HOPF ALGEBRAS AND DENDRIFORM STRUCTURES ARISING FROM PARKING FUNCTIONS

JEAN-CHRISTOPHE NOVELLI AND JEAN-YVES THIBON

Abstract. We introduce a graded Hopf algebra based on the set of parking functions (hence of dimension \((n + 1)^n - 1\) in degree \(n\)). This algebra can be embedded into a noncommutative polynomial algebra in infinitely many variables. We determine its structure, and show that it admits natural quotients and subalgebras whose graded components have dimensions respectively given by the Schröder numbers (plane trees), the Catalan numbers, and powers of 3. These smaller algebras are always bialgebras and belong to some family of di- or tri-algebras occurring in the works of Loday and Ronco.

Moreover, the fundamental notion of parkization allows one to endow the set of parking functions of fixed length with an associative multiplication (different from the one coming from the Shi arrangement), leading to a generalization of the internal product of symmetric functions. Several of the intermediate algebras are stable under this operation. Among them, one finds the Solomon descent algebra but also a new algebra based on a Catalan set, admitting the Solomon algebra as a left ideal.
## Contents

1. Introduction 3
2. Preliminaries 5
2.1. Notations 5
2.2. Parking functions 6
2.3. Dendriform dialgebras 8
2.4. Dendriform trialgebras 9
2.5. Bidendriform bialgebras 11
3. The Hopf algebra of parking functions 12
3.1. The algebra $\mathcal{PQSym}$ 12
3.2. The coalgebra $\mathcal{PQSym}$ 12
3.3. The Hopf algebra $\mathcal{PQSym}$ 13
3.4. The graded dual $\mathcal{PQSym}^*$ 14
3.5. $\mathcal{PQSym}$ as a bidendriform bialgebra 15
3.6. Free generators and multiplicative bases 18
3.7. $\mathcal{PQSym}^*$ as a combinatorial Hopf algebra 19
3.8. Realizations of $\mathcal{PQSym}^*$ and $\mathcal{PQSym}^*$ 21
3.9. $\mathcal{PQSym}^*$ as a dendriform trialgebra 23
3.10. The internal product 25
4. The Schröder Quasi-Symmetric Hopf algebra $\mathcal{SQSym}$ 27
4.1. Hypoplactic classes of parking functions 27
4.2. The Schröder Quasi-Symmetric Hopf algebra $\mathcal{SQSym}$ 28
4.3. $\mathcal{SQSym}$ is not self-dual 30
4.4. Algebraic structure of $\mathcal{SQSym}^*$ and $\mathcal{SQSym}^*$ 30
4.5. $\mathcal{SQSym}^*$ as a combinatorial Hopf algebra 31
4.6. Primitive Lie algebras of $\mathcal{SQSym}$ and $\mathcal{SQSym}^*$ 32
4.7. Schröder ribbons 32
4.8. Dendriform structures on $\mathcal{SQSym}$ 33
5. The Catalan Quasi-Symmetric Hopf algebra $\mathcal{CQSym}$ 34
5.1. The Hopf algebra $\mathcal{CQSym}$ 34
5.2. The dual Hopf algebra $\mathcal{CQSym}^*$ 36
5.3. Catalan ribbons 37
5.4. Internal product 38
5.5. Compositions, Lagrange inversion, and $H_n(0)$ 40
6. A Hopf algebra of segmented compositions 44
6.1. Segmented compositions 44
6.2. A Hopf subalgebra of $\mathcal{SQSym}$ 44
6.3. Algebraic structure of $\mathcal{SCQSym}$ and $\mathcal{SCQSym}^*$ 47
6.4. Primitive Lie algebras of $\mathcal{SCQSym}$ 47
6.5. A quasi-ribbon basis of $\mathcal{SCQSym}$ 47
6.6. A ribbon basis of $\mathcal{SCQSym}$ 49
7. Appendix 50
7.1. Relations with free probability theory 50
7.2. An exercise on permutation representations 50
7.3. Solution of the exercise 51
References 52
1. Introduction

Many examples of graded Hopf algebras based on combinatorial structures occur in apparently remote contexts. One of them is the theory of operads. It is quite common there that in a given operad, the free algebra on one generator admit a Hopf structure [15]. This structure often has an elegant combinatorial description, the best known example being the free dendriform algebra on one generator, also known as the Loday-Ronco algebra of planar binary trees [21, 12].

On another hand, such Hopf algebras also occur in the theory of noncommutative symmetric functions [7], for which one central problem is to understand complicated commutative formulas by means of simpler non commutative analogues. It has been found over the years that such an understanding required the introduction of larger and larger Hopf algebras, based on more and more complex combinatorial objects. For such algebras to be useful in this context, it is necessary that their elements can be realized as polynomials in some auxiliary infinite set of variables (commutative or not), so as to recover ordinary symmetric functions after a chain of standard manipulations (such as imposing commutation relations among the variables or taking sums to reestablish complete symmetry). The best illustration of this approach is provided by the algebra of Free Quasi-Symmetric Functions $\text{FQSym}$ [4]. This is an algebra of noncommutative polynomials $F_\sigma(A)$ labeled by permutations. It contains a subalgebra $\text{FSym}$ spanned by free Schur functions $S_t(A)$, labeled by standard Young tableaux. This observation essentially amounts to a one-line proof of the Littlewood-Richardson rule. Abstractly, however, $\text{FQSym}$ and $\text{FSym}$ are isomorphic to the Hopf algebras previously introduced in [24] and [32], and it is the polynomial realization which allows such a direct application to symmetric functions.

Interestingly, it is the very same realization which allowed a new understanding of the algebra $\text{PBT}$ of planar binary trees [12]. It could be put on the same footing as $\text{FSym}$, using the sylvestre correspondence instead of Robinson-Schensted, so that both algebras appear now as special cases of a general construction.

The aim of the present article is to introduce a new extension of $\text{FQSym}$, that is, a larger Hopf algebra built from the same principles, but leaving enough room to accomodate several new combinatorial Hopf algebras.

It turns out that most of the Hopf algebras arising in the process also have an operadic interpretation, in general as some kind of trialgebra or dialgebra [19, 22], thus providing polynomial realizations of those as well.

Our master algebra, denoted by $\text{PQSym}$, for Parking Quasi-Symmetric Functions, is built on the set of parking functions, a special family of words which can in many respects be regarded as natural generalizations of permutations. Geometrically, permutations correspond to chambers of the Coxeter arrangement of type $A_{n-1}$, while parking functions label those of the Shi arrangement [2], but this is not the only possible explanation (see, e.g., [20]), and our choice was rather dictated by elementary combinatorial considerations (see Appendix).

Our first task will be to elucidate the structure of $\text{PQSym}$. It will be shown that it is free, cofree, and actually self-dual, with a free primitive Lie algebra. This will be done by means of Foissy’s theory of bidendriform bialgebras [6]. Next, we shall
determine explicit generators and multiplicative bases of $\text{PQSym}$ and $\text{PQSym}^*$. Then come the realizations, given by simple and explicit noncommutative polynomials for the natural basis of $\text{PQSym}^*$, and in terms of integer matrices, reminescent of the construction of $\text{MQSym}$ [4], for the natural basis of $\text{PQSym}$ itself. After that, we shall start the investigation of smaller Hopf algebras arising from $\text{PQSym}$ by natural processes.

Recall that the dimension of $\text{PQSym}$ in degree $n$ is $(n+1)^n-1$. We shall show that it admits natural quotients and subalgebras whose graded components have dimensions respectively given by the Schröder numbers (plane trees), the Catalan numbers, powers of 3 and powers of 2. Most of those turn out to be related to the theory of operads, and to belong to some family of di- or tri-algebras occuring in the works of Loday and Ronco. We shall in particular recover the free dendriform trialgebra on one generator (Schröder numbers) and the free cubical trialgebra. Similarly, we obtain a cocommutative Hopf algebra based on a Catalan set, which is isomorphic to the free dendriform dialgebra on one generator as an algebra, but not as a coalgebra.

Moreover, the fundamental notion of parkization of a word, which is needed from the beginning, allows one to endow the set of parking functions of fixed length with an associative multiplication (different from the one coming from their interpretation as chambers of the Shi arrangement), leading to a generalization of the internal product of symmetric functions. Several of the intermediate algebras are stable under this operation. Among them, one finds the Solomon descent algebra and the Solomon-Tits algebra, but also a new algebra based on a Catalan set, admitting the Solomon algebra as a left ideal.

This paper is structured as follows: the preliminaries present some background about parking functions and dendriform structures needed in the sequel and give a realization the free dendriform trialgebra on one generator in terms of noncommutative polynomials. In Section 3 we present our principal algebra $\text{PQSym}$, and investigate its most important features, mostly reying upon its bidentriform bialgebra structure. We then move to a subalgebra $\text{SQSym}$ of $\text{PQSym}$, whose Hilbert series is given by the little Schröder numbers and prove in particular that it is isomorphic to the free dendriform trialgebra on one generator (Section 4). In Section 5 we study another subalgebra $\text{CQSym}$ of $\text{PQSym}$ whose Hilbert series is given by the Catalan numbers, show that it is cocommutative, that it is stable under the internal product of $\text{PQSym}$ and that its dual is a natural generalization of $\text{QSym}$. In Section 6 we present $\text{SCQSym}$, a quotient of $\text{SQSym}$ whose Hilbert series is given by powers of 3 and show in particular that it is isomorphic to the free cubical trialgebra on one generator. Finally, the Appendix presents how the construction of $\text{PQSym}$ arose from considerations about free probability and an exercise proposed by Kerov in 1995. Most of these results were announced in [27].

Acknowledgements. - This project has been partially supported by CNRS and by EC’s IHRP Programme, grant HPRN-CT-2001-00272, “Algebraic Combinatorics in Europe”. The authors would also like to thank the contributors of the MuPAD project, and especially those of the combinat package, for providing the development environment for this research (see [14] for an introduction to MuPAD-Combinat).
2. Preliminaries

2.1. Notations. Our notations for ordinary symmetric functions will be those of [23]. Other undefined notations can be found in [7, 4], although the essential ones will be recalled when needed.

2.1.1. To start with, we shall need the following two operations on words.
For a word $w$ on the alphabet $\{1, 2, \ldots\}$, denote by $w[k]$ the word obtained by replacing each letter $i$ by the integer $i + k$. If $u$ and $v$ are two words, with $u$ of length $k$, one defines the shifted concatenation

$$u \bullet v = u \cdot (v[k])$$

and the shifted shuffle

$$u \uplus v = u \uplus (v[k]) \cdot$$

where $\uplus$ is the usual shuffle product on words defined by

$$ (au) \uplus (bv) = a \cdot (u \uplus (bv)) + b \cdot ((au) \uplus v),$$

with $u \uplus \epsilon = \epsilon \uplus u = u$ if $\epsilon$ is the empty word.

It is immediate to see that the set of permutations is closed under both operations. The subalgebra spanned by those elements is isomorphic to the convolution algebra of symmetric groups [24] or to Free Quasi-Symmetric Functions [4], whose definition is recalled below.

2.1.2. Let $A$ be a totally ordered alphabet. We denote by $K$ a field of characteristic 0, and by $K\langle A \rangle$ the free associative algebra over $A$ when $A$ is finite, and the projective limit $\text{proj lim}_B K\langle B \rangle$, where $B$ runs over finite subsets of $A$, when $A$ is infinite, which will be generally assumed in the sequel.

Given a totally ordered alphabet $A$, the evaluation vector $\text{Ev}(w)$ of a word $w$ is the sequence of the numbers of occurrences of all the elements of $A$.

Recall that the standardized $\text{Std}(w)$ of a word $w \in A^\ast$ is the permutation obtained by iteratively scanning $w$ from left to right, and labelling 1, 2, \ldots the occurrences of its smallest letter, then numbering the occurrences of the next one, and so on. Alternatively, $\sigma = \text{Std}(w)^{-1}$ can be characterized as the unique permutation of minimal length such that $w\sigma$ is a nondecreasing word. For example, $\text{Std}(bbacid) = 341624$.

This characterizes completely the sequences of transpositions effected by the bubble sort algorithm on $w$. An elementary observation, which is at the basis of the constructions of [4], is that the noncommutative polynomials

$$G_\sigma(A) = \sum_{w \in A^\ast, \text{Std}(w) = \sigma} w$$

span a subalgebra of $K\langle A \rangle$. Moreover, if $A$ is infinite, this subalgebra admits a natural Hopf algebra structure. This is $\text{FQSym}$, the algebra of Free Quasi-Symmetric Functions.

Let $F_\sigma = G_{\sigma^{-1}}$. The coproduct is defined by

$$\Delta F_\sigma = \sum_{u \cdot v = \sigma} F_{\text{Std}(u)} \otimes F_{\text{Std}(v)},$$
where $u \cdot v$ means concatenation. The scalar product is defined by

$$\langle F_\sigma, G_\tau \rangle = \delta_{\sigma, \tau},$$

where $\delta$ is the Kronecker symbol, and one has then for all $F, G, H \in \mathbf{FQSym}$

$$\langle FG, H \rangle = \langle F \otimes G, \Delta H \rangle.$$

The product formula in the $F$ basis is

$$F_\alpha F_\beta = \sum_{\gamma \in \alpha \uplus \beta} F_\gamma.$$

The sum of the inverses of the permutations occurring in $\alpha^{-1} \uplus \beta^{-1}$ is called convolution and denoted by $\alpha * \beta$ \[33, 24\].

2.1.3. A general process for constructing interesting subalgebras of $\mathbf{FQSym}$ is to take sums of the form

$$\mathcal{P}_\chi(A) = \sum_{\Psi(\sigma) = \chi} F_\sigma,$$

where $\Psi$ is the left symbol of some Robinson-Schensted type correspondence. If we take the original Robinson-Schensted map, we obtain $\mathbf{FSym}$, the algebra of free symmetric functions citeNCSF6. If we take the sylvester congruence \[12\], we obtain $\mathbf{PBT}$, the Loday-Ronco algebra of planar binary trees. Finally, if we take the hypoplactic correspondence \[17\], we obtain $\mathbf{Sym}$, the algebra of noncommutative symmetric functions. The dual Hopf algebras are obtained in each case by imposing the corresponding congruence (plactic, sylvester, hypoplactic) on $A^*$. 

2.2. Parking functions. In the following, we shall see that it is possible to replace permutations by parking functions is all these constructions. As one will see, it is obvious that the set of parking functions is stable under shifted concatenation and shifted shuffle, and many other classes of words share this property. The point is that for parking functions, the resulting algebra has a natural Hopf structure, and that it is again possible to find a polynomial realization. Moreover, an interesting internal product can be defined.

2.2.1. A parking function is a word $a = a_1 a_2 \cdots a_n$ of length $n$ on $[n] = \{1, 2, \ldots, n\}$ whose nondecreasing rearrangement $a^\uparrow = a'_1 a'_2 \cdots a'_n$ satisfies $a'_i \leq i$ for all $i$. Let $\text{PF}_n$ be the set of such words.

For example, $\text{PF}_1 = \{1\}$, $\text{PF}_2 = \{11, 12, 21\}$, and

$$\begin{align*}
\text{PF}_3 &= \{111, 112, 121, 211, 113, 131, 311, 122, 212, 221, \\
&\quad 123, 132, 213, 231, 312, 321\}\end{align*}$$

$$\text{(10)}$$
2.2.2. It is well-known that \(|\text{PF}_n| = (n + 1)^{n-1}\), and that the permutation representation of \(\mathfrak{S}_n\) naturally supported by \(\text{PF}_n\) has Frobenius characteristic (see [10])

\[(11) \quad (-1)^n \omega(h_n^*)\]

where \(f \mapsto f^*\) is the involution on symmetric functions defined on the generators \(h_n\) as follows (see [23], ex. 24 p. 35). If we set \(H(t) := \sum_{n \geq 0} h_n t^n\) and \(H^*(u) := \sum_{n \geq 0} h_n^* u^n\), then

\[(12) \quad u = tH(t) \iff t = uH^*(u).\]

Each nondecreasing parking function generates a sub-permutation representation of \(\text{PF}_n\). It is easy to see that the number of nondecreasing parking functions of length \(n\) is the Catalan number \(C_n = \frac{1}{n+1} \binom{2n}{n}\).

2.2.3. Prime parking functions. This important notion has been derived by Gessel in 1997 (see [37]). Given a parking function of length \(n\), one says that \(b \in \{0, 1, \ldots, n\}\) is a breakpoint of \(a\) if \(|\{i \mid a_i \leq b\}| = b\). For example, the parking function 112256679 has the five breakpoints \(\{0, 4, 5, 8, 9\}\). Then, \(a \in \text{PF}_n\) is said to be prime if its only breakpoints are the trivial ones: 0 and \(n\). Let \(\text{PPF}_n \subset \text{PF}_n\) be the set of prime parking functions on \([n]\). For example,

\[(13) \quad \text{PPF}_1 = \{1\}, \quad \text{PPF}_2 = \{11\}, \quad \text{PPF}_3 = \{111, 112, 121, 211\}.\]

It can easily be shown that \(|\text{PPF}_n| = (n-1)^{n-1}\) for \(n \geq 2\) (see [37] and Section 5.5). The number of nondecreasing prime parking functions of length \(n\) is the shifted Catalan number \(C_{n-1}\): they are obtained by concatenating a 1 to the left of all nondecreasing parking functions of length \(n - 1\).

As already mentioned, it is immediate to see that the set of all parking functions is closed under shifted concatenation and shifted shuffle. The prime parking functions are exactly those that do not occur in any nontrivial shifted shuffle of parking functions. This observation is at the basis of our definition of the Hopf algebra of parking functions (see Section 3).

