Association between liver targeted antiviral therapy in colorectal cancer and survival benefits: An appraisal

Qiang Wang, Chao-Ran Yu

ORCID number: Qiang Wang (0000-0001-9558-5459); Chao-Ran Yu (0000-0003-4657-7975).

Author contributions: Wang Q and Yu CR designed the research; Wang Q prepared the literature review and wrote the paper; Yu CR coordinated the reference review and performed the majority of the writing.

Conflict-of-interest statement: There is no conflict of interest associated with any of the senior author or other coauthors who contributed their efforts in this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited Manuscript

Received: March 7, 2020
Peer-review started: March 7, 2020
First decision: March 24, 2020
Revised: April 10, 2020
Accepted: May 1, 2020
Article in press: May 1, 2020
Published online: June 6, 2020

Abstract

In colorectal cancer (CRC), liver metastasis remains a major contributor to the cause of cancer-related death. Putative biomarkers, therapeutic efficacy, and drug insensitivity still pose clinical challenges for metastatic CRC patients. Interestingly, previous studies indicated that tumor cells in CRC did not metastasize to the injured liver, which included hepatitis or cirrhotic liver. The benefits of antiviral therapy on hepatocellular carcinoma have also been identified. This review discusses the role of antiviral therapy on the liver. Antiviral therapy may reduce potential liver metastasis associated with CRC in several mechanistic aspects.

Key words: Colorectal cancer; Liver metastasis; Antiviral therapy; Survival; Injury status; Biomarkers

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Liver metastasis is one of the major contributors to the cancer-related deaths in colorectal cancer. Previous studies reported that tumor cells rarely metastasize to the injured liver during the disease course. Others also identified survival benefits brought by antiviral therapy upon hepatocellular carcinoma. Hereby, this review discusses the potential impact of antiviral therapy in reducing liver metastasis of colorectal cancer.

Citation: Wang Q, Yu CR. Association between liver targeted antiviral therapy in colorectal cancer and survival benefits: An appraisal. World J Clin Cases 2020; 8(11): 2111-2115
URL: https://www.wjgnet.com/2307-8960/full/v8/i11/2111.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i11.2111

Manuscript source: Invited Manuscript

Received: March 7, 2020
Peer-review started: March 7, 2020
First decision: March 24, 2020
Revised: April 10, 2020
Accepted: May 1, 2020
Article in press: May 1, 2020
Published online: June 6, 2020

Qiang Wang, Chao-Ran Yu, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Shanghai 200025, China

Corresponding author: Chao-Ran Yu, MD, PhD, Surgeon, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai 200025, China. chaoran_yu@yeah.net

Abstract

In colorectal cancer (CRC), liver metastasis remains a major contributor to the cause of cancer-related death. Putative biomarkers, therapeutic efficacy, and drug insensitivity still pose clinical challenges for metastatic CRC patients. Interestingly, previous studies indicated that tumor cells in CRC did not metastasize to the injured liver, which included hepatitis or cirrhotic liver. The benefits of antiviral therapy on hepatocellular carcinoma have also been identified. This review discusses the role of antiviral therapy on the liver. Antiviral therapy may reduce potential liver metastasis associated with CRC in several mechanistic aspects.

Key words: Colorectal cancer; Liver metastasis; Antiviral therapy; Survival; Injury status; Biomarkers

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Liver metastasis is one of the major contributors to the cancer-related deaths in colorectal cancer. Previous studies reported that tumor cells rarely metastasize to the injured liver during the disease course. Others also identified survival benefits brought by antiviral therapy upon hepatocellular carcinoma. Hereby, this review discusses the potential impact of antiviral therapy in reducing liver metastasis of colorectal cancer.

Citation: Wang Q, Yu CR. Association between liver targeted antiviral therapy in colorectal cancer and survival benefits: An appraisal. World J Clin Cases 2020; 8(11): 2111-2115
URL: https://www.wjgnet.com/2307-8960/full/v8/i11/2111.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i11.2111

Manuscript source: Invited Manuscript

Received: March 7, 2020
Peer-review started: March 7, 2020
First decision: March 24, 2020
Revised: April 10, 2020
Accepted: May 1, 2020
Article in press: May 1, 2020
Published online: June 6, 2020

Core tip: Liver metastasis is one of the major contributors to the cancer-related deaths in colorectal cancer. Previous studies reported that tumor cells rarely metastasize to the injured liver during the disease course. Others also identified survival benefits brought by antiviral therapy upon hepatocellular carcinoma. Hereby, this review discusses the potential impact of antiviral therapy in reducing liver metastasis of colorectal cancer.
INTRODUCTION

Colorectal cancer (CRC) remains one of the most common malignancies in the world, with liver metastasis as one of the major distant metastatic lesions[1]. In China, the incidence and mortality of CRC have been increasing[2]. Commonly, liver metastasis occurs at the advanced course of CRC. Surgical intervention, chemotherapy, and target drugs significantly improve the survival benefits. However, overall outcomes of CRC remain largely unsatisfying due to distant metastasis and drug insensitivity[2,3]. The underlying mechanisms may be correlated to molecular features and clinical heterogeneity[4,5].

