ELICITATION OF DELAYED-TYPE HYPERSENSITIVITY RESPONSES TO poly(l-Tyr, l-Glu)-poly(DLAla)--poly(l-Lys) BY ANTI-IDIOTYPIC ANTIBODIES*

By GIDEON STRASSMANN, RUTH LIFSHITZ, AND EDNA MOZES

From the Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel

The determination of biological activities of anti-idiotypic (Id) antibodies is a useful approach for studying antigen-specific T cell recognition unit because cross-reactive Id determinants have been shown to be shared by antibodies and T cells (1, 2). Anti-Id antibodies were reported to trigger Id-specific T cells that suppress antibody formation (3) and delayed-type hypersensitivity (DTH) responses (4). Helper and mixed-lymphocytic-reactive T cells were also reported to be induced by anti-Id antibodies (2, 5). Recently, we have reported that anti-Id serum produced in C57BL/6 mice against C3H.SW anti-poly(l-Tyr, l-Glu)-poly(DLAla)--poly(l-Lys) [T,G]-A-L antibodies stimulated in vitro proliferative responses of (T,G)-A-L-primed T cells (6). Furthermore, anti-Id sera against (T,G)-A-L-specific antibodies (7) reacted with (T,G)-A-L-specific helper factors produced by educated T cells (8), a T cell-specific hybrid line, and a (T,G)-A-L-specific continuous line with helper activity (9).

DTH responses to (T,G)-A-L are T cell mediated, antigen specific (10), and genetically controlled (11). In a previous article we have described the participation of two distinct T cell subsets in DTH to (T,G)-A-L (12). We have shown that sensitized radioresistant Lyt-1+2-3- cells required the presence of normal radiosensitive Lyt-1+2+3+ cells for efficient DTH responses. It was of interest to establish the effect of murine anti-Id serum against (T,G)-A-L-specific antibodies on T cell-mediated DTH responses. In this report we describe the ability of this anti-Id serum to replace the antigenic challenge in the efferent phase of DTH. We were able to localize the effect of the antiserum on the antigen-educated Lyt-1+2-3- cells.

Materials and Methods

Animals. C3H.SW (H-2b, Igh-1a), C57BL/6 (H-2b, Igh-1a), and CWB (H-2b, Igh-1b) mouse strains 2-3 mo of age were obtained from the Experimental Animal Unit of the Weizmann Institute of Science, Rehovot, Israel.

Antigens. The synthetic polypeptide (T,G)-A-L was synthesized and characterized as described previously (13). Keyhole lymphatic hemocyanin (KLH; Calbiochem-Behring Corp., American Hoechst Corp., San Diego, Calif.) was used as well.

Preparation of Anti-Id-Serum. Anti-(T,G)-A-L Id serum was produced in C57BL/6 mice. Briefly, mice were injected intravenously and subcutaneously with 50 μg of C3H.SW anti-(T,G)-A-L antibodies in complete Freund's adjuvant (CFA: H37Rv, Difco Laboratories, Detroit, Mich.). 1 wk later, the mice were injected with incomplete Freund's adjuvant, and boosted weekly thereafter, (total of six times) with antibodies in phosphate-buffered saline

* Supported in part by the Stiftung Volkswagenwerk.
(PBS; 0.01 M phosphate buffer, pH 7.2, in 0.15 M NaCl). The serum was tested for idiotype-binding capacity by radioimmunoassay.

In Vivo Generation of Educated T Cells and Measurement of DTH. Thymocytes (10⁸) were injected intravenously into irradiated (800 rad; Co source) syngeneic recipients that were immunized with 20 μg of antigen in CFA intraperitoneally. Spleens that contained educated T cells were removed 7 d later and single cell suspensions were prepared. Cells were irradiated (1,200 rad) and transferred into naive recipients. 16 h after cell transfer, mice were challenged with 10 μl of either antigen [(T,G)-A--L or KLH] (2 mg/ml) or with anti-Id serum diluted in PBS in the right ear (R). The left ear (L) was injected with either PBS (as control for antigen) or with C57BL/6 normal mouse serum (NMS) at the same dilution of anti-Id (as control for antiserum). 10 h after challenge, mice received 5-fluorodeoxyuridine and 2 μCi of [¹²⁵I]5-iodo-2'-deoxyuridine ([¹²⁵I]UdR; Radiochemical Centre, Amersham, England). Ears were removed 25 h later and counted in a gamma counter (Packard Instrument Co., Inc., Downers Grove, Ill.). The results are expressed as the ratio of radioactivity in the right ear to that of the left ear (R:L [¹²⁵I]UdR index; [10, 11]). Positive DTH was considered when the index was >1.2. The results are expressed as the arithmetic mean of all mice in the group ± SE. P values were calculated by the Student's t test.

