Phylogenetic and genomic diversity in isolates from the globally distributed *Acinetobacter baumannii* ST25 lineage

Jason W. Sahl1,2, Mariateresa Del Franco3, Spyros Pournaras4, Rebecca E. Colman5, Nabil Karah5, Lenie Dijkshoorn6 & Raffaele Zarrilli3

Acinetobacter baumannii is a globally distributed nosocomial pathogen that has gained interest due to its resistance to most currently used antimicrobials. Whole genome sequencing (WGS) and phylogenetics has begun to reveal the global genetic diversity of this pathogen. The evolution of *A. baumannii* has largely been defined by recombination, punctuated by the emergence and proliferation of defined clonal lineages. In this study we sequenced seven genomes from the sequence type (ST)25 lineage and compared them to 12 ST25 genomes deposited in public databases. A recombination analysis identified multiple genomic regions that are homoplasious in the ST25 phylogeny, indicating active or historical recombination. Genes associated with antimicrobial resistance were differentially distributed between ST25 genomes, which matched our laboratory-based antimicrobial susceptibility typing. Differences were also observed in biofilm formation between ST25 isolates, which were demonstrated to produce significantly more extensive biofilm than an isolate from the ST1 clonal lineage. These results demonstrate that within *A. baumannii*, even a fairly recently derived monophyletic lineage can still exhibit significant genotypic and phenotypic diversity. These results have implications for associating outbreaks with sequence typing as well as understanding mechanisms behind the global propagation of successful *A. baumannii* lineages.

Acinetobacter baumannii is an emergent nosocomial pathogen of increasing interest due to its widespread resistance to antimicrobials. *A. baumannii* is truly a global pathogen, with isolates collected from hospitals around the world, including injured soldiers from Iraq and Afghanistan. The concern is the emergence of multidrug-resistant (MDR) and extremely drug-resistant (XDR) isolates that are resistant to most currently used therapeutics. Genes that confer resistance in *A. baumannii* have been documented, including class D beta-lactamases, such as blaOXA-51-like, which appears to be highly conserved across *A. baumannii*. The insertion element ISAba1 is required for carbapenem resistance in blaOXA-51-like positive isolates.

The genome of *A. baumannii* is highly plastic, with much of the evolution characterized by recombination and horizontal gene transfer. The core genome phylogeny of *A. baumannii* demonstrates highly divergent genomes, with the emergence of a few highly successful clonal lineages. While the evolution
of these lineages is anticipated to be clonal, no in depth evolutionary studies have been performed to look at the fine scale evolution, recombination, and gene composition of these clades.

Infections caused by *A. baumannii* are increasing worldwide, possibly due to the rapid expansion of a selected number of genetically distinct lineages. Three of these lineages, known as international clones I to III, represent globally distributed and ubiquitous clades. Other successful lineages, which spread in single institutions and/or worldwide, have been identified in the population structure of *A. baumannii* using different genotyping methods, including sequence type ST25. *A. baumannii* strains assigned to ST25 were responsible for epidemics in different European countries and the United Arab Emirates and were isolated as endemic or sporadic isolates in South America and Asia, respectively. ST25 genomes are of increasing interest due to increasing antimicrobial resistance found within novel genomic resistance elements.

The aim of the current study was to analyze the genomic epidemiology of 19 *A. baumannii* strains belonging to the ST25 lineage according to Pasteur’s MLST scheme. Understanding the composition and evolution of one successful global lineage may help in understanding the genetic basis for the emergence and proliferation of global clones of *A. baumannii*.

Methods

Isolates.

The collection of ST25 isolates analyzed in this study includes 19 strains: three sporadic strains from Leiden’s collection isolated during 1985, 2000 and 2002; 13 strains representative of epidemics or endemic circulation in different countries; three additional sporadic isolates selected because of their antimicrobial susceptibility profile and mechanisms of antimicrobial resistance (Table 1). Seven of these isolates were chosen for sequencing.

Pulsed-field gel electrophoresis (PFGE) typing and dendrogram analysis.

ApaI DNA macrorestriction and PFGE of *A. baumannii* isolates were performed as previously reported. PFGE profiles were compared using the GelCompar II v. 4.6 software package (Applied Maths, Sint-Martens-Latem, Belgium). Clustering was based on the un-weighted pair-group method with arithmetic averages (UPGMA). The Dice correlation coefficient was used to analyze the similarities of the banding patterns with a tolerance of 1%. Interpretation of chromosomal DNA restriction patterns was based on the criteria of Tenover *et al.* and also on a similarity of >85% at dendrogram analysis, to indicate strain relatedness.

