Frequency stability of interconnected power systems using atom search optimization algorithm

Chandan Kumar Shiva¹, B. Vedik², Ritesh Kumar³ and K. Sravan Kumar⁴

¹Department of Electrical and Electronics Engineering, SR Engineering College, Warangal, Telangana, India, Pin: 506371
²,³Department of Electrical and Electronics Engineering, S R University, Warangal, Telangana, India, Pin: 506371
⁴Department of Electrical and Electronics Engineering, Sumathi Reddy Institute of Technology for Women, Warangal, Telangana, India. Pin: 506371

Email: chandankumarshiva@gmail.com

Abstract. This paper explores the dynamic controller design issue for load frequency control (LFC) of a practical interconnected power system model. In view of this, the three-degree-of-freedom proportional-integral-derivative (3DOF-PID) controller architecture and LFC performance analysis for the proposed atom search optimization (ASO) is presented. The consistency of the form and acceptability of the well-known PID controller's responses ultimately enforces to use in this work. The proposed ASO algorithm efficiently combines search space discovery and exploitation that yield promising solutions at the termination condition. The test system investigated is a four-area model with each region consisting of identical thermal unit. The system is also connected in one area with an interline power flow controller. The simulation results presented showed the superiority of ASO based 3DOF-PID controller in terms of settling time, peak variance, and magnitude of oscillation.

Keywords. frequency stability, evolutionary optimization; three-degree-of-freedom PID controller, interline power flow controller.

1. Introduction
The growth in size, complexity, the increasingly demand and linking energy systems for electricity are a major problem for the power utility company. The key reasons for linking energy systems are efficiency and economy [1]. The failure of a system part like a major transmission line or generator has a limited effect on the system with a large, interconnected grid. Reliability means that another device compensates for the failure when one device fails [2]. More than one path to connect a load to each generator is available in a realistic grid. Economy means that the energy from which it is cheap can be produced. The operation of large generating stations 24 hours a day at maximum capacity, which cater not to individual loads but pools power into the grid and is used for multiple linked loads,
is more economical. In respect to the above interactions, the interconnections of power utility companies led to the standardization of frequency. Also, there is a need for better utilisation and operation of AC transmission systems using high-power electronic converters. Several such converters are in operation in present time. A large power system can be plugged into neighbouring power systems via AC transmission lines or DC connections. In general, such neighbours are subject to the control exchange. This requires a better strategy for controller/optimization, than an additional mechanism for the operation of the power system.

In the previous work done, it has been clearly shown that the 2DOF controller has outlined the advantages of the classical 1DOF controller in the application of LFC problem [3]. It shows that if tuning buckles are in a controller framework, even better results might be possible. In [3] the higher DOF allows system oscillations to be dampened. In this work done, the significance of adding degree of freedom (DOF) to the conventional proportional-integral-derivative (PID) controller has shown. The 3DOF-PID controller therefore has the same possibility to further extend in the research work. The controller more conveniently controls the non-linearities and the disturbances in the dynamic system. In this work, important physical constraints such as time delay (T_d), governor dead band (GDB), boiler dynamics (BD), reheat turbine and generation rate constraint (GRC) has been added in the plant dynamics having interconnected four areas. The potential use of the LFC in the presence of flexible alternating current transmission system (FACTS) devices [4-6] is an important area of discussion in power system discussion. In [7], the output of a few FACTS units such as static synchronous compensation unit, thyristor-controlled series capacitor, thyristor-controlled phase shifter and IPFC was compared. Performance basis, dynamic IPFC responses are found to be better than the above-mentioned units.

Moreover, the IPFC device can transfer real power to any other and, thereby, facilitate real power transfer among the line. Thereby, in the studied test system, the IPFC controller is installed and its effectiveness is investigated. In the studied system, the control strategy work is done in the presence of PID and IPFC based damping controller designed by the very powerful optimization method. Thereby, all the variables of interest are optimized by using atom search optimization (ASO) approach. The details of ASO can be studied in [8-9]. The application of some of the application of power system through optimization techniques can be seen in [10-13].

In the following pages, the remainder of the paper is recorded. Section 2 includes brief explanations of the evaluated test system and the associated controller. The problems related to LFC are defined in Section 3. Section 4 describes a short preface for the ASO as an optimising method. Section 5 analyses the simulation results. In Section 6, the resulting findings are finalised.

