Research progress on photodynamic detection of peritoneal metastases using 5–aminolevulinic acid (ALA)

Ji Zhonghe1 Liu Yang2, Yutaka Yonemura2, Li Yan1*

1. Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; 2. Peritoneal Surface Malignancy Center, Kishiwada Tokushukai Hospital, 4-27-4 Kamori-Cho, Kishiwada City, Osaka 596-8522, Japan; 3. NPO Organization to Support Peritoneal Surface Malignancy Treatment, 510 Fukushima-Cho, Shimogyou-Ku, Kyoto 600-8189, Japan

Abstract Peritoneal metastasis (PM) has long been regarded as the terminal stage or cancer spreading. Since the 1990s, an integrated treatment strategy combining cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) has been gradually developed by the surgical oncology community and has definitely improved the survival in selected patients with PM. In such comprehensive treatment strategy, completeness of cytoreduction (CCR) is the most important independent prognostic factor for survival benefit. The current CRS technique, however, is inadequate to identify the minute tumor nodules hidden at less accessible sites in the abdomen and pelvis. Thus PM still accounts for the most frequent form of cancer recurrence after CRS + HIPEC. There is an urgent need to develop sharper techniques to identify the minute PM nodules. Among the emerging technologies, photodynamic diagnosis (PDD) attracts the increasing attention for PM diagnosis. This review summarizes the application of 5-aminolevulinic acid (5–ALA)-based PDD for the diagnosis and treatment of PM.

Key words 5-aminolevulinic acid; photodynamic diagnosis; peritoneal surface malignancy; PEPT1; ABCG2; ferrochelatase

http://kns.cnki.net/kcms/detail/11.3662.R.20180606.1751.044.html
(peritoneal cancer index, PCI) and completeness of cytoreduction (CCR) are the most important independent survival predictors.

However, current surgical techniques are prone to overlook occult or microscopic deposits that may recur postoperatively even after a thorough CRS, with recurrence rates as high as 70%.

It is urgently needed to develop new methods to detect PM or micrometastases.

In recent years, ALA-PDD has been developed and utilized for the detection of gastrointestinal malignancies, ovarian cancer, and malignant mesothelioma.

The purpose of this review is to summarize the basic principle, basis, and clinical research status of ALA-PDD.

1 ALA-PDD

1.1 Protoporphyrin IX (PpIX)

ALA is the natural precursor of PpIX and heme. In the human body, ALA is synthesized from neighboring CoA and glycine under the catalysis of ALA synthase and transferred to the cytoplasm, where it is catalyzed by ALA dehydratase leading to protoporphyrinogen. In the presence of ferrochelatase, PpIX is converted to heme. ALA can be transported into cancer cells through the PEPT1 transporter, thus increasing PpIX synthesis and accumulation.

1.2 PpIX Selective Accumulation

Selective accumulation of PpIX in cancer cells and tissues is the theoretical basis of ALA-PDD. The mechanism of selective accumulation of PpIX in cancer cells includes enzyme-related and transport-related mechanisms.

1.2.1 Enzyme-Mediated Mechanism

Kaneko et al. observed that in glial tumors, the activity of ferrochelatase was lower than in normal brain tissues. After administering ALA, ALA-PDD and PpIX fluorescence were observed in the normal brain cells, whereas no fluorescence was observed in the tumor cells. Kaneko et al. also observed a similar phenomenon in bladder cancer.

1.2.2 Transport-Mediated Mechanism

The expression and metabolism of ALA transporters can promote selective accumulation of PpIX.

Fig. 1 Biolosynthesis pathway of protoporphyrin IX and heme

ALA: aminolevulinic acid; PpIX: protoporphyrin IX.
ABCG2 mRNA in the cytoplasm of tumor cells may be involved in the regulation of cell PpIX levels.

PEPT1, which is predominantly expressed on the surface of cancer cells, plays a critical role in the selective accumulation of PpIX in tumor cells.

In a study by Collin et al., the expression levels of PEPT1 and ABCG2 were measured in 20 gastric cancer cell lines and 13 primary gastric tumors. PEPT1 expression was found to be significantly correlated with the selective accumulation of PpIX in tumor cells.

