Hints of Early Dark Energy in Planck, SPT, and ACT data: new physics or systematics?

Tristan L. Smith,1 Matteo Lucca,2 Vivian Poulin,3 Guillermo F. Abellan,3 Lennart Balkenhol,4 Karim Benabed,5 Silvia Galli,5 and Riccardo Murgia3,6,7

1 Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA
2 Service de Physique Théorique, Université Libre de Bruxelles, C.P. 225, B-1050 Brussels, Belgium
3 Laboratoire Univers & Particules de Montpellier (LUPM), CNRS & Université de Montpellier (UMR-5299), Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France
4 School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
5 Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France
6 Gran Sasso Science Institute (GSSI), I-67100 L’Aquila (AQ), Italy
7 INFN - Laboratori Nazionali del Gran Sasso (LNGS), I-67100 L’Aquila (AQ), Italy

We investigate constraints on early dark energy (EDE) using ACT DR4, SPT-3G 2018, Planck polarization, and restricted Planck temperature data (at $\ell < 650$), finding a 3.3σ preference ($\Delta \chi^2 = -16.2$ for three additional degrees of freedom) for EDE over ΛCDM. The EDE contributes a maximum fractional energy density of $f_{EDE}(z_*) = 0.163^{+0.047}_{-0.047}$ at a redshift $z_* = 3.357 \pm 0.200$ and leads to a CMB inferred value of the Hubble constant $H_0 = 74.2^{+1.9}_{-2.2}$ km/s/Mpc. We find that Planck and ACT DR4 data provide the majority of the improvement in χ^2, and that the inclusion of SPT-3G pulls the posterior of $f_{EDE}(z_*)$ away from ΛCDM. This is the first time that a moderate preference for EDE has been reported for these combined CMB data sets including Planck polarization. We find that including measurements of supernovae luminosity distances and the baryon acoustic oscillation standard ruler only minimally affects the preference (3.0σ), while measurements that probe the clustering of matter at late times – the lensing potential power spectrum from Planck and f_{σ_8} from BOSS – decrease the significance of the preference to 2.6σ. Conversely, adding a prior on the H_0 value as reported by the SH0ES collaboration increases the preference to the 4 – 5σ level. In the absence of this prior, the inclusion of Planck TT data at $\ell > 1300$ reduces the preference from 3.0σ to 2.3σ and the constraint on $f_{EDE}(z_*)$ becomes compatible with ΛCDM at 1σ. We explore whether systematic errors in the Planck polarization data may affect our conclusions and find that changing the TE polarization efficiencies significantly reduces the Planck preference for EDE. More work will be necessary to establish whether these hints for EDE within CMB data alone are the sole result of systematic errors or an opening to new physics.

I. INTRODUCTION

Over the past several years, the standard cosmological model, ΛCDM, has come under increased scrutiny as measurements of the late-time expansion history of the Universe [1], the cosmic microwave background (CMB) [2], and large-scale structure (LSS) – such as the clustering of galaxies [3–6] – have improved. Some of these observations have hinted at possible tensions within ΛCDM, related to the Hubble constant

\[H_0 = 100h \text{ km/s/Mpc} \]

and the parameter combination $S_8 \equiv \sigma_8(\Omega_m/0.3)^{0.5}$ [8] (where Ω_m is the total matter relic density parameter and σ_8 is the root mean square of the linear matter perturbations within 8 Mpc/h today), reaching the $4 – 5\sigma$ [9–13] and $2 – 3\sigma$ level [8, 14, 15], respectively. While both of these discrepancies are the result of systematic uncertainties, and not all measurements lead to the same level of tension [16, 17] (see also Refs. [18, 19]), numerous models have been suggested as a potential resolution (see e.g. Refs. [20, 21] for recent reviews), though none is able to resolve both tensions simultaneously [21, 22].

In this work we focus on a scalar field model of ‘early dark energy’ (EDE), originally proposed to resolve the ‘Hubble tension’ (see e.g. Refs. [23–26]). The EDE scenario assumes the presence of an ultra-light scalar field ϕ slow-rolling down an axion-like potential of the form $V(\phi) \propto [1 - \cos(\phi/f)]^n$, where f is the decay constant of the field. Due to Hubble friction the field is initially fixed at some value, $\theta_i = \phi_i/f$, and becomes dynamical when the Hubble parameter drops below the field’s mass, which happens at a critical redshift z_c. Once that occurs, the field starts to evolve, eventually oscillates around the minimum of its potential, and its energy density dilutes at a rate faster than matter (for the potential we use here, with $n = 3$, $\rho_{\text{EDE}} \propto (1 + z)^{-1.5}$). The energy density of the scalar field around z_c reduces the sound horizon at recombination leading to an increase in the inferred value of H_0 from CMB measurements (see e.g. Ref. [27]).

Up until recently, evidence for EDE came only from analyses which included a prior on the value of H_0 from the Supernova H_0 for the Equation of State (SH0ES) collaboration [25, 26, 28–30]. Using this prior

1 The SH0ES prior is actually a constraint on the absolute calibration of the SNe data. However, since the EDE is dynamical at pre-recombination times, this distinction is unimportant [21].
on H_0 and the full Planck power spectra, within the EDE model one obtains a non-zero fraction of the total energy density in EDE at the critical redshift, $f_{\text{EDE}}(z_c) = 0.108^{+0.035}_{-0.028}$, with a corresponding Hubble parameter $H_0 = 71.5 \pm 1.2 \, \text{km/s/Mpc}$ [30] (adding supernovae (SNe) and baryon acoustic oscillation ‘standard ruler’ (BAO) data leads to insignificant shifts). Without the SH0ES prior, one has instead an upper bound of the form $f_{\text{EDE}}(z_c) < 0.088$ at 95% confidence level (CL) and $H_0 = 68.29^{+0.75}_{-0.29} \, \text{km/s/Mpc}$ [30, 31].

Recent analyses of EDE using data from the Atacama Cosmology Telescope’s fourth data release (ACT DR4) [34] alone have shown a slight ($\sim 2.2\sigma$) preference for the presence of an EDE component with a fraction $f_{\text{EDE}}(z_c) \sim 0.15$ and $H_0 \sim 74 \, \text{km/Mpc/s}$ [35, 36]. Interestingly, the inclusion of large-scale CMB temperature measurements by the Wilkinson Microwave Anisotropy Probe (WMAP) [37] or the Planck satellite [2] restricted to the WMAP multipole range increases the preference to $\sim 3\sigma$. A similar analysis using the third generation South Pole Telescope 2018 (SPT-3G) data [38] was presented in Ref. [39] (see also Refs. [28, 29] for previous studies using SPTpol). There is no evidence for EDE over ΛCDM using SPT-3G alone or when combined with the Planck temperature power spectrum restricted to $\ell < 650$, giving the marginalized constraint $f_{\text{EDE}}(z_c) < 0.2$ at 95% CL in the latter case. Combining ACT DR4 and/or SPT-3G with the full Planck CMB power spectra returns an upper limit on $f_{\text{EDE}}(z_c)$, albeit less restrictive than for Planck alone.

In Refs. [35, 36] it was argued that the ACT DR4 preference for EDE is mainly driven by a feature in the ACT DR4 EE power spectrum around $\ell \sim 500$ when ACT DR4 is considered alone, with an additional broadly-distributed contribution from the TE spectrum when in combination with restricted Planck TT data ($\ell < 650$ or $\ell < 1060$). Ref. [36] also considered the role of Planck polarization data, finding that the evidence for a non-zero $f_{\text{EDE}}(z_c)$ and an increased H_0 persists, as long as the Planck TT spectrum is restricted to $\ell < 1060$.

Building on these previous studies, the work presented here explores in more detail how the evidence for EDE using data from ACT DR4, SPT-3G or both data sets is impacted by the inclusion of the more precise intermediate-scale ($O(\ell) = 100$) polarization measurements by Planck. We test the robustness of the results to changes in the Planck TE polarization efficiency and the dust contamination amplitudes in Planck EE. We also further investigate the role of Planck high-ℓ TT data as well as that of several non-CMB probes.

This paper is organized as follows. In Section II we briefly summarize the numerical setup and cosmological data sets used in our analysis. In Section III we present our results, focusing on the role of Planck polarization and temperature data as well as that of possible systematic uncertainties. We conclude in Section IV with a summary and final remarks. The Appendices contain additional figures and tables.