Results

Effect of Anti-Id Serum on DTH to (T,G)-A--L. To find out whether anti-Id serum would have any effect on DTH to (T,G)-A--L, various dilutions of anti-Id serum were injected into the right pinnae of recipients that were transferred previously with (T, G)-A--L-educated and irradiated T cells. As a control, the same recipients were challenged with NMS in the left pinnae. As can be seen in Table I, the anti-Id could replace the antigenic challenge in the ears. Significant DTH responses could be observed when the anti-Id serum was injected at 1:100 and 1:200 dilutions. It can also be seen in Table I that no biological effect could be obtained in naive mice that did not receive (T,G)-A--L-activated cells and were challenged with the anti-Id serum at either 1:20 or 1:100 dilutions. No effect of the C57BL/6 anti-Id serum produced against C3H.SW anti-(T,G)-A--L antibodies could be observed on 20 × 10⁶ KLH-educated and irradiated cells transferred into C3H.SW recipients (Table I). Thus, it can be concluded that the anti-Id serum can trigger DTH responses in mice transferred with (T,G)-A--L-activated cells of C3H.SW origin, and that this potential is antigen specific.

Strain Specificity of the Effect of the Anti-Id on DTH Responses to (T,G)-A--L. Table II

Table I

Group	Educated cells transferred*	Sensitizing antigen	Antigen used for ear challenge	Dilution of anti-Id used for challenge	Responders/ group	R:L [¹²⁵I]UdR index ± SE
A	25 × 10⁶	(T,G)-A--L	(T,G)-A--L	9/10	1.44 ± 0.06	
B	25 × 10⁶	(T,G)-A--L	1:20	2/5	1.11 ± 0.09	
C	25 × 10⁶	(T,G)-A--L	1:100	10/11	1.42 ± 0.07	
D	25 × 10⁶	(T,G)-A--L	1:500	1/10	1.14 ± 0.10	
E	25 × 10⁶	(T,G)-A--L	1:200	1/10	0.81 ± 0.08	
F	25 × 10⁶	KLH	1:100	1/10	0.81 ± 0.07	
G	20 × 10⁶	KLH	9/10	1.80 ± 0.12		
H	20 × 10⁶	KLH	1:100	1.10 ± 0.06		

* C3H.SW educated and irradiated (1,200 rad) cells were transferred into syngeneic recipients.
† Significant difference from group F: P < 0.001.
‡ Significant difference from group F: P < 0.002.
§ Significant difference from group F: 0.02 < P < 0.01.
¶ Significant difference between groups H and I: P < 0.001.
Table II

Group	Mouse strain*	Allotype	Reagent used for challenge	Responders/group	R.L. [13H]UdR index ± SE
A	C3H.SW	Igh-1a	(T,G)-A--L	8/10	1.45 ± 0.08‡
B	C3H.SW	Igh-1a	Anti-Id§	13/15	1.40 ± 0.07‡
C	CWB	Igh-1b	(T,G)-A--L	5/5	1.54 ± 0.05§
D	CWB	Igh-1b	Anti-Id§	1/7	1.05 ± 0.06
E	C57BL/6	Igh-1b	(T,G)-A--L	10/10	1.68 ± 0.14‡
F	C57BL/6	Igh-1b	Anti-Id§	1/10	0.96 ± 0.06

* 25 × 10^6 (T,G)-A--L-educated and irradiated (1,200 rad) cells were transferred into syngeneic naive recipients.
‡ Significant difference from group D: P < 0.005.
§ Dilution of anti-Id used for challenge was 1:100 in PBS.
§§ Significant difference from group D: P < 0.001.

