Social disparities in obesity treatment for children age 3–10 years: A systematic review

Tim Lobstein¹,² | Margot Neveux¹ | Tamara Brown³ | Li Kheng Chai⁴,⁵ | Clare E. Collins⁶ | Louisa J. Ells⁷ | Paulina Nowicka⁸,⁹ | for the STOP project consortium

Summary
Socio-economic status and ethnic background are recognized as predictors of risk for the development of obesity in childhood. The present review assesses the effectiveness of treatment for children according to their socio-economic and ethnic background. Sixty-four systematic reviews were included, from which there was difficulty reaching general conclusions on the approaches to treatment suitable for different social subgroups. Eighty-one primary studies cited in the systematic reviews met the inclusion criteria, of which five directly addressed differential effectiveness of treatment in relation to social disparities, with inconsistent conclusions. From a weak evidence base, it appears that treatment effectiveness may be affected by family-level factors including attitudes to overweight, understanding of the causes of weight gain and motivation to make and maintain family-level changes in health behaviours. Interventions should be culturally and socially sensitive, avoid stigma, encourage motivation, recognize barriers and reinforce opportunities and be achievable within the family’s time and financial resources. However, the evidence base is remarkably limited, given the significance of social and economic disparities as risk factors. Research funding agencies need to ensure that a focus on social disparities in paediatric obesity treatment is a high priority for future research.

KEYWORDS
disparity, family attitudes, household resources, inequality, paediatric, socio-economic, treatment

INTRODUCTION

In 2016, 60 million children aged between 5 and 10 years was living with obesity worldwide, equivalent to one child in every eight in this age group.¹ Childhood obesity has long-term detrimental effects on individual health and has wider social and economic consequences: it is directly linked with endocrine and orthopaedic complications and early onset of cardiovascular disease and type-2 diabetes and affects children's psychosocial well-being by reducing self-esteem, quality of life and increasing social stigmatization.²,³ The prevalence of obesity is not spread uniformly across child populations. Variability is associated with parental weight status, maternal smoking, infant...
feeding patterns and, of particular interest in the present study, ethnicity and socio-economic status. In high-income countries, evidence from epidemiological studies have shown that obesity levels are higher in children of the lowest socio-economic status, whereas in lower income countries, overweight tends to be more prevalent in urban and higher income households. Evidence also suggests that ethnicity is an independent risk factor, with children in southern Asian, Afro-Caribbean and Hispanic families tending to show higher overweight prevalence levels than those in far-Eastern and White Caucasian families.

In order to reduce the prevalence of childhood overweight and obesity, two approaches are needed: (i) reducing the incidence of new cases through prevention and (ii) reducing the number of existing cases through treatment and weight management services. In this review, we will examine the latter approach, with a focus on paediatric services for younger children. This is an area in which a substantial amount of research has been undertaken, and the results examined in many systematic reviews in the last decade. Although surgical and pharmaceutical interventions are rarely considered in preadolescent children, interventions using diet and physical activity are commonly undertaken, but the results show only small average intervention effects on sustained improvements in adiposity.

Despite the limited effects, these trials have helped to identify features that are associated with a better likelihood of success, including a focus on younger children, a multidisciplinary approach, intensive delivery, parental or family involvement and a focus on school or group settings. Rarely mentioned, however, are the barriers to successful treatment that may be associated with social disparities. The purpose of the present review is to focus on treatment interventions in health care settings for younger children experiencing overweight or obesity, with a specific focus on the evidence for differential effectiveness of interventions to treat paediatric obesity in relation to socio-economic and ethnic disparities, and to examine evidence on the challenging phases of the interventions such as recruitment, adherence and follow-up in relation to these disparities. The review was registered with the PROSPERO International Prospective Register of Systematic Reviews (CRD42019128687) with additional searches undertaken, as described here.

2 | METHODS

This paper focuses on social disparities (defined here as disparities linked to ethnicity, migrant status, educational status, household income, health insurance status or other related socio-economic measure such as area deprivation index) in relation to paediatric obesity treatment and outcome, as provided through health care services to younger children (defined here as children aged between 3 and 10 years).

The search for evidence was undertaken in two stages: an examination of systematic reviews and an examination of primary studies of paediatric obesity treatment. The two stages were found to be necessary when it became clear in pilot searches that the systematic reviews did not provide sufficient evidence on social disparities in paediatric obesity treatment.

2.1 | Stage 1

In the first stage, we undertook a systematic search for evidence on social disparities contained within systematic reviews of paediatric obesity treatment published in the last decade (2009 onwards). Papers were included if they provided evidence on younger children (age 3.0–9.9 years) being treated for overweight or obesity. For each systematic review, we examined the Methods, Results, Discussion and Conclusion sections in order to identify evidence relating to social disparities in outcomes or in the recruitment and retention of participants. Relevant information was extracted to provide a narrative review.

2.2 | Stage 2

In the second stage, we examined all the primary studies of paediatric treatment that had been accepted for inclusion in the systematic reviews identified in the first stage. The primary studies were included according to the population, intervention, comparison and outcome (PICO) criteria shown in Table 1, which specifies age (children aged between 3.0 and 9.9 years), treatment for excess bodyweight provided through health care services to children, assessed in a controlled trial with at least 6 months of follow-up. Outcome variables included weight-related measures and treatment process indicators. Social status variables followed a qualified PROGRESS-Plus recommendations, (for exclusions, see Table 1). Data were extracted from these studies according to a template designed to capture salient information on social disparities, intervention procedures and treatment outcomes (see supporting information, section 3).

Following concern that additional papers may have been missed under the search strategy outlined in Stage 2, we undertook a rapid review for recent primary studies using Medline, restricted to studies published 1/1/2018 through 1/7/2019. The search terms and results are shown in the supporting information (section 2.2).