In general, hepatic therapy is incorporated into the comprehensive therapeutic strategy for CRC when liver metastasis is detected. However, a preventive therapeutic idea of introducing hepatic treatment to the comprehensive treatment in early stage is noteworthy. Of note, in patients with hepatitis B-related hepatocellular carcinoma, adjuvant antiviral therapy with adefovir reduced recurrence and improved postoperative prognosis[6]. Recently, the same research group introduced a novel conception of antiviral therapy as “the lower the better and the earlier the better” to the therapeutic effects in hepatitis B-related hepatocellular carcinoma patients with a low hepatitis B virus (HBV) DNA level (HBV-DNA < 2000 IU/mL)[7,8]. In addition, CRC with HBV or hepatitis C virus (HCV) infected or cirrhotic liver rarely develops metastatic lesion[9]. Actually, antiviral treatment is routinely taken as a parallel therapeutic strategy for CRC with hepatitis, but its benefit has not been fully recognized. Moreover, the value of antiviral therapy for general CRC patients is rarely investigated. Thus, this review discusses the potential role of antiviral therapy for the overall survival of CRC patients.

ABSENT LIVER METASTASIS IN CRC WITH HBV/HCV

Previously, Utsunomiya et al[8] reported that CRC patients with either HBV or HCV infection rarely presented liver metastatic lesion. Meanwhile, another study from Italy also indicated that 3.2% of HBV/HCV infected CRC patients developed liver metastasis compared to 9.4% in non-infected cases with statistical significance[10]. Moreover, others thought that HBV vaccine could serve to enhance intrinsic antitumor activity in numerous malignancies, including colon cancer[11]. Reasonably to presume that the pre-activated liver immune environment in CRC patients with HBV/HCV infection could be of clinical significance to eradicate potential tumor cells in the liver. Of note, CRC patients with a cirrhotic liver also displayed similar clinical outcomes[12]. However, both clinical observational studies did not fully demonstrate the direct connections between liver metastasis in CRC and corresponding liver disease status.

POTENTIAL MECHANISTIC CLUES

In fact, there are two mechanistic insights that may hold accountable. First, the immune system pre-activated by liver diseases could be of contribution to the identification and eradication of potential cancer cells in the liver. Second, the medical therapy for liver disease (HBV/HCV infected or cirrhotic liver) prior or parallel to the cancer treatment could be another helper. Interestingly, the medical therapy for HBV/HCV consists of a series of drugs associated with immune system regulation and antiviral function[13,14,15]. In addition, in HBV patients with liver cirrhosis or HIV infection, interferon associated combinational therapy is included[14]. Reduced tumor progression and favored clinical outcome were noticed in patients with hepatitis B-related hepatocellular carcinoma when receiving antiviral therapy for chronic hepatitis and liver cirrhosis[14].

Given the long term for therapeutic course in liver diseases, it is highly possible that the liver immune environment has been altered prior to the occurrence of malignancies[16-19]. Therefore, reduced liver metastasis in CRC could be associated with the altered immune response, which was already triggered by liver diseases. However, up to now, the role of HBV/HCV infected or cirrhotic liver-associated therapy in reducing liver metastasis remains largely unclear. Meanwhile, it is also essential to distinguish the roles of injured liver status and medical therapy targeting HBV/HCV infected or cirrhotic liver, respectively (Table 1). Therefore, it is insightful to perform a trial analyzing CRC patients with an injured liver but without receiving antiviral therapy to illustrate the association between injured-liver status and reduced liver metastasis. Interestingly, CRC patients with an impaired parenchyma (selective right portal vein embolization) did show a smaller volume of liver metastatic lesion.
compared to the patients with functionally-intact liver parenchyma[20]. Moreover, Augustin et al[21] reported that CRC patients with a chronically injured liver had a significantly lower incidence of liver metastasis than CRC patients without. However, in that study, the role of medical therapy was not disclosed. Collectively, the injured liver status could be an influential factor with reduced liver metastasis.

