A role of p38 mitogen-activated protein kinase in adenosine A1 receptor-mediated synaptic depotentiation in area CA1 of the rat hippocampus

Ying-Ching Liang2, Chiung-Chun Huang1 and Kuei-Sen Hsu*1,2

Address: 1Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan and 2Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan

Email: Ying-Ching Liang - alice217@ms35.url.com.tw; Chiung-Chun Huang - Chun19680111@yahoo.com.tw; Kuei-Sen Hsu* - richard@mail.ncku.edu.tw

* Corresponding author

Abstract

Background: Although long-term potentiation (LTP) of synaptic strength is very persistent, current studies have provided evidence that various manipulations or pharmacological treatment when applied shortly after LTP induction can reverse it. This kind of reversal of synaptic strength is termed as depotentiation and may have a function to increase the flexibility and storage capacity of neuronal networks. Our previous studies have demonstrated that an increase in extracellular levels of adenosine and subsequent activation of adenosine A1 receptors are important for the induction of depotentiation; however, the signaling downstream of adenosine A1 receptors to mediate depotentiation induction remains elusive.

Results: We confirm that depotentiation induced by low-frequency stimulation (LFS) (2 Hz, 10 min, 1200 pulses) was dependent on adenosine A1 receptor activation, because it was mimicked by bath-applied adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and was inhibited by the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Pretreatment of the hippocampal slices with the selective p38 mitogen-activated protein kinase (MAPK) inhibitors, 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyruyl)-1H-imidazole (SB203580) or trans-1-(4-hydroxycyclohexyl)-4-(fluorophenyl)-5-(2-methoxypyrimidin-4-y)imidazole (SB239063), prevented the induction of depotentiation by LFS and CPA. In agreement with electrophysiological observation, both LFS- and CPA-induced depotentiation are associated with an increase in p38 MAPK activation, which are blocked by DPCPX or SB203580 application.

Conclusion: These results suggest that activation of adenosine A1 receptor and in turn triggering p38 MAPK signaling may contribute to the LFS-induced depotentiation at hippocampal CA1 synapses.

Background

Long-term potentiation (LTP) is a long-lasting form of activity-dependent synaptic plasticity that is generally thought to play crucial roles in learning and memory processes in the brain [1,2]. Although LTP is remarkable for its stability, numerous studies have revealed that it is...
initially labile and sensitive to disruption by a variety of interfering events and agents [3,4]. Such reversal of synaptic strength from the potentiated state to pre-LTP levels has been termed depotentiation and may provide a mechanism of preventing the saturation of the synaptic potentiation and increase the efficacy and the capacity of the information storage of the neuronal networks [3].

A sustained train of low-frequency stimulation (LFS) is a powerful paradigm for studying the molecular mechanism underlying the induction of depotentiation. Previous work from our and other laboratories have demonstrated that trains of 1–5 Hz LFS can produce an enduring and complete reversal of synaptic potentiation when delivered within 10 min of LTP induction [1,3,5,6]. So far, a number of synaptic signaling molecules have been identified that participate in the induction of depotentiation including adenosine, calcineurin, nitric oxide, and small GTPase Rap2 [6-12]. Less well understood are the processes that control signaling from these synaptic ligands and receptors. For example, we have previously proposed that the reversal of LTP at the Schaffer collateral-CA1 synapses by LFS is associated with an increase of extracellular levels of adenosine acting on adenosine A1 receptor to interrupt the cAMP/protein kinase A (PKA)-dependent biochemical processes leading to LTP [6,11]. We further demonstrated that the efflux of cAMP is the potential source for the increased extracellular adenosine underlying LFS-induced depotentiation [6]. However, it is still unclear the signaling downstream of adenosine A1 receptors to mediate the induction of LFS-induced depotentiation. Recent data suggest that p38 mitogen-activated protein kinase (MAPK) activation may contribute to adenosine A1 receptor-mediated synaptic depression in the hippocampal CA1 region [13]. Moreover, p38 MAPK signaling has been shown to be an important mediator of AMPA receptor surface trafficking during synaptic plasticity, a process crucial for rapid altering synaptic strength [14,15]. It became, therefore, of interest to study possible roles of p38 MAPK in adenosine A1 receptor-mediated depotentiation.