Isolate	Year/Country	Isolate Source	Pasteur ST	Oxford ST	Reference
RUH 1486	1985/Netherlands	Umbilicus	25	229	Diancourt *et al.*, 2010
NM3	2008/UAE	Sputum	25	229	Sonnevend *et al.*, 2013
LUH 1460	1996/Singapore	Respiratory Tract	25	not typed	Unpublished
LUH 6220	2000/Netherlands	Sputum	25	not assigned	Unpublished
PV38/LUH 13606	2007/Italy	Upper Respiratory tract	25	not typed	Carretto *et al.*, 2010
LUH 7841	2002/Netherlands	venous catheter tip	402	229	Unpublished
4390	2003/Greece	Bronchial	25	not assigned	Gogou *et al.*, 2011
66492	2012/Argentina	Blood	25	110	Stietz *et al.*, 2013
AO-471	2005/Thailand	Wound	25	not typed	Karah *et al.*, 2011
741019	2011/Argentina	Pleural fluid	25	not assigned	Stietz *et al.*, 2013
66295	2012/Argentina	Blood	25	110	Stietz *et al.*, 2013
NM133	2008/UAE	Bronchial aspirate	25	110	Sonnevend *et al.*, 2013
3890	2003/Greece	Bronchial aspirate	25	not assigned	Di Popolo *et al.*, 2011
3865	2005/Turkey	Blood	25	440	Di Popolo *et al.*, 2011
AO-21841	2006/Sweden	Intra-abdominal isolate	25	not typed	Karah *et al.*, 2011
65904	2009/Argentina	Inwelling catheter	25	not typed	Stietz *et al.*, 2013
161/07	2007/Germany	Respiratory Tract	25	440	Bonnin *et al.*, 2012
SLO	2008/Slovenia	Respiratory Tract	25	not typed	Bonnin *et al.*, 2012
4190	2009/Italy	Blood	25	not assigned	Zarrilli *et al.*, 2011

Table 1. Metadata associated with ST25 isolates analyzed in this study. *ST assigned using Pasteur’s MLST scheme (Diancourt *et al.*, 2010) ^bST assigned using Oxford’s MLST scheme (Bartual *et al.*, 2005)*
MLST typing. Multi-locus sequence typing (MLST) analysis was performed using the Institut Pasteur’s MLST scheme as previously described. Allele sequence and MLST profile definitions were assigned using the sequence and profile definitions available at http://pubmlst.org/abaumannii/. The MLST results were confirmed from the whole genome sequence analysis using a publically available script: https://github.com/Victorian-Bioinformatics-Consortium/mlst.

DNA extraction, sequencing, assembly. DNA was extracted with the GenElute DNA extraction kit (Sigma-Aldrich, Milan, Italy). Sequence libraries were generated from extracted DNA as reported previously. Genomes were sequenced to high depth on the IlluminaMiSeq platform. Resulting reads were adapter trimmed with Trimmomatic, error corrected with Hammer, and assembled with SPAdes v3.12. The read coverage across each contig was evaluated, and contigs of an anomalous coverage, due to read crossover in multiplexed runs, were manually removed. The assembly stats for each genome are shown in Supplementary Table S1. All assemblies and raw reads were deposited in public databases (accession numbers in Supplementary Table S1). Annotation was performed with the NCBI PGAP pipeline.

Antimicrobial susceptibility testing. Antimicrobial susceptibility testing was performed using the Vitek 2 system (bioMérieux, Marcy l’ Étoile, France). Imipenem, meropenem and colistin minimum inhibitory concentrations (MICs) were determined by agar dilution and Etest (bioMérieux) and interpreted using the EUCAST and CLSI 2012 interpretative criteria.

in silico antimicrobial susceptibility profiling. To identify previously characterized genes associated with antimicrobial resistance in our dataset, raw reads were mapped to the ResFinder database with the SRST2 pipeline; raw reads were used to determine the percentage of the reference gene covered, but also could identify variants compared to the reference database. SRST2 produces a table of all positive hits identified in each genome.

