Moments $n = 2$ and $n = 3$ of the Wilson twist-two operators at three loops in the RI$'$/SMOM scheme

Bernd A. Kniehl $^a,^*$, Oleg L. Veretin b

a II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
b Institut für Theoretische Physik, Universität Regensburg,Universitätsstraße 31, 93040 Regensburg, Germany

Received 23 September 2020; accepted 21 October 2020
Available online 23 October 2020
Editor: Hong-Jian He

Abstract

We study the renormalization of the matrix elements of the twist-two non-singlet bilinear quark operators, contributing to the $n = 2$ and $n = 3$ moments of the structure functions, at next-to-next-to-next-to-leading order in QCD perturbation theory at the symmetric subtraction point. This allows us to obtain conversion factors between the MS scheme and the regularization-invariant symmetric momentum subtraction (RI$'$/SMOM, RI$'$/SMOM) schemes. The obtained results can be used to reduce errors in determinations of moments of structure functions from lattice QCD simulations. The results are given in Landau gauge.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The great success of QCD in the description of the structure of hadrons relies on the principle of factorization. Phenomenologically, it is possible to access this problem only under some particular kinematical conditions, as provided, for instance, in experiments like deep-inelastic scattering, vector boson or heavy-meson production, Drell-Yan process and others.

In hard processes, QCD factorization and scaling violation manifest themselves in the well-known Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [1–3] and allow for non-perturbative information, on how the parton momenta are distributed inside the hadrons and

* Corresponding author.
E-mail addresses: kniehl@desy.de (B.A. Kniehl), oleg.veretin@desy.de (O.L. Veretin).
how the hadron spins are generated, to be accumulated in parton distribution functions (PDFs). Besides PDFs, also other nonperturbative distributions and concepts like, e.g., light-cone distribution amplitudes (LCDAs) [4–9] and generalized parton distributions (GPDs) [10,11] have been introduced.

At the operator level, the most significant contributions in hard processes arise from operators of twist two. In particular, in the case of non-singlet distributions, bilinear quark operators play a crucial rôle. Such operators, contributing to the nth moment of a distribution, are given by symmetric traceless combinations, like

$$S\bar{\psi}γ_{μ_1}D_{μ_2} \cdots D_{μ_n}\psi,$$ \hspace{1cm} (1)

where the symbol S denotes total symmetrization over indices $μ_1, \ldots, μ_n$ (including the factor $1/n!$) and subtraction of all possible traces over pairs of indices.

Since the matrix elements of the operators in Eq. (1) are of nonperturbative nature, they can be accessed only by experiments, QCD sum rules, or lattice-QCD simulations. The most important examples of recent lattice studies include determinations of low moments of LCDAs of mesons (see, e.g., Refs. [12–15]) and low moments of the proton PDFs and GPDs (see, e.g., Refs. [16–20]).

To renormalize the matrix elements of the operators in Eq. (1) on the lattice, the regularization-invariant momentum-subtraction (RI/MOM) scheme and its modification, the RI'/MOM scheme, have been developed [21,22] and applied to quark-antiquark operators [23,24]. Improved variants include the RI'/SMOM and RI'/SMOM schemes [25,26], which differ in the way three-point functions are treated. In the RI/MOM and RI'/MOM schemes, the subtraction is done at vanishing operator momenta, which potentially generates additional sensitivity to short-distance effects in the respective channel. On the other hand, in the RI/SMOM and RI'/SMOM schemes, the subtraction of three-point functions is performed at the symmetric Euclidean point, $− μ^2$, by setting

$$p^2 = q^2 = (p + q)^2 = − μ^2, \hspace{1cm} p \cdot q = \frac{μ^2}{2},$$ \hspace{1cm} (2)

where the four-momenta p and q are as depicted in Fig. 1. Thus, there is no channel with exceptional momenta in this scheme.

The next step after the nonperturbative renormalization is the perturbative conversion of the results from one of the above schemes into the modified minimal-subtraction ($\overline{\text{MS}}$) scheme of dimensional regularization, which serves as the worldwide standard in perturbative QCD calculations. Choosing the parameter $− μ^2$ to be of the order of a few GeV2, such a conversion can be done perturbatively order by order in the expansion in the strong-coupling constant $α_s(− μ^2)$. This matches the lattice simulations with the high-energy behavior determined by conventional perturbation theory in the continuum using the $\overline{\text{MS}}$ scheme.

Fig. 1. Matrix element $(\bar{\psi}(q)O(−q−p)\psi(p))$ of bilinear quark operator in momentum space. The black box denotes the operator and the solid lines the external quarks.
The RI/SOM to $\overline{\text{MS}}$ conversion functions of non-singlet bilinear quark operators without derivatives have been considered in Refs. [25,27] at one loop and in Refs. [26,28,29] at two loops. In our previous paper [30], we extended this analysis to the three-loop order numerically. Our three-loop result for the (pseudo)scalar current has been confirmed by an analytical calculation [31] in terms of constants constructed earlier in Ref. [32].

