The Effects of Functional Feed Additive Probiotic and Phytogenicin Rations on The Performance of Local Ducks

M Daud, M A Yaman and Zulfan

Animal Husbandry, Faculty of Agriculture, Syiah Kuala University, Banda Aceh, Indonesia

E-mail: daewood@unsyiah.ac.id

Abstract. The research aims to study the use of functional feed additive probiotic and phytogenic in rations on the performance of local duck. The study used 80 heads local duck 8-16 weeks old grower phase. The study was conducted by experimental method, using a completely randomized design with 4 treatments of rations and 4 replications (5 ducks/pen). The with 4 treatment rations: R1 (basal diet / control), R2 (basal diet + phytogenic 0.4%); R3 (basal diet + probiotic 10^8 CFU); R4 (basal diet + phytogenic 0.4% + probiotic 10^8 CFU). The observed variables were: feed consumption, body weight gain, final body weight, feed conversion, and mortality. Data was analyzed by using one-way analysis of variance then continued with Duncan test. The results showed that the use of functional feed additive probiotic and phytogenic gave a positive response to the performance of local duck grower phase. The use of functional feed additive probiotic and phytogenic in ration significantly affect (P<0.05) feed consumption, body weight gain, final body weight and ration conversion, but no significant affect on ration mortality. It was concluded that the use of functional feed additive phytogenic and probiotic could serve as a source of feed additive in local duck ration and able to increase performance of local duck.

Keywords: phytogenic, probiotic, feed additive, performances, local ducks

1. Introduction

One of the ways to improve livestock performances and production is through utilization of feed additive in rations. Feed additives that are very commonly used are antibiotics or better known as Antibiotic Growth Promoter (AGP) which serves to help fight pathogenic bacteria and consequently can increase livestock production. Antimicrobials, especially antibiotics in livestock are used as therapy, prevention of disease, and are also used as a growth promoter [1]. Scientifically, the use of AGP is considered successful and is able to improve the FCR value. However, the WHO has banned the use of AGP in livestock because it can adversely affect human health. Likewise, FAO, said that the use of antibiotics is a threat to humans, because microbes that should be able to be eradicated with antibiotics do not.
The European Union has banned the use of antibiotics as a growth promoter since 2006 [2]. But in Indonesia, the new AGP ban will come into force since January 1, 2018. The use of antibiotic growth promoter (AGP) in feed has been banned by the Indonesian government. Therefore, the search for alternative AGP continues to be carried out. The addition of phyto genic and probiotic is one of the potential alternatives because it has the same ability as AGP.

Phytogenic is the result of secondary metabolites of plants that contain nutritionally valuable, non-nutritious, or anti-nutritive compounds [3;4]. Some phyto genic active components include essential oils, flavonoids, saponins, and tannins. While probiotics are a group of living microbes that are beneficial and are used to influence landlords through the improvement of microorganisms in the digestive tract [5]. The most widely used probiotic microorganisms are Lactobacillus and Bifidobacteria strains [6]. Feed additives used in this study were probiotics sourced from lactic acid bacteria (L. casei Rhamnosus) and phyto genic derived from ciplukan plant extraction. The research aims to study the use of functional feed additive probiotic and phyto genic in rations on the performance of local duck.

2. Methodology

The research material used 80 heads female local duck 8-16 weeks old grower phase. Ration used in this experiment consisted of probiotic, phyto genic, corn, rice bran, coconut meal, soybean meal, sago, fish meal, coconut oil, premix, NaCl, and DCP.

The study was conducted by experimental method, using a completely randomized design (CRD) with 4 treatments of rations and 4 replications (5 ducks/pen). The experiment used completely randomized design with 4 treatment rations: R1 (basal diet /control), R2 (basal diet + phyto genic 0.4%); R3 (basal diet + probiotic 10^8 CFU); and R4 (basal diet + phyto genic 0.4% + probiotic 10^8 CFU).

