1. Introduction

Ephemeral streams are common features of landscapes around the world, and are the predominant fluvial environments in arid zones (Shaw and Cooper, 2008). In most arid land systems, vegetation cover rarely exceeds 75% and bare soil is always a significant feature (Huxman et al., 2004). Plant ecosystems in arid and semiarid climates, however, show high complexity, especially in areas where water availability allows plants to carry out vital processes (Quevedo and Francés, 2008). Yet, because dominant plant communities and habitat types change according to soils and precipitation (Zhang et al., 1999; Obando, 2005; Stromberg et al., 2007; Skirvin et al., 2008), assessing the plant diversity of ephemeral stream plant communities has proven challenging.

Jordan consists not only of desert, but also semi-desert and steppe (Shaw and Cooper, 2008). Ephemeral streams called wadies, where soil moisture is sufficient to support vegetation. Badia of northeast Jordan are particularly fragile. As a consequence, habitat degradation and species losses in this region have been severe, reducing biodiversity at rates that far exceed natural processes (Ministry of Agriculture, 1996).

Although 80% of the total area (90,000 km²) of Jordan is desert, the flora of Jordan is diverse. Previous studies have identified between 2543 and 2978 plant species belonging to between 120 and 142 families and 719 to 868 genera (Al-Eisawi, 2013). Continued floristic studies, especially of wadi plant communities, would help accurately assess plant diversity of Jordan’s Eastern Badia.

The goal of the present work is to study the floristic composition, life forms, and chorology of the Wadi Hassan watershed in the Azraq Basin (Eastern Badia). This study may help better understanding whether vegetation can be used in the future as a major tool for watershed management.

2. Materials and methods

2.1. The study area

Wadi Hassan is located in the eastern Badia of Jordan (31° 97’ N, 36° 89’ E), in the north western part of the Al-Azraq area. The Wadi...
is a part of one of the largest catchment areas in the northern Badia of Jordan (≈ 360 km²). The main catchment consists of three main wadies; the largest of them begin in the Syrian Jebal Al–Arab north of Jordan and is joined by the other two wadies near the Southern edge of the catchment. Wadi Hassan stretches from Jebal Al-Asfar in the east. All the wadies reach a mud flat locally known as Marab Hassan. Downstream, one wadi continues to the Azraq mud flat (Qa’a Al-Azraq) and has an elevation gradient 580 m–610 m. Soil is composed of basaltic volcanic rock, which has a texture that ranges between silty clay and course sand, and a pH between 7.5 and 8.3; soil salinity ranges from 0.5 to 7.4 mM/cm (Fig. 1).

The climate of the Northeastern Badia is arid with a mean annual rainfall increasing from 50 mm per year in the south to over 250 mm per year in the north near the Syrian border (Fig. 2). The rainy season lasts from October through April. On average, there are 23 rainy days; the average annual rainfall for the catchment is 194 mm and for Wadi Hassan is 50 mm (Figs. 2 and 3).

Fig. 1. (A) Map of Jordan showing the location of Wadi Hassan and pictures taken during the study period (2010/2011). (B) Wadi Hassan catchment and sub-catchment areas (31° N, 36° E; Al-Ayyash et al., 2012).
January is the coldest month of the year, during which the average monthly temperature can fall below 0 °C. The hottest months are July and August with an average temperature of 29 °C. The mean annual temperature is about 20 °C. These six families represent 60% of the total families recognized in the study area (Fig. 4). Of 34 families identified at Wadi Hassan, 26.5% (9 families) of the total number of families, are represented by one species per family. This common feature of desert flora indicates that only a few of the large number of species that belong to these plant families have adapted to the harsh desert environment.

Our survey of Wadi Hassan identified numerous plants of special interest. Notably, many of the plant species recorded from Wadi Hassan are medicinal herbs (e.g., *Achillea fragrantissima*, *Artemisia herba-alba*, *Paronychia argentea*, *Teucrium montbretii*, *Thymus bovei*, *Glaucium arabicum*, *Citrus vulgaris*, *Anagallis arvensis*, *Plantago ovata*) used in folk medicine. In addition, several toxic (poisonous) plant species were found in the study area, including *C. colycnthis*, *Urginea maritima*, and the African rue *Peganum harmal*. Some of the recorded species are endemic to Jordan such as *Eremostachys transjordana*, and some of these species (e.g., *Ducrosia flabellifolia*) are rare.

