Evidence for a Possible Black Hole Remnant in the Type IIL Supernova 1979C

D. J. Patnaude, A. Loeb, & C. Jones

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

ABSTRACT

We present an analysis of archival X-ray observations of the Type IIL supernova SN 1979C. We find that its X-ray luminosity is remarkably constant at $(6.5 \pm 0.1) \times 10^{38}$ erg s$^{-1}$ over a period of 12 years between 1995 and 2007. The high and steady luminosity is considered as possible evidence for a stellar-mass ($\sim 5–10M_\odot$) black hole accreting material from either a supernova fallback disk or from a binary companion, or possibly from emission from a central pulsar wind nebula. We find that the bright and steady X-ray light curve is not consistent with either a model for a supernova powered by magnetic braking of a rapidly rotating magnetar, or a model where the blast wave is expanding into a dense circumstellar wind.

Subject headings: supernovae: individual(SN 1979C) – supernova remnants

1. Introduction

Kasen & Bildsten (2009) and Woosley (2009) have recently suggested that a class of Type IIL supernovae (SNe) may be powered by the birth of a magnetar during the SN event. These SNe include SN 1961F, SN 1979C, SN 1980K, and SN 1985L. In particular, Kasen & Bildsten (2009) argue that for a supernova with ejecta mass $M_{ej} = 5M_\odot$ that forms a magnetar with an initial period of $P_i = 10$ ms, the supernova can reach peak luminosities consistent with what was observed in these events. They also show that even brighter ($M_B = -21$) events can occur, such as the ultra-bright Type IIL SNe 2005ap and 2008es.

Motivated by Kasen & Bildsten (2009) and Woosley (2009), we compared the time evolution of the X-ray luminosity of SN 1979C to the form expected from a magnetar-powered SN. In § 2, we discuss SN 1979C and examine its X-ray luminosity. We find that contrary to the expectation of these papers, the evolution of this SN is not consistent with the magnetar model. Additionally, we show that the X-ray emission spectrum exhibits evidence for hard X-ray emission, possibly originating from a central source. We show that the X-ray luminosity has been steady over the lifetime of the SN evolution and argue that this is due to an accreting stellar-mass black hole remnant at the center of SN 1979C.

2. SN 1979C

The Type IIL SN 1979C, discovered on April 19 1979 by G. Johnson (Mattei et al. 1979) and its host galaxy NGC 4321 (M100, at a distance of 15.2 ± 0.1 Mpc; Freedman et al. 2001) have been extensively observed in the radio (Weiler et al. 1986; Montes et al. 2000; Bartel & Bietenholz 2003, 2008; Marcaide et al. 2008).
optical (Fesen & Matonick 1993; Milisavljevic et al. 2009) and X-ray (Immler et al. 1998; Kaaret 2001; Immler et al. 2005) bands. At optical wavelengths, the Hα flux has decreased by ~ 35% between 1993 and 2008, while forbidden line emission from lines such as [O III] has increased ~ 50% (see Figure 3 of Milisavljevic et al. 2009). The increase in the forbidden line emission is evidence of shock heating of the ejecta by the reverse shock. Similar to the Hα emission, the radio emission also shows a decline of a factor of ~ 5 over the lifetime of the SN (Bartel & Bietenholz 2008), though early observations provided evidence for quasi-periodic oscillations that may be the result of a modulation in the progenitor’s circumstellar environment by a binary companion (Weiler et al. 1992; Schwarz & Pringle 1996).

Recently, Bartel & Bietenholz (2008) noted that in conjunction with a decrease in the radio luminosity the spectrum has begun to flatten. They note that the flattening spectrum would be expected for a supernova with emission from a compact remnant that is beginning to appear in the shell as the expanding remnant becomes increasingly transparent. They point out, however, that the flattened spectrum could also be due to synchrotron emission from the shell as electrons are accelerated to GeV energies. We note that in this scenario, it would be reasonable to expect an increasing hard X-ray flux as electrons are accelerated to TeV energies. More recently, Marcaide et al. (2009) presented a revised analysis of the radio expansion of SN 1979C and found that the expanding blastwave is in near free expansion with \(m = 0.91 \pm 0.09 \) for \(R \propto t^m \). This seems contrary to X-ray observations which suggest that the blastwave has been strongly decelerated by a dense circumstellar interaction (Immler et al. 2005). While the optical and radio emission have showed evolution over ~ 25 years, X-ray observations of SN 1979C show a markedly different behavior. As seen in Table 1, the X-ray luminosity has remained remarkably constant over its 30 yr lifetime.

