ORIGINAL RESEARCH

Biometric and Psychometric Remote Monitoring and Cardiovascular Risk Biomarkers in Ischemic Heart Disease

Chrisandra L. Shufelt, MD, MS; Andy Kim, BS; Sandy Joung, MS; Lili Barsky, MD; Corey Arnold, PhD; Susan Cheng, MD; Shivani Dhawan, MS; Garth Fuller, MS; William Speier, PhD; Mayra Lopez, MPH; Mitra Mastali, PhD; Kelly Mouapi, PhD; Irene van den Broek, PhD; Janet Wei, MD; Brennan Spiegel, MD, MS*; Jennifer E. Van Eyk, PhD*; C. Noel Bairey-Merz, MD*

BACKGROUND: Patients with stable ischemic heart disease represent a heterogeneous population at variable risk for major adverse cardiac events (MACE). Because MACE typically occurs outside the hospital, we studied whether biometric and psychometric remote patient monitoring are associated with MACE risk biomarkers.

METHODS AND RESULTS: In 198 patients with stable ischemic heart disease (mean age 65±11 years, 60% women), we evaluated baseline measures, including biometric (FitBit 2) and psychometric (acquired via smartphone-administered patient-reported outcomes) remote monitoring, in the PRE-MACE (Prediction, Risk, and Evaluation of Major Adverse Cardiac Events) study. In multivariable adjusted regression analyses, we examined the association of these measures with biomarkers of MACE risk, including NT-proBNP (N-terminal pro-b-type natriuretic peptide), u-hs-cTnI (ultra-high sensitivity cardiac-specific troponin I), and hs-CRP (high-sensitivity C-reactive) protein. Both biometric and psychometric measures were associated with NT-proBNP. Specifically, step count, heart rate, physical activity, global health score, and physical function score were all inversely related, whereas physical limitation score was directly related (\(P \leq 0.05\) for all). However, only biometric measures (step count and heart rate) were associated with u-hs-cTnI (inversely related, \(P < 0.05\)), while only the psychometric measures of physical limitation were associated with hs-CRP (directly related, \(P \leq 0.05\)).

CONCLUSIONS: In stable ischemic heart disease patients, remotely monitored measures were associated with MACE risk biomarkers. Both biometric and psychometric measures were related to NT-proBNP. In contrast, biometric measures were uniquely related to u-hs-cTnI, while psychometric indices were uniquely related to hs-CRP. Further investigation could assess the predictive value of these metrics for MACE in ischemic heart disease.

Key Words: ischemic heart disease ■ major adverse cardiac events ■ precision medicine ■ remote patient monitoring
C-reactive protein), NT-pro BNP (N-terminal pro-b-type natriuretic peptide), and u-hs-cTnI (ultra-high sensitivity cardiac-specific troponin I) may provide a better understanding of MACE risk at the individual level. Although higher levels of hs-CRP predict MACE in community population studies, it has large intra-individual variability over time that may not necessarily be attributed to cardiac inflammatory risk. High NT-proBNP and u-hs-cTnI values are predictive of heart failure outcomes, because these biomarkers are directly related to myocardial injury and stress.

Because MACE typically occurs outside the confines of a hospital, remote patient monitoring (RPM) using biometric and psychometric indices has the potential to provide a precision medicine approach to monitoring MACE risk among patients with stable IHD. Wearable biosensors that monitor dynamic changes in physiologic and activity parameters, such as heart rate and step counts, may provide clinically useful and timely information about the changing health of patients with stable IHD. In addition to monitoring biometric indices with wearable sensors, smartphones now offer a platform to monitor psychometric indices, such as patient-reported outcomes (PROs), offering another RPM data stream to complement objective physiological and activity metrics. The acceptance and availability of consumer-grade biosensors continues to improve, driven by advancements in technology and reduction in cost.

In this study, we hypothesized that RPM measures, obtained using wearable biosensors and smartphone-based collection of PROs, are associated with the primary outcome of levels of serum cardiovascular MACE risk biomarkers in patients with stable IHD. To our knowledge, this is among the first studies to associate RPM data, including biometric and psychometric parameters, with objective biochemical markers of MACE risk among patients with stable IHD.

