Complex networks embedded in space: Dimension and scaling relations between mass, topological distance and Euclidean distance

Thorsten Emmerich¹, Armin Bunde¹, Shlomo Havlin², Li Guanlian³ and Li Daqing⁴

¹Institut für Theoretische Physik, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
²Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
³Center for Polymer Studies, Department of Physics, Boston University, Boston 02215, USA
⁴School of Reliability and Systems Engineering, Beihang University, Beijing, 100191, China

E-mail: thorsten.emmerich@theo.physik.uni-giessen.de

Abstract. Many real networks are embedded in space, where in some of them the links length decay as a power law distribution with distance. Indications that such systems can be characterized by the concept of dimension were found recently. Here, we present further support for this claim, based on extensive numerical simulations for model networks embedded on lattices of dimensions $d_e = 1$ and $d_e = 2$. We evaluate the dimension d from the power law scaling of (a) the mass of the network with the Euclidean radius r and (b) the probability of return to the origin with the distance r travelled by the random walker. Both approaches yield the same dimension. For networks with $\delta < d_e$, d is infinity, while for $\delta > 2d_e$, d obtains the value of the embedding dimension d_e. In the intermediate regime of interest $d_e \leq \delta < 2d_e$, our numerical results suggest that d decreases continously from $d = \infty$ to d_e, with $d - d_e \sim (\delta - d_e)^{-1}$ for δ close to d_e. Finally, we discuss the scaling of the mass M and the Euclidean distance r with the topological distance ℓ (minimum number of links between two sites in the network). Our results suggest that in the intermediate regime $d_e \leq \delta < 2d_e$, $M(\ell)$ and $r(\ell)$ do not increase with ℓ as a power law but with a stretched exponential, $M(\ell) \sim \exp[A\ell^{\delta'(2-\delta')}]$ and $r(\ell) \sim \exp[B\ell^{\delta'(2-\delta')}]$, where $\delta' = \delta/d_e$. The parameters A and B are related to d by $d = A/B$, such that $M(\ell) \sim r(\ell)^d$. For $\delta < d_e$, M increases exponentially with ℓ, as known for $\delta = 0$, while r is constant and independent of ℓ. For $\delta \geq 2d_e$, we find power law scaling, $M(\ell) \sim \ell^{d_e}$ and $r(\ell) \sim \ell^{1/d_{min}}$, with $d_e \cdot d_{min} = d$. For networks embedded in $d_e = 1$, we find the expected result, $d_e = d_{min} = 1$, while for networks embedded in $d_e = 2$ we find surprisingly, that although $d = 2$, $d_e > 2$ and $d_{min} < 1$, in contrast to regular lattices.

Submitted to: New J. Phys.
1. Introduction

It has been realized in the last decades that a large number of complex systems are structured in the form of networks. The structures can be man-made like the World Wide Web and transportation or power grid networks or natural like protein and neural networks [?, 1–16, 19]. When studying the properties of these networks it is usually assumed that spatial constraints can be neglected. This assumption is certainly correct for networks like the World Wide Web (WWW) or the citation network where the real (Euclidean) distance does not play any role, but it may not be justified in networks where the Euclidean distance matters [20]. Typical examples of such networks include the Internet [6,11], airline networks [21,22], wireless communication networks [23], and social networks (like friendship and author networks) [24,25], which are all embedded in two-dimensional space (surface of the earth), as well as protein and neural networks [26], which are embedded in three dimensions.

To model these networks, two network classes are of particular interest: Erdős-Rényi (ER) graphs [27,28] and Barabasi-Albert (BA) scale free networks [29]. In ER-networks, the distribution of the number \(k \) of links per node (degree-distribution) is Poissonian with a pronounced maximum at a certain \(k \)-value, such that nearly each node is linked to the same number of nodes. In BA networks, the distribution follows a power law \(P(k) \sim k^{-\alpha} \), with \(\alpha \) typically between 2 and 3. Here we focus on ER-type networks embedded in one- and two-dimensional space. We actually use a degree distribution that is close to a delta function (as the case in simple lattices). We found that the results are the same for both kinds of distributions. We follow Refs. [30–32] and assume that nodes are connected to each other with a probability \(p(r) \sim r^{-\delta} \), where \(r \) is the Euclidean distance between the nodes. The choice of a power law for the distance distribution is supported from findings in the Internet, airline networks, human travel networks and other social networks [22,25,33]. Our model of embedding links of length \(r \), chosen from Eq. (1), in a \(d_e \)-dimensional lattice can be regarded as a generalization of the known Watts Strogatz (WS) model [1,3]. In the WS model links of any possible lengths with the same probability are added in the lattice system which corresponds to the case \(\delta = 0 \) of Eq. (1). Other methods for embedding networks in Euclidean space have been proposed in [34–37].

