This is the accepted manuscript made available via CHORUS. The article has been published as:

Acausality of Massive Gravity
S. Deser and A. Waldron
Phys. Rev. Lett. 110, 111101 — Published 12 March 2013
DOI: 10.1103/PhysRevLett.110.111101
Acausality of Massive Gravity

S. Deser
Lauritsen Lab, Caltech, Pasadena CA 91125 and Physics Department, Brandeis University, Waltham, MA 02454, USA

A. Waldron
Department of Mathematics, University of California, Davis, CA 95616, USA
(Dated: January 30, 2013)

We show that the ghost-free, 5 degree of freedom, Wess-Zumino (1970) massive gravity model is acausal. By analyzing its characteristics, we demonstrate that shock wave solutions exhibit superluminal behavior. Ironically, this pathology arises from the very constraint that removes the Boulware-Deser ghost mode.

PACS numbers:

INTRODUCTION

Over four decades ago, Isham, Salam and Strathdee proposed a 2-tensor “f-g” theory [1] by adding to the Einstein action that of a second vierbein, \(f_\mu^m \), plus a non-derivative coupling term, leaving a single common coordinate invariance. Of particular interest is the limit of non-dynamical (say flat) \(f \), giving a finite range to the gravitons due to the coupling “mass” term. It was rapidly shown [2] however, that unlike their linearized massive spin 2 Fierz-Pauli (FP) limits, these models suffered from a ghost problem: generic non-linearities reinstate a 6th degree of freedom (DoF), beyond the linearized 2 DoF, one of which is necessarily ghost-like. A final twist, also from that time, was Wess and Zumino’s [3] discovery of a distinguished set of \(f-g \) mass terms of which at least one is immune from this disease, keeping 5 DoF. Because [3] was only published without detail in lecture notes, it remained unknown. Separately, other analyses showed that the linearized theory’s matter coupling seemed to suffer a “vDVZ” discontinuity [4], as well as a failure of the Birkhoff theorem [5]. Hence, the subject remained moribund until the recent (independent) rediscovery [6] of the results [3] plus two new \(f-g \) models. This exhumation has, unsurprisingly, generated an immense industry (see the recent survey [7]). Our purpose is to re-inter \(f-g \). We will show that the first, 5 DoF, Wess-Zumino, model is acausal. Our methods also show that of the two remaining such models [8], one is definitely acausal and the other likely so [5, 23]. Paradoxically, acausalities arise precisely because of the very constraint that removes the ghost. Note that there is no conflict between acausality and ghostlessness, as witness the old “charged” higher \((s>1)\) spin interactions with Maxwell and gravity, say those of \(s = (3/2, 2) \) [13, 13], that are also invalidated only by acausality.

Our results will be obtained by using the method of characteristics, analyzing the constraints’ shock wave discontinuities, in particular that of the “5th” scalar one that results from combining the trace and double divergence of the field equations, just as is done in the linear FP model, to find a derivative-free constraint.

THE MODEL AND THE FIFTH CONSTRAINT

Our concrete 5 DoF model is

\[
G_{\mu\nu} := g_{\mu\nu} + m^2 (f_{\mu\nu} - g_{\mu\nu} f) = 0, \tag{1}
\]

where all indices are moved by the dynamical metric \(g_{\mu\nu} \) and its associated vierbein \(e_\mu^m \); in particular \(f_{\mu\nu} \) is the fixed background vierbein \(f_{\mu\nu}^m \) times \(e_\nu^m \), and is manifestly symmetric on-shell. Vanishing of its antisymmetric part yields 6 conditions. Taking the reference \(f_{\mu\nu} \) field as the flat bein is a popular choice but is not physically required; in fact, our results, both for acausality and the absence of the sixth ghost mode, depend neither on \(f \) being flat nor the dimensionality of spacetime. The parameter \(m^2 \) reduces to the FP mass in the weak \(e \)-field limit. Next, we proceed as in the FP development and seek 5 constraints to reduce the \textit{a priori} 10 metric DoF (now that coordinate invariance is lost due to the preferred background). The single derivative, 4-vector, constraint is obviously (by the Bianchi identity) the covariant \(g \)-divergence of Equation (1).

\[
0 = C_\nu := \nabla^\nu G_{\mu\nu} = m^2 (\nabla f_\nu - \nabla f_\nu) .
\]

