Refinements of Dyck Paths with Flaws

Jun Maa,* \hspace{1cm} Yeong-Nan Yeh b,†

a,b Institute of Mathematics, Academia Sinica, Taipei, Taiwan

Abstract

The classical Chung-Feller theorem [2] tells us that the number of Dyck paths of length \(n \) with \(m \) flaws is the \(n \)-th Catalan number and independent on \(m \). In this paper, we consider the refinements of Dyck paths with flaws by four parameters, namely peak, valley, double descent and double ascent. Let \(p_{n,m,k} \) be the number of all the Dyck paths of semi-length \(n \) with \(m \) flaws and \(k \) peaks. First, we derive the reciprocity theorem for the polynomial \(P_{n,m}(x) = \sum_{k=1}^{n} p_{n,m,k}x^k \). Then we find the Chung-Feller properties for the sum of \(p_{n,m,k} \) and \(p_{n,m,n-k} \). Finally, we provide a Chung-Feller type theorem for Dyck paths of length \(n \) with \(k \) double ascents: the number of all the Dyck paths of semi-length \(n \) with \(m \) flaws and \(k \) double ascents is equal to the number of all the Dyck paths that have semi-length \(n \), \(k \) double ascents and never pass below the \(x \)-axis, which is counted by the Narayana number. Let \(v_{n,m,k} \) (resp. \(d_{n,m,k} \)) be the number of all the Dyck paths of semi-length \(n \) with \(m \) flaws and \(k \) valleys (resp. double descents). Some similar results are derived.

Keyword: Chung-Feller Theorem; Double ascent; Dyck path; Narayana number; Peak; Reciprocity

1 Introduction

Let \(Z \) denote the set of the integers. We consider \(n \)-Dyck paths in the plane \(Z \times Z \) using \textit{up} \((1,1)\) and \textit{down} \((1,-1)\) steps that go from the origin to the point \((2n,0)\). We say \(n \) the \textit{semilength} because

*Email address of the corresponding author: majun@math.sinica.edu.tw

†Partially supported by NSC 96-2115-M-001-005
there are $2n$ steps. Define L_n as the set of all n-Dyck paths. Let $\mathcal{L} = \bigcup_{n \geq 0} L_n$. A n-flawed path is a n-Dyck path that contains some steps under the x-axis. The number of n-Dyck path that never pass below the x-axis is the n-th Catalan number $c_n = \frac{1}{n+1} \binom{2n}{n}$. Such paths are called the Catalan paths of length n. The generating function $C(z) := \sum_{n \geq 0} c_n z^n$ satisfies the functional equation $C(z) = 1 + zC(z)^2$ and $C(z) = \frac{1 - \sqrt{1 - 4z}}{2z}$ explicitly.

A Dyck path is called a (n,m)-flawed path if it contains m up steps under the x-axis and its semilength is n. Clearly, $0 \leq m \leq n$. Let $\mathcal{L}_{n,m}$ denote the set of all the (n,m)-flawed paths and $l_{n,m} = |\mathcal{L}_{n,m}|$. The classical Chung-Feller theorem [2] says that $l_{n,m} = c_n$ for $0 \leq m \leq n$.

We can consider an (n,m)-flawed path P as a word of $2n$ letters using only U and D. In this word, let P_i denote the i-th ($1 \leq i \leq 2n$) letter from the left. If a joint node in the Dyck path is formed by a up step followed by a down step, then this node is called a peak; if a joint node in the Dyck path is formed by a down step followed by a up step, then this node is called a valley; if a joint node in the Dyck path is formed by a up step followed by a up step, then this node is called a double ascent; if a joint node in the Dyck path is formed by a down step followed by a up step, then this node is called a double descent.

