Numerical convergence of simulations of galaxy formation: the abundance and internal structure of cold dark matter haloes

Aaron D. Ludlow1,*, Joop Schaye2 & Richard Bower3

1International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
2Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands
3Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE, U.K.

ABSTRACT
We study the impact of numerical parameters on the properties of cold dark matter haloes formed in collisionless cosmological simulations. We quantify convergence in the median spherically-averaged circular velocity profiles for haloes of widely varying particle number, as well as in the statistics of their structural scaling relations and mass functions. In agreement with prior work focused on single haloes, our results suggest that cosmological simulations yield robust halo properties for a wide range of softening parameters, \(\epsilon \), provided: 1) \(\epsilon \) is not larger than a “convergence radius”, \(r_{\text{conv}} \), which is dictated by 2-body relaxation and determined by particle number, and 2) a sufficient number of timesteps are taken to accurately resolve particle orbits with short dynamical times. Provided these conditions are met, median circular velocity profiles converge to within \(\approx 10 \) per cent for radii beyond which the local 2-body relaxation timescale exceeds the Hubble time by a factor \(\kappa \equiv t_{\text{relax}}/t_{\text{H}} > 0.177 \), with better convergence attained for higher \(\kappa \). We provide analytic estimates of \(r_{\text{conv}} \) that build on previous attempts in two ways: first, by highlighting its explicit (but weak) softening-dependence and, second, by providing a simpler criterion in which \(r_{\text{conv}} \) is determined entirely by the mean inter-particle spacing, \(l \); for example, \(\approx 10 \) per cent convergence in circular velocity for \(r > 0.05l \). We show how these analytic criteria can be used to assess convergence in structural scaling relations for dark matter haloes as a function of their mass or maximum circular speed, \(V_{\text{max}} \). The convergence radius is smaller than the virial radius, \(r_{200} \), of all haloes resolved with \(\geq 32 \) particles, a result that we verify explicitly using our suite of simulations. Indeed, mass functions converge to within \(\approx 10 \) per cent for haloes resolved with \(\geq 32 \) particles, and to within \(\approx 5 \) per cent for \(\geq 100 \) particles.

Key words: cosmology: dark matter, theory – galaxies: formation – methods: numerical

1 INTRODUCTION
Cosmological simulations have become an essential component of astronomical science. Simulations of collisionless cold dark matter (CDM), in particular, have matured to a point where both the statistical properties of large-scale structure, as well as the highly non-linear structure of dark matter haloes are largely agreed upon, even between groups employing widely varying simulation or analysis methods. Among these are: the topology of large-scale structure (e.g. Gott et al. 1987; James et al. 2007; Blake et al. 2014); the matter power spectrum (e.g. Smith et al. 2003); the clustering (e.g. Kaiser 1984; White et al. 1987; Poole et al. 2015; Tinker et al. 2010), mass function (e.g. Jenkins et al. 2001; Reed et al. 2003; Tinker et al. 2008; Despali et al. 2016) and shapes (e.g. Allgood et al. 2006; Despali et al. 2014; Vera-Ciro et al. 2014; Vega-Ferrero et al. 2017) of dark matter haloes; their spherically averaged mass profiles (e.g. Navarro et al. 1996, 1997; Bullock et al. 2001; Ludlow et al. 2013; Dutton & Macciò 2014) and the mass function and radial distribution...
of their substructure populations (e.g. Ghigna et al. 1998, Stoehr et al. 2003, Gao et al. 2004, Springel et al. 2008).

The radial mass profile of dark matter haloes is a particularly important and robust prediction of N-body simulations. For relaxed haloes it can be approximated by the NFW profile (Navarro et al. 1996, 1997), though slight deviations from this form have been reported extensively in the literature (e.g. Navarro et al. 2004, Ludlow et al. 2013, Dutton & Macciò 2014, Ludlow & Angulo 2017). The NFW profile has a central cusp where densities diverge as \(\rho \propto r^{-1} \) and a steep outer profile where \(\rho(r) \) tapers off as \(r^{-3} \). In parametric form, the spherically averaged density profiles can be well approximated by

\[
\rho(r) = \frac{\rho_s}{r/r_s(1 + r/r_s)}^\alpha,
\]

where \(\rho_s \) and \(r_s \) are characteristic values of density and radius.

Agreement on these issues required pain-staking tests of numerical convergence that demanded repeatability of simulation results, regardless of the numerical methods employed or the numerical parameters adopted. A number of these studies led to the development of useful “convergence criteria” that can be used to disentangle aspects of simulations that are reliably modeled from those that may be affected by numerical artifact. These studies differ in the details, but uniformly agree that systematic convergence tests are necessary to validate the robustness of a particular numerical result. Numerical requirements for convergence in halo mass functions, for example, may differ substantially from those required for convergence in shapes, dynamics or mass profiles.

For collisionless CDM, once a cosmological model has been specified, only numerical parameters remain. The starting redshift and finite box size of simulations, for example, affect halo mass functions and clustering, but leave the internal properties of dark matter haloes largely unchanged (Knebe et al. 2009, Power & Knebe 2006). Other parameters impose strict limits on spatial resolution, or otherwise alter the inner structure of haloes in non-trivial ways. Of particular importance are the gravitational force softening, \(\epsilon \) (which prevents divergent pairwise forces and suppresses large-angle deflections), the integration timestep for the equations of motion, \(\Delta t \), and the particle mass resolution, \(m_p \).

Power et al. (2003, hereafter P03) provided comprehensive survey of how these numerical parameters affect the internal structure of a simulated CDM halo. They conclude that convergence in mass profiles can be achieved for suitable choices of timestep, softening, particle number and force accuracy. For choices of softening that suppress discreteness effects, and for timesteps substantially shorter than the local dynamical time, circular velocity profiles converge to within \(\lesssim 10 \) per cent roughly at the radius enclosing a sufficient number of particles to ensure that the local relaxation time exceeds a Hubble time. Their tests lead to the development of what is now a standard choice for the “optimal” softening for cosmological simulations, and to an empirical prescription for calculating the “convergence radius” of dark matter haloes. Their results—which we put to the test in subsequent sections—have been validated and extended by a number of follow-up studies (e.g. Diemand et al. 2004, Springel et al. 2008, Navarro et al. 2010, Gao et al. 2012).

Strictly speaking, the criteria laid out by P03 mainly apply to convergence in the circular velocity profiles, \(V_c(r) \), of individual haloes, and may not apply to convergence in other quantities of interest, such as their shapes (Vera-Ciro et al. 2014), mass functions (e.g. Reed et al. 2003), to various aspects of their substructure distributions (e.g. Ghigna et al. 2000, Reed et al. 2005, Springel et al. 2008), or to population-averaged profiles of, for example, density or circular velocity. We focus on the latter in this paper. P03 defined convergence empirically: the same simulation was repeated multiple times using different numerical parameters and the results were used to quantify the radial range over which \(V_c(r) \) remained insensitive to those choices.

van den Bosch & Ogiya (2018) follow a different approach. Using a series of idealized numerical experiments, they argue that inappropriate choices for gravitational softening are detrimental to the evolution of substructure haloes and that, as a result, many state-of-the-art cosmological simulations are still subject to the classic “over-merging” problem (Moore et al. 1996). They additionally argue that discreteness-driven instabilities in subhaloes with \(\lesssim 10^3 \) particles forbids a proper assessment of their evolution in strong tidal fields, limiting our ability to interpret convergence in their mass functions or internal structure.

Going beyond pure dark matter (DM), hydrodynamic simulations of galaxy formation are reaching new levels of maturity. The increase of computational resources and improved algorithms enable fully cosmological simulations of galaxy formation to be carried out; simulations that often resolve tens of thousands of individual galaxies in volumes approaching those required for cosmological studies. Notable among these are EAGLE (Schaye et al 2015), Crain et al. 2015, Illustris (Vogelsberger et al. 2014a, Pillepich et al. 2018), Horizon-AGN (Dubois et al. 2014), and the Magneticum Pathfinder simulations (Dolag et al. 2016). Although subgrid models in simulations such as these must be calibrated to reproduce a desired set of observables (for EAGLE, the \(z = 0 \) galaxy stellar mass function and size-mass relation), many of their predictions have been ratified by observations making them a useful tool for interpreting observational data and illuminating the complex physical processes that give rise to galaxy scaling relations.

As discussed by Schaye et al (2015), the need to calibrate subgrid models in simulations affects our ability to interpret numerical convergence, particularly when mass and spatial resolution are improved. Clearly convergence is a requirement for predictive power, but for a multi-scale process such as galaxy formation it should arguably be attained only after recalibration of the subgrid physics, thus allowing models to benefit from increased resolution by incorporating new, scale-dependent physical processes.

The convergence of hydrodynamic simulations is, in any event, poorly understood. It remains unclear, for example, how robust predictions of galaxy formation models are to small changes in the numerical parameters. We seek to address this using a suite of simulations drawn from the EAGLE project. In this first paper we study the sensitivity of our simulations to numerical parameters when only dark matter is present, seeking to illuminate and clarify shortcomings of prior work. In a follow-up paper, we will address convergence in fully-hydrodynamical simulations using a well-calibrated galaxy formation model from the EAGLE project.
We will focus our analysis on isolated haloes expected to host central galaxies in hydrodynamic runs. This is primarily for two reasons: 1) assessing convergence in properties of substructure is much more challenging (see van den Bosch & Ogiya 2018; van den Bosch et al. 2018 for a recent in depth analysis), and 2) most galaxies initially form in field haloes and undergo rapid quenching after becoming satellites (e.g., Balogh et al. 2000; Wetzel et al. 2015; Fillingham et al. 2015; van de Voort et al. 2017), quickly transitioning to collisionless mixtures of stars and dark matter.

Our study is part of the EAGLE Project. All of our runs were carried out using the same simulation code and adopt the same “fiducial” numerical parameters as Schaye et al. (2015), which we vary systematically from run-to-run. We concentrate our discussion primarily on gravitational softening and the impact of 2-body collisions on the spatial resolution of N-body simulations, but consider mass resolution and timesteping when necessary. Softening has been studied in great detail in the past two decades, but this has not led to a clear consensus on what constitutes an “optimal” softening length for a given simulation.

The remainder of the paper is organized as follows. In Section 2.1 we describe our simulation suite and the variation of numerical parameters, as well as halo finding techniques (Section 2.2). We provide simple analytic estimates of plausible bounds on gravitational softening in Section 3. We introduce the 2-body “convergence radius” in Section 3.2, highlighting its explicit dependence on softening. We then present our main results: the convergence of median circular velocity profiles is discussed in Section 4 followed by that of mass functions (Section 5). We summarize and conclude in Section 6.

2 SIMULATIONS

2.1 Simulation set-up

All runs were carried out in the same $L_b = 12.5$ Mpc cubic periodic volume which was simulated repeatedly using different numbers of particles, N_p, gravitational softening lengths, ϵ, and timestep size, Δt. Each run adopted the set of “Planck” cosmological parameters used for EAGLE (Schaye et al. 2015; Planck Collaboration et al. 2014):

- $\Omega_M = \Omega_{DM} + \Omega_{bar} = 1 - \Omega_{\Lambda} = 0.307$; $\Omega_{bar} = 0.04825$;
- $h = 0.6777$; $\sigma_8 = 0.8288$; $n_s = 0.9611$.

Here Ω is the energy density of component i expressed in units of the critical density, $\rho_{crit} \equiv 3H_0^2/(8\pi G)$; $h \equiv H_0/[100 \text{ km/s/Mpc}]$ is Hubble’s constant; σ_8 is the $z = 0$ linear rms density fluctuation in $8 h^{-1}$ Mpc; and n_s is the primordial power spectral index. Initial conditions for each simulation were generated using second-order Lagrangian perturbation theory at $z = 127$ (Jenkins 2013), which is sufficiently high to ensure that all resolved modes are initially well within the linear regime. We sample the linear density field with $N_p = 376^3$ particles. The DM density field is evolved using the same version of P-gadget (Springel 2005) employed for the EAGLE project.

