Effect of Induction Chemotherapy in Nasopharyngeal Carcinoma: An Updated Meta-Analysis

Shan-Shan Yang†, Jian-Gui Guo†, Jia-Ni Liu†, Zhi-Qiao Liu†, En-Ni Chen†, Chun-Yan Chen†, Pu-Yun OuYang†, Fei Han* and Fang-Yun Xie*

1 Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China, 2 Department of Radiation Oncology, The First People’s Hospital of Foshan, Foshan, China, 3 Department of Head and Neck Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China

Background: Previous meta-analysis had evaluated the effect of induction chemotherapy in nasopharyngeal carcinoma. But two trials with opposite findings were not included and the long-term result of another trial significantly differed from the preliminary report. This updated meta-analysis was thus warranted.

Methods: Literature search was conducted to identify randomized controlled trials focusing on the additional efficacy of induction chemotherapy in nasopharyngeal carcinoma. Trial-level pooled analysis of hazard ratio (HR) for progression free survival and overall survival and risk ratio (RR) for locoregional control rate and distant control rate were performed.

Results: Twelve trials were eligible. The addition of induction chemotherapy significantly prolonged both progression free survival (HR=0.68, 95% confidence interval [CI] 0.60–0.76, p<0.001) and overall survival (HR=0.67, 95% CI 0.54–0.80, p<0.001), with 5-year absolute benefit of 11.31% and 8.95%, respectively. Locoregional (RR=0.80, 95% CI 0.70–0.92, p=0.002) and distant control (RR=0.70, 95% CI 0.62–0.80) rates were significantly improved as well. The incidence of grade 3–4 adverse events during the concurrent chemoradiotherapy was higher in leukopenia (p=0.028), thrombocytopenia (p<0.001), and fatigue (p=0.038) in the induction chemotherapy group.

Conclusions: This meta-analysis supported that induction chemotherapy could benefit patients with nasopharyngeal carcinoma in progression free survival, overall survival, locoregional, and distant control rate.

Keywords: induction chemotherapy, meta-analysis, nasopharyngeal carcinoma, radiotherapy, updated
INTRODUCTION

Nasopharyngeal carcinoma is an epithelial carcinoma arising from the nasopharyngeal mucosal lining. It is a common head and neck carcinoma in east and southeast Asia, especially in south China (1). Resulting from the non-specific symptom in early-stage disease and the absence of regular examination of nasopharynx or effective screening, almost 70% of patients have locoregionally advanced disease at the initial diagnosis (2). Radiotherapy is known to be the primary treatment approach, but it has relatively poor disease control for locoregionally advanced nasopharyngeal carcinoma. The randomized trial was initiated in 1989 to test the added value of induction chemotherapy before radiotherapy (3), and finally improved disease free survival was observed but not overall survival. As the new induction chemotherapy regimen of docetaxel and cisplatin led to significant benefit of overall survival for patients from endemic area in a phase II trial (4), more clinicians and researchers were concerned with induction chemotherapy. But what the subsequent trials (5–8) found was not always the same. A recent meta-analysis (9) concluded that induction chemotherapy had the potential to improve both progression free survival and overall survival, but it did not include another two large scale and possibly equally-weighted trials (10, 11), in which the result of induction chemotherapy on overall survival was inconsistent. Moreover, the long-term results (12, 13) of another two previous trials (7, 8) deserved great concern, especially the distinctive finding of induction chemotherapy of cisplatin and fluorouracil in 5-year overall survival (13). Therefore, an updated meta-analysis is warranted.

METHODS

Identification of Trials and Extraction of Data

The electronic databases including PubMed, Cochrane Library, Embase, and Web of Science were searched to identify randomized controlled trials focusing on nasopharyngeal carcinoma or nasopharyngeal cancer, induction chemotherapy or neoadjuvant chemotherapy, and radiotherapy. Trials were eligible if investigating the benefit of induction chemotherapy before radiotherapy or concurrent chemoradiotherapy alone in locoregional advanced nasopharyngeal carcinoma patients.

Information of included trials was extracted, including study design, cancer staging, number of patients, year, end points, treatment protocol, follow-up duration, failure patterns and grade 3 or 4 acute toxic effects.