ANTIVIRAL THERAPY AND IMMUNE SYSTEM

The role of immune system associated therapy, including antiviral drugs (interferon and nucleoside/nucleotide analogues), remains largely unclear in the progression of liver metastasis in CRC[22-24]. Intriguingly, antiviral therapy has been potentially identified to reduce the incidence of hepatocellular carcinoma as well as the survival risks[25-27].

Mechanistically, liver targeted antiviral therapy improves the immune status of liver cells, at both the cellular and extracellular matrix levels, enhancing the activities of intrinsic immune cells[28]. The density of CD8\(^+\) T cells in tumor was inversely correlated with pathological T stage in CRC without relapse while CD8 \(^+\) T cell density was low in cases with relapse[28]. In fact, antiretroviral therapy for HIV infections could preserve the HIV-specific function of CD8 \(^+\) T cells as well as other T cell subsets[29]. Viral persistence enhances Th1 immunity and represses Th1 response[30]. Loss of Th1 could specifically reduce the function of CD8 T cell[30]. Therefore, antiviral therapy could avert the repression of both Th1 and CD8 T cells, implying that antiviral therapy could modulate the immunological activity throughout the tumor progression in CRC.

ANTIVIRAL THERAPY AND MICROSATELLITE INSTABILITY IN CRC

Given the clinical benefits of microsatellite instability (MSI) and PD-1/PD-L1 in CRC being increasingly recognized[31,32], this study further discusses the possible effects of antiviral therapy on CRC with MSI or receiving PD-1/PD-L1. MSI, also refers to mismatch repair (MMR), has been one of the key genomic markers in CRC[31]. Based on its genomic status, CRC patients can be stratified as MSI-High, MSI-Low, and microsatellite stable (MSS) groups, similarly to the classification of MMR-deficient (dMMR) and MMR-proficient (pMMR) CRC. CRC patients with MSI present with more favorable survival outcomes than MSS patients[33]. The association among MSI (or MMR) and PD-1/PD-L1, a key immunosuppression mediator that represses Th1 cytotoxic immune response and local immunological surveillance, remains largely unclear but increasingly popular. In fact, the antiviral therapy-supported Th1 cells contribute to the general therapeutic effects intrigued by PD-1/PD-L1 blockade. Moreover, given the distinct somatic mutations followed by local immunological surveillance between MSI and MSS, antiviral therapy may further enhance the local immunological surveillance via the increased activity of Th1 and CD8 T cells.

Of note, the clinical benefits of immune checkpoint blockade could also be predicted by the MMR status, with an immune-related objective response rate of 40\% in dMMR and 0\% in pMMR while the immune-related progression-free survival rate was 78\% in dMMR and 11\% in pMMR[34]. This could be partially explained by the comparably larger number of tumor-associated immunogenic antigens from the somatic mutation of dMMR (MSI), rather than pMMR (MSS), if not all.

However, solid evidence from randomized clinical trials focusing on the role of antiviral therapy in reducing liver metastasis of CRC remains largely vacant. In addition, the heterogeneity between CRC and hepatocellular carcinoma may account for potential confounding bias. Specifically, high serum HBV DNA level is an independent prognostic indicator in hepatocellular carcinoma, instead of CRC[35].

FUTURE CLINICAL IMPLEMENTATION

A pilot trial with a large sample size to validate the survival benefit of antiviral therapy is necessary. The value of antiviral drugs in both CRC with or without hepatitis is yet to be fully characterized. In addition, this review also introduces the insightful idea of preventive therapy. Thus, antiviral therapy could be incorporated to the primary treatment of CRC. However, the association between the molecular features of CRC, such as MSI and MSS, and antiviral therapy also awaits further
CRC: Colorectal cancer; HBV: Hepatitis B virus; HCV: Hepatitis C virus.

exploration.

CONCLUSION

This review highlights the potential survival benefits of liver targeted antiviral therapy in CRC.

