Complete genome sequence of *Bacteroides helcogenes* type strain (P 36-108T)

Amrita Pati1, Sabine Gronow2, Ahmet Zeytun1,3, Alla Lapidus1, Matt Nolan1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxane Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3, Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Amy Chen4, Krishna Palaniappan5, Miriam Land1,3, Loren Hauser1,3, Yun-Juan Chang1,5, Cynthia D. Jeffries1,5, John C. Detter1, Evelyne Brambilla2, Manfred Rohde6, Markus Göker2, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk2*, and Susan Lucas1

1 DOE Joint Genome Institute, Walnut Creek, California, USA
2 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
7 University of California Davis Genome Center, Davis, California, USA
8 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia

*Corresponding author: Hans-Peter Klenk

Keywords: strictly anaerobic, mesophilic, nonmotile, Gram-negative, chemoorganotrophic, pig abscess, animal pathogen, *Bacteroidaceae*, GEBA

Bacteroides helcogenes Benno et al. 1983 is of interest because of its isolated phylogenetic location and, although it has been found in pig feces and is known to be pathogenic for pigs, occurrence of this bacterium is rare and it does not cause significant damage in intensive animal husbandry. The genome of *B. helcogenes* P 36-108T is already the fifth completed and published type strain genome from the genus *Bacteroides* in the family *Bacteroidaceae*. The 3,998,906 bp long genome with its 3,353 protein-coding and 83 RNA genes consists of one circular chromosome and is a part of the *Genomic Encyclopedia of Bacteria and Archaea* project.

Introduction

Strain P 36-108^T^ (= DSM 20613 = ATCC 35417 = JCM 6297) is the type strain of *Bacteroides helcogenes*, one of currently 39 species in the genus *Bacteroides* [1,2]. The species epithet of *B. helcogenes* is derived from the Greek noun *helkos* meaning ‘abscess’ and the Greek verb *gennaio* meaning ‘produce’, referring to the pathogenic, probably intestinal, abscess-producing properties of the species [2]. *B. helcogenes* strain P36-108^T^ was isolated from a pig abscess in Japan, and described by Benno et al. in 1983 [2]. Nine further isolates of *B. helcogenes* have been obtained from pig abscesses whereas two other isolates originated from pig feces. Here we present a summary classification and a set of features for *B. helcogenes* P 36-108^T^, together with the description of the complete genomic sequencing and annotation.

Classification and features

A representative genomic 16S rRNA sequence of *B. helcogenes* was compared using NCBI BLAST under default values (e.g., considering only the high-scoring segment pairs (HSPs) from the best 250 hits) with the most recent release of the Greengenes database [3] and the relative frequen-
cies, weighted by BLAST scores, of taxa and key-
words (reduced to their stem [4]) were deter-
ned. The single most frequent genus was Bacte-
roides (100%) (33 hits in total). Regarding the 21
hits to sequences from other members of the ge-
nus, the average identity within HSPs was 92.7%,
whereas the average coverage by HSPs was
84.5%. Among all other species, the one yielding
the highest score was Bacteroides ovatus, which
corresponded to an identity of 93.4% and a HSP
coverage of 86.6%. The highest-scoring envi-
ronmental sequence was AM275453 (‘fecal microbi-
ota irritable bowel syndrome patients differs sig-
nificantly from that of healthy subjects’), which
showed an identity of 95.5% and a HSP coverage
of 84.3%. The most frequently occurring key-
words within the labels of environmental samples
which yielded hits were ‘human’ (11.0%), ‘fecal’
(9.5%), ‘microbiota’ (8.8%), ‘sequenc’ (5.4%) and
‘gut’ (5.4%) (217 hits in total). The most fre-
quently occurring keywords within the labels of envi-
rnosmental samples which yielded hits of a higher
score than the highest scoring species were
‘fecal/human’ (13.3%), ‘feedlot’ (5.2%), ‘bowel,
faecal, healthi, irrit, microbiota, patient, significan-
ti, subject, syndrom’ (2.7%) and ‘beef, cattl, coli,
irrit, microbiota, patient, significan-
ti, subject, syndrom’ (2.7%) and ‘beef, cattl, coli,
escherichia, feedbunk, habitat, marc, materi, neg,
pen, primari, secondari, stec, surfac, synecolog,
top, west’ (2.6%) (6 hits in total). Most of these
keywords are in accordance with the isolation
sites of the different isolates and strongly suggest
that B. helcogenes, like many other species of the
genus Bacteroides, is associated with the intestinal
tract of the host in the case of B. helcogenes, this
host is the pig [2].