Here, we tested whether p38 MAPK signaling is involved in the induction of LFS-induced depotentiation in the CA1 region of hippocampus. Our study provides evidence that p38 MAPK may serve as a signaling downstream of adenosine A1 receptor activation to induce depotentiation.

Results

p38 MAPK contributes to LFS-induced depotentiation

Using field potential recordings, we first tested for the existence of a LFS-induced depotentiation in the CA1 region of hippocampal slices. LTP was induced by two 1-sec trains of 100 Hz stimuli separated by intertrain interval of 20 sec. The mean slope of the field excitatory postsynaptic potential (fEPSP) measured 50 min after high-frequency tetanic stimulation (HFS) was 146.5 ± 4.2% (n = 8) of baseline (Fig. 1A). To establish a reliable depotentiation, a long train of LFS protocol, 2 Hz/1200 pulse stimulation, was used [6,16]. As expected, when LFS was applied 5 min after LTP induction, LTP was almost completely reversed (Fig. 1A). The mean residual potentiation measured 40 min after the end of LFS was 96.5 ± 5.8% (n = 8) of baseline. Thus, these results generally confirmed previous studies showing that LTP is vulnerable to disruption by depotentiation stimuli within a short period after its induction [6,17,18].

To assess the role of p38 MAPK in the induction of LFS-induced depotentiation, the highly selective p38 MAPK inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580) was used. As shown in Figure 1B, SB203580 (1 μM) treatment alone had no effect on the induction of LTP. The mean slope of the fEPSP measured 50 min after HFS was 153.6 ± 8.5% (n = 6) of baseline, which was not statistically different from the corresponding values of control slices. In marked contrast to control slices, application of LFS, 5 min after LTP induction, failed to induce depotentiation in all eight slices tested. The mean residual potentiation measured 40 min after the end of LFS was 138.5 ± 6.2% (n = 8) of baseline (Fig. 1B). To further confirm a role of p38 MAPK in the induction of depotentiation, in another set of experiments, we examined the effect of another 38 MAPK inhibitor trans-1-(4-hydroxycyclohexyl)-4-(fluorophenyl)-5-(2-methoxypyrimidin-4-yl)imidazole (SB239063) on the LFS-induced depotentiation. We found that application of SB239063 (1 μM) failed to affect the LTP induction (148.5 ± 8.1% of baseline, n = 4; p > 0.05 when compared with control LTP slices; unpaired Student’s t test), but prevented the LFS-induced depotentiation (Fig. 1C). The mean residual potentiation measured 40 min after the end of LFS was 139.5 ± 7.5% (n = 5) of baseline. In addition, in both control and SB203580-treated slices, 10 min of 2 Hz stimulation delivered to Schaffer collateral-CA1 synapses had no long-lasting effect on the synaptic transmission (Fig. 1D). The mean slope of the fEPSP measured 40 min after the end of LFS was 96.5 ± 6.7% (n = 6) and 98.3 ± 7.2% (n = 6) of baseline, respectively. Similar results were also obtained using an antibody that selectively recognizes phosphorylated, activated p38 MAPK [19]. As shown in Figure 1E, phospho-p38 MAPK was readily detected in untreated control slices, and the levels were increased to 132.5 ± 6.8% (n = 5) of control in LFS (2 Hz)-treated slices. However, no significant changes in the levels of phospho-p38 MAPK were observed 30 min after LTP induction (102.8 ± 5.6% of control slices, n = 5; p > 0.05; unpaired Student’s t test). In LFS-induced depotentiation experiments, we found that there was signifi-
Figure 1 (see legend on next page)
cantly increased the levels of phospho-p38 MAPK (134.2 ± 7.2% of control slices, n = 5; p < 0.05; unpaired Student's t test). In addition, pretreatment of the slices with SB203580 (1 μM) completely blocked the increase in p38 MAPK phosphorylation induced by LFS (Fig. 1E). These results strongly support the view that the p38 MAPK is an obligatory component of the biochemical bases that serves the induction of LFS-induced depotentiation.