Kasen & Bildsten (2009) suggest that Type IIL SNe such as SN 1979C may have been magnetar powered. In the context of a magnetic dipole model, one can write the spindown luminosity as \(L_p = 5 \times 10^{42} B_{14}^2 P_i^{-4} \) erg s\(^{-1}\) for a magnetar with magnetic field \(B_{14} \) (in units of \(10^{14} \) Gauss) and period \(P_i \) (in units of 10 ms), or as

\[
L_p = 2 \times 10^{42} B_{14}^2 (t/\text{yr})^{-2} \text{ erg s}^{-1}.
\]

(1)

The observed X-ray luminosity, \(L_X \), can be expressed as some fraction, \(f_x \), of the magnetar spindown luminosity, i.e. \(L_X = f_x L_p \). In Figure 1 we plot the evolution of the X-ray luminosity for a dipole magnetar-powered SN assuming that 1, 3, or 10% of the spindown power is transferred into X-rays, with \(B_{14} = 1 \) and \(P_i = 1 \). We also indicate the X-ray luminosity (from Table 1) as observed by the ROSAT, XMM–Newton, Chandra, and Swift observatories, as well as the early upper limit from the Einstein observatory HRI, where the model predicted X-ray luminosity is more than two orders of magnitude above the Einstein upper limit. As seen in Figure 1 and also in Table 1 the observed X-ray luminosity \(^1 \) is remarkably constant over time, with \(L_X = (6.5 \pm 0.1) \times 10^{38} \text{ erg s}^{-1} \).

Most importantly, even if the magnetar powered the SN only at early times, it would have likely resulted

\(^1\text{to convert from the observed count rates to source fluxes and luminosities, we assume an absorbed thermal bremsstrahlung model with } n_H = 2.4 \times 10^{20} \text{ cm}^{-2} \text{ and } kT = 0.5 \text{ keV.}\)
in a clear detection by the Einstein observatory. The above equation applies to a magnetic dipole spindown. More generally, the magnetar luminosity can be written as

\[L_p \propto \frac{(l - 1)}{(1 + t/t_p)} t^l, \tag{2} \]

where \(t_p \) is the initial spindown time and \(l = 2 \) for magnetic dipole spindown. At late times, \(L_p \propto t^{-l} \), and for all physical values of \(l \) the luminosity decreases with time. If the X-ray luminosity is some fraction of the spindown luminosity, the fraction will need to increase with time, potentially up to unphysical values greater than unity, in order for the observed X-ray luminosity to remain constant.

2.1. Spectral Modeling

The combined Chandra ACIS-S spectrum of SN 1979C is shown in Figure 2. Immler et al. (2005) fit the XMM-Newton observation to a two component thermal plasma model (MEKAL model in XSPEC\(^2\)), with \(kT_{\text{low}} = 0.77^{+0.17}_{-0.19} \) keV and \(kT_{\text{high}} = 2.31^{+1.95}_{-0.66} \) keV. They did not find any evidence for strong absorption, with a fitted hydrogen column density \(N_H \approx 2.5 \times 10^{20} \) cm\(^{-2}\) (see also Dickey & Lockman 1990), and attribute the low temperature component to recently shocked ejecta, and the high temperature component to emission from swept–up circumstellar material (CSM). In their model, the shocked circumstellar emission arises from a dense wind, with densities of \(\lesssim 10^5 \) cm\(^{-3}\) out to radii of 0.13 pc, yielding column densities \(\lesssim 10^{22} \) cm\(^{-2}\). Immler et al. (2005) argue that VLBI imaging at \(t = 22 \) yr show no evidence for clumping in the CSM, indicating that the CSM is remarkably uniform. If this were the case, then both the XMM–Newton and Chandra ACIS-S spectrum would show strong absorption at low energies. We fitted the Chandra ACIS-S spectrum to a two component thermal plasma model, and found that the spectrum can be described by two thermal plasmas with temperatures \(kT = 0.75^{+0.2}_{-0.3} \) and \(1.86^{+0.88}_{-0.72} \) keV, which shows no evidence for the level of absorption expected from the above properties of a hypothetical dense smooth CSM. We note that our fitted parameters and those of Immler et al. (2005) are consistent.

