Estimation of Accuracy of the Method of Gamma- Spectrometry
for Non-Destructive Control of Gadolinium Content and
Uranium Enrichment in Non-Irradiated VVER-type Fuel Pellets

Yu V Stogov
Department of Theoretical and Experimental Physics of Nuclear Reactors, National
Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe
highway, 31, Moscow, Russia

YVStogov@mephi.ru

Abstract. The gamma-spectra of the single (UO$_2$-Gd$_2$O$_3$)-pellets were measured on the planar
detector HPLeGe. The measurements of Gd content in (UO$_2$-Gd$_2$O$_3$)-pellets were performed by X-
ray fluorescence method. The total count rate in the doublet 42,3 and 43,0 keV K$_{\alpha 1,2}$-X-rays from
Gd was used as a measure of Gd content. In measurements was used 241Am as an external radiation
source for exciting the doublet 42,3 and 43,0 keV K$_{\alpha 1,2}$-X-rays from Gd. In order to obtain the
calibration dependence of count rate in doublet 42,3 and 43,0 keV from Gd content in (UO$_2$-
Gd$_2$O$_3$)-pellets there were used standard (UO$_2$-Gd$_2$O$_3$)-pellets with the known Gd content, density
and enrichment. The estimates of influence of deviations of the density of (UO$_2$-Gd$_2$O$_3$)-pellets
and Gd content on total count rate in doublet 42,3 and 43,0 keV were performed. The «pure» gamma-
spectra (without employing of external radiation source) were used to obtain the data on uranium
enrichment of fuel pellets using multigroup gamma-spectra analysis code (MGAU) and additional
information about Gd content. The dependence of $\frac{S_{185,7\,keV}}{S_{98,4\,keV}}$ from Gd content in (UO$_2$-Gd$_2$O$_3$)-
pellets is present (the ratio of count rates for two peaks: E_{γ}=185,7 keV (the measure of 235U) and
E=98,43 keV (the measure of 235,238U)).

1. Introduction
The nuclear safety of the VVER-type reactors depends from the method of compensating of initial
reactivity excess, as well as by the reliability of the corresponding safety systems. That’s why the
investigation of different types of technological characteristics of (UO$_2$-Gd$_2$O$_3$)-, UO$_2$-pellets is very
important [1-6]. The applied nondestructive analysis method permits to perform continuous material
control measurements of single pellets in laboratory conditions [7].
2. Determination of Gd content in (UO$_2$-Gd$_2$O$_3$)-pellets

2.1. The Gamma and X-rays Nuclear Data

The Gamma and X-rays Nuclear Data are present in table 1.

Energy (keV)	Photon emission probability (%)	
Gd K$_{\alpha 2}$	42.302	50
Gd K$_{\alpha 1}$	42.989	100
U K$_{\alpha 1}$	98.430	100
γ-ray 235U	185.7	57.5
γ-ray 241Am	59.54	35.8

2.2. Equipment

Spectrums were taken in planar HPLEGe detector with resolution 460 eV at E_{γ}=122 keV (full width at half maximum, FWHM). The multichannel digital analyzer DSA-1000 Canberra and Genie-2000 (including MGAU-code) soft were used.

In this chapter are present experimental data obtained on the facility containing external radiation source 241Am ($A$$\approx$300 kBq). Since both the radiation from the 241Am excitation source and the Gd K$_{\alpha 1,2}$-X-rays are appreciably attenuated in typical VVER-fuel cladding material, the X-ray analysis was performed on the unclad fuel single pellets. The geometry of measurements is present on figure 1 ("side-source geometry").

![Figure 1](image)

Figure 1. The geometry of measurements of gamma-spectra of (UO$_2$–Gd$_2$O$_3$) – pellet:
1-(UO$_2$-Gd$_2$O$_3$)-pellet; 2-Pb- collimator; 3-holder for collimator; 4-gamma-radiation source 241Am; 5-Pb- plate; 6-stop for fixing equipment with external radiation source on the HPLEGe detector; 7-HPLEGe detector housing.

