Case Report

360-surgery for a giant cervical chordoma with involvement of the right vertebral artery

Rodolfo Pedro Molina-Martínez1, Venus Damaris Medina-Illueca2, Carlos Betancourt-Quiroz1, Daniel Alejandro Vega-Moreno1, Andrés Alberto Moral-Naranjo1, Rosa María Vicuña-González2, Martha Leticia Llamas-Ceras2, Víctor Andrés Reyes-Rodríguez2, Rodrigo Efraín Hernández-Reséndiz3, Abraham Ibarra-de la Torre1, Ulises García-González1

Departments of 1Neurosurgery and 2Pathology, Hospital Central Sur de Alta Especialidad PEMEX, Tlalpan, 3Department of Neurosurgery, Hospital Central Norte PEMEX, Azcapotzalco, Ciudad de México, México.

E-mail: *Rodolfo Pedro Molina-Martínez - rpmolinam@gmail.com; Venus Damaris Medina-Illueca - vmedianillaueca@gmail.com; Carlos Betancourt-Quiroz - cbetancourtquiroz@gmail.com; Daniel Alejandro Vega-Moreno - d2206@hotmail.com; Andrés Alberto Moral-Naranjo - dr.andresamn@gmail.com; Rosa María Vicuña-González - vicus67@yahoo.com; Martha Leticia Llamas-Ceras - leyllamas80@gmail.com; Víctor Andrés Reyes-Rodríguez - neurovican@hotmail.com; Rodrigo Efrain Hernández-Resendiz - drrodrigoehr@gmail.com; Abraham Ibarra-de la Torre - abraham_iibarra2017@outlook.com; Ulises García-González - ulises.med@gmail.com

INTRODUCTION

Chordomas are malignant tumors that arise from the remnants of the notochord, anywhere in the axial skeleton.[11] Chordomas represent 3% of primary bone tumors with a worldwide incidence of 0.08 cases/100,000 person-years. The World Health Organization considers these to be malignant neoplasms.[12] Pamir et al., analyzed and reported data drawn from the National Cancer Institute's Surveillance, site results were 41% cranial, 30% spinal, and 28.5% sacral. The median survival rate is about 4.7 years across all sites.[8] Our review of 13 patients over the past 10 years, revealed 38.46% cranial, 46.15% spinal, and 15.38% sacral lesions. Complete en bloc radical resection with postoperative radiation therapy is currently considered the gold standard for treating chordomas.[5]

However, this is rarely possible due to the tumor extension to surrounding vital organs and structures, vertebral artery (VA). Here we report a patient who underwent circumferential management of a cervical chordoma with preservation of the ipsilateral VA despite tumor invasion (i.e., due to the risks of major ischemia, and the high risk of tumor recurrence that may invade the contralateral VA).
CASE REPORT

Presentation

A 40 YO woman presented with a 2-year history of the posterior neck and right shoulder pain; it worsened over the prior year.

Examination

On examination, she had 4+/5 mild weakness involving the right arm (C6, C7 distributions) along with hyperreflexia and decreased pinprick/hypoesthesia in the right C4-C6 distribution. Right Froment’s sign positive.

MR and CT findings

T2-weighted MR presented an isointense, homogeneous, well-defined lesion localized in the right side of the vertebral body of C3 and C4 invading the ipsilateral VA, myelo-scan presented compression of the spinal cord. Bone window CT demonstrated lytic lesion of the body and right transverse foramen of C3 and C4 [Figure 1].

Staged surgery

Part I

Stage I was a minimally invasive surgery (MIS) cervical laminectomy on the right of C3 and C4 (using tubular retractors and neurophysiology monitoring). The tumor was soft, gray-looking, with surrounding small vessels. With the help of an ultrasonic aspirator, the lesion was partially resected. There was an additional dorsal and lateral displacement of the right C5 root and 360° involvement of right VA. Only 50% of the lesion was resected and followed by routine closure. Pathology was consistent with a chordoma [Figure 2].

