thornado-transport: Anderson- and GPU-accelerated nonlinear solvers for neutrino-matter coupling

M Paul Laiu\(^1\), J Austin Harris\(^2\), Ran Chu\(^3\) and Eirik Endeve\(^1,3\)

\(^1\)Computer Science and Mathematics Division, Oak Ridge National Laboratory, TN 37831
\(^2\)National Center for Computational Sciences, Oak Ridge National Laboratory, TN 37831
\(^3\)Department of Physics and Astronomy, University of Tennessee Knoxville, TN 37996

E-mail: laiump@ornl.gov; harrisja@ornl.gov; rchu@vols.utk.edu; endevee@ornl.gov

Abstract. Algorithms for neutrino-matter coupling in core-collapse supernovae (CCSNe) are investigated in the context of a spectral two-moment model, which is discretized in space with the discontinuous Galerkin method, integrated in time with implicit-explicit (IMEX) methods, and implemented in the toolkit for high-order neutrino-radiation hydrodynamics (thornado). The model considers electron neutrinos and antineutrinos and tabulated opacities from Bruenn (1985), which includes neutrino-electron scattering and pair processes. The nonlinear system arising from implicit time discretization of the equations governing neutrino-matter coupling is iterated to convergence using Anderson-accelerated fixed-point methods, which avoid formation of Jacobians and inversion of dense linear systems. Numerical experiments show that, for a given tolerance, a nested iteration scheme which aims to reduce opacity evaluations can lower the computational cost. Our initial port to GPUs, using both OpenMP and OpenACC, shows an overall speedup of up to \(\sim 100x\) when compared to results using a single CPU core. These results indicate that the algorithms implemented in thornado are well-suited to GPU acceleration.

1. Introduction

Neutrinos play a critical role in the core-collapse supernova (CCSN) explosion mechanism [34, 27, 9, 37]. In a CCSN event, most (\(\sim 99\%\)) of the gravitational binding energy liberated during iron core collapse (\(\sim 10^{46}\) J) is released as neutrino radiation, and it is thought that a fraction of this energy is deposited back into the stellar fluid to help drive the explosion. Although much remains to be elucidated, this basic picture is supported by simulations (e.g., [33, 31, 10]).

The ‘supernova problem’ has been with us since the 1960s [20, 4], and any perceived slow progress in understanding the explosion mechanism(s) is in part due to the complexity of the physical processes known to play a role, combined with a lacking availability of computational resources and robust and efficient algorithms needed to include these processes in models. The
inclusion of neutrino transport is a major reason for the high computational cost of CCSN models. Since neutrinos interact weakly with matter in the neutrino heating region, a kinetic description based on the phase space distribution function is warranted. The need for sufficient phase space resolution to faithfully capture the physics quickly adds to the computational cost. For example, it has been demonstrated (e.g., [30, 36]) that the inclusion of neutrino-matter interactions that couple across momentum space and/or across neutrino species (e.g., scattering and pair processes) can have a decisive impact on the global dynamics. However, the computational cost of including these interactions in simulations typically grows with the number of momentum space degrees of freedom to a power of 2-3 (depending on the algorithm), which can render them prohibitively expensive. The delivery of exascale computing systems (capable of 10^{18} double-precision floating-point operations per second) is expected to enable unprecedented realism in CCSN simulations. However, the path to the exascale — through heterogeneous computer architectures — has opened up unchartered territory for exploration of suitable algorithms, implementations, and programming models.

The toolkit for high-order neutrino-radiation hydrodynamics\(^2\) (tornado) [13, 23] is being developed for modeling CCSNe. Current capabilities in tornado include hydrodynamics (approximated by the Euler equations with ideal and tabulated equations of state) and spectral neutrino transport (approximated by a two-moment model with algebraic closures). A distinguishing feature of tornado, when compared to mature supernova codes (e.g., [35, 8, 41]), is the use of high-order discontinuous Galerkin (DG) methods [17] for both hydrodynamics and neutrino transport. DG methods combine elements of spectral and finite volume methods, achieve high-order accuracy on a compact stencil, and favorable parallel scalability on heterogeneous architectures has been demonstrated [28]. They can be used in combination with \(hp\)-adaptivity [39], where, in addition to mesh refinement, the local polynomial degree can be chosen differently in different cells. DG methods can easily be adapted to problems using curvilinear coordinates (e.g., beneficial in numerical relativity [42]). Important for neutrino transport, DG methods recover without modification the correct asymptotic behavior in the diffusion limit, characterized by frequent collisions (e.g., [29, 1]). tornado is not developed as a supernova simulation code with all the utilities needed to run on large scale, distributed-memory systems, but rather as a collection of modules that can be incorporated into such simulation codes (e.g., FLASH [24] and CASTRO [2]). For this reason, a primary focus of the tornado development is node-level performance on heterogeneous computing systems.

In this paper we provide an initial overview of algorithms and implementations for neutrino-matter coupling in tornado. We discuss two iterative, nonlinear solvers embedded in our DG framework with implicit-explicit (IMEX) time integration: (1) a coupled algorithm, which iterates matter and neutrinos on an equal footing; and (2) a nested algorithm, which iterates matter and neutrinos in a hierarchical fashion with the aim of reducing expensive opacity evaluations. Both algorithms are based on Anderson-accelerated fixed-point iteration [3]. Numerical experiments using a single CPU core indicate that the nested algorithm can reduce the computational cost. Moreover, initial results from porting the coupled algorithm to GPUs show that a substantial reduction in time to solution can be achieved for all components of the neutrino transport scheme. Importantly, the implicit part of the DG-IMEX scheme achieves a $\sim 100x$ GPU speedup when compared to results obtained with a single CPU core. In the results presented, we considered electron neutrinos and antineutrinos, and used opacities from Bruenn (1985; [7]), which include emission/absorption, iso-energetic scattering, neutrino-electron scattering, and electron-positron pair processes. Tabulated equations of state and neutrino opacities, with associated subroutines, are provided by the WeakLib\(^3\) library.