In another study by Guyon et al., the expression levels of PEPT1 and ABCG2 were measured in 20 colorectal cancer cell lines and 13 primary colorectal tumors. PEPT1 expression was found to be significantly correlated with the selective accumulation of PpIX in tumor cells.

In a study by Onemura et al., the expression levels of PEPT1 and ABCG2 were measured in 20 head and neck squamous cell carcinoma cell lines and 13 primary head and neck squamous cell carcinoma tumors. PEPT1 expression was found to be significantly correlated with the selective accumulation of PpIX in tumor cells.

In a study by Kishi et al., the expression levels of PEPT1 and ABCG2 were measured in 20 breast cancer cell lines and 13 primary breast cancer tumors. PEPT1 expression was found to be significantly correlated with the selective accumulation of PpIX in tumor cells.

Author Animal Model Number of case Drug Administration Dose

Hornung [18] Fischer344 rat EOC PM 24 ALA IV 100 mg/kg
Cani [10] BD IX rat EOC PM 36 ALA IV 100 mg/kg
Chao [10] Fischer344 rat EOC PM 9 ALA IV 100 mg/kg
Ludwig [10] Fischer344 rat EOC PM 11 HAL IP 4 – 12 mmol/L
Collin [10] Fischer344 rat EOC PM 21 ALA/HAL IP 100 mg/kg
Guyon [10] Fischer344 rat EOC PM 42 HAL IP/PO IP: 100 mg/kg PO: 50 mg/kg
Gahlerer [10] WAG Rij rat CC PM 12 ALA IV/IV 440 – 550 mg/kg
Kishi [10] BALB/c nude mice CC PM 8 ALA IP 250 mg/kg

ALA: aminolevulinic acid; **PDD**: photodynamic diagnosis; **PM**: peritoneal metastasis; **EOC**: epithelial ovarian carcinoma; **CC**: colon cancer; **GC**: gastric cancer; **HAL**: hexaminolaevulinate; **IV**: intravenous; **IP**: intraperitoneal; **PO**: per os; **NR**: not reported.
Hornung 等报道，24 只 Fischer 344 小鼠经腹腔注射卵巢癌细胞制作 PM 模型，接种 4 周后，静脉给予ALA 100 mg /kg，之后1、3、6、9...0%)标本的转移结节检出率。此外，在 60% 的结肠癌 PM 中，可检测到转移结节。在胃癌 PM 和阑尾黏液肿瘤中，PDD 检测率较低，分别为25.7%和16.4%，详见表3。

2 ALA-PDD 用于肿瘤检测

3 ALA-PDD 用于肿瘤检测

3.1 ALA PDD

采用不同 ALA 的 PDD 的 PM 试验结果

组别	ALA	剂量	给药方式	显像时间	检出量	检出率
1	ALA	100 mg /kg	静脉	1 h	62.5%	
2	ALA	50 mg /kg	口服	2 h	37.5%	
3	ALA	25 mg /kg	口服	3 h	25%	

3.2 ALA PDD

采用不同 ALA 的 PDD 的 PM 试验结果

组别	ALA	剂量	给药方式	显像时间	检出量	检出率
1	ALA	20 mg /kg	静脉	1 h	62.5%	
2	ALA	10 mg /kg	口服	2 h	37.5%	
3	ALA	5 mg /kg	口服	3 h	25%	

ALA-PDD 用于肿瘤检测的临床应用

ALA-PDD 用于肿瘤检测的临床应用

ALA-PDD 用于肿瘤检测的临床应用

ALA-PDD 用于肿瘤检测的临床应用

ALA-PDD 用于肿瘤检测的临床应用

ALA-PDD 用于肿瘤检测的临床应用
Table 2: ALA-PDD for detecting PM in clinical trials

Author	Disease	Number of case	Administration	Dose (/mg kg⁻¹)	Incubation time/h	Sensitivity/\%	False positive/\%	Specificity/\%
Lonin[14]	EOC	29	IP	30	5	92	2	NR
Liu[16]	EOC	20	PO	20	2	95	0	100
Yonemura[16]	PM	138	PO	20	2	46	0	100
Murayama[10]	GC	13	PO	10 - 15	3	100	0	100
Hillemanns[16]	EOC	26	PO	10	9 - 16	75	0	100

ALA: aminolevulinic acid; PDD: photodynamic diagnosis; EOC: epithelial ovarian carcinoma; PM: peritoneal metastasis; GC: gastric cancer; IP: intraperitoneal; PO: per os; NR: not reported.

