iTRAQ-based quantitative proteomic of tobacco (Nicotiana tabacum L.) identified major host proteins involved in photosystems throughout the aging process

CURRENT STATUS: UNDER REVIEW

BMC Plant Biology BMC Series

Conglian He
Yunnan Academy of Tobacco Agricultural Sciences

Shubin Sun
Research Center of Hubei Tobacco Industrial Co., Ltd of China

Yun Tang
Research Center of Hubei Tobacco Industrial Co., Ltd of China

Chenggang He
Yunnan Agricultural University

Pengfei Li
Research Center of Yunnan Aromatic Tobacco Company

Tianyang Xu
Research Center of Yunnan Aromatic Tobacco Company

Gaokun Zhao
Yunnan Academy of Tobacco Agricultural Sciences

Congming Zou
Yunnan Academy of Tobacco Agricultural Sciences

Zhonglong Lin
Yunnan Academy of Tobacco Agricultural Sciences

Yi Chen
Yunnan Academy of Tobacco Agricultural Sciences
Corresponding Author
ORCID: 0000-0003-3828-8559

DOI:
10.21203/rs.2.20550/v2

SUBJECT AREAS
Plant Physiology and Morphology Plant Molecular Biology and Genetics

KEYWORDS
iTRAQ, tobacco leaves, senescence, Proteomics, Photosynthesis
Abstract

Background Leaf senescence is one of the most common manifestations in plant senescence and has an important effect on photosynthesis. However, the molecular regulation of leaf senescence in response to photosynthesis is still poorly understood. To gain insight into the molecular mechanisms underpinning tobacco, we integrated photosynthesis, organelle ultrastructural, and proteomic analyses of tobacco leaves during senescence. Results The photosynthetic rate, intercellular CO$_2$ concentration, stomatal conductance, transpiration rate showed a downward trend and the stability of organelle decreased with the increasing of tobacco leaves age. iTRAQ and PRM verification were used to analyze the proteins expressed in different periods based on photosynthetic physiology and ultramicroscopic observation. A total of 321, 319, 223 differentially expressed proteins (DEPs) were identified from over maturity (OM) vs immature (IM), OM vs well maturity (WM) and WM vs IM, respectively, including 122/199, 124/195 and 125/98 up/down proteins, respectively. KEGG analysis of DEPs was significantly enriched in metabolic pathways, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, starch and sucrose metabolism. In addition, down-regulated proteins were also involved in metabolic pathways such as carbon sequestration of photosynthetic organisms and photosynthesis. Furthermore, PRM analysis indicated that iTRAQ is highly reliable. Conclusions Our study provided important technical references for screening photosynthetic host proteins of tobacco leaf senescence and revealing the molecular mechanism during the senescence of tobacco leaves.

1 Background

Leaf senescence is one of the most common manifestations of plant senescence and chloroplasts are the main sites for photosynthesis in plants [1, 2]. During leaf senescence,
chlorophyll degradation is one of the most important catabolism, and it is one of the main causes of leaf yellowing during plant senescence. Chlorophyll content is often used to characterize plant senescence [3, 4]. Simultaneously, large molecules such as proteins and nucleic acids are degraded, which causes a decline in photosynthesis during leaf senescence. Therefore, leaf senescence has an important effect on photosynthesis [5, 6]. Plant senescence is regulated by gene and affected by environment [7, 8]. Yan et al. studied the phenotype of transgenic plants and mutants of Arabidopsis using reverse genetics methods and found that AtSPX 1 can accelerate the senescence of Arabidopsis leaves, but the senescence of mutant plants is not obvious [9]. Christiansen et al. found that HvNA005 gene expression was up-regulated after treating wheat with ABA, indicating that HvNA005 is an obvious target for fine-tuning gene expression to promote wheat senescence-related nutrient reuse [10]. Gao et al. identified 113 B3 proteins from tobacco by comparative genomic analysis and divided them into 4 subfamilies of ARF, RAV, LAV, and REM. After analyzing the B3 protein of tobacco, they found that the REM family genes were up-regulated in response to topping, while ARF is down-regulated [11]. However, previous studies mainly focused on reflecting the regulation mechanism at the transcription level, and the molecular regulation mechanism of photosynthesis in response to plant senescence from the protein expression level has rarely been reported. Tobacco is one of the classic model plants, and studies on the senescence mechanism of tobacco leaves have certain guiding significance for the research on the senescence mechanism of other crops [12]. Tobacco is an important economic crop. During the cultivation process of flue-cured tobacco, there is a technical measure of topping and wiping off the branches, which has changed the law of material accumulation in the leaves. Therefore, it has also changed the normal senescence pattern of tobacco leaves [13]. During the harvest process, the maturity of the tobacco leaves is often judged based
on the appearance characteristics of leaves, including color, fluff, and veins, which are greatly affected by the subjective influence of harvesters, and there are major defects in the determination of the maturity of tobacco leaves [14]. The difference in the quality of fresh tobacco leaves cause problems such as difficulty in curing tobacco leaves and poor quality after curing. Therefore, analyzing the molecular mechanism of photosynthesis response in tobacco leaf senescence and screening host proteins for photosynthesis in tobacco leaf senescence are of great significance for the accurate judgment of plant and tobacco senescence.

Proteomics is an important part of systems biology, which is widely used to study the expression of proteins such as growth and development, mutation and environmental changes in plants and animals. Proteomics can screen potential protein targets from DEPs [15, 16]. High-throughput and high-resolution protein isolation and identification techniques are commonly used for quantitative and qualitative analysis of proteins [17]. The iTRAQ for protein quantitative analysis has the characteristics of high sensitivity, strong separation ability, wide application range, high throughput, reliable results and high automation [18]. Targeted proteomics is used to quantify the target protein and peptide segments for the selected, interested proteins or peptides, and to verify specific scientific hypotheses, such as SRM technology and PRM technology [19, 20].

With the continuous improvement of proteomics technology, proteomics is gradually applied to the research of tobacco proteomics. For example, Das et al. used iTRAQ technology to perform protein expression analysis on infected TMV and mock infected tobacco plants [21]. A total of 407 differential proteins were identified, and several major host proteins related to TMV infection / replication were found. Most of the tobacco proteomics research involved in resistance to stress, pests and diseases [22, 23]. Proteomics studies on protein changes in tobacco leaves during the senescence,
especially those related to photosynthesis are scarce.

The purpose of this study is to analyze the protein expression on tobacco variety K326 at different stages by using iTRAQ technology. PRM technology was used to verify the expression of differentially expressed proteins to screen out the target proteins of tobacco leaf senescence and verify the reliability of iTRAQ results. By analyzing internal mechanism of tobacco leaves which represents the color changes of tobacco leaves during tobacco senescence, so that to discover the proteins closely related to tobacco senescence. This study can not only scientifically explain the senescence mechanism of tobacco leaves, but also provide a theoretical basis for the subsequent development of a new method to quickly and accurately determine the maturity of tobacco leaves.

