The Rotationally Resolved Infrared Spectrum of TiO and Its Isotopologues

Daniel Witsch,1 Alexander A. Breier,1 Eileen Döring,1 Koichi M. T. Yamada,2 Thomas F. Giesen,1 and Guido W. Fuchs1

1University of Kassel, Institute of Physics, Heinrich-Plett Str. 40, 34132 Kassel, Germany
2National Metrology Institute of Japan (NMIJ), AIST, Tsukuba 305-8563, Japan

ABSTRACT

In this study, we present the ro-vibrationally resolved gas-phase spectrum of the diatomic molecule TiO around 1000 cm\(^{-1}\). Molecules were produced in a laser ablation source by vaporizing a pure titanium sample in the atmosphere of gaseous nitrous oxide. Adiabatically expanded gas, containing TiO, formed a supersonic jet and was probed perpendicularly to its propagation by infrared radiation from quantum cascade lasers. Fundamental bands of \(^{46-50}\)TiO and vibrational hotbands of \(^{48}\)TiO are identified and analyzed. In a mass-independent fitting procedure combining the new infrared data with pure rotational and electronic transitions from the literature, a Dunham-like parameterization is obtained. From the present data set, the multi-isotopic analysis allows to determine the spin-rotation coupling constant \(\gamma\) and the Born-Oppenheimer correction coefficient \(\Delta_{\text{U10}}^{\text{Ti}}\) for the first time. The parameter set enables to calculate the Born-Oppenheimer correction coefficients \(\Delta_{\text{U02}}^{\text{Ti}}\) and \(\Delta_{\text{U02}}^{\text{O}}\). In addition, the vibrational transition moments for the observed vibrational transitions are reported.

Corresponding author: Daniel Witsch, Guido W. Fuchs
d.witsch@physik.uni-kassel.de
fuchs@physik.uni-kassel.de
Keywords: spectroscopy — high-resolution — infrared — ro-vibrational — titanium monoxide — isotopologues — hotbands

1. INTRODUCTION

Since 1904, when the British astronomer Alfred Fowler (1868-1940) showed similarities between the spectra of Antarian stars\(^1\) and the arc spectrum of titanium oxide (TiO), TiO has become a molecule of astrophysical relevance (Fowler 1904). In the second half of the 20\(^{\text{th}}\) century, the blue-green emission in late-type stars were assigned to electronic transitions of TiO by Merrill et al. (1962). Since 1973, the strength of the prominent VIS-UV lines of TiO in spectra of late-type stars are used to classify stars within the Morgan-Keenan spectral classification scheme (Morgan & Keenan 1973). In rare cases, emission bands of TiO can be found in optical spectra of warm circumstellar environments (Barnbaum et al. 1996; Kamiński et al. 2010). Metal oxides, like TiO, are thought to play an important role in the change of the VIS-UV apparent magnitude in Mira-type variable stars at optical as well as infrared wavelengths, as has been demonstrated by Reid & Goldston (2002).

Up to now, TiO signatures in stellar spectra are the topic of many observational studies. Chavez & Lambert (2009) detected isotopologues of TiO towards local M-dwarf stars, such as GJ699 or GJ701, at optical wavelengths. The derived isotopic abundances in these objects are similar to the natural abundance found on earth. Kamiński et al. (2013) detected pure rotational transitions from TiO towards the oxygen-rich late-type star VY Canis Majoris for the first time using the submillimeter array (SMA) between 279.1 GHz and 335.1 GHz. In a follow-up study towards Mira (o-Ceti) at submm-wavelength, the detection of all stable titanium isotopologues was reported, with the exception of \(^{47}\)TiO (Kamiński et al. 2017). In these studies it was shown, that the titanium-bearing molecules, TiO and TiO\(_2\), are found outside the dust forming regions. From the high abundance, the authors concluded that a substantial fraction of titanium is present as gas-phase species and not as solid dust grains. This is an indication that titanium oxides do not initiate the dust formation - as

\(^1\) i.e. the spectrum of stars like Antares, \(\alpha\) Herculis or o Ceti
previously believed. The authors added that titanium might still support the formation of silicate
dust. Recently, pure rotational transitions of vibrationally excited TiO were identified towards the
AGB stars R Dor and IK Tau by Danilovich et al. (accepted 2020).

First evidence for signs of TiO in atmospheres of extrasolar planets (exoplanets) were found in the
atmosphere of the ultra-hot jupiter WASP-121b (Evans et al. 2016), while earlier studies indicated
no presence of TiO in the atmosphere of other investigated exoplanets (Huitson et al. 2013; Sing
et al. 2013). TiO is proposed to contribute to thermal inversion in the atmospheres of hot Jupiters,
which is in good agreement with self-consistent atmospheric models Piette et al. (2020). Recently,
an improved TiO line list was added to the ExoMol database (Tennyson et al. 2016; McKemmish
et al. 2019), which contains molecules associated with atmospheres of exoplanets. Based on this line
list, Pavlenko et al. (2020) investigated the spectra of the M dwarfs GJ15A and GJ15B, revealing
non-solar isotopic titanium ratios deduced from synthetic spectra of the TiO isotopologues. Using
the Spitzer (IR) Space Telescope, Smolders et al. (2012) published a paper, where they assigned an
infrared emission band of the S-type star NP Aurigae to TiO. The spectrum was taken at a resolution
of 2 cm^{-1} and no individual ro-vibrational transitions could be resolved. In the same work, further
candidates of TiO emission bands were suggested in the spectra of RX Psc and V899 Aql, but could
not be verified.

In terms of laboratory investigations, TiO has been intensively studied in various experiments. An
overview of the works targeting the main isotopologue $^{48}\text{Ti}^{16}\text{O}$ is given by McKemmish et al. (2017).
In the early stages, TiO was commonly produced from modulated high-voltage arc discharge sources,
like in the work of Phillips (1950). J. Phillips identified the $^{1}\Pi - ^{1}\Delta$ and the $^{1}\Phi - ^{1}\Delta$ bands of the
main isotopologue of TiO in the spectra using a grating spectrograph. Initially, it was mistakenly
assumed that the triplet electronic state $^{3}\Pi$ is the ground-state (Lowater 1929; Phillips 1951). In
1969, the $^{3}\Delta$ state was correctly assigned as electronic ground-state (Phillips 1969). Fletcher et al.
(1993) investigated the hyperfine splitting of ^{47}TiO, that originates from the $I = 5/2$ spin of the
rare titanium isotope, using laser induced fluorescence spectra from the $^{3}\Pi - ^{3}\Delta$ transition. Amiot
et al. (1995, 1996) performed crossed beam experiments between a molecular beam of TiO and
a continuous wave tunable laser to study the $^3\Pi - ^3\Delta$ and the $^1\Phi - ^1\Delta$ bands at sub-Doppler resolution. The laser induced fluorescence spectra led to a comprehensive determination of the rotational molecular constants, as well as spin-orbit- and spin-spin-coupling constants, A and λ. A few years later, two bands, $^3\Phi - ^3\Delta$ and $^1\Pi - ^1\Delta$ of the TiO main isotopologue, were identified in sunspots by Ram et al. (1996, 1999). This observation was based on laboratory measurements conducted between 10,000 and 16,000 cm$^{-1}$, where TiO was produced using a hollow cathode lamp. The same authors also improved the $^3\Delta$ ground-state rotational constants of 48TiO by including pure rotational transitions from jet cooled-measurements. Namiki & Ito (2002) and Namiki et al. (2003, 2004) analyzed several vibronic transitions of 48TiO of the $^3\Delta$ electronic ground-state in the optical frequency range. Measurements of the $^3\Pi - ^3\Delta$ transition of all TiO isotopologues in a jet-cooled experiment were performed by Kobayashi et al. (2002). Pure rotational transitions of laser ablated TiO were measured by Kania et al. (2008) in a supersonic-jet expansion utilizing millimeter-wave spectroscopy. Recently, Lincowski et al. (2016) presented a spectroscopic analysis of the rare isotopologues of TiO by means of high-resolution millimeter/submillimeter spectroscopy. From this study hyperfine constants of 47TiO and 49TiO were determined. The results agree well with those obtained by Fletcher et al. (1993). Lincowski et al. (2016) also obtained rotational constants, including centrifugal distortion constants for spin-spin and spin-orbit parameters, for all stable titanium isotopologues. Breier et al. (2019) conducted measurements for all stable titanium isotopologues of TiO around 300 GHz. The data were analyzed using a mass-independent Dunham approach, which allows to investigate all isotopologues in a global fit, thus combining measurements at microwave and optical wavelengths. In turn, the Dunham analysis allowed to predict frequencies for the radioactive molecule 44TiO within a sub-MHz uncertainty. This unstable isotopologue decays with a half-life of 60 years and is of particular interest in the context of young supernova remnants (Siegert et al. 2015; Tsygankov et al. 2016; Austin et al. 2017). The titanium isotope 44Ti is synthesized in core-collapse supernovae during helium burning reactions.

In this study, we present the first measurement of the infrared spectra of TiO and of all stable titanium isotopologues as well as the spectra of the vibrational hotbands of 48TiO. In total 1034
transitions have been assigned and a line list with data of accuracy better than 10^{-3}cm^{-1} was assembled to guide future astronomical observations. Transitions from vibrationally excited states of up to $v = 3$ have been observed in our experiments. Together with data from the literature (Breier et al. 2019; Lincowski et al. 2016; Fletcher et al. 1993; Ram et al. 1999; Amiot et al. 1995), a mass-independent Dunham analysis, based on that presented in Breier et al. (2019), was performed, which results in new insights into the vibrational potential of TiO.

2. EXPERIMENTAL APPROACH

The experiments in this work have been performed using a laser ablation technique combined with a supersonic jet expansion, intersected with infrared radiation from a quantum cascade laser (QCL), see Witsch et al. (2019) for a detailed description of the experimental setup. Here, only a brief description is given. A highly intense laser pulse of 7 ns pulse duration with an output power of up to 33.5 mJ/pulse produced by a Nd:YAG laser from Continuum Lasers (Inlite II-20 Series) was focused onto the surface of a pure titanium sample rod and produced a hot titanium plasma ($\sim 10,000\text{K}$). The sample rod with a diameter of 1 cm and a length of 5 cm containing titanium isotopes in natural abundances (see Table 1) was rotated and translated in order to continuously provide a pristine surface for the ablation processes. A helium buffer gas containing 3% of nitrous oxide (N$_2$O) as an oxygen donor was used as a carrier gas, for picking up parts of the ablated material. A Parker Series 9 General Valve was used to produce carrier gas pulses of 500 μs duration. In a subsequent reaction channel of 4 mm length and 12 mm \times 1 mm cross section, TiO was formed and finally adiabatically expanded into a vacuum chamber of $1.2 \times 10^{-1}\text{mbar}$ background pressure. As a result, a supersonic jet was formed, which was probed by a quantum cascade laser (QCL) beam perpendicular to its propagation. A Herriott-type multi-pass cell (Herriott et al. 1964) guided the radiation 40 times through the jet to increase the absorption length. The experiment was operated at a repetition rate of 20 Hz. The delay between the gas flow and the ablation laser pulse was controlled by a trigger pulse generator (Quantum Composers 9300 series) to optimize the TiO yield.

In the frequency range between 984 and 992 cm$^{-1}$, spectra were measured in a step-scan mode (Witsch et al. 2019), using a narrow linewidth distributed feedback (DFB) QCL (Alpes Lasers).
After 40 ablation processes the QCL was stepped by $1.62 \times 10^{-4} \text{cm}^{-1}$. A liquid nitrogen cooled mercury cadmium tellurid (MCT) detector with 300 kHz response was used to record absorption signals of TiO.

Furthermore, experiments were performed between 971 cm$^{-1}$ and 1032 cm$^{-1}$ using a mode-hop-free external cavity (ec) QCL from Daylight Solutions. The infrared radiation was detected by a fast liquid nitrogen cooled 1 GHz-response-MCT detector. By applying a 200 kHz frequency modulation to the ec-QCL, spectral intervals of 0.03 cm$^{-1}$ width were acquired 600 times before stepping to the next spectral interval.

All spectra were calibrated by simultaneously measuring the spectrum of an internally coupled etalon with a free spectral range of 0.006 cm$^{-1}$ (0.01 cm$^{-1}$ in step scan measurements) and the spectrum of methanol (CH$_3$OH) in a Herriott-type multi-pass gas cell. The pressure in the cell was reduced until the Doppler width dominated the line broadening. The reference spectrum was calibrated using line positions from the Hitran database (Xu et al. 2004). The calibration accuracy was better than $2.8 \times 10^{-4} \text{cm}^{-1}$.

3. THE IR SPECTRUM OF TiO

In this study, we present the first rotationally resolved infrared spectrum of TiO between 971.2 cm$^{-1}$ and 1031.9 cm$^{-1}$, as shown in Figure 1. The laser ablation source does not provide a constant molecular yield, which causes intensity fluctuations in the observed spectrum. A total of 1034 transitions were assigned to the fundamental bands of TiO and its stable titanium isotopologues, $^{46-50}$TiO, as well as vibrational hotbands of the main isotopologue 48TiO. The typical linewidth is $2 \times 10^{-3} \text{cm}^{-1}$ (60 MHz). The band centers are listed in Table 1. A detailed list of transitions is provided in the supplemental material in Tables 5 to 12.

For the main isotopologue, 48TiO, ro-vibrational transitions in the $^3\Delta$ electronic ground state of J'' up to 25 and 32 have been assigned to the P- and the R-branch, respectively. In addition, 63 Q-branch transitions were assigned. As listed in Table 1, several hotband transitions of 48TiO and transitions originating from 46TiO, 47TiO, 49TiO and 50TiO are identified (see Figure 1) and appear in natural abundance. Transitions of 47TiO (nuclear spin $I = 5/2$) and 49TiO ($I = 7/2$) with low J''
values exhibit larger linewidths of up to 2.5×10^{-3} cm$^{-1}$ (75 MHz), because of the unresolved hyperfine structure. Due to the spin-orbit coupling, energy levels split into three Ω-components. Transitions between different Ω are prohibited by selection rules, resulting in three transitions for each J'' as can be seen in the upper plot in Figure 1. For $J'' > 6$ the splitting into three Ω-components was observed for all isotopologues. However, as the total angular momentum can not be smaller than its components, only states with $J \geq \Omega$ exist, thus dissolving the triplet structure for the lowest J'' transitions. Furthermore, for $J'' \leq 5$, some $\Omega = 3$ transitions were too weak to be observed and for the lowest J'' values some $\Omega = 2$ components could not be detected due to the unfavorable partition function.

