Targeting TM4SF1 exhibits therapeutic potential via inhibition of cancer stem cells

Signal Transduction and Targeted Therapy (2022) 7:350

Dear Editor,

Cancer stem cells (CSCs) are thought to be responsible for cancer initiation, growth, recurrence, metastasis, and drug resistance.\(^1\) Therefore, targeting CSCs is an effective therapeutic approach for cancer.\(^2\) However, there are few CSC-specific targets with functional extracellular domains for the development of antibody drugs.\(^3\) Our published paper demonstrated that transmembrane 4 L six family member 1 (TM4SF1) coupled discoidin domain receptor tyrosine kinase 1 (DDR1) under collagen I stimulation activated JAK2-STAT3 signaling. This noncanonical DDR1 signaling sustained the manifestation of CSC traits by inducing SOX2 and NANOG expression and drove multiorgan metastases.\(^4\)

In this study, we demonstrated that TM4SF1 was a cell membrane marker of CSCs, and monoclonal antibodies (mAb) targeting functional extracellular domain of TM4SF1 inhibited CSCs. Immunohistochemistry staining of 16 types of cancer and adjacent normal tissues showed that TM4SF1 was highly expressed on the cancer cell membrane but undetectably expressed on normal cells (Fig. 1a and Supplementary Fig. 1a). Then, we examined the relationship between TM4SF1 and CSCs. There were more CD44\(^{\text{high}}\)/CD24\(^{\text{low}}\), CD133, SOX2 and NANOG expression and drove multiorgan metastases.\(^4\)

These results suggest that TM4SF1 is a cell membrane marker of CSCs. Moreover, the expression of stemness markers, such as CD44\(^{\text{high}}\)/CD24\(^{\text{low}}\), CD133, SOX2 and NANOG, was higher in primary tumors formed from TM4SF1\(^{\text{high}}\) MDA-MB-231 cells than in those formed from TM4SF1\(^{\text{low}}\) MDA-MB-231 cells. These results suggest that TM4SF1 is a cell membrane marker of CSCs. Furthermore, we utilized the serial limiting dilution transplantation assay to determine the frequency of tumor-initiating cells (T-IC) (Supplementary Fig. 2a). TM4SF1\(^{\text{high}}\) MDA-MB-231 cells injected into mice exhibited more rapid tumor growth, higher T-IC frequency, and shorter latency periods than TM4SF1\(^{\text{low}}\) MDA-MB-231 cells (Fig. 1d–f and Supplementary Fig. 2b, c). Notably, TM4SF1 expression was maintained in primary tumors formed from TM4SF1\(^{\text{high}}\) or TM4SF1\(^{\text{low}}\) cells (Fig. 1g), indicating that CSCs stably maintain TM4SF1\(^{\text{high}}\) expression. Moreover, the expression of stemness markers, such as CD44\(^{\text{high}}\)/CD24\(^{\text{low}}\), CD133, NANOG, POU5F1, and SOX2 (Supplementary Figs. 1k, 2f, g, i, j), was higher in primary tumors formed from TM4SF1\(^{\text{high}}\) MDA-MB-231 cells than in those formed from TM4SF1\(^{\text{low}}\) MDA-MB-231 cells, indicating that TM4SF1\(^{\text{high}}\) expression stably maintained CSC traits. To examine whether the stemness of TM4SF1\(^{\text{high}}\) cells can be stably passaged to subsequent generations, secondary and tertiary transplantation assays were performed. TM4SF1\(^{\text{high}}\) cells exhibited more rapid tumor growth, higher T-IC frequency and shorter latency periods (Fig. 1h–k and Supplementary Fig. 2f, g, i, j) than TM4SF1\(^{\text{low}}\) cells. Moreover, fluorescence-activated cell sorting (FACS) analysis showed that TM4SF1 expression was maintained in the secondary and tertiary tumors formed from TM4SF1\(^{\text{high}}\) and TM4SF1\(^{\text{low}}\) cells, respectively (Supplementary Fig. 2h, k). Similar results were obtained in A2058 cells (Supplementary Fig. 2l–n). These results indicate that TM4SF1\(^{\text{high}}\) cells have CSC characteristics and that these characteristics were stably maintained and passaged to subsequent generations.

