A Local Strong Solution of the Navier-Stokes Problem in $L^2(\Omega)$

Maoting Tong

Department of Mathematical Science, Xi’anJiaotong-Liverpool University, Suzhou, 215123, P.R.China, E-mail address: Maoting.Tong18@student.xjtlu.edu.cn

Daorong Ton

Department of Mathematics, Hohai University, Nanjing, 210098, P.R.China, E-mail address: 1760724097@qq.com, Current address: 1-3306 Moonlight Square, Nanjing, 210036, P.R.China.

Abstract

In this paper we prove that the Navier-Stokes initial value problem (1) has a unique smooth local strong solution $u(t,x)$ and $p(t,x)$ if the following condition are satisfied

(1) $f \in DL_2(\Omega)$ and f is Hölder continuous about t on $(0,\infty)$,

(2) The initial value $u_0 \in D((-\Delta)^{\frac{1}{2}})$.

Mathematics Subject Classification (2010). Primary 35Q30, 76N10; Secondary 47D06

Keywords. Navier-Stokes equation, Existence and uniqueness, local solution, Semigroup of operators, Invariance, Banach lattice, Fractional powers.

The Navier-Stokes initial value problem can be written in its classical form as

\begin{align}
\frac{\partial u}{\partial t} &= \Delta u - \nabla p - (u \cdot \nabla)u + f, x \in \Omega, t \in (0,\infty) \\
\nabla \cdot u &= div u = 0 \\
\frac{\partial u}{\partial \nu} &= 0, t \in (0,\infty) \\
u|_{t=0} &= u_0, x \in \Omega
\end{align}

where Ω is a bounded domain in R^3 with smooth boundary $\partial \Omega$ of class C^3, $u = u(t,x) = (u_1(t,x),u_2(t,x),u_3(t,x))$ is the velocity field, $u_0 = u_0(x)$ is the initial velocity, $p = p(t,x)$ is the pressure, $f = f(t,x)$ is the external force,

$$
\Delta u = \left(\sum_{i=1}^{3} \frac{\partial^2 u_1}{\partial x_i^2} \right) + \left(\sum_{i=1}^{3} \frac{\partial^2 u_2}{\partial x_i^2} \right) + \left(\sum_{i=1}^{3} \frac{\partial^2 u_3}{\partial x_i^2} \right).
$$
In these four equations u, p are unknown and f, u_0 are given. The boundary condition imposed on the velocity at Ω is homogeneous.

The existence, uniqueness and regularity properties of solutions for the Navier-Stokes problems are extensively studied. There is an extensive literature on the solvability of the initial value problem for Navier-Stokes equations.

Let $L_2(\Omega)$ be the Banach space of real vector functions in $L^2(\Omega)$. That is

$$L_2(\Omega) = \{ h : \Omega \to R^3, h = (h_1, h_2, h_3), h_i \in L^2(\Omega) (i = 1,2,3) \}.$$

For $u = (u_1, u_2, u_3) \in L_2(\Omega)$, we define the norm

$$\|u\|_{L_2(\Omega)} = \left(\sum_{i=1}^{3} \|u_i\|^2_{L^2(\Omega)} \right)^{\frac{1}{2}}$$

then $L_2(\Omega)$ is a Banach space. The set of all real vector functions u such that $\text{div} \ u = 0$ and $u \in C^\infty_0(\Omega)$ is denoted by $C^\infty_{0,\sigma}(\Omega)$. Let $DL_2(\Omega)$ be the closure of $C^\infty_{0,\sigma}(\Omega)$ in $L_2(\Omega)$. If $u \in C^\infty(\Omega)$ then

(2) $u \in DL_2(\Omega)$ if and only if $\text{div} \ u = 0$ in Ω and $u_n = 0$ on $\partial \Omega$. (p.270 in [3]).

In this paper we always consider the spaces of vector value functions on Ω.

We have

$$DL_2(\Omega) \subseteq L_2(\Omega) = W^{0,2}(\Omega), \quad \|u\|_{DL_2(\Omega)} = \|u\|_{L_2(\Omega)},$$

$$L_2(\Omega) = DL_2(\Omega) \oplus DL_2(\Omega)^\perp.$$

From [2] and [3] we see that $DL_2(\Omega)^\perp = \{ \nabla h; h \in W^{1,2}(\Omega) \}$. Let P be the orthogonal projection from $L_2(\Omega)$ onto $DL_2(\Omega)$. $A = -P\Delta$ is called the Stokes operator. By applying P to the first equation of (1.1) and taking account of the other equations, we are let the following abstract initial value problem, Pr.II

(3) \[
\begin{cases}
\frac{du}{dt} = P\Delta u + Fu + Pf, & t \in (0,\infty) \\
u \big|_{t=0} = u_0, & x \in \Omega
\end{cases}
\]

where $Fu = -P(u \cdot \nabla)u$.