METHODS

Recruitment

The PRE-MACE (Prediction, Risk, and Evaluation of Major Adverse Cardiac Events) study is a longitudinal, prospective cohort study design in 200 enrolled patients with stable IHD. Detailed methodology regarding the PRE-MACE study has been previously published. In brief, subjects were recruited from a large, academic hospital-based cardiac rehabilitation center, a tertiary care IHD center and by physician referral. All subjects needed to own or have access to a smartphone or personal computer. Among the 200 subjects with stable IHD, defined as physician-diagnosed, 198 (99%) completed all baseline measures and were included in the current analysis. All subjects provided written informed consent as approved by the Cedars-Sinai institutional review board. The authors declare that all supporting data are available within the article.

Biometric RPM

At the baseline visit, subjects were provided a Fitbit Charge 2 (Fitbit Inc., San Francisco, CA), a wearable device that monitors step counts and heart rate. For
the current analysis, baseline Fitbit data were collected and averaged for the first week. Monitoring was only interrupted by bathing, swimming, or other activities involving water, or while charging the device in its charging cradle.

Psychometric RPM

During the baseline visit, psychometric data were collected using the Patient-Reported Outcomes Measurement Information System (PROMIS), which are validated PROs that measure physical, mental, and social health. The global short form version of PROMIS (PROMIS 4 and 10) was used, which included the following health measures: global health, depression, emotional distress/anxiety, fatigue, physical function, sleep disturbance, and social isolation. Additional disease-targeted PROs included the Kansas City Cardiomyopathy Questionnaire (KCCQ) and the Seattle Angina Questionnaire (SAQ). For both the KCCQ and SAQ, the range of possible subscale scores was 0 to 100, with 100 representing the least burden of symptoms.

Biomarker Monitoring

Cardiovascular MACE risk biomarkers included u-hs-cTnI, NT-proBNP and hs-CRP. On-site serum blood draws for biomarkers occurred at baseline. Biomarkers NT-proBNP and hs-CRP were measured by the Mayo Clinic Immunochemical Core laboratory as previously described. u-hs-cTnI was measured using the Quanterix assay (Quanterix Corporation, Lexington, MA) on the Simoa HD-1 Analyzer, a highly sensitive and fully automated ELISA platform, in duplicate at the Cedars-Sinai Proteomics and Metabolomics Core. Clinically elevated u-hs-cTnI was defined as >5 ng/L, elevated NT-pro-BNP was defined as >300 pg/mL and hs-CRP was elevated when values were >0.3 mg/dL.

Statistical Analysis

For all analyses, we excluded subjects with missing biomarker measures (N=2), leaving N=198 for the main study sample. We used percent frequencies and means±SD to describe categorical and continuous variables, respectively, with the exception of non-normally distributed continuous variables, for which we used medians (25th, 75th percentiles). For non-normally distributed variables, which were all right-skewed, we performed natural log transformation before inclusion in regression analyses. To examine the relation of RPM measures with each of the biomarkers (NT-proBNP, u-hs-cTnI, and hs-CRP), we generated multivariable models of RPM for prediction of log NT-proBNP, log u-hs-cTnI, and log hs-CRP with 95% confidence limits, using multivariable adjusted restricted cubic splines with 3 knots (10th, 50th, and 90th percentiles). All models were adjusted for age, sex, and body mass index (BMI) at baseline. Two-sided P values were considered statistically significant after accounting for tests of multiple hypotheses, based on the false discovery rate. We adjusted the P values to control the expected proportion of false discoveries (incorrectly rejected null hypotheses). We used the false discovery rate method to account for the multiple hypothesis tests conducted, 1 for each of the biometric and psychometric predictors analyzed in association with each of the 3 biomarker outcomes. This approach was implemented using the Benjamini-Hochberg procedure with a false discovery rate of 0.1. Regression analyses were performed using the stats package (v3.5.1) in R v1.1.453 (R foundation, Vienna, Austria) and cubic splines were generated using STATA v13.0 (Stata Corp., College Station, TX). Construction of the model analyses in R and generation of the visual splines in STATA were performed as separate processes. We used R to conduct multivariable adjusted regression analyses as we have done previously for other analyses. We used STATA to generate the spline figures given enhanced functionality of previously established STATA code for visualizing multiple covariate-adjusted splines (ie, a function that is not readily available in R). The modeling approaches for both processes (ie, the covariates selected) were identical for both model analyses in R and splines generation in STATA. All predictors were standardized to a normal distribution with a SD of 1 and a mean of 0. The estimates were also scaled, in order to reflect the change in log of the outcome per 1 SD of each predictor. The estimates reflect the change in log of the outcome per 1 SD difference in each predictor variable.

