Metabolic complications in liver transplant recipients

Miguel Jiménez-Pérez, Rocío González-Grande, Edith Omonte Guzmán, Víctor Amo Trillo, Juan Miguel Rodrigo López

Abstract
The metabolic syndrome (MS), which includes obesity, dyslipidaemia, hypertension and hyperglycaemia according to the most widely accepted definitions now used, is one of the most common post-transplant complications, with a prevalence of 44%-58%. The MS, together with the immunosuppression, is considered the main risk factor for the development of cardiovascular disease (CVD) in transplant recipients, which in turn accounts for 19%-42% of all deaths unrelated to the graft. The presence of MS represents a relative risk for the development of CVD and death of 1.78. On the other hand, non-alcoholic fatty liver disease (NAFLD), considered as the manifestation of the MS in the liver, is now the second leading reason for liver transplantation in the United States after hepatitis C and alcohol. NAFLD has a high rate of recurrence in the liver graft and a direct relation with the worsening of other metabolic disorders, such as insulin resistance or diabetes mellitus. Consequently, it is vitally important to identify and treat as soon as possible such modifiable factors as hypertension, overweight, dyslipidaemia or diabetes in transplanted patients to thus minimise the impact on patient survival. Additionally, steroid-free regimens are favoured, with minimal immunosuppression to limit the possible effects on the development of the MS.

Key words: Metabolic syndrome; Liver transplantation; Immunosuppressions; Risk factors; Non-alcoholic fatty liver disease

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The metabolic syndrome is a very frequent complication after liver transplantation; indeed, over half transplant patients will eventually develop it. It is also a risk factor for the development of cardiovascular disease, one of the main causes of long-term death after transplantation. The identification and early treatment of such factors as hypertension, dyslipidaemia, obesity and diabetes is crucial to
achieve a positive impact on long-term survival of liver transplant patients.

Jiménez-Pérez M, González-Grande R, Omonte Guzmán E, Amo Trillo V, Rodrigo López JM. Metabolic complications in liver transplant recipients. *World J Gastroenterol* 2016; 22(28): 6416-6423 Available from: URL: http://www.wjgnet.com/1007-9327/full/v22/i28/6416.htm DOI: http://dx.doi.org/10.3748/wjg.v22.i28.6416

INTRODUCTION

The optimization over recent years of the surgical technique and immunosuppressive therapy has led to excellent survival rates after liver transplantation, reaching 90% at one year and 80% at five years[1-3]. This greater survival has, however, been accompanied by an increase in medical complications derived from the transplant, such as the development of de novo malignancies, recurrence of the underlying disease, metabolic complications and cardiovascular diseases, which today constitute the main causes of death unrelated to the graft[4-6]. The metabolic syndrome (MS), which includes obesity, dyslipidaemia, hypertension and hyperglycaemia according to the most widely accepted definitions now used (Table 1)[7,8], is one of the most common post-transplant complications, with a prevalence ranging from 44%-58% in different studies[9-13]. The MS, together with the immunosuppression, is considered the main risk factor for the development of cardiovascular disease (CVD) in transplant recipients, which in turn accounts for 19%-42% of all deaths unrelated to the graft[10,14]. The presence of the MS represents a relative risk for the development of CVD and death of 1.78[15]. On the other hand, non-alcoholic fatty liver disease (NAFLD), considered as the manifestation of the MS in the liver, is now the second leading reason for liver transplantation in the US after hepatitis C and alcohol[16,17]. NAFLD has a high rate of recurrence in the liver graft and a direct relation with the worsening of other metabolic disorders, such as insulin resistance or diabetes mellitus[18]. Consequently, it is vitally important to identify and treat as soon as possible such modifiable factors as hypertension, overweight, hyperlipidaemia or diabetes in transplanted patients to thus minimise the impact on patient survival. Additionally, steroid-free regimens are preferred, with minimal immunosuppression to limit the possible effects on the development of the MS.

COMPONENTS OF POST-LIVER TRANSPLANT METABOLIC SYNDROME

Obesity

According to the World Health Organisation obesity is determined from the body mass index (BMI) as: overweight BMI: 25-29.9 kg/m², class I: 30-34.9 kg/m², class II: 35-39.9 kg/m² and class III: > 40 kg/m². Central obesity seems to confer more risk of developing the MS and CVD than peripheral obesity[19,20].

Two considerations concerning obesity and its impact on the results of liver transplantation should be considered; the presence of obesity at the time of transplantation and the development of obesity after transplantation.

Patients who are overweight or obese before the transplant remain overweight or obese after the transplant[9]. Over 15% of patients who are of normal weight when they receive their liver transplant become obese within one year and over 25% within 3 years[9,21]. This can be explained by the correction of the catabolic state induced by the cirrhosis and which disappears after transplantation, as well as the increased appetite due to the absence of chronic disease and the use of drugs like steroids. Weight gain after a transplant is associated with an increased risk for the MS and its complications, such as CVD, kidney disease or NAFLD/non-alcoholic steatohepatitis (NASH) on the liver graft[22,23].