Recently, Bietenholz et al. (2010) reported on VLBI detection of a central source in SN 1986J. They argue that the small proper motion of the source (500 ± 1500 km s\(^{-1}\)) provides evidence that the source is either a central neutron star or black hole, but they do point out that it might also be a dense CSM condensate seen along the line of sight, as similar clumped regions appear in the northeastern region of the SN 1986J shell. Additionally, as previously pointed out, Marcaide et al. (2009) showed that the blastwave of SN 1979C is still in free expansion, and Bartel & Bietenholz (2008) argued that the flattening radio spectrum could be evidence for emission from a central compact remnant. We thus chose to fit the X-ray spectrum of SN 1979C as a combination of shocked plasma, either arising from shocked CSM or ejecta, along with a component associated with a central source. The resultant fits are shown in Figure 2. In both cases, we found that the thermal component is well described by a plasma with \(kT = 1.1^{+0.14}_{-0.12} \) keV in collisional ionization.

2http://heasarc.nasa.gov/xanadu/xspec/
equilibrium. We first modeled the hard emission as a power-law (bottom panel of Fig. 2), and found a power-law index for the flux per unit energy $\Gamma = 2.2^{+0.3}_{-0.4}$. We also fit the data to a model for an accreting central black hole, using the \texttt{kerrbb} model in XSPEC, shown in the top panel of Figure 2. We found that the hard component of the spectrum can be well fit for a black hole mass of $\sim (5.2 \pm 0.8) M_\odot$. We do note, however, that while the X-ray spectrum is well described by a spectrum from an accreting black hole, we do concede that a powerlaw fit such as that shown in the bottom panel of Figure 2 is still consistent with emission from either a central compact source such as a pulsar wind nebula, or from synchrotron emission arising from shock accelerated electrons.

2.2. A Black Hole Remnant?

While a two component thermal model can describe the X-ray spectrum for SN 1979C, with the hard component having a $kT \gtrsim 2$ keV, as seen in Figure 2 the data are equally well described by a thermal component, either from shocked CSM or shocked ejecta, and a hard spectral component, possibly from a central source. Immler et al. (2005) modeled the X-ray emission as arising from the expansion of the blastwave into a dense circumstellar wind, with values ranging from 10^4 – 10^7 cm$^{-3}$ out to radii of 4×10^{17} cm. Ahead of the blastwave, the circumstellar density in their model is still 10^3 cm$^{-3}$ at a distance of 1 pc (c.f. Figure 6 of Immler et al. 2005), which would add an absorbing column density of $\sim 3 \times 10^{21}$ cm$^{-2}$, well in excess of the measured absorption in the spectrum of SN 1979C.

Additionally, in models for supernova remnant (SNR) evolution where the blast wave is expanding into a wind, the X-ray (and optical and radio) emissivity from the expanding blast wave should decrease with increasing blast wave radius. This is because the blast wave encounters the densest material at small radii, and sweeps over less dense material as it expands to a larger volume. At the late times of interest here, the ejecta is optically thin (Chevalier & Fransson 1994). The free-free emission measure scales quadratically with the particle number density n and linearly with the volume $V \propto r^3$, so that for the typical $n \propto r^{-2}$ radial profile of a wind, $L_X \propto n^2 V \propto r^{-1}$ decreases with time. Other SN remnants (SNRs) do show evidence for a strong interaction with a circumstellar medium (c.f., SN 1994I and SN 1993J: Immler et al. 2002, Chandra et al. 2009). SN 1993J was observed with Chandra in 2000 and again in 2008. Analysis of these data show that the X-ray luminosity has dropped from $\sim 6 \times 10^{38}$ erg s$^{-1}$ in 2000 to $\sim 1.5 \times 10^{38}$ erg s$^{-1}$ in 2008. This sharp drop in X-ray luminosity is inconsistent with the near steady X-ray emission from SN 1979C.