REFERENCES

1. Brenner H, Klooor, M, Pox CP. Colorectal cancer. Lancet 2014; 383: 1490-1502 [PMID: 24225001 DOI: 10.1016/S0140-6736(13)61649-9]
2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu Q, He J. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66: 115-132 [PMID: 26808342 DOI: 10.3322/caac.21338]
3. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 2009; 361: 2449-2460 [PMID: 20018966 DOI: 10.1056/NEJMoa0804583]
4. Wang W, Kandimalia R, Huang H, Zhu L, Li, Y, Gao, F, Gao, A, Wang, X. Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin Cancer Biol 2019; 55: 37-52 [PMID: 29775690 DOI: 10.1016/j.semcancer.2018.05.002]
5. Khater F, Vairy S, Largillos S, Dumnoucel S, Sontag T, Si-Ong, P, Bittencourt H, Dal Soglio D, Champagne J, Duval M, Leclere JM, Lavender C, Tran TH, Paiet N, Eliezeam B, Perretault S, Pichet N, Samson Y, Teira P, Jabado N, Micon B, Brossard J, Marzouki M, Cellot S, Sinnett D. Molecular Profiling of High-to-Treat Childhood and Adolescent Cancers. JAMA Netw Open 2019; 2: e192902 [PMID: 31026031 DOI: 10.1001/jamanetworkopen.2019.2906]
6. Yu C, Hong H, Lu J, Zhao X, Hu W, Zhang S, Zong Y, Mao Z, Li J, Wang, M, Feng, B, Sun J, Zheng M. Prediction of Target Genes and Pathways Associated With Cetuximab Sensitivity in Colorectal Cancer. Technol Cancer Res Treat 2018; 17: 1533033818806905 [PMID: 30336768 DOI: 10.1177/1533033818806905]
7. Huang G, Lau WY, Wang ZG, Pan ZY, Yuan SX, Shen F, Zhou WP, Wu MC. Antiviral therapy improves postoperative survival in patients with hepatocellular carcinoma: a randomized controlled trial. Ann Surg 2015; 261: 56-66 [PMID: 25072444 DOI: 10.1097/SLA.0000000000001858]
8. Huang G, Li PP, Lau WY, Pan ZY, Zhao LH, Wang ZG, Wang MC, Zhou WP. Antiviral Therapy Reduces Hepatocellular Carcinoma Recurrence in Patients With Low HBV-DNA Levels: A Randomized Controlled Trial. Ann Surg 2018; 268: 943-954 [PMID: 29521740 DOI: 10.1097/SLA.0000000000002727]
9. Zhang YM, Liu GM. Comment on "Antiviral Treatment for Postcurative Hepatitis B Virus-related Hepatocellular Carcinoma". Ann Surg 2019; 269: e80-e81 [PMID: 31082930 DOI: 10.1097/SLA.0000000000002980]
10. Utsunomiya T, Saito, H, Saku M, Yoshida K, Matsumata T, Shimada M, Sugimachi K. Rare occurrence of colorectal cancer metastasis in livers infected with hepatitis B or C virus. Am J Surg 1999; 177: 279-281 [PMID: 10326842 DOI: 10.1016/S0002-9610(99)00045-8]
11. Li Destri G, Castaing M, Ferlito F, Minutolo V, Di Cataldo A, Puleo S. Rare hepatic metastases of colorectal cancer in livers with symptomatic HBV and HCV hepatitis. Am J Surg 1999; 177: 279-281 [PMID: 10326842 DOI: 10.1016/S0002-9610(99)00045-8]
12. Altintop MA, Ozpinar A, Orpinar A, Hacker E, Elmaz I. Could hepatitis B vaccine act as an adjuvant to colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin Cancer Biol 2019; 55: 37-52 [PMID: 29775690 DOI: 10.1016/j.semcancer.2018.05.002]
13. Uetsuji S, Yamamura M, Yamamichi K, Okuda Y, Takada H, Hirota K, Sontag T, Ito Y, Yokosuka O, Imazeki F, Nakata R, Tanaka N, Arakawa Y, Hashimoto E, Hirota K, Yoshida H, Ohashi Y, Onuma M. Tokyo-Chiba Hepatitis Research Group. Antiviral therapy for cirrhosis hepatitis C: association with reduced hepatocellular carcinoma development and improved survival. Ann Intern Med 2005; 142: 105-114 [PMID: 15657158 DOI: 10.7326/0003-4819-142-2-200501180-00009]
Wang Q et al. Antiviral therapy in CRC

17 Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. *Nat Immunol* 2018; 19: 222-232 [PMID: 29739119 DOI: 10.1038/s41590-018-0044-z]

18 Ma C, Zhang Q, Greten TF. Nonalcoholic fatty liver disease promotes hepatocellular carcinoma through direct and indirect effects on hepatocytes. *FEBS J* 2018; 285: 755-762 [PMID: 28857485 DOI: 10.1111/febs.14209]

19 Farazi PF, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. *Nat Rev Cancer* 2006; 6: 674-687 [PMID: 16929323 DOI: 10.1038/nrc1934]

20 Elias D, De Baere T, Roche A, Mducreux, Leclere J, Lasser P. During liver regeneration following right portal embolization the growth rate of liver metastases is more rapid than that of the liver parenchyma. *Br J Surg* 1999; 86: 784-788 [PMID: 10383579 DOI: 10.1046/j.1365-2168.1999.01154.x]