Table 3: Positive rate of ALA-PDD for detecting PM of different origins

Primary site	Number of case	Positive rate/\% (\%)
Ovarian cancer	26	22 (84.6)
Mesothelioma	8	5 (62.5)
Pancreas cancer	4	3 (75.0)
Colorectal cancer	29	27 (96.5)
Cholangiocarcinoma	3	2 (66.7)
Small intestine cancer	8	4 (50.0)
Gastric cancer	10	9 (90.0)
Appendiceal mucinous carcinoma	55	9 (16.4)
Total	143	81 (56.6)

PM: peritoneal metastasis; ALA: aminolevulinic acid; PDD: photodynamic diagnosis.

Table 4: PpIX contents in PM of different origins

Primary sites	Number of case	PpIX content (/nm mg⁻¹)
Ovarian cancer	10	0.018 ± 0.007
Mesothelioma	5	0.015 ± 0.010
Pancreas cancer	5	0.010 ± 0.010
Colorectal cancer	29	0.010 ± 0.000
Gastric cancer	10	0.010 ± 0.001
Appendiceal mucinous carcinoma	15	0.002 ± 0.001

PM: peritoneal metastasis; PpIX: protoporphyrin IX.

5 ALA-PDD PM

Kamp[12] 84 ALA 44 PDD 56 ALA-PDD 13 PM 115 ALA-PDD 84 ALA 44 PDD 56 ALA-PDD 13 PM 115 ALA-PDD

4 ALA PDD

ALA ALA ALA ALA ALA ALA ALA.
6

ALA-PDD PM PEPT1 ABCG2 PpIX ALA-PDD PM PEPT1 ABCG2

ALA-PDD PM PEPT1 ABCG2 PpIX ALA-PDD PM PEPT1 ABCG2

ALA-PDD PM PEPT1 ABCG2 PpIX ALA-PDD PM PEPT1 ABCG2

7

Li Y Zhou Y F Liang H et al. Chinese expert consensus on cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal malignancies. World J Gastroenterol 2016 22(30): 6906-6916.

Yonemura Y Endo Y Canbay E Li Y et al. A comprehensive treatment for peritoneal metastases from gastric cancer with curative intent. Eur J Surg Oncol 2016 42(8): 1123-1131.

Yan T D Black D Savady R et al. Systematic review on the efficacy of cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal carcinoma. J Clin Oncol 2006 24(24): 4011-4019.

Liu Y Endo Y Fujita T et al. Cytoreductive surgery under aminolevulinic acid-mediated photodynamic diagnosis plus hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from ovarian cancer and primary peritoneal carcinoma: results of a phase I trial. Ann Surg Oncol 2014 21(13): 4256-4262.

Yonemura Y Endo Y Canbay E et al. Photodynamic detection of peritoneal metastases using 5-aminolevulinic acid (ALA). Cancers (Basel) 2017 9(3): 23.

Kaneko S Kaneko S. Fluorescence-guided resection of malignant glioma with 5-ALA. Int J Biomed Imaging 2016 2016: 6135293.

Hagiya Y Fukuharaz H Matsumoto K et al. Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer. J Photooncology Ther 2013 10(3): 288-295.

Yonemura Y. Selection of patients by membrane transporter expressions for aminolevulinic acid (ALA)-guided photodynamic detection of peritoneal metastases. Int J Sci 2015 4(9): 66-77.

Hagiya Y Endo Y Yonemura Y et al. Pivotal roles of peptide transporter PEPT1 and ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro. J Photooncology Ther 2012 9(3): 204-214.

Toyoda Y Hagiya Y Adachi T et al. Human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiota 2008 38(7-8): 833-862.

Rodriguez L Ballo A Di Venosa G et al. Study of the mechanisms of uptake of 5-aminolevulinic acid derivatives by PEPT1 and PEPT2 transporters as a tool to improve photodynamic therapy of tumours. Int J Biochem Cell Biol 2006 38(9): 1530-1539.

