Phase II Study of Dasatinib in Philadelphia Chromosome–Negative Acute and Chronic Myeloid Diseases, Including Systemic Mastocytosis

Srdan Verstovsek, Ayalew Tefferi, Jorge Cortes, Susan O'Brien, Guillermo Garcia-Manero, Animesh Pardanani, Cem Akin, Stefan Faderl, Taghi Manshouri, Deborah Thomas, and Hagop Kantarjian

Abstract

Purpose: Molecular characterization of Philadelphia chromosome–negative (Ph−) chronic myeloproliferative disorders, such as systemic mastocytosis (SM), has provided a clear rationale for investigating novel targeted therapies. The tyrosine kinase (TK) inhibitor dasatinib is 325-fold more potent against Bcr-Abl TK than imatinib in vitro, significantly inhibiting wild-type KIT and platelet-derived growth factor receptor β-TKs, and is active against cells carrying the mutant KIT-D816V gene.

Experimental Design: In this phase 2, open-label study, the efficacy of dasatinib (140 mg/d) was investigated in 67 patients with various Ph− myeloid disorders, including SM (n = 33; 28 KIT-D816V positive).

Results: The overall response rate to dasatinib in patients with SM was 33%. Only two patients, one with SM-myelofibrosis and one with SM-chronic eosinophilic leukemia, achieved complete response (elimination of mastocytosis) lasting for 5 and 16 months, respectively. Both patients were negative for KIT-D816V mutation, had low tryptase levels, abnormal WBC counts, and anemia, and had failed prior therapy with erythropoietin. Additional nine SM patients had symptomatic response, lasting 3 to 18+ months. Complete responses were achieved in two other patients (acute myeloid leukemia and hypereosinophilic syndrome). No responses were observed among patients with myelodysplastic syndromes and primary myelofibrosis. The majority of adverse events were grade 1/2.

Conclusion: These data show that dasatinib therapy may benefit a selected group of SM patients, primarily by improving their symptoms, but it does not eliminate the disease in the patients with KIT-D816V mutation.

Despite clinical progress in leukemia therapy, notably the introduction of Bcr-Abl–targeted therapies for Philadelphia chromosome–positive chronic myeloid leukemia (Ph+ CML; ref. 1), most adult patients with advanced or refractory myeloid malignancies still die from their disease. For example, no generally effective therapy has been established for Ph-negative (Ph−) chronic myeloproliferative diseases (CMPD; ref. 2). Therefore, there is an urgent need to identify new targeted treatments for a range of potentially life-threatening myeloid diseases, including acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), primary myelofibrosis (PMF), hyper-eosinophilic syndrome (HES), chronic eosinophilic leukemia (CEL), and systemic mastocytosis (SM).

Four main subcategories of SM are described by the WHO classification system for mast cell diseases: (3) indolent SM (ISM), SM with an associated clonal hematologic nonmast cell disorder (SM-AHNMD), aggressive SM (ASM), and mast cell leukemia. Although standard cytoreductive therapies for SM may provide symptomatic improvements, responses are transient and the overall prognosis, which is particularly poor for patients with ASM, SM-AHNMD, and mast cell leukemia, remains unchanged by treatment (4). Impetus for the clinical investigation of novel targeted agents for the treatment of CMPD has been provided by advances in molecular characterization of these diverse diseases. KIT is a 145-kDa transmembrane class III receptor tyrosine kinase (TK; ref. 5) required for human mast cell growth, differentiation, and functional activation (6, 7). Gain-of-function point mutations in the KIT kinase domain result in ligand-independent constitutive activation of KIT signaling, leading to uncontrolled mast cell proliferation and resistance to apoptosis (8). One of these KIT mutations (D816V) is present in >90% of patients with SM (9–11) and mutated KIT has also been described in patients...
with AML (12). Additional genetic abnormalities have been identified in patients with SM-AHNMD (13, 14) in whom an associated CEL may be linked to the FIP1L1-platelet-derived growth factor receptor \(\alpha \) (PDGFR\(\alpha \)) fusion gene (14–17). A large body of data supports a role for PDGFR TKs in the pathophysiology of several subtypes of MDS and MPD (18). Mutated genes in molecularly defined CEL include those encoding for PDGFR\(\alpha \) and PDGFR\(\beta \) and fibroblast growth factor receptor 1.

In preclinical studies, the TK inhibitor imatinib mesylate (Gleevec, Novartis) inhibited KIT, fibroblast growth factor receptor, and PDGFR, suggesting that it has a potential role in certain hematologic neoplasms expressing these kinases (19–21). Imatinib has shown activity against neoplastic mast cells exhibiting wild-type KIT and the spontaneously immortalized human mast cell line HMC-1.1 expressing mutant KIT-V560G, but it failed to inhibit HMC-1.2 cells expressing the mutant KIT-D816V (22, 23). Imatinib has also been investigated in several clinical studies of patients with CMPD, including SM (24–30). Durable hematologic and cytogenetic responses were achieved with imatinib in a recent study of 12 patients with PDGFR\(\beta \) fusion-positive, Bcr-Abl–negative CMPD (31). Furthermore, 100 mg/d imatinib is the treatment of choice for FIP1L1-PDGFR\(\alpha \)–positive SM-CEL or other clonal eosinophilic and induces a complete hematologic and molecular remission in almost all treated patients (15, 32). However, in FIP1L1-PDGFR\(\alpha \)–negative HES, treatment with imatinib is unlikely to produce durable remissions (15). Similarly, therapy with imatinib does not usually benefit patients with SM in whom imatinib-sensitive molecular markers, such as FIP1L1-PDGFR\(\beta \), are absent (24, 33) and imatinib is not indicated for those with KIT-D816V mutation. Because of the efficacy limitations of standard cytoreductive therapies, several new TK inhibitors and other novel therapeutic agents are under active clinical investigation in patients with CMPD (34–36).