In Jordan Badia, most of the area appears to the casual observer to be without vegetation cover all. According to the flora survey conducted by the Azraq Project (*Al-Eisawi*, 1995), terrestrial plant communities comprise 133 species of vascular plants, belonging to 100 genera and 33 families. Seven species were recorded as new to the flora of Jordan and unique to the Azraq Wetland Reserve. However, the previous checklist for the flora of the Eastern Badia stands only at 322 plant species in 46 families (*Cope and Al-Eisawi*, 1998; *Dutton et al.*, 1998). Due to the scarcity of water and nutrients, most of the plant species identified by our checklist are restricted to small time periods and at select sites. These species may have been successful at maintaining high diversity because of strong root systems, which facilitate absorption of moisture as well as nutrients from different soil types (*Ahmad et al.*, 2009; *Hussain*, 2002).

The Wadi Hassan flora exhibit a great diversity of life forms typical of desert flora. Most plants recorded are annual plants (61%), some plants are hemicyclophtyes (18%) and caamaephyttes (15%), few are geophytes (5%) and phanerophyte shrub composed only 0.5% (Fig. 5). Furthermore, *Retama raetam* was one of the most common species recorded during the two-year collection period (2010/2011). *R. raetam* is the only phanerophyte shrub recorded in Wadi Hassan and the maximum vegetation height for the study area (245 cm) can be attributed to the presence of this plant.

Arid vegetation community structure, function, patterns of species colonization, and succession are highly determined by climatic factors. On an annual scale, precipitation pattern and intensity affect floristic composition and biomass; even rainfall events less than 5 mm can play a vital role in affecting species composition (*Westbrookea et al.*, 2005, *Fariz and Hatough-Bouran*, 1998). Recruitment of some long-lived species is probably confined to very rare occasions when soil water reservoirs are substantial enough to allow the growing taproot of seedlings to reach soil depths with reliable ground water (*Westbrookea et al.*, 2005). Furthermore, the mortality of perennials is affected by periods of limited water availability (*Milton and Dean*, 2000). Finally, the abundance of annuals is largely, determined by the amount of rainfall (*Ward et al.*, 2000). Our finding that 60% of plants in Wadi Hassan are annuals and 73.2% are ephemeral plants agrees with these previous studies. Moreover, the highest vegetation cover in Wadi Hassan occurs in the same area where soil moisture was the highest, except in the area where soil crust formed. The low percent of phanerophytes recorded in this study in consistent with the floristic composition of the Khulais region, West Saudi Arabia (*Alsherif et al.*, 2013) and are in agreement with previous observation that south and south-western Arabian Peninsula are very poor in tree (*White and Leonard*, 1991).

Short-term dynamics in arid/semi-arid systems have been relatively well studied. For example, annuals are thought to act as...
Table 1
Checklist of Wadi Hassan 206 species belong to 138 genera and 34 families, ordered alphabetically.

