Bioactive substances with anti-neoplastic efficacy from marine invertebrates: *Bryozoa, Mollusca, Echinodermata* and *Urochordata*

Peter Sima, Vaclav Vetvicka

Abstract

The marine environment provides a rich source of natural products with potential therapeutic application. This has resulted in an increased rate of pharmaceutical agents being discovered in marine animals, particularly invertebrates. Our objective is to summarize the most promising compounds which have the best potential and may lead to use in clinical practice, show their biological activities and highlight the compounds currently being tested in clinical trials. In this paper, we focused on *Bryozoa, Mollusca, Echinodermata* and *Urochordata*.

© 2011 Baishideng. All rights reserved.

Key words: Cancer; *Echinodermata*; Invertebrates; *Mollusca*; *Urochordata*

Peer reviewers: Murielle Mimeault, PhD, Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, 7052 DRC, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, United States; Kazuaki Chikamatsu, MD, PhD, Assistant Professor, Department of Otolaryngology-Head and Neck Surgery, University of Yamanashi, Faculty of Medicine, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan

INTRODUCTION

Oceans contain the greatest known diversity of life, with 34 of the 36 phyla represented. It is not surprising that due to this diversity, a substantial number of biomedically potent molecules have been described, isolated and characterized. At the same time, despite decades of intensive research, cancer is still one of the most lethal diseases. Despite great achievements and decades of intensive, labor-consuming and expensive research, the incidence of various tumors and cancers is still increasing at an alarming rate. Based on the National Cancer Institute estimates, slightly less than one-in-two men and little more than one-in-three women in the United States are likely to contract cancer in their lifetime. In addition, the discovery of new anti-cancer drugs is painfully slow. In fact, very few fundamentally new anti-cancer drugs were introduced in the last decade, thus leaving oncologists to rely on chemotherapeutic drugs developed in the fifties.

In the past 30 years, the role of natural products in drug discovery has undergone many changes. It is not surprising, therefore, that in the past few decades, marine animals (and plants) have been the focus of an intensive effort to identify new molecules with anti-cancer properties. Marine invertebrates contain metabolites of unprecedented molecular structures and activities. In addition, *de novo* synthesis and design of pharmacologically active substances can not replace millions of years of evolution. Despite the fact that only a very small number of marine animals have been investigated, more than 12 000 novel bioactive molecules have been discovered. Several
marine natural products are currently undergoing clinical trials and their success is encouraging. In this part of our review, we focus on the pharmacologically-effective molecules with potential anti-cancer abilities found in Bryozoa, Mollusca, Echinodermata and Urochordata.

Bryozoa

Over 4000 living species of Bryozoa are known. Macroyclic lactone bryostatin-1, a very promising anti-tumor metabolite with significant biological activities, was isolated from the bryozoan Bugula neritina\[^1\]. It is a potent immunomodulator promoting hemato-, lympho-, and myelopoiesis, activates protein kinase C, and acts as an antagonist of tumor-promoting phorbol esters\[^2,3\]. Moreover, it down regulates multi drug resistance gene 1 expression, influences bcl-2 and p53 gene expression, and induces apoptotic processes\[^4,5\]. It also has strong anti-cancer activity and simultaneously enhances the activity of chemotherapeutics such as cisplatin, gemcitabine, paclitaxel, and vincristine\[^6,7\]. Bryostatins are already in clinical use\[^8-10\]. Lopanik et al\[^11\] subsequently discovered that bryostatins are actually produced by a microbial symbiont (Endobugula sertula) which protects Bugula larvae from predators using these substances.

The alkaloids, pterocellins, were isolated from another bryozoan, Pterocella vesiculosa\[^12\]. They possess cytotoxic activities against murine leukemia, human melanoma and breast cancer cell lines.

Mollusca

The mollusks belong to the most successful evolutionary assemblage of animals. Malacologists estimate that there are up to 150 000 molluscan species living world-wide\[^13\]. Contrary to the vast number of molluscan species and their relative accessibility, not many of their secondary bioactive metabolites have been investigated. Substances exerting anti-cancer activity are mainly peptides, dolastatins, which were first isolated in 1985 from prosobranch mollusk Jorunna funebris. These metabolites could also be accumulated from some sponges (e.g., Enoplaxella sp., Haliclona sp., Oceanapia sp., and Xestospongia sp.), which represent the main source of Jorunna nutrition. They are highly active against human colon, prostate and lung carcinoma cell lines\[^14\].

