Genome Sequence of *Arenibacter algicola* Strain SMS7, Found in Association with the Marine Diatom *Skeletonema marinoi*

Mats Töpel,a,b Matthew I. M. Pinder,a Oskar N. Johansson,c Olga Kourtchenko,a Anna Godhe,a Adrian K. Clarkec

a Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
b Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
c Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden

ABSTRACT *Arenibacter algicola* strain SMS7 was isolated from a culture of the marine diatom *Skeletonema marinoi* strain ST54, sampled from top-layer sediments in Kosterfjord, Sweden. Here, we present its 5,857,781-bp genome, consisting of a circular chromosome and one circular plasmid, in all containing 4,932 coding sequences.

In an ongoing study of the microbiome of the chain-forming diatom *Skeletonema marinoi* strain ST54, we isolated and sequenced the associated bacterial strain SMS7. The ST54 culture was established from a revived resting cell taken from top-layer sediment in Kosterfjord, Sweden (58°51.0′N, 10°45.7′E; 102 m depth) in May 2009. This bacterial strain was sampled from a colony formed after multiple-dilution streaking on marine agar. Genomic DNA was extracted using Plant DNAzol reagent (Invitrogen Life Technologies, USA) from pure cultures grown from a single bacterial colony, according to the manufacturer’s instructions. Genome sequencing was performed with the PacBio RS II platform (Pacific Biosciences, Menlo Park, CA, USA) on a single-molecule real-time (SMRT) cell. The sequencing produced 98,352 uncorrected reads totaling 1.3 Gbp, which were assembled using Falcon version 1.7.5 (https://github.com/PacificBiosciences/FALCON [1]; seed read length, 17,000 bp). To ensure that the contigs were circular, the corresponding contig ends were joined, and the SMRT Portal version 2.3.0 RS Resequencing.1 protocol (Pacific Biosciences [2]) was used to remap the reads to the contigs; this included a correction step using Quiver (2). The assembly contains two circular contigs, a chromosome of 5,793,053 bp (G+C content, 39.8%) and a plasmid of 64,728 bp (G+C content, 43.8%), with an average assembly read coverage of 173.06× (statistics are summarized in Table 1).

The assembly was annotated with Prokka version 1.12beta (3); this inferred 4,932 coding sequences (CDSs; of which 4,061 have a predicted function), 17 pseudogenes, 47 tRNAs, 9 rRNAs, 22 noncoding RNAs (ncRNAs), and one transfer-messenger RNA (tmRNA) (statistics are summarized in Table 1). Strain SMS7’s chromosome contains three identical 16S rRNA sequences, which share 99.9% identity with the three found in the *Arenibacter algicola* type strain TG409 (NCBI RefSeq accession number NZ_JPOO00000000). In addition, the housekeeping genes *gyrB* and *rpoB* show 99.1% and 99.0% sequence similarity, respectively, between strain SMS7 and *A. algicola* strain TG409T. Given this similarity, strain SMS7 was compared to all whole-genome-sequenced Flavobacteriaceae species available in RefSeq ([ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/](http://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/)) using the phylogenetic analysis software PhyloPhIAn version 0.99 (4). This showed strain SMS7 as sister to the clade of *A. algicola* TG409T and *Arenibacter* sp. strain C-21, with 100% bootstrap support. Taking the above-described analyses together, we place strain SMS7 in the taxon *Arenibacter algicola*. In addition, colonies of strain SMS7 showed the characteristic orange pigmentation of *A. algicola*, attributed to its pigment absorbing at 450/470/476 nm.

Citation Töpel M, Pinder MIM, Johansson ON, Kourtchenko O, Godhe A, Clarke AK. 2019. Genome sequence of Arenibacter algicola strain SMS7, found in association with the marine diatom Skeletonema marinoi. Microbiol Resour Announc 8:e01461-18. https://doi.org/10.1128/MRA.01461-18.

Editor Julie C. Dunning Hotopp, University of Maryland School of Medicine

Copyright © 2019 Töpel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Address correspondence to Mats Töpel, mats.tipel@marine.gu.se.

