Helicobacter pylori infection is associated with reduced risk of Barrett’s esophagus: a meta-analysis and systematic review

Yan-Lin Du, Ru-Qiao Duan and Li-Ping Duan*

Abstract

Background: Helicobacter pylori (Hp) is a class I carcinogen in gastric carcinogenesis, but its role in Barrett’s esophagus (BE) is unknown. Therefore, we aimed to explore the possible relationship.

Methods: We reviewed observational studies published in English until October 2019. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for included studies.

Results: 46 studies from 1505 potential citations were eligible for inclusion. A significant inverse relationship with considerable heterogeneity was found between Hp (OR = 0.70; 95% CI, 0.51–0.96; P = 0.03) and BE, especially the CagA-positive Hp strain (OR = 0.28; 95% CI, 0.15–0.54; P = 0.0002). However, Hp infection prevalence was not significantly different between patients with BE and the gastroesophageal reflux disease (GERD) control (OR = 0.99; 95% CI, 0.82–1.19; P = 0.92). Hp was negatively correlated with long-segment BE (OR = 0.47; 95% CI, 0.25–0.90; P = 0.02) and associated with a reduced risk of dysplasia. However, Hp had no correlated with short-segment BE (OR = 1.11; 95% CI, 0.78–1.56; P = 0.73). In the present infected subgroup, Hp infection prevalence in BE was significantly lower than that in controls (OR = 0.69; 95% CI, 0.54–0.89; P = 0.005); however, this disappeared in the infection history subgroup (OR = 0.88; 95% CI, 0.43–1.78; P = 0.73).

Conclusions: Hp, especially the CagA-positive Hp strain, and BE are inversely related with considerable heterogeneity, which is likely mediated by a decrease in GERD prevalence, although this is not observed in the absence of current Hp infection.

Keywords: Helicobacter pylori, Barrett’s esophagus, Gastroesophageal reflux disease

Background

Owing to improvements in hygiene and living conditions, the prevalence of Helicobacter pylori (Hp) has continued to fall in developed countries, along with the incidence of gastric cancer and peptic ulcer, although it remains high in some developing countries, such as 70.1% in Africa [1, 2]. Interestingly, in contrast to the decline in the rate of Hp infection, the incidence of esophageal adenocarcinomas (EAC) has increased significantly. Current epidemiological studies present a consistent, rapidly increasing incidence of EAC in the United States and most other western countries, especially among males, with an observed or estimated start between 1960 and 1990, while the incidence of esophageal squamous cell carcinoma is stable or declining in all racial groups [3, 4]. The etiology of EAC is multifactorial, and Barrett’s esophagus (BE) is a premalignant lesion that is observed in the majority of patients with EAC, and carries a risk of eventual development of EAC that is up to 30- to 125-fold higher than that in patients without this condition.
Previous studies have identified several risk factors for the development of BE, including male sex, older age, smoking, white race, obesity, hiatal hernia, and gastroesophageal reflux disease (GERD) [7, 8]. However, the possible role of Hp in BE is uncertain. Currently, Hp is classified by the World Health Organization as a class 1 carcinogen, since it promotes gastric cancer, and is also regarded as a commensal organism that confers some protection against asthma, allergies, and even obesity [9, 10]. Hp seems to have a protective influence on BE, however, the relationship between Hp and BE remains controversial.

Multiple studies have highlighted the relationship between Hp and BE [11–13]. Recently, Wang used individual-level data from six case–control studies to conduct analysis. Their study provided evidence that Hp infection was strongly inversely associated with BE, which was even stronger among individuals with cytotoxin-associated gene A (CagA) positive strain [14]. Another extensive meta-analysis also demonstrated that Hp infection was associated with a reduced risk of BE, and dysplastic, non-dysplastic, and long-segment BE (LSBE), and demonstrated that the risk reduction was not correlated with geographical location [15]. However, some researchers concluded that there was no clear association between Hp and BE, or demonstrated contrary conclusions in case–control studies and cohort studies [16, 17]. Fischbach's meta-analysis of 49 observational studies identified a protective effect of Hp on BE, and showed great heterogeneity between the majority of studies, which was potentially due to selection and information bias [18]. Consequently, it is understandable that different meta-analyses come to different conclusions.

Previous meta-analysis results are inconsistent, and the heterogeneity between them may derive from selection of the control group, the definition of BE, and the Hp detection method. To better understand this relationship, we performed meta-analysis and subgroup analysis based on the potential sources of heterogeneity. This study would contribute to the design of clinical studies and the decisions on whether to eradicate Hp.

Methods

Search strategy

PubMed, EMBASE, and COCHRANE databases were searched from inception to October 2019. We used the following MeSH terms or keywords as search terms: ("Barrett Esophagus"[Mesh]) OR (Barrett metaplasia) OR (Barrett metaplasias) OR (Barrett's Metaplasia) OR (Metaplasia, Barrett) OR (Metaplasias, Barrett) OR (Barrett's Syndrome) OR (Barretts syndrome) OR (Barrett Syndrome) OR (Barrett's Esophagus) OR (Barrett's oesophagus) OR (Barretts Esophagus) OR (Barrett's oesophagus) OR (Esophagus, Barrett's) OR (oesophagus, Barrett's) OR (oesophagus, Barrett) OR (Barrett Epithelium) OR (Epithelium, Barrett) OR (Barrett's) OR (Barrett) AND ("Helicobacter pylori"[Mesh]) OR (Helicobacter pylori) OR (H pylori) OR (H. pylori) OR (Helicobacter) OR (Campylobacter) AND (Humans).

Inclusion and exclusion criteria

All eligible studies satisfied the following inclusion criteria:

1. Observational studies: Case–control, cohort, or cross-sectional studies
2. Providing raw data on Hp infection in the BE and control groups
3. Studies conducted in adult populations

Studies with the following exclusion criteria were eliminated:

1. Full-text articles in languages other than English
2. Studies in which the data came from a review article or other non-full-text article
3. Less than five points in the Newcastle–Ottawa Scale (NOS)

When the same data appeared in different articles, only the study with the most complete relevant data was included.

Data extraction

Data were extracted by two independent investigators after reading each included study. When agreement was reached by discussion or with the help of third investigators, the data were recorded in a designed Excel 2019 sheet. We collected data on author, year of publication, journal, geographical location, study type, Hp infection testing methods, definition of cases and controls, number of cases and controls, number of Hp infections in cases and controls, and whether matched in sex, age, obesity, smoking, alcohol, and race. Data on dysplasia, segment length and infection of CagA-positive Hp strain were included when present. When the subjects of multiple reports are the same. Only one, the most complete, would be included.

