Changes in the H-1 Histone Complement during Myogenesis. II. Regulation by Differential Coupling of H-1 Variant mRNA Accumulation to DNA Replication

EDWARD WINTER,* CARL MATHEW PALATNIK,* DAVID L. WILLIAMS,* LEEANNE S. COLES,† JULIAN R. E. WELLS,† and JOEL S. GORDON‡

*The Cellular and Developmental Biology Program and Departments of †Anatomical and ‡Pharmacological Sciences, State University of New York, Stony Brook, New York 11794; and †Department of Biochemistry, University of Adelaide, Australia. Dr. Gordon's present address is Basic Research, Johnson and Johnson, Skillman, New Jersey 08558

ABSTRACT We have shown that changes in proportions of the four chicken H-1's during in vitro myogenesis are primarily the result of differential coupling of their synthesis to DNA replication (see the previous paper). We show here that the four major chicken H-1's are encoded by distinct mRNAs which specify primary amino acid sequence variants. Accumulation of the H-1-variant mRNAs is coupled to DNA replication to different extents. The level of mRNA encoding H-1c (the H-1 variant that increases relative to the other H-1's in nondividing muscle cells) is completely uncoupled. In contrast, the level of mRNAs encoding H-1's a, b, and d (which have levels that decrease in nondividing muscle cells) are more tightly coupled. Polyadenylation is not involved in uncoupling H-1 c mRNA accumulation from DNA replication.

The H-1 histones are small, basic proteins that have been implicated in organizing nucleosomes into higher orders of chromatin structure. In all species examined, the H-1's are highly heterogeneous. Where examined in detail, the heterogeneity reflects numerous post-synthetic modifications of a limited number of amino acid sequence variants. The sequence variants show tissue specific distributions (1, 2). In addition, changes in H-1-variant proportions have been correlated with changes in developmental (3–5), differentiative (6, 7), and physiologic states (8–12). Though little is known about the biological consequences of these changes, their widespread correlation with changes in nuclear activity have led to suggestions that the H-1 variants have different functions. An understanding of how changes in the H-1 complement of a cell are regulated may provide insight into their role in regulating the functional state of chromatin.

We have shown that a dramatic change in H-1 proportions during in vitro chick myogenesis is the result of differential coupling of their synthesis to DNA replication (13). As myoblasts withdraw from the cell cycle, fuse, and differentiate into myotubes, the amount of H-1c increases relative to the amount of H-1's a, b, and d. As a family, synthesis of the H-1's is less tightly coupled to DNA replication than is nucleosomal histone synthesis. In addition, there are differences in the degree to which synthesis of the individual H-1's is coupled, with H-1 c synthesis being substantially less tightly coupled than synthesis of H-1's a, b, and d. The continued synthesis of the H-1's in the absence of DNA synthesis occurs in conjunction with a turnover of nuclear H-1. As myogenic cells stop dividing and differentiate into myotubes, H-1c synthesis predominates, thus increasing the relative amount of H-1 c in the terminally differentiated myotube.

H-1c is present in high relative amounts in many nonproliferating chicken tissues (14), suggesting that uncoupling of its synthesis from DNA replication is not limited to the myogenic lineage. In addition, there are differences in the degree to which H-1-variant synthesis is coupled to DNA replication in other organisms (15–18, and unpublished results). Thus differential coupling of H-1-variant synthesis to DNA replication appears to be a widespread mechanism for establishing tissue-specific H-1 proportions. It follows that chicken myogenesis in vitro provides a useful system for eliciting how differential coupling is regulated, and how this in turn establishes tissue-specific H-1 proportions.
Previous amino acid composition analysis suggested that the major chicken H-1’s are primary amino acid sequence variants (1, 2). We now confirm that the four chicken H-1’s are primary sequences variants by partial peptide analysis and in vitro translation. It can be shown that H-1 mRNA levels are less tightly coupled to DNA synthesis than the levels of mRNA encoding the nucleosomal histone H-4. Moreover, there are differences in the degree to which H-1-variant mRNA levels are coupled to DNA synthesis, with H-1c mRNA levels being completely uncoupled. Thus, changes in H-1 proportions during myogenesis are regulated at the level of messenger RNA accumulation.