Another point is whether the presence of overweight at the time of transplantation impacts on the short- and long-term results post-transplant. One study found that at 5 years post-transplant there was greater mortality among patients who had a BMI > 35 (class I) and BMI > 40 (class II) when they received their transplant as compared with non-obese patients, though this study did not consider the possible influence of the presence of ascites[24]. This may, therefore, be a confounding factor, as it could have been the presence of ascites at the time of transplantation that was associated with greater post-transplant mortality and not the greater BMI of the patients. Other studies, however,

American heart association	International diabetes federation
At least 3 of the following criteria:	Abdominal obesity according to gender and ethnicity specific values
Waist circumference > 88 cm for women and > 102 cm for men	(i.e., waist circumference > 80 cm for women and > 90 cm for men if they are American or European) and at least 2 the following criteria:
Fasting glucose > 100 mg/dL	Fasting glucose > 100 mg/dL
Systolic blood pressure > 130 mmHg and/or diastolic blood pressure > 85 mmHg	Systolic blood pressure > 130 mmHg
HDL < 50 mg/dL for women and < 40 mg/dL for men	HDL < 50 mg/dL and/or diastolic blood pressure > 85 mmHg
Triglycerides > 150 mg/dL	HDL < 50 mg/dL and/or diastolic blood pressure > 85 mmHg

HDL: High density lipoprotein.

Table 1 Definition of the metabolic syndrome by the National Cholesterol Education Program, Adult Treatment Panel III adapted by the National Heart, Lung and Blood Institute/American Heart Association, and the International Diabetes Federation

According to the World Health Organisation obesity is determined from the body mass index (BMI) as:

Volume 22 Issue 28 6417

Jiménez-Pérez M et al. Metabolic complications and liver transplantation
that considered obesity but corrected for ascites found no differences in survival between obese and non-obese patients, probably due to the more exhaustive control of cardiovascular risk factors undergone by obese patients during the pre-transplant period. This, therefore, highlights the need to consider the presence of ascites at the time of transplantation and its association with worse results when interpreting the impact of the BMI on post-transplant results\(^{25}\). Even in cases of morbid obesity excellent survival rates can be achieved, both for the graft and the patient, provided there is adequate selection\(^{25,26}\). A study by the United Network of Organ Sharing found a lower survival rate among patients with a BMI > 40 and a high MELD score\(^{27}\). Nevertheless, adoption of vigorous measures to prevent and correct overweight must be taken from before the time of transplant.

Hypertension

Although the incidence of hypertension before transplantation is low it can still reach 40%-85% afterwards\(^{28-30}\). The immunosuppressive drugs, either alone or combined with other factors, are the main cause of the onset of hypertension, due mainly to the renal and systemic haemodynamic changes they induce. Steroids can also induce hypertension due to their mineralocorticoid effect as well as the increase in vascular resistance and cardiac contractility. Calcineurin inhibitors, mainly cyclosporine rather than tacrolimus\(^{31,32}\), produce hypertension due to vasoconstriction of the afferent renal arteriole, which in turn induces reabsorption of sodium and water and volume expansion, with the resulting increase in blood pressure\(^{33}\). Mammalian target of rapamycin (mTOR) inhibitors, when combined with calcineurin inhibitors, can also cause hypertension\(^{34}\).

Salt-restriction diets and the correction of other associated risk factors accompanied by physical activity are determinant for the prevention and control of hypertension. If drugs are required to control the hypertension, calcium antagonists are considered the first choice as they act directly on the pathophysiological mechanism producing hypertension. In liver transplant patients the recommended drugs are amlopidine/felodipine because they do not interfere with the hepatic metabolism of calcineurin, unlike diltiazem, verapamil or nifedipine, which interfere with the cytochrome P450 and can increase the levels of calcineurin inhibitors and thus their possible toxicity. Angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers have a limited effect when used as single therapy during the early post-transplant period because the activity of the plasma renin system is low during this period, so that these drugs are more useful at later stages after the transplant in which plasma renin activity is greater\(^{33}\). Specific beta blockers are considered second-line therapy. Although the ideal blood pressure level in transplant patients has not been established, the suggested levels are < 130/80; for which up to 30% of patients would require at least two drugs\(^{35,36}\).

New-onset diabetes

In cirrhotic patients the prevalence of glucose intolerance is 60%-80% and that of diabetes is 10%-15%. The incidence of new-onset diabetes after liver transplant (NODALT) ranges from 14%-44%, similar to that seen after other solid-organ transplants (kidney, lung, heart)\(^{37-39}\). Pre-transplant diabetes and the BMI have been found in one study to be factors predicting the development of NODALT\(^{40}\). NODALT is associated with a high risk of developing CVD and post-transplant mortality\(^{38,40}\).

The predominant role played by the liver in the regulation of carbohydrate, protein, lipid and drug metabolism makes it the main organ responsible for the maintenance of glucose homeostasis. This has led some authors\(^{41,42}\) to suggest that it is the liver graft itself that causes the metabolic disorders that occur after the transplant. A high incidence of NODALT has been observed in patients who receive a graft with steatosis, which is associated with insulin resistance\(^{37}\).

