S1 Table. Definition of the different parameters and their priors for Ile-de-France region, Ireland and four other French regions: Provence Alpes Côte d’Azur (PACA), Occitanie (OC), Nouvelle-Aquitaine (NA), Auvergne Rhône Alpes (ARA). The priors have been chosen based on current literature. U stands for uniform distribution and tN for truncated normal distribution (tN[mean, std, limit inf, limit sup]).

Parameters	Definitions	Prior or constant value	Prior or constant value	Prior or constant value
		Ile de France *	Ile de France **	Ireland
$I_1(0)$	Initial condition	U[10,1500]	U[10,1500]	U[5,100]
$S(0)$	Initial condition	N=12278000	N=12278000	N=5176000
$E_1(0), E_2(0), I_2(0), A_1(0), A_2(0)$	Initial conditions	Use of steady-state conditions ***	Use of steady-state conditions ***	Use of steady-state conditions ***
$H_1(0), H_2(0), ICU(0), D(0), G(0), R(0)$	Initials conditions	0	0	0
$\beta(0)$	Initial condition of the transmission rate	0.85	0.85	0.70
ν	Volatility of the Brownian process	U[0.02,0.15]	U[0.02,0.15]	U[0.05,0.15]
$1/\sigma$	average duration of the incubation period	tN[4,0.1,3,5] (Di Domenico et al, 2020)	tN[4,0.1,3,5] (Di Domenico et al, 2020)	tN[4,0.1,3,5] (Di Domenico et al, 2020)
$1/\gamma$	average duration of the infectious period	tN[6,0.2,4.5,7.5] (eg Ferguson et al, 2020)	tN[6,0.2,4.5,7.5] (eg Ferguson et al, 2020)	tN[6,0.2,4.5,7.5] (eg Ferguson et al, 2020)
$1/\kappa$	average hospitalization period	U[10,20]	U[10,20]	U[8,20]
$1/\delta$	average time spent in ICU	U[10,20]	U[10,20]	U[8,20]
τ_A	fraction of asymptomatics	U[0.30,0.70]	U[0.30,0.70]	U[0.30,0.70]
τ_H	fraction of hospitalization	U[0.02,0.10]	U[0.02,0.10]	U[0.02,0.10]
τ_I	fraction of ICU admission	U[0.05,0.15]	U[0.05,0.15]	U[0.025,0.15]
τ_D	death rate	U[0.10,0.80]	U[0.10,0.80]	U[0.10,0.60]
q_1	reduction in transmissibility	1.5* q1; but ≤1	1.5* q1; but ≤1	1.5* q1; but ≤1
q_2	reduction in transmissibility	0.55 (Li et al, 2020)	0.55 (Li et al, 2020)	0.55 (Li et al, 2020)
q_3	reduction in ICU admission fraction	0.05	0.05	0.10
q_D	reduction in death rate	0.10	0.10	0.20
ρ_I	reporting rate for symptomatic infectious	U[0.01, 0.10]	U[0.01, 0.10]	U[0.02, 0.15]
ρ_H	reporting rate for hospitalized people	U[0.95,1]	U[0.95,1]	U[0.95,1]
ρ_{ICU}	reporting rate for ICU admission	0.96	0.96	0.96
ρ_G	reporting rate for hospital discharge	0.96	0.96	0.96
ρ_D	reporting rate for death	0.98	0.98	0.98

* using hospital discharge data and ** not using hospital discharge data
*** steady-state conditions are defined by: $\frac{dE_1}{dt} = \frac{dE_2}{dt} = \frac{dI_1}{dt} = \frac{dI_2}{dt} = \frac{dA_1}{dt} = \frac{dA_2}{dt} = 0$
S1 Table. (continued)

Parameters	Prior or constant value			
	PACA	OC	NA	ARA
$I_f(0)$	U[10,500]	U[10,300]	U[10,200]	U[10,1000]
$S(0)$	N=5055000	N=5845000	N=5957000	N=5176000
$E_i(0), E_s(0), I_2(0), A_1(0), A_2(0)$	Use of steady-state conditions ***			
$H_i(0), H_s(0), ICU(0), D(0), G(0), R(0)$	0	0	0	0
$\beta(0)$	0.70	0.85	0.70	0.70
ν	U[0.02,0.15]	U[0.02,0.15]	U[0.02,0.15]	U[0.02,0.15]
$1/\alpha$	tN[4,0.1,3,5]	tN[4,0.1,3,5]	tN[4,0.1,3,5]	tN[4,0.1,3,5]
(Di Domenico et al, 2020)		(Di Domenico et al, 2020)	(Di Domenico et al, 2020)	(Di Domenico et al, 2020)
$1/\gamma$	tN[6,0.2,4,5,7.5]	tN[6,0.2,4,5,7.5]	tN[6,0.2,4,5,7.5]	tN[6,0.2,4,5,7.5]
(eg Ferguson et al, 2020)		(eg Ferguson et al, 2020)	(eg Ferguson et al, 2020)	(eg Ferguson et al, 2020)
$1/\kappa$	U[10,20]	U[8,18]	U[8,18]	U[10,20]
$1/\delta$	U[10,20]	U[10,20]	U[14,24]	U[12,22]
τ_A	U[0.30,0.70]	U[0.30,0.70]	U[0.30,0.70]	U[0.30,0.70]
τ_H	U[0.02,0.15]	U[0.02,0.10]	U[0.02,0.10]	U[0.02,0.10]
τ_I	U[0.05,0.15]	U[0.05,0.20]	U[0.05,0.15]	U[0.05,0.15]
τ_D	U[0.10,0.60]	U[0.10,0.60]	U[0.10,0.60]	U[0.10,0.80]
q_1	1.5*q_2 but≤1	1.5*q_2 but≤1	1.5*q_2 but≤1	1.5*q_2 but≤1
q_2	0.55	0.55	0.55	0.55
	(Li et al, 2020)			
q_3	0.05	0.05	0.05	0.05
q_D	0.10	0.10	0.10	0.10
ρ_1	U[0.02, 0.15]	U[0.02, 0.15]	U[0.02, 0.15]	U[0.01, 0.10]
ρ_H	U[0.95,1]	U[0.95,1]	U[0.95,1]	U[0.95,1]
ρ_{ICU}	0.96	0.96	0.96	0.96
ρ_G	0.96	0.96	0.96	0.96
ρ_D	0.98	0.98	0.98	0.98