Biofilm formation. Biofilm formation was determined as previously described. Three independent experiments, each one performed in triplicate, were conducted for each strain. Biofilms were grown in the presence and absence of 0.5 mg/L imipenem.

Cell adhesion assays. Adherence of A. baumannii strains to A549 cells (human type 2 pneumocytes) was determined as described previously, with minor modifications. In brief, ~10^6 A549 cells were infected with ~10^7 bacterial CFU and incubated for 60 min at 37°C in 5% CO2 atmosphere. Non-adherent bacterial cells were removed by washing with PBS. Infected cells were lysed by the addition of 1 ml distilled water and serial 10-fold dilutions were plated on LB agar to determine the number of CFU of adherent bacteria. To determine adherent and invading bacteria, A549 cells were infected with A. baumannii strains as described above. The monolayers were then treated with 1 ml of fresh culture medium containing 5 mg/L of colistin sulfate (Sigma-Aldrich, Milan, Italy) for 30 min, the shortest time point that resulted in the killing of all extracellular bacteria added to the monolayers. Afterwards, the cells were washed with PBS, harvested with trypsin, and lysed with sterile distilled water. Dilutions from harvested samples were inoculated on LB agar plates and bacterial colony counts were estimated after overnight incubation at 37°C. Each experiment was performed in triplicate.

Statistical analysis. Data were analyzed using a Statistical Package for the Social Sciences Version 13.0 (SPSS Inc., Chicago, IL, USA). Differences between mean values were tested for significance by performing either unpaired, two-tailed Student’s t-tests or one-way ANOVA analysis followed by Tukey’s multiple-comparison test, when appropriate. A P value < 0.05 was considered to be statistically significant. Correlations were evaluated by regression analysis using the Pearson’s correlation coefficient (r).

Single nucleotide polymorphism (SNP) identification and phylogenetics. For ST25 comparisons, all SNPs were identified by mapping raw reads against A. baumannii AB307-0294 (NC_011595) with BWA-MEM and calling SNPs with the UnifiedGenotyper method in GATK. For external genome assemblies, whole genome alignments were generated with nucmer and variants were identified by direct mapping of each query to the reference. These methods were wrapped by the Northern Arizona SNP Pipeline (NASP) (http://tgennorth.github.io/NASP/). A phylogeny was inferred from the resulting concatenated SNP alignment with a maximum likelihood algorithm in RaxML v8. A Retention Index (RI) value, which demonstrates how consistent the nucleotide character states are with the phylogeny, was calculated with Phangorn.

For the global A. baumannii phylogeny, a set of 572 reference genomes (Supplementary Table S2) were downloaded from Patric. Genome assemblies were aligned against AB307-0294 with NASP. A maximum likelihood phylogeny was inferred on this alignment with RaxML. Genomes were pruned from the phylogeny to only reflect the major sequence types. Clades were collapsed in ARB.

LS-BSR analysis. To look for differential gene conservation, the Large-Scale Blast Score Ratio (LS-BSR) pipeline was employed. In this method, all coding regions (CDSs) predicted by Prodigal were aligned with BLASTX to the reference set of A. baumannii and A. mellius. The Large-Scale Blast Score Ratio (LS-BSR) was then calculated to quantify the extent of sequence identity across the genome.
are clustered with USEARCH45 at an ID of 90%. Each resulting centroid, which is the most representative sequence of each cluster, is then aligned against itself with BLAT46 to obtain the reference bit score. Each centroid is then separately aligned against each genome assembly with BLAT to obtain the query bit score. Dividing the query bit by the reference bit score returns the BLAST Score Ratio (BSR)47. Unique genomic regions were identified by comparing all CDSs between groups and considering a region to be unique if it had a BSR value > 0.8 in target genomes and a BSR value < 0.4 in all non-target genomes.

Recombination analysis. The FASTA output of NASP was converted to NEXUS using Readseq48. The Retention Index for each base was then calculated with Paup v4a14049; the specific Paup commands are publicly available (https://gist.github.com/jasonsahl/a66afa55371d7d916a0e). The SNP density (SD), or the number of parsimony-informative (PI) SNPs across a genomic interval, was calculated across 1-Kb, non-overlapping windows, compared to the reference genome of \textit{A. baumannii} AB307-0294; PI SNPs are those that contain at least two types of nucleotides and occur in a minimum of two genomes. The number of homoplasious SNPs, based on a per-base RI value < 0.5, was also calculated across the same window. The Homoplasy Density (HD) value was calculated by dividing the number of homoplasious SNPs (those SNPs that are inconsistent with the tree topology) by the total number of PI SNPs; a script to perform these functions has been published previously50. Visualization was performed by Circos51. Core genome regions, or those regions conserved across all genomes tested, were identified from the NASP output, where a call was made in all genomes.