Likewise, grafts from donors after circulatory death have a greater incidence of NODALT, probably in relation to the damage derived from the warm ischemia on the development of insulin resistance\(^{43}\). However, in comparison to patients who receive a liver transplant from a deceased donor, patients who receive a liver transplant from a living donor (LDLT) have a lower incidence of NODALT, probably because LDLT livers have more favourable characteristics regarding such factors as age, BMI, or liver function state\(^{44}\).

Certain genotype characteristics of the graft are also considered to be determinant in the metabolic status after liver transplantation\(^{44}\). Various gene polymorphisms have been associated with metabolic disorders and a particular response to immunosuppressive drugs. This would explain the inter-individual, and even the intra-individual variability of certain drugs like tacrolimus concerning their pharmacokinetic characteristics or dose individualisation\(^{45-47}\).

Recurrence of the underlying liver disease can also influence the appearance of NODALT. A strong association has been found between early recurrence of hepatitis C and NODALT\(^{48}\), probably related with the damage to the beta cells induced by the hepatitis C virus (HCV). The recurrence of steatosis/steatohepatitis, which can reach around 60% in patients who receive their transplants for this reason, has also been strongly associated with the development of the MS, as well as diabetes\(^{49}\). The association between insulin resistance and beta-cell dysfunction is well known in cirrhosis caused by such agents as alcohol, HCV, or NASH, which all damage beta cells and alter glucose regulation. This results in over 90% of cirrhotic patients becoming intolerant to glucose during the final stages of the disease, with up to 30% developing diabetes\(^{50,51}\).

Various studies suggest that liver transplantation can
resolve up to 70% of cases of pre-transplant diabetes as a result of improving insulin resistance, with the other cases that fail to resolve possibly being due to the persistence of beta-cell injury\[52-54\]. Nevertheless, these patients all remain exposed to factors associated with the development of diabetes after transplantation, such as immunosuppression, the presence of HCV, or age.

The use of immunosuppressive drugs after liver transplantation plays a crucial role in NODALT. Steroids cause increased insulin resistance and reduced beta-cell secretion. Likewise, calcineurin inhibitors, mainly tacrolimus, have been considered the inducers of NODALT, principally via reduction of insulin secretion by the beta cells through several pathways\[59,61\]. The mTORs everolimus and sirolimus have not, however, been found to be more effective than tacrolimus in post-transplant blood glucose control\[57\]; with one study even finding that mTORs reduce beta-cell mass and increase insulin resistance\[58\]. This has all led to current immunosuppressive regimens tending to use steroid-free protocols and minimisation of the immunosuppression.

Recent studies have also shown the role of the intestinal microbiota in the regulation of carbohydrate metabolism, as well as its influence on the pathogenesis of glucose metabolism disorders. The intestinal microbiota could be affected by liver transplantation through multiple factors, including immunosuppression. Some authors have found an association between the dysbiosis produced by tacrolimus, insulin levels and the insulin resistance index\[44\].

Dyslipidaemia

Although the prevalence of dyslipidaemia in cirrhotic patients is low, due to the alteration in hepatic synthesis, it can nevertheless reach 70% in liver transplant recipients\[59-62\]. As with other components of the MS, immunosuppression also plays a fundamental role in dyslipidaemia. Steroids produce hypercholesterolaemia and hypertriglyceridaemia due to stimulation of the activity of acetyl-CoA carboxylase and fatty acid synthesis\[63,64\]. Calcineurin inhibitors can also induce dyslipidaemia, more often cyclosporine than tacrolimus\[65-67\]. Cyclosporine produces a reduction in biliary cholesterol excretion and blocks the LDL-cholesterol receptors, with the resulting increase in blood levels\[66\]. mTOR inhibitors induce hypertriglyceridaemia by increasing the activity of adipose tissue lipase and reducing lipoprotein lipase, especially if combined with cyclosporine\[58,69\].

The treatment of dyslipidaemia should be oriented towards dietary measures, steroid withdrawal and minimisation of immunosuppression. The treatment of post-transplant hypercholesterolaemia generally necessitates the use of drugs since dietary measures alone are not usually effective. Statins are the drugs of choice for the treatment of hypercholesterolaemia. Pravastatin is most recommended because it is not metabolised by the P450 cytochrome and does not interact with the immunosuppression, unlike other statins like simvastatin, fluvastatin, atorvastatin or lovastatin, though these are widely used in transplant recipients with no great problems. Special care is required with the use of ion exchange resins given their effect on the enterohepatic circulation and their repercussion on the absorption of calcineurin inhibitors, particularly cyclosporine. Hypertriglyceridaemia with normal cholesterol concentrations is also usual in liver transplant recipients. It responds best to dietary treatment, particularly the use of omega 3 fatty acids. Drug therapy with fibrates (gemfibrozil) is reserved for severe cases, and is generally well tolerated\[33,36,70\].

