RESEARCH ARTICLE

Comparative immunomodulatory efficacy of rosemary and fenugreek against Escherichia coli infection via suppression of inflammation and oxidative stress in broilers

Sameh M. Farouk1 · Haidy G. Abdel-Rahman2 · Osama A. Abdallah2 · Nashwa G. EL-Behidy3

Received: 19 July 2021 / Accepted: 23 December 2021 / Published online: 3 February 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Broiler chickens are frequently infected with Escherichia coli (E. coli) bacteria, which often leads to the emergence of many diseases and high economic losses. Hence, the current study was conducted to assess the relative efficacy of dietary rosemary and fenugreek, under E. coli infection in broilers and their ability to replace antimicrobials without any loss of productivity or negative influence on broiler health, via evaluation of growth performance, biochemical indices, immune response and histo-morphological changes. Eighty Cobb broilers were allotted to four equal groups (n=20 chicks/group): control non-infected (CN), control infected (CI), rosemary infected (RI) and fenugreek infected (FI) groups. The RI and FI groups revealed a significant elevation in their body weight and body weight gain compared with the CI group. However, both groups showed a significant decline in serum aspartate and alanine aminotransferase activities, as well as uric acid and creatinine levels. A significant decrease in total antioxidant capacity, catalase and superoxide dismutase activities was noted among CI chicks. Moreover, distinctly higher activities were evident in both RI and FI groups. Assessment of immunomodulatory markers showed a significant increase in immunoglobulin G along with a significant decline in interleukin-6 level in both RI and FI groups, with the lowest IL-6 value within FI group. Histopathological evaluations focused on the deleterious effect associated with E. coli infection of broilers’ liver, kidney, intestine, spleen, bursa of Fabricius and thymus. Partial histological improvement was noticed among RI group, and nearly normal tissues were recorded in FI group. Overall, the obtained findings suggest the ability of fenugreek to mitigate the adverse effects of E. coli infection on broiler performance and tissue profiles, by improving the general health status of the broiler chickens.

Keywords Fenugreek · Rosemary · Immunomodulatory · Antioxidant · E. coli · Histopathology · Broiler

Introduction
In the global poultry industry, Escherichia coli (E. coli) lead to significant economic losses each year (Lau et al., 2010). E. coli infection is usually controlled with antibiotics. However, the emergence and continued use of the antibiotics in poultry feed have raised cross-resistance that poses substantial risks for human health (Asai et al., 2011; Ghozlan et al., 2017). One possibility is the application of probiotics, prebiotics and herbaceous plants or their essential oils (Sarica et al., 2007), to replace antibiotics without negative health impact or any loss of productivity (Demir et al., 2003; Maiorano et al., 2016).

Rosemary (Rosmarinus officinalis), a widespread household plant, is used as a natural additive to animal feed with its antibacterial, antifungal and antioxidant activities (Genena et al., 2008; Mohamed et al., 2016a), as well as a flavoring agent for food, beverages and cosmetics preparations (Ibarra et al., 2010). It possesses a number of therapeutc applications in medicine for the treatment or management of various pathological conditions such as inflammatory diseases, respiratory and GIT disorders (Al-Kassie and Abd-Al-Jaleel, 2011; El-Boshy et al., 2015). It is mainly

Responsible Editor: Lotfi Aleya

Sameh M. Farouk
dr_smf_hist@vet.suez.edu.eg; dr_smf_hist@yahoo.com

1 Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
2 Clinical Pathology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
3 Veterinary Medicine Directorate of Damietta, Damietta, Egypt
composed of 0.5% volatile oil, flavonoids (diosmetin, gen-
kwainin, diosmin, glucoside and luteolin), phenolic acids (rosmarinic, chlorogenic, neochlorogenic, labiatic and caff-
ecic acids), carnosic acid, rosmaricine and isorosmaricine, tripterpenic acids and others (Khan and Abourashed, 2010).
Jafari-sales and Pashazadeh (2020) indicated that 1.8 cineole and α-pinen are the highest essential oils in rosemary and have a remarkable anti E. coli activity, so it could be used as a suitable alternative to synthetic antibiotics. Furthermore, Ojeda et al. (2013) reported a relationship between the antibacterial activity of different rosemary essential oils against Gram-positive and Gram-negative bacteria, and they related their activities to the changes in membrane permeability and disruption of the E. coli cell membrane in vitro.

