Efficacy of a non-pheromone semiochemical for trapping of western flower thrips in the presence of competing plant volatiles in a nectarine orchard

David A. J. Teulon1, Melanie M. Davidson1, Mette Nielsen1, Ruth Butler1, Dolores Bosch2, Jordi Riudavets3 and Cristina Castañé3

1The New Zealand Institute for Plant & Food Research Ltd, Private Bag 4704, Christchurch 8140, New Zealand. 2Sustainable Plant Protection, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 25198 Lleida, Spain. 3Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08348, Cabrils, Barcelona, Spain.

Abstract

Non-pheromone semiochemicals or allelochemicals (kairomones, synomones, allomones) are often derived from, or are similar to, host plant odours and depending on their use, these semiochemicals may have to compete with the same or similar odours emanating from adjacent host plants with unknown consequences on trapping efficacy. The aim of this study was to examine the efficacy of the non-pheromone thrips attractant methyl isonicotinate (MI) as a lure for Western flower thrips (WFT; Frankliniella occidentalis) over a range of Prunus persicae nectarine plant growth stages (flowering, green fruit, ripe fruit), when competition from different host plant odours may vary, and different numbers of thrips can be present, in a Catalan nectarine orchard in 2014 and 2015. Significant 2.4–3.9 × increases in WFT numbers in traps with MI compared with those without MI were consistent over the season (flowering, green fruit, mature fruit) despite overall differences in thrips numbers on these different occasions. These results suggest that MI is an effective lure throughout the nectarine growth stages despite the presumed presence of competing and changing host plant odours. Trap type and colour and MI release rate may be important for improving overall trap efficacy.

Additional keywords: Thysanoptera; trapping efficacy; attractant; methyl isonicotinate; competing odours, Prunus persicae.

Abbreviations used: HGLM (hierarchical generalized linear model); MI (methyl isonicotinate); NZFT (New Zealand flower thrips); WFT (Western flower thrips).

Authors’ contributions: Conceived of the experiment: DAJT, JR, CC. Designed experiment: JR, CC, DB, MMD, MN. Undertook field samples and compiled data: DB. Analysed the data: RB, DAJT. Wrote the paper: DAJT, CC, JR, MMD, MN. All authors read and approved the final manuscript.

Citation: Teulon, D.A.J., Davidson, M.M., Nielsen, M., Butler, R., Bosch, D., Riudavets, J., Castañé, C. (2018). Short communication: Efficacy of a non-pheromone semiochemical for trapping of western flower thrips in the presence of competing plant volatiles in a nectarine orchard. Spanish Journal of Agricultural Research, Volume 16, Issue 3, e10SC01. https://doi.org/10.5424/sjar/2018163-13060

Received: 17 Feb 2018. Accepted: 25 Jul 2018.

Copyright © 2018 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC-by 4.0) License.

Funding: Spanish Ministry of Economy and Competitiveness (Project AGL2014-53970-C2-2-R); Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme; NZ-EU IRSES Counterpart Fund PIRSES-CA-2011-295194 administered by the Royal Society of New Zealand (Europe Australasian Thrips Semiochemical (EATS) Network).

Competing interests: DAJT, MMD and MN all work for the New Zealand Institute for Plant and Food Research who hold the patent for methyl isonicotinate.

Correspondence should be addressed to David A. J. Teulon: david.teulon@plantandfood.co.nz

