Supporting Information

Network ‘small-world-ness’: a quantitative method for determining canonical network equivalences

Mark D. Humphries and Kevin Gurney

Adaptive Behaviour Research Group,
Department of Psychology, University of Sheffield,
Sheffield. S10 2TP. UK
m.d.humphries@sheffield.ac.uk

1 Real-world systems — details

The correlations of S^\triangle and S^{ws} with n (see main text) are re-plotted in Figure ST1a and Figure ST1b, respectively, using the indices of the networks from Table 1. The three real-world systems with $S^{ws} < 1$ were omitted from that correlation as these were not small-world networks. Some systems were borderline small-world networks, defined here as $1 \leq S^\triangle, S^{ws} \leq 3$ — 4 systems had S^{ws} in this range, 6 systems had S^\triangle in this range. For these we tested the significance of their small-world-ness scores as detailed in the main text. All had S values greater than the upper 99% confidence limit. We conclude that all other real-world systems were small-world networks.

Figure ST1: Correlation of real-world system properties. Both S^\triangle (a) and S^{ws} (b) scale linearly with network size n across real networks from all domains, and irrespective of other properties. Numbers correspond to entries in Table 1.
The few systems that were not small-world networks were defined as such according to their
S^{ws} values, and not their S^Δ values. This illustrates the comment made in the main text that
C^{ws} and C^Δ often considerably differ, and actually describe two different graph properties: one
interpretation is that C^{ws} measures average local edge density and that C^Δ measures the proportion
of closed loops in the network. We can see the difference clearly in Figure ST2, which shows the
correlation of C^{ws} and C^Δ for the real-world systems in Table 1 (main text).

Figure ST2: Correlation of clustering coefficients for real-world systems. Linear regression shows
some correlation ($r^2 = 0.65, n = 27$), but C^{ws} and C^Δ for some systems differ by an order of
magnitude.

2 Finding maximum S^Δ

We wanted to find out how close the particular linear model $S^\Delta \simeq 0.023n$ was to the theoretical
maximum possible value for S^Δ from the Watts-Strogatz (WS) model, given the corresponding
mean degree $\langle k \rangle \simeq 5$ for that data-set. To do this, we differentiated S^Δ_{ws} with respect to p; as S^Δ_{ws}
has a unique maximum value, finding the value of p for which $dS^\Delta_{ws}/dp = 0$ would thus give us
the theoretical maximum S^Δ value.

The ratios λ_{ws} and γ^Δ_{ws} can be expressed as (see main text):

$$\lambda_{ws} = \frac{n \ln(2K)f(nKp)}{K \ln(n)},$$

$$\gamma^\Delta_{ws} = \frac{3K - 3}{8K^2 - 4K}n(1 - p)^3.$$

If we assume that the product $nKp \gg 1$, and thus substitute the asymptotic limit $f(x) = \ln(2x)/4x$
into (1), we get the full expression

\[S^\triangle_{ws} = \frac{\gamma_{ws} \lambda_{ws}}{(8K^2 - 4K) \ln(2K) \ln(2nKp)}. \]

(3)

We want to differentiate this with respect to \(p \), so gather all constant terms in (3)

\[S^\triangle_{ws} = \beta (1 - p)^3 \ln(2nKp), \]

(4)

where

\[\beta = \frac{4K^2(3K - 3)n \ln(n)}{(8K^2 - 4K) \ln(2K)}, \]

(5)

and differentiate (4) to obtain

\[\frac{dS^\triangle_{ws}}{dp} = \beta \left\{ \frac{\ln(2nKp) [(1 - p)^3 - 3p(1 - p)^2] - (1 - p)^3}{\ln(2nKp)^2} \right\}, \]

(6)

We set \(dS^\triangle_{ws}/dp = 0 \) and re-arrange to find \(p \). No closed form solution exists, but after some algebra we find

\[0 = (1 - p) \left(1 - \frac{1}{\ln(2nKp)} \right) - 3p. \]

(7)

We use a standard minimisation routine — fzero from MATLAB (The MathWorks, Natick, MA), with an initial value of \(p = 0.5 \) — to find values for \(p \) which satisfy this equality, given \(n \in [10^3, 10^4, \ldots, 10^{20}] \) and \(K = \langle k \rangle / 2 = 2.5 \). These are shown in Figure ST3a. We see that the value for \(p \) that maximises \(S^\triangle_{ws} \) is surprisingly restricted across the whole range of \(n \), converging on an asymptotic value of \(p = 0.246 \) as \(n \to \infty \). If we substitute the values for \(n \) and the resulting \(p \) values into (3) we find the linear relationship \(S^\triangle_{ws} = 0.181n \), shown in Figure ST3b. Thus, as shown in the main text (Figure 2a), the linear rate of real-world scaling does not reach the theoretical maximum.
Figure ST3: Determining maximum possible S^Δ.

a The value for p that maximises S^Δ_{ws} in the WS model falls in a narrow range over many orders of magnitude of n, converging on an asymptotic value of $p = 0.246$ as $n \to \infty$.

b The result is that maximum S^Δ_{ws} grows linearly with n.

![Graph a](image1.png)

![Graph b](image2.png)