Numerical approach for bifurcation and orbital stability analysis of periodic motions of a 2-DOF autonomous Hamiltonian system

E Sukhov
Department of Mechatronics and Theoretical Mechanics, Moscow Aviation Institute (National Research University), 4 Volokolamskoe Highway, 125993, Moscow, Russian Federation
E-mail: SukhovEA@mai.ru

Abstract. In Spaceflight Dynamics it is often necessary to obtain periodic motions of conservative mechanical systems and analyze their stability and bifurcation. These conservative systems can be described using Hamiltonian equations. We consider bifurcation and orbital stability problem for periodic motions of a 2-DOF autonomous Hamiltonian system. Since it is not possible to obtain analytical solutions to the aforementioned problem for all admissible values of its parameters a two-step numerical approach is proposed. On the first step the so-called base solutions are obtained analytically for particular values of problem's parameters. The base solutions are then continued to the borders of their existence domains using a numerical algorithm. In course of computation bifurcation points are identified and orbital stability is studied. On the second step new base solutions are identified in the neighborhood of bifurcation points and the continuation process is repeated. Finally, orbital stability and bifurcation diagrams of the resulting families of periodic motions are constructed. Poincare sections are also computed in the neighborhoods of bifurcation points to verify the results. To illustrate this approach, we computed the bifurcation and orbital stability diagrams for families of short-periodic motions originating from Regular precessions of a dynamically-symmetric satellite.

1. Introduction
Conservative mechanical systems appear in many problems of Spaceflight Dynamics such as the problem of attitude and orbital motion of a satellite. Analyzing behavior of a conservative system often requires computing its periodic motions and studying their properties such as stability and bifurcation. Stable periodic motions also play an important role in applications since they allow to design spacecraft orbits and maneuvers for increased propellant and energy efficiency. A common way to acquire equations of motion of a conservative system is to write them out in Hamiltonian form. Periodic motions of Hamiltonian systems have been previously studied rigorously in many works [1-5]. The analytical approach used in these works involves normalizing the initial Hamiltonian system in the neighborhood of known equilibria or stationary motions which makes it is possible to obtain the periodic motions as small parameter power series and apply KAM theory for nonlinear orbital stability analysis. However, these results only remain valid in small neighborhood of the aforementioned stationary motions and equilibria. To obtain periodic motions for all admissible values of the problem’s parameters as well as to perform an orbital stability and bifurcation analysis it is necessary to use a numerical approach.
Numerical algorithms for computing periodic motions of Hamiltonian systems have been discussed and developed in works [6-12]. The common way to obtain periodic motions relies on solving the boundary problem using shooting method-based algorithms. However, a predictor-corrector numerical continuation method proposed by A Deprit and J Henrard in [9] and developed in works [10-12] offers a more effective approach to computation of periodic motions.

In this paper we consider autonomous Hamiltonian system with two degrees of freedom:

\[
\begin{align*}
\dot{q}_1 &= \frac{\partial H}{\partial p_1}, \quad \dot{p}_1 = -\frac{\partial H}{\partial q_1}, \quad (i = 1, 2) \\
q_1(t, \bar{A}), \quad p_1(t, \bar{A}) \quad (i = 1, 2)
\end{align*}
\]

where \(H(q_1, q_2, p_1, p_2, \bar{a})\) is its Hamiltonian, \(h\) is energy constant, \(\bar{a} = (a_1, ..., a_k, h)\) is parameter vector. We then assume that

\[
q_i(t, \bar{A}), \quad p_i(t, \bar{A}) \quad (i = 1, 2)
\]

is a known \(T\)-periodic motion of the system (1) with initial conditions

\[
q_{i0} = q_i(0, \bar{A}), \quad p_{i0} = p_i(0, \bar{A}), \quad (i = 1, 2)
\]

corresponding to fixed set of parameter values \(\bar{A}\), including energy constant value \(h_0\). Following [9,10] we use a term ‘base solutions’ for referring to the periodic motions (2).

