Fermi Surface Symmetric Mass Generation

Da-Chuan Lu, Meng Zeng, Juven Wang, and Yi-Zhuang You

1Department of Physics, University of California, San Diego, CA 92093, USA
2Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA

Symmetric mass generation is a novel mechanism to give gapless fermions a mass gap by non-perturbative interactions without generating any fermion bilinear condensation. The previous studies of symmetric mass generation have been limited to Dirac/Weyl/Majorana fermions with zero Fermi volume in the free fermion limit. In this work, we generalize the concept of symmetric mass generation to Fermi liquid with a finite Fermi volume and discuss how to gap out the Fermi surfaces by interactions without breaking the U(1) loop group symmetry or developing topological orders. We provide examples of Fermi surface symmetric mass generation in both (1+1)D and (2+1)D Fermi liquid systems when several Fermi surfaces together cancel the Fermi surface anomaly. However, the U(1) loop group symmetry in these cases is still restrictive enough to rule out all possible fermion bilinear gap terms, such that a non-perturbative interaction mechanism is the only way to gap out the Fermi surfaces. This symmetric Fermi surface reconstruction is in contrast to the conventional symmetry-breaking mechanism to gap the Fermi surfaces. As a side product, our model provides a pristine 1D lattice regularization for the (1+1)D U(1) symmetric chiral fermion model (e.g., the 3-4-5-0 model) by utilizing a lattice translation symmetry as an emergent U(1) symmetry at low energy. This opens up the opportunity for efficient numerical simulations of chiral fermions in their own dimensions without introducing mirror fermions under the domain wall fermion construction.

I. INTRODUCTION

Fermi liquids are gapless quantum many-body systems of fermions that possess Fermi surfaces and well-defined quasi-particle excitations at low energy. They are the models for the most commonly-seen metallic materials in nature. They are probably also one of the most studied quantum phases of matter in condensed matter physics since Landau [1, 2]. However, there are still many novel aspects of Fermi liquids that might not have been well recognized. This article explores one such aspect: the phenomenon of symmetric mass generation (SMG, see a recent overview [3] and references therein) in Fermi liquids.

One intriguing property of the Fermi liquid is the surprising stability of the Fermi surface under generic local interactions of fermions. Although the system is gapless with vastly degenerated ground states, local interactions often do not immediately lift the ground state degeneracy and destabilize the Fermi liquid towards gapped phases. Early understandings of this property came from the perturbative renormalization group (RG) analysis, as the Fermi liquid theory can emerge as a stable RG fix-point of interacting fermion systems [4–10].

Recently, a modern understanding arose under the name of Fermi surface anomaly [11, 12], which states that the stability of the Fermi surface can be viewed as protected by the quantum anomaly of an emergent LU(1) loop group symmetry at low energy, extending and unifying many related discussions [13–28] about Luttinger’s theorem [29] and Lieb-Schultz-Mattis theorem [30]. Loosely speaking, the LU(1) symmetry corresponds to the fermion number n_k conservation at each momentum point k on the Fermi surface (FS), which is preserved by the Landau Fermi liquid Hamiltonian $H_{FL} = \sum_{k \in FS} \epsilon_k n_k + \sum_{k, k' \in FS} f_{kk'} n_k n_{k'} + \cdots$. In the presence of the Fermi surface anomaly, the Fermi liquid can only be gapped by either (i) spontaneously breaking the LU(1) symmetry or (ii) spontaneously developing anomalous topological orders (or other non-Fermi liquid exotic states) that saturate the Fermi surface anomaly. The anomaly matching is a kinematic constraint, which is non-perturbative and more robust than the perturbative RG analysis of the Fermi liquid low-energy dynamics.

Over the past decade, the quantum anomaly [31–34] has been realized as an important theoretical tool in analyzing the protected gapless boundary states of interacting topological insulators/superconductors, which belong to symmetry-protected topological (SPT) phases in a grand scope (see overviews [35–37] and references therein). An interesting phenomenon, known as symmetric mass generation (SMG) [38–48], was discovered in the study of interacting fermionic SPT states. It was realized that certain SPT states might look non-trivial at the free-fermion (non-interacting) level but can be smoothly deformed into a trivial gapped phase with a unique ground state by fermion interactions. This implies some integer \mathbb{Z} classification of non-interacting SPT states can be reduced to a finite abelian elementary order-n group \mathbb{Z}_n classification for some interacting SPT states, first emphasized by Fidkowski-Kitaev [38, 39]. Correspondingly, their gapless boundary states can be gapped out by (and only by) interaction without breaking the symmetry or developing the topological order (breaking emergent higher-form symmetry). This provides a novel mechanism to generate a mass for zero-density relativistic gapless fermions (e.g., Dirac/Weyl/Majorana fermions occupying only Fermi points with zero Fermi volumes at the Fermi level, colloquially known as Dirac/Weyl/Majorana cones) without symmetry breaking. This mechanism is
called SMG, which is distinct from the conventional Higgs mechanism that relies on symmetry breaking for fermion mass generation.

However, as far as we are aware of the existing literature, the SMG mechanism has not yet been extended to fermion systems at a finite filling (with a finite density). The Fermi liquid is one most notable examples of such, which possesses a Fermi surface enclosing a finite Fermi volume. It is natural to ask: can SMG happen on the Fermi surface as well, gapping out the Fermi surface by interaction without breaking the loop group symmetry of interest? As we will demonstrate in this article, the answer is yes.

Given the spacetime-internal symmetry G of a fermion system, the conditions [3] for SMG to happen are: (i) the system must be free from G-anomaly such that symmetric gapping (without topological order) becomes possible, and (ii) the symmetry G must be restricted enough to rule out any symmetric fermion bilinear gapping term such that the gapping can only be achieved by interaction. These defining conditions of SMG can be applied to the Fermi liquid system by considering G as the emergent loop group symmetry on the Fermi surface. Based on this understanding, we will investigate the Fermi surface SMG in the presence of the LU(1) symmetry. The general feature is that even though a single Fermi surface is anomalous, it is possible to cancel the Fermi surface anomaly among multiple Fermi surfaces (or Fermi surfaces with multiple fermion flavors), such that interactions can drive the transition from the Fermi liquid phase to a symmetric gapped phase. We shall name this phenomenon as the “Fermi surface Symmetric Mass Generation”.

The Fermi surface SMG provides us a different possibility to create a gap to all excitations on the Fermi surface without condensing any fermion bilinear order parameter, which makes it distinct from the superconducting gap (i.e., condensing Cooper pairs) or the density wave gap (i.e., condensing excitons) that are more familiar in condensed matter physics. Nevertheless, it does involve condensing some multi-fermion bound states that transform trivially under the symmetry action. One simplest example is the charge-4e superconductor [49–55], which condenses fermion quartets (four-fermion bound states) that preserves at least the \mathbb{Z}_4 subgroup of the charge U(1) symmetry. In this work, we will provide more carefully designed examples preserving the full U(1) symmetry (and other lattice symmetries), but the essential idea of condensing symmetric multi-fermion operators to generate a many-body excitation gap is the same. Therefore, the Fermi surface SMG is intrinsically a strong non-perturbative interaction effect of fermions. The interaction may look irrelevant at the free-fermion (or the Fermi liquid) fixed-point. However, strong enough interaction can still drive the gap-opening transition through non-perturbative effects.

The article will be organized as follows. In Sec. II, we will present a lattice model of Fermi surface SMG in (1+1)D, as the pristine lattice regularization of the 3-4-5-0 chiral fermion model, whose phase diagram can be reliably analyzed by RG approach. In Sec. III, we will extend the discussion of Fermi surface SMG to (2+1)D in a concrete lattice model, which can be exactly solved in both the weak and strong interaction limits. Through these examples, we establish the Fermi surface SMG as a general mechanism to gap out anomaly-free Fermi surfaces in different dimensions. We summarize our result and discuss its connection to future directions in Sec. IV.

II. FERMI SURFACE SMG IN (1+1)D

A. (1+1)D Fermi Liquid and Fermi Surface Anomaly

In the free-fermion limit, the (1+1)D Fermi liquid can be realized as a system of fermions occupying a segment of single-particle momentum eigenstates in the 1D momentum space (or Brillouin zone), which can be described by a Hamiltonian $H = \sum_k c_k^\dagger c_k$, where c_k (or c_k^\dagger) is the fermion annihilation (or creation) operator of the single-particle mode at momentum k. For now, we only consider spinless fermions, such that the c_k operator does not carry spin (or any other internal degrees of freedom). As an example, suppose the band structure is described by $\epsilon_k = (k^2 - k_F^2)/(2m)$ for non-relativistic fermions with a finite chemical potential $\mu = k_F^2/(2m)$. The ground state of the Hamiltonian H will have fermions occupying the momentum segment $k \in [-k_F, k_F]$ set by the Fermi momentum k_F, as illustrated in Fig. 1(a).

![FIG. 1. (a) A typical single-band Fermi liquid with Fermi surface anomaly. (b) Two-band model of a Fermi liquid with the Fermi surface anomaly canceled. Chiral fermions with linearized dispersions around different Fermi points emerge at low energy.](image-url)

The low-energy degrees of freedom in the (1+1)D Fermi liquids can be modeled by the chiral fermions near the 0D Fermi surfaces (namely, Fermi points) at $\pm k_F$, which are described by the following Lagrangian density

$$\mathcal{L} = c_L^\dagger(i\partial_t - vF\partial_x)c_L + c_R^\dagger(i\partial_t + vF\partial_x)c_R,$$ \hspace{1cm} (1)

where $v_F = k_F/m$ is the Fermi velocity. The operator c_L (or c_R) annihilates the left (or right) moving fermion...
modes, defined as
\[c_{R/L}(x) = \int_{-\Lambda}^{\Lambda} d\kappa \, c_{\pm k_F + \kappa} e^{i(\pm k_F + \kappa)x} \]
(2)
around the Fermi points within a small momentum cut-off \(\Lambda \ll k_F \). The low-energy effective theory \(\mathcal{L} \) in Eq. (1) has an emergent \(U(1)_L \times U(1)_R \) symmetry, corresponding to the separate charge conservation of the left- and right-moving chiral fermions. Under the symmetry transformation with the periodic \(\phi_L \) and \(\phi_R \) in \([0, 2\pi)\),
\[U(1)_L : c_L \rightarrow e^{i\phi_L} c_L, c_R \rightarrow c_R; \]
\[U(1)_R : c_L \rightarrow c_L, c_R \rightarrow e^{i\phi_R} c_R. \]
(3)
They can be as well understood as a recombination of the vector \(U(1)_V \) and axial \(U(1)_A \) symmetries, by rewriting \(\phi_L = \phi - k_F \delta x \) and \(\phi_R = \phi + k_F \delta x \),
\[U(1)_V : c_k \rightarrow e^{i\phi} c_k \rightarrow \begin{cases} c_L \rightarrow e^{i\phi} c_L, \\ c_R \rightarrow e^{i\phi} c_R, \end{cases} \]
(4)
\[U(1)_A : c_k \rightarrow e^{i\phi} c_k \rightarrow \begin{cases} c_L \rightarrow e^{-ik_F \delta x} c_L, \\ c_R \rightarrow e^{ik_F \delta x} c_R. \end{cases} \]
(5)
More precisely, the combined symmetry group should be denoted as \(U(1)_V \times \mathbb{Z}_2^f U(1)_A \equiv \frac{U(1)_V \times U(1)_A}{\mathbb{Z}_2^f} \), because the \(U(1)_V \) and \(U(1)_A \) symmetries share the fermion parity \(\mathbb{Z}_2^f \) subgroup (under which \(c_{L,R} \rightarrow -c_{L,R} \)). The physical meaning of the vector \(U(1)_V \) symmetry is the total \(U(1) \) charge conservation of the fermions, and the axial \(U(1)_A \) symmetry can be considered an effective representation of the translation symmetry in the infrared (IR) limit (that translates all fermions by displacement \(\delta x \) along the 1D system). Although translation symmetry is described by a non-compact symmetry group \(\mathbb{Z} \) at the lattice scale, its action on the low-energy chiral fermion fields \(c_L, c_R \) behaves as a compact \(U(1)_A \) emergent symmetry [25, 56].

