Steady-state and unsteady-state moisture regime of enclosing structure

V G Gagarin¹,², P A Khavanov¹ and K P Zubarev¹,²

¹Moscow State University of Civil Engineering, 26, Yaroslavskoye Shosse, Moscow, 129337, Russia.
²Research Institute of Building Physics of Russian Academy of Architecture and Construction Science, Moscow, 127238, Russia.

E-mail: zubarevkirill93@mail.ru

Abstract. This paper describes the moisture transfer problems of enclosing structures which are crucial in modern construction industry. In terms of current condition of science, researchers do not know the moisture transfer law in capillary-porous materials, so they need to work with a variety of mathematical models. We developed the new steady-state and unsteady-state formulation of mathematical models based on moisture potential \(F \), which takes into account water vapour and liquid movements uniformly. It is vital to understand whether we can use steady-state moisture transfer mathematical model in a design engineer work or we must use the unsteady-state one, so we make a comparison between them for a single-layer aerated concrete wall. We compare moisture behaviours of the steady-state and unsteady-state processes in two ways: comparison of the moisture distribution in the thickness of the enclosing structure during maximum moisture accumulation period and comparison of the average moisture of the wall during a year. It was found that the solution of the unsteady-state equation of moisture transfer gives significantly more possibilities than the solution of the steady-state equation of moisture transfer. As a result, we recommend to use the developing unsteady-state mathematical model to predict the moisture regime of enclosing structures.

1. Introduction

Researching of the moisture regime of enclosing structures is one of the modern trends in construction direction [1–5]. Moisture regime is a research complex, which consists of experiments, field investigations and theoretical developments [6]. One of the most important issues is the developing of mathematical models for moisture transfer calculation [7–12].

There are some works which are based on the separate accounting of private moisture transfer potentials. The complexity of this approach is connected with working with a complex system of differential equations and a large number of experiments [13–26].

Another approach, which is based on the moisture potential, allows to replace part of the private transfer potentials with a single moisture potential, which simplifies the mathematical formulation of the problem [27].

One of the famous moisture potential is the potential which was developed by H.M. Künzel:
\[
\frac{dW}{d\phi} \frac{\partial\phi}{\partial \tau} = \nabla (D_v \nabla \phi + \mu \cdot \nabla (\phi E_e)).
\] (1)

where \(D_v\) – liquid moisture transfer coefficient, \(\text{kg/(m} \cdot \text{s})\); \(\phi\) – relative air humidity; \(\mu\) – vapor permeability coefficient, \(\text{kg/(m} \cdot \text{s} \cdot \text{Pa})\); \(E_e\) – saturated water vapor pressure, \(\text{Pa}\); \(W\) – material moisture content, volume percentage; \(\tau\) – time, \(s\).

In this case, the temperature field is determined by the equation:

\[
\frac{dH}{dT} \frac{\partial T}{\partial \tau} = \nabla (\lambda V T) + r \cdot \nabla (\mu \cdot \nabla (\phi E_e)) \cdot \nabla \phi \cdot \nabla (\phi E_e)).
\] (2)

where \(H\) – enthalpy, \(\text{J/m}^3\); \(T\) – absolute temperature, \(\text{K}\); \(r\) – specific heat of the liquid-vapor phase transition, \(\text{J/kg}\); \(\lambda\) – thermal conductivity coefficient, \(\text{W/(m} \cdot \text{C})\).

Another potential is proposed by V.G. Gagarin and V.V. Kozlov [28–30]:

\[
F(w,t) = E_e(t) \cdot \phi(w) + \frac{1}{\mu} \int_{0}^{w} \beta(\zeta) d\zeta.
\] (3)

where \(F\) – moisture potential, \(\text{Pa}\); \(\beta\) – moisture conductivity coefficient, \(\text{kg/(m} \cdot \text{s} \cdot \text{kg/kg})\); \(w\) – material humidity, \(\text{kg/kg}\) (1 kg/kg = 100 % by weight); \(\zeta\) – current material moisture value, \(\text{kg/kg}\).

As we can see from formula (3), the moisture potential \(F\) takes into account the movement of liquid and vaporous moisture [28–30]:

\[
g = -\mu \frac{\partial F}{\partial x}.
\] (4)

where \(g\) – total flow density of vapor and liquid moisture, \(\text{kg/(m}^2 \cdot \text{s})\).