The scalar constraint results from taking the (covariantized) FP combination

\[
0 = C := \nabla_\mu (\ell^{\nu\sigma} \nabla_{\nu} G_{\sigma}) + \frac{m^2}{2} G \tag{2}
\]

with \(\ell^{\nu\sigma} := \ell^{\nu}_m e^{\sigma m} \), where \(\ell^{\nu}_m \) is the inverse of the background vierbein \(f_\mu^m \). The proof that \(C \) is indeed a constraint, \textit{i.e.,} devoid of second derivatives, is simple: following [14], we observe that the (torsion-free) Levi-Civita spin connection \(\omega (e)_\mu^m n \) corresponding to the vierbeine \(e_\mu^m \) will in general be torsion-full if employed as the spin connection for the non-dynamical vierbeine \(f_\mu^m \). The difference between this connection and
the Levi–Civita spin connection \(\omega(f)_\mu m^n \) of \(f^{m}_\mu \) yields the contorsion tensor

\[
K^{m}_\mu n := \omega(e)_\mu m^n - \omega(f)_\mu m^n .
\]

It measures the failure of parallelograms of the dynamical metric to close with respect to the background metric (and vice versa). For reasons that will later become apparent, it is important to emphasize that flatness of the background metric does not ensure vanishing contorsion. In these terms, the vector constraint reads

\[
0 = C_\mu = m^2 K^{\nu \rho} f_{\mu \rho} .
\]

In particular, this means that metric derivatives enter the vector constraint only through the trace of the spin connection \(\omega(e) \). However the leading (second) derivative terms of the scalar curvature \(R \) are proportional to \(\partial_\mu \omega(e)_{\nu \rho} \). Hence the linear combination of the divergence of the vector constraint and the trace of the equation of motion quoted in Equation (2) yields the remaining scalar constraint \(C = 0 \). This ensures that the model does not propagate spurious ghost degrees of freedom and thus evades the generic difficulties associated with massive gravity theories [2].

For our purposes an explicit evaluation of the scalar constraint \(C \) is needed. For that we first express the scalar curvature in terms of the contorsion

\[
R = 2 \nabla_\mu K^{\nu \mu} - K^{\nu \mu \rho} K^{\nu \rho} - K^{\mu \nu \rho} K^{\nu \rho} + \epsilon^{\nu} m \epsilon^\mu_n R(f)_{\mu \nu} m^n ,
\]

where \(R(f) \) is the Riemann tensor corresponding to the vierbeine \(f^{m}_\mu \). Observing that the first term on the first line of the above display is the square of the vector constraint \(- \frac{m^2}{c^2} C_\mu \epsilon^{\mu \nu} \epsilon_{\nu \rho} C^\rho \), we have the modified constraint

\[
0 = C_\mu - \frac{1}{2m^2} C_\mu \epsilon^{\mu \nu} C^\nu = \frac{m^2}{2} f - m^2 \epsilon^{\mu n} R(f)_{\mu \nu} m^n + \frac{m^2}{2} K^{\mu \nu \rho} K^{\nu \rho} .
\]

The first term is the familiar FP-trace and the second one vanishes for flat \(f^{m}_\mu \). We will see in the next Section that the third term has dire consequences for the causality of the model. It does vanish for special solutions whose contorsion obeys \(K_{\mu \nu \rho} - K_{\rho \mu \nu} = 0 \); however, imposing this condition as an additional constraint would remove further field theoretical degrees of freedom of the model, an obviously unacceptable tradeoff.

Acausality

To study the causality of the model we study its characteristics by employing the method first introduced in a field theoretical context in [13, 17]. This allows us to determine the maximum speed of propagation by studying a shock whose second derivatives are discontinuous across its wavefront. Since the model is second order in derivatives, we assume that the dynamical metric \(g_{\mu \nu} \) and its first derivatives are continuous across the hypersurface spanned by the shock’s wavefront by \(\Sigma \). The inert \(f^{m}_\mu \) background is of course continuous. Note that we are studying causality with respect to the dynamical metric \(g \), not the background, this being a putative theory of the metric field. (Actually, our conclusions are equally valid with respect to the background.) Then \(g \), being smooth across \(\Sigma \), defines local light-cones which allows us to decide whether the shock wavefront corresponds to superluminal propagation.

