Determining the Hubble Constant without the Sound Horizon: Measurements from Galaxy Surveys

Oliver H. E. Philcox, Blake D. Sherwin, Gerrit S. Farren and Eric J. Baxter

1Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA
2Department of Astrophysical Sciences and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
3Kavli Institute for Cosmology, Cambridge University, Kavli Institute for Cosmology, Cambridge, Cambridge CB3 0HA, UK
4Department of Physics and Astronomy, Haverford College, Haverford, PA 19041, USA
5Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

Two scales are encoded in the galaxy power spectrum: the sound horizon at recombination and the horizon at matter-radiation equality. By combining BOSS DR12 galaxy power spectra with the theoretical size of the sound horizon scale at angular equality, we derive information from the sound-horizon at recombination, including CMB and calibrated BAO, usually independent of early-universe physics.

How do galaxy surveys measure the Hubble constant? Recent analyses have determined H_0 by comparing the angular scale of Baryon Acoustic Oscillations (BAO) with the theoretical size of the sound horizon scale at decoupling, r_d. A second ‘standard ruler’ exists however; the equality scale, i.e., the horizon wavenumber at matter-radiation equality. In this Letter, we explore the extent to which galaxy surveys can use this scale to place constraints on H_0 that are independent of the sound horizon.

Until recently, precise H_0 constraints have stemmed from two sources: the Cepheid-calibrated local distance ladder [e.g., 1] and anisotropies in the cosmic microwave background (CMB) [e.g., 2]. Today, a host of additional constraints are available, arising from data-sets such as galaxy and Lyman-alpha (Lyα) BAO [e.g., 3–8], strong gravitational lensing [e.g., 9, 10], and gravitational wave observations [11, 12]. Broadly, these fall into two camps: ‘indirect’ measurements, which require a full cosmological model for interpretation; and ‘direct’ probes, independent of early-universe physics.1 Probes in the former category, including CMB and calibrated BAO, usually derive information from the sound-horizon at recombination,2 calculated assuming ΛCDM. Previously, a tension between direct and indirect measurements seemed apparent; however, with the latest results from the TRGB-calibrated distance ladder [13] and strong-lensing [10], this distinction has become less clear. Nevertheless, there remains significant disagreement between indirect probes and the SH0ES distance ladder measurements [1], reaching a significance of $\sim 5\sigma$ [14].

Two primary possibilities exist to resolve this: (a) unresolved systematics [e.g., 15]; or (b) incompleteness of the cosmological model. For the latter, a wide variety of new-physics models have been proposed; many of these resolve the tension by providing mechanisms to reduce the sound horizon at recombination. As yet, there is no generally accepted solution.

Ref. [16] proposed a new method to shed light on the discrepancy, using CMB lensing to measure H_0 without the sound horizon scale; constraints were instead derived from the angular equality scale, L_{eq}. Being simply the projected wavenumber of modes entering the horizon at $z_{eq} \sim 3400$, this produces a definitive feature in the convergence spectrum, and can be used as a standard ruler. Importantly, the equality scale is sensitive to different redshifts than those of CMB and BAO analyses ($z \sim 1100$). This yields an important test: inconsistency of equality- and recombination-based H_0 constraints would give evidence for physics beyond ΛCDM 'recombination' and 'decoupling'; we thus use the terms interchangeably.

1 These are sometimes classified as ‘early’ and ‘late’ measurements respectively, but the terminology can be misleading, since an ‘early’ measurement does not necessarily involve high-redshift data-sets.
2 For the purposes of this Letter, there is little difference between...
operating at $z \gtrsim 10^3$. Combining Planck lensing with cosmological priors on Ω_m and A_s, Ref.[16] obtained $H_0 = 73.8 \pm 5.1$ km s$^{-1}$Mpc$^{-1}$; unfortunately, the projected improvements from future surveys were modest owing to the intrinsically large cosmic variance. Since the number of modes available to a 3D galaxy survey is typically much greater than for CMB lensing, one might expect stronger constraints on H_0 from this avenue: indeed, this was the primary source of H_0 information from galaxy surveys two decades ago [e.g., 17, 18]. In this Letter, we perform such a measurement with modern surveys.