2. Problem

Thus, it becomes possible to develop the mathematical model which is based on the moisture potential \(F\). However, it is crucial to compare the solution of the unsteady-state moisture transfer equation and the solution of the steady-state moisture transfer equation.

3. Materials and methods

3.1. The mathematical model of steady-state moisture transfer

In the case of steady-state process, moisture transfer is described by the equation:

\[
\frac{\partial}{\partial x} (\mu \frac{\partial F(w,t)}{\partial x}) = 0.
\] (5)

Third-order boundary conditions on enclosing structure surfaces for the moisture potential distribution:
where \(F_N\) – material moisture potential next to enclosing structure surface, which contacts with inside air, \(Pa\); \(F_i\) – moisture potential of enclosing structure section, which contacts with outside air, \(Pa\); \(F_{in}\) – inside air moisture potential, \(Pa\); \(F_{ext}\) – outside air moisture potential, \(Pa\); \(R_{m,ext}\) – resistance to moisture exchange between outside air and the surface of the enclosing structure, \((m^2 s Pa)/kg\); \(R_{m,in}\) – resistance to moisture exchange between inside air and the surface of the enclosing structure, \((m^2 s Pa)/kg\).

Boundary condition between enclosing structure layers:

\[
-\mu_1 \frac{\partial F}{\partial x} \bigg|_{x=0} = -\mu_2 \frac{\partial F}{\partial x} \bigg|_{x=v}.
\]

where \(v\) – section of multi-layer enclosing structure, in which there is a material joint: \(\mu_1\) – vapor permeability coefficient of enclosing structure layer which is the nearest to the building outside surface, \(kg/(m s Pa)\); \(\mu_2\) – vapor permeability coefficient of enclosing structure layer which is the nearest to the enclosing structure inner surface, \(kg/(m s Pa)\).

Similarly, the steady-state heat conduction equation is considered:

\[
\frac{\partial}{\partial x}(\lambda \cdot \frac{\partial t}{\partial x}) = 0.
\]

The third-order boundary condition on an enclosing structure outside surface for the temperature distribution:

\[
-\lambda \frac{\partial t}{\partial x} \bigg|_{x=0} = \alpha_{ext} \left(t_{ext} - t_i \right).
\]

where \(t_{ext}\) – outside air temperature, °C; \(t_i\) – temperature of enclosing structure section, which contacts with outside air, °C; \(\alpha_{ext}\) – heat transfer coefficient between outside air and the surface of the enclosing structure, \(W/(m^2 °C)\).

The third-order boundary conditions on an enclosing structure inside surface for the temperature distribution:

\[
\lambda \frac{\partial t}{\partial x} \bigg|_{x=v} = \alpha_{in} \left(t_{in} - t_N \right).
\]
where \(t_a \) – inside air temperature, \(^\circ \text{C} \); \(t_n \) – temperature of enclosing structure section, which contacts with inside air, \(^\circ \text{C} \); \(\alpha \) – heat transfer coefficient between inside air and the surface of the enclosing structure, \(W/(m^2 \cdot ^\circ \text{C}) \), \(l \) – enclosing structure thickness, \(m \).

Boundary condition between enclosing structure layers:

\[
-\lambda \frac{\partial t}{\partial x} \bigg|_{x=\pm \theta_e} = -\lambda \frac{\partial t}{\partial x} \bigg|_{x=\pm \theta_e} .
\]

(12)

Saturated water vapor pressure is described by analytical expression:

\[
E_t = 1.84 \cdot 10^{11} \cdot \exp(-5330/(273+t)).
\]

(13)

3.2. The mathematical model of steady-state moisture transfer

In unsteady-state moisture regime moisture transfer is described by the differential equation:

\[
\frac{\partial F(w,t)}{\partial t} = \kappa(w,t) \cdot E_t(t) \frac{\partial^2 F(w,t)}{\partial x^2}.
\]

(14)

where \(\kappa \) – material heat-humidity characteristic coefficient, \(m^2/(s \cdot \text{Pa}) \).

