Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches

Anirban Pathak

Abstract Recently, Hassanpour and Houshmand have proposed a protocol of controlled deterministic secure quantum communication (Hassanpour and Houshmand, Quantum Inf Process 14:739–753, 2015). The authors compared the efficiency of their protocol with that of two other existing protocols and claimed that their protocol is efficient. Here, we have shown that the efficiency of Hassanpour Houshmand (HH) protocol is not high, and there exist several approaches through which more efficient protocols for the same task can be designed. To establish this point, we have proposed an efficient protocol of controlled deterministic secure quantum communication which is based on permutation of particles technique and is considerably efficient compared to HH protocol. We have also generalized this protocol into its bidirectional counterpart. Interestingly, bipartite entanglement (Bell state) is sufficient for the realization of the proposed protocols, but HH protocol and other existing protocols require at least tripartite entanglement. Further, we have shown that it is possible to construct a large number of efficient protocols of unidirectional and bidirectional controlled deterministic secure quantum communication by using various alternative approaches and different quantum states. These alternative protocols can be realized by modifying the existing protocols of quantum secure direct communication and deterministic secure quantum communication. We have also shown that it is possible to design completely orthogonal-state-based protocols for unidirectional and bidirectional controlled deterministic secure quantum communication.
1 Introduction

In 1984, Bennett and Brassard proposed a protocol of quantum key distribution (QKD) [1]. The protocol, which is popularly known as BB84 protocol, drew considerable attention of the cryptographic community as the protocol was unconditionally secure. As a consequence, several other protocols of secure quantum communication have been proposed. Interestingly, in the early years of secure quantum communication, only protocols of QKD were proposed [1–4]. However, it was realized soon that quantum states can be employed to design the protocols for secure direct quantum communication where we can circumvent the prior generation of keys (i.e., QKD) and thus directly communicate a message by using quantum resources. In the last few years, many such protocols of secure direct quantum communication have been proposed. Such protocols can be classified into two broad classes: (a) protocols for quantum secure direct communication (QSDC) [5–8] and (b) protocols for deterministic secure quantum communication (DSQC) [9–16]. The difference between DSQC and QSDC is very small. Specifically, in a DSQC protocol, Bob (receiver) can decode the secret message sent by Alice (sender) only after the receipt of the additional classical information of at least one bit for each qubit transmitted by Alice. In contrast, no such additional classical information is required in QSDC ([17] and references therein). Further, extending the idea of secure direct quantum communication, a few three-party protocols have recently been introduced [18–20]. In these protocols, Alice can directly communicate a secret message to Bob, if a controller (Charlie) allows them to do so. These protocols are referred to as controlled QSDC (CQSDC) protocols. However, if we stick to the definition of QSDC, it does not appear justified to refer to these protocols as CQSDC. This is so because in all these protocols, Bob can read the message sent by Alice, only after Charlie provides him some additional classical information (usually outcome of a measurement performed by Charlie). Thus, it would be more appropriate to call them controlled DSQC (CDSQC) or controlled secure direct quantum communication. In what follows, we refer to these protocols as CDSQC. Very recently, Hassanpour and Houshmand (HH) have proposed an interesting entanglement-swapping-based protocol of CDSQC [18] using GHZ-like states. They claimed their protocol as a protocol of CQSDC, but the claim is not correct as in their protocol the receiver (Bob) can decode the secret message only after the receipt of classical information from both the sender (Alice) and controller (Charlie). Thus, the HH protocol is actually a protocol of DSQC. Further, they claimed their protocol as an efficient one by comparing the qubit efficiency of their protocol with that of Gao et al. [19] and Dong et al. [20] protocols. However, a critical analysis of HH protocol reveals that the efficiency reported in Ref. [18] can be considerably improved, and the protocols of CDSQC can be designed using various quantum states and various alternative ways. This paper aims to establish these facts. Further, in Ref. [18], Hassanpour and Houshmand have mentioned that in the future, they wish to extend the HH protocol to a protocol of controlled bidirectional deterministic secure quantum communication (CBDSQC). Here, we explicitly provide a protocol of CBDSQC and also provide some possible alternative methods for realization of CBDSQC. In our protocols, permutation of particles (PoP) plays a very important role. This technique was first introduced by Deng and Long in [21], while they proposed a protocol of QKD based on this technique. In what follows, we
will find that PoP helps us to improve the efficiency of the protocols of CDSQC and CBDSQC and to obtain completely orthogonal-state-based protocols of CDSQC and CBDSQC.

Remaining part of this paper is organized as follows. In Sect. 2, we provide a protocol of CDSQC that uses PoP, dense coding and Bell states. Subsequently, we show that there exist several alternative approaches through which CDSQC protocols can be designed. In Sect. 3, we show that our main protocol of CDSQC can be turned to a protocol of CBDSQC, and there exist infinitely many quantum channels that can be used to realize CBDSQC. In Sect. 4, we compared the efficiency of the proposed protocols with that of the HH protocol and established that the efficiency of CDSQC protocol can be increased considerably. To be precise, we have shown that our protocols are much more efficient compared to the HH protocol. Finally, we conclude the paper in Sect. 5, where we categorically list a set of important observations.

