Concern for estrogenic effects of environmental xenobiotic chemicals on human and wildlife health has existed for over 25 years (1,2). However, within the last 4 years, this interest has become focused and intensified (3–5). Among wildlife species, research has been focused on animals associated with wetland or aquatic habitats receiving sewage or industrial effluent and agricultural runoff. As with most studies in aquatic toxicology, fish have received the greatest attention. In fish, estrogenic responses have been associated with exposure to pesticides (6), surfactants (7), pulp mill effluent/phytoestrogens (8–11), industrial waste (12), and sewage effluent (13,14). In these studies, one measure of estrogenic activity is the production of vitellogenin (VTG), an estrogen-inducible egg protein precursor. This protein, normally synthesized in the liver of female oviparous vertebrates, is estrogen dependent and increases markedly in the serum during oocyte development (15,16). In general, the VTG gene is present but not expressed in males [there are exceptions (17–21)]. However, administration of exogenous estrogen, estrogen mimics, or P450 aromatase inducers can elicit VTG synthesis in males (22–24). The primary purpose of this investigation was to determine whether male carp (Cyprinus carpio) collected in the Mississippi River below a major metropolitan sewage treatment plant (STP) exhibited elevated serum VTG concentrations and altered serum sex steroid concentrations when compared with a relatively pristine reference site, the St. Croix River. Either abnormality in male fish could indicate the presence of estrogenic chemicals in their riverine environment. To determine the extent of any observed effect, we collected carp from two additional Mississippi River locations below the STP and from a Mississippi River tributary receiving agricultural runoff, the Minnesota River.

Methods and Materials

Fish Collection

Male carp were collected from five locations around the St. Paul, Minnesota, area (Fig. 1): 1) a natural side channel of the Mississippi River receiving effluent from the St. Paul Metropolitan Sewage Treatment Works (STP, river mile 835, n = 10); 2) Mississippi River Navigational Pool #2 (MRP-2, between river miles 815 and 832, n = 10); 3) Mississippi River Pool #3 (MRP-3, between river miles 798 and 802, n = 10); 4) The Minnesota River, a Mississippi River tributary receiving extensive agricultural runoff (MRN, river mile 69, n = 10); and 5) The St. Croix River, our reference site classified as a National Wild and Scenic River (SCR, between river miles 63 and 125, n = 5). Additionally, female carp were collected from the effluent channel (n = 7) and from MRP-2 (n = 10). Fish were collected using a pulsed DC electrofishing boat. Fish, which were all in postspawning condition, were obtained from the effluent channel during the last week of August and from the other locations between 20 September and 16 October 1995. River flow rates at the time of collection were >200% of normal for this period. All fish were mature adults between ages III and V; mean length values are given in mm ± 1 standard error: STP, 472.2 ± 5.9 male (M) and 466.6 ± 9.3 female (F); MRP-2, 474.1 ± 10.7 (M) and 523.8 ± 14.5 (F); MRP-3, 500.2 ± 11.4; MRN, 496.2 ± 12.6; and SCR, 628.0 ± 13.3. Blood was drawn by cardiac puncture into heparinized vacutainers and allowed to clot. The samples were centrifuged and the serum was pipetted into 1.5-ml microfuge tubes pretreated with aprosten and frozen at -70°C until analyzed.

Vitellogenin Analysis

The monoclonal antibody Mab HL 1147 (2D3-3A9) was raised against a mixture of fish vitellogenins injected into a Balb/C mouse in the Hybridoma Core Facility at the University of Florida. Briefly, a mouse was injected subcutaneously at three sites, first with purified striped bass VTG and then twice with a mixture of acrylamide gel pieces of purified brown bullhead and carp VTG in RIBI MPL and TDM adjuvant (RIBI Immuno Chemical, Inc., Hamilton, MT) at 2- to 3-week intervals. The mouse was then injected with a combination of 75 μg of purified carp VTG and gel pieces of carp and brown bullhead VTG, followed by a final intraperitoneal (ip) boost with 75 μg of purified carp VTG. Hybridomas were screened against carp, striped bass, and brown bullhead VTG by ELISA. We obtained hybridomas for carp and striped

Address correspondence to L. C. Folmar, U.S. Environmental Protection Agency, 1 Sabine Island Drive, Gulf Breeze, FL 32561 USA. The authors wish to thank the following individuals for their assistance in sample collection and preparation: Ranjit Bhagyaum, Michael Feist, Bonnie Mallory, Ken Mueller, and Dan Orr (Northern States Power Company). This work was funded in part by a U.S. Environmental Protection Agency (EPA) Cooperative Agreement (CR821437) to L.J.G. and N.D.D., grants to L.J.G. (PR471437) and N.D.D. (E507375) from the NEHS, grants to L.J.G. from the EPA (R824760-01-0) and the Alton Jones Foundation, and an EPA graduate fellowship to D.C. (U-914738-01-0). Mention of trade names does not constitute government endorsement. Received 20 February 1996; accepted 20 June 1996.
(Pierce Chemical Company, Rockford, IL) as the elution buffer. This purified antibody was used in the capture-ELISA assay.