Part II

A preoperative angiogram was performed to evaluate the patency and dominance of both the compromised right VA and contralateral VA [Figure 3]. The second surgery included a right anterior cervical approach consisting of a microscopic discectomy and full corpectomy of C3 and C4. Tumor invasion was documented extending to the posterior longitudinal ligament (PLL) and the dura. Resection of the PLL was performed and a C2-C5 fusion was achieved using an expandable titanium cage and anterior cervical plate [Figure 4]. Thus, complete resection of the anterior portion of the lesion was successfully achieved.

Part III

The patient was readmitted 4 weeks later for a 3rd stage procedure. A balloon test occlusion of the VA circulation was performed; the test was not tolerated due to right side VA dominance. The patient then underwent a posterior procedure aimed at complete radical resection of remaining posterior arch of C3 and C4 and tumor surrounding the right VA. A gross total removal was achieved under the operating microscope. The patient was routinely discharged 8 days later without pain, and no signs of cerebrospinal fluid leakage and/or new neurological dysfunction. Artist representation (Figure 5).

Figure 1: Pre-operative studies. (a) C3 CT bone window, (b) C4 CT bone window, (c) C3 T2-weighted MRI, right VA white arrow head, (d) C4 T2-weighted MRI, right VA white arrow head, (e) cervical spine CT bone window, (f) cervical spine T2-weighted MRI, (g) cervical myelo-scan. CT: Computed tomography, VA: Vertebral artery, MR: Magnetic resonance.
DISCUSSION

In our institution, we treated 13 patients with histologically confirmed diagnoses of chordoma in the last 10 years. Six patients were diagnosed with spinal chordomas. They presented at a mean age of 57.50 years. The average time from symptom onset to surgery was 5.7 months.

Cervical chordomas are not a common disease, they are often overlooked as a diagnostic possibility in patients with neck pain or palpable mass. However there are few reports of imaging features in literature. In 1998 Wippold et al. published one of the most cited articles regarding this topic. They described radiological features of ten cervical chordomas. On gross inspection they form lobulated pseudoencapsulated masses, being the vertebral body the predominant site of affection, with a mean involvement of three levels, being C3-C4 the most common level affected. Lytic lesions were seen in 8 of 10 cases, two cases involved the VA. On MRI no tumor was hyperintense in T1-weighted and 5 out of 6 were hyperintense in T2. Cui et al. published 9 cases of CT and MRI features of cervical chordomas. 9 patients exhibited a multi-lobar soft tissue component that extended over the vertebral, involved and revealed a collar button appearance in the sagittal plane. The VA was encased in seven patients. Six patients presented with lytic-sclerotic bone destruction. All cases were heterogeneous and hypodense compared with adjacent muscle. T1 and T2-weighted features were the same as those described by Wippold. These radiological features are the most common pattern as described by previous studies, being lobulated in gross appearance, T1-weighted hypointense, T2-weighted hyperintense, with multi-level involvement.
The gold standard is en bloc resection, however, this was not initially considered in our patient due to the suspicion of right VA irruption, thus we had to perform a 360°, MIS, multiple staged approach to achieve maximal safe resection. For tumor extension, we used the Weinstein-Boriani-Biagini (WBB) classification.[2] We classified the lesion for C3 as WBB 7-10 A-D, and C4 as 8-9 A-D. However, The Spine Oncology Study Group proposed a modification by adding a letter “F” to indicate VA involvement.[3]

Currently, there are no guidelines regarding the management of cervical chordomas with invasion and encasement of the VA. In retrospect, a full angiography assessment of the patency of both VA prior to the first stage could have been made. After this case, we believe this step to be crucial in the management of this kind of pathology. Due to our own personal experience, we considered a MIS posterior approach to be the best option as the initial step, however an open full laminectomy of C3 and C4 is a suitable option as well, the decision should be made based on the surgeon expertise. Anterior tumor resection utilizing a C3, C4 corpectomy technique with an expandable cage and plating was effective for gross total anterior tumor resection. It additionally facilitated removal of tumor around the right VA.