2
We consider equation (3) in integral form Pr.III

(4) \[u(t) = e^{tp}u_0 + \int_0^t e^{(t-s)p}Fu(s)ds. \]

In Theorem 1.6 of [3] H.Fujita and T.Kato proved that if \(u \) is a solution of (3) then \(u \) is of the class \(C^\infty \) as \(L_2(\Omega) \) – valued functions. They gave some sufficient conditions for (3) having a solution. In Theorem 3.4 of [2] Y.Giga and T.Miyakawa proved that the solution of (4) belongs to \((C^\infty(\Omega \times (0,T)))^n \). They gave some sufficient conditions for (3) and (4) having a solution. In [8] Mukhtarbay.Otelbaev proved that if all \(\frac{\partial u}{\partial t}, \Delta u, (u \cdot \nabla)u, \text{div } p \in L^p((0,T) \times \Omega) \), then (1) have the unique local solution. But he did not prove that this solution is smooth. In [10] Veli B.Shakhmurov discussed nonlocal Navier-Stokes problems in abstract function space \(DL_2(\Omega) \).

He gave some sufficient conditions for (4) having a solution. In this paper we will prove that the Navier-Stokes initial value problem (1) have the unique strong solution \(u(t,x) \in (C^\infty([0,t] \times \Omega))^n \), \(p(t,x) \in C^\infty([0,t] \times \Omega) \) in the state space \(DL_2(\Omega) \) by using the theory of semigroup of operators.

For \(u = (u_1, u_2, u_3) \in L_2(\Omega) \) we define \(\Delta u = (\Delta u_1, \Delta u_2, \Delta u_3) \) and \(\nabla u = (\frac{\partial u_1}{\partial x_1}, \frac{\partial u_2}{\partial x_2}, \frac{\partial u_3}{\partial x_3}) \).

Since the operator \(-\nabla = -\sum_{i=1}^3 \frac{\partial^2}{\partial x_i^2} \) is strongly elliptic of order 2. Theorem 7.3.6 in [11] implies that \(\Delta \) is the infinitesimal generator of an analytic semigroup of contractions on \(L^2(\Omega) \) with \(D(\Delta) = H^2(\Omega) \cap H_0^1(\Omega) \). Hence \(\Delta \) is also the infinitesimal generator of an analytic semigroup of contraction on \(L_2(\Omega) \) with \(D(\Delta) = H_2(\Omega) \cap H_{1,0}(\Omega) \), where \(H_2(\Omega) \) and \(H_{1,0}(\Omega) \) are the Sobolev spaces of vector value in \(H^2(\Omega) \) and \(H_0^1(\Omega) \) respectively. We will prove that \(\Delta \) is also the infinitesimal generator of an analytic semigroup of contraction on \(DL_2(\Omega) \).

A operator \(A \) is called preserving divergence-free on a vector value functions space \(X \) if \(A \) maps every \(u \in X \) with \(\text{div } u = 0 \) to an \(Au \) with \(\text{div } Au = 0 \).

Lemma 1. For every \(u \in L_2(\Omega) \), \(\text{div } u = 0 \) if and only if \(\text{div } (\lambda I - \Delta)u = 0 \) for \(\lambda \in \Sigma_\beta = \{ \lambda : \beta - \pi < \arg \lambda < \pi - \beta, |\lambda| \geq r \} \).
where $0<\theta<\frac{\pi}{2}$.

Proof. Let $u=(u_1,u_2,u_3) \in L_2(\Omega)$. Then

$$
\Delta u = \left(\frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2} + \frac{\partial^2 u_1}{\partial x_3^2} + \frac{\partial^2 u_2}{\partial x_2^2} + \frac{\partial^2 u_2}{\partial x_3^2} + \frac{\partial^2 u_3}{\partial x_3^2}, \frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2} + \frac{\partial^2 u_1}{\partial x_3^2} + \frac{\partial^2 u_2}{\partial x_2^2} + \frac{\partial^2 u_2}{\partial x_3^2} + \frac{\partial^2 u_3}{\partial x_3^2}, \frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2} + \frac{\partial^2 u_1}{\partial x_3^2} + \frac{\partial^2 u_2}{\partial x_2^2} + \frac{\partial^2 u_2}{\partial x_3^2} + \frac{\partial^2 u_3}{\partial x_3^2} \right),
$$

$$
\text{div}(\Delta u) = \frac{\partial^2 u_1}{\partial x_1^2} \frac{\partial u_1}{\partial x_1} + \frac{\partial^2 u_1}{\partial x_2^2} \frac{\partial u_1}{\partial x_2} + \frac{\partial^2 u_1}{\partial x_3^2} \frac{\partial u_1}{\partial x_3} + \frac{\partial^2 u_2}{\partial x_2^2} \frac{\partial u_2}{\partial x_2} + \frac{\partial^2 u_2}{\partial x_3^2} \frac{\partial u_2}{\partial x_3} + \frac{\partial^2 u_3}{\partial x_3^2} \frac{\partial u_3}{\partial x_3} + \frac{\partial^2 u_1}{\partial x_1^2} \frac{\partial u_2}{\partial x_1} + \frac{\partial^2 u_2}{\partial x_2^2} \frac{\partial u_2}{\partial x_2} + \frac{\partial^2 u_3}{\partial x_3^2} \frac{\partial u_3}{\partial x_3} + \frac{\partial^2 u_1}{\partial x_1^2} \frac{\partial u_3}{\partial x_1} + \frac{\partial^2 u_2}{\partial x_2^2} \frac{\partial u_3}{\partial x_2} + \frac{\partial^2 u_3}{\partial x_3^2} \frac{\partial u_3}{\partial x_3} = \Delta(\text{div} u).
$$

So we have

$$
(5) \quad \text{div}[(\lambda I - \Delta)u] = (\lambda I - \Delta)(\text{div} u).
$$

From (5) it is clear that $\text{div} u = 0$ implies that $\text{div} (\lambda I - \Delta)u = 0$.