II. ANALYSIS METHOD AND DATA SETS

For the numerical evaluation of the cosmological constraints on the models considered within this work (ΛCDM and EDE) and their statistical comparison we perform a series of Markov-chain Monte Carlo (MCMC) runs using the public code MontePython-v3 [40, 41], interfaced with our modified version of CLASS [42, 43]. We make use of a Metropolis-Hasting algorithm assuming uninformative flat priors on $\{\omega_b, \omega_{\text{cdm}}, H_0, A_s, n_s, \tau_{\text{reio}}\}$, while when considering the EDE model we also vary $\{\log_{10}(z_c), f_{\text{EDE}}(z_c), \theta_i\}$ with priors of the form $\{3 \leq \log_{10}(z_c) \leq 4, 0.001 \leq f_{\text{EDE}}(z_c) \leq 0.5, 0.01 \leq \theta_i \leq 3.1\}$. We also include all nuisance parameters associated with each data set as given by the official collaborations and treat the corresponding sets of nuisance parameters independently. As described in Ref. [26], we use a shooting method to map the set of phenomenological parameters $\{\log_{10}(z_c), f_{\text{EDE}}(z_c)\}$ to the theory parameters $\{m, f\}$. We adopt the Planck collaboration convention in modeling free-streaming neutrinos as two massless species and one massive with $m_\nu = 0.06 \, \text{eV}$ [45], and use Halofit to estimate the non-linear matter clustering [46]. We consider chains to be converged using the Gelman-Rubin [47] criterion $|R-1| \lesssim 0.05$. To post-process the chains and produce our figures we use GetDist [48].
We make use of the various Planck 2018 [2] and ACT DR4 [34] likelihoods distributed together with the public MontePython code, while the SPT-3G polarization likelihood [38] has been adapted from the official clik format10. In addition to the full Planck polarization power spectra (referred to as TEEE), we compare the use of the Planck TT power spectrum with a multipole range restricted to $\ell < 650$ (TT650), or the full multipole range (TT). The choice of Planck TT650 is motivated by the fact that the Planck and WMAP data are in excellent agreement in this multipole range [49]. In all the runs of this paper, we include the Planck low multipole ($\ell < 30$) EE likelihood to constrain the optical depth to reionization, as well as the low-ℓ TT likelihood [2]. For any data combination that includes Planck TT650 we did not restrict ACT DR4 TT. In analyses that include Planck TT at higher multipoles, we removed any overlap with ACT DR4 TT up until $\ell = 1800$ to avoid introducing correlations between the two data sets [50].

10 https://pole.uchicago.edu/public/data/dutcher21 (v3.0)

Finally, we briefly explore joint constraints from the primary CMB anisotropy data in combination with CMB lensing potential measurements from Planck [2], BAO data gathered from 6dFGS at $z = 0.106$ [51], SDSS DR7 at $z = 0.15$ [52] and BOSS DR12 at $z = 0.38, 0.51, 0.61$ [3] (both with and without information on redshift space distortions (RSD) $f\sigma_8$), data from the Pantheon catalog of uncalibrated luminosity distance of SNe in the range $0.01 < z < 2.3$ [1] as well as the late-time measurement of the H_0 value reported by the SH0ES collaboration, $H_0 = 73.04 \pm 1.04$ km/s/Mpc [13] (which we account for as a Gaussian prior on H_0).

III. RESULTS

The resulting posterior distributions of the parameters most relevant for our discussion are shown in Fig. 1 for a variety of CMB data set combinations. The mean, best-fit, and 1σ errors for the full CMB data set combination for both ΛCDM and EDE cosmologies are shown in Table I. A complete list of CMB constraints can be found in Table III provided in Appendix A.

We find that the combination of Planck TT650TEE+ ACT DR4+SPT-3G leads to a 3.3σ preference11 for EDE.

11 We compute the preference assuming that the $\Delta \chi^2$ follows a χ^2 distribution with three degrees of freedom. Because the parameters $\{z_c, \theta_i\}$ are not defined once $f_{\text{ED}} = 0$, this test-statistics does not fully encapsulate the true significance, as required by Wilks’ theorem [53]. Still, we note that it gives results more conservative than local significance tests, which would consist in computing the preference at fixed $\{z_c, \theta_i\}$, and therefore with a single degree of freedom. We keep a more detailed analysis estimating the true significance for future work, for instance following Refs. [54–56] or dedicated mock data analyses.
Fig. 2. The difference between the EDE and ΛCDM best-fit models to the data combination ACT DR4+SPT-3G+Planck TT650TEEE (solid black) and the residuals of the data points computed with respect to the ΛCDM best fit of the same data set combination (coloured data points). Although the EE power spectrum measurements around $\ell \sim 500$ of SPT-3G and Planck do not follow the same fluctuations as the ACT DR4 data, we find a 3.3σ preference for EDE over ΛCDM when fitting ACT DR4+SPT-3G+Planck TT650TEEE jointly.

A. Impact of Planck TEEE data

In the context of the EDE scenario, it was argued in Refs. [35, 36] that the preference for a non-zero $f_{\text{EDE}}(z_c)$ using ACT DR4 data alone or with additional Planck low-ℓ temperature data is driven, in part, by features in the ACT DR4 EE power spectrum around $\ell \sim 500$. The lack of such a feature in the SPT-3G data might explain why in combination with ACT DR4 these data do not show evidence for a non-zero $f_{\text{EDE}}(z_c)$ [39]. The effect of adding the Planck polarization power spectra is most apparent at the intermediate TE and EE multipoles, since it is at these scales that the Planck measurements are more constraining than those of ACT DR4 and SPT-3G.

We show the difference of the TT, TE and EE power spectra between the EDE and ΛCDM best-fit models extracted from the data set combination ACT DR4+SPT-3G+Planck TT650TEEE in Fig. 2, while in Fig. 8 of Appendix C we focus on ACT DR4 and SPT-3G data with and without Planck polarization data. The figures show that Planck TEEE data drive tight constraints on the spectra at low multipoles, with a small deviation away from ΛCDM in TE between $\ell \sim 200−800$ and in EE between $\ell \sim 500−800$ that is coherent with the behavior of the data. Remarkably, after the inclusion of Planck TEEE data, the best-fit models for ACT DR4 and SPT-3G come into better agreement. Additionally, due to the presence of EDE\(^{12}\) the TT spectrum exhibits a lower power than ΛCDM around $\ell \sim 500−1300$, which follows a trend clearly visible in ACT DR4 data. In fact, in this combined analysis of ACT DR4 with Planck TT650TEEE and SPT-3G, the preference for

\(^{12}\)For discussions about the impact of EDE on the CMB power spectra and the correlation with other cosmological parameters see Refs. [25, 27, 31, 57].
EDE within ACT DR4 data is driven almost equally by temperature \((\Delta \chi^2)\) (ACT DR4 TT) \(= -3.3\) and polarization \((\Delta \chi^2)\) (ACT DR4 TEEE) \(= -4.7\) data.

At the parameter level, the main impact of including Planck TEE in combination with Planck TT650+ACT DR4+SPT-3G is on the value of \(\omega_b\), \(z_c\), and \(\theta_i\) (for comparison, see Appendix C for analyses without Planck polarization data). For instance, ACT DR4+Planck TT650 gives \(10^{\omega_b} = 2.154^{+0.049}_{-0.040}\), \(\log_{10} (z_c) = 3.21^{+0.11}_{-0.09}\) and no constraints on \(\theta_i\) (see Table VII and Fig. 7). The inclusion of Planck polarization shifts the baryon density to \(10^{\omega_b} = 2.273^{+0.023}_{-0.023}\), tightly constrains \(\theta_i = 2.784^{+0.093}_{-0.093}\), and leads to a value of the critical redshift \(z_c\) in good agreement with that of earlier findings [25, 26, 30], namely \(\log_{10} (z_c) = 3.529^{+0.033}_{-0.045}\), i.e. a field that becomes dynamical around the time of matter-radiation equality \((\log_{10} (z_{eq}) = 3.580^{+0.022}_{-0.016}\).