Historically, fenugreek (Trigonella foenum-graecum) is considered one of the oldest medicinal herbs (Djeridane et al., 2006). Its seeds are commonly used by people in Asia, Africa and Mediterranean countries as one of the ingredients in daily diets (Basch et al., 2003). In modern food technology, it is used as a food stabilizer, adhesive and emulsifier (Meghwal and Goswami, 2006). It is known to have several pharmacological properties (Benayad et al., 2014), including hypoglycemia (Sharma et al., 1990; Zia et al., 2001), hypcholesterolemia (Stark and Madar, 1993; Srinivasan, 2006), gastro-protective (Sujapandian et al., 2002), chemopreventive (Amin et al., 2005), antioxidant (Kavirasan et al., 2007), anti-inflammatory (Ahmadian et al., 2001) and appetite stimulation (Petit et al., 1993). Previously reported data on the phytochemical composition of fenugreek highlighted the presence of alkaloids (Petropoulos, 2002), flavonoids and phenolic acids (Kenny et al., 2013), polysaccharides (Petropoulos, 2002), triterpenoids (Shang et al., 1998), steroidal sapogenins (Taylor et al., 1997) and nicotinic acid (Rajalakshmi et al., 1964). The fenugreek seeds contain about 7.5% of total lipids: neutral lipids, glycolipids and former acids, 6% steroidal sapogenins (glycosides; vitamins, minerals, (28%) mucilage, 5% of 4-hydroxyisoleucine, arginine, lysine and histidine); saponins; carbohydrates; vitamins, minerals, (28%) mucilage, 5% of 4-hydroxyisoleucine, arginine, lysine and histidine); saponins; carbohydrates; vitamins, minerals, (28%) mucilage, 5% of a stronger-smelling, bitter fixed volatile oils (Snehlata and Dande, 2012). The strong antioxidant free radical scavenging activity of fenugreek seeds correlates with the presence of carboxyl group in the seed oil that were more dominated by unsaturated essential fatty acids (Akbari et al., 2013; Baba et al., 2018). Qureshi et al. (2015) revealed the antibacterial properties of fenugreek seeds in vitro with zone of inhibition as 2.1 mm against E. coli on the Mueller Hinton Agar. This high growth inhibitory effect is related to the presence of major compounds known to have antibacterial activity such as tannins and flavonoids (Chalghourni et al., 2016).

The emergence of drug-resistant E. coli indicates the possibility of chicken as a source of antibiotic resistance pool for humans and a major ecological risk to the environment. Therefore, in this paper, the authors report on the in vivo ameliorative effects of broiler ration supplementation with two medicinal plants, rosemary leaves (Rosmarinus officinalis) and fenugreek seeds (Trigonella foenum-graecum), challenging with experimental infection of E. coli for 6 weeks, on growth performance, some selective biochemical, immunological and antioxidant parameters, along with histopathological changes associated with hepatic, renal, intestinal, splenic, thymic and bursal tissues.

Materials and methods

Experimental broiler chicks, E. coli strain and natural products

Eighty, 1-day-old, apparently healthy commercial Cobb broiler were obtained from Alasma Masr Poultry Company, Egypt. E. coli strain O78 was obtained from Animal Health Research Institute, Ismailia, Egypt. E. coli colonies were grown in nutrient broth for 24 h at 37 °C, and viable number was adjusted to 4 × 10^6 colony forming units (CFU). Each chick was inoculated with 0.5 ml of E. coli O78 bacterial inoculum, at 7 days old of age as the following: 0.25 ml intranasal and 0.25 ml via eye drop route. Rosemary leaves and fenugreek seeds were purchased from local commercial market of herbs and medicinal plants (Al-kateb Company, Egypt), were grounded by the home blender and then were added to the balanced ration by 5 g plant powder/kg diet for each.

Chemicals and reagents

All commercial test kits for aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid (UA), creatinine (Cr), cholesterol (Ch) and glucose (G) were obtained from BIO-Merieux (Brains/France) and Ticho-Diagnostic (Sees, France). Diagnostic kits for chicken interleukin-6 (IL-6) ELISA kit (Genorise Scientific, INC), chicken immunoglobulin G (IgG) ELISA kit (Bethyl Laboratories, INC.), superoxide dismutase (SOD) ELISA kit (Kamiya Biomedical), catalase (CAT) catalase assay kit (Cayman Chemical) and total antioxidant capacity (TAC) Oxiselect™ assay kit (Cell Biolabs, Inc.) were used in the current study.

