Reduced expression of P120 catenin in cholangiocarcinoma correlated with tumor clinicopathologic parameters

Bo Zhai, He-Xin Yan, Shu-Qin Liu, Lei Chen, Meng-Chao Wu, Hong-Yang Wang

INTRODUCTION

P120-catenin is a member of the Armadillo (ARM)/β-catenin gene family and is essential for mesenchymal cadherin-mediated regulation of cell motility and invasiveness

AIM: To investigate the relationship between the expression of P120 and the clinicopathologic parameters in intrahepatic cholangiocarcinoma (ICC).

METHODS: An immunohistochemical study of E-cadherin and P120 catenin was performed on 42 specimens of ICC with a Dako Envision kit.

RESULTS: The expression of E-cadherin and P120 was reduced in 27 cases (64.3%) and 31 cases (73.8%), respectively. Both E-cadherin and P120 expressions were significantly correlated with the tumor histological grade ($\chi^2 = 9.333$, $P = 0.009$ and $\chi^2 = 11.71$, $P = 0.003$), TMN stage ($\chi^2 = 8.627$, $P = 0.035$ and $\chi^2 = 13.123$, $P = 0.004$), intrahepatic metastasis ($\chi^2 = 7.292$, $P = 0.007$ and $\chi^2 = 4.657$, $P = 0.041$, respectively) and patients’ survival ($\chi^2 = 6.351$, $P = 0.002$ and $\chi^2 = 4.023$, $P = 0.000$, respectively).

CONCLUSION: Down-regulated expression of E-cadherin and P120 occurs frequently in ICC and contributes to the progression and development of tumor. Both of them may be valuable biologic markers for predicting tumor invasion, metastasis and patients’ survival, but only P120 is an independent prognostic factor for ICC.
It is not possible to provide a natural text representation of the document as it contains images and cannot be read naturally.
The expression of E-cadherin and P120 tended to be reduced in poorly-differentiated tumors compared with well- and moderately-differentiated tumors. In addition, the expression of E-cadherin and P120 was inversely associated with the pTNM stage of tumors ($P = 0.035$ and $P = 0.004$, respectively).

Relationship between expression of E-cadherin and P120 in ICC

As shown in Table 3, positive and negative expression of E-cadherin and P120 was found in 9 and 25 cases, respectively. However, negative expression of P120 was observed in 7 cases. There was a significant concordance between the expressions of E-cadherin and P120 ($P = 0.000$).

Relationship between expression of E-cadherin/P120 and survival of ICC patients

The patients were followed up for 4-67 months. The overall survival rate of patients according to the expression of E-cadherin and P120 in tumor is shown in Figure 2. Analysis of the survival of all patients showed that abnormal expression of E-cadherin and P120 was

Table 1 Relationship between expressions of E-cadherin/P120 catenin and histological features of ICC n (%)

	n	+	-	P value	+	-	P value
Differentiation grade							
Well	3	3	0	0.009	3	0	0.003
Moderate	14	7	7		5	9	
Poor	25	5	20	0.035	3	22	
pTNM							
I	2	2	0	0.035	2	0	0.004
II	9	5	4		5	4	
III	25	8	17		4	21	
IV	6	0	6		0	6	

Figure 1 Immunoreactivity of E-cadherin and P120 in intrahepatic cholangiocarcinomas. "Preserved type" (+) (A, D), "reduced type" (-) (B, E), and "complete absent" (C, F) of E-cadherin and P120 induced type (-) and staining, respectively (\times 200).
significantly correlated with the poor survival of patients (\(P = 0.024\) and \(P = 0.004\), respectively). However, when the expression of E-cadherin or P120 and the clinicopathological parameters were analyzed by the Cox regression model, abnormal expression of P120 was found to be an independent prognostic factor for ICC patients (\(P = 0.049\)) (Table 4).

DISCUSSION

Usually, ICC is an adenocarcinoma and may arise from the large intra-hepatic bile ducts near the hepatic hilus or from the bile ducts at the border of hepatic parenchyma. It was reported that altered expression of E-cadherin/catenins complex in ICC occurs frequently and is significantly correlated with tumor histological features and/or vascular invasion and metastasis\(^{[9-14]}\).