Family	Species	Life form	Summer Shedding	Chorotype
Aizoaceae	1. Aizoohanicum L.	Annual	Ephemeral	SA
	2. Mesembryanthemum nodiflorum L.	Annual	Ephemeral	ES, M, SA
Amaranthaceae	3. Amaranthus albus L.	Annual	Ephemeral	A
	4. A. blitoides S. Wats.	Annual	Ephemeral	A
	5. Halogenus alpoeauroides (Del.) Moq.	Perenating		
Boraginaceae	6. Anchusa aegyptiaca (L.) DC.	Annual	Ephemeral	SA
	7. A. milleri Willd.	Annual	Ephemeral	IT, SA
	8. A. ovata Lehm	Annual	Ephemeral	IT
	9. Arehina hispissima (Lehm.) DC.	Annual	Ephemeral	SA, SU
	10. A. linariafolia DC.	Annual	Ephemeral	IT, SA
	11. A. tinctoriaeus Forssk.	Annual	Ephemeral	SA
	12. Gastrocytide hispida (Forssk.) Bunge	Geophyte		
	13. Heliotropium bacciferum Forssk.	Chamaephyte	Perenating	SA, SU
	14. H. europarem L.	Annual	Ephemeral	M, I, T
	15. H. hirsutissimum Grauer	Annual	Ephemeral	M
	16. L. muricata	Annual	Ephemeral	SA
	17. L. spinocarpus (Forssk.) Aschers.	Annual	Ephemeral	IT, SA
	18. Nonea ventricosa (Sm.) Griseb.	Annual	Ephemeral	M, IT
	19. Paracaryum rugulorum (DC) Boiss.	Hemicryptophyte	Ephemeral	IT, SA
Capparaceae	20. Capparis ovata Desf.	Chamaephyte	Perenating	M, IT, SA
Caryophyllaceae	21. Dianthus judaicus Boiss.	Hemicryptophyte	Perenating	IT
	22. Gypsophila arabica Barkoudah.	Chamaephyte	Perenating	IT
	23. Hernia hissuta L.	Annual	Ephemeral	ES, M, IT
	24. Minuartia picta Borm	Annual	Ephemeral	IT
	25. Paronychia argentea (Lam.	Hemicryptophyte	Perenating	M
	26. Petranthus dichotomus Forssk.	Annual	Ephemeral	SA
	27. Silene colorata Poir.	Annual	Ephemeral	M
	28. S. conoidea L.	Annual	Ephemeral	M, IT
	29. S. arctica Boiss	Annual	Ephemeral	SA
	30. Spargula fallax (Lowe) karuse	Annual	Ephemeral	SA
	31. Spargularia diandra (Guss.) Heldr. Et Sart.	Annual	Ephemeral	M, IT, SA
	32. Vaccaria pyramidata Medik.	Annual	Ephemeral	M
Chenopodiaceae	33. Anabasis setifera Moq.	Chamaephyte	Perenating	SA
	34. A. syriaca Iljin.	Chamaephyte	Perenating	IT
	35. Ariplex leucocladus Boiss.	Chamaephyte	Perenating	IT, SA
	36. Bassia eriophora (Schrud.) Aschers	Annual	Ephemeral	SA, SU
	37. B. muricata (L. Aschers.	Annual	Ephemeral	IT, SA
	38. Halothamnus acutifolis (Moq.) Botsch.	Chamaephyte	Perenating	IT
	39. Hammadah egii Iljin	Chamaephyte	Perenating	IT
	40. Salsoola volksisii Schweinf. et Aschers.	Annual	Ephemeral	SA
	41. Seidlitzia florida (M. Bieb.) Boiss.	Chamaephyte	Ephemeral	SA
	42. S. rosmarinus Beg. ex. Boiss.	Chamaephyte	Ephemeral	SA
Cistaceae	43. Helianthemum sessiflorum (Desf.) Pers.	Chamaephyte	Perenating	SA
Compositae	44. Auuonushnia factoroskovy Warb.& Eig.	Annual	Ephemeral	SA
	45. Achillea fragrantissima (Forsk.) Sch Bip	Hemicryptophyte	Perenating	IT, SA
	46. A. membranacea (Labill.) DC.	Hemicryptophyte	Perenating	
	47. Anthemis bornmullerii Stoj. & Acht.	Annual	Ephemeral	M
	48. A. haussknechtii Boiss. & Reut.	Annual	Ephemeral	IT
	49. Artemisia herba-alba Asso	Chamaephyte	Perenating	IT
	50. Asteriscus pygmaeus (DC.) Coss. & Dur.	Chamaephyte	Perenating	SA
	51. Attraclyis cancellata L.	Annual	Ephemeral	M
	52. A. prolifera Boiss.	Annual	Ephemeral	SA
	53. Calendula arvensis L.	Annual	Ephemeral	M, IT
	54. C. tripterycra Rufr.	Annual	Ephemeral	SA
	55. Cardius getulos Pomel	Annual	Ephemeral	SA
	56. Carthamus tenuis (Boiss & BL) Bormm	Annual	Ephemeral	M
	57. Centaurea aegyptiaca L.	Chamaephyte	Perenating	SA
	58. C. ammonycusus Boiss.	Annual	Ephemeral	SA
	59. C. lanulata Eig	Hemicryptophyte	Ephemeral	SA
	60. Crepis aspera L.	Annual	Ephemeral	M
	61. C. sancta (L.) Bormm.	Annual	Ephemeral	M, SA
	62. Echinos glaberrimus DC.	Hemicryptophyte	Perenating	SA
	63. Filago contracta (Boiss.) Chirte & Holub	Annual	Ephemeral	IT
	64. F. desertorum Pomel	Annual	Ephemeral	IT, SA
	65. Gynmarnhena micronthe Desf.	Annual	Ephemeral	SA
	66. Ilfgro spicata (Forssk.) Sch Bip.	Annual	Ephemeral	SA
	67. Lactuca orientalis (Boiss.) Boiss.	Hemicryptophyte	Perenating	IT
	68. L. serriola L.	Annual	Ephemeral	ES, M, IT
	69. Lasagopon muscoides (Desf.) DC.	Annual	Ephemeral	SA
	70. Launaea mucronata (Forssk.) Muschler	Annual	Ephemeral	SA
	71. L. nudicaulis (L) Hook. fil.	Hemicryptophyte	Perenating	SA
	72. Leontodon laciniatus (Bertol.) Widder	Annual	Ephemeral	IT, SA