It has recently been shown that spatial constraints are important and may alter the dimension and therefore the topological properties of the networks (like the dependence of the mean topological distance on the system size) as well as their robustness [30,31]. Here we are interested in studying how in these model networks the spatial constraints quantified by the distance exponent \(\delta \) modify the scaling relations between mass (number of nodes), Euclidean distance \(r \) and topological distance \(\ell \). Our earlier study on ER networks embedded in a square lattice (with dimension \(d_e = 2 \)), indicate that by varying the exponent \(\delta \) one can actually change continuously the dimension \(d \) of the network, from \(d = \infty \) for \(\delta < 2 \) to \(d = 2 \) for \(\delta > 4 \) [32]. In the present manuscript we present further extensive numerical simulations for \(d_e = 2 \) that support this claim.
as well as simulations in linear chains ($d_e = 1$) that suggest analogous conclusions. In $d_e = 1$ we find that for $\delta < 1$ the system behaves like an infinite dimensional network (as the original ER-network). When continuously increasing δ the dimension becomes finite for $\delta > 1$ and approaches $d = 1$ for $\delta > 2$. Since the dimension of a system plays a critical role in many physical phenomena like diffusion, percolation and phase transition phenomena, our results are important for understanding and characterizing the properties of real world networks.

Our manuscript is organized as follows. In Section 2, we discuss the characteristic distances in the spatially constrained networks. In Section 3 we describe the method to generate the spatial network models. In Section 4 we present our numerical results for the dimension d, for networks embedded in linear chains and in square lattices, that we obtain from the scaling relation of the mass M and the distance r. In Section 5 we present our numerical results for the dimension d, that we obtain from the scaling relation of the probability of return to the origin P_0 of a diffusing particle and its distance r. In Section 6, we discuss the scaling of the mass M and the Euclidean distance r with the topological distance ℓ. The conclusions in Section 7 summarize our main results.

![Figure 1](image_url)

Figure 1. Illustration of ER networks embedded in linear chains (top) and square lattices (bottom), for various distance exponents δ.

2. Characteristic distances

First we estimate how the characteristic distances, in a network of L^{d_e} nodes, depend on its linear size L, on δ and on the embedding dimension d_e. We normalize the distance distribution $p(r)$ such that $\int_1^L dr r^{d_e-1} p(r) = 1$, which yields

$$p(r) = \begin{cases} (d_e - \delta) L^{-(d_e - \delta)} r^{-\delta} & , \delta < d_e \\ (\delta - d_e) r^{-\delta} & , \delta > d_e. \end{cases} \quad (1)$$
From $p(r)$ we obtain $\bar{r} = \int_1^L dr r^{d_e-1} r^n p(r)$ and the related length scales $\bar{r}_n \equiv (\bar{r}^n)^{1/n}$. The maximum distance r_{max} is determined by $L^{d_e} \int_{r_{max}}^L dr r^{d_e-1} p(r) \simeq 1$. The results for \bar{r}_n and r_{max} are

\[\bar{r}_n = \begin{cases} \frac{d_e-\delta}{d_e+n-\delta} L^n, & \delta < d_e \\ \frac{d_e-n}{d_e+n-\delta} L^{d_e+n-\delta}, & d_e < \delta < d_e + n \\ n \ln(L), & \delta = d_e + n \\ \frac{d_e-\delta}{d_e+n-\delta}, & \delta > d_e + n \end{cases} \]

and

\[r_{max} \simeq \begin{cases} L, & \delta < 2d_e \\ L^{d_e/(\delta-d_e)}, & \delta \geq 2d_e. \end{cases} \]

Accordingly, for $\delta < d_e$ all length scales (\bar{r}_n and r_{max}) are proportional to L, the spatial constraints are weak and the system can be regarded as an infinite dimensional system. On the other hand, for $\delta > 2d_e$, \bar{r}_n/L and r_{max}/L tend to zero in the asymptotic limit. In this case, we expect that the physical properties of the network are close to those of regular lattices of dimension d_e. However, large finite size effects are expected for δ close to $2d_e$ where r_{max}/L decays only very slowly to zero. In the intermediate δ-regime $d_e \leq \delta < 2d_e$, r_{max} scales as L, while \bar{r}_n/L tends to zero in the asymptotic limit. In this regime our simulation results (Chap. 4) suggest intermediate behavior represented by a dimension between d_e and infinity that changes with δ.