The other peptide metabolite with anti-tumor activity is the dissipeptide, kahalalide F, which was isolated from the mollusk Ellysia rubescens. It induces cytotoxicity by blocking the G1 phase of cell cycle and has selectivity against cell lines derived from solid tumors like prostate, breast, and colon cancer\[^21\]. Various bioactive peptides, e.g., angiotensin-converting enzyme inhibitory peptides, anti-fungal and anti-cancer peptides\[^22\] were also discovered in oysters. Wang et al\[^23\] treated tumor-bearing mice with oyster peptides and documented a significant inhibition of tumor growth accompanied by an increase in NK cell activity.

An important and very hopeful group of anti-cancer drug candidates are the hexacyclic pyrrole alkaloids, the lamellarsins, which were first isolated in 1985 from prosobranch mollusks of the genus Lamellaria\[^24\]. Over 38 lamellarsins denominated A-Z and a-γ were discovered. It was shown that these substances are effective inhibitors of a number of so-called disease-relevant protein kinases such as cyclin-dependent protein kinases, glycogen synthase kinase 3, serine/threonine kinase Pim-1, and specificity to both the tyrosine phosphorylation regulated kinase 1A, and casein kinase 1, which are involved in cancer cell proliferation. Baunbæk et al\[^25\] showed that 22 lamellarsins inhibit 6 kinases which are essential for transition from G1 to G2 phase and induce cell cycle arrest and cell death. Investigations into the therapeutic effects of these substances and their artificial analogues is ongoing and promises to acquire new, less toxic, but still effective compounds.

Echinodermata

Deuterostomian invertebrates-the echinoderms—comprise about 6000 species. The main secondary bioactive metabolites are the saponins. Sulfated glycosides belonging chemically to asterosaponins are regularosides and novaeguinosides from the starfish Culea novaeguineae. These structurally and functionally characterized. Linear monoterpenes and steroids with significant anti-neoplastic activities were also described in the sea hare Notarchus leachi cirrus. Many of these compounds exert promising anti-tumor activity, but they are only available in miniscule amounts\[^26\]. Another macrolide substance-latrunculin A—was first discovered in the sponge Negombata magnifl\[^21\]. It disrupts actin polymerization and binds to actin microfilaments, thereby impairing cellular migration and adhesion. It also suppresses tumor metastases and cellular viability (for review\[^27\]). Other potentially cytotoxic terpenoid derivatives have been discovered—Hexabranthus sanguineus and Pflilidiella pustulosa\[^28\]. Further cytotoxic substances, the bistetrahydroisoquinolines, jorunnamycins A-C, were isolated from the nudibranch gastropod mollusk Jorunna funebris. These metabolites could also be accumulated from some sponges (e.g., Enoplaxella sp., Haliclona sp., Oceanapia sp., and Xestospongia sp.), which represent the main source of Jorunna nutrition. They are highly active against human colon, prostate and lung carcinoma cell lines\[^24\].

Sima P et al. Bioactive substances with anti-neoplastic efficacy

WJCO | www.wjgnet.com

363 November 10, 2011 | Volume 2 | Issue 11
of breast, colon, ovarian, neural and lung origin. The alkaloids, just as in some mollusks, corals and sponges, represent the main group of urochordate metabolites with cytotoxic and antineoplastic activity. The tetracyclic alkaloids, cystaltykins, from tunicate *Cystodytes delichaejia* were the first pyridoacridine alkaloids, interesting levorotatory compounds, discovered in tunicates. These compounds showed potent cytotoxicity against murine lymphoma cells and human epidermoid carcinoma cells in vitro.

Additionally, important tunicate molecules with anti-neoplastic activity against many mammalian tumor cell lines are the polyaromatic alkaloids belonging to the family of lamellarins described previously in the prosobranch mollusk *Lamellaria sp.* (see above), which were isolated from several species of the tunicate genus *Didemnum*. A family of cyclic dispeptide derivatives called didemnins with potent antineoplastic properties was isolated from *Didemnum solidum*, from which didemnin B exerted the highest degree of antitumor activity and was included in clinical trials as early as 1988. Because of its toxic side-effects, it was discarded from further clinical examinations. A similar molecule to didemnin, the aplidine (dehydrodermin B), was extracted from the tunicate *Aplidium albicans*. Aplidine interfered, similar to kahalalide and ecteinascidins, with the cell cycle, however, its cytotoxicity against tumors is based on inhibition of the enzyme ornithine decarboxylase which is required for tumor growth. It also exerts inhibiting activity on HIF-1. Clinical phase II studies confirmed its cytostatic activity against acute lymphoid and myeloid leukemia.

