MAGE-A1 in lung adenocarcinoma as a promising target of chimeric antigen receptor T cells

Yuan Mao1,2,3†, Weifei Fan3†, Hao Hu††, Louqian Zhang1, Jerod Michel5, Yaqin Wu6, Jun Wang3, Lizhou Jia2, Xiaojun Tang2, Li Xu7, Yan Chen7, Jin Zhu8, Zhenqing Feng9, Lin Xu1*, Rong Yin1* and Qi Tang2,9*

Abstract

Background: Cancer/testis antigens (CTAs) are a special type of tumor antigen and are believed to act as potential targets for cancer immunotherapy.

Methods: In this study, we first screened a rational CTA MAGE-A1 for lung adenocarcinoma (LUAD) and explored the detailed characteristics of MAGE-A1 in LUAD development through a series of phenotypic experiments. Then, we developed a novel MAGE-A1-CAR-T cell (mCART) using lentiviral vector based on our previous MAGE-A1-scFv. The anti-tumor effects of this mCART were finally investigated in vitro and in vivo.

Results: The results showed striking malignant behaviors of MAGE-A1 in LUAD development, which further validated the rationality of MAGE-A1 as an appropriate target for LUAD treatment. Then, the innovative mCART was successfully constructed, and mCART displayed encouraging tumor-inhibitory efficacy in LUAD cells and xenografts.

Conclusions: Taken together, our data suggest that MAGE-A1 is a promising candidate marker for LUAD therapy and the MAGE-A1-specific CAR-T cell immunotherapy may be an effective strategy for the treatment of MAGE-A1-positive LUAD.

Keywords: Lung adenocarcinoma, Cancer/testis antigen, MAGE, CAR-T cell

Introduction

Lung cancer (LC) incidence has been continuously increasing for the past few years worldwide [1]. According to the latest data on cancer statistics, approximately 700,000 new cases of LC occurred in 2015, and LC has become the leading cause of cancer-related mortality in China [2]. Non-small cell lung cancer (NSCLC) accounts for 85% of all cases of LC, and lung adenocarcinoma (LUAD) is the most common histological type of NSCLC, accounting for nearly 40% of all LC-related deaths [3, 4]. Despite significant improvements in LUAD treatment, including surgery, chemotherapy, radiotherapy, and especially targeted therapy, the overall survival (OS) of LUAD is still frustrating. The 5-year survival rate of patients with LUAD is less than 30% when it is treated in an early stage, and the OS rate decreases in patients with advanced LUAD because of its highly aggressive and metastatic characteristics [5, 6]. Therefore, it is of tremendous importance to develop novel therapeutic strategies for patients with LUAD.

Adoptive immunotherapy has been proven to have enormous potential in cancer treatment. In particular, chimeric antigen receptor-engineered T (CAR-T) cells have demonstrated antitumor activity, especially for hematological malignancies such as leukemia and lymphomas [7, 8]. For solid tumors, CAR-T therapy has also made progress, including in colorectal cancer [9], breast cancer [10], thyroid cancer [11], and head and
From the CTA database in our previous study [22], we retrieved LUAD-related data and screened candidate CTAs by score ranking (normalized expression > 3%). Then, we searched the GTEx Portal database (https://www.gtexportal.org) to further identify appropriate CTAs that are only expressed in testes and not in normal tissues. Next, we inspected the GeneCard database (http://www.genecards.org) to filter suitable CTAs that are expressed in the cytomembranes of cancer cells (expression confidence > 3). Moreover, we employed The Cancer Genome Atlas (TCGA) data (https://cancergenome.nih.gov) to validate the RNA expression levels of eligible CTAs in LUAD tissues and corresponding noncancerous tissues (expression fold change > 10). Finally, we checked the Human Protein Atlas database (http://www.proteinatlas.org) to ensure CTA protein expression in LC.

Tissue sample collection
A tissue microarray (TMA) containing 90 cases of normal human tissue samples was purchased from Outdo Biotech Co., Ltd. (Shanghai, China). Simultaneously, five LUAD tissue samples and corresponding non-cancerous tissue samples were collected from the Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital. A TMA containing 93 cases of LUAD was also purchased from Outdo Biotech Co., Ltd. (Shanghai, China) [23]. Important clinical parameters were collected along with the LUAD TMA. Written informed consent was obtained from the patients for the publication of this study and the use of any accompanying images. The study protocol was approved by the Ethics Committee of Nanjing Medical University Affiliated Cancer Hospital, and all experiments were performed following the approved guidelines of Nanjing Medical University.

Cell lines and reagents
Four LUAD cell lines (PC9, H1299, GLC82, A549) and the human embryonic kidney 293T cell line (HEK-293T) were preserved in our lab and enrolled in the present study. The human melanoma A375 cell line was purchased from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). The human normal bronchial epithelial (HBE) cell line was kindly provided by Professor. Erbao Zhang from the Department of Epidemiology and Biostatistics, Nanjing Medical University, to serve as the non-cancerous cell line. Peripheral blood mononuclear cells (PBMCs) derived from a healthy donor were collected by Ficoll-Hypaque density-gradient centrifugation conducted by the Jiangsu Blood Center. Medium with recombinant human interleukin-2 (IL-2) 300 U/ml was used for the expansion of T cells.

One-step qPCR, western blotting, immunofluorescence, and immunohistochemistry analyses
MAGE-A1 expression was thoroughly examined in LUAD cell lines and tissue samples. For the qPCR, the sequences of the primers are listed in Additional file 7: Table S2. For the western blotting analysis, two types of primary monoclonal antibodies were obtained from Abcam (ab193330, ab243935, Abcam, Cambridge, MA,
USA). The protocols of the qPCR test and western blotting analysis were described previously [24, 25]. The immunofluorescence test was conducted following the protocols described in our previous study [26]. Cells were incubated with FITC-labeled human anti-MAGE-A1 antibody (Abcam, ab212590) in the dark. Were incubated with FITC-labeled human anti-MAGE-A1 antibody (Abcam, ab212590) in the dark. 4 were incubated with FITC-labeled human anti-MAGE-A1 antibody (Abcam, ab212590) in the dark. 4 were incubated with FITC-labeled human anti-MAGE-A1 antibody (Abcam, ab212590) in the dark. 4 were incubated with FITC-labeled human anti-MAGE-A1 antibody (Abcam, ab212590) in the dark. 4 were incubated with FITC-labeled human anti-MAGE-A1 antibody (Abcam, ab212590) in the dark.

