Formation pathways of polycyclic aromatic hydrocarbons (PAHs) in butane or butadiene flames†

Tingting Zhang, a Guizhi Mu, a Shourong Zhang b and Jialin Hou a, *a

The reaction pathways from phenyl radicals to phenanthrene (A3) and pyrene (A4) via C2H3 and C6H5 additions were investigated using the G3(MP2, CC) method. Rate constants of elementary reactions were calculated. The influence of additions, H-abstraction ways and reactive sites on the reaction rates were considered. These polycyclic aromatic hydrocarbon (PAH) formation pathways were used to improve the combustion chemistry model for C4 fuels, and the results from the improved model and the original model were compared with experimental data. H atoms are important for PAH formation owing to their influential roles in the production of aromatic radicals and stable aromatic structures. C2H3 and C6H5 addition reactions can occur at low temperature, and need less energy than C2H4 addition. The PAH formation pathways determined from G3 calculations, which were used to improve the model, were effective in promoting PAH formations in this model. Comparison of PAH formation in butane and butadiene flames showed both the C2H3 and C6H5 addition pathways included in this work can improve the formation of PAHs in butadiene and butane flames. C4H4 addition pathways in a butane flame were better for PAH formation than C2H3 addition.

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs), which mainly come from the incomplete combustion of fuel, are extremely harmful to humans and the environment. So far, the most commonly-used addition for PAH growth is C2H3, and the most popular PAH formation mechanism is H-abstraction-C2H2-addition (HACA).1,5 However, the HACA mechanism underestimates the concentrations of PAHs and soot compared with the experimental results.6–9 This underestimation may be explained by two main reasons. Firstly, there are many non-acetylene organic compounds (e.g. CH4, C2H6, C3H8, C4H6, C4H8, C5H6, C6H6, and C6H5) that also contribute to PAH growth in various flame configurations.6–13 Secondly, many PAH formation reactions in the HACA mechanism are reversible.14 Hence, more additions in PAH formation should be considered to perfect the PAH formation mechanism. Many non-acetylene additions have been proved experimentally to be important for PAHs formation. C4H4 addition can effectively lead to PAHs formation.15 C2H3 addition is critical for the formation of PAHs and soot.16 The hydrogen abstraction/vinyl radical addition (HAVA) mechanism may be the best complement to the HACA mechanism, and the phenyl addition/cyclization (PAC) mechanism can promote the growth of molecular mass and ring number of PAHs without the limit of reactive sites.16,17 Hence, the additions of C2H3, C4H4 and C6H5 contribute greatly to PAHs formation, and more research on PAHs formation from C2H3, C4H4 and C6H5 additions is needed.

Butane and butadiene, two light hydrocarbons, are both beneficial to the environment and can relieve energy shortage. In this research, PAHs formation routes via C2H3, C4H4 and C6H5 additions within all reaction rates of elementary reactions in the modified Arrhenius equation were studied and coupled to a chemical kinetic model for butadiene and butanol. The effects of additions, reaction types and reaction sites were considered during PAHs formation.

2. Methods

All molecular structures involved in the reactions under study were optimized by using the hybrid B3LYP functional with the 6-311+G(d,p) basis set.16–20 Vibrational frequency was calculated at the same level to identify the optimized structures as local minimum or first-point saddle points and to provide their zero-point vibrational energy (ZPE). Intrinsic reaction coordinate calculations were implemented to ensure that the transition states connect to relevant reactants and products correctly. The final single-point energies of all species were determined using
the G3(MP2, CC) method,21,22 which is expected to generate relative energies of various species within the accuracy of 1–2 kcal mol\(^{-1}\) (ref. 23) and is extensively used to study PAHs growth mechanisms.21,24–28 The intermediate species and transition structures found in this study were all closed shell singlets or open shell doubles. Molecular properties of chemical species (CS) and transition states (TS) are shown in ESI.† The G3(MP2, CC) energies are calculated as follows:

\[
E_{\text{G3(MP2, CC)}} = E_{\text{CCSD/6-311++(d,p)}} + \Delta E_{\text{MP2}} + \Delta E_{\text{SO}} + \Delta E_{\text{HLC}} + E_{\text{ZPE}}
\]

where \(\Delta E_{\text{MP2}} = E_{\text{MP2/6-311G++(d,p)}} - E_{\text{MP2/6-311G+(d,p)}}\) is the basis set correction; \(\Delta E_{\text{SO}}\) is the spin–orbit correction.