We then look for initial conditions

\[
q_{i0} = q_i^*(0, \bar{a}), \quad p_{i0} = p_i^*(0, \bar{a}), \quad (i = 1, 2)
\]

of periodic motions

\[
q_i^*(t, \bar{a}), \quad p_i^*(t, \bar{a}) \quad (i = 1, 2)
\]

which satisfy adherence conditions

\[
\lim_{\bar{a} \to \bar{A}} q_i(0, \bar{a}) = q_i(0, \bar{A}), \quad \lim_{\bar{a} \to \bar{A}} p_i(0, \bar{a}) = p_i(0, \bar{A}), \quad \lim_{\bar{a} \to \bar{A}} T^*(\bar{a}) = T(\bar{A}). \quad (i = 1, 2)
\]

Periodic motions (5) and (2) constitute a so-called natural family [9,13] emanating from base solution (2) and defined by adherence conditions (6).

The aim of the paper is to formulate and test a numerical approach which allows to perform bifurcation an orbital stability analysis simultaneously with computing the natural families constituted by periodic motions (5) and (2).

2. Materials and research methods

We base our approach on a predictor-corrector algorithm proposed by A Sokolskiy and S Karimov [11]. As an application we consider attitude motion of a dynamically-symmetric satellite. This problem is well-studied [3,4,14-18] analytically for both elliptical and circular orbits which allows for good verification of the proposed approach. In this paper we investigate bifurcation and orbital stability problems for families of short-periodic motions originating from the satellite’s Regular precessions on a circular orbit.

2.1 Numerical continuation of natural families

Since analytical computation of natural families is only possible in particular cases [9] we use the following numerical method. In accordance with [11], we introduce local coordinates \(\bar{w} = (\bar{n}_u, \bar{m}_u, \bar{\nu}_v, \bar{m}_v)^T\) by applying an univalent canonical transformations

\[
\xi_i = q_i^* - q_i, \quad \eta_i = p_i^* - p_i, \quad (i = 1, 2)
\]

and

\[
(\xi_1, \xi_2, \eta_1, \eta_2) = S \cdot \bar{w},
\]

where \(S\) is a symplectic orthogonal matrix [19]

\[
S = \frac{1}{V} \begin{pmatrix}
q_2 & q_1 & \bar{q}_2 & \bar{q}_1 \\
q_1 & q_2 & \bar{q}_1 & \bar{q}_2 \\
-p_2 & -p_1 & \bar{p}_2 & \bar{p}_1 \\
-p_1 & -p_2 & \bar{p}_1 & \bar{p}_2
\end{pmatrix}, \quad S^T S = I, \quad S^T S = E, \quad V = \sqrt{q_1^2 + q_2^2 + p_1^2 + p_2^2}.
\]

The derivatives \(q_1, q_2, p_1, p_2\) in (9) are calculated on the base solution (2). On applying (7) and (8) the initial canonical system takes on the following form
\[n_u = \frac{\partial H^n}{\partial v}, \quad n_v = -\frac{\partial H^n}{\partial u}, \]
\[m_u = \frac{\nu}{v} m_u + h_{14} n_u + h_{34} n_v + \sum_{j=1}^{k} h_j^2 a_j, \]
\[m_v = -\frac{1}{v} H_u^T \cdot \vec{a}, \]

where
\[H^n = \frac{1}{2} (h_{11} n_u^2 + h_{33} n_v^2 + 2n_u n_v h_{13}) + n_u \sum_{j=1}^{k} h_{11}^j a_j + n_v \sum_{j=1}^{k} h_{12}^j a_j \]
is its Hamiltonian and \(h_{11}, h_{13}, h_{14}, h_{33}, h_{34}, H_u^T, h_{11}^j, h_{12}^j, h_2^j, (j = 1 ... k) \) are time-dependent coefficients calculated on the base solution (2). Here
\[\vec{a} = \vec{a} - \vec{A} \]
are parameter variations or ‘steps’ which are determined depending on desired rate and precision of the continuation. To determine these variations, we use a method proposed in [20].

