Research Status and Prospects of Key Technologies for Underground Water-sealed Oil Storage Cave

DOU Ming-yuan\(^{1,2,3}\), ZOU Shuai\(^{1,2,3}\), LI Hao-ming\(^{1,2,3}\), FENG Qing\(^{1,2,3}\), HUANG Fu-chuan\(^{1,2,3}\) and LIAO Xiao-hua\(^*\)

\(^1\)College of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
\(^2\)Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, Guangxi, 530004, China
\(^3\)Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi, 530004, China
\(^4\)South China branch of Sinopec Sales Co., Ltd

\(^*\)Corresponding author’s e-mail: 2422559717@qq.com
Author’s e-mail: doumingyuan@foxmail.com

Abstract. Petroleum is the lifeblood of the national economy. The underground water-sealed oil storage cave has become the main development direction and research object of petroleum reserve at home and abroad due to its advantages. This paper summarizes the research progress of key technologies for large-scale underground water-sealed oil storage cave, emphasizes the current role of underground water-sealed oil storage cave in petroleum reserve, and discusses water curtain system and water sealing, surrounding rock permeability and evaluation, surrounding rock stability and evaluation, field construction technology and related issues, and also emphasizes the importance of strategic petroleum reserve (SPR), and has prospects to the future development of underground water-sealed oil storage cave.

1. Introduction

Petroleum is called the blood of industry, is an important resource guarantee to guarantee national energy security and social and economic sustainable development, and plays an extremely important role in national defense construction and security. According to the data of the National Bureau of Statistics, China's oil output in 2018 was 189.1 million tons, and its oil import volume was 461.89 million tons, with an external dependence of 70.59%. According to the increase of China's oil demand, it is expected that China's total oil demand will exceed 700 million tons by 2020.

China's Strategic Petroleum Reserve Plan originated in 1973. Strategic petroleum reserve is one of the effective ways to cope with short-term oil supply. In the construction of petroleum reserve system, countries with suitable geological conditions tend to build underground oil storage caverns [1]. Compared with the above ground storage, the underground storage has the advantages of high security, long service life and can avoid the attack of conventional weapons [2]. As a kind of underground reservoir, water-sealed underground oil reservoir has the advantages of strong geographic adaptability, large inventory size, easy expansion and small footprint [1].
The theory of underground water-sealed reservoirs was first proposed by Hageman, father of rock mechanics and oil reserves in Sweden. Since the 1980s, the world has made great efforts to develop the underground water-sealed oil storage cave. For example, three underground oil storage caverns have been built in Japan, i.e. Kuji, Kikuma and Kushikino.

The development of underground water-sealed oil storage cave in China is relatively late. Since the 1970s, China has vigorously developed the technology of underground water-sealed oil reservoir, and built the first underground water-sealed cavern with a volume of 15×10^4 m3 in Huangdao in 1973. In the second phase project of National Petroleum Reserve, half of the reserve base is underground water-sealed oil reservoir. With the arrival of the third phase project of the petroleum reserve, there is an increasing demand for the technical development of the underground water-sealed oil reservoir.

2. Water Curtain System and Water Sealing

The key to water sealing of underground water-sealed oil storage cave is whether there is a stable water cap layer above the cavern, and the thickness of the water cap layer is 5m, which is suitable [3]. However, due to the imperfection of the theory of water sealing conditions and the different geological conditions, the water pressure outside the cavern is often increased by setting artificial water curtain. Water curtain hole is the core component of water curtain system. At present, the layout of water curtain holes can be divided into three types: horizontal, vertical and inclined.

The design of water curtain system has always been the most important part of the design of underground water-sealed caverns. Liang Bin et al. [4] analyzed the groundwater seepage field and evaluated the water sealing effect of an underground water-sealed oil storage cave during its operation by using the method of modeling and analysis. It was found that the expansion rate of water level line under the condition of water curtain is smaller than that under the condition of no water curtain, indicating that the condition of no water curtain is easier to form a distinct drop funnel than that under the condition of water curtain. Peng Zhenhua et al. [5] discussed the situation of guaranteeing water sealing without artificial water curtain system, and gave the relevant conditions from groundwater conditions, the permeability of surrounding rock of cave and reservoir, etc.