![Fig. 1](image1.png)

Fig. 1 Phenanthrene formation pathways from phenyl radical via C\(_6\)H\(_5\) and C\(_2\)H\(_3\) additions.

![Fig. 2](image2.png)

Fig. 2 Phenanthrene formation pathways from naphthyl radical via C\(_4\)H\(_4\) addition.

![Fig. 3](image3.png)

Fig. 3 Pyrene formation pathways from phenanthryl radical via C\(_2\)H\(_3\) addition.
correction, included for atomic species only. For molecules, higher level correction (HLC) is $\Delta E_{\text{HLC}} = A n_a - B (n_a - n_b)$ with $A = 9.279 \text{ mHartrees}$ and $B = 4.471 \text{ mHartrees}$, and for atoms, is $\Delta E_{\text{HLC}} = C n_a - D (n_a - n_b)$ with $C = 9.345 \text{ mHartrees}$ and $D = 2.021 \text{ mHartrees}$, where n_a and n_b are the numbers of a and b valence electrons, respectively. All calculations were performed on Gaussian 09.

Based on the calculated potential energy surface (PES) and molecular characteristics, Rice–Ramsperger–Kassel–Marcus (RRKM) and transitional state theory (TST) were used to determine reaction rates by ChemRate program.

Noticeably, none of the rate constants were arbitrarily changed or intuitively estimated to match the computed and the experimental results. The calculated PAHs formation pathways were used to update Hansen’s mechanism which consists of 216 species connected via 1028 reactions. Then the updated mechanism was used to simulate the premixed 1,3-butadiene or butane flame and to discuss the roles of our pathways in PAHs formation under 1,3-butadiene or butane flame.

Table 1 Barrier heights and reaction energies for steps involved in phenanthrene formation pathways from phenyl radical via C_6H_5 and C_2H_3 additions computed at the G3(MP2, CC) level

No.	Reaction	Barriers/ kcal mol$^{-1}$	Reaction heats/ kcal mol$^{-1}$
Carbon addition			
R1	$\text{2CS}_1 = \text{CS}_2$	14.3	-119.7
R3	$\text{CS}_3 + \text{C}_2\text{H}_3 = \text{CS}_4$	3.8	-116.2
Hydrogen abstraction			
Ra	$\text{CS}_2 + \text{O} = \text{CS}_3 + \text{OH}$	292.3	16.7
Rb	$\text{CS}_2 + \text{OH} = \text{CS}_3 + H_2\text{O}$	436.5	0.5
Rc	$\text{CS}_2 + \text{C}_2\text{H}_3 = \text{CS}_3 + \text{C}_2\text{H}_4$	18.1	7.4
Rd	$\text{CS}_2 + \text{C}_2\text{H}_4 = \text{CS}_3 + \text{C}_2\text{H}_6$	14.4	3.0
R2	$\text{CS}_2 + H = \text{CS}_3 + H_2$	22.4	13.1
R4	$\text{CS}_4 + H = \text{CS}_5 + H_2$	23.6	13.0
Ring formation			
R5	$\text{CS}_3 = \text{CS}_6$	7.3	-39.7
Hydrogen loss and (or) disproportionation			
R6	$\text{CS}_6 = \text{CS}_7 + H$	27.9	16.5

Fig. 4 Pyrene formation pathways via C_4H_4 addition onto different sites of 1-ethynylnaphthyl radical.
3. Results and discussion

3.1 PAHs formation pathways

Four PAHs formation pathways were studied (Fig. 1−4): (i) formation of phenanthrene via once addition of phenyl radical \((\text{C}_6\text{H}_5)\) and twice additions of \(\text{C}_2\text{H}_3\) onto phenyl radical; (ii) formation of phenanthrene via once addition of \(\text{C}_4\text{H}_4\) onto naphthyl radical; (iii) formation of pyrene via once addition of \(\text{C}_2\text{H}_3\) onto phenanthryl radical; (iv) formation of pyrene via once addition of \(\text{C}_4\text{H}_4\) onto 1-ethynlnaphthyl radical. Comparisons

Fig. 5 H-abstractions via the assistance of \(\text{H}, \text{O}, \text{OH}, \text{C}_2\text{H}_3\) or \(\text{C}_6\text{H}_5\) radicals.

