RESEARCH ARTICLE

Cadmium exposure and age-associated DNA methylation changes in non-smoking women from northern Thailand

Kathryn Demanelis,1 Shama Virani,1 Justin A. Colacino,1 Niladri Basu,2 Muneko Nishijo,3 Werawan Ruangyuttikarn,4 Witaya Swaddiwudhipong,5 Kowit Nambunmee6 and Laura S. Rozek1,*

1Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48104, USA, 2Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, H9X3V9, Canada, 3Department of Public Health, Kanazawa Medical University Hospital, Uchinada, 920-0293, Ishikawa, Japan, 4Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand, 5Department of Community and Social Science, Mae Sot General Hospital, Mae Sot District, Tak Province 63110, Thailand and 6School of Health Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

*Correspondence address. Department of Environmental Health Sciences, Office of Global Public Health, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109-2200, USA. Tel: 734-615-9816; E-mail: rozekl@umich.edu

Abstract

DNA methylation changes with age, and may serve as a biomarker of aging. Cadmium (Cd) modifies cellular processes that promote aging and disrupts methylation globally. Whether Cd modifies aging processes by influencing establishment of age-associated methylation marks is currently unknown. In this pilot study, we characterized methylation profiles in >450,000 CpG sites in 40 non-smoking women (age 40–80) differentially exposed to environmental Cd from Thailand. Based on specific gravity adjusted urinary Cd, we classified them as high (HE) and low (LE) exposed and age-matched within 5 years. Urinary Cd was defined as below 2 mg/l in the LE group. We predicted epigenetic age (DNAm-age) using two published methods by Horvath and Hannum and examined the difference between epigenetic age and chronologic age (D-age). We assessed differences by Cd exposure using linear mixed models adjusted for estimated white blood cell proportions, BMI, and urinary creatinine. We identified 213 age-associated CpG sites in our population (P < 10^-4). Counterintuitively, the mean D-age was smaller in HE vs. LE (Hannum: 3.6 vs. 7.6 years, P = 0.0093; Horvath: 2.4 vs. 4.5 years, P = 0.1308). The Cd exposed group was associated with changes in methylation (P < 0.05) at 12, 8, and 20 age-associated sites identified in our population, Hannum, and Horvath. From the results of this pilot study, elevated Cd exposure is associated with methylation changes at age-associated sites and smaller differences between DNAm-age and chronologic age, in contrast to expected age-accelerating effects. Cd may modify epigenetic aging, and biomarkers of aging warrant further investigation when examining Cd and its relationship with chronic disease and mortality.

Key words: cadmium; biologic aging; DNA methylation; thailand; epigenomics; toxic metals

Received 16 March 2017; revised 8 May 2017; accepted 12 June 2017

© The Author 2017. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

The epigenetic clock is hypothesized to capture common and progressive changes in methylation that occur during aging at specific CpG sites that are susceptible to the decline in maintaining methylation patterns [1, 2]. DNA methylation can affect downstream gene expression, and it is a mechanism that is dynamic and sensitive to internal and external environmental changes that result from aging, lifestyle factors, disease, and exposure to environmental toxicants [3]. DNA methylation becomes increasingly dysregulated with age, and aging is associated with loss of global methylation and preferential gains in methylation at island-associated promoters [4–6]. Using human methylation arrays, several studies have shown that a combination of methylation at CpG sites can describe an epigenetic clock and predict epigenetic age [1, 4, 7, 8]. Multiple studies have characterized that greater difference between chronologic age and epigenetic age is associated with health and mortality [9, 10]. Environmental exposures that alter the epigenome may modify the rate at which alterations in DNA methylation accrue during aging.

Cadmium (Cd) is a toxic metal, and environmental exposure is associated with changes in the cellular environment, including epigenomic changes, and potentially, with health in later life [11]. Cd initiates aging-related cellular processes, including perturbation of gene-specific and global methylation. DNA Methylation may be sensitive to Cd-associated changes in the oxidative [12, 13] and inflammatory environment of the cell [14]. Cd is also associated with altered DNA methyltransferase activity as suggested by in vivo and in vitro studies [15–17].

The relationship between Cd exposure and age-associated methylation changes has not been thoroughly investigated in an environmentally exposed population. We have previously described DNA methylation changes in a population in northern Thailand that was environmentally exposed to Cd [18]. The population was exposed to Cd after ingesting contaminated rice and water resulting from downstream environmental pollution from nearby zinc mines [19]. This population has documented levels of urinary Cd levels that exceed the WHO standard level [20] and associated chronic health problems such as diabetes, hypertension, and osteoporosis [21, 22]. In the current work we conducted a pilot study of non-smoking women from northern Thailand with high and low levels of Cd to evaluate the cross-sectional relationship among age, DNA methylation, and Cd exposure using epigenome-wide data and hypothesized that increased Cd exposure is associated with increased epigenetic age acceleration.