PREDICTORS OF POST-LIVER TRANSPLANT METABOLIC SYNDROME

The prevalence of the MS after liver transplantation is around 50%, depending on the criteria used\[9\]. The factors most consistently related with the risk of developing post-liver transplant MS are a high recipient age at the time of transplant, the presence of diabetes mellitus before transplantation, an increase in BMI after transplantation, smoking and the indication for the transplant (hepatitis C, alcohol or cryptogenic cirrhosis)\[8,9,10,13,71,72\]. Some studies have found the use of cyclosporine as an immunosuppressive agent to be a risk factor. In addition, recent studies provide increasing evidence for certain gene polymorphisms as independent risk factors for the development of the MS\[39,45,73\].

REPERCUSSION OF THE METABOLIC SYNDROME AFTER LIVER TRANSPLANTATION

The MS after a liver transplant can have a significant negative impact on post-transplant morbidity and mortality due to its involvement in the development of different clinical aspects directly related with post-transplant survival.

Cardiovascular risk

All the components of the MS are considered cardiovascular risk factors. The higher prevalence of the MS in liver transplant recipients is associated with a higher incidence of cardiovascular events than in the general population\[74\], though the risk is lower than in recipients of a kidney or heart transplant. This is because patients with chronic liver disease experience haemodynamic and metabolic changes resulting from peripheral vasodilation, as well as having low blood pressure and cholesterol levels, which all make these patients less liable to develop cardiovascular events, unlike the situation in kidney or heart transplant recipients. In addition, liver transplant recipients require...
lower immnosuppression than patients who receive a kidney or heart transplant[79].

The incidence of cardiovascular events after liver transplantation is around 10\% at 3 years[300]. Diabetes mellitus, hypertension and having received the transplant due to NAFLD are the risk factors most associated with cardiovascular events[76]. It is important to note that the risk of experiencing a cardiovascular event is 4 times greater in liver-transplant recipients who have the MS than those who do not have it[75].

Around 20\% of non-hepatic causes of death in liver transplant patients are due to CVD, which are one of the main causes of death unrelated with the graft[14,77]. Factors predicting cardiovascular events are an older recipient age (OR = 1.2), male gender (OR = 2), NODALT (OR = 2), post-transplant hypertension (OR = 1.8) and the use of mycophenolate mofetil (OR = 2)[300].

In general, prevention measures and treatment aims in CVD based on studies in the general population are also applicable to liver transplant patients, as no specific studies have yet been undertaken of the impact of these measures in transplant recipients. These recommendations are outlined in Table 2[78].

Kidney failure

The presence of the MS in both the general population and in liver transplant recipients is associated with a higher incidence of kidney failure[78]. The reduction in glomerular filtration and the microalbuminuria associated with hypertension or diabetes and the resulting structural damage in the kidney can be increased by the effect of immnosuppressive drugs, which in turn leads to the higher incidence of chronic kidney disease in transplant patients with the MS[79].

Recurrence of hepatitis C

There is a bidirectional relationship between hepatitis C and insulin resistance and diabetes, these latter two being recognised as risk factors for the progression of the fibrosis in patients with hepatitis C, whether or not they have received a transplant[60,81]. Additionally, the recurrence of hepatitis C is also recognised as a risk factor for the development of NODALT[60,82], which in turn is related with greater progression of the fibrosis.

Hepatitis C also affects lipid metabolism, producing a reduction in serum lipid concentrations. Though this could potentially be beneficial, reducing the cardiovascular risk, it has also been related with alterations in the intracellular lipid balance, which could increase the hepatic steatosis[83].

The use of current direct-action antiviral agents against HCV and their high rate of efficacy has led to the recurrence of HCV becoming much less prevalent, with the resulting lower rate of possible effects on metabolic factors.

NAFLD and NASH

NAFLD and NASH can be considered hepatic events of the MS[23]. Around 20\% of patients with NASH can eventually develop cirrhosis and require liver transplantation. Over 60\% of the patients who receive a transplant due to NASH experience a recurrence during the first year, with the main risk factor being the presence of the MS[84]. One study found that around 20\% of liver transplant patients who did not previously have fatty liver developed NAFLD afterwards and around 10\% developed NASH post-transplant[85].

On the other hand, various studies have identified a 10\% increase in the BMI as the main risk factor for the development of NAFLD[46,74,86]. Nonetheless, the true impact of the presence of NAFLD and NASH after transplantation still remains unclear.

CONCLUSION

The high prevalence of the MS after a liver transplant and its relation with the development of cardiovascular events, as well as its involvement in other clinical aspects after the transplant that can seriously influence morbidity and mortality, necessitates the early identification of these factors to achieve adequate management of the risks, thereby minimising their impact on patient survival. Other aspects in post-transplant MS, such as the role of gene polymorphisms or the gut microbiota require much greater study.

