript{50} values ranging from 9.2 μg/ml to 49.6 μg/ml in comparison to IC\textsubscript{50} value of 7.3 μg/ml exhibited by the positive control (El-Kersh et al., 2016). Similarly, (El-Kersh et al., 2016) evaluated the cytotoxicity activities of n-hexane, ethyl acetate, butanol, chloroform and ethanol extracts of the aerial parts of M. zanzibarica against the HeLa, MCF-7, HEPG2, PC3 and A549 using the sulforhodamine B colourimetric assay with doxorubicin as a positive control. The extracts exhibited activities with the best activities against the cancer cells exhibiting IC\textsubscript{50} values ranging from 8.5 μg/ml to 18.4 μg/ml (El-Kersh et al., 2016).

CONCLUSIONS

This study reviewed the medicinal uses, phytochemistry and biological activities of M. zanzibarica. The current pharmacological studies indicate the potential biological activities of the phytoconstituents and crude extracts of M. zanzibarica, indicating the merit for more attention in future studies. More pharmacological studies including phytochemical, toxicological, \textit{in vitro} and \textit{in vivo} experiments are needed to provide evidence for the clinical effectiveness of remedies prepared from the species.
ACKNOWLEDGEMENT

I am grateful to the reviewers who kindly commented on my manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

Funding Support

The authors declare that they have no conflict of interest for this study.

REFERENCES

Arnold, H.-J., Gulumian, M. 1984. Pharmacopoeia of traditional medicine in Venda. Journal of Ethnopharmacology, 12(1):35–74.

Bidgood, S., Verdcourt, B., Vollesen, K., Bignoniaceae 2006. Flora of tropical east Africa. Royal Botanic Gardens, pages 1–47.

Bruschi, P., Morganti, M., Mancini, M., Signorini, M. A. 2011. Traditional healers and laypeople: A qualitative and quantitative approach to local knowledge on medicinal plants in Muda (Mozambique). Journal of Ethnopharmacology, 138(2):543–563.

Chhabra, S. C., Mahunnah, B. L. A., Mshiu, E. N. 1987. Plants used in traditional medicine in eastern Tanzania. I. Pteridophytes and angiosperms (acanthaceae to canellaceae). Journal of Ethnopharmacology, 21(3):253–277.

Chhabra, S. C., Mahunnah, R. L. A., Mshiu, E. N. 1991. Plants used in traditional medicine in eastern tanzania. V. Angiosperms (passifloraceae to sapindaceae). Journal of Ethnopharmacology, 33(1-2):143–157.

Dharani, N. 2019.

Dierenfeld, E. S., Toit, R. D., Braselton, W. E. 1995. Nutrient composition of selected browses consumed by black rhinoceros (Diceros bicornis) in the Zambezi valley. Zimbabwe. Journal of Zoo and Wildlife Medicine, 26:220–230.

Diniz, M. A., Bignoniaceae 1988. Flora Zambesiaca Managing Committee, 8:61–85.

El-Kersh, D. M., El-Dine, R. S., Abou-Hussein, D. R., Sakhawy, F. S. E., Elmazar, M. M. 2016. Cytotoxicity and chemical investigation of the aerial parts of Markhamia zanzibarica (Bojer ex DC) K. Schum (Bignoniaceae). Life Science Journal, 13:22–26.

Fischer, E., Thiesen, I., Lohmann, L. G., Bignoniaceae 2004. The families and genera of vascular plants. Springer, Berlin.

Fox, F. W., Young, N. M. 1982. Food from the veld. Delta Books. Johannesburg.

Gormann, R., Kaloga, M., Kolodziej, H. 2006. Novel flavonoids from leaf extracts of Markhamia acuminata and Spathodea campanulata. Planta Medica, 72(11):35–35.

Gormann, R., Schreiber, L., Kolodziej, H. 2004. Cuticular Wax Profiles of Leaves of Some Traditionally Used African Bignoniaceae. Zeitschrift für Naturforschung C, 59(9-10):631–635.

Hedberg, L., Staugård, F. 1989. Traditional medicine in Botswana: Traditional medicinal plants. Ipelegeng Publishers, Gaborone.

Hilonga, S., Otieno, J. N., Ghorbani, A., Pereus, D., Kocy, A., de Boer, H. 2019. Trade of wild-harvested medicinal plant species in local markets of Tanzania and its implications for conservation. South African Journal of Botany, 122:214–224.

