Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning

Viature Tuyisenge a,b, Lena Trebaul a,b, Manik Bhattacharjee a,b, Blandine Chanteloup-Forêt a,b, Carole Saubat-Guigui a,b, Ioana Mindruță c,d, Sylvain Rheims e,f,g, Louis Maillard h,i,j, Philippe Kahane a,b,k, Delphine Taussig l, Olivier David a,b,*

a Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
b Inserm, U1216, F-38000 Grenoble, France
c Neurology Department, University Emergency Hospital, Bucharest, Romania
d Neurology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
e Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
f Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Lyon, France
g Epilepsy Institute (IDEE), Lyon, France
h Research Center for Automatic Control (CRAN), University of Lorraine, CNRS, UMR 7039, Vandoeuvre, France
i Department of Neurology, Central University Hospital, CHU de Nancy, Nancy, France
j Medical Faculty, University of Lorraine, Nancy, France
k Laboratory of Neurophysiopathology of Epilepsy, Centre Hospitalier Universitaire Grenoble-Alpes, Grenoble, France
l Department of Pediatric Neurosurgery, Fondation Rothschild, F-75940 Paris, France

ARTICLE INFO

Article history:
Accepted 1 December 2017
Available online 24 December 2017

Keywords:
Intracranial EEG
Stereo-EEG
Bad channels
Feature extraction
Ensemble bagging
Machine learning

HIGHLIGHTS

- We propose a method that detects automatically bad channels from intracranial EEG (iEEG) datasets.
- It computes iEEG features specific to bad channels and uses an ensemble bagging classifier.
- The bad channel classification accuracy was demonstrated to be excellent on a large data sample.

ABSTRACT

Objective: Intracranial electroencephalographic (iEEG) recordings contain “bad channels”, which show non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels using machine learning of seven signal features.

Methods: The features quantified signals’ variance, spatial–temporal correlation and nonlinear properties. Because the number of bad channels is usually much lower than the number of good channels, we implemented an ensemble bagging classifier known to be optimal in terms of stability and predictive accuracy for datasets with imbalanced class distributions. This method was applied on stereo-electroencephalographic (SEEG) signals recording during low frequency stimulations performed in 206 patients from 5 clinical centers.

Results: We found that the classification accuracy was extremely good: It increased with the number of subjects used to train the classifier and reached a plateau at 99.77% for 110 subjects. The classification performance was thus not impacted by the multicentric nature of data.

Conclusions: The proposed method to automatically detect bad channels demonstrated convincing results and can be envisaged to be used on larger datasets for automatic quality control of iEEG data.

Significance: This is the first method proposed to classify bad channels in iEEG and should allow to improve the data selection when reviewing iEEG signals.

© 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Intracranial electroencephalographic (iEEG) recordings, either from depth electrodes (stereoelectroencephalography, SEEG) (Kahane and Dubeau, 2014) or from subdural grids and strips

Abbreviations: DES, direct electrical stimulation; ECoG, electrocorticography; EEG, electroencephalography; iEEG, intracranial electroencephalography; SEEG, stero-electroencephalography.
* Corresponding author at: Grenoble Institut des Neurosciences – Chemin Fortuné Ferrini – Bât El Safa, 38700 La Tronche, France. Fax: +33 4 56 52 05 98.
E-mail address: Olivier.David@inserm.fr (O. David).

https://doi.org/10.1016/j.clinph.2017.12.013
1388-2457/© 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The computer-assisted approach required a certain number of features to classify bad channels. Here, we selected seven features already used in the literature to remove artifacts from EEG data (Shoker et al., 2005; Nolan et al., 2010; Mognon et al., 2011; Lawhern et al., 2013) that can also be applied to iEEG recordings for detecting bad channels.
i. **Correlation coefficient**: Because of the limited spatial resolution of iEEG, a subset of local electrodes measures spatially correlated brain activity. Therefore, a channel with a low correlation of its activity with the one of its neighbors has an increased likelihood to be bad. The first feature is thus the average of correlation coefficients of every channel with respect to neighboring channels, considered to be on the same electrode shaft, at a maximal distance of 5 contacts. The mean correlation coefficient μ_{cor} for a given channel X_i was computed as follows:

$$\mu_{cor} = \frac{1}{n} \sum_{j=1}^{n} \text{Cor}(X_i, X_j)$$

where $\text{Cor}(X_i, X_j)$ is the Pearson correlation coefficient between channel X_i and X_j, and n the number of channels in the neighborhood of X_i (Nolan et al., 2010; Mognon et al., 2011).