Finally, transitions belonging to higher vibrational states ($v'' \geq 1$) of 48TiO were found in the observed spectrum. In total 3 hotbands were assigned ($v = 2 \leftarrow 1, 3 \leftarrow 2$ and $4 \leftarrow 3$) indicating that the vibrational excitation of TiO is not effectively cooled in the supersonic jet expansion – contrary to the rotational excitation. The most populated hotband ($v = 2 \leftarrow 1$) exhibits Q-branch transitions at 990.9 cm$^{-1}$, while the Q-branches from the other hotbands are too weak to be observed in our spectrum.

4. ISOTOPICALLY INVARIANT FITTING PROCEDURE

The energy levels of the diatomic molecules, titanium monoxide and its isotopologues, can be described by the Dunham formalism (Dunham 1932a,b) to obtain a mass-independent molecular parameterization, according to Equation 1. Molecular parameters of TiO were derived from a global data set analysis using high-resolution data from Breier et al. (2019) and the here presented mid-IR measurements on multi-isotopologue ro-vibrational TiO transitions. The mass-independent molecular parameterization is described in detail by Breier et al. (2018, 2019). In short, the parameter description of TiO is obtained by an adjustment procedure of the following isotopically invariant equation of the molecular parameters,

$$X_{v,\alpha} = \sum_k \left\{ \eta \cdot \mu_{\alpha} \cdot \frac{2l+k}{2} \cdot \left(1 + \sum_{i=Ti,O} \frac{m_i}{M_{\alpha}} \Delta_i \hat{O}_{k,i} \right) \cdot \hat{O}_{k,i} \cdot \left(v + \frac{1}{2} \right)^k \right\}. \quad (1)$$
Figure 1. The infrared spectrum of TiO. Lower plot: The measured spectrum is shown (upper trace, red) together with a simulated spectrum (lower trace, black) of the fundamental bands of $^{46-50}$TiO and hotbands of 48TiO up to $v = 4 \leftarrow 3$ assuming a rotational temperature of 247 K. In the simulation the vibrational temperature is assumed to be 1250 K and the isotopologues are simulated using their natural abundance values (De Laeter et al. 2003). Upper plot: A detailed view of the spectrum around 987.8 cm$^{-1}$. The three Ω components of the fundamental band of 48TiO are marked in red, fundamental transitions assigned to the rare isotopologues of TiO are labeled in green. Transitions assigned to the 48TiO hotbands are labeled in blue. The vibrational quantum numbers for hotband transitions are indicated.
Table 1. Number of assigned transitions in the observed spectrum of TiO, its isotopologues, and hot-bands together with measured band centers ν and calculated vibrational transition moments. The natural abundance of titanium isotopes is given in percent. A detailed list of transitions is given in Tables 5 to 12.

| Isotopologue/Transition | Natural abundancea | $\nu_{i\rightarrow i-1}$ (cm$^{-1}$) | P-branch | Q-branch | R-branch | $|\langle \nu_i |\mu| \nu_{i-1} \rangle|$(D) |
|-------------------------|----------------------|---------------------------------|----------|----------|----------|-----------------|
| 48TiO $v = 1 \leftarrow 0$ | 73.720(22) | 1000.0410(5) | 63 | 47 | 89 | 0.230 0.230 |
| $v = 2 \leftarrow 1$ | | 990.8839(5) | 41 | 32 | 103 | 0.323 0.323 |
| $v = 3 \leftarrow 2$ | | 981.7032(6) | 14 | 0 | 69 | 0.393 0.393 |
| $v = 4 \leftarrow 3$ | | 972.4989(7) | 0 | 0 | 42 | 0.452 0.451 |
| 46TiO $v = 1 \leftarrow 0$ | 8.249(21) | 1005.4076(5) | 73 | 0 | 69 | – – |
| 47TiO $v = 1 \leftarrow 0$ | 7.437(14) | 1002.6670(5) | 64 | 0 | 73 | – – |
| 49TiO $v = 1 \leftarrow 0$ | 5.409(10) | 997.5060(5) | 49 | 0 | 79 | – – |
| 50TiO $v = 1 \leftarrow 0$ | 5.185(13) | 995.0733(5) | 48 | 0 | 79 | – – |

aValues taken from De Laeter et al. (2003)

bValues are calculated according to McKemmish et al. (2019) using DUO (Yurchenko et al. 2016)

The isotopic invariant Dunham-like fitting parameter $\hat{O}_{k,l}$ takes a central role in Equation 1. The index l describes the expansion of molecular parameters in terms of the the angular momentum operator \hat{N}^2, \hat{N}^4, \ldots, \hat{N}^{2l} for the isotopologue α in its vibrational state v. For example, the molecular parameters $B_{v,\alpha}$, $D_{v,\alpha}$ and $H_{v,\alpha}$ for $l = 1$, 2, 3, respectively, are obtained from the Dunham parameters $\hat{O}_{k,l} = U_{k,l}$. The index k is the ro-vibrational coupling order ($(v + 1/2)^k$). In the case of $l = 1$, the Dunham parameter $U_{k,l}$ are linked to the equilibrium rotational constant ($k = 0$) or the rotation-vibration interaction constants ($k = 1, 2, \ldots$). Analogous, Dunham-like parameters $\hat{O}_{k,l}$, such as $A_{k,l}$, $\gamma_{k,l}$ and $eQq_{0,k,l}$, are used to describe the fine- and hyperfine-structure, e.g. the spin-orbit coupling constant A, the spin-rotation coupling constant γ or the electric hyperfine-structure parameter eQq_0. The coefficient η in Equation 1 is a nucleus scaling factor being unity for rotational and fine-structure parameters. For hyperfine parameters, η is set to be the nuclear g_N-factor for magnetic hyperfine parameters and the electric hyperfine parameters are scaled by the electric quadrupole moment Q.

respectively. The scaling values of TiO are given in Breier et al. (2019). The isotopic invariance is introduced into Equation 1 by the reduced mass μ_α. To obtain a more precise description of the mass invariance, the Born-Oppenheimer breakdown (BO) correction is given as sum over parameters $\Delta^i_{O_k,l}$. Its mass dependency is given by the fraction of the electron mass m_e and the mass of atom M_i^α ($i = \text{Ti}, \text{O}$). In this work, the BO correction parameters $\Delta^i_{O_k,l}$ are determined in addition to the first-order vibrational, rotational and spin-orbital expansion terms U_{10}, U_{01} and A_{00}, respectively.

In our analysis we used the isotope masses of titanium and oxygen as published by AME2016 (Wang et al. 2017). The generalized equation is implemented in the program PGOPHER (Western 2017). Contrary to Breier et al. (2019), the weighting process of the various data sets is changed and the well-defined iterative re-weighting procedure introduced by Watson (2003) is used to improve the reproducibility. The ROBUST parameter value of PGOPHER was determined to be 0.1.

One advantage of a mass-independent analysis is that the effect of the spin-rotation interaction onto the energy level is distinguishable from the centrifugal distortion of the spin-orbital effects due to their difference in mass scaling behavior (Müller et al. 2015). In this work, two different fitting sets are obtained by excluding the spin-rotation interaction ("Fit A") or by including this contribution ("Fit B") in the parameter set. Both parameter sets describe the electronic ground-state ($X^3\Delta$) of TiO with 29 mass-independent Dunham-like molecular parameters, which are shown in Table 2. The confidence of parameter set "Fit B" is emphasized and its usage for TiO is recommended. This Dunham-like parameter set corresponds to 150 effective molecular parameters which describe the vibrational states $v = 0$ to 4 of 48TiO and the vibrational states $v = 0, 1$ of the observed rare isotopologues (including the hyperfine structure of 47TiO and 49TiO). Parameters for the $A^3\Phi$ and $B^3\Pi$ state, which are obtained from the global fit, are listed in Tables 13 and 14 of the supplementary material and are not further discussed. The uncertainty of the here measured IR data is 5.2×10^{-4} cm$^{-1}$. The fitting routine within PGOPHER is available on request.
Table 2. Mass-invariant molecular parameters for the $X^3\Delta$ state of TiO based on the analysis of the six stable titanium isotopologues $^{46-50}\text{Ti}^{16}\text{O}$ and $^{48}\text{Ti}^{18}\text{O}$.

Parameter	This work	Ref. \(^6\)			
$\hat{O}_{k,l}$	Fit A	Fit B	Fit A	Fit B	Units
U_{00}	0.0	0.0	0.0	0.0	cm\(^{-1}\)
$U_{10} \times 10^{-3}$	3.4949905(13)	3.4949915(13)	3.4949966(26)	3.4949959(26)	cm\(^{-1}\) u\(^{1/2}\)
$\Delta_{U_{10}}^{\text{Ti}}$	0.109(31)	0.114(31)	–	–	
$U_{20} \times 10^{-1}$	-5.470311(43)	-5.470315(43)	-5.47093(45)	-5.47063(46)	cm\(^{-1}\) u
$U_{30} \times 10^{1}$	-1.6302(23)	-1.6300(23)	-1.587(22)	-1.596(22)	cm\(^{-1}\) u\(^{3/2}\)
U_{01}	6.4227147(57)	6.42351367(72)	6.4227037(25)	6.4234987(74)	cm\(^{-1}\) u
$\Delta_{U_{01}}^{\text{Ti}}$	-8.397(16)	-8.314(16)	-8.253(24)	-8.282(25)	
$\Delta_{U_{01}}^{\text{O}}$	-6.116(25)	-9.769(31)	-6.112(8)	-9.722(29)	
$U_{11} \times 10^{1}$	-1.255794(22)	-1.255799(21)	-1.255825(44)	-1.255631(69)	cm\(^{-1}\) u\(^{3/2}\)
$U_{21} \times 10^{3}$	-1.3339(25)	-1.3337(25)	-1.3467(57)	-1.3542(61)	cm\(^{-1}\) u\(^2\)
$U_{02} \times 10^{5}$	8.67136(21)	8.67227(26)	8.67195(38)	8.67186(38)	cm\(^{-1}\) u\(^2\)
$U_{12} \times 10^{6}$	1.7640(47)	1.7608(47)	1.7469(81)	1.7469(81)	cm\(^{-1}\) u\(^{5/2}\)
$U_{03} \times 10^{10}$	2.08(14)	2.29(14)	1.95(17)	2.05(17)	cm\(^{-1}\) u\(^3\)
$A_{00} \times 10^{-1}$	5.046090(88)	5.0642587(62)	5.065030(11)	5.064254(14)	cm\(^{-1}\)
$\Delta_{A_{00}}^{\text{Ti}} \times 10^{-2}$	3.286(15)	–	–	–	
$A_{10} \times 10^{3}$	5.025(45)	4.245(42)	6.77(73)	4.93(84)	cm\(^{-1}\) u\(^{1/2}\)
$A_{20} \times 10^{3}$	-10.399(53)	-10.421(54)	-10.61(51)	-10.88(53)	cm\(^{-1}\) u
$A_{01} \times 10^{4}$	-3.12190(99)	1.895(24)	-1.797(10)	1.722(56)	cm\(^{-1}\) u
$\Delta_{A_{01}}^{\text{Ti}} \times 10^{-4}$	–	–	–	–	
$A_{11} \times 10^{5}$	-3.958(63)	–	-4.25(22)	7.3(28)	cm\(^{-1}\) u\(^{3/2}\)
$\gamma_{01} \times 10^{2}$	–	9.326(45)	–	9.00(10)	cm\(^{-1}\) u

Table 2 continued on next page
Table 2 (continued)

Parameter	This work	Ref.\(^a\)	Units		
\(\hat{O}_{k,l}\)	Fit A	Fit B	Fit A	Fit B	Units
\(\gamma_{11} \times 10^2\)	–	0.952(12)	–	2.36(52)	cm\(^{-1}\) \(u^{3/2}\)
\(\gamma_{02} \times 10^7\)	–	5.10(191)	–	–	cm\(^{-1}\) \(u^2\)
\(\lambda_{00}\)	1.749446(62)	1.745255(65)	1.74974(16)	1.74584(18)	cm\(^{-1}\)
\(\lambda_{10} \times 10^2\)	-1.5066(29)	-1.5454(22)	-1.81(11)	-2.00(12)	cm\(^{-1}\) \(u^{1/2}\)
\(\lambda_{20} \times 10^3\)	–	–	3.19(85)	3.13(85)	cm\(^{-1}\) \(u\)
\(\lambda_{01} \times 10^6\)	5.65(20)	-48.60(29)	6.64(15)	-47.76(44)	cm\(^{-1}\) \(u\)
\(\lambda_{11} \times 10^8\)	4.7(10)	–	–	–	cm\(^{-1}\) \(u^{3/2}\)
\(a_{00} \times 10^3\)	5.6198(21)	5.6136(22)	5.6220(45)	5.6133(46)	cm\(^{-1}\) \(g_N^{-1}\)
\(\Delta a_{00} \times 10^3\)	4.613(16)	4.647(16)	4.620(31)	4.684(31)	cm\(^{-1}\) \(g_N^{-1}\) \(u^{1/2}\)
\(b_{00} \times 10^2\)	2.7470(11)	2.7658(12)	2.7481(30)	2.7653(26)	cm\(^{-1}\) \(g_N^{-1}\)
\(c_{00} \times 10^3\)	-2.9640(87)	-3.1638(91)	-2.971(20)	-3.160(20)	cm\(^{-1}\) \(g_N^{-1}\)
\(c_{01} \times 10^4\)	1.239(17)	1.204(17)	1.257(37)	1.205(38)	cm\(^{-1}\) \(g_N^{-1}\) \(u\)
\(eQ_{d00} \times 10^3\)	-6.03184(55)	-6.03246(56)	-6.0320(11)	-6.0322(11)	cm\(^{-1}\) \(b\)

\(^a\)Values taken from Breier et al. (2019)

5. MASS-INDEPENDANT DUNHAM-LIKE PARAMETERIZATION

The addition of new mid-IR ro-vibrational transitions confirm and improve the former mass-independent Dunham-like parameterization (Breier et al. 2019), see Table 2. This can be seen, when comparing the equilibrium bond length of \(^{48}\)Ti\(^{16}\)O (\(r_e^{48}\)) with previous works, see Table 3. The here derived value of \(r_e^{48} = 1.62033700(14) \text{ Å}\) is in perfect agreement with the single isotopologue study of Ram et al. (1999) (\(r_e^{48} = 1.62033709(25) \text{ Å}\)) and with the former multi-isotopologue study of Breier et al. (2019) (\(r_e^{48} = 1.62033696(7) \text{ Å}\)). The agreement with the previous works, is also reflected by the
Table 3. Comparison of bond length model values for TiO.