We denote \(n_u, n_v, m_u \) and \(\tau \) in form of linear combinations of parameter variations \(\vec{a} \) and the variation of energy constant \(\Delta h \):
\[n_u = \sum_{j=1}^{k} n_u^j a_j + n_u^{k+1} \Delta h, \]
\[n_v = \sum_{j=1}^{k} n_v^j a_j + n_v^{k+1} \Delta h, \]
\[m_u = \sum_{j=1}^{k} m_u^j a_j + m_u^{k+1} \Delta h, \quad \tau = \sum_{j=1}^{k} \tau^j a_j + \tau^{k+1} \Delta h. \]

Substituting (13) into (10), we obtain the Predictor equations [5,8]:
\[\dot{n}_{11} = h_{11} n_{11} + h_{33} n_{12}, \]
\[\dot{n}_{12} = -h_{11} n_{11} - h_{13} n_{12}, \]
\[\dot{n}_{21} = h_{11} n_{21} + h_{33} n_{22}, \]
\[\dot{n}_{22} = -h_{11} n_{21} - h_{13} n_{22}, \]
\[\dot{n}_p^j = n_p^j h_{13} + n_p^j h_{33} + h_{12}^j, \]
\[\dot{n}_p^j = -n_p^j h_{13} - n_p^j h_{33} - h_{12}^j, \]
\[\dot{m}_1 = \frac{\nu}{v} m_1 + h_{14} n_{11} + h_{34} n_{12}, \]
\[\dot{m}_2 = \frac{\nu}{v} m_2 + h_{14} n_{21} + h_{34} n_{22}, \]
\[\dot{m}_p^j = \frac{\nu}{v} m_p^j + h_{14} n_p^j + h_{34} n_p^j + h_{2}^j, \]
\[j = 1 ... k + 1, \]
\[h_{11}^{k+1} = h_{14}^{k+1}, h_{12}^{k+1} = h_{34}^{k+1}, h_2^{k+1} = 0. \]

Solving (8) and (9) with initial conditions \(n_{11} = 1, n_{12} = 0, n_{21} = 0, n_{22} = 1, m_1 = 0, m_2 = 0, n_p^1 = 0, n_p^2 = 0, m_p^j = 0 \), we find (12). After returning to the initial variables \(q_i, p_i (i = 1,2) \) we obtain approximate values of initial conditions (4) of a new periodic motion (5) belonging to a natural family emanating from (2). These approximate initial conditions can be corrected to a required level of precision using the corrector part of the algorithm presented in [11,19].

2.2 Bifurcation and linear orbital stability analysis

A base solution (2) is called critical [11, 21] if it is not possible to find a solution to the equations of normal deviations
\[\dot{n}_{11} = h_{11} n_{11} + h_{33} n_{12}, \]
\[\dot{n}_{12} = -h_{11} n_{11} - h_{13} n_{12}, \]
\[\dot{n}_{21} = h_{11} n_{21} + h_{33} n_{22}, \]
\[\dot{n}_{22} = -h_{11} n_{21} - h_{13} n_{22}, \]

which are part of both predictor and corrector steps of the numerical algorithm used in this work. This condition is called *termination* of a natural family according to [11,21] and can be also formulized by a criterion
\[\Delta = \det(N(T) - E) = 0 \]
where $N(t)$ is the fundamental matrix of (15). However, meeting condition (16) can be associated with bifurcation of natural families and does not always mean principal impossibility to continue a natural family. While this work does not give an analytical solution to this problem, we propose a numerical approach to identify and analyze bifurcation of natural families.

Since equations (15) are solved as part of predictor system (14) it is possible to calculate (16) on each computational step n and check if it approaches zero by applying a halting condition:

$$\Delta_n \leq \epsilon$$ \hspace{1cm} (17)

where ϵ is a small user-defined value. Analyzing equations (15) also allows us to investigate the periodic motions’ orbital stability, i. e. their stability in respect to normal perturbations of their orbits. For this purpose, we write out the characteristic equation of (15):

$$\rho^2 - 2A\rho + 1 = 0,$$ \hspace{1cm} (18)

where $A = \frac{1}{2} Sp[N(T)]$ ($Sp[N]$ – is trace of the matrix N), and T is period of the periodic solution in question. If the roots ρ_1, ρ_2 of equation (18) satisfy condition $|A| < 1$ then the periodic motion is linear orbital stable.

