Focal Seizures in a Child Following COVID-19 Infection: A Case Report

Janardhan Mydam 1, Srinivas Midivelly 2, Pujitha Vallivedu Chennakesavulu 3, Arnav Mydam 4, Hundana Alleppalli 5, Kiran Depala 6

1. Neonatology, John H. Stroger Jr. Hospital of Cook County, Chicago, USA 2. Pediatrics and Child Health, Yashoda Hospital, Hyderabad, IND 3. Internal Medicine, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, IND 4. Research, Berkeley Preparatory School, Tampa, USA 5. Research, Adlai E. Stevenson High School, Buffalo Grove, USA 6. Research, College of Public Health and Social Justice, Saint Louis University, St. Louis, USA

Abstract

Coronavirus disease 2019 (COVID-19) has been shown to impact multiple organs, even in instances where patients did not show any symptoms. In this case report, we detail a six-year-old male child presenting with focal seizures without an antecedent history of epilepsy. The child presented with twitching movements on the right side of the face involving the oral cavity. Non-contrast brain MRI showed meningoencephalitis. He was given antibiotics, antipyretics, and antiepileptic drugs (AEDs), but his clinical condition continued to deteriorate despite treatment. Oropharyngeal and nasopharyngeal swabs tested positive for COVID-19. Thus, treatment was initiated for COVID-19 encephalitis and seizures with intravenous immune globulin (IVIG) and steroids. Frequency of seizures decreased dramatically after steroids were initiated and remained infrequent during the five days of steroid therapy. After steroids were discontinued seizures returned but were shorter, less frequent and manageable with AEDs. The child was discharged on AEDs and was seizure-free at six months of follow-up. The following case report details the disease and treatment pathway of the patient.

Introduction

The coronavirus disease 2019 (COVID-19) pandemic has profoundly impacted the health of the global population. Presently, the World Health Organization reports that 255 million individuals have been infected with the disease, with over five million resultant deaths [1]. Initially, it was believed that COVID-19 only had a detrimental impact on the respiratory system but, as the pandemic grew, it became clear that the condition was multisystemic and could have a detrimental impact on multiple organs [2,3]. Less commonly, COVID-19 is also known to cause neurological symptoms, with some studies reporting neurological symptoms in 30% of those infected, with higher prevalence among those with severe disease [4,5]. The most commonly reported neurologic symptoms include spasticity, movement disorders, seizures, headaches, altered taste, anosmia, dizziness, and cerebrovascular incidents [6,7]. In addition, de-novo focal seizures, as a consequence of COVID-19, have been reported in a small number of case reports, but we did not find any that described them in detail in pediatric patients [8].

Within the current case report, we describe a six-year-old previously healthy male child, who developed focal seizures that appeared to be associated with COVID-19. By reporting this case, we intend to increase healthcare providers' knowledge in treating children with the disease. Specifically, we want to raise awareness of the potential for neurological complications to occur within this patient population.

Case Presentation

A six-year-old previously healthy male child presented to our tertiary care hospital from a remote local pediatrician's office with a history of fever (five days), cough (three days), and new onset of multiple abnormal involuntary movements. The parents described twitching movements on the right side of his face, with deviation of the mouth and drooling of saliva from the left angle of the mouth. These episodes were accompanied by slurred speech and lasted for two to three minutes on each occurrence. The parents reported no history of loss of consciousness, eye-rolling, abnormal movements of limbs, or bowel/bladder incontinence. On examination, the child was noted to be tachycardic (118 bpm) and tachypneic (34/min), with low oxygen saturations (80%) in room air. He was afebrile (98.6°F) and had normal blood pressure (100/60 mmHg). Respiratory examination on auscultation revealed left-sided crackles. Neurological examination revealed drowsiness, impaired immediate memory recall, and slurred speech, but he was oriented to place and person and had no other focal neurological deficits.

The child was admitted to the neuro-intensive care unit, and treatment was initiated. He was kept on nil per
oral (NPO) and an orogastric (OG) tube was placed. After OG tube placement, oxygen was given via face mask at 5 L/min to maintain saturations above 95%. The patient was started on IV fluids (0.45% dextrose) at 2/3 normal requirement (in view of meningitis). Injection ceftriaxone IV 2g 12 hourly (200 mg/kg/day) and injection acyclovir IV 300 mg eight hourly (15 mg/kg/dose) were started because of high suspicion of herpes simplex encephalitis. Lorazepam, 1 mg IV, was ordered for acute seizure episodes. Additional supportive treatment included injection paracetamol 300 mg IV eight hourly (15 mg/kg/dose), injection pantoprazole 20 mg IV 24 hourly (1 mg/kg/day), and injection ondansetron 3 mg IV 12 hourly (0.15mg/kg/dose), as needed. Although lorazepam was effective for acute episodes, seizures continued to occur. Injection levetiracetam IV was added, beginning with a 400 mg loading dose (20 mg/kg/dose), followed by 200 mg IV given 12 hourly (10mg/kg/dose).

