Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers

Juan Wang, Li Zhang, Qi-Lin Zhang, Min-Qiang Zhou, Xiao-Tong Wang, Xing-Zhuo Yang, Ming-Long Yuan

Corresponding Author: Ming-Long Yuan
Email address: yuanml@lzu.edu.cn

The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of *Lygus pratensis* and re-sequenced the mitogenomes of four mirids (i.e. *Apolygus lucorum*, *Adelphocoris suturalis*, *Ade. fasciaticollis* and *Ade. lineolatus*). We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage) were well conserved among these mirids. Four protein-coding genes (PCGs) (*cox1*, *cox3*, *nad1* and *nad3*) had no length variability, where *nad5* showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs (*nad4* and *nad5*) showed relatively high substitution rates at the nucleotide and amino acid levels, where *cox1* had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than one (< 0.59), but the Ka/Ks values of *cox1*-barcode sequences were always larger than 1 (1.34 – 15.20), indicating that the 658 bp sequences of *cox1* may be not the appropriate marker due to positive selection or selection relaxation.

Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of *Nesidiocoris* + (*Trigonotylus* + (*Adelphocoris* + (*Apolygus* + *Lygus*))), as revealed by *nad4*, *nad5*, *rrnL* and the combined 22 transfer RNA genes (tRNAs), respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes (*nad4*, *nad5* and *rrnL*) and the combined 22 tRNAs could be used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification studies.
Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers

Juan Wang§, Li Zhang§, Qi-Lin Zhang§, Min-Qiang Zhou, Xiao-Tong Wang, Xing-Zhuo Yang, Ming-Long Yuan*

State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, People's Republic of China

§These authors contributed equally to this work.

*Correspondence and requests for materials should be addressed to M.L.Y. (yuanml@lzu.edu.cn)
Abstract

The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of *Lygus pratensis* and resequenced the mitogenomes of four mirids (i.e. *Apolygus lucorum*, *Adelphocoris suturalis*, *Adelphocoris fasciaticollis* and *Adelphocoris lineolatus*). We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage) were well conserved among these mirids. Four protein-coding genes (PCGs) (*cox1*, *cox3*, *nad1* and *nad3*) had no length variability, where *nad5* showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs (*nad4* and *nad5*) showed relatively high substitution rates at the nucleotide and amino acid levels, where *cox1* had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than one (< 0.59), but the Ka/Ks values of *cox1*-barcode sequences were always larger than 1 (1.34 – 15.20), indicating that the 658 bp sequences of *cox1* may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of *Nesidiocoris* + (*Trigonotylus* + (*Adelphocoris* + (*Apolygus* + *Lygus*))), as revealed by *nad4*, *nad5*, *rrnL* and the combined 22 transfer RNA genes (tRNAs), respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes (*nad4*, *nad5* and *rrnL*) and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential
to evaluate and select suitable markers for different taxa groups when performing phylogenetic,

population genetic and species identification studies.
Mirid bugs (Hemiptera: Miridae) are one of the most species-rich families of insects, with approximately 11,000 described species in 1,200 genera (Cassis & Schuh 2012; Jung & Lee 2012). Mirid bugs play a key role in natural systems and agroecosystems, with a wide range of food preferences and behaviors (Cassis & Schuh 2012; Jung & Lee 2012; Wheeler 2001). Some mirids are of great economic importance as pests on various cultivated plants (Cassis & Schuh 2012; Lu et al. 2010), whereas others are beneficial species used as biological control agents (Cassis & Schuh 2012). In China, several mirids (e.g. *Apolygus lucorum*, *Lygus pratensis* and *Adelphocoris lineolatus*) are important insect pests on crops, vegetables and forages and recently have extensively increased population density on cotton due to increasing Bt cotton adoption (Lu et al. 2010). However, little is known about interspecific and intraspecific diversity and evolution in these mirids.

Mirids show high morphological diversity and some are difficult to be identified by eye due to small body size, especially closely related species with similar morphological characteristics. The mitochondrial cytochrome c oxidase subunit 1 (*cox1*) has been widely used as a molecular marker for molecular phylogenetics, population genetics and species identification in animals (Avise 2009; Hebert et al. 2003; Jinbo et al. 2011; Simon et al. 2006). The effectiveness of *cox1* as a DNA barcoding marker has been widely investigated in many insect groups, such as Lepidoptera (Cameron & Whiting 2008; Mitchell et al. 2010; Wiemers & Fiedler 2007), Hemiptera (Abd-Rabou et al. 2012; Foottit et al. 2008; Jung et al. 2011; Park et al. 2011; Raupach et al. 2014) and Coleoptera (Kubisz et al. 2012; Monaghan et al. 2005; Raupach et al. 2017).
These studies showed that *cox1* was an effective and suitable DNA barcoding marker for most insect groups, but showed limited ability to identify closely related species for some groups (MeiYan et al. 2012; Lee et al. 2013; Schmidt & Sperling 2008). Therefore, it is essential to explore other potential mitochondrial and nuclear markers for these groups, such as nuclear ITS (Park et al. 2010) and other mitochondrial genes (e.g. *nad4* and *nad5*) (Brabec et al. 2015; Levkanicova & Bocak 2009; Ye et al. 2015; Yu et al. 2016).

Insect mitogenome is a circular double-stranded molecule of 15–18 kb in size and usually contains 37 genes and a large non-coding region (known as control region) (Boore 1999; Cameron 2014). During the past decades, insect mitogenomes are the most extensively used genetic information for molecular evolutionary, phylogenetic and population genetic studies (Cameron 2014; Simon et al. 2006). To date, only ten complete or nearly complete mitogenomes have been determined for Miridae. However, the number of sequenced mirid mitogenomes is still very limited compared to the species-richness of Miridae. Therefore, sequencing more mirid mitogenomes is essential for understanding the evolution of Miridae at the genomic level. In particular, all mirid mitogenomes available in GenBank were sequenced for just a single individual per species, which limited our understanding of intraspecific mitogenomic diversity. To date, knowledge about intraspecific evolution of insect mitogenomes is limited, with the notable exception of *Drosophila melanogaster* (Wolff et al. 2016). Due to the linkage of these mitochondrial genes within the same mtDNA molecule, the same genealogy shared by mitochondrial genes is expected. However, incongruent phylogenetic results were frequently found among different mitochondrial genes (Duchêne et al. 2011; Havird & Santos 2014; Nadimi
In addition, the single or a few concatenated genes could serve as a proxy for the entire mitogenomes (Duchêne et al. 2011; Havird & Santos 2014; Nadimi et al. 2016), which provides a good opportunity to resolve phylogenetic relationships of Miridae that currently lacks sufficient entire mitogenome sequences. However, the performance of the best genes or regions is highly taxa-dependent (Duchêne et al. 2011; Havird & Santos 2014; Nadimi et al. 2016). Therefore, it is needed to evaluate the potential and suitability of single mitochondrial genes as molecular markers within Miridae.

