ABSTRACT:

The aerial parts of *Cissus quadrangularis* L. var-I collected from different soils were chemically analyzed for setting the standard to be of use in Indian Traditional Systems of medicine. Extractive value, ash value, loss on draying, powder analysis, qualitative and quantitative phytochemical estimation were estimated.

INTRODUCTION

Cissus quadrangularis L. is a rambling shrub\(^1\) syn. *Vitis quadrangularis* Wall\(^2\), belongs to the family Vitaceae. It is commonly known as “Pirandai” (in Tamil)\(^3\). Based on morphological characters, three variants of *Cissus quadrangularis* are reported to occur; square-stemmed, round-stemmed and flat-stemmed termed as variant I, II and III respectively \(^4\). Pharmacognostical studies on var I and II of *Cissus quadrangularis* L. was undertaken by Anoop Austin \(^5\). Among all variants, variant-I grows almost everywhere in the plains of India \(^6\). It is one of the valuable medicine in the Indian Traditional System of Medicine.

The aerial parts of the plant are used in asthma, dog bite, insect bite \(^7\), as alterative and stomachic, in scurvy, menorrhagia and digestive disorders\(^8,9\). It is used as anti-inflammatory \(^10\), and to promote wound healing and cardiovascular activity \(^11\), menstrual disorders, in epistaxis \(^12\), and for its helicobactericial activity \(^13\), and in hypotension\(^14\). Fracture healing mechanism of the herb was unfolding \(^15\)\(^-\)\(^23\).

It contains 0.14% of amyrine delta triterpene, 0.1% of amyrene delta triterpene and of 0.0003% of arborenol iso triterpene in Thailand specimen \(^24\). It also contains calcium oxalate, carotene, vitamin-C, sitosterols, tetraterpenoide, â-, á- amyrins and an anabolic ketosteroid \(^25,26\), and 3-ketosteroid, acetylcholine \(^27,28\). Therapeutic effect of medicinal plants depend upon their chemical
constituents. Chemical constituents of plants may vary depending upon environmental factors like soil, climate, associated flora and methods of cultivation29,30. \textit{Cissus quadrangularis} grows in different soil and climate. The present investigation was undertaken with a view to subject the plant samples of \textit{C. quadrangularis} var – I growing in different soil, to physicochemical analysis.

MATERIAL AND METHODS

The aerial parts of \textit{Cissus quadrangularis} Variant-I were collected during flowering period from different places with different types of soil after the plant specimen was identified with the help of local Floras31–34. Identity of specimen was further confirmed with the help of Herbarium sheets available in The Rapinat Herbarium, St. Joseph’s College, Tiruchirapalli and Botanical Survey of India, Southern Circle, Coimbatore. Voucher specimens are deposited in the department herbarium for future reference (TUH – 68A).

The air dried (shade) plant materials were powdered, which were subjected to determination of total ash, water-soluble ash, acid-insoluble ash, sulphated ash by the methods described in Indian Pharmacopoeia35-37. The solubility percentage of powder in water, ethanol, 50% ethanol was also estimated38.

Powder analysis was carried out as mentioned by Kay39, Johansen40. Qualitative phyto-chemical analysis of the powder was done using procedures of Kokate38. Quantitative estimation of total alkaloid, total terpenoid, total glycoside41, calcium salt and vitamin-C42 was also determined.

RESULTS AND DISCUSSION

Soil samples A, B, C, and D collected in four localities belong to four types viz. reddish clay loam, clay, clay loam, and sand clay respectively (Table – 1). Among the four soils, soil – B has the highest lime content, soil – C has the lowest and the other two have medium content of lime. pH of the soils also showed variation, soil – B was highly alkaline (pH – 9.2) and the other soils neutral or slightly acidic in nature. Electrical conductivity (EC) of the soil – B has the highest (0.91) and the others in the range of 0.11 to 0.24. In NPK status, soil – C has the highest N content, soil – B has the highest P content and soil – D has the highest K content where as Soil – C has the lowest P content.

