Contracting eastern African C₄ grasslands during the extinction of *Paranthropus boisei*

Rhonda L. Quinn¹,²* & Christopher J. Lepre²

The extinction of the *Paranthropus boisei* estimated to just before 1 Ma occurred when C₄ grasslands dominated landscapes of the Eastern African Rift System (EARS). *P. boisei* has been characterized as an herbivorous C₄ specialist, and paradoxically, its demise coincided with habitats favorable to its dietary ecology. Here we report new pedogenic carbonate stable carbon (\(\delta^{13}C\)) and oxygen (\(\delta^{18}O\)) values (nodule = 53, analyses = 95) from an under-sampled interval (1.4–0.7 Ma) in the Turkana Basin (Kenya), one of the most fossiliferous locales of *P. boisei*. We combined our new results with published \(\delta^{13}C\) values from the EARS dated to 3–0 Ma, conducted time-series analysis of woody cover (\(f_{WC}\)), and compared the EARS \(f_{WC}\) trends to regional and global paleo-environmental and -climatic datasets. Our results demonstrate that the long-term rise of C₄ grasslands was punctuated by a transient but significant increase in C₃ vegetation and warmer temperatures, coincident with the Mid-Pleistocene Transition (1.3–0.7 Ma) and implicating a short-term rise in \(pCO_2\). The contraction of C₄ grasslands escalated dietary competition amongst the abundant C₄-feeders, likely influencing *P. boisei*’s demise.

Since Leakey and colleagues¹ (pg. 9) suggested *Paranthropus boisei* was the “victim” of *Homo habilis* at Olduvai (Oldupai) Gorge (Tanzania), our ancestors have been implicated in the demise of their sister taxon. Tool-assisted foraging behaviors were traditionally thought to have propelled genus *Homo* into a broad omnivorous dietary niche, providing an evolutionary edge relative to *Paranthropus’* dentognathic procurement strategies across Africa’s savanna habitats² and resulting in competitive exclusion³. More recent archaeological evidence suggests that both *Homo* and *Paranthropus* were plausible inheritors of tool-making behaviors⁴,⁵, and stable carbon isotopic (\(\delta^{13}C_{\text{enamel}}\)) and microwear analyses of fossil specimens have revealed a dynamic and complex evolutionary history of Pleistocene African hominin and non-hominin primate diets (Fig. 1)⁶–¹³. Eastern African hominins and *Theropithecus*, the large-bodied baboon, underwent a dietary transition incorporating more C₃ foods in the early Pleistocene¹⁴,¹⁵, which have been attributed to behavioral changes in response to complex competitive landscapes¹⁵. Distinct from other Pleistocene hominins, *P. boisei*, the last eastern African paranthropine species, yielded \(\delta^{13}C_{\text{enamel}}\) and \(\delta^{18}O_{\text{enamel}}\) values indicating a herbivorous¹⁶ and primarily C₄ diet from ~2.3 Ma until its last appearance from the fossil record at ~1.3 Ma¹⁷. Unexpectedly, isotopic evidence for this shift into a C₄ plant feeding niche was not mirrored by changes in microwear patterns or dentognathic morphology⁷,¹⁰,¹⁵. *P. boisei’s* diet had comparable mechanical properties to those of C₃-C₄-mixed feeding hominins such as *Australopithecus afarensis*. *P. boisei*’s use of fallback foods, rather than its dietary staples of C₄ plants, may have been the main influence for its distinctive “nut-cracking” form¹⁰.

Wood and Patterson (2020)¹⁶ suggested that *P. boisei*’s 1-myr morphological and dietary stasis signifies that its occupied niche and associated adaptations were “remarkably durable.” Although eastern African hominins may have begun their evolutionary trajectories as C₃-C₄-mixed-feeding opportunists during the early Pleistocene¹³, *P. boisei* evolved to be a C₄ plant specialist¹⁷ sharing more dietary similarities to *T. oswaldi* than with members of genus *Homo*, who remained C₃-C₄-mixed feeding omnivores (Fig. 1A–C). Thus evidence for dietary niche separation and shared stone tool making abilities cast doubt on competitive exclusion by *Homo* as a primary cause of *P. boisei*’s demise.

A prevailing explanation for *P. boisei*’s extinction is the opposite cause of *Homo’s* success, that is, its dietary and behavioral inflexibility amidst environmental perturbations¹⁷. *P. boisei*’s extinction, estimated between 1.3 Ma¹⁴ and just prior to 1 Ma¹⁸, occurs during one of *Homo’s* significant increases in brain size and its second wave of dispersal out of Africa and into Eurasia⁹,²⁰. These evolutionary events in the hominin lineage are coincident with the Mid-Pleistocene Transition (MPT; 1.3–0.7 Ma)¹⁹, when the Earth’s glacial and interglacial climatic...
Intervals transitioned from an obliquity-paced (41-kyr) cyclicity to an asymmetrical ~100 kyr eccentricity pattern of repeated saw-toothed glacial growth and rapid deglaciation. Global climatic and environmental changes are commonly evoked as major forces of eastern African hominin evolution. Dietary and technological adaptations in the Plio-Pleistocene have been contextualized in open and variable landscapes, shaped by the presence of C4 plant communities. During the MPT interval, current environmental proxy records from the East African Rift System (EARS) show evidence for low percentages of woody cover and high abundances of C4-feeders. This scenario begs the question: why would *P. boisei*, this “durable” herbivorous C4-feeding hominin, disappear during the dominance of C4 grasslands?