Plasmid construction, lentivirus packaging, and infection

The overexpression and short-hairpin RNA (shRNA)-mediated knockdown lentivirus plasmids and packaging vectors were prepared as previously described [29]. Full-length MAGE-A1 was inserted into the lentivirus pLenti-EF1a-EGFP-P2A-Puro-CMV-MCS vector (Obio Technology, Co., Ltd., Shanghai, China). The detailed sequences of the three shRNAs and related siRNAs used in this study are listed in Additional file 7: Table S2. shRNA targeting MAGE-A1 (shmAGE) or scrambled shRNA (shCT) were cloned into pLKD-CMV-G&PR-U6-shRNA (Obio Technology). PC9 cells were then infected with MAGE-A1 overexpression (OEMAGE) or shMAGE viruses. After viral transfection, MAGE-A1 expression was evaluated by qPCR and western blotting analyses. Then, stable OEMAGE and shMAGE PC9 cell lines were confirmed by puromycin selection and prepared for further experiments.

Cell proliferation, migration, and invasion assays

CCK-8, wound healing, and Transwell assays were performed in OEMAGE and shMAGE PC9 cell lines, respectively, to detect the malignant behaviors of MAGE-A1 in LUAD, including its effects on cell proliferation, cell migration, and cell invasion, as described before [30].

Tumor growth assay in mice

Athymic 4-week-old BALB/c nude mice were purchased from SLAC Laboratory Animal Co., Ltd. (Shanghai, China) and kept under specific pathogen-free (SPF) conditions. In brief, 1.0 × 10^7 PC9 (OEMAGE and shMAGE) cells were injected into nude mice subcutaneously. After inoculation, the tumor-bearing mice were observed, and tumor size was measured with a Vernier caliper. The subsequent procedures of the tumor growth assay in mice were described previously [26].

mCAR construction

The MAGE-A1-CAR (mCAR) was designed to consist of a human CD8α leader, anti-MAGE-A1-scFv, CD8α hinge and transmembrane domain (CD8α), and CD137 and CD3ζ cytoplasmic domains [31, 32]. The anti-MAGE-A1 scFv was determined in our previous study [33], and the detailed amino acid sequence is shown in Additional file 8: Table S3. The fragments encoding the CD8α leader, anti-MAGE-A1 scFv, CD8α, and CD137-CD3ζ were produced by PCR and cloned into the EcoRI and XbaI sites of the lentiviral expression vector pLNVX-IRES-ZsGreen (Clontech, USA). All positive clones were confirmed by sequencing analysis.

Lentivirus production

For lentivirus production, HEK-293T cells were co-transfected with mCAR vector, pMD2.G plasmid (Invitrogen, Carlsbad, CA, USA) and packaging psPAX2 plasmid (Invitrogen). Supernatants containing the lentivirus were collected 48 h and 72 h later. After filtration through a 0.45-μm filter, the lentivirus supernatant was concentrated 30-fold by ultracentrifugation (Amicon Ultra 100 kD, Millipore, USA). 293T cells transfected with CD19-CAR (unrelated-CAR) and untransfected 293T cells (blank) were employed as controls. Then, CD3ζ was selected as the target to test mCAR expression after 293T cell transfection by western blotting analysis.

Sandwich ELISA assay

A sandwich ELISA was performed to evaluate the binding ability of mCAR to MAGE-A1 as described before [34]. Briefly, 96-well plates were seeded with transfected 293T cells (mCAR and unrelated-CAR). Untransfected 293T cells (blank) were used as a negative control. Then, each well was washed and MAGE-A1 antigens were added (Novus Biologicals, Littleton, CO, USA) at different dilutions. Then, the supernatants were collected and added to another 96-well plate, which was preliminarily coated with anti-MAGE-A1 rabbit polyclonal antibody (LS-C327797-200, LifeSpan BioSciences, Seattle, WA, USA), followed by the addition of a primary anti-MAGE-A1 mouse monoclonal antibody (LS-C25368-100, LifeSpan BioSciences) and a secondary anti-mouse antibody. After washing, the optical density at 450 nm (OD450) was measured with an automatic microplate reader (Thermo Fisher Scientific, USA). The supernatant lentivirus titers were detected following the protocol described previously [35, 36].

T cell collection and mCART preparation

PBMCs were separated from 10 mL of peripheral blood from a healthy volunteer using lymphocyte separation medium. PBMCs were activated in 24-well plates coated with anti-human CD3 (Life Technologies, Mountain View, CA, USA) and anti-human CD28 antibodies (Life
of approximately 100 mm3, and mice underwent fully
ment was initiated when the xenografts reached volumes
oculation, mice were divided randomly into three groups
escent imaging of in vivo tumors, mice were injected with
For LUAD xenograft model establishment and biolumin-
Athymic BALB/c nude mice were purchased from SLAC.

Flow cytometry was performed on a BD FACSCelesta
flow cytometer. Data were graphed using FlowJo 7.6
software (Ashland, OR, USA).