It is common in the literature to refer to ϵ as the “spatial resolution” of a simulation, not surprisingly given its dimensions. For cosmological simulations of uniform mass resolution it is customary to adopt a gravitational softening length that is a fixed fraction of the (comoving) mean inter-particle separation, $l \equiv L_b/N_p^{1/3}$, thus fixing the ratio $\epsilon/m_{DM}^{1/3}$. In EAGLE the softening parameter, initially fixed in comoving coordinates, reaches a maximum physical value at redshift $z_{phys} = 2.8$, after which it remains constant in physical coordinates. For $L_b = 100$ Mpc, $N_p = 1504^3$ and $\epsilon(z = 0) = 700$ pc, this implies, $\epsilon_{phys}/l \approx 0.011$ for $z \leq 2.8$, while $\epsilon_{cm}/l \approx 0.04$ in co-moving coordinates for $z > 2.8$. We will hereafter refer to $\epsilon_{phys}(z = 0)/l \approx 0.011$ as the “fiducial” softening length regardless of mass resolution, and will vary ϵ away from this value by successive factors of two. For $N_p = 752^3$ the “fiducial” softening length is $\epsilon_{phys} = 175$ pc; $\epsilon_{phys} = 350$ pc for $N_p = 376^3$, and 700 pc for $N_p = 188^3$. We further note that ϵ refers to the Plummer-equivalent softening length, which is related to the “spline” softening length through $\epsilon_{phys} = 2.8 \times \epsilon$.

To test the sensitivity of our results to changing ϵ_{phys}, we have also carried out runs with $\epsilon_{phys} = 0$ (fixed co-moving ϵ at all z) and ∞ (fixed physical ϵ). For convenience, we will sometimes reference softening parameters relative to the fiducial value, hence defining the relative softening length $f_{\epsilon} \equiv \epsilon/\epsilon_{phys}$. Table 1 lists all of the relevant numerical parameters for our simulations.

2.2 Halo identification

We identify haloes in all of our simulations using the subfind (Springel et al. 2001) algorithm. subfind first links dark matter particles into friends-of-friends (FoF) groups before separating them into a number of self-bound “subhaloes”. Each FoF group contains a central or “main” subhalo that contains most of its mass, and a number of lower-mass substructures. For each FoF halo and its entire hierarchy of subhaloes subfind records a number of attributes, the most basic of which include its mass, M_{FoF} (for FoF haloes), position (defined as the location of the particle with the minimum potential energy), the magnitude and location of its peak circular speed, V_{max} and r_{max}, as well as its self-bound mass, M_{bound} (for all subhaloes). For FoF haloes (defined as “main” haloes in what follows), subfind also records other common mass definitions based on a variety of spherical overdensity boundaries: M_{200} is the mass contained within a spherical region whose mean density is $200 \rho_{\text{crit}}(z)$; M_{18} encloses a mean density of $\Delta \times \rho_{\text{crit}}(z)$, where Δ is the redshift-dependent virial overdensity of Bryan & Norman (1998) ($\Delta = 103.7$ for our adopted cosmology). Each of these are common and sensible ways to define virial masses, which we compare in section 5.2. Note that the virial mass of a halo implicitly defines its virial radius, r_{Δ}, and corresponding circular velocity, V_{Δ}; for an overdensity Δ, for example, $r_{\Delta} = 3M_{200}/4\pi\Delta\rho_{\text{crit}}$, and $V_{\Delta} = \sqrt{G M_{200}/r_{\Delta}}$.

In addition to halo properties, subfind also records lists of particles belonging to each halo, which we use to calculate
their spherically-averaged enclosed mass profiles, \(M(r) \). We construct these profiles for all main haloes in 50 equally-spaced logarithmic bins spanning \(-5 \leq \log r/[\text{Mpc}] \leq 0 \) which we then use to build median circular velocity profiles, \(V_c(r) = \sqrt{G M(r)/r} \), as a function of halo mass, and various other structural scaling relations. Note that all particles are used to calculate \(M(r) \), and not just those deemed bound to the main halo by SUBFIND. The results presented in the following sections are obtained using these spherically-averaged profiles, and the halo masses returned by SUBFIND.

3 ANALYTIC EXPECTATIONS

3.1 Preliminaries: limits on gravitational softening

Softening gravitational forces in N-body simulations has distinct advantages. In particular, it suppresses large-angle deflections due to (artificial) 2-body scattering, thereby permitting the use of low-order orbit integration schemes. This substantially decreases wall-clock times required for a given N-body problem. There are, however, drawbacks: when \(\epsilon \) is small shot noise in the particle load can result in large neighbor forces, or when large, to systematic suppression of inter-particle forces. Both effects can jeopardize the results of N-body simulations and the optimal choice of gravitational softening should provide a compromise between the two.

The finite particle mass and limited force resolution inherent to particle-based simulations can give rise to adverse discreteness effects if \(\epsilon \) is not properly chosen, and the debate over what constitutes a wise choice persists. Some studies, designed specifically to annotate discreteness-driven noise in simulations, suggest a safe lower limit to softening of \(\epsilon/l \gtrsim 1 - 2 \) (e.g. Melott et al. 1997; Power et al. 2016). This is supported by others who argue that various two-point statistics of the DM density field are not converged on scales \(\lesssim l \) (Splinter et al. 1998). It is important to note, however, that discreteness noise does not propagate from the small scales where it is introduced to larger ones, being typically confined to scales of order \(\sim \epsilon \) to \(\sim 2l \) (Romero et al. 2008).

Whether simulations are trustworthy below scales \(\sim l \) remains a matter of debate. Notwithstanding, cosmological simulations for which \(\epsilon \sim l \) are undesirable for other reasons. Consider a CDM model, for example, where considerable intrinsic power exists on all scales \(\gtrsim l \). To avoid biasing gravitational collapse at the resolution limit of such a simulation, the comoving softening length must be smaller than the comoving virial radius of the lowest-mass haloes resolved by the simulation. Noting that \(M_{200} = N_{200} \Omega_{\text{DM}} \), where \(m_{\text{DM}} = \rho_{\text{crit}} \Omega_{\text{DM}} l^3 \), this places a strict upper limit on the comoving softening length of

\[
\epsilon_{\text{cm}}(z) \lesssim \left(\frac{3 \Omega_{\text{DM}}}{8 \pi} \right)^{1/3} \left(\frac{N_{200}}{100} \right)^{1/3} l \\
\approx 0.33 l \left(\frac{N_{200}^{1/3}}{100} \right).
\]

For a conservative resolution limit of \(N_{200} = 100 \), eq. [3] suggests that \(\epsilon \) should remain smaller than about one third of
the mean inter-particle spacing; for $N_{200} = 20$, $\epsilon/l \lesssim 0.2$ is required.

Most recent large-scale simulations adopt softening lengths substantially smaller than these limits, but large enough to ensure that the lowest-mass haloes remain approximately collisionless at all times. One such criterion demands that the specific binding energy of low-mass haloes, $v^2_{200} \simeq (10 G M_{200} m_{DM})^{2/3}$, remains larger than the binding energy of two DM particles separated by ϵ: $v^2_s \ll V^2_{200}$ imposes a lower limit on ϵ of

$$\epsilon_{\text{min}} \gg l \left(\frac{3 \Omega_{DM}}{800 \pi} \frac{1}{N_{200}^2} \right)^{1/3} \approx 3.32 \times 10^{-3} l \left(\frac{N_{200}}{100} \right)^{-2/3}. \quad (4)$$

For $N_{vir} \sim 20$ this implies a lower limit of $\epsilon/l \gtrsim 0.01$, comparable to values adopted for essentially all recent large-scale simulations projects. The Bolshoi simulation (Klypin et al. 2011), for example, had a force resolution of $\approx 0.016l$, while the Multi-dark simulations (Klypin et al. 2016) adopted $\epsilon/l = 0.014 - 0.026$ (Plummer equivalent); the Millennium (Springel et al. 2005), Millennium-II (Boylan-Kolchin et al. 2009) and Millennium-XXL (Angulo et al. 2012) each used $\epsilon/l \approx 0.022$; and $\epsilon/l = 0.016$ for DUES FUR (Alimi et al. 2012). Cosmological hydrodynamical simulations use comparable values of softening; as mentioned above, Eagle adopted a physical softening length of $\epsilon/l = 0.011$ ($\epsilon/b = 0.04$ in co-moving coordinates at $z > 2.8$), while Illustris-TNG used maximum physical value of $\epsilon/l \approx 0.012$ (Springel et al. 2018). All values above are quoted as physical softening lengths at $z = 0$, unless stated otherwise. We consider a broad range of softening lengths, spanning $\epsilon/l \approx 0.17$ to $\approx 1.6 \times 10^{-4}$.

As mentioned above, the “optimal” softening, ϵ_{opt}, for a given simulation is the one that balances large force errors due to shot noise with biases resulting from large departures from the Newtonian force law. Merritt (1996) suggested that ϵ_{opt} should be chosen to minimize the average square error in force evaluations relative to what is expected from an equivalent smooth matter distribution. A drawback of this approach is that ϵ_{opt} depends not only on the mass distribution under consideration – which is not generally known a priori – but also on the number of particles in the system, N, Dehnen (2001), for example, found that the optimal softening for a Hernquist (1990) halo is roughly $\epsilon_{opt}/a \approx 0.017 (N/10^5)^{-0.23}$, where a is its scale radius. Similar, van den Bosch & Ogiya (2018) find $\epsilon_{opt}/r_{200} = 0.005 \times (N_{200}/10^5)^{0.773}$ for an NFW halo with concentration $c = r_{200}/r_i = 10$. We will see in section 3.3 that this is sufficiently small to avoid compromising the spatial resolution in halo centres in cosmological simulations using equal-mass particles.

Suppressing discreteness imposes a lower limit to the gravitational softening that can be used for a given simulation. As previously mentioned, collisionless dynamics demands that the maximum binding energy between two particles, $v^2_s \approx G m_{DM} \epsilon_{opt}/v$, not exceed the virial binding energy of haloes of interest, i.e. $v^2_s < V^2_{200}$, implying $\epsilon_{opt} > r_{200}/N_{200}$, where $N_{200} = M_{200}/m_{DM}$. This is comparable to the softening length required to suppress large-angle deflections due to close encounters, given by $\epsilon_{90} \sim b_{90} = 2 G m_{DM} v^2/\epsilon$, where b_{90} is the impact parameter giving rise to $\sim 90^\circ$ deflections (Binney & Tremaine 1987) and $v^2 \approx GM/r$ is the typical speed of particles at distance r. This condition therefore requires $\epsilon_{90} \gtrsim 2 r_{200}/N_{200}$, a factor of 2 larger than ϵ_{opt}.

Suppressing large accelerations during to close encounters results in stricter limits on softening (see P03). For example, requiring that the maximum stochastic acceleration due to close encounters, $a_{\text{acc}} = G m_{DM} / v^2$, remains smaller than the minimum mean-field acceleration across the entire halo, $a_{\text{min}} = G M_{200}/r^2_{200}$, imposes a lower limit of $\epsilon_{\text{acc}} \lesssim r_{200}/\sqrt{N_{200}}$.

The solid black lines in Figure 1 show the softening lengths ϵ_s, ϵ_{90} and ϵ_{acc}, normalized to the virial radius, r_{200}, as a function of N_{200}.