Here we report pedogenic carbonate stable carbon (δ13CPC) and oxygen (δ18OPC) isotopic values (nodules = 53, paired analyses = 95) in the Turkana Basin, northern Kenya, eastern Africa (Fig. 2A–C), from 1.4 to 0.7 Ma, an under-sampled interval for pedogenic carbonates in an otherwise well-studied region of human evolutionary environments (see “Methods”, “Supplementary Information”). The Turkana region is the most fossiliferous of the known *P. boisei* sites, and Turkana specimens constitute the majority of isotopically analyzed *P. boisei* enamel samples to date. We combine our new δ13CPC data to those from other EARS locations preserving the MPT interval, calculate fraction of woody canopy cover (ƒWC), and compare the EARS ƒWC record to other environmental, ecological and climatic proxy records from 3 to 0 Ma to examine the contexts of *P. boisei*’s extinction.

Results

In contrast to characterizations of the Turkana Basin during the MPT as extremely grassy and dry, our new data (n = 53, 95 paired analyses) show excursions to lower δ13CPC and δ18O values, consistent with relatively woodier vegetation structures and more humid and/or warmer conditions. Exponentially smoothed ƒWC and δ18O values from the Turkana Basin show temporally corresponding peaks of the excursions at 1 Ma (Supplementary Fig. S6). Exponential (Fig. 3A) and Loess (Fig. 3B) smoothing of the compiled EARS ƒWC record from 3 to 0 Ma illustrate the long-term increase in C4 vegetation punctuated by a short-term increase in C4 vegetation beginning at the start of the MPT interval and peaking at 1 Ma. The interpreted pattern from the EARS ƒWC record is substantiated with Bayesian change point analysis detecting two significant changes, which appear to mark the MPT interval (Fig. 3C).

African basins have idiosyncratic variables (e.g., elevation, topography, temperature, water deficits, tectonism) that influence the distribution of vegetation and local climatic conditions. Individual EARS basins during the time of *P. boisei*’s evolutionary history show local-scale heterogeneity in vegetation structures (Supplementary Fig. S7). Some EARS sites have low δ13CPC sampling resolutions or may be oversampled in specific time horizons. The Awash (Ethiopia) and Turkana (Kenya) basins have the highest δ13CPC sampling resolutions across the MPT interval (1.3–0.7 Ma) with 27 and 53 samples, respectively, and both record significant reductions in C4 vegetation (Supplementary Fig. S7). Olduvai (Oldupai) Gorge and Tugen Hills, yielding small sample sizes from the MPT interval, i.e., 12 and 3, respectively, show persistent grassy vegetation structures (Supplementary Fig. S7).

Differences in vegetation structures between the northern and central EARS may be an artifact of low sampling density in the central EARS or true spatial differences within the EARS.
Discussion

Causes of the EARS C$_3$ excursion. Vegetation structures are dependent on mean annual precipitation (MAP)31, and increasing abundances of C$_3$ vegetation would be predicted with higher rainfall during the MPT. Several mechanisms are proposed to have altered water delivery to Plio-Pleistocene Africa, including eccentricity-modulated precession, glacial forcing of the Inter-Tropical Convergence Zone (ITCZ) position, and tropical sea-surface temperature fluctuations among others33–38, yet regional proxy records yield dissimilar evidence for hydroclimate (Fig. 4A–E). Dust flux data from marine cores at sites 721/722 in the Arabian Sea indicate several intervals of increased aridity, including one circa 1 Ma (Fig. 4A)35. In contrast, deep lakes in the EARS are thought to have formed during periods of higher rainfall and forced by 405-kyr eccentricity (insolation) maxima (Fig. 4B)36. During the MPT, Lake Silbo was present in the Turkana Basin39,40, possibly indicating higher rainfall.