At present, most of the water curtain systems of the oil reservoirs that have been built are mainly horizontal water curtain. Li Yutao et al. [6] used the finite element numerical simulation method to study the layout of the expansion cavern with and without vertical water curtain, and concluded that when the distance between the two caverns is small, setting vertical water curtain can reduce the impact of the proposed cavern on the cavern already built. Gao Bin et al. [7] deduced the calculation formula of equivalent permeability tensor, simulated the seepage flow field under the combination of different permeability tensors and different water curtain layout ways, and concluded that the arrangement way of curtain holes perpendicular to the main direction of permeation should be used.

Aberg.B. et al. [8] believe that the sealing of the cavern can be guaranteed as long as the vertical hydraulic gradient is greater than 1, while ignoring the influence of gravity, friction and capillary forces. However, the contradiction between the nature of the surrounding rock seepage of the cavern and the equivalent medium analysis method affects the design of the water seal system [9]. Therefore, there are not many pure theoretical studies on the water curtain system at present, most of which summarize the experience through engineering examples. Zhang Qihua [10] summarized and evaluated the project of Huangdao National Petroleum Reservoir and affirmed the supplementary role of artificial water curtain system in groundwater decline. Zhongkui Li et al. [11] used the first large water-sealed underground oil depot in China for reference, and discussed some design and operation problems related to water curtain system during the construction of the project. Large-scale water-sealed underground caverns have been put into use only in recent years. Relevant theories and experiences about water curtain water-seal system still need further study by experts and scholars.

3. Formatting the text Stability and Permeability of Surrounding Rock

During the construction of underground water-sealed cavern, due to the existence of weak structural planes such as cracks, interbeds, joints, etc., the surrounding rock mass is not uniform, anisotropic,
discontinuous and other defects, which will affect the site construction and the stability of the surrounding rock. Therefore, a large number of scholars have carried out a series of studies on the stability and permeability of the surrounding rock of underground oil storage caverns.

3.1. Stability of Surrounding Rock

The stability evaluation of surrounding rock has always been one of the most important problems in the cavern construction of underground water-sealed oil storage cave. Qi Lan [12] et al. discussed the stability of surrounding rocks of underground caverns based on the analysis of ground stress field. Zeng Haizhao et al. [13] analyzed the stability of surrounding rocks of a large underground tunnel based on block theory and UNWEDGE software, which provided a useful reference for underground construction. Yao Zhongtao [14] provides a quantitative index for the stability of surrounding rocks of underground caverns by means of finite element analysis based on catastrophe theory. B Zhang et al. [15] put forward a method combining experiment and numerical value to evaluate the stability of underground cavern in Anhui. The result shows that the cavern has good stability. Based on cloud theory and principal component analysis (PCA) method, Zhiqiang Li et al. [16] put forward a new analysis model for surrounding rocks of groundwater sealing chamber, which is of great significance to reduce risks during construction. Qingwen Ren et al. [17] put forward a comprehensive evaluation method of surrounding rock safety applicable to underground tunnel construction. This method can be used to evaluate the deformation stability of surrounding rock and quickly predict the collapse of rock mass, providing a new idea for the safety of surrounding rock in underground tunnel construction.

Due to the complex underground environment, many factors affect the stability of surrounding rocks. Su Feng [18] analyzed and summarized the influence of cylindrical jointed rock mass on stability of surrounding rocks of underground caverns. Liu Peng et al. [19] based on FLAC3D finite difference software, analyzed the influence of fault fracture zone and spacing between caverns on stability of underground water-sealed caverns. These have certain reference value for actual construction on site.