2.2.1 | Search methods

In Stage 1, searches were undertaken in Medline, Cochrane Database and Embase (Ovid) for systematic reviews focusing on socio-economic aspects of paediatric obesity treatment. Search terms are shown in the supporting information (section 2), and in brief form were (Child+ OR Pediatric) AND (Overweight OR Obes+) AND (Treatment or Management), limited to systematic reviews and meta-analyses, and published between 1/1/2009 and the date of the search, 24/6/2019. From the identified publications, further potential reviews were
sought by examining the references cited. In addition, a Google Scholar search (first 100 returns) was undertaken to identify additional reviews. Text in each of the systematic reviews was examined and relevant sections extracted by one researcher and subsequently verified independently by a second researcher. Differences were resolved by discussion. The quality of the reviews was assessed using the AMSTAR2 rating scheme and reported in Table 2 below.

In Stage 2, all primary studies of paediatric obesity treatment, which had been cited in the systematic reviews examined in Stage 1, were considered as eligible for further analysis. These primary studies were assessed according to the PICO eligibility criteria described in Table 1 and the included studies processed for data extraction. Data from primary studies were extracted independently by two researchers using a standard data template (see supporting information, section 3). The completed templates for each study were then compared and differences resolved by discussion with a third researcher. Where the individual studies provided stratified results based on social disparities, a GRADE rating system was used as an evaluation tool and reported in Table 4 below.

3 | FINDINGS

The numbers of papers identified in each of the stages of the present review are shown in the PRISMA chart below. This shows the identification of 64 systematic reviews included in the present study and the identification of 82 primary studies of paediatric obesity treatment, which conform to the PICO inclusion criteria.

3.1 | Results from systematic reviews

A preliminary search identified three systematic reviews of potentially high relevance as they focused on social disparities in paediatric obesity treatment. One of these reviewed interventions among South Asian children and adults and included one primary study of treatment in younger children. A second review reviewed 23 interventions to reduce socio-economic inequalities in obesity in children and of which four studies concerned treatment interventions in younger children. The third review examined 30 studies of social disparities in paediatric weight management, of which six were studies in younger children in health-care settings and with adequate follow-up.

Table 2 shows the narrative text extracted from these three systematic reviews. It can be seen that the quantity of information is remarkably limited and the level of detail is poor. The interpretation provided by the authors in their narrative text needs to be taken in the context of the critical appraisal shown in the third column, based on AMSTAR2 criteria, where it can be seen that the applicability of the authors' comments to the population of interest (children under age 10 years, treated for obesity through paediatric services) is limited. As the review by Ligthart et al noted, most studies had small sample sizes, and therefore, the opportunity to examine the effects of interventions on subgroups defined by social disparities was very limited.

The paucity of results from these three reviews led the authors to examine the remaining 61 systematic reviews addressing paediatric treatment identified in the literature search. For each review, the

TABLE 1 PICO framework and inclusion/exclusion criteria

PICO feature	Inclusion criteria	Notes
Population	Children 3.0 to 9.9 years of age eligible for treatment for overweight and obesity.	Included studies that included children of 10 years or more, the study was included if the stated average age of the children in all arms of the study was <10 years, or the stated age range implied a mid-point below 10y (e.g., “7–11 years”).
Intervention(s)	Controlled trials to treat overweight and obesity provided within or under the auspices health care services. Cohort and observational studies are excluded.	Randomized or cluster randomized controlled interventions must have minimum study period of 6 months including follow-up (3 months for pharmaceutical interventions).
Comparison(s)	Placebo, usual care, waiting list, alternative treatment, lower dose or intensity of treatment, or no treatment.	
Outcomes	Primary outcomes: Influence of socio-economic disparity or related PROGRESS-Plus variables on changes in adiposity-related anthropological measurements including BMI (or BMI-z score). Secondary outcomes: Recruitment, adherence and follow-up data stratified by socio-economic variables.	Excluded outcomes: Changes in health-related behaviour, physical activity, food choices or dietary patterns. Excluded: PROGRESS-Plus variables for gender, sexual identity, place of residence, disability, social capital or religion.

Abbreviations: BMI, body mass index; PICO, population, intervention, comparison and outcome.

https://bestpractice.bmj.com/info/toolkit/learn-ebm/what-is-grade/
Review	Key statements in the review’s text	Comments and AMSTAR2 quality concerns
Brown et al⁵	Abstract: “There was no evidence that interventions were more or less effective according to whether the intervention was set in South Asia or not, or by socio-economic status.” Conclusions: “One high quality RCT in South Asian children found that a school-based physical activity intervention that was delivered within the normal school day which was culturally sensitive, was effective. There is also evidence of culturally appropriate approaches to, and characteristics of, effective interventions in adults which we believe could be transferred and used to develop effective interventions in children.”	No PICO shown. Duplicate data extraction was not stated. Risk of bias and publication bias was not mentioned in the Discussion. Included only three RCT studies of children. Results for south Asians were not compared with non-south Asians. Review included adults, and included preventive interventions. Of seven studies, none complied with the present reviews’ PICO criteria. AMSTAR2: LOW
Hillier-Brown et al⁶	Abstract: “At the individual level (n = 4), there was indicative evidence that screen time reduction and mentoring health promotion interventions could be effective in reducing inequalities in obesity. ... The review has found only limited evidence although some individual and community based interventions may be effective in reducing socio-economic inequalities in obesity-related outcomes amongst children but further research is required, particularly of more complex, societal level interventions and amongst adolescents.” Discussion: “Treatment interventions are more likely to show positive effects than prevention ones. [A] targeted approach ... has limitations as even when interventions are effective amongst low income groups they are only able to reduce the health inequalities gap, they have little effect on the wider social gradient.”	No PICO shown. The quality of studies was assessed but not reported. Risk of bias and publication bias were not mentioned in the discussion. The review included preventive and treatment interventions. Age range 6–12 years old. Race/ethnicity was not examined. Of 23 studies, 2 complied with present reviews’ PICO criteria. AMSTAR2: LOW
Ligthart et al⁷	Discussion: “We found that Black ethnicity seems to be associated with higher intervention dropout and that low family income appears to be associated with lower compliance with the intervention. ... The associations between other ethnicities (such as White and Hispanic and White and other ethnic minorities) and SES categories and intervention or study dropout and non-compliance were mainly non-significant. ... In the literature, ethnicity and SES are considered to be related: ethnic minorities often have a lower SES than Whites ... This relationship was reflected in our study results; outcomes for ethnicity and SES pointed in the same direction. Studies that reported on both ethnicity and SES found corresponding associations with study and intervention dropout and non-compliance. ...”	No PICO shown. The review included adolescents up to age 20 years. Some interventions included non-obese children. Publication bias was not mentioned in the Discussion. Of 30 studies, 6 complied with the present reviews’ PICO criteria. AMSTAR2: MODERATE
authors examined the Methods section for the description of the data they recorded from their eligible studies, the Results tables describing the individual studies included in the review, and the Results, Discussion and Conclusion texts for the interpretation of the evidence in the review. A summary of the results of the data extraction for this stage of the review is shown in the supporting information. This indicates that of the additional 61 systematic reviews, 34 made no reference to social disparity-relevant variables, and a further 11 reviews referred to social disparity variables in the Methods or Results tables, but did not discuss or interpret these variables in their Results or Discussion text.

