Wavelet analysis as a p–adic spectral analysis

S.V. Kozyrev

November 3, 2018

Abstract

New orthonormal basis of eigenfunctions for the Vladimirov operator of p–adic fractional derivation is constructed. The map of p–adic numbers onto real numbers (p–adic change of variable) is considered. p–Adic change of variable maps the Haar measure on p–adic numbers onto the Lebesgue measure on the positive semiline. p–Adic change of variable (for $p = 2$) provides an equivalence between the constructed basis of eigenfunctions of the Vladimirov operator and the wavelet basis in $L^2(\mathbb{R}_+)$ generated from the Haar wavelet. This means that the wavelet analysis can be considered as a p–adic spectral analysis.

1 Introduction

In the present paper we construct a new orthonormal basis of eigenfunctions of the Vladimirov operator of p–adic fractional derivation. The example of such a basis one can find in [1]. Different basises of eigenvectors of the Vladimirov operator were built in [2], [3], [4]. The basis constructed in the present paper consists of locally constant functions with support on p–adic discs.

We also check that the constructed basis of eigenfunctions of the Vladimirov operator (for $p = 2$) is equivalent to the wavelet basis in $L^2(\mathbb{R}_+)$ generated from the Haar wavelet. This equivalence is given by p–adic change of variables: the map of p–adic numbers onto real numbers that conserves the measure. This means that the wavelet analysis can be considered as a p–adic
harmonic analysis (decomposition of functions over the eigenfunctions of the Vladimirov operator of p–adic fractional derivation).

For introduction to p-adic analysis see [1]. p-Adic analysis and p-adic mathematical physics attract great interest, see [1], [3], [4]. For instance, p-adic models in string theory were introduced, see [4], [8], and p-adic quantum mechanics [1] and p-adic quantum gravity [10] were investigated. p–Adic analysis was applied to investigate the spontaneous breaking of the replica symmetry, cf. [11], [12], [13], [14].

Let us make here a brief review of p-adic analysis. The field \mathbb{Q}_p of p-adic numbers is the completion of the field of rational numbers \mathbb{Q} with respect to the p-adic norm on \mathbb{Q}. This norm is defined in the following way. An arbitrary rational number x can be written in the form $x = p^\gamma \frac{m}{n}$ with m and n not divisible by p. The p-adic norm of the rational number $x = p^\gamma \frac{m}{n}$ is equal to $|x|_p = p^{-\gamma}$.

The most interesting property of the field of p-adic numbers is ultrametricity. This means that \mathbb{Q}_p obeys the strong triangle inequality

$$|x + y|_p \leq \max(|x|_p, |y|_p).$$

We will consider disks in \mathbb{Q}_p of the form $\{ x \in \mathbb{Q}_p : |x - x_0|_p \leq p^{-k} \}$. For example, the ring \mathbb{Z}_p of integer p-adic numbers is the disk $\{ x \in \mathbb{Q}_p : |x|_p \leq 1 \}$ which is the completion of integers with the p-adic norm. The main properties of disks in arbitrary ultrametric space are the following:

1. Every point of a disk is the center of this disk.
2. Two disks either do not intersect or one of these disks contains the other.

The p-adic Fourier transform F of the function $f(x)$ is defined as follows

$$F[f](\xi) = \tilde{f}(\xi) = \int_{\mathbb{Q}_p} \chi(\xi x) f(x) d\mu(x)$$

Here $d\mu(x)$ is the Haar measure. The inverse Fourier transform have the form

$$F^{-1}[\tilde{g}](x) = \int_{\mathbb{Q}_p} \chi(-\xi x) \tilde{g}(\xi) d\mu(\xi)$$

Here $\chi(\xi x) = \exp(2\pi i \xi x)$ is the character of the field of p-adic numbers. For example, the Fourier transform of the indicator function $\Omega(x)$ of the disk of
radius 1 with center in zero (this is a function that equals to 1 on the disk and to 0 outside the disk) is the function of the same type:

\[\tilde{\Omega}(\xi) = \Omega(\xi) \]

In the present paper we use the following Vladimirov operator \(D_\alpha^x \) of the fractional \(p \)-adic differentiation, that is defined [1] as

\[
D_\alpha^x f(x) = F^{-1} \circ |\xi|^\alpha_p \circ F[f](x) = \frac{p^\alpha - 1}{1 - p^{1-\alpha}} \int_{Q_p} \frac{f(x) - f(y)}{|x - y|^{1+\alpha}_p} d\mu(y) \quad (1)
\]

Here \(F \) is the (\(p \)-adic) Fourier transform, the second equality holds for \(\alpha > 0 \).