2.2.4. The module of prime parking functions. Parking functions can be classified according to the factorization of their nondecreasing reorderings \(a^\uparrow\) with respect to the operation of shifted concatenation. That is, if

\[(14) \quad a^\uparrow = w_1 \bullet w_2 \bullet \cdots \bullet w_r\]

is the unique maximal factorization of \(a^\uparrow\), each \(w_i\) is a nondecreasing prime parking function. Let us define \(i_k = |w_k|\) and let \(I = (i_1, \ldots, i_r)\). We shall say that \(a\) is of type \(I\) and denote by \(\text{PPF}_I\) the set of parking functions of type \(I\). For example, the parking function 966142272 is of type \((1, 4, 3, 1)\) and the number of parking functions of length 4 of each type is

| \(a^\uparrow\) | \(1 \quad 4 \quad 3 \quad 1\) | \(966142272\) |
|---|---|---|
| \((4)\) | \((31)\) | \((13)\) | \((22)\) | \((211)\) | \((121)\) | \((112)\) | \((1111)\) |
| 27 | 16 | 16 | 6 | 12 | 12 | 12 | 24 |
The set $\text{PPF}_n$ of prime parking functions of length $n$ obviously is a sub-permutation representation of $\text{PF}_n$. It can be shown that its Frobenius characteristic is

\begin{equation}
 f_n = -\omega(e_n^*)
\end{equation}

(see the Appendix for a direct proof). One can also obtain it as follows.

The set $\text{PPF}_I$ of parking functions of type $I$ is a sub-permutation representation of $\text{PF}_n$, and its Frobenius characteristic is

\begin{equation}
 \text{ch}(\text{PPF}_I) = f_{i_1} \cdots f_{i_r}
\end{equation}

since it is induced from the permutation representation of the Young subgroup $\mathcal{S}_I$ on the Cartesian product $\text{PPF}_{i_1} \times \cdots \times \text{PPF}_{i_r}$. Now, $\text{PF}_n = \bigsqcup_{I \models n} \text{PPF}_I$, so that

\begin{equation}
 g_n = \sum_{i=1}^{r} f_{i_1} \cdots f_{i_r}
\end{equation}

which amounts to

\begin{equation}
 g := \sum_{n \geq 0} g_n = (1 - f)^{-1} \text{ where } f = \sum_{n \geq 1} f_n.
\end{equation}

Thus, if we know that $g_n$ is given by (11), we obtain that $f_n$ is given by (15), and conversely. A noncommutative version of these results will be established in Section 5.5.

### 2.3. Dendriform dialgebras

A *dendriform dialgebra*, as defined by Loday [19], is an associative algebra $D$ whose multiplication $\circ$ splits into two binary operations

\begin{equation}
 x \circ y = x \ll y + x \gg y,
\end{equation}

called left and right, satisfying the following three compatibility relations for all $a, b,$ and $c$ different from 1 in $D$:

\begin{equation}
 (a \ll b) \ll c = a \ll (b \circ c)
\end{equation}

\begin{equation}
 (a \gg b) \ll c = a \gg (b \ll c)
\end{equation}

\begin{equation}
 (a \circ b) \gg c = a \gg (b \gg c)
\end{equation}

These relations are satisfied by shuffle algebras with $\circ = \shuffle$ and for $x = ua$ and $y = vb$ ($a$ and $b \in A$),

\begin{equation}
 x \gg y = (ua \shuffle v)b, \quad x \ll y = (u \shuffle vb)a
\end{equation}

It turns out that the free associative algebra $\mathbb{K}\langle A \rangle$ is also a dendriform dialgebra. Actually, it is even a dendriform trialgebra, as explained below.
2.4. **Dendriform trialgebras.** A *dendriform trialgebra* [22] is an associative algebra whose multiplication \( \odot \) splits into three pieces

\[
x \odot y = x \prec y + x \cdot y + x \succ y,
\]

where \( \cdot \) is associative, and

\[
(x \prec y) \prec z = x \prec (y \odot z),
\]

\[
(x \succ y) \prec z = x \succ (y \prec z),
\]

\[
(x \odot y) \succ z = x \succ (y \succ z),
\]

\[
(x \succ y) \odot z = x \succ (y \odot z),
\]

\[
(x \prec y) \odot z = x \odot (y \succ z),
\]

\[
(x \odot y) \prec z = x \odot (y \prec z).
\]

Let \( A = \{a_1 < a_2 < \cdots < a_n < \cdots \} \) be an infinite linearly ordered alphabet. Recall that \( K \langle A \rangle \) is understood as the projective limit of the \( \mathbb{K} \langle A_n \rangle \) where \( A_n \) is the interval \([a_1, a_n]\) of \( A \). We denote by \( \max(w) \) the greatest letter occurring in the word \( w \in A^* \).

**Definition 2.1.** For two non empty words \( u, v \in A^* \), we set

\[
u \prec v = \begin{cases} uv & \text{if } \max(u) > \max(v) \\
0 & \text{otherwise}, \end{cases}
\]

\[
u \odot v = \begin{cases} uv & \text{if } \max(u) = \max(v) \\
0 & \text{otherwise}, \end{cases}
\]

\[
u \succ v = \begin{cases} uv & \text{if } \max(u) < \max(v) \\
0 & \text{otherwise}, \end{cases}
\]

**Lemma 2.2.** The three operations \( \prec, \odot, \succ \), endow the augmentation ideal \( \mathbb{K} \langle A \rangle^+ \) with the structure of a dendriform trialgebra.

**Proof –** A straightforward verification.

Setting \( \leq \prec \) and \( \geq \succ \odot \prec \), we obtain a dendriform dialgebra.

It is known [22] that the free dendriform trialgebra on one generator, denoted here by \( \mathfrak{TD} \), is a free associative algebra with Hilbert series

\[
\sum_{n \geq 0} s_n t^n = \frac{1 + t - \sqrt{1 - 6t + t^2}}{4t} = 1 + t + 3t^2 + 11t^3 + 45t^4 + 197t^5 + \cdots
\]

that is, the generating function of the *super-Catalan*, or *little Schröder* numbers, counting *plane trees*.

The previous considerations allow us to give a simple polynomial realization of \( \mathfrak{TD} \). Consider the polynomial

\[
M_1 = \sum_{i \geq 1} a_i,
\]

(the sum of all letters). We can then state:
Theorem 2.3. The sub-trialgebra of \( \mathbb{K} \langle A \rangle^+ \) generated by \( M_1 \) is free as a dendriform trialgebra.

We shall need the following construction on words. With any word \( w \) of length \( n \), associate a plane tree \( T(w) \) with \( n + 1 \) leaves, as follows: if \( m = \max(w) \) and if \( w \) has exactly \( k \) occurrences of \( m \), write

\[
\text{w} = v_0 \, m \, v_1 \, m \, v_2 \cdots v_{k-1} \, m \, v_k,
\]

where the \( v_i \) may be empty. Then, \( T(w) \) is the tree obtained by grafting the subtrees \( T(v_0), T(v_1), \ldots, T(v_k) \) (in this order) on a common root, with the initial condition \( T(\epsilon) = \emptyset \) for the empty word.

For example, the tree associated with 141324431312 is represented in Figure 1.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{tree.png}
\caption{The tree of 141324431312.}
\end{figure}

Now associate with each plane tree \( T \) a polynomial by

\[
M_T := \sum_{T(w) = T} w.
\]

These belong to the subtrialgebra generated by \( M_1 \) since, if \( T \) has as subtrees of its root \( T_1, \ldots, T_k \), one has

\[
M_T = M_{T_1} \circ M_1 \circ (M_{T_2} \circ M_1) \circ \cdots \circ (M_{T_{k-1}} \circ M_1) \circ M_{T_k}.
\]

For example, with the tree \( T \) presented in Figure 1, one gets the expression:

\[
M_1 \circ M_1 \circ ((M_1 \circ M_1 \circ M_1) \circ M_1) \circ M_1 \circ (M_1 \circ (M_1 \circ M_1) \circ (M_1 \circ M_1)).
\]

Proof – [of the theorem] Since it is already known that the dimension of the free dendriform trialgebra on one generator has dimensions given by the little Schröder numbers, we just need to show that all terms of the Hilbert series of this subalgebra are greater than or equal to the terms of Equation (34). The polynomials \( M_T \), being sums over disjoint sets of words, are obviously linearly independent, whence the result.

\[\blacksquare\]

Corollary 2.4. The free commutative dendriform trialgebra on one generator is \( QS\text{Sym}^+ \), the augmentation ideal of quasi-symmetric functions.
Indeed, it is the image of $\mathfrak{T}\mathfrak{D}$ by the ring homomorphism mapping the letters $a_i$ to commuting variables $x_i$.

Other applications of this realization of $\mathfrak{T}\mathfrak{D}$ will be given in Section 4.

2.5. **Bidendriform bialgebras.** These have been introduced by Foissy in [6]. A bidendriform bialgebra is a dendriform dialgebra equipped with a coproduct that splits into two parts, satisfying the codendriform relations, obtained by dualizing the dendriform relations, and certain compatibility properties with the two half-products.

A codendriform coalgebra is a coalgebra $C$ whose coproduct $\Delta$ splits as $\Delta(c) = \Delta(c) + c \otimes 1 + 1 \otimes c$ and $\Delta = \Delta_\ll + \Delta_\gg$, such that, for all $c$ in $C$:

\[
(\Delta_\ll \otimes \text{Id}) \circ \Delta_\ll(a) = (\text{Id} \otimes \Delta) \circ \Delta_\ll(a),
\]

\[
(\Delta_\gg \otimes \text{Id}) \circ \Delta_\ll(a) = (\text{Id} \otimes \Delta_\ll) \circ \Delta_\gg(a),
\]

\[
(\Delta \otimes \text{Id}) \circ \Delta_\ll(a) = (\text{Id} \otimes \Delta_\gg) \circ \Delta_\gg(a).
\]

The Loday-Ronco algebra of planar binary trees introduced in [21] arises as the free dendriform dialgebra on one generator. This is moreover a Hopf algebra, which turns out to be self-dual, so that it is also codendriform.

There is some compatibility between the dendriform and the codendriform structures, leading to what has been called by Foissy [6] a bidendriform bialgebra. A bidendriform bialgebra is both a dendriform dialgebra and a codendriform coalgebra satisfying the following four compatibility relations

\[
\Delta_\gg(a \gg b) = a' b' \otimes a'' b'' + a' \otimes a'' \gg b + b' \otimes a \gg b'' + a b',
\]

\[
\Delta_\ll(a \ll b) = a' b'_\gg \otimes a'' \ll b''_\ll + a' \otimes a'' \ll b + b'_\gg \otimes a \ll b''_\ll,
\]

\[
\Delta_\ll(a \gg b) = a' b'_\gg \otimes a'' \gg b''_\ll + ab'_\ll \otimes b''_\gg + b'_\gg \otimes a \gg b''_\ll,
\]

\[
\Delta_\gg(a \ll b) = a' b'_\gg \otimes a'' \ll b''_\ll + a b \otimes a'' + b'_\gg \otimes a \ll b''_\ll + b \otimes a,
\]

where the pairs $(x', x'')$ (resp. $(x'_\ll, x''_\ll)$ and $(x'_\gg, x''_\gg)$) correspond to all possible elements occurring in $\Delta x$ (resp. $\Delta_\ll x$ and $\Delta_\gg x$), summation signs being understood (Sweedler’s notation).

Foissy has shown [6] that a connected bidendriform bialgebra $B$ is always free as an associative algebra and self-dual as a Hopf algebra. Moreover, its primitive Lie algebra is free, and as a dendriform dialgebra, $B$ is also free over the space of totally primitive elements (those annihilated by $\Delta_\ll$ and $\Delta_\gg$).

It is also proved in [6] that $\mathbf{FQS}\mathbf{y}\mathbf{m}$ is bidendriform, so that it satisfies all these properties.
3. The Hopf algebra of parking functions

3.1. The algebra PQSym. Since permutations are special parking functions and
parking functions are stable under the shifted shuffle, it is natural to embed the
algebra of Free Quasi-Symmetric functions $FQSym$ of [4] into an algebra spanned
by elements $F_a$ ($a \in PF$), with the same multiplication rule:

$$F_a F_{a'} := \sum_{a \in a' \cup a''} F_a .$$

We shall call this algebra $PQSym$ (Parking Quasi-Symmetric functions).

For example,

$$F_1 F_1 = F_{12} + F_{21}, \quad F_1 F_{11} = F_{122} + F_{212} + F_{221}. $$

$$F_1 F_{12} = F_{123} + F_{213} + F_{231}, \quad F_1 F_{21} = F_{132} + F_{312} + F_{321}. $$

$$F_{12} F_{11} = F_{1233} + F_{1323} + F_{1332} + F_{3123} + F_{3132} + F_{3312} .$$

Recall that the prime parking functions are those that do not occur in the decom-
position of any nontrivial product $F_a F_{a'}$.

3.2. The coalgebra PQSym. There is a coproduct on $PQSym$ which appears as
a natural extension of the coproduct of $FQSym$. Recall (see [24, 4]) that if
$\sigma$ is a permutation,

$$\Delta F_{\sigma} = \sum_{w^\prime \vdash \sigma} F_{\text{Std}(u)} \otimes F_{\text{Std}(v)},$$

where Std denotes the usual notion of standardization of a word.

Given a word $w$ on \{1, 2, \ldots\}, it is possible to define a notion of parking
Park($w$), a parking function which coincides with Std($w$) when $w$ is a word with-
out repeated letters.

Algorithm 3.1.

Input: A word $w$.
Output: A parking function.
Let $n$ be the length of $w$. Define

$$d(w) := \min\{i \mid |\{w_j \leq i\}| < i\} .$$

- If $d(w) = n + 1$, return $w$.
- Otherwise, let $w'$ be the word obtained by decrementing all the elements of $w$
greater than $d(w)$. Then return the parkized word of $w'$. 
The algorithm is correct since \( d(w) = n + 1 \) iff \( w \) is a parking function and since \( w' \) is smaller than \( w \) in the lexicographic order, it terminates.

For example, the following tableau displays an execution of the parkization algorithm: on each line, there is a word \( w \) and the value of \( d(w) \) and the next line contains the element \( w' \) as defined in the algorithm.

|   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|
| 5 | 7 | 3 | 3 | 13 | 1 | 10 | 10 | 4 | 2 |
| 4 | 6 | 2 | 2 | 12 | 1 | 9  | 9  | 3 | 7 |
| 4 | 6 | 2 | 2 | 11 | 1 | 8  | 8  | 3 | 7 |
| 4 | 6 | 2 | 2 | 10 | 1 | 7  | 7  | 3 | 9 |
| 4 | 6 | 2 | 2 | 9  | 1 | 7  | 7  | 3 | 10|

We can now define a coproduct on \( \text{PQSym} \) by

\[
\Delta F_a := \sum_{u \cdot v = a} F_{\text{Park}(u)} \otimes F_{\text{Park}(v)}.
\]

For example,

\[
\Delta F_{121} = 1 \otimes F_{121} + F_1 \otimes F_{21} + F_{12} \otimes F_1 + F_{121} \otimes 1.
\]

\[
\Delta F_{131} = 1 \otimes F_{131} + F_1 \otimes F_{21} + F_{12} \otimes F_1 + F_{131} \otimes 1.
\]

\[
\Delta F_{3132} = 1 \otimes F_{3132} + F_1 \otimes F_{132} + F_{21} \otimes F_{21} + F_{212} \otimes F_1 + F_{3132} \otimes 1.
\]

\[
\Delta F_{1643165} = 1 \otimes F_{1643165} + F_1 \otimes F_{532154} + F_{12} \otimes F_{32154} + F_{132} \otimes F_{2143}
+ F_{1432} \otimes F_{132} + F_{15431} \otimes F_{21} + F_{154315} \otimes F_1 + F_{1643165} \otimes 1.
\]

**Proposition 3.2.** The operation defined by Equation (54) is coassociative and is a morphism for the product. So \( (\text{PQSym}, \cdot, \Delta) \) is a bialgebra.

**Proof.** The operation is obviously coassociative since the deconcatenation is coassociative. Consider two words \( w_1 \) and \( w_2 \) and a prefix \( u_1 \) (resp. \( u_2 \)) of \( w_1 \) (of \( w_2 \)). Then the set of the parkized words of all prefixes of \( w_1 \cup w_2 \) containing only letters of \( u_1 \) and \( u_2 \) is equal to \( u_1 \cup u_2 \). So \( \Delta \) is a morphism for the product, and hence \( \text{PQSym} \) is a bialgebra.

### 3.3. The Hopf algebra \( \text{PQSym} \)

Since \( \text{PQSym} \) is endowed with a bialgebra structure naturally graded by the length of parking functions, one defines the antipode as the inverse of the identity for the convolution product and then endow \( \text{PQSym} \) with a Hopf algebra structure.

