Gut Microbiota-targeted Interventions for Reducing the Incidence, Duration, and Severity of Respiratory Tract Infections in Healthy Non-elderly Adults

J. Philip Karl on behalf of the Tri-Service Microbiome Consortium

ABSTRACT

Introduction: Respiratory tract infections (RTI), such as those caused by influenza viruses and, more recently, the severe acute respiratory syndrome coronavirus-2, pose a significant burden to military health care systems and force readiness. The gut microbiota influences immune function, is malleable, and may provide a target for interventions aiming to reduce RTI burden. This narrative review summarizes existing evidence regarding the effectiveness of probiotics, prebiotics, and synbiotics, all of which are gut microbiota-targeted interventions, for reducing the burden of RTI in military-relevant populations (i.e., healthy non-elderly adults).

Materials and Methods: A systematic search strategy was used to identify recent meta-analyses and systematic reviews of randomized controlled trials conducted in healthy non-elderly adults which examined effects of probiotics, prebiotics, or synbiotics on the incidence, duration, and/or severity of RTI, or on immune responses to vaccinations against viruses that cause RTI. Relevant randomized controlled clinical trials not included in those reports were also identified.

Results: Meta-analyses and multiple randomized controlled trials have demonstrated that certain probiotic strains may reduce the incidence, duration, and/or severity of RTI and improve immune responses to vaccination against RTI-causing pathogens in various populations including healthy non-elderly adults. Fewer randomized controlled trials have examined the effects of prebiotics or synbiotics on RTI-related outcomes in healthy non-elderly adults. Nevertheless, some studies conducted within that population and other populations have observed that certain prebiotics and synbiotics reduce the incidence, duration, and/or severity of RTI or improve immune responses to vaccinations against RTI-causing viruses. However, across all product classes, not all product formulations have shown benefit, and most have not been tested in multiple randomized controlled trials in military-relevant populations.

Conclusion: Dietary supplementation with certain gut microbiota-targeted interventions, and certain probiotics in particular, may provide viable strategies for reducing RTI-related illness in military personnel. Research in military populations is warranted to fully understand the magnitude of any military health and cost benefits, and to establish definitive recommendations for use.

INTRODUCTION

Globally, respiratory tract infections (RTI) and related diseases are leading causes of outpatient illness and are responsible for >2 million deaths annually. Within the United States, RTI cause significant illness and mortality, being responsible for ~85,000 deaths per year. That burden is also experienced within the U.S. military where infectious respiratory diseases account for up to 30% of infection-related military hospitalizations and have been estimated to impact up to 80,000 recruits and 600,000 active duty military personnel annually, resulting in 27,000 lost training days and 95,000 lost duty days per year. This impact of RTI on military strength and readiness is not new. During World War I, more U.S. troops died from RTI and its complications than from battle injuries, and, as recently as 2009, the novel A(H1N1)pdm09 virus was responsible for 20 to 30 hospitalizations weekly within the Military Health System. Even more recently, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) has emerged as a highly contagious and virulent virus causing RTI with a high fatality rate. The severity of disease that SARS-CoV2 causes, known as coronavirus disease (COVID)-19, has a tremendous public health burden and, along with other viruses causing RTI, carries the potential to reduce military
strength, readiness, and lethality. As vaccine development is a lengthy process, and effectiveness of any vaccine will be variable, it is imperative to identify immediate strategies that may mitigate risk of developing COVID-19 and other RTI, and which may reduce the duration and severity of illness following infection. Some have speculated that interventions targeting the gut microbiota may be one strategy.

The human gastrointestinal tract is inhabited by trillions of microorganisms collectively known as the gut microbiota. These microbes largely coexist in a mutually beneficial relationship with their human host, carrying out functions the human body cannot and producing myriad compounds that modulate health and physiology. For example, the gut microbiota is integral to deterring colonization of the gastrointestinal tract by pathogenic microbes. Additionally, the location of the microbiota within the gastrointestinal tract places the community in close proximity to the largest collection of immune cells in the body, the gut-associated lymphoid tissue (GALT). A primary function of the GALT is to monitor and manage the gut microbiota and other antigens. As a result, the gut microbiota and human immune system constantly interact, with the immune system influencing the gut microbiota, and the gut microbiota influencing immune function.

One implication of the dynamic bidirectional relationship between gut microbes and the immune system is that changes in the composition and metabolic activity of the gut microbiota can alter immune function, potentially altering host susceptibility to infection. The modulation of susceptibility is not limited to gastrointestinal pathogens because the GALT interconnects with multiple arms of the innate and adaptive immune systems which are responsible for immune responses throughout the body, including within the pulmonary system. Composition and metabolic activity of the gut microbiota is influenced by many factors. For example, military-relevant stressors may alter the gut microbiota in ways that could be beneficial to health and immune function in some cases, but detrimental in others. Notably, initial military training and military deployment are sources of physical and psychological stress, and associated with high rates of RTI. However, more so than stress, diet is a predominant mediator of gut microbiota composition and metabolic activity. As a result, dietary interventions that target and modulate the gut microbiota may provide strategies for enhancing immune function before, during, and after stress.