2 Results

2.1 Photosynthesis at Different Maturity Stages

During tobacco senescence, photosynthesis of tobacco leaves at three different maturity stages was studied. The photosynthetic rate at IM, WM and OM were 15.00 μmol·m^{-2}·s^{-2}, 11.50μmol·m^{-2}·s^{-2} and 5.90μmol·m^{-2}·s^{-2}, respectively. The photosynthetic rate of tobacco leaves at IM and WM was significantly higher than that at OM, and there was no significant difference between IM stage and WM stage (Fig.1A). The concentration of intercellular CO₂ in tobacco leaves at IM, WM and OM were 510 μmol·mol^{-1}, 400 μmol·mol^{-1} and 280 μmol·mol^{-1}, respectively. The intercellular CO₂ concentration of tobacco leaves in IM and WM periods was significantly higher than that in OM periods, and there was no significant difference in intercellular CO₂ concentration between IM and WM periods (Fig.1B). The tomatal conductance of tobacco leaves at IM, WM and OM were 0.24 mmol·m^{-2}·s^{-1}, 0.13 mmol·m^{-2}·s^{-1} and 0.11 mmol·m^{-2}·s^{-1}, respectively. The tomatal conductance of tobacco
leaves in IM was significantly higher than that in WM and OM, and there was no significant difference between WM and OM (Fig.1C). The tomatal conductance of tobacco leaves at IM, WM and OM was 2.75 mmol·m$^{-2}·s^{-1}$, 1.40 mmol·m$^{-2}·s^{-1}$ and 1.30 mmol·m$^{-2}·s^{-1}$, respectively. The transpiration rate of tobacco leaves in IM was significantly higher than that in WM and OM, and there was no significant difference between WM and OM (Fig.1D). In conclusion, photosynthetic rate, intercellular CO$_2$ concentration, tomatal conductance and transpiration rate decreased with increasing of leaf age.

2.2 Chloroplasts configuration and ultrastructure

By observing the configuration and ultrastructure of chloroplasts, it was found that the IM leaves had orderly arrangement of chloroplasts, and complete chloroplast membrane and less starch granules (Fig. 2A). After enlargement, the proportion of starch granules in chloroplasts was small, and the chloroplast structure was complete, the cell wall structure was incomplete, and the grana lamellae were closely arranged (Fig. 2B). The structure of chloroplasts in WM leaves was similar to that in IM, in addition, starch granules were clearly visible, the number of starch granules increased obviously and the volume increased in WM leaves (Fig. 2C). After enlargement, the arrangement of grana lamellae was loose, the gap was enlarged, and the structure of cell wall was clear, and the structure of chloroplast membrane was complete (Fig. 2D). During the OM stage, the number of chloroplasts decreased significantly, and the chloroplast membrane dissolved gradually, the volume and the number of starch granules were increased. With the dissolution of chloroplast membrane, the chloroplasts were exposed to cells (Fig. 2E). After enlargement, almost all chloroplasts contained a certain amount of starch granules, and the number of grana lamellae decreased compared with the WM. The cell wall was also blurred (Fig. 2F). Thus, with the increasing of leaf age, the number of chloroplasts
decreased, and the grana lamella became loose gradually from compact arrangement. The number of grana lamellae increased firstly and then decreased. The chloroplast membrane also gradually dissolved. The proportion of starch granules was positively correlated with increasing of leaf age.

2.3 Identification of Proteins at Different Maturity Stages

The number of secondary spectra produced by mass spectrometry and the number of secondary spectra analyzed for three groups of tobacco leaves at different growth stages (IM, OM and WM) were 435604 and 158095, respectively. The identification rate of spectra was more than 36.29%. The number of identified peptide segments was 23346, and the number of identified proteins was 4747. The number of identified proteins containing at least two specific peptide segments was 3292, which accounted for 69.35% of total protein amount.

2.4 Quantitative Analysis of Protein between Samples

If there is no significant change in the amount of the same protein between the two samples in relative quantification, the protein abundance ratio is close to 1. Pairwise comparisons of proteins with P-values < 0.05 and fold-changes > 1.2 or < 0.83 in abundance were regarded as differentially regulated proteins (DRPs). We identified a total of 321 DRPs, including 122 up-regulated and 199 down-regulated proteins, by comparing the OM against the IM (Fig.3A). In contrast, we obtained 319 DRPs, including 124 up-regulated and 195 down-regulated proteins, by comparing the OM against the WM (Fig. 3B). There were 223 DRPs, including 125 up-regulated and 98 down-regulated proteins between WM and IM (Fig. 3C). Fig. 4 was a Venn diagram showing significant differences in protein expression between pairwise comparisons. Further comparisons of different proteins between the control groups revealed that there were 86 differentially expressed proteins among OM vs IM, OM vs WM and WM vs IM of the three control groups.
2.5 KEGG Metabolic Pathway of Differentially Expressed Proteins