REFERENCES

1. Pagadala M, Dasarathy S, Eghtesad B, McCullough AJ. Posttransplant metabolic syndrome: an epidemic waiting to happen. Liver Transpl 2009; 15: 1662-1670 [PMID: 19938136 DOI: 10.1002/lt.21952]
2. Belle SH, Porayko MK, Hoofnagle JH, Lake JR, Zetterman RK. Changes in quality of life after liver transplantation among adults. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Liver Transplantation Database (LTD). Liver Transpl Surg 1997; 3: 93-104 [PMID: 9346722 DOI: 10.1002/lt.500030201]
3. Germani G, Theocharidou E, Adam R, Karam V, Wendon J, O’
Grady J, Burra P, Senzolo M, Mirza D, Castaing D, Klempnauer J, Pollard S, Paul A, Belghiti J, Tischutz E, Burroughs AK. Liver transplantation for acute liver failure in Europe: outcomes over 20 years from the ELTR database. J Hepatol 2012; 57: 288-296 [PMID: 22521347 DOI: 10.1016/j.jhep.2012.02.017]

Watt KD, Pedersen RA, Kremers WK, Heimbach JK, Charlton MR. Evolution of causes and risk factors for mortality post-liver transplantation: results of the NIDDK long-term follow-up study. Am J Transplant 2010; 10: 1420-1427 [PMID: 20486907 DOI: 10.1111/j.1600-6143.2010.03126.x]

Johnston SD, Morris JK, Cramb R, Gunson BK, Neuberger J. Cardiovascular morbidity and mortality after orthotopic liver transplantation. Transplantation 2002; 73: 901-906 [PMID: 11923689 DOI: 10.1097/00007890-200203270-00012]

Vogt DP, Henderson JM, Carey WD, Barnes D. The long-term survival and causes of death in patients who survive at least 1 year after liver transplantation. Surgery 2002; 132: 775-780; discussion 780 [PMID: 12407365 DOI: 10.1067/msy.2002.128343]

National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002; 106: 3143-3421 [PMID: 12485966]

Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Kraus RM, Savage PJ, Smith SC, Sputerts JA, Costa F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112: 2735-2752 [PMID: 16157765 DOI: 10.1161/CIRCULATIONAHA.105.169404]

Bianchi G, Marchesini G, Marzocchi R, Pinna AD, Zoli M. Metabolic syndrome in liver transplantation: relation to etiology and immunosuppression. Liver Transpl 2008; 14: 1648-1654 [PMID: 18975273 DOI: 10.1002/lt.21588]

Laryea M, Watt KD, Molinari M, Walsh MJ, McAlister VC, Marotta PJ, Nashan B, Peltekian KM. Metabolic syndrome in liver transplant recipients: prevalence and association with major vascular events. Liver Transpl 2007; 13: 1109-1114 [PMID: 17663411 DOI: 10.1002/lt.21126]

Ford ES, Gilles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287: 356-359 [PMID: 11790215 DOI: 10.1001/jama.287.3.3356]

Francisco S, Angelico F, Baiocchi I, Tisone G, Lenci I, Carbone AN, Angelico M. High prevalence of metabolic syndrome and long-term survival after liver transplantation. J Hepatol 2008; 48: S82-S82 [DOI: 10.1016/S0168-8278(08)60198-1]

Anastácio LR, Ferreira LG, Ribeiro Hde S, Liboredo JC, Lima AS, Correia MI. Metabolic syndrome after liver transplantation: prevalence and predictive factors. Nutrition 2011; 27: 931-937 [PMID: 21623188 DOI: 10.1016/j.nut.2010.12.017]

Abstracts of the 59th Annual Meeting of the American Association for the Study of Liver Diseases, 2008. October 31-November 4, 2008; Boston, Massachusetts. Liver Transpl Surg 2008; 14: 328-334 [PMID: 18294163 DOI: 10.1053/j.hep.2008.11.039]

Bays HE, González-Campoy JM, Bray GA, Kitabchi AE, Lombardero M, Lake JR, Wiesner RH, Zetterman RK, Hoofnagle JH. Weight change and obesity after liver transplantation: incidence and risk factors. Liver Transpl Surg 1998; 4: 285-296 [PMID: 9649642]

Shaker M, Tabbaa A, Albeldawi M, Alkhouri N. Liver transplantation for nonalcoholic fatty liver disease: new challenges and new opportunities. World J Gastroenterol 2014; 20: 5320-5330 [PMID: 24833862 DOI: 10.3748/wjg.v20.i18.5320]

Nair S, Verna S, Thuluvath PJ. Obesity and its effect on survival in patients undergoing orthotopic liver transplantation in the United States. Hepatology 2002; 35: 105-110 [PMID: 17186965 DOI: 10.1053/jhep.2002.33160]

Leonard J, Heimbach JK, Malinchoc M, Watt K, Charlton M. The impact of obesity on long-term outcomes in liver transplant recipients-results of the NIDDK liver transplant database. Am J Transplant 2008; 8: 667-672 [PMID: 18294163 DOI: 10.1111/j.1600-6143.2007.02588.x]

LaMattina JC, Foley DP, Fernandez LA, Pirsch JD, Musat AL, Di Alessandro AM, Mezrich JD. Complications associated with liver transplantation in the obese recipient. Clin Transplant 2012; 26: 910-918 [PMID: 22694047]

Dick AA, Spitzer AL, Seiffert CF, Deckert A, Carithers RL, Reyes JD, Perkins J. Liver transplantation at the extremes of the body mass index. Liver Transpl 2009; 15: 968-977 [PMID: 19642131 DOI: 10.1002/lt.21785]