Plasmid analysis. CDSs predicted by Prodigal for 40 plasmids identified in \textit{A. baumannii} (Supplementary Table S3) were mapped across ST25 genomes with LS-BSR and BLAT. Following manual curation of screened CDSs, the conservation of genes in associated plasmids was visualized with the interactive tree of life52. Only a subset of CDSs was selected to demonstrate the variability in plasmid content across isolates.

Gene screen. The distribution of several genes associated with virulence or antimicrobial resistance was determined across all ST25 genomes. This included AbaR1, which has previously been shown to be missing from \textit{A. baumannii} 419053. This region (Coordinates 3702770-3602770 in \textit{A. baumannii} AYE) was parsed out of \textit{A. baumannii} AYE and coding regions were predicted with Prodigal. Other resistance islands, including AbaR4 (JN107991) and the G7 plasmid that contains AbaR3 (KF669606) were also screened. All CDSs were then compared against all ST25 genomes with LS-BSR and BLAT. An additional set of genes previously associated with virulence in \textit{A. baumannii} (Supplementary Table S4) was also screened against ST25 genomes with LS-BSR.

Results

Isolates analyzed. In addition to ST25 genomes deposited in public databases, we selected a set of isolates to expand the diversity of this global lineage. The following seven isolates in our collection were selected for WGS analysis in addition to WGS data of strain 4190 already available in GenBank54: strains RUH1486 and NM3 are susceptible and MDR epidemic isolates, respectively; carbapenem-resistant strains 4390 and 741019 carry different carbapenemase genes (\textit{bla}OXA-23 and \textit{bla}

PFGE Analysis. PFGE analysis identified ten unrelated PFGE types (A-J), with six PFGE subtypes within these types (Fig. 1) (C1, E1-E4, I1). Interestingly, PFGE type A included the susceptible first isolate of our collection (RUH1486) and the NM3 MDR strain isolated during an epidemic in United Arab Emirates; six strains from Greece, Argentina, Sweden or Abu Dhabi Emirates were assigned to PFGE type E (Fig. 1), isolated during epidemics in different countries (Table 1); strain 161/07 contains a distinct carbapenemase (NDM-1); strain LUH6220 has a MDR phenotype but is susceptible to carbapenems; strain LUH7841 is susceptible to most antimicrobials (Supplementary Table S5).

MLST. MLST with the Pasteur system15 was performed on 19 ST25 genomes, although only 7 were subjected to whole genome sequencing (WGS). Of all ST25 isolates analyzed, including a set of reference genomes from GenBank, eighteen were assigned to ST25, while one to ST402 (LUH7841), which is a single-locus variant of ST25. \textit{In silico} MLST confirmed sequence type assignments for all genomes where WGS data exists (Supplementary Table S1).

Antimicrobial susceptibility testing. The antimicrobial susceptibility profiles of 19 ST25 \textit{A. baumannii} strains included in the study are shown in Supplementary Table S5. Two strains were classified as susceptible, six and eleven as MDR and XDR, respectively, according to Magiorakos et al., 201229. Five out of six MDR strains and all 11 XDR strains showed resistance to carbapenems and contained class D or class B carbapenemases.
In silico antimicrobial resistance profiling. As a complement to the laboratory-determined antimicrobial susceptibility profiles, in silico profiles were generated for each sequenced genome, using the ResFinder database in conjunction with the SRST2 pipeline. The results demonstrate that resistance mechanisms were identified in the genomes tested for only a few classes of antimicrobials (Table 2), demonstrating limitations in predicting the resistance phenotype from the genotype. Carbapenemase genes were found in the genomes of 161/07 (\textit{bla}NDM-1, \textit{bla}OXA-64), 741019 (\textit{bla}OXA-64, \textit{bla}OXA-23), and 4390 (\textit{bla}OXA-64). The \textit{bla}OXA-64 gene (AY750907), which is also known as \textit{bla}OXA-51-like, is conserved in all ST25 genomes tested (Table 2). However, the IS\textit{Aba}1 insertion sequence is missing in carbapenem-susceptible isolates that are \textit{bla}OXA-64 positive, while present in resistant isolates, which confirms published results that this sequence is required for carbapenem resistance.