To further investigate the biological functions of these DEPs, KEGG pathway analysis was performed using the BLAST v2.2.26 (NCBI) program. Four pathways were significantly enriched among the DEPs of OM vs IM, OM vs WM and WM vs IM, including “metabolic pathways”, “Biosynthesis of secondary metabolites”, “Microbial metabolism in diverse environment” and “Starch and sucrose metabolism”. By comparing the OM against the IM, a total of 237 DEPs (74%) were mapped to 79 pathways in the KEGG database (Table S1). Figure 5 (A) was a statistical pie chart of Pathway function, which ranked the top ten in the list of up and down-regulation differential proteins between over-mature (OM) and immature (IM) tobacco leaves. As can be seen from the figure, Pathway metabolic function types in the top 10 were different in all up-regulation and down-regulation differential proteins. The Pathway functional annotations of the two groups have the same four functions in the top 10; We identified 123 proteins (30 proteins were up-regulated and 93 proteins were down-regulated) that belong to “metabolic pathways”, 55 proteins (22 proteins were up-regulated and 33 proteins were down-regulated) that belong to “Biosynthesis of secondary metabolites”, 40 proteins (8 proteins were up-regulated and 32 proteins were down-regulated) that belong to “Microbial metabolism in diverse environment”, 14 proteins (7 proteins were up-regulated and 7 proteins were down-regulated) that belong to “Starch and sucrose metabolism”. In addition, up-regulated proteins were also involved in metabolic pathways such as “Protein processing in endoplasmic reticulum” (8), “Tyrosine metabolism” (7), “Phenylpropanoid biosynthesis” (6), “ABC transporters” (5) and “Plant-pathogen interaction” (5) and “Isoquinoline alkaloid biosynthesis” (5). Down-regulation of protein involves in “Photosynthesis” (26), “Carbon fixation in photosynthetic organisms” (18), “Glycolysis/glycogenesis” (11), “Ribosome” (8), “Oxidative phosphorylation” (7), “Pentose phosphate pathway” (7) and so on (Fig.5A).
By comparing the OM against the WM, a total of 237 DEPs (74%) were mapped to 82 pathways in the KEGG database (Table S2). We identified 126 proteins (34 proteins were up-regulated and 92 proteins were down-regulated) that belong to “metabolic pathways”, 64 proteins (28 proteins were up-regulated and 36 proteins were down-regulated) that belong to “Biosynthesis of secondary metabolites”, 37 proteins (8 proteins were up-regulated and 29 proteins were down-regulated) that belong to “Microbial metabolism in diverse environment”, 19 proteins (8 proteins were up-regulated and 11 proteins were down-regulated) that belong to “Starch and sucrose metabolism”. Up-regulated proteins were also involved in “Phenylpropanoid biosynthesis” (8), “Tyrosine metabolism” (8), “Phenylalanine metabolism” (7), “Isoquinoline alkaloid biosynthesis” (6), “Splicer” (6) and “Protein processing in endoplasmic reticulum” (9), which were different from the functional metabolic pathways of down-regulated proteins. Down-regulated proteins were involved in metabolic pathways, including “Photosynthesis” (25), “Carbon fixation in photosynthetic organisms” (13), “Glycolysis/glycogenesis” (9), “Pentose phosphate pathway” (8), “Glutathione metabolism” (7) and “Oxidative phosphorylation” (7) and so on (Fig.5B).

By comparing the WM against the IM, a total of 163 DEPs (73%) were mapped to 78 pathways in the KEGG database (Table S3). We identified 79 proteins (39 proteins were up-regulated and 40 proteins were down-regulated) that belong to “metabolic pathways”, 45 proteins (27 proteins were up-regulated and 18 proteins were down-regulated) that belong to “Biosynthesis of secondary metabolites”, 26 proteins (10 proteins were up-regulated and 16 proteins were down-regulated) that belong to “Microbial metabolism in diverse environment”, 12 proteins (7 proteins were up-regulated and 5 proteins were down-regulated) that belong to “Starch and sucrose metabolism”. In addition, up-regulated proteins were also involved in metabolic pathways including “Phenylpropanoid
biosynthesis” (6), “Protein processing in endoplasmic reticulum” (6), “Phenylalanine metabolism” (5), “Plant-pathogen interaction” (5), “ABC protein transporters” (4) and “Glutathione metabolism” (4). Down-regulated proteins were involved in metabolic pathways including “Carbon fixation in photosynthetic organisms” (12), “Ribosomes” (8), “Photosynthesis” (7), “Glycolysis/gluconeogenesis” (5), “Pentose phosphate pathway” (5) and “Fructose and mannose metabolism” (4) and so on (Fig. 5C).

2.6 Thermogram Analysis of Differential Proteins

A total of 86 DEPs from six significantly enriched pathways in the senescence of tobacco leaves are shown with their abundance patterns and functional annotation in Fig. 6. Many DEPs involved in metabolic pathways (32), biosynthesis of secondary metabolites (15), metabolism of microorganisms in different environments (11), carbon sequestration of photosynthetic organisms (10), and some DEPs involved in photosynthesis (8), starch and sucrose metabolism (6) were reduced sharply. In photosynthesis metabolic pathways, there were eight proteins that related to photosynthesis, including A0A140G1P2, A0A1S4DCM1, A0A140G1X0, D2K7Z2, A0A140G1R2, A0A1S4CFV4, A0A140G1P8 and A0A140G1S1.

2.7 Photosynthetic proteins expression patterns

Photosynthesis is critical for tobacco leaves yield; hence, we investigated the abundance of proteins involved in photosynthesis pathway. Several DEPs concentrated in photosynthetic pathways and one typical pathway was shown in Fig. 7A. Almost all the photosynthetic DEPs enriched in core parts of photosynthesis, such as photosystems (I and II), cytochrome b6f complex, electron transports, and ATP synthases. Compared OM with IM, there were 23 DEPs involved in photosynthetic pathway, including one up-regulated protein and 22 down-regulated proteins. 24 DEPs involved in photosynthetic pathway were shown in Fig. 7B by comparing OM with WM, including one up-regulated
protein and 23 down-regulated proteins. The enrichment of all photosynthetic DEPs was similar to OM vs IM. Compared WM with IM, there were 9 DEPs involved in photosynthetic pathway, including 2 up-regulated proteins and 7 down-regulated proteins which enriched in photosystems (I and II) and ATP synthases (Fig.7C).

2.8 PRM verification

Three proteins, including A0A1S4DCM1, A0A140G1R2 and A0A140G1P2 which were significantly expressed and related to photosynthesis were selected and their expression was examined by PRM. Skyline can not only visualize the target peptide ion signal which is collected by mass spectrometry, but also judge the quality and content of the peptide signal by observing the peak shape, peak intensity, and retention time consistency [24]. The effect is immediately visible when the ratios are presented in a density plot (Fig.8A, B and C) or in a PRM plot (Fig.9A, B and C). Compared with the quantitative results of iTRAQ, three differentially expressed proteins showed the same level (A0A1S4DCM1 was up-regulated and A0A140G1R2 and A0A140G1P2 were down-regulated) of expression which confirmed the reliability of iTRAQ.

3 Discussion

Photosynthetic rate, intercellular CO₂ concentration, tomatal conductance and transpiration rate are comprehensive evaluation indicators of photosynthesis [25]. Photosynthetic rate and intercellular CO₂ concentration in IM and WM were significantly higher than those in OM. Canales et al. cultured sunflower in different concentrations of CO₂, and found that sunflower senescence was delayed in high concentrations of CO₂ [26]. There were researches indicated that higher intercellular CO₂ concentration and tomatal conductance were factors that improved photosynthesis. Photosynthesis was inseparable from photosynthesis rate, intercellular CO₂ concentration, tomatal conductance and
transpiration rate [27]. During the senescence of tobacco leaves, the decrease of stomatal conductance resulted in the decrease of gas exchange, which decreased the intercellular CO$_2$ concentration and transpiration rate, then resulted in the decrease of photosynthetic rate. The decline of photosynthesis related index indicated that the photosynthesis of tobacco leaves decreased significantly during senescence.