RESULTS

The group (N=198) mean age was 65±11 years (range 54–76 years) with a mean BMI of 27.2 (range 24.0–31.2), 60% were women, and 28% were non-White. In terms of medical history, 21% of the group had a history of diabetes mellitus and 38% had a history of tobacco abuse. With regard to medication use, 85% of the cohort was taking aspirin, 85% was taking a statin and 65% was taking a β-blocker on enrollment. Overall, 28% of subjects had elevated u-hs-cTnI, 23% had elevated NT-pro-BNP and 28% had elevated hs-CRP. Individual subjects in our study who had elevated levels of all 3 biomarkers (6.0%) were more likely to be men, older in age, and higher in BMI. In the total sample, ln NT-proBNP was strongly correlated with ln u-hs-cTnI (r=0.67, P<0.0001) and only modestly with in
Figure 1. Remote monitoring measures and NT-proBNP.
The multivariable models of steps per week (A), light physical activity (B), activity heart rate (C), Patient-Reported Outcomes Measurement Information System (PROMIS) global health score (D), PROMIS physical function score (E), Seattle Angina Questionnaire (SAQ) overall score (F), SAQ physical limitations score (G), and Kansas City Cardiomyopathy Questionnaire (KCCQ) physical limitations score (H) for prediction of log NT-proBNP are shown, with 95% confidence limits using multivariable adjusted restricted cubic splines with 3 knots (10th, 50th, and 90th percentiles). All models are adjusted for age, sex, and body mass index. NTproBNP indicates N-terminal pro-b-type natriuretic peptide.
hs-CRP ($r=0.17$, $P=0.016$), whereas ln u-hs-cTnl was not significantly correlated with ln hs-CRP ($r=0.03$, $P=0.64$). As described in the Methods section, all of these models were adjusted for age, sex, and BMI.

The multivariable models of remote monitoring measures for association with log NT-proBNP, log u-hs-cTnl, and log hs-CRP with 95% confidence limits, using multivariable adjusted linear regression analyses and restricted cubic splines with 3 knots (10th, 50th, and 90th percentiles), are shown in Figures 1 through 3. All models were adjusted for age, sex, and BMI.

Both biometric and psychometric RPM measures were significantly associated with NT-proBNP at baseline (Table 1). There were inverse associations between several biometric measures and NT-proBNP. Specifically, the more steps taken, as well as the greater the amount of light physical activity, the lower the levels of NT-proBNP (Figure 1A and 1B). Additionally, a higher heart rate during activity was associated with a lower NT-proBNP level (Figure 1C). Our evaluation of psychometric RPM measures revealed that higher PROMIS global physical health and physical function scores were associated with lower NT-proBNP (Figure 1D and 1E). Higher SAQ-7 scores, an indication of better overall function, were associated with lower NT-proBNP (Figure 1F). Similarly, the physical limitation subscales for both the SAQ and the KCCQ were inversely related to NT-proBNP (Figure 1G and 1H), indicating that less physical limitation was associated with lower NT-proBNP.