Although there is an overall improvement in the \(\chi^2\) when using EDE for all of the CMB data, the inclusion of Planck polarization leads to a degradation of the fit to ACT DR4 when compared to the EDE analysis with \(\chi\) for a related discussion). As explained in Ref. [59] (see also Sec. 2.2.1 of Ref. [2] and Ref. [60]), two different approaches for the modeling of the Planck TE polarization efficiency (PE) calibration are possible\(^\text{14}\). In principle, these techniques should give equivalent results for the TE PE parameters, but in practice estimates in Planck are slightly discrepant, at the level of \(\sim 2\sigma\) (see Eqs. (45) – used as baseline – and (47) of Ref. [59]). Although these differences have a negligible impact on the parameter estimation within \(\Lambda\)CDM, it has been noted that constraints to several extensions of the \(\Lambda\)CDM model are affected by shifts in the TE PE parameters (see e.g. Fig. 77 of Ref. [59]).\(^\text{15}\)

Another potential systematic effect in the Planck data that has to be considered in beyond-\(\Lambda\)CDM models whose parameters are strongly correlated with the scalar spectral index, \(n_s\), involves the choice made for the galactic dust contamination amplitudes [59]. For the latter, the standard analysis fixes the EE polarization dust amplitudes to values determined by analyzing the 353 GHz map, while the TE dust amplitudes are subject to Gaussian priors (see Fig. 40 of the reference). Lifting such choices does not have significant effects on the parameter estimation (see again Fig. 77 of Ref. [59]), however, since \(f_{EDE}(z_c)\) is strongly correlated with \(n_s\) (as shown in Fig. 6), we test whether relaxing the dust priors may have a significant impact on our constraints to EDE.

In order to test the robustness of our results against these possible known sources of systematics, we perform two additional fits of EDE to Planck TT650+TEE data: one in which we fix the PE calibration factors to the values reported in Eq. (47) of Ref. [59], and another where we place uniform priors on six additional nuisance parameters describing the dust contamination amplitudes in the EE power spectrum. The results of this analysis are shown in Fig. 9, presented in Appendix D. We find that the Planck preference for EDE vanishes when the TE PE parameters are fixed to the non-standard values \((\Delta \chi^2 = -5.1)\). Interestingly, the ACT collaboration also found that a potential systematic error in their TE spectra can reduce the preference for EDE within ACT DR4 data [35], although not quite as drastically as we find here for Planck. On the other hand, allowing the dust contamination amplitudes in EE to vary freely has only a marginal effect on the preference for EDE \((\Delta \chi^2 = -10.2)\).

\(^{13}\) Even with this increase in the ACT DR4 \(\chi^2\), the overall goodness-of-fit as quantified by the probability-to-exceed goes from 0.17 to 0.07. Thus, in terms of the overall goodness-of-fit, both models are acceptable.

\(^{14}\) Polarization efficiencies are calibration factors multiplying polarization spectra. In principle, the polarization efficiencies found by fitting the TE spectra should be consistent with those obtained from EE. However, in Planck, small differences (at the level of 2\(\sigma\)) are found between the two estimates at 143 GHz. There are two possible choices: the ‘map-based’ approach, which adopts the estimates from EE (which are about a factor of 2 more precise than TE) for both the TE and EE spectra; or the ‘spectrum-based’ approach, which applies independent estimates from TE and EE. The baseline Planck likelihood uses a ‘map-based’ approach, but allows one to test the ‘spectrum-based’ approach as well (see also Ref. [61]), as we do in this paper.

\(^{15}\) We note that for Planck there exist other likelihood codes which may be used. In this paper we used the Plik likelihood, which is the baseline Planck likelihood for the final third data release (PR3) of the Planck collaboration. Another Planck likelihood based on PR3 is CamSpec [61, 62], which gives 0.5\(\sigma\) shifts relative to Plik in some extensions of \(\Lambda\)CDM for the TT+TEE data combination. These shifts are due to differences in the treatment of polarization data (Plik and CamSpec provide the same results in TT), which are mostly driven by different choices of polarization efficiencies (see Section 2.2.5 of [62]). Thus, applying different efficiencies to the Plik likelihood (as done in this paper) provides an accurate proxy of the uncertainty introduced by the difference between the two likelihoods. Moreover, outside of the Planck collaboration, new likelihoods (CamSpec [63], Hillipop – https://github.com/planck-npipe/hillipop) have recently been proposed based on a new release of Planck maps, NPIPE [64]. However, while the results are consistent with the ones from PR3, a detailed understanding of differences between data releases and likelihoods is outside of the scope of this paper.
Parameter	Planck TT650TEE +ACT DR4+SPT-3G +BAO+Pantheon	Planck TT650TEE +ACT DR4+SPT-3G +BAO+Pantheon	Planck TTTEEE +ACT DR4+SPT-3G +BAO+Pantheon
$f_{EDE}(z_c)$	0.148(0.163)$^{+0.034}_{-0.035}$	0.106(0.143)$^{+0.044}_{-0.034}$	$< 0.128(0.100)$
log_{10}(z_c)	3.524(3.529)$^{+0.028}_{-0.026}$	3.494(3.515)$^{+0.032}_{-0.030}$	3.511$^{-534}_{+34}$
θ_i	2.75(2.757)$^{+0.074}_{-0.065}$	2.512(2.743)$^{+0.43}_{-0.66}$	2.42(2.77)
H_0 [km/s/Mpc]	73.03(73.51)$^{+1.6}_{-1.3}$	71.45(72.53)$^{+2.1}_{-1.7}$	69.72(70.78)$^{+1.1}_{-1.1}$
$100 \omega_b$	2.273(2.272)$^{+0.016}_{-0.018}$	2.268(2.261)$^{+0.017}_{-0.020}$	2.254(2.254) $^{+0.016}_{-0.016}$
ω_{cdm}	0.1349(0.1368)$^{+0.005}_{-0.005}$	0.1303(0.1345)$^{+0.005}_{-0.003}$	0.1256(0.1299) $^{+0.0055}_{-0.0038}$
$10^9 A_s$	2.136(2.138)$^{+0.034}_{-0.036}$	2.129(2.155)$^{+0.033}_{-0.034}$	2.13(2.135)$^{+0.038}_{-0.038}$
n_s	0.9965(0.9977)$^{+0.0074}_{-0.0077}$	0.9899(0.9931)$^{+0.0092}_{-0.0076}$	0.9804(0.9846) $^{+0.0075}_{-0.0073}$
τ_{eiso}	0.0505(0.0498)$^{+0.0078}_{-0.0075}$	0.0516(0.0549)$^{+0.0071}_{-0.0074}$	0.0546(0.0521) $^{+0.0073}_{-0.0073}$
S_8	0.838(0.841)$^{+0.015}_{-0.015}$	0.836(0.845)$^{+0.014}_{-0.014}$	0.835(0.842) $^{+0.014}_{-0.014}$
Ω_m	0.297(0.297)$^{+0.007}_{-0.006}$	0.301(0.299)$^{+0.006}_{-0.007}$	0.306(0.306) $^{+0.006}_{-0.006}$
Age [Gyrs]	12.95(12.86)$^{+0.22}_{-0.23}$	13.18(12.99)$^{+0.26}_{-0.23}$	13.45(13.24)$^{+0.31}_{-0.21}$
$\Delta \chi^2_{min}(EDE - \Lambda CDM)$	-14.4	-11.4	-9.4
Preference over ΛCDM	99.8% (3.0σ)	99.0% (2.6σ)	97.6% (2.3σ)

TABLE II. The mean (best-fit) ±1σ errors of the cosmological parameters reconstructed from analyses of various data sets (see column title) in the EDE model when including data beyond Planck TT650TEE + ACT DR4+SPT-3G. For each data set, we also report the best-fit χ^2 and improvement $\Delta \chi^2 \equiv \chi^2(\text{EDE}) - \chi^2(\Lambda CDM)$.

FIG. 3. 1D and 2D posterior distributions (68% and 95% CL) for a subset of the cosmological parameters for different data set combinations fit to EDE. The vertical gray band represents the H_0 value reported by the SH0ES collaboration [13], $H_0 = 73.04 \pm 0.41$ km/s/Mpc. The non-CMB data tend to prefer lower values of n_s and ω_{cdm} leading to lower values of $f_{EDE}(z_c)$. The overall preference for EDE is relatively unchanged when including the BAO and SNe data. Including the full Planck data leads to a value of $f_{EDE}(z_c)$ consistent with zero at $\sim 1\sigma$.