The remaining 16 reviews referred to social disparities in their Results or Discussion sections, and the relevant text is reproduced in Table 3. Several reviews noted that many primary studies involve families with higher income and higher levels of general functioning, with resources to make changes to their health behaviour, and with parenting skills and capacity to ensure good family involvement in the treatment programme. Studies of subgroups, such as Latino or Mexican populations are inconclusive, and do not demonstrate whether any specific treatment requirements were advantageous. Overall, there is considerable difficulty reaching general conclusions on the forms and approaches to paediatric obesity treatment suitable for different social subgroups within a general population.

3.2 | Results from primary studies

The systematic reviews were not able to answer the research questions with a high level of confidence. We therefore examined the 1,699 primary studies cited in the systematic reviews, and from these identified 81 which fulfilled the PICO criteria in Table 1 for data extraction (see Figure 1B). These 81 studies are listed in the supporting information, with the relevant information from each of them summarized from their data extraction templates.

3.2.1 | Differential outcomes

Of the 81 studies identified, 37 did not mention social disparities in the published reports. The remaining 44 studies stated that some social disparity measure had been taken at baseline but 39 of these 44 studies did not describe body-weight-related outcomes in relation to the socio-economic disparity measures taken. The remaining five studies had undertaken some quantitative analysis of treatment outcomes in relation to one or another measure of social disparity, and a summary is given in Table 4.

Of these five studies, one17 found no significant differential outcome between social groups. Two studies13,15,16 found greater intervention effects among children of higher educated mothers.
TABLE 3 Summary from 16 systematic reviews which include social disparity variables in their text

Reviews	Statements in the review’s Results, Discussion or Conclusion text
Axon et al19	“No trials investigated socioeconomic effects.”
Bond et al20,21	Of the three studies included in this pair of reviews, one, the Hip-Hop Jr study, “… took great care to be culturally sensitive to
	the minority groups it was working with. The Hip-Hop Jr authors identified several components from their pilot work that
	were important in engaging these families: easy and safe access to the programme; being situated in the preschool that the
	children were already attending; having the parental element take place in the home; encouraging identification between those
	delivering the intervention and participants; addressing cognitive and environmental barriers to exercise and dietary
	change; emphasis on modelling lifestyle change; and consideration of all levels of literacy”
Colquitt et al9	“Five of the seven trials reported ethnicity. … Five trials reported socioeconomic status using different indicators. … No trials
	investigated all-cause mortality, morbidity, or socioeconomic effects.”
Eisenberg et al22	(Review focused on interventions targeting Latino population groups, suitable for application in Mexico.) “… it is recognized
	that parents and the home environment can influence children’s dietary and physical activity behaviors. As such, parental
	components should be highly considered in designing obesity interventions.”
Ells et al10	Concern about self-selection for treatment “… whether the study population … may have attracted a subset of the community
	amenable to the availability of free treatment.”
Foster et al23	One study18 found no change in BMI at 1 year compared with controls but “…a post hoc analysis showed significant effects on BMI
	in female subjects … and those in households with incomes less than $50,000. The Taveras study is reported in Table 4, below.
Kitzmann and	“[M]ore research will be needed to explore the role of socioeconomic status and ethnicity in these treatment outcome studies.
Beech24	In the current review, only about a third of studies reported information about participants’ socioeconomic status, and even fewer
	programs—of 31—provided information about participants’ race. However, these variables may be important to consider both in terms
	of who needs treatment and what kind of treatment would work best. … Minority and majority families may also benefit from different
	formats of family-based intervention.”
Ling et al25	“This review did not evaluate the effects of demographics, such as sex, ethnicity/race, socioeconomic status, parents’ education,
	marital and employment status, on intervention effects. Further efforts should explore the potential influence of these factors
	on intervention effects.”
Loveman et al26	“No trials reported socio-economic effects.”
McDonagh et al27	“Race and ethnicity distribution was not reported in a consistent manner across the studies … Three studies reported enrolling
	more than 90% white children, while the remainder reported a more mixed population including a study from Australia, where 64%
	were ethnically Indian subcontinent or Pacific Islanders”.
Mead et al28	“No trials reported on-cause mortality, morbidity or socioeconomic effects.”
Nagle et al29	Review of interventions targeting Latino population groups. No comment on specific issues for this population.
Oude Luttikhuis	“The practicalities of delivering effective advice on lifestyle changes to obese children and adolescents will vary with the wide
et al8	span of social, ethnic and economic circumstances, as well as with the many variations in available resources for local health
	service delivery. … the majority of research in the field has been conducted in motivated, middle class, Caucasian populations”
Park et al30	“The results of this review must be interpreted with caution: the studies were short-term and based on small samples;
	participants were mainly from the U.S., and large portions were from ethnic backgrounds known to be at increased risk of metabolic
	disorders, limiting the generalizability of findings; and the studies presented unadjusted measures without any intention-to-treat
	analyses, which may have overestimated treatment effects.”
Staniford et al31	“A large number of studies did not identify the ethnicity (49.2%) or the socio-economic status (67.2%) of the participants and in
	studies that identified these demographics, samples with a majority of white participants (36.1%), from middle to upper class
	backgrounds (21.3%), were the most common.”
	“Limited research has addressed recommendations to actively recruit and tailor treatment interventions to ethnically diverse and
	immigrant populations … When reported, studies generally involved white, middle/upper class samples. Future research targeting
	diverse populations, specifically groups with the highest prevalence of obesity are still required to avoid taking a ‘one size
	fits all’ approach.”
Viner et al32	Results section notes that “subjects were predominantly white or Hispanic” but this is not referred to in the Discussion.