Statistical Analysis

Overall, the role of induction chemotherapy in progression free survival (time from random assignment to locoregional failure, distant metastasis, or death from any cause) and overall survival (time from random assignment to death from any cause) was investigated by meta-analysis of the results of diverse trials. Hazard ratios with 95% confidence intervals (CIs) of individual trials were pooled if reported, or these were estimated as elucidated by Tierney and colleagues (14). Survival curves of pooled progression free survival and overall survival were drawn, and absolute differences between induction chemotherapy group and control group were computed as recommended by Pignon and colleagues (15). According to the method described by Tierney and Pignon, corresponding survival probability and effective number event-free of each clinical trial were obtained from the Kaplan–Meier curve at the time point of 0/12/24/36/48/60 month. And the weight of each clinical trial was also calculated. Therefore, the total survival probability of the study group and control group at each time point could be calculated. However, the role of induction chemotherapy in locoregional control and distant control was evaluated by pooling the risk ratios (RRs) with 95% CIs using the Mantel–Haenszel method (16) instead of time-dependent locoregional relapse free survival and distant metastasis free survival, because the data of hazard ratios and 95% CIs were not available at all by direct or indirect methods in certain trials. Severe acute toxicities were also pooled if available. Notably, only the data of long-term results were included for analysis. Estimation was based on random effect model in case of heterogeneity \[p \text{ value of } \chi^2 \text{ test } < 0.1 \text{ or } I^2 \text{ statistic } > 50\% (17)\], or else fixed effect model. Finally, Begg’s test (18) and Egger’s test (19) were conducted to find potential publication bias. If publication bias was detected, the Duval and Tweedie nonparametric “trim and fill” procedure (20) was subsequently performed to further assess the possible effect.

Data analyses were done using R version 3.5.2 and Stata version 12.0 (Statacorp LP, College Station, Texas, USA). Two-sided p<0.05 was considered significant for all analyses except heterogeneity tests.

RESULT

Trials Information

A total of 12 randomized controlled trials (3–8, 10–13, 21–24) (3,586 patients, shown in Table 1) were finally eligible for this meta-analysis as the literature search and trial selection (Figure 1) were completed. Notably, there were seven large scale trials (3, 7, 8, 10–13, 21, 22) with more than 300 participants and only three trials (4, 23, 24) enrolled fewer than 100 patients in each; 2,942 (82.04%) patients of eight trials (4, 6–8, 10–13, 21, 22) were from endemic area; two trials (7, 8) recently updated the long-term results (12, 13) and thus only one trial (21) had a median follow-up time less than three years; seven trials (4, 6–8, 10–13, 24) delivered intensity-modulated radiotherapy technique and eight trials (4–8, 10–13, 24) administrated concurrent chemotherapy of cisplatin to patients during the process of radiotherapy.