Dasatinib (SPRYCEL, Bristol-Myers Squibb) is a dual Src/Abl kinase inhibitor with shown clinical activity in all stages of Ph+ CML after the failure of imatinib (37–40). Dasatinib is 325-fold more potent against Bcr-Abl lymphoblastic leukemia in patients resistant or intolerant to imatinib. Dasatinib is 325-fold more potent against wild-type KIT (IC\(50 \), 5 nmol/L) and PDGFR\(\beta \) (IC\(50 \), 28 nmol/L; ref. 42). Preclinical studies have shown that dasatinib potently inhibits both the growth of HMC-1.2 cells carrying the mutant KIT-D816V (43) and primary mast cells with KIT-D816V mutation obtained from patients with SM (44). These preclinical studies suggested that dasatinib might be clinically effective in patients with SM that in >90% of cases carrying this KIT mutation.

In this phase 2, open-label study, the efficacy of dasatinib was investigated in patients with Ph- myeloid diseases, potentially expressing KIT and PDGFR. The primary objective was to determine the objective response rate to dasatinib according to disease-specific response criteria. The secondary objective was to evaluate the duration of response.

Materials and Methods

Patients. Patients included in the study were ages \(\geq 18 \) years and had a confirmed diagnosis of one of the following Ph- acute or chronic myeloid diseases: (a) SM; (b) KIT-positive AML or MDS [>10% bone marrow (BM) or peripheral blood mononuclear cells positive by flow for CD117], excluding acute promyelocytic leukemia [specifically refractory-relapsed AML or MDS, including those who failed to achieve complete response after the first cycle of induction, second or subsequent therapy, or newly diagnosed AML or MDS patients over 60 years of age with karyotype other than t{15;17}, inv16, (t;8:21), who did not want to receive chemotherapy] or chronic myelomonocytic leukemia (CMML), a subtype of MDS; (c) HES/CEL; and (d) PMF. All patients were required to have serum bilirubin level <2 mg/dL, serum creatinine level <2 mg/dL (unless the abnormality was considered by the investigator to be due to hematologic malignancy), Eastern Cooperative Oncology Group performance status <3, and adequate cardiac status (New York Heart Association grade <3). Patients with cardiac symptoms (uncontrolled angina within 3 months, congenital long QT syndrome, prolonged QTc interval on pre-entry electrocardiogram (>450 ms) on both the Fridericia and Bazett’s correction, and clinically significant ventricular arrhythmias such as ventricular tachycardia, ventricular fibrillation, or torsades de pointes), uncontrolled hypertension, a history of significant bleeding disorder unrelated to cancer, acquired bleeding disorder within 1 year, and patients receiving drugs associated with a risk of torsades de pointes were not eligible. Women of child-bearing potential were required to have a negative pregnancy test and to use an effective contraceptive method. There were no exclusions of women or minorities based on the study objectives.

The protocol was approved by the research ethics board of the University of Texas M. D. Anderson Cancer Center; this was a single center study. Written informed consent was obtained according to institutional policy and the Declaration of Helsinki.

Treatment protocol. Dasatinib was administered orally at a starting dose of 70 mg twice daily or 140 mg as a single daily dose. One cycle was defined as 28 days. At the time of the study initiation, the 70 mg twice daily dose of dasatinib was recommended for use in patients with Ph+ CML; for that reason, we have treated most of our patients with it. In SM diagnostic group, after the accrual of first 24 patients, the protocol was modified to allow the accrual of an additional nine patients, treated with the alternative dose/schedule of dasatinib, 140 mg, as a single daily dose. Single daily dose was contemplated to deliver higher peak plasma levels of dasatinib, hypothesized to be possibly able to affect mast cells to greater extent. Treatment was administered at the same dose until disease progression or the occurrence of adverse events necessitating dose reduction or discontinuation. Adverse events were assessed and graded using the National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0.

The dose of dasatinib could be increased by one level in patients showing evidence of progressive disease or no response after 8 weeks (Table 1). Treatment was interrupted for Common Terminology Criteria grade 2 nonhematologic toxicity (except alopecia and fatigue) and restarted at the original dose after resolution of the adverse event to grade \(\leq 1 \) or return to baseline. The dose could be further reduced by one level each time the same adverse event recurred (maximum of three reductions). A similar dose modification scheme was used when grade 3 nonhematologic toxicity occurred, except that the dose was reduced by

Table 1. Dose modification levels for dasatinib

Dose level	Start dose (mg)	Single daily dose (mg)
Escalation 1	100	200
Starting dose	70	140
Reduction 1	50	100
Reduction 2	40	80
Reduction 3	20	40
Table 2. Response criteria

Disease	Response criteria
ASM*	Major response: complete resolution of at least one clinical finding [C-Finding(s)] and no progression in other C-Findings. Complete remission = disappearance of mast cell infiltrates in affected organs, decrease of serum tryptase levels to <20 ng/mL, and disappearance of SM-associated organomegaly. Incomplete remission = decrease in mast cell infiltrates in affected organs and/or substantial decrease of serum tryptase level and/or visible regression of organomegaly. Pure clinical response = without decrease in mast cell infiltrates, without decrease in tryptase levels, and without regression of organomegaly. Partial response: incomplete regression of one or more C-Finding(s) without complete regression and without progress in other C-Findings. Good partial response: >50% regression. Minor response: ≤50% regression. No response: C-Finding(s) persistent or progressive. Stable disease: C-Finding variables show constant range. Progressive disease: one or more C-Finding(s) show progression.
Dasatinib was generally discontinued in cases of grade 4 nonhematologic toxicity, although continuation with a dose reduction of at least one level was permitted at the investigators’ discretion. Treatment was not modified or interrupted if neutropenia occurred during the first 14 days of treatment. Thereafter, if grade 4 neutropenia (absolute neutrophil count (ANC) <0.5 × 10^9/L) occurred and marrow cellularity was <10% or >10% and neutropenia persisted for 4 weeks, treatment was interrupted and restarted at the original dose after neutrophil recovery to >1.0 × 10^9/L. Doses were subsequently reduced by one level each time grade 4 neutropenia recurred. Dose modification was not applied in patients with AML and MDS when myelosuppression was attributable to disease.