Certain biometric RPM measures were significantly associated with u-hs-cTnl at baseline (Table 1). In particular, a greater number of steps was associated with lower u-hs-cTnl at baseline (Figure 2A). Similarly, higher heart rate, both at rest and with activity at baseline, was significantly associated with lower u-hs-cTnl at baseline (Figure 2B and 2C), a finding that may have possibly been because of the high prevalence of β-blocker use. Interestingly, none of the psychometric RPM measures were associated with u-hs-cTnl at baseline. Conversely, psychometric RPM measures were significantly associated with hs-CRP at baseline, including SAQ and KCCQ (Figure 3A and 3B, Table 1), while none of the biometric RPM measures were related to hs-CRP. Of note, there were no significant age or sex interactions for any biomarker associations examined (data not shown). A summary of the serum biomarker levels, biometric and psychometric data for the cohort is provided in Table S1. The R2 values for each of the tests are displayed in Table S2.

In multivariable regression analyses, the only relationships found to be significantly nonlinear were between ln NT-proBNP and PROMIS Global Physical Health ($P=0.028$), which appeared to reveal an inflection point around 50, and between ln NT-proBNP and SAQ Physical Limitation score ($P=0.041$), which appeared to reveal an inflection point around 80 (Figure 1D and 1G, respectively). The corresponding beta coefficients above and below this threshold are reported in Table S3.

DISCUSSION

Our results demonstrate that among stable IHD subjects, baseline biometric and psychometric RPM are associated with cardiovascular MACE risk biomarkers. This is among the first studies, in IHD or otherwise, to evaluate the relationship between RPM parameters and clinically relevant biochemical laboratory markers. Both biometric and psychometric RPM measures were significantly associated with NT-proBNP, a marker of cardiac volume status. While only certain biometric RPM measures were related to u-hs-cTnl, a marker of cardiac damage, only certain psychometric RPM measures were significantly associated with hs-CRP, a marker of cardiac inflammation. These initial findings may have clinical implications. Further investigation to evaluate RPMs for prediction of specific MACE as well as stratify personalized risk in patients with stable IHD is needed.

We found that both step count per week and heart rate had an inverse relationship with NT-proBNP and u-hs-cTnl. These findings support the protective effects of regular exercise for IHD or reflect IHD-related reduced cardiovascular reserve and/or symptom burden that limits physical activity in this cross-sectional analysis. These results may be useful, because step counts are readily accessible on consumer-facing products, such as the Fitbit Charge 2 used in our PRE-MACE study.

To date, research in the area of biometric RPM has shown mixed results with respect to benefit and varies according to the specific cardiovascular population. In patients with heart failure, use of biometric RPM via smartphone and video monitors did not improve heart failure mortality or healthcare utilization. Additionally, in patients after stroke, biometric RPM with ankle accelerometers did not increase time spent walking per day. Other studies have examined biometric RPM in patients with implantable pacemakers or defibrillators. In a randomized clinical trial, wireless RPM providing real-time alerts compared with home monitoring only was found to be safe and effective for reducing hospital visits by 79%. Furthermore, a meta-analysis of 3 studies in patients with defibrillators found the RPM-related absolute total mortality risk was lower by ≈2%. Our data suggest that biometric RPM in stable subjects with IHD are associated with cardiovascular MACE risk biomarkers; these results may be of use in MACE risk prediction and personalized treatment.
The measure of cardiac injury used in this study, u-hs-cTnI, revealed an inverse relationship with resting heart rate. Lower resting heart rate in patients with stable IHD was likely a reflection of beta blockade and/or more limited cardiovascular reserve in our population. Higher heart rates during physical activity, however, had predicted lower levels of u-hs-cTnI, suggesting that achievement of higher heart rates may be a surrogate measure of cardiovascular health.

With regard to psychometric RPM measures, lower global health and physical function scores were associated with higher NT-proBNP, which is clinically associated with higher cardiac volume status. This relationship appears to offer additional insights into both biometric and psychometric RPM domains, because volume overload contributes to reduced physical function because of symptom burden and limited cardiovascular reserve. Both NT-proBNP and hs-CRP exhibited direct relations to SAQ and KCCQ physical limitation subscales. This indicates that higher levels of inflammation and volume status are associated with self-reported physical limitation.

