Long non-coding RNA BRE-AS1 inhibits the proliferation, migration, and invasion of cancer cells in triple-negative breast cancer and predicts patients’ survival by downregulating miR-21

Jianchao Gao\(^1\), Sisi Wang\(^2\), Zhisheng Zhang\(^1\) and Jun Li\(^3\)*

Abstract

Background: BRE-AS1 is a recently identified tumor suppressor in non-small cell lung cancer. Its role in other human diseases remains elusive.

Methods: Differential expression of BRE-AS1 in triple-negative breast cancer (TNBC) patients (\(n = 74\), patient group) and healthy volunteers (\(n = 58\), control group) was studied with RT-qPCR. The direct interaction between BRE-AS1 and premature microRNA-21 (miR-21) was assessed by RNA pull-down assay. The interactions among BRE-AS1, miR-21 and PTEN were evaluated by overexpression assays. CCK-8 assay and Transwell assay were used to evaluate cell behaviors.

Results: BRE-AS1 was downregulated in TNBC, while miR-21 was highly expressed in TNBC. Low expression levels of lncRNA BRE-AS1 and high expression levels of miR-21 were significantly correlated with unfavorable survival outcomes. BRE-AS1 and miRNA-21 were inversely correlated across TNBC samples, not control samples. BRE-AS1 decreased miR-21 expression and increased PTEN expression while miR-21 showed no role in BRE-AS1 expression. RNA pull-down assay illustrated that BRE-AS1 may sponge premature miR-21 to suppress its maturation. Overexpression of BRE-AS1 decreased cell behaviors, while overexpression of miR-21 promoted cell behaviors. MiR-21 suppressed the role of BRE-AS1 in cancer cell behaviors.

Conclusion: Therefore, BRE-AS1 may inhibit TNBC by downregulating miR-21.

Keywords: Triple-negative breast cancer, lncRNA BRE-AS1, miR-21, Survival
Background
Breast cancer in 2018 caused 11.6% of all new cancer cases and accounted for 6.6% of cancer deaths [1]. Triple-negative breast cancer (TNBC) is a unique subtype of breast cancer characterized by the lack of ER, PR, and HER2 [2]. The prognosis of TNBC patients is usually poor, mainly owing to the high prevalence of distal metastasis caused by late diagnosis and cancer therapeutic resistance [3–5].

Non-coding RNAs (ncRNAs) are RNA transcripts with limited protein-coding capacity [6]. ncRNAs are key players in human diseases [7]. Long non-coding RNAs (lncRNAs) composed of more than 200 nucleotides and affect protein synthesis and other non-coding RNA genes, such as miRNAs, to locally or systemically regulate gene expression network, thereby participating in diverse biological processes, such as the tumorigenesis of breast cancer and many other cancers [8].

BRE-AS1 is a recently identified tumor inhibitor in non-small cell lung cancer and prostate carcinoma [9, 10]. Our preliminary sequencing analysis revealed the inverse correlation between BRE-AS1 and miR-21, which promotes TNBC by increasing both tumor growth and metastasis by interacting with multiple signaling pathways [11]. We demonstrated that BRE-AS1 inhibited TNBC potentially by downregulating miR-21.

Methods
Research subjects
TNBC patients (n = 74, patient group, 47.3 ± 5.1 years) and volunteers (n = 58, control group, 48.5 ± 6.0) were enrolled at the Affiliated Cancer Hospital of Nanjing Medical University from March 2013 to July 2015. All patients were Han female Chinese. Patients’ inclusion criteria: 1) new TNBC cases confirmed by pathological examinations; 2) patients completed treatment in Yinzhou No.2 Hospital of Ningbo and completed 5 year-follow-up. The 74 TNBC patients were composed of 18, 23, 16, and 17 cases at stage I–IV, respectively. No significant differences in age, smoking and drinking habits, BMI, and other basic clinical data were found between the patient group and the control groups (Table 1). The Ethics Committee of aforementioned hospital approved the present study. Patients and controls provided informed consent.

Specimens and cell lines
All patients and controls donated sufficient volume of blood (3–5 ml) for the preparation of plasma, which was performed by transferring to EDTA tubes and centrifugation for 10 min at 1200 g.
Human TNBC cell lines BT-549 and HCC70 (ATCC) were used all in vitro cell experiments. Cells were cultivated following the instructions from ATCC.