For further reading on the subject of \(p \)-adic analysis see [1].

2 \(p \)-Adic spectral analysis

Let us construct an orthonormal basis of eigenvectors of the Vladimirov operator. The following lemma gives the basic technical result.

Lemma 1. The function

\[
\psi(x) = \chi(p^{-1}x) \Omega \left(|x|_p \right)
\]

is an eigenvector of the Vladimirov operator:

\[
D^\alpha \psi(x) = p^\alpha \psi(x)
\]

Remark. The eigenvalue for \(\psi(x) \) is the same as for the character \(\chi(p^{-1}x) \):

\[
D^\alpha \chi(p^{-1}x) = p^\alpha \chi(p^{-1}x)
\]

Proof Let us check that \(\psi(x) \) is an eigenvector of the Vladimirov operator. We get

\[
D^\alpha \psi(x) = \frac{p^\alpha - 1}{1 - p^{1-\alpha}} \int_{Q_p} \frac{\psi(x) - \psi(y)}{|x - y|^{1+\alpha}_p} d\mu(y) = \]

3
\[
\frac{p^\alpha - 1}{1 - p^{-1-\alpha}} \int \frac{\chi(p^{-1}x)\Omega(|x|_p) - \chi(p^{-1}y)\Omega(|y|_p)}{|x - y|_p^{1+\alpha}} d\mu(y) = \\
= \chi(p^{-1}x) \frac{p^\alpha - 1}{1 - p^{-1-\alpha}} \int \frac{\Omega(|x|_p) - \chi(p^{-1}(y - x))\Omega(|y|_p)}{|x - y|_p^{1+\alpha}} d\mu(y) \quad (3)
\]

Let us calculate the integral over \(y\) in (3) in two cases.

1) Let \(|x|_p \leq 1\). In this case the integral in (3) is given by

\[
\int \frac{1 - \chi(p^{-1}(y - x))\Omega(|y|_p)}{|x - y|_p^{1+\alpha}} d\mu(y)
\]

Using that every point of \(p\)-adic disk is its center we get that for \(|x|_p \leq 1\) we have \(\Omega(|y|_p) = \Omega(|x - y|_p)\) and therefore the integral is equal to

\[
\int \frac{1 - \chi(p^{-1}z)\Omega(|z|_p)}{|z|_p^{1+\alpha}} d\mu(z) = \int \frac{1 - \chi(p^{-1}z)\Omega(|z|_p)}{|z|_p^{1+\alpha}} d\mu(z)
\]

2) Let \(|x|_p > 1\). For the integral in (3) we get

\[
-\frac{1}{|x|_p^{1+\alpha}} \int_{|y|_p \leq 1} \chi(p^{-1}(y - x)) d\mu(y) = 0
\]

This proves that \(\psi(x)\) is an eigenvector of the Vladimirov operator with the following eigenvalue

\[
D^\alpha \psi(x) = \psi(x) \frac{p^\alpha - 1}{1 - p^{-1-\alpha}} \int \frac{1 - \chi(p^{-1}z)\Omega(|z|_p)}{|z|_p^{1+\alpha}} d\mu(z) = \\
= \psi(x) \frac{p^\alpha - 1}{1 - p^{-1-\alpha}} \left(p^{-1} \sum_{i=0}^{p-1} (1 - \chi(p^{-1}i)) + (1 - p^{-1}) \sum_{\gamma=1}^{\infty} p^\gamma p^{-(1+\alpha)\gamma} \right) = p^\alpha \psi(x)
\]

that finishes the proof of the lemma.