The corresponding conversions for the $n = 2, 3$ moments of the bilinear quark operators of twist two with one or two covariant derivatives have been considered in Refs. [27,29,33,34] at the one- and two-loop orders.

In this paper, we extend this analysis to the three-loop order. We concentrate on the cases of $n = 2$ and $n = 3$ and study the relevant operators at the symmetric kinematical point up to three loops. This paper is organized as follows. In Section 2, we introduce our notations and definitions. In Sections 3 and 4, we present our three-loop results for the $n = 2$ and $n = 3$ moments, respectively. In Section 5, we conclude with a summary.

2. Setup

To fix the notation, we start from the following expression in Minkowski coordinate space:

$$\int dx \, dy \, e^{-i(q-x)p-y}(\bar{\psi}_{\xi,i}(x) O(0) \psi_{\xi,j}(y)) = \delta_{ij} S_{\xi \xi}(q) \Lambda_{\xi \xi}(p, q) S_{\xi \xi}(p),$$

where O stands for some bilinear quark operator, ξ, ζ are spinor indices, i, j are color indices in the fundamental representation of the SU(N) group, $S(q)$ is the quark propagator, and $\Lambda(p, q)$ is the amputated Green’s function, which is shown schematically in Fig. 1.

In the cases $n = 2$ and $n = 3$, we can write explicitly for any operators $O_{\mu \nu}$ and $O_{\mu \nu \sigma}$:

$$SO_{\mu \nu} = \frac{1}{2} (O_{\mu \nu} + O_{\nu \mu}) - \frac{1}{d} g_{\mu \nu} O^\alpha_\alpha,$$

$$SO_{\nu \sigma} = \frac{1}{6} (O_{\nu \nu} + O_{\nu \sigma} + O_{\sigma \nu} + O_{\sigma \nu} + O_{\sigma \nu} + O_{\mu \nu}$$

$$- \frac{1}{3(d+2)} \Lambda_{\mu \nu} g^\rho_\rho + g^\rho_\rho g^\rho_\rho + g^\rho_\rho g^\rho_\rho) \Lambda_{\rho \rho} + O_{\rho \sigma} + O_{\sigma \rho} + O_{\sigma \rho}) g^\rho_\rho,$$

where $g_{\mu \nu}$ is the metric tensor and $d = 4 - 2e$ is the space-time dimension.

In the definition in Eq. (1), we still have the freedom to define in which directions the covariant derivatives act. Thus, in the case with one derivative, we can define two operators,

$$SO^L_{\mu \nu} = S \bar{\psi} \gamma_{\mu} \bar{D}_\nu \psi,$$

$$SO^R_{\mu \nu} = S \bar{\psi} \gamma_{\mu} \bar{D}_\nu \psi,$$

from which we can construct operators with either sign of charge conjugation (C),

$$O^{C=-1} = SO^L + SO^R,$$

$$O^{C=+1} = SO^L - SO^R,$$

where we have omitted the indices μ, ν for the ease of notation. Notice that the operators in Eqs. (8) and (9) do not mix under renormalization, so that the operator renormalization matrix is diagonal in this basis. In Refs. [27,29,33], different operators, called W_2 and ∂W_2, have been introduced. These can be expressed in terms of the operators O^L and O^R with the help of a suitable 2×2 transformation matrix, as
\[
\frac{1}{2} \left(\frac{\partial W_2}{W_2} \right) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} O^L \\ O^R \end{pmatrix}.
\]

The factor 1/2 in Eq. (10) appears because it has been omitted in the definitions of \(W_2 \) and \(\partial W_2 \) in Refs. [27,29,33]. We should also note that, in these papers, \(W_2 \) corresponds to the operator where the covariant derivative acts to the right, while, according to our definitions, the derivative in \(W_2 \) acts to the left. Only with such conventions, we find agreement with Refs. [27,29,33].

For the operators with two derivatives, we introduce the following basis of three operators:

\[
SO_{\mu \nu \sigma}^{LL} = S \bar{\psi} \gamma_\mu D_\nu D_\sigma \psi,
\]

\[
SO_{\mu \nu \sigma}^{LR} = S \bar{\psi} \gamma_\mu D_\nu D_\sigma \psi,
\]

\[
SO_{\mu \nu \sigma}^{RR} = S \bar{\psi} \gamma_\mu D_\nu D_\sigma \psi.
\]

From these operators, we can define the following combinations with definite \(C \) parities:

\[
O_1^{C=-1} = O^{LL} - 2O^{LR} + O^{RR},
\]

\[
O_2^{C=-1} = O^{LL} + 2O^{LR} + O^{RR},
\]

\[
O_3^{C=+1} = O^{LL} - O^{RR},
\]

where we again omit the indices \(\mu, \nu, \sigma \) for simplicity. Operators \(O_1 \) and \(O_2 \) mix under renormalization, so that the \(3 \times 3 \) operator renormalization matrix takes a block diagonal form in this basis, with one block of size \(2 \times 2 \) and one of size \(1 \times 1 \).