The standard formula for the antipode, written on the basis \( (F_a) \) reads as

\[
\nu(F_a) = \sum_{\substack{r \geq 0 \mid u_i \neq 0 \text{ or } u_i \geq 1}} (-1)^r F_{\text{Park}(u_1)} F_{\text{Park}(u_2)} \cdots F_{\text{Park}(u_r)}
\]
For example,
\[ \nu(F_{122}) = -F_{122} + F_{1}F_{11} + F_{12}F_{1} - F_{1}^3 = F_{212} + F_{221} - F_{213} - F_{231} - F_{321}. \]

3.4. The graded dual PQSym*. Let \( G_a = F_a^* \in \mathrm{PQSym}^* \) be the dual basis of \( (F_a) \).

**Proposition 3.3.** The product on \( \mathrm{PQSym}^* \) is given by
\[ G_a G_{a'} = \sum_{a' \ast F \ast a''} G_a, \]
where the convolution \( a' \ast F \ast a'' \) of two parking functions is defined as
\[ a' \ast F \ast a'' = \sum_{u,v; a = u \cdot v \in PF, \mathrm{Park}(u) = a', \mathrm{Park}(v) = a''} a. \]

**Proof.** If \( \langle , \rangle \) denotes the duality bracket, the product on \( \mathrm{PQSym}^* \) is given by
\[ G_a G_{a''} = \sum_{a} \langle G_a \otimes G_{a''}, \Delta F_a \rangle G_a = \sum_{a' \ast F \ast a''} G_a. \]

For example,
\[ G_1 G_1 = G_{11} + G_{12} + G_{21}, \quad G_1 G_{11} = G_{111} + G_{122} + G_{211} + G_{311}. \]

\[ G_1 G_{12} = G_{112} + G_{113} + G_{123} + G_{212} + G_{213} + G_{312}. \]

\[ G_1 G_{21} = G_{121} + G_{131} + G_{132} + G_{221} + G_{231} + G_{321}. \]

\[ G_{12} G_{11} = G_{1211} + G_{1222} + G_{1233} + G_{1311} + G_{1322} + G_{1411} + G_{1422} + G_{2311} + G_{2411} + G_{3411}. \]

\[ G_{211} G_{131} = G_{211131} + G_{211141} + G_{211151} + G_{211161} + G_{211242} + G_{211252} + G_{211262} + G_{211353} + G_{211363} + G_{211464} + G_{322131} + G_{322141} + G_{322151} + G_{322161} + G_{433141} + G_{433151} + G_{433161} + G_{433131} + G_{544131}. \]

When restricted to permutations, the product of \( G \) coincides with the convolution of \[33, 24\]. Notice also that
\[ G_1^n = \sum_{a \in PF_n} G_a. \]

**Proposition 3.4.** The coproduct \( \Delta G_a \) is given by
\[ \Delta G_a := \sum_{u,v; a \in u \otimes v} G_u \otimes G_v. \]
Proof. If $\langle , \rangle$ denotes the duality bracket, the coproduct on $\text{PQSym}^*$ is given by
\begin{equation}
\Delta G_a = \sum_{a',a''} \langle G_{a'}, F_{a'} F_{a''} \rangle G_{a'} \otimes G_{a''} = \sum_{a \in a' \shuffle a''} G_{a'} \otimes G_{a''}.
\end{equation}

For example,
\begin{equation}
\Delta G_{121} = 1 \otimes G_{121} + G_{121} \otimes 1.
\end{equation}
\begin{equation}
\Delta G_{131} = 1 \otimes G_{131} + G_{11} \otimes G_1 + G_{131} \otimes 1.
\end{equation}
\begin{equation}
\Delta G_{3132} = 1 \otimes G_{3132} + G_1 \otimes G_{221} + G_{12} \otimes G_{11} + G_{3132} \otimes 1.
\end{equation}
\begin{equation}
\Delta G_{164821657} = 1 \otimes G_{164821657} + G_{121} \otimes G_{315324} + G_{1421} \otimes G_{24213} + G_{14215} \otimes G_{1312} + G_{164821657} \otimes 1.
\end{equation}

There is also a direct way to describe the coproduct of $G_a$ in terms of breakpoints:
\begin{proposition}
Let $a$ be a parking function of length $n$. For $b$ in $\{0, \ldots, n\}$, define $a'(b)$ and $a''(b)$ as the restrictions of $a$ to the respective intervals $[1, b]$ and $[b + 1, n]$. Then
\begin{equation}
\Delta G_a := \sum_{b} G_{a'(b)} \otimes G_{a''(b)},
\end{equation}
where the sum runs over all breakpoints of $a$.
\end{proposition}
\begin{proof}
The term $G_u \otimes G_v$ appears in $\Delta G_a$ iff $a$ belongs to the shifted shuffle of $u$ and $v$, so that $a$ has a breakpoint at $b = |u|$. Then $a'(b) = u$ and $a''(b) = v$.
\end{proof}

For example, the breakpoints of 164821657 are $\{0, 3, 4, 5, 9\}$ so that one recovers the result of Equation (75).

Let us finally mention that the realization provided in Section 3.8.1 allows to shed an interesting light on the coproduct and the fact that $\text{PQSym}^*$ is a Hopf algebra.

### 3.5. $\text{PQSym}$ as a bidendriform bialgebra

In [6], Foissy has proved that the Hopf algebra of Free quasi-symmetric functions $\text{FQSym}$ is bidendriform. A very slight modification of his operations allows us to state:

**Theorem 3.6.** $\text{PQSym}^*$ is a bidendriform bialgebra with the following definitions:
\begin{equation}
G_{a'} \ll G_{a''} = \sum_{a = u, v \in a', a''; |u| = |a'|; \max(v) < \max(u)} G_a,
\end{equation}
\begin{equation}
G_{a'} \gg G_{a''} = \sum_{a = u, v \in a', a''; |u| = |a'|; \max(v) \geq \max(u)} G_a.
\end{equation}
\[(79) \quad \Delta \ll G_a = \sum_{a \in u \cup v; \text{last}(a) \leq |u|} G_u \otimes G_v,\]

\[(80) \quad \Delta \gg G_a = \sum_{a \in u \cup v; \text{last}(a) > |u|} G_u \otimes G_v.\]

where \(|u| \geq 1\) and \(|v| \geq 1\), and \(\text{last}(a)\) means the last letter of \(a\).

**Proof.** First, the three defining relations of a dendriform dialgebra are satisfied. Let us check the first one, for instance. The left part of (20) amounts to consider the elements \(w\) in \(a^* \otimes b\) where the last maximum of \(w\) belongs to \(a\). It is the same for the right part of (20). The other two relations are proved in the same way, by checking that they build the words in \(a^* \otimes b\) where the last maximum is in \(b\) (Equation 21) or in \(c\) (Equation 22).

The three defining relations of a codendriform coalgebra are also satisfied since they amount to split the set of parking functions indexing the elements of \((\Delta \otimes \text{Id}) \circ \Delta(G_a)\) according to the element of the tensor product containing the last letter of \(a\).

Since the sum of the four compatibility relations is equivalent to the coassociativity of \(\Delta\), it is sufficient to check any three of them. We will only prove the first one (more complicated than the second and third one) in detail, the other ones being proved in the same way.

We will identify till the end of this proof any function \(G_a\) with its index \(a\). Let \(a\) and \(b\) be two parking functions of length \(p\) and \(q\). For any word \(w\) of length \(p + q\), let \(m_1 = \min(w_1 \ldots w_p)\), \(m_2 = \min(w_{p+1} \ldots w_{p+q})\), \(M_1 = \max(w_1 \ldots w_p)\), \(M_2 = \max(w_{p+1} \ldots w_{p+q})\).

Let \(i\) be any integer and split into two groups the parking functions indexing the terms in \(G_a \gg G_b\) having a breakpoint at \(i\) according to the criterions:

- \((M_1 \leq i)\), or \((M_1 > i \text{ and } m_1 \leq i)\), or \((m_1 > i)\),
- \((m_2 \leq i)\), or \((m_2 > i)\).

Apply \(\Delta \gg\) to the first group and consider \(S_1\) as the sum of the elements \(G_u \otimes G_v\) such that \(u\) is of length \(i\). Since \(M_1 \leq i\) and \(m_2 \leq i\), the first \(p\) letters of all words are in \(u\), whereas the others are both in \(u\) and \(v\) (by hypothesis, the last one is in \(v\)). Note that the positions of the letters belonging to the right-hand side of the tensor product are independent of the element of the first group and are the positions of the \(p + q - i\) greatest letters of \(b\). Moreover, there exists a breakpoint of \(b\) separating those letters from the other ones. Since the last letter of any word of the first group goes to the right-hand side of the tensor product and comes from the last letter of \(b\), we then deduce that the right-hand side of \(S_1\) is built with all \(b''_\gg\) of length \(p + q - i\), using Sweedler’s notations. Finally, in the left-hand side, we find the elements of the form \(a \cup b''_\gg\), and all those ones, since they correspond to the restriction of all words of \(a \gg b\) to letters smaller than \(i\). Finally, summing up over all possible \(i\), we get that the sum of all the elements of all the first groups is \(G_a G_{b''_\gg} \otimes G_{b''_\gg}\), that is, the fourth term of the right hand-side of Equation (43).
In the same way, one proves that the second group, corresponding to $M_1 \leq i$ and $m_2 > i$ gives the term $a \otimes b$ of Equation (13). The third group, corresponding to $M_1 > i$, $m_1 \leq i$, and $m_2 \leq i$ gives the term $a'b'_{\gg} \otimes a''_{\gg} \gg b''_{\gg}$ of Equation (13). The fourth group, corresponding to $M_1 > i$, $m_1 \leq i$, and $m_2 > i$ gives the term $a' \otimes a'' \gg b_{\gg}$ of Equation (13). The fifth group, corresponding to $m_1 > i$ and $m_2 \leq i$ gives the term $b'_{\gg} \otimes a \gg b''_{\gg}$ of Equation (13). The sixth group, corresponding to $m_1 > i$ and $m_2 > i$, gives no term since we would have $|u| = 0$, which is impossible.

For example,

\[
G_{12} \ll G_{212} = \sum_{i} G_{13212} + G_{14212} + G_{14313} + G_{14323} + G_{15212} + G_{15313} + G_{15321} + G_{24312} + G_{23122} + G_{23212} + G_{25212} + G_{25312} + G_{35212} + G_{45212}.
\]

(81)

\[
G_{12} \gg G_{212} = \sum_{i} G_{12212} + G_{12313} + G_{12323} + G_{12414} + G_{12424} + G_{12434} + G_{13313} + G_{13323} + G_{13414} + G_{13424} + G_{23313} + G_{23414}.
\]

(82)

\[
\Delta_{\ll} G_{125254} = G_{125254} \otimes G_1 + G_{1224} \otimes G_{131}.
\]

(83)

\[
\Delta_{\gg} G_{125254} = G_{122} \otimes G_{2421} + G_1 \otimes G_{141643}.
\]

(84)

The duality of bidendriform bialgebras implies that the bidendriform relations for PQSym are

\[
F_{a'} \ll F_{a''} = \sum_{a \in a' \otimes a''; \text{last}(a) \leq |a'|} F_a,
\]

(85)

\[
F_{a'} \gg F_{a''} = \sum_{a \in a' \otimes a''; \text{last}(a) > |a'|} F_a,
\]

(86)

\[
\Delta_{\ll} F_a = \sum_{u \cdot v = a; \text{max}(v) < \text{max}(u)} F_{\text{Park}(u)} \otimes F_{\text{Park}(v)},
\]

(87)

\[
\Delta_{\gg} F_a = \sum_{u \cdot v = a; \text{max}(v) \geq \text{max}(u)} F_{\text{Park}(u)} \otimes F_{\text{Park}(v)},
\]

(88)

where the sums inside the coproducts occur over non trivial deconcatenations, that is $|u| \geq 1$ and $|v| \geq 1$.

We then have the following consequences of the results of Foissy [6].

**Corollary 3.7.** PQSym is a self-dual Hopf algebra.

**Corollary 3.8.** The Lie algebra of primitive elements of PQSym is a free Lie algebra.
Let
\[ PF(t) = 1 + \sum_{n \geq 1} (n + 1)^{n-1} t^n. \]

**Corollary 3.9.** **PQSym** is free as a dendriform dialgebra on its totally primitive elements whose degree generating series is
\[ TP(t) := \frac{(PF(t) - 1)}{PF(t)^2} \]
\[ = t + t^2 + 7 t^3 + 66 t^4 + 11278 t^6 + 189391 t^7 + 364711 t^8 + 79447316 t^9 + O(t^{10}). \]

For example, \( F_1 \) and \( G_1 \) are totally primitive and so are \( F_{12} - F_{11} \) and \( G_{11} \). Here are bases of the seven dimensional space of totally primitive elements of **PQSym** and **PQSym**\(^*\) in degree 3:
\[ F_{123} - F_{122} - F_{112} + F_{111}, \quad F_{311} - F_{211}, \quad F_{113} - F_{112}, \]
\[ F_{131} - F_{121}, \quad F_{132} - F_{131}, \quad F_{231} - F_{121}, \quad F_{213} - F_{212}. \]
\[ G_{122} - G_{212}, \quad G_{131} - G_{311}, \quad G_{312} - G_{132}, \quad G_{111}, \quad G_{112}, \quad G_{121}, \quad G_{211}. \]

Thanks to the bidendriform structure of **PQSym**, we know that **PQSym** and **PQSym**\(^*\) are isomorphic as bidendriform bialgebras and hence isomorphic as Hopf algebras. We do not know an explicit isomorphism, but restricting to **FQSym**, that is, permutations, the linear map \( \varphi \) defined by
\[ \varphi(F_\sigma) := \sum_{a, \Std(a) = \sigma^{-1}} G_a, \]
is a bidendriform and hence a Hopf embedding, compatible with the usual realization of **FQSym** \([4]\).

### 3.6. Free generators and multiplicative bases

Let us say that a word \( w \) over \( \mathbb{N}^* \) is **connected** if it cannot be written as a shifted concatenation \( w = u \bullet v \), and **anti-connected** if its mirror image \( \overline{w} \) is connected.

**Proposition 3.10.** **PQSym** is free over the set
\[ \{F_c \mid c \in \text{PF}, \; c \text{ connected} \} \]
and **PQSym**\(^*\) is free over the set
\[ \{G_d \mid d \in \text{PF}, \; d \text{ anti-connected} \} \]

**Proof.** Clearly, any word \( w \) has a unique **maximal factorization** into connected words, \( w = w_1 \bullet w_2 \bullet \ldots \bullet w_k \) where all \( w_i \) are connected. Moreover, the lexicographically minimal word in \( w_1 \uplus \ldots \uplus w_k \) is \( w \) so that the matrix expressing all products of \( F \) indexed by connected words is triangular over the basis \( F_a \), with ones on the diagonal. The proof is exactly the same for the \( G \). \( \blacksquare \)
The ordinary generating function for the numbers $c_n$ of connected parking functions is
\[
\sum_{n \geq 1} c_n t^n = 1 - PF(t)^{-1}
\]
(96)
\[
= t + 2 t^2 + 11 t^3 + 92 t^4 + 1014 t^5 + 13795 t^6 + 223061 t^7
+ 4180785 t^8 + 89191196 t^9 + 2135610879 t^{10} + 56749806356 t^{11}
+ 1658094051392 t^{12} + O(t^{13})
\]

Let $a = a_1 \cdot a_2 \cdot \ldots \cdot a_r$ be the maximal factorization of $a$ into connected parking functions. We set
(97) $F_a = F_{a_1} \cdot F_{a_2} \cdots F_{a_r}$ ,
and
(98) $G^a = G_{a_r} \cdots G_{a_1}$ .

**Proposition 3.11.** The basis $(F^a)$ of $\text{PQSym}$ and the basis $(G^a)$ of $\text{PQSym}^*$ are both multiplicative.

**Proof.** This follows from the proof of Proposition 3.10. 

Now, if $S_a$ (resp. $T_a$) is the dual basis of $F^a$ (resp. $G^a$) then
(99) \{S_c \mid c \text{ connected}\} and \{T_c \mid c \text{ connected}\}
are bases of the primitive Lie algebras $\text{LPQ}^*$ (resp. $\text{LPQ}$) of $\text{PQSym}^*$ (resp. $\text{PQSym}$).

Thanks again to [6], we known that both Lie algebras are free, on generators whose degree generating series is
\[
1 - \prod_{n \geq 1} (1 - t^n)^{c_n} = 1 - (1 - t)(1 - t^2)(1 - t^3)^1 \cdots
\]
(100)
\[
= t + 2 t^2 + 9 t^3 + 80 t^4 + 12564 t^5 + 206476 t^6 + 3918025 t^8 + 84365187 t^9 + 2034559143 t^{10} + O(t^{11})
\]

3.7. $\text{PQSym}^*$ as a combinatorial Hopf algebra. Since $\text{FQSym}$ can be embedded in $\text{PQSym}$, we have a canonical Hopf embedding of $\text{Sym}$ in $\text{PQSym}$ given by

(101) $S_n \mapsto F_{12 \ldots n}$ .

With parking functions, we have other possibilities: for example,
(102) $j(S_n) := F_{11 \ldots 1}$

is a Hopf embedding, whose dual $j^*$ maps $\text{PQSym}^*$ to $\text{QSym}$ and therefore endows $\text{PQSym}^*$ with a different structure of combinatorial Hopf algebra in the sense of [1].

On the dual side, we have a Hopf embedding
(103) $S_n \mapsto \sum_{\text{Std}(a)=12 \ldots n} G_a$
of \textbf{Sym} into \textbf{PQSym}*, given by the restriction of the self-duality isomorphism of Formula (93) to the \textbf{Sym} subalgebra \( S_n = F_{12^n} \) of \textbf{PQSym}. Its transpose gives a Hopf epimorphism \( \eta : \textbf{PQSym} \to \textbf{QSym} \), which maps \( F_a \) to \( F_I \), where \( I \) is the descent composition of the word \( a \).
3.8. Realizations of PQSym* and PQSym.

3.8.1. Realization of PQSym*. The algebra PQSym*(A) admits a simple realization in terms of noncommutative polynomials [28], which is similar to the construction of FQSym. If A is a totally ordered infinite alphabet, one can set

$$G_a(A) := \sum_{w \in A^*, \text{Park}(w) = a} w.$$  \hfill (104)

**Theorem 3.12** ([28]). These polynomials satisfy Relations (61) and allow to write the coproduct as $\Delta G_a = G_a(A' + A'')$ where $A' + A''$ denotes the ordered sum of two mutually commuting alphabets isomorphic to A as ordered sets.