Since $-\Delta$ is a strongly elliptic operator of order 2 on Ω. From Theorem 7.3.2 in [11] it follows that there exist constant $C>0$, $R \geq 0$ and $0<\theta<\frac{\pi}{2}$ such that

$$
||u||_{L_2(\Omega)} \leq C ||(\lambda I - \Delta)u||_{L_2(\Omega)}
$$

for $u \in D(\Delta) = H_2(\Omega) \cap H_{1,0}(\Omega) \subset L_2(\Omega)$ and

$$
\lambda \in \Sigma_\theta = \{ \lambda: \theta - \pi < \arg \lambda < \pi - \theta, |\lambda| \geq r \}.
$$

From (6) it follows that for every $\lambda \in \Sigma_\theta$ the operator $\lambda I - \Delta$ is injective from $D(\Delta)$ into $L_2(\Omega)$. From (5) it follows that $\text{div}(\lambda I - \Delta)u = 0$ implies that $\text{div} u = 0$. \Box

Lemma 2. (1.5.12 in [5]) Let $\{ T(t) : t \geq 0 \}$ be a C_0-semigroup on a Banach space X. If Y is a closed subspace of X such that $T(t)Y \subset Y$ for all $t \geq 0$, i.e., if Y is $T(t)_{t \geq 0}$-invariant, then the restrictions

$$
T(t)_Y := T(t)_Y
$$

form a C_0-semigroup $\{ T(t)_Y : t \geq 0 \}$, called the subspace semigroup, on the Banach space Y.

4
Lemma 3. (Proposition 2.2.3 in [5]) Let \((A, D(A))\) be the generator of a \(C_0\) -semigroup \(\{T(t) : t \geq 0\}\) on a Banach space \(X\) and assume that the restricted semigroup (subspace semigroup) \(\{T(t)_1 : t \geq 0\}\) is a \(C_0\) -semigroup on some \((T(t))_{t \geq 0}\) - invariant Banach space \(Y \rightarrow X\). Then the generator of \(\{T(t)_1 : t \geq 0\}\) is the part \((A_1, D(A_1))\) of \(A\) in \(Y\).

Lemma 4. The operator \(\Delta\) with \(D(\Delta) \subset DL_2(\Omega)\) is the infinitesimal generator of an analytic semigroup of contractions on \(DL_2(\Omega)\).

Proof. From Theorem 7.3.6 in [11] \(\Delta\) is the infinitesimal generator of an analytic semigroup of contractions on \(L^2(\Omega)\). Then \(\Delta\) is also the infinitesimal generator of an analytic semigroup of contractions on \(L_2(\Omega)\). Let \(\{T(t) : t \geq 0\}\) be the restriction of the analytic semigroup generated by \(\Delta\) on \(L_2(\Omega)\) to the real axis. \(\{T(t) : t \geq 0\}\) is a \(C_0\) semigroup of contractions by Theorem 7.2.5 and Theorem 3.1.1 in [11]. We have already noted that \(DL_2(\Omega)\) is a closed subspace of \(L_2(\Omega)\) and is also a Hilbert space. We want to show that \(DL_2(\Omega)\) is \(T(t)_{t \geq 0}\) - invariant. For every \(u \in L_2(\Omega)\) with \(\text{div} u = 0\) and \(\lambda \in \rho(\Delta) \cap \Sigma_\phi = \{\lambda : \theta - \pi < \arg \lambda - \pi - \theta, |\lambda| \geq r\}\) we have \((\lambda I - \Delta)[R(\lambda : \Delta)u] = u\) where \(\Sigma_\phi\) is the same as in the proof of lemma 1. From Lemma 1 it follows that \(\text{div} R(\lambda : \Delta)u = 0\). That is to say that \((R(\lambda : \Delta)\) is preserving divergence-free for \(\lambda \in \rho(\Delta) \cap \Sigma_\phi\). From Theorem 2.5.2 (c) in [11] it follows that \(\rho(\Delta) \supset R^+\), and so \(\rho(\Delta) \cap \Sigma_\phi \supset \{\lambda : |\lambda| \geq r\}\). Hence \((R(\lambda : \Delta)\) is preserving divergence free for every \(\lambda \geq r\). Let \(u \in DL_2(\Omega)\) then there exists a sequence \(u_n\) such that \(\lim_{n \to \infty} u_n = u\) and \(\text{div} u_n = 0\) for \(n = 1, 2, \ldots\). Since \(R(\lambda : \Delta)\) is bounded and so is continuous. Hence \(\lim_{n \to \infty} R(\lambda : \Delta)u_n = R(\lambda : \Delta)u\) and \(\text{div} R(\lambda : \Delta)u_n = 0\) for every \(\lambda \geq r\). Therefore \(R(\lambda : \Delta)u \in DL_2(\Omega)\) for every \(\lambda \geq r\). It follows that \(DL_2(\Omega)\) is \(R(\lambda : \Delta)\) - invariant for every \(\lambda \geq r\). Now the Theorem 4.5.1 in [11] implies that \(DL_2(\Omega)\) is \(T(t)_{t \geq 0}\) - invariant.
From Lemma 2 and Lemma 3 it follows that \(\Delta_{\rho|DL_2(\Omega)} \) with \(D(\Delta_{\rho|DL_2(\Omega)}) = D(\Delta) \cap DL_2(\Omega) \) is the infinitesimal generator of the \(C_0 \) semigroup \(\{T(t)_{|DL_2(\Omega)} : t \geq 0 \} \) of contractions on \(DL_2(\Omega) \).