Fig. 6 \(\text{C}_2\text{H}_2, \text{C}_6\text{H}_5\) and \(\text{C}_2\text{H}_3\) addition reactions.
between H abstraction reactions of biphenyl via H atom, O atom or OH radical at same reactive site were studied. The effects of reactive sites to hydrogen abstraction, carbon addition, ring closure, and hydrogen atom loss reactions were investigated. The barrier heights and reaction energies for all steps are collected in Table S1.

Meanwhile, to understand the thermodynamics of the studied reactions better, the enthalpies and Gibbs free energies are illustrated in Tables S2 and S3.† The molecular geometries, vibrational frequencies, moments of inertia, and rotational constants of the chemical species (CS) and transition states (TS) involved in all routes are shown in Table S5.†

3.1.1 Phenanthrene formation pathway via C₂H₃ additions

As shown in Fig. 1, phenanthrene was formed through H-abstractions, C-additions and ring formation reactions, and the barrier heights and reaction energies were determined in Table 1. The initial association of two C₆H₅ additions results in the formation of CS₂, biphenyl. This thermodynamically and kinetically favorable process is highly exothermic (119.7 kcal mol⁻¹) with a barrier of 14.3 kcal mol⁻¹, leading to a quick increase of ring number. In Fig. 6, C₃H₃, and especially C₆H₅ and C₂H₃ addition reactions are all exothermic. Besides, C₂H₃ addition reaction occurs more easily than C₃H₃ or C₆H₅ addition reaction.

H-abstractions may produce singlet PAH intermediates such as CS₃1 and CS₇, or radicals such as CS₃ and CS₅. Most of the former H-abstractions are exothermic, and most of the later H-abstractions are endothermic, providing precondition for the possible carbon additions or cyclization reactions. To explore the easier formation of larger PAHs molecules, we calculated and compared five radical site formation processes via H, O, OH, C₂H₃ and C₆H₅ respectively to provide a prime radical formation process. The barriers and reaction heats were shown in Table 1 and all H-abstraction reactions with assistance of H, O, OH, C₂H₃ and C₆H₅ in this pathway together with H-abstraction reaction R29 from literature were compared in Fig. 5. Comparison of R2, Ra, Rb, Rc and Rd showed the barriers of the H-abstraction reactions via O and OH radicals were much higher than those via H, C₂H₃ and C₆H₅ radicals. This means that, depending on the concentrations of H, C₂H₃ and C₆H₅ radicals in combustion environments, H, C₂H₃ and C₆H₅ radicals can much more easily initiate H-abstractions than O and OH radicals.

Table 2 Barrier heights and reaction energies for steps involved in pyrene formation pathway from phenanthrene via C₂H₃ addition computed at the G3(MP2, CC) level

No.	Reaction	Barrier/ kcal mol⁻¹	Reaction heat/ kcal mol⁻¹
R13	CS₁₃ + C₂H₃ = CS₁₄	5.4	-113.0
R14	CS₁₄ + H = CS₁₅ + H₂	31.0	11.9
R15	CS₁₅ = CS₁₆	5.3	-53.2
R16	CS₁₆ = CS₁₇ + H	38.2	25.0

© 2021 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2021, 11, 5629-5642 | 5633

Paper RSC Advances Open Access Article. Published on 02 February 2021. Downloaded on 5/10/2022 9:51:54 PM. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Little difference between H-abstractions via TS2 and TS4 was found in barriers or reaction heats, which is mainly because of the same reaction types and reactive sites between armchair and free edges. CS6 was formed via a cyclization reaction after H-abstraction, and formed CS7, phenanthrene, by emitting a H atom.

3.1.2 Phenanthrene formation pathway via C4H4 addition. This pathway describes the phenanthrene formation process initiated by C4H4 addition onto naphthyl radical. The energies of the intermediate species and the transition states are relative to the total energy of CS8 and C4H4 (Fig. 7). The addition of C4H4 leads to CS9 with a barrier of 3.4 kcal mol⁻¹, which is lower than that of C2H2 addition, RI. After that, the reaction CS9 → CS10 is internal hydrogen abstraction via migration of a hydrogen atom from the aromatic ring to the second carbon of the C4 fragment, producing a butadiene chain with a barrier of 39.1 kcal mol⁻¹. Then to prepare for the cyclization, CS10 undergoes cis-trans isomerization, forming CS11 with a barrier of 38.6 kcal mol⁻¹. Due to its structural characteristics, the CS11 adduct can be cyclized, producing the phenanthrene precursor CS12, which yields phenanthrene after hydrogen atom elimination. The barrier of the cyclization step CS11 → CS12 is only 0.4 kcal mol⁻¹, which can be ignored easily. Also, the reaction is highly exothermic by 65.1 kcal mol⁻¹. The hydrogen atom elimination step CS12 → CS7 + H overcomes a barrier of 40.5 kcal mol⁻¹, and is the rate determining step of this pathway.