Let us recall the precise way to introduce a coproduct on an algebra realized on words under certain conditions. Start with $A'$ and $A''$, two mutually commuting alphabets isomorphic to A as ordered sets. Then build their ordered sum $A' + A''$ and compute $G_a(A' + A'')$ separating inside each term what belongs to $A'$ and what belongs to $A''$. Assume that one can write, for all parking function $a$,

$$G_a(A' + A'') = \sum_{a', a''} G_{a'}(A') G_{a''}(A''),$$  \hfill (105)

where the sum is taken over a set of pairs of parking functions depending on $a$. Then the operation

$$\Delta G_a := \sum_{a', a''} G_{a'} \otimes G_{a''},$$  \hfill (106)

where the sum is taken over the same set as before is a coproduct.

For example, $G_{121} = \sum_i a_i a_{i+1} a_i$, so that

$$G_{121}(A' + A'') = G_{121}(A') + G_{121}(A''),$$  \hfill (107)

since $a_i \in A'$ is equivalent to $a_{i+1} \in A'$ by definition of the ordered sum of alphabets. One then recovers the results of Equation (72) Now, $G_{131} = \sum_{i,j \geq i+1} a_i a_j a_i$, so that

$$G_{131}(A' + A'') = G_{131}(A') + G_{11}(A') G_1(A'') + G_{121}(A''),$$  \hfill (108)

since $a_i$ and $a_j$ can belong to A (first term), or $a_i$ belongs to $A'$ and $a_j$ belongs to $A''$ (second term), or $a_i$ and $a_j$ belong to $A''$ (third term). One then recovers the results of Equation (73).

3.8.2. Realization of PQSym. Although PQSym and PQSym* are isomorphic as Hopf algebras, no explicit isomorphism is known. We can nevertheless propose a realization of PQSym in terms of $(0,1)$-matrices instead of words.

This construction is reminiscent of the construction of MQSym (see [11, 4]), and coincides with it when restricted to permutation matrices, providing the natural embedding of FQSym in MQSym.

Let $M_n$ be the vector space spanned by symbols $X_M$ where M runs over $(0,1)$-matrices with $n$ columns and an infinite number of rows, with $n$ nonzero entries, so that at most $n$ rows are nonzero.
Given such a matrix $M$, we define its *vertical packing* $\text{vp}(M)$ as the finite matrix obtained by removing the null rows of $M$.

For a vertically packed matrix $P$, we define

\begin{equation}
M_P = \sum_{\text{vp}(M) = P} X_M.
\end{equation}

Now, given a $(0,1)$-matrix, we define its reading $r(M)$ as the word obtained by reading its entries by rows, from left to right and top to bottom and recording the numbers of the columns of the ones. For example, the reading of the matrix

\[
\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

is $(2,3,1,2)$.

A matrix $M$ is said to be of *parking type* if $r(M)$ is a parking function. Finally, for a parking function $a$, we set

\begin{equation}
F_a := \sum_{r(P) = a, P \text{ vertically packed}} M_P = \sum_{r(M) = a} X_M.
\end{equation}

For example,

\begin{equation}
F_{(1,2,2)} = M \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} + M \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.
\end{equation}

The multiplication on $M = \bigoplus_n M_n$ is defined by columnwise concatenation of the matrices:

\begin{equation}
X_M X_N = X_{M,N}.
\end{equation}

In order to explicit the product of $M_P$ by $M_Q$, we first need a definition. Let $P$ and $Q$ be two vertically packed matrices with respective heights $p$ and $q$. The *augmented shuffle* of $P$ and $Q$ is defined as follows: let $r$ be an integer in $[\max(p, q), p + q]$. One inserts zero rows in $P$ and $Q$ in all possible ways so that the resulting matrices have $p + q$ rows. Let $R$ be the matrix obtained by concatenation of such pairs of matrices. The augmented shuffle consists in the set of such matrices $R$ with nonzero rows. We denote this set by $\psi(P, Q)$.

**Theorem 3.13.** The following formulas hold:

\begin{equation}
M_P M_Q = \sum_{R \in \psi(P, Q)} M_R,
\end{equation}

and

\begin{equation}
F_a F_{a'} = \sum_{a \in a' \cup a''} F_a.
\end{equation}

This is the same as Equation (114).
Proof. Formula (114) comes from the definition of the augmented shuffle of matrices: any matrix in $\psi(p, q)$ appears as a product $X_M \cdot X_N$ where $vp(M) = p$ and $vp(N) = q$. Conversely, any element in $M_P \cdot M_Q$ has as vertical packing a matrix with a number of rows in the interval $[\max(p, q), p+q]$ which left part has $M$ as vertical packing and right part has $N$ as vertical packing.

The proof of (115) is almost the same as the previous one if one starts from the definition $F_a = \sum_{r(M) = a} X_M$.

Finally, concerning the coproduct, one has first to define the parkization $\text{Park}(M)$ of a vertically packed matrix $M$, which consists in iteratively removing column $d(r(M))$ until $M$ becomes a parking matrix.

The coproduct of a matrix $M_P$ is then defined as:

\begin{equation}
\Delta M_P = \sum_{Q \cdot R = P} M_{\text{Park}(Q)} \otimes M_{\text{Park}(R)},
\end{equation}

It is then easy to check that

**Proposition 3.14.** The following formula holds:

\begin{equation}
\Delta F_a = \sum_{u \cdot v = a} F_{\text{Park}(u)} \otimes F_{\text{Park}(v)}.
\end{equation}

This is the same as Equation (52).

3.8.3. **Realization of $FQSym$.** A parking matrix $M$ is said to be a word matrix if there is exactly one 1 in each column. Then $FQSym$ is the Hopf subalgebra generated by the parking word matrices.

3.9. **$PQSym^*$ as a dendriform trialgebra.** Since we already know that $K\langle A \rangle^+$ is a dendriform trialgebra (see Definition 2.1 and Lemma 2.2), and since $PQSym^*$ can be realized on words, it is a natural question to ask whether $PQSym^*$ is a sub-trialgebra of $K\langle A \rangle^+$.

**Theorem 3.15.** $PQSym^*$ is a sub-dendriform trialgebra of $K\langle A \rangle^+$ with the following product rules:

\begin{equation}
G_{a'} \vartriangleleft G_{a''} = \sum_{a = u \cdot v \in a' \cdot a''} G_a, \quad |u| = |a'|; \max(v) < \max(u)
\end{equation}

\begin{equation}
G_{a'} \circ G_{a''} = \sum_{a = u \cdot v \in a' \cdot a''} G_a, \quad |u| = |a'|; \max(v) = \max(u)
\end{equation}

\begin{equation}
G_{a'} \triangleright G_{a''} = \sum_{a = u \cdot v \in a' \cdot a''} G_a, \quad |u| = |a'|; \max(v) > \max(u)
\end{equation}
Proof — Since $\text{PQSym}^*$ can be realized on words, one only needs to check that $\text{PQSym}^*$ is stable under all three operations, their compatibility coming from the fact that $\mathbb{K}\langle A \rangle^+$ is a dendriform trialgebra. Since all words having a given parkized word have the same inversions, they have in particular the same relations between the maximum of any prefix and any suffix of given lengths. One then derives the product rules from direct calculation. 

For example, with the notations of Definition 2.1:

\[
\text{G}_{12} \prec \text{G}_{212} = \text{G}_{13212} + \text{G}_{14212} + \text{G}_{14313} + \text{G}_{14323} + \text{G}_{15212} + \text{G}_{15313} \\
+ \text{G}_{15323} + \text{G}_{24313} + \text{G}_{24212} + \text{G}_{34212} + \text{G}_{23212} + \text{G}_{25212} \\
+ \text{G}_{25313} + \text{G}_{35212} + \text{G}_{45212}.
\]

(121)

\[
\text{G}_{12} \circ \text{G}_{212} = \text{G}_{12212} + \text{G}_{13313} + \text{G}_{13323} + \text{G}_{23313}.
\]

(122)

\[
\text{G}_{12} \succ \text{G}_{212} = \text{G}_{12313} + \text{G}_{12323} + \text{G}_{12414} + \text{G}_{12424} \\
+ \text{G}_{12434} + \text{G}_{13414} + \text{G}_{13424} + \text{G}_{23414}.
\]

(123)

Based on numerical evidence, we conjecture the following result:

**Conjecture 3.16.** $\text{PQSym}^*$ is a free dendriform trialgebra.

Recall that the generating series $F(t)$ for the dimensions of the free dendriform trialgebra satisfies

\[
F(t) - 1 = t(2F(t)^2 - F(t)).
\]

(124)

Applying the same trick as in [6] for computing the generating series of the totally primitive elements, one gets the generating series of the number $g_n$ of generators in degree $n$ of $\text{PQSym}^*$ as a free dendriform trialgebra:

\[
\sum_{n \geq 0} g_n t^n = \frac{PF(t) - 1}{2PF(t)^2 - PF(t)}
\]

(125)

\[
= t + 5 t^3 + 50 t^4 + 634 t^5 + 9475 t^6 + 163843 t^7 + 3226213 t^8 + 71430404 t^9 + O(t^{10}).
\]

By self-duality of $\text{PQSym}$, one can endow $\text{PQSym}$ with a structure of dendriform trialgebra.

Note that $\text{FQSym}$ is not a sub-dendriform trialgebra of $\mathbb{K}\langle A \rangle^+$ since the product is not internal and that, independently of the realization, it cannot be a free dendriform trialgebra since the substitution $F(t) = \sum_n n!t^n$ in Equation (128) does not yield a series with nonnegative integer coefficients.
3.10. The internal product. We shall now recall the definition of the internal product of $\text{PQSym}$, introduced in [28]. We first need a few standard notations about biwords. Let $x_{ij} = \binom{i}{j}$ be commuting indeterminates, and $a_{ij} = \binom{i}{j}$ be noncommuting ones. We shall denote by $\left(\begin{array}{c} i_1, i_2, \ldots, i_r \\ j_1, j_2, \ldots, j_r \end{array}\right)$ the monomial $\left(\begin{array}{c} i_1 \\ j_1 \end{array}\right) \left(\begin{array}{c} i_2 \\ j_2 \end{array}\right) \cdots \left(\begin{array}{c} i_r \\ j_r \end{array}\right)$ and by $\left[\begin{array}{c} i_1, i_2, \ldots, i_r \\ j_1, j_2, \ldots, j_r \end{array}\right]$ the word $\left[\begin{array}{c} i_1 \\ j_1 \end{array}\right] \left[\begin{array}{c} i_2 \\ j_2 \end{array}\right] \cdots \left[\begin{array}{c} i_r \\ j_r \end{array}\right]$. Such expressions will be referred to respectively as bimonomials and biwords.

Recall that Gessel constructed the descent algebra by extending to $\text{QSym}$ the coproduct dual to the internal product of symmetric functions. That is, if $X$ and $Y$ are two totally and isomorphically ordered alphabets of commuting variables, we can identify a tensor product $f \otimes g$ of quasi-symmetric functions with $f(X)g(Y)$. Denoting by $XY$ the Cartesian product $X \times Y$ endowed with the lexicographic order, Gessel defined for $f \in \text{QSym}_n$

\begin{equation}
\delta(f) = f(XY) \in \text{QSym}_n \otimes \text{Sym}_n.
\end{equation}

The dual operation on $\text{Sym}_n$ is the internal product $*$, for which it is anti-isomorphic to the descent algebra $\Sigma_n$. This construction can be extended to $\text{PQSym}^*$. Let $A'$ and $A''$ be two totally and isomorphically ordered alphabets of noncommuting variables, but such that $A'$ and $A''$ commute with each other. We denote by $A' \times A''$ the Cartesian product endowed with the lexicographic order. This is a total order in which each element has a successor, so that $G_a(A' \times A'')$ is a well defined polynomial. Identifying tensor products of words of the same length with words over $A' \times A''$, we have

\begin{equation}
G_a(A' \times A'') = \sum_{\text{Park}(u \otimes v) = a} u \otimes v.
\end{equation}

For example, writing tensor products as biwords, one has

\begin{equation}
G_{4121}(A' \times A'') = \sum_{a,b,c,d} \left[\begin{array}{cccc}
b & a & a & a \\
d & c & c + 1 & c
\end{array}\right]
\end{equation}

with $b > a$, or $b = a$ and $d \geq c + 3$.

**Theorem 3.17** ([28]). The formula $\delta(G_a) = G_a(A' \times A'')$ defines a coassociative coproduct on each homogeneous component $\text{PQSym}_n^*$. Actually,

\begin{equation}
\delta(G_a) = \sum_{\text{Park}(a' \otimes a'') = a} G_{a'} \otimes G_{a''},
\end{equation}

where $a'$ and $a''$ are parking functions. By duality, the formula

\begin{equation}
F_{a'} \ast F_{a''} = F_{\text{Park}(a' \otimes a'')}
\end{equation}

defines an associative product on each $\text{PQSym}_n$.

Since $A$ is infinite, $\delta$ is compatible with the product of $\text{PQSym}^*$. 
Example 3.18.

\[
\delta G_{4121} = (G_{2111} + G_{3111} + G_{4111}) \otimes (G_{1232} + G_{1121} + G_{2121} + G_{3121} + G_{4121}) + G_{1111} \otimes G_{4121}.
\]

Example 3.19.

\[
F_{211} \ast F_{211} = F_{311}; \quad F_{211} \ast F_{112} = F_{312};
\]

(132)

\[
F_{211} \ast F_{121} = F_{321}; \quad F_{112} \ast F_{312} = F_{213};
\]

(133)

\[
F_{31143231} \ast F_{23571713} = F_{61385451}.
\]

(134)

Note that although parking functions can be interpreted as chambers of the Shi arrangement, our internal product is not induced by the face semigroup of this arrangement. Indeed, one should obtain in particular an idempotent semigroup, which is clearly not the case.

The main tool for handling internal products of non-commutative symmetric functions is the splitting formula (see [7], Proposition 5.2). It does not hold in \text{PQSym}, but one can find subalgebras of \text{PQSym} larger than \text{Sym} in which it remains true.
4. The Schröder Quasi-Symmetric Hopf algebra $\text{SQSym}$

In Section 2.4, we recalled that the little Schröder numbers build up the Hilbert series of the free dendriform trialgebra on one generator $\mathfrak{T} \mathfrak{D}$. We show in [29] that $\mathfrak{T} \mathfrak{D}$ realized on words has a natural structure of bidendriform bialgebra. In particular, this proves that there is a natural self-dual Hopf structure on $\mathfrak{T} \mathfrak{D}$.

But parking functions provide another way to find little Schröder numbers. Indeed, the number of classes of parking functions of length $n$ under the hypoplactic congruence is also equal to $s_n$. This construction leads to a non self-dual Hopf algebra, denoted by $\text{SQSym}$.

4.1. Hypoplactic classes of parking functions. Let $\equiv$ denote the hypoplactic congruence (see [17, 26]). Recall that the equivalence classes of words under this congruence are parametrized by quasi-ribbon tableaux. A quasi-ribbon tableau of shape $I$ is a ribbon diagram $r$ of shape $I$ filled by letters in such a way that each row of $r$ is nondecreasing from left to right, and each column of $r$ is strictly increasing from top to bottom. A word is said to be a quasi-ribbon word of shape $I$ if it can be obtained by reading from bottom to top and from left to right the columns of a quasi-ribbon diagram of shape $I$. For example, the word 11425477 is a quasi-ribbon word since it is the reading of the following quasi-ribbon

\[
\begin{array}{llll}
1 & 1 & 2 & 4 \\
4 & 5 & 7 & 7
\end{array}
\]

The hypoplactic classes of parking functions correspond to parking quasi-ribbons, that is, quasi-ribbon words that are parking functions. We denote this set by $\text{PQR}$, and $\text{PQR}_n$ is the set of quasi-ribbon parking functions of length $n$.

We will make use of a simple parametrization of the elements of $\text{PQR}$: define a segmented word as a finite sequence of non-empty words, separated by vertical bars, e.g., $232 \mid 14 \mid 5 \mid 746$.

The parking quasi-ribbons can be represented as segmented nondecreasing parking functions where the bars only occur at positions $\cdots a \mid b \cdots$, with $a < b$. For example, the quasi-ribbon of Equation (135) is represented by the word $112 \mid 44 \mid 577$.

Clearly, a nondecreasing word containing exactly $l$ different letters admits $2^{l-1}$ segmentations.

On another hand, the statistic $l$ (the length of the packed evaluation vector) on nondecreasing parking functions has the same distribution as the number of blocks in non-crossing partitions through the natural bijection. This is given by a classical $q$-Catalan, $c_n(q)$ (see, e.g., [25]) and finally, the number of canonical packed words of length $n$ is $c_n(2)$, which is known to be equal to the Schröder number $s_n$.

For example, $c_1(q) = 1$, $c_2(q) = 1 + q$ and $c_3(q) = 1 + 3q + q^2$, so that $c_1(2) = 1$, $c_2(2) = 3$ and $c_3(2) = 11$ as one can check on Equations (136) and (137). The coefficients of $c_n(q)$ are known as the Narayana numbers (sequence A001263 of Sloane’s database [34]).

Here is for $n \geq 3$ the list of canonical hypoplactic parking functions.

\[
\begin{align*}
\text{(136)} & \quad \{1\}, \quad \{11, 12, 1 \mid 2\}, \\
\end{align*}
\]
In the sequel, we will identify parking quasi-ribbons and their encodings as segmented words.