Yonemura Y Canbay E Ishibashi H et al. 5-Aminolevulinic acid fluorescence in detection of peritoneal metastases. Asian Pac J Cancer Prev 2016 17(4): 2271-2275.

Hornung R Major A L McHale M et al. In vivo detection of metastatic ovarian cancer by means of 5-aminolevulinic acid-induced fluorescence in a rat model. J Am Assoc Gynecol Laparosc 1998 5(2): 141-148.

Canis M Botchorishvili R Berreni N et al. 5-aminolevulinic acid-induced (ALA) fluorescence for the laparoscopic diagnosis of peritoneal metastasis. AST An experi-
mental study [J]. Surg Endosc 2001; 15 (10): 1184-1186.

[15] Chan J K, Monk B J, Cuccia D et al. Laparoscopic photodynamic diagnosis of ovarian cancer using 5-aminolevulinic acid in a rat model [J]. Gynecol Oncol 2002; 87 (1): 64-70.

[16] Lüdicke F, Gabrecht T, Lange N et al. Photodynamic diagnosis of ovarian cancer using hexamino-porphyrin: a preclinical study [J]. Br J Cancer 2003; 88 (11): 1780-1784.

[17] Collinet P, Sabban F, Cosson M et al. Laparoscopic photodynamic diagnosis of ovarian cancer peritoneal micro metastases: an experimental study [J]. Photochem Photobiol 2007; 83 (3): 647-651.

[18] Guyon L, Farine M, Lesage J C et al. Photodynamic therapy of ovarian cancer peritoneal metastasis with hexamino-porphyrin: a toxicity study [J]. Photodiagnosis Photodyn Ther 2014; 11 (3): 265-274.

[19] Gahlen J, Pietzschmann M, Pross R L et al. Systemic vs local administration of delta-aminolevulinic acid for laparoscopic fluorescence diagnosis of malignant intra-abdominal tumors: Experimental study [J]. Surg Endosc 2001; 15 (2): 196-199.

[20] Kondo Y, Murayama Y, Konishi H et al. Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid [J]. Int J Onkol 2014; 45 (1): 41-46.

[21] Kishi K, Fujiwara Y, Yano M et al. Staging laparoscopy using ALA-mediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer [J]. J Surg Oncol 2012; 106 (3): 294-298.

[22] Lamon J, With T K, Redeker A G. The Hoesch test: bedside screening for urinary porphobilinogen in patients with suspected porphyria [J]. Clin Chem 1974; 20 (11): 1438-1440.

[23] Loning M, Diddens H, Kupker W et al. Laparoscopic fluorescence detection of ovarian carcinoma metastases using 5-aminolevulinic acid-induced protoporphyrin IX [J]. Cancer 2004; 100 (8): 1650-1656.

[24] Koizumi N, Harada Y, Minamikawa T et al. Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid [J]. World J Gastroenterol 2016; 22 (3): 1289-1296.

[25] Murayama Y, Ichikawa D, Koizumi N et al. Staging fluorescence laparoscopy for gastric cancer by using 5-aminolevulinic acid [J]. Anticancer Res 2012; 32 (12): 5421-5427.

[26] Hillemanns P, Wimberger P, Reif J et al. Photodynamic diagnosis with 5-aminolevulinic acid for intraoperative detection of peritoneal metastases of ovarian cancer: A feasibility and dose finding study [J]. Lasers Surg Med 2017; 49 (2): 169-176.

[27] Kamp M, Fischer I, Buhner J et al. 5-ALA fluorescence of cerebral metastases and its impact for the local-in-brain progression [J]. Oncotarget 2016; 7 (41): 66776-66789.

[28] Guyotat J, Pallud J, Armoiry V et al. 5-aminolevulinic acid-protoporphyrin IX fluorescence-guided surgery of high-grade gliomas: a systematic review [J]. Adv Tech Stand Neurosurg 2016; 43: 61-90.

[29] Rink M, Babjuk M, Catto J W et al. Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: a critical review of the current literature [J]. Eur Urol 2013; 64 (4): 624-638.

[30] Ushimaru Y, Fujiwara Y, Kishi K et al. Prognostic significance of basing treatment strategy on the results of photodynamic diagnosis on advanced gastric cancer [J]. Ann Surg Oncol 2017; 24 (4): 983-989.

(© © ©: 2017-05-15)