Palaeoproterozoic A-type magmatism in northern Wuyishan terrane, Southeast China: petrogenesis and tectonic implications

Zhi-Hong Chen, Guang-Fu Xing and Xi-Lin Zhao
Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, China

ABSTRACT
In this article we present zircon U–Pb ages, Hf isotopes, and whole-rock geochemistry of the Longzhu rhyolite porphyry from the Cathaysia Block, Southeast China to constrain its petrogenesis and provide insights into the early Precambrian tectonic evolution of the Cathaysia Block. LA-ICP-MS zircon U–Pb dating of a representative sample yields a weighted mean 206Pb/238U age of 1819 ± 16 Ma, interpreted as the crystallization age of the Longzhu rhyolite porphyry. Zircons from this sample have εNd(t) values ranging from ~ 8.4 to ~ 2.2 and εHf(DM2) model ages from 2.76 to 2.46 Ga. The whole-rock Nd isotopic data from the Longzhu rhyolite porphyries yield εNd(t) values spanning ~ 6.3 to ~ 4.7 and εHf(DM2) model ages from 2.81 to 2.69 Ga. The rhyolite porphyries have geochemical features similar to those of the typical A-type granites (rhyolites), with high SiO2, total alkali contents and Fe2O3/MgO ratios, and low CaO and MgO contents. Additionally, the rhyolite porphyries have high total rare earth element concentrations (627 ~ 760 ppm), high (La/Yb)N values (14.5 ~ 26.9), strongly negative Eu anomalies (δEu = 0.28 ~ 0.41), and display enrichments of Rb, Ga, Th, and U and depletions of Sr, Nb, Ta, Eu, and Ti. The geochemical and Nd-Hf isotopic features suggest that the Palaeoproterozoic Longzhu rhyolite porphyries were generated by partial melting of source rocks similar to those of the Badu Complex in an intra-plate extensional setting. The results from this study, when combined with existing geochronological data, further demonstrate that the Palaeoproterozoic rocks of Wuyishan terrane probably represent a remnant of the Columbia supercontinent.

Introduction
South China is an important geological region in eastern Asia, comprising the Yangtze Block to the northwest and the Cathaysia Block to the southeast. It was formed through the assembly of the two blocks along the Shaoxing–Jiangshan–Pinging Fault during the Neoproterozoic (Li et al. 1995; Zhao and Cawood 1999; Wang et al. 2007a; Chen et al. 2009a, 2009b) (Figure 1). The term Cathaysia Block, named after the ‘Cathaysia old-land’ by Grabau (1924), is characterized by Precambrian metamorphic basement rocks which are unconformably overlain by the unmetamorphosed Lower Devonian sandstones (Shui 1988; Jahn et al. 1990; Hu et al. 1992; Gan et al. 1995; Chen and Jahn 1998; Li et al. 2000; Xu et al. 2007; Yu et al. 2009, 2012).

The oldest rocks in the Cathaysia Block mostly outcrop in southwest Zhejiang Province and northwest Fujian Province. It was commonly accepted that a unified Palaeoproterozoic and Mesoproterozoic crystalline basement existed in the Wuyishan terrane of Cathaysia Block, including the Palaeoproterozoic Badu, Tianjingping, and Mayuan groups, and the Mesoproterozoic Mamianshan, Wanquan, Longquan, and Chencai groups, based on conventional single- or multiple-grain zircon U–Pb methods or Sm–Nd isochron ages (Shui 1988; Hu et al. 1992; Gan et al. 1995, 1996; Zhuang et al. 2000). Recently, the application of advanced geochronological methods (SHRIMP and LA-ICP-MS) has been applied to the basement rocks, demonstrating that all these stratigraphic sequences formed in the Neoproterozoic or even later time, except for the Palaeoproterozoic Badu and Tianjingping groups in the Wuyishan terrane (Figure 2a) (Li et al. 2000; Wan et al. 2007; Yu et al. 2009). These basement rocks were intensively deformed and metamorphosed during the prolonged, multiple tectono-thermal events during the Neoproterozoic to Mesozoic (Li et al. 2005, 2010, 2011a; Wan et al. 2007; Wang et al. 2012).

© 2015 Taylor & Francis
complicating understanding of their temporal-spatial distribution and evolutionary histories (Shu 2006; Wan et al. 2007; Xu et al. 2007; Yu et al. 2007, 2010; Yao et al. 2011). Therefore, the scale or distribution of this Palaeoproterozoic basement is an intriguing question and still needs to be precisely defined. In this study, we undertake systematic field and experimental work to confirm a Palaeoproterozoic A-type rhyolite porphyry body in the northern Wuyishan region, and thus provide new and important insights into the early Precambrian tectonic evolution of the Cathaysia Block.

Geological background and samples

The Precambrian basement rocks of the Cathaysia Block are mainly exposed between the Shaoxing–Jiangshan–Pingxiang and Zhenghe–Dapu faults (Shu 2006), as sporadic tectonic windows largely covered by Mesozoic felsic volcanic rocks or intruded by Mesozoic granites (Yu et al. 2009). The basement rocks in the Cathaysia Block have been divided into two metamorphic sequences on the basis of lithologic and structural features and metamorphic grades (Li 1997). The lower sequence is termed the Mayuan Group in NW Fujian, and the Badu Group in SW Zhejiang, while the upper one is termed the Mamianshan Group in Fujian and the Longquan and Chencai groups in Zhejiang (Jin et al. 1992). Both the lower and upper sequences are characterized by amphibolite-facies metamorphism (Xiang et al. 2008; Zeng et al. 2008; Li et al. 2010, 2011b).

The Badu Group, also referred to as the Badu Complex (Yu et al. 2009, 2012; Xia et al. 2012), is widely distributed in the study area (Figure 2a), consisting of the Tangyuan, Qiantou, Zhangyan, Siyuan, and Dayanshan formations upwards (Hu et al. 1992). The Badu Complex mainly comprises graphitic mica schist, garnet sillimanite gneiss, marble, amphibolites, and migmatites. The typical metamorphic mineral assemblage of the metasedimentary rocks from the Badu Complex is composed of garnet + sillimanite + graphite (Zhao et al. 2015).
The Longzhu rhyolite porphyry is located in the northern Wuyishan terrane, with an outcrop area of approximately 0.12 km2. It is in clear intrusive contact with the Badu Complex (Figure 2b). Jurassic volcanic rocks occur in the vicinity of the rhyolite porphyry body (Figure 2b). Four fresh samples were collected from the rhyolite porphyry in Longzhu region, Zhejiang Province. All rhyolite porphyry samples are pinkish, with gneissic structure and porphyritic texture. Quartz, plagioclase, and biotite are the main phenocrysts (10–15%) and are always present as corroded grains (Figure 3a, b, c, and d). The matrix is mainly composed of felsic minerals (85–90%) with a cryptocrystalline texture. Some of these contain variable concordant to nearly concordant felsic veins that are generally folded, indicating weak migmatization. Sample ZJ-11–1 was selected as a representative sample for zircon U–Pb dating and Lu–Hf isotope analysis because of its minimal migmatization. Major and trace element analyses were carried out for all samples.