In Refs. [27,29,34], a different triplet of operators, called \(W_3, \partial W_3, \) and \(\partial \partial W_3 \), has been introduced. We can express these in terms of the operators in Eqs. (11)–(13) as

\[
\begin{pmatrix} W_3 \\ \partial W_3 \\ \partial \partial W_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} O^{LL} \\ O^{LR} \\ O^{RR} \end{pmatrix}.
\]

Similarly to the previous case, we find that the directions in which the covariant derivatives act in the operator \(W_3 \) defined in Refs. [27,29,34] should be flipped. Upon this change, we find agreement with the previous one- and two-loop calculations.

In order to renormalize the above operators, we use appropriate matrices \(Z \) of renormalization constants, a \(2 \times 2 \) matrix for \(n = 2 \) and a \(3 \times 3 \) matrix for \(n = 3 \). In the \(\overline{\text{MS}} \) scheme, we can write

\[
Z = 1 + \frac{Z_1}{\epsilon} + \frac{Z_2}{\epsilon^2} + \frac{Z_3}{\epsilon^3} + \cdots,
\]

where \(Z_i \) are constant matrices depending on the QCD coupling constant,

\[
a = \frac{\alpha_s}{4\pi}.
\]

These matrices can be related to the matrix of anomalous dimensions \(\gamma \) by the following matrix equations:

\[
a \partial_a Z_1 = -\gamma,
\]

\[
a \partial_a Z_2 = a \partial_a \left(\frac{1}{2} Z_1^2 \right) + \beta \partial_a Z_1 - \xi \gamma_3 \partial_\xi Z_1,
\]

\[
a \partial_a Z_3 = a \partial_a \left(\frac{Z_1 Z_2 + Z_2 Z_1}{2} - \frac{1}{3} Z_1^3 \right) + \beta \partial_a \left(Z_2 - \frac{1}{2} Z_1^2 \right)
\]
\[-\xi \gamma_3 \partial_\xi \left(Z_2 - \frac{1}{2} Z_1^2 \right), \tag{22}\]

where β is QCD β function, ξ is the gauge parameter, and γ_3 is the anomalous dimension associated with the latter \cite{35}.

The matrix γ for $n = 2$ has been evaluated analytically through $O(a^3)$ in Ref. \cite{33}. The corresponding matrix for $n = 3$ can be found in Ref. \cite{34}.\footnote{Notice that the definition of γ given by Eq. (2.8) in Ref. \cite{34} differs by a factor of 2 from the definition used for the results in Eq. (2.10) therein.} Moreover, in Ref. \cite{34}, the nondiagonal matrix elements are only given through order $O(a^2)$. We evaluate the missing $O(a^3)$ contributions numerically for color group SU(3). In the basis $(W_3, \partial W_3, \partial \partial W_3)$, Eq. (2.10) in Ref. \cite{34} should be extended by the following three-loop contributions

\[
\gamma_{12}^{W_3, O(a^3)}(a) = a^3 \left(-385.466 + 66.199 n_f + 0.5329 n_f^2 \right), \tag{23}\]

\[
\gamma_{13}^{W_3, O(a^3)}(a) = a^3 \left(-170.641 + 24.822 n_f + 0.3107 n_f^2 \right), \tag{24}\]

where n_f is the number of light-quark flavors.

To represent our results, we adopt the tensor decompositions from Refs. \cite{33,34}. It is convenient to contract the open indices of the operators $O_{\mu \nu}$ and $O_{\mu \nu \rho} \varepsilon$ with the light-cone vector Δ, with $\Delta^2 = 0$. This automatically takes into account the symmetry and the tracelessness of the operators. Specifically, we write

\[
\frac{1}{\varepsilon^2} \Lambda_2(p, q) = \frac{1}{\mu^2} \left[2(p \cdot \Delta) F_1 + 2(q \cdot \Delta) F_2 \right]
\]

\[
+ \frac{1}{\mu^2} \left[(p \cdot \Delta)^2 F_3 + 2(p \cdot \Delta)(q \cdot \Delta) F_4 + (q \cdot \Delta)^2 F_5 \right]
\]

\[
+ \frac{1}{\mu^2} \left[(p \cdot \Delta)^2 F_6 + 2(p \cdot \Delta)(q \cdot \Delta) F_7 + (q \cdot \Delta)^2 F_8 \right]
\]

\[
+ \frac{1}{\mu^2} \Gamma_{3, \Delta pq} \left[2(p \cdot \Delta) F_9 + 2(q \cdot \Delta) F_{10} \right], \tag{25}\]

\[
\frac{1}{(-i)^2 \mu^2} \Lambda_3(p, q) = \frac{1}{\mu^2} \left[3(p \cdot \Delta)^2 F_1 + 6(p \cdot \Delta)(q \cdot \Delta) F_2 + 3(q \cdot \Delta)^2 F_3 \right]
\]

