The Polyhedral Geometry of Truthful Auctions

Sylvain Spitz,
joint work w/ Michael Joswig, Max Klimm

IPCO 2023 @ Madison, Wisconsin
June 21, 2023
Allocation Mechanism

Images: flaticon.com
Allocation Mechanism

4.2	3.8	4.9	3.7	6.8
5.0	5.0	5.0	5.0	5.0
4.9	7.1	3.3	4.9	2.5

Images: flaticon.com
Allocation Mechanism

Food	Green	Red	Blue	Total
Coffee	4.2	5.0	4.9	6.8
Beverages	3.8	5.0	7.1	
Burger	4.9			
Pizza	3.7			
Cake	5.0			5.0

Images: flaticon.com
	4.2	3.8	4.9	3.7	6.8
	4.8	4.8	4.8	4.8	4.8
	4.9	7.1	3.3	4.9	2.5

Images: flaticon.com
Allocation Mechanism

Images: flaticon.com
Allocation Mechanism

- Task: allocate \(m \) items among \(n \) agents; set of allocations:

\[
\Omega = \left\{ A \in \{0, 1\}^{n \times m} \mid \sum_{i \in [n]} a_{i,j} = 1 \text{ for all } j \in [m] \right\}
\]
Allocation Mechanism

- Task: allocate \(m \) items among \(n \) agents; set of allocations:

\[
\Omega = \left\{ A \in \{0, 1\}^{n \times m} \middle| \sum_{i \in [n]} a_{i,j} = 1 \text{ for all } j \in [m] \right\}
\]

- Agents have valuation vectors for the items \(\theta_i \in \mathbb{R}^m, i \in [n] \).
• Task: allocate \(m \) items among \(n \) agents; set of allocations:

\[
\Omega = \left\{ A \in \{0,1\}^{n \times m} \left| \sum_{i \in [n]} a_{i,j} = 1 \text{ for all } j \in [m] \right. \right\}
\]

• Agents have valuation vectors for the items \(\theta_i \in \mathbb{R}^m, i \in [n] \).

• Compute an allocation \(f : \Theta \rightarrow \Omega \) and payments \(p : \Theta \rightarrow \mathbb{R}^n \).

\((\Theta = \mathbb{R}^{n \times m})\)
Allocation Mechanism

- Task: allocate m items among n agents; set of allocations:

$$\Omega = \left\{ A \in \{0, 1\}^{n \times m} \mid \sum_{i \in [n]} a_{i,j} = 1 \text{ for all } j \in [m] \right\}$$

- Agents have valuation vectors for the items $\theta_i \in \mathbb{R}^m$, $i \in [n]$.

- Compute an allocation $f : \Theta \rightarrow \Omega$ and payments $p : \Theta \rightarrow \mathbb{R}^n$. ($\Theta = \mathbb{R}^{n \times m}$)

- Agent i will misreport a valuation θ'_i if it benefits their utility

$$u_i(\theta' | \theta_i) = f_i(\theta') \cdot \theta_i - p_i(\theta')$$

A mechanism $M = (f, p)$ is incentive compatible (IC), if misreporting never benefits the agent.
Allocation Mechanism

- Task: allocate m items among n agents; set of allocations:
 \[
 \Omega = \left\{ A \in \{0, 1\}^{n \times m} \mid \sum_{i \in [n]} a_{i,j} = 1 \text{ for all } j \in [m] \right\}
 \]

- Agents have valuation vectors for the items $\theta_i \in \mathbb{R}^m$, $i \in [n]$.

