Adopt Fast, Adapt Quick: Adaptive Approaches in the South African Context
Bo Xing, Lufuno Marwala, and Tshilidzi Marwala
University of Johannesburg, South Africa

Word Count: 9,300

Abstract: The Fourth Industrial Revolution (4IR) will change the way people work, and the way they need to think. Higher education must, therefore, identify new ways to prepare learners for the automation economy. In this chapter, we propose an adaptive approach whereby both educators and learners employ an Adopt Fast and Adapt Quick (AFAQ) strategy for higher education in the context of the 4IR. Our proposal presents evidence from a “smart mining” case in South Africa as implemented by the University of Johannesburg. Findings detail an adaptive solution to new demands in the higher education arena, which address issues of accessibility, digital-literacy, acceleration, pan-regionalization, transformation, inclusiveness, vision, and engagement of students.

1. The Fourth Industrial Revolution (4IR): New Data Resources

We live in a world where resources are becoming scarce while human needs continue to increase. According to O’Sullivan, Sheffrin, and Perez (2014), the resources that humans utilize for production can be broadly classified into three types:

- **Natural Resource**: e.g., land, mineral, oil, natural gas, water, etc.
- **Capital Resource**: e.g., machines, durable equipment, tools, infrastructure, buildings, etc.
- **Human Resource**: e.g., physical labour, intellectual effort, knowledge, skills, experiences, leadership, entrepreneurship, etc.

The fourth industrial revolution (4IR) unveiled artificial intelligence (AI), machine learning, robots, intelligent machines, 3D printing, bioscience technologies, Internet of things (IoT) and cyber-physical systems (CPS). These developments are shaping a new data economy. As a new critical feedstock for this round of macro-economic developments (see Fig. 1), these data resources, though abundant and ubiquitous, constitute combination the 4IR inputs.

![Figure 1: New production resources: data.](image-url)
Approximately 100 gigabytes of data can be generated within a second after a self-driving car begins to operate. Some people refer to “big data” as “massive data”. However, the most commonly used definition is called 3 Vs. It was proposed by Doug Laney, a distinguished analyst at Gartner (Yaqoob et al., 2016): The “big data” is generally defined as “high volume, high velocity, and/or high variety information assets that require new forms of processing to enable enhanced decision making, insight discovery and process optimization”.

Without access to data and optimal use of it, machine learning and AI will not lead to new developments. Data is akin to raw material; it allows people to see beyond the digital world and paves the way to faster communications (e.g., customer-centered design), improved coordination mechanisms (e.g., smart logistics and smart factories), and innovative collaborations (e.g., new business and cooperation models across counties and continents) (Gopalkrishnan, Steier, Lewis, Guszczza, & Lucker, 2013; Manyika et al., 2011).

Increasingly companies have increased their capacity to analyze and make use of, big data. For instance, Internet companies manage data that gives them enormous power (e.g., Alphabet, Amazon, Apple, Facebook, and Microsoft) (The Economist, 2017b), while industrial and retailer giants collect data that makes them more competitive (e.g., Siemens, GE, McDonald, and Tesla) (Barton & Court, 2012). Data are said to be a driver of growth and transformation, the true invisible hand behind the 4IR: It is emerging as a means for governments, private sectors and organizations to improve accuracy and trustworthiness (IBM, 2014); and it offers the hidden insights that have the potential to shape and influence the manufacturing, social and service environments (The Economist, 2017a). Therefore, harnessing the power of big data will determine enterprises’ likelihood of success in the future (Oguro, 2016; Wang & Wang, 2016). Like previous sources of information, data is believed to promote neo-infrastructure, neo-businesses, neo-monopolies, neo-politics, and most importantly, new economic models/systems. However, unlike earlier sources of information; data is extracted, mined, refined, assessed, purchased, and sold in distinct ways. In the 4IR age, property rights and use of data pose are likely to generate conflict.

2. The Fourth Industrial Revolution (4IR): Renewed Human Resource

Though the 4IR is staged to drive inclusive benefits, it could also challenge our society and hinder (social/socio-economics?) development by replacing human capital with machines. The workforce, therefore, needs to have greater access to higher education, and education of quality. Low-skilled work will become scarcer in the future as predictable tasks are replaced by machines. Both high- and low-skilled worked need to be either re-trained or educated differently. The fast advancement of various technologies has led to partial or full automation of many job positions. Although many of us worry about the possibility of a situation in which human labour is replaced by automation and 4IR technologies, it is also important to recognize that job automation can be a positive change, at least in the following scenarios (Phillips & Phillips, 2015; The Economist, 2014; Tsvetkov, 2011):

- **Jobs characterized by monotony and boredom**: These kinds of jobs are typically based on a routine and demand more concentration than critical thinking (e.g., assembly line positions). Humans are prone to feeling dissatisfied when involved in monotonous and boring jobs, which could potentially result in absenteeism, high employee turnover, injuries, and health deterioration.

- **Jobs full of unfavourable dangerousness**: These jobs are common in sectors like manufacturing, mining, nuclear energy and other heavy industries. Introducing automation could prevent unnecessary injuries and deaths while also increasing productivity.
• **Jobs that involve simple-step transactions**: ATMs (automatic teller machines) are exemplar in this category, mainly because they operate 24/7. Similar advanced technologies could make simple-step transactions more efficient than when they are managed by conventional human operators.

• **Jobs unwanted by humans**: Take marine industry, it has become increasingly difficult to recruit qualified crew members willing to stay away from home for months while drifting at sea. When carrying non-perishable goods, autonomous cargo vessels are more convenient because they allow to save on accommodation expenses for the crew and also remove the bulk of associated utilities (e.g., heating and plumbing).

With the above discussion as a backdrop, it becomes evident that investment on human capital is necessary for multiple purposes such as finalizing key decision making, problem solving, and process monitoring (e.g., onshore unmanned ships control room). Even in a fully automated working environment, humans are still indispensable: (1) When new technologies are firstly introduced, humans are needed to finalize and coordinate implementation tasks; (2) when systems are put into operation, people need to perform a set of non-straightforward maintenance duties; (3) humans have the capacity to upgrade their skills by taking over the jobs when automation fails. This analysis can help us to reach the conclusion that human capital is not outdated in the era of the 4IR, but it requires enhanced training.

From the first to the third industrial revolutions, machines outperformed humans in terms of mechanical tasks. This led to a shift in the duties associated to human labour; from mechanical tasks to cognitive tasks in the service industry. The 4IR (see Fig. 2), with the advent of AI, is poised to outperform humans in cognitive tasks.

![Figure 2: 4IR: dissolving human and machine boundary.](https://ssrn.com/abstract=3225325)

The current trend shows that AI base algorithms for big data are becoming a substitute, in the workplace, for a wide range of non-routine cognitive tasks (Frey & Osborne, 2013). The computerization of jobs will leave a large proportion of human labour unemployed. Brynjofsson

Adopt Fast, Adapt Quick: Adaptive Approaches in the South African Context

Bo Xing, Lufuno Marwala, and Tshilidzi Marwala
and McAfee (2012) showed that there is a strong negative relationship between wages and educational attainment and the probability of computerization. Future professionals will have to shift to areas that will not be affected by AI based computerization.