A polyclonal antisera (UF114) was raised in rabbits by injection of a mixture of polyclonal gel-purified VTGs from several species including carp, largemouth bass, striped bass, bluegill sunfish, and rainbow trout. The rabbit was boosted with three injections of the above VTG cocktail minus the rainbow trout VTG. Before use, antiserum UF114 was mixed with one-sixth volume of serum from control males to remove nonspecific reactivity. Precipitated material was removed by high speed centrifugation. The clear supernatant contained antisera that was specific and of high affinity for carp VTG. This antisera was used in the quantitative capture ELISA described below. For gel electrophoresis and Western blot analyses, serum samples were diluted 25-fold with Laemmli sample buffer (25), and 15 μl of each sample was applied in duplicate to preformed wells in 7.5% Tris-tricine acrylamide gels (26). Immediately after electrophoresis, one set of gels was stained with Coomassie Brilliant Blue (R250) to visualize the proteins, and another set of gels was electrotoblated overnight at 20 V and 4°C onto Immobilon P membranes (Millipore Corporation, Bedford, MA) using 10 mM MES (morpholinobetaine sulfonic acid), pH 6, 20% MeOH as the transfer buffer (27). For Western blot analyses, membranes were blocked with 5% non-fat dry milk (28) in TBST (10 mM Tris, pH 7; 150 mM NaCl; 0.5% Tween) for 2 hr at room temperature and then incubated directly with tissue culture supernatant containing Mab HL 1147 (2D3-3A9) for 16 hr at 4°C. The membrane was then washed in TBST and probed with goat anti-mouse alkaline phosphatase-conjugated secondary antibody (diluted 1:1000) for 2 hr at room temperature. Blots were developed by incubating them with bromochloroindolyl phosphate/nitro blue tetrazolium substrate. Carp VTG was detected as a set of two high-molecular weight proteins of 180 kDa (Fig. 2; thin band in blot) and 150 kDa (wide band). In addition, there were a number of degradation products of VTG detected by this sensitive assay in blots of samples with high levels of VTG. These bands make up less than 1% of the VTG protein and are not detected by Coomassie staining, thus illustrating the superior sensitivity of the Western blot assay.

Capture-ELISA Assay

VTG was quantified using a capture-ELISA assay. Carp VTG, purified by chromatography on DEAE (diethylamino ethyl anion exchange medium; Perceptive Biosystems, Inc., Farmington, MA), was used as a standard. Protein concentration was determined by the Bradford assay (29). Purified Mab HL 1147 (2D3-3A9), diluted to a concentration of 10 μg/ml in phosphate buffered saline (PBS), was coated onto the surface of 96-well microtiter plates (50 μl/well) overnight at 4°C. The plates were washed with TBST and blocked with 360 μl/well of 0.1% BSA in TBST for 2 hr at room temperature. Again, the plates were thoroughly washed with TBST. Fish plasma samples were diluted in the range of 1:500 to 1:5000 in 0.1% BSA in TBST. Fifty microliters of this dilution was added, in duplicate, to individual wells of the plate and allowed to incubate overnight. Standard curves were constructed by adding serial dilutions of purified carp VTG (0.1 to 2.0 μg/ml) to undiluted male serum diluted in the same range as the fish from the St. Croix River reference area (1:500 to 1:5000) and added

Figure 2. (A) SDS-PAGE separation of serum samples from fish collected from the sewage effluent channel (STP) stained with Coomassie Brilliant Blue and (B) Western blot disclosure of vitellogenin in the same samples using monoclonal antibody HL 1147 (2D3-3A9). Lanes containing fish plasma are numbered sequentially 1–17, from left to right, and correspond to samples 1–17 in Table 1. Sex of fish is designated by M (male) or F (female). Lanes labeled MW contain molecular weight markers corresponding to 220 kDa (myosin), 97.4 kDa (phosphorylase b), 66 kDa (bovine serum albumin), 46 kDa (ovalbumin), 30 kDa (carbonic anhydrase), and 21.5 kDa (trypsin inhibitor).
to the wells as indicated above. The next day, the plates were washed in TBST and then incubated with 50 µl/well rabbit anti-VTG polyclonal antiserum (UF 114) diluted 1:500 to disclose the VTG captured by the monoclonal antibody in the first step; this incubation was done at room temperature for 2 hr. The polyclonal antiserum was in turn disclosed by a 1:1000 dilution of a third antibody, goat anti-rabbit IgG, linked to alkaline phosphatase. As above, this incubation was conducted for 2 hr at room temperature. After a final series of three washes with TBST, 100 µl of substrate solution (p-nitrophenyl phosphate in carbonate buffer, pH 9.6) was added to each well and incubated for 30 min. The intensity of the yellow color that developed was quantitated at 405 nm with an automated ELISA reader. VTG concentrations were calculated based on the standard curve after subtracting values for the male control serum.