Introduction

Semiochemicals (pheromone and non-pheromones) are increasingly used in insect pest management (Suckling, 2015). Non-pheromone semiochemicals or allelochemicals (kairomones, synomones, allomones) are often derived from, or are similar to, host plant odours (Koschier, 2008) and depending on their use, these semiochemicals may have to compete with the same or similar odours emanating from adjacent host plants with unknown consequences on trapping efficacy. Frankliniella occidentalis (Pergande), western flower thrips (WFT), is a cosmopolitan pest of many different fruit and vegetable crops (Kirk & Terry, 2003). Since its dispersal around the world in the 1980s and 1990s it has become the principal thrips pests in peach and nectarine (Prunus persicae) in many countries (Lacasa et al., 1993; González et al., 1994; Felland...
et al., 1995; Pearsall, 2000; Hazir & Ulusoy, 2012; Tommasini & Ceredi, 2007; Broughton et al., 2015). WFT adults are found in *P. persicae* flowers and ripe fruit (harvest) where they cause feeding damage and lay eggs (see references above). WFT management relies on insecticide applications but alternative approaches are being eagerly explored (de Kogel et al., 2016) in part because of WFT’s ability to develop resistance to these chemicals (Jensen, 2000). Gao et al. (2012) listed eight insecticide classes with different modes of action (Insecticide Resistance Action Committee codes: 1A, 1B, 2A, 2B, 3A, 4A, 5, 6) that WFT has been recorded as resistant to.

The odour of *P. persicae* flowers (Baraldi et al., 1999) and fruit (Sevens & Jenning, 1966; Do et al., 1969; Spencer et al., 1978; Horvat et al., 1990; El-Sayed et al., 2014) include volatile compounds, some of which have been identified as being attractive to WFT in laboratory and field bioassays (Koschier, 2008; Davidson et al., 2008). Like other generalist thrips, WFT is considered to respond to a wide range of scents associated with flowers (Kirk, 1985). La Rue et al. (1972) and Teulon (1988) speculated that the characteristic odour of peach/nectarine fruit is attractive to WFT and New Zealand flower thrips (NZFT) (*Thrips obscuratus* (Crawford), respectively. Subsequently, the attraction of NZFT to several compounds found in peach fruit odour was confirmed by El-Sayed et al. (2014).

Methyl isonicotinate (MI) is one of several recently discovered and patented semiochemicals that has potential for a variety of uses in thrips pest management such as mass trapping, lure and kill, lure and infect, and as a behavioural synergist in conjunction with insecticides (de Kogel et al., 2016; Teulon et al., 2017). MI has not been identified from the odours of peach/nectarine flowers (Baraldi et al., 1999) or fruit (Sevenants & Jenning, 1966; Do et al., 1969; Spencer et al., 1978; Horvat et al., 1990; El-Sayed et al., 2014) and to our knowledge not from the odours of any other flowers or fruit. MI was originally selected based on its similarity to other thrips attractants and its increased efficacy against a range of thrips species (Teulon et al., 2007, 2017; Davidson et al., 2008). MI is probably the most extensively studied thrips non-pheromone semiochemical, with field and glasshouse trapping experiments and wind tunnel and Y-tube olfactometer studies in several countries demonstrating a behavioural response that resulted in increased trap capture of at least 12 thrips species, including WFT (Teulon et al., 2017). MI is an effective lure for flying WFT adults in nectarine orchards in Western Australia (Broughton & Harrison, 2012) and Catalonia, Spain (Teulon et al., 2014a; Davidson et al., 2015) but its effectiveness was not examined throughout the growing season when there may be qualitative and quantitative changes in competing plant odours from flowers or fruit. In these previous studies the WFT numbers were very low and were aggregated for the full trapping period (Broughton & Harrison, 2012) or were carried out only at the green fruit stage (Teulon et al., 2014a; Davidson et al., 2015). MI needs to be shown to be active for WFT throughout the peach/nectarine growing season if it is to become a useful tool for WFT pest management.

The aim of this study was to examine the efficacy of the non-pheromone attractant MI as an attractant for WFT during nectarine flowering, green fruit and ripe fruit growth stages, when competition from different host plant odours may vary and different numbers of thrips can be present.

Material and methods

In general, methods were comparable with previous trapping of thrips with semiochemicals in Catalan nectarine orchards in 2013 as reported by Teulon et al. (2014a) and Davidson et al. (2015).