2 Controlled secure direct quantum communication using Bell states

Before we elaborate our protocol of CDSQC, it will be useful to briefly describe the basic ideas of some closely connected protocols of QSDC and DSQC. Let us first describe the Ping-Pong (PP) protocol [6] of QSDC. In PP protocol, Bob prepares a Bell state, keeps the second qubit with himself and sends the first qubit to Alice, who encodes a message on the qubit she received and returns the qubit to Bob. Subsequently, Bob performs a joint measurement on both the qubits using Bell basis and obtains the secret encoded by Alice. The encoding is done by following a pre-decided rule: To communicate 0, Alice does nothing, and to communicate 1, she applies X gate. Thus, if Bob prepares $|\psi^+\rangle = |00\rangle + |11\rangle$ as the initial state and receives the same state as the outcome of his measurement, then Alice has encoded 0, whereas if his measurement yields $|\phi^+\rangle = |10\rangle + |01\rangle$, then Alice has encoded 1. Clearly, in PP protocol, full advantage of dense coding is not utilized. The same is utilized in Cai Li (CL) protocol [22], which is a modified PP protocol with the following rule for encoding: To encode 00, 01, 10 and 11, Alice applies I, X, iY and Z gates, respectively. Now, we can easily see that Bob’s possible measurement outcomes $|\psi^+\rangle$, $|\phi^+\rangle$, $|\phi^-\rangle$, and $|\psi^-\rangle$ correspond to Alice’s secret bits 00, 01, 10, and 11, respectively. Except this difference in the encoding part, the CL protocol is same as the PP protocol. In both of these protocols, Bob prepares the maximally entangled state and sends a part of it to Alice. In contrast to PP and CL protocols, in Deng Long Liu (DLL) protocol [23], Alice prepares a Bell state and sends the second qubit to Bob and verifies that he has received it without eavesdropping. Subsequently, Alice encodes her message on the first qubit by following the same encoding rule as done in the CL protocol and sends the qubit to Bob, who measures it in Bell basis. Here, it is important to note the following: (1) If a third party (Charlie) distributes the entanglement to Alice and Bob, then CL and DLL protocols are equivalent (this will be the case with the protocol proposed below). (2) Clearly, CL and DLL protocols are more efficient than PP protocol. Further, CL and DLL protocols can be easily realized using other entangled states where dense coding is possible, but the
efficiency will be higher for those states where maximal dense coding is possible. Consequently, the efficiency of any dense coding-based scheme that uses multipartite entangled states with odd number of qubits have to be lower than the situation where the same scheme is realized using Bell states. So far, we have not discussed anything about the security of PP, CL and DLL schemes. The security is achieved in two alternative ways. We refer to these two alternative methods as BB84 subroutine and GV subroutine. In both the methods, to transmit a sequence A of n message qubits, the sender creates an additional sequence D of n decoy qubits and inserts the decoy qubits randomly into the sequence of message qubits. The combined sequence is sent to the receiver. In BB84 subroutine, the decoy qubits are prepared in a random sequence of $\{|0\rangle, |1\rangle, |+\rangle, |-\rangle\}$, whereas in GV subroutine, n decoy qubits are prepared as $|\psi^+\rangle^\otimes \frac{n}{2}$.

BB84 subroutine: In this method, eavesdropping is checked using two or more mutually unbiased bases (i.e., using conjugate coding) in a manner similar to what followed in BB84 protocol [1]. Specifically, after receiving the authentic acknowledgment from the receiver, the sender announces the positions of the decoy qubits. Now, the receiver measures all the decoy qubits randomly in $\{|0\rangle, |1\rangle\}$ or $\{|+\rangle, |-\rangle\}$ basis and announces which basis he/she has used to measure a particular decoy qubit, position of that decoy qubit and the outcome. The sender compares the initial states of the decoy qubits with the outcomes of the receiver’s measurement in all those cases where the basis used by the sender to prepare the decoy qubit is same as the basis used by the receiver to measure it. Ideally, in the absence of eavesdropping, the states should match the outcomes, while any eavesdropping effort would lead to a mismatch. The security of the schemes that use the above subroutine is equivalent to that of BB84 protocol, and the security arises essentially from the information versus disturbance trade-off in quantum mechanics. This trade-off asserts that a measurement strategy designed to acquire information about an observable will disturb information in an incompatible observable [24]. Cryptographically, this means that by mixing two or more ways of encoding classical information using non-orthogonal states, legitimate observers can monitor the presence of Eve. This disturbance is maximal when the incompatible bases are mutually unbiased [25]. The information versus disturbance trade-off, which allows Alice and Bob to estimate Eve’s information based on the observed disturbance, determines the largest error that Alice and Bob can tolerate. In practice, modeling Eve’s attack can be tricky, and it was not until 2000 that a simple proof for the security of BB84 was shown using quantum error correcting techniques by Shor and Preskill [26].
GV subroutine: After receiving the authenticated acknowledgment from the sender that he/she has received all the $2n$ qubits sent to him/her, the sender discloses the actual sequence of the decoy qubits, so that the receiver can perform Bell measurements on partner particles (original Bell pairs) and reveal any effort of eavesdropping through the disturbance introduced by Eve’s measurements.

To understand this point, consider that the sender prepares $|\psi^+\rangle \otimes |\psi^+\rangle = |\psi^+\psi^+\rangle_{1234}$ and randomly changes the sequence of the particles and sends them to receiver. Now, also consider that Eve knows that two Bell states are sent, but she does not know which qubit is entangled to which qubit. Consequently, any wrong choice of partner particles would lead to entanglement swapping (say, if Eve does Bell measurement on qubit numbers 1, 3; 1, 4 and/or 2, 4 that would lead to entanglement swapping). Now, at a later time, when the sender discloses the actual sequence of the transmitted qubits, the receiver uses that data to rearrange the qubits into the original sequence and performs Bell measurements on them. Clearly, attempts of eavesdropping will leave detectable traces through the entanglement swapping and whenever receiver’s Bell measurement would yield any result other than $|\psi^+\rangle$, they will know the existence of an eavesdropper.