Bond length (Å)	Ref.	
r_e^{48}	1.62033709(25)	Ram et al. (1999)
	1.62033696(7)	Breier et al. (2019)
	1.62033700(14)	this work
r_e^{BO}	1.61999035(93)	Breier et al. (2019)
	1.61998846(90)	this work

a Derived from parameter U_{01} of Fit B listed in Tab. 11 (Breier et al. 2019)

Born-Oppenheimer corrected bond length of TiO r_e^{BO}, evaluated from the U_{01} parameter, see Table 3. The difference between the here derived r_e^{BO} and r_e^{48} is solely related to BO correction terms.

5.1. Born-Oppenheimer correction coefficients

With the present TiO parameterization (“Fit B”), three mass-dependent BO correction parameters, namely $\Delta_{U_{01}}^{Ti}$, $\Delta_{U_{01}}^{O}$, and $\Delta_{U_{10}}^{Ti}$, are determined, see Table 4. By comparing the derived U_{01} correction values with those derived from theoretical calculations ($\Delta_{U_{01}}^{Ti} = -4.9$ and $\Delta_{U_{01}}^{O} = -6.7$, Breier et al. (2019)), an almost constant shift of 3 to 3.4 is observed. Besides this difference in absolute values, the experimental results follow the same trend as the calculated $\Delta_{U_{01}}^{Ti}$ and $\Delta_{U_{01}}^{O}$ values, i.e., in both cases the contribution to the mass shift of rotational energy levels is stronger for oxygen than for titanium. The same trend is also observed in the case of ZrO and HfO (Table 4). Furthermore, the vibrational mass correction value of U_{10} for titanium is derived here in the same order as expected from CO and SiO, see Table 4.

By using the Born-Oppenheimer mass correction values $\Delta_{U_{10}}^{A}$ and $\Delta_{U_{01}}^{A}$ for an atom A, Ogilvie (1989) derived an empirical relation to estimate the mass correction value $\Delta_{U_{02}}^{A}$ for the first order centrifugal distortion term U_{02}. In case of titanium it is as follows

\[
\Delta_{U_{02}}^{Ti} \approx 3\Delta_{U_{01}}^{Ti} - 2\Delta_{U_{10}}^{Ti},
\]
Table 4. Comparison of Born-Oppenheimer correction values for diatomic molecules of the form AB, i.e., TiO, CO, SiO, ZrO and HfO.

	This work	Ref.a	Ref.b	Ref.c	Ref.d	
TiO	\(\Delta A_{U_{10}} \)	0.114(31)	0.69547(7)	0.567(37)	–	–
CO	\(\Delta B_{U_{10}} \)	–	-0.16886(7)	–	–	–
SiO	\(\Delta A_{U_{01}} \)	-8.314(16)	-2.0567(2)	-1.2976(44)	-4.872(39)	-3.40(57)
ZrO	\(\Delta B_{U_{01}} \)	-9.769(31)	-2.1047(2)	-2.0507(16)	-6.1888(25)	-5.656(23)

\(\text{a} \) Values taken from Velichko et al. (2012)

\(\text{b} \) Values taken from Müller et al. (2013)

\(\text{c} \) Values taken from Beaton & Gerry (1999)

\(\text{d} \) Values taken from Lesarri et al. (2002)

yielding \(\Delta_{Ti}^{U_{02}} = -25.2(1) \). By applying the Kratzer-Pekeris relation (Kratzer 1920; Pekeris 1934) to \(U_{01} \) and \(U_{10} \), the mass independent first order centrifugal distortion term \(U_{02}^{BO} = 8.67932(3) \times 10^{-5} \text{ cm}^{-1} \text{ u}^{-2} \) is calculated according to:

\[
U_{02}^{BO} = \frac{4U_{01}^3}{U_{10}^2}
\]

(3)

In contrast to \(U_{02} \), the BO correction is considered for \(U_{02}^{BO} \), and consequently their combination with \(\Delta_{Ti}^{U_{02}} \) allows to calculate the corresponding oxygen Born-Oppenheimer correction value \(\Delta_{U_{02}}^{O} = -15(1) \) according to Equation 1.

5.2. Spin-rotation coupling constant

For a diatomic molecule in a multiplet state \(\Lambda > 0 \), the contribution of the spin-rotation interaction and the centrifugal correction of the spin-orbit coupling to the energy levels are only distinguishable in a multi-isotopic fitting procedure (Müller et al. 2013). In this work, the spin-rotation coupling constant \(\gamma \) for the \(X^\Delta \) ground-state of TiO was determined for the first time. Brown & Watson (1977) have shown that the spin-rotation interaction \(\gamma \hat{N} \cdot \hat{S} \) consists of two contributions \(\gamma^{(1)} \) and \(\gamma^{(2)} \), with \(\gamma^{(1)} \) describing the first-order dipole-dipole interaction contribution of electronic spin and the
rotating charges and $\gamma^{(2)}$ introduces the second-order spin-orbit interaction contribution (Brown & Watson (1977)). The term $\gamma^{(2)}$ dominates in case of molecules with a large spin-orbit interaction. According to Lefebvre-Brion & Field (1986) and assuming a microscopic description of the spin-orbital operator in a single configuration representation for the electronic states, the spin-rotation coupling constant γ can be estimated to be

$$\gamma = \gamma^{(1)} + \gamma^{(2)} \approx 2 \frac{A \cdot \bar{B}}{E_{E^3\Pi} - E_{X^3\Delta}} = \gamma^{E-X}. \quad (4)$$

If we consider only contributions from the two lowest lying triplet configuration state $X^3\Delta$ and $E^3\Pi$ ($E_{E^3\Pi} - E_{X^3\Delta} = 11826.9548(5) \text{cm}^{-1}$) of TiO (Kobayashi et al. (2002)) and assume an average spin-orbital contribution of both states of $\bar{A} = 94.0513(5) \text{cm}^{-1}$ as well as an average rotational constant of $\bar{B} = 0.524442(4) \text{cm}^{-1}$, we obtain a spin-rotation coupling constant of $\gamma^{E-X} = 250.058(2) \text{MHz}$ from Equation 4. This value is in fairly good agreement with our experimental value of $\gamma = 236.5(11) \text{MHz}$ suggesting that the strongest contribution of the spin-rotation coupling occurs from the interaction between the states of $E^3\Pi$ and $X^3\Delta$.

5.3. Vibrational Transition Moments

Finally, the vibrational transition moments for the observed vibrational transitions $\nu_{i \rightarrow i-1}$ are calculated. We have utilized the Dunham-like parameterization of TiO to generate the electronic ground-state potential of TiO using the Rydberg-Klein-Rees description (Rydberg 1932, 1933; Klein 1932; Rees 1947). The potential constants are generated with the RKR1 program from Le Roy (2017). The potential is combined with diagonal elements of the dipole moment curve of the $X^3\Delta$ electronic ground-state taken from McKemmish et al. (2019) to determine the vibrational transition moments with the DUO software (Yurchenko et al. 2016). The results are listed in Table 1 and are in excellent agreement with the values reported in the literature. Furthermore, the calculated vibrational transition moments allow to reproduce the line intensities measured in our experiments very well, as depicted in Figure 1.

6. CONCLUSION
In this work, we report on 1034 ro-vibrational transitions of TiO around 1000 cm$^{-1}$. Accurate experimental frequency positions with an uncertainty of better than 10$^{-3}$ cm$^{-1}$ are provided in the supplementary material, see Tables 5 to 12. We have identified the fundamental bands of the stable isotopologues $^{46-50}$TiO, as well as the three lowest lying vibrational hotbands of the main isotopologue 48TiO. Our data can be used to guide the astronomical search for TiO at infrared frequencies. The tentative detection of TiO towards the S-type star NP Aurigae using low resolution spectra at 1000 cm$^{-1}$ from the Spitzer Space Telescope (Smolders et al. 2012) could be reexamined, using telescopes with high spectral resolution instruments such as EXES or TEXES ($R \sim 100,000$) to unambiguously verify this assignment.

The previous mass-independent Dunham-like parameterization of TiO (Breier et al. 2019) is improved by including experimental mid-IR data of the present study. Our analysis yields a reliable parameterization of the spin-rotation coupling constant γ with strong contributions occurring between the states $E^3\Pi$ and $X^3\Delta$. Furthermore, additional Born-Oppenheimer correction coefficients $\Delta^{T_i}_{U_{01}}$, $\Delta^{T_i}_{U_{02}}$, and $\Delta^{0}_{U_{02}}$ have been determined. This enables accurate predictions of highly excited ro-vibrational states of rare TiO isotopologues, such as 44TiO, within the uncertainty accuracy of the main isotopologue. In addition, the vibrational transition moments are calculated from the Dunham-like parameterization using a RKR potential description as input for the DUO software.

ACKNOWLEDGMENT

This paper is dedicated to the 60th birthday of Stephan Schlemmer from the Universität zu Köln. His friendship and inspiring work in the field of molecular spectroscopy benefited us all. The authors gratefully acknowledge many fruitful discussions, support and advices from Stephan on various occasions. This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 328961117 - SFB 1319 ELCH and project number 326572190 - FU 715/2-1.

SUPPLEMENTARY MATERIALS
The supplementary materials contain lists of the observed infrared transitions for $^{46-50}\text{TiO}$ and the molecular parameters for the electronic states $A^3\Phi$ and $B^3\Pi$.

REFERENCES

Amiot, C., Azaroual, E. M., Luc, P., & Vetter, R. 1995, J. Chem. Phys., 102, 4375, doi: 10.1063/1.469486

Amiot, C., Cheikh, M., Luc, P., & Vetter, R. 1996, J. Mol. Spectrosc., 179, 159, doi: 10.1006/jmsp.1996.0194

Austin, S. M., West, C., & Heger, A. 2017, Astrophys. J. Lett., 839, L9, doi: 10.3847/2041-8213/aa68e7

Barnbaum, C., Omont, A., & Morris, M. 1996, Astron. Astrophys., 310, 259. http://adsabs.harvard.edu/abs/1996A%26A...310..259B

Beaton, S. A., & Gerry, M. C. L. 1999, J. Chem. Phys., 110, 10715, doi: 10.1063/1.479014

Breier, A. A., Waßmuth, B., Büchling, T., & et al. 2018, J. Mol. Spectrosc., 350, 43, doi: 10.1016/j.jms.2018.06.001

Breier, A. A., Waßmuth, B., Fuchs, G. W., Gauss, J., & Giesen, T. F. 2019, J. Mol. Spectrosc., 355, 46, doi: 10.1016/j.jms.2018.11.006

Brown, J. M., & Watson, J. K. G. 1977, J. Mol. Spectrosc., 65, 65, doi: 10.1016/0022-2852(77)90358-7

Chavez, J., & Lambert, D. L. 2009, Astrophys. J., 699, 1906, doi: 10.1088/0004-637X/699/2/1906

Danilovich, T., Gottlieb, C. A., Decin, L., et al. accepted 2020, Astrophys. J., doi: https://arxiv.org/pdf/2010.06485.pdf

De Laeter, J. R., Böhlke, J. K., De Bièvre, P., et al. 2003, Pure Appl. Chem., 75, 683, doi: 10.1351/pac200375060683

Dunham, J. L. 1932a, Phys. Rev., 41, 713, doi: 10.1103/PhysRev.41.713

—. 1932b, Phys. Rev., 41, 721, doi: 10.1103/PhysRev.41.721

Evans, T. M., Sing, D. K., Wakeford, H. R., et al. 2016, Astrophys. J. Lett., 822, L4, doi: 10.3847/2041-8205/822/1/L4

Fletcher, D. A., Scurlock, C. T., Jung, K. Y., & Steimle, T. C. 1993, J. Chem. Phys., 99, 4288, doi: 10.1063/1.466082

Fowler, A. 1904, Proc. R. Soc. London, 73, 219. http://www.jstor.org/stable/116773

Herriott, D., Kogelnik, H., & Kompfner, R. 1964, Appl. Opt., 3, 523, doi: 10.1364/AO.3.000523

Huitson, C. M., Sing, D. K., Pont, F., et al. 2013, Mon. Notices Royal Astron. Soc., 434, 3252, doi: 10.1093/mnras/stt1243

Kamiński, T., Schmidt, M., & Tylenda, R. 2010, Astron. Astrophys., 522, A75, doi: 10.1051/0004-6361/201014406
Kamiński, T., Gottlieb, C. A., Menten, K. M., et al. 2013, Astron. Astrophys., 551, A113, doi: 10.1051/0004-6361/201220290

Kamiński, T., Müller, H. S. P., Schmidt, M. R., et al. 2017, Astron. Astrophys., 599, A59, doi: 10.1051/0004-6361/201629838

Kania, P., Giesen, T. F., Müller, H. S. P., Schlemmer, S., & Brüken, S. 2008, in 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 1–2, doi: 10.1109/ICIMW.2008.4665795

Klein, O. 1932, Zeits. f. Physik, 76, 226, doi: 10.1007/BF01341814

Kobayashi, K., Hall, G. E., Muckerman, J. T., Sears, T. J., & Merer, A. J. 2002, J. Mol. Spectrosc., 212, 133, doi: 10.1006/jmsp.2002.8543

Kratzer, A. 1920, Zeits. f. Physik, 3, 289, doi: 10.1007/BF01327754

Le Roy, R. J. 2017, J. Quant. Spectrosc. Radiat. Transfer, 186, 158, doi: 10.1016/j.jqsrt.2016.03.030

Lefebvre-Brion, H., & Field, R. W. 1986, Perturbations in the Spectra of Diatomic Molecules (Academic, Orlando)

Lesarri, A., Suenram, R. D., & Brugh, D. 2002, J. Chem. Phys., 117, 9651, doi: 10.1063/1.1516797

Lincowski, A. P., Halfen, D. T., & Ziurys, L. M. 2016, Astrophys. J., 833, 9, doi: 10.3847/0004-637X/833/1/9

Lowater, F. 1929, Natur, 123, 644, doi: 10.1038/123644b0

McKemmish, L. K., Masseron, T., Hoeijmakers, H. J., et al. 2019, Mon. Notices Royal Astron. Soc., 488, 2836, doi: 10.1093/mnras/stz1818

McKemmish, L. K., Masseron, T., Sheppard, S., et al. 2017, Astrophys. J. Suppl. Ser., 228, 15, doi: 10.3847/1538-4365/228/2/15