While in a rigorous sense it is impossible to continue a family beyond a critical solution using the method proposed in this work in practice if a bifurcation occurs it is sometimes possible to ‘overstep’ the termination by choosing the parameter steps (12) so that the critical solution falls between the start and end point of the step in the problem’s parameter space. To handle this situation we check for the following conditions:

$$\text{sign}(\Delta_n) = -\text{sign}(\Delta_{n+1})$$ \hspace{1cm} (19)

$$\text{sign} \left(\frac{\partial \Delta_n}{\partial a_j} \right) = -\text{sign} \left(\frac{\partial \Delta_n}{\partial a_j} \right), (j = 1..k + 1)$$ \hspace{1cm} (20)

If (19) or at least one of the conditions (20) apply, we use the bisection method to choose the parameter step values (12) and approach the critical solution until the condition (17) is fulfilled.

When a critical solution is identified, we construct Poincare sections in its neighborhood to investigate the bifurcation pattern and obtain initial conditions for the periodic motions branching off the initial natural family. These new periodic motions are then taken as base solutions for numerical continuation. Finally, to illustrate the bifurcations we present the resulting data in form of period versus parameter graphs.

2.3 Motion of a dynamically symmetric satellite about its center of mass

To illustrate the proposed approach we consider motion of a rigid-body satellite about its center of mass on a circular orbit in central Newtonian gravitational field. We introduce an orbital reference frame $OXYZ$ and a body-fixed frame $Oxyz$ (figure 1). The axes OX, OY and OZ of the orbital frame are aligned with transversal and normal vectors to the satellite’s orbit and with its center of mass’ radius-vector \vec{R}, respectively. The axes of the body-fixed frame $Oxyz$ are pointed along the satellite’s principal axes with corresponding moments of inertia being J_1, J_2 and J_3. We describe the relative position of these frames by Euler angles ψ, θ, φ.

![Figure 1. The satellite’s reference frames.](image-url)
Taking ψ, θ, φ as generalized coordinates and assuming that the satellite is dynamically symmetric, i. e. $I_1 = I_2$, we obtain canonical equations describing the satellite’s motion about its center of mass

$$\frac{d\psi}{dv} = \frac{\delta H}{\delta p_\psi}, \quad \frac{d\theta}{dv} = \frac{\delta H}{\delta p_\theta}, \quad \frac{d\varphi}{dv} = -\frac{\delta H}{\delta \theta}, \quad \frac{dp_\theta}{dv} = -\frac{\delta H}{\delta \varphi}$$ \tag{21}

with Hamiltonian \cite{4}:

$$H = \frac{p_\psi^2}{2 \sin^2 \theta} + \frac{p_\theta^2}{2} - \left(\frac{\gamma \cos \theta}{\sin \theta} + \frac{\cos \psi}{\tan \theta}\right) p_\psi - p_\psi \sin \psi + \frac{\gamma^2}{2 \tan^2 \theta} + \frac{\gamma \cos \psi}{\sin \theta} + \frac{1}{2} \delta \cos^2 \theta.$$ \tag{22}

where $\nu = \omega_0 t$ and ν is a cyclic coordinate so its respective impulse retains constant value $p_\psi = \frac{l_3}{l_1} r_0 = \gamma$

where $r_0 = \dot{\psi} \cos \theta - \omega_0 \cos \psi \sin \theta$ and ω_0 is the angular velocity of the radius-vector \vec{R}. $\delta = 3 \left(\frac{l_3}{l_1} - 1\right)$ is an inertial parameter ($-3 < \delta \leq 3$).