To start with, we denote the leading discontinuity in the metric across \(\Sigma \) by square brackets

\[
[\partial_\alpha \partial_\beta g_{\mu \nu}]_{\Sigma} = \xi_\alpha \xi_\beta \gamma_{\mu \nu} ,
\]

where \(\xi_\mu \) is a vector normal to the characteristic and \(\gamma_{\mu \nu} \) is some non-vanishing symmetric tensor defined on the characteristic surface. Propagation is acausal whenever the field equations admit characteristics with timelike normal \(\xi_\mu \), i.e.,

\[
\xi_\mu g_{\mu \nu} \xi^\nu < 0 ;
\]

it can be analyzed by studying the field equations and any combinations of field equations and their derivatives that are of degree two or less in derivatives on \(g_{\mu \nu} \) and so have a well-defined discontinuity across \(\Sigma \). This, of course, amounts to studying the discontinuity of \(G_{\mu \nu} \) and the constraints \(C_\mu \) and \(C \) across \(\Sigma \).

Firstly we consider the anti-symmetric part of the equation of motion \(\xi_\mu g_{\nu \rho} \) implying \(f_{\mu \rho} = f_{\rho \mu} \). For this we must compute the discontinuity of the vierbeine. Since these depend algebraically on the metric we have

\[
[\partial_\alpha \partial_\beta \epsilon^m_{\mu}]_{\Sigma} = \xi_\alpha \xi_\beta \xi^m_{\mu} ,
\]

where \(\xi^m_{\mu} \) is some tensor defined on the characteristic surface. Computing the discontinuity of the relation \(\epsilon^m_{\mu \eta \tau} \epsilon_{\nu m} = g_{\mu \nu} \) gives \(\xi_\alpha \xi_\beta (\xi_{\mu} + \xi_{\nu}) = \xi_\alpha \xi_\beta \gamma_{\mu \nu} \). At this point, we proceed by contradiction by taking \(\xi_\mu \) timelike. Without loss of generality, we may therefore set

\[
\xi^\mu g_{\mu \nu} \xi^\nu = -1 ,
\]

and thus learn

\[
\xi_{\mu} + \xi_{\nu} = \gamma_{\mu \nu} .
\]

A similar computation based on the symmetry of \(f_{\mu \nu} \) gives

\[
f_{\mu}^\rho \xi_{\nu \rho} = f_{\nu}^\rho \xi_{\mu \rho} .
\]

Next we compute the leading discontinuity in the field equation \(G_{\mu \nu} \) and in turn its trace \(G \). Since this amounts
to studying the second derivative terms in these equa-
tions, the result coincides with that of the FP theory
computed long ago in [4, 15] (save that indices are raised
and lowered with the metric $g_{\mu\nu}$):

$$\xi^2\gamma_{\mu\nu} - \xi_{\mu}\gamma_{\nu} - \xi_{\nu}\gamma_{\mu} + \xi_{\mu}\xi_{\nu}\gamma = 0, \quad (4)$$

$$\xi^2\gamma - \xi_{\mu}\xi_{\nu}\gamma = 0.$$

It is clearly useful to decompose our variables with re-
spect to the (unit) timelike vector ξ_{μ}. In particular, for
a vector, symmetric tensor and antisymmetric tensor we
have respectively

$$V_\mu := V^\perp_\mu - \xi_{\mu}\xi_{\nu}V_\nu, $$

$$S_{\mu\nu} := S^\perp_{\mu\nu} - \xi_{\mu}\xi_{\nu}S^\perp_{\mu\nu} - \xi_{\mu}\xi_{\nu}\xi_{\Sigma}S, \quad (S_\mu := \xi_{\Sigma}S_\mu), $$

$$A_{\mu\nu} := A^\perp_{\mu\nu} + \xi_{\mu}A^\perp_{\nu} - \xi_{\nu}A^\perp_{\mu} = A_{\mu\nu}\xi_{\Sigma}. $$

In this language, Equation (4) implies that $\gamma_{\mu\nu} = 0$ so

$$\gamma_{\mu\nu} = -\xi_{\mu}\gamma^\perp_{\nu} - \xi_{\nu}\gamma^\perp_{\mu} + \xi_{\mu}\xi_{\nu}\xi_{\Sigma}\gamma. \quad (5)$$