Birds grouping and treatment schedule

Upon arrival, birds were weighed and kept under standard sanitary conditions in floor pens covered with unused
wood shavings litter, with free access to the balanced commercial basal ration (Table 1) and fresh tap water ad libitum until the end of the experiment. The temperature was adjusted according to age, 32 °C at the first week and then decreased 2 °C per week. All chickens were vaccinated according to the vaccination schedule. Birds were then allotted into four equal groups \((n = 20 \text{ chicks/group})\) as follow: control non-infected (CN) group, fed on balanced commercial ration free from any feed additives. Control infected (CI) group, fed on balanced commercial ration free from any feed additive but experimentally infected with \(E. \text{coli}\) at 1 week of age (Majo et al., 1997). Rosemary infected (RI) group, fed on balanced commercial ration supplied with rosemary at the level of 0.5% (5 g rosemary leaves powder/kg ration) from 1 day to 6 weeks old (Ghazalah and Ali, 2008) and experimentally infected with \(E. \text{coli}\) at 1 week of age. Fenugreek infected (FI) group, fed on balanced commercial ration supplied with fenugreek at the level of 0.5% (5 g fenugreek seed powder/kg ration) from 1 day to 6 weeks old (Elbushra, 2012) and experimentally infected with \(E. \text{coli}\) at 1 week of age.

Growth performance parameters

Each chick was individually weighed at the beginning and end of the experiment (1 day and 6th week old), respectively. Body weight gain (BWG) was calculated at 6th week of the experiment by subtracting the body weight between two consecutive weights. Feed consumption (FC) was calculated by subtracting the amount of feed remaining at the end of the 6th week from the amount of feed given at the beginning of the experiment. The amount of feed consumed was then divided by the weight gain for each group to obtain the feed conversion ratio (FCR) (Nobo et al., 2012).

Blood and tissue sampling

At the end of the experiment, five chicks were randomly obtained from each group for blood and tissue specimens’ collection. Approximately 3 ml of blood samples was obtained by puncturing the heart of each bird, collected in a plain centrifuge tube and then used for the preparation of serum for assay of biochemical, immunological and antioxidant parameters (TAC and CAT). After blood sampling, chicks were gently sacrificed, and small specimens from the liver, kidney, intestine, spleen, thymus and bursa were obtained for histopathological examination. Furthermore, parts of liver and kidney were stored at −20 °C for the antioxidant assay.

Sera biochemical parameters

Blood sera were then used for assessment of hepatic and renal injury biomarkers. ALT and AST activities were determined colorimetrically according to the method of Crowley (1967). UA was determined by uricase–POD enzymatic colorimetric method according to Fossati et al. (1980). Cr was performed by photometric colorimetric test for kinetic measurement, methods without deproteinization, using readymade kits as described by the method of Owen et al. (1954). Serum glucose was determined according to Kinoshita et al. (1979). Cholesterol was determined by the enzymatic colorimetric method, CHOD-POD, according to the method described by Allain et al. (1974).

Cytokine’s estimation

IL-6 was assessed, and IgG concentrations were calculated according to the method of Koivunen and Krogsrud (2006).
Evaluation of antioxidant indices

SOD concentration was measured according to Koivunen and Krogsrud (2006). CAT was assessed according to Wheeler et al. (1990); meanwhile, TAC was calculated according to Hariane and Moya (2015).

Histopathological examination

Liver, kidney, intestine spleen, bursa and thymus samples, obtained from sacrificed birds of all groups, were freshly collected and then fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned at 5–7-µm thickness and finally stained with hematoxylin and eosin (H&E) for histopathological examination. Routine histological procedures were carried out according to the method of Suvarna et al. (2012).

Statistical analysis

Data collected from biochemical, immunological and antioxidant assays of all treated groups were statically analyzed compared to control group for the mean and standard error using statistical software program (SPSS for windows, version 16, USA). The difference between means of different experimental groups was carried out using one-way analysis of variance (ANOVA) with Duncan multiple comparison tests. Dissimilar superscript letters in the same column show a significance \((P > 0.05) \) (Landau and Everitt, 2004).

Results

The main clinical symptoms, observed among the \(E. \ coli \)-infected birds, were dullness, depression, raffled feathers, huddling, reduced fed and water consumption, which appeared within 24 h post infection. Respiratory signs were developed 2–3 days post infection, as sneezing, rhinitis and wet eyes. As summarized in Table 2, mortality was highest in CI group (25%) followed by that of RI (10%), and then the lowest percentage was recorded within FI (5%).