3. Minding the Truth and Fact Gap

Although the vast abundance of data resources and well projected human resources illustrate a bright picture of the brave new world of the 4IR, there is a looming gap between truth (how data resources are being exploited) and fact (how human resources are managing to adapt).

3.1 Upcoming Truth: Granular Computing Mereology

Artificial intelligence is a computerized process that mimics human behaviour in problem solving. Though the early days of AI were full of failures, this research area resurfaced in the form of “neural networking”, thanks to numerous researchers devoting themselves to integrating rigorous mathematical theories (e.g., statistical inference approaches, topological representation, and relational matrix theory) in AI (Marwala, 2009, 2010, 2012, 2013, 2014, 2015; Marwala, Boulkaibet, & Adhikari, 2017; Marwala & Hurwitz, 2017; Marwala & Lagazio, 2011; Xing & Gao, 2014). From the public viewpoint, AI appears powerful enough to trigger the 4IR and automatically solve a wide range of global issues. Despite the fact that there is still a huge gap between computerized and humanized problem solving, scientists are trying very hard to close such gap (Xing & Marwala, 2018). According to Hobbs (1985), an exclusive feature of human problem solving is the ability to conceptualize the world in different levels and enjoy free mobility across them.

Consider a well-debated smart factory scenario in the 4IR; when a production manager is involved in drafting a production plan, he/she only needs a coarse-grained factory model during the early stage of mental planning. At this stage, the whole factory may be encoded as a rough block diagram composed only by key workshops while temporarily ignoring details. As soon as a sketched plan is available, our human manager will reconsider some previously neglected minutiae to form a fine-grained factory model. During this phase, if global information needs to be considered, he/she can swiftly switch back to the former coarse-grained model. This trait is the hallmark of human intelligence. However, when we turn our attention to our counterpart – intelligent machines, the situation changes dramatically. Although computers have almost every bit of data about a factory (e.g., machine conditions, worker profiles, tool availability, building environment, inventory list, and much more) accumulated in their storage medium, it is still difficult for computers to create different representation models based on these data, let alone switching back and forth among models with distinct granularity levels.

In this regard, humans have already embarked on solving this problem using their own intelligence. Although the physical implementation of intelligent machines is probably quite different from that of human brains, an in-depth understanding of the human brain’s basic working rules is still an often indispensable requirement when it comes to designing machines that use AI. Built on various efforts, granular computing slowly arises as a suitable candidate in fulfilling the requirement for understanding the genuine human intelligence. The core idea of granular computing is inspired by humans’ capacity to process information in a multi-level granular manner. The foundations of granular computing can be traced back to the renowned mereological theory of things. Granular computing is made possible by breakthroughs in AI, fuzzy sets, and rough sets. Granular computing is helping machines better imitate humans problem solving capacity.
3.2 Upsetting Fact: Gradual Commencing Ideology

The 4IR is gradually introducing a shift in the way in which production in the economy is conducted. Consequently, new jobs that are significantly different from those that currently exist will be created. Accordingly, the skills set that will be required in the new economic paradigm will also need to change. Thus, the new skills set will be driven by the 4IR and drive the new economic paradigm. However, training and employment systems are currently structured in such a way that people spend their first twenty five years training for jobs and spend the rest of their lives working. This is starting to change so that individuals continue to be trained and learn for the rest of their lives, which means that lifelong learning will no longer be reserved for the ambitious but will be a common feature required in every worker. However, this transformation is not easily achievable since everyone is a victim of a subtle force: lag. In the 4IR, lag is can be perceived as obsolesces, because most people who fall behind may feel that they will not be able to catch up. Some of them pretend to be adaptable by adopting new technologies and strategies early.

In this regard, the higher education sector has to be responsive to this shift by not only adopting several new technological developments (e.g., digital open courseware and online educational resources), but also acknowledging the achievement gap – a disparity exhibited by different student groups in terms of enrolment and academic performance. In the 4IR, university graduates must be significantly different from those of yesteryear. Any new training paradigm developed by higher education institutions needs to show a reasonable balance between two factors, namely, time-to-adopt (technology related elements) and time-to-adaption (human related elements).

4. Minting An “ADAPTIVE” Solution

The end result of the three previous revolutions, for countries that were able to benefit from them, was a broadened provision of social services such as health-care, education etc. for their populations. This was as the outcome of an increase in economic productivity (more resources to distribute amongst the population) and a more efficient distribution of the resources. Thus, it is expected that the South African higher education sector will both be a beneficiary and a driver of the 4IR. As such, this education sector is expected to use the 4IR as means to overcome some of the challenges that it is currently facing. These challenges include, but are not limited to: Broadening access to higher education for South Africans living in poverty; a decline in state funding for higher education; creating a larger pool of next generation academics and improving the quality of higher education offered in the South African tertiary institutions. In the midst of these obstacles, the higher education system has to grapple the notion of creating the future workforce. Indeed, the conjecture is that the 4IR will have a positive impact on all dimensions of higher education. To meet this expectation, we propose an “ADAPTIVE” solution in this section, which covers the factors of accessibility, digital-literacy, acceleration, pan-regionalization, transformation, inclusiveness, vision, and engagement. The “ADAPTIVE” solution is presented in the following subsections largely determined by the alphabetical appearing sequence (acronym); however, some important overlapping themes are addressed across subsections. Although the University of Johannesburg (UJ) (UJ, 2017c) is intensively used (accompanied by other South African universities occasionally) for illustrative purpose, the scope and boundary of “ADAPTIVE” is by no means limited to any specific higher education institution or scenario.

4.1 Accessibility

From a historical viewpoint, the developmental cycle of higher education has gone through elite, mass, and post-mass stages (Shin, Postiglione, & Huang, 2015). With the forthcoming 4IR, the
higher education system is expected to enter its next stage, i.e., a scheme of universal education that intends to keep the “whole population” adaptable to dramatic societal and technological changes (Lee, 2015). Our first “ADAPTIVE” factor, accessibility, is thus selected to address the issues that many modern higher education institutions are currently facing. The following two practices expound how UJ is striving to achieve this goal.

4.1.1 Accessible Environment

As more and more universities embrace strategic plans that assimilate digital technology and introduce more active learning in traditional lecture halls, they have also reconfigured their physical surroundings to spur these teaching and learning shifts. Educational arrangements are being adjusted to encourage project-based interactions that take various factors (e.g., mobility, flexibility, and multi-device usability) into account. Among myriads of re-designing and planning activities, educational practitioners should also acknowledge the importance of offering disabled students equal and integral access to higher education (Becker et al., 2017; Hartrey, Denieffe, & Wells, 2017; Mara, 2014).

At UJ, we fully recognise the central role of addressing disability in achieving our transformative goals and aspirations to offer full access to higher education. As such, all issues related to disability receive equal consideration from the perspectives of both UJ’s policy and broader institutional mandate. In addressing disability, UJ operates through an holistic approach that emphasises the following: (1) a continued improvement of disability-friendly infrastructure (e.g., the availability of assistive devices); and (2) through the adaptation to pedagogic approaches that support diverse learning needs (e.g., curriculum design, living environment, sporting facilities, online systems, and technological settings) in order to support diverse learning needs in a reasonably accommodating and practical manner (UJ, 2015).

