Potential for definitive discovery of a 70 GeV dark matter WIMP with only second-order gauge couplings

Bailey Tallman, Alexandra Boone, Adhithya Vijayakumar, Fiona Lopez, Samuel Apata, Jehu Martinez, and Roland Allen

Physics and Astronomy Department, Texas A&M University, College Station, Texas 77843, USA

Received: October 2022, Published: 2022

Abstract

As astronomical observations and their interpretation improve, the case for cold dark matter (CDM) becomes increasingly persuasive. A particularly appealing version of CDM is a weakly interacting massive particle (WIMP) with a mass near the electroweak scale, which can naturally have the observed relic abundance after annihilation in the early universe. But in order for a WIMP to be consistent with the currently stringent experimental constraints it must have relatively small cross-sections for indirect, direct, and collider detection. Using our calculations and estimates of these cross-sections, we discuss the potential for discovery of a recently proposed dark matter WIMP which has a mass of about 70 GeV/c² and only second-order couplings to W and Z bosons. There is evidence that indirect detection may already have been achieved, since analyses of the gamma rays detected by Fermi-LAT and the antiprotons observed by AMS-02 are consistent with 70 GeV dark matter having our calculated $\langle \sigma_{\text{ann}} v \rangle \approx 1.2 \times 10^{-26}$ cm³/s. The estimated sensitivities for LZ and XENONnT indicate that these experiments may achieve direct detection within the next few years, since we estimate the relevant cross-section to be slightly above 10^{-48} cm². Other experiments such as PandaX, SuperCDMS, and especially DARWIN should be able to confirm on a longer time scale. The high-luminosity LHC might achieve collider detection within about 15 years, since we estimate a collider cross-section slightly below 1 femtobarn. Definitive confirmation should come from still more powerful planned collider experiments (such as a future circular collider) within 15-35 years.

Keywords: dark matter

There are many aspects of the dark matter problem and a vast number of dark matter candidates, with masses and couplings spanning many orders of magnitude. The cold dark matter (CDM) paradigm has, however, become increasingly compelling during the past quarter century, because of the growing sophistication of astronomical observations and their interpretation. A particularly appealing version of CDM continues to be weakly interacting massive particles (WIMPs), since a weakly interacting particle with a mass near the electroweak scale can naturally emerge from the early universe with about the observed relic abundance.

There are, however, stringent limits on the cross-sections for direct, indirect, and collider detection. Figure 1 shows the remarkable sensitivity achieved in direct detection experiments during the past few decades, which demonstrates that a viable dark matter candidate must have a very small cross-section for scattering off an atomic nucleus.

As can be seen in Fig. 2, there are also strong bounds on the cross-section for annihilation in the present universe, determined by observations of dwarf spheroidal galaxies.

Finally, the hopes for collider detection at the LHC have not been realized, and strong limits have been placed on new particles of any kind, including dark matter particles.

Here we will focus on the potential for detection of a new dark matter particle which is consistent with all experimental and observational limits, and which additionally appears to be the only viable candidate with a well-defined mass and well-defined couplings. Since there are no free parameters, it is possible to determine the cross-sections for indirect, direct, and collider detection, providing clean experimental tests of the theory.

FIGURE 1: Reach of previous direct detection experiments. From Ref. [6], used with permission. The present dark matter candidate has couplings to only W and Z bosons, and these are only second-order. It consequently has only a small cross-section for scattering off atomic nuclei, estimated to be slightly above 10^{-48}cm² in the case of Xe, so it lies below the sensitivities of earlier experiments. With a mass of about 70 GeV/c², it should barely be detectable by the LZ and XENONnT experiments, both of which estimate a reach down to about 1.4×10^{-48}cm² for a dark matter particle with a mass ~ 50 GeV/c². The current and projected sensitivities of LZ and XENONnT, shown in Figs. 3 - 6, demonstrate the grounds for this prediction in more detail.
This candidate is a WIMP with a mass of about 70 GeV/c\(^2\) and an annihilation cross section in the present universe given by \(<\sigma_{\text{ann}}v> \approx 1.2 \times 10^{-26} \text{ cm}^3/\text{s}\), according to the calculations described below, if it is assumed to constitute 100% of the dark matter. It should be mentioned, however, that the present theory also predicts supersymmetry (susy) at some energy scale, and that the lightest superpartner [1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] can be a subdominant component in a multicomponent scenario.