\[
+ \frac{1}{\mu^2} \left[(p \cdot \Delta)^3 F_4 + 3(p \cdot \Delta)^2(q \cdot \Delta) F_5 + 3(p \cdot \Delta)(q \cdot \Delta)^2 F_6 + (q \cdot \Delta)^3 F_7 \right]
\]

\[
+ \frac{1}{\mu^2} \left[(p \cdot \Delta)^3 F_8 + 3(p \cdot \Delta)^2(q \cdot \Delta) F_9 + 3(p \cdot \Delta)(q \cdot \Delta)^2 F_{10} + (q \cdot \Delta)^3 F_{11} \right]
\]

\[
+ \frac{1}{\mu^2} \Gamma_{3, \Delta pq} \left[3(p \cdot \Delta)^2 F_{12} + 6(p \cdot \Delta)(q \cdot \Delta) F_{13} + 3(q \cdot \Delta)^2 F_{14} \right]. \tag{26}\]

Here
\[
\Gamma_{3,\mu\nu\sigma} = \frac{1}{3!} \gamma_{[\mu\nu}\gamma_{\sigma]} \tag{27}
\]
is the fully antisymmetric combination of the Dirac \(\gamma\) matrices, and we use the short-hand notation \(\Gamma_{3,\Delta\rho\sigma} = \Gamma_{3,\mu\nu\sigma} \Delta^{\mu} p^\nu q^\sigma\). With the definitions in Eqs. (25) and (26), the definitions of the formfactors \(F_1, \ldots, F_{10}\) and \(F_1, \ldots, F_{14}\) coincide with those in Ref. [33] and [34], respectively.

We refrain from describing our calculation because it is similar to the one in Ref. [30], where details may be found, and merely list our results, which we do for the \(n = 2\) case in Section 3 and for the \(n = 3\) case in Section 4.

3. Numerical results for \(n = 2\) moment

Here, we present the numerical results for the formfactors \(F_j^L\) and \(F_j^R\) of the \(n = 2\) moment at three loops in the \(\overline{\text{MS}}\) scheme. For \(F_j^L\), we have

\[
F_1^L = a(0.87497670537933942370)
+ a^2(18.69246420435249196 - 2.51218407747666979282n_f)
+ a^3(767.149(2) - 147.4921(2)n_f + 3.99834(1)n_f^2),
\]

\[
F_2^L = 0.5 + a(-1.687441763448348593)
+ a^2(-21.75488024301858658 + 2.394054755622383881n_f)
+ a^3(-624.064(4) + 123.5347(3)n_f - 2.81311(1)n_f^2),
\]

\[
F_3^L = a(-0.62655873962365026074)
+ a^2(-7.8618849118581104 + 0.4799770959727058987n_f)
+ a^3(-254.421(1) + 48.002(1)n_f - 0.71738(1)n_f^2),
\]

\[
F_4^L = a(-0.82709837483873229037)
+ a^2(-8.42794691505549605 + 0.8725648296451055402n_f)
+ a^3(-313.419(4) + 64.3005(4)n_f - 1.38245(3)n_f^2),
\]

\[
F_5^L = a(-1.3116507463261931407)
+ a^2(-30.32774293571586111 + 2.4134870684309379409n_f)
+ a^3(-1281.20(1) + 213.0615(9)n_f - 5.33964(3)n_f^2),
\]

\[
F_6^L = a(-0.4661270314515846370)
+ a^2(-14.0528424971245715 + 0.4507104624332595895n_f)
+ a^3(-467.649(5) + 63.8280(5)n_f - 0.71048(3)n_f^2),
\]

\[
F_7^L = a(-0.79783174129928598074)
+ a^2(-23.1610912325045065 + 1.224509859979596977n_f)
+ a^3(-890.390(6) + 134.2270(5)n_f - 2.708n_f^2),
\]

\[
F_8^L = a(-0.8455237148746085037)
+ a^2(-10.93560591432546472 + 0.849974752412507047n_f)
+ a^3(-404.35(2) + 72.164(2)n_f - 1.41340(7)n_f^2),
\]

\[
F_9^L = a(0.22222222222222222222)
\]
\[F_{10}^L = a(0.8195143283064261733) \]
\[+ a^2\left(15.47442232012187938 - 1.2832916030122051316n_f \right) \]
\[+ a^3\left(580.239(3) - 108.8446(4)n_f + 2.83040(3)n_f^2 \right). \]

Via crossing symmetry in the decomposition in Eq. (25), we obtain for \(F_j^R \)
\[
F_{1,2}^R = F_{2,1}^L, \quad F_{3,4,5}^R = F_{8,7,6}^L, \quad F_{6,7,8}^R = F_{5,4,3}^L, \quad F_{9,10}^R = F_{10,9}^L. \tag{38}
\]

Comparing with the previous calculations by Gracey [27, 29, 33], we find agreement by verifying the relations \(F_j^L = -\frac{1}{2} \Sigma_{(j)}^W \) and \(F_j^L + F_j^R = -\frac{1}{2} \Sigma_{(j)}^{\alpha W_2} \) for \(j = 1, \ldots, 10 \) through the two-loop order.