4.1.2 Accessible Curriculum

In the era of the 4IR, lifelong learning becomes a necessity for humans to compete with machines (Anonymous, 2013; Grip & Smits, 2012; Sledge & Fishman, 2014). Therefore, students (or more precisely people) should be capable of learning and working anywhere, with uninterrupted access to study materials, and keeping their peers within reach. Higher education institutions thus need to make a great leap in creating more platforms for students and faculty to be collaborative and productive (Becker et al., 2017). With this understanding, the Executive Leadership Group of UJ has recently made the pioneering decision to form a partnership with a leading international online education provider company to enrich curriculum offerings. Several pressing areas linked to the 4IR (e.g., cyber-citizenship) are under careful consideration (UJ, 2015).

4.2 Digital-savvy

The 4IR is characterized by wide spread advancement in digital technologies. Although the ubiquity of these technological and digital tools is already well documented, their usefulness and effectiveness is not yet clear. If those in possession of these new technologies cannot generate a meaningful use of them, then their spread is will have less positive impact (Grosseck, 2009; Kerawalla, Minocha, Kirkup, & Conole, 2009; Kukulska-Hulme, 2012; Tess, 2013). Our second “ADAPTIVE” factor – digital-savvy is thus chosen to address this often overlooked issue by many modern higher education institutions and invention workshops. The following two practices elaborate how UJ is exerting itself towards mitigating the negative side effects.

4.2.1 Digital Fluency
The workforce for 4IR is expected to be digital-savvy and seamlessly work with different media sources as well as novel technologies. An essential factor for cultivating a desired level of digital fluency is to recognize that superficial knowledge of a certain device or software is far from enough; students and faculty must possess the ability to make connections and perceive implications among the tools they use and their intended outputs. The accumulated know-how and the resultant competence of leveraging technology in inventive means will allow people to quickly adapt from one scenario to another. The ownership of this campaign must be shared and sustained by all divisions within an institution, given that digital fluency affects almost every aspect of modern teaching and learning (Gikas & Grant, 2013). Bearing this in mind, UJ has been actively developing a rich collection of digital information resources and initiating various online presentations of electronic books throughout the past decade. In order to cope with the trend of high penetration rate of mobile technologies among students and staff, the functionality of our uLink (a primary portal for students and staff) has been upgraded to accommodate email and mobile registration, and provide a new interface - uConnect. In addition, a series of efforts were made to release the newest version of UJ’s App – uGo (UJ, 2015). Apart from these, a lab under the Centre for Academic Technologies (CAT) was also established to foster innovation in teaching and learning, e.g., developing media artefacts that facilitate one-on-one collaborative and interactive teaching and learning.

4.2.2 Digital Literacy

For people to succeed in the 21st workplace and beyond, innovative and productive technology usage that encompasses modern practices is vital. The importance of digital literacy lies in that it transcends the conventional technological skill-gaining process by offering a better understanding of digital surroundings, which in turn, will equip people with an intuitive adaptability to new contexts and the ability to coordinate creatively with others (Becker et al., 2017). To address this issue, UJ offers a set of in-depth digital literacy training sessions to first year students. In response to the ever-increasing demand for these sessions, the following strategy was prepared and conducted: Standardisation of Library Information Literacy modules that cover the fundamental knowledge to make use of the library via textual display or video interaction (UJ, 2015).

Meanwhile, UJ reached a three-year collaboration agreement with the City of Johannesburg Metropolitan Government. Under the Digital Ambassadors programme, approximately 3000 entrepreneurial youths from across the City of Johannesburg received dedicated training at the UJ via an open-sourced, cloud-based learning management system. Over a period of 18 months, the project deployed successful candidates across the Johannesburg city area to promote digital literacy among local residents to facilitate the use of various online tools, and enable personalized benefits for their career development (UJ, 2015).

4.3 Acceleration

Nowadays, new knowledge is generated and accumulated every day at an astonishing rate. Under this circumstance, it is necessary to nurture a novel breed of alternative educational modes. For instance, developing cost-efficient, shorter, weight-reduced, content-wide, and diverse learning modules (Kamernetz, 2017; Pucciarelli & Kaplan, 2016). In the hypercompetitive environment that we face with the 4IR, accelerated learning and training are paramount (Brown, 2013; Sledge & Fishman, 2014). Therefore, our third “ADAPTIVE” factor entails acceleration with the goal of eliminating the mismatch between demand and supply, i.e., the heads that employers are eagerly
hunting for and the mind-sets that students have forged upon graduation. The following two practices demonstrate how UJ is accelerating itself in accomplishing this transmutation.

4.3.1 Accelerated Learning

To meet such pressing needs, UJ has designed a set of short learning programmes (SLPs) to acquaint participants with the new thinking methods in several fast-growing fields. In its essence, a SLP has a certain amount of credit values (e.g., less than 120 credits), it lasts no more than six months in average, and is offered by various accredited content providers (inward or outward) in the target field. In addition, statistical results showed that the number of Continuous Professional Development (CPD) programs for accreditation from different service providers in South Africa have increased (UJ, 2015).

By now, UJ has over 200 SLPs available within 9 faculties all year round. These courses include both face-to-face and e-learning components and are catered to both national and international participants. For example, UJ has partnered with several organizations such as the United Nations Economic Commission for Africa (UNECA), the Business Communication and Writings for Intergovernmental Professionals (BCWIP) course, the UJ International Office for the University of Johannesburg English Language Programme (UJELP), and Cornell University to establish a short learning program in law. Overall, SLPs offer alumni, students and staff the prospect to enhance their knowledge and develop a culture of lifelong learning.

4.3.2 Accelerated Profession Development

The insistence on introducing more and more hands-on, technology-assisted and content-tailored learning activities has affected entire operational systems of many universities, specifically teaching practices. The traditional image of a university instructor was that of a sage enlightening the audience. However, with regular collaboration, interaction and innovation among students, instructors have re-defined themselves as guides, lightening on the side. Under this new normal, students need professional mentors and coaches who join them to explore new front-lines, solve problems, and obtain concrete skills. To enable this, institutions must provide professional development support to their faculty. In light of this requirement, UJ implemented the AAMP (accelerated academic mentorship programme) in 2015. This initiative was designed to facilitate a transformation of the academic cohort, particularly in the development of a next generation of academic leaders. The specific emphasis of the AAMP initiative was placed on the establishment of a far more diverse and representative academic cohort.

4.4 Pan-regionalization

The consensus is that the landscape of higher education has been dramatically transformed during the last three decades, after the international dimension was added in the picture. As the world becomes more interrelated, globalized, and integrated; universities, businesses, and governments delve deeper into relationships and opportunities with their peers. The most recent effort has been to focus on regionalized institutional cooperation and exchange. In Africa, various regional organizations (e.g., African Union, Association of African Universities, and the Association for the Development of Education in Africa) are actively supporting the “African Higher Education Harmonization” movement. The growing significance of higher education pan-regionalization is testified by: (1) Several key establishments such as Pan-Atlantic University, Pan-African University, and Pan-European University; (2) numerous intra- and inter-regional alliances and agreements (Sledge & Fishman, 2014). Our fourth “ADAPTIVE” factor is thus dedicated to pan-regionalization.