Analytical techniques

Zircons were extracted using standard density and magnetic separation techniques. Selected zircon grains were hand-picked under a stereoscopic microscope and were
mounted in epoxy resin before being polished for analysis. Cathodoluminescence images were taken using a JXA-8800 R electron microprobe at the Institute of Mineral Resources in the Chinese Academy of Geological Sciences, Beijing.

Zircon dating was conducted by the LA-ICP-MS method at the School of Resources and Environmental Engineering at Hefei University of Technology, using an Agilent 7500a ICP-MS coupled with a 193 nm ComPex102-ArF laser-ablation system (Coherent Inc., USA). A spot size of 32 μm with a repetition rate of 6 Hz was applied in all analyses. The standard 91,500 and MT zircons were used as an external standard to normalize isotopic fractionation during isotope analysis, and we calibrated trace elements with an NIST610 as the external standard and 29Si as the internal standard. The detailed analytical procedures are described in Liu et al. (2008, 2010). U–Pb ages and U–Th contents of the zircon spots analysed were processed using the ICPMSDataCal program (Liu et al. 2010). Common Pb was corrected after Andersen (2002), and ISOPLOT software (Version 2.49) was used to calculate weighted zircon ages and depict a concordia plot (Ludwig 2001).

Zircon Hf isotopic analysis was carried out in situ using a New-wave UP213 laser-ablation microprobe, attached to a Neptune multi-collector ICP-MS, with a spot size of 44 μm and a repetition rate of 8 Hz, at the Institute of Mineral Resources. Instrumental conditions and data acquisition are described by Wu et al. (2006) and Hou et al. (2007). Zircon GJ-1 was used as the reference standard, with a weighted mean 176Hf/177Hf ratio of 0.282010 ± 0.000010 (2σ, n = 10) during our routine analyses. In this work, we adopted the value of 1.865 × 10−11 year⁻¹ as the 176Lu decay constant (Scherer et al. 2001). Initial 176Hf/177Hf ratios εHf(t) were calculated with reference to the chondritic reservoir of Blichert-Toft and Albarede (1997). The depleted mantle Hf model age (TDM1) was calculated with present-day 176Hf/177Hf (0.28325) and 176Lu/177Lu (0.0384) (Griffin et al. 2000). Two-stage ‘crustal’ model ages (TDM2) were calculated assuming that the parental magma of the zircon was derived from a source with an average continental crust 176Lu/177Hf of 0.015 (Griffin et al. 2002).

Whole-rock major-element analyses were performed by X-ray fluorescence spectrometry (XRF) using Panalytical (Holland) apparatus at the Nanjing Institute of Geology and Mineral Resources, Nanjing. Analytical precision is generally better than 5% for all elements (Chen and Xing 2013). Trace element abundances were measured using an Agilent 7500a ICP-MS at the State Key Laboratory of Continental Dynamics at Northwest University, Xi’an. Analytical precision is better than 5–10% (Rudnick et al. 2004). Nd isotopic compositions were determined at the State Key Laboratory for Mineral Deposits Research at Nanjing University using a

Figure 3. Field photographs and microphotographs of rhyolite porphyries in the Longzhu region. (a) Field outcrop showing contact between the rhyolite porphyry and Badu Complex; (b) undulatory extinction of quartz phenocryst; (c) allanition of biotite phenocryst (plane polarized light); (d) felsitic texture and secondary enlargement of hyperthermal quartz phenocryst (perpendicular polarized light for (c)). Qtz, quartz; Bt, biotite; Pl, plagioclase.
Finnigan Triton TI TIMS, following the methods of Pu et al. (2005).

Results

\textbf{U–Pb ages and trace elements of zircon grains}

Twenty-five spot analyses were made on 25 zircon grains from sample ZJ-11–1. The analytical results are listed in Supplementary Table 1 (see http://dx.doi.org/10.1080/00206814.2015.1125808 for supplementary tables) and graphically illustrated in Figure 4. Most zircon grains have concentric, weak oscillatory zoning structures with thin metamorphic rims in CL images. They are 100–300 μm in length with elongation ratios of 2:1 to 3:1 (Figure 4a). The 23 spots have U and Th contents ranging from 77 to 433 ppm and 108 to 2024 ppm, respectively, with Th/U ratios of 0.25 to 1.62 that are typical of magmatic zircons (Koschek 1993). All the analyses show a well-defined discordia line with an upper intercept at 1844 ± 26 Ma (MSWD = 0.91; Figure 4b) and a lower intercept at 157 ± 650 Ma (not shown). Twenty-three concordant analyses fall within a group close to the upper intercept, yielding a weighted mean $^{206}\text{Pb}/^{207}\text{Pb}$ age of 1819 ± 16 Ma (MSWD = 0.91, $n = 23$). This weighted mean age is within the error of the upper intercept age and is thus interpreted as the best estimate for the crystallization age of the Longzhu rhyolite porphyry. Two metamorphic zircons have $^{206}\text{Pb}/^{238}\text{U}$ ages of 238 and 240 Ma, and low Th/U ratios (0.08–0.09) with 12–15 ppm Th and 134–186 ppm U. The ca. 240 Ma age is considered to represent the timing of metamorphic overprint of the Longzhu rhyolite porphyry during the early Mesozoic.

Trace element analyses of magmatic zircons from sample ZJ-11–1 are presented in Supplementary Table 2. Zircons have Hf contents of 9178–14,587 ppm and Y of 334–3255 ppm. In the chondrite-normalized rare earth element (REE) patterns, most zircons are characterized by significant heavy HREE (HREE) enrichment, positive Ce anomalies, and prominent negative Eu anomalies (Figure 4c), features consistent with magmatic zircons (Belousova et al. 2002). The analysed zircons contain Ti in the range 16.1–41.2 ppm (Supplementary Table 2), yielding crystallization temperatures of 813–917°C (averaging 865°C) calculated using a Ti-in-zircon thermometer (Watson and Harrison 2005). Trace element data for two metamorphic zircons are not given because of unstable instrument status during LA-ICP-MS analysis.

\textbf{Whole-rock geochemistry}

The major and trace element analyses are listed in Supplementary Table 4. In general, these samples have...
high SiO$_2$ ranging from 67.2 to 72.1%, and high alkali contents with K$_2$O of 6.45–6.51% and Na$_2$O of 1.95–2.43%. They are characterized by low Fe$_2$O$_3$ contents of 0.66–1.36%, CaO of 0.96–1.65%, MgO of 0.18–0.43%, TiO$_2$ of 0.24–0.43%, and P$_2$O$_5$ of 0.09–0.24%. All these samples are classified as shoshonitic series according to the K$_2$O vs. SiO$_2$ diagram. Their Al$_2$O$_3$ contents vary between 13.19 and 13.97%, exhibiting an aluminous feature (A/CNK = 0.99–1.09). In Harker diagrams, the samples analysed display a negative correlation between some major elements (e.g. CaO, P$_2$O$_5$, and TFe$_2$O$_3$) and SiO$_2$, plotting in the fields of the Badu metasedimentary rocks, consistent with the trend of Palaeoproterozoic A-type granites in the Wuyishan terrane.