- Compute an allocation $f : \Theta \rightarrow \Omega$ and payments $p : \Theta \rightarrow \mathbb{R}^n$.
 ($\Theta = \mathbb{R}^{n \times m}$)

- Agent i will misreport a valuation θ'_i if it benefits their utility
 \[
 u_i(\theta' \mid \theta_i) = f_i(\theta') \cdot \theta_i - p_i(\theta')
 \]

- A mechanism $M = (f, p)$ is incentive compatible (IC), if misreporting never benefits the agent.
Example (local mechanism):
One agent, two items.
Example (local mechanism):
One agent, two items.
Choose prices for bundles
$q_{10}, q_{01}, q_{11} \in \mathbb{R}$. $q_{00} = 0$
Difference Sets

Example (local mechanism):
One agent, two items.
Choose prices for bundles
$q_{10}, q_{01}, q_{11} \in \mathbb{R}$. $q_{00} = 0$

$$\max_{a \in \{0,1\}^2} \{ a \cdot (\theta_1, \theta_2) - q_a \}$$

Difference sets: $D_a = \{ \theta \in \Theta \mid u(\theta) \text{ maximized by } a \}$
Example (local mechanism):
One agent, two items.
Choose prices for bundles
$q_{10}, q_{01}, q_{11} \in \mathbb{R}$. $q_{00} = 0$

$$f(\theta) = \arg \max_{a \in \{0,1\}^2} \{ a \cdot (\theta_1, \theta_2) - q_a \}$$

$$p(\theta) = q_f(\theta)$$

Difference sets: $D_a = \{ \theta \in \Theta \mid u(\theta) \text{ maximized by } a \}$
Lemma (Nisan et al. - 2007)

$M = (f, p)$ is IC if and only if for all $i \in [n]$ and all $\theta \in \mathbb{R}^{n \times m}$, p_i is given by some function $p_{i,\theta_{-i}} : \{0, 1\}^m \to \mathbb{R}$, and

$$f(\theta) \in \arg\max \left\{ A_i \cdot \theta_i - p_{i,\theta_{-i}}(A_i) \mid A \in \Omega \right\}.$$

A_i is the i-th row of the matrix A.

\Rightarrow Multi-agent mechanisms are characterized by local one-agent mechanisms.
Lemma (Nisan et al. - 2007)

$M = (f, p)$ is IC if and only if for all $i \in [n]$ and all $\theta \in \mathbb{R}^{n \times m}$, p_i is given by some function $p_{i, \theta_{-i}} : \{0, 1\}^m \rightarrow \mathbb{R}$, and

$$f(\theta) \in \arg \max \left\{ A_i \cdot \theta_i - p_{i, \theta_{-i}}(A_i) \mid A \in \Omega \right\}.$$

A_i is the i-th row of the matrix A.

\Rightarrow Multi-agent mechanisms are characterized by local one-agent mechanisms.
\[\theta_1 + \theta_2 = q_{11} \]

Diagram:

- D_{01}
- D_{00}
- D_{10}
- D_{11}

Points:
- q_{01}
- q_{10}

Right side:
- θ_{-i}
- θ'_{-i}
- θ''_{-i}
- θ'''_{-i}
θ_1, θ_2

$D_{00}, D_{01}, D_{10}, D_{11}$

$\theta_{-i}, \theta'_{-i}, \theta''_{-i}, \theta'''_{-i}$
Indifference Complex

Definition

The *indifference complex* $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$
\mathcal{I}(f) = \left\{ \mathcal{O} \subseteq \Omega \mid \bigcap_{A \in \mathcal{O}} \bar{D}_A \neq \emptyset \right\}.
$$

\mathcal{I} is an ASC \iff (i) $\mathcal{I} \neq \emptyset$, (ii) $E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}$
Indifference Complex

Definition

The *indifference complex* $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$
\mathcal{I}(f) = \left\{ \mathcal{O} \subseteq \Omega \mid \bigcap_{A \in \mathcal{O}} \bar{D}_A \neq \emptyset \right\}.
$$

\mathcal{I} is an ASC \iff (i) $\mathcal{I} \neq \emptyset$, (ii) $E \subset F$, $F \in \mathcal{I} \Rightarrow E \in \mathcal{I}$

\[
\mathcal{I}(f) = \left\{ \{00\}, \{01\}, \{10\}, \{11\} \right\}.
\]
The **indifference complex** $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$\mathcal{I}(f) = \left\{ \mathcal{O} \subseteq \Omega \mid \bigcap_{A \in \mathcal{O}} \bar{D}_A \neq \emptyset \right\}.$$