Historically, the most common approaches for targeting and modulating the gut microbiota have included introducing new bacteria into the community and providing substrate to feed beneficial community members. The former approach relies on probiotics, defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host” (Table 1). In contrast, the latter approach relies on prebiotics, defined as “substrates (e.g., nutrients) that are selectively utilized by host microorganisms (e.g., gut microbes) conferring a health benefit.” Although there are few established prebiotics at present, several oligosaccharides, polysaccharides, and other compounds are considered “candidate prebiotics” because their utilization by gut microbes is thought to result in a health benefit. Synbiotics are combinations of probiotics and prebiotics. Probiotics, prebiotics, and synbiotics modulate multiple aspects of local and systemic immune function in a variety of experimental models. However, those effects and their mechanisms of action are not shared across all products (i.e., bacterial strains, or prebiotic type) or observed in every population studied, and effects on in vitro, ex vivo, or other measures of immune function do not necessarily translate to effects on infection and illness in vivo. As such, evidence synthesis and recommendations for use require attention to the form of the intervention itself, desired outcomes, and target population.

This report narratively summarizes evidence from systematic reviews, meta-analyses, and randomized controlled trials which have included military-relevant populations (i.e., healthy adults ~18 to 65 years), and have examined the effects of probiotics, prebiotics, and synbiotics on the incidence, duration, and severity of RTI, or on immune responses to vaccinations against viruses that cause RTI. The focus on healthy non-elderly adults is justified in that immune function and susceptibility to RTI is known to vary with age and health status. The focus on immune responses to vaccination is justified by the substantial interindividual variability in immune responses to vaccination which impacts vaccine effectiveness, evidence that the gut microbiota and gut microbiota-targeted interventions may influence that variability, and the recognition that vaccine challenge models are a gold-standard method for measuring immune function. Further, once a SARS-CoV2 vaccine is available, its use in military populations will be widespread and maximizing its effectiveness will be critical. Although it is unlikely that a single dietary intervention will prevent or eliminate COVID-19 or other viral diseases entirely, such interventions may provide safe, low-cost (relative to pharmaceuticals), and easily accessible strategies for reducing risk of infection and illness severity. Therefore, the aim of this review is to evaluate evidence regarding the use of probiotics, prebiotics, and synbiotics (i.e., gut microbiota-targeted interventions) for reducing RTI-related illness in military personnel.

METHODS

Relevant systematic reviews and meta-analyses published up to May 2020 were identified by searching PubMed using the search terms listed in Table S1. A similar search strategy was used to identify recently published randomized controlled trials not included in the systematic reviews. Reports that focused primarily or exclusively on infants, children <18 years, older-adult populations (>65 years), populations with an underlying chronic illness, or populations with an acute illness at the time the study started were not considered.
TABLE I. Probiotic Species and Prebiotic Compounds Studied for Reducing the Incidence, Duration, and Severity of Respiratory Tract Infections (RTI), or Enhancing the Immune Response to Vaccinations Against RTI-causing Pathogens in Healthy Non-elderly Adults

Product class	Probiotic species and prebiotic types studied	Potential impacts on gut microbiota	Potential effects on immune functiona
Probiotics	Bifidobacteria: animalis ssp. lactis, bifidum, longum ssp. infantis	Thought to be transient with minimal impact on overall diversity in healthy populations.70	↑Adaptive immune response;
	Lactobacilli: acidophilus, brevis, casei, delbrueckii ssp. bulgaricus, fermentum, gasseri, helveticus, lactis, paracasei, plantarum, rhamnosus, salivarius	May help normalize microbiota after perturbation.15	↑Innate immune response;
	Enterococcus faecium		↑Mucosal immunity;
	Streptococcus thermophillus		↓Inflammation;
Prebiotics	Fructans (inulin, fructo-oligosaccharides, oligofructose); Galactans (galacto-oligosaccharides)	↑Beneficial microbes and metabolites16	↑Gut barrier health;
			↑Colonization resistance;
			↑Cell-surface receptor (e.g., TLR) activation;
			↑Organic acids

↓: decrease; ↑, increase; SCFA, short-chain fatty acid; TLR, Toll-like receptor.

aPotential effects are not necessarily shared across different probiotic strains or prebiotic types, nor have effects been consistently documented in human studies.14,15,17,18,53

bExamples of species limited to those investigated in randomized controlled trials of healthy non-elderly adults.

cMultiple other fermentable oligosaccharides and polysaccharides are known to stimulate the growth and/or activity of a broader population of microbes.16

RESULTS AND DISCUSSION

Probiotics

Respiratory Tract Infections

Probiotics have a long history of safe use for a variety of clinical applications.14,15 In a 2010 review focused on several military relevant health applications of probiotics including RTI prevention, Smith et al.22 concluded that probiotics may reduce the duration and severity, but not the incidence, of RTI. However, the evidence at that time was not sufficiently robust for those authors to recommend procurement of any particular probiotic product(s) for distribution within military dining facilities. Since then, additional relevant studies on probiotic supplementation and RTI-related outcomes have been published (Tables II and S2). Evidence from some of those studies and others conducted up to 2014, which included ~4,000 participants, have been collated in 2 separate meta-analyses (Table II).25,26 Those meta-analyses reported that probiotics reduced the number of individuals experiencing a RTI episode by 47%20 and reduced the mean duration of RTI episodes by approximately 1 to 2 days.23,24 However, both meta-analyses relied heavily on studies conducted in children, and both excluded studies conducted in athletes (a population relevant to military personnel). Comprehensive narrative and systematic reviews focused exclusively on probiotic use in athletes have concluded that ~65% of studies show favorable effects of probiotics on some aspect of immune function in athletes to include reducing the incidence, duration, and/or severity of RTI.25–27 In one of those reviews, a position stand on probiotic use in athletes, the authors concluded that “specific probiotic strains can reduce the number of episodes, severity and duration of upper RTI” in athletic populations.26