3. Generation of the networks

The nodes of the network are located at the sites of a d_e-dimensional regular lattice, in our case a linear chain of length L ($d_e = 1$) or a square lattice of size $L \times L$ ($d_e = 2$). We assign to each node a fixed number k of links (in most cases, $k = 4$). Actually this network is a random regular (RR) network since all nodes have the same degree. It is expected (and we have also verified it numerically) that both networks, ER and RR with the same spatial constraints, are in the same universality class.

To generate the spatially embedded networks, we use the following iterative algorithm: (i) We pick a node i randomly and choose, for one of its available k_i links, a distance r ($1 \leq r \leq L$) from the given probability distribution $p(r)$, Eq. (1). It is easy to see that the distance r can be obtained from random numbers $0 < u \leq 1$ chosen from the uniform distribution, by

\[r = \begin{cases} [1 - u(1 - L^{d_e-\delta})]^{1/(d_e-\delta)}, & \delta \neq d_e \\ L^u, & \delta = d_e. \end{cases} \]

(ii) We consider all N_i nodes between distance $r - \Delta r$ and r from node i, that are not yet connected to node i. Without loss of generality, we choose $\Delta r = 1$ for the linear
chain and $\Delta r = 0.4$ for the square lattice. (iii) We pick randomly one of these nodes j. If node j has at least one available link, we connect it with node i. If not, we do not connect it. Then we return to (i) and proceed with another randomly chosen node. At each step of the process, either 2 or zero links are added. For generating the network, we have typically performed $10^3 \cdot L^{d_e}$ trials. Due to the generation process, the nodes of the final network do not all have exactly the same degree, but the degree follows a narrow distribution with a mean \bar{k} slightly below $k = 4$. Figure 1 illustrates the ER networks embedded in $d_e=1$ and $d_e=2$ for $\delta = 0.5d_e$, $1.5d_e$, $2d_e$, $2.5d_e$, and $k = 4$. Figure 2 shows the actual narrow degree distribution as well as $p(r)$ obtained in the simulations.

4. The dimension of the networks

For determining the dimensions of the spatially embedded networks, we follow the method developed by Daqing et al [32]. We use the fact that the mass M (number of nodes) of an object within an hypersphere of radius r scales with r as

$$M \sim r^d$$

(5)

where the exponent d represents the dimension of the network. When using this relation without taking into account the way the nodes are linked, one trivially and erroneously finds that the dimension of the network is identical to the dimension d_e of the embedding space.
To properly take into account the connectivity, when considering the dimension of the network, we proceed as follows (see Fig 3): We choose a node as origin and determine its nearest neighbors (referred to as shell 1) and their number $S(1)$, the number of second nearest neighbors $S(2)$, and so on. Next we measure the mean Euclidean distance $r(\ell)$ of the nodes in shell ℓ from the origin and determine the number of nodes $M(\ell) = \sum_{i=1}^{\ell} S(i)$ within shell ℓ. To improve the statistics, we repeat the calculations for many origin nodes.
and then average $r(\ell)$ and $M(\ell)$. To reduce finite size effects, we do not choose the origin nodes randomly in the underlying lattice, but from a region with radius $L/10$ around the central node. From the scaling relation between the average M and the average r, Eq. (5), we determine the dimension d of the network.

Figure 4 shows the results for networks embedded in linear chains, for distance exponents δ between 1.25 d_e and 2.5 d_e. In (a), we consider networks with $k = 4$ fixed and different system sizes ($N = 10^5$, 10^6 and 10^7), while in (b) we consider networks with a fixed size $N = 10^7$ and various k values ($k = 3, 4, 6$). In both panels, we have plotted M as a function of r/\bar{r}, where $\bar{r} \equiv \bar{r}_1$ is the mean distance, see Eq. (2).

Figure 4a shows that for δ in the interesting regime between d_e and 2d_e, the curves for different N collapse nicely. (For transparency, the curves (except $\delta = 1.25$) have been shifted along the x-axis by a factor of 10, 10^2, 10^3, 10^4 and 10^5). From the slopes of the straight lines, we obtain the dimension $d \approx 4.64$ ($\delta = 1.25$), $d \approx 2.12$ ($\delta = 1.5$) and $d \approx 1.48$ ($\delta = 1.75$). For $\delta \geq 2$, the data starts to overshoot above some crossover value that increases with the system size and thus can be regarded as a finite size effect. To understand the reason for this crossover note that a node close to the boundary has a considerably higher probability to be linked with nodes closer to the center of the underlying lattice. As a consequence, for large shell numbers ℓ, the mean Euclidean distance of the nodes from the origin node will be underestimated and thus the mass within large Euclidean distances overestimated. This effect is most pronounced in the linear chain, for intermediate δ-values, and gives rise to the overshooting of $M(r)$ for δ between 2 and 2.5, where $d \approx d_e$. For $\delta = 2.5$ and $N = 10^7$, the total number of nodes in the spatially constrained network is well below N, since the network is separated into smaller clusters. For larger k-values, this effect is less likely to appear. Figure 4b shows that the dimension of the networks does not depend on their average degree. The $M(r)$ curves collapse for different k, and thus give rise to the same dimensions. This indicates the universality feature of the dimension.