Adenosine A1 receptor-mediated depotentiation was decreased by p38 MAPK inhibition

We and other laboratories have previously shown that an increase of extracellular adenosine acting on adenosine A1 receptors may be a component of the mechanism that triggers LFS-induced depotentiation in the hippocampal CA1 region [6,8,18]. A recent study has revealed that adenosine A1 receptor-mediated synaptic depression is dependent on p38 MAPK activation [13]. It was therefore of interest to examine the relationship between p38 MAPK activation and adenosine-mediated signaling pathways in the induction of depotentiation. We began by confirming that LFS-induced depotentiation can be blocked by the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). As shown in Figure 2A, the LFS-induced depotentiation was significantly inhibited in the presence of DPCPX (0.1 μM). The slope of fEPSP after LFS recovered close to the initial LTP levels. The mean residual potentiation measured 40 min after the end of LFS was 140.9 ± 8.6% (n = 5) of baseline. Application of DPCPX alone had no significant effect on the induction of LTP (149.7 ± 7.5% of baseline, n = 6; p > 0.05; unpaired Student's t test).

We next tested whether the reversal of LTP induced by a direct adenosine application was also affected by p38 MAPK antagonism. Because adenosine may act at multiple receptor subtypes and is rapidly degraded by ectonucleotidases [20], we used the specific adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) to address this issue. Application of CPA (0.2 μM) for 5 min potentially depressed the fEPSP by 84.5 ± 6.5% of baseline (n = 6). The fEPSP fully recovered after washout of drug (Fig. 2B). We next examined the effect of CPA application on the previously established LTP. In agreement with our previous findings [6,11], CPA (0.2 μM for 5 min) applied 5 min after LTP induction almost completely reversed LTP (Fig. 2C). The mean residual potentiation measured 40 min after washout of CPA was 98.9 ± 7.2% (n = 6) of baseline. When CPA was applied in the presence of DPCPX (0.1 μM), both acute response and the resulting depotentiation were inhibited significantly (Fig. 2C).

Discussion

In this study, we identify a novel interaction between adenosine A1 receptor and p38 MAPK in hippocampal neu-

Figure 1 (see previous page)

p38 MAPK contributes the induction of LFS-induced depotentiation. (A) Summary of experiments showing that LFS (2 Hz, 10 min) given 5 min after two trains of 100 Hz HFS almost completely reversed LTP (n = 8; ●), whereas fEPSPs in slices that received HFS without LFS exhibited persistent potentiation (n = 8; ○). (B) Summary of experiments showing that pretreatment of slices with the p38 MAPK inhibitor SB203580 (1 μM) blocked the induction of LFS-induced depotentiation (n = 8; ●) but had no effect on the induction of LTP (n = 6; ○). (C) Summary of experiments showing that pretreatment of slices with the p38 MAPK inhibitor SB239063 (1 μM) blocked the induction of LFS-induced depotentiation (n = 5; ●) but had no effect on the induction of LTP (n = 4; ○). (D) Summary of experiments showing that the protocol of LFS had no lasting effect on synaptic transmission in the presence of vehicle (n = 6; ○) or SB203580 (n = 6; ●). The superimposed fEPSP in the inset illustrates respective recordings from example experiments taken at the time indicated by number. Horizontal bars denote the period of delivery LFS or SB203580. (E) Representative immunoblots showing that the induction of LFS-induced depotentiation (DEP) is accompanied by a significant increase in p38 MAPK phosphorylation and that SB203580 (1 μM) prevented this enhancement action. Group data showing the normalization of phospho-p38 MAPK to the nonphosphorylated form was determined in each group of five experiments. In each experiment, 21–28 slices obtained from 2–3 rats were used. *, p < 0.05 (unpaired Student's t test) as compared with the control (Con) group.
Figure 2 (see legend on next page)
rons. We have shown that activation of adenosine A₁ receptors, either by a train of LFS or a brief application of adenosine A₁ receptor agonist CPA, can trigger a depotentiation by a mechanism that requires the activation of p38 MAPK signaling pathway.