C. Impact of non-CMB data

In Fig. 3 we show the 1D and 2D posteriors for a subset of the cosmological parameters when including: (i) probes of the late-time expansion history, namely BAO and the (uncalibrated) Pantheon SNe, and (ii) probes of the clustering of matter at late times, namely $f\sigma_8$ and Planck lensing. A complete list of constraints is given in Table II.

The inclusion of BAO and Pantheon SNe has a relatively small effect on the preference for EDE over ΛCDM, slightly reducing it to 3.0σ ($\Delta\chi^2 = -14.4$). On the other hand, when both $f\sigma_8$ and the Planck lensing power spectrum are included, the preference for EDE over ΛCDM is reduced to 2.6σ ($\Delta\chi^2 = -11.4$). It is well known that EDE cosmologies can be tested using measurements of the clustering of matter, since their preferred values of ω_{cdm} and n_s predict larger clustering at small scales than ΛCDM [30, 31, 65–67]. In fact, the value of $S_8 = 0.829_{-0.015}^{+0.017}$ reconstructed in the EDE cosmology from Planck TT650TEEE+3G+ACT DR4 is in slight tension with the S_8 measurements from KiDS-1000+BOSS+2dLenS [14] (2.3\σ), and DES-Y3 [15] (2.1\σ). Therefore, it is not surprising that probes of the clustering of matter at late times have a more significant impact on the EDE fit. This is evident in Fig. 3: both $f\sigma_8$ and estimates of the lensing potential power spectrum prefer lower values of n_s and ω_{cdm}, leading to a decrease in the marginalized values of $f\sigma_8(z_c)$. However, it is interesting to note that the resulting posterior distribution for the Hubble constant shifts to $H_0 = 71.45_{-1.7}^{+2.1}$ km/s/Mpc, i.e. with a central value still significantly higher than in ΛCDM. Stronger constraints on EDE may be obtained from analyses making use of the full shape of BOSS DR12 data [65, 66] or from including additional surveys such as KiDS-1000 [70], DES-Y3 [15] and HSC [71]. A fully satisfactory resolution of the ‘S_8 tension’, if not due to systematic errors, e.g. from galaxy assembly bias and baryonic effects [72], may require a more complicated EDE dynamics [73–75] or an independent mechanism [22, 76, 77].

Finally, in Appendix E we present results of combined analyses with a prior on H_0 as reported by SH0ES [13]. We find that when considering the combination of Planck TT650TEEE+ACT DR4+SPT-3G+BAO+Pantheon+SH0ES the EDE model is favored at 5.3σ over ΛCDM, with $f\sigma_8(z_c) = 0.143_{-0.026}^{+0.023}$ and $H_0 = 72.81_{-0.98}^{+0.82}$ km/s/Mpc. The inclusion of the full Planck TT power spectrum, lensing power spectrum and $f\sigma_8$ measurement reduces the preference to 4.3σ, but the EDE model still provides an excellent fit to all data sets, and a potential resolution to the ‘Hubble tension’.

D. Impact of Planck high-ℓ TT data

In Fig. 3 we show the parameter reconstructed posteriors when including the full range of the Planck TT power spectrum. In that case, we find that the EDE contribution is constrained to be at most $f\sigma_8(z_c) < 0.128$ (95\% CL) with a corresponding $H_0 = 69.7_{-1.8}^{+1.4}$ km/s/Mpc (see Table II), while the preference for EDE drops to the 2.3σ level (with a best fit value $f\sigma_8(z_c) = 0.1$). We note that, although the posterior distribution of $f\sigma_8(z_c)$ is compatible with zero at 1σ, it is interesting that the preference, computed using the $\Delta\chi^2$ statistics with three degrees of freedom [18], stays above the 2σ level. This is reminiscent of the difference between the results reported using an EDE model with only one parameter [30, 32, 78], or using a frequentist approach through a profile likelihood analysis [33], which led to a 2.2σ preference for EDE from full Planck data, as opposed to MCMC analyses that only find upper limits on $f\sigma_8(z_c)$ [30, 31]. In addition to this, the marginalized constraints on $f\sigma_8(z_c)$ using Planck TT650TEEE with ACT DR4 and SPT-3G are roughly 50% weaker than constraints from Planck only.

Given that the posterior distribution of $f\sigma_8(z_c)$ is compatible with zero at 1σ, we conservatively interpret these results as an indication that the full Planck TT power spectrum slightly disfavors the EDE cosmology preferred by the other data sets. We leave a more robust determination of this (in)consistency to future work.

We show in Fig. 4 the difference between the temperature power spectra obtained in the EDE best-fit to Planck TT650TEEE+ACT DR4+SPT-3G or full Planck TT650TEEE+ACT DR4+SPT-3G, and the ΛCDM fit to full Planck TT650TEEE+ACT DR4+SPT-3G. We also show Planck TT data residuals with respect to the ΛCDM model. To gauge the role of foregrounds in affecting the preference for EDE, we compare the data residuals for the foreground models obtained from the restricted fit to those obtained in the fit to the full range of data. One can see that data residuals are fairly similar, indicating that high-ℓ foregrounds are not strongly correlated with EDE, and cannot be the reason for which Planck high-ℓ TT data seems to disfavor EDE. Additionally, one may see that data points up to $\ell \sim 850$ are in good agreement with the EDE best-fit model, but start diverging around $\ell \sim 900$.

To better understand the impact of the Planck TT power spectrum, in Fig. 5 we show how the preference for EDE evolves as we increase the considered range of the

16 The level of tension is in fact smaller than in the fiducial Planck ΛCDM cosmology [14, 15, 62], but it is slightly larger than in the ΛCDM cosmology extracted from Planck TT650TEEE+SPT-3G+ACT DR4, see Tab. I.

17 Although these constraints are debated [30, 32, 67, 68] and a recently raised potential issue with the calibration of the window function may affect such constraints [69].

18 This likely indicates that the true significance of the preference over ΛCDM is lower than the one reported here, similarly to the way with which local and global significance can differ.
FIG. 4. Residual plot of the Planck TT data with respect to the reference ΛCDM best-fit model for the Planck TTTEEE+ACT DR4+SPT-3G data set combination. The orange line corresponds to the difference between the EDE best-fit model to the data combination Planck TT650TEEE+ACT DR4+SPT-3G (‘EDE TT650’ in the legend) and the reference ΛCDM model. The blue line is the same for full Planck TTTEEE+ACT DR4+SPT-3G (‘EDE’ in the legend). Coadded data residuals are computed with respect to the reference ΛCDM cosmological model but using the best-fit nuisance parameters for each of the two EDE cases (TT650 for the red points and full TT for the blue ones). Since in the TT650 case the high-ℓ data, shown in red transparent data points, do not enter the parameter determination, high-ℓ foreground parameters are not determined. Therefore, in this case they have been obtained by minimizing the Planck TT likelihood when fixing the C_ℓ and low-ℓ nuisances to the Planck TT650TEEE+ACT DR4+SPT-3G best-fit model. At ℓ > 900, the red transparent residual data points are very close to the blue ones, which indicates that the difference in nuisance parameters between the two cases is small. The high-ℓ orange best-fit line predicted by the EDE TT650 case is far from the residual data points, regardless of the nuisance model chosen. It is therefore the high-ℓ TT data which drives the best-fit closer to ΛCDM, from the orange line toward the blue one.

Planck TT power spectrum in steps of Δℓ = 100. The evidence for EDE over ΛCDM (and the corresponding increased value of H_0) starts to drop off once the TT multipoles ℓ ≥ 1300 are included. This is consistent with the fact that Planck gains most of its statistical power between ℓ ∼ 1300 and ℓ ∼ 2000, and drives the model to be extremely close to ΛCDM. Given that high-ℓ ACT DR4 temperature power spectrum is partly driving the preference for EDE, as mentioned previously, this may hint to a small inconsistency between Planck and ACT DR4 temperature data (see also Ref. [58]), although at the current level of significance a statistical fluctuation cannot be ruled out.