Adopt Fast, Adapt Quick: Adaptive Approaches in the South African Context
Bo Xing, Lufuno Marwala, and Tshilidzi Marwala

Electronic copy available at: https://ssrn.com/abstract=3225325
In line with this trend, UJ has established an Institute for Pan-African Political Thought and Conversation, which is regarded as an activating agent that positioned UJ as the African epicentre for critical thinking and conversation. Meanwhile, UJ partnered with Nanyang Technological University in Singapore, to establish the Johannesburg Institute for Advanced Studies (JIAS). The JIAS is the first Pan-Africa-Pan-Asia establishment that aims to generate global advancement by offering spaces for leading world thinkers to deliver crucial reflections.

4.5 Transformation

In the 4IR, a cultural transformation is indispensable to promote progressive learning. In other words, the structure of institutions must be organized in a way that spurs the development and intersectionality of new concepts, popularizes successful cases inside or outside of the university enclosure, and rewards student-focused teaching innovation (Rider, Hasselberg, & Waluszewski, 2013). Accordingly, we choose transformation as our fifth “ADAPTIVE” factor. The following two aspects demonstrate how UJ is transforming itself inside out.

4.5.1 Institutional Culture

In 2015, UJ celebrated its 10th anniversary. When UJ was officially established (a merger of three renowned higher education institutions) in 2005, it immediately set out on a path to steer the institution towards a transformative goal. Among various achievements, UJ has been recognized as one of the strongest university brands within South Africa. Transformation at UJ is mainly coordinated by the designated Transformation Unit with incoming contributions from many other divisions and units. The five carefully selected motifs covered by the Transformation Plan clearly indicate the depth and breadth of UJ’s transformational determination – ranging from the underlying institutional culture through a shift towards active leadership and employment equity, to the outpaced academic performance and a mission that holds student success at its core (UJ, 2011).

In terms of institutional culture, UJ is committed to provide an empowering institutional environment and culture that promote diversity and consider the social, ethnic and class representation of the Johannesburg Metropolitan area. UJ’s students and staff are as diverse as the community it serves. A tenet that has been embedded into UJ’s institutional culture is: Innovation is best nourished within a university when people with diverse cultures, views, principles and attitudes can interact with one another with mutual understanding and a trustable spirit.

4.5.2 New Establishments

To cope with the potential disturbances brought by the 4IR, UJ has also set up several new establishments for students to better seize the emerging opportunities out of the university fence. On 1 July 2017, UJ officially launched its CBE (College of Business and Economics), which is a strategic combination of the different innovative strengths of two UJ faculties: The Faculty of Management and the Faculty of Economic and Financial Sciences. The aim of CBE is to position UJ as a leader in African commerce by providing an excellent, practice-driven commerce education. UJ also aims to satisfy South Africa’s need for additional medical practitioners and is working to establish the Johannesburg Medical School. After having successfully completed a series of benchmarking tests and in-depth analysis, UJ is positively approaching the goal of opening the doors of this medical school in the near future.

4.6 Inclusiveness
The 2017 Summer Davos Summit was recently held in China, and the key theme of this year’s forum was inclusiveness, that is, how the alleged 4IR can be inclusive and not generate a situation where everyone is on their own. Aligned to this broad consensus and UJ’s strategic goals of being globally excellent, the sixth “ADAPTIVE” factor is inclusiveness. This selection actually mirrors a perfect unification between various activities that UJ is living up to, in order to address the need for further inclusion and UJ’s unique institutional culture as reflected in its slogan: “Transformation through reconciliation – Together creating an inclusive and caring vibrant African city university.” In this regard, UJ has developed a new postgraduate diploma specialized in inclusive education. This new program offers the alternative of online distance-learning.

4.7 Visionary

Today, learning has moved on top of the business priority list in terms of sharpening skills, enlarging the leadership pipeline, and stimulating employee incentives. At times when every organization has to reassess its learning environment, a fresh vision needs to be implemented to create an optimized learning experience that touches everyone involved in a significant way (Deloitte, 2017). Chief learning officer (CLO) (Deloitte University Press, 2015) is thus no more an envisioned position in many businesses when it comes to creating a suitable learning culture. Motivated by this new consideration, the “ADAPTIVE” solution encompasses vision as its seventh factor. The following two movements shows how UJ is creating a vision for the future.

4.7.1 Internationalisation

The internationalisation division was formed to undertake a set of work that is central to UJ’s vision of becoming “an International University of choice, anchored in Africa, dynamically shaping the future”. Through internationalism, UJ is poised to strengthen its scholarly engagement and soft power to influence transformative agendas on national, regional, and continental levels. UJ will also integrate to the immense global higher education landscape. The Executive Management Committee ensures that UJ’s leadership fosters an environment where failure is normalized as part of the learning process. Some specific actions include recruiting students and faculty members from around the world, integrating them into UJ’s life, decolonizing the curriculum, developing international partnerships, bolstering international collaboration, and facilitating student and staff mobility to name a few.

4.7.2 Expanding the Academic Core

In addition to a normally practiced initiatives in contributing to an enriched learning experience through academic expansion, UJ’s Global Excellence and Stature Fund also injected valuable academic resources into several flagship programmes, like the newly established Institute for Intelligent Systems (IIS) (UJ, 2017a).

South African universities are already involved in AI research. The University of Pretoria (UP) established a Computational Intelligence Research Group, or CIRG based in the Department of Computer Science in 1998 (UP, 2017). Its areas of focus include swarm intelligence, evolutionary computation, neural networks, and artificial immune systems. These techniques have been applied in this group for optimization (e.g. scheduling), classification, prediction, data mining and clustering, image analysis, bioinformatics, and financial analysis problems. The University of Cape Town established the Robotics and Agents Lab (RAL) which focuses on developing autonomous robots (UCT, 2017). In 2011, the Centre for Artificial Intelligence Research (CAIR) was founded as a joint research centre between the University of KwaZulu-Natal and the Council for Scientific and
Industrial Research (CSIR) (CAIR, 2017). CAIR is a national research network that undertakes foundational, directed and applied research into numerous domains of Artificial Intelligence. In 2016, CAIR was expanded to include universities: the University of Cape Town, University of KwaZulu-Natal, North-West University, University of Pretoria and Stellenbosch University. CAIR is coordinated and funded by the CSIR Meraka Institute and Department of Science and Technology (DST) respectively. These initiatives still have to find a place in the broader curriculum of several South African institutions.

In this regard, UJ has emerged as a leader in re-engineering its curriculum so that it is centred on the 4IR (News 24, 2017). For example, UJ IIS focuses on Systems Intelligence and Cognitive Computing; Big Data Analytics and Deep learning; Digital Revolution and Machine learning; and Industrial application of Intelligent Systems and Cognitive Computing. UJ has committed to change the curriculum so that it ensures that graduates can participate in the 4IR. Such changes include ensuring that engineers understand social sciences and humanities (City Press, 2017). AI is a computerized process that mimics human behaviours in learning and solving problems. Accordingly, AI machines assume responsibilities in society that require them to be designed as moral entities. Therefore, an engineer and a computer scientist with a better understanding of the human moral framework (psychological and social) should be an average graduate from the higher education system. UJ also plans to introduce a degree in computer sciences and culture (City Press, 2017).

At the same time, by making full use of the Strategic Tutor Fund in combination with other specifically allocated resources, UJ has established one of the largest tutor support programmes in Africa. In stimulating the decolonisation movement, which is expected to redirect the knowledge flow from the developed world to the developing world, UJ has also appointed Nobel Laureate Prof. Wole Soyinka to actively lecture and engage in public discourse on global politics and development. Having Soyinka at the university is a clear signal that Africans have the capacity to contribute to the 4IR.