No other therapies for the treatment of myeloid diseases were permitted except for anagrelide and hydroxyurea for initial reduction of platelet and WBC counts, and hematopoietic growth factors at the investigators’ discretion. The administration of drugs that inhibit platelet function, prolong QT interval, or inhibit/induce CYP3A4 was prohibited or restricted.

Response assessment. Evaluation of patients during the study period included, at minimum, complete blood counts weekly for 4 weeks and then every 2 to 4 weeks, serum chemistry every 2 weeks for 2 weeks and then every month, BM biopsy and/or aspirate every 1 to 3 months, and an electrocardiogram between days 4 and 8 of cycle 1.

Patients were evaluated for hematologic response, when applicable, on an ongoing basis. Patients had to be off any supportive care therapy for 2 weeks, including hydroxyurea, anagrelide, transfusions, or hematopoietic growth factors, for a response to be documented. Patients were evaluated for BM response after a minimum of three treatment cycles (earlier evaluation was treating physicians choice). All patients who received any dasatinib were considered evaluable for efficacy analyses according to the response criteria shown in Table 2.

Table 2. Response criteria (Cont’d)

A. Response criteria

Disease	Response criteria
Reduction in splenomegaly and/or hepatomegaly by 50% of pretreatment dimensions (measured as length below the left costal margin on palpation) confirmed by imaging in difficult cases	
All other responses were considered failures	
Complete response = disappearance of eosinophilia (<10%) and disappearance of signs and symptoms of disease	
Partial response = reduction of eosinophilia by ≥50% and reduction of organomegaly by ≥50%	

B. Definition of responses in C-Findings for patients with ASM

C-Finding	MR (100%)	GPR (>50%)
BM/blood	ANC >1.0 × 10^9/L	Decrease below 1,000 reverted by >50% (e.g., 600-800 = 50%)
Anemia, Hb <10 g/dL	Hb >10 g/dL	Decrease below 10 reverted by >50%
Thrombocytopenia (platelets <100 × 10^9/L)	Platelets >100 × 10^9/L	Decrease to <100,000 reverted by 50%
Liver	No ascites	Decrease of frequency of paracenteses
Abnormal liver tests		
Elevated enzyme levels	Decrease to normal	Increase reverted by >50%
Anemia	Increase to normal	Decrease in vein pressure improved by 50%
Portal hypertension	Normal vein pressure	
Spleen	No signs of hypertension, platelets >100 × 10^9/L	Variables indicating hypertension, platelets improved by >50%
Gastrointestinal tract		
Malabsorption with hypoalbuminemia	Normal albumin	Decrease in albumin improved by >50%
and/or weight loss	Normal weight	Weight loss reverted by >50%
Bones	No osteolyses, normal bone density	Partial resolution of osteolyses, decreased bone density reverted by 50%
Huge osteolyses or and severe		
osteoporosis with pathologic fractures		

Abbreviations: G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; Hb, hemoglobin; MR, major response; GPR, good partial response.

*Response criteria for ISM and SM-AHNMD have not been established and are descriptive.

†A minimum increase of 0.1 × 10^9 ANC/L blood is required.

‡A minimum increase of 1 g/dL HB is required.

A minimum increase of 10 × 10^9 platelets/L blood is required for good partial response.
Patients were removed from the study if they developed progressive disease with no response to therapy despite increases of treatment doses or duration, experienced unacceptable toxicity despite dose reduction, did not comply with the treatment schedule, withdrew their consent, or died.

Statistical considerations. The primary objective of the study was to determine the activity of dasatinib. The response rate and duration of response were measured. Because dasatinib has a unique mode of action, a response rate as low as 10% was deemed to be of interest. The study sample size determination was based on a minimum-maximum of 14 to 25 patients in each diagnostic group, yielding an 82% posterior credibility interval for probability of response of width 0.16. For each diagnostic group, an interim analysis was planned after 14 patients had been evaluated.

Results

Patient characteristics

The characteristics of 67 patients included in the study are detailed in Table 3. Patients with SM comprised approximately half (49%) of the study population. The next most common diagnosis was PMF (16%) followed by AML (13%), HES/CEL (12%), and MDS/CMML (10%).

Among the group with SM, there were 9 patients with ASM, 18 with ISM, and 6 with SM-AHNMD, including 1 case each of CEL, PMF, and MDS/MPD and 3 cases of CMML. Sixteen patients had not received prior treatment for SM. KIT-D816V mutation status was positive in 28 patients, negative in 4 patients, and unknown in 1 patient. There was no correlation between the percentage mast cells in patients’ BMs, or blood tryptase level, and the subtype of SM. The percentage of mast cells in the BM in patients was $\leq 10\%$ in 14, 10% to 20% in 6, 25% to 35% in 5, 40% to 65% in 4, and $>65\%$ in 4. Tryptase blood levels ($n = 32$) were >200 ng/mL (upper limit of quantitation) in 11 patients, $\leq 20\text{ng/mL}$ in 5 patients, 21 to 60 ng/mL in 8 patients, 61 to 100 ng/mL in 4 patients, and 101 to 199 ng/mL in 4 patients. Testing for FIP1L1-PDGFRα yielded negative results in all patients with SM and HES/CEL.