The lemma implies

\[
D^\alpha \psi(ax + b) = |a|_p^\alpha p^\alpha \psi(ax + b)
\]

(4)

One can check that the set of (integrable) functions \(\psi(ax + b)\) (for different \(a, b\)) is a complete system in a Hilbert space \(L^2(Q_p)\). Moreover,
Theorem 2. The set of functions \(\{ \psi_{\gamma jn} \} \):

\[
\psi_{\gamma jn}(x) = p^{-\frac{\gamma}{2}} \chi(p^{\gamma - 1} j x) \Omega(|p^\gamma x - n|_p), \quad \gamma \in \mathbb{Z}, \quad n \in Q_p/Z_p, \quad j = 1, \ldots, p-1
\]

is an orthonormal basis in \(L^2(Q_p) \) of eigenvectors of the operator \(D^\alpha \):

\[
D^\alpha \psi_{\gamma jn} = p^{\alpha(1-\gamma)} \psi_{\gamma jn}
\]

The group \(Q_p/Z_p \) in (5) is parameterized by

\[
n = \sum_{i=1}^{m} n_i p^{-i}, \quad n_i = 0, \ldots, p-1
\]

Proof Consider the scalar product

\[
\langle \psi_{\gamma jn}, \psi_{\gamma' j'n'} \rangle =
\]

\[
= \int_{Q_p} p^{-\frac{\gamma}{2}} \chi(-p^{\gamma - 1} j x) \Omega(|p^\gamma x - n|_p) p^{-\frac{\gamma'}{2}} \chi(p^{\gamma' - 1} j' x) \Omega(|p^{\gamma'} x - n'|_p) d\mu(x)
\]

Consider \(\gamma \leq \gamma' \). We have that the product of indicators is equal to the indicator or zero:

\[
\Omega(|p^\gamma x - n|_p) \Omega(|p^{\gamma'} x - n'|_p) = \Omega(|p^{\gamma - \gamma'} n - n'|_p)
\]

Since \(n' \in Q_p/Z_p \) the function \(\Omega(|p^{\gamma - \gamma'} n - n'|_p) \) is non–zero (and equal to one) for

\[
n' = p^{\gamma' - \gamma} n
\]

We get for (7)

\[
\int_{Q_p} p^{-\frac{\gamma}{2}} \chi(-p^{\gamma - 1} j x) \Omega(|p^\gamma x - n|_p) p^{-\frac{\gamma'}{2}} \chi(p^{\gamma' - 1} j' x) \Omega(|p^{\gamma'} x - n'|_p) d\mu(x) = 0
\]

Consider \(\gamma < \gamma' \). Then for the integral (8) we get

\[
\int_{Q_p} p^{-\frac{\gamma}{2}} p^{-\frac{\gamma'}{2}} \chi(-p^{\gamma - \gamma' - 1} j' n) \Omega(|p^\gamma x - n|_p) \Omega(|p^{\gamma' - \gamma} n - n'|_p) d\mu(x) = 0
\]
Therefore the scalar product (7) can be non-zero only for $\gamma = \gamma'$. For $\gamma = \gamma'$ the integral (8) is equal to

$$
\int_{Q_p} p^{-\gamma} \chi(-p^{\gamma-1} jx) \chi(p^{\gamma-1} j'x) \Omega(|p^{\gamma} x - n|_p) \Omega(|n - n'|_p) d\mu(x)
$$

Since $n, n' \in Q_p/Z_p$

$$
\Omega(|n - n'|_p) = \delta_{nn'}
$$

we get for (8)

$$
\langle \psi_{\gamma j n}, \psi_{\gamma' j' n'} \rangle = \delta_{\gamma \gamma'} \delta_{nn'} \int_{Q_p} p^{-\gamma} \chi(p^{\gamma-1} (j' - j)x) \Omega(|p^{\gamma} x - n|_p) d\mu(x) =
$$

$$
= \delta_{\gamma \gamma'} \delta_{nn'} \delta_{jj'}
$$

that proves that the vectors $\psi_{\gamma j n}$ are orthonormal.

To prove that the set of vectors $\{\psi_{\gamma j n}\}$ is an orthonormal basis (is total in $L^2(Q_p)$) we use the Parsevaley identity.

Since the set of indicators (characteristic functions) of p–adic discs is total in $L^2(Q_p)$ and the set of vectors $\{\psi_{\gamma j n}\}$ is translationally invariant and invariant under dilations $x \mapsto p^n x, x \in Q_p$, to prove that $\{\psi_{\gamma j n}\}$ is a complete system it is enough to check the Parsevaley identity for the indicator $\Omega(|x|_p)$.

