Photoaffinity labeling identifies an intersubunit steroid-binding site in heteromeric GABA type A (GABA_A) receptors

Selwyn S. Jayakar^{1,4}, David C. Chiara^{1,4}, Xiajuan Zhou¹, Bo Wu³, Karol S. Bruzik³, Keith W. Miller², and Jonathan B. Cohen^{1,4}

From the ¹Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, the ²Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, and the ³Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois

Edited by Karen G. Fleming

Allopregnanolone (3α5α-P), pregnanolone, and their synthetic derivatives are potent positive allosteric modulators (PAMs) of GABA_A receptors (GABA_ARs) with <i>in vivo</i> anesthetic, anxiolytic, and anti-convulsant effects. Mutational analysis, photoaffinity labeling, and structural studies have provided evidence for intersubunit and intrasubunit steroid-binding sites in the GABA_AR transmembrane domain, but revealed only little definition of their binding properties. Here, we identified steroid-binding sites in purified human α1β3 and α1β3γ2 GABA_ARs by photoaffinity labeling with [³⁵S]H[21-4-(3-trifluoromethyl)-3H-diazirine-3-yl]benzoylallopregnanolone ([³⁵S]21-pTFDBzox-AP), a potent GABA_AR PAM. Protein microsequencing established 3α5α-P inhibitable photolabeling of amino acids near the cytoplasmic end of the β subunit M4 (β3Pro-415, β3Leu-417, and β3Thr-418) and M3 (β3Arg-309) helices located at the base of a pocket in the β⁺–α[−] subunit interface that extends to the level of αGln-242, a steroid sensitivity determinant in the αM1 helix. Competition photolabeling established that this site binds with high affinity a structurally diverse group of 3α-OH steroids that act as anesthetics, anti-epileptics, and anti-depressants. The presence of a 3α-OH was crucial: 3-acetylated, 3-deoxy, and 3-oxo analogs of 3α5α-P, as well as 3β-OH analogs that are GABA_AR antagonists, bound with at least 1000-fold lower affinity than 3α5α-P. Similarly, for GABA_AR PAMs with the C-20 carbonyl of 3α5α-P or pregnanolone reduced to a hydroxyl, binding affinity is reduced by 1,000-fold, whereas binding is retained after deoxygenation at the C-20 position. These results provide a first insight into the structure-activity relationship at the GABA_AR β⁺–α[−] subunit interface steroid-binding site and identify several steroid PAMs that act via other sites.

Endogenous neurosteroids, including allopregnanolone (3α5α-P) and pregnanolone (3α5β-P), can produce anxiolytic, sedative, and anti-convulsive effects (1, 2), and their synthetic analogs are in development as general anesthetics and for treatment of epilepsy, anxiety, depression, and other mood disorders (3, 4). These neuroactive steroids act at submicromolar concentrations as potent positive allosteric modulators (PAMs) of γ-aminobutyric acid type A receptors (GABA_AR), and at higher concentrations as direct activators in the absence of GABA (5–8). GABA_AR potentiation by steroids demonstrates structural specificity in that the orientation of a hydroxyl group at the C-3 position (Fig. 1) determines activity. Steroids with a 3α-OH, including 3α5α-P and the anesthetic alphaxalone, act as PAMs, whereas their 3β-OH epimers (3β5α-P and betaxalone) at higher concentrations inhibit GABA responses (9–12). This structural specificity provided early evidence that steroids might interact with specific binding sites in GABA_ARs, identification and characterization of which would prove important for the development of novel steroid-based therapeutic agents.

Functional, structural, and photolabeling studies provide evidence for the existence of multiple steroid-binding sites in αβγ GABA_ARs. Steroids do not bind to the GABA and benzodiazepine-binding sites at subunit interfaces in the extracellular domain or to the homologous binding sites for intravenous general anesthetics such as propofol, etomidate, and barbiturates that are located at subunit interfaces in the extracellular third of the transmembrane domain (TMD) (Fig. 1) (13, 14). Binding assays using channel blockers as well as electrophysiological assays identify multiple effects of steroids potentially mediated by distinct sites (15, 16). Intersubunit and intrasubunit steroid-binding sites near the extracellular and cytoplasmic surfaces of the TMD are predicted based upon the recently determined α1β3γ2 GABA_AR structures (17, 18) and the locations of amino acids identified by mutational analysis as determinants for GABA_AR enhancement or direct activation. A site near the cytoplasmic end of the β⁺–α[−] subunit TMD interface was predicted based upon the identification of α1Gln-242 (human α1 numbering) as a position critical for enhancement by steroids (19, 20). Consistent with this location, alphaxalone protected against the modification of cysteines substituted in the β3 M3 helix at positions contributing to this interface (21), and 3α5β-P, tetrahydrodeoxycorticosterone (3α5α-THDDOC), and alphaxalone bind to a homologous pocket in crystallographic structures of homopentameric, chimeric receptors with GABA_AR α subunit TMDs (22–24). In α1β3 GABA_ARs, there is 3α5α-P inhibitable steroid photolabeling of a residue at the cytoplasmic end of βM3 in proximity to this pocket, with additional residues identified near the extracellular end of the TMD within the α1 and β3 subunits (25).

Photoaffinity labeling with radiolabeled, photoactive intravenous general anesthetics has allowed the identification of
GABA_AR-binding site for neuroactive steroids

Figure 1. Locations of general anesthetic binding sites in the TMD of an αβ3γ2 GABA_AR and structures of representative neuroactive steroids. Depicted are the four transmembrane helices in each subunit (M1–M4), the homologous binding sites for etomidate and R-mpTFD-MPAB, an analog of meprobamate, in the extracellular third of the β′−α′ and α′/γ′−β′ subunit TMD interface(s), respectively, and a binding site for neurosteroids in the intracellular third of the β′−α′ interface. The binding sites for GABA are located in the extracellular domain in the β′−α′ interface, and benzodiazepines bind at the homologous site in the α′−γ′ interface. β′, steroid ring structure, with numbering of the carbons, and structures of representative neuroactive steroids that act as positive or negative GABA_AR allosteric modulators.

- Etomidate
- R-mpTFD-MPAB
- Neurosteroid

photolabeled amino acids for site identification and the determination of the pharmacological specificity of these sites by inhibition of photolabeling with nonradioactive anesthetics. Photolabeling with [3H]azietomide and a meprobamate analog, [3H]R-mpTFD-MPAB, identified homologous binding sites in the αβ3γ2 GABA_AR TMD at the β′−α′ and α′/γ′−β′ subunit interfaces, respectively (13, 26). Etomidate and azietomide bind with 100-fold selectivity to the β′−α′ sites, R-mpTFD-MPAB with 50-fold selectivity to the β′−α′ sites, and other barbiturates and propofol derivatives bind with variable selectivity to the two classes of sites.

Here we characterize a GABA_AR steroid-binding site by use of 21-pTFD-Bzox-AP (21-[4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoxyl]allopregnanolone), a photoreactive steroid that acts as a potent αβ3 and αβ3γ2 GABA_AR PAM (27). Previously, we reported that [3H]21-pTFD-Bzox-AP primarily photoincorporated into the β3 subunit with ~80% of the subunit photolabeling inhabitable by 3α5α-P or by alphaxalone, but not by pregnenolone sulfate (PS), an inhibitory neurosteroid, or by etomidate or R-mpTFD-MPAB (27). We now identify the amino acids photolabeled by [3H]21-pTFD-Bzox-AP, which are located at the cytoplasmic ends of the β3M3 and β3M4 helices and form the base of a pocket at β′−α′ intersubunit interface that extends up to the level of α1Gln-242 in αM1. By use of competition photolabeling with a panel of steroid GABA_AR PAMs and inhibitors, we provide a first definition of the structural determinants important for high affinity binding to this site.

Results

Positive and negative steroid GABA_AR allosteric modulators enhance [3H]muscimol binding

In equilibrium binding assays with the agonist [3H]muscimol, GABA_AR PAMs, including steroids and other general anesthetics, enhance binding by increasing the fraction of GABA_ARs in a desensitized state that binds [3H]muscimol with high affinity (28). 21-pTFD-Bzox-AP was shown previously to enhance [3H]muscimol binding to expressed α1β3 and α1β3γ2 GABA_ARs in membranes, and after purification in detergent/lipid micelles, with concentrations producing half-maximal enhancement (EC₅₀ = 0.2-0.5 μM) similar to those for 3α5α-P, 3α5β-P, and alphaxalone (27). We extended these studies by characterizing [3H]muscimol binding to α1β3 GABA_ARs in the presence of steroids that act as GABA_AR negative allosteric modulators, inhibiting GABA responses noncompetitively: the 3β-epimers of 3α5α-P, 3α5β-P, and alphaxalone, and two 3β-sulfated steroids (PS and dehydroepiandrosterone sulfate (DHEAS)) (10, 12, 29, 30) (Fig. 2 and Table 1). The 3β-OH epimers of pregnanolone (3β5β-P) and alphaxalone (betaxalone) enhanced [3H]muscimol binding with EC₅₀ values of 25 and 45 μM, respectively, whereas 3β5α-P at concentrations up to 100 μM did not. PS at concentrations up to 500 μM had no effect on [3H]muscimol binding, whereas DHEAS reduced specific binding maximally by 50% (IC₅₀ = 10 μM). In addition, we found that (3α5α)-17-phenylandrost-16-en-3-ol (17-PA), which antagonizes steroid enhancement of GABA responses but not GABA responses (31), enhanced [3H]muscimol binding with an EC₅₀ of 30 μM.

Pharmacologically specific photolabeling by [3H]21-pTFD-Bzox-AP in the β3 subunit of α1β3 and α1β3γ2 GABA_ARs

In initial photolabeling studies, we compared [3H]21-pTFD-Bzox-AP photolabeling of α1β3 and α1β3γ2 GABA_ARs. After photolabeling, GABA_AR subunits were resolved by SDS-PAGE, and 3H incorporation into the subunits was characterized by fluorography (Fig. 3A). As reported previously (27), for both receptor subtypes photolabeling was most prominent in...
the gel bands of 59 and 61 kDa that contain differentially glycosylated β3 subunits (13, 32), and at a lower level in the 56-kDa gel band containing the α1 and γ2 subunits. Photolabeling of the β3 subunit was inhibited by 30 μM 3α5α-P, but not by PS, etomidate, or R-mTFD-MPAB. To quantify the concentration dependence of inhibition of photolabeling by nonradioactive drugs, receptor aliquots were photolabeled with [3H]21-pTFDBzox-AP in the presence of a range of drug concentrations, with receptor subunits excised from the stained gel after SDS-PAGE and [3H]incorporation into the β subunit determined by liquid scintillation counting. In a representative experiment (Fig. 3B), nonradioactive 21-pTFDBzox-AP maximally inhibited [3H]21-pTFDBzox-AP photolabeling of α1β3 and α1β3γ2 GALABαRs to the same extent as 30 μM 3α5α-P, with IC50 values of 0.7 and 0.9 μM, respectively. As described under “Experimental procedures,” IC50 values for drugs were determined by combining results from at least four independent experiments using two or more GALABαR purifications, with data from individual experiments combined after normalization to the total specific (i.e. 3α5α-P inhibitable) binding in the absence of competitor. The pooled data for inhibition by 21-pTFDBzox-AP are shown in Fig. 4.