A complete blood count with differential (CBCD) showed an elevated total leukocyte count of 19,510 cells/mm3 with 78.5% neutrophils and 13.9% lymphocytes. C-reactive protein (CRP) was elevated at 53.6 mg/dL. A chest x-ray performed on admission revealed bilateral lung parenchymal involvement with right upper lobe infiltrates and left lower lobe consolidation. A CT lung screen showed a left basal lung collapse attributed to aspiration rather than infection. The MRI brain plain with contrast showed diffuse leptomeningeal enhancement on both sides and altered signal intensity in the bilateral capsule-ganglionic and temporal regions - features suggestive of probable meningoencephalitis (Figures 1A-3B).

FIGURE 1: Axial T1-weighted MRI of a six-year-old boy with COVID-19 encephalopathy (A) without contrast - normal and (B) with contrast - diffuse leptomeningeal involvement in bilateral cerebral hemispheres

COVID-19: coronavirus disease 2019
Cerebrospinal fluid (CSF), obtained after the MRI, was within normal limits showing no significant increase in WBC, and the viral meningitis panel (including herpes simplex virus polymerase chain reaction [HSV PCR]) was negative. Because the brain MRI showed symmetrical involvement, we ordered a CSF autoimmune encephalitis panel, including tests for serum neuromyelitis optica (NMO) and anti-myelin oligodendrocyte glycoprotein (anti-MOG) antibodies. The autoimmune panel returned all negative results. The negative CSF analysis suggested the encephalitis was an inflammatory reaction and not an acute viral leptomeningeal encephalitis. Oropharyngeal and nasopharyngeal swabs were taken to test (reverse transcription-polymerase chain reaction [RT-PCR]) for COVID-19 and indicated the patient was infected with the disease. However, D-dimer (523 ng/mL), serum ferritin (167 u/L), and serum lactate dehydrogenase (LDH) (196 U/L) were all within normal range, with interleukin-6 (IL-6) (8.17 pg/mL) being mildly elevated. Throughout the patient’s stay in the hospital, CRP showed a decreasing trend.

A brief EEG was performed on day two of admission, after starting antiepileptic drugs (AEDs) and while the
syndrome following COVID-19 infection may also play a causal role in developing post-viral seizures. The system's role following COVID-19 infection is poorly understood. At present, the mechanistic routes via which COVID-19 can negatively impact the nervous system are poorly understood. Proposed mechanisms include neurotropism, pro-inflammatory markers entering the nervous system, and the immune system’s role following COVID-19 infection. In addition, among children, multisystem inflammatory syndrome following COVID-19 infection may also play a causal role in developing post-viral seizures.

Discussion

The current case report details a young male patient who presented with focal seizures and subsequently tested positive for COVID-19. To the best of our knowledge, this is the first such case reported in a pediatric population. We hope that by detailing his treatment regimen, this case can help to inform the treatment of such patients in the future.

As the pandemic swept across the globe, more detailed information has been gathered concerning the neurological impact of COVID-19 infection. Neurological signs related to infection are diverse and include, but are not limited to, anosmia, stroke, headaches, and dysgeusia. There is also a growing body of evidence that suggests that these symptoms may persist long after acute COVID-19 infection has passed. For example, a study published in 2021 from the United Kingdom found a range of neurological disorders within a relatively small cohort of children; disorders were diverse and included psychosis, behavior change, hallucinations, and peripheral nervous system involvement.

Overall, seizures appear to be a rare occurrence following COVID-19 infection. At the same time, there is a limited but growing body of evidence that suggests that new-onset focal seizures and epilepsy should be considered a delayed central nervous system manifestation of COVID-19 infection. Carroll et al. reported refractory status epilepticus in a 69-year-old African American woman six weeks after COVID-19 infection. Previously published case reports have identified focal seizures in adult patients; for example, Vollono et al. reported its occurrence in a 78-year-old female patient. Following a hospital admission, their patient was well enough to be discharged. A second case report details focal seizures in a 45-year-old patient, which, at the time of publication of the report, were still occurring and required ongoing medication.