MATERIALS AND METHODS

Cell Culture: Myogenic cells were prepared by mechanical dissociation of the thigh musculature (19) dissected from 11-12-d-old White Leghorn chickens (SPAFA Inc., Norwich, CT). Cells were grown in 850-cm² gelatin-coated plastic roller bottles inDuboucco’s modified Eagle’s medium supplemented with 15% horse serum and 4% embryo extract as previously described (20). Myoblasts were harvested at 16−24 h after preparation of the cultures, prior to fusion. After day 3, and upon definitive appearance of fused cells, the myotubes were freed of dividing cells with 24-h treatments with 10⁴ M cytosine arabinoside (Ara C). The myotubes were harvested within 24 h after the addition of fresh media without Ara C.

Extraction and Electrophoresis of H-1’s: H-1’s were extracted by virtue of their solubility in 5% perchloric acid (PCA) using a previously described modification (13) of the technique of Johns (21). H-1’s and H-1 proteolytic fragments were resolved on 17% polyacrylamide gels containing SDS, electrophoresed at 140 V for 7–8 h. Acid-urea-polyacrylamide slab gel electrophoresis was carried out by a modification (13) of the method of Panyim and Chalkley (22). H-1’s dissolved in 6–10 μL of loading buffer (8 M urea, 4% β-mercaptoethanol, 22% sucrose, and 1.3 ionic acid) were applied to the gel.

SDS electrophoresed at 140 V for 7–8 h. Acid-urea-polyacrylamide slab gel electrophoresis was carried out by a modification (13) of the method of Panyim and Chalkley (22). H-1’s dissolved in 6–10 μL of loading buffer (8 M urea, 4% β-mercaptoethanol, 22% sucrose, and 1.3 ionic acid) were applied to the gel.

PCR reactions were performed using Polaroid type 46-L continuous tone film. Acid-urea-polyacrylamide slab gel electrophoresis was carried out by a modification (13) of the method of Panyim and Chalkley (22). H-1’s dissolved in 6–10 μL of loading buffer (8 M urea, 4% β-mercaptoethanol, 22% sucrose, and 1.3 ionic acid) were applied to the gel.

Hybridization Analysis: Relative levels of electrophoretically resolved H-1 and H-4 mRNA’s were determined by hybridization (Northern) analysis using H-1 cDNA (described by Cole, L. S., and J. R. E. Wells, manuscript submitted for publication) and H-4 DNA (a derivative of lambda CHO-1, described in reference 27) cloned in plasmid pBR 322. Plasmid DNAs were radioactively labeled to an approximate specific activity of 10⁶ cpm/μg by nick translation (reagents obtained from Bethesda Research Laboratories, Gaithersburg, MD).

RESULTS

In Vitro Translutions: Total RNA was translated in a nucleic acid-free translation system prepared by lysing (Bethesda Research Laboratories Inc., 8107 SB) supplemented with 200 μg/mL 1H-lysine (HYN, 90 Ci/mM) (New England Nuclear, Boston, MA) for 2 h at 25°C. The total translational activity was monitored by scintillation spectrometry of 5% TCA-precipitable material which had been incubated at 90°C for 30 min to hydrolyze aminoacyl-tRNAs. Protein synthesis behared as a linear function of RNA concentration up to 140 μg/mL of total RNA. Translations were for 3 h at 25°C during which time incorporation was linear with respect to time. Acetylation by the in vitro translation system was inhibited by the addition of oxaloacetate and citrate synthase (type II from porcine heart, Sigma Chemical Co., St. Louis, MO), as described by P. Palmer (30).

H-1 translation products were extracted from the wheat germ reaction mixture with 5% PCA. Aliquots of the reaction mixtures containing equivalent levels of protein radioactivity (1.5–2.0 ml) were mixed with 20 μg of chicken thymus H-1. H-1’s were subsequently extracted using 5% PCA and analyzed by SDS or acid-urea-polyacrylamide gel electrophoresis. The gels were prepared for fluorography and exposed to preflashed X-ray film (28°C with an intensifying screen (Cornex Lightning-Plus, DuPont Co., Wilmington, DE) as described by Laskey and Mills (29). Levels of hybridization were determined by scanning densitometry of the radioautogram onto the nitrocellulose filter and were corrected for nonspecific hybridization.