There are limited reports of cervical chordomas managed with circumferential surgery where the VA was also involved, four cases are described [Table 1].

CONCLUSION

Cervical chordomas are slow-growing malignant tumors resulting in spinal cord compression and occasional invasion of the VA. With appropriate preoperative testing, these lesions may be resected en bloc in stages, and accompanied by selective VA sacrifice.

REFERENCES

1. Bailey CS, Fisher CG, Boyd MC, Dvorak MFS. En bloc marginal excision of a multilevel cervical chordoma: Case report. J Neurosurg Spine 2006;4:409-14.
2. Boriani S, Weinstein JN, Biagini R. Primary bone tumors of the spine, terminology and surgical staging. Spine (Phila Pa 1976) 1997;22:1036-44.
3. Chan P, Boriani S, Fourney DR, Biagini R, Dekutoski MB, Fehlings MG, et al. An assessment of the reliability of the enneking and weinstein-boriani-biagini classifications for staging of primary spinal tumors by the spine oncology study group. Spine (Phila Pa 1976) 2009;34:384-91.
4. Cui JF, Hao DP, Chen HS, Liu JH, Hou F, Xu WJ. Computed tomography and magnetic resonance imaging features of cervical chordoma. Oncol Lett 2018;16:861-5.
5. Denaro L, Berton A, Ciuffreda M, Loppini M, Candela V, Brandi ML, et al. Surgical management of chordoma: A systematic review. J Spinal Cord Med 2020;43:797-812.
6. Guppy KH, Chakrabarti I, Isaacs RS, Jun JH. En bloc resection of a multilevel high-cervical chordoma involving C-2: New operative modalities: Technical note. J Neurosurg Spine 2013;19:232-42.
7. Jiang L, Liu ZJ, Liu XG, Ma QJ, Wei F, Ly Y, et al. Upper cervical spine chordoma of C2-C3. Eur Spine J 2009;18:293-300.
8. Pamir MN, Al-Mefty O, Borba LA, editors. Chordomas: Technologies, Techniques, and Treatment Strategies. New York, United States: Thieme; 2017.

Table 1: Reports of cervical chordomas excisions with VA involvement.

Author	Patient characteristics	Surgery
Rhines et al. 2005[9]	54 YO man, C2-C4 chordoma, involvement of right VA	2 stage procedure, sacrificed VA, achieved en bloc resection
Bailey et al. 2006[1]	50 YO man, C1-C3 chordoma, involvement of right VA	3 stage procedure, sacrificed VA, achieved en bloc resection
Jiang et al. 2009[7]	26 YO woman, C2-C3 chordoma, involvement of left VA	1 stage combined anterior and posterior approach, sacrifice of VA and C3 nerve root, achieved en bloc resection
Guppy et al. 2013[6]	49 YO woman, C2-C3 chordoma, involvement of right VA	3 staged procedure, endovascular sacrifice of right VA, achieved en bloc resection

VA: Vertebral artery

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.
9. Rhines LD, Fourney DR, Siadati A, Suk I, Gokaslan ZL. En bloc resection of multilevel cervical chordoma with C-2 involvement. Case report and description of operative technique. J Neurosurg Spine 2005;2:199-205.

10. Wippold FJ, Koeller KK, Smirniotopoulos JG. Clinical and imaging features of cervical chordoma. Am J Roentgenol 1999;172:1423-6.

11. World Health Organization. Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours, WHO Classification of Tumours Series. 5th ed., Vol. 3. Lyon, France: International Agency for Research on Cancer; 2020.

12. World Health Organization. International Classification Of Diseases for Oncology (ICD-O). 3rd ed. Geneva: World Health Organization; 2013.

How to cite this article: Molina-Martínez RP, Medina-Illueca VD, Betancourt-Quiroz C, Vega-Moreno DA, Moral-Naranjo AA, Vicuña-González RM, et al. 360-surgery for a giant cervical chordoma with involvement of the right vertebral artery. Surg Neurol Int 2021;12:604.