The number of chloroplasts showed a downward trend with the increasing of tobacco leaf age. The grana lamellae gradually became loose from close arrangement, and its amount increased first and then decreased, and the chloroplast membrane gradually dissolved. The proportion of starch grains was positively correlated with the increasing of tobacco leaf age, which was consistent with the results of Mayta et al. [28]. There are lots of studies found that sugar was an important signal for regulating plant metabolism and development. The accumulation of sugar in leaves can lead to plant senescence [29]. Starch granules would be accumulated during the process of leaves growth and the chloroplast structure would be broken down when starch granules were accumulated enough [30]. The breaking down of chloroplast structure will weaken the photosynthesis of leaves.

To maximize information on the tobacco proteome, we prepared and identified protein extracts from three stages of tobacco leaves using iTRAQ coupled with LC-MS/MS technology. There were differences among the pairwise comparisons in protein expression, which indicated that the divergences in the appearance of tobacco leaves at various stages were accompanied by protein expression differences. Between OM vs IM and OM vs WM, the number of down-regulated proteins was greater than that of up-regulated proteins, which indicated that the number of protein decreased during tobacco leaves senescence. In the senescence of tobacco leaves, up-regulation proteins may be involved in the material catabolic pathway, while down-regulation proteins were mainly involved in
substance anabolic pathway and the metabolic process related to photosynthesis. Zhang et al. [31] found that up-regulated proteins were involved in energy metabolism, and down-regulated proteins were involved in photosynthesis and electron transport by proteomic analysis of rice aging process.

KEGG metabolic pathways analysis of differential proteins was conducted to further understand main biochemical metabolic pathways and signal transduction pathways that DEPs involved in. The DEPs involved in “Metabolic pathways”, “Biosynthesis of secondary metabolites” and “Microbial metabolism in diverse environments”, “Starch and sucrose metabolism”. Ma et al. [32] carried out proteomic studies on four developmental stages of daylily flower. KEGG annotation results showed that DEPs were enriched in starch and sucrose metabolism. Starch accumulated slowly in the early stage and reached the peak at the mature stage. With the increasing of leaf age, starch gradually metabolized and its content showed a downward trend [33]. Secondary metabolism was the metabolic process of nicotine and major aroma precursor’s synthesis and catabolism in plants. Studies have shown that the content of nicotine and reducing sugar in leaves increased with the increasing of tobacco leaf age [34].

Up-regulated proteins were also involved in the metabolic pathways including “Endoplasmic reticulum protein processing” and “Phenylpropanoid biosynthesis”. Phenylpropanoid was a kind of secondary metabolite, and its protein expression was up-regulated in the biosynthesis of phenylpropanoid, which further indicated that the biosynthesis process of secondary metabolite increases with the increasing of tobacco leaf age. During the senescence of tobacco leaves up-regulated proteins were involved in endoplasmic reticulum protein processing. Proteins processed by endoplasmic reticulum may be protein degrading enzymes, which sped up the catabolism of proteins and other substances. Zhang et al. [35] found that proteases related to protein degradation, such as
cysteine protease, aspartic protease and proteasome subunit alpha type-3, were up-regulated during tobacco leaves senescence, which indicated that the synthesis and catabolism of proteins were simultaneous in the senescence of tobacco leaves. There are some reasons that lead to the decrease of proteins during the senescence of tobacco leaves, including the decrease of protein synthesis rate, the acceleration of degradation rate, and the contact of substrate and hydrolase [36].

The proportion of down-regulated proteins in “Metabolic pathways” and “Microbial metabolism in different environments” was higher than that of up-regulated proteins. Metabolic pathways included anabolism and catabolism. The down-regulation of protein expression related to metabolic pathways and microbial metabolism in different environments indicated that the metabolic ability of tobacco leaves declined during tobacco senescence. Down-regulated proteins were also involved in metabolic pathways including “Photosynthesis”, “Carbon fixation in photosynthetic organisms”, “Glycolysis and Glycogenesis”. There are two stages in Photosynthesis, including light reaction and dark reaction. During light reaction, leaves absorbed light energy to reduce NADP$^+$ to NADPH and phosphorylate ADP to ATP, which provided energy for carbon assimilation in dark reaction [37, 38, 39]. The decline of protein expression involved in photosynthesis, carbon sequestration of photosynthetic organisms and glycolysis and glycogen regeneration indicated that photosynthesis and sugar synthesis were weakened during tobacco leaves senescence. Plaxton et al. [40] found that plant glycolytic enzymes were multifunctional proteins involved in the process, rather than carbohydrate metabolism. ATP was produced in glycolysis pathway [41], the down-regulation of protein expression related to glycolysis and glycogenesis indicated that ATP synthesis was decreased and sugar synthesis weakened during tobacco leaves senescence.

According to the enrichment of 86 proteins, they were mainly involved in metabolic
pathways, including metabolic pathways, biosynthesis of secondary metabolites, metabolism of microorganisms in different environments, carbon sequestration of photosynthetic organisms, photosynthesis and metabolism of starch and sucrose. Photosystem I and II were photosynthetic electron transport centers [42]. According to the search results of 8 proteins related to photosynthesis, 3 proteins with significant differences between the comparison groups were screened for PRM verification. In the PRM validation process, three differentially expressed proteins were consistent with the quantitative results of iTRAQ in pairwise comparisons. Therefore, three differentially expressed proteins including A0A1S4DCM1, A0A140G1R2 and A0A140G1P2 were likely to be key regulators of tobacco leaves senescence, and can be used as marker protein for tobacco leaves senescence.

Photoreaction of photosynthesis is driven by protein complexes such as photosystem I, photosystem II, cytochrome b6/f complex, ATP synthase, and so on [43]. Oxygen-evolving enhancer protein 3-2, chloroplastic-like was a protein related to photosystem II, which participated in oxygen release during photosynthesis and maintained the stability of photosynthesis system [44, 45, 46]. In this study, the expression of A0A1S4DCM1 was up-regulated during tobacco leaves senescence, which was consistent with previous research results [47, 48, 49]. It is indicated that during the senescence of tobacco leaves, attributing to the decline of photosynthesis, the A0A1S4DCM1 is increased in order to maintain the stability of the photosynthetic system. In addition, oxygen-evolving enhancer proteins are products of degradation of the photosynthetic system, the oxygen-evolving enhancer protein increased with the degradation of the photosynthetic system [50].