\(^2\)github.com/endeve/thornado
\(^3\)github.com/starkiller-astro/weaklib
2. Mathematical model

Here we present a model for electron neutrinos and antineutrinos interacting with a (fluid) background. Notable assumptions in our model are: (1) the fluid velocity is zero everywhere, (2) the rest mass density does not change with time, and (3) only the isotropic part of the scattering and pair process kernels are included. We consider a non-relativistic two-moment model for neutrino transport, where the spectral neutrino density \mathcal{J}, flux density \mathcal{H}, and stress \mathbf{K} are defined as angular moments

$$
\{ \mathcal{J}, \mathcal{H}, \mathbf{K} \}(\varepsilon, \mathbf{x}, t) = \frac{1}{4\pi} \int_{S^2} f(\omega, \varepsilon, \mathbf{x}, t) \{ 1, \ell, \ell \otimes \ell \} \, d\omega,
$$

where the distribution function $f : (\omega, \varepsilon, \mathbf{x}, t) \in S^2 \times \mathbb{R}^+ \times \mathbb{R}^3 \times \mathbb{R}^+ \rightarrow \mathbb{R}^+$ gives the number of particles propagating in the direction $\omega \in S^2$, with energy $\varepsilon \in \mathbb{R}^+$, at position $\mathbf{x} \in \mathbb{R}^3$ and time $t \in \mathbb{R}^+$, and $\ell(\omega) \in \mathbb{R}^3$ is a unit vector parallel to the particle propagation direction. (We employ units where the speed of light is $c = 1$.) Angular moments of the antineutrino distribution $f(\omega, \varepsilon, \mathbf{x}, t)$ are defined analogously and annotated with a bar; i.e., \mathcal{J}^\prime, \mathcal{H}^\prime, and \mathbf{K}^\prime.

For electron neutrinos, the evolution equations for the spectral density and flux are given by

$$
\partial_t \mathcal{J} + \nabla \cdot \mathbf{H} = \eta(\mathcal{J}, \mathcal{J}^\prime) - \chi(\mathcal{J}, \mathcal{J}^\prime) \mathcal{J},
$$

$$
\partial_t \mathcal{H} + \nabla \cdot \mathbf{K} = -\kappa(\mathcal{J}, \mathcal{J}^\prime) \mathcal{J},
$$

where, following [32], we write the stress tensor in terms of the lower order moments as

$$
\mathbf{K} = \frac{1}{2} \left[(1 - \psi) \mathbf{I} + (3 \psi - 1) \mathbf{h} \otimes \mathbf{h} \right] \mathcal{J},
$$

where \mathbf{I} is the identity matrix, $\mathbf{h} = \mathcal{H} / |\mathcal{H}|$, and $\psi(\mathcal{J}, h)$, with $h = |\mathcal{H}| / \mathcal{J}$, is the Eddington factor. Here we use the maximum entropy Eddington factor from Cernohorsky & Bludman [11].

The collision terms on the right-hand side of Eqs. (2) and (3) model neutrino-matter interactions due to electron capture and iso-energetic scattering on nucleons and nuclei, inelastic neutrino-electron scattering (NES), and electron-positron pair production and annihilation. The total emissivity is given by

$$
\eta(\mathcal{J}, \mathcal{J}^\prime) = \chi_{\text{Ec}} \mathcal{J}_0 + \int_{\mathbb{R}^+} \Phi_{\text{Nes}}^{\text{In}}(\varepsilon, \varepsilon') \mathcal{J}(\varepsilon') \, dV_{\varepsilon'} + \int_{\mathbb{R}^+} \Phi_{\text{Par}}^{\text{Pr}}(\varepsilon, \varepsilon') \left(1 - \mathcal{J}(\varepsilon') \right) \, dV_{\varepsilon'},
$$

where χ_{Ec} is the electron capture opacity, \mathcal{J}_0 is the equilibrium (Fermi-Dirac) spectral distribution, $\Phi_{\text{Nes}}^{\text{In}}$ is the NES in-scattering kernel, and $\Phi_{\text{Par}}^{\text{Pr}}$ is the pair production kernel. The infinitesimal energy volume element is $dV_{\varepsilon} = \varepsilon^2 \, d\varepsilon$. The total opacity is given by

$$
\chi(\mathcal{J}, \mathcal{J}^\prime) = \chi_{\text{Ec}} + \int_{\mathbb{R}^+} \left[\Phi_{\text{Nes}}^{\text{In}}(\varepsilon, \varepsilon') \mathcal{J}(\varepsilon') + \Phi_{\text{Nes}}^{\text{Out}}(\varepsilon, \varepsilon') \left(1 - \mathcal{J}(\varepsilon') \right) \right] \, dV_{\varepsilon'},
$$

$$
+ \int_{\mathbb{R}^+} \left[\Phi_{\text{Par}}^{\text{Pr}}(\varepsilon, \varepsilon') \left(1 - \mathcal{J}(\varepsilon') \right) + \Phi_{\text{Par}}^{\text{An}}(\varepsilon, \varepsilon') \mathcal{J}(\varepsilon') \right] \, dV_{\varepsilon'},
$$

where $\Phi_{\text{Nes}}^{\text{Out}}$ is the NES out-scattering kernel, and $\Phi_{\text{Par}}^{\text{An}}$ is the pair annihilation kernel. In Eq. (3), $\kappa = \chi + \sigma$, where σ — independent of \mathcal{J} and \mathcal{J}^\prime — is the scattering opacity due to iso-energetic scattering on nucleons and nuclei. (For brevity we omit listing of analogous equations for antineutrinos.) Here we represent the iso-energetic and NES scattering, and the pair kernels by their isotropic approximations (zeroth order Legendre expansion of the full kernels; cf. [7]). The opacities χ_{Ec} and σ, the equilibrium distribution \mathcal{J}_0, and the kernels $\Phi_{\text{Nes}}^{\text{In}}, \Phi_{\text{Nes}}^{\text{Out}}, \Phi_{\text{Par}}^{\text{Pr}}$, and $\Phi_{\text{Par}}^{\text{An}}$ depend nonlinearly on the neutrino energy ε and local matter conditions; e.g., rest mass...
density ρ, temperature T, and electron fraction Y\textsubscript{e}. The integral operators in Eqs. (5) and (6) couple neutrinos of all energies. In addition, pair production and annihilation couple neutrinos and antineutrinos.