The equations (21) possess the following particular solutions known as Regular precessions \cite{22-24}:

$$g_0 = \frac{\pi}{2}, \quad \cos \psi_0 = -\gamma, \quad p_{\theta_0} = \sin \psi_0, \quad p_{\varphi_0} = 0$$ \tag{23}

$$g_0 = \frac{\pi}{2}, \quad \psi_0 = \pi, \quad p_{\theta_0} = 0, \quad p_{\varphi_0} = 0$$ \tag{24}

$$\sin g_0 = \frac{\gamma}{\delta - 1}, \quad \psi_0 = 0, \quad p_{\theta_0} = 0, \quad p_{\varphi_0} = \delta \sin g_0 \cos g_0$$ \tag{25}

Solutions (23), (24) and (25) presented in figure 2 describe stationary motions of the satellite in the orbital reference frame and are known as Hyperboloidal, Cylindrical and Conical precession, respectively.

![Figure 2. (a) Hyperboloidal, (b) cylindrical and (c) conical precessions of a symmetric satellite.](image)

If a Regular precession is Lyapunov-stable \cite{25} there exist two types of periodic motions in its neighborhood: short-periodic motions with period close to $\frac{2\pi}{\omega_2}$ and long-periodic motions with period close to $\frac{2\pi}{\omega_1}$ where ω_1 and ω_2 are the frequencies of the linearized system.

3. Results and discussion

The short-periodic motions emanating from Regular precessions of a dynamically-symmetric satellite are defined by the following analytical expressions \cite{26}:

$$\psi = \psi_0 + ckA_{12}^J \sin \Omega (v - v_0) + O(c^2),$$

$$\theta = \theta_0 + ckA_{22}^J \sin \Omega (v - v_0) + O(c^2)$$

$$p_\psi = p_{\psi_0} + ckA_{32}^J \sin \Omega (v - v_0) + O(c^2),$$

$$p_{\theta_0} = p_{\theta_0} + ckA_{42}^J \sin \Omega (v - v_0) + O(c^2)$$ \tag{26}

with period $T = \frac{2\pi}{\Omega}$, where
\[\Omega = \omega_2 + 4c^2a + O(c^4), \]

\(c(h) \) is a small parameter and \(\kappa, \alpha, A_{12}^j, A_{32}^j, A_{32}^j, A_{42}^j (j = \Gamma, Z, K) \) are coefficients depending on \(\gamma \) and \(\delta \) obtained during normalization of the Hamiltonian system (1) in the neighborhood of Regular precessions.

We use the numerical method described in paragraph 1.1 to continue motions (26) to the borders of their existence domains. Following [26] we refer to the natural families of short-periodic motions emanating from Hyperboloidal, Cylindrical and Conical precession as \(\Gamma_s, Z_s \) and \(K_s \), respectively. Figure 3 shows traces of the satellite’s principal axis on a unit sphere for motions belonging to natural families \(\Gamma_s \) (a), \(Z_s \) (b) and \(K_s \) (c) for parameter values \(\gamma = 0.5, \delta = 1.0 \) and \(\Delta h = 0.01 \) (blue curve) and \(\Delta h = 0.1 \) (red curve). \(\Delta h \) is deviation of the energy constant from its value for the corresponding Regular precession.

\[\text{(a)} \quad \text{(b)} \quad \text{(c)} \]

Figure 3. Traces of the satellite’s principal axis on a unit sphere for short-periodic motions arising from (a) Hyperboloidal, (b) Cylindrical and (c) Conical precessions for \(\gamma = 0.5, \delta = 1.0 \) and \(\Delta h = 0.01 \) (blue curve) and \(\Delta h = 0.1 \) (red curve). \(\Delta h \) is deviation of the energy constant from its value for the corresponding Regular precession.

Figures 4-6 show existence and linear orbital stability domains of natural families \(\Gamma_s, Z_s \) and \(K_s \) obtained using the numerical method described in paragraph 2.2. Gray areas represent the existence domains and cross-hatched areas represent domains of orbital instability.

\[\text{(a)} \quad \text{(b)} \quad \text{(c)} \]

Figure 4. Existence (grey) and orbital instability (hatched) domains of family of short-periodic motions arising from Cylindrical precession for (a) \(\delta = 0.5 \), (b) \(\delta = 1.0 \) and (c) \(\delta = 2.8 \).
The family Z_{s} (figure 4) emanates from Cylindrical precession at the curve S_{1}^{Z} and terminates at curve S_{2}^{Z}. With increase of parameter γ it becomes orbitally unstable at curves S_{1}^{K}, S_{2}^{Z} and S_{2}^{Z} due to bifurcation either with natural family K_{s} (curve S_{1}^{K}) or with long-periodic motions originating from Cylindrical precession. The family Z_{s} then becomes linear orbitally stable at the curve S_{1}^{K} due to bifurcation with natural family Γ_{s} which emanates from Hyperboloidal precession.

