Antioxidant properties of various parts of *Cissus quadrangularis* L. in different solvents

B. Sasi*, P. Tamizhiniyan

Department of Botany, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India

ABSTRACT

An important medicinal plant *Cissus quadrangularis*, belonging to the family Vitaceae was used in the present study to estimate antioxidant properties of different extract (root, stem, leaves and tendrils). Plant materials were collected from the village Ponnanthittu, Chidambaram Taluk, Cuddalore Dist. The antioxidant properties of the petroleum ether, chloroform, ethyl acetate, acetone and methanol extracts of *Cissus quadrangularis* were screened and results showed considerable antioxidants in all the extracts.

KEYWORDS: *Cissus quadrangularis* L., various parts, different solvents, antioxidants

INTRODUCTION

Medicinal plants are the backbone of the traditional medicines [1]. The past 2500 years, there have been very strong traditional systems of medicines born and practiced more in the eastern continent. Approximately 80% of population in the developing countries still rely on these systems of medicines for their primary health care needs [2]. Moreover, herbal medicines are considered to be less toxic and free from side effects than synthetic ones. The chemical compounds found in plants are natural products that have pharmacological and biological activity and hence, they are generally used in drug discovery and drug design [3]. Medicinal plants are rich source of compounds or secondary metabolites like tannins, terpenoids, alkaloids, flavonoids, etc. [4,5].

Cissus quadrangularis is an important medicinal plant with traditional and modern medicinal uses [6]. Previous studies are about antioxidant potentials from stem of plants and with antimicrobial actions from this plant [7] and antioxidants from stem portions [8]. In the present study, we aimed to estimate antioxidant properties of different extract (root, stem, leaves and tendrils) from medicinal plant *Cissus quadrangularis*.

MATERIALS AND METHODS

Antioxidant Activity

The radical scavenging effects of different parts (root, stem, leaves and tendrils) of crude extracts of *Cissus quadrangularis* were evaluated against 1,1-diphenyl-2-picrylhydrazyl, ABTS*, hydrogen peroxide, superoxide radical, Nitric oxide radical, hydroxyl radicals scavenging assay, ferric reducing antioxidant power, total phenol, total flavonoids content and total antioxidant activity.

All the chemicals and solvents used in the study were analytical grade (AR). 1,1-diphenyl-2-picryl-hydrazyl (DPPH), quercetin, gallic acid (TCA), ascorbic acid, monobasic and dibasic phosphate, potassium ferric cyanide, sulphuric acid, sodium phosphate, EDTA, ammonium molybdate, NBT-Nitroblue tetrazolium, BHT, ferric chloride, ammonium acetate, acetylate acetate, potassium phosphate buffer, potassium phosphate saline, phosphoric acid, ferrozine, methanol and were obtained from Himedia, India.

DPPH Free Radical Scavenging Activity

The DPPH scavenging activity of different extracts of *C. quadrangularis* root, stem, leaves and tendrils were measured according to the procedure described by Hatano et al. [9].

ABTS* Scavenging Effects (2, 2'-Azino-bis-3-ethylbenzthiazoline-6-sulphonic acid)

ABTS* scavenging effects was measured according to the method of Re et al. [10].

Superoxide Anion Radical Scavenging Activity Assay

The Superoxide anion radical scavenging was measured by the method of Liu et al. [11].
Hydrogen Peroxide (H₂O₂) Scavenging Assay

Hydrogen peroxide scavenging activity of the extract was measured by standard method [12].

Hydroxyl Radical Scavenging Assay

The scavenging activity for hydroxyl radicals was measured with fenton reaction by the standard method [13].

Ferric Reducing Antioxidant Power (FRAP)

The FRAP assay was used to estimate the reducing capacity of plant extracts, according to the method of Benzie and Strain [14].

Determination of Total Antioxidant Activity

The antioxidant activity of the extracts was evaluated by the phosphomolybdenum method according to the procedure of Prieto et al. [15].

RESULT AND DISCUSSION

The antioxidant properties of the petroleum ether, chloroform, ethyl acetate, acetone and methanol extracts of Cissus quadrangularis were screened and results showed considerable antioxidants in all the extracts. The ethanolic extracts of the leaves of Carica papaya, Psidium guajava and Vernonia amygdalina, stem bark of Mangifera indica were screened for the their free radical scavenging activity [16]. The antioxidant screening of ethanolic extracts of Viola serpens and Morus nigra showed the presence of enzymatic antioxidant such as catalase, peroxidase and ascorbate oxidase and non-enzymatic antioxidant such as ascorbic acid [17]. The antioxidant activity by DPPH method indicated that ethanolic extract of Phragmites vallatoria possessed considerable antioxidant activity. The highest radical scavenging activity was IC₅₀=73 µg/mL. Seven compounds were identified in GC-MS analysis [18].