Progression Free Survival and Overall Survival

Seven trials (4, 6, 10–13, 24) directly reported the original hazard ratio with 95% CI of progression free survival and overall survival. Based on the random effect model (potential
Studies	No. of patients	Stage	Inclusion period	Median follow up (m)	Radiotherapy	Induction chemotherapy	Concurrent chemotherapy
Cvitkovic et al. (3)	339	UICC any T, N2-3	1989–1993	49	2DRT: 2.0 Gy/f to 65–70 Gy	3* BLM 15mg bolus (d1) + 12mg/m²/d (d1–5) + epirubicin 70mg/m² (d1) + DDP 100mg/m²/ d1	None
Chua et al. (21)	334	Ho’s stage III/IV and N≥3cm	1989–1993	30	2DRT: 60–66 Gy and additional boost for residual LNs, hypofractionated RT for	2-3*epirubicin 110mg/m² + DDP 60mg/m²	None
Ma et al. (22)	456	Chinese 1992 III–IV	1993–1994	62	2DRT: 2.0 Gy/f, to 68–72 Gy and additional boost up to 80 Gy if residual	2-3* DDP 100mg/m² (d1) + FU 800 mg/m² (d1-5) + BLM 10mg/m²/d (d1, d5)	None
Harayama et al. (23)	80	All stages M0	1991–1998	49	2DRT: 2.0–2.2 Gy/f to 66–68 Gy	2*DPP 80mg/m² (d1) + FU 800mg/m² (d1-4)	None
Hui et al. (4)	65	UICC1997 III–IVB	2002–2004	51.6	2DRT/3D CRT/IMRT: 20 Gy/f to 66 Gy; residual boost of 7.5 Gy, parapharyngeal	2*docetaxel 75mg/m²	None
Fountzilas et al. (5)	144	UICC2002 III–IVB	2003–2008	55	2DRT/3D CRT: 2.0 Gy/f to 66–70 Gy	3*epirubicin 75mg/m² (d1) + paclitaxel 75mg/m² (d1) + DDP 75 mg/m² q3w	None
Tan et al. (6)	172	UICC1997 III–IVB	2004–2012	40.8	2DRT: 70Gy/3F; IMRT: 69.96Gy/3F	3*paclitaxel 70mg/m² + carboplatin (AUC=2.5) + gemcitabine 1000mg/m², q3w	DDP 40 mg/m² weekly
Sun et al. (7) Li et al. (12)	480	7th UICC III–IVB (except T3-4N0)	2011–2013	71.5	IMRT: 2.2–2.35Gy/f to ≥66Gy	3*docetaxel 60mg/m² (d1) + DDP 60mg/m² (d1) + 5FU 600mg/m² (d1–5), q3w	DDP 100 mg/m² q3w
Cao et al. (8)	476	6th UICC III–IVB (except T3N0-1)	2008–2015	82.6	2DRT/IMRT: 2–2.33Gy/f to 64–72Gy	2*DDP 80mg/m² (d1) + 5FU 800mg/m² (d1–5), q3w	DDP 80 mg/m² q3w
Yang et al. (13)	81	UICC2002 T2b-4 and/or N1-3	2009–2015	43.1	IMRT/non-IMRT: 70Gy/3F	3*Docetaxel 75mg/m² (d1) + DDP 75mg/m² (d1) + 5FU 750mg/m² (d1–5), q3w	DDP 40 mg/m² weekly
Hong et al. (10)	479	5th UICC IVa–IVB	2003–2009	72.0	1.8–2.2Gy/f, 5/week, ≥70 Gy to the primary tumor, 66–70 Gy to the involved	3*motomycin 8mg/m², epirubicin 60mg/m² + DDP 60mg/m², D1, 5-FU 450mg/m² + leucovorin 30mg/m², D8, q3w	DDP 30mg/m² weekly
Zhang et al. (11)	480	7th UICC III–IVB, except N0	2013–2016	42.7	IMRT: 66–70Gy/30–33F	3*gemcitabine 1g/m²/d1–d8 + DDP 80mg/m² (d1, q3w	DDP 100 mg/m² q3w

UICC, International Union Against Cancer; BLM, bleomycin; f, fraction; LN, lymph node; civ, continuous intravenous; DDP, cisplatin; FU, fluorouracil; 2DRT, two-dimensional radiotherapy; 3D CRT, three-dimensional conformal radiotherapy; IMRT, intensity-modulated radiotherapy.
heterogeneity for overall survival with a p value of 0.088 by \(\chi^2 \) test), meta-analysis highly favored induction chemotherapy, with a hazard ratio of 0.68 (95% CI 0.60–0.76, \(p<0.001 \)) for progression free survival and a hazard ratio of 0.67 (95% CI 0.54–0.80, \(p<0.001 \)) for overall survival (Figure 2A). The addition of induction chemotherapy before radiotherapy alone or concurrent chemoradiotherapy showed the potential to enhance the 3-year, 4-year, and 5-year progression free survival by 9.95%, 10.80%, and 11.31% (Figure 2B), and prolong 3-year, 4-year, and 5-year overall survival by 6.44%, 7.90%, and 8.95%, respectively (Figure 2C). No publication bias was observed by Egger’s test or Begg’s test (\(p\geq0.217 \)).