A0A140G1R2 (Photosystem I P700 chlorophyll a apoproteinA2) is an important protein for chloroplasts to maintain normal physiological functions [51, 52]. In the senescence of tobacco leaves, the decrease of A0A140G1R2 indicates that photosynthetic electron
transport in senescent leaves is gradually inhibited, thus decreasing photosynthesis. A0A140G1P2 (Photosystem II protein D1) was the core subunit of photosystem II, which played an important role in maintaining the stability of photoreaction center system II. It also provided binding sites for electron-transfer oxidative coenzyme factors and involved in the electron transfer of most cofactors and pigment molecules [53]. The down-regulation of PSII protein D1 indicated that the transmission of electronic capabilities and the stability of PSII were decreased, and the function of PSII was weakened.

4 Conclusion

In this study, tobacco leaf photosynthetic rate, intercellular CO₂ concentration, body surface conductivity, transpiration rate, and organelle ultrastructure all changed significantly. Combining proteomics technology and physiological changes for the first time, photosynthesis during tobacco senescence was described. Physiological changes revealed the mature metabolism of tobacco leaves; and dynamic protein changes obtained using iTRAQ revealed important metabolic pathways during tobacco senescence from the protein level, including "metabolic pathways", "biosynthesis of secondary metabolites", Metabolism in different environments "," starch and sucrose metabolism "and" photosynthesis "and so on. Finally, through PRM verification of photosynthesis-related differential expressed proteins, three differential expressed proteins including A0A1S4DCM1, A0A140G1R2 and A0A140G1P2 were different at three growth stages. Therefore, they can be used as protein biomarkers in the process of tobacco leaves senescence.

All iTRAQ dataset related to this study has been public available on iProX (www.iprox.org) with ID IPX0001668000/ IPX0001668001/ IPX0001668002.

5 Methods
5.1 Plant Materials

The seeds of the tobacco variety K326 were acquired from Zhongyan Tobacco Seed Co., Ltd, China. Tobacco seedlings (*Nicotiana tabacum* L.) were transplanted to potting mixture. The seedlings were grown from April to August 2018 under typical Yunnan climate conditions. Healthy tobacco plants of 3 periods, including IM leaves (70 days after transplanting), WM leaves (80 days after transplanting) and OM leaves (90 days after transplanting) were separately collected with two biological replicates and then stored at −80 °C immediately until sent to Wuhan Jinkairui Bioengineering Co., Ltd. for testing (Fig. 10).

5.2 Determination of Photosynthetic Rate

LI-6400 portable photosynthetic system (Li-Cor Inc., Lincoln, NE, USA) was used to measure the photosynthetic indexes of tobacco leaves at different maturity stages [54]. The photosynthetic rate, intercellular carbon dioxide concentration, tomatal conductance and transpiration rate of tobacco leaves were measured at IM, WM and OM stages, respectively. The determination time was once every two hours from 8:00 to 18:00 and five times in total. Then calculated the average value. During the measurements, the leaf temperature was adjusted to 25 °C. Sigma Plot is used to plot according to the data.

5.3 Electron Microscope Scanning

Refer to Li et al.’s [55] methods with slight modification. Different maturity of fresh tobacco leaves were cut into 3 mm × 3 mm size leaves, avoiding the main vein and large lateral vein of leaves. Then placed in a penicillin bottle and immersed the leaves in 4% glutaraldehyde fixing solution. The leaves were fully immersed in fixing solution by syringe extraction. The samples were fixed by 1% OsO₄ (osmium tetroxide) for 2 hours and dehydrated by acetone. Then embedded the samples by epoxy resin (spi-812) for 24 hours and sliced (German Leica uc6) into thin slices. The slices were stained with lead citrate
and uranyl acetate then observed and photographed the slices under Hitachi-A-2 transmission electron microscope.

5.4 Extraction of total proteins from tobacco leaves

Middle tobacco leaves of three periods were harvested and ground with a tissue homogenizer, in TissueLyzer LT (Qiagen) with liquid nitrogen until the leaves became fine powder. The ground powder was resuspended in lysis buffer (7 M urea, 2 M thiourea, 4% SDS (sodium salt), 40 mM Tris-Cl, pH 8.5, 1 mM PMSF (phenylmethanesulfonyl fluoride), 2 mM EDTA (ethylene diamine tetraacetic acid)) for 5 min. The suspension was added 10 mM DL-Dithiothreitol (DTT) and placed in an ultrasonic cell disruptor (JY92-11N, Ningbo, China) sonicated for 15 min in an ice bath, then centrifuged at 13000 g, 4°C for 20 minutes in a desktop high speed refrigerated centrifuge(TGL-20M, Hunan, China). After that, transferred the supernatant to a new centrifugal tube, and added cold acetone with a volume of 4 times the supernatant to the centrifugal tube, which was placed overnight at -20 °C. Collected the protein precipitation by centrifugation and dried in air. Added 8M urea/100 mM Borane-triethylamine complex (TEAB, pH 8.0) solution to redissolve the protein. Then added DL-Dithiothreitol till the final concentration was 10mM, and the reduction reaction was carried out in water bath at 56 °C for 30 minutes. After that, added Iodoacetamide (IAM) till the final concentration was 55mM and the alkylation reaction was carried out at dark in room temperature for 30 minutes. The protein concentration was determined by Bradford method.

5.5 Separation and Identification of Proteins

Protein extraction and separation, iTRAQ quantification, bioinformatics analysis and PRM validation were carried out according to the following procedures (Fig. 11).

5.5.1 Enzymatic Hydrolysis and Desalination
100 μg of protein from each sample was taken for trypsin digestion and then diluted 5 times with 100 mM Triethylamine borane (TEAB). Trypsin was added at a mass ratio of 1:50 (trypsin: protein) and the enzymatic hydrolysis was digested overnight at 37 °C. After enzymatic hydrolysis, the peptide segments were desalted by AAA-C18 column (150 mm×4.6 mm I.D., 5 μM, AB SCIEX), and then frozen and dried in vacuum [56].

5.5.2 iTRAQ labeling
Dissolved the Peptides with 0.5M TEAB and labeled with iTRAQ-8 kit (AB SCIEX, USA) according to the manufacturer's instructions. Six samples including IM-1, IM-2, WM-1, WM-2, OM-1, OM-2 were labeled with iTRAQ tag 115, iTRAQ tag 116, iTRAQ tag 117, iTRAQ tag 118, iTRAQ tag 119 and iTRAQ tag 121, respectively. Get all of the labeled samples together and then fractionated the mixed samples with a high-performance liquid chromatography (HPLC) system (Thermo DINOEX Ultimate 3000 BioRS, USA) with a Durashell C18 (5 μm, 100 Å, 4.6 × 250 mm). A total of 42 secondary fractions were collected and merged into 12 fractions for analysis. The fractions were then desalinated on the Strata-X C18 column (Phenomenex, Torrance, USA) and dried in vacuum.