Results

Study Population Characteristics

The median and range of SG-adjusted Cd was 0.7 μg/l (0.3–1.9 μg/l) in the low Cd exposure (LE) group and 10.8 μg/l (7.0–48.3 μg/l) in the high Cd exposure (HE) group. The mean age in the (LE) and HE groups were 58.8 (SD=9.4) and 60.4 (SD=10.3) years (Table 1). The HE had significantly higher BMI than the HE group, 26.4 vs. 22.2 kg/m² (P = 0.0028).

Urine SG was not significantly different between exposure groups. The mean urinary creatinine was significantly higher in the HE group compared with LE (P < 0.0001 and P = 0.00036, respectively). Urinary citrate, a biomarker of renal stone formation, was significantly lower in the HE compared with LE (P < 0.0001). These results among our study population are consistent with renal damage identified among Mae Sot [23]. Hematocrit and total red blood cell count were also, on average, lower in the HE group (P = 0.03 and 0.04, respectively). Further, HE individuals had an increased estimated percentage of monocytes (P = 0.02) and decreased B cells (P = 0.03).

DNAm-Age and Association with Cd Exposure

The Hannum and Horvath DNAm-ages positively and significantly correlated with chronicologic age, 0.76 (P < 0.0001) and 0.73 (P < 0.0001), respectively (Fig. 1). The DNAm-age from Hannum and Horvath were also positively and significantly correlated with each other, 0.88 (P < 0.0001). Hannum and Horvath DNAm-ages were on average 5.56 (SD = 6.37) and 3.49 (SD = 6.70) years greater than chronologic age, respectively.

The mean DNAm-age did not significantly differ by exposure group [Hannum: LE = 65.9 (SD = 8.4) and HE = 64.4 (SD = 8.0) years; Horvath: LE = 62.4 (SD = 8.0) and HE = 63.7 (SD = 7.8) years]. Among the LE group, the Spearman correlation between Hannum and Horvath DNAm-age and chronicologic age was 0.63 (P = 0.0029) and 0.55 (P = 0.0128), respectively, while among the HE group, the correlations were 0.93 (P < 0.0001) and 0.89 (P < 0.0001), respectively (Fig. 1). Within the HE group, the Hannum and Horvath DNAm-age increased by 0.69 (P = 0.0011, r² = 0.804) years and 0.64 years (P < 0.0001, r² = 0.692) per year in chronologic age, respectively. Although in the LE group, the Hannum and Horvath DNAm-age significantly increased by 0.58 years (P = 0.0021, r² = 0.384) and 0.53 years (P = 0.0042, r² = 0.339) per year in chronologic age, respectively.

The mean Δage using Hannum was 7.6 years (SD = 10.9 years) in the LE group and 3.6 years (SD = 9.9 years) in the HE group. Counterintuitively, the Δage was significantly smaller in the HE group compared with LE group (unadjusted: β = –3.98 years, P = 0.0093; adjusted: β = –4.65 years, P = 0.0225) (Fig. 2). The mean Δage using Horvath was 4.5 years (SD = 11.2 years) in the LE group and 2.4 years (SD = 10.0 years) in the HE group. The Δage for Horvath was also smaller in the HE group compared with LE group (unadjusted: β = –2.10 years, P = 0.1308; adjusted: β = –2.36 years, P = 0.2270). In addition, Hannum Δage significantly decreased per percent increase in continuous Cd exposure (adjusted β = –0.015, P = 0.0311) while The Horvath Δage was not significantly associated with continuous Cd exposure (adjusted β = –0.010, P = 0.1035). No associations were found between Δage and our urinary biomarkers of kidney function after adjustment (not shown).

Methylation among Sites Included in Hannum and Horvath Methylation Age Predictors

At a significance level of P = 0.05, 56% (n = 40) of CpG sites included in the Hannum methylation age predictor were correlated with age in our study population (not shown). After adjustment by estimated blood cells, BMI, and urinary creatinine, 61% (n = 43) of sites included in the Hannum predictor were associated with age. Only 14% (n = 51) of sites included in the Horvath predictor were correlated with age in our study population, and after adjustment, 15% (n = 53) of these sites were associated with age.