We will prove that \(\{T(t)_{|DL_2(\Omega)} : t \geq 0 \} \) can also be extended to an analytic semigroup on \(DL_2(\Omega) \). Suppose that \(\lambda \in \rho(\Delta) \cap \Sigma_\theta \), i.e. there exists \(R(\lambda : \Delta) \) from \(L_2(\Omega) \) into \(D(\Delta) \). Then for any \(u \in DL_2(\Omega) \subset L_2(\Omega) \), \(R(\lambda : \Delta)u \in DL_2(\Omega) \). We have

\[
(\lambda I - \Delta)R(\lambda : \Delta)u = u \quad \text{and} \quad R(\lambda : \Delta)(\lambda I - \Delta)u = u.
\]

Since \(R(\lambda : \Delta) \) is preserving divergence-free we have

\[
R(\lambda : \Delta)u \in DL_2(\Omega) \quad \text{and} \quad (\lambda I - \Delta)u \in DL_2(\Omega).
\]

Thus the formula (7) becomes

\[
(\lambda I - \Delta_{\rho|DL_2(\Omega)})R(\lambda : \Delta)u = u \quad \text{and} \quad R(\lambda : \Delta)(\lambda I - \Delta_{\rho|DL_2(\Omega)})u = u.
\]

Hence \((\lambda I - \Delta_{\rho|DL_2(\Omega)})(\lambda I - \Delta_{\rho|DL_2(\Omega)})^{-1} = R(\lambda : \Delta)_{|DL_2(\Omega)} \).

From the formula (8) and Theorem 2.5.2(c) in [11] we have

\[
\rho(\Delta_{\rho|DL_2(\Omega)}) \supset \rho(\Delta) \cap \Sigma_\theta \supset \Sigma = \{ \lambda : |\arg \lambda| < \frac{\pi}{2} \cup \{0\} \} \cap \Sigma_\theta
\]

\[
= \Sigma_\theta = \{ \lambda : |\arg \lambda| < \delta, 0 \leq |\lambda| \leq r \}
\]

where \(0 < \delta < \frac{\pi}{2} \) and \(\theta = \min\{\frac{\pi}{2} + \delta, \pi - \theta\} \). Thus, for \(\lambda \in \Sigma_\theta \), \(\lambda I - \Delta_{\rho|DL_2(\Omega)} \) is invertible. From Theorem 2.5.2(c) in [11] we have

\[
\|R(\lambda : \Delta_{|DL_2(\Omega)})\| = \sup_{u \in DL_2(\Omega)} \|R(\lambda : \Delta_{|DL_2(\Omega)})u\|_{L_2(\Omega)}^{-1} \leq \frac{M}{|\lambda|}
\]

Now Theorem 2.5.2(c) in [11] implies that \(\{T(t)_{|DL_2(\Omega)} : t \geq 0 \} \) can also be extended to an
analitic semigroup on $DL_2 (\Omega)$. Therefor $\Delta^{\frac{3}{2}}_{DL_2 (\Omega)}$ is a infinitesimal generator of an analytic semigroup of ccontraction on $DL_2 (\Omega)$. □

Suppose that $-A$ is the infinitesimal generator of an analytic semigroup $T(t)$ on a Banach space X. From the results of section 2.6 in [11] we can define the fraction powers A^α for $0 \leq \alpha \leq 1$ and A^α is a closed linear invertible operator with domain $D(A^\alpha)$ dense in X. $D(A^\alpha)$ equipped with the norm $\|x\|_\alpha = \|A^\alpha x\|$ is a Banach space denoted by X_α. It is clear that $0 < \alpha < \beta$ implies $X_\alpha \supset X_\beta$ and that the embedding of X_β into X_α is continuous. If $-A = \Delta$ and $\gamma > \frac{1}{2}$ then $X_\gamma \subset X_\frac{1}{2}$ and $D((\Delta)^{\gamma}) \subset D((\Delta)^{\frac{1}{2}})$, so the norms $\|\cdot\|_{DL_2 (\Omega)}$ and $\|\cdot\|_{DL_2 (\Omega)}$ are equivalent (see p291 in [6]), i.e. there exists $L_0 > 0$ such that for any $u \in D((\Delta)^{\gamma})\|\cdot\|_{DL_2 (\Omega)}$

$$\|(-\Delta)^{\gamma} u\|_{DL_2 (\Omega)} = \|u\|_{DL_2 (\Omega)} \leq L_0 \|x\|_{DL_2 (\Omega)}^{\frac{1}{2}}.$$

For $u \in D(\Delta)$ we have

$$\|\nabla u\|_{DL_2 (\Omega)} = \|\nabla u\|_{DL_2 (\Omega)} = \|(-\Delta)^{\frac{1}{2}} u\|_{DL_2 (\Omega)} = \|\cdot\|_{DL_2 (\Omega)}^{\frac{1}{2}}.$$

In [2] Giga proved the following result:

Lemma 5. (Lemma 2.2 in [2]) Let $0 \leq \delta < \frac{1}{2}$, $n(1-r^{-1}) / 2$. Then

$$\|A^{-\delta} P(u, \nabla) v\|_{L_r} \leq M \|A^{\delta} u\|_{L_r} \|A^n v\|_{L_r}$$

with some constant $M = M (\delta, \theta, \omega, r)$, provided $\delta + \theta + \omega \geq n / 2r + 1 / 2$, $\theta > 0, \omega > 0, \omega + \delta > 1 / 2$.