2. Test system dynamics

2.1. System dynamics

The investigated test device is a four-area (all thermal reheaters) with the same area capability. Nonlinear physical constraints like, GDB, BD or GRC are well known to have major implications for transient oscillations. To make the analysis more relevant, the test system contains these limitations. The 3DOF-PID controller, one single turbine unit of 50.0 ms, 0.06 percent GDB (0.036 Hz), 3 % BD and GRC per minute are scheduled for each zone [14] (Refer to Appendix section for the related model parameters (for example, the device configuration and device parameters). The model has followed the boiler dynamics configuration taken from [15]. The simplified diagram and the ith area configuration of the studied test system are depicted in Fig. 1(a) and Fig. 1(b), respectively.
2.2. Studied controller: 3DOF-PID controller
The power system needs continuous surveillance and control. In other way, the power system operator must, like many other engineering systems, constantly track a power system’s health and carry out control measures if appropriate. A large number of automatic control systems have been installed in the systems. These controllers can require manual steps to be supplemented. The basic 3DOF design structure for a plant model is illustrated in Fig. (2a). The same applies to 3DOF-PID controller structure design and is shown in Fig. (2a). The 3DOF-PID controller’s closed loop expression can be defined in (1) [16-17].

$$Y(s) = \left[\frac{C(s)P(s)}{1+C(s)P(s)} R_c(s) \right] R(s) + \left[\frac{P(s)-C(s)P(s)FF_c(s)}{1+C(s)P(s)} \right] D(s)$$ (1)
In (1), $R(s)$ is the input reference signal, $Y(s)$ is the system output, $P(s)$ corresponds to plant model, $C(s)$ is the 1DOF controller, $D(s)$ is the load disturbance, $R_e(s)$ is the input reference controller and $FF_c(s)$ is the feed-forward controller. As concerned to $C(s)$ controller, K_{Pi}, K_{Ii} and K_{Di} are its PID gains, respectively. N_i is the filter coefficient for derivative controller. $R_e(s)$ consists of b_i and c_i which are the PD set point weight for the reference signal whereas $FF_c(s)$ has G_{iff} as the gain parameter (refer Fig. 2 (b)).

![Diagram](image)

Figure 2. Studied 3DOF-PID controller: (a) controller structure and (b) block diagram [16].

3. LFC problem formulation

3.1. Objective function

In the present LFC optimization task, ITAE (also named as figure of demerit (FOD)) is used as the objective function for the design of constrained optimization task. The same may be stated in (2).

$$FOD = ITAE = \int_{0}^{t_{sim}} \left[\Delta f_i + \left| \Delta P_{tieij} \right| \right] dt \quad (2)$$

In (2), Δf_i is the frequency deviation profile of ith area; ΔP_{tieij} is the net tie-line power deviation plot connecting between the ith and the jth area and t_{sim} is the simulation time.
3.2. Problem constraints

The problem conceived in this section is called a restricted optimization task. Thus, 3DOF-PID control gains and the IPFC time-constant are the optimizing parameters of this tuning task. The limits of these restrictions can be defined in (3).

\[
\begin{align*}
K_{pk}^{\text{min}} & \leq K_{pk} \leq K_{pk}^{\text{max}}, & k = 1 \text{ to } 4 \\
K_{ik}^{\text{min}} & \leq K_{ik} \leq K_{ik}^{\text{max}}, & k = 1 \text{ to } 4 \\
K_{dk}^{\text{min}} & \leq K_{dk} \leq K_{dk}^{\text{max}}, & k = 1 \text{ to } 4 \\
b_k^{\text{min}} & \leq b_k \leq b_k^{\text{max}}, & k = 1 \text{ to } 4 \\
c_k^{\text{min}} & \leq c_k \leq c_k^{\text{max}}, & k = 1 \text{ to } 4 \\
G_{eff}^{\text{min}} & \leq G_{eff} \leq G_{eff}^{\text{max}}, & k = 1 \text{ to } 4 \\
N_k^{\text{min}} & \leq N_k \leq N_k^{\text{max}}, & k = 1 \text{ to } 4 \\
T_{ipfc}^{\text{min}} & \leq T_{ipfc} \leq T_{ipfc}^{\text{max}}, & k = 1 \text{ to } 4
\end{align*}
\]

In the present optimization task, the minimum and the maximum values of PID gains are 0.001 and 10, respectively; the range of N is 0.001 to 100 and the range of b_k, G_{eff}, T_{ipfc} and c_k is 0.001 to 1.

