Sir,

Calpainopathy belongs to a group of limb-girdle muscular dystrophies (LGMD), characterized by proximal muscle weakness. Calpainopathy or LGMD2A is an autosomal recessive disease caused by mutations in the calpain-3 gene (CAPN3).\(^1\)

We report the case of a 16-year-old male patient with a myopathy with proximal muscle weakness. He started tiptoeing up, at the age of 4. At 13-year-old, he began to have difficulty climbing stairs, incorporating from the ground and running, being referred to the neurologist. Physical examination showed muscle weakness of shoulder and pelvic girdle, positive Gower’s sign, lumbar lordosis, and joint contractions. CK was elevated (7341 UI/L). Electromyography showed myopathic pattern, muscle biopsy, a dystrophic pattern, and the immunohistochemical analysis showed a lower intensity of staining with anti-DYS-3 antibody (Dp427m-dystrophin protein) [Figure 1a].

These results focused the diagnosis on the Becker muscular dystrophy (BMD), and treatment with corticosteroids was indicated. He was operated for bilateral tendon lengthening.

A multiplex ligation-dependent probe amplification (MLPA) test was carried out to detect duplications and deletions in the dystrophin gene (DMD). MLPA results confirmed the diagnosis which revealed 49 ± 3 CAG repeats (normal range 9–36). Kennedy’s disease (spinobulbar muscular atrophy [SBMA]) is a rare X-linked recessive neurodegenerative disorder characterized by degeneration of lower motor neurons and is caused by CAG trinucleotide repeat expansion in the androgen receptor gene on chromosome Xq11-12.\(^2\)

It is characterized by progressive atrophy and weakness of limb and bulbar muscles with tongue atrophy and chin fasciculations and with onset in the 3rd–5th decades. Patients may have endocrinological abnormalities in the form of gynecomastia, testicular atrophy, and diabetes mellitus.\(^3\)

It is important to differentiate Kennedy’s disease from other neuromuscular disorders as several disorders of varying severity and outcomes resemble SBMA. On electrophysiological studies, CMAP amplitudes may be low. Most patients have low amplitude or absent SNAPs, which reflect the association of Kennedy’s disease with degeneration of the dorsal root ganglia. Currently, there is no cure for Kennedy’s disease, and treatment is mainly symptomatic and supportive.\(^4\)

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Ayush Dubey, Rahul Jain, Ajoy Sodani, Dinesh Chouksey

1 Department of Neurology, Sri Aurobindo Medical College and PG Institute, Indore, Madhya Pradesh, India
2 Department of Neurology, SAIMS Medical College, Indore, Madhya Pradesh, India

For correspondence: Dr. Ayush Dubey, Department of Neurology, Sri Aurobindo Medical College and PG Institute, Indore - 452 010, Madhya Pradesh, India. E-mail: ayushdubey2@yahoo.co.in

References
1. Kennedy WR, Alter M, Sung JH. Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology 1968;18:671-80.
2. Preston DC, Shapiro BE. Atypical motor neuron disorders. In: Electromyography and Neuromuscular Disorders. 2nd ed., Ch. 28. Philadelphia: Elsevier Butterworth-Heinemann; 2005. p. 442-3.
3. Finsterer J. Perspectives of Kennedy’s disease. J Neurol Sci 2010;298:1-10.
4. Au KM, Lau KK, Chan AY, Sheng B, Li HL. Kennedy’s disease. Hong Kong Med J 2003;9:217-20.
were normal. The study continued by next-generation sequencing (NGS) analysis, using a commercial panel of a clinical exome (TruSight One of Illumina®). No point mutations in the DMD gene were found and 23 genes associated with LGMD and Emery-Dreifuss muscular dystrophy were analyzed: TRIM32/DES/SGCB/FKTN/CAV3/FKRP/SGCG/SGCD/DNAJB6/SGCA/CAPN3/TTN/ANOS/DYSF/PLEC/DAG1/EMD/LMNA/MYOT/TCAP/POMGNT1/POMT1/POMT2. The patient had two mutations in heterozygosity in the CAPN3 gene: c. 550delA;p.Thr184Argfs*36 and c. 3261_3262delAGinsTCATCT;p.Arg788Serfs*14 (NM_000070). Sanger sequencing confirmed the mutations detected in the patient and identified the mutations in the father and the mother, respectively.

An abnormal calpain-3 protein expression was demonstrated in the skeletal muscle biopsy of the patient by Western blot [Figure 1b], and the diagnostic of calpainopathy was confirmed. Both mutations in the CAPN3 gene cause a change in the reading frame (frameshift mutation), leading to a premature stop codon and calpain-3 abnormal protein. They have been described previously as LGMD2A pathogenic in several studies.[2,3]

The wide variety of muscular dystrophies and common clinical manifestations makes necessary the immunohistochemical studies, immunoblotting, and molecular genetics to reach the definitive diagnosis of these pathologies. We report a case with a diagnostic suspicion of BMD, where the incorporation of NGS has been essential for the diagnosis of calpainopathy. NGS enables the screening of many genes at once and was chosen since the classical Sanger method is laborious and time-consuming. Mutation identification is the necessary approach to an upcoming gene therapy.[4]

Acknowledgment
We wish to thank Ruben de Sancho and Amparo Garcia Cardenal for their technical contribution in carrying out the experiments and Rocio Mena and Maria Victoria Gomez for CAPN3 gene sequencing.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Clara Gómez-González, María Isabel Esteban-Rodriguez1, Yolanda Ruano2, Elena Vallespin, Pablo Lapunzina, Paloma Martinez, Samuel I. Pascual1, Jesús Molano, Carmen Prior
Department of Genetics, INGEMM, IdiPAZ, CIBERER, La Paz University Hospital,
1Department of Anatomical Pathology, La Paz University Hospital, Madrid, Spain
2Department of Anatomical Pathology, 12 de Octubre Hospital, Madrid, Spain

Address for correspondence: Dr. Carmen Prior,
Department of Genetics, INGEMM, IdiPAZ, CIBERER, Hospital Universitario La Paz, Paseo Castellana 261, 28046 Madrid, Spain.
E-mail: carmen.prior@salud.madrid.org

REFERENCES
1. Richard I, Roudaut C, Saenz A, Pogue R, Grinbergen JE, Anderson LV, et al. Calpainopathy—a survey of mutations and polymorphisms. Am J Hum Genet 1999;64:1524-40.
2. Fanin M, Nascimbeni AC, Fulizio L, Angelini C. The frequency of limb girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul Disord 2005;15:218-24.
3. Urtasun M, Sáenz A, Roudaut C, Poza JJ, Urtizberea JA, Cobo AM, et al. Limb-girdle muscular dystrophy in Guipúzcoa (Basque Country, Spain). Brain 1998;121(Pt 9):1735-47.
4. Bartoli M, Roudaut C, Martin S, Fougerousse F, Suel L, Poupiot J, et al. Safety and efficacy of AAV-mediated calpain 3 gene transfer in a mouse model of limb-girdle muscular dystrophy type 2A. Mol Ther 2006;13:250-9.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

How to cite this article: Gómez-González C, Esteban-Rodriguez MI, Ruano Y, Vallespin E, Lapunzina P, Martinez P, et al. Molecular diagnosis of limb-girdle muscular dystrophy type 2A by next-generation sequencing. Ann Indian Acad Neurrol 2017;20:164-5.

© 2006 - 2017 Annals of Indian Academy of Neurology | Published by Wolters Kluwer - Medknow