Research Article

Invariant Tori for a Two-Dimensional Completely Resonant Beam Equation with a Quintic Nonlinear Term

Min Zhang, Zhe Hu, and Yonggang Chen

College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China

Correspondence should be addressed to Min Zhang; zhangminmath@163.com

Received 23 May 2022; Accepted 9 September 2022; Published 5 October 2022

Academic Editor: Shanhe Wu

Copyright © 2022 Min Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper focuses on a two-dimensional completely resonant beam equation with a quintic nonlinear term. This means studying the equation

\[ u_{tt} + \Delta^2 u + \varepsilon f(u) = 0, \quad x \in \mathbb{T}^2, \quad t \in \mathbb{R}, \]

under periodic boundary conditions

\[ u(t, x_1, x_2) = u(t, x_1 + 2\pi, x_2) = u(t, x_1, x_2 + 2\pi) \]

is considered, where \( \varepsilon \) is a small positive parameter and \( f(u) \) is a real analytic odd function of the form

\[ f(u) = f_5 u^5 + \sum_{i \geq 5} f_{2i+1} u^{2i+1}, \quad f_5 \neq 0. \]

It is proved that the equation admits the existence of a class of invariant tori, which implies the existence of quasiperiodic solutions for most values of frequency vector by an abstract KAM (Kolmogorov-Arnold-Moser) theorem for infinite dimensional Hamiltonian systems.

In nature, periodic phenomenon is an ideal state, but in practical problems, such as data observation, extraction, and operation, it often has errors and even some interference. In fact, quasiperiodic functions are always needed to be introduced in a system when there are two disturbance factors with incommensurability of periods; thus, quasiperiodic phenomenon is more common than periodic phenomenon, such as the celestial mechanics, ecology system, and economic volatility in many practical problems which often can be classified as quasiperiodic problem of differential equations. Generally speaking, there is more than one variable that causes the change of a phenomenon, so it is of great practical value to study the quasiperiodic problem of partial differential equations (PDEs), and the quasiperiodic solution problem of nonlinear Hamiltonian system is an important branch of nonlinear scientific research. As a kind of important Hamiltonian system, beam equation has also received corresponding attention.

The classical KAM theory, proposed by Kolmogorov [1, 2], Arnold [3], and Moser [4], is a theory about the long-term state of the solution of the integrable Hamiltonian system after it is perturbed, which is a significant progress of Newtonian mechanics in the 20th century and enables
people to study the Hamiltonian system in a new way. In the late 1980s, in order to construct quasiperiodic solutions of one-dimensional Hamiltonian PDEs, the classical KAM theory was developed into infinite dimensional space by Wayne [5], Kuksin [6], and Pöschel [7]. Since then, KAM theory of Hamiltonian PDEs with one-dimensional spatial variables has been well developed and produced a lot of results, which we will not repeat here.

When the dimension of the spatial variable exceeds 1, the multiplicity of the normal frequency tends to infinity, which makes the small divisor problem and its measure estimation in KAM iteration more difficult to solve, resulting in fewer corresponding results and larger research space. The conclusion of the existence of quasiperiodic solutions of high-dimensional Hamiltonian PDEs comes from Bourgain [8], but instead of using KAM theory, it uses multiscale analysis, so as to avoid a lot of tedious Melnikov conditions. Since then, according to this idea, many important results have been obtained on high-dimensional Hamiltonian PDEs (refer to [9–13]). However, this method also has some disadvantages, such as it cannot give the normal form of the system, and thus, the linear stability and other related dynamic properties of small amplitude quasiperiodic solutions cannot be given. For these reasons, researchers have been trying to apply KAM theory to high-dimensional Hamiltonian PDEs. Yuan [14] and Geng and You [15, 16] first applied KAM theory to the existence of quasiperiodic solutions of high-dimensional Hamiltonian PDEs. In [17], Eliasson and Kuksin studied high-dimensional Schrödinger equations with convolutional-type potential and made a breakthrough in properly classifying normal frequencies by introducing the Toplitz-Lipschitz property, which perfectly solved the measure estimation problem brought by eigenvalue multiplicity. Eliasson et al. [18] considered a $d$-dimensional cubic beam equation that does not satisfy momentum conservation

\[ u_{tt} + \Delta^2 u + mu + \partial_x G(x, u) = 0, \quad x \in \mathbb{T}^d, t \in \mathbb{R}, \]  

where $G(x, u) = u^d + O(u^2)$ and $d \geq 2$. The existence of quasiperiodic solutions of (1) was proved by the KAM theory. However, the above conclusions are dependent on external parameters and therefore cannot be applied to classical equations of complete resonance with physical background. Geng et al. [19] researched the KAM theory of two-dimensional completely resonant Schrodinger equation

\[ iu_t - \Delta u + |u|^4 u = 0, \quad x \in \mathbb{T}^2, t \in \mathbb{R}. \]  

on the phase flow invariant subspace $Z_2^{odd} = \{ r = (r_1, r_2), r_1 \in 2\mathbb{Z} - 1, r_2 \in 2\mathbb{Z} \}$ of $Z^2$. The reason why the existence of solution is only discussed in the invariant subspace of phase flow is that the nonlinear term of the Hamiltonian system corresponding to beam equation is relatively complex, and this idea was first proposed by [22].

The KAM theory is the compound of Newton iterative method and Birkhoff normal type. Through the normal type, parameters are introduced to adjust the frequency; that is, the spoke frequency modulation is realized through the parameters, so as to overcome the problem of small divisor related to homology equation in KAM iterative, which is an important link of the KAM theory. The nonlinear term of the Hamiltonian system directly affects its normal form. Therefore, once the nonlinearity changes, the corresponding normal form should be adjusted accordingly, so the KAM theory needs to be reconstructed. In 2021, the authors of the present paper Zhang and Si [23] applied the idea in [19] to the existence of quasiperiodic solutions of the two-dimensional completely resonant quintic Schrödinger equation

\[ iu_t - \Delta u + |u|^4 u = 0, \quad x \in \mathbb{T}^2, t \in \mathbb{R}. \]  

Although only the nonlinear term has changed from $|u|^2 u$ to $|u|^4 u$, its normal form is completely different, so its corresponding KAM theory has also undergone essential changes. In recent years, more attention has been paid to the existence of quasiperiodic solutions of quintic Hamiltonian PDEs in high-dimensional space. Relevant results can be referred to references [24–26]. However, using the KAM theory to prove the existence of quasiperiodic solutions for two-dimensional completed resonant beam equations with higher order nonlinear terms remains to be solved.

This paper is focused on the study of (1) + (2). The nonlinear term of the Hamiltonian system corresponding to (6) is $p_1^{r_1} p_2^{r_2} p_3^{r_3} p_4^{r_4} \sqrt{\lambda_1 \lambda_2 \lambda_3 \lambda_4}$ and that of (1) is $l_1^{s_1} l_2^{s_2} l_3^{s_3} l_4^{s_4} l_5^{s_5} \sqrt{\lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5}$, where $r_1 \neq r_2 \neq r_3 \neq r_4 \neq r_5 \neq s_1 \neq s_2 \neq s_3 \neq s_4 \neq s_5 \neq s$, and $p^* = \tilde{p}$. This difference leads to the essential difference of the normal form between the two, which leads to the fact that the KAM theory for (6) is not suitable for (1), and the phase flow invariant subspace where the quasiperiodic solution is located will also change. In this paper, we only discuss the existence of quasiperiodic solutions of (1) in the phase flow invariant subspace where the quasiperiodic solution is located. We will have to reselect the tangential sites, that is, reconstruct the admissible set. Although this process does not require advanced mathematical knowledge and only involves elementary operations, it is cumbersome enough and requires strong skills. For the selected
Remark 2. There are sets satisfying the above definition. For example, for any integer $d \geq 4$, the first point $(b_1, c_1) \in \mathbb{Z}^d_1$ is defined as $b_1 > d^2$, $c_1 = 4b_1^3$, and the second one is defined by $b_2 = 4c_1 - 1$, $c_2 = 4b_2^3$; the others are defined inductively by $b_{j+1} = 4c_j^3 \prod_{2 \leq n \leq j, 1 \leq i < n} (c_i - c_j)^2 - 1$, $c_{j+1} = 4b_{j+1}^3$, $2 \leq j \leq d - 1$.

(8)

Theorem 3 (main theorem). Let $\mathcal{K} = \{i_1^{*} = (b_1, c_1), \ldots, i_d^{*} = (b_d, c_d)\} \subset \mathbb{Z}^d$ be an admissible set with $d \geq 4$. There exist a Cantor set $\mathbb{Z}^*$ with positive measure, such that for arbitrary $(\zeta_1, \ldots, \zeta_d) \in \mathbb{Z}^*$, the beam equation (1) + (2) has a solution

\[
(9)
\]

2. The Hamiltonian Setting and Birkhoff Normal Form

Before turning equation (1) into a Hamiltonian system, we first introduce the following notations which will appear later.