Define $\mathcal{P}_{n,m,k}$ (resp. $\mathcal{V}_{n,m,k}$) as the set of all the (n,m)-flawed paths with k peaks (resp. valleys). Let $p_{n,m,k} = |\mathcal{P}_{n,m,k}|$ and $v_{n,m,k} = |\mathcal{V}_{n,m,k}|$. We also define $\mathcal{A}_{n,m,k}$ (resp. $\mathcal{D}_{n,m,k}$) as the set of (n,m)-flawed path with k double ascents (resp. k double descents). Let $a_{n,m,k} = |\mathcal{A}_{n,m,k}|$ and $d_{n,m,k} = |\mathcal{D}_{n,m,k}|$. Let ε be a mapping from the set $\{U, D\}$ to itself such that $\varepsilon(U) = D$ and $\varepsilon(D) = U$. Furthermore, for any path $P = P_1 P_2 \ldots P_{2n} \in \mathcal{P}_{n,m,k}$, let $\phi(P) = \varepsilon(P_1)\varepsilon(P_2)\ldots\varepsilon(P_{2n})$. It is easy to see that ϕ is a bijection between the sets $\mathcal{P}_{n,m,k}$ and $\mathcal{V}_{n,n-m,k}$. For any $P = P_1 P_2 \ldots P_{2n} \in \mathcal{A}_{n,m,k}$, let $\psi(P) = \varepsilon(P_{2n})\varepsilon(P_{2n-1})\ldots\varepsilon(P_1)$. Clearly, ψ is a bijection from the set $\mathcal{A}_{n,m,k}$ to the set $\mathcal{D}_{n,m,k}$. Hence, in this paper, we focus on the polynomials $P_{n,m}(x) = \sum_{k=1}^{n} p_{n,m,k} x^k$ and
$A_{n,m}(x) = \sum_{k=0}^{n-1} a_{n,m,k} x^k$. Table 1 shows the polynomials $P_{n,m}(x)$ for small values of n and $m.$

(n, m)	$P_{n,m}(x)$	(n, m)	$P_{n,m}(x)$
$(1, 0)$	x	$(5, 0)$	$x^5 + 10x^4 + 20x^3 + 10x^2 + x$
$(1, 1)$	1	$(5, 1)$	$5x^4 + 20x^3 + 15x^2 + 2x$
$(2, 0)$	$x^2 + x$	$(5, 2)$	$4x^4 + 18x^3 + 17x^2 + 3x$
$(2, 1)$	$2x$	$(5, 3)$	$3x^4 + 17x^3 + 18x^2 + 4x$
$(2, 2)$	$x + 1$	$(5, 4)$	$2x^4 + 15x^3 + 20x^2 + 5x$
$(3, 0)$	$x^3 + 3x^2 + x$	$(5, 5)$	$x^4 + 10x^3 + 20x^2 + 10x + 1$
$(3, 1)$	$3x^2 + 2x$	$(6, 0)$	$x^6 + 15x^5 + 50x^4 + 50x^3 + 15x^2 + x$
$(3, 2)$	$2x^2 + 3x$	$(6, 1)$	$6x^5 + 40x^4 + 60x^3 + 24x^2 + 2x$
$(3, 3)$	$x^2 + 3x + 1$	$(6, 2)$	$5x^5 + 35x^4 + 60x^3 + 29x^2 + 3x$
$(4, 0)$	$x^4 + 6x^3 + 6x^2 + x$	$(6, 3)$	$4x^5 + 32x^4 + 60x^3 + 32x^2 + 4x$
$(4, 1)$	$4x^3 + 8x^2 + 2x$	$(6, 4)$	$3x^5 + 29x^4 + 60x^3 + 35x^2 + 5x$
$(4, 2)$	$3x^3 + 8x^2 + 3x$	$(6, 5)$	$2x^5 + 24x^4 + 60x^3 + 40x^2 + 6x$
$(4, 3)$	$2x^3 + 8x^2 + 4x$	$(6, 6)$	$x^5 + 15x^4 + 50x^3 + 50x^2 + 15x + 1$
$(4, 4)$	$x^3 + 6x^2 + 6x + 1$		