In this study, we sequenced and annotated the mitogenome of *L. pratensis* and re-sequenced the mitogenomes of four mirid species (i.e. *Apo. lucorum*, *Ade. suturalis*, *Ade. fasciaticollis* and *Ade. lineolatus*). These five mirid bugs are important pests on crops, vegetables and forages in China (Lu et al. 2010; Zhang et al. 2016). Combined with ten mirid mitogenomes available from GenBank (Table 1), we provided a comparative mitogenomic analysis at various taxonomic levels. Particularly, we focused on molecular evolution of mitochondrial genes within genera and species. We also evaluated the potential of these mitochondrial genes as molecular markers by genetic distance and phylogenetic analyses. The results will provide useful genetic information for further studies on phylogeny, species identification, phylogeography and population genetics in mirid bugs.

Materials and Methods

Sample and DNA extraction

Adult specimens of five mirid bugs were collected from alfalfa field in Shishe Town, Xifeng
District, Qingyang City, Gansu Province, China, in July 2013. Samples and voucher specimens have been deposited in the State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China. All specimens were initially preserved in 100% ethanol in the field, and transferred to -20°C until used for DNA extraction. The total genomic DNA was extracted from thorax muscle of a single specimen using the OMEGA Insect DNA Kit (OMEGA, USA) according to the manufacturer’s protocols.

PCR amplification and sequencing

For each mirid species, mitogenome was amplified with 10–13 overlapping fragments by using universal insect mitogenome primers (Simon et al. 2006) and species-specific primers designed from sequenced fragments. All primers used in this study are provided in Table S1. PCR and sequence reactions were conducted following our previous studies (Yuan et al. 2015a; Yuan et al. 2015b).

Genome annotation and sequence analysis

Sequence files were assembled into contigs with BioEdit 7.0.9.0 (Hall 1999). Each of the five mirid mitogenomes newly sequenced in the present study was annotated following our previous studies (Yuan et al. 2015a; Yuan et al. 2015b). Nucleotide composition and codon usage were analyzed with MEGA 6.06 (Tamura et al. 2013). For each protein-coding gene (PCG) of all 15 mirid mitogenomes, the number of synonymous substitutions per synonymous site (Ks) and the
number of nonsynonymous substitutions per nonsynonymous site (Ka) were calculated with MEGA 6.06 (Tamura et al. 2013). We also calculated the genetic distances for 13 PCGs and two ribosomal RNA genes (rRNAs) with MEGA 6.06 (Tamura et al. 2013) under the Kimura-2-parameter model (K2P). Strand asymmetry was calculated using the formulas: AT-skew = [A-T]/[A+T] and GC-skew = [G-C]/[G+C] (Perna & Kocher 1995). To determine whether the Ka/Ks values of cox1-barcode sequences were relevant with the scope of sequences used, we downloaded all 7759 cox1 sequences of Miridae available in GenBank (March 1, 2017). After removing sequences shorter than 658 bp, a total of 2326 sequences in 144 genera were obtained (Table S7). Except for forty genera with only one sequence, the remaining 104 genera were used to calculate the values of Ka, Ks and Ka/Ks.

Phylogenetic analysis

Complete or nearly complete mitogenome sequences of eleven mirid bugs (15 samples, Table 1) and two outgroups from Pentatomomorpha (*Corizus tetraspilus* and *Eurydema gebleri*) (Yuan et al. 2015a; Yuan et al. 2015b) were used to perform phylogenetic analyses. The complete sequences of 13 PCGs (excluding stop codons), two rRNAs and 22 transfer RNA genes (tRNAs) were used for phylogenetic analyses. Each PCG was aligned individually based on codon-based multiple alignments by using the MAFFT algorithm within the TranslatorX (Abascal et al. 2010) online platform. Sequences of each rRNA gene were individually aligned using the MAFFT v7.0 online server with G-INS-i strategy (Katoh & Standley 2013). Alignments of individual genes were then concatenated as a combined matrix with DAMBE 5.3.74 (Xia 2013). Two datasets
were assembled for phylogenetic analyses: (1) nucleotide sequences of 13 PCGs (P123) with
11,133 residues and (2) nucleotide sequences of 13 PCGs, two rRNAs and 22 tRNAs (P123RT)
with 14,905 residues. To evaluate phylogenetic potential of single mitochondrial genes, i.e. each
of 13 PCGs, \textit{rrnL} and \textit{rrnS}, as well as the combined 22 tRNAs, were also used in phylogenetic
analyses.

The optimal partitioning schemes and corresponding nucleotide substitution models for each
datasets were determined by PartitionFinder v1.1.1 (Lanfear et al. 2012). We created input
configuration files that contained pre-defined data blocks by genes and codons, e.g. 39 partitions
for P123, 42 partitions for P123RT and 3 partitions for each of 13 PCGs. The “greedy”
algorithm with branch lengths estimated as “unlinked” and Bayesian information criterion (BIC)
were used to search for the best-fit scheme (Table S2). The best-fit partitioning schemes selected
by PartitionFinder were used in all subsequent phylogenetic analyses. We used jModelTest 2.1.7
(Posada 2008) to determine the best evolutionary model for \textit{rrnL}, \textit{rrnS} and the combined 22
tRNAs.

Phylogenetic analyses were conducted with Bayesian inference (BI) and maximum
likelihood (ML) methods available on the CIPRES Science Gateway v3.3 (Miller et al. 2010).
Bayesian analyses were performed with MrBayes 3.2.3 (Ronquist et al. 2012) on Extreme
Science and Engineering Discovery Environment (XSEDE 8.0.24). Two independent runs with
four chains (three heated and one cold) each were conducted simultaneously for 1×10^6
generations. Each run was sampled every 100 generations. Stationarity is assumed to be reached
when ESS (estimated sample size) value is above 100 and PSRF (potential scale reduction factor)
approach 1.0 as suggested in MrBayes 3.2.3 manual (Ronquist et al. 2012). The first 25%
samples were discarded as burn-in, and the remaining trees were used to calculate posterior
probabilities (PP) in a 50% majority-rule consensus tree. ML analyses were carried out using
RAxML-HPC2 (Stamatakis 2014) on XSEDE 8.0.24 with the GTRGAMMA model, and the
node reliability was assessed by 1,000 bootstraps (BS).

Results

General features of mirid mitogenomes
In the present study, we sequenced and annotated the mitogenomes of five mirid bugs: two were
completely sequenced, whereas three were nearly complete mitogenomes (lacking sequences of
three tRNAs and the putative control region) (Table 1, Table S3). The mitogenome sequences of
five mirids have been deposited in GenBank of NCBI under accession numbers: KU234536–
KU234540. The two completely sequenced mitogenomes contained 37 typical mitochondrial
genomes (i.e. 13 PCGs, 22 tRNA genes and two rRNAs) and a large non-coding region (putative
control region) (Table S3). The order and orientation of the mitochondrial genes were identical
to that of the putative ancestral insect mitogenome (Boore 1999; Cameron 2014). Gene overlaps
and spacers were presented in several conserved positions in the mirid mitogenomes, e.g.