IV. SUMMARY AND CONCLUSIONS

We have found that when analyzing EDE using ACT DR4, SPT-3G, and Planck measurements of the CMB a consistent story emerges if we exclude the Planck temperature power spectrum at high-ℓ: an EDE component consisting of ∼ 10 − 15% of the total energy density at a redshift $\log_{10}(z_c) \simeq 3.5$ with an initial field displacement of $\theta_i \simeq 2.7$ and a corresponding increase in the inferred value of the Hubble constant with $H_0 \simeq 73 − 74$ km/s/Mpc, in contrast to ΛCDM which gives $H_0 \simeq 68$ km/s/Mpc (see Table III).

Such hints for an EDE cosmology are present when combining Planck polarization power spectra with Planck TT excised at ℓ > 650 (2.2σ), and when adding ACT DR4 (3.3σ) or SPT-3G (2.4σ). Combining all three CMB data sets yields a 3.3σ preference for EDE over ΛCDM. The inclusion of the Planck polarization data effectively removes the differences between the best-fits of the measurements of the lowest polarization multipoles by ACT DR4 and SPT-3G, and emphasizes the new information that these observations provide. Indeed, together with Planck polarization data the EDE best-fits for both ACT DR4 and SPT-3G visually come into closer agreement (although a more careful analysis of their consistency is left for future work). This preference remains at the 3σ level when adding the Pantheon SNe and the BAO standard ruler, increases above 5σ when including an H_0 prior from SH0ES, and is mildly reduced when considering CMB lensing potential data or estimates of f_{σ_8}.

We find that these results remain unchanged when increasing the maximum Planck TT multipole until

19 Here we do not include the SPT-3G data for sake of computational speed, but we have explicitly checked with a few dedicated runs that its addition does not impact our conclusions.
The authors thank J. Colin Hill, Thibault Louis and Adam G. Riess for useful comments and suggestions. This work used the Strelka Computing Cluster, which is run by Swarthmore College. TLS is supported by NSF Grant No. 2009377, NASA Grant No. 80NSSC18K0728, and the Research Corporation. ML is supported by

\[f_{EDE}(z_c) \] and \(H_0 \) as a function of the maximum TT multipole for Planck TT(\(\ell_{\text{max}} \))TEEE+ACT DR4. The yellow and purple bands in the bottom panel give the S$_\text{ESS}$ and the full Planck values for \(H_0 \), respectively. Note that, following Ref. \[50\], in the chains used to make this figure we restricted the ACT DR4 temperature bins so as to remove any overlap with Planck up until \(\ell_{\text{max}} = 1800 \). As the Planck TT \(\ell_{\text{max}} \) is increased the preference for a non-zero contribution of EDE is decreased, leading to a smaller inferred value of \(H_0 \).

\(\ell = 1300 \). On the contrary, the inclusion of small angular scale data from the Planck temperature power spectrum above that multipole decreases this preference to 2.3\(\sigma \) (in the absence of a \(H_0 \) prior). This is consistent with the fact that Planck high-\(\ell \) TT data have most of their constraining power at those scales, and drive parameters very close to their ΛCDM values, limiting the ability to exploit degeneracies between ΛCDM and EDE parameters. There have been several previous studies looking into the consistency between the ‘low’ (\(\ell \lesssim 1000 \)) and ‘high’ TT multipoles (see e.g. Refs. \[2, 79, 80\]). The high-\(\ell \) TT power spectrum has a slight (\(\sim 2\sigma \)) preference for higher \(\omega_{\text{cdm}} \), higher amplitude (\(A_{\ell} e^{-2\tau_{\text{reio}}} \)), and lower \(H_0 \). However, an exhaustive exploration of these shifts indicates that they are all consistent with expected statistical fluctuations [80]. Although there may be localized features in the high-\(\ell \) TT power spectrum which are due to improperly modeled foregrounds (see Sec. 6.1 in Ref. \[2\]), under the assumption of ΛCDM there is no evidence that these data are broadly biased. However, it is interesting to note that the ACT DR4 TT data at these multipoles are consistent with the preference for EDE.

Moreover, it is well known that Planck polarization data may suffer from some systematic uncertainties which may, in turn, impact our conclusions. The most significant potential source of systematics would imply a change in the TE polarization efficiencies. We explore this by re-analyzing the Planck constraints on EDE using different TE polarization efficiencies and find that the Planck TT650TEEE preference for EDE largely reduces. A similar analysis conducted in Ref. \[35\] accounted for a possible unknown source of systematics in ACT DR4 TE data and showed that it also reduces the ACT DR4’s preference for EDE. When allowing the EE dust amplitudes to vary we found almost no change to the constraints on EDE.

It is thus clear that future, high-precision, CMB temperature and polarization data will be necessary to disentangle whether the reported preference for EDE over ΛCDM is driven by systematics or a hint of new physics (or, possibly, a statistical fluctuation). In particular, the precision expected from upcoming data releases from SPT and ACT (as mentioned in the conclusions of Refs. \[34, 38, 44, 81\]) with combined temperature, polarization, and lensing likelihoods will be capable of constraining the parameter space of the EDE model even more tightly\(^{20}\) as well as of clarifying how the small-scale CMB TT measurements impact the EDE constraints.

This will not only provide a valuable cross-check on the Planck measurements, but also an opportunity to obtain tight and robust constraints through joint analyses, which can be of primary importance to test physics scenarios beyond ΛCDM with CMB data (as in the case of e.g. primordial magnetic fields \[22, 83\], sterile neutrino self-interactions \[84\] and New EDE \[78, 85\]) as our work demonstrates. In fact, based on the analyses previously conducted in \[21, 36\], we also carried out preliminary tests to check whether the same data set combinations that lead to a preference for EDE would also display a similar behavior in other beyond-ΛCDM models (such as New EDE and varying electron mass), finding that this is not the case. The same conclusion was also recently reached in \[86\] in the context of the Wess Zumino Dark Radiation model introduced in \[87\]. Although a more in-depth analysis is left for future work, this is already indicative of the very important role that future data might play in testing and distinguishing non-standard cosmological models.

\[^{20}\] In the future, CMB spectral distortions will also be able to determine the value of \(n_s \) with a high significance, thereby testing the EDE ability to address the \(H_0 \) tension independently of CMB anisotropy data \[82\].

ACKNOWLEDGMENTS
an F.R.S.-FNRS fellowship, by the ‘Probing dark matter with neutrinos’ ULB-ARC convention and by the IISN convention 4.4503.15. LB acknowledges support from the University of Melbourne and the Australian Research Council (DP210102386). SG is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 101001897). This work has been partly supported by the CNRS-IN2P3 grant Dark21. The authors acknowledge the use of computational resources from the Excellence Initiative of Aix-Marseille University (A*MIDEX) of the “Investissements d’Avenir” programme. This project has received support from the European Union’s Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement No 860881-HIDDeN.

