Fast Search Algorithms for Connected Phone Recognition Using the Stochastic Segment Model

V.Digalakis† M.Ostendorf† J.R. Rohlicek‡
† Boston University 44 Cumington St. Boston, MA 02215
‡ BBN Inc. 10 Moulton St. Cambridge, MA 02138

ABSTRACT
In this paper we present methods for reducing the computation time of joint segmentation and recognition of phones using the Stochastic Segment Model (SSM). Our approach to the problem is twofold: first, we present a fast segment classification method that reduces computation by a factor of 2 to 4, depending on the confidence of choosing the most probable model. Second, we propose a Split and Merge segmentation algorithm as an alternative to the typical Dynamic Programming solution of the segmentation and recognition problem, with computation savings increasing proportionally with model complexity. Even though our current recognizer uses context-independent phone models, the results that we report on the TIMIT database for speaker independent joint segmentation and recognition are comparable to that of systems that use context information.

Introduction
The Stochastic Segment Model [6, 10, 9] was proposed as an alternative to hidden Markov models (HMMs), in order to overcome the limiting assumptions of the latter that observation features are conditionally independent given the underlying state sequence. The main disadvantage of the SSM over other methods is its computational complexity, which can be attributed to the fact that dropping the conditional independence assumption on the state sequence increases the size of the effective state space. Having addressed several issues on the classification accuracy of the SSM in our previous work [2], we now move to speaker independent connected phone recognition and choose to concentrate on the important issue of computational complexity of the SSM recognition algorithm. We present two new algorithms which together achieve a significant computation reduction.

This paper is organized as follows. A brief overview of the SSM is given in this section. For a more detailed description of the model the reader is referred to [6, 10]. In the next section, we present a new algorithm for fast phone classification with the SSM. Next, we address the issue of joint segmentation and recognition. The originally proposed solution for this problem used a Dynamic Programming algorithm to find the globally maximum likelihood phone sequence. After we examine the computational complexity of this method, we look at an alternative approach to this problem based on local search algorithms. We propose a different search strategy that reduces the computation significantly, and can be used in conjunction with the classification algorithm. Although theoretically the new algorithm may not find the global maximum, experimental results on the TIMIT database, show that the recognition performance of the fast algorithm is very close to the optimum one.

An observed segment of speech (e.g., a phoneme) is represented by a sequence of q-dimensional feature vectors \(Y = [y_1, y_2, \ldots, y_L] \), where the length \(L \) is variable. The stochastic segment model for \(Y \) has two components [10]: 1) a time transformation \(T_L \) to model the variable-length observed segment in terms of a fixed-length unobserved sequence \(Y = XT_L \), where \(X = [z_1, z_2, \ldots, z_M] \), and 2) a probabilistic representation of the unobserved feature sequence \(X \). The conditional density of the observed segment \(Y \) given phone \(\alpha \) and duration \(L \) is:

\[
p(Y|\alpha, L) = \int_{X \cdot Y = XT_L} p(X|\alpha) dX. \tag{1}
\]

When the observed length, \(L \), is less than or equal to \(M \), the length of \(X \), \(\alpha \) is a time-warping transformation which obtains \(Y \) by selecting a subset of columns of \(X \) and the density \(p(Y|\alpha) \) is a marginal distribution of \(p(X|\alpha) \). In this work, as in previous work, the time transformation, \(T_L \), is chosen to map each observed sample \(y_i \) to the nearest model sample \(z_j \) according to a linear time-warping criterion. The distribution \(p(X|\alpha) \) for the segment \(X \) given the phone \(\alpha \) is then modelled using an \(M_q \)-dimensional multivariate Gaussian distribution.

Fast Segment Classification
Let \(Y = [y_1, y_2, \ldots, y_L] \) be the observed segment of speech. Then, the MAP detection rule for segment classification reduces to

\[
\alpha^* = \arg \max_{\alpha} p(Y|\alpha, L)p(L|\alpha)p(\alpha)
\]

with the terms \(p(L|\alpha) \) representing duration probabilities.