To be more careful, sensitivity analysis was conducted by excluding the four trials without concurrent chemotherapy during the phase of radiotherapy, as radiotherapy alone is no longer recommended in the clinical practice. As a result, induction chemotherapy followed by concurrent chemoradiotherapy remained the advantage of progression free survival (hazard ratio 0.64, 95% CI 0.54–0.74, \(p<0.001 \)) and overall survival (hazard ratio 0.59, 95% CI 0.41–0.77, \(p<0.001 \)) over concurrent chemoradiotherapy alone.

Locoregional and Distant Control Rate
The number of locoregional or distant failure was not available in the trial by Frikha et al. (24). Meta-analysis of the other 11 trials indicated that the addition of induction chemotherapy could significantly lower the risk of both locoregional and distant failure. The fixed effect model (no heterogeneity with \(p\geq0.381 \) by \(\chi^2 \) test) showed a pooled risk ratio of 0.80 (95% CI 0.70–0.92, \(p=0.002 \)) for locoregional control rate and a risk ratio of 0.70 (95% CI 0.62–0.80) for distant control rate (Figure 3). There was no evidence of publication bias for distant control rate (\(p\geq0.185 \)), but Egger’s test (\(p=0.023 \)) and Begg’s test (\(p=0.024 \)) both showed publication bias for locoregional control rate. When three theoretical missing studies were incorporated using the “trim and fill” analysis, the improved locoregional control rate resulting from the additional induction chemotherapy remained with a risk ratio of 0.75 (95% CI 0.63–0.91, \(p=0.003 \)) by random effect meta-analysis (potential heterogeneity with a \(p \) value of 0.067 by \(\chi^2 \) test).

Severe Toxicities
The main toxicities of induction chemotherapy varied by the individual regimen. Severe hematologic adverse events were not uncommon, especially neutropenia (32.74%) and leukopenia (11.94%). Unfortunately, patients were more likely to suffer from leukopenia (\(p=0.028 \)), thrombocytopenia (\(p<0.001 \)), and fatigue (\(p=0.038 \)) during the radiotherapy phase if they had received induction chemotherapy before (Table 2).

DISCUSSION
This updated meta-analysis further confirmed the benefit of induction chemotherapy in improving progression free survival, overall survival, locoregional control, and distant survival.
control of nasopharyngeal carcinoma, based on all the currently published randomized controlled trials. Obviously, 66.28% (2,377 patients) of patients in this meta-analysis were delivered with concurrent chemoradiotherapy, which has been the standard therapy for locoregionally advanced nasopharyngeal carcinoma now; 46.26% (1,659 patients) of patients received intensity-modulated radiotherapy, which has been the primary radiation technique; 82.04% (2,942 patients) of patients were from an endemic area, which increased the applicability and practicability of the result in the real world; the median follow-up time of 52.73% (1,891 patients) of patients in four trials (10, 12, 13, 22) were longer than 60 months, which meant that the result of according meta-analysis was more likely to be robust.