Figure 1 shows the phylogenetic neighborhood of
B. helcogenes P 36-108T in a 16S rRNA based tree.
The sequences of the five 16S rRNA gene copies in
the genome differ from each other by up to 20
nucleotides, and differ by up to 13 nucleotides
from the previously published 16S rRNA sequence
(AB200227).

The cells of B. helcogenes generally have the shape
of short rods (0.5-0.6 µm × 0.8-4.0 µm) which oc-
cur singly or in pairs (Figure 2). B. helcogenes is a
Gram-negative, non-pigmented and non spore-
forming bacterium (Table 1). The organism is
originally described as nonmotile and only five
genes associated with motility have been found in
the genome (see below). The organism grows well
at 37°C but does not grow at 4°C or at 45°C [2]. B.

helcogenes is strictly anaerobic, chemoorganotro-
ic and is able to ferment glucose, mannose,
fructose, galactose, sucrose, maltose, cellobiose,
lactose, xylose, melibiose, raffinose, starch, glycog-
en, salicin, amygdalin, and xylan [2]. The organ-
ism hydrolyzes esculin and starch but does not
digest casein, liquefy gelatin, reduce nitrate nor
produce indole from tryptophan [2]. B. helcogenes
does not utilize arabinose, rhamnose, ribose, treha-
lose, inulin, glycerol, mannitol, sorbitol, inositol,
adonitol, erythritol or gum Arabic [2]. It does not
require hemin for growth but does require the
presence of CO₂; it does not show hemolysis.
Growth is not enhanced by the addition of 20%
 bile [2]. Major fermentation products from PYFG
broth (peptone yeast extract Filde glucose broth
[26]) are acetic acid and succinic acid; propionic
and isobutyric acid are produced in small amounts
[2]. B. helcogenes is phosphatase, DNase, β-
glucuronidase, and glutamic acid decarboxylase
active and urease, catalase, lecithinase and lipase
inactive [2]. The organism produces ammonium
and chondroitin sulfatase [2]. B. helcogenes can
grow in the presence of kanamycin (1mg/ml),
vancomycin (10 µg/ml), colistin (10 µg/ml), eryth-
romycin (60 µg/ml) or polymyxin B (10 µg/ml)
but not in the presence of cepharothin (10 µg/ml)
or Brilliant green (0.001%) [2].

Chemotaxonomy
Little chemotaxonomic information is available for
strain P 36-108T. Thus far, only the fatty acid
composition has been elucidated. The major fatty
acids found (>10%) were anteiso-C15:0, C15:0 and
iso-C15:0.3-OH. Also, iso-C15:0.3-H, C16:0, and cis-C18:1
were detected in a proportion ranging between 5% to
10% of the total fatty acids (unpublished data).

Genome sequencing and annotation
Genome project history
This organism was selected for sequencing on the
basis of its phylogenetic position [27], and is part
of the Genomic Encyclopedia of Bacteria and Arc-
chae project [28]. The genome project is de-
posited in the Genomes OnLine Database [10] and
the complete genome sequence is deposited in
GenBank. Sequencing, finishing and annotation
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is
shown in Table 2.
Figure 1. Phylogenetic tree highlighting the position of *B. helcogenes* relative to those type strains within the genus that appeared within a monophyletic *Bacteroides* main clade in preliminary analyses. Note that several of the *Bacteroides* type strain 16S rRNA sequences (from *B. cellulosolvens*, *B. galacturonicus*, *B. pectinophilus*, *B. vulgatus*) did not cluster together with this clade (data not shown, but see [5]) and were omitted from the main phylogenetic inference analysis. The same holds for the sequence from *Anaerorhabdus furcosa* (GU585668; also *Bacteroidaceae*). Other *Bacteroides* species lacked a sufficiently long 16S rRNA sequence and also had to be omitted (*B. coagulans*, *B. xylanolyticus*). The tree was inferred from 1,414 aligned characters [6,7] of the 16S rRNA gene sequence under the maximum likelihood criterion [8] and rooted with the type strain of the family *Prevotellaceae*. The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support values from 1,000 bootstrap replicates [9] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [10] are shown in blue, published genomes [11] and *Prevotella melaninogenica* released Genbank accession CP002122 in bold.

