Subunit Selectivity and Epitope Characterization of mAbs Directed against the GABA_A/Benzodiazepine Receptor

Markus Ewert,* Brenda D. Shivers,* Hartmut Lüddens,* Hanns Möhler,† and Peter H. Seeburg*

*Laboratory of Molecular Neuroendocrinology, Center for Molecular Biology, University of Heidelberg, 6900 Heidelberg, FRG; and †Pharmakologisches Institut der Universität Zürich, 8006 Zürich, Switzerland

Abstract. mAbs bd 17, bd 24, and bd 28 raised against bovine cerebral γ-aminobutyric acid (GABA_A/benzodiazepine receptors were analyzed for their ability to detect each of 12 GABA_A receptor subunits expressed in cultured mammalian cells. Results showed that mAb bd 17 recognizes epitopes on both β₂ and β₃ subunits while mAb bd 24 is selective for the α₁ subunit of human and bovine, but not of rat origin. The latter antibody reacts with the rat α₁ subunit carrying an engineered Leu at position four, documenting the first epitope mapping of a GABA_A receptor subunit-specific mAb. In contrast to mAbs bd 17 and bd 24, mAb bd 28 reacts with all GABA_A receptor subunits tested but not with a glycine receptor subunit, suggesting the presence of shared epitopes on subunits of GABA-gated chloride channels.

© The Rockefeller University Press, 0021-9525/90/06/2043/6 $2.00
The Journal of Cell Biology, Volume 110, June 1990 2043-2048 2043

1. Abbreviation used in this paper: GABA, γ-aminobutyric acid.
Materials and Methods

Transfection of Cultured Cells

Transformed human embryonic kidney cells 293 (ATCC CRL 1573) (Gorman et al., 1989) were grown at 37°C on coverglass coated with fibronectin (25 μg/ml in PBS) in MEM (Gibco Laboratories, Grand Island, NY) supplemented with 10% FBS containing 100 U of penicillin (Gibco Laboratories) and 100 μg of streptomycin (Gibco Laboratories) per ml in a 5% CO₂/95% air incubator. Exponentially growing cells were trypsinized and seeded at 2 × 10⁶ per coverglass in 2 ml of growth medium. The transfection was performed by using the calcium phosphate precipitation technique (Chen and Okayama, 1987). The cloned cDNAs of human GABA₅ receptor subunits, inserted singly into the eukaryotic expression vector pCI2 (Prickett et al., 1988; Gorman et al., 1989) or CDM8 (Ymer et al., 1989 a, b), were used for transfection. The cells were incubated in the presence (2 μg/ml) of one or several supercoiled expression plasmids for 12–16 h at 37°C under 3% CO₂/97% air. The medium was removed, and the cells were rinsed twice with culture medium, reseeded, and incubated in the same medium for 24 h at 37°C under 5% CO₂/95% air before beginning the immunological studies.

Immunocytochemistry

Medium was removed by aspiration and cells were washed twice with 10 mM PBS, pH 7.4. Fixation was performed in 3% PBS-buffered paraformaldehyde for 5 min. Cells were rinsed twice with PBS and incubated with 50 mM glycine in PBS. In some cases, cells were permeabilized by the addition of 0.3% Triton X-100. After an additional 5 min, 1% blocking serum (Vectastain ABC kit; Vector Laboratories, Burlingame, CA) was applied for 30 min. The mAbs were added to cells for 2–3 h in a 1:5 dilution using supernatants of cultured hybridoma cells. Coverglasses with cells were washed gently with PBS and the second biotinylated antiserum (Vectastain 1:200) was added for 60 min. After washing with PBS the avidin-biotinylated HRP complex (1:100) was applied for 1.5 h. Cells were rinsed with PBS and the reaction was started by incubation in PBS containing 0.05% diaminobenzidine/0.03% H₂O₂ typically for 5–15 min. To stop this reaction, cells were again rinsed with PBS. Coverglasses were dipped for a few seconds into distilled water and mounted on glass microscope slides with Moviol (Hoechst AG, FRG).