A number of studies have revealed an important role for extracellular adenosine acting on adenosine A₁ receptors in mediating the induction of depotentiation [6,8,11,18]. However, the signaling downstream of adenosine A₁ receptor activation to trigger depotentiation remains elusive. We have previously shown that activation of adenosine A₁ receptor may interrupt the cAMP-PKA-dependent biochemical processes associated with the LTP expression [6,11]. Here, we have extended these findings by demonstrating that p38 MAPK may lie downstream of adenosine A₁ receptor activation to induce depotentiation. Evidence supporting this prediction is that pretreatment of the hippocampal slices with the specific p38 MAPK inhibitors, SB203580 and SB239063, effectively prevented the induction of LFS- or CPA-induced depotentiation (DEP). We further showed that activation of NMDA receptors can be activated by the adenosine A₁ receptors via a pertussis toxin-sensitive signaling pathway [26]. It seems likely that the p38 MAPK activation by the adenosine A₁ receptors is mediated by G_{i/o} proteins coupling to classical intracellular signaling pathways such as modulation of cAMP production or the phospholipase C pathway.
Interestingly, several other studies have reported that G protein-coupled receptors can also activate p38 MAPK via Gβγ subunits. For example, in human embryonic kidney 293 cells, Gβ2-coupled m2 muscarinic receptors and Gγ-coupled β-adrenergic receptors were found to stimulate p38 MAPK via Gβγ [29]. Similarly, our previous study has also demonstrated that by releasing Gβγ subunits, the Gαq/11-coupled type 5 metabotropic glutamate receptors can activate small GTPase Rap1 to mediate (S)-3,5-dihydroxyphenylglycine (DHPG)-induced p38 MAPK activation in hippocampal CA1 neurons [15]. According to these previous observations, it will be important for future studies to identify which of these mechanisms is responsible for the adenosine A1 receptor-mediated p38 MAPK activation observed in hippocampal CA1 neurons.

How might p38 MAPK activation reverse the previously established LTP? A most likely possibility is that a decrease in the surface expression of AMPA receptors contributes to this process. Activity-dependent changes in AMPA receptor trafficking have been proposed to play a critical role in mediating bidirectional synaptic plasticity [30,31]. It has been shown that LTP induction in hippocampal slices is associated with an increase in the delivery of AMPA receptors to dendritic spines [32,33], whereas the expression of LTD is associated with a decrease in the surface expression of AMPA receptors [34,35]. With the use of biochemical surface biotinylation assay, we have previously shown that the expression of DHPG-induced depotentiation is associated with a reduction in the increase of the surface expression of AMPA receptors seen with LTP [24]. This finding strongly implies that the removal of synaptic surface AMPA receptor is a potential mechanism underlying the expression of depotentiation in hippocampal neurons. In addition, previous work from our and other laboratories has demonstrated that activation of p38 MAPK may lead to synaptic removal of surface AMPA receptors [12,15]. These results suggest that p38 MAPK-mediated synaptic removal of surface AMPA receptors may account for, at least in part, the development of adenosine A1 receptor-dependent form of depotentiation. Our previous studies have found that the expression of LFS-induced depotentiation was accompanied by a persistent dephosphorylation of the GluR1 subunit of AMPA receptors at serine 831, a protein kinase C and calcium/calmodulin-dependent protein kinase II substrate, but not at serine 845, a substrate of PKA [6,11]. Activation of protein phosphatase 1 (PP1) triggered this dephosphorylation (Huang et al., 2001) and inhibition of PP1 activity rendered the depotentiation stimuli ineffective [6,36]. Taken together, these findings indicate that the interaction between p38 MAPK and PP1 can determine whether depotentiation is induced at Schaffer collateral-CA1 synapses.

Our results indicate that SB203580 produced only little effect on the acute response during CPA application but significantly blocked the induction of CPA-induced depotentiation. This finding is in contrast with observation made in a previous study [13], which reported that SB203580 potently reduced CPA-mediated synaptic depression. The reason for this discrepancy is not clear. It remains to be determined if the use of different concentrations of CPA (0.2 μM vs. 40 nM) and SB203580 (1 μM vs. 25 μM) has a role in explaining the conflicting results. In addition, SB203580 has been shown to effectively compete the binding of adenosine A1 receptor antagonist DPCPX in rat brain membrane at micromolar concentrations [37]. Given that the concentration of SB203580 used in this study was below the effective concentration as adenosine A1 receptor antagonist [37], we therefore assumed that the effect of SB203580 on depotentiation was mediated via the inhibition of p38 MAPK.

An intriguing observation of this study is that 2 Hz stimulation alone in control slices significantly increased the levels of phospho-p38 MAPK but had no long-lasting effect on the basal synaptic transmission (Fig. 1D, 1E and 2E). A plausible explanation for this finding may be that p38 MAPK activity is required but is not sufficient for the induction of synaptic depotentiation or depression. However, further experiments are required to test this possibility.