3.1.3 Pyrene formation pathway via C2H3 additions. The reaction process from phenanthrene to pyrene via C2H3 addition and the energy of this process were shown in Fig. 3 and Table 2. The C2H3 addition reaction is followed by activation of
Fig. 11 Pyrene formation pathways via C_4H_4 addition onto CS18.

Fig. 12 Pyrene formation pathway via C_4H_4 addition onto CS24.
Table 3 Elementary reaction rate constants in the modified Arrhenius equation form of $A^* T^n \exp(-E/RT)$ with the units of cm, s evaluated at 300–2500 K

No.	Reaction	A	n	E
R1	2CS + CS2	5.00×10^{-14}	-0.3	8.2
R2	CS2 + H → CS3 + H$_2$	4.00×10^{-16}	1.8	23
R3	CS3 + C$_2$H$_4$ → CS4	5.00×10^{-11}	-1.1	42.4
R4	CS4 + H → CS5 + H$_2$	4.00×10^{-16}	1.8	23.8
R5	CS5 → CS6	4.00×10^{-12}	0.4	10.3
R6	CS6 → CS7 + H	3.20×10^{-10}	1	42.3

Phenanthrene formation pathway via C$_2$H$_4$ addition

R7	CS8 + C$_2$H$_4$ → CS9	3.40×10^{-9}	-9.6	89.9
R8	CS9 → CS10	8.40×10^{-12}	-15.2	57.2
R9	CS10 → CS11	3.90×10^{-10}	-5.9	28.9
R10	CS11 → CS12	6.10×10^{-12}	0.1	1.5
R11	CS12 → CS7 + H	2.00×10^{-13}	0.8	29.5

Pyrene formation pathway via C$_2$H$_4$ addition

R12	CS7 + H → CS13 + H$_2$	—	—	—
R13	CS13 + C$_2$H$_4$ → CS14	5.90×10^{-10}	-1.4	44.6
R14	CS14 + H → CS15 + H$_2$	2.50×10^{-16}	1.8	27.5
R15	CS15 → CS16	2.50×10^{-12}	0.1	5.8
R16	CS16 → CS17 + H	5.00×10^{-10}	1.0	43.6

Pyrene formation pathways via C$_2$H$_4$ addition

R17	CS18 + C$_2$H$_4$ → CS19	4.30×10^{-9}	-10.4	90.4
R18	CS19 → CS20	4.00×10^{-14}	0.4	42.2
R19	CS20 → CS21	5.80×10^{-14}	0.1	8.0
R20	CS21 → CS22	8.70×10^{-10}	0.5	38.9
R21	CS22 → CS23	1.60×10^{-12}	0.1	7.9
R22	CS23 → CS7 + H	1.80×10^{-11}	0.8	29.5
R23	CS24 + C$_2$H$_4$ → CS25	8.60×10^{-9}	-13.9	94.7
R24	CS25 → CS26	1.20×10^{-12}	0.5	36.6
R25	CS26 → CS17	—	—	—
R26	CS27 → CS28	3.30×10^{-12}	0.4	44.1
R27	CS28 → CS29	3.10×10^{-12}	0.6	2.3
R28	CS29 → CS17 + H	8.90×10^{-9}	0.6	47.5

Furthermore, both reaction CS15 → CS16 and reaction CS5 → CS6 are ring formation processes that occur at the edge of vinyl group and the carbon of aromatic ring between “armchair” and “free edge” (Fig. 1, 3 and 10). These two reactions are both exothermic with low barriers.

