Development and Characterization of Polymorphic EST-SSR and Genomic SSR Markers for Tibetan Annual Wild Barley

Mian Zhang¹, Weihua Mao², Guoping Zhang¹, Feibo Wu¹*

¹Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China, ²Center of Analysis and Measurement, Zhejiang University, Hangzhou, P.R. China

Abstract

Tibetan annual wild barley is rich in genetic variation. This study was aimed at the exploitation of new SSRs for the genetic diversity and phylogenetic analysis of wild barley by data mining. We developed 49 novel EST-SSRs and confirmed 20 genomic SSRs for 80 Tibetan annual wild barley and 16 cultivated barley accessions. A total of 213 alleles were generated from 69 loci with an average of 3.14 alleles per locus. The trimeric repeats were the most abundant motifs (40.82%) among the EST-SSRs, while the majority of the genomic SSRs were di-nucleotide repeats. The polymorphic information content (PIC) ranged from 0.08 to 0.75 with a mean of 0.46. Besides this, the expected heterozygosity (He) ranged from 0.0854 to 0.7842 with an average of 0.5279. Overall, the polymorphism of genomic SSRs was higher than that of EST-SSRs. Furthermore, the number of alleles and the PIC of wild barley were both higher than that of cultivated barley, being 3.12 vs 2.59 and 0.44 vs 0.37. Indicating more polymorphism existed in the Tibetan wild barley than in cultivated barley. The 96 accessions were divided into eight subpopulations based on 69 SSR markers, and the cultivated genotypes can be clearly separated from wild barleys. A total of 47 SSR-containing EST unigenes showed significant similarities to the known genes. These EST-SSR markers have potential for application in germplasm appraisal, genetic diversity and population structure analysis, facilitating marker-assisted breeding and crop improvement in barley.

Introduction

Barley (Hordeum vulgare L.) is the fourth important cereal crop worldwide. With the rapid development of beer and feed industry, the demand for barley keeps increasing. However, during the long-term domestication of the cultivated barley, especially after the modern breeding and intensive cultivation, the genetic variation degraded significantly, resulting in missing lots of genes, including some rare alleles [1]. The monotonous genetic background of cultivated barley has become the bottleneck of the effectiveness of breeding, while the abundant diversity of wild barley can provide a pool of alleles for barley breeding and improvement [2,3]. Morphological, archaeological cytogenetic and isozyme data revealed that wild barley on the Qinghai-Tibet Plateau is different from the Fertile Crescent wild barley [4]. Researches so far have shown even rich genetic diversity in Tibetan wild barley than in Ethiopian barley [5]. Novel germplasm has been identified from the Tibetan wild barley tolerant to drought, salinity and aluminum toxicity [6–8].

Increasing efficient molecular markers would be valuable in diversity analyses, resource conservation and beneficial alleles exploitation for wild barley. Comprehensive sets of expressed sequence tags (ESTs) sequences have been generated in many plants (http://www.ncbi.nlm.nih.gov/dbEST). The availability of increasing sequence databases enables the identification of functional genes with similar sequences in related species [9]. EST-based SSR markers (EST-SSRs) have been widely employed as powerful molecular genetic tools in a large number of cereal crop species due to their high level of transferability, close association to genes with known function, codominant inheritance, and low cost for development with available development from public databases [10–12]. Jaikishan et al. [13] used 25 EST-SSRs and 25 genomic SSRs to predict grain yield heterosis; multiple EST-SSRs were generated for wheat (Triticum aestivum L.) and these markers showed high transferability between wheat and the other crops, such as barley, maize, rice, and sorghum [14–16]. Up to date, polymorphic EST-SSRs were identified to establish Hordeum chilense evolutionary relationships [17] and new EST-SSRs and genomic SSRs were complemented to the published Australian barley genetic maps [18]. However, to our knowledge, little work has been performed to develop EST-SSRs and apply them for population structure in Tibetan wild barley.

In the present study, with the objective of exploiting new SSRs from EST databases and confirming the published genomic SSRs in the Tibetan wild and cultivated barley accessions, 49 EST-SSRs and 20 genomic SSRs were developed and characterized. These markers can be utilized to evaluate the genetic variation and phylogenetic relationships of 96 barley genotypes. Furthermore,
Table 1. Characterization of 49 polymorphic EST-SSR makers in barley (*Hordeum vulgare* L.).