Acid Sequences

To determine whether the four chicken H-1’s are amino acid sequences distinct from each other, the gels were stained with silver nitrate, and the radioactivity was localized by autoradiography. The gel was exposed to X-ray film for 3 days at −75°C. The gel was then scanned on a densitometer (model 320, du Pont Co., Wilmington, DE) and the areas under the densitometric peaks were integrated. Amino acid analysis of the H-1’s was carried out as previously described (30).

Abbreviations used in this paper: Ara C, cytosine arabinoside; PCA, perchloric acid; SSC, standard saline citrate.
acid sequence variants, we compared the peptide fragments generated by digestion of the H-1's with V-8 protease, elastase, trypsin, and type III collagenase. The four H-1 species were first resolved by acid-urea-polyacrylamide gel electrophoresis. The region of the gel containing the H-1's was excised and cut into strips along the direction of migration. These slices were then incubated with one of the proteases and were subsequently placed on the surface of an SDS polyacrylamide gel such that electrophoresis in the second dimension was 90° relative to the first dimension.

Proteolytic fragments of the four H-1's generated by V-8 protease, trypsin, elastase, and collagenase are shown in Fig. 1. A number of proteolytic fragments common to all four H-1's were generated with each of the enzymes tested. In addition, fragments can be identified which are unique to the individual H-1's. Of the 15 major H-1 a proteolytic fragments generated with the four enzymes, six had unique molecular weights (V-8 protease and elastase each gave two unique fragments, and collagenase and trypsin each gave one). Of the 14 major H-1 c proteolytic fragments, two were unique (one unique fragment generated by V-8 protease and one by collagenase). H-1 b and d peptides generated with V-8 protease, trypsin, and elastase were identical. Two proteolytic fragments unique to H-1 b were observed when collagenase was used. The data indicates that the amino acid sequence of H-1 a is different from that of H-1 c, which are both different from that of H-1's b and d. The data also suggests that H-1's b and d have unique amino acid sequences.

That all four H-1's are unique sequence variants is strongly supported by in vitro translation analysis. The major 5% PCA-soluble translation products directed by total myoblast RNA co-migrated with authentic H-1 on SDS polyacrylamide gels (Fig. 2). As with in vivo-synthesized H-1's, only three bands are observed on SDS gels due to the failure to resolve H-1's b and d. Identity as H-1's was further established by recovery with an affinity-purified anti-H-1 antibody (data not shown).

When the 5% PCA-soluble translation products were analyzed by acid-urea-polyacrylamide gel electrophoresis, multiple bands were observed (Fig. 3A). Careful examination reveals four pairs of overlapping doublets. The upper member of each doublet co-migrates with H-1 synthesized in vivo. Histones synthesized in vivo are subject to acetylation (for review see reference 31). Wheat germ in vitro translation reaction mixtures have been shown to contain acetylating activity (30). If acetylation of the H-1's synthesized in vitro is incomplete, the upper member of each doublet could represent the acetylated H-1, while the lower member could be unmodified. To test this possibility, we inhibited acetylation by adding oxaloacetate and citrate synthase to the translation reaction (30). Under these conditions only four translation products which co-migrate with the lower member of each pair of doublets were observed (Fig. 3B). Thus the lower members of each pair of doublets are the unacetylated pre-
cursor forms of the H-1's. Coupled with the partial peptide analysis, these results strongly suggests that the four H-1's are primary sequence variants.

H-1 mRNA Is Present in Nondividing Myogenic Cells

Previous work showed that H-1 synthesis is less tightly coupled to DNA synthesis than nucleosomal histone synthesis throughout myogenesis (13). H-1 synthesis is only partially inhibited in myoblasts in which DNA synthesis has been inhibited with Ara C, or after cells withdraw from the cell cycle upon fusion into myotubes. In contrast, core histone synthesis is tightly coupled to DNA synthesis. To determine if synthesis is regulated at the level of messenger RNA accumulation, we assayed the relative amounts of H-1 mRNA by hybridization using the Northern transfer technique.