Table 1. The polynomials $D_{n,m}(x)$ for small values of n and $m.$

From the classical Chung-Feller theorem, we have $P_{n,m}(1) = A_{n,m}(1) = c_n$ for $0 \leq m \leq n$. The classical Chung-Feller theorem was proved by using analytic method in [2]. T.V.Narayana [6] showed the theorem by combinatorial methods. S.P.Eu et al. [4] studied the theorem by using the Taylor expansions of generating functions and proved a refinement of this theorem. Y.M. Chen [1] revisited the theorem by establishing a bijection. Recently, Shu-Chung Liu et al. [5] use an unify algebra approach to prove chung-Feller theorems for Dyck path and Motzkin path and develop a new method to find some combinatorial structures which have the Chung-Feller property. However, the macroscopical structures should be supported by some microcosmic structures. We want to find the Chung-Feller phenomenons in the more exquisite structures.
Richard Stanley’s book [7], in the context of rational generating functions, devotes an entire section to exploring the relationships (called reciprocity relationships) between positively- and nonpositively-indexed terms of a sequence. First, we give the reciprocity theorem for the polynomial $P_{n,m}(x)$. Particularly, we prove that the number of Dyck paths of semi-length n with m flaws and k peaks is equal to the number of Dyck paths of semi-length n with $n-m$ flaws and $n-k$ peaks.

One observes that the sum of $p_{n,m,k}$ and $p_{n,m,n-k}$ are independent on m for any $1 \leq m \leq n-1$ and $1 \leq k \leq \lfloor n/2 \rfloor$ in Table 1. This is proved in Theorem 3.2 by using the algebra methods. Given n and k, we also show that the polynomials $A_{n,m}(x)$ have the Chung-Feller property on m. Particularly, we conclude that the number of all the Dyck paths of semi-length n with m flaws and k double ascents is equal to the number of all the Dyck paths that have semi-length n, k double ascents and never pass below the x-axis, which is counted by the Narayana number. So, the Classical Chung-Feller theorem can be viewed as the direct corollary of this result.

This paper is organized as follows. In Section 2, we will prove the reciprocity theorem for the polynomial $P_{n,m}(x)$. In Section 3, we will show that $p_{n,m,k} + p_{n,m,n-k}$ have the Chung-Feller property on m for any $1 \leq m \leq n-1$ and $1 \leq k \leq \lfloor n/2 \rfloor$. In Section 4, we will prove that the polynomials $A_{n,m}(x)$ have the Chung-Feller property on m.

2 The reciprocity theorem for the polynomial $P_{n,m}(x)$

In this section, first, define the generating functions $P_m(x,z) = \sum_{n \geq m} P_{n,m}(x)z^n$. When $m = 0$, $p_{n,0,k} = \frac{1}{k}(\frac{n-1}{k-1})$ is the Narayana numbers. It is well known that

$$P_0(x,z) = 1 + P_0(x,z)[x + P_0(x,z) - 1],$$

equivalently,

$$P_0(x,z) = \frac{1 + (1-x)z - \sqrt{1 - 2(1+x)z + (1-x)^2z^2}}{2z}.$$

Similarly, let $V_m(x,z) = \sum_{n,k \geq 0} v_{n,m,k}x^kz^n$. It is easy to obtain

$$V_0(x,z) = 1 + z + z[V_0(x,z) - 1](1 + xV_0(x,z)), $$

4
equivalently,
\[V_0(x, z) = \frac{1 - (1 - x)z - \sqrt{1 - 2(1 + x)z + (1 - x)^2z^2}}{2zx}. \]

In fact, we have \(v_{n,0,k} = p_{n,0,k+1} \) since the number of the valleys is equal to the number of the peaks minus one for each Catalan path. So, \(P_n(x, z) = V_0(x, z). \)

Now, let \(P(x, y, z) = \sum_{n \geq 0} \sum_{m=0}^{n} \sum_{k=1}^{n} p_{n,m,k} x^k y^m z^n \). Let \(P \in \mathcal{L} \) contain some step over \(x \)-axis. We decompose \(P \) into \(P_1 UP_2 DP_3 \), where \(U \) and \(D \) are the first up and down steps leaving and returning to \(x \)-axis and on \(x \)-axis respectively. Note that all the steps of \(P_1 \) are below \(x \)-axis, \(P_2 \) is a Catalan path and \(P_3 \in D \). If \(P_2 = \emptyset \), then we get a peak \(UD \). So, we obtain the following lemma.