— **2014.** A single trial was conducted in a 5.6-ha ‘Fantasia’ nectarine orchard near Lleida (Soses) (41° 34’ 53.30” N, 0° 25’ 59.22” E) from 4 to 15 August 2014 to compare thrips capture on sticky traps baited with and without MI. The trial was conducted soon after fruit harvest with some intact fruit still on the orchard floor.

— **2015.** Three trials were conducted in a 2.0-ha ‘Big Top’ nectarine orchard near Lleida (Menàrguens) (41° 45’ 0.34” N, 0° 43’ 47.52” E), one each during flowering (3–10 April 2015), green fruit (7–13 May 2015) and ripe fruit (20 June–1 July 2015) to compare thrips capture on sticky traps baited with and without MI and at these different stages of nectarine fruit development.

For both years, blue sticky board traps, 10 × 35 cm (Syngenta, Almeria, Spain) were attached to a branch on the tree at a height of 1.5 m with no consistent orientation as is usual with hanging traps. Traps were 20 m apart (between both treatments and replicates), at least 30 m from the orchard edge and arranged in a 2 (treatment) × 6 (replicate) design using three adjacent Latin squares. A 4-mL glass vial was attached to each sticky board and each contained 5 × 6 cm white filter paper (Whatman no. 1) rolled into a cylinder to create a wick that protruded 1 cm above the vial opening. Each dispenser was loaded with either 1 mL of MI, which emits between 180 and 380 mg/day depending on ambient conditions (Nielsen, unpublished data), or 1 mL of water (control) as different treatments. Each trial
was repeated over time on four occasions (four trapping periods each of 2–3 days). Treatment locations were alternated for each temporal replicate and traps, vials and their contents were replaced so that there was sufficient MI throughout the trial period. Numbers of WFT and non-WFT (sexes not differentiated) caught were counted directly for each side of the sticky trap using a stereo microscope (80X magnification) and converted to daily values for better comparison between trapping periods.

All thrips were counted on all traps. In 2014, thrips were counted on two halves and on each side of all traps (i.e. 4 counts per trap). In 2015, thrips were counted on both sides of all traps (i.e. 2 counts per trap).

Differences between numbers of thrips with and without MI were compared for WFT and non-WFT thrips (species not differentiated) although few non-WFT thrips were present in 2014 (see results).

Statistical analysis

All trials were analysed similarly. Only WFT and non-WFT counts were analysed. The individual counts (four per trap in 2014 or two per trap in 2015) were analysed (i.e. the data were not summarized as counts per trap). Some initial analyses were carried out to assess whether there were any spatial effects (e.g. trends from north to south across the trial) and since there were none, no adjustments were included for such trends within the analyses.

The counts for the total trapping period (i.e. four trapping periods combined) for each stage of nectarine fruit development in each year were analysed for differences between traps with and without MI. The counts were analysed with either a Poisson hierarchical generalized linear model approach (HGLM, Lee et al. 2006) or, where there was substantial aggregation/clustering (see section 4.5 Over-dispersion in McCullagh & Nelder, 1989), with a negative binomial HGLM. This approach allows for the inclusion of random effects (such as trap location, trapping periods within a period of fruit development, trap side for 2015). Where required, the aggregation factor for the negative binomial was estimated by fitting the fixed effects (treatments with or without MI) with a Poisson distribution, and including a ‘units’ level factor (one level for each separate count) as a random effect. Logarithmic links were used for both fixed and random effects. In the results, predicted means are given along with 95% confidence limits. These were obtained on the link (log.) scale, and back-transformed. The analyses were carried out with Genstat (Payne et al., 2015).

Data were further contrasted to similar bioassays comparing blue sticky traps with and without MI in a nectarine orchard near Lleida in 2013 (Davidson et al., 2015). In these bioassays blue sticky traps were Horiver 10 × 25 cm (Koppert, Berkel en Rodenrijs, The Netherlands).

