Circadian regulation of innate immunity in animals and humans and implications for human disease

Joanna Poole1 · Gareth B. Kitchen2,3

Received: 26 November 2021 / Accepted: 3 February 2022 / Published online: 15 February 2022
© The Author(s) 2022

Abstract
Circadian rhythms are 24-h oscillating variations in physiology generated by the core circadian clock. There is now a wide body of evidence showing circadian regulation of the immune system. Innate immune cells contain the molecular circadian clock which drives rhythmic responses, from the magnitude of the inflammatory response to the numbers of circulating immune cells varying throughout the day. This leads to rhythmic presentation of disease clinically, for example the classic presentation of nocturnal asthma or the sudden development of pulmonary oedema from acute myocardial infarction first thing in the morning.

Introduction
The earth’s rotation provides cyclical light:dark phases that have provided contrasting environments for cellular life to partition its pathways, especially those of metabolism and immune defence. Whilst it is posed by some that circadian rhythms evolved from peroxiredoxin responses [28] to oxidative solar stress, they are a feature in all three domains of life — eukaryotic, prokaryotic and archaea [28]. These rhythms can be intrinsic (cycling patterns of protein synthesis and degradation), light-driven or intrinsic with modulation by feeding. Examples can be found across the animal kingdom.

The innate immune system is an early line of defence against pathogen exposure and does not require previous exposure or ‘memory’ of the pathogen to be effective. Features of it persist across the animal kingdom [75]. It consists of antimicrobial peptides [50], pattern recognition receptors [41], cytokines [98], complement [25] and phagocytic cells [35]. In higher animals, the presence of cells with oxidative killing (e.g. neutrophils) can lead to tissue damage [51, 67]. Given this oxidative stress, and the origin of the clock as an oxidative stress buffer, circadian modulation of innate immunity has been proposed and studied, in animals.

A landmark paper by Halberg in 1960 [39] demonstrated that lethality in a mouse model of inhaled endotoxin (lipopolysaccharide) varied depending on time of day. The Ray group has shown that knocking out the clock component Bmal1 in mouse myeloid cells [48] is protective against streptococcal pneumonia. Other studies have gone on to confirm that caecal ligation puncture in mice also has a circadian susceptibility — worse in the dark phase [40]. Similar has been shown in the flounder fish [114] — Bmal1 knockout enhances pro-inflammatory cytokines and improves survival in bacterial infection [114]. Moreover, illumination at night has been shown to affect both clock genes and inflammatory cytokines in zebra finches [4, 70].

The therapeutic interest in clock targets is their modulation of the inflammatory response, reviewed in this article, and mediation of oxidative stress defences. Because of the therapeutic value of these targets to human drug development, the review will focus on mammalian circadian circuits and their impact on the innate immune system.

In particular, photic regulation via the suprachiasmatic nucleus (SCN) and cell clock gene regulation of myeloid behaviour will be detailed, because these provide translational targets (Reverbα and RORα have agonists available);
information about the sympathetic nervous system, circadian rhythms and inflammation, is a large topic and was reviewed by Leach and Suzuki [56] recently. Lastly, entrainment of the liver clock via feeding cues will NOT be provided, because this is an ongoing topic and has been provided a mini-review very recently here [72].

Feedback regulation

The molecular circadian clock consists of two interlocking transcription-translation feedback loops (TTFL) that converge on BMAL1 and CLOCK [93]. The basic mechanism involves transcriptional activation and repression, allowing rhythmic activation and repression of target genes. The transcriptional activators are BMAL1 and CLOCK, and the repressors are PERIOD (PER1, PER2 and PER3) and CRYPTOCHROME (CRY1 and CRY2). The BMAL1/CLOCK heterodimers also promote transcription of the nuclear receptors REVERBα/β and RORα [17] which form accessory repressive and activating loops respectively (Fig. 1).

Suprachiasmatic nucleus

The suprachiasmatic nucleus in mammals is considered the pacemaker circuit; lesions produce changes in sleep [113], circadian rhythm [27] and melatonin output [89]. Ex vivo SCN neurons still show phasic output [105]. A considerable proportion of SCN neurons are light responsive [38] — their electrical activity coincides with the light phase [68]. Light exposure entrains SCN output [23].

The SCN network’s output has a sinusoidal pattern; however, its relationship with behaviour depends on whether the animal is nocturnal (SCN activity nadir occurs with active phase) or diurnal (SCN zenith occurs with active phase) [16].

A number of clock genes within the SCN are light responsive, for example Per1 and Per2 [95]. This has raised concerns within ecology for the effect of dim evening light on urban animals — for example birds. Dim light at night has been shown to alter per2 expression in the hypothalamus of zebra finches [4], in addition to reducing tlr4 and il-1β mRNA transcripts. In association was loss of standard 24-h cycles of clock, ror-α and cry1. The emphasis of dim light at night in zebra finches was confirmed to alter cytokines IL-1β and IL-10 in a separate study [70].

The effect of clock-gene changes on cytokine expression is not unique to birds and has also been demonstrated in zebra fish, where the genes period1 and period2 alter cytokine expression and per1b alters neutrophil recruitment [88].

There is consistency in mammals regarding photic influence of immunity. For example, mice kept in constant dark conditions show three times the mortality of those with a typical light:dark cycle, although this is independent of the myeloid expression of CLOCK or BMAL-1 [54]. Furthermore, mice in a caecal ligation puncture (CLP) model of sepsis demonstrate less severe sepsis and organ injury when exposed to high-illuminance blue light [59], which mimics early morning light. The same paper discusses a small number of human patients with appendicitis exposed post-operatively to blue light and found a significant reduction in cytokines such as IL-6 and IL-10, although the number was too small to comment on clinical outcomes.
One of the key differences in mammals is whether they are diurnal (like humans) or nocturnal, e.g. mice and hamsters. This is important because it has previously been shown that BMAL1 and PER2 in humans/mice are antiphase from one another in expression [58]. This may reflect that circadian regulation reflects behaviour/activity in an organism rather than simply external night or day — in the case of immunity, pathogen exposure and injury are of course more likely when out hunting/foraging/socialising, than sleeping.