Primer	SSR motif	Primer sequence (5’-3’)	Expected size(bp)	Na	Ne	Ho	He	PIC
P181	(GAGAG)4	GTCGTCTCCCTCCCTTCA	227	5	3.23	0.1979	0.6944	0.6379
		CATTGCCACGACGTGTTTC						
P129	(GCC)7	CGAGGAGTTGAGGTGGAA	260	4	3.26	0.6042	0.697	0.635
		ACTCTGCTCCCAAGTCTTCT						
P184	(TGC)9	CCTACCAAACAACCGGGAATA	276	4	3.04	0.1053	0.6746	0.6232
		CAGGCAAGGTTGGCCAGGA						
P50	(AATG)5	ACAAGCAGATCAGGCGAG	215	3	2.95	0.2727	0.6649	0.5868
		AACCCGACGACAAAAATAAT						
P91	(TC)13	CGAGGCTCTCATCTCTCT	211	3	2.89	0.3542	0.657	0.5796
		CCAGGCTCTCGGTTGAA						
P8	(AG)15	TCGTTGATCGCAACTTTACC	197	3	2.6	0.0957	0.6187	0.5352
		CACCAGACGACTGAGTA						
P29	(ATAC)13	CTGCTTAGCTTACAGGCTTCC	140	4	3.57	0.1935	0.6141	0.5391
		CCTGCTGCTACGTTTCTAT						
P103	(CTG)9	CATTGCCATCATGTTGAT	100	3	2.53	0.0104	0.6073	0.5362
		ATGTCTCTGCTGTTGAAA						
P32	(GATG)6	GCAGAATGAGAAACGAGA	233	3	2.6	0.0957	0.6187	0.5352
		CAAATAGGAGGAAGAAGGT						
P168	(CTC)7	TTTCCTGCTCTCTCCTC	169	4	2.49	0.3511	0.6013	0.5344
		CTGTGCTACTACGTCTCT						
P99	(ATG)7	GATGTGATCTGATGCTATT	273	4	3.46	0.5021	0.5966	0.5266
		TTTTCCTGCTGTCTTCTC						
P152	(CT)11	ACCAAGCCACAGGATA	251	4	2.4	0.5021	0.5966	0.5266
		CGACCCAGGAGAACAGAT						
P144	(CT)11	CTCGCTCCCCTCTCCACC	134	5	2.19	0.4545	0.5473	0.5127
		TCCGCTTCACGATGAC						
P121	(TACA)4	CCCAGAATAAAGACAGA	287	4	2.25	0.3684	0.5587	0.4971
		CACCAGCTAATAGGCAA						
P34	(CTC)6	GGCGAGAAGCTGTTGTTG	252	3	2.33	0.2083	0.5738	0.4898
		GATGGCCCTCATCTGCTAC						
P101	(ATC)12	CCCCGTATAAACCACCCA	245	3	2.18	0.2565	0.5439	0.4827
		GGGCAAGCTACGACACCAC						
P149	(AGC)9	CTTGCCCAGCTTTGTTTG	259	3	2.19	0.191	0.5431	0.478
		ACTTCCACCGGATCAG						
P150	(GAGC)5	TAAAGTGGTTGAGGAAAGGAA	265	3	2.22	0.1149	0.5533	0.4693
		CAAATAGAAGGATGTTGGA						
P83	(AAGA)4	CTCGCGAAACAGAGAAGCA	278	3	2.21	0.2083	0.5506	0.468
		TTTAGACGAGGTGTC						
P30	(ATGT)12	ACTGCCAATCCATTAGG	241	3	2.18	0.1684	0.5407	0.4626
		CTGTGCTAGTGTTCTT						
P63	(AGC)9	GGGCTGAGCCTTGTCTT	259	3	2.07	0.1146	0.5206	0.4573
		TTTCCAGGACATCAGTC						
P90	(GAT)7	CGCAAGCCACAGAGACAC	177	3	2.12	0.1146	0.5301	0.4507
		TCGCTCCTCTGCTCATC						
P9	(AC)11	ATCAAAACAGCCCTGCTCTA	111	4	2.01	0.2812	0.5047	0.4388
		GTGGTAACCTGCGCTTGG						
P3	(GA)10	GGGAAGGATGATTATAAACCAG	132	4	1.95	0.3077	0.4887	0.4256
		TCGATTCTGCTGCTATAACTA						
Table 1. Cont.