In α1β3 and α1β3γ2 GALABαRs, a 3α-OH substituent is a major determinant of pregnanolone affinity for this site

As a test of the pharmacological specificity of the sites identified in α1β3 and α1β3γ2 GALABαRs by [3H]21-pTFDBzox-AP photolabeling, we compared inhibition by 3α5α-P with its antagonist 3β-OH isomer (3β5α-P) and with analogs modified at the 3-position by acetylation (3α-acyetyl-5α-P), removal of the –OH (3-deoxy-5α-P), or oxidation into a ketone (3-oxo-5α-P) (Fig. 4 and Table 1). 3α5α-P inhibited photolabeling of both receptor subtypes with an IC50 of 0.4 μM, whereas 3β5α-P at 300 μM inhibited photolabeling of α1β3 and α1β3γ2 GALABαRs by <10% and ~40%, respectively. At the highest concentration tested (100 μM), 3-deoxy-5α-P, which is a GALABαR PAM (20), as well as 3α-acyetyl-5α-P and 3-oxo-5α-P each inhibited photolabeling by <10%. We also determined that alphaxalone inhibited α1β3 and α1β3γ2 GALABαR photolabeling with IC50 values of 5 and 2 μM, respectively, whereas for betaxalone, 50% inhibition was seen at ~200 μM (Fig. 4). Consistent with the importance of a 3α-OH for binding to this site, the sulfated 3β-OH antagonists PS and DHEAS at 100 μM each inhibited photolabeling by <10% (Table 1 and Ref. 27). In contrast to the importance of the 3α-OH, the configuration at the 5-position was not important. 3β5β-P inhibited photolabeling with an IC50 of 0.7 μM, similar to that for 3α5α-P, whereas 3α5β-THDOC and 3α5β-THDOC inhibited GALABαR photolabeling with IC50 values of 2-3 μM (Table 1).

3α5α-P inhibits [3H]21-pTFDBzox-AP photolabeling of amino acids located at the cytoplasmic ends of the β3M and β4M helices that contribute to a pocket at the β2-α1 subunit interface

Based upon the similar pharmacological properties of the steroid-binding sites in α1β3 and α1β3γ2 GALABαRs defined by [3H]21-pTFDBzox-AP photolabeling, we identified the photolabeled amino acids in α1β3 GALABαRs, which can be expressed and purified at higher levels than α1β3γ2 GALABαRs. β3 subunits were isolated from α1β3 GALABαRs photolabeled on a preparative scale with [3H]21-pTFDBzox-AP (0.7 μM) in the presence of 300 μM GABA and in the absence or presence of 30 μM 3α5α-P. In five preparative photolabelings, the specific β subunit photolabeling (i.e. 3α5α-P inhibitable) was 320 ± 70 3H cpm/pmol, which indicated photolabeling of 1.2 ± 0.2% of β subunits based upon the radiochemical specific activity of [3H]21-pTFDBzox-AP (21.8 Ci/mmol) and the amount of GALABαR photolabeled. This efficiency of photolabeling was similar to that seen for GALABαR photolabeling by a photoreactive etomidate analog (32), but ~15% the efficiency seen for [3H]R-mTFD-MPAB (33). The photolabeled amino acids were identified by protein microsequencing of fragments beginning near the N termini of the β3M4, β3M3, and β3M1 helices that can be produced by digestion with endoproteinase Lys-C (Endo Lys-C) and resolved by reversed-phase HPLC (rpHPLC) (13, 32, 34). When
Table 1
Comparison of potency of neuroactive steroids as modulators of [3H]muscimol binding and as inhibitors α1β3 and α1β3γ2 GABAAR photolabeling by [3H]21-pTFDBzoxAP

Steroid*	R₁ (C-3)	C5	R₂ (C-17)	[3H]Muscimol Binding* EC₅₀	α1β3	α1β3γ2
21-pTFDBzox-AP	-OH, α	α	-COCH₂OOCOBzTFD	0.36 ± 0.06	0.21 ± 0.02 (4)	0.65 ± 0.08 (4)
3α5β-P pregnanolone	-OH, α, β	α	-COCH₃	0.62 ± 0.08	0.65 ± 0.13 (4)	0.30 ± 0.05 (4)
3α5α-P allopregnanolone	-OH, α	α	-COCH₃	0.58 ± 0.22	0.27 ± 0.03 (6)	0.40 ± 0.06 (6)
3β5α-P (3101-16, P3830)	-OH, β	α	-COCH₃	>100	>1000 (6)	470 ± 70 (2)
3α-Acetylg-5α-P (P3801)	CH₂CO₂-, α	α	-COCH₃	>10⁶	>300 (4)	>300 (6)
3-Oxo,5α-P (P2970)	=O	α	-COCH₃	>10⁶	>300 (4)	>300 (2)
3-Deoxygen-5α-P (P2430)	-H	α	-COCH₃	1⁶	>300 (4)	>300 (2)
Alphaxalone (11-oxo)	-OH, α	α	-COCH₃	0.71 ± 0.15	4.6 ± 0.7 (4)	2.4 ± 0.5 (4)
Betaxalone (11-oxo) (3093-16)	-OH, β	α	-COCH₃	45 ± 8	175 ± 25 nM = 0.5 ± 0.1 (6)	200 ± 50 (2)
3α5α-THDOC (P2560)	-OH, α	α	-COCH₂OH	1.0 ± 0.15	2.1 ± 0.3 (4)	ND
3α5α-THDOC (3167-16)	-OH, α	β	-COCH₃	3^a	3.3 ± 0.5 (4)	2.9 ± 0.5 (4)
DHEAS (5-ene)	SO₃₂, β	=O	-COCH₃	IC₅₀ = 10 ± 2	>300 (4)	>300 (4)
PS (5-ene)	SO₃₂, β	=O	-COCH₃	>300 (4)	>300 (4)	>300 (6)

*Catalog numbers are indicated for steroids from Research Plus (xxxx-16) and Steraloids (P-xxxx).

^a EC₅₀ (±SE) values for steroid modulation of [3H]muscimol binding to α1β3 GABA_R in membranes, from Fig. 2 and Ref. 27.

^b IC₅₀ (±SE) values, the total drug concentrations resulting in 50% inhibition of photolabeling of GABA_R purified in detergent/lipid, were determined as described under “Experimental procedures,” from Fig. 4 and Ref. 27; n, number of experiments.

^c IC₅₀ values for enhancement of [3H]flunitrazepam binding to rat brain membranes (51).

^d EC₅₀ values for enhancement of GABA responses of expressed α1β2γ2 GABA_R (12, 20).

***aliquots of the β subunit Endo Lys-C digests were sequenced, peaks of 3H release were seen in cycles 3/4 and 6/7 that were inhibitable by 3α5α-P (Fig. 5A). When the digests were fractionated by rpHPLC (Fig. 5B), the peak of 3H was recovered in a fraction that contained an unlabeled fragment beginning at 3β3Ala-280 near the N terminus of βM3, with the unlabeled fragment beginning at 3β3lle-412 before the N terminus of βM4 eluting one fraction earlier. Additional 3H-containing adducts eluted in the more hydrophobic fractions that contain the unlabeled fragment beginning at 3β3Arg-216 at the N terminus of βM1 that extends through βM2.

Protein sequencing protocols were designed to allow identification of photolabeled amino acids even if the incorporation of the hydrophobic steroid caused the 3H-labeled fragment to elute in more hydrophobic HPLC gradient fractions than the unlabeled fragment directly identifiable by PTH-derivative analysis. When 50% of the fraction containing the peak of 3H was sequenced, there were peaks of 3H release in cycles 3-4 and 6-7 of Edman degradation that were reduced by 90% by 3α5α-P (Fig. 5C), as seen when the total digest was sequenced. There were no additional peaks of 3H release above background in 30 cycles of Edman degradation (not shown). To determine whether the peaks of 3H release originated from labeling in βM3 or βM4, we took advantage of the presence of β3Pro-415 in cycle 4 of Edman degradation of the βM4 fragment and the lack of a proline at that cycle in the βM3 or βM1 fragment. For the remaining 50% of the fraction, sequencing was interrupted at cycle 4 for treatment with α-phthalaldehyde (OPA) to prevent further sequencing of fragments not containing a proline at that cycle (35, 36). After treatment with OPA in cycle 4, the 3H releases in cycles 4, 6, and 7 were preserved, whereas sequencing of the M3 fragment was reduced by >95% (Fig. 5C). Thus, these 3H releases did not originate from the βM3 fragment. Rather, the results were consistent with 3α5α-P inhibitable photolabeling of β3Pro-415 (cycle 4), β3Leu-417, and β3Thr-418 in the fragment beginning at β3lle-412 before the N terminus of βM4. The 3H release in cycle 3, although not tested by the use of OPA in cycle 4, indicated likely labeling of β3lle-414. Based upon sequencing nine samples from five independent photolabeling experiments, β3lle-414 and β3Leu-417 were photolabeled at 55 ± 26 and 155 ± 55 cpm/pmole, respectively, ~90% inhibitable by 3α5α-P (Table 2). Because of uncertainties in calculating photolabeling efficiency for the second of two successive photolabeled amino acids, similar calculations were not made for β3Pro-415 and β3Thr-418.

Photolabeling of β3Arg-309 at the C terminus of βM3 was identified by sequencing the broad peak of 3H that co-eluted with the unlabeled βM1 fragment (Fig. 6). A peak of 3α5α-P inhibitable 3H release was seen in cycle 30, in addition to the peaks of 3H release in cycles 3/4 and 6/7 attributable to labeling within the βM4 fragment and a peak in cycle 19 not reproduced in other experiments (Fig. 6A). The 3H release in cycle 30 did not result from labeling in βM1, because for a sample sequenced with OPA treatment at cycle 13, the cycle containing β3Pro-228 in βM1, sequencing of the βM1 fragment persisted after treatment but no release of 3H was seen in cycle 30 (not shown). This suggested that the labeled βM3 fragment, similar to the labeled βM4 fragment, elutes in more hydrophobic rpHPLC fractions than the unlabeled fragment, with the 3H release in cycle 30 resulting from...
GABA_R-binding site for neuroactive steroids

from 4 independent photolabeling experiments, β3Arg-309 was photolabeled at ~25% the efficiency as compared with β3Leu-417 (Table 2).