compared with children of lower educated mothers, whereas two
studies14,18 showed an interaction between outcome (body mass
index [BMI] or BMIz) socio-economic status and control versus
intervention.

The Broccoli study13 noted that, for children of mothers with
lower levels of education, the intervention led to a greater weight gain
than the control, that is, the intervention was potentially harmful for
these children. Both the Epstein et al14 and Taveras18 interventio-
note an interaction between social disparity and outcome effect. In
the Taveras study,18 both the control and intervention groups with
the lower socio-economic status showed BMI increases that were
greater for the controls (usual care) than for the intervention, whereas
in the higher socio-economic status group, there was no significant
change in BMI for either control or intervention children. It appears
the intervention countered a significant rise in BMI experienced by lower socio-economic status children over the period. In the Epstein et al. study, children in higher socio-economic households showed BMIz declining over the 2-year study in both the control and intervention groups, whereas for the children in lower socio-economic households, there was a decline in BMIz for the intervention group but not the control group, indicating socio-economic status acted as a moderator of the effect of treatment.

The Broccoli study was administered by family paediatricians using motivational interviewing techniques, consisting of five sessions over a 7-month period. The Taveras “High Five for Kids” study involved frequent contact with health professionals through home visits and telephone contact, tailored educational materials and resources for physical activity. In the Epstein et al. study, the intervention focused on screen time, with reduced TV watching as the main instrument in tackling sedentary behaviour and resulting BMI. In all studies, parents and family members were closely involved.

The small study by Golan et al. found better responses to the intervention among higher socio-economic groups (undefined). The interventions were either parent-focused or child-focused. The study by Golley et al. showed no detectable difference in response to the interventions between subgroups differentiated by the Australian Socio-Economic Index for Areas (SEIFA) score. The intervention consisted of a parental involvement programme, with one group having seven additional intensive lifestyle support sessions and sessions for children.

3.2.2 Recruitment, adherence and follow-up

From both the systematic reviews and the primary studies, we extracted statements referring to recruitment of participants, adherence to treatment, drop-out from treatment and availability for follow-up, in relation to the social disparities of interest in this study. A total of 15 documents contained relevant material.

Table 5 provides a brief summary of the text and quantitative data found in the 15 documents. Loss to recruitment or to treatment due to the reasons stated by participants such as “no time”, “no transport” or similar were disregarded unless these were linked to the subjects’ social disparity status.

Few general conclusions can be made from these extracted texts. Participation in paediatric treatment, and especially in controlled trials of paediatric interventions, requires a degree of commitment, family resources and capacity, and motivation from the family and the child. Jang et al. notes the importance of understanding family dynamics and how they may relate to intervention programme participation, and that family and social support and culturally relevant intervention programmes should be considered. Kitzmann and Beech add that families who have participated in research trials are likely to be relatively high functioning and have a certain level of organization and cohesion in order to be able to participate in an intervention program and to complete the programme over the course of many weeks. Kitzmann and Beech add: “Some families—such as those characterized by destructive conflict or poor parenting skills, or those experiencing multiple stressors associated with socioeconomic disadvantage—may
TABLE 4 Influence of social disparities on treatment outcomes reported in primary studies identified in Stage 2

Study and trial details	Stratified outcomes, as published	Comments and GRADE rating concerns
Broccoli et al¹³	Motivational interviewing *had a positive long-term effect on Δ0–24BMI in children whose mother had a high (Δ0–24BMI – 0.73% [95% CI = -1.65 to 0.18]) or medium (Δ0–24BMI – 0.31% [95% CI = -0.74 to 0.13]) level of education, whereas it had a negative long-term effect in children whose mother had a low level of education (Δ0–24BMI 0.66% [95% CI 0.08 to 1.23]) (interaction test P = .008). The same results were observed in the short term.* Mothers’ education had an “important role in determining the outcome. Whereas benefits disappeared after the 12-month follow-up visit for children whose mothers had spent >13 years at school, the effects of intervention seem counterproductive in the long term for children whose mothers had received <13 years of education.”	Not blinded RCT, same practitioners used for treatment and usual care, apparent dose–response over educational gradient, effect observed in short (1 year) and long (2 years) term, controls received normal care (advice without motivational interviews). Adequate sample size. GRADE: MODERATE
Epstein et al¹⁴	“Socioeconomic status was a statistically significant moderator of zBMI change (group X SES X months; p = 0.01). This effect was explored by dividing the sample based on SES into 2 groups at the mean SES and by examining changes in zBMI by group. For the low SES group, statistically significant between-group differences were observed from baseline to 6 m, 12 m, 18 m and 24 m, while no statistically significant between-group differences in zBMI changes were observed for the high SES group.”	RCT, overall dose–response shown, large sample, sustained effect over 1 year. Adequate sample size. GRADE: HIGH
Golan et al^{15,16}	“The correlation analyses suggested that a better economic status was related to a better treatment outcome in both the experimental and control groups.”(Golan et al¹⁶) No further details provided.	RCT. Two types of intervention compared. Small sample sizes, and 30% attrition in one group. Form of SES measure not stated. Overweight measure defined as 20% above 50th centile for age, gender and height (USA). GRADE: LOW
Golley et al¹⁷	“No association between change in BMIz score from baseline to 12 months and indicators of socioeconomic status (all SEIFA indices p > 0.05).”	Blinded RCT, control is waiting list group, two levels of intervention, dose–response shown, effects sustained over 1 year. Small sample sizes. GRADE: HIGH
Taveras¹⁸	“In post-hoc stratified analyses, we observed statistically significant intervention effects on BMI among participants in households with annual incomes $50,000 or less (−0.93 kg/m²; 95% CI: −1.60, −0.25; p = 0.01) but not in higher income households (0.02 kg/m²; 95% CI: −0.30, 0.33; p = 0.92).” BMI at baseline versus 1 year:	
• $50,000 or less, usual care: 19.9 (0.4) versus 21.3 (0.5)
• $50,000 or less, intervention: 19.6 (0.3) versus 20.0 (0.4)
• $50,001 or more, usual care 19.0 (0.2) versus 19.2 (0.2)
• $50,001 or more, intervention: 19.0 (0.2) versus 19.3 (0.2) | RCT. No overall significant effect over 1 year. Adequate sample size. GRADE: MEDIUM |
TABLE 5 Reviews and studies providing social disparities-related statements on recruitment, adherence, drop-out or follow-up