3.2. Permeability of Surrounding Rock

In order to achieve good water sealing effect, the underground cavern needs to construct below the groundwater level, so the seepage problem must be considered in the design of underground cavern [9]. For underground water-sealed reservoirs, the control of water seepage in caverns is the core of seepage analysis and seepage prevention treatment [20]. According to the current research level, the seepage models of jointed and fractured rock mass mainly include three kinds: equivalent continuum model, double-medium model and discrete fracture network model.

3.2.1. The equivalent continuum model. Equivalent continuum model regards rock mass as equivalent continuous medium, including rock block and fissure, without considering the anisotropy of medium, it is described by a comprehensive elastic modulus. The physical variables used are the average value of each field, and the problem of coupling seepage field and stress field in rock mass is studied by continuous mechanics method [21, 22]. Li Shucai et al. [23] took a large underground water-sealed oil cavern in China as the background, combined with field test data analysis, used the method of equivalent continuous medium, used anisotropic permeability tensor of fractured rock mass and established three-dimensional model to predict the change of underground water level in different construction stages. Lu Wenlong et al. [24] used GeoStudio software and equivalent fissured rock mass to continuous medium, discussed the influence of fractured zone on water inflow of cavern.

3.2.2. The double-medium model. The double-medium model (fracture-pore seepage model) [25] considers not only the flow of fluid in joints and fracture networks, but also the flow of fluid in rock blocks. Cui Shaodong et al. [26] established a dynamic water inflow calculation method based on the seepage model of rock mass pore and fissure dual media. Shao Jiansheng et al. [27] studied the law of velocity change, pressure distribution and the influence of different shapes of fissures during the
seepage process of double-medium model. Because the water exchange between fracture and pore is complex, the main cracks can be analyzed by this method in the actual analysis process, and the small cracks and rock blocks can be analyzed by using the equivalent medium model.

3.2.3. The discrete fracture network model. The discrete fracture network model [28] regards the rock mass medium as a fracture medium system, examines the flow of water in the fracture network and ignores the water conduction function of rock blocks. Based on the advantages of discrete fracture network, a large number of scholars and experts have used discrete fracture network model to simulate and analyze the water tightness and water curtain system of underground caverns combined with field engineering data in recent years [29, 30, 31, 32, 33].

4. On-Site Construction.
The use of sections to divide the text of the paper is optional and left as a decision for the author. Where the author wishes to divide the paper into sections the formatting shown in table 2 should be used.

4.1. Construction Risk Analysis
There is less experience in the construction of underground water-sealed oil storage cave in China, although there are corresponding design specifications [34], it is not mature. The construction of underground water-sealed cavern has the characteristics of long construction period, difficult construction, large investment amount, immature technology, poor experience and many uncertain factors. There are certain safety risks in the construction process. Therefore, the safety risk assessment during the construction period is of great significance. Wang Zhechao et al. [35] carried out safety risk assessment of the cavern during construction from two aspects of stability and sealing of the cavern. Guo Shunli et al. [36] evaluated the construction risk of underground water-sealed oil storage cave relying on Huangdao underground water-sealed oil reservoir, analyzed and summarized the evaluation method and control theory of construction risk. Ke Chao [37] analyzed the risk of underground cavern construction based on Fuzzy mutation theory. The construction analysis and analysis of underground water-sealed cavern can not only ensure the safety of construction objects, but also enable the smooth implementation of the project as planned.

4.2. Construction Technology
4.2.1. Excavation blasting technology. The excavation blasting of underground water-sealed oil storage cave has the characteristics of complex construction environment, high requirements for forming effect, large blasting vibration and strict damage control. Li Peng et al. [38] optimized the blasting method for excavation of large underground water sealed cavern. He Guofu et al. [39], Fu LuKun et al. [40], Zhi Wei et al. [41], Sun Haijiang [42], Zou Can [43] combined with the actual blasting engineering test of underground water-sealed cavern, analyzed and summarized the experience of relevant vibration detection and blasting control, which has certain reference value for the blasting design and construction of large underground water-sealed cavern. Now, there is a kind of double roll drilling and blasting free construction technology applied to the excavation construction of underground water-sealed oil storage cave, which greatly promotes the construction efficiency, environmental protection and safety.

