Data Article

Plastic debris dataset on the Seine river banks: Plastic pellets, unidentified plastic fragments and plastic sticks are the Top 3 items in a historical accumulation of plastics

Romain Tramoy a,*, Laurent Colasse b, Johnny Gasperi a, Bruno Tassin a

a LEESU (UMR MA 102, University of Paris-Est, AgroParisTech), University of Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
b SOS Mal de Seine NGO, France

Article history:
Received 17 December 2018
Received in revised form 10 January 2019
Accepted 18 January 2019

Abstract

Plastic pollution in oceans and rivers is of high concern because of its persistence in the environment and its potential impact on ecosystems. However, there is a specific lack of data in rivers. Here we present data from the Seine river banks in a historical polluted shore. Data were classified using international MSFD and OSPAR classifications. The sampled site is a quadrat of 1 m² located downstream in the estuary in a visual maximum along a 1 km shore covered by plastics. A total of 20,259 plastic debris were individually counted, classified and weighted by category for a total mass higher than 4 kg. Half of the plastic debris in number are represented by preproduction pellets.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Environment
More specific subject area	Plastic pollution
Type of data	Table, figure
How data was acquired	Hand collection, visual and chemical identification
Data format	Analyzed
Experimental factors	Air-dried and sorted with the naked eye
Experimental features	Sampling and sorting
Data source location	Seine estuary, Petiville, France, Lat. 49.4339; Long. 0.6160
Data accessibility	Data in this article
Related research article	A. Bruge C. Barreau, J. Carlot, H. Collin, C. Moreno and P. Maison, Monitoring Litter Inputs from the Adour River (Southwest France) to the Marine Environment, J. Mar. Sci. Eng., 6 (2018) 24–36. 10.3390/jmse6010024

Value of the Data

- Identified plastic items in river banks according to litter international classifications (MSFD and OSPAR) for comparisons with marine data.
- Reporting items in number, mass and volume for conversions between units in other studies dealing with plastic litter in rivers.
- The amount of plastic preproduction pellets is reported at levels never reported before.
- New types of items identified: fibers from toilet brushes, plastic tag ties, plastic fragments from road brushes.
- Need to adapt the OSPAR/MSFD classifications used for the marine environment to rivers.

1. Data

In this report, an inventory of plastic items is presented (Table 1). Plastic items were collected in a quadrat of 1 m² in a historical polluted shore in the Seine river (downstream of the estuary; Lat. 49.4339; Long. 0.6160). Data are representative of the historical plastic pollution occurring in this river with few items dated from 1965, 1974, 1983, 1992 or 2010. Plastic items were classified according to OSPAR and MSFD classifications, which give insights about the origin of the items and their chemical composition.

A total of 20,259 plastic debris were individually counted, classified and weighted by category. Those plastic debris are more than 150% heavier in mass (> 4 kg) than organic debris, i.e. dead vegetation and gastropod shells, found in this kind of dry march surrounded by reedbeds.

The Top 3 categories of items collected are plastic preproduction pellets [2], unidentified plastic fragments and plastic sticks (cotton bud and lollipop sticks; [1]. Plastic preproduction pellets are 15 times more numerous than gastropod shells. High concentration of pellets could be linked to the vicinity of plastic manufacturers near the sampled site. They represent 50% of the items collected during this campaign but only 5.6% of the mass (Fig. 1). In contrast, around 30% of the mass is carried by the unidentified fragments of macroplastics > 2.5 cm, which only represent 7% of the total items. Hundreds of caps, lids, and rings were also found without their associated bottles, which are often prompt to sink. Furthermore, the dataset refers to specific activities in the estuary with for example 100 g/m² of polyethylene from shotgun plastic wads related to intense hunting activities. Those items have to be mentioned because they are very common in the estuary and their origin is clearly identified, while alternatives such as biodegradable wads do exist.