Recent studies have suggested that hydroclimate may not be the primary cause of changes to African vegetation structures38,41,42. Plant wax δD values from ODP cores 235/241 in the Indian Ocean off of eastern Africa indicate no directional trend in calculated precipitation δD over the last 10 million years, and the MPT interval in those cores, specifically, does not appear to have experienced a significant shift in regional paleohydrology yielding intermediate values within the 3–0 Ma study interval (Fig. 4C)38. However, the sampling density (n = 3) of ODP 235/241 through the MPT is of particularly low resolution. If orbital climate forcing36 was the primary influence of the EARS C$_3$ excursion, we would predict multiple C$_3$ excursions coinciding with insolation maxima, which is not the case (Fig. 4D). The Turkana Basin δ18O$_{pc}$ record, a proxy of rainfall source, rainfall amounts, and/or temperature, shows a long-term trend consistent with more arid and/or cooler conditions, followed by
a return to warmer and/or wetter conditions during the MPT (Fig. 4E). Additional rainfall proxy records from the EARS, able to distinguish rainfall amount from sources of rain42,43, are warranted to further test for links between hydroclimate and vegetation structure.

Vegetation structures are impacted by herbivore communities31; thus major changes in animal community compositions may have influenced the EARS \(C_4 \) excursion (Fig. 5A–D). Significant declines in eastern African large-bodied carnivore speciosity from \(\sim 4\text{–}1 \) Ma (Fig. 5B)44 and megaherbivore diversity from \(\sim 6 \) to \(0 \) Ma (Fig. 5D)41 correspond to the long-term EARS \(C_4 \) trend (Fig. 5A). \(C_3 \)-browsing by fewer megaherbivores could have resulted in an increase in woody cover. However, after the \(C_3 \) excursion, the EARS \(f_{WC} \) record returns to previous percentages, maintaining the long-term \(C_4 \) trend, which is not predicted as megaherbivores continued to decline. A recent compilation of the number of EARS grazer species from \(\sim 7 \) to \(0 \) Ma45 parallels the spread of

Figure 3. EARS \(f_{WC} \) data fitted with (A) simple exponential smoothed curves (\(\alpha = 0.1, 0.3, 0.6 \)), (B) loess regressions (3\%, 10\%, 20\%) and (C) Bayesian change point algorithm of a 5-point moving average; posterior probabilities on secondary axis (red line). See Supplementary Data for site locations, \(\delta^{13}CPC \) values, and references. Shaded area denotes MPT interval (1.3–0.7 Ma).
C4 grasslands as previously shown23,26,28; however, there is a major decline in the number of EARS grazer species, specifically non-ruminant grazers, beginning at ~1 Ma and coincident with the peak of the EARS C3 excursion (Fig. 5C). Faith and colleagues45 proposed that non-ruminant grazers were outcompeted by ruminant grazers and mixed feeders due to habitat loss during aridity pulses beginning with the MPT. The Turkana Basin δ18OPC record is not consistent with increased aridity during the MPT, but the EARS δ13C record indicates that C4 grasslands contracted significantly, which may have influenced the decline in non-ruminant grazers.

The long-term increase in eastern African C4 grasslands and its impact on faunal communities has been associated to concurrently decreasing pCO238,41. Global climate and vegetation models46,47 predict the cause-effect relationship between higher pCO2 and destabilized C4 vegetation48; moreover, woody thickening is proposed as a consequence of rising pCO253. Modeled and proxy pCO2 records, showing discrepancies in estimations across the MPT (Fig. 6A–E), fuel various hypotheses about the role of pCO2 in Earth’s climatic reorganization21,22,49–51. The EARS δ13C record (Fig. 6G) is consistent with the Chinese Loess Plateau paleosol pCO2 record49 (Fig. 6E) and one of the pCO2 models51 (Fig. 6A) indicating relatively higher pCO2 confined to the MPT interval. The clumped-isotope paleo-thermometer record, derived from paleosols in the Nachukui Formation at Turkana, shows higher temperatures during the MPT (Fig. 6F)52, which are predicted with increasing pCO253. The Turkana Basin δ18O record circa 1 Ma is also consistent with higher temperatures (Fig. 4E).

We interpret that the EARS C4 excursion was primarily forced by a transient increase in pCO2, potentially accompanied by an increase in temperature. There is debate, however, about the primary drivers of African vegetation change38,54, and vegetation proxy records from various African regions record dissimilar trends across the MPT. Plant wax δ13C data from ODP core 1077 in the Lower Congo Basin indicated an increase in C4 vegetation, which was interpreted as a response to an increased aridity circa 900 Ka34. Arabian Sea plant wax δ13C data (core

Figure 4. (A) Arabian Sea dust flux (%) from core sites 721/722 with proposed periods of increased aridity (orange bars)35 and heightened environmental variability25 (purple bars). (B) 100/405-kyr eccentricity record and proposed EARS lake phases46 (blue bars). (C) plant wax δDppt values from Indian Ocean core sites 235/24138. (D) EARS fWC record (exponentially smoothed, α = 0.1) (E) Turkana Basin δ18OPC values. See Supplementary Data and Supplementary Information for site locations, δ18OPC values, and references. Shaded area denotes MPT interval (1.3–0.7 Ma).