4.8 Engagement

It is widely agreed that organizations stand to harvest the benefits of having a highly committed workforce (von Kotze & Walters, 2017). However, this sought after commitment does not come from nowhere. Recently, both the business world and the academic research community have been particularly interested in taking advantage of engagement (the integration of several classical commitment and motivation theories) to harness the power of commitment (Bersin, 2015; Efron, 2017; Gagné, 2014; Roberts, in press). For instance, in Europe it is commonly believed that the universities’ remarkably affluent intangible resources (e.g., knowledge and expertise) can and have to be better exploited to make a more visible contribution towards economic development and society as a whole, aside from preparing graduates, and that a wider engagement movement could stimulate this (Whitemore, 2013). In line with the theme of this chapter, our “ADAPTIVE” formulation concludes by enfolding engagement. The following two types of engagements describe how UJ is deriving benefits from a broader engagement.

4.8.1 Community Engagement

As the third essential purpose of the university, community engagement (CE) is embedded in UJ’s mission as indicated by the powerful declaration “inspiring its community to transform and serve humanity through innovation and collaborative pursuit of knowledge”. There are four key values that UJ highlights, these are “imagination (developing a cosmopolitan identity), conversation (engaging meaningfully with one another), regeneration (developing sustainability through creative
contribution), and ethical foundation (participating in and helping the community)”. In addition, UJ recognises three types of CE, namely service learning, community-based research, and organized outreach. As an engaged university, UJ’s goal is to use its learning, teaching, research and CE capabilities to make a substantial impact to the social, economic and educational advancement of Johannesburg, the Gauteng province, South Africa and beyond. For example, over the last eight years, UJ has held an annual event aimed at women’s empowerment organizations. Other initiatives include the art for AIDS international organization workshop, the Nelson Mandela International Day initiative, and the UJ CE volunteer Champion programmes (UJ, 2014).

4.8.2 Stakeholder Engagement

Stakeholder engagement (SE) impacts on UJ’s reputation, both nationally and internationally. In this regard, UJ gathered media exposure, which promoted UJ’s experts as thought leaders, ensuring a broader diffusion of the UJ brand to improve the university’s profile. A number of international media houses, such as the BBC and CNN, have used UJ academics as experts. In addition, several initiatives have taken place within UJ in 2015, which included the Orange Carpet Open Day and the staff/teacher cupcake interactions programme. On the other hand, the Institutional Advancement Division manages most of the non-academic SE’s, some of them include 1001 Seats of Knowledge, the alumni relations event, the 555 project, and the “missing middle” initiative (UJ, 2015).

5. Minuting: A Case Study in the Context of South Africa

Historically, the economic performance of mining industries’ has been among the best in South Africa. Today, they continue to play an important role in promoting population growth, regional development, industrial diversification and growth, and research innovation. In terms of research innovation, in 2013, BASF Group launched a mining laboratory in Johannesburg to offer innovative solutions for mineral processing and extractive metallurgy. While South African universities and research organizations are focusing on projects that use satellite monitoring to detect the deformation of land surfaces, mitigate the environmental impact of quarrying, and support the rehabilitation of post-mining processes (Campbell, 2017).

The fourth revolutionary wave is under way. As several reports argue, it could change not only business, but many other sectors. It is a good opportunity for the mining industry to embrace new technologies, rethink their operating models and find new productivity gains. Under the 4IR, manufacturing is going digital and thus becoming smart. In light of this, a number of remarkable technologies like deep learning algorithms, mobile technologies, big data analytics, and automation are converging. For instance, engineers in big construction firms like Hitachi hosted a new project called “Smart Excavator” to deploy big data analytics to optimize the vehicle routing strategies at the coalface (Carter, 2016). Another example proposed by Sweden’s Lulea University of Technology is “smart Rockbolt”, which focuses on using sensors to measure both vibrations and strain (Carter, 2016). Indeed, mining’s future depends on technological innovation (both for deep learning and deep mining, see Fig. 3). Neal Froneman, the CEO of Sibanye Gold, South Africa’s largest producer of the metal, told the Financial Times on May 13 of 2017: “with conventional mining, the mining industry can look forward a sharp decline in gold production by 2019–20 and for mining to die out almost completely by 2033” (Cotterill, 2017).
6. Mingling “ADAPTIVE” Solution with Smart Mining

Mining the earth’s natural resources in addition to negative environmental impacts, is arduous, dangerous, and hazardous for people involved. Smart mining (with the ultimate goal of autonomous mining) is a viable alternative in the age of the 4IR. But, the automaton economy does not mean the complete elimination of humans from mining operations. A mine typically has a limited lifespan that ranges from short-term geographical investigation, possibility analysis, feasibility evaluation; through mid-term system design & construction, production initiation, equipment decommissioning; to long-term system disposition and environment protection. Thus, humans are still required at many stages of mining operations where the use of scientific methodologies is necessary to gain an in-depth understanding of the process. In this section, we demonstrate how the proposed “ADAPTIVE” solution is being implemented at UJ-Sibanye Mining Leadership programme (Sinha & Grobler, 2017) to equip students with the necessary skills to cope with the smart mining future.

6.1 Accessibility

In 2017, in line with the requirements from the South African DHET (Department of Higher Education and Training), CHE’s (Council of Higher Education) new HEQSF (Higher Education Quality Sub-Framework), and ECSA (Engineering Council of South Africa), the Faculty of Engineering and the Built Environment (FEBE) at UJ introduced South Africa’s first accredited Bachelor of Engineering Technology (BEngTech) degree and Built Environment Bachelors qualifications (FEBE, 2016e). The new 3-year BEngTech Degree is specifically structured (as shown in Fig. 4) and joint with the conventional Bachelor of Engineering (BEng) Degrees to cater for South Africa’s in-demand technology occupations.
Adopt Fast, Adapt Quick: Adaptive Approaches in the South African Context
Bo Xing, Lufuno Marwala, and Tshilidzi Marwala

At the same time, several new Master’s degrees were introduced as follows:

- Research-based degrees: Mineral Resource Governance, and Sustainable Mining;
- Coursework-based degrees: Structural Engineering, Sustainable Energy, and Sustainable Mining.

In terms of the enrolment in mining related disciplines, UJ has also witnessed a dramatic increase over the past decade (see Fig. 5).

Figure 4: The structure of UJ’s new engineering and built environment qualifications.

Figure 5: The UJ’s mining discipline: enrolment overview.
6.2 Digital-savvy

With the growing popularity of wearable technology, CPSs will become a new norm in the 4IR, elevating the role of numerical simulations in both education and practical applications. Among others, UJ has implementing wearable technology to provide an immersion experience. It is actively exploring the possibility of introducing virtual reality (VR) assistive devices to enhance undergraduate exposure and employability skills in mining-specific domains.