2.3. Experimental Results. Plotting the Calibration Dependence of the Total Count Rate in Doublet 43 keV from Gd Content

In order to obtain the calibration dependence of total count rate in doublet 43 keV from Gd content in (UO$_2$-Gd$_2$O$_3$)-pellets there were used standard (UO$_2$-Gd$_2$O$_3$)-pellets with known Gd content, density and enrichment.

The calibration dependence of total count rate in doublet 43 keV from Gd content in (UO$_2$-Gd$_2$O$_3$)-pellets is present in figure 2.
On the base of obtained experimental data there was obtained expression for the dependence of the total count rate in doublet 43 keV from Gd content:

$$S_{43\text{keV}} = (7.3\pm0.3) \times 10^{-3} + \left(4.2\pm0.1\right) \times 10^{-2} \cdot \text{w.f.Gd}_2\text{O}_3 \quad (1)$$

2.4. The Estimates of Influence of Deviations of the Density of (UO$_2$-Gd$_2$O$_3$)-Pellets and Gd Content on Total Count Rate in Doublet 43 keV

The calculation of the ratio I_1/I_2 of total count rate in doublet 43 keV was performed for three values of the density (γ) of (UO$_2$-Gd$_2$O$_3$)-pellets: 10.5, 10.1 and 9.6 g/cm3. The weight fraction of Gd$_2$O$_3$ in (UO$_2$-Gd$_2$O$_3$)-pellet is 8 %. The data are shown in table 2.

γ, g/cm3	I_1/I_2
10.5	1.0006
10.1	1.0000
9.6	0.9976

The changes in I_1/I_2 are little ($\pm0.05\%$). Its explain by the features of the geometry of the measurements: $K_{\alpha_{1,2}}$-X-rays from Gd 43 keV escape from very thin surface layer (d<0.1 mm) from (UO$_2$-Gd$_2$O$_3$)-pellet to the direction of the sensitive volume of detector.

The next calculation of the ratio I_1/I_2 of total count rate in doublet 43 keV was performed for three values of the weight fractions of Gd$_2$O$_3$ in (UO$_2$-Gd$_2$O$_3$)-pellet: 7%, 8%, and 9%. The data are shown in table 3.
Table 3 The changes of the ratio I_1/I_2 of total count rate in the doublet 43 keV from the weight fraction of Gd$_2$O$_3$ in (UO$_2$-Gd$_2$O$_3$)-pellet.

w.f. of Gd$_2$O$_3$, %	I_1/I_2
7.0	0.992
8.0	1.000
9.0	1.008

When we change the concentration of Gd$_2$O$_3$ in (UO$_2$-Gd$_2$O$_3$)-pellets step by step on 1%, the total count rate in the doublet 43 keV also change on \approx1%. So, the obtained data in total count rate in doublet 43 keV are sensitive to the change of weight fraction of Gd$_2$O$_3$.

2.5. The Procedure of Obtaining of the Estimates of Influence of Deviations of the Density of (UO$_2$-Gd$_2$O$_3$)-Pellets and Gd Content on Total Count Rate in Doublet 43 keV

The ratio of the total count rate I_1/I_2 in the doublet 43 keV for two types ($i=1, 2$) of (UO$_2$-Gd$_2$O$_3$)-pellets with different technological data was calculated using the next expression:

$$
\frac{I_1}{I_2} = \frac{\gamma_{(UO_2-Gd_2O_3)_i} \left[\mu_i(59,54) + \mu_i(43) \right] (1 - e^{\rho_i(59,54)} + e^{\rho_i(43)}) x_i}{\gamma_{(UO_2-Gd_2O_3)_i} \left[\mu_i(59,54) + \mu_i(43) \right] (1 - e^{\rho_i(59,54)} + e^{\rho_i(43)}) x_i}
$$

(2)

were X_i – thickness, γ_i - density, μ_0 - linear attenuation coefficient of fuel pellets with certain technological data ($i=1, 2$). The following expression was used to calculate linear attenuation coefficients in materials with complex chemical composition:

$$
\mu_m = \sum_i (\mu_{m_i}(E) \cdot \rho_i)
$$

(3)

where μ_{m_i} – mass attenuation coefficient [10].