Results and discussion

Several thrips species are thought to inhabit Spanish peach and nectarine orchards (Riudavets & Castañé, unpublished data) but WFT is by far the most numerous and problematic (Torà et al., 2010; Davidson et al., 2015). This was confirmed in this study, where about 60% of thrips at flowering and close to 100% of thrips at the ripe fruit stage were WFT (Table 1).

Trial design was not optimal for comparing thrips population densities over time and between seasons, as sample intervals varied over studies. Additionally, we did not control for different nectarine varieties between years that may have influenced thrips densities. Nevertheless, relatively low thrips numbers were found at flowering compared with at harvest (Table 2), as is consistent with other studies in Spain and Italy (Lacasa et al., 1993; González et al., 1994; Tommasini & Burgio, 2004).

The main objective of this study was to examine differences in WFT trap capture with and without the thrips semiochemical lure MI at different stages of flower or fruit development, when there were presumably different background host plant odours. Increases in WFT numbers, including those results from Davidson et al. (2015) in similar Catalan nectarine orchards in 2013, of between 2.4 X – 3.9 X in traps with MI compared with those without MI were surprisingly consistent over the season (flowering, green fruit, mature fruit) despite overall differences in thrips numbers on these different occasions (Table 2). (p<0.001 for all comparisons except for flowering 2015 when numbers were too low for meaningful analysis). Like any field research, the conclusions drawn from this study would benefit from additional studies carried out in different years and in different locations. However, our results show for the first time that a thrips attractant is equally effective across different stages of flower and fruit development, a condition that will be important for successful exploitation of thrips trapping technologies with attractants for thrips pest management.

| Table 1. Percentage of western flower thrips (WFT) out of total thrips at different growth stages of nectarine trees. |
|-----------------|-----------------|-----------------|
| | Flowering | Green fruit | Ripe fruit |
| 20131 | - | 94.5 | - |
| 2014 | - | - | 98.4 |
| 2015 | 62.5 | 95.5 | 98.6 |

Data from Davidson et al. (2015).
Broughton & Harrison (2012) also found MI (in the commercial formulation Lurem-TR) to be an effective lure for WFT in nectarines but did not distinguish efficacy at different plant growth stages, and thrips numbers trapped were relatively low (< 17 thrips per trap). In Y-tube experiments, Koschier et al. (2017) have shown that MI remains an effective lure for WFT irrespective of background odour. Our results further demonstrate that MI is an effective lure throughout the nectarine growth stages despite the presumed presence of competing and changing host plant odours.

Trapping NZFT with another thrips lure, ethyl nicotinate, in a New Zealand stonefruit orchard showed the efficiency of this chemical throughout the growing season and that the chemical was more attractive than ripe fruit (Penman et al., 1982; Teulon et al., 1993). The addition of ethyl nicotinate to water traps for early-season monitoring of NZFT in a nectarine orchard significantly increased capture of adult male and female thrips (up to 27 times), and NZFT were caught in traps with ethyl nicotinate before traps without ethyl nicotinate (Teulon et al., 1993). El-Sayed et al. (2014) used 6-pentyl-2H-pyran-2-one to increase trap captures of NZFT compared with those by unbaited traps during the harvest period in January, but there was no indication if fruit were on the trees.

Both ethyl nicotinate and 6-pentyl-2H-pyran-2-one are very strong attractants for NZFT (Penman et al., 1982; Teulon et al., 1993; El-Sayed et al., 2014) with increased trap catches sometimes over 100 times. However, such a strong response for WFT has not been found for any chemical to date. MI has proved to be more effective than ethyl nicotinate and 6-pentyl-2H-pyran-2-one for this thrips species (Teulon et al., 2014a). Increased trap catches (c. 10 X) of WFT in white water traps with MI compared with those without (Teulon et al., 2014a) suggest that trap type and trap colour may be important for maximising trap efficacy. Additionally, there is growing evidence that increased odour release rates bring about increased thrips response with different thrips species/odour combinations (El-Sayed et al., 2014; Teulon et al., 2014b), so that increased trap capture can be brought about by manipulation of the release rate. Further research investigating factors such as trap type, trap colour and release rates is likely to be important for optimising thrips trap capture but was beyond the scope of this short communication.