\textit{trnS2}/\textit{nad1} (7 bp), \textit{trnW}/\textit{trnC} (-8 bp), \textit{atp8}/\textit{atp6} (-7 bp) and \textit{nad4}/\textit{nad4L} (-7 bp).

The tRNAs in the three \textit{Adelphocoris} species could be folded into a classical clover-leaf
secondary structure (Figure 1). However, \textit{trnSl} (AGN) in \textit{Apo. lucorum} and \textit{L. pratenszs} species
lacked the DHU stem-loop structures, as previously observed in many other true bugs (Wang et
al. 2014b; Yuan et al. 2015a; Yuan et al. 2015b). All 22 tRNAs in *Apolygus* and *Lygus* species used the standard anticodon, whereas two tRNAs in the three *Adelphocoris* species were exceptions: *trnS1* was predicted to have anticodon UCU, whereas *trnK* had the anticodon UUU (Table S3). The sequences and structures of anticodon arms and aminoacyl acceptor stems were well conserved within Miridae, whereas most of the variations (nucleotide substitutions and indels) were found in the DHU loops, pseudouridine (TψC) arms and variable loops (Figure 1).

All of the mirid mitogenomes showed similar nucleotide composition in the J-strand: high A+T content, positive AT- and negative GC-skews (Figure S1), as is usually observed in insect mitogenomes (Hassanin et al. 2005). For each part of mitogenomes, the A+T content, AT- and GC-skews showed low variability among different taxonomic levels (i.e. family, subfamily, genus and species). For AT-skew, a negative value was found in PCGs, *rrnL*, *rrnS* and the 2nd codon position of PCGs, whereas the 1st and 3rd codon positions of PCGs had positive AT-skew values. Except for *Apo. lucorum*, a positive AT-skew value also was found for tRNAs in all mirids. For GC-skew, the 1st codon position of PCGs, *rrnL*, *rrnS* and tRNAs were markedly positive, whereas the 2nd and 3rd codon positions of PCGs showed negative values. The pattern of codon usage in all analyzed mirid mitogenomes was consistent with previous findings in insects (e.g. Wang et al. 2015; Yuan et al. 2015a), namely that A+T-rich codons were preferably used (Table S4).

Gene variability in mirid mitogenomes

Among 13 PCGs, four genes (*cox1*, *cox3*, *nad1* and *nad3*) had no length variability in the 15
examined mirid mitogenomes (Table S5). Four genes showed size variation only in one species (i.e. atp6, cox2 and nad4 in N. tenuis, cob in L. lineolaris). N. tenuis belonging to Bryocorinae showed the most length differences with species from Mirinae. The length of nad5 was most variable, but conserved within each genus. No length variation was found in the same species, whereas the most variations were found among genera. For the two genera including more than two species, no size variation was present in Adelphocoris, and only cob in L. lineolaris showed size difference with the others in Lygus. For rrnL and rrnS, intra-generic and -specific size differences were slight, whereas large differences were found among genera.

The numbers of variable and informative sites varied among genes and taxa (Table 2). The smallest gene atp8 showed the highest informative sites in Miridae, Mirinae and Mirini, followed by nad2 and nad6, while nad4L in Adelphocoris and nad3 in Lygus. The cox1 gene showed least informative sites in Miridae, Mirinae and Mirini, while nad6 in Adelphocoris and nad4L in Lygus. Generally, rrnL and rrnS had the lower informative sites than most PCGs; rrnL was slightly higher than rrnS, except for Adelphocoris. Compared to the whole cox1, cox1-barcode sequences contained relatively small informative sites in most taxonomic levels (except for Lygus). Except for cox1, other two longest genes (nad4 and nad5) contained moderate informative sites in most taxonomic levels (except for Lygus).

As expected, the largest genetic distances were found among subfamilies, followed by Tribes and genera, whereas the smallest among species (Figure 2). Some genes (e.g. atp6, cox2, nad1, nad3 and nad6) showed no intraspecific variations at nucleotide and/or amino acid levels, indicating that these genes were highly conserved. The values of K2P and Ka in 13 PCGs of
Lygus were larger than that of Adelphocoris, indicating that Lygus had the higher substitution rates. For the K2P distance, nad6 was the highest in Miridae and Lygus, whereas atp8 in Mirinae and Mirini. The K2P distance of nad4L was the highest within Adelphocoris, and relatively high K2P distance was also found in Miridae, Mirinae, Mirini and Lygus. The two rRNAs showed similar K2P distance with those of cox1-3 and cob in Miridae, Mirinae and Mirini, but had the lowest substitution rates in Lygus. For Miridae, Mirinae and Mirini, atp8 showed the highest Ka value, whereas nad4L in Adelphocoris and nad6 in Lygus showed the highest Ka values. Two genes (nad4 and nad5) showed relatively high substitution rates at the nucleotide and amino acid levels. Cox1 showed the lowest substitution rate in Miridae, Mirinae, Mirini, Adelphocoris and Lygus. The Ka/Ks values for all PCGs were far lower than one (< 0.59) (Figure 2), suggesting that these genes were evolving under purifying selection. However, we found that the Ka/Ks values for cox1-barcode sequences of the 15 mirids were always larger than 1 (1.34 in Ade. suturalis to 15.20 in Mirini; Table S6). In addition, analyses for cox1-barcode sequences of Miridae from GenBank showed that forty-four genera had no Ka and/or Ks values (Table S7), whereas the values of Ka/Ks for the remaining 61 genera were larger than one (1.5–263.0, Table S7), indicating that these sequences may be under positive selection or selection relaxation during the evolutionary process of Miridae. These results suggested that different genes had different substitution rates, whereas the same genes in different taxonomic levels showed large differences.

Mirid phylogeny based on combined mitochondrial genes
Phylogenetic relationships of 15 mirid mitogenome sequences were inferred using BI and ML methods based on two mitogenomic datasets (P123 and P123RT). The results showed that the two methods with the same dataset resulted in identical tree topology, whereas slight difference was found in the relationships of three species between the two datasets (Figure 3). For the P123 dataset, *Ade. nigritylus* was sister to *Ade. suturalis* (PP = 0.65, BS = 84). For the P123RT dataset, *Ade. nigritylus* had a closer relationship with *Ade. fasciaticolli* and *Ade. lineolatus* (PP = 0.64, BS = 30), which was consistent with previous mirid phylogeny based on mitogenomic data (Wang et al. 2014b). However, low supports were present in both analyses (Figure 3), indicating that the phylogenetic position of *Ade. nigritylus* was unstable. All analyses consistently supported the relationship of *Nesidiocoris* + *(Trigonotylus + (Adelphocoris + (Apolygus + Lygus)))*, as previous mitogenomic analyses (Wang et al. 2014b). For *Lygus*, the two datasets consistently recovered a phylogeny of *(rugulipennis + (lineolaris + (hesperus + pratenszs)))*. The monophyly of *Adelphocoris* was strongly supported by all analyses with high supports (PP = 1.0, BS = 100), as was the monophyly of *Lygus* (PP = 1.0, BS = 100).