All the samples exhibit high REE contents, relative enrichment of light RREs (LREEs) ((La/Sm)$_N$ = 5.13–6.84, (La/Yb)$_N$ = 14.4–27.9), flat HREE patterns, and strong negative Eu anomalies (Supplementary patterns) and trace element spidergram (Figure 6b), all the samples show characteristic negative anomalies of Ba, Nb, Ta, Sr, P, Eu, and Ti. The negative Ba, Sr, and Eu anomalies may be associated with residues of plagioclase in the magma source, whereas the negative P and Ti anomalies are attributed to residues of apatite and ilmenite. In addition, the samples of the Longzhu rhyolite porphyries and Palaeoproterozoic A-type granites analysed from the Wuyishan terrane have REE patterns and trace element diagrams similar to Palaeoproterozoic Badu metasedimentary rocks (Figure 6), suggesting the possibility that they were mainly derived from crustal materials.

Figure 5. Harker diagrams of major-element compositions of the Longzhu rhyolite porphyries. Data source for Palaeoproterozoic A-type granites and Badu metasedimentary rocks in the Wuyishan terrane are from Yu et al. (2009, 2012), Xia et al. (2012), and Liu et al. (2009, 2014).

Figure 6. (a) Chondrite-normalized REE pattern and (b) N-MORB-normalized trace element spidergram of the Longzhu rhyolite porphyries. Chondrite and N-MORB values are from Sun and McDonough (1989). Data sources for Palaeoproterozoic A-type granites and Badu metasedimentary rocks in the Wuyishan terrane are Yu et al. (2009, 2012), Xia et al. (2012), and Liu et al. (2009, 2014).
Hf isotopes

Fifteen zircon grains analysed for U–Pb dating were selected for in situ Hf isotope analysis using LA-MC-ICP-MS, and the results are listed in Supplementary Table 3. These zircons have variable 176Hf/177Hf ratios (0.281405–0.281588, Supplementary Table 3), corresponding to $\varepsilon_{\text{Hf}}(t)$ values of –8.1 to –2.2 and two-stage Hf model ages ($T_{\text{Hf DM2}}$) between 2.76 and 2.46 Ga.

Nd isotopes

The whole-rock Nd isotopic data of the Longzhu rhyolite porphyries are given in Supplementary Table 4. Four samples have similar Nd isotopic compositions, with $\varepsilon_{\text{Nd}}(t)$ values of −3.8 to −6.4 and $T_{\text{Nd DM2}}$ ages of 2.87–2.65 Ga, similar to the Hf model ages of the Palaeoproterozoic zircons in this study (2.76–2.46 Ga). These analyses are also similar to published Nd isotopic data for the metamorphic rocks from the Budu Complex, further documenting their petrogenetic relationship (Hu et al. 1992; Yu et al. 2009; Xia et al. 2012; Liu et al. 2014; Zhao et al. 2015).

Discussion

Genetic type of the Longzhu rhyolite porphyry: an A-type affinity

Granitic rocks are generally divided into I-, S-, M-, and A-types, mainly according to geochemistry signatures (Whalen et al. 1987; Pitcher 1997). Relative to the well-known I- and S-type granites, A-type granites typically have chemical compositions with high SiO$_2$, (Na$_2$O + K$_2$O), Zr, Nb, Ta, Ga, Y, and REE (except Eu) contents, high Fe/Mg and Ga/Al ratios, and low concentrations of CaO, Ba, Sr, and Eu (Whalen et al. 1987; Eby 1990). A-type granites are also distinguished from other types by their relatively high temperature origin (Clemens et al. 1986; King et al. 1997, 2001).

The Longzhu rhyolite porphyries show high K$_2$O + Na$_2$O, Zr, Nb, and Ce contents, and high FeO/FeO$^\text{t}$ + MgO and Rb/Sr ratios, which share the geochemical features most common to A-type granites (Collins et al. 1982; Whalen et al. 1987; King et al. 1997, 2001). Their 10,000*Ga/Al ratios vary from 3.1 to 4.0 with an average of 3.6, close to the global average of 3.75 for A-type granites (Whalen et al. 1987), but higher than those of the aluminous A-type granites from southeastern China (Wu et al. 2002). In the discrimination diagrams of (K$_2$O + Na$_2$O) and FeO/FeO$^\text{t}$/MgO vs. 10,000*Ga/Al (Figure 7), they all plot in the field of A-type granites. The Longzhu rhyolite porphyries can easily be discriminated from S-type granites because the latter have much higher P$_2$O$_5$ contents, and are always peraluminous (King et al. 1997; Bonin 2007). Compared with highly evolved I-type granites at the same SiO$_2$ level, the Longzhu rhyolite porphyries are comparatively well enriched in Zr, Nb, Y, Ce, and Ga (Yang et al. 2006; Zhao et al. 2008; Peng et al. 2012; Lei et al. 2013). In addition, The Longzhu rhyolite porphyry has relatively high magma temperatures as shown by the Ti-in-zircon formation temperatures of 813–917°C (average 865°C) (Supplementary Table 2) and Zr saturation temperatures of 878–913°C (average 896°C) (Supplementary Table 4). These values are markedly higher than temperatures of I-type granites but similar to those of typical A-type granites worldwide (e.g. Clemens et al. 1986; King et al. 1997, 2001; Miller et al. 2003; Bonin 2007). High temperatures also account for the absence of inherited zircons in the Longzhu rhyolite porphyry. Taken together, we suggest that the Longzhu rhyolite porphyries are of A-type affinity.
Sources and petrogenesis

Many compositional variations have been found for A-type granites (rhyolites), and there is no consensus on the origin of A-type magma (Bonin 2007). Several petrogenetic schemes have been proposed for the origin of A-type granites: (1) direct fractionation of mantle-derived magmas or hybridization between anatectic granitic and mantle-derived mafic magmas (Eby 1990; Foland and Allen 1991; Turner et al. 1992; Kerr and Fray 1993; Bonin 2007; Sun et al. 2011); (2) low degrees of partial melting of lower-crustal granulites by extraction of previous granitic melt (Collins et al. 1982; Clemens et al. 1986; Whalen et al. 1987; King et al. 1997); (3) low-pressure melting of calc-alkaline rocks at upper crustal levels (Sylvester 1989; Creaser et al. 1991; Skjerlie and Johnston 1992; Patiño Douce 1997); and (4) partial melting of tholeiitic rocks newly derived from the mantle (Frost and Frost 1997; Dall’Agnol and de Oliveira 2007; Wang et al. 2010a). However, among these petrogenetic models above, interaction of mantle-derived magma with crustal rocks, and melting of deep continental crust, are considered the most important mechanism (Rämö and Haapala 1995; Bonin 1996).