We denote the evolved quantities and fluxes for neutrinos and antineutrinos compactly as
\[
\mathcal{M} = (\mathcal{J}, \mathcal{H}, \tilde{\mathcal{J}}, \tilde{\mathcal{H}}) \quad \text{and} \quad \mathcal{F}(\mathcal{M}) = (\mathcal{H}, \mathcal{K}, \tilde{\mathcal{H}}, \tilde{\mathcal{K}}),
\]
respectively, and the collision term as
\[
\mathcal{C}(\mathcal{M}) = \left(\eta - \chi \mathcal{J}, -\kappa \mathcal{H}, \tilde{\eta} - \tilde{\chi} \tilde{\mathcal{J}}, -\tilde{\kappa} \tilde{\mathcal{H}} \right),
\]
and write the full system of moment equations as
\[
\partial_t \mathcal{M} + \nabla \cdot \mathcal{F}(\mathcal{M}) = \mathcal{C}(\mathcal{M}).
\]

Neutrino-matter interactions result in lepton and four-momentum exchange between neutrinos and matter. The resulting change in the electron fraction is given by
\[
\partial_t Y_e = -\left(\frac{m_B}{\rho} \right) \left(\frac{4\pi}{h^3} \right) \int_{\mathbb{R}^+} \left[(\eta - \chi \mathcal{J}) - (\tilde{\eta} - \tilde{\chi} \tilde{\mathcal{J}}) \right] d\varepsilon_e,
\]
where \(m_B \) is the average baryon mass and \(h \) is the Planck constant. The change in the specific internal energy \(\epsilon \) is given by
\[
\partial_t \epsilon = -\left(\frac{1}{\rho} \right) \left(\frac{4\pi}{h^3} \right) \int_{\mathbb{R}^+} \left[(\eta - \chi \mathcal{J}) + (\tilde{\eta} - \tilde{\chi} \tilde{\mathcal{J}}) \right] \epsilon d\varepsilon_e.
\]

Combining evolution equations for neutrinos and antineutrinos (cf. Eq. (2)) with Eq. (10), lepton number conservation is expressed as
\[
\int_D \left[\left(\frac{\rho}{m_B} \right) \partial_t Y_e + \frac{4\pi}{h^3} \int_{\mathbb{R}^+} \left(\partial_t \mathcal{J} - \partial_t \mathcal{\tilde{J}} \right) d\varepsilon_e \right] d\mathbf{x} = -\int_{\partial D} \left[\frac{4\pi}{h^3} \int_{\mathbb{R}^+} (\mathcal{H} - \tilde{\mathcal{H}}) d\varepsilon_e \right] \cdot d\mathbf{S},
\]
where the change in the total lepton number in the domain \(D \) (left-hand side of Eq. (12)) is only due to fluxes through the boundary \(\partial D \). Similarly, the change in the total energy is
\[
\int_D \left[\partial_t \epsilon + \frac{4\pi}{h^3} \int_{\mathbb{R}^+} (\partial_t \mathcal{J} + \partial_t \mathcal{\tilde{J}}) \epsilon d\varepsilon_e \right] d\mathbf{x} = -\int_{\partial D} \left[\frac{4\pi}{h^3} \int_{\mathbb{R}^+} (\mathcal{H} + \tilde{\mathcal{H}}) \epsilon d\varepsilon_e \right] \cdot d\mathbf{S}.
\]

(Our model imposes a static background, therefore the three-momentum is not conserved.)

3. DG-IMEX scheme

We use the DG method \([14, 15, 16, 17, 18, 19]\) to discretize Eq. (9) in \(z = (\varepsilon, \mathbf{x}) \) combined with IMEX time discretization \([5, 38]\). Here we summarize the main components of this DG-IMEX scheme. While we defer the full exposition of the current scheme to a future publication, details on our scheme for a single energy, single particle system, using a simplified collision term can be found in \([12]\).

We divide the \(d_\mathbf{x} \)-dimensional\(^4\) phase-space domain \(D \) into a disjoint union \(\mathcal{T} \) of open elements \(K_g = K^x \times K^z_g \), so that \(D = \cup_{g \in \mathcal{G}} K_g \). The spatial elements are denoted \(K^x = \{ \mathbf{x} : x^i \in K^i := (x^i_1, x^i_2) | i = 1, \ldots, d_\mathbf{x} \} \), while the finite energy space \(D^x \) is divided into \(N_g \) elements (groups) denoted \(K^z_g := (\varepsilon_{g-1/2}, \varepsilon_{g+1/2}) \), \(g = 1, \ldots, N_g \), so that \(D^x = \cup_{g=1}^{N_g} K^z_g \).

\(^4\) We let \(d_\mathbf{x} = d_x + 1 \) denote the dimension of energy-position space and \(d_x \) the dimension of position space.
We denote the approximation space for the DG method as V_h^k, which is consist of functions that, on each element in K_g, take values from tensor products of one-dimensional polynomials of maximal degree k. The semi-discrete DG problem is then to find $M_h \in V_h^k$ such that

$$
\frac{\partial}{\partial t} \int_{K_g} M_h v \, dV = -\int_{\partial K_g} v \bar{F}(M_h) \cdot n \, dA + \int_{K_g} \mathcal{F}(M_h) \cdot \nabla v \, dV + \int_{K_g} C(M_h) v \, dV,
$$

(14)

for all $v \in V_h^k$ and all $K_g \in T$. Here the subscript h denotes that M_h is a discretized approximation of M, since functions in V_h^k are allowed to be discontinuous at edges of the elements. In Eq. (14), n is the outward normal on the boundary ∂K_g (area element dA) of element K_g (volume element dV), and \bar{F} is the numerical flux. We use the global Lax-Friedrichs flux with unit wave speed in the numerical experiments presented in Section 5.

In Eq. (14), we use Lagrange polynomials (i.e., nodal DG [25]) based on the tensor product of one-dimensional Legendre-Gauss (LG) quadrature points to represent M_h, and v in K_g. We denote the N-point one-dimensional LG point set by $S_N = \{ \eta_q \}_{q=1}^N$ so that the point set for the Lagrange polynomial basis is $S_N = \otimes_{i=1}^N S_i$. We define the point set on the element face with normal in the ith dimension as $S_{N_i} = \otimes_{j \neq i}^N S_i$. When evaluating volume and surface integrals in Eq. (14) we use the LG quadrature rule with the S_N and S_{N_i} points (and associated weights), respectively; i.e., similar to the spectral-type nodal collocation DG method in [6].

The semi-discretization of the moment equations in Eq. (14) results in a system of ordinary differential equations (ODEs) of the form

$$
d_t M = T_M(M) + C_M(M),
$$

(15)

where $M = \{ M_{K_g} \}_{K_g \in T}$ represent all the degrees of freedom evolved with the DG method, and M_{K_g} are the unknowns in element K_g (i.e., M_h evaluated in the point set S_N). On the right-hand side of Eq. (15), the transport operator T_M corresponds to the first two terms on the right-hand side of Eq. (14), while the collision operator C_M corresponds to the last term. Coupling Eq. (15) with the electron fraction and internal energy equations, Eqs. (10) and (11), gives

$$
d_t U = T(U) + C(U),
$$

(16)

where $U = (u, M)$, with u denoting (Y_e, ϵ) in Eqs. (10)–(11). Here the transport operator $T(U) = (0, T_M(M))$, and the collision operator C is given by the right-hand sides of Eqs. (10)–(11) and C_M.