3.3. Calculation of performance indices

The current work has stressed the accuracy of the developed controller's output to build an adaptive plant model. Quality indexes like ISE, ITSE and IAE are considered to demonstrate this. To describe these three performance indexes, (4) - (6) can be defined.

\[
\begin{align*}
\text{ISE} & = \int_{0}^{t_{\text{sim}}} \left\{ (\Delta f_i)^2 + (\Delta P_{\text{tieij}})^2 \right\} dt \quad (4) \\
\text{ITSE} & = \int_{0}^{t_{\text{sim}}} \left\{ (\Delta f_i)^2 + (\Delta P_{\text{tieij}})^2 \right\} t \, dt \quad (5) \\
\text{IAE} & = \int_{0}^{t_{\text{sim}}} \left\{ |\Delta f_i| + |\Delta P_{\text{tieij}}| \right\} dt \quad (6)
\end{align*}
\]

4. ASO algorithm

Zhao et.al [8] presented, in 2018, a new physics-based optimization approach called ASO based on atomic dynamics. This ASO algorithm is taken from the atomic motion model, which follows the standard molecular mechanics. All substances consist of atoms, bound by covalent bonds, and converted to molecules. Moreover, the interaction between these atoms is attractive or repulsive based on the gap. The repulsion power between atoms increases sharply as the gap decreases. In comparison, with increasing the distance between the atoms the frequency of attraction increases. Therefore, the acceleration of atom i can be calculated based on Newton’s second law and is given below [9].
\[a_i = \frac{F_i + G_i}{m_i} \quad (7) \]

where, \(a_i \) represents the acceleration of \(i^{th} \) atom, \(F_i \) denotes the interaction force, \(G_i \) signifies the constraint force, and \(m_i \) indicates the mass of \(i^{th} \) atom. The details of this algorithm can be found in [8-9].

5. Simulation results and analysis

This study aims to change the conventional PID controller to increase DOF's and show the dynamic performance. DOF is the number of closed loop transfer functions that can be individually modified depending on the form of problem to be solved [18]. The design of control systems is a multi-variable problem. In the Fig. 3, the studied load disturbance profiles are shown. The test device studied was simulated to assess the efficiency of the updated controller for example and comparison. For the simulation work, the following scenarios are considered to study the system dynamic performance.

Scenario (a): System dynamic performance study with SLP

Scenario (b): System dynamic performance study with RLP

![Figure 3. Studied load perturbation profiles: (a) SLP and (b) RLP [19].](image)

5.1. Scenario (a): Test system dynamic performance analysis with SLP

The dynamic output of the device with the use SLP magnitude 0.01 p.u.MW is investigated in this case. The optimized control gain values for the investigated control type are arranged with this charge disturbance in Table 1. This table shows the utility benefit of ASO-based 3DOF-PID controllers. Table 2 calculates device FOD values which include three performance indices produced by ASO-optimized controllers are calculated in Table 2. Fig. 4 displays the load alarming complex responses. An examination of Fig. 4 showed that improvement in dynamic responses of frequency deviation of area-1 (\(\Delta f_1 \)) and area-2 (\(\Delta f_2 \)), tie-line power deviation profiles such as (\(\Delta P_{tie12} \)) and (\(\Delta P_{tie23} \)) as well as \(ACE_1 \) may be observed with the proposed ASO-3DOF-PID technique.

The convergence profile of FOD with iteration cycle is also recorded in Fig. 5. In this figure, comparative convergence mobility of the FOD value, obtained by the proposed ASO has been plotted. This figure shows the superiority of ASO technique in terms of tuning process while viewing the FOD value.
Figure 4. ASO based response profiles for 0.01 p.u.MW SLP: (a) Δf_1, (b) Δf_2, (c) ΔP_{tie12}, (d) ΔP_{tie23}.