EQUALITY AND THE SOUND HORIZON

A glance at the matter power spectrum reveals two features: the broadband peak at wavenumber $k_{\text{eq}} \sim 10^{-2}h\text{Mpc}^{-1}$ and the oscillatory behavior with period $\Delta k \sim 0.05h\text{Mpc}^{-1}$. The behavior around k_{eq} is well known, arising from the transition between modes that enter the horizon in radiation-dominated and matter-dominated epochs. In galaxy surveys, resolving the peak is difficult (though possible with experiments such as SPHEREx [19]), due to relativistic effects and integral constraints [e.g., 20], alongside cosmic variance. More generally, k_{eq} information is encoded in the shape of the power spectrum, and can be inferred from smaller scales, facilitated in part by the addition of amplitude and bias information from redshift-space distortions or priors. In ΛCDM, the equality scale is simply related to cosmological parameters;

$$k_{\text{eq}} = (2\Omega_{cb} H_0^2 z_{\text{eq}})^{1/2}, \quad z_{\text{eq}} = 2.5 \times 10^4 \Omega_{cb} h^2 \Theta_{2.7}^{-4/3} \quad (1)$$

[21, 22], where $\Theta_{2.7} \equiv T_{\text{CMB}}/(2.7\text{K})$ is the temperature of the CMB monopole, $\Omega_{cb} \equiv \Omega_{cdm} + \Omega_b$ (assuming neutrinos to be relativistic at z_{eq}), and $h \equiv H_0/(100$ km s$^{-1}$ Mpc$^{-1}$). Measuring k_{eq} in $h\text{Mpc}^{-1}$ units probes the combination $\Omega_{cb} h \equiv (\omega_{cdm} + \omega_b)/h$, or, marginalizing over $\omega_b, \omega_{cdm}/h$. Given k_{eq} and a probe of Ω_{cb}, we can thus solve for the Hubble constant.

Complicating this is the second scale: the sound horizon at z_d, the redshift of photon-baryon decoupling. This is given by

$$r_d \equiv r_s(z_d) = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

$$\approx 55.154h \exp \left[-72.3(\omega_\nu + 0.0006)^2 \right] \frac{0.2535}{\omega_b^2} \frac{1.2807}{\omega_b} h^{-1}\text{Mpc} \quad (2)$$

[23], where $H(z)$ and $c_s(z)$ are the Hubble parameter and sound-speed. r_d sources two main features: the BAO wiggles with $\Delta k \approx 0.05h$ Mpc$^{-1}$, and a small-scale suppression of power on the baryonic Jeans scale [24]. Both have amplitudes scaling as ω_b/ω_{cb} and could be used to infer the physical scale of the sound horizon. In combination with the measured angular scale, this constrains H_0. From (2), such measurements carry the degeneracy $\omega_{cdm} \propto h^4$ (after ω_b marginalization), and a measurement using the Jeans suppression is degenerate with n_s.

An H_0 measurement from the full-shape (FS) of the galaxy power spectrum will include information from both r_d and k_{eq}^{-1} standard rulers, whilst BAO analyses are sensitive only to r_d. To extract only information deriving from equality, one may wish to ‘marginalize over the sound horizon’; this is non-trivial since r_d is not a direct input to any Boltzmann code, emerging only following simplifications such as tight-coupling. Here, we limit the H_0 information arising from the sound horizon simply by removing the usual informative prior on ω_b, and thus the external r_d calibration. For future data this may be insufficient: the BAO features and Jeans suppression can, in principle, calibrate each other, sourcing an effective sound-horizon prior.