Among the Hannum sites, eight sites were associated (P < 0.05) with Cd exposure after adjustment (Table 2). The
difference in methylation among these eight sites was between 1.1 and 3.1% lower in the HE compared with the LE group, and among all of the Hannum sites, difference in methylation was lower in HE compared with LE group in 75% of the sites (n = 53). In addition, eight sites were associated (P < 0.05) with continuous Cd exposure after adjustment. Among the Horvath sites, 20 sites were associated (P < 0.05) with Cd exposure group after adjustment. Forty-three sites were associated with decreased methylation (range: −0.8 to −3.4%) in HE group compared with LE group while eleven sites were associated with increased methylation (range: 0.2−3.5%) in HE compared with LE group. Among all of the Horvath sites, difference in methylation was lower in HE compared with LE group in 59% of the sites (n = 210). Forty-three sites were associated (P < 0.05) with continuous Cd exposure after adjustment.

Age-Associated Methylation in Study Population

We then took an agnostic approach to identify age-associated CpG sites in our study population. In total 114 sites were significantly correlated with age at a significance level of P = 0.0001. The absolute values of the Spearman correlations ranged from 0.58 to 0.77. Of the 114 significantly correlated sites, 92% (n = 105) were positively correlated with age. After adjusting for BMI, creatinine, and estimate white blood cell proportion, 213 sites were associated with age at a significance level of P = 0.0001, and 10 of these sites had an false discovery rate (FDR) less of 0.05 (Fig. 3). Of these sites, 38% (n = 43) were among the identified CpG sites correlated with age in our study population (P < 1e-4), suggesting that some of these sites were confounded by BMI, urinary creatinine, or white blood cell composition. Ninety-four percent of these sites were positively associated with age. Fifty-four percent of these sites were located within CpG islands and 23% were located within the open sea. This distribution significantly differed from the locational distribution of the entire array (P < 0.0001). One hundred sixty sites annotated to a gene. Among these age-associated sites in our population, ten sites were located in the PRRT1 gene, three sites were located in each of the following genes: KLF14, ELOVL2, and FB1N2.

Among the age-associated sites identified in our study population, 12 sites were nominally significant (P < 0.05) with Cd exposure group after adjustment (Table 2). Ten sites were associated with decreased methylation in the HE compared with LE group (range: −1.1 to −2.8%). Two sites were associated with increased methylation between the groups; PBSM9/TAPI methylation was 6.4% higher in the HE compared with LE group. Seven sites were associated (P < 0.05) with continuous Cd exposure after adjustment.

Table 1. Descriptive statistics of study population stratified by exposure group

	Low Cd (n = 20)	High Cd (n = 20)	P values	Spearman correlation age	P values	Spearman correlation adjusted Cd	P values	
Adjusted Cd (µg/l)	0.71 (0.26, 1.94)	10.76 (6.97, 48.3)	<0.0001	0.204	0.2061	0.204	0.2061	
Age (years)	58.9 (9.4)	60.4 (10.3)	0.6106	0.0024	−0.246	0.1263	−0.387	0.0137
BMI (kg/m²)	26.4 (2.9)	22.2 (4.9)	0.0024	0.0024	−0.246	0.1263	−0.387	0.0137

Non-smoking northern Thai women age 40–80 with high (n = 20) and low (n = 20) exposure to Cd. Medians and ranges are reported for adjusted urinary Cd and urinary markers, which were non-normally distributed, and P-values from Wilcoxon sum rank test were reported. Mean and SDs are reported for all other covariates, which were normally distributed, and P-values from t-tests were reported. Spearman correlations were computed for each covariate and its relationship with age and adjusted Cd and corresponding P-values were reported.

Discussion

We observed that the Hannum and Horvath DNAm-ages were correlated with chronologic age in our Cd-exposed study population from northern Thailand and the difference between chronologic age and DNAm-age was smaller in the HE group. Age-associated CpG sites in the Horvath and Hannum were not strongly associated with chronologic age in our study. We identified a unique set of age-associated CpG sites in our study population, suggesting that age-associated methylation patterns vary between populations, by environmental exposures, like Cd, or both. Cd was associated with methylation at age-associated sites included in the Hannum and Horvath DNAm-age predictors, which may affect the estimation of DNAm-age in our study population.