Figure 5. ASO based profile of FOD.
Table 1. Optimized PID controller gains for the investigated controller types pertaining to Scenario (a)

Optimized controller gains (For SLP load)	ASO-3DOF-PID	ASO-3DOF-PID For random load perturbation
K_{p1}	7.9442	0.0100
K_{i1}	0.1304	0.2596
K_{d1}	8.7762	0.0100
b_1	0.0100	0.0247
c_1	0.0569	0.5200
G_{ff1}	0.0101	0.7807
N_1	0.0113	98.7671
K_{p2}	0.0101	0.0100
K_{i2}	0.0164	0.1413
K_{d2}	0.0100	0.0102
b_2	0.9783	0.0515
c_2	0.0121	0.7996
G_{ff2}	1.0000	0.5858
N_2	0.0774	33.1252
K_{p3}	0.0100	0.2254
K_{i3}	0.0232	0.4375
K_{d3}	0.0110	0.0167
b_3	1.0000	0.4230
c_3	0.1522	0.1379
G_{ff3}	0.8411	0.0102
N_3	0.0101	100.0000
K_{p4}	0.0280	0.7941
K_{i4}	0.0264	0.0388
K_{d4}	0.0100	0.7700
b_4	0.0100	0.7544
c_4	1.0000	0.0373
G_{ff4}	0.5508	0.9060
N_4	0.0152	9.8413
T_{ipfc}	0.1017	0.0157
Table 2. Comparative FOD and the studied performance indices values pertaining to Scenario (a)

Controller type	FOD (=ITAE)	ISE	ITSE	IAE
ASO-3DOF-PID	8.9527	0.0065	0.0649	1.0920
(For SLP load)				
ASO-3DOF-PID	27.1613	0.0007	0.0445	0.5508
(For random load perturbation)				

5.2. Scenario (b): Test system dynamic performance analysis with RLP
The load disturbance differs randomly in the narrative in this scenario. The same system is tested in the same problem formulation as in Scenario (a). The system is separately tested as secondary controls by ASO-3DOF-PID. Each controller’s gains are optimized by ASO simultaneously. The value of the specified controller is provided in Table 1 for each controller. Table 2 displays the FOD values along with the values of the output indices analyzed. The area frequencies, the power deviation response of the tie-line and the quantity of area error, subject to RLP in area-1, are shown in the figure after the execution of the simulation work (refer Fig. 6). It can be observed that the oscillations are damped, and their constant state has nearly been restored. Thus, it can eliminate the damped oscillation by applying the RLP in the proposed MVO-3DOF-PID controller.
6. Conclusion
The dynamic performance of a four-area thermal test system with important physical constraints under 3DOF-PID controller has been shown in this manuscript. The controller design methodology is based on the tuning performance ASO. The primary contribution of this work done is the implementation of a powerful optimization technique in the large interconnected four-area power system with relevant system constraints that depicts the behaviour of power system. The simulation work showed that the ASO technique that was applied to the test system showing prominent results subjected to LFC task. It also indicates improved tuning abilities that can be observed from the measure of performance study. In the event of random load disturbance, the dynamic response for the 3DOF-PID controller centred on the ASO is better in the presence of non-linearity of device dynamics. Better results can be observed because it is parameter-free and simple to build, is very accurate, offers quicker versatility to converge.

7. References
[1] Tan W 2010 Unified tuning of PID load frequency controller for power systems via IMC IEEE Trans. Power Syst.25 (1) 341-350
[2] Parmar KPS, Majhi S, Kothari DP 2012 Load frequency control of a realistic power system with multi-source power generation Int. J. Electr. Power Energy Syst.42 426-33
[3] Debarma S, Saikia LC, Sinha N 2014 Automatic generation control using two degree of freedom fractional order PID controller Int. J. Electr. Power Energy Syst. 58 120-29
[4] Mudi J, Shiva CK, Vedik B and Mukherjee V 2020 Frequency stabilization of solar thermal-photovoltaic hybrid renewable power generation using energy storage devices Iranian Journal of Science and Technology, Transactions of Electrical Engineeringhttps://doi.org/10.1007/s40998-020-00374-w
[5] Nandi M, Shiva CK and Mukherjee V 2019 Moth-flame algorithm for TCSC-and SMES-based controller design in automatic generation control of a two-area multi-unit hydro-power System Iranian Journal of Science and Technology, Transactions of Electrical Engineering,https://doi.org/10.1007/s40998-019-00297-1
[6] Nandi M, Shiva CK and Mukherjee V 2017 Frequency stabilization of multi-area multi-source interconnected power system using TCSC and SMES mechanism Journal of energy storage 14, 348-362https://doi.org/10.1016/j.est.2017.10.018
[7] Dash P, Saikia LC and Sinha N 2015 Comparison of performances of several FACTS devices using cuckoo search algorithm optimized 2DOF controllers in multi-area AGC Int. J. Electr. Power Energy Syst.65 316-24
[8] Zhao W, Wang L and Zhang Z 2019 Atom search optimization and its application to solve a hydrogeologic parameter estimation problem Knowledge-Based Systems 163 283-304