Detection of the anti-tumor effectiveness of mCART
in vitro
Antitumor activity was quantified by LDH release assay,
as described previously [37]. mCART, unrelated-CART,
and T were co-cultured with LUAD cell lines (H1299,
PC9, PC9(sh)) at different ratios (20:1, 10:1, 5:1, 2:1).
Then, mCART was co-cultured with different LUAD cell
lines (PC9, H1299, GLC82, A549) at a fixed ratio (10:1).
The HBE cell line was employed as a control. Unrelated-
CART representsCD19-CAR-T cells that are produced
in vivo

Detection of the anti-tumor effectiveness of mCART
in vivo
Athymic BALB/c nude mice were purchased from SLAC.
For LUAD xenograft model establishment and biolumi-
nescent imaging of in vivo tumors, mice were injected with
luciferase-expressing H1299 cells with matrix. After in-
oculation, mice were divided randomly into three groups
(mCART group, unrelated-CART group, T group).
Treatment was initiated when the xenografts reached volumes
of approximately 100 mm3, and mice underwent fully
myeloablative radiation. On days 0, 3, and 6, mice received
intravenous treatment with mCART (1 × 107), unrelated-
CART and T cells. The tumor diameter was measured,
and the tumor volume was calculated as described previ-
ously [26]. For bioluminescent imaging, mice were injected intraperitoneally with D-luciferin (Gold Biotechnol-
ogy, St. Louis, MO, USA), and images were recorded on
days 2, 5, 8, 13, and 20 by utilizing an IVIS Lumina II
(PerkinElmer, Hopkinton, MA, USA). On day 27, all mice
were killed, and the xenograft tumors were removed for
further analysis. Specifically, CD3 expression was detected
by IHC analysis using a primary rabbit monoclonal anti-
body (Abcam, ab16669). The detailed protocol of IHC
analysis was described previously.

Results
MAGE-A1 is determined to be a suitable candidate CTA
for LUAD
First, we retrieved raw LUAD-related data and created a
CTA expression heat map with a total of 1019 CTAs
(Fig. 1a, Additional file 6: Table S1). Then, we screened
77 candidate CTAs by score ranking (normalized expres-
sion > 3%) (Fig. 1b, Additional file 6: Table S1). Subse-
quently, we searched the GTEx Portal database to
further identify 49 CTAs that were only expressed in the
testes and not in normal tissues (Fig. 1c, Additional file 1:
Figure S1, Additional file 6: Table S1). After that, we
inspected the GeneCard database to identify four suit-
able CTAs that were expressed in the cytomembranes of
cancer cells (expression confidence > 3) because the
cytomembrane expression of CTAs is important for the
construction of CAR-T cells (Fig. 1d, Additional file 2:
Figure S2, Additional file 6: Table S1). Moreover, we
employed TCGA data to validate 2 CTAs, of which the
RNA expression in LUAD tissues was markedly higher
than that in the corresponding non-cancerous tissues
(expression fold change > 10) (Fig. 1e, Additional file 6:
Table S1). In addition, we consulted the Human Protein
Atlas database to ensure that the qualified CTAs are
positively expressed in LC (Fig. 1f, Additional file 6:
Table S1). Finally, MAGE-A1 was selected as the appro-
priate LUAD-associated CTA from among the original
1019 CTAs (Fig. 1g).

MAGE-A1 is highly expressed in LUAD cell lines
To confirm the expression of MAGE-A1 in LUAD, qPCR
and western blotting analyses were performed in LUAD
cell lines. In four LUAD cell lines, the results of both
qPCR and western blotting analyses showed that MAGE-
A1 expression was significantly higher than that in the
normal HBE cell line (Fig. 2a, b). Immunofluorescence
assay revealed that MAGE-A1 could be stained in MAGE-
A1-positive PC9 cell but not in MAGE-A1-negative HBE
cell. The human melanoma A375 cell line was employed
as a positive control and MAGE-A1-positive staining
could also be observed in A375 cell line. Strong staining
of MAGE-A1 was mainly localized in the cytomembrane
while relatively weak staining of MAGE-A1 was observed
in the cytoplasm of cancer cells (Fig. 2c).

MAGE-A1 is dominantly expressed in LUAD tissues
We searched GTEx Portal database to preliminarily de-
tect the expression mode of MAGE-A1 in normal hu-
man tissue and the data showed that MAGE-A1 was
mostly expressed in human testis (Fig. 3a). Further, IHC
analysis in normal human TMA confirmed that the
MAGE-A1 expression was largely witnessed in human
testicle samples while rarely observed in other human
tissue samples (Fig. 3b). Then, we collected five LUAD
Fig. 1 Bioinformatics analyses for the CTA screening. a Raw data were retrieved, and a heat map of the expression of 1019 CTAs in LUAD was created. b A total of 77 candidate CTAs were screened based on score ranking (normalized expression fold > 3%). c In total, 49 candidate CTAs that were exclusively expressed in the testis were screened (GTEx Portal database). d Four CTAs (MAGE-A1, ADAM2, TEX101, and Clorf49) that were expressed in the cytomembranes of cancer cells (expression confidence > 3) were screened (GeneCard database). e Two CTAs (MAGE-A1 and TEX101) had elevated RNA expression in LUAD tissues compared with the corresponding noncancerous tissues (expression fold change > 10, marked by a red box) and were selected (TCGA database). f One CTA (MAGE-A1) that was positively expressed in LC was screened and is marked by a red box (Human Protein Atlas database). g The screening diagram summarizes the entire process by which MAGE-A1 was finally identified as an appropriate CTA from among the original 1019 CTAs.
and noncancerous tissue samples, and the data from qPCR and WB tests showed that the expression of MAGE-A1 in LUAD was elevated compared with that in non-cancerous tissues (Fig. 4a, b). After IHC analysis in LUAD TMA, 4 samples of LUAD and 9 samples of non-cancerous tissue in TMA were missing. The results of IHC analysis demonstrated that high MAGE-A1 expression was detected in 49 of 89 (44%) LUAD tissues compared with 14 of 78 (18%) non-cancerous tissues, and the difference was highly significant ($\chi^2 = 24.36$, $p = 0.001$). The IHC staining for MAGE-A1 expression and its relationships with important clinical characteristics in LUAD patients are presented in Fig. 4c and Table 1. A high level of MAGE-A1 expression was significantly correlated with tumor diameter ($p = 0.023$) and N status ($p = 0.031$). A survival analysis was performed, and the results illustrated that MAGE-A1 expression was critically associated with OS in patients with LUAD ($p = 0.022$) but was not an independent prognostic predictor ($p = 0.087$) (Fig. 4d and Table 2).