4.2. The Schröder Quasi-Symmetric Hopf algebra SQSym. Let us denote by \( P(w) \) the hypoplactic \( P \)-symbol of a word \( w \) (its quasi-ribbon). The \( P \)-symbols of parking functions are therefore parking quasi-ribbons. With a parking quasi-ribbon \( q \), we associate the elements

\[
P_q := \sum_{P(a)=q} F_a, \quad \text{and} \quad Q_q := \overline{G_a},
\]

where \( \overline{w} \) denotes the hypoplactic class of \( w \). For example,

\[
P_{11|3} = F_{131} + F_{311}, \quad P_{113} = F_{113}.
\]

\[
Q_{11|3} = \overline{G_{131}} = \overline{G_{311}}, \quad Q_{113} = \overline{G_{113}}.
\]

\[
Q_{12|34} = \overline{G_{1324}} = \overline{G_{3124}} = \overline{G_{1342}} = \overline{G_{3142}}.
\]

**Theorem 4.1.** The \( P_q \) form a basis of a Hopf subalgebra of \( PQSym \), denoted by \( SQSym \). Its dual \( SQSym^* \) is the quotient \( PQSym^* / \mathcal{J} \) where \( \mathcal{J} \) is the two-sided ideal generated by

\[
\{ G_a - G_{a'} | a \equiv a' \}.
\]

Moreover, one has \( G_a \equiv G_{a'} \) iff \( a \equiv a' \), so that \( SQSym^* \simeq PQSym^* / \equiv \). The dual basis of \( (P_q) \) is then \( (Q_q) \).

The dimension of the component of degree \( n \) of \( SQSym \) and \( SQSym^* \) is the little Schröder number (or super-Catalan) \( s_n \).

**Proof –** Let us begin with the elements \( \overline{G_a} \). Since the hypoplactic equivalence is a congruence

\[
u \equiv u' \text{ and } v \equiv v' \implies uv \equiv u'v',
\]

so that these elements build up an algebra that we will denote by \( SQSym^* \). Since the hypoplactic congruence is compatible with the restriction to intervals, one easily checks that the coproduct of \( G_a \) is compatible with the hypoplactic congruence, so that \( SQSym^* \) is a Hopf algebra.

Recall that two words \( u \) and \( v \) are hypoplactically equivalent iff they have the same evaluation and \( \text{Std}(u) \) and \( \text{Std}(v) \) are hypoplactically equivalent. Since two words of the same evaluation have parkized words of the same evaluation as well, the same result applies if one replaces the standardization by the parkization: two words \( u \) and \( v \) of the same evaluation are hypoplactically equivalent iff their parkized words are. This proves that

\[
a \equiv a' \iff \overline{G_a} = \overline{G_a'}.
\]
So $\text{SQSym}^*$ is isomorphic to $\text{PQSym}^*/\equiv$ as a Hopf algebra.

Since the dual basis of $G_a$ in $\text{PQSym}$ is $F_a$, one can write the duality bracket as

$\langle G_a, F_{a'} \rangle = \delta_{a,a'}$,

where $\delta$ is the Kronecker symbol. Then the dual basis of $Q_q = \overline{G_a}$ inherited from the dual Hopf algebras $\text{PQSym}$, $\text{PQSym}^*$ is naturally $\sum_{a' \equiv a} F_{a'}$, that is, $P_q$. It then comes without proof that the $P_q$ form a basis of a Hopf subalgebra of $\text{PQSym}$ we will denote by $\text{SQSym}$, as it is the dual of $\text{SQSym}^*$.

The dimensions are given by the little Schröder numbers since these numbers count the hypoplactic classes of parking functions.

\[\text{Theorem 4.2.}\] The product and coproduct rules for the $Q_q$ and the $P_q$ are

\[Q_{q'}Q_{q''} = \sum_{a \in a' + a''} Q_{\pi},\]

where $a'$ (resp. $a''$) is in the hypoplactic class of $q'$ (resp. $q''$).

\[\Delta Q_q = \sum_{u,v: q = u|v|u} G_u \otimes G_v.\]

\[P_qP_{q''} = P_{q'|r''} + P_{q'r''}\]

where $r'' = q''||q'\|$.

\[\Delta P_q = \sum_{q', q''} P_{q'} \otimes P_{q''}\]

where the sum is taken over the hypoplactic classes $q'$ and $q''$ such that their canonical elements $c'$ and $c''$ can be obtained as parkized words of the prefix and the suffix of an element of the hypoplactic class $q$.

\[\text{Proof –}\] The formulas for the product and coproduct of the $Q$ come from the formulas of the $G$ in $\text{PQSym}^*$. The formulas for the $P$ are then easily derived from the previous ones by duality.

For example,

\[Q_{1|2}Q_1 = Q_{1|23} + Q_{1|22} + Q_{12|3} + Q_{11|3} + Q_{11|2} + Q_{1|23}.\]

\[\Delta Q_{11|34|55} = 1 \otimes Q_{11|34|55} + Q_{11} \otimes Q_{12|33} + Q_{11|3} \otimes Q_{1|22} + Q_{11|34} \otimes Q_{11} + Q_{11|34|55} \otimes 1.\]

\[P_{11|335|6}P_{112} = P_{11|335|6778} + P_{11|335|6778}.\]

\[\Delta P_{11|3} = 1 \otimes P_{11|3} + P_1 \otimes (P_{1|2} + P_{11}) + (P_{21} + P_{12}) \otimes P_1 + P_{11|3} \otimes 1.\]
4.3. **SQSym is not self-dual.** Some simple computations prove that $\text{SQSym}$ and $\text{SQSym}^*$ are not isomorphic Hopf algebras since the primitive Lie algebra of $\text{SQSym}^*$ is of dimension 6 in degree 3, spanned by

\begin{equation}
Q_{11}^2; \ Q_{12}^2; \ Q_{11|2}; \ Q_{122} - Q_{1|22}; \ Q_{113} - Q_{11|3}; \ Q_{123} - Q_{1|23} - Q_{12|3} + Q_{1|2|3},
\end{equation}

whereas it is of dimension 7 in $\text{SQSym}$, spanned by:

\begin{equation}
P_{123} - P_{112} - P_{112} + P_{111}; \ P_{1|22} - P_{11|2} - P_{112} + P_{122}; \ P_{1|23} - P_{11|2} - P_{112} + P_{111}; \ P_{113} - P_{112}; \ P_{1|3} - P_{11|2}; \ P_{1|2|3} - P_{11|2} + P_{112}.
\end{equation}

In particular, it is impossible to endow $\text{SQSym}$ or $\text{SQSym}^*$ with a bidendriform bialgebra structure since both would then be self-dual. We cannot use the machinery of Foissy to investigate the freeness of both algebras and their primitive Lie algebras, but we can do it by hand.

4.4. **Algebraic structure of SQSym* and SQSym.** Since we know that the primitive Lie algebra of $\text{SQSym}$ is of dimension seven in degree 3, $\text{SQSym}^*$ cannot be free and, indeed, one finds the relation

\begin{equation}
Q_1(Q_{11} + Q_{12}) = (Q_{11} + Q_{12})Q_1.
\end{equation}

We now move to $\text{SQSym}$. Consider the set PQS of parking quasi-ribbons that cannot be obtained as a nontrivial shifted concatenation of parking quasi-ribbons. They are the parking quasi-ribbons having a bar whenever the underlying nondecreasing parking function has a breakpoint. For example, here are the elements of $\text{PQS}_n$ for $n \leq 4$.

\begin{equation}
\{1\}; \ \{11, 1|2\}; \ \{111, 112, 11|2, 11|3, 1|22, 1|2|3\}; \ \{1111, 1112, 111|2, 1113, 111|3, 111|4, 1122, 11|22, \\
1123, 11|23, 112|3, 112|23, 112|4, 11|2|4, 11|33, \\
11|3|4, 1|222, 1|223, 1|22|3, 1|22|4, 1|2|33, 1|2|3|4\}.
\end{equation}

Since the elements of PQS are those that never occur in a nontrivial shifted concatenation of elements of PQR, any element $q$ of PQR decomposes uniquely as a shifted product $q_1 \bullet q_2 \bullet \cdots \bullet q_k$ where all the $q_k$ are in PQS. Define then

\begin{equation}
P^q = P_{q_1}P_{q_2}\cdots P_{q_k}.
\end{equation}

**Proposition 4.3.** The $P^q$ form a multiplicative basis of $\text{SQSym}$. In particular, $\text{SQSym}$ is free as an algebra.

**Proof.** The $P^q$ generate the same algebra as the $P_q$ since they are triangular over the $P_q$; each term $P^q$ begins with $P_q$ followed with elements of PQR that are shifted concatenations of strictly lower elements of PQS.

\[ \square \]
Since $\text{SQSym}$ is free, one can compute the generating series of its generating set. Recall that the generating series of $s_n$ is $S(t) := \frac{1 + t - \sqrt{1 - 4t + t^2}}{2t}$, so that

\begin{equation}
U(t) := 1 - 1/S(t) = \frac{1 - t - \sqrt{1 - 6t + t^2}}{2},
\end{equation}

that is the generating series of large Schröder numbers $s'_n$ (sequence A006318 [34]), obviously equal to $2s_n$ thanks to the previous formula. So

**Proposition 4.4.** The sets $\text{PQS}_n$ are enumerated by the large Schröder numbers.

**Proof** – Even if the algebraic construction has already proved this result, we provide a bijective proof in order to enlighten the relation between the large and the little Schröder numbers from the point of view of parking functions.

We split $\text{PQS}_n$ into two and provide a bijection between both sets and $\text{PQR}_{n-1}$, the set of parking quasi-ribbons of length $n - 1$.

Let $\text{PQS}'_n$ be the subset of $\text{PQS}_n$ consisting of the elements whose underlying parking function is prime. The bijection between $\text{PQS}'_n$ and $\text{PQR}_{n-1}$ is trivial: it consists in adding or removing 1 at the beginning of the parking function.

Let $\text{PQS}''_n$ be the complementary subset of $\text{PQS}_n$. The bijection is the following: start from an element of $\text{PQR}_{n-1}$. If this element belongs to $\text{PQS}'_{n-1}$, then add a bar and $n$ to its end. Otherwise, let $i$ be the smallest integer greater than 1 such that $i - 1$ is a breakpoint and that there is no bar before the first $i$. Then insert a bar and an $i$ before the first $i$. This element satisfies the requirements of $\text{PQS}_n$ since it can have breakpoints only to the left of $i$ and that, by hypothesis, all those breakpoints followed by a bar. Moreover, this element has a breakpoint, so belongs to $\text{PQS}''_n$. For example, the image of $11|2|455|669$ is $11|2|4|55|669$, since there is a breakpoint at 4 with no bar before the first 5.

The reverse bijection consists in considering the rightmost breakpoint $i$ of the underlying parking function of an element of $\text{PQS}''_n$ and remove $i + 1$ with the bar before it. The result belongs to $\text{PQR}_{n-1}$ since we removed the letter just after the rightmost breakpoint.

Finally, it is a bijection between $\text{PQS}''_n$ and $\text{PQR}_{n-1}$ since the operations are inverse to each other and the image of each set is included in the other.

The next proposition summarizes the structures of $\text{SQSym}$ and $\text{SQSym}^*$.

**Proposition 4.5.** The algebra $\text{SQSym}$ is a Hopf algebra of dimension $s_n$ in degree $n$. It is not self-dual since $\text{SQSym}$ is free as an algebra whereas $\text{SQSym}^*$ is not.

**4.5. SQSym* as a combinatorial Hopf algebra.** The embedding of Formula (93) induces an embedding

\begin{equation}
\text{QSym} \simeq \text{FQSym}^*/(\mathcal{J} \cap \text{FQSym}^*) \rightarrow \text{PQSym}^*/\mathcal{J} = \text{SQSym}^*.
\end{equation}

In particular, we see that $\text{SQSym}^*$ contains a large commutative subalgebra.
4.6. Primitive Lie algebras of SQSym and SQSym∗. Since SQSym∗ contains QSym as a subalgebra, its primitive Lie algebra cannot be free and one easily finds:

\[
[Q_1, Q_{12} - Q_{112} + Q_{11}] = 0.
\]

The first dimensions for the primitive Lie algebra of SQSym are 1, 2, 7, 25, 102, with no relations between those elements in those degrees so that one can conjecture that it is free as a Lie algebra.

4.7. Schröder ribbons. In the algebra Sym, the product of non-commutative complete fonctions split into sums of ribbon Schur functions, using a simple order on compositions. To get an analogous construction in our case, we define a partial order on segmented non-decreasing parking functions.

Let π be a segmented non-decreasing parking function and Ev(π) be its segmented evaluation vector, that is its evaluation vector with separators between the \(i\)-th and \(i+1\)-th element if \(i\) and \(i+1\) are separated by a bar in \(π\). The successors of \(π\) are the segmented non-decreasing parking functions whose evaluations are given by the following algorithm: given two non-zero elements of Ev(π) not separated by a bar with only zeroes between them, replace the left one by the sum of both and the right one by 0.

For example, the successors of 11|3346 are 11|3336, and 11|3344.

By transitive closure, the successor map gives rise to a partial order \(\succeq\) on segmented non-decreasing parking functions.

Now, define the Schröder ribbons by

\[
P_q := \sum_{q' \succeq q} R_{q'}.
\]

or, by Möbius inversion on the boolean lattice,

\[
R_q := \sum_{q' \succeq q} (-1)^{f(q,q')} P_{q'}.
\]

where \(f(u,v)\) is the difference between the numbers of different letters in \(u\) and in \(v\).

For example,

\[
P_{11|34} = R_{11|34} + R_{11|33}.
\]

\[
P_{11|3346} = R_{11|3346} + R_{11|3336} + R_{11|3344} + R_{11|3333}.
\]

\[
R_{11|3346} = P_{11|3346} - P_{11|3336} - P_{11|3344} + P_{11|3333}.
\]

**Proposition 4.6.** The product of two ribbons is given by

\[
R_q R_{q''} = R_{q|q''} + R_{q'\triangleright q''} + R_{q''\triangleleft q'},
\]

where \(r'' = q''(q'\rangle q''\rangle)\) and \(q'\triangleright r''\) is the successor of \(q'r''\) obtained by decreasing the smallest letters of \(r''\) down to the value of the greatest letters of \(q'\).
Proof – Let $p$ be the length of $q'$. Let us expand $R_q R_{q''}$ on the $P$ basis. On gets an alternating sum of $P$ indexed by the successors of $q'r''$ having different $p$-th and $p+1$-st letters or indexed by the successors of $q'r'$. This second set obviously sum up to $R_q r''$. This first set is part of all successors of $q'r''$, the missing set being all successors of $q'r'$. The sign of an element depending only on its number of different letters, the result follows.

For example,

(168) $R_1 R_{1|2} = R_{1|2|3} + R_{12|3} + R_{11|3}$.

(169) $R_{11|3} R_{113} = R_{11|3|446} + R_{11|3446} + R_{11|3336}$.

4.8. Dendriform structures on SQSym. Let us now consider the other structures that can be put on $SQSym$ and $SQSym^*$. First note that the product rules of $PQSym^*$ as a tridendriform algebra are compatible with the hypoplactic congruence, so that $SQSym^*$ is a tridendriform algebra. But it is not free since

(170) $Q_{11|2} = G_{212} = G_{221}$,

that can be rewritten as

(171) $(Q_1 \triangleright Q_1) \circ Q_1 = Q_1 \circ (Q_1 \triangleright Q_1)$,

a relation that is not a consequence of the tridendriform relations.

We already mentioned that $SQSym^*$ cannot have a bidendriform bialgebra structure since it would imply that $SQSym^*$ is self-dual. On our realization of the bidendriform bialgebra $PQSym$, the explanation comes from the fact that the hypoplactic congruence is not compatible with the codendriform definitions since, for example,

(172) $\Delta \triangleleft G_{221} = G_1 \otimes G_{11}$ whereas $\Delta \triangleleft G_{212} = 0$. 

5. The Catalan Quasi-Symmetric Hopf algebra \( \text{CQSym} \)

5.1. The Hopf algebra \( \text{CQSym} \).

5.1.1. Non-decreasing parking functions and non-crossing partitions. As already mentioned, non-decreasing parking functions form a Catalan set. There are dozens of possibilities to identify them to other combinatorial objects. However, parking functions are known to be related to non-crossing partitions (see \[3, 36, 37\]), and there is a simple bijection between non-decreasing parking functions and non-crossing partitions. Starting with a non-crossing partition, \( \pi \), e.g.,

\[
\pi = 13|2|45,
\]

one replaces all the letters of each block by its minimum, and reorders them as a non-decreasing word

\[
13|2|45 \rightarrow 11244,
\]

which is a parking function. In the sequel, we identify non-decreasing parking functions and non-crossing partitions via this bijection.

5.1.2. The Catalan Hopf algebra \( \text{CQSym} \). For a general \( a \in \text{PF}_n \), let \( \text{NC}(a) \) be the non-crossing partition corresponding to \( a \) by the inverse bijection, e.g., \( \text{NC}(42141) = \pi \) as above.

Then define \( P^\pi \) as the sum of all permutations of the non-decreasing word corresponding to the given non-crossing partition:

\[
P^\pi := \sum_{a; \text{NC}(a) = \pi} F_a.
\]

**Theorem 5.1.** The \( P^\pi \), when \( \pi \) runs over non-crossing partitions span a cocommutative Hopf subalgebra of \( \text{PQSym} \) with product and coproduct given by

\[
P^\pi P^{\pi'} = P^{\pi' \bullet \pi''}.
\]

\[
\Delta P^\pi = \sum_{u,v; (u,v)^! = \pi} P^\text{Park}(u) \otimes P^\text{Park}(v),
\]

where \( u \) and \( v \) run over the set of non-decreasing words.