From the point of view of anticancer activity, lipophilic cyclic peptides like ascidiacyclamide, ulithiacyclamide, several patellamides from *Lissoclinum patella* and some polyunsaturated amino alcohols such as crucigerolins from *Pseudodiastoma cruciger* are interesting with regard to therapeutic development. Equally the polyketal, palmerolide A, from the tunicate *Synoicum adareanum*, which was found to be particularly active against melanoma cells, is an attractive substance for the construction of new synthetic derivatives.

The bi-steroidal substance, cephalostatin 1, which activates the apoptosis signals, was recently discovered in a representative of a unique phylum of marine deuterostomian invertebrates, the hemichordate *Cephalodiscus gilchristi*. It inactivates the antiapoptotic mitochondrial protein bel-2 and activates caspase-4, an endoplasmic reticulum stress response and induces apoptosis. These effects strongly suggest that cephalostatin 1 may be useful in the development of a drug to treat drug-resistant cancers.

CONCLUSION

The most important bioactive substances with anti-neoplastic effects isolated from these phyla are summarized in Table 1. In general, these substances manifest one or more anti-cancer mechanisms, including induction of apoptosis, enhancement of the effects of chemotherape-
utic drugs, direct cytotoxicity, inhibition of proliferation, impaired cell migration, suppression of metastases, gene regulation, or anti-angiogenesis. Despite the extensive effort and enormous amounts of money used in the development of new types of drugs, significant progress in cancer treatment remains elusive. The use of plants as a source of new drugs resulted in few clinically important drugs, but in recent years, more attention has been focused on marine organisms. Readers seeking additional data should read these excellent articles.[41,51-55] From the data in both sections of this work, it is clear that the world’s oceans will play an important role in the future control of cancer treatment. Although some of the molecules isolated from marine invertebrates are already used for cancer treatment in the United States and the European Union, substantial efforts are still necessary to further advance clinical applications and to fulfill the potential offered by marine invertebrates.