The security of the schemes that uses GV subroutine also arises from the information versus disturbance trade-off in quantum mechanics involving MUBs. However, instead of non-orthogonal states involving internal degrees of freedom, such as polarization, it uses orthogonal states involving the external degrees of freedom of position- and momentum-like observables. The information is encoded in terms of the elements of an entangled basis, but through geographic separation of individual particles (which is ensured here through application of PoP), Eve is restricted to being unable to measure the entangled states using the entangled basis used for encoding. Thus, Eve’s measurements can only provide her partial information, and the measurement process disturbs the information encoded in the entangled basis [27, 28]. Security can also be seen as due to a generalized no-cloning theorem, whereby even orthogonal states cannot be cloned, because the full system is inaccessible at any given time [29].

In the conventional PP, CL and DLL protocols, eavesdropping is checked by applying BB84 subroutine (i.e., using conjugate coding), but the encoding and decoding are done by using orthogonal states. Thus, if we replace BB84 subroutine by GV subroutine, then we can obtain completely orthogonal-state-based counterparts of PP, CL and DLL protocols. Specifically, orthogonal-state-based protocols of QSDC that correspond to PP, CL and DLL are referred to as PP$^\text{GV}$, CL$^\text{GV}$ and DLL$^\text{GV}$, respectively [27, 30].
This discussion provides us sufficient background to describe an efficient protocol of CDSQC which can be realized either using conjugate coding (if BB84 subroutine is used for eavesdropping checking) or in a way which is completely orthogonal state based (if GV subroutine is used for eavesdropping checking). Our protocol can be described in following steps:

1. Charlie prepares n Bell states $|\psi^+\rangle^{\otimes n}$ with $n \geq 2$. He uses the Bell states to prepare two ordered sequences as follows:
 (a) A sequence with all the first qubits of the Bell states: $P_A = [p_1(t_A), p_2(t_A), \ldots, p_n(t_A)]$,
 (b) A sequence with all the second qubits of the Bell states: $P_B = [p_1(t_B), p_2(t_B), \ldots, p_n(t_B)]$.

 where the subscripts 1, 2, \ldots, n denote the order of a particle pair $p_i = \{t_A^i, t_B^i\}$, which is in the Bell state.

 To illustrate how the sequence P_A and P_B are prepared, we may consider a specific example. Let us assume that Charlie prepares $|\psi^+\rangle^{\otimes 3} = \left(\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_{12}\right) \otimes \left(\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_{34}\right) \otimes \left(\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_{56}\right)$.

 Qubits 1, 2 constitute the Bell pair p_1 and similarly qubits 3, 4 and 5, 6 constitute Bell pair p_2 and p_3, respectively. As Alice keeps first qubits of all the Bell pairs (i.e., first qubits of p_1, p_2 and p_3), her sequence P_A is made of qubit number 1, 3 and 5. Similarly, Bob’s sequence P_B is made of qubit number 2, 4 and 6. Thus, in this example, $p_1(t_A)$, $p_1(t_B)$ and $p_2(t_A)$ are first, second and third qubits, respectively. Now for our convenience, if we denote $p_i(t_j) : i \in \{1, 2, 3\}$ (for this example) and $j \in \{A, B\}$ with the corresponding qubit number, then we have $P_A = [p_1(t_A), p_2(t_A), p_3(t_A)] \equiv [1, 3, 5]$ and $P_B = [p_1(t_B), p_2(t_B), p_3(t_B)] \equiv [2, 4, 6]$.

2. Charlie applies an n-qubit permutation operator Π_n on P_B to create a new sequence as $P_B' = \Pi_n P_B$. The actual order (Π_n) is known to Charlie only. Here, we may illustrate the working of PoP or particle order rearrangement technique using the example given after the previous step. In our example, $P_B = [p_1(t_B), p_2(t_B), p_3(t_B)] \equiv [2, 4, 6]$. A 3-qubit permutation operator Π_3 randomly transforms this sequence (i.e., randomizes the sequence). Specifically, $\Pi_3 P_B = \Pi_3[2, 4, 6]$ will randomly yield one of the following 6 sequences as $P_B': [2, 4, 6], [2, 6, 4], [6, 2, 4], [6, 4, 2], [4, 2, 6], [4, 6, 2]$. Without the knowledge of the actual sequence, a potential eavesdropper will be ignorant about which particle of P_B' is entangled with which particle of P_A.

3. Charlie prepares $2n$ decoy qubits either as a random sequence of $\{|0\rangle, |1\rangle, |+\rangle, |−\rangle\}$ or as $|\psi^+\rangle^{\otimes n}$ and randomly inserts first (last) n decoy qubits in $P_A(P_B')$ to yield a larger sequence $P_A''(P_B''')$ having $2n$ qubits. Subsequently, Charlie sends P_A'' and P_B''' to Alice and Bob, respectively. The actual positions of the decoy qubits are known to Charlie only.

4. Charlie discloses the coordinates of the decoy qubits after receiving the authenticated acknowledgment of the receipt of the qubits from Alice and Bob. Alice and Bob apply BB84 subroutine, if the decoy qubits are prepared as a random sequence of $\{|0\rangle, |1\rangle, |+\rangle, |−\rangle\}$ to check the error rate (eavesdropping). Otherwise, (i.e., if the decoy qubits are prepared as $|\psi^+\rangle^{\otimes n}$) they apply a GV subroutine to check
error rate. If the computed error rate is found lower than the tolerable error limit, they go to the next step; otherwise, they return back to Step 1.