From the Lemma 5 and the formula (10) we see that if take $n = 3, r = 2$

$$\delta = 0, \theta = 3 / 4 \text{ and } \omega = 3 / 4,$$ then
with some constant M for any $u, v \in DL_2(\Omega)$. Hence we have

Lemma 6. Suppose that $u, v \in DL_2(\Omega)$ are velocity fields and $(u \cdot \nabla)v \in DL_2(\Omega)$, then

$$\| (u \cdot \nabla)v \|_{DL_2(\Omega)} \leq M_0 \| u \|_{DL_2(\Omega)^{1/2}} \| v \|_{DL_2(\Omega)^{1/2}}.$$

Assumption (F). Let $X = DL_2(\Omega)$ and U be an open subset in $R^+ \times X_\alpha$ ($0 < \alpha < 1$). The function $f: U \to X$ satisfies the assumption (F) if for every $(t, u) \in U$ there is a neighborhood $V \subset U$ and constants $L \geq 0$, $0 \leq \theta \leq 1$ such that for all $t_i, u_i \in V (i = 1, 2)$

$$\| f(t_1, u_1) - f(t_2, u_2) \| \leq L \| t_1 - t_2 \| + \| u_1 - u_2 \|.$$

Lemma 7. (Theorem 6.3.1 in [11]) Let $-A$ be the generator of an analytic semigroup $T(t)$ satisfying $\| T(t) \| \leq M$ and assume that $0 \in \rho(-A)$. If, $0 < \alpha < 1$ and f satisfies the assumption (F) then for every initial date $(t_0, u_0) \in U$ the initial value problem

\[
\begin{aligned}
\frac{du(t)}{dt} + Au(t) &= f(t, u(t)), t \in (t_0, \infty) \\
u(t_0) &= u_0
\end{aligned}
\]

has a unique local solution $u \in C([t_0, t_1); X) \cap C^1([t_0, t_1); X)$ where $t_1 = t_1(t_0, u_0) > t_0$.

Lemma 8. Suppose that $u, v \in D((-\Delta)^{1/2}) \subset DL_2(\Omega)$, then $(u \cdot \nabla)v \in DL_2(\Omega)$. Proof. From (3) we have

$$\int_{\Omega} u \cdot \nabla h dx = 0 \quad \text{and} \quad \int_{\Omega} v \cdot \nabla h dx = 0$$
for all $h \in W^{1,2}(\Omega)$. So $\int_{\Omega} u \frac{\partial h}{\partial x_i} \, dx = 0$ and $\int_{\Omega} v_i \frac{\partial h}{\partial x_j} \, dx = 0$ for $i = 1, 2, 3$. $u, v \in D$

$((-\Delta)^{\frac{3}{2}}) \in H^1(\Omega)$ imply $u, \frac{\partial u}{\partial x_i}$ and $v_i, \frac{\partial v_i}{\partial x_j}$ are all bounded on Ω, $\frac{\partial u}{\partial x_i} \leq L_1$, $\frac{\partial v_i}{\partial x_j} \leq L_2$

for $i = 1, 2, 3$. Hence

$$\int_{\Omega} \left(\sum_{i=1}^{3} u_i \frac{\partial}{\partial x_i} \right) v_j \frac{\partial h}{\partial x_j} \, dx \leq \int_{\Omega} \left| u_j \right| \frac{\partial v_j}{\partial x_j} \frac{\partial h}{\partial x_j} \, dx \leq L_2 \int_{\Omega} \left| u_j \right| \frac{\partial h}{\partial x_j} \, dx = 0, j = 1, 2, 3,$$

$$\int_{\Omega} (u \cdot \nabla) v \cdot \nabla h \, dx = 0, h \in W^{1,2}(\Omega),$$

$$(u \cdot \nabla) v \in DL_2(\Omega).$$

Now we study the Navier-Stokes initial value problem (1).

A function u which is differentiable almost everywhere on $[0, T]$ such that $u \in L^1[0,T:DL_2(\Omega)]$ is called a strong solution of the initial value problem (1) if $u(0) = u_0$ and u satisfies (1) a.e. on $[0, T]$.

Let $C^\mu([0, \infty); DL_2(\Omega)_{\frac{1}{2}})$ denote the space of all Hölder continuous functions on $[0, T]$ with exponent μ and with values in a Banach space $DL_2(\Omega)_{\frac{1}{2}}$.