[9] Fu Y, Li Z, Qu C and Chen, H, 2020 Modified atom search optimization based on immunologic mechanism and reinforcement learning mathematical problems in engineering https://doi.org/10.1155/2020/4568906

[10] Mudi J, Shiva C K, Vedik B and Mukherjee V 2020 Frequency stabilization of solar thermal-photovoltaic hybrid renewable power generation using energy storage devices Iran J Sci Technol. Trans.Electr. Eng. https://doi.org/10.1007/s40998-020-00374-w

[11] Vedik B, Shiva C K, and Harish P 2020 Reverse harmonic load flow analysis using an evolutionary technique SN Appl. Sci. 2, 1584. https://doi.org/10.1007/s42452-020-03408-4

[12] Vedik B, Ritesh K, Deshmukh R and Shiva C K 2020 Renewable energy based load frequency stabilization of interconnected power systems using quasi-oppositional dragonfly algorithm J Control AutomElectr Syst. https://doi.org/10.1007/s40313-020-00643-3

[13] Vedik B, Naveen P and Shiva C K 2020 A novel disruption based symbiotic organisms search to solve economic dispatch Evol. Intel. https://doi.org/10.1007/s12065-020-00506-5

[14] Golpira H and Bevrani H 2011 Application of GA optimization for automatic generation control design in an interconnected power system Energy Convers Manage 52 2247-2255

[15] Chandrakala KR MV and Balamurugan S 2016 Simulated annealing based optimal frequency and terminal voltage control of multi-source multi area system Int J Electr Power Energy Syst78 823-829

[16] Rahman A, Saikia LC and Sinha N 2015 Load frequency control of a hydro-thermal system under deregulated environment using biogeography-based optimised three degree-of-freedom integral-derivative controller IET GenerTransmDistrib9(15) 2284-2293

[17] Mudi J, Shiva C K, and Mukherjee V 2019 Multi-verse optimization algorithm for LFC of power system with imposed nonlinearities using three-degree-of-freedom PID controller Iranian Journal of Science and Technology, Transactions of Electrical Engineering 43(4) 837-856https://doi.org/10.1007/s40998-018-0166-1

[18] HOl’owitz1 M 1963 Synthesis of Feedback Systems(Academic Press)

[19] Rahman A, Saikia LC, Sinha N 2016 Maiden application of hybrid pattern search biogeography based optimisation technique in automatic generation control of a multi-area system incorporating interline power flow controller IET GenerTransmDistrib10(7) 1654-1662

Appendix

Nominal data of the studied four-area test system [14]

System configuration:
\[f = 60 \text{ Hz}, P_{r1} = P_{r2} = P_{r3} = P_{r4} = 2000 \text{ MW}, \text{ Total area load}=1000 \text{ MW}, \text{ Base rating}=2000 \text{ MW}, \text{ Initial loading}=50\% .\]

System parameters:
\[a_{ij} = -1, B_i = 0.425 \text{ p.u.MW/Hz}, K_{ri} = 0.5, K_{pi} = 120 \text{ Hz/p.u.MW}, R_{ti} = 2.4 \text{ Hz/p.u.MW}, T_{ij} = 0.086, T_{gi} = 0.08 \text{ s}, T_{pi} = 20.0 \text{ s}, T_{ri} = 10 \text{ s}, T_{ti} = 0.3 \text{ s}, \]