Reporting number of items, associated mass and volumes will improve conversions of unit for other studies related to river pollution when only one of the units are available. To facilitate
Table 1
Inventory of plastic items collected in 1 m² on a river bank in the Seine river at Petiville. In yellow, items of special interest for their high recurrence or their novelty.

MFD	OSPAR	Items	Full	Micro	Meso	Macro	Total	Dry mass (g)	Vol. (L)	Comment
G3	2	Rags (e.g. shopping)	7	7	19.7					
G10	6	Food inl. food containers in expanded polyethylene	106	106	23.0	0.3		in drinking water, Mac Donal, meat		
G12	7	Cosmetics (bottles & containers e.g. sun lotion, shampoo, shower gel, deodorant)	3	3	7.8					
G13	12	Other container in plastics other than polyethylene	20	25	45.2					
G17	11	Insect repellent containers	3	3	5.1					
G18	13	Cigarette (cigarette cases)	6	6	12.5					
G19	14	Car parts	12	18	99.8	0.7		include wheel arch screw		
G21	15	Miscellaneous items	25	25	99.2	0.3		e.g. 4 dishwashing liquid, 3 cold water faucets		
G22	15	Capsules, non-food	146	24	127	1.1				
G24	16	Capsules, food and associated seal	217	358	575	1.1				
G25	16	Tobacco: packaging and associated plastic film	1	1	1.3					
G26	41	Tobacco: lighter	4	4	8.8					
G27	41	Tobacco: cigarette butt	41	41	22.3	0.1		Plastic tips		
G28	17	Pens and related	65	65	69.9	0.2		include 34 caps, 12 cartridges, 4 pens		
G30	19	Crisp/peanut packets	5	83	88	0.5		469 packaging, 26 pieces of Krunch		
G31	20	Lollipop sticks	86	30	117	73	0.3	100 adding reconstituted pieces with 231 fragments		
G32	21	Toys & party favors	47	19	66	65.4	0.2	Including plastic coin of 1/2 Euro from 1985	}	

R. Tramoy et al. / Data in Brief 23 (2019) 103697
conversions, mass per item were also reported for the Top 10 items (Fig. 1). In addition, specific items such as plastic tag ties (e.g. textile), or plastic fibers from toilet brushes were unusually reported and should be considered as additional categories in OSPAR/MSFD classifications for rivers.

2. Experimental design, materials, and methods

2.1. Experimental design

2.1.1. Site description

Plastic litter were collected in the estuary of the Seine river close to Petiville, 80 km downstream of Rouen and 30 km upstream the river mouth (Fig. 2). Here is the beginning of the muddy plug of the estuary under high tidal influence. The sampled site belongs to a 1 km shore covered by plastic litter and corresponds to a visual maximum of plastic accumulation on a gentle slope dipping to the river. The depositional environment is a dried marsh annually flooded by the river and entrapped by a road on north-side (ancient towpath) and reedbeds on south-side. In this environment, woody debris and gastropod shells are very common. However, plastic debris also accumulate. They are not easily removed by flood events because reedbeds act as a barrier living floating items go in but not out. Very large items are less frequent thanks to this natural barrier and because of punctual cleanings by NGO’s.

Table 1 (continued)