\mathcal{I} is an ASC \iff (i) $\mathcal{I} \neq \emptyset$, (ii) $E \subset F$, $F \in \mathcal{I} \implies E \in \mathcal{I}$

\[I(f) = \{\{00\}, \{01\}, \{10\}, \{11\}, \{00, 10\}, \{10, 11\}, \{11, 01\}, \{01, 00\}, \{00, 11\}, \} \]
Indifference Complex

Definition

The *indifference complex* $\mathcal{I}(f)$ of an allocation function f is the abstract simplicial complex defined as

$$\mathcal{I}(f) = \left\{ \mathcal{O} \subseteq \Omega \mid \bigcap_{A \in \mathcal{O}} \bar{D}_A \neq \emptyset \right\}.$$

\mathcal{I} is an ASC \iff (i) $\mathcal{I} \neq \emptyset$, (ii) $E \subset F, F \in \mathcal{I} \Rightarrow E \in \mathcal{I}$

$\mathcal{I}(f) = \left\{ \{00\}, \{01\}, \{10\}, \{11\}, \{00, 10\}, \{10, 11\}, \{11, 01\}, \{01, 00\}, \{00, 11\}, \{00, 10, 11\}, \{00, 01, 11\} \right\}$
Central Question

Which indifference complexes arise from IC mechanisms?
Central Question

Which indifference complexes arise from IC mechanisms?

Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)

An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.
Definition

Let $S \subset \mathbb{R}^n$ be finite.
Definition
Let $S \subset \mathbb{R}^n$ be finite
Definition
Let $S \subset \mathbb{R}^n$ be finite and $\lambda : S \rightarrow \mathbb{R}$ be a lifting.

$\lambda = (6, 5, 7, 7, 5)$
Definition
Let $S \subset \mathbb{R}^n$ be finite and $\lambda : S \rightarrow \mathbb{R}$ be a lifting. Consider the lifted polytope

$$P(S, \lambda) = \text{conv} \left\{ (x, \lambda(x)) \in \mathbb{R}^{n+1} \mid x \in S \right\}.$$

$\lambda = (6, 5, 7, 7, 5)$
Definition

Let $S \subset \mathbb{R}^n$ be finite and $\lambda : S \to \mathbb{R}$ be a lifting. Consider the lifted polytope

$$P(S, \lambda) = \text{conv} \left\{ (x, \lambda(x)) \in \mathbb{R}^{n+1} \mid x \in S \right\}.$$

Projecting its lower faces onto $\text{conv}(S)$ yields the regular subdivision of S induced by λ.

$\lambda = (6, 5, 7, 7, 5)$
Regular Subdivisions

Definition

Let $S \subset \mathbb{R}^n$ be finite and $\lambda : S \to \mathbb{R}$ be a lifting. Consider the lifted polytope

$$P(S, \lambda) = \text{conv} \{(x, \lambda(x)) \in \mathbb{R}^{n+1} \mid x \in S\}.$$

Projecting its lower faces onto $\text{conv}(S)$ yields the regular subdivision of S induced by λ.

$\lambda = (6, 5, 7, 8, 5)$
Definition
Let $S \subset \mathbb{R}^n$ be finite and $\lambda : S \to \mathbb{R}$ be a lifting. Consider the lifted polytope

$$P(S, \lambda) = \text{conv} \{(x, \lambda(x)) \in \mathbb{R}^{n+1} \mid x \in S\}.$$

Projecting its lower faces onto $\text{conv}(S)$ yields the regular subdivision of S induced by λ.

Not all subdivisions are regular, e.g.:

$$\lambda = (6, 5, 7, 8, 5)$$
Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)

An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

Number of triangulations of the m-cube:

m	Total Triangulations
3 | 74,743,743
4 | 92,487,256
87,959,448
Theorem (Joswig, Klimm, S.; cf. Frongillo, Kash - 21)

An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

- A mechanism is nondegenerate, if the associated regular subdivision is a triangulation.
An indifference complex \mathcal{I} for m items and one agent arises from a local IC mechanism if and only if it corresponds to a regular subdivision of the m-cube.