Efficacy

Systemic mastocytosis. The overall response rate to dasatinib in patients with SM was 33% (11 of 33 patients treated). Two patients, one with SM-PMF ($\text{KIT-D816V negative, FIP1L1-PDGFR} \alpha \text{negative, JAK2 V617F positive, complex abnormalities on cytogenetic analysis [47,XY,+1,der(1;7)(q10;p10),+9]}$) and one with SM-CEL ($\text{KIT-D816V negative, FIP1L1-PDGFR} \alpha \text{negative, JAK2 V617F negative, insufficient metaphases on cytogenetic analysis}$), achieved a complete response lasting for 5 and 16 months, respectively (Table 4). Specifically, in SM-PMF patient, we recorder the elimination of SM but PMF persisted. In SM-CEL patient, on the other hand, the BM completely normalized. Both patients started dasatinib therapy at 70 mg orally twice daily. Both patients had low tryptase level, abnormal WBC count differential, and anemia, and had failed prior therapy with erythropoietin. The patient with SM-PMF progressed to AML after 8 months on dasatinib therapy and died, whereas the patient with SM-CEL died, while off therapy due to intercurrent medical problems, after 18 months.

Table 3. Baseline demographic and clinical characteristics by patient diagnosis

	SM	AML
n	33 (9 ASM, 18 ISM, 6 SM-AHNMD)*	9
Median age, y (range)	57 (29-74)	70 (57-91)
Sex (M:F)	14:19	7:2
Cytogenetics	Diploid: 30	Diploid: 5
	Complex (=3 abn): 1	+8(1): 5
	Unknown: 2 †	-7(1): 1
	Other: 2 ‡	
Performance status	0	1
0	0	1
1	31	7
2	2	1
Number of prior therapies	0	1
0	16	1
1	12	2
2	4	4
3	0	2
≥4	1	0
Prior therapies	1	1
(no. patients indicated if >1)	Imatinib (8); denileukin diftitox (4); IFN (3); darbepoetin (4); cladribine (4); 17-AAG; PKC412	Idarubicin + cytarabine (5); fludarabine + cytarabine; high-dose cytarabine; cytarabine + tipifarnib; allo BMT; VNP40101M; perifosine; capcitabine; thalidomide; azacitidine; hydroxyurea

Abbreviations: Abn, abnormalities; allo BMT, allogeneic BM transplantation; MPD, myeloproliferative disease; peg-IFN, pegylated IFN alfa; 17-AAG, 17-(allylamino)-17-demethoxygeldanamycin. *CEL (1), MF (1), MDS/MPD (1), and CMML (3). † Insufficient metaphase. ‡ 20q- and i(17q). § t(15;19). ||t(5;12)(q31;p13).
Importantly, in the patient with SM-CEL, the cytogenetic analysis done on the BM done 1 year after the start of dasatinib therapy (while on therapy in complete response and with normal BM findings) revealed cytogenetic abnormality 46,XY,t(5;12)(q33;q13) in 9 of 20 analyzed cells. This is a cytogenetic abnormality known to involve the gene for PDGFRβ on chromosome 5q33, sensitive to dasatinib, and therefore a likely reason for a response in these patients.

Nine patients (six with ISM and three with ASM) had symptomatic improvement, as recorded by treating physicians. One patient with ISM was KIT-D816V negative, whereas others were positive; none had cytogenetic abnormality. The duration of symptomatic responses ranged from 3 to 18+ months and five responses were ongoing at the time of analysis. The types of improvements in symptoms related to SM included improvement in rash, diarrhea, bone pain, headaches, itching, fatigue, shortness of breath, indigestion, and decrease or elimination of anaphylactic reactions. Although one patient with ASM had a reduction in the spleen size (from 7 to 1 cm below the left costal margin, on physical examination), this patient did not fulfill predetermined response criteria for ASM (Table 2B).

There were no significant, sustained (for at least 3 months) responses in blood tryptase levels and, with the exception of the two patients achieving complete response, there were no significant, sustained (evident at least in two consecutive BM biopsies done 3 months apart) responses in the percentage of BM mast cells.

Acute myeloid leukemia

One complete response was observed in an 80-year-old male with cytogenetic abnormality [+8] who had CD117 (i.e., KIT) expressed on 66% BM blasts. Testing for a mutation in KIT gene was not done. He previously achieved a short complete response with cytarabine and daunorubicin chemotherapy (Table 4). He relapsed on dasatinib therapy after 60 weeks (15 months). Eight patients had no response (four stopped therapy within the first month).

HES/CEL. One 48-year-old woman with HES, previously treated with imatinib without response, achieved a complete response (Table 4), with normalization of blood and BM findings and disappearance of symptoms related to the disease (rash, indigestion/nausea/diarrhea, and shortness of breath). Tests for KIT-D816V and PDGFRα were negative. She relapsed after 58 weeks (14.5 months) while off therapy because of toxicity. Other patients did not respond (one stopped therapy within the first month).

Other chronic myeloid diseases

No objective clinical responses were observed among the patients with MDS and PMF.

Treatment received during study

The initial dose of dasatinib was administered as 70 mg twice daily to 58 patients and as 140 mg once daily to 9 patients with SM (Table 5). The median number of treatment cycles administered ranged from <1 to 20. Dasatinib treatment was continued without dose modification in 38% of patients overall. Dose reduction by one level was required in 34% of patients and by two levels in 9% of patients. No patient received a dose escalation either due to noted toxicity or due to either physician or patient decision not to pursue therapy at higher dose. Dasatinib was discontinued within the first month in 12 patients (due to toxicity in 9 patients). The most common reasons for patients discontinuing the study after the first month of therapy were no response (n = 17), toxicity (n = 14), and disease progression (n = 6).