Hybridization analysis shows that the level of H-1 mRNA is less tightly coupled to DNA synthesis than the level of mRNA encoding the nucleosomal histone H-4. H-1 and H-4 mRNAs were present at decreased levels in Ara C-treated myoblasts and in nondividing myotubes when compared with untreated myoblasts (Fig. 4). However, the decrease in H-1 mRNA levels was substantially less dramatic than the decrease in H-4 mRNA levels. Quantitative analysis reveals that the amount of H-1 mRNA present in Ara C-treated myoblasts was 18 ± 3% and in myotubes was 13 ± 2% of that found in untreated myoblasts. In contrast, the amount of H-4 mRNA present in Ara C-treated myoblasts was 5 ± 2% and in myotubes was 3 ± 2% of that found in untreated myoblasts.

The Level of Translatable RNA Encoding The Four H-1 Species Is Coupled to DNA Replication to Different Extents

To determine if the levels of mRNA encoding each of the variants is differentially coupled to DNA synthesis, we assayed changes in the amounts of translatable mRNA encoding the four H-1's. The H-1 in vitro translation products directed by RNA from untreated myoblasts, Ara C-treated myoblasts, and myotubes are shown in Fig. 5. H-1 c translatable mRNA was preferentially retained in the cells which are not synthesizing DNA as compared to dividing myoblasts. In Ara C-treated myoblasts and in myotubes, the level of translatable H-1 a, b, and d mRNA decreased to <18% of the level found in untreated myoblasts. In contrast, the level of translatable H-1 c mRNA was indistinguishable in myoblasts, in Ara C-treated myoblasts, and in myotubes. The results show that the level of H-1 c mRNA is uncoupled from DNA synthesis. It follows that the uncoupling of H-1 c synthesis previously observed in myogenic cells occurs at the level of mRNA accumulation.

H-1 Messages Are Not Polyadenylated

In most cases, histone messages lack the 3' polyadenylate tracts typical of eucaryotic mRNA. However, several notable exceptions have been described. In several cell types in which polyadenylated histone messages have been observed, histone synthesis is uncoupled from DNA synthesis (32-34). These correlations between polyadenylated histone mRNA and uncoupled histone synthesis have led to suggestions that polyadenylation is involved in the process of uncoupling histone synthesis from DNA replication (32-35). We therefore asked if the H-1 mRNAs which accumulate in nondividing myogenic cells are polyadenylated. RNA from untreated myoblasts, Ara C-treated myoblasts, and myotubes was separated into poly (A)+ and poly (A)- fractions by poly(U)-Sepharose chromatography (35). The H-1 mRNA content of each was
FIGURE 5 Comparison of translatable H-1 mRNA levels in myoblasts. Total RNA extracted from myoblasts, Ara C-treated myoblasts, and myotubes was translated in a cell-free wheat germ in vitro translation system supplemented with oxaloacetate and citrate synthase. The H-1's were extracted from aliquots of the reactions that contained equivalent levels of protein radioactivity with 5% PCA, and were subsequently resolved by acid-urea-polyacrylamide gel electrophoresis followed by fluorography. Two different exposures of the same gel are shown for comparison. (A) 3-wk and (B) 1-wk exposure.

then analyzed by hybridization and in vitro translation analysis. The vast majority of total translation products were directed by the poly (A)" fraction (Fig. 6A). However, after PCA extraction, H-1 translation products were detected only in the poly (A)" fractions (Fig. 6B). Each variant was found in the same relative proportions as after translation of total RNA. Furthermore, hybridization analysis showed that H-1 mRNA is found exclusively in the poly (A)" fraction in all cases (data not shown). Thus, H-1 mRNA is not polyadenylated in dividing and nondividing myogenic cells.

DISCUSSION
This study shows that the four chicken H-1's are encoded by different messenger RNAs whose expression is coupled to DNA synthesis to varying extents. Accumulation of H-1c mRNA is completely uncoupled from DNA synthesis. This can account for the increase in the relative amount of H-1c after dividing myoblasts fuse into nondividing myotubes (see previous paper).