Primer	SSR motif	Primer sequence (5'-3')	Expected size(bp)	Na	Ne	Ho	He	PIC
P45	(GGTT)5	CCCACACACCACCAACAC	229	3	2.08	0.1771	0.5219	0.413
		GCCCCGTAAGTAAGAACAGTA						
P55	(CTG)9	TTATGAGAAGGAGCAT	264	1	1.78	0.0319	0.4419	0.3926
		ACATAGTGGGATAGAGACC						
P105	(CTCG)4	GGGACTACGAGAGCACA	297	3	1.78	0.0632	0.4415	0.381
		CACGGAAGTACAGAAGA						
P56	(CTG)7	AGTATGCTAGGCGGTAT	176	2	1.99	0.1875	0.5007	0.374
		CGTACGCCATTGCT						
P66	(CTCT)4	CAAATGTCCGATTAGAAAA	293	2	1.99	0.234	0.5006	0.374
		GGATAGTGGCAAGGAT						
P67	(TTG)12	AGAAACAAACAGACAGACC	284	2	1.95	0.5729	0.496	0.3717
		ATTTCCACGCTTACCACCA						
P180	(CAG)8	ATTCTGCCGGCCACTAACT	217	2	1.97	0.3229	0.4903	0.3688
		CCACTGATAAGGAGGAGATCA						
P80	(GGTG)4	ACTCTGGTCTGTGCTGAC	149	2	1.95	0.4946	0.4903	0.3688
		CGTATTAGGCAGCTTCC						
P57	(AATA)5	ATACACCGGCTTGTAGGAG	260	2	1.94	0.2604	0.4869	0.367
		GATCGTCTCCAAAAACAT						
P54	(ATC)7	CAGCACCACTACTAATCGAA	245	2	1.93	0	0.4849	0.366
		GCCACACAAGACACCTCC						
P137	(GAAGA)4	AGAGCACAAGCAGGAAGA	161	2	1.91	0.1739	0.479	0.3629
		CACGGAAAGCAAGAAAAAA						
P106	(CTG)8	CGAGCCGCTGTGGTATGGTC	206	2	1.85	0.1383	0.4612	0.3535
		TCTACTGCGGCGGTGAG						
P139	(GCAT)5	ACTCACAATGTAATCGAAGG	287	2	1.83	0.4896	0.4568	0.3512
		GGGCAAGAACGAACTCAG						
P186	(CTGA)5	GGTAGTCCCGCATCAGA	177	2	1.72	0.2604	0.4197	0.3303
		CTCCTGTTGGACAGAAGAT						
P187	(GCACA)4	CTCGGGAGACACATTATT	209	2	1.7	0.8175	0.4154	0.3278
		TTCAGCTCCAGGGGTGCC						
P53	(CCAA)5	AGGGAAAGGAAATCGAAGG	224	2	1.63	0.0968	0.3902	0.3128
		TTGACTCGTTATACACCT						
P13	(AT)19	CACATTGCGGGATGTGCC	298	2	1.63	0	0.3899	0.3126
		GGATTATCTGTTGCGCAG						
P16	(TG)11	CGAAGGGCATAGGCCATAT	256	3	1.44	0.069	0.3097	0.2853
		GACCGTTAGTGGTGTAGAGT						
P61	(GCA)8	CAATGGAGAGAAGCAGA	235	2	1.47	0.1827	0.3204	0.2679
		CAACTTGGAGAGCAGATC						
P81	(CTG)8	GCAGGATAGGGCGACCTC	141	2	1.38	0.1333	0.2793	0.2392
		GACAGGAGAAGGAGCAG						
P185	(CGG)8	AAAAGGGCTTTTACATCTCCC	201	2	1.38	0.0625	0.2792	0.2392
		CGCCAAAACAGTGCTCCC						
P120	(AGC)7	GAAATCTCCAGAGAGACG	249	2	1.33	0.0106	0.2473	0.2157
		AGCAAGTGGCAGTCTACC						
P100	(ACG)6	CACATAAACACCGAACC	249	2	1.23	0.0208	0.1876	0.1693
		CCACATACGCAGAGAGTG						
P21	(GAC)7	AACCTATGGCGGCTTACCTT	241	2	1.11	0.0417	0.0993	0.0939
		CCACCCGTCCACTCTTTT						
polymorphism, and genetic diversity in the Tibetan wild barley accessions were evaluated which would be particularly useful for identification of novel genes with traits of interest, and marker-assisted breeding in barley.

Materials and Methods

Plant materials

A total of 96 barley accessions were used in this study including 80 Tibetan annual wild barley from Qinghai-Tibet Plateau provided by Huazhong Agricultural University barley germplasm collection, and 16 cultivars from China which were stored at the Institute of Crop Science, Zhejiang University, Hangzhou, China (Table S1). These accessions were collected on public land. And no specific permits were required for the collection. Seeds were surface sterilized with 3% H2O2 for 30 minutes and thoroughly rinsed with distilled water, followed by germination in nutrient rich soil in an incubator (22/18°C, day/night) for 10 days. Total genomic DNA was extracted from barley leaves using the Plant Genomic DNA Kit (TianGen, Beijing, China).

Sequence screening and primer designing

A total of 525999 barley ESTs were acquired from the EST database of GenBank (up to September 2012) (http://www.ncbi.nlm.nih.gov/Genbank/). Redundant sequences were removed from these ESTs using CD-HIT-EST (http://cd-hit.org) with the identity parameter of 95%. The presence of SSRs was screened using Simple Sequence Repeat Identification Tool (SSRIT) software (http://www.gramene.org/gramene/searches/ssrtool). The criteria for di-, tri-, tetra-, and penta-nucleotides were 10, 7, 5, and 4 repeat units, respectively. A total of 188 EST-SSRs were randomly selected and primers were designed using Primer5.0 with a length ranging from 18–22 bp, and product sizes of 100 to 300 bp. The reverse primers were marked with 6-FAM or HEX fluorescent dye at 5’ end. 188 EST-SSRs and 20 (49% out of 41) genomic SSRs (Tables 1 and 2), were generated from 69 loci with an average of 3.14 alleles per locus. The ratio of the EST-SSR repeat motifs was not equally distributed. The di-, tri-, tetra-, and penta-nucleotides accounted for 16.32%, 40.82%, 26.53%, and 16.32%, respectively. Whilst most of the genomic SSRs selected were composed of dinucleotide repeats. According to the results of POPGENE for the 69 SSRs, the observed number of alleles per locus (Na) ranged from 2 to 6 (mean = 3.14) and the effective number of alleles per locus (Ne) varied from 1.09 to 4.54 (mean = 2.30). The average Na was 3.12 and 2.59 for wild and cultivated barley, respectively (Table 3).