Because β subunit photolabeling dominated over that in α and the gel band containing α subunit also contains β subunit at a low level (13), it was difficult to use our protocols to determine whether α subunit residues were photolabeled at low efficiency. Nonetheless, we searched in particular for 3α,5α-P inhibitable photolabeling in α-subunit-resident extracellular end of TMD that is a sensitivity determinant for steroid enhancement (19) and that was photolabeled by an allopreganolone derivative with a photolabeling efficiency. Nonetheless, we searched in particular for 3α,5α-P and nonspecific incorporation of [3H] (n=3) was determined in the presence of 30 μM 3α,5α-P, and specific binding was normalized to the [3H] cpm incorporated specifically in the control condition (B_n – B_{ns}). The plotted data are the averages (± S.D.) from the independent experiments. As described under “Experimental procedures,” the pooled data from the independent experiments were fit to Equation 2. Drug structures, parameters for the fits, and the number of independent experiments are tabulated in Table 1. The curves are plotted for fits to n₄ = 1, which were favored by F-test comparison over fits with variable n₄, with the exception of betaxalol (α1β3, n₄ = 0.5 ± 0.1). Based upon an F-test comparison of fits of the data for α1β3 and α1β3y2 GABA_Rs to the same (null hypothesis) or separate IC₅₀ values, a common fit was favored for 3α,5α-P (p = 0.7, F(Dfn,Dfd) = 0.22 (1,112)) and 3α,5β-THDOC (p = 0.6, F(Dfn,Dfd) = 0.24 (1,63)). Separate fits were favored for 21-pTFDBzox-AP (p < 0.0001, F(Dfn,Dfd) = 35.9 (1,94)), 3α,5β-P (p = 0.002, F(Dfn,Dfd) = 10.4 (1,62)), and alphaxalol (p = 0.01, F(Dfn,Dfd) = 6.7 (1,62)).
Figure 5. 3α5αβ-P inhibits [3H]21-pTFDBzox-AP photolabeling of β3-ile-414, β3-Leu-417, and β3-Thr-418 near the N terminus of βM4. α1β3 GABAAR Rs were photolabeled on a preparative scale in the presence of 300 μM GABA in the absence or presence of 30 μM 3α5α-P. GABAAR β subunits were isolated by SDS-PAGE and digested with Endo Lys-C. When the Endo Lys-C digests were fractionated by rpHPLC, determined by Edman degradation determination of the masses (I) of β subunit fragments eluting in rpHPLC fractions 25 (βM4), 26/27 (βM3), and 28-29 (βM1). C, [3H] released during sequence analysis of the peak of [3H (rpHPLC fraction 26) from receptors photolabeled in the absence (●) but not the presence (○) of 3α5α-P. Shown above are the sequences of the β3 subunit fragments produced by Endo Lys-C digestion that contain transmembrane helices (M1-M2, M3, and M4). B, [3H] elution profiles when the Endo Lys-C digests were fractionated by rpHPLC, determined by counting 10% of each fraction. Inset, Edman degradation determination of the masses (L) of β subunit fragments eluting in rpHPLC fractions 25 (βM4), 26/27 (βM3), and 28-29 (βM1). The data for the control and with 3α5α-P inhibition are shown in Table 2. C digests by rpHPLC and found a [3H] distribution similar to that for β subunit digests shown in Fig. 5B. We sequenced fractions 24-27 that would contain the unlabeled and labeled fragments beginning at α1Ileu-392, with OPA treatment in cycle 10 of Edman degradation (α1Pro-401) to associate [3H] release beyond cycle 11 (α1Leu-402) with αM4. When the α1Ileu-392 fragment (L0 = 6 pmol) was sequenced for 25 cycles, no peaks of [3H] release were detected above background after cycle 11. Any photolabeling of α1Asn-408, or residues nearby in the primary structure, if it occurred, would be at less than 10% the efficiency of photolabeling of β3-Leu-417.

Table 2
Pharmacological specificity of [3H]21-pTFDBzox-AP photoincorporation into β3Ile-414, β3Leu-417, and β3Arg-309 in the α1β3 GABAAR in the presence of GABA

The efficiency of photolabeling of a residue (in cpm/pmol of PTH-derivative) was calculated using Equation 4 ("Experimental procedures"). The data for the control condition are presented as mean (± S.D.) from 4 (β3Arg-309) or 5 (β3Ile-414, β3Leu-417) independent photolabeling experiments with the number (n) of sequenced samples. Samples from GABAARs photolabeled in the absence (control) or presence of 30 μM 3α5α-P were sequenced in parallel. For each pair the percent inhibition at that residue was calculated from the ratio of calculated photolabeling efficiencies, with the mean (± S.D.) for all samples tabulated.

Residue	Control	+3α5α-P inhibition
β3Ile414	55 ± 26	92 ± 7
β3Leu417	155 ± 55	88 ± 6
β3Arg309	37 ± 22	90 ± 7

Locations of photolabeled residues in α1β3γ2 GABAAR structure

In Fig. 7 we highlight the positions of four photolabeled residues (β3Pro-415, β3Leu-417, β3Thr-418, and β3Arg-309) in a structure recently solved by cryo-EM (18) of α1β3γ2 GABAAR Rs (Protein Data Base 6153) purified from the same GABAAR-expressing HEK 293T cell line used for our purifications. Most of the 116 amino acids comprising the β3 cytoplasmic domain between the M3 and M4 helices are not defined in this structure, which resolves amino acids beginning with β3Pro-415 and locates β3Val-420 at the cytoplasmic end of the βM4 helix. In this structure, β3Pro-415–β3Asp-419 form a turn at the cytoplasmic end of βM4, with the photolabeled residues (β3Pro-415, β3Leu-417, β3Thr-418, and β3Arg-309) at the cytoplasmic end of βM3) contributing to the base of a pocket at the β3–β2 subunit interface (Fig. 7, B and C) that extends between βM3 and αM1 up to the level of α1Gln-242, the amino acid in αM1 identified by mutational analysis as a major sensitivity determinant for many steroid PAMs (19), including 21-pTFDBzox-AP (27). This pocket is homologous to the intersubunit cleft identified as a binding site for 3α-OH steroid PAMs in crystal structures of homomeric, chimeric receptors containing GABAAR α subunit TMDs (22–24). Based upon computational docking using CDocker, 21-pTFDBzox-AP can be readily accommodated within this intersubunit pocket in the α1β3γ2 GABAAR β3–αβ subunit interface, with the lowest energy solutions adopting an orientation with the 3α-OH in proximity to α1Gln-242 and with the reactive diazirine in proximity to the photolabeled residues (Fig. 7C).

Anesthetic, anticonvulsant, and anxiolytic 3α-OH steroids bind to this site

By use of competition photolabeling, we established that this site binds with high affinity a structurally diverse group of 3α-OH pregnane GABAAR PAMs that have a wide range of pharmacological activities in vivo (Fig. 8A and Table 3). Org20599, an amino steroid anesthetic containing a 1β2-morpholino-substituent to enhance water solubility (37), inhibited photolabeling with IC50 = 0.2 μM. Substitutions at the 3β- and 17β-positions that improve bioavailability were well tolerated. Thus, GABAAR PAMs that act in vivo as an anticonvulsant (ganaxolone (38)), an anti-depressant (SAGE-217 (39)), or a sedative/hypnotic (CCD-3693 (40)) each inhibited photolabeling with
IC$_{50}$ < 1 µM, and for UCI-50027, active orally as an anxiolytic (41), the IC$_{50}$ was 10 µM. 3β-CH$_2$OCH$_2$-3α,5α-T-HDOD (42) (IC$_{50}$ = 2 µM) was equipotent with 3α,5α-T-HDOD as an inhibitor. Each of these compounds inhibited photolabeling maximally to the same extent as 30 µM 3α5a-P, with the exception of ganaxolone, which inhibited maximally by only 71 ± 2%.

Substituents at C-17 in the steroid D ring are important determinants of binding affinity

In contrast to the high affinity binding of 3α5α-P and 3α5β-P, the presence of a hydroxyl group at the C-20 position in place of the carbonyl resulted in loss of binding. 5α-Pregn-3α,20α-diol or 5β-pregn-3α,20β-diol at 300 µM inhibited photolabeling by <10%, although they act as GABA$_A$R PAMs with affinities similar to 3α5α-P (30, 43) (Fig. 8A). The presence of the –OH at C-20 caused the loss of binding, because 5β-pregn-3α-ol (3α5β-P-20-deoxy), with hydrogens at C-20, bound with high affinity (IC$_{50}$ = 4 µM), as did 5α-androst-3α-ol (3α5α-A, IC$_{50}$ = 9 µM) with any C-17 substituent (Fig. 8B and Table 4). Similar to the loss of binding associated with an –OH at C-20, the presence of an –OH or a carbonyl at C-17 also reduced binding affinity. At 300 µM, androsterone (3α5α-A-17-one), a potent GABA$_A$R PAM (30, 44), inhibited photolabeling by only ~40%, and 5α-androst-3α,17α-diol (3α5α-A-17α-ol) inhibited photolabeling by <10%. In contrast to the steroid PAMs that bound with high affinity to this site and inhibited photolabeling with a Hill coefficient (n_{H1}) close to 1, 3α5α-A-17-one inhibited photolabeling with n_{H1} less than 0.5 (IC$_{50}$ = 700 ± 390 µM, n_{H1} = 0.32 ± 0.05). The 3α-OH androstene antagonist 17-phenyl-(3α,5α)-androsten-16-en-3-ol (17-PA) was more potent than 3α5α-A-17-one as an inhibitor for photolabeling, with IC$_{50}$ = 85 ± 13 µM, n_{H1} = 0.33 ± 0.03.

The binding of C-11 substituted pregnanolones

As the carbonyl at C-11 in alphaxalone reduced its IC$_{50}$ value by 20-fold compared with 3α5α-P (Table 1), we used competition photolabeling to determine the effects of other C-11 substituents on binding to this site (Fig. 9 and Table 5). As seen for the C-11 carbonyl in alphaxalone, the affinity for the 5β analog of alphaxalone (renanolone, IC$_{50}$ = 10 µM) was 20-fold weaker than that for 3α5β-P. Substitution of an 11β-OH further reduced potency by 20-fold (3α5β-P-11β-ol, IC$_{50}$ ~ 200 µM). In contrast, high affinity binding was retained in the presence of C-11 of either the small azl group (11-Azl-AP, IC$_{50}$ = 0.4 µM) or the bulky azidotetrafluorophenyl-group (11-F4N3Bzoxy-AP, IC$_{50}$ = 0.1 µM) in two recently introduced photoreactive 3α5a-P derivatives that act as potent GABA$_A$R PAMs and general anesthetics (45).