Conclusion
In summary, we have shown in this study that p38 MAPK is activated by adenosine A1 receptor stimulation and contributes to the induction of depotentiation in the hippocampal CA1 region. Given the potential role of LTP in learning and memory formation and the processes disrupting the formation of stable LTP may be the possible cause for the loss of memory [1,3], our findings imply a possibility that p38 MAPK is a potential common signaling molecule to exert the mechanism of memory loss. It would be interesting to explore whether the selective p38 MAPK inhibitor may be implicated in enhancing cognition in the treatment of some dementia disorders.

Methods
Hippocampal slice preparation
All procedures were performed according to NIH guidelines for animal research (Guide for the Care & Use of Laboratory Animals, NRC, 1996) and approved by the Institutional Animal Care and Use Committee at National Cheng Kung University. Hippocampal slices were obtained from 28- to 35-day-old young male Sprague-Dawley rats for extracellular recordings by the procedures described previously [6]. In brief, animals were anesthetized with halothane and decapitated with guillotine, and the hippocampi were removed, placed in ice cold artificial...
CSF (aCSF) solution and cut with a Leica VT1000S tissue slicer (Leica, Nussloch, Germany) into transverse slices of 400 μm. After their preparation, slices were placed in a holding chamber of aCSF oxygenated with 95% O2-5% CO2 and kept at room temperature for at least 1 h before used. The composition of the aCSF solution was (in mM): NaCl 117, KC1 4.7, CaCl2 2.5, MgCl 2 1.2, NaHCO3 25, NaH2PO4 1.2 and glucose 11 at pH 7.3–7.4 and equilibrated with 95% O2-5% CO2.

Electrophysiological recordings

For the extracellular field potential recordings, a single slice was transferred to a submerge-type recording chamber and held between two nylon nets. The chamber consisted of a circular well of a low volume (1–2 ml) and was continuously perfused with oxygenated aCSF at a flow rate of 2–3 ml/min at 32.0 ± 0.5°C. Area CA3 was surgically removed after sectioning. Extracellular field potential recordings were carried out using an Axoclamp-2B amplifier (Axon Instruments, Union City, CA). Microelectrodes were pulled from microfibre 1.0 mm capillary tubing on a Brown-Flaming electrode puller (Sutter Instruments, San Rafael, CA). The responses were low pass filtered at 2 kHz, digitally sampled at 5–10 kHz, and analyzed using pCLAMP software (Version 7.0; Axon Instruments). The evoked postsynaptic responses were induced in CA1 stratum radiatum by stimulation (0.02 ms duration) of Schaffer collateral/commissural afferents at 0.033 Hz with a bipolar stainless steel stimulating electrode. The stimulation strength was set to elicit a response having amplitude that was 30–40% of the maximum spike-free response. fEPSPs were recorded with a glass pipette filled with 1 M NaCl (2–3 MΩ resistance) and fEPSP slope was measured from approximately 20–70% of the rising phase using a least-squares regression. The LTP was induced by HFS, at the test pulse intensity, consisting of two 1-sec trains of stimuli separated by an intertrain interval of 20 sec at 100 Hz. Depotentiation was induced by application of 10 min low-frequency trains of stimuli at 2 Hz, and the stimulation intensity was the same as the test pulse intensity. All values of residual potentiation reported here were calculated as the changes in the slope of fEPSPs measured 40 min after the end of LFS.