In the case of rats, both constant dark and constant light produced worse mortality in caecal ligation puncture sepsis than a standard light/dark cycle [13]. Standard 1-week mortality was 83% in cycling conditions, 62.5% constant light and 31% constant dark. In these rats, non-survival was associated with an early peak cortisol in relation to plasma ACTH — the authors’ conclusion was external light cues modified the hypothalamic–pituitary–adrenal axis. Consistent with this is similar evidence in mice that constant dark conditions exacerbate sepsis lethality [54], and for these authors, this change was independent of myeloid clock genes, suggesting a clock gene-exogenous pathway.

Interestingly, human shiftworkers have been shown to have an increased susceptibility to infection [63, 64] which may in part be explained by the light-at-night phenomenon seen in other species (mammals, birds and fish). There are also important implications for patients, who often experience dim lighting rather than true dark conditions, especially in intensive care where monitors and procedures interrupt ‘dark’ conditions.

That said, interventions attempting to re-entrain patient circadian rhythms with light have only been done in a small number of patients in critical care, measuring a melatonin metabolite; the study contained 22 patients and suffered with attrition, although it did show an improved phase/synchronisation [34], but was unable to comment on clinical outcomes. Other interventions using light exposure have not been shown to affect a particular outcome of concern, delirium [96, 97].

We will go on to discuss circadian behaviour in innate cell subsets, with respect to neutrophils and macrophages. Further reviews with a wider scope have been published [5, 12].

Neutrophils

Neutrophils are phagocytic cells, whose origins may have been as far back as cnidarians — evidence of phagocytic activity is evident in some species of coral [78]. In humans, up to 10^{10} neutrophils are produced daily [100]. Number and percentage of neutrophils appear to vary by species — in humans, they represent 40–50% of the total leukocyte pool, whilst this can be considerably different in other species [33]. There is little published data on circadian immunology in cnidarians, who do however have light responsive transcriptome responses [55]. However, there is evidence in mice [1], pigs [31] and humans [30] that neutrophil behaviour has a daily rhythm.

Features of neutrophil behaviour displaying circadian rhythms include egress under CXCR4 in humans [30], the NADPH oxidase enzyme used in oxidative burst killing [30] and phagocytosis [43] — reduced by 40% in constant light conditions in mice [43].

In mice, neural output through the sympathetic nervous system via noradrenaline affects expression of CXCL12 via B3 mediated SF-1 expression (Fig. 2) [69]. CXCL12 is a...
homologous for the neutrophil receptor CXCR4 as well as important for bone marrow haematopoietic stem cells [99], and further reviewed recently as a key determinant of neutrophil trafficking [22]. Moreover, CXCR4 antagonists mobilise the haematopoietic stem cell pool in both mice and primates [32].

Evolutionarily, CXCR12 and CXCR4 are considered antecedent to a sophisticated immune system, with extant chemokines potentially deriving from the CNS [45]. CXCR4 and CXCL12 both have a role in the development of the nervous system [71], and Cxcr4 knockout mice, in addition to high embryonic lethality, display profound defects in marrow haemopoiesis and nervous system development [65]. Human CXCR4/CXCL12 signalling shares conservation with mice, and human CXCR4 knockin restores some of the leukocyte, and neutrophil, features of knockout mice [19]. This mouse line has been proposed as useful for CXCR4-based human therapies. Noradrenaline has a circadian rhythm, as does adrenaline [61], and their complex interactions beyond the scope of this review have been reviewed excellently by Leach and Suzuki [56]. The effect of such catecholamines on myeloid cells may explain why adrenalectomy removes diurnal rhythms in circulating blood leukocytes in mice [9].

One of the pathogen defences of neutrophils is NETosis — the production of neutrophil extracellular traps (NETs) which consist of chromatin and antimicrobial molecules [8]. Mature neutrophils have a circadian ‘responsiveness’ in NETosis, driven by CXCL2, in mice [2]. The circadian responsiveness was replicated in humans and correlated with pneumonia severity — offering a potential therapeutic or chronotherapeutic pathway [2].

The avian analogue of neutrophils, heterophils, is also observed to have a diurnal acrophase [66], whilst neutrophil injury recruitment in fish also has a circadian phenotype [87] suggesting these features are well preserved in different animals. The latter is influenced by melatonin, which has extensive pathways, reviewed with respect to immunity and inflammation previously [12, 14, 101, 110]. Examples of how melatonin may influence immunity, however, through increasing the weight of immune organs [81], reducing neutrophil apoptosis [73] and increasing neutrophil burst killing [82].

Macrophages

Macrophages are phagocytes of the innate immune system with tissue-specific fates and phenotypes [111]. They circulate as monocytes for a number of days, before maturing into macrophages on receipt of external cues, when they may develop different subtypes [111]. In addition to recruitment to sites of infection and damage, they are an intrinsic component of wound and tissue healing and regeneration [111]. They also have circadian transcriptomes and behaviours which affect function [46]. Post-translational circadian regulation of macrophage function is also seen, especially with respect to metabolic networks and mitochondrial morphology [18].

Keller et al. established that spleen and lymph node-derived macrophages contain autonomous cellular oscillators with 8% of their transcriptome being expressed in a circadian pattern [46]. Essential elements of importance are the lipopolysaccharide (LPS) receptor TLR4, TNFα pathway and other LPS-associated receptors such as CD14, MAPK14 and AP-1 subunits JUN and FOS, as well as ADAM 17.