Figure 5 shows the corresponding results for networks embedded in square lattices ($d_e = 2$), again for 6 exponents δ between 1.25 d_e and 2.5 d_e, three network sizes ($N = 9 \cdot 10^4$, 10^6 and $9 \cdot 10^6$), and three k values ($k = 3, 4, 6$). From the slopes of the straight lines we obtain $d \approx 5.82$ ($\delta = 2.5$), $d \approx 2.91$ ($\delta = 3$), and $d \approx 2.21$ ($\delta = 3.5$). For δ above 4, d is close to d_e, as expected. The figure confirms that the finite size effects in $d_e = 2$ are considerably less pronounced than in $d_e = 1$, contrary to the intuition, since the linear size of the underlying embedding lattice is considerably higher in $d_e = 1$ than in $d_e = 2$. As in $d_e = 1$, the dimensions are independent of the mean degree of the networks.

Figure 6 summarizes our results for the dimensions of the spatially embedded networks in the intermediate δ regime between d_e and 2d_e, where the dimension is supposed to bridge the gap between $d = \infty$ for the unconstrained case δ below d_e and $d = d_e$ for the highly constrained case δ above 2d_e. The figure shows $d - d_e$ as a function of the relative distance exponent $\delta' = \delta/d_e$ for both considered lattices. The figure shows that in both cases, the curves approximately collapse to a single line which can
Figure 5. The same as Fig 4, but for ER networks embedded in a square lattice, the system sizes are $N = 9 \cdot 10^4, 10^6$ and $9 \cdot 10^6$ with $\delta = 2.5, 3, 3.5, 4, 4.5, 5$ (from left to right).

Figure 6. The difference between network dimension d and embedding dimension d_e as a function of δ/d_e for $d_e = 1$ (circles) and $d_e = 2$ (triangles).

be represented by

$$d - d_e = c \frac{2 - \delta'}{\delta' (\delta' - 1)}, \quad 1 < \delta' < 2$$

where $c \approx 1.60$. According to Eq. (6), $d - d_e$ diverges for δ' approaching the critical relative distance exponent $\delta' = 1$.
5. The probability of return to the origin

The network dimension plays an important role also in physical processes such as diffusion [38–40]. The probability $P_0(t)$ that a diffusing particle, after having traveled t steps, has returned to the origin, is related to the root mean square displacement $r(t)$ of the particle by [32, 40, 41]

$$P_0(t) \sim r(t)^{-d}.$$ (7)

To derive Eq. (7) one assumes that the probability of the particle to be in any site in the volume $V(t) = [r(t)]^d$ is the same. As a consequence, $P_0(t) \sim 1/V(t)$, which leads to Eq. (7). Figure 7 shows P_0 as a function of r/\bar{r} in $d_e = 1$ and 2, for the same δ-values as in Figs. 4 and 5. For convenience, we show only the results for the largest system size, $N = 10^7$ for $d_e = 1$ and $N = 9 \cdot 10^6$ for $d_e = 2$. To obtain $P_0(t)$, we averaged, for each value of δ, over 10^4 diffusing particles and 50 network realizations. From the straight lines in the double-logarithmic presentations of Figure 7 we obtain the dimension of the networks, which are listed in the figure. The dimensions obtained in Figure 7 agree very well with those obtained by direct measurements in Figs. 4 and 5.

Figure 7. (a) The probability P_0 that a diffusing particle is at its starting site, after travelling an average distance r, as a function of the relative distance r/\bar{r} for ER networks embedded in linear chains with $k = 4$, for the system size $N = 10^7$ with $\delta = 1.25, 1.5, 1.75, 2, 2.25, 2.5$ (from left to right). The straight lines are best fits to the data that yield the dimension d of the network. (b) The same as panel (a), but for ER networks embedded in a square lattice, the system size is $N = 9 \cdot 10^6$ with $\delta = 2.5, 3, 3.5, 4, 4.5, 5$ (from left to right). Note that the values of d obtained here are almost the same as those obtained by direct measurements in Figs. 4 and 5.
6. The topological dimension and the dimension of the shortest path

In order to find how M scales with the Euclidean distance r, we determined in Sect. 4 how M and r scale with the topological length ℓ, and obtained the dimension d from $M(\ell) \sim r(\ell)^d$. In this section, we discuss explicitly how M and r depend on ℓ.