The next task is to compute the discontinuity in the vec-
tor constraint:

$$\left[\xi^\alpha\partial_\alpha C_{\mu}\right]_{\Sigma} = m^2\xi^\alpha\left[\partial_\alpha\omega(e)^{\rho\sigma}\right]_{\Sigma} f_{\mu\sigma}$$

$$= -m^2\left(\xi_{\nu}\omega^\sigma - \xi^{\sigma\nu}\xi_{\nu}\right) f_{\mu\sigma}. $$

Since $f_{\mu\nu}$ is assumed invertible, by decomposing

$$2E_{\mu\nu} = \gamma_{\mu\nu} + a_{\mu\nu},$$

into its symmetric and antisymmetric parts, we learn

$$0 = \gamma^\perp_{\mu\nu} + a^\perp_{\mu\nu}. \quad (6)$$

Together, Equations (5) and (6) give

$$2E_{\mu\nu} = a^\perp_{\mu\nu} - 2

\xi_{\mu}\xi_{\nu}\xi_{\Sigma}\gamma + \xi_{\mu}\xi_{\nu}\xi_{\Sigma}\xi_{\nu}\gamma$$

so that Equation (3) becomes

$$0 = f_{\mu\nu}^\perp a_{\mu\nu}^\perp + \xi_{\mu}(2f_{\nu\rho\sigma}^\perp a^\perp_{\rho\sigma} - f_{\nu\rho}^\perp a^\perp_{\rho} - \xi_{\nu}\xi_{\gamma} f_{\nu\sigma}^\perp) - (\mu \leftrightarrow \nu). \quad (7)$$

The terms perpendicular and parallel to ξ_{μ} must vanish separately so

$$f_{\nu\rho}^\perp a_{\rho\sigma}^\perp - f_{\nu\rho}^\perp a_{\mu\sigma}^\perp = 0 = 2f_{\nu\rho\sigma}^\perp a_{\rho\sigma}^\perp - f_{\nu\rho}^\perp a_{\rho}^\perp - \xi_{\nu}\xi_{\gamma} f_{\nu\sigma}^\perp. \quad (8)$$

The first set of these equations generically gives 3 in-
dependent linear conditions on as many unknowns ($a^\perp_{\mu\nu}$) so
ensures $a^\perp_{\mu\nu} = 0$. The second set then gives 3 con-
ditions on the 4 remaining non-vanishing unknowns, $\gamma^\perp_{\mu\nu}$ and $\xi_{\mu}\xi_{\nu}\xi_{\Sigma}\gamma$. Thus, generically 3 linear combinations of these
vanishing, leaving one non-zero linear combination. If this
were to vanish, we would have established the absence of
shock wavefronts Σ with timelike normal ξ_{μ}. (Of course, one
still would have to verify the absence of special cases
for the two italicized appearances of “generically” in the
preceding argument, but those are irrelevant in the face
of the generic acausality we are about to exhibit.)

The model is left requiring one more condition on E^m_{μ}
for its causal consistency. That condition can only derive
from the remaining scalar constraint C, whose discontin-
ity across Σ we compute next. To begin with, to better
exhibit the problem we are about to find, let us make the
assumption that the background is flat and that the con-
torsion vanishes so that the remaining constraint implies f whose discontinuity across Σ implies $f^{\mu\nu}E_{\mu\nu} = 0$. This provides the remaining independent linear relation
between $\xi_{\mu}\xi_{\nu}\xi_{\Sigma}\gamma$ and $\gamma^\perp_{\mu\nu}$ required to establish that $E^m_{\mu} = 0$ and in turn the absence of superluminal shocks—so long as the contorsion vanishes.

However, the contorsion does not vanish as a conse-
quence of the field equations (in fact, as discussed above
this would imply too many conditions on the field theo-
retic degrees of freedom). Thus a proper computation of
the discontinuity of C reads

$$\left[\xi^\alpha\partial_\alpha (C - \frac{1}{2}m^2 (C, \xi_\nu)^2)\right]_{\Sigma} = \frac{m^2}{2} \xi^\alpha\left[\partial_\alpha (K_{\mu\nu}\rho_{\nu})\right]_{\Sigma}$$