3.2 2-Body relaxation and the convergence radius

3.2.1 The relaxation timescale

It is important to emphasize that softening pair-wise forces does not necessarily increase 2-body relaxation times, which generally impose stricter constraints on the spatial resolution of N-body simulations. To see why, consider the cumulative effect of 2-body interactions incurred by a test particle as it crosses an N-particle system with surface mass density $\Sigma \approx N/\pi R^2$. Following Binney & Tremaine (1987) (see also Huang et al. 1993), we assume that any one encounter induces a small velocity perturbation $|\delta v_\perp| \ll v$ perpendicular to the particle’s direction of motion, but leaves its trajectory unchanged. The perturbation due to a single encounter can be expressed

$$|\delta v_\perp| \approx \frac{2 G m_{DM} b}{(b^2 + \epsilon^2)^{1/2}} v, \quad (5)$$

where b is the impact parameter and ϵ the (Plummer) softening length. In a single crossing, the test particle will experience $dn \approx 2\pi \Sigma b\, db$ collisions with impact parameters spanning b to $b + db$. Integrating the square velocity change over all such encounters yields

$$\Delta v^2_\perp = 8 N \left(\frac{G m_{DM}}{R v} \right)^2 \int_{b_{\text{min}}}^{b_{\text{max}}} b^2 (b^2 + \epsilon^2)^{-2/3} db$$

$$= \frac{4v^2}{N} \left[\ln(\epsilon^2 + b^2) + \frac{\epsilon^2}{\epsilon^2 + b^2} \right]_{b_{\text{min}}}^{b_{\text{max}}}, \quad (6)$$

where b_{min} and b_{max} are, respectively, the minimum and maximum impact parameters, and we have assumed a typical velocity $v^2 = G m_{DM}/R$.

The **relaxation time** can be defined in terms of the number of crossings a test particle must execute such that it loses memory of its initial orbit, i.e. $n_{\text{cross}} \sim v^2/\Delta v^2_\perp \sim t_{\text{relax}}/t_{\text{cross}}$. In the limit $b \gg \epsilon$, eq. (6) implies

$$t_{\text{relax}} = \frac{N}{8 \ln(b_{\text{max}}/b_{\text{min}})} \simeq \frac{N}{8 \ln(N/2)} \tau_{\text{cross}}, \quad (7)$$

where $t_{\text{cross}} = r/v$ is the crossing time, and we have assumed $b_{\text{max}} = R$ and $b_{\text{min}} = b_{90} = 2 G m_{DM} v^2$. Eq. (7) is the classic relaxation time calculated by Binney & Tremaine (1987) for Keplerian forces, which depends only on the enclosed number of particles. Note that for a narrow range of impact parameter, $b_{\text{max}}/b_{\text{min}} = (1 + \Delta)$, eq. (7) implies...
3.2.2 The convergence radius

Collisional relaxation imposes a lower limit on the spatial resolution of N-body simulations that is typically larger than the limits on gravitational softening outlined in the previous section. Based on an extensive suite of simulations, P03 concluded that convergence is obtained at radii that enclose a sufficient number of particles so that the local two-body relaxation timescale is comparable to or longer than a Hubble time, \(t_H(z) \). The “convergence radius”, \(r_{\text{conv}} \), implied by eq. 7 can thus be approximated by the solution to

\[
\kappa_{P03}(r) \equiv \frac{t_{\text{relax}}(z)}{t_{200}(z)} = \frac{N}{8 \ln N} \frac{r/V_{200}}{r_{200}/V_{200}} = \frac{\sqrt{200}}{8} \frac{N}{\ln N} \left(\frac{\bar{\rho}(r)}{\rho_{\text{crit}}(z)} \right)^{-1/2}
\]

where \(\bar{\rho}(r) \) is the mean internal density enclosing \(N \equiv N(r) \) particles. We can rewrite eq. 11 in order to incorporate its explicit dependence on softening implied by eq. 8, resulting in

\[
\kappa_c(r) = \frac{\sqrt{200} N}{4} \left[\ln \left(\frac{R^2}{\epsilon^2} + 1 \right) + \frac{\epsilon^2 - 2R^2}{3(\epsilon^2 + R^2)} - \ln \left(\frac{2}{3} \right) \right]^{-1/2} \left(\frac{\bar{\rho}(r)}{\rho_{\text{crit}}(z)} \right)^{-1/2}.
\]

Note that we have used subscripts on eqs. 11 and 12 in order to distinguish the P03 convergence radius from our softening-dependent estimate above, a convention we retain throughout the paper. Either equation, however, can be used to estimate \(r_{\text{conv}} \) once an empirical relationship between \(\kappa \equiv t_{\text{relax}}/t_H \) and “convergence” has been determined from simulations. P03 found that circular velocity profiles converge to \(\lesssim 10 \) per cent provided \(\kappa_{P03} \gtrsim 0.6 \). Navarro et al. (2010) hereafter N10 showed that better convergence can

\[b_{\text{min}} = \epsilon/\sqrt{2}, \]

for which the perpendicular pair-wise force between particles is maximized, tending to zero for both larger and smaller \(b \). Inserting this into eq. 6 and assuming \(b_{\text{max}} = R \), we obtain

\[
t_{\text{relax}}/t_{\text{cross}} = \frac{N}{4} \left[\ln \left(\frac{R^2}{\epsilon^2} + 1 \right) + \frac{\epsilon^2 - 2R^2}{3(\epsilon^2 + R^2)} - \ln \left(\frac{3}{2} \right) \right]^{-1}
\]

where the last two steps are valid provided \(R \gg \epsilon \). Note that eq. 10 depends logarithmically on \(\epsilon \), and is equivalent to eq. 4 if \(b_{\text{max}} = R \) and \(b_{\text{min}} = \epsilon \). This confirms our expectation that softened forces give rise to modest changes in \(t_{\text{relax}} \), even for very small values of the softening length. We will test this explicitly in Section 4.3.

1 This can be seen by maximizing the radial gradient of a Plummer force law and solving for \(\epsilon \). The minimum impact parameter obtained this way is slightly smaller than that which maximizes the velocity perturbation in eq. 5 which occurs at \(b = \epsilon \).
be obtained for larger values of $\kappaP03$; at $\kappaP03 = 7$, for example, $V_\text{c}(z)$ profiles converge to ≈ 2.5 per cent. We follow P03 and N10 and quantify convergence in circular velocity profiles using $\Delta V_r \equiv (V_{r}^{\text{high}} - V_{r}^{\text{low}})/V_{c}$, where V_{r}^{low} and V_{r}^{high} are the median profiles for haloes of fixed mass in our low- and highest-resolution simulations, respectively.

3.2.3 A simpler convergence criterion?

As a useful approximation, we can rewrite the convergence radius implied by eq. [11] as

$$\frac{r_{\text{conv}}}{r_{200}} = \frac{2/3}{\kappaP03} \frac{C \kappaP03}{N^{1/3}_{200}},$$

(13)

where $C \equiv 4 (\ln N_c/\sqrt{\pi})^{2/3}$ and $N_c \equiv N(< r_{\text{conv}})$; these quantities depend weakly on concentration and N_{200}, but also on $\kappaP03$. To illustrate, we set $\kappaP03 = 1$ and solve eq. [11] assuming an NFW mass profile to determine N_c for a range of concentrations and N_{200}. We find that, for $10^5 < N_{200} < 10^9$, C varies by a factor $\gtrsim 2.4$ for $c = 20$ and $\lesssim 1.9$ for $c = 5$. Neglecting this weak dependence, eq. [13] implies that the ratio r_{conv}/r_{200} is approximately independent of mass and that, to first order, $r_{\text{conv}}/r_{200} \propto N^{-1/3}_{200}$. As a result, haloes of a given N_{200} will be “converged” roughly to a fixed fraction of their virial radii regardless of mass.

We can use these findings to cast eq. [13] into convenient forms that depend only on particle mass, or mean inter-particle spacing:

$$r_{\text{conv}}(z) = C \kappaP03 \left(\frac{3 m_{\text{DM}}}{800 \pi \rho_{\text{crit}}(z)} \right)^{1/3},$$

(14)

$$= C \kappaP03 \left(\frac{3 \Omega_{\text{DM}}}{800 \pi} \right)^{1/3} \frac{l(z)}{l(\bar{z})},$$

(15)

where we have used the fact that $m_{\text{DM}} = \Omega_{\text{DM}} \rho_{\text{crit}}(z) l(z)^3$; $l(z) \equiv l/(1 + z)$ is the mean inter-particle spacing in physical units. The latter result, eq. [15], implies that the ratio $r_{\text{conv}}(z)/l(z)$ should be largely independent of redshift, halo mass and particle mass; the convergence radius is simply a fixed fraction of the mean inter-particle spacing. We will test these scalings explicitly in later sections.

Figure 4 plots r_{conv} (for $\kappaP03 = 1$; thick black lines) for NFW profiles with $c = 5$ and $c = 20$, representative of the vast majority of DM haloes that form in typical cosmological simulations. Due to the weak dependence of N_c on N_{200}, these curves are only slightly steeper than $r_{\text{conv}}/r_{200} \propto N_{200}^{-1/3}$. As a result, adopting a fixed softening parameter for cosmological simulations with uniform mass resolution will not necessarily compromise spatial resolution at any mass scale. Take for example the solid blue line in Figure 1 which plots $e/r_{200} \propto N_{200}$ adopted for the EAGLE simulation. Here, e is smaller than r_{conv} by more than a factor of ≈ 2 at all relevant halo masses (but will eventually exceed r_{conv} at very large N_{200}).

4 MEDIAN MASS PROFILES

The most comprehensive attempt to establish the impact of numerical parameters on halo mass profiles has been the work of P03. Their results imply that, provided timestep size, softening and starting redshift are wisely chosen, particle number is the primary factor determining convergence.

One limitation of the work carried out by P03 and N10 is that they were based on simulations of a single $\sim 10^{12} M_\odot$ dark matter halo that was resolved with at least $\sim 10^4$ particles, over 300 times that of the poorest resolved systems in typical cosmological runs. Can the conclusions of P03 be extrapolated to haloes with $\sim 10^2$ particles, or fewer? Is the P03 radial convergence criterion valid for stacked mass profiles, or for haloes whose masses differ substantially from $\sim 10^{12} M_\odot$? We devote this section to addressing these questions.

4.1 Integration accuracy

The central regions of dark matter haloes are difficult to simulate due to their high densities, which reach many orders of magnitude above the cosmic mean. Crossing times there are $\sim 10^{-3}$ to 10^{-4} times $\mu(z)$ implying that thousands of orbits per particle must be integrated to ensure accuracy and reliability. Adding to this, haloes are not smooth and integration errors may accumulate during close encounters between particles. In the presence of discreteness effects, the number of timesteps required to reach convergence scales as $\sim 1/\epsilon$ (P03), so many integration steps are needed when ϵ is small. As a result, integration must be carried out with a minimum (but a priori unknown) level of precision to prevent errors from accumulating, which may compromise results. In GADGET, particles take adaptive timesteps of length $\Delta t = \sqrt{2\eta/|\ddot{a}|}$, where $|\ddot{a}|$ is the magnitude of the local acceleration, and η is a parameter that allows some additional control over the step size. In the GADGET parameter file, η is referred to as ErrTolIntAccuracy and takes on a default value of 0.025.

Figure 6 plots the average enclosed mass profiles of haloes drawn from our $N_p = 376^3$ run, and highlights the importance of accurate integration. Panels correspond to different mass bins, which were selected so that (from top left to bottom right) $N_{200} \approx 10^3$, 10^4, 10^5 and 10^6. The curves show the radii, r_{N_p}, enclosing a given number of particles (indicated to the right of each curve) and are plotted as a function of the gravitational softening, ϵ. As a guide, the virial radius for each mass bin is indicated by the arrow on the left side of each panel. Connected (blue) circles show results for GADGET’s default integration accuracy parameter, $\text{ErrTolIntAcc} = 0.025$.