The results above were obtained with MicrOMEGAs [24]. If we assume that the dark matter fraction \(\Omega_{\text{DM}}\) is 0.27, that the present candidate constitutes all of the dark matter, and that the reduced Hubble constant \(h = 0.73\) [25], we obtain \(\Omega_{\text{DM}}h^2 = 0.144\). If it is instead assumed that a few percent of the dark matter consists of other components, making \(\Omega_{\text{DM}} \approx 0.26\) for the present candidate, and that \(h = 0.68\) [26], one obtains \(\Omega_{\text{DM}}h^2 \approx 0.120\). (This value is equal to that obtained by Planck for all dark matter in an analysis that confirms the consistency of standard \(\Lambda\)CDM cosmology [26].) Finally, as an extreme, we can consider \(\Omega_{\text{DM}} = 0.22\) (for the present candidate) with \(h = 0.68\), giving \(\Omega_{\text{DM}}h^2 = 0.102\).

Our calculations with MicrOMEGAs yield:
\[
\Omega_{\text{DM}}h^2 = 0.162, 0.147, 0.134, 0.121, 0.098 \text{ and } \\
<\sigma_{\text{ann}}v> = 1.08, 1.19, 1.30, 1.43, 1.73 \times 10^{-26} \text{ cm}^3/\text{s}, \text{ respectively, for } m_h = 69.5, 70.0, 70.5, 71.0, 72.0 \text{ GeV/c}^2.
\]

We can conclude that \(m_h = 70 - 72 \text{ GeV/c}^2\) and that \(<\sigma_{\text{ann}}v> \approx 1.2 - 1.7 \times 10^{-26} \text{ cm}^3/\text{s}\). It is then reasonable to say that \(m_h\) is about 70 GeV/c\(^2\) and that correspondingly (with some bias toward the measured value of \(h = 0.73\) over the theoretical value of \(h = 0.68\) in the context of the present universe) \(<\sigma_{\text{ann}}v> \approx 1.2 \times 10^{-26} \text{ cm}^3/\text{s}\).

It can be seen that our calculated \(<\sigma_{\text{ann}}v>\) with an approximately 70 GeV mass is well below the upper bounds of Fig. 2 for any of the above values of \(\Omega_{\text{DM}}h^2\).
Ref. [39] finds that “An excess of $\sim 10 - 20$ GeV cosmic-ray antiprotons has been identified in the spectrum reported by the AMS-02 Collaboration.... After accounting for these uncertainties, we confirm the presence of a 4.7 σ antiproton excess, consistent with that arising from a $m_{\chi} \approx 64 - 88$ GeV dark matter particle annihilating to $b\bar{b}$ with a cross section of $\sigma v \approx (0.8 - 5.2) \times 10^{-26}$ cm3/s.”

Other analyses have yielded similar results, which are not very sensitive to the specific annihilation channel.

At one time it may have appeared that a positron excess from AMS-02 and other experiments was evidence for a dominant dark matter particle at an energy of ~ 800 GeV or above. However, this interpretation has been ruled out by Planck [41].
FIGURE 10: Representative diagram for direct detection of the present dark matter candidate with scattering via exchange of Z bosons.

FIGURE 11: Representative diagram for direct detection of the present dark matter candidate with scattering via exchange of W bosons.

FIGURE 12: Representative diagram for collider detection of the present dark matter candidate via vector-boson fusion, with > 140 GeV of missing energy accompanied by two jets.
more powerful colliders on a longer time scale. The signature in a proton collider is > 140 GeV of missing transverse energy with two quark jets.

The annihilation processes of Figs. 8 and 9 have a cross-section given by $\langle \sigma_{\text{ann}}\vec{v} \rangle \approx 1.2 \times 10^{-26}$ cm3/s. The mass and annihilation cross-section inferred in careful analyses of the gamma rays observed by Fermi-LAT and the antiprotons observed by AMS-02 are consistent with those calculated here, so indirect detection may already have been achieved.