For the purposes of the present report, we consolidated relevant studies captured in the meta-analyses and systematic reviews cited earlier with relevant recently published trials (Table S2). Of the 26 studies included, 38% (10 of 26), 45% (10 of 22), and 37% (7 of 19) reported that probiotics reduced the incidence, duration, or severity of RTI, respectively. While only 2 studies demonstrated favorable effects across all three outcomes (one of which reported favorable effects in men but detrimental effects in women), 62% (16 of 26) reported a favorable effect of probiotics on at least one of those outcomes. Single-strain relative to multi-strain supplements slightly more often reported at least one favorable effect (65% vs. 56% of trials), and interventions using single-strains of Lactobacillus more often reported at least one favorable effect (9 of 13 trials) when compared to interventions using single strains of Bifidobacterium (2 of 4 trials). Relatively few probiotic strains or multi-strain combinations were investigated in more than one study, and results were not always consistent in studies that did use the same strain/strain-combinations. These differential findings may be partly attributable to strain-specific effects and to other aspects of the study designs such as the duration and dose of supplementation, the populations studied, and uncontrolled lifestyle factors such as diet, sleep, smoking habits, and stress level. For example, Lactobacillus
TABLE II. Recent Meta-analyses Including Randomized Controlled Trials of Healthy Adults to Assess the Effects of Probiotics, Prebiotics, and/or Synbiotics on the Incidence, Duration, and/or Severity of Respiratory Tract Infections (RTI), or Immune Responses to Vaccinations Against RTI-causing Viruses

Reference	Studies included	Results	
Probiotics			
King et al. 2014	20 RCTs (8 in healthy non-elderly adults; excluded athletes)	Probiotics reduced duration of illness episodes by 0.8 d [95% CI: 0.04 d, 1.5 d]; (9 studies, n = 3,350)	
	Population: Children and adults	Probiotics reduced days of illness by 0.3 d/person [95% CI: 0.1 d, 0.4 d]; (10 studies, n = 2,647)	
	Intervention: *Bifidobacterium* or *Lactobacillus* probiotic	Probiotics reduced work/school days missed by 0.2 d [95% CI: 0.03 d, 0.3 d]; (10 studies, n = 2,647)	
	Outcome: RTI incidence and duration	Probiotics reduced duration of illness episodes by 0.8 d [95% CI: 0.04 d, 1.5 d]; (9 studies, n = 3,350)	
Hao et al. 2015	13 RCTs (3 in healthy non-elderly adults; excluded athletes)	Probiotics reduced duration of illness episodes by 0.8 d [95% CI: 0.04 d, 1.5 d]; (9 studies, n = 3,350)	
	Population: Children and adults	Probiotics reduced days of illness by 0.3 d/person [95% CI: 0.1 d, 0.4 d]; (10 studies, n = 2,647)	
	Intervention: Any probiotic	Probiotics reduced work/school days missed by 0.2 d [95% CI: 0.03 d, 0.3 d]; (10 studies, n = 2,647)	
	Outcome: RTI incidence and duration	Probiotics reduced duration of illness episodes by 0.8 d [95% CI: 0.04 d, 1.5 d]; (9 studies, n = 3,350)	
Lei et al. 2017	13 RCTs (5 in healthy non-elderly adults)	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 2.7 [95% CI: 1.2, 5.7]), but not H1N1 (OR = 1.7 [95% CI: 0.8, 3.8])	
Yeh et al. 2018	6 RCTs (1 in healthy non-elderly adults)	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 2.7 [95% CI: 1.2, 5.7]), but not H1N1 (OR = 1.7 [95% CI: 0.8, 3.8])	
	Population: Healthy and hospitalized adults	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 2.7 [95% CI: 1.2, 5.7]), but not H1N1 (OR = 1.7 [95% CI: 0.8, 3.8])	
	Intervention: Any probiotic	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 2.7 [95% CI: 1.2, 5.7]), but not H1N1 (OR = 1.7 [95% CI: 0.8, 3.8])	
	Outcome: Immune responses to influenza vaccination	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 2.7 [95% CI: 1.2, 5.7]), but not H1N1 (OR = 1.7 [95% CI: 0.8, 3.8])	
Prebiotics			
Lei et al. 2017	6 RCTs (1 in healthy non-elderly adults)	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 3.1 [95% CI: 1.2, 7.7]), and H1N1 (OR = 1.9 [95% CI: 1.1, 3.3]), but not B-strain (OR = 0.8 [95% CI: 0.5, 1.5]); (3 studies, n = 215)	
Yeh et al. 2018	6 RCTs (1 in healthy non-elderly adults)	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 3.1 [95% CI: 1.2, 7.7]), and H1N1 (OR = 1.9 [95% CI: 1.1, 3.3]), but not B-strain (OR = 0.8 [95% CI: 0.5, 1.5]); (3 studies, n = 215)	
	Population: Healthy and hospitalized adults	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 3.1 [95% CI: 1.2, 7.7]), and H1N1 (OR = 1.9 [95% CI: 1.1, 3.3]), but not B-strain (OR = 0.8 [95% CI: 0.5, 1.5]); (3 studies, n = 215)	
	Intervention: Any prebiotic	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 3.1 [95% CI: 1.2, 7.7]), and H1N1 (OR = 1.9 [95% CI: 1.1, 3.3]), but not B-strain (OR = 0.8 [95% CI: 0.5, 1.5]); (3 studies, n = 215)	
	Outcome: Immune responses to influenza vaccination	Prebiotics increased odds of achieving seroprotection against H3N2 (OR = 3.1 [95% CI: 1.2, 7.7]), and H1N1 (OR = 1.9 [95% CI: 1.1, 3.3]), but not B-strain (OR = 0.8 [95% CI: 0.5, 1.5]); (3 studies, n = 215)	
Synbiotics			
Chan et al. 2020	16 RCTs (2 in healthy non-elderly adults)	Synbiotics reduced the rate of RTI by 16% [95% CI: 4%, 27%]; (9 studies, n = 2,845)	
	Population: Healthy, any age	Synbiotics reduced the risk of RTI by 16% [95% CI: 5%, 26%]; (7 studies, n = 7,273)	
	Intervention: Any synbiotic	Synbiotics reduced the rate of RTI by 16% [95% CI: 4%, 27%]; (9 studies, n = 2,845)	
	Outcome: RTI incidence	Synbiotics reduced the risk of RTI by 16% [95% CI: 5%, 26%]; (7 studies, n = 7,273)	