4. Numerical results for \(n = 3 \) moment

Here, we present the numerical results for the formfactors \(F_j^{LL} \), \(F_j^{RR} \), and \(F_j^{LR} \) of the \(n = 3 \) moment at three loops in the \(\overline{\text{MS}} \) scheme. For \(F_j^{LL} \), we have

\[
F_1^{LL} = a\left(0.12809418462663994519\right) \]
\[+ a^2\left(3.57396324725023741 - 0.3927663257641307273n_f \right) \]
\[+ a^3\left(142.934(4) - 23.3744(5)n_f + 0.38322(1)n_f^2 \right). \tag{39}\]

\[
F_2^{LL} = a\left(0.64814814814814814815\right) \]
\[+ a^2\left(11.92146760129898963 - 1.6685976202307340604n_f \right) \]
\[+ a^3\left(470.434(6) - 94.2894(8)n_f + 2.69132(1)n_f^2 \right). \tag{40}\]

\[
F_3^{LL} = 0.33333333333333333333 + a\left(-1.5801847945918187101 \right) \]
\[+ a^2\left(-23.39093305099714828 + 2.878059562968590479n_f \right) \]
\[+ a^3\left(-784.543(3) + 157.3102(3)n_f - 4.15775(1)n_f^2 \right). \tag{41}\]

\[
F_4^{LL} = a\left(-0.34254600335127144000 \right) \]
\[+ a^2\left(-4.53423910035660995 + 0.2361911259199855009n_f \right) \]
\[+ a^3\left(-138.88(5) + 25.985(4)n_f - 0.34336(2)n_f^2 \right). \tag{42}\]

\[
F_5^{LL} = a\left(-0.42384760642772557827 \right) \]
\[+ a^2\left(-4.59354266387785339 + 0.3660534795383755215n_f \right) \]
\[+ a^3\left(-152.53(5) + 31.366(5)n_f - 0.528634(1)n_f^2 \right). \tag{43}\]

\[
F_6^{LL} = a\left(-0.5842793145997912020 \right) \]
\[+ a^2\left(-4.8574463745270533 + 0.6841872158771917737n_f \right) \]
\[+ a^3\left(-193.46(4) + 43.965(3)n_f - 1.08542(4)n_f^2 \right). \tag{44}\]

\[
F_7^{LL} = a\left(-1.0677459370968307259 \right) \]
\[+ a^2\left(-23.3776083561611187 + 2.126160364999081326n_f \right) \]
\[+ a^3\left(-1037.27(2) + 177.931(2)n_f - 4.87027(7)n_f^2 \right). \tag{45}\]
\begin{align*}
F_{8}^{LL} &= a \left(- 0.2222222222222222 \right) \\
&\quad + a^2 \left(- 7.10270791265820791 + 0.1633837590014029747 n_f \right) \\
&\quad + a^3 \left(- 223.72(4) + 28.698(4) n_f - 0.241101(1) n_f^2 \right), \\
F_{9}^{LL} &= a \left(- 0.28929698728195749432 \right) \\
&\quad + a^2 \left(- 9.25460402258154041 + 0.2645583674342950950 n_f \right) \\
&\quad + a^3 \left(- 306.93(4) + 40.838(5) n_f - 0.426065 n_f^2 \right), \\
F_{10}^{LL} &= a \left(- 0.47732484248508078617 \right) \\
&\quad + a^2 \left(- 15.44021253016360790 + 0.7240160519079720091 n_f \right) \\
&\quad + a^3 \left(- 587.16(3) + 86.038(3) n_f - 1.64434(2) n_f^2 \right), \\
F_{11}^{LL} &= a \left(- 0.56115109786022296830 \right) \\
&\quad + a^2 \left(- 7.60796010282396424 + 0.606188782359786649 n_f \right) \\
&\quad + a^3 \left(- 288.83(1) + 50.148(2) n_f - 1.03938(10) n_f^2 \right), \\
F_{12}^{LL} &= a \left(0.060704765059735272099 \right) \\
&\quad + a^2 \left(1.27591955027728723 - 0.04990488421511731147 n_f \right) \\
&\quad + a^3 \left(49.32(1) - 6.8348(9) n_f + 0.07301(1) n_f^2 \right), \\
F_{13}^{LL} &= a \left(0.12140953011947054420 \right) \\
&\quad + a^2 \left(2.55370383484854647 - 0.12707055462464682228 n_f \right) \\
&\quad + a^3 \left(98.40(1) - 14.3840(9) n_f + 0.20626(1) n_f^2 \right), \\
F_{14}^{LL} &= a \left(0.45889950244920457284 \right) \\
&\quad + a^2 \left(8.64602611504816215 - 0.7578066395741738465 n_f \right) \\
&\quad + a^3 \left(322.542(7) - 62.2614(7) n_f + 1.72278(2) n_f^2 \right). \\
\end{align*}