Statistical analysis

Our primary objective was to compare the prevalence of Hp infection between BE groups and controls. The secondary objective was to conduct subgroup analysis according to the differences in definitions of the control group, the definitions of BE, and the Hp detection
methods, in order to clarify the impact of these aspects on the overall results. The correlation between \(H_p \) and BE was determined by calculating the odds ratios (ORs) and 95% confidence intervals (CIs) for risk. The results of the meta-analysis were displayed on a forest map, heterogeneity was assessed using Cochrane’s Q and I^2 statistics, and publication biases were checked by visual assessment of funnel plots. Heterogeneity was regarded as moderate, substantial, and considerable when the I^2 was between 30–60%, 50–90%, and 75–100%, respectively. All calculations were conducted by Review Manager 5.3.

Results

Searches initially generated 1505 potential citations after removing 546 duplicates from 2051 citations. A large sample study (n = 1445) was further excluded by screening titles, abstracts, and browsing full-text. A total of 62 studies remained for full-text review, and six studies without original data [19–24]. and seven studies with less than five points in NOS were additionally excluded [25–31]. Three studies were excluded because of repetitive research subjects [32–34]. Finally, Forty-five studies were included in this article; data from 36 of these were extracted to explore the relationship between \(H_p \) and BE, while others examined the correlation in \(H_p \) and BE dysplasia, lengths of BE, and the correlation between the CagA-positive \(H_p \) strain and BE. The study selection process is shown in Fig. 1.

Prevalence of \(H_p \) infection in BE and controls

The 36 included studies comprised a total of 90,895 BE patients and 430,846 controls [11–13, 35–67]. A summary of the characteristics of these studies is shown in Table 1. The prevalence of \(H_p \) infection in BE patients was significantly lower than that in controls (OR = 0.70; 95% CI, 0.51–0.96; \(P = 0.03 \)), with considerable heterogeneity observed between studies (I^2 = 98%, \(P < 0.00001 \)) (Fig. 2). Funnel plots suggested no obvious publication bias (Fig. 3). Subgroup analysis was conducted according to differences in definition of control group. Fourteen studies regarded patients with GERD as control group [37, 43, 49, 52, 54, 55, 58–60, 62, 63, 64, 66, 67]. There was no significant difference in the prevalence of \(H_p \) infection between BE and GERD controls (OR = 0.99; 95% CI, 0.82–1.20; \(P = 0.91 \); I^2 = 33%). In contrast, the negative relationship between \(H_p \) prevalence and BE was enhanced when defining subjects undergoing endoscopy in another 14 studies (OR = 0.55; 95% CI, 0.31–0.95;
Authors	Years	Journal	Hp testing method	Biopsy location	BE	Control	Sex match	Age match	BMI/obesity match	Smoking match	Alcohol match	Race match	
Aghayeva et al.	2019	Dis Esophagus	H, R	Antrum	IM†	Endoscopy	Yes	Yes	Not clear	Not clear	Not clear	Yes	
Chen et al.	2016	PLoS One	R	Antrum	IM	Primary care	Yes	Yes	Not clear	Not clear	Not clear	Not clear	
Chuang et al.	2019	Kaohsiung Journal of Medical Sciences	H, R, U	Not clear	Not clear	Endoscopy, Primary care	No	No	Not clear	Not clear	Not clear	Not clear	
Corley et al.	2008	Gut	S	Antrum	IM	Population	Yes	Yes	Not clear	Not clear	Not clear	Not clear	
Csendes et al.	1997	Dis Esophagus	H	Antrum	Gastric epithelium ≥ 3 cm or IM	Endoscopy, Primary care	No	No	Not clear	Not clear	Not clear	Not clear	
Dore et al. [63]	2016	Scand J Gastroenterol	H, R, 13C-UBT	Antrum, Antrum, Corpus	IM	GERD	Not clear	Not clear	Not clear	Not clear	Not clear	Not clear	
Ferrández et al.	2006	BMC Gastroenterol	S	H, R	IM	Blood donor	Yes	Yes	Not clear	No	No	Not clear	
Fischbach et al.	2014	Am J Gastroenterol	H, C	Antrum, Corpus, Cardia	IM	Endoscopy	Yes	Yes	Yes	No	Not clear	No	
Hackelsbeiger et al.	1998	Gut	H, R	Antrum, Corpus, Cardia	IM	Endoscopic diagnosis	Not clear	Not clear	Not clear	Not clear	Not clear	No	
Hirota et al.	1999	Gastroenterology	H	Antrum	IM	Endoscopy	Yes	Yes	Yes	Yes	Yes	Not clear	
Katsinelos et al.	2013	Hippokratia	R	Antrum	IM	Endoscopy	Yes	Yes	Yes	Yes	Not clear	Not clear	
Keyashian et al.	2013	Dis Esophagus	H, S, stool antigen	Not clear	IM	GERD	No	No	Yes	Yes	Not clear	Not clear	
Kiltz et al.	2002	Eur J Gastroenterol Hepatol	R, S	Antrum, Corpus	IM	Endoscopy	Not clear	Not clear	Not clear	Not clear	Not clear	Not clear	
Laheij et al.	2002	Alimentary Pharmacology and Therapeutics	H, R, C	Antrum	CM**	Endoscopy	Not clear	Not clear	Not clear	Not clear	Not clear	Not clear	
Loffeld et al.	2000	Digestion	H, R, S, C	Antrum	CM	Endoscopy	Not clear	Not clear	Not clear	Not clear	Not clear	Not clear	
Loffeld et al.	2004	Netherlands Journal of Medicine	H, C	Antrum	Not clear	Endoscopy	Not clear	No	Not clear	Not clear	Not clear	Not clear	
Newton et al.	1997	Gut	R	Antrum	GERD	No	No	No	Not clear	Not clear	Not clear	Not clear	
Authors	Years	Journal	Hp testing method	Biopsy location	BE	Control	Sex match	Age match	BMI/obesity match	Smoking match	Alcohol match	Race match	
---------------------------------	-------	--	-------------------	-----------------	----	---------	-----------	-----------	-------------------	---------------	---------------	------------	
Öberg et al. [43]	1999	Archives of Surgery	H	Antrum, biopsies just below SCC	IM	GERD	Not clear	Not clear	Not clear	Not clear	Not clear	Not clear	
Park et al. [50]	2009	J Clin Gastroenterol	H, R, S	Not clear	IM	Endoscopy	No	No	No	No	Yes		
Paull and Yardley [51]	1988	Gastroenterology	H	Gastric biopsy	Not clear	Endoscopy	Yes	Yes	Not clear	Not clear	Not clear	Not clear	
Rajendra et al. [52]	2007	Helicobacter	H, R, S	Antrum, Corpus, Cardia	IM	GERD	Not clear	Not clear	Not clear	Not clear	Not clear	Not clear	
Ronkainen et al. [53]	2005	Gastroenterology	H, S	Antrum, Corpus	IM	Population	Not clear	Not clear	Not clear	No	No	No	
Rubenstein et al. [54]	2014	Clin Gastroenterol Hepatol	S	IM	IM	GERD	Yes	Not clear	Not clear	Not clear	Not clear	No	
Sharifi et al. [55]	2014	Gastroenterol Res Pract	R	IM	IM	GERD	Yes	No	No	Yes	Yes	Not clear	
Sonnenberg et al. [56]	2010	Gastroenterology	H	Stomach	IM	Endoscopy	No	No	Not clear	Not clear	Not clear	No	
Sonnenberg et al. [11]	2017	Aliment Pharmacol Ther	H	Stomach	IM	Endoscopy	Not clear	Not clear	Not clear	Not clear	Not clear	No	
Thrift et al. [57]	2012	Int J Cancer	S	IM	IM	Population	Endoscopic diagnosis	Not clear	Not clear	Not clear	Not clear	Not clear	No
Usui et al. [35]	2019	J Clin Gastroenterol	S	IM	IM	Endoscopy	Not clear	Not clear	Not clear	Not clear	Not clear	No	
Vaezi et al. [58]	2000	Am J Gastroenterol	H, S	Antrum, Corpus	IM	GERD	Not clear	Yes	Not clear	Not clear	Not clear	No	
Vicari et al. [59]	1998	Gastroenterology	H, S	Antrum, Fundus, Cardia	CM ≥ 3 cm or IM	GERD	Not clear	Yes	Not clear	Not clear	Yes		
Viet et al. [65]	2000	Digestion	H	Antrum, Corpus	IM	NUD[1]	No	No	Not clear	Not clear	Not clear	Yes	
Weston et al. [60]	2000	Am J Gastroenterol	H	Stomach	IM	GERD	Yes	Yes	Not clear	Yes	Yes	No	
White et al. [61]	2008	Can J Gastroenterol	H	Not clear	IM	Normal SCJ	No	Yes	Not clear	Not clear	Not clear	No	
Wu et al. [66]	2000	Alimentary Pharmacology and Therapeutics	H, R	Antrum, Corpus	IM	GERD	Not clear	Not clear	Not clear	Not clear	Not clear	No	
Zaninotto et al. [67]	2002	Dig Liver Dis	H	Esophagus	IM	GERD	Not clear	Not clear	Not clear	Not clear	Not clear	No	
Table 1 (continued)