The stability of the Fermi liquid is protected by the Fermi surface anomaly, which can be viewed as the mixed anomaly between the \(U(1)_V \) and \(U(1)_A \) symmetries. The anomaly index is given by [23, 29, 30]
\[1 \times k_F - 1 \times (-k_F) = 2k_F = 2\pi\nu, \]
(6)
which can be related to the fermion filling fraction \(\nu \). The system is anomalous if the filling \(\nu \) is not an integer. Without breaking the charge \(U(1) \) and translation symmetries, it is impossible to drive the Fermi liquid to a trivial gap phase due to the non-vanishing Fermi surface anomaly. This can be viewed as a consequence of the Lieb-Schultz-Mattis (LSM) theorem [30]. The situation is also similar to the chiral fermion edge states on the \((1+1)D \) boundary of a \((2+1)D \) quantum Hall insulator.

B. Two-Band Model and Anomaly Cancellation

To generate a gap for these low-energy fermions in \((1+1)D \) Fermi liquids, the Fermi surface anomaly must be canceled. Here we present a two-band toy model that achieves anomaly cancellation and enables gapping out the Fermi surface without breaking the charge \(U(1) \) and translation symmetries and without generating any Fermi bilinear condensation. It will provide a concrete example of SMG in \((1+1)D \) Fermi liquids.

Consider a 1D lattice (a chain of sites) with two types of fermions \(c_{iA} \) and \(c_{iB} \) per site. The \(A \)-type fermion \(c_{iA} \) carries charge \(q_A \) under a global \(U(1) \) symmetry, and the \(B \)-type fermion \(c_{iB} \) carries charge \(q_B \) under the same \(U(1) \) symmetry. The Hamiltonian takes the general form of
\[H = -\sum_{ij}(t_{ij}^A c_{iA}^\dagger c_{jA} + t_{ij}^B c_{iB}^\dagger c_{jB} + \text{h.c.}) \]
\[-\sum_i(\mu_A c_{iA}^\dagger c_{iA} + \mu_B c_{iB}^\dagger c_{iB}) + H_{\text{int}} \]
(7)
with \(H_{\text{int}} \) being some fermion interactions to be specified later in Eq. (10). The specific details of the hopping coefficients \(t_{ij}^A \) and \(t_{ij}^B \) are not important to our discussion as long as they produce a band structure that looks like Fig. 1(b) in the Brillouin zone. The \(A \)-type fermion forms an electron-like band, and the \(B \)-type fermion forms a hole-like band. The two bands overlap in the energy spectrum. This will realize a two-band Fermi liquid in general. The Hamiltonian \(H \) in Eq. (6) has a \(U(1) \times (\mathbb{Z} \times \mathbb{Z}_2) \) symmetry (parameterized by a periodic angle \(\phi \) \(\in \[0, 2\pi) \) and an integer \(n \in \mathbb{Z} \) as follows)
\[U(1) : c_{iA} \rightarrow e^{i\nu_A \phi} c_{iA}, \quad c_{iB} \rightarrow e^{i\nu_B \phi} c_{iB}; \]
\[Z : c_{iA} \rightarrow c_{i(i+n)A}, \quad c_{iB} \rightarrow c_{i(i+n)B}; \]
\[Z_2 : c_{iA} \rightarrow c_{i(-i)A}, \quad c_{iB} \rightarrow c_{i(-i)B}. \]
(8)
They correspond to the total charge conservation symmetry \(U(1) \), the lattice translation symmetry \(\mathbb{Z} \), and the lattice reflection symmetry \(\mathbb{Z}_2 \). The question is whether we can gap the Fermi liquid without breaking all these symmetries in \((1+1)D \) space.

One significant obstruction towards gapping is the Fermi surface anomaly, which can also be interpreted as a mixed anomaly between the charge \(U(1) \) and (the IR correspondence of) the translation symmetry. To cancel the Fermi surface anomaly, we need to fine-tune the chemical potentials \(\mu_A \) and \(\mu_B \) such that the anomaly index vanishes
\[q_A \nu_A + q_B \nu_B = 0 \mod 1, \]
(9)
where \(\nu_A \) and \(\nu_B \) are the filling fractions of the \(A \) and \(B \) bands (for the hole-like \(B \) band, we may assign \(\nu_B < 0 \) such that \(|\nu_B| \) corresponds to the hole-filling). This is also known as the charge compensation condition in semiconductor physics.

If the \(A \)-type and \(B \)-type fermions carry the same charge as \(q_A = q_B = 1 \), the anomaly cancellation condition Eq. (8) simply requires \(\nu_A = -\nu_B \). In this case, the electron-like Fermi surface of the \(A \)-type fermion and
the hole-like Fermi surface of the B-type fermion are perfectly nested (with zero nesting momentum). A gap can be opened simply by tuning on a fermion bilinear term \(\sum_i c_i^A g_i B + \text{h.c.} \) in the Hamiltonian, which preserves the full U(1) × (Z × Z_2) symmetry. This is the familiar band hybridization mechanism to open a band gap in a charge-compensated Fermi liquid, which drives a metal to a band insulator without breaking symmetry.

However, we are more interested in the non-trivial case when the fermions carry different charges $q_A \neq q_B$. For example, let us consider the case of $q_A = 1$ and $q_B = 3$, then the anomaly cancellation condition Eq. (8) requires $\nu_A = -3 \nu_B$, i.e. the electron-like Fermi volume in the A band must be three times as large as the hole-like Fermi volume in the B band to cancel the Fermi surface anomaly. Defining the fermion operators $c_k A, c_k B$ in the momentum space by the Fourier transformation

\[
c_k A = \sum_i c_i A e^{-i k_i}, \quad c_k B = \sum_i c_i B e^{-i k_i},
\]

the desired band structure can be effectively described by the following band Hamiltonian (suppressing the interaction for now)

\[
H = \sum_k \left(c_{kA}^\dagger c_{kA} + c_{kB}^\dagger c_{kB} \right),
\]

with the band dispersions (see Fig. 1(b))

\[
\epsilon_{kA} = \frac{k^2 - (3k_F)^2}{2m_A}, \quad \epsilon_{kB} = -\frac{k^2 - k_F^2}{2m_B}.
\]

Here we assume $m_A, m_B > 0$. The Fermi momentum $k_F = |\nu_B| \pi$ is set by the filling $|\nu_B|$ which is typically an irrational number (without fine-tuning). The key feature is that the Fermi momenta of the A and B energy bands must have a 3 : 1 ratio that matches the inverse charge ratio $(q_A/q_B)^{-1}$ precisely. In this case, the energy band hybridization is forbidden by the charge U(1) symmetry as the two bands now carry different charges. Even if the band hybridization is spontaneously generated at the price of breaking the U(1) symmetry, it does not gap the Fermi liquid because the Fermi surfaces of the two bands are no longer nested at the Fermi level, such that the band hybridization will only create some avoided energy band crossing below the Fermi level. Then the system remains metallic because the (upper) hybridized band still crosses the Fermi level.

One can show that it is impossible to symmetrically gap the Fermi liquid by any fermion bilinear terms in this charge-compensated two-band system with $q_A = 1$ and $q_B = 3$, even if the Fermi surface anomaly has already been canceled by the charge-compensated filling $\nu_A = -3 \nu_B$. Although the anomaly vanishes (i.e. there is no obstruction towards gapping in principle), the symmetry is still restrictive enough to forbid any fermion bilinear coupling term, such that the only possible gapping mechanism rests on non-perturbative fermion interaction effects.

To see this, we can single out the low-energy chiral fermions near the four Fermi points:

\[
c_{AR} = c_{(3k_F)A}, \quad c_{BR} = c_{(-k_F)B},
\]

\[
c_{BL} = c_{(k_F)B}, \quad c_{AL} = c_{(-3k_F)A},
\]

where A, B label the bands that they originated from and L, R label their chiralities (i.e. left- or right-moving), according to Fig. 1(b). Similar to Eq. (1), the low-energy effective Lagrangian density reads

\[
\mathcal{L} = \sum_a c_a^\dagger (i \partial_t + v_a i \partial_x) c_a,
\]

where the index a sums over the four Fermi point labels AR, BR, BL, AL. Here v_a denotes the Fermi velocity near the Fermi point a.