5. On successful completion of the error checking, Alice (Bob) understands that he/she shares entanglement with Bob (Alice). Alice can now encode her secret message by performing a Bell-state-based protocol of secure direct communication (either a protocol of QSDC or that of DSQC) and send her qubits to Bob (after randomly inserting \(n \) decoy qubits). The specific QSDC/DSQC protocol may be chosen from a large class of protocols. For example, they may use one protocol from the following set of protocols \(\{ \text{PP, PP}^{\text{GV}}, \text{CL, CL}^{\text{GV}}, \text{DLL, DLL}^{\text{GV}} \} \).

Since the sequence with Alice and Bob are different, even if Alice or Bob obtains the access of both \(P_A \) and \(P_B' \), they will not be able to find out which particle is entangled with which particle. Thus, until Charlie discloses \(\Pi_n \), Bob will not be able to decode the information encoded by Alice.

6. Charlie discloses \(\Pi_n \), when he plans to allow Bob to decode the information encoded by Alice.

7. Since the initial Bell states and exact sequence are known, Bob measures the initially entangled (partner) particles in Bell basis and using the outcomes of his measurement and the knowledge of the initial state, he decodes the secret sent by Alice.

Here, it is interesting to note that the above scheme is not limited to Bell state. There exist several alternative approaches through which efficient CBDSQC schemes can be designed. Here, we list a few alternative paths.

2.1 Alternative 1: CDSQC using entangled states other than Bell states

It can be implemented by distributing other entangled states, too. To illustrate this point more clearly, we may note that dense coding schemes for a large set of entangled states (e.g., \(W \) state, GHZ state, GHZ-like state, \(Q_4 \) state, \(Q_5 \) state, cluster state, \(|\Omega \rangle \) state, Brown state) are described in our recent works \([31,32]\). In all such dense coding schemes using \(N \)-qubit entangled states, initially Alice possesses \(p \) qubits (with \(\frac{N}{2} \leq p < N \)), and Bob possesses \((N - p)\) qubits. Subsequently, Alice encodes her message on the \(p \) qubits of her possession and sends the message-encoded qubits to Bob, who measures the \(N \)-qubit state in an appropriate basis. Now, to implement a scheme of CDSQC, Charlie should follow the same strategy as above and distribute \(p \) qubits of each of the \(N \)-qubit entangled states to Alice (with appropriate security measures) and a reordered sequence of remaining \((N - p)\) qubits to Bob. Alice will encode her secret on her qubits by applying the unitary operations that lead to dense coding and send the qubits to Bob who will be able to decode the message only after Charlie’s disclosure of the actual order. Thus, this provides several possibilities of obtaining CDSQC. Specifically, CDSQC is possible using above protocol and \(n \) copies of any of the following entangled states: \(W \) state, GHZ state, GHZ-like state, \(Q_4 \) state, \(Q_5 \) state, cluster state, \(|\Omega \rangle \) state, Brown state, etc. Interestingly, the possibilities are not exhausted here. It is also possible to design entanglement-swapping-based protocols of CDSQC using various other entangled states. In the following subsection, we elaborate this point.
2.2 Alternative 2: CDSQC using entanglement swapping and PoP

In a recent work [33], we have shown that it is possible to design a protocol of DSQC that can transmit an s-bit message using entanglement swapping, and the quantum states of the form

$$|\psi\rangle = \frac{1}{\sqrt{2^s}} \sum_{i=1}^{2^s} |e_i\rangle |f_i\rangle,$$

where $\{|e_i\rangle\}$ is a basis set in C^{2m} : $m \geq s$ (where $|e_i\rangle$ is a maximally entangled m-qubit state) and each of the basis vectors is an m-qubit maximally entangled state ($m \geq 2$), and $\{|f_i\rangle\}$ is a basis set in C^{2l} : $l \geq s \geq 1$. Elements of $\{|f_i\rangle\}$ may be separable. Thus, $|\psi\rangle$ is an $m + l$ qubit state. Further, since $\{|e_i\rangle\}$ and $\{|f_i\rangle\}$ are basis sets, $i \neq i'$ implies that $|\psi\rangle$ is an entangled state. In general, we demand $|e_i\rangle$ is a maximally entangled m-qubit state. In our original protocol, we had assumed that the quantum state $|\psi\rangle$ described in Eq. (1) is prepared by Alice, who keeps first m qubits with herself and sends the remaining l qubits to Bob in a non-clonable manner. By non-clonable manner, we mean that Alice sends the qubits to Bob in such a way that Eve cannot clone the state $|f_i\rangle$. To convert our DSQC protocol [33] into an entanglement-swapping-based protocol of CDSQC, it would be sufficient to consider that Charlie prepares $|\psi\rangle \otimes n$ and sends a sequence of nm qubits to Alice (the sequence contains first m qubits of each copy of $|\psi\rangle$), and he sends remaining nl qubits to Bob after applying Π_{nl} on them. Subsequently, Alice will encode her secret message by faithfully following the entanglement-swapping-based DSQC protocol of ours [33], but Bob will not be able to decode the message unless Charlie discloses Π_{nl}. In [33], we have provided several examples of quantum states of the form (1) (cf. Table 1 of [33]) which can be used to implement DSQC using entanglement swapping. The above strategy of Charlie implies that all the states of the form (1) can be used to implement CDSQC using entanglement swapping. Specifically, we can use GHZ state, GHZ-like state, cat state, cluster state, Ω state, χ state, Brown state, etc., to implement CDSQC based on entanglement swapping. Interestingly, there exists another alternative approach through which a protocol of CDSQC can be designed.