DATA-SETS AND ANALYSIS

Redshift-Space Power Spectrum

Our main observational data-set is the twelfth data release (DR12) [3] of the Baryon Oscillation Spectroscopic Survey (BOSS), part of SDSS-III [25, 26]. Split across two redshift bins in each of the Northern and Southern galactic caps, the survey contains $\sim 1.2 \times 10^6$ galaxy positions with a total volume of $5.8 h^{-3}\text{Gpc}^3$. Here, we use the (unreconstructed) power spectrum monopole and quadrupole, each in 48 k-bins for $k \in [0.01, 0.25]/h\text{Mpc}^{-1}$, with covariances generated from a suite of 2048 MultiDark-Patchy mocks [27, 28], using the cosmology $\{\Omega_m = 0.30715, \Omega_b = 0.048, \sigma_8 = 0.8288, h = 0.6777, \sum m_\nu = 0\text{eV}\}$.

To extract maximal shape information, we model $P_r(k)$ with the Effective Field Theory of Large Scale Structure, following Ref. [29] (see also Ref. [30]). This includes one-loop perturbation theory, infra-red resummation of long-wavelength modes, and counterterms parametrizing the impact of small-scale physics. The model is convolved with the survey window function, and incorporates Alcock-Paczynski (AP) effects [31]. The procedure has been used in a number of works [22, 32–35], including a rigorous test on huge volume simulations [36]. Here, we

3 An ad-hoc rescaling of r_d would be dangerous, as it would not conserve the stress-energy $T_{\nu\nu}$; instead, one should self-consistently add any new physics model to the perturbation equations.

4 beburl.github.io/hub/boss_papers.html

5 We use a fiducial value of $\Omega_m = 0.31$ to apply the AP rescaling to the BOSS data.
utilize the CLASS-PT implementation [37], with MCMC performed using montepython v3.3 alongside heavily optimized public likelihoods.\footnote{\url{github.com/michalychforever/ls_monterthon}.}

We vary the parameter set
\begin{equation}
\{ h, \omega_{cdm}, \omega_b, A_s, A_{s, Planck}, n_s, \sum m_{\nu} \} \times \{ b_1, b_2, b_{G_2}, b_4, c_{s,0}, c_{s,2}, P_{shot} \}
\end{equation}

where $A_{s, Planck} = 2.0989 \times 10^{-9}$, and $\sum m_{\nu}$ is the summed mass of three degenerate neutrinos. To aid convergence, we add an uninformative Gaussian prior on ω_b of width 50\% and flat priors of $[0, 0.18]$ eV and $[0.87, 1.07]$ to $\sum m_{\nu}$ and n_s respectively. The second line gives nuisance parameters of the EFT model, which are allowed to vary independently in each of the four data patches, subject to the weak Gaussian priors of Ref.\cite{32}. Those entering the likelihood linearly (b_4, $c_{s,0}$, $c_{s,2}$ and P_{shot}) are marginalized analytically\cite{35, 38, 39}, reducing the total number of sampled parameters to $6 + 3 \times 4 = 18$.

Later, we will require mock data. This is generated from the theory model using the baseline cosmology \{$\omega_{cdm} = 0.118, \omega_b = 0.022, A_s/A_{s, Planck} = 1.025, h = 0.6777, n_s = 0.9649, \sum m_{\nu} = 0.06 \text{ eV}$\}, similar to the MultiDark-Patchy parameters, but with massive neutrinos. Three samples are created: (1) fiducial; (2) with negligible BAO wiggles; and (3) with fewer baryons (to reduce both BAO and baryon damping effects). For each, we fit nuisance parameters to the observed $P_l(k)$ and do not include noise. Set (2) is generated by increasing the BAO damping scale by 1000\times, whilst (3) reduces ω_b by 10\times relative to the fiducial value, keeping ω_{cdm} and A_s fixed.