Characterization of polymorphic SSRs

In total, 69 SSR primer pairs, including 49 (26% out of 188) EST-SSRs and 20 (49% out of 41) genomic SSRs (Tables 1 and 2), showed polymorphism among 96 accessions. A total of 213 alleles were generated from 69 loci with an average of 3.14 alleles per locus. The ratio of the EST-SSR repeat motifs was not equally distributed. The di-, tri-, tetra-, and penta-nucleotides accounted for 16.32%, 40.82%, 26.53%, and 16.32%, respectively. Whilst most of the genomic SSRs selected were composed of dinucleotide repeats. According to the results of POPGENE for the 69 SSRs, the observed number of alleles per locus (Na) ranged from 2 to 6 (mean = 3.14) and the effective number of alleles per locus (Ne) varied from 1.09 to 4.54 (mean = 2.30). The average Na was 3.12 and 2.59 for wild and cultivated barley, respectively (Table 3). Besides this, the polymorphic information content (PIC) ranged temperature. PCR products were diluted and tested on a MegaBACE 1000 DNA analysis system (Amersham Biosciences, Piscataway, NJ) at the Center of Analysis and Measurement in Zhejiang University. The lengths of PCR fragments were calculated using the ET550-R size standard and Genetic Profiler version 2.2.

Results

Characterization of polymorphic SSRs

In total, 69 SSR primer pairs, including 49 (26% out of 188) EST-SSRs and 20 (49% out of 41) genomic SSRs (Tables 1 and 2), showed polymorphism among 96 accessions. A total of 213 alleles were generated from 69 loci with an average of 3.14 alleles per locus. The ratio of the EST-SSR repeat motifs was not equally distributed. The di-, tri-, tetra-, and penta-nucleotides accounted for 16.32%, 40.82%, 26.53%, and 16.32%, respectively. Whilst most of the genomic SSRs selected were composed of dinucleotide repeats. According to the results of POPGENE for the 69 SSRs, the observed number of alleles per locus (Na) ranged from 2 to 6 (mean = 3.14) and the effective number of alleles per locus (Ne) varied from 1.09 to 4.54 (mean = 2.30). The average Na was 3.12 and 2.59 for wild and cultivated barley, respectively (Table 3). Besides this, the polymorphic information content (PIC) ranged temperature. PCR products were diluted and tested on a MegaBACE 1000 DNA analysis system (Amersham Biosciences, Piscataway, NJ) at the Center of Analysis and Measurement in Zhejiang University. The lengths of PCR fragments were calculated using the ET550-R size standard and Genetic Profiler version 2.2.

Population structure

Population structure was assessed using the STRUCTURE software v2.3.3 based on the admixture model [21]. Models were tested for clusters (k) from 1 to 15, each with ten independent runs and 100,000 MCMC (Markov Chain Monte Carlo) iterations. The most likely number of clusters (k) was indicated by Δk, the change rate of the estimated log probability of the data (LnP[D]) [22].

Gene function blast

EST-SSRs associated unigene sequences were blasted against the GenBank non-redundant (nr) protein database using BLASTX (http://www.ncbi.nlm.nih.gov/BLAST) with an expected value (E-value) of 10−10 for the function of polymorphic EST-SSRs.

Table 1. Cont.

Primer	SSR motif	Primer sequence (5’-3’)	Expected size(bp)	Na	Ne	Ho	He	PIC
P44	(GCAA)5	AGTCCCCGTAAACCTACCTGAG	165	2	1.09	0	0.0854	0.0813
		TGCCGGAGAATGTAATCG						

Note: Na, number of alleles; Ne, number of effective alleles; Ho, observed heterozygosity; He, expected heterozygosity; PIC, polymorphic information content.

doi:10.1371/journal.pone.0094881.t001
from 0.08 to 0.75 with a mean of 0.46, and the PIC of wild barley was higher than that of cultivars with 0.44 vs 0.37. The expected heterozygosity (He) ranged from 0.0854 to 0.7842 with an average of 0.5279, while the observed heterozygosity (Ho) ranged from 0 to 0.766 with an average of 0.1677. As an indicator of genetic diversity, the average He was 0.5098 in wild barley accessions and 0.4333 in cultivated accessions.

Gene functions of the 49 unigene sequences containing polymorphic EST-SSRs

Functions of the 49 polymorphic EST-SSRs were determined and 47 unigenes showed significant similarities to the known genes (Table 4), for instance, zinc finger protein MAGPIE, transcription factor LAF1, photosystem II reaction center PSB28 protein, xyloglucan endotransglycosylase (XET), and protein kinase