Real-time quantitative PCR (RT-qPCR)
RNAzol (Genecopoeia) was used for RNA isolation and other processes to improve purity and quality. Following cDNA preparations with 3000 ng total RNA as template, qPCRs were performed to determine the expression of BRE-AS1, PTEN, and miR-21 with GAPDH and 18S endogenous controls, respectively. PCRs were conducted on ABI 7500 System. PCR primers of lncRNA BRE-AS1, miR-21, and GAPDH and 18S endogenous controls were provided by GenePharma (Shanghai, China). Ct values of PTEN, miR-21 and BRE-AS1 were normalized to corresponding internal controls using 2^(-ΔΔCT) method.

Cell transfection
MiR-21 and NC miRNA mimics were from Sigma-Aldrich (St. Louis, MO, USA). BRE-AS1 expression vector (pcDNA3.1) was provided by Sangon (Shanghai, China). Lipofectamine 2000 reagent (Invitrogen) was used for all transfections with vectors and miR-21 at the dose of 10 nM and 40 nM, respectively. Vectors of miRNAs were first mixed with lipofectamine 2000 reagent to

| Table 1: Comparison of basic clinical data between TNBC and Control groups |
|-----------------|-----------------|-----------------|-----------------|
| | TNBC | Controls | P values |
| Cases | 74 | 58 | |
| Age (years) | 47.3 ± 5.1 | 48.5 ± 6.0 | p > 0.05 |
| Smoking | 30 (40.5%) | 24 (41.4%) | p > 0.05 |
| Drinking | 28 (37.8%) | 20 (34.5) | p < 0.05 |
| BMI | 22.3 ± 1.3 | 21.9 ± 1.2 | p < 0.05 |
| Stage | | | |
| I | 18 | NA | NA |
| II | 23 | NA | NA |
| III | 16 | NA | NA |
| IV | 17 | NA | NA |

Gao et al. BMC Cancer (2021) 21:745 Page 2 of 10
form transfection mixture, followed by incubation with cells for 6 h. After that, Transfection with empty vectors or miRNA negative control was used as negative control.

RNA pull-down assay

Biotinylated premature miR-21 (Bio-premature miR-21) and U6 (Bio-U6) purchased from Invitrogen Shanghai, China were transfected into cells with BRE-AS1 expression vector. Cell culture was performed for 48 h, followed by cell lysis preparation. Biotinylated RNAs were then separated using streptavidin magnetic beads (Invitrogen). After that, the expression of BRE-AS1 was analyzed by RT-qPCR.

RIP assay

Ago2-RIP assay was conducted in BT-549 and HCC70 cells using Ago2 antibody or normal IgG-conjugated Protein A resin (Sigma-Aldrich, USA). Cells were lysed with RIP buffer containing magnetic beads, which were conjugated with an antibody against IgG (Millipore Sigma) or argonaute2 (Ago2; Millipore Sigma) at 4 °C overnight. The abundances of BRE-AS1 or miR-21 in the precipitates were determined by qRT-PCR.

Cell proliferation assay

Cells were subjected to cell proliferation assay in cases that the expression rate of both lncRNA BRE-AS1 and hsa-miR-21 was higher than 200%. Cell suspensions were prepared and cell density was adjusted to 3 × 10⁴ cells/ml. Cell culture was performed with a 96-well plate, and measurement of OD values at 450 nm was performed 24, 48, 72 and 96 h CCK-8 solution was added to 10% at 2 h before the measurements.

Colony formation assay

BT-549 and HCC70 cells (1 × 10³) were transferred to 6-well plates. Colony formation was checked after 2 weeks of cell culture. Staining with 1% crystal violet (Sigma-Aldrich) was used to visualize cell colonies.