For comparison, the vertical green arrows in each panel mark two estimates of minimum softening needed to suppress discreteness effects. The first, $\epsilon_{\text{acc}} = r_{200}/\sqrt{N_{200}}$, ensures that the maximum stochastic acceleration felt by a particle ($\sim GM/\epsilon^2$) remains smaller than the minimum mean field acceleration of the halo ($\sim GM_{200}/r_{200}^2$). The other, $\epsilon_{\text{soft}} = 2 r_{200}/N_{200}$, is less restrictive and is required to prevent large-angle deflections during two-body encounters.

There are a couple points to note in this figure. First, central densities are noticeably suppressed for radii smaller than the “spline” softening length, i.e. $r \lesssim \epsilon_{\text{sp}} = 2.8 \times \epsilon$ (in GADGET, pairwise forces become exactly Newtonian for separations larger than ϵ_{sp}). This can be seen by noting that all radii appear to increase slightly once they cross into the grey shaded region, which delineates $r = \epsilon_{\text{sp}}$. Large values of softening clearly compromise spatial resolution. More inter-
Figure 2. Average radii enclosing fixed numbers of particles as a function of the softening length, ϵ, for haloes in four separate mass bins. All runs used $N_P = 376^3$ particles. Connected blue circles correspond to runs carried out with GADGET’s default integration accuracy parameter, $\text{ErrTolIntAcc}=0.025$, and red squares to runs with $\text{ErrTolIntAcc}=0.0025$. From top left to bottom right, panels correspond to halo masses equivalent to $N_{200} \sim 10^4$, 10^5, 10^6 and 10^7 DM particles. The grey shaded regions highlight $r \gtrsim \epsilon_{\text{SP}} = 2.8 \times \epsilon$, the inter-particle length scale beyond which forces become exactly Newtonian. Green arrows mark two estimates of softening required to suppress discreteness effects, ϵ_{acc} and ϵ_{90} (see section 3.1 for details). The right-pointing arrows mark the virial radius, r_{200}, and P03’s convergence radius, r_{conv}, for each mass bin.

The connected (red) squares show, for a subset of ϵ, the same results but for a series of runs in which η was reduced to from 0.025 to 0.0025 (this increases the total number of timesteps by a factor of roughly $\sqrt{10} \approx 3.16$). These curves are clearly flatter, suggesting that halo mass profiles are robust to changes in softening across a wide range of masses provided: a) ϵ is sufficiently small so that $r \gtrsim \epsilon_{\text{SP}}$, and b) care is taken to ensure particle orbits are resolved with a sufficient number of timesteps. For the remainder of the paper, all results from runs for which $\epsilon < \epsilon_{\text{90}}$ were carried out with $\text{ErrTolIntAcc}=0.0025$, unless stated otherwise.

These results are qualitatively consistent with those of P03, but differ in the details. These authors report that GADGET runs with fixed timestep developed artificially dense “cuspy” centres, where resolution is poor. Based on this, they argue for an ϵ-dependent adaptive timestep criterion, $\Delta t_i = \sqrt{\eta \epsilon_i / a_i}$, where $\eta = 0.04$. This is the same criterion adopted for our runs, but with a considerably larger than the value of η, perhaps due to the much smaller softening parameters tested in our study. This may indicate the need for a timestep criterion with a stronger dependence on ϵ. We defer this task to future work.
Figure 3. Median circular velocity profiles for haloes in four distinct mass bins. Each run used the same softening length, $\epsilon = 43.75$ pc, but a different total number of particles: $N_p = 752^3$ (grey circles), $N_p = 376^3$ (red lines) and $N_p = 188^3$ (blue lines), corresponding to a factor of 64 in mass resolution. Dashed lines show NFW profiles with a concentration parameter equal to the median values for haloes in our $N_p = 752^3$ run in the same mass bins. Thick lines (or points in the case of $N_p = 752^3$) extend down to the radius beyond which the circular velocity profiles agree with the theoretical ones to within ~10 per cent; thin lines extend the curves to radii enclosing ~20 particles. Downward pointing arrows mark the P03 “convergence radius” for $\kappa_{\text{P03}} = 0.177$ (eq. 11).

The results above suggest that the median mass profiles of dark matter haloes are remarkably robust to changes in gravitational softening provided it is not so large that it compromises enclosed masses. This is true even for haloes containing as few as $N_{200} = 10^3$ particles, and for radii enclosing as few as $N_{200} = 10^5$ particles, and for mass resolution. Indeed, provided other numerical parameters are carefully chosen, 2-body relaxation places much stronger constraints on convergence (P03), and dense haloes centres – which occupy only a small fraction of their total mass and volume – are highly susceptible to low particle number. The systematic effects of 2-body scattering on the innermost mass profiles of dark matter haloes must therefore be carefully considered when seeking to quantify numerical convergence. As discussed above, a useful tactic for separating converged from unconverged parts of a halo is to identify the radius at which the collisional relaxation time is some multiple $\kappa \equiv t_{\text{rel}}/t_H(z)$ of a Hubble time (P03). We turn our attention to this in the following subsections.

4.2 Median circular velocity profiles

Figure 3 shows the median circular velocity profiles of haloes in four separate mass bins and at three different resolutions.

Grey dashed lines show NFW fits to the profiles of haloes in our $N_p = 752^3$ run (grey lines and circles). Because these curves agree well with the simulated profiles over a large radial range, we can use them to estimate the convergence radius by identifying the point at which the simulated profiles first dip below the theoretical ones by a certain amount. Thick lines (or points in the case of $N_p = 752^3$) cover radii for which V_c departs from dashed lines by less than 10 per cent; thin lines extend to radii enclosing $N \geq 20$ particles.

Note that measured convergence radii are, for a given resolution, only weakly dependent on halo mass (the thick segments or points end at similar radii for a given set of curves). Haloes in our $N_p = 752^3$ run, for example, have convergence radii that differ by at most ~30 per cent across the entire mass range plotted (which corresponds to a factor of 512 in N_{200} and 8 in r_{200}), and the difference is similar for the other resolutions. Two haloes with the same total number of particles therefore have very different convergence radii depending on their mass. For example, a halo of mass $1.2 \times 10^9 M_\odot$ in our $N_p = 752^3$ run has a measured convergence radius of ~ 0.60 kpc, whereas $7.5 \times 10^9 M_\odot$ haloes in our 188^3 run, resolved with the same number of particles, $r_{\text{conv}} \approx 3.5$ kpc, about a factor of 6 larger.

This scaling is indeed expected from eq. 11. Neglecting the weak dependence of concentration on halo mass, two haloes with the same number of particles identified in simulations of different mass resolution, will have con-
vergence radii that resolve comparable fractions of their virial radii, but differ, on average, by a factor \((r_{200}^A/r_{200}^B) \propto (m_A^3/m_B^3)^{1/3} = (M_{200}^A/M_{200}^B)^{1/3}\), indicating a smaller convergence radius in the higher-resolution run. The downward pointing arrows in Figure 3 mark Power’s convergence radii for each simulation volume and mass bin (note that these convergence radii have been approximated using the NFW profiles assuming \(\kappa_{P03} = 0.177\), smaller than the value advocated by P03), which agree well with these empirical estimates.

4.3 The convergence radius of collisionless cold dark matter haloes

4.3.1 Dependence on halo mass

The convergence radius can also be calculated explicitly by comparing the circular velocity profiles of haloes to those of the same mass but in a higher-resolution simulation. Figure 4 shows, as a function of \(N_{200}\), the radius at which the median profiles in our \(N_p = 376^3\) (red circles) and \(188^3\) (blue squares) first depart from those in the \(N_p = 752^3\) run by more than 10 per cent.

For comparison, we also plot the convergence radii expected from eq. [11] as solid lines of corresponding colour (assuming \(\kappa_{P03} = 0.177\); smaller than the value of \(\approx 0.6\) advocated by P03 for \(\Delta V_c/V_c = 0.1\)), which agree well with the measured values of \(r_{\text{conv}}\). Our measurements are also recovered well by eq. [12], which is shown using dashed lines in Figure 4 for \(\kappa_c = 0.177\). Both sets of curves were constructed using the mass-concentration relation predicted by the model of Ludlow et al. (2016), assuming a Planck cosmology. The horizontal dot-dashed lines show eq. [17] which approximates \(r_{\text{conv}}\) as a fixed fraction of the mean inter-particle spacing. For consistency with several subsequent figures, points and lines have been colour-coded by softening length, which decreases from top-to-bottom, left-to-right. Note that softening lengths larger than the expected \(r_{\text{conv}}\) compromise spatial resolution and result in measured convergence radii of \(\approx 2 \times \epsilon\) (indicated using coloured arrows). For \(\epsilon\) smaller than this value the minimum spatial resolution is set by 2-body relaxation, and is essentially independent of \(\epsilon\) over the range of values studied.

Figure 5. Radii beyond which median circular velocities converge to within 10 per cent as a function of \(N_{200}\) for \(N_p = 376^3\) runs carried out with different gravitational softening lengths. The solid black curve shows the predicted convergence radius using the P03 criterion for \(\kappa_{P03} = 0.177\); dashed lines show the predictions of eq. [12] for each value of \(\epsilon\), again for \(\kappa_c = 0.177\). Both sets of curves were constructed using the mass-concentration relation predicted by the model of Ludlow et al. (2016), assuming a Planck cosmology. The horizontal dot-dashed lines show eq. [17] which approximates \(r_{\text{conv}}\) as a fixed fraction of the mean inter-particle spacing. For consistency with several subsequent figures, points and lines have been colour-coded by softening length, which decreases from top-to-bottom, left-to-right. Note that softening lengths larger than the expected \(r_{\text{conv}}\) compromise spatial resolution and result in measured convergence radii of \(\approx 2 \times \epsilon\) (indicated using coloured arrows). For \(\epsilon\) smaller than this value the minimum spatial resolution is set by 2-body relaxation, and is essentially independent of \(\epsilon\) over the range of values studied.

\[
\frac{\Delta V_c}{V_c} = 0.1, \quad \kappa = 0.177, \quad 2 \times \epsilon
\]

\[
\log r_{\text{conv}} [\text{kpc}]
\]

\[
\epsilon = 5.6 [\text{kpc}]
\]

\[
\epsilon = 2.8 [\text{kpc}]
\]

\[
\epsilon = 1.4 [\text{kpc}]
\]

\[
\epsilon = 0.7 [\text{kpc}]
\]

\[
\epsilon = 0.35 [\text{kpc}]
\]

\[
\epsilon = 0.175 [\text{kpc}]
\]

\[
\epsilon = 0.087 [\text{kpc}]
\]

\[
\epsilon = 0.044 [\text{kpc}]
\]

\[
\epsilon = 0.022 [\text{kpc}]
\]

\[
\epsilon = 0.011 [\text{kpc}]
\]

\[
\epsilon = 0.7 [\text{kpc}]
\]

\[
\epsilon = 0.35 [\text{kpc}]
\]

\[
\epsilon = 0.175 [\text{kpc}]
\]

\[
\epsilon = 0.087 [\text{kpc}]
\]

\[
\epsilon = 0.044 [\text{kpc}]
\]

\[
\epsilon = 0.022 [\text{kpc}]
\]

\[
\epsilon = 0.011 [\text{kpc}]
\]
4.3.2 Dependence on gravitational softening

Based on the discussion in section 3.2 we expect r_{conv} to depend slightly but systematically on ϵ, particularly for haloes resolved with small numbers of particles. Figure 5 plots r_{conv} versus N_{200} for a series of $N_p = 376^3$ runs carried out with different softening lengths. As before, r_{conv} is estimated by comparing the point at which these profiles first depart from those in our highest resolution run ($N_p = 752^3$, $\epsilon = 43.75$ pc) by a certain amount. All panels show results for $\Delta V_c/V_c = 0.1$, with ϵ decreasing from top to bottom, left to right by a factor of two between consecutive panels. For each value of ϵ we use filled circles to indicate mass scales for which $N_{200} > 2r_{200}/r_{\text{conv}}$, which are required to suppress large-angle scattering of particles during close encounters (see section 3.1). The solid black line in each panel shows the convergence radii expected from eq. 11, dashed lines show eq. 12 which depend explicitly on ϵ (both assume $\kappa = 0.177$). The dot-dashed horizontal lines show eq. 17.