2.3 Alternative 3: CDSQC using dense coding and $(N + 1)$-qubit entangled state

Consider that we have n copies of the $(N + 1)$-qubit quantum state of the form

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\psi_1\rangle_{A_1,2,...,pB_{1,2,...,N-p}} |a\rangle_{C_1} \pm |\psi_2\rangle_{A_1,2,...,pB_{1,2,...,N-p}} |b\rangle_{C_1} \right),$$

where single qubit states $|a\rangle$ and $|b\rangle$ satisfy $\langle a|b\rangle = \delta_{a,b}$, and $|\psi_i\rangle$ is an element of an N-qubit basis set S, where dense coding is possible if the receiver possesses p qubits and the sender possesses $N - p$ qubits. The subscripts A, B and C indicate the qubits of Alice, Bob and Charlie, respectively, and the condition

$$|\psi_1\rangle \neq |\psi_2\rangle$$
ensures that Charlie’s qubit is appropriately entangled with remaining N qubits. In a protocol that uses a quantum state of this form, Charlie prepares n copies of the $(N + 1)$-qubit quantum state $|\psi\rangle$ and transmits p qubits of each state to Alice as a sequence A and rest $N - p$ qubits to Bob as a sequence B. Charlie randomly inserts decoy qubits in the sequences A and B, but does not alter the order of the qubits present in sequence B. Here, Charlie’s control on the protocol arises from the fact that unless he measures his qubit in $\{|a\rangle, |b\rangle\}$ basis, Bob is unaware of the initial state on which Alice has encoded her secret message using unitary operators. However, with the knowledge of Charlie’s measurement outcome, Bob will be able to decode the message sent by Alice. A very special case of the above described general state is a GHZ-like state, where $|\psi_i\rangle \in \{ |\psi^+\rangle, |\psi^-\rangle, |\phi^+\rangle, |\phi^-\rangle : |\psi_1\rangle \neq |\psi_2\rangle \}$, $|\psi^\pm\rangle = |00\rangle \pm |11\rangle \sqrt{2}$, $|\phi^\pm\rangle = |01\rangle \pm |10\rangle \sqrt{2}$.

3 Controlled bidirectional deterministic secure quantum communication using Bell states

In the recent paper of Hassanpour and Houshmand [18], the authors have mentioned that in the future, they wish to extend their proposal to a CBDSQC protocol. Here, we will show that it is a straightforward exercise to transform our first protocol into a protocol of CBDSQC. In fact, there exist a large number of alternatives through which one can produce it.

1. Charlie prepares $2n$ Bell states $|\psi^\pm\rangle \otimes 2n$ with $n \geq 2$. He uses the Bell states to prepare four ordered sequences as follows:
 (a) A sequence with all the first qubits of the first n Bell states: $P_{A_1} = [p_1(t_A), p_2(t_A), \ldots, p_n(t_A)]$,
 (b) A sequence with all the first qubits of the last n Bell states: $P_{A_2} = [p_{n+1}(t_A), p_{n+2}(t_A), \ldots, p_{2n}(t_A)]$,
 (c) A sequence with all the second qubits of the first n Bell states: $P_{B_1} = [p_1(t_B), p_2(t_B), \ldots, p_n(t_B)]$,
 (d) A sequence with all the second qubits of the last n Bell states: $P_{B_2} = [p_{n+1}(t_B), p_{n+2}(t_B), \ldots, p_{2n}(t_B)]$,
 where the subscripts $1, 2, \ldots, 2n$ denote the order of a particle pair $p_i = (t_A^i, t_B^i)$, which is in the Bell state.

2. Charlie applies n-qubit permutation operators Π_{n_1} and Π_{n_2} on P_{A_2} and P_{B_1} to create two new sequences as $P'_{A_2} = \Pi_{n_1} P_{A_2}$ and $P'_{B_1} = \Pi_{n_2} P_{B_1}$ and sends the sequences P_{A_1} and P'_{A_2} (P_{B_2} and P'_{B_1}) to Alice (Bob) after random insertion of n decoy qubits in each sequence. The actual order is known to Charlie only. It is pre-decided that the first (last) n Bell states prepared by Charlie are to be used for Alice to Bob (Bob to Alice) communication. Clearly, the rest of the protocol will be analogous to the previous one with the only difference that Alice (Bob) will encode her (his) secret message on P_{A_1} (P_{B_2}) and sends that to Bob (Alice), who will be able to decode the encoded message only after Charlie’s disclosure of Π_{n_1} (Π_{n_2}).