Cosmological Priors

Equality based measurements of H_0 are assisted by information on A_s (to constrain k_{eq}) and Ω_b (to break the $H_0 - \Omega_b$ degeneracy).\footnote{Knowledge of b_1 is also useful; this is provided by redshift-space distortions.} For the former, we employ a weak Gaussian prior of $A_s = (2.11 \pm 0.36) \times 10^{-9}$, centered on the Planck best-fit\cite{2}. The r_d-dependence of this is minimal, since the CMB measurement is limited by the optical depth and hence derives from very large scales; however, to be maximally conservative, we choose the prior width to be 10\times that of the Planck constraint.

For the Ω_m prior, we principally use the marginalized result from Pantheon supernovae: $\Omega_m = 0.298 \pm 0.022$\cite{40}. This cannot constrain H_0 directly, since the supernova absolute magnitudes are unknown. An alternative source of Ω_m information is given by uncalibrated BAO measurements. A standard BAO analysis proceeds by comparing the radial and angular oscillatory scales to the ΛCDM sound horizon, providing information on Ω_m and $H_0 r_d$ through the evolution of the angular diameter distance and Hubble parameter \cite{e.g., 4]. To remove the dependence on r_d, we rescale the sound horizon by a free parameter α_{r_d}. In this formalism, no knowledge of recombination physics is required, just the existence of a time-independent correlation function peak. Here, we use a range of galaxy BAO measurements from BOSS DR7 6dF and main galaxy samples\cite{41, 42}, and eBOSS DR14 Lyman-alpha measurements, (including cross-correlations with quasars)\cite{43, 44}. We exclude the BOSS DR12 BAO measurements, since they are covariant with the FS data-set, which would cause additional complications. Alone, the uncalibrated BAO give the constraint $\Omega_m = 0.308^{+0.025}_{-0.035}$.

Additional Data-sets

H_0 constraints from CMB lensing were demonstrated in Ref.\cite{16}. Due to the presence of projection integrals, the measurements are relatively free from r_d-calibration, even with a restrictive prior on ω_b. The lensing power spectrum measures the combination $\Omega_{m, h}^2$, with a different scaling than that of k_{eq}; thus we may expect some degeneracy breaking when this is combined with FS measurements. Here, we use the public Planck 2018 CMB-marginalized lensing likelihood\cite{45}, assuming zero covariance between this and the BOSS data.\footnote{Technically, some correlation will be present since the probes partially overlap. Since the lensing kernel is much broader in redshift space than the BOSS selection function, and CMB lensing is only sensitive to modes that are perpendicular to the line-of-sight, we expect this to be small.} For analyses including the lensing data-set, we impose a twice tighter prior on A_s of $(2.11 \pm 0.18) \times 10^{-9}$ (as in Ref.\cite{16}), to break the significant $A_s - L_{eq}$ degeneracy.

RESULTS

Constraints from current data-sets

Fig. 1 shows the cosmological constraints obtained. Combining BOSS power spectra with Pantheon Ω_m priors, we obtain $H_0 = 65.1^{+3.0}_{-4.4}$ km s$^{-1}$ Mpc$^{-1}$, below the best-fit SH0ES value at a 95\% confidence level (including non-Gaussianity of the posterior), even though our analysis does not depend on sound-horizon physics.\footnote{This corresponds to $k_{eq} = (1.40^{+0.10}_{-0.14}) \times 10^{-2}$ h Mpc$^{-1}$.} As expected, the ω_b posterior is broad, since, unlike in previous analyses, we have not imposed a restrictive prior.
There is a strong $h - \omega_{cdm} - \omega_b$ degeneracy, close to the expected linear relationship, rather than the $\omega_{cdm} \propto h^4$ scaling of r_d-calibration. The $\omega_b - \omega_{cdm}$ degeneracy indicates that a small amount of ω_{cdm} information comes from the BAO wiggles, though, as argued below, we do not expect this to inform our H_0 constraints. We note little dependence on the A_s prior, with $< 10\%$ degradation in σ_{H_0} if this is removed; this is expected since A_s can be measured from the power spectrum through the loop corrections.

