ERRATUM

Erratum to: Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjecture

Avraham Aizenbud¹ · Dmitry Gourevitch¹ · Bernhard Krötz² · Gang Liu³

Published online: 1 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Erratum to: Math. Z.
DOI 10.1007/s00209-016-1629-6

The following changes to the main results of [1] are necessary:

(1) In Theorem A and Corollary B the following assumption is required: the number of orbits of the complexification \(H_C \) on \(G_C/P_C \) is finite, where \(P \) is a minimal parabolic subgroup of \(G \).

(2) In Theorem C the following additional assumption is required: the number of orbits of \(H_C \) on \(X_C \) is finite.

Presently we do not know whether these results hold without the additional assumptions.

The source of the mistake is in [2], where the expressions “real algebraic groups” and “real algebraic manifolds” are ambiguous. Moreover, a mistake in [2, Definition 1.1.1] hints to a wrong resolution of this ambiguity, in particular in [2, Theorem D]. This result entered in the proof of Lemma 3.2.1 of [1].

The online version of the original article can be found under doi:10.1007/s00209-016-1629-6.

Dmitry Gourevitch
dmitry.gourevitch@weizmann.ac.il
Avraham Aizenbud
aizenr@gmail.com
Bernhard Krötz
bkroetz@gmx.de
Gang Liu
gang.liu@univ-lorraine.fr

¹ Faculty of Mathematics and Computer Science, Weizmann Institute of Science, POB 26, 76100 Rehovot, Israel
² Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
³ Institut Élie Cartan de Lorraine, Université de Lorraine, Ile du Saulcy, 57045 Metz, France
In [2] the terms “real algebraic groups” and “real algebraic manifolds” sometimes mean algebraic groups and manifolds defined over \mathbb{R}, and sometimes real points of such. Those two meanings are not equivalent; in particular, the statement that an algebraic group G defined over \mathbb{R} acts on an algebraic manifold X with finitely many orbits implies the statement that $G(\mathbb{R})$ acts on $X(\mathbb{R})$ with finitely many orbits, but is not equivalent to it. Rather, it is equivalent to the stronger statement that $G(\mathbb{C})$ has finitely many orbits on $X(\mathbb{C})$. In particular, in [2, Theorem D] one needs the stronger assumption (only then it follows from the Bernstein–Kashiwara theorem, [2, Thm 3.2.2]), see [3]. We do not know whether this theorem holds under the weaker assumption.

The argument in [1] proves the corrected versions of the main results (see (1, 2) above), after the following revision.

(a) In Sects. 2 and 3, the expression “real algebraic group” has to be replaced by “algebraic group defined over \mathbb{R}” and the expression “real algebraic manifold” has to be replaced by “algebraic manifold defined over \mathbb{R}”.

(b) One has to introduce the following notation: for an algebraic manifold X defined over \mathbb{R}, a Zariski closed algebraic submanifold Z and an algebraic bundle E over X denote $S_Z(X, E) := S_{Z(\mathbb{R})}(X(\mathbb{R}), E)$ and $S^*_Z(X, E) := S^*_{Z(\mathbb{R})}(X(\mathbb{R}), E)$, and similarly for the special cases $S(X), S(X, E), S_Z(X)$, and their dual spaces.

(c) In the proof of Lemma 3.2.1, one has to add that the reason that Proposition 3.1.1 implies the finiteness of the dimension of

$$H_0(h, S_Z(X, E)/S_Z(X, E)^{\dagger} \otimes \chi)$$

is that $Z(\mathbb{R})$ is a finite union of $H(\mathbb{R})$-orbits.

(d) In Sect. 4, G should be the group of real points of an algebraic reductive group G defined over \mathbb{R}, and H should be the group of real points of an algebraic subgroup $H \subset G$. Also, each time that we require H to be a real spherical subgroup we actually need to require the stronger condition that H has finitely many orbits on G/P, where P is a minimal parabolic subgroup of G defined over \mathbb{R}.

References

1. Aizenbud, A., Gourevitch, D., Kroetz, B., Liu, G.: Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjecture. Math. Z. (2016). doi:10.1007/s00209-016-1629-6
2. Aizenbud, A., Gourevitch, D., Minchenko, A.: Holonomicity of relative characters and applications to multiplicity bounds for spherical pairs (old version). arXiv:1501.01479v1
3. Aizenbud, A., Gourevitch, D., Minchenko, A.: Holonomicity of relative characters and applications to multiplicity bounds for spherical pairs. arXiv:1501.01479v2