Steroid Analysis

All samples and standards for radioimmunoassay analysis were prepared in duplicate and were analyzed in a single assay. Samples [75 µl for estradiol 17β–estradiol (E2) and 25 µl for testosterone (T)] were extracted twice with 4 ml diethyl ether. Ether extracts were then dried under a constant air stream. For T determinations, testosterone antiserum (T3-125; Endocrine Sciences, Calabasas Hills, CA) was used at a final concentration of 1:14,400. Cross-reactivities of this antiserum to other ligands are as follows: dihydrotestosterone, 44%; Δ1-1-testosterone, 41%; Δ1-dihydrotestosterone, 18%; 5α-androstan-3β, 17β-diol, 3%; 4-androsten-3β, 17β-diol, 2.5%; A-4-androstenedione, 2%; 5β-androstan-3β, 17β-diol 1.5%; estradiol, 0.5%; all other ligands <0.2%. For E2 determinations, estradiol antiserum (E26-47; Endocrine Sciences) was used at a final concentration of 1:95,000. Cross-reactivities of this antiserum to other ligands are as follows: estrone, 1.3%; estradiol, 0.6%; 16-keto-estradiol, 0.2%; all other ligands <0.2%. Trinitrated T (TRK.921) and E2 (TRK.587; Amersham International, Arlington Heights, IL) labels were used at 10,000 cpm per tube. To reduce nonspecific binding, bovine serum albumin (BSA; Sigma Chemical Company, St. Louis, MO) was added at a final concentration of 1.9%. Antiserum, label, and BSA were diluted in assay buffer (0.05 M borate buffer, pH 8.0 with 10 N NaOH). Final assay volume was 500 µl. T and E2 concentrations of 0, 1.563, 3.125, 6.25, 12.5, 25, 50, 100, 200, 400, and 800 pg/tube were used to generate the standard curve. Interassay variations were 4.08% for the T assay and 2.99% for the E2 assay. Samples were incubated at 4°C for 18 hr. Bound–free separation was achieved by adding 500 µl of 5% charcoal/0.5% dextran in 0.5 M PBS, followed immediately by a 30-min centrifugation at 1500 × g. The supernatant (500 µl) was diluted with Scintiverse BD (Fisher Scientific, Pittsburgh, PA) and counted on a Beckman scintillation counter (Beckman Instruments, Palo Alto, CA). Hormone concentrations were determined with a commercially available software package (Beckman Immunostr; Beckman Instruments).

Statistics

To test for significant differences among collection sites, we analyzed the plasma steroid hormone concentrations using one-way ANOVA. If an overall significance was detected, Scheffe’s S-tests were performed to determine differences between specific pairs. Prior to analysis, the raw data for serum T and E2 concentrations were log transformed to achieve homogeneity of variance. Steroid hormone data were also examined as an estrogen/androgen (E/A) ratio. These data were arc sine transformed prior to analysis. To determine any relationship between serum steroid and VTG concentrations, a Pearson’s product moment correlation analysis was performed. All data are reported as mean ± 1 standard error (SE). Probability of significance was set at p ≤ 0.05. All statistical analyses were conducted with Stat-View II software (Abacus Concepts, Berkeley, CA).