The family Γ_{s} (figure 5) emanates from Hyperboloidal precession at the curve S_{0}^{Γ} and terminates at curve S_{1}^{Γ}. With increase of γ it becomes orbitally unstable at curve S_{2}^{Γ} and then becomes linear orbitally stable at curve S_{1}^{Γ}. This change in orbital stability takes place to bifurcation with long-periodic motions originating from Hyperboloidal precession. Further study of these long-periodic motions and their bifurcation can be found in \cite{27}.

The family K_{s} (figure 6) is orbitally unstable for $0 < \delta < 1$. For $\delta > 1$ it exits between the curves S_{1}^{K} and S_{1}^{K} and is linear orbitally stable in a subdomain below the curve S_{1}^{K}.

![Figure 5](image1.png)

Figure 5. Existence (grey) and orbital instability (hatched) domains of family of short-periodic motions arising from Hyperboloidal precession for (a) $\delta = 0.5$, (b) $\delta = 1.0$ and (c) $\delta = 2.8$.

![Figure 6](image2.png)

Figure 6. Existence (grey) and orbital instability (hatched) domains of short-periodic motions arising from Conical precession for (a) $\delta = 0.5$ and (b) $\delta = 2.8$.

Figure 7 shows existence domains of families Γ_{s} (inclined hatch), Z_{s} (gray fill) and K_{s} (horizontal hatch) plotted together for fixed value $\delta = 0.5$ and a period vs. parameter bifurcation diagram of these natural families for fixed value of the energy constant $h = 0.35$.
In Figure 7b, T_γ, T_Γ, and T_K are periods of motions belonging to families Γ_s, Z_s, and K_s, respectively. Points P_1 and P_3 belong to the curve S_0^F corresponding to Cylindrical precession, point P_2 belongs to curve S_2^K on which the family K_s terminates and $B_{1,2}$ are bifurcation points belonging to curves S_1^K and S_1^F. If we continue the natural family Z_s from the point P_3 ($\gamma = 1.84$) where it emanates from Cylindrical precession we arrive at point B_2 ($\gamma = 1.11$) where a bifurcation occurs: motions belonging to family Z_s become orbitally unstable and a linear orbitally stable family Γ_s branches off from Z_s. Further continuation brings us to the point B_1 ($\gamma = 0.78$) at which an orbitally unstable family K_s branches off from the family Z_s with the latter becoming linear orbitally stable. Finally, natural family Z_s terminates at point P_2 ($\gamma = 0.16$) by converging into Cylindrical precession. The family Γ_s can be continued beyond $\gamma = 0$ and K_s terminates at point P_2.

![Bifurcation diagram of short-periodic motion families Γ_s, Z_s, and K_s.](image)

Figure 7. Bifurcation diagram of short-periodic motion families Γ_s, Z_s, and K_s. Right graph shows the periods T_Γ, T_γ, T_K of these motions plotted against parameter γ for $\delta = 0.5$, $h = 0.35$. Dotted lines show periods of orbital instability.

To illustrate the bifurcation of families Γ_s, Z_s, and K_s and identify other families of periodic motions we constructed Poincare maps in the neighborhood of points B_1, B_2 (Figures 8-9). On these maps Γ_s, Z_s, and K_s refer to stationary points representing short-periodic motions which emanate from Hyperboloidal, Cylindrical and Conical precessions, respectively. Numerical analysis show that stationary points Z_i ($i = 1.5$) present on these maps correspond to long-periodic motions emanating from Cylindrical precession and stationary point K_i corresponds to long-periodic motion emanating from Conical precession. Stationary points Γ_3 and Γ_4 correspond to long-periodic motions emanating from Hyperboloidal precession in case of fourth-order resonance. Natural families of these motions were computed and studied in [27].