Via crossing symmetry in the decomposition in Eq. (26), we obtain for F_{j}^{RR}

\begin{align*}
F_{1,2,3}^{RR} &= F_{3,2,1}^{LL}, \quad F_{4,5,6,7}^{RR} = F_{11,10,9,8}^{LL}, \quad F_{8,9,10,11}^{RR} = F_{7,6,5,4}^{LL}, \quad F_{12,13,14}^{RR} = F_{14,13,12}^{LL}. \\
\end{align*}

Finally, for F_{j}^{LR} we have

\begin{align*}
F_{1}^{LR} &= F_{3}^{LR} = a \left(0.45522361895958633728 \right) \\
&\quad + a^2 \left(8.88767955565142389 - 1.2820230592203345582 n_f \right) \\
&\quad + a^3 \left(368.500(5) - 74.9538(4) n_f + 2.28234(1) n_f^2 \right), \\
F_{2}^{LR} &= 0.16666666666666666667 + a \left(- 0.91896983417115119333 \right) \\
&\quad + a^2 \left(- 12.94227294752102117 + 1.6292211796126293778 n_f \right) \\
&\quad + a^3 \left(- 422.739(7) + 86.3035(6) n_f - 2.29625(1) n_f^2 \right), \\
F_{4}^{LR} &= F_{11}^{LR} = a \left(- 0.28401273627237882074 \right) \\
&\quad + a^2 \left(- 3.32764581150150047 + 0.2437859700527203978 n_f \right) \\
&\quad + a^3 \left(- 115.52(3) + 22.016(3) n_f - 0.37402(3) n_f^2 \right). \\
\end{align*}
\[F_{5}^{LR} = F_{10}^{R} = a\left(-0.3364042233931270222 \right) \\
+ a^2\left(-3.64571691677851411 + 0.3756487722159301382n_f \right) \\
+ a^3\left(-141.21(5) + 27.501(4)n_f - 0.632127(1)n_f^2 \right), \] \(57\)

\[F_{6}^{LR} = F_{9}^{R} = a\left(-0.40433651740142803852 \right) \\
+ a^2\left(-10.87040428448957907 + 0.70201836002985790003n_f \right) \\
+ a^3\left(-442.55(5) + 69.922(4)n_f - 1.61609(1)n_f^2 \right), \] \(58\)

\[F_{7}^{LR} = F_{8}^{R} = a\left(-0.2439048092293624148 \right) \\
+ a^2\left(-6.95013458205424924 + 0.2873267034318566148n_f \right) \\
+ a^3\left(-243.93(3) + 35.130(3)n_f - 0.46937(3)n_f^2 \right), \] \(59\)

\[F_{12}^{LR} = F_{14}^{R} = a\left(0.087443383088412876049 \right) \\
+ a^2\left(1.67025543169975743 - 0.09772109576729624122n_f \right) \\
+ a^3\left(64.285(8) - 10.3017(10)n_f + 0.164148(1)n_f^2 \right), \] \(60\)

\[F_{13}^{R} = a\left(0.22583598672341225432 \right) \\
+ a^2\left(4.07752442951393566 - 0.37450630303729499795n_f \right) \\
+ a^3\left(151.82(1) - 30.4658(9)n_f + 0.855783(1)n_f^2 \right). \] \(61\)

Comparing with the previous calculations by Gracey \[27,29,34\], we find agreement by verifying the relations \(F_{j}^{LL} = -\Sigma_{(j)}^{W_3}, F_{j}^{LL} + F_{j}^{LR} = -\Sigma_{(j)}^{\alpha W_3}, \) and \(F_{j}^{LL} + 2F_{j}^{LR} + F_{j}^{RR} = -\Sigma_{(j)}^{\alpha\beta W_3} \) for \(j = 1, \ldots, 14 \) through the two-loop order.

5. Conclusion

In this paper, we have calculated the \(n = 2 \) and \(n = 3 \) moments of the twist-two non-singlet bilinear quark operators in SMOM kinematics at three loops in QCD. This allows us to match, with unprecedented precision, lattice QCD simulations of these quantities to their high-energy behaviors in the continuum limit as determined from perturbative QCD calculations in the \(\overline{\text{MS}} \) scheme. We have presented the relevant conversion factors between the RI/SMOM and \(\overline{\text{MS}} \) schemes in numerical form, ready to be used by the lattice community. The three-loop corrections are comparable in size to the two-loop contributions available from Refs. \[27,29,33,34\], which we were able to reproduce after clarifying some issues with the definitions.

CRediT authorship contribution statement

Bernd A. Kniehl: research, manuscript preparation.
Oleg L. Veretin: research, manuscript preparation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements

This work was supported in part by DFG Research Unit FOR 2926 through Grant No. 409651613. O.L.V. is grateful to V. Braun and M. Göckeler for fruitful discussions and to the University of Hamburg for the warm hospitality.

References

[1] V.N. Gribov, L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438–450, Yad. Fiz. 15 (1972) 781–807.

[2] G. Altarelli, G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298–318, https://doi.org/10.1016/0550-3213(77)90384-4.