Let $\mathcal{K} = \{i_1^{*} = (b_1, c_1), \ldots, i_d^{*} = (b_d, c_d)\} \subset \mathbb{Z}^d \setminus \mathcal{K}$, and $\mathcal{F}$ be some Hilbert space of sequences $v = (v_1, v_2, \ldots)_{i \in \mathbb{Z}^d}$, where the norm be $\|v\|_{\mathcal{F}} = \sum_{i \in \mathbb{Z}^d} |v_i|^{\alpha} |i|^{\beta}$. Let $\theta \equiv (\theta_l)_{l \in \mathbb{Z}^d}$, $\mathcal{I} = (I_l)_{l \in \mathbb{Z}^d}$, $v = (v_l)_{l \in \mathbb{Z}^d}$, and $\zeta = (\zeta_l)_{l \in \mathbb{Z}^d}$, and introduce the phase space $\mathcal{F} = \mathbb{T}^d \times \mathcal{C}^d \times \mathcal{F} \times \mathcal{F} \ni (\theta, I, v, v)$, where $\mathbb{T}^d$ is complex neighborhood of $\mathbb{T}$. Let

\[
(10)
\]

For any $V^* = (\theta, I, v, v) \in \mathcal{F}$, define its norm be $\|V^*\|_{\mathcal{F}} = |\theta| + (1/\zeta)^2 |I| + (1/\zeta^2) |v|_{\mathcal{F}} + (1/\zeta^3) |v|_{\mathcal{F}}$. Let $\mathcal{O}$ be the parameter set. Denote $\alpha \equiv (\alpha_l)_{l \in \mathbb{Z}^d}$, $\beta \equiv (\beta_l)_{l \in \mathbb{Z}^d}$, and $\alpha_l$ and $\beta_l \in \mathbb{N}$ have a finite number of positive integer components. Let $W(\theta, I, v, v) = \sum_{l \in \mathbb{Z}^d} W_{\alpha l}(\theta, I)v^\alpha_l$, $W_{\beta l}(\theta, I)v^\beta_l$, and $W_{\alpha l}(\theta, I)v^\alpha_l \in C^\infty_{\mathcal{O}}$ functions of the parameter $\zeta$. Set the norm of $W$ as $\|W\|_{\mathcal{F}} = \sup_{l \in \mathbb{Z}^d} \|W_{\alpha l}(\theta, I)v^\alpha_l\|_{\mathcal{F}}$, where $\|W_{\alpha l}(\theta, I)v^\alpha_l\|_{\mathcal{F}} = \sum_{k \in \mathbb{N}} |W_{\alpha_l}(\theta, I)v^\alpha_l|^{2k}$ and $\|\alpha_l\|_{\mathcal{F}} = \sup_{l \in \mathbb{Z}^d} \|W_{\alpha l}(\theta, I)v^\alpha_l\|_{\mathcal{F}}$. Denote $W_\xi$ as the Hamiltonian field $W$ corresponding to the symplectic structure $d\theta + \omega d\theta + dN W \omega$, which is $W_\xi = (\partial_\theta W_\xi - \partial_\theta W, \partial_\theta W_\xi - \partial_\theta W)$. Set its norm as
\[
|X_W|_{D_{\sigma}(r^*, s^*)} \equiv \|W_i\|_{D_{\sigma}(r^*, s^*)} + \frac{1}{(s^*)^5} \|W_0\|_{D_{\sigma}(r^*, s^*)} + \frac{1}{s^5} \left( \sum_{l \in \mathbb{Z}^2} \|W_l\|_{D_{\sigma}(r^*, s^*)} \epsilon^{n \lambda} |l|^a \right)
+ \sum_{l \in \mathbb{Z}^2} \|W_l\|_{D_{\sigma}(r^*, s^*)} \epsilon^{n \lambda} |l|^a).
\]

(11)

The vector function \( \tilde{W} : D_{\sigma}(r^*, s^*) \times \mathcal{O} \rightarrow C_0^m(\mathbb{R}^n) \) is \( C^8 \) function of the parameter \( \sigma \), and its norm is \( \| \tilde{W} \|_{D_{\sigma}(r^*, s^*)} \equiv \sum_{l \in \mathbb{Z}^2} \| \tilde{W}_l \|_{D_{\sigma}(r^*, s^*)} \). The vector function \( \hat{W} : D_{\sigma}(r^*, s^*) \times \mathcal{O} \rightarrow \mathcal{P}_W \) is \( C_0^8 \) functions of the parameter \( \sigma \), and its norm is \( \| \hat{W} \|_{D_{\sigma}(r^*, s^*)} = \| (\| \tilde{W}_l \|_{D_{\sigma}(r^*, s^*)})_l \|_{\mathcal{P}_W} \).

### 2.1. The Hamiltonian Setting

Without losing generality, we suppose that \( f(u) = u^5 \). Rewrite the beam equation (1) as

\[
u_{tt} + \Delta^2 u + \epsilon u^5 = 0, \quad x \in \mathbb{T}^2, \ t \in \mathbb{R}.
\]

(12)

Introducing a variable \( u_t = v \), then (12) can be turned into

\[
\begin{cases}
u_t = v, \\
v_t = -\Delta^2 u - \epsilon u^5.
\end{cases}
\]

(13)

Set \( p = \sqrt{2} \left( -\Delta \right)^{1/2} u - i \left( -\Delta \right)^{-1/2} v \); then, (13) is turned into \( \dot{p} = i (\partial H^* / \partial \bar{p}) \) whose corresponding Hamiltonian is

\[
H^*(p) = \int_{\mathbb{T}^2} \left( -\Delta \right)^{1/2} p - i \left( -\Delta \right)^{-1/2} \left( \frac{\epsilon}{6} \left( -\Delta \right)^{-1/2} \left( \bar{p} + \bar{p} \right) \right) \text{dx}.
\]

(14)

The eigenvalues and eigenvectors of operator \(-\Delta \) with periodic boundary conditions are \( \lambda_l = |l|^2 \) and \( \phi_l(x) = (1/2\pi)^{2l} \hat{e}^{ilx} \), respectively. \( p \) has coordinates \( \{ p_l \}_{l \in \mathbb{Z}^2} \in \mathcal{P}_W \) with respect to the bases \( \{ \phi_l \}_{l \in \mathbb{Z}^2} \). The corresponding symplectic structure is \( \sum_{l \in \mathbb{Z}^2} \delta p_l \wedge \delta p_l \). In new coordinates, (13) becomes

\[
\dot{\bar{p}} = \left( \frac{\partial H}{\partial p_l} \right)_l, \quad \forall l \in \mathbb{Z}_4^2.
\]

(15)

The corresponding Hamiltonian is

\[
H^* = \Lambda + Q,
\]

(16)

where

\[
\Lambda = \sum_{l \in \mathbb{Z}_4^2} \lambda_l |p_l|^2,
\]

\[
Q = \sum_{i + j + n + m + r + s = 0} \frac{\epsilon}{768\pi^4} \lambda_{i,j,n,m,r,s} \lambda_{i,j,n,m,r,s}.
\]

(17)

The regularity of the Hamiltonian system (15) is shown below, and its proof is similar to [21], which is omitted here.

**Lemma 4.** For a given \( a \geq 0 \) and \( \omega > 1/2 \), the gradients \( Q_p, Q_{\bar{p}} \) are real analytic as maps from some neighborhood of origin in \( \mathcal{P}_W \times \mathcal{P}_W \) to \( \mathcal{P}_W \) and \( \| Q_p \|_{a, \omega} \equiv O(|p|^5_{a, \omega}) \), \( \| Q_{\bar{p}} \|_{a, \omega} \equiv O(|\bar{p}|^5_{a, \omega}) \).

### 2.2. Partial Birkhoff Normal Form

\( \mathcal{K} \) is an admissible set with \( d \) points. Set \( \mathcal{Z}_4^2 \equiv \mathbb{Z}_4^2 \setminus \mathcal{K} \), and define four sets as follows:

\[
\mathcal{K}_1 = \{(i, j, n, m, r, s) \in (\mathbb{Z}_4^2)_{l}^6 : |i|^2 + |j|^2 + |n|^2 + |m|^2 + |r|^2 - |s|^2 \neq 0 \},
\]

\(
\#(\mathcal{K} \cap \{i, j, n, m, r, s\}) \geq 4.
\)

\[
\mathcal{K}_2 = \{(i, j, n, m, r, s) \in (\mathbb{Z}_4^2)_{l}^6 : |i|^2 + |j|^2 + |n|^2 + |m|^2 + |r|^2 + |s|^2 \neq 0 \},
\]

\(
\#(\mathcal{K} \cap \{i, j, n, m, r, s\}) \geq 4.
\)

\[
\mathcal{K}_3 = \{(i, j, n, m, r, s) \in (\mathbb{Z}_4^2)_{l}^6 : |i|^2 + |j|^2 + |n|^2 + |m|^2 + |r|^2 + |s|^2 \neq 0 \},
\]

\(
\#(\mathcal{K} \cap \{i, j, n, m, r, s\}) \geq 4.
\)

\[
\mathcal{K}_4 = \{(i, j, n, m, r, s) \in (\mathbb{Z}_4^2)_{l}^6 : |i|^2 + |j|^2 + |n|^2 + |m|^2 + |r|^2 - |s|^2 \neq 0 \},
\]

\(
\#(\mathcal{K} \cap \{i, j, n, m, r, s\}) \geq 4.
\)
Obviously, the set
\[
\left\{ (i, j, n, m, r, s) \in \mathbb{Z}^6_+ : i + j + n + m + r + s = 0 \right\}
\]
is an empty set. It is proved by the reduction to absurdity that any six points \( i = (4i_1 - 1, 4j_1 - 1, 4j_2), j = (4j_1 - 1, 4j_2), n = (4n_1 - 1, 4n_2), m = (4m_1 - 1, 4m_2), r = (4r_1 - 1, 4r_2), s = (4s_1 - 1, 4s_2) \) on \( \mathbb{Z}^6_+ \) satisfy \( |i|^2 + |j|^2 + |n|^2 + |m|^2 + |r|^2 + |s|^2 = 0 \). Suppose that \( |i|^2 + |j|^2 + |n|^2 + |m|^2 + |r|^2 - |s|^2 = 0 \), then
\[
(4i_1 - 1)^2 + (4j_1 - 1)^2 + (4n_1 - 1)^2 + (4m_1 - 1)^2 + (4r_1 - 1)^2 - (4s_1 - 1)^2 = -16 \left( i_2^2 + j_2^2 + n_2^2 + m_2^2 + r_2^2 + s_2^2 \right).
\]
(20)

The first polynomial is divisible by 8, but the second polynomial is not, which is a contradiction. Therefore, the set
\[
\left\{ (i, j, n, m, r, s) \in \mathbb{Z}^6_+ : i + j + n + m + r + s = 0 \right\}
\]
is an empty set. Similarly, any six points \( i, j, n, m, r, s \) on \( \mathbb{Z}^6_+ \) satisfy \( |i|^2 + |j|^2 + |n|^2 + |m|^2 + |r|^2 - |s|^2 \neq 0 \). Therefore, the set
\[
\left\{ (i, j, n, m, r, s) \in \mathbb{Z}^6_+ : i + j + n + m + r + s = 0 \right\}
\]
is an empty set.