For small deviations of the energy constant h from the Regular precessions the results of this numerical analysis correspond well with the analytical results presented in [2,3]. Aside from presenting interest for general research in the field of Hamiltonian mechanics, orbitally stable periodic motions obtained in this work may be useful for planning attitude motion and control for small-scale satellites in circular orbits in case it is acceptable to model the satellite with a rigid body. Since these motions are conditioned by the inherent properties of the mechanical system and do not require external energy inputs to maintain they can be potentially used for designing more propellant and energy efficient attitude maneuvers.
Figure 8. Poincare sections in the neighborhood of bifurcation points B_1 and B_2 for $\gamma = 0.77$ and $\gamma = 1.05$. $\Gamma_{3,4}$, Z_i ($i = 1.5$) and K_1 are long-periodic motions arising from Hyperboloidal, Cylindrical and Conical precessions, respectively.

Figure 9. Poincare sections in the neighborhood of bifurcation points B_1 and B_2 for $\gamma = 0.77$ and $\gamma = 1.05$. $\Gamma_{3,4}$, Z_i ($i = 1.5$) and K_1 are long-periodic motions arising from Hyperboloidal, Cylindrical and Conical precessions, respectively.

4. Conclusion
In this work we build upon the numerical continuation method proposed by A Sokolskiy and S Karimov and adapt it for investigating bifurcation and linear orbital stability of periodic motions of a Hamiltonian system with two degrees of freedom for all admissible values of problems’ parameters. The proposed approach involves run-time linear orbital stability analysis and identification of bifurcation points which is followed by additional bifurcation analysis using Poincare maps. The resulting bifurcation diagrams are presented as period versus parameter plots. As an application we investigated the linear orbital stability and bifurcation problems for short-periodic motions originating from Regular precessions of a symmetric satellite on circular orbit. The resulting orbital stability domains and bifurcation diagrams correspond well with the analytical conclusions obtained in earlier works. The families of orbitally-stable periodic motions obtained herein present both theoretical interest in the field of Hamiltonian mechanics and may be also used for deriving propellant efficient attitude control for small dynamically symmetric satellites on circular orbits.

Acknowledgments
The reported study was performed at the Moscow Aviation Institute (National Research University) and funded by Russian Fund for Basic Research, project number No. 20-01-00637.
References

[1] Schmidt D S 1974 Periodic solutions near a resonant equilibrium of a Hamiltonian system. *Celestial Mechanics* 9 81 DOI: 10.1007/BF01236166

[2] Markeev A P 1999 On nonlinear oscillations of a Hamiltonian system in case of 2:1 resonance. *J. of Applied Math. and Mech.* 63(5) 715 DOI: 10.1016/S0021-8928(99)00090-8

[3] Bardin B S and Chekin A M 2009 On non-linear oscillations of a Hamiltonian system in case of 3:1 resonance. *J. of Appl. Math. and Mech.* 73(3) 249 DOI: 10.1016/j.jappmathmech.2009.07.016

[4] Markeev A P 2009 Linear Hamiltonian systems and certain stability problems of satellite’s motion about its center of mass (Moscow, Izhevsk: Regular and Chaotic Dynamics, Institute of Computer Reasearch) p 168

[5] Bruno A D 1990 *Restricted Three-Body Problem: flat periodic orbits* (Moscow: Nauka) p 76

[6] Dena A, Rodrigues M, Serrano S, Barrio R 2012 High-Precision Continuation of Periodic Orbits. *Abstract and Applied Analysis* 2012 716024 DOI 10.1155/2012/716024

[7] Wulff C, Schebesch A 2008 Numerical Continuation of Hamiltonian Relative Periodic Orbits. *Nonlinear Science* 18 343 DOI: 10.1007/s00332-008-9026-x