[3] Yu.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641–653, Zh. Eksp. Teor. Fiz. 73 (1977) 1216–1240.

[4] V.L. Chernyak, A.R. Zhيتinskii, Asymptotic form of hadronic form factors in quark model, JETP Lett. 25 (1977) 510–513, Pis’ma Zh. Eksp. Teor. Fiz. 25 (1977) 544–547.

[5] A.V. Efremov, A.V. Radyushkin, Asymptotical behavior of the pion form factor in quantum chromodynamics, Theor. Math. Phys. 42 (1980) 97–110, https://doi.org/10.1007/BF01032111, Theor. Mat. Fiz. 42 (1980) 147–166.

[6] G.P. Lepage, S.J. Brodsky, Exclusive processes in quantum chromodynamics: the form factors of baryons at large momentum transfer, Phys. Rev. Lett. 43 (1979) 545–549, https://doi.org/10.1103/PhysRevLett.43.545, Erratum: Phys. Rev. Lett. 43 (1979) 1625–1626, https://doi.org/10.1103/PhysRevLett.43.1625.

[7] G.P. Lepage, S.J. Brodsky, Exclusive processes in quantum chromodynamics: evolution equations for hadronic wavefunctions and the form factors of mesons, Phys. Lett. B 87 (1979) 359–365, https://doi.org/10.1016/0370-2693(79)90554-9.

[8] A.V. Efremov, A.V. Radyushkin, Factorization and asymptotic behaviour of pion form factor in QCD, Phys. Lett. B 94 (1980) 245–250, https://doi.org/10.1016/0370-2693(80)90869-2.

[9] G.P. Lepage, S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157–2198, https://doi.org/10.1103/PhysRevD.22.2157.

[10] F.-M. Dites, D. Müiller, D. Robaschik, B. Geyer, J. Hořejší, The Altarelli-Parisi kernel as asymptotic limit of an extended Brodsky-Lepage kernel, Phys. Lett. B 209 (1988) 325–329, https://doi.org/10.1016/0370-2693(88)90955-0.

[11] D. Müiller, D. Robaschik, B. Geyer, F.-M. Dites, J. Hořejší, Wave functions, evolution equations and evolution kernels from light-ray operators of QCD, Fortschr. Phys. 42 (1994) 101–141, https://doi.org/10.1002/prop.2190420202, arXiv:hep-ph/9812448.

[12] R. Arthur, P.A. Boyle, D. Brömmel, M.A. Donnellan, J.M. Flynn, A. Jüttner, T.D. Rae, C.T.C. Sachrajda, UKQCD Collaboration, Lattice results for low moments of light meson distribution amplitudes, Phys. Rev. D 83 (2011) 074505, https://doi.org/10.1103/PhysRevD.83.074505, arXiv:1011.5906 [hep-lat].

[13] V.M. Braun, S. Collins, M. Göckeler, P. Perez-Rubio, A. Schäfer, R.W. Schiel, A. Sternebeck, Second moment of the pion light-cone distribution amplitude from lattice QCD, Phys. Rev. D 92 (2015) 014504, https://doi.org/10.1103/PhysRevD.92.014504, arXiv:1503.03656 [hep-lat].

[14] V.M. Braun, et al., The ρ-meson light-cone distribution amplitudes from lattice QCD, J. High Energy Phys. 1704 (2017) 082, https://doi.org/10.1007/JHEP04(2017)082, arXiv:1612.02955 [hep-lat].

[15] G.S. Bali, et al., RQCD Collaboration, Light-cone distribution amplitudes of pseudoscalar mesons from lattice QCD, J. High Energy Phys. 1908 (2006) 065, https://doi.org/10.1007/JHEP08(2009)065, arXiv:1903.08038 [hep-lat].

[16] Y. Aoki, T. Blum, H.-W. Lin, S. Ohta, S. Sasaki, R. Tweedie, J. Zanotti, T. Yamazaki, RBC and UKQCD Collaborations, Nucleon isovector structure functions in (2 + 1)-flavor QCD with domain wall fermions, Phys. Rev. D 82 (2010) 014501, https://doi.org/10.1103/PhysRevD.82.014501, arXiv:1003.3387 [hep-lat].

[17] J.R. Green, M. Engelhardt, S. Krieg, J.W. Negele, A.V. Pochinsky, S.N. Syritsyn, Nucleon structure from lattice QCD using a nearly physical pion mass, Phys. Lett. B 734 (2014) 290–295, https://doi.org/10.1016/j.physletb.2014.05.075, arXiv:1209.1687 [hep-lat].

[18] G.S. Bali, S. Collins, M. Göckeler, R. Rödl, A. Schäfer, A. Sternebeck, RQCD Collaboration, Nucleon generalized form factors from two-flavor lattice QCD, Phys. Rev. D 100 (2019) 014507, https://doi.org/10.1103/PhysRevD.100.014507, arXiv:1812.08256 [hep-lat].
[19] T. Harris, G. von Hippel, P. Junnarkar, H.B. Meyer, K. Ottnd, J. Wilhelm, H. Wittig, L. Wrang, Nucleon isovector charges and twist-2 matrix elements with $N_f = 2 + 1$ dynamical Wilson quarks, Phys. Rev. D 100 (2019) 034513, https://doi.org/10.1103/PhysRevD.100.034513, arXiv:1905.01291 [hep-lat].