Groups	Number of dead chicks	Mortality %
CN	0	0
CI	5	25
RI	2	10
FI	1	5

Growth performance parameters

Growth performance parameters was summarized within Table 3 (supplementary data). The CI group showed a significant decline in BW and BWG compared to CN. Meanwhile, RI and FI groups revealed a significant increase in BW and BWG compared to CI, with more significance in FI group. Moreover, non-significant change was reported in FI group compared to CN (Fig. 1A, B). Concerning FC and FCR, CI group showed a significant decrease when compared with CN. Additionally, a significant decline of FC and FCR was noted among RI and FI groups in comparison with CI, with the less FC and FCR in RI group (Fig. 1C, D).

Cholesterol and glucose levels

CI group showed a significant increase and a significant decrease in cholesterol and glucose levels, respectively when compared to CN (Fig. 2A, B). RI and FI groups revealed a significant decline in cholesterol level compared to CI (Fig. 2A). RI group showed a significant increase, while FI group revealed a significant decrease in glucose level in comparison with CI (Fig. 2B). RI group showed a non-significant change in glucose level when compared to CN (Fig. 2B).

AST and ALT activities, UA and Cr concentrations

As shown in Fig. 3, the CI group showed a significant increase in AST and ALT activities along with a significant elevation in UA and Cr levels when compared to CN. On the other hand, both RI and FI groups showed a significant decline in their levels compared to CI, with the least recorded value in FI.

Immunological profile

Pointing to IL-6 and IgG levels, the CI group revealed a significant increase in their levels compared to CN (Fig. 4A, B). Meanwhile, both RI and FI groups showed a significant decrease in IL-6 level (Fig. 4A) when compared to CI, along with a significant elevation in IgG level (Fig. 4B) when compared with CN and CI groups, with the lowest value of IL-6 and the highest IgG level obtained from FI group.

Hepatic and renal SOD activities

The CI group showed a significant decrease in hepatic and renal SOD activities when compared to CN. In contrary, RI and FI groups showed a significant elevation of SOD levels in comparison with CI (Fig. 5). A non-significant change in hepatic and renal SOD levels was noted among CN, RI and FI (Fig. 5).
Fig. 1 Mean ± SE of body weight (A), body weight gain (B), feed consumption (C) and feed conversion ratio (D) in all experimental groups

Fig. 2 Mean ± SE of cholesterol (A) and glucose (B) levels in all experimental groups

Fig. 3 Mean ± SE of AST and ALT activities (A), and UA and Cr levels (B) in all experimental groups

Sera antioxidant indices

The CI group revealed a non-significant decline in TAC and CAT levels compared with CN group (Fig. 6A, B). RI and FI groups showed a significant increase of TAC and CAT levels compared to CI one (Fig. 6A, B). On the other hand, non-significant changes in TAC and CAT activities were recorded among RI and FI groups (Fig. 6A, B).
Fig. 4 Mean ± SE of IL-6 (A) and IgG (B) levels in all experimental groups

Fig. 5 Mean ± SE of SOD in hepatic and renal tissues of all experimental groups

Fig. 6 Mean ± SE of TAC (A) and CAT (B) levels in all experimental groups
Histopathological evaluations

In all four treated-groups, hepatic, renal, intestinal, splenic, thymic and bursal specimens were processed further for histopathological analysis. Architectural changes were successively recorded in all selected organs of experimental broilers. The histological structures of all previously mentioned organs in response to different treatments were illustrated in Figs. 7,8,9,10,11 and 12, respectively.

The microscopical examination of hepatic tissue sections, obtained from CN group, demonstrated normal hepatic architecture along with normally arranged hepatocytes separated by hepatic sinusoids and radiated from the central vein. The hepatocytes appeared crowded polygonal cells with centrally located spherically basophilic nuclei and acidophilic cytoplasm (Fig. 7A). In contrast, CI group showed thick hepatic capsule with marked degenerative changes among hepatocytes, Kupffer cell hyperplasia, mononuclear leukocytic infiltration around the central vein, evidence of marked congestion and dilatation of central vein and sinusoids as well as marked diffuse necrobiotic changes of hepatic tissue. Such degenerative changes were evidenced by vacuolar degeneration in some pyknotic hepatocytes. Moreover, fibrous connective proliferation was observed around the portal area admixed with mononuclear leukocytic infiltration (Fig. 7B). RI birds' liver revealed very mild degenerative changes in hepatocytes with mononuclear cellular infiltration. The central vein was slightly dilated and congested compared to control group (Fig. 7C). Meanwhile, FI birds' liver showed near normal hepatocellular organization and architecture, with very mild degenerative changes of some hepatocytes and less mononuclear cell infiltration; others showed regeneration in the rest of the cells. Additionally, the central vein appears normal (Fig. 7D).