Primer	SSR motif	Primer sequence (5'-3')	Expected size (bp)	Na	Ne	Ho	He	PIC
S40	(AT)29	ACACCTTCCAGGACAACTCC	182	6	4.54	0.022	0.7842	0.748
		CAGAGACCAAAAAAGTCGTGA						
S22	(GT)13,(AG)19	AAGCTTTTCTTTGTATTCGTG	158	5	4.09	0.0526	0.7595	0.7162
		GTCATACCTTCTTAACTCCCG						
S18	(CT)28	CGGGATTTTGTATCCTCTAA	107	5	3.9	0.0211	0.7474	0.7016
		AAAACAGTACGAAAAATGGAGA						
S7	(AC)20	ATAGATCAACAGTGAACCC	177	5	3.49	0.0833	0.7175	0.6776
		GGTATACCTGAGGCAAATAC						
S37	(CT)18	CGGACACATGGTATGAACCC	131	5	3.35	0.0521	0.7049	0.6596
		CGTGGACAAATACCGTGTT						
S2	(AC)7T(CA)15,(AT)9	CCACTAAAGTCCGGCTAG	215	4	3.32	0.0326	0.703	0.6504
		GTGGGCGCTCAGATCGAC						
S11	(AG)15	TCCATGATGATGGGTATAGAGA	173	5	3.01	0.0909	0.672	0.6121
		CGGATCCTCCAAACACAC						
S4	(AT)6/AC16	GCTATGGGCTACTATGATGGTG	173	4	3.04	0.0549	0.6749	0.6106
		TCAGATGGGTATGCTACAAAGA						
S41	(TG)8	AGTATGGGAAATTATTTGG	136	4	2.79	0.0312	0.6455	0.5864
		GCTGCAAAGTGAATCAATGT						
S25	(CT)24	TTTGTGACATCTCAAGAACAC	158	4	2.77	0.1889	0.6428	0.5845
		TGCAAAAATATACCTCACAG						
S38	(GA)17(GA)7	CTATCAGACGCACACATG	169	5	2.73	0.5106	0.6376	0.5828
		CCGAGAAAGAAAGGCCAAC						
S30	(GC)5GGG (GT)16	CAAATCACTAAGAGGCC	153	3	2.74	0	0.6384	0.5615
		TTTGAAGTGAGACATTTCCA						
S21	(AG)7C(AG)30-(AG)6	GGAAGCTCTAATGAAAGAG	150	3	2.67	0	0.6284	0.5546
		AATGTAGGGAGGTGCTCATAG						
S19	(AG)19	CCTAGCCTTCTTGTAGAG	135	3	2.46	0.0316	0.5973	0.5292
		TTATCGGCAATGGCCATAG						
S29	(GT)16	AGATCAAGATCGACAAACAC	124	4	2.13	0.0233	0.5464	0.5027
		AAAAAATGAACTGGATGAA						
S15	(CT)16	ATATCGATCTTGTATTAGGCC	174	3	2.16	0.0319	0.5391	0.4749
		ACATATGTCGATCAAAGC						
S31	(CT)21	CTATTTTCTAATGCTGGAC	149	3	2.46	0.0947	0.5437	0.4647
		TGCTATGCATCATCATAGGC						
S36	(CA)9	GGAATTTTCTCACAGAACCT	239	3	2.13	0.0076	0.5234	0.4597
		GGGTAGTGCCACTATT						
S1	(AC)11	GTCCTTACGGTGAACGTT	138	3	2.1	0.0316	0.5256	0.4547
		ACATAGCCGACATCGTGTT						
S8	(AC)13(AT)9	GCTCTTCTCTAGAAAATGGA	177	3	1.63	0.0444	0.3899	0.3492
		GAATATTTAAGGCTGTGAAA						

Table 2. Characterization of 20 genomic-SSR makers in barley.

DOI: 10.1371/journal.pone.0094881.t002
APK1B. In addition, the results revealed that the most annotated proteins were from *Triticum urartu* (17, 36.2%), and the species *Hordeum vulgare* and *Aegilops tauschii* accounted for the same percentage (11, 23.4%).

Population structure and genetic distance

To detect the population structure in the 96 barley genotypes, we performed STRUCTURE program for Bayesian clustering analysis using 69 SSR markers, assuming that the number of populations (K) ranged from 1 to 15. The highest log likelihood score (D_k) was at $K = 8$ (Figure 1A), indicating that the most suitable number of subpopulations was eight. The frequency of each accession assigned to a subpopulation was shown in Table S1. If the threshold of frequency was set at 0.5, only six accessions were defined as admixed. However, about 80% of the accessions can be derived from the subpopulations when the threshold was at 0.7. The output of structure analysis demonstrated that wild and cultivated barleys were assigned to different subpopulations (Figure 1B). Most of the cultivated barleys were classified into the subpopulation 4, except for A74, Tadmor, B1342 and B1031. Fifty percent of the wild barley accessions studied were assigned to subpopulation 1.

According to the values of genetic distance of the eight subpopulations, we get the dendrogram showing the genetic

![Dendrogram](image-url)

Table 3. Polymorphism of SSR markers in Tibetan wild and cultivated barley.