Insertional Mutagenesis

The single-stranded M13 mp 18 DNA, containing the cloned rat α₁ GABA₅ receptor subunit cDNA, served as a template for insertional oligonucleotide-mediated DNA synthesis (Adelman et al., 1983) in the presence of E. coli polymerase I, Kloney fragment (Boehringer Mannheim Biochemicals, Indianapolis, IN), and dATP, dTTP, dGTP, and dCTPαS (Taylor et al., 1985). The oligonucleotide (5' TTG GAC ACA GCC CCT CTT GTA AT; GAA CTT C′) was complementary to the sequence encoding the amino acid residues YGGPQSLODE, and specified an additional leucine codon at position four of the rat α₁ polypeptide sequence. The mutant detection system developed by Eckstein and collaborators (Taylor et al., 1985) was employed to minimize screening efforts, using conditions as specified in the protocol accompanying the Amersham Corp. in vitro mutagenesis kit (Arlington Heights, IL). Resulting M13 plaques were analyzed by DNA sequencing (Sanger et al., 1977). For eukaryotic expression, the cDNA fragments containing the entire coding region for the wild type and mutated rat α₁ subunits were excised with endonucleases Hind III and Pst I from the respective M13 DNAs after double-strand DNA synthesis primed with the lac 17-mer primer (Messing et al., 1981). These DNA fragments were gel purified and cloned into linearized CI-MA vector DNA (Invitrogen, San Diego, CA).

Results

Single GABA₅ receptor subunits as well as subunit combinations can be transiently expressed in cultured mammalian cells and the receptors which form in these cells can be readily characterized by pharmacological and electrophysiological means (Prickett et al., 1988, 1989a,b; Shivers et al., 1989). We have used this system to investigate the specificity of mAbs bd 17, bd 24, and bd 28 in their detection of 12 GABA₅ receptor subunits. Human embryonic kidney cells grown on coverglasses were transfected with expression vectors containing cloned cDNAs that encode these subunits. After subunit expression, fixed, and either permeabilized or nonpermeabilized cells, were incubated with the antibodies which, in turn, were visualized by the avidin-biotinylated HRP method. Neither untransfected nor mock-transfected 293 cells showed immunoreactivity with any of the three antibodies (Fig. 1 a).

Displaying high specificity, mAb bd 24 reacted only with bovine and human α₁ subunits (Fig. 1 b), but did not detect the α₂ subunit of rat origin. This antibody did not react with any other α subunit variant nor any of the other members of the known GABA₅ receptor subunit classes. Thus, it appears that mAb bd 24 is specific for the α₁ subunit of selected species.

The mAb bd 17 displayed intensive staining of cells expressing the rat β₁ subunit (Fig. 1 c), a reproducibly weaker reaction with the rat β₂ subunit and no staining with rat or human β₁ subunits. No other GABA₅ receptor subunit was recognized by this mAb (Fig. 2). These results confirm that bd 17 is β₁-subunit specific as proposed previously (Haring et al., 1985; Fuchs et al., 1988). However, mAb bd 17 is selective for β₁ and β₂ subunits and fails to react with the β₃ subunit.

In marked contrast to the specificity of mAbs bd 17 and bd 24, mAb bd 28 recognized all six α subunits, although with different intensities (Fig. 2), and reacted additionally with β₁, γ₁, and δ subunits. This nonselectivity of mAb bd 28 suggested that it might also bind to subunits of the glycine receptor, as subunits of GABA₅ and glycine receptors are highly homologous (Barnard et al., 1987; Grenningloh et al., 1987; Schofield et al., 1987). However, no immunocytochemical reaction was observed upon expression of the 48-kD glycine receptor subunit (Grenningloh et al., 1987), although this subunit was detected by mAb 4 specific for the glycine receptor (Pfeiffer et al., 1984; Becker et al., 1988). Hence, GABA₅ receptor subunits may share epitopes not present on the glycine receptor.