CI, confidence interval; d, days; OR, odds ratio; RCT, randomized controlled trial; RTI, respiratory tract infection.

Seroprotection is defined as an antibody titer superior to an established threshold for clinical protection against the virus.

Seroconversion is defined as achieving a certain fold increase (e.g., 4-fold) in specific antibody titers after vaccination.

CI, confidence interval; d, days; OR, odds ratio; RCT, randomized controlled trial; RTI, respiratory tract infection.

Seroprotection is defined as an antibody titer superior to an established threshold for clinical protection against the virus.

Seroconversion is defined as achieving a certain fold increase (e.g., 4-fold) in specific antibody titers after vaccination.
fermentum VRI-003 (PCC) reduced RTI duration and severity in men in two separate studies but increased RTI incidence, duration, and severity in women in one of the studies.18,19 The one strain for which favorable effects were observed in multiple studies was Lactobacillus casei Shirotas. That strain, when administered in a fermented milk product, reduced the incidence of RTI in three of four studies.20–23 In the single study in which RTI incidence was not reduced, the overall incidence was unexpectedly low and antibody titers to cytomegalovirus and Epstein–Barr virus were reduced by L. casei Shirotas suggesting an immune benefit from the probiotic intervention.31

Vaccine Responses

The response to vaccination is mediated by innate, humoral, and cell-mediated immunity, and can be assessed using a variety of measures including antibody titers, seroconversion rates, seroprotection rates, and/or vaccine-specific immunoglobulin concentrations (see Table II legend for definition of seroconversion and seroprotection).15 Several studies have examined whether probiotics improve immune responses to vaccinations against viruses that cause RTI, most often examining vaccine responses against seasonal influenza strains (H1N1, H3N2, and B-strain) (Table S3). Results from many of those studies have been collated in two recent meta-analyses34,35 and a systematic review.36 In one meta-analysis, probiotics were found to increase the odds of achieving seroprotection following H3N2, but not H1N1 or B-strain vaccination, and increase the odds of seroconversion following H3N2 and B-strain, but not H1N1 vaccination (Table II). A separate meta-analysis reported that probiotics increased antibody titers following H1N1 and H3N2, but not B-strain, vaccination (Table II).35 However, both meta-analyses included elderly and hospitalized patients, and excluded the largest relevant trial. That trial of 1,099 healthy young and middle-age adults found no effect of Lactobacillus paracasei ssp. paracasei 431 (L. casei 431) supplementation on any measure of vaccine responsiveness or the incidence of postvaccination RTI.37 However, the duration of postvaccination RTIs were reduced by ~1 day,37 and the same probiotic strain improved antibody responses to vaccination in a smaller trial.38 Further, all other studies conducted in healthy non-elderly adult populations have reported favorable effects of probiotics on at least one outcome related to immune responses to influenza vaccinations, though favorable effects are rarely seen against all influenza strains tested (Table S3). Two additional studies of healthy young and middle-age adults have also reported that various probiotics increased concentrations of vaccine-specific antibody responses following vaccination against polio39 and hepatitis A40 viruses. Collectively, these observations are consistent with recent reviews examining the entire evidence base (neonates through elderly adults and all types of vaccines) which have concluded that probiotic interventions can likely improve vaccine efficacy and that future research should focus on defining optimal strains/strain-combinations and dosing regimens.36,41