Marker	No. of alleles	PIC	He	No. of alleles	PIC	He
	Wild	Cultivated				
P3	4	2	0.450	0.156	0.5259	0.1754
P8	3	3	0.582	0.482	0.6597	0.5565
P9	4	2	0.467	0.110	0.5454	0.1210
P13	2	2	0.271	0.371	0.3251	0.5081
P16	3	3	0.256	0.375	0.2757	0.4456
P21	2	1	0.110	0.1179	0	0.1179
P29	3	3	0.484	0.520	0.5637	0.6048
P30	3	3	0.431	0.398	0.4908	0.4758
P32	3	2	0.542	0.315	0.6201	0.4046
P34	3	2	0.507	0.366	0.5878	0.4980
P44	2	2	0.075	0.110	0.0783	0.1210
P45	3	3	0.265	0.294	0.4623	0.3306
P50	3	2	0.545	0.305	0.6285	0.3871
P53	2	2	0.288	0.374	0.3503	0.5149
P54	2	2	0.372	0.258	0.4981	0.3145
P55	3	2	0.382	0.359	0.4237	0.4839
P56	2	2	0.371	0.359	0.4953	0.4839
P57	2	2	0.347	0.283	0.4500	0.3528
P61	2	2	0.280	0.195	0.3389	0.2258
P63	3	2	0.475	0.323	0.5386	0.4173
P66	2	2	0.364	0.258	0.4821	0.3145
P67	2	2	0.375	0.305	0.5024	0.3871
P80	2	2	0.372	0.323	0.4981	0.4173
P81	2	2	0.248	0.195	0.2916	0.2258
P83	4	3	0.473	0.438	0.5550	0.5423
P90	3	3	0.378	0.544	0.4479	0.6371
P91	3	3	0.587	0.327	0.6650	0.3730
P99	3	2	0.549	0.305	0.6223	0.3871
P100	2	2	0.110	0.337	0.1179	0.4435
P101	3	2	0.499	0.315	0.5637	0.4046
P103	3	2	0.470	0.371	0.5252	0.5081
P105	3	2	0.380	0.195	0.4634	0.2258
P106	2	2	0.329	0.349	0.4185	0.4657
P120	2	2	0.159	0.359	0.1749	0.4839
P121	4	3	0.485	0.367	0.5584	0.4529

Average | 3.12 | 2.59 | 0.441 | 0.373 | 0.5098 | 0.4333

[doi:10.1371/journal.pone.0094881.t003](http://dx.doi.org/10.1371/journal.pone.0094881.t003)
Primer	Accession No.	Putative protein	Organism	E-value
P181	CA032876.1	Hypothetical protein TRIUR3_30088	*Triticum urartu*	4.00E-51
P129	CV03130.1	Putative SKP1 protein	*T.aestivum*	1.00E-77
P184	CB85839.1	Hypothetical protein TRIUR3_19075	*T.urartu*	1.00E-46
P50	DN178534.1	UCW116, putative lipase	*H. vulgare subsp. vulgare*	3.00E-125
P91	FD524685.1	Putative syntaxin-131	*Aegilops tauschii*	1.00E-93
P8	AL506646.1	Zinc finger protein MAGPIE	*T.urartu*	4.00E-41
P29	AV943994.1	RNA polymerase sigma factor rpoD	*T.urartu*	7.00E-116
P103	CA009356.1	GID1-like gibberellin receptor	*H. vulgare subsp. vulgare*	4.00E-04
P32	EX593207.1	Disease resistance protein RGA2	*Aegilops tauschii*	8.70E-02
P168	BU997138.1	Hypothetical protein TRIUR3_09517	*T.urartu*	1.00E-04
P99	GH218162.1	Two-component response regulator ARR9	*T.urartu*	2.00E-64
P152	AV938130.1	Predicted protein	*H. vulgare subsp. vulgare*	1.10E-01
P144	EX598444.1	No hit	-	-
P121	CK569829.1	ACC oxidase	*H. vulgare*	9.00E-74
P34	DN186304.1	Predicted: UDP-glucose 6-dehydrogenase-like	*Brachypodium distachyon*	5.00E-65
P101	GH223749.1	FT-like protein	*H. vulgare subsp. vulgare*	1.00E-45
P149	EX583185.1	Condensin-2 complex subunit G2	*T.urartu*	5.00E-54
P150	FD519288.1	Curcuminoid synthase	*T.urartu*	5.00E-59
P83	FD527549.1	Putative pectinesterase S3	*Aegilops tauschii*	1.00E-76
P30	DN177250.1	Hypothetical protein F775_31773	*Aegilops tauschii*	1.00E-05
P63	EX577085.1	Condensin-2 complex subunit G2	*T.urartu*	6.00E-69
P90	FD528427.1	Photosystem II reaction center PS28 protein	*T.urartu*	2.00E-83
P9	AL505258.1	Hypothetical protein F775_27232	*Aegilops tauschii*	6.00E-113
P3	BJS47928.1	Hypothetical protein TRIUR3_27885	*T.urartu*	1.00E-113
P45	FD523777.1	Hypothetical protein OsL_14737	*Oryza sativa Indica Group*	3.00E-50
P55	AL505545.1	No hit	-	-
P105	CA014373.1	Eukaryotic translation initiation factor 1A	*Leymus chinensis*	5.00E-72
P56	EX584572.1	Hypothetical protein F775_08651	*Aegilops tauschii*	2.00E-37
P66	FD518055.1	Predicted: protein LOC100843116	*B.distachyon*	5.00E-51
P67	FD520223.1	Hypothetical protein TRIUR3_27901	*T.urartu*	8.00E-36
P180	CA030489.1	Hypothetical protein TRIUR3_23016	*T.urartu*	4.00E-73
P80	FD523499.1	Casein kinase I-2-like protein	*A.tauschii*	1.00E-75
P57	EX599270.1	Hypothetical protein ZEAMMB73_419738	*Zea mays*	7.00E-56
P54	AL500476.1	PM2	*H. vulgare subsp. vulgare*	5.00E-67
P137	DN180922.1	PREDICTED: protein LOC100846358	*B.distachyon*	2.00E-02
P106	CA031374.1	OSJNBa0074L08.11	*Oryza sativa Japonica Group*	1.00E-46
P139	AL501810.1	GDSL esterase/lipase	*A.tauschii*	3.00E-40
P186	CB864664.1	Protein kinase APK18, chloroplastic	*A.tauschii*	4.00E-50
P187	CB864737.1	Inactive ubiquitin carboxyl-terminal hydrolase 54	*T.urartu*	1.00E-17
P53	EH090859.1	TBC1 domain family member 15	*A.tauschii*	2.00E-57
P13	CK569261.1	Hypothetical protein TRIUR3_25268	*T.urartu*	3.50E-01
P16	CB873886.1	Phospholipid transfer protein precursor	*H. vulgare subsp. vulgare*	2.00E-43
P61	EX573461.1	Predicted protein	*H. vulgare subsp. vulgare*	6.00E-60
P81	FD521065.1	Predicted protein	*H. vulgare subsp. vulgare*	1.00E-81
P185	CB860703.1	Peptide transporter PTR2	*A.tauschii*	5.00E-60
P120	CK569159.1	Xyloglucan endotransglycosylase (XET)	*H. vulgare subsp. vulgare*	5.00E-69
P100	GH216950.1	Rho GDP-dissociation inhibitor 1	*T.urartu*	7.00E-69
P21	CK122115.1	Predicted protein	*H. vulgare subsp. vulgare*	5.00E-116
P44	CV063055.1	Transcription factor LAF1	*T.urartu*	3.00E-70