Lemma 2.1

\[P(x, y, z) = V_0(x, yz) \{1 + z[x + P_0(x, z) - 1]P(x, y, z)\}. \]

Equivalently,
\[P(x, y, z) = \frac{2}{\sqrt{f(x, z)} + \sqrt{f(x, yz)} + (1 - x)(1 - y)z} \]

where \(f(x, y) = 1 - 2(1 + x)y + (1 - x)^2y^2 \).

We state the reciprocity relationships for the polynomials \(P_{n,m}(x) \) as the following theorem.

Theorem 2.2 Let \(n \geq 1 \). \(P_{n,m}(x) = x^n P_{n,n-m} \left(\frac{1}{x} \right) \) for all \(0 \leq m \leq n \). Equivalently, \(p_{n,m,k} = p_{n,n-m,n-k} \)

Proof. Let \(f(x, y) = 1 - 2(1 + x)y + (1 - x)^2y^2 \). Note that (1) \(f(x^{-1}, xyz) = f(x, yz) \); (2) \(f(x^{-1}, xz) = f(x, z) \); and (3) \((1 - x^{-1})(1 - y^{-1})xyz = (1 - x)(1 - y)z \).

By Lemma 2.1, we have
\[P(x, y, z) = P(x^{-1}, y^{-1}, xyz). \]
Since $P(x, y, z) = 1 + \sum_{n=1}^{\infty} \sum_{m=0}^{n} P_{n,m}(x)y^{m}z^{n}$, we have

$$P(x^{-1}, y^{-1}, xyz) = 1 + \sum_{n=1}^{\infty} \sum_{m=0}^{n} P_{n,m}(\frac{1}{x})y^{-m}(xyz)^{n}$$

$$= 1 + \sum_{n=1}^{\infty} x^{n} P_{n,m}(\frac{1}{x})y^{n-m}z^{n}$$

$$= 1 + \sum_{n=1}^{\infty} x^{n} P_{n,n-m}(\frac{1}{x})y^{m}z^{n}.$$

This implies $P_{n,m}(x) = x^{n}P_{n,n-m}(\frac{1}{x})$ for all $0 \leq m \leq n$. Comparing the coefficients on the sides of the identity, we derive $p_{n,m,k} = p_{n-n,m,k}$.

Recall that $v_{n,m,k}$ is the number of Dyck paths of semi-length n with m flaws and k valleys and $v_{n,m,k} = p_{n,n-m,k}$.

Corollary 2.3 Let $n \geq 1$. Then $v_{n,m,k} = v_{n,n-m,n-k}$.

3 The refinement of (n, m)-flawed paths obtained by peak

In this section, we will consider the refinement of (n, m)-flawed paths obtained by peak and prove that the values of $p_{n,m,k} + p_{n,n-m-k}$ have the Chung-Feller property on m for any $1 \leq m \leq n-1$ and $1 \leq k \leq \lceil \frac{n}{2} \rceil$.

Lemma 3.1

$$P_{1}(x, z) = (1 + z - xz)P_{0}(x, z) - 1.$$

Furthermore, we have

$$p_{n,1,k} = \frac{2(n-k)}{n(n-1)} \binom{n}{k-1} \binom{n}{k}$$

for any $n \geq 2$.

Proof. Let P be a Dyck path containing exact one up step under the x-axis. Then we can decompose the path P into $P_{1}DP_{2}$, where P_{1} and P_{2} are both Catalan paths. So, $P_{1}(x, z) = z[P_{0}(x, z)]^{2}$. Hence, we have $P_{1}(x, z) = (1 + z - xz)P_{0}(x, z) - 1$ since $P_{0}(x, z) = 1 + P_{0}(x, z)z[x + P_{0}(x, z) - 1]$.

