A note on Hedetniemi’s conjecture, Stahl’s conjecture and the Poljak-Rödl function

Claude Tardif
Royal Military College of Canada
Canada
Claude.Tardif@rmc.ca

Xuding Zhu*
Department of Mathematics
Zhejiang Normal University
Jinhua, Zhejiang, China
xdzhu@zjnu.edu.cn

Submitted: Jun 12, 2019; Accepted: Oct 28, 2019; Published: Nov 22, 2019
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We prove that $\min\{\chi(G), \chi(H)\} - \chi(G \times H)$ can be arbitrarily large, and that if Stahl’s conjecture on the multichromatic number of Kneser graphs holds, then we can have $\chi(G \times H) / \min\{\chi(G), \chi(H)\} \leq 1/2 + \epsilon$ for large values of $\min\{\chi(G), \chi(H)\}$.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

The categorical product $G \times H$ of graphs G and H has vertex set $V(G \times H) = \{(x, y) : x \in V(G), y \in V(H)\}$, in which two vertices (x, y) and (x', y') are adjacent if and only if $xx' \in E(G)$ and $yy' \in E(H)$. A proper colouring ϕ of G can be lifted to a proper colouring Φ of $G \times H$ defined as $\Phi(x, y) = \phi(x)$. So $\chi(G \times H) \leq \chi(G)$, and similarly $\chi(G \times H) \leq \chi(H)$. Hedetniemi conjectured in 1966 that $\chi(G \times H) = \min\{\chi(G), \chi(H)\}$ for all finite graphs G and H [6]. The conjecture received a lot of attention [7, 10, 13, 14] and remained open for more than half century. It is known that $\chi(G \times H) = \min\{\chi(G), \chi(H)\}$ whenever $\min\{\chi(G), \chi(H)\} \leq 4$ [1] and that the fractional version is true, i.e., for any graphs G and H, $\chi_f(G \times H) = \min\{\chi_f(G), \chi_f(H)\}$ [15]. However, Shitov refuted this conjecture recently [12]. Yet, some problems concerning the chromatic number of product graphs remain open.

The Poljak-Rödl function $f : \mathbb{N} \to \mathbb{N}$ is defined by

$$f(n) = \min\{\chi(G \times H) : \chi(G), \chi(H) \geq n\}.$$
Hedetniemi’s conjecture is equivalent to the statement that \(f(n) = n \) for all \(n \). Shitov proved that for sufficiently large \(n \), \(f(n) \leq n - 1 \). Still, very little is known about the behavior of the function \(f(n) \). In particular, it is unknown whether \(f(n) \) is bounded by a constant. However it is known that if \(f(n) \) is bounded by a constant, then \(f(n) \leq 9 \) for all \(n \) (see [10, 14]). In this note, we prove the following facts.

Proposition 1.

(i) \(\lim_{n \to \infty} (n - f(n)) = \infty \),

(ii) If Stahl’s conjecture on the multichromatic number of Kneser graphs [11] holds, then \(\lim_{n \to \infty} f(n)/n \leq 1/2 \).

Proposition 1 (i) will be proved in Section 2. Proposition 1 (ii) will be proved in Section 3, where a presentation of Stahl’s conjecture is also given.

2 Discussion and extensions of Shitov’s results

For a positive integer \(c \), the *exponential graph* \(K^H_c \) has vertices all the mappings \(f : V(H) \to \{1, 2, \ldots, c\} \), in which \(f, g \) are adjacent in \(K^H_c \) if \(f(u) \neq g(v) \) for every edge \(e = uv \) of \(H \). It is well known and easy to verify that \(\Phi(v, f) = f(v) \) is a proper \(c \)-colouring of \(H \times K^H_c \). Thus the way to find counterexamples to Hedetniemi’s conjecture is to find an integer \(c \) and a graph \(H \) such that both \(H \) and \(K^H_c \) have chromatic number larger than \(c \).

The *lexicographic product* \(G[H] \) of \(G \) and \(H \) is the graph with vertex set \(V(G[H]) = \{(x, y) : x \in V(G), y \in V(H)\} \), in which two vertices \((x, y)\) and \((x', y')\) are adjacent if and only if \(xx' \in E(G) \), or \(x = x' \) and \(yy' \in E(H) \).