Probiotics Summary

The evidence reviewed above collectively demonstrates that probiotics show promise for reducing the incidence, duration, and/or severity of RTI and improving immune responses to vaccinations against RTI-causing viruses in healthy non-elderly adults. However, benefits have not been observed with all strain/strain-combinations tested which is consistent with the concept that immunomodulatory effects of probiotics are likely strain-specific.15 Results from vaccination trials similarly suggest that not all probiotics are effective against all viral strains. Therefore, not all probiotics available in the marketplace should be expected to protect against RTI or improve vaccine responsiveness. That conclusion is consistent with the findings of recent meta-analyses suggesting that probiotics overall appear to modestly reduce RTI incidence, duration, and/or severity in infants and children, but that evidence is stronger for certain strains, such as Lactobacillus rhamnosus GG, than others.42–44

Meta-analyses focused on studies conducted solely in healthy non-elderly adults are notably absent from the evidence base. Therefore, despite promise, the magnitude of benefit for military populations is uncertain and the most effective strains/strain combinations and dosing regimens are unclear. Nonetheless, the modest benefits reported in meta-analyses of studies conducted to date do have the potential to substantially reduce military health care burden and costs. In support, a recent mathematical modelling analysis based on 2 of the meta-analyses reviewed herein23,24 estimated that if the entire U.S. population were to take probiotics, the total number of sick days due to RTI would be reduced 10% to 25% annually at an estimated cost savings of up to $1.4 billion when productivity loss is included.45 Effect estimates included a 50% to 60% reduction in RTI-related sick days in unvaccinated individuals (e.g., SARS-CoV2) and those sharing indoor environments (e.g., military barracks).45 While confirming such an analysis is impossible, and limitations included assuming that all probiotic formulations are equally effective and not accounting for costs of the probiotics themselves, the analysis does make the point that probiotics may provide a cost-efficient option for reducing RTI burden, particularly in high-risk groups. Also worth noting in the context of the COVID-19 pandemic are results from recent meta-analyses which concluded that probiotics reduce the incidence of ventilator-associated pneumonia in patients on mechanical ventilation46 and reduce the duration of diarrhea and hospitalization because of viral gastroenteritis.47 Consumption of probiotics that have shown benefit for reducing RTI incidence, duration, and/or severity, or improving vaccine responses in at least one well-conducted human trial, such as L. casei Shirotas, should therefore not be
discouraged in healthy adults if the product is obtained from a reputable source. Recent reviews provide excellent guidance on considerations for identifying reputable probiotic supplements. However, large, well-designed studies conducted in military populations at high risk for RTI are ultimately needed to enable more definitive recommendations regarding the most effective probiotic strain, strain combinations, and dosing regimens for improving RTI-related outcomes in military personnel.

Prebiotics
Current established prebiotics are listed in Table I. All are fermentable (by bacteria) carbohydrates selectively utilized by *Bifidobacterium* and/or *Lactobacillus*. These carbohydrates are naturally occurring in plants, extracted from plants and added to foods, or synthesized for food ingredient and dietary supplement use. Other fermentable carbohydrates and phenolic compounds found in fruits, vegetables, and whole grains are metabolized by and modulate the gut microbiota, and the health promoting properties of some may be mediated, in part, by gut microbes. However, for the purposes of this review, we focus primarily on established prebiotics.

Respiratory Tract Infections
Despite the role of prebiotics in stimulating bacterial genera commonly used in probiotic supplements, only one study was identified that has examined effects of established prebiotics on RTI in healthy non-elderly adults (Table S4). In that study, dose-response effects of galacto-oligosaccharides on RTI symptoms were not observed and effects varied by stress level and body weight status. The paucity of studies examining effects of established prebiotics on RTI incidence, duration, and severity in healthy non-elderly adults is somewhat surprising as biological plausibility for immunomodulation has been demonstrated in animal studies, and favorable effects have been observed in some studies of infants, children and, to a lesser extent, elderly and critically-ill adults (reviewed in Refs. 17, 52, and 53). Of note, evidence suggests that certain nondigestible fermentable carbohydrates and plant-derived phenolic compounds that modulate the gut microbiota in a nonselective manner, or are metabolized and biotransformed by the gut microbiota, may have some efficacy for reducing RTI incidence, duration, and/or severity.

Vaccine Responses
Studies examining effects of established prebiotics on immune responses to vaccinations against RTI-causing viruses have been collated in two recent meta-analyses. In the first, prebiotics were found to increase the odds of achieving H1N1 and H3N2, but not B-strain, seroprotection following vaccination, but had no effect on seroconversion rates (Table II). The second meta-analysis reported that prebiotics increased postvaccination antibody titers for H1N1, but not H3N2 or B strains (Table II). Only one study included in those meta-analyses was conducted in a healthy non-elderly adult population, and, in that study, no effects of long-chain inulin and oligofructose supplementation on the immune response to vaccination were observed (Table S3). Similar to the evidence base related to RTI, certain nondigestible fermentable carbohydrates and plant-derived phenolic compounds that modulate or are metabolized by the gut microbiota have shown favorable effects on immune responses to vaccination, though many of the studies were not conducted in healthy non-elderly adult populations. Thus, while some evidence suggests potential for prebiotics and related compounds to improve immune responses to vaccination, effects may be specific to the pathogenic agent, and whether these effects are present in healthy non-elderly adults is not well characterized.