Note that $P_0(x, z) = 1 + \sum_{n \geq 1} \sum_{k=1}^{n} p_{n,0,k} x^k z^n$, where $p_{n,0,k} = \frac{1}{k} \binom{n-1}{k-1} \binom{n}{k}$. Therefore,

$$p_{n,1,k} = \frac{1}{k} \binom{n-1}{k-1} \binom{n}{k} + \frac{1}{k} \binom{n-2}{k-1} \binom{n-1}{k-1} - \frac{1}{k-1} \binom{n-2}{k-2} \binom{n-1}{k-2}$$

$$= \frac{2(n-k)}{n(n-1)} \binom{n}{k} \binom{n}{k+1}.$$

\[\square \]

Theorem 3.2 Let n be an integer with $n \geq 1$ and $1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor$. Then

$$p_{n,m,k} + p_{n,m,n-k} = p_{n,m,k} + p_{n,n-m,k} = \frac{2(n+2)}{n(n-1)} \binom{n}{k+1}$$

for any $1 \leq m \leq n-1$.

Proof. Theorem 2.2 implies that $p_{n,m,k} + p_{n,m,n-k} = p_{n,m,k} + p_{n,n-m,k}$. We consider the generating function $R(x,y,z) = \sum_{n \geq 1} \sum_{m=1}^{n-1} \sum_{k=1}^{n-1} (p_{n,m,k} + p_{n,n-m,k}) x^k y^m z^n$. It is easy to see

$$R(x,y,z) = P(x,y,z) + P(x,y^{-1},yz) + 2$$

$$-[V_0(x,z) + V_0(x,yz)] - [P_0(x,z) + P_0(x,yz)]$$

Let $\alpha(x,z) = \frac{1 + x - (1-x)z}{x} P_0(x,z) - \frac{P_0(x,z)}{V_0(x,z)} - \frac{1}{x}$. Then

$$R(x,y,z) = \frac{y \alpha(x,z) - \alpha(x,yz)}{1-y}.$$

Suppose $\alpha(x,z) = \sum_{n \geq 1} \sum_{k=1}^{n-1} a_{k,n} x^k z^n$. Then

$$R(x,y,z) = \sum_{n \geq 1} \sum_{k=1}^{n-1} a_{k,n} x^k y^m z^n \frac{1 - y^{n-1}}{1-y}$$

$$= \sum_{n \geq 1} \sum_{m=1}^{n-1} \sum_{k=1}^{n-1} a_{k,n} x^k y^m z^n.$$
Hence, given \(n \geq 1 \) and \(1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \), we have \(p_{n,m,k} + p_{n,n-m,k} = p_{n,n-k} + p_{n,m,n-k} = a_{k,n} \) for all \(1 \leq m \leq n-1 \). By Lemma 3.1, we have

\[
\begin{align*}
p_{n,m,k} + p_{n,n-m,k} &= p_{n,1,k} + p_{n,1,n-k} \\
&= \frac{2(n+2)}{n(n-1)} \binom{n}{k-1} \binom{n}{k+1}.
\end{align*}
\]

Corollary 3.3 Let \(n \) be an integer with \(n \geq 1 \). Then

\[
p_{2n,m,n} = \frac{1}{2n-1} \binom{2n}{n} \binom{2n}{n}
\]

for any \(1 \leq m \leq 2n-1 \).

Note that \(v_{n,m,k} = p_{n,n-m,k} \). We obtain the following corollaries.

Corollary 3.4 Let \(n \) be an integer with \(n \geq 1 \) and \(1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \). Then

\[
v_{n,m,k} + v_{n,m,n-k} = v_{n,m,k} + v_{n,n-m,k} = \frac{2(n+2)}{n(n-1)} \binom{n}{k-1} \binom{n}{k+1}
\]

for any \(1 \leq m \leq n-1 \).

Corollary 3.5 Let \(n \) be an integer with \(n \geq 1 \). Then

\[
v_{2n,m,n} = \frac{1}{2n-1} \binom{2n}{n} \binom{2n}{n}
\]

for any \(1 \leq m \leq 2n-1 \).

In the following theorem, we derive a recurrence relation for the polynomial \(P_{n,m}(x) \).