Peptide mapping and cell-free translation analysis both indicate that the four major chicken H-1's are amino acid sequence variants. A comparison of the peptides generated after partial digestion with four different proteases clearly distinguishes H-1a from H-1c and both from H-1's b and d. Only minor differences between H-1's b and d are observed with one of the enzymes. In vitro translation analysis of RNA extracted from myogenic cells supports the conclusion that the four chicken H-1's are primary amino acid sequence variants. When acetylation is inhibited, myogenic RNA directs the synthesis of four H-1's. We can not eliminate the possibility that the wheat germ translation system carries out a novel covalent modification which gives the appearance of four primary translation products. However, the observation that the relative amounts of the four H-1 translation products vary depending on the source of RNA makes this unlikely. Thus analysis by two independent techniques indicates that the four major chicken H-1's are primary amino acid sequence variants.

Analysis of the protease digestion products can define some of the differences between the H-1's. After V-8 protease digestion, H-1a and H-1c yield different numbers of peptides, some of which have unique molecular weights. The unique H-1a and H-1c fragments generated by V-8 protease, which has a specificity for glutamic and aspartic acid residues, suggests that these proteins have different numbers and locations of these amino acids. One of the two major trypsin digestion products of H-1a has a larger apparent molecular weight than that characteristic of the others. This digestion product is relatively resistant to proteolysis following extended trypsin digestions (data not shown). Since it is known from trypsin digestions of H-1's from other organisms that the central globular region is relatively resistant (36), this result suggests that the H-1a central domain is larger than that of H-1's b, c, and d. The differences distinguishing H-1b and H-1d are more difficult to define since they are observed only with commercial collagenase which usually contains contaminating proteases of undefined specificity (37, 38). Taken as a whole, the data indicate that the structure of H-1a (the least stable H-1 species) is the most highly diverged. H-1c (which preferentially accumulates during myogenesis) is also clearly different from the others. The data suggest that H-1's b and d are very similar. That the H-1's whose proportions change most dramatically during myogenesis are also the most unique (as determined by partial proteolytic mapping) suggests that fundamental changes in chromatin structure may be taking place in these cells. Further understanding of the differences between the four proteins awaits the cloning and sequencing of the genes which encode them.

In the previous paper we demonstrated that synthesis of the H-1's is less tightly coupled to DNA synthesis than nucleosomal histone synthesis in both myoblasts and myotubes. This study shows that the difference in coupling is regulated at the level of mRNA accumulation. It is likely that the changes in H-1 mRNA levels determined by hybridization with the cloned H-1 cDNA underestimate the amount of total H-1 message in the nondividing cell types. Preliminary studies
suggest that the cloned H-1 cDNA used in this study preferentially hybridizes to H-1α mRNA (data not shown). H-1α synthesis is more tightly coupled to DNA replication than synthesis of H-1 b, c, or d. Thus the changes in hybridizable H-1 mRNA may preferentially reflect changes in the RNA whose level is most tightly coupled to DNA synthesis. However, even when this cloned DNA is used, the results show that H-1 mRNA levels are less tightly coupled to DNA synthesis than nucleosomal H-4 mRNA levels.

In the previous paper we also demonstrated that differential coupling of H-1-variant synthesis to DNA replication is responsible for changing H-1 proportions after dividing myoblasts differentiate into nondividing myotubes. The results described in this paper demonstrate that differential coupling is regulated at the level of mRNA accumulation.