ii. **Variance**: A channel with a higher variance with respect to its neighboring channels has also a higher probability to belong to the bad channel class, under the assumption that artefacts add variance to the recorded signals. This feature was also taken into consideration for classification purpose. For this, we computed a normalized channel variance σ_i^2 as follows:

$$\sigma_i^2 = \frac{\sigma_i^2}{\bar{\sigma}^2}$$

where σ_i^2 is the variance for channel X_i and $\bar{\sigma}^2$ represents the median of the variances of neighboring channels (Shoker et al., 2005).

iii. **Deviation**: The electrical drift during SEEG recordings can reflect bad channels in terms of electrical impedance. The mean amplitude for a given channel that diverges from the mean amplitude of its neighboring channels can reveal such behavior. It was computed with the following formula:

$$\Delta_d^i = \mu_d^i - \mu_d$$

where Δ_d^i and μ_d^i are respectively the deviation and mean amplitude of channel i, μ_d is the mean of neighboring channels’ amplitudes (Nolan et al., 2010).

iv. **Amplitude**: The movement of electrodes modulates the impedance between the contact and the electrodes, which in turn alters the offset of electrode voltage. This offset alteration corrupts the channel signal, which is determined by its high amplitude. This signal artifact can be identified by computing the amplitude range normalized by the median of local channels’ amplitudes A (Shoker et al., 2005):

$$A' = \frac{\max(X_i) - \min(X_i)}{A}$$

where σ_i^2 is the variance for channel X_i, and $\bar{\sigma}^2$ represents the median of the variances of neighboring channels.

v. **Gradient**: The gradient parameter was used to detect high-frequency activity in a channel. For this, we computed the mean gradient of channels using the following formula:
\[\mu_c^i = \frac{\mu_i - \overline{\mu_c}}{\nu_c} \]

(5)

where \(\mu_c^i \) is a normalized mean gradient of channel \(i \) and \(\overline{\mu_c} \) is the median gradient across neighboring channels (Galar et al., 2010; Mognon et al., 2011).

vi. Hurst exponent: The Hurst exponent \(H \) is used as an index of long-term memory of time series (Nolan et al., 2010). Typically, EEG recordings have values of \(H \approx 0.7 \), and channels with Hurst exponents that diverge from this standard value are potentially artifactual. In the same line, the Hurst exponent can be applied to detect SEEG bad channels. Given a channel \(X \) of length \(n \) and mean amplitude \(\mu_x \), this parameter is computed using the algorithm 1.

vii. Kurtosis: An electrical activity may appear in one of the channels and be absent in the remaining ones. Such events can be detected by computing the kurtosis in all channels. Given that the kurtosis indicates the presence of outliers in datasets, the highest value reveals which channel shows a particular event (Mognon et al., 2011).

Note that all feature extraction scripts have been implemented using a commercial software package (MATLAB 9.0, The MathWorks Inc., Natick, MA, R2016a).

Algorithm 1. Calculation of Hurst exponent

1: Calculate the mean amplitude \(\mu_A \) of channel: \(\mu_A = \frac{1}{n} \sum_{i=1}^{n} X_i \)
2: Create a mean centered channel: \(Y_i = X_i - \mu_A \) for \(t = 1, 2, \ldots, n \)
3: Compute the cumulative channel deviation \(Z_t \): \(Z_t = \sum_{i=1}^{t} Y_i \) for \(t = 1, 2, \ldots, n \)
4: Compute the channel amplitude range \(R_n \): \(R_n = \max_{Z_i \in [1:n]}(Z_i) - \min_{Z_i \in [1:n]}(Z_i) \)
5: Compute the standard deviation \(\sigma_n \): \(\sigma_n = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_A)^2} \)
6: The Hurst exponent \(H \) is given by the following equation:

\[H = \log \left(\frac{R_n}{\sigma_n} \right)^{1/2} \]

2.4. Choice of classification model

A priori, the datasets have imbalanced class distributions because the number of bad channels is much lower than the number of channels that belong to the class of good channels. Furthermore, the class of bad channels is the class of interest as far as the learning task is concerned. In this case, standard classifier learning algorithms, such as support vector machine, decision trees, logistic regression classifiers, discriminant analysis, and so on, are more sensitive to the finite size of classes in training samples. The degree of weights, for instance in the majority class (here, the class of good channels) is amplified to take advantage of the greater occurrence of instances correctly classified while the instances from the minority class (bad channels) are penalized by low weights as they are usually considered as artefacts. In such a way, bad channels are more often misclassified than good channels (Galar et al., 2012).