- A mechanism is nondegenerate, if the associated regular subdivision is a triangulation.
- Number of triangulations of the m-cube:

m	all	regular
2	2	2
3	74	74
4	92,487,256	87,959,448
• S_m acts by permuting the coordinates of the cube.
 \rightarrow corresponds to permutation of items
Symmetries of the Cube

- S_m acts by permuting the coordinates of the cube.
 \rightarrow corresponds to permutation of items
- The full automorphism group Γ_m is generated by S_m and coordinate flips.
Symmetries of the Cube

- S_m acts by permuting the coordinates of the cube.
 \rightarrow corresponds to permutation of items
- The full automorphism group Γ_m is generated by S_m and coordinate flips.

m	all	regular	S_m-orbits	Γ_m-orbits
2	2	2	2	1
3	74	74	23*	6
4	92,487,256	87,959,448	3,706,261*	235,277

*Computations made using MPTOPCOM
Γ_3-Orbits

Type A
(4 reg, 2 S_3)

Type B
(8 reg, 4 S_3)

Type C
(24 reg, 6 S_3)

Type D
(24 reg, 6 S_3)

Type E
(12 reg, 3 S_3)

Type F
(2 reg, 2 S_3)

Type A – E have been found by Vidali (2009).
Type A – E have been found by Vidali(2009)
Allocations may change drastically by slight perturbations of the valuations.
Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let \(d : \{0,1\}^m \times \{0,1\}^m \rightarrow \mathbb{R} \) be a (pseudo)metric.
Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let \(d : \{0, 1\}^m \times \{0, 1\}^m \to \mathbb{R} \) be a (pseudo)metric.
- The sensitivity of an allocation function \(f \) is
 \[
 \mu(f) = \max \{ d(a, b) \mid a, b \in F \text{ for some } F \in \mathcal{I}(f) \}
 \]
Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d : \{0, 1\}^m \times \{0, 1\}^m \to \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is
 \[
 \mu(f) = \max \{d(a, b) \mid a, b \in F \text{ for some } F \in I(f)\}
 \]
- Cardinality distance: $d_c(a, b) = \left| |a|_1 - |b|_1 \right| \rightarrow \mu_c(f)$
Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let \(d : \{0, 1\}^m \times \{0, 1\}^m \rightarrow \mathbb{R} \) be a (pseudo)metric.
- The sensitivity of an allocation function \(f \) is

\[
\mu(f) = \max \{ d(a, b) \mid a, b \in F \text{ for some } F \in \mathcal{I}(f) \}
\]

- Cardinality distance: \(d_c(a, b) = \left| |a|_1 - |b|_1 \right| \rightarrow \mu_c(f) \)
- Hamming distance: \(d_h(a, b) = |a - b|_1 \rightarrow \mu_h(f) \)
Sensitivity of Mechanisms

- Allocations may change drastically by slight perturbations of the valuations.
- Let $d : \{0, 1\}^m \times \{0, 1\}^m \rightarrow \mathbb{R}$ be a (pseudo)metric.
- The sensitivity of an allocation function f is
 \[
 \mu(f) = \max \{ d(a, b) \mid a, b \in F \text{ for some } F \in \mathcal{I}(f) \}
 \]
- Cardinality distance: $d_c(a, b) = \left| |a|_1 - |b|_1 \right| \rightarrow \mu_c(f)$
- Hamming distance: $d_h(a, b) = |a - b|_1 \rightarrow \mu_h(f)$
- What is $M_c(m) = \min_{f \in \Phi_m} \mu_c(f)$? (Resp. $M_h(m)$?)
 \[\Phi_m = \text{set of local allocation functions for } m \text{ items}\]
Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for \(m \) items is \(M_c(m) = 1 \).

Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for \(m \geq 3 \) items is bounded by \(2 \leq M_h(m) \leq m - 1 \).
Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for \(m \) items is \(M_c(m) = 1 \).