Since neutrino-matter interactions are frequent and introduce stiffness in the dense regions of the computational domain, we use IMEX time integration to stably integrate with time steps that can greatly exceed the shortest time scales associated with the collision operator using implicit methods, while we integrate the transport operator using explicit methods. s-stage IMEX schemes can be written in the following general form [38]

$$
U^{(i)} = U^n + \Delta t \sum_{j=1}^{i-1} \tilde{a}_{ij} T(U^{(j)}) + \Delta t \sum_{j=1}^{i} a_{ij} C(U^{(j)}), \quad i = 1, \ldots, s,
$$

(17)

$$
U^{n+1} = U^n + \Delta t \sum_{i=1}^{s} \tilde{w}_i T(U^{(i)}) + \Delta t \sum_{i=1}^{s} w_i C(U^{(i)}),
$$

(18)

where the matrices $\tilde{a}_{ij}, a_{ij} \in \mathbb{R}^{s \times s}$ and vectors $\tilde{w}_i, w_i \in \mathbb{R}^s$ must satisfy certain order conditions for accuracy. The explicit matrix \tilde{a}_{ij} is strictly lower triangular, while the implicit matrix a_{ij} is lower triangular, i.e., the diagonal entries a_{ii} can be nonzero. We use the PD-ARS scheme from [12] (their Appendix A with $\epsilon = 0$), which combines two evaluations of T.
and C (i.e., two implicit solves) per time step. The scheme is formally only first-order accurate in time, but reduces to the optimal second-order accurate explicit Runge-Kutta scheme of [40] in the streaming limit ($C = 0$), performs well in the diffusion limit, and is convex-invariant. Since neutrinos obey Fermi-Dirac statistics, their distribution function is governed by lower and upper bounds (e.g., $f, \bar{f} \in [0, 1]$; a convex set). As a consequence, the moments of the neutrino distribution function must satisfy certain algebraic constraints, which also form a convex set. Given sufficient conditions, a convex-invariant time integration scheme preserves the constraints of a model if the set of admissible states satisfying the constraints forms a convex set.

In this section, considering two neutrino species (electron neutrinos and antineutrinos), we write the implicit solve in Eq. (19) as

$$U^{(s)} = U^{(*)} + \tau C(U^{(*)}),$$

(20)

which is equivalent to a backward Euler solve with time step $a_{ii} \Delta t$ ($a_{ii} \geq 0$). We proceed to discuss approaches to the implicit solve in Eq. (19), and the coupling to the matter equations.

4. Nonlinear solvers

In this section, considering two neutrino species (electron neutrinos and antineutrinos), we write the implicit solve in Eq. (19) as

$$Y^{(*)} = Y^{(*)} - \tau \left(\frac{m_p}{n} \right) \frac{1}{\pi^2} \sum_{q} W_q^{(2)} \left(\left(\eta - \chi J_q^{(*)} \right) - \left(\bar{\eta} - \bar{\chi} \bar{J}_q^{(*)} \right) \right),$$

(21a)

$$e^{(*)} = e^{(*)} - \tau \left(\frac{1}{\pi^2} \right) \frac{1}{\pi^2} \sum_{q} W_q^{(3)} \left(\left(\eta - \chi J_q^{(*)} \right) + \left(\bar{\eta} - \bar{\chi} \bar{J}_q^{(*)} \right) \right),$$

(21b)

$$J^{(*)} = J^{(*)} + \tau \left(\eta - \chi J^{(*)} \right),$$

(21c)

$$\bar{J}^{(*)} = \bar{J}^{(*)} + \tau \left(\bar{\eta} - \bar{\chi} \bar{J}^{(*)} \right),$$

(21d)

$$H^{(*)} = H^{(*)} - \tau \kappa H^{(*)},$$

(21e)

$$\bar{H}^{(*)} = \bar{H}^{(*)} - \tau \bar{\kappa} \bar{H}^{(*)},$$

(21f)

where (J_q, \bar{J}_q) denotes the number densities at energy node $\varepsilon_q \in D^x$, given by the N-point LG quadrature on each energy element (group) K^x_q as defined in section 3. The weights $W_q^{(2)}$ and
where \(W_q^{(3)} \) correspond to the quadrature weights used to evaluate the energy integrals in Eqs. (10)–(11). Here the discrete opacities \(\eta \) and \(\chi \) are computed by evaluating the energy integrals in Eqs. (5) and (6) using the energy quadrature, and \(\kappa := \chi + \sigma \), with \(\sigma \) evaluated in the same quadrature points as \(\chi \). The antineutrino opacities \(\bar{\eta} \), \(\bar{\chi} \), and \(\bar{\kappa} \) are defined analogously.

We take a two-step approach to solving Eq. (21), which first solves the fully coupled nonlinear system (21a)–(21d), plug the solution \((Y_{\epsilon}^{(e)}, e^{(e)}, J^{(e)}, \bar{J}^{(e)})\) into (21e)–(21f) to compute \(\kappa, \bar{\kappa} \), and then update \((H^{(e)}, \bar{H}^{(e)})\). Since solving (21e)–(21f) is straightforward once \(\kappa \) and \(\bar{\kappa} \) are known, the main difficulty in solving (21) is to solve (21a)–(21d), where the opacities \((\eta, \chi, \bar{\eta}, \bar{\chi})\) are functions of \((Y_{\epsilon}, e, J, \bar{J})\) (see Eqs. (5), (6)) and these opacities need to be updated in the solution procedure in order to remain consistent with \((Y_{\epsilon}^{(e)}, e^{(e)}, J^{(e)}, \bar{J}^{(e)})\).

In the following subsections, we investigate two approaches for solving the coupled nonlinear system (21a)–(21d). To simplify the notation, we denote the matter states by \(u := (Y_{\epsilon}^{(e)}, e^{(e)}) \), the discretized neutrino (antineutrino) distributions by \(U := (J^{(e)}, \bar{J}^{(e)}) \), and the total variables by \(U := (u, U) \). We then write (21a)–(21d) as

\[
U = G(U) = \left(\begin{array}{c} g(U) \\ G(u, U) \end{array} \right),
\]

where

\[
g(U) := \left(\begin{array}{c} - (\frac{m}{\rho}) \left(\frac{e}{k} \right) \sum_q W_q^{(2)} (J_{\eta}^{(e)} - \bar{J}_{\eta}^{(e)}) + CV_{\epsilon} \\ - (\frac{1}{h}) \left(\frac{e}{k} \right) \sum_q W_q^{(3)} (J_{q}^{(e)} + \bar{J}_{q}^{(e)}) + C_{\epsilon} \end{array} \right),
\]

and

\[
G(u, U) := \left(\begin{array}{c} (J^{(e)} + \tau \eta(u, U)) / (1 + \tau \chi(u, U)) \\ (\bar{J}^{(e)} + \tau \bar{\eta}(u, U)) / (1 + \tau \bar{\chi}(u, U)) \end{array} \right).
\]