Perhaps as compelling as the relationships we identified were the negative results in this study. A moderate or vigorous level of physical activity, measured as minutes per week, was not associated with any of the cardiovascular MACE risk biomarkers. This appears to support current analyses and guidelines suggesting that less physical activity intensity is needed than previously thought to obtain benefit. Further, PROs for depression, anxiety, fatigue, sleep disturbance or KCCQ quality of life subscale related to any biomarker. Previous studies have found that both depression and anxiety are associated with elevated hs-CRP in community populations. Elevated BNP, the precursor hormone to the NT-proBNP that we are analyzing here, has been associated with sleep apnea and sleep disturbances, as well as KCCQ health status. Our findings are not consistent with this prior work, and may be underpowered or specific to our stable IHD cohort.

Figure 2. Remote monitoring measures and u-hs-cTnI.
The multivariable models of steps per week (A), heart rate during rest (B), and heart rate during activity (C) for prediction of log troponin I are shown, with 95% confidence limits using multivariable adjusted restricted cubic splines with 3 knots (10th, 50th, and 90th percentiles). All models are adjusted for age, sex, and body mass index. u-hs-cTnI indicates ultra-high sensitivity cardiac-specific troponin I.

Figure 3. Remote monitoring measures and hs-CRP.
The multivariable models of Seattle Angina Questionnaire (SAQ) physical limitations score (A) and Kansas City Cardiomyopathy Questionnaire (KCCQ) physical limitations score (B) for prediction of log hs-CRP are shown, with 95% confidence limits using multivariable adjusted restricted cubic splines with 3 knots (10th, 50th, and 90th percentiles). All models are adjusted for age, sex, and body mass index. hs-CRP indicates high sensitivity C-reactive protein.
One major strength of the study included a high compliance rate, with <1% with missing baseline data and only 2 subjects dropping out. We have previously reported compliance rates with the wearable sensor in this protocol and found 90% median use in our stable IHD population. Our study also demonstrated feasibility and validation of RPM using several concurrent platforms. The limitations of our study include the observational design that precluded causal inference. There may have also been behavioral influences, such as the awareness of being monitored, and the fact that study subjects already owned a computer or smart phone device, which could have accounted for the higher adherence. Many of our subjects were recruited from a cardiac rehabilitation program and demonstrated a high medication compliance rate of 85%, suggesting above average adherence, which may not reflect a more general stable IHD population.

CONCLUSIONS

In patients with stable IHD, baseline RPMs were associated with cardiovascular MACE risk serum biomarkers. In particular, both biometric and psychometric RPM measures were related to the universal marker of cardiac volume status, NT-proBNP. In contrast, the biometric measures were uniquely associated with u-hs-cTnI, while psychometric indices were uniquely associated with hs-CRP. These findings may have clinical implications and support clinician reinforcement of beneficial health habits among patients. Further investigation is indicated to evaluate RPMs for prediction of change in cardiovascular MACE risk biomarkers, as well as MACE to understand the value of RPM for precision medicine in IHD. Future studies should evaluate these relationships in a larger cohort of patients with stable IHD, with more diverse patterns of adherence and socioeconomic status. Future longitudinal analyses will also assess for prediction of MACE.

Table. Multivariable-Adjusted Models of Remote Patient Monitoring Measures With u-hs-cTnI, NT-proBNP, and hs-CRP