In nonpermeabilized cells the antibodies have access only to epitopes located at the outer surface of the plasma membrane. Under these conditions, mAbs bd 24 and bd 17 did, while bd 28 did not, immunoreact with all GABA₅ receptor subunits detected in permeabilized cells. This indicates extracellularly located epitopes for mAbs bd 24 and bd 17, while the epitope recognized by mAb bd 28 is either intracellularly located or hidden in a folded structure within the extracellular domain. We favor the latter possibility since the extracellular domain of the δ subunit contained in a bacterial fusion protein reacted in an ELISA with mAb bd 28 when pretreated with Triton X-100 (not shown). However, in sections of rat brain, mAb bd 28 did not yield an immunoreaction even after treatment with detergent (J. G. Richards, personal communication).

Sequence comparisons among the GABA₅ receptor subunits failed to reveal likely epitopes for bd 17 and bd 28, indicating that features other than primary structure may determine the reactivity of these antibodies. However, comparison of the α₁ subunit sequences from three species was more informative as it revealed very few amino acid substitutions. In particular, an extra leucine residue occurs in position four of the predicted mature extracellular domain of the
bovine and human versus the rat α1 subunits. To test whether this difference correlates with the species selectivity of mAb bd 24, we inserted the leucine residue by site-directed mutagenesis into the appropriate position of the cloned rat α1 subunit cDNA. Upon expression, the mutated rat α1 subunit indeed reacted with mAb bd 24 (Fig. 3). As predicted, both the normal and mutated rat α1 subunits were detected by mAb bd 28 in a control experiment. Further support that mAb bd 24 specifically recognizes this epitope is provided by the positive reaction of the antibody to an immobilized 14-mer peptide covering amino acid residues 1-14 of the bovine GABA_A receptor α1 subunit (not shown).

Discussion

We have tested the specificity of subunit recognition by the three most widely used mAbs for GABA_A receptor characterization and immunocytochemistry. Two of these antibodies displayed a high specificity towards particular subunits. Thus, bd 17 is clearly selective for subunits of the β class, detecting β3 and β1, though it does not show any reactivity towards the β2 subunit (Figs. 1 and 2). The latter subunit is the least expressed among the β subunits in the CNS as judged by Northern analysis (Ymer et al., 1989 b). Sequence comparisons among the three β subunits did not give any clues as to which epitope mediates β3 and β1 subunit recognition by mAb bd 17. In brain sections, bd 17 recognizes GABA_A receptors with the pattern of epitope distribution.
Figure 3. Site-directed mutagenesis to characterize the epitope recognized by mAb bd24. The sequencing gel on the left shows the rat GABA\textsubscript{A} receptor α\textsubscript{1} subunit (wt rα1) with the nucleotide sequence shown from 107-186 bp (premature form). The corresponding amino acid sequence is shown on the side. The right sequencing gel shows the mutated rat GABA\textsubscript{A} receptor α\textsubscript{1} subunit (rα1 + L) with the inserted leucine at amino acid position two (mature form). The reaction of mAb bd24 with the normal and mutated rα1 subunits is shown next to the respective sequences. Immunopositive cells are indicated by arrowheads. Bar, 30 \textmu m.
often corresponding to the distribution of radioligand binding sites (Schoch et al., 1985; Richards et al., 1987). Thus, in the absence of data from high-resolution immunocytochemistry, the β1 and/or β2 subunits seem frequently components of natural GABAₐ receptors.

Antibody bd 24 presented the highest selectivity because it reacted solely with the α1 subunit of human and bovine origin but failed to react with rat α1 (Figs. 1 and 2). This species specificity has been noticed previously (Härting et al., 1985). However, the selectivity for α1, excluding all other α subunits, documented here, had not been previously appreciated. Currently, six α subunits are characterized (Schofield et al., 1987, 1989; Ymer et al., 1989a; Khrestchatisky et al., 1989; Pritchett and Seeburg, 1990) that display ~70% sequence homology in their extracellular domain (>80%). Hence the selectivity of mAb bd 24 makes this antibody a particularly useful tool to study α1 subunit-containing GABAₐ receptors. The latter receptors are highly expressed in many parts of the mammalian central nervous system and are constituents of the pharmacologically important BZ I type of GABAₐ/benzodiazepine receptors (Pritchett et al., 1989a). In sections of brain from several species, the epitope distribution for mAb bd 24 is very similar to that of mAb bd 17 (Schoch et al., 1985; Richards et al., 1988; Somogyi et al., 1989). Thus, the natural GABAₐ/benzodiazepine receptors frequently contain α1 subunits in some combination with β1 and/or β2 subunits.