Synbiotics
Synbiotics are, in theory, designed to provide complementary, additive, or synergistic effects of their probiotic and prebiotic constituents, and can include many different combinations of beneficial microbes and prebiotic ingredients. One recent systematic review and meta-analysis identified 16 studies including 10,443 participants which examined the effects of synbiotics on RTI incidence, duration, and/or severity. Results demonstrated that synbiotic interventions reduced the incidence rate of RTI and the proportion of participants who experienced a RTI by 16% (Table II). Only two reports included in the meta-analysis described studies conducted in adult populations. However, one of those reports described three separate large randomized controlled trials comparing similar synbiotic supplements to placebos, and all three of those trials showed reductions in the incidence, duration, and severity of RTI with synbiotic supplementation (Table S4). Evidence that synbiotics impact vaccine responses against RTI-causing viruses in adults is similarly limited to a single trial which found no benefit. As such, too few studies exist to draw any conclusions regarding the effect of synbiotic supplements on RTI-related outcomes in healthy non-elderly adults.

Prebiotics and Synbiotics Summary
Relative to probiotics, far fewer randomized controlled trials have determined the effects of established prebiotics or synbiotics on the incidence, duration, and/or severity of RTI,
or on immune responses to vaccinations against RTI-causing viruses in healthy non-elderly adults. However, recent systematic reviews and meta-analyses provide some evidence supporting the efficacy of probiotic and/or synbiotic products for these purposes in infant, child, and/or elderly adult populations. Additional evidence suggests that certain nondigestible fermentable carbohydrates and plant-derived phenolic compounds that modulate the gut microbiota in a nonselective manner, or are metabolized and biotransformed by the gut microbiota, may also have some efficacy for reducing RTI incidence, duration, and/or severity. Thus, research in healthy non-elderly adults populations, to include military personnel, is warranted. Considering the large variety of nutrients known to modulate or be modulated by the gut microbiota, these studies need not focus solely on established prebiotics.

CONCLUSION

Infectious respiratory disease burden is high in military personnel, a population which is exposed to a variety of different stressors that compromise immune function possibly due, in part, to effects of those stressors on the gut microbiota. Dietary supplements targeting the gut microbiota may, in theory, mitigate RTI-related illnesses by increasing proportions of beneficial microbes and beneficial microbiota-derived metabolites within the gut microbiota, which can be achieved through the introduction of exogenous microbes (probiotics), feeding beneficial microbes (prebiotics), or their combination (synbiotics). A growing and diverse evidence base has examined the efficacy of probiotics, and to a lesser extent prebiotics and synbiotics, for reducing the incidence, duration, and/or severity of RTI, and for improving immune responses to vaccinations against RTI-causing viruses. Although promising results exist for certain interventions and within certain populations, few studies have been conducted in military populations. Trials conducted in military-relevant populations (i.e., healthy non-elderly adults) have studied multiple different product formulations, and, in some cases, reported different results using the same formulations. As a result, there is not sufficient evidence at this time to recommend the use of any particular product formulation(s) for RTI risk reduction in military personnel.

Currently, no singular diet or dietary intervention can prevent or cure RTI and associated sequelae caused by any virus including SARS-CoV2. However, reducing risk and illness severity would reduce health care burden, and, within the military, increase force readiness. Notably, the magnitude of reduction in RTI incidence and duration attributed to probiotics in different meta-analyses is similar to, if not better than, the effects achieved through dietary supplementation with vitamins C and D, zinc, and Echinacea which are commonly used remedies for RTI. Further, although not reviewed herein, some gut microbiota-targeted interventions, primarily probiotics, have demonstrated potential for reducing the incidence, duration, and severity of gastrointestinal tract infections. Like respiratory infections, gastrointestinal infections represent a significant burden on the military health care system and force readiness. Thus, accumulating evidence from meta-analyses and randomized controlled trials support the conclusion that dietary supplementation with gut microbiota-targeted interventions, and certain probiotic strains in particular, can provide a promising safe and accessible strategy for reducing the burden that multiple infectious diseases pose for military health care and force readiness. Although reductions at the individual level appear to be modest, when extrapolated to the entire military population, reductions in health care burden and costs could be significant. To fully understand that promise, and the associated magnitude of any risk reduction and cost-benefits for military personnel, research in military populations, particularly those at high risk for RTI, is needed. Until then, the probiotics and prebiotics investigated in studies reviewed herein which have demonstrated beneficial effects in one or more studies (see Supplemental Tables) can be considered viable options for military personnel interested in reducing RTI-related illness.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Military Medicine online.

ACKNOWLEDGMENTS

The author thanks Tri-Service Microbiome Consortium Chair Jason Soares and Vice-Chair Dr. Michael Goodson for their critical review of the manuscript. The author also thanks Patrick Radcliffe for assistance with the literature search, and Drs. James McClung, Tracey Smith, and Andrew Young for their critical review of the manuscript.