Taking into account the weight fractions for each element in the pellet composition, the linear attenuation coefficients for energies 59,54 keV and 43 keV were calculated as follows:

$$
\mu_i(59,54 \text{ keV}) = \gamma_{(UO_2-Gd_2O_3)} \cdot (\mu^{(59,54)}_{m_i} \cdot \text{w.f.}(U) + \mu^{(59,54)}_{m_{Gd}} \cdot \text{w.f.}(Gd) + \mu^{(59,54)}_{m_O} \cdot \text{w.f.}(O))
$$

(4)

$$
\mu_i(43 \text{ keV}) = \gamma_{(UO_2-Gd_2O_3)} \cdot (\mu^{(43)}_{m_i} \cdot \text{w.f.}(U) + \mu^{(43)}_{m_{Gd}} \cdot \text{w.f.}(Gd) + \mu^{(43)}_{m_O} \cdot \text{w.f.}(O))
$$

(5)

where $\gamma_{(UO_2-Gd_2O_3)}$ is the density of the (UO$_2$-Gd$_2$O$_3$)-pellet; $\mu_{m_{U_i}}(E_i)$, $\mu_{m_{Gd}}(E_i)$, $\mu_{m_{U}}(E_i)$ are the mass attenuation coefficients of the U, Gd, and oxygen for energies of 43 and 59,54 keV; w.f.(U), w.f. (Gd), w.f. (O)-weight fractions of the U, Gd, and oxygen in (UO$_2$-Gd$_2$O$_3$)-pellets.

The density of (UO$_2$-Gd$_2$O$_3$)-pellet was calculated using the expression:

$$
\gamma_{UO_2-Gd_2O_3} = \gamma_{UO_2} \cdot (1 - \varepsilon_v) + \gamma_{Gd_2O_3} \cdot \varepsilon_v
$$

(6)

where ε_v is the volume fraction of Gd$_2$O$_3$ in the (UO$_2$-Gd$_2$O$_3$)-pellet.
The weight fractions of the U, Gd, and oxygen in the (UO$_2$-Gd$_2$O$_3$)-pellet were calculated using the following expressions:

$$w.f.(U) = \frac{m_U}{m_U + m_{Gd} + m_O}; \quad w.f.(Gd) = \frac{m_{Gd}}{m_U + m_{Gd} + m_O}; \quad w.f.(O) = \frac{m_O}{m_U + m_{Gd} + m_O}$$ (8–10)

Based on the results of the above calculations, the dependence of the density of (UO$_2$-Gd$_2$O$_3$)-pellets from the weight fraction of Gd$_2$O$_3$ is present on Figure 3. The dependences of the weight fractions of uranium, gadolinium and oxygen from the weight fraction of Gd$_2$O$_3$ in the (UO$_2$-Gd$_2$O$_3$)-pellet are present on the figures 4, 5 and 6.

Figure 3. Dependence of the density of the (UO$_2$-Gd$_2$O$_3$)-pellet from the weight fraction of Gd$_2$O$_3$.

Figure 4. Dependence of the weight fraction of uranium from the weight fraction of Gd$_2$O$_3$ in (UO$_2$-Gd$_2$O$_3$)-pellet.
As mentioned earlier, the total count rate in the doublet 43 keV Gd X-ray determine by two portions:

- X-ray count rate Gd, due to the "external" gamma source (241Am);
- X-ray counting rate Gd, due to the "internal" gamma source (decay products of uranium in the pellet).

When we use the "side source geometry" the pellet moves away from the horizontal surface of the sensitive volume of the detector. The contribution to the total count rate in the doublet 43 keV from the «internal» sources should decrease and will negligible when the activity of the external source and geometry of measurements chose properly.