Here \(g \) is derived by substituting Eqs. (21c) and (21d) into the right-hand sides of Eqs. (21a) and (21b), and \(C_{\epsilon} \) and \(C_{\epsilon} \) collect the known constants from the explicit state \(U^{(e)} \). Specifically, \(C_{\epsilon} = Y_{\epsilon}^{(e)} + (\frac{m}{\rho}) \left(\frac{e}{k} \right) \sum_q W_q^{(2)} (J_{\eta}^{(e)} - \bar{J}_{\eta}^{(e)}) \) and \(C_{\epsilon} = e^{(e)} + (\frac{1}{h}) \left(\frac{e}{k} \right) \sum_q W_q^{(3)} (J_{q}^{(e)} + \bar{J}_{q}^{(e)}) \). This substitution simplifies the exposition since the resulting \(g \) only depends on \(U \). On the other hand, \(G \) comes from reorganizing (21e)–(21f), which ensures that \(G \) is a contraction map, i.e., the Lipschitz constant of \(G \) is strictly less than one. In addition, for the sake of clarity, the fact that the opacities \((\eta, \chi, \bar{\eta}, \bar{\chi})\) depend on \(u := (Y_{\epsilon}^{(e)}, e^{(e)}) \) (through opacity kernels \(\Phi \)) and \(U := (J^{(e)}, \bar{J}^{(e)}) \) is expressed explicitly.

We consider two fixed-point approaches for solving (22) – the coupled approach and the nested approach. When solving the nonlinear system (22), fixed-point methods are more attractive than Newton’s method because they (1) do not require the Jacobian matrix, which can be difficult to compute accurately with tabulated opacities; and (2) avoid inversion of dense linear systems. On the other hand, the rate of convergence can be slower for fixed-point methods than that of Newton-based methods. We intend to investigate this further in a future study.

4.1. Coupled fixed-point algorithm

The coupled approach considers Eq. (22) as a fixed-point problem with unknowns \(U \), e.g., applying Picard iteration on Eq. (22) leads to

\[
U^{(k+1)} = G(U^{(k)}).
\]

Here the opacities \((\eta, \chi, \bar{\eta}, \bar{\chi})\) in \(G \) are updated at each iteration \(k \) using \(U^{(k)} \) and thus are consistent with the solution. The Picard iteration guarantees convergence when \(G \) is a contraction map, however, the convergence could be slow. To achieve faster convergence,
we implement Anderson acceleration \cite{3, 44} to solve Eq. (22). Anderson acceleration utilizes information from previous iterations to update the unknowns, which is expected to give faster convergence than Picard iteration, but at a cost of additional memory usage. Specifically, in iteration $k + 1$, Anderson acceleration on the coupled problem first computes the residual

$$r^{(k)} := G(U^{(k)}) - U^{(k)},$$

then solves a least-squares problem

$$\alpha^* := \arg\min_{\alpha \in \mathbb{R}^{m_k + 1}} \left\{ \| \sum_{i=0}^{m_k} \alpha_i r^{(k-i)} \|_2^2 : \sum_{i=0}^{m_k} \alpha_i = 1 \right\}$$

with $m_k := \min\{m, k\}$, and finally updates

$$U^{(k+1)} = \sum_{i=0}^{m_k} \alpha^*_i G(U^{(k-i)}).$$

Here the truncation parameter $m \geq 0$ is an integer that indicates the “memory” of Anderson acceleration, i.e., the maximum number of residuals kept in memory. When $m = 0$, the solver reduces to Picard iteration. For $m > 0$, Anderson acceleration updates U using a linear combination of the last m_k iterates that leads to the minimum residual. The convergence properties of Anderson acceleration were shown in \cite{43}, which include (i) global convergence on linear problems under the standard contraction assumption, and (ii) local convergence on nonlinear problems under assumptions similar to the standard assumptions for local convergence of Newton’s method. In the numerical examples in Section 5, we use $m = 2$, which we have found to significantly reduce the number of iterations when compared to Picard. For $m = 2$, the additional memory required for Anderson acceleration is small since each implicit solve is local in space. In addition, the least squares problem for α^*_i is small, and can be written out explicitly or solved using an optimized linear algebra library (e.g., LAPACK).

4.2. Nested fixed-point algorithm

The second approach we consider is a nested algorithm, which formulates Eq. (22) as a nested fixed-point problem with two layers

$$u = g(\hat{U}(u)),$$

$$\hat{U}(u) = G(u, \hat{U}(u)),$$

where the outer layer, Eq. (28a), is a fixed-point problem on the matter states u, and the inner, Eq. (28b), is on the distributions \hat{U} for fixed matter states u. These two problems are nested in the sense that evaluating the right-hand side of Eq. (28a) at a given u requires solving Eq. (28b).

For example, applying Picard iteration on both Eqs. (28a) and (28b) gives the following iterative scheme

$$u^{(k+1)} = g(\hat{U}(u^{(k)})),$$

where $\hat{U}(u^{(k)}) = \hat{U}^{(k,*)}$, the limit point of the inner Picard iteration

$$U^{(k,\ell+1)} = G(u^{(k)}, \hat{U}^{(k,\ell)}).$$

In practice, we use Anderson acceleration with $m = 2$, as described in Section 4.1, to accelerate both the inner and outer solves separately.

The nested approach is motivated by the fact that in solving Eq. (22), the most costly part is evaluating the opacity kernels Φ at a given matter state u, which is performed in G whenever u is updated. Therefore, while the coupled approach seems simple and straightforward, the nested structure in Eq. (28) justifies the additional complexity by reducing the number of updates (on u) in Eq. (28a) via a more accurate distribution update given by solving Eq. (28b) at the current matter state. Note that the matter state u is fixed in the solution procedure of the inner problem in Eq. (28b) and does not require opacity kernel reevaluations.
4.3. Fixed-point convergence criteria
Here we introduce the convergence criteria applied on the two fixed-point algorithms. For fixed-point problems of the form \(U = G(U) \), commonly used convergence criteria are either on the error \(\| U^{(k)} - U^{(k-1)} \| \) or the residual \(\| U^{(k)} - G(U^{(k)}) \| \). These criteria do not directly apply to the problems considered here, since the unknowns \(U = (Y_e, \epsilon, J, \bar{J}) \) in these problems are physical quantities of different scales. To address this, we impose a separate convergence criterion on each physical quantity of interest, i.e., the convergence criteria take the form
\[
\begin{align*}
|Y_e^{(k+1)} - Y_e^{(k)}| &\leq \text{tol} |Y_e^{(0)}|, \\
|\epsilon^{(k+1)} - \epsilon^{(k)}| &\leq \text{tol} |\epsilon^{(0)}|, \\
\|J^{(k+1)} - J^{(k)}\| &\leq \text{tol} \|J^{(0)}\|, \\
\|\bar{J}^{(k+1)} - \bar{J}^{(k)}\| &\leq \text{tol} \|\bar{J}^{(0)}\|,
\end{align*}
\] (30a)
\[(30b)\]
where \(\text{tol} > 0 \) is a constant relative tolerance. In the coupled algorithm in Section 4.1, all four criteria in (30) are applied. On the other hand, in the nested algorithm in Section 4.2, the outer layer (Eq. (28a)) and inner layer (Eq. (28b)) use the convergence criteria (30a) and (30b), respectively. In the numerical experiments, we set \(\text{tol} \) to be identical in each criterion in (30).