At present, the mechanistic routes via which COVID-19 can negatively impact the nervous system are poorly understood. The evidence is even more scarce among children, as the disease appears to be milder within this population when compared with adults, resulting in fewer long-term symptoms. Proposed mechanisms include neurotropism, pro-inflammatory markers entering the nervous system, and the immune system’s role following COVID-19 infection. In addition, among children, multisystem inflammatory syndrome following COVID-19 infection may also play a causal role in developing post-viral seizures.
Conclusions

Our case report details focal seizures following COVID-19 infection in a young child. The seizures were minimally responsive to AEDs but dramatically improved with the addition of a course of methylprednisolone and intravenous immunoglobulins. After completion of steroids, the child’s condition gradually improved on multiple antiseizure medications. The frequency of episodes declined from approximately five episodes a day on presentation to one every four to five days prior to discharge, and the child was seizure-free by six months of follow-up. Although focal seizures have been described in adults with COVID-19, they have not previously been reported in children infected with the virus. Further research, specifically data collection among young cohorts, is required to improve treatment and, subsequently, patient outcomes.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. WHO coronavirus (COVID-19) dashboard. Accessed: January 12, 2021: https://covid19.who.int.
2. White-Deuro G, Gibson LE, Tzarror L, et al.: Multisystem effects of COVID-19: a concise review for practitioners. Postgrad Med. 2021, 133:20-7. 10.1080/00325481.2020.1823094
3. Ramos-Casals M, Brito-Zerón P, Mariette X: Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021, 17:515-32. 10.1038/s41584-021-00608-z
4. Mao L, Jin H, Wang M, et al.: Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77:685-90. 10.1001/jamanet.2020.1127
5. Collantes ME, Espiritu AI, Sy MC, Antacan VM, Jamosa RD: Neurological manifestations in COVID-19 infection: a systematic review and meta-analysis. Can J Neurol Sci. 2021, 48:66-76. 10.1017/cjn.2020.146
6. Iadecola C, Anrather J, Kanel H: Effects of COVID-19 on the nervous system. Cell. 2020, 183:16-27. 10.1016/j.cell.2020.08.028
7. Jarrahi A, Ahsalwalia M, Khodadadi H, et al.: Neurological consequences of COVID-19: what have we learned and where do we go from here?. J Neuroinflammation. 2020, 17:10.1186/s12974-020-01957-4
8. Bozzoli M, Grassini A, Morana G, et al.: Focal seizures with impaired awareness as long-term neurological complication of COVID-19: a case report. Neurol Sci. 2021, 42:2619-25. 10.1007/s10072-021-05235-y
9. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PI: 6-month neurological and psychiatric outcomes in 236.379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021, 8:416-27. 10.1016/S2215-0366(21)00193-0
10. Ray ST, Abdel-Mannan O, Sa M, et al.: Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: a prospective national cohort study. Lancet Child Adolesc Health. 2021, 5:631-41. 10.1016/S2352-4642(21)00193-0
11. Hwang ST, Ballout AA, Mirza U, et al.: Acute seizures occurring in association with SARS-CoV-2. Front Neurol. 2020, 11:5389/4neur.2020.576329
12. Park S, Majoka H, Sheikh A, Ali I: A presumed case of new-onset focal seizures as a delayed complication of COVID-19 infection. Epilepsy Behav Rep. 2021, 16:10.1016/j.ebr.2021.100447
13. Carroll E, Neumann H, Aguero-Rosenfeld ME, Lighter J, Czeisler BM, Melmed K, Lewis A: How does the COVID-19 cause seizure and epilepsy? Front Neurol. 2021, 12:6037-41. 10.3389/fneur.2021.60373
14. Vollono C, Rollo E, Romozzi M, Frisullo G, Servidei S, Borghetti A, Calabresi P: Focal status epilepticus as an acute clinical feature of COVID-19: a case report. Seizure. 2020, 78:109-12. 10.1016/j.seizure.2020.04.009
15. Norouzi M, Miar P, Norouzi S, Nikpour P: Nervous system involvement in COVID-19: a review of the current knowledge. Mol Neurobiol. 2021, 58:5561-74. 10.1007/s12035-021-02347-4
16. Zimmermann P, Curtis N: Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child. 2021, 106:429-39. 10.1136/archdischild-2020-320338
17. Nishibiki F, Mohammadkianizadeh A, Mohammad E: How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Mult Scler Relat Disord. 2020, 46:10.1016/j.msard.2020.102535
18. Paterson RW, Brown RL, Benjamin L, et al.: The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020, 143:5104-20. 10.1093/brain/awaa230
19. Diorio C, Henriksson SE, Vella LA, et al.: Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J Clin Invest. 2020, 130:5967-75. 10.1172/JCI140970