When ϵ is large, the measured convergence radii scale roughly as $r_{\text{conv}} \sim 2\times \epsilon$ (shown as arrows on the right side of each panel), approximately independent of halo mass. Once ϵ becomes smaller than the analytic estimates of r_{conv} (solid, dashed or dot-dashed lines), the measured values bottom-out and exhibit, at most, a weak dependence on ϵ and N_{200} thereafter. The weak mass-dependence is described reasonably well by eqs. 11 and 12 but may also be approximated by the much simpler relation, eq. 17 in which r_{conv} is a fixed fraction of the mean inter-particle spacing, regardless of mass. We conclude that, provided ϵ is negligibly small, eqs. 11 and 12 provide a reasonable upper limit to the values of r_{conv} measured from the median $V_c(r)$ profiles of haloes composed of as few as $N_{200} \approx 100$ particles, provided $\kappa_{\text{P03}} \approx 0.177$ (for $\Delta V_c/V_c = 0.1$). The dependence of t_{rel} on ϵ anticipated from eq. 12 adds only a minor correction, but may become increasingly important as ϵ becomes arbitrarily small.

4.3.3 Dependence on redshift

Convergence radii anticipated from eqs. 11 and 12 depend not only on enclosed particle number, $N(r)$, and gravitational softening, but also on redshift. We show this explicitly in the upper panel of Figure 6 where we plot the convergence radii of haloes identified in one of our $N_p = 376^3$ runs at several different redshifts (this run used $\epsilon_{\text{phys}} = 2.8$ and a maximum physical softening length of $\epsilon_{\text{phys}}/2 = 175$ pc). As in previous Figures, the solid and dashed lines show the analytic estimates of r_{conv} expected from eqs. 11 and 12 which describe the numerical results reasonably well. Convergence radii clearly depend on redshift in a way that is well captured by these simple analytic prescriptions.

Note too the strong redshift-dependence: from $z = 0$ to $z = 6$, for example, physical convergence radii vary by as much as a factor of $(1 + z) = 7$ at essentially all mass scales probed by our simulations, consistent with the redshift dependence of $r_{200}(z)$ or $l(z)$. This result may at first seem puzzling, but is indeed expected from eq. 11 haloes that follow a universal NFW mass profile whose concentration depends only weakly on mass and redshift should have convergence radii that scale approximately as $r_{\text{conv}}(z) \propto r_{200}(z)/N_{200}^{1/3}$.

As in previous Figures, the solid and dashed lines show eq. 12, which depend explicitly on ϵ (both assume $\kappa = 0.177$). The dot-dashed horizontal lines show eq. 17.

When ϵ is large, the measured convergence radii scale roughly as $r_{\text{conv}} \sim 2\times \epsilon$ (shown as arrows on the right side of each panel), approximately independent of halo mass. Once ϵ becomes smaller than the analytic estimates of r_{conv} (solid, dashed or dot-dashed lines), the measured values bottom-out and exhibit, at most, a weak dependence on ϵ and N_{200} thereafter. The weak mass-dependence is described reasonably well by eqs. 11 and 12 but may also be approximated by the much simpler relation, eq. 17 in which r_{conv} is a fixed fraction of the mean inter-particle spacing, regardless of mass. We conclude that, provided ϵ is negligibly small, eqs. 11 and 12 provide a reasonable upper limit to the values of r_{conv} measured from the median $V_c(r)$ profiles of haloes composed of as few as $N_{200} \approx 100$ particles, provided $\kappa_{\text{P03}} \approx 0.177$ (for $\Delta V_c/V_c = 0.1$). The dependence of t_{rel} on ϵ anticipated from eq. 12 adds only a minor correction, but may become increasingly important as ϵ becomes arbitrarily small.

Figure 6. Physical convergence radii for $\Delta V_c/V_c = 0.1$, plotted as a function of N_{200} for haloes identified at different redshifts. The upper panel shows results from our $N_p = 376^3$ run carried out with $\epsilon = 175$ pc ($\epsilon_{\text{phys}}/2$). These results are again plotted in the lower panel, but after rescaling r_{conv} by $r_{200}(z)$. Blue squares in the lower panel show results from our $N_p = 188^3$ runs carried out with the same softening length. The solid line in the lower panels shows the scaling $r_{\text{conv}}/r_{200} = 1.1 \times N_{200}^{-0.4}$ which approximates our numerical results reasonably well; the dashed line shows the “optimal” softening for ($c = 10$) NFW haloes advocated by van den Bosch & Ogiya (2018). The thick dot-dashed line corresponds to $r_{\text{conv}}/l = 0.055$ (eq. 17).

Having rescaled the convergence radii above by $r_{200}(z)$, and included one of our $N_p = 188^3$ runs (blue points). All curves now follow a similar scaling, implying that the co-moving convergence radius is largely independent of redshift. The dot-dashed black line in the lower panels shows eq. 17 for which r_{conv} is a fixed fraction of the mean inter-particle spacing: $r_{\text{conv}}/l = 0.055$. This simple approximation describes our numerical results well, but can be improved slightly using $r_{\text{conv}}/r_{200} = 1.1 \times N_{200}^{-0.4}$ (heavy solid line in the lower panels), which is slightly steeper than $N_{200}^{-1/3}$. These convergence radii are similar to, but slightly larger than, the “optimal” softening for NFW haloes advocated by van den Bosch & Ogiya (2018). For N_{200} spanning $\sim 10^2$ to $\sim 10^7$, ϵ_{opt} is a factor of 2 to 3 smaller than these estimates of r_{conv}, and should therefore not compromise spatial resolution. In addition, since $\epsilon_{\text{opt}} \propto N_{200}^{-1/3}$, the ratio $\epsilon_{\text{opt}}/m_{\text{DM}}^{1/3}$ remains fixed for all N_{200}: the softening is optimal at all masses, regardless of N_{200}, making it a potentially desirable choice for cosmological simulations of equal mass particles.
Figure 7. Convergence radii for $\Delta V_c/V_c = 0.03$, 0.1 and 0.15 as a function of N_{200} for $z = 0$ haloes in our $N_p = 376^3$ run. Solid lines show the scaling expected from eq. (11) for different values of κ_{P03}, with shading indicating the deviation expected for $\Delta\kappa_{P03}/\kappa_{P03} = \pm 0.25$. Dashed lines show eq. (12) for the same values of κ_c. Note that better convergence requires higher values of κ, in agreement with N10. Dot-dashed horizontal lines show constant fractions of the mean inter-particle spacing corresponding to 0.040 (green), 0.055 (red) and 0.10 (blue).

4.3.4 Dependence on κ

In previous sections we estimated convergence radii in our simulations by comparing the median circular velocity profiles of haloes in our $N_p = 376^3$ simulation with those of the same virial mass but in a higher-resolution simulation ($N_p = 752^3$). The radius within which profiles deviate by more than 10 per cent marked r_{conv}. For analytic estimates of r_{conv} based on eqs. (11) and (12) this corresponds to particular values of κ_c, about 0.177. However, as discussed in detail in N10, better convergence can be obtained for higher values of κ, which occurs at larger radii where relaxation times are substantially longer.

In Figure 7 we plot three separate estimates of convergence radii, corresponding to fractional departures between median $V_c(r)$ profiles in our low and high-resolution runs of $\Delta V_c/V_c = 0.03$, 0.1 and 0.15. Better convergence is obtained at larger radii, and requires larger values of κ: the solid and dashed lines show convergence radii estimated from eqs. (11) and (12) respectively; blue, orange and green denote $\kappa = 0.566$, 0.177 and 0.106, respectively (as before, the shaded region indicates ± 25 per cent in κ_{P03}). Horizontal dot-dashed lines indicate fixed fractions of the mean inter-particle distance, corresponding to $r_{\text{conv}}/l = 0.040$, 0.055 and 0.10 for $\Delta V_c/V_c = 0.03$, 0.1 and 0.15, respectively.

Figure 8 summarizes a number of previous results. Here we plot, in the top panels, the residual difference in the circular velocity profiles between haloes in our low- and highest-resolution runs as a function of $\kappa(r) = t_{\text{soft}}(r)/t_H(z)$. The left hand panel shows results for $N_p = 376^3$ (red) and 1883 (blue); both runs used a $(z = 0)$ softening length of $\epsilon = 43.75$ pc. The panel on the right compares several $N_p = 376^3$ runs using different softening. In all cases, residuals are calculated with respect to our $N_p = 752^3$ ($\epsilon = 43.75$ pc) in 40 equally-spaced bins of $\log M_{200}$ spanning the range $10^9 m_{\odot}$ to $10^{12} m_{\odot}$. White circles and squares mark the empirical results of P03 and N10, respectively; both are more conservative than ours (which supports the conclusions of Zhang et al. 2018).

As expected from previous plots, deviations in V_c are largely independent of both mass and force resolution, but correlate strongly with the enclosed relaxation timescale $\kappa(r)$. Overall, the convergence of the median circular velocity profiles can be approximated reasonably well by

$$\frac{\Delta V_c}{V_c} = -\log(1 - 10^a \psi^b + \psi^c),$$

where we have defined $\psi \equiv \log \kappa + d$, and $(a, b, c, d) = (-0.4, -0.6, -0.55, 0.95)$ (heavy black line in the upper panels of Figure 8). We do, however, note a small residual systematic dependence on ϵ.

In the lower panels of Figure 8 we plot $\Delta V_c/V_c$ for the same runs, but now as a function of halo-centric distance normalized by the mean inter-particle separation, l. Convergence in circular velocity is achieved at spatial scales that roughly correspond to fixed fractions of l, which provides a much simpler convergence criterion than that advocated by P03. A conservative upper limit to the convergence radius as a function of $\Delta V_c/V_c$ can again be approximated by eq. (18) but with modified parameters: $\psi \equiv \log(r/l) + d$ and $(a, b, c, d) = (-1.96, -0.76, -0.52, 1.49)$ (thick black line in the lower panels). The outsized color points in Figure 8 correspond to the curves in Figure 7.

4.4 Scaling relations

These results help clarify why structural scaling relations for dark matter haloes converge even for systems resolved with only a few hundred particles, a result we show explicitly in Figure 9. Here we plot, as a function of M_{200}, the ratio of the virial radius to the radius $r_{X,50}$ enclosing X per cent of the halo mass (the curve labeled “50%”, for example, is the half-mass radius–virial mass relation), for all haloes resolved with $N_{200} \geq 32$ particles. As in previous figures, different colours correspond to different resolutions. Points connected by thick lines in Figure 9 correspond to runs carried out with fixed $\epsilon = 43.75$ pc, and the thin lines to the “fiducial” softening, which is a factor of 4 to 16 times larger, depending on resolution. The faint diagonal lines show the P03 convergence radius for $\kappa_{P03} = 0.177$ (solid) and assuming $r_{\text{conv}}/l = 0.055$ (dotted). These provide a good indication of the mass scale above which the scaling relations are converged. Note that, as expected, the converged relations are largely independent of ϵ. Dashed lines show the expected trends assuming NFW profiles and the $c(M)$ relation of Ludlow et al. 2018. For comparison we also plot the expected concentration, $c = r_{200}/r_{-2}$, and the ratio r_{200}/r_{max} using the same model, as well as radii that enclose fixed overdensities of $\Delta = 500$ and 2500.

Resolving the innermost structure of haloes is clearly challenging. Resolving r_{-2} with a systematic bias in $V_c(r_{-2})$ of less than 10 per cent (assuming eq. (11) with $\kappa_{P03} = 0.177$), for example, requires $N_{200} \approx 844, 1083$, and 1353 particles.
for our $N_p = 188^3$, 3763 and 7523 runs, respectively. Resolving $r_{\text{max}} \approx 2.2 \times r_{\text{20}}$ is less demanding, requiring only $N_{200} \approx 170$, 214, and 266 for the same respective N_p.