Theorem. The initial value problem (1) has a unique smooth local strong solution if the initial value $u_0 \in D((-\Delta)^{\frac{3}{2}})$, f is Hölder continuous about t on $(0, \infty)$ with exponent β_1, i.e. there exist constant C_1 and $0 < \beta_1 < 1$ such that

$$\|f(s, x) - f(t, x)\| \leq C_1 |s - t|^{\beta_1}, \text{ for } s, t \in (0, \infty) \text{ and } x \in \Omega. \quad (13)$$

Proof. We will find that by incorporating the divergence-free condition, we can remove the pressure term from our equation. (see p. 271 in [3], p. 234, and p. 239 in [9]) So first we can rewrite (1) into a abstract initial value problem on $DL_2(\Omega)$
\[
\begin{aligned}
\frac{du}{dt} &= \Delta u + F(t, u(t)), t \in (0, \infty) \\
\left. u \right|_{t=0} &= u_0, x \in \Omega
\end{aligned}
\]

(14)

where \(F(t, u(t)) = -(u \bullet \nabla)u + f \) is a abstract function. From Lemma 4 \(\Delta \) is the generator of an analytic semigroup \(T(t) \) of contraction on \(DL_2(\Omega) \) and \(\|T(t)\| \leq 1 \). From Theorem 2.5.2(c) in [11] \(0 \in \rho(\Delta) \).

Let \(U \) be the subset of \(R^+ \times DL_2(\Omega) \) such that \((t_1, u_1) \in U \) iff \(u_1 = u(t_1) \) for some \(u(t) \in C^H([0, \infty); DL_2(\Omega)) \) Let \(u_k(t, x) = (k, k, k) \ (t \in [0, \infty), x \in \Omega, k \in R) \). Then \((t, u_k) \in U \) for \(t \in [0, \infty) \) and all \(k \in R \). For any \(u \in D((-\Delta)^2) \) let \(u(t) \equiv u \ (t \in [0, \infty)) \). Then \(u(t) \in C^H([0, \infty); DL_2(\Omega)) \) Hence \(U \) is not empty.

Let \(U_1 \) be the open kernel of \(U \). From Lemma 8 \(F(t, u(t)) = -(u \bullet \nabla)u + f \) is a function:

\(U_1 \rightarrow DL_2(\Omega) \). For any \((t_1, u_1), (t_2, u_2) \in U_1 \) we have \((u_1 \bullet \nabla)u_1, (u_2 \bullet \nabla)u_2 \in DL_2(\Omega)\) and

\[
\begin{aligned}
\left\| (u_1 \bullet \nabla)u_1 - (u_2 \bullet \nabla)u_2 \right\|_{DL_2(\Omega)} \\
&= \left\| (u_1 \bullet \nabla)u_1 - (u_1 \bullet \nabla)u_2 \right\|_{DL_2(\Omega)} + \left\| (u_1 \bullet \nabla)u_2 - (u_2 \bullet \nabla)u_2 \right\|_{DL_2(\Omega)} \\
&= \left\| (u_1 \bullet \nabla)(u_1 - u_2) \right\|_{DL_2(\Omega)} + \left\| (u_1 - u_2 \bullet \nabla)u_2 \right\|_{DL_2(\Omega)} \\
&\leq ML_0 \left(\left\| u_1 \right\|_{DL_2(\Omega)} \right) \left\| u_1 - u_2 \right\|_{DL_2(\Omega)} + \left\| u_1 - u_2 \right\|_{DL_2(\Omega)} \left\| u_2 \right\|_{DL_2(\Omega)} \\
&= ML_0 \left(\left\| u_1 \right\|_{DL_2(\Omega)} + \left\| u_2 \right\|_{DL_2(\Omega)} \right) \left\| u_1 - u_2 \right\|_{DL_2(\Omega)}.
\end{aligned}
\]

(15)

We used lemma 6 in the above third step. Therefore \((u \bullet \nabla)u \) is local Lipschitz continuous.

Since \(u(t) \) is Hölder continuous about \(t \) on \([0, \infty) \) in \(DL_2(\Omega) \), so there is a constant \(C_2 \) and \(0 < \beta_2 < 1 \) such that

\[
\left\| u(s, x) - u(t, x) \right\|_{DL_2(\Omega)} \leq C_2 |s - t|^\beta_2 \quad \text{for} \quad s, t \in [0, \infty).
\]

(16)

Hence
\[(\|u(t_1) \bullet \nabla u(t_1) - (u(t_2) \bullet \nabla)u(t_2)\|_{L^2(\Omega)} \leq \|u(t_1) \bullet \nabla u(t_1) - (u(t_2) \bullet \nabla)u(t_2)\|_{L^2(\Omega)} + \|u(t_1) \bullet \nabla (u(t_1) - u(t_2)) \bullet \nabla (u(t_1) - u(t_2))\|_{L^2(\Omega)} \]
\[= \|u(t_1) \bullet \nabla u(t_1) - u(t_2)\|_{L^2(\Omega)} + \|u(t_1) - u(t_2)\|_{L^2(\Omega)} \|u(t_1) - u(t_2)\|_{L^2(\Omega)} \]
\[(17) \leq ML_0 \|u(t_1)\|_{L^2(\Omega)} \|u(t_1) - u(t_2)\|_{L^2(\Omega)} + \|u(t_1) - u(t_2)\|_{L^2(\Omega)} \|u(t_1) - u(t_2)\|_{L^2(\Omega)} \]
\[= ML_0 \|u(t_1)\|_{L^2(\Omega)} + \|u(t_2)\|_{L^2(\Omega)} \|u(t_1) - u(t_2)\|_{L^2(\Omega)} \]
\[\leq ML_0 C_2 \left(\|u(t_1)\|_{L^2(\Omega)} + \|u(t_2)\|_{L^2(\Omega)} \right) \|t_1 - t_2\|^\beta_1 . \]

We used the Lemma 6 in the above third step, and the formula (16) in fifth step.