6.3 Acceleration

It is widely agreed that the pedagogical shift towards authentic learning (e.g., project-based, challenge-driven, competency-involved) can trigger students’ motivation to grasp wealthier hands-on, real-world experiences. As such universities have made active learning a priority over the outdated rote learning. Students are treated no more as passive participants and absorbers of knowledge. Instead, they stand at the centre of the stage as active contributors to the ecosystem of knowledge production and use. In other words, there is no need for students to wait until graduation to test their skills since they applied them through various innovative means (e.g., practicing, experiencing, building, challenging, contesting, and demonstrating). To meet this requirement, UJ has built a “mock mine” environment at its Doornfontein Campus, which includes a 180 meter long haulage connected with a 32 meter high elevator shaft and a workshop complex. Such emulated facility can simulate real mining conditions that offer students an authentic mining learning experience through practical engineering, construction, and observation methodology during laboratory and tutorial sessions (UJ, 2015). The mock mine, further enhance the students’ competitiveness by exposing them to other engineering disciplines (e.g., mechanical engineering, and electrical and electronic engineering).

In addition to its educational purposes, the mock mine is also used for applied research objectives; developing and verifying smart mining related technologies such as fibre-optical sensors, visible light and/or power line communications, indoor navigation techniques, and innovative urban mining mode (e.g., mine dumps and landfills).

6.4 Pan-regionalization

To increase UJ’s regional impact, it’s Faculty of Engineering and the Built Environment also enabled a number of collaborative Master’s Degrees with regional and international leading bodies:

- Master of Foundry Engineering: offered in collaboration with TU Berg Akademie Freiberg in Germany;
- Master of Mineral Governance: offered in collaboration with the African Institute for Economic Development and Planning (IDEP).

6.5 Transformation

As an affirmation of UJ’s strong research tradition, the South African NRF (National Research Foundation) has awarded several new research chairs to UJ, which deserve to be mentioned for the following reasons:

- UJ was awarded five new South Africa Research Chairs in 2015;
- UJ received the maximum that could be awarded within a particular year; and
• All five research chairs, including the industrial development chair, are held by UJ’s stellar woman academics.

In addition to these recognitions, the newly NRF funded Centre of Excellence of Integrated Mineral and Energy Resource Analysis (CIMERA) positions UJ as a leading institution in leveraging smart mining development. These transformative efforts have been fruitful. According to the recent QS World University Rankings by Subject, UJ has made a significant jump in its global ranking for mining engineering (Sinha & Grobler, 2017).

6.6 Inclusiveness

The transformation of both the mining industry landscape and the mining education system does not necessarily mean that the university has to leave any students behind. Conversely, UJ has experienced a steady growth in terms of high-achieving student enrolment and disadvantaged student enrolment (from the lowest South African quintile schools, i.e., quintiles 1 and 2), see Figs. 6 and 7, respectively.

Figure 6: The UJ’s mining discipline: access and excellence overview.

Figure 7: The UJ’s mining discipline: inclusiveness overview.
6.7 Visionary

According to National Academies of Sciences Engineering and Medicine (2017), the future economic growth and competitiveness of a country largely depends on its innovation capacity, which is mainly sourced from the new knowledge and trained graduates produced by universities. However, the highly complex technical and societal problems that countries encounter can no longer be effectively addressed by a conventional higher education model. The single university research group led by an individual main investigator is likely not going to keep pace with the large scale changes emerging in industry. Instead, these puzzles can only be dealt with properly when multiple institutions with different fields of expertise work collaboratively. The example of the Engineering Research Centre (ERC) in the United States is a positive example of the education opportunities that can be developed with Government-University cooperation.

Many such collaborative opportunities are emerging in South Africa. For example, to ensure that South African universities continue to be a source of innovation, economic advancement, and educational excellence, the Gauteng University Vice-Chancellors signed a memorandum of understanding (MoU) at UJ on 24 May 2017 with the Premier of Gauteng, South Africa. The UJ’s Vice-Chancellor together with Vice-Chancellors from other neighbouring universities have come into an agreement to form a partnership with the Gauteng Provincial Government through collaboration on several key areas such as energy, security, and environment sustainability (UJ, 2017b). It is too early to tell what impacts such collaborations will have, but the preparation is essential as the 4IR arrives in South Africa and around the world if we are to prepare a workforce of relevance.

6.8 Engagement

In partnering with the Department of Science and Technology (DST) via its Technology Innovation Agency (TIA), UJ has established a Process, Energy and Environment Technology Station (PEETS), which is committed to offer high-quality and professional engagement with stakeholders. Among different functionalities (e.g., training and demonstration, energy auditing, environmental impact assessment, etc.), PEETS’ main mission is to use suitable technological innovations to offer support to enterprise development in the energy and environment sectors.

Sibanye is an independent mining company based in South Africa, which holds and operates a portfolio of projects for high-quality gold and platinum group metals. Furthermore, Sibanye holds and manages significant extraction and processing facilities where gold-bearing ore is processed to yield gold. Sibanye is also currently investing in a number of long-term, sustainable organic projects. UJ is actively engaging with Sibanye to conduct mining related research and innovation.

To engage with students, the newly forged mining degrees are also explained (by their academic leaders) through videos posted on popular online sites for the students’ convenience. Some of them are listed as follows:

- **Bachelor of Engineering Technology Degree in Extraction and Physical Metallurgy:** (FEBE, 2016c)
- **Bachelor of Engineering Technology Degree in Mining Engineering:** (FEBE, 2016d)
- **Bachelor of Engineering Technology Degree in Industrial Engineering:** (FEBE, 2016a)
7. Conclusion

According to Visser (2002), human learning is related to human adaptive behaviour, which can be identified in at least four levels:

- **Level 1**: Pre-programmed and genetically transferable from one generation to another generation, e.g., fight and flight responses.
- **Level 2**: Inherited predisposition to acquire fundamental abilities, e.g., linguistic capability.
- **Level 3**: Commonly perceived learning level that involves deliberate acquisition of specific skills and knowledge. The outcome of this particular learning level may include motor skills, verbal abilities, knowledge acquisition, cognitive talent, and attitude capacity.
- **Level 4**: Transformed into a permanent disposition to interact with one’s surroundings. Learning at this level is no longer limited to acquiring certain skills or knowledge pieces.

It is thus argued by Visser (2001) that true lifelong learning can only be achieved when one reaches the fourth level of learning. However, since most people and societies have largely focused on the third level of learning, very little has changed over a long period of time. Now that the 4IR is about to change many parameters of human existence dramatically, human learning should be treated as a complex system in which adaptive behaviour is present in an integrated manner that comprises the four levels mentioned above. In this chapter, through the selected smart mining case, we emphasize how the 4IR and specifically deep learning technologies are changing not only the mining sector, but how learners are prepared to work in that sector. Through the “ADAPTIVE” strategy implemented in the UJ-Sibanye mining programme, we illustrate how universities can help society to respond to such radical and sudden changes by deploying pedagogy that yields creative thinkers with practical skills.

References

Anonymous. (2013). Lifelong learning: continuous training and development is the key to business success. *Development and Learning in Organizations*, 27(2), 23-25.

Barton, D., & Court, D. (2012). Making advanced analytics work for you. *Harvard Business Review*, 90(10), 78-83.

Becker, A., Cummins, S., Davis, M., Freeman, A., Hall, A., Giesinger, C., & V.Ananthanarayanan. (2017). NMC horizon report: 2017 higher education edition (pp. 1-60). 1250 Capital of Texas Hwy South, Building 3, Suite 400, Austin, TX 78746: The New Media Consortium, ISBN 978-0-9977215-7-7.