Table 1. Composition and nutrients content of the treatment rations

Feed Ingredients	R1	R2	R3	R4
Corn	40	40	40	40
Rice bran	17	17	17	17
Coconut meal	10	10	10	10
Soybean meal	12.5	12.5	12.5	12.5
Sago	10	10	10	10
Fish meal	7.5	7.5	7.5	7.5
Coconut oil	1.5	1.5	1.5	1.5
Premix	0.5	0.5	0.5	0.5
NaCl	0.5	0.5	0.5	0.5
DCP	0.5	0.5	0.5	0.5
Total	100	100	100	100

Calculated nutrients content:

Nutrients	R1	R2	R3	R4
Metabolizable energy (Kcal/kg)	2707	2707	2707	2707
Crude protein (%)	19.19	19.19	19.19	19.19
Crude fiber (%)	5.97	5.97	5.97	5.97
Crude fat (%)	3.27	3.27	3.27	3.27
Ca (%)	1.27	1.27	1.27	1.27
P (%)	0.81	0.81	0.81	0.81
Meth (%)	0.35	0.35	0.35	0.35
Cys (%)	0.24	0.24	0.24	0.24
Lys (%)	0.97	0.97	0.97	0.97

Note: R1 (basal diet /control); R2 (basal diet + phyto genic 0.4%); R3 (basal diet + probiotic 10^8 CFU); R4 (basal diet + phyto genic 0.4% + probiotic 10^8 CFU).
Treatment Rations
The ration used during the research was basal ration without antibiotics. All treatment rations use the same feed ingredients, only differing in the use of phytogenic and probiotics. Treatment rations are formulated according to the grower phase duck requirements: It contained 19% crude protein and 2700 kkal/kg metabolizable energy (Table 1).

Experimental Procedure
This study used heads local duck 8 weeks of old and reared until 16 weeks of old in the litter cagessystem. The experiment lasted 8 weeks and during that time, feed and water were offered ad libitum. Feed consumption and body weight gain were determined weekly. Final body weight, feed conversion, and mortality of local duck were determined at the end of feeding trial.

Research Variables and Data Analysis
The observed variables were: feed consumption, body weight gain, final body weight, feed conversion, and mortality of local duck. Data was analyzed by using one-way analysis of variance then continued with Duncan’s Multiple Range Test [7].

3. Result and Discussion

Rations Consumption
The average consumption of local ducks ration during the study were 994-1064 grams per head per weeks (Table 2). The lowest feed intake was obtained from treatment R1 (control) and the highest feed intake was found in treatment R4 (basal diet containing phytogenic and probiotic). The data of local ducks performance obtained in this study are presented in Table 2.

Table 2. The performances of local ducks (8 - 16 weeks)

Parameters	Treatment			
Ration consumption (g/h/w)	R1 R2 R3 R4			
994±15.9a	1,050±14.7ab	1,036±17.8ab	1,064±18.7b	
Body weight gain (g/h/w)	76.09±1.34a	83.86±1.38b	81.69±1.60b	79.59±1.29b
Final body weight (g)	1,408.7±21.2a	1,470.8±27.4b	1,453.5±18.1b	1,436.7±40.9b
Feed conversion ratio	5.6±0.45a	5.7±0.76a	5.7±0.57a	5.9±0.59b
Mortality (%)	0	0	0	0

Note: Different superscript in the same line means significantly different (P<0.05); R1 (basal diet /control); R2 (basal diet + phytogenic0.4%); R3 (basal diet + probiotic 10^8 CFU); R4 (basal diet + phytogenic0.4% + probiotic 10^8 CFU).

The results showed that the use of phytogenic and probiotics in ration significantly affect (P<0.05) ration consumption of local duck. An improvement of ration consumption was found in the local ducks fed phytogenic and probiotic (R4), it was significantly higher (P<0.05) in compare to control ration (R1). The giving probiotic from local microbial have significant effect on ration consumption [8]. Ration consumption in livestock can be influenced by various factors, one of the main factors according to was the quality of feed including the nutrient content contained in the feed [9]. Found that ration consumption was also strongly influenced by the palatability of the rations, types, and composition of feed ingredients used in duck ration formulation [10]. In addition, the palatability of the ration is also influenced by the of the ration itself [11]. Feed consumption influenced by various factors, including the nutrient content in the feed and the level of energy content in the ration (12). Phytogenics is reported to have the ability to increase ration palatability, improve intestinal function, and absorption nutrients [13].

Body Weight Gain
The average body weight gain of local ducks (8-16 weeks) during the study ranged from 76.09-83.86 g/head/weeks (Table 2). The results of statistical analysis showed that the use of phytogenic and probiotic in local duck ration gave significant affect (P<0.05) on weight gain. This result suggested
that the use of phytogenic and probiotic in the dietary as feed additive source increased the weight
gain of local duck. The increasing of livestock weight was strongly influenced by the consumption of
rations [14].Several research reports show that the of phytogenic and probiotic is proven to increase
growth performance, and improve feed conversion [15;16].