3.1.4 Pyrene formation pathways via C$_2$H$_4$ addition onto CS18

Fig. 11 provides the energy diagram for pyrene formation pathway initiated from the C$_2$H$_4$ addition onto CS18. The energies of the intermediate species and the transition states are relative to the total energy of CS18 and C$_4$H$_4$. The C$_4$H$_4$ addition onto the radical site of CS18 to form CS19 requires a barrier of 0.4 kcal mol$^{-1}$, which is 3.0 kcal mol$^{-1}$ lower than the C$_4$H$_4$ addition step above, CS8 + C$_4$H$_4$ → CS9. This may be because of the existence of the acetylene group in CS18. After that, the reaction CS19 → CS20 is internal hydrogen abstraction via migration of a hydrogen atom, producing a butadiene chain with a barrier of 39.0 kcal mol$^{-1}$. The energetics of this reaction is rather similar to that observed for another internal hydrogen migration step CS9 → CS10. The barrier heights range within 39.0–39.1 kcal mol$^{-1}$, and reaction exothermicities are about 11.6–14.3 kcal mol$^{-1}$. After that, cyclization occurs at the end of the butadiene group and the radical site of aromatic ring, CS20 → CS21, which requires an activation energy of 7.9 kcal mol$^{-1}$, forming a six-membered ring. Later, another cyclization process takes place at the vinyl radical group and the newly-formed ring, forming the fourth ring structure, CS23, with a barrier of 7.1 kcal mol$^{-1}$. Finally, adduct CS23 eliminates an “extra” hydrogen atom to produce CS17, pyrene.

Fig. 12 provides the energy diagram for pyrene formation pathway initiated from the C$_4$H$_4$ addition onto CS24. The energies of the intermediate species and the transition states are relative to the total energy of CS18 and C$_4$H$_4$. The C$_4$H$_4$ addition onto the radical site of CS24 to produce CS25 requires a barrier of 4.2 kcal mol$^{-1}$, which is higher than C$_4$H$_4$ addition steps via TS7 and TS17. This may be because the reactive site for C$_4$H$_4$ addition is near the shared carbons of two aromatic rings. The exothermicity of this addition reaction is 48.2 kcal mol$^{-1}$, which differs by only 0.1 and 2.8 kcal mol$^{-1}$ with the other two...
C₄H₄ addition steps via TS7 and TS17, respectively, but is significantly lower than the reaction energies for C₆H₅ and C₂H₃ addition reactions, R1, R3 and R13. Combined with Fig. 6 and 8, in the addition reactions, the same added species may contribute equally to similar reaction kinetics, just like C₂H₃ and C₂H₄. After the addition of C₄H₄, the internal hydrogen migration from C₄ group to acetylene group adjusts the structure of CS₂⁵ to adduct CS₂⁶, which yields CS₂⁷ within three aromatic rings through cyclization via TS₂⁵. At this point, another internal hydrogen migration via TS₂⁶ has a large thermodynamic driving force for the subsequent formation of PAHs, CS₂⁹. At last, pyrene is formed through the elimination of an “extra” hydrogen atom from adduct CS₂⁹. In this pathway, the structure of TS₂⁵, which is the transition state for CS₂⁶ → CS₂⁷, was not found. Thus, the highest barrier of this pathway is 41.8 kcal mol⁻¹ so far, and the rate-deciding step is the dehydrogenation, CS₂⁹ → CS₁⁷ + H.

3.2 Elementary reaction rate constants

The high-pressure limit rate constants of the elementary reactions involved above are listed in Table 3 ranging from 300 to 2500 K. Fig. 13 and 14 demonstrate the rate constants for C₂H₂, C₄H₄, and C₆H₅ additions, and for C₂H₃ and C₄H₄ additions along temperature respectively. Fig. 15 shows the aromatic structures for C₂H₃ and C₄H₄ additions. Results imply that reactions R₄⁸ and R₅₃ almost share the same rate constants at different temperatures, which is because the reactive sites of CS₃⁸ and CS₄₃ are both armchair sites. Moreover, for C₄H₄ additions, the rate constant added onto CS₁ is the fastest, followed by CS₄₈, and that of CS₅₃ is the last. All reactive sites on CS₁, CS₄₈ and CS₅₃ are free edges with no adjacent groups, and the molecular mass of CS₁ is the lightest, followed by CS₄₈, and that of CS₅₃ is the heaviest. Thus, we believe C₄H₄ can be more easily added onto aromatic structures with light mass.
3.3 Kinetic modeling

The mechanism investigated here was improved from Hansen’s mechanism by the quantum chemical calculations reported before and in this work. The improvements of the new mechanism are shown in Fig. 16. All computations for laminar flames were performed with the code PREMIX from CHEMKIN II. Thermodynamic and transport data for the species involved in the mechanism were taken from Hansen’s mechanism or evaluated by applying group additives rules. The improved mechanism was verified in premixed butane and butadiene flames separately. Species concentrations determined from these flames were compared with the experimental results and the simulation results from Hansen’s mechanism. Thereby, the influence of new PAHs formation routes on predicting PAHs formation was analyzed.