M.T. and M.I.M.P. contributed equally to this work.

Received 23 October 2018
Accepted 16 November 2018
Published 10 January 2019
TABLE 1 Summary of assembly and annotation statistics for *Arenibacter algicola* strain SMS7

Statistic	Value for:	Total assembly	Chromosome	pSMS7
Assembly	No. of reads	98,352		
	No. of bases	1,266,330,556		
Final assembly size	(bp)	5,857,781	5,793,053	64,728
G+C content (%)		39.8	39.8	43.8
Avg read coverage	(×)	173.06		
Annotation (no.)	CDSs	4,932	4,852	80
	Pseudogenes	17	17	0
	tRNAs	47	47	0
	rRNAs	9	9	0
	ncRNAs	22	22	0
	tmRNAs	1	1	0

Arenibacter algicola strain SMS7 contains a plasmid, pSMS7 (with 80 predicted CDSs), a feature not reported for strain TG409\(^T\) (5). This plasmid was compared to the type strain assembly and SMS7 chromosome using BLASTn (6), and the result implies that pSMS7 is a unique replicon, as no sizable equivalent appears in the strain TG409\(^T\) assembly or the SMS7 chromosome.

The *A. algicola* type strain TG409 was originally isolated from the *Skeletonema* type species, *S. costatum* (7). Our identification of another *A. algicola* strain associated with *S. marinoi* provides further evidence of functional links between the two organisms. One suggested link is the diatoms’ ability to accumulate polycyclic aromatic hydrocarbons (PAHs) on their silica frustules, which associated *A. algicola* bacteria can use as a carbon source (7).

Data availability. This whole-genome project has been deposited in GenBank under the accession numbers CP022515 and CP022516 as part of BioProject number PRJNA380207.

ACKNOWLEDGMENTS

This work was supported by the Gordon and Betty Moore Foundation (to A.K.C., M.T., and A.G., grant 4967), the Swedish Research Council VR (to A.K.C., grant 2015-04286), and the Swedish Research Council Formas (to M.T. and A.G., grant 2017-00466; and to A.G., grant 219-2012-2070).

We thank the Linnéus Center for Marine Evolutionary Biology (CeMEB, http://cemeb.science.gu.se/) for support. All bioinformatics analyses were run on the Albiorix computer cluster (http://albiorix.bioenv.gu.se/) at the Department of Marine Sciences, University of Gothenburg.

REFERENCES

1. Gordon D, Huddleston J, Chaisson MJ, Hill CM, Kronenberg ZN, Munson KM, Malig M, Raja A, Fiddes I, Hillier LW, Dunn C, Baker C, Armstrong J, Diekhans M, Paten B, Shendure J, Wilson RK, Haussler D, Chin C-S, Eichler EE. 2016. Long-read sequence assembly of the gorilla genome. Science 352:aae0344. https://doi.org/10.1126/science.aae0344.
2. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/nmeth.2474.
3. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.
4. Segata N, Börnigen D, Morgan XC, Huttenhower C. 2013. PhylotypeAn: a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:2304. https://doi.org/10.1038/ncomms3304.
5. Gutierrez T, Whitman WB, Huntemann M, Copeland A, Chen A, Kyrpides N, Markowitz V, Pillay M, Ivanova N, Mikhailova N, Osvchinnikova G, Andersen E, Pati A, Stamatis D, Reddy TBK, Nguyen CV, Chovavi M, Daum C, Shapiro N, Cantor MN, Woyke T. 2016. Genome sequence of *Arenibacter algicola* strain TG409, a hydrocarbon-degrading bacterium associated with marine eukaryotic phytoplankton. Genome Announc 4:e00765-16. https://doi.org/10.1128/genomeA.00765-16.
6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.
7. Gutierrez T, Rhodes G, Mishamandani S, Berry D, Whitman WB, Nichols PD, Semple KT, Atken MD. 2014. Polycyclic aromatic hydrocarbon degradation of phytoplankton-associated *Arenibacter* spp. and description of *Arenibacter algicola* sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol 80:618–628. https://doi.org/10.1128/AEM.03104-13.