Biofilm formation and pneumocyte adherence. Our previous results demonstrated that the ability to form biofilm and adherence to cultured pneumocytes was significantly higher for \textit{A. baumannii} strains assigned to ST25 and ST2 compared to other STs. The biofilm growth on abiotic surfaces and adherence/invasion to cultured A549 pneumocytes were assessed for the 19 strains included in this study. As demonstrated in Fig. 2 panel A, the 19 strains assigned to ST25 and ST402 and strain ACICU assigned to ST2 generally demonstrated significantly (p < 0.05) greater biofilm growth than strain AYE assigned to ST1, although variability in biofilm growth was observed among ST25 strains. Exposure to sub-inhibitory concentrations of imipenem significantly (p < 0.05) stimulated biofilm growth in strains.
AYE and ACICU assigned to ST1 and ST2, respectively, but not in the strains assigned to ST25 or ST402 (Fig. 2, panel B). We next investigated the ability of A. baumannii strains to adhere to A549 human alveolar epithelial cells. All A. baumannii strains assigned to ST25 and ST2 (ACICU) strain showed a significantly higher adherence to A549 human bronchial cells compared with ST1 strain AYE (Supplementary Fig. S1) (p < 0.01). On the other hand, ST25 A. baumannii strains were not able to invade A549 cells human alveolar cells. Also, a similar number of bacteria adhered to A549 cells when the monolayers were incubated with A. baumannii strains for 60 min at 4°C, i.e. under conditions that do not allow for tissue invasion.

Sequencing and comparative genomics. WGS of seven strains was performed and compared to whole genome sequences of 12 A. baumannii strains assigned to ST25 available in GenBank (Supplementary Table S1) and to 572 non-ST25 A. baumannii reference genomes (Supplementary Table S2). The core genome phylogeny based on 1.15Mb of conserved sequence demonstrated the position of the ST25 lineage (Fig. 3) in relation to other globally-relevant lineages. The retention index (RI) of the concatenated SNP alignment was 0.85, demonstrating significant homoplasy likely due to recombination and introducing uncertainty in the phylogenetic placement, especially with regards to deeply branching nodes and long branches\(^5\). A phylogeny of just the ST25 genomes (Fig. 4) also demonstrated homoplasy (RI = 0.84), which demonstrates that although ST25 is a lineage with closely related genomes, the evolution of this group has also been partially driven by recombination; the core genome size of ST25 genomes in relation to AB307-0294 was 3Mb. As anticipated, the core genome phylogeny demonstrated much different relationships than were obtained by the PFGE cluster dendrogram (Figs 1 and 4). For example, genomes RUH1486 and NM3 both share the same PFGE type (Fig. 1), but are significantly different based on the core genome phylogeny (Fig. 4).

Recombination in the ST25 lineage. To demonstrate both the extent and location of recombination in the ST25 lineage in relation to the genome of AB307-0294, a homoplasy density analysis was performed\(^6\). Considering all of the A. baumannii genomes (n = 597), the homoplasy appears to be distributed equally across the reference chromosome, with no isolated regions of recombination (Supplementary Fig. S2). When only considering the ST25 genomes, clear regions have likely been recombined between isolates (Fig. 5, panel A). However, fragments in the core genome, using AB307-0294 as the reference, still generally give a strong phylogenetic signal (Fig. 5, panel B). The annotation of selected regions associated with recombination is shown in Supplementary Table S6. A comprehensive list of HD values across all regions in the reference chromosome is also available (https://gist.github.com/5e1cab0b85c-73de7c6d6.git).

Plasmid composition. The horizontal gene transfer of plasmids was analyzed in ST25 genomes, using the composition of 40 previously characterized A. baumannii plasmids (Supplementary Table S3). Coding regions were predicted for all the plasmids using Prodigal and they were compared against 19 ST25 genomes using LS-BSR. The results demonstrate that the plasmid content is highly variable across sequenced genomes (Fig. 6), although this method fails to discriminate between genes present on
plasmids or the chromosome. The susceptible genome RUH1486 appeared to not contain any annotated plasmid.