Simultaneous binding with nonsteroidal GABA$_A$R PAMs at the etomodite site

We used competition photolabeling to determine whether PAMs of large size that bind to the etomodite site near the extracellular end of the TMD β^* – α subunit interface would inhibit [${}^{3}H$]21-pTFDBzox-AP photolabeling of α_1B GABA$_A$Rs, whether by steric overlap or by negative allosteric interaction. Less than 10% inhibition was seen at the highest concentrations tested for propofol (300 µM, molecular volume, 191 Å3), etomiodone (300 µM, volume 208 Å3), or TG-41 (10 µM, ethyl 2-(4-bromophenyl)-1-(2,4-dichlorophenyl)-1H-4-imidazolcarboxylate (46), volume 323 Å3), which were tested at 40-, 150-, and 500-fold higher than their IC$_{50}$ values for inhibition of [${}^{3}H$]azetidomate photolabeling (26).
We also tested ivermectin (volume 880 Å³), a nonanesthetic activator and PAM of GABAᵦRs and other pentameric ligand-gated ion channels (47) that binds in a homomeric, invertebrate glutamate-gated chloride channel (Glu-Cl) to an intersubunit site (48) homologous to the etomidate and glutamate-gated chloride channel (Glu-Cl) to an intersubunit pocket extending to the γ₁ site (49). We found that 100 μM ivermectin potently inhibited photolabeling by [³H]21-⽌TFDBzox-AP at α₁β3 or α₁β3γ2 GABAᵦRs by <10% (Fig. 10). In contrast, ivermectin potently inhibited photolabeling by [³H]R-⽌TFDBzox-AP (IC₅₀ = 0.02 ± 0.005 μM, nₐ₁ = 0.6 ± 0.1) and inhibited [³H]azietomidate photolabeling at higher concentrations (IC₅₀ = 6.4 ± 1.0 μM) (Fig. 10). Thus, ivermectin at 100 μM fully occupies those sites without inhibiting [³H]21-⽌TFDBzox-AP photolabeling, and consistent with the functional studies, ivermectin binds with higher affinity to the α⁺/γ−β− sites than to the β−/α− sites. Furthermore, the concentration dependence of inhibition of [³H]R-⽌TFDBzox-AP photolabeling (nₐ₁ = 0.6) established that ivermectin binds nonequivalently to the α⁺−β− and γ⁺−β− sites in the presence of GABA. This is not the case for R-⽌TFDBzox-AP, but it is for other GABAᵦR PAMs including the anesthetic p-benzoyl-propofol and the sedative/anticonvulsant lorcicept (26). Based upon a fit of the inhibition data to a two-site model, ivermectin binds to the β− sites with IC₅₀ values of 3.1 ± 1.1 and
with the photolabeled amino acids located in the GABA_AR structure near the cytoplasmic ends of the βM4 (β3Pro₄₁₅, β3Leu₄₁₇, and β3Thr₄₁₈) and βM3 (β3Arg₃₀₉) helices that contribute to the base of a pocket at the β⁺−α[−] subunit interface. This binding site extends upward to the level of α1Gln₂₄₂, a position identified by mutational analysis as a major determinant for steroid enhancement of GABA responses. Many 3α-OH pregnane and androstan-3α,5α-P GABA_AR PAMs bind to this site at concentrations similar to those necessary for GABA_AR enhancement, but we also identified potent steroid GABA_AR PAMs that do not bind to this site. High affinity binding depends on the presence of a free 3α-OH and is highly sensitive to the nature of the substitution at the C-17 position. 3-Deoxy-5α-P and steroids with an –OH in place of the carbonyl at C-20 of 3α5α-P enhance GABA responses with potencies similar to 3α5α-P (20, 30, 43), but their binding affinities for the β⁺−α[−] site are reduced by more than 1000-fold. These potent steroid PAMs that do not bind to the β⁺−α[−] site should serve as useful lead compounds for the development of novel reagents to identify additional GABA_AR steroid-binding sites.

Structural determinants for binding to the β⁺−α[−] subunit interface steroid site

Because the β subunit amino acids photolabeled by [3H]21-pTFDBzoxo-AP were located within a common binding pocket at the β⁺−α[−] subunit interface, characterization of the effects of nonradioactive steroids on GABA_AR photolabeling at the level of the β subunit could be used to determine the affinities (IC₅₀ values) of nonradioactive drugs for that site. We did not identify any nonsteroidal GABA_AR PAMs that inhibited photolabeling, including drugs varying in size from propofol to ivertin-3 that bind to the adjacent etomidate site at the β⁺−α[−] subunit interface. Many steroid 3α-OH GABA_AR PAMs were potent inhibitors of [3H]21-pTFDBzoxo-AP photolabeling, reducing β subunit photolabeling maximally to the same extent as 30 μM 3α5α-P with a concentration dependence characterized by a Hill coefficient of 1. The simplest interpretation of this pattern of inhibition is that it results from competitive interactions at a common binding site. For α1β3 and α1β3γ2 GABA_ARs, the IC₅₀ values for 5β-isomers differed by less than a factor of 2 from those for 3α5α-P, 3α5α-THDCC, and alphaxalone (Tables 1 and 4), and the IC₅₀ values for inhibition of photolabeling were within a factor of 2 of EC₅₀ values reported for enhancement of GABA responses (12, 23, 45). A similar good correlation between photolabeling inhibition IC₅₀ and GABA_AR enhancement EC₅₀ was seen for many substituted pregnolones, including those acting in vivo as an anesthetic (Org20599), anti-convulsant (ganaxalone), or antidepressant (SAGE-217) (Tables 3 and 5).

Discussion

In this report we show that a novel photoreactive steroid, [3H]21-pTFDBzoxo-AP, binds with high affinity to a site in the TMD of heteromeric GABA_ARs at the cytoplasmic end of the β⁺−α[−] subunit interface, and we use a photolabeling inhibition assay to provide a first definition of the structure-affinity relationships for a GABA_AR steroid-binding site. In α1β3 and α1β3γ2 GABA_ARs, pharmacologically specific [3H]21-pTFDBzoxo-AP photolabeling was primarily within the β subunit, 150 ± 65 nm. Further studies would be required to determine whether it is the α⁺−β[−] or γ[−]β[−] site that binds with highest affinity.
potency similar to 3α5α-P (20). Thus, 3-deoxy-5α-P enhances GABA responses without binding to this site.

We found substitutions at the steroid C-17 position that were unexpectedly important determinants of binding to the \(\beta^+ - \alpha^- \) site. Early studies of 3α-OH steroids as GABA\(_A\)R PAMs established that the C-20 carbonyl of 3α5α-P was not essential, because androsterone (3α5αA-17-one) and pregnan-3α,20-diols were potent PAMs (11, 30, 43). The C-20 carbonyl is also not essential for binding to the \(\beta^+ - \alpha^- \) site, because 3α5α-A and 3α5β-P-20-deoxy, PAMs with an –H or \(\beta^- \)-ethyl at C-17, bound with high affinity (Table 4). However, two potent PAMs, 5α-pregnan-3α,20a-diol and 5β-pregnan-3α,20β-diol, did not bind to the \(\beta^+ - \alpha^- \) site at concentrations 100-fold higher than necessary for GABA\(_A\)R enhancement. 3α5α-A-17α-ol, with an \(\alpha^- \)-OH at C-17, also did not bind to the \(\beta^+ - \alpha^- \) site. However, this may not be simply a consequence of the \(-\)OH, because 3α5α-A-17β-ol is a PAM (50), as are other steroids with a C-17 side chain in a \(\beta^- \)-configuration (11, 51).

Although many 3α-OH steroid PAMs potently inhibited GABA\(_A\)R photolabeling to the same extent as 3α5α-P and with a concentration dependence characterized by a Hill coefficient of 1, ganaxalone and 3α5αA-17-one were exceptions. Ganaxalone was a potent inhibitor (IC\(_{50} = 0.3 \) μM), but at high concentrations, maximal inhibition (\(B_{\text{max}} = 29 \pm 2\% \)) was less than that seen in the presence of 3α5α-P (\(B_{\text{max}} = 0\% \)), whereas other PAMs with 3β-substituents inhibited fully. For 3α5αA-17-one, which enhances \(\alpha1\beta2 \) y GABA\(_A\)R responses with an EC\(_{50}\) of \(\sim 3 \) μM (52), inhibition was fit equally well either to \(n_4 = 1 \) and variable \(B_{\text{max}}\) (IC\(_{50} = 5 \pm 2\) μM, \(B_{\text{max}} = 63 \pm 3\% \)) or with \(B_{\text{max}}\) equal to 0 and a variable Hill coefficient (IC\(_{50} = 700 \pm 390 \) μM, \(n_4 = 0.32 \pm 0.05\)). There was no evidence that the partial inhibition resulted from limited solubility of these two steroids in the detergent/lipid environment used for GABA\(_A\)R purification, and further studies are required to clarify the mechanism of inhibition.

Mode of steroid binding at the \(\beta^+ - \alpha^- \) steroidal site

Our photolabeling results establish that 21-\(\rho \)-TFDBzoxy-AP binds in heteromeric GABA\(_A\)Rs at the \(\beta^- - \alpha^- \) subunit interface. Based upon computational docking, in its most energetically favorable binding mode, 21-\(\rho \)-TFDBzoxy-AP’s photoreactive diazirine is in proximity to the photolabeled amino acids at the cytoplasmic surface of the TMD and the 3α-OH is in proximity to \(\alpha1\)Gln-242 and \(\alpha1\)Trp-246. Thus, 21-\(\rho \)-TFDBzoxy-AP binds at the \(\beta^- - \alpha^- \) subunit interface site in an orientation similar to that of 3α5α-THDOC, 3α5β-P, or alphaxalone at \(\alpha^- - \alpha^- \) subunit interfaces in the crystal structures of homopentameric, chimeric receptors with GABA\(_A\)R \(\alpha \) subunit TMDs (22–24). Consistent with this mode of binding, positive modulation of GABA responses by 21-\(\rho \)-TFDBzoxy-AP is lost in the \(\alpha1Q242W \) mutant receptor (27). Although direct interactions between the free 3α-OH and \(\alpha1\)Gln-242 were predicted based upon the loss of 3α5α-P PAM activity seen for substitutions at \(\alpha1\)Gln-242 (19), substitutions at \(\alpha1\)Gln-242 also caused loss of PAM activity for 3-deoxy-5α-P (20), a PAM that did not inhibit \(^3\)H[21-\(\rho \)-TFDBzoxo-AP photolabeling. This discrepancy indicates that substitutions at \(\alpha1\)Gln-242 can interfere with PAM activity even for steroids that do not bind to the \(\beta^+ - \alpha^- \) site, and the GABA\(_A\)R amino acids interacting directly with the 3α-OH remain to be determined.
Based upon competition photolabeling, the presence of a free –OH at C-20 is as deleterious for binding to the $\beta^+ - \alpha^-$ site as is its absence at the C-3 position, even though a free-water partition coefficient by C-17 substituted 3α-OH steroid GABA$_A$R PAMs.