MAGE-A1 is positively associated with malignant behaviors of LUAD

Because MAGE-A1 was upregulated in LUAD, the biological role of MAGE-A1 was explored by CCK-8, wound healing and transwell assays in the PC9 cell line. As shown in Fig. 5a, we successfully constructed MAGE-A1 knockdown (shMAGE) and MAGE-A1 overexpression (OEMAGE) models. shMAGE drastically inhibited PC9 cell proliferation, migration, and invasion, while OEMAGE significantly augmented PC9 cell proliferation, migration, and invasion (Fig. 5b–d). Then, shMAGE and OEMAGE PC9 cells were subcutaneously injected into nude mice. As shown in Fig. 5e, the xenograft tumors that developed from

Fig. 2 The detection of MAGE-A1 expression in LUAD cell lines. **a, b** Detection of MAGE-A1 expression in LUAD cell lines (PC9, H1299, GLC82, A549) by qPCR and western blotting analyses. The human normal bronchial epithelial (HBE) cell line was used as a non-cancerous control cell line. *Significant difference of MAGE-A1 expression in LUAD cell lines compared with HBE cells. $p < 0.05$. **c** Immunofluorescence assay revealed that MAGE-A1 could be stained in MAGE-A1-positive PC9 cell but not in MAGE-A1-negative HBE cell. The human melanoma A375 cell line was employed as a positive control and MAGE-A1-positive staining could also be observed in A375 cell line. Strong staining of MAGE-A1 was mainly localized in the cytomembrane while relatively weak staining of MAGE-A1 was observed in cytoplasm of cancer cells. Green, MAGE-A1 staining; red, DSG-2 staining; blue, nuclear staining.
OEMAGE PC9 cells grew significantly faster than those that developed from shMAGE PC9 cells. Consistently, the weight (Fig. 5f, Additional file 3: Figure S3) and volume (Fig. 5g) of MAGE-A1 knockdown tumors were much lighter and smaller than those of MAGE-A1 overexpression tumors at 48 days after cell inoculation. These results indicate the promotional function of MAGE-A1 in LUAD tumorigenesis.

Generation and characterization of mCART

The structure of mCAR is shown in Fig. 6a, consisting of a signal peptide leader sequence of CD8α, MAGE-A1-scFv, the hinge spacer, and the transmembrane region of CD8α, the costimulatory molecule CD137 intracellular domain and the CD3ξ signaling moieties. Then, the western blotting analysis was used to detect CD3ξ expression to illustrate the outcome of mCAR generation,
Fig. 4 The detection of MAGE-A1 expression in LUAD tissues. a, b qPCR and WB tests in five LUAD and non-cancerous tissue samples showed that the expression of MAGE-A1 in LUAD was elevated compared with that in non-cancerous tissues. *Significant difference of MAGE-A1 expression in LUAD tissue samples compared with non-cancerous tissue samples. \(p < 0.05 \). c Detection of MAGE-A1 expression in a tissue microarray (TMA) containing 92 LUAD samples by immunohistochemistry (IHC) analysis. Positive staining of MAGE-A1 was mainly located in the cytoplasm of LUAD cells. d The survival analysis and Kaplan-Meier curve illustrated that positive MAGE-A1 expression \((p = 0.022) \), positive lymph node metastasis \((p = 0.001) \), positive N status \((p = 0.002) \), and advanced TNM stage \((p = 0.001) \) were significantly correlated with a poor prognosis of patients with LUAD.
and the results confirmed the successful construction and expression of mCAR in 293T cells after transfection. 293T cells transfected with unrelated-CAR were used as a positive control, and 293T cells without transfection were employed as a negative control (Fig. 6b). The results of the sandwich ELISA further implied that compared with 293T cells transfected with unrelated-CAR or untransfected 293T cells, 293T cells transfected with mCAR could specifically bind the uncombined MAGE-A1 antigen, which indicates that the MAGE-A1-scFv contained in mCAR could expectedly recognize MAGE-A1 antigen (Fig. 6c). The lentivirus titer was 1×10^8 TU/mL after detection (Additional file 4: Figure S4). Then, the lentiviral vector encoding mCAR or unrelated-CAR was used to transfect CD3/CD28-activated T cells from a healthy donor. After 7 days of stimulation, fluorescence-activated cell sorting (FACS) analysis demonstrated that the transfection efficiencies of mCART and unrelated-CART by GFP (ZsGreen) were 77.0% and 74.3%, respectively. In comparison, MAGE-A1-PE staining showed that the transfection efficiency of mCART was 65.2%, which was significantly higher than that of unrelated-CART (1.22%) (Fig. 6d). Then, the phenotype of the stimulated T cells after transfection was further determined by FCM analysis. One week after co-culture in the presence of CD3/CD28 antibodies, more than 90% of the sorted cells were CD3-positive, and 80% of the sorted cells were CD8-positive in mCART as well as in unrelated-CART (Fig. 6e). The results strongly suggested that T cells were successfully infected with the lentiviral vector containing the mCAR and that the characteristic mCART was verified.

mCART exerts anti-tumor activity against LUAD cells in vitro

When co-cultured with LUAD cell lines, mCART mediated significant cell-killing activity in a dose-dependent manner. As shown in Fig. 7a, the tumor-inhibitory rate of mCART in the H1299 and PC9 (MAGE-A1 positive) cell lines was progressively upregulated along with the increase in the E:T ratio of mCART. mCART, with a 20:1 ratio, showed the most effective cell killing activity. In comparison, mCART showed highly ineffective cell-killing ability in MAGE-A1-negative cell lines (HBE and PC (shMAGE)), even though the E:T ratio of mCART was elevated. Then, a fixed E:T ratio of mCART was chosen, and mCART also illustrated significant tumor-inhibitory efficacy for all MAGE-A1-positive LUAD cell lines (Fig. 7b). In all the cell viability assays, unrelated-CART and T showed no cell-killing activities, regardless of the E:T ratio selected or the cell type used. Moreover, mCART co-incubated with LUAD cells caused a large release of cytokines, including IFN-γ and IL-2. In contrast, the release of IFN-γ and IL2 remained unchanged in the unrelated-CART group and T group (Fig. 7c, d). The above data clearly showed the potent tumor-inhibitory role of mCART in MAGE-A1-positive LUAD cells.

mCART exerts anti-tumor activity against LUAD xenografts in vivo

The xenograft tumor models produced by inoculation of athymic nude mice with H1299 cells were constructed to investigate the anti-tumor function of mCART, following the protocol shown in Fig. 8a. Bioluminescent imaging of xenograft LUAD derived from luciferase-expressing H1299 cells illustrated a substantial effect on