Prevotella melaninogenica (AY323525)

Figure 2. Scanning electron micrograph of *B. helcogenes* P 36-108T
Table 1. Features of B. helcogenes P 36-108T according to the MIGS recommendations [12].

MIGS ID	Property	Term	Evidence code
	Domain	Bacteria	TAS [13]
	Phylum	Bacteroidetes	TAS [14]
	Class 'Bacteroidia'	TAS [15]	
	Order 'Bacteroidales'	TAS [16]	
	Family Bacteroidaceae	TAS [17,18]	
	Genus Bacteroides	TAS [17,19-22]	
	Species Bacteroides helcogenes	TAS [2,23]	
	Current classification	Type strain P 36-108	TAS [2]
	Gram stain	negative	TAS [2]
	Cell shape	rod-shaped, single or in pairs	TAS [2]
	Motility	non-motile	TAS [2]
	Sporulation	none	TAS [2]
	Temperature range	mesophile	TAS [2]
	Optimum temperature	37°C	TAS [2]
	Salinity	normal	TAS [2]
MIGS-22	Oxygen requirement	strictly anaerobic	TAS [2]
	Carbon source	carbohydrates	TAS [2]
	Energy source	chemoorganotroph	TAS [2]
MIGS-6	Habitat	host	TAS [2]
MIGS-15	Biotic relationship	free-living	TAS [2]
MIGS-14	Pathogenicity	animal pathogen	TAS [2]
	Biosafety level	2	TAS [24]
	Isolation	Sus scrofa abscess	TAS [2]
MIGS-4	Geographic location	Japan	TAS [2]
MIGS-5	Sample collection time	1974	TAS [2]
MIGS-4.1	Latitude	not reported	NAS
MIGS-4.2	Longitude	not reported	NAS
MIGS-4.3	Depth	not reported	NAS
MIGS-4.4	Altitude	not reported	NAS

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [25]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.

Growth conditions and DNA isolation

B. helcogenes P 36-108T, DSM 20613, was grown anaerobically in medium 104 (PYG Medium) [29] at 37°C. DNA was isolated from 0.5-1 g of cell paste using MasterPure Gram-positive DNA purification kit (Epicentre MGP04100) following the standard protocol as recommended by the manufacturer, with modification st/DL for cell lysis as described in Wu et al. [28]. DNA is available through the DNA Bank Network [30,31].

Genome sequencing and assembly

The genome was sequenced using a combination of Illumina and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [32]. Pyrosequencing reads were assembled using the Newbler assembler version 2.3-PreRelease-10-21-2009-gcc-4.1.2-threads (Roche). The initial Newbler assembly consisting of 48 contigs in two scaf
folds was converted into a phrap assembly by [33] making fake reads from the consensus, to collect the read pairs in the 454 paired end library. Illumina GAii sequencing data (225.3 Mb) was assembled with Velvet [34] and the consensus sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 data. The 454 draft assembly was based on 146.7 Mb 454 draft data and all of the 454 paired end data. Newbler parameters are -consed -a 50 -l 350 -g -m -ml 20. The Phred/Phrap/Consed software package [33] was used for sequence assembly and quality assessment in the subsequent finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution [32], Dupfinisher [35], or sequencing cloned bridging PCR fragments with subcloning or transposon bombing (Epicentre Biotechnologies, Madison, WI). Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks (J.-F.Chang, unpublished). A total of 160 additional reactions and 4 shatter libraries were necessary to close gaps and to raise the quality of the finished sequence. Illumina reads were also used to correct potential base errors and increase consensus quality using a software Polisher developed at JGI [36]. The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Illumina and 454 sequencing platforms provided 93 × coverage of the genome. The final assembly contained 500,148 pyrosequence and 6,257,254 Illumina reads.