Moreover, as an algebra, it is isomorphic to the algebra of the free semigroup of non-crossing partitions under the operation of concatenation of diagrams.

**Proof.** Equation (176) follows from Equation (47): indeed, any permutation of \( \pi' \bullet \pi'' \) is uniquely obtained as the shifted shuffle of a permutation of \( \pi' \) with a permutation of \( \pi'' \). The converse is obvious.

Equation (177) comes from Equation (52): consider the relation \( P(p,q) \) on words which consists of pairs \( (w,w') \) of words \( w \) and \( w' \) of length \( p+q \) such that the sorted word of the prefix of length \( p \) (resp. suffix of length \( q \) of \( w \) and \( w' \) are equal. By definition of \( P^\pi \), it is a sum of such classes, so that \( \Delta P^\pi \) decomposes as a sum of tensor products of the form \( P^{\pi'} \otimes P^{\pi''} \). The sum on the right hand-side of
Equation (177) is exactly over representatives of the equivalence classes, hence the result. Formula (177) proves that the coalgebra \( CQSym \) is cocommutative.

Moreover, since \( CQSym \) is a subalgebra and a sub-coalgebra of \( PQSym \), the product and the coproduct of \( CQSym \) are compatible, so that \( CQSym \) is endowed with a graded bialgebra structure, and therefore, with a Hopf algebra structure.

This algebra will be called the Catalan subalgebra of \( PQSym \) and denoted by \( CQSym \).

For example, one has

\[
\begin{align*}
P^{11}P^{1233} &= P^{113455} \quad & P^{1124}P^{1223} &= P^{11245667} \\
\end{align*}
\]

\[
\begin{align*}
\Delta P^{1124} &= 1 \otimes P^{1124} + P^1 \otimes (P^{112} + P^{113} + P^{123}) + P^{11} \otimes P^{12} \\
&\quad + P^{12} \otimes (P^{11} + 2P^{12}) + (P^{112} + P^{113} + P^{123}) \otimes P^1 + P^{1124} \otimes 1.
\end{align*}
\]

Since the non-decreasing parking functions that never occur in a nontrivial shifted concatenation of such elements are the connected non-decreasing parking functions, any \( \pi \) decomposes uniquely as a shifted product \( \pi_1 \bullet \pi_2 \bullet \cdots \bullet \pi_k \) where all the \( \pi_k \) are connected.

**Proposition 5.2.** The \( P \) form a multiplicative basis of \( CQSym \). In particular, \( CQSym \) is free as an algebra.

Here are the connected non-decreasing parking functions up to length 4.

\[
\{1\}, \{11\}, \{111, 112\}, \{1111, 1112, 1113, 1122, 1123\}.
\]

Since \( CQSym \) is free, one can compute the generating series of its generating set. Recall that the generating series of \( C_n \) is \( C(t) := \frac{1-\sqrt{1-4t}}{2t} \), so that

\[
CN(t) := 1 - 1/C(t) = \frac{1 - \sqrt{1 - 6t + t^2}}{2},
\]

that is the generating series of shifted Catalan numbers \( C_{n-1} \). Indeed, the connected non-decreasing parking functions are obtained by concatenating a 1 to the left of all non-decreasing parking functions.

5.1.3. Algebraic structure of \( CQSym \). Following Reutenauer [33] p. 58, denote by \( \pi_1 \) the Eulerian idempotent, that is, the endomorphism of \( CQSym \) defined by \( \pi_1 = \log^*(Id) \) where \( \log^* \) means that the logarithm is taken in the convolution algebra of graded endomorphisms \( \text{End}^{gr}(CQSym) \). It is obvious, thanks to the definition of \( P^\pi \) that

\[
\pi_1(P^\pi) = P^\pi + \cdots,
\]

where the dots stand for terms \( P^\gamma \) where \( \gamma \) is not connected. So the family \( \pi_1(P^\alpha) \) where \( \alpha \) runs over all connected non-decreasing parking functions is a free set of
primitive generators of $\text{CQSym}$. In particular, they generate a free Lie algebra (see, e.g. [13] for more details) whose Hilber series is given by
\begin{equation}
t + t^2 + 3 t^3 + 8 t^4 + 25 t^5 + 75 t^6 + 245 t^7 + 800 t^8 + O(t^9).
\end{equation}

The sequence is referenced in Sloane’s database as A022553 [34]. It counts Lyndon words $l$ of even length $2n$ with an equal number of $a$ and $b$. So the free Lie algebra of primitive elements of $\text{CQSym}$ is isomorphic to the Lie subalgebra $\mathcal{L}$ of the free Lie algebra $\text{Lie}(a, b)$ consisting of the elements with an equal number of $a$ and $b$. One can then prove that the standard bracketings of the Lyndon words $l$ with the same number of $a$ and $b$ such that $l = l' \cdot b$ with $l'$ also being a Lyndon word generate a free Lie algebra. Since those particular Lyndon words are enumerated by the shifted Catalan numbers, one can conclude that they generate $\mathcal{L}$.

5.2. The dual Hopf algebra $\text{CQSym}^\ast$. Let us denote by $\mathcal{M}_\pi$ the dual basis of $\mathcal{P}_\pi$ in the commutative algebra $\text{CQSym}^\ast$. Since $\text{CQSym}$ is the subalgebra of $\text{PQSym}$ obtained by summing all permutations of nondecreasing parking functions, $\text{CQSym}^\ast$ is the quotient of $\text{PQSym}^\ast$ by the relations $G_a \equiv G_b$ if $a^\uparrow = b^\uparrow$.

It is then immediate (see Equation (61)) that the multiplication in this basis is given by
\begin{equation}
\mathcal{M}_\pi \cdot \mathcal{M}_\pi' = \sum_{a \in \pi' \ast \pi''} \mathcal{M}_a^\uparrow.
\end{equation}

For example,
\begin{equation}
\mathcal{M}_1 \mathcal{M}_{12} = \mathcal{M}_{112} + \mathcal{M}_{113} + \mathcal{M}_{122} + 3 \mathcal{M}_{123}.
\end{equation}

\begin{equation}
\mathcal{M}_{12} \mathcal{M}_1 = \mathcal{M}_{1112} + \mathcal{M}_{1113} + \mathcal{M}_{1114} + \mathcal{M}_{1123} + \mathcal{M}_{1124} + \mathcal{M}_{1134} + \mathcal{M}_{1222} + \mathcal{M}_{1223} + \mathcal{M}_{1224} + \mathcal{M}_{1233}.
\end{equation}

Theorem 5.3. $\text{CQSym}^\ast$ can be embedded in the polynomial algebra $\mathbb{C}[x_1, x_2, \ldots]$ by
\begin{equation}
\mathcal{M}_\pi = \sum_{\text{Park}(w) = \pi} w,
\end{equation}
where $w$ is the commutative image of $w$ (i.e., $a_i \mapsto x_i$).

Proof. The result follows from (104) and from the fact that quotienting $\text{PQSym}^\ast$ by the relations $G_a \equiv G_b$ if $a^\uparrow = b^\uparrow$ amounts to take the commutative image of words, transforming these into monomials.

For example,
\begin{equation}
\mathcal{M}_{111} = \sum_i x_i^3.
\end{equation}
\begin{equation}
\mathcal{M}_{112} = \sum_i x_i^2 x_{i+1}.
\end{equation}
(190) \[ M_{113} = \sum_{i,j; j \geq i+2} x_i^2 x_j. \]

(191) \[ M_{122} = \sum_{i,j; i < j} x_i x_j^2. \]

(192) \[ M_{123} = \sum_{i,j,k; i < j < k} x_i x_j x_k. \]

The packed evaluation vector \( t(w) \) of \( w \) is obtained from \( \text{Ev}(w) \) by removing all its zeroes. For example, if \( w = 3117291781329 \), \( \text{Ev}(w) = (4, 2, 2, 0, 0, 2, 1, 2) \) and \( t(w) = (4, 2, 2, 2, 2, 1, 2) \).

We can now see that \( \text{CQSym}^* \) contains \( \text{QSym} \) as a subalgebra. The embedding of \( \text{QSym} \) into \( \text{CQSym}^* \) is given by

(193) \[ \gamma(M_l) := \sum_{t(\pi) = l} M_{\pi}. \]

For example,

(194) \[ M_3 = M_{111}, \quad M_{21} = M_{112} + M_{113}, \quad M_{12} = M_{122}, \quad M_{111} = M_{123}. \]

5.3. **Catalan ribbons.** As already done for the Schröder algebras, we define a partial order on non-decreasing parking functions.

Let \( \pi \) be a non-decreasing parking function and \( \text{Ev}(\pi) \) be its evaluation vector. The successors of \( \pi \) are the non-decreasing parking functions whose evaluations are given by the following algorithm: given two non-zero elements of \( \text{Ev}(\pi) \) with only zeroes between them, replace the left one by the sum of both and the right one by 0.

For example, the successors of 113346 are 111146, 113336, and 113344.

By transitive closure, the successor map gives rise to a partial order on non-decreasing parking functions. We will write \( \pi' \succeq \pi \) if \( \pi' \) is obtained from \( \pi \) by successive applications of successor maps.

Now, define the Catalan ribbon functions by

(195) \[ P^\pi := \sum_{\pi' \succeq \pi} R_{\pi'}. \]

This last equation completely defines the \( R_{\pi} \).

For example,

(196) \[ P^{113346} = R_{113346} + R_{113344} + R_{113336} + R_{113333} + R_{111146} + R_{111144} + R_{111116} + R_{111111} \]

and

(197) \[ R_{113346} = P^{113346} - P^{113344} - P^{113336} + P^{113333} - P^{111146} + P^{111144} + P^{111116} - P^{111111}. \]

Note that, by Möbius inversion of the boolean lattice, the coefficient of \( P^{\pi'} \) in \( R^\pi \) is \(-1\) to the number of different letters in \( \pi \) minus the number of different letters in \( \pi' \).
This definition is compatible with the definition of commutative ribbon Schur functions since if one considers the morphism $\phi$ as

$$\phi : \text{CQSym} \mapsto \text{Sym} \quad P^\pi \mapsto S^{c(\pi)}$$

(198)

then the image $\phi(R_\pi)$ is equal to $R_{c(\pi)}$.

**Proposition 5.4.** The product of two $R$ functions is

$$R_{\pi'} \cdot R_{\pi''} = R_{\pi' \cdot \pi''} + R_{\pi' \triangleright \pi''},$$

(199)

where $\triangleright$ is the successor of $\pi' \cdot \pi''$ obtained by decreasing the smallest letters of $\pi''$ down to the greatest letters of $\pi'$.

**Proof.** Let $p$ be the length of $\pi'$. Let us expand $R_{\pi' \cdot \pi''}$ on the $P$ basis. On gets the alternating sum of $P$ indexed by successors of $\pi' \cdot \pi''$. Those successors split into two disjoint subsets: the successors having the $p$-th and $p+1$-th letters equal and the others. The first set corresponds to the successors of $\pi' \triangleright \pi''$ whereas the second set corresponds to the $w' \cdot w''$ where $w' \succeq \pi'$ and $w'' \succeq \pi''$.

The sign of an element depending only on its number of different letters, the alternating sum of the first set amounts to $-R_{\pi' \triangleright \pi''}$ whereas the sum of the second set amounts to $R_{\pi' \cdot \pi''}$. $lacksquare$

For example,

$$(200) \quad R_{11224}R_{113} = R_{11224668} + R_{11224448}, \quad R_{113}R_{11224} = R_{11344557} + R_{11333557}. $$

5.4. **Internal product.** Define the parkized word of a bimonomial as the non-decreasing parking function obtained by parkizing its lexicographically sorted biword. Recall that bimonomials can be encoded as matrices, the entry $A_{ij}$ being the number of bi-letters $(ij)$ in the biword, so that it makes sense to speak of the parkized word of a matrix.

**Theorem 5.5** ([28]). The homogeneous components $\text{CQSym}_n$ of the Catalan algebra are stable under the internal product $\ast$. More precisely, one has

$$P^{\pi'} \ast P^{\pi''} = \sum_{\pi} P^\pi$$

(201)

where $\pi$ runs over the parkized words of all non-negative integer matrices with row sum $\text{Ev}(\pi')$ and column sum $\text{Ev}(\pi'')$.

**Example 5.6.**

$$(202) \quad P^{1123} \ast P^{1111} = P^{1134}; \quad P^{1111} \ast P^{1123} = P^{1123}. $$

$$(203) \quad P^{1123} \ast P^{1112} = 2P^{1134} + P^{1234}; \quad P^{1122} \ast P^{1224} = P^{1134} + P^{1233} + 2P^{1234}. $$

$$(204) \quad P^{1123} \ast P^{1224} = 2P^{1134} + 5P^{1234}. $$
The matrices appearing in the last product are
\[
\begin{pmatrix}
1 & 1 & . . . & 1 \\
. & 1 & . . . & 1 \\
. & . . . & 1 \\
. & . . & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & 1 & . . . & 1 \\
. & 1 & . . . & 1 \\
. & . . & 1 \\
. & . & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & . . . & 1 \\
. & 1 & . . . & 1 \\
. & . & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & 2 & . . . & 1 \\
. & 2 & . . . & 1 \\
. & . & 1 \\
1 & . & . \\
\end{pmatrix}
\begin{pmatrix}
1 & . . . & 1 \\
. & 1 & . . . & 1 \\
. & . & 1 \\
1 & . & . \\
\end{pmatrix}
\begin{pmatrix}
1 & . . & 1 \\
. & 1 & . . & 1 \\
. & . & 1 \\
. & . & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & . & . & 1 \\
. & 1 & . & . \\
. & . & 1 \\
1 & . & . \\
\end{pmatrix}
(205)
\]
the fourth and the fifth matrices having 1134 as parkized word whereas the other ones yield 1234.

It is interesting to observe that these algebras are non-unital. Indeed, it follows from Formula (201) that

**Corollary 5.7.** The element \( J_n = P^{(1^n)} \) is a left unit for \( * \), but not a right unit. ■

The description of \( P^{\pi'} * P^{\pi''} \) in terms of integer matrices being essentially identical to that of \( S^I * S^J \) in \( \text{Sym} \), the same argument as in [7], proof of Proposition 5.2, shows that the splitting formula remains valid in \( \text{CQSym}^n \):  

**Proposition 5.8.** Let \( \mu_r \) denote the \( r \)-fold product map from \( \text{CQSym} \otimes^r \) to \( \text{CQSym} \), \( \Delta^r \) the \( r \)-fold coproduct with values in \( \text{CQSym} \otimes^r \), and \( *_r \) the internal product of the \( r \)-fold tensor product of algebras \( \text{CQSym}^\otimes \). Then, for \( f_1, \ldots, f_r, g \in \text{CQSym} \),

\[
(f_1 \cdots f_r) * g = \mu_r[(f_1 \otimes \cdots \otimes f_r) *_r \Delta^r(g)].
\]

(206)

This is indeed the same formula as with the internal product of \( \text{Sym} \), actually, an extension of it, since we have

**Corollary 5.9.** The Hopf subalgebra of \( \text{CQSym} \) generated by the elements \( J_n \), which is isomorphic to \( \text{Sym} \) by \( j : S_n \mapsto J_n \), is stable under \(*_r \), and thus also \(*_r\)-isomorphic to \( \text{Sym} \). Moreover, the map \( f \mapsto f * J_n \) is a projector onto \( \text{Sym}_n \), which is therefore a left \(*_r\)-ideal of \( \text{CQSym}_n \). ■

More precisely, if \( i < j < \ldots < r \) are the letters occurring in \( \pi \), so that as a word \( \pi = i^{m_1} j^{m_2} \cdots r^{m_r} \), then

\[
P^\pi * J_n = J_{m_1} J_{m_2} \cdots J_{m_r}.
\]

(207)

It follows from Theorem 5.5 that the \( R_\pi \) are the pre-images of the ordinary ribbons under the projection \( f \mapsto f * J_n \):

**Corollary 5.10.** Let \( I \) be the composition obtained by discarding the zeros of the evaluation of a non-decreasing parking function \( \pi \). Then

\[
R_\pi * J_n = j(R_I).
\]

(208)

More precisely, if \( I = (i_1, \ldots, i_p) \), this last element is equal to \( R_{1^{i_1} \cdot 2^{i_2} \cdots \cdot p^{i_p}} \), that is, the Catalan ribbon indexed by the only non-decreasing word of evaluation \( d(\pi) \). ■
The internal product of $\mathbf{CQSym}$ is dual to the coproduct $\delta f = f(XY)$ on the commutative algebra $\mathbf{CQSym}$, quotient of $\mathbf{PQSym}^*$. For example, we have

$$M_{113}(XY) = (M_{112}(X) + M_{113}(X))(M_{111}(Y) + M_{112}(Y) + M_{113}(Y) + M_{122}(Y)) + M_{111}(X)M_{113}(Y).$$

(209)

$$M_{112}(XY) = M_{111}(X)M_{112}(Y).$$

(210)

5.4.1. Cauchy Kernel. Define the Cauchy kernel by

$$K(X; A) = \sum_{a \in \mathbf{PF}} G_a(X)F_a(A) = \sum_{\pi} M_\pi(X)P_\pi(A).$$

(211)

Proposition 5.11. The kernel $K$ has the reproducing property

$$K(X; A) \ast K(Y; A) = K(XY; A).$$

(212)

Proof –

$$\langle K(X) \ast K(Y), M_\pi \rangle = \sum_{\pi', \pi''} M_{\pi'}(X)M_{\pi''}(Y) \langle P_{\pi'} \ast P_{\pi''}, M_\pi \rangle$$

(213)

$$= \sum_{\pi', \pi''} M_{\pi'}(X)M_{\pi''}(Y) \langle P_{\pi'} \otimes P_{\pi''}, \Delta M_\pi \rangle$$

$$= \Delta M_\pi(X, Y) = M_\pi(XY).$$

5.5. Compositions, Lagrange inversion, and $H_n(0)$.

5.5.1. Recall that nondecreasing parking functions (or non-crossing partitions) can be classified according to the factorization $\pi = \pi_1 \cdot \ldots \cdot \pi_r$ into irreducible nondecreasing parking functions (or non-crossing partitions). Let $i_k := |\pi_k|$ and $c(\pi) := (i_1, \ldots, i_k)$, regarded as a composition of $n$.

