The utilization of lignocellular bio-mass as green building thermal insulation material

Muhammad Abdulredha¹,*, Sadiq J. Baqir², Sarah M. Ali³

¹ Department of Civil Engineering, College of Engineering, University of Kerbala, Kerbala, Iraq
² Al-Mustaqbal University College, Babylon, Iraq
³ Department of pharmacy, Al-Mustaqbal University College, Babylon, Iraq
*Corresponding author; Email: muhammed.r@uokerbala.edu.iq

Abstract. In new residential structures and green architecture, it is necessary to maintain the heat of the internal environment to an appropriate level throughout winter conditions with low electricity usage. This work is thus intended to produce environmentally acceptable isolation substances (organic material). Lignocellular biomass, which is also referred to as Poaceae common reed and Phragmites australis and straw, were used as organic material in this study. During testing of its performance under controlled settings, the insulating effectiveness of these organic compounds was assessed. The exploratory project comprises three forms of isolation: organic made from straw and reed, industrial isolation (fibreglass), and brickwork without insulation. An infrared sensor was used to calculate the quality of isolation. For each isolation situation, the temperature characteristic was produced. The findings show that fibreglass was equivalent to the effectiveness of the organic isolation. Furthermore, the efficiency difference was 0.84 percent comparing the industrial and organic isolation substances, which shows that Lignocellusic Biomass is a viable environmental-friendly replacement to industrial isolation substances.

1. Introduction

Several nations worldwide have seen great and constant growth in different industries, agriculture, commerce, and urban areas [1, 2]. In this expansion, the number of people, particularly in the petroleum and commercial states, is increasing steadily. Numerous towns and villages have been paved to link them and improve movement among cities and nations [3, 4]. In addition, as a result of persistent population expansion, towns and cities have substantially enlarged their boundaries. Owing to such an expansion, the use of different sorts of products from and to nations and continents, and numerous activities that directly influence the environment as well as people safety and welfare were naturally included. Due to the misuse of unsustainable resources, environmental concerns, including solid wastes accumulation [5-10], climate change [11-13], and global warming [14-16], have become apparent in recent years. For example, worldwide heat is growing rapidly [17-19], freshwater pollution is increasing significantly [20-22], and water use also expanded to an extreme extent [23-25]. Sustainable recycling techniques have thus become a necessity to minimize the health risks associated with contemporary society. For example, some research focused on using by-products of wastewater treatment plants in the construction process, such as the by-products of the electrocoagulation unit [26, 27], filtration units [28-30], and coagulation plants [31-36]. Also, the by-products of furnaces [37-39] and other industries [40-43] are recycled to minimize their environmental effects. However, the by-products of wastewater...
treatment plants and any industrial by-products contain harmful pollutants [44-47], which could leach into the indoor environment causing many health problems [4, 48-51]. Sustainable cycles may be only achieved if more natural energy like lignocellulosic materials is recycled and reused. A variety of research is trying to address these problems via the use of new techniques for sewage treatment, freshwater processing, waste management [52-54], and diverse industrial sectors. The concrete industry, which produces large volumes of greenhouse emissions, is among the primary worry for the creation of effective societies. The construction sector has indeed been demonstrated to account for approximately 8 percent of the total atmospheric carbon quantity released to the Earth’s atmosphere. Furthermore, the construction sector is rapidly diminishing mineral resources. Hence, for civil engineers and organizations, the building sector has become the most important problem. There have been major attempts to ensure replacements for traditional building materials (development of green buildings). Green building is an active topic of research since this design strategy is expected to significantly decrease the adverse environmental impacts of the construction sector by using very energy-efficient technologies [10].