FUNDING

None.

CONFLICT OF INTEREST

None.

REFERENCES

1. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators: Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the global burden of disease study 2016. Lancet 2017; 390: 1151-210.
2. Murray CJ, Lopez AD: Measuring the global burden of disease. N Engl J Med 2013; 369: 448-57.
3. Sanchez JL, Cooper MJ, Myers CA, et al: Respiratory infections in the U.S. military: recent experience and control. Clin Microbiol Rev 2015; 28: 743-800.
4. Center AFHS: Surveillance snapshot: influenza reportable events, service members and other beneficiaries, 2009-2010. MSMR 2010; 16: 17.
5. Tang D, Comish P, Kang R: The hallmarks of COVID-19 disease. PLoS Pathog 2020; 16: e1008536.
6. Flannery B, Kondor RJG, Chung JR, et al: Spread of antigenically drifted influenza A(H3N2) viruses and vaccine effectiveness in the United States during the 2018-2019 season. J Infect Dis 2020; 221: 8-15.
7. Baud D, Agri VC, Gibson GR, Reid G, Giannoni E: Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health 2020; 8: 1-5.

8. Koppel N, Balskus EP: Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem Biol 2016; 23: 18-30.

9. Sorbara MT, Pamer EG: Intestinal mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol 2019; 12: 1-9.

10. Spencer SP, Fragiadakis GK, Sonnenburg JL: Pursuing human-relevant gut microbiota-immune interactions. Immunity 2019; 51: 225-39.

11. Libertiucci J, Young VB: The role of the microbiota in infectious diseases. Nat Microbiol 2019; 4: 35-45.

12. Karl JP, Hatch AM, Arcidiacono SM, et al: Effects of psychological, environmental and physical stressors on the gut microbiota. Microbiol 2018; 9; 2013.

13. Zmora N, Szej E, Elinav E: You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 2016; 19: 35-56.

14. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA: Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 2019; 16: 605-16.

15. Hill C, Guarner F, Reid G, et al: Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11: 506-14.

16. Gibson GR, Hutkins R, Sanders ME, et al: Expert consensus document. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of probiotics. Nat Rev Gastroenterol Hepatol 2017; 14: 491-502.

17. Robe insufficient M, Gibson GR, Hoyle L, et al: Prebiotic effects: metabolic and health benefits. Br J Nutr 2010; 104(Suppl 2): S1-63.

18. Peters VBM, van de Steeg E, van Bilsen J, Meijerink M: Mechanisms and immunomodulatory properties of pre- and probiotics. Benef Microbes 2019; 10: 225-36.

19. Zimmerman DH, Carambula RE, Cimielewski J, Rosenthal KS: Lessons from next generation influenza vaccines for inflammatory disease therapies. Int Immunopharmacol 2019; 74: 105729.

20. Dawood FS, Chung JR, Kim SS, et al: Interim estimates of 2019-20 seasonal influenza vaccine effectiveness—United States, February 2020. MMWR Morb Mortal Wkly Rep 2020; 69: 177-82.

21. Albers R, Bourdet-Sicard R, Braun D, et al: Monitoring immune modulation by nutrition in the general population: identifying and substantiating effects on human health. Br J Nutr 2013; 110(Suppl 2): S1-30.

22. Smith TJ, Margolis LM, Young AJ: Should military dining facilities offer and promote consumption of probiotic-containing foods? Mil Med 2010; 175: 770-83.

23. Shirota ingestion on common cold infection and herpes virus antibody titers after influenza vaccination: a systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther 2018; 12: 217-30.

24. Zimmerman PM, Curtis N: The influence of probiotics on vaccine responses—a systematic review. Vaccine 2018; 36: 207-13.

25. Jespersen L, Tarnow I, Eskesen D, et al: Effect of Lactobacillus paracasei subsp. paracasei L. casei 431 on immune response to influenza vaccination in healthy adult volunteers: a randomised, double-blind, placebo-controlled, parallel-group study. Am J Clin Nutr 2015; 101: 1188-96.

26. Rizzardini G, Eskesen D, Calder PC, Capetti A, Jespersen L, Clerici M: Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis BB-12 and Lactobacillus paracasei ssp. paracasei L. casei 431® in an influenza vaccination model: a randomised, double-blind, placebo-controlled study. Br J Nutr 2012; 107: 867-84.

27. Paineau D, Carcano D, Leyer G, et al: Effects of seven potential probiotic strains on specific immune responses in healthy adults: a double-blind, randomized, controlled trial. FEMS Immunol Med Microbiol 2008; 53: 107-13.

28. Redondo N, Nova E, Cheorgehe A, Díaz LE, Hernández A, Marcos A: Evaluation of Lactobacillus coryniformis CECT5711 strain as a coadjuvant in a vaccination process: a randomised clinical trial in healthy adults. Nutr Metab (Lond) 2017; 14: 2.

29. Vietha T, Saltzman ET, Thomsen M, Nikol T, Hall S: Adjuvant probiotics and the intestinal microbiome: enhancing vaccines and immunotherapy outcomes. Vaccines 2017; 5: 50.