5.5.3 LC-MS/MS Analysis
Referring to the method of Zhu et al. [57], LC-MS/MS analysis was performed on Triple TOF 5600 plus mass spectrometer (AB SCIEX, Massachusetts, USA). Dissolved the polypeptide samples in 2% acetonitrile/0.1% formic acid and analyzed by Triple TOF 5600 plus mass spectrometer coupled with Eksigent nanoLC system (SCIEX, USA). The polypeptide solution was added to the C18 capture column (5 μm, 100 μm × 20 mm), and gradient elution was carried out on the C18 analytical column (3 μm, 75 μm × 150 mm) at a 90-minute time gradient and 300 nL/min flow rate. The two mobile phases are respectively mobile phase A (2% acetonitrile / 0.1% formic acid / 98% H₂O) and mobile phase B (98% acetonitrile / 0.1% formic acid/2% H₂O). For information dependent acquisition (IDA), the first-order
mass spectrogram was scanned with 250m/s ion accumulation time, and the second-order mass spectrogram of 30 precursor ions was collected with 50ms ion accumulation time. The MS1 spectra was collected in the range of 350-1500m/z, and the MS2 spectra was collected in the range of 100-1500m/z. The precursor ions were excluded from reselection for 15 s.

5.5.4 Protein Identification and data analysis

The original MS/MS data were submitted to ProteinPilot Software v4.5 (Applied Biosystem, USA) for data analysis. Combining ProteinPilot's Paragon ™ database search algorithm (ProteinPilot Software v4.5, Applied Biosystem, USA) and nonlinear fitting methods to determine the false discovery rate (FDR) for peptide identification and quantification. Proteinpilot search parameters are shown in table 1. [58, 59]. All reported proteins were based on the following conditions: (1) at least one peptide confidence > 95% (unused Prot Score ≥1.3); (2) FDR < 1%. The tobacco leaves samples with different maturity were compared between two (OM vs IM; OM vs WM; WM vs IM). Under the condition of fold change ≥1.2 or ≤0.83 and $p \leq 0.05$, they could be considered to be differentially expressed proteins [60].

Proteinpilot search parameters are shown in table 1.

5.6 Bioinformatics Analysis

Kyoto Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/) was used to annotate differentially expressed proteins to understand their biological functions. All other pictures in this paper were drawn with R language (http://www.r-project.org/).

5.7 PRM Quantitation Analysis

Protein preparation was performed as described above. Targeted MS analysis using PRM (parallel reaction monitoring) was performed on a TripleTOF 5600 LC-MS/MS system (AB SCIEX, Massachusetts, USA). For PRM data collection, the list of optimized protein peptides
is added to the inclusion list, and the mass spectrometer selects the size of the peptides in the list one by one to be broken and collects the secondary ion spectrum. All the peptide samples obtained by enzymatic hydrolysis were firstly mixed and then subjected to mass spectrometry DDA (Data Dependent Acquisition) detection. The Proteinpilot database was searched, and then the Skyline software was introduced to establish a spectrum library, and the peptides of the target protein were screened for method establishment. Design the PRM detection method and add the target peptide m/z to the inclusion list to establish a mass spectrometry acquisition method. The PRM method is then used to perform PRM data acquisition on the mixed samples to adjust and optimize the PRM acquisition method to form a final PRM method for sample data collection. Each sample was dissolved with Loading Buffer (0.1% formic acid/3% acetonitrile), and the supernatant was spotted after centrifugation. Data acquisition was performed on each sample using the optimized PRM mass spectrometry method described above to obtain 2 PRM spectral files. By extracting and analyzing these PRM spectrum files, quantitative information of the protein can be obtained. By extracting and analyzing these PRM spectrum files, quantitative information of the protein can be obtained [61, 62].

5.8 Statistical analysis

Analyses of the statistical differences in protein expression levels between samples were performed using SPSS 21.0 statistical software (IBM, Armonk, NY, USA). All data in this study were presented as means ± standard deviation (SD). One-way analysis of variance (ANOVA) was used to determine a significant difference between the groups with a 2-tailed p-value < 0.05 was considered to be statistically significant.

List Of Abbreviations

DEPs: differentially expressed proteins; iTRAQ: isobaric tag for relative and absolute quantification; PRM: parallel reaction monitoring; OM: over maturity; WM: well
maturity; IM: immature; KEGG: Kyoto Encyclopedia of Genes and Genomes; DRPs: differentially regulated proteins;

Declarations

Availability of data and materials

All data generated or analysed during this study are included in this published article [and its supplementary information files]

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests. All authors approved the final manuscript.

Funding

This work was supported by the grant from Yunnan Provincial Tobacco Monopoly Bureau China (nos. 2019530000241019), the National Natural Science Foundation of China (Grant nos. 41601330), Yunnan Science and Technology Innovation Project (Grant nos.2019HB068), Yunnan Ten Thousand People Program (Congming Zou), Yunnan Applied Basic Research Projects (Grant nos.2017FB074). The founders did not play any roles in the design, analysis, and interpretation of this study or relevant data.

Authors’ Contributions

ZL and CZ conceived the original research plans. GZ and CH designed the experiments. PL and TX performed the experiments. YT and SS analyzed the data. YC and CH wrote the manuscript. All authors reviewed and approved the final manuscript.

Acknowledgments
The authors wish to thank the Wuhan Gene Create Biological Engineering Co., Ltd who was of great help in the iTRAQ assays and data analysis.

References

1. Süssенбacher, I. et al. Cryptic chlorophyll breakdown in non-senescent green Arabidopsis thaliana leaves. *Photosynthesis research*. 2019; 142: 69-85.

2. Tamary, E. et al. Chlorophyll catabolism precedes changes in chloroplast structure and proteome during leaf senescence. *Plant Direct*. 2019; 3: e00127.

3. Schöttler MA, Tóth SZ. Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. *Front Plant Sci*. 2014; 5: 188.

4. Gomez, F. et al. Extra-plastidial degradation of chlorophyll and photosystem I in tobacco leaves involving ‘senescence-associated vacuoles’. *The Plant Journal*. 2019; 99: 465-477.

5. Li, L. et al. Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. *Scientific reports*. 2016; 6: 37976.

6. Krieger-Liszkay, A., Krupinska, K., & Shimakawa, G. The impact of photosynthesis on initiation of leaf senescence. *Physiologia plantarum*. 2019; 166: 148-164.

7. Liang, C. et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. *Proceedings of the National Academy of Sciences*. 2014; 111: 10013-10018.

8. Kim, H. J. et al. Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis. *Journal of experimental botany*. 2014; 65: 4023-4036.

9. Yan, H. et al. AtSPX1-mediated transcriptional regulation during leaf senescence in
Arabidopsis thaliana. *Plant science*. 2019; 283: 238-246.