Table 4

Steroida	C-5	$[^3]$HTFDBzox-APb	IC$_{50}$ (nM)	GABA enhancementc	EC$_{50}$ (nM)
21-pTFDBzox-AP	α	-COCH$_3$OOCO$_2$TFD	0.21 ± 0.02	27	
3α5α-A (A2150)	α	-H	8.7 ± 1.0 (6)	0.3	
3α5β-P-20-deoxy (P7800)	β	4.2 ± 0.5 (4)	NDd (0.3)e		
5α-Pregnan3α,20α-diol (P1950)	α	>>300 (3)	0.2		
5β-Pregnan3α,20β-diol (P6050)	β	>>300 (4)	2		
3α5α-A-17-one (androsterone, A2420)	α	=O	~700 ± 400 ($n_H = 0.35$) (6)	~3	
3α5α-A-17α-ol (A1150)	α	>300 (4)	ND		
17-PA (5αA3α-ol,16-ene, 17-C$_6$H$_5$)	α	C$_3$H$_7$	85 ± 13 ($n_H = 0.3 ± 0.03$) (4)	29 ± 5f	

aCatalog numbers are indicated for steroids from Steroids (A/P-xxxx).
bIC$_{50}$ (±S.E.) values, the total drug concentrations resulting in 50% inhibition of GABA$_A$R photolabeling, were determined as described under Experimental Procedures from data of Fig. 8B, n, number of experiments.
cEC$_{50}$ values for steroid enhancement of GABA responses of GABA$_A$Rs expressed in oocytes, from the literature: 21p-TFD-Bzox-AP (27); 3α5α-A (67); 5α-pregnan-3α,20α-diol and 5β-pregnan-3α,20β-diol (43); 3α5α-A-17-one (52).
dND, not determined.
eIC$_{50}$ for photolabeling by C-17 substituted 3α5α-A-20-deoxy (67).
fEC$_{50}$ for enhancement of [3H]muscimol binding (Fig. 2).

Additional binding sites for steroid PAMs

Our sequencing results established that the α subunit amino acids that would contribute to other steroid-binding sites, our competition photolabeling results identified three potent PAMs (EC$_{50}$ < 10 μM, 3-deoxy-5α-P, 5α-pregnan-3α,20α-diol, and 5β-pregnan-3α,20β-diol) that did not bind to this site. The absence of an α hydroxyl at C-3 at one end of the steroid ring system or the presence of a hydroxyl at C-20, 10 Å away at the other end of the ring system, prevents binding to the $\beta^+ - \alpha^-$ interface. The presence of the 3α-OH is insufficient to overcome unfavorable interactions at the other end of the molecule. It remains to be determined whether one or more of these
GABA_R-binding site for neuroactive steroids

Figure 9. Effects of substituents at C-11 on steroid binding affinity for the [3H]21-p-TFDBzox-AP site in α1β3 GABA_Rs. GABA_Rs were photolabeled in the presence of GABA and the indicated concentrations of C11-substituted derivatives of 3α5α-P (the photoreactive anesthetics 11-azi-AP and 11-F4N3Bzox-AP) or 3αβ5β-P (renanolone and 3αβ5β-P-11β-il). The chemical structures, IC₅₀ values determined from the concentration dependence of inhibition, and the number of independent experiments are presented in Table 5. Covariant incorporation of [3H] was determined by liquid scintillation counting of β3 subunits isolated by SDS-PAGE, and data from independent experiments were normalized and combined as described under “Experimental procedures” and in Fig. 4. The plotted data are the mean ± S.D. from the independent experiments.

“orphan” PAMs bind to the intrasubunit sites near the extracellular end of the TMD recently identified by photolabeling in αM4 by steroids containing photoreactive groups at C-21 or C-6 and in βM3 by a steroid containing a C-3α photoreactive group (25).

Antagonist steroids

Although early studies suggested that 3β-OH steroids competitively antagonize steroid enhancement of GABA_R function (53–55), subsequent studies indicate that they noncompetitively inhibit GABA responses in the absence of enhancing steroids, acting in a manner more similar to the sulfated 3β-OH neurosteroids PS and DHEAS (12, 56). Although steroid PAMs generally enhance [3H]muscimol or [3H]flunitrazepam equilibrium binding (51, 57, 58), our results indicate that inhibitory 3β-OH steroids can modulate [3H]muscimol binding in 3 different ways. (i) The enhancement of binding seen for betaxalone and 3β5β-P indicates that these steroids stabilize the GABA_R in a desensitized state with high affinity for [3H]muscimol. 17-PA, a 3α-β3 and 35α-OH androstenone that does not inhibit GABA responses in the absence of a steroid PAM (31, 59), also enhanced [3H]muscimol binding. (ii) The lack of modulation seen for 3β5α-P and PS at concentrations as high as 100 μM suggests that they do not perturb the receptor conformational state. (iii) That DHEAS partially inhibits binding indicates that it stabilizes the receptor in a state with low affinity for [3H]muscimol, potentially a resting, closed channel state. The effects we observed for 3β5α-P, PS, and DHEAS are consistent with previous studies of [3H]muscimol binding to rat brain membranes (29, 60).

Our competition photolabeling results are consistent with functional studies indicating that free and sulfated 3β-OH steroids inhibit GABA responses without binding to the same site as steroid PAMs. Thus, PS, 3β5α-P, and 3β5β-P inhibit GABA responses with IC₅₀ values of less than 5 μM (12, 61), but any inhibition of [3H]21-p-TFDBzox-AP, photolabeling, if it occurred, would be characterized by IC₅₀ values greater than 300 μM. Betaxalone was a possible exception, because inhibition (IC₅₀ = 175 μM) occurred at similar concentrations as enhancement of [3H]muscimol binding (EC₅₀ = 50 μM). However, the concentration dependence of inhibition of photolabeling (n_H = 0.5) was inconsistent with a simple model of direct completion for the [3H]21-p-TFDBzox-AP–binding site.

Conclusions

We have shown that [3H]21-p-TFDBzox-AP, a photoreactive steroid and GABA_R PAM, binds with high affinity in the β⁺–α[−] subunit interface of heteromeric, human, full-length α1β3 and α1β3y2L GABA_Rs in a site homologous to that revealed in crystal structures of chimeric homomeric pentameric ligand-gated ion channels of the same superfamily. We used competition photolabeling to establish that the steroid structure–activity relationships of this site parallel that observed in many functional pharmacological studies. These studies also reveal that some potent PAMs, such as 3α-deoxy-5α-P and pregnan-3α,20-diols, bind to a different site or sites. Thus, [3H]21-p-TFDBzox-AP is a useful tool for the development of steroids that selectively target specific sites on GABA_Rs including those with other subunit compositions.

Experimental procedures

Materials

Nonradioactive 21-p-TFDBzox-AP and [3H]21-p-TFDBzox-AP (21.8 Ci/mmol, stored at −20 °C in ethanol at 1 mCi/ml) were prepared as described previously (27). The 21-p-TFDBzox-AP UV spectrum was characterized by a major absorption peak at 241 nm (ε = 16,160 M^{−1} cm^{−1}) with a secondary, diazirine band with absorption maximum at 347 nm (ε = 360 M^{−1} cm^{−1}). [3H]Azetomidate (19 Ci/mmol, 53 μM in ethanol) and nonradioactive and [3H]R[–]TFD-MPAB (38 Ci/mmol, 26 μM) were also synthesized and titrated previously (33, 62). 11-Azi-AP and 11-F₂N₃–Bzox-AP were prepared as described previously (45). UCI-50027 (41) and CCD-3693 (40) were gifts from Drs. Derk Hogenkamp and Kelvin Gee (Department of Pharmacology, College of Medicine, University of California, Irvine). 3β-CH₃OCH₂–THDOC (42) was a gift from Drs. Shuo enTsai and Fung Fuh Wong (School of Pharmacy, China Medical University, Taichung, Taiwan). Other nonradioactive steroids were from commercial sources, most from Research Plus or Steraloids, but also from Tocris (3α5α-P, Org20599, and 17-PA), Santa Cruz Biotechnology (PS), Sigma-Aldrich (ganaxolone, DHEAS, 3αβ5β-P, and alphaxalone), and MedChemExpress (Sage-217). Chemical structures of steroids tested are presented in Fig. S1. Ivermectin was from Tocris. 0-Pthalaldehyde and cyanogen bromide were from TCI Chemicals and Alfa Aesar, respectively. Endoproteinase Lys-C was from New England Biolabs.

Human α2β3 and αβ3y2L GABA_Rs with the α1 subunits containing a FLAG epitope at the N terminus of the mature subunit were expressed in tetracycline-inducible, stably transfected HEK293-TetR cell lines, and purified from detergent...
Table 5

R	C-5	[3H]21-pTFDBzox-AP IC50 (n)	GABA enhancement EC50 (µM)
Alphaxalone	α	4.6 ± 0.7 (4)	2.2
11-Azi-AP	α	0.44 ± 0.06 (4)	0.2 ± 0.1
11-F4N3Bzox-AP	α	0.09 ± 0.01 (4)	0.5 ± 0.2
6-AziOAP	α	44	25
Renanolone (Res Plus 3183-16)	O	10 ± 1.5 (4)	3.6
3a5β-P-11β-ol (Res Plus 3159-16)	-OH	190 ± 32 (6)	>300
6-AziOP	O	>100	37

IC50 (± S.E.) values, the total drug concentrations resulting in 50% inhibition of α1β3 GABAAR photolabeling, were determined as described under “Experimental Procedures” from data of Fig. 9 or Ref. 27, number of experiments.

Literature IC50 values for steroid enhancement of GABA responses of α1β3γ2 GABAARs expressed in oocytes (alphaxalone, 11-Azi-AP, and 11-F4N3Bzox-AP (45)) or for enhancement of [3H]diazepam binding to rat brain membranes (renanolone (58); 3a5β-pregn-11β-ol (68)).

From Ref. 27; IC50 for enhancement of [3H]muscimol binding.