Cell cycle and apoptosis analysis

Cells were seeded into 6-well plates at a density of 3 × 10⁵ cells/well and incubated at 37 °C overnight. The adherent cells were fixed in 70% cold ethanol and incubated at −20 °C overnight. The cells were stained with Propidium Iodide (PI) following the manufacturer’s instructions and cell cycle distribution was evaluated by flow cytometry. For evaluation of apoptosis, cells were cultured in 2 ml culture medium, seeded into in 6-well plates at a density of 3 × 10⁵ cells/well, and incubated at 37 °C for 18–24 h. Next, cells were washed twice in cold PBS and re-suspended in 100 μl binding buffer (BD Pharmingen), followed by staining with 5 μl PI solution and 5 μl Annexin V-FITC and incubated for 20 min in the dark. Flow cytometry analysis (FACS Calibur, BD Biosciences, San Jose, CA, USA) was performed within 30 min after staining. The apoptotic rate was calculated using the following formula: Apoptotic rate = Early apoptotic (Q4) + late apoptotic (Q2).

Western blot analysis

RIPA and BCA assays (Invitrogen) were used for protein isolation and quantifications. Protein samples were denatured and separated by 8% SDS-PAGE gels. After transfer to PVDF membrane and blocking, the membrane was incubated with primary antibodies GAPDH (1:1800, ab22555, Abcam), PTEN (1:1800, ab157087, Abcam), Ki67 (1:1000; ab16667; Abcam), Bcl-2 (1:2000, ab182858, Abcam), Bax (1:2000, ab32503, Abcam), cleaved-caspase-3 (ab2302, 1 μg/ml, Abcam), anti-cleaved-caspase-9 (ab2324, 1 μg/ml, Abcam), followed by incubation with secondary antibody goat HRP (IgG) (1:2000; ab31392; Abcam). ECL (Thermo Fisher Scientific) and Image J v1.46 software were used for signal production and data normalization, respectively.

Transwell migration and invasion assay

Cells were subjected to in vitro cell migration and invasion assay if expression rates of both BRE-AS1 and hsa-miR-21 were higher than 200%. Cells in serum-free medium was added to the upper chamber. FBS was added to 10% in lower chamber to induce cell movement. Staining with 0.5% crystal violet (Sigma-Aldrich) for 15 min was performed to make the cells visualizable. It is worth noting that Matrigel (Millipore) was used to coat membranes before invasion assay.

Statistical analysis

Paired t test was applied to compare two independent groups. Patients were divided into high (n = 42) BRE-AS1 level groups and high (n = 34) and low (n = 40) miR-21 level groups according to Youden’s index. Survival curves were compared by log-rank t-test. Age, BMI and gene expression levels were compared by ANOVA Tukey test was used to compare multiple groups. p < 0.05 was statistically significant.

Results

BRE-AS1 and miR-21 showed opposite expression patterns in TNBC

The expression levels of lncRNA BRE-AS1 and miR-21 in plasma of both TNBC patients and healthy participants were analyzed with Expression levels of lncRNA BRE-AS1 were significantly decreased in TNBC patients (Fig. 1a, p < 0.05). In contrast, the expression levels of
miR-21 were significantly higher in TNBC patients than that in healthy participants (Fig. 1b, \(p < 0.05 \)).

Low expression levels of lncRNA BRE-AS1 and high expression levels of miR-21 were significantly correlated with poor survival.

Patients were divided into high (\(n = 32 \)) and low (\(n = 42 \)) lncRNA BRE-AS1 level groups, and high (\(n = 34 \)) and low (\(n = 40 \)) miR-21 level groups according to Youden’s index. Based on follow-up data, the Kaplan-Meier method was used to plot survival curves and survival curves were compared by log-rank test. Survival curve analysis showed that patients with low expression levels of lncRNA BRE-AS1 (Fig. 2a, \(p = 0.030 \)) and high expression levels of miR-21 (Fig. 2b, \(p = 0.026 \)) showed significantly lower overall survival rates.

Analysis of the correlations between BRE-AS1 and miRNA-21

Correlation analysis showed that BRE-AS1 and miRNA-21 were inversely correlated across TNBC samples (Fig. 3a).

In contrast, the correlation between BRE-AS1 and miRNA-21 were not significant in healthy participants (Fig. 3b).