If \(u_0 \in D((-\Delta)^{1/2}) \), then \(0, u_0 \in U_1 \). Set
\[V = B_\varepsilon (0, u_0) = \left\{ (t, u) \in U : \|t - 0\| \leq \varepsilon, \|u - u_0\|_{L^2(\Omega)} \leq \varepsilon \right\} . \]

Then for \((t, u) \in V \),
\[\|u\|_{L^2(\Omega)} \|t\| \leq \|u - u_0\|_{L^2(\Omega)} + \|u_0\|_{L^2(\Omega)} \leq \varepsilon + \|u_0\|_{L^2(\Omega)} . \]

Let \(L = \varepsilon + \|u_0\|_{L^2(\Omega)} \), \(L_1 = 2ML_0 L \), \(L_2 = 2ML_0 LC_2 \) and \(L_3 = Max(C_1, L_2, L_1) \),
\(\beta = Max(\beta_1, \beta_2) \) then from (13), (15) and (17) it follows that for all \((t, u_1) \in V \)
\[\|F(t, u_1)=F(t, u_2)\|_{L^2(\Omega)} \leq \|F(t, u_1) = F(t, u_2)\|_{L^2(\Omega)} + \|F(t_1, u_2(t_1)) - F(t_2, u_2(t_2))\|_{L^2(\Omega)} \]
\[= \|(u_1(t_1) \bullet \nabla u_1(t_1) - (u_2(t_1) \bullet \nabla)u_2(t_1)\|_{L^2(\Omega)} + \|(u_2(t_1) \bullet \nabla)u_2(t_1) - (u_2(t_2) \bullet \nabla)u_2(t_2)\|_{L^2(\Omega)} \]
\[+ \|f(t_1, x) \bullet \nabla u_1(t_1) - f(t_2, x) \bullet \nabla u_2(t_2)\|_{L^2(\Omega)} \]
\[\leq 2ML_0 L \|u_1 - u_2\|_{L^2(\Omega)} + 2ML_0 LC_2 \|t_1 - t_2\|^{\beta_1} + C_1 \|t_1 - t_2\|^{\beta_1} \]
\[\leq L_3 \|u_1 - u_2\|_{L^2(\Omega)} + L_2 \|t_1 - t_2\|^{\beta_1} + C_1 \|t_1 - t_2\|^{\beta_1} \]
\[\leq L_3 (\|t_1 - t_2\|^{\beta_1} + \|u_1 - u_2\|_{L^2(\Omega)}) . \]

Hence \(F(t, u(t)) \) satisfies the assumption \((F) \), then by Lemma 7 for every initial data
(0, u₀) ∈ U₁, the initial value problem (14) has a unique local solution

\[u(t) ∈ C(0, t₁): DL₁(Ω)) \cap C²((0, t₁): DL₁(Ω)) \]

(18)

where \(t₁ = t₁(u₀) \).

We consider equation (3) in integral form

\[u(t) = e^{tα}u₀ + \int_0^t e^{(t-s)α}Fu(s)ds. \]

(19)

In a similar induction way as Theorem 3.9 in [2] or as Theorem 5.1 in [10] we can prove that the solution \(u(t, x) ∈ C^∞((0, t₁] × Ω) \). (see Appendix) We can also prove directly that \(u(t, x) \) is smooth. In fact, the solution (18) of (14) is also the solution of (19). The Theorem 3.4 in [2] mean that as long as the solution of (19) exists, this solution is smooth. From Theorem 3.4 in [2] we have the solution \(u(t, x) ∈ C^∞((0, t₁] × Ω) \). Substituting \(u(t, x) \) into (1) we get the solution \(p(t, x) \). We also have \(p(t, x) ∈ C^∞((0, t₁] × Ω) \). It follows from the formula (2) and \(u ∈ DL₁(Ω) \) that the solution \(u(t, x) \) is divergence-free. Changing the value of \(u \) on \(∂Ω \) to zero we get a unique smooth local strong solution \(u = u(t, x), \ p(t, x) \) of the Navier-Stokes initial value problem (1).

The above Theorem extents Theorem 1.2 in [3] and Theorem 2.5 in [2]. In another paper we will prove that if we take \(f(t, x) \) to be identically zero and assume that any initial value \(u₀ ∈ D((-Δ)₁) \cap C^∞([0, ∞) × R³) \) satisfies \(|∂ₓ u₀(x)| \leq C_{₁₁} (1 + |x|)^{-k} \) on \(R³ \) for any \(α \) and \(k \), then the Navier-Stokes initial value problem have a global smooth solution with bounded energy.

Appendix

Lemma 1. (Lemma 3.1 in [2]) Let \(u ∈ D(-Δ) \) and \(-Δu ∈ W^{m,r}(Ω) \) for some integer \(m \geq 0 \), then \(u ∈ W^{m+2,r}(Ω) \) and satisfies

\[\|u\|_{m+2,r} \leq C_{₁₁} \|−Δu\|_{m,r} \]
with a constant $C_m > 0$ independent of u and $-\Delta u$.

Let $C^\mu([0, T]; X)$ denote the space of Hölder continuous functions on $[0, T]$ with exponent μ and with values in a Banach space X. Similarly let $C^\mu((0, T], X)$ denote the space of functions which are Hölder continuous on every subinterval $[\varepsilon, T]$ of $(0, T]$, with exponent μ.