Mirid phylogeny based on single mitochondrial gene

We performed phylogenetic analyses using BI and ML methods with single mitochondrial genes, including each of 13 PCGs, *rrnL*, *rrnS* and the combined 22 tRNAs (Figures S2 and S3). The results showed that the tree topologies were variable among different datasets, indicating incongruent phylogenetic signals among genes, as reported in previous similar studies (Duchêne et al. 2011; Havird & Santos 2014; Nadimi et al. 2016). However, all analyses consistently
supported the monophyly of each of *Adelphocoris* (PP = 0.87–1.0, BS = 82–100) and *Lygus* (PP = 0.74–1.0, BS = 59–100), and several relationships within each of these two genera were recovered by different individual genes (Table 3, Figures S2 and S3). Four datasets (*nad4*, *nad5*, *rrnL* and tRNAs) with the two analytical methods supported the phylogeny: *Nesidiocoris* + (*Trigonotylus* + (*Adelphocoris* + (*Apolygus* + *Lygus*))), as recovered by the P123 and P123RT datasets. This relationship among the five genera was also supported by BI analyses with two other genes (*cox1* and *nad2*). These four datasets supported the *Lygus* phylogeny of (*rugulipennis* + (*lineolaris* + (*hesperus* + *pratenszs*))), as four other genes (*cob*, *cox3*, *nad1* and *nad6*). For *Adelphocoris*, BI and ML analyses of four genes (*cox2*, *cox3*, *nad5* and *rrnL*) supported (*fasciaticollis* + *lineolatus*) + *nigritylus* (PP = 0.85–1.0, BS = 34–98), whereas other four genes (*atp6*, *cox1*, *nad1* and *nad4*) recovered the sister relationship of *nigritylus* and *suturalis* (PP = 0.63–0.9, BS = 53–97). It was notable that the *cox1*barcode sequences did not support the sister relationship of *Apolygus* + *Lygus* consistently recovered by many independent datasets (Figure 3 and Figures S2–S4).

Discussion

To date, a total of 15 mitogenomes representing 11 species in five genera were sequenced for Miridae. For the seven nearly complete mitogenomes, the undetermined region was the control region characterized by notable base composition bias, high numbers of tandem repeats and stable stem-loop structures. These features may result in disruption of PCR and sequencing reactions, as has been reported in other true bugs (Wang et al. 2014b; Yuan et al. 2015a). The
size of completely sequenced mitogenomes greatly varied among genera, ranging from 14,522 bp in *Ade. nigritylus* and 17,747 bp in *L. hesperus*, primarily due to the significant size variation of the control region. The complete mitogenome of *Apo. lucorum* (15,647 bp) re-sequenced in the present study was rather larger than that previously sequenced by Wang et al. (2014a) (14,768 bp), largely due to significant size difference between the two control regions. Sequence alignment of control regions found that *Apo. lucorum* previously sequenced lacked regions of multiple repeated sequences, implying that the control region may be incomplete. The two completely sequenced mitogenomes of *Ade. lineolatus* were highly similar in length, with a 162 bp difference. Generally, genome size and total length of spacers and overlaps were more conserved within genus and species than that within subfamily and family, as reported in previous similar studies (Roehrdanz et al. 2016; Wang et al. 2014a; Wang et al. 2014b; Wang et al. 2016a).

The loss of the DHU arm in *trnS1* (AGN) has been considered a typical feature of insect mitogenomes (Cameron 2014). It has been shown that in the nematode *Ascaris suum* the tRNA genes that lack the DHU arm are functional (Okimoto et al. 1992). We found that *trnS1* in *Apo. lucorum* and *L. pratensis* species lacked the DHU arm, but this tRNA in all sequenced mitogenomes of *Adelphocoris* species had a classical clover-leaf secondary structure, indicating the diversity in the secondary structures of *trnS1* within miridae. With the exception of *trnS1* and *trnK*, all the remaining 20 tRNAs used the same anticodon in mirids as in other hemipterans (Wang et al. 2015; Yuan et al. 2015a; Yuan et al. 2015b). In the four *Adelphocoris* species, *trnS1* changed the anticodon GCU with UCU and *trnK* changed the anticodon CUU with UUU. We re-
sequenced the mitogenomes of three *Adelphocoris* species, confirming that the two anticodons of *trnS*\(^1\) and *trnK* were genus-specific conserved. Therefore, the variations in structures and anticodons of mirid tRNAs may be genus-specific, and may indicate the high species diversity of Miridae. The mutations in the *trnS*\(^1\) and *trnK* anticodons were uncommon in hemipteran mitogenomes, which may be correlated with the AGG codon reassignments between serine and lysine (Abascal et al. 2006; Wang et al. 2014b). We also noticed that *trnS*\(^1\) in coleopteran mitogenomes always used the anticodon UCU (Sheffield et al. 2008; Yuan et al. 2016) and *trnK* used UUU in some beetles (Li et al. 2016; Wang et al. 2016b), suggesting the parallel evolution of AGG codon reassignments and point mutations at the anticodons of *trnS*\(^1\)/*trnK* in insect mitogenomes (Abascal et al. 2006; Wang et al. 2014b). Further study by sequencing more mitogenomes from other genera and species is needed to investigate the evolution of anticodons and structures within Miridae.

Currently, *cox1* has been extensively used as DNA barcoding for evaluating and resolving phylogenetic relationships in insects (Hebert et al. 2003; Jinbo et al. 2011). Although the whole *cox1* sequences were evolving under purifying selection, the Ka/Ks values of the *cox1*-barcode sequences were always larger than one at various taxonomic levels within Miridae. Therefore, when we aim to determine the neutral population structure of mirids, the whole *cox1* sequences, combined other mitochondrial genes (e.g. *nad4* and *nad5*) as well as other markers (e.g. microsatellites and SNPs), may be preferred. In contrast, the *cox1*-barcode sequences may have the potential to study the adaptive evolution of mirids in the future. However, further investigations with denser sampling and additional analytical methods for the Ka/Ks ratio (e.g. ...)
Bayesian methods) are essential to reveal evolutionary patterns of \textit{cox1}-barcode sequences within Miridae.