The high Rb/Sr ratios and significant negative $\varepsilon_{Nd}(t)$ and $\varepsilon_{Hf}(t)$ values of the Longzhu rhyolite porphyry suggest that it cannot be originated from mantle-derived magmas. The lack of mafic enclaves in this porphyry argues against material involvement of mafic magma in the source. The Longzhu rhyolite porphyry has relatively high magma temperatures, indicating that the source rocks should have been underplated and heated by mantle-derived mafic magmas. Therefore, mantle input may have dominated as the heat source for the formation of the A-type Longzhu rhyolite porphyry. The identification of Palaeoproterozoic intra-plate rifting and mafic-ultramafic rocks in the neighbouring region also provides supportive evidence for the existence of underplating magmatism (Xiang et al. 2008).

Available geochronological and geochemical data suggest that Palaeoproterozoic S- and A-type granites in the northern Wuyishan terrane were mostly derived from the metamorphic rocks of the Badu Complex (Liu et al. 2009, 2014; Yu et al. 2009; Xia et al. 2012). The Badu metamorphic rocks have whole-rock Nd isotopic model ages of 2.87–2.65 Ga and zircon (most detrital grains) Hf isotopic model ages of 3.0–2.4 Ga, similar to zircons in those S- and A-type Palaeoproterozoic granites, suggesting similar sources (Yu et al. 2009, 2012; Xia et al. 2012; Liu et al. 2014). Likewise, the two-stage whole-rock Nd isotopic model ages (2.81–2.69 Ga) and zircon Hf isotopic model ages (2.76–2.46 Ga) of the Longzhu rhyolite porphyry are all consistent with those of the metamorphic rocks from the Badu Complex (Xu et al. 2007; Xiang et al. 2008; Liu et al. 2009, 2014; Yu et al. 2009, 2012; Xia et al. 2012; Zhao et al. 2015) (Figure 8). Regarding petrogenesis of Palaeoproterozoic A-type granites in the Wuyishan terrane, Yu et al. (2009) further proposed three possible models to explain their formation: (1) melting of a source residual after extraction of S-type granitic melts; (2) partial melting of meta-igneous rocks; and (3) mixing of majority sedimentary source with low proportions of mafic materials. However, to date, such felsic orthometamorphic rocks and amphibolites in the Badu Complex still lack systematic reliable geochemical studies and precise dating. Thus, here we were unable to estimate these last two schemes. In fact, the enriched Nd-Hf isotopic compositions of the Longzhu rhyolite porphyries also imply little mantle material contribution in their genesis. Notably, the studied rhyolite porphyries have similar major-element compositions to the Badu metasedimentary rocks (Figure 5). In addition, the Longzhu rhyolite porphyries also have similar REE patterns and trace element diagrams to metasedimentary rocks of the Badu Complex (Figure 6). Considering these results in the context of the regional geology, we are inclined to conclude that the Palaeoproterozoic Longzhu rhyolite porphyries were derived from metasedimentary rocks similar to those of the Badu Complex. We are unable to determine whether they originated from partial melting of granulitic residues after extraction of S-type granitic melts. Our geochemical data cannot provide a definitive solution, whereas this inference is partly supported by their higher magma temperatures (>813°C, see above) and younger ages of A-type
Longzhu rhyolite porphyry compared with those of S-type granites.

Tectonic significance

Late Palaeoproterozoic collisional orogenic events have been increasingly recognized in Precambrian cratons worldwide, and may have ultimately resulted in the formation of the supercontinent Columbia (e.g. Rogers and Santosh 2002; Zhao et al. 2002, 2004, 2009; Santosh et al. 2007). In the last two decades, Palaeoproterozoic tectonothermal events have also been recognized in the Cathaysia Block (Li 1997; Li and Li 2007; Wang et al. 2008; Liu et al. 2009, 2014; Yu et al. 2009, 2012; Li et al. 2010, 2011b; Xia et al. 2012; Chen and Xing 2013). Available precise ages and geochemical affinity are compiled in Table 1 and Figure 9; it appears that the I-type granites were generated at 1.91–1.89 Ga in the Proterozoic.

Table 1. A complication of precise zircon U–Pb ages of different types of Palaeoproterozoic rocks in the Wuyishan terrane.

Location	Lithology	Geochemical affinity	Age (Ma)	Low intercept	Metamorphic	Dating method	Data source
Zhuji	Chencai meta-gabbro	A-type	1781 ± 21	197	SHRIMP zircon U-Pb	Li et al. (2010)	
Suichang	Tianhou granodiorite	A-type	1856 ± 10	230	SHRIMP zircon U-Pb	Yu et al. (2009)	
Songyang	Lizhuang granite	S-type	1875 ± 9	233	LA-ICP-MS zircon U-Pb	Yu et al. (2009)	
	Jingju granite	A-type	1861 ± 35	226	LA-ICP-MS zircon U-Pb	Xia et al. (2012)	
	Jingju granite	A-type	1849 ± 30	231	LA-ICP-MS zircon U-Pb	Xia et al. (2012)	
	Jinluohou granite	A-type	1877 ± 10	224	LA-ICP-MS zircon U-Pb	Xia et al. (2012)	
	Jinluohou granite	S-type	1878 ± 28	18	LA-ICP-MS zircon U-Pb	Xia et al. (2012)	
Longquan	Danzhu granite	A-type	1832 ± 6	243	SHRIMP zircon U-Pb	Li and Li (2007)	
	Danzhu granodiorite	A-type	1875 ± 33	209	LA-ICP-MS zircon U-Pb	Wang et al. (2008)	
	Danzhu monzogranite	A-type	1855 ± 8	228	LA-ICP-MS zircon U-Pb	Yu et al. (2009)	
	Danzhu granite	A-type	1867 ± 8	230	LA-ICP-MS zircon U-Pb	Yu et al. (2009)	
	Huaqiao granitoid	A-type	1859 ± 21	18	LA-ICP-MS zircon U-Pb	Liu et al. (2014)	
	Danzhu meta-mafic rocks	A-type	1850 ± 9	260–230	LA-ICP-MS zircon U-Pb	Liu et al. (2009)	
	Badu Complex	A-type	1886–1882		LA-ICP-MS zircon U-Pb	Yu et al. (2012)	
	Longzhu rhyolite porphyry	A-type	1819 ± 16 Ma	157	240–238	LA-ICP-MS zircon U-Pb	This study
Jingning	Sanzhishu granite	A-type	1860 ± 13 Ma	238	114–108	LA-ICP-MS zircon U-Pb	Liu et al. (2014)
	Chimushan granite	I-type	1887 ± 19	185	LA-ICP-MS zircon U-Pb	Liu et al. (2014)	
	Chimushan granite	S-type	1876 ± 18	319	LA-ICP-MS zircon U-Pb	Liu et al. (2014)	
	Xiaocu granite	I-type	1912 ± 51	238	LA-ICP-MS zircon U-Pb	Liu et al. (2014)	
	Xiaocu granite	S-type	1882 ± 21	250	LA-ICP-MS zircon U-Pb	Liu et al. (2014)	
	Xiaocu granitoid	A-type	1869 ± 24	220	LA-ICP-MS zircon U-Pb	Liu et al. (2014)	
	Wongkeng granite	S-type	1884 ± 14	229	LA-ICP-MS zircon U-Pb	Liu et al. (2014)	
	Wongkeng granitoid	A-type	1878 ± 20	192	LA-ICP-MS zircon U-Pb	Liu et al. (2014)	
Qingyuan	Xiaji granite	S-type	1887 ± 7	233	LA-ICP-MS zircon U-Pb	Yu et al. (2009)	
Pucheng	Qiuyuan granite	S-type	1851 ± 21	234	LA-ICP-MS zircon U-Pb	Li et al. (2011b)	
	Qiuyuan granite	S-type	1857 ± 29		LA-ICP-MS zircon U-Pb	Li et al. (2011b)	
	Xiaochuan	S-type	1839 ± 16		LA-ICP-MS zircon U-Pb	Chen et al. (2013)	
Jianning	Tianjingping meta-mafic rocks	A-type	1766 ± 19		LA-ICP-MS zircon U-Pb	Li (1997)	
Wuyishan terrane, whereas the A- and S-type granites were more or less synchronously generated at 1.88–1.82 Ga. Moreover, the Palaeoproterozoic granulite facies metamorphism (ca. 1.89 Ga, Yu et al. 2012) is almost earlier than that of A-type magmatism (1.88–1.82 Ga), indicating such a collisional orogen to intra-plate extensional setting may be more likely to explain Palaeoproterozoic tectonic evolution. This strong collisional event has been identified from the Badu Complex, as marked by 1.89 Ga high-pressure metamorphism (Yu et al. 2012). Subsequent extension occurred during the 1.88–1.76 Ga interval, as manifested by A-type granites and rift-related mafic rocks in the Wuyishan terrane (Li 1997; Li et al. 2000; Liu et al. 2009, 2014; Yu et al. 2009, 2014; Yu et al. 2009; Xia et al. 2012). In this study, zircon U–Pb dating constrains the formation of the Longzhu rhyolite porphyry at ca. 1.82 Ga, indicating an important Palaeoproterozoic tectonothermal event in the northern Wuyishan. This newly obtained U–Pb age also substantiates the existence of Palaeoproterozoic basement rocks in northern Wuyishan, represented by remnants of the Columbia supercontinent.