Figure 10. Ivermectin binds to the α+/γ+–β− (R-[3H]R-mTFD-MPAB) and β+–α− intersubunit site. α1β3γ2 GABAARs were photolabeled in the presence of GABA with varying concentrations of ivermectin. After SDS-PAGE, [3H] incorporation into GABAAR subunits was determined by liquid scintillation counting. For each independent experiment, nonspecific photolabeling was determined in the presence of 30 µM 3a5β-P ([3H]21-pTFDBzox-AP (n = 4)), 60 µM nonradioactive R-mTFD-MPAB ([3H]R-mTFD-MPAB (n = 3), or 300 µM etomidate ([3H]azietomidate (n = 3)). For each photoprobe, specific binding in [3H] cpm was determined for each independent experiment and normalized to the specific binding in the control condition, and data from the independent experiments were pooled. The plotted data are the mean ± S.D. from the independent experiments. When fit to Equation 2, for [3H]azietomidate, IC50 = 6.4 ± 1.0 µM, nH = 1 (R2 = 0.93). For [3H]R-mTFD-MPAB, IC50 = 21 ± 5 nM and nH = 0.55 ± 0.08 (dose, R2 = 0.92) or when fit to a two site model (B(x) = B1/(1 + IC50L/x) + B2/(1 + IC50H/x) + Bo; dashed line), IC50L = 3 ± 1 nM, IC50H = 140 ± 64 nM (R2 = 0.91).

Ivermectin binds to the α+/γ+–β− ([3H]R-mTFD-MPAB) and β+–α− ([3H]azietomidate) intersubunit anesthetic sites without altering binding of [3H]21-pTFDBzox-AP to its β+–α− intersubunit site. α1β3γ2 GABAARs were photolabeled in the presence of GABA with varying concentrations of ivermectin. After SDS-PAGE, [3H] incorporation into GABAAR subunits was determined by liquid scintillation counting. For each independent experiment, nonspecific photolabeling was determined in the presence of 30 µM 3a5β-P ([3H]21-pTFDBzox-AP (n = 4)), 60 µM nonradioactive R-mTFD-MPAB ([3H]R-mTFD-MPAB (n = 3), or 300 µM etomidate ([3H]azietomidate (n = 3)). For each photoprobe, specific binding in [3H] cpm was determined for each independent experiment and normalized to the specific binding in the control condition, and data from the independent experiments were pooled. The plotted data are the mean ± S.D. from the independent experiments. When fit to Equation 2, for [3H]azietomidate, IC50 = 6.4 ± 1.0 µM, nH = 1 (R2 = 0.93). For [3H]R-mTFD-MPAB, IC50 = 21 ± 5 nM and nH = 0.55 ± 0.08 (dose, R2 = 0.92) or when fit to a two site model (B(x) = B1/(1 + IC50L/x) + B2/(1 + IC50H/x) + Bo; dashed line), IC50L = 3 ± 1 nM, IC50H = 140 ± 64 nM (R2 = 0.91).

Extracts as described previously (13, 62–64) by use of an anti-FLAG antibody column. In brief, cells were grown for 72 h on 15-cm plates at 37 °C, induced with tetracycline and 5 mM sodium butyrate for 24 h, then harvested and lysed as described (63), with membrane pellet suspensions flash frozen in liquid nitrogen and stored at −80 °C. α1β3 and α1β3γ2 GABAARs were expressed at ~30 and 5-10 pmol of [3H]muscimol-binding sites per mg of membrane protein, respectively. For GABAAR purifications, membranes (1 mg of protein/ml) were solubilized for 2.5 h in purification buffer (13) supplemented with 30 mM n-dodecyl β-d-maltopyranoside. Column wash and elution buffers contained 0.2 mM asolectin and 5 mM CHAPS. After elution from columns in the presence of 5 mM FLAG peptide (elutions 1 and 2, 13 ml each), aliquots were characterized for [3H]muscimol binding. Membranes from 30 plates of α1β3 GABAARs (10-15 nmol of binding sites) yielded 2-3 nmol of purified receptor (60-110 and 30-40 nm binding sites in elutions 1 and 2). Membranes from 60 to 70 plates of α1β3γ2 GABAARs contained 4-5 nmol of binding sites and yielded ~1 nmol of purified receptor (50-60 nm and 20-30 nm binding sites in...
elutions 1 and 2). Aliquots of purified GABA_Rs were stored at −80°C until use.

[3H]Muscimol binding

Membrane homogenates were prepared as described (63) from HEK 293 TetR cells expressing α1β3 GABA_Rs. Membrane suspensions (50 μg of protein/ml in 2 ml of assay buffer (200 mM KCl, 1 mM EDTA, 10 mM phosphate buffer, pH 7.4)) were equilibrated with 2 nM [3H]muscimol (PerkinElmer Life Sciences) and various concentrations of steroid for 1 h at 4°C and then filtered in quadruplicate on Whatman GF/B glass fiber filters that had been pretreated with 0.5% polyethyleneimine for 1 h. After being washed twice with 5 ml of cold assay buffer, filters were dried and [3H] retention was determined by liquid scintillation counting. Non-specific binding was determined in the presence of 1 mM GABA. The modulation results are presented as the percentage of the specifically bound [3H] muscimol over that without steroid. The plotted data are the mean ± S.D. of pooled data from 2 to 4 independent experiments, and the full data sets were fit to Equation 1 to determine values of EC₅₀, n_H, and maximal enhancement.

\[
B\%(x) = \frac{B_{\text{max}} - 100}{1 + \left(\frac{EC_{50}}{x} \right)^{n_H}} + 100 \quad (\text{Eq. 1})
\]

GABA_R photolabeling

Purified α1β3 or α1β3γ2 GABA_Rs were photolabeled with [3H]21-pTFDBzox-AP in the presence of 300 μM GABA on an analytical scale (50 μl/gel lane, ~2 pmol of [3H]muscimol-binding sites) or for α1β3 GABA_Rs on a preparative scale (1.5-2 ml, 60-170 pmol of [3H]muscimol sites per condition). Appropriate volumes of [3H]21-pTFDBzox-AP were dried down under an argon stream and resuspended with gentle vortexing and 1 M 3M for 30 min at 4°C in freshly thawed GABA_R aliquots. Final concentrations of [3H]21-pTFDBzox-AP varied between 0.5 and 1 μM for α1β3 GABA_R photolabelings and 0.5 and 1.5 μM for α1β3_γ2 GABA_Rs. For preparative scale labeling, the resuspended sample was divided into two equal aliquots for determination of photolabeled amino acids in the absence or presence of 30 μM 3α5-α-P. Both samples contained 0.5% (v/v) methanol. Samples were incubated at 4°C for 30 min, placed into 3.5 cm diameter plastic Petri dishes, and irradiated using a Spectroline model EN-280L 365-nm lamp for 30 min on ice from a distance of 1 cm. For analytical photolabeling assays, a 1-μl glass syringe (Hamilton 86200) was used to add 0.25 μl (0.5%) of the steroid/drug to be tested to a 10-μl aliquot of GABA_R in glass vials (CERT5000-69LV, ThermoFisher Scientific) followed by addition of 40-μl aliquots of GABA_R equilibrated with [3H]21-pTFDBzox-AP. Samples were vortexed, incubated on ice for 45 min, transferred to 96-well plates, and then irradiated for 30 min at 365 nm. Most stock solutions of nonradioactive steroids were prepared in ethanol at 60 mM, or at 150 (DHEAS and PS), 20 (3α5β-THDOC), or 6 mM (Org20599). Stock solutions of 11-aziAP (11 mM) and 11-F4N3Bzox-AP (7.6 mM) were prepared in methanol. Stock solutions in DMSO were prepared at 150 (3β5β-P, 5β-pregn-3α,20β-diol, 3α5α-A, 3α5α-A-17α-
ol, and 3α5α-A-17-one), 60 (3-acetyl-5α-P, 3-deoxy-5α-P, 5α-pregn-3α,20β-diol, 5β-pregn-3α,11β-diol-20-one, and SAGE-217), or 22 mM (21-βTFDBzox-AP). The final concentrations of ethanol, methanol, or DMSO during labeling were 0.5, 0.5, or 0.2% (v/v), respectively.

After photolabeling, GABA_R subunits were separated by SDS-PAGE as described (13), and gel bands containing α/γ (56 kDa) and β (59/61 kDa) subunits were identified by Gel Code Blue Safe Protein Stain (ThermoFisher Scientific) for analytical labelings (26). For analytical scale experiments, [3H]21-pTFDBzox-AP incorporation was measured by scintillation counting of excised gel bands (in 3 H cpm) or by fluorography (13). For preparative scale experiments, gel bands of interest were excised and eluted passively in elution buffer (100 mM NH₂HCO₃, 2.5 mM DTT, 0.1% SDS, pH 8.4) for 3 days at room temperature. The eluates were filtered and concentrated, and the proteins in the eluate were precipitated (75% acetone, overnight at −20°C) and then resuspended in digestion buffer (15 mM Tris, 0.5 mM EDTA, 0.1% SDS, pH 8.4).

Quantitation of concentration dependence of inhibition of photolabeling

The concentration dependence of inhibition of [3H] incorporation into GABA_R subunits was fit by nonlinear least squares to Equation 2,

\[
B(x) = \frac{B_0 - B_{\text{ns}}}{1 + \left(\frac{x}{IC_{50}} \right)^{n_H}} + B_{\text{ns}} \quad (\text{Eq. 2})
\]

where, B(x) is the [3H] cpm incorporated into a subunit gel band at a total inhibitor concentration of x. B₀ is incorporation in the absence of inhibitor, B_{ns} is the nonspecific incorporation, IC₅₀ is total inhibitor concentration that reduces the specific incorporation by 50%, and n_H is the Hill coefficient. For [3H]21-pTFDBzox-AP, nonspecific photolabeling was determined in the presence of 30 μM 3α5α-P. IC₅₀ values were determined for inhibition of [3H]21-pTFDBzox-AP incorporation in the β subunit gel bands (59/61 kDa) that reflects photolabeling of residues at the β_γ-α_γ subunit interface at the cytoplasmic end of the TMD (see “Results”). For [3H]azetomiodate and [3H]R-mTFD-MPAB, IC₅₀ values were determined for inhibition of photolabeling in the α (56 kDa) and β (59/61 kDa) subunit gel bands, respectively, which reflect labeling of α1Met-236 and β3Met-227 (13, 62). For each drug tested, data from 4 to 6 experiments, using at least 2 different GABA_R purifications, were combined by normalizing (as %) the specific incorporation (B_s − B_{ns}) at each concentration to the specific incorporation in the absence of drug (B₀ − B_{ns}) for each experiment individually. The data plotted in the figures are the mean ± S.D. values of the normalized specific data from n experiments. The full normalized data sets were fit (GraphPad Prism 7.0 or SigmaPlot 11.0) using Equation 2. For all fits, the best fit values (± S.E.) of the variable parameters and the number of experiments are reported in the tables, with the plotted curves calculated from those parameters. Unless noted otherwise, the reported IC₅₀ values and calculated curves are for fits with B_{ns} = 0 and n_H = 1. Parameters
from fits with variable \(n_{1b} \) or variable \(B_{ns} \) are not reported unless \(n_{1b} \) was less than 0.8 or \(B_{ns} \) was greater than 15%. The extra sum of the squares principle (\(F \) test, \(\alpha = 0.05 \)) was used to determine whether a variable \(n_{1b} \) provided a statistically favored fit compared with \(n_{1b} = 1 \) (null hypothesis), or whether IC\(_{50}\) values for a drug were the same (null hypothesis) or different for \(\alpha 1 \beta 3 \) and \(\alpha 1 \beta 3 \gamma 2 \) GABA\(_x\)Rs.