It is well known that for regular lattices as well as for fractal structures, M and r scale with ℓ as power laws,

$$M(\ell) \sim \ell^{d_\ell}$$

$$r(\ell) \sim \ell^{1/d_{min}},$$

where d_ℓ is the topological ("chemical") dimension and d_{min} is the dimension of the shortest path, see e.g., [42,43]. For regular lattices of dimension d_e, $d_\ell = d_e$ and $d_{min} = 1$. Thus we expect that for $\delta \geq 2d_e$, the power law relations (8) hold.

For $\delta = 0$ the network has no spatial constraints and it is known that the mean topological distance $\langle \ell \rangle$ between 2 nodes on the network scales with the network size N as $\langle \ell \rangle \sim \log N$ [5]. This represents the small world nature of random graphs. Since N plays the role of the mass M of the network, it follows that M increases exponentially

![Figure 8](image-url)
with ℓ, i.e. $M(\ell) \sim \exp(A\ell)$. We expect that this relation holds for $\delta < d_e$ where r_{max} and r/\bar{r} are both proportional to the linear scale L of the network, see Eqs. (2) and (3). Since for $\delta > 2d_e$ we expect power law relations (8), we conjecture that in the intermediate regime $d_e \leq \delta < 2d_e$, $M(\ell)$ will increase slower than exponential and faster than a power law, via a stretched exponential,

$$M(\ell) \sim \exp(A\ell^\alpha), \quad d_e \leq \delta < 2d_e. \quad (9)$$

This function can bridge between the exponential behavior for $\delta < d_e$ and the power law for $\delta > 2d_e$. For δ approaching d_e from above, α should approach 1, while for δ approaching $2d_e$ from below, α should approach 0, consistent with a power law. The conjecture, Eq. (9) is supported by earlier numerical simulations [30] where it was found that in the intermediate regime, ℓ scales as $(\log N)^\beta$, leading to $\alpha = 1/\beta$. On the basis of numerical simulations it was estimated [30], that $\alpha \simeq \delta(2 - \delta)$ in $d_e = 1$ and $\alpha \simeq \delta(4 - \delta)/4$ in $d_e = 2$, which actually can be combined into a single equation, $\alpha = \delta'(2 - \delta')$, when the relative distance exponent $\delta' = \delta/d_e$ is introduced. Thus our conjecture (9) becomes

$$M(\ell) \sim \begin{cases} e^{A\ell}, & \delta' < 1 \\ e^{A\ell'(2-\delta')}, & 1 \leq \delta' < 2, \end{cases} \quad (10)$$
where the prefactor A may depend on δ' and d_e. To test this hypothesis, we have plotted, in Figs. 8, a, b, c ($d_e = 1$) and Figs. 9 a, b, c ($d_e = 2$), $M(\ell)$ versus $\ell^{\delta'(2-\delta')}$, in a semi-logarithmic fashion. The relative distance exponents δ' are 0.5, 1.25 and 1.75 in both cases. The lattice sizes are the same as in Figs. 4 and 5. For $\delta' = 0.5$ where the spatial constraints are irrelevant, we find $\log M \sim \ell$, in agreement with (10). In the intermediate δ regime $1 \leq \delta' < 2$ we find that $\log M \sim \ell^\alpha$, with $\alpha = 0.93$ ($\delta = 1.25$) and 0.43 ($\delta = 1.75$), also in agreement with (10). Accordingly, in the intermediate δ-regime, $M(\ell)$ scales with the topological distance ℓ as a stretched exponential which serves as a "bridge" between the exponential behavior for $\delta < d_e$ and the anticipated power law behavior for δ well above $2d_e$.

Now the question arises how the power law in Eq. (5) that describes the scaling of M with r and the stretched exponential in Eq. (10) that describes the scaling of M with ℓ, can be simultaneously satisfied. The only way to fulfill both equations is, that also $r(\ell)$ is a stretched exponential with the same α in the intermediate regime i.e.,

$$r(\ell) \sim e^{B\ell^{\delta'(2-\delta')}} \quad 1 \leq \delta' < 2,$$

where B may depend on δ' and d_e. To test this hypothesis, we have plotted, in Figs. 8, a, b, c ($d_e = 1$) and Figs. 9 a, b, c ($d_e = 2$), $M(\ell)$ versus $\ell^{\delta'(2-\delta')}$, in a semi-logarithmic fashion. The relative distance exponents δ' are 0.5, 1.25 and 1.75 in both cases. The lattice sizes are the same as in Figs. 4 and 5. For $\delta' = 0.5$ where the spatial constraints are irrelevant, we find $\log M \sim \ell$, in agreement with (10). In the intermediate δ regime $1 \leq \delta' < 2$ we find that $\log M \sim \ell^\alpha$, with $\alpha = 0.93$ ($\delta = 1.25$) and 0.43 ($\delta = 1.75$), also in agreement with (10). Accordingly, in the intermediate δ-regime, $M(\ell)$ scales with the topological distance ℓ as a stretched exponential which serves as a "bridge" between the exponential behavior for $\delta < d_e$ and the anticipated power law behavior for δ well above $2d_e$.