Authors	Years	Journal	Hp testing meth od	Biopsy locat ion	BE	Control	Sex match	Age match	BMI/obesity match	Smoking match	Alcohol match	Race match
Zhang et al. [62]	2004	World J Gastroenterol	H	Antrum	IM	GERD	Not clear	Not clear	Not clear	Not clear	Not clear	Not clear

*: Histology, †: Rapid urease test, ‡: Intestinal metaplasia, §: Urea breath test, ¶: Serology, **: Culture, ††: Esophagogastric junction, ‡ ‡: Columnar metaplasia, §§: Squamous Columnar Junction, ¶¶: Non-ulcer dyspepsia
$P = 0.03; I^2 = 99\%$) or normal control (population or primary care people) in four studies (OR = 0.48; 95% CI, 0.38–0.61; $P < 0.00001; I^2 = 0\%$) as control groups (Fig. 4) [11, 13, 36, 38, 40–42, 44–48, 50, 51, 53, 56, 57]. When BE was defined as intestinal metaplasia (IM) in 26 studies, we found an increased negative correlation between $H. pylori$ prevalence and BE (OR = 0.64; 95% CI, 0.51–0.80; $P = 0.0011; I^2 = 90\%$) [11, 12, 13, 36, 39–44, 46–49, 51, 59]. However, the negative correlation disappeared (OR = 0.76; 95% CI, 0.51–1.14; $P = 0.18; I^2 = 92\%$) in the other subgroups, which diagnosed BE with columnar metaplasia (CM), endoscopic presentation, no clear definition, and gastric epithelium [35, 37, 39, 41, 46–49, 51, 59]. In addition, we divided the studies according to whether $H. pylori$ could be confirmed as a present infection, into the present infected subgroup ($H. pylori$ positive with rapid urease test, urea breath test, histology, or culture), infection history subgroup ($H. pylori$ positive with serological detection, treatment history, or infection history), and not clear subgroup. In the present infected group with 24 studies, the prevalence of $H. pylori$ infection in BE was significantly lower than that in controls (OR = 0.69; 95% CI, 0.54–0.89; $P = 0.005; I^2 = 92\%$) [11, 13, 36, 37, 39–44, 46–49, 51, 53, 55, 56, 60–63, 65–67], while the negative correlation disappeared again in the infection...
history subgroup (OR = 0.88; 95% CI, 0.43–1.78; P = 0.73; I² = 95%) (Fig. 5) [12, 35, 38, 54, 57].

Correlation between *Hp* and length of BE

We extracted data from 11 studies to explore the correlation between *Hp* and LSBE, and obtained a total of 669 BE patients and 31,243 controls [35, 42, 45, 58, 62, 67, 68–72]. We found that the risk of *Hp* infection in patients with LSBE was significantly lower than that in the controls (OR = 0.47; 95% CI, 0.25–0.90; P = 0.02; I² = 82%). In contrast, we extracted data from 12 studies to explore the correlation between *Hp* and short-segment BE (SSBE), and obtained a total of 7886 BE patients and 31,173 controls [35, 36, 42, 45, 58, 62, 67, 73, 70, 74–76]. There was no significant difference in the prevalence of *Hp* between the SSBE and controls (OR = 1.11; 95% CI, 0.78–1.56; P = 0.57; I² = 68%). Although the same *Hp* infection rate was observed in the ultra-short-segment BE (USBE) and GERD groups (22%, 2/9 vs. 22% 7/32) in Zaninotto’s study, such a small sample size might lead to bias [67]. Matsuzaki’s research suggested that the *Hp* infection rate in USBE was lower than that in controls, but the difference was not significant (66.3%, 57/86 vs 72.5%, 50/69; P > 0.05) [76].

Correlation between *Hp* and BE dysplasia

Only four previous studies have focused on whether *Hp* reduces the risk of BE dysplasia [11, 36, 5765]. Decades ago, Vieth found that patients with BE neoplasia (high-grade dysplasia or EAC) had significantly lower rates of *Hp* infection than patients with non-ulcer dyspepsia (P < 0.01), which was also lower than that observed in patients with simple BE [65]. This conclusion was further confirmed by two subsequent studies. In a population-based case–control study, Thrift determined that patients with BE had a lower likelihood of infection with *Hp* (OR = 0.37; 95% CI, 0.22–0.61) as was observed in many other studies. The BE group was then divided into two subgroups: BE without dysplasia and BE with dysplasia, and showed a reduced negative correlation (OR = 0.51; 95% CI, 0.30–0.86) and an increased negative correlation (OR = 0.10; 95% CI, 0.03–0.33) when compared to population control, respectively [57]. Another case–control study with many more research objects further verified this finding. When defining cases as BE with dysplasia or cancer, instead of simple BE, the negative correlation between *Hp* and the cases became stronger (OR = 0.31; 95% CI, 0.26–0.37 vs OR = 0.36; 95% CI, 0.34–0.38) [11].