(continued on next page)
Family	Species	Life form	Summer Shedding	Chorotype	
	73. Matricaria aurea (Loefl.) Sch. Bip.	Annual	Ephemeral	M, IT	
	74. Notobasis syriaca (L.) Cass.	Annual	Ephemeral	M	
	75. Onopordum alexandrinum Boiss.	Hemicryptophyte	Ephemeral	IT, SA	
	76. O. transjordanicum Eig.	Hemicryptophyte	Ephemeral	SA	
	77. Phagnalon rupestris (L.) DC.	Chamaephyte	Perenating	M, IT	
	78. P. acuminatum (L.) Cass.	Annual	Ephemeral	M, IT	
	79. Picris aspleniodies	Annual	Ephemeral	SA	
	80. P. cyanocarpae Boiss.	Annual	Ephemeral	SA	
	81. Reichardia tingitana (L.) Roth	Annual	Ephemeral	M, IT	
	82. Scorzonera papposa DC.	Hemicryptophyte	Ephemeral	IT	
	83. S. puella Pall.	Hemicryptophyte	Ephemeral	IT	
	84. S. schweinfurthii Boiss.	Hemicryptophyte	Ephemeral	SA	
	85. Sonchus oleraceus L. remend. Gouan	Annual	Ephemeral	ES, M, IT	
	86. Zygia purnurea Fresen.	Annual	Ephemeral	IT, SA	
Convolvulaceae	87. Convolulus lanatus Vahl	Chamaephyte	Perenating	SA	
Cruciferae	88. Abyssum marginatum Steud. ex Boiss.	Annual	Ephemeral	IT	
	89. A. meniacoides Bois.	Annual	Ephemeral	IT	
	90. Biscutella didyma L.	Annual	Ephemeral	M, IT	
	91. Diplotaus erucoides (L.) DC.	Annual	Ephemeral	M	
	92. D. harra (Forssk.) Bioss.	Chamaephyte, Hemicryptophyte, Annual	Ephemeral	SA	
	93. Eruca sativa Mill.	Annual	Ephemeral	M, IT	
	94. Eruca boweana Cass.	Annual	Ephemeral	SA	
	95. E. pinnata	Annual	Ephemeral	SA	
	96. Lepidium aucherii Boiss.	Annual	Ephemeral	IT	
	97. Lobularia arabica (Boiss.) Muschl.	Annual	Ephemeral	SA	
	98. L. malcolmia africana (L.) R. Br.	Annual	Ephemeral	IT, SA	
	99. M. conringioides	Annual	Ephemeral	IT, SA	
	100. Matthiola aspera Boiss.	Annual	Ephemeral	SA	
	101. M. paviflora (Schoubl.) R. Br.	Annual	Ephemeral	SA	
	102. Notoceras bicorne	Annual	Ephemeral	SA	
	103. Schimpera arabisca Hochst. Et Steud. ex Boiss	Annual	Ephemeral	SA	
	104. Sinapis alba L.	Annual	Ephemeral	ES, M, IT	
	105. S. arvensis L.	Annual	Ephemeral	M	
	106. Sisymbrium runcinatum Lag.	Annual	Ephemeral	IT	
	107. S. septulatum DC. prolo. bilobum (C. Koch) O. E. Schulz	Annual	Ephemeral	IT	
	108. Zilla spinosa (L.) Prantl	Perenating	M		
Cucurbitaceae	109. Citrullus colocynthis (L.) Schrad.	Annual	Hemicryptophyte	Perenating	SA
Dipsacaceae	110. Scabiosa porphyaneura Blakelock	Annual	Ephemeral	IT, SA	