Based on work in other systems, it is likely that most core histone and core histone mRNA synthesis is restricted to the late G1/S phase of the cell cycle and that the mRNAs encoding the core histones are rapidly degraded after S phase. The results which we have presented suggest that H-1 mRNA metabolism is different, and that different H-1 mRNA’s can be independently regulated. For example, individual H-1 mRNAs may be transcribed and/or stabilized at other stages of the cell cycle and may not be subject to the same S phase controls as core histone mRNAs. However, since the levels of H-1 mRNAs do not increase during myogenesis, we do not know whether any H-1 mRNAs continue to be synthesized during myogenesis or whether they are simply not destabilized (or a combination of both). The underlying molecular mechanisms which result in the differential regulation of H-1 variant mRNA levels remains to be determined. It has been proposed that the lack of polyadenylation is involved in coupling histone synthesis to DNA replication (32–35). Our results show that H-1 mRNAs in both dividing and nondividing myogenic cells are not polyadenylated. Thus the polyadenylation of H-1 mRNA is not involved in uncoupling H-1c mRNA levels from DNA synthesis. It should be pointed out that while the relative amount of translatable H-1c mRNA increases during myogenesis, the in vivo and in vitro labeling patterns for H-1c (relative to H-1’s a, b, and d) are not identical. H-1c mRNA is either preferentially translated in vivo or inefficiently translated in vitro. These results suggest
that H-1 c mRNA may have other properties which play a role in regulating its expression. An understanding of the mechanism by which the cell distinguishes between the H-1 mRNAs may be particularly revealing.

This work was supported by grants GM 27652 (to C. M. Palatnik) and AM 18171 (to D. L. Williams) from the National Institutes of Health, and a Muscular Dystrophy Association grant to J. S. Gordon.

Received for publication 12 November 1984, and in revised form 2 April 1985.