Figure 5. (A) EARS fWC record (exponentially smoothed, α = 0.1) compared to EARS fossil faunal abundance data: (B) carnivore fraction (medians);44 (C) number of grazing species (residuals);45 (D) megaherbivore diversity (residuals)46. Shaded area denotes MPT interval (1.3–0.7 Ma).
Figure 6. (A) Modeled global pCO\textsubscript{2} \cite{51} (B) modeled global pCO\textsubscript{2} \cite{50} estimated pCO\textsubscript{2} (ppm) derived from compiled (C) phytoplankton-alkenone records\cite{23}, (D) compiled δ11B values\cite{23}, (E) Chinese Loess Plateau (CLP) paleosols\cite{51}, (F) paleotemperature estimates based on clumped isotope analysis of EARS pedogenic carbonates\cite{52}, (G) EARS f\textsubscript{WC} record (exponentially smoothed, α = 0.1). Shaded area denotes MPT interval (1.3–0.7 Ma).

sites 721/722) yielded evidence for a long-term increase in C\textsubscript{4} vegetation but no significant change during the MPT interval\cite{14}. Lake Malawi plant wax δ13C record, from the southern EARS (Malawi Rift), shows persistent C\textsubscript{3} vegetation throughout the Plio-Pleistocene and across the MPT interval\cite{35}. Our analysis of individual basins demonstrates that the C\textsubscript{3} excursion occurred in the northern EARS and may not have been a significant event in the central EARS. However, we emphasize that sampling resolution of some of these records may not be sufficiently high to resolve vegetation changes within the MPT interval.

Finding discrepancies between the EARS f\textsubscript{WC} record and other regional vegetation datasets supports interpretations that marine sediments to the north and west of Africa may not capture the complete range of paleoenvironmental conditions within the EARS\cite{54,57}. In contrast to the limited spatial averaging of pedogenic carbonates (see Supplementary Information), marine core records of terrestrial vegetation represent integrated signals without specific provenance for large regions, for example, aeolian transport from southern Africa in the case of ODP core 107734. Site- and region-specific controls on vegetation may differentially respond to changes in ice volume, sea surface temperatures, and pCO\textsubscript{2} \cite{38,37}. Moreover, model data and lake core studies demonstrate that rift basins respond differently to global environmental change such as during the Last Glacial Maximum \cite{58,59}. Therefore, we suggest that a transient rise in global pCO\textsubscript{2} causing the EARS C\textsubscript{3} excursion does not necessitate synchronous declines in C\textsubscript{4} vegetation in other African regions.

A new behavioral and ecological scenario for the extinction of \textit{P. boisei}. \textit{P. boisei}'s extinction occurred during a significant contraction of C\textsubscript{4} grasslands within the EARS, and specifically in one of its known habitats, the Turkana Basin. Admittedly, f\textsubscript{WC} estimates do not fully characterize the diversity and complexities of African vegetation communities during the Pleistocene, but rather provide evidence for relative changes in the dominant (C\textsubscript{4} vs. C\textsubscript{3}) vegetation structures. The decline in C\textsubscript{4} grasslands likely resulted in the loss of \textit{P. boisei}'s exploited C\textsubscript{4} plant foods (Fig. 7A), but the identities of those C\textsubscript{4} plant foods remain unknown. Microwear evidence suggest that foods items may not have involved hard components\cite{11} but rather “novel mechanical challenges” entailing masticating C\textsubscript{4} grasses and sedges for long periods of time\cite{12}. Faunal-based studies have emphasized that EARS environments during human evolution were “non-analogous” to modern faunal community structures\cite{26,45,60}. In a common thread, paleovegetation communities also evolved through time, thus limiting the use of modern EARS environments and current vegetation proxy methods to identify specific elements of vegetation communities as well as particular plant species consumed by Pleistocene hominins. Moreover, dietary reconstructions of eastern African hominins and non-hominin primates with δ13Cenamel and δ44/42Caenamel data pose issues of isotopic equifinality\cite{61} where many types of food combinations may result in comparable isotopic values.

\textit{P. boisei} likely competed directly with the EARS grazing species for C\textsubscript{4} plant foods (Fig. 7B). We suggest that \textit{P. boisei} and several other non-ruminant grazers were outcompeted by ruminant grazers for declining C\textsubscript{4} plant foods during the MPT interval. Of course, \textit{P. boisei} was not an herbivorous ungulate but rather a large-bodied, bipedal, encephalized, and likely stone tool using hominin\cite{15,18,62}, thus its life history strategies, social organization, reproductive rates, activity times, caloric and nutritional requirements, home and day ranges, and cognitive abilities were likely more similar to other hominins and non-hominin primates than to most of the ungulates occupying the EARS C\textsubscript{4} biome. \textit{T. oswaldi} was likely in direct competition with \textit{P. boisei} for C\textsubscript{4} plant foods throughout the Pleistocene (Fig. 7C). δ44/42Caenamel values, however, suggest that \textit{T. oswaldi} engaged in omnivory throughout its evolutionary history, providing some dietary niche separation from the herbivorous \textit{P. boisei} but also a competitive advantage, as C\textsubscript{4} plant foods contracted.