Let us introduce some partial Birkhoff form of order six.

**Proposition 5.** \( \mathcal{X} \) is an admissible set with \( d \) points; there exists a symplectic transformation \( X_\mathcal{X} \) that converts the Hamiltonian (16) into
\[
H = A + \mathcal{A}_1 + B_1 + \mathcal{A}_2 + B_2 + W,
\]
with
\[
A = \sum_{i \in \mathbb{Z}} \eta_i(\zeta)I_i + \sum_{r \in \mathbb{Z}^2_+} \Omega_r(\zeta)|v_r|^2,
\]
(24)
\[
\eta_i(\zeta) = e^{-\lambda_i} + \frac{5\zeta_i^2}{64\pi^4\lambda_i^4} + \sum_{j \neq i, j \neq i} \left[ \frac{15\zeta_j^2}{64\pi^4\lambda_j^4} + \frac{15\zeta_{i,j}^4}{32\pi^4\lambda_i\lambda_j} \right],
\]
(25)
\[
\Omega_r(\zeta) = e^{-\lambda_r} + \sum_{i \neq r} \left[ \frac{15\zeta_i^2}{64\pi^4\lambda_i^4} + \frac{15\zeta_{i,r}^4}{32\pi^4\lambda_i\lambda_r} \right],
\]
(26)
\[
\mathcal{A}_1 = \sum_{i \neq j, i \neq j} \frac{15}{16\pi^4} \sqrt{\zeta_i \zeta_j e^{i(\theta + \vartheta)}} \psi_i \bar{\psi}_j,
\]
(27)
\[
B_1 = \sum_{i \neq j, i \neq j} \frac{15}{16\pi^4} \sqrt{\zeta_i \zeta_j e^{i(\theta + \vartheta)}} \psi_i \bar{\psi}_j,
\]
(28)
\[
\mathcal{A}_2 = \sum_{i \neq j, i \neq j} \frac{15}{8\pi^4} \sqrt{\zeta_i \zeta_j e^{i(\theta + \vartheta - \vartheta - \vartheta)}} \psi_i \bar{\psi}_j,
\]
(29)
\[
B_2 = \sum_{i \neq j, i \neq j} \frac{15}{8\pi^4} \sqrt{\zeta_i \zeta_j e^{i(\theta + \vartheta)}} \psi_i \bar{\psi}_j,
\]
(30)
\[
W = O \left( e^{1/4} |\zeta|^2 |v|^2_{1,2} + e^{1/4} |\zeta|^2 |v|^2_{1,2} \right).
\]
(33)
**Proof.** Let

\[
R = \frac{5e}{192\pi^2} \sum_{i,j,n,m,r \in \mathbb{Z}} \epsilon \left( p \cdot p - p \cdot p \right) + \frac{\epsilon}{256\pi^4} \sum_{i,j,n,m,r \in \mathbb{Z}} \epsilon \left( p \cdot p - p \cdot p \right) + \frac{5e}{256\pi^4} \sum_{i,j,n,m,r \in \mathbb{Z}} \epsilon \left( p \cdot p - p \cdot p \right)
\]

and \( X^1_T \) be the time \(-1\) mapping of the Hamiltonian vector field of \( R \). Set

\[
P_j = \begin{cases} 
  p_j & l \in \mathcal{I}, \\
  v_j & l \in \mathbb{Z}^2.
\end{cases}
\]

Then, \( X^1_T \) converts \( H^* \) into

\[
H = H^* \cdot X^1_T = \Lambda + Q + \{\Lambda, R\} + \{Q, R\} + \int_0^1 \left( 1 - t \right) \{H^*, R \} \cdot X^1_T dt
\]

where \( \sum_{i \in \mathbb{Z}} idp_i \wedge dp_i + \sum_{r \in \mathbb{Z}^2} idv_r \wedge dv_r \) is the corresponding symplectic structure of Poisson bracket \( \{\cdot, \cdot\} \). (\( r, s \)) is a resonant pair, and \((i, j)\) and \((i, j, n, m)\) are uniquely determined by \((r, s)\).

Introduce the action-angle variable

\[
p_j = \sqrt{1 + \zeta_j e^{i\theta_j}}, \quad p_j = \sqrt{1 + \zeta_j e^{-i\theta_j}}, \quad l \in \mathcal{I}.
\]

Equation (37) converts the Hamiltonian \( \tilde{H} \) into

\[
H = \sum_{i \in \mathbb{Z}} \left( \lambda_i + \frac{5e^2}{64\pi^4} \lambda_i^{\alpha} \lambda_i^{\beta} + \frac{15e}{32\pi^4} \lambda_i^{\alpha} \lambda_i^{\beta} + \frac{15e}{32\pi^4} \lambda_i^{\alpha} \lambda_i^{\beta} \right)
\]

where \( \sum_{i \in \mathbb{Z}} idp_i \wedge dp_i + \sum_{r \in \mathbb{Z}^2} idv_r \wedge dv_r \) is the corresponding symplectic structure of Poisson bracket \( \{\cdot, \cdot\} \). (\( r, s \)) is a resonant pair, and \((i, j)\) and \((i, j, n, m)\) are uniquely determined by \((r, s)\).

Scaling through time

\[
\zeta \mapsto e^{3/2} \zeta, \quad I \mapsto e^\theta I, \quad \theta \mapsto \theta, \quad v \mapsto e^{3/2} v, \quad \tilde{v} \mapsto e^{3/2} \tilde{v}
\]

the scaled Hamiltonian is \( H = e^{-9} \tilde{H} \). The Hamiltonian \( H \) satisfies (23) and (24) where \( \zeta \in [e^{3/2}, 2e^{3/2}] \).

\[
3. \text{An Infinite-Dimensional KAM Theorem for PDEs}
\]

We will use the KAM theorem in [23] to prove the main result (Theorem 3). For easy understanding, the KAM theorem in [23] is introduced below. Denote \( H^* = \Lambda^* + \mathcal{A}_1^* + B_1^* + B_2^* + B_3^* + B_4^* \), where
\[ \Lambda^r = \sum_{r \in \mathbb{R}} \eta_r(\zeta) I_j + \sum_{r \in \mathbb{R}} \Omega_r(\zeta) v_r, \]
\[ \partial_1^r = \sum_{r \in \mathbb{R}} a_r(\zeta) e^{i(\theta_r-\theta_j)} v_r, \]
\[ \partial_2^r = \sum_{r \in \mathbb{R}} a_r(\zeta) e^{i(\theta_r-\theta_j)} v_r, \]
\[ \bar{\partial}_1^r = \sum_{r \in \mathbb{R}} \bar{a}_r(\zeta) e^{i(\theta_r-\theta_j)} \bar{v}_r, \]
\[ \bar{\partial}_2^r = \sum_{r \in \mathbb{R}} \bar{a}_r(\zeta) e^{i(\theta_r-\theta_j)} \bar{v}_r, \]
\[ (\partial_1^r, \partial_2^r) = (\bar{\partial}_1^r, \bar{\partial}_2^r) \]

Assumption 6 (nondegeneracy). Suppose that \( \forall \zeta \in \Xi, \)
\[ \begin{cases} \text{rank} \left( \frac{\partial \eta_r}{\partial \zeta}, \ldots, \frac{\partial \eta_0}{\partial \zeta} \right) = \sigma, \\ \text{rank} \left( \frac{\partial \eta_r}{\partial \zeta}, \ldots, \frac{\partial \eta_0}{\partial \zeta} \right) = d, \end{cases} \]
where \( \sigma \) is a given integer with \( 1 \leq \sigma \leq d, \) \( \frac{\partial \eta_r}{\partial \zeta}, \ldots, \frac{\partial \eta_0}{\partial \zeta} \) are vectors of all \( 1 \)–order partial derivatives in \( \zeta, \) and for a fixed \( \tau, \)
\[ \frac{\partial \eta_r}{\partial \zeta} = \left( \frac{\partial \eta_1}{\partial \zeta}, \ldots, \frac{\partial \eta_0}{\partial \zeta} \right). \]
Moreover, \( \eta(\zeta) \) belongs to \( C^8_{\mathbb{W}}(\Xi). \)

Assumption 7 (asymptotics of normal frequencies).
\[ \Omega_r = r^{-\gamma} |r|^{\gamma} + \hat{\Omega}_r, \quad \gamma > 0, \]
where \( \hat{\Omega}_r \)s are \( C^8_{\mathbb{W}} \) functions of \( \zeta \) with \( C^8_{\mathbb{W}} \)-norm bounded by some small positive constant \( L. \)

