Case Report

The Role of Chest Computed Tomography in Asymptomatic Patients of Positive Coronavirus Disease 2019: A Case and Literature Review

Jeton Shatri1,3, Lirim Tafilaj2, Agon Turkaj4, Kreshnike Dedushi1, Metë Shatri4, Sadi Bexheti3, Serbeze Kabashi Mucaj1

1Department of Radiology, 2Department of Infectious Disease, University Clinical Center of Kosovo, Pristina, Kosovo, Albania, 3Department of Anatomy Faculty of Medicine, 4Faculty of Medicine, University of Prishtina "Hasan Prishtina", Kosovo, Albanian.

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing global health emergency. At present, patients are the primary source of infection. A randomly diagnosed confirmed case of COVID-19 highlights the importance of computerized tomography of thorax in diagnosing asymptomatic patients. In the early phase of COVID-19, routine screenings miss patients who are virus carriers, and tracking travel history is of paramount importance to early detection and isolation of SARS-CoV-2 cases.

Keywords: Coronavirus disease 2019, Severe acute respiratory syndrome coronavirus 2, Novel coronavirus pneumonia, Asymptomatic for coronavirus disease 2019, Chest computerized tomography

INTRODUCTION

As of April 15, 2020, more than 2,018,920 cases of the coronavirus disease 2019 (COVID-19) infection have been confirmed worldwide. The current definition of the ongoing global COVID-19 pandemic as an acute respiratory disease is based on the diagnosis of pneumonia. The usual symptoms are fever, cough, dyspnea, and myalgia. This diagnosis was made by a positive polymerase chain reaction test, which is highly specific. The first cases were seen in Wuhan, China, in December 2019, before spreading globally. In Kosovo, the first two cases were reported on March 13, 2020; as of April 7, there are 184 laboratory-confirmed cases. The diagnosis was also made by a positive polymerase chain reaction (PCR) test, which is highly specific. The computerized tomography (CT) has a higher sensitivity but lower specificity and can play a role in the diagnosis and treatment of the disease. However, multiple radiologists have come forward to state that CT should not be relied on as a primary diagnostic/screening tool for COVID-19.

CASE PRESENTATION

An unconscious 60-year-old male was brought to the ER by his relatives from a village in Pristina’s vicinity. According to the family members, the patient had been complaining about dizziness and fatigue throughout the day. Other symptoms, such as coughing, fever, and chest pain, were not present. His medical history (in this case, a heteroanamnesis) states that the
patient suffers from high blood pressure and diabetes mellitus type 2. After consultation with a neurologist, the patient underwent a CT scan of his head and a complete blood test. The CT scan revealed general cerebral atrophy (corresponding to the patient’s age) and discreet gliotic lesions but no changes to the brain parenchyma [Figure 1]. The radiologist in charge during that shift, taking into consideration the current coronavirus pandemic, ordered a chest CT scan. During the careful analysis of the chest CT scan the following lesions could be observed: Alveolar changes predominantly, such as ground-glass opacities, focal consolidations, and mixed opacities (including a reversed halo sign), with bilateral and multifocal involvement, peripheral distribution, predominantly in the middle, lower, and posterior lung fields, septal thickening, and reticular changes superimposed on alveolar changes [Figure 2]. Also incipient lung scarring (fibrotic bands) and pleural effusion with ground-glass opacities especially predominated shown in [Figure 3] and mediastinal lymphonodes [Figure 4]. The blood test results were as follows: Glucose 102 mg/dL (65–110 mg/dL), leukocytes WBC 28000, INR 1.0, fibrinogen 28, LDH 29, procalcitonin 1.3, protein C-reactive PCR 96.6 mg/l (30–120), protein 7.0 g/dL (6.0–8.0 g/dL), sample test positive for COVID-19, neutrophil 6.07 × 10⁹/μL 2.00–7.50, lymphocyte 1.65 × 10⁹/μL 1.00–4.00, monocytes 0.35 × 10⁹/

**Figure 1:** Head computed tomography images of a 64-year-old man with asymptomatic symptom for coronavirus disease 2019. (a) Axial showing subarachnoid space dilated associated with cortical atrophy (Red arrows). (b) Choroid plexus calcification in the lateral ventricles (Red arrows).

**Figure 2:** Chest computed tomography (CT) images of a 64-year-old man with asymptomatic symptom for coronavirus disease 2019 (COVID-19). (a-d) Axial chest CT scans showing multifocal and bilateral ground-glass opacities, with peripheral and posterior predominance (Red arrows), which are typical pulmonary findings of COVID-19 infection (confirmed by reverse transcriptase polymerase chain reaction).

**Figure 3:** Chest computed tomography (CT) images of a 64-year-old man with asymptomatic symptom for coronavirus disease 2019. Chest CT with different planes, coronal plane (a and b) reconstruction shows bilateral multifocal ground-glass opacities (Red arrows) and sagittal plane (c and d) images show multiple patchy and bilateral areas of ground-glass opacities with a posterior predominance (Red arrows).

**Figure 4:** Chest computed tomography (CT) images of a 64-year-old man with asymptomatic symptom for coronavirus disease 2019. Axial plane chest CT scans showing lymph nodes larger than 1 cm (Red arrows).
The continuing 2019-nCoV epidemic threat of novel coronavirus from patients with pneumonia in China. N Engl J Med 2020;382:727-33.
2. Hui DS, Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infec Dis 2020;91:264-6.
3. ACR Recommendations for the Use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection. American College of Radiology; 2020. Available from: https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection. [Last accessed on 2020 Mar 11].
4. RCR Position on the Role of CT in Patients Suspected with COVID-19 Infection. The Royal College of Radiologists; 2020. Available from: http://www.Rcr.ac.uk. [Last accessed on 2020 Apr 17].
5. Canadian Society of Thoracic Radiology and Canadian Association of Radiologists’ Statement on COVID-19—CAR-Canadian Association of Radiologists; 2020. Available from: https://car.ca/news/canadian-society-of-thoracic-radiology-and-canadian-association-of-radiologists-statement-on-covid-19/. [Last accessed on 2020 Mar 26].
6. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020.
Shatri, et al.: The role of chest CT in asymptomatic patients of positive COVID-19: A case and literature review

7. Bai HX, Hsieh B, Xiong Z, Tran TM, Choi JW, Halsey K, et al. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology 2020;24:200823.

8. Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH. Essentials for radiologists on COVID-19: An update-radiology scientific expert panel. Radiology 2020;27:200527.

9. Mahmud MB, Carolyn CM, Danny CK, Tuite MJ, Kolli KP, Tan BS. Radiology department preparedness for COVID-19. Radiology scientific expert panel. Radiology 2020;16:200988.

How to cite this article: Shatri J, Tafilaj L, Turkaj A, Dedushi K, Shatri M, Bexheti S, Kabashi S. The Role of Chest Computed Tomography in Asymptomatic Patients of Positive Coronavirus Disease 2019: A case and literature review. J Clin Imaging Sci 2020;10:35.