Enhanced performance of porous silicone-based dielectric elastomeric composites by low filler content of Ag@SiO₂ Core-Shell nanoparticles

Lian Xiong, Shaodi Zheng, Zewang Xu, Zhengying Liu, Wei Yang and Mingbo Yang

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China

ABSTRACT

In the present work, micropores and a low filler content of Ag@SiO₂ nanoparticles (NPs) are synchronously introduced into polydimethylsiloxane (PDMS) film to obtain porous dielectric elastomeric composites. The morphology and dielectric and mechanical properties of the composites are investigated. The resulting composites possess high dielectric permittivity, low dielectric loss and low Young’s modulus, which is beneficial to the requirements of a dielectric elastomer actuator. This study provides an effective method to prepare high-performance PDMS-based dielectric porous dielectric elastomeric composites filled with low filler contents of Ag@SiO₂ NPs.

ARTICLE HISTORY

Received 22 November 2018
Revised 7 December 2018
Accepted 11 December 2018

KEYWORDS

Porous materials; elastomer; core-shell particles; dielectric permittivity; dielectric loss; Young’s modulus

1. Introduction

Dielectric elastomers are promising materials for advanced electromechanical applications such as actuators, generators and sensors, thanks to their simple and flexible working principle [1–4]. The high dielectric permittivity and low Young’s modulus are two key parameters to improve the electromechanical sensitivity of dielectric elastomers [5]. A remarkably increase of dielectric permittivity can be achieved by adding conductive particles, such as carbon nanotubes [6], metal particles [7], and graphene sheets [8, 9] into the polymer matrix until reaching the percolation threshold [10, 11]. However, at percolation dielectric loss factor increases and Young’s modulus significantly increases, limiting the application of dielectric elastomers [12].

Introducing an insulating shell between conductive fillers, using core–shell nanoarchitecture strategies, would be a reasonable route to decrease the dielectric loss meanwhile improving the dielectric permittivity of the composites [13]. Nan has fabricated Ag@C core-shell structure fillers and incorporated into epoxy. The dielectric permittivity of an epoxy nanocomposite increased by more than two orders of magnitude when the Ag nanoparticle concentration was larger than 20% [14, 15]. DM Opris reported PANI@PDVB/PDMS composites, which presented higher dielectric permittivity 3.4@10³Hz [16]. Such insulating shells on conductive fillers can prevent these conductive fillers from contacting each other directly, which favors a reduction in dielectric loss [17]. Moreover, the Young’s modulus of composite based on dielectric elastomers should be considered prudently. James Wang et al. [18] presented an exponential equation to predict porosity-related modulus relations for porous materials. As expected, polymer porous membranes exhibited the same exponential relationship between modulus and porosity [19]. It can therefore be an interesting
strategy to improve the dielectric permittivity and decrease the Young's modulus through introducing micropores and conductive nanoparticles into the matrix simultaneously.

In this study, silver coated silicon dioxide nanoparticle (Ag@SiO₂ NP) suspension was squeezed into polydimethylsiloxane (PDMS) through intense agitation. After the volatilization of water and cross-linking of PDMS, micropores were introduced into the matrix along with Ag@SiO₂ NPs. The dielectric and mechanical properties of the PDMS/Ag@SiO₂ NPs composites were investigated in terms of porosities and content of the Ag@SiO₂ NPs.

2. Experimental

170 mg Silver nitrate (AgNO₃, Tianjin Yingda Rare Chemical Reagent Factory) and 200 mg poly (vinyl pyrrolidinone) (PVP, Mₕ:58000, Aladdin) were mixed in deionized water followed by adding 400 µL of 5.0 M NaCl solution. Then the solution was added into the mixed solution of 2800 mg L-ascorbic acid and 40 mL 0.5 M NaOH and stirred for 2h [20]. The obtained Ag NPs were dispersed in 200 mL deionized water (DI water) after centrifugation. Silica coating was performed based on the modified Stober method [21]. 3.0 g PVP (Mₕ: 24000, Aladdin) was dissolved in the 200 mL Ag NPs solutions. Then the solutions were centrifuged and the supernatant was removed, and the sediments were redispersed in a solution of ammonia in 50 mL ethanol (4.2 vol%). 5 mL tetraethyl orthosilicate (TEOS, Tianjin Bodi Chemical Co. LTD.) solution (10 vol % in ethanol) was added immediately. After stirring for 12 h, the solution was centrifuged to obtain Ag@SiO₂ NP suspension. The Ag@SiO₂ NP suspension was squeezed into PDMS mixture (base monomers and the curing agent was in a mass ratio of 10: 1) (Sylgard 184, Dow Corning) through stirring for 30 min. The mixture was cast to come a 1 mm film after the air being removed by a vacuum process and cured at atmospheric pressure at 80 °C. Samples are named as PDMS/Ag@SiO₂-x-y, where x represents the mass fraction (wt.%) of Ag@SiO₂ and y represents the volume fraction (vol.%) of DI water.