Safety and tolerability

Treatment-related adverse events among the 67 patients included in the study are detailed in Table 6. No grade 4 adverse events were reported. The majority of adverse events were mild-moderate (Common Terminology Criteria grade 1 or 2).

Table 3. Baseline demographic and clinical characteristics by patient diagnosis (Cont’d)

MDS/CMML	HES	CEL	PMF
6 (3 MDS, 3 CMML) 68 (61-75)	5	3	11
4:2	3:2	2:1	10:1
Diploid: 5	Diploid: 5	Diploid: 0	Diploid: 9
+8(8): 0	+8(8): 1	Complex (≥3 abn): 1	Complex (≥3 abn): 2
Other: 1	Other: 1		

| Peg-IFN, lenalidomide, thalidomide, decitabine (2); hydroxyurea; clofarabine plus cytarabine | Imatinib (2); peg-IFN; nilotinib | Epoetin; hydroxyurea; idarubicin + cytarabine; decitabine + valproic acid; imatinib | PTK787 (3); lenalidomide (2); IFN, thalidomide; etanercept, imatinib, RAD001, hydroxyurea (5); azacitidine (3); peg-IFN, anagrelide |
Grade 3 adverse events were reported in all disease groups. Pleural effusion was the most common grade 3 adverse event, occurring in 7 of 67 patients overall (similar to prior experience with dasatinib in CML). Grade 3 nonhematologic adverse events occurring in the subgroup of patients with SM comprised headache (four cases), pain (three cases), dyspnea and pleural effusion (two cases each), and ascites, fatigue, hyperuricemia, nausea/vomiting, palpitations, and hemorrhage (1 case each). There were two cases of grade 3 hematologic toxicity (low platelets and anemia) in patients with SM, with six cases overall.

Twenty-three patients discontinued dasatinib therapy because of toxicity (9 stopped early and 14 discontinued after at least 1 month on treatment).

Discussion

This open-label, phase 2 study was designed to determine the objective response rate to dasatinib in patients with Ph- acute and chronic myeloid diseases. Disease-specific response criteria were used. The response rate to dasatinib in patients with SM

Table 4. Complete responses to dasatinib

	SM PMF	SM CEL
Patient characteristics		
61-y-old white male, diagnosed with SM-PMF in 6/2005	64-y-old African-American male, diagnosed with SM-CEL in 9/2005	
Anemia, SOB, fatigue, back pain	Anemia, SOB, fatigue, low-grade fever, sweating, loss of weight	
Prior therapy		
Darbepoetin × 5 mo without result	Epoetin alfa × 4 mo without result	
Baseline laboratory values		
Hb: 9.4 g/dL	Hb: 9.4 g/dL	
Platelets: 90 × 10^9/L	Platelets: 150 × 10^9/L	
WBC: 4.4 × 10^9/L	WBC: 8.3 × 10^9/L	
6% blasts	Eosinophils: 13%, AEC: 1.08 × 10^9/L	
Baseline BM, cytogenetics, and gene analysis		
10-15% MC on biopsy	10-20% MC on biopsy; insufficient metaphases on cytogenetic analysis, but t(5;12) (q33;q13) after 1 y of therapy	
Reticulin 2+ (scale 0-3)	KIT-D816V negative, PDGFRα negative, JAK2-V617F negative	
Cytogenetics: 47, XY, +1, del(17)(q10;p10), +9 [10/20]	KIT-D816V negative, PDGFRα negative	
Dasatinib dose		
70 mg twice daily	70 mg twice daily; -1 level due to pleural effusion; -2 level due to fatigue	
Response to dasatinib		
Starting at 3 wk: Platelets ≥ 148 × 10^9/L	Starting at 2 mo: Hb: 13.0 g/dL	
Starting at 6 mo: Hb: ≥ 10.1 g/dL	WBC: 7.4 × 10^9/L	
BM at 3 and 6 mo: Hypocellular	Eosinophils: 3.9%	
No SM	BM at 3, 6, 9, 12, and 15 mo: Eosinophils ≤ 4%	
Reticulin 4+	No SM	
Blasts 4%	Normal cellularity	
Outcome		
Died after 8 mo due to AML	Died off therapy (due to other medical reasons) after 18 mo	

	AML	HES
80-y-old white male, diagnosed with AML in 11/2005	48-y-old white female, diagnosed with HES in 1/2001	
Daunorubicin + cytarabine with short complete response (1 mo)	Rash, SOB, diarrhea, fatigue	
Prednisone, imatinib, hydroxyurea		

13% blasts	20% eosinophils	

Abbreviations: AEC, absolute eosinophil count; MC, mast cells; SOB, shortness of breath.
was 33%, including two complete responses and nine patients with symptomatic improvement. Objective responses to dasatinib were also achieved in one AML and one HES patient (complete response in each) but not in those with MDS and MF.