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Three genomic libraries: one 454 pyrosequence standard library, one 454 PE library (9 kb insert size), one Illumina library
MIGS-29	Sequencing platforms	Illumina GAii, 454 GS FLX Titanium
MIGS-31.2	Sequencing coverage	56.3 × Illumina; 36.7 × pyrosequence
MIGS-30	Assemblers	Newbler version 2.3-PreRelease-10-21-2009-gcc-4.1.2-threads, Velvet, phrap
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
INSDC ID		CP002352
Genbank Date of Release		January 18, 2011
GOLD ID		Gc01593
NCBI project ID		41913
Database: IMG-GEBA		2503538016
MIGS-13	Source material identifier	DSM 20613
Project relevance		Tree of Life, GEBA

Genome annotation

Genes were identified using Prodigal [37] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [38]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [39].

Genome properties

The genome consists of a 3,998,906 bp long chromosome with a GC content of 44.7% (Figure 3 and Table 3). Of the 3,436 genes predicted, 3,353 were protein-coding genes, and 83 RNAs; 109 pseudogenes were also identified. The majority of the protein-coding genes (64.5%) were assigned with a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.
Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	3,998,906	100.00%
DNA coding region (bp)	3,583,947	89.62%
DNA G+C content (bp)	1,788,209	44.72%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	3,436	100.00%
RNA genes	83	2.42%
rRNA operons	5	
Protein-coding genes	3,353	97.58%
Pseudo genes	109	3.17%
Genes with function prediction	2,215	64.46%
Genes in paralog clusters	454	13.21%
Genes assigned to COGs	2103	61.20%
Genes assigned Pfam domains	2360	68.68%
Genes with signal peptides	980	28.52%
Genes with transmembrane helices	798	23.22%
CRISPR repeats	1	
Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	147	6.5	Translation, ribosomal structure and biogenesis
A	0	0	RNA processing and modification
K	157	6.9	Transcription
L	125	5.5	Replication, recombination and repair
B	0	0	Chromatin structure and dynamics
D	20	0.9	Cell cycle control, cell division, chromosome partitioning
Y	0	0	Nuclear structure
V	67	2.9	Defense mechanisms
T	125	5.5	Signal transduction mechanisms
M	245	10.8	Cell wall/membrane/envelope biogenesis
N	5	0.2	Cell motility
Z	0	0	Cytoskeleton
W	0	0	Extracellular structures
U	48	2.1	Intracellular trafficking, secretion, and vesicular transport
O	66	2.9	Posttranslational modification, protein turnover, chaperones
C	120	5.3	Energy production and conversion
G	185	8.1	Carbohydrate transport and metabolism
E	149	6.5	Amino acid transport and metabolism
F	67	2.9	Nucleotide transport and metabolism
H	120	5.3	Coenzyme transport and metabolism
I	64	2.8	Lipid transport and metabolism
P	161	7.6	Inorganic ion transport and metabolism
Q	20	0.9	Secondary metabolites biosynthesis, transport and catabolism
R	266	11.7	General function prediction only
S	122	5.4	Function unknown
-	1,333	38.8	Not in COGs

Acknowledgements

We would like to gratefully acknowledge the help of Sabine Welnitz (DSMZ) for growing *B. helcogenes* cultures. This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00R22725, as well as German Research Foundation (DFG) INST 599/1-2.

References

1. Garrity G. NamesforLife. BrowserTool takes expertise out of the database and puts it right in the browser. *Microbiol Today* 2010; 7:1.

2. Benno Y, Watabe J, Mitsuoka T. *Bacteroides pylogenes* sp. nov., *Bacteroides suis* sp. nov., and *Bacteroides helcogenes* sp. nov., new species from abscesses and feces of pigs. *Syst Appl Microbiol* 1983; 4:396-407.

3. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. *Appl Environ Microbiol* 2006; 72:5069-5072. PubMed doi:10.1128/AEM.03006-05

4. Porter MF. An algorithm for suffix stripping. Program: electronic library and information systems 1980; 14:130-137.

5. Yarza P, Richter M, Peplies J, Euzéby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-
7. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540-552. PubMed

8. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 2008; 57:758-771. PubMed doi:10.1007/s10292-008-0242-9

9. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How Many Bootstrap Replicates Are Necessary? Lect Notes Comput Sci 2009; 5541:184-200. doi:10.1007/978-3-642-02008-7_13

10. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes OnLine Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2010; 38:D346-D354. PubMed doi:10.1093/nar/gkq848

11. Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxtin I, Duerden B, Harris B, Quail MA, et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 2005; 307:1463-1465. PubMed doi:10.1126/science.1107008

12. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed doi:10.1038/nbt1360

13. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576

14. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1. Springer, New York 2001:119-169.