Results

Serum Vitellogenin Concentrations

Gel electrophoresis and Western blot analysis is a very sensitive method to detect the presence of VTG in serum. Mab HL 1147 (2D3-3A9) reacts specifically with carp VTG present in vitellogenic females (or E2-induced males), but not with control males. In Figure 2B, the prominent VTG band in Lane 1 corresponds to 150 kDa. In some lanes, VTG is also expressed as a higher MW band of 180 kDa. The bands appearing below 150 kDa correspond to about 1% of the VTG protein and are breakdown products of VTG visualized by the high sensitivity of this assay. When male control serum is probed by Western blot, no bands appear, indicating that these bands are not the result of cross-reactivity with normal serum proteins (data not shown). Plasma samples of all fish collected in this study were analyzed by gel electrophoresis and Western blot analysis. While most of the female fish collected at all sites had measurable amounts of VTG, both female and male fish collected in the sewage effluent canal (STP) had visible levels of VTG by Western blot analysis (Fig. 2B). The corresponding lanes in the Coomasie blue stained gels (Fig. 2A) show that the equivalent amount of serum protein was loaded into each lane. As observed from the blot, 6 of the 7 females had high levels of VTG, while one had a lower level. Seven of the 10 males had visible levels, with 6 of those 7 in the range represented by the females. The lesser bands that are visible on the blot are degradation products of VTG and are most prominent in those samples with high VTG concentrations. The capture-ELISA assay was performed on the samples from the sewage effluent canal (STP) to quantitate the VTG concentrations in those fish (Table 1). One female showed a low level of VTG, while the remaining females ranged from 240 to 1357 µg/ml. Two males showed no VTG present, two showed low levels, and the remaining six were within the range of female VTG concentrations.

Table 1. Serum vitellogenin (VTG, 17β–estradiol (E2), and testosterone (T) concentrations in serum of 10 male and 7 female carp (Cyprinus carpio)

Sample Number	Sex	VTG (µg/ml)	E2 (pg/ml)	T (pg/ml)
1	F	240	98.7	567.6
2	M	10,000	IS	IS
3	M	185	145.6	2958.4
4	M	30	78.6	1372.0
5	F	1170	118.9	345.1
6	F	35	432.5	620.4
7	M	0	256.0	14916.0
8	F	7500	215.9	1146.0
9	M	150	105.0	1464.6
10	M	10	140.4	1474.8
11	M	5	98.5	1402.8
12	F	1357	381.2	768.4
13	M	340	136.9	463.2
14	M	0	55.0	2024.0
15	F	285	118.5	457.6
16	F	1360	153.5	831.6
17	M	430	116.4	1057.2

Fish were collected from the sewage effluent canal of the St. Paul, Minnesota, metropolitan sewage treatment plant. Values are averages of duplicate determinations. IS, insufficient sample.
Vitellogenin induction was not observed at any other sampling location, even in fish collected between 3 and 17 miles downstream of the effluent channel (MRP-2). No attempt was made to establish a gradient of VTG induction away from the effluent channel due to the diluting effect associated with an abnormally high flow rate of the Mississippi River in 1995 (160–300% of normal in May through October). The presence of VTG in the serum of male carp suggests that there is an estrogenic component of the sewage discharge. Similar observations have been reported with caged fish in Great Britain rivers receiving domestic sewage (14, 30). Purdom et al. (14) suggested that the most likely estrogenic substances in domestic sewage are ethynyl estradiol (EE2) and alkylphenol polyethoxylates (APEs); however, a wide range of environmental contaminants possessing estrogenic activity have been reported and may be associated with domestic sewage (31, 32). Estrogens have been measured by radioimmunoassay in the effluent of a modern sewage treatment facility and shown to vary from 7 to 52 ng/l (33). Male sheepshead minnows can produce measurable quantities of VTG after a 3-day exposure to EE2 at 10 ng/l (Folmar, unpublished observations). Purdom et al. (14) also showed that EE2 at 1–10 ng/l could induce a vitellogenic response in caged rainbow trout. Alkylphenol polyethoxylates are produced worldwide at >300,000 tons annually, and as much as 60% of that ends up in the aquatic environment (34). These chemicals have been shown to bind to the estrogen receptor of fish and mammals (7, 35) and are capable of inducing VTG production in fish hepatocyte cell culture (7, 13). Additionally, a wide array of chemicals, including pesticides and plasticizers commonly found in wastewater, stimulate VTG production from fish hepatocytes in vitro (12). In general, there appears to be little similarity in structure among many of the documented estrogenic chemicals (36), but a para-substituted phenolic group (37) and structural rigidity (38, 39) appear to enhance estrogenicity. Serum T concentrations were lowest in male fish collected from the effluent channel and the Minnesota River. No males from any location showed increased serum E2 concentrations, nor were those concentrations elevated when compared to females. Males from the effluent channel had detectable serum VTG concentrations, but male fish from the Minnesota River did not; this suggests that the elevated E/A ratios were not responsible for that increase. These findings indicate that vitellogenesis in the male fish from the sewage effluent channel was not induced by endogenous estrogens. Although we did not determine which chemical(s) was responsible for depressing serum T concentrations, phytoestrogens such as β-sitosterol found in pulp mill effluent (10, 40) are capable of dramatically reducing serum T concentrations by altering cholesterol availability (41). The E/A ratio appears to be a sensitive marker of abnormal serum sex steroid concentrations; however, when taken alone, the E/A ratio has little functional significance because normal ranges for this parameter have not been established for most wildlife species. Circulating sex steroid concentrations vary significantly in fish and other vertebrates throughout the annual reproductive cycle (42). Although the E/A ratio or serum sex steroid concentrations can be informative of contaminant exposure during embryonic development (43, 44) and adulthood (10, 41, 42), samples must be collected in such a way as to minimize naturally occurring variation. Used in collaboration with serum VTG analysis, the serum sex steroid concentrations have provided important insight into the mechanism by which male fish are induced to express VTG. Although we have focused on induced VTG production in male fish exposed to chemical contaminants, earlier field studies reported either no change [winter flounder (45)] or decreases [English sole (46, 47)] in serum VTG levels in female fish exposed to polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Similarly, several laboratory studies have shown decreases or no change in E2 and VTG synthesis in female fish exposed to acid, metals, cyanide, pesticides, PCBs, and PAHs (48–54). In females, elevated levels of various estrogen mimics could stimulate negative feedback in gonadotropin secretion, resulting in suppressed synthesis of endogenous estrogens, and thus, reduced VTG synthesis. Likewise, estrogen mimics that are weaker could occupy hepatic estrogen receptors but stimulate a lower level of VTG gene expression—an antiestrogenic effect. Our results show that the sewage