The estimated overall absolute benefit of induction chemotherapy in progression free survival and overall survival provided reference basis for sample size estimation in the future randomized controlled trials. The absolute 5-year survival benefit of 11.31% in progression free survival and 8.95% in overall survival were higher than those of concurrent chemotherapy (6.6% in progression free survival and 5.3% in overall survival) or adjuvant chemotherapy (6.1% in progression free survival and 3.3% in overall survival) alone, but inferior to concurrent chemotherapy plus adjuvant chemotherapy (12.4% in progression free survival and 12.4% in overall survival), as reported in the previous meta-analysis (25). Since the high benefit of concurrent chemotherapy plus adjuvant chemotherapy was the result of taking radiotherapy alone as the control (25), induction chemotherapy thus seemed to be the most effective treatment approach. Local control and distant failure rates are, as overall survival and progression free survival, dependent on follow-up. Even if the trials are randomized with comparable follow-up in both arms, the analyses are less worthwhile than those for progression free survival and overall survival.
Overall, these trials administrated cisplatin-based induction chemotherapy regimen, with the combination of epirubicin or taxanes. In comparison with the counterparts, the former combination regimen brought about no benefit in overall survival, even in progression free survival or distant control rate for a total of more than 600 participants in the four large-scale trials (3, 5, 10, 21). Conversely, the combination of taxanes and cisplatin with or without other drugs did seem to be more effective (4, 7, 12), even though negative results were also observed in another small trial by Frikha and colleagues (24). Since this trial (24) was closed prematurely due to poor accrual, less than one third of estimated patients were actually enrolled. Perhaps it was the lack of statistic power, instead of the induction chemotherapy regimen itself, that caused the false negative finding of similar survival rate between the induction chemotherapy plus concurrent chemoradiotherapy arm and concurrent chemoradiotherapy arm in the trial (24). The newest induction chemotherapy of gemcitabine and cisplatin (11) showed highly promising results, with absolute survival benefit of 8.8% in 3-year failure free survival and 4.3% in overall survival, which appeared to be even more effective than the regimen of docetaxel, cisplatin, and fluorouracil (7). The effect of the combination of gemcitabine and cisplatin was also observed in recurrent or metastatic nasopharyngeal carcinoma (26). Certainly, another trial (6) with gemcitabine-based induction chemotherapy did not find survival improvement. This may be correlated with the combined drug of carboplatin instead of cisplatin and possible low statistic power caused by insufficient sample size resulting from overestimation of the effect of induction chemotherapy. Apart from the newly induction chemotherapy regimens, more precise eligibility criteria may be another reason for the positive efficiency of induction chemotherapy in the recent trials. As the sixth or seventh edition of AJCC/UICC staging system more effectively stratifies patients than the prior editions (27–29) and the application of magnetic resonance imaging together with fluorodeoxyglucose positron emission tomography/computed tomography more precisely staged the disease than computed tomography (30, 31), the recent trials, no wonder, more possibly enrolled high-risk patients and accordingly observed survival benefit of induction chemotherapy.

As seen in Table 2, induction chemotherapy itself caused common severe hematologic toxicities and meanwhile lowered the tolerance of patients to the followed concurrent chemoradiotherapy. One trial (32) showed the possibility of omitting concurrent chemotherapy after induction chemotherapy, but before more strong evidence is available, it is still the most reassuring and satisfactory if the addition of induction chemotherapy would not significantly bring down the intensity of concurrent chemoradiotherapy. Given that not all the locoregionally advanced nasopharyngeal carcinoma patients could achieve benefit from induction chemotherapy (33–35), precise selection of high-risk patients (36, 37) could be another valuable way to further enhance the magnitude of absolute benefit, apart from the exploration of newly induction chemotherapy regimen.

CONCLUSION

Induction chemotherapy resulted in significant benefit in progression free survival, overall survival, locoregional control, and distant control for patients with nasopharyngeal carcinoma.
TABLE 2 | Grade 3 or 4 acute toxic effects.