We set

$$V^I := \sum_{c(\pi) = I} P_\pi$$

considered as an element of $\mathbf{PQSym}$. If one defines $V_n = V^{(n)}$, we have

$$V_n = \sum_{a \in \mathbf{PPF}_n} F_a$$

(215)

and

$$V^I = V_{i_1} \cdot \ldots \cdot V_{i_r} = \sum_{a \in \mathbf{PPF}_I} F_a.$$

(216)

This can be reformulated as

$$\sum_{a \in \mathbf{PF}} F_a = \left(1 - \sum_{b \in \mathbf{PPF}} F_b\right)^{-1},$$

(217)
which is the lift to \( \text{PQSym} \) of the well known identity
\[
\sum_{n \geq 0} (n + 1)^{n-1} \frac{t^n}{n!} = \left( 1 - \sum_{n \geq 1} (n - 1)^{n-1} \frac{t^n}{n!} \right)^{-1}.
\]
Indeed, the map \( F_a \mapsto \frac{1}{n!} (n = |a|) \) is a character of \( \text{PQSym} \).

At this point, it is useful to observe that if \( C(w) \) denotes the descent composition of a word \( w \), the map
\[
\eta : F_a \mapsto F_{C(a)} ,
\]
which is a Hopf algebra morphism \( \text{PQSym} \to \text{QSym} \), maps \( V^I \) to the Frobenius characteristic of the underlying permutation representation of \( \mathfrak{S}_n \) on \( \text{PPF}_I \).

\[
\eta(V^I) = \sum_{a \in \text{PPF}_I} F_{C(a)} = \text{ch}(\text{PPF}_I) ,
\]
Indeed, if \( V \subseteq A^n \) is any set of words invariant under the right action of \( \mathfrak{S}_n \), the characteristic of the underlying permutation representation is always equal to \( \sum_{w \in V} F_{C(w)} \). This is because \( V \) splits as a disjoint union
\[
V = \bigsqcup_{\nu} A_{\nu} , \quad \text{where} \quad A_{\nu} = \{ w \in A^n | \text{Ev}(w) = \nu \} .
\]
The characteristic of \( A_{\nu} \) is clearly \( h_{\nu} \), and it is well known that
\[
h_{\nu} = \sum_{w \in A_{\nu}} F_{C(w)} .
\]
Actually, each \( \mathbb{C}A_{\nu} \) is also a projective \( H_n(0) \)-module with noncommutative characteristic \( \text{ch}(\mathbb{C}A_{\nu}) = S^I \), where \( I = t(\nu) \).

5.5.2. As a consequence, the number of parking functions of type \( I \) with descent composition \( J \) is equal to the scalar product of symmetric functions
\[
\langle r_J, f^I \rangle
\]
where \( f^I = f_{i_1} \cdots f_{i_r} = \text{ch}(\text{PPF}_I) \) and \( r_J \) is the ribbon Schur function. This extends Prop. 3.2.(a) of [30]. Remark that in particular, by inversion of
\[
\text{F}_{\text{PF}_n} := \sum_{a \in \text{PF}_n} F_a = \sum_{I \vdash n} V^I ,
\]
one obtains
\[
\text{F}_{\text{PPF}_n} = \sum_{I \vdash n} (-1)^{n-l(I)} \text{F}_{\text{PF}_I} ,
\]
where
\[
\text{PF}_I := \text{PF}_{i_1} \cup \text{PF}_{i_2} \cup \cdots \cup \text{PF}_{i_r} .
\]
These identities are easily visualized on the encoding of parking functions with skew Young diagrams as in [30] or in [9].
5.5.3. The transpose $\gamma^*$ of the map $\gamma$ defined in Equation (193), is the map

$$
\text{ch}: \text{CQSym} \rightarrow \text{Sym}
$$

(227)

which sends $P^\pi$ to the characteristic non-commutative symmetric function of the natural projective $H_n(0)$-module with basis $\{a \in PF_n | NC(a) = \pi\}$.

5.5.4. One can show that

$$
g := \sum_{n \geq 0} g_n := \sum_{n \geq 0} \text{ch}(F_{PF_n}) = \sum_{I} \text{ch}(V_I).
$$

(228)

is the series obtained by applying the non-commutative Lagrange inversion formula of [8, 31] to the generating series of complete functions, i.e., $g$ is the unique solution of the equation

$$
g = 1 + S_1 g + S_2 g^2 + \cdots = \sum_{n \geq 0} S_n g^n.
$$

(229)

Indeed, let $g$ be defined by (228) and set

$$
f := \sum_{n \geq 1} f_n = \sum_{n \geq 1} \text{ch}(F_{PPF_n}) = \sum_{n \geq 1} \text{ch}(V_n).
$$

(230)

Recall that the prime nondecreasing parking functions of length $n$ are obtained by concatenating a 1 to the left of a nondecreasing parking function of length $n - 1$. This gives a recurrence for $f_n$ and $g_n$. From each nondecreasing parking function of packed evaluation $J \models n - 1$, contributing a term $S^J$ to $g_{n-1}$, we get a prime nondecreasing parking function of packed evaluation $I = (j_1 + 1, j_2, \ldots, j_r) \models n$, contributing a term $S^I := \Omega S^J$ to $f_n$, where $\Omega$ is the linear operator incrementing the first part in the basis $S^J$ of $\text{Sym}$. Hence, $f_n = \Omega g_{n-1}$, and we have a system of two equations

$$
\begin{cases}
f &= \Omega g \\
g &= (1-f)^{-1},
\end{cases}
$$

(231)

which, with the initial condition $g_0 = 1$, admits a unique solution: $f_1 = \Omega g_0 = S^1$, $g_1 = f_1$, $f_2 = \Omega g_1 = S^2$, $g_2 = f_2 + f^{11} = S^2 + S^{11}$, $f_3 = \Omega g_2 = S^3 + S^{21}$, $g_3 = f_3 + f^{21} + f^{12} + f^{111} = S^3 + 2S^{21} + S^{12} + S^{111}$, and so on.

But the unique solution of (229) satisfies

$$
\Omega g = S_1 + S_2 g + S_3 g^2 + \cdots
$$

(232)

and also

$$
1 = g^{-1} + S_1 + S_2 g + S_3 g^2 + \cdots = g^{-1} + \Omega g
$$

(233)

so that if we set $f = \Omega g$, we solve (231) as well.

Remark that the commutative images of these equations give the $S_n$-characteristics of $PF_n$ and $PPF_n$, and that we have derived them from first principles, using only the multiplication rule of $\text{PQSym}$ and the notion of a prime parking function.
5.5.5. The Hilbert series of $\text{SQSym}$ revisited. It is also possible to obtain it by a character calculation, derived from the above considerations. If we decompose the noncommutative characteristic of the $H_n(0)$-module $\text{CPF}_n$ into ribbons
\[(234) \quad \text{ch}(\text{CPF}_n) = \sum_{I \vdash n} m_I R_I,\]
the number of hypoplactic classes of parking functions of length $n$ is
\[(235) \quad \sum_{I \vdash n} m_I.\]

Indeed, as already mentioned, if $V \subset A^n$ is any set of words which is a disjoint union of evaluation classes $A_{\nu}$, $\mathbb{C}V$ is a projective $H_n(0)$-module since it is the direct sum $\bigoplus \mathbb{C}A_{\nu}$, where $\text{ch}(\mathbb{C}A_{\nu}) = S^I$, with $I = t(\nu)$.

Now, each $A_{\nu}$ is itself a disjoint union of hypoplactic classes
\[(236) \quad A_{\nu,I} = \{w \in A_{\nu} | C(\text{Std}(w)^{-1}) = I\},\]
and each such class is the support of an indecomposable projective module
\[(237) \quad \text{ch}(A_{\nu,I}) = R_I.\]

By duality between the bases $F_I$ and $R_I$,
\[(238) \quad \sum m_I = \left\langle \sum F_I, \text{ch}(\text{CPF}_n) \right\rangle\]
and taking into account the identity \[(239) \quad \sum I F_I = \frac{1}{2} \left[ 1 + \prod_{i \geq 1} \frac{1 + x_i}{1 - x_i} \right] = 1 + \frac{1}{2} \sum_{n \geq 1} \sum_{k=0}^{n} e_k h_{n-k},\]
we obtain
\[(240) \quad \dim(\text{SQSym}_n) = \left\langle \sum_{I \vdash n} F_I, \text{ch}(\text{PF}_n) \right\rangle = \left\langle \frac{1}{2} \sum_{k=0}^{n} e_k h_{n-k}, \frac{1}{n+1} h_n((n+1)X) \right\rangle \]
\[= \frac{1}{2n+2} \sum_{k=0}^{n} \binom{n+1}{k} \binom{2n-k}{n-k} = s_n.\]
6. A Hopf algebra of segmented compositions

6.1. Segmented compositions. Define a \textit{segmented composition} as a finite sequence of positive integers, separated by vertical bars or commas, \textit{e.g.,} \((2, 1 | 2 | 1, 2)\).

The number of segmented compositions having the same underlying composition is obviously \(2^{l-1}\) where \(l\) is the length of the composition, so that the total number of segmented compositions of sum \(n\) is \(3^{n-1}\) since \((1 + 2)^{n-1} = 3^{n-1}\).

6.2. A Hopf subalgebra of \(\text{SQSym}^*\).

6.2.1. Hypoplactic packed words. Let \(A = \{a_1 < a_2 < \ldots\}\) be an infinite totally ordered alphabet. The \textit{packed word} \(u = \text{pack}(w)\) associated with a word \(w \in A^*\) is obtained by the following process. If \(b_1 < b_2 < \ldots < b_r\) are the letters occurring in \(w\), \(u\) is the image of \(w\) by the homomorphism \(b_i \mapsto a_i\).

A word \(u\) is said to be \textit{packed} if \(\text{pack}(u) = u\). We denote by \(\text{PW}\) the set of packed words.

Let us consider packed quasi-ribbons, that is, quasi-ribbons that are packed words. For example, the word 11324355 is a packed quasi-ribbon word since it is the reading of the following quasi-ribbon

\[
\begin{array}{cccc}
1 & 1 & 2 \\
3 & 3 \\
4 & 5 & 5 \\
\end{array}
\]

These objects are in bijection with segmented compositions. Indeed, start from a packed quasi-ribbon \(q\) and write the evaluation vector \(I\) of \(q\), putting a separator between \(I_i\) and \(I_{i+1}\) iff \(i\) and \(i + 1\) are not in the same row of \(q\). For example, the segmented composition corresponding to the quasi-ribbon of Equation (241) is 21|2|12. This element will be denoted by \(\text{ps}(q)\). The reverse bijection consists in writing the unique nondecreasing word of evaluation \(I\) and put the letters \(i + 1\) on the row next to the row of letters of \(i\) iff \(i\) and \(i + 1\) are separated by \(|\) in \(I\).

\textbf{Example 6.1.} For \(n = 2\), we have 3 packed quasi-ribbons

\[
\begin{array}{c}
11 \ 12 \ 1|2 \\
11 \ 12 \ 1 \ 2 \\
12 \ 2 \ 1 \ 2 \\
\end{array}
\]

For \(n = 3\), we have 9 packed quasi-ribbons

\[
\begin{array}{c}
111 \ 112 \ 11 \ 2 \ 122 \ 12 \ 12 \ 12 \ 123 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \\
3 \ 21 \ 2 \ 1 \ 12 \ 1 \ 2 \ 111 \ 111 \ 11 \ 11 \ 11 \ 11 \ 11 \ 11 \ 11 \\
\end{array}
\]

respectively encoded as the 9 segmented compositions:

\[
\begin{array}{c}
3 \ 21 \ 2 \ 1 \ 12 \ 1 \ 2 \ 111 \ 111 \ 11 \ 11 \ 11 \ 11 \ 11 \\
\end{array}
\]

In the sequel, we will identify packed quasi-ribbons and their encodings as segmented compositions.

6.2.2. A Hopf subalgebra of \(\text{SQSym}^*\). Let us denote by \(P(w)\) the hypoplactic \(P\)-symbol of a word \(w\) (its quasi-ribbon). The \(P\)-symbols of packed words are therefore packed quasi-ribbons.

For each packed quasi-ribbon \(I\), define

\[
P_I := \text{P}_{\text{unp}(I)} \quad \text{and} \quad Q_I := \sum_{\text{ps}(q) = I} Q_q \in \text{SQSym}^*.
\]
where \( \text{unp}(q) \) is the maximal parking quasi-ribbon for the lexicographic order of evaluation \( I \).

For example,

\[
P_{11|2} = P_{12|33}, \quad P_{112} = P_{1233}.
\]

\[
Q_{12|1} = Q_{122|3} + Q_{122|4}, \quad Q_{121} = Q_{1223} + Q_{1224}.
\]

\[
Q_{12|21} = Q_{122|334} + Q_{122|335} + Q_{122|336} + Q_{122|445} + Q_{122|446}.
\]

**Theorem 6.2.** The \( P_I \) span a Hopf subalgebra \( \text{SCQSym} \) of \( \text{SQSym} \). This subalgebra is also the quotient of \( \text{SCQSym} \) by the relations \( P_q = P_{q'} \) if \( w \) and \( w' \) have same packed word.

The \( Q_I \) span a Hopf subalgebra \( \text{SCQSym}^* \) of \( \text{SQSym}^* \) and one has

\[
\text{dim } \text{SCQSym}_n = 3^n - 1,
\]

for \( n \geq 1 \).

**Proof –** The product and coproduct rules of the \( P \) of \( \text{SQSym} \) imply that the \( P \) of \( \text{SQSym}^* \) span a Hopf subalgebra of \( \text{SQSym} \). It is also obvious that both operations are compatible with the relations \( P_q = P_{q'} \) if \( q \) and \( q' \) have same packed word, so that \( \text{SCQSym} \) is a Hopf quotient of \( \text{SQSym} \). Then, by the usual standard argument, we have that the \( Q \) are a basis of \( \text{SCQSym}^* \).

The dimension of \( \text{SCQSym}_n \) is given by the number of segmented compositions, that is \( 3^n - 1 \).

To describe the product and coproduct rules of both bases, we need a new operation on segmented compositions.

Recall that the product of the monomial basis \( M_I \) on \( \text{QSym} \) is defined with the augmented shuffle of two compositions recursively defined as

\[
(I_1, I') \uplus (J_1, J') = I_1(I' \uplus (J_1, J')) + J_1((I_1, I') \uplus J') + I_1 + J_1(I' \uplus J'),
\]

with the extra condition \( I' \uplus \epsilon = \epsilon \uplus I' \) where \( \epsilon \) is the empty word.

This construction is generalized to \( \text{SCQSym} \) as follows: the *augmented shuffle* \( I' \uplus I'' \) of two segmented compositions is obtained from the usual augmented shuffle \( I' \uplus I'' \) of their underlying compositions by inserting bars between two blocks \( I_k \) and \( I_{k+1} \) of a composition \( I \) iff

- \( I_k \) and \( I_{k+1} \) both contains elements coming from \( I' \) and those elements were separated by a bar,
- \( I_k \) and \( I_{k+1} \) both contains elements coming from \( I'' \) and those elements were separated by a bar,
- \( I_k \) contains an element coming from \( I'' \) and \( I_{k+1} \) contains an element coming from \( I' \).

For example,

\[
1 \uplus 2|1 = 12|1 + 3|1 + 2|1 + 2|11 + 2 + 2|1|1, \quad 1 \uplus 21 = 212 + 132 + 2|11 + 2|2 + 21|1.
\]
Theorem 6.3. The product and coproduct rules for the $P_I$ and the $Q_I$ are

\begin{equation}
P_I P'_I = P_{I|I'} + P_{I|I''}.
\end{equation}

\begin{equation}
\Delta P_I = \sum_{I' \subseteq I''} P_{I'} \otimes P_{I''}.
\end{equation}

\begin{equation}
Q_I Q'_I = \sum_{I' \subseteq I''} Q_I.
\end{equation}

\begin{equation}
\Delta Q_I = \sum_{I = I' \cap I'' \text{ or } I = I'|I''} Q_I \otimes Q_{I''}.
\end{equation}

Proof – The product of two $P$ of $\text{SCQSym}$ directly comes from the product of two $P$ of $\text{SQSym}$. The coproduct of a $Q$ then comes by duality. The shifted shuffle of two compositions then obviously give all the possible evaluations of the convolution of two parking functions of the given evaluations. Finally, the rules to place the bars correspond to the different cases where there is an $i$ to the right of an $i + 1$ in one of the resulting parking functions. 