4.2.2. Shotcrete technology. Jet concrete layer is the key supporting layer of large underground water-sealed oil storage cave, and its performance has a significant impact on the construction of oil depot and the later operation and maintenance. Wang Jun [44] studied the high performance shotcrete of large underground water-sealed cavern, and analyzed the mix ratio, working performance and mechanical properties of concrete. Qin Zhiyong et al. [45] analyzed the bearing characteristics of
anchor shotcrete support structure, discussed the working status of shotcrete and surrounding rock, which has certain guiding significance for future underground cavern construction.

4.2.3. Other Technologies. Large underground water-sealed oil storage cave has the characteristics of long construction period, high construction conditions and complex construction environment, so more and more technical processes are used in underground water-sealed oil storage cave. Wang Ke [46] studied the application of three-dimensional laser scanning in underground caverns and proposed a new method for measuring the volume of large underground water-sealed oil storage cave. In recent years, the widespread use of Beidou navigation system has brought great convenience to the initial mapping and design of underground water-sealed oil storage cave. In addition, combined with the means of big data, the spatial positioning in the early stage of the project is more accurate, the project is safer and more standardized during construction.

5. Conclusion and Prospect
(1) Underground water-sealed oil storage cave has many advantages, such as large scale of stock, relatively small investment cost and small area. Therefore, large-scale construction of underground water-sealed oil storage cave is the key development direction of China's strategic petroleum reserve.

(2) The construction of underground water-sealed oil storage cave in China is relatively late, and the technology and experience are immature compared with developed countries. In the later work, we need to strengthen the research on these theoretical basis.

(3) At present, the standards for construction of underground water-sealed oil storage cave are not perfect, and many technical standards are derived from field experience or standards of other relevant industries. However, with the development of the national strategic petroleum reserve system, relevant standards will be constantly revised and improved.

(4) At present, the employees of underground water-sealed caverns are relatively concentrated. The existing relevant units and personnel may not be enough to undertake the construction and research of underground water-sealed oil storage cave. Therefore, all practitioners and universities should strengthen the training of relevant professionals.

Acknowledgments
Thanks for the foundation of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials.

References
[1] Li Y.S., Lu B.L. (2016) Integrated Innovations of Key Technology for Construction of Large-Scale Crude-Oil Reserve Underground Water-Curtaining Caverns Project, Sinopec press, Beijing.
[2] Qian Q.H. (2007) National Petroleum Reserve should be built underground, Science times.
[3] Liu Q., Lu Y.R., Zhang F.G. (2008) Hydrogeological and engineering geological problems of the site of underground oil storage caverns with water curtain. Hydrogeology & Engineering Geology, 04:1-5.
[4] Liang B., Chen G., Hu C. (2018) Vadose field simulation and water-sealing effect evaluation of underground petroleum storage caver. World Nuclear Geoscience, 35(03): 180-186.
[5] Peng Z.H., Li J.Z., Yang S., Wang J.C., Wang J.K. (2019) Discussion on the Feasibility of Underground Water-Sealed Storage Cavern Without Artificial Water Curtain System. Construction & Design for Engineering, 22: 133-134+181.
[6] Li Y.T., Zhang B., Shi L., Peng Z.H., Li J.Y. (2019) Enlargement Layout of Underground Water-sealed Oil Storage Cavern with Vertical Water Curtain System. Tunnel Construction, 39 (08): 1308-1318.
[7] Gao B., Xu Z.H., Shi X.S., Zhang L.W., Zhao S.L., Wang W.Y., Huang X. (2018) Water
Curtain Arrangement of Water Sealed Oil Storage Based on Permeability Tensor of Fractured Rock Mass. Science Technology and Engineering, 18 (22): 47-53.

[8] Aberg B. (1977) Model Tests On Oil Storage In Unlined Rock Caverns. Storage in Excavated Rock Caverns. Stockholm, 517-530.