Although much evidence indicates dietary niche partitioning between \textit{P. boisei} and members of \textit{Homo}, some dietary competition may have occurred. Patterson and colleagues (2019)\cite{63} suggested that in the Koobi Fora region of the Turkana Basin after 1.65 Ma, \textit{Homo} sp. δ13Cenamel values slightly converge with those of \textit{P. boisei}, and \textit{H. erectus} was by and large the C\textsubscript{4} interloper (Fig. 1). The post-1.65 Ma change in \textit{Homo} sp. δ13Cenamel values was not detected in other sympatric mammals from the Koobi Fora region, and local vegetation structures appear
may have outcompeted for non-food resources and some C4 plant foods with those tools. P. boisei the omnivorous approach than direct competition between the hominin sister taxa even after 1.65 Ma. But notably a few Homo eructus of δ44/42Caenamel values after 1.65 Ma suggestive of omnivory (Fig. 1C). Ungulate C4-grazer meat and marrow may Homo resource base underpinned dietary shift. and other members of Homo erectus' strategy to reduce competition in the C3-C4-mixed feeding niche during the early Pleistocene. However, with C4 plant food loss, P. boisei's inability to return to its ancestral C3-C4-mixed diet due to competitive exclusion by

stable; consequently, as these authors suggest, it seems likely that a behavioral change rather than a change in resource base underpinned H. erectus' dietary shift. H. erectus and other members of Homo display wide ranges of δ44/42Caenamel values after 1.65 Ma suggestive of omnivory (Fig. 1C). Ungulate C4-grazer meat and marrow may have been the primary source of H. erectus' C4 diet; supporting the interpretation of niche separation rather than direct competition between the hominin sister taxa even after 1.65 Ma. But notably a few Homo specimens approach P. boisei's δ13Cenamel and δ44/42Caenamel values, which could be interpreted to indicate that segments of the omnivorous Homo populations exploited some resources within P. boisei’s dietary niche.

Similar biogeographic distributions and habitat preferences of members of Homo and P. boisei implies competition for non-food resources including but not limited to feeding territories, sleeping sites, and potable water. Evidence for the origins and evolution of Early Stone Age technologies has shifted the discussion of presence vs. absence of tool-making abilities by P. boisei and other non-Homo hominin species further toward the cognitive and social learning capacities required for habitual and advanced stone tool making. The large-brained and -bodied H. erectus remains the most likely maker of advanced tools during the MPT interval and may have outcompeted P. boisei for non-food resources and some C4 plant foods with those tools.

In summary, EARS environments experienced a significant reduction in C4 grasslands during the MPT interval potentially forced by an increase in pCO2 and associated with a rise in temperature. The EARS C4 excursions, peaking circa 1 Ma, escalated dietary competition amongst the abundant C4-feeders, which influenced the decline of non-ruminant grazers. Dietary niche separation amongst the EARS hominins may have served as a strategy to reduce competition in the C3-C4-mixed feeding niche during the early Pleistocene. However, with C4 plant food loss, P. boisei’s inability to return to its ancestral C3-C4-mixed diet due to competitive exclusion by H. erectus and/or its own behavioral inflexibility likely played a role in its extinction (Fig. 7D–F).

Methods
Our study site is located in the Lake Turkana Basin, which is part of the northern Kenyan rift in the eastern branch of the EARS (Fig. 2A–C). On the northeast side of the basin, the Nariokotome Member is the uppermost unit of the Nachukui Formation and attains a thickness of ~ 60 m. Previous interpretations suggested the Nariokotome Member was accumulated through the period of 1.30–0.75 Ma. Near the Nariokotome Catholic mission, we studied this member’s outcrops and sampled pedogenic nodules along two NW trending transects (Supplementary Fig. S1, Supplementary Table T1). Two representative composite stratigraphic sections, measuring 50–55 m thick, were recorded (Supplementary Fig. S6). Walking along marker horizons (e.g., stromatolites layers) or using a transit to level the relative positions of marker horizons facilitated correlations between successive outcrops (Supplementary Fig. S2). Sedimentary strata of these outcrops have dips of about 3–5° into the west or are nearly flat lying. The strata comprise rounded volcanic-clast gravels, quartzo-feldspathic sands of varying grain sizes, and mudstones. Locally, the mudstones preserve carbonate nodules and slickensided fractures that indicate paleosols. Occasionally interbedded with these detrital clastic sediments are thinner units of stromatolite-encrusted gravels, mollusk sandstones, and tuff layers.