Analysis of clock genes by Keller et al. showed that PER2 and REVERBα display high-amplitude oscillations with 4- and 20-fold differences, respectively, at peak and trough levels in macrophages. In peritoneal macrophages especially, mRNA transcripts of PER2 and REVERB varied by as much as 100–300-fold. The corresponding changes in cytokine production (IL-6 and TNFα) showed threefold changes. These changes persisted even with removal or addition of glucocorticoid mediators [46].

In addition to variation in mRNA transcripts, absolute splenocyte counts vary in a circadian fashion in Keller’s study, demonstrating regulation of leukocyte trafficking.

Kitchen et al. demonstrated that clock knockout of the gene Bmal-1 in mice in macrophages presented a survival advantage in streptococcal pneumonia [48], partly through recruitment and phagocytosis. Thus, a basal fluctuation in circadian behaviour may tend towards important survival advantages.

Intriguingly, more recent work in mice has demonstrated that the polarisation state of the macrophage (M1 or M2) is associated with differential periodicity and amplitude in expression of clock genes themselves [115]. In the M1 state, transcripts of BMAL1 and PER2 are suppressed, with normal periodicity (just the amplitude changes), whilst in the M2 state, periodicity is lengthened, whilst amplitude remains the same. This suggests an association between clock gene expression and behaviour — a pathway that may be target for treatments of inflammatory human disease, or even wound healing. For example, wound healing in Siberian hamsters has a clear circadian rhythm [10], whilst shifts in photoperiod reduce the number of M2-polarised macrophages in adipose tissue in mice [47].

This has direct implications for human shiftworkers, who have higher rates of obesity, diabetes, cardiovascular disease and cancer [90]. Other more novel implications are those regarding shiftwork, reduced fertility [108] and miscarriage [6]. As pro-inflammatory macrophages have been shown to affect number and quality of ovarian follicles [62]...
and successful embryonic development [112], there is urgent need to clarify therapeutic targets in this group of workers. In 2018, in data published by TUC (Trade Union Congress) in the UK alone, night workers counted for more than 3 million employees, or 1 in 9 workers, with the female proportion increasing by more than 100,000 in the preceding 5 years [102]; thus, this represents a considerable health burden.

Targeting clock genes in sepsis and other inflammatory diseases

This section will focus on REVERBα and RORα agonists as these are available and have some pre-clinical use.

Sepsis has been well studied in mouse models through a circadian lens. This began with the very early experiments by Halberg et al. [39] noting a time-of-day lethality to inhaled endotoxin.

More recently, this has been observed in caecal ligation puncture models of sepsis in murine models [40]. Mechanistically, this appears to coincide with cytokine levels, e.g. IL-6 — perhaps because the polymicrobial contamination in the peritoneum provoked the ‘cytokine storm’ that produces a SIRS response and multi-organ failure. Further experimentation revealed that a mutation in Per2 in these mice removed the circadian lethality, demonstrating a pathway under PER2 regulation mediates this effect.

Aside from direct cytokine effects, further circadian influence over sepsis severity could potentially relate to activity of the inflammasome — an IL-1-producing assembly. The receptor portion of this assembly of proteins is encoded by NLRP. REVERBα, the circadian nuclear receptor, regulates production of this mRNA [84]. The inflammasome has recently been reviewed in sepsis [21, 109], identifying RORα as one of fifteen master regulators that influence sepsis severity. The authors of this study highlight that downregulation of these master regulators is causal for the sustained state of inflammation seen in severe sepsis.

REVERBα has also gained interest as a target in inflammatory diseases. Knockout models have shown us that loss of Reverba, or its mutation, is pro-inflammatory. A knockout model demonstrates increased neuroinflammation and microglial activity (an innate immune cell of the CNS) that could be attenuated with the REVERBα agonist SR9009 [37]. Meanwhile, a mouse model of pulmonary inflammation showed that mutating Reverbα causes increased pulmonary responsiveness and aggression in myeloid cells [17], whilst mutating its parologue Reverbβ in bronchoepithelial cells also enhanced inflammation. Moreover, the inflammation itself caused changes in stability and degradation of REVERBα via SUMOylation and ubiquitination, showing there is a reciprocal relationship between inflammation and circadian rhythm, which could result in a wind-up phenomenon. Similarly, Durrington et al. confirmed REVERBα as a gateway to asthma response, reflecting the importance of this pathway for pulmonary disease [26].

Gibbs et al. confirm that reduction in REVERBα increased IL-6 and other cytokines in human and mouse macrophages, whilst another group demonstrated that SR9009 (Reverba agonist) improves survival in a murine caecal ligation puncture model of sepsis [36], suggesting through mixed REVERBα and light studies that this was a pathway through which blue light improves survival in their model of Klebsiella pneumonia in mice.

Other roles for SR9009 have been found in cardiovascular ischaemia [86], inflammasome inhibition [42] and reducing the LPS-driven M1 polarisation of macrophages in pregnancy loss [20], demonstrating a persistent role for REVERBα in inflammation.

Sexual dimorphism

Exemplified recently by the higher male lethality of COVID-19 [7], it has been recognised for some time that there is a sex difference in infection survival [3, 104] in addition to a sex difference in autoimmune disease, where 80% of patients are female [91]. Since there are also circadian differences in the two biological sexes, for sleep [106] and cycle length [24], there is growing interest in how sex and circadian rhythm intersect to affect immunity. There is not much published information as this is a relatively novel field.

There are sex hormone receptors in the human suprachiasmatic nucleus itself [52] and these are thought to help modify electrical activity in response to photoperiod/jet lag (female mice show faster photic entrainment [53]; the evolutionary benefit in a sex difference may be the female’s increased adaptability for childcare needs.