The Ag@SiO₂ NPs were characterized with transmission electron microscopy (TEM, FEI Tecnai G2F20S-TWIN, USA) and X-ray diffraction analysis (XRD, Rigaku Ultima IV, Japan). Fractured cross sections of the PDMS/Ag@SiO₂ composites were investigated by scanning electron microscopy (SEM, Inspect F, FEI, USA) with an acceleration voltage of 20 kV. The dielectric properties of the composites were measured by a Novocontrol Concept 50 Frequency Analyzer in the frequency range 10⁵ Hz to 10⁷ Hz. The tensile tests were performed using a universal tensile testing machine (AGS-J Shimadzu) at a crosshead speed of 12 mm/min.

3. Results and discussion

Figure 1 shows the XRD patterns of Ag NPs and Ag@SiO₂ NPs. The peaks at 38.0°, 44.1°, 64.4°, 77.3° and 81.6° are assigned to the 111, 200, 220, 311 and 222 lattice planes respectively, which are indexed to be cubic-phase Ag [20]. A broaden peak at 21.0° observed from XRD patterns of Ag@SiO₂ NPs confirms the existence of amorphous SiO₂. From the TEM images (Fig.1 insets), the Ag nanoparticles are basically spherical and their average particle size is about 25 nm. The aggregates of several Ag particles are covered by a smooth and homogeneous silica shell to obtain Ag@SiO₂ NPs with an average particle size of 200 nm. The SEM images in Fig.2 show the porous structures and Ag@SiO₂ NPs distribution of the PDMS/Ag@SiO₂-2-y composite film. When the Ag@SiO₂/DI water suspension was squeezed into the hydrophobic PDMS, phase separation happened and the water phase in the PDMS solution attempted to form

![Figure 1. XRD patterns and TEM images (inset) of silver nanoparticles and Ag@SiO₂ nanoparticles.](image-url)
spherical droplets. During the curing of PDMS, DI water was volatilized and the micropores stayed with relatively uniform pore size distribution (Fig. 2 A1-C1). The porosity is approximately equal to the volume fraction of DI water, which ranges from 0% to 40%. With increasing volume fraction of DI water, the pore size increases and the average diameter of the pores in these composite films is 2.02\(\mu\)m, 3.10\(\mu\)m and 3.47\(\mu\)m, respectively (see insets in Fig. 2 A1-C1). Composite with various porosities and Ag@SiO\(_2\) NPs inside the pores wall (Fig. 2 A2-C2, the Ag@SiO\(_2\) NPs are featured as small bright spots) were fabricated successfully.

The stress-strain curves and Young’s modulus of the composites are presented in Fig. 3. All as-fabricated composites show elastic behaviors even though the nanoparticle and micropore are introduced into it. The Young’s modulus of the composites decreases with increasing porosity. As expected, an evident increase in the Young’s modulus is observed by increasing the Ag@SiO\(_2\) from 0 to 3 wt% (Fig. 3(b)), but they are all below the Young’s modulus of pure PDMS’s (1.80MPa). Because micropores and NPs are introduced into the matrix simultaneously, a relatively low Young’s modulus of the composites is ensured.

Figure 4(a) presents the frequency dependence of dielectric permittivity of PDMS/Ag@SiO\(_2\)-2-\(y\) and PDMS/Ag@SiO\(_2\)-x-30 composites. The dielectric permittivity of all composites shows a low frequency dependence in the measured frequency range, which can be attributed to the fact that SiO\(_2\) shells interact

\[\text{Figure 2. SEM images of the fractured cross sections of PDMS/Ag@SiO}_2-2-\(y\) composites with porosities of 20\% (A), 30\% (B), 40\% (C) respectively: 2000X, 10000X (from top to bottom). The insets show the core size distributions of the composites.}\]