Massive developments in the construction business worldwide contribute to an increase in energy usage, particularly in the household sector, due to insulation demands. High energy consumption may lead to various difficulties, for example, the depletion of crude energy supplies and environmental concerns, leading to substantial volumes of greenhouse gases in the atmosphere. This is why studies and the need to enhance the energy performance of the buildings throughout the planet arise from such challenges. Therefore, the utilization of alternative products and clean energy becomes a major aspect of future construction [10]. The heat protection of structures plays a key role in reducing energy demand and inconveniencing an interior atmosphere. The use of efficient isolation substances helps achieve apartment complexes’ heating with acceptable temperature limitations. The Engineers rely on numerous remedies to avoid high summer temperatures, from applying heat insulation components in built-in walls, flooring, roofing, and even wintertime. To safeguard against extreme heat exposure, sunshades, curtains, and aborigines are extensively utilized. The principle of sustainability can furthermore be promoted by using and renewable resources as insulators. The use of non-toxic, sustainable lignocellulosic biomass is one of the earliest construction products used for protecting humans from external threats and protecting them from harm. In several countries of the globe, for example, timber and strokes are still being used. Such resources can readily be used with different kinds of construction components. Thus, a concept of the environment in planning, building, and maintenance will assess the possible construction techniques involving green, natural materials in a low-energy approach. This would help provide low-energy sustainable structures, mainly for buildings. The use of building isolation can improve current or future structures’ energy efficiency. The use of a suitable thermal insulation system might significantly enhance construction sector development [55, 56].

The objective of these works has been to examine a sustainable way of building through a simulated hollow wall with a sustainable isolating element that employs biotechnological resources, such as lignocellulosic biomass, and is compressed by a simple shaft during insulation. In future studies, the performance of the suggested insulation material can be monitored and evaluated using sensors such as those used in the monitoring of cracks in concrete bodies [57-59] or pollution monitoring [60-63].

2. Methodology

2.1 Experimental procedure

The main substance adopted in this study is straw, which is typically used as isolation in the form of a bale. However, this approach takes a great deal of floor area. The objective of the current work is thus to efficiently employ insulation material to decrease land usage. The straw was placed over the subject in a dense layer supported by a reed frame. An electrical heater was provided on just one side of the cavity and the temperatures were measured using an infrared sensor at the opposite side of the cavity. The use of materials required in building constructions was minimized using various hollow wall techniques, such as the rat-trap brick bonding. The combined cavity-wall construction and renewable, insulating material can protect valuable natural resources to enhance the overall efficiency.
of new infrastructure projects. It is worth noting that the technique given above is relatively simple; issues like the specific density and quality of the raw materials and the humidity are not considered. The current study approach seeks to show the possibility for future construction projects to use recycled isolation materials. A simple strategy was chosen to assess the effectiveness of straw and reed as thermal insulation materials. As mentioned before, hollow walls may be used to introduce the insulating materials into them (like Rat-Trap Bond) [64]. A portion of the hollow walls was used to simulate the process. The hollow wall was made using conventional clay and cement mortars.

Compressing straw in a layer of about 40 mm thick, back strengthened by reeds, which function vertically as supports, was incorporated for natural insulating components. The straw substrate was coated with a protective carton layer which had a minimal influence on heat output to ease the assembly and movement of samples. Infrared imagery after supplying a heat source was used to detect fluctuations in temperature over time. At the commencement of the non-isolation test, the impact of the once utilized is tested. Similarly, the typical fibreglass insulating material was supplied and then used in the cavity wall, and the performance of this kind of insulator was then tested. Temperature measurements were carried out directly in line with the heat supply at the same position on the walls. This method for temperature measuring at the same site reduced the variation in warming of outside lab impacts during experimentation. In addition, a thermometer from both sides of the wall cavity for the accurate description of the temperature differential between the 2 sides of the cavity wall was given with the portion of the simulated wall cavity. Figure 1 provides visual help on the arrangement of the thermocouples. A was directly in touch with the source of heat; B was always in the contrary direction

![Figure 1: Cavity wall section simulation.](image)

2.2 Data collection

There have been three experiments for every form of isolation: organic, fibreglass, and insulation-free. The temperatures were calibrated in the background (a base value of 19°C), but every type of individual isolation was checked multiple times to guarantee uniformity in the data. Therefore, that heat capacity measured showed insignificant variations; the margin of error was acceptable. The first temperature record for a surface wall was approximately similar to the ambient temperature in the room (19°C).
isolation was checked multiple times to guarantee uniformity in the data. Therefore, that heat capacity measured showed insignificant variations; the margin of sampling error was allowed. The infrared camera captured the temperature values and transmitted them to the laptop. Around 30 min from the first measurement, the ultimate average temperature record was completed.