Review or study	Summary of evidence
Barkin et al33	Maternal education: “... the completers and non-completers did not differ significantly on variables of interest.”
Davis et al34	“The clinical implications of this study are many. First, for rural families facing the issue of pediatric obesity, telemedicine or other methods of interactive televideo seem to be feasible for the delivery of empirically supported interventions. Families from rural areas who commit to this type of intervention are likely to show up for treatment and to encounter few technical difficulties.”
Jang et al35	Although none of the studies we reviewed discussed the reason for high attrition, prior research has found that high attrition was associated with low socio-economic status, the single-parent family, and ethnic minorities. Further research is indicated to develop methods to ameliorate these discrepancies, particularly since studies included in this review did not reach families of diverse race/ethnicity or low socioeconomic status. Understanding family dynamics within a family system and how this relates to intervention program participation is also important to address in order to eliminate obstacles. In addition, family and social support as well as culturally relevant intervention programs should be considered in future research as a means to enhance program participation and effectiveness.”
Kelishadi et al36	“Participants were selected ... to avoid socioeconomic bias.”
Kirk et al37	“Children were recruited from referrals to a pediatric weight management programme at Cincinnati Children's Hospital Medical Center (CCHMC) who lacked health insurance coverage for the CCHMC program.”
Kitzmann and Beech24	“It is important to note that families who have participated in research on family-based interventions for pediatric obesity are likely to be relatively high functioning. These families must show a certain level of organization and cohesion to successfully initiate participation in an intervention program and to complete the program over the course of many weeks. In this sense, current research on family-based interventions for pediatric obesity could be considered a form of efficacy research in that the treatments are being implemented with families who are relatively well positioned to take advantage of the program. Tests of these interventions in a wider range of families would thus constitute a form of research on effectiveness rather than efficacy. We believe that a more general family focus may be a helpful framework for modifying these programs so that they also may be implemented with a wider range of families. Some families – such as those characterized by destructive conflict or poor parenting skills, or those experiencing multiple stressors associated with socioeconomic disadvantage – may need more basic support and preparation in order for treatment to be effective. For these families, intervention programs may need to include a greater emphasis on conflict resolution, basic parenting skills, and stress reduction so that parents are in a better position to influence their children's eating and exercise. As such, we are arguing for a more ecological approach to treatment, one that focuses not just on the immediate context of parent–child interactions but also on the larger social context of the family and community. This ecological perspective has been shown to be useful in targeting behavior problems in high-risk youth ... and is becoming increasingly common as a perspective for understanding and treating children's behaviors related to physical health.”
Lochrie et al38	“Compared with those who completed the study, those who did not complete the study had significantly lower SES, were less likely to be living with both biological parents, and caregivers were less likely to be married.”
Nagle et al29	(Review focused on interventions targeting Latino population groups.) “The healthcare setting facilitates interaction with health professionals who are knowledgeable about the health effects of obesity. ... this setting would not be ideal for populations and communities that do not have regular access to clinics and/or do not seek out healthcare on a regular basis.”
Resnicow et al39	“We lost ~30% of the baseline sample. Although this was the anticipated range of attrition and consistent with previous studies, the fact that those lost to follow-up differed on several demographic variables (e.g. race, income and education) limits generalizability. ... those lost to follow-up were significantly more likely to be black or Hispanic patients and to come from households with <$40,000 income and lower parental education. There were also more likely to have Medicaid.”
Taveras18	“Although we attempted to match pediatric sites to obtain similar participant characteristics in intervention and usual care, unbalanced participant characteristics at baseline occurred. This imbalance may have also affected differences in parent obesity and household income.”
Taylor et al40	“Multivariate regression predicting intervention uptake showed pacific ethnicity and university degree influenced uptake—see table II. Socioeconomic status differed in intervention participants (n = 197) 4.9(2.8) vs non-participants (n = 74), 5.4 (2.9). Information on the socioeconomic status of their place of residence using the New Zealand Index of Deprivation (ranges from 1—least deprived to 10—most deprived). Few differences in demographic variables were observed between intervention participants and non-participants with age, sex, ethnicity, maternal BMI, or household structure differing little by intervention uptake (Table III). However, non-participants were more likely to be from homes in more deprived areas (P = 0.039) and participant mothers also tended to be more highly educated (P = 0.051, Table III).”
Theim et al41	“Families in which both the preadolescent and parent were missing Hypothetical High Risk Situation Inventory at baseline (n = 27) were excluded from analyses.”
Wake et al42	Family disadvantage score: Retained (n = 107) 1030 (56.8) vs Lost (n = 11) 1,022 (57.9)
Walker et al43	“Children with private insurance appeared to have a benefit in that they were less likely to drop out compared to children with public insurance.”
West et al44	“Although the sociodemographic characteristics of the sample were typical for the Australia general population, participants were mainly white, well-educated for parents with moderate levels of employment and income. The sample included some sole-parent and low-income families, and some children of mixed ethnicity; however, further research is needed to clarify whether similar findings would be obtained with higher-risk families (e.g. families experiencing poverty, minority families or parents from non-English speaking background).”
need more basic support and preparation in order for treatment to be effective. For these families, intervention programs may need to include a greater emphasis on conflict resolution, basic parenting skills, and stress reduction” (p58).24

