Complications of COVID-19, a case with both neurological and dermatological complications.

parivash davoodian
Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University Of Medical Sciences, Bandar Abbas, Iran.

setayesh sotoudehnia korani (setayeshsotoudehnia96@gmail.com)
Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University Of Medical Sciences, Bandar Abbas, Iran. https://orcid.org/0000-0002-6681-9399

ali rezazadeh roudkoli
Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University Of Medical Sciences, Bandar Abbas, Iran. https://orcid.org/0000-0002-3265-2391

elham ouspid
Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University Of Medical Sciences, Bandar Abbas, Iran.

Case Report

Keywords: COVID-19, ophthalmoplegia, skin lesions, baboon syndrome

Posted Date: September 9th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-71357/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Recently, different complications and clinical manifestations of COVID-19 have been reported such as neurological or dermatological complications. We present a confirmed COVID-19 case of diplopia and ophthalmoplegia presenting skin lesions at the same time.

Introduction

From the onset of the COVID-19 pandemic, various non-respiratory presentations have been reported, including dermatologic and neurologic presentations.

In this case report, a patient will be presented with both dermatologic and neurologic symptoms.

Of the neurologic symptoms of COVID-19,

Headache and anosmia are common manifestations, and less common symptoms include seizure, stroke and isolated cases of Guillain-Barre syndrome (GBS). (1)

Of the dermatologic symptoms of COVID-19,

maculopapular exanthem, papulovesicular rash, urticaria, painful acral red purple papules, livedo reticularis lesions and petechiae.

The lesions were mostly localized on the trunk. The development occurred before the onset of respiratory symptoms, and according to the majority of studies, lesions were not related to the severity of the disease. (2)

Case Presentation

In June, 2020, a 47-year-old man presented with fever and chills, cough, diarrhea, headache and then mild dyspnea. He was diagnosed with COVID-19 after a nasal swab for SARS-CoV-2 PCR was positive.

Laboratory test on admission showed increased D-dimer and inflammatory markers such as CPK, LDH, ESR and CRP.

In an outpatient setting, hydroxychloroquine started for the patient with a dose of 600 mg twice a day for one day, followed by 400 mg daily for four days. He was also treated with azithromycin and subcutaneous enoxaparin and naproxen 500.
After 5 days, he returned with presentation of a rare hypersensitivity syndrome called baboon syndrome, erythrodermic non pruritic skin lesions in the inguinal area, axilla and also around his neck. This is considered as a nonimmediate hypersensitivity reaction, which is very rarely reported. (3, 4)

A therapy with antihistamine (hydroxyzine10) started for the patient and after 3 days, he presented with diplopia and ophthalmoplegia.

At referral to the neurologist, it was the 15th day after the onset of his first symptoms. The patient was awake and completely oriented, with normal language and speech examination. Cranial nerve examination showed right side 6th nerve palsy leading to patient diplopia. All other cranial nerves were normal. Sensory motor and cerebellar examinations were normal. The only other abnormal exam was lost left side Achill reflex, which was compatible with a previous history of old left side S1 radiculopathy. There was no papilledema or ptosis. He had no headache, vision loss, nausea, vertigo, or history of seizure or other neurologic complaints.

Brain MRI with and without contrast was performed that was completely normal and showed no abnormal meningeal or cranial nerve enhancement at that stage.

Electrodiagnostic studies (EDX) including needle electromyography (needle EMG) and nerve conduction studies (NCS), were performed to search for polyneuropathies, including GBS and its variant Miller Fisher syndrome, but there was no conduction block, decreased conduction velocity, increased distal latency, ongoing denervation potentials including fibrillations or positive sharp waves or sensory loss in all examined nerve CMAPs and SNAPs and muscle MUAPs to suggest such a diagnosis. The only positive findings in the EDX study were chronic neurogenic findings, such as polyphasic long duration MUAPS in L5 and S1 innervated muscles bilaterally, which was in favor of old radiculopathy. The EDX study report is attached.

Regarding normal brain MRI and no obvious peripheral polyneuropathy, cranial mononeuropathy was considered, and treatment with IV corticosteroid (2 doses of intramuscular dexamethasone 5 days apart) was started which resulted in complete improvement of the patient's neurologic symptoms.

After 20 days, there were no neurologic or dermatologic symptoms remained.

Discussion

In conclusion, some cases of neurological or dermatological complications of COVID-19 have been reported so far, but we presented a rare case of a patient who had both neurological and dermatological symptoms at the same time in addition to his respiratory symptoms.

There is a need to diagnose these non respiratory manifestations at the earliest stage to prevent long-term sequelae as much as possible. Much research is needed to explore the role of SARS-CoV-2 in
causing these neurological and dermatological manifestations and also the risk factors of their development(5)

Declarations

The study was approved by the local ethic committee.
The patients gave informed consent and approved the publication of the manuscript.
The authors declare no conflict of interest.