Assumption 8 (Melnikov’s nondegeneracy). Let \( \mathcal{F}_r = \Omega_r \) for \( r \in \mathbb{Z}^{\mathbb{W}} \backslash (\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4), \)
\[ \begin{aligned} \mathcal{F}_r &= \left( \Omega_r + \eta_1 r \right), \quad r \in \mathcal{F}_1, \\ \mathcal{F}_r &= \left( \Omega_r + \eta_1 \right), \quad r \in \mathcal{F}_2, \\ \mathcal{F}_r &= \left( \Omega_r + \eta_1 + \eta_2 r \right), \quad r \in \mathcal{F}_3, \\ \mathcal{F}_r &= \left( \Omega_r + \eta_1 + \eta_2 + \eta_3 + \eta_4 \right), \quad r \in \mathcal{F}_4, \end{aligned} \]
where \( (r, s) \) are resonant pairs and \( (i, j) \) and \( (i, j, n, m) \) are uniquely determined by \( (r, s). \) There is \( \gamma', \tau > 0 \) (here, \( I \) is identity matrix) such that
\[ |< k, \eta > | \geq y' |k|^{-\tau}, \quad k \neq 0, \]
\[ |\det (< k, \eta > I \pm \mathcal{F}_r) | \geq y' |k|^{-\tau}, \]
\[ |\det (< k, \eta > I \pm \mathcal{F}_r \pm I \pm \mathcal{F}_r) | \geq y' |k|^{-\tau}. \]

Assumption 9 (regularity). \( \partial_1^r + \partial_2^r + \bar{\partial}_1^r + \bar{\partial}_2^r + \partial_1^r + \partial_2^r + \bar{\partial}_1^r + \bar{\partial}_2^r + W^r \) is real analytic in \( \theta, I, \) \( r, \) \( v, \) \( \bar{v} \) and \( C^8_{\mathbb{W}} \) in \( \zeta \) and
\[ \begin{aligned} \| X_{\partial_1^r} \|_{D_{\mathbb{W}}(r', s')} &+ \| X_{\partial_2^r} \|_{D_{\mathbb{W}}(r', s')} + \| X_{\bar{\partial}_1^r} \|_{D_{\mathbb{W}}(r', s')} + \| X_{\bar{\partial}_2^r} \|_{D_{\mathbb{W}}(r', s')} &< 1, \\ \| X_{W^r} \|_{D_{\mathbb{W}}(r', s')} &< \varepsilon. \end{aligned} \]

Assumption 10 (special form). \( \partial_1^r + \partial_2^r + \bar{\partial}_1^r + \bar{\partial}_2^r + \partial_1^r + \partial_2^r + \bar{\partial}_1^r + \bar{\partial}_2^r + W^r \) has the following special form:
\[ \mathcal{Y}^r = \left\{ \partial_1^r + \partial_2^r + \bar{\partial}_1^r + \bar{\partial}_2^r + \partial_1^r + \partial_2^r + \bar{\partial}_1^r + \bar{\partial}_2^r + W^r : \partial_1^r + \partial_2^r + \bar{\partial}_1^r + \bar{\partial}_2^r + \partial_1^r + \partial_2^r + \bar{\partial}_1^r + \bar{\partial}_2^r + W^r = \sum_{h \in \mathbb{Z}^4, n \in \mathbb{N}^4, a \in \mathbb{Z}^4} \left( \Omega_r + \eta_1 + \Omega_r + \eta_2 + \Omega_r + \eta_3 + \Omega_r + \eta_4 \right)^{\log\left( |r|^{\alpha} e^{i k \cdot v} \right)} \right\}. \]
where \( k, \alpha, \beta \) satisfy \( \sum_{r=1}^{\infty} k_{r}^2 + \sum_{r \in \mathbb{Z}^d} (\alpha_r - \beta_r) r = 0 \).

**Assumption 11** (Töplitz-Lipschitz property). For given \( r, s \in \mathbb{Z}^d, \xi \in \mathbb{Z}^d \), the limits

\[
\lim_{i \to \infty} \frac{\partial^2 (\mathcal{H}^i_r + \mathcal{H}^i_s + W^i)}{\partial v_{r+i} \partial v_{s-i}},
\]

exist. Moreover, there is \( K^* > 0 \), so that if \( t > K^* \), then \( \Lambda^* + \alpha^*_r + \beta^*_r + \mathcal{H}^*_1 + \mathcal{H}^*_2 + \mathcal{H}^*_3 + W \) satisfies

\[
\left\| \frac{\partial^2 (\mathcal{H}^i_r + \mathcal{H}^i_s + W^i)}{\partial v_{r+i} \partial v_{s-i}} - \lim_{i \to \infty} \frac{\partial^2 (\mathcal{H}^i_r + \mathcal{H}^i_s + W^i)}{\partial v_{r+i} \partial v_{s-i}} \right\|_{D_{\lambda, \sigma}(r, s, \mathbb{Z})} \leq \varepsilon e^{-\| t \|_{d+1}}.
\]

Verifying Assumption (6): from (24), for \( \tilde{n} = 1, \ldots, d, \)

\[
\frac{\partial^2 \eta_{\tilde{n}}(\xi)}{\partial \xi_{\tilde{n}}^2} = \frac{5}{32n!^2 \lambda_{\tilde{n}}^2},
\]

(49)

\[
\frac{\partial^2 \eta_{\tilde{j}}(\xi)}{\partial \xi_{\tilde{j}} \partial \xi_{\tilde{j}}} = \frac{15}{32n!^2 \lambda_{\tilde{j}}^2 \lambda_{\tilde{j}}}, \quad 1 \leq \tilde{j} \neq \tilde{n}.
\]

(50)

Let

\[
\mathcal{W} = \begin{pmatrix}
\frac{\partial^2 \eta_{\tilde{1}}(\xi)}{\partial \xi_{\tilde{1}}^2} & & \frac{\partial^2 \eta_{\tilde{2}}(\xi)}{\partial \xi_{\tilde{2}}^2} & & \frac{\partial^2 \eta_{\tilde{3}}(\xi)}{\partial \xi_{\tilde{3}}^2} \\
\frac{\partial^2 \eta_{\tilde{1}}(\xi)}{\partial \xi_{\tilde{1}} \partial \xi_{\tilde{2}}} & & \frac{\partial^2 \eta_{\tilde{2}}(\xi)}{\partial \xi_{\tilde{2}} \partial \xi_{\tilde{2}}} & & \frac{\partial^2 \eta_{\tilde{3}}(\xi)}{\partial \xi_{\tilde{3}} \partial \xi_{\tilde{3}}} \\
\frac{\partial^2 \eta_{\tilde{1}}(\xi)}{\partial \xi_{\tilde{1}} \partial \xi_{\tilde{3}}} & & \frac{\partial^2 \eta_{\tilde{2}}(\xi)}{\partial \xi_{\tilde{2}} \partial \xi_{\tilde{3}}} & & \frac{\partial^2 \eta_{\tilde{3}}(\xi)}{\partial \xi_{\tilde{3}} \partial \xi_{\tilde{3}}} \\
\end{pmatrix},
\]

(51)

where \( \xi \in \mathbb{Z} \); then, \( \mathcal{W} \) is the submatrix of matrix \( \{ \partial^2 \eta/\partial \xi^2 \} \). According to (49) and (50), then

\[
\lim_{i \to \infty} \mathcal{W} = \frac{5}{32n!^2} \mathcal{W} = \frac{5}{32n!^2}, \quad d \in \mathbb{R}.
\]

(52)

From \( \det (\mathcal{W}) = (1 + 3(d - 1))(-2)^{d-1}/\prod_{i=1}^{d} \lambda_{i} \neq 0 \), we have \( \det (\mathcal{W}) \neq 0 \) when \( 0 < \epsilon < 1 \), that is, rank \( \mathcal{W} = d \). Hence, Assumptions (6) is verified.

Verifying Assumption (7): take \( \zeta = 4 \); the proof is obvious. Verifying Assumption (8): from (23), \( \mathcal{G}_r \) is represented as follows:

\[
\mathcal{G}_r = \Omega_2, r \in \mathbb{Z}^{d} \setminus (\mathcal{J}_1 \cup \mathcal{J}_2 \cup \mathcal{J}_3 \cup \mathcal{J}_4),
\]

\[
\begin{pmatrix}
\Omega_4 + \eta_4 \\
\sum_{n \in \mathbb{Z}} \frac{15}{16n!^2} \sqrt{\lambda_4 \lambda_5 \lambda_6} \lambda_7 \lambda_{\tilde{n}} \lambda_{\tilde{n}} \\
\sum_{n \in \mathbb{Z}} \frac{15}{16n!^2} \sqrt{\lambda_4 \lambda_5} \lambda_6 \lambda_{\tilde{n}} \lambda_{\tilde{n}} \\
\end{pmatrix}, \quad r \in \mathcal{J}_4.
\]

(53)

\[
\begin{pmatrix}
\Omega_2 + \eta_2 \\
\sum_{n \in \mathbb{Z}} \frac{15}{16n!^2} \sqrt{\lambda_2 \lambda_3} \lambda_4 \lambda_{\tilde{n}} \lambda_{\tilde{n}} \\
\sum_{n \in \mathbb{Z}} \frac{15}{16n!^2} \sqrt{\lambda_2 \lambda_3 \lambda_4} \lambda_{\tilde{n}} \lambda_{\tilde{n}} \\
\end{pmatrix}, \quad r \in \mathcal{J}_4.
\]

(54)