Phylogenetic analyses indicated that individual genes supported different phylogenetic relationships of the 15 mirids despite their linked nature, as reported in previous studies (Duchêne et al. 2011; Havird and Santos 2014; Nadimi et al. 2016; Seixas et al. 2016). The most probable factor for these incongruent phylogenies is the lack of adequate phylogenetic information within each individual gene, but other potential factors (e.g. phylogenetic inference methods, incomplete taxon sampling) should be considered. Two PCGs (\textit{nad4} and \textit{nad5}) consistently supported the same relationships among the five genera and the four \textit{Lygus} species, as the two concatenated mitogenomic datasets. These two genes were also identified as good molecular markers for metazoan phylogenetic analyses (Havird and Santos 2014). However, most previous studies focused on the phylogenetic performance of mitochondrial PCGs, whereas the phylogenetic potential of RNA genes were rarely assessed by comparing the performance of single and concatenated mitochondrial genes. In the present study, we found that \textit{rnrL} and the combined 22 tRNAs performed well in phylogenetic analyses, as \textit{nad4} and \textit{nad5}, suggesting their potential and importance in resolving the phylogeny of Miridae. However, we found that although \textit{cox1} probably was the most commonly used mitochondrial genes in studies of metazoans, this gene (especially \textit{cox1}-barcode sequences) showed poor phylogenetic performance within Miridae, indicating that the \textit{cox1} sequences provided phylogenetic signals that may not be representative of the other mitochondrial genes in Miridae. Previous studies showed incongruent phylogenetic results of \textit{cox1} sequences, suggesting that the suitability of
cox1 may be taxa-specific and relevant to species number used (Havird and Santos 2014). Therefore, we should be cautious when the phylogenies are solely derived from sequence data of *cox1*, whereas additional mitochondrial genes could provide useful genetic information for phylogenetics and population genetics studies of mirid bugs.

Conclusions

In this study, we determined the mitogenomes of *L. pratensis* and re-sequenced other four mirid mitogenomes, and provided a comparative analysis for all 15 sequenced mitogenomes at various taxonomic levels. The results showed that gene content, gene arrangement, codon usage and nucleotide composition were well conserved within Miridae. Four protein-coding genes (*cox1*, *cox3*, *nad1* and *nad3*) had no length variability, where *nad5* showed the most size variation; no intraspecific length variation was found in PCGs. Two genes (*nad4* and *nad5*) showed relatively high substitution rates and informative sites in most taxonomic levels, where *cox1* had the lowest in Miridae, Mirinae and Mirini. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes (*nad4*, *nad5* and *rrnL*) and the combined dataset of 22 tRNAs could be used as potential molecular markers for Miridae. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic and population genetic studies.

DNA Deposition

The following information was supplied regarding the deposition of DNA sequences:
The mitogenomes of five mirids are deposited in GenBank of NCBI under accession numbers:

KU234536–KU234540.

Data Availability

The following information was supplied regarding data availability:

The raw data has been supplied as a Supplementary Information.

References

Abascal F, Zardoya R, and Telford MJ. 2010. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. *Nucleic Acids Research* 38:W7-13.

DOI:10.1093/nar/gkq291:

Abascal F, Posada D, Knight RD, and Zardoya R. 2006. Parallel evolution of the genetic code in arthropod mitochondrial genomes. *PLoS Biology* 4:e127.

Abd-Rabou S, Shalaby H, Germain J-F, Ris N, Kreiter P, and Malausa T. 2012. Identification of mealybug pest species (Hemiptera: Pseudococcidae) in Egypt and France, using a DNA barcoding approach. *Bulletin of Entomological Research* 102:515-523.

Avise JC. 2009. Phylogeography: retrospect and prospect. *Journal of Biogeography* 36:3-15.

Boore JL. 1999. Animal mitochondrial genomes. *Nucleic Acids Research* 27:1767-1780.

DOI:10.1093/nar/27.8.1767:

Brabec J, Kostadinova A, Scholz T, and Littlewood DTJ. 2015. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular
epidemiology of important fish pathogens. *Parasites & Vectors* 8:1-11.

Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. *Annual Review of Entomology* 59:95-117. DOI:10.1146/annurev-ento-011613-162007:

Cameron SL, and Whiting MF. 2008. The complete mitochondrial genome of the tobacco hornworm, *Manduca sexta*, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. *Gene* 408:112-123. DOI:10.1016/j.gene.2007.10.023:

Cassis G, and Schuh RT. 2012. Systematics, Biodiversity, Biogeography, and Host Associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha). *Annual Review of Entomology* 57:377-404. DOI:10.1146/annurev-ento-121510-133533:

Dai X, Xun H, Chang J, Zhang J, Hu B, Li H, Yuan X, and Cai W. 2012. The complete mitochondrial genome of the plant bug *Nesidiocoris tenuis* (Reuter)(Hemiptera: Miridae: Bryocorinae: Dicyphini). *Zootaxa*:30-44.

Duchêne S, Archer FI, Vilstrup J, Caballero S, and Morin PA. 2011. Mitogenome Phylogenetics: The Impact of Using Single Regions and Partitioning Schemes on Topology, Substitution Rate and Divergence Time Estimation. *PLoS ONE* 6:e27138. DOI:10.1371/journal.pone.0027138:

Foottit R, Maw H, Von Dohlen C, and Hebert P. 2008. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. *Molecular Ecology Resources* 8:1189-1201.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. p 95-98.

Hassanin A, Leger N, and Deutsch J. 2005. Evidence for multiple reversals of asymmetric
mutational constraints during the evolution of the mitochondrial genome of Metazoa, and
consequences for phylogenetic inferences. *Systematic Biology* 54:277-298.
DOI:10.1080/10635150590947843:

Havird JC, and Santos SR. 2014. Performance of Single and Concatenated Sets of Mitochondrial
Genes at Inferring Metazoan Relationships Relative to Full Mitogenome Data. *PLoS
ONE* 9:e84080. DOI:10.1371/journal.pone.0084080:

Hebert PD, Ratnasingham S, and de Waard JR. 2003. Barcoding animal life: cytochrome c
oxidase subunit 1 divergences among closely related species. *Proceedings of the Royal
Society of London B: Biological Sciences* 270:S96-S99.

Jinbo U, Kato T, and Ito M. 2011. Current progress in DNA barcoding and future implications
for Entomology. *Entomological Science* 14:107-124.

Jung S, Duwal RK, and Lee S. 2011. COI barcoding of true bugs (Insecta, Heteroptera).
Molecular Ecology Resources 11:266-270. DOI:10.1111/j.1755-0998.2010.02945.x:

Jung S, and Lee S. 2012. Molecular phylogeny of the plant bugs (Heteroptera: Miridae) and the
evolution of feeding habits. *Cladistics* 28:50-79. DOI:10.1111/j.1096-0031.2011.00365.x:

Katoh K, and Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
improvements in performance and usability. *Molecular Biology and Evolution* 30:772-
780.