 Springer
Clearly, all the states for which dense coding is possible can be used to implement this protocol. Now, consider a $2N + 1$ qubit state of the form
\[
|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\psi_1\rangle_{A_1,2,\ldots,N-p} |\psi_2\rangle_{B_1,2,\ldots,N-p} |a\rangle_{C_1} \pm |\psi_3\rangle_{A_1,2,\ldots,N-p} |\psi_4\rangle_{B_1,2,\ldots,N-p} |b\rangle_{C_1} \right),
\]
where $|a\rangle$, $|b\rangle$ and $|\psi_i\rangle$ have the same meaning as in the protocol of CDSQC described above as Alternative 3. The condition
\[
|\psi_1\rangle \neq |\psi_3\rangle, |\psi_2\rangle \neq |\psi_4\rangle
\]
ensures that Charlie’s qubit is appropriately entangled with the remaining qubits. By appropriately entangled we mean that unless Charlie measures his qubit in $\{|a\rangle, |b\rangle\}$ basis and discloses the outcome, Alice and Bob are not aware of the entangled states they share, and consequently, the receiver does not know upon the receipt of the sender’s information encoded qubits, how to decode the message. This provides the desired control. Here, a measurement by Charlie in $\{|a\rangle, |b\rangle\}$ basis will reduce the state into a product state of the form $|\psi_i\rangle \otimes |\psi_j\rangle$, where first p qubits of $|\psi_i\rangle$ and last $(N - p)$ qubits of $|\psi_j\rangle$ are with Alice, and the remaining qubits are with Bob. Further, this enables Alice and Bob to use the state $|\psi_i\rangle(|\psi_j\rangle)$ for Alice to Bob (Bob to Alice) communication using dense coding, and we can have a scheme of CBDSQC as the receivers in both directions will be able to decode the message encoded by the senders only after Charlie’s disclosure of his measurement outcome. Further, in completely different contexts, we have shown that the 5-qubit quantum states of the following form are useful for bidirectional controlled state teleportation (BCST) [34] and controlled bidirectional remote state preparation (CBRSP) [35]:
\[
|\psi\rangle_{12345} = \frac{1}{\sqrt{2}} \left(|\psi_1\rangle_{A_1,B_1} |\psi_2\rangle_{A_2,B_2} |a\rangle_{C_1} \pm |\psi_3\rangle_{A_1,B_1} |\psi_4\rangle_{A_2,B_2} |b\rangle_{C_1} \right),
\]
where single qubit states $|a\rangle$ and $|b\rangle$ satisfy $\langle a|b \rangle = \delta_{a,b}$, $|\psi_i\rangle \in \{|\psi^+\rangle, |\psi^-\rangle, |\phi^+\rangle, |\phi^-\rangle\}$, $|\psi_1\rangle \neq |\psi_3\rangle, |\psi_2\rangle \neq |\psi_4\rangle$, $|\psi^\pm\rangle = \frac{|00\rangle \pm |11\rangle}{\sqrt{2}}$, $|\phi^\pm\rangle = \frac{|01\rangle \pm |10\rangle}{\sqrt{2}}$. This is clearly a special case of the more general state (4), and we may conclude that the 5-qubit states that are shown to be useful for BCST and CBRSP are also useful for CBDSQC. In our earlier work [34], we have already shown that the total number of possible 5-qubit quantum states of the form (6) is infinite. Thus, there exist infinitely many alternative 5-qubit quantum states that can be used for the implementation of CBDSQC.

4 Qubit efficiency of the protocols

The efficiency of a quantum cryptographic protocol is quantitatively measured using two analogous but different parameters. The first one is defined as
\[
\eta_1 = \frac{c}{q},
\]
Efficient protocols for unidirectional and bidirectional

where \(c \) denotes the total number of transmitted classical bits (message bits) and \(q \) denotes the total number of qubits used [36]. The limitation of this simple measure is that it does not include the classical communication that is required for decoding of the information in a DSQC protocol or CDSQC protocol. To circumvent this limitation of the first measure, another quantitative measure [37] is defined as

\[
\eta_2 = \frac{c}{q+b},
\]

(8)

where \(b \) is the number of classical bits exchanged for decoding of the message (classical communication used for checking of eavesdropping is not counted). It is straightforward to visualize that \(\eta_1 = \eta_2 \) for all QSDC and QSDC\(^\text{GV} \) protocols, but \(\eta_1 > \eta_2 \) for all DSQC protocols [cf. [17] for a detail discussion]. Hassanpour and Houshmand [18] compared efficiency of their protocol of CDSQC with that of Gao et al. [19] and Dong et al. [20] protocols using these quantitative measures of efficiency. However, they have used a different notation in which they referred to \(\eta_1 \) of the present paper as \(\eta_2 \) and vice versa, but that does not affect our analysis.

It is important to note that the decoy qubits used for eavesdropping check and the classical communications involved in eavesdropping check are not included in the computation of qubit efficiency in Ref. [18]. Remaining consistent with them, we may note that if any of the following protocols \(\{ \text{CL, CL}^{\text{GV}}, \text{DLL, DLL}^{\text{GV}} \} \) is used as a sub-protocol in our protocol of CDSQC, then each Bell state can be used for the transmission of two bits of classical information, implying that for the whole protocol \(c = 2n \), and it requires \(2n \) qubits, so \(q = 2n \). Further, disclosure of \(\Pi_n \) requires \(n \)-bit of classical information. Thus, \(b = n \). This leads to \(\eta_2 = \frac{2n}{2n} = 66.67 \% \), and \(\eta_1 = \frac{2n}{2n} = 100 \% \). Clearly, this is more efficient than the existing protocols. However, the efficiency calculation is not appropriate and we should count the qubits used as decoy qubits. In the above, \(2n \) decoy qubits are used in total to check eavesdropping during Charlie’s transmission step. Another \(n \) qubits are used for eavesdropping check during Alice to Bob transmission. Thus, \(q = 2n + 3n = 5n \) and \(\eta_2 = \frac{2n}{6n} = 33.33 \% \) and \(\eta_1 = \frac{2n}{5n} = 40 \% \).