Appendix A. ACTION FOR SCALAR BOSONS AND AUXILIARY FIELDS

In this appendix we quote some relevant results of Refs. [43] and [44], where the action for scalar boson fields has the form

$$S_{\text{matter}} = \int d^4x \ e \ Z_{\text{scalar}}$$ \hspace{1cm} (A.1)

$$Z_{\text{scalar}} = \sum_R \phi_R^+(x) \left(D^\mu D_\mu - \frac{1}{4} R \right) \phi_R(x) + \sum_R F_R^+(x) F_R(x) + \sum_s \phi_s \left(\nabla^\mu \nabla_\mu - \frac{1}{4} R \right) \phi_s + Z_{h-\text{int}}$$ \hspace{1cm} (A.2)

in a general coordinate system, but before masses and further interactions result from symmetry breakings and other effects. The ϕ_s are complex one-component Higgs fields, the F_R are the one-component auxiliary fields of supersymmetry, and the ϕ_s are real one-component higgson fields. Each higgson field can be treated (and quantized) like a standard real scalar field, but with no quantum numbers and only second-order interactions.

Here

$$D_\mu = \nabla_\mu - i A_\mu$$ \hspace{1cm} (A.3)

is the full covariant derivative, including the effects of both gravitational and gauge curvature, R is the gravitational (Ricci) curvature scalar, and $e = \det e^a_{\mu} = (- \det g_{\mu\nu})^{1/2}$. The second-order gauge interactions of the higgson fields have been isolated in the last term, which can be written explicitly as

$$Z_{h-\text{int}} = \frac{s^2}{2(2 \cos \theta_W)^2} h_s Z^\mu Z_\mu h_s + \frac{s^2}{2} h_s W^{\mu+} W^-_{\mu} h_s$$ \hspace{1cm} (A.4)

in the electroweak sector, where it is assumed that there is no higgson condensate, so that $\phi_s = h_s$, with the convention that h_s is used to represent both a field and the particle which is an excitation of that field.

The higgson fields have only second-order interactions because they are the amplitude modes for Majorana-like bosonic fields that are constructed from primitive fields Φ_S and their charge conjugates Φ_S^c:

$$\Phi_S = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_S^c \\ \Phi_S \end{pmatrix}$$ \hspace{1cm} (A.5)

The first-order terms then cancel [10]. In addition, Yukawa couplings cannot exist and there is no mechanism for higgson-Higgs couplings. As a result, the cross-sections for annihilation, scattering, and creation are relatively small, making them consistent with current experimental and observational limits, while still within reach of experiments that have recently begun taking data or else are planned for the foreseeable future.

References

[1] Gianfranco Bertone, Dan Hooper, and Joseph Silk, “Particle dark matter: evidence, candidates and constraints”, Physics Reports 405, 279 (2005), arXiv:0404175

[2] Yann Mambrini, *Particles in the Dark Universe: A Student’s Guide to Particle Physics and Cosmology* (Springer, 2021).

[3] Daniel Green et al., “Snowmass Theory Frontier: Astrophysics and Cosmology”, arXiv:2209.06854 [hep-ph].

[4] L. Baudis and S. Profumo, “Dark Matter”, in R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022), with updates at https://pdg.lbl.gov/.

[5] See e.g. T. M. C. Abbott et al. (DES Collaboration), “Dark Energy Survey Year 3 Results: Constraints on extensions to CDM with weak lensing and galaxy clustering”, Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 [astro-ph.CO].

[6] J. Billard, E. Figueroa-Feliciano, and L. Strigari, “Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments”, Phys. Rev. D 89, 023524 (2014), arXiv:1307.5458 [hep-ph].

[7] Alexandre Alvarez, Francesca Calore, Anna Genina, Justin Read, Pasquale Dario Serpico, and Bryan Zaldivar, “Dark matter constraints from dwarf galaxies with data-driven J-factors”, JCAP 09, 004 (2020), arXiv:2002.01229 [astro-ph.HE].

[8] Antonio Boveia and Caterina Doglioni, “Dark Matter Searches at Colliders”, Annu. Rev. Nucl. Part. Sci. 68, 429 (2018), arXiv:1810.12236 [hep-ex].

[9] O. Buchmuller and P. de Jong, “Supersymmetry, Part II (Experiment)”, same pdg issue as for Ref. [4].