REFERENCES

1. Pettit GRH, Herald C, Doubeck D, Herald D. Isolation and structure of brystein I. J Am Chem Soc 1982; 104: 6846-6848
2. Sharkis SJ, Jones RJ, Bellis ML, Demetri GD, Griffin JD, Cavin C, May WS. The action of brystein on normal human hematopoietic progenitors is mediated by accessory cell release of growth factors. Blood 1990; 76: 716-720
3. Mayer AM, Gustafson KR. Marine pharmacology in 2000: antitumor and cytotoxic compounds. Int J Cancer 2003; 105: 291-299
4. Maki A, Diwakaran H, Redman B, al-Asfar S, Pettit GR, Mohammad RM, al-Katif A. 2-Cl-2 and 2-Cl-2 p35 oncogenes can be modulated by brystein I and dolastatins in human diffuse large cell lymphoma. Anticancer Drugs 1995; 6: 392-397
5. Mohammad RM, Diwakaran H, Maki A, Emara MA, Pettit GR, Redman B, al-Katif A. Brystein I induces apoptosis and augments inhibitory effects of vincristine in human diffuse large cell lymphoma. Leuk Res 1995; 19: 667-673
6. Kraft AS, Smith JB, Berkow RL. Brystein I, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60. Proc Natl Acad Sci USA 1986; 83: 1334-1338
7. Wender PA, Hinkde KW, Koehler MF, Lippa B. The rational design of potential chemotherapeutic agents: synthesis of brystein analogues. Med Res Rev 1999; 19: 388-407
8. Blackhall FH, Ranson M, Radford JA, Hancock BW, Soukop M, McGowan AT, Robbins A, Halbert G, Jayson GC. A phase II trial of brystein I in patients with non-Hodgkin’s lymphoma. Br J Cancer 2001; 84: 465-469
9. El-Rayes BF, Gadgeel S, Shields AF, Manza S, Lorusso P, Philip PA. Phase I study of brystein I and gemcitabine. Clin Cancer Res 2006; 12: 7059-7062
10. Peterson AC, Harlin H, Harrison T, Vogelzang NJ, Knost JA, Kugler JW, Lester E, Vokes E, Gajewski TF, Stadler WM. A randomized phase II trial of interferon-2 in combination with four different doses of brystein-I in patients with renal cell carcinoma. Invest New Drugs 2006; 24: 141-149
11. Lopanik N, Lindquist N, Targett N. Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 2004; 139: 131-139
12. Yao B, Prinspe MR, Nicholson BK, Gordon DP. The pterocellins, novel bioactive alkaloids from the marine bryozoan Pterocella vesículosa. J Nat Prod 2003; 66: 1074-1077
13. May RT. How many species? Phil Trans R Soc Lond B 1990; 330: 293-304
14. Beckwith M, Urba WJ, Longo DL. Growth inhibition of human lymphoma cell lines by the marine products, dolastatins 10 and 15. J Natl Cancer Inst 1993; 85: 483-488
15. Iijima R, Kusigój J, Yamazaki M. Biopolymers from marine invertebrates. XIV. Antifungal property of Dolabellanin A, a putative self-defense molecule of the sea hare, Dolabella auricularia. Biol Pharm Bull 1994; 17: 1144-1146
16. Pettit GR, Srinirangam JK, Barkocy J, Williams MD, Durkin KP, Boyd MR, Bari R, Hamel E, Schmidt JM, Chapuis JC. Antineoplastic agents 337. Synthesis of dolastatin 10 structural modifications. Anticancer Drug Des 1995; 10: 529-544
17. Pettit GR, Flahive EJ, Boyd MR, Bari R, Hamel E, Pettit RK, Schmidt JM. Antineoplastic agents 360. Synthesis and cancer cell growth inhibitory studies of dolastatin 15 structural modifications. Anticancer Drug Des 1998; 13: 47-66
18. Haldar S, Basu A, Croce CM. Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells. Cancer Res 1998; 58: 1609-1615
19. Yamada K, Ojika M, Kigoshi H, Suenaga K. Alyprone A, a potent antitumour macrolide of marine origin, and the congeners alyprones B-H: chemistry and biology. Nat Prod Rep 2009; 26: 27-43
20. Yamada K, Ojika M, Kigoshi H, Suenaga K. Cytotoxic substances from two species of Japanese sea hare: chemistry and bioactivity. Proc Jpn Acad Ser B Phys Biol Sci 2010; 86: 176-189
21. Kashman Y, Groveissi A, Themueli U. Latrunucilin, a new 2-thiazolidnone macrolide from the marine sponge Latrunucil in magnifica. Tetrahedron Lett 1980; 21: 2629-2632
22. Nagle DG, Zhou Y-D. Marine Natural Products as Inhibitors of Hypoxic Signaling in Tumors. Phytochem Rev 2009; 8: 415-429
23. Zhang W, Guo YW, Gu Y. Secondary metabolites from the South China Sea invertebrates: chemistry and biological activity. Curr Med Chem 2006; 13: 2041-2090
24. Charupant K, Suwanborirux K, Amnuaypol S, Eato E, Kubo A, Saito N. Jorunnamycins A-C, new stabilized renieramy cin-type bistetrahydroisoquinolines isolated from the Thai nudibranch Jorunna funebris. Chem Pharm Bull (Tokyo) 2007; 55: 81-86
25. Garcia-Rocha M, Bonay P, Avila J. The antitumour compound Kahalalide F acts on cell lysosomes. Cancer Lett 1996; 99: 43-50
26. Li P, Li QF, Huang DC, Li XQ, Liu M. The research of isolation and biological activities of marine alkaloids from marine sponges. J. Metabolites of the marine prosobranch mollusk Lamellaria sp. J Am Chem Soc 1985; 107: 5492-5495
27. Raunbald D, Trinkler N, Ferandin Y, Lozach O, Ploypreadth P, Rucrawat S, Ishibashi F, Iwao M, Meijer L. Anticancer alkaloid lamellariins inhibit protein kinases. Mar Drugs 2008; 6: 255-268
28. Andersen RJ, Faulkner DJ, He CH, Van Duyne GD, Clardy J. Metabolites of the marine prosobranch mollusk Lamellaria sp. J Am Chem Soc 1985; 107: 5492-5495
29. Beckwith M, Urba WJ, Longo DL. Growth inhibition of human lymphoma cell lines by the marine products, dolastatins 10 and 15. J Natl Cancer Inst 1993; 85: 483-488
Sima P et al. Bioactive substances with anti-neoplastic efficacy

J Biomol Struct Dyn 1993; 10: 793-818

JImeno JF, Faircloth G, Cameron L, Meely K, Vega E, Gomez A, Fernandez-Souza-Faro JM, Rinehart K. Progress in the acquisition of new marine-derived antitumor compounds: development of eucheuma 743 (ET 743). Drugs Future 1996; 21: 1155-1165