As has already been reviewed in other sections, there is evidence across species that the SCN/light input influences cytokine titres, so it is feasible that sex hormones influence immunity, via sex steroid receptors in the SCN itself.

A pre-eminent mechanism, however, might be the evidence that sex hormones differentially regulate RORα (reviewed in a previous section). Oestrogen increases its activity whilst testosterone reduces it [92]. This could explain the preponderance of Th17-mediated diseases in female (humans) like multiple sclerosis [29], as well as a worse outcome from endotoxin exposure in male mice, and sepsis in human patients, although these all are likely to be multifactorial.

Sex hormones are likely involved as confirmed by circadian and sleep changes in both menstrual phase in mammals [94] and pregnancy [76, 107].

There is also evidence of sexual dimorphism in humans of PER2 expression in the central nervous system [60], as well as altered amplitude in rhythmic expression in the murine adrenal gland [49] — evidence for adrenaline/noradrenaline in influencing immune behaviour has been mentioned with respect to bone marrow pools, and reviewed in detail here [56].

Thus, there is a range of mechanisms by which sexual dimorphism in circadian immunity could be made manifest. This field is evolving.

Discussion

It is clear that the regulation of inflammation is finely balanced in health, with choreographed gene expression and tissue behaviour, modified by clock genes. Many of these pathways interact with each other, either through light, or the sympathetic nervous system, and can be rewired in inflammation. They are often conserved across animal kingdoms, suggesting they are important.

It appears that there are many ways the circadian immune system is influenced — be it gene expression secondary to native clock gene oscillation, output from the SCN via melatonin, or adrenaline and noradrenaline, as well as corticosteroids, which were not reviewed here.

The field has developed from observation of circadian immune phenomena — like severity of response to pathogen exposure — to clarification of the cytokines involved, the recruitment and killing capacity of innate cells (e.g. burst killing, phagocytosis and NETosis), and the development of gene-manipulated mice. Evidence linking light, or circadian gene expression, to cytokines and disease survival has been provided in mammals, birds and fish. New gene sequencing and chromatin structure sequencing has allowed researchers to describe mechanistic links between light or time of day and protein expression. Proteome analysis has shown that inflammation can have reciprocal effects on protein stability and how inflammatory disease may rewire circadian circuits [83].

Furthermore, new translational drug opportunities have appeared with targets for REVERBα and RORα, which show promise in pre-clinical models.

Limitations in our knowledge are the huge complexity of multiplexed regulation — the intersection of light, baseline gene fluctuation, feeding status, sterile or non-sterile inflammation, and the sympathetic nervous system. Furthermore, we also rely on ex vivo analysis of human cells, which no longer have access to the full complement of regulators available in vivo.

Moreover, many of our pre-clinical studies are based on mice, who are typically nocturnal. This may mean that alterations in their immune systems following ‘resting phase’ interventions by human lab workers could contribute to the well-known failure of pre-clinical studies to translate into successful human therapies [57].

Dysregulated innate immunity is the basis for a number of inflammatory conditions that are known to affect humans. The effect of light and shiftwork, therefore, on innate immunity has large health implications for shiftworkers, as well as reproductive health in women.

Furthermore, the effect of light on circadian dysrhythmia and immune systems has implications for ecology, e.g. light in urban areas, as well as for humans exposed to artificial lighting, both in health and disease.

Future directions may focus on translating pre-clinical therapies into humans, understanding the complex interplay of different in vivo systems — which may require computer network algorithm analysis — and the effect of sexual dimorphism, and age, on all these pathways.
Given such a diverse array of diseases have demonstrable circadian rheostats, it is essential that we deepen our understanding of such pathways, to target treatments, and reduce medical and ecological burdens in a world where technology is competing with life’s reliance on environmental rhythms.

Funding GK is supported by the NIHR Development and Skills Enhancement Award, Ref: WKR0-2019–0037.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adrover JM, del Fresno C, Crainiciuc G, Cuartero MI, Casanova-Acebes M, Weiss LA, Huerga-Encabo H, Silvestre-Roig C, Ros-saint J, Cossio I, Lechuga-Vieco AV, García-Prieto J, Gómez-Parrizas M, Quintana JA, Ballesteros I, Martín-Salamanca S, Aroca-Crevillén A, Chong SZ, Evrad M, Balabanian K, López J, Bidzhekov K, Bachelerie F, Abad-Santos F, Muñoz-Calleja C, Zarbock A, Sohnlein O, Weber C, Ng LG, Lopez-Rodriguez C, Sancho D, Moro MA, Ibáñez B, Hiladgo A (2019) A neutrophil timer coordinates immune defense and vascular protection. Immunity 50:390-402.e10. https://doi.org/10.1016/j.immuni.2019.01.002

2. Adrover JM, Aroca-Crevillé A, Crainiciuc G, Ostoš F, Rojas-Vega Y, Rubio-Ponce A, Cillön C, Bonzón-Kulichenko E, Calvo E, Rico D, Moro MA, Weber C, Lizasoaín I, Torres A, Ruíz-Caballo J, Vázquez J, Hidalgo A (2020) Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat Commun 21:135–144. https://doi.org/10.1038/s41590-019-0571-2

3. Angele MK, Pratschke S, Hubbard WJ, Chaudry IH (2014) Gender differences in sepsis: cardiovascular and immunological aspects. Virulence 5:12–19. https://doi.org/10.4161/viru.26982

4. Batra T, Malik I, Prabhat A, Bhardwaj SK, Kumar V (2020) Sleep in unnatural times: illuminated night negatively affects sleep and associated hypothalamic genes expressions in diurnal zebra finches. Proc R Soc B Biol Sci 20192952. https://doi.org/10.1098/rspb.2019.2952

5. Baxter M, Ray DW (2020) Circadian rhythms in innate immunity and stress responses. Immunology 161:261–267. https://doi.org/10.1111/imm.13166