A plausible explanation for the constant luminosity would be to associate it with Eddington-limited accretion onto a central compact object of mass M_x. Based on the Eddington luminosity value,

\[
L_{\text{Edd}} = 1.4 \times 10^{38} \left(\frac{M_x}{M_\odot} \right) \text{ erg s}^{-1},
\]

(3)

with a modest bolometric correction (e.g. $L_{H\alpha} = 1.6 \times 10^{37}$, $L_{UV} = 9 \times 10^{36}$ and $L_{1.6GHz} = 1.6 \times 10^{36}$ erg s$^{-1}$; Immler et al. 2005, Bartel & Bietenholz 2003), this implies that the accreting object has a mass of 5–10M_\odot, which is within the typical range associated with stellar-mass black holes (McClintock et al. 2002).
The hard component of the X-ray spectrum of the source shown in Figure 2 is consistent with the spectrum of an Eddington-limited black hole in an X-ray binary such as LMC X-3 (see Fig. 1 in Davis et al. 2006), and our spectral fits to the data imply a black hole mass of $\gtrsim 5M_\odot$. It is plausible to expect that a black hole forms in a type IIL SNe. According to Figure 2 of Heger et al. (2003), solar metallicity stars with progenitor masses $\simeq 25M_\odot$ can follow a track that leads to black hole formation. Heger et al. (2003) also point out that 25% of low mass ($M \sim 20M_\odot$) progenitors with solar metallicity will produce black hole remnants by fallback. Since $\sim 3\%$ of core-collapse SNe are Type IIL (Smartt 2009), this implies that some Type IIL’s will form a black hole remnant, consistent with predictions for theoretical black hole mass distributions from core-collapse SNe (Fryer & Kalogera 2001). Interestingly, Heger et al. (2003) also suggest that Type IIL/b SNe are produced in binaries, which would avoid the need for a fallback accretion disk in the SN (Perna et al. 2000, Wang et al. 2006) as the binary companion would provide the accreting material. There has been some evidence for a binary companion to the progenitor of SN 1979C, seen as a modulation of the early time radio light curve.

The existence of an accreting black hole remnant at the center of SN 1979C is consistent with the upper limit on the early X-ray luminosity established by the Einstein Observatory. For supernova models with 2–5M_\odot of ejecta and explosion energies of 2×10^{51} ergs, the expanding ejecta bubble becomes optically thin to keV X-rays on a timescale of 15 yrs. The upper limit on the Einstein observation may reflect that early phase of the SNR evolution when the ejecta is optically thick or the time delay required to establish a stable accretion flow around the black hole remnant, which is calculated to be about twice the recombination timescale, ~ 1 yr (Zampieri et al. 1998, Balberg et al. 2000).

Milisavljevic et al. (2009) note the presence of a Wolf–Rayet “bump” in the optical emission spectrum of SN 1979C which may be associated with the progenitor. They mention that several metal–rich H II regions in M100 have been observed to possess WR stars (van Dyk et al. 1999, Pindao et al. 2002), and HST imaging shows several young blue stars of age 4–6 Myr in the vicinity of SN 1979C. Photometry of the clusters’ stellar population yields an estimate of the progenitor’s mass to be $(18)\pm 3$ M_\odot. This is consistent with the expected progenitors for Type IIL SN and with the required progenitor mass to form a black hole during the SN explosion, possibly from a fallback disk.

We have also analyzed Chandra and ROSAT observations of other two other Type IIL SNe, SN 1980K and SN 1985L. We have found that the X-ray luminosity of SN 1979C is more than an order of magnitude larger than that of SN 1980K ($L_X \approx 5.5 \times 10^{37}$ erg s$^{-1}$) and SN 1985L ($L_X \lesssim 4 \times 10^{37}$ erg s$^{-1}$). Interestingly, the latter luminosities from these Type IIL SNe are more consistent with a pulsar origin in young SNe, such as SN 1968D, SN 1941C, and SN 1959D (Perna et al. 2008, Soria & Perna 2008), in line with Heger et al. (2003) who point out that not all Type IIL’s will form a black hole remnant.