The focus of this study was WFT, hence non-WFT species were not identified. Increases in non-WFT were more varied, with between 0.9 and 11.7 times as many thrips in traps with MI and traps without MI (Table 3). Differences in apparent efficacy of MI may have been due to a number of reasons, including changes in the abundance of species found at different sampling periods.

These results suggest that methyl isonicotinate is an effective lure for Western flower thrips throughout the

Table 2. Mean numbers (95% confidence limits) of western flower thrips (WFT) caught on sticky traps with and without methyl isonicotinate (MI) and at different growth stages of nectarine trees. Ratios are of thrips in traps with MI to traps without MI.

Flowering	Green fruit	Ripe fruit
+MI -MI	+MI -MI	+MI -MI
Ratio	Ratio	Ratio
2013 \(^1\)		
160.9	41.0	3.9
(89.1,290.5)	(22.5,74.8)	
2014		
0.1	0.0	2.5
(0.0,0.3)	(0.0,0.2)	
7.5	2.9	2.6
(3.4,16.6)	(1.3,6.3)	
56.8	19.9	2.9
(14.7,219.6)	(5.1,76.9)	
2015		
0.3	0.4	1.4
(0.1,0.2)	(0.0,0.1)	
0.4	0.1	3.3
(0.3,0.6)	(0.1,0.2)	
3.0	0.3	1.0
(0.1,0.7)	(0.2,0.7)	

\(^1\)Data from Davidson et al. (2015).

Table 3. Mean numbers (95% confidence limits) of non-western flower thrips species caught on sticky traps with and without methyl isonicotinate (MI) and at different growth stages of nectarine trees. Ratios are of thrips in traps with MI to traps without MI.

Flowering	Green fruit	Ripe fruit
+MI -MI	+MI -MI	+MI -MI
Ratio	Ratio	Ratio
2013 \(^1\)		
9.7	1.1	9.0
(4.3,21.7)	(0.4,3.3)	
2014		
0.7	0.5	1.4
(0.3,1.5)	(0.2,1.1)	
2015		
0.3	0.3	1.0
(0.1,0.7)	(0.2,0.7)	

\(^1\)Data from Davidson et al. (2015).
nectarine growth stages despite the presumed presence of competing and changing host plant odours.

Acknowledgements

We thank Peter Lo for comments on an earlier draft of this manuscript.

References

Baraldi R, Rapparini F, Rossi F, Latella A, Ciccioli P, 1999. Volatile organic compound emissions from flowers of the most occurring and economically important species of fruit trees. Phys Chem Earth B 24 (6): 729-732. https://doi.org/10.1016/S1464-1909(99)00073-8

Broughton S, Harrison J, 2012. Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficial insects (Syripodidae, Hemerobiidae) in deciduous fruit trees in Western Australia. Crop Prot 42: 156-163. https://doi.org/10.1016/j.cropro.2012.05.004

Broughton S, Bennington JMA, Cousins DA, Rahman T, 2015. Thrips (Thysanoptera) damage to apples and nectarines in the most occurring in Western New South Wales. Crop Prot 72: 47-56. https://doi.org/10.1016/j.cropro.2015.02.014

Davidson MM, Perry NB, Larsen L, Green VC, Butler RC, Teulon DAJ, 2008. 4-pyridyl carbonyl compounds as thrips lures: effectiveness for Western Flower Thrips in Y-tube bioassays. J Agric Food Chem 56: 6554-6561. https://doi.org/10.1021/jf080863t

Davidson MM, Nielsen M-C, Butler RC, Castañé C, Alomar O, Riudavets J, Teulon DAJ, 2015. Can semiochemicals attract both western flower thrips and their anthocorid predators? Entomol Exp Appl 155: 54-63. https://doi.org/10.1111/eea.12284

De Kogel WJ, Koschier EH, Broughton S, Castañé C, Davidson MM, Hamilton JGC, Kirk WDJ, Nielsen M-C, Riudavets J, Van Tol RWHM, Teulon DAJ, 2016. Semiochemicals for sustainable thrips management. Die Bodenkultur 66 (3-4): 17-25.