Merrill, P. W., Deutsch, A. J., & Keenan, P. C. 1962, Astrophys. J., 1, 21, doi: 10.1086/147348

Morgan, W. W., & Keenan, P. C. 1973, Annu. Rev. Astron. Astrophys., 11, 29, doi: 10.1146/annurev.aa.11.090173.000333

Müller, H. S. P., Kobayashi, K., Takahashi, K., Tomaru, K., & Matsushima, F. 2015, J. Mol. Spectrosc., 310, 92, doi: 10.1016/j.jms.2014.12.002

Müller, H. S. P., Spezzano, S., Bizzocchi, L., et al. 2013, J. Phys. Chem. A, 117, 13843, doi: 10.1021/jp408391f

Namiki, K.-i. C., & Ito, H. 2002, J. Mol. Spectrosc., 214, 188, doi: 10.1006/jmsp.2002.8586

Namiki, K.-i. C., Ito, H., & Davis, S. P. 2003, J. Mol. Spectrosc., 217, 173, doi: 10.1016/S0022-2852(02)00027-9

Namiki, K.-i. C., Saitoh, H., & Ito, H. 2004, J. Mol. Spectrosc., 226, 87, doi: 10.1016/j.jms.2004.03.016

Ogilvie, J. F. 1989, Spectrosc. Lett., 22, 477, doi: 10.1080/00387018908053897

Pavlenko, Y. V., Yurchenko, S. N., McKemmish, L. K., & Tennyson, J. 2020, Astron. Astrophys., 642, A77, doi: 10.1051/0004-6361/202037863
Pekeris, C. L. 1934, Phys. Rev., 45, 98, doi: 10.1103/PhysRev.45.98

Phillips, J. G. 1950, Astrophys. J., 111, 314, doi: 10.1086/145266

—. 1951, Astrophys. J., 114, 152, doi: 10.1086/145460

—. 1969, Astrophys. J., 157, 449, doi: 10.1086/150079

Piette, A. A. A., Madhusudhan, N., McKemmish, L. K., et al. 2020, Mon. Notices Royal Astron. Soc., 496, 3870, doi: 10.1093/mnras/staa1592

Ram, R. S., Bernath, P. F., Dulick, M., & Wallace, L. 1999, Astrophys. J. Suppl. Ser., 122, 331, doi: 10.1086/313212

Ram, R. S., Bernath, P. F., & Wallace, L. 1996, Astrophys. J. Suppl. Ser., 107, 443, doi: 10.1086/192370

Rees, A. L. G. 1947, Proc. Phys. Soc. (Lond), 59, 998, doi: 10.1088/0959-5309/59/6/310

Reid, M. J., & Goldston, J. E. 2002, Astrophys. J., 568, 931, doi: 10.1086/338947

Rydberg, R. 1932, Zeits. f. Physik, 73, 376, doi: 10.1007/BF01341146

—. 1933, Zeits. f. Physik, 80, 514, doi: 10.1007/BF02057312

Siegert, T., Diehl, R., Krause, M. G. H., & Greiner, J. 2015, Astron. Astrophys., 579, A124, doi: 10.1051/0004-6361/201525877

Sing, D. K., Lecavelier des Etangs, A., Fortney, J. J., et al. 2013, Mon. Notices Royal Astron. Soc., 436, 2956, doi: 10.1093/mnras/stt1782

Smolders, K., Verhoelst, T., Neyskens, P., et al. 2012, Astron. Astrophys., 543, L2, doi: 10.1051/0004-6361/201219520

Tennyson, J., Yurchenko, S. N., Al-Refaie, A. F., et al. 2016, J. Mol. Spectrosc., 327, 73, doi: 10.1016/j.jms.2016.05.002

Tsygankov, S. S., Krivonos, R. A., Luotinov, A. A., et al. 2016, Mon. Not. R. Astron. Soc., 458, 3411, doi: 10.1093/mnras/stw549

Velichko, T. I., Mikhailenko, S. N., & Tashkun, S. A. 2012, J. Quant. Spectrosc. Radiat. Transfer, 113, 1643, doi: 10.1016/j.jqsrt.2012.04.014

Wang, M., Audi, G., Kondev, F. G., et al. 2017, Chin. Phys. C, 41, 030003, doi: 10.1088/1674-1137/41/3/030003

Watson, J. K. G. 2003, J. Mol. Spectrosc., 219, 326, doi: 10.1016/S0022-2852(03)00100-0

Western, C. M. 2017, J. Quant. Spectrosc. Radiat. Transfer, 186, 221, doi: 10.1016/j.jqsrt.2016.04.010

Witsch, D., Lutter, V., Breier, A. A., et al. 2019, J. Phys. Chem. A, 123, 4168, doi: 10.1021/acs.jpca.9b01605

Xu, L.-H., Lees, R. M., Wang, P., et al. 2004, J. Mol. Spectrosc., 228, 453, doi: 10.1016/j.jms.2004.05.017

Yurchenko, S. N., Lodi, L., Tennyson, J., & Stolyarova, A. V. 2016, Comput. Phys. Commun., 202, 262, doi: 10.1016/j.cpc.2015.12.021
Table 5. Observed transitions for 48TiO, $v = 1 \leftarrow 0$. Experimental errors for line positions are better than 1×10^{-3} cm$^{-1}$.

J'	Ω'	J''	Ω''	Frequency	Obs-Calc	E_{lower}	J'	Ω'	J''	Ω''	Frequency	Obs-Calc	E_{lower}
25	3	24	3	971.264	1.1	954.0184	25	1	24	1	971.8669	4.76	748.4708
24	2	23	2	972.7568	1.2	922.4359	23	3	22	3	973.7034	4.13	901.2496
23	1	22	1	974.253	2.79	696.7772	22	3	21	3	974.9134	-4.19	876.4754
22	2	21	2	975.1595	1.08	772.2968	22	1	21	1	975.4376	3.41	672.51
21	3	20	3	976.119	1.24	852.7754	21	2	20	2	976.3521	0.68	748.8236
21	1	20	1	976.6167	6.57	649.2964	20	3	19	3	977.3183	3.03	830.1499
20	2	19	2	977.5393	3.34	726.4151	20	1	19	1	977.7897	5.84	627.1364
19	2	18	2	978.7201	0.33	705.0716	18	3	17	3	979.6993	4.15	788.1239
18	2	17	2	979.8953	-0.47	684.7934	18	1	17	1	980.1181	2.72	585.9782
17	3	16	3	980.8808	3.42	768.7242	17	2	16	2	981.0645	-2.78	665.5808
17	1	16	1	981.2736	1.88	566.9805	16	3	15	3	982.0568	6.2	750.4003
16	2	15	2	982.2284	-0.61	647.434	16	1	15	1	982.4235	2.04	549.0372
15	3	14	3	983.226	0.31	733.1527	15	2	14	2	983.3862	0.04	630.3534
15	1	14	1	983.568	6.5	532.1485	14	3	13	3	984.3897	-0.15	716.9817
14	2	13	2	984.5379	-1.95	614.3391	14	1	13	1	984.7058	1.5	516.3146
13	3	12	3	985.5479	2.56	701.8874	13	2	12	2	985.684	-1.04	599.3914
13	1	12	1	985.8377	-2.97	501.5357	12	3	11	3	986.6995	-0.01	687.8703
12	2	11	2	986.824	-2.6	585.5105	12	1	11	1	986.9651	4.5	487.8118
11	3	10	3	987.8461	6.38	674.9304	11	2	10	2	987.9587	3.12	572.6966
11	1	10	1	988.0858	3.81	475.1431	10	3	9	3	988.9854	1.21	663.0681

Table 5 continued on next page
J'	Ω'	J''	Ω''	Frequency E_{lower}	Obs-Calc E_{lower}								
				cm$^{-1}$	10$^{-4}$ cm$^{-1}$	K	cm$^{-1}$	10$^{-4}$ cm$^{-1}$	K				
10	2	9	2	989.0861	-5.71	560.9499	10	1	9	1	989.2003	0.0	463.5298
9	3	8	3	990.1195	3.48	652.2835	9	2	8	2	990.2087	-3.86	550.2705
9	1	8	1	990.3095	1.56	452.9718	8	3	7	3	991.248	9.56	642.5769
8	2	7	2	991.3252	-1.66	540.6587	8	1	7	1	991.4121	-4.28	443.4694
7	3	6	3	992.3694	6.53	633.9483	7	2	6	2	992.4361	2.9	532.1144
7	1	6	1	992.5104	6.0	435.0226	6	3	5	3	993.4851	6.74	626.398
6	2	5	2	993.5402	-0.01	524.638	6	1	5	1	993.6015	3.17	427.6315
5	3	4	3	994.5948	7.83	619.9261	5	2	4	2	994.6389	2.3	518.2294
5	1	4	1	994.6874	6.33	421.2961	4	3	3	3	995.6978	3.7	614.5326
4	2	3	2	995.7311	0.13	512.8887	4	1	3	1	995.7668	3.9	416.0165
3	2	2	2	996.8176	1.46	508.6161	3	1	2	1	996.8409	7.29	411.7928
2	1	1	1	997.9085	5.14	408.625	21	3	21	3	998.6149	10.54	852.7754
20	3	20	3	998.7449	5.83	830.1499	19	3	19	3	998.8694	7.57	808.5993
18	3	18	3	998.9869	1.09	788.1239	18	2	18	2	998.9989	5.81	684.7934
18	1	18	1	999.0086	2.56	585.9782	17	3	17	3	999.0994	7.4	768.7242
17	2	17	2	999.1084	4.0	665.5808	17	1	17	1	999.1157	1.1	566.9805
16	3	16	3	999.2049	5.64	750.4003	16	2	16	2	999.2116	0.58	647.434
16	1	16	1	999.2175	7.41	549.0372	15	3	15	3	999.3039	1.87	733.1527
15	2	15	2	999.3093	1.55	630.3534	15	1	15	1	999.312	0.0	532.1485
14	3	14	3	999.3973	3.18	716.9817	14	2	14	2	999.4008	2.67	614.3391
14	1	14	1	999.4013	0.5	516.3146	13	1	13	1	999.485	4.38	501.5357
13	2	13	2	999.485	-7.96	599.3914	13	3	13	3	999.485	10.24	701.8874
12	1	12	1	999.5618	-1.66	487.8118	12	2	12	2	999.565	-0.26	585.5105
12	3	12	3	999.565	2.12	687.8703	11	1	11	1	999.6333	-0.31	475.1431
11	2	11	2	999.6381	-0.77	572.6966	11	3	11	3	999.64	5.95	674.9304

Table 5. continued on next page
Table 5. (continued)

J'	$Ω'$	J''	$Ω''$	Frequency	Obs-Calc	E_{lower}	J'	$Ω'$	J''	$Ω''$	Frequency	Obs-Calc	E_{lower}
10	1	10	1	999.6992	4.29	463.5298	10	2	10	2	999.7048	-3.78	560.9499
10	3	10	3	999.7078	0.69	663.0681	9	1	9	1	999.7581	-0.78	452.9718
9	2	9	2	999.7659	-2.12	550.2705	9	3	9	3	999.7702	2.67	652.2835
8	1	8	1	999.8121	3.75	443.4694	8	2	8	2	999.8207	-1.7	540.6587
8	3	8	3	999.8264	5.66	642.5769	7	1	7	1	999.8598	4.55	435.0226
7	2	7	2	999.8699	3.05	532.1144	7	3	7	3	999.8763	7.82	633.9483
6	1	6	1	999.9013	3.97	427.6315	6	2	6	2	999.9124	1.56	524.638
6	3	6	3	999.9199	7.99	626.398	5	1	5	1	999.9368	1.93	421.2961
5	2	5	2	999.9488	-0.77	518.2294	5	3	5	3	999.9569	5.44	619.9261
4	1	4	1	999.9668	4.25	416.0165	4	2	4	2	999.9793	0.15	512.8887
4	3	4	3	999.9879	4.46	614.5326	3	1	3	1	999.9899	-2.44	411.7928
3	2	3	2	1000.0034	-2.74	508.6161	2	1	2	1	1000.0081	1.52	408.625
3	3	3	3	1000.0127	4.47	610.2177	1	1	1	1	1000.0215	16.7	406.5131
2	2	2	2	1000.0215	-4.25	505.4116	1	1	2	1	1002.12	1.6	406.5131
2	1	3	1	1003.1582	2.4	408.625	2	2	3	2	1003.2084	2.07	505.4116
3	1	4	1	1004.1906	5.64	411.7928	3	2	4	2	1004.252	0.61	508.6161
3	3	4	3	1004.3031	8.44	610.2177	4	1	5	1	1005.2166	3.75	416.0165
4	3	5	3	1005.3491	-7.1	614.5326	5	1	6	1	1006.2367	4.12	421.2961
5	2	6	2	1006.3208	-0.54	518.2294	5	3	6	3	1006.3916	6.12	619.9261
6	1	7	1	1007.2508	3.59	427.6315	6	2	7	2	1007.3461	0.03	524.638
6	3	7	3	1007.4263	4.76	626.398	7	1	8	1	1008.2592	6.22	435.0226
7	2	8	2	1008.365	-1.11	532.1144	7	3	8	3	1008.4551	6.9	633.9483
8	1	9	1	1009.261	3.74	443.4694	8	2	9	2	1009.3779	0.0	540.6587
8	3	9	3	1009.4772	6.22	642.5769	9	1	10	1	1010.257	3.58	452.9718
9	2	10	2	1010.3847	1.57	550.2705	9	3	10	3	1010.4931	8.24	652.2835

Table 5 continued on next page
TiO and Its Isotopologues

Table 5. (continued)

J'	$Ω'$	J''	$Ω''$	Frequency E_{lower}		
				cm$^{-1}$	10$^{-4}$ cm$^{-1}$	K
10	1	11	1	1011.2468	0.84	463.5298
10	3	11	3	1011.5021	3.85	663.0681
11	2	12	2	1012.3779	-10.6	572.6966
12	1	13	1	1013.2079	-5.04	487.8118
12	3	13	3	1013.5016	4.45	687.8703
13	2	14	2	1014.3481	-1.33	599.3914
14	1	15	1	1015.1463	4.01	516.3146
14	3	15	3	1015.4752	4.36	716.9817
15	2	16	2	1016.2924	1.9	630.3534
16	1	17	1	1017.0587	-1.17	549.0372
16	3	17	3	1017.4229	3.92	750.4003
17	2	18	2	1018.2113	3.95	665.5808
18	1	19	1	1018.9477	4.66	585.9782
18	3	19	3	1019.3444	3.45	788.1239
19	3	20	3	1020.2954	4.35	808.5993
20	2	21	2	1021.0415	4.24	726.4151
21	1	22	1	1021.7335	-0.1	649.2964
21	3	22	3	1022.1773	2.35	852.7754
22	2	23	2	1022.8958	0.8	772.2968
23	1	24	1	1023.56	-0.21	696.7772
23	3	24	3	1024.0331	3.61	901.2496
24	2	25	2	1024.7244	-1.6	822.4359
25	1	26	1	1025.3619	3.55	748.4708
25	3	26	3	1025.8622	3.85	954.0184
26	2	27	2	1026.5274	-0.48	876.8295