$$= -\frac{m^2}{2} \xi_{\nu}K_{\mu\nu}\rho_{\nu}$$

$$= \frac{m^2}{4} \xi_{\mu}K_{\mu\nu}\rho_{\nu}a^\perp_{\mu\nu}. $$

Thus, instead of a relation involving $\xi_{\mu}\xi_{\nu}\xi_{\gamma}$ and $\gamma^\perp_{\mu\nu}$, we find
the seemingly additional, but in fact redundant, require-
ment $\xi_{\nu}K_{\mu\nu}\rho_{\nu}a^\perp_{\mu\nu} = 0$ on $a^\perp_{\mu\nu}$ Therefore, since some lin-
ear combination of $\xi_{\mu}\xi_{\nu}\xi_{\gamma}$ and $\gamma^\perp_{\mu\nu}$ does not vanish, timelike
shock normals are allowed. This establishes the promised
presence of acausal characteristics for any choice of back-
ground.

DISCUSSION

We have just shown that one otherwise ghost-free, ac-
ceptable finite range gravity model is excluded. How far
does this no-go result extend to all three possible such
combinations, quite apart from other previously men-
tioned obstacles to these models? Very recently, causality
for models with mass terms quadratic in the f-bein has
been ruled out [8] using methods similar to the present
ones. This leaves only a third candidate mass, cubic in f. Any model of the form $G_{\mu\nu}(g) = T_{\mu\nu}(f, e)$ with
algebraic T universally yields Equation (3) for the shock;
the structure of the fifth constraint is at the root of the
acausality [21]. Its covariant version for the third mass is
as yet unknown, but if it takes the generic form $f^3 + f^2K^2$
where K is the contorsion, the argument of [8] already
establishes its acausality. Even if it does not, there is poten-
tially a new source of discontinuity, closer to that of
the charged massive spin 3/2 and 2 systems [13, 14, 17].
Namely, zeros in the characteristic matrix can allow su-
perluminal characteristics, just as critical values of the
background E/M field permit superluminal signal propagation in the charged $s = (3/2, 2)$ models. In fact, for those models, acausality can be traced to non-positivity of equal time commutators, a fatal physical flaw \cite{18}. We conclude therefore that the acausality we have exhibited is an unavoidable pathology of $f-g$ massive gravity barring some miracle of the cubic model or some (hitherto unknown) underlying “rescue” modification of the model \cite{25} that also yields a smooth massless limit \cite{26}.

We thank M. Sandora for a very useful discussion and A.W. acknowledges the hospitality of the Lauritsen Lab, Caltech. S.D. was supported in part by NSF PHY-1064302 and DOE DE-FG02-16492ER40701 grants.
* deser@brandeis.edu
* wally@math.ucdavis.edu