In Sect. 3.3 of Ref. [18], some of the GHZ-like states prepared by Alice are used for security check. Hassanpour and Houshmand did not explicitly mention how many qubits are used for security check. However, it is well known that to obtain the required security, half of the transmitted qubits must be checked for eavesdropping. Specifically, if \(2x \) qubits (a random mix of message qubits and decoy qubits) travel through a quantum channel accessible to Eve and \(x \) of them are tested for eavesdropping, then for any \(\delta > 0 \), the probability of obtaining less than \(\delta n \) errors on the check qubits (decoy qubits), and more than \((\delta + \epsilon)n \) errors on the remaining \(x \) qubits is asymptotically less than \(\exp[-O(\epsilon^2 x)] \) for large \(x \) [38]. Thus, to obtain an unconditional security, we always need to check half of the travel qubits for eavesdropping. Therefore, to obtain two copies of GHZ-like state that are used in Eq. (9) of Sect. 3.4 of Ref. [18], Alice must start the preparation phase (i.e., Sect. 3.2 of Ref. [18]) with four copies of GHZ-like state. Therefore, \(q = 12 \) and consequently corrected qubit efficiency of the protocol of Hassanpour and Houshmand should be \(\eta_1 = \frac{2}{12} = 16.66 \% \) and \(\eta_2 = \frac{2}{12+3} = 13.33 \% \). Clearly, the efficiency of the protocol reported here is 3 (2).
Table 1 Comparison of the efficiency of HH protocol [18] and the protocols proposed here.

Protocol	Without counting decoy qubits	Counting decoy qubits
	η_1 (%)	η_2 (%)
HH [18]	33.33	22.22
Proposed CDSQC protocol (unidirectional using Bell states)	100	66.67
Proposed CBDSQC protocol (bidirectional using Bell states)	100	66.67
CDSQC using Alternative 3 (unidirectional with GHZ-like states)	66.67	50
CDSQC using Alternative 3 (unidirectional with $(2m + 1)$-qubit states ($m \gg 1$))	100	100

In this table, we have not included the efficiency of CDSQC protocols of Dong et al. [20] and Gao et al. [19] as in Ref. [18] it is already established that HH protocol is more efficient than Dong et al. and Gao et al. protocols.

Times more than that of the protocol of Hassanpour and Houshmand if we use $\eta_2(\eta_1)$ as the measure of efficiency. The CBDSQC scheme described above has the same qubit efficiency as that of the unidirectional scheme. This is so, because in the bidirectional case, all quantities (e.g., q, m and b) just get doubled in comparison with their values in unidirectional case. This linear change has no impact on the efficiency. Interestingly, even if we use GHZ-like states to implement a scheme of CDSQC using Alternative 3 described in Sect. 2.3, we will have higher values of efficiency compared to HH protocol. To illustrate this fact, we consider that the initial state used is n copies of GHZ-like states. Therefore, Charlie keeps n-qubits (all the last qubits) and sends the rest of the $2n$ qubits to Alice and Bob through the quantum channels. For the secure transmission of those $2n$ qubits, Charlie has to insert $2n$ decoy qubits, too. Thus, up to this step, we require $5n$ qubits. Using dense coding, Alice can send $2n$ bits of information, thus $c = 2n$. However, during Alice to Bob communication, Alice has to add n decoy qubits that will lead to $q = 6n$ and thus $\eta_1 = \frac{2}{3} = 33.33\%$ and $\eta_2 = \frac{2}{7} = 28.57\%$. However, the efficiency of this scheme can asymptotically approach 40%. To visualize this, we may assume that the state prepared by Charlie in Alternative 3 is $|\text{Cat}_1\rangle|0\rangle + |\text{Cat}_2\rangle|1\rangle$, where Cat_i is a $2m$ qubit Cat state, where maximal dense coding is possible. In this case, Charlie sends m qubits to Alice and m qubits to Bob with equal amount of decoy qubits. Subsequently, after encoding $2n$ bits of information using dense coding scheme, Alice would send Bob m message qubits that she received from Charlie and m decoy qubits. Finally, Charlie announces the outcome of his measurement in computational basis. This implies $q = 5m$, $c = 2m$ and $b = 1$. Thus, $\eta_2 = \frac{2m}{5m+1}$ and for $m \gg 1$, we obtain $\eta_2 = \frac{2}{5} = 40\%$.

5 Conclusions

We conclude this paper by noting the following useful and important observations:
1. It is shown that in the strict sense, the protocol of Hassanpour and Houshmand and the protocols designed here are actually protocols of controlled DSQC and not of controlled QSDC as in these protocols, and all the similar protocols, the controller has to disclose some information without which the receiver will not be able to decode the information encoded by the sender.

2. In Ref. [18], Hassanpour and Houshmand described a protocol of CDSQC using entanglement swapping. For the purpose, they have used two copies of GHZ-like states. Similar protocols can be devised using a large number of entangled states of a generic form described by Eq. (1). Further, using block streaming of qubits and PoP (as used in the first protocol described here), the controller can securely distribute quantum states of the form (1) to the receiver and sender, and subsequently, they can use QSDC/DSQC protocol described in our earlier work [33]. This point is already elaborated in Sect. 2. In Sects. 2 and 3, we have also provided a large number of alternative approaches and alternative quantum states that lead to CDSQC. Thus, this paper provides many alternatives for the experimental realizations of CDSQC. All these alternative schemes are equally secure as the security essentially arises through the proper use of BB84 subroutine or GV subroutine. However, the efficiency of the proposed schemes are not equal as shown in Table 1. Further, protocols proposed as alternatives 1 and 3 essentially require multi-qubit entangled states (3-qubit or more) and the protocol proposed as Alternative 2 can be implemented using both 2-qubit and multi-qubit entangled state. Experimental realization and maintenance of such multi-qubit states are relatively more difficult in comparison to the preparation and maintenance of Bell states. Further, in Ref. [33], it is shown that the efficiency of the intrinsic entanglement-swapping-based DSQC protocol used in Alternative 2 is smaller than that of a dense coding-based DSQC/QSDC scheme that do not use entanglement swapping. As a consequence, Alternative 2 is less efficient. Interestingly, from Table 1, we can observe that the qubit efficiency η_2 (counting decoy qubits) of the unidirectional CDSQC scheme implemented using Alternative 3 with $(2m + 1)$-qubit states increases with m and approaches the maximum value for $m \gg 1$, but the experimental difficulty in preparation of such a state also increases with m. Thus, in a real experiment, choice of quantum channel and protocol will depend on both the qubit efficiency that can be obtained using that quantum channel and the difficulty in preparation and maintenance of that.