Superoxide Radical Scavenging Activity

The results of superoxide radical scavenging activity of petroleum ether, chloroform, ethyl acetate, chloroform and methanolic extracts root, stem, leaves and tendrils of C. quadrangularis and standard are shown in Figure 1. The inhibition of superoxide anion radical scavenging activity generation is lower than that of ascorbic acid (standard). The inhibition of SOD at the concentrations (20, 40, 60, 80 and 100 µg/mL) recorded.

The highest inhibition was produced by methanol extracts, and then followed by ethyl acetate, acetone, chloroform and petroleum ether extracts. The antioxidants values of methanol extracts of root, stem, leaf, tendril and standard (ascorbic acid) were 38.70 ± 0.04, 86.64 ± 0.04, 59.53 ± 0.04, 28.21 ± 0.04 and 99.96 ± 0.02 µg/mL respectively at 100 µg/mL concentration of the extract. The IC₅₀ values of methanol extracts were 303 µg/mL (root), 267 µg/mL (stem), 325 µg/mL (leaves), 456 mg/mL (tendril) and 204 µg/mL (ascorbic acid).

Hydroxyl Radicals Scavenging Activity

The results of hydroxyl radical scavenging activity of various extracts of C. quadrangularis and ascorbic acid are shown in Figure 2. A significant difference was observed among the parts of C. quadrangularis in difference concentrations of hydroxyl radicals scavenging activity. The highest antioxidant capacity was recorded in methanol extracts of C. quadrangularis, and then followed by ethyl acetate, acetone, chloroform and petroleum ether. Among the extracts, the highest activity was recorded in methanol extracts of stem (49.06 ± 0.02 µg/mL), followed by leaves (43.56 ± 0.02 µg/mL), root (31.12 ± 0.30 µg/mL) tendril (19.87 ± 0.02 µg/mL) and ascorbic acid (63.55 ± 0.0 µg/mL) at 100 µg/mL concentration. The methanol extracts exhibited IC₅₀ values were 525 µg/mL (root), 495 µg/mL (stem), 516 µg/mL (leaf), 621 µg/mL (tendril) and 453 µg/mL (ascorbic acid).

Hydrogen Peroxide Scavenging Activity

The results of hydrogen peroxide scavenging activity in various extracts of C. quadrangularis are shown in Figure 3. A significant activities was found among the samples of C. quadrangularis in different concentrations of 20, 40, 60, 80 and 100 µg/mL. The highest H₂O₂ scavenging potential was recorded with methanol extracts of all the samples, followed by ethyl acetate, acetone, chloroform and petroleum ether. Among the various parts of plant, the highest antioxidant potential was observed in stem, followed by leaves, root and tendrils. The hydrogen peroxide scavenging activity of methanolic extracts of root, stem, leaves, tendrils and control were 20.23 ± 0.01, 31.15 ± 0.01, 24.61 ± 0.01, 19.28 ± 0.01 and 38.53 ± 0.05 µg/mL respectively at 100 µg/mL concentration. The IC₅₀ values of methanolic extracts of root, stem, leaves, tendrils and control were 430, 289, 329 and 489 µg/mL respectively when compared to the ascorbic acid (254 µg/mL).

Ferric Reducing Antioxidant Powder Assay (FRAP)

The FRAP assay results of different extracts of C. quadrangularis are presented in Figure 4. The inhibition of FRAP generation was lower than that of ascorbic acid. The inhibition of FRAP at the concentration of 20, 40, 60, 80 and 100 µg/mL was recorded. On the other hand, at the same concentration of ascorbic acid, the highest antioxidant activity was observed in stem of C. quadrangularis and then followed by leaves, root and tendrils. Among the extracts, methanol extracts exhibited the potential FRAP values. The FRAP values of methanolic extracts of root, stem, leaves, tendril and ascorbic acid were 12.45 ± 0.04, 17.52 ± 0.02, 14.23 ± 0.02, 9.71 ± 0.02 and 20.92 ± 0.03 µg/mL respectively at 100 mg/mL concentration. The IC₅₀ values of the same extracts were 690, 589, 683 and 725 µg/mL respectively compared with standard value (503 µg/mL).
Figure 1: Superoxide radical scavenging activity of different extracts of root, stem, leaves and tendrils of *C. quadrangularis*

Figure 2: Hydroxyl radical scavenging activity of different extracts of root, stem, leaves and tendrils of *C. quadrangularis*
Figure 3: H_2O_2 scavenging activity of different extracts of root, stem, leaves and tendrils of *C. quadrangularis*

Figure 4: Ferric reducing antioxidant power assay of different extracts of root, stem, leaves and tendrils of *C. quadrangularis*
The results of ABTS⁺ radical scavenging activity of petroleum ether, chloroform, ethyl acetate acetone and methanol extract of root, stem, leaves and tendrils of *C. quadrangularis* are shown in Figure 5. A statistical significant difference (p < 0.05) was found among the samples of *C. quadrangularis* in different concentrations (20, 40, 60, 80 and 100 µg/mL). Among the samples, stem extracts exhibited the highest antioxidant properties and then followed by leaves, root, and tendrils. The methanol extracts produced remarkable antioxidant potential when compared to other solvents. The methanol extracts of *C. quadrangularis* root, stem, leaves, tendrils and standard values were 29.45 ± 0.02, 46.63 ± 0.23, 33.34 ± 0.03, 15.56 ± 0.04 and 50.19 ± 0.03 respectively at 100 mg/mL concentration. The same extracts produced IC₅₀ values were 392 µg/mL (root), 333 µg/mL (stem), 367 µg/mL (leaf) and 412 µg/mL (tendril) compared with standard value (288 µg/mL).