The solution of the moisture transfer equation (14) is possible to obtain by the finite difference method using an explicit difference scheme:

\[
\begin{aligned}
F_{1}^{k+1} &= F_{1}^{k} + \Delta t \frac{h}{h^2} E_{1}^{k} \left(F_{i+1}^{k} - (1 + \frac{h}{\mu R_{m,ext}}) F_{i}^{k} + F_{i-1}^{k} \right) + \Delta t \frac{h}{h^2} E_{1}^{k} \left(\frac{h}{\mu R_{m,ext}} F_{ext}^{k} \right), \\
F_{i}^{k+1} &= F_{i}^{k} + \Delta t \frac{h}{h^2} E_{i}^{k} \left(F_{i+1}^{k} - 2 \cdot F_{i}^{k} + F_{i-1}^{k} \right), \quad i = 2, \ldots, N - 1, \quad k = 0,1, \ldots \\
F_{N}^{k+1} &= F_{N}^{k} + \Delta t \frac{h}{h^2} E_{N}^{k} \left(F_{N-1}^{k} - (1 + \frac{h}{\mu R_{m,in}}) F_{N}^{k} \right) + \Delta t \frac{h}{h^2} E_{N}^{k} \left(\frac{h}{\mu R_{m,in}} F_{int}^{k} \right),
\end{aligned}
\]

(15)

where \(\Delta t \) – time step, \(s \); \(h \) – coordinate step, \(m \); \(F_{ext}^{k} \) – moisture potential of outer air at the \(k \)-th time step, \(Pa \); \(F_{1}^{k} \) – moisture potential in the first section of the enclosing structure at the \(k \)-th time step, \(Pa \); \(F_{2}^{k} \) – moisture potential in the second section of the enclosing structure at the \(k \)-th time step, \(Pa \); \(F_{i+1}^{k} \) – moisture potential in the first section of the enclosing structure at the \((k+1) \)-th time step, \(Pa \); \(F_{i}^{k} \) – moisture potential in the \((i-1) \)-th section of the enclosing structure at the \(k \)-th time step, \(Pa \); \(F_{i+1}^{k} \) – moisture potential in the \(i \)-th section of the enclosing structure at the \(k \)-th time step, \(Pa \); \(F_{i}^{k} \) – moisture potential in the \(i \)-th section of the enclosing structure at the \((k+1) \)-th time step, \(Pa \); \(F_{N}^{k} \) – moisture potential in the \((N-1) \)-th section of the enclosing structure at the \(k \)-th time step, \(Pa \); \(F_{N}^{k} \) –
moisture potential in the \(N \)-th section of the enclosing structure at the \((k+1)\)-th time step, \(P_a \); \(F^k_w \) — moisture potential of inner air at the \(k \)-th time step, \(P_a \); \(\kappa^k_F \) — material heat-humidity characteristic coefficient in the first section of the enclosing structure at the \(k \)-th time step, \(m^2/(s\cdot Pa) \); \(E^k_i \) — saturated water vapor pressure in the first section of the enclosing structure at the \(k \)-th time step, \(P_a \); \(E^k_{1i} \) — saturated water vapor pressure in the \(i \)-th section of the enclosing structure at the \(k \)-th time step, \(P_a \); \(E^k_{iN} \) — saturated water vapor pressure in the \(N \)-th section of the enclosing structure at the \(k \)-th time step, \(P_a \); \(\kappa^k_{F,i} \) — material heat-humidity characteristic coefficient in the \(i \)-th section of the enclosing structure at the \(k \)-th time step, \(m^2/(s\cdot Pa) \); \(\kappa^k_{F,N} \) — material heat-humidity characteristic coefficient in the \(N \)-th section of the enclosing structure at the \(k \)-th time step, \(m^2/(s\cdot Pa) \).

4. Results and discussion

The results of calculating the moisture regime using the steady-state and the unsteady-state methods, which are based on the theory of the moisture potential \(F \), are compared. A single-layer aerated concrete wall in Moscow (Russian Federation) was investigated. Inside the building the temperature of 20 °C and the relative humidity of 55 % are constantly maintained. A comparison of the moisture distribution of the enclosing structure, which is determined by separate methods of the theory of moisture potential \(F \), during maximum moisture accumulation period and during a year is presented at (Fig. 1, Fig. 2).