Kubisz D, Kajtoch Ł, Mazur M, and Rizun V. 2012. Molecular barcoding for central-eastern
European *Crioceris* leaf-beetles (Coleoptera: Chrysomelidae). *Open Life Sciences* 7:69-
76.

Lanfear R, Calcott B, Ho SY, and Guindon S. 2012. Partitionfinder: combined selection of
partitioning schemes and substitution models for phylogenetic analyses. *Molecular
Lee W, Park J, Lee GS, Lee S, and Akimoto S. 2013. Taxonomic status of the *Bemisia tabaci* complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. *PLoS ONE* 8:e63817.

Levkanicova Z, and Bocak L. 2009. Identification of net-winged beetle larvae (Coleoptera: Lycidae) using three mtDNA fragments: a comparison of their utility. *Systematic Entomology* 34:210-221.

Li F, Zhang H, Wang W, Weng H, and Meng Z. 2016. Complete mitochondrial genome of the Japanese pine sawyer, *Monochamus alternatus* (Coleoptera: Cerambycidae). *Mitochondrial DNA Part A* 27:1144-1145.

Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KA, and Guo Y. 2010. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. *Science* 328:1151-1154.

MeiYan C, HuiLin H, Qiang G, CongHui Y, Qian J, Jun L, FuQiang C, ChunSheng W, and AiBing Z. 2012. Effects of different evolution models on DNA barcoding evaluated with the Noctuidae from Wuling Mountain, Hebei, northern China. *Acta Entomologica Sinica* 55:1193-1204.

Miller MA, Pfeiffer W, and Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *Gateway Computing Environments Workshop (GCE), 2010: Gateway Computing Environments Workshop (GCE), 2010*. p 1-8.

Mitchell A, Keena MA, Gopurenko D, Boykin LM, Armstrong KF, Pogue MG, Lima J, Floyd R, Hanner RH, and Humble LM. 2010. Towards a global barcode library for Lymantra (Lepidoptera: Lymantriinae) tussock moths of biosecurity concern. *PLoS ONE* 5:e14280.
Monaghan MT, Balke M, Gregory TR, and Vogler AP. 2005. DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. *Philosophical Transactions of the Royal Society of London B: Biological Sciences* 360:1925-1933.

Nadimi M, Daubois L, and Hijri M. 2016. Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi. *Molecular Phylogenetics and Evolution* 98:74-83.

Okimoto R, Macfarlane J, Clary D, and Wolstenholme D. 1992. The mitochondrial genomes of two nematodes, *Caenorhabditis elegans* and *Ascaris suum*. *Genetics* 130:471.

Park DS, Foottit R, Maw E, and Hebert PD. 2011. Barcoding bugs: DNA-based identification of the true bugs (Insecta: Hemiptera: Heteroptera). *PLoS ONE* 6:e18749.

Park DS, Leem YJ, Hahn K-W, Suh SJ, Hong KJ, and Oh HW. 2010. Molecular identification of mealybugs (Hemiptera: Pseudococcidae) found on Korean pears. *Journal of Economic Entomology* 103:25-33.

Perna NT, and Kocher TD. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. *Journal of Molecular Evolution* 41:353-358.

Posada D. 2008. jModelTest: phylogenetic model averaging. *Molecular Biology and Evolution* 25:1253-1256.

Raupach MJ, Astrin JJ, Hannig K, Peters MK, Stoeckle MY, and Wägele JW. 2010. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. *Frontiers in Zoology* 7:1-15.

Raupach MJ, Hendrich L, Küchler SM, Deister F, Morinière J, and Gossner MM. 2014. Building-up of a DNA barcode library for true bugs (insecta: hemiptera: heteroptera) of Germany reveals taxonomic uncertainties and surprises. *PLoS ONE* 9:e106940.
Roehrdanz R, Cameron SL, Toutges M, and Wichmann SS. 2016. The complete mitochondrial genome of the tarnished plant bug, *Lygus lineolaris* (Heteroptera: Miridae). *Mitochondrial DNA Part A* 27:48-49. DOI:10.3109/19401736.2013.869689:

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, and Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61:539-542. DOI:10.1093/sysbio/sys029:

Schmidt BC, and Sperling FA. 2008. Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). *Systematic Entomology* 33:613-634.

Seixas VC, Paiva PC, and Russo CAM. 2016. Complete mitochondrial genomes are not necessarily more informative than individual mitochondrial genes to recover a well-established annelid phylogeny. *Gene Reports* 5:10-17.

Sheffield NC, Song H, Cameron SL, and Whiting MF. 2008. A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. *Molecular Biology and Evolution* 25:2499-2509.

Simon C, Buckley TR, Frati F, Stewart JB, and Beckenbach AT. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. *Annual Review of Ecology, Evolution, and Systematics* 37:545-579. DOI:10.1146/annurev.ecolsys.37.091305.110018:

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30:1312-1313. DOI:10.1093/bioinformatics/btu033:
Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Molecular Biology and Evolution* 30:2725-2729. DOI:10.1093/molbev/mst197:

Wang P, Li H, Wang Y, Zhang JH, Dai X, Chang J, Hu BW, and Cai WZ. 2014a. The mitochondrial genome of the plant bug *Apolygus lucorum* (Hemiptera: Miridae): presently known as the smallest in Heteroptera. *Insect Science* 21:159-173. DOI:10.1111/1744-7917.12029:

Wang Y, Chen J, Jiang L-Y, and Qiao GX. 2015. Hemipteran mitochondrial genomes: Features, structures and implications for phylogeny. *International Journal of Molecular Sciences* 16:12382-12404.

Wang Y, Li H, Wang P, Song F, and Cai WZ. 2014b. Comparative mitogenomics of plant bugs (Hemiptera: Miridae): identifying the AGG codon reassignments between Serine and Lysine. *PLoS ONE* 9:e101375. DOI:10.1371/journal.pone.0101375:

Wang Y, Li H, Xun H, and Cai W. 2016a. Complete mitochondrial genome sequence of the plant bug *Adelphocoris fasciaticollis* (Hemiptera: Heteroptera: Miridae). *Mitochondrial DNA Part A* 27:222-223. DOI:10.3109/19401736.2014.880898:

Wang YT, Liu YX, Tong XL, Ren QP, and Jiang GF. 2016b. The complete mitochondrial genome of the longhorn beetle, *Massicus raddei*. *Mitochondrial DNA Part A* 27:209-211.

Wheeler AG. 2001. *Biology of the plant bugs (Hemiptera: Miridae): pests, predators, opportunists*. New York: Cornell University Press.

Wiemers M, and Fiedler K. 2007. Does the DNA barcoding gap exist?—a case study in blue butterflies (Lepidoptera: Lycaenidae). *Frontiers in Zoology* 4:8.