We identified age-associated sites that were unique to our study population, and some of these sites overlapped with
those sites included in the Hannum or Horvath DNAm-age predictors, providing support that our results are consistent with age-associated methylation changes identified in the literature [4, 7, 24]. Ten age-associated sites in our study population were located within proline-rich transmembrane protein 1 (PRRT1) gene. PRRT1 lies within the gene dense region of 6p12.32 and is near the major histocompatibility complex, an epigenetically heritable region [25] that encodes numerous immune-response genes, which are susceptible to changes in methylation [26, 27]. Although Hannum and Horvath DNAm-ages correlated with chronologic age, these correlations were stronger in the HE compared with the LE group. Chronologic age correlated more strongly with Hannum DNAm-age compared with Horvath DNAm-age. These DNAm-ages were generated from different tissues, populations, and epigenome-wide arrays, and only six sites overlapped between the Hannum and Horvath DNAm-age predictors. Although the Δage was smaller in the HE group, the mean difference between DNAm-age and chronologic age was positive in both exposure groups, suggesting DNAm-age, a biologic age biomarker, was greater than chronologic age. We postulate that the epigenomic effects of Cd may be different and potentially independent of the epigenomic effects of aging. Within the study, HE women have lower methylation at sites in the Hannum and Horvath predictors compared with LE women. These sites are locationally biased towards promoters and genic regions, which tend to become more methylated during aging, and a majority of these sites have positive coefficients in the predictors [1, 4]. There is a complex relationship among epigenetic modification associated with environmental exposures, age-related processes, and their combined effect on epigenome-wide methylation. Smoking extensively modifies gene-specific and global DNA methylation [28], but it has not been shown to be associated with epigenetic age acceleration [9, 29]. Ambient particle exposure from air pollution is associated with epigenome-wide changes in methylation [30] and is significantly associated with increasing predicted DNAm-age [31].

The epigenomic effects of Cd have not been extensively studied in populations with high environmental exposure, as documented in the Mae Sot district in northern Thailand, and among adults. Two epigenome-wide array studies of Cd have examined cord blood methylation of infants from Bangladesh [32] and USA [33], and both of these studies observed sex-specific associations with maternal blood and placental Cd exposure, respectively. Using a promoter-specific epigenome-wide array, maternal blood Cd altered DNA methylation in promoter regions of 61 genes in infant blood, and some of these genes were associated with transcriptional regulation and apoptosis [34]. Increased urinary Cd exposure in low-exposed Argentinean women was associated with decreased LINE-1 methylation, a surrogate measure of global methylation [35]. Within the Mae Sot population, LINE-1 methylation was lower in HE women compared with HE men, and HE women had decreased MGMT methylation, a methyltransferase that maintains genomic stability, compared with LE women [18]. Cd modifies gene-specific and global methylation, suggesting age-associated methylation changes may be influenced by Cd exposure.

The small sample size of this pilot study limits the interpretation of these results, and our results should be validated longitudinally, in a larger sample size from our study population, or in a different Cd-exposed population, in order to further investigate age-associated methylation changes, epigenetic aging, and Cd exposure. The 450K array only covers a fraction of the total CpG sites in the genome and is biased towards sites located in promoter and intergenic regions. Age-associated methylation changes can only be assessed cross-sectionally in this study, and it is important to examine these changes temporally across the Cd-exposure and age trajectory. Our study only included women because they were mostly non-smokers, and most men in this population smoked. Although environmental tobacco smoke exposure is not likely to contribute substantially to Cd exposure in these women, it could be a source of residual confounding in the analyses. Men and women have different epigenetic aging [4] and Cd exposure patterns [23], and it is likely not appropriate to combine the genders in epigenetic studies of aging. The study population may not be a healthy population since there is a high prevalence of the renal effects associated with Cd exposure in the Mae Sot population. DNAm-ages may accurately estimate the DNAm-age within our study
population because the effects of aging and Cd exposure on methylation both change temporally. Other biologic age biomarkers that are more independent of Cd exposure are necessary to validate the association between Cd and biologic aging, and these include transcriptomic age [36], composite biologic age constructed from biomarkers associated with health and function of different organ systems [37], or telomere length [38].

Our study population is an ideal population to examine environmental Cd exposure and age-associated methylation changes because these women have been environmentally exposed to high levels of Cd and were self-reported non-smokers. Smoking may confound many analyses of environmental exposure to Cd [39]. Urine is also a good biomarker of prolonged Cd exposure as it captures between 10 and 30 years of exposure [40]. Although this pilot study is limited by its sample size and hence power, a concern our study addresses is that there appears to be some population-level heterogeneity in age-associated CpG sites, and the environment may shape aging in a population-specific manner, even though the subjects lived in adjacent villages in northern Thailand. Age-associated epigenetic patterns may be influenced by a combination of different genetic, dietary, lifestyle and environmental factors, and it will be beneficial to develop a biologic age predictor in this population and compare to Horvath and Hannum epigenetic age predictors.

This preliminary study suggests that Cd exposure is associated with age-associated methylation changes although the consequences of these changes are not clear. Biologic age biomarkers may be an important mediator to consider when examining the relationship between environmental Cd exposure and risk of age-related chronic diseases and mortality. The complex interaction among Cd exposure, aging, and methylation may promote a complex chronic disease phenotype that may have long-term consequences during the lifespan. Age-associated methylation changes and their potential modification by Cd suggest that adulthood is another critical window of vulnerability to environmental insults.