![Figure 1. Moisture distribution along the thickness of the enclosing structure during maximum moisture accumulation period (1 — distribution, which is obtained according to the solution of the steady-state moisture transfer equation; 2 — distribution, which is obtained according to the solution of the unsteady-state moisture transfer equation).](image-url)
Figure 2. Moisture distribution during a year (1 – distribution, which is obtained according to the solution of the steady-state moisture transfer equation; 2 – distribution, which is obtained according to the solution of the unsteady-state moisture transfer equation).

As it can be seen from the graph (Fig. 1), the highest moisture is achieved using the steady-state method for assessing the humidity regime. This is because the steady-state regime does not take into account the kinetics of humidification. Also, the unsteady-state method allows to more accurately determine the moment of maximum moisture accumulation.

5. Conclusion

Thus, we formulated the mathematical models of steady-state and unsteady-state moisture transfer processes. The solution of the steady-state moisture transfer equation can be found as an analytical expression, whereas the solution of the unsteady-state moisture transfer equation can be obtained by the finite difference method using an explicit difference scheme.

We used these two methods for a the single-layer enclosing structure of aerated concrete blocks, analyzed the moisture behaviour in the thickness of the enclosing structure during maximum moisture accumulation period, and the average moisture of the wall during a year. As a result, the steady-state method of calculation is simpler to use in engineer work, however, it gives less opportunities. The unsteady-state method has higher accuracy than steady-state one, because the unsteady-state formulation of mathematical model takes into account the inertia of humidification processes.

Authors recommend using the developing unsteady-state mathematical model to predict the moisture regime of enclosing structures.

The prospect of developing the topic is the creation of analytical calculation methods for assessing the unsteady-state moisture regime.

References
[1] Bai H, Zhu J, Chen X, Chu J, Cui Y and Yan Y 2020 Steady-state performance evaluation and energy assessment of a complete membrane-based liquid desiccant dehumidification system Appl. Energy. 258 L 114082
[2] Vavrovic B 2014 Importance of envelope construction renewal in panel apartment buildings in terms of basic thermal properties Advanced Materials Research. (Kocovce: International Conference on Advanced Building Construction and Materials (ABCM 2013)) 855 pp 97-101
[3] Musorina T, Katcay A, Petrichenko M and Selezneva A 2018 Thermal Properties of Conventional and High-strength Concrete *MATEC Web of Conferences* (International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2018)) **245** L 06005

[4] Gamayunova O, Musorina T and Ishkov A 2018 Humidity Distributions in Multilayered Walls of High-rise Buildings *E3S Web of Conferences* (High-Rise Construction 2017 (HRC 2017)) **33** L 02045

[5] Statsenko E A, Musorina T A, Ostrovaia A F, Olshevskiy V Y and Antuskov A L 2017 Moisture transport in the ventilated channel with heating by coil *Mag. Civ. Eng.* **70**(2) 11–17

[6] Petrov A S and Kupriyanov V N 2016 About operational factor influence on vapor permeability of heat-insulating materials *International journal of pharmacy and technology*. **8** L 11248-56

[7] Gagarin V G, Akhmetov V K and Zubarev K P 2020 The moisture regime calculation of single-layer enclosing structures on the basis of the discrete-continuum method application *IOP Conference Series: Materials Science and Engineering* (International science and technology conference "FarEastCon-2019") **753** L 022045

[8] Gagarin V G, Akhmetov V K and Zubarev K P 2020 The moisture regime calculation of single-layer enclosing structures on the basis of the discrete-continuum method application *IOP Conference Series: Materials Science and Engineering* (International science and technology conference "FarEastCon-2019") **753** L 022046

[9] Zhang N, Chen X, Su Y, Zheng H, Ramadan O, Zhang, X, Chen, H and Riffat S 2019 Numerical investigations and performance comparisons of a novel cross-flow hollow fiber integrated liquid desiccant dehumidification system *Energy* **182** 1115-1131

[10] Lal S, Lucci F, Defraeye T, Poulilakos L D, Partl M N, Derome D and Carmeliet J 2018 CFD modeling of convective scalar transport in a macroporous material for drying applications *International journal of thermal sciences* **123** 86-98

[11] Tang YC, Min JC and Wu XM 2018 Selection of convective moisture transfer driving potential and its impacts upon porous plate air-drying characteristics *International journal of heat and mass transfer* **116** 371-6