The Longzhu rhyolite porphyry in northern Wuyishan has an A-type affinity and was likely produced by reworking of the Palaeoproterozoic Badu Complex. A-type granites (rhyolites) have been traditionally considered to form in intra-plate extensional tectonic environment, regardless of the origin of the magma source (Whalen et al. 1987; Eby 1992; Pitcher 1997). The Longzhu rhyolite porphyry has relatively high magma temperatures, suggesting mantle input (heat) in their petrogenesis (see above). These formation temperatures for the Longzhu rhyolite porphyry are comparable to values of A-type granites in the northern Wuyishan (Yu et al. 2009; Xia et al. 2012; Liu et al. 2014), indicating that they were all generated in an intra-plate extensional tectonic setting. Indeed, the Palaeoproterozoic Longzhu A-type rhyolite porphyries in southwestern Zhejiang mainly fall into the within-plate field in the tectonic discrimination diagram (Figure 10). Intra-plate extension could easily have facilitated upwelling and decompression melting of the mantle asthenosphere to produce mafic magmas that provided heat energy, inducing crustal anatexis to form the A-type granitic magmatism represented by the Longzhu rhyolite porphyry. Taking into account all geochronological and geochemical data on Palaeoproterozoic (1.88–1.82 Ga) A-type rocks of the Wuyishan terrane (Table 1, Figure 9) (Liu et al. 2009, 2014; Yu et al. 2009; Xia et al. 2012), we suggest initiation of intra-plate extension after 1.89 Ga, perhaps at 1.88–1.82 Ga in the Cathaysia Block. Subsequent enhanced extension at 1.78–1.77 Ga resulted in the eruption of minor volumes of rift-related mafic magmas (Li et al. 2000, 2010), signalling the cessation of the whole Palaeoproterozoic tectonic evolutionary cycle in the Wuyishan terrane (Liu et al. 2014).

The early Mesozoic metamorphic event was identified in this study area, and is recorded in the Longzhu rhyolite porphyry sample (ZJ-11–1) with a 206Pb/238U age of ca. 240 Ma. Recent studies suggest that the Palaeoproterozoic Badu Complex and S- and A-type granites also underwent early Mesozoic metamorphism, probably having reached amphibolite-granulite facies (Xiang et al. 2008; Yu et al. 2009, 2012; Xia et al. 2012; Liu et al. 2014; Zhao et al. 2015). Metamorphism led not only to Pb loss in Palaeoproterozoic zircons and older (Archean) inherited cores, but also resulted in overgrowth or recrystallization of rims on earlier zircons in those of Palaeoproterozoic rocks (Xiang et al. 2008; Yu et al. 2009, 2012; Xia et al. 2012; Liu et al. 2014; Zhao et al. 2015). In fact, early Mesozoic tectono-magmatic events are well known in Southeast China and are characterized by an intensely compressional tectonic setting related to the Indosinian Orogeny. This collisional orogenic event might have affected Mesozoic intra-plate reworking of the Cathaysia Block (Zhao et al. 2015).

Conclusions

1. LA-ICP-MS zircon U–Pb ages indicate that the Longzhu rhyolite porphyry was formed at ca. 1.82 Ga and suffered metamorphic overprinting in early Mesozoic (ca. 240 Ma).
(2) The geochemical data and zircon Hf isotopic compositions of the Longzhu rhyolite porphyry suggest that they have A-type affinity and were probably produced by reworking of source rocks similar to those of the Badu Complex in an intra-plate extensional setting.

(3) Palaeoproterozoic basement rocks in northern Wuyishan terrane may represent remnants of the Columbia supercontinent.

Acknowledgements

The authors thank Dr Quan-Zhong Li for assistance with LA-ICP-MS zircon U–Pb dating. Ming-Gang Yu, Yang Jiang, and Cun-Zhi Wang are thanked for their help during the fieldwork.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the China Geological Survey (12120115030101 and 12120113070800); National Natural Science Foundation of China [41202141].

References

Andersen, T., 2002, Correction of common lead in U–Pb analyses that do not report 204Pb: Chemical Geology, v. 192, p. 59–79. doi:10.1016/S0009-2541(02)00195-X

Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.I., 2002, Igneous zircon: Trace element composition as an indicator of source rock type: Contributions to Mineralogy and Petrology, v. 143, p. 602–622. doi:10.1007/s00410-002-0364-7

Blichert-Toft, J., and Albarède, F., 1997, The Lu–Hf geochemistry of chondrites and the evolution of the mantle–crust system: Earth and Planetary Science Letters, v. 148, p. 243–258. doi:10.1016/S0012-821X(97)00040-X

Bonin, B., 1996, A-type granite ring complexes: Mantle origin through crustal filters and the anorthosite-rapakivi magmatism connection, in Demaille, D., Ed., Petrology and geochemistry of magmatic suites of rocks in the continental and oceanic crusts: Bruxelles, A volume dedicated to Professor J. Michot, ULB-MRAC, p. 201–217.