Groups	No.	MAGE-A1 +	MAGE-A1 %	χ^2	P value
Gender					
Male	49	28	0.1918	0.661	
Female	40	21			
Age					
\geq 60 years	56	31	0.0055	0.941	
< 60 years	33	18			
Tumor diameter					
\geq 3 cm	56	36	5.1993	0.023*	
< 3 cm	33	13			
Pathological grade					
Grade I–II	64	36	0.1312	0.717	
Grade III	25	13			
Lymph node metastasis					
Positive	48	30	2.3246	0.127	
Negative	39	18			
Insufficient data	2	1			
T status					
T1–T2	68	35	1.4974	0.221	
T3–T4	21	14			
N status					
Positive	36	25	4.6647	0.031*	
Negative	50	23			
Insufficient data	3	1			
M status					
Positive	1	1	0.8051	0.370	
Negative	87	48			
Insufficient data	1	0			
TNM stage					
Stage I–II	44	21	2.3890	0.122	
Stage III–IV	42	27			
Insufficient data	3	1			

*$p < 0.05$
the tumors upon mCART administration (Fig. 8b, c). The tumor growth curve also confirmed that mCART led to a progressive and critical reduction in tumor burden (Additional file 5: Figure S5A). The mean body weight of nude mice in the three groups showed no significant difference (Additional file 5: Figure S5B). On day 27, all mice were sacrificed, and the xenograft tumors were removed and analyzed. The tumor volume (Fig. 8d), weight (Fig. 8e), and morphology (Fig. 8f) further confirmed that mCART can specifically target and significantly inhibit MAGE-A1-positive LUAD xenograft growth in vivo. IHC analysis of CD3 expression in xenograft tumors highly proved that mCART was able to infiltrate into tumors and exert tumor-inhibitory effectiveness (Fig. 8g).

Discussion

Notwithstanding the noteworthy success of CAR-T cells for the treatment of hematologic malignancies, the efficacy of CAR-T cells in the treatment of solid tumors is less effective due to obstacles and limitations, such as off-target and off-tumor toxicity, incompetence of infiltration and persistence, and immunosuppression in the tumor microenvironment [38]. Further development of CAR-T therapy in solid tumors needs to overcome many impediments. First and foremost, identifying a suitable target antigen is one of the greatest challenges in the development of CAR-T therapy for solid tumors [39]. Given the exceptional properties of CTAs, it is logical to look for an appropriate antigen from among the CTAs for CAR-T therapy. Based on previous research [22], we searched the CTA database for those related to LUAD. After a sequence of bioinformatics analyses, we successfully identified an appropriate target antigen, MAGE-A1, from among 876 possible CTAs.

As a member of the MAGE-A antigens, which are the best characterized CTAs, MAGE-A1 is also strictly tumor-specific and is detected in various solid tumors [40–42]. Although MAGE-A1 expression in LC has also been reported [43–45], the detailed and exclusive function of MAGE-A1 in LUAD remains unclear. After MAGE-A1 was screened as the most promising candidate by the aforementioned bioinformatics analyses, we performed a set of investigations to thoroughly examine the characteristics of MAGE-A1 in LUAD. IHC analysis of CD3 expression in xenograft tumors highly proved that mCART was able to infiltrate into tumors and exert tumor-inhibitory effectiveness (Fig. 8g).

Table 2 Univariate and multivariate analysis of prognostic factors for overall survival in LUAD patients

	Univariate analysis	Multivariate analysis				
	HR	p value	HR	p value	95% CI	95% CI
MAGE-A1 expression						
High versus low	1.78	0.022*	1.09–2.93	1.58	0.087	0.93–2.68
Gender						
Male versus female	1.38	0.183	0.86–2.20			
Age						
≥ 60 years versus < 60 years	0.96	0.861	0.59–1.55			
Tumor diameter						
≥ 3 cm versus < 3 cm	1.54	0.090	0.93–2.55			
Pathological grade						
Grade I–II versus grade III	0.88	0.633	0.53–1.47			
Lymph node metastasis						
Positive versus negative	2.47	0.001*	1.49–4.09	1.02	0.950	0.44–2.42
T status						
T1–T2 versus T3–T4	0.71	0.196	0.42–1.20			
N status						
Positive versus negative	2.11	0.002*	1.31–3.41	1.42	0.265	0.77–2.65
M status						
Positive versus negative	1.09	0.930	0.15–7.90			
TNM stage						
Stage I–II versus stage III–IV	0.36	0.001*	0.21–0.59	0.45	0.029*	0.22–0.92

HR hazard ratio, CI confidence interval, LUAD lung adenocarcinoma
*p < 0.05
Fig. 5 The investigation of MAGE-A1 activity in the development of LUAD in vitro and in vivo. a MAGE-A1 knockdown (shMAGE) and MAGE-A1 overexpression (OEMAGE) models were successfully constructed using the PC9 cell line. For shMAGE, qPCR and western blotting analyses showed that MAGE-A1 expression levels in shMAGE1 (sh1), shMAGE2 (sh2), and shMAGE3 (sh3) were significantly reduced. *Significant difference in MAGE-A1 expression in shMAGE cell line compared with the wild-type (WT) cell line. \(p < 0.05 \). For OEMAGE, qPCR and western blotting analyses showed that the MAGE-A1 expression level in OEMAGE (OE) was significantly elevated. *Significant difference in MAGE-A1 expression in the OEMAGE cell line compared with the WT cell line. \(p < 0.05 \). b–d CCK-8, wound healing, and transwell assays demonstrated that shMAGE drastically inhibited PC9 cell proliferation, migration, and invasion, while OEMAGE significantly augmented PC9 cell proliferation, migration, and invasion in vitro. *Significant difference in cell proliferation, migration, and invasion in shMAGE or OEMAGE cell lines compared with WT cell lines. e, f Xenograft tumors developed from OEMAGE cells grew significantly faster than those developed from shMAGE cells. g The volume of shMAGE tumors was much smaller than that of OEMAGE tumors at 48 days after cell inoculation. *Significant difference in tumor volume in tumors from shMAGE or OEMAGE cell lines compared with tumors from WT cell lines.
Fig. 6 (See legend on next page.)
In LUAD tissue samples, elevated MAGE-A1 expression was also observed and IHC analysis in LUAD TMA further demonstrated that positive MAGE-A1 expression in LUAD was correlated with certain clinical-pathologic characteristics, including tumor diameter and N status. The survival analysis revealed that a high level of MAGE-A1 expression was correlated with unfavorable outcomes of LUAD. All the above data concurred with the studies that showed high expression levels and a prognostic role of MAGE-A1 in LUAD [43, 45, 46].