[8] Munoz-Almaraz F J, Freire E, Galan J, Doedel E, Vanderbauwhede 2003 A Continuation of periodic orbits in conservative and Hamiltonian systems. *Physica D: Nonlinear Phenomena* 181(1-2) 1 DOI: 10.1016/S0167-2789(03)00097-6

[9] Deprit A and Henrard J 1967 Natural families of periodic orbits. *Astronomical Journal* 72(2) 158

[10] Sokolov A G, Khovanskiy S A 1983 On numerical continuation of periodic solutions of a Lagrangian system with two degrees of freedom. *Cosmic Research* 21 851

[11] Karimov S R and Sokolov A G 1990 Continuation method for natural families of periodic motions of Hamiltonian systems. Preprint of Institute of Theoretical Astronomy of the USSR 9 15 p

[12] Lara M, Pelacq J 2002 On the numerical continuation of periodic orbits. An intrinsic, 3-dimensional, differential, predictor-corrector algorithm. *Astronomy & Astrophysics* 389(2) 692 DOI: 10.1051/0004-6361:20020598

[13] Wintner A D 1931 Grundlagen einer Genealogie der periodischen Bahnen im restringierten Dreikörperproblem. *Math. Zeitung* 34 321

[14] Tikhonov A A, Tkhai V N 2015 Symmetrical Oscillations in the Problem of Gyrostat Attitude motion in a Weakly Elliptical Orbit in Gravitational and Magnetic Fields. *Vestnik St. Petersburg Uni. Mathematics* 48 119 DOI: 10.3103/S1063454115020107

[15] Tikhonov A A, Tkhai V N 2016 Symmetric oscillations of charged gyrostat in weakly elliptical orbit with small inclination. *Nonlinear Dynamics* 85 1919 DOI: 10.1007/s11071-016-2805-2

[16] Kholostova O V, Safonov A I 2017 A study of the Motions of an Autonomous Hamiltonian System at 1:1 Resonance. *Regul Chaotic Dyn.* 22(1) 792 DOI: 10.1134/S1560354717070036

[17] Kholostova O V 2019 On the Motions of One Near-Autonomous Hamiltonian System at 1:1:1 Resonance *Regul. Chaotic Dyn.* 24(1) 235 DOI: 10.1134/S1560354719030018

[18] Sokolovskiy A G, Khovanskiy S A 1979 Periodic motions close to Hyperboloidal precession of a satellite on circular orbit. *Cosmic Research* 17 208

[19] Bardin B S and Sukhov E A 2018 On numerical continuation algorithm of periodic motions of a 2-DOF Hamiltonian systems. *Proc. of All-Russian conference on the problems of Dynamics, Plasma Physics and Optoelectronics* (RUDN, Moscow) pp 198-202

[20] Sukhov E A and Bardin B S 2016 Analytical and numerical computation of symmetric satellite’s family of periodic motions originating from its Hyperboloidal precession. *Eng. J.: Sci. and Innovation* 53(5) 10 DOI 10.18698/2308-6033-2016-5-1489

[21] Wintner A D 1941 *Analytical foundations of Celestial Mechanics* (Princeton University Press) p 388

[22] Beletskiy V V 1975 *Motion of a satellite relative to its center of mass in gravitational field* (Moscow: MSU press) p 263

[23] Kondur V T 1959 Particular solutions to the general problem of rotational-translational motion
of a spheroid in gravitational field of a ball. **Astronomical Journal** *36*(5) 890

[24] Duboshin G N On rotational motion of artificial celestial bodies. *Bulletins of the Institute of Astronomy of the USSR Academy of Science* *7* 511

[25] Lyapunov A M 1956 *General problem of the stability of motion* (Moscow: USSR academy of science) p 263

[26] Sukhov E A 2019 Bifurcation analysis of periodic motions originating from regular precessions of a dynamically symmetric satellite. *Russian Journal of Nonlinear dynamics* *4* 593 DOI: 10.20537/nd190419

[27] Sukhov E 2018 Analytical and numerical computation ans study of long-periodic motions originating from hyperboloidal precession of a symmetric satellite. *AIP Conference Proceedings* *1959* 040021 DOI 10.1134/10.1063/1.5034624