The use of an \(M_q \)-dimensional Gaussian distribution for the SSM makes the calculation of the log-likelihoods \(l(\alpha) \) computationally
In this section, we present an algorithm for fast segment classification, based on obtaining an upper bound $L(\alpha)$ of $l(\alpha)$ and eliminating candidate phones based on this bound. The same idea for HMM's has also been used in [1], but in the case of the SSM the computation can be done recursively.

Specifically, define

$$Y^k_i = [y_i, y_2, \ldots, y_k, \mu_{k+1,k}, \ldots, \mu_{L,k}]$$

where

$$\mu_{i,k}^j = E\{y_j | \alpha_i, y_1, \ldots, y_k\}, j > k$$

for all phones α_i. Then, because of the Gaussian assumption,

$$l(\alpha_i) = \ln p(\alpha_i) + \ln p(L|\alpha_i) + \ln p(Y|\alpha_i, L) \leq \ln p(\alpha_i) + \ln p(L|\alpha_i) + \ln p(Y^k_i|\alpha_i, L) = L_k(\alpha_i),$$

where

$$L_k(\alpha_i) = L_{k+1}(\alpha_i) \leq L_k(\alpha_i).$$

A fast classification scheme for the SSM is then described by the following algorithm, where by C we denote the set of remaining candidates and by Ω the set of all candidates.

Initialization

Set $C = \Omega$, $k = 1$

Step 1 For all $\alpha_i \in C$

compute $L_k(\alpha_i)$

Step 2 Pick $\alpha^* = \arg \max_{\alpha_i} L_k(\alpha_i)$

Step 3 Compute the actual likelihood $l(\alpha^*)$

Step 4 For all $\alpha_i \in C$

if $L_k(\alpha_i) < l(\alpha^*)$ remove α_i from C

Step 5 Increment k. If $|C| > 1$ and $k \leq L$ go to step 1.

Because of the Gaussian assumption, the computation of the bounds $L_k()$ in step 1 of iteration k actually corresponds to a single q-dimensional Gaussian score evaluation for every remaining class. The savings in computation are directly dependent on the discriminant power of the feature vector, and can be further increased if the frame scores are computed in a permuted order, so that frames with the largest discriminant information (for example the middle portion of a phone) are computed first.

The proposed method has the desirable property of being exact - at the end the best candidate according to the MAP rule is obtained. On the other hand, the computation savings can be increased if instead of pruning candidates based on the strict bound, we use the bound at each iteration to obtain a biased estimate of the true likelihood, $\hat{L}_k(\alpha)$, and use it in place of $L_k(\alpha)$ in step 4 of the algorithm. In the choice of the estimate there is a trade-off between computation savings and the confidence level of choosing the true best candidate. In our phonetic classification experiments, using a segment model with length $M = 5$ and assuming independent frames, we achieved a 50% computation reduction with the exact method. The savings increased to 75% without any effect to classification accuracy when pruning based on the estimates of likelihoods. We can also argue that the computation reduction should be bigger for a segment longer than 5 frames and also when the frame independence assumption is dropped, because in that case the distributions will be sharper.

Joint Segmentation/Recognition

Before we present the problem of joint segmentation and recognition (JSR), it is useful to introduce some notation. A segmentation S of a sentence that is N frames long and consists of n segments s^k_t will be represented by

$$S = S(n) = \{s^1_1, s^2_{1+1}, \ldots, s^n_{n+1}\},$$

$$1 \leq \tau_1 < \tau_2 < \ldots < \tau_{n-1} < \tau_n = N$$

The sequence of the observed data can be partitioned in accordance to the segmentation $S(n)$ as

$$Y = Y(S(n)) = \{Y(1, \tau_1), Y(\tau_1 + 1, \tau_2), \ldots, Y(\tau_{n-1} + 1, \tau_n)\}$$

with

$$Y(\tau, t) = [y_\tau, y_{\tau+1}, \ldots, y_t]$$

Finally, an n-long sequence of phone labels will be represented as

$$\alpha(n) = \{\alpha_0, \alpha_1, \ldots, \alpha_{n-1}\}$$

When the phone boundaries are unknown, the joint likelihood of the observed data and an n-long phone sequence is