On the northeast side of the basin, the Koobi Fora Formation’s Chari Member (1.38–0.75 Ma) was examined because it is nearly time equivalent with the Nariokotome Member. We compiled fieldwork observations and samples from the Chari Member outcrops exposed near the town of Ilere (Supplementary Fig. S3). Sediments, chronostratigraphic constraints, and interpretations of the depositional environments for the Ilere outcrops have been described in detail elsewhere. We sampled pedogenic carbonates from sedimentary strata documented by the section PNG-04. The PNG-04 section is redrawn in Supplementary Figure S4 and relevant latitude and
longitude data are listed in Supplementary Table T1. At PNG-04, an unconformity occurs ~7 m up from the base of the Chari Tuff. Samples were derived from stratigraphic levels above and below the unconformity, measured relative to the dated tuff units. Lithostratigraphic thicknesses, sedimentological data, and bedding attitudes were collected from the outcrops using standard field procedures and measuring instruments.

Pedogenic carbonate nodules were extracted from all preserved carbonate nodule-bearing paleosols throughout each of three outcrop sections in the Turkana Basin as the stratigraphic distribution of relevant geological materials dictated. Paleosols were identified from the presence of vertic features and slickensides. Pedogenic carbonate nodules were sampled at levels >30 cm below the contact with overlying stratum and ~50 cm deep into the outcrop. Ages were determined through linear scaling between the stratigraphic levels of the radioisotopic dates of the Lower Nariokotome Tuff (1.30 Ma) and the Silbo Tuff (0.75 Ma) and the Chari Tuff (1.38 Ma) and the Silbo Tuff29. Scaled ages were calculated from the reported sedimentation rate20. The large age gap between samples Ileret 514–1 and 520–2 (Supplementary Fig. S5; Supplementary Data) is due to a ~500 kyr unconformity in the lower Chari Member (Supplementary Fig. S4)39.

Pedogenic nodules were cross-sectioned to expose the inner surface. Carbonate powders were eroded with a hand-held rotary tool (Foredom Series) affixed with a 0.5 mm carbidite bit. We avoided sparry calcite and collected micrite from the nodules. Ninety-five δ13C analyses of extracted powders from fifty-three pedogenic carbonate (PC) nodules were conducted on a FIONS Mass Spectrometer in the Department of Earth and Planetary Sciences at Rutgers University. Samples were reacted at 90°C in 100% phosphoric acid for 13 min. δ13CPC and δ18OPC values are reported in the standard per mil (‰) notation: δ = [(Rsample/Rstandard - 1) x 1000, relative to Vienna-Pee Dee Belemnite (V-PDB) using the laboratory standard NBS-19. Analytical error is <0.05 ‰.

We utilized δ13CPC data from published sources and this study (n = 53) to characterize vegetation structures in each of the EARS basins dated to 3–0 Ma, which spans the evolutionary history of P. boisei (Supplementary Data). Published data were taken from the compilation of Levin (2015)31, Patterson and colleagues (2019)32, and Potts et al. (2018)32. We then compiled δ13CPC values from EARS sampling locations that included spanning the MPT interval to gauge relative changes in vegetation structures from 3 to 0 Ma, which included Awash, Turkana, Olduvai Gorge, and Tugen Hills. Due to potentially different rainfall sources across different EARS basins33, we restricted time-series analysis to δ18Opc data from the Turkana Basin and Lower Omo Valley.

After Cerling and others24 we subtracted 14‰ from the δ13CPC values to convert to the isotopic equivalent of organic carbon (δ13Coc) and used the equation: fwc = ([sin(–1.06688 – 0.08538(δ13Coc)])2] to generate estimates of fraction woody canopy cover (fwc) for classification into UNESCO categories of African vegetation (see Supplementary Information). Eastern African savanna plant communities demonstrate a wide range of δ13CPC values, and due to differential paleosol deposition and preservation, δ13CPC data points are not evenly distributed through time. In order to assess trends in the central tendency of vegetation structures through time from the EARS fwc datasets, we performed simple exponential smoothing (α = 0.1, 0.3, 0.6), Loess regressions (3%, 10%, 20%, 30%), and a Bayesian change point algorithm of a 5-point running mean (see Supplementary Information).

Received: 4 October 2020; Accepted: 18 March 2021
Published online: 30 March 2021