Grade 3 or 4 acute toxic effects	Ciolkovic et al. (3)	Chua et al. (21)	Ma et al. (22)	Hareyama et al. (23)	Hui et al. (4)	Fountzilas et al. (6)	Tan et al. (7)	Cao et al. (8)	Frika et al. (24)	Hong et al. (10)	Zhang et al. (11)	Incidence (95% CI) or risk ratio (95% CI) with p value		
Induction chemotherapy phase (No.)														
Total	162	155	219	40	34	63	86	239	238	40	237	239		
Anemia	NA	3	6	NA	NA	1	1	1	1	NA	16	4	1.62% (0.79%–3.28%)	
Leukopenia	NA	4	8	NA	NA	NA	16	65	12	NA	139	26	11.94% (4.80%–26.73%)	
Thrombocytopenia	NA	0	3	NA	NA	0	0	0	0	NA	66	13	NA	
Nausea/vomiting	49.0	42	28	11	3	4	0	18	10	NA	42	48	12.88% (7.33%–19.66%)	
Neutropenia	NA	NA	NA	3	33	6	50	85	35	11	NA	49	32.74% (17.74%–49.82%)	
Fever	6.0	10	NA	NA	4	NA	4	NA	3	10	NA	4.10% (2.08%–6.13%)		
Neutropenia	NA	NA	NA	NA	NA	NA	2	1	0	NA	NA	4	NA	2.07% (0–5.06%)
Fatigue	NA	41	NA	NA	NA	40	0	NA	NA	6	NA	NA	20.98% (1.29%–53.74%)	
Hair loss	9.0	NA	NA	NA	0	NA	NA	0	0	NA	0	3	NA	
Renal toxicity	NA	78	2	17.31% (5.73%–41.87%)										
Hepatotoxicity	NA	NA	NA	NA	NA	NA	2	6	2	NA	3	5	1.45% (0.73%–2.18%)	
Diarrhea	NA	NA	NA	NA	NA	NA	19	1	NA	NA	1	NA	NA	
Toxic death	NA	2	0	0	0	0	0	0	0	0	0	NA	NA	
Radiotherapy phase (No.)														
Total	147 vs 161	155 vs 152	219 vs 221	39 vs 40	34 vs 26	60 vs 70	86 vs 86	239 vs 238	238 vs 238	40 vs 1	237 vs 227	239 vs 237		
Anemia	NA	NA	NA	NA	3 vs 5	3 vs 0	2 vs 2	2 vs 5	23 vs 9	NA	23 vs 2	19 vs 2	2.38 (0.92–6.11), p=0.072	
Leukopenia	NA	NA	NA	NA	NA	16 vs 21	45 vs 32	98 vs 41	45 vs 34	NA	70 vs 32	47 vs 48	1.44 (1.04–1.98), p=0.028	
Thrombocytopenia	NA	NA	NA	NA	NA	3 vs 1	10 vs 1	12 vs 0	6 vs 2	4 vs 2	NA	78 vs 2	17 vs 3	6.77 (2.57–17.79), p<0.001
Neutropenia	NA	NA	NA	NA	NA	9 vs 4	4 vs 8	21 vs 10	101 vs 17	24 vs 20	NA	NA	28 vs 25	1.67 (0.83–3.37), p=0.154
Fever	NA	NA	NA	NA	NA	1 vs 1	0 vs 1	NA	7 vs 0	NA	3 vs 2	1 vs 0	2.38 (0.89–6.35), p=0.085	
Neutropenia	NA	NA	NA	NA	NA	5 vs 2	0 vs 2	12 vs 2	NA	NA	NA	NA	2.54 (1.05–6.13), p=0.038	
Nausea/vomiting	NA	NA	NA	NA	NA	3 vs 2	13 vs 13	2 vs 3	106 vs 85	25 vs 21	NA	17 vs 30	85 vs 66	1.13 (0.97–1.32), p=0.605
Hepatotoxicity	NA	1 vs 0	7 vs 2	1 vs 3	NA	6 vs 3	1 vs 0	1.86 (0.83–4.18), p=0.131						
Mucositis	27 vs 33	33 vs 38	1 vs 0	98 vs 84	16 vs 12	NA	82 vs 102	67 vs 76	0.96 (0.85–1.08), p=0.482					
Toxic death	14 vs 2	0 vs 1	0 vs 1	NA	NA	NA	0 vs 0	0.88 (0.10–7.36), p=0.903						

NA, not available; CI, confidence interval.
DATA AVAILABILITY STATEMENT

The original contributions presented in this study are included in the article/supplementary materials. Further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

Study concept and design: F-YX, P-YO, FH. Literature retrieval: AUTHOR CONTRIBUTIONS

S-SY, P-YO, J-GG, J-NL. Data analysis and interpretation: S-SY, P-YO, J-GG, J-NL. Data acquisition: S-SY, J-GG, J-NL, Z-QL, E-NC, C-YC. Study concept and design: F-YX, P-YO, FH. Literature retrieval: S-SY, P-YO, J-GG, J-NL. Data analysis and interpretation: S-SY, P-YO, J-GG, J-NL. Manuscript preparation and editing: S-SY, P-YO. Critical revisions: all authors. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Sun Yat-sen University Clinical Research 5010 Program (2015020), the National Natural Science Foundation of China (81672665), the Sci-Tech Project Foundation of Guangdong Province (2016A020215087), and the Natural Science Foundation of Guangdong Province (2019A1515010300), Medical Scientific Research Foundation of Guangdong Province, China (Grant No. A2016197).