6. Begtrup LM, Specht IO, Hammer PEC, Flachs EM, Garde AH, Hansen J, Hansen AM, Kolstad HA, Larsen AD, Bonde JP (2019) Night work and miscarriage: a Danish nationwide register-based cohort study. Occup Environ Med 76:302. https://doi.org/10.1136/oemed-2018-105592

7. Brandi ML, Giustina A (2020) Sexual dimorphism of coronavirus 19 morbidity and lethality. Trends Endocrinol Metab TEM 31:918–927. https://doi.org/10.1016/j.tem.2020.09.003

8. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chomatin? J Cell Biol 198:773–783. https://doi.org/10.1083/jcb.201203170

9. Brown HE, Dougherty TF (1956) The diurnal variation of blood leucocytes in normal and adrenalectomized mice. Endocrinol 58:365–375. https://doi.org/10.1210/endo-58-3-365

10. Cable EJ, Oishi KG, Prendergast BJ (2017) Circadian rhythms accelerate wound healing in female Siberian hamsters. Physiol Behav 171:165–174. https://doi.org/10.1016/j.physbeh.2016.12.019

11. Cai KC, van Mil S, Murray E, Mallet J-F, Matar C, Ismail N (2016) Age and sex differences in immune response following LPS treatment in mice. Brain Behav Immun 58:327–337. https://doi.org/10.1016/j.bbi.2016.08.002

12. Calvo JR, González-Yanes C, Maldonado MD (2013) The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 55:103–120. https://doi.org/10.1111/jpi.12075

13. Carlson DE, Chiu WC, Scalea TM (2006) Cecal ligation and puncture in rats interrupts the circadian rhythms of corticoster-one and adrenocortical responsiveness to adrenocorticotropic hormone. Crit Care Med 34:1178–1184

14. Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, Rodríguez-Rodriguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14:8638–8683. https://doi.org/10.3390/ijms14048638

15. Cazalis M-A, Lepape A, Venet F, Frager F, Moguin B, Vallin H, Paye M, Pachot A, Monneret G (2014) Early and dynamic changes in gene expression in septic shock patients: a genome-wide approach. Intensive Care Med Exp 2:20–20. https://doi.org/10.1186/s40635-014-0020-3

16. Challet E (2007) Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148:5648–5655. https://doi.org/10.1210/en.2007-0804

17. Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong L-W, DiTacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–127. https://doi.org/10.1038/nature11048

18. Collins El, Cervantes-Silva MP, Timmons GA, O’Siorain JR, Curtis AM, Hurley JM (2020) Post-transcriptional circadian regulation in macrophages organizes temporally distinct immunometabolic states. bioRxiv 31:171–185. https://doi.org/10.1101/2020.02.28.970715

19. Costa MJ, Kudaravalli J, Liu W-H, Stock J, Kong S, Liu S-H (2018) A mouse model for evaluation of efficacy and concomitantly toxic effect of anti-human CXCR4 therapeutic. PLoS ONE 13:e0194688. https://doi.org/10.1371/journal.pone.0194688

20. Cui L, Xu F, Wang S, Li X, Lin H, Ding Y, Du M (2021) Pharmacological activation of rev-erβb suppresses LPS-induced macrophage M1 polarization and prevents pregnancy loss. BMC Immunol 22:37. https://doi.org/10.1186/s12075-021-00438-4

21. Danielski L, Giustina AD, Bonfante S, Barichello T, Petronilo F (2020) The NLRP3 inflammasome and its role in sepsis development. Inflammation 43:24–31. https://doi.org/10.1007/s10753-019-01124-9

22. De Filippo K, Rankin SM (2018) CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest 48(Suppl 2):e12949-e12949. https://doi.org/10.1111/eci.12949

23. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and
The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus. J Biol Rhythms 29:16–27. https://doi.org/10.1177/0748738714516752

39. Halberg F, Johnson EA, Brown BW, Bittner JJ (1960) Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med 103:142–144. https://doi.org/10.3838/jpbsm.118377727-103-25439

40. Heipertz EL, Harper J, Lopez CA, Figkirg E, Hughes ME, Walker WE (2018) Circadian rhythms influence the severity of sepsis in mice via a TLR2-dependent, leukocyte-intrinsic mechanism. J Immunol 201:193. https://doi.org/10.4049/jimmunol.1701677

41. Herwald H, Egesten A (2011) Editorial. J Innate Immun 3:435–436. https://doi.org/10.1159/000330635

42. Hong H, Cheung YM, Cao X, Wu Y, Li C, Tian XY (2021) REV-ERBa agonist SR9009 suppresses IL-1β production in macrophages through BMAL1-dependent inhibition of inflammasome. Biochem Pharmacol 192:114701. https://doi.org/10.1016/j.bcp.2021.114701

43. Hirscu M (2004) Circadian phagocytic activity of neutrophils and its modulation by light. J Appl Biomed 2:199–211. https://doi.org/10.3272/jap.2004.024

44. Hsu AY, Wang T, Syahirah R, Liu S, Li K, Zhang W, Wang J, Cao Z, Tian S, Matosevic S, Staiger C, Wan J, Deng Q (2021) RORA regulates neutrophil migration and activation in zebrafish. bioRxiv 129:2629. https://doi.org/10.1101/2021.12.03.074833

45. Huisng MO, Stet RJM, Kruisswijk CP, Vakelou HJ, Kemenade L-V, B.M., (2003) Molecular evolution of CXC chemokines: extant CXC chemokines originate from the CNS. Trends Immunol 24:306–312. https://doi.org/10.1016/S1471-4906(03)00129-0

46. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk H-D, Kramer A, Maier B (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106:21407–21412. https://doi.org/10.1073/pnas.0906361106