It was recently reported that P120 plays a role in the occurrence of various cancers, and that P120 may behave either as a tumor suppressor or as a metastasis promoter, depending on the loss of E-cadherin and P120. If E-cadherin is lost first, P120 may directly and actively promote metastasis. If P120 is lost first, E-cadherin levels would fall significantly, which is likely to be parallel to

Table 2 Relationship between expressions of E-cadherin/P120 catenin and clinical parameters of ICC

	E-cadherin	P120 catenin				
	+	-	\(P\) value	+	-	\(P\) value
Size						
< 5 cm	7 (41.2)	10 (58.8)	0.826	6 (35.3)	11 (64.7)	0.584
5-10 cm	5 (31.3)	11 (68.7)		3 (18.8)	12 (81.2)	
> 10 cm	3 (33.3)	6 (66.7)		2 (22.2)	7 (77.8)	
Capsular invasion						
+	4 (66.7)	2 (33.3)	0.164	3 (50)	3 (50)	0.391
-	11 (30.6)	25 (69.4)		8 (22.2)	28 (77.8)	
Satellite nodules						
+	4 (36.4)	7 (65.6)	1	3 (27.3)	8 (72.7)	0.314
-	11 (35.5)	20 (64.5)		8 (25.8)	23 (74.2)	
Vascular invasion						
+	13 (45.4)	16 (55.2)	0.089	1 (7.7)	12 (92.3)	0.127
-	29 (13.6)	16 (86.4)		10 (34.5)	19 (65.5)	
L.N.P						
+	7 (14.3)	6 (85.7)	0.39	0 (0)	7 (100)	0.161
-	35 (14.0)	21 (86.0)		11 (31.4)	24 (68.6)	
I.M.						
+	10 (0)	10 (100)	0.007	0 (0)	10 (100)	0.041
-	32 (14.9)	17 (53.1)		11 (34.4)	21 (65.6)	

Table 3 Relationship between expression of E-cadherin and P120 catenin in ICC

E-cadherin	P120
+	9
-	2

Figure 2 Kaplan-Meier survival curves. **A**: Expression of P120 induced type (\(-\)) and **B**: Expression of E-cadherin.

* Sig: Significance; RR: Relative risk; CI: Confidence interval.*

Table 4 Cox multivariate analysis for survival of 37 patients

E-cadherin expression	Sig	RR	95% CI

Significantly correlated with the poor survival of patients (\(P = 0.024\) and \(P = 0.004\), respectively). However,
the reduced levels of α- and β-catenins[15]. P120 down-regulation results in a striking dose-dependant loss of endogenous cadherins, indicating that P120 is essential for cadherin stability. Moreover, P120 down-regulation occurs frequently in almost all carcinomas[16]. P120 loss is often associated with the stage and poor prognosis of tumors, suggesting that its loss may be associated with biological aggressiveness and progression of tumors. Nevertheless, to our knowledge, no report is available on the expression of P120 in human intrahepatic cholangiocarcinoma.

The present study showed that reduced or absent expression of E-cadherin and P120 was associated with the histological grade of tumors, which is consistent with reported data[17-21]. In well-differentiated tumors, there were obvious and strong staining along the cell-cell boundaries, whereas in poorly-differentiated tumors, the immunohistostaining was focally and heterogeneously distributed, with patchy or spotty features along the cell-cell boundaries, indicating that the staining of E-cadherin and P120 is related with the differentiation of ICC, namely both E-cadherin and P120 may be regarded as differentiation markers of tumor. In addition, the staining intensity of E-cadherin and P120 complex was gradually decreased, suggesting that P120 may play a critical role in ICC progression.

Microscopy revealed that E-cadherin was located on the membrane either in non-tumor tissues or in tumor cells, whereas P120 was expressed on the membrane or in cytoplasm of tumor cells. However, it was reported that P120 is also in nuclei[22], suggesting that P120 plays an important role in cell signal transduction. P120 has an intrinsic nucleocytoplasmic shuttling activity that is modulated, in part, by extrinsic factors such as cadherin binding and interactions with the microtubule network[23]. Julia and colleagues reported[24] that P120 displays up-regulation and nuclear expression in pancreatic cancer. No expression of P120 in nuclei of cancer cells, however, was observed in our study, suggesting that it is necessary to further investigate the mechanism underlying P120 expression in nuclei of cancer cells.

In this study, we observed the relationship between reduced expression of E-cadherin and P120 and several clinicopathologic parameters of ICC. The expression of P120 and E-cadherin was significantly associated with tumor pTNM stage and intrahepatic metastasis (IM), but not with tumor stage and size, capsular and vascular invasion, and lymph node invasion. Osaka and his colleagues[24] revealed that E-cadherin is involved in intra-hepatic metastasis of hepatocellular carcinoma. Asayama et al[13] detected the expression of E-cadherin in hepatocellular carcinoma and cholangiocarcinoma, and found that reduced expression of E-cadherin is significantly correlated with the grade and IM of ICC. Therefore, E-cadherin and P120 may be important mediators in tumor progression, and can be considered as invasion and metastasis markers of ICC.