Environmental Health Perspectives • Volume 104, Number 10, October 1996

Table 2. Serum concentrations (mean ± 1 SE) of testosterone (T) and 17β-estradiol (E2) in adult postspawning male and female carp (Cypinus carpio) collected from five locations

Site	Number (M/F)	Male T (ng/ml)	Female T (ng/ml)	Male E2 (pg/ml)	Female E2 (pg/ml)
STP	10/7	2.97 ± 1.58	0.72 ± 0.1	125.4 ± 19.2	216.7 ± 51.5
MRP-2	10/10	4.16 ± 0.86	1.25 ± 0.1	125.9 ± 7.3	750.5 ± 89.6
MRP-3	11/0	5.13 ± 1.77	ND	147.3 ± 14.3	ND
MNR	10/0	2.92 ± 0.24	ND	133.6 ± 13.7	ND
SCR	5/0	6.41 ± 2.0	ND	105.4 ± 22.0	ND

ND, no data available; STP, channel below the St. Paul metropolitan sewage treatment plant; MRP-2, Mississippi River Pool #2; MRP-3, Mississippi River Pool #3; MNR, Minnesota River; SCR, St. Croix River.

*Values with different superscripts are significantly different at p ≤ 0.05.
effluent did not enhance endogenous estrogen synthesis, but it appears to act directly on the estrogen receptor (ER) or possibly through the disruption of other hormones such as the thyroid hormones, growth hormone, prolactin, or cortisol known to enhance hepatic yolk protein synthesis (55-58). For example, a variety of pesticides, PCBs, and acidic water have been shown to alter circulating concentrations of triodothyronine (T_3) and thyroxine (T_4) in fish (59-62). Thyroid hormones are known to potentiate estrogen induction of VTG mRNA and stimulate synthesis of estrogen receptors in frog hepatocytes (58). Likewise, contaminants at higher concentrations are capable of producing a generalized stress response with accompanying increase in circulating levels of cortisol. Cortisol has been shown to cause rapid but transient increases in male Oereosrichis VTG mRNA (63), decreased E_2 secretion in isolated rainbow trout ovarian follicles (64), increased serum binding capacity, decreased cytosolic and nuclear binding sites with no change in circulating E_2 levels in immature female rainbow trout (65), and suppressed plasma VTG concentrations in female catfish (66). Future studies must begin to examine a wide range of hormones to determine the various mechanisms by which males are stimulated to express elevated serum concentrations of VTG. This study confirms similar observations from studies with caged fish in Great Britain (23,24) and indicates that similar problems exist in the United States, even with state-of-the-art sewage treatment plants. Future studies should focus on how such changes in serum sex steroid and VTG concentrations relate to reproductive dysfunction in individuals and consequential changes in populations.