Martínez-Saldívar B, Prieto J, Berenguer M, de la Mata M, Pons JA, Serrano T, Rafael-Valdivia L, Aguilera V, Barrera P, Parrilla P, Lorente S, Rubin A, Fraga E, rimola A. Control of blood pressure in liver transplant recipients. Transplantation 2012; 93: 1031-1037 [PMID: 22411562 DOI: 10.1097/TP.0b013e318247b9e6]

Parekh J, Corley DA, Feng S. Diabetes, hypertension and hyperlipidemia: prevalence over time and impact on long-term survival after liver transplantation. Am J Transplant 2012; 12: 2181-2187 [PMID: 22548965 DOI: 10.1111/j.1600-6143.2012.04077.x]

Albeldawi M, Aggarwal A, Madhwal S, Cywinski J, Lopez R, Eghtesad B, Zein NN. Cumulative risk of cardiovascular events after orthotopic liver transplantation. Liver Transpl 2012; 18: 370-375 [PMID: 22140067]

Canzanello VJ, Tetcov SC, Taler SJ, Schwartz LL, Porayko MK, Wiesner RH, Krom RA. Late hypertension after liver transplantation: a comparison of cyclosporine and tacrolimus (FK 506). Liver Transpl Surg 1998; 4: 328-334 [PMID: 9649648 DOI: 10.1002/00004040]

Tetcov SC, Schwartz L, Wilson DJ, Wiesner R, Romero JC, Augustine J, Kos P, Hay E, Gores G, Dickson ER. Systemic and renal effects of nifedipine in cyclosporine-associated hypertension. Hypertension 1994; 23: 1220-1224 [PMID: 8282363 DOI: 10.1161/01.HYP.23.I.000120]
vascular complications in the liver transplant recipient. *Ann Gastroenterol* 2015; 28: 183-192 [PMID: 25830307]

34 **Gonwa** T, Mendez R, Yang HC, Weinstein S, Jensk S, Steinberg S. Randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 6 months. *Transplantation* 2003; 75: 1213-1220 [PMID: 12717205 DOI: 10.1097/01.TP.0000062837.99400.60]

35 **Neal** DA, Tom BD, Luan J, Wareham NJ, Gimson AE, Delivriere LD, Byrne CD, Alexander GJ. Is there disparity between risk and incidence of cardiovascular disease after liver transplant? *Transplantation* 2004; 77: 93-99 [PMID: 14724441 DOI: 10.1097/01.TP.0000060085.70064.90]

36 **Watt** KD, Charlton MR. Metabolic syndrome and liver transplantation: a review and guide to management. *J Hepatol* 2010; 53: 199-206 [PMID: 20451282 DOI: 10.1016/j.jhep.2010.01.040]

37 **Honda** M, Asonuma K, Hayashida S, Suda H, Ohya Y, Lee KJ, Yamamoto H, Takeichi T, Inomata Y. Incidence and risk factors for new-onset diabetes in living-donor liver transplant recipients. *Clin Transplant* 2013; 27: 426-435 [PMID: 23464510 DOI: 10.1111/ctc.12103]

38 **Lv** C, Zhang Y, Chen X, Huang X, Xue M, Sun Q, Wang T, Liang J, He S, Gao J, Zhou J, Yu M, Fan J, Gao O. New-onset diabetes after liver transplantation and its impact on complications and patient survival. *J Diabetes* 2015; 7: 811-890 [PMID: 25676209 DOI: 10.1111/1753-0407.12275]

39 **Ling** Q, Xie H, Lu D, Wei X, Gao F, Zhou L, Xu X, Zheng S. Association between donor and recipient CYP3A7 gene polymorphisms and the risk of new-onset diabetes mellitus after liver transplantation in a Han Chinese population. *J Hepatol* 2013; 58: 271-277 [PMID: 23041360 DOI: 10.1016/j.jhep.2012.09.025]

40 **Wauters** RP, Casio FG, Suarez Fernandez ML, Kudya Y, Shah P, Torres VE. Cardiovascular consequences of new-onset hyperglycemia after kidney transplantation. *Transplantation* 2012; 94: 377-382 [PMID: 22806098 DOI: 10.1097/TP.0b013e3182584831]

41 **Stockmann** M, Konrad T, Nolting S, Hüneberd D, Wernecke KD, Döbling H, Steinmüller T, Neuhaus P. Major influence of liver function itself but not of immunosuppression determines glucose tolerance after living-donor liver transplantation. *Liver Transpl* 2006; 12: 535-543 [PMID: 16496277 DOI: 10.1002/lt.20633]

42 **Gebrhardt** S, Jara M, Malinowski M, Seeberth D, Puhl G, Pratschke J, Stockmann M. Risk factors of metabolic disorders after liver transplantation: an analysis of data from fasted patients. *Transplantation* 2015; 99: 1234-1249 [PMID: 25539465 DOI: 10.1097/01.TP.0000440000.000009]