The original U(1) × Z symmetry at the lattice fermion level reduces to the emergent U(1)_{\nu_B} × U(1)_{\nu_A} symmetry for the low-energy chiral fermions c_a (see Appendix A for more explanations)

\[
U(1) \Rightarrow U(1)_{\nu_B} : c_a \mapsto e^{i q_a \phi_B} c_a,
\]

\[
Z \Rightarrow U(1)_{\nu_A} : c_a \mapsto e^{i q_a \phi_A} c_a.
\]

Tab. I summarizes their charge assignment under $U(1)_\nu$ and $U(1)_A$, where the vector $U(1)_\nu$ symmetry is just the charge U(1) symmetry and the axial $U(1)_A$ symmetry is an emergent symmetry corresponding to the lattice translation symmetry Z. Alternatively, they can be recombined into the $U(1)_{3\nu_B} \times U(1)_{\nu_A}$ symmetry, such that it becomes obvious that all fermion bilinear backscattering terms (either the Dirac mass $c_{iA}^\dagger c_{iB}$ or the Majorana mass $c_a c_b$ for $a \neq b$ and $a, b \in \{ AR, BR, BL, AL \}$) are forbidden by the symmetry because they are all charged non-trivially under the $U(1)_{3\nu_B} \times U(1)_{\nu_A}$ symmetry due to the distinct charge assignment to every chiral fermion. Given this situation, the only hope to gap the Fermi liquid is to evoke the SMG mechanism that generates the mass for all chiral fermions by non-perturbative multi-fermion interactions.

fermion chirality	$U(1)_\nu$	$U(1)_A$	$U(1)_{3\nu_B}$	$U(1)_{\nu_A}$
c_{AR}	-1	1	3	3
c_{BR}	-1	3	-1	4
c_{BL}	+1	3	1	5
c_{AL}	+1	1	-3	0

C. SMG Interaction and RG Analysis

It is worth mentioning that the charge-compensated two-band model with $q_A = 1$ and $q_B = 3$ essentially
regularizes the 3-4-5-0 chiral fermion model [58, 59] on a pristine 1D lattice (without introducing any compact extra dimensions). The emergent U(1)$_{V,Z}$ symmetries act as the lattice translations decorated by appropriate internal U(1) rotations, described by the following Z symmetry groups (parameterized by integer $n \in \mathbb{Z}$) at the lattice level: (see Appendix A for derivation)

$$Z \ (for \ 3V\pm A) : \left\{ \begin{array}{l}
c_i A \rightarrow e^{\pm i 3 k \pi n} c_{(i+n)A}, \\
c_i B \rightarrow e^{\pm i 3 k \pi n} c_{(i+n)B}.
\end{array} \right. \ (15)
$$

The 3-4-5-0 model is a toy model for studying the long-standing problem: the lattice regularization of the chiral fermion theory in high-energy physics [60–68]. Many variants of the model are studied in the lattice community [69, 70]. This model is anomaly-free — perturbative local gauge anomaly free within any linear combination of the U(1)$_V \times U(1)_A$ checked by the Adler-Bell-Jackiw method [71, 72], perturbative local gravitational anomaly free because of the zero chiral central charge $c_L - c_R = 0$, also nonperturbative global anomaly free from any gauge or gravitational fields checked by the cobordism [73]. However, it is known much later that symmetric gapping can only be achieved by minimally six-fermion interactions among the four flavors of 3-4-5-0 fermions. The SMG interaction was first proposed by Wang and Wen [44, 74], which was later discussed by Tong [75] and only recently verified by the density matrix renormalization group (DMRG) [76, 77] numerical simulation in Ref. 78.

Given the existing knowledge about the SMG interaction in the 3-4-5-0 chiral fermion model, we can map the Wang-Wen interaction [44, 74] back to our lattice model following the correspondence listed in Tab. I, which gives us the following SMG interaction (see Appendix B for more details)

$$H_{\text{int}} = g \sum_i c_{i-1,B}^\dagger C_{i-1} C_{i-1,A} c_{i,B} c_{i,A} c_{i+1,B} c_{i+1,A} + \text{h.c.} \ . \ (16)$$

This is a six-fermion interaction across three adjacent sites on the 1D lattice. It describes the process that first annihilates both A- and B-type fermions on the center site (which annihilates four units of charges on the site i) and then separately converts A-type fermions to B-type fermions on the two adjacent sites (which creates two units of charges on each of the site $i - 1$ and $i + 1$), such that the U(1)$_V$ charge is conserved. The interaction is also manifestly translation and reflection symmetric, so the full U(1)$_V \times (Z \times Z_2)$ symmetry is preserved by the interaction as expected. With this interaction, we claim that the lattice model Eq. (6) will exhibit an (ersatz) Fermi liquid to SMG insulator transition when the interaction strength g exceeds a finite critical value g_c.

To show that the proposed interaction Eq. (16) indeed drives the Fermi liquid to a gapped interacting insulator, we bosonize [79, 80] the fermion operator $c_a \sim e^{i \phi_a} :$ (with $a \in \{AR, BR, BL, AL\}$) and cast the lattice model to an effective Luttinger liquid theory, described by the following Lagrangian density

$$\mathcal{L} = \frac{1}{4\pi}(\partial \varphi^T K \partial \varphi - \partial x \varphi^T V \partial x \varphi) + \sum_{\alpha=1,2} g_{\alpha} \cos(I^\alpha, \varphi), \quad \Delta_{\text{int}} = \frac{|\Delta_{\text{int}}|}{\bar{\Delta}_{\text{int}}} = \pi^2 g^2, \quad \pi g \in [0, 1, 2, 3, 4, 5] \ . \ (17)$$

where $\varphi = (\varphi_{AR}, \varphi_{BR}, \varphi_{BL}, \varphi_{AL})^T$ are compact scalar bosons. The K matrix and the I_{α} vectors are given by

$$K = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \quad I_1 = \begin{bmatrix} -1/2 \\ -1/2 \end{bmatrix}, \quad I_2 = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}. \quad \ (18)$$

The six-fermion interaction H_{int} in Eq. (16) translates to the cosine terms g_1 and g_2 in the Luttinger liquid theory in Eq. (17), with $g_1 = g_2 = g$ enforced by the Z_2 reflection symmetry. The RG flow in the log energy scale $\ell = -\ln \Lambda$ is given by [81, 82]

$$\frac{dg}{d\ell} = (2 - \Delta_{\text{int}})g, \quad \frac{d\Delta_{\text{int}}}{d\ell} = \pi^2 g^2, \quad \Delta_{\text{int}}$$

where Δ_{int} is the scaling dimension of the SMG interaction. The RG flow diagram is shown in Fig. 2.

![FIG. 2. The RG flow of the coupling g and the scaling dimension Δ_{int} of the SMG interaction. The abbreviations stand for the following terminology: SMG for symmetric mass generation, FL for Fermi liquid, EFL for ersatz Fermi liquid, LL for Luttinger liquid.]
If the bare coupling g is strong enough ($g > g_c$), the scaling dimension Δ_{int} can be reduced to $\Delta_{\text{int}} < 2$ such that the SMG interaction becomes relevant and flows strong. As the cosine term in Eq. (17) gets strong, the corresponding vertex operators $e^{i\theta} (\alpha = 1, 2)$ condense. Any other operators that braid non-trivially with the condensed operators will be gapped, which includes all the fermion operators. Therefore the system enters the SMG insulating phase with all fermion excitations all the fermion operators. Therefore the system enters

$$\text{III. FERMI SURFACE SMG IN (2+1)D}$$

A. (2+1)D Fermi Liquid and Fermi Surface Anomaly

Given the example of Fermi surface SMG in (1+1)D, we would like to further explore similar physics in higher dimensions. The most important low-energy features of a (2+1)D Fermi liquid are the gapless fermions on its 1D Fermi surface. Suppose we parameterize the 1D Fermi surface $k_F(\theta) \in \partial \Omega_F$ by a continuous and periodic parameter θ, such that $k_F(\theta + 2\pi) = k_F(\theta)$ (where we do not require θ to literally represent the geometrical angle, as the Fermi surface may not be a perfect circle in general). The fermions c_θ on the Fermi surface have an emergent symmetry described by the loop group of $U(1)$ [11, 12], denoted as $LU(1)$, under which

$$LU(1) : c_\theta \to e^{i\phi(\theta)} c_\theta,$$

(20)

where the $U(1)$ phase factor $e^{i\phi(\theta)}$ is a smooth function of θ with the periodicity $e^{i\phi(\theta+2\pi)} = e^{i\phi(\theta)}$. Both the (global) charge $U(1)$ and the translation symmetries \mathbb{R}^2 are subgroups of $LU(1)$:

$$U(1) : c_\theta \to e^{i\phi} c_\theta, \quad \mathbb{R}^2 : c_\theta \to e^{ia \cdot k_F(\theta)} c_\theta,$$

(21)

assuming the fermions c_θ carry charge q under the global $U(1)$ symmetry and are translated by the vector $a \in \mathbb{R}^2$.

The presence of the Fermi surface causes a mixed anomaly between the $U(1)$ and translation symmetries [86], which is characterized by the anomaly index

$$q = \frac{q}{2(2\pi)^2} \oint d\theta (k_F \times \partial_\theta k_F)_3 = \frac{q \nu}{(2\pi)^2} = q \nu,$$

(22)

where ν_F stands for the Fermi volume in the momentum space, and ν is the filling factor. If the Fermi surface anomaly is non-vanishing, it is impossible to trivially gap out the Fermi liquid without breaking any symmetry or developing any topological order. The Fermi surface SMG is only possible if the Fermi liquid system contains multiple Fermi surfaces of opposite anomaly indices, such that their anomalies cancel as a whole.

B. Kagome-Triangular Lattice Model

We present a concrete lattice model to demonstrate the Fermi surface SMG in (2+1)D. Consider two types of spinless fermions labeled by A and B that are charged under a global $U(1)$ symmetry with charges $q_A = 1$ and $q_B = 3$, respectively. The A-type (or B-type) fermion is defined on a Kagome (or triangular) lattice. As depicted in Fig. 3(a), the Kagome and the triangular lattices lie on top of each other, with the site I of the triangular lattice aligned with the upper triangle Δ_I on the Kagome lattice. We will use the lower-case letters i, j (or the upper-case letters I, J) to label the Kagome (or the triangular) lattice sites.

The lattice model is described by following the Hamiltonian

$$H = H_A + H_B + H_{\text{int, CF}},$$

$$H_A = -t_A \sum_{i,j} (c_i^\dagger c_j + \text{h.c.}) - \mu_A \sum_i c_i^\dagger c_i,$n

$$H_B = -t_B \sum_{i,j} (c_i^\dagger c_j + \text{h.c.}) - \mu_B \sum_i c_i^\dagger c_i,$n

(23)

$$H_{\text{int, CF}} = -g \sum_{i,j,k \in \Delta_I} (c_i^\dagger c_j c_k + \text{h.c.}),$$
A lattice liquid phase. According to Eq. (22), the Fermi surface interactions also appear in a recent study [87] of quantum associated with the symmetry action in Eq. (24). Similar in the hopping model to a joint U(1) charge conservation, the CF interaction breaks the separate one in Eq. (23) that fuses three together only through a four-fermion interaction \(H \) of the four bands. Specifically, such that the Fermi surface only involves \(\nu \) filling such as \(\nu_B = 3/4(\nu_A) \) bands are filled by filling fractions \(\nu_B \) and one band for \(B \)-type fermions. The chemical potentials \(\mu_A, \mu_B \) must increase correspondingly to keep the fermion fillings fixed. The model Hamiltonian decouples to each unit cell in the strong coupling limit

\[
H = \sum_{I|ijk\in \triangle I} -\mu_A (n_i + n_j + n_k) - \mu_B n_I \\
- g (\hat{c}^\dagger_i \hat{c}^\dagger_j \hat{c}_j \hat{c}_k + \text{h.c.}),
\]

where \(n_i = \hat{c}^\dagger_i \hat{c}_i \) (and \(n_I = \hat{c}^\dagger_I \hat{c}_I \)) denotes the fermion number operator. Within each unit cell, there are only two relevant states \(|1110\rangle \) and \(|0001\rangle \) (in the Fock state basis \(|n_1 n_2 n_3 n_4| \)) acted by the Hamiltonian. Their hybridization will produce the ground state in each unit cell. The full-system ground state will be the following direct product state

\[
|\text{SMG}\rangle = \bigotimes_I \left(\sqrt{p} |1110\rangle + \sqrt{1-p} |0001\rangle \right)_I,
\]

where \(p = \frac{1}{2} \left(1 + \frac{-3\mu_A + \mu_B}{\sqrt{(-3\mu_A + \mu_B)^2 + 4g^2}} \right) \) is the probability to observe the \(|1110\rangle \) state in the unit cell, which is tunable by adjusting \(\mu_A, \mu_B \) relative to \(g \). The fermion fillings (per unit cell) in the ground state \(|\text{SMG}\rangle \) will be

\[
\nu_A = 3p, \quad \nu_B = 1 - p = -p \mod 1,
\]

which automatically satisfies the anomaly cancellation condition \(\nu_A = -3\nu_B \) (as it should be). The ground state \(|\text{SMG}\rangle \) is non-degenerated and gapped from all excited states (with a gap of the order \(g \)). It also preserves the charge U(1) and all the lattice symmetries and does not have topological order. Therefore, we have explicitly shown that the system ends up in the SMG insulator

\[
q_A \nu_A + q_B \nu_B = 0 \mod 1.
\]
phase as $g \to \infty$. As a gapped phase, we expect it to be stable against perturbations (such as the hopping terms t_A, t_B) over a finite region in the parameter space. The SMG phase is a strongly interacting insulating phase, which has no correspondence in the free-fermion picture.