REFERENCES

1. Bitman J, Cecil HC. Estrogenic activity of DDT analogs and polychlorinated biphenyls. J Agric Food Chem 18:1108-1112 (1970).
2. Nelson JA, Struck RF, James R. Estrogenic activities of chlorinated hydrocarbons. J Toxicol Envirn Health 4:325-339 (1978).
3. Colborn T, Clement C (eds) Chemically-induced alterations in sexual and functional development: the wildlifes/human connection. Princeton, Nj:Princeton Scientific Publishing, 1992.
4. Rolland R, Gilbertson M, Colborn T (eds). Environmentally induced alterations in development: a focus on wildlife. Environ Health Perspect 103(suppl 4), 1995.
5. Estrogens in the environment III: global health implications. Environ Health Perspect 103(suppl 7), 1995.
6. Waster PW. Histopathological effects of environmental pollutants β-HCH and methyl mercury on reproductive organs in freshwater fish. Comp Biochem Physiol 100C:237-239 (1991).
7. White R, Jobling S, Hoare SA, Sumpter JP, Parker MG. Environmentally persistent alklyphenolic compounds are estrogenic. Endocrinology 135:175-182 (1994).
8. Pelisser C, Benjamin P, Le Menn F, Dunogues J. The estrogenic activity of certain phytoestrogens in the Siberian sturgeon Acipenser baeri. J Steroid Biochem Mol Biol 38:293-299 (1991).
9. Pelisser C, Prouvier G, Fouquier JL, Benettau B, K. Lawless K, Le Gac F, Sumpter JP. Vitellogenin synthesis in cultured hepatocytes: an in vitro test for the estrogenic potency of chemicals. J Steroid Biochem Mol Biol 44:263-272 (1993).
10. Munkittrick KR, Port CB, Van Der Kraak GJ, Smith IR, Rokosh DA. Impact of bleached Kraft pulp mill effluent on population characteristics, liver MFO activity, and serum steroids of the Lake Superior white sucker (Catostomus commersoni) population. Can J Fish Aquat Sci 48:1-10 (1991).
11. Van Der Kraak GJ, Munkittrick KR, McMaster MW, Port CB, Chang JP. Exposure to bleached Kraft pulp mill effluent disrupts the pituitary-gonadal axis of white sucker at multiple sites. Toxicol Appl Pharmacol 115:224-233 (1992).
12. Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 103:582-587 (1995).
13. Jobling S, Sumpter JP. Detergent components in sewage effluent are weakly estrogenic to fish: an in vitro study using rainbow trout hepatocytes. Aquat Toxicol 37:4-37 (1993).
14. Purdon CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP. Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8:275-285 (1994).
15. Wallace R. Vitellogenesis and oocyte growth in non-mammalian vertebrates. In Developmental biology, vol 1 (Brower LW, ed). New York:Plenum Press, 1985:127-177.
16. Specker J, Sullivan CV. Vitellogenesis in fishes: status and perspectives. In: Perspectives in comparative endocrinology (Davey KG, Peter RG, Tebo SS, eds). Ottawa:National Research Council of Canada, 1994:304-315.
17. Copeland PA, Sumpter JP, Walker TK, Croft M. Vitellogenin levels in male and female rainbow trout (Salmo gairdneri Richardson) at various stages of the reproductive cycle. Comp Biochem Physiol 83B:487-493 (1986).
18. Copeland PA, Thomas P. The measurement of plasma vitellogenin levels in a marine teleost, the spotted seatrout (Cynoscion nebulosus), by homologous radioimmunoassay. Comp Biochem Physiol 91B:23-23 (1988).
19. Ding JL, Lee PL, Lam TJ. Two forms of vitellogenin in the plasma and gonads of male Oereosrichis aureus. Comp Biochem Physiol 93B:363-370 (1989).
20. Goodwin AE, Grizzle JM, Bradley JT, Estridge BH. Monoclonal antibody-based immunoassay of vitellogenin in the blood of male catfish (Ictalurus sp). Comp Biochem Physiol 101B:441-446 (1992).
21. Kishida M, Specker J, Vitellogenin in tilapia (Oreosrichis mossambica): induction of two forms by estradiol, quantification in plasma and characterization in oocyte extract. Fish Physiol Biochem 12:171-182 (1993).
22. Maitre JL, LeGuellec C, Derrien S, Tenniswood M, Valotaire Y. Measurement of vitellogenin from rainbow trout by rocket immunoelectrophoresis: application to the kinetic analysis of estrogen stimulation in the male. Can J Biochem Cell Biol 63:982-987 (1985).
23. Ho SM. Endocrinology of vitellogenesis. In: Hormones and reproduction in fishes, amphibians and reptiles. (Norris DO, Jones RT, eds). New York:Plenum Press, 1987:413-421.