Figure 10. The mass M (left column) and the relative distance r/\bar{r} (right column) as a function of the topological distance ℓ for ER networks embedded in linear chains with $k = 4$, for the system sizes $N = 10^5$, 10^6 and 10^7 with $\delta = 2.0$, 2.25 and 2.5. The straight lines are best fits to the data that yield the topological dimension d_t and the dimension of the shortest path d_{min}. Note that the slopes below the crossover in (b), (c), (e) and (f) of M and r vs ℓ are the same. This yields $d = 1$ for all range of r as indeed seen in Fig. 4.
and the ratio between the prefactors A and B should yield the dimension of the network. This is since $M(\ell) \sim e^{A\ell^{(2-d')}} = (e^{B\ell^{(2-d')}})^{A/B} \sim r^d$. Figs. 8 e, f and 9 e, f support the assumption (11). The prefactor B is obtained from the slopes of the straight lines in the figures and indeed the values of A/B are found to be identical to the values of the dimensions we obtained in the previous section. For δ below d_e (see Figs. 8d and 9d), r is independent of ℓ and $M \sim e^{A\ell}$ (see Figs. 8a and 9a).

For $\delta \geq 2d_e$, we expect that $M(\ell)$ and $r(\ell)$ follow power laws, such that we can determine, from a double logarithmic plot, the chemical dimension d_ℓ and the dimension of the shortest path, d_{min}. Figures 10 and 11 show that this is the case. But surprisingly, for $\delta \geq 2d_e$ (but close to $2d_e$), the values of d_{min} and d_ℓ do not agree with the values for the corresponding regular lattices. For $\delta = 2d_e$, we obtain $d_\ell \simeq 3.02$ in $d_e = 1$ and $d_\ell \simeq 3.67$ in $d_e = 2$, significantly higher than the corresponding values $d_\ell = 1$ and $d_\ell = 2$ in regular lattices. Furthermore, the dimension of the shortest path d_{min} is considerably smaller than in regular lattices ($d_{min} = 1$), $d_{min} = 1/2.65 = 0.38$ in $d_e = 1$ and $d_{min} = 1/1.80 = 0.56$ in $d_e = 2$. Since $M \sim \ell^{d_\ell} \sim r^{d_{min}d_\ell}$, the dimension d of the network for $\delta \geq 2d_e$ is simply $d = d_{min}d_\ell$, which yields $d \simeq 1.14$ in $d_e = 1$ and $d \simeq 2.04$ in $d_e = 2$, in agreement with our results of Figs. 4 - 7. For δ above $2d_e$ we expect that d_ℓ and d_{min} accept the values of the corresponding regular lattices. Figure 10 shows

Figure 11. The same as Fig 10, but for ER networks embedded in a square lattice. The system sizes are $N = 9 \cdot 10^4, 10^6$ and $9 \cdot 10^6$ with $\delta = 4.0, 4.5$ and 5.0. The lines in (c) and (f) demonstrate for comparison slopes 2 and 1 respectively.
that this is indeed the case in $d_e = 1$, with a pronounced crossover behavior for $\delta = 2.25$ and 2.5. The crossover point decreases with increasing δ. In $d_e = 2$, in contrast, for $\delta = 2.25d_e$ and $2.5d_e$ the dimensions do not seem to reach their anticipated values $d_e = 2$ and $d_{\text{min}} = 1$, even though $d \cong 2$ was obtained for both δ values. Figure 11 does not suggest that this is a finite size effect since a bending down for larger system sizes cannot be seen similar to that in $d_e = 1$. However, we cannot exclude the possibility that at very large system sizes that right now cannot be analyzed with the current state-of-the-art computers, there will be a crossover towards the anticipated values of $d_\ell = 2$ and $d_{\text{min}} = 1$.