References

1. Whittaker A, Anson M, Harky A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol Scand. 2020;142(1):14-22.

2. Sachdeva M, Gianotti R, Shah M, Bradanini L, Tosi D, Veraldi S, et al. Cutaneous manifestations of COVID-19: Report of three cases and a review of literature. J Dermatol Sci. 2020;98(2):75-81.

3. Gelincik A, Brockow K, Çelik GE, Doña I, Mayorga L, Romano A, et al. Diagnosis and management of the drug hypersensitivity reactions in Coronavirus disease 19. Allergy. 2020.

4. Barbaud A, Waton J. Systemic allergy to corticosteroids: clinical features and cross reactivity. Current pharmaceutical design. 2016;22(45):6825-31.

5. Ahmed MU, Hanif M, Ali MJ, Haider MA, Kherani D, Memon GM, et al. Neurological Manifestations of COVID-19 (SARS-CoV-2): A Review. Front Neurol. 2020;11:518-.

Tables

Summary EMG data
Motor CV
Sensory CV

Test	Site	Lat., ms	Ampl., µV	Dur., ms	Area, nV·ms	Stim., mA	Stim., ms	Dist., mm	Time, ms	Vel., m/s	Vel. norm, m/s	Vel. dev., %	
R, Ramus superficialis n. radialis, C5 C6	7	Middle third of forearm	1.2	10.5	1.3	8.7	18	0.1	100	1.22	82.2	57.0	+44.1
R, n. Medianus III dig.	6	Middle of palm	2.6	28.9	3.1	19.7	27	0.1	70	2.65	66.5	60.0	(N)
L, n. Medianus III dig.	10	Wrist	2.8	21.2	2.3	12.9	22	0.1	140	2.8	50.0	60.0	(N)
R, n. Ulnaris V dig.	5	Wrist	2.0	19.3	2.6	14.4	20	0.1	120	1.96	61.2	60.0	(N)
L, n. Ulnaris V dig.	13	Wrist	2.3	9.0	2.1	5.8	51	0.1	130	2.33	55.8	60.0	(N)
R, n. Suralis, S1-S2	23	1	2.8	7.4	1.9	4.9	23	0.1	130	2.76	47.1	50.0	(N)
L, n. Suralis, S1-S2	26	1	3.5	10.4	2.0	11.7	30	0.1	130	3.52	36.9	50.0	-26.1

F-wave parameters

- **R, Abductor digiti minimi, Ulnaris, C8 T1**
 - Wrist: 3.6 ms, 9.4 µV, 6.56 ms, 100 µV·ms, 1.22 mA, 120 ms, 82.2 m/s
 - Elbow: 7.7 ms, 9.4 µV, 7.27 ms, 120 µV·ms, 1.44 mA, 120 ms, 69.4 m/s
 - Arm: 8.3 ms, 8.3 µV, 5.8 ms, 120 µV·ms, 1.76 mA, 120 ms, 57.0 m/s

- **L, Abductor digiti minimi, Ulnaris, C8 T1**
 - Wrist: 2.1 ms, 8.0 µV, 5.56 ms, 100 µV·ms, 1.16 mA, 120 ms, 80 m/s
 - Elbow: 6.8 ms, 8.6 µV, 5.72 ms, 120 µV·ms, 1.44 mA, 120 ms, 53.0 m/s
 - Arm: 8.3 ms, 8.3 µV, 5.8 ms, 120 µV·ms, 1.44 mA, 120 ms, 57.0 m/s

- **R, Abductor pollicis brevis, Medianus, C8 T1**
 - Wrist: 3.6 ms, 9.4 µV, 6.56 ms, 100 µV·ms, 1.22 mA, 120 ms, 82.2 m/s
 - Elbow: 7.7 ms, 9.4 µV, 7.27 ms, 120 µV·ms, 1.44 mA, 120 ms, 69.4 m/s
 - Arm: 8.3 ms, 8.3 µV, 5.8 ms, 120 µV·ms, 1.44 mA, 120 ms, 57.0 m/s

- **L, Abductor pollicis brevis, Medianus, C8 T1**
 - Wrist: 2.1 ms, 8.0 µV, 5.56 ms, 100 µV·ms, 1.16 mA, 120 ms, 80 m/s
 - Elbow: 6.8 ms, 8.6 µV, 5.72 ms, 120 µV·ms, 1.44 mA, 120 ms, 53.0 m/s
 - Arm: 8.3 ms, 8.3 µV, 5.8 ms, 120 µV·ms, 1.44 mA, 120 ms, 57.0 m/s