Using uncalibrated BAO instead of the Pantheon sample gives a similar posterior; $H_0 = 65.6^{+3.4}_{-5.5}$ km s$^{-1}$Mpc$^{-1}$. This is unsurprising; the sound horizon rescaling parameter, α_{rd}, removes the H_0 information, and the marginalized Ω_m constraint from BAO alone is similar to Pantheon. Interestingly, the α_{rd} posterior is 0.993 ± 0.016; the combination of equality-based power spectra and (independent) uncalibrated BAO prefer a sound horizon consistent with ΛCDM.

Combination with Planck lensing shifts the H_0 posterior to larger values, with a marginalized limit of $70.6^{+3.7}_{-5.0}$ km s$^{-1}$Mpc$^{-1}$. Due to the addition of galaxy information, this is somewhat tighter than the lensing-only constraints of Ref. [16], though there is no improvement relative to the $P(k)$ posteriors, due to the broad error bars on the CMB lensing measurements and similar degeneracy directions. Note that the lensing-only constraint ($H_0 = 73.4 \pm 6.1$ km s$^{-1}$Mpc$^{-1}$) is shifted somewhat from that of Ref. [16], due to slightly different prior choices.

Dependence on r_d

We now demonstrate that our H_0 constraints do not receive significant information from the sound horizon, using three tests: repeating the analysis on mock data-sets without baryon oscillations and damping; employing scale cuts; and performing Fisher forecasts, where we can explicitly marginalize over r_d.

First, we turn to the synthetic data-sets discussed above. As shown in Fig. 2, our H_0 constraints are negligibly impacted by removing BAO wiggles or reducing baryonic damping. Since the mock data are generated to match the BOSS spectra, this is a strong indication that our H_0 constraints are independent of sound horizon physics. Note that the best-fit values of ω_{cdm} and h are shifted by $\sim 0.5\sigma$ from the truth; this indicates a
(modest) prior-volume effect, confirmed by its removal when reanalyzing the data with a covariance appropriate for a 10× larger survey. Whilst this could be ameliorated by stricter nuisance parameter priors, given that the offsets are small, we do not include these. The mocks also highlight the importance of Ω_m priors; since the FS likelihood sources ω_{adm} information from BAO wiggles, the no-wiggle constraints on H_0 would degrade if an external prior was not present.

Scale cuts provide further evidence to support our conclusions. Fig. 3 shows the effect of reducing k_{max} from 0.25 h Mpc$^{-1}$ to 0.10 h Mpc$^{-1}$, which, if information were coming from BAO wiggles, would be expected to greatly inflate the H_0 posterior. Notably, the reduction in constraining power is slight ($\sim 10\%$), though the nuisance parameters of the one-loop model suffer significant posterior inflation. Again, this indicates that the primary information is sourced by k_{eq}^{-1} rather than r_d.

Finally, we consider a simplified Fisher analysis in which r_d can be marginalized over exactly. This is made possible by using the Eisenstein-Hu transfer function [21] in CLASS-PT, rather than the usual output from CLASS. In addition to the five cosmological parameters $\{h, \omega_{adm}, \omega_b, A_s/A_s(\text{Planck}), n_s\}$ (the Eisenstein-Hu approximation does not allow for massive neutrinos) we vary a sound horizon rescaling parameter β_{r_d}. For simplicity, a single redshift bin (centered at $z = 0.51$) with the total BOSS volume is used, and window function effects are ignored. As seen in Fig. 4, the H_0 posteriors are broader than those found in Fig. 1; this is due to the assumptions of an Eisenstein-Hu model and exclusion of redshift evolution, yet the model retains qualitative utility. Marginalization over r_d has little effect, reducing σ_{H_0} by < 10%, reinforcing our conclusions that the H_0 constraints are insensitive to r_d. Without an Ω_m prior the marginalization gives significant degradation, with $\sigma_{H_0} = 11$ km s$^{-1}$ Mpc$^{-1}$; in this case, Ω_m information enters from the BAO wiggle amplitudes which are washed-out by the marginalization.