47. Kim S-M, Neuendorff N, Alaniz RC, Sun Y, Chapkin RS, Earnest DJ (2018) Shift work cycle-induced alterations of circadian rhythms potentiate the effects of high-fat diet on inflammation and metabolism. FASEB J Off Publ Fed Am Soc Exp Biol 32:3085–3095. https://doi.org/10.1096/fj.201700784R

48. Kitchen GB, Cunningham PS, Poolman TM, Iqbal M, Maidstone R, Baxter M, Bagnall J, Begley N, Saer B, Hussell T, Matthews LC, Dockrell DH, Durrington HJ, Gibbs JE, Blakley JF, Loudon AS, Ray DW (2020) The clock gene Bmal1 inhibits macrophage motility, phagocytosis, and impairs defense against pneumonia. Proc Natl Acad Sci 117:1543. https://doi.org/10.1073/pnas.1915932117

49. Kloehn I, Pllailia SB, Officer L, Klement C, Gasser PJ, Evans JA (2016) Sexual differentiation of circadian clock function in the adrenal gland. Endocrinology 157:1895–1904. https://doi.org/10.1210/en.2015-1968

50. Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K (2000) Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry 39:8646–8654. https://doi.org/10.1021/bi0004549

51. Kohchi C, Inagawa H, Nishizawa T, Soma G-I (2009) ROS and Innate Immunity. Anticancer Res 29:817

52. Krujier FPM, Swaab DF (2002) Sex hormone receptors are present in the human suprachiasmatic nucleus. Neuroendocrinology 75:296–305. https://doi.org/10.1159/000057339

53. Kuljis DA, Loh DH, Truong D, Vosko AM, Ong ML, McClusky R, Arnold AP, Colwell CS (2013) Gonadal- and sex- and chromosome-dependent sex differences in the circadian system. Endocrinology 154:1501–1512. https://doi.org/10.1210/en.2012-1921