Proof. Cut the cube with the hyperplanes

\[
H_k = \left\{ x \in \mathbb{R}^m \mid \sum_{i \in [m]} x_i = k \right\}.
\]

The resulting subdivision proves the claim. It can be obtained with the prices \(q_a = |a|^2_1 \).
Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for \(m \) items is \(M_c(m) = 1 \).

Proof. Cut the cube with the hyperplanes

\[
H_k = \left\{ x \in \mathbb{R}^m \mid \sum_{i \in [m]} x_i = k \right\}.
\]

The resulting subdivision proves the claim. It can be obtained with the prices \(q_a = |a|^2 \).
Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for m *items is* $M_c(m) = 1$.

Proof. Cut the cube with the hyperplanes

$$H_k = \left\{ x \in \mathbb{R}^m \mid \sum_{i \in [m]} x_i = k \right\}.$$

The resulting subdivision proves the claim. It can be obtained with the prices $q_a = |a|_1^2$.

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of an IC single agent mechanism for m items is $M_c(m) = 1$.

Proof. Cut the cube with the hyperplanes

$$H_k = \left\{ x \in \mathbb{R}^m \mid \sum_{i \in [m]} x_i = k \right\}.$$

The resulting subdivision proves the claim. It can be obtained with the prices $q_a = |a|_1^2$.
Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for \(m \geq 3 \) items is bounded by \(2 \leq M_h(m) \leq m - 1 \).

Proof. Upper bound, \(m \) odd: Cut off all corners with even number of ones \(\Rightarrow \) no antipodal vertices in the same cell.

\(m \) even: Consider \(m \)-cube as prism over \((m-1)\)-cube. Cut off corners as before. Cells of \(m \)-cube are prisms over cells of \((m-1)\)-cube.
Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for \(m \geq 3 \) items is bounded by \(2 \leq M_h(m) \leq m - 1 \).

Proof. Upper bound, \(m \) odd: Cut off all corners with even number of ones \(\Rightarrow \) no antipodal vertices in the same cell.

\(m \) even: Consider \(m \)-cube as prism over \((m-1)\)-cube. Cut off corners as before. Cells of \(m \)-cube are prisms over cells of \((m-1)\)-cube.
Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for \(m \geq 3 \) items is bounded by \(2 \leq M_h(m) \leq m - 1 \).

Proof. Upper bound, \(m \) odd: Cut off all corners with even number of ones \(\Rightarrow \) no antipodal vertices in the same cell.

\(m \) even: Consider \(m \)-cube as prism over \((m-1) \)-cube. Cut off corners as before. Cells of \(m \)-cube are prisms over cells of \((m-1) \)-cube.
Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for \(m \geq 3 \) items is bounded by \(2 \leq M_h(m) \leq m - 1 \).

Proof. Upper bound, \(m \) odd: Cut off all corners with even number of ones \(\Rightarrow \) no antipodal vertices in the same cell.

\(m \) even: Consider \(m \)-cube as prism over \((m-1) \)-cube. Cut off corners as before. Cells of \(m \)-cube are prisms over cells of \((m-1) \)-cube.
Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for \(m \geq 3 \) items is bounded by \(2 \leq M_h(m) \leq m - 1 \).

Proof. Upper bound, \(m \) odd: Cut off all corners with even number of ones \(\Rightarrow \) no antipodal vertices in the same cell.

\(m \) even: Consider \(m \)-cube as prism over \((m-1) \)-cube. Cut off corners as before. Cells of \(m \)-cube are prisms over cells of \((m-1) \)-cube.
Proposition (Joswig, Klimm, S.)

The minimal Hamming sensitivity of an IC single agent mechanism for \(m \geq 3 \) items is bounded by \(2 \leq M_h(m) \leq m - 1 \).

Proof. Upper bound, \(m \) odd: Cut off all corners with even number of ones \(\Rightarrow \) no antipodal vertices in the same cell.