The role of BRE-AS1 in miR-21 expression

Overexpression of miR-21 (Fig. 4a, \(p < 0.05 \)) and lncRNA BRE-AS1 (Fig. 4b, \(p < 0.05 \)) were achieved. Overexpression of BRE-AS1 resulted in downregulation of miR-21 in BT-549 and HCC70 cells (Fig. 4c, \(p < 0.05 \)). MiR-21 did not significantly affect the BRE-AS1 expression in BT-549 and HCC70 cells (Fig. 4d). It is worth noting that miR-21 and lncRNA BRE-AS1 were also overexpressed in MCF10A cell line, which is a non-tumorigenic breast epithelial cell line. Overexpression of miR-21 and lncRNA BRE-AS1 did not alter the expression of each other (data not shown). Biotinylated premature miR-21 (Bio-premature miR-21) and U6 (Bio-U6, negative control) were used to pull down BRE-AS1. It was found that premature miR-21 could pull down BRE-AS1 (Fig. 4e, \(p < 0.05 \)). Therefore, BRE-AS1 may absorb premature miR-21 to prevent its maturation, resulting in
Fig. 3 The expression levels of lncRNA BRE-AS1 and miRNA-21 were inversely correlated in TNBC patients but not in healthy participants. BRE-AS1 and miRNA-21 were inversely correlated in TNBC patients (a) but not in healthy participants (b).

Fig. 4 Overexpression of lncRNA BRE-AS1 downregulated miR-21 in TNBC. Overexpression of miR-21 (a) and lncRNA BRE-AS1 (b) was achieved in cells of TNBC cell lines BT-549 and HCC70. In addition, overexpression of lncRNA BRE-AS1 resulted in downregulation of miR-21 (c). In contrast, overexpression of miR-21 did not significantly affect the expression of lncRNA BRE-AS1 (d). Biotinylated premature miR-21 (Bio-prenature miR-21) and U6 (Bio-U6, negative control) to pull down BRE-AS1. It was found that premature miR-21 could pull down BRE-AS1 (e). RIP analysis of the amount of BRE-AS1 and miR-21 pulled down from the Ago2 protein in BT-549 and HCC70 cells (f). Data of three independent replicates were expressed as mean ± SD (*, p < 0.05).
Fig. 5 (See legend on next page.)
reduction in the production of mature miR-21. Moreover, RIP assay results indicated that BRE-AS1 and miR-21 were enriched in Ago2 pellet compared to that in the input control in BT-549 and HCC70 cells (Fig. 4f, \(p < 0.05 \)). Western blot analysis showed that overexpression of BRE-AS1 increased the expression levels of tumor suppressor PTEN, which is a target of miR-21 (supplemental Figure-1, \(p < 0.05 \)).

BRE-AS1 inhibits TNBC cell proliferation, migration and invasion of TNBC cells through miR-21

Next, to elucidate the regulatory mechanism of lncRNA BRE-AS1 in the progression of triple-negative breast cancer, cells were transfected with lncRNA BRE-AS1 overexpression vectors and has-miR-21 mimics either alone or in combination. BRE-AS1 led to inhibited, while overexpression of miR-21 led to promoted proliferation by CCK-8 (Fig. 5a), similar results were shown in colony formation assay (Fig. 5b), cell cycle experiment assay (Fig. 5c), migration (Fig. 6a) and invasion assay (Fig. 6b) in BT-549 and HCC70 cells. The results suggested that cell viability, migration and invasion abilities were evidently enhanced by transfection of miR-21 mimics, while it was largely diminished by transfection of BRE-AS1 overexpression vectors (\(p < 0.05 \)). Western blot analysis showed that overexpression of BRE-AS1 increased the expression levels of tumor suppressor PTEN, Bax, cleaved-Caspase 3 and cleaved-Casepase 9, Ki67 and BCL-2 (Fig. 5d, \(p < 0.05 \)). In addition, overexpression of miR-21 attenuated the inhibitory effects of overexpression of lncRNA BRE-AS1 on cancer cell proliferation. Western blot analysis showed that overexpression of BRE-AS1 increased the expression levels of tumor suppressor Bax, cleaved-Caspase 3, cleaved-Casepase 9, Ki67 and BCL-2 (d). Data of three independent replicates were expressed as mean ± SD (*, \(p < 0.05 \)).