Established the Fermi liquid (metallic) phase at $g = 0$ and the SMG insulator phase at $g \to \infty$, there must be an SMG transition (an interaction-driven metal-insulator transition) at some intermediate coupling strength g_c. However, the nature of the transition is still an open question, which we will leave for future numerical study. In the following, we will only analyze the SMG transition at a special filling: $\nu_A = \nu_B = 3/4$, where the Fermi surfaces coincide precisely and take the perfect hexagon shapes as shown in Fig. 3(c). This allows us to gain some analytic control of the problem.

C. RG Analysis of the SMG Transition

In this subsection, we analyze the interaction effect in Eq. (23) when the filling is $\nu_A = \nu_B = 3/4$. In this case, the Fermi surface contains three Van Hove singularity (VHSs) (or three hot spots) at three distinct M points as shown in Fig. 3(c). We can investigate the interaction effects using the hot-spot renormalization group (RG) method at the one-loop level [88–95]. The hot-spot RG assumes that the low-energy physics emerges from the correlated effects of the fermions near the VHSs, because the density of states diverges near the VHSs, leading to the highest instability towards ordering.

Under RG, the charge fusion interaction $H_{\text{int, CF}}$ will generate two types of density-density interactions at the one-loop level, namely, $H_{\text{int, AA}} = \sum_{i,j} n_i n_j$ and $H_{\text{int, AB}} = \sum_{i,j} n_i n_j$ as well as other (less important) exchange interactions. These density-density interactions are more important in the sense that they will in turn contribute to the correction of $H_{\text{int, CF}}$. Therefore, we should include $H_{\text{int, CF}}, H_{\text{int, AA}}, H_{\text{int, AB}}$ altogether in the RG analysis and study the RG flow jointly.

To proceed, we transform the interactions into the momentum space. The fermion operators are labeled by the flavor index $S = A, B$ and the hot-spot index $\alpha = 1, 2, 3$ (referring to the three different VHSs). We note that $H_{\text{int, CF}}$ would vanish if it is naively restricted to the hot spots because the momentum conservation requires multiple A-type fermion operators to appear on the same hot spot, which violates the Pauli exclusion principle of fermions. So we need to introduce point splitting in the momentum space around each hot spot. Our strategy is to further split the A-type fermion into three modes A_s labeled by $s = 1, 2, 3$, and define the interaction,

$$H_{\text{int, CF}} = g_{rt} \sum_{\alpha} \epsilon^{ijk} c_{B\alpha}^\dagger c_{A,\alpha} c_{A,\alpha} c_{A,\alpha} + g_{rt} \sum_{\alpha \neq \beta} \epsilon^{ijk} c_{B\alpha}^\dagger c_{A,\alpha} c_{A,\beta} c_{A,\beta} + \text{h.c.}$$

g_{rs} and g_{rt} are the CF interaction decomposed into different momentum transfer channels: the intra-hot-spot scattering g_{rs} and the inter-hot-spot scattering g_{rt}.

These CF interactions receive corrections from the following density-density interactions at the one-loop level,

$$H_{\text{int, AA}} + H_{\text{int, AB}} = g_{as} \sum_{n,\alpha} n_A,\alpha n_{A,\alpha} + (A_s \leftrightarrow A_t)$$

$$+ g_{st} \sum_{\alpha \neq \beta} n_B,\alpha n_{A,\beta} + (A_s \leftrightarrow B) + \text{h.c.}$$

where $...$ refers to the other interactions that are decoupled from $g_{rs}, g_{rt}, g_{rs}, g_{bt}$ in the RG equations. The scattering processes of these four important interactions are illustrated in Fig. 4. The complete set of all possible interactions is presented in Appendix C.

We derive the RG equations based on the systematic approach developed in Ref. 96. Since we are interested in the flow of $H_{\text{int, CF}}$, the relevant part of the RG equations reads,

$$\frac{dg_{rt}}{d\ell} = 2d_0 d_{AB} g_{rt}^2, \quad \frac{dg_{as}}{d\ell} = -2g_{as}^2,$$

$$\frac{dg_{rs}}{d\ell} = -6g_{as} g_{rs}, \quad \frac{dg_{rt}}{d\ell} = 4d_0 d_{AB} g_{rt} g_{as} - 2g_{as} g_{rt}$$

where the RG parameter is defined by the Cooper-pairing susceptibility of A-type fermions $\ell = \chi_{pp, AA}(k = 0, E) \sim \nu_0 \log(\Lambda/E)$, in which $\nu_0 \log(\Lambda/E)$ is the diverging density of states at the VHS, E is the running energy scale and Λ is the high energy cutoff. $d_0 = d\chi_{pp, AA}(Q)/d\ell \leq 1$ is the nesting parameter of A-type fermions, which saturates to one in the perfectly nested limit ($d_0 \to 1$). In our case, different VHSs are half-nested (only one of the two crossing Fermi surfaces is perfectly nested between every pair of different VHSs), so $d_0 = 1/2$ is a suitable estimation. Similarly, we define $d_{AB} = d\chi_{pp, AB}(0)/d\ell$, which depends on the energies of A and B-type fermions near the VHS. The full RG equations and details are listed in Appendix C.

FIG. 4. Scattering of fermions between Van Hove singularities (VHSs) by (a) density-density interactions g_{rt} (red), g_{as} (blue) and (b) non-vanishing processes g_{rs} (yellow), g_{rt} (green) of $H_{\text{int, CF}}$. Thin (or thick) arrows correspond to A-type (or B-type) fermions.

According to the one-loop RG equations, if the density-density interactions g_{rt}, g_{as} are initially zero, then the CF interactions g_{rs}, g_{rt} remain marginal along the RG.
flow. However, if we turn on small density-density interactions g_{at}, g_{as} with correct signs ($g_{as} > 0$ or $g_{as} < 0$), the charge fusion interactions g_{rs}, g_{rt} will be marginally relevant. The solutions of RG equations Eq. (31) are

$$g_{bt}(\ell) = \frac{g_{bt}(0)}{1 - 2 d_0 d_{AB} g_{bt}(0) \ell}, \quad g_{as}(\ell) = \frac{g_{as}(0)}{1 + 2 g_{as}(0) \ell},$$

$$g_{rs}(\ell) = \frac{g_{rs}(0)}{(1 + 2 g_{as}(0) \ell)^2},$$

$$g_{rt}(\ell) = \frac{g_{rt}(0)}{(1 + 2 g_{as}(0) \ell)(1 - 2 d_0 d_{AB} g_{bt}(0) \ell)^2}. \tag{32}$$

As the RG parameter ℓ increases under the RG flow, the coupling strengths can diverge at some critical scale ℓ_c, when any of the denominators in Eq. (32) vanish. The critical scale is set by the bare density-density interaction strengths $g_{bt}(0)$ and $g_{as}(0)$, but the CF interaction strengths g_{rs}, g_{rt} diverge faster than the density-density interactions as the critical scale is approached. Therefore, the RG fixed points are characterized by the behavior of g_{rs}, g_{rt}.

![FIG. 5.](image)

FIG. 5. The RG phase diagram with respect to the density-density interactions g_{as}, g_{bt}. In the Fermi liquid (FL) phase, the gapping interaction flows to zero. In the symmetric mass generation (SMG) phase, the gapping interaction flows to infinity.

Depending on the bare density-density interaction strengths $g_{as}(0)$ and $g_{bt}(0)$, the system can flow towards different RG fixed points as shown Fig. 5. When $g_{as}(0) > 0$ and $g_{bt}(0) < 0$, all interactions flow to zero, which corresponds to the Fermi liquid fixed point. When $g_{as}(0) < \min(0, -d_0 d_{AB} g_{bt}(0))$, both charge fusion interactions g_{rs}, g_{rt} flow to infinity, which should correspond to the SMG phase according to the previous lattice model analysis. However, we also find a region in the phase diagram, described by $g_{bt} \geq \max(0, -g_{as}/d_0 d_{AB})$, where $g_{as} \rightarrow 0$ and $g_{rt} \rightarrow \infty$, i.e. flowing towards different limits. We are not sure how to interpret the physical meaning of this RG fixed point. It might still be in the SMG phase as one interaction still flows strong. But it could as well end up in a spontaneous symmetry breaking (SSB) phase that breaks the $RU(1)$ symmetry since the A-type and B-type Fermi surfaces have pretty strong nesting instability. This might also be an artifact of the hot-spot RG method, as it does not fully capture all low-energy fermionic degrees of freedom of the Fermi surface.

Functional RG [97–100] might provide a better resolution of the Fermi surface and remove the uncertainty in the phase diagram Fig. 5. A recent study [101] has demonstrated the functional RG method in a triangle lattice model with spinless fermions. The same technique might apply to our model as well. However, we will leave such study for future research.

By tuning $g_{as}(0)$ across zero on the $g_{bt}(0) < 0$ side, one can drive a FL to SMG transition. The gapping interaction is marginally relevant at the transition point. According to the solution of the RG equations in Eq. (32), the coupling diverges at the critical scale $\ell_c \sim \nu_0 \log^2(\Lambda/\Delta_{SMG})$ when the denominator $(1 + 2 g_{as}(0) \ell_c)$ vanishes. This implies that the SMG gap Δ_{SMG} (the energy gap between the ground state and the first excited state) opens up as $[102, 103]$

$$\Delta_{SMG} \sim \Lambda \exp(-c/\sqrt{g_{as}(0) \nu_0}), \tag{33}$$

where Λ is the UV cutoff energy scale, ν_0 is the coefficient in front of the diverging density of state at the VHS, and c is some non-universal constant.

IV. SUMMARY AND DISCUSSION

In this work, we propose the concept of Fermi surface SMG: a mechanism to gap out Fermi surfaces by non-perturbative interaction effects without breaking the $LU(1)$ symmetry. This phenomenon can only happen when the Fermi surface anomaly is canceled out in the fermion system. We present $(1+1)D$ and $(2+1)D$ examples of Fermi surface SMG. We expect that the mechanism can generally occur in all dimensions.