4. **Proof of the Main Theorem**

Let us show that the Hamiltonian (23) satisfies the Assumptions (6)–(11).
\[
G_r = \begin{pmatrix}
\Omega_r + \eta_r + \eta_m
& \frac{15}{16\pi^4} \sqrt{\lambda_1 \lambda_m \lambda_n \lambda_1 \lambda_m} \\
\frac{15}{16\pi^4} \sqrt{\lambda_1 \lambda_m \lambda_n \lambda_1 \lambda_m}
& \Omega_r + \eta_r + \eta_m
\end{pmatrix}, \quad r \in \mathcal{I}_r.
\]

\[
G_s = \begin{pmatrix}
\Omega_s + \eta_s
& \frac{15}{16\pi^4} \sqrt{\lambda_1 \lambda_m \lambda_n \lambda_1 \lambda_m} \\
\frac{15}{16\pi^4} \sqrt{\lambda_1 \lambda_m \lambda_n \lambda_1 \lambda_m}
& \Omega_s + \eta_s + \eta_m
\end{pmatrix}, \quad r \in \mathcal{I}_s.
\]

where \((i,j)\) and \((i,j,n,m)\) are uniquely determined by \((r,s)\). We only prove \((A3)\) for \(\det\langle k, \eta(\eta) \rangle \supset \mathcal{G}_r \otimes I \supset I \otimes \mathcal{G}_r\) which is the most complicated. Let

\[
\mathcal{F}(\xi) = \langle k, \eta(\xi) \rangle \supset I \otimes \mathcal{G}_r \otimes I \supset \mathcal{G}_r.
\]

We will prove that \(|\mathcal{F}(\xi)| \geq (\nu' / \eta')\), \((k \neq 0)\). Let us only prove the case \(r, r' \in \mathcal{I}_4\), and everything else is similar. Let

\[
\mathcal{G}_r = \mathcal{E}^4 \mathcal{G}_{r,1} + \mathcal{G}_{r,2}, \quad \forall r \in \mathcal{I}_4,
\]

where

\[
\mathcal{G}_{r,1} = \begin{pmatrix}
\lambda_r + \lambda_{r'} & 0 \\
0 & \lambda_r + \lambda_{r'} + \lambda_n + \lambda_m
\end{pmatrix},
\]

\[
\mathcal{G}_{r,2} = \begin{pmatrix}
\mathcal{G}_{r,1} & \mathcal{G}_{r,2} \\
\mathcal{G}_{r,1} & \mathcal{G}_{r,2}
\end{pmatrix},
\]

with

\[
\mathcal{G}_{r,1} = \frac{5}{16\pi^4 \lambda_1^2} \zeta, - \sum_{j' \in \mathcal{I}} \frac{15}{32\pi^4 \lambda_{j'}^2 \lambda_1 \lambda_{j'}} \zeta \zeta_{j'} + \frac{15}{64\pi^4} \left( \frac{1}{\lambda_r + \lambda_{r'}} \right) < \zeta, A \zeta >,
\]

\[
\mathcal{G}_{r,2} = \frac{15}{16\pi^4 \lambda_1 \lambda_m \lambda_n \lambda_1} - \frac{15}{16\pi^4 \sqrt{\lambda_1 \lambda_m \lambda_n \lambda_1 \lambda_m}}.
\]

\[
\mathcal{G}_{r,2} = \frac{5}{16\pi^4 \lambda_n^2} \left( \frac{\zeta_n^2 + \lambda_n^2}{\lambda_n} \right) - \sum_{j' \in \mathcal{I}} \frac{15}{32\pi^4 \lambda_{j'}^2 \lambda_n^2} \left( \frac{\zeta_{j'}^2 + \lambda_{j'}^2}{\lambda_{j'}} \right) + \frac{15}{64\pi^4} \left( \frac{1}{\lambda_r + \lambda_{r'}} \right) < \zeta, A \zeta >,
\]

with \(\zeta = (\zeta_1, \zeta_2, \cdots, \zeta_\nu)\) and

\[
A = \begin{pmatrix}
1 & 2 & \cdots & 2 \\
2 & 1 & \cdots & 2 \\
\vdots & \vdots & \ddots & \vdots \\
2 & 2 & \cdots & 1
\end{pmatrix}
\]

Thus,

\[
\mathcal{F}(\xi) = \mathcal{E}^4 \left( \langle k, \beta^* \rangle + \langle k, B \rangle \pm \left( |r|^2 + |j|^2 \right) \pm \left( |r'|^2 + |j'|^2 \right) \right) I
\]

\[
\pm \mathcal{G}_{r,2} \otimes I \pm I \otimes \mathcal{G}_{r,2},
\]

where \(\beta^* = (|i'_1|^2, |i'_2|^2, \cdots, |i'_\nu|^2)\) and \(B = (\cdots, B_{r'}, \cdots)_{r' \in \mathcal{I}}\) with

\[
B_{r'} = \frac{5 \zeta_{r'}^2}{64\pi^4 \lambda_{r'}^2} + \sum_{j' \in \mathcal{I}} \frac{15 \zeta_{j'}^2}{32\pi^4 \lambda_{j'}^2 \lambda_{r'}} + \sum_{n' \in \mathcal{I}} \frac{15 \zeta_{n'}^2}{32\pi^4 \lambda_{n'}^2 \lambda_{r'}} \zeta_{n'}.
\]

The eigenvalues of \(\mathcal{F}(\xi)\) are

\[
\mathcal{E}^4 \left( \langle k, \beta^* \rangle + \langle k, B \rangle \pm \left( |r|^2 + |j|^2 \right) \pm \left( |r'|^2 + |j'|^2 \right) \right) I
\]

\[
\pm \frac{5}{128\pi^4} \left( \frac{\zeta_1^2 + \lambda_1^2 + \lambda_2^2}{\lambda_1} + \frac{\zeta_3^2 + \lambda_3^2}{\lambda_3} \right)
\]

\[
- 6 \sum_{j' \in \mathcal{I}} \left( \frac{\zeta_{j'}^2 + \lambda_{j'}^2}{\lambda_{j'}} \right) + 3 \left( \frac{1}{\lambda_r + \lambda_{r'}} \right) + \frac{1}{\lambda_r + \lambda_{r'}} - 1
\]

\[
< \zeta, A \zeta > \pm \sqrt{h_{r, r'}} (\zeta_1, \zeta_2, \cdots, \zeta_\nu, \zeta_{r'}, \zeta_{r''})\}
\]
where
\[
\begin{align*}
    h_{r,s,r',s'}(\zeta_0, \zeta_1, \zeta_2, \zeta_3) &= \left( 4 \left( \frac{\zeta_0}{\lambda_0} - \frac{\zeta_1}{\lambda_1} \right) \left( \frac{\zeta_2}{\lambda_2} + \frac{\zeta_3}{\lambda_3} \right) - 6 \sum_{r=0}^{s-1} \frac{\zeta_0}{\lambda_0} - \frac{\zeta_1}{\lambda_1} \right) \left( \frac{\zeta_0}{\lambda_0} - \frac{\zeta_1}{\lambda_1} \right) + \left( \frac{1}{\lambda_0} - 1 + \frac{1}{\lambda_1} \right) < \zeta_0, \zeta_1 > \right)^{-2} - 576 \left( \frac{\zeta_0\zeta_1\zeta_2\zeta_3}{\lambda_0\lambda_1\lambda_2\lambda_3} \right).
\end{align*}
\]

(62)

It has been proved that none of the eigenvalues of $F(\zeta)$ are zero in [23]. Moreover, when $r \in J_1$, $r' \in J_1$ or $r \in J_1$, $r' \in J_2$ or $r \in J_1$, $r' \in J_3$ and so on, the situations are similar, so omit the proofs. That is, none of the eigenvalues of $F(\zeta)$ are zero for $k \neq 0$. From Lemma 3.1 in [19], then det $(F(\zeta))$ is a polynomial function in the components of $\zeta$ with order at most eight and $|\partial^4/\partial y^2(F(\zeta))| \geq (1/2)|k| \neq 0$. By excluding some parameter set with measure $O\left(\sqrt{y}\right)$, then $|\det (F(\zeta))| \geq (1/2)|k|$, $k \neq 0$. (A3) is verified.

Verifying Assumption (9): similar to [19], from Lemma 4, it is obvious that (A4) holds, so omit its proof.

Verifying Assumption (10): similar to [19], the result is obvious.

Verifying Assumption (11): similar to [23], the result is obvious.

By Theorem 12 ([23] Theorem 2.1), we have Theorem 3.

Appendix

A. Proof of Non Empty Admissible Set

Lemma 13. Set $\mathcal{K}$ as the given set with $d$ points in Remark 2. For $m, n, r, s, \bar{m}, \bar{r}, \bar{s} \in \mathcal{K}$, the following conclusion is true:

\begin{enumerate}
    \item[(i)] $n - m = 0, n = m$, and $|n| = |m|$ are equivalent
    \item[(ii)] $n - m + r - s = 0, \{n, r\} = \{m, s\}$, and $\{|n|, |r|\} = \{|m|, |s|\}$ are equivalent
    \item[(iii)] $n - m + r - s + \n = \bar{m}$, $\{n, r, \bar{n}\} = \{m, s, \bar{m}\}$, and $\{|n|, |r|, |\bar{n}|\} = \{|m|, |s|, |\bar{m}|\}$ are equivalent
    \item[(iv)] $n - m + r - s + \n = \bar{m} + r - s = 0, \{n, r, \n, \bar{r}\} = \{m, s, \bar{m}, \bar{r}\}$, and $\{|n|, |r|, |\n|, |\bar{r}|\} = \{|m|, |s|, |\bar{m}|, |\bar{r}|\}$ are equivalent
    \item[(v)] $<n, r> = <m, s>$, $\{n, r\} = \{m, s\}$, and $\{|n|, |r|\} = \{|m|, |s|\}$ are equivalent
    \item[(vi)] $<n - m, r - s> = 0$ is equivalent to $n = m$ or $r = s$
\end{enumerate}

The above results are obvious, and we omit their proof.