3. Here, it is established that the efficiency reported in the efficient CDSQC protocol of Hassanpour and Houshmand can be considerably increased by appropriately using block streaming and PoP. The point is clearly illustrated in the previous section and in Table 1.

4. The fact that the efficiency of the entangled state-based protocol is less compared to the proposed protocols is not surprising as in the context of conventional QSDC and DSQC protocols designed by us [17,28,31], we have already seen that using block streaming and PoP, we can design maximally efficient protocols of QSDC and DSQC, but the maximal efficiency was not achieved when we used entanglement swapping for the same purpose [cf. our earlier work [33]].

5. In any protocol of CDSQC, the receiver and sender need to be semi-honest [39]. Otherwise, it will always be possible for Alice and Bob to avoid the control of
Charlie and share the secret information (or quantum state) by creating a quantum channel of their own. For example, dishonest Alice and Bob may decide to use CL or DLL protocol in their original form and completely ignore Charlie. However, such a situation will not arise if we consider Alice and Bob as semi-honest as the semi-honest users follow the protocol, but tries to cheat the controller remaining within the protocol. This very important point was not realized by Hassanpour and Houshmand, and consequently, they restricted their discussion to the external attacks (attacks of Eve). However, for a protocol of CDSQC, it is important to show that the protocol is secure from internal attacks of semi-honest receivers and senders. To do so, it is desirable (but not essential) that the controller prepares the state (quantum channel). Otherwise, Alice can supply a separable qubit to Charlie and thus get rid of his control. This desirable condition is not followed in HH protocol. Consequently, Alice can always cheat Charlie, but the proposed protocol is free from such an internal attack.

6. All the protocols of CDSQC that are introduced until now [18–20] are conjugate-coding-based. In these protocols, security arises from the use of two or more mutually unbiased bases (MUBs). In contrast to them, here we have shown that if we use GV subroutine for eavesdropping checking in all the steps of the proposed protocols, then we obtain orthogonal-state-based protocols of CDSQC. This is fundamentally important as it establishes that the protocols of CDSQC can be achieved without using conjugate coding (non-commutativity).

In brief, in this paper, we have established that it is possible to construct a large number of alternative protocols of unidirectional and bidirectional efficient controlled secure direct quantum communication by using various quantum states. Thus, the present theoretical work provides a large number of alternatives for the experimental realization of a CDSQC or CBDSQC scheme. Keeping this fact in mind, we conclude the paper with an expectation that the protocols proposed in this paper will be experimentally realized in near future.

Acknowledgments AP thanks Department of Science and Technology (DST), India, for the support provided through the DST Project No. SR/S2/LOP-0012/2010. He also thanks K. Thapliyal and C. Shukla for carefully reading the manuscript, and R. Srikanth for several useful technical discussions and his comments on the manuscript.

References

1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. Bangalore, India (1984)
2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)
3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)
4. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)
5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
6. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
7. Degiovanni, I.P., Berchera, I.R., Castelletto, S., Rastello, M.L., Bovino, F.A., Colla, A.M., Castagnoli, G.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)
8. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)
9. Jun, I., Liu, Y.M., Cao, H.J., Shi, S.H., Zhang, Z.J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652–2655 (2006)
10. Li, X.-H., Deng, F.-G., Li, C.-Y., Liang, Y.-J., Zhou, P., Zhou, H.-Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)
11. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75–78 (2004)
12. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)
13. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Euro. Phys. J. D 61, 785–790 (2011)
14. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)
15. Hai-Jing, C., He-Shan, S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290–292 (2006)
16. Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50, 2403–2409 (2011)
17. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)
18. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14, 739–753 (2015)
19. Gao, T., Yan, F.: Controlled quantum teleportation and secure direct communication. Chin. Phys. Soc. 14, 893–897 (2005)
20. Dong, L., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905–908 (2011)
21. Deng, F.-G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)
22. Cai, Q.-Y., Li, B-w: Improving the Capacity of the Boström-Felbinger Protocol. Phys. Rev. A 69, 054301 (2004)
23. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)
24. Buscemi, F., Hall, M.J., Ozawa, M., Wilde, M.M.: Noise and disturbance in quantum measurements: an information-theoretic approach. Phys. Rev. Lett. 112, 050401 (2014)
25. Biham, E., Boyer, M., Boykin, P.O., Mor, T., Roychowdhury, V.: A proof of the security of quantum key distribution. J. Cryptol. 19, 381–439 (2006)
26. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)
27. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731–2743 (2014)
28. Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)
29. Mor, T.: No cloning of orthogonal states in composite systems. Phys. Rev. Lett. 80, 3137 (1998)
30. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton, USA (2013)
31. Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914–1924 (2013)
32. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)
33. Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)
34. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013)
35. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation. arXiv:1409.0833v1 (quant-ph) (2014)
36. Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)
37. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)
38. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New Delhi (2008)
39. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59–70 (2014)