3. Results and Discussion
During the investigation, the surface temperature of the walls was monitored after 25 minutes. A thermal profile has been established with a unique key for each heat profile enables comprehension of the expected temperature throughout the wall section for each insulating scenario. With each isolation situation, Figure 2 illustrates the measured temperature variations. The heat pattern of the surface recorded after 25 minutes without isolation conditions is illustrated in Figure 2a. The results indicated that the greatest temperature was 21.4 °C and the lowest temperature being 19.8˚C. Figure 3b illustrates the heat profile observed on the wall surface after 25 minutes once a natural insulator was installed. The results indicated that the greatest temperature was 20.5 °C and the lowest temperature being 18.6˚C. Figure 3c shows the wall’s thermal profile when industrial isolation (fibreglass) is employed. The temperatures were 20.3°C and 18.9 °C, respectively. In the light of the above, no insulating case is likely to transmit the heat through the hollow wall section, which causes the greatest temperature measurements. This indicates that the greatest recorded temperature and the lowest observed temperature are the best of the three test conditions. No insulation was used during the first test, and the testing of both other insulating materials was based on that. Fibreglass isolation has been determined to have the least heat transfer of the surface; it appears reasonable that the highest performance under these test circumstances should be a uniform industrial standard. Fibreglass can thus be viewed as the best thermal insulating quality insulator. The highest recorded fibreglass temperature, being just 0.2 °C higher than the maximal sensing temperature, was also shown by natural materials as high isolation rates, allow them to be used in future applications.

Figure 2: The three insulation scenarios’ thermal profile

When looking at Figure 3, one can see that if no insulating was applied, the temperature differential between 2 sides of the wall faces was the smallest of any insulating scenario (62 °C). Such results were predicted and suggested that the system transferred more heat than when no insulating elements were used. The temperature variation recorded between the wall sides was 81.5 °C when the wall was insulated with fibreglass. This would be the biggest temperature difference measured and showed the fibreglass stops the most heat loss. The added organic isolation to the wall also exhibited a temperature
differential of 79.5 °C on each side. The use of the natural combined materials can significantly enhance the maximum insulation characteristics of the wall construction in comparison with the basic case, which does not include isolation materials. It is noteworthy that variations in the observed temperatures are about the same as when fibreglass is used as conventional in the industry.

Figure 3: Thermal variations in thermocouples

The temperature data from the temperature sensors are shown in Figure 4 in regards to isolation quality. The same overall model is seen in Figure 3. Nevertheless, it is useful to recognize the quality similarities between fibreglass and natural insulators. Only a 0.84% distinction between the 2 insulators was found in terms of proportion effectiveness. Both substances have significantly enhanced the insulating structural performance, as demonstrated by the less efficient use of no isolation.

Figure 4: Efficiency of different insolation scenarios.

4. Conclusion

A variety of environmentally friendly techniques were successfully implemented using the mixture of sustainable materials in cavity wall constructions as a natural insulator. The experimental data indicated that natural isolation offers promising results as a heat barrier as contrasted to an industrial insulator such as fibreglass. The results enable the possible use of these organic compounds as a natural source to encourage movement toward green construction. Further research must nevertheless be done to ensure success and extendability for the sustainable construction sector and the healthy home environment with a range of alternative construction techniques.

References

[1] Al-Jumeily D, Hashim K, Alkaddar R and Lunn J 2019. Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). 11th International Conference on Developments in eSystems Engineering (DeSE), Cambridge, UK 214-9.
[2] Farhan S L, Antón D, Akef V S, Zubaidi S L and Hashim K S 2021. Factors influencing the transformation of Iraqi holy cities: the case of Al-Najaf. *Scientific Review Engineering and Environmental Sciences*, 30 365-75.

[3] Farhan S L and Nasar A Z 2021. Urban Identity in the Pilgrimage Cities of Iraq: Analysis Trends of Architectural Designers in the City of Karbala. *J. Urban Regen. Renew.*, 14 2-14.

[4] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljefery M H and Carnacina I 2019. Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study. *Desalination and Water Treatment*, 150 406-12.