Final Body Weight
The results showed that the final body weight of local ducks ranged from 1408.7– 1470.8 g/head
(Table 2). Rations containing phytogenic and probiotic had a significant affect (P<0.05) on final body
weight of local ducks at 8-16 weeks. The highest final weight was found in R2 treatment 1470.8 g/head
and the lowest final weight was found in treatment R1 1408.7 g/head. It can be seen that the use of
0.4% phytogenic increased duck’s body weight relatively higher than other treatments, (P <0.05). The
use of phytogenic and probiotic feed additives in rations can have a positive impact on improving
the performance of local duck. The use of phytogenic feed supplements in feed can improve performance,
and improve the safety and quality of the meat produced [17].

Feed Conversion Ratio (FCR)
Feed conversion ratio (FCR) one of the variables used to see the ability of livestock to convert feed
into meat products. Research results showed that the use of phytogenic and probiotic in ration local
duck for grower stage during 8-16 weeks had significant affect (P<0.05) on ration conversion (Table
2). The highest FCR was found in R4 treatment 5.9 and the lowest FCR was found in treatment
R15.6. The lower the value of the FCR, the lower amount of feed needed to increase a unit of body
weight [18]. This finding suggested that the use of phytogenic and probiotic can grow local duck
ration produced a similar FCR to the control feed. This finding suggested that the formulated local diet
containing phytogenic and probiotic can provide the level of palatability, quantity and balance of
nutrients and it is effective in promote growth of the ducks and improves feed to body weight
conversion of the rations. The smaller the feed conversion rate, the more efficient the use of ration by
livestock [19].

The value of feed conversion depends on the quality of feeds given to the animal. The higher the
nutrient conceived the better the conversion of the resulting feed. This happens because with a good
feed the livestock consumed less feed to produce the same body weight in compare to less good one.
High growth reflecteds the efficiency of ration consumption and it can be seen from decreasing ration
conversion rate[20]. Several research reports show that the of phytogenic is proven to improve feed
conversion, improve carcass quality, improve safety of food products from livestock, and reduce stress
response [21;22].

Mortality
The results showed that the use of phytogenic and probiotic in ration did not affect mortality of local
duck grower phase. This suggests that the use of phytogenic and probiotic may be one of the sources
of feed additive source in local duck ration as well as good and regular maintenance management.
Provision of ration and regular water supply greatly affects the immune system of ducks. Cage
hygiene also greatly affects the mortality of ducks, where dirty cages easily led to disease infection
that caused death of the ducks. Good maintenance management can control and prevent disease on
ducks and inhibit the occurrence of infection so mortality rate in ducks were minimized [23]. Giving
probiotic supplementary feed can have a positive effect on livestock immunity. Colonization of
probiotic bacteria added to feed helps in the act of immunizing livestock in preventing colonization
of pathogenic bacteria that contaminate feed [24]. Phytogenics is beneficial in improving the performance
of poultry and increasing immune activity, and has the potential to be anti-inflammatory [3].
Supplementation of feed with thymol and carvacrol increased broiler immune response [25].
4. Conclusion

It was concluded that the use of functional feed additive phytogenic and probiotic could serve as a source of feed additive in local duck ration and able to increase performance of local duck grower phase.

Acknowledgement

The author would like to thank LPPM Syiah Kuala University the Ministry of Research, Technology and Higher Education which has funded this research through Lector Syiah Kuala University scheme.