$$l(\alpha(n)) = \sum_{S(n)} p(Y(S(n)), S(n)|\alpha(n))p(\alpha(n))$$

and under the assumption of independent phones,

$$p(Y(S(n)), S(n)|\alpha(n))p(\alpha(n)) = \prod_{t=0}^{n-1} p(Y(\tau_t + 1, \tau_{t+1})|\alpha_t, s^t_{\tau_t+1}|p(s^t_{\tau_t+1}|\alpha_t)p(\alpha_t)$$

where the terms $p(s^t_{\tau_t+1}|\alpha) = p(L|\alpha)$ represent duration probabilities. For the automatic recognition problem, the MAP rule for detecting the most likely phonetic sequence would involve calculations of the form (2). Because of the complexity of (2), in a similar fashion to HMM's where Viterbi decoding is used instead of the forward algorithm, we choose to jointly select the segmentation and the phone sequence that maximize the a posteriori likelihood

$$(\alpha^*(n^*), S^*(n^*), n^*) = \arg \max_{(\alpha(n^*), S(n^*), n)}\{p(Y(S(n^*)), S(n^*)|\alpha(n^*))p(\alpha(n^*))\}$$

In addition to the phone independence assumption, if we further assume that there is no upper bound in the range of allowable phone durations, there are 2^{N-1} possible segmentations. If the second assumption is dropped, and the range of phone durations is $1 \leq L \leq D$, the number of configurations among which we optimize drops to $2^{N-1} - 2^{N-D} + 1$.

174
Dynamic Programming Search

The joint segmentation and recognition, being a shortest path problem, has a solution using the following Dynamic Programming recursion [6] under the assumption of independent phones:

\[
J^*_t = \begin{cases} 0 & \text{if } t = 0 \\ \max_{r < t} \{ J^*_r + \ln[p(Y(r + 1, t)|\alpha)] + \ln[p(s^*_r|\alpha)] + \ln[p(\alpha)] + C \} & \text{otherwise} \end{cases}
\]

with \(C \) being a constant that controls the insertion rate. At the last frame \(N \) we obtain the solution:

\[
J^*_N = \max_{(\alpha(n), S(n), n)} \{ \ln[p(Y(S(n)), S(n)|\alpha(n))p(\alpha(n))] + nC \}
\]

We shall express the complexity of a joint segmentation and recognition search algorithm in terms of segment score evaluations:

\[
e^*_t = \max_\alpha \{ \ln[p(Y(t, t)|\alpha)] + \ln[p(s^*_t|\alpha)] + \ln[p(\alpha)] \}
\]

Clearly, a segment score evaluation is dominated by the first term, which is a \((t - \tau + 1)q\) dimensional Gaussian evaluation. We shall also use the number of \(q\)-dimensional Gaussian score evaluations as a measure of complexity. A segment score evaluation consists of \(|\Omega|(t - \tau + 1)\) Gaussian score evaluations, with \(\Omega \) the set of all phones.

The DP solution is efficient with a complexity of \(O(N^2)\) segment score evaluations, which drops to \(O(DN)\) if the segment length is restricted to be less than \(D \). However, in terms of Gaussian score evaluations (1) this approach is computationally expensive. If we assume that feature vectors are independent in time, then for each frame in the sentence the scores of all models and possible positions within a segment will effectively be computed and stored. This translates to a complexity of \(O(M \times N \times |\Omega|)\) \(q\)-dimensional Gaussian evaluations, or simply \(M \) Gaussian evaluations per frame per model, where \(M \) is the model length. This complexity is further increased when the independence assumption is dropped, in which case the number of Gaussian scores that must be computed increases drastically and is equal to the square of allowable phone durations per frame per model. For large \(q \) (as in [2]), the DP solution is impractical. In the following sections we present a local search algorithm that achieves a significant computation reduction.

Local Search Algorithms

We now give the description of a general local search algorithm for the joint segmentation and recognition problem. The set of all segmentations is

\[
\mathcal{F} = \{ S | S = \{ s^1, s^2, \ldots, s^N \} \}
\]

The neighborhood of a segmentation \(S \) is defined through the mapping from \(\mathcal{F} \) to the power set of \(\mathcal{F} \):

\[
N : \mathcal{F} \rightarrow 2^\mathcal{F}
\]

A local search algorithm for the JSR problem is then defined as: given any segmentation \(S \), the neighborhood \(N(S) \) is searched for a segmentation \(S' \) with \(l(S') > l(S) \). If such \(S' \) exists in \(N(S) \), then it replaces \(S \) and the search continues, otherwise a local (perhaps) optimum with respect to the given neighborhood is found. The choice of the neighborhood is critical, as discussed in [7]. In general it must be powerful enough to help avoid local optima and on the other hand small, so that it can be searched efficiently.