7. Summary

In summary, we studied the effect of spatial constraints on complex networks where the length r of each link was taken from a power law distribution, Eq. (1), characterized by the exponent δ. Spatial constraints are relevant in all networks where distance matters, such as the Internet, power grid networks, and transportation networks, as well as in cellular phone networks and collaboration networks [6,11,20,23–25]. Our results suggest that for δ below the embedding dimension d_e, the dimension of the network is infinite as in the case of networks that are not embedded in space (represented by $\delta = 0$). For δ between d_e and $2d_e$, the dimension decreases monotonically, from $d = \infty$ to $d = d_e$. Above $2d_e$, $d = d_e$. We also studied how the mass M and the Euclidean distance r scale with the topological distance ℓ. For δ below d_e, M increases exponentially with ℓ, while r does not depend on ℓ. For δ between d_e and $2d_e$, both the mass M and the Euclidean distance r increase with ℓ as a stretched exponential, with the same exponent α but different prefactors in the exponential. The ratio between these two prefactors yields the dimension of the embedded network. Exactly at $\delta = 2d_e$, the exponent α becomes zero and M and r scale with ℓ as power laws, defining the exponents d_ℓ and d_{min}, respectively similar to fractal structures [42,43]. While the dimension d is equal to d_e, surprisingly d_ℓ and d_{min} do not have the values $d_\ell = d_e$ and $d_{\text{min}} = 1$ that are expected for regular lattices. This effect seems to hold in $d_e = 2$ also for δ values somewhat greater than $2d_e$. Our results have been obtained for a nearly δ-functional degree distribution, but we argue that they are valid for any narrow degree distribution, like Poissonian, Gaussian or exponential degree distribution since all those networks are expected to be in the same universality class. For power law degree distributions (scale free networks [29]), there may be differences for small values of δ, since it is known that nonembedded random graphs and scale free networks are in different universality classes [44,45]. In the relevant intermediate δ regime ($d_e \leq \delta < 2d_e$), we cannot exclude the possibility that the dimensions do not depend on the degree distribution. Indications are from measurements of the dimension of the airline network and the Internet [32]. Both are scale free networks, with δ close to 3 (airline network) and δ close to 2.6 (Internet). For the airline network, d is close to 3, while for the Internet, d is close to 4.5. These values are consistent with those obtained here for the ER-networks, with the same δ-
values. We have assumed a power law distribution, Eq. (1), for the link length. Other distributions are possible, for example an exponential distribution which holds for the power grid and ground transportation networks [20]. This case is equivalent to $\delta = \infty$, since we have a finite length scale and thus the dimension d of the network is expected to be the same as the dimension of the embedding space d_e.

A power law distribution of Euclidean distances appears also in other physical systems where the present results may be relevant. For example, model systems where the interactions between particles decay as $r^{-\delta}$ have been studied extensively for many years, for recent reviews on the statistical physics and dynamical properties of these systems, see [46, 47]. Magnetic models on lattices with long range bonds whose lengths follow a power law distribution have also been studied, see e.g., [48]. In Levy flights and walks, the jump lengths follow a power law distribution. For reviews see [39,53,54]. Finally, it has been found that a power law distribution of link lengths with $\delta = d_e$ or $d_e + 1$ (depending on the type of transport) is optimal for navigation [19,49–52].

Acknowledgments

AB and SH are grateful to the Deutsche Forschungsgemeinschaft for financial support. DL thanks the National Science Foundation of China (NSFC) for financial support.