[1] D. M. Scolnic et al., “The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample,” Astrophys. J. 859, 101 (2018), arXiv:1710.00845 [astro-ph.CO].
[2] N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020), [Erratum: Astron. Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
[3] Shadab Alam et al. (BOSS), “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,” Mon. Not. Roy. Astron. Soc. 470, 2617-2652 (2017), arXiv:1607.03155 [astro-ph.CO].
[4] T. M. C. Abbott et al. (DES), “Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing,” Phys. Rev. D98, 043526 (2018), arXiv:1708.01530 [astro-ph.CO].
[5] H. Hildebrandt et al., “KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data,” Astron. Astrophys. 633, A69 (2020), arXiv:1812.06076 [astro-ph.CO].
[6] eBOSS Collaboration, Shadab Alam, et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from two Decades of Spectroscopic Surveys at the Apache Point observatory,” arXiv e-prints, arXiv:2007.08991 (2020), arXiv:2007.08991 [astro-ph.CO].
[7] L. Verde, T. Treu, and A. G. Riess, “Tensions between the Early and the Late Universe,” in Nature Astronomy 2019 (2019) arXiv:1907.10625 [astro-ph.CO].
[8] S. Joudaki et al., “KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear,” Astron. Astrophys. 638, L1 (2020), arXiv:1906.09262 [astro-ph.CO].
[9] Adam G. Riess, Stefano Casertano, Wilenlong Yuan, J. Bradley Bowers, Lucas Macri, Joel C. Zinn, and Dan Scolnic, “Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ACDM,” Astrophys. J. Lett. 908, L6 (2021), arXiv:2012.08534 [astro-ph.CO].
[10] John Soltis, Stefano Casertano, and Adam G. Riess, “The Parallax of ω Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant,” Astrophys. J. Lett. 908, L5 (2021), arXiv:2012.09196 [astro-ph.GA].
[11] D. W. Pesce et al., “The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints,” (2020), arXiv:2001.09213 [astro-ph.CO].
[12] John P. Blakeslee, Joseph B. Jensen, Chung-Pei Ma, Peter A. Milne, and Jenny E. Greene, “The Hubble Constant from Infrared Surface Brightness Fluctuation Distances,” Astrophys. J. 911, 65 (2021), arXiv:2101.02221 [astro-ph.CO].
[13] Adam G. Riess et al., “A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team,” (2021), arXiv:2112.04510 [astro-ph.CO].
[14] Catherine Heymans et al., “KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints,” Astron. Astrophys. 646, A140 (2021), arXiv:2007.15652 [astro-ph.CO].
[15] T. M. C. Abbott et al. (DES), “Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing,” (2021), arXiv:2105.15549 [astro-ph.CO].
[16] Wendy L. Freedman et al., “The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch,” (2019), 10.3847/1538-4357/abf7f3, arXiv:1907.05922 [astro-ph.CO].
[17] Wendy L. Freedman, Barry F. Madore, Taylor Hoyt, In Sung Jang, Rachael Beaton, Myung Gyoon Lee, Andrew Monson, Jill Neeley, and Jeffrey Rich, “Calibration of the Tip of the Red Giant Branch (TRGB),” (2020), arXiv:2002.01550 [astro-ph.GA].
[18] Wendy L. Freedman, “Measurements of the Hubble Constant: Tensions in Perspective,” (2021), arXiv:2106.15656 [astro-ph.CO].
[19] Gagandeep S. Anand, R. Brent Tully, Luca Rizzi, Adam G. Riess, and Wenlong Yuan, “Comparing Tip of the Red Giant Branch Distance Scales: An Independent Reduction of the Carnegie-Chicago Hubble Program and the Value of the Hubble Constant,” (2021), arXiv:2108.00007 [astro-ph.CO].
[20] Eleonora Di Valentino, Olga Mena, Supriya Pan, Luca Visinelli, Wei Qiang Yang, Alessandro Melchiorri, David F. Mota, Adam G. Riess, and Joseph Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav. 38, 153001 (2021), arXiv:2103.01183 [astro-ph.CO].
[21] Nils Schöneberg, Guillermo Franco Abellán, Andrea Pérez Sánchez, Samuel J. Witte, Vivian Poulin, and Julien Lesgourgues, “The H0 Olympics: A fair ranking of proposed models,” (2021), arXiv:2107.10291 [astro-ph.CO].
[22] Karsten Jedamzik, Levon Pogosian, and Gong-Bo Zhao, “Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension,” Commun. in Phys. 4, 123 (2021), arXiv:2010.04158 [astro-ph.CO].
[23] Tanvi Karwal and Marc Kamionkowski, “Dark energy at early times, the Hubble parameter, and the string universe,” Phys. Rev. D 94, 103523 (2016), arXiv:1608.01309 [astro-ph.CO].

[24] Vivian Poulin, Tristan L. Smith, Daniel Grin, Tanvi Karwal, and Marc Kamionkowski, “Cosmological implications of ultralight axionlike fields,” Phys. Rev. D 98, 083525 (2018), arXiv:1806.10608 [astro-ph.CO].

[25] Vivian Poulin, Tristan L. Smith, Tanvi Karwal, and Marc Kamionkowski, “Early Dark Energy Can Resolve The Hubble Tension,” Phys. Rev. Lett. 122, 221301 (2019), arXiv:1811.04083 [astro-ph.CO].

[26] Tristan L. Smith, Vivian Poulin, and Mustafa A. Amin, “Oscillating scalar fields and the Hubble tension: a resolution with novel signatures,” Phys. Rev. D 101, 063523 (2020), arXiv:1908.06995 [astro-ph.CO].

[27] Lloyd Knox and Marius Millea, “Hubble constant hunter’s guide,” Phys. Rev. D 101, 043533 (2020), arXiv:1908.03663 [astro-ph.CO].

[28] Anton Chudaykin, Dmitry Gorbunov, and Nikita Nedelko, “Combined analysis of Planck and SPTPol data favors the early dark energy models,” JCAP 08, 013 (2020), arXiv:2004.13046 [astro-ph.CO].

[29] Anton Chudaykin, Dmitry Gorbunov, and Nikita Nedelko, “Exploring an early dark energy solution to the Hubble tension with Planck and SPTPol data,” Phys. Rev. D 103, 043529 (2021), arXiv:2011.04682 [astro-ph.CO].

[30] Riccardo Murgia, Guillermo F. Abellán, and Vivian Poulin, “Early dark energy resolution to the Hubble tension in light of weak lensing surveys and lensing anomalies,” Phys. Rev. D 103, 063502 (2021), arXiv:2009.10733 [astro-ph.CO].

[31] J. Colin Hill, Evan McDonough, Michael W. Toomey, and Stephon Alexander, “Early dark energy does not restore cosmological concordance,” Phys. Rev. D 102, 043507 (2020), arXiv:2003.07355 [astro-ph.CO].

[32] Tristan L. Smith, Vivian Poulin, José Luis Bernal, Kimberly B. Boddy, Marc Kamionkowski, and Riccardo Murgia, “Early dark energy is not excluded by current large-scale structure data,” Phys. Rev. D 103, 123542 (2021), arXiv:2009.10740 [astro-ph.CO].

[33] Laura Herold, Elisa G. M. Ferreira, and Eiichiro Komatsu, “New constraint on Early Dark Energy from Planck and BOSS data using the profile likelihood,” (2021), arXiv:2112.12140 [astro-ph.CO].

[34] Steve K. Choi et al. (ACT), “The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz,” JCAP 12, 045 (2020), arXiv:2007.07289 [astro-ph.CO].

[35] J. Colin Hill et al., “The Atacama Cosmology Telescope: Constraints on Pre-Recombination Early Dark Energy,” (2021), arXiv:2109.04451 [astro-ph.CO].

[36] Vivian Poulin, Tristan L. Smith, and Alexa Bartlett, “Dark Energy at early times and ACT: a larger Hubble constant without late-time priors,” (2021), arXiv:2109.06229 [astro-ph.CO].

[37] C. L. Bennett et al. (WMAP), “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results,” Astrophys. J. Suppl. 208, 20 (2013), arXiv:1212.5225 [astro-ph.CO].

[38] D. Dutcher et al. (SPT-3G), “Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data,” Phys. Rev. D 104, 022003 (2021), arXiv:2101.01684 [astro-ph.CO].

[39] Adrien La Posta, Thibaut Louis, Xavier Garrido, and J. Colin Hill, “Constraints on Pre-Recombination Early Dark Energy from SPT-3G Public Data,” (2021), arXiv:2112.10754 [astro-ph.CO].

[40] Benjamin Audren, Julien Lesgourgues, Karim Benabed, and Simon Prunet, “Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code,” JCAP 1302, 001 (2013), arXiv:1210.7183 [astro-ph.CO].

[41] Thejs Brinckmann and Julien Lesgourgues, “MontePython 3: boosted MCMC sampler and other features,” (2018), arXiv:1804.07261 [astro-ph.CO].

[42] Julien Lesgourgues, “The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview,” (2011), arXiv:1104.2932 [astro-ph.IM].

[43] Diego Blas, Julien Lesgourgues, and Thomas Tram, “The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes,” JCAP 1107, 034 (2011), arXiv:1104.2933 [astro-ph.CO].

[44] Simone Aiola et al. (ACT), “The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters,” JCAP 12, 047 (2020), arXiv:2007.07288 [astro-ph.CO].

[45] Peter Ade et al. (Simons Observatory), “The Simons Observatory: Science goals and forecasts,” JCAP 02, 056 (2019), arXiv:1808.07445 [astro-ph.CO].