Although the tumor-promoting activities of MAGE-A1 have been reported in melanoma, possibly due to the activation of the p-C-JUN or ERK-MAPK signaling pathways [47, 48], the biological functions of MAGE-A1 in LUAD have not been fully investigated. Hence, the OEMAGE and shMAGE models in PC9 cells were

Fig. 6 MAGE-A1-CAR-T cell construction and identification. a The lentiviral vector construct of MAGE-A1-CAR (mCAR), the TM transmembrane portion. The mCAR is composed of the MAGE-A1-scFv linked to a human CD8a leader, CD8a hinge, and the transmembrane domain fused to an intracellular signaling domain derived from human CD137 and CD3ζ. b CD3ζ was detected by Western blotting in HEK-293T cells transfected with mCAR. HEK-293T cells transfected with an unrelated-CAR were used as a positive control. Untransfected 293T cells (blank) were employed as a negative control. c A sandwich ELISA was performed to evaluate the binding ability of mCAR to MAGE-A1. 293T cells transfected with mCAR and unrelated-CAR were enrolled. Untransfected 293T cells were employed as control (blank). d The transfection efficiencies of mCAR and unrelated-CAR by GFP (ZsGreen) were 77.0% and 74.3%, respectively. In comparison, the transfection efficiencies of mCAR and unrelated-CAR by MAGE-A1-PE staining were 65.2% and 1.22%, respectively. e Flow cytometry analysis showed that CD3-positive, CD4-positive, and CD8-positive T cells in mCAR were obtained from PBMCs by magnetic bead separation, activated by CD3/CD28 co-stimulation and transfected by mCAR lentivirus. An unrelated-CAR was used as a positive control.

Fig. 7 Anti-tumor activity of mCART against LUAD was explored by LDH release assay in vitro. a The tumor-inhibitory rate of mCART in the H1299 and PC9 (both MAGE-A1 positive) cell lines was progressively upregulated along with the increase in the E:T ratio of mCART. The 20:1 ratio of mCART showed the most effective cell killing activity. In comparison, mCART was barely able to kill MAGE-A1-negative cell lines (HBE and PC (shMAGE)). *Significant difference in tumor-inhibitory rate in the mCART group compared with the T group. b A fixed 10:1 E:T ratio of mCART also demonstrated significant tumor-inhibitory efficacy in all MAGE-A1-positive LUAD cell lines. For all the cell viability assays, unrelated-CART and T showed no cell-killing activities, regardless of the E:T ratio selected or the cell type used. *Significant difference in tumor-inhibitory rate in the mCART group compared with the T group. c and d IFN-γ and IL-2 expression were detected when mCART was co-incubated with LUAD cells. The 10:1 E:T ratio of mCART was co-cultured with four different cell lines. After culturing, a larger amount of IFN-γ and IL-2 was released by mCART, and their release was highly associated with the level of MAGE-A1 expression in the LUAD cells. In contrast, the release of IFN-γ and IL-2 remained unchanged in unrelated-CART and T cells. *Significant difference in IFN-γ and IL-2 expression in the mCART group compared with the T group.
Fig. 8 The anti-tumor activity of mCART against LUAD was investigated by mouse xenografts in vivo. a Flow diagram of the in vivo test. For mCART preparation, PBMCs from a healthy donor were collected on day 10, and lentivirus infection was performed on day 6. Mice were subcutaneously implanted with luciferase-expressing H1299 cells until the tumor volume reached approximately 100 mm³ and then randomly divided into three groups (mCART, unrelated-CART, and T). On days 0, 3, and 6, mice received intravenous treatment with mCART (1 x 10^7), unrelated-CART, and T therapy. On days 2, 5, 8, 13, and 20, bioluminescent images were recorded. On day 27, all mice were killed, and the tumors from each animal were removed, measured, and weighed individually. b, c Serial bioluminescence imaging and tumor signal in mice was recorded to follow tumor progression. *Significant difference in bioluminescence imaging in the mCART group compared with that in the T group. d Serial volume of xenograft tumors. *Significant difference in the volume of xenograft tumors in the mCART group compared with the T group. e, f Comparison of xenograft tumor weight and morphology on day 27. *Significant difference in weight of xenograft tumors in the mCART group compared with the T group. g Comparison of CD3 expression in xenograft tumors by IHC analysis.
generated to investigate the malignant behaviors of MAGE-A1 in LUAD. In vitro, the results revealed that OEMAGE significantly increased cell proliferation, migration, and invasion. Conversely, shMAGE critically inhibited cell proliferation, migration, and invasion. In vivo, OEMAGE radically increased the tumor burden, while shMAGE considerably reduced tumor growth. The above data demonstrate that MAGE-A1 expression is functionally important for LUAD development, which is in line with previous studies that described a prominent role played by MAGEs in driving tumorigenesis and progression in LUAD [49–51].

Previously, we produced a human anti-MAGE-A1 scFv and synthesized an immunotoxin [33]. To confirm the legitimacy and suitability of MAGE-A1 as a target antigen for LUAD treatment, we tried to construct a mCAR by adopting the anti-MAGE-A1 scFv and fusing it with CD8α leader, CD8™ and CD137-CD3ζ co-stimulatory domains. The results showed that mCAR was successfully generated and functionally expressed. Then, T cells were collected from a healthy donor, activated by CD3/CD28, expanded by IL-2 and transfected by mCAR lentivirus to produce mCART, which showed high transfection efficiencies and appropriate characteristics. Then, the cytotoxic activity of mCART was evaluated. The LDH results showed that mCART exerted significant cell-lysis activity for MAGE-A1-positive LUAD cells in a dose-dependent manner, accompanied by the release of IFN-γ and IL-2. Our data largely agree with a study reported by Thivyean et al., which illustrated that IFN-γ production could be detected in a positive c-Met expression mesothelioma cell line when it was treated with MET-specific CAR-T [52]. The in vitro results strongly implied that mCART can be activated and expanded in the presence of MAGE-A1-positive LUAD cells and that mCART could specifically destroy LUAD cells by secreting IFN-γ. The cytotoxic effectiveness was improved by increasing the effector to target (E:T) ratio. Moreover, the in vivo experiment thoroughly proved that the tumor-inhibitory competence of mCART for the tumor burdens of mice treated with mCART was much lower than that of mice administered unrelated-CART or T cells and the infiltration ability of mCART into xenograft tumors was also observed.