Do JY, Salunkhe DK, Olson LE, 1969. Isolation, identification and comparison of the volatiles of peach fruit as related to harvest maturity and artificial ripening. J Food Sci 34: 618-621. https://doi.org/10.1111/j.1365-2621.1969.tb12104.x

El-Sayed AM, Mitchell, VJ, Suckling DM, 2014. 6-Pentyl-2H-pyran-2-one: a potent peach-derived kairomone for New Zealand flower thrips, *Thrips obscuratus*. J Chem Ecol 40: 50-55. https://doi.org/10.1007/s10886-014-0379-3

Felland CM, Teulon DAJ, Hull LA, Polk D, 1995. Distribution and management of thrips (Thysanoptera: Thripidae) on nectarine in the mid-Atlantic region. J Econ Entomol 88: 1004-1011. https://doi.org/10.1093/jee/88.4.1004

Gao Y, Leia Z, Reitz SR, 2012. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag Sci 68 (8): 1111-1121. https://doi.org/10.1002/ps.3305

González E, Alvarado M, Berlanga E, Serrano A, De la Rosa A, 1994. Daños producidos por trips en nectarinas en el Valle del Guadalquivir. Bol San Veg Plagas 20: 229-241.

Hazir A, Ulusoy MR, 2012. Population fluctuation of thrips species (Thysanoptera: Thripidae) in nectarine orchards and damage levels in east mediterranean region of Turkey. J Entomol Res Soc 14(1): 41-52.

Horvat RJ, Chapman JRGW, Robertson JA, Meredith FL, Scorza R, Callahan AM, Morgens P, 1990. Comparison of the volatile compounds from several commercial peach cultivars. J Agric Food Chem 38: 234-237. https://doi.org/10.1021/jf00091a051

Jensen SE, 2000. Insecticide resistance in the western flower thrips *Frankliniella occidentalis*. Integrated Pest Manag Rev 5: 131-146. https://doi.org/10.1023/A:1009600426262

Kirk WDJ, 1985. The effect of some floral scents on host finding by thrips (Insecta: Thysanoptera). J Chem Ecol 11: 35-43. https://doi.org/10.1007/BF00987602

Kirk WDJ, Terry LI, 2003. The spread of the western flower thrips *Frankliniella occidentalis* (Pergande). Agr Forest Entomol 5: 301-310. https://doi.org/10.1046/j.1461-9563.2003.00192.x

Koschier EH, 2008. Essential oil compounds for thrips control - a review. Nat Prod Commun 3 (7): 1171-1182.

Koschier E, Nielsen M-C, Spangl B, Davidson MM, Teulon DAJ, 2017. The effect of background plant odours on the behavioural responses of *Frankliniella occidentalis* to attractive or repellent compounds in a Y-tube olfactometer. Entomol Exp Appl 163(2): 160-169. https://doi.org/10.1111/eea.12566

Lacasa A, Torres J, Martinez MAC, 1993. *Frankliniella occidentalis* (Perg.) en los cultivos de nectarina de Murcia. Evolución de las poblaciones y comportamiento de variedades. Bol San Veg Plagas 19: 335-344.

La Rue JH, Dibble JE, Obernauf G, 1972. Thrips in nectarines. The Blue Anchor (spring): 21-25.