[46] R. E. Smith, J. A. Peacock, A. Jenkins, S. D. M. White, C. S. Frenk, F. R. Pearce, P. A. Thomas, G. Efstathiou, and H. M. P. Couchmann (VIRGO Consortium), “Stable clustering, the halo model and nonlinear cosmological power spectra,” Mon. Not. Roy. Astron. Soc. 341, 1311 (2003), arXiv:astro-ph/0207664.

[47] Andrew Gelman and Donald B. Rubin, “Inference from Iterative Simulation Using Multiple Sequences,” Statist. Sci. 7, 457–472 (1992).

[48] Antony Lewis, “GetDist: a Python package for analysing Monte Carlo samples,” (2019), arXiv:1910.13970 [astro-ph.IM].

[49] Y. Huang, G. E. Addison, J. L. Weiland, and C. L. Bennett, “Assessing Consistency between WMAP 9 Year and Planck 2015 Temperature Power Spectra,” Astrophys. J. 869, 38 (2018), arXiv:1804.05428 [astro-ph.CO].

[50] Simone Aiola et al. (ACT), “The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters,” (2020), arXiv:2007.07288 [astro-ph.CO].

[51] Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister Staveley-Smith, Lachlan Campbell, Quentin Parker, Will Saunders, and Fred Watson, “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,” Mon. Not. Roy. Astron. Soc. 416, 3017–3032 (2011), arXiv:1106.3366 [astro-ph.CO].

[52] Ashley J. Ross, Lado Samushia, Cullan Howlett, Will J. Percival, Angela Burden, and Marc Manera, “The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z = 0.15,” Mon. Not. Roy. Astron. Soc. 449, 835–847 (2015), arXiv:1409.3242 [astro-ph.CO].

[53] S. S. Wilks, “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses,” Annals Math. Statist. 9, 60–62 (1938).

[54] Eilam Gross and Ofer Vitells, “Trial factors for the look elsewhere effect in high energy physics,” Eur. Phys. J. C 70, 525–530 (2010), arXiv:1005.1891 [physics.data-an].
Appendix A: Supplementary material on the CMB constraints

In this appendix we provide constraints on the EDE model for different combinations of CMB probes (Fig. 6 and Table III) to be compared with those already presented in Table I for the full combination ACT DR4+SPT-3G+Planck TT650TEEE (which we repeat in the right column of Table III for convenience). Additional discussion about the behaviours of the single parameters can be found in e.g. [24–26, 31].

![Appendix A: Supplementary material on the CMB constraints](image)

FIG. 6. A triangle plot displaying the posterior distributions of the full set of cosmological parameters for the same data set combinations shown in Fig. 1.
TABLE III. The mean (best-fit) ±1σ errors of the cosmological parameters reconstructed from analyses of various data sets (see column title) in the EDE model. For each data set, we also report the best-fit χ^2 and the $\Delta \chi^2 \equiv \chi^2(\text{EDE}) - \chi^2(\Lambda\text{CDM})$.

Appendix B: Supplementary tables of χ_{min}^2 values per experiment

In this appendix we report a complete breakdown of the best-fit χ^2 per experiment for both the ΛCDM (Table IV) and EDE (Table V) models. In Table VI we also focus on the dependence of the best-fit χ^2 values on the exclusion of Planck polarization data.

Parameter	Planck TT650TEE + ACT DR4	Planck TT650TEE + SPT-3G	Planck TT650TEE + ACT DR4 + SPT-3G
f_{EDE}	0.101(0.163) ±0.024	0.123(0.156) ±0.024	0.163(0.179) ±0.029
θ_1	3.585(3.573) ±0.003	3.529(3.521) ±0.004	3.566(3.570) ±0.008
Ω_m	2.262(2.732) ±0.012	2.784(2.806) ±0.009	2.5(2.706) ±0.36
H_0 [km/s/Mpc]	71.74(74.30) ±3.3	71.74(74.30) ±3.3	72.58(73.91) ±3.3
ω_{cdm}	0.1291(0.1351) ±0.0059	0.1362(0.1376) ±0.0068	0.1307(0.1339) ±0.0063
$10^9 A_s$	2.116(2.132) ±0.043	2.155(2.159) ±0.041	2.109(2.12) ±0.04
τ_{reio}	0.9886(0.998) ±0.013	1(1.0022) ±0.01	0.9926(0.9978) ±0.011
S_8	0.823(0.822) ±0.024	0.835(0.834) ±0.021	0.818(0.819) ±0.021
Ω_m	0.297(0.288) ±0.012	0.291(0.288) ±0.011	0.293(0.288) ±0.011
$\Delta \chi_{\text{min}}^2$	-9.4	-16.1	-10.4
Preference over ΛCDM	2.2σ	3.3σ	2.4σ

ACDM

Planck high−ℓ TT650TEE | 1839.9 | 1843.2 | 1841.3 | 1842.3 | 1842.8 | 1842.4 | – |
Planck low−ℓ EE | 395.6 | 395.7 | 395.7 | 395.7 | 396.1 | 395.9 |
Planck low−ℓ TT | 22.1 | 21.7 | 21.8 | 21.7 | 21.3 | 21.4 | 22.1 |
ACT DR4a | – | 293.8 | – | 296.0 | 296.4 | 296.0 | 242.3 |
SPT-3G | – | 517.6 | 519.0 | 518.4 | 523.7 | 520.3 |
Pantheon SN1a | – | – | – | – | 1026.8 | 1027.0 | 1026.9 |
BOSS BAO low−z | – | – | – | 1.5 | 1.6 | 1.3 |
BOSS BAO DR12 | – | – | – | 3.7 | – | 4.1 |
BOSS BAO/DES DR12 | – | – | – | – | 6.0 | – |
Planck lensing | – | – | – | – | 9.0 | – |
Planck high−ℓ TTEEE | – | – | – | – | – | 2349.4 |

Total χ_{min}^2 | 2257.6 | 2554.4 | 2776.4 | 3074.7 | 4106.6 | 4123.2 | 4562.3 |

*In the last column, ACT DR4 data are restricted to $\ell > 1800$.

TABLE IV. Best-fit χ^2 per experiment (and total) for ΛCDM when fit to different data combinations. Each column corresponds to a different data set combination.
In this appendix we compare results with and without Planck polarization data. In Table VII we present results of analyses performed with ACT DR4, SPT-3G and Planck TT650 data including a prior on the optical depth to reionization as measured by Planck within ΛCDM, τ = 0.0543 ± 0.0073 (but no polarization data). A graphical representation of the posterior distributions of the parameters most relevant for our discussion is shown in Fig. 7. In particular, one can see how the inclusion of the Planck polarization data significantly narrows the posterior for θi and log(10(zc)), favoring values of zc ∼ 10^{3.5} and θi ∼ 2.8. These are slightly larger than the results from analyses combining ACT DR4 with Planck TT650 (although compatible at ∼ 2σ), and in good agreement with results from past studies combining Planck with a SH0ES prior [25, 26, 30]. Furthermore, to illustrate the role of Planck polarization data at the spectrum level, we compare in Fig. 8 the TT, TE and EE power spectra between the EDE and ΛCDM best-fit models obtained when analyzing ACT DR4 and SPT-3G data with and without Planck polarization data.
Parameter	Planck TT650+τ +ACT DR4	Planck TT650+τ +SPT-3G	Planck TT650+τ +ACT DR4+SPT-3G
$f_{\text{EDE}}(z_c)$	0.121(0.113)$^{+0.029}_{-0.47}$	< 0.203(0.148)	0.102(0.099)$^{+0.134}_{-0.057}$
$\log_{10}(z_c)$	3.208(3.221)$^{+0.095}_{-0.095}$	3.46(3.56)$^{+0.19}_{-0.20}$	3.25(3.295)$^{+0.15}_{-0.15}$
θ_i	unconstrained (0.561)	unconstrained (2.623)	unconstrained (0.474)
H_0 [km/s/Mpc]	73.22(73.36)$^{+2.3}_{-3.3}$	72.3(73.89)$^{+1.9}_{-3.6}$	72.94(73.26)$^{+2.8}_{-2.8}$
$10^3 \omega_b$	2.154(2.145)$^{+0.04}_{-0.04}$	2.272(2.290)$^{+0.039}_{-0.044}$	2.219(2.216)$^{+0.03}_{-0.038}$
ω_{cdm}	0.1308(0.1303)$^{+0.0053}_{-0.0092}$	0.1233(0.1304)$^{+0.005}_{-0.01}$	0.1279(0.1283)$^{+0.0049}_{-0.0086}$
$10^9 A_s$	2.12(2.118)$^{+0.048}_{-0.062}$	2.09(2.105)$^{+0.041}_{-0.051}$	2.119(2.121)$^{+0.041}_{-0.042}$
n_s	0.9785(0.9781)$^{+0.017}_{-0.017}$	0.9878(0.9964)$^{+0.011}_{-0.018}$	0.988(0.9883)$^{+0.017}_{-0.017}$
τ_{reio}	0.0547(0.0547)$^{+0.0075}_{-0.0076}$	0.0541(0.0532)$^{+0.0075}_{-0.0076}$	0.0546(0.0546)$^{+0.0073}_{-0.0071}$
S_8	0.809(0.806)$^{+0.044}_{-0.048}$	0.782(0.797)$^{+0.043}_{-0.117}$	0.803(0.804)$^{+0.034}_{-0.032}$
Ω_m	0.286(0.283)$^{+0.018}_{-0.019}$	0.281(0.282)$^{+0.018}_{-0.019}$	0.284(0.282)$^{+0.015}_{-0.017}$
Age [Gyrs]	13.06(13.05)$^{+0.42}_{-0.24}$	13.29(12.97)$^{+0.49}_{-0.19}$	13.14(13.09)$^{+0.39}_{-0.33}$
$\Delta \chi^2_{\text{min}}(\text{EDE} - \Lambda\text{CDM})$	-16.9	-5.3	-9.9
Preference over ΛCDM	3.4σ	1.4σ	2.3σ