We have

$$
\langle \Omega(|x|_p), \psi_{\gamma j n} \rangle = p^{-\frac{\gamma}{2}} \theta(\gamma) \delta_{n0}, \quad \theta(\gamma) = 0, \gamma \leq 0, \quad \theta(\gamma) = 1, \gamma \geq 1 \quad (9)
$$

Formula (9) implies the Parsevaley identity for $\Omega(|x|_p)$:

$$
\sum_{\gamma j n} |\langle \Omega(|x|_p), \psi_{\gamma j n} \rangle|^2 = \sum_{\gamma = 1}^{\infty} (p - 1) p^{-\gamma} = 1 = |\langle \Omega(|x|_p), \Omega(|x|_p) \rangle|^2
$$

that proves that $\{\psi_{\gamma j n}\}$ is an orthonormal basis in $L^2(Q_p)$.

Formula (4) implies that the basis $\{\psi_{\gamma j n}\}$ is an orthonormal basis of eigenvectors of the operator D^α with eigenvalues (6). This finishes the proof of the theorem.
3 Wavelet interpretation

Let us discuss the connection between the constructed basis \(\{ \psi_{\gamma j n} \} \) and the basis of wavelets in the space of quadratically integrable functions \(L^2(\mathbb{R}_+) \) on positive semiline. The wavelet basis in \(L^2(\mathbb{R}_+) \) is a basis given by shifts and dilations of the so called mother wavelet function, cf. [15]. The simplest example of such a function is the Haar wavelet

\[
\Psi(x) = \chi_{[0,\frac{1}{2})}(x) - \chi_{[\frac{1}{2},1]}(x) \tag{10}
\]

(difference of two characteristic functions).

The wavelet basis in \(L^2(\mathbb{R}) \) (or basis of multiresolution wavelets) is the basis

\[
\Psi_{\gamma n}(x) = 2^{-\gamma} \Psi(2^{-\gamma} x - n), \quad \gamma \in \mathbb{Z}, \quad n \in \mathbb{Z} \tag{11}
\]

Consider the \(p \)-adic change of variables, i.e. the onto map

\[
\rho : Q_p \to \mathbb{R}_+
\]

\[
\rho : \sum_{i=\gamma}^{\infty} a_i p^i \mapsto \sum_{i=\gamma}^{\infty} a_i p^{-i-1}, \quad a_i = 0, \ldots, p - 1, \quad \gamma \in \mathbb{Z} \tag{12}
\]

This map is not a one–to–one map. The map \(\rho \) is continuous and moreover

Lemma 3. The map \(\rho \) satisfies the Holder inequality

\[
|\rho(x) - \rho(y)| \leq |x - y|_p \tag{13}
\]

Proof Consider

\[
x = \sum_{i=\alpha}^{\infty} x_i p^i, \quad y = \sum_{i=\beta}^{\infty} y_i p^i,
\]

where \(\alpha \leq \beta \). Then

\[
\rho(x) - \rho(y) = \sum_{i=\alpha}^{\beta-1} x_i p^i + \sum_{i=\beta}^{\infty} (x_i - y_i) p^i
\]

Consider the following two cases:
1) Let $\alpha < \beta$. Then
$$|\rho(x) - \rho(y)| \leq (p - 1) \sum_{i=\alpha}^{\infty} p^{-i-1} = |x - y|_p$$

2) Let $\alpha = \beta$. Then $|x - y|_p = p^{-\gamma}, \gamma > \alpha$.
$$\rho(x) - \rho(y) = \sum_{i=\gamma}^{\infty} (x_i - y_i)p^{-i-1}$$
$$|\rho(x) - \rho(y)| \leq (p - 1) \sum_{i=\gamma}^{\infty} p^{-i-1} = p^{-\gamma} = |x - y|_p$$

that finishes the proof of the lemma.

The following map is a one–to–one map:
$$\rho : Q_p/Z_p \rightarrow \mathbb{N}$$

where \mathbb{N} is a set of natural numbers including zero.

Here Q_p/Z_p is a group (with respect to addition modulo 1) of numbers of the form
$$x = \sum_{i=\gamma}^{-1} x_ip^i$$

Lemma 4. For $n \in Q_p/Z_p$ and $m, k \in \mathbb{Z}$ the map ρ satisfies the conditions
$$\rho : p^m n + p^k Z_p \rightarrow p^{-m} \rho(n) + [0, p^{-k}] \quad (14)$$
$$\rho : Q_p \backslash \{ p^m n + p^k Z_p \} \rightarrow \mathbb{R}_+ \backslash \{ p^{-m} \rho(n) + [0, p^{-k}] \} \quad (15)$$

up to a finite number of points.