\[\text{Figure 3. Stress–strain curves of PDMS/Ag@SiO}_2\) composites with various porosity (a) and content of Ag@SiO\(_2\) NPs (b).}\]
with PDMS matrix, confining the rotation of amorphous dipoles in PDMS. The dielectric permittivities are enhanced with increasing porosity (6.9@10^3Hz for PDMS/Ag@SiO2-2-40). Also, the dielectric permittivity of the composites increases with the increasing of the NP (Fig. 4(c)). When the content of Ag@SiO2 NPs is 3 wt%, the dielectric permittivity of the composites reaches 6.8@10^3Hz which is nearly 2.5 times that of composites containing 1 wt% Ag@SiO2 NPs. The increased dielectric permittivity is mainly attributed to Maxwell–Wagner–Sillars (MWS) polarization, which occurs at the interface between two materials with an accumulation of charge carriers. Porosity and filler contents show little effect on dielectric losses of the PDMS/Ag@SiO2 composites, which are all less than 0.02@10^3Hz (Fig. 4(b) and (d)). Table 1 summarizes the dielectric properties and mechanical properties of the composites containing different kinds of fillers. We can see that PDMS-based porous dielectric elastomeric composites filled with 2 wt% of Ag@SiO2 NPs in this study show a relatively higher dielectric permittivity, lower dielectric loss and Young’s modulus, compared with others’ researches.

4. Conclusions

High-performance porous PDMS-based dielectric elastomeric composites filled with low filler contents of Ag@SiO2 NPs were successfully prepared.

![Image](https://example.com/image.png)

Figure 4. (a) Dielectric permittivity, (b) loss of PDMS/Ag@SiO2 composites with different porosities; (c) Dielectric permittivity, (d) loss of PDMS/Ag@SiO2 composites with different content of Ag@SiO2 NPs.

Table 1. PDMS-based elastomers containing different fillers.

Base elastomer	Filler	Content	ε’@10^3Hz	tanδ@10^3Hz	Y[MPa]	Ref.
PDMS	TiO2	11 vol%	5.5	0.060	2.20	22
PDMS	Ag@SiO2 Particles	20 vol%	5.9	0.078	1.44	23
PDMS	BaTiO3	30 wt%	5.7	0.005	–	24
PDMS	PMN	20 vol%	5.2	–	1.00	25
PDMS	Expanded graphite	2 wt%	4.5	0.090	0.80	26
PDMS	PANi@PDVB	20 wt%	3.4	0.050	2.32	16
PDMS (Porous)	Ag@SiO2 particles	2 wt%	6.9	0.001	0.82	This study
The Young's modulus decreased significantly when micropores were incorporated into the composites. The dielectric permittivity was improved significantly with increasing porosity even at low nanoparticle content. The dielectric losses of the all composites were less than 0.02 at 10^3 Hz. Overall, this work provides a feasible way of preparing high-performance dielectric porous composites, which have great prospects for advanced electromechanical applications.

Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant No. 51422305, 51721091.

Notes on contributors

Lian Xiong is a graduate student in the College of Polymer Science and Engineering of Sichuan University. She has worked on porous dielectric elastomer composites based on Polydimethylsiloxane and its application in actuators.

Shaodi Zheng is currently a Ph. D. candidate in the College of Polymer Science and Engineering of Sichuan University and obtained his M.S. degree from Sichuan University in 2015. He has worked on PANI conductive composites for flexible and wearable sensors.

Zewang Xu is a graduate student in the College of Polymer Science and Engineering of Sichuan University. He has worked on preparation and performance improvements of dielectric elastomer composites and its application in actuators.

Zhengying Liu received his Ph.D. degrees from Sichuan University in 2006 and is an associate professor in College of Polymer Science and Engineering of Sichuan University. Her current research interests are mainly focused on the design of nanomaterials as well as exploring their applications for flexible electronic device. She has published mainly on polymer with improved dielectric properties, preparation and functionalization of polyaniline microtubules and structure design of thermal conductivity material based on Polyamide.

Wei Yang is a professor in College of Polymer Science and Engineering of Sichuan University. He has published mainly on polymer blends and new composites, polymer based energy storage materials, evolution and control of condensed matter structure in polymer processing process.

Mingbo Yang is a professor in College of Polymer Science and Engineering of Sichuan University. He has published mainly on method and technology of polymer forming, new polymer blends, the basic theory of polymer forming processing and the destructive properties of polymer materials and products.