However, a recent study in Azerbaijan, a high-prevalence area of *Hp* infection, directly compared BE with and without dysplasia, and found no significant difference in *Hp* infection between the two groups (OR = 0.42; 95% CI, 0.12–1.52; P > 0.05) [36]. Details of these studies are shown in Table 2.
Prevalence of CagA-positive H. pylori in BE and controls

In the ten studies that examined patients with BE, the prevalence of the CagA-positive H. pylori strain was significantly lower than that in controls (208/1080 [20.5%] vs 605/2070 [29.1%]) (OR = 0.28; 95% CI, 0.15–0.54, P = 0.0002; I² = 83%) (Fig. 6) [12, 38, 45, 47, 54, 58, 59, 69, 71, 72]. In a case–control study in 2008, Corley confirmed that the inverse association between H. pylori and BE...
5.1 Present infected subgroup

Study	BE Events	Control Events	BE Total	Control Total	Weight	Odds Ratio M-H, Random, 95% CI
Aghayeva 2019	53	83	103	167	3.0%	1.10 [0.64, 1.89]
Chen 2016	42	148	261	588	3.1%	0.50 [0.34, 0.74]
Chuang 2019	224	369	1548	2597	3.2%	1.05 [0.84, 1.31]
Cséndes 1997	20	100	38	190	2.9%	1.00 [0.56, 1.83]
Dore 2016	47	108	1251	2928	3.1%	1.03 [0.70, 1.52]
Fischbach 2014	35	218	146	439	3.1%	0.38 [0.25, 0.58]
Hackelberger 1998	43	108	156	315	3.1%	0.67 [0.43, 1.05]
Horioka 1999	4	104	64	738	2.4%	0.42 [0.15, 1.18]
Katsinelos 2013	14	75	414	1915	2.9%	0.63 [0.46, 1.50]
Lahej 2002	6	23	281	528	2.5%	0.31 [0.12, 0.80]
Lofield 2004	55	179	1550	3975	3.1%	0.69 [0.50, 0.96]
Newton 1997	4	16	15	36	2.1%	0.47 [0.13, 1.73]
Paul 1988	10	26	11	28	2.3%	0.85 [0.28, 2.58]
Ronkainen 2005	5	16	383	984	2.4%	0.71 [0.26, 2.07]
Sharif 2014	12	34	204	702	2.8%	1.33 [0.86, 2.07]
Sonnenberg 2010	8	144	2510	9356	3.2%	0.44 [0.37, 0.52]
Sonnenberg 2017	8	1972	7647	20683	3.2%	0.34 [0.32, 0.35]
Viet 2000	5	463	1054	378	3.2%	0.69 [0.57, 0.84]
Weston 2000	7	73	208	96	3.1%	0.68 [0.46, 1.01]
White 2008	2	39	3	29	1.5%	0.47 [0.07, 3.00]
Wu 2000	0	6	77	225	0.9%	0.15 [0.01, 2.65]
Zanitchko 2002	6	34	7	32	2.2%	0.77 [0.23, 2.58]
Zhang 2004	60	120	31	93	3.0%	2.00 [1.14, 3.50]
Öberg 1999	5	40	8	69	2.2%	1.09 [0.33, 3.59]
Subtotal (95% CI)	**82093**	**378932**	**64.8%**	**0.69 [0.54, 0.89]**		

Total events: 3299
Heterogeneity: Tau² = 0.27, Chi² = 282.30, df = 23 (P < 0.00001), I² = 92%
Test for overall effect: Z = 2.83 (P = 0.005)

5.2 Infection history subgroup

Study	BE Events	Control Events	BE Total	Control Total	Weight	Odds Ratio M-H, Random, 95% CI
Corley 2006	36	309	67	295	3.1%	0.45 [0.28, 0.70]
Ferrández 2006	91	104	159	213	2.9%	2.38 [1.23, 4.59]
Rubenstein 2014	25	150	86	375	3.0%	0.67 [0.41, 1.10]
Thrift 2012	28	296	73	390	3.0%	0.45 [0.28, 0.72]
Usui 2019	1764	7419	4596	29196	3.2%	1.67 [1.57, 1.78]
Subtotal (95% CI)	**8278**	**30469**	**15.2%**	**0.88 [0.43, 1.78]**		

Total events: 1944
Heterogeneity: Tau² = 0.59, Chi² = 75.10, df = 4 (P < 0.00001), I² = 95%
Test for overall effect: Z = 0.35 (P = 0.73)

5.3 Not clear subgroup

Study	BE Events	Control Events	BE Total	Control Total	Weight	Odds Ratio M-H, Random, 95% CI
Keyashian 2013	24	52	205	420	2.9%	0.90 [0.50, 1.60]
Klitz 2002	8	35	175	545	2.7%	0.63 [0.28, 1.41]
Lofield 2000	14	36	248	454	2.8%	0.53 [0.26, 1.06]
Park 2009	39	215	12173	20154	3.1%	0.15 [0.10, 0.21]
Rajendra 2007	29	55	37	80	2.8%	1.30 [0.65, 2.58]
Vaezi 2000	41	230	151	434	3.1%	0.41 [0.27, 0.60]
Vicari 1998	15	48	30	84	2.7%	0.82 [0.36, 1.74]
Subtotal (95% CI)	**671**	**22171**	**20.2%**	**0.86 [0.29, 1.05]**		

Total events: 170
Heterogeneity: Tau² = 0.66, Chi² = 56.92, df = 6 (P < 0.00001), I² = 89%
Test for overall effect: Z = 1.81 (P = 0.07)

Total (95% CI): 91042 431172 100.0% 0.68 [0.50, 0.94]

Fig. 5 Forest plot of subgroup analysis according to status of Hp infection. 5.1: Hp positive with rapid urease test, urea breath test, histology or culture; 5.2: Hp positive with serological detection, treatment history, or infection history; 5.3: not sure to status of Hp infection.
Table 2. Characteristics of the four studies about the correlation between *Hp* and BE dysplasia