Unique genomic regions. The complete genetic content for 597 *A. baumannii* genomes was compared using LS-BSR. By using default values in LS-BSR, a single coding region was found to be present in ST25 genomes and absent from all others; this region corresponds to a large (~14600 nucleotides) hemagglutinin repeat protein (WP_002016208.1). While portions of this gene are conserved in other *A. baumannii* genomes, the complete gene structure is unique to ST25 genomes and could potentially serve as a diagnostic tool for the surveillance of this global lineage.

Distribution of virulence associated genes. Virulence associated genes (Supplementary Table S4) were screened against ST25 genomes with LS-BSR and BLAT. The results demonstrate variability in composition across four genes. Perhaps the most striking difference is in *ompF*, which is highly conserved in only three genomes, each on the same branch of the phylogeny (Supplementary Fig. S3).

Distribution of resistance islands. Coding regions from three previously characterized resistance islands were screened against ST25 genomes with LS-BSR. The results demonstrate that AbaR1 and AbaR4 were sparsely distributed across ST25 genomes (Supplementary Fig. S4). However, the AbaR3 resistance island was highly conserved across two lineages in the ST25 phylogeny, likely demonstrating independent acquisition.

Discussion. *A. baumannii* is a globally distributed nosocomial pathogen associated with clinical infections that are difficult to treat due to widespread antimicrobial resistance. WGS has begun to demonstrate the phylogenetic diversity of this pathogen, which seems largely driven by homologous recombination."
Figure 4. A core genome single nucleotide polymorphism (SNP) phylogeny of ST25 genomes. The phylogeny was inferred with RAxML from a concatenation of ~24,000 SNPs compared to the reference genome of AB307-0294 with 100 bootstrap replicates. Each genome was annotated with its antimicrobial susceptibility information, where available. The tree was rooted according to the most basal genome isolated from the global phylogeny (Fig. 3).

Figure 5. Homoplasy density (HD) ratio analysis of ST25 genomes. (Panel A): Parsimony informative (PI) single nucleotide polymorphisms (SNPs) were identified across 1-Kb, non-overlapping windows (SNP density, or SD), compared to the reference genome of AB307-0294. Homoplasious SNPs were identified by a Retention index value < 0.05. The HD was calculated by dividing the number of homoplasious SNPs by the total number of PI SNPs. The SD and HD values were visualized with Circos. Core genome regions were identified where there was a call in all query genomes compared to the reference genome. (Panel B): The distribution of 1-kb, non-overlapping regions, based on the HD values.
And although phylogenetic diversity has been documented, many genomes sequenced to date fall into clearly defined clonal lineages, such as ST1 and ST2, which have been identified worldwide. Genetic diversity within each of these sequence types has largely focused on the diversity of antimicrobial resistance islands or individual loci. The focus of this study was to perform a comprehensive genomics analysis of the ST25 lineage, which was isolated in different countries and was responsible for epidemics worldwide, to better understand the genotypic and phenotypic properties behind the worldwide distribution and evolution of a successful lineage of A. baumannii.

Phenotypic diversity was observed within ST25, including differences in biofilm formation, antimicrobial susceptibility, and pneumocyte adherence. In terms of biofilm formation, ST25 isolates produce a significantly higher amount of biofilm than a single ST1 representative in the absence of antimicrobials. Although the relationship between biofilm formation and virulence has not been solidified in A. baumannii, biofilms have been associated with resistance to antimicrobials, pathogenensis, as well as resistance to host factors. The presence of imipenem did not affect biofilm production in ST25 isolates, suggesting that these mechanisms are constitutively expressed.

Antimicrobial susceptibility testing demonstrated varied susceptibility profiles within ST25 isolates (Supplementary Table S5). In silico profiles using WGS data against the ResFinder database could predict laboratory resistance for only a subset of antimicrobials (Table 2). This demonstrates that although antimicrobial resistance databases are useful for predicting resistance for some classes of antimicrobials, additional experimentation is required to fully understand the genetic basis for antimicrobial resistance in A. baumannii. In terms of adherence, ST25 genomes were demonstrated to adhere better than a representative from the ST1 clonal lineage. Although this may be due to the presence of a unique haemagglutinin identified in ST25 and absent from all other A. baumannii genomes, additional experimentation is required.