Proof We consider for simplicity the case $\rho_0 = \rho$ and $k = 0$. Consider $n \in Q_p/Z_p$:

$$n = \sum_{i=\gamma}^{-1} n_ip^i$$
$$n - 1 = \sum_{i=\gamma}^{-1} n_ip^i + \sum_{i=0}^{\infty} (p - 1)p^i$$
Then
\[\rho(n) = \sum_{i=\gamma}^{-1} n_i p^{-i-1} \]
\[\rho(n-1) = \rho \left(\sum_{i=\gamma}^{-1} n_i p^i + \sum_{i=0}^{\infty} (p-1)p^i \right) = \sum_{i=\gamma}^{-1} n_i p^{-i-1} + \sum_{i=0}^{\infty} (p-1)p^{-i-1} = \rho(n) + 1 \]

Application of (13) for \(y = n, y = n - 1 \) proves that \(n + Z_p \) maps into \(\rho(n) + [0, 1] \). Since the map \(Q_p/Z_p \to \mathbb{N} \) is one–to–one this proves the lemma.

Lemma 5. The map \(\rho \) maps the Haar measure \(\mu \) on \(Q_p \) onto the Lebesgue measure \(l \) on \(\mathbb{R}_+ \): for measurable subspace \(X \subset Q_p \)
\[\mu(X) = l(\rho(X)) \]
or in symbolic notations
\[\rho : d\mu(x) \mapsto dx \]

Proof Lemma 4 implies that balls in \(Q_p \) map onto closed intervals in \(\mathbb{R}_+ \) with conservation of measure. The map \(\rho : Q_p \to \mathbb{R}_+ \) is surjective and moreover nonintersecting balls map onto intervals that do not intersect or have intersection of the measure zero (by lemma 4). This proves the lemma.

Therefore the corresponding map
\[\rho^* : L^2(\mathbb{R}_+) \to L^2(Q_p) \]
\[\rho^* f(x) = f(\rho(x)) \quad (16) \]
is an unitary operator.

Lemma 4 implies the following:

Lemma 6. The map \(\rho \) maps the Haar wavelet (14) onto the function (4) (for \(p = 2 \)):
\[\rho^* : \Psi(x) \mapsto \psi(x) \quad (17) \]
(17) is an equality in \(L^2 \): on the set of zero measure (17) may not be true.

Moreover, we have the following theorem:
Theorem 7. For \(p = 2 \) the map \(\rho \) maps the orthonormal basis of wavelets in \(L^2(\mathbb{R}_+) \) (generated from the Haar wavelet) onto the basis \((\mathfrak{3}) \) of eigenvectors of the Vladimirov operator:

\[
\rho^* : \Psi_{\gamma \rho(n)}(x) \mapsto (-1)^n \psi_{\gamma 1 n}(x)
\]

Proof. We have

\[2^{-\gamma} \rho(x) = \rho(2^\gamma x)\]

Lemma 4 implies for \(\rho(n) \in \mathbb{N} \)

\[\chi_{[0,1]}(\rho(2^\gamma x) - \rho(n)) = \chi_{[0,1]}(\rho(2^\gamma x - n))\]

\((20)\) is true almost everywhere. Analogously

\[\chi_{[0,\frac{1}{2}]}(\rho(2^\gamma x) - \rho(n)) = \chi_{[0,\frac{1}{2}]}(\rho(2^\gamma x - n))\]

\((21)\)

Formulas \((\mathfrak{11})\), \((\mathfrak{19})\), \((\mathfrak{20})\), \((\mathfrak{21})\) imply

\[
\Psi_{\gamma \rho(n)}(\rho(x)) = 2^{-\gamma} \Psi(2^{-\gamma} \rho(x) - \rho(n)) = \\
= 2^{-\gamma} \Psi(\rho(2^\gamma x - n)) = 2^{-\gamma} \psi(2^\gamma x - n)
\]

The last equality follows from \((\mathfrak{16})\).

Formula \((\mathfrak{5})\) implies that for \(p = 2 \)

\[
\psi_{\gamma 1 n}(x) = 2^{-\frac{\gamma}{2}} \chi(2^{\gamma-1}x) \Omega(|2^\gamma x - n|_2) = (-1)^n 2^{-\frac{\gamma}{2}} \psi(2^\gamma x - n)
\]

that proves \((\mathfrak{18})\) and finishes the proof of the theorem.