Several studies on other cancers have evaluated the relationship between the expression of E-cadherin/P120 and the survival of patients, but the results remain debatable[25-29]. In the present study, reduced expression of both E-cadherin and P120 was significantly related with the survival of patients. However, when the expression of E-cadherin/P120 and the clinicopathological parameters of ICC were analyzed by the Cox regression model, only the abnormal expression of P120 was found to be an independent prognostic factor for ICC, suggesting that P120 can be considered a valuable biological marker for predicting the prognosis of ICC patients.

In summary, abnormal expression of E-cadherin and P120 catenin occurs frequently in intrahepatic cholangiocarcinoma. Reduced expression of P120 catenin and E-cadherin is correlated with tumor differentiation, pTNM stage, intrahepatic metastasis and survival of patients. Both P120 catenin and E-cadherin may play an important role in the development and progression of human intrahepatic cholangiocarcinoma.

ACKNOWLEDGMENTS

The authors thank Miss Guo LN, International Cooperation Laboratory on Signal Transduction, Eastern HEPATOBILIIARY Surgery Institute, Second Military Medical University, for her valuable advice on cell staining.

COMMENTS

Background
P120-catenin is a member of the E-cadherin/catenin complex family and may be associated with biological aggressiveness and progression of tumors. However, no report is available on the expression of P120 catenin in human intrahepatic cholangiocarcinoma.

Research frontiers
P120 down-regulation occurs frequently in almost all carcinomas. P120 loss is often associated with the stage and poor prognosis of tumors.

Innovations and breakthroughs
Our results suggest that down-regulated expression of E-cadherin and P120 catenin occurred frequently in intrahepatic cholangiocarcinoma (ICC) and contributed to the progression and development of tumors. Both E-cadherin and P120 catenin may be valuable biologic markers for predicting tumor invasion, metastasis and survival of patients, but only P120 catenin is an independent prognostic factor for ICC.

Applications
Because down-regulated expression of P120 contributes to the progression and development of ICC, P120 can be used as a valuable biologic marker for predicting the invasion and metastasis of ICC, and the survival of patients.

Peer review
This is an interesting report on E-cadherin and P120 catenin in human intra-hepatic cholangiocarcinoma. The study was performed on 42 specimens of ICC with a Dako Envision kit, indicating that. Both E-cadherin and P120 catenin may be valuable biological markers for predicting tumor invasion, metastasis and survival of patients. However, its clinical application should be further studied.

REFERENCES

1. Reynolds AB, Herbert L, Cleveland JL, Berg ST, Gaut JR. p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors beta-catenin, plakoglobin and armadillo. Oncogene 1992; 7: 2439-2445
2. Yanagisawa M, Anastasiadis PZ. p120 catenin is essential for mesenchymal cadherin-mediated regulation of cell motility and invasiveness. J Cell Biol 2006; 174: 1087-1096
3. Nollet F, Berx G, van Roy F. The role of the E-cadherin/catenin adhesion complex in the development and
progression of cancer. Mol Cell Biol Res Commun 1999; 2: 77-85

4 Xiao K, Oas RG, Chiasson CM, Kowalczyk AP. Role of p120-catenin in cadherin trafficking. Biochim Biophys Acta 2007; 1773: 8-16

5 Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 2001; 33: 1353-1357

6 The general rules for the clinical and pathological study of primary liver cancer. Liver Cancer Study Group of Japan. Jpn J Surg 1989; 19: 98-129

7 Hermanek P, Hutter RVP, Sobin LH. TNM Atlas, UICC. 4 th ed. Berlin: Springer 1997: 115-123

8 Gamallo C, Palacios J, Suarez A, Pizarro A, Navarro P, Quintanilla M, Cano A. Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma. Am J Pathol 1993; 142: 987-993

9 Ashida K, Terada T, Kitamura Y, Kaibara N. Expression of E-cadherin, alpha-catenin, beta-catenin, and CD44 (standard and variant isoforms) in human cholangiocarcinoma: an immunohistochemical study. Hepatology 1998; 27: 974-982

10 Sato K, Murai H, Ueda Y, Katsuda S. Intrahepatic sarcomatoid cholangiocarcinoma of round cell variant: a case report and immunohistochemical studies. Virchows Arch 2006; 449: 585-590