Figure 2. epigenetic age acceleration (Δage). Epigenetic age acceleration (Δage) is calculated as the difference between adjusted DNAm-age and chronologic age. Boxplots of Δage are presented for Hannum (A) and Horvath (C). Relationship between Cd (µg/l) and Δage are presented for Hannum (B) and Horvath (D). Blue and red denote LE and HE group, respectively.
Horvath

cg10045881 1 CHI3L2 5’UTR Island 16.7% (2.9%) 15.2% (3.3%) –2.18% 4.31E-02 –0.007% 7.43E-02

cg14692377 17 SLC6A4 5’UTR Island 16.7% (2.9%) 15.2% (3.3%) –2.18% 4.31E-02 –0.007% 7.43E-02

cg02650266 4 Island 11.0% (3.4%) 10.3% (3.7%) –2.17% 2.72E-02 –0.007% 4.33E-02

cg02654291 4 LGI2 TSS200 South Shore 6.6% (4.0%) 5.1% (1.7%) –2.41% 4.64E-02 –0.007% 1.70E-01

cg04562589 4 AFF1 TSS1500 North Shore 2.9% (0.3%) 2.8% (0.4%) –0.24% 7.72E-02 –0.001% 1.79E-02

cg14163776 3 ACAP2 TSS500 South Shore 20.9% (4.0%) 20.5% (3.2%) –0.4% 2.55E-02 –0.007% 2.90E-02

cg12830694 18 PPP1R14A TSS500 South Shore 92.6% (1.2%) 92.3% (1.3%) –0.85% 5.69E-02 –0.004% 1.11E-02

cg19478743 17 ZMYND15 TSS1500 Island 6.2% (1.9%) 5.4% (1.0%) –1.65% 8.16E-03 0.002% 1.11E-03

cg02580560 17 KRT33B TSS500 South Shore 7.0% (1.4%) 7.6% (1.5%) 1.38% 1.33E-02 0.004% 2.33E-02

cg09915590 18 TNFRSF13B Body Island 2.5% (0.8%) 2.9% (0.4%) 0.37% 4.67E-02 –0.002% 9.59E-02

cg19695271 19 PDE4C 5’UTR North Shore 45.6% (3.9%) 49.2% (5.4%) 3.52% 3.39E-02 0.009% 1.06E-01

cg13557227 17 KRT20 TSS200 Open Sea 80.5% (3.6%) 79.5% (4.0%) –2.30% 5.30E-02 –0.009% 2.09E-02

cg22432269 15 CYFIP1 5’UTR Island 2.8% (0.3%) 2.9% (0.4%) 0.03% 4.27E-02 –0.007% 1.20E-02

cg18239431 8 EBF2 Body North Shore 16.9% (4.7%) 14.7% (3.6%) –2.49% 2.96E-02 –0.006% 1.75E-01

Horvath

cg19478743 17 ZMYND15 TSS1500 Island 6.2% (1.9%) 5.4% (1.0%) –1.65% 8.16E-03 0.002% 1.11E-03

cg19695271 19 PDE4C 5’UTR North Shore 45.6% (3.9%) 49.2% (5.4%) 3.52% 3.39E-02 0.009% 1.06E-01

cg13557227 17 KRT20 TSS200 Open Sea 80.5% (3.6%) 79.5% (4.0%) –2.30% 5.30E-02 –0.009% 2.09E-02

Table 2. results of age-associated methylation by Cd exposure group

Chr	Gene	Location	Relation to Cpg Island	Mean (SD) %	Mean (SD) %	Change in methylation by exposure group	P-value	Change in methylation per percent change in Cd
6				low	high	P		
20						Change in methylation by exposure group		
6						Change in methylation per percent change in Cd		

Methods

Study Population

Forty non-smoking women between ages 40 and 80 years were selected from a Cd-exposed cohort from Mae Sot, Thailand. These women participated in a follow-up health impact survey in 2012 and provided whole blood and urine at the time of the survey [41]. This Cd-exposed cohort has been previously described in [20], and all covariates included in the analyses were obtained from the health impact survey and biomarkers of renal functions were previously measured [42]. We selected...
non-smoking women from the population analyzed by Virani et al. [18]. Based on their urinary Cd adjusted by specific gravity, we identified 20 women with HE from the highest quartile, and twenty women with LE from the lowest quartile. Women in the LE group had Cd exposure <2 μg/l, which corresponds to urinary Cd concentrations in humans not excessively exposed to Cd [43]. The women in each group were matched by age within 5 years. Study approval for this study was obtained from the research and ethics committee from the Faculty of Medicine, Chiang Mai University (Approval No. 004/2012).