The genetic diversity of ST25 was demonstrated in multiple ways, including the visualization of a core genome single nucleotide polymorphism (SNP) phylogeny (Figs 3 and 4); a similar topology was observed compared to a recent CRISPR-subtyping analysis. A homoplasy density approach demonstrated that much of the SNP density that defines the phylogenetic structure of ST25 is due to homoplasy (Fig. 5, panel A), most likely resulting from homologous recombination. The extent of homoplasy observed in the global phylogeny suggests that A. baumannii does not evolve in a tree like manner and different methods may better represent the evolution in this highly recombinant pathogen.

In addition to SNP analyses, comparative genomics demonstrated a much different gene content between ST25 genomes, primarily between mobile genetic elements. In the case of plasmids, the gene content was significantly different (Fig. 6), which was anticipated due to the movement of mobile genetic elements and has been demonstrated previously in Acinetobacter. However, a screen of genes associated with virulence also demonstrated differences between closely related genomes (Supplementary Fig. S3).
The variable distribution of genes across the ST25 dataset, including those associated with antimicrobial resistance islands (Supplementary Fig. S4), may help explain the variable phenotypes. Overall, these results demonstrate the problem with assuming that isolates have similar gene content or phenotypes based solely on MLST or PFGE type analyses. In terms of either assigning isolates to outbreaks or understanding the evolution of clonal lineages, WGS offers the resolution to untangle the relationships between seemingly related isolates.