4 | LIMITATIONS

In the present review, we limited our search for primary studies to those which had been cited in the initial 64 identified systematic reviews. This identified 81 primary studies of which only five provided data on differential outcomes according to social disparities. A more exhaustive search for all potential primary studies might have captured additional studies, especially if they were published after the most recent of the systematic reviews included here. To address this, we undertook a rapid review for primary studies published 1/1/2018 through 1/7/2019, which identified one further study, by Hoffman et al,45 which met the PICO criteria. The study reported a spread of participants from households with incomes below $20,000 (38%), $20,000 to $49,999 (30%) and $50,000-plus (32%), and across parental education indicators and racial groups (12% white, 49% African American, 36% Hispanic). The authors did not describe BMI-relevant outcomes in relation to the social disparity measures taken, but they noted that the intervention was designed to be applicable to a “low income and diverse population”, by being flexible and relatively unstructured, with adaptable enrolment and attendance schedules: “This flexibility is a strength in terms of inclusivity, but the lack of structure and accountability is also a limitation” (p8).

A second limitation is the narrow range of countries from which evidence is available: the large majority of primary studies were conducted in North America and Europe and only one study in a non-OECD economy (Brazil).

5 | DISCUSSION

The objective of this review was to assess the evidence of differential effectiveness of interventions undertaken through health services to treat paediatric obesity with a particular focus on social disparities, and the potential impact of social disparity during the challenging phases of the interventions such as recruitment, adherence and follow-up. This review was conceived on the premise that it would be a “review of reviews” looking specifically at the influence of social and economic variables on treatment effectiveness, as defined in current systematic reviews of the issue. However, an initial scoping exercise raised concerns that insufficient evidence might be available, and a two-stage process was designed. The results from Stage 1, an analysis of systematic reviews since 2009, found that only three reviews focusing on possible socio-economic disparities have been published and their conclusions are unable to provide convincing answers to the present research question. Broadening the review to include a further 61 systematic reviews of paediatric treatment published since 2009 did not add significantly to the evidence base.

In the second stage, we examined the source material for the systematic reviews, consisting of over 1,450 different primary studies, of which 81 studies complied with the PICO criteria for the present review, shown in Table 1. Of the 81 included studies, only five studies contained relevant evidence of disparities in outcome. From the systematic reviews and the primary studies, 15 papers provided evidence on treatment processes, such as differential recruitment and adherence issues. A follow-up database search found one additional paper45 that met the inclusion criteria and contained some evidence on optimal intervention design.

From the material examined in the present review, we make a number of observations.

5.1 | Treatment outcomes

- There is a remarkable lack of high-quality evidence concerning the influence of social disparities on the effectiveness of paediatric obesity treatment, and on recruitment, drop-out and follow-up phases of interventions.
- Where base-line data on social disparities are collected in treatment trials, they are heterogeneous in nature and may include ethnicity or racial descriptors, household income, parents' education, a composite index of deprivation used in one country only or an indirect indicator such as health insurance status. We found no evidence of data collected for migrant status for the younger children included in this review.
- Where baseline data are collected and reported, there is often no further analysis, with neither the processes nor the outcomes differentiated by social subgroup.
- When reported, the most common ethnic subgroup is Caucasian/White, followed by African-American or Black, and Hispanic or Latino. These categories reflect the dominance of treatment studies undertaken in the United States.
- Our findings are similar to those of Staniford et al31 who reviewed 61 studies of paediatric obesity treatment (including adolescents) and noted that 41 of the studies (67%) did not report socio-economic status and 30 (49%) did not report ethnicity. Of those reporting socio-economic status, 13 studied children from upper-and middle-class households only, three studied children from lower-class households only and just four studied children from a range of households. Of those reporting ethnicity, 22 studied children of White/Caucasian background, three African-American, two diverse ethnicities, and four others.

5.2 | Treatment processes

- In the present study, follow-up attendance was reported in only a fifth of the individual studies (17 out of 82) and adherence in just over a third (32 out of 82) of the studies. This could compromise the evaluation of effectiveness of interventions and the reliability of results.
• In reviews and papers that refer to attendance, drop-out and follow-up, there are few discussions concerning subgroups, and their conclusions are largely speculative. Key points arising are the ability to attend sessions over extended periods of time, the lack of rapid results for the child and subsequent loss of interest and the dynamics of families in different cultural environments and under economically stressful conditions.

5.3 | Research implications

There is a clear and continuing high level of policy concern over health inequities and universal health coverage at global, national and community levels. Action to mitigate disparities needs evidence, yet this need for evidence is not being addressed.

• Many intervention studies, paid for with public funds or philanthropic grants, appear not to be collecting the relevant information on social disparities, or collecting it in inconsistent forms, and then not analysing or reporting on the processes and outcomes in relation to these disparities. We urge academics, clinicians and funding bodies to make socio-economic disparities a priority for research trials.

• In studies where the relevant social status information has been collected at baseline, but not subsequently used to analyse differential responses, reanalyses could be considered to exploit the data already available.

• Steps may be taken to increase the collection of data from uncontrolled observational studies as additional sources of valid evidence. In addition, steps can be taken to encourage academics and service providers to work with the populations known to suffer disadvantages, including higher obesity prevalence levels, to develop new studies and participant-led interventions.