43 **Suda** A, Chang YH, Aqel BA, Byrne TJ, Chakkera HA, Douglas DJ, Mulligan DC, Rakela J, Vargas HE, Carey EJ. New Onset Diabetes Mellitus in Living Donor versus Deceased Donor Liver Transplant Recipients: Analysis of the UNOS/ OPTN Database. *J Transplant* 2013; 2013: 269096 [PMID: 24205434]

44 **Ling** Q, Xu X, Wang B, Li H, Zheng S. The Origin of New-Onset Diabetes After Liver Transplantation: Liver, Islets, or Gut? *Transplantation* 2016; 100: 808-813 [PMID: 26910325 DOI: 10.1097/01.TP.0000060000.000111]

45 **Neve** B, Le Bacqueur O, Caron S, Huynvat M, Leloire A, Pouliain-Godefroy O, Locoeur C, Pattou F, Stuela B, Froguel P. Alternative human liver transcripts of TCFL2 bind to the glucosecongeneis regulator HNF4α at the protein level. *Diabetologia* 2014; 57: 785-796 [PMID: 24463962 DOI: 10.1007/s00125-013-3154-z]

46 **Ling** Q, Xu X, Wang K, Wang C, Xiang P, Zhang X, Zhuang R, Xie H, Zheng S. Donor PPARα Gene Polymorphisms Influence the Susceptibility to Glucose and Lipid Disorders in Liver Transplant Recipients: A Strobe-Compliant Observational Study. *Medicine (Baltimore)* 2015; 94: e1421 [PMID: 26334901 DOI: 10.1097/MD.0000000000001421]

47 **Yu** S, Wu L, Jin J, Yan S, Jang G, Xie H, Zheng S. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. *Transplantation* 2006; 81: 46-51 [PMID: 16421473 DOI: 10.1097/01.tp.0000188188.34633.bf]

48 **Gelley** F, Zadori G, Fmeisz G, Wagner L, Fehevári I, Gerlei Z, Fazakas J, Papai S, Lengyel G, Sarvary E, Nemes B. Relationship between hepatitis C virus recurrence and de novo diabetes after liver transplantation: the Hungarian experience. *Transplant Proc* 2011; 43: 1281-1282 [PMID: 21620111 DOI: 10.1016/j.transproceed.2011.02.065]
Jiménez-Pérez M et al. Metabolic complications and liver transplantation

T, Shrestha R, Wachs M, Kam I. Prednisone withdrawal late after adult liver transplantation reduces diabetes, hypertension, and hypercholesterolemia without causing graft loss. *Hepatology* 1997; 25: 173-177 [PMID: 9895286 DOI: 10.1002/hep.1012500132]

Boillot O, Mayer DA, Boudjemea K, Salizzoni M, Gridelli B, Filipponi F, Tranecka P, Krawczyk M, Clavien PA, Ducerf C, Margarit C, Margreiter R, Pallardo JM, Hoeckerstedt K, Pageaux GP. Corticosteroid-free immunosuppression with tacrolimus following induction with dacluzumab: a large randomized clinical study. *Liver Transpl 2005; 11: 61-67* [PMID: 15690537 DOI: 10.1002/lt.20307]

Rabkin JM, Corless CL, Rosen HR, Olyaei AJ. Immunosuppression impact on long-term cardiovascular complications after liver transplantation. *Am J Surg 2002; 183: 595-599* [PMID: 12034401 DOI: 10.1016/S0002-9610(02)00826-7]

Manzarbeitia C, Reich DJ, Rothstein KD, Braintam LE, Levin S, Munoz SJ. Tacrolimus conversion improves hyperlipidemic states in stable liver transplant recipients. *Liver Transpl 2001; 7: 93-99* [PMID: 11172391 DOI: 10.1053/jtlt.2001.21289]

Roy A, Kneteman N, Lilly L, Marotta P, Pelekhian K, Scudamore C, Tchervenkov I. Tacrolimus as intervention in the treatment of hyperlipidaemia after liver transplant. *Transplantation 2006; 82: 494-500* [PMID: 16925693 DOI: 10.1097/01.it.0000217711.82193.41]

Trotter JF, Wachs ME, Trouillot TE, Bak T, Kugelmas M, Kam I, Everson G. Dyslipidaemia during sirolimus therapy in liver transplant recipients. *Liver Transpl 2001; 7: 401-408* [PMID: 11349259 DOI: 10.1053/jtlt.2001.23916]

Morrisett JD, Abdel-Fattah G, Kahan BD. Sirolimus changes lipid concentrations and lipoprotein metabolism in kidney transplant recipients. *Transplant Proc 2003; 35: 1438-1450* [PMID: 12742487 DOI: 10.1016/S0041-1345(03)00233-1]

Zheng J, Wang WL. Risk factors of metabolic syndrome after liver transplantation. *Hepatobiliary Pancreat Dis Int 2015; 14: 582-587* [PMID: 26663005 DOI: 10.1016/j.hbpd.2015.06.007]

Contos MJ, Cales W, Sterling RK, Luketic VA, Shiffman ML, Mills AS, Fisher RA, Ham J, Sanyal AJ. Development of nonalcoholic fatty liver disease after orthotopic liver transplantation for cryptogenic cirrhosis. *Liver Transpl 2001; 7: 363-373* [PMID: 11303298 DOI: 10.1053/jtlt.2001.23011]