Theorem 3.6 For any \(m, r \geq 0 \), we have

\[
P_{m+r,m}(x) = \begin{cases}
1 & \text{if } (m,r) = (0,0) \\
\sum_{k=1}^{m} \binom{m-1}{k-1} \binom{m}{k} x^{k-1} & \text{if } r = 0 \text{ and } m \geq 1 \\
x \sum_{i=0}^{m} \sum_{j=0}^{r-1} P_{m-i,m-i}(x) P_{r-j-1,r-j-1}(x) P_{j+i,i}(x) & \text{if } r \geq 1
\end{cases}
\]
Proof. It is trivial for the case with \(r = 0 \). We only consider the case with \(r \geq 1 \). Note that
\[x + P_0(x, z) - 1 = xV_0(x, z). \]
Lemma 2.1 tells us that
\[P(x, y, z) = V_0(x, yz) + xzV_0(x, z)V_0(x, yz)P(x, y, z). \]

It is well known that
\[V_0(x, z) = \sum_{n \geq 0} b_n(x)z^n, \]
where \(b_0(x) = 1 \) and
\[b_n(x) = \sum_{k=1}^{n} \frac{1}{k} \binom{n-1}{k-1} \binom{n}{k} x^{k-1} \]
for all \(n \geq 1 \). Comparing the coefficients of \(y^m \) on both sides of Identity (1), we get
\[P_m(x, z) = b_m(x)z^m + xzV_0(x, z) \sum_{i=0}^{m} P_i(x, z)b_{m-i}(x)z^{m-i}. \]

Finally, since \(P_m(x, z) = \sum_{n \geq m} P_{n,m}(x)z^n \), comparing the coefficients of \(z^n \) on both sides of Identity (2), we obtain
\[P_{m,m}(x) = b_m(x), \]
and
\[P_{n,m}(x) = x \sum_{i=0}^{m} \sum_{j=i}^{n-m+i-1} b_{m-i}(x)b_{n-m+i-j-1}(x)P_{j,i}(x). \]

This completes the proof.

4 The refinement of \((n, m)\)-flawed paths obtained by double ascent

In this section, we will consider the refinement of \((n, m)\)-flawed paths obtained by double ascent and prove the value of \(a_{n,m,k} \) have the Chung-Feller property on \(m \). Define the generating functions
\[A_m(x, z) = \sum_{n \geq m} A_{n,m}(x)z^n. \]
When \(m = 0 \), \(a_{n,0,k} = \frac{1}{k+1} \binom{n-1}{k} \binom{n}{k} \). It is well known that
\[A_0(x, z) = 1 + \frac{zA_0(x, z)}{1 - xzA_0(x, z)}, \]
equivalently,
\[A_0(x, z) = \frac{1 + (x - 1)z - \sqrt{(1 + xz - z)^2 - 4xz}}{2xz}. \]

Define a generating function \(A(x, y, z) = \sum_{n \geq 0} \sum_{m=0}^{n} \sum_{k=1}^{n} a_{n,m,k}x^ky^n z^n. \)

Lemma 4.1
\[A(x, y, z) = \frac{A_0(x, z)A_0(x, yz)}{1 - x[A_0(x, z) - 1][A_0(x, yz) - 1]}. \]
Proof. Let the mapping ϕ be defined as that in Introduction. An alternating Catalan path is a Dyck path which can be decomposed into RT, where $R \neq \emptyset$ and $T \neq \emptyset$, such that $\phi(R)$ and T are both Catalan paths.

Now, Let $P \in \mathcal{D}$. We can uniquely decompose P into $PQ_1 \ldots Q_mR$ such that P and $\phi(R)$ are Catalan paths and Q_i is the alternating Catalan path for all i. Hence,

$$A(x, y, z) = A_0(x, z) \left(\sum_{m \geq 0} x[A_0(x, z) - 1][A_0(x, yz) - 1] \right) A_0(x) yz$$

$$= \frac{A_0(x, z)A_0(x, yz)}{1 - x[A_0(x, z) - 1][A_0(x, yz) - 1]}.$$

Theorem 4.2 Let n be an integer with $n \geq 0$ and $0 \leq k \leq n - 1$. Then

$$a_{n, m, k} = \frac{1}{k+1} \binom{n-1}{k} \binom{n}{k}$$

for any $0 \leq m \leq n$.