11 Settakorn J, Kaewpli N, Burns GF, Leong AS. FAT, E-cadherin, beta catenin, HER 2/neu, Ki67 immuno-expression, and histological grade in intrahepatic cholangiocarcinoma. J Clin Pathol 2005; 58: 1249-1254

12 Tokumoto N, Ikeda S, Ishizaki Y, Kurihara T, Ozaki S, Iseki M, Shimizu Y, Itamoto T, Arihiro K, Okajima M, Asahara T. Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas. Int J Oncol 2005; 27: 973-980

13 Asayama Y, Taguchi Ki K, Aishima Si S, Nishi H, Masuda K, Tsuneyoshi M. The mode of tumour progression in combined hepatocellular carcinoma and cholangiocarcinoma: an immunohistochemical analysis of E-cadherin, alpha-catenin and beta-catenin. Liver 2002; 22: 43-50

14 Sugimachi K, Taguchi K, Aishima S, Tanaka S, Shimada M, Kajiyama K, Sugimachi K, Tsuneyoshi M. Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod Pathol 2001; 14: 900-905

15 Thoreson MA, Reynolds AB. Altered expression of the catenin p120 in human cancer: implications for tumor progression. Differentiation 2002; 70: 583-589

16 Reynolds AB, Carnahan RH. Regulation of cadherin stability and turnover by p120ctn: implications in disease and cancer. Semin Cell Dev Biol 2004; 15: 657-663

17 Brennes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L, Gemmill RM, Drabkin HA, Franklin WA. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol 2002; 20: 2417-2428

18 Sarrio D, Perez-Mies B, Hardisson D, Moreno-Bueno G, Suarez A, Cano A, Martin-Perez J, Gamallo C, Palacios J. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene 2004; 23: 3272-3283

19 Ishizaki Y, Omori Y, Momiyama N, Nishikawa Y, Tokairin T, Manabe M, Enomoto K. Reduced expression and aberrant localization of p120catenin in human squamous cell carcinoma of the skin. J Dermatol Sci 2004; 34: 99-108

20 Qian ZR, Sano T, Yoshimoto K, Asa SL, Yamada S, Mizusawa N, Kudo E. Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol 2007; 20: 1269-1277

21 Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L, Gemmill RM, Drabkin HA, Franklin WA. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol 2002; 20: 2417-2428

22 Rocznik-Ferguson A, Reynolds AB. Regulation of p120-catenin nucleocytoplasmic shuffling activity. J Cell Sci 2003; 116: 4201-4212

23 Mayerle J, Friers H, Buchler MW, Schneekonburger J, Weiss FU, Zimmer KP, Domschke W, Lerch MM. Up-regulation, nuclear import, and tumor growth stimulation of the adhesion protein p120 in pancreatic cancer. Gastroenterology 2003; 124: 949-960

24 Osada T, Sakamoto M, Ino Y, Iwashita A, Matsuno Y, Muto T, Hiroshishi S. E-cadherin is involved in the intrahepatic metastasis of hepatocellular carcinoma. Hepatology 1996; 24: 1460-1467

25 Bellovin DI, Bates RC, Muzikansky A, Rimm DL, Mercurio AM. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res 2005; 65: 10938-10945

26 Wang EH, Liu Y, Xu HT, Dai SD, Liu N, Xie CY, Yuan XM. Abnormal expression and clinicopathologic significance of p120-catenin in lung cancer. Histol Histopathology 2006; 21: 841-847

27 Wijnhoven BP, Pigantelli M, Dinjens WN, Tilanus HW. Reduced p120ctn expression correlates with poor survival in patients with adenocarcinoma of the gastroesophageal junction. J Surg Oncol 2005; 92: 116-123

28 Bantis A, Giannopoulos A, Gonidi M, Liossi A, Athanassiadou P, Bantis A, Giannopoulos A, Gonidi M, Liossi A, Athanassiadou P. Expression of p120, Ki-67 and PCNA as proliferation biomarkers in imprint smears of prostate carcinoma. Histopathology 2004; 15: 25-31

29 Nakopoulou L, Gakiopoulou-Givalou H, Karayiannakis AJ, Giannopoulos I, Keramopoulos A, Davaris P, Pigantelli M. Abnormal alpha-catenin expression in invasive breast cancer correlates with poor patient survival. Histopathology 2002; 40: 536-546

S-Editor Sun YL L-Editor Wang XL E-Editor Lin YP