6 | CONCLUSION

There is an extraordinary lack of information on social and economic influences on trials of paediatric obesity treatment administered through health services. This is despite the well-recognized evidence of disparities in obesity prevalence, which shows that among most middle- and high-income countries, there is a greater prevalence of obesity among families with lower incomes or parental education and in specific ethnic groups. The causes of these disparities are likely to have major relevance for the success or failure of paediatric treatment, yet such disparities are rarely examined in treatment studies and, as a consequence, not featuring in systematic reviews.

The lack of high-quality information on differential treatment impact among socially disparate groups is likely to be hampering the development of good practices and coherent national guidance on paediatric obesity treatment for those most in need. Use of weight management and obesity treatment services is likely to be affected by familial attitudes to overweight in children, their understanding of the underlying causes of weight gain, their motivation to make family-level changes and, above all, the resources they may have available to make and maintain these changes.

The interventions themselves need to be culturally and socially sensitive, avoiding stigma, encouraging motivation, recognizing barriers and reinforcing opportunities. Providing treatments that are attractive, that encourage, support and facilitate repeat attendance, that motivate sustained change, and are achievable within the resources the family can offer, requires a degree of understanding of the children being treated and their families. However, it appears from this review that this understanding is rarely attempted, considered or applied. This indicates missed opportunities for successful interventions.

CONFLICT OF INTEREST

TB, LKC and PN report no conflict of interest. TL and MN report that their employer receives programme funding from the European Union, Horizon 2020 funding, and educational grants from two pharmaceutical companies. CEC is supported by an Australian National Health and Medical Research Council senior research fellowship and a University of Newcastle, Faculty of Health and Medicine Gladys M Brawn senior research fellowship. LE receives funding from Public Health England and the UK National Institute for Health Research.

FUNDING INFORMATION

Research was conducted as part of the STOP project (http://www.stopchildhoodobesity.eu/). The STOP project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 774548. The content of this document reflects only the authors’ views and the European Commission is not liable for any use that may be made of the information it contains.

ORCID

Tim Lobstein https://orcid.org/0000-0003-4102-0545
Louisa J. Ells https://orcid.org/0000-0003-0559-4832