For example,

\begin{equation}
P_{12|1} P_{2|11} = P_{12|12|11} + P_{12|1|2|11}.
\end{equation}

\begin{equation}
\Delta P_{12|1} = 1 \otimes P_{12|1} + P_1 \otimes (P_{12} + P_{2|1}) + P_{11} \otimes (P_{1|1} + P_2) + P_{1|1} \otimes P_2 + (P_{111} + P_{11|1}) \otimes P_1 + P_{12|1} \otimes 1.
\end{equation}

\begin{equation}
Q_1 Q_{2|1} = Q_{3|1} + Q_{12|1} + Q_{2|2} + Q_{2|1|1} + Q_{2|1|1}.
\end{equation}

\begin{equation}
Q_1 Q_{11|1} = Q_{111|1} + Q_{21|1} + Q_{11|11} + Q_{12|1} + Q_{11|1} + Q_{11|2} + Q_{11|11}.
\end{equation}

\begin{equation}
Q_{1|1} Q_{1|1} = 2Q_{1|11|1} + Q_{1|1|11} + Q_{11|1|1} + Q_{11|1|1} + Q_{2|1} + Q_{2|1} + 2Q_{2|2|1} + Q_{1|1|2} + Q_{11|2}.
\end{equation}

\begin{equation}
\Delta Q_{12|1} = 1 \otimes Q_{12|1} + Q_1 \otimes Q_{2|1} + Q_{12} \otimes Q_1 + Q_{12|1} \otimes 1.
\end{equation}
6.3. Algebraic structure of SCQSym and SCQSym*. The algebra SCQSym* is not free for exactly the same reason SQSym* is not: one has the relation

\[ Q_1(Q_2 + Q_{11}) = (Q_2 + Q_{11})Q_1. \]

Let us now move to SCQSym.

Since SCQSym is the subalgebra of SQSym spanned by the parking quasi-ribbons that are maximally unpacked, and since SQSym is free, SCQSym is automatically free and generated by the maximal elements of PQS. For example, the generators of SCQSym for \( n \leq 4 \) are

\[
\begin{align*}
\{1\}; \quad & \{11, 1|2\}; \quad \{111, 11|3, 1|22, 1|2|3\}; \\
\{1111, 111|4, 1|33, 11|3|4, 1|222, 1|22|4, 1|2|33, 1|2|3|4\},
\end{align*}
\]

that can be rewritten on segmented compositions as

\[
\begin{align*}
\{1\}; \quad & \{2, 1|1\}; \quad \{3, 2|1, 1|2, 1|1|1\}; \\
\{4, 3|1, 2|2, 2|11, 1|3, 1|2|1, 1|1|2, 1|1|1\},
\end{align*}
\]

By the same argument on generating series as in SQSym, one finds that there are \( 2^{n-1} \) generators of SCQSym of degree \( n \). And indeed, these generators are in natural bijection with compositions of \( n \) since they have separators between all elements.

The next proposition summarizes the structures SCQSym and SCQSym*.

**Proposition 6.4.** The algebra SCQSym is a Hopf algebra of dimension \( 3^{n-1} \). It is not self-dual since SCQSym is free as an algebra whereas SCQSym* is not. Moreover, SCQSym is free over a graded alphabet labelled by all compositions.

6.4. Primitive Lie algebras of SCQSym*. Since SCQSym* contains QSym as a subalgebra, its primitive Lie algebra cannot be free and one easily finds:

\[ [Q_1, Q_{12} - Q_{1|2} + Q_{11}] = 0. \]

6.5. A quasi-ribbon basis of SCQSym*. The elements \( Q_1 \) are segmented analogs of the basis \((M_I)\) of QSym. So we can define analogs of the \((F_I)\) of QSym in the same way as we did in SQSym*.

Recall that the refinement order denoted by \( \succeq \) on compositions is such that \( I = (i_1, \ldots, i_k) \succeq J = (j_1, \ldots, j_l) \) iff \( \{i_1, i_1 + i_2, \ldots, i_1 + \cdots + i_k\} \) contains \( \{j_1, j_1 + j_2, \ldots, j_1 + \cdots + j_l\} \). In this case, we say that \( I \) is finer than \( J \). For example, \( (2, 1, 2, 3, 1, 2) \succeq (3, 2, 6) \).

Let \( I = (I_1 | \cdots | I_r) \) and let

\[ F_1 := \sum_{I'} Q_{I'}, \]

where the sum is taken over sequences of compositions \((I'_1, \ldots, I'_r)\) where \( I'_k \) is finer than \( I_k \). For example, one has

\[ F_{2|2} = Q_{11|11} + Q_{2|1|1} + Q_{11|2} + Q_{2|2}. \]

By a triangularity argument, we have

**Theorem 6.5.** The \( F_1 \) form a basis of SCQSym*.
The basis $F_I$ satisfies a product formula similar to the $F_I$ of $QSym$ (whence the choice of notation). To state it, we need an analogue of the shifted shuffle.

A segmented permutation is a permutation with separators. The descent composition $C(\alpha)$ of a segmented permutation $\alpha$ is a segmented composition: it is the sequence of descent compositions of the blocks of $\alpha$ separated by bars.

For example, $\alpha = 248|517|3$ is a segmented permutation whose descent composition is $(3|12|1)$.

The shifted shuffle $\alpha \mathcal{W} \beta$ of two segmented permutations is obtained from the usual shifted shuffle $\sigma \mathcal{W} \tau$ of the underlying permutations $\sigma$ and $\tau$ by inserting bars

- after each descent which was originally followed by a bar in $\alpha$ or in the shift of $\beta$,
- after each descent created by the shuffling process.

For example,

\begin{equation}
2|1 \mathcal{W} 21 = 2|143 + 24|13 + 243|1 + 4|2|13 + 4|23|1 + 43|2|1.
\end{equation}

**Theorem 6.6.** Let $I'$ and $I''$ be two segmented compositions and let $\alpha$ and $\beta$ be any two segmented permutations whose descent compositions are respectively $I'$ and $I''$. Then

\begin{equation}
F_{I'} F_{I''} = \sum_I F_I,
\end{equation}

where the sum runs over the descent compositions of the segmented permutations $\gamma$ occurring in $\alpha \mathcal{W} \beta$.

**Proof.** The product of the $Q$ can be easily rewritten in terms of of segmented permutations as follows: associate with two segmented compositions $I'$ and $I''$ two segmented permutations $\alpha$ and $\beta$ such that $C(\alpha) = I'$ and $C(\beta) = I''$. Consider the elements in the shifted shuffle $\alpha \mathcal{W} \beta$ such that two elements in increasing order of $\alpha$ (resp. $\beta$) not separated by a bar have no $\beta$ (resp. $\alpha$) between them. From all those elements, build the set of all segmented permutations with at least those bars and at most new bars between the elements of $\alpha$ and the elements of $\beta$. For all those segmented permutations, compute first their descent compositions and then remove the bars added lately. The set of the descent compositions obtained by this process correspond to the product $Q_{\alpha} Q_{\beta}$.

Express both $F$ in the $Q$ basis and group the terms in their product where the letters of $\alpha$ have been inserted at the same place. By construction, the lexicographically minimum element $s$ in each group with the smallest number of bars belongs to $\alpha \mathcal{W} \beta$. Now, given the product rule of the $Q$, we have all elements obtained from $s$ by adding any number of bars, thus $F_s$.

For example,

\begin{equation}
F_1 F_{1|1} = F_{2|1} + F_{1|2|1} + F_{11|2} + F_{11|1|1}.
\end{equation}

\begin{equation}
F_1 F_{2|1} = F_{3|1} + F_{1|2|1} + F_{2|2} + F_{2|1|1}.
\end{equation}
Theorem 6.7. Let $I$ be a segmented composition. Then
\begin{equation}
\Delta F_I = \sum_{I=I'\downarrow I'' \text{ or } I=I'\triangleright I''} F_{I'} \otimes F_{I''},
\end{equation}
where $(I_1, \ldots, I_k) \triangleright (I'_1, \ldots, I'_l)$ denotes the segmented composition $(I_1, \ldots, I_{k-1}, I_k \triangleright' I'_1, I'_2, \ldots, I'_l)$ where $(i_1, \ldots, i_k) \triangleright' (j_1, \ldots, j_l) = (i_1, \ldots, i_{k-1}, i_k + j_1, j_2, \ldots, j_l)$.

Proof – This result will follow by duality from the considerations in the forthcoming section.

6.6. A ribbon basis of $\text{SCQSym}$. Let $(R_I)$ be the dual basis of $(F_I)$. Then

Proposition 6.8. The $(R_I)$ are a basis of $\text{SCQSym}$ related to the $P$ by
\begin{equation}
P_I =: \sum_I R_I,
\end{equation}
where the sum is taken over sequences of segmented compositions $(I'_1|\ldots|I'_r)$ where $I_k$ is finer than $I'_k$.

Since $\text{SCQSym}$ is a subalgebra of $\text{SQSym}$ such that the image of $P_I$ is $P_q$, given both orders on parking quasi-ribbons and on segmented compositions, the image of $R_I$ is $R_q$. This remark immediately proves the product rule of the $R$, whereas its coproduct rule comes from the duality between the $(R)$ and the $(F)$.

Theorem 6.9. The product and coproduct rules of $R$ are
\begin{equation}
R_I \cdot R_{I'} = R_{I \cdot I'} + R_{I' \downarrow I'} + R_{I' \triangleright I'}.
\end{equation}
\begin{equation}
\Delta R_I = \sum_{I \in I' \circ I''} R_{I'} \otimes R_{I''}.
\end{equation}

From Equation (274), we see that $\text{SCQSym}$ is the free cubical trialgebra on one generator, see \cite{22}.
7. Appendix

7.1. Relations with free probability theory. The free cumulants $R_n$ of a probability measure $\mu$ on $\mathbb{R}$ are defined (see e.g., [35]) by means of the generating series of its moments $M_n$

\begin{equation}
G_\mu(z) := \int_\mathbb{R} \frac{\mu(dx)}{z-x} = z^{-1} + \sum_{n\geq 1} M_n z^{-n-1}
\end{equation}

as the coefficients of its compositional inverse

\begin{equation}
K_\mu(z) := G_\mu(z)^{-1} = z^{-1} + \sum_{n\geq 1} R_n z^{-n-1}.
\end{equation}

It is in general instructive to interpret the coefficients of a formal power series as the specializations of the elements of some generating family of the algebra of symmetric functions. In this context, it is the interpretation

\begin{equation}
M_n = \phi(h_n) = h_n(A)
\end{equation}

which is relevant. Indeed, the process of functional inversion (Lagrange inversion) admits a simple expression within this formalism (see [23], ex. 24 p. 35). If the symmetric functions $h_n^*$ are defined by the equations

\begin{equation}
u = tH(t) \iff t = uH^*(u)
\end{equation}

where $H(t) := \sum_{n\geq 0} h_n t^n$, $H^*(u) := \sum_{n\geq 0} h_n^* u^n$, then, using the $\lambda$-ring notation,

\begin{equation}h_n^*(X) = \frac{1}{n+1} (-1)^n e_n((n+1)X) := \frac{1}{n+1} [t^n] E(-t)^{n+1}
\end{equation}

where $E(t)$ is defined by $E(t)H(t) = 1$. This defines an involution $f \mapsto f^*$ of the ring of symmetric functions.

Now, if one sets $M_n = h_n(A)$ as above, then

\begin{equation}G_\mu(z) = z^{-1} H(z^{-1}) = u \iff z = K_\mu(u) = \frac{1}{u} E^*(-u) = u^{-1} + \sum_{n\geq 1} (-1)^n e_n^* u^{-n-1}.
\end{equation}

Hence,

\begin{equation}R_n = (-1)^n e_n^*(A).
\end{equation}

7.2. An exercise on permutation representations. It follows immediately from the explicit formula (see [23] p. 35)

\begin{equation}-e_n^* = \frac{1}{n-1} \sum_{\lambda \vdash n} \binom{n-1}{l(\lambda)} \left( m_1, m_2, \ldots, m_n \right) e_\lambda
\end{equation}

(where $\lambda = 1^{m_1} 2^{m_2} \cdots n^{m_n}$) that $-e_n^*$ is Schur positive. Clearly, $-e_n^*$ is the Frobenius characteristic of a permutation representation $\Pi_n$, twisted by the sign character. Let us set

\begin{equation}(-1)^{(n-1)} R_n = -e_n^* =: \omega(f_n)
\end{equation}
so that
\begin{equation}
\label{eq:fn}
f_n := \sum_{\lambda \vdash n} \frac{1}{n-1} {n-1 \choose l(\lambda)} \left( n \times m_1, m_2, \ldots, m_n \right) h_\lambda
\end{equation}
and \( f_n \) is the character of \( \Pi_n \).

The problem of constructing such a representation had been raised by Kerov in 1995. We shall see that \( \Pi_n \) corresponds to prime parking functions. We note that our construction of \( \Pi_n \) is merely a variation about previously known results (see in particular [18, 30]). However, since this is the precise version of the question that led us to the Hopf algebra of parking functions and some of its properties, we decided to include its discussion.

7.3. Solution of the exercise.

**Proposition 7.1.** The Frobenius characteristic of the permutation representation of \( \text{PPF}_n \) is \( f_n \).

**Proof** – We first show that the number of nondecreasing prime parking functions whose reordered evaluation is a given partition \( \lambda \) is equal to

\begin{equation}
\label{eq:primefn}
\frac{1}{n-1} {n-1 \choose l(\lambda)} \left( n \times m_1, m_2, \ldots, m_n \right)
\end{equation}

where \( \lambda = 1^{m_1}2^{m_2} \cdots n^{m_n} \) (see Equation \ref{eq:fn}). Indeed, this number corresponds to the number of ways of putting the \( \lambda_i \) over \( n-1 \) places in a circle. For such a placement \( P \), number in all possible clockwise ways the places of the circle and consider the \( n-1 \) nondecreasing words \( i^{c_i} \) where \( c_i \) is the content of place number \( i \). Then, thanks to [5], there is exactly one of those words that is a prime parking function.

For example, with \( \lambda = (3, 2, 2) \), there are 10 possible circles. Consider the circle where the 3 is followed by one empty place, a 2, two empty places, and the last 2. Then the six nondecreasing words are:

\begin{equation}
\label{eq:example}
1113366, 2255666, 1144555, 3344666, 2233555, 1122244,
\end{equation}

Now, since all permutations of a nondecreasing prime parking function are parking functions, the Frobenius characteristic of the permutation representation of this set of words is \( h_\lambda \). It then easily comes that

\begin{equation}
\label{eq:equality}
\text{ch}(\text{PPF}_n) = f_n,
\end{equation}

so that \( \Pi_n \) can be identified with \( \text{PPF}_n \), as claimed before. \( \blacksquare \)
References

[1] M. Aguiar, N. Bergeron, and F. Sottile, Combinatorial Hopf Algebras and generalized Dehn-Sommerville relations, Compo. Math., to appear.
[2] C. Athanasiadis, A simple bijection for regions of the Shi arrangement of hyperplanes, Discrete Math. 204 (1999), 27–39.
[3] P. Biane, Parking functions of types A and B, Electronic J. Combin. 9 (2002), # 7.
[4] G. Duchamp, F. Hivert, and J.-Y. Thibon, Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Internat. J. Alg. Comput. 12 (2002), 671–717.
[5] A. Dvoretzky and T. Motzkin, A problem of arrangements, Duke Math. J. 14 (1947), 303–313.
[6] L. Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions, math.RA/0505207.
[7] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-Y. Thibon, Noncommutative symmetric functions, Adv. in Math. 112 (1995), 218–348.
[8] I. Gessel, Noncommutative Generalization and q-analog of the Lagrange Inversion Formula, Trans. Amer. Math. Soc. 257 (1980), no. 2, 455–482.
[9] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232.
[10] M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Alg. Combin. 3 (1994), 17–76.
[11] F. Hivert, Combinatoire des fonctions quasi-symétriques, Thèse de Doctorat, Marne-La-Vallée, 1999.
[12] F. Hivert, J.-C. Novelli, and J.-Y. Thibon, The algebra of binary search trees, Theoretical Computer Science 339 (2005), 129–165.
[13] F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Commutative Hopf algebras of permutations and trees, preprint 2005, math.CO/0502456.
[14] F. Hivert and N. Thiéry, MuPAD-Combinat, an open-source package for research in algebraic combinatorics, Sém. Lothar. Combin. 51 (2004), 70p. (electronic).
[15] R. Holtkamp, On Hopf algebra structures over free operads, math.RA/0504531.
[16] L. H. Kalikow, Enumeration of parking functions, allowable permutation pairs, and labelled trees, PhD Thesis, Brandeis University, 1999.
[17] D. Krob and J.-Y. Thibon, Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q = 0, J. Alg. Comb. 6 (1997), 339–376.
[18] C. Lenart, Lagrange inversion and Schur functions, J. Algebraic Combin. 11 (2000), 1, 69–78.
[19] J.-L. Loday, Dialgebras, "Dialgebras and related operads", Lecture Notes in Math. 1763, Springer, Berlin, (2001), 7–66.
[20] J.-L. Loday, Parking functions and triangulation of the associahedron, preprint, 2005.
[21] J.-L. Loday and M. O. Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998) n. 2, 293–309.
[22] J.-L. Loday and M. O. Ronco, Trialgebras and families of polytopes, Contemporary Mathematics 346 (2004).
[23] I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, 1995.
[24] C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), 967–982.
[25] T. V. Narayana, Lattice Path Combinatorics with Statistical Applications, Univ. Toronto Press (1979), 100–101.
[26] J.-C. Novelli, On the hypoplactic monoid, Disc. Math. 217, 2000, 315–336.
[27] J.-C. Novelli and J.-Y. Thibon, A Hopf algebra of parking functions, Proc. FPSAC’04, Vancouver.
Institut Gaspard Monge, Université de Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée cedex 2, FRANCE
E-mail address, Jean-Christophe Novelli: novelli@univ-mlv.fr
E-mail address, Jean-Yves Thibon: jyt@univ-mlv.fr