Euphorbiaceae	111. Andrachne telephioides L.	Hemicryptophyte	Perenating	M, IT	
	112. Chrozophora oblongifolia (Det.) Ad. Juss. ex Spreng	Chamaephyte	Perenating	SU	
	113. C. obliqua (Vahl) Ad. Juss.	Perenating	M		
	114. C. pilata (Vahl) Ad. Juss. ex Spreng	Annual	Ephemeral	SU	
	115. Euphorbia chamaepeplus Boiss. et Hohen	Annual	Ephemeral	IT, SA	
Geraniaceae	116. E. terracina L.	Euphorbia	Perenating	M	
	117. Erodium bryoniifolium Boiss.	Annual	Ephemeral	M, IT	
	118. E. deserti (Eig) Eig.	Annual	Ephemeral	SA	
	119. E. fasciatus (Cav.) Willd.	Annual	Ephemeral	M	
Gramineae	120. Bromus dantoniae Trin.	Annual	Ephemeral	IT	
	121. B. scoparius L.	Annual	Ephemeral	M, IT	
	122. Cithopis delileana (Schult. & Schult. fil.) Roshev	Annual	Ephemeral	M, IT	
	123. Cynodon dactylon (L.) Pers.	Perenating	TR		
	124. Hordeum glaucum Steud.	Annual	Ephemeral	M, IT	
	125. Poa bulbosa L.	Euphorbia	Perenating	ES, M, IT	
	126. Polygonon viridis (Gouan) Breistr.	Hemicryptophyte	Ephemeral	M	
	127. Schismus urabricus Nees.	Annual	Ephemeral	IT, SA	
	128. Stipa capensis Thunb.	Annual	Ephemeral	IT, SA	
	129. S. parviflora Desf.	Hemicryptophyte	Perenating	IT	
Iridaceae	130. Iris isyrinchium L.	Geophyte	Ephemeral	M, IT	
Lamiaceae	131. Ballota undulata (Sieb. ex Fresen) Benth.	Chamaephyte	Perenating	M	
	132. Eremostachys transjordanica Eig.	Hemicryptophyte	Ephemeral	IT	
	133. Phlomis brachyodon Boiss.	Perenating	M		
	134. Salvia lanigera Poir.	Chamaephyte	Perenating	M,SA	
	135. S. spinosa L.	Hemicryptophyte	Ephemeral	IT	
	136. Teucrium montbretii Benth.	Hemicryptophyte	Perenating	M, IT	
	137. Thymus bovei Benth.	Chamaephyte	Perenating	SA	
Leguminosae	138. Astragalus alexandrinus Bois.	Hemicryptophyte	Perenating	M, IT	
	139. A. anularis Forssk	Annual	Ephemeral	SA	
	140. A. bombycinus Bios.	Annual	Ephemeral	SA	
	141. A. corrugatus Bertol.	Annual	Ephemeral	IT, SA	
	142. A. palaestinus Eig.	Hemicryptophyte	Ephemeral	M, IT	
	143. A. sieberi DC.	Chamaephyte	Perenating	SA	
	144. A. sparsus Del.	Hemicryptophyte	Ephemeral	SA	
	145. A. spinosus (Forssk.) Muschl.	Chamaephyte	Perenating	IT	
	146. A. trachomiticus Post	Annual	Ephemeral	–	
	147. A. triloboides Del.	Annual	Ephemeral	IT, SA	
The chorotypes are: A, American; IT, Irano-Turanian; ES, Euro-Siberian; M, Mediterranean; SA, Saharo-Arabian; SU, Sudania; TR, Tropical.