Cd Exposure Assessment
Twenty-five milliliters of morning urine were collected in Cd-free polyethylene containers. Specific gravity (SG) was measured for each sample using a refractometer (PALS-10S), shortly after collection. The median specific gravity in the study population in 2012 was 1.015, and we used the following adjustment, unadjusted Cd (μg/l) * [(1.015–1)/(SG-1)], to account for urine density at time of collection [44]. After transportation to the University of Michigan on dry ice, samples were stored at –20°C until analysis. Urinary Cd was measured at the Michigan Department of Community Health. The samples were diluted 1:10 with a digestion solution of 2.0% nitric acid, 0.05% Triton X, and internal standards. Cd concentrations were measured using an inductively coupled plasma mass spectrometer. The analytical accuracy using Cd urinary standard reference material (QMEQS08U, Institut National de Santé Publique du Québec) was 101.1% (n = 8), and all samples were above the detection limit of 0.15 μg/l.

DNA Extraction and Bisulfite Conversion
Five milliliters of fasting venous whole blood was collected in EDTA-coated tubes. After transportation to the University of Michigan on dry ice, samples were stored at –80°C until DNA extraction. Genomic DNA was extracted from 300 μL of whole blood using QiaAMP DNA Mini Kit (Qiagen). Extracted DNA concentrations and quality were quantified using the Nanodrop spectrophotometer (Thermoscientific). We bisulfite converted 500ng of genomic DNA using EpiTect Bisulfite Kit (Qiagen) per manufacturer’s protocol.

DNA Methylation Measurement
DNA methylation was measured using the Illumina Infinium HumanMethylation450 BeadChip [45]. Human Illumina 450K Methylation arrays were processed by the University of Michigan Sequencing Core Facility according to manufacturer protocol. The proportion of methylation at each site is reported as the beta-value, which is computed as beta = methylated signal intensity/(methylated signal intensity + unmethylated signal intensity + a), where a is an adjustment constant.

Normalization Summary
We filtered 1977 probes with detection P-values above 0.01 and 3198 probes with bead counts <3 in two or more samples from the analysis. We restricted our analysis to probes corresponding to CpG sites located on autosomal chromosomes and removed 11270 probes on the sex chromosomes. No samples in our analysis performed poorly, as defined by having >5% of probes above the detection P-value. We performed background and dye-bias correction using the normal-exponential model [46] implemented in methylumi [47]. We also removed probes identified by Chen et al. [48], where the CpG site or single-base extension site corresponded to a SNP with a minor allele frequency ≥0.01, which removed 24720 probes, and 29233 cross-reactive probes. We then applied subset-quantile within array normalization [49]. ComBat was used to correct for plate and technical effects [50, 51]. The final number of probes included in our analysis was 419995, which covers 80% of the 450K Illumina array.

Age Prediction
For the age prediction analyses, we generated background corrected betas. To estimate predicted methylation age (DNAm-age), we applied two published methods from Hannum et al. [4] and Horvath [1]. Hannum et al. [4] found that a combination of 71 age-associated methylation markers predicted the age of
individuals ages 9–101, and additionally, identified individuals whose DNAm-age significantly deviated from their chronologic age. Horvath developed a predictive model for aging utilizing data from 51 tissues and cell types and identified a panel of 353 age-associated methylation markers that he proposed estimated the epigenetic clock and DNAm-age within an individual [1]. Horvath DNAm-age was computed using his online age calculator (https://dnamage.genetics.ucla.edu). Hannum DNAm-age was computed by extracting the effect for each age-related CpG site in the predictor and weighting our betas with each site. The sum of these weights yielded the Hannum DNAm-age. DNAm-ages were adjusted by array and estimated Houseman white blood cell composition using linear regression [1, 52], and the residuals from this model were added to the mean DNAm-age to yield an adjusted DNAm-age [9]. We calculated epigenetic age acceleration as the difference between adjusted DNAm-age and chronologic age (\(\Delta\)age).

Statistical Analysis
All statistical analyses were performed on the M-values from the beta-values using a logit2 transformation. We examined the unadjusted age associations by computing the Spearman correlation for each CpG site and adjusted using linear multivariate regression performed in limma. Based on review of epigenome-wide analysis literature, we selected covariates a priori and adjusted for BMI, urinary creatinine, as a marker of renal function, and estimated white blood cell proportions using the Houseman method [52]. Differences in methylation between Cd exposure groups and log-transformed Cd were analyzed using linear mixed models among the age-related sites in our study population, reported by Hannum et al. [4] and Horvath [1] using lmerTest. The relationship between DNAm-age and chronologic age were examined using Spearman correlations and linear models, and differences in \(\Delta\)age were examined using linear mixed models, described earlier. The FDR was computed using the Benjamini-Hochberg method. All analyses were implemented in R version 3.2.3.