References
1. Leakey, L. S. B., Tobias, P. V. & Napier, J. R. A new species of the genus Homo from Olduvai Gorge. Nature 202, 7–9 (1964).
2. Bromage, T. G. & Schrenk, F. Biogeographic and climatic basis for a narrative of early hominid evolution. J. Hum. Evol. 28, 109–114 (1995).
3. Klein, R. The causes of “robust” australopithecine extinction in Evolutionary history of the “robust” australopithecines (ed. Grine, F.E.) 499–505 (Aldine de Gruyter, 1988).
4. McPherron, S.P. et al. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466, 857–860 (2010).
5. Harmand, S. et al. Before the Oldowan: 3.3 Ma Stone Tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315 (2015).
6. Cerling, T. E. et al. Diet of Paranthropus boisei in the early Pleistocene of East Africa. Proc. Natl. Acad. Sci. USA 108, 9337–9341 (2011).
7. Ungar, P. S. & Sponheimer, M. The diets of early hominins. Science 334, 190–193 (2011).
8. Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl. Acad. Sci. USA 110, 10501–10506 (2013).
9. Cerling, T. E. et al. Diet of Theropithecus from 4 to 1 Ma in Kenya. Proc. Natl. Acad. Sci. 110, 10507–10512 (2013).
10. Ungar, P. S., Grine, F. E. & Teaford, M. F. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS ONE 3, e2044 (2008).
11. Ludewig, I. et al. Dietary versatility of early Pleistocene hominins. Proc. Natl. Acad. Sci. USA 115, 13330–13335 (2018).
12. Wynn, I. G. et al. Isotopic evidence for the timing of the dietary shift toward C3 foods in eastern African Paranthropus. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2006221117 (2020).
13. Martin, J. E., Taccioli, T., Braga, J., Cerling, T. E. & Balter, V. Calcium isotopic ecology of Turkana Basin hominins. Nat. Commun. 11, 3587 (2020).
14. Dominguez-Rodrigo, M. et al. First partial skeleton of a 1.34-million-year-old Paranthropus boisei from Bed II, Olomai Gorge, Tanzania. PLoS ONE 8, e80347 (2013).
15. Wood, B., Wood, C. & Konigsberg, L. Paranthropus boisei: An example of evolutionary stasis?. Am. J. Phys. Anthropol. 95, 117–136 (1994).
16. Wood, B. A. & Patterson, B. A. Paranthropus through the looking glass. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2016445117 (2020).
17. Antón, S. C., Potts, R. & Aiello, L. C. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828 (2014).
18. Wood, B. & Constantino, P. Paranthropus boisei: Fifty years of evidence and analysis. Yrbk. Phys. Anthropol. 50, 106–132 (2007).
19. Muttoni, G., Scardia, G. & Kent, D. V. Early hominins in Europe: The Galerian migration hypothesis. Quart. Sci. Rev. 180, 1–29 (2018).
20. Shultz, S., Nelson, E. & Dunbar, R. I. M. Hominin cognitive evolution: identifying patterns and processes in the fossil and archaeological record. *Phil. Trans. R. Soc. B* **367**, 2130–2140 (2012).

21. Clark, P. U. *et al.* The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. *Quat. Sci. Rev.* **25**, 3130–3184 (2006).

22. Raymo, M. E., Oppo, D. W. & Curry, W. The mid-Pleistocene climate transition: a deep sea carbon isotopic perspective. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **12**, 546–559 (1997).

23. Levin, N. E. Environment and climate of early human evolution. *Ann. Rev. Earth Planet. Sci.* **43**, 405–429 (2015).

24. Cerling, T. E. *et al.* Woody cover and hominin environments in the past 6 million years. *Nature* **476**, 51–56 (2011).

25. Potts, R. & Faith, J. T. Alternating high and low climate variability: the context of natural selection and speciation in Plio-Pleistocene hominin evolution. *J. Hum. Evol.* **87**, 5–20 (2015).

26. Cerling, T. E. *et al.* Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. *Proc. Natl. Acad. Sci. USA* **112**, 11467–11472 (2015).

27. Negash, E. W. *et al.* Dietary trends in herbivores from the Shungura Formation, southwestern Ethiopia. *Proc. Natl. Acad. Sci. USA* https://doi.org/10.1073/pnas.2006982117 (2020).

28. Pasquet, J. & Drapeau, M. S. M. Environmental comparisons of the Awash Valley, Turkana Basin and lower Omo Valley from upper Miocene to Holocene as assessed from stable carbon and oxygen isotopes of mammalian enamel. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **562**, 110099 (2021).

29. Bobe, R. & Behrensmeyer, A. K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origins of the genus Homo. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **207**, 399–420 (2004).

30. Nutz, A. *et al.* Plio-Pleistocene sedimentsation in West Turkana (Turkana Depression, Kenya, East African Rift System): paleolake fluctuations, paleolandsapes and controlling factors. *Earth-Sci. Rev.* **211**, 103415 (2020).

31. Sankaran, M. *et al.* Determinants of woody cover in African savannas. *Nature* **438**, 846–849 (2005).

32. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole in the tropical Indian Ocean. *Nature* **401**, 360–363 (1999).

33. Peterson, L. C., Haug, G. H., Hughen, K. A. & Rohl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the Last Glacial. *Science* **290**, 1947–1951 (2000).

34. Schefuß, E., Schouten, S., Jansen, J.H.F., Sinninghe Damste, J.S. African vegetation controlled sea surface temperatures in the mid-Pleistocene period. *Nature* **422**, 418–421 (2003).

35. deMenocal, P.B. African climate change and faunal evolution during the Pliocene-Pleistocene. *Earth Planet. Sci. Lett.* **220**, 3–24 (2004).