[9] Qin Z.Y., Gao X.M. (2019) Research Status and Thinking about Underground Oil Storage in Rock Caverns in China. Journal of Yangtze River Scientific Research Institute, 36(05):141-148.

[10] Zhang Q.H. (2014) Some Ideas on Assessment and Control of Water Tightness Effect in Huangdao Oil Storage Cavern. Journal of Yangtze River Scientific Research Institute, 31(08):112-116.

[11] Li Z.K., Lu B.Q., Zou J., Xu B., Zhang Z.Z. (2016) Design and operation problems related to water curtain system for underground water-sealed oil storage caverns. Journal of Rock Mechanics and Geotechnical Engineering, 8(5).

[12] Qi L., Ma Q.C.(2000) ON THE SELECTION OF LONGITUDINAL DIRECTION AND STABILITY OF UNDERGROND OPENING BASED ON TEH ANALYSIS OF IN-SITU STRESS FIELD. Chinese Journal of Rock Mechanics and Engineering, S1:1120-1123.

[13] Zeng H.Z., He J.D., Xie H.Q., Zuo L.Y. (2009) Stability analysis of surrounding rock of large underground cavern based on block theory. Guizhou Water Power, 23(03):21-26.

[14] Yao Z.T. (2015) Surrounding rock stability analysis of underground caverns based on mutation theory. Tsinghua University.

[15] Zhang, B., et al. (2019) Stability analysis of a group of underground anhydrite caverns used for crude oil storage considering rock tensile properties. Bulletin of Engineering Geology and the Environment, 78(8): 6249-6265.

[16] Li, Z., et al. (2019) An analytical model for surrounding rock classification during underground water-sealed caverns construction: a case study from eastern China. Environmental Earth Sciences, 78(20): 602.

[17] Ren Q.W., Xu L., Zhu A.X., Shan M.Z., Zhang L.F., Gu J.F., Shen L. (2019) Comprehensive safety evaluation method of surrounding rock during underground cavern construction. Underground Space.

[18] Su F. (2019) Study on Surrounding Rock Stability of Giant Underground Cavern under the Influence of Columnar Joined Rock Mass. Gansu Water Resources and Hydropower Technology, 55(11):32-37.

[19] Liu P., Zhao Q., Chen Y.L., Jin W. (2018) Influence of the Distance Between Fault Fracture Zone and Cavern on the Stability of Underground Water-sealed Oil Storage Cavern. Journal of Yangtze River Scientific Research Institute, 35(08):151-153+158.

[20] Zhang Q.H., He G.F., Li Y.J., Yuan D. (2018) Analysis of Rock Permeability and Water Seepage Quantity for Water-sealed Cavern and Discussion on Detection Standard of Seepage Protection. Chemical and Pharmaceutical Engineering, 39(02):1-5.

[21] Wu Y.Q., Zhang L.Y. (1994) Study on a centralized parametric mathematical model for coupling seepage and stress fields in rock mass. JOURNAL OF ENGINEERING GEOLOGY, 2(1):9-14.

[22] Wu Y.Q. (1996) Coupling model of seepage field and stress field in rock mass fracture system. JOURNAL OF GEOLOGICAL HAZARDS AND ENVIRONMENT PRESERVATION, 7(1): 31-34.

[23] Li S.C., Zhang L., Ma X.Y., Xue Y.G., Wang Z.C., Li Y.F., Ping Y., Jiang Y.Y. (2013) Space-time evolution behaviour of seepage field around a large underground petroleum storage caverns with groundwater curtaining. Rock and Soil Mechanics, 34(7):1979-1986.

[24] Lu W.L., Zhou Z.F., Huang Y. (2014) Effect of a single fault zone on flow in an underground lining-free cave. Yellow River, 36(2):112-114.

[25] Huyakorn, P.S., Lester B.H. and C.R. Faust. (1983) Finite element techniques for modeling groundwater flow in fractured aquifers. Water Resources Research, 4: 1019-1035.
[26] Cui S.D., Guo S.T., Gao J.F. (2017) Research on Water Inflow into Underground Water Sealed Cave Based on Un saturated Flow. Chinese Journal of Underground Space and Engineering, 13(S2):746-751.