Predictors	Outcome: Ln NT-proBNP	Outcome: Ln u-hs-cTnI	Outcome: Ln hs-CRP			
	Est. (SE)	P Value	Est. (SE)	P Value	Est. (SE)	P Value
Biometric RPM						
Steps per wk	−0.33 (0.07)	< 0.001*	−0.24 (0.08)	0.008*	−0.09 (0.08)	0.4
Physical activity, min/wk						
Light level	−0.24 (0.07)	0.004*	−0.11 (0.07)	0.25	−0.09 (0.07)	0.38
Moderate/vigorous level	−0.16 (0.08)	0.11	−0.17 (0.08)	0.1	−0.10 (0.09)	0.4
Heart rate, beats/min						
During rest	−0.14 (0.07)	0.1	−0.18 (0.07)	0.03*	0.01 (0.07)	0.92
During activity	−0.21 (0.07)	0.01*	−0.23 (0.07)	0.005*	−0.01 (0.07)	0.9
Psychometric RPM						
PROMIS scores						
Global physical health	−0.26 (0.07)	0.002*	−0.07 (0.07)	0.5	−0.11 (0.07)	0.2
Physical function	−0.27 (0.07)	0.002*	−0.12 (0.07)	0.18	−0.15 (0.07)	0.09
Depression	0.07 (0.07)	0.5	−0.06 (0.07)	0.57	0.04 (0.07)	0.7
Anxiety	0.02 (0.07)	0.88	−0.03 (0.07)	0.8	−0.06 (0.07)	0.53
Fatigue	0.14 (0.07)	0.1	−0.04 (0.07)	0.68	0.09 (0.07)	0.33
Sleep disturbance	0.05 (0.07)	0.65	−0.02 (0.07)	0.88	−0.04 (0.07)	0.68
SAQ scores						
Overall	−0.18 (0.07)	0.05*	−0.02 (0.07)	0.89	−0.08 (0.07)	0.4
Physical limitations	−0.23 (0.07)	0.007*	−0.09 (0.07)	0.38	−0.18 (0.07)	0.02*
KCCQ scores						
Quality of life	−0.16 (0.07)	0.007	−0.06 (0.07)	0.57	0.02 (0.07)	0.87
Physical limitations	−0.23 (0.07)	0.007*	−0.09 (0.07)	0.33	−0.19 (0.07)	0.02*

hs-CRP indicates high sensitivity C-reactive protein; KCCQ, Kansas City Cardiomyopathy Questionnaire; NT-proBNP, N-terminal pro-b-type natriuretic peptide; PROMIS, Patient-Reported Outcomes Measurement Information System; RPM, remote patient monitoring; SAQ, Seattle Angina Questionnaire; and u-hs-cTnI, ultra-high sensitivity cardiac-specific troponin I.

*The findings that are statistically significant ($P \leq 0.05$).
REFERENCES

1. Nowbar AN, Giotto M, Howard JP, Francis DP, Al-Lamee R. Mortality from ischemic heart disease. Circ Cardiovasc Qual Outcomes. 2019;12:e003375. DOI: 10.1161/CIRCOUTCOMES.118.003375.

2. Pinho-Gomes A-C, Azevedo L, Ahn J-M, Park S-J, Hamza TH, Dr Bairey Merz would like to report funding from iRhythm, Abbott Diagnostics, K23HL127262, K23HL125941, and T32HL116273.

3. Farkouh ME, Serruys PW, Milojevic M, Kappetein AP, Stone GW, et al. PLoS One. 2013;8:e60759.

4. Speier W, Dzubur E, Zide M, Shufelt C, Joung S, Van Eyk JE, Moradi KM. Safety and efficacy of a common and simplified protocol for pacemaker and defibrillator surveillance based on remote monitoring: a long-term randomized trial (RM-ALONE). Eur Heart J. 2019;40:1837–1846.

5. Hindricks G, Varma N, Kacet S, Lewalter T, Seggaard P, Guédon-Moreau L, Proff J, Gerds TA, Anker SD, Torp-Pedersen C. Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled-level-data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J. 2017;38:1749–1755.

6. Shufelt C, Dzubur E, Joung S, Fuller G, Mouapi KN, Van Den Broek I, Lopez M, Dhawan S, Arnold CW, Speier W, et al. The relationship between B-type natriuretic peptide and hs-CRP: a gender-stratified analysis in a population-based study. Psychoneuroendocrinology. 2017;81:63–69.

7. Deverts DJ, Cohen S, DiLillo VG, Lewis CE, Kiefe C, Whooley MA, Matthews KA. Depressive symptoms, race, and circulating C-reactive protein: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Psychosom Med. 2010;72:734–741.

8. Ljunggren M, Lindahl B, Theorell-Haglöw J, Lindberg E. Association between obstructive sleep apnea and elevated levels of type B natriuretic peptide in a community-based sample of women. Sleep. 2012;35:1521–1527.