References

[1] Watts D J and Strogatz S H 1998 Collective dynamics of ’small-world’ networks Nature 393 440
[2] Albert R, Jeong H and Barabási A-L 1999 Diameter of the World-Wide Web Nature 401 130
[3] Watts D J 1999 Small worlds (Princeton: Princeton University Press)
[4] Cohen R, Erez K, ben-Avraham D and Havlin S 2000 Resilience of the Internet to random breakdowns Phys. Rev. Lett. 85 4626
[5] Bollobás B 2001 Random graphs (Cambridge: Cambridge University Press)
[6] Albert R and Barabási A-L 2002 Statistical mechanics of complex networks Rev. Mod. Phys. 74 47
[7] Newman M E J, Watts D J and Strogatz S H 2002 Random graph models of social networks Proc. Natl. Acad. Sci. U.S.A. 99 2566
[8] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D and Alon U 2002 Network motifs: Simple building blocks of complex networks Science 298 824
[9] Dorogovtsev S N 2003 Evolution of networks: From biological nets to the internet and www (Oxford: Oxford University Press)
[10] Cohen R and Havlin S 2003 Scale-free networks are ultrasmall Phys. Rev. Lett. 90 058701
[11] Satorras R P and Vespignani A 2004 Evolution and structure of the internet: A statistical physics approach (Cambridge: Cambridge University Press)
[12] Gallos L K, Cohen R, Argyrakis P, Bunde A and Havlin S 2005 Stability and topology of scale-free networks under attack and defense strategies Phys. Rev. Lett. 94 188701
[13] Brockmann D, Hufnagel L and Geisel T 2006 The scaling laws of human travel Nature 439 462
[14] Barrat A, Barthélemyn M and Vespignani A 2008 Dynamical processes on complex networks (Cambridge: Cambridge University Press)
[15] Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press)
[16] Csanyi G and Szendroi B 2004 Fractalsmall-world dichotomy in real-world networks Phys. Rev. E 70 016122
[17] Gastner M T and Newman M E J 2006 The spatial structure of networks European Physical Journal B49 247
[18] Cohen R and Havlin S 2010 Complex networks: Structure robustness and function (Cambridge: Cambridge University Press)
[19] Yanqing H, Yougui W, Daqing L, Havlin S and Zengru D 2011 Possible Origin of Efficient Navigation in Small Worlds Phys. Rev. Lett. 106 108701
[20] Barthélym M 2010 Spatial Networks Phys. Rep. 499 1
[21] Bianconi G, Pin P and Marsili M 2009 Assessing the relevance of node features for network structure Proc. Natl. Acad. Sci. U.S.A. 106 11433
[22] Hua H, Myers S, Colizza V and Vespignani A 2009 WiFi networks and malware epidemiology Proc. Natl. Acad. Sci. U.S.A. 106 1318
[23] Liben-Nowell D, Novak J, Kumar R, Raghavan P and Tomkins A 2005 Geographic routing in social networks Proc. Natl. Acad. Sci. U.S.A. 102 11623
[24] Lambiotte R, Blondel V D, de Kerchove C, Huens E, Prieur C, Smoreda Z and Van Dooren P 2008 Geographical dispersal of mobile communication networks Physica A 387 5317
[25] Jeong H, Mason S, Barabási A-L and Oltvai Z N 2001 Lethality and centrality in protein networks Nature 411 41
[26] Erdős P and Rényi A 1959 On random graphs Publ. Math. 6 290
[27] Goldberg J and Levy M 2009 Distance is not dead: Social interaction and geographical distance in the internet era. arXiv:0906.3202
[28] Rozenfeld A F, Cohen R, ben-Avraham D and Havlin S 2002 Scale-free networks on lattices Phys. Rev. Lett. 89 218701
[29] Weiss G H 1994 Aspects and Applications of the Random Walk (Amsterdam: North Holland Press)
[30] Klafter J and Sokolov IM 2001 First steps in Random Walks (Oxford: Oxford University Press)
[31] Alexander S and Orbach R 1982 Density of states on fractals J. Phys. Lett. 43 625
[32] Havlin S and ben-Avraham D 2002 Diffusion in disordered media Adv. Phys. 51 187; Adv. Phys. 36 695
[33] Cohen R, ben-Avraham D and Havlin S 2002 Percolation critical exponents in scale-free network models Europhys. Lett. 59 510
[34] Ben-Naim E, Inalhan A S, Scalas E and Santangelo M 2001 Anomalous diffusion in complex networks Europhys. Lett. 59 510
[35] Ben-Naim E, Inalhan A S, Scalas E and Santangelo M 2001 Anomalous diffusion in complex networks Europhys. Lett. 59 510
[36] Ben-Naim E, Inalhan A S, Scalas E and Santangelo M 2001 Anomalous diffusion in complex networks Europhys. Lett. 59 510
networks Phys. Rev. E 66 036113

[45] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Critical phenomena in complex networks Rev. Mod. Phys. 80 1275

[46] Mukamel D 2008 Statistical Mechanics of systems with long range interactions arXiv:0811.3120v1

[47] Campa A, Dauxois T and Ruffo S 2009 Statistical mechanics and dynamics of solvable models with long-range interactions Phys. Rep. 480 57

[48] Chang Y F, Sun L and Cai X 2007 Phase transition of a one-dimensional Ising model with distance-dependent connections Phys. Rep. 76 021101

[49] Viswanathan G M, Buldyrev S V, Havlin S, da Luz M G E, Raposo E P and Stanley E H 1999 Optimizing the success of random searches Nature 401 911

[50] Kleinberg J M 2000 Navigation in a small world - It is easier to find short chains between points in some networks than others Nature 406 845

[51] Li G, Reis S D S, Moreira A A, Havlin S, Stanley E H, Andrade J S and Jr 2010 Towards Design Principles for Optimal Transport Networks Phys. Rev. Lett. 104 018701

[52] Roberson M R, ben-Avraham D 2006 Kleinberg navigation in fractal small-world networks Phys. Rev. E 74 017101

[53] Klafter J, Shlesinger M F and Zumofen G 1996 Beyond Brownian Motion Physics Today 49 33

[54] Metzler R and Klafter J 2000 The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 339 1