REFERENCES

1. Bustin, M., and R. D. Cole. 1968. Species and organ specificity in very lysine-rich histones. J. Biol. Chem. 242:4500-4505.
2. Kinkade, J. M., Jr. 1969. Qualitative species differences and quantitative tissue differences in the distribution of lysine-rich histones. J. Biol. Chem. 244:3375-3386.
3. Ruderman, J. V., and P. R. Gross. 1974. Histones and histone synthesis in sea urchin development. Dev. Biol. 36:286-298.
4. Poccia, D. L., and R. T. Hinegardner. 1975. Developmental changes in chromatin proteins of the sea urchin from blastula to mature larva. Dev. Biol. 45:81-89.
5. Harrison, M. F., and F. H. Wilt. 1982. The program of H-1 histone synthesis in S. purpuratus embryos and the control of its timing. Exp. Zool. 222:245-256.
6. Pieler, C., G. R. Adolf, and P. Swetly. 1981. Accumulation of histone H-1¢ during chemically induced differentiation of murine neuroblastoma cells. Eur. J. Biochem. 115:329-335.
7. Gerset, R., C. Gorka, S. Hathower, J. J. Lawrence, and H. Eiser. 1982. Developmental and hormonal regulation of protein H-1¢ in rodents. Proc. Natl. Acad. Sci. USA 79:2333-2337.
8. Hohmann, P., and R. D. Cole. 1969. Hormonal effects on amino acid incorporation into lysine-rich histones. Nature (Lond.) 223:1064-1066.
9. Hohmann, P., and R. D. Cole. 1971. Hormonal effects on amino acid incorporation into lysine-rich histones in the mouse mammary gland. J. Mol. Biol. 58:533-540.
10. Hohmann, P. H., A. A. Bern, and R. D. Cole. 1972. Responsiveness of preneoplastic and neoplastic mouse mammary tissues to hormones: casein and histone synthesis. J. Natl. Cancer Inst. 49:355-360.
11. Tan, K. B., H. T. Borun, R. Distin, V. J. Cristofalo, and C. M. Croce. 1983. Normal and neoplastic human cells have different histone H-1 compositions. J. Biol. Chem. 527:5377-5383.
12. Pehrson, J., and R. D. Cole. 1980. Histone H-1¢ accumulates in growth-inhibited cultured cells. Nature (Lond.) 283:43-44.
13. Winter, E., D. Levy, and J. S. Gordon. 1984. Changes in the H-1 histone component during myogenesis. I. Establishment of differential coupling of H-1 species synthesis to DNA replication. J. Cell Biol. 101:167-174.
14. Berdows, V. A., C. Gork, S. V. Agutinskaya, V. A. Cherpensova, and E. V. Kleva. 1975. Study of the relationship between the subfraction composition of histone F-1 and the type of tissue in birds. Mol. Biol. (Moscow) 10:887-896.
15. Zlatanova, J. S. 1980. Synthesis of Histone H-1¢ is not inhibited in hydroxyurea-treated Friend cells. FEBS (Fed. Eur. Biochem. Soc.) Lett. 119:192-195.
16. Pehrson, J. R., and R. D. Cole. 1982. Histone H-1 and H-1¢ turnover at different rates in non-dividing cells. Biochemistry. 21:456-460.
17. D'Anna, J., L. J. Galley, and R. A. Tobey. 1982. Synthesis and modulations in the chromatin content of histones H-1 and H-1¢ during G1 and S phases in Chinese hamster cells. Biochemistry. 21:399-4001.
18. Lennar, R. W., and L. H. Cohen. 1983. The histone H-1 complements of dividing and non-dividing cells of the mouse. J. Biol. Chem. 258:262-268.
19. Caplan, A. I. 1976. A simplified procedure for preparing myogenic cells for culture. J. Embryol. Exp. Morphol. 36:175-181.
20. Konigsberg, L. R. 1971. Diffusion-mediated control of myoblast fusion. Dev. Biol. 26:133-152.
21. Johns, E. W. 1964. Studies on histones. Preparative methods for histone fractions from calf thymus. Biochem. J. 92:55-59.
22. Panyim, S., and R. Chalkey. 1969. High resolution acrylamide gel electrophoresis of histones. Arch. Biochem. Biophys. 130:337-346.
23. Wray, W., S. R. Keshaw, V. W. Wray, and R. Hancock. 1981. Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 189:231-237.
24. Laskey, R. A., and A. D. Mills. 1975. Quantitative film detection of 3H and 32C in polyacrylamide gels. Anal. Biochem. 118:197-203.
25. Cleveland, D. W., F. G. Stuart, M. W. Kirschner, and U. K. Laemmli. 1977. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252:1021-1106.
26. Prorok, A. A., W. Wang, G. S. Sheknes, O. Ostupchak, and D. L. Williams. 1982. Isolation and characterization of a DNA clone specific for avian vitelligenin II. Nucleic Acids Res. 10:4935-4950.
27. Harvey, R. P., P. A. Kivel, H. A. Robbins, L. S. Cotes, and J. R. E. Wells. 1981. Non-tandem arrangement and divergent transcription of chicken histone genes. Nature (Lond.) 294:49-53.
28. Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:1201-1205.
29. Laskey, R. A., and A. D. Mills. 1975. Quantitative film detection of 3H and 32C in polyacrylamide gels by fluorography. Eur. J. Biochem. 56:335-341.
30. Mandinen, P. K. 1977. Prevention of proteolytic activation of proteins synthesized in cell-free systems. J. Biol. Chem. 252:8781-8783.
31. Laserberg, I. 1979. Histones. Annu. Rev. Biochem. 48:159-191.
32. D'Anna, J. A., L. R. Gurley, and R. A. Tobey. 1982. Synthesis and modulations in the histone H-1 complement and H-1¢ turnover at different rates in non-dividing cells. Biochemistry. 21:456-460.
33. Peterkofsky, B., and R. Diegelmann. 1971. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Anal. Biochem. 48:337-345.
34. Molgaard, H. V., M. Perucho, and A. Ruiz-Carrillo. 1980. Histone H-5 messenger RNA in Xenopus laevis oocytes. Cell. 9:311-322.
35. Ruderman, J. V., and C. M. Palatnik. 1978. A porportion of all major classes of histone messenger RNA in Amphibian oocytes is polyadenylated. J. Biol. Chem. 253:2018-2025.
36. Molgaard, H. V., M. Peruci, and A. Ruiz-Carrillo. 1980. Histone H-5 messenger RNA is polyadenylated. Nature (Lond.) 283:502-504.
37. Palatnik, C. M., C. Wilkins, and A. Jacobson. 1984. Translational control during early Drosophila development: possible involvement of poly (A) sequences. Cell. 30:1017-1025.
38. Allan, J., P. G. Hartman, C. Crane-Robinson, and F. X. Aviles. 1980. The structure of histone H-1 and its location in chromatin. Nature (Lond.) 288:675-679.
39. Peterkofsky, B., and R. Diegelmann. 1971. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 10:908-904.
40. Hessler, E., and A. Yaron. 1973. A novel aminopeptidase from clostridium histolyticum. Biochem. Biophys. Res. Commun. 50:405-407.