3.3.1 Species concentration in premixed 1,3-butadiene flame. With the improved chemical mechanism, we simulated the variation in concentrations of the main intermediates and PAHs in the premixed 1,3-butadiene flame. All modelling parameters were cited from experiments, and all results were shown in Fig. 17 compared with experiments and simulation of Hansen’s mechanism.

The mole concentrations of C2H3, C4H4, A1 and A1C2H decrease at low temperature (Fig. 17). Among them, the consumption of C2H3, C4H4, A1 and A1C2H may be because of the newly-added PAHs formation routes, and the C2H2 concentration decreases probably because of the transition of C2H2 into C2H3 and C3H4 for chemical equilibrium. Specifically, the added PAHs formation routes do contribute to PAHs formation, especially at low temperature.

The mole concentrations of A2CH3 and A2 increase, but those of A1C2H and A2C2H decrease compared with the results of Hansen’s mechanism. A2 forms from HACA routes, conjugation of A1CH2 radical and C3H3 radical, or conjugation of two cyclopentadienyl radical in Hansen’s mechanism (Fig. 16). A2 formation routes via C2H3 and C4H4 additions are newly-added in this study. Hence, the increase of the A2 mole concentration compared to the results of Hansen’s mechanism is mainly due to the new added routes. As a consequence of chemical equilibrium, the mole concentration of A1CH3 also increases. Since A1C2H and A2C2H are both reactants in the new added PAHs formation routes, their mole concentrations decrease compared with the results of Hansen’s mechanism.

3.3.2 Species concentration in premixed butane flame. The variations in the concentrations of main intermediates and PAHs in the premixed butane flame were simulated according to experiments, Hansen’s mechanism and the improved mechanism in this study. All results were shown in Fig. 18. The C2H3 mole concentration from the improved mechanism agrees well with the data from Hansen’s mechanism (Fig. 18). Namely, the newly-added PAHs formation routes via C2H3 addition were not brought into full play in butane flame.
Compared with the modelling results from Hansen’s mechanism, the mole concentration of C₄H₄ from the improved mechanism decreases, and those of A₂, A₃ and A₄ from the improved mechanism increase. However, at low temperature, the concentration of A₂ decreases obviously compared with Hansen’s results for the newly-added A₃ formation routes from A₂. Thus, the newly-added PAHs formation routes via C₄H₄ addition play key roles in butane flame.

The mole concentration of C₉H₈ from the improved mechanism increases compared with results from Hansen’s mechanism, because the newly-added A₃ formation routes improve the formation of A₅, and a part of A₃ forms indenyl and cyclopentadienyl due to the chemical equilibrium. Hence, the newly-added PAHs formation routes, especially the C₄H₄ addition routes, contribute in butane flame.

Comparative comparison about the added PAHs formation routes and the modelling results of 1,3-butadiene and butane flame shows that both C₂H₃ and C₄H₄ addition routes benefit PAHs formation in 1,3-butadiene flame, but C₄H₄ addition routes benefit PAHs formations more than C₂H₃.

Fig. 17 Comparison of calculated and experimental data of mole fraction profiles for major products in butadiene flames (black dots: from experiments; dashed lines: from Hansen’s mechanism; solid lines: from the improved mechanism).
additions in butane flame. This is mainly because of the geometries of 1,3-butadiene and butane.

4. Conclusions

Detailed A$_3$ and A$_4$ formation routes via C$_2$H$_3$ and C$_4$H$_4$ addition reactions onto aromatic radicals were investigated with the G3(MP2, CC) method. The influences of reaction sites, reaction types and additions to PAHs formation rates were discussed. The PAHs formation routes gained in this study and reported before were used to improve an existing mechanism. This improved mechanism was verified and compared to experimental results and the modelling results of the original mechanism. The contributions of C$_2$H$_3$ and C$_4$H$_4$ addition routes to PAHs formation in both butadiene and butane flame were studied.