[12] Skerget L, Tadeu A and Ravnik J 2017 BEM numerical simulation of coupled heat, air and moisture flow through a multilayered porous solid *Engineering analysis with boundary elements* **74** 24-33

[13] Perre P, Pierre F, Casalinho J and Ayouz M 2015 Determination of the Mass Diffusion Coefficient Based on the Relative Humidity Measured at the Back Face of the Sample During Unsteady Regimes *Drying technology* (Paris: EuroDrying Conference 2013) **33** 1068-75

[14] Belkharchouche D and Chaker A 2016 Effects of moisture on thermal conductivity of the lightened construction material *International journal of hydrogen energy* (17th International Conference on Emerging Nuclear Energy Systems (ICENES)) **41** L17 7119-25

[15] Liu Z C, Hansen W and Wang F Z 2018 Pumping effect to accelerate liquid uptake in concrete and its implications on salt frost durability *Construction and building materials* **158** 181-8

[16] Wu Z, Wong HS and Buenfeld NR 2017 Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking *Cement and concrete research* **98** 136-54

[17] Zvicevicius E, Raiia A, Cipliene A, Cerniauskiene Z, Kadziuliene Z and Tilvikiene V 2018 Effects of moisture and pressure on densification process of raw material from Artemisia dubia Wall *Renewable energy* **119** 185-92

[18] George F, Prevost J H and Huet B 2018 Impact of the microstructure model on coupled simulation of drying and accelerated carbonation *Cement and concrete research* **104** 1-12

[19] Li XX, Chen S H, Xu Q and Xu Y 2018 Modeling Capillary Water Absorption in Concrete with Discrete Crack Network *Journal of materials in civil engineering* **30**

[20] Eklund J A, Zhang H, Viles H A and Curteis T 2013 Using handheld moisture meters on limestone: factors affecting performance and guidelines for best practice *International journal
of architectural heritage 7 L6 207-24

[21] Hoseini A and Bahrami A 2017 Effects of humidity on thermal performance of aerogel insulation blankets Journal of building engineering 13 107-15

[22] Jin H Q, Yao X L, Fan L W, Xu X and Yu Z T 2016 Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content International journal of heat and mass transfer 92 589-602

[23] Shukla N, Kumar D, Elliott D and Kosny J 2014 Moisture Content Measurements in Wood and Wood-Based Materials-Advancements in Sensor Calibration and Low-Moisture-Content Regime Next-generation thermal insulation challenges and opportunities. (Jacksonville: Symposium on Next Generation Thermal Insulation Challenges and Opportunities) 1574 66-80

[24] Suchorab Z, Sobczuk H and Lagod G 2016 Estimation of Building Material Moisture Using Non-invasive TDR Sensors Thermophysics 2016: 21st international meeting 2016 (21st International Meeting on Thermophysics) 1752 L 030003

[25] Rubene S, Vilnitis M and Noviks J 2015 Impact of External Heat Insulation on Drying Process of Autoclaved Aerated Concrete Masonry Constructions 2nd international conference on innovative materials, structures and technologies (2nd International Conference on Innovative Materials, Structures and Technologies (IMST)) 96 L 012059

[26] Potzsch N and Ruther N 2009 Determination of the water vapour diffusion permeability of building materials in dependency on the temperature Bauphysik. 31 L 2 106-9

[27] Gvozdkov A 2014 Modern solutions to improve the efficiency of air treatment in HVAC Systems 9th International Conference on Environmental Engineering (ICEE 2014 (2014)) 258 L 114082

[28] Gagarin V G, Akhmetov V K and Zubarev K P 2018 Assessment of enclosing structure moisture regime using moisture potential theory MATEC Web of Conferences 2018. (International Scientific Conference Environmental Science for Construction Industry – ESCI 2018). 193 L 03053

[29] Gagarin V G, Akhmetov V K and Zubarev K P 2018 The moisture regime calculation of single-layer enclosing structures on the basis of the discrete-continuum method application IOP Conference Series: Materials Science and Engineering (APCSCE) 456 L 012105

[30] Gagarin V G, Akhmetov V K and Zubarev K P 2018 Unsteady-state moisture behavior calculation for multilayer enclosing structure made of capillary-porous materials IOP Conference Series Earth and Environmental Science (International Conference on Sustainable Cities) 177 L 012021