[5] Abdulredha M, Abdulridha A, Shubbar A, Alkhaddar R, Kot P and Jordan D 2020. Estimating municipal solid waste generation from service processes during the Ashura religious event. *IOP Conference Series: Materials Science and Engineering*, 012075.

[6] Abdulredha M, al-Khaddar R, Kot P, Jordan D and Abdulridha A 2018. Benchmarking of the Current Solid Waste Management System in Karbala, Iraq. Using Wasteware Benchmark Indicators. *World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change*, 40-8.

[7] Abdulredha M, Kot P, Al Khaddar R, Jordan D and Abdulridha A 2020. Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, Iraq. *Environment, Development and Sustainability*, 22 1431-54.

[8] Abdulredha M, Rafid A, Jordan D and Alattabi A 2017. Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? *Procedia engineering*, 196 771-8.

[9] Alattabi A W, Harris C, Alkhaddar R, Alzyeyadi A and Abdulredha M 2017. Online Monitoring of a sequencing batch reactor treating domestic wastewater. *Procedia engineering*, 196 800-7.

[10] Alwan H H, Saleh L A, Al-Mohammed F M and Abdulredha M A 2020. Experimental prediction of the discharge coefficients for rectangular weir with bottom orifices. *Journal of Engineering Science and Technology*, 15 3265-80.

[11] Zubaidi Salah L, Al-Bugharbee H, Ortega Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairi N and Kot P 2020. A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach. *Water*, 12 1-17.

[12] Zubaidi S, Muhsen Y R, Hashim K, Alkhaddar R M, Al-Jumeil D and Aljaaf A J 2019. The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate. *12th International Conference on Developments in eSystems Engineering (DeSÈ)*, Kazan, Russia 274-7.

[13] Zubaidi S L, Kot P, Hashim K, Alkhaddar R, Abdellatif M and Muhsin Y R 2019. Using LARS–WG model for prediction of temperature in Columbia City, USA. *IOP Conference Series: Materials Science and Engineering*, 012026.

[14] Zanki A K, Mohammad F H, Hashim K S, Muravod M, Kot P, Kareem M M and Abdulhadi B 2020. Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. *IOP Conference Series: Materials Science and Engineering*, 012033.

[15] Zubaidi S, Al-Bugharbee H, Muhsin Y R, Hashim K and Alkhaddar R 2020. Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study. *IOP Conference Series: Materials Science and Engineering*, 012018.

[16] Zubaidi S, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020. Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study. *Water*, 12 1-18.

[17] Salah Z, Hashim K, Etbahb S, Al-Bdairi N S S, Al-Bugharbee H and Gharghan S K 2020. A novel methodology to predict monthly municipal water demand based on weather variables scenario. *Journal of King Saud University-Engineering Sciences*, 32 1-18.

[18] Salah Z, Ortega-Martorell S, Kot P, Alkhaddar R M, Abdellatif M, Gharghan S K, Ahmed M S and Hashim K 2020. A Method for Predicting Long-Term Municipal Water Demands Under Climate Change. *Water Resources Management*, 34 1265-79.

[19] Salah Z, Abdulkareem I, Al-Bugharbee H, Ridha H, Gharghan S K, Al-Qaim F F, Muravod M, Kot P and Alkhaddar R 2020. Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand. *Water*, 12 1-18.
[20] Hashim K S, AlKhaddar R, Shaw A, Kot P, Al-Jumneily D, Alwash R and Aljefery M H 2020
Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources
Engineering and Management. Berline: Springer.

[21] Hashim K S, Al-Saati N H, Alqzuweeni S S, Zaubaidi S L, Kot P, Kraidy L, Hussein A H, Alkhaddar
R, Shaw A and Alwash R 2019. Decolourization of dye solutions by electrocoagulation: an
investigation of the effect of operational parameters. First International Conference on Civil and
Environmental Engineering Technologies (ICCEET), University of Kufa, Iraq 25-32.

[22] Hashim K, Al-Saati N, Hussein A H and Al-Saati Z 2018. An investigation into the level of heavy
mets leaching from canal-dreged sediment: a case study metals leaching from dredged sediment. Ist
Int. Conference on Materials Engineering & Science, Istanbul Aydm University, Turkey 12-22.