Authors	Years	Journal	*Hp* testing method	Biopsy location	BE	Cases	*Hp*+	Total	Controls	*Hp*+	Total		
Aghayeva et al. [36]	2019	Dis Esophagus	H*, R†	Antrum	IM‡	BE with dysplasia	5	11	BE without dysplasia	48	72		
Sonnenberg et al. [11]	2017	Aliment Pharmacol Ther	H	Stomach	IM	BE without dysplasia or cancer	1972	76,475	Endoscopy	20,683	284,552		
					IM	BE with dysplasia or cancer	138	6167	Endoscopy	20,683	284,552		
Thrift et al. [57]	2012	Int J.Cancer	S§	IM		BE	28	296	Population	73	390		
					IM	BE without dysplasia	25	208	Population	73	390		
					IM	BE with dysplasia	3	88	Population	73	390		
Vieth et al. [65]	2000	Digestion	H	Antrum, Corpus	IM‡	BE	463	1054	NUD	378	712		
					IM‡	Barrett’s neoplasia (HGD		or adenocarcinoma)	54	138	NUD	378	712

*: Histology, †: Rapid ureas test, ‡: Intestinal metaplasia, §: Serology, ||: High dysplasia
was stronger in subjects with the CagA-positive strain, weaker but still present in those with CagA-negative strains [38]. Meanwhile, there were no substantial differences in the pattern of BE and the CagA-positive Hp strain after adjustment for GERD symptom severity or GERD symptom frequency, which was similar to Anderson’s conclusion [38, 69]. However, Anderson found a somewhat weaker pattern between the CagA-positive Hp strain and BE when analyzing for the CagA antigen only [69].

Description of publication bias, heterogeneity, and sensitivity analysis

A visual inspection of the funnel plot was used to assess publication bias in the studies. There was no asymmetry in the funnel plots of the respective analyses and subgroup analyses. Considerable heterogeneity was noted in meta-analyses concerning the correlation between Hp prevalence and BE. Substantial heterogeneity was also noted when analyzing the relationship between Hp and lengths of BE, and that at between the CagA-positive Hp strain and BE. Through sensitivity analyses, we found that the significant heterogeneity could be attributed to factors other than a single study. We sometimes discovered decreased heterogeneity in the following subgroup meta-analyses. In the subgroup analysis of GERD, population and primary care people, the heterogeneity decreased considerably to 33% and 0%, respectively. This finding suggests that regarding subjects undergoing endoscopy as control might be the most potential sources of heterogeneity. There was also a significant decrease in heterogeneity when subgroup analysis was performed based on whether or not a match was made for sex and age. There were many factors closely related to Hp and BE, including sex, age, smoking, alcohol consumption, race, geographic location, definition of BE and control group, methods of Hp testing. It was hard to analyze and discuss each factor due to the limited number of publications and the heterogeneity of the description.

Discussion

In accordance with recent studies, our meta-analysis showed an inverse relationship between the prevalence of Hp, especially the CagA-positive Hp strain, with BE. The conclusions of most of the previous studies are consistent with those of the current study [14, 15, 77], in that Hp is a protective factor for BE. It is generally recognized that Hp causes corpus-predominant gastritis with decreased acid secretion, which is associated with a decreased risk of GERD and BE [78, 79]. Meanwhile, Hp infection reduces the chance of regurgitation by promoting gastric emptying and reducing the incidence of obesity [79]. In subgroup analyses, Hp infection and BE were inversely related when compared with subjects undergoing endoscopy and normal control (population or primary care people), but not GERD control. Furthermore, the prevalence of Hp was not significantly different between patients with BE and those with GERD. Combined to previous studies, this protective effect of Hp is likely mediated by a decrease in prevalence of GERD in Hp-infected patients, since it disappears in patients with GERD [14]. However, there were no substantial differences in the relationship between BE and CagA-positive Hp strains after adjustment for GERD symptom severity or frequency [38, 71]. It suggested that CagA-positive Hp might reduce the risk of BE in some other ways.
Although *Hp* has been classified as a class 1 carcinogen, the majority of infected people had no symptoms associated with *Hp* infection actually [1]. Nowadays, the negative associations between *Hp* and asthma, allergies, GERD and inflammatory bowel disease are increasingly recognized [80]. The present study also revealed the protective effect of *Hp* on BE. Meanwhile, long-term use of proton pump inhibitors has been shown to increase the risk of gastric cancer after confounding factors, the HRs increased with cumulative duration, cumulative omeprazole equivalents and time since treatment initiation [81, 82]. Therefore, it would be important to explore new treatment options to alleviate BE symptoms and personalize *Hp* eradication.

The most likely protective mechanism of *Hp* to BE is the effect on gastric reflux by its influence on gastric acid secretion. Usually, antral-predominant gastritis is associated with increased acid secretion, whereas corpus-predominant gastritis, often accompanied by gastric atrophy, is associated with decreased acid secretion [83]. Ten previous studies only detected *Hp* infection with tissue from the antrum [13, 35, 36, 39, 44, 46–49, 55]; The meta-analysis of these articles showed *Hp* no protective impact to BE (OR = 0.80; 95% CI, 0.58–1.10; \(P = 0.17; \ I^2 = 66% \)) although with decreased heterogeneity. In contrast, studies that defined *Hp* exclusively from esophageal biopsies tended to find a positive association between *Hp* and BE [18]. *Hp* directly damages the esophageal mucosa with bacterial products, increases the production of prostaglandin, sensitizes the afferent nerve, reduces the pressure of the lower esophageal sphincter, and increases acidity via Gastrin, an oncogenic growth factor that contributes to esophageal carcinogenesis [84–88]. Due to the lack of classified discussion on the severity of gastric mucosal lesions after *Hp* infection in those included publications, our study is not able to prove the potential protective effect of *Hp* on BE might be explained by decreased acid secretion due to corpus-predominant gastritis. There are limited studies on the relationship between the duration, site, and severity of *Hp* infection and BE, and further discussions on classification are yet to be conducted.

In subgroup analyses based on different definitions of control and BE, we found that the inverse relationship disappeared when comparing BE with GERD control, and when BE was defined as a change other than IM. Conversely, the OR values of the other subgroups decreased to some extent. In particular, the prevalence of *Hp* infection in the normal control (population or primary care people) was much lower than that in patients with BE compared to the endoscopy subgroup. We also found that *Hp* was negatively correlated with LSBE, and that *Hp* infection could reduce BE dysplasia; however, there was no apparent correlation between *Hp* and SSBE. When it came to different detection methods for *Hp*, we found that the inverse relationship disappeared in the *Hp* infection history subgroup. Serological detection, treatment history, or infection history of *Hp* cannot reflect the current infection status of the study subjects, which will increase the uncertainty of information. In the present infected subgroup, our meta-analysis discovered a protective association between *Hp* and BE that was not present in the *Hp* infection history subgroup.

A few studies without obvious selection and information bias have reported a reduced risk of BE in people infected with *Hp* [18, 38, 53, 71]. The relationship between *Hp* infection and BE is controversial due to the considerable heterogeneity observed in most studies; indeed, significant heterogeneity was also noted in the current meta-analysis. A study by Fischbach et al. identified selection and information bias as potential sources of heterogeneity [71].