In stark contrast to mAbs bd 17 and bd 24, mAb bd 28 is indiscriminate in its binding to all GABAₐ receptor subunits tested (Figs. 1 and 2). Interestingly, it reacts with subunits of all classes including the β and δ classes having low homology to α subunits. Although mAb bd 28 reacts with all subunits, the extent of this reaction is not as uniform as α1, β1, and β2 subunits are less intensively stained. Such lower reactivity could be due to a reduced expression efficiency of these subunits. While we cannot investigate this possibility due to the lack of subtype-specific antibodies, we would like to stress that DNA constructs for expression of the β1 and α subunits injected into Xenopus oocyte nuclei lead to large chloride currents upon superfusion with GABA (Ymer et al., 1989a). The lack of selectivity of mAb bd 28 is unexpected considering earlier findings in which bd 28 reacted mainly with α subunit proteins in Western blots (Härting et al., 1985; Fuchs et al., 1988). The epitope recognized by this antibody may not be preserved to the same extent in all subunits under Western blot conditions.

As for mAb bd 17, a sequence search among GABAₐ receptor subunits for a common epitope to account for mAb bd 28 recognition was unsuccessful. Our finding that mAb bd 28 does not react with the 48-kD subunit of the glycine receptor although subunits of both receptors share ~35% sequence similarity points to an epitope unique to GABAₐ receptor subunits (Barnard et al., 1987; Grenningloh et al., 1987; Schofield et al., 1987). This extent of sequence similarity is also found between members of different classes of GABAₐ receptor subunits. A successful epitope characterization was achieved in the case of mAb bd 24 where a leucine residue present in the human and bovine α1 subunits, but absent in the rat homologue, was identified as an essential part of the specific epitope recognized by this antibody (Fig. 3).

The present characterization should greatly aid in the interpretation of immunocytochemical results obtained with the use of these mAbs. Our present studies underscore the importance of determining the specificities of antibodies directed against subunits of ligand-gated ion channels. As these subunits are members of the large gene family with significant similarity, the reactivity towards several subunits of antibodies once thought to be subunit specific becomes a likely possibility. Hence, an immunomethod that utilizes cells expressing an array of related subunits is a convenient and necessary tool to characterize such antibodies. Furthermore, modifications of this method should also permit an investigation into intracellular processing assembly and transport (Hurtley and Helenius, 1989) as well as receptor insertion into the cell surface of subunits expressed singly or in combination with others.

The authors would like to thank our colleagues Dolan B. Pritchett, Sanie Ymer, Pia Werner, and Martin Köhler for the expression vector constructs for various GABAₐ receptor subunit cDNAs; Heike Wieland for the bacterial fusion protein of the extracellular domain of the δ subunit; and Cord-Michael Becker and Heinrich Betz for use of an mAb specific for the 48-kD subunit of the glycine receptor. We gratefully acknowledge the excellent secretarial help of Jutta Rami. M. Ewert is the recipient of a doctoral fellowship by Fonds der Chemischen Industrie. This research was supported by Deutsche Forschungsgemeinschaft, SFB grant 317, to P. H. Seeburg.

Received for publication 1 December 1989 and in revised form 26 January 1990.

References

Adelman, J. P., J. S. Hayflick, M. Vasser, and P. H. Seeburg. 1983. In vitro deletional mutagenesis for bacterial production of the 20,000 Dalton form of human pituitary growth hormone. DNA (NY). 2:183–193.

Barnard, E. A., M. G. Darlison, and P. H. Seeburg. 1987. Molecular biology of the GABAₐ receptor: the receptor/channel superfamily. Trends Neurosci. 10:502–509.