Bonin, B., 2007, A-type granites and related rocks: Evolution of a concept, problems and prospects: Lithos, v. 97, p. 1–29. doi:10.1016/j.lithos.2006.12.007

Chen, J.F., and Jahn, B.M., 1998, Crustal evolution of southeastern China: Nd and Sr isotopic evidence: Tectonophysics, v. 284, p. 101–133. doi:10.1016/S0040-1951(97)00186-8

Chen, Z.H., Guo, K.Y., Dong, Y.G., Chen, R., Li, L.M., Liang, Y.H., Li, C.H., Yu, X.M., Zhao, L., and Xing, G.F., 2009a, Possible early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone: Evidence from zircon LA-ICP-MS U–Pb geochronology and geochemistry: Science in China Series D: Earth Sciences, v. 52, p. 925–939. doi:10.1007/s11430-009-0071-6

Chen, Z.H., and Xing, G.F., 2013, Petrogenesis of a Palaeoproterozoic S-type granite, central Wuyishan terrane, SE China: Implications for early crustal evolution of the Cathaysia Block: International Geology Review, v. 55, no. 12, p. 1445–1461. doi:10.1080/00206814.2013.779065

Chen, Z.H., Xing, G.F., Guo, K.Y., Dong, Y.G., Chen, R., Zeng, Y., Li, L.M., He, Z.Y., and Zhao, L., 2009b, Petrogenesis of a late-stage granitic magmatism in the Pingshui Group, Zhejiang Province, SE China: Constraints from zircon U–Pb ages and Hf isotopes: Chinese Science Bulletin, v. 54, p. 1570–1578. doi:10.1007/s11434-009-0081-y

Clemens, J.D., Holloway, J.R., and White, A.J.R., 1986, Origin of A-type granites: Experimental constraints: American Mineralogist, v. 71, p. 317–324.

Collins, W.J., Beams, S.D., White, A.J.R., and Chappell, B.W., 1982, Nature and origin of A-type granites with particular reference to southeastern Australia: Contributions to Mineralogy and Petrology, v. 80, p. 189–200. doi:10.1007/BF00374895

Creaser, R.A., Price, R.C., and Wormald, R.J., 1991, A-type granites revisited: Assessment of a residual–source model: Geology, v. 19, p. 163–166. doi:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

Figure 10. Tectonic setting discrimination diagrams of Nb vs. Y and Rb vs. (Y + Nb) (Pearce et al. 1984). Data sources for Palaeoproterozoic A-type granites in the Wuyishan terrane are from Yu et al. (2009), Xia et al. (2012), and Liu et al. (2009, 2014).
Dall’Agnol, R., and de Oliveira, D.C., 2007, Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granite: Lithos, v. 93, p. 215–233. doi:10.1016/j.lithos.2006.03.065

Eby, G.N., 1990, The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis: Lithos, v. 26, no. 1–2, p. 115–134. doi:10.1016/0024-4937(90)90043-Z

Eby, G.N., 1992, Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications: Geology, v. 20, p. 641–644. doi:10.1130/0091-7613(1992)020<0641-CSOTAT>2.3.CO;2

Foland, K.A., and Allen, J.C., 1991, Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, USA: Contributions to Mineralogy and Petrology, v. 109, p. 195–211. doi:10.1007/BF00306479

Frost, C.D., and Frost, B.R., 1997, High-K, iron-enriched rapakivi-type granites: The tholeiite connection: Geology, v. 25, p. 647–650. doi:10.1130/0091-7613(1997)025<0647:RTGT>2.3.CO;2

Gan, X.C., Li, H.M., Sun, D.Z., Jin, W.S., and Zhao, F.Q., 1995, A geochronological study on Early Proterozoic granitic rocks, southwestern Zhejiang: Acta Petrologica Mineral, v. 14, p. 1–8. (in Chinese with English abstract).

Gan, X.C., Zhao, F., Jin, W., and Sun, D., 1996, The U–Pb ages of early Proterozoic- Archean zircons captured by igneous rocks in southern China: Geochimica, v. 25, p. 112–120. (in Chinese with English abstract).

Grabau, A.W., 1924, Stratigraphy of China, Part I, Paleozoic and older: The Geological Survey of Agriculture and Commerce, Peking, v. 528, p. 1–6.

Griffin, W.L., Pearson, N.J., Elusive, E., Jackson, S.E., Van Achtenberg, E., O’Reilly, S.Y., and She, S.R., 2000, The Hf isotope composition of carbonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites: Geochimica Et Cosmochimica Acta, v. 64, p. 133–147. doi:10.1016/S0016-7037(99)00343-9

Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X.S., and Zhou, X.M., 2002, Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes. Tongli and Pingtan igneous complexes: Lithos, v. 61, p. 237–269. doi:10.1016/S0040-1951(02)00082-8

Hou, K.J., Li, Y.H., Zou, T.R., Qu, X.M., Shi, Y.R., and Xie, G.Q., 2007, Laser ablation-MC-ICPMS technique for Hf isotope microanalysis of zircon and its geological applications: Acta Petrologica Sinica, v. 23, p. 2595–2604. (in Chinese with English abstract).

Hu, X., Xu, J., Chen, C., Li, C., and Li, H., 1992, U–Pb ages of single-zircons from Paleo-African granites and Pegmatite, southwestern Zhejiang: Chinese Science Bulletin, v. 37, p. 1016–1018. (in Chinese).

Jahn, B.M., Zhou, X.H., and Li, J.L., 1990, Formation and tectonic evolution of Southeastern China and Taiwan: Isotopic and geochemical constraints: Tectonophysics, v. 183, p. 145–160. doi:10.1016/0040-1951(90)90413-3

Jin, W., Zhan, D., Yang, Z., and Chen, Y., 1992, Characteristics of petrology, geochemistry and metamorphism of the Pre-Caledonian regional metamorphic rocks in Fujian Province: Geology of Fujian, v. 11, p. 162–241. (in Chinese with English abstract).

Kerr, A., and Fryer, B.J., 1993, Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada: Chemical Geology, v. 104, p. 39–60. doi:10.1016/0009-2541(93)90141-5

King, P.L., Chappell, B.W., Allen, C.M., and White, A.J.R., 2001, Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrha Suite: Australian Journal of Earth Sciences, v. 48, p. 501–514. doi:10.1046/j.1440-0952.2001.00881.x

King, P.L., White, A.J.R., Chappell, B.W., and Allen, C.M., 1997, Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia: Journal of Petrology, v. 38, p. 371–391. doi:10.1093/petroj/38.3.371

Koschek, G., 1993, Origin and significance of the SEM cathodoluminescence from zircon: Journal of Microscopy, v. 171, p. 223–232. doi:10.1111/j.1365-2818.1993.tb03485.x

Li, R.X., Wu, C.Z., Chi, G.X., Gu, L.X., Dong, H.L., Qu, X., Jiang, Y. H., and Jiang, S.Y., 2013, The Neoproterozoic Hongliujing A-type granite in Central Tianshan (NW China): LA-ICP-MS zircon U–Pb geochronology, geochemistry, Nd–Hf isotope and tectonic significance: Journal of Asian Earth Sciences, v. 74, p. 142–154. doi:10.1016/j.jseaes.2013.03.025