54. Lang V, Ferencik S, Ananthusubramaniam B, Kramer A, Maier B (2021) Susceptibility rhythm to bacterial endotoxin in myeloid clock-knockout mice. Elife 10:6862. https://doi.org/10.7554/eLife.62469
55. Leach WB, Reitzel AM (2019) Transcriptional remodelling upon light removal in a model cnidarian: losses and gains in gene expression. Mol Ecol 28:3413–3426. https://doi.org/10.1111/mec.15163
56. Leach S, Suzuki K (2020) Adrenergic signaling in circadian control of immunity. Front Immunol 11:1235. https://doi.org/10.3389/fimmu.2020.01235
57. Leenaars CHC, Kounenaar C, Staafue FR, Bleich A, Ritskes-Hoitinga M, De Vries RMB, Meijboom FLB (2019) Animal to human translation: a systematic scoping review of reported concordance rates. J Transl Med 17:223. https://doi.org/10.1186/s12967-019-1976-2
58. Leibetseder V, Humpeler S, Svoboda M, Schmid D, Thalhammer T, Zuckermann A, Markt W, Ekmecioğlu C (2009) Clock genes display rhythmic expression in human hearts. Chronobiol Int 26:621–636. https://doi.org/10.1080/07420520902924939
59. Lewis AJ, Zhang X, Grippentrog JE, Yuan D, Collage RD, Waltz PK, Angus DC, Zuckerbraun BS, Rosengart MR (2018) Blue light enhances bacterial clearance and reduces organ injury during sepsis. Crit Care Med 46:e779–e787. https://doi.org/10.1097/CCM.000000000003190
60. Lim ASP, Myers AJ, Yu L, Buchman AS, Duffy JF, De Jager PL, Bennett DA (2013) Sex difference in daily rhythms of clock gene expression in the aged human cerebral cortex. J Biol Rhythms 28:117–129. https://doi.org/10.1177/1049202113478552
61. Linsell CR, Lightman SL, Mullen PE, Brown MJ, Causon RC (1985) Circadian rhythms of epinephrine and norepinephrine in man*. J Clin Endocrinol Metab 60:1210–1215. https://doi.org/10.1210/jcem-60-6-1210
62. Liberos C, Liev SH, Zareie P, La Gruta NL, Mansell A, Hutt K (2021) Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci Rep 11:278. https://doi.org/10.1038/s41598-020-79488-4
63. Loef B, Nanlohy NM, Jacobi RHJ, van de Ven C, Mariman R, van der Beek AJ, Proper KL, van Baarle D (2019) Immunological effects of shift work in healthcare workers. Sci Rep 9:18220. https://doi.org/10.1038/s41598-019-54816-5
64. Loef B, van Baarle D, van der Beek AJ, Sanders EAM, Bruijn-Jerhen-Verhagen P, Proper KL (2019) Shift work and respiratory infections in health-care workers. Am J Epidemiol 188:509–517. https://doi.org/10.1093/aje/kwy258
65. Ma Q, Jones D, Borpesheini PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci 95:9448. https://doi.org/10.1073/pnas.95.16.9448
66. Makeri H, Ayó J, Aluwong T, Minka NS (2017) Daily rhythms of blood parameters in broiler chickens reared under tropical climate conditions. J Circadian Rhythms 15:5. https://doi.org/10.3334/jcr.151
67. McDowell SAC, Luo RBE, Arabzadeh A, Doré S, Bennett NC, Breton V, Karimi E, Rezanejad M, Yang RR, Lach KD, Issac MSM, Samborska B, Perus LJ, Moldoveanu D, Wei Y, Fiset B, Rayes RF, Watson IR, Kazak L, Gulić M-C, Fiset PO, Spencer JD, Dannenberg AJ, Walsh LA, Quail DF (2021) Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat Cancer 2:545–562. https://doi.org/10.1038/s43018-021-00194-9
68. Meijer JH, Groos GA, Russak B (1986) Luminance coding in a circadian pacemaker: the suprachiasmatic nucleus of the rat and the hamster. Brain Res 382:109–118. https://doi.org/10.1016/0006-8993(86)90117-4
69. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447. https://doi.org/10.1038/nature06685
70. Mishra I, Knerr RM, Stewart AA, Payette WJ, Richter MM, Ashley NT (2019) Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata). Sci Rep 9:15833. https://doi.org/10.1038/s41598-019-51791-9
71. Mithal DS, Banisadr G, Miller RJ (2012) CXCL12 signaling in the development of the nervous system. J. Neuroimmun Pharmacol. Off J Soc Neuroimmun Pharmacol 7:820–834. https://doi.org/10.1007/s11159-011-9336-x
72. Mul Fedele ML, Senna CA, Aiello I, Golombek DA, Paladino N (2021) Circadian rhythms in bacterial sepsis pathology: what we know and what we should know. Front Cell Infect Microbiol 11:1249. https://doi.org/10.3389/fcimb.2021.773181
73. NaveenKumar SK, Hemshekhar M, Jagadish S, Manikanta K, Vishalakshi GJ, Kemparaju K, Girish KS (2020) Melatonin restores neutrophil functions and prevents apoptosis amid dysfunctional glutathione redox system. J Pineal Res 69:e12676. https://doi.org/10.1111/jpi.12676
74. Nejati Moharrami N, Björkst Tande E, Ryan L, Espevik T, Boyartchuk V (2018) RORα controls inflammatory state of human macrophages. PLoS ONE 13:e0207374–e0207374. https://doi.org/10.1371/journal.pone.0207374
75. Nürenberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266. https://doi.org/10.1111/j.0105-2896.2004.0019.x
76. Obeyesekare JL, Cohen ZL, Coles ME, Pearlstein TB, Monzon C, Flynn EE, Sharkey KM (2020) Delayed sleep timing and circadian rhythms in pregnancy and transdiagnostic symptoms associated with postpartum depression. Transl Psychiatry 10:14. https://doi.org/10.1038/s41398-020-0683-3
77. Oh SK, Kim D, Kim K, Boo K, Yu YS, Kim IS, Jeon Y, Im S-K, Lee S-H, Lee JM, Ko Y, Lee H, Park D, Fang S, Baek SH (2019) RORα is crucial for attenuated inflammatory response to maintain intestinal homeostasis. Proc Natl Acad Sci 116:21140. https://doi.org/10.1073/pnas.1907595116
78. Olano CT, Bigger CH (2000) Phagocytic Activities of the Gor- gonian Coral Swiftia exserta. J Invertebr Pathol 76:176–184. https://doi.org/10.1006/jipa.2000.4974
79. Oliveira RA, Improta DO, Fernandes VG, Cavalcante JV, Albanus RD, Dalmolin RJ (2021) Reverse engineering of the pediatric sepsis regulatory network and identification of master regulators. Bioinformatics 9:1297. https://doi.org/10.1093/10390-020-0683-3
80. Pan P, Shen M, Yu Z, Ge W, Chen K, Tian M, Xiao F, Wang Z, Wang J, Jia Y, Wang W, Pan P, Zhang J, Chen W, Lei Z, Chen X, Luo Z, Zhang Q, Xu M, Li G, Li Y, Wu J (2021) SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun 12:4664. https://doi.org/10.1038/s41467-021-25015-6
81. Persitov SS (2006) Effect of melatonin on the thymus, adrenal glands, and spleen in rats during acute stress. Bull Exp Biol Med 141:292–295. https://doi.org/10.1007/s10517-006-0153-9
82. Pieri C, Recchioni R, Moroni F, Marcheselli F, Marra M, Marinoni S, Di Primio R (1998) Melatonin regulates the respiratory burst of human neutrophils and their depolarization. J Pineal Res 24:43–49. https://doi.org/10.1111/j.1600-079x.1998.tb00364.x
83. Poolman TM, Gibbs J, Walker AL, Dickson S, Farrell L, Hensman I, Kendall AC, Maidstone R, Warwood S, Loudon A, Rat-tray M, Bruce IN, Nicolaou A, Ray DW (2019) Rheumatoid arthritis reprograms circadian output pathways. Arthritis Res Ther 21:47. https://doi.org/10.1186/s13075-019-1825-y
84. Pourcet B, Zecchin M, Ferri L, Beauchamp J, Sitaula S, Bilvon C, Delhaye S, Vanhoutte J, Mayeuf-Louchart A, Thorel Q, Haas JT, Eeckhoute J, Dombrowicz D, Duhem C, Boulinguez...
A, Lancel S, Sebti Y, Burris TP, Stael B, Duez HM (2018) Nuclear receptor subfamily 1 group D member 1 regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice. Gastroenterology 154:1449–1464.e20. https://doi.org/10.1053/j.gastro.2017.12.019

85. Prendergast BJ, Hotchkiss AK, Bilbo SD, Kinsey SG, Nelson RJ (2003) Photoperiodic adjustments in immune function protect Siberian hamsters from lethal endotoxemia. J Biol Rhythms 18:51–62. https://doi.org/10.1177/1070456903239676

86. Reitz CJ, Alibhai FJ, Khatua TN, Rasouli M, Bridle BW, Burris TP, Martin TA (2019) SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol 2:353. https://doi.org/10.1038/s42003-019-0595-z

87. Ren D, Ji C, Wang X-B, Wang H, Hu B (2017) Endogenous melatonin promotes rhythmic recruitment of neutrophils toward an injury in zebrafish. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-05074-w

88. Ren D, Zhang J, Yang L, Wang X, Wang Z, Huang D, Tian C, Hu B (2018) Circadian genes period1b and period2 differentially regulate inflammatory responses in zebrafish. Fish Shellfish Immunol 77:139–146. https://doi.org/10.1016/j.fsi.2018.03.048