References

1. Dang ZM, You SS, Zha JW, et al. Effect of shell-layer thickness on dielectric properties in Ag@TiO_2 core@shell nanoparticles filled ferroelectric poly(vinylidene fluoride) composites. Phys Status Solidi. A 2010;207:739–742.
2. Madsen FB, Daugaard AE, Hvilsted S, et al. The Current State of Silicone-Based Dielectric Elastomer Transducers. Macromol Rapid Commun. 2016;37:378–413.
3. Arbatti M, Shan X, Cheng Z. Ceramic-Polymer Composites with High Dielectric Constant. Adv Mater. 2007;19:1369–1372.
4. Wang D, Ba D, Hao Z, et al. A Novel Approach for PDMS Thin Films Production towards Application as Substrate for Flexible Biosensors. Mater Lett. 2018;221:
5. Ohalloran A, Omalley F, Mchugh P. A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys. 2008;104:
6. Qin LI, Xue Q, Zheng Q, et al. Large dielectric constant of the chemically purified carbon nano-tube/polymer composites. Mater Lett. 2008;62:4229–4231.
7. Qi L, Lee B, Chen S, et al. High-Dielectric-Constant Silver–Epoxy Composites as Embedded Dielectrics. Adv Mater. 2005;17:1777–1781.
8. Shang J, Zhang Y, Yu L, et al. Fabrication and enhanced dielectric properties of graphene-polyvinylidene fluoride functional hybrid films with a polyaniline interlayer. J Mater Chem A. 2013;1:884–890.
9. Javadi A, Xiao Y, Xu W, et al. Chemically modified graphene/P(VDF-TrFE-CFE) electroactive polymer nanocomposites with superior electromechanical performance. J Mater Chem. 2012;22:830–834.
10. Carpi F, Gallone G, Galantini F, et al. Silicone–Poly(hexylthiophene) Blends as Elastomers with Enhanced Electromechanical Transduction Properties. Adv Funct Mater. 2008;18:235–241.
11. Ruan M, Yang D, Guo W, et al. Mussel-inspired synthesis of barium titanate@poly(dopamine)@graphene oxide multilayer core-shell hybrids for high-performance dielectric elastomer actuator. Mater Lett. 2018;219.
12. Yuan JK, Dang ZM, Yao SH, et al. Fabrication and dielectric properties of advanced high permittivity polyaniline/poly(vinylidene fluoride) nanohybrid films with high energy storage density. J Mater Chem. 2010;20:2441–2447.
13. Huang X, Jiang P. Core-Shell Structured High-k Polymer Nanocomposites for Energy Storage and Dielectric Applications. Adv Mater Weinheim.. 2015;27:546–554.
14. Shen Y, Lin Y, Nan CW. Interfacial Effect on Dielectric Properties of Polymer Nanocomposites Filled with Core/Shell-Structured Particles. Adv Funct Mater. 2007;17:2405–2410.
15. Shen Y, Lin Y, Li M, et al. High Dielectric Performance of Polymer Composite Films Induced by a Percolating Interparticle Barrier Layer. Adv Mater. 2007;19:1418–1422.
16. Opris DM, Molberg M, Walder C, et al. New Silicone Composites for Dielectric Elastomer Actuator Applications In Competition with Acrylic Foil. Adv Funct Mater. 2011;21:3531–3539.
17. Wang JC. Young's modulus of porous materials. J Mater Sci. 1984;19:809–814.
18. Sonnenschein MF. Porosity-dependent Young’s modulus of membranes from polyetherether ketone. J Polym Sci B Polym Phys. 2003;41:1168–1174.
19. Zhu H, Liu Z, Wang F, et al. Influence of shell thickness on the dielectric properties of composites filled with Ag@SiO₂ nanoparticles. RSC Adv. 2016;6:
20. Kobayashi Y, Katahama H, Mine E, et al. Silica coating of silver nanoparticles using a modified Stober method. J Colloid Interf Sci. 2005;283:392–396.
21. Kashani MR, Javadi S, Gharavi N. Dielectric properties of silicone rubber-titanium dioxide composites prepared by dielectrophoretic assembly of filler particles. Smart Mater Struct. 2010;19(19):035019.
22. Quinsaat JEQ, Alexandru M, Nüesch FA, et al. Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. J Mater Chem A. 2015;3:14675–14685.
23. Yan J, Jeong YG. Roles of carbon nanotube and BaTiO₃, nanofiber in the electrical, dielectric and piezoelectric properties of flexible nanocomposite generators. Compos Sci Technol. 2017;144:1–10.
24. Yang D, Zhang L, Liu H, et al. Lead magnesium niobate-filled silicone dielectric elastomer with large actuated strain. J Appl Polym Sci. 2012;125:2196–2201.
25. Hassouneh SS, Daugaard AE, Skov AL. Design of elastomer structure to facilitate incorporation of expanded graphite in silicones without compromising electromechanical integrity. Macromol Mater Eng. 2015;300:542–550.