References

1. Van Looveren, M. & Goossens, H. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect 10, 684–704 (2004).
2. Perez, F. et al. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51, 3471–3484 (2007).
3. Tognim, M. C. et al. Resistance trends of Acinetobacter spp. in Latin America and characterization of international dissemination of multi-drug resistant strains: five-year report of the SENTRY Antimicrobial Surveillance Program. Int J Infect Dis 8, 284–291, doi: 10.1016/j.ijid.2003.11.009 (2004).
4. Yun, H. C. et al. Bacteria recovered from patients admitted to a deployed U.S. military hospital in Baghdad, Iraq. Mil Med 171, 821–825 (2006).
5. Tien, H. C. et al. Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers. BMC Infect Dis 7, 95, doi: 10.1186/1471-2334-7-95 (2007).
6. Manchanda, V., Sanchaita, S. & Singh, N. Multidrug resistant Acinetobacter. Journal of global infectious diseases 2, 291–304, doi: 10.4103/0974-777X.68538 (2010).
7. Park, Y. K. et al. Extreme drug resistance in Acinetobacter baumannii infections in intensive care units, South Korea. Emerging infectious diseases 15, 1325–1327 (2009).
8. Nordmann, P. & Poirel, L. Emerging carbapenemases in Gram-negative aerobes. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 8, 321–331 (2002).
9. Sahil, J. W. et al. Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter. PLoS ONE 8, e54287, doi: 10.1371/journal.pone.0054287 (2013).
10. Turton, J. F. et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 258, 72–77, doi: 10.1111/j.1574-6968.2006.00195.x (2006).
11. Sahil, J. W. et al. Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity. BMC Genomics 12, 291, doi: 10.1186/1471-2164-12-291 (2011).
12. Snitkin, E. S. et al. Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proc Natl Acad Sci USA 108, 13758–13763, doi: 10.1073/pnas.1104401048 (2011).
13. Imperi, F. et al. The genomics of Acinetobacter baumannii: insights into genome plasticity, antimicrobial resistance and pathogenicity. iUBMB life 63, 1068–1074, doi: 10.1002/iub.533 (2011).
14. Zarrilli, R., Pournaras, S., Giannouli, M. & Tsakris, A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. International journal of antimicrobial agents 41, 11–19, doi: 10.1016/j.ijantimicag.2012.09.008 (2013).
15. Diancourt, L., Passet, V., Nemec, A., Dijkshoorn, L. & Brisse, S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 5, e10034, doi: 10.1371/journal.pone.0010034 (2010).
16. Gogou, V. et al. Evolution of multidrug-resistant Acinetobacter baumannii clonal lineages: a 10 year study in Greece (2000-09). The journal of antimicrobial chemotherapy 66, 2767–2772, doi: 10.1093/jac/dkx390 (2011).
17. Carretto, E. et al. Widespread carbapenem resistant Acinetobacter baumannii clones in Italian hospitals revealed by a multicenter study. Infection, Genetics and Evolution 11, 1319–1326 (2011).
18. Karah, N., Giske, C. G., Sundsfjord, A. & Samuelsen, O. A diversity of OXA-carbapenemases and class 1 integrons among carbapenem-resistant Acinetobacter baumannii clinical isolates from Sweden belonging to different international clonal lineages. Microbial drug resistance 17, 545–549, doi: 10.1089/mdr.2011.0089 (2011).
19. Di Popolo, A., Giannouli, M., Triassi, M., Brisse, S. & Zarrilli, R. Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii strains in four Mediterranean countries with a multilocus sequence typing scheme. Clin Microbiol Infect 17, 197–201, doi: 10.1111/j.1469-0691.2010.03254.x (2011).
20. Bonnin, R. A. et al. Dissemination of New Delhi metallo-beta-lactamase-1-producing Acinetobacter baumannii in Europe. Clin Microbiol Infect 18, E362–365, doi: 10.1111/j.1469-0691.2012.03928.x (2012).
21. Sonnevend, A. et al. Characteristics of epidemic and sporadic strains of Acinetobacter baumannii isolated in Abu Dhabi hospitals. J Med Microbiol 61, 582–590, doi: 10.1099/jmm.0.055681-0 (2013).
22. Stietz, M. S. et al. Acinetobacter baumannii extensively drug resistant lineages in Buenos Aires hospitals differ from the international clones I–III. Infection, Genetics and Evolution 14, 294–301 (2013).
23. Hamidian, M., Holt, K. E. & Hall, R. M. Genomic resistance island AG1 carrying a complex class 1 integron in a multiply antibiotic-resistant ST25 Acinetobacter baumannii isolate. The Journal of antimicrobial chemotherapy, doi: 10.1093/jac/dkv137 (2015).
24. Zarrilli, R. et al. Molecular epidemiology of a clonal outbreak of multidrug-resistant Acinetobacter baumannii in a university hospital in Italy. Clin Microbiol Infect 13, 481–489 (2007).
25. Tenover, F. C. et al. Identifying chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239 (1995).
26. Bolger, A. M., Lohse, M. & Usadel, B. Trimmmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2141–2142, doi: 10.1093/bioinformatics/btu170 (2014).
27. Medvedev, P., Scott, E., Kakaradov, B. & Pevzner, P. Error correction of high-throughput sequencing datasets with non-uniform coverage. Bioinformatics 27, i137–141, doi: 10.1093/bioinformatics/btr208 (2011).
28. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology : a journal of computational molecular cell biology 19, 455–477, doi: 10.1089/cmb.2012.0021 (2012).
29. Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection 18, 268–281, doi: 10.1111/j.1469-0691.2011.03570.x (2012).
30. Institute, C. A. L. S. Performance standards for antimicrobial susceptibility testing (Clinical and Laboratory Standards Institute, Wayne, PA, 2012).
31. Zankari, E. et al. Identification of acquired antimicrobial resistance genes. The Journal of antimicrobial chemotherapy 67, 2640–2644, doi: 10.1093/jac/dks261 (2012).
32. Inouye, M. et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome medicine 6, 90, doi: 10.1186/s13073-014-0090-6 (2014).
Acknowledgements

The authors would like to thank the Acinetobacter baumannii ST25 clonal lineage study group, including Mariana Catalano and Maria Soledad Ramirez, University of Buenos Aires, Argentina; Tibor Pal, United Arab Emirates University, Al Ain, United Arab Emirates; Laurent Poirel, HFR – Hôpital Cantonal, Fribourg, Switzerland; Maria Triassi, University of Naples “Federico II”, Italy; Athanassios Tsakris, University of Athens, Greece; Bernt Eric Uhlín, Umeå University, Sweden; and Haluk Vahaboglu, Medeniyet University, Istanbul, Turkey. This work was supported in part by grant from University of Naples “Federico II” (Fondo d'Ateneo per la Ricerca to RZ).
Author Contributions
Conceived and designed the experiments: J.W.S., S.P., L.D. and R.Z. Performed data analyses: J.W.S. Performed laboratory analyses: M.D.F., R.E.C., S.P. and N.K. Wrote the manuscript: J.W.S. and R.Z. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Sahl, J. W. et al. Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci. Rep. 5, 15188; doi: 10.1038/srep15188 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/