9. Speratus JA, Winder JA, Deyow RA, Prozinski J, McDonnell M, Fihn SD. Development and evaluation of the Seattle Angina Questionnaire: a new functional status measure for coronary artery disease. J Am Coll Cardiol. 1995;25:333.

10. Jolomol P, Patel PP, Conrad MJ, Chang L, Melenkovsky V, Wilson DH. Fully automated ultrasensitive digital immunoassay for cardiac troponin I based on single molecule array technology. Clin Chem. 2015;61:1283–1291.

11. Fox WR, Diercks DB. Troponin assay use in the emergency department for management of patients with potential acute coronary syndrome: current use and future directions. Clin Exp Emerg Med. 2016;3:1–8.

12. Bettercourt PM. Clinical usefulness of B-type natriuretic peptide measurement: present and future perspectives. Heart. 2005;91:1489–1494.

13. Mok CC, Birmingham DJ, Ho LY, Hebert LA, Rovin BH. High-sensitivity C-reactive protein, disease activity, and cardiovascular risk factors in systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2013;65:441–447.

14. Bordbar S, Bigi MAB, Fatehi F, Ding H, Walters D. Remote monitoring of patients with heart failure: an overview of systematic reviews. J Med Internet Res. 2017;19:e18.

15. Bashi N, Karunanithi M, Fatehi F, Ding H, Walters D. Remote monitoring of implantable cardioverter-defibrillators: insights from the pooled-level-data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J. 2017;38:1749–1755.

16. Dorsch AK, Thomas S, Xu X, Kaiser W, Dobkin BH;Investigators S. SIReACT: an international randomized clinical trial of activity feedback during inpatient stroke rehabilitation enabled by wireless sensing. Neurorehabil Neural Repair. 2015;29:407–415.

17. Garcia-Fernandez FJ, Osca Asensí J, Romero R, Fernández Lozano I, Larrazabal JM, Martinez Ferrer J, Ortiz R, Pombo M, Tornéz FJ, Moradi KM. Safety and efficiency of a common and simplified protocol for pacemaker and defibrillator surveillance based on remote monitoring: a long-term randomized trial (RM-ALONE). Eur Heart J. 2019;40:1837–1846.

18. Hindricks G, Varma N, Kacet S, Lewalter T, Seggaard P, Guédon-Moreau L, Proff J, Gerds TA, Anker SD, Torp-Pedersen C. Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled-level-data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J. 2017;38:1749–1755.

19. Piercy KL, Troiano RP. Physical activity guidelines for Americans from the US Department of Health and Human Services. Circ Cardiovasc Qual Outcomes. 2019;12:e005263. DOI: 10.1161/CIRCOUTCOM ES.118.005263.

20. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The physical activity guidelines for Americans. JAMA. 2018;320:2020–2028.

21. Taiyefi M, Shafiee M, Kazemi-Bajестani SMR, Esmaeil H, Darroudi S, Khakpour S, Mohammadi M, Ghanifar Z, Azarpajouh MR, Mohebbati M, et al. Depression and anxiety both associate with serum level of hs-CRP: a gender-stratified analysis in a population-based study. Psychoneuroendocrinology. 2017;81:63–69.

22. Deverts DJ, Cohen S, DiLillo VG, Lewis CE, Kiefe C, Whooley MA, Matthews KA. Depressive symptoms, race, and circulating C-reactive protein: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Psychosom Med. 2010;72:734–741.

23. Ljunggren M, Lindahl B, Theorell-Haglöw J, Lindberg E. Association between obstructive sleep apnea and elevated levels of type B natriuretic peptide in a community-based sample of women. Sleep. 2012;35:1521–1527.

24. Luther SA, McCullough PA, Havranek EP, Rumsfeld JS, Jones PG, Heidenreich PA, Peterson ED, Rathore SS, Krumholz HM, Weintraub WS, et al. The relationship between B-type natriuretic peptide and health status in patients with heart failure. J Card Fail. 2005;11:414–421.