We show this explicitly in the left-hand panel of Figure 10 where we plot the $V_{\text{max}} - r_{\text{max}}$ relations for haloes in runs of different resolution. Thick curves correspond to the median r_{max} and V_{max} in bins of M_{200}, and extend down to a lower mass limit corresponding to $N_{200} = 100$. We adopt the same colour scheme as in previous figures and use solid lines for our fiducial runs, and dashed lines for runs where ϵ was kept fixed at 43.75 pc. Note that curves corresponding to a given mass resolution begin to converge when N_{200} exceeds the lower limits provided above. Convergence is not perfect, however, as systematic differences in V_{max} and r_{max} of order 10 per cent are expected at these mass scales. Solid (faint) lines of corresponding colour, for example, show the $r_{\text{max}} - V_{\text{max}}$ relation for haloes whose mass is kept fixed at those lower limits. Dotted lines show the analogous relations for convergence radii equal to $r_{\text{conv}} = 0.055l$.

Fixing ϵ at 43.75 pc, well below the fiducial value, appears to improve convergence between runs of different mass resolution even slightly below these mass scales. Indeed, at first glance, convergence even seems better than expected from limits imposed by 2-body relaxation. This result, however, is fortuitous, as shown in the right-hand of Figure 10 where $r_{\text{max}} - V_{\text{max}}$ relations are plotted for our $N_p = 376^3$ runs for a variety of ϵ. It is clear from this figure that a $r_{\text{max}} \propto r_{\text{conv}}$ is a requirement for convergence in the median relations (i.e. convergence is only achieved to the right of the solid or dotted grey lines labeled $r_{\text{max}} = r_{\text{conv}}$).

Figure 8. Deviation in circular velocity profiles between low and high-resolution runs plotted as a function of $\kappa(r) \equiv t_{\text{rel}}(r)/t_H(z)$ (upper panels) and r/l (lower panels). The left panels show results for our $N_p = 376^3$ (red) and 1883 (blue) runs for a fixed softening length of $\epsilon = 43.75$ pc; the right-hand panels show $N_p = 376^3$ runs for a variety of ϵ (indicated in the legend). In all cases, $\Delta V_c/V_c$ is calculated with respect to our $N_p = 752^3$, $\epsilon = 43.75$ pc runs. (Note the sign convention: positive values of $\Delta V_c/V_c$ indicate suppressed densities in our low-resolution runs.) Median profiles are shown in 40 equally-spaced bins of log M_{200} that span a lower limit corresponding to $M_{200} = 100 \times m_{\text{DM}}$ up to $M_{200} \approx 10^{12} M_\odot$. The white square and circle in each upper panel show the empirical measurements of P03 and N10, respectively, both of whom simulated a single DM halo within varying particle number; coloured points correspond to values used in Figure 7.
laced halo of mass comparable to that of the Milky Way would require \(N_{200} \approx 3 \times 10^{12} \) particles, far higher than any cosmological simulation published to date. Note, however, that these scales are baryon-dominated in hydrodynamical simulations, and the relevance of these criteria are not obvious in that case.

The right hand panel of Figure 11 shows the convergence radius (using \(\kappa_{\text{P03}} = 0.177 \)) as a function of halo mass expected for simulations of different uniform mass resolution (burgundy lines), for which \(m_{\text{DM}} \) varies by successive factors of 8. Heavy lines highlight several particular values of \(m_{\text{DM}} \). Note that for \(m = 1.2 \times 10^9 \, M_\odot \) (comparable to the particle mass in the 100 Mpc, \(N_p = 1504^3 \) EAGLE simulation), convergence radii vary from \(\approx 3 \) kpc for \(10^{15} \, M_\odot \) haloes, to \(\approx 2 \) kpc at \(M_{200} = 10^{13} \, M_\odot \), equivalent to roughly 3 to 4 fiducial softening lengths. Targeting convergence radii below \(\sim 100 \) pc for haloes with virial masses \(M_{200} \sim 10^8 \, M_\odot \) requires dark matter particle mass of only a few thousand \(M_\odot \); achieving \(\sim 10 \) pc resolution requires \(m_{\text{DM}} \approx M_\odot \).

Dashed blue lines show, for comparison, the convergence radii as a function of mass for fixed values of \(N_{200} \), ranging from 20 particles (thick dashed line) to \(N_{200} = 10^5 \). This is comparable to the highest-resolution dark matter-only simulations carried out to date – the Aquarius (Springel et al. 2008) and Ghalo (Stadel et al. 2008) simulations – which achieve a maximum spatial resolution of order 100 pc in a Milky Way mass dark matter halo.

These results imply that the current state-of-the-art in cosmological hydrodynamical simulations (e.g. EAGLE, Illustris, Apostle, FIRE, Auriga) are not fully converged on scales relevant for galaxy formation.

4.6 Section summary

Before moving on, we first summarize the results of this section:

- Gravitational softening does not compromise the spatial resolution of simulations provided: a) a sufficient number of timesteps are taken to reliably integrate particle orbits in dense halo centres, and b) it remains smaller than the radius within which 2-body relaxation dominates individual particle dynamics. This is true even for runs with very small softening and for haloes resolved with only \(\sim 10^5 \) particles, despite the fact that strong discreteness effects were naively expected for \(\epsilon \sim r_{200}/\sqrt{N_{200}} \). Indeed, the enclosed mass profiles of dark matter haloes are remarkably robust to changes in \(\epsilon \), even for much smaller values of \(\epsilon \).

- Nevertheless, the fact that the median mass profiles of haloes are largely insensitive to \(\epsilon \) says little about the radial range over which they can be considered reliably resolved. For a given DM halo the minimum resolved radius, \(r_{\text{conv}} \), depends primarily on total particle number, \(N_{200} \), and roughly coincides with the radius within which the enclosed 2-body relaxation time first exceeds the Hubble time by some factor \(\kappa \). The precise value of \(\kappa \) dictates the level of convergence: we find that for \(\kappa \approx 0.177 \), median circular velocity profiles have converged to within 10 per cent; 3 per cent convergence in \(V_s(r) \) requires \(\kappa \approx 0.566 \). This is true regardless of \(m_{\text{DM}} \) and of \(\epsilon \), provided the condition \(\epsilon \lesssim r_{\text{conv}} \) is met.

- The convergence radius scales roughly as \(r_{\text{conv}} \propto \left(\frac{\epsilon}{M_\odot} \right)^{0.5} \).
\[N_{200}^{-1/3} \text{ (see eq. 13), implying } r_{\text{conv}}/\epsilon \approx \text{constant, independent of redshift, halo mass and particle mass. Indeed, for } \Delta V_c/V_c = 0.1 (\kappa_{P03} = 0.177) \text{ we find that } r_{\text{conv}}(z) = 0.055 \times (t(z) \text{ describes our numerical data about as well as the P03 criterion, typically to within 20 per cent. A better approximation can be obtained with a slightly steeper dependence on } N_{200}: r_{\text{conv}}/r_{200} = 1.1 \times N_{200}^{-0.4} \text{ (see Figure 6).}

- Cosmological simulations should adopt softening lengths at least a factor of 2 smaller than } r_{\text{conv}} \text{ in order to ensure that biased force estimates do not compromise their spatial resolution. Recently, van den Bosch & Ogiya (2018) suggested that the “optimal” softening for NFW haloes scales with particle number approximately as } \epsilon_{\text{opt}}/r_{200} = 0.005 \times (N_{200}/10^3)^{-1/3} \text{, which is a factor of 2 to 4 smaller than } r_{\text{conv}} \text{ over virtually all values of } N_{200} \text{ relevant for cosmological simulations } (10^2 \lesssim N_{200} \lesssim 10^5), \text{ and is “optimal” regardless of halo mass. Indeed, their results imply that } \epsilon_{\text{opt}}/l \approx 0.017, \text{ comparable to values adopted by the majority of recent large-scale cosmological simulations.}

5 HALO MASS FUNCTIONS

Accurately characterizing the dark matter halo mass function, } n(M) \text{, either from simulation or theory, is necessary for several reasons. At high mass, for example, the shape and time evolution of } n(M) \text{ encodes clues that provide important constraints on cosmological models (e.g., Eke et al. 1996). The mass function is also an important probe of dark matter, since many particle candidates predict strong, scale-dependent deviations from the expectations of the canonical cold dark matter model (see, e.g., Schneider 2015; Angulo et al. 2013). Accurate predictions for halo mass functions are also required for galaxy formation theory, since galaxies are assumed to form in halo centres via dissipative collapse of primordial and recycled gas (see, e.g., White & Frenk 1991 and a number of subsequent works). The abundance of dark matter haloes is therefore closely related to the observed luminosity function of galaxies, and is a central aspect of theoretical models that attempt to reproduce observed galaxy number densities.

The latter point is particularly important for hydrodynamical simulations that possess star-forming haloes (\gtrsim \text{ a few } \times 10^9 M_\odot) \text{ close their resolution limit. EAGLE is an example of a simulation in which haloes of mass } \sim 10^9 M_\odot \text{ are resolved with only a few hundred dark matter particles. The abundance and structure of these haloes, and consequently the statistics of the first generation of low-mass galaxies, are likely subject to numerical artifact. In this section we quantify the robustness of the halo mass function to changes in particle mass and in gravitational softening length, focusing particularly on the lowest mass haloes.}

5.1 Dependence on halo mass definition

Before studying the sensitivity of halo mass functions to numerical parameters, it is useful to examine their dependence on how mass is defined, in order to have a useful gauge for...
Figure 11. Left panel: Total number of particles, N_{200}, required to resolve the innermost 10^3, 100 and 10 pc of NFW haloes as a function of their mass (obtained from eq. [1]). Dashed lines assume convergence of V_c to within 3 per cent ($\kappa_{P03} = 0.566$) and solid curves to within 10 per cent ($\kappa_{P03} = 0.177$). As a guide, the thin grey lines show N_{200} versus virial mass for several values of particle mass, increasing from $m_{DM} = 46 M_\odot$ to $1.2 \times 10^7 M_\odot$ by factors of 8. Right panel: Power’s convergence radius (for $\kappa_{P03} = 0.177$) as a function of halo mass for different mass resolutions. Thick burgundy lines correspond to particle masses decreasing from $7.7 \times 10^8 M_\odot$ by successive factors of 64; thin lines correspond to additional values of m_{DM} that differ from these by factors of 8. The heavy black line shows r_{200} and the dashed blue line the convergence radius expected for haloes of $N_{200} = 20$ particles, where all other curves terminate. The dashed lines show convergence radii for haloes of mass M_{200} resolved with different numbers of particles (labeled along each line). All curves assume that haloes follow an NFW profile and a mass-concentration relation consistent with the model of Ludlow et al. (2016) for the Planck cosmology.

5.2 Dependence on particle number and softening

The upper panels of Figure 13 show the cumulative mass functions for M_{FoF} (left) and M_{200} (right) in our $N_p = 752^3$, 376^3 and 188^3 boxes. Solid lines correspond to runs carried out with the fiducial softening parameter, $\epsilon/b \approx 0.011$ (at $z = 0$); dashed lines are used for runs in which ϵ was kept fixed at 43.75 pc (physical, also at $z = 0$), regardless of m_{DM}. The upper residual panel plots the departure of each fiducial run from the black dashed line (i.e. from the run with the highest mass resolution and smallest force softening). Differences are small, typically $\lesssim 5$ per cent for haloes containing $N \gtrsim 100$ particles (indicated using downward-pointing arrows), and $\lesssim 10$ per cent at all masses. The lower residual panels compare results for fixed-softening runs (we use $\epsilon = 43.75 \text{ pc}$, corresponding to $\epsilon/\epsilon_{fid} = 1/4, 1/8$ and $1/16$ for $N_p = 752^3, 376^3$ and 188^3, respectively). Albeit slightly, this choice of softening improves agreement at low FoF masses, but has the opposite effect for M_{200}. Overall, the M_{FoF} mass functions appear more stable to changes in N_p than those using M_{200}. Nevertheless, it is worth emphasizing that, in both cases, departures remain small compared to variations arising from different mass definitions.