Cytoreductive therapy is indicated for patients with ASM and selected patients with less aggressive forms of SM to control mast cell burden and improve quality of life. IFN-α and cladribine have been beneficial in this setting. A phase 2 trial of IFN-α in 20 adult patients with SM resulted in seven (35%) partial responses and no major responses (45). In another small study, 10 patients with SM with severe symptoms were treated with cladribine and all experienced symptomatic responses and improvements in mast cell variables (serum tryptase and urinary histamine metabolite excretion), but none achieved a complete response (46). Lack of complete responses and relatively short duration of partial responses to IFN-α and cladribine justify investigations of novel targeted therapies for SM. The first such agent, imatinib, was proven ineffective against KIT-D816V carrying mast cells. The failure of imatinib to inhibit cells expressing KIT-D816V (22, 23) is probably because of an allosteric clash within the activation loop caused by the structural change at residue 816, which is key for maintaining the inactive conformation needed for imatinib binding. Preclinical data, on the other hand, have shown that dasatinib is active against the KIT-D816V mutation (44) at clinically achievable concentrations. Interestingly, KIT-D816V-bearing cells were found to be 10-fold more sensitive to dasatinib than were KIT-D816V/F-carrying cells, suggesting that conformational changes within the KIT activation loop may also influence the inhibitory activity of dasatinib (43). The broad spectrum of activity of dasatinib against many mutations of a given TK may override possible mutational resistance and increase efficacy compared with other small-molecule TK inhibitors that bind more specifically to a target (KIT in this case; ref. 47). In the present study, 28 of 33 patients with SM were positive for KIT-D816V mutation. However, only two SM patients achieved a complete response, and both tested negative for the KIT-D816V mutation. This result is rather disappointing as our expectations for a significant reduction in the mast cell burden in these patients were high based on the preclinical results with dasatinib against cells carrying KIT-D816V mutation. We do not have an explanation for this clinical result.

We were particularly cautious to account, in our assessment of possible responses, for known variability in the percent mast cells (in the BM), and tryptase level (in blood) in patient samples from time to time, while not on any therapy. Durability of a response is currently not accounted for in published response criteria for ASM (Table 2A) and the hope is

| Table 5. Summary of dasatinib treatment received, dose modifications, and discontinuations |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| SM (n = 33) | AML (n = 9) | MDS/CML (n = 6) | HES (n = 5) | CEL (n = 3) | PMF (n = 11) |
| Initial dose schedule (n) | | | | | |
| 70 mg twice daily | 24 | 9 | 6 | 5 | 3 |
| 140 mg once daily | 9 | 1 | 1 | 3 | 11 |
| Median number of treatment cycles (range) | 4 (1-20) | 1 (1-18) | 1 (1-2) | 3 (0-17) | 3 (1-4) |
| No. dose modifications | | | | | |
| 0 | 1 | 2 | 2 | 2 | 1 |
| -1 | 13 | 2 | 2 | 2 | 1 |
| -2 | 5 | 1 | 2 | 1 | 3 |
| Early (<1 mo) discontinuation of therapy (n) | 4 (toxicity) | 4 (toxicity 2, progression 1, death 1) | 2 (toxicity 1, comorbid condition 1) | 1 (toxicity) | 1 (toxicity) |
| Off-study due to (n): | | | | | |
| Relapse | 4 | 1 | | | |
| Progression | 0 | 2 | 2 | 1 | 1 |
| Toxicity | 6 | 2 | 2 | 1 | 1 |
| Death | 2 | 1 | 1 | | |
| No response | 16 | 3 | 1 | 2 | 1 |

| Table 6. Treatment-related adverse events |
|---|-----------------|-----------------|-----------------|
| Adverse event | Grade 1 | Grade 2 | Grade 3 |
| Anorexia | 1 | 1 | |
| Ascites | | | 1 |
| Atrial fibrillation | | | 1 |
| Confusion | | | 1 |
| Diarrhea | 3 | 2 | |
| Dysphagia | 1 | | |
| Dyspepsia | 1 | | |
| Dysnea | 4 | 11 | 3 |
| Edema | 1 | 4 | |
| Fatigue | 1 | 4 | 3 |
| Fever | 1 | | 2 |
| Flushing | 1 | 2 | |
| Headache | 4 | 3 | 5 |
| Hemorrhage | | | 1 |
| Hyperuricemia | | | 1 |
| Nausea/vomiting | 9 | 9 | 3 |
| Pain | 2 | 2 | 3 |
| Palpitations | 1 | | 1 |
| Pericardial effusion | | | 1 |
| Platelets/Hb | | | 6 |
| Pleural effusion | 1 | 6 | 7 |
| Pleural pain | | | 1 |
| Pulmonary edema | 1 | 1 | |
| Rash | 1 | 3 | |
| Tachycardia | 1 | | |
| Tinnitus | | | 1 |
| Urticaria | 1 | | 1 |
| Weight gain | 2 | | |
| Weight loss | 1 | | |
that this oversight will be corrected in very near future. We required a record of a sustained improvement in these variables for a response to be assigned, and this did not happen in other SM patients.

The complete responses achieved with dasatinib were durable, lasting for 5 months in the patient with SM-MF and for 16 months in the patient with SM-CEL. Two other patients in the study achieved durable complete responses: 15 months in one patient with AML previously treated with intensive chemotherapy and 14.5 months in one patient with HES previously treated with prednisone, imatinib, and hydroxyurea. The patient with SM-CEL exhibiting a complete response was found, on a later testing, to harbor a cytogenetic abnormality involving PDGFRα, a TK sensitive to dasatinib and likely responsible for a response in this patient. Molecular abnormalities possibly sensitive to dasatinib and responsible for responses in other patients achieving a complete response are currently unknown.

A further nine patients (six with SM and three with ASM) had symptomatic improvement lasting for 3 to 18+ months. Patients with mast cell diseases can exhibit a myriad of symptoms, ranging in severity from bothersome to life threatening. In this study, improvements were documented by treating physicians in terms of rash, diarrhea, bone pain, headaches, itching, fatigue, shortness of breath, indigestion, anaphylactic reactions, and spleen size. It is possible that this positive effect of dasatinib therapy was a result of nonspecific inhibition of many kinases in the malignant cells. Symptom improvement is an important therapeutic goal for all forms of SM and can enhance patients’ quality of life. However, our expectation was to observe significant elimination of mast cell burden in treated SM patients and, therefore, our evaluations during therapy focused on the BM and blood (e.g., tryptase) testing rather than on the proper documentation of symptom improvement. This is a limitation of our study and a good learning point for a design of future studies in SM.