Table 5 continued on next page
Table 5. (continued)

J' Ω' J'' Ω''	Frequency E_{lower} E_{lower} cm$^{-1}$ K	J' Ω' J'' Ω''	Frequency E_{lower} E_{lower} cm$^{-1}$ K
	cm$^{-1}$ 10$^{-4}$ cm$^{-1}$		cm$^{-1}$ 10$^{-4}$ cm$^{-1}$
27 1 28 1	1027.1382 2.57 804.3752	27 2 28 2	1027.4191 -0.02 905.6208
27 3 28 3	1027.6644 3.22 1011.0784	28 1 29 1	1028.0171 4.55 833.9058
28 2 29 2	1028.3042 -0.28 935.4746	28 3 29 3	1028.5553 1.74 1041.2165
29 1 30 1	1028.8895 3.92 864.4882	29 2 30 2	1029.1829 1.53 966.3904
29 3 30 3	1029.4395 0.18 1072.4258	30 1 31 1	1029.7559 7.55 896.1221
30 2 31 2	1030.0552 3.94 998.3678	30 3 31 3	1030.3169 -1.18 1104.706
31 1 32 1	1030.6152 3.56 928.8073	31 2 32 2	1030.9202 0.51 1031.4064
31 3 32 3	1031.1878 -0.85 1138.0565	32 1 33 1	1031.4688 5.84 962.5434
32 2 33 2	1031.7792 1.84 1065.5057		

Table 6. Observed transitions for $^{48}\text{TiO, }v = 2 \leftrightarrow 1$. Experimental errors for line positions are better than 1×10^{-3} cm$^{-1}$.

J' Ω' J'' Ω''	Frequency E_{lower} E_{lower} cm$^{-1}$ K	J' Ω' J'' Ω''	Frequency E_{lower} E_{lower} cm$^{-1}$ K
	cm$^{-1}$ 10$^{-4}$ cm$^{-1}$		cm$^{-1}$ 10$^{-4}$ cm$^{-1}$
17 3 16 3	971.8212 4.61 1767.8228	17 2 16 2	972.0063 3.94 1664.6888
17 1 16 1	972.216 7.99 1566.096	16 2 15 2	973.1647 6.6 1646.6456
16 1 15 1	973.3607 9.54 1548.2539	15 3 14 3	974.1554 4.42 1732.4565
15 2 14 2	974.3167 4.42 1629.6625	14 3 13 3	975.313 -0.26 1716.3786
14 2 13 2	975.4643 17.63 1613.7396	14 1 13 1	975.6325 13.79 1515.7159
13 2 12 2	976.6038 8.18 1598.8772	13 1 12 1	976.7589 8.28 1501.0202
12 3 11 3	977.612 6.72 1687.435	12 2 11 2	977.7382 7.96 1585.0755
12 1 11 1	977.8802 10.38 1487.3737	11 3 10 3	978.7517 2.07 1674.5698
11 2 10 2	978.8665 6.16 1572.3347	10 3 9 3	979.8855 0.08 1662.7758
10 2 9 2	979.9889 4.71 1560.655	10 1 9 1	980.1046 9.57 1463.2285

Table 6 continued on next page
J'	Ω'	J''	Ω''	E_{lower}	Frequency	Obs-Calc	E_{lower}	Frequency	Obs-Calc
9	3	8	3	981.0131	-3.98	1652.0534	981.1051	0.2	1550.0366
9	1	8	1	981.2081	10.73	1452.73	982.1354	0.05	1642.4027
8	2	7	2	982.2161	5.17	1540.4796	982.3057	11.16	1443.2811
7	3	6	3	983.2507	-4.49	1633.8239	983.3204	2.57	1531.9841
7	1	6	1	983.3973	11.3	1434.8819	984.3605	-3.85	1626.3171
6	2	5	2	984.4186	-0.97	1524.5502	984.4828	9.68	1427.5324
5	3	4	3	985.4644	-0.39	1619.8824	985.5117	4.29	1518.1782
5	1	4	1	985.5624	7.98	1421.2327	986.5646	28.28	1614.52
4	2	3	2	986.5973	-3.91	1512.8686	986.6358	3.47	1415.9829
3	2	2	2	987.6782	1.47	1508.6198	987.7039	5.82	1411.7829
2	1	1	1	988.7658	5.18	1408.6329	990.139	0.46	1732.4565
14	3	14	3	990.2322	-6.08	1716.3786	990.3192	-11.39	1701.3714
12	3	12	3	990.4013	-3.03	1687.435	990.4054	8.6	1487.3737
12	2	12	2	990.4054	8.03	1585.0755	990.4771	-11.37	1572.3347
10	1	10	1	990.5407	-15.72	1463.2285	990.5456	2.26	1662.7758
10	2	10	2	990.5456	0.08	1560.655	990.6027	6.52	1452.73
9	2	9	2	990.6074	4.45	1550.0366	990.6082	2.2	1652.0534
8	1	8	1	990.6569	9.98	1443.2811	990.6629	8.3	1540.4796
8	3	8	3	990.6644	1.74	1642.4027	990.7048	9.7	1434.8819
7	2	7	2	990.7115	4.25	1531.9841	990.714	-1.86	1633.8239
6	1	6	1	990.7462	5.71	1427.5324	990.7535	-4.56	1524.5502
6	3	6	3	990.7576	-3.55	1626.3171	990.7819	3.67	1421.2327
5	2	5	2	990.7909	0.93	1518.1782	990.7966	11.17	1619.8824
4	1	4	1	990.812	5.25	1415.9829	990.8213	-1.27	1512.868
4	3	4	3	990.8267	-1.21	1614.52	990.8364	9.61	1411.7829

Table 6 continued on next page
\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\multicolumn{3}{|c|}{\textit{J}' \ \textit{\Omega}' \ \textit{J}'' \ \textit{\Omega}'' \ \text{Frequency} \ \text{Obs-Calc} \ \text{\textit{E}_{\text{lower}}} \ \text{\textit{K}}} & \multicolumn{3}{|c|}{\textit{J}' \ \textit{\Omega}' \ \textit{J}'' \ \textit{\Omega}'' \ \text{Frequency} \ \text{Obs-Calc} \ \text{\textit{E}_{\text{lower}}} \ \text{\textit{K}}} \\
\hline
3 & 2 & 3 & 2 & 990.8458 & -1.5 & 1508.6198 & 2 & 2 & 2 & 990.8643 & -0.13 & 1505.4335 \\
1 & 1 & 1 & 1 & 990.8655 & 1.49 & 1406.5329 & 1 & 1 & 2 & 1 & 992.9544 & 10.01 & 1406.5329 \\
2 & 1 & 3 & 1 & 993.9865 & 10.96 & 1408.6329 & 2 & 2 & 3 & 2 & 994.0315 & -6.4 & 1505.4335 \\
3 & 1 & 4 & 1 & 995.0123 & 8.61 & 1411.7829 & 3 & 2 & 4 & 2 & 995.0701 & 4.04 & 1508.6198 \\
3 & 3 & 4 & 3 & 995.1179 & 10.77 & 1610.23 & 4 & 1 & 5 & 1 & 996.0323 & 9.04 & 1415.9829 \\
4 & 2 & 5 & 2 & 996.101 & 0.88 & 1512.868 & 4 & 3 & 5 & 3 & 996.158 & 0.59 & 1614.52 \\
5 & 1 & 6 & 1 & 997.0462 & 8.25 & 1421.2327 & 5 & 2 & 6 & 2 & 997.1264 & 3.92 & 1518.1782 \\
5 & 3 & 6 & 3 & 997.1926 & -0.42 & 1619.8824 & 6 & 1 & 7 & 1 & 998.0544 & 10.48 & 1427.5324 \\
6 & 2 & 7 & 2 & 998.1452 & 2.21 & 1524.5502 & 6 & 3 & 7 & 3 & 998.2211 & 0.81 & 1626.3171 \\
7 & 1 & 8 & 1 & 999.0564 & 12.28 & 1434.8819 & 7 & 2 & 8 & 2 & 999.1582 & 6.2 & 1531.9841 \\
7 & 3 & 8 & 3 & 999.2428 & -2.83 & 1633.8239 & 8 & 1 & 9 & 1 & 1000.0518 & 8.17 & 1443.2811 \\
8 & 2 & 9 & 2 & 1000.1648 & 8.37 & 1540.4796 & 8 & 3 & 9 & 3 & 1000.2586 & -0.65 & 1642.4027 \\
9 & 1 & 10 & 1 & 1001.0417 & 9.99 & 1452.73 & 9 & 2 & 10 & 2 & 1001.1648 & 6.96 & 1550.0366 \\
9 & 3 & 10 & 3 & 1001.2682 & 3.92 & 1652.0534 & 10 & 1 & 11 & 1 & 1002.0251 & 7.12 & 1463.2285 \\
10 & 2 & 11 & 2 & 1002.1583 & 3.57 & 1560.655 & 10 & 3 & 11 & 3 & 1002.2706 & 0.56 & 1662.7758 \\
11 & 1 & 12 & 1 & 1003.0028 & 9.0 & 1474.7764 & 11 & 2 & 12 & 2 & 1003.1458 & 3.34 & 1572.3347 \\
11 & 3 & 12 & 3 & 1003.2669 & 0.66 & 1674.5698 & 12 & 1 & 13 & 1 & 1003.974 & 7.08 & 1487.3737 \\
12 & 2 & 13 & 2 & 1004.1273 & 6.17 & 1585.0755 & 12 & 3 & 13 & 3 & 1004.2565 & -1.4 & 1687.435 \\
13 & 1 & 14 & 1 & 1004.9396 & 10.41 & 1501.0202 & 13 & 2 & 14 & 2 & 1005.1022 & 6.98 & 1598.8772 \\
13 & 3 & 14 & 3 & 1005.2397 & -2.9 & 1701.3714 & 14 & 1 & 15 & 1 & 1005.8986 & 8.9 & 1515.7159 \\
14 & 2 & 15 & 2 & 1006.0709 & 8.4 & 1613.7396 & 14 & 3 & 15 & 3 & 1006.2169 & 0.62 & 1716.3786 \\
15 & 1 & 16 & 1 & 1006.8522 & 14.9 & 1531.4605 & 15 & 2 & 16 & 2 & 1007.0328 & 6.06 & 1629.6625 \\
15 & 3 & 16 & 3 & 1007.1869 & -2.01 & 1732.4565 & 16 & 1 & 17 & 1 & 1007.7987 & 11.61 & 1548.2539 \\
16 & 2 & 17 & 2 & 1007.9888 & 7.75 & 1646.6456 & 16 & 3 & 17 & 3 & 1008.151 & 1.98 & 1749.6046 \\
17 & 1 & 18 & 1 & 1008.7393 & 11.09 & 1566.096 & 17 & 3 & 18 & 3 & 1009.1083 & 3.69 & 1767.8228 \\
\hline
\end{tabular}
\caption{continued on next page}
\end{table}
J'	$Ω'$	J''	$Ω''$	Frequency E_{lower}	Obs-Calc E_{lower}	10^{-4} cm$^{-1}$	cm$^{-1}$
18	1	19	1	1009.6739	12.07	1584.9866	1009.8809
18	3	19	3	1010.0582	-3.22	1787.1107	1010.6018
19	2	20	2	1010.8171	1.57	1703.9541	1011.002
20	1	21	1	1011.5237	7.86	1625.9124	1011.7478
20	3	21	3	1011.9397	-1.72	1828.8943	1012.439
21	2	22	2	1012.6717	10.94	1747.4562	1012.8705
22	1	23	1	1013.3494	11.98	1671.0299	1013.5884
22	3	23	3	1013.7946	-0.25	1874.9525	1014.2522
23	2	24	2	1014.4996	10.99	1795.1925	1014.7113
24	1	25	1	1015.1496	11.57	1720.3372	1015.403
24	3	25	3	1015.623	2.97	1925.2823	1016.0399
25	2	26	2	1016.3008	5.69	1847.1604	1016.5263
26	1	27	1	1016.9245	10.36	1773.8323	1017.192
27	1	28	1	1017.8026	10.5	1802.1496	1018.3141
28	1	29	1	1018.6737	4.73	1831.5131	1018.9543
28	3	29	3	1019.1981	-0.65	2038.7425	1020.075
30	1	31	1	1020.3982	8.18	1893.3772	1020.6906
30	3	31	3	1020.9454	0.57	2101.8653	1021.2507
31	2	32	2	1021.5487	7.73	2028.4226	1021.8082
32	1	33	1	1022.0968	7.18	1959.4222	1022.4
32	3	33	3	1022.6652	-0.21	2169.2443	1022.9365
33	2	34	2	1023.2442	1.34	2097.2846	1023.5146
34	1	35	1	1023.7688	-0.7	2029.6452	1024.0831
34	3	35	3	1024.3577	-0.16	2240.8752	1024.596
35	2	36	2	1024.9138	1.8	2170.3611	1025.1932

Table 6 continued on next page
Table 6. (continued)

J'	Ω'	J''	Ω''	Frequency E_{lower}	Obs-Calc E_{lower}	J'	Ω'	J''	Ω''	Frequency E_{lower}	Obs-Calc E_{lower}
36	1	37	1	1025.4167	8.88 2104.0432	36	2	37	2	1025.739	7.38 2208.4784
36	3	37	3	1026.0229	1.75 2316.753	37	1	38	1	1026.2304	8.71 2142.8069
37	2	38	2	1026.5566	2.92 2247.6478	37	3	38	3	1026.8445	-3.68 2356.283

Table 7. Observed transitions for 48TiO, $v = 3 \leftarrow 2$. Experimental errors for line positions are better than 1×10^{-3} cm$^{-1}$.