Fermi surface SMG belongs to a broader class of phenomena, called the symmetric Fermi surface reconstruction (SFSR), as summarised in Fig. 6. The SFSR is in contrast to the more conventional symmetry-breaking Fermi surface reconstruction, where the Fermi surface is reconstructed (or gapped) by developing spontaneous symmetry-breaking orders. Depending on the cancellation of the Fermi surface anomaly, the SFSR further splits into two classes: the Fermi surface symmetric mass generation (SMG) if the anomaly vanishes, or the Fermi surface topological mass generation (TMG) if the anomaly does not vanish. The former class, the Fermi surface SMG, is the focus of this work. The latter class, the Fermi surface TMG, is also discussed in the literature, where the non-vanishing Fermi surface anomaly is absorbed by an anomalous topological quantum field theory (TQFT), such that the SFSR is achieved by developing the corresponding topological order. This gives rise to deconfined/fractionalized Fermi liquid (FL*) [104–106] or orthogonal metal [107–109]. Symmetry extension [110] has provided a unified framework, to understand TMG and SMG for bosons or fermions of zero Fermi volume.
where the symmetric gapping can be achieved by extending the symmetry group to lift any gapping obstruction that was otherwise imposed by the symmetry. Similar constructions can be applied to understand SFSR more generally.

![Fermi Liquid](Image)

Fig. 6. Classification of Fermi surface reconstruction mechanisms, based on the LU(1) loop group symmetry.

Fermi surface SMG deforms an anomaly-free (charge-compensated) Fermi liquid state to a fully gapped product state. Although the resulting SMG gapped state does not have non-trivial features like topological order, the SMG transition from the Fermi liquid phase to the SMG phase can still be quite exotic. The SMG transition of relativistic fermions has been proposed to be a deconfined quantum critical point [117, 118], where the physical fermion fractionalizes to bosonic and fermionic partons with emergent gauge fluctuations at and only at the critical point. It is conceivable that similar scenarios might apply to the Fermi surface SMG transition as well, where deconfined Fermi liquid (orthogonal metal) could emerge at the critical point. The lattice models presented in this study lay the ground for future theoretical and numerical studies of the exotic SMG transition in these models.

It is also known that the fermion single-particle Green’s function has symmetry-protected zeros at zero frequency in the SMG phase [119–122]. It will be interesting to investigate further the Green’s function structure in the Fermi surface SMG phase. Whether or not the SMG interaction will replace the original Fermi surface (a loop of poles) with a loop of zeros in the Green’s function is still an open question to explore.

Acknowledgments

We thank David Tong, Tin Sulejmanpasic, Max Metlitski, Xiao-Liang Qi, Cenke Xu, Subir Sachdev, John Preskill for inspiring discussions. We acknowledge the workshop “Paths to Quantum Field Theory 2022” at Durham University, where the discussion with David Tong and Tin Sulejmanpasic motivates the authors to think about pristine lattice regularizations of the 3-4-5-0 chiral fermion model. DCL, MZ, and YZY are supported by a startup fund at UCSD. JW is supported by the Center for Mathematical Sciences and Applications at Harvard University and NSF Grant DMS-1607871 “Analysis, Geometry and Mathematical Physics.”

[1] L. Landau and E. Lifshitz, *Statistical Physics: Volume 5*, v. 5 (Elsevier Science, 1933).
[2] E. Lifshitz and L. Pitaevskii, *Statistical Physics: Theory of the Condensed State*, Course of Theoretical Physics No. v. 9 (Elsevier Science, 2013).
[3] J. Wang and Y.-Z. You, Symmetric Mass Generation, *Symmetry* 14, 1475 (2022), arXiv:2204.14271 [cond-mat.str-el].
[4] R. Shankar, Renormalization group for interacting fermions in \(d > 1\), *Physica A Statistical Mechanics and its Applications* 177, 530 (1991).
[5] R. Shankar, Renormalization-group approach to interacting fermions, *Reviews of Modern Physics* 66, 129 (1994), arXiv:cond-mat/9307009 [cond-mat].
[6] A. C. Hewson, Renormalization group and Fermi liquid theory, *Advances in Physics* 43, 543 (1994), arXiv:cond-mat/9410013 [cond-mat].
[7] G. Y. Chitov and D. Sénéchal, Renormalization-group study of interacting electrons, *Phys. Rev. B* 52, 13487 (1995), arXiv:cond-mat/9505140 [cond-mat].
[8] N. Dupuis and G. Y. Chitov, Renormalization-group approach to Fermi-liquid theory, *Phys. Rev. B* 54, 3040 (1996), arXiv:cond-mat/9511120 [cond-mat].
[9] G. Y. Chitov and D. Sénéchal, Fermi liquid as a renormalization-group fixed point: The role of interference in the Landau channel, *Phys. Rev. B* 57, 1444 (1998), arXiv:cond-mat/9705037 [cond-mat.str-el].
[10] L. Rademaker and M. Ortúñó, Explicit Local Integrals of Motion for the Many-Body Localized State, *Phys. Rev. Lett.* 116, 010404 (2016), arXiv:1507.07276 [cond-mat.str-el].
[11] D. V. Else, R. Thorngren, and T. Senthil, Non-Fermi Liquids as Ersatz Fermi Liquids: General Constraints on Compressible Metals, *Physical Review X* 11, 021005 (2021), arXiv:2007.07896 [cond-mat.str-el].
[12] D. V. Else and T. Senthil, Strange Metals as Ersatz Fermi Liquids, *Phys. Rev. Lett.* 127, 086601 (2021), arXiv:2010.10523 [cond-mat.str-el].
[13] M. Oshikawa, M. Yamanaka, and I. Affleck, Magnetization Plateaus in Spin Chains: “Haldane Gap” for Half-Integer Spins, *Phys. Rev. Lett.* 78, 1984 (1997), arXiv:cond-mat/9610168 [cond-mat.str-el].
[14] M. Oshikawa, Compressibility, Excitation Gap, and Topology in Quantum Many-Particle Systems on a Periodic Lattice, *Phys. Rev. Lett.* 84, 1535 (2000), arXiv:cond-mat/9911137 [cond-mat.str-el].
[15] M. Oshikawa, Topological Approach to Luttinger’s Theorem and the Fermi Surface of a Kondo Lattice, Phys. Rev. Lett. 84, 3370 (2000), arXiv:cond-mat/0002392 [cond-mat.str-el].

[16] G. Misguich, C. Lhuillier, M. Mambrou, and P. Sindzingre,Degeneracy of the ground-state of antiferromagnetic spin-1/2 Hamiltonians, European Physical Journal B 26, 167 (2002), arXiv:cond-mat/0112360 [cond-mat.str-el].

[17] A. Paramekanti and A. Vishwanath, Extending Luttinger’s theorem to Zd fractionalized phases of matter, Phys. Rev. B 70, 245118 (2004), arXiv:cond-mat/0406619 [cond-mat.str-el].

[18] F. D. M. Haldane, Luttinger’s Theorem and the Fermi Surface of a Kondo Lattice, Phys. Rev. B 119, 085140 (2018), arXiv:1707.07686 [cond-mat.str-el].

[19] M. B. Hastings, Sufficient conditions for topological order in insulators, EPL (Europhysics Letters) 70, 824 (2005), arXiv:cond-mat/0411094 [cond-mat.str-el].

[20] H. Watanabe, H. C. Po, A. Vishwanath, and M. Zaelel, Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals, Proceedings of the National Academy of Science 112, 14551 (2015), arXiv:1505.04193 [cond-mat.str-el].

[21] M. Cheng, M. Zaelel, M. Barkeshli, A. Vishwanath, and P. Bonderson, Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface, Physical Review X 6, 041068 (2016), arXiv:1511.02923 [cond-mat.str-el].

[22] Y.-M. Lu, Y. Ran, and M. Oshikawa, Filling-enforced constraint on the quantized Hall conductivity on a periodic lattice, arXiv e-prints, arXiv:1705.09298 (2017), arXiv:1705.09298 [cond-mat.str-el].

[23] G. Y. Cho, C.-T. Hsieh, and S. Ryu, Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases, Phys. Rev. B 96, 195105 (2017), arXiv:1705.03892 [cond-mat.str-el].

[24] C.-M. Jian, Z. Bi, and C. Xu, Lieb-Schultz-Mattis theorem and its generalizations from the perspective of the symmetry-protected topological phase, Phys. Rev. B 97, 054412 (2018), arXiv:1705.00012 [cond-mat.str-el].

[25] M. A. Metlitski and R. Thorngren, Intrinsic and emergent anomalies at deconfined critical points, Phys. Rev. B 98, 085140 (2018), arXiv:1707.07686 [cond-mat.str-el].

[26] N. Bultinck and M. Cheng, Filling constraints on fermionic topological order in zero magnetic field, Phys. Rev. B 98, 161119 (2018), arXiv:1808.00324 [cond-mat.str-el].

[27] X.-Y. Song, Y.-C. He, A. Vishwanath, and C. Wang, Electric polarization as a nonquantized topological response and boundary Luttinger theorem, arXiv e-prints, arXiv:1909.08637 (2019), arXiv:1909.08637 [cond-mat.mes-hall].

[28] Y. Yao and M. Oshikawa, Generalized Boundary Conditions Applied to Lieb-Schultz-Mattis-Type Inghapabilities and Many-Body Chern Numbers, Physical Review X 10, 031008 (2020), arXiv:1906.11662 [cond-mat.str-el].

[29] J. M. Luttinger, Fermi surface and some simple equilibrium properties of a system of interacting fermions, Phys. Rev. 119, 1153 (1960).

[30] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals of Physics 16, 407 (1961).

[31] S. Ryu, J. E. Moore, and A. W. W. Ludw, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, Phys. Rev. B 85, 045104 (2012), arXiv:1010.0936 [cond-mat.str-el].

[32] X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88, 045013 (2013), arXiv:1303.1803 [hep-th].

[33] A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv e-prints, arXiv:1404.3230 (2014), arXiv:1404.3230 [hep-th].

[34] J. C. Wang, Z.-C. Gu, and X.-G. Wen, Field-Theory Representation of Gauge-Gravity Symmetry-Protected Topological Invariants, Group Cohomology, and Beyond, Phys. Rev. Lett. 114, 031601 (2015), arXiv:1405.7689 [cond-mat.str-el].

[35] T. Senthil, Symmetry Protected Topological phases of Quantum Matter, Ann. Rev. Condensed Matter Phys. 6, 299 (2015), arXiv:1405.8015 [cond-mat.str-el].

[36] E. Witten, Fermion Path Integrals And Topological Phases, Rev. Mod. Phys. 88, 055001 (2016), arXiv:1505.04193 [cond-mat.str-el].

[37] X.-G. Wen, Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89, 041004 (2017), arXiv:1610.03911 [cond-mat.str-el].