[10] Reagan Thornberry, Maxwell Throm, John Killough, Dylan Blend, Michael Erickson, Brian Sun, Brett Bays, Gabriel Frohau, and Roland E. Allen, “Experimental signatures of a new dark matter WIMP”, EPL [European Physics Letters] 134, 49001 (2021), arXiv:2104.11715 [hep-ph], and references therein.

[11] Caden LaFontaine, Bailey Tallman, Spencer Ellis, Trevor Croteau, Brandon Torres, Sabrina Hernandez, Diego Cristancho Guerrero, Jessica Jakstik, Drue Lubanski, and Roland E. Allen, “A Dark Matter WIMP That Can Be Detected and Definitely Identified with Currently Planned Experiments”, Universe 7, 270 (2021), arXiv:2107.14390 [hep-ph].

[12] Bailey Tallman, Alexandra Boone, Caden LaFontaine, Trevor Croteau, Quinn Ballard, Sabrina Hernandez, Spencer Ellis, Adhithya Vijayakumar, Fiona Lopez, Samuel Apata, Jehu Martinez, and Roland Allen, “Indirect detection, direct detection, and collider detection cross-sections for a 70 GeV dark matter WIMP”, Proceedings of Science (in press) [proceedings of the 41st International Conference on High Energy Physics, ICHEP 2022].

[13] G. Steigman, B. Daspupta, and J. F. Beacom, “Precise relic WIMP abundance and its impact on searches for dark matter annihilation”, Phys. Rev. D 86 023506 (2012), arXiv:1204.3622 [hep-ph].

[14] G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric Dark Matter”, Phys. Rept. 267, 195 (1996), arXiv:hep-ph/9506380.

[15] H. Baer and X. Tata, *Weak Scale Supersymmetry: From Superfields to Scattering Events* (Cambridge University Press, 2006), and references therein.
Lisa Goodenough and Dan Hooper, “Possible Evidence
Rebecca K. Leane, “Indirect Detection of Dark Matter in
Kelly Stifter [on behalf of the LZ collaboration], “First dark
J. Aalbers et al. [LUX-ZEPLIN (LZ) Collaboration], “First
Planck Collaboration, “Planck 2018 results. VI. Cosmolog-
Adam G. Riess, Wenlong Yuan, Lucas M. Macri, Dan
G. Belanger, F. Boudjemaa, A. Pukhov, and A. Semenov,
Howard Baer, Dibyashree Sengupta, and Xerxes Tata, “Is natural higgsino-only dark matter ex-
Leszek Roszkowski, Enrico Maria Sessolo, and Sebastian
Howard Baer, Dibyashree Sengupta, Shadman Salam, Ku-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, Dibyashree Sengupta, and
Leszek Roszkowski, Enrico Maria Sessolo, and Sebastian
Howard Baer, Vernon Barger, Dibyashree Sengupta, and
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, Dibyashree Sengupta, and
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, Dibyashree Sengupta, and
Xerxes Tata, “Natural Supersymmetry: Status and
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, Dibyashree Sengupta, and
Leszek Roszkowski, Enrico Maria Sessolo, and Sebastian
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, Dibyashree Sengupta, and
Xerxes Tata, “Natural Supersymmetry: Status and
Gianfranco Bertone, “The moment of truth for WIMP dark
B. D. Allen, “Predictions of a fundamental statistical pic-
Rebecca K. Leane and Tracy R. Slatyer, “Revival of
Christopher Karwin, Simona Murgia, Tim M. P. Tait, Troy
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Alexei V. Filippenko, Samantha Hoffmann, Saurabh W.
Ming-Yang Cui, Qiang Yuan, Yue-Lin Sming Tsai, and Yi-
Alessandro Cuoco, Jan Heisig, Michael Korsmeier, and
Alessandro Cuoco, Michael Krämer, and Michael Ko-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Alessandro Cuoco, Michael Krämer, and Michael Ko-
Howard Baer, Dibyashree Sengupta, Shadman Salam, Ku-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, Dibyashree Sengupta, and
Xerxes Tata, “Is natural higgsino-only dark matter ex-
Leszek Roszkowski, Enrico Maria Sessolo, and Sebastian
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
Howard Baer, Vernon Barger, and Hasan Serce, “SUSY un-
}