REFERENCES

1. Cao SM, Simons MJ, Qian CN. The prevalence and prevention of nasopharyngeal carcinoma in China. Clin J Oncol (2011) 30(2):114–9. doi: 10.5372/jco.010.10377
2. OuYang PY, Su Z, Ma XH, Mao YP, Liu MZ, Xie FY. Comparison of TNM staging systems for nasopharyngeal carcinoma, and proposal of a new staging system. Br J Cancer (2013) 109(12):2987–97. doi: 10.1038/bjc.2013.659
3. Cvtikovic E, Eschwege F, Rahal M, SK O. Preliminary results of a randomized trial comparing neoadjuvant chemotherapy (cisplatin, etoposide, bleomycin) plus radiotherapy vs. radiotherapy alone in stage IV (> or = N2, M0) undifferentiated nasopharyngeal carcinoma: a positive effect on progression-free survival. Int J Radiat Oncol Biol Phys (1996) 35(3):463–9. doi: 10.1016/S0360-3016(96)80007-1
4. Hui EP, Ma BB, Leung SF, King AD, Mo F, Kam MK, et al. Randomized phase II trial of concurrent cisplatin-radiotherapy with or without neoadjuvant docetaxel and cisplatin in advanced nasopharyngeal carcinoma. J Clin Oncol (2009) 27(2):242–9. doi: 10.1200/jco.2008.18.1545
5. Fountzilas G, Ciuleanu E, Bobos M, Kalogera-Fountzila A, Eleftheraki AG, Karayannopoulou G, et al. Induction chemotherapy followed by concomitant radiotherapy and weekly cisplatin versus the same concomitant chemoradiotherapy in patients with nasopharyngeal carcinoma: a randomized phase II study conducted by the Hellenic Cooperative Oncology Group (HeCOG) with biomarker evaluation. Ann Oncol (2012) 23(2):427–35. doi: 10.1093/annonc/mdr116
6. Tan T, Lim WT, Fong KW, Cheah SL, Soong YL, Ang MK, et al. Concurrent chemoradiation with or without induction gemcitabine, Carboplatin, and Paclitaxel: a randomized, phase 2/3 trial in locally advanced nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys (2015) 91(5):952–60. doi: 10.1016/j.ijrobp.2015.01.002
7. Sun Y, Li WF, Chen NY, Zhang N, Hu GQ, Xie FY, et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial. Lancet Oncol (2016) 17(11):1509–20. doi: 10.1016/S1470-2045(16)30410-7
8. Cao SM, Yang Q, Guo L, Mai HQ, Mo HY, Cao KJ, et al. Neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase III multicentre randomised controlled trial. Eur J Cancer (2019) 24(4):505–18. doi: 10.1016/j.ejca.2016.12.039
9. OuYang PY, Zhang XM, Qiu XS, Liu ZQ, Lu L, Gao YH, et al. A Pairwise Meta-Analysis of Induction Chemotherapy in Nasopharyngeal Carcinoma. Oncologist (2019) 24(4):505–12. doi: 10.1634/theoncologist.2018-0522
10. Hong RL, Hsiao CF, Ting LL, Ko JY, Wang CW, Chang JTC, et al. Final results of a randomized phase III trial of induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in patients with stage IVA and IVB nasopharyngeal carcinoma-Taiwan Cooperative Oncology Group (TCOG) 1303 Study. Ann Oncol (2018) 29(9):1972–9. doi: 10.1093/annonc/mdy249
24. Frikha M, Auperin A, Tao Y, Elloumi F, Toumi N, Blanchard P, et al. A randomized trial of induction docetaxel-cisplatin-5FU followed by concomitant cisplatin-RT versus concomitant cisplatin-RT in nasopharyngeal carcinoma (GORTEC 2006-02). Ann Oncol (2018) 29 (3):731–6. doi: 10.1093/annonc/mdx770

25. Blanchard P, Lee A, Marguet S, Leclercq J, Ng WT, Ma J, et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol (2015) 16(6):645–55. doi: 10.1016/S1470-2045(15)70126-9