30. Wang Y, Li X, Ge T, et al: Probiotics for prevention and treatment of respiratory tract infections in children: a systematic review and meta-analysis of randomized controlled trials. Medicine 2016; 95: e4509.

31. Amares MA, Guedes G, Epifanio M, Wagner MB, Jones MH, Matiello R: Network meta-analysis of probiotics to prevent respiratory infections in children and adolescents. Pediatr Pulmonol 2017; 52: 833-43.

32. Lausen RP, Hojsak I: Probiotics for respiratory tract infections in children attending day care centers: a systematic review. Eur J Pediatr 2018; 177: 979-94.

33. Lemoin-Wijnkoop I, Merenstein D, Korchagina D, Broholm C, Sanders ME, Tancredi D: Probiotics reduce health care cost and societal impact of flu-like respiratory tract infections in the USA: an economic modeling study. Front Pharmacol 2019; 10: 980.
46. Su M, Jia Y, Li Y, Zhou D, Jia J: Probiotics for the prevention of ventilator-associated pneumonia: a meta-analysis of randomized controlled trials. Respir Care 2020; 65: 673-85.
47. Ansari F, Pashazadeh F, Nourollahi E, Hajebrhaimi S, Munn Z, Pourjafar H: A systematic review and meta-analysis: the effectiveness of probiotics for viral gastroenteritis. Curr Pharm Biotechnol 2020.
48. Sanders ME, Merenstein D, Merrifield CA, Hutkins R: Probiotics for human use. Nutr Bull 2018; 43: 212-25.
49. Shane AL, Cabana MD, Vidry S, et al: Guide to designing, conducting, publishing and communicating results of clinical studies involving probiotic applications in human participants. Gut Microbes 2010; 1: 243-53.
50. Rastall RA: Functional oligosaccharides: application and manufacture. Annu Rev Food Sci Technol 2010; 1: 305-39.
51. Hughes C, Davoodi-Semiromi Y, Colee JC, et al: Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: a randomized, double-blind, controlled trial in healthy university students. Am J Clin Nutr 2011; 93: 1305-11.
52. Ramberg JE, Nelson ED, Sinnott RA: Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 2010; 9: 54.
53. Lomax AR, Calder PC: Prebiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr 2009; 101: 633-58.
54. Somerville V, Braggins C, Braakhuis A: Polyphenols and performance: a systematic review and meta-analysis. Sports Med 2017; 47: 1589-99.
55. Riede L, Grube B, Gruenwald J: Larch arabinogalactan effects on reducing incidence of upper respiratory infections. Curr Med Res Opin 2013; 29: 251-58.
56. Lomax AR, Cheung LV, Noakes PS, Miles EA, Calder PC: Inulin-type β2-1 fructans have some effect on the antibody response to seasonal influenza vaccination in healthy middle-aged humans. Front Immunol 2015; 6: 490.
57. Dion C, Chappuis E, Ripoll C: Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials. Nutr Metab 2016; 13: 28.
58. Chan CKY, Tao J, Chan OS, Li HB, Pang H: Preventing respiratory tract infections by synbiotic interventions: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr 2020; 11: 979–88.
59. Pregliasco F, Anselmi G, Fonte L, Giussani F, Schieppati S, Soletti L: A new chance of preventing winter diseases by the administration of synbiotic formulations. J Clin Gastroenterol 2008; 42(Suppl 3, Pt 2): S224-33.
60. Enani S, Przemska-Kosicka A, Childs CE, et al: Impact of ageing and a synbiotic on the immune response to seasonal influenza vaccination; a randomised controlled trial. Clin Nutr 2018; 37: 443-51.
61. Kalima K, Lehtaranta L, He L, et al: Probiotics and respiratory and gastrointestinal tract infections in Finnish military conscripts—a randomised placebo-controlled double-blinded study. Benef Microbes 2016; 7: 463-71.
62. Tiollier E, Chennoumi M, Gomez-Merino D, Drogou C, Filaire E, Guizennec CY: Effect of a probiotics supplementation on respiratory infections and immune and hormonal parameters during intense military training. Mil Med 2007; 172: 1006-11.
63. Hemilä H, Chalker E: Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev 2013; 1: CD000980.
64. David S, Cunningham R: Echinacea for the prevention and treatment of upper respiratory tract infections: a systematic review and meta-analysis. Complement Ther Med 2019; 44: 18-26.
65. Martineau AR, Jolliffe DA, Greenberg L, et al: Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess 2019; 23: 1-44.
66. Singh M, Das RR: Zinc for the common cold. Cochrane Database Syst Rev 2013; 6: CD001364.
67. Bae JM: Prophylactic efficacy of probiotics on travellers’ diarrhea: an adaptive meta-analysis of randomized controlled trials. Epidemiol Health 2018; 40: e2018043.
68. McFarland LV, Goh S: Are probiotics and prebiotics effective in the prevention of travellers’ diarrhea: a systematic review and meta-analysis. Travel Med Infect Dis 2019; 27: 11-19.
69. Porter CK, Thura N, Riddle MS: Quantifying the incidence and burden of postinfectious enteric sequelae. Mil Med 2013; 178: 452-69.
70. Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O: Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 2016; 8: 52.