Here, we used an ensemble classifier approach to cope with the problem of the class imbalance (Dietterich, 2000). The basic idea of the ensemble methodology is to build different classifiers from the initial data and then to combine their forecasts once new unidentified instances are available. This approach is inspired from the human natural behavior in such way that before any important decision is taken, different consultations had to be gathered. The objective of the ensemble methods is to compile a significant diversity among the individual models they combine and to come up with a new robust classifier that provides more stable and accurate results that outperform each and every single model. The driving principle of combining the predictions of several learning algorithms is to improve generalizability and robustness over a single independent model: for a given test sample, a classifier algorithm that provides a higher classification accuracy will be taken into account with higher weights in that test sample region. Ensemble methods combine many diverse classifiers into a global predictive algorithm in order to reduce variance, bias and thus to improve overall predictions results (Dietterich, 2000; Galar et al., 2012).

2.5. Model training and class prediction

We have chosen an ensemble bagging model because of its specific ability to improve classification in terms of stability and predictive accuracy. It also reduces the variance of the classification and helps to avoid overfitting (Galar et al., 2012). The ensemble model used here was implemented in a commercial software package (MATLAB 9.0, The MathWorks Inc., Natick, MA, R2016a).

We trained the bagging model using channel features from SEEG datasets, where bad channels were previously labeled by experts. As input, this algorithm took an array of data: channels in raws \(\times 8 \) columns (the first 7 feature columns and the last column for class labels). After training of the classification algorithm, the prediction is done by applying the trained classifier on new SEEG datasets. The input of the trained model is of the same form as the training dataset (table or matrix) and the trained model returns predictions.

2.6. Classification accuracy

The classification performance was assessed using the accuracy rate \(\text{Acc} \):

\[\text{Acc} = \frac{TP + TN}{TP + TN + FP + FN} \]

(6)

where \(TP \) (true positive) is the number of channels labeled as bad and identified as bad channels and \(TN \) (true negative), the number of channels annotated and predicted as good channels. \(FP \) (false positive) is the number of channels annotated as good identified by the algorithm as bad channels and \(FN \) (false negative), the number of channels labeled as bad channels and classified as good.

We evaluated the number of subjects required to obtain a stable classification accuracy. To that end, we trained and tested the classification model with sets of subjects of different sizes (from 10 to 200 subjects for the training set, with a regular step of 10 subjects) randomly chosen among the 206 subjects. For each size of the training datasets, the accuracy rate of classification was computed 19 times.

3. Results

3.1. Extracted features

Fig. 2 shows channel features extracted from 466 SEEG stimulations of 10 subjects where the two classes (good channels in blue and bad channels in red) can be visually discriminated. Using these features, ensemble bagging was able to detect different types of SEEG bad channels as depicted in Fig. 3.
3.2. Classification accuracy

Fig. 4 shows the classification accuracy as a function of the number of subjects used in the training set. With 10 subjects only, the classification accuracy was on average as high as 98.63%. It then increased linearly and reached a plateau at 99.77% for 110 subjects. When more subjects were added to the training set, the accuracy remains unchanged. Therefore, the classification model could be considered as stable and readily usable for any new data-set from there on, with excellent precision. With such high values of classification accuracy, one could anticipate that the classification was robust according to the origin of the data. We explicitly tested this prediction by classifying data coming from centers that were not including in the training dataset. For a training dataset composed of 110 patients, the classification accuracy of the data from each center was very high (BUC: 99.7%; GRE: 99.6%; LYO: 99.6%; NAN: 99.5%; ROT: 99.8%).

3.3. Most discriminant features selection

We evaluated the classification ability of each candidate feature to find the most discriminants among others. To achieve this goal, we have used filter methods (Kohavi, 1997) which rely on general characteristics of the data to evaluate and assess the merits of features without taking into account the selected classification model. Under the assumption of no interaction between features, we applied the t-test on each feature and compare p-value for each feature as a measure of how accurate it is at classifying bad and good channel groups (Corr: p < 0.0001; Varn: <0.0001; Devn: 0.0103; Ampl: <0.0001; Grad: 0.2306; Kurt: <0.0001; Hurs: 0.0078). The computed p-values of all features indicate that all features were discriminant except Grad.

4. Discussion

In this paper, an automatic method for the detection of bad channels in iEEG datasets was proposed. It was applied to multi-centre large datasets that contained bad channels as found in standard continuous recordings, but also disconnected channels during direct electrical stimulations. The main property of the method is the use of different features and ensemble bagging classifier not only to identify the bad channels but also to cope with datasets with imbalanced class distributions. The results demonstrate a very good accuracy rate (99.77%) and stable classification perfor-
mances with a training set of about 100 patients and a test set of similar size.

To the best of our knowledge, this report is the first to investigate the possibility to automatically detect bad channels from iEEG data. The methods chosen used up-to-date classification methods from features of interest that were inspired from the methods already developed for scalp EEG (Shoker et al., 2005; Nolan et al., 2010; Mognon et al., 2011; Lawhern et al., 2013). In the implementation of the model for iEEG data as compared to scalp EEG, less emphasis was put on the spatial smoothness of the data as iEEG shows weaker spatial covariance. Different features, i.e. Hurst and Devn, were introduced to be sensitive to highly nonlinear signals. However, it should be noted that the presence of the artifact of stimulations in both good and bad channels did not limit the accuracy of the classifier.