Discussion

We showed that BRE-AS1 played a tumor suppressive role in TNBC, and the functions of BRE-AS1 in TNBC were mediated at least partially by the downregulation of miR-21.

MiR-21 promotes different types of human cancer [12]. Overexpression of miR-21 a predicts poor prognosis [13], and also mediates the failures in clinical cancer treatment [14]. MiR-21 inhibition is considered as a promising therapeutic target for human cancers [12]. It has been reported that miR-21 promotes the proliferation of TNBC cells and predicts poor prognosis [15–18]. We demonstrated that high expression levels of miR-21 were closely correlated with low overall survival rate of TNBC patients, and overexpression of miR-21 mediated the accelerated proliferation of TNBC cells. Besides, our findings also suggested that miR-21 positively regulated TNBC cell migration and invasion. Our study further confirmed the oncogenic role of miR-21 in TNBC.

MiR-21 participates in cancer biology by regulating multiple downstream signaling molecules, such as PTEN and lncRNAs [19, 20]. In addition, the expression of miR-21 in cancer development can also be regulated by lncRNAs [21]. In the present study we showed that lncRNA BRE-AS1 played an inhibitor role upstream of miR-21, and this inhibition of miR-21 by lncRNA BRE-AS1 is involved in the regulation of multiple cell behaviors of TNBC cells, including proliferation, migration, and invasion. PTEN is a well-established target of miR-21 and it can suppress cancer development from different aspects [20, 21]. In this study we showed that BRE-AS1 may indirectly upregulate PTEN through miR-21. Therefore, a novel BRE-AS1/miR-21/PTEN pathway in TNBC was established. Our data also suggested that overexpression of lncRNA BRE-AS1 may serve as a potential therapeutic target for TNBC through the downregulation of miR-21. Interestingly, our RNA pull-down assay showed that premature miR-21 may be absorbed by BRE-AS1. Therefore, BRE-AS1 may suppress the maturation of miR-21. Future studies may focus on the direct interaction between BRE-AS1 and premature miR-21 in nucleus. Other mechanisms may also exist and more studies are needed.

It is worth noting that overexpression of miR-21 only partially reversed the effects of overexpression of BRE-AS1 on the proliferation, invasion, and migration of TNBC cells, indicating the existence of other downstream mediators of BRE-AS1 in TNBC.
Overexpression of lncRNA BRE-AS1 inhibits TNBC cell migration and invasion of TNBC cells through miR-21. Transwell assays were performed to study the roles of BRE-AS1 and miR-21 in the regulation of TNBC cell invasion and migration. Overexpression of lncRNA BRE-AS1 led to inhibited, while overexpression of miR-21 led to promoted migration (a) and invasion (b) of cells of TNBC cell lines BT-549 and HCC70. In addition, overexpression of miR-21 attenuated the inhibitory effects of overexpression of lncRNA BRE-AS1 on cancer cell migration and invasion. Data of three independent replicates were expressed as mean ± SD (*, p < 0.05).
Another possibility is that overexpression of IncRNA BRE-AS1 in this study is not sufficient. Our future studies will try to identify these mediators.

Conclusions
In conclusion, IncRNA BRE-AS1 is a tumor suppressor in TNBC. Overexpression of IncRNA BRE-AS1 inhibits cancer cell proliferation, migration, and invasion by downregulating miR-21.

Abbreviations
miR-21: MicroRNA-21; TNBC: Triple-negative breast cancer; ER: Estrogen receptor α; PR: Progesterone receptor; HER2: Human epidermal growth factor receptor 2; ncRNAs: Non-coding RNAs; lncRNAs: Long non-coding RNAs; RT-qPCR: Real-time quantitative PCR

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12885-021-08294-6.

Additional file 1: Figure S1. Western blot analysis of the expression of tumor suppressor PTEN, which is a target of miR-21 in cells of TNBC cell lines BT-549 (A) and HCC70 (B). Data of three independent replicates were expressed as mean ± SD (*, p < 0.05).

Additional file 2: Supplemental material. Full-length blots of Western blot.

Acknowledgments
Not applicable.