References

[1] C. L. Ventola. 2016. The Antibiotic Resistance Crisis Part 1: Causes and Threats Pharm.Ther. 40(4): 277-283.
[2] B. M. Marshall, S. B. Levy. 2011. Food Animals and Antimicrobials: Impacts on Human Health. Clin Microbiol Rev 24(4): 718-735.
[3] T. Acamovic, J. D. Brooker. 2005. Biochemistry of plant secondary metabolites and their effects in animals. Proc Nutr Soc. 64:403-412.
[4] S. R. Hashemi, H. Davoodi. 2011. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet Res Commun. 35:169-180.
[5] R. Fuller. 1997. Probiotics 2: Application and Practical Aspect. Chapman and Hall. London.
[6] H. K. Solanki, D. D. Pawar, D. A. Shah, V. D. Prajapati, G. K. Jani, A. M. Mulla. 2013. Development of microencapsulation delivery system for longterm preservation of probiotics as biotherapeutics agent. BioMed Research International 1–21.
[7] R. G. D. Steel, J. H. Torrie. 1995. Principles and Procedures of Statistics. Jakarta (ID): GramediaPustaka Utama.
[8] D. Priastoto, T. Kurtini, and Sumardi. 2016. Pengaruh Pemberian Probiotik Dari Mikroba Lokal Terhadap Performa Ayam Petelur. Jurnal Ilmiah Peternakan Terpadu Vol. 4(1): 80-85.
[9] F. J. Hernandez, V. Madrid, J. Garcia. Orengo and M.D. Megias. 2004. Influence of two plants extracts on broilers performance, digestibility, and digestive organ size. Poult.Sci. 83: 169-174.
[10] M. Daud, Z. Fuadi, Sultana. 2013. Penggunaan limbah kopi sebagai bahan penyusun ransum itik Peking dalam bentuk wafer ransum komplit. J Agripet. 13:36-42.
[11] Allaily, R. Nahrowi, R. Ridwan. 2011. Kajian silaseransumkomplitberbahanbakupakanlokal pada itikMojosariAlabiojantan. J Agripet. 11:35-40.
[12] H. P. Fan, M. Xie, W.W. Wang, S. S. Hou, and W. Huang. 2008. Effect of dietary energy on growth performance and carcass quality of white growing pekin ducks from two to six weeks of age. Poult. Sci. 87: 1162–1164.
[13] L. Fascina, J. R. Sartori, E. Gonzales, F. B. Carvalho, G. V. Polycarpo, & I.M.G.P. Souza. 2012. Phyrogenic additives and organic acids in broiler chicken diets. R Bras Zootec. 41(10):2189-2197.
[14] M. Daud, Z. Fuadi, Mulyadi. 2017. Performa dan PersentaseKarkasAyam Ras PetelurJantan pada KepadatanKandang yang Berbeda. J Agripet. 17(1) : 67-74.
[15] T. X. Zhou, Z. F. Zhang, & I. H. Kim. 2013. Effects of dietary Coptis chinensis herb extract on growth performance, nutrient digestibility, blood characteristics and meat quality in growing-finishing pigs. Asian-Australas. J Animal Science 26:108-115.
[16] K. Dhama, S. K. Latheef, S. Manis, H. A. Samad, K. Kartik, R. Tiwari, R. U. Khan, M. Alagawany, M. R. Farag, G. M. Alam, V. Laudadio, Tu & V. Farelli. 2015. Multiple beneficial applications and modes of action of herbs in poultry health and production – A review. Int J Pharmacol. 11:152-176.
[17] V. Stanacev, D. Glamocic, N. Milosevic, N. Puvaca, V. Stanacev, & N. Plavsa. 2011. Effect of garlic (Allium sativum L.) in fattening chicks nutrition. Afr J Agric Res. 6:943-948
[18] A. D. Anggraini, F. Poernama, C. Hanim, and N. D. Dono. 2017. Penggunaan protease dalam...
pakan yang menggunakan limbah pertanian-peternakan untuk meningkatkan kinerja pertumbuhan ayam broiler. *BuletinPeternakan* Vol. 41 (3): 243-249.

[19] N. Arifah, Ismoyowati, and N. Iriyanti. 2013. Tingkat pertumbuhan dan konversi pakan pada berbagai itik lokal jantan (*Anas plathyrrinchos*) dan itik manila jantan (*Cairrina moschata*). *Jurnal Ilmiah Peternakan* 1(2): 718 –725.

[20] Nurhayati, Berliana, and Nelwilda. 2016. Performa ayam broiler yang mengkonsumsi kulit nanas yang difermentasidengan yoghurt dalam ransum mengandung gula maobat. *J Agripet*. Vol. 16. No. 1: 31-36.

[21] P. Li, X. Piao, X. Han, L. Xue, & H. Zhang. 2012. Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. *Asian-Australas J Anim Sci*. 25: 1617-1626

[22] T. X. Zhou, Z. F. Zhang, & I. H. Kim. 2013. Effects of dietary Coptischinensis herb extract on growth performance, nutrient digestibility, blood characteristics and meat quality in growing-finishing pigs. *Asian-Australas. J Animal Science* 26:108-115.

[23] S. T. Shandu. 2014. Duck Health Care, Duck Research Laborator. Comel University of veterinary Medicine, Ithaca York.

[24] J. F. Hocquette, R. I. Richardson, S. Prache, F. Medale, G. Duffy, N. D. Scollan. 2005. The future trends for research on quality and safety of animal products. *ItalianJ Anim Sci*. 4 (suppl.3):49-72.

[25] H. Hashemipour, H. Kermanshahi, A. Golian, & T. Veldkamp. 2013. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. *Poul Sci*. 92:2059-2069.