Ber (29%) followed by Irano-Turanian elements (15%) and Mediterranean elements (14%). In addition to plant species that belong to the Mediterranean and the Irano-Turanian elements presented in the target region, it has a large number of plant species which dominate in other uniregional region, such as Saharo-Arabian. American and Tropical elements showed the least species number (2 and 3 species, respectively).

The high species number of Saharo-Arabian elements can likely be explained by the adaptation of these plant species to the aridity and high temperatures of harsh environments similar to the Jordan flora. Saharo-Arabian region elements recorded the highest number (29%) followed by Irano-Turanian elements (15%) and Mediterranean elements (14%). In addition to plant species that belong to the Mediterranean and the Irano-Turanian elements presented in the target region, it has a large number of plant species which dominate in other uniregional region, such as Saharo-Arabian. American and Tropical elements showed the least species number (2 and 3 species, respectively).

The Table 1 (continued)

Family	Species	Life form	Summer Shedding	Chorotype
Anagallis arvensis	Annual	Ephemeral	M	
Fagonia bruguieri	Annual	Ephemeral	SA	
Zygophyllaceae	Fagonia bruguieri	Annual	Ephemeral	M
Hibiscus trionum	Annual	Ephemeral	TR	
Malvaceae	Malva parviflora L.	Annual	Ephemeral	M, IT
Papaveraceae	Papaver syriacum	Annual	Ephemeral	M, IT
Plantaginaceae	Plantago lanceolata	Annual	Ephemeral	M, IT
Polygonaceae	Rumex cyprius	Annual	Ephemeral	M, IT
Primumaceae	Androsace maxima L.	Annual	Ephemeral	M, IT
Rafflesiae	Rhyncospermum schweinfurthii	Annual	Ephemeral	M, IT
Rauvolfiaceae	Rauvolfia serpentina	Annual	Ephemeral	M, IT
Rutaceae	Hypecoum pendulum	Annual	Ephemeral	M, IT
Solanaceae	Solanum sisymbriifolium	Annual	Ephemeral	M, IT
Umbelliferae	Anethum graveolens	Annual	Ephemeral	M, IT
Urticaceae	Urtica dioica	Annual	Ephemeral	M, IT
Zygophyllaceae	Zygophyllum armatum	Annual	Ephemeral	M, IT

The chorotypes are: A, American; IT, Irano-Turanian; ES, Euro-Siberian; M, Mediterranean; SA, Saharo-Arabian; SU, Sudania; TR, Tropical.
Fig. 4. The plant family diversity in Wadi Hassan/Eastern Desert. The most diverse families are Compositae (20.5%), Cruciferae (10.2%), Leguminosae (8.3%), Boraginaceae (6.8%), followed by Caryophyllaceae and Gramineae (5.4% the same for both families). These six families represent 56.6% of the total families recognized in the study area.

Fig. 5. Life form of plant species recorded in Wadi Hassan checklist 2010/2011.

Fig. 6. Proportional percentage of chorological types of the recorded species. A, American; IT, Irano-Turanian; ES, Euro-Siberian; M, Mediterranean; SA, Saharo-Arabian; SU, Sudania; TR, Tropical.
Badia. Vegetation cover is mainly concentrated in locations where water accumulates. These results are in agreement with studies in Saudi Arabia (Al-Turki and Al-Olayan, 2003; El-Ghamem et al., 2010; Alatar et al., 2011; Daur, 2012; Alsherif et al., 2013).