Becker, C.-M., W. Hoch, and H. Betz. 1988. Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO (Eur. Mol. Biol. Organ.) J. 7:3717–3720.

Bureau, M., and R. W. Olsen. 1988. GABAₐ/benzodiazepine receptor carries binding sites on both two major peptide subunits. Biochem. Biophys. Res. Commun. 153:1006–1011.

Chen, C., and H. Okayama. 1987. High efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.

de Blas, A. L., J. Vitorica, and P. Friedrich. 1988. Localization of the GABAₐ receptor in the rat brain with a monoclonal antibody to the 57,000 M₉ peptide of the GABAₐ receptor/benzodiazepine receptor/C2' channel complex. J. Neurosci. 8:602–614.

Fuchs, K., H. Möhler, and W. Sieghart. 1988. Various proteins from rat brains, specifically and irreversibly labeled by [3H]flunitrazepam, are distinct α-subunits of the GABAₐ/benzodiazepine receptor complex. Neurosci. Lett. 90:314–319.

Gorman, C. M., D. Gies, G. McGray, and M. Huang. 1989. Products of adenovirus early regions, E1a and E1b, increase expression from the human cyto-megalovirus major intermediate early promoter. Virology. 171:377–385.

Grenningloh, G., A. Rienitz, B. Schmitt, C. Methfessel, M. Zensen, K. Beyreuther, E. D. Gundelfinger, and H. Betz. 1987. The strychnine-binding subunit of the glycine receptor shows homology with nictinotic acetylcholine receptors. Nature (Lond.). 314:215–220.

Härting, P., C. Stähli, P. Schoch, T. Staehelin, and H. Möhler. 1985. Monoclonal antibodies reveal structural homogeneity of γ-aminobutyric acid/benzodiazepine receptors in different brain areas. Proc. Natl. Acad. Sci. USA. 82:4837–4841.

Houser, C. R., R. W. Olsen, J. G. Richards, and H. Möhler. 1988. Immunohistochemical localization of benzodiazepine/GABAₐ receptors in human hippocampal formation. J. Neurosci. 8:1370–1383.

Hurtley, S. M., and A. Helenius. 1989. Protein oligomerization in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5:277–307.

Khrestchatisky, M., A. J. MacLennan, M.-Y. Chiang, W. Xu, M. B. Jackson, N. Brecha, C. Sternini, R. W. Olsen, and A. J. Tobin. 1989. A novel subunit in rat brain GABAₐ receptors. Neuron. 3:745–753.

Levitan, E. S., P. R. Schofield, D. R. Burt, L. M. Rhee, W. Wisden, M. Köhler, N. Fujita, H. Rodriguez, F. A. Stephenson, M. G. Darlison, E. A. Barnard, and P. H. Seeburg. 1988. Structural and functional basis for GABAₐ receptor heterogeneity. Nature (Lond.). 335:76–79.

Ewert et al. Characterization of mAbs against GABAₐ Receptor Subunits
Messing, J., R. Crea, and P. H. Seeburg. 1981. A system for shotgun DNA sequencing. Nucleic Acids Res. 9:309–321.

Möhler, H., M. K. Battersby, and J. G. Richards. 1980. Benzodiazepine receptor protein identified and visualized in brain tissue by a photoaffinity label. Proc. Natl. Acad. Sci. USA. 77:1666–1670.

Olson, R. W., and C. J. Venter, editors. 1986. Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties. Alan R. Liss, Inc., New York. 335 pp.

Pfeiffer, F., R. Simler, G. Grenningloh, and H. Betz. 1984. Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc. Natl. Acad. Sci. USA. 81:7224–7227.

Pritchett, D. B., and P. H. Seeburg. 1990. GABA, receptor α5 subunit creates novel type II benzodiazepine receptor pharmacology. J. Neurochem. In press.

Richards, J. G., P. Schoch, P. Häring, B. Takacs, and H. Möhler. 1987. Resolving GABA/benzodiazepine receptors: cellular and subcellular localization in the CNS with monoclonal antibodies. J. Neurosci. 7:1866–1886.