Table 4. The putative proteins identified by BLASTX of 49 unigene sequences containing polymorphic EST-SSRs.
relationship of the subpopulations via UPGMA clustering analysis (Figure 2). The dendrogram showed that the subpopulation 3 was most close to the cultivated barleys (subpopulation 4) with the genetic distance of 132.188. The subpopulation 7 had the largest genetic distance (165.167) with the cultivated subpopulation.

Discussion

In recent years, different kinds of molecular markers have been used widely, including marker-assisted breeding, study of genetic relationships between populations, and screening candidate genes associated with the target traits [23]. The simple sequence repeats (SSRs) are increasingly important due to their high polymorphism and convenient techniques. However, EST-SSRs are superior to genomic SSRs for their transcriptional sequence and suitable application in cross-species [24]. In the present study, we developed 49 EST-SSR and 20 genomic SSR markers for wild barley. These novel EST-derived markers will be a valuable resource for tagging and mapping of genes related to agronomic and stress-resistant traits of interest. In addition, these markers are advantageous for identifying functional diversity of unique adaptive germplasm because of their genic function.

In many plants, the di- and tri-nucleotides repeat motifs were the major types, but the predominant motifs were different in various species [25,26]. In our research, the tri-meric repeats were the most abundant motifs (40.82%), followed by the tetra-meric repeats accounted for 26.55%, and the di-meric and penta-meric repeat motifs were at the same frequency (16.32%). The polymorphism of SSRs can be divided into three degrees: high (PIC > 0.5), medium (0.5 > PIC > 0.25) or low (PIC < 0.25) [27]. In our study, the genetic diversity of genomic SSRs was higher than the EST-SSRs, with the mean PIC value of 0.57 (high) and 0.41 (medium), respectively, resulting in the general medium polymorphism (mean = 0.46). This finding was in line with previous results, and the lower level of polymorphism of EST-SSRs might be due to the selection against the variation in the conserved regions of the EST-SSRs [28]. Moreover, the expected levels of heterozygosity at EST-SSRs were also not as high as that of genomic SSRs, ranging from 0.0854 to 0.697 vs 0.3899 to 0.7842. Pompanon et al. [29] contributed the deficiency of heterozygosity to the primer problems, the deletion of alleles and appearance of invalid alleles at the annealing points.

Studies of the genetic variation in barley suggested that Tibetan wild barley showed higher polymorphism than cultivated barley [30–32]. The results of our study were consistent with the previous studies. The number of alleles and the PIC of wild barley were
both higher than that of cultivated barley, being 3.12 vs 2.59 and 0.44 vs 0.37. The expected heterozygosity (He) showed the same trend, with 0.5030 and 0.4333 for wild and cultivated barley, respectively. The richness of genetic diversity in Tibetan wild barley may be the source of novel genes contributing to the tolerance of biotic and abiotic stresses, which is important in the barley breeding.

BLASTX analysis indicated that 47 (96%) of the 49 unigenes containing EST-SSRs can be matched to at least one important proteins in the NCBI nr protein database. For further study, we can search the candidate genes of interest via association analysis referring to the function of markers in the metabolism pathways. Furthermore, these EST-SSR markers can be utilized as affirmative markers for comparative studies in the related species, for example, _Triticum urartu_ and _Aegilops tauschii_.

In the present investigation, the findings of population structure analysis demonstrated that the developed EST-SSRs and genomic SSRs could distinguish between the cultivated and wild barley genotypes clearly. The 96 genotypes were divided to eight subpopulations. The subpopulation 3 (XZ161, XZ163, XZ165, XZ168) was most closely related to the cultivated barley (subpopulation 4), and the subpopulation 7 (XZ120, XZ151, XZ153) and the cultivated barlews were two most genetically distant populations. The genetic relation of the subpopulations suggested that the subpopulation 3 contained the most domesticated genotypes among the studied wild barley. Furthermore, the other subpopulations of wild barley, especially subpopulation 7, may be the important germplasm resource for the improvement of cultivars tolerant of abiotic and biotic stresses. These results were consistent with recent clustering studies in the Tibetan wild barley.