To date, numerous targets for CAR-T therapy in NSCLC have been evaluated, including EGFR, HER2, MSLN, GPC3, EpCAM, and MUC1 [53]. Nevertheless, MAGEs as targets for CAR-T therapy in LUAD are rare, and prior studies have paid more attention to antitumor vaccines. For instance, MAGE-A3 was once believed to be a potential target in cancer immunotherapy, and a clinical trial demonstrated a promising benefit [54]. The latest research provided negative information regarding MAGE-A3 as the immunotherapeutic adjuvant because it failed to improve the survival of patients with NSCLC [21]. More interestingly, MAGE-A3 was described by an influential study to be essential for cancer cell survival and was shown to play important roles in inducing oncogenic features in noncancerous cells [55]. Therefore, exploration of MAGEs should not be abandoned, and alternative therapeutic strategies should be considered. In the present study, we introduced MAGE-A1 into the CAR-T field and demonstrated the practicability of developing mCART for LUAD treatment.

Intriguingly, a recent study reported a negative attribute of MAGE-A1, showing that it exerted a suppressive, rather than a stimulatory role in breast and ovarian cancers. The major reason for this inconsistency is largely due to the disparity of cancer types, which could interfere with the function of c-JUN, FBXW7, and NICD1 and result in the apparently contradictory properties of MAGE-A1 in cancers [56, 57]. Despite this discrepancy, the dominant role of MAGE-A1 in the carcinogenesis of LUAD is well acknowledged, indicating that the scheme for the use of mCART in LUAD treatment is reasonable and convincing.

There are several issues we need to address. We did not employ NSG mice but rather chose athymic nude mice for the in vivo test. Although athymic nude mice are acceptable [10], the optimized and prevailing preclinical model for evaluating CAR-T cells is NSG mice [58]. Moreover, the side effects of mCART in mice were not thoroughly evaluated, such as the injury of important viscera, the potential toxicity to testis, and the release of serum cytokines. In addition, we kept the mice for only 1 month and therefore failed to provide survival data for the mice and data regarding the persistence of mCART. In comparison, Ruella et al. raised the NSG mice for over 8 months so the prognosis of mice and even the long-term immunological memory effect induced by CAR-T cells could be explored [59]. Above all, the mechanism of mCART in LUAD was not elucidated by the present study. For example, immunosuppressive factors in the tumor microenvironment (TME) seem to be a substantial challenge for CAR-T therapy in solid tumors. We need to further inspect how mCART affects the LUAD TME, including checkpoint pathways, cytokines, and other byproducts. In fact, research is ongoing to ameliorate therapeutic effectiveness and to investigate the mechanism of action of mCART in LUAD by our research group. The strategies include the design of dual targeting mCART to enhance tumor antigen recognition, the utilization of cytokine co-expression to improve the survival and infiltrating capacities of mCART, the development of combination therapy with checkpoint inhibitors to boost mCART performance by counteracting immunoevasion, and the construction of hu-CD34-NSG™ and PDX mice models to mimic human TME for mCART mechanism research [60–65].
Conclusions
Our present study demonstrated that MAGE-A1 is a prospective target in LUAD and that the innovative mCART exerts notable antitumor activity against MAGE-A1-positive LUAD. This current study offers a new strategy for LUAD immunotherapy.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13045-019-0793-7.

Additional file 1: Figure S1. NAA11 was employed to demonstrate the representative expression pattern of 49 CTAs in human tissues, which are marked in red boxes (GTEx Portal database).

Additional file 2: Figure S2. Demonstration of expression of compartment and confidence for four CTAs (MAGE-A1, ADAM2, TEX101 and Clor49) (GeneCard database).

Additional file 3: Figure S3. Comparison of tumor weight of xenograft tumors in WT, shMAGE, shCT, OEMAGE, OECT tumors at 48 days after cell inoculation. * Significant difference in tumor weight in the OEMAGE and shMAGE groups compared with that in the WT group.

Additional file 4: Figure S4. Titer detection of lentivirus transfection and determination of optimum titer in 10^{-2}, 10^{-3}, 10^{-4}, and 10^{-5} different concentrations of lentivirus. The lentivirus titer was 1 × 10^{8} TU/mL.

Additional file 5: Figure S5. A. The growth curve of xenograft tumors when treated with mCART, unrelated-CART and T. The administration of mCART illustrated the most significant tumor-inhibitory effectiveness. * Significant difference in tumor volume in the mCART group compared with the T group. B. Body weight of xenograft nude mice in three treated groups (mCART, unrelated-CART and T) showed no significant difference.

Additional file 6. Detailed data of CTA screen.

Additional file 7: Table S2. Primer and siRNA sequences.

Additional file 8: Table S3. MAGE-A1-scFv amino acid sequence.

Abbreviations
CAR-T: Chimeric antigen receptor-engineered T; CTAs: Cancer/testis antigens; EGFR: Epidermal growth factor receptor; FACS: Fluorescence-activated cell sorting; LC: Lung cancer; LUAD: Lung adenocarcinoma; mCART: MAGE-A1-CAR-T cell; NSCLC: Non-small cell lung cancer; OEMAGE: MAGE-A1-overexpression; OS: Overall survival; PBMC: Peripheral blood mononuclear cell; scFv: Single-chain variable fragment; shMAGE: MAGE-A1 knockdown; shRNA: Short-hairpin RNA; SPF: Specific pathogen-free; TAAs: Tumor-associated antigens; TCGA: The Cancer Genome Atlas; TMA: Tissue microarrays; TME: Tumor microenvironment

Acknowledgements
We thank Professor. Erbao Zhang from the Department of Epidemiology and Biostatistics, Nanjing Medical University, for providing the HBE cell line. We thank Dr. Hong Lin from the Jiangsu Blood Center for the preparation of PBMCs from healthy donors.