(I) Let us prove the property (2) by reduction to absurdity. The proof for the property (1) is similar and simpler. Let us say $i, j, n, m, r \in \mathcal{K}$ satisfies $<r - m, i - j + n - m> = <i - j, n >$

Lemma 14. The set $\mathcal{K}$ given in Remark 2 is admissible.

Proof. According to $i - j + r - s = 0$ and $|i|^2 - |j|^2 + |r|^2 - |s|^2 = 0, <r - j, i - j > = 0$. By $i - j + n + m + r - s = 0$ and $|i|^2 - |j|^2 + |n|^2 - |m|^2 + |r|^2 - |s|^2 = 0$, then $<r - m, i - j + n - m> = <i - j, n >$. In order to prove that $\mathcal{K}$ has the properties (3)–(12) in Definition 1, we need to prove that

\[
\begin{align*}
    &<r - j, i - j>,  \\
    &<r - i, r - j>,  \\
    &<r - m, i - j + n - m>,  \\
    &<r - m, \bar{r} - j + n - \bar{m}>,  \\
    &<r - m, \bar{r} - j + n - \bar{m}>,  \\
    &<r - j, i - j>,  \\
    &<r - j, i - j>,  \\
    &<r - m, \bar{r} - j + n - \bar{m}>,  \\
    &<r - m, \bar{r} - j + n - \bar{m}>,  \\
    &<r - m, i - j + n - m>,  \\
    &<r - m, i - j + n - m>,  \\
    &<r - m, i - j + n - m>,  \\
    &<r - m, i - j + n - m>,
\end{align*}
\]

(A.1)–(A.10)

have no solution in $r = (r_1, r_2) \in \mathbb{Z}^2$ for $i, j, n, m, i, j, n, m \in \mathcal{K}$ and $\{i, j, \n, \bar{m}\} \neq \{i, j, n, m\}$.

Case 1.1. Only one element of $\{|n|, |\n|, |\bar{n}|, |\bar{m}|\}$ gets the maximum value.

Case 1.1.1. Suppose that $|r| = \max \{|n|, |\n|, |\bar{n}|, |\bar{m}|\}$. We write $<r - m, i - j + n - m> = <i - j, n >$ in terms of the following components:

\[
\begin{align*}
    (r_1 - m_1)(i_1 - j_1 + n_1 - m_1) + (r_2 - m_2)(i_2 - j_2 + n_2 - m_2)  \\
    = (i_1 - j_1)(i_2 - j_2 + n_2 - m_2).
\end{align*}
\]

(A.11)
By the calculation, we have
\[
\begin{align*}
r_2 &= m_2 + (m_1 - r_{12})(i_1 - j_1 + n_1 - m_1) + (i_2 - j_2)(j_2 - n_2) \\
&= m_2 + (m_1 - r_{12})(i_1 - j_1 + n_1 - m_1) + |(i_1 - j_1)(j_2 - n_2)| \\
&\leq m_2 + 2r_{12}^2 + r_2^2 \leq m_2 + 4r_{12}^2 < 5r_1^2.
\end{align*}
\]
(A.12)

This is contradictory to \( r_2 = r_1^2 \).

**Case 1.2.** Suppose that \( |j| = \max \{|i|, |j|, |n|, |m|, |r|\} \); then, we have
\[
|<i - j, j - n>| = |<\frac{j}{2}, \frac{j}{2}>| = \frac{1}{4}|j|^2 < |<r - m, i - j + n + m>|.
\]
(A.13)

This is contradictory to the hypothesis \(<i - j, j - n> = <r - m, i - j + n + m>\).

**Case 1.2.** Two elements of \( \{|i|, |j|, |n|, |m|, |r|\} \) get the maximum value.

**Case 1.2.1.** Suppose that \( |m| = |j| = \max \{|i|, |j|, |n|, |m|, |r|\} \), then
\[
|<r - m, i - j + n + m>| \\
= |<i - j, j - n>| \implies |<r - j, i + n - 2j>| \\
= |<i - j, j - n>| \implies 3 < j, j > - <j - n, j > - 2 <i, i > + <i, r > + <n, r > + <i, n > = 0.
\]
(A.14)

\[
\begin{align*}
\left\{ \begin{array}{l}
<j - j_1 - n_0 + j - i + m - m_0, i - j + n - m_0 > = 0, \\
(i_1 - j_1 - m_1)[<j - i, j - n> + <j - i + m - m_0, i - j + n - m_0 >] + (i_1 - j_1 + n_1 - m_1) < i - j, i - m > = 0.
\end{array} \right.
\end{align*}
\]
(A.18)

From the system above, we get \( i_1 - j_1 + n_1 - m_1 < i - j, i - m > = 0 \). And by \( i_1 - j_1 + n_1 - m_1 \neq 0 \), then \( <i - j, i - m > = 0 \) is obtained. In view of Lemma 13, then \( i = j \) or \( i = m \).

\[\text{It is contradictory to } r \in \mathcal{F}.\] That is, \( \beta_{211} \neq 0 \). Because the order of the numerator \( \beta_{211} \) is no more than \( n_1 \) and the order of the divisor \( a_{211} \) is \( n_2 \), we have \( r_2 \in \mathbb{Z} \).

**Case 2.1.** Only one of \( \{|i|, |j|, |i|, |j|, |i|, |j|, |n|, |m|\} \) gets the maximum value.

**Case 2.1.1.** Suppose that \( |n| = \max \{|i|, |j|, |n|, |m|, |r|\} \), then
\[
r_2 = m_2 + j_2 + \frac{\beta_{211}}{a_{211}},
\]
(A.16)

where
\[
\begin{align*}
\beta_{211} &= n_1 [<j - j_1 - n_0 + j - i + m - m_0, i - j + n - m_0 >] \\
&+ (i_1 - j_1 - m_1)[<j - i, j - n> + <j - i + m - m_0, i - j + n - m_0 >] \\
&+ (i_1 - j_1 + n_1 - m_1) < i - j, i - m >, \\
a_{211} &= (i_1 - j_1 + n_1 - m_1)(i_2 - j_2 + n_2 - m_2) \\
&+ (i_1 - i_1 + m_1 - n_1)(i_2 - j_2 + n_2 - m_2).
\end{align*}
\]
(A.17)

To prove \( \beta_{211} \neq 0 \) by contradiction, suppose that \( \beta_{211} = 0 \), then
\[
r_2 = m_2 + \frac{\beta_{212}m_2 + \alpha_{212}}{\delta_{212}m_2 + \gamma_{212}} = m_2 + \frac{\beta_{212}}{\delta_{212}} + \frac{\alpha_{212}\delta_{212} - \beta_{212}\gamma_{212}}{\delta_{212}(\delta_{212}m_2 + \gamma_{212})},
\]
(A.19)

where
\[
\beta_{212} = (i_1 - j_1 + n_1 - m_1)(i_2 - j_2 + n_2 - m_2),
\]
Then, \( \gamma_{212} = (i_1 - j_1 + \tilde{n}_1 - \tilde{m}_1) (j_2 + \tilde{m}_2) + (j_2 - 2i_1 + m_1) (\tilde{i}_2 - \tilde{j}_2 + \tilde{n}_2 - \tilde{m}_2). \) \hfill (A.25)

Denote

\[
\sigma_{221} = \frac{\alpha_{221} \gamma_{221} - \beta_{221} \mu_{221}}{\gamma_{221}}, \quad \varepsilon_{221} = \delta_{221} \gamma_{221}^2 - \alpha_{221} \gamma_{221} \mu_{221} + \beta_{221} \mu_{221}^2, \omega_{221} = \gamma_{221}^2 \left( \frac{\gamma_{221} i_2 + \sigma_{221}}{\omega_{221}} \right), \hfill (A.26)
\]

then by the calculation,

\[
\mu_{221} = 4 \left( i_1 - j_1 + \tilde{n} - \tilde{m} \right) i_2^2 + \varepsilon_{221}, \omega_{221} \hfill (A.27)
\]

where the order of \( \varepsilon_{221} \) and \( \omega_{221} \) is no more than \( i_1 \). By Lemma 13, then \( -i + j + n - m \neq 0 \). So we know that \( \beta_{221} > \gamma_{221} = (1/2) \), \( \sigma_{221} \) is an integer or \( \lceil \sigma_{221} \rceil > 1/\sqrt{\gamma_{221}}, \omega_{221} > 1/\sqrt{\gamma_{221}} \), and

\[
\left| \frac{\beta_{221} - \gamma_{221}}{\gamma_{221}} + \frac{\alpha_{221} \gamma_{221} - \beta_{221} \mu_{221}}{\gamma_{221}} \right| < 1/\sqrt{\gamma_{221}} \hfill (A.28)
\]

Hence, \( r_2 \in \mathbb{Z} \).

Other situations are similar to the above cases.

Case 2.2. Two elements of \( \{i, j, n, \tilde{i}, \tilde{j}, \tilde{n}, \tilde{m}, \tilde{n}, \tilde{m}\} \) get the maximum value.