Analytical values of the four plant samples collected at different soils remained more or less similar except water-soluble and acid-insoluble ash values (Table – 2) for all the soil samples. Soil – D has the highest water-soluble ash value (8.90%) and soil – B has the least acid-insoluble ash (0.16%). Prakash \textit{et al.}43 working on \textit{Desmodium gangeticum} also reported that plants
grown in different soil types showed variation in their physicochemical characteristics. Behavior of plant powders to different chemical reagents revealed identical response (Table – 3). Qualitative phytochemical analysis (Table – 4) of 50% EtOH extract revealed that all the biologically active compounds were present in all the samples. Alcoholic (100%) extract of the plant sample also answered positively for most of the compounds except saponins and gum and mucilage. Aqueous extract of the plants showed absence of alkaloids, fixed oil and fats. Quantitative phytochemical analysis (Table – 5) of the four plant samples showed that total alkaloidal Content was (0.022 – 0.024%) and vitamic - C content was almost similar (0.11 – 0.18%). Greatest quantity of total glycosides (2.804%) was found in sample – D. Calcium salts (1.1990%), total terpenoids (2.2520%) were found to be higher in the sample – A. Earlier workers on C. quadrangularis reported physicochemical values which are of significant deviation from the values reported here. The difference might be due to the type of from which the specimen was collected.

The present work revealed that C. quadrangularis samples collected from different types of soil have variations in their physicochemical profiles. Further pharmacological work is in progress to know their activity profiles.

Sample	Place of collection	Soil Texture	Lime Status	pH	EC	N (%)	P (%)	K (%)
A	Ariyalur in Perambalur Dist.	Reddish Clay Loam	Medium	6.4	0.11	3.72	2.0	5.5
B	A. Mettur in Perambalur Dist.	Clay	Profuse	9.2	0.91	5.64	3.0	5.5
C	Malayalapatti in Perambalur Dist.	Clay Loam	Normal	6.9	0.24	9.48	0.6	4.0
D	Muthupet in Pudukottai Dist.	Sandy Clay Loam	Medium	7.0	0.16	5.64	2.8	6.0

EC = Electrical Conductivity
N = Nitrogen, P - Phosphorus, K - Potassium
Table – 2
Analytical values of *Cissus quadrangularis* samples

Parameters	Sample–A	Sample-B	Sample-C	Sample-D
Total Ash (%)	13.0305	12.4559	12.7945	12.5315
Water-soluble Ash (%)	5.5497	5.4509	5.3306	8.9063
Acid-insoluble Ash (%)	1.0352	0.1608	0.7706	0.5499
Sulphated Ash (%)	22.4691	21.0741	21.9188	18.0807
Loss on Drying (%)	88.42	86.91	86.91	87.20
Solubility (%)				
H₂O	12.60	12.62	11.90	12.78
EtOH	3.40	3.28	3.48	4.14
50% EtOH	13.82	13.74	13.48	13.44
Table – 3

Fluorescent behaviour of powder of *Cissus quadrangularis* samples

Chemical	Sample – A	Sample – B	Sample – C	Sample – D
Powder (P)	Light Green	Light Green	Light Green	Light Green
P + H₂SO₄	Light Black	Light Black	Light Black	Light Black
P + HNO₃	Brown	Yellow	Brown	Brown
P + HCl	Light Green	Greenish Yellow	Light Green	Greenish Yellow
P + NH₄OH	Green	Greenish Yellow	Green	Greenish Yellow
P + Acetic Acid	Light Green	Greenish Yellow	Light Green	Greenish Yellow
P + Iodine	Light Green	Green	Light Green	Green
P + FeCl₃	Green	Dark Green	Green	Dark Green
P + Piperic Acid	Light Green	Yellowish Green	Light Green	Yellowish Green
P + NaOH	Green	Dark Green	Green	Dark Green
Table – 4
Qualitative Phyto-chemical Studies of *Cissus quadrangularis* samples