Li, L.M., Sun, M., Wang, Y.J., Xing, G.F., Zhao, G.C., Cai, K.D., and Zhang, Y.Z., 2011a, Geochronology and Geochemistry of Palaeoproterozoic gneissic granites and clinopyroxenite enclaves from NW Fujian, SE China: Implications for the crustal evolution of the Cathaysia Block: Journal of Asia Earth Sciences, v. 41, p. 204–212. doi:10.1016/j.jseaes.2011.01.017

Li, L.M., Sun, M., Wang, Y.J., Xing, G.F., Zhao, G.C., Lin, S.F., Xia, X.P., Chan, L.S., Zhang, F.F., and Wang, J., 2011b, U–Pb and Hf isotopic study of zircons from migmatised amphibolites in the Cathaysia Block: Implications for the early Paleozoic peak tectonothermal event in Southeastern China: Gondwana Research, v. 19, p. 191–201. doi:10.1016/j.gr.2010.03.009

Li, W.X., Li, X.H., and Li, Z.X., 2005, Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance: Precambrian Research, v. 136, p. 51–66. doi:10.1016/j.precamres.2004.09.008

Li, X.H., 1997, Timing of the Cathaysia Block formation: Constraints from SHRIMP U–Pb zircon geochronology: Episodes, v. 20, p. 188–192.

Li, X.H., Sun, M., Wei, G.J., Liu, Y., Lee, C.Y., and Malpas, J., 2000, Geochemical and Sm–Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: Evidence for an extremely depleted mantle in the Paleoproterozoic: Precambrian Research, v. 102, p. 251–262. doi:10.1016/S0301-9268(00)00067-X

Li, Z.X., and Li, X.H., 2007, Formation of the 1300 km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model: Geology, v. 35, p. 179–182. doi:10.1130/G23193A.1

Li, Z.X., Li, X.H., Wartho, J.A., Clark, C., Li, W.X., Zhang, C.L., and Bao, C.M., 2010, Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions: Geological Society of America Bulletin, v. 122, p. 772–793. doi:10.1130/B30021.1

Li, Z.-X., Zhang, L., and Powell, C.M., 1995, South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia? Geology, v. 23, p. 407–410. doi:10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
Liu, Q., Yu, J.H., O’Reilly, S.Y., Zhou, M.F., Griffin, W.L., Wang, L. J., and Cui, X., 2014, Origin and geological significance of Paleoproterozoic granites in the northeastern Cathaysia Block, South China: Precambrian Research, v. 248, p. 72–95. doi:10.1016/j.precamres.2014.04.001

Liu, R., Zhou, H., Zhang, L., Zhong, Z., Zeng, W., Xiang, H., Jin, S., Lu, X., and Li, C., 2009, Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China: Evidence from zircon trace elements, U–Pb and Lu–Hf isotopes: Chinese Science Bulletin, v. 54, p. 1543–1554. doi:10.1007/s11434-009-0964-4

Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., and Wang, D., 2010, Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, HF Isotopes and Trace Elements in Zircons from Mantle Xenoliths: Journal of Petrology, v. 51, p. 537–571. doi:10.1016/j.egypt2008

Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., and Chen, H.H., 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard: Chemical Geology, v. 257, p. 34–43. doi:10.1016/j.chemgeo.2008.08.004

Ludwig, K.R., 2001, ISOPLOT 2.49: A geochronological toolkit for microsoft excel: Berkeley Geochronology Centre, Special Publication, Vol. 1, 1–58 p.

Miller, C.F., McDowell, S.M., and Mapes, R.W., 2003, Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance: Geology, v. 31, p. 529–532. doi:10.1130/0091-7613(2003)031<0529:HACCOG>2.3.CO;2

Patino Douce, A.E., 1997, Generation of metaluminous A-type granites by low pressure melting of calc-alkaline gneigoids: Geology, v. 25, p. 743–746. doi:10.1130/0091-7613(1997)025<0743:GDGMAP>2.3.CO;2

Pearce, J.A., Harris, N.W., and Tindale, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, p. 956–983. doi:10.1039/jp254956a

Peng, M., Wu, Y.B., Gao, S., Zhang, H.F., Wang, J., Liu, X.C., Gong, H.J., Zhou, L., Hu, Z.C., Liu, Y.S., and Yuan, H.L., 2012, Geochemistry, zircon U–Pb age and HF isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications: Gondwana Research, v. 22, p. 140–151. doi:10.1016/j.gr.2011.08.012

Pitcher, W.S., 1997, The nature and origin of granite: second ed.: London, Chapman & Hall, p. 386.

Pu, W., Gao, J., Zhao, K., Ling, H., and Jiang, S., 2005, Separation method of Rb–Sr, Sm–Nd using DCTA and HIBA: Journal of Nanjing University Nature Science, v. 41, p. 445–450. (in Chinese with English abstract).

Rämö, O.T., and Haapala, I., 1995, One hundred years of rapakivi granite: Mineralogy and Petrology, v. 52, p. 129–185. doi:10.1007/BF01163243

Rogers, J.W., and Santosh, M., 2002, Configuration of Columbia, a Mesoproterozoic supercontinent: Gondwana Research, v. 5, p. 5–22. doi:10.1016/S1342-937X(05)70083-2

Rudnick, R.L., Gao, S., Ling, W.L., Liu, Y.S., and McDonough, W. F., 2004, Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton: Lithos, v. 77, p. 609–637. doi:10.1016/j.lithos.2004.03.033

Santosh, M., Wilde, S.A., and Li, J.H., 2007, Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U–Pb zircon geochronology: Precambrian Research, v. 159, p. 178–196. doi:10.1016/j.precamres.2007.06.006

Scherer, E., Munker, C., and Mezger, K., 2001, Calibration of the lutetium-hafnium clock: Science, v. 293, p. 683–687. doi:10.1126/science.1061372

Shu, L.S., 2006, Pre-Devonian tectonic evolution of south China: From Cathaysia block to Caledonian folded belt: Geological Journal of China Universities, v. 12, p. 418–431. (in Chinese with English abstract).

Shui, T., 1988, Tectonic framework of the continental basement of southeastern China: Science in China Series B–Chemistry Sciences, v. 31, p. 885–896.

Skjerlie, K.P., and Johnston, A.D., 1992, Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites: Geology, v. 20, p. 263–266. doi:10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2

Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: in Saunders, A.D., and Norry, M.J., eds., Magmatism in the ocean basins: Geological Society: v. 42, Special Publications, p. 313–345.