5. Numerical experiments
We compare the performance of the nonlinear solvers discussed in Section 4 using a benchmark problem, Deleptonization Wave, that mimics the conditions in a collapsed stellar core. The initial matter profiles (for \(\rho, T, \) and \(Y_e \)) are given by the analytic expressions
\[
\begin{align*}
\rho(r) &= 0.5 \times \left\{ D_{\text{max}} \times \left[1 - \tanh \left(\frac{(r - R_D)}{H_D} \right) \right] + D_{\text{min}} \times \left[1 - \tanh \left(\frac{(R_D - r)}{H_D} \right) \right] \right\}, \\
T(r) &= 0.5 \times \left\{ T_{\text{max}} \times \left[1 - \tanh \left(\frac{(r - R_T)}{H_T} \right) \right] + T_{\text{min}} \times \left[1 - \tanh \left(\frac{(R_T - r)}{H_T} \right) \right] \right\}, \\
Y_e(r) &= 0.5 \times \left\{ Y_{\text{min}} \times \left[1 - \tanh \left(\frac{(r - R_Y)}{H_Y} \right) \right] + Y_{\text{max}} \times \left[1 - \tanh \left(\frac{(R_Y - r)}{H_Y} \right) \right] \right\},
\end{align*}
\] (31)
\[(32)
\[(33)
where, for the density profile we set \(D_{\text{min}} = 10^3 \text{ g cm}^{-3}, \ D_{\text{max}} = 4 \times 10^{14} \text{ g cm}^{-3}, \ R_D = 20 \text{ km}, \) and \(H_D = 10 \text{ km}. \) Thus, in the inner core the maximum density is consistent with nuclear matter, and neutrinos are trapped. As the density decreases with radius, the neutrino mean free path increases, allowing neutrinos to escape the computational domain (deleptonization). For the temperature profile we set \(T_{\text{min}} = 5 \times 10^{10} \text{ K}, \ T_{\text{max}} = 2.6 \times 10^{11} \text{ K}, \ R_T = 25 \text{ km}, \) and \(H_T = 20 \text{ km}, \) while for the electron fraction profile we set \(Y_{\text{min}} = 0.3, \ Y_{\text{max}} = 0.46, \ R_Y = 45 \text{ km}, \) and \(H_Y = 10 \text{ km}. \) The initial density, temperature, and electron fraction profiles are plotted in Figure 1. The radiation field is initialized by setting the distribution function equal to the local Fermi-Dirac distribution; i.e., \(J = J_0 \) and \(\bar{J} = \bar{J}_0, \) and \(\mathcal{H} = \mathcal{H}_0 = 0. \)

We first solve this problem in one spatial dimension (imposing spherical symmetry) with linear elements (\(k = 1 \)) on a spatial domain \(r \in [0, 100] \text{ km} \) divided into 64 uniform elements, and an energy domain covering \(\epsilon \in [0, 300] \text{ MeV} \) covered by 16 geometrically progressing elements where the first element has \(\Delta \epsilon = 4 \text{ MeV} \) and the last element has \(\Delta \epsilon \approx 50 \text{ MeV}. \) We evolve until \(t = 5 \text{ ms} \) using a fixed time step \(\Delta t \approx 10^{-3} \text{ ms}. \)

Figure 2 provides an overview of the results from the coupled algorithm in Section 4.1 (see caption for additional details). In the top panel we
plot the electron fraction versus radius for select times. Neutrinos are trapped in the central core \((r \lesssim 30 \, \text{km})\) and the electron fraction remains relatively unchanged. For larger radii, as the density decreases with radius, neutrinos decouple from matter and transition to free-streaming, the flux factor increases monotonically with radius towards its maximum value of unity. The mean energy is largest in the center (around 150 MeV for \(r = 0\)), decreases to about 12 MeV at \(r = 60 \, \text{km}\), and then remains fairly constant with radius. We plot the neutrino number density distribution \(n_\nu \approx n_\nu^0\) versus energy \(\varepsilon\) at \(t = 5 \, \text{ms}\) for various radii in the lower right panel of Figure 2. For \(r = 20 \, \text{km}\) (solid lines), neutrinos are strongly coupled to matter and \(J \approx J_0\). At a larger radius, when \(r = 50 \, \text{km}\) (dashed lines), the neutrino-matter coupling weakens and \(J \approx J_0\) for \(\varepsilon \gtrsim 15 \, \text{MeV}\) (note that the neutrino opacity increases roughly as \(\varepsilon^2\)). Neutrinos are then further decoupled from matter at \(r = 80 \, \text{km}\) (dash-dot lines), and the spectral density deviates substantially from the equilibrium distribution for all energies.

In Figure 3 we compare the coupled (Section 4.1) and nested (Section 4.2) algorithms in terms of iteration counts needed to reach a specified tolerance to 1 \(= 10^{-8}\) with convergence criteria (30) as discussed in Section 4.3. (At \(t = 5 \, \text{ms}\), the relative difference in temperature and electron fraction obtained with the two algorithms is less than \(10^{-3}\).) We plot the total number of iterations versus radius and time. The coupled algorithm (left panel in Figure 3) requires more iterations involving opacity evaluations to converge. Most iterations (up to ten) are needed in the high density (> \(10^{14} \, \text{g cm}^{-3}\)), while only two iterations are needed at lower densities (< \(10^{11} \, \text{g cm}^{-3}\)). The total number of iterations at a given radius is not very sensitive to time. For the nested algorithm we plot both the inner and outer iteration counts (middle and right panels in Figure 3, respectively), where the inner iteration count is averaged over the number of outer iterations per solve. The nested algorithm requires fewer (at most four) outer iterations, and hence fewer opacity evaluations, than the coupled algorithm. Between one and three outer iterations are needed in the high density regions (> \(10^{14} \, \text{g cm}^{-3}\)), three to four are needed in the regions with \(\rho \in [10^{11}, 10^{14}] \, \text{g cm}^{-3}\), while two are needed at lower densities. The number of inner iterations is highest (at most eight) at high density, and decreases with increasing radius, almost in a monotonic fashion, to one iteration outside \(r = 60 \, \text{km}\). At \(t = 5 \, \text{ms}\), the total number of iterations for the coupled algorithm is 169500, versus 88770 for the nested algorithm.

