Water bird habitat suitability analysis in an urban coastal wetland (case study: Lantebung mangrove ecotourism area)

A Purify, N Nurdin, R I Maulani, and M Lanuru

1Environmental Management, Hasanuddin University, Makassar, South Sulawesi, Indonesia
2Department of Marine Science, Hasanuddin University, Makassar, South Sulawesi, Indonesia.
3Department of Forestry, Hasanuddin University, Makassar, South Sulawesi, Indonesia
4Research And Development Center For Marine Coastal And Small Island, LPPM, Hasanuddin University, Makassar, South Sulawesi, Indonesia

Email: aurapurify@gmail.com

Abstract. Water birds are a significant wildlife component in tropical mangrove wetlands. These birds have prominent roles for the integrity of the ecosystem. This research aimed to analyse water birds habitat suitability level at Lantebung Mangrove Ecotourism Area in Makassar, South Sulawesi, Indonesia. Geography Information System (GIS) and remote sensing approaches were employed in this study. Eight parameters were used for water bird habitat suitability assessment: land type, food class, water level, human disturbance, salinity, pH, dissolved oxygen, and temperature. All data parameters other than land type were interpolated using Inverse Distance Weighted Interpolation (IDW) in ArcGIS 10.5. Meanwhile, land types were digitized on-screen using Landsat 8 imagery (acquisition October 2018), based on GPS field tracking. The suitability assessment was done by weighted overlay analysis, based on the scoring and weighting of each layer. The results showed that the area suitable for water bird habitat at Lantebung Mangrove Ecotourism Area was approximately 44 ha or 51.2% from the total area. The majority of suitable area consisted of mangrove forest, mudflat in front of mangrove forest, and mudflat behind mangrove forest. Further sustainable effort is needed to manage the available habitats, so that water bird population can be conserved.

1. Introduction

The dynamics of mangrove wetlands, particularly in tropical coastal urban areas are highly impacted by urbanization and human activities [1]. The degradation of this type of wetland has resulted in deterioration of wetland ecosystem services and the biodiversity that depends on these wetlands [2]. Water birds are a significant wildlife component in tropical mangrove wetlands. These birds are an important part of mangrove wetland ecosystems, because they have ecological role in mangrove forest dynamics [3]. Water birds are able to oxygenate the soil while eating, and release nutrients into the water body through their faeces and leftovers [4]. Water birds, particularly wading egrets and herons [5], and migratory shore birds [6] are known to occupy even highly disturbed mangrove ecosystems which can often still provide them with important habitat. Therefore, conservation efforts to preserve both water bird species and their habitat are much needed in order to sustain equilibrium in
ecosystems, especially in urban areas where anthropogenic pressures are at their highest. In such cases, habitat suitability assessments should be done as an essential step towards conservation.

Water birds habitat suitability assessments using remote sensing and Geographic Information System (GIS) approaches have been conducted in several types of wetland ecosystem, including freshwater wetlands [7–9], archipelagic wetlands [10], semi-arid wetlands [11], and tropical non-urban wetlands [12]. However, it appears that these tools have not yet been used for water bird habitat suitability assessments in tropical urban mangrove wetlands, even though this habitat is very prone to loss. Therefore, this research aimed to analyse water bird habitat suitability level using a remote sensing and GIS approach. The study site was the Lantebung Mangrove Ecotourism Area, a tropical urban mangrove wetland area located in a suburb of Makassar City, Indonesia.

2. Research Method

2.1. Research Design

Geographical Information System (GIS) and remote sensing approaches were employed in this study. Eight parameters were used for water bird habitat suitability assessment, i.e., land type, food class, water level, human disturbance, salinity, pH, dissolved oxygen, and temperature. All of the data parameters except land type, were collected in the field, input to the GIS and interpolated using Inverse Distance Weighted Interpolation (IDW) in ArcGIS 10.5. Meanwhile, land types were digitized on-screen using Landsat 8 imagery (acquisition October 2018), based on GPS field tracking. Suitability assessments were done by weighted overlay analysis, based on the scoring and weighting of each data layer.

2.2. Study Time and Area

This study was conducted from May to November 2018, at the Lantebung Mangrove Ecotourism Area, Lantebung Village, Tamalanrea District, Makassar City. This area is surrounded by fishponds, fishing settlements, and industrial warehousing areas. The mangrove forest extends for around 11 ha, stretched along 1.5 km of shoreline (Figure 1).