We get that after the \(p \)–adic change of variables \((\mathfrak{12})\) the wavelet analysis becomes the \(p \)–adic spectral analysis (expansion of a function over the eigenfunctions of the Vladimirov operator of \(p \)–adic derivation).

Using this interpretation we will call the basis \((\mathfrak{5})\) the wavelet basis (or \(p \)–adic wavelet basis).

Using map \((\mathfrak{16})\) it is possible to define the action of the Vladimirov operator in \(L^2(\mathbb{R}_+) \) by the formula

\[
\partial^\alpha_p f(x) = \rho^{\alpha-1} D^\alpha \rho^* f(x)
\]
(let us note that D^α and ρ^* depend on p).

We can see that

$$\partial^\alpha_p f(x) = \frac{p^\alpha - 1}{1 - p^{-1-\alpha}} \int_0^\infty \frac{f(x) - f(y)}{|\rho^{-1}(x) - \rho^{-1}(y)|_{1+\alpha}^{1+\alpha}} dy$$ \hspace{1cm} (22)

where ρ^{-1} is the inverse map to ρ. Since ρ is not one–to–one map the map ρ^{-1} is ambiguous but ambiguity is concentrated on the set of zero measure that makes definition (22) correct.

Acknowledgements

The author is grateful to V.S.Vladimirov, I.V.Volovich, V.A.Avetisov, A.H.Bikulov, V.P.Mikhailov and A.K.Guschin for discussion. This work was partially supported by INTAS 9900545 and RFFI 990100866 grants.

References

[1] V.S.Vladimirov, I.V.Volovich, Ye.I.Zelenov, p-Adic analysis and mathematical physics. World Scientific, Singapore, 1994. Russian Edition: Moscow, Nauka, 1994

[2] V.S.Vladimirov, On the spectra of of certain pseudodifferential operators over the field of p–adic numbers, Algebra i Analiz, vol.2(1990), pp.107–124

[3] A.N.Kochubei, Additive and multiplicative fractional differentiations over the field of p–adic numbers, in ”p–Adic Functional Analysis”, Lect. Notes Pure Appl. Math., vol. 192, New York: Dekker, 1997, pp.275–280

[4] V.S.Vladimirov, Ramified characters of Idele groups of one–class quadratic fields, Proc. of the Steklov Institute of Mathematics, vol.224(1999), pp.107–114

[5] V.S.Vladimirov, Generalized functions over the field of p–adic numbers, Usp. Mat. Nauk, vol.43(1989), No.5 pp.17–53

[6] A.Khrennikov, p–Adic valued distributions in mathematical physics, Kluwer Academic Publ., Dordrecht, 1994
[7] I.V.Volovich, p–Adic String, Class. Quantum Gravity, 4(1987)L83-L87
[8] Freund P.G.O., Olson M., Nonarchimedean strings, Phys. Lett. B, 1987, Vol.199, p.186
[9] Vladimirov V.S., Volovich I.V., p–Adic quantum mechanics, Commun. Math. Phys., 1989, Vol.123, pp.659–676
[10] Aref’eva I.Ya., Dragovic B., Frampton P., Volovich I.V., Wave function of the universe and p–adic gravity, Mod. Phys. Lett. A, 1991, Vol.6, pp.4341–4358
[11] Avetisov V.A., Bikulov A.H., Kozyrev S.V., Application of p–adic analysis to models of spontaneous breaking of replica symmetry, Journal of Physics A, 1999, Vol.32, pp.8785–8791, http://xxx.lanl.gov/abs/cond-mat/9904360
[12] Parisi G., Sourlas N., p–Adic numbers and replica symmetry breaking, http://xxx.lanl.gov/abs/cond-mat/9906095
[13] Carlucci D.M., De Dominicis C., On the replica Fourier transform, http://xxx.lanl.gov/abs/cond-mat/9709200
[14] De Dominicis C., Carlucci D.M., Temesvari T., Replica Fourier transform on ultrametric trees and block diagonalizing of multiple replica matrices, J. Phys. I France, 1997, Vol.7, pp.105-115, http://xxx.lanl.gov/abs/cond-mat/9703132
[15] Daubechies I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. Vol.41 (1988) p.906; The wavelet transform, time frequency localization and signal analysis, IEEE Trans. Inform. Theory Vol.36 (1990) p.961; Ten Lectures on Wavelets, CBMS Lecture Notes Series, Philadelphia: SIAM, 1991