We compare the performance of the nonlinear solvers in the DG-IMEX scheme in terms of elapsed wall-time per time step in Figure 4. For this purpose we ran the Deleptonization Wave problem in 3D for four time steps (with \(\Delta t \approx 3 \times 10^{-3} \, \text{ms}\)) using Cartesian coordinates, a cubic spatial domain with \(x^d \in [0, 100] \, \text{km}\), covered by \(12^d\) linear \((k = 1)\) elements. The energy domain is the same as for the spherically symmetric problem described above.

In Figure 4 we plot the time consumed by the primary components of the scheme for the coupled (left columns) and nested (right columns) solvers. The total time per step \(T_{\text{Tot}}\) is represented by the blue columns, while the time spent by the explicit updates \(T_{\text{ins}}\), implicit updates \(T_{\text{im}}\), and the positivity limiter \(T_{\text{pl}}\) are represented by the red, purple, and orange
Figure 2. Results from the spherically symmetric Deleptonization Wave problem. In the upper panel we plot the electron fraction versus radius for various times: $t = 0 \text{ ms (cyan)}, t = 1 \text{ ms (magenta)}, t = 2 \text{ ms (blue), and } t = 5 \text{ ms (black)}. In the lower left panel we plot the flux factor h (solid) and the mean energy $\langle \varepsilon \rangle$ (dashed) versus radius for electron neutrinos at $t = 5 \text{ ms}$. In the lower right panel we plot the electron neutrino number density J versus energy at $t = 5 \text{ ms}$ for various radii: $r = 20 \text{ km (solid black)}, r = 50 \text{ km (dashed black), and } r = 80 \text{ km (dash-dot black). We also plot the local equilibrium number density J_0 for the same radii (blue lines with matching line style). Note that } J \approx J_0 \text{ for } r = 20 \text{ km.}$

columns, respectively ($t_{\text{Tot}} \approx t_{\text{Ex}} + t_{\text{Im}} + t_{\text{PL}}$). We also plot the time spent doing opacity interpolations (t_{Op}; green columns), which is part of the implicit update. For both solvers, the implicit solve dominates the overall computational cost of the DG-IMEX scheme, with $t_{\text{Im}}/t_{\text{Tot}} \approx 0.88$ and $t_{\text{Im}}/t_{\text{Tot}} \approx 0.86$ for the coupled and nested algorithms, respectively. We also find that opacity interpolations dominate the cost of the implicit solve, with $t_{\text{Op}}/t_{\text{Im}} \approx 0.91$ and $t_{\text{Op}}/t_{\text{Im}} \approx 0.84$ for the coupled and nested algorithms, respectively. The nested algorithm spends less time doing opacity interpolations ($t_{\text{Op}} = 9.3 \text{ s, versus } t_{\text{Op}} = 12.3 \text{ s for the coupled algorithm}$, and as a result it is about 15 percent faster than the coupled algorithm.
6. Performance Portability

High-performance computing has entered an era of increased heterogeneity and diversity in computer architectures. As part of the Exascale Computing Project, thornado will be incorporated into large scale simulations of CCSN with a parallel adaptive-mesh refinement (AMR) code like FLASH [24]. Effectively utilizing the variety of architectures these codes may run on will be critical to our ability to incorporate new physics capabilities in these types of simulations on realistic timescales and with limited computational resources. In this context, we are mainly concerned with the performance of thornado at the scale of a single MPI rank since optimizations at larger scales will be managed by the encompassing AMR framework [45].
In this section, we demonstrate our approach to performance portability in thornado, which we define simply as the ability of the code to take full advantage of a target architecture. For the purpose of this paper, we constrain the scope of our discussion to only include GPUs, but the approach could apply to other novel architectures.

Programming models based on abstractions for parallel execution and data management across a variety of architectures have been very successful for C++ (e.g., Kokkos [22] or RAJA [26]). However, these types of abstractions do not conform to thornado as a Fortran code. Instead, we rely on a combination of preprocessor macros, GPU compiler directives (OpenMP or OpenACC), and generic interfaces to optimized linear algebra libraries (e.g., MAGMA [21]) to fully accelerate all components of the DG-IMEX scheme. For example, consider the code in Listing 1 that performs an array permutation and the subsequent interpolation to a cell faces in Listing 2, needed in the implicit part of the scheme described in Section 3. With this approach, depending on the available hardware and programming environment, we are able to choose at compile time whether to use OpenMP with GPU offload, OpenACC, or more traditional OpenMP for CPU multi-core to execute the nested loop in parallel.

```
#if defined (THORNADOOMPOL)
  !$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD COLLAPSE(7)
#elif defined (THORNADOOACC)
  !$ACC PARALLEL LOOP GANG VECTOR COLLAPSE(7)
#elif defined (THORNADOOMP)
  !$OMP PARALLEL DO SIMD COLLAPSE (7)
#endif
DO iZ4 = iZB4−1, iZE4+ 1 ; . . . ; DO iNode = 1 , n DOF
  uCR_K(iNode , iZ1 , iZ2 , iZ3 ,iM, iS , iZ4 ) = U(iNode , iZ1 , iZ2 , iZ3 ,iZ4 ,iM, iS )
END DO ; . . . ; END DO
Listing 1. Example of array permutation using tightly nested loops that are common throughout thornado.
```
CALL MatrixMatrixMultiply &
 ('N', 'N', nDOF_X3, nF, nDOF, One, L_X3_Up, nDOF_X3, &
 uCR_K(1,iZB1,iZB2,iZB3,1,1,iZB4−1), nDOF, Zero, &
 uCR_L(1,iZB1,iZB2,iZB3,1,1,iZB4), nDOF_X3)

Listing 2. Example of interface for matrix-matrix multiplication to be performed by an optimized linear algebra library. The TARGET attribute is added to the dummy arguments so the C address can be ascertained and passed to C routines with the ISO_C_BINDING interface.