Authors’ contributions
JCG and JL: experimental work, data analysis, research design and manuscript writing. SSW and ZSZ: experimental work, data analysis, research design and clinical research. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
Ethics Committee of The Affiliated Cancer Hospital of Nanjing Medical University, approved this study and all the procedures have been performed in accordance with the Declaration of Helsinki. All patients understood the aims of specimen collection and signed written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1. Department of Breast Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province 075000, People’s Republic of China.
2. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province 075000, People’s Republic of China.
3. Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, and The Affiliated Cancer Hospital of Nanjing Medical University, Room 803, Building 19, Jinyu Zhongyang 2 Block, Shogunate West Road, Gulou District, Nanjing City, Jiangsu Province 210009, People’s Republic of China.

Received: 29 June 2020 Accepted: 5 May 2021
Published online: 28 June 2021

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.214192.
2. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48. https://doi.org/10.1056/NEJMra1001389.
3. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22. https://doi.org/10.1007/978-0-387-74039-3_1.
4. Ledtkie C, Mazonzi C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):725–81. https://doi.org/10.1200/JCO.2007.14.1417.
5. Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP, Roberts JM, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529(7586):413–7. https://doi.org/10.1038/nature16508.
6. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15 Spec No 1:R17–29.
7. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74. https://doi.org/10.1038/nrg3074.
8. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19. https://doi.org/10.4161/rna.20481.
9. Zhang M, Wu J, Zhong W, Zhao Z, Liu Z. Long non-coding RNA BRE-AS1 represses non-small cell lung cancer cell growth and survival via up-regulating NR4A3. Arch Biochem Biophys. 2018;660:53–63. https://doi.org/10.1016/j.abb.2018.09.013.
10. Chen Z, Zhen M, Zhou J. IncRNA BRE-AS1 interacts with miR-145-5p to regulate cancer cell proliferation and apoptosis in prostate carcinoma and has early diagnostic value. Biosci Rep. 2019;39(3):BSR20182097.
11. Fang H, Xie J, Zhang M, Zhao Z, Wan Y, Yao Y, miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am J Transl Res. 2017;9(3):953–61.
12. Pfeffer SR, Yang CH, Pfeffer LM. The role of miR-21 in cancer. Drug Dev Res. 2015;76(6):270–7. https://doi.org/10.1002/ddr.21257.
13. Wang Y, Gao X, Wei F, Zhang X, Yu J, Zhao H, et al. Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis. Gene. 2014;531(1):389–97. https://doi.org/10.1016/j.gene.2013.09.038.
14. Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cell lines. Gynecol Oncol. 2015;137(1):143–51. https://doi.org/10.1016/j.ygyno.2014.12.042.
15. Dong G, Liang X, Wang D, Gao H, Wang L, Wang L, et al. High expression of miR-21 in triple-negative breast cancers was correlated with a poor prognosis and promoted tumor cell in vitro proliferation. Med Oncol. 2014;31(7):57. https://doi.org/10.1007/s12032-014-0057-x.
16. Yang L, Feng Y, Qi P, Xu S, Zhou Y. Mechanism of serum miR-21 in the pathogenesis of familial and triple negative breast cancer. J Biol Regul Homeost Agents. 2016;30(4):1041–5.
17. Xie Y, Liu Y, Fan X, Zhang L, Li Q, Li S, et al. MicroRNA-21 promotes progression of breast cancer via inhibition of mitogen-activated protein kinase10 (MAPK10). Biosci Rep. 2019;39(3):BSR20181000.
18. Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C, et al. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer. 2019;19(1):738.
19. Zhang Z, Zhu Z, Watabe K, Zhang X, Bai C, Xu M, et al. Negative regulation of IncRNA GASS by miR-21. Cell Death Differ. 2013;20(1):1558–68. https://doi.org/10.1038/cdd.2013.110.
20. Gao Y, Xu R, Xu X, Zhou Y, Cui L, He X. Downregulation of IncRNA CASC2 by microRNA-21 increases the proliferation and migration of renal cell
carcinoma cells. Mol Med Rep. 2016;14(1):1019–25. https://doi.org/10.3892/mmr.2016.5337.

21. Zhang J, Yao T, Wang Y, Yu J, Liu Y, Lin Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther. 2016;17(1):104–13. https://doi.org/10.1080/15384047.2015.1108496.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.