Table III

Educated cell donors*	Recipient strain	Challenging reagent	Responders/group	R.L. [13H]UdR index ± SE
C3H.SW	C57BL/6	(T,G)-A--L	13/16	1.70 ± 0.18‡
C57BL/6	C3H.SW	(T,G)-A--L	15/15	1.55 ± 0.12‡
C3H.SW	C57BL/6	Anti-Id§	15/17	1.31 ± 0.08‡
C57BL/6	C3H.SW	Anti-Id§	1/18	1.02 ± 0.07

* 25 × 10^6 (T,G)-A--L-educated T cells were irradiated (1,200 rad) and transferred into naive recipients.
‡ Dilution of anti-Id serum used for challenge was 1:100 in PBS.
§§ Significant difference from the last group in the Table: P < 0.01.

Demonstrates that the activity of the anti-Id serum on DTH responses is strain specific. Thus, the anti-Id serum replaces (T,G)-A--L in eliciting DTH responses only in C3H.SW (Igh-1a) mice but not in CWB mice, which are congenic with C3H.SW and differ only by heavy-chain allotypes (Igh-1b). C57BL/6-educated cells used as control were not triggered as well by the anti-Id serum (Table II). These results suggest allotype-linked cross-reactive idiotypic determinants between C3H.SW (T,G)-A--L-specific antibodies and DTH-mediating T cells.

Stimulatory Effect of the Anti-Id on the (T,G)-A--L-educated but Not on the Proliferating T Cells in DTH Responses. Efficient DTH responses require educated radioresistant Lyt-1^+^2^−^3^- cells and normal radiosensitive Lyt-1^+^2^+^3^+ cells (12). It was of interest, therefore, to find out which cell type of the above-mentioned populations is triggered by the anti-Id. Because the anti-Id was shown to elicit DTH responses only in C3H.SW mice (H-2^b^, Id^+^) and not in CWB mice (H-2^b^, Id^-) we have performed experiments in which C3H.SW educated T cells were transferred into C57BL/6 recipients, and vice versa, C57BL/6 educated cells were transferred into recipients of the second mouse strain. Recipients were challenged in the ear either with (T,G)-A--L or with the anti-Id. Table III demonstrates that educated T cells of C3H.SW origin can be triggered by (T,G)-A--L to mediate DTH responses in C57BL/6 naive recipients and vice versa as result of H-2^b^ compatibility. On the other hand, when the anti-Id (1:100) serum was used for ear challenge, DTH responses were obtained only when educated and irradiated T cells of C3H.SW origin were transferred into C57BL/6 naive recipients but not when educated C57BL/6 cells were injected into C3H.SW...
recipients. Thus, the (T,G)-A--L-educated T cells are those triggered by the anti-Id in the efferent phase of the DTH response.

Discussion

In this study we have demonstrated the effectiveness of anti-Id in eliciting DTH responses mediated by (T,G)-A--L-educated T cells (Table I). This in vivo biological function of anti-Id on C3H.SW Id-positive educated cells is shown to be antigen (Table I) and strain (Table II) specific. The fact that CWB responder mice to (T,G)-A--L could not be triggered by the anti-Id to manifest DTH responses suggested a linkage between the expressed Id determinants on DTH-mediating T cells and the Igh-1a allotypic marker of C3H.SW strain (Table II). These results are in agreement with previous data indicating a linkage between the heavy-chain allotypes and the expression of Id determinants on anti-(T,G)-A--L antibodies (14) and on (T,G)-A--L-specific helper T cell factor (8). With the same C57BL/6 anti-Id, shared Id determinants have been shown between subpopulations of T cells of different immune functions. Hence, the anti-Id reacted with (T,G)-A--L-specific helper factors (8, 9), it stimulated in vitro proliferating T cells (6), and here we have shown its capacity to challenge DTH-mediating T cells (Tables I and II).

The triggering effect of the anti-Id has been obtained only when the antigen-educated cells were originated from an Id+ (C3H.SW) mouse strain, whereas the proliferating normal T cells participating in the efferent phase of the DTH response could be of an Id− origin (Table II). These results contribute to the understanding of the mechanism of DTH reaction. It is likely that (T,G)-A--L, when used for ear challenge, triggers the antigen-activated T cell (Lyt-1+2−3−). The latter, as a result, signals the second nonstimulated T cell (Lyt-1+2+3+) to respond in the efferent phase of DTH.