REFERENCES

1. NCD Risk Factor Collaboration. Worldwide trends in bodymass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627-2642. with additional data from the NCD-RisC online database at www.ncdrisc.org
2. Lobstein T, Baur L, Uauy R. Obesity in children and young people: a crisis in public health. Obes Rev. 2004;5(s1):4-85.
3. Hill AJ. Social and Psychological Factors in Obesity. In Williams G. Williams G. Frühbeck G. Obesity: Science to Practice. Wiley; 2009, pp 347-366.
4. Uljaszak SJ, Pentecost M, Marcus C, Karpe F, Frühbeck G, Nowicka P. Inequality and childhood overweight and obesity: a commentary. Pediatr Obes. 2017;12(3):195-202.
5. Brown T, Smith S, Bhopal R, Kasim A, Summerbell C. Diet and physical activity interventions to prevent or treat obesity in south Asian
children and adults: a systematic review and meta-analysis. Int J Environ Res Public Health. 2015;12(1):566-594.
6. Hillier-Brown FC, Bambra CL, Cairns J-M, Kasim A, Moore HJ, Summerbell CD. A systematic review of the effectiveness of individual, community and societal level interventions at reducing socioeconomic inequalities in obesity amongst children. BMC Public Health. 2014;14(1):834. https://doi.org/10.1186/1471-2458-14-834
7. Ligthart KAM, Buitendijk L, Koes BW, van Middelkoop M. The association between ethnicity, socioeconomic status and compliance to pediatric weight-management interventions—a systematic review. Obes Res Clin Pract. 2017;3:1-51.
8. Oude Luttikhuis H, Baur L, Jansen H, et al. Interventions for treating obesity in children. Cochrane Database Syst Rev. 2009;1:CD001872.
9. Colequitt JL, Loveman E, O’Maley C, et al. Diet, physical activity, and behavioural interventions for the treatment of overweight or obesity in preschool children up to the age of 6 years. Cochrane Database Syst Rev. 2016;3:CD012105. https://doi.org/10.1002/14651858.CD012105
10. Ells LJ, Mead E, Atkinson G, et al. Surgery for the treatment of obesity in children and adolescents. Cochrane Database Syst Rev. 2015;(6):CD011740. https://doi.org/10.1002/14651858.CD011740
11. Cochrane Methods: Equity. PROGRESS-plus. cochrane collaboration 2019. https://methods.cochrane.org/equity/projects/evidence-equity/progress-plus (Accessed October 25 2020).
12. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised and non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. https://doi.org/10.1136/bmj.j4008
13. Brodil S, Davoli AM, Bonvicini L, et al. Motivational interviewing to treat overweight children: 24-month follow-up of a randomized controlled trial. Pediatrics. 2016;137(1):e20151979. https://doi.org/10.1542/peds.2015-1979
14. Epstein LH, Roemmich JS, Robinson JL, et al. A randomized trial of the effects of reducing television viewing and computer use on body mass index in young children. Arch Pediatr Adolesc Med. 2008;162(3): 239-245.
15. Golan M, Fainaru M, Weizman A. Role of behaviour modification in the treatment of childhood obesity with the parents as the exclusive agents of change. Int J Obes Relat Metab Disord. 1998;22(12):1217-1224.
16. Golan M, Weizman A, Apter A, Fainaru M. Parents as the exclusive agents of change in the treatment of childhood obesity. Am J Clin Nutr. 1998;67(6):1130-1135.
17. Golley RK, Magarey AM, Baur LA, Steinbeck KS, Daniels LA. Twelve-month effectiveness of a parent-led, family-focused weight-management program for prepubertal children: a randomized, controlled trial. Pediatrics. 2007;119(3):517-525.
18. Taveras EM. Randomized controlled trial to improve primary care to prevent and manage childhood obesity. Arch Pediatr Adolesc Med. 2011;165(8):714-722.
19. Axon E, Atkinson G, Richter B, et al. Drug interventions for the treatment of obesity in children and adolescents. Cochrane Database Syst Rev. 2016;11:CD012436. https://doi.org/10.1002/14651858.CD012436
20. Bond M, Wyatt K, Lloyd J, Welch K, Taylor R. Systematic review of the effectiveness and cost-effectiveness of weight management schemes for the under fives: a short report. Health Technol Assess (Rocky). 2009;13:1-75.
21. Bond M, Wyatt K, Lloyd J, Taylor R. Systematic review of the effectiveness of weight management schemes for the under fives. Obes Rev. 2011;12(4):242-253.
22. Eisenberg CM, Sánchez-Romero LM, Rivera-Dommarco JA, et al. Interventions to increase physical activity and healthy eating among overweight and obese children in Mexico. Salud Publica Mex. 2013:55(Suppl 3):441-446.
23. Foster BA, Farragher J, Parker P, Sosa ET. Treatment interventions for early childhood obesity: a systematic review. Acad Pediatr. 2015;15(4):353-361.
24. Kitzm ann KM, Beech BM. Family-based interventions for pediatric obesity: methodological and conceptual challenges from family psychology. J Fam Psychol. 2006;20(2):175-189.
25. Ling J, Robbins LB, Wen F. Interventions to prevent and manage overweight or obesity in preschool children: a systematic review. Int J Nurs Stud. 2016;53:270-289.
26. Loveman E, Al-Khudairy L, Johnson RE, et al. Parent-only interventions for childhood overweight or obesity in children aged 5 to 11 years. Cochrane Database Syst Rev. 2015;12:CD012008. https://doi.org/10.1002/14651858.CD012008
27. McDonagh MS, Selph S, Ozpinar A, Foley C. Systematic review of the benefits and risks of metformin in treating obesity in children aged 18 years and younger. JAMA Pediatr. 2014;168(2):178-184.
28. Mead E, Brown T, Rees K, et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese children from the age of 6 to 11 years. Cochrane Database Syst Rev. 2017;6:CD012651. https://doi.org/10.1002/14651858.CD012651
29. Nagle BJ, Holub CK, Barquera S, et al. Interventions for the treatment of obesity among children and adolescents in Latin America: a systematic review. Salud Publica Mex. 2013;55(Suppl 3):434-440.
30. Park MH, Kinra S, Ward KJ, White B, Viner RM. Metformin for obesity in children and adolescents: a systematic review. Diabetes Care. 2009;32(9):1743-1745.
31. Stanford LJ, Breckon JD, Copeland RJ. Treatment of childhood obesity: a systematic review. J Child Fam Stud. 2012;21(4):545-564.
32. Viner RM, Hisa Y, Tomsic T, Wong ICK. Efficacy and safety of anti-obesity drugs in children and adolescents: systematic review and meta-analysis. Obes Rev. 2010;11(8):593-602.
33. Barkin SL, Gesell SB, Pöe EK, Ip EH. Changing overweight Latino pre-adolescent body mass index: the effect of the parent-child dyad. Clin Pediatr (Phila). 2011;50(1):29-36.
34. Davis AM, Sampilo M, Gallagher KS, Landrum Y, Malone B. Treating rural pediatric obesity through telemedicine: outcomes from a small randomized controlled trial. J Pediatr Psychol. 2013;38(9):932-943.
35. Jang M, Chao A, Whittomere R. Evaluating intervention programs targeting parents to manage childhood overweight and obesity: a systematic review using the RE-AIM framework. J Pediatr Nurs. 2015;30 (6):877-887.
36. Kelishadi R, Hashemipour M, Mohamadifard N, Alkhassy H, Adeli K. Short- and long-term relationships of serum ghrelin with changes in body composition and the metabolic syndrome in prepubescent obese children following two different weight loss programmes. Clin Endocrinol (Oxf). 2008;69(5):721-729.
37. Kirk S, Brehm B, Saelens BE, et al. Role of carbohydrate modification in weight management among obese children: a randomized clinical trial. J Pediatr. 2012;161(2):320, e1-327.
38. Lochrie AS, Wysocki T, Hossain J, et al. The effects of a family-based intervention (FBI) for overweight/obese children on health and psychological functioning. Clin Pract Pediatr Psychol. 2013;1(2):159-170.
39. Resnicow K, McMaster F, Bocian A, et al. Motivational interviewing and dietary counseling for obesity in primary care: an RCT. Pediatrics. 2015;135(4):649-657.
40. Taylor RW, Williams SM, Dawson AM, Taylor BJ, Meredith-Jones K, Brown D. What factors influence uptake into family-based obesity treatment after weight screening? J Pediatr. 2013;163:1657, e1-1662.
41. Theim KR, Sinton MM, Stein RI, et al. Preadolescents’ and parents’ dietary coping efficacy during behavioral family-based weight control treatment. *J Youth Adolesc*. 2012;41(1):86-97.

42. Wake M, Lycett K, Clifford SA, et al. Shared care obesity management in 3-10 year old children: 12 month outcomes of HopSCOTCH randomised trial. *BMJ*. 2013;346:f3092. https://doi.org/10.1136/bmj.f3092

43. Walker SE, Smolkin ME, O’Leary MLL, et al. Predictors of retention and BMI loss or stabilization in obese youth enrolled in a weight loss intervention. *Obes Res Clin Pract*. 2012;6(4):e330-e339.

44. West F, Sanders MR, Cleghorn GJ, Davies PSW. Randomised clinical trial of a family-based lifestyle intervention for childhood obesity involving parents as the exclusive agents of change. *Behav Res Ther*. 2010;48(12):1170-1179.

45. Hoffman J, Frerichs L, Story M, et al. An integrated clinic-community partnership for child obesity treatment: a randomized pilot trial. *Pediatrics*. 2018;141. pii: e20171444(1). https://doi.org/10.1542/peds.2017-1444

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Lobstein T, Neveux M, Brown T, et al. Social disparities in obesity treatment for children age 3–10 years: A systematic review. *Obesity Reviews*. 2021;22:e13153. https://doi.org/10.1111/obr.13153