26. Zhang L, Huang Y, Hong S, Yang Y, Yu G, Jia J, et al. Gemcitabine plus cisplatin versus fluorouracil plus cisplatin in recurrent or metastatic nasopharyngeal carcinoma: a multicentre, randomised, open-label, phase 3 trial. Lancet (2016) 388(10054):1883–92. doi: 10.1016/S0140-6736(16)31388-5

27. Liu M-Z, Tang L-L, Zong J-F, Huang Y, Sun Y, Mao Y-P, et al. Evaluation of Sixth Edition of AJCC Staging System for Nasopharyngeal Carcinoma and Proposed Improvement. Int J Radiat Oncol Biol Phys (2008) 70(4):1115–23. doi: 10.1016/j.ijrobp.2007.07.2353

28. Chen L, Mao YP, Xie FY, Liu LZ, Sun Y, Tian L, et al. The seventh edition of the UICC/AJCC staging system for nasopharyngeal carcinoma is prognostically useful for patients treated with intensity-modulated radiotherapy from an endemic area in China. Radiother Oncol (2012) 104 (3):331–7. doi: 10.1016/j.radonc.2011.10.009

29. Sun R, Qiu HZ, Mai HQ, Zhang Q, Hong MH, Li YX, et al. Staging of untreated nasopharyngeal carcinoma with PET/CT: comparison with conventional imaging work-up. Eur J Nucl Med Mol Imaging (2008) 36 (1):12–22. doi: 10.1007/s00259-008-0918-7

30. Liu N, Chen NY, Cui RX, Li WF, Li Y, Wei RR, et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol (2012) 13(6):633–41. doi: 10.1016/S1470-2045(12)70102-X

31. Song JH, Wu HG, Keam BS, Hah JH, Ahn YC, Oh D, et al. The Role of Neoadjuvant Chemotherapy in the Treatment of Nasopharyngeal Carcinoma: A Multi-institutional Retrospective Study (KROG 11-06) Using Propensity Score Matching Analysis. Cancer Res Treat (2016) 48(3):917–27. doi: 10.4143/ct.2015.265

32. Ou D, Blanchard P, El Khoury C, De Felice F, Even C, Levy A, et al. Induction chemotherapy with docetaxel, cisplatin and fluorouracil followed by concurrent chemoradiotherapy or chemoradiotherapy alone in locally advanced non-endemic nasopharyngeal carcinoma. Oral Oncol (2016) 62:114–21. doi: 10.1016/j.oraloncology.2016.10.011

33. Song JH, Wu HG, Keam BS, Hah JH, Ahn YC, Oh D, et al. The Role of Neoadjuvant Chemotherapy in the Treatment of Nasopharyngeal Carcinoma: A Multi-institutional Retrospective Study (KROG 11-06) Using Propensity Score Matching Analysis. Cancer Res Treat (2016) 48(3):917–27. doi: 10.4143/ct.2015.265

34. Ou D, Blanchard P, El Khoury C, De Felice F, Even C, Levy A, et al. Induction chemotherapy with docetaxel, cisplatin and fluorouracil followed by concurrent chemoradiotherapy or chemoradiotherapy alone in locally advanced non-endemic nasopharyngeal carcinoma. Oral Oncol (2016) 62:114–21. doi: 10.1016/j.oraloncology.2016.10.011

35. Zhang LN, Gao YH, Lan XW, Tang J, OuYang PY, Xie FY. Effect of taxane-based induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma: A large scale propensity-matched study. Oral Oncol (2015) 51 (10):950–6. doi: 10.1016/j.oraloncology.2015.07.004

36. Peng H, Dong D, Fang MJ, Li L, Tang LL, Chen L, et al. Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma. Clin Cancer Res (2019) 25(14):4271–9. doi: 10.1158/1078-0432.CCR-18-3065

37. Dong D, Zhang F, Zhong LZ, Fang MJ, Huang CL, Yao JJ, et al. Development and validation of a novel MR imaging predictor of response to induction chemotherapy in locoregionally advanced nasopharyngeal cancer: a randomized controlled trial substudy (NCT01245959). BMC Med (2019) 17 (1):190. doi: 10.1186/s12916-019-1422-6

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Yang, Guo, Liu, Liu, Chen, Chen, OuYang, Han and Xie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.