Subgroup analyses of the GERD and normal control (population or primary care people) showed a decrease of heterogeneity to 33% and 0%, respectively. The endoscopy subgroup might be one of the greatest sources of heterogeneity, since endoscopy might be associated with multiple gastrointestinal diseases. Applying subjects undergoing endoscopy, who were more likely to be colonized with *Hp* than the general population, as control, would lead to selection bias [38]; however, it also represents the most common and easiest control group. In the same way, blood donors cannot represent the population because they are likely to be healthier and younger [15]. Subject from the same geographical area as the BE patient would be the best choice of control.

A final, but no less important finding was that a significant decrease in overall heterogeneity was also observed when performing subgroup analyses based on whether or not a match was made for sex and age. Males and aging have been shown to be risk factors for *Hp* infection and BE, and in the current study, the protective effect of *Hp* infection wasn't presented when matching both sex and/or age (OR = 0.72; 95% CI, 0.50–1.05; \(P = 0.09; \ I^2 = 76% \)) [12, 13, 36, 38, 40, 44, 51, 60]. This result might be influenced by heterogeneity in definition of control group, definition of BE, *Hp* detection method, age, sex and so on. We collected information about whether or not the BE and control subjects were matched in sex, age, obesity, smoking, alcohol consumption, and race. However, it is unfortunate that, due to too many interfering factors, there were too few studies in single factor subgroups to perform additional
The heterogeneity of existing studies is great. To understand this, gastritis type, sex, age, obesity, smoking, alcohol, and HP attention to, but not only to, the definition of the control well-designed studies are needed. Researchers should pay attention to the inverse relationship between HP and BE disappeared in the SSBE. In addition, the inverse relationship between HP and BE disappeared in the HP infection history subgroup. The heterogeneity of existing studies is great. To understand the extent to which HP reduces the risk of BE, further well-designed studies are needed. Researchers should pay attention to, but not only to, the definition of the control group, the definition of BE, status of HP infection, sampling site, gastritis type, sex, age, obesity, smoking, alcohol, and race.

Abbreviations

HP: Helicobacter pylori; BE: Barrett's esophagus; OR: Odds ratio; CI: Confidence interval; GERD: Gastroesophageal reflux disease; LSBE: Long-segment BE; SSBE: Short-segment BE; USBE: Ultra-short-segment BE; EAC: Esophageal adenocarcinoma; CagA: Cytotoxin-associated gene A; NOS: Newcastle–Ottawa Scale; IM: Intestinal metaplasia; CM: Columnar metaplasia; S: Serology; R: Rapid urease test; U: Urea breath test; H: Histology; T: Treatment history; C: Culture; NUD: Non-ulcer dyspepsia; HGD: High grade dysplasia; SCJ: Squamous Columnar Junction; EGI: Esophagogastric junction.

Acknowledgements

We thank all authors who provided data for this meta-analysis.

Authors’ contributions

Y-LD carried out the study selection and drafted the manuscript; Y-LD and R-QD contributed to extraction and analysis of the data; L-PD designed and supervised the study. All authors commented on drafts of the paper and approved the final manuscript.

Funding

None.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 21 June 2021 Accepted: 16 November 2021 Published online: 07 December 2021

References

1. Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, Malfertheiner P, Graham DY, Wong WVS, Wu JCY, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 2017;153(2):420–9.

2. Graham DY. History of Helicobacter pylori: duodenal ulcer, gastric ulcer and gastric cancer. World J Gastroenterol. 2014;20(18):5191–204.

3. Edgren G, Adami HO, Weiderpass E, Nyren O. A global assessment of the oesophageal adenocarcinoma epidemic. Gut. 2013;62(10):1406–14.

4. Cook MB, Chow WH, Devesa SS. Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977–2005. Br J Cancer. 2009;101(5):855–9.

5. Sharma P. Clinical practice. Barrett’s esophagus. N Engl J Med. 2009;361(26):2548–56.

6. Perez N, Taylor W. Epidemiology of Barrett’s oesophagus and oesophageal adenocarcinoma. Med Stud. 2019;35(1):61–8.

7. Qumseya BJ, Bukannan A, Gendy S, Ahemd Y, Sultan S, Bain P, Gross SA, Iyer P, Wani S. Systematic review and meta-analysis of prevalence and risk factors for Barrett’s esophagus. Gastrointest Endosc. 2019;90(5):707-717. e701.

8. Arora Z, Garber A, Thota PN. Risk factors for Barrett’s esophagus. J Dig Dis. 2016;17(4):215–21.

9. Muller H, Heseltine E, Vainio H. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7–14 June 1994. IARC Monogr Eval Carcinog Risks Hum. 1994;61:1–241.

10. Blaser MJ. Helicobacter pylori and esophageal disease: wake-up call? Gastroenterology. 2010;139(6):1819–22.

11. Sonnenberg A, Turner KO, Spechler SJ, Genta RM. The influence of Helicobacter pylori on the ethnic distribution of Barrett’s metaplasia. Aliment Pharmacol Ther. 2017;45(2):283–90.

12. Ferrández A, Benito R, Aranas J, García-González MA, Sopeña F, Alcedo J, Ortego J, Sainz R, Laras A. CagA-positive Helicobacter pylori infection is not associated with decreased risk of Barrett’s esophagus in a population with high H. pylori infection rate. BMC Gastroenterol. 2006;6:1–10.

13. Chen CC, Hsu YC, Lee CT, Hsu TC, Tsai CM, Wang WL, Tseng CH, Hsu CT, Lin JT, Chang CY. Central obesity and H. pylori infection influence risk of Barrett’s esophagus in an Asian population. PloS ONE. 2016;11(12):e0167815.

14. Wang Z, Shaheen DJ, Whitehead DC, Anderson LA, Vaughan TL, Corley DA, El-Serag HB, Rubinstein JH, Thrift AP. Helicobacter pylori infection is associated with reduced risk of Barrett’s esophagus: an analysis of the barrett’s and esophageal adenocarcinoma consortium. Am J Gastroenterol. 2018;113(8):1148–55.

15. Erős B, Farkas N, Vincze Á, Tinusz B, Szapáry L, Garami A, Balaskó M, Sarlós IM, Vincze Á, Tinusz B, Szapáry L, Garami A, Balaskó M, Sarlós E, Cuesta IM, Zádor A, El-Serag HB, Rubenstein JH, Thrift AP. Helicobacter pylori infection is associated with reduced risk of Barrett’s esophagus: a meta-analysis and systematic review. Helicobacter. 2018;23(4):e12504.

16. Liu FX, Wang WH, Shuai XW. Prevalence of Helicobacter pylori in patients with Barrett’s esophagus: a meta-analysis. Chin J Evid Based Med. 2008;8(12):1086–93.