Enzymatic and chemical fragmentation

\(\alpha 1 \) and \(\beta 3 \) subunits isolated by SDS-PAGE from \(\alpha 1 \beta 3 \) GABA\(_x\)Rs photolabeled on a preparative scale were digested with Endo Lys-C (3-5 \(\mu \)g, 3 days, 20 °C), which produces fragments beginning at the N termini of each subunit’s M1, M3 and M4 helices that can be separated and purified by rpHPLC (13). To cleave at the C-terminal side of methionines, samples already loaded onto sequencing supports were treated with cyanogen bromide as described (65, 66).

HPLC purification and protein microsequencing

Subunit digests were fractionated by rpHPLC on an Agilent 1100 binary pump system using a Brownlee C4 Aquapore column (100 × 2.1 mm, 7-µm particle size) at 40 °C with an upstream guard column (Newguard RP-2). The aqueous solvent contained 0.08% TFA and the organic solvent contained 60% acetonitrile, 40% isopropyl alcohol, 0.05% TFA. Elution was achieved using a nonlinear gradient increasing from 5 to 100% organic solvent over 80 min at a flow rate of 0.2 ml/min. Fractions of 0.5 ml were collected, and 10% aliquots were assayed for determination of \(^3\)H. Fractions of interest were pooled for sequencing and drop-loaded at 45°C onto Micro TFA glass fiber sequencing filters (Applied Biosystems) that were treated after loading with Bio-brene Plus (Applied Biosystems).

Samples were sequenced on an Applied Biosystems Procise 492 Protein sequencer programmed to use 2/3 (~80 of 120 µl) of the material from each cycle of Edman degradation for PTH-derivative identification and quantitation and to collect 1/3 for \(^3\)H determination by liquid scintillation counting. For some samples, sequencing was interrupted at a designated cycle for treatment of the sequencing filter with o-phthalaldehyde (35, 36) to prevent further sequencing of any peptide not containing a proline at that cycle. The amount of PTH-derivative released (in picomoles) for a given residue was quantified using their peak height in the chromatogram, background-subtracted, compared with a standard peak, and the PTH-derivatives released for the detected peptide were fit to the equation,

\[
F(x) = I_0 \times R^x \quad \text{Eq. (3)}
\]

where \(F(x) \) is the pmol of the amino acid in cycle \(x \), \(I_0 \) is the calculated initial amount of the peptide, and \(R \) is the repetitive yield. The 1st residue in the peptide as well as Cys, Trp, His, and Ser were not used in the calculation due to known problems with their quantitation. The efficiency of photolabeling (\(E \) in cpm/pmol) at a labeled amino acid in cycle \(x \) was calculated by the equation,

\[
E(x) = \frac{2 \times (cpm_x - cpm_{x-1})}{I_0 \times R^x} \quad \text{Eq. (4)}
\]

where \(cpm_x \) is the \(^3\)H released in cycle \(x \).

Molecular modeling and computational docking

For computational docking studies, we used the recently solved cryo-EM structure of a desensitized state of \(\alpha 1 \beta 3 \gamma 2 \) L GABA\(_x\)R (PDB 6I53) (18) in a lipid-nanodisc with a bound positive allosteric modulator megabody in the extracellular domain. This structure was determined from GABA\(_x\)Rs purified from the same cell line as that used in our photolabeling studies, a cell line expressing full-length receptor subunits with intact cytoplasmic domains. Although most of the ~120 amino acids comprising each subunit cytoplasmic domain were not resolved in this structure, the locations of 4 of the 5 amino acids specifically photolabeled by \(^3\)H \(\gamma 21 \)-TFDBzox-AP were resolved. In contrast, only the photolabeled \(\beta 3 \)Arg-309 was resolved in 5 other structures using the same source of GABA\(_x\)Rs that were determined in the presence of GABA, picROTOXIN, or bicuculline (17).

Docking of \(\gamma 21 \)-TFDBzox-AP and other steroids to the PDB 6I53 model was performed using the Discovery Studio CDOCKER module. Potential binding sites at each subunit interface of the PDB 6I53 structure were defined by 14-Å radius interface of the PDB 6I53 structure were defined by 14-Å radius of \(\gamma 21 \)–\(\alpha 1 \)GABAARs. Although most of the \(\alpha 1 \) subunit cytoplasmic domain was not resolved in this structure, the locations of 4 of the 5 amino acids specifically photolabeled by \(^3\)H \(\gamma 21 \)-TFDBzox-AP were resolved. In contrast, only the photolabeled \(\beta 3 \)Arg-309 was resolved in 5 other structures using the same source of GABA\(_x\)Rs that were determined in the presence of GABA, picROTOXIN, or bicuculline (17).

Docking of \(\gamma 21 \)-TFDBzox-AP and other steroids to the PDB 6I53 model was performed using the Discovery Studio CDOCKER module. Potential binding sites at each subunit interface of the PDB 6I53 structure were defined by 14-Å radius binding site and more than 10 kcal/mol.

> \(\gamma 21 \)-THDOC (PubChem structure CID No. 101,771). Four copies of \(\gamma 21 \)-TFDBzox-AP, differing by rotations of ~180°, were seeded into the binding site spheres. The 50 lowest energy solutions (simulated annealing with full potential minimization) were collected for each molecule from 50 random conformations (high temperature molecular dynamics) and 50 randomized orientations within the sphere (i.e., 2,500 attempted dockings per molecule). In two independent docking runs, we found that \(\gamma 21 \)-TFDBzox-AP was predicted to bind most favorably at the \(\gamma 21 \)–\(\alpha 1 \)GABAAR subunit interface with the lowest CDOCKER interaction energy (~49.17 kcal/mol) at that site 4.5 kcal/mol more favorable than at the \(\beta 3 \)–\(\gamma 21 \)–\(\alpha 1 \)GABAAR subunit interface with more than 10 kcal/mol more favorable than at the homologous \(\alpha 1 \). At the homologous \(\alpha 1 \)–\(\gamma 21 \)–\(\alpha 1 \) and \(\gamma 21 \)–\(\alpha 1 \)–\(\gamma 21 \) subunit interfaces. At the \(\gamma 21 \)–\(\alpha 1 \)–\(\gamma 21 \) site, for the energetically most favored solution and 56% of all collected solutions, \(\gamma 21 \)-TFDBzox-AP adopted a common orientation with the 3\(\alpha \)-OH directed toward \(\alpha 1 \)Gln-242 and the aromatic diazirine extending linearly from the steroid backbone into a groove between \(\beta 3 \)Arg-309 and \(\beta 3 \)Leu-417, residues photolabeled by \(^3\)H \(\gamma 21 \)-TFDBzox-AP (see “Results”). 3\(\alpha \)5\(\alpha \)-THDOC and 3\(\alpha \)5\(\alpha \)-P were also predicted to bind in a similar orientation at the \(\gamma 21 \)–\(\alpha 1 \)–\(\gamma 21 \) site, with most favorable CDOCKER interaction energies of ~40.6 and ~35.0 kcal/mol. Although both molecules were predicted to bind in an orientation with the 3\(\alpha \)-OH in proximity to \(\alpha 1 \)Gln-242, no consistent prediction was made concerning the energetic importance of a 3\(\alpha \)-OH. For THDOC,
the CDOCKER interaction energy for the 3α-OH isomer was 1.8 kcal/mol more favorable than for the 3β-epimer, whereas the interaction energy was 1.4 kcal/mol more favorable for 3β5α-P than for 3α5α-P.

Data availability

All data are contained within the article.

Acknowledgments—We dedicate this article to the memory of David C. Chiara, our wonderful colleague who passed away recently. We thank Drs. Derk Hogenkamp and Kevin Gee for the gifts of UCI-50027 (41) and CCD-3693 (40) and Drs. Shuo en Tsai and Fung Fuh Wong for the resynthesis and gift of 3β-CH3OCH2-THDOC (42).

Author contributions—S. S. J., D. C. C., and J. B. C. conceptualization; S. S. J., D. C. C., X. Z., and K. W. M. investigation; S. S. J., D. C. C., X. Z., and K. W. M. resources; K. S. B., K. W. M., and J. B. C. funding acquisition; J. B. C. supervision; S. S. J. and D. C. C. writing-original draft.

Funding and additional information—This work was supported, in whole or in part, by National Institutes of Health Grant GM-58448. The content is solely the responsibility of the authors and does not necessarily represents the views of the National Institutes of Health.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: 3α5α-P, allopregnanolone; 3α5β-P, pregnanolone; PAM, positive allosteric modulator; GABAAR, γ-aminobutyric acid type A receptor; THDOC, tetrahydrocorticosterone; 21-pTFDBzox-AP, 21-[4-(3-trifluoromethyl)-3H-diazirine-3-yl]benzox] allopregnanolone; R-mTFD-MPAB, (R)-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid; azetimidate, 2-(3-methyl-3H-diazirine-3-yl)ethyl (R)-1-(phenylethyl)-1H-imidazole-5-carboxylate; TMD, transmembrane domain; PS, pregnenolone sulfate; DHEAS, dehydroepiandrosterone sulfate; 17-PA, (3α5α)-17-phenylandrost-16-en-3-ol; Endo Lys-C, endoproteinase Lys-C; rHPLC, reversed phase high performance liquid chromatography; PTH, phenylthiohydantoin; OPA, o-phthalaldehyde; PDB, Protein Data Bank.