Item	Mass (g)	Number	Mass (g)				
Strong plastic (plastics)	1	1	0.5				
Strong plastic, other	1	1	0.5				
Beaded	19	19	23.7	0.1 e.g. 13 security seals, 1 EST said from 1974			
Maintenance/bricolage, various equipment (broom, brush, etc.)	47	47	74	0.1 e.g. 10 screw cover, 10 washers, 6 plastic welding sticks			
Plastic flowers	5	4	12	0.1 Include 2 like cokes			
Metal trash	60	50	232	0.3 Plastic fibers 8x1 mm			
Plastic tag tie	12	12	29	0.1 From toilet brushes			
Plastic bag tie	127	107	220	24.7			
Synthetic weed broom	26	95	121	24.4 Different colors, Remnant in the same mass			
Key ring	2	2	1.8	Including a phone number used between 1963 and 1985			
Condenser filter item	1	1	0.6				
Beltguts for fluids	3	12	15	0.3			
Geogrids and grids	17	17	16.2				
Adhesive tape	8	8	8.9				
Filter pump from water treatment plant	1	1	48	0.1			
Plastic sheet	4	4	15.4				
Preproduction pellets	10240	10240	5663	3609	20289	4181	17.5
TOTAL OF SYNTHETIC POLYMERS (PLASTICS)	1460	10240	5663	3609	20289	4181	17.5
Rubber	G125	49	9	9.3	3.5 Yellowish and blackish		
G126	53	3	2	5.7	5.3		
G134	53	1	2	58.9	18.2 1 how and 1 strap		
G159	68	Cork cap	2	2	8.3 Corkwood		
G171	74	Untreated wood fragments + 8x1mm	2	1	13 1 how and 1 strap		
Metals	G177	81	3	3	16		
G178	77	Cap and Listen pull, wirehead	2	2	4.4		
Other	G211	105	1	1	5.6 Used pole		
G212	109	Parafilm / wax (1<50 cm)	1	2	3.9		
/ 111	230	Weld, cell	2	2	5.2		
/ 111	36	Redbran Pouillane	3	4	10.5	0.1 Density + Environnement, food waste	
/ 111	83	Redbran dry mix	3	4	10.5	0.1 Unmanned	
/ 111	83	Lightweight concrete	3	4	10.5	0.1 Unmanned	
BIODIVERSITY	Earthworms (alka)	21	21				
Gastropod shells	866	866	261	1.2			
Dead wood	2400	2400	2400	2400			

R. Tramoy et al. / Data in Brief 23 (2019) 103697
Fig. 1. Top 10 plastic items collected in 1 m² on a river bank in the Seine river at Petiville. The black line refers to the mass per unit.

Fig. 2. Geographical localization of the sampled site. Notice that plastic producers from Notre-Dame-de-Gravenchon are close to the targeted site. Lat. 49.4339; Long. 0.6160. The red stars point to the major plastic manufacturers, i.e. main sources of preproduction pellets.
2.1.2. Sampling method

Plastic litter and organics (wood and organisms, mostly dead gastropod shells) were exhaustively collected by hands in a quadrat of 1 m² in a visual maximum of plastic accumulation until the soil was reached (see pictures in sup. data). Samples were stored in plastic bags of 50 L. They were dried at ambient air for days, then sorted and counted one by one in the lab, classified by size and category, and weighted.

2.1.3. Classification method

Plastic items were classified according to OSPAR and MSFD classifications usually applied to marine environment and to macroplastics > 2.5 cm. Here, when possible, those classifications were also applied to items 0.5 cm < mesoplastics < 2.5 cm. They were separately numbered in the table but weighted together with macro-items. Only industrial pellets were numbered as microplastics (< 0.5 cm). Size class were determined based on at least one dimension.

Acknowledgments

We acknowledge the lab Polymères, Biopolymères et Surfaces UMR 6270 CNRS from the University of Rouen for their technical support and access to lab facilities. We also thank PhD students Naila Bouhaidar and Bassidi Diawara for their precious help for sorting and counting items. We also thank the Ministry of the Environment of France for its financial support.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.01.045.

References

[1] A. Bruge, C. Barreau, J. Carlot, H. Collin, C. Moreno, P. Maison, Monitoring litter inputs from the Adour River (Southwest France) to the marine environment, J. Mar. Sci. Eng. 6 (2018) 24–36. https://doi.org/10.3390/jmose6010024.
[2] T.M. Karlsson, L. Arneborg, G. Broström, B.C. Almroth, L. Gipperth, M. Hassellöv, The unaccountability case of plastic pellet pollution, Mar. Pollut. Bull. 129 (2018) 52–60. https://doi.org/10.1016/j.marpolbul.2018.01.041.