Lemma 2. (Lemma 3.2 in [2]) Let $f(t) \in C^\mu([0, T]; DL_2(\Omega))$, for some $0 < \mu < 1$. Then the function

$$v(t) = \int_0^t e^{-(t-s)\Delta} f(s)ds \in C^\mu((0, T]; D(-\Delta)) \cap C^{1+\nu}((0, T]; DL_2(\Omega))$$

for every ν such that $0 < \nu < \mu$.

Let P_r be the continuous projection from $L^2(\Omega)$ to $DL_2(\Omega)$.

Lemma 3. (Lemma 3.3 in [2]) (i) For $m > 3/r$, there exists a constant $C_{m,r} > 0$ such that

$$\|P_r(u \cdot V)\|_{m,r} \leq C_{m,r} \|u\|_{m,r} \|V\|_{m+1,r}$$

for every $u \in (W^{m,r}(\Omega))^3$, $v \in (W^{m+1,r}(\Omega))^3 (1 < r < \infty)$.

(ii) When $r > 3$, we have

$$\|P_r(u \cdot V)\|_{r,r} \leq C_r \|u\|_{r,r} \|V\|_{r,r}$$

for $u, v \in (W^{1,r}(\Omega))^3$.

We will say that $u(t)$ has property $(P_m)(m \geq 1)$ if

$$u^{(m)} \in C^\mu([0, T]; D((-\Delta)^{\frac{m}{2}}))$$

$$u^{(j)} \in C^\mu([0, T]; (W^{m+1-j,2}(\Omega))^3) \quad 1 \leq j \leq m-1,$$

$$u \in C^\mu([0, T]; (W^{m+2,2}(\Omega))^3),$$

for all $\mu, 0 < \mu < \frac{3}{2}$. Here $u^{(j)} = \frac{d^ju}{dt^j}$.

Let the solution in the above Theorem be

$$u(t, x) = T(t)u_0 + \int_0^t T(t-s)F(s, (-\Delta)^{\frac{1}{2}})y_0(s)ds$$

Lemma 2 and Lemma 3(i) now imply

Lemma 4. (Lemma 3.6 in [2]) $u \in C^\mu((0, T]; D(\Delta))$ and $u' = du/ dt \in C^\mu((0, T];DL_2(\Omega))$.

13
\(DL^2(\Omega) \) for all \(\mu, 0 < \mu < \frac{\gamma}{2} \). Moreover \(F(s, (-\Delta)^{\frac{\gamma}{2}} y_0(s)) \in C^\mu \left((0, T) \left(W^{1,2}(\Omega) \right)^3 \right) \)

Lemma 5. (Lemma 3.7 in [2]) We have \(u' = \partial u / \partial x \in C^\mu \left((0, T) D((-\Delta)^{\frac{\gamma}{2}}) \right) \) for all \(\mu, 0 < \mu < \frac{\gamma}{2} \).

The proof is similar to Lemma 3.7 in [2].

Since \(D((-\Delta)^{\frac{\gamma}{2}}) \subset (W^{1,\gamma}(\Omega))^3 \), Lemma 1, Lemma 4, Lemma 4 and the identity \(u = (-\Delta)^{-\frac{\gamma}{2}}(Fu-u') \) show that

\[
\begin{align*}
(20) & \\
& u \in C^\mu \left((0, T) \left(W^{3,2}(\Omega) \right)^3 \right)
\end{align*}
\]

Lemma 5 and the above formula (20) show that \(u(t) \) has property \((P)_1 \).

Lemma 6. (Lemma 3.8 in [2]) \((P)_m \) implies \((P)_{m+1} \).

The proof is the same to Lemma 3.8 in [2].

Therefore we can prove the following theorem in a similar way as Theorem 3.9 in [2] or as Theorem 5.1 in [10].

Theorem. The solution in the above Theorem is smooth.

References

1. Andras Batkai, Marjeta Kramar Fijavz, Abdelaziz Rhandi, Positive Operator Semigroups, Birkhauser (2017).

2. Y.Giga.T.Miyakava, Solutions in \(L_r \) of the Vavier-Stokes Initial Value Problem, Arch.Ration.Mech.Anal. 89(1985)267-281.

3. H.Fujita, T.Kato, On the Navier-Stokes initial value problem I, Arch. Ration. Mech. Anal. 16(1964),269-315

4. T.Kato, Strong \(L_p \)-solution of the Navier-Stokes equation in \(\mathbb{R}^m \), with application to weak solutions, Math. Z. 187(1984)471-480.

5. Engel Klaus-Jochen , Rainer Nagel. One-Parameter Semigroups for Linear Evolution Equations, Springer, (2000).

6. E.Kreyszig, Introduction functional analysis with applications, John Wiley &Sons (1978).

7. Peter Meyer-Nieberg, Banach Lattices, Springer-Verlag, (1991).
8. M.Otelbaev, Existence of a strong solution of the Navier-Stokes equation, Mathematical Journal, 13(4)(2013),5-104.

9. James C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, (2001).

10. Veli B.Shakhmurov, Nonlocal Navier-Stokes problems in abstract function, Nonlinear Analysis:Real World Applications, 26(2015)19-43.

11. A.Pazy, Semigroups of linear operators and applications to partial differential equations, Springer Verlag (1983, reprint in China in 2006).

12. K.Yosida, Functional analysis (6th edition), Springer Verlag (1980).