4. Conclusion

The present study is the first floristic study of Wadi Hassan and shows the importance of plant diversity in this region. The numbers of species in this region are high, largely because of soil characteristics and water availability. Although we have identified high plant diversity in one small region, this study only reflects a glimpse of the plant diversity of the larger area. Thus, we believe many plant species remain unrecorded and need long-term comprehensive study.

Conflicts of interest

None declared.

Acknowledgement

This work was supported by the Biology Department, University of Jordan, Amman. The authors, therefore, acknowledge with thanks University of Jordan support for Scientific Research. We thank our colleagues from Department of Land, Water and Environment, University of Jordan and in the Jordan Badia Research and Development Center, especially who provided insight and expertise that greatly assisted the research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pld.2019.05.001.

References

Ahmad, L., Aqeel, M., Ahmad, Q., Hussain, M., Hameed, M., Ashraf, M., Saghir, M., Koukol, S., 2009. Spatio-temporal effects on species classification of medicinal plants in some valley of Pakistan. Int. J. Agric. Biol. 11 (11), 560–8530.

Al-Ayyash, S., Al-Adamat, R., Al-Meshal, O., Rawajfih, Z., Al-Tahini, R., Al-Masaeed, K., 2012. Water resources management at Marah Hassan-NE Badia/ Jordan. Asian J. Agric. Sci. 4 (1), 65–71.

Al-Eisawi, D.M., 1986. List of Jordan vascular plants. Mitt. Bot. Staatsamml. Muensch. 18, 79–182.

Al-Eisawi, D.M., 1986. Med-checklist. OPTIMA, Geneve. In: Advisor of Jordan in OPTIMA, 3.

Al-Eisawi, D.M., 1995. Flora and Vegetation of Azraq Wetland Reserve. Azraq Oasis Conservation Project. RAMSAR and the World Bank, p. 72.

Al-Eisawi, D.M., 1996. Vegetation of Jordan. UNESCO—Cairo Office, Regional Office for Science and Technology for the Arab States, p. 210–213.

Al-Eisawi, D.M., 1998. Field Guide of Wild Flower of Jordan and Neighboring Countries, National Library, Amman, Jordan.

Al-Eisawi, D.M., 2013. In: Flora of Jordan Checklist, Revised, first ed. The University of Jordan Press, Amman-Jordan.

Al-Turki, T.A., Al-Qljan, H.A., 2003. Contribution to the Flora of Saudi Arabia: Hail F. Kherissat, D. Al-Esawi / Plant Diversity 41 (2019) 166–173

Alsherif, E.A., Ayesh, A.M., Rawi, S.M., 2013. Florestic composition, life form and water characteristics and vegetation analysis in hail region of Central Saudi Arabia. Saudi J. Biol. Sci. 17, 119–128.

Bowers, M.A., 1987. Precipitation and the relative abundances of desert winter annuals: a 6-year study in the northern Mohave desert. J. Arid Environ. 12, 141–150.

Cope, T.A., Al-Eisawi, D., 1998. Checklist of the flora. In: Dutton, R.W., Clarke, J.L., Battikhi, A.M. (Eds.), Arid Land Resources and their Management, Jordan's Desert Margin, 1st ed. Kegan Paul International, London, pp. 183–188.

Daur, I., 2012. Plant flora in the rangeland of western Saudi Arabia. Pakistan J. Bot. 44, 23–26.

Dutton, R.W., Clarke, J.L., Battikhi, A.M., 1998. Arid Land Resources and Their Management, Jordan's Desert Margin, 1st ed. Kegan Paul International.

El-Ghamem, W.A., Hassan, L.M., Galal, T.M., Badr, A., 2010. Floristic composition and vegetation analysis in hail region of Central Saudi Arabia. Saudi J. Biol. Sci. 17, 119–128.

El-Qoqh, Tafour, H., 2017. The Plants of Jordan. An Annotated Checklist. Royal Botanic Gardens, Kew.

Fariz, G.H., Hatough-Bouran, A., 1998. Population Dynamics in Arid Regions: the Experience of the Azraq Oasis Conservation Project. AAAS.

Guo, Q.F., Brown, J.H., 1998. Temporal fluctuations and experimental effects in desert communities. Oecologia 107, 568–577.