Bigam DL, Pennington JJ, Carpenter A, Wanless IR, Hemming AW, Croxford R, Greig PD, Lilly LB, Heathcote JE, Levy GA, Catral MS. Hepatitis C-related cirrhosis: a predictor of diabetes after liver transplantation. *Hepatology 2000; 32: 87-90* [PMID: 10869293 DOI: 10.1002/hep.1008270]

Boj SF, van Es JH, Huch M, Li VS, José A, Hatzis P, Mokry M, Haegerbart A, van den Born M, Chambon P, Voshol P, Dor Y, Cuppen E, Fillat C, Clevers H. Diabetes risk gene and Wnt effector Tcf71/Tcf4 controls hepatic response to perinatal and adult metabolic demand. *Cell 2012; 151: 1595-1607* [PMID: 23260145 DOI: 10.1016/j.cell.2012.10.053]

Madhwal S, Areja A, Albeldawi M, Lopez R, Post A, Costa MA. Is liver transplantation a risk factor for cardiovascular disease? A meta-analysis of observational studies. *Liver Transpl 2012; 18: 1140-1146* [PMID: 22821809 DOI: 10.1002/lt.23508]

Martin P, DiMartini A, Feng S, Brown R, Fallon M. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of the Liver Diseases and the American Society of Transplantation. *Hepatology 2014; 59: 1144-1165* [PMID: 24716201 DOI: 10.1002/hep.26972]

Vanwagner LB, Bhave M, Te HS, Feinglass J, Alvarez L, Rinella ME. Patients transplanted for nonalcoholic steatohepatitis are at increased risk for postoperative cardiovascular events. *Hepatology 2012; 56: 1741-1750* [PMID: 22611040 DOI: 10.1002/hep.25855]

Pruthi J, Medkiff KA, Ersason KT, Donovan JA, Yoshida EM, Erb SR, Steinbrecher UP, Fong TL. Analysis of causes of death in liver transplant recipients who survived more than 3 years. *Liver Transpl 2001; 7: 811-815* [PMID: 11552217 DOI: 10.1053/jtlt.2001.27084]

González Grande R, Jiménez-Pérez M, Sáez Gómez AB, Rodrigo López JM. Metabolic syndrome after liver transplantation. In: Abdeldayem H, Allam N, editors. Liver Transplantation - Technical Issues and Complications. Croatia: InTech, 2012: 349-360

Morales JM, Dominguez-Gil B, Gutiérrez MJ. [Impact of immunosuppression in the cardiovascular risk profile after renal transplantation I]. *Nefrologia 2006; 26: 181-194* [PMID: 1680256]

Veldt BJ, Poterucha JJ, Watt KD, Wiesner RH, Hay JE, Rosen CB, Heimbach JK, Janssen HL, Charlton MR. Insulin resistance, serum adipokines and risk of fibrosis progression in patients transplanted for hepatitis C. *Am J Transplant 2009; 9: 1406-1413* [PMID: 19459812 DOI: 10.1111/j.1600-6143.2009.02642.x]

Hanounch IA, Feldstein AE, McCullough AJ, Miller C, Acevo F, Yerian L, Lopez R, Zain NN. The significance of metabolic syndrome in the setting of recurrent hepatitis C after liver transplantation. *Liver Transpl 2008; 14: 1287-1293* [PMID: 18756451 DOI: 10.1002/lt.21524]

Chen T, Jia H, Li J, Chen X, Zhou H, Tian H. New onset diabetes mellitus after liver transplantation and hepatitis C virus infection: meta-analysis of clinical studies. *Transpl Int 2009; 22: 408-415* [PMID: 19207185 DOI: 10.1111/j.1432-2277.2008.00804.x]

Syed GH, Ahmed A, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. *Trends Endocrinol Metab 2010; 21: 33-40* [PMID: 18954061 DOI: 10.1016/j.tem.2009.07.005]

El Atrache MM, Aboudjoud MS, Divine G, Yoshida A, Kim DY, Kazimi MM, Mookna D, Huang MA, Brown K. Recurrence of non-alcoholic steatohepatitis and cryptogenic cirrhosis following orthotopic liver transplantation in the context of the metabolic syndrome. *Clin Transplant 2012; 26: E505-E512* [PMID: 23067159 DOI: 10.1111/ctj.12014]

Sos E, Maganti K, Khdhra M, Ramsamoog R, Tsodikov A, Bowlus C, McVicar J, Zern M, Torok N. De novo nonalcoholic fatty liver disease after liver transplantation. *Liver Transpl 2007; 13: 844-847* [PMID: 17029282 DOI: 10.1002/lt.20932]

Lim LG, Cheng CL, Woo A, Lim SG, Lee YM, Sutedja DS, Da Costa M, Prabhakaran K, Wai CT. Prevalence and clinical associations of posttransplant fatty liver disease. *Liver Int 2007; 27: 76-80* [PMID: 17241384 DOI: 10.1111/j.1478-3231.2006.01396.x]