36. Trauth, M. H., Maslin, M. A., Deino, A. & Streaker, M. R. Late Cenozoic moisture history of East Africa. *Science* **309**, 2051–2053 (2005).

37. Donges, J. F. *et al.* Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. *Proc. Natl. Acad. Sci. USA* **108**, 20422–20427 (2011).

38. Polisar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. *Nature Geosci.* **12**, 657–660 (2019).

39. Schefuß, E. & Frenzel, J. A geological history of the Turkana Basin. *Proc. Natl. Acad. Sci. USA* **114**, 7331–7336 (2017).

40. Lepre, C. J. *et al.* Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight technological diversity. *Science* **367**, 367–370 (2019).

41. Qin, D. *et al.* The sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC). *Ann. Rev. Earth Planet. Sci.* **47**, 85–112 (2019).

42. Blumenthal, S. A. *et al.* Brain expansion in early hominins predicts carnivore extinctions in East Africa. *Ecol. Evol.* **13**, 537–544 (2020).

43. Faith, T. J., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: No evidence for ancient hominin impacts. *Science* **362**, 938–941 (2018).

44. Donges, J. F. & Bunde, A. Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. *Proc. Natl. Acad. Sci. USA* **116**, 21478–21483 (2019).

45. Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. *Glob. Change Biol.* **9**, 973–982 (2003).

46. Bragg, F. J. *et al.* Stable isotope and modeling evidence for CO2 as a driver of glacial-interglacial vegetation shifts in southern Africa. *Biogeosci.* **16**, 2001–2010 (2019).

47. Wynn, T. & Groves, C. R. The evolutionary biology of hominins. *Science* **367**, 370–371 (2019).

48. Dufault, J. & Lenski, R. The history of life on Earth. *Nature* **463**, 846–849 (2009).

49. Schefuß, E. &Dupont, L. M. Multiple drivers of Miocene C4 ecosystem expansions. *Nature Geosci.* **13**, 463–466 (2020).

50. Johnson, T. C. *et al.* A progressively wetter climate in southern East Africa over the past 1.3 million years. *Nature* **537**, 220–224 (2016).

51. Schefuß, E. & Dupont, L. M. Multiple drivers of Miocene C4 ecosystem expansions. *Nature Geosci.* **13**, 463–466 (2020).

52. Johnson, T. C. *et al.* A progressively wetter climate in southern East Africa over the past 1.3 million years. *Nature* **537**, 220–224 (2016).

53. King, D. J. & Harrison, T. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **243**, 272–306 (2007).

54. Lepre, C. J. *et al.* An earlier origin for the Acheulean. *Nature* **477**, 82–85 (2011).

55. Braun, D. B. *et al.* Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight technological diversity. *Proc. Natl. Acad. Sci. USA* **116**, 11712–11717 (2019).
66. Mana, S., Hemming, S., Kent, D. V. & Lepre, C. J. Temporal and stratigraphic framework for paleoanthropology site within East-Central Area 130, Koobi Fora Kenya. Front. Earth Sci. 7, 230 (2019).
67. Shea, J. J. Occasional, obligatory, and habitual stone tool use in hominin evolution. Evol. Anthropol. 26, 200–217 (2017).
68. de la Torre, I. The origins of the Acheulean: past and present perspectives on a major transition in human evolution. Philos. Trans. R. Soc. B 371, 20150245 (2016).
69. Harris, J. M., Brown, F. H. & Leakey, M. G. Geology and paleontology of Plio-Pleistocene localities west of Lake Turkana Kenya. Contrib. Sci. 399, 1–128 (1988).
70. McDougall, I. et al. New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo-Turkana Basin East Africa. J. Geol. Soc. Lond. 169, 213–226 (2012).
71. Quinn, R. L. et al. Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin. J. Hum. Evol. 65, 65–78 (2013).
72. Potts, R. et al. Environmental dynamics during the onset of the Middle Stone Age in eastern Africa. Science 360, 86–90 (2018).
73. Levin, N. E., Zipser, E. J. & Cerling, T. E. Isotopic compositions of waters from Ethiopia and Kenya: insights into moisture sources for eastern Africa. J. Geophys. Res. 114, D23306 (2009).

Acknowledgements
We thank the following for permissions, logistical support, and funding for field and laboratory work: Office of the President of Kenya, the Ministry of Education, Science and Technology, the National Council for Science and Technology, Kenya National Museums, Turkana Basin Institute, West Turkana Archaeological Project, The Leakey Foundation, US National Science Foundation (BCS-1455274; BCS-1818805), Richard Mortlock and James Wright at the Stable Isotope Laboratory in the Department of Earth and Planetary Sciences at Rutgers University. We posthumously thank Frank Brown for guidance during fieldwork at Nariokotome.

Author contributions
R.L.Q. and C.J.L. devised the study, conducted the data collection and analyses, interpreted the data, and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-86642-z.

Correspondence and requests for materials should be addressed to R.L.Q.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021