17. Wang C, Yuan Y, Hunt RH. Helicobacter pylori infection and Barrett’s esophagus: a systematic review and meta-analysis. Am J Gastroenterol. 2009;104(2):492–500 (quiz 491, 501).

18. Fischbach LA, Nordenstedi H, Kramer JR, Gandhi S, Dick-Onoibus S, Lewis A, El-Serag HB. The association between Barrett’s esophagus and Helicobacter pylori infection: a meta-analysis. Helicobacter. 2012;17(3):163–75.

19. Blaser MJ, Perez-Perez GI, Schneidman D, Brown A, Schaffner M, Marin-Sorensen M, Weinstein WM. Association of infection due to Helicobacter pylori with specific upper gastrointestinal pathology. Rev Infect Dis. 1991;13(Suppl 8):S704–708.

20. Johannson S, Håkansson HO, Mellblom L, Kampa A, Johannson KE, Granath F, Nyren O. Risk factors for Barrett’s esophagus: a population-based approach. Scand J Gastroenterol. 2007;42(2):148–56.

21. Goldblum JR, Richter JE, Yaez M, Falk GW, Rice TW, Peek RM. Helicobacter pylori infection, not gastroesophageal reflux, is the major cause of...
inflammation and intestinal metaplasia of gastric cardiac mucosa. Am J Gastroenterol. 2002;97(2):302–11.

22. Peitz U, Hackelberger A, Günther T, Clara L, Malferttheiner P. The prevalence of Helicobacter pylori infection and the pattern of gastritis in Barrett's esophagus. Dig Dis. 2001;19(2):164–9.

23. Ormsby AH, Vaezi MF, Richter JE, Goldblum JR, Rice TW, Falk GW, Gramlich TL. Cytokine inanoreactivity patterns in the diagnosis of short‑segment Barrett's esophagus. Gastroenterology. 2000;119(3):683–90.

24. O'Connor HJ, Cunnane K. Helicobacter pylori and gastro‑oesophageal reflux disease—a prospective study. Ir J Med Sci. 1994;163(6):369–73.

25. Jonatiss L, Krukas D, Kudellis G, Kugniskis L. Risk factors for erosive esophagitis and Barrett's esophagus in a high Helicobacter pylori prevalence area. Medicina. 2011;47(8):434–9.

26. Gashi Z, Sherifi F, Shabani R. The prevalence of Helicobacter pylori infection in patients with reflux esophagitis—our experience. Med Arch (Sarajevo, Bosnia and Herzegovina). 2013;67(6):402–4.

27. Peng S, Xiong LS, Xiao YL, Lin JK, Wang AJ, Zhang N, Hu PJ, Chen MH. Prompt upper endoscopy is an appropriate initial management in uninvestigated chinese patients with typical reflux symptoms. Am J Gastroenterol. 2010;105(9):1947–52.

28. Guenther T, Hackelberger A, Kuester D, Malferttheiner P, Roessner A. Helicobacter pylori infection or Helicobacter infection?—diagnostic value of the inflammatory pattern in metaplastic mucosa at the squamocolumnar junction. Pathol Res Pract. 2007;203(12):831–7.

29. Voutilainen M, Färkkilä M, Mecklin JP, Juhola M, Sipponen P. Classical Barrett esophagus contrasted with Barrett‑type epithelium at normal‑appearing esophagogastric junction: comparison of demographic, endoscopic, and histologic features. Scand J Gastroenterol. 2000;35(12):2–9.

30. Werdmuller BFM, Loffeld RLF. Helicobacter pylori infection has no role in the pathogenesis of reflux esophagitis. Dig Dis Sci. 1997;42(1):103–5.

31. Laportosa G. Helicobacter pylori in Barrett's oesophagus. Histopathology. 1991;18(6):568–70.

32. Garcia JM, Splenser AE, Kramer J, Alsarraj A, Fitzgerald S, Ramsey D, El‑Serag HB. Circulating inflammatory cytokines and adipokines are associated with increased risk of Barrett's esophagus: a case‑control study. Clin Gastroenterol Hepatol. 2014;12(2):229‑238.e223.

33. Hilal J, Kramer JR, Richardson P, Ramsey D, Alsarraj A, El‑Serag H. Physical activity and the risk of Barrett's esophagus. Gastroenterology. 2014;146(5):S307–8.

34. Thrift AP, Kramer JR, Qureshi Z, Richardson PA, El‑Serag HB. Age at onset of GERD symptoms predicts risk of Barrett's esophagus. Am J Gastroenterol. 2013;108(6):915–22.

35. Usui G, Sato H, Shinozaki T, Jinno T, Fujibayashi K, Ishii K, Horiuichi H, Morikawa T, Gunji T, Matushita N. Association between Helicobacter pylori infection and short‑segment/long‑segment Barrett's esophagus in a Japanese population: a large‑cross‑sectional study. J Clin Gastroenterol. 2019;54:439–44.

36. Aghayeva S, Mara KC, Katzka DA. The impact of Helicobacter pylori infection in 190 control subjects and in 236 patients of Barrett's esophagus. Am J Gastroenterol. 2008;57(6):727–33.

37. Colley DA, Kudo A, Levin TR, Block G, Habel L, Zhao W, Leighton P, Rumore G, Quinsebnder C, Brusher P, et al. Helicobacter pylori infection and the risk of Barrett's oesophagus: a community‑based study. Gut. 2008;57(6):727–33.

38. Sierra PM, Falk GW, Puskas JD, Talley NJ, Delahanty DM. The prevalence of Helicobacter pylori infection in 190 control subjects and in 236 patients with gastroesophageal reflux, erosive esophagitis or Barrett's esophagus. Dis Esophagus. 1997;10(1):38–42.

39. Fischbach LA, Graham DY, Kramer JR, Rugge M, Venstovsek G, Parente P, Alsarraj A, Fitzgerald S, Shab I, Abraham NS, et al. Association between Helicobacter pylori and Barrett's esophagus: a case‑control study. Am J Gastroenterol. 2014;109(3):537–68.

40. Hackelberger A, Günther T, Schultz V, Manes G, Dominguez‑Munoz JE, Roessner A, Malferttheiner P. Intestinal metaplasia at the gastro‑oesophageal junction: Helicobacter pylori gastritis or gastro‑oesophageal reflux disease? Gut. 1998;43(1):17–21.
62. Zhang J, Chen XL, Wang KM, Guo XD, Zuo AL, Gong J. Relationship of gastric Helicobacter pylori infection to Barrett’s esophagus and gastro-esophageal reflux disease in Chinese. World J Gastroenterol. 2004;10(5):672–5.

63. Dore MP, Pes GW, Bassotti G, Fanna MA, Marras G, Graham DY. Risk factors for erosive and non-erosive gastroesophageal reflux disease and Barrett’s esophagus in Northern Sardinia. Scand J Gastroenterol. 2016;51(1):1281–7.