Gupta, S., Narayanan, R., 2006. Species diversity in four contrasting sites in a peri-urban area in Indian dry tropics. Trop. Ecol. 47 (2), 229–241.

Hobbs, R.J., Mooney, H.A., 1995. Spatial and temporal variability in California annual Grassland – results from a long-term study. J. Veg. Sci. 6, 43–56.

Hussain, M., 2002. Exploration of legume diversity endemic to salt range, in the Punjab. In: Annual Technical Report Submitted to University of Agriculture Faisalabad, Pakistan.

Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogles, K., Pockman, W.T., Sandquist, D.R., Pots, D.L., Schwinnin, S., 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141, 254–268.

Koppel, R., Huber, S., Benyamini, L., Herber, I., 1997. Flora Palaestina, the Israel Academy of Science and Humanities, Part 3, Type Set at Goldberger’s Press. Jerusalem and Academic Press, Plates by Litho-offset ziv, Jerusalem.

Koppel, R., Huber, S., Benyamini, L., 1986. Flora Palaestina, the Israel Academy of Science and Humanities, Part 4, Type Set at Monoline Press, även bero, Litho-Offset Ziv, Plates by Emil Printone, Jerusalem.

Milton, S.J., Dean, W.R., 2000. Disturbance, drought and dynamics of desert dune Grassland, South Africa. Plant Ecol., 35–71.

Ministry of Agriculture, Amman, 1996. The Hashemite Kingdom of Jordan. Version 2. IN: National Programme for Range Rehabilitation and Development Baseline Survey of Socio-Economic and Animal Production Data, 1.

Obando, J.A., 2005. Modelling soil erosion and vegetation change. FWU (3), 117–128.

Quevedo, D.L., Frances, F., 2008. A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrol. Earth Syst. Sci. 12, 1175–1187.

Shaw, R.J., Cooper, D.J., 2008. Linkages among watersheds, stream reaches, and riparian vegetation in dryland ephemeral stream networks. J. Hydro. 350, 68–82.

Skirvin, S., Kidwell, M., Biedenbender, S., Henley, J.P., Donna King, D., Collins, C.H., Slocum, D., Wight, M., 2003. Exploration of legume diversity endemic to salt range, in the Punjab. In: Annual Technical Report Submitted to University of Agriculture Faisalabad, Pakistan.

Srivastava, R.K., Murti, K.P., 1994. Vegetation of Pakistan. Kegan Paul International, London, pp. 183–188.

Stromberg, J.C., Beuchamp, W.B., Dixon, M.D., Litt, S.J., Paradizick, C., 2007. Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid south-western United States. Freshw. Biol. 52, 651–675.

Ward, D., Saltz, D., Olivid-Whittaker, L., 2000. Distinguishing signal from noise: long-term studies of vegetation in Makhtesh ramon erosion cirque, negev desert, Israel. Plant Ecol., 27–36.

Westbrooke, M.E., Florentine, S.K., Milberg, P., 2005. Arid land vegetation dynamics after a rare flooding event: influence of fire and Grazing. J. Arid Environ. 61, 249–260.

White, F., Leonard, J., 1991. Phytogeographical links between Africa and Southwest Asia. Flora Veg, 5, 229–246.

Zhang, L., Dawes, W.R., Walker, G.R., 1999. Prediction the Effect of Vegetation Changes on Catchment Average Water Balance. Cooperative Research Centre for Catchment Hydrology.

Zohary, M., 1966. Flora Palaestina, the Israel Academy of Science and Humanities, Part 1, Type Set at Litho-Offset ziv, Jerusalem, Plates. Emli Pikovesky Ltd., Jerusalem.

Zohary, M., 1973. Geobotanical Foundations of the Middle East, 2 vols. Gustav Fischer Verlag, Stuttgart.

Zohary, M., Feinbrun-Dothan, N., 1972. Flora Palaestina, the Israel Academy of Science and Humanities, Part 2, Type Set at Litho-Offset ziv, Jerusalem, Plates. Emli Pikovesky Ltd., Jerusalem.