Bersin, J. (2015). Becoming irresistible: a new model for employee engagement. *Deloitte Review*, 16, 1-19.

Brown, J. S. (2013) Learning in and for the 21st century. *CJ Koh Professorial Lecture Series No. 4* (pp. 1-21). Singapore: A publication of the Office of Education Research, NIE/NTU, Singapore, ISSN 2251-3019.

Brynjolfsson, E., & McAfee, A. (2012). *Race against the machine: how the digital revolution is accelerating innovation, driving productivity, and irreversibly transforming employment and the economy*. Lexington, MA: Digital Frontier Press, ISBN 978-0-9847251-0-6.

CAIR. (2017). CAIR, retrieved from http://cair.za.net/, accessed on 25 July 2017.

Campbell, K. (2017). Space based: earth observation satellites starting to bring benefits to mining sector. *Mining Weekly*, 23, 10-11 & 68.

Carter, J. (2016). Deep learning: how the mining industry got smart, retrieved from http://www.techradarl.com/news/world-of-tech/deep-learning-how-the-mining-industry-got-smart-1322890, accessed on 23 July 2017.
Adopt Fast, Adapt Quick: Adaptive Approaches in the South African Context
Bo Xing, Lufuno Marwala, and Tshilidzi Marwala

City Press. (2017). retrieved from https://www.pressreader.com/south-africa/citypress/20170702/281655370094044, accessed on 25 July 2017.

Cotterill, J. (2017). Mining’s future depends on technological innovation, Financial Times, Saturday 13 May 2017, p. 2.

Deloitte. (2017). Rewriting the rules for the digital age: 2017 human capital trends report for South Africa (pp. 1-30): Deloitte Touche Tohatsu Limited.

Deloitte University Press. (2015). Global human capital trends 2015: leading in the new world of work. In J. Bersin, D. Agarwal, B. Pelster & J. Schwartz (Eds.), (pp. 1-112): Deloitte Development LLC., Deloitte University Press.

Efron, L. (2017). Purpose meets execution: how winning organizations accelerate engagement and drive profits. 711 Third Avenue, New York, NY 10017, USA: Bibliomotion, Inc., ISBN-13 978- 1- 138- 04909-3.

FEBE. (2016a). Dr Able Mashamba - Bachelor of Engineering Technology Degree in Industrial Engineering at UJ: The University of Johannesburg (retrieved from https://www.youtube.com/watch?v=UzetQwKRN0w, accessed on 25 July 2017)

FEBE. (2016b). Dr David Wilson - Mine Surveying Bachelor’s Degree at UJ: The University of Johannesburg (retrieved from https://youtube.be/VIPq7HXRHIs, accessed on 25 July 2017)

FEBE. (2016c). Dr Didier Nyembwe - Bachelor of Engineering Technology in Extraction and Physical Metallurgy: The University of Johannesburg (retrieved from https://www.youtube.com/watch?v=DF76Z3zx-aM&feature=youtu.be, accessed on 25 July 2017)

FEBE. (2016d). Dr Steven Rupprecht - Engineering Technology (BEngTech) Degree in Mining Engineering: The University of Johannesburg (retrieved from https://www.youtube.com/watch?v=ct25c6yquaM&feature=youtu.be1of37/22/17, accessed on 25 July 2017)

FEBE. (2016e). The First in SA to roll out accredited BEngTech and built environment Bachelors qualifications: The University of Johannesburg (retrieved from https://www.youtube.com/watch?v=nvqeeVMTSSg, accessed on 25 July 2017).

Frey, C. B., & Osborne, M. A. (2013). The future of employment: how susceptible are jobs to computerisation? retrieved from www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf, accessed on 22 July 2017.

Gagné, M. (2014). The oxford handbook of work engagement, motivation, and self-determination theory. 198 Madison Avenue, New York, NY 10016: Oxford University Press, ISBN 978-0–19–979491–1.

Gikas, J., & Grant, M. M. (2013). Mobile computing devices in higher education: student perspectives on learning with cellphones, smartphones & social media. Internet and Higher Education, 19, 18-26.

Gopalkrishnan, V., Steier, D., Lewis, H., Guszcza, J., & Lucker, J. (2013). Big data 2.0: new business strategies from big data Deloitte Review, 12, 1-17.

Grip, A. d., & Smits, W. (2012). What affects lifelong learning of scientists and engineers. International Journal of Manpower, 33(5), 583-597.

Grosseck, G. (2009). To use or not to use web 2.0 in higher education? Procedia Social and Behavioral Sciences, 1, 478-482.

Hartrey, L., Denieffe, S., & Wells, J. S. G. (2017). A systematic review of barriers and supports to the participation of students with mental health difficulties in higher education. Mental Health & Prevention, 6, 26-43.

Hobbs, J. R. (1985). Granularity. Paper presented at the Proceedings of the 9th International Joint Conference on Artificial Intelligence, 18-23 August 1985, Los Angeles, California, pp. 432-435.

IBM. (2014). Understanding big data so you can act with confidence (pp. 1-16). Software Group, Route 100, Somers, NY 10589: IBM Corporation.

Kamenetz, A. (2017). The $10,000 business degree, retrieved from www.fastcompany.com/3015844/the-10000-business-degree, accessed on 26 July 2017.

Kerawalla, L., Minocha, S., Kirkup, G., & Conole, G. (2009). An empirically grounded framework to guide blogging in higher education. Journal of Computer Assisted Learning, 25, 31-42.

Kukulska-Hulme, A. (2012). How should the higher education workforce adapt to advancements in technology for teaching and learning? Internet and Higher Education, 15, 247-254.
Lee, M. N. N. (2015). Higher education in Malaysia: national strategies and innovative practices. In J. C. Shin, G. A. Postiglione & F. Huang (Eds.), Mass Higher Education Development in East Asia: Strategy, Quality, and Challenges. Cham Heidelberg New York Dordrecht London: Springer International Publishing AG Switzerland, ISBN 978-3-319-12672-2, Chapter 6, pp. 105-118.

Manyika, J., Chuí, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: the next frontier for innovation, competition, and productivity (pp. 1-156): McKinsey Global Institute

Mara, D. (2014). Higher education for people with disabilities - Romanian education experience. Procedia - Social and Behavioral Sciences, 142, 78-82.

Marwala, T. (2009). Computational intelligence for missing data imputation, estimation and management: knowledge optimization techniques. New York, USA: IGI Global, ISBN 978-1-60566-336-4.

Marwala, T. (2010). Finite-element-model updating using computational intelligence techniques: applications to structural dynamics. London, UK: Springer-Verlag, ISBN 978-1-84996-322-0.

Marwala, T. (2012). Condition monitoring using computational intelligence methods: applications in mechanical and electrical systems. London: Springer-Verlag, ISBN 978-1-4471-2379-8.

Marwala, T. (2013). Economic modeling using artificial intelligence methods. Springer London Heidelberg New York Dordrecht: Springer-Verlag London, ISBN 978-1-4471-5009-1.

Marwala, T. (2014). Artificial intelligence techniques for rational decision making. Springer Cham Heidelberg New York Dordrecht London: Springer International Publishing Switzerland, ISBN 978-3-319-11423-1.

Marwala, T. (2015). Causality, correlation and artificial intelligence for rational decision making. 5 Toh Tuck Link, Singapore 596224: World Scientific Publishing Co. Pte. Ltd, ISBN 978-9-81463-086-3.