![Figure 1](image-url)
Based on previous study data, there are 18 water birds species (wading birds and shore birds) the live in this area, with an average visitation rate of 339 birds per day. Three of these water birds are protected by the government based on the Regulation of the Environment Minister issued in 2018.

2.3. Data Sources
Landsat images (acquisition October 2018) were downloaded from the United States Geological Survey (USGS) site https://glovis.usgs.gov. Food class was identified by point sampling using a core sampler, duplicated at 15 points which were evenly distributed along the area. Human disturbances were identified by on-site observation; if two people were conducting the same activity, it was considered as one activity. Data on the physical and chemistry characteristics of the water (salinity, pH, and temperature) were measured using a Water Quality Checker (WQC) unit. Water depths were calculated using a water level meter. Water was collected for Dissolved Oxygen (DO) analysis using a Winkler bottle sampler at each of the 15 sampling points, and calculated using in situ Winkler titration. Additional data collected on site were photographs of land types and GPS tracking data.

2.4. Data Processing
Landsat images were pansharpened to increase the spatial resolution. Multispectral imagery were pansharpened with Panchromatic band (Band-8 on Landsat 8 OLI), using “Create Pansharpened Raster Dataset” in the ArcMap 10.5 toolbox and natural colour channels selected. For all images, georeferencing was set to UTM WGS 1984 Zone 51 S. Images were specifically cropped to the study area (Lantebung Ecotourism Area) and spectral display was adjusted. A land types map was created based on GPS tracking data and on site observation, using on-screen digitation in ArcGIS 10.5. Distribution maps of each parameter were created using the on site point sampling data for each attribute. These data were interpolated for each attribute using Inverse Distance Weight Interpolation (IDW) in ArcGIS 10.5 Geostatistical Wizard. The value of power and search neighbourhood were adjusted to get the lowest RMS (root mean square) value. Each attribute was then classified based on the determined range value.

2.5. Data Analysis
Raster data results from IDW interpolation were reclassified to give a score attribute to each layer. Suitability analysis was done using weighted overlay analysis of every parameter layer. Each data layer was input to Weighted Overlay tools in ArcGIS, and given a determined weighting value. Table 1 shows the weighting and scores used for each parameter.

Suitability parameter	Criteria	Score	Weight	Source
Human Disturbance	0	3	20	[8,12]
	1 type	2		
	> 1 type	1		
Food Class	4 classes	3	20	[12,13]
	3 classes	2		
	1-2 classes	1		
Land Types	Mudflat	3	15	[12] modified based on field condition
	Mangrove	2		
	Active Fishponds	1		
Water Level	0-50 cm	3	15	[14]
	50 cm – 90 cm	2		
	>90 cm	1		
Suitability parameter	Criteria	Score	Weight	Source
----------------------	---------	-------	--------	--------
pH	7-8.5	3	10	[13,15,16]
	5.4-6.9 and 8.6-9	2		
	<5.3 and >9	1		
Salinity (ppt)	<34	3	10	[13,15]
	34-50	2		
	<2.5 and >40	1		
Temperature (°C)	28-32	3	5	[13,15,17]
	2.5-28 and 32-40	2		
	>50	1		
DO (ppm)	>5	3	5	[13,15,16]
	3-5	2		
	<3	1		

3. Results and Discussion

Distribution maps (Figure 2) of human disturbance, food class, land types, and water level are displayed in Figure 2. The types of human disturbance observed on site were fisherman in boats in front of the mangroves, visitor activities near mangroves, and people working in fish ponds. The area with no human disturbance was 16 ha or 18.6% of the total area; one type of human disturbance occurred in 67 ha (77.8% of the total area), and more than one type of human disturbances occurred in 3 ha or 3.49% of the total area (Figure 2A).

Food classes found in the Lantebung Ecotourism Area were: Polychaeta (sea worms), Bivalvia (shellfish), Gastropoda (sea snails), Maxillopoda (barnacles), and Pisces (fish). The areas which were considered ‘suitable’ (with 3 food classes) covered ≈ 40 ha or 46.5% of the total area (Figure 2B).