Kaingu, C. K. 2016. Evaluation of anti-fertility potential of selected medicinal plants of Tana River County. Kenya; Nairobi.

Kaingu, C. K., Mbaria, J., Oduma, J. A., Kiama, S. G. 2014. Ethnobotanical study of medicinal plants traditionally used in Tana River County for management of illnesses. Asian Journal of Complementary and Alternative Medicine, 2:1–5.

Kaingu, C. K., Oduma, J. A., Mbaria, J. M., Kiama, S. G. 2013a. Ethnobotanical survey of medicinal plants used for the management of male sexual dysfunction and infertility in Tana River County. Kenya. Photon, 119:453–463.

Kaingu, C. K., Oduma, J. A., Mbaria, J. M., Kiama, S. G. 2013b. Medicinal plants traditionally used for the management of female reproductive health dysfunction in Tana River County, Kenya. TANG [HUMANITAS MEDICINE], 3(2):17.1–17.10.

Khan, M. R., Mlungwana, S. M. 1999. γ-Sitosterol, a cytotoxic sterol from Markhamia zanzibarica and Kigelia africana.

Kigen, G., Maritim, A., Some, F., Kibosia, J., Rono, H., Chepkwony, S., Kipkore, W., Wanjoh, B. 2016. Ethnopharmacological survey of the medicinal plants used in Tindiret, Nandi County, Kenya. African Journal of Traditional, Complementary and Alternative Medicines, 13(3):156–156.

Koenen, E. V. 2001. Medicinal, poisonous and edible plants in Namibia. Klaus Hess Publishers, Windhoek.

Kokwaro, J. O. 2009. Medicinal plants of East Africa. University of Nairobi Press, Nairobi.

Komwihangilo, D. M., Goromela, E. H., Bwire, J. M. 1995. Indigenous knowledge in utilization of local trees and shrubs for sustainable livestock production in central Tanzania. Livestock Research for
Rural Development, 6:28–28.

Louppe, R. H. M. J., Oteng-Amoako, D., A, A. 2012. Plant resources of tropical africa 7: timbers 2. pages 457–461. Backhuys Publishers.

Lovett, J. C., Ruffo, C. K., Gereau, R. E., Taplin, J. R. D. 2007. Field guide to the moist forest trees of Tanzania. The Society for Environmental Exploration. London.

Mayekiso, K., Eloff, J., Mcgaw, L. 2009. Screening of South African plants for antibacterial and antymycobacterial activity. African Journal of Traditional, Complementary and Alternative Medicines, 6:319–319.

McGaw, L., Elgorashi, E., Eloff, J. 2010. Cytotoxicity and mutagenicity investigation of extracts of common South African ethnoveterinary plants. Planta Medica, 76(12):154–154.

Morris, B. 1996.

Moshi, M. J., Otieno, D. F., Mbabazi, P. K., Weisheit, A. 2009. The Ethnomedicine of the Haya people of Bugabo ward, Kagera Region, north western Tanzania. Journal of Ethnobiology and Ethnomedicine, 5(1):24–24.

Mtengeti, E. J., Mhelela, A. 2006. Screening of potential indigenous browse species in semi-arid central Tanzania. A case of Gairo division. Livestock Research for Rural Development, 18:122–122.

Pakia, M., Cooke, J. A., van Staden, J. 2003. The ethnobotany of the Midzichenda tribes of the coastal forest areas in Kenya: 2. Medicinal plant uses. South African Journal of Botany, 69(3):382–395.

Palgrave, M. C., Keith 2002. Coates Palgrave trees of southern Africa. Struik Publishers, Cape Town.

Palmer, E., Pitman, N. 1972. Trees of southern Africa covering all known indigenous species in the Republic of South Africa. South-West Africa, Botswana, Lesotho and Swaziland. Balkema, Cape Town.

Semenya, S. S., Maroyi, A. 2018. Ethnobotanical study of curative plants used by traditional healers to treat rhinitis in the Limpopo Province, South Africa. African Health Sciences, 18(4):1076–1076.

Watt, J. M., Breyer-Brandwijk, M. G. 1962. The medicinal and poisonous plants of southern and eastern Africa. Livingstone, London, UK.