Richards, J. G., P. Schoch, P. Häring, B. Takacs, and H. Möhler. 1988. Strategies for raising antibodies against benzodiazepine receptors. In Molecular Neuroanatomy. F. W. van Leeuwen, R. M. Buijs, C. W. Pool, and O. Pack. editors. Elsevier Science Publishing Co. Inc., Amsterdam. 159–190.

Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463–5467.

Schoch, P., P. Häring, B. Takacs, C. Stähli, and H. Möhler. 1984. A GABA/benzodiazepine receptor complex from bovine brain: purification, reconstitution and immunological characterization. J. Recept. Res. 4:189–200.

Schoch, P., J. G. Richards, P. Häring, B. Takacs, C. Stähli, T. Stachelin, W. Haeffely, and H. Möhler. 1985. Colocalization of GABA receptor subunits and benzodiazepine receptors in the brain shown by monoclonal antibodies. Nature (Lond.). 314:168–171.

Schofield, P. R., M. G. Darlison, N. Fujita, D. R. Burt, F. A. Stephenson, H. Rodríguez, L. M. Rhee, J. Ramachandran, V. Reale, T. A. Glencorse, P. H. Seeburg, and E. A. Barnard. 1987. Sequence and functional expression of the GABA, receptor shows a ligand-gated receptor super-family. Nature (Lond.). 328:221–227.

Schofield, P. R., D. B. Pritchett, H. Sontheimer, H. Kettenmann, and P. H. Seeburg. 1989. Sequence and expression of human GABA, receptor α and β subunits. FEBS (Fed. Eur. Biochem. Soc.) Lett. 244:361–364.

Shivers, B. D., I. Killisch, R. Sprengel, H. Sontheimer, M. Köhler, P. R. Schofield, and P. H. Seeburg. 1989. Two novel GABA, receptor subunits exist in distinct neuronal subpopulations. Neuron. 3:327–337.

Siegwart, W., A. Eichinger, J. G. Richards, and H. Möhler. 1987. Photoaffinity-labeling of benzodiazepine receptor proteins with the partial inverse agonist [3H]Ro15-4513: a biochemical and autoradiographic study. J. Neurochem. 48:46–52.

Sigel, E., F. A. Stephenson, and E. A. Barnard. 1983. A γ-amino butyric acid/benzodiazepine receptor complex of bovine cerebral cortex. J. Biol. Chem. 258:6965–6971.

Somogyi, P., H. Takagi, J. G. Richards, and H. Möhler. 1989. Subcellular localization of benzodiazepine/GABA, receptors in the cerebellum of rat, cat and monkey using monoclonal antibodies. J. Neurosci. 9:2197–2209.

Stephenson, F. A., S. O. Casalotti, C. Mamalaki, and E. A. Barnard. 1986. Antibodies recognizing the GABA, benzodiazepine receptor including its regulatory sites. J. Neurochem. 46:854–861.

Sweetnam, P., E. Nestler, P. Gallambardo, S. Brown, R. Duman, H. S. Bracha, and J. Tallman. 1987. Comparison of the molecular structure of GABA/benzodiazepine receptors purified from rat and human cerebellum. Mol. Brain Res. 2:223–233.

Taylor, J. W., J. Ott, and F. Eckstein. 1985. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 13:8765–8785.

Unwin, N. 1989. The structure of ion channels in membranes of excitable cells. Neuron. 3:665–676.

Ymer, S., A. Draguhn, M. Köhler, P. R. Schofield, and P. H. Seeburg. 1989a. Sequence and expression of a novel GABA, receptor subunit. FEBS (Fed. Eur. Biochem. Soc.) Lett. 258:119–122.

Ymer, S., P. R. Schofield, A. Draguhn, P. Werner, M. Köhler, and P. H. Seeburg. 1989b. GABA, receptor β subunit heterogeneity: functional expression of cloned cDNAs. EMBO (Eur. Mol. Biol. Organ.) J. 8:1665–1670.