J'	Ω'	J''	Ω''	Frequency E_{lower}	Obs-Calc E_{lower}	J'	Ω'	J''	Ω''	Frequency E_{lower}	Obs-Calc E_{lower}
9	3	8	3	971.8842	-9.69 2642.6613	9	2	8	2	971.9776	-7.06 2540.6435
8	1	7	1	973.1733	-6.69 2433.9371	7	3	6	3	974.1096	-13.7 2624.5381
7	2	6	2	974.1823	5.14 2522.6952	7	1	6	1	974.2611	12.88 2425.5857
6	3	5	3	975.2129	-16.92 2617.0751	6	2	5	2	975.2747	2.39 2515.3042
6	1	5	1	975.341	12.74 2418.2781	5	3	4	3	976.3116	-4.8 2610.6779
5	2	4	2	976.3616	5.66 2508.969	5	1	4	1	976.4151	14.17 2412.0143
3	1	2	1	978.5438	0.37 2402.6183	2	1	1	1	979.5989	-8.14 2399.4863
1	1	2	1	983.7641	2.75 2397.3982	2	1	3	1	984.7904	6.83 2399.4863
3	1	4	1	985.8106	9.41 2402.6183	3	2	4	2	985.8639	-3.71 2499.4657
4	1	5	1	986.8233	-1.92 2406.7943	4	2	5	2	986.8888	-3.93 2503.6894
4	3	5	3	986.9419	-9.26 2605.3468	5	1	6	1	987.8323	10.32 2412.0143
5	2	6	2	987.9078	-1.44 2508.969	5	3	6	3	987.97	-10.75 2610.6779
6	1	7	1	988.8344	14.07 2418.2781	6	2	7	2	988.9211	6.5 2515.3042
6	3	7	3	988.9912	-18.23 2617.0751	7	1	8	1	989.8298	12.42 2425.5857
7	2	8	2	989.9274	7.12 2522.6952	7	3	8	3	990.0074	-10.18 2624.5381
8	1	9	1	990.819	9.11 2433.9371	8	2	9	2	990.9267	1.45 2531.1416

Table 7 continued on next page
Table 7. (continued)

J'	Ω'	J''	Ω''	Frequency (cm$^{-1}$)	Obs-Calc (10^{-4} cm$^{-1}$)	E_{lower} (K)	J'	Ω'	J''	Ω''	Frequency (cm$^{-1}$)	Obs-Calc (10^{-4} cm$^{-1}$)	E_{lower} (K)
8	3	9	3	991.0164	-10.2	2633.0669	9	1	10	1	991.8032	18.05	2443.3321
9	2	10	2	991.9204	2.49	2540.6435	9	3	10	3	992.0187	-13.13	2642.6613
10	2	11	2	992.0982	7.21	2551.2007	10	3	11	3	993.0149	-11.59	2653.3212
11	1	12	1	993.751	11.96	2465.2528	11	2	12	2	993.8891	7.23	2562.8129
11	3	12	3	994.0048	-9.35	2665.0464	12	1	13	1	994.716	12.88	2477.7783
12	2	13	2	994.8633	2.99	2575.4802	12	3	13	3	994.9875	-13.14	2677.8366
13	1	14	1	995.6747	11.19	2491.347	13	2	14	2	995.8319	7.33	2589.2022
13	3	14	3	995.9648	-5.71	2691.6917	14	1	15	1	996.6275	13.38	2505.9588
14	2	15	2	996.7938	8.14	2603.9787	14	3	15	3	996.9345	-8.48	2706.6114
15	1	16	1	997.5739	13.48	2521.6136	15	2	16	2	997.7492	7.42	2619.8097
15	3	16	3	997.8975	-12.83	2722.5954	16	1	17	1	998.5139	10.85	2538.3112
16	2	17	2	998.6984	10.13	2636.6947	16	3	17	3	998.8545	-10.98	2739.6435
17	1	18	1	999.4479	10.65	2556.0515	17	3	18	3	999.8047	-11.58	2757.7554
18	1	19	1	1000.3755	9.23	2574.8342	18	2	19	2	1000.5759	-1.87	2673.6262
18	3	19	3	1000.7488	-6.52	2776.9307	19	1	20	1	1001.2971	9.9	2594.6593
19	2	20	2	1001.5057	-0.07	2693.6721	19	3	20	3	1001.6854	-10.32	2797.1692
20	2	21	2	1002.4301	11.56	2714.771	20	3	21	3	1002.6157	-10.48	2818.4705
21	1	22	1	1003.1208	4.75	2637.4354	21	2	22	2	1003.3467	11.57	2736.9227
21	3	22	3	1003.539	-13.73	2840.8341	22	1	23	1	1004.0234	4.33	2660.3861
22	3	23	3	1004.4561	-12.95	2864.2598	23	1	24	1	1004.9202	8.86	2684.3782
23	3	24	3	1005.3685	8.83	2888.7471	24	1	25	1	1005.8104	9.95	2709.4114
24	2	25	2	1006.0573	10.21	2809.691	25	1	26	1	1006.6946	15.54	2735.4857
26	1	27	1	1007.5712	7.8	2762.6006	26	2	27	2	1007.8307	0.54	2863.4607
27	1	28	1	1008.4417	2.54	2790.7558	27	3	28	3	1008.9416	5.78	2997.3041
28	1	29	1	1009.3062	1.94	2819.9512	28	2	29	2	1009.5799	12.19	2921.4327

Table 7 continued on next page
$$J' \quad \Omega' \quad J'' \quad \Omega'' \quad \text{Frequency} \quad \text{Obs-Calc} \quad E_{\text{lower}}$$

28	3	29	3	1009.8168	-6.55	3027.093
29	2	30	2	1010.4435	7.85	2951.9936
31	1	32	1	1011.8615	2.75	2913.7747
33	1	34	1	1013.5325	1.03	2981.5183

$$J' \quad \Omega' \quad J'' \quad \Omega'' \quad \text{Frequency} \quad \text{Obs-Calc} \quad E_{\text{lower}}$$

29	1	30	1	1010.1643	1.79	2850.1863
30	2	31	2	1011.2999	-1.34	2983.6038
32	2	33	2	1012.9953	5.39	3049.9705

Table 8. Observed transitions for 48TiO, $v = 4 \leftarrow 3$. Experimental errors for line positions are better than 1×10^{-3} cm$^{-1}$.

$$J' \quad \Omega' \quad J'' \quad \Omega'' \quad \text{Frequency} \quad \text{Obs-Calc} \quad E_{\text{lower}}$$

4	1	5	1	977.5936	12.31	3388.428
5	2	6	2	978.6653	-13.62	3490.5787
6	2	7	2	979.671	-17.2	3496.8769
7	2	8	2	980.6717	-7.27	3504.2247
8	2	10	2	982.6525	-3.11	3522.0682
9	1	11	1	983.7356	-26.87	3634.6814

$$J' \quad \Omega' \quad J'' \quad \Omega'' \quad \text{Frequency} \quad \text{Obs-Calc} \quad E_{\text{lower}}$$

10	3	11	3	984.4751	7.24	3446.5494
11	2	12	2	985.4325	-3.55	3459.0026
12	1	13	1	986.3852	1.41	3472.4931
13	1	14	1	987.3305	-6.28	3487.0206
14	1	15	1	988.2711	0.96	3502.585
15	1	16	1	989.3827	-2.71	3617.5581
16	2	17	2	990.3183	-3.67	3635.3921
17	2	18	2	992.1699	-5.89	3674.2023
18	2	19	2	993.0868	1.12	3695.1778

Table 8 continued on next page
Table 8. Continued

J'	$Ω'$	J''	$Ω''$	Frequency E_{lower}	Obs-Calc	E_{lower}
				cm$^{-1}$	10$^{-4}$ cm$^{-1}$	K
21	2	22	2	993.9969	6.42	3717.1999
22	1	23	1	994.6733	-7.68	3640.5557
23	1	24	1	995.5633	-2.56	3664.409
25	1	26	1	997.3232	-1.17	3715.2208
26	1	27	1	998.1931	-5.86	3742.1787
28	2	29	2	1000.1805	16.36	3900.6296

J'	$Ω'$	J''	$Ω''$	Frequency E_{lower}	Obs-Calc	E_{lower}
				cm$^{-1}$	10$^{-4}$ cm$^{-1}$	K
29	2	28	2	971.6409	0.7	1401.2293
28	2	27	2	972.8882	2.81	1356.2784
27	2	26	2	974.1296	3.95	1312.8716
26	1	25	1	975.7062	5.34	1125.6935
25	2	24	2	976.5948	3.73	1230.6929
24	2	23	2	977.8185	2.25	1191.9221
23	3	22	3	978.7729	2.54	1304.9548
23	1	22	1	979.3348	2.2	1010.6672
22	2	21	2	980.2486	1.21	1119.0205
21	3	20	3	981.2163	-0.78	1234.4666
21	1	20	1	981.7251	4.69	941.6382
20	2	19	2	982.655	-2.01	1052.3089
19	3	18	3	983.637	6.52	1170.2281

Table 9. Observed transitions for 46TiO, $v = 1 \leftarrow 0$. Experimental errors for line positions are better than 1×10^{-3} cm$^{-1}$.

J'	$Ω'$	J''	$Ω''$	Frequency E_{lower}	Obs-Calc	E_{lower}
				cm$^{-1}$	10$^{-4}$ cm$^{-1}$	K
20	1	19	1	982.655	-2.01	1052.3089
21	3	20	3	981.2163	-0.78	1234.4666
21	1	20	1	981.7251	4.69	941.6382
22	2	21	2	980.2486	1.21	1119.0205
21	3	20	3	981.2163	-0.78	1234.4666
21	1	20	1	981.7251	4.69	941.6382
20	2	19	2	982.655	-2.01	1052.3089
19	3	18	3	983.637	6.52	1170.2281

Table 9 continued on next page
J'	Ω'	J''	Ω''	Frequency (cm$^{-1}$)	Obs-Calc (10$^{-4}$ cm$^{-1}$)	E_{lower} (K)	J'	Ω'	J''	Ω''	Frequency (cm$^{-1}$)	Obs-Calc (10$^{-4}$ cm$^{-1}$)	E_{lower} (K)
19	1	18	1	984.0917	4.21	878.7367	18	3	17	3	984.8366	8.77	1140.4538
18	2	17	2	985.0379	-4.18	991.7911	18	1	17	1	985.2661	3.56	849.5844
17	3	16	3	986.033	4.79	1112.2436	17	2	16	2	986.2211	0.5	963.856
17	1	16	1	986.4343	-0.18	821.9649	16	3	15	3	987.2205	-11.18	1085.5979
16	2	15	2	987.3973	-4.36	937.4706	16	1	15	1	987.5971	0.3	795.8784
15	3	14	3	988.4052	5.17	1060.5172	15	2	14	2	988.5684	-1.76	912.6353
14	3	13	3	989.582	2.16	1037.0019	14	2	13	2	989.7333	-0.92	889.3505
14	1	13	1	989.905	2.72	748.3054	13	3	12	3	990.7533	5.89	1015.0525
13	2	12	2	990.892	-2.66	867.6165	13	1	12	1	991.0504	6.58	726.8193
12	3	11	3	991.9184	6.81	994.6692	12	2	11	2	992.0455	3.22	847.4336
12	1	11	1	992.189	2.32	706.8671	11	3	10	3	993.077	4.92	975.8525
11	2	10	2	993.1925	4.42	828.8022	11	1	10	1	993.3223	3.78	688.449
10	3	9	3	994.2399	6.61	958.6028	10	2	9	2	994.3331	2.84	811.7224
10	1	9	1	994.498	7.09	671.5652	9	3	8	3	995.377	11.87	942.9202
9	2	8	2	995.4864	7.14	796.1945	9	1	8	1	995.571	6.95	656.2157
8	3	7	3	996.5171	8.56	928.8051	8	2	7	2	996.5967	3.18	782.2188
8	1	7	1	996.6866	10.5	642.4008	7	3	6	3	997.6514	8.43	916.2577
7	2	6	2	997.7193	2.04	769.7954	7	1	6	1	997.7956	7.85	630.1206
6	3	5	3	998.7798	11.48	905.2783	6	2	5	2	998.8363	6.47	758.9245
6	1	5	1	999.899	7.98	619.3751	5	3	4	3	999.9004	-1.64	895.867
5	2	4	2	999.9358	-3.22	749.6064	5	1	4	1	999.996	4.68	610.1645
4	3	3	3	1000.0162	0.08	888.024	4	2	3	2	1001.0511	5.54	741.841
4	1	3	1	1001.0878	9.58	602.4889	3	1	2	1	1002.1727	5.6	596.3484
2	1	1	1	1003.2524	8.43	591.7249	1	1	2	1	1007.5091	5.84	588.6726
2	1	3	1	1008.5581	5.11	591.7249	2	2	3	2	1008.6093	5.33	730.9692
J'	Ω'	J''	Ω''	Frequency	Obs-Calc E_{lower}	J'	Ω'	J''	Ω''	Frequency	Obs-Calc E_{lower}		
---	---	---	---	---	---	---	---	---	---	---	---		
3	1	4	1	1009.6014	7.26	596.3484	3	2	4	2	1009.6637	0.23	735.6286
3	3	4	3	1009.7136	-16.61	881.7494	4	1	5	1	1010.6381	4.91	602.4889
4	2	5	2	1010.7125	1.6	741.841	4	3	5	3	1010.7747	6.48	888.024
5	1	6	1	1011.6692	6.7	610.1645	5	2	6	2	1011.7552	5.01	749.6064
5	3	6	3	1011.8271	6.33	895.867	6	1	7	1	1012.6942	9.54	619.3751
6	2	7	2	1012.7914	5.91	758.9245	6	3	7	3	1012.8734	10.04	905.2783
7	1	8	1	1013.7128	8.02	630.1206	7	2	8	2	1013.8207	0.49	769.7954
7	3	8	3	1013.9126	7.15	916.2577	8	1	9	1	1014.7249	3.97	642.4008
8	2	9	2	1014.8443	2.05	782.2188	8	3	9	3	1014.9448	-0.74	928.8051
9	1	10	1	1015.7313	4.47	656.2157	9	2	10	2	1015.8614	1.96	796.1945
9	3	10	3	1015.9721	6.47	942.9202	10	1	11	1	1016.7316	4.27	671.5652
10	2	11	2	1016.8722	1.29	811.7224	10	3	11	3	1016.9922	7.28	958.6028
11	1	12	1	1017.7258	5.93	688.449	11	2	12	2	1017.8768	3.45	828.8022
12	1	13	1	1018.7136	4.62	706.8671	12	2	13	2	1018.8747	2.19	847.4336
12	3	13	3	1019.0124	5.06	994.6692	13	1	14	1	1019.6956	7.62	726.8193
13	2	14	2	1019.8664	2.2	867.6165	13	3	14	3	1020.0131	7.76	1015.0525
14	1	15	1	1020.671	6.43	748.3054	14	2	15	2	1020.8518	3.68	889.3505
14	3	15	3	1021.0068	6.77	1037.0019	15	1	16	1	1021.6395	-2.01	771.3252
15	2	16	2	1021.8302	-0.35	912.6353	15	3	16	3	1021.9935	1.44	1060.5172
16	1	17	1	1022.6035	6.99	795.8784	16	2	17	2	1022.8026	0.39	937.4706
16	3	17	3	1022.9743	3.7	1085.5979	17	2	18	2	1023.7689	4.8	963.856
17	3	18	3	1023.9481	2.13	1112.2436	18	1	19	1	1024.5105	2.76	849.5844
18	2	19	2	1024.7281	2.86	991.7911	18	3	19	3	1024.9157	5.78	1140.4538
19	1	20	1	1025.4549	3.72	878.7367	19	2	20	2	1025.6812	4.67	1021.2755
19	3	20	3	1025.8763	5.36	1170.2281	20	1	21	1	1026.3931	5.14	909.4214
Table 9. (continued)