Case 2.2.1. Suppose that \( |i| = |n| = \max \{ |i|, |j|, |n|, |m|, |\tilde{i}|, |\tilde{j}|, |\tilde{n}|, |\tilde{m}| \} \), then \( i = n \). By the calculation, then

\[
r_2 = m_2 + \frac{\beta_{221} i_2^2 + \alpha_{221} i_2 + \delta_{221}}{\gamma_{221} i_2 + \mu_{221}} + \frac{\alpha_{221} \gamma_{221} - \beta_{221} \mu_{221}}{\gamma_{221}} + \frac{\delta_{221} \gamma_{221}^2 - \alpha_{221} \gamma_{221} \mu_{221} + \beta_{221} \mu_{221}^2}{\gamma_{221} \gamma_{221} i_2 + \mu_{221}}, \hfill (A.24)
\]

where

\[
\beta_{221} = (i_1 - j_1 + \tilde{n}_1 - \tilde{m}_1), \quad \alpha_{221} = 2 (i_1 - j_1 + \tilde{n}_1 - \tilde{m}_1) j_2, \quad \delta_{221} = -(i_1 - j_1 + \tilde{n}_1 - \tilde{m}_1) (i_2 - 2i_1 + j_2 + |j|^2) - (j_2 - 2i_1 + m_1), \quad \gamma_{221} = 2 (i_1 - j_1 + \tilde{n}_1 - \tilde{m}_1), \hfill (A.29)
\]

where

\[
(\{j < i, j + n \rightarrow < j, i + \tilde{n} \rightarrow < j \rightarrow \tilde{i}, j + \tilde{n} \rightarrow 0, \quad \{j < i, j + n \rightarrow < j, i + \tilde{n} \rightarrow < j \rightarrow j + \tilde{n} \rightarrow 0, \quad \{j - i, j + n \rightarrow (i_1 - j_1 + n_1 - m_1) i_2 + n_1 - \tilde{m}_1, \}
\]

We prove \( \beta_{222} \neq 0 \) by contradiction. Suppose that \( \beta_{222} = 0 \), then

\[
\{j < i, j + n \rightarrow < j, i + \tilde{n} \rightarrow < j \rightarrow j + \tilde{n} \rightarrow 0, \quad \{j < i, j + n \rightarrow < j, i + \tilde{n} \rightarrow < j \rightarrow j + \tilde{n} \rightarrow 0, \quad \{j - i, j + n \rightarrow (i_1 - j_1 + n_1 - m_1) i_2 + n_1 - \tilde{m}_1, \}
\]

From the system above, we have \( (i_1 - j_1 + \tilde{n}_1 - i_1 + j_1 - n_1) < j - i, j + n \rightarrow 0 \). And from \( i_1 - j_1 + \tilde{n}_1 - i_1 + j_1 - n_1 \neq 0 \)
0, then we have \(<j - i, j - n> = 0\). From Lemma 13, then \(j = i \) or \(j = n\). It is contradictory to \(r \in \mathcal{J}_3\). That is, \(\beta_{222} \neq 0\). Due to the order of the numerator \(\beta_{222}\) which is no more than \(m_1\) and the order of the divisor \(a_{222}\) which is \(m_2\), we have \(r_5 \in \mathbb{Z}\).

Other situations are similar to the above cases.

**Case 2.3.** Three elements of \(\{i, j, |n|, |m|, \tilde{i}, \tilde{j}, \tilde{|n|}, \tilde{|m|}\}\) get the maximum value. It can be seen by [23] that such situation is similar to those mentioned above; thus, omit the proof.

\[
\begin{align*}
\left\{ \begin{array}{l}
<m - r, i - j + n - r> = \langle i - j, j - n>, \\
<r, i + \tilde{n} + \tilde{m} - \tilde{j} - i - n - m + j> = \langle i - j, j - n> - \langle \tilde{j} - \tilde{n} > + \langle \tilde{i} - \tilde{j} + \tilde{n}, m>,
\end{array} \right.
\end{align*}
\]

(A.32)

We assert \(|j|\) and \(|\tilde{j}|\) will not be the maximum. Suppose that \(|j| = \max\ \{i, j, |n|, |m|, \tilde{i}, \tilde{j}, \tilde{|n|}, \tilde{|m|}\}\). According to \(|m|^2 + |n|^2 + |j|^2 = |r|^2 + |s|^2 + |j|^2 \geq |j|^2\) and the definition of \(\mathcal{H}\), then there is one element of the set \(\{m, n, j\}\) that is identical to \(j\). If \(i = j\), then \(r + s - n - m = 0\) and \(|r|^2 + |s|^2 - |n|^2 - |m|^2 = 0\). That is, \(r \in \mathcal{J}_3\). This is contradictory to \(r \in \mathcal{J}_4\). That is, \(|j| \neq \max\ \{i, j, |n|, |m|, \tilde{i}, \tilde{j}, \tilde{|n|}, \tilde{|m|}\}\). Similarly, we have \(|\tilde{j}| \neq \max\ \{\tilde{i}, \tilde{j}, |\tilde{n}|, |\tilde{m}|, i, j, |n|, |m|\}\).

**Case 3.1.** Only one element of \(\{\tilde{i}, \tilde{j}, |\tilde{n}|, |\tilde{m}|, i, j, |n|, |m|\}\) gets the maximum value. Suppose that \(|n| = \max\ \{\tilde{i}, \tilde{j}, |\tilde{n}|, |\tilde{m}|, i, j, |n|, |m|\}\), then

\[
|r|^2 = |\tilde{i}|^2 + |\tilde{j}|^2 + |\tilde{n}|^2 + |\tilde{m}|^2 \leq n_1.
\]

(A.33)

By the calculation to (A.32),

\[
r_2 = i_2 - j_2 + m_2 + \frac{\beta_{31}}{a_{31}},
\]

(A.34)

where

\[
\beta_{31} = (i_1 - j_1 + m_1 - r_1)n_1 + \langle j - i, j - m > - \langle \tilde{j} - \tilde{n}, \tilde{m} > + \langle \tilde{i} - \tilde{j} + \tilde{n} - \tilde{m} > - r_1(i_1 - j_1 + m_1 - \tilde{i}1 + \tilde{j}1 - \tilde{n}1 - \tilde{m}1)
\]

\[
+ (i_2 + m_2 - j_2)(-i_2 + j_2 - m_2 + \tilde{i}2 + \tilde{n}2 + m_2 - \tilde{j}2),
\]

\[
a_{31} = n_2 + (i_2 + m_2 - j_2 + \tilde{j}2 - \tilde{i}2 - \tilde{n}2 - \tilde{m}2).
\]

We prove \(\beta_{31} \neq 0\) by contradiction. Suppose that \(\beta_{31} = 0\), then

\[
i_1 - j_1 + m_1 - r_1 = 0, r_2 = i_2 - j_2 + m_2.
\]

(A.36)

**Case 2.4.** Four elements of \(\{i, j, |n|, |m|, \tilde{i}, \tilde{j}, |\tilde{n}|, |\tilde{m}|\}\) get the maximum value. It can be seen by [23] that such situation is similar to those mentioned above; thus, omit the proof. It is shown that equation (A.3) has no solution in \(\mathbb{Z}^{20}\). That is, \(\mathcal{H}\) satisfies the property (6) in Definition 1. Similarly, \(\mathcal{F}\) satisfies the property (3) in Definition 1 and \(\mathcal{J}_3 \cap \mathcal{J}_4 = \emptyset\).

(III) Let us show that equation (A.4) has no solution in \(\mathbb{Z}^{20}\). The proof for (A.2), (A.5), and (A.7)–(A.10), is similar and simpler than the proof for (A.4).

By the calculation, equation (A.4) is equivalent to

\[
\beta_{321}r_1^2 + a_{321}r_1 + \delta_{321} = 0,
\]

(A.37)

where

\[
\beta_{321} = |i + n - j - \tilde{i} - \tilde{j} - \tilde{n} - \tilde{m}|,
\]

\[
a_{321} = 2(|i + m - n + \tilde{j} - \tilde{i} - \tilde{n} - \tilde{m}|),
\]

\[
\delta_{321} = (\langle j - i, j - n > + \langle \tilde{i} - \tilde{j} - \tilde{n} > - \langle m, i - j + n + \tilde{j} - \tilde{i} - \tilde{n} > \rangle)^2
\]

(A.38)
Therefore,
\[
\Delta = \alpha_{321}^2 - 4\beta_{321}\delta_{321}
\]
\[
= \gamma_{321}' \left[ m_2 + \frac{\mu_{321}}{(i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1)^2} \right]^2
\]
\[
+ 4 \left( \frac{i - j + n + \hat{j} - \hat{1} - \hat{n}}{(i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1)} \cdot \sigma_{321}' \right)^2
\]
where
\[
\gamma_{321} = (i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1)(i_2 - j_2 + n_2 + \hat{j}_2 - \hat{1} - \hat{n}_2),
\]
\[
\mu_{321} = -\left( i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1 \right)(i_2 - j_2 + n_2 + \hat{j}_2 - \hat{1} - \hat{n}_2)m_1
\]
\[
+ 2 \left( i_2 - j_2 + n_2 + \hat{j}_2 - \hat{n}_2 \right) \left( <j - i, \hat{n} > - <j - i, n > \right)
\]
\[
+ \left( i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1 \right) \left( i_2 - j_2 + n_2 \right)
\]
\[
- \left( i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1 \right) \left( i_2 - j_2 + \hat{n}_2 \right),
\]
\[
\sigma_{321} = (\frac{i - j + n + \hat{j} - \hat{1} - \hat{n}}{i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1})^{-1}\cdot \sigma_{321}',
\]
\[
\Delta = \gamma_{321}' \left[ m_2 + \frac{\mu_{321}}{(i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1)^2} \right]^2.
\]
Due to \( \sigma_{321} \) which is of order \( m_1 \) which is far less than \( m_2 \), we have
\[
\Delta = \gamma_{321}' \left[ m_2 + \frac{\mu_{321}}{(i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1)^2} \right]^2,
\]
where
\[
\gamma_{321}' \sim \frac{m_1}{m_2} \leq \frac{1}{(i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1)^2}.
\]
Therefore,
\[
r_1 = \frac{-\alpha_{321} + \sqrt{\Delta}}{2\beta_{321}} = \frac{-\alpha_{321}}{2\beta_{321}},
\]
\[
\pm \frac{\left| \gamma_{321}' \right|m_2 + \left( \gamma_{321}' \mu_{321} / (i_1 - j_1 + n_1 + \hat{j}_1 - \hat{1} - \hat{n}_1)^2 \right) - \left| \gamma_{321}' \right| v_{321}}{2\beta_{321}},
\]
\[
\Delta = \alpha_{321}^2 - 4\beta_{321}\delta_{321}
\]
\[
= \left( 2m_2 - j_2 + \hat{1} - \hat{n}_2 \right)^2 \cdot \left( -8m_1^2 + \gamma_{321}' \right) < 0,
\]
where the order of \( \gamma_{321}' \) does not exceed \( m_2 \).