[1] A. Salam and J. Strathdee, Phys. Rev. 184, 1750 and 1760 (1969); C. J. Isham, A. Salam and J. Strathdee, Phys. Lett. B 31, 300 (1970).
[2] S. Deser and D. G. Boulware, Phys. Rev. D 6, 3368 (1972).
[3] B. Zumino, “Effective Lagrangians and broken symmetries,” in Brandeis Univ. Lectures on Elementary Particles and Quantum Field Theory (MIT Press Cambridge, Mass.), Vol. 2, 1970, 437.
[4] H. van Dam and M. J. G. Veltman, Nucl. Phys. B 22, 397 (1970); V. I. Zakharov, JETP Lett. 12, 312 (1970).
[5] P. van Nieuwenhuizen, Phys. Rev. D 7, 2900 (1973).
[6] C. de Rham, G. Gabadadze and A. J. Tolley, Phys. Rev. Lett. 106, 231101 (2011) [arXiv:1011.1232 [hep-th]]; Phys. Lett. B 711, 190 (2012) [arXiv:1107.3820 [hep-th]]; C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020 (2010) [arXiv:1007.0443 [hep-th]]; S. F. Hassan and R. A. Rosen, Phys. Rev. Lett. 108, 041101 (2012) [arXiv:1106.3344 [hep-th]].
[7] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012) [arXiv:1105.3735 [hep-th]].
[8] S. Deser, M. Sandora and A. Waldron, “Nonlinear Partially Massless from Massive Gravity?” arXiv:1301.5621 [hep-th].
[9] A. Gruzinov, “All Fierz-Paulian massive gravity theories have ghosts or superluminal modes,” arXiv:1106.3972 [hep-th].
[10] C. de Rham, G. Gabadadze and A. J. Tolley, “Comments on (super)luminality,” arXiv:1107.0710 [hep-th].
[11] C. Deffayet and T. Jacobson, Class. Quant. Grav. 29, 065009 (2012) [arXiv:1107.4978 [gr-qc]]; V. Baccetti, P. Martin-Moruno and M. Visser, JHEP 1208, 148 (2012) [arXiv:1206.3814 [gr-qc]].
[12] C. Burrage, N. Kaloper and A. Padilla, “Strong Coupling and Bounds on the Graviton Mass in Massive Gravity,” arXiv:1211.6001 [hep-th].
[13] G. Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969).
[14] M. Kobayashi and A. Shamaly, Phys. Rev. D 17 (1978) 2179; Prog. Theor. Phys. 61 (1979) 656.
[15] S. Deser and A. Waldron, Nucl. Phys. B 631, 369 (2002) [hep-th/0112182].
[16] C. Deffayet, J. Mourad and G. Zahariade, “Covariant constraints in ghost-free massive gravity,” arXiv:1207.6338 [hep-th].
[17] J. Madore and W. Tait, Commun. Math. Phys. 30 (1973) 201; J. Madore, Phys. Lett. B 55 (1975) 217.
[18] K. Johnson and E. C. G. Sudarshan, Annals Phys. 13 (1961) 126.
[19] S. Deser and R. I. Nepomechie, Annals Phys. 154 (1984) 396; Phys. Lett. B132 (1983) 321; S. Deser and A. Waldron, Phys. Rev. Lett. 87, (2001) 031601 [hep-th/0012166]; Nucl. Phys. B 607, (2001) 577 [hep-th/0103198]; Phys. Lett. B 508 (2001) 347 [hep-th/0103255] and 513, (2001) 137 [hep-th/0105181]; Phys. Lett. B 513, (2001) 137 [hep-th/0105181]; Phys. Lett. B 603, (2004) 30 [hep-th/0408155]; Phys. Rev. D 74 (2006) 084036 [hep-th/0609113]; C. de Rham and S. Renaux-Petel, “Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity,” arXiv:1206.3482 [hep-th]; S. Deser, E. Joung and A. Waldron, Phys. Rev. D 86, 104004 (2012) [arXiv:1208.1307 [hep-th]].
[20] M. Porrati, R. Rahman and A. Sagnotti, Nucl. Phys. B 846, 250 (2011) [arXiv:1011.6411 [hep-th]]; M. Porrati and R. Rahman, Phys. Rev. D 80, 025009 (2009) [arXiv:0906.1432 [hep-th]]; M. Porrati and R. Rahman, Phys. Rev. D 84, 045013 (2011) [arXiv:1103.6027 [hep-th]].
[21] I. I. Kogan, S. Mouslopoulos and A. Papazoglou, Phys. Lett. B 503, 173 (2001) [hep-th/0011138]; M. Porrati and R. Rahman, Phys. Lett. B 498, 92 (2001) [hep-th/0011152]; S. Deser and A. Waldron, Phys. Lett. B 501, 134 (2001) [hep-th/0012014].
[22] A. I. Vainshtein, Phys. Lett. B 39 (1972) 393.
[23] An earlier massive gravity causality study [8] found superluminal behavior in the auxiliary fields of the model’s Stückelberg formulation. However, these superluminal modes amount to unphysical background metrics [10]. Nonetheless, this effect could well be related to known horizon and null energy difficulties of one of either one of the metrics of a bimetric theory [11]. Our classical results are valid for ALL (nonzero) values of m; while it has been argued that at the quantum level, graviton masses small enough to be observationally consistent force a cut-off that removes predictivity of the model [12].
[24] Given the scalar constraint’s nefarious role, one might try to turn it into a harmless Bianchi identity by taking a de Sitter background and a partially massless (PM) limit where the scalar helicity does not propagate [10]. However, very recently it has been shown that no PM limit of ghost-free massive $f-g$ theories exists [8].
[25] One example, in a different context, is the use of string theoretical non-minimal couplings for charged higher spins [21].
[26] The massless vDVZ discontinuity can actually be averted by introducing a cosmological constant and setting the mass to zero before limiting to flat space [21]. Also, it was suggested long ago that a similar mechanism applies to the interchange of massless and free limits in a putative non-linear massive theory [22].