Wolff JN, Camus MF, Clancy DJ, and Dowling DK. 2016. Complete mitochondrial genome
sequences of thirteen globally sourced strains of fruit fly (*Drosophila melanogaster*) form a powerful model for mitochondrial research. *Mitochondrial DNA Part A* 27:4672-4674.

Xia X. 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. *Molecular Biology and Evolution* 30:1720-1728. DOI:10.1093/molbev/mst064:

Ye F, Liu T, Zhu W, and You P. 2015. Complete mitochondrial genome of Whitmania laevis (Annelida, Hirudinea) and comparative analyses within Whitmania mitochondrial genomes. *Belgian Journal of Zoology* 145:115-129.

Yu H, Kong L, and Li Q. 2016. Evaluation of the efficacy of twelve mitochondrial protein-coding genes as barcodes for mollusk DNA barcoding. *Mitochondrial DNA Part A* 27:1336-1339.

Yuan ML, Zhang QL, Guo ZL, Wang J, and Shen YY. 2015a. Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta: Hemiptera: Heteroptera) and phylogenetic implications. *BMC Genomics* 16:460. DOI:10.1186/s12864-015-1679-x:

Yuan ML, Zhang QL, Guo ZL, Wang J, and Shen YY. 2015b. The complete mitochondrial genome of *Corizus tetraspilus* (Hemiptera: Rhopalidae) and phylogenetic analysis of Pentatomomorpha. *PLoS ONE* 10:e0129003. DOI:10.1371/journal.pone.0129003:

Yuan ML, Zhang QL, Zhang L, Guo ZL, Liu YJ, Shen YY, and Shao R., 2016. High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences. *Molecular Phylogenetics and Evolution* 104: 99-111.

Zhang B, Zhou MQ, Wang J, Pu Y, Zhang L, and Yuan ML. 2016. Species checklist and research status of alfalfa insect pests reported in China. *Pratacultural Science* 33:785-812.
Supplementary Information

Figure S1: Base composition of 15 mirid mitochondrial genomes.

Figure S2: Bayesian phylogeny of mirid bugs using each of 13 protein-coding genes, \textit{rrnL}, \textit{rrnS} and 22 tRNA genes. Numbers on branches are Bayesian posterior probabilities.

Figure S3: Maximum likelihood phylogeny of mirid bugs using each of 13 protein-coding genes, \textit{rrnL}, \textit{rrnS} and 22 tRNA genes. Numbers on branches are bootstrap support values.

Figure S4: Phylogeny of eleven mirid bugs based on the \textit{cox1}-barcode sequences. Numbers on branches are Bayesian posterior probabilities (left) and bootstrap values (right).

Table S1: Primers used in this study.

Table S2: Evolutionary models for each dataset. The best partitioning schemes and substitution models were selected by PartitionFinder for the P123 and P123RT datasets, and each of 13 PCGs. The best substitution models for \textit{rrnL}, \textit{rrnS}, 22 tRNAs and \textit{cox1}-barcode sequences were determined by jModelTest.

Table S3: The annotation and organization of the mitochondrial genomes of five mirid species sequenced in this study.

Table S4: Codon usage in the 15 mirid mitochondrial genomes.

Table S5: Length variations (bp) of 13 protein-coding genes, \textit{rrnL} and \textit{rrnS} among the 15 mirid mitogenomes.

Table S6: Evolutionary analyses of \textit{cox1}-barcode sequences from the 15 mirid mitochondrial genomes.
Table S7: Evolutionary analyses of \textit{cox1}-barcode sequences of Miridae available in GenBank.

Raw data

- Alignment of protein-coding genes, rRNA genes and tRNAs used in this study.
- Mitochondrial genome sequences of five mirids sequenced in this study.
Figure 1: Putative secondary structures of the 22 tRNA genes identified in the mitochondrial genome of *Adelphocoris lineolatus*.

(A) trnI, (B) trnQ, (C) trnM, (D) trnW, (E) trnC, (F) trnY, (G) trnL2, (H) trnK, (I) trnD, (J) trnG, (K) trnA, (L) trnR, (M) trnN, (N) trnS1, (O) trnE, (P) trnF, (Q) trnH, (R) trnT, (S) trnP, (T) trnS2, (U) trnL1, (V) trnV. All tRNA genes are shown in the order of occurrence in the mitochondrial genome starting from trnI. The nucleotides showing 100% identity in the 15 mirid mitochondrial genomes are marked with green color, and the variable region are marked with red color. Bars indicate Watson-Crick base pairings, and dots between G and U pairs mark canonical base pairings in tRNA.
Figure 2: The K2P genetic distance, Ka and Ka/Ks of 13 protein-coding genes among the 15 mirid mitochondrial genomes.

(A) K2P, the Kimura-2- parameter distance; (B) Ka, the number of nonsynonymous substitutions per nonsynonymous site; (C) Ka/Ks. Ks, the number of synonymous substitutions per synonymous site.
Figure 3: The mitochondrial phylogeny of eleven mirid bugs based on the two combined datasets: (A) P123 and (B) P123RT.

Numbers on branches are Bayesian posterior probabilities (PP, left) and Bootstrap values (BS, right). Asterisk (*) indicates PP = 1.0 and BS = 100. Species sequenced in the present study are bold.
Table 1: List of mirid species analyzed in the study.
Table 1: List of mirid species analyzed in the study.

Subfamily	Species	Size (bp)	A+T %	AT-skew	GC-skew	GenBank Accession	References
Bryocorina	*Nesidiocoris tenuis*	17544	75.0	0.10	-0.11	NC_022677	Dai et al. 2012
Mirinae	*Adelphocoris fasciaticollis*	15434	77.4	0.16	-0.22	KJ001714	Wang et al. 2016
Mirinae	*Adelphocoris fasciaticollis_Yuan*	13587	77.0	0.17	-0.21	KU234536	This study
Mirinae	*Adelphocoris lineolatus*	15595	77.1	0.16	-0.21	KJ020286	Wang et al. 2014b
Mirinae	*Adelphocoris lineolatus_Yuan*	15433	76.9	0.16	-0.21	KU234537	This study
Mirinae	*Adelphocoris nigritylus*	14522	77.2	0.17	-0.21	KJ020287	Wang et al. 2014b
Mirinae	*Adelphocoris suturalis*	14327	76.8	0.17	-0.20	KJ020288	Wang et al. 2014b
Mirinae	*Adelphocoris suturalis_Yuan*	14106	76.8	0.17	-0.21	KU234538	This study
Mirinae	*Aplygus lucorum*	14768	76.8	0.12	-0.12	NC_023083	Wang et al. 2014a
Mirinae	*Aplygus lucorum_Yuan*	15647	76.8	0.11	-0.12	KU234539	This study
Mirinae	*Lygus hesperus*	17747	75.3	0.14	-0.19	NC_024641	Unpublished
Mirinae	*Lygus lineolaris*	17027	75.9	0.13	-0.18	NC_021975	Roehrdanz et al. 2016
Mirinae	*Lygus pratensis*	14239	75.6	0.15	-0.18	KU234540	This study
Mirinae	*Lygus rugulipennis*	15819	75.5	0.14	-0.18	KJ170898	Wang et al. 2014b
Mirinae	*Trigonotylus caelestialium*	15095	74.9	0.14	-0.13	KJ170899	Wang et al. 2014b
* incomplete mitochondrial genomes.
Table 2 (on next page)

Table 2: Number of variable sites and number of informative sites in Miridae.
Table 2: Number of variable sites and number of informative sites in Miridae.