Authors' contribution
LinX, RY, and QT designed the study. WF, LZ, and JW collected the tissue samples and clinical data. LIX and YC performed the IHC analysis. WF, LZ, JZ, and ZF collected and processed PBMC. YM, QT, and XT constructed CART cells. YM, HH, and XT performed the in vitro experiments. YM, WF, and HH performed the in vivo experiments. HH and JM performed the statistics. YM drafted the manuscript. YM, HH, and JM polished the manuscript. LinX, RY, and QT supervised the study. All authors read and approved the final manuscript.

Funding
This work is supported by the grants from the National Natural Science Foundation (no. 81872378 and no. 81572261 to Lin Xu, no. 8167295 to Rong Yin, no. 81773100 to Zhenqing Feng, no. 81773268 to Qi Tang), the Young Scientist Project of Jiangsu Provincial Commission of Health and Family Planning (no. QNRC2016535 to Yuan Mao), the Natural Science Foundation of Jiangsu Province (BK20181489 to Yuan Mao), the Six Talent Peaks Project of Jiangsu Province (2015-WSN-017 to Yuan Mao), the National Natural Science Foundation for Youth of China (no.81301951 to Yuan Mao), the General Project of Jiangsu Provincial Commission of Health and Family Planning (H2017014 to Weifei Fan), and the “Ligueyi” Talent Project of Jiangsu Provincial Commission of Health and Family Planning (LGY2017096 to Weifei Fan).

Availability of data and materials
All data generated or analyzed during this study are included in the manuscript and its supplementary information files.

Ethics approval and consent to participate
PBMCs of healthy donors were obtained from Jiangsu Blood Center under the approval by the Ethics Committee of the Geriatric Hospital of Nanjing Medical University. Written informed consent was obtained from the patients for the publication of this study and the use of any accompanying images. The study protocol was approved by the Ethics Committee of Nanjing Medical University Affiliated Cancer Hospital, and all experiments were performed following the approved guidelines of Nanjing Medical University.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China. 2NH Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. 3Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China. 4Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. 5Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China. 6Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Medical University of Nanjing Medical University, Nanjing, China. 7Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China. 8Huadong Medical Institute of Biotechniques, Nanjing, China. 9Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.

Received: 26 May 2019 Accepted: 20 September 2019
Published online: 22 October 2019

References
1. Segel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017; 67(1):7–30.
2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2015;65(2):115–35.
3. Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med. 2004;350(4):379–92.
4. Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, et al. Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev. 2016;44:42–50.
5. Song YH, Zhang CQ, Chen FF, Lin YJ. Upregulation of neural precursor cell expressed developmentally downregulated 4-1 is associated with poor prognosis and chemoresistance in lung adenocarcinoma. Chin Med J. 2018; 131(1):16–24.
6. Kumarakulasinghe NB, van Zanwijk N, Soo RA. Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer (NSCLC). Respirology. 2015;20(3):370–8.
52. Thayaparan T, Petrovic RM, Achkova DY, Zabinski T, Davies DM, Klampatsa A, et al. CAR T-cell immunotherapy of MET-expressing malignant mesothelioma. Oncoimmunology. 2017;6(12):e1363137.

53. Kiesgen S, Chicyabarn L, Chintala NK, Adusumilli PS. Chimeric antigen receptor (CAR) T-cell therapy for thoracic malignancies. J Thorac Oncol. 2018;13(1):16–26.

54. Pujil JL, Vansteenikste JF, De Pas TM, Atanackovic D, Reck M, Thomeer M, et al. Safety and immunogenicity of MAGE-A3 Cancer immunotherapeutic with or without adjuvant chemotherapy in patients with resected stage IB to III MAGE-A3-positive non-small-cell lung cancer. J Thorac Oncol. 2015;10(10):1458–67.

55. Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou YH, et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell. 2015;160(4):715–28.

56. Zhao J, Wang Y, Mu C, Xu Y, Sang J. MAGEA1 interacts with FBXW7 and regulates ubiquitin ligase-mediated turnover of NICD1 in breast and ovarian cancer cells. Oncogene. 2017;36(35):5023–34.

57. Kitade S, Onoyama I, Kobayashi H, Yagi H, Yoshida S, Kato M, et al. FBXW7 is involved in the acquisition of the malignant phenotype in epithelial ovarian tumors. Cancer Sci. 2016;107(10):1399–405.

58. Tchou J, Zhao Y, Levine BL, Zhang PJ, Davis MM, Melenhorst JJ, et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res. 2017;5(12):1152–61.

59. Ruelia M, Khchirsky M, Kenderian SS, Shestova O, Zilber AL, Kraft DG, et al. Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov. 2017;7(10):1154–67.

60. Wegner A. Chimeric antigen receptor T cells for the treatment of cancer and the future of preclinical models for predicting their toxicities. Immunotherapy. 2017;9(8):669–80.

61. Schubert ML, Hoffmann JM, Oege R, Muller-Tidow C, Schmitt M. Chimeric antigen receptor transduced T cells: tuning up for the next generation. Int J Cancer. 2018;142(9):1738–47.

62. Hegde UP, Mukherji B. Current status of chimeric antigen receptor engineered T cell-based and immune checkpoint blockade-based cancer immunotherapies. Cancer Immunol Immunother. 2017;66(9):1113–21.

63. Yong CSM, Dardalhon V, Devaux C, Taylor N, Darcy PK, Kershaw MH. CAR T-cell therapy of solid tumors. Immunol Cell Biol. 2017;95(4):356–63.

64. Scarfo I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer. 2017;5:28.

65. Huang S, Li F, Liu H, Ye P, Fan X, Yuan X, et al. Structural and functional characterization of MB5301, an afucosylated bispecific anti-HER2 antibody. mAbs. 2018;10(8):664–75.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.