In general, the value of the effect of the influence of the "internal" source on the total count rate in the doublet 43 keV depends from the activity of the "external" and "internal" source, uranium enrichment, density pellet, measurement geometry.

3. Determination of the Dependence of the Ratio of Count Rate in Peaks with $E_\gamma=185,7$ keV and $E_{\text{x-ray}}=98,43$ keV From the Gd Content in (UO$_2$-Gd$_2$O$_3$)-Pellets.

In this chapter are present the data obtained on the facility when external radiation source is absent. So, only the internal gamma radiation sources are present in the (UO$_2$-Gd$_2$O$_3$)-pellets (decay products of gamma radiation emitters of U).

The analysis is showing, that the mass attenuation coefficient for Gd is bigger of mass attenuation coefficient for U in the energy range above the K-absorption edge of Gd (50,23 keV) and below the K-absorption edge of U (115,6 keV). Therefore, the more Gd concentration in (UO$_2$-Gd$_2$O$_3$)-pellets, the smaller the intensity of the U- radiation in this energy range because of both decrease of U concentration and increase of the summary mass attenuation coefficient.

For gamma- and X- spectra, obtained for each single (UO$_2$-Gd$_2$O$_3$)-pellet the ratio of count rates in peaks $E_\gamma=185,7$ keV (the measure of 235U) and $E_{\text{x-ray}}=98,43$ keV (the measure of 235,238U) was determined. The dependence of $\frac{S_{185,7\text{keV}}}{S_{98,43\text{keV}}}$ from Gd content in (UO$_2$-Gd$_2$O$_3$)-pellets is present on the figure 7.
4. Determination of uranium enrichment in (UO$_2$-Gd$_2$O$_3$)-pellets

The certified method of measurement of the uranium enrichment in (UO$_2$-Gd$_2$O$_3$)-pellets using multi-group analysis of the spectra (MGAU code) was used.

For non-irradiated (UO$_2$-Gd$_2$O$_3$)-pellets with passport nominal data of the uranium enrichment $x=6.50\%$ there was obtained in confirming measurements of uranium enrichment by the use of MGAU code $x=(6.53\pm0.03)\%$.

The outstanding features of uranium enrichment measurements by use the MGAU code was presented in [9, 10].

5. Conclusion

The unified gamma-spectrometric method of performing confirmatory measurements of Gd$_2$O$_3$ content and uranium enrichment in non-irradiated single (UO$_2$-Gd$_2$O$_3$)-pellets was developed. In gamma-spectrometric measurements was used planar detector. The Gd$_2$O$_3$ content in (UO$_2$-Gd$_2$O$_3$)-pellets was determined on the basis of the total count rate in doublet 43 keV K$_{\alpha1,2}$-X-rays from Gd. There was used «side-source geometry» as the most practicable source-specimen-detector arrangement. 241Am is convenient and efficient radiation source for exciting the 43 keV K$_{\alpha}$-X-rays from Gd. Since both the radiation from the 241Am excitation source and the Gd K$_{\alpha1,2}$-X-rays are appreciably attenuated in typical VVER-fuel cladding material, the X-ray analysis was performed on the unclad fuel pellets. The mean square error in determining of the Gd content in (UO$_2$-Gd$_2$O$_3$)-pellets is $\pm2\%$ (using standard (UO$_2$-Gd$_2$O$_3$)-pellets with the known Gd content, density and enrichment). The accuracy of obtaining results depends from the different parameters: Gd content, density and uranium enrichment of (UO$_2$-Gd$_2$O$_3$)-pellets, activity of the external radiation source, time of the measurement of X-ray spectra, efficiency of HPLeGe detector, measurement geometry, effect/background ratio. An experimental calibration dependence of total count rate in doublet 43 keV from Gd content in (UO$_2$-Gd$_2$O$_3$)-pellets is present by the expression: $S^{43keV}=(7.3\pm0.3)\cdot10^{-3}+(4.2\pm0.1)\cdot10^{-2}\cdot w.f. Gd_2O_3$. Control productivity 1-2 pellet/hour (the activity \approx300 kBq for used 241Am).