At this time, we only show results using the coupled algorithm described in Section 4.1 and defer discussion detailing comparisons among the different GPU implementations of the nonlinear solvers to a future paper. In Figure 5, we show some preliminary profiling results for the deleptonization wave described in Section 5 in a three-dimensional (3D) setting, where we have adapted the benchmark to be more representative of workloads that one might encounter in a large scale simulation with FLASH. Specifically, we solve the problem in a 3D box on a Cartesian mesh with 12 elements in each dimension but otherwise retain the previously described problem setup; this is a fairly good representation of a single AMR “block” in a FLASH simulation that would be local to one MPI rank. This benchmark was run on a single node of the Summit computer at the Oak Ridge Leadership Computing Facility (OLCF). Each node is comprised of 2 IBM POWER9 CPUs and 6 NVIDIA Volta GPUs, but for the reasons described earlier in this section we limit our tests to a single CPU core and one GPU.

The most notable result from this benchmark is a ~100x overall speedup of OpenACC relative to using only the CPU, bringing the time per time step down from $t_{\text{Tot}} \approx 15.3\ s$ to $t_{\text{Tot}} \approx 0.16\ s$. Furthermore, we find that the implementation of OpenMP offloading by the IBM XL compiler was about three times slower than the OpenACC implementation by PGI. Preliminary analysis suggests this may be accounted for by different choices for the GPU kernel launch configurations (i.e. fewer thread blocks and more registers), but this warrants more study before we can draw any definitive conclusions. Overall, these results show that thornado is well-suited to GPU acceleration. We suspect this is due to a high-degree of SIMD-like parallelism and high arithmetic intensity, particularly in operations such as neutrino opacity interpolations, but more analysis (e.g., roofline model) is left for the subject of future study.

7. Summary
We have described algorithms for neutrino-matter coupling as implemented in thornado. The transport of electron neutrinos and antineutrinos in conditions expected in core-collapse supernovae is modeled with a two-moment model using the algebraic fermion closure from [11]. We use tabulated neutrino-matter interactions from [7], which include emission and absorption, iso-energetic scattering, neutrino-electron scattering, and pair processes. The two-moment model is discretized in position-energy space using the discontinuous Galerkin method, and we use implicit-explicit time integration, where the neutrino-matter interactions are treated implicitly. The nonlinear system governing the neutrino-matter coupling is solved iteratively using Anderson-accelerated fixed-point iteration, and we have investigated two approaches: (1) a fully coupled approach, and (2) a nested approach, where the nested approach aims to reduce expensive opacity evaluations. We have found that the nested approach can reduce the computational cost of the implicit solve. Furthermore, we have discussed our approach to porting the neutrino transport in thornado to GPUs. Results obtained with the fully coupled algorithms on GPUs, using OpenACC and OpenMP offloading, show speedups of ~100x can be achieved when compared to running with a single CPU core. These results indicate that the algorithms implemented in thornado are well-suited for GPU acceleration. This is certainly true for the benchmarking experiments performed here with linear DG, but in lieu of further experimentation, we speculate only modest quantitative implications for the performance at higher orders. Future investigations will include comparison of the algorithms presented here
with algorithms based on Newton’s method, and comparison of the relative performance of these algorithms on GPUs.

Acknowledgments
This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This research was sponsored, in part, by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC. This research was also supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. thornado uses equation of state and opacity tables and subroutines developed under the WeakLib project. We acknowledge the contributions to WeakLib of Ryan Landfield and Eric J. Lentz.

References
[1] Adams M 2001 Nuclear Science and Engineering 137 298
[2] Almgren A, Beckner V E, Bell J B, et al. 2010 ApJS 715 1221
[3] Anderson D G 1965 J. ACM 12 547
[4] Arnett W D Canadian Journal of Physics 44 2553
[5] Ascher U M, Ruuth S J and Spiteri R J 1997 Applied Numerical Mathematics 23 151
[6] Bassi F, Franchina N, Ghidoni A and Rebay S 2013 Int. J. Numer. Meth. Fluids 71 1322
[7] Bruenn S W 1985 ApJS 58 771
[8] Bruenn S W, Blondin J M, Hix W R, et al. 2018 arXiv:1809.05608v1
[9] Burrows A 2013 Rev. Mod. Phys. 85 245
[10] Burrows A, Radice D and Vartanyan D 2019 MNRAS 485 3153
[11] Cernohorsky J and Bludman J A 1994 ApJ 433 250
[12] Chu R, Endeve E, Hauck C D and Mezzacappa A 2019 JCP 389 62
[13] Cockburn B and Shu C-W 1989 Math. Comput. 52 411
[14] Cockburn B and Shu C-W 1999 JCP 141 199
[15] Cockburn B and Shu C-W 2001 Journal of Scientific Computing 16 173
[16] Cockburn B, Lin S-Y and Shu C-W 1998 JCP 154 251
[17] Cockburn B, Hou S and Shu C-W 1996 Math. Comput. 54 545
[18] Colgate S and White R H 1966 ApJ 143 626
[19] Edwards H C, Trott C R and Sunderland D 2014 Journal of Parallel and Distributed Computing 74 3302
[20] Endeve E, Buffalo J, Dunham S J, et al. (2019) J. Phys.: Conf. Ser. 1225 012013
[21] Hornung R, Jones H, Keasler J et al. 2015 ASC Tri-lab Co-design Level 2 Milestone Report Technical Report LLNL-TR-677453
[22] Janka H-Th 2012 Annu. Rev. Nucl. Part. Sci. 62 407
[23] Klöckner A, Warburton T, Bridge J and Hesthaven J S 2009 JCP 228 7863
[24] Larsen E W and Morel J E 1989 JCP 83 212
[25] Lentz E J, Mezzacappa A, Messer O E B, et al. 2012 ApJ 747 73
[26] Lestz E J, Bruenn S W, Hix W R, et al. 2015 ApJL 807 L31
[27] Levermore C D 1984 JQSRT 31 149
[28] Melson T, Janka H-Th and Marek A 2015 ApJ 801 L24
[29] Mezzacappa A 2005 Annu. Rev. Nucl. Part. Sci. 55 467
[30] Müller B, Janka H-Th and Dimmelmeier H 2010 ApJS 189 104
[31] Müller B, Janka H-Th and Marek A 2012 ApJ 756 84
[32] Müller B PASA 33 1
[33] Pareschi L and Russo G 2005 Journal of Scientific Computing 25 129
[34] Remacle J-F, Flaherty J E and Shephard M S 2003 SIAM Review 45 53
[35] Shu C-W and Osher S 1988 JCP 77 439
[41] Skinner M A, Dolence J C, Burrows A, et al. 2019 *ApJS* **241** 7
[42] Teukolsky S A 2016 *JCP* **312** 333
[43] Toth A and Kelley C 2015 *SIAM Journal on Numerical Analysis* **53** 805
[44] Walker H and Ni P 2011 *SIAM Journal on Numerical Analysis* **49** 1715
[45] Zhang W, Almgren A, Beckner V et al. 2019 *The Open Journal* **4** 1370