Land types in the Lantebung Ecotourism Area comprised mudflats in front of and behind the mangroves (20 ha or 23.3% of the total area); Mangroves (≈ 11 ha (12.8%), while active fish ponds covered 11 ha (12.8%), salt ponds 31 ha (36%), and inactive fish ponds 13 ha (15.1%) (Figure 2C). In terms of water level, suitable water bird habitat (with water levels of 0- 30 cm) extended for ≈39 ha or 45.3% of the total area (Figure 2D).
Physical and chemical factors (water, pH, salinity, temperature, and dissolved oxygen) the distribution of which influences water bird habitat suitability, can be seen in Figure 3. The distribution map of water pH at Lantebung Mangrove Ecotourism Area (Figure 3A) shows that habitat with suitable pH (pH 7-8) covered 83 ha or 96.5% of the total area. Suitable salinity for water bird habitat (below 34 ppt) extended for 51 ha, or 59.3% of the total area (Figure 3B). Temperatures most suitable for water birds habitat (28-32°C) were recorded in 82 ha or 95.3% of the total area (Figure 3C). Dissolved oxygen (DO > 5 ppm) was found all over Lantebung Mangrove Ecotourism Area (Figure 3D).
The map of water birds habitat suitability obtained from overlaying all parameters distribution maps is shown in Figure 4. The result of the spatial analysis to determine habitat suitability classes for water birds based on habitat components in the Lantebung Mangrove Ecotourism Area, showed two classes: 1) suitable, the highest score indicating optimum components, and 2) unsuitable, a feeding ground used when the mudflat was not exposed and habitat components were less optimum. Suitable habitat for water birds in Lantebung Mangrove Ecotourism Area extended for 44 ha or 51.2% of the total area. Meanwhile, the unsuitable area was 42 ha or 48.8% of the total area.

Figure 3 Distribution Maps of physical and chemical habitat suitability parameters which influence water bird abundance and diversity:
(A) pH
(B) Salinity
(C) Temperature
(D) Dissolved Oxygen
The suitable class comprised areas of mudflats, mangroves, and inactive fish ponds. Suitable areas where foods are available in a higher variety need to be protected from human disturbance. The choice of habitat by water birds in wetlands is strongly influenced by the availability of food sources and the ease of getting food according to the daily needs of each water bird species foraging in a particular area [18].

The presence of human activities in an ecosystem affects the presence, distribution and abundance of animals. Human activity is a form of disturbance that can affect the population dynamics of water birds, affecting their behaviour, abundance and/or distribution. The responses of birds to human presence are varied. They may shorten the time spent in searching for food and may fly away when humans are close to them. Therefore, the existing ecotourism should consider the spatial aspects of bird habitat and the distance between water birds and tourists. This is important when deciding on areas for facilities such as visitor paths and bridges.

Generally water birds have a tendency to approach feeding locations that are rich in food sources and migratory birds often visit the same feeding site from year to year [19]. Migrant beach birds tend to always use the same stopover sites every year as places to rest and obtain food. In addition, in this case the accessibility or ease of obtaining food is influenced by water height, further affecting the abundance and diversity of water birds [14].

The distribution and abundance of water birds are also influenced by physical-chemical factors. Changes in physical, chemical and biological factors can have a significant impact on the overall wetlands which are the habitat of aquatic communities. So that in turn these factors will also affect

Figure 4 Water Bird Habitat Suitability Map for Lantebung Mangrove Ecotourism Area, Makassar City.
organisms that depend on wetland habitat (including water birds and their food sources), affecting in turn the attributes of the ecosystem, such as species richness, distribution, and density [20].

Since most water birds have a narrow breeding distribution and habitat meeting their requirements is increasingly restricted, they are often considered as endangered. Therefore, existing ecotourism activities should be able to accommodate water bird habitat conservation efforts. As urban wetlands tend to be highly pressured by human population and activity, the way in which visitor activities are managed will have a significant (positive or negative) impact on water bird habitat. Land conversion of urban wetlands may also reduce the availability of mudflats and inactive fishponds which are important for water birds as foraging areas. Therefore, policies and measures should be taken to manage and control existing water bird habitat.

4. Conclusions

The suitability analysis of water bird habitat in Lantebung Mangrove Ecotourism Area found 44 hectares of suitable land (51.2%) and 42 hectares of unsuitable land (48.8%). These data can be used to support water bird biodiversity conservation and proper management of an existing urban mangrove ecotourism area under increased pressure from human population growth and potential disturbances.

Acknowledgements

This study was supported by a Magister Thesis Research (Penelitian Tesis Magister) grant from the Indonesian Ministry of Research, Technology, and Higher Education of the Republic of Indonesia. ESRI also supported this study through an ArcGIS 10.5 software license.