[27] Shao J.L., Zhou F., Xue Y.C., Du H.Q. (2019) Study on Numerical Simulation of Pore-fracture Double Seepage in Rock Mass. Safety in Coal Mines, 50(09):1-4.

[28] Cacas M.C., et al. (1990) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model. Water Resources Research, 3: 479-489.

[29] Zhang C. (2016) Study on the mechanism and optimization of water curtain system in large underground water sealed oil depot. China University of Geosciences (Beijing).

[30] Li Z.H., Hu C., Chen G., Liu J.H. (2016) Seepage Analysis of the Water-sealed Cavern in Yantai City Based on the Discrete Fracture Network Model. Safety and Environmental Engineering, 23(05):170-173+182.

[31] Zhao S.L. (2017) Fracture network model and water curtain optimization evaluation of underground oil storage. Shandong University.

[32] Lin F. (2017) Study on water seal effectiveness of water curtain system of underground oil storage cavern group. Southwest Jiaotong University.

[33] Wang Z.C., Zhang Z.J., Li S.C., Bi L.P., Fang S.X., Zhong K.C. (2016) Assessment of inter-cavern containment property for underground oil storage caverns using discrete fracture networks. Journal of Shandong University(Engineering Science),46(02):94-100+115.

[34] GB 50455 – 2008 (2009) code for design of underground water sealed stone cavern oil depot. China Planning Press, Beijing.

[35] Wang Z.C., Lu B.Q., Li S.C., Qiu D.H., Qiao L.P., Yu F., Bi L.P. (2015) Risk assessment for an underground crude oil storage facility with water-curtaining system during construction phase. Chinese Journal of Geotechnical Engineering, 37(06):1057-1067.

[36] Guo S.L., Liu J., Yu F., Yao Y.T., Yang H. (2017) Risk assessment and control of underground water seal oil caverns. Shanxi Architecture, 43(14):248-249.

[37] Ke C. (2017) Study on Safety Risk Assessment of Underground Cavern Construction Based on Fuzzy Mutation. Pearl River, 38(06):54-57.

[38] Li P., Zhao X., Jin X.N., Sun P.J. (2014) Optimization and Selection of Blasting Method for the Excavation of Large-scale Underground Water-sealed Caverns. Journal of Yangtze River Scientific Research Institute, 31(04):104-108+113.

[39] He G.F., Jin W., Qin Z.Y., Gao X.M. (2018) Cavern Explosion Seismic Effects on Underground Water-Sealed Oil Storage Caverns. Journal of Water Resources and Architectural Engineering, 16(03):86-92.

[40] Fu L.K., Cheng C.H., Li P., Li Z.D. (2018) Blasting Tests of Vault Layer Excavation in Water-sealed Underground Caverns of Zhanjiang National Petroleum Storage Project. Journal of Yangtze River Scientific Research Institute, 35(08):145-150.

[41] Zhi W., Wu L., Yuan Q. (2014) Monitoring and Analysis of Blasting Vibration in Underground Water Sealed Caverns. Blasting, 31(04):46-48+67.

[42] Sun H.J. (2014) Blasting control technology and application of Huangdao national storage ground water sealed oil depot project. Shandong University.

[43] Zou C., Wu L., Zuo Q.J. (2014) Monitoring and Analysis of Blasting Vibration in Underground Water-sealed Oil Storage Caverns. Blasting, 31(01):84-88.

[44] Wang J. (2014) research and application of high performance shotcrete for large underground sealed crude oil cave. Shandong University.

[45] Qin Z.Y., Gao X.M., Cheng C.H., Xiang Q. (2019) Load-bearing Characteristics of Bolt-Shotcrete Support System for Underground Oil Storage in Rock Caverns. Journal of Yangtze River Scientific Research Institute, 36(05):149-154.

[46] Wang K. (2019) Application and research of 3D laser scanning technology in underground cavern. China University of Geosciences (Beijing).