Compound Tested	Reagent used	Sample - A	Sample - B	Sample - C	Sample - D												
		EtOH	50% EtOH	H₂O													
Colour and Physical Nature		Dark green oily semi-solid	Dark green oily semi-solid	Dark Brown Semi-solid	Dark green oily semi-solid	Dark Brown Semi-solid	Dark green oily semi-solid	Dark Brown Semi-solid	Dark green oily semi-solid	Dark Brown Semi-solid							
Carbohydrate	Felbing’s	-	+++	++	-	+++	++	-	+++	++	-	+++	++	-	+++	++	
	Molish’s	+++	++	-	+++	++	-	+++	++	-	++	+++	++	-	+++	++	
	Benedict’s	++	+	-	++	+	-	++	+	-	++	+	-				
Alkaloids	Mayer’s	+	-	-	+	-	+	+	-	-	+	-	-	+	-	+	
	Wagner’s	+	-	-	+	-	+	+	-	-	+	-	-	+	-	+	
	Hager’s	+	+	-	+	+	-	+	+	-	+	+	-	+	+	-	
	Dragondroff’s	+	+	-	+	+	-	+	+	-	+	+	-	+	+	-	
Tannins and Phenols	FeCl₃ Test	+++	+++	-	+++	+++	-	+++	+++	-	+++	+++	-	+++	+++	-	
	Lead Acetate	++	+++	++	+++	++	++	+++	++	++	+++	+++	++	+++	+++	++	
	Gelatin	+++	++	+++	+++	++	+++	+++	++	+++	+++	+++	++	+++	+++	++	
Fixed oil & Fats	Spot Test	+	+	-	+	-	+	-	+	-	+	+	-	+	+	-	
Gum & Mucilage	Alcolol Precipitation	-	+	++	-	+	++	-	+	-	+	+	-	+	+	-	
Saponins	Foam Test	-	+++	+++	-	+++	+++	-	+++	-	-	+++	+++	-	+++	+++	
Phytoesterol	L.B. Test	+	++	+	+	+	+	+	+	-	+	+	-				
Flavonides	Shinoda’s	+	++	+	+	++	=	+	++	+	+	++	+				

Presence of Constituents

+++ = Appreciable amount ++ = Moderate amount
+ = Small amount - = Completely absent
Table 5
Quantitative phyto-chemical estimation of *Cissus quadrangularis* samples

Compound	Colour & Physical Nature	Sample–A	Sample-B	Sample-C	Sample-D
Total Alkaloids (%)	Greenish-yellow oily semi solid	0.024	0.022	0.023	0.024
Total Terpenoids (%)	Dark Green oily semi solid	2.252	2.392	2.056	2.056
Total Glycosides (%)	Dark Brown oily semi solid	2.228	2.276	2.514	2.804
Calcium Salts (%)	-	1.1990	0.5958	0.6336	0.4819
Vitamin–C (%)	-	0.1894	0.1139	0.1176	0.1277

Reference

1. Kirthikar KR and Basu BD, 1980. *Indian medicinal plants*. IV, 604.
2. Basu BD, 1980. *Indian medicinal plants*. I, 246.
3. Anonymous, 1986. *The useful plant of India*. 127.
4. Kannan R and Jegadeesan M, 1999. Notes on the variants of *Cissus quadrangularis* L., *Econ. and Tax. Bot.*. 22(3), 261-263.
5. Anoop Austin R, Kannan R and Jegadeesan M, 2005. Pharmacognostical studies on *Cissus quadrangularis* L. variant I, II. *J. Econ. Taxon. Bot.*. 29(2), 422-433.
6. Nair CN and Henry AN, 1983. *Flora of Tamil Nadu, India Series 1: Analysis*. I, 81.
7. Vedavathy S, Sudhakar A and Mrdula V, 1997. Tribal medicinal plants of Chittoor, *Ancient Sci. of Life*. XVI(4), 307-331.
8. Girach RD, Brahman M, Misra MK and Ahmed M, 2001. Some less know medicinal plans in relation to Unani system of medicine from District Bhadrak, Orissa, Hemedard medicus. XLIV(3), 51-56.

9. Karnick CR, 1981. Phytochemical screening of some medicinal plans used in Ayurvedic system of medicines, Bull. Medico. Ethno. Bot. Res.. 2(3), 364-383.

10. Vetrichelvan T and Jegadeesan M, 2001. Ethanobotanical study of Tirachirapalli District, Tamil Nadu, India.

11. Kishwar Hayat Khan and Jain SK, 2003. Medicinal plant a retrospective, Hemedard medicus. XLVI (3), 23-33.

12. Kalyani K, Laksmanan KK and Viswanathan MB, 1989. Medico-Botainal surves of plants in Marudha Mala; Hills of Coimbatore District, Tamil Nadu, J. Swamy Bot. Cl.. 6(3 & 4), 89-96.

13. Anoop Austin R, Jedadeesan M and Gowrishnankar R, 2003. Helicobacteriel activity of Cissus quadrangularis L. Variant-I, Hamdard medicus. XLVI, 91-94.

14. Guhabakshi DN, Sensarma P and Pal DC, 1999. Medicinal plant in India. 1, 443-445.

15. Prasad GC and Udupa KN, 1963. Effect of Cissus quadrangularis on the healing of cortisone-treated fracture, Indian Journal of Medical Research. 51, 667.