Chronic therapy is required to maintain symptomatic responses in patients with SM, and therefore, it is an important issue affecting treatment strategy. The safety profile of dasatinib has been well established in patients with Ph+ CML (37–40). No new or unexpected adverse events emerged in patients with Ph- myeloid diseases treated with dasatinib in the present study. The majority of adverse events were mild-moderate and no grade 4 toxicities were observed. None of the patients discontinued therapy early because of toxicity. Grade 3 adverse events leading to dose interruption or dose reduction were observed in all disease subgroups. Grade 3 pleural effusions were reported in 10% of patients. Previous clinical studies of dasatinib have also reported pleural effusions, which can be managed by dose interruption and reduction, and with the administration of diuretics and steroids (48, 49). The majority of dose reductions were by one level, from 140 to 100 mg/d, administered as 50 mg twice daily or 100 mg once daily. Data from a dose optimization trial in patients with Ph+ CML have suggested that the incidence and severity of pleural effusions may be lower with 100 mg dasatinib administered once daily leading to a very recent change in the recommended starting dose for CML patients (50). It is possible that the 100 mg once daily starting dose in this trial would have resulted in less toxicity.

All of the patients achieving a complete response were initially treated with 70 mg dasatinib twice daily. Three of the four patients with a complete response required a dose reduction by one or two levels because of toxicity; one patient (with HES) stopped therapy due to toxicity and then relapsed. It is not possible to draw any conclusions from these preliminary data about potential differences in therapeutic ratio between once-daily and twice-daily schedules of dasatinib.

In conclusion, dasatinib therapy is beneficial in a proportion of SM patients, mainly by improving disease-related symptoms, but it does not eliminate the disease in the patients with KIT-D816V mutation. Dasatinib therapy is associated with side effects that may prevent desirable long-term therapeutic use of this agent for patients with SM. Therefore, whether its use in patients with SM provides any advantage over other conventional therapies is questionable. Dasatinib therapy does not seem to have significant activity in patients with AML, MDS, PMF, and HES/CEL.

Disclosure of Potential Conflicts of Interest

H. Kantarjian has commercial research grants with Bristol-Myers Squibb, MGI Pharma, and Novartis. D. Thomas has received honoraria from Bristol-Myers Squibb. S. O’Brien has minor commercial research support from Genentech, Berlex, Biogen Idec, Eli Lilly, Novartis, Bristol-Myers Squibb, GeminX, and Genta and is a consultant with Genta and the Scientific Advisory Boards of GeminX, Biogen Idec, and Eli Lilly.

Acknowledgments

We thank Tim Kelly and Andrew Richardson for providing professional writing and editorial support.

References

1. Deininger M, Buchdunger E, Drucker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005;105:2840–53.
2. Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med 2006;355:2452–66.
3. Valent P, Horiny HP, Escrivanò L, et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res 2001;25:603–25.
4. Valent P, Akin C, Sperri WR, et al. Diagnosis and treatment of systemic mastocytosis: state of the art. Br J Haematol 2003;122:695–717.
5. Yarden Y, Kuang WJ, Yang-Feng T, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 1987;6:3341–51.
6. Valent P, Spanbloci E, Sperri WR, et al. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture. Blood 1992;80:2237–45.
7. Wang B, Tsukada J, Higashi T, et al. Growth suppression of human mast cells expressing constitutively active c-kit receptors by JNK inhibitor SP600125. Genes Cells 2006;11:983–92.
8. Furtu T, Tsujimura T, Tono T, et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 1993;92:1736–44.
9. Nagata H, Worrubec AS, Oh CK, et al. Identification of a point mutation in the catalytic domain of the proto-oncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci U S A 1995;92:10560–4.
10. Fritsche-Polanz R, Jordan JH, Feix A, et al. Mutation analysis of C-KIT in patients with myelodysplastic syndromes without mastocytosis and cases of systemic mastocytosis. Br J Haematol 2001;113:357–64.
11. Longley BJ, Tyrrell L, Lu SZ, et al. Somatic c-kit activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 1996;12:312–4.
12. Paschka P, Marcucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 2006;24:3904–11.
13. Pardanani A, Ketterling RP, Brockman SR, et al. CHIC2 deletion, a surrogate for FIP1L1-PDGFRα fusion, occurs in systemic mastocytosis associated with eosiophilia and predicts response to imatinib mesylate therapy. Blood 2003;102:3093–6.
Dasatinib for Ph-Negative Myeloid Diseases