64. Keyashian K, Hua V, Narsinh K, Kline M, Chandrasoma PT, Kim JJ. Barrett’s esophagus in Latinos undergoing endoscopy for gastroesophageal reflux disease symptoms. Dis Esophagus. 2013;26(1):44–9.

65. Vleth M, Masoud B, Meining A, Stolte M. Helicobacter pylori infection protection against Barrett’s mucosa and neoplasia? Digestion. 2000;62(4):225–31.

66. Wu JC, Sung JJ, Chan FK, Ching JY, Ng AC, Wong SK, Ng EK, Chung SC. Helicobacter pylori infection is associated with milder gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2000;14(4):A27–32.

67. Zaninotto G, Portale G, Parenti A, Lanza C, Costantini M, Molena D, Ruol A, Battaglia G, Costantino M, Epifani M, et al. Role of acid and bile reflux in development of specialised intestinal metaplasia in distal oesophagus. Dig Liver Dis. 2002;34(2):251–7.

68. Abe Y, Iijima K, Koike T, Asanuma A, Ohara S, Shimosgeawa T. Barrett’s esophagus is characterized by the absence of Helicobacter pylori infection and high levels of serum pepsinogen I concentration in Japan. J Gastroenterol Hepatol. 2009;24(1):129–34.

69. Anderson LA, Murphy SJ, Johnston BT, Watson RGP, Ferguson HR, Bamford KB, Ghazy A, McCarron P, McGuigan J, Reynolds JV, et al. Relationship between Helicobacter pylori infection and gastric atrophy and the stages of the oesophageal inflammation, metaplasia, adenocarcinoma sequence: results from the FINBAR case-control study. Gut. 2008;57(6):734–9.

70. Csendes A, Smok G, Burdiles P, Sagastume H, Rojas J, Puente G, Quezada L. Proton pump inhibitors and risk of gastric cancer development after treatment for Helicobacter pylori: a population-based cohort study. Gut. 2018;67(1):28–35.

71. Anderson LA, Murphy SJ, Johnston BT, Watson RGP, Ferguson HR, Bamford KB, Ghazy A, McCarron P, McGuigan J, Reynolds JV, et al. Relationship between Helicobacter pylori infection and gastric atrophy and the stages of the oesophageal inflammation, metaplasia, adenocarcinoma sequence: results from the FINBAR case-control study. Gut. 2008;57(6):734–9.

72. Rugge M, Russo V, Busatto G, Genta RM, Di Mario F, Farinati F, Graham DY. The phenotype of gastric mucosa coexisting with Barrett’s esophagus. J Clin Pathol. 2001;54(6):456–60.

73. Dietz J, Chaves-e-Silva S, Meurer L, Sekine S, De Souza AR, Meine GC. Short segment Barrett’s esophagus and distal gastric intestinal metaplasia. Arquivos de gastroenterologia 2006;43(1):117–20.

74. Chang Y, Liu B, Liu GS, Wang T, Gong J. Short-segment Barrett’s esophagus and distal gastric intestinal metaplasia: a comparative analysis. World J Gastroenterol. 2010;16(48):6151–4.

75. Dietz J, Meurer L, Maffazzone DR, Furtado AD, Proctor I. Intestinal metaplasia in the distal esophagus and correlation with symptoms of gastro-esophageal reflux disease. Dis Esophagus. 2003;16(1):29–32.

76. Matsuzaki J, Suzuki H, Asakura K, Saito Y, Hirata K, Takebayashi T, Hibi T. Dietz J, Chaves-e-Silva S, Meurer L, Sekine S, De Souza AR, Meine GC. Short segment Barrett’s esophagus and distal gastric intestinal metaplasia: a comparative analysis. World J Gastroenterol. 2010;16(48):6151–4.

77. Dietz J, Meurer L, Maffazzone DR, Furtado AD, Proctor I. Intestinal metaplasia in the distal esophagus and correlation with symptoms of gastro-esophageal reflux disease. Dis Esophagus. 2003;16(1):29–32.

78. Buttar NS, Falk GW. Pathogenesis of gastroesophageal reflux and Barrett esophagus. Mayo Clin Proc. 2001;76(2):226–34.

79. Abe Y, Ohara S, Koike T, Sekine H, Iijima K, Kawamura M, Imatani A, Kato K, Shimosgeawa T. The prevalence of Helicobacter pylori infection and the status of gastric acid secretion in patients with Barrett’s esophagus in Japan. Am J Gastroenterol. 2004;99(7):1213–21.

80. Roshetnyak VI, Burmistrov AI, Maev IV. Helicobacter pylori: commensal, symbiont or pathogen? World J Gastroenterol. 2021;27(7):545–50.

81. Abrahami D, McDonald EG, Schnitzer ME, Barkun AN, Suissa S, Azoulay L. Proton pump inhibitors and risk of gastric cancer: population-based cohort study. Gut. 2021. https://doi.org/10.1136/gutjnl-2021-325097.

82. Cheung KS, Chan EW, Wong ALJ, Chen L, Wong ICK, Leung WK. Long-term proton pump inhibitors and risk of gastric cancer development after treatment for Helicobacter pylori: a population-based study. Gut 2018;67(1):28–35.

83. Falk GW. Evaluating the association of Helicobacter pylori to GERD. Gastroenterol Hepatol. 2008;4(9):631–2.

84. Kountouras J, Zavos C, Chatzopoulos D, Katsinelos P. Helicobacter pylori and gastro-oesophageal reflux disease. Lancet (London, England). 2006;368(9540):986 (author reply 986-987).

85. Abdel-Latif MM, Windle H, Terres A, Eidhin DN, Kelleher D, Reynolds JV. Helicobacter pylori extract induces nuclear factor-kappa B, activator protein-1, and cyclooxygenase-2 in esophageal epithelial cells. J Gastrointest Surg. 2006;10(4):551–62.

86. Kountouras J, Chatzopoulos D, Zavos C. Eradication of Helicobacter pylori might halt the progress to oesophageal adenocarcinoma in patients with gastro-oesophageal reflux disease and Barrett’s oesophagus. Med Hypotheses. 2007;68(5):1174–5.

87. Chu YX, Wang WH, Dai Y, Teng GG, Wang SJ. Esophageal Helicobacter pylori colonization aggravates esophageal injury caused by reflux. World J Gastroenterol. 2014;20(42):15715–26.

88. Liu FX, Wang WH, Wang J, Li J, Gao PP. Effect of Helicobacter pylori infection on Barrett’s esophagus and esophageal adenocarcinoma formation in a rat model of chronic gastroesophageal reflux. Helicobacter. 2011;16(1):66–77.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

At BMC, research is always in progress.

Learn more: biomedcentral.com/submissions