Shitov’s construction of counterexamples to Hedetniemi’s conjecture is based on the following result.

Theorem 2 ([12], Claim 3). *For any graph \(G \) with girth at least six, for all but finitely many values of \(q \), we have \(\chi(K^G[K^H_q]) \geq c + 1 \), with \(c = \lceil 3.1q \rceil^1 \).*

Finding such a lower bound on chromatic numbers of some exponential graphs was the key part of Shitov’s refutation of Hedetniemi’s conjecture. Finding lexicographic products \(G[H] \) with \(\chi(G[K^H_q]) > c \) is standard theory. Indeed the fractional chromatic number \(\chi_f(H) \) of a graph \(H \) is a standard lower bound for its chromatic number, and it is well known that \(\chi_f(G[H]) = \chi_f(G)\chi_f(H) \) (see [3]). Erdős’ classic probabilistic proof [2] shows that there are graphs with girth at least 6 and fractional chromatic number at least 3.1. For such a graph \(G \), we have \(\chi(G[K^H_q]) \geq \lceil \chi_f(G[K^H_q]) \rceil = \lceil \chi_f(G) \cdot q \rceil \geq \lceil 3.1q \rceil \), and by Theorem 2, this yields a counterexample to Hedetniemi’s conjecture.

Remarkably, replacing the condition \(\chi_f(G) \geq 3.1 \) by \(\chi_f(G) \geq B \) for \(B \geq 3.1 \) readily gives counterexamples to Hedetniemi’s conjecture where the chromatic number of at least

\(^1\)Technically, Shitov refers to the “strong product” rather than the lexicographic product of graphs, but with \(K^H_q \) as a second factor, the strong product coincides with the lexicographic product (see [4]).
one factor is arbitrarily larger than the chromatic number of the product. Also, the proof of Theorem 2 only uses a small subgraph of $K_{c}^{G[K_{q}]}$. Therefore it is possible that Shitov’s construction already gives examples that show that $\lim_{n \to \infty} f(n)/n = 0$. On the other hand, since $\chi_f(G[K_{q}]) > c$, the fractional version of Hedetniemi’s conjecture [15] implies that $\chi_f(K_{c}^{G[K_{q}]}), c$. Thus it is also reasonable to think that $\chi(K_{c}^{G[K_{q}]}))c$ may be bounded, and that the identity $\lim_{n \to \infty} f(n)/n = 0$, if true, can only be witnessed by a different construction.

Proof of Proposition 1 (i). Fix a positive integer d. We shall prove that if n is sufficiently large, then $f(n + d) \leq n$. Let G_d be a graph with girth at least 6 and fractional chromatic number at least $8d$. Then by Theorem 2, for sufficiently large q and $c = [3.1q]$, we have $\chi(K_{c}^{G_d[K_{q}]}))c + 1$ while $\chi(G_d[K_{q}])) 2cd$. Now consider the graph $K_{cd}^{G_d[K_{q}]}$. For $i = 0, 1, \ldots, d - 1$, let Q_i be the subgraph of $K_{cd}^{G_d[K_{q}]}$ induced by the functions with image in $\{ic + 1, ic + 2, \ldots, ic + c\}$. Each Q_i is isomorphic to $K_{cd}^{G_d[K_{q}]}$ and hence at least $c + 1$ colours are needed for each copy. For $i \neq j$, each function in Q_i is adjacent to each function in Q_j. Hence, $\chi(K_{cd}^{G_d[K_{q}]})) d(c + 1)$. As $\chi(K_{cd}^{G_d[K_{q}]})) dc$ and $\chi(G_d[K_{q}])) 2cd \geq cd + d$, it follows that $f(dc + d) \leq dc$.