The lower two panels of Figure 13 show, for $N_p = 376^3$, the M_{FoF} (left) and M_{200} (right) mass functions for a large range of ϵ (5.46 $\lesssim \epsilon/[\text{pc}] \lesssim 5.6 \times 10^3$). The dashed black lines are the same as in the upper panels, and correspond to the run with $N_p = 752^3$, $\epsilon = 43.75 \text{ pc}$; residuals in the lower panels are computed with respect to these curves. Provided $\epsilon/\epsilon_{fid} \lesssim 8$, differences due to softening are limited to the
lowest mass haloes. Indeed, for a broad range of softening, 4 \gtrsim \epsilon/\epsilon_{\text{fid}} \gtrsim 1/64, both sets of mass functions agree with that of the higher-resolution run to within about 10 per cent for haloes resolved with more than \sim 100 particles, although deviations depend systematically on \epsilon.

Figure 14 shows the softening dependence of the total number density of haloes based on \(M_{\text{FoF}} \) and \(M_{200} \). Top panels show results for \(N \geq 32 \) particles (based on the respective mass definitions); bottom panels for \(N \geq 100 \). The filled and open squares correspond to \(M_{\text{FoF}} \) and \(M_{200} \), respectively; symbols are colour-coded by \epsilon as in Figure 13. For comparison, filled and open circles show the number densities of haloes above the same mass thresholds in the \(N_p = 752^3 \) runs. In all cases, the number density of haloes grows gradually until \(\epsilon \approx 4 \times \epsilon_{\text{fid}}, \) where it peaks, before decreasing rapidly for larger \epsilon. For EAGLE’s fiducial softening length halo abundances are within a few per cent of the maximum attained for any \epsilon.

5.3 Dependence on redshift evolution of \epsilon

The gravitational softening length, initially fixed in comoving coordinates, reaches a maximum physical value at \(z_{\text{phys}} = 2.8 \), after which it remains constant in proper coordinates. Other cosmological simulations often use a fixed comoving softening at all \(z \), whereas some opt for fixed proper softening lengths. What effect, if any, does this have on the halo mass function? In order to find out, two additional “fiducial” (\(N_p = 376^3 \)) runs were carried out using \(z_{\text{phys}} = 10 \) and 0 (i.e., fixed in comoving units at all times), each reaching a \(z = 0 \) softening parameter of \(\epsilon_{\text{fid}} = 350 \) pc. Figure 15 shows the redshift evolution of the total number of haloes above 32 and 100–particle thresholds. As above, masses are computed at all \(z \) using both \(M_{\text{FoF}} \) (solid lines) and \(M_{200} \) (dashed definitions). The connected (blue) circles in this plot show the results for \(z_{\text{phys}} = 2.8 \); other curves correspond to \(z_{\text{phys}} = 10 \) (green diamonds) and 0 (red squares).

Overall, the results are similar, with the largest differences being limited to the lowest-mass haloes. Figure 16 shows the residuals with respect to the run with \(z_{\text{phys}} = 0 \) (for clarity, the comparison is limited to \(M_{200} \) masses in this plot). For \(N_{200} \geq 100 \) (lower panel), differences are never larger than \(\sim 2 \) per cent (highlighted by the grey shaded region). For \(N_{200} \geq 32 \) differences are still small, \(\gtrsim 5 \) per cent, but systematic: higher \(z_{\text{phys}} \) corresponds to higher \(n(M) \). This is qualitatively consistent with the results in Figure 14, which indicates that increasing \epsilon results in a slight boost in the numbers of low-mass haloes, at least up to a point. For a given \(z = 0 \) softening length, higher \(z_{\text{phys}} \) implies larger physical softening lengths at \(z > z_{\text{phys}} \), and also enhances slightly the numbers of low-mass haloes. Note as well the slight boost in \(n(M) \) (of order a couple per cent) after \(z_{\text{phys}} \). These subtle changes in the abundance of low-mass haloes may impact the star formation histories of low-mass galaxies that inhabit them, provided they are sufficiently massive to promote efficient gas cooling.

5.4 Section summary

The results of this section can be summarized as follows:

- Dark matter halo mass functions may differ by as much as 20 per cent for haloes resolved with \(\geq 100 \) particles depending on how mass is defined. At fixed mass, \(M_{200} \) masses yield the lowest overall number densities and \(M_{\text{FoF}} \) the highest. Comparing haloes at fixed number density, this suggests that, on average, FoF masses exceed those based on \(M_{200} \) by a factor of \(\approx 1.15 - 1.2 \), though a more detailed comparison is required to properly assess the systematics (see, e.g., Tinker et al. 2008 for a thorough discussion).
- For haloes containing \(\gtrsim 100 \) particles, FoF mass functions converge to better than \(\approx 5 \) per cent for runs carried out with our “fiducial” softening, \(\epsilon_{\text{fid}}/l = 0.011 \) at \(z = 0 \), regardless of particle number \(N_p \) (note \(\epsilon_{\text{fid}} = 700, 350 \), and 175 pc for \(N_p = 188^3, 376^3 \) and 752\(^3 \), respectively), and to \(\lesssim 3 \) per cent when \(\epsilon = 43.75 \) pc was kept fixed for all \(N_p \). For haloes resolved with \(\geq 32 \) particles, corresponding to the resolution limit of SUBFIND, FoF mass functions converge to within \(\approx 10 \) per cent for fiducial softening values, and to within \(\approx 5 \) per cent for \(\epsilon = 43.75 \) pc. The overall trend is such that lower mass resolution results in a systematic increase in the total number of FoF haloes, driven mainly by a slight increase in the number of poorly resolved systems. For \(M_{200} \) the converse is true: runs of lower resolution produce systematically fewer haloes. Differences are small but systematic, reaching \(\approx 5 \) per cent in our fiducial runs for haloes resolved with at least \(N_{200} \geq 100 \), and \(\approx 10 \) per cent for runs with \(\epsilon = 43.75 \) pc.
- At fixed mass resolution (corresponding to \(N_p = 376^3 \)) \(M_{\text{FoF}} \) mass functions converge to within \(\approx 6 \) (15) per cent
for $N_{\text{FoF}} \geq 100$ (32), for a range of ϵ spanning nearly a factor of 10^3 (5.46 pc to 5.6 kpc). For M_{200}, we obtain convergence at the 11 and 15 per cent level for $N_{200} \gtrsim 100$ and $\lesssim 32$, respectively, although larger differences are found for the most extreme values of ϵ tested. There is also a systematic trend: increasing ϵ results in a gradual increase in the abundance of haloes composed of $\lesssim 100$ particles, provided it remains smaller than about $8 \times \epsilon_{\text{fid}} \approx 0.091 \ell$, where the total abundance of haloes peaks.

- Changing the redshift z_{phys} below which the softening parameter remains fixed in proper units (rather than comoving) can have a comparable effect on the abundance of low-mass $\lesssim 100$-particle haloes. When ϵ is fixed at $z = 0$ a higher z_{phys} implies larger physical softening lengths for all $\epsilon > z_{\text{phys}}$. As we have seen above, larger softening lengths tend to enhance slightly the formation of low-N haloes, provided ϵ does not become too large. For example, for $N_{p} = 376^{3}$ and $\epsilon(z = 0) = 350\ell$, increasing z_{phys} from 0 to 10 results in a $\lesssim 2$ per cent increase in the abundance of haloes with $N_{200} \gtrsim 100$; for $N_{200} \gtrsim 32$ deviations are not larger than ≈ 5 per cent.

Figure 13. Upper panels: Resolution dependence of cumulative halo mass functions for FoF (left) and M_{200} (right) mass definitions. In both panels, results are shown for six separate runs. Three adopt the “fiducial” softening parameter, corresponding (at $z = 0$) to a fixed fraction $f \approx 0.011$ of the Lagrangian mean inter-particle separation, but vary the total particle number, N_{p} (solid lines). These are compared to three additional runs carried out with the same three N_{p}, but with ϵ held fixed at a value of 43.75 pc (dashed lines). Downward arrows mark the mass of 100 DM particles for each N_{p}, above which the mass functions agree with the higher resolution runs to within $\lesssim 10$ per cent. Upper residual panels show the departure of our fiducial runs from the $N_{p} = 752^{3}$ run with the smallest softening, $\epsilon = 43.75$ pc (i.e. from the dashed black line); lower residual panels compare runs at fixed softening, $\epsilon = 43.75$ pc, regardless of resolution. Lower panels: Dependence of cumulative mass functions on softening. As on top, left and right hand panels correspond to FoF and M_{200} masses, respectively. Dashed lines show results for our $N_{p} = 752^{3}$; $\epsilon = 43.75$ pc run; coloured lines correspond to $N_{p} = 376^{3}$ runs for a variety of softening lengths, as indicated in the legend. Note that, despite ϵ differing by over a factor of $\sim 10^{3}$, the mass functions have typically converged at the level of ≈ 5 per cent for $N_{\text{FoF}} \gtrsim 100$, and to ≈ 10 per cent for $N_{200} \gtrsim 100$. The lower panels plot the residuals with respect to the $N_{p} = 752^{3}$ run with $\epsilon = 43.75$ pc.
Numerical convergence of CDM haloes

Overall, our results suggest that halo mass functions are a robust result of N-body simulations once a definition of halo mass has been specified. Variations in halo abundances with numerical parameters tend to be restricted to poorly resolved systems containing fewer than 100 particles. Yet, however slight, these changes may have a noticeable impact on the first generation of star formation if these haloes happen to have masses comparable to the threshold for efficient gas cooling. Calibrating sub-grid models at fixed \(N_p \) and \(\epsilon \) may help mitigate any non-physical effects brought about by star formation in this first generation of poorly resolved haloes, but may not easily adapt to increasing or decreasing resolution. As a result, simulations that adopt numerical parameters that differ from those for which the models were calibrated may yield noticeably different star formation histories and/or galaxy properties. We will address these issues in a companion paper.

6 CONCLUSIONS

We have carried out a systematic convergence study of the median and statistical properties of DM haloes in fully cosmological, dark matter-only simulations. Unlike previous work, which targeted single haloes, we focused our analysis on their median spherically-averaged density profiles as a function of mass and on several mass-dependent structural scaling relations. After verifying the need for fine timesteps to resolve halo centres, we tested the sensitivity of halo profiles to total particle number, \(N_p \), and force softening length, \(\epsilon \). We also revisited the calculation of the convergence radius originally provided by P03, and derived its explicit (but weak) dependence on the gravitational softening.

In addition to mass profiles, we also studied convergence in the abundance of haloes as a function of mass, focusing on runs carried out with different particle numbers and redshift-dependent softening lengths. Our main results can be summarized as follows:

(i) Softening and 2-body relaxation: Softening does not significantly affect 2-body relaxation times, which are pri-
marily driven by particle number. This is contrary to common belief, despite being well documented in the literature (e.g. [Huang et al. 1993; Theis 1998; Dehnen 2001]). The result may, at first, seem puzzling because encounters between particles give rise to velocity perturbations that scale approximately as $\delta v \sim G m_{\text{DM}} / b v$, increasing significantly for encounters with small impact parameter, b. Nevertheless, close encounters are rare and, as pointed out by Chandrasekhar [1942] and Spitzer & Hart [1971], the large numbers of distant encounters dominate the cumulative effect of perturbations: relaxation is driven by discreteness on large scales, where most of the mass is (see, e.g., Hernquist & Barnes 1990). Softening does, however, suppress small-scale "collisions" between particles: for Plummer softening interactions between particles become increasingly unimportant for separations $\lesssim \epsilon/\sqrt{2}$. Softening therefore serves the purpose of smoothing the matter distribution on small scales, allowing force estimates to more faithfully represent a continuous matter field.