Fig. 18 Comparison of calculated and experimental data26 of mole fraction profiles for major products in butadiene flames (black dots: from experiments,26 dashed lines: from Hansen’s mechanism,31 solid lines: from the improved mechanism).
(1) Compared with C₂H₂ addition, C₃H₈ and C₄H₈ addition reactions occurred more easily at the radicals of aromatics; C₃H₈, C₄H₈ and C₅H₈ additions were more irreversible, and the formed PAH geometries were more irreversible. All these addition reactions easily occurred in flame, and were verified to produce PAHs at low temperature in both butadiene and butane flame. (2) H atoms are important for PAHs formation. On one hand, almost all H-abstractions with the assistance of H atoms need barriers about 30 kcal mol⁻¹, and disproportionations need to overcome high barriers and are highly endothermic. That is, H atoms decreased the energies for radical production, and made the reactions more irreversible. On the other hand, H loss with the assistance of O atom and OH radical needs to overcome much higher barriers than that with the assistance of H atom. In other words, H atoms more easily induce H loss than O atoms and OH radicals.

(3) The C₂H₃ and C₄H₈ addition routes are both beneficial to PAHs formation in 1,3-butadiene flame, and the C₃H₈ addition route benefits PAHs formation in butane flame. This is mainly because C₂H₃ can be effectively formed from continuous dehydrogenations of 1,3-butadiene and butane. C₂H₃ can be formed easily from the breakage of C–C in 1,3-butadiene structure, but difficulty from the corresponding reactions of butane molecules.

Conflicts of interest

There are no conflicts to declare.

References

1. H. Wang and M. Frenklach, Calculations of Rate Coefficients for the Chemically Activated Reactions of Acetylene with Vinylc and Aromatic Radicals, J. Phys. Chem., 1994, 98, 11465–11489.
2. M. Frenklach and H. Wang, Detailed modeling of soot particle nucleation and growth, Symp., 1991, 23, 1559–1566.
3. M. Frenklach, D. W. Clary, W. C. Gardiner and S. E. Stein, Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene, Symp., 1985, 20, 887–901.
4. J. D. Bittner and J. B. Howard, Composition profiles and reaction mechanisms in a near-sooting premixed benzene/oxygen/argon flame, Symp., 1981, 18, 1105–1116.
5. J. Appel, H. Bockhorn and M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combust. Flame, 2000, 121, 122–136.
6. V. V. Kislov, A. I. Sadovnikov and A. M. Mebel, Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring, J. Phys. Chem. A, 2013, 117, 4794–4816.
7. A. Violì, A. D’Anna and A. D’Alessio, Modeling of particulate formation in combustion and pyrolysis, Chem. Eng. Sci., 1999, 54, 3433–3442.
8. Y. Li, L. Wei, Z. Tian, B. Yang, J. Wang, T. Zhang and F. Qi, A comprehensive experimental study of low-pressure premixed C₃-oxygenated hydrocarbon flames with tunable synchrotron photoionization, Combust. Flame, 2008, 152, 336–359.
9. Y. Yang, Y. Li, L. Wei, C. Huang, J. Wang, Z. Tian, R. Yang, L. Sheng, Y. Zhang and F. Qi, An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization, Proc. Combust. Inst., 2007, 31, 555–563.
10. B. Shukla and M. Koshi, A novel route for PAH growth in HACA based mechanisms, Combust. Flame, 2012, 159, 3589–3596.
11. J. Yang, L. Zhao, W. Yuan, F. Qi and Y. Li, Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios, Proc. Combust. Inst., 2015, 35, 855–862.
12. W. Yuan, Y. Li, P. Dagaut, J. Yang and F. Qi, Experimental and kinetic modeling study of styrene combustion, Combust. Flame, 2015, 162, 1868–1883.
13. W. Yuan, Y. Li, P. Dagaut, J. Yang and F. Qi, Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation, Combust. Flame, 2015, 162, 3–21.
14. H. Wang, Formation of nascent soot and other condensed-phase materials in flames, Proc. Combust. Inst., 2011, 33, 41–67.
15. D. S. Parker, B. B. Dangi, R. I. Kaiser, A. Jamal, M. N. Ryazantsev, K. Morokuma, A. Korte and W. Sander, An experimental and theoretical study on the formation of 2-methylnaphthalene (C₉H₁₀/C₉H₇D₇) in the reactions of the para-tolyl (C₆H₆) and para-tolyl-d₇ (C₆D₆) with vinylacetylene (C₉H₆), J. Phys. Chem. A, 2014, 118, 2709–2718.
16. K. O. Johansson, M. P. Head-Gordon, P. E. Schrader, K. R. Wilson and H. A. Michelsen, Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth, Science, 2018, 361, 997–1000.
17. B. Shukla and M. Koshi, A highly efficient growth mechanism of polycyclic aromatic hydrocarbons, Phys. Chem. Phys., 2010, 12, 2427–2437.
18. A. D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction, J. Chem. Phys., 1992, 96, 2155–2160.
19. A. D. Becke, Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction, J. Chem. Phys., 1992, 97, 9173–9177.
20. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.
21. R. I. Kaiser, B. B. Dangi, T. Yang, D. S. Parker and A. M. Mebel, Reaction dynamics of the 4-methylphenyl radical (p-tolyl) with 1,2-butadiene (1-methylallene): are methyl groups purely spectators?, J. Phys. Chem. A, 2014, 118, 6181–6190.
22. T. Yang, L. Muzangwa, D. S. Parker, R. I. Kaiser and A. M. Mebel, Formation of 2- and 1-methyl-1,4-di hydronaphthalene isomers via the crossed beam reactions of phenyl radicals (C₆H₅) with isoprene (CH₃C(CH₃)CHCH₂) and 1,3-pentadiene.
(CH₂CHCHCH₃), Phys. Chem. Chem. Phys., 2015, 17, 530–540.