Since CSCs are also responsible for metastasis, we examined whether TM4SF1 expression affected metastasis. Interestingly, more metastases were developed in the lungs of mice orthotopically injected with TM4SF1\(^{\text{high}}\) MDA-MB-231 cells, and multiorgan metastases were promoted and the survival times were decreased in the mice intracardially injected with TM4SF1\(^{\text{high}}\) MDA-MB-231 cells (Fig. 1l, m and Supplementary Fig. 3a). Similar results were obtained in A2058 and H2030 cells (Supplementary Fig. 3b, c). These findings demonstrate that TM4SF1\(^{\text{high}}\) cells have higher metastatic ability than TM4SF1\(^{\text{low}}\) cells. To examine whether high TM4SF1 expression is necessary for TM4SF1\(^{\text{high}}\) cells to possess and maintain the CSC function, we silenced TM4SF1 in TM4SF1\(^{\text{high}}\) MDA-MB-231 cells and found reductions in sphere formation, tumor growth, T-IC frequency, and metastasis (Fig. 1n–p and Supplementary Fig. 4a–d, g). Moreover, TM4SF1 depletion prolonged latency periods and survival times after orthotopic injection (Supplementary Fig. 4e, f, h, i). In contrast, this suppression was reduced by TM4SF1 overexpression in shTM4SF1 cells. To further examine whether high TM4SF1 expression is a sufficient condition for the possession and maintenance of CSC characteristics, we overexpressed TM4SF1 in TM4SF1\(^{\text{low}}\) MDA-MB-231 cells and found that TM4SF1 enhanced stemness, as indicated by sphere formation, tumor growth, T-IC frequency, and metastasis, and shortened latency periods and survival times (Fig. 1q–s). These results reveal that high TM4SF1 expression is a necessary and sufficient condition for the possession and maintenance of CSC characteristics. Therefore, TM4SF1 may be a therapeutic target for specifically eliminating CSCs.

Our previous study showed that the interaction between TM4SF1 and DDR1 on the cell membrane mediated multiorgan metastases. To further identify the interaction domain of TM4SF1, communoprecipitation assays (coIP) were performed, and we found that the interaction site was the extracellular loop 1 (ECL1) of TM4SF1 (Supplementary Fig. 6a, b). Then, we used ECL1 of

Received: 3 April 2022 Revised: 25 July 2022 Accepted: 31 August 2022
Published online: 14 October 2022

© The Author(s) 2022

https://doi.org/10.1038/s41392-022-01177-7
TM4SF1 as the antigen, screened thousands of mAbs, and obtained a series of functional mAbs (Supplementary Fig. 6c). The functional mAbs blocked the interaction of TM4SF1 and DDR1. Among these mAbs, FC17-7 exhibited the best blocking activity (Fig. 1t and Supplementary Fig. 6d), and FACS analysis showed that the binding capacity of FC17-7 was dose-dependent (Supplementary Fig. 6e). Furthermore, FC17-7 blocked collagen-induced activation of JAK2-STAT3 signaling in MDA-MB-231 cells (Fig. 1u and Supplementary Fig. 6g, i). Similar results were obtained in 293FT and A549 human lung cancer cells.
Fig. 1 TM4SF1 is a novel molecular target for CSC therapy. a Representative immunohistochemical images and staining intensities of TM4SF1 expression in clinical samples of three types of organ cancer with the adjacent normal tissue (colon, kidney, and liver). Representative immunohistochemical images of other 13 types of organ cancer are shown in Fig. S1a. b Flow cytometric analysis of the CD44high/CD24low expression level in TM4SF1low and TM4SF1high MDA-MB-231 cells (three independent experiments). c The sphere-forming capacity of TM4SF1low cells was determined by serial tumor sphere assays (1000 cells/well). Cells were cultured with 30 μg/ml collagen I for 14 days. The primary spheres were dissociated and subjected to secondary tumor sphere assays (three independent experiments). See Supplementary Fig. S1c for representative images of spheres. d–k Serial limiting dilution transplantation assay indicated that TM4SF1 was critical for the stemness of cancer cells. Primary tumor volume at a dilution of 10² cells (d). Representative tumor images on Day 56 at a dilution of 10⁶ cells (e). Primary tumor-initiating capacity (f). Flow cytometric analysis of TM4SF1 expression on the cell membrane of tumor cells from digested primary tumors, at least three independent experiments (g). Secondary tumor volume at a dilution of 10⁷ cells (h). Secondary tumor-initiating capacity (i). Tertiary tumor volume at a dilution of 10⁸ cells (j). Tertiary tumor-initiating capacity (k). (The n-values denote the number of tumors per group.) l Representative images of H&E staining of lung metastases from the primary transplantation assay. See Supplementary Fig. S3a for quantification (three independent experiments). m Bioluminescence imaging (left panels) and quantification (right panels) of metastases in BALB/c nude mice xenografted with shControl, shTM4F-3 or TM4SF1-mutant cells by intracardiac injection (1 x 10⁶ cells) (The n-values denote the number of mice per group). n–p Silencing of TM4SF1 in TM4SF1high MDA-MB-231 cells inhibited the tumor-initiating and metastatic capacities. Tumor volume (The n-values denote the number of tumors per group.) (n). Tumor-initiating capacity (o). Bioluminescence imaging (left panels) and quantification (right panels) of metastases in BALB/c nude mice xenografted with shControl, shTM4F-3 or TM4SF1-mutant cells by intracardiac injection (1 x 10⁶ cells) (The n-values denote the number of mice per group) (p). q–s Overexpression of TM4SF1 in TM4SF1low MDA-MB-231 cells enhanced the tumor-initiating and metastatic capacities. Tumor volume (The n-values denote the number of tumors per group.) (q). Tumor-initiating capacity (r). Bioluminescence imaging (left panels) and quantification (right panels) of metastases of BALB/c nude mice xenografted with control or TM4SF1-overexpressing cells by intracardiac injection (1 x 10⁵ cells) (The n-values denote the number of mice per group). s). t The coimmunoprecipitation assay showed that the interaction of TM4SF1 and DDR1 was blocked by monoclonal antibodies. See Supplementary Fig. S6d for lysates (three independent experiments). u Western blot analysis showed that activation of STAT3 was blocked by the monoclonal antibody FC17-7. See Supplementary Fig. S6i for quantification (three independent experiments). v The sphere-forming capacity of cells treated with FC17-7 at the indicated concentration was determined by a tumor sphere formation assay. MDA-MB-231 cells (1000 cells/well) were cultured with IgG or FC17-7 at the indicated concentration and stimulated with collagen I (30 μg/ml) for 14 days. See Supplementary Fig. S7c for representative images of spheres (three independent experiments). w FC17-7 inhibited cancer metastasis. Bioluminescence imaging (left panels), quantification (middle panels) of metastases and overall survival (right panels) of BALB/c nude mice implanted with MDA-MB-231 cells by intracarcinjection (1 x 10⁵ cells). IgG or FC17-7 (10 mg/kg) was administered intraperitoneally once every 3 days (FC17-7) from day −1 to the death of mice (The n-values denote the number of mice per group). Throughout the study, data are presented as the mean ± s.e.m. values. P values were determined by an unpaired two-tailed Student’s t test with Welch’s correction [μ, μ, μ] or one-way ANOVA with uncorrected Fisher’s LSD test (μ) and (μ) or two-way ANOVA with uncorrected Fisher’s LSD test [(μ, d, h, j, m, n, p, q, s, w)] or the log-rank test [(μ, w)]. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, n.s. not significant and #, end of the experiment.