[20] C. Alexandrou, et al., Extended Twisted Mass Collaboration, Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass, Phys. Rev. D 101 (2020) 094513, https://doi.org/10.1103/PhysRevD.101.094513, arXiv:2003.08486 [hep-lat].

[21] G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa, A. Vladikas, A general method for non-perturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81–105, https://doi.org/10.1016/0550-3213(95)00126-D, arXiv:hep-lat/9411010.

[22] E. Franco, V. Lubicz, Quark mass renormalization in the $\overline{\text{MS}}$ and RI schemes up to the NNLO order, Nucl. Phys. B 531 (1998) 641–651, https://doi.org/10.1016/S0550-3213(98)00438-6, arXiv:hep-ph/9803491.

[23] M. Göckeler, et al., Non-perturbative renormalization of composite operators in lattice QCD, Nucl. Phys. B 544 (1999) 699–733, https://doi.org/10.1016/S0550-3213(99)00036-X, arXiv:hep-lat/9807044.

[24] M. Göckeler, et al., Perturbative and nonperturbative renormalization in lattice QCD, Phys. Rev. D 82 (2010) 114511, https://doi.org/10.1103/PhysRevD.82.114511, Erratum: Phys. Rev. D 86 (2012) 099903, https://doi.org/10.1103/PhysRevD.86.099903, arXiv:1003.5756 [hep-lat].

[25] C. Sturm, Y. Aoki, N.H. Christ, T. Izubuchi, C.T. Sachrajda, A. Soni, RBC and UKQCD Collaborations, Renormalization of quark bilinear operators in a momentum-subtraction scheme with a nonexceptional subtraction point, Phys. Rev. D 80 (2009) 014501, https://doi.org/10.1103/PhysRevD.80.014501, arXiv:0901.2599 [hep-ph].

[26] M. Gorbahn, S. Jäger, Precise $\overline{\text{MS}}$ light-quark masses from lattice QCD in the regularization invariant symmetric momentum-subtraction scheme, Phys. Rev. D 82 (2010) 114001, https://doi.org/10.1103/PhysRevD.82.114001, arXiv:1004.3997 [hep-ph].

[27] J.A. Gracey, RI/SMOM scheme amplitudes for deep inelastic scattering operators at one loop in QCD, Phys. Rev. D 83 (2011) 054024, https://doi.org/10.1103/PhysRevD.83.054024, arXiv:1009.3895 [hep-ph].

[28] L.G. Almeida, C. Sturm, Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the regularization invariant symmetric momentum-subtraction schemes, Phys. Rev. D 82 (2010) 054017, https://doi.org/10.1103/PhysRevD.82.054017, arXiv:1004.4613 [hep-ph].

[29] J.A. Gracey, RI/SMOM scheme amplitudes for quark currents at two loops, Eur. Phys. J. C 71 (2011) 1567, https://doi.org/10.1140/epjc/s10052-011-1567-8, arXiv:1101.5266 [hep-ph].

[30] B.A. Kniehl, O.L. Veretin, Bilinear quark operators in the RI/SMOM scheme at three loops, Phys. Lett. B 804 (2020) 135398, https://doi.org/10.1016/j.physletb.2020.135398, arXiv:2002.10894 [hep-ph].

[31] A. Bednyakov, A. Pikelner, Quark masses: N3LO bridge from RI/SMOM to $\overline{\text{MS}}$ scheme, Phys. Rev. D 101 (2020) 091501(R), https://doi.org/10.1103/PhysRevD.101.091501, arXiv:2002.12758 [hep-ph].

[32] B.A. Kniehl, A.F. Pikelner, O.L. Veretin, Three-loop massive tadpoles and polylogarithms through weight six, J. High Energy Phys. 1708 (2017) 024, https://doi.org/10.1007/JHEP08(2017)024, arXiv:1705.05136 [hep-ph].

[33] J.A. Gracey, Two loop renormalization of the $n = 2$ Wilson operator in the RI/SMOM scheme, J. High Energy Phys. 1103 (2011) 109, https://doi.org/10.1007/JHEP03(2011)109, arXiv:1103.2055 [hep-ph].

[34] J.A. Gracey, Amplitudes for the $n = 3$ moment of the Wilson operator at two loops in the RI/SMOM scheme, Phys. Rev. D 84 (2011) 016002, https://doi.org/10.1103/PhysRevD.84.016002, arXiv:1105.2138 [hep-ph].

[35] S.A. Larin, J.A.M. Vermaseren, The three-loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334–336, https://doi.org/10.1016/0370-2693(93)91441-O, arXiv:hep-ph/9302208.