14. Swolin B, Rodiger S, Roupe G. Cytogenetic studies in patients with mastocytosis. Cancer Genet Cytogenet 2000;120:131 - 5.
15. Pardeanu A, Brockman SR, Patenoster SF, et al. FIP1L1-PDGFR fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood 2004;104: 3038 - 45.
16. Gotlib J, Cools J, Malone JM, et al. The FIP1L1-PDGFRα fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 2004;103:2879 - 91.
17. Griffin JH, Leung J, Bruner RJ, et al. Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci U S A 2003; 100:7830 - 5.
18. Ostman A, Helin CH. Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res 2001;80:1 - 38.
19. Akin C, Brockow K, DAmbrosio C, et al. Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp Hematol 2003;31:686 - 92.
20. Buchdunger E, Giotti CL, Law N, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295:139 - 45.
21. Zemati Y, De Sepulveda P, Feger F, et al. Effect of tyrosine kinase inhibitor STI571 on the kinase activity of wild-type and various mutated c-kit receptors found in mast cell neoplasms. Oncogene 2003;22: 660 - 4.
22. Frost M, Ferrao PT, Hughes TP, et al. Juxtaposition of V560GKIT is more sensitive to imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant DB16VKit is resistant. Mol Cancer Ther 2002;1:1115 - 24.
23. Ma Y, Zeng S, Metcalfe DD, et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory type mutations. Blood 2002;99: 1741 - 4.
24. Pardeanu A, Elliott M, Reeder T, et al. Imatinib for systemic mast-cell disease. Lancet 2003;362:535 - 6.
25. Droogendijk HJ, Kluin-Nelemans HJ, van Doormaal JJ, et al. Imatinib mesylate in the treatment of systemic mastocytosis: a phase II trial. Cancer 2006;107:345 - 51.
26. Cortes J, Auj T, Polder C, et al. Efficacy of imatinib mesylate in the treatment of idiopathic hypereosinophilic syndrome. Blood 2003;101:4714 - 6.
27. Salem Z, Zalloua PA, Chehal A, et al. Effective treatment of hypereosinophilic syndrome with imatinib mesylate. Hematol J 2003;4:410 - 2.
28. Tashiro H, Shrasaki R, Noguchi M, et al. Molecular analysis of chronic eosinophilic leukemia with t(4;10) showing good response to imatinib mesylate. Int J Hematol 2006;83:433 - 8.
29. Hasselbalch HC, Bjerrum OW, Jensen BA, et al. Imatinib mesylate in idiopathic and postpolycythemic myelofibrosis. Am J Hematol 2003;74:238 - 42.
30. Telfen A, Mesa RA, Gray LA, et al. Phase 2 trial of imatinib mesylate in myelofibrosis with myeloid metaphasia. Blood 2002;99:3854 - 6.
31. David M, Cross NC, Burgstaller S, et al. Durability responses to imatinib in patients with PDGFRα fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood 2007;109:61 - 4.
32. Jovanovic JV, Score J, Waghorn K, et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRα-positive chronic eosinophilic leukemia. Blood 2007;109: 4635 - 40.
33. Musto P, Falcone A, Sanpaoio G, et al. Inefficacy of imatinib-mesylate in sporadic, aggressive systemic mastocytosis. Leuk Res 2004;28:421 - 2.
34. Quintas-Cardama A, Aribi A, Cortes J, et al. Novel approaches in the treatment of systemic mastocytosis. Cancer 2006;107:1429 - 39.
35. Kalac M, Quintas-Cardama A, Vhovac R, et al. A critical appraisal of conventional and investigational drug therapy in patients with hypereosinophilic syndrome and clonal eosinophilia. Cancer 2007;110: 955 - 64.
36. Verstovsek S, Quintas-Cardama A, Kantarjian H, et al. Experimental therapy in myelofibrosis with myeloid metaplasia. Expert Opin Investig Drugs 2006;15:1565 - 63.
37. Cortes J, Rousselot P, Kim DW, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood 2007;109: 3207 - 13.
38. Gullot F, Apperley J, Kim DW, et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood 2007; 109:4143 - 50.
39. Hochhaus A, Kantarjian HM, Baccarani M, et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood 2007;109:2303 - 9.
40. Kantarjian H, Pasquini R, Hamerschlag N, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: a randomized phase 2 trial. Blood 2007;109: 5143 - 50.
41. O’Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 2005;65: 4500 - 5.
42. Lombardo LA, Lee FY, Sen P, et al. Discovery of N-[2-chloro-6-methyl phenyl]-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyridin-4-ylami- no)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004;47: 6658 - 61.
43. Schittenhelm MM, Shira S, Schroeder A, et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxta-membrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 2006;66:473 - 81.
44. Shah NP, Lee FY, Luo R, et al. Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 2006;106:2869 - 91.
45. Casasus P, Caillat-Vigneron N, Martin A, et al. Treatment of adult systemic mastocytosis with interferon-α: results of a multicentre phase II trial on 20 patients. Br J Haematol 2002;119:1090 - 7.
46. Kluin-Nelemans HC, Oldhoff JM, Van Doormaal JJ, et al. Cladribine therapy for systemic mastocytosis. Blood 2003;102:4270 - 6.
47. Lee FY, Lombardo L, Camuso A, et al. BMS-354825 potently inhibits multiple selected oncogenic tyrosine kinases and possesses broad-spectrum antitumor activities in vitro and in vivo [abstract 675]. Proc Amer Assoc Cancer Res 2005;46.
48. Bergeron A, Réa D, Levy V, et al. Lung abnormalities after dasatinib treatment for chronic myeloid leukemia: a case series. Am J Respir Crit Care Med 2007;176: 814 - 8.
49. Quintas-Cardama A, Kantarjian HM, O’Brien S, et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol 2007;25:3908 - 14.
50. Shah NP, Kim DW, Kantarjian HM, et al. Dasatinib 50 mg or 70 mg BID compared to 100 mg or 140 mg GD in patients with CML in chronic phase (CP) who are resistant or intolerant to imatinib: one-year results of CA180034 [abstract 7004]. J Clin Oncol 2007;25:358S.
Phase II Study of Dasatinib in Philadelphia Chromosome–Negative Acute and Chronic Myeloid Diseases, Including Systemic Mastocytosis

Srdan Verstovsek, Ayalew Tefferi, Jorge Cortes, et al.

Clin Cancer Res 2008;14:3906-3915.

Updated version Access the most recent version of this article at: http://clincancerres.aacrjournals.org/content/14/12/3906

Cited articles This article cites 49 articles, 24 of which you can access for free at: http://clincancerres.aacrjournals.org/content/14/12/3906.full#ref-list-1

Citing articles This article has been cited by 15 HighWire-hosted articles. Access the articles at: http://clincancerres.aacrjournals.org/content/14/12/3906.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/14/12/3906. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.