\(m \) even: Consider \(m \)-cube as prism over \((m-1) \)-cube. Cut off corners as before. Cells of \(m \)-cube are prisms over cells of \((m-1) \)-cube.
Summary

- The indifference complex captures the combinatorial information of mechanisms.
Summary

- The indifference complex captures the combinatorial information of mechanisms.
- Indifference complexes arise from local IC mechanisms if and only if they correspond to a regular subdivision of the cube.
Summary

- The indifference complex captures the combinatorial information of mechanisms.
- Indifference complexes arise from local IC mechanisms if and only if they correspond to a regular subdivision of the cube.
- The sensitivity measures how drastically an outcome may change by only small perturbations of the valuations.
The indifference complex captures the combinatorial information of mechanisms.

Indifference complexes arise from local IC mechanisms if and only if they correspond to a regular subdivision of the cube.

The sensitivity measures how drastically an outcome may change by only small perturbations of the valuations.

Thank You for Your attention!
Affine Maximizers

Allocation space for n agents and m items:

$$\Omega = \left\{ A \in \{0, 1\}^{n \times m} \middle| \sum_{i \in [n]} A_{i,j} = 1 \text{ for all } j \in [m] \right\}$$

f is an affine maximizer \iff There exist $w_1, \ldots, w_n \in \mathbb{R}$ and $c_A \in \mathbb{R}$ for all $A \in \Omega$, such that

$$f(\theta) \in \arg \max \left\{ c_A + \sum_{i \in [n]} w_i \theta_i \cdot A_i \middle| A \in \Omega \right\}.$$
Affine maximizer:

\[f(\theta) \in \arg \max \left\{ c_A + \sum_{i \in [n]} w_i \theta_i \cdot A_i \ \bigg| \ A \in \Omega \right\} . \]

Theorem (Joswig, Klimm, S.)

An indifference complex \(\mathcal{I} \) for \(n \) agents and \(m \) items arises from an affine maximizer if and only if it corresponds to a regular subdivision of \(\Delta_{n-1}^m \).
Symmetries of Δ_{n-1}^m

$$\Omega = \left\{ A \in \{0, 1\}^{n \times m} \left| \sum_{i \in [n]} A_{i,j} = 1 \text{ for all } j \in [m] \right. \right\}$$

- Regular subdivisions of Δ_{n-1}^2 have been studied before.

- Denote by $S_n \times S_n$ the automorphism group which permutes the vertices of each simplex separately.

- Denote by $S_m \times S_n$ the automorphism group which permutes the rows and columns of allocations $A \in \{0, 1\}^{n \times m}$.
Symmetries of Δ_{n-1}^m

- Denote by $S_n \times S_n$ the automorphism group which permutes the vertices of each simplex separately.
- Denote by $S_m \times S_n$ the automorphism group which permutes the rows and columns of allocations $A \in \{0, 1\}^{n \times m}$.

Results for $m = 2$:

n	regular	$[S_2 \times S_n]$-orbits	$[S_n \times S_n]$-orbits
3	108	21	5
4	4,494,288	96,722	7,869

Computations made using MPTOPCOM
Triangulations of Δ_2^2

Type A
- 6 regular
- $3 \times S_3 \times S_3$

Type B
- 12 regular
- $4 \times S_3 \times S_3$

Type C
- 36 regular
- $5 \times S_3 \times S_3$

Type D
- 36 regular
- $5 \times S_3 \times S_3$

Type E
- 18 regular
- $4 \times S_3 \times S_3$
Cardinality distance: \(d_c(a, b) = |a|_1 - |b|_1 \). The cardinality sensitivity of an affine maximizer \(f \) is

\[
\mu_c(f) = \max \{ d_c(A_i, B_i) \mid A, B \in F \text{ for some } F \in \mathcal{I}(f) \text{ and } i \in [n] \}
\]

Proposition (Joswig, Klimm, S.)

The minimal cardinality sensitivity of affine maximizers for \(n \geq 3 \) agents and \(m \) items is bounded by \(\mu_c(f) \leq \left\lceil \frac{m}{2} \right\rceil \).

This sensitivity can be achieved by the allocation biases

\[
c_A = -\max_{i \in [n]} \left(\sum_{j \in [m]} a_{i,j} \right)^2
\]