Forecasting for Future Surveys

To estimate the potential of future surveys to constrain H_0 without the sound horizon, we perform a simplistic Fisher analysis, similar to that presented above. In particular, we consider a Euclid-like survey in eight redshift bins, taking the volumes and fiducial bias parameters from the forecast of Ref. [46]. For consistency, we slightly expand our k-range up to $k_{\text{max}} = 0.3h$ Mpc$^{-1}$ and do not impose nuisance parameter priors. Adopt-
ing the A_α and Ω_m priors of this Letter, and marginalizing over r_d, we obtain $\sigma_{H_0} \sim 1.7 \text{ km s}^{-1}\text{Mpc}^{-1}$; this tightens to $\sim 1.6 \text{ km s}^{-1}\text{Mpc}^{-1}$ with the more optimistic $\sigma_{\Omega_m} = 0.012$ prior of Ref. [16]. For future surveys, it is unclear whether removing the ω prior will be sufficient to ensure r_d-independence; this will be discussed in future work alongside a more complete forecast.

DISCUSSION

In the past decade, galaxy surveys have focused on measuring BAO. In this Letter, we make use of the fact that an additional standard ruler is present; the horizon size at matter-radiation equality, k_{eq}^{-1}. Combining galaxy power spectra from BOSS with cosmological priors on Ω_m gives equality-based constraints of $H_0 = 65.1^{+3.0}_{-5.4} \text{ km s}^{-1}\text{Mpc}^{-1}$ (power spectrum only) and $70.6^{+3.7}_{-5.0} \text{ km s}^{-1}\text{Mpc}^{-1}$ (adding Planck lensing). For BOSS such a measurement can be obtained simply by analyzing the data without use of an informative ω prior; we demonstrate this using mock catalogs, scale cuts and Fisher forecasts. For the next generation of surveys, simple forecasts indicate that sound horizon independent constraints of $\sigma_{H_0} \sim 1.6 \text{ km s}^{-1}\text{Mpc}^{-1}$ should be possible; more sophisticated techniques may be required to remove r_d information, however.

To close, we consider implications for the `Hubble tension’. Most proposed mechanisms for its resolution rely on modifying the sound horizon at recombination, and thus altering the BAO scale. Given that equality-based measurements are sensitive to higher redshifts than BAO measurements, H_0 constraints anchored at z_d and z_{eq} may differ if new physics is at work, making this a valuable test of new physics prior to recombination. Here, we find good agreement between galaxy-only H_0 measurements derived from the sound horizon and equality scales, both of which favor lower values than those of SH0ES. If this consistency holds to much higher precision, it will place strong bounds on many beyond-CDM resolutions of the Hubble tension.

We thank Mikhail Ivanov, Julien Lesgourgues and Marko Simonovi{\v{c}} for insightful discussions; we are additionally grateful to Jo Dunkley, Dragan Huterer, Eiichiro Komatsu and Matias Zaldarriaga for comments on a draft of this manuscript. OHEP would like to thank the Max Planck Institute for Astrophysics for hospitality when this work was being finalized. OHEP acknowledges funding from the WFIRST program through NNG06F33C and NNN12AA01C. GSF acknowledges support through the Isaac Newton Studentship and the Cambridge Trust Vice Chancellor’s Award. BDS acknowledges support from an Isaac Newton Trust Early Career Grant, from a European Research Council (ERC) Starting Grant under the European Unions Horizon 2020 research and innovation programme (Grant agreement No. 851274), and from an STFC Ernest Rutherford Fellowship.