Western blotting

Hippocampal slices were prepared and treated with HFS with or without LFS exactly as described in the electrophysiological experiments. At the end of experiments, the CA1 subregion of the hippocampal slices between the positions of the stimulating and recording electrodes was dissected out and immediately frozen on dry ice. Three to four microdissected CA1 subregions (from control, 30 min after LTP induction, 15 min after the end of LFS, 20 min after washout of CPA) were pooled together. In each experiment, an entire set of control, LTP, or depotentiation pooled slices was taken from one animal. The micro-dissected subregions were lysed in ice-cold Tris-HCl buffer solution (TBS; pH 7.4) containing a cocktail of protein phosphatase and proteinase inhibitors (50 mM Tris-HCl, 100 mM NaCl, 15 mM sodium pyrophosphate, 50 mM sodium fluoride, 1 mM sodium orthovanadate, 5 mM EGTA, 5 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 1 μM microcystin-LR, 1 μM okadaic acid, 0.5% Triton X-100, 2 mM benzamidine, 60 μg/ml aprotinin, and 60 μg/ml leupeptin) to avoid dephosphorylation and degradation of proteins, and ground with a pellet pestle (Kontes glassware, Vineland, NJ, USA). Samples were sonicated and spun down at 15,000 × g at 4°C for 10 min. The supernatant was then assayed for total protein concentration using Bio-Rad Bradford Protein Assay Kit (Hercules, CA). Each sample was separated in 10% SDS-PAGE gel. Following the transfer on PVDF membranes, blots were blocked in buffer solution containing 5% milk and 0.1% Tween-20 in PBS (124 mM NaCl, 4 mM KCl, 10 mM Na2HPO4, and 10 mM KH2PO4, pH 7.2) for 1 h and then blotted for 2 h at room temperature with antibodies that recognize phosphorylated p38 MAPK (1:1000; New England BioLabs). It was then probed with HRP-conjugated secondary antibody for 1 h and developed using the ECL immunoblotting detection system (Amersham Biosciences, Buckinghamshire, UK), according to manufacturer's instructions. The immunoblots using phosphorylation site-specific antibodies were subsequently stripped and reprobed with an antibody that recognizes phosphorylated p38 MAPK (1:500; New England BioLabs). Immunoblots were analyzed by densitometry using Bio-Profil BioLight PC software. Only film exposures that were in the linear range of the ECL reaction were used for quantification analysis.

Drug application

All drugs were applied by manually switching the superfusate. Drugs were diluted from stock solutions just before application. CPA was prepared by first dissolving it in an equimolar amount of HCl as a concentrated stock and then diluting to its final concentration in aCSF. Other drugs used in this study were dissolved in distilled water. SB203580, SB239063 and CPA were purchased from Tocris Cookson (Bristol, UK).

Statistical analysis

All data are expressed as means ± SEM and the statistical significance was determined using the Mann-Whitney U-test or Student’s t-test. Numbers of experiments are indicated by n. Probability values of *p < 0.05 were considered to represent significant differences.