Gene	Miridae	Mirinae	Mirini	Adelphocoris	Lygus							
	Number of variable sites (%)	Number of informative sites (%)	Number of variable sites (%)	Number of informative sites (%)	Number of variable sites (%)	Number of informative sites (%)						
atp6	319 (47.47)	212 (31.55)	260 (38.86)	203 (30.34)	227 (33.93)	199 (29.75)	39 (5.83)	23 (3.44)	50 (7.47)	9 (1.35)		
atp8	84 (52.83)	60 (37.74)	74 (46.54)	56 (35.22)	58 (36.48)	56 (35.22)	4 (2.56)	3 (1.92)	7 (4.40)	2 (1.26)		
cob	412 (36.83)	273 (24.14)	350 (30.95)	263 (23.25)	296 (26.17)	254 (22.46)	51 (4.51)	39 (3.45)	117 (10.34)	19 (1.68)		
cox1	534 (34.83)	344 (22.44)	425 (27.72)	322 (21.00)	357 (23.29)	314 (20.48)	87 (5.68)	60 (3.91)	110 (7.18)	23 (1.50)		
cox2	267 (39.38)	185 (27.29)	219 (32.30)	168 (24.78)	183 (26.99)	164 (24.19)	37 (5.46)	23 (3.39)	53 (7.82)	10 (1.47)		
cox3	311 (39.72)	204 (26.05)	252 (32.18)	191 (24.39)	212 (27.08)	189 (24.14)	36 (4.06)	25 (3.19)	62 (7.92)	11 (1.40)		
nad1	343 (37.12)	215 (23.27)	274 (29.65)	194 (21.00)	215 (23.27)	190 (20.56)	27 (2.92)	19 (2.06)	75 (8.12)	12 (1.30)		
nad2	562 (55.92)	352 (35.02)	441 (43.88)	324 (32.24)	363 (36.12)	316 (31.44)	67 (6.75)	32 (3.22)	91 (9.05)	11 (1.09)		
nad3	168 (47.86)	103 (29.34)	132 (37.61)	96 (27.35)	109 (31.05)	94 (26.78)	14 (3.99)	10 (2.85)	32 (9.12)	7 (1.99)		
Gene	n	m	m'	n'	m''	n''	m'''	n'''	m''''	n''''	m'''''	n'''''
----------	------	------	------	------	------	------	------	------	-------	-------	--------	--------
nad4	703	450	570 (42.99)	404	452	399	74 (5.58)	46 (3.47)	112 (8.45)	23 (1.73)		
nad4L	167	101	130 (42.48)	94 (30.72)	105	94 (30.72)	20 (6.60)	13 (4.29)	30 (9.90)	3 (0.99)		
nad5	828	541	678 (39.72)	506	550	496	69 (4.07)	56 (3.30)	120 (7.07)	19 (1.12)		
nad6	289	172	228 (46.63)	155	172	151	18 (3.68)	9 (1.84)	51 (10.49)	7 (1.44)		
rrnL	501	321	388 (30.77)	285	301	283	28 (2.27)	17 (1.38)	47 (3.75)	9 (0.72)		
rrnS	494	211	205 (23.06)	198	205	193	36 (4.47)	12 (1.49)	34 (3.99)	4 (0.47)		
cox1-	221	135	176 (26.75)	125	142	121	28 (4.26)	24 (3.65)	48 (7.29)	13 (1.98)		

Gene	n	m	m'	n'	m''	n''	m'''	n'''	m''''	n''''	m'''''	n'''''
barcoding sequences	221	135	176 (26.75)	125	142	121	28 (4.26)	24 (3.65)	48 (7.29)	13 (1.98)		
Table 3: The phylogeny for the major clades of Miridae recovered by different mitochondrial datasets and analytical approaches.
Table 3: The phylogeny for the major clades of Miridae recovered by different mitochondrial datasets and analytical approaches.

Gene	Adelphocoris s	Lygus	Nes+(Tri+(Ade+(Apo+Lys)))	Af+Al	(Af+Al)+Aan	An+As	Lr+(Ll+(Lh+Lp))
atp6	M/M	M/M	N/N	N/N	N/N	Y/Y	Y/N
atp8	M/M	M/M	N/N	N/N	N/N	N/N	N/N
cob	M/M	M/M	N/N	Y/Y	N/N	N/N	N/N
cox1	M/M	M/M	Y/N	N/N	Y/Y	N/N	N/N
cox2	M/M	M/M	N/N	Y/Y	Y/Y	N/N	Y/N
cox3	M/M	M/M	N/N	Y/Y	Y/Y	N/N	Y/N
nad1	M/M	M/M	N/N	N/N	N/N	Y/Y	Y/N
nad2	M/M	M/M	Y/N	N/N	N/N	N/N	Y/N
nad3	M/M	M/M	N/N	Y/Y	Y/Y	N/N	N/N
nad4	M/M	M/M	Y/Y	Y/Y	N/N	Y/N	Y/N
nad4L	M/M	M/P	N/N	N/N	N/N	Y/N	Y/N
nad5	M/M	M/M	Y/Y	Y/Y	Y/Y	N/N	Y/N
nad6	M/M	M/M	Y/Y	Y/Y	Y/Y	N/N	Y/N
rnrL	M/M	M/M	Y/Y	Y/Y	N/N	N/N	Y/N
rnrS	M/M	M/M	N/N	N/N	N/N	N/N	N/N
22 tRNAs	M/M	M/M	Y/Y	Y/Y	N/N	N/N	Y/N
P123	M/M	M/M	Y/Y	Y/Y	N/N	Y/N	Y/N
P123RT	M/M	M/M	Y/Y	Y/Y	N/N	Y/N	Y/N

Results from left to right are obtained from Bayesian inference and maximum likelihood, respectively. M, monophyletic; P, paraphyletic or polyphyletic; Y, yes, a phylogeny is supported; N, no, a phylogeny is not supported. Nes, Nesidiocoris; Tri, Trigonotylus; Ade, Adelphocoris; Apo, Apolygus; Lys, Lygus; Af, Adelphocoris fasciaticollis; Al, Ade. lineolatus; An, Ade. nigritylus; As, Ade. suturalis; Lr, Lygus rugulipennis; Ll, L. lineolaris; Lh, L. hesperus; Lp, L. pratenszs.