* ohep2@cantab.ac.uk

[1] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, *Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond CDM*, ApJ 876 (2019) 85 [1903.07603].
[2] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi et al., *Planck 2018 results. VI. Cosmological parameters*, arXiv e-prints (2018) arXiv:1807.06209 [1807.06209].
[3] S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J. A. Blazek et al., *The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample*, MNRAS 470 (2017) 2617 [1607.03155].
[4] A. Cuceu, J. Farr, P. Lemos and A. Font-Ribera, *Baryon Acoustic Oscillations and the Hubble constant: past, present and future*, JCAP 2019 (2019) 044 [1906.11628].
[5] T. M. C. Abbott, F. B. Abdalla, J. Annis, K. Bechtol, J. Blazek, B. A. Benson et al., *Dark Energy Survey Year 1 Results: A Precise H_0 Estimate from DES Y1, BAO, and D/H Data*, MNRAS 480 (2018) 3879 [1711.00403].
[6] K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghu, M. Millon, D. Sluse et al., *Sounds Discordant: Classical Distance Ladder and CDM-based Determinations of the Cosmological Sound Horizon*, ApJ 874 (2019) 4 [1811.00537].
[7] N. Schöneberg, J. Lesgourgues and D. C. Hooper, *The BAO+BBN take on the Hubble tension*, JCAP 2019 (2019) 029 [1907.11594].
[8] G. E. Addison, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw and J. L. Weiland, *Elucidating CDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy*, ApJ 853 (2018) 119 [1707.06547].
[9] K. C. Wong, S. H. Suyu, G. C. F. Chen, C. E. Rust, M. Millon, D. Sluse et al., *H0LiCOW XIII. A 2.4% measurement of H_0 from lensed quasars: 5.3σ tension between early and late-Universe probes*, MNRAS (2020) [1907.04869].
[10] S. Birrer, A. J. Shahij, A. Galan, M. Millon, T. Treu, A. Agnello et al., *TDcosmo IV: Hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles*, arXiv e-prints (2020) arXiv:2007.02941 [2007.02941].
[11] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams et al., *A gravitational-wave standard siren measurement of the Hubble constant*, Nature 551 (2017) 85 [1710.05835].
[12] A. G. Riess, *The expansion of the Universe is faster than expected*, Nature Reviews Physics 2 (2019) 10 [2001.03624].
[13] W. L. Freedman, B. F. Madore, D. Hatt, T. J. Hoyt, I. S. Jang, R. L. Beaton et al., *The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch*, ApJ 882 (2019) 34 [1907.05922].
[14] L. Verde, T. Treu and A. G. Riess, *Tensions between the early and late Universe*, Nature Astronomy 3 (2019) 891 [1907.10625].
G. d’Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang et al., The cosmological analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP 2020 (2020) 005 [1909.05271].

C. Alcock and B. Paczynski, An evolution free test for non-zero cosmological constant, Nature 281 (1979) 358.

M. M. Ivanov, M. Simonović and M. Zaldarriaga, Cosmological parameters and neutrino masses from the final P l a n k and full-shape BOSS data, Phys. Rev. D 101 (2020) 083504 [1912.08208].

O. H. E. Philcox, M. M. Ivanov, M. Simonović and M. Zaldarriaga, Combining full-shape and BAO analyses of galaxy power spectra: a 1.6% CMB-independent constraint on H0, JCAP 2020 (2020) 032 [2002.04035].

M. M. Ivanov, E. McDonough, M. Simonović, M. W. Toomey, S. Alexander et al., Constraining Early Dark Energy with Large-Scale Structure, arXiv e-prints (2020) arXiv:2006.11235 [2006.11235].

O. H. E. Philcox, M. M. Ivanov, M. Zaldarriaga, M. Simonović and M. Schmittfull, Fewer Mocks and Less Noise: Reducing the Dimensionality of Cosmological Observables with Subspace Projections, in prep. (2020).

T. Nishimichi, G. D’Amico, M. M. Ivanov, L. Senatore, M. Simonović, M. Takada et al., Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum, arXiv e-prints (2020) arXiv:2003.08277 [2003.08277].

A. Chudaykin, M. M. Ivanov and M. Simonović, CLASS-PT: non-linear perturbation theory extension of the Boltzmann code CLASS, arXiv e-prints (2020) arXiv:2004.10607 [2004.10607].