(ii) Convergence of the median mass profiles of CDM haloes: Provided ϵ and timestep size are appropriately chosen, 2-body relaxation imposes a strict and well-defined lower limit on the spatial resolution of collisionless CDM haloes. Convergence in mass profiles, for example, can only be achieved at radii beyond which 2-body relaxation times are a sizeable fraction of a Hubble time, or longer. As a result, convergence radii are primarily determined by the enclosed particle number, though analytic arguments suggest a weak (approximately logarithmic) dependence on softening. Softening appears to compromise the spatial resolution of simulations only if it is larger than the convergence radius dictated by 2-body scattering: in this case, our results suggest that $r_{\text{conv}} \approx 2 \times \epsilon$.

Particle interactions tend to drive the local velocity distribution towards a Maxwellian and, occasionally, impart velocities exceeding the local escape speed. The net effect of 2-body relaxation is therefore to monotonically suppress the central densities of haloes, allowing convergence radii to be determined empirically by comparing runs of different (mass) resolution. A simple but accurate description of our measured convergence radii can be obtained using eq. [12] where $\kappa \equiv t_{\text{relax}}/t_{\text{H}}$: better convergence is achieved for higher values of κ. Circular velocities, for example, converge to within ≈ 5 per cent for $\kappa = 0.566$ and 0.106, respectively (values of κ for arbitrary levels of convergence can be approximated using eq. [18]).

These results, valid at all redshifts, are qualitatively consistent with those of P03 and N10, but differ in the details. P03, for example, find that 10 per cent convergence in $v_c(r)$ requires $\kappa \approx 0.6$, while N10 find $\kappa = 7.5$ yields $\Delta v_c / v_c \approx 0.025$; both are larger than the values of κ we advocate for the same level of convergence (≈ 0.2 and ≈ 0.6, respectively). It is worth emphasizing, however, that both previous studies focused on single dark matter haloes of fixed virial mass, whereas our results apply to median mass profiles that span a broad range of halo masses. Differences between our results and theirs may arise as a result of sampling haloes possessing a wide range of concentrations at fixed mass: since r_{conv} (and its relation to κ) depends explicitly on profile shape, it will necessarily vary from halo to halo. The convergence criteria advocated by P03 and N10 are therefore more conservative than ours, a result echoed by the recent work of Zhang et al. [2018].

At fixed mass resolution, the convergence radii anticipated by eq. [11] exhibit a weak dependence on N_{200}, varying by about a factor of two for NFW haloes with N_{200} ranging from 10^2 to 10^8. Indeed, the measured median convergence radii of haloes in our simulations are compatible with a much simpler approximation in which r_{conv} is simply a fixed fraction of the mean inter-particle spacing, l. For example, < 10 per cent convergence in circular velocity is obtained approximately at a radius $r_{\text{conv}}(z) \approx 0.055 \times l(z)$ (eq. [17]). Softening lengths for cosmological simulations should be chosen with this in mind.

(iii) The optimal softening for cosmological simulations: We note that the "optimal" softening length, $\epsilon_{\text{opt}} / r_{200} = 0.005 \times (N_{200} / 10^5)^{1/3}$, advocated by van den Bosch & Ogiya [2018] for NFW haloes is typically a factor of 2 to 4 smaller than r_{conv} at fixed N_{200}. It is therefore unlikely to compromise the central mass profiles of simulated haloes. Furthermore, since $\epsilon_{\text{opt}} \propto N_{200}^{-1/3}$, the ratio $\epsilon_{\text{opt}} / m_{\text{DM}}$ is fixed and ϵ can be expressed in units of the mean inter-particle distance: $\epsilon_{\text{opt}} / b \approx 0.017$ (this is a factor ≈ 1.6 larger than the maximum physical softening length for our fiducial runs). We suggest that softening lengths of order ϵ_{opt} be employed in future large-scale simulations.

(iv) Convergence of halo mass functions: The mass functions of central CDM haloes are a robust prediction of cosmological simulations once a halo mass definition has been specified. For our fiducial softening lengths, Friends-of-friends (M_{FoF}) and spherical overdensity (M_{200}) mass functions, converge to within ≈ 10 per cent of those obtained from a higher-resolution run, above a mass scale corresponding to ≈ 32 particles. Convergence is better at higher masses, reaching ≈ 5 per cent for haloes resolved with at least 100 particles. These results are valid for a wide range of softening lengths, as demonstrated in Figure [13] where we compared the mass functions in a suite of 11 simulations that varied ϵ from ≈ 5.5 pc ($1/64^{5/3}$ of ϵ_{fid}) to ≈ 5.6 kpc (16 times ϵ_{fid}). For all but the largest softening length, all of these runs converge to within ≈ 5 per cent for FoF mass, and to with ≈ 10 per cent for M_{200} provided haloes are resolved with at least 100 particles. Although small, the deviations depend systematically on ϵ. For both mass definitions, the total abundance of haloes containing of order a few dozen to a few hundred particles increases systematically with increasing ϵ, reaching a maximum at 4 to 8 times the fiducial softening (corresponding to roughly 4 to 8 per cent of the mean inter-particle separation) before rapidly declining. We emphasize, however, that such large softening lengths are undesirable as they compromise the innermost structure of DM haloes, limiting the simulation’s spatial resolution.

Overall, our results confirm and extend prior work on the accuracy and reliability of cosmological simulations of collisionless cold dark matter. The primary catalyst of this work was a follow-up study in which we repeat a number of these simulations but including either adiabatic hydrodynamics, or a fully-calibrated set of sub-grid physics models for galaxy formation. In our opinion, it is therefore necessary to first highlight and expound the level of convergence in these pure DM runs, validating the numerical results in
order to facilitate the interpretation of more complex hydrodynamical simulations.

We close by reiterating that our convergence study focused exclusively on isolated or “main” DM haloes, and that our results are unlikely to apply directly to substructure. As emphasized recently by van den Bosch & Ogiya (2018) and Despali et al. (2018), the evolution of substructure in haloes is governed by several phenomena, both physical and numerical, that do not necessarily apply to isolated systems. We do, however, encourage future studies such as ours targeted explicitly at the structural evolution of substructure in hierarchical cosmologies.

ACKNOWLEDGMENTS

We thank Lydia Heck and the cosma support team for their invaluable assistance, and Alejandro Alejandro Benítez-Llambay and Matthieu Schaller for helpful conversations. We thank Lydia Heck and the cosma support team for their invaluable assistance, and Alejandro Alejandro Benítez-Llambay and Matthieu Schaller for helpful conversations.

REFERENCES

Alimi J.-M., Bouillot V., Rasera Y., Reverdy V., Corasaniti P.-S., Balmes I., Requena S., Delaruelle X., Richet J.-N., 2012, ArXiv e-prints

Allgood B., Flores R. A., Primack J. R., Kravtsov A. V., Wechsler R. H., Faltenbacher A., Bullock J. S., 2006, MNRAS, 367, 1781

Angulo R. E., Hahn O., Abel T., 2013, MNRAS, 434, 3337

Angulo R. E., Springel V., White S. D. M., Jenkins A., Baugh C. M., Frenk C. S., 2012, MNRAS, 426, 2046

Balogh M. L., Navarro J. F., Morris S. L., 2000, ApJ, 540, 113

Binney J., Tremaine S., 1987, Galactic dynamics. Princeton, NJ, Princeton University Press, 1987, 747 p.

Blake C., James J. B., Poole G. B., 2014, MNRAS, 437, 2488

Boylan-Kolchin M., Springel V., White S. D. M., Jenkins A., Lemson G., 2009, MNRAS, 398, 1150

Bryan G. L., Norman M. L., 1998, ApJ, 495, 80

Bullock J. S., Kolatt T. S., Sigad Y., Somerville R. S., Kravtsov A. V., Klypin A. A., Primack J. R., Dekel A., 2001, MNRAS, 321, 559

Chandrasekhar S., 1942, Principles of stellar dynamics

Crain R. A., Schaye J., Bower R. G., Furlong M., Schaller M., Theuns T., Dalla Vecchia C., Frenk C. S., McCarthy I. G., Helly J. C., Jenkins A., Rosas-Guevara Y. M., White S. D. M., Trayford J. W., 2015, MNRAS, 450, 1937

Dehnen W., 2001, MNRAS, 324, 273

Despali G., Giocoli C., Angulo R. E., Tormen G., Sheth R. K., Baso G., Moscardini L., 2016, MNRAS, 456, 2486

Despali G., Giocoli C., Tormen G., 2014, MNRAS, 443, 3208

Diemand J., Moore B., Stadel J., 2004, MNRAS, 353, 624

Dolag K., Komatsu E., Sunyaev R., 2016, MNRAS, 463, 1797

Dubois et al 2014, MNRAS, 444, 1453

Dutton A. A., Macciò A. V., 2014, MNRAS, 441, 3359

Eke V. R., Cole S., Frenk C. S., 1996, MNRAS, 282, 263

Fillingham S. P., Cooper M. C., Wheeler C., Garrison-Kimmel S., Boylan-Kolchin M., Bullock J. S., 2015, MNRAS, 454, 2039

Gao L., Navarro J. F., Frenk C. S., Jenkins A., Springel V., White S. D. M., 2012, MNRAS, 425, 2169

Gao L., White S. D. M., Jenkins A., Stoehr F., Springel V., 2004, MNRAS, 355, 819

Ghigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 1998, MNRAS, 300, 146

Ghigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 2000, ApJ, 544, 616

Gott III J. R., Weinberg D. H., Melott A. L., 1987, ApJ, 319, 1

Hernquist L., 1990, ApJ, 356, 359

Hernquist L., Barnes J. E., 1990, ApJ, 349, 562

Hopkins P. F., Kereš D., Ostriker J. P., Faucher-Giguère C.-A., Quataert E., Murray N., Bullock J. S., 2014, MNRAS, 445, 581

Huang S., Dubinski J., Carlberg R. G., 1993, ApJ, 404, 73

Hunter J. D., 2007, Computing In Science & Engineering, 9, 90

James J. B., Lewis G. F., Colless M., 2007, MNRAS, 375, 128

Jenkins A., 2013, MNRAS, 434, 2094

Jenkins A., Frenk C. S., White S. D. M., Colberg J. M., Cole S., Evrard A. E., Couchman H. M. P., Yoshida N., 2001, MNRAS, 321, 372

Jones E., Oliphant T., Peterson P., et al., 2001, SciPy: Open source scientific tools for Python

Kaiser N., 1984, ApJL, 284, L9

Klypin A., Yepes G., Gottlöber S., Prada F., Heß S., 2016, MNRAS, 457, 4340

Klypin A. A., Trujillo-Gomez S., Primack J., 2011, ApJ, 740, 102

Knebe A., Wagner C., Knollmann S., Diekemshoff T., Krause F., 2009, ApJ, 698, 266

Ludlow A. D., Angulo R. E., 2017, MNRAS, 465, L84

Ludlow A. D., Bose S., Angulo R. E., Wang L., Hellwing W. A., Navarro J. F., Cole S., Frenk C. S., 2016, MNRAS, 460, 1214

Ludlow A. D., Navarro J. F., Boylan-Kolchin M., Bett P. E., Angulo R. E., Li M., White S. D. M., Frenk C., Springel V., 2013, MNRAS, 432, 1103

Melott A. L., Shandarin S. F., Splinter R. J., Suto Y., 1997, ApJL, 479, L79

Merritt D., 1996, AJ, 111, 2462

Moore B., Katz N., Lake G., 1996, ApJ, 457, 455