21 Augustin G, Bruetta T, Korolija D, Milosevic M. Lower incidence of hepatic metastases of colorectal cancer in patients with chronic liver diseases: meta-analysis. *Hepatogastroenterology* 2013; 60: 1164-1168 [PMID: 23803379 DOI: 10.5755/jgs.11561]

22 Halama N, Zornig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, Suetterlin T, Brand K, Krauss J, Lasitschka F, Lerchl T, Luckner-Minden C, Ulrich A, Koch M, Weitz J, Schneider M, Buechler MW, Zitvogel L, Herrmann T, Benner A, Kunz C, Luecke S, Springfeld C, Grabe N, Falk CS, Jaeger D. Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients. *Cancer Cell* 2016; 29: 587-601 [PMID: 27070705 DOI: 10.1016/j.ccell.2016.03.005]

23 Weidle UH, Birzele F, Krüger A. Molecular targets and pathways involved in liver metastasis of colorectal cancer. *Clin Exp Metastasis* 2015; 32: 623-635 [PMID: 26104118 DOI: 10.1007/s10585-015-9732-3]

24 Goodwin TJ, Huang L. Investigation of phosphorylated adjuvants co-encapsulated with a model cancer peptide antigen for the treatment of colorectal cancer and liver metastasis. *Vaccine* 2017; 35: 2550-2557 [PMID: 28385609 DOI: 10.1016/j.vaccine.2017.03.067]

25 Lok AS. Does antiviral therapy prevent recurrence of HBV–related hepatocellular carcinoma after curative liver resection? *JAMA* 2012; 308: 1922-1924 [PMID: 23417511 DOI: 10.1001/jama.2012.12971]

26 Kwon H, Lok AS. Does antiviral therapy prevent hepatocellular carcinoma? *Antivir Ther* 2011; 16: 787-795 [PMID: 21900710 DOI: 10.3851/IMP1895]

27 Liaw YF, Sung JJ, Chow WC, Farrell G, Lee CZ, Yuen H, Tanwande T, Tao QM, Shue K, Keene ON, Dixon JS, Gray DF, Sabbat J, Cirrhosis Asian Lamivudine Multicentre Study Group. Lamivudine for patients with chronic hepatitis B and advanced liver disease. *N Engl J Med* 2004; 351: 1521-1531 [PMID: 15121531 DOI: 10.1056/NEJMoa032866]

28 Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meachit T, Bruneval P, Trajanoski Z, Fridman WH, Pagés F, Galon J. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. *J Clin Oncol* 2011; 29: 610-618 [PMID: 21425428 DOI: 10.1200/JCO.2010.30.5427]

29 Oxenius A, Price DA, Easterbrook PJ, O'Callaghan CA, Kelleher AD, Whelan JA, Sontag G, Sewell AK, Phillips RE. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. *Proc Natl Acad Sci USA* 2000; 97: 3367-3372 [PMID: 10773788 DOI: 10.1073/pnas.97.7.3367]

30 Sperl LM, Osokine I, Yamada DH, De la Fuente JR, Elsaesser HJ, Brooks DG. Overcoming CD4 Th1 Cell Fate Restrictions to Sustain Antiviral CD8 T Cells and Control Persistent Virus Infection. *Cell Rep* 2016; 16: 3286-3296 [PMID: 27653690 DOI: 10.1016/j.celrep.2016.08.062]

31 Xiao Y, Freeman GJ. The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. *Cancer Discov* 2015; 5: 16-18 [PMID: 25583798 DOI: 10.1158/2159-8290.CD-14-1397]

32 Gatalica Z, Snyder CL, Yeatts K, Xiao N, Holterman D, Lynch HT. Programmed death 1 (PD-1) lymphocytes and ligand (PD-L1) in colorectal cancer and their relationship to microsatellite instability status. *J Clin Oncol* 2014; 32: 3625-3625 [DOI: 10.1200/jco.2014.32.15_suppl.3625]

33 de la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. *J Clin Oncol* 2010; 28: 3380-3387 [PMID: 20516444 DOI: 10.1200/JCO.2009.27.0652]

34 Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Liber BS, Azad NS, Laberu D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocezn T, Leahy JL, Duffay SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huchter N, Hruban RH, WD, Luka N, Pardoll DM, Papadopoulos N, Kinzler K, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. *N Engl J Med* 2015; 372: 2509-2520 [PMID: 26028255 DOI: 10.1056/NEJMoa1505596]

35 Chen CJ, Yang HJ, Su J, Jen CL, You SL, Lu SN, Huang GT, Jioeje UH; REVEAL-HBV Study Group. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. *JAMA* 2006; 295: 65-73 [PMID: 16391218 DOI: 10.1001/jama.295.1.65]