[38] L. Fidkowski and A. Kitaev, Effects of interactions on the topological classification of free fermion systems, Phys. Rev. B 81, 134509 (2010), arXiv:0904.2197 [cond-mat.str-el].

[39] L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011), arXiv:1008.4138 [cond-mat.str-el].

[40] S. Ryu and S.-C. Zhang, Interacting topological phases and modular invariance, Phys. Rev. B 85, 245132 (2012), arXiv:1202.4484 [cond-mat.str-el].

[41] X.-L. Qi, A new class of (2 + 1)-dimensional topological superconductors with Z2 topological classification, New Journal of Physics 15, 065002 (2013), arXiv:1202.3983 [cond-mat.str-el].

[42] H. Yao and S. Ryu, Interaction effect on topological classification of superconductors in two dimensions, Phys. Rev. B 88, 064507 (2013), arXiv:1202.5805 [cond-mat.str-el].

[43] Z.-C. Gu and M. Levin, Effect of interactions on two-dimensional fermionic symmetry-protected topological phases with Z2 symmetry, Phys. Rev. B 89, 201113 (2014), arXiv:1304.4569 [cond-mat.str-el].

[44] J. Wang and X.-G. Wen, Non-Perturbative Regularization of 1+1D Anomaly-Free Chiral Fermions and Bosons: On the equivalence of anomaly matching conditions and boundary gapping rules, arXiv e-prints, arXiv:1307.7480 (2013), arXiv:1307.7480 [hep-lat].

[45] K. Slagle, Y.-Z. You, and C. Xu, Exotic quantum phase transitions of strongly interacting topological insulators, Phys. Rev. B 91, 115121 (2015), arXiv:1409.7401 [cond-mat.str-el].

[46] V. Ayyar and S. Chandrasekharan, Massive fermions without fermion bilinear condensates, Phys. Rev. D 91, 065035 (2015), arXiv:1410.6474 [hep-lat].

[47] S. Catterall, Fermion mass without symmetry break-
ing, *Journal of High Energy Physics* 1, 121 (2016), arXiv:1510.04153 [hep-lat].

48. V. Ayyar and S. Chandrasekharan, Origin of fermion masses without spontaneous symmetry breaking, *Physical Review D* 93, 081701 (2016), arXiv:1511.09071 [hep-lat].

49. S. A. Kivelson, V. J. Emery, and H. Q. Lin, Doped antiferromagnets in the weak-hopping limit, *Physical Review B* 42, 6523 (1990).

50. H. Kamei and K. Miyake, On Quartet Superfluidity of Fermionic Atomic Gas, *Journal of the Physical Society of Japan* 74, 1911 (2005), arXiv:cond-mat/0505468 [cond-mat.supr-con].

51. E. Berg, E. Fradkin, and S. A. Kivelson, Theory of the striped superconductor, *Physical Review B* 79, 064515 (2009), arXiv:0810.1564 [cond-mat.supr-con].

52. L. Radzihovsky and A. Vishwanath, Quantum Liquid Crystals in an Imbalanced Fermi Gas: Fluctuations and Fractional Vortices in Larkin-Ovchinnikov States, *Physical Review Letters* 103, 010404 (2009), arXiv:0812.3945 [cond-mat.supr-con].

53. E. Berg, E. Fradkin, and S. A. Kivelson, Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors, *Nature* 5, 830 (2009), arXiv:0904.1230 [cond-mat.str-el].

54. E.-G. Moon, Skyrmmions with quadratic band touching fermions: A way to achieve charge 4e superconductivity, *Physical Review B* 85, 245123 (2012), arXiv:1202.5389 [cond-mat.str-el].

55. Y.-F. Jiang, Z.-X. Li, S. A. Kivelson, and H. Yao, Charge-4e superconductors: a Majorana quantum Monte Carlo study, arXiv e-prints (2016), arXiv:1607.01770 [cond-mat.supr-con].

56. Z. Darius Shi, H. Goldman, D. V. Else, and T. Senthil, Gifts from anomalies: Exact results for Landau phase transitions in metals, arXiv e-prints, arXiv:2204.07585 (2022), arXiv:2204.07585 [cond-mat.str-el].

57. J. Wang, CT or P Problem and Symmetric Gapped Fermion Solution, arXiv e-prints, arXiv:2207.14813 (2022), arXiv:2207.14813 [hep-th].

58. T. Bhattacharya, M. R. Martin, and E. Poppitz, Chiral lattice gauge theories from warped domain walls and Ginsparg-Wilson fermions, *Phys. Rev. D* 74, 058028 (2006), arXiv:hep-lat/0605003 [hep-lat].

59. J. Giedt and E. Poppitz, Chiral lattice gauge theories and the strong coupling dynamics of a Yukawa-Higgs model with Ginsparg-Wilson fermions, *Journal of High Energy Physics* 2007, 076 (2007), arXiv:hep-lat/0701004 [hep-lat].

60. H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice (I). Proof by homotopy theory, *Nuclear Physics B* 185, 20 (1981).

61. H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice: (ii), intuitive topological proof, *Nuclear Physics B* 193, 173 (1981).

62. H. B. Nielsen and M. Ninomiya, A no-go theorem for regularizing chiral fermions, *Physics Letters B* 105, 219 (1981).

63. P. Swift, The electroweak theory on the lattice, *Physics Letters B* 145, 256 (1984).

64. E. Eichten and J. Preskill, Chiral Gauge Theories on the Lattice, *Nucl. Phys. B* 268, 179 (1986).

65. D. B. Kaplan, A method for simulating chiral fermions on the lattice, *Physics Letters B* 288, 342 (1992).

66. T. Banks and A. Dabholkar, Decoupling a fermion whose mass comes from a Yukawa coupling: Nonperturbative considerations, *Phys. Rev. D* 46, 4016 (1992), arXiv:hep-lat/9204017 [hep-lat].

67. I. Montvay, Mirror fermions in chiral gauge theories, *Nuclear Physics B Proceedings Supplements* 29, 159 (1992), arXiv:hep-lat/9205023 [hep-lat].

68. J. Wang and X.-G. Wen, Nonperturbative definition of the standard models, *Physical Review Research* 2, arXiv:1809.11171 (2020), arXiv:1809.11171 [hep-th].

69. E. Poppitz and Y. Shang, Chiral Lattice Gauge Theories via Mirror-Fermion Decoupling; a Mission (im)possible?, *International Journal of Modern Physics A* 25, 2761 (2010), arXiv:1003.5896 [hep-lat].

70. C. Chen, J. Giedt, and E. Poppitz, On the decoupling of mirror fermions, *Journal of High Energy Physics* 2013, 131 (2013), arXiv:1211.6947 [hep-lat].

71. S. L. Adler, Axial-vector vertex in spinor electrodynamics, *Physics Review* 177, 2426 (1969).

72. J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ-model, *Il Nuovo Cimento A* (1965-1970) 60, 47 (1969).

73. Z. Wan and J. Wang, Higher Anomalies, Higher Symmetries, and Cobordisms I: Classification of Higher-Symmetry-Protected Topological States and Their Boundary Fermionic/Bosonic Anomalies via a Generalized Cobordism Theory, *Ann. Math. Sci. Appl.* 4, 107 (2019), arXiv:1812.11967 [hep-th].

74. J. Wang and X.-G. Wen, Solution to the 1 + 1 dimensional gauged chiral Fermion problem, *Phys. Rev. D* 99, 111501 (2019), arXiv:1807.05998 [hep-lat].

75. D. Tong, Comments on Symmetric Mass Generation in 2d and 4d, arXiv e-prints, arXiv:2104.03997 (2021), arXiv:2104.03997 [hep-th].

76. S. R. White, Density matrix formulation for quantum renormalization groups, *Physics Review Letters* 69, 2863 (1992).

77. U. Schollwöck, The density-matrix renormalization group, *Reviews of Modern Physics* 77, 250 (2005), arXiv:cond-mat/0409292 [cond-mat.str-el].

78. M. Zeng, Z. Zhu, J. Wang, and Y.-Z. You, Symmetric Mass Generation in the 1 + 1 Dimensional Chiral Fermion 3-4-5-0 Model, *Physical Review Letters* 128, 185301 (2022), arXiv:2202.12355 [cond-mat.str-el].

79. J. Luttinger, An exactly soluble model of a many-fermion system, *Journal of mathematical physics* 4, 1154 (1963).

80. M. P. A. Fisher and L. I. Glazman, Transport in a one-dimensional Luttinger liquid, arXiv e-prints, cond-mat/9610037 (1996), arXiv:cond-mat/9610037 [cond-mat.mes-hall].

81. J. M. Kosterlitz, The critical properties of the two-dimensional xy model, *Journal of Physics C: Solid State Physics* 7, 1046 (1974).

82. J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model, *Physical Review B* 16, 1217 (1977).

83. V. L. Berezinski, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems having a Continuous Symmetry Group I. Classical Systems, *Soviet Journal of Experimental and Theoretical Physics* 32, 493 (1971).