An important question for any local search algorithm is the size of the minimal exact local search neighborhood: that is, given any starting configuration \(S \), what is the smallest possible neighborhood that must be searched so that we are guaranteed convergence to the global optimum after a finite number of steps. For the JSR problem, a segmentation \(S' \) is in the minimal exact search neighborhood of \(S \) if it has no common boundaries in a single part of the sentence, except the first and last frames of this part, and the scenario before and after those two frames is the same. A more formal definition of the exact neighborhood and a proof of the above stated result is out of the scope of this paper.

The size of the minimal exact neighborhood of \(S \) can be shown to be exponential in \(N \). It also depends on the number of segments, and is larger for segmentations with longer segments. Of course an explicit search of this neighborhood is infeasible and furthermore we already have a solution with a complexity of \(O(N^2)\) segment evaluations. In the next section we shall propose a strategy that searches over a subset of \(N_{exact}(S) \) with size proportional to the number of segments only.

Two common local search strategies are the splitting and merging schemes. To describe these strategies we shall make use of the concept of a segmentation tree: a node of this tree is a single segment \(s^t_0 \) and can have children \(s^t_1, s^t_2 \) with \(t_1 \leq t < t_2 \). The children are not unique, because of the freedom in the choice of the boundary \(t \). The root of the tree is the segment \(s^N_N \) (whole sentence). A segmentation \(S \) is then a node cutset separating the root from all the leaves [3]. A splitting scheme starts from the top of the segmentation tree (initial segmentation is a single segment) and moves towards a finer segmentation by searching at each point a subset of the exact neighborhood that consists of all possible splits for all nodes of the current segmentation. The size of this search neighborhood is \(O(N)\). The opposite, merging strategy, is to start with an initial segmentation with one frame long segments (bottom of the tree) and search over all configurations with a pair of two consecutive segments of the original segmentation merged into a single segment. The latter scheme, has in general a smaller search neighborhood, \(O(n)\). We can argue though that this type of search is more effective for the JSR problem: the size of the minimal exact neighborhood is much smaller for a segmentation that consists of single frame segments than for a segmentation with a single segment. Since the search neighborhoods for both the splitting and merging schemes have approximately the same size, it is much easier to fall into local optima near the top of the tree (splitting scheme) than at the bottom because we are searching a smaller portion of the exact neighborhood.

As an example in speech processing, the search strategy followed in the MIT SUMMIT system for finding a
In this paper we propose to use a combined split and merge algorithm as follows: at each iteration of the algorithm, the scores of all the candidate phones are computed and stored for all segments.

Constrained searches

In this section, we describe how the split and merge search can be constrained when the phones are not independent, for example when bigram probabilities are used. So far, the independence assumption allowed us to associate the most likely phone to each segment and then perform a search over all possible segmentations. When this assumption is no longer valid, the cost \(c_{S_k} \) associated to the segment \(S_k \) is not unique for all possible segmentations that include this segment, so the search must be performed over all possible segmentations and phone sequences. For the DP search, if bigram probabilities of the form \(p(S_k|S_{k-1}) \) are used, the search should be done over all allowable phone durations and all phone labels at each time, which means that the search space size is multiplied by the number of phone models. A suboptimal search can be performed with the split and merge segmentation algorithm as follows:

At each iteration of the algorithm, the scores of all the candidate phones are computed and stored for all segments...
and all segmentations in the search neighborhood, without
using the constraint probabilities (we make the assumption
that we have probabilistic constraints, in the form of a statisti-
cal grammar as above). Next, an action (split or merge) is
taken if by changing only the phone labels of the segments
the global likelihood is increased, this time including the
constraint probabilities. This guarantees that the likelihood
of the new segmentation is bigger than the previous one. If
the decision is to take the action, we fix the segmentation
and then perform a search over the phone labels only. For
example, if we use bigram probabilities, this can be done
with a Dynamic Programming search over the phonetic la-
bels with the acoustic scores of the current segmentation.
This last step is necessary, because once an action is taken
and a local change is made, we are not guaranteed that the
current scenario is globally optimum for the given segment-
tation because of the constraints (e.g. independent phones).