[23] Hashim K S, Ewadhi H M, Muhsin A A, Zaubaidi S L, Kot P, Muradov M, Aljefery M and Al-Khaddar
R 2020. Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions
and modelling studies. Water Science and Technology, 83 1-17.

[24] Hashim K S, Hussein A H, Zaubaidi S L, Kot P, Kraidy L, Alkhaddar R, Shaw A and Alwash R 2019.
Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC)
method. 2nd International Scientific Conference, Al-Qadsiyah University, Iraq 12-22.

[25] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021. Water purification from metal
ions in the presence of organic matter using electromagnetic radiation-assisted treatment. Journal of
Cleaner Production, 280 1-17.

[26] Hashim K, Ali S, AlRifaie J, Kot P, Idowu I and Gkantou M 2020. Escherichia coli inactivation using
a hybrid ultrasonic–electrocoagulation reactor. Chemosphere, 247 125868-75.

[27] Mohammed A, Hussein A, Yeboah D, Abdulhadi B, Ali A and Hashim K 2020. Electrochemical
removal of nitrate from wastewater. IOP Materials Science and Engineering, 012037.

[28] Abdulraheem F S, Al-Khafaji Z, Muradov M, Kot P and Shubbar A A 2020. Natural filtration unit
for removal of heavy metals from water. IOP Materials Science and Engineering, 012034.

[29] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and
Abdulhadi B 2020. Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-
phosphate solution. IOP Conference Series: Materials Science and Engineering, 012031.

[30] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faluji D, Muradov M, Kot P and Abdulhadi
B 2020. Cost-effective hybrid filter for remediation of water from fluoride. IOP Conference Series:
Materials Science and Engineering, 012038.

[31] Al-Saati N H, Omran I I, Salman A A, Al-Saati Z and Hashim K S 2021. Statistical modeling of
monthly streamflow using time series and artificial neural network models: Hindiya Barrage as a case
study. Water Practice and Technology, 16 681-91.

[32] Emamjomeh M, Kakavand S, Jamali H A, Mousavi S, Hashim K and Mousazade M 2020. The
treatment of printing and packaging wastewater by electrocoagulation–flotation: the simultaneous
efficacy of critical parameters and economics. Desalination and water treatment, 205 161-74.

[33] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkiaiabi D, Naghdali Z, Hashim K
S and Ghanbari R 2020. Simultaneous removal of phenol and linear alkylbenzene sulfonate from
avtomatic service station wastewater: Optimization of coupled electrochemical and physical
processes. Separation Science and Technology, 55 3184-94.

[34] Hashim K, Kot P, Zaubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumneily D and Aljefery M 2020.
Energy efficient electrocoagulation using bubble-plates electrodes for efficient Escherichia Coli
removal from Wastewater. Journal of Water Process Engineering, 33 101079-86.

[35] Omran I, Al-Saati N, Al-Saati H, Hashim K and Al-Saati Z 2021. Sustainability assessment of
wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA).
Water Practice and Technology, 16 468-60.

[36] Omran I, Al-Saati N, Al-Saati Z, Patryk K, Khaddar R A, Al-Jumneily D, Ruddock F and Aljefery M
2019. Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel. Desalination
and Water Treatment, 168 165-74.

[37] Shubbar A, Al-Shaar A, Hawesah H A and Sadique M 2019. Investigating the influence of cement
replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar.
First International Conference on Civil and Environmental Engineering Technologies (ICCEET), University of Kufa, Iraq 31-8.

[38] Ali A, Sadique M, Nasr M S, Al-Khafaji Z S and Hashim K S 2020. The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash. *Karbala International Journal of Modern Science*, 6 1-23.

[39] Ali A, Sadique M, Shanbara H K and Hashim K 2020 *The Development of a New Low Carbon Binder for Construction as an Alternative to Cement*. In *Advances in Sustainable Construction Materials and Geotechnical Engineering*, Berlin: Springer.

[40] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020. Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust. *Journal of Building Engineering*, 32 1-17.

[41] Kadhim A, Sadique M, Mufti R and Hashim K 2020. Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent. *Advances in Cement Research*, 32 1-38.

[42] Majdi H, Shubbar A, Nasr M, Jafer H, Abdulredha M, Sadique M and Hashim K 2020. Experimental study on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations. *Data in Brief*, 31 105961-72.