SUPPLEMENTARY INFORMATION

DATA AVAILABILITY

All data are available upon reasonable request to the corresponding author.

ACKNOWLEDGEMENTS

We thank members of the Gao laboratory for discussions. This work was supported by the National Key Research and Development Program of China (2015CB964800), the National Natural Science Foundation of China (81773084 and 81972736), Shanghai Municipal Science and Technology Commission (18142202200), and the One Thousand Talents Program of Shanghai (SH04020 to H.G.). H.G. received an Eastern Scholarship from the Program for Professors of Special Appointment at Shanghai Institutions of Higher Learning (2013-14).

AUTHOR CONTRIBUTIONS

G.C. designed, performed and analyzed most experiments with assistance from X.S. Y.Y. performed the purification of monoclonal antibodies under supervision of J.F. J.M. conducted the western blotting experiments in Supplementary Fig. S6b, g and assisted in revising the paper. Y.G. assisted with the screening of monoclonal antibodies. G.C. wrote the paper and revised the paper with assistance from J.M. and X.S. under supervision of H.G. H.G. conceived, designed, interpreted, and supervised the study. H.Q. and J.F. supervised and supported the study.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41392-022-01177-7.

Competing interests: The paper has been approved by all authors for publication. The authors declare no competing interests.

Ethics approval: All animal experiments were approved by the Institutional Animal Care and Use Committee of Tongji University (approval number: TIBAO1000105).
Guang Chen1,2, Xiaofei She1,2, Yanxin Yin2,3, Junxian Ma1,2, Yaqun Gao1,2, Hua Gao1,2, Huanlong Qin1,2,3 and Jianmin Fang2,3

1Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, School of Life Sciences and Technology and School of Medicine, Tongji University, Shanghai, PR China; 2Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, PR China and 3Biomedical Research Center, Tongji University Suzhou Institute and Department of Neurology, Tongji Hospital, Tongji University, Shanghai, PR China

These authors contributed equally: Guang Chen, Xiaofei She, Yanxin Yin, Junxian Ma

Correspondence: Hua Gao (gaoh@tongji.edu.cn) or Huanlong Qin (qinhuanlong@tongji.edu.cn) or Jianmin Fang (jfang@tongji.edu.cn)

REFERENCES

1. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).
2. Ramos, E. K., Hoffmann, A. D., Gerson, S. L. & Liu, H. New opportunities and challenges to defeat cancer stem cells. Trends Cancer 3, 780–796 (2017).
3. Yang, L. et al. Targeting cancer stem cell pathways for cancer therapy. Sig Transduct. Target Ther. 5, 8 (2020).
4. Gao, H. et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell 166, 47–62 (2016).
5. Visintin, A. et al. Novel anti-TM4SF1 antibody–drug conjugates with activity against tumor cells and tumor vasculature. Mol. Cancer Ther. 14, 1868–1876 (2015).