References

1. Russell J, Booth A, Fuller J, Harrewen B, Hedley P, et al. (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398.
2. Nevo E, Apelbaum-Elkaher I, Garty J, Belles A (1997) Natural selection causes microscale allozyme diversity in wild barley and leek at ‘Evolution Canyon’. Mt Carmel Israel. Heredity 78: 373–382.
3. Dai F, Nevo E, Wu DZ, Comadran J, Zhou MX, et al. (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109: 10999–11004.
4. Ren XF, Nevo E, Sun DF, Sun GL (2013) Tibet as a Potential Domestication Center of Cultivated Barley of China. PLoS One 8:e62700.
5. Zhang QF, Dai XK (1992) Comparative assessment of genetic variation at 6 isozyme loci in barley from two centers of diversity: Ethiopia and Tibet. Acta Genet Sin 19: 236–243.
6. Zhao J, Sun HY, Dai HK, Zhang GP, Wu FB (2010) Difference in response to drought stress in Tibet wild barley genotypes. Euphytica 172: 393–403.
7. Dai RX, Shan WN, Zhao J, Zhang GP, Li CD, et al. (2011) Difference in response to aluminum stress among Tibetan wild barley genotypes. J Plant Nutr Soil Sc 174: 952–960.
8. Wu DZ, Qin L, Xu LX, Ye LZ, Chen MX, et al. (2011) Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS One 6: e22930.
9. Mricek W, Wiesecke W, Pfeiffer KP, Graner A (2002) EST analysis in barley defines a unigene set comprising 4,000 genes. Theor Appl Genet 104:97–103.
10. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23: 48–55.
11. Zeng SH, Xiao G, Guo J, Fei ZJ, Xu YQ, et al. (2010) Development of an EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, _Epimedium sagittatum_ (Sieb. et Zucc.) maxim. BMC Genomics 11: 94–104.
12. Li M, Zhu L, Zhou CY, Lin L, Fan YJ, et al. (2012) Development and characterization of EST-SSR markers from _Sorghum benghalense_ and their transferability in _Sorghum subkarnianum_ and _Triticum aestivum_. Molecules 17: 10716–10723.
13. Jakabian I, Rajendrakumar P, Ramesha MS, Virakamath BG, Balachandran SM, et al. (2010) Prediction of heterosis for grain yield in rice using ‘key’ informative EST-SSR markers. Plant Breeding 129: 100–111.
14. Mohan A, Goyal A, Singh R, Balyan HS, Gupta PK (2006) Physical mapping of wheat and rye expressed sequence tag-simple sequence repeats on wheat chromosomes. Crop Sci 47(S_1): S3–S13.
15. Tang J, Gao L, Cao Y, Jia J (2006) Homologous analysis of SSR-ESTs and transferability of wheat SSR-EST markers across barley, rice and maize. Euphytica 151: 87–93.
16. Li L, Wang J, Guo Y, Jiang F, Xu Y (2008) Development of SSR markers from ESTs of graminaceous species and their chromosome location on wheat. Prog Nat Sci 18: 1495–1499.
17. Castillo A, Bulak H, Varshney RK, Dorado G, Graner A (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8: 97.
18. Willmore KJ, Eckermann P, Varshney RK, Graner A, Landgrape P (2006) New eSSR and gSSR markers added to Australian barley maps. Crop Pasture Sci 57: 953–959.
19. Gregoratti V, Graner G (2009) Analysis of population structure through discriminant analysis of principal components in barley (_Hordeum vulgare_ L.) cultivars. Genetics 172:1163–1177.
20. Yeh FC, Yand RC, Boyle T (1999) FSTAT (Version 1.31): Microsoft Window-bases freeware for population genetic analysis, University of Alberta and the Centre for International Forestry Research.
21. Prichard JK, Stephens M, Donnelly P (2006) Inference of population structure using multilocus genotype data. Genetics 155: 945–955.
22. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620.
23. Gupta PK, Rastgi S (2004) Molecular markers from the transcribed/expRESSED region of the genome in higher plants. Funct Integr Genomics 4: 139–162.
24. Mian MA, Saha MC, Hopkins AA, Wang ZY (2005) Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome 48: 637–647.
25. Varshney RK, Thiel T, Stein N, Landgrape P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Curr Mol Biol Lett 7:537–546.
26. Kumpatla SP, Mukhopadhyay S (2005) Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome 48:985–991.
27. Xie WG, Zhang XQ, Cai HW, Liu W, Peng Y (2010) Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (_Dactylis glomerata_ L.). Biochem Syst Ecol 38: 740–749.
28. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, et al. (2000) Analysis of sequence-based polymorphism and haplotype content in transcribed and encoded regions of the barley genome. Genome 47:389–398.
29. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859.
30. Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, et al. (2000) Wild barley: a source of genes for crop improvement in the 21st century. J Exp Bot 51: 9–17.

31. Jin XL, Cai SG, Han Y, Wang J, Wei K, et al. (2011) Genetic variants of HvGlb1 in Tibetan annual wild barley and cultivated barley and their correlation with malt quality. J Cereal Sci 53: 59–64.

32. Sun DF, Ren WB, Sun GL, Peng JH (2011) Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica 178: 31–43.