As in the independent phone case, convergence of the al-
gorithm is ensured because after each iteration of the algo-

In the case of non-independent phones, the exact mini-
mal search neighborhood can be shown to be the set of all
segmentations. It is therefore much easier for a local search
algorithm to get trapped into local optima. For this reason,
it is important that for constrained searches the above men-
tioned algorithm starts with a good initial segmentation. In
practice we obtained a good starting segmentation by first
run an unconstrained search using only unigram proba-
bilities and then perform a search over the phone labels. For
example, if we use bigram probabilities, this can be done
with a Dynamic Programming search over the phonetic la-
bels with the acoustic scores of the current segmentation.
This last step is necessary, because once an action is taken
and a local change is made, we are not guaranteed that the
current scenario is globally optimum for the given segment-
tation because of the constraints (e.g. independent phones).

As in the independent phone case, convergence of the al-
gorithm is ensured because after each iteration of the algo-

In the case of non-independent phones, the exact mini-

Complexity
The size of the search neighborhood at each iteration of the

split and merge algorithm is $O(n)$, with n the number of
current segments. However, if the scores at each iteration
of the algorithm are stored, then the number of segment
score evaluations as defined in (3) has the order of the num-er of iterations with an additional initial cost. In the case
of constrained searches, we can argue that there may exist
pathological situations where all possible configurations are
visited, and the number of iterations is exponential with N.
As we shall see though, we found experimentally that the
number of iterations was roughly equal to n.

Results
The methods that we presented in this paper were evaluated
on the TIMIT database [4]. The phone-classifier that we
used in our experiments was identical to the baseline sys-
tem described in [2]. We used Mel-warped cepstra and their
derivatives together with the derivative of log power. The
length of the segment model was $M = 5$ and had indepen-
dent samples. We used 61 phonetic models, but in counting
errors we folded homophones together and effectively used
the reduced CMU/MIT 39 symbol set. However, we did
not remove the glottal stop Q in either training or recogni-
tion, and allowed substitutions of a closure-stop pair by the
corresponding single closure or stop as acceptable errors.

Those two differences from the conditions used in [5, 8]
have effects on the performance estimates which offset one
another.

The training and test sets that we used consist of 317
speakers (2536 sentences) and 103 speakers (824 sentences)
respectively. We report our baseline results on this large test
set, but our algorithm development was done on a subset of
this set, with 12 speakers (96 sentences), and the comparison
of the split and merge algorithm to the DP search is done
on this small test set.

DP / Split and Merge comparison
The average sentence length in our small test set was 3
seconds, or 300 frames when the cepstral analysis is done
every 10 msec. The number of segment score evaluations
per sentence for a DP search is 15,000 when we restrict
the length of the phones to be less than 50 frames, and can
be reduced to approximately 4,000 if we further restrict the
accuracy of the search to 2 frames. In addition, for 61 phone
models and a $M = 5$ long segment, there are 90,000 different
Gaussian score evaluations under the frame independence
assumption that will eventually be computed during the DP
search.

The average number of iterations for the non-constrained
split and merge search over these sentences was 114, with
750 segment and 40,000 Gaussian score evaluations, when
we also include the fast classification scheme. The split and
merge search was on average 3 times faster than a two frame
accurate DP search under these conditions, and 5 times faster
than a single frame accurate DP search. Furthermore, the
savings increase with the length of the model: we verified
experimentally that doubling the length of the model had
little effect on the split and merge search, whereas it doubled
the recognition time of the DP search.

The computation savings remain the same in the case of
constrained searches also. The additional segment and frame
score evaluations in the second phase of the split and merge
are offset by the increased search space in the DP search.
Finally, we should notice that the fast classification scheme
has only a small effect when a DP search is used.