- **R, Abductor hallucis, Tibialis, L4 L5 S1**
 - Medial malleolus: 5.7 ms, 4.8 µV, 5.56 ms, 100 µV·ms, 1.22 mA, 120 ms, 66.5 m/s
 - Popliteal fossa: 16.1 ms, 4.5 µV, 7.27 ms, 120 µV·ms, 1.44 mA, 120 ms, 53.4 m/s

- **L, Abductor hallucis, Tibialis, L4 L5 S1**
 - Medial malleolus: 6.2 ms, 6.1 µV, 6.92 ms, 100 µV·ms, 1.44 mA, 120 ms, 66.5 m/s
 - Popliteal fossa: 15.3 ms, 3.8 µV, 7.27 ms, 100 µV·ms, 1.44 mA, 120 ms, 53.4 m/s

- **R, Extensor digitorum brevis, Peroneus, L4 L5 S1**
 - Sole of the foot: 3.9 ms, 2.0 µV, 6.36 ms, 100 µV·ms, 1.22 mA, 120 ms, 66.5 m/s
 - Head of fibula: 10.6 ms, 1.6 µV, 7.38 ms, 120 µV·ms, 1.44 mA, 120 ms, 53.4 m/s

- **L, Extensor digitorum brevis, Peroneus, L4 L5 S1**
 - Sole of the foot: 4.6 ms, 2.1 µV, 6.37 ms, 100 µV·ms, 1.22 mA, 120 ms, 66.5 m/s
 - Head of fibula: 11.4 ms, 2.5 µV, 6.37 ms, 120 µV·ms, 1.44 mA, 120 ms, 53.4 m/s
| Test | Fmin lat., ms | M lat., ms | Fmin-M lat., ms | Max Vprox, m/s |
|------|--------------|------------|----------------|----------------|
| R, Abductor digiti minimi, Ulnaris, C8 T1 | 29.2 | 2.88 | 23.3 |
| L, Abductor digiti minimi, Ulnaris, C8 T1 | 28.0 | 2.76 | 23.2 |
| R, Abductor pollicis brevis, Medianus, C8 T1 | 27.3 | 3.84 | 23.5 |
| L, Abductor pollicis brevis, Medianus, C8 T1 | 29.8 | 3.84 | 23.0 |
| R, Abductor hallucis, Tibialis, L4 L5 S1 | 58.6 | 6.04 | 52.6 |
| L, Abductor hallucis, Tibialis, L4 L5 S1 | 55.4 | 6.12 | 49.3 |
| R, Extensor digitorum brevis, Peroneus, L4 L5 S1 | non | 3.92 | 0 |
| L, Extensor digitorum brevis, Peroneus, L4 L5 S1 | 53.1 | 4.76 | 48.3 |

H-reflex

Test	Threshold stim., mA	Max wave stim., mA	Max wave lat., ms	Max ampl., mV	Max area, mV×ms	Max H/M, %	Index H, cm²/mc²
R, Gastrocnemius, Tibialis, S1-S2	H-reflex 22.0	31.0	35.0	0.638	1.6	6.1	
	M-wave 15.0	39.0	6.16	10.5	24.8		
L, Gastrocnemius, Tibialis, S1-S2	H-reflex 36.0	42.0	33.4	1.09	3.5	74.9	
	M-wave 42.0	47.0	6.08	1.45	3.2		

Electromyography

1 13 **Interference**
Site	Spont. activity	Fasciculations	MUP amplitude	MUP duration	MUP polyphasicity	Pattern
R, Biceps brachii, Musculocutaneus, C5 C6	N	N	N	N	N	N
L, Biceps brachii, Musculocutaneus, C5 C6	N	N	N	N	N	N
R, Flexor carpi radialis, Medianus, C6-C7	N	N	N	N	N	N
L, Flexor carpi radialis, Medianus, C6-C7	N	N	N	N	N	N
R, Interosseus I, Ulnaris, C8 T1	N	N	N	N	N	N
L, Interosseus I, Ulnaris, C8 T1	N	N	N	N	N	N
R, Vastus lateralis, Femoralis, L2-L4	N	N	N	N	N	N
L, Vastus lateralis, Femoralis, L2-L4	N	N	N	N	N	N
R, Tibialis anterior, Peroneus, L4 L5 s1	N	N	N	Increased	Increased	Neurogenic
L, Tibialis anterior, Peroneus, L4 L5 s1	N	N	N	Increased	Increased	Neurogenic
R, Gastrocnemius, Tibialis, S1-S2	N	N	N	Greatly increased	Greatly increased	Neurogenic
L, Gastrocnemius, Tibialis, S1-S2	N	N	N	Increased	Greatly increased	Neurogenic

Figures
Figure 1
dermatologic presentation