84. V. L. Berezinski, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Pos-
sessing a Continuous Symmetry Group. II. Quantum Systems, Soviet Journal of Experimental and Theoretical Physics 34, 610 (1972).
[85] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics 6, 1181 (1973).
[86] X.-G. Wen, Low-energy effective field theories of fermion liquids and the mixed U (1) x R^d anomaly, Phys. Rev. B 103, 165126 (2021), arXiv:2101.08772 [cond-mat.str-el].
[87] B. Lian, A Quantum Breakdown Model: from Many-body Localization to Chaos with Scars, arXiv e-prints, arXiv:2208.10509 (2022), arXiv:2208.10509 [cond-mat.str-el].
[88] N. Furukawa, T. M. Rice, and M. Salmhofer, Truncation of a Two-Dimensional Fermi Surface due to Quasiparticle Gap Formation at the Saddle Points, Phys. Rev. Lett. 81, 3195 (1998), arXiv:cond-mat/9806159 [cond-mat.str-el].
[89] S. Raghu and S. A. Kivelson, Superconductivity from repulsive interactions in the two-dimensional electron gas, Phys. Rev. B 83, 094518 (2011), arXiv:1009.3600 [cond-mat.supr-con].
[90] R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene, Nature Physics 8, 156 (2012), arXiv:1107.1903 [cond-mat.mes-hall].
[91] H. Isobe, N. F. Q. Yuan, and L. Fu, Unconventional Superconductivity and Density Waves in Twisted Bilayer Graphene, Physical Review X 8, 041041 (2018), arXiv:1805.06440 [cond-mat.str-el].
[92] Y.-P. Lin and R. M. Nandkishore, Chiral twist on the high-T_c phase diagram in moiré heterostructures, Phys. Rev. B 100, 085136 (2019), arXiv:1901.00500 [cond-mat.str-el].
[93] Y.-P. Lin and R. M. Nandkishore, Parquet renormalization group analysis of weak-coupling instabilities with multiple high-order Van Hove points inside the Brillouin zone, Phys. Rev. B 102, 245122 (2020), arXiv:2008.05485 [cond-mat.str-el].
[94] T. Park, M. Ye, and L. Balents, Electronic instabilities of kagome metals: Saddle points and Landau theory, Phys. Rev. B 104, 035142 (2021), arXiv:2104.08425 [cond-mat.mes-hall].
[95] Y.-Z. You and A. Vishwanath, Kohn-Luttinger Superconductivity and Inter-Valley Coherence in Rhombohedral Trilayer Graphene, arXiv e-prints, arXiv:2109.04669 (2021), arXiv:2109.04669 [cond-mat.str-el].
[96] D.-C. Lu, T. Wang, S. Chatterjee, and Y.-Z. You, Correlated metals and unconventional superconductivity in rhombohedral trilayer graphene: A renormalization group analysis, Phys. Rev. B 105, 155115 (2022), arXiv:2206.01213 [cond-mat.str-el].
[97] C. Wetterich, Exact evolution equation for the effective potential, Physics Letters B 301, 90 (1993).
[98] M. Salmhofer and C. Honerkamp, Fermionic Renormalization Group Flows—Technique and Theory—, Progress of Theoretical Physics 105, 1 (2001).
[99] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M. Pawlowski, M. Tissier, and N. Wschebor, The nonperturbative functional renormalization group and its applications, Physics Reports 910, 1 (2021), arXiv:2006.04853 [cond-mat.stat-mech].
[100] W.-S. Wang, Y.-Y. Xiang, Q.-H. Wang, F. Wang, F. Yang, and D.-H. Lee, Functional renormalization group and variational monte carlo studies of the electronic instabilities in graphene near 1/3 doping, Phys. Rev. B 85, 035414 (2012), arXiv:1109.3884 [cond-mat.supr-con].
[101] N. Gneist, D. Kiese, R. Henkel, R. Thomale, L. Classen, and M. M. Scherer, Functional renormalization of spinless triangular-lattice fermions: N-patch vs. truncated-unity scheme, European Physical Journal B 95, 157 (2022), arXiv:2205.12547 [cond-mat.str-el].
[102] D. T. Son, Superconductivity by long-range color magnetic interaction in high-density quark matter, Phys. Rev. D 59, 094019 (1999), arXiv:hep-ph/9812287 [hep-ph].
[103] E.-G. Moon and A. Chubukov, Quantum-critical Pairing with Varying Exponents, Journal of Low Temperature Physics 161, 263 (2010), arXiv:1005.0356 [cond-mat.supr-con].
[104] T. Senthil, S. Sachdev, and M. Vojta, Fractionalized Fermi Liquids, Phys. Rev. Lett. 90, 216403 (2003), arXiv:cond-mat/0209144 [cond-mat.str-el].
[105] T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69, 035111 (2004), arXiv:cond-mat/0305193 [cond-mat.str-el].
[106] S. Gazit, F. F. Assaad, and S. Sachdev, Fermi Surface Reconstruction without Symmetry Breaking, Physical Review X 10, 041057 (2020), arXiv:1906.11250 [cond-mat.str-el].
[107] R. Nandkishore, M. A. Metlitski, and T. Senthil, Orthogonal metals: The simplest non-Fermi liquids, Phys. Rev. B 86, 045128 (2012), arXiv:1201.5998 [cond-mat.str-el].
[108] M. Hohenadler and F. F. Assaad, Fractionalized Metal in a Falicov-Kimball Model, Phys. Rev. Lett. 121, 086601 (2018), arXiv:1804.05858 [cond-mat.str-el].
[109] C. Chen, X. Y. Xu, Y. Qi, and Z. Y. Meng, Metal to Orthogonal Metal Transition, Chinese Physics Letters 37, 047103 (2020), arXiv:1904.12872 [cond-mat.str-el].
[110] J. Wang, X.-G. Wen, and E. Witten, Symmetric Gapped Interfaces of SPT and SET States: Systematic Constructions, Physical Review X 8, 031048 (2018), arXiv:1705.06728 [cond-mat.str-el].
[111] Y. Tachikawa, On gauging finite subgroups, SciPost Phys. 8, 015 (2020), arXiv:1712.09542 [hep-th].
[112] J. Wang, K. Ohmori, P. Putrov, Y. Zheng, Z. Wan, M. Guo, H. Lin, P. Gao, and S.-T. Yau, Tunneling topological vacua via extended operators: (Spin-)TQFT spectra and boundary deconfinement in various dimensions, Progress of Theoretical and Experimental Physics 2018, 053A01 (2018), arXiv:1801.05416 [cond-mat.str-el].
[113] M. Guo, K. Ohmori, P. Putrov, Z. Wan, and J. Wang, Fermionic Finite-Group Gauge Theories and Interacting Symmetric/Crystalline Orders via Cobordisms, Communications in Mathematical Physics 376, 1073 (2020), arXiv:1812.11959 [hep-th].
[114] R. Kobayashi, K. Ohmori, and Y. Tachikawa, On gapped boundaries for SPT phases beyond group cohomology, Journal of High Energy Physics 2019, 131 (2019), arXiv:1905.05391 [cond-mat.str-el].
[115] A. Prakash, J. Wang, and T.-C. Wei, Unwinding Short-Range Entanglement, Phys. Rev. B98, 125108 (2018).
[116] A. Prakash and J. Wang, Unwinding Fermionic SPT Phases: Supersymmetry Extension, Phys. Rev. B 103, 085130 (2021), arXiv:2011.13921 [cond-mat.str-el].

[117] Y.-Z. You, Y.-C. He, C. Xu, and A. Vishwanath, Symmetric Fermion Mass Generation as Deconfined Quantum Criticality, Physical Review X 8, 011026 (2018), arXiv:1705.09313 [cond-mat.str-el].

[118] Y.-Z. You, Y.-C. He, A. Vishwanath, and C. Xu, From bosonic topological transition to symmetric fermion mass generation, Phys. Rev. B 97, 125112 (2018), arXiv:1711.00863 [cond-mat.str-el].

[119] Y.-Z. You, Z. Wang, J. Oon, and C. Xu, Topological number and fermion Green’s function for strongly interacting topological superconductors, Phys. Rev. B 90, 060502 (2014), arXiv:1403.4938 [cond-mat.str-el].

[120] S. Catterall and D. Schaich, Novel phases in strongly coupled four-fermion theories, ArXiv e-prints (2016), arXiv:1609.08541 [hep-lat].

[121] S. Catterall and N. Butt, Topology and strong four fermion interactions in four dimensions, Phys. Rev. D 97, 094502 (2018), arXiv:1708.06715 [hep-lat].

[122] Y. Xu and C. Xu, Green’s function Zero and Symmetric Mass Generation, arXiv e-prints, arXiv:2103.15865 (2021), arXiv:2103.15865 [cond-mat.str-el].
Appendix A: Emergent U(1) Symmetries in the (1+1)D Two-Band Model

Start from the definition of charge U(1) (parameterized by a periodic angle \(\phi \in [0, 2\pi] \)) and lattice translation \(Z \) (parameterized by an integer \(n \in \mathbb{Z} \)) symmetries as defined in Eq. (7)

\[
U(1) : c_{iA} \rightarrow e^{iq\phi}c_{iA}, \quad c_{iB} \rightarrow e^{iq\phi}c_{iB}; \\
Z : c_{iA} \rightarrow c_{(i+n)A}, \quad c_{iB} \rightarrow c_{(i+n)B}.
\]

(A1)

Follow the definition Eq. (9) of the fermion operators in the momentum space

\[
c_{kA} = \sum_{i} c_{iA}e^{-aki}, \quad c_{kB} = \sum_{i} c_{iB}e^{-uki},
\]

(A2)

where the wave number \(k \in [-\pi, \pi) \) is a dimensionless periodic variable defined in the first Brillouin zone. (Note: the *dimensionful* momentum \(p \) should be related to the *dimensionless* wave number \(k \) by \(p = \hbar k / a \) with \(a \) being the lattice constant and the site coordinate \(x \in \mathbb{R} \) is related to the site index \(i \in \mathbb{Z} \) by \(x = ai \), such that the Fourier factor \(e^{-ipx/\hbar} = e^{-iki} \) is consistent with the quantum mechanics convention.) It is straightforward to show that the \(U(1) \times Z \) symmetry acts in the momentum space as

\[
U(1) : c_{kA} \rightarrow e^{iq\phi}c_{kA}, c_{kB} \rightarrow e^{iq\phi}c_{kB}; \\
Z : c_{kA} \rightarrow e^{ikn}c_{kA}, c_{kB} \rightarrow e^{ikn}c_{kB}.
\]

(A3)

Apply these transformations to the low-energy fermion near the four Fermi points. According to Eq. (12)

\[
c_{AR} = c_{(3k_F)A}, \\
c_{BR} = c_{(-k_F)B}, \\
c_{BL} = c_{(k_F)B}, \\
c_{AL} = c_{(-3k_F)A},
\]

(A4)

Eq. (A3) becomes

\[
U(1) : \\
U(1) : c_{AR} \rightarrow e^{i\phi_{3k_F}c_{AR}}, \\
c_{BR} \rightarrow e^{i\phi_{k_F}c_{BR}}, \\
c_{BL} \rightarrow e^{i\phi_{k_F}c_{BL}}, \\
c_{AL} \rightarrow e^{i\phi_{3k_F}c_{AL}};
\]

(A5)

\[
Z : \\
c_{AR} \rightarrow e^{i\phi_{3k_F}c_{AR}}, \\
c_{BR} \rightarrow e^{-i\phi_{k_F}c_{BR}}, \\
c_{BL} \rightarrow e^{i\phi_{3k_F}c_{BL}}, \\
c_{AL} \rightarrow e^{-i\phi_{3k_F}c_{AL}}.
\]

Because \(k_F = |\nu_B|/\pi \) is *almost always* (i.e., with probability \(1 \)) a irrational multiple of \(\pi \) (because \(|\nu_B| \) is almost always an irrational number without fine tuning), \(k_Fn \) mod \(2\pi \) can approach any angle in \([0, 2\pi] \) (with \(2\pi \) periodicity) as close as we want (given \(n \in \mathbb{Z} \)). This allows us to define two angular variables \(\phi_V \) and \(\phi_A \), both are periodic in \([0, 2\pi] \),

\[
\phi_V = \phi, \quad \phi_A = k_Fn \mod 2\pi,
\]

(A6)

then Eq. (A5) can be compactly written as

UV symmetry \(\Rightarrow \) IR symmetry

\[
U(1) \Rightarrow U(1)_V : c_{A} \rightarrow e^{i\phi_{V}c_{A}}, \\
Z \Rightarrow U(1)_A : c_{A} \rightarrow e^{i\phi_{A}c_{A}},
\]

(A7)

for \(a = AR, BR, BL, AL \) enumerating over the four Fermi point labels, together with the charge vectors (given that \(q_A = 1 \) and \(q_B = 3 \)):

\[
q^V = \begin{bmatrix} q_A \\ q_B \\ q_B \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}, \quad q^A = \begin{bmatrix} 3 \\ -1 \\ -3 \end{bmatrix}.
\]

(A8)

Therefore, the global charge U(1) symmetry is simply reinterpreted as the U(1)_V vector symmetry, and the translation symmetry (described by a non-compact \(Z \) group) in the UV becomes an emergent U(1)_A axial symmetry (described by a compact U(1) group) in the IR. The symmetry transformation in Eq. (A7) precisely matches Eq. (14) in the main text with the correct charge assignment as listed in Tab. I.