25. Speier W, Dzubur E, Zide M, Shufelt C, Joung S, Van Eyk JE, Bairey Merz CN, Lopez M, Dhawan S, Arnold CW, Speier W, et al. The relationship between B-type natriuretic peptide and health status in patients with heart failure. J Am Coll Cardiol. 2005;35:1245–1255.
SUPPLEMENTAL MATERIAL
Table S1. Cardiovascular Risk Biomarker Levels, Biometric and Psychometric Values.

Cardiovascular Risk Biomarkers	
NT-proBNP (pg/ml)	126.5 (66, 286.5)
u-hs-cTnI (ng/L)	1.94 (0.98, 5.23)
hs-CRP (mg/dL)	0.12 (0.05, 0.33)

Biometric RPM	
Steps per week	5726 (4005, 8293)
Physical activity, min/week	
Light level	197 (151, 250)
Moderate/vigorous level	37 (28, 53)
Heart rate, beats/min	
During rest	67±8
During activity	83±10

Psychometric RPM	
PROMIS scores	
Global physical health	47±9
Physical function	45 (40,53)
Depression	49 (41,56)
Anxiety	53 (47,58)
Fatigue	51 (46,57)
Sleep disturbance	51 (44,56)
SAQ-7 scores	
Overall	77 (63,89)
Physical limitation	83 (58,100)
KCCQ scores	
Quality of life	75 (50, 88)
Physical limitation	83 (67, 100)

Values are % frequency for categorical variables, mean±SD for normally distributed continuous variables, median (IQR) for MACE surrogate biomarkers, median (25th, 75th percentile) for non-normally distributed continuous variables. PROMIS, Patient-Reported Outcomes Measurement Information System; SAQ-7, Seattle Angina Questionnaire; KCCQ, Kansas City Cardiomyopathy Questionnaire.
Table S2. R2 Values for Each Test.

Term	NT-proBNP_adjusted_R2	NT-proBNP_R2	u-hs-cTnl_adjusted_R2	u-hs-cTnl_R2	hs-CRP_adjusted_R2	hs-CRP_R2
Scale(log_steps_week)	0.17	0.19	0.19	0.21	0.16	0.18
Scale(log_light_physical_activity_week)	0.13	0.15	0.16	0.18	0.16	0.18
Scale(log_moderate_physical_activity_week)	0.15	0.18	0.28	0.3	0.17	0.2
Scale(resting_heart_rate_week)	0.09	0.11	0.18	0.2	0.17	0.18
Scale(active_heart_rate_week)	0.13	0.14	0.2	0.22	0.16	0.18
Scale(PROMIS_physical_health)	0.13	0.15	0.15	0.17	0.18	0.2
Scale(PROMIS_physical_function)	0.13	0.15	0.17	0.19	0.19	0.2
Scale(PROMIS_depression)	0.07	0.09	0.15	0.17	0.17	0.19
Scale(PROMIS_anxiety)	0.07	0.09	0.15	0.17	0.17	0.19
Scale(PROMIS_fatigue)	0.09	0.11	0.15	0.17	0.18	0.19
Scale(PROMIS_sleep_disturbance)	0.07	0.09	0.15	0.17	0.17	0.19
Scale(SAQ_overall)	0.1	0.12	0.14	0.16	0.17	0.19
Scale (SAQ_physical_limitations)	0.11	0.13	0.15	0.17	0.2	0.22
---------------------------------	------	------	------	------	------	------
Scale (KCCQ_quality_of_life)	0.1	0.12	0.15	0.16	0.17	0.19
Scale (KCCQ_physical_limitations)	0.12	0.14	0.15	0.17	0.17	0.18
Table S3. Associations of self-reported outcomes demonstrating non-linear associations with NT-proBNP.

Outcome: ln NT-proBNP	Est. (SE)	P value
PROMIS Global Physical Health, for score overall	-0.26 (0.07)	0.002
PROMIS Global Physical Health, if score <50	-0.40 (0.12)	0.001
PROMIS Global Physical Health, if score >=50	0.001 (0.18)	0.99
SAQ Physical Limitation, for score overall	-0.23 (0.07)	0.007
SAQ Physical Limitation, if score <80	-0.44 (0.14)	0.001
SAQ Physical Limitation, if score >=80	0.22 (0.23)	0.35