24. LeGuellec K, Lawless K, Valotaire Y, Kress M, Tenniswood M. Vitellogenin gene expression in male rainbow trout (Salmo gairdneri). Gen Comp Endocrinol 71:359-371 (1988).
25. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680-685 (1970).
26. Schagger H, von Jagow G. Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368-379 (1987).
27. Deuslow ND, Parten B, Nguyen HP. Problott: a membrane for electrophorising peptides after enzymatic digestion in gel slices. In: Protein analysis renaissance. Foster City,CA:Applied Biosystems, 1993:33-36.
28. Johnson DA, Gauthus JW, Sportsman JR, Elder JH. Improved technique utilizing non-fat dry milk for an analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal Tech 1:3-8 (1984).
29. Peterson GL. Determination of total protein. Methods Enzymol 91:95-121 (1993).
30. Sumpter JP, Jobling S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect 103(suppl 7):173-178 (1995).
31. Guillote JL Jr, Arnold SF, McLachlan JA. Ecosyros and embryos—is there a scientific basis for concern? Anim Reprod Sci 42:13-24 (1996).
32. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Olea Serrano F. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103(suppl 7):113-122 (1995).
33. Shore LS, Giesy JP, Shemesh M. Estrogen as an environmental pollutant. Bull Environ Contam Toxicol 51:361-366 (1993).
34. Naylor GC, Mieruse JP, Weeks JA, Castaldi FJ, Romano RR. Alklyphenol ethoxylates in the environment. J Am Oil Chem Soc 69:695-703 (1992).
35. Arnold SF, Robinson MK, Notides AC, Guillelle Lj Jr, McLachlan JA. A yeast estrogen screen for examining the relative exposure of cells to natural and xenosterogens. Environ Health Perspect 104:544-548.
36. McLachlan JA. Functional toxicology: a new approach to detect biologically active xenobiotics. Environ Health Perspect 101:386-387 (1993).
37. Jordan VC, Mittal S, Gosden B, Koch R, Lieberman ME. Structure-activity relationships of estrogens. Environ Health Perspect 61:97-101 (1985).
38. Korach KS, Sparer P, Chae K, McLachlan JA, McKinney JD. Estrogen receptor-binding activity of polychlorinated hydroxybifurphenyls: conformationally restricted structural probes. Mol Pharmacol 33:120-126 (1988).
47. Casillas
46. McManus, AA, Valentine B. Reduction in oocytes production and gonadotrope activity, and plasma levels of estrogen and vitellogenin, in brook trout exposed to low environmental pH. Can J Zool 68:2468–2476 (1990).
45. Pavlišen AF, Korsgaard B, Bjerregaard P. The effect of cadmium on vitellogenin metabolism in eel (Anguilla anguilla) as an indicator of potential environmental risk. Aquat Toxicol 17:253–262 (1990).
44. Mount DR, Hockett JR, Gern WA. Effect of long-term exposure to acid, aluminum and low calcium on adult brook trout. Salvelinus fontinalis. 2. Vitellogenesis and osmoregulation. Can J Fish Aquat Sci 45:1633–1642 (1988).
43. Chakravorty S, Lai B, Singh TP. Effect of endosulfan (thiodan) on vitellogenesis and its modulation by different hormones in the vitellogenic catfish. Clarias batrachus. Toxiconology 75:191–198 (1992).
42. Ruby SM, Idler DR, So YP. Plasma vitellogenin, 17β-estradiol, T3, T4 and TSH levels in sexually maturing rainbow trout. Oncorhyncus mykiss following sublethal HCN exposure. Aquat Toxicol 26:91–102 (1993).
41. Monosson E, Fleming WJ, Sullivan CV. Effects of the planar PCB 3,3',4,4'-tetrachlorobiphenyl (TCB) on ovarian development, plasma levels of sex steroid hormones and vitellogenin, and sex specificity in the white perch (Morone americana). Aquat Environ Contam Toxicol 14:427–431 (1993).
40. Casillas E, Misiano D, Johnson LL, Rhodes LD, Collier TK, Stein JE, McCain BB, Varanasi U. Inducibility of spawning and reproductive success of female English sole (Parophrys vetulus) from urban and nonurban areas of Puget Sound, Washington. Mar Environ Res 31:99–122 (1991).
39. Johnson LL, Casillas E, Sol S, Collier TK, Stein JE, Varanasi U. Contaminant effects on reproductive success in selected benthic fish. Mar Environ Res 35:165–170 (1993).