Thus for every d there exist infinitely many values of n (of the form $dc + d$) such that $n - f(n)) d$. It only remains to show that the gap between n and $f(n)$ will not close while going from one value of c to the next. Note that $c = [3.1q]$, where q is any value above a fixed threshold, and $[3.1(q + 1)] - [3.1q] \leq 4$. Thus it suffices to examine the values $n = dc + d + i$ where $i \leq 4d$, and we can suppose that $c \geq 5$. The graph $K_{cd+1}^{G_d[K_{q}]}$ contains a copy of $K_{cd}^{G_d[K_{q}]}$ induced by the functions with image in $\{1, 2, \ldots, cd\}$. For $j = cd + 1, cd + 2, \ldots, cd + i$, the constant functions g_j with image j are pairwise adjacent and each is adjacent to all the functions in $K_{cd}^{G_d[K_{q}]}$. Hence $\chi(K_{cd+1}^{G_d[K_{q}]})) \chi(K_{cd}^{G_d[K_{q}]})) + i \geq cd + d + i$. For $i \leq (c - 1)d$, we also have $\chi(G_d[K_{q}])) cd + d + i$, so that $f(cd + d + i) \leq cd + i$. Altogether, the inequality $f(n + d) \leq n$ is established for all but finitely many values of n. Thus, $\lim_{n \to \infty} n - f(n) = \infty$.

The gap between n and $f(n)$ proved in this section depends on the minimum number p of vertices of a girth 6 graph with fractional chromatic number at least $8d$. The best known upper bound for p to our knowledge is $p = O((d \log d)^{2})$, which follows from a result of Krivelevich [8]. Using this result, one can show that for any $\epsilon > 0$, there is a constant a such that for sufficiently large n, $f(n) \leq n - a(\log n)^{1/2 - \epsilon}$. Very recently, He and Wigderson [5] proved that for some $\epsilon \simeq 10^{-9}$, $f(n) < (1 - \epsilon)n$ for sufficiently large n. The examples are again cases of Shitov’s construction.

3 Stahl’s conjecture

In the proof of Proposition 1(i), based on the fact that $\chi(K_{c}^{G_d[K_{q}]})) c + 1$, we have shown that $\chi(K_{cd}^{G_d[K_{q}]})) cd + d$. In this section, we show that if a special case of a conjecture
of Stahl on the multichromatic number of Kneser graphs is true, then \(\chi(K_{cd}^{G_d[K_q]}) \) is much larger.

Consider a proper colouring \(\phi \) of the graph \(K_{cd}^{G_d[K_q]} \) with \(x \) colours. Let \(A \) be a subset of \(\{1, \ldots, cd\} \) of cardinality \(c \). Let \(R_A \) be the subgraph of \(K_{cd}^{G_d[K_q]} \) induced by the functions with image contained in \(A \). Then \(R_A \) is isomorphic to \(K_{\chi(K_{cd}^{G_d[K_q]})}^{G_d[K_q]} \), so \(\phi \) uses at least \(c + 1 \) colours on \(R_A \). Let \(\psi(A) \) be a subset of exactly \(c+1 \) colours used by \(\phi \) on \(R_A \). We have \(\psi(A) \) disjoint from \(\psi(B) \) whenever \(A \) is disjoint from \(B \), because \(R_A \) is totally joined to \(R_B \) in \(K_{cd}^{G_d[K_q]} \). This property can be formulated in terms of homomorphisms of Kneser graphs. Recall that the vertices of the Kneser graph \(K(n, \alpha) \) are the \(n \)-subsets of \(\{1, \ldots, \alpha\} \), and two of these are joined by an edge whenever they are disjoint. Thus the colouring \(\phi : K_{cd}^{G_d[K_q]} \rightarrow K_x \) induces a homomorphism \(\psi : K(cd, c) \rightarrow K(x, c + 1) \). The question is how large does \(x \) need to be for such a homomorphism to exist.

Stahl’s conjecture deals with the latter question. For an integer \(n \), the \(n \)-th multichromatic number \(\chi_n(H) \) of a graph \(H \) is the least integer \(m \) such that \(H \) admits a homomorphism to \(K(m, n) \). In particular \(\chi_1(H) = \chi(H) \). Lovász [9] proved that \(\chi_1(K(m, n)) = \chi(K(m, n)) = m - 2n + 2 \). Stahl [11] investigated the general multichromatic numbers of Kneser graphs, and observed the following.

\[\begin{align*}
\textbf{a.} & \quad \text{For } 1 \leq k \leq n, \chi_k(K(m, n)) = m - 2(n - k), \\
\textbf{b.} & \quad \chi_{kn}(K(m, n)) = km, \\
\textbf{c.} & \quad \chi_{k+k'}(K(m, n)) \leq \chi_k(K(m, n)) + \chi_{k'}(K(m, n)).
\end{align*} \]

Based on this he conjectured the following.