Recombining the charge vectors of U(1)_V and U(1)_A, we can define two alternative emergent U(1) symmetries, denoted as U(1)^{\pm}_A with the charge vectors

\[
q^{3\nu\pm}_A = \frac{1}{2} (3q^V \pm q^A),
\]

(A9)

as their names implied. More explicitly, the charge vectors match the chiral charge assignments for the 3-4-5-0 fermions:

\[
q^{3\nu\pm}_A = \begin{bmatrix} 3 \\ 5 \\ 0 \\ 3 \end{bmatrix}, \quad q^{3\nu\mp}_A = \begin{bmatrix} 4 \\ 5 \\ 0 \\ 4 \end{bmatrix}.
\]

(A10)

The fermions are expected to transform under U(1)^{3\nu\pm}_A (as parameterized by the periodic angles \(\phi_\pm \in [0, 2\pi) \))

\[
U(1)^{3\nu\pm}_A : c_{A} \rightarrow e^{i\phi_{\pm}(3q^V \pm q^A)\phi_\pm c_{A}}.
\]

(A11)

This can be viewed as the combined transformation of U(1)_V and U(1)_A with the vector rotation angle \(\phi_V \) and the axial rotation angle \(\phi_A \) given by

\[
\phi_V = \frac{3}{2} \phi_\pm, \quad \phi_A = \pm \frac{1}{2} \phi_\pm,
\]

(A12)

as can be verified by comparing Eq. (A11) with Eq. (A7). Now we can connect these rotation angle back to the original U(1) \times Z symmetry of the lattice fermions using the relation Eq. (A6),

\[
\phi = \frac{3}{2} \phi_\pm, \quad \pm \frac{1}{2} \phi_\pm = k_Fn \mod 2\pi.
\]

(A13)

Eliminate \(\phi_\pm \) from the equations, we obtain the relation

\[
\phi = \pm 3k_Fn \mod 2\pi,
\]

(A14)
for the $U(1)_{3V} \uparrow \downarrow$ symmetries. Therefore, in order to reproduce the IR emergent $U(1)_{3V} \uparrow \downarrow$ symmetries, the corresponding UV symmetries (at the lattice level) must be such implemented that every n-step translation should be followed by a charge $U(1)$ rotation with the rotation angle $\phi = \pm 3k_F \pi$. So we establish the following correspondence between the IR and UV symmetries

$$U(1)_{3V} \uparrow \downarrow \Rightarrow Z(3V \uparrow \downarrow / 2) : \begin{cases} c_{iA} \rightarrow e^{\pm 3iQ_A k_F n} c_{(i+n)A}, \\ c_{iB} \rightarrow e^{\pm 3iQ_B k_F n} c_{(i+n)B}. \end{cases} \quad (A15)$$

Here the compact $U(1)$ symmetries in the IR get mapped to the non-compact symmetries Z in the UV, because the UV symmetries are parameterized by the integer variable $n \in Z$. Given that $g_A = 1$ and $g_B = 3$, Eq. (A15) becomes Eq. (15), as claimed in the main text. Therefore the 3-4-5-0 chiral fermion model is indeed realized in by the (1+1)D two-band lattice model at low energy.

Appendix B: Wang-Wen Interaction

In the bosonization language, the Wang-Wen interaction is described by

$$\mathcal{L}_{\text{int}} = \sum_{\alpha = 1, 2} g_{\alpha} \cos(l_{\alpha} \varphi) \quad (B1)$$

with $\varphi = (\varphi_{AR}, \varphi_{BR}, \varphi_{BL}, \varphi_{AL})^T$ and the interaction vectors given by

$$l_1 = \left[\begin{array}{c} -1 \\ 1 \\ 2 \\ 2 \end{array} \right], \quad l_2 = \left[\begin{array}{c} 2 \\ -2 \\ 2 \\ 1 \end{array} \right]. \quad (B2)$$

Mapping back to the chiral fermions by the correspondence $c_{\alpha} \sim e^{i\varphi_{\alpha}}$, the interaction reads

$$H_{\text{int}} = \frac{g_1}{2}(c_{AR}c_{BL})(c_{iB}^\dagger c_{iAL})^2 + \text{h.c.} \quad (B3)$$

According to Eq. (12) and use the inverse Fourier transformation,

$$c_{AR} = c_{(3k_F)A} = \sum_i c_{iA} e^{i3k_F i},$$

$$c_{BR} = c_{(-k_F)B} = \sum_i c_{iB} e^{-i k_F i},$$

$$c_{BL} = c_{(k_F)B} = \sum_i c_{iB} e^{i k_F i},$$

$$c_{AL} = c_{(-3k_F)A} = \sum_i c_{iA} e^{-3i k_F i}.$$

Plugging Eq. (B4) into Eq. (B3), the interaction becomes

$$H_{\text{int}} = \sum_{i_1, \ldots , i_6} g_{i_1 \ldots i_6} (c_{i_1 B}^\dagger c_{i_2 A})(c_{i_3 B} c_{i_4 A})(c_{i_5 B}^\dagger c_{i_6 A}) + \text{h.c.,} \quad (B5)$$

with

$$g_{i_1 \ldots i_6} = \frac{g_1}{2} e^{i k_F ((i_1-3i_2 + i_3 + 3i_4 + i_5 - 3i_6)} + \frac{g_2}{2} e^{i k_F (-i_1 + i_2 - 3i_3 - 3i_4 - i_5 + 3i_6)}.$$ \quad (B6)

Notice that under lattice reflection symmetry $Z_2 : c_{iA} \rightarrow c_{(-1)A}, c_{iB} \rightarrow c_{(-1)B}, g_1$ and g_2 maps to each other. To simplify, we can impose the reflection symmetry and requires $g_1 = g_2 = g$, then the coupling coefficient is

$$g_{i_1 \ldots i_6} = g \cos (k_F (i_1 - 3i_2 + i_3 + 3i_4 + i_5 - 3i_6)). \quad (B7)$$

The dominant s-wave interaction is given by

$$i_1 - 3i_2 + i_3 + 3i_4 + i_5 - 3i_6 = 0, \quad (B8)$$

such that $g_{i_1 \ldots i_6} = g$ is uniform. We seek a local interaction that has minimal span on the lattice. The optimal solution of Eq. (B8) is given by

$$i_1 = i_2 = i - 1, i_3 = i_4 = i, i_5 = i_6 = i + 1, \quad (B9)$$

for any choice of i. With this solution Eq. (B9), Eq. (B5) reduces to

$$H_{\text{int}} = g \sum_i c_{(i-1)B}^\dagger c_{(i-1)A} c_{iB} c_{iA}^\dagger c_{(i+1)B}^\dagger c_{(i+1)A} + \text{h.c.}. \quad (B10)$$

which is the SMG interaction Eq. (16) proposed in the main text.

Appendix C: Full Renormalization Group Equations

We start with the interaction $H_{\text{int, CF}}$

$$H_{\text{int, CF}} = g_{\text{rs}} \sum_{\alpha} \epsilon^{ijk} c_{BA}^\dagger c_{A\beta} c_{A\alpha} c_{A\alpha} c_{A\alpha} + \text{h.c.} \quad (C1)$$

Under RG, following the density-density and exchange interactions will be generated

$$H_{\text{int, AA}} = g_{\text{as}} \sum_{\alpha, \beta} n_{A\alpha} n_{A\beta} + g_{\text{at}} \sum_{\alpha \neq \beta, \beta, \text{st}} n_{A\alpha} n_{A\beta} + g_{\text{ae}} \sum_{\alpha \neq \beta, \text{st}} c_{A\alpha}^\dagger c_{A\beta} c_{A\beta} c_{A\alpha} + (A_s \leftrightarrow A_t) + \text{h.c.} \quad (C2)$$

and

$$H_{\text{int, AB}} = g_{\text{bs}} \sum_{\alpha, \beta} n_{B\alpha} n_{A\alpha} + g_{\text{bt}} \sum_{\alpha \neq \beta, s} n_{B\alpha} n_{A\beta} + g_{\text{be}} \sum_{\alpha \neq \beta, s} c_{B\alpha}^\dagger c_{B\alpha} c_{A\alpha} + (A_s \leftrightarrow B) + \text{h.c.} \quad (C3)$$
There is an additional density-density interaction that will correct $H_{\text{int, AA}}, H_{\text{int, AB}},$

$$H_{\text{int, BB}} = g_{bb} \sum_{\alpha \beta} n_{B\alpha} n_{B\beta} - c_{B\alpha}^c B_{B\beta}^c c_{B\alpha}^c.$$ \hspace{1cm} (C4)

Putting all interactions together, the full RG equations are

\[
\frac{dg_{bb}}{d\ell} = 4d_0d_{BB}g_{bb}^2 + 3d_0g_{be}^2, \\
\frac{dg_{bs}}{d\ell} = -2d_{AB}g_{bs}^2 + \frac{9g_{rs}^2}{2} + g_{rt}^2, \\
\frac{dg_{bt}}{d\ell} = 2d_0d_{AB}g_{bt}^2, \\
\frac{dg_{be}}{d\ell} = -6d_0g_{ae}g_{be} + 2d_0g_{at}g_{be} + 4d_0d_{BB}g_{bb}g_{be} + 3g_{rs}g_{rt} + \frac{g_{rt}^2}{2}, \\
\frac{dg_{as}}{d\ell} = -2g_{as}^2, \\
\frac{dg_{at}}{d\ell} = 2d_0g_{at}^2 - d_0d_{AB}g_{rt}^2, \\
\frac{dg_{ae}}{d\ell} = -d_0d_{AB}g_{ae}^2 + 4d_0g_{ae}g_{at} - 6d_0g_{ae}^2 - 2d_0d_{BB}g_{be}^2, \\
\frac{dg_{rs}}{d\ell} = -6g_{as}g_{rs}, \\
\frac{dg_{rt}}{d\ell} = 4d_0d_{AB}g_{bt}g_{rt} - 2g_{as}g_{rt},
\]

where $d_{AB} = d_{\chi_{pp,AB}(0)}/d\ell, d_{BB} = d_{\chi_{pp,BB}(0)}/d\ell.$

These ratios depend on the energies of A and B-type fermions near the VHSs. The two types of fermions have similar band structures, which can be approximated as $E_{k}^{A,B} = \epsilon^{A,B}(k).$ The ratios are then given by $d_{AB} = \frac{\epsilon^A}{|\epsilon^A| + |\epsilon^B|}$ and $d_{BB} = \frac{\epsilon^B}{|\epsilon^A| + |\epsilon^B|}.$ If A and B-type fermions have the same band structure, then $d_{AB} = d_{BB} = 1.$