3. Conclusions

Our analysis of archival X-ray observations of SN 1979C indicate that the X-ray luminosity has been remarkably steady. We find that the X-ray light curve is not consistent with either a model for a supernova
powered by a magnetar or a model where the X-ray emission arises from a blast wave expanding into a dense circumstellar wind. In the latter case, the observed decline in the optical and radio bands should be accompanied by a decline in the X-ray flux. The X-ray spectrum for SN 1979C can be modeled by a combination of a thermal X-ray component and emission from an accreting black hole with a mass $\sim 5M_\odot$. The accreting material likely originates from either a fallback disk after the supernova, or possibly from material accreted from a binary companion which is suggested by the radio light curve at early times (Weiler et al. 1992; Schwarz & Pringle 1996). Finally, we note that the formation of a black hole in SN 1979C might have also imprinted a feature in the optical supernova light curve. Young, Smith, & Johnson (2005) recently showed that the supernova light curve can be fit by a two component model which includes a GRB afterglow followed by supernova ejecta. They argued that the GRB optical afterglow is produced when a jet, from the formation of the central $\sim 2M_\odot$ black hole, penetrates through the stellar envelope.

We note that SN 1979C appears to be the first example of a historic supernova where there is possible evidence for a black hole remnant. A survey of Type IIL SNe observed at late times could reveal the existence of other accreting black hole remnants and constrain the statistics of black hole formation in core-collapse SNe. We note that a deep *Chandra* or *XMM–Newton* observation of SN 1979C could settle the issue, as it would allow for both a detailed spectral analysis of the emitted spectrum as well as a search for short term variations in the X-ray light curve, which could be seen as evidence for ongoing accretion.

Acknowledgments. We thank Roger Chevalier and Robert Fesen for useful comments on an early draft of this manuscript. This work was supported in part by NSF grant AST-0907890 and NASA grants NNX08AL43G and NNA09DB30A for AL. DJP and CJ acknowledge support from NASA Contract NAS8-03060 and the Smithsonian Institution.

REFERENCES

Balberg, S., Zampieri, L., & Shapiro, S. L. 2000, ApJ, 541, 860

Bartel, N., & Bietenholz, M. F. 2003, ApJ, 591, 301

Bartel, N., & Bietenholz, M. F. 2008, ApJ, 682, 1065

Bietenholz, M. F., Bartel, N., & Rupen, M. P. 2010, ApJ, 712, 1057

Chandra, P., Dwarkadas, V. V., Ray, A., Immler, S., & Pooley, D. 2009, ApJ, 699, 388

Chevalier, R. & Fransson, C. 1994. ApJ, 420, 268

Davis, S. W., Done, C., & Blaes, O. M. 2006, ApJ, 647, 525

Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215

Duncan, R. C., & Thompson, C. 1992, ApJ, 392, L9
Fesen, R. A., & Matonick, D. M. 1993, ApJ, 407, 110
Freedman, W. L., et al. 2001, ApJ, 553, 47
Fryer, C. L., & Kalogera, V. 2001, ApJ, 554, 548
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, ApJ, 591, 288
Immler, S., Pietsch, W., & Aschenbach, B. 1998, A&A, 331, 601
Immler, S., Wilson, A. S., & Terashima, Y. 2002, ApJ, 573, L27
Immler, S., et al. 2005, ApJ, 632, 283
Kaaret, P. 2001, ApJ, 560, 715
Kasen, D., & Bildsten, L. 2009, arXiv:0911.0680
Kouveliotou, C., et al. 1998, Nature, 393, 235
Marcaide, J. M., Martí-Vidal, I., Perez-Torres, M. A., Alberdi, A., Guirado, J. C., Ros, E., & Weiler, K. W. 2009, A&A, 503, 869
Mattei, J., Johnson, G. E., Rosino, L., Rafanelli, P., & Kirshner, R. 1979, IAU Circ., 3348, 1
McClintock, J. E., et al. 2009, preprint arXiv:0911.5408
Milisavljevic, D., Fesen, R. A., Kirshner, R. P., & Challis, P. 2009, ApJ, 692, 839
Montes, M. J., Weiler, K. W., Van Dyk, S. D., Panagia, N., Lacey, C. K., Sramek, R. A., & Park, R. 2000, ApJ, 532, 1124
Perna, R., Hernquist, L., & Narayan, R. 2000, ApJ, 541, 344
Perna, R., Soria, R., Pooley, D., & Stella, L. 2008, MNRAS, 384, 1638
Pindao, M., Schaefer, D., González Delgado, R. M., & Stasińska, G. 2002, A&A, 394, 443
Richardson, D., Branch, D., Casebeer, D., Millard, J., Thomas, R. C., & Baron, E. 2002, AJ, 123, 745
Schwarz, D. H., & Pringle, J. E. 1996, MNRAS, 282, 1018
Smartt, S. J. 2009, ARA&A, 47, 63
Soria, R., & Perna, R. 2008, ApJ, 683, 767
Truelove, J. K., & McKee, C. F. 1999, ApJS, 120, 299
van Dyk, S. D., et al. 1999, PASP, 111, 313
Weiler, K. W., Sramek, R. A., Panagia, N., van der Hulst, J. M., & Salvati, M. 1986, ApJ, 301, 790