References

[1] Branoff B 2018 Urban Mangrove Biology and Ecology: Emergent Patterns and Management Implications Threats to Mangrove Forests ed C Makowski and C Finkl (Coastal Research Library, vol 25. Springer, Cham)
[2] Mathiventhan T, Jayasingam T and Umaramani M 2018 Urban Mangrove Wetlands, Challenges and Its Conservation: Sri Lanka Perspectives. International J. Res. Stud. Biosci. 6 23–6
[3] Mohd-Azlan J, Noske R A and Lawes M J 2015 The Role of Habitat Heterogeneity in Structuring Mangrove Bird Assemblages Diversity 7 118–36
[4] Navedo J G, Hahn S, Parejo M, Abad-Gómez, J M Gutiérrez J S, Villegas A and Sánchez-Guzmán, J M Masero J A 2015 Unravelling Trophic Subsidies OfAgroecosystems For Biodiversity Conservation: Food Consumption and Nutrient Recycling By Waterbirds In Mediterranean Rice Fields Sci. Total Env. 511 288–97
[5] Roshnath R and Sinu P A 2017 Nesting Tree Characteristics of Heronry Birds of Urban Ecosystems in Peninsular India : Implications for Habitat Management Curr. Zool. 63 599–605
[6] Lim, Chuan H and Posa M R C 2014 Distribution and Prey of Migratory Shorebirds on The Northern Coastline of Singapore Raffles Bull. Zool. 62 701–17
[7] Herring H K and Gawlik D E 2011 Resource Selection Functions for Wood Stork Foraging Habitat in The Southern Everglades Waterbirds 34 133–42
[8] Dong Z, Wang Z, Liu D, Li L, Ren C, Tang X, Jia. M and Liu C 2013 Assessment of Habitat Suitability for Waterbirds in The West Shongnen Plain, China, Using Remote Sensing and GIS Ecol. Eng. 55 94–100
[9] Liang J, Hua S, Zeng G, Yuan Y, Lai X, Li X, Li F, Wu H, Huang L and Yu X 2015 Application of Weight based on Canonical Correspondence Analysis for Assessment of Anatidae Habitat Suitability : A Case Study in East Dongting Lake, Middle China Ecol. Eng. 77 119–26
[10] Heinanen S, Erola J and von Numers M 2012 High Resolution Species Distribution Models of Two Nesting WaterbirdSpecies: a Study of Transferability and Predictive Performance Landsc. Ecol. 27 545–55
[11] Maleki, Saeideh A R, Soffianian, Koupaei S S, Saatchi S and Pourmanafi, S Sheikholeslam F 2016 Habitat Mapping as a Tool for Water Birds Conservation Planning in an Arid Zone Wetland Ecol. Eng. 95 594–603

[12] Jumilawaty E 2012 Kesarusahaan Habitat danDistribusiBurung Air di PercutSei Tuan, Sumatera Utara (Bogor Agriculture Institute)

[13] Manikannan R, Asokan S and Ali A M S 2012 Abundance and Factors Affecting Population Characteristics of Waders (Charadriiformes) in Great Vedranyam Swamp of Point Calimere Wildlife Sanctuary, South East Coast of India Int. J. Ecosyst. 2 6–14

[14] Calle L, Gawlik D L, Xie Z, Green L, Lapointe B and Stron A 2016 Effects of Tidal Periodicities and Diurnal Foraging Constraints on The Density of Foraging Wading Birds Auk 133 378–96

[15] Hoetomo 2004 Environment Ministry Decision No. 51 2004, about sea water quality standard (Indonesia)

[16] Enderleine, Ute S, Enderlein R E and Williams W P 1997 Water Pollution Control - A Guide to the Use of Water Quality Management Principles (London. Weinheim. New York. Tokyo. Melbourne. Madras: E & FN Spon and An imprint of Thomson Professional)

[17] Vlain, Anouck and Guillemette M 2016 Does Water Temperature Affect The Timing and Duration of RemigialMoult in Sea Ducks? An Experimental Approach PLoS One 11 e0155253

[18] Pierce R L and Gawlik D E 2010 Wading Bird Foraging Habitat Selection in The Florida Everglades Waterbirds 33 494–503

[19] Putra C A, Fajarallah D P and Mulyani A Y 2017 Habitat Use of Migratory Sorebirds on The Coastline of Deli Serdang Regency, North Sumatera Province Hayati J. Biosci. 24 16–21

[20] Thapa, Jham B and Saund T B 2012 Water Quality Parameters and Bird Diversity in Jagdishpur Reservoir, Nepal J. Sci. Technol. 13