J' Ω' J'' Ω''	Frequency E_{lower}	Obs-Calc		J' Ω' J'' Ω''	Frequency E_{lower}	Obs-Calc	
20 2 21 2	1026.6274	2.34	1052.3089	20 3 21 3	1026.8298	0.8	1201.5658
21 1 22 1	1027.3246	2.84	941.6382	21 2 22 2	1027.5671	0.78	1084.8907
21 3 22 3	1027.7775	5.77	1234.4666	22 1 23 1	1028.2502	4.18	975.387
22 2 23 2	1028.5004	0.64	1119.0205	22 3 23 3	1028.7173	-0.78	1268.9298
23 1 24 1	1029.1695	6.9	1010.6672	23 2 24 2	1029.4272	1.24	1154.6978
23 3 24 3	1029.6514	3.78	1304.9548	24 1 25 1	1030.0824	7.69	1047.4786
24 2 25 2	1030.3475	2.21	1191.9221	24 3 25 3	1030.5782	1.54	1342.5411
25 1 26 1	1030.9885	5.24	1085.8208	25 2 26 2	1031.261	1.68	1230.6929
25 3 26 3	1031.4987	5.52	1381.6879				

Table 10. Observed transitions for 47TiO, $v = 1 \leftarrow 0$. Experimental errors for line positions are better than 1×10^{-3} cm$^{-1}$.

J' Ω' J'' Ω''	Frequency E_{lower}	Obs-Calc		J' Ω' J'' Ω''	Frequency E_{lower}	Obs-Calc	
27 3 26 3	971.255	-3.79	1459.3858	27 1 26 1	971.9176	5.07	1161.9564
26 2 25 2	972.7939	-3.72	1266.0184	26 1 25 1	973.1325	11.75	1120.7779
25 3 24 3	973.7306	-8.89	1376.8277	24 3 23 3	974.9599	-8.79	1337.9428
24 2 23 2	975.2332	-4.04	1187.3642	24 1 23 1	975.5455	30.64	1042.9864
23 3 22 3	976.1835	-8.45	1300.5649	23 2 22 2	976.4447	1.26	1150.3438
23 1 22 1	976.7397	3.41	1006.3743	22 3 21 3	977.3999	-20.99	1264.7396
22 2 21 2	977.6503	5.73	1114.8621	22 1 21 1	977.9311	6.66	971.285
21 3 20 3	978.6135	-3.55	1230.4677	21 2 20 2	978.8491	0.44	1080.9193
21 1 20 1	979.1164	6.22	937.719	20 3 19 3	979.8196	-1.96	1197.7495
20 2 19 2	980.0427	1.74	1048.5162	20 1 19 1	980.2961	8.28	905.6765

Table 10 continued on next page
| \(J'\) | \(\Omega'\) | \(J''\) | \(\Omega''\) | Frequency \(cm^{-1}\) | Obs-Calc \(10^{-4} cm^{-1}\) | \(E_{lower}\) K | \(J'\) | \(\Omega'\) | \(J''\) | \(\Omega''\) | Frequency \(cm^{-1}\) | Obs-Calc \(10^{-4} cm^{-1}\) | \(E_{lower}\) K |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 19 | 3 | 18 | 3 | 981.0182 | -16.61 | 1166.5857 | 19 | 2 | 18 | 2 | 981.2304 | 1.6 | 1017.653 |
| 19 | 1 | 18 | 1 | 981.4697 | 7.9 | 875.1578 | 18 | 3 | 17 | 3 | 982.2141 | 0.15 | 1136.9769 |
| 18 | 2 | 17 | 2 | 982.412 | 0.1 | 988.3302 | 18 | 1 | 17 | 1 | 982.6374 | 6.98 | 846.1633 |
| 17 | 3 | 16 | 3 | 983.4018 | -4.7 | 1108.9236 | 17 | 2 | 16 | 2 | 983.5883 | 3.87 | 960.5484 |
| 17 | 1 | 16 | 1 | 983.7994 | 6.86 | 818.6932 | 16 | 3 | 15 | 3 | 984.5846 | 0.28 | 1082.4261 |
| 16 | 2 | 15 | 2 | 984.7578 | -1.77 | 934.3078 | 16 | 1 | 15 | 1 | 984.955 | 1.98 | 792.7478 |
| 15 | 3 | 14 | 3 | 985.7604 | -4.86 | 1057.4851 | 15 | 2 | 14 | 2 | 985.9217 | -3.59 | 909.6088 |
| 15 | 1 | 14 | 1 | 986.1057 | 5.48 | 768.3273 | 14 | 3 | 13 | 3 | 986.9296 | -16.08 | 1034.1009 |
| 14 | 2 | 13 | 2 | 987.0797 | -6.33 | 886.4518 | 14 | 1 | 13 | 1 | 987.2489 | -6.69 | 745.432 |
| 13 | 3 | 12 | 3 | 988.0951 | -4.62 | 1012.274 | 13 | 2 | 12 | 2 | 988.2324 | -1.95 | 864.8372 |
| 13 | 1 | 12 | 1 | 988.3885 | 3.8 | 724.062 | 12 | 3 | 11 | 3 | 989.2531 | -8.81 | 992.0047 |
| 12 | 2 | 11 | 2 | 989.3789 | -0.21 | 844.7652 | 12 | 1 | 11 | 1 | 989.5213 | 5.54 | 704.2176 |
| 11 | 3 | 10 | 3 | 990.4052 | -10.93 | 973.2935 | 11 | 2 | 10 | 2 | 990.5193 | 0.1 | 826.2361 |
| 11 | 1 | 10 | 1 | 990.648 | 5.04 | 685.8989 | 10 | 3 | 9 | 3 | 991.5515 | -11.61 | 956.1407 |
| 10 | 2 | 9 | 2 | 991.6545 | 7.59 | 809.2503 | 10 | 1 | 9 | 1 | 991.7695 | 10.81 | 669.1062 |
| 9 | 3 | 8 | 3 | 992.6921 | -8.8 | 940.5467 | 9 | 1 | 8 | 1 | 992.8843 | 9.61 | 653.8395 |
| 8 | 3 | 7 | 3 | 993.8248 | -25.21 | 926.5118 | 8 | 2 | 7 | 2 | 993.905 | 4.22 | 779.9093 |
| 8 | 1 | 7 | 1 | 993.9934 | 9.46 | 640.0989 | 7 | 3 | 6 | 3 | 994.954 | -17.41 | 914.0364 |
| 7 | 2 | 6 | 2 | 995.0213 | 2.24 | 767.5546 | 7 | 1 | 6 | 1 | 995.0966 | 10.64 | 627.8847 |
| 6 | 2 | 5 | 2 | 996.1312 | -2.93 | 756.7441 | 6 | 1 | 5 | 1 | 996.1933 | 5.91 | 617.1968 |
| 5 | 2 | 4 | 2 | 997.236 | 0.6 | 747.478 | 5 | 1 | 4 | 1 | 997.2851 | 12.73 | 608.0353 |
| 4 | 2 | 3 | 2 | 998.3368 | 22.44 | 739.7567 | 4 | 1 | 3 | 1 | 998.3703 | 15.2 | 600.4003 |
| 2 | 1 | 3 | 1 | 1005.7996 | -24.49 | 589.7082 | 3 | 1 | 4 | 1 | 1006.838 | -7.81 | 594.2913 |
| 3 | 2 | 4 | 2 | 1006.8991 | 15.58 | 733.5807 | 4 | 1 | 5 | 1 | 1007.87 | 1.48 | 600.4003 |
| 4 | 2 | 5 | 2 | 1007.943 | 17.65 | 739.7567 | 5 | 1 | 6 | 1 | 1008.895 | 0.3 | 608.0353 |

Table 10 continued on next page
J'	Ω'	J''	Ω''	Frequency	Obs-Calc	E_{lower}
				cm$^{-1}$		K
				10$^{-4}$ cm$^{-1}$		
6	1	7	1	1009.9141	-1.69	617.1968
7	1	8	1	1010.9274	-0.64	627.8847
8	1	9	1	1011.9348	1.99	640.0989
8	3	9	3	1012.1524	13.45	926.5118
9	2	10	2	1013.0635	-2.8	793.8079
10	1	11	1	1013.9307	0.93	669.1062
10	3	11	3	1014.1881	10.87	956.1407
11	2	12	2	1015.0688	2.9	826.2361
12	1	13	1	1015.9024	1.67	704.2176
12	3	13	3	1016.1981	11.17	992.0047
13	2	14	2	1017.0482	3.7	864.8372
14	1	15	1	1017.8496	2.76	745.432
14	3	15	3	1018.1822	13.93	1034.1009
15	2	16	2	1019.0022	4.97	909.6088
16	1	17	1	1019.7721	3.47	792.7478
16	3	17	3	1020.1394	9.71	1082.4261
17	2	18	2	1020.9306	6.34	960.5484
18	1	19	1	1021.6691	-3.42	846.1633
18	3	19	3	1022.0702	5.47	1136.9769
19	2	20	2	1022.8328	2.98	1017.653
20	1	21	1	1023.5421	-2.4	905.6765
20	3	21	3	1023.9751	7.09	1197.7495
21	2	22	2	1024.7096	4.02	1080.9193
22	1	23	1	1025.3904	2.47	971.285
22	3	23	3	1025.8532	6.95	1264.7396

Table 10 continued on next page
Table 10. (continued)

J'	Ω'	J''	Ω''	Frequency	Obs-Calc	E_{lower}
				cm$^{-1}$	10$^{-4}$ cm$^{-1}$	K
23	2	24	2	1026.5603	3.18	1150.3438
24	1	25	1	1027.2126	-2.36	1042.9864
24	3	25	3	1027.7048	9.47	1337.9428
25	2	26	2	1028.3846	-0.13	1225.9225
26	1	27	1	1029.0103	0.3	1120.7779
26	3	27	3	1029.5283	0.17	1417.3539
27	2	28	2	1030.1835	5.17	1307.6511
28	1	29	1	1030.7822	-2.25	1204.6563
28	3	29	3	1031.3258	1.56	1502.9676

Table 11. Observed transitions for 49TiO, $v = 1 \leftarrow 0$. Experimental errors for line positions are better than 1×10^{-3} cm$^{-1}$.

J'	Ω'	J''	Ω''	Frequency	Obs-Calc	E_{lower}
				cm$^{-1}$	10$^{-4}$ cm$^{-1}$	K
22	2	21	2	972.7555	5.92	769.6305
20	3	19	3	974.9027	-10.19	827.7024
20	1	19	1	975.3693	4.65	624.7359
19	2	18	2	976.2964	-2.26	702.7481
18	1	17	1	977.6862	10.15	583.7847
17	2	16	2	978.6287	-1.93	663.4588
16	3	15	3	979.6158	-7.05	748.3659
15	1	15	1	979.979	4.04	547.0292
15	2	14	2	980.9373	-7.15	628.4113
14	3	13	3	981.9379	1.01	715.1209

Table 11 continued on next page
Table 11. (continued)

J'	$Ω'$	J''	$Ω''$	Frequency	Obs-Calc	E_{lower}	J'	$Ω'$	J''	$Ω''$	Frequency	Obs-Calc	E_{lower}
14	1	13	1	982.2496	6.21	514.471	13	3	12	3	983.0885	-12.12	700.1054
13	2	12	2	983.2229	-9.0	597.6075	13	1	12	1	983.3759	4.38	499.7662
12	3	11	3	984.2338	-17.94	686.1615	12	2	11	2	984.3576	-4.31	583.7976
12	1	11	1	984.4966	4.55	486.1111	11	3	10	3	985.3739	-16.67	673.2894
11	2	10	2	985.4859	-4.02	571.0493	11	1	10	1	985.6118	7.7	473.5059
10	3	9	3	986.5073	-24.53	661.4896	10	2	9	2	986.6078	-9.63	559.3628
10	1	9	1	986.7204	2.36	461.9507	9	3	8	3	987.6364	-15.15	650.7622
9	2	8	2	987.7247	-5.53	548.7382	9	1	8	1	987.8242	8.14	451.4455
8	3	7	3	988.7589	-14.14	641.1075	7	3	6	3	989.8433	-16.46	632.5258
7	2	6	2	989.9404	-4.33	530.6757	7	1	6	1	990.0134	9.71	433.5857
6	3	5	3	990.9872	-7.42	625.0176	6	2	5	2	991.0391	-7.84	523.2381
6	1	5	1	991.0995	13.58	426.2312	5	3	4	3	992.0848	-89.1	618.5832
5	2	4	2	992.1313	-17.08	516.8632	5	1	4	1	992.1791	10.52	419.9269
4	2	3	2	993.2196	-8.86	511.5512	4	1	3	1	993.2536	19.54	414.6729
3	1	2	1	994.3213	19.62	410.469	2	1	3	1	1000.6064	-31.27	407.315
5	1	6	1	1003.6711	-1.62	419.9269	5	2	6	2	1003.7545	11.61	516.8632
6	1	7	1	1004.6798	-4.49	426.2312	6	2	7	2	1004.7746	9.02	523.2381
7	1	8	1	1005.6835	2.49	433.5857	7	2	8	2	1005.7883	4.42	530.6757
8	1	9	1	1006.6809	5.47	441.9905	8	2	9	2	1006.7966	9.27	539.1758
9	1	10	1	1007.6716	1.21	451.4455	9	3	10	3	1007.9050	21.88	650.7622
10	1	11	1	1008.6565	-0.82	461.9507	10	2	11	2	1008.7934	5.72	559.3628
11	1	12	1	1009.6362	4.89	473.5059	11	2	12	2	1009.7821	0.8	571.0493
11	3	12	3	1009.9069	12.75	673.2894	12	1	13	1	1010.6087	-0.69	486.1111
12	2	13	2	1010.7652	1.16	583.7976	12	3	13	3	1010.8999	16.37	686.1615
13	1	14	1	1011.576	1.82	499.7662	13	2	14	2	1011.7418	0.64	597.6075