References

1. Belledi, D., and Lambert, J. J. (2005) Neurosteroids: Endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci. 6, 565–575 CrossRef Medline
2. Belledi, D., Hogenkamp, D., Gee, K. W., and Lambert, J. J. (2020) Realising the therapeutic potential of neuroactive steroid modulators of the GABA_A receptor. Neurobiol. Stress 12, 100207 CrossRef Medline
3. Reddy, D. S., and Estes, W. A. (2016) Clinical potential of neurosteroids for CNS disorders. Trends Pharmacol. Sci. 37, 543–561 CrossRef Medline
4. Blanco, M.-J., La, D., Coughlin, Q., Newman, C. A., Griffin, A. M., Harrison, B. L., and Salturo, F. G. (2018) Breakthroughs in neuroactive steroid drug discovery. Bioorg. Med. Chem. Lett. 28, 61–70 CrossRef Medline
5. Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L., and Paul, S. M. (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA recombinant human receptor. Science 232, 1004–1007 CrossRef Medline
6. Puia, G., Santi, M. R., Vicini, S., Pritchett, D. B., Purdy, R. H., Paul, S. M., Seeburg, P. H., and Costa, E. (1990) Neurosteroids act on recombinant human GABA_A receptors. Neuron 4, 759–765 CrossRef Medline
7. Akk, G., Covey, D. F., Evers, A. S., Steinbach, J. H., Zorumski, C. F., and Mennerick, S. (2007) Mechanisms of neurosteroid interactions with GABA(A) receptors. Pharmcol. Ther. 116, 35–57 CrossRef Medline
8. Hosie, A. M., Wilkins, M. E., and Smart, T. G. (2007) Neurosteroid binding sites on GABA(A) receptors. Pharmcol. Ther. 116, 7–19 CrossRef Medline
9. Harrison, N. L., Majewska, M. D., Harrington, J. W., and Barker, J. L. (1987) Structure-activity relationships for steroid interaction with the γ-aminobutyric acid_A receptor complex. J. Pharmacol. Exp. Ther. 241, 346–353 Medline
10. Cottrell, G. A., Lambert, J. J., and Peters, J. A. (1987) Modulation of GABA_A receptor activity by alphaxalone. Br. J. Pharmacol. 90, 491–500 CrossRef Medline
11. Purdy, R. H., Morrow, A. L., Blinks, J. R., and Paul, S. M. (1990) Synthesis, metabolism, and pharmacological activity of 3α-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneuroosomes. J. Med. Chem. 33, 1572–1581 CrossRef Medline
12. Wang, M. D., Ye, Y. J., Eisenman, L. N., Fields, C., Zeng, C. M., Mathews, J., Benz, A., Fu, T., Zorumski, E., Steinbach, J. H., Covey, D. F., Zorumski, C. F., and Mennerick, S. (2002) 3β-Hydroxyprogrenalone steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. J. Neurosci. 22, 3366–3375 CrossRef Medline
13. Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABA_A) receptor. J. Biol. Chem. 288, 19343–19357 CrossRef Medline
14. Forman, S. A., and Miller, K. W. (2016) Mapping general anesthetic sites in heteromeric γ-aminobutyric acid type A receptors reveals a potential for targeting receptor subtypes. Anesth. Analg. 123, 1263–1273 CrossRef Medline
15. Akk, G., Bracamontes, J., Covey, D. F., Evers, A. R., Dao, T., and Steinbach, J. H. (2004) Neuroactive steroids have multiple actions to potentiate GABA_A receptors. J. Physiol. 558, 59–74 CrossRef Medline
16. Evers, A. S., Chen, Z.-W., Manion, B. D., Han, M., Jiang, X., Darbandi-Tonkabon, R., Kable, T., Bracamontes, J., Zorumski, C. F., Mennerick, S., Steinbach, J. H., and Covey, D. F. (2010) A synthetic 18-norsteroid distinguishes between two neurosteroid binding sites on GABA_A receptors. J. Pharmacol. Exp. Ther. 333, 404–413 CrossRef Medline
17. Masilius, S., Desai, R., Uchański, T., Sema Martin, I., Laverty, D., Karia, D., Malinauskas, T., Zivanov, J., Pardon, E., Kotecha, A., Steyaert, J., Miller, K. W., and Aricescu, A. R. (2019) GABA_A receptor signalling mechanisms revealed by structural pharmacology. Nature 565, 454–459 CrossRef Medline
18. Laverty, D., Desai, R., Uchański, T., Masilius, S., Stec, W. J., Malinauskas, T., Zivanov, J., Pardon, E., Kocheva, A., Steyaert, J., Miller, K. W., and Aricescu, A. R. (2019) Cryo-EM structure of the human α1β3γ2 γ-aminobutyric acid type A (GABA_A) receptor. Nature 565, 516–520 CrossRef Medline
19. Hosie, A. M., Wilkins, M. E., Da Silva, H. M. A., and Smart, T. G. (2019) Cryo-EM structure of the human α1β3γ2 GABA_A receptor in a lipid bilayer. Nature 565, 486–489 CrossRef Medline
20. Akk, G., Li, P., Bracamontes, J., Reichert, D. E., Covey, D. F., and Steinbach, J. H. (2008) Mutations of the GABA-A α subunit M1 domain reveal unexpected complexity for modulation by neuroactive steroids. Mol. Pharmacol. 74, 614–627 CrossRef Medline
21. Ziemba, A. M., Szabo, A., Pierce, D. W., Haburcak, M., Stern, A. T., Nourmahnad, A., Halpin, E. S., and Forman, S. A. (2018) Alphaxalone binds in inner transmembrane β-α interfaces of α1β3γ2 γ-aminobutyric acid type A receptors. Anesthesiology 128, 338–351 CrossRef Medline
22. Laverty, D., Thomas, P., Field, M., Andersen, O. J., Gold, M. G., Biggin, P. C., Gießen, M., and Smart, T. G. (2017) Crystal structures of a GABA_A-
GABA_A-R-binding site for endogenous neurosteroids
sensitivity of recombinant GABA_α receptor isoforms. Can. J. Physiol. Pharmacol. 76, 909–920 CrossRef Medline
55. Garrett, K. M., and Gan, J. (1998) Enhancement of γ-aminobutyric acid_α receptor activity by α-chloralose. J. Pharmacol. Exp. Ther. 285, 680–686 CrossRef Medline
56. Wang, M.-D., Rahman, M., Zhu, D., Johansson, I.-M., and Bäckström, T. (2007) 3β-Hydroxysteroids and pregnenolone sulfate inhibit recombinant rat GABA_α receptor through different channel property. Eur. J. Pharmacol. 557, 124–131 CrossRef Medline
57. Turner, D. M., Ransom, R. W., Yang, J. S. J., and Olsen, R. W. (1989) Steroid anesthetics and naturally occurring analogs modulate the γ-aminobutyric acid receptor complex at a site distinct from barbiturates. J. Pharmacol. Exp. Ther. 248, 960–966 CrossRef Medline
58. Prince, R. J., and Simmonds, M. A. (1993) Differential antagonism by epi-pregnanolone of alphaxalone and pregnanolone potentiation of [3H]flunitrazepam binding suggests more than one class of binding site for steroids at GABA_α receptors. Neuropharmacology 32, 59–63 CrossRef Medline
59. Kelley, S. P., Alan, J. K., O’Buckley, T. K., Mennerick, S., Krishnan, K., Covey, D. F., and Leslie Morrow, A. (2007) Antagonism of neurosteroid modulation of native γ-aminobutyric acid receptors by (3α,5α)-17-phenylandrostan-16-en-3-ol. Eur. J. Pharmacol. 572, 94–101 CrossRef Medline
60. Goodnough, D. B., and Hawkinson, J. E. (1995) Neuroactive steroid modulation of [3H]muscimol binding to the GABA_α receptor complex in rat cortex. Eur. J. Pharmacol. 288, 157–162 CrossRef Medline
61. Rahman, M., Lindblad, C., Johansson, I. M., Backstrom, T., and Wang, M. D. (2006) Neurosteroid modulation of recombinant rat α5β2γ2L and α1β2γ2L GABA_α receptors in Xenopus oocyte. Eur. J. Pharmacol. 547, 37–44 CrossRef Medline
62. Jayakar, S. S., Zhou, X., Chiara, D. C., Dostalova, Z., Savechenkov, P. Y., Bruzik, K. S., Dailey, W., Miller, K. W., Eckenhoff, R. G., and Cohen, J. B. (2014) Multiple propofol-binding sites in a γ-aminobutyric acid type A receptor (GABA_{α(R)}) identified using a photoreactive propofol analog. J. Biol. Chem. 289, 27456–27468 CrossRef
63. Dostalova, Z., Liu, A. P., Zhou, X. J., Farmer, S. L., Krenzel, E. S., Arevalo, E., Desai, R., Feinberg-Zadek, P. L., Davies, P. A., Yamodo, I. H., Forman, S. A., and Miller, K. W. (2010) High-level expression and purification of Cys-loop ligand-gated ion channels in a tetracycline-inducible stable mammalian cell line: GABA_α and serotonin receptors. Protein Sci. 19, 1728–1738 CrossRef Medline
64. Dostalova, Z., Zhou, X., Liu, A., Zhang, X., Zhang, Y., Desai, R., Forman, S. A., and Miller, K. W. (2014) Human α1β3γ2L γ-aminobutyric acid type A receptors: high-level production and purification in a functional state. Protein Sci. 23, 157–166 CrossRef Medline
65. Scott, M. G., Crimmins, D. L., McCourt, D. W., Tarrand, J. J., Eyerman, M. C., and Nahm, M. H. (1988) A simple in situ cyanogen bromide cleavage method to obtain internal amino acid sequence of proteins electroblotted to polyvinylidifluoride membranes. Biochem. Biophys. Res. Commun. 155, 1353–1359 CrossRef Medline
66. Hamouda, A. K., Kimm, T., and Cohen, J. B. (2013) Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J. Neurosci. 33, 485–494 CrossRef Medline
67. Li, P., Bandypadhyaya, A. K., Covey, D. F., Steinbach, J. H., and Akk, G. (2009) Hydrogen bonding between the 17β-substituent of a neurosteroid and the GABA_α receptor is not obligatory for channel potentiation. Br. J. Pharmacol. 158, 1322–1329 CrossRef Medline
68. Slavíková, B., Bujons, J., Matyáš, L., Vidal, M., Babot, Z., Kristofíková, Z., Suňol, C., and Kasal, A. (2013) Allopregnanolone and pregnanolone analogues modified in the C ring: synthesis and activity. J. Med. Chem 56, 2323–2336 CrossRef Medline
69. Nourmahnad, A., Stern, A. T., Hotta, M., Stewart, D. S., Ziemba, A. M., Szabo, A., and Forman, S. A. (2016) Tryptophan and cysteine mutations in M1 helices of α1β3γ2L γ-aminobutyric acid type A receptors indicate distinct intersubunit sites for four intravenous anesthetics and one orphan site. Anesthesiology 125, 1144–1158 CrossRef Medline