Lee Y, Nelder JA, Pawitan Y, 2006. Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood. Chapman & Hall/CRC Press, London. Pg 416. https://doi.org/10.1201/9781420011340

McCullagh P, Nelder JA, 1989. Generalized Linear Models. Chapman & Hall, London, Pp 511+xix. https://doi.org/10.1007/978-1-4899-3242-6

Payne R, Murray D, Harding S, 2015. The Guide to the Genstat® Command Language (Release 18). VSN International, Hemel Hempstead, Hertfordshire, United Kingdom.

Pearsall IA, 2000. Damage to nectarines by the western flower thrips, *Frankliniella occidentalis* (Pergande) in British Columbia, Canada. J Econ Entomol 93: 1207-15. https://doi.org/10.1603/0022-0493-93.4.1207
Penman DR, Osborne GO, Worner SP, Chapman RB, McLaren GF, 1982. Ethyl nicotinate: a chemical attractant for Thrips obscuratus (Thysanoptera: Thripidae) in stonefruit in New Zealand. J Chem Ecol 8: 1299-1303. https://doi.org/10.1007/BF00987763

Sevenants MR, Jennings WG, 1966. Volatile components of peach II. J Food Sci 31: 81-86. https://doi.org/10.1111/j.1365-2621.1966.tb15418.x

Spencer MD, Pangborn RM, Jennings WG, 1978. Gas chromatographic and sensory analysis of volatiles from cling peaches. J Agric Food Chem 26 (3): 725-732. https://doi.org/10.1021/jf60217a052

Suckling DM, 2015. Can we replace toxicants, achieve biosecurity, and generate market position with semiochemicals? Front Ecol Evol 3: 17. https://doi.org/10.3389/fevo.2015.00017

Teulon DAJ, 1988. Pest management of the New Zealand flower thrips Thrips obscuratus (Crawford) (Thysanoptera: Thripidae) on stonefruit in Canterbury, New Zealand. Ph.D. thesis, Lincoln College, University of Canterbury, New Zealand.

Teulon DAJ, Penman DR, Ramakers PMJ, 1993. Volatile chemicals for thrips (Thysanoptera: Thripidae) host finding and possible applications for thrips pest management. J Econ Entomol 86 (5): 1405-1415. https://doi.org/10.1093/jee/86.5.1405

Teulon DAJ, Davidson MM, Hedderly DI, James DE, Fletcher CD, Larsen L, Green VC, Perry NB, 2007. 4-Pyridyl carbonyl and related compounds as thrips lures: Effectiveness for onion thrips and New Zealand flower thrips in field experiments. J Agric Food Chem 55 (15) 6198-6205. https://doi.org/10.1021/jf070389a

Teulon DAJ, Castañé C, Nielsen MC, El-Sayed AM, Davidson MM, Gardner-Gee R, Poulton J, Kean AM, Hall C, Butler RC, Sansom CE, Suckling DM, Perry NB, 2014a. Evaluation of new volatile compounds as lures for western flower thrips and onion thrips in New Zealand and Spain. NZ Plant Prot 67: 175-183.

Teulon DAJ, Davidson MM, Butler RC, Nielsen MC, 2014b. Effect of release rate and odour cross-contamination for semiochemical baited traps used in thrips pest management. IOBC/WPRS Bull 102: 205-210.

Teulon DAJ, Davidson MM, Perry NB, Nielsen MC, Castañé C, Bosch D, Riudavets J, van Tol RWKM, de Kogel WJ, 2017. Methyl isonicotinate - A non-pheromone thrips semiochemical - and its potential for pest management. Int J Trop Insect Sci 37 (2): 50-56. https://doi.org/10.1017/S1742758417000030

Tommasini MG, Burgio G, 2004. The damage of thrips on nectarine: sampling methods of populations and injury level. IOBC/WPRS Bull 27 (5): 35-47.

Tommasini MG, Ceredi G, 2007. Damages on nectarines by thrips in northern Italy: monitoring and control on late attacks. B Insectol 60 (1): 71-75.

Torá R, Dolset A, García de Otazo J, 2010. Control Integrado en frutales de hueso de la zona productora de Lleida. Phyton España 219: 48-54.