Funding
Support for this study was provided by the University of Michigan School of Public Health Office of Global Public Health and the Center for Southeast Asian Studies.

Acknowledgements
We acknowledge support provided by University of Michigan Institutional Training Grants from the National Institute of Environmental Health Sciences (NIEMS) (T32 ES007062) (Kathryn Demanelis, Justin Colacino and Shama Virani) and the National Human Genome Research Institute (NHGRI) (T32 HG000040) (Kathryn Demanelis and Justin Colacino). We would like to acknowledge Mae Sot General Hospital for sample collection and the study participants for their participation in these studies.

Ethics Statement
IRB approval for this study was obtained from the research and ethics committee from the Faculty of Medicine, Chiang Mai University (Approval No. 004/2012).

Conflict of interest statement. None declared.

References
1. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013;14:R115.
2. Jones Mj, Goodman Sj, Kobor Ms. DNA methylation and healthy human aging. Aging Cell 2015;14:924–32.
3. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, Haile RW, Laird PW. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet 2012;131:1565–89.
4. Hannum G, Guinne J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzsche B, Bibikova M, Fan JB, Gao Y, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013;49:359–67.
5. Heyn H, Li N, Ferreira Hj, Moran S, Písano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA 2012;109:10522–7.
6. Horvath S, Zhang Y, Langfelder P, Kahn Rs, Boks Mp, van Eijk K, van den Berg Lh, Ophoff Ra. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 2012;13:R97.
7. Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 2014;23:1186–201.
8. Weidner Ci, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag Do, Jöckel Kh, Erbel R, Mühleisen Tw, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 2014;15:R24.
9. Marioni Re, Shah S, McRae Af, Chen Bh, Colicino E, Harris Se, Gibson J, Henders Ak, Redmond P, Cox Sr, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 2015;16:25.
10. Marioni Re, Shah S, McRae Af, Ritchie Sj, Muniz-Terrera G, Harris Se, et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol 2015;44:1388–96.
11. Maruzeni S, Nishijo M, Nakamura K, Morikawa Y, Sakurai M, Nakashima M, Kido T, Okamoto R, Nagawa K, Suwazono Y, Nakagawa H. Mortality and causes of deaths of inhabitants with renal dysfunction induced by cadmium exposure of the polluted Jinzu River basin, Toyama, Japan; a 26-year follow-up. Environ Health 2014;13:18.
12. Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, Shen T, Han X, Kontos Cd, Huang S. Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radic Biol Med 2011;50:624–32.
13. Mikhed Y, Gorlach A, Knaus Ug, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 2015;5:275–89.
14. Valinluck V, Sowers Lc. Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers. Cancer Res 2007;67:5583–6.
15. Benbrahim-Tallaa L, Waterland Ra, Dill Al, Webber Mm, Wraikes Mp. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 2007;115:1454–9.
16. Jiang G, Xu L, Song S, Zhu C, Wu Q, Wu L. Effects of long-term low-dose cadmium exposure on genomic DNA methylation
Cd exposure and age-associated DNA methylation changes

in human embryo lung fibroblast cells. Toxicology 2008;244:49–55.

17. Zhou ZH, Lei YX, Wang CX. Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium. Toxicol Sci 2012;125:412–7.

18. Virani S, Rentschler KM, Nishijo M, Ruangyuttikarn W, Swaddiwudhipong W, Basu N, Rozek LS. DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status. Chemosphere 2016;145:284–90.

19. Simmons RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S. Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 2005;27:501–11.

20. Teeyakasem W, Nishijo M, Honda R, Satarug S, Swaddiwudhipong W, Ruangyuttikarn W. Monitoring of cadmium toxicity in a Thai population with high-level environmental exposure. Toxicol Lett 2007;169:85–95.

21. Namnumkee K, Honda R, Nishijo M, Swaddiwudhipong W, Nakagawa H, Ruangyuttikarn W. Bone resorption acceleration and calcium reabsorption impairment in a Thai population with high cadmium exposure. Toxicol Mech Methods 2010;20:7–13.

22. Swaddiwudhipong W, Mahasakpan P, Limpatanachot P, Krintratun S. Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: A population study. Environ Res 2010;110:612–6.

23. Honda R, Swaddiwudhipong W, Nishijo M, Mahasakpan P, Teeyakasem W, Ruangyuttikarn W, Satarug S, Padungtod C, Nakagawa H. Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicol Lett 2010;198:26–32.

24. Aragnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, Di Blasio AM, Gentilini D, Vitale G, Collino S, et al. Methylation of ELOVL2 gene as a new epigenetic marker of aging. Cell 2012;11:1132–4.

25. McaRea AF, Powell JE, Henders AK, Bowdler I, Hemani G, Shah S, Painter JN, Martin NG, Visscher PM, Montgomery GW. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol 2014;15:R73.

26. Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X, Xu X, Thornton TA, Caruso D, Keet CA, et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun 2015;6:6304.

27. Sinclair Sh, Vegnasubramanian S, Dummer Js. Global DNA methylation changes and differential gene expression in Anaplasma phagocytophilum-infected human neutrophils. Clin Epigenetics 2015;7:77.

28. Gao X, Jia M, Zhang Y, Breitling L, Brenner H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenetics 2015;7:113.

29. Gao X, Zhang Y, Breitling L, Brenner H. Relationship of tobacco smoking and smoking-related DNA methylation with epigenetic age acceleration. Oncotarget 2016;7:46878–89.

30. Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K, et al. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study. Environ Health Perspect 2016;124:983–90.

31. Nwanaji-Enwere JC, Colicino E, Trevisi L, Krog I, Just AC, Shen J, Brennan K, Dereix A, Hou L, Vokonas P, et al. Long-term ambient particle exposures and blood DNA methylation age: findings from the VA normative aging study. Environ Epigenet 2016;2:dvw006.

32. Kippler M, Engstrom K, Mikar SJ, Bottai M, Ahmed S, Hossain MB, Raqib R, Volter M, Broberg K. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics 2013;8:494–503.

33. Mohanty AF, Farin FM, Bammler TK, MacDonald JW, Afsharnejad Z, Burcher TM, Siscovich DS, Williams MA, Enquebahrarie DA. Infant sex-specific placental cadmium and DNA methylation associations. Environ Res 2015;138:74–81.

34. Sanders AP, Smeester L, Rojas D, Debusseycher T, Wu MC, Wright FA, Zhou YH, Laine JE, Rager JE, Swamy GK, et al. Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 2014;9:212–21.

35. Hossain MB, Volter M, Concha G, Broberg K. Low-level environmental cadmium exposure is associated with DNA hypomethylation in Argentinian women. Environ Health Perspect 2012;120:879–84.

36. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Supthin GL, Zhenakova A, Schramm K, et al. The transcriptional landscape of age in human peripheral blood. Nat Commun 2015;6:8570.

37. Belkas D, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, Harrington H, Israel S, Levine ME, Schaefer JD, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci U S A 2015;112:E4104–10.

38. Zota AR, Needham BL, Blackburn EH, Lin J, Park SK, Rehkopf DH, Epel ES. Associations of cadmium and lead exposure with leukocyte telomere length: findings from the National Health and Nutrition Examination Survey, 1999-2002. Am J Epidemiol 2015;181:127–36.

39. Vacchi-Suzzi C, Kruse D, Harrington J, Levine K, Meliker Jr. Is urinary cadmium a biomarker of long-term exposure in humans? A review. Curr Environ Health Rep 2016;3:450.

40. Lauwersy R, Bernard Am, Roels Ha, Buchet Jp. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 1994;40:1391–4.

41. Ruangyuttikarn W, Panyamoon A, Namnumkee K, Honda R, Swaddiwudhipong W, Nishijo M. Use of the kidney injury molecule-1 as a biomarker for early detection of renal tubular dysfunction in a population chronically exposed to cadmium in the environment. Springerplus 2013;2:533.

42. Suwagandha D, Nishijo M, Swaddiwudhipong W, Honda R, Ohse M, Kuhara T, Nakagawa H, Ruangyuttikarn W. A biomarker found in cadmium exposed residents of Thailand by metabolome analysis. Int J Environ Res Public Health 2014;11:3661–77.

43. World Health Organization. International Programme on Chemical Safety: Environmental Health Criteria 134 Cadmium. Geneva: Wold Health Organization, 1992.

44. Suwazono Y, Akesson A, Alfen T, Jarup L, Volter M. Creatinine versus specific gravity-adjusted urinary cadmium concentrations. Biomarkers 2005;10:117–26.

45. Bibikova M, Barnes B, Tzan C, Ho V, Klozle B, LE JM, Delano D, Zhang L, Schroth GP, Gunderson KL, et al. High density DNA
methylation array with single CpG site resolution. Genomics 2011;98:288–95.
46. Ritchie Me, Silver J, Oshlack A, Holmes M, Diysagama D, Holloway A, Smyth GK. A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007;23:2700–7.
47. Davis S, Du P, Bilke S, Triche Jr. T, Bootwalla M. methylumi: Handle Illumina methylation data. R package version 2016;2.20.0.
48. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, Gallinger S, Hudson TJ, Weksberg R. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 2013;8:203–9.
49. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol 2012;13:R44.
50. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8:118–27.
51. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, Beck S. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 2014;30:428–30.
52. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012;13:86.