Sun, Y., Ma, C.Q., Liu, Y.Y., and She, Z.B., 2011, Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China: Journal of Asian Earth Sciences, v. 42, p. 1117–1131. doi:10.1016/j.jseaes.2011.06.007

Sylvester, P.J., 1989, Post-collisional alkaline granites: The Journal of Geology, v. 97, p. 261–280. doi:10.1086/jg.1989.97.issue-3

Turner, S.P., Foden, J.D., and Morrison, R.S., 1992, Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia: Lithos, v. 28, p. 151–179. doi:10.1016/0021-9257(92)90029-X

Wan, Y.S., Liu, D.Y., Xu, M.H., Zhuang, J., Song, B., Shi, Y., and Du, L., 2007, SHRIMP U–Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia Block, China: Tectonic implications and the need to redefine lithostratigraphic units: Gondwana Research, v. 12, p. 166–183. doi:10.1016/j.gr.2006.10.016

Wang, Q., Wyman, D.A., Li, Z.X., Bao, Z.W., Zhao, Z.H., Wang, Y. X., Jian, P., Yang, Y.H., and Chen, L.L., 2010a, Petrology, geochemistry and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia: Precambrian Research, v. 178, p. 185–208. doi:10.1016/j.precamres.2010.02.004

Wang, X., Chen, J., and Luo, D., 2008, Study on petrogenesis of zircons from the Danzhu granodiorite and its geological implication: Geology Review, v. 54, p. 387–398. (in Chinese with English abstract).

Wang, X.L., Zhou, J.C., Griffin, W.L., Wang, R.C., Qiu, J.S., O’Reilly, S.Y., Xu, X., Liu, X.M., and Zhang, G.L., 2007a, Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks: Precambrian Research, v. 159, p. 117–131. doi:10.1016/j.precamres.2007.06.005
Wang, Y.J., Fan, W.M., Zhao, G.C., Ji, S.C., and Peng, T.P., 2007b, Zircon U–Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block: Gondwana Research, v. 12, p. 404–416. doi:10.1016/j.gr.2006.10.003

Wang, Y.J., Zhang, F.F., Fan, W.M., Zhang, G.W., Chen, S.Y., Cawood, P.A., and Zhang, A.M., 2010b, Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U–Pb geochronology: Tectonics, v. 29, doi:10.1029/2010TC002750

Watson, E.B., and Harrison, T.M., 2005, Zircon thermometer reveals minimum melting conditions on earliest earth: Science, v. 308, p. 841–844. doi:10.1126/science.1110873

Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: Geochemical characteristics, discrimination and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, p. 407–419. doi:10.1007/BF00402202

Wu, F.Y., Sun, D.Y., Li, H., Jahn, B.M., and Wilde, S., 2002, A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis: Chemical Geology, v. 187, p. 143–173. doi:10.1016/S0009-2541(02)00018-9

Wu, F.Y., Yang, Y.H., and Xie, L.W., 2006, Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology: Chemical Geology, v. 234, p. 105–126. doi:10.1016/j.chemgeo.2006.05.003

Xia, Y., Xu, X.S., and Zhu, K.Y., 2012, Paleoproterozoic S- and A-type granites in southwestern Zhejiang: Magmatism metamorphism and implications for the crustal evolution of the Cathaysia basement: Precambrian Research, v. 216-219, p. 177–207. doi:10.1016/j.precamres.2012.07.001

Xiang, H., Zhang, L., Zhou, H.W., Zhong, Z.Q., and Zeng, W., 2008, Geochronology and Hf isotopes of zircon from mafic-ultramafic basement rocks of southwestern Zhejiang: Response to the Indosinian orogeny of the metamorphic basement of the Cathaysia Block: Science in China Series D–Earth Sciences, v. 51, p. 788–800. doi:10.1007/s11430-008-0053-0

Xu, X.S., O’Reilly, S.Y., Griffin, W.L., Wang, X.L., Pearson, N.J., and He, Z.Y., 2007, The crust of Cathaysia: Age, assembly and reworking of two terranes: Precambrian Research, v. 158, p. 51–78. doi:10.1016/j.precamres.2007.04.010

Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., and Chu, M.F., 2006, A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence: Lithos, v. 89, p. 89–106. doi:10.1016/j.lithos.2005.10.002

Yao, J.L., Shu, L.S., and Santosh, M., 2011, Detrital zircon U–Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China: Gondwana Research, v. 20, p. 553–567. doi:10.1016/j.gr.2011.01.005

Yu, J.H., O’Reilly, S.Y., Griffin, W.L., Zhou, M.F., and Wang, L.J., 2012, U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block: Precambrian Research, v. 222-223, p. 424–449. doi:10.1016/j.precamres.2011.07.014

Yu, J.H., O’Reilly, S.Y., Wang, L., Griffin, W.L., Jiang, S.Y., Wang, R., and Xu, X.S., 2007, Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust: Chinese Science Bulletin, v. 52, p. 13–22. doi:10.1007/s11434-007-0008-4

Yu, J.H., O’Reilly, S.Y., Wang, L.J., Griffin, W.L., Zhou, M.F., Zhang, M., and Shu, L.S., 2010, Components and episodic growth of pre cambrian crust in the cathaysia block, South China: Evidence from U–Pb ages and Hf isotopes of zircons in Neoproterozoic sediments: Precambrian Research, v. 181, p. 97–114. doi:10.1016/j.precamres.2010.05.016

Yu, J.H., Wang, L.J., Griffin, W.L., O’Reilly, S.Y., Zhang, M., Li, C.Z., and Shu, L.S., 2009, A Paleo-proterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China: Precambrian Research, v. 174, p. 347–363. doi:10.1016/j.precamres.2009.08.009

Zeng, W., Zhang, L., Zhou, H.W., Zhong, Z.Q., and Xiang, H., 2008, Caledonian reworking of the Paleoproterozoic basement of the Cathaysia Block: Constrains from the zircon U–Pb dating: Hf isotope and trace element: Chinese Science Bulletin, v. 53, p. 895–904. doi:10.1007/s11434-008-0076-0

Zhao, G.C., and Cawood, P.A., 1999, Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: New evidence for Neoproterozoic collisional-related assembly of the South China craton: American Journal of Science, v. 299, p. 309–339. doi:10.2475/ajs.299.4.309

Zhao, G.C., Cawood, P.A., Wilde, S.A., and Sun, M., 2002, Review of global 2.1–1.8 Ga orogens: Implications for a pre-Rodinia supercontinent: Earth Science Reviews, v. 59, p. 125–162. doi:10.1016/S0012-8252(02)00073-9

Zhao, G.C., He, Y.H., and Sun, M., 2009, The Xiong’er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent: Gondwana Research, v. 16, p. 170–181. doi:10.1016/j.earscirev.2009.02.004

Zhao, G.C., Sun, M., Wilde, S.A., and Li, S.Z., 2004, A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup: Earth Science Reviews, v. 67, p. 91–123. doi:10.1016/j.earscirev.2004.02.003

Zhao, L., Zhou, X., Zhai, M., Santosh, M., and Geng, Y., 2015, Zircon U-Th-Pb-Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane: Gondwana Research, v. 28, p. 246–261. doi:10.1016/j.gr.2014.03.019

Zhao, X.F., Zhou, M.F., Li, J.W., and Wu, F.Y., 2008, Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment: Chemical Geology, v. 257, p. 1–15. doi:10.1016/j.chemgeo.2008.07.018

Zhuang, J., Huang, Q., and Deng, B., 2000, Strata subdivision and petrology of precambrian metamorphic rocks in Fujian: Xiamen, Xiamen University Press, p. 80–90. (in Chinese).