Table 11 continued on next page
J'	Ω'	J''	Ω''	Frequency E_{lower}	Obs-Calc E_{lower}
13	3	14	3	1011.8841 14.96	700.1054
14	2	15	2	1012.7129 6.91	612.4788
15	1	16	1	1013.4917 -0.65	530.2254
15	3	16	3	1013.8348 9.69	731.2079
16	2	17	2	1014.6345 1.77	645.4047
17	1	18	1	1015.3833 -0.94	564.8824
17	3	18	3	1015.76 7.16	766.5946
18	2	19	2	1016.5309 -2.1	682.5734
19	1	20	1	1017.2504 -1.22	603.7359
19	3	20	3	1017.6591 5.32	806.2632
20	2	21	2	1018.4022 -3.84	723.9828
21	1	22	1	1019.0934 1.79	646.7845
21	3	22	3	1019.5326 7.96	850.2109
22	2	23	2	1020.2486 0.64	769.6305
23	1	24	1	1020.9115 3.04	694.0264
23	3	24	3	1021.3789 0.59	898.4346
24	2	25	2	1022.0703 14.55	819.5139
25	1	26	1	1022.7047 3.75	745.4599
25	3	26	3	1023.1997 3.85	950.9312
26	2	27	2	1023.864 5.51	873.6303
27	1	28	1	1024.4729 2.45	801.083
27	3	28	3	1024.9937 3.33	1007.697
28	3	29	3	1025.881 6.18	1037.6798
30	1	31	1	1027.0778 -1.97	892.3682
30	3	31	3	1027.635 7.3	1100.8424

Table 11 continued on next page
Table 11. (continued)

J'	Ω'	J''	Ω''	Frequency	Obs-Calc	E_{lower}	J'	Ω'	J''	Ω''	Frequency	Obs-Calc	E_{lower}
32	1	33	1	1028.7833	-1.69	958.4551	32	2	33	2	1029.0915	2.31	1061.3457
32	3	33	3	1029.3617	3.19	1168.2643	33	1	34	1	1029.6274	8.06	993.0666
33	2	34	2	1029.9403	5.69	1096.3263	33	3	34	3	1030.2144	-4.27	1203.5712
34	2	35	2	1030.7822	6.83	1132.3612	34	3	35	3	1031.0616	1.9	1239.9412
35	1	36	1	1031.294	0.97	1065.4239							

Table 12. Observed transitions for 50TiO, $v = 1 \leftarrow 0$. Experimental errors for line positions are better than 1×10^{-3} cm$^{-1}$.

J'	Ω'	J''	Ω''	Frequency	Obs-Calc	E_{lower}	J'	Ω'	J''	Ω''	Frequency	Obs-Calc	E_{lower}
21	1	20	1	971.8864	5.78	644.3644	20	2	19	2	972.8016	-0.51	721.6488
19	3	18	3	973.767	10.05	804.0225	19	1	18	1	974.2022	3.26	601.5254
18	3	17	3	974.943	20.28	783.7534	18	2	17	2	975.1335	0.48	680.4423
18	1	17	1	975.3515	1.47	581.6713	17	3	16	3	976.1107	5.94	764.549
17	2	16	2	976.2907	-0.46	661.4214	17	1	16	1	976.4951	-0.22	562.8612
16	3	15	3	977.2739	3.64	746.4098	16	1	15	1	977.6338	6.65	545.095
15	3	14	3	978.4313	3.06	729.3361	15	2	14	2	978.5881	-0.09	626.5455
15	1	14	1	978.7658	3.15	528.3731	14	3	13	3	979.5834	7.37	713.328
14	2	13	2	979.7278	-1.97	610.6911	14	1	13	1	979.892	-0.47	512.6955
13	3	12	3	980.7287	1.95	698.3859	13	2	12	2	980.8621	-0.86	595.8925
13	1	12	1	981.0131	1.56	498.0625	12	2	11	2	981.9915	9.42	582.1502
12	1	11	1	982.1282	1.94	484.4741	11	3	10	3	983.0028	3.88	671.7006
11	2	10	2	983.1129	-2.96	569.4642	11	1	10	1	983.2372	-1.65	471.9305
10	3	9	3	984.1316	10.58	659.9579	10	2	9	2	984.2295	-3.45	557.8348

Table 12 continued on next page
\(J'\)	\(\Omega'\)	\(J''\)	\(\Omega''\)	Frequency (cm\(^{-1}\))	Obs-Calc K	\(E_{\text{lower}}\) cm\(^{-1}\)	\(E_{\text{lower}}\) cm\(^{-1}\) K
10	1	9	1	984.3412	1.94	460.4318	469.2821
9	2	8	2	985.3399	-6.77	547.262	449.9781
8	3	7	3	986.3695	6.08	639.6733	537.7461
8	1	7	1	986.5306	-2.4	440.5695	631.1318
7	2	6	2	987.5442	-5.81	529.2872	432.2061
6	3	5	3	988.5833	0.04	623.6576	521.8854
6	1	5	1	988.6971	-5.67	424.8879	617.251
5	2	4	2	989.7255	1.72	515.5408	418.6151
4	2	3	2	990.8064	-2.58	510.2535	413.3877
3	2	2	2	991.882	-0.75	506.0235	409.2057
2	1	3	1	998.1604	6.98	406.0691	502.851
3	1	4	1	999.1822	4.79	409.2057	611.9119
4	2	5	2	1000.2697	-1.93	510.2535	515.5408
5	1	6	1	1001.2089	7.47	418.6151	424.8879
5	3	6	3	1001.36	1.05	617.251	623.6576
6	2	7	2	1002.307	6.06	521.8854	537.7461
7	1	8	1	1003.2109	-0.01	432.2061	684.51
8	1	9	1	1004.2037	4.05	440.5695	659.9579
8	3	9	3	1004.4157	5.6	639.6733	471.9305
9	2	10	2	1005.3135	-18.78	547.262	577.414
10	1	11	1	1006.171	7.05	460.4318	557.8348
10	3	11	3	1006.4207	1.62	659.9579	471.9305
11	2	12	2	1007.2907	1.28	569.4642	671.7006
12	1	13	1	1008.1143	7.76	484.4741	582.1502
12	3	13	3	1008.4006	-0.92	684.51	498.0625
Table 12. (continued)

J' Ω' J'' Ω'' Frequency cm⁻¹	Obs-Calc E_{lower} K	J' Ω' J'' Ω'' Frequency cm⁻¹	Obs-Calc E_{lower} K
1009.2409 -1.49 595.8925 K	1009.3821 9.16 698.3859 K	1010.0326 -0.49 512.6955 K	1010.2068 -0.97 610.6911 K
1010.3561 7.13 713.328 K	1010.9832 0.71 528.3731 K	1011.3222 -9.17 729.3361 K	1011.9282 4.93 545.095 K
1012.1202 0.84 643.4557 K	1012.6109 2.24 746.4098 K	1012.8666 4.28 562.8612 K	1013.0666 -6.95 661.4214 K
1013.2394 -0.45 764.549 K	1013.799 4.35 581.7613 K	1014.0082 0.51 680.4423 K	1014.1881 1.88 783.7534 K
1014.9424 -3.72 700.5182 K	1015.130 0.27 804.0225 K	1015.6455 4.39 622.4232 K	1015.8712 1.11 721.6488 K
1016.0658 2.94 825.356 K	1016.5593 1.66 644.3644 K	1016.9282 4.93 545.095 K	1017.0788 1.51 767.0728 K
1016.7925 -4.85 743.8337 K	1016.995 4.2 847.7537 K	1017.4676 4.17 667.3489 K	1017.7088 1.51 767.0728 K
1017.9177 6.43 871.2151 K	1018.369 0.01 691.3765 K	1018.618 0.72 791.3656 K	1018.7633 1.8 895.7398 K
1018.618 0.72 791.3656 K	1018.8333 1.8 895.7398 K	1019.2649 2.12 716.4468 K	1019.5211 2.85 816.7119 K
1019.7427 1.81 921.3274 K	1020.1549 2.74 742.5598 K	1020.4176 2.85 816.7119 K	1020.6456 1.64 947.9776 K
1020.4176 2.85 816.7119 K	1020.7633 1.8 895.7398 K	1021.307 -4.59 870.5632 K	1021.542 2.49 975.6898 K
1021.307 -4.59 870.5632 K	1021.8333 1.8 895.7398 K	1022.191 -0.82 899.0675 K	1022.4313 -2.15 1004.4636 K
1022.191 -0.82 899.0675 K	1022.6333 -2.15 1004.4636 K	1022.7856 -1.21 827.1514 K	1023.0676 -7.55 928.6237 K
1023.3141 -5.26 1034.2985 K	1023.6505 0.22 857.432 K	1023.9389 -1.91 959.2314 K	1024.1906 -4.26 1065.194 K
1024.5089 0.31 888.7537 K	1024.8032 -7.55 928.6237 K	1025.0604 -4.52 1097.1497 K	1026.2068 -1.75 954.5195 K
Table 13. Mass-invariant molecular parameters of the $A^3\Phi$ state of TiO. Two sets of parameters are obtained by excluding ("Fit A") and including ("Fit B") the spin-rotation interaction in the electronic ground state (see Table 2). In a global fit, the infrared data obtained in this work are combined with data for $^{46-50}\text{Ti}^{16}\text{O}$ and $^{48}\text{Ti}^{18}\text{O}$ at optical and microwave frequencies from the literature (Breier et al. 2019; Lincowski et al. 2016; Fletcher et al. 1993; Ram et al. 1999; Amiot et al. 1995).

Parameter $\hat{O}_{k,l}$	Fit A	Fit B	Units
$U_{00} \times 10^{-4}$	1.41635548(5)	1.41635442(5)	cm$^{-1}$
$U_{10} \times 10^{-3}$	3.004397(3)	3.004397(3)	cm$^{-1}u^{1/2}$
$U_{20} \times 10^{-1}$	-4.5972(5)	-4.5972(5)	cm^{-1}u
$U_{30} \times 10^{1}$	-4.88(2)	-4.88(2)	cm$^{-1}u^{3/2}$
U_{01}	6.084493(4)	6.084491(4)	cm^{-1}u
$U_{11} \times 10^{1}$	-1.3146(2)	-1.3145(2)	cm$^{-1}u^{3/2}$
$U_{21} \times 10^{4}$	-9.2(4)	-9.3(4)	cm$^{-1}u^2$
$U_{31} \times 10^{4}$	-1.5(2)	-1.4(2)	cm$^{-1}u^{5/2}$
$U_{02} \times 10^{5}$	9.9762(8)	9.9760(8)	cm$^{-1}u^2$
$U_{12} \times 10^{7}$	6.6(3)	6.8(3)	cm$^{-1}u^{5/2}$
$U_{22} \times 10^{7}$	1.8(3)	1.8(3)	cm$^{-1}u^3$
$U_{03} \times 10^{10}$	2.8(2)	2.8(2)	cm$^{-1}u^3$
$A_{00} \times 10^{-1}$	5.801031(10)	5.801012(10)	cm$^{-1}$
$A_{10} \times 10^{1}$	-3.678(3)	-3.678(3)	cm$^{-1}u^{1/2}$
$A_{20} \times 10^{2}$	1.48(2)	1.48(2)	cm^{-1}u
$A_{01} \times 10^{4}$	-5.060(3)	-5.033(5)	cm^{-1}u
$A_{11} \times 10^{5}$	1.43(9)	1.30(9)	cm$^{-1}u^{3/2}$
$\lambda_{00} \times 10^{1}$	-5.163(2)	-5.178(2)	cm$^{-1}$
$\lambda_{10} \times 10^{2}$	1.12(8)	1.23(8)	cm$^{-1}u^{1/2}$
$\lambda_{20} \times 10^{3}$	-3.5(5)	-3.7(5)	cm^{-1}u
$\lambda_{01} \times 10^{5}$	-5.43(8)	-3.74(8)	cm^{-1}u
$\lambda_{11} \times 10^{6}$	7(2)	-3(2)	cm$^{-1}u^{3/2}$
Table 14. Molecular parameters of the $B^3Π$ state of TiO in the singly excited vibrational state $v = 1$. All values are given in cm$^{-1}$. Two sets of parameters are obtained by excluding (“Fit A”) and including (“Fit B”) the spin-rotation interaction in the electronic ground state (see Table 2). In a global fit, the infrared data obtained in this work are combined with data for $^{46−50}$Ti16O and 48Ti18O at optical and microwave frequencies from the literature (Breier et al. 2019; Lincowski et al. 2016; Fletcher et al. 1993; Ram et al. 1999; Amiot et al. 1995).

Parameter	Fit A	Fit B
$T \times 10^{-4}$	$1.751591015(13)$	$1.751589964(14)$
$B \times 10^1$	$5.028657(2)$	$5.028657(2)$
$D \times 10^7$	$6.9128(8)$	$6.9142(9)$
$H \times 10^{13}$	$1.90(13)$	$2.02(13)$
$A \times 10^{-1}$	$2.07884(2)$	$2.07883(2)$
$A_D \times 10^4$	$-1.15(2)$	$-1.14(2)$
$\gamma \times 10^2$	$2.491(5)$	$2.490(5)$
$\lambda \times 10^1$	$-9.305(2)$	$-9.305(2)$
$\lambda_D \times 10^6$	$-3.7(6)$	$-3.8(6)$
$\lambda_H \times 10^{10}$	$-6.0(1.4)$	$-5.6(1.4)$
$\sigma \times 10^1$	$-6.185(2)$	$-6.184(2)$
$\sigma_D \times 10^6$	$1.6(4)$	$1.3(4)$
$\sigma_H \times 10^{10}$	$5.0(1.0)$	$6.2(1.0)$
$p \times 10^2$	$2.6123(8)$	$2.6121(8)$
$p_D \times 10^7$	$1.13(3)$	$1.14(3)$
$q \times 10^4$	$2.963(3)$	$2.964(3)$
$q_D \times 10^{10}$	$-7.2(8)$	$-8.2(8)$