[43] Obaid M, Nasr M, Ali I, Ali A and Hashim K 2021. Performance of green mortar made from locally available waste tiles and silica fume. *Journal of Engineering Science and Technology*, 16 136-51.

[44] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021. Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study. *Science of The Total Environment*, 760 1-16.

[45] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019. Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, University of Kufa, Iraq 12-22.

[46] Abdulla G, Kareem M, Muradov M, Mubarak H, Abdellatif M and Abdulhadi B 2020. Removal of iron from wastewater using a hybrid filter. *IOP Materials Science and Engineering*, 012035.

[47] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020. Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. *IOP Conference Series: Materials Science and Engineering*, 012064.

[48] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faljuji D and Zubaidi S L 2020. Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. *IOP Conference Series: Materials Science and Engineering*, 012032.

[49] Aqeel K, Mubarak H A, Amoako-Attaah J, Abdul-Rahaim L A, A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020. Electrochemical removal of brilliant green dye from wastewater. *IOP Conference Series: Materials Science and Engineering*, 012036.

[50] Alnaimi H, Idan I J, Al-Janabi A, Hashim K, Gkantou M, Zubaidi S L, Kot P and Muradov M 2020. Ultrasonic-electrochemical treatment for effluents of concrete plants. *888* 1-9.

[51] Al-Marri S, AlQuzweeni S, AlKhaddar R and Al-Khafaji Z S 2020. Ultrasonic-Electrocoagulation method for nitrate removal from water. *IOP Materials Science and Engineering*, 012073.

[52] Al-Sareji O, Grmasha R, Salman J, Idowu I and Hashim K 2021. Street dust contamination by heavy metals in Babylon governorate, Iraq. *Journal of Engineering Science and Technology*, 16 3528 - 46.

[53] Grmasha R, Al-sareji O, Salman J, and Jasim I A 2020. Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust Within Three Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment. *Journal of King Saud University - Engineering Sciences*, 33 1-18.

[54] Idowu I A, Hashim K and Nunes L J 2021. Enhancing the fuel properties of beverage wastes as non-edible feedstock for biofuel production. *Biofuels*, 14 1-8.

[55] Abdulredha M, Kadhim N, Hussein A, Almutairi M, Alkhaddar R, Yeboah D and Hashim K 2021. Zeolite as a natural adsorbent for nitrogenous compounds being removed from water. *IOP Conference Series: Materials Science and Engineering*, 012082.

[56] Shubbar A, Abdulredha M, Nasr M, Al Masoodi Z and Sadique M J2020. Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days. *30* 101327.
[57] Gkantou M, Muradov M, Kamaris G, Atherton W and Kot P 2019. Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection. *Sensors*, **19** 5175-89.

[58] Omer G, Kot P, Atherton W, Muradov M, Gkantou M, Shaw A, Riley M, Hashim K and Al-Shamma’a A 2021. A Non-Destructive Electromagnetic Sensing Technique to Determine Chloride Level in Maritime Concrete. *Karbala International Journal of Modern Science*, **7** 61-71.

[59] Kot P, Muradov M and Rafid R 2021 *How can sensors be used for sustainability improvement?. In Methods in Sustainability Science*, Elsevier, United Kingdom: Joe Hayton, p 426.

[60] Kot P, Muradov M, Gkantou M, Kamaris G and Yeboah D 2021. Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring. *Applied Sciences*, **11** 1-28.

[61] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019. A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna. *Sensors*, **19** 1813-23.

[62] Ryecroft S, Fergus P, Kot P, Tang A, Moody A and Conway L 2021. An Implementation of a Multi-Hop Underwater Wireless Sensor Network using Bowtie Antenna. *Karbala International Journal of Modern Science*, **7** 113-29.

[63] Ryecroft S P, shaw A, Fergus P, Kot P, Hashim K and Conway L 2019. A Novel Gesomin Detection Method Based on Microwave Spectroscopy. *12th International Conference on Developments in eSystems Engineering (DeSE)*, Kazan, Russia 429-33.

[64] Gupta A 2017. Building a Green Home Using Local Resources and Sustainable Technology in Jammu Region–A Case Study. *Energy Procedia*, **115** 59-69.