Other situations are similar to the above cases.

**Case 3.3.** Three elements of \( \{[i], [j], [n], [\hat{n}], [i], [j], [n], [\hat{n}]\} \) get the maximum value. It can be seen by [23] that such situation is similar to that mentioned above; thus, omit the proof.

**Case 3.4.** Four elements of \( \{[i], [j], [n], [\hat{n}], [i], [j], [n], [\hat{n}]\} \) get the maximum value.

**Case 3.4.1.** Suppose that \( \|i\| = \|n\| = \|m\| = \|\hat{m}\| = \max \{[i], [j], [n], [\hat{n}], [i], [j], [n], [\hat{n}]\} \), then \( i = n = m = \hat{m} \). By the calculation to (A.32),
\[
\beta_{341}r_1^2 + \alpha_{341}r_1 + \delta_{341} = 0,
\]
where
\[
\beta_{341} = \|2m - j + \hat{1} - \hat{n}\|^2,
\]
\[
\alpha_{341} = 2 \left( 2m_1 - j_1 + \hat{1} - \hat{n}_1 \right) \left( -m - j - m - \hat{1} - \hat{n} > 0 \right)
\]
\[
+ 2 \left( m_1 - j_1 + \hat{1} - \hat{n}_1 \right) \left( -m - j - m - j - \hat{n} > 0 \right)
\]
\[
+ 3 \left( m_2 - j_2 + \hat{1} - \hat{n}_2 \right) \left( m_2 - j_2 + \hat{n}_2 \right)
\]
\[
- \left( m_1 - j_1 + \hat{1} - \hat{n}_1 \right) \left( m_2 - j_2 + \hat{n}_2 \right),
\]
\[
\delta_{341} = -\|m\|^2 + \left( -j - j - \hat{n} > 0 \right) \left( -2m - j - j - \hat{n} > 0 \right)
\]
\[
+ 2 \left( m_2 - j_2 + \hat{n} > 0 \right) \left( m_2 - j_2 + \hat{n} > 0 \right)
\]
\[
\left( -m - j - \hat{n} > 0 \right) \left( -2m - j_2 + \hat{n} > 0 \right) \left( m_2 - j_2 + \hat{n} > 0 \right),
\]
\[
\left( -m - j - \hat{n} > 0 \right) \left( -2m - j_2 + \hat{n} > 0 \right) \left( m_2 - j_2 + \hat{n} > 0 \right).
\]

It is shown that equation (A.4) has no solution in \( \mathbb{Z}^{\leq} \) because
\[
\Delta = \alpha_{341}^2 - 4\beta_{341}\delta_{341}
\]
\[
= \left( 2m_2 - j_2 + \hat{1} - \hat{n}_2 \right)^2 \cdot \left( -8m_1^2 + \gamma_{321}' \right) < 0,
\]
where the order of \( \gamma_{341}' \) does not exceed \( m_2 \).

Other situations are similar to the above cases.

**Case 3.5.** Five elements of \( \{[i], [j], [n], [\hat{n}], [i], [j], [n], [\hat{n}]\} \) get the maximum value. It can be seen by [23] that such situation is similar to that mentioned above; thus, omit the proof.

**Case 3.6.** Six elements of \( \{[i], [j], [n], [\hat{n}], [i], [j], [n], [\hat{n}]\} \) get the maximum value. It can be seen by [23] that such situation is similar to that mentioned above; thus, omit the proof.

It is shown that equation (A.4) has no solution in \( \mathbb{Z}^{\leq} \).

That is, \( \mathcal{K} \) satisfies the property (7) in Definition 1. Similarly, \( \mathcal{K} \) satisfies the properties (5) and (12) in Definition 1.

**Data Availability**

No external data has been used in this study.
Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This paper is partially supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 22CX03008A and 19CX02054A) and the Natural Science Foundation of Shandong Province (Grant Nos. ZR2021MA053 and ZR2022MA078).

References

[1] A. N. Kolmogorov, “On the conservation of conditionally periodic motions for a small change in Hamilton’s function,” Doklady Akademii Nauk, vol. 98, pp. 527–530, 1954.
[2] G. Casati and J. Ford, “English translation,” in Lectures Notes in Physics, pp. 51–56, Springer, 1979.
[3] V. I. Arnold, Mathematical Methods in Classical Mechanics, Nauka, Springer, 1978.
[4] J. Moser, “Convergent series expansions for quasi-periodic motions,” Mathematische Annalen, vol. 169, no. 1, pp. 136–176, 1967.
[5] C. E. Wayne, “Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory,” Communications in Mathematical Physics, vol. 127, no. 3, pp. 479–528, 1990.
[6] S. B. Kuksin, “Nearly integrable infinite-dimensional Hamiltonian systems,” in Lecture Notes in Mathematics, vol. 1556, Springer, New York, 1993.
[7] J. Pöschel, “A KAM-theorem for some nonlinear PDEs,” Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, vol. 23, no. 1, pp. 119–148, 1996.
[8] J. Bourgain, “Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations,” Annals of Mathematics, vol. 148, pp. 363–439, 1998.
[9] M. Berti and P. Bolle, “Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential,” Nonlinearity, vol. 25, no. 9, pp. 2579–2613, 2012.
[10] M. Berti and P. Bolle, “Quasi-periodic solutions with Sobolev regularity of NLS on $T^d$ with a multiplicative potential,” Journal of the European Mathematical Society, vol. 15, no. 1, pp. 229–286, 2013.
[11] J. Bourgain, Nonlinear Schrödinger Equations, Park City Ser, vol. 5, American Mathematical Society, Providence, RI, 1998.
[12] J. Bourgain, “Green’s function estimates for lattice Schrödinger operators and applications,” in Annals of Mathematics Studies, vol. 158, Princeton University Press, Princeton, NJ, 2005.
[13] W.-M. Wang, “Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions,” Duke Mathematical Journal, vol. 165, no. 6, pp. 1129–1192, 2016.
[14] X. Yuan, “Quasi-periodic solutions of nonlinear Schrodinger equations of higher dimension,” Journal of Differential Equations, vol. 195, no. 1, pp. 230–242, 2003.
[15] J. Geng and J. You, “A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces,” Communications in Mathematical Physics, vol. 262, no. 2, pp. 343–372, 2006.
[16] J. Geng and J. You, “KAM tori for higher dimensional beam equations with constant potentials,” Nonlinearity, vol. 19, no. 10, pp. 2405–2423, 2006.
[17] L. H. Eliasson and S. B. Kuksin, “KAM for the nonlinear Schrödinger equation,” Annals of Mathematics, vol. 172, no. 1, pp. 371–435, 2010.
[18] L. H. Eliasson, B. Grebert, and S. B. Kuksin, “KAM for the nonlinear beam equation,” Geometric and Functional Analysis, vol. 26, no. 6, pp. 1588–1715, 2016.
[19] J. Geng, X. Xu, and J. You, “An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation,” Advances in Mathematics, vol. 226, no. 6, pp. 5361–5402, 2011.
[20] J. Xu and J. You, “Persistence of lower-dimensional tori under the first Melnikov’s non-resonance condition,” Journal de Mathématiques Pures et Appliquées, vol. 80, no. 10, pp. 1045–1067, 2001.
[21] J. Geng and S. Zhou, “An infinite dimensional KAM theorem with application to two dimensional completely resonant beam equation,” Journal of Mathematical Physics, vol. 59, no. 7, article 072702, 2018.
[22] M. Procesi, “A normal form for beam and non-local nonlinear Schrödinger equations,” Journal of Physics A, vol. 43, no. 43, article 434028, 2010.
[23] M. Zhang and J. Si, “Construction of quasi-periodic solutions for the quintic Schrödinger equation on the two-dimensional torus $T^2$,” Transactions of the American Mathematical Society, vol. 374, pp. 4711–4780, 2021.
[24] J. Geng and S. Xue, “Reducible KAM tori for two-dimensional quintic Schrödinger equations,” Science China Mathematics, vol. 51, no. 3, pp. 457–498, 2021.
[25] E. Haus and M. Procesi, “Growth of sobolev norms for the quintic NLS on $T^d$,” Analysis & PDE, vol. 8, no. 4, pp. 883–922, 2015.
[26] C. Procesi and M. Procesi, “A KAM algorithm for the resonant non-linear Schrodinger equation,” Advances in Mathematics, vol. 272, pp. 399–470, 2015.