Proof. First, we give an algebra proof of this theorem. Since $xz[A_0(x, z)]^2 = A_0(x, z)[1+xz-z]-1$, simple calculations tell us

$$z \{1 - x[A_0(x, z) - 1][A_0(x, yz) - 1]\} [yA_0(x, yz) - A_0(x, z)]$$

$$= z(y - 1)A_0(x, z)A_0(x, yz).$$

By Lemma 4.1, we have

$$A(x, y, z) = \frac{A_0(x, z)A_0(x, yz)}{1 - x[A_0(x, z) - 1][A_0(x, yz) - 1]}$$

$$= \frac{yA_0(x, yz) - A_0(x, z)}{y - 1}$$

$$= \sum_{n \geq 0} \sum_{m=0}^n A_{n,0}(x)y^m z^n.$$

This implies $A_{n,m}(x) = A_{n,0}(x)$ for any $0 \leq m \leq n$. Therefore, $a_{n,m,k} = a_{n,0,k} = \frac{1}{k+1} \binom{n-1}{k} \binom{n}{k}$.

10
Now, we give a bijection proof of this theorem. Let P be a path of semi-length n with m flaws and k double ascent, where $0 \leq m \leq n - 1$. We say that a Catalan path is prime if the path touches x-axis exact twice. We can decompose P into $SRUQDT$ such that

1. UQD is the right-most prime Catalan path in P
2. $\phi(R)$ is a Catalan path, where ϕ is defined as that in Introduction, and
3. the final step of S is D on x-axis or $S = \emptyset$.

It is easy to see $\phi(T)$ is a Catalan path. We define a path $\varphi(P)$ as

$$\varphi(P) = STDRUQ.$$

Clearly, the number of double ascents in $\varphi(P)$ is equal to the number of double ascents in P and the number of flaws in $\varphi(P)$ is $m + 1$.

To prove the mapping φ is a bijection, we describe the inverse φ^{-1} of the mapping φ as follows: Let P' be a path of semi-length n with $m + 1$ flaws and k double ascent, where $0 \leq m \leq n - 1$. We can decompose P' into $STDRUQ$ such that

1. D and U are the right-most steps leaving and returning to the x-axis steps and under the x-axis in P';
2. $\phi(T)$ is a Catalan path, where ϕ is defined as that in Introduction, and
3. the final step of S is D on x-axis or $S = \emptyset$.

Clearly, Q and $\phi(DRU)$ are both Catalan paths. We define a path $\varphi^{-1}(P')$ as $\varphi^{-1}(P') = SRUQDT$.

\blacksquare
Corollary 4.3 (Chung-Feller.) The number of n-Dyck path with m-flaws is the Catalan number c_n for any $0 \leq m \leq n$.

Recall that $d_{n,m,k}$ is the number of Dyck paths of semi-length n with m flaws and k double descents and $d_{n,m,k} = a_{n,m,k}$.

Corollary 4.4 Let n be an integer with $n \geq 0$ and $0 \leq k \leq n - 1$. Then

$$d_{n,m,k} = \frac{1}{k+1} \binom{n-1}{k} \binom{n}{k}$$

for any $0 \leq m \leq n$.

References

[1] Y.M. Chen, The Chung-Feller theorem revisited, Discrete Math. 308 (2008) 1328-1329

[2] K.L. Chung, W. Feller, On fluctuations in-coin tossing, Proc. Natl. Acad. Sci. USA 35 (1949) 605-608

[3] S. P. Eu, T.S.Fu, Y.N. Yeh, Refined Chung-Feller theorems for Dyck paths, J. Combin. Theory Ser. A 112 (2005) 143-162
[4] S. P. Eu, T.S.Fu, Y.N. Yeh, Taylor expansions for Catalan and Motzkin numbers, *Adv. Appl. Math.* 29 (2002) 345-357

[5] Shu-Chung Liu, Yi Wang and Yeong-Nan Yeh, Chung-Feller property in view of generating functions, submitted

[6] T.V.Narayana, Cyclic permutation of lattice paths and the Chung-Feller theorem, *Skand. Aktuarietidskr.* (1967) 23-30

[7] R. Stanley, Enumerative Combinatorics, Volume I, Cambridge University Press, 1997.