10. Christiansen, M. W. et al. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. *Journal of experimental botany*. 2016; 67: 5259-5273.

11. Gao, X. et al. Characterization and Mapping of a Novel Premature Leaf Senescence Mutant in Common Tobacco (Nicotiana tabacum L.). Plants. 2019; 8: 415.

12. Cheng, L. et al. High-density SNP genetic linkage map construction and quantitative trait locus mapping for resistance to cucumber mosaic virus in tobacco (Nicotiana tabacum L.). *The Crop Journal*. 2019; 7: 539-547.

13. Zhao, J. et al. Metabolic changes in primary, secondary, and lipid metabolism in tobacco leaf in response to topping. Analytical and bioanalytical chemistry. 2018; 410: 839-851.

14. Jiang, S. P. et al. Effect of different harvesting maturity on tobacco quality with optimized leaf structure. *Journal of Henan Agricultural Sciences*. 2013; 42: 40-45.

15. Altaf Hussain, M., & Huygens, F. Proteomic and bioinformatics tools to understand virulence mechanisms in Staphylococcus aureus. *Current Proteomics*. 2012; 9: 2-8.

16. Zhang, H., & Ge, Y. Comprehensive analysis of protein modifications by top-down mass spectrometry. *Circulation: Cardiovascular Genetics*. 2011; 4: 711-711.

17. Owiti, J. et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. *The Plant Journal*. 2011; 67: 145-156.

18. Yang, M., Dong, J., Zhao, W., & Gao, X. Characterization of proteins involved in early stage of wheat grain development by iTRAQ. *Journal of proteomics*. 2016; 136: 157-166.

19. Elschenbroich, S., and Kislinger, T. Targeted proteomics by selected reaction
monitoring mass spectrometry: applications to systems biology and biomarker
discovery. Mol. Biosyst. 2011; 7: 292-303.

20. Bourmaud, A., Gallien, S., and Domon, B. Parallel reaction monitoring using
quadrupole-Orbitrap mass spectrometer: principle and applications. Proteomics. 2016;
16: 2146-2159.

21. Das P P, Lin Q, Wong S M. Comparative proteomics of Tobacco mosaic virus-infected
Nicotiana tabacum plants identified major host proteins involved in photosystems
and plant defence[J]. Journal of proteomics. 2019; 194: 191-199.

22. Xie, H.et al. iTRAQ-based quantitative proteomic analysis reveals proteomic changes
in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought
stress. Biochemical and biophysical research communications. 2016; 469: 768-775.

23. Wang, J. et al. iTRAQ protein profile analysis provides integrated insight into
mechanisms of tolerance to TMV in tobacco (Nicotiana tabacum). Journal of
proteomics. 2016; 132: 21-30.

24. Pino, L. K., Searle, B. C., Bollinger, J. G., Nunn, B., MacLean, B., & MacCoss, M. J. The
Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass
spectrometry reviews

25. Yi, J.H. Determination and Study on Photosynthetic Parameters of Euonymus
japonicus [J]. Technology Wind. 2018; 201-202.

26. Canales, F. J., De la Haba, P., Barrientos, E., & Ágüera, E. Effect of CO₂ enrichment
and increased nitrogen supply on the induction of sunflower (Helianthus annuus L.)
primary leaves senescence. Canadian Journal of Plant Science. 2016; 96: 1002-1013.

27. Yang, X. S., Chen, G. X., & Yuan, Z. Y. Photosynthetic decline in ginkgo leaves during
natural senescence. Pakistan Journal of Botany. 2013; 45: 1537-1540.

28. Mayta, M. L. et al. Expression of a plastid-targeted flavodoxin decreases chloroplast
reactive oxygen species accumulation and delays senescence in aging tobacco leaves. Frontiers in plant science. 2018; 9: 1039.

29. Kim, J. Sugar metabolism as input signals and fuel for leaves senescence. Genes & genomics. 2019; 41: 737-746.

30. Wingler, A., & Roitsch, T. Metabolic regulation of leaves senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biology. 2008; 10: 50-62.

31. Zhang, A.et al. Comparative proteomic analysis provides new insights into the regulation of carbon metabolism during leaves senescence of rice grown under field conditions. Journal of plant physiology. 2010; 167: 1380-1389.

32. Ma, G.et al. iTRAQ-based quantitative proteomic analysis reveals dynamic changes during daylily flower senescence. Planta. 2018; 248: 859-873.

33. McKinley, B. A., Casto, A. L., Rooney, W. L., & Mullet, J. E. Developmental dynamics of stem starch accumulation in Sorghum bicolor. Plant Direct. 2018; 2: e00074.

34. Van Doorn, W. G. Is the onset of senescence in leaves cells of intact plants due to low or high sugar levels? Journal of experimental botany. 2008; 59: 1963-1972.

35. Zhang, L.et al. Proteomic Analysis of Senescing Leaves of Tobacco. Plant Physiology Journal. 2014; 50: 488-500.

36. Martin, C., & Thimann, K. V. The role of protein synthesis in the senescence of leaves: I. The formation of protease. Plant physiology. 1972; 49: 64-71 (1972).

37. Amunts, A., Toporik, H., Borovikova, A., & Nelson, N.. Structure determination and improved model of plant photosystem I. Journal of Biological Chemistry. 2010; 285: 3478-3486.

38. Rochaix, J. D. Role of thylakoid protein kinases in photosynthetic acclimation. Febs Letters 2007; 581: 2768-2775.
39. Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2006; 1757: 742-749.

40. Plaxton, W. C. The organization and regulation of plant glycolysis. Annual review of plant biology 1996; 47: 185-214.

41. Joshi, R., Karan, R., Singla-Pareek, S. L., & Pareek, A. Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant cell reports. 2016; 35: 27-41.

42. Nelson, N., & Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annual review of biochemistry. 2015; 84: 659-683.

43. Mi, H.L. The regulation of NAD (P)H dehydrogenase complexes bound in thylakoid membranes in photosynthesis [J]. Plant Physiology Journal. 2016; 52:1457-1465.

44. Xu, Y., Gianfagna, T., & Huang, B. Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. Journal of Experimental Botany. 2010; 61: 3273-3289.

45. Sorek, M., Yacobi, Y. Z., Roopin, M., Berman-Frank, I., & Levy, O. Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae. Proceedings of the Royal Society B: Biological Sciences. 2013; 280: 20122942.

46. Yamada, K.et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003; 302: 842-846.

47. Sugihara, K., Hanagata, N., Dubinsky, Z., Baba, S., & Karube, I. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorhiza. Plant and cell physiology. 2000; 41, 1279-185.