38. Chen TT, Reid PC, Van Beneden R, Sonstegard RR. Effect of Aroclor 1254 and mirex on estradiol-induced vitellogenin production in juvenile rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci 43:169–173 (1986).
37. Tam WH, Fryer JN, Valentine B. Reduction in oocyte production and gonadotrope activity, and plasma levels of estrogen and vitellogenin, in brook trout exposed to low environmental pH. Can J Zool 68:2468–2476 (1990).
36. Pavlišen AF, Korsgaard B, Bjerregaard P. The effect of cadmium on vitellogenin metabolism in eel (Anguilla anguilla) as an indicator of potential environmental risk. Aquat Toxicol 17:253–262 (1990).
35. Mount DR, Hockett JR, Gern WA. Effect of long-term exposure to acid, aluminum and low calcium on adult brook trout. Salvelinus fontinalis. 2. Vitellogenesis and osmoregulation. Can J Fish Aquat Sci 45:1633–1642 (1988).
34. Chakravorty S, Lai B, Singh TP. Effect of endosulfan (thiodan) on vitellogenesis and its modulation by different hormones in the vitellogenic catfish. Clarias batrachus. Toxiconology 75:191–198 (1992).
33. Ruby SM, Idler DR, So YP. Plasma vitellogenin, 17β-estradiol, T3, T4 and TSH levels in sexually maturing rainbow trout. Oncorhyncus mykiss following sublethal HCN exposure. Aquat Toxicol 26:91–102 (1993).
32. Monosson E, Fleming WJ, Sullivan CV. Effects of the planar PCB 3,3',4,4'-tetrachlorobiphenyl (TCB) on ovarian development, plasma levels of sex steroid hormones and vitellogenin, and sex specificity in the white perch (Morone americana). Aquat Environ Contam Toxicol 14:427–431 (1993).
31. Casillas E, Misiano D, Johnson LL, Rhodes LD, Collier TK, Stein JE, McCain BB, Varanasi U. Inducibility of spawning and reproductive success of female English sole (Parophrys vetulus) from urban and nonurban areas of Puget Sound, Washington. Mar Environ Res 31:99–122 (1991).
30. Johnson LL, Casillas E, Sol S, Collier TK, Stein JE, Varanasi U. Contaminant effects on reproductive success in selected benthic fish. Mar Environ Res 35:165–170 (1993).
29. Chen TT, Reid PC, Van Beneden R, Sonstegard RR. Effect of Aroclor 1254 and mirex on estradiol-induced vitellogenin production in juvenile rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci 43:169–173 (1986).
28. Tam WH, Fryer JN, Valentine B. Reduction in oocyte production and gonadotrope activity, and plasma levels of estrogen and vitellogenin, in brook trout exposed to low environmental pH. Can J Zool 68:2468–2476 (1990).
27. Pavlišen AF, Korsgaard B, Bjerregaard P. The effect of cadmium on vitellogenin metabolism in eel (Anguilla anguilla) as an indicator of potential environmental risk. Aquat Toxicol 17:253–262 (1990).
26. Mount DR, Hockett JR, Gern WA. Effect of long-term exposure to acid, aluminum and low calcium on adult brook trout. Salvelinus fontinalis. 2. Vitellogenesis and osmoregulation. Can J Fish Aquat Sci 45:1633–1642 (1988).
25. Chakravorty S, Lai B, Singh TP. Effect of endosulfan (thiodan) on vitellogenesis and its modulation by different hormones in the vitellogenic catfish. Clarias batrachus. Toxiconology 75:191–198 (1992).
24. Ruby SM, Idler DR, So YP. Plasma vitellogenin, 17β-estradiol, T3, T4 and TSH levels in sexually maturing rainbow trout. Oncorhyncus mykiss following sublethal HCN exposure. Aquat Toxicol 26:91–102 (1993).
23. Monosson E, Fleming WJ, Sullivan CV. Effects of the planar PCB 3,3',4,4'-tetrachlorobiphenyl (TCB) on ovarian development, plasma levels of sex steroid hormones and vitellogenin, and sex specificity in the white perch (Morone americana). Aquat Environ Contam Toxicol 14:427–431 (1993).
22. Casillas E, Misiano D, Johnson LL, Rhodes LD, Collier TK, Stein JE, McCain BB, Varanasi U. Inducibility of spawning and reproductive success of female English sole (Parophrys vetulus) from urban and nonurban areas of Puget Sound, Washington. Mar Environ Res 31:99–122 (1991).
21. Johnson LL, Casillas E, Sol S, Collier TK, Stein JE, Varanasi U. Contaminant effects on reproductive success in selected benthic fish. Mar Environ Res 35:165–170 (1993).
20. Chen TT, Reid PC, Van Beneden R, Sonstegard RR. Effect of Aroclor 1254 and mirex on estradiol-induced vitellogenin production in juvenile rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci 43:169–173 (1986).