A fast suboptimal search for the JSR problem is justified
if the solutions it provides are not far from the global opti-
mum. Starting with a uniform initial segmentation near the
bottom of the tree, we found that the split and merge search
had almost identical performance to the DP search, without
and with the bigram probabilities. The results on our small
test set are summarized in Table 1, counting substitutions
and deletions as errors in percent correct and with accuracy
defined to be 100% minus the percentage of substitutions,
deletions and insertions.

Baseline results and Discussion
After adjusting the parameters of our recognizer, we tested
it on the long test set. The results for the split and merge
algorithm and the dynamic programming search, both us-
ing bigram probabilities, are shown in Table 2. On the
full 61 TIMIT symbol set our recognition rate is 60% correct/54% accuracy. On the reduced symbol set, our baseline result of 70% correct/64% accuracy compares favorably with other systems using context independent models. For example, Lee and Hon [5] reported 64% correct/53% accuracy on the same database using discrete density HMMs. Their recognition rate increases to 74% correct/66% accuracy with right-context-dependent phone modelling. Lately, Robinson and Fallside [8] reported 75% correct/69% accuracy using connectionist techniques. Their system also uses context information through a state feedback mechanism (left context) and a delay in the decision (right context).

In conclusion, we achieved the main goal of this work, a significant computation reduction for connected phone recognition using the SSM with no loss in recognition performance. Our current recognition rate is close to that of systems that use context dependent modelling. However, we expect to achieve significant additional improvements when we incorporate context information and time correlation in the segment model.

Acknowledgment
This work was jointly supported by NSF and DARPA under NSF grant # IRI-8902124.

References
[1] L.Bahl, P.S.Gopalakrishnan, D.Kanevsky and D.Nahamoo, “Matrix Fast Match: A Fast Method for Identifying a Short List of Candidate Words for Decoding”, in IEEE Int. Conf. Acoust., Speech, Signal Processing, Glasgow, Scotland, May 1989.

[2] V. Digalakis, M. Ostendorf and J. R. Rohlicek, “Improvements in the Stochastic Segment Model for Phoneme Recognition,” Proceedings of the Second DARPA Workshop on Speech and Natural Language, pp. 332-338, October 1989.

[3] S. L. Horowitz and T. Pavlidis, “Picture segmentation by a tree traversal algorithm,” Journal Assoc. Comput. Mach., Vol. 23, No. 2, pp. 368-388, April 1976.

[4] L.F. Lamel, R. H. Kassel and S. Seneff, “Speech Database Development: Design and Analysis of the Acoustic-Phonetic Corpus,” in Proc. DARPA Speech Recognition Workshop, Report No. SAIC-86/1546, pp. 100-109, Feb. 1986.

[5] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition using Hidden Markov Models,” IEEE Trans. on Acoust., Speech and Signal Proc., Vol. ASSP-37(11), pp. 1641-1648, November 1989.

[6] M. Ostendorf and S. Roucos, “A stochastic segment model for phoneme-based continuous speech recognition,” in IEEE Trans. Acoustic Speech and Signal Processing, ASSP-37(12):1857-1869, December 1989.

[7] C.H.Papadimitriou and K.Steiglitz, Combinatorial Optimization, Algorithms and Complexity, Prentice-Hall, New Jersey 1982.

[8] T. Robinson and F. Fallside, “Phoneme Recognition from the TIMIT database using Recurrent Error Propagation Networks,” Cambridge University technical report No. CUED/F-INFENG/TR.42, March 1990.

[9] S. Roucos and M. Ostendorf Dunham, “A stochastic segment model for phoneme-based continuous speech recognition,” In IEEE Int. Conf. Acoust., Speech, Signal Processing, pages 73–89, Dallas, TX, April 1987. Paper No. 3.3.

[10] S. Roucos, M. Ostendorf, H. Gish, and A. Derr, “Stochastic segment modeling using the estimate-maximize algorithm,” In IEEE Int. Conf. Acoust., Speech, Signal Processing, pages 127–130, New York, New York, April 1988.

[11] V. Zue, J. Glass, M. Philips and S. Seneff, “Acoustic segmentation and Phonetid classification in the SUMMIT system,” In IEEE Int. Conf. Acoust., Speech, Signal Processing, Glasgow, Scotland, May 1989.