Competing interests

The authors declare that they have no competing interests.
References

1. Bliss TV, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993, 361(6407):31-39.
2. Malenka RC, Bear MF: LTP and LTD: an embarrassment of riches. Neuron 2004, 44(1):5-21.
3. Huang CC, Hsu KS: Progress in understanding the factors regulating reversibility of long-term potentiation. Rev Neurosci 2001, 12(1):51-68.
4. Zhou Q, Poo MM: Reversal and consolidation of activity-induced synaptic modifications. Trends Neurosci 2004, 27(7):378-383.
5. Fujii S, Saito K, Miyakawa H, Ito K, Kato H: Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation: the input to CA1 neurons of guinea pig hippocampal slices. Brain Res 1991, 555(1):112-122.
6. Huang CC, Liang YC, Hsu KS: A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J Neurosci 1999, 19(22):9728-9738.
7. Sekino Y, Ito K, Miyakawa H, Kato H, Kuroda Y: Adenosine A1 antagonist inhibits induction of long-term potentiation of evoked synaptic potentials but not of the population spike in hippocampal CA1 neurons. Biochem Biophys Res Commun 1991, 181(3):1010-1014.
8. Fujii S, Sekino Y, Kuroda Y, Sasaki H, Ito K, Kato H: β-cyclopentyltheophylline, an adenosine A1 receptor antagonist, inhibits the reversal of long-term potentiation in hippocampal CA1 neurons. Eur J Pharmacol 1997, 331(1):9-14.
9. Doyle C, Holscher C, Rowan M, Anwyl R: The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo. J Neurosci 1996, 16(1):418-424.
10. Zhuo M, Zhang W, Son H, Mansuy I, Sobel RA, Seidman J, Kandel ER: A selective role of calcium/calmodulin-dependent protein kinase II requires the NSF-GluR2 interaction. Neuron 2000, 28(3):403-413.
11. Huang CC, Liang YC, Hsu KS: Characterization of long-term potentiation by low frequency stimulation at hippocampal CA1 synapses. J Biol Chem 2001, 276(51):48108-48117.
12. Zhu Y, Pak D, Qin Y, McCormack SG, Kim MJ, Baungart JP, Velamoor V, Auberson YP, Osten PV, van Aelst L, Malinow R: Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron 2005, 46(6):903-916.
13. Brust TB, Caysbyb FS, Zhou N, MacVicar BA: p38 mitogen-activated protein kinase contributes to adenosine A1 receptor-mediated synaptic depression in area CA1 of the rat hippocampus. J Neurosci 2006, 26(48):12427-12438.
14. Zhu JJ, Qin Y, Zhao M, van Aelst L, Malinow R: Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 2002, 110(4):443-455.
15. Huang CC, You JL, Wu MY, Hsu KS: Rap1-induced p38 mitogen-activated protein kinase activation facilitates AMPA receptor trafficking via the GDI.Rab5 complex. Potential role in (5)-3,5-dihydroxyphenylglycine-induced long term depression. J Biol Chem 2004, 279(13):12286-12292.
16. Omatahova NA, Lisman JE: D/δ, dopamine receptors inhibit depotentiation at CA1 synapses via cAMP-dependent mechanism. J Neurosci 1998, 18(4):1270-1279.
17. Anzai A, Kessler M, Lynch G: The effects of adenosine on the development of long-term potentiation. Neurosci Lett 1990, 119(1):41-44.
18. Staubli U, Chun D: Factors regulating the reversibility of long-term potentiation. J Neurosci 1996, 16(2):853-860.
19. Han J, Lee JD, Bibos L, Ulevitch RJ: A MAP kinase targeted by endotoxins and hypoxia/reoxygenation in mammalian cells. Science 1994, 265(5173):808-811.
20. Dunwiddie TV, Masino SA: Glutamate: the role of glutamate in the central nervous system. Annu Rev Neurosci 2001, 24:31-55.
21. Lee HK, Kameyama K, Huganir RL, Bear MF: NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998, 21(5):1151-1162.
22. Bashir ZI, Jane DE, Sunter DC, Watkins JC, Collingridge GL: Metabotropic glutamate receptors contribute to the induction of long-term depression in the CA1 region of the hippocampus. Eur J Pharmacol 1993, 239(1-3):265-266.
23. Bashir ZI, Collingridge GL: An investigation of depotentiation of long-term potentiation in the CA1 region of the hippocampus. Exp Brain Res 1994, 100(2):243-245.
24. Neher E: Depotentiation of synaptic transmission in hippocampal CA1 neurons. J Physiol 1994, 477(Pt 3):443-455.
25. White TE, Collingridge GL, Alexander SP, Hill SJ: Adenosine A1 receptor stimulation of inositol phospholipid hydrolysis and calcium mobilisation in DDT1 MF-2 cells. Br J Pharmacol 1992, 106(1):215-221.
26. Yamauchi J, Nagao M, Kizuno Y, Itoh H: Activation of p38 mitogen-activated protein kinase by signaling through G protein-coupled receptors. Involvement of G protein βγ subunits. Annu Rev Cell Dev Biol 1997, 17(3):613-643.
27. Derkach VA, Oh MC, Guire ES, Soderling TR: Regulation of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 2007, 8(2):101-113.
28. Shepherd JD, Huganir RL: The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 2007, 23:613-643.
29. Shi S, Hayashi Y, Esteban JA, Malinow R: Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 2001, 105(3):331-343.
30. Hayashi Y, Shi SH, Esteban JA, Piccin A, Poncer JC, Malinow R: Driving AMPA receptors into synapses by LTD and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 2000, 287(5461):2262-2267.
31. Kandler K, Karz LC, Kauer J: Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nat Neurosci 1998, 1(2):119-123.
32. Luthi A, Chitaiajuli R, Duprat F, Palmer MJ, Benke TA, Kidd FL, Henley JM, Isaac JT, Collingridge GL: Hippocampal LTD expression involves a pool of AMPARs 7-regulated by the NSP-GluR2 interaction. Neuron 1999, 24(2):389-399.
33. Zhou Q, Tao HW, Poo MM: Reversal and stabilization of synaptic modifications in a developing visual system. Science 2003, 300(5627):1953-1957.
34. Schulte G, Fredholm BB: Signaling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 2003, 15(9):813-827.