Wang, Z., Chakrabarty, D., & Kaplan, D. L. 2006, Nature, 440, 772

Weiler, K. W., van Dyk, S. D., Pringle, J. E., & Panagia, N. 1992, ApJ, 399, 672

Woosley, S. E. 2009, arXiv:0911.0698

Young, T. R., Smith, D., & Johnson, T. A. 2005, ApJ, 625, L87

Zampieri, L., Colpi, M., Shapiro, S. L., & Wasserman, I. 1998, ApJ, 505, 876

This preprint was prepared with the AAS LaTeX macros v5.2.
Table 1. X-ray observations of SN 1979C

Δt yr	Count Rate 10^{-4} cps	F_X^a 10^{-14} erg cm$^{-2}$ s$^{-1}$	L_X^b 10^{38} erg s$^{-1}$	Mission
0.7	< 3.0	< 2.3	< 6.3	$Einstein$ (HRI)
16.2	6.7±0.7	3.0±0.3	8.2±0.9	$ROSAT$ (HRI)
20.6	42.±2.0	2.5±0.2	6.9±0.6	$Chandra$ (ACIS-S)
22.7c	· · ·	2.3±0.3	6.3±0.7	XMM–$Newton$ (MOS)
26.5d	8.0±0.9	2.3±0.3	6.3±0.7	$Swift$ (XRT)
26.9	40.±0.8	2.4±0.2	6.6±0.5	$Chandra$ (ACIS-S)
28.0	43.±0.3	2.6±0.2	7.0±0.5	$Chandra$ (ACIS-S)

aUnabsorbed 0.3–2.0 keV flux assuming a 0.5 keV thermal Bremsstrahlung model with Galactic hydrogen column density of 2.4×10^{20} cm$^{-2}$.

bLuminosity assumes a distance to M100 of 15.2±0.1 Mpc (Freedman et al. 2001).

cFlux value taken from Immler et al. (2005).

dValues are from $Swift$ XRT observations taken between 2005 and 2006, with the first observation performed on 2005–11–13.
Fig. 1.— Evolution of the X-ray luminosity of SN 1979C. The dotted, dashed, and long-dashed diagonal lines correspond to the evolution of the SN luminosity if it were powered by the magnetic dipole spindown of a central magnetar for various X-ray efficiencies, f_x. The data points correspond to the 0.3–2.0 keV X-ray luminosities with 1-σ uncertainties, assuming a distance of 15.2 Mpc. The upper limit from the Einstein observatory is depicted as an arrow. The heavy solid line corresponds to our best fit value of a nearly constant X-ray luminosity.
Fig. 2.— The unfolded Chandra ACIS-S spectrum of SN 1979C. Panel (a) shows the data with its 1-σ error bars (crosses), which is fitted as a combination of a thermal plasma component (blue long-dashed line), and emission from a relativistic accretion disk around a Kerr black hole (red short-dashed line). For the thermal component, we infer a temperature of $kT = 1.2$ keV, and for the disk component, we infer a black hole mass of $M_{\text{BH}} = 5.2 M_\odot$. Panel (b) shows the same thermal plasma model as in panel (a) together with a power-law fit (red short-dashed line) with a spectral slope for the flux per unit energy $F_E \propto E^{-\Gamma}$ of $\Gamma = 2.1$. In both panels, the fitted absorption is consistent with Galactic foreground of a hydrogen column density, $N_H = 2.5 \times 10^{20}$ cm$^{-2}$.