23 L. A. Curtiss, K. Raghavachari, P. C. Redfern, A. G. Baboul and J. A. Pople, Gaussian-3 theory using coupled cluster energies, Chem. Phys. Lett., 1999, 314, 101–107.

24 C. W. Bauschlicher, A. Ricca and M. Rosi, Mechanisms for the growth of polycyclic aromatic hydrocarbon (PAH) cations, Chem. Phys. Lett., 2002, 355, 159–163.

25 P. Ghesquiére, D. Talbi and A. Karton, The reaction of the benzene cation with acetylenes for the growth of PAHs in the interstellar medium, Chem. Phys. Lett., 2014, 314, 101–107.

26 C. W. Bauschlicher, A. Ricca and M. Rosi, Mechanisms for the growth of polycyclic aromatic hydrocarbon (PAH) cations, Chem. Phys. Lett., 2002, 355, 159–163.

27 P. Ghesquiére, D. Talbi and A. Karton, The reaction of the benzene cation with acetylenes for the growth of PAHs in the interstellar medium, Chem. Phys. Lett., 2014, 314, 101–107.

28 T. Yang, L. Muzangwa, R. I. Kaiser, A. Jamal and K. Morokuma, A combined crossed molecular beam and theoretical investigation of the reaction of the meta-tolyl radical with vinylacetylene-toward the formation of methylcnaphthalenes, Phys. Chem. Chem. Phys., 2015, 17, 21564–21575.

29 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2009.

30 V. Mokrushin, V. Bedanov, W. Tsang, M. Zachariah and V. Knyazev, ChemRate 1.5.8, NIST, Gaithersburg, MD, 2006.

31 N. Hansen, M. Braun-Unkho, T. Kathrotia, A. Lucassen and B. Yang, Understanding the reaction pathways in premixed flames fueled by blends of 1,3-butadiene and n-butanol, Proc. Combust. Inst., 2015, 35, 771–778.

32 M. Wei, T. Zhang, S. Li, G. Guo and D. Zhang, Naphthalene formation pathways from phenyl radical via vinyl radical (C₆H₅) and vinylacetylene (C₄H₄): computational studies on reaction mechanisms and kinetics, Can. J. Chem., 2017, 95, 816–823.

33 Y. Wang and S. H. Chung, Soot formation in laminar counterflow flames, Prog. Energy Combust. Sci., 2019, 74, 152–238.

34 R. J. Kee, F. M. Rupley and J. A. Miller, CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics, Sandia, 1989.

35 J. A. Cole, J. D. Bittner, J. P. Longwell and J. B. Howard, Formation mechanisms of aromatic compounds in aliphatic flames, Combust. Flame, 1984, 56, 51–70.

36 N. M. Marinov, W. J. Pitz, C. K. Westbrook, A. M. Vincitore, M. J. Castaldi, S. M. Senkan and C. F. Melius, Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame, Combust. Flame, 1998, 114, 192–213.