Our goal was to develop a method able to deal with data from multiple centers, acquired under different conditions and parameters. We addressed this objective by computing features that are relatively independent of the sampling rate, that is that do not rely in temporal derivatives and frequency contents. By testing the accuracy rate for the patients coming from the different centers, we did not find any significant difference between the centers. This suggests that the classifier can be applied with good confidence to new iEEG datasets coming from different origins.

The proposed method has no profound limitation, except that a training data set has to be prepared by visual inspection of experts. This may be difficult and cumbersome to achieve, but once it is done, the classification model is very easy to use and allows fast classification of channels. One of the advantage of the approach is that the model can be easily incremented with new data in the training set for a larger repertoire of artifacts. This technical note reports early advances of the F-TRACT project (f-tract.eu) for which we collect a large database of cortical stimulations and where an automatic classification of bad channels was required. We thus quantified the accuracy of the methods with the data of the 206 first patients ready to be processed. For the forthcoming patients, the outcome of the model will be systematically controlled visually as part of our quality control procedures. In case of false positive or false negative classification, we will update the classification model.

For the forthcoming patients, the outcome of the model will be systematically controlled visually as part of our quality control procedures. In case of false positive or false negative classification, we will update the classification model. The model is available in open access and will be regularly updated on the F-TRACT webpage (f-tract.eu).

Although the classifier was trained on stimulation data at 1 Hz, the method is also valid to classify bad channels during non-stimulation periods with the same training dataset because many channels did not contain stimulation artifacts and thus could be considered as if recorded during non-stimulation interictal periods. The used training set is however not sufficient to readily take into account stimulation periods performed at other frequencies, such as 50 Hz, the most common frequency in current clinical procedures. In that case, the training dataset will need to be extended to other stimulation protocols to improve the chances of correct classifications for a various set of stimulation configurations.

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 616268 F-TRACT. This work was also funded by Romanian...
UEFISCDI Grant PN-II-ID-PCE-2011-3-0240, and by a Grenoble-Alpes University Hospital grant (DRCI 1325, EPISTIM study).

Conflict of interest statement

None of the authors have potential conflicts of interest to be disclosed.

References

Alotaiby T, El-Samie FEA, Alshebeili SA, Ahmad I. A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process 2015;2015:767.

David O, Bastin J, Chabardès S, Minotti L, Kahane P. Studying network mechanisms using intracranial stimulation in epileptic patients. Front Syst Neurosci 2010;4:148.

David O, Job A-S, De Palma L, Hoffmann D, Minotti L, Kahane P. Probabilistic functional tractography of the human cortex. NeuroImage 2013;80:307–17.

Dietterich TG. Ensemble methods in machine learning. In: Kittler J, Roli F, editors. Multiple classifier systems. Lecture Notes in Computer Science. Cagliari, Italy: Workshop; 2000. p. 1–15.

Fernández IS, Loddenkemper T. Electrocorticography for seizure foci mapping in epilepsy surgery. J Clin Neurophysiol 2013;30:554–70.

Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern C 2012;42:463–84.

Kahane P, Dubeau F. Intracerebral depth electrodes electroencephalography (stereoelectroencephalography). In: Ebersole JS, Nordli DR, editors. Current practice of clinical electroencephalography. 4th ed. Philadelphia: Wolters Kluver Health; 2014.

Keller CJ, Hoosey CJ, Mégevand P, Entz L, Ulbert I, Mehta AD. Mapping human brain networks with cortico-cortical evoked potentials. Philos Trans R Soc Lond B Biol Sci 2014;369:20130528.

Kohavi R. Wrappers for feature subset selection. Artif Intell 1997;97:273–324.

Lawhern V, Hairston WD, Robbins K. DETECT: a MATLAB toolbox for event detection and identification in time series, with applications to artifact detection in EEG signals. PLoS ONE 2013;8:e62944.

Mignon A, Jovicich J, Bruzzone L, Luiatti M. ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 2011;48:229–40.

Mur A, Dormido R, Vega J, Duro N, Dormido-Canto S. Unsupervised event characterization and detection in multichannel signals: an EEG application. Sensors (Basel) 2016;16:590.

Nolan H, Whelan R, Reilly RB. FASTER: fully automated statistical thresholding for EEG artifact rejection. J Neurosci Methods 2010;192:152–62.

Selimbeyoglu A, Parvizi J. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front Hum Neurosci 2010;4:46.

Shoker L, Sanei S, Chambers J. Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm. IEEE Signal Process Lett 2005;12:721–4.