15. Ludwig W, Euzéby J, Whitman WG. Draft taxonomic outline of the Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi, and Gemmatimonadetes. http://www.bergeys.org/Outlines/Bergeys_Vol_4_Outline.pdf. Taxonomic Outline 2008.

16. Garrity GM, Holt JG. Taxonomic Outline of the Archaea and Bacteria. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 155-166.

17. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225-420. doi:10.1099/00207713-30-1-225

18. Pribram E. Klassifikation der Schizomyceten. Klassifikation der Schizomyceten (Bakterien), Franz Deuticke, Leipzig, 1933, p. 1-143.

19. Castellani A, Chalmers AJ. Genus Bacteroides Castellani and Chalmers, 1918. Manual of Tropical Medicine, Third Edition, Williams, Wood and Co., New York, 1919, p. 959-960.

20. Holdeman LV, Moore WEC. Genus I. Bacteroides Castellani and Chalmers 1919, 959. In: Buchanan RE, Gibbons NE (eds), Bergey's Manual of Determinative Bacteriology, Eighth Edition, The Williams and Wilkins Co., Baltimore, 1974, p. 385-404.

21. Cato EP, Kelley RW, Moore WEC, Holdeman LV. Bacteroides zoogloaeformans, Weinberg, Nativelle, and Prévot 1937) corrig. comb. nov.: emended description. Int J Syst Bacteriol 1982; 32:271-274. doi:10.1099/00207713-32-3-271

22. Shah HN, Collins MD. Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 1989; 39:85-87. doi:10.1099/00207713-39-1-85

23. Validation List no. 12. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 1983; 33:896-897. doi:10.1099/00207713-33-4-896

24. Classification of bacteria and archaea in risk groups. http://www.baua.de TRBA 466.
26. Saito H, Miura K. Preparation of transfroming deoxyribonucleic acid by phenol treatment. *Biochim Biophys Acta* 1963; **72**:619-629. PubMed doi:10.1016/0926-6550(63)90386-4

27. Klenk HP, Goeker M. En route to a genome-based classification of *Archaea* and *Bacteria*? *Syst Appl Microbiol* 2010; **33**:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

28. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, *et al.* A phylogeny-driven genomic encyclopaedia of *Bacteria* and *Archaea*. *Nature* 2009; **462**:1056-1060. PubMed doi:10.1038/nature08656

29. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php.

30. Gemeinholzer B, Dröge G, Zetzsche H, Haszprunar G, Klenk HP, Güntsch A, Berendsohn WG, Wägele JW. The DNA Bank Network: the start from a German initiative. *Biopreservation and Biobanking*. (In press).

31. DNA Bank Network. http://www.dnabank-network.org

32. DOE Joint Genome Institute. http://www.jgi.doe.gov

33. Phrap and Phred for Windows. MacOS, Linux, and Unix. http://www.phrap.com

34. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res* 2008; **18**:821-829. PubMed doi:10.1101/gr.074492.107

35. Han C, Chain P. 2006. Finishing repeat regions automatically with Dupfinisher. in Proceeding of the 2006 international conference on bioinformatics & computational biology. Edited by Hamid R. Arabnia & Homayoun Valafar, CSREA Press. June 26-29, 2006: 141-146.

36. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.

37. Hyatt D, Chen GL, LoCascio PF, Land ML, Larkin FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* 2010; **11**:119. PubMed doi:10.1186/1471-2105-11-119

38. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. *Gene-PRIMP*: a gene prediction improvement pipeline for prokaryotic genomes. *Nat Methods* 2010; **7**:455-457. PubMed doi:10.1038/nmeth.1457

39. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. *IMG ER*: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; **25**:2271-2278. PubMed doi:10.1093/bioinformatics/btp393