Marwala, T., Boukalibet, I., & Adhikari, S. (2017). Probabilistic finite element model updating using Bayesian statistics: applications to aeronautical and mechanical engineering. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons, Ltd, ISBN 978-1-119-5301-6.

Marwala, T., & Hurwitz, E. (2017). Artificial intelligence and economic theory: skynet in the market. Gewerbestrasse 11, 6330 Cham, Switzerland: Springer International Publishing AG, ISBN 978-3-319-66103-2.

Marwala, T., & Lagazio, M. (2011). Militarized conflict modeling using computational intelligence. London, UK: Springer-Verlag, ISBN 978-0-85729-789-1.

National Academies of Sciences Engineering and Medicine. (2017). A new vision for center-based engineering research. Washington, DC: The National Academies Press, ISBN-13 978-0-309-45905-1.

News 24. (2017). Forging a new academic path, retrieved from http://www.news24.com/SouthAfrica/News/newsmaker-forging-a-new-academic-path-20170702-2, accessed on 25 July 2017.

O’Sullivan, A., Sheffrin, S. M., & Perez, S. J. (2014). Macroeconomics: principles, applications, and tools (8th ed.). One Lake Street, Upper Saddle River, New Jersey 07458, USA: Pearson Education, Inc., ISBN 13 978-0-13-294887-6.

Oguro, K. (2016). Big data - key to the 4th industrial revolution. Japan SPOTLIGHT, September / October, 24-27.

Phillips, J. J., & Phillips, P. P. (2015). High-impact: human capital strategy: addressing the 12 major challenges today's organizations face. 1601 Broadway, New York, NY 10019: American Management Association, ISBN 978-0-8144-3606-6.

Pucciarelli, F., & Kaplan, A. (2016). Competition and strategy in higher education: managing complexity and uncertainty. Business Horizons, 59, 311-320.

Rider, S., Hasselberg, Y., & Waluszewski, A. (2013). Transformations in research, higher Education and the academic market: the breakdown of scientific thought: Springer Science+Business Media Dordrecht, ISBN 978-94-007-5248-1.

Roberts, K. J. (in press). Community engagement in Indian higher education: financial and partnership trends. International Journal of Educational Development, http://dx.doi.org/10.1016/j.ijedudev.2017.03.005.

Shin, J. C., Postiglione, G. A., & Huang, F. (2015). Mass higher education development in East Asia: strategy, quality, and challenges. Cham Heidelberg New York Dordrecht London: Springer International Publishing AG Switzerland, ISBN 978-3-319-12672-2.

Adopt Fast, Adapt Quick: Adaptive Approaches in the South African Context
Bo Xing, Lufuno Marwala, and Tshilidzi Marwala
Sinha, S., & Grobler, H. (2017). UJ-Sibanye engineering "mining leadership". Johannesburg, South Africa, The University of Johannesburg, retrieved from https://goo.gl/OPbzdI, accessed on 25 July 2017.

Sledge, L., & Fishman, T. D. (2014). Reimagining higher education: how colleges, universities, business, and governments can prepare for a new age of lifelong learning (pp. 1-40): Deloitte Development LLC., Deloitte University Press.

Tess, P. A. (2013). The role of social media in higher education classes (real and virtual) – a literature review. *Computers in Human Behavior, 29*, A60-A68.

The Economist. (2014). Technology quarterly: ghost ships. *The Economist, 410*(8877), 3-4.

The Economist. (2017a). Fuel of the future. *The Economist, 6th-12th May 2017*, 423, 19-22.

The Economist. (2017b). The world's most valuable resource. *The Economist, 6th-12th May 2017*, 9.

Tsvetkov, P. V. (2011). Nuclear power – control, reliability and human factors. Janeza Trdine 9, 51000, Rijeka, Croatia: InTech, ISBN 978-953-307-599-0.

UCT. (2017). RARL, retrieved from http://www.rarl.uct.ac.za/, accessed on 25 July 2017.

UJ. (2011). Institutional transformation plan. Johannesburg, South Africa, : The University of Johannesburg, retrieved from http://www.UJ.ac.za, accessed on 23 July 2017.

UJ. (2014). Community engagement report. Johannesburg, South Africa, : The University of Johannesburg, retrieved from http://www.UJ.ac.za, accessed on 23 July 2017.

UJ. (2015). Annual report 2015. Johannesburg, South Africa, : The University of Johannesburg, retrieved from https://www.UJ.ac.za, accessed on 23 July 2017.

UJ. (2017a). Dismantling data obstacles with intelligent systems for national benefit, retrieved from https://www.UJ.ac.za/newandevents/Pages/Dismantling-data-obstacles-with-intelligent-systems-for-national-benefit.aspx, accessed on 25 July 2017.

UJ. (2017b). Gauteng University Vice-Chancellors partner with Government to strengthen research and innovation: The University of Johannesburg (retrieved from https://www.UJ.ac.za/newandevents/Pages/gauteng-university-vice-chancellors-partner-with-government-to-strengthen-research-and-innovation.aspx, accessed on 25 July 2017)

UJ. (2017c). University of Johannesburg Corp Video 2017: The University of Johannesburg (retrieved from https://www.youtube.com/watch?v=QF2hDivUhos, accessed on 25 July 2017)

UP. (2017). CIRG, retrieved from http://cirg.cs.up.ac.za/visitPage.php?pageID=1701, accessed on 25 July 2017.

Visser, J. (2002). The role of human learning in the information age: challenges and opportunities for Latin America and the rest of us. In V. Almeida, R. Baeza-Yates & M. I. Camarena (Eds.), *The Role of Humanity in the Information Age: an Ibero-American Perspective* (pp. 1-34).

von Kotze, A., & Walters, S. (2017). Forging solidarity: popular education at work. P.O. Box 21858, 3001 AW Rotterdam, The Netherlands: Sense Publishers, ISBN 978-94-6300-922-5.

Wang, L., & Wang, G. (2016). Big data in cyber-physical systems, digital manufacturing and industry 4.0. *International Journal of Engineering and Manufacturing, 4*, 1-8.

Whittemore, S. (2013). The JISC business and community engagement programme. In D. Baker & W. Evans (Eds.), *Trends, Discovery, and People in the Digital Age*, . Hexagon House, Avenue 4, Station Lane, Witney, Oxford OX28 4BN, UK: Chandos Publishing, ISBN 978-1-84334-723-1, Chapter 12, pp. 185-203.

Xing, B., & Gao, W.-J. (2014). *Innovative computational intelligence: a rough guide to 134 clever algorithms*. Cham Heidelberg New York Dordrecht London: Springer International Publishing Switzerland, ISBN: 978-3-319-03403-4.

Xing, B., & Marwala, T. (2018). *Smart maintenance for human–robot interaction: an intelligent search algorithmic perspective*. Gewerbestrasse 11, 6330 Cham, Switzerland: Springer International Publishing AG, ISBN 978-3-319-67479-7.

Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., & Vasilakos, A. V. (2016). Big data: from beginning to future. *International Journal of Information Management, 36*, 1231-1247.

Adopt Fast, Adapt Quick: Adaptive Approaches in the South African Context

Bo Xing, Lufuno Marwala, and Tshilidzi Marwala