Summary

The in vivo effect of murine anti-idiotypic serum against C3H.SW antipoly(εTyr,εGlu)-poly(pεAla)--poly(εLys) [(T,G)-A--L] antibodies on delayed type hypersensitivity responses to (T,G)-A--L was studied. Anti-idiotypic serum could challenge DTH responses in C3H.SW mice transferred with antigen-sensitized T cells. The elicitation activity was shown to be antigen and strain specific. With H-2-compatible (but allotype different) strain combinations of (T,G)-A--L-educated T cells and recipients, we were able to show that the biological effect of the anti-idiotypic serum is expressed on the first antigen-sensitized idiotypic T cell, but not on the proliferating normal cells of recipient origin that participate in the efferent phase of delayed-type hypersensitivity responses to (T,G)-A--L.

We thank Mrs. Tova Waks for her technical assistance.

Received for publication 11 July 1980.

References

1. Binz, H., and H. Wigzell. 1975. Shared idiotypic determinants on B and T lymphocytes reactive against the same antigenic determinants. I. Demonstration of similar or identical
idiotypes on IgG molecules and T cell receptors with specificity for the same alloantigens. J. Exp. Med. 142:197.

2. Eichmann, K., and K. Rajewsky. 1975. Induction of T and B cell immunity by anti-idiotypic antibodies. Eur. J. Immunol. 5:661.

3. Eichmann, K. 1975. Idiotype suppression. II. Amplification of a suppressor T cell with anti-idiotypic activity. Eur. J. Immunol. 5:511.

4. Yamamoto, H., M. Nonaka, and D. H. Katz. 1979. Suppression of hapten-specific delayed-type hypersensitivity responses in mice by idiotype-specific suppressor T cells after administration of anti-idiotypic antibodies. J. Exp. Med. 150:818.

5. Frischknecht, H., H. Binz, and H. Wigzell. 1978. Induction of specific transplantation immune reactions using anti-idiotypic antibodies. J. Exp. Med. 147:506.

6. Lifshitz, R., B. Parhami, and E. Mozes. 1980. (T,G)-A--L specific T cells of high and low responders share idiotypes with anti-(T,G)-A--L antibodies. 4th International Congress of Immunology. Paris. 2.6.07. (Abstr.).

7. Schwartz, M., R. Lifshitz, D. Givol, E. Mozes, and J. Haimovich. 1978. Cross-reactive idiotypic determinants on murine anti-(T,G)-A--L antibodies. J. Immunol. 121:421.

8. Mozes, E., and J. Haimovich. 1979. Antigen specific T cell helper factor cross reacts idiotypically with antibodies of the same specificity. Nature (Lond.). 278:56.

9. Apte, R. N., Z. Eshhar, I. Löwy, P. Baetselier, and E. Mozes. Immortalized growth and function of antigen specific helper T cell lines. In: Experimental Hematology Today. S. J. Baum, G. D. Ledney, and A. Khan, editors. Springer Verlag New York, Inc., New York. In press.

10. Eshhar, Z., G. Strassmann, T. Waks, and E. Mozes. 1979. In vitro and in vivo induction of effector T cells mediating DTH responses to a protein and a synthetic polypeptide antigen. Cell. Immunol. 47:378.

11. Strassmann, G., Z. Eshhar, and E. Mozes. 1980. Genetic regulation of delayed-type hypersensitivity responses to poly(Tyr,Glu)--poly(DLAla)--poly(Lys). I. Expression of the genetic defect at two phases of the immune process. J. Exp. Med. 151:265.

12. Strassmann, G., Z. Eshhar, and E. Mozes. 1980. Genetic regulation of delayed-type hypersensitivity responses to poly(Tyr,Glu)--poly(DLAla)--poly(Lys). II. Evidence for a T-T-cell collaboration in delayed-type hypersensitivity responses and for a T-cell defect at the efferent phase in nonresponder H-2k mice. J. Exp. Med. 151:628.

13. Sela, M., S. Fuchs, and R. Arnon. 1962. Studies on the chemical basis of the antigenicity of proteins. Synthesis, characterization and immunogenicity of some multichain and linear polypeptides containing tyrosine. Biochem. J. 85:223.

14. Lifshitz, R., M. Schwartz, and E. Mozes. Linkage of murine (T,G)-A--L specific idiotypic determinants to the heavy chain constant region allotypic markers. Immunogenetics. In press.