48. Fatehi, F., Hosseinzadeh, A., Alizadeh, H., & Brimavandi, T. The proteome response of
Hordeum spontaneum to salinity stress. Cereal research communications. 2012; 41: 78-87.

49. Ngamhui, N. O.et al. Differentially expressed proteins in sugarcane leaves in response to water deficit stress. Plant Omics. 2012; 5: 365.

50. Wassim, A., Ichrak, B. R., & Saïda, A. Putative role of proteins involved in detoxification of reactive oxygen species in the early response to gravitropic stimulation of poplar stems. Plant signaling & behavior. 2013; 8: e22411.

51. Girard-Bascoul, J., Choquet, Y., Schneider, M., Delosmel, M., & Dron, M. Characterization of a chloroplast mutation in the psaA2 gene of Chlamydomonas reinhardtii. Current genetics. 1987; 12: 489-495.

52. Lefebvre-Legendre, L. et al. A nucleus-encoded chloroplast protein regulated by iron availability governs expression of the photosystem I subunit PsA in Chlamydomonas reinhardtii. Plant physiology. 2015; 167: 1527-1540.

53. Teramoto, H., Nakamori, A., Minagawa, J., & Ono, T. A. Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Physiology. 2002; 130: 325-333.

54. Qin, H.J. Effects of Photosynthetic Characteristics of Three Elymus Forage Grasses under Drought Stress [J]. Grassland and Prataculture. 2019; 25: 48-52.

55. Li, C., Xu, H., Xu, J., Chun, X., & Ni, D. Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant. Acta physiologiae plantarum.2011; 33: 973-978.

56. Liu P, Du Y, Meng L, et al. Proteomic analysis in kidneys of Atlantic salmon infected with Aeromonas salmonicida by iTRAQ[J]. Developmental & Comparative Immunology, 2017, 72: 140-153.

57. Zhang C, Zhu Y, Liu Y, et al. SEMA3B-AS1-inhibited osteogenic differentiation of
human mesenchymal stem cells revealed by quantitative proteomics analysis[J]. Journal of cellular physiology, 2019, 234(3): 2491-2499.

58. Wang, X., et al. Target-decoy-based false discovery rate estimation for large-scale metabolite identification. Journal of proteome research. 2018; 17: 2328-2334.

59. H. Tang, I.V. Shilov, S.L. Seymour, Nonlinear fitting method for determining local false discovery rates from decoy database searches, J. Proteome Res. 7 (2008)3661–3667.

60. Tang, X.Y.et al. Identification of Cold Responsive Proteins in Dongxiang Wild Rice Root Based on iTRAQ Technique [J]. Molecular Plant Breeding. 2019; 17:3624-3631.

61. Luczak M, Formanowicz D, Marczak Ł, et al. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis[J]. Scientific reports, 2016, 6: 32511.

62. Vidova V, Spacil Z. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition[J]. Analytica chimica acta, 2017, 964: 7-23.

Tables

Table 1 Proteinpilot searching parameters
Item	Value
Type of search	iTRAQ 8plex (Peptide Labeled)
Enzyme	Trypsin
Cys Alkylation	Iodoacetamide
Instrument	TripleTOF 5600
Bias Correction	TRUE
Background Correction	TRUE
ID focus	Biological modifications
Search Effort	Thorough ID
Protein Mass	Unrestricted
Database	uniprot-taxonomy%3A-Nicotiana+tabacum.fasta 0 sequence in tc

Additional File Legends

Additional file 1: Table S1. Pathway enrichment of differentially expressed proteins between OM and IM

Additional file 2: Table S2. Pathway enrichment of differentially expressed proteins between OM and WM

Additional file 3: Table S3. Pathway enrichment of differentially expressed proteins between WM and IM

Figures
Figure 1

Photosynthesis at different maturity stages. (A) Photosynthetic rate; (B) Intercellular CO2 concentration; (C) Tomatal conductance; (D) Transpiration rate;

(*) Represent significant differences at p<0.05.
Figure 2

Mesophyll cell and chloroplast ultrastructure changes in tobacco leaves. The left column (A, C, E) shows the chlorophyll mesophyll cells and topography (×6000). Shown in the right column (B, D, F) is the ultrastructure (×20,000) of mesophyll cells and chloroplast. Micrographs in rows A–B, C–D, and E–F, respectively, were from plants IM, WM and OM. IS, Intercellular space; CW, cell wall; Ch, Chloroplast; S, starch granule; Chm, chloroplast membrane; G, Grana lamellae.
The volcano plot shows the collected p-values for the changes in the patterns of all identified proteins in pairwise comparisons. (A) DEPs in OM vs IM; (B) DEPs in OM vs WM; (C) DEPs in WM vs IM. Black spots are unchanged proteins, Green spots represent down-regulated proteins and the red spots represent up-regulated protein. Blue spots represent candidates with a putative role.
Figure 4

Venn diagram of differentially expressed proteins between different groups
Figure 5

The top ten metabolic pathways involved by three groups of differential proteins. (A) OM vs IM metabolic pathways involved by differential proteins. (B) OM vs WM metabolic pathways involved by differential proteins. (C) WM vs IM metabolic pathways involved by differential proteins.
Figure 6

Differential protein relative expression matrix heatmap of the three groups; the color in the figure indicates the relative expression level of the protein in the sample. The yellow color indicates that the protein has a higher expression level in the sample, and the blue color represents a lower expression level. Color bars represent specific expression abundance.
Figure 7

Representative significantly enriched photosynthesis related KEGG pathways. (A) The OM vs IM significantly enriched photosynthesis pathway; (B) the OM vs WM significantly enriched photosynthesis pathway; (C) the WM vs IM significantly enriched photosynthesis pathway. The abundance of proteins is represented by different colors, with red for up-regulated, green for down-regulated, and black for stable expression of proteins.
Figure 8

Visualization of skyline peptide results. (A) The ratios of A0A140G1P2; (B) the ratios of A0A140G1R2; (C) the ratios of A0A1S4DCM1.
Figure 9

Column map of PRM quantitative protein differences among different samples. (A) OM vs IM; (B) OM vs WM; (C) WM vs IM. The proteins corresponding to the column on the upside of transverse axis 0 represent up-regulated proteins, the proteins corresponding to the column on the underside of transverse axis 0 represent down-regulated proteins, numbers on columns represent multiple differences (non-logarithmic), for example: If the number in the underside column is 2, it means that WM is twice as much as IM in expression level; if the number in the upside column is 2, it means that WM is 0.5 times as much as IM in expression level.
Figure 10

External morphology of tobacco leaves with different maturity. (A), (D) IM; (B), (E) WM; (C), (F) OM.
Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Table S1.xlsx
Table S2.xlsx
Table S3.xlsx