Erba E, Bergamaschi D, Bassano L, Damia G, Ronzoni S, Faircloth GT, D’Incaci M. Euteneascanid-743 (ET-743), a natural marine compound, with a unique mechanism of action. Eur J Cancer 2001; 37: 97-105

van Kesteren C, Cvitkovic E, Taamma A, Lopez-Lazaro L, Jimeno JM, Guzman C, Math RA, Schellens JH, Misset JL, Brain E, Hillebrand MJ, Rosing H, Beijnen JH. Pharmacokinetics and pharmacodynamics of the novel marine-derived anticancer agent eteinesacinid 743 in a phase I dose-finding study. Clin Cancer Res 2000; 6: 4725-4732

Kobayashi J, Cheng JF, Walchli MR, Nakamura H, Hirata Y, Sasaki T, Ohizumi Y. Cystodytins A, B, and C, novel tetra cyclic aromatic alkaloids with potent antineoplastic activity from the Okinawan tunicate Cystodytes dellichaijae. J Org Chem 1988; 53: 1800-1804

Lindquist N, Fenical W, Van Duyne GD, Clardy J. New alkaloids of the lamellarin class from marine ascidian Didemnum chartaceum (Sluiter, 1909). J Org Chem 1988; 53: 4570-4574

Quesada AR, Garcia Gravalos MD, Fernandez-Puentes JL. Polyaromatic alkaloids from marine invertebrates as cytotox ic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. Br J Cancer 1996; 74: 677-682

Vera MD, Joullié MM. Natural products as probes of cell biology: 20 years of didemnin research. Med Res Rev 2002; 22: 102-145

Dorr FA, Kuhn JC, Phillips J, von Hoff DD. Phase I clinical and pharmacokinetic investigation of didemnin B, a cyclic depsipeptide. Eur J Cancer Clin Oncol 1988; 24: 1699-1706

Sakai R, Rinehart KL, Kishore V, Kundu B, Faircloth G, Gloer JB, Carney JR, Namikoshi M, Sun F, Hughes RG, García Gravalos D, de Quesada TG, Wilson GR, Heid RM. Structure-activity relationships of the didemnins. J Med Chem 1996; 39: 2819-2834

Ishida T, In Y, Doi M, Inoue M, Hamada Y, Shioiri T. Molecular conformation of ascidiacyclamide, a cytotoxic cyclic peptide from Ascidian: X-ray analyses of its free form and solvate crystals. Biopolymers 1992; 32: 131-143

In Y, Doi M, Inoue M, Ishida T, Hamada Y, Shioiri T. Molecular conformation of patellamide A, a cytotoxic cyclic peptide from the ascidian Lissoclinum patella, by X-ray crystal analysis. Chem Pharm Bull (Tokyo) 1993; 41: 1686-1690

Jares-Erijman EA, Bapat CP, Lightgow-Bertoloni A, Rinehart KL, Sakai R. Crucigasterins, new polyunsaturated amino alcohols form the Mediterranean Tunicate Pseudodistoma crucigaster. J Org Chem 1993; 58: 5732-5737

Diyalabalange T, Amsler CD, McClintock JB, Baker BJ, Palm erolide A, a cytotoxic macrolide from the antarctic tunicate Synoicum aureum. J Am Chem Soc 2006; 128: 5630-5631

Jiang X, Liu B, Lebreton S, Brabander JK. Total synthesis and structure revision of the marine metabolite palmerolide A. J Am Chem Soc 2007; 129: 6386-6387

Pettit GR, Schaufelberger DE. Isolation and structure of the cytostatic lignan glycode hydroxyphyllanthosatin A. J Nat Prod 1988; 51: 1104-1112

Lopez-Antón N, Rudy A, Barth N, Schmitz ML, Pettit GR, Schulze-Osthoff K, Dirsch VM, Vollmar AM. The marine product cephalostatin 1 activates an endoplasmic reticulum stress-specific and apoptosome-independent apoptic signaling pathway. J Biol Chem 2006; 281: 33078-33086

Mayer AM, Lehmann VK. Marine pharmacology in 1999: antitumor and cytotoxic compounds. Anticancer Res 2001; 21: 2489-2500

Mayer AMS. Marine pharmacology in 1998: antitumor and cytotoxic compounds. Pharmacologist 1999; 41: 159-164

Gerwick WH. Drugs from the sea. The search continues. J Pharm Technol 1987; 3: 136-141

Rinehart KL. Antitumor compounds from tunicates. Med Res Rev 2000; 20: 1-27

Grubb DR, Wolverteng EJ, Lawen A. Didemnin B induces cell death by apoptosis: the fastest induction of apoptosis ever described. Biochem Biophys Res Commun 1995; 215: 1130-1136

S- Editor Yang XC L- Editor Webster JR E- Editor Yang XC