16. Prasad GC and Udupa KN, 1970. Role of Cissus quadrangularis on fracture healing Advance Research in Indian medicine, Varanasi, India.

17. Prasad GC and Udupa KN, 1972. Pathways and Site of Action of Phytogenic Steroid from Cissus quadrangularis L., Journal of Research in Indian Medicine. 7, 29.

18. Udupa KN and Prasad GC, 1964. Further studies on the effect of Cissus quadrangularis in accelerating fracture healing. Indian Journal of Medical Research. 52(2), 26.

19. Udupa KN and Prasad GC, 1984. Biomechanical and C14 Studies on the effect of Cissus quadrangularis in fracture repair. Indian Journal of Medical Research. 52(2), 480-487.

20. Udupa KN, Prasad GC and Sen SP, 1965. Effect of phytogenic anabolic steroid in the acceleration of fracture repair, Life Sciences. 4, 317.

21. Prasad GC, Chatterji SC and Udupa KN, 1970. Effect of phytogenic steroid of Cissus quadrangularis on endocrine glands after fracture, Journal of Research in Indian Medicine.4, 132.

22. Chopra SS, Pate MR and Awadhiya RP, 1976. Studies on Cissus quadrangularis in expermental fracture repair, a Histopathological Study. Indian Journal of Medical Research. 64, 1365-1367.

23. Pradhan R, 1994. Herbal remedies in dental practice, Proc.-1; National Seminar on the use of traditional medicine in skin care, CIMAP, Lucknow, India, 25-26.
24. Pluemjai T and Saifah E, 1986. Constituents of Cissus quadrangularis, Than J. Pharm. Sci. 11(4), 205-211.
25. Jaiswal S, Singh SV, Bnoopendra Singh and Sing HN, 2004. Plants used for tissue healing of animals, Natural product Radiance, NISCAIR, CSIR, New Delhi. 3(4), 284-286.
26. Mandrake’s root, 200, Cissus quadrangularis. Pushudhan, 16(9), 41.
27. Chopra RN, Chopra IC and Varma BS, 1969. Supplement to Glossary of Indian Medicinal Plant.
28. Guhabakshi DN, Sensarma P and Pal DC, 1999. Medicinal plant in India. 1, 443-445.
29. Tyler, V.E., Brady, L. R and Robbers E. J., 1976. Pharmacognosy, 8th edition, Lea & Febiger, Philadelphia, 15.
30. Trease, GE and Evans W.C., 1983. Pharmacognosy, 12th edition. Bailliere Tindall, London. 71-72.
31. Gamble JS, 1967. Flora of the presidency of Madras. I, 167.
32. Henry AN, Kumari GR and Chitra V, 1987. Flora of Tamil Nadu, India, Series-I, II. Botanical surveys of India Southern Circle, Coimbatore, India.
33. Matthew KM, 1981. Materials for a flora of the Tamil Nadu Cardnatic, 175.
34. Matthew KM, 1983. The flora of Tamil Nadu Cardnatic, The Rapinat Herbarium, St. Joseph’s College, Tiruchirapalli. III, 282.
35. Anonymous, 1966. Indian pharmacopeia (2nd ed.), Ministry of Health, Government of India publication, New Delhi.
36. Anonymous, 1985. Indian pharmacopeia (2nd ed.), Ministry of Health, Government of India publication, New Delhi.
37. Anonymous, 1996. Indian pharmacopeia (2nd ed.), Ministry of Health, Government of India publication, New Delhi.
38. Kokate C.N., 1994. Practical pharmacognosy. Vallash Prakashan, New Delhi.
39. Kay A.L., 1938. Microscopic studies of drugs. Bailliere Tindall and co., London.
40. Johansen D.A., 1940. Plant microtechnique. Mc Raw Hill Book Coccinia, Indica, New York, 183-185.
41. Ferguson N. M., 1956. A text book of pharmacognosy, Macmillan company, 69, 191.
42. Anonymous, 1980. Official methods of analysis of the AOAC, Washington. DC.
43. Prakash D, Niranjana A and Tewari S. K. 2000. Chemistry of Desmodium gangeticum cultivated on sodic soil. Journal of medicinal and Aromatic Plant Sciences, 22/4A & 23/1A., 21-25.
44. Anoop Austin R, Kannan R and Jegadeesan M. 2005. Pharmacognostical studies of Cissus quadrangularis L. Var-I & II J. Econ. Taxon. Bot. 29 (2), 422-433.