89. Reppert S, Perlow M, Ungerleider L, Mishkin M, Tamarkin L, Orloff D, Hoffman K, Klein D (1981) Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. J Neurosci 1:1414. https://doi.org/10.1523/JNEUROSCI.01-12-0141.1981

90. Rivera AS, Akanbi M, O’Dwyer LC, McHugh M (2020) Shift work and long work hours and their association with chronic health conditions: a systematic review of systematic reviews with meta-analyses. PLoS ONE 15:e0231037. https://doi.org/10.1371/journal.pone.0231037

91. Rubtsova K, Marrack P, Rubtsov AV (2015) Sexual dimorphism in autoregulation. J Clin Invest 125:2187–2193. https://doi.org/10.1172/JCI78082

92. Sarachana T, Hu VW (2013) Differential recruitment of coregulators to the RORA promoter adds another layer of complexity to gene (dys) regulation by sex hormones in autism. Mol Autism 4:39. https://doi.org/10.1088/2040-2392/4/3/39

93. Sato TK, Yamada RG, Ukai H, Bags GE, Miraglia L, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogness JB (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38:312–319. https://doi.org/10.1038/ng1745

94. Schechter A, Varin F, Boivin DB (2010) Circadian variation of sleep during the follicular and luteal phases of the menstrual cycle. Sleep 33:647–656. https://doi.org/10.1093/sleep/33.5.647

95. Shigeoishi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–1053. https://doi.org/10.1016/S0092-8674(00)80494-8

96. Simons KS, Laheij RJF, van den Boogaard M, Moviat MAM, Paling AJ, Polderman FN, Rozendaal FW, Salet GAM, van der Hoeven JG, Pickkers P, de Jager C, de Vries J (2016) Dynamic light application therapy to reduce the incidence and duration of delirium in intensive-care patients: a randomised controlled trial. Lancet Respir Med 4:194–202. https://doi.org/10.1016/S2223-2600(16)00025-4

97. Smogn R, Magalhaes E, Bouadma L, Andremont O, de Montmollin E, Essardy F, Mourvillier B, Lebut J, Dupuis C, Neuvile M, Lermuzeaux M, Timsit J-F, Sonneville R (2019) Impact of normal light exposure on delirium burden in adult patients receiving invasive mechanical ventilation in the ICU: a prospective study. Ann Intensive Care 9:120. https://doi.org/10.1186/s13613-019-0592-x

98. Stenger S, Röllinghoff M (2001) Role of cytokines in the innate immune response to intracellular pathogens. Annu. Rheum. Dis. 60:iii43. https://doi.org/10.1136/ard.60.90003.iii43

99. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988. https://doi.org/10.1016/j.immuni.2006.10.016

100. Summers C, Rankin SM, Condiliffe AM, Singh N, Peters AM, Chillvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31:318–324. https://doi.org/10.1016/j.ti.2010.05.006

101. Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, Pinton P (2019) Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis 10:317. https://doi.org/10.1038/s41419-019-1556-7

102. TUC (2018) Number of people working night shifts up by more than 150,000 in 5 years. TUC, London

103. van den Berg DF, Te Velde AA (2020) Severe COVID-19: NLRP3 inflammasome dysregulated. Front Immunol 11:1580–1580. https://doi.org/10.3389/fimmu.2020.01580

104. Vázquez-Martínez ER, García-Gómez E, Camacho-Arroyo I, González-Pedrajo B (2018) Sexual dimorphism in bacterial infections. Biol Sex Differ 9:27–27. https://doi.org/10.1186/s13239-018-0187-5

105. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577. https://doi.org/10.1146/annurev-physiol.021909-135919

106. Wever RA (1984) Sex differences in human circadian rhythms: intrinsic periods and sleep fractions. Experience 40:1226–1234. https://doi.org/10.1073/BF01946652

107. Wharfe MD, Mark PJ, Wyrwoll CS, Smith JT, Yap C, Clarke MW, Waddell BJ (2016) Pregnancy-induced adaptations of the central circadian clock and maternal glucocorticoids. J Endocrinol 228:135–147. https://doi.org/10.1530/JOE-15-0405

108. Wise J (2017) Heavy lifting and shift work are linked to reduced fertility. BMJ 356:j681. https://doi.org/10.1136/bmj.j681

109. Wu R, Wang N, Comish PB, Tang D, Kang R (2021) Inflammation-moderated coagulation activation in sepsis. Front Immunol. 12:684

110. Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W (2019) Melatonin in macrophage biology: current understanding and future perspectives. J Pineal Res 66:e12547. https://doi.org/10.1111/jpr.12547

111. Yang J, Zhang L, Yu C, Yang X-F, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2:1. https://doi.org/10.1186/2045-7771-2-1

112. Yao Y, Xu X-H, Jin L (2019) Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 10:792

113. Zhang S, Zeitzer JM, Yoshida Y, Wisor JP, Nishino S, Edgar DM, Mignot E (2004) Lesions of the suprachiasmatic nucleus eliminate the daily rhythm of hypocretin-1 release. Sleep 27:619–627. https://doi.org/10.1093/sleep/27.4.619

114. Zhang P, Yu C, Sun L (2020) Japanese flounder (Paralichthys olivaceus) Bmal1 is involved in the regulation of inflammatory response and bacterial infection. Aquaculture 525:735330. https://doi.org/10.1016/j.aquaculture.2020.735330

115. Lellupiyiyyage Don SS, Mas-Rosario JA, Lin H-H, Nguyen MN, Taylor SR, Farkas ME (2021) Macrophage Circadian Rhythms are Differentially Affected Based on Stimuli. https://doi.org/10.1101/2021.07.01.450771

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.