The estimates of influence of deviations of the density and Gd content of (UO$_2$-Gd$_2$O$_3$)-pellets on total count rate in doublet 43 keV were performed.

The information obtained on the base of «pure» gamma-spectra of (UO$_2$-Gd$_2$O$_3$)-pellets (without employ of external radiation source) was used to obtain uranium enrichment and to obtain the dependence

![Figure 7. The calibration dependence of $S^{185.7 keV} / S^{98.93 keV}$ from Gd content in (UO$_2$-Gd$_2$O$_3$)-pellets.](image-url)
of \(\frac{S_{185.7\,\text{keV}}}{S_{98.43\,\text{keV}}} \) from Gd content in (UO\(_2\)-Gd\(_2\)O\(_3\))-pellets. The experimental value of \(\frac{S_{185.7\,\text{keV}}}{S_{98.43\,\text{keV}}} \) depends not only from Gd content, but uranium enrichment and density of (UO\(_2\)-Gd\(_2\)O\(_3\))-pellets.

Pellets from UO\(_2\) and (UO\(_2\)-Gd\(_2\)O\(_3\)) can be identified on the basis of differences in the corresponding gamma-ray spectra. In the spectra of (UO\(_2\)-Gd\(_2\)O\(_3\)) - pellets there is an X-ray peak of 43 keV (Gd K\(\alpha_1,2\)). The certified method of measurement of the uranium enrichment in (UO\(_2\)-Gd\(_2\)O\(_3\))-pellets using multi-group analysis of the spectra MGAU was used.

For nominal passport data of the uranium enrichment x=6.50 % in non-irradiated (UO\(_2\)-Gd\(_2\)O\(_3\))- pellets there was obtained in confirming measurements of uranium enrichment by the use of MGAU code \(x=(6.53\pm0.03)\% \).

References

[1] Dan Gabriel Cacuci (Ed.) 2010 Handbook of Nuclear Engineering
[2] Renier J et all. 2001 Development of Improved burnable poisons for commercial nuclear power reactors ORNL/TM-2001/238
[3] Fedotov A V et all. Theoretical and experimental density of (U,Gd)O\(_2\) and (U,Er)O\(_2\) Atomic Energy 113.6 429–434
[4] Popov S G et all. Thermodynamic analysis of uranium-gadolinium fuel stability at high temperatures Atomic Energy 110.4 221–229
[5] Kalyakin S G et all. 2014 Experimental research on thermophysical processes for safety validation of new-generation VVER. Atomic Energy 116 293–299
[6] Stogov Y V and Prosyolkov V N 2017 Experimental determination of the effective resonance absorption integrals of \(^{238}\text{U}\) and \(^{158}\text{Gd}\) in urania–gadolinia rods Physics of Atomic Nuclei 80.8 1333–1338
[7] Reilly D (Ed.) et all. 1991 Passive nondestructive assay of nuclear materials NUREG/CR-5550 LA-UR-90-732
[8] Firestone R and Shirley V 1996 Table of Isotopes. Wiley, New-York
[9] Stogov Y V 2017 Nondestructive determination of 235U enrichment of uranium samples in the presence of actinides (\(^{232}\text{Th},\; ^{236}\text{U},\; ^{237}\text{Np}\)) IOP Conf. Series: J. Phys. Conf. Series 781 012016
[10] Stogov Y V 2018 Application of gamma-ray spectrometry for non-destructive determination of \(^{235}\text{U}\) enrichment and mass of uranium in non-irradiated VVER-type fuel pellets IOP Conf. Series: J. Phys. Conf. Series 1133 012032
[11] NIST Physical measurement Laboratory. X-ray Mass Attenuation Coefficients. Physics.nist.gov/PhysRefData/XrayMassCoef