S. L. Bridle, R. Crittenden, A. Melchiorri, M. P. Hobson, R. Kneissl and A. N. Lasenby, Analytic marginalization over CMB calibration and beam uncertainty, MNRAS 335 (2002) 1193 [astro-ph/0112114].

A. N. Taylor and T. D. Kitching, Analytic methods for cosmological likelihoods, MNRAS 408 (2010) 865 [1003.1136].

D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, ApJ 859 (2018) 101 [1710.00845].

F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell et al., The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant, MNRAS 416 (2011) 3017 [1106.3366].

A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. M. Ivanov, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering, halo occupation distribution of BOSS CMASS galaxies in the Final Data Release, MNRAS 460 (2016) 1173 [1509.06404].

M. M. Ivanov, M. Simonović and M. Zaldarriaga, Cosmological parameters from the BOSS galaxy power spectrum, JCAP 2020 (2020) 042 [1909.05277].

G. d’Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang et al., The cosmological analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP 2020 (2020) 005 [1909.05271].

C. Alcock and B. Paczynski, An evolution free test for non-zero cosmological constant, Nature 281 (1979) 358.

M. M. Ivanov, M. Simonović and M. Zaldarriaga, Cosmological parameters and neutrino masses from the final P l a n k and full-shape BOSS data, Phys. Rev. D 101 (2020) 083504 [1912.08208].

O. H. E. Philcox, M. M. Ivanov, M. Simonović and M. Zaldarriaga, Combining full-shape and BAO analyses of galaxy power spectra: a 1.6% CMB-independent constraint on H0, JCAP 2020 (2020) 032 [2002.04035].

M. M. Ivanov, E. McDonough, M. Simonović, M. W. Toomey, S. Alexander et al., Constraining Early Dark Energy with Large-Scale Structure, arXiv e-prints (2020) arXiv:2006.11235 [2006.11235].

O. H. E. Philcox, M. M. Ivanov, M. Zaldarriaga, M. Simonović and M. Schmittfull, Fewer Mocks and Less Noise: Reducing the Dimensionality of Cosmological Observables with Subspace Projections, in prep. (2020).

T. Nishimichi, G. D’Amico, M. M. Ivanov, L. Senatore, M. Simonović, M. Takada et al., Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum, arXiv e-prints (2020) arXiv:2003.08277 [2003.08277].

A. Chudaykin, M. M. Ivanov and M. Simonović, CLASS-PT: non-linear perturbation theory extension of the Boltzmann code CLASS, arXiv e-prints (2020) arXiv:2004.10607 [2004.10607].

S. L. Bridle, R. Crittenden, A. Melchiorri, M. P. Hobson, R. Kneissl and A. N. Lasenby, Analytic marginalization over CMB calibration and beam uncertainty, MNRAS 335 (2002) 1193 [astro-ph/0112114].

A. N. Taylor and T. D. Kitching, Analytic methods for cosmological likelihoods, MNRAS 408 (2010) 865 [1003.1136].

D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, ApJ 859 (2018) 101 [1710.00845].

F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell et al., The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant, MNRAS 416 (2011) 3017 [1106.3366].

A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. M. Ivanov, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering, halo occupation distribution of BOSS CMASS galaxies in the Final Data Release, MNRAS 460 (2016) 1173 [1509.06404].

M. M. Ivanov, M. Simonović and M. Zaldarriaga, Cosmological parameters from the BOSS galaxy power spectrum, JCAP 2020 (2020) 042 [1909.05277].

G. d’Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang et al., The cosmological analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP 2020 (2020) 005 [1909.05271].
[45] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi et al., *Planck 2018 results. V. CMB power spectra and likelihoods*, arXiv e-prints (2019) arXiv:1907.12875 [1907.12875].

[46] A. Chudaykin and M. M. Ivanov, *Measuring neutrino masses with large-scale structure: Euclid forecast with controlled theoretical error*, Journal of Cosmology and Astroparticle Physics (2019) [1907.06666].