Total Antioxidant Activity

The results of total antioxidant activity of different extracts of *C. quadrangularis* are shown in Figure 6. A significant result was recorded in various concentrations of 20, 40, 60, 80 and 100 µg/mL. The highest total antioxidant activity was observed in stem extracts and then followed by leaves, root and tendrils. Among the solvents, the methanol extracts produced potential total antioxidant properties when compared to other solvents. The total antioxidant values of methanol extracts of *C. quadrangularis* were 48.12 ± 0.02 µg/mL (root), 77.87 ± 0.03 µg/mL (stem), 57.06 ± 0.02 µg/mL (leaves), 26.56 ± 0.03 µg/mL (tendrils) and 89.96 ± 0.02 µg/mL (standard value) at 100 mg/mL concentration. The methanol extracts exhibited IC₅₀ values were 286 µg/mL (root), 212 µg/mL (stem), 245 µg/mL (leaf) and 296 µg/mL (tendril) compared with standard value (288 µg/mL).
(leaves) and 314 µg/mL (tendrils) compared with standard value (198 µg/mL).

REFERENCES

1. Farnsworth NR. Ethnopharmacology and future drug development: the North American experience. Journal of ethnopharmacology. 1993 Mar 1;38(2-3):137-43.
2. Vieira RF, Skorupa LA. Brazilian medicinal plants gene bank. InWOCMAP I-Medicinal and Aromatic Plants Conference: part 4 of 4 330 1992 Jul 19 (pp. 51-58).
3. World Health Organization. WHO guidelines on good agricultural and collection practices [GACP] for medicinal plants. World Health Organization; 2003 Dec 16.
4. Lee SH, Chang KS, Su MS, Huang YS, Jang HD. Effects of some Chinese medicinal plant extracts on five different fungi. Food control. 2007 Dec 1;18(12):1547-54.
5. Nivedithadevi D, Arivalagan M, Somasundaram R. Plant growth regulators alters antioxidant metabolisms in Solanum trilobatum L.: An underutilized medicinal herb. Journal of Medicinal Botany. 2017;1:20-8.
6. Joseph B, Raj SJ. A comparative study on various properties of five medicinally important plants. International Journal of Pharmacology. 2011 Feb 15;7(2):206-11.
7. Chidambara Murthy KN, Vanitha A, Mahadeva Swamy M, Ravishankar GA. Antioxidant and antimicrobial activity of Cissus quadrangularis L. Journal of medicinal food. 2003 Jul 1;6(2):99-105.
8. Jainu M, Devi CS. In Vitro. and In Vivo. Evaluation of Free-Radical Scavenging Potential of Cissus quadrangularis. Pharmaceutical biology. 2005 Jan 1;43(9):773-9.
9. Hatano T, YASUHARA T, FUKUDA T, NORO T, OKUDA T. Phenolic Constituents of Licorice. II.: Structures of Licopyranocoumarin, Licoarylcoumarin and Glisoflavone, and Inhibitory Effects of Licorice Phenolics on Xanthine Oxidase. Chemical and pharmaceutical bulletin. 1989 Nov 25;37(11):3005-9.
10. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine. 1999 May 1;26(9-10):1231-7.
11. Liu F, Ooi VE, Chang ST. Free radical scavenging activities of mushroom polysaccharide extracts. Life sciences. 1997 Jan 31;60(10):763-71.
12. Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M. Nitric oxide induced by hydrogen peroxide mediates asbscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist. 2007;175(1):36-50.
13. Halliwell B, Gutteridge J. Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts. FEBS letters. 1981 Jun 15;126(2):347-52.
14. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry. 1996 Jul 15;239(1):70-6.
15. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry. 1999 May 1;269(2):337-41.
16. Ayoola GA, Coker HA, Adesegun SA, Adepoju-Bello AA, Obaweya K, Ezennia EC, Atangbayila TO. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Tropical Journal of Pharmaceutical Research. 2008;7(3):1019-24.
17. Ghaffar R, Saeed M, Ahmad M, Khan H, Ahmad S. In vivo anti-inflammatory characterization of crude extract and solvent fractions of Viola serpens. Pure and Applied Biology (PAB). 2017 May 29;6(1):18-31.
18. Vamsi Krishna AN, Venkata Raman B, Ramesh Babu K, Apparao C. Antioxidant activity and GC-MS analyses of Phragmites vallatoria leaf ethanolic extract. Int. J. Pharm. 2012;3: 252-254.