TABLE VII. The mean (best-fit) ±1σ errors of the cosmological parameters reconstructed from analyses of various data sets (see column title) in the EDE model. For each data set, we also report the best-fit χ^2 and the $\Delta \chi^2 \equiv \chi^2(\Lambda\text{CDM}) - \chi^2(\text{EDE})$.

![Graphical representation of the posterior distributions](image-url)

FIG. 7. 1D and 2D posterior distributions (68% and 95% CL) for different data set combinations with and without *Planck* polarization measurements. The vertical gray band represents the H_0 value $H_0 = 73.04 \pm 1.04$ km/s/Mpc as reported by the SH0ES collaboration [13]. The inclusion of *Planck* polarization significantly narrows the posterior for θ_i and $\log_{10}(z_c)$.
FIG. 8. Difference plots (in units of μK^2) of the CMB-only TT, TE and EE power spectra between their respective EDE and ΛCDM best-fit models for various data set combinations. The addition of Planck TEEE data to Planck TT650 and either SPT-3G (dashed to solid orange) or ACT DR4 (dashed to solid blue) leads to similar CMB spectra. This indicates that these joint fits favor the same EDE model. The combination of Planck TT650+TEEE+ACT DR4+SPT-3G is shown in purple.

Appendix D: Supplementary material on tests for systematic errors within Planck polarization data

We present in this appendix the results of two tests for systematic errors within Planck TEEE data. First, we test a different approach for the modeling of the Planck TE polarization efficiency (PE) calibration and, second, we test the impact of galactic dust contamination amplitudes [59] (see Section III B for more details on these two sources of systematics). We show the result of our analyses of Planck TT650+low-ℓ TTEE data in Fig. 9, where we plot the reconstructed 1D and 2D posterior distributions for the most relevant parameters for our discussion. As was discussed in the main text, one can see that if the PE is chosen to be different than the baseline, the posterior for $f_{\text{EDE}}(z_c)$ becomes compatible with zero, and we derive $f_{\text{EDE}}(z_c) < 0.151$ (95\%C.L.) with $\Delta \chi^2 = -5.1$. On the other hand, placing uniform priors on the dust contamination amplitude does not alter our results, as we reconstruct $f_{\text{EDE}}(z_c) = 0.131^{+0.085}_{-0.049}$ with $\Delta \chi^2 = -10.2$.
FIG. 9. 1D and 2D posterior distributions (68% and 95% CL) of \{H_0, f_{EDE}(z_c), \theta_i, \log_{10}(z_c), n_s\} reconstructed from Planck TT650TEEE when considering two potential type of systematic errors (Planck TE polarization efficiency and dust contamination) compared to the fiducial run.

Appendix E: Supplementary material on results with a SH₀ES prior on H₀

In this appendix we present results of the analyses that include a late-time prior on H₀ as measured by SH₀ES. We perform one analysis that includes Planck TT650TEEE, ACT DR4, SPT-3G, BAO and Pantheon data, and another that consider the full Planck temperature power spectrum, as well as fσ_8 and Planck lensing (φφ) data. A complete list of constraints is given in Table VIII and the χ^2 per experiments are reported in Table IX.
Parameter	Planck TT650TEEES +ACT DR4+SPT-3G +BAO+Pantheon+SH0ES	Planck TTTEEES +ACT DR4+SPT-3G+φφ +BAO/fσ8+Pantheon+SH0ES
f_{EDE}(z_e)	0.143(0.153)^{+0.043}_{-0.026}	0.116(0.115)^{+0.043}_{-0.022}
log_{10}(z_e)	3.523(3.525)^{+0.032}_{-0.027}	3.543(3.510)^{+0.031}_{-0.036}
θ_1	2.731(2.761)^{+0.098}_{-0.061}	2.75(2.81)^{+0.09}_{-0.06}
H_0 [km/s/Mpc]	72.81(73.08)^{+0.082}_{-0.08}	71.68(71.23)^{+0.067}_{-0.06}
100 ω_b	2.275(2.268)^{+0.017}_{-0.019}	2.264(2.242)^{+0.014}_{-0.014}
ω_{cdm}	0.1342(0.1355)^{+0.0032}_{-0.0033}	0.131(0.132)^{+0.003}_{-0.003}
10^3 A_s	2.137(2.140)^{+0.0038}_{-0.0035}	2.147(2.125)^{+0.026}_{-0.028}
n_s	0.9956(0.9955)^{+0.0057}_{-0.0056}	0.9887(0.9833)^{+0.0052}_{-0.0058}
τ_{reio}	0.0509(0.0508)^{+0.0082}_{-0.0076}	0.0543(0.0477)^{+0.0068}_{-0.0066}
S_8	0.838(0.841)^{+0.015}_{-0.016}	0.839(0.841) ± 0.011
Ω_m	0.297(0.297)^{+0.005}_{-0.006}	0.300(0.305) ± 0.005
Age [Gyrs]	12.98(12.93)^{+0.16}_{-0.13}	13.14(13.17)^{+0.12}_{-0.13}
Δχ^2_{min}(EDE − ΛCDM)	-34.6	-25.2
Preference over ΛCDM	5.3σ	4.3σ

TABLE VIII. The mean (best-fit) ±1σ errors of the cosmological parameters reconstructed from analyses of various data sets (see column title) in the EDE model when including a late-time prior on the Hubble parameter following the latest value reported by SH0ES. For each data set, we also report the best-fit χ^2 and the Δχ^2 ≡ χ^2(EDE) − χ^2(ΛCDM).

Parameter	ACDM	EDE
Planck high−l TT650TEEES	1834.4	1836.1
Planck high−l TTTEEES	−	2351.0
Planck low−l TT	21.0	21.8
Planck low−l EE	395.8	396.9
Planck lensing	−	9.0
ACT DR4	297.8	242.5
SPT-3G	519.1	520.3
BOSS BAO low−z	2.4	1.9
BOSS BAO DR12	3.7	−
BOSS BAO/fσ8 DR12	−	6.9
Pantheon	1026.7	1026.7
SH0ES	16.5	19.9
total χ^2_{min}	4126.4	4596.0
Δχ^2_{min}(EDE − ΛCDM)	−	−34.6
Preference over ΛCDM	−	5.3σ

TABLE IX. Best-fit χ^2 per experiment (and total) for ΛCDM and EDE when fit to different data combinations including a prior on the H_0 parameter as measured by SH0ES. We also report the Δχ^2_{min} ≡ χ^2_{min}(EDE) − χ^2_{min}(ΛCDM) and the corresponding preference over ΛCDM, computed assuming the Δχ^2 follows a χ^2-distribution with three degrees of freedom.