Conjecture 3 ([11]). If \(k = an + b \), \(a \geq 1, 0 \leq b \leq n - 1 \), then for \(m \geq 2n \),

\[\chi_k(K(m, n)) = \chi_{an}(K(m, n)) + \chi_b(K(m, n)) = (a + 1)m - 2(n - b). \]

Proof of Proposition 1 (ii). For a fixed \(d \), let \(G_d \) have girth at least 6 and fractional chromatic number at least \(8d \). For any \(q \) above a given threshold \(q_d \) and for \(c = \lfloor 3.1q \rfloor \), we have \(\chi(G_d[K_q]) \geq 2cd \) and \(\chi(K_{cd}^{G_d[K_q]}) \geq \chi_{c+1}(K(cd, c)) \), as explained in the first three paragraphs of this section. If Stahl’s conjecture holds, then \(\chi(K_{cd}^{G_d[K_q]}) \geq 2cd - 2c + 2 \). Since \(f \) is monotonic, this gives \(f(2cd - 2c + 2) \leq cd \). Therefore

\[n \in [2(c - 4)d - 2(c - 4) + 2, 2cd - 2c + 2] \text{ implies } f(n) \leq \frac{cd}{2(c - 4)d - 2(c - 4) + 2}. \]

The intervals \([2(c - 4)d - 2(c - 4) + 2, 2cd - 2c + 2], c \in \mathbb{N} \) cover all but a finite part of \(\mathbb{N} \). Hence

\[\limsup \frac{f(n)}{n} \leq \lim_{c \to \infty} \frac{cd}{2(c - 4)d - 2(c - 4) + 2} = \frac{d}{2d - 2}. \]

Since this holds for arbitrarily large \(d \), \(\limsup \frac{f(n)}{n} \leq \frac{1}{2}. \)
Acknowledgements

We thank Yaroslav Shitov for many helpful comments.

References

[1] M. El-Zahar, N.W. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121–126.

[2] P. Erdős, Graph theory and probability, Canadian J. Math. 11 (1959), 34–38.

[3] G. Gao, X. Zhu, Xuding, Star-extremal graphs and the lexicographic product, Discrete Math. 152 (1996), 147–156.

[4] W. Imrich, S. Klavžar, Product graphs. Structure and recognition, Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000. xvi+358 pp.

[5] X. He, Y. Wigderson, Hedetiemi’s conjecture is asymptotically false, arXiv:1906.06783v2, 2019.

[6] S. Hedetniemi, Homomorphisms of graphs and automata, Technical Report 03105-44-T, University of Michigan, 1966.

[7] S. Klavžar, Coloring graph products—a survey, Discrete Math. 155 (1996) 135–145.

[8] M. Krivelevich, Bounding Ramsey numbers through large deviation inequalities, Random Struct. Algorithms 7 (2) (1995) 145–155.

[9] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978), 319–324.

[10] N. Sauer, Hedetniemi’s conjecture—a survey, Discrete Math. 229 (2001) 261–292.

[11] S. Stahl, n-tuple colorings and associated graphs, J. Combinatorial Theory Ser. B 20 (1976), no. 2, 185–203.

[12] Y. Shitov, Counterexamples to Hedetniemi’s conjecture, Ann. of Math. (2) 190 (2019), no. 2, 663–667.

[13] C. Tardif, Hedetniemi’s conjecture, 40 years later, Graph Theory Notes N. Y. 54 (2008) 46–57.

[14] X. Zhu, A survey on Hedetniemi’s conjecture, Taiwanese J. Math. 2 (1998) 1–24.

[15] X. Zhu, The fractional version of Hedetniemi’s conjecture is true, European J. Combin. 32 (2011), 1168–1175.