The selected renal sections obtained from CN group revealed normal renal histological structures of the glomeruli and surrounding tubules (Fig. 8A). However, infected birds showed marked degenerative changes of tubular cells, and areas of mild interstitial infiltration of mononuclear leukocytic cells were noticed among the renal cortex of this treated group. Additionally, congestion of the renal blood vessels and inter-tubular capillaries was also observed along with extravasated RBCs among this group (Fig. 8B). The degenerative changes of tubular cells are indicated by vacuolar and hydropic degeneration. Additionally, individual epithelial cells were shrunken with pyknotic nuclei. Concerning RI birds, the kidneys showed mild congestion of the renal blood vessels and inter-tubular capillaries. Additionally, the lining epithelium of the convoluted tubules mostly appeared degenerated (Fig. 8C). The degenerated changes of renal structures were seen to be disappeared in FI group which exhibited near normal renal features (Fig. 8D).

Fig. 7 Representative photomicrograph of broiler liver. A; CN group, B; CI group, C; RI group and D; FI group. Here, hepatocytes (HC) radiated from central vein (CV); hepatic sinusoids (thin black arrows); vacuolar degeneration in some pyknotic hepatocytes (head arrows); Kupffer cell hyperplasia (thin white arrowheads); evidence of marked congestion and dilatation of central vein (CC) and hepatic sinusoids (CS) along with leukocytic infiltration (L). H&E stain.
Fig. 8 Representative photomicrograph of broiler kidney. A; CN group, B; CI group, C; RI group and D; FI group. Here, renal corpuscles (RC) and surrounding tubules; proximal tubules (PT) and distal tubules (DT); severe congestion and hemorrhages in the peritubular capillaries (H); vacuolization of epithelial lining renal tubules (white arrows); pyknosis of some tubular nuclei (arrowheads); leukocytic infiltration (black arrows). H&E stain

Fig. 9 Representative photomicrograph of broiler intestine. A; CN group, B; CI group, C; RI group and D; FI group. Here, intestinal villi (IV); intestinal glands (IG); lamina propria (LP); muscularis mucosa (MM); tunica submucosa (SM); tunica musculara (TM); destructive intestinal villi (white arrows) and gland (black arrow); leukocytic infiltration (head arrows). H&E stain
Fig. 10 Representative photomicrograph of broiler spleen. A; CN group, B; CI group, C; RI group and D; FI group. Here, red pulp (R); white pulp (W); lymphoid follicle (LF); artery of white pulp (A); congested blood vessels (CB). H&E stain

Fig. 11 Representative photomicrograph of broiler thymus. A; CN group, B; CI group, C; RI group and D; FI group. Here, cortex (CO); medulla (M); thymic corpuscle (T); fine connective tissue septa (white arrows); necrotic area (N); lymphocytic depletion (black arrows); heamobiotic cells (head arrows). H&E stain
Control untreated birds revealed normal intestinal architecture with uniform intestinal villi lined by columnar epithelium with goblet cells in between, as well as intestinal glands located between the bases of villi in intestinal mucosal layer (Fig. 9A). Even the intestine of infected birds showed vacuolation, atrophy, sloughing and necrosis of intestinal villi along with leukocytic infiltration (mainly heterophils, macrophage and lymphocyte) associated with edema and necrosis of the muscularis mucosa (Fig. 9B). The intestinal tissue architecture of RI birds revealed some degenerative changes of the intestinal architecture but less than that picture recorded in an infected group alone (Fig. 9C). Meanwhile, FI birds showed normal villus architecture with mild cellular infiltration in intestinal mucosa and sub-mucosa when compared with the control (Fig. 9D).

Histological examination of splenic sections obtained from CN broilers showed no difference in splenic architecture enclosing normal white and red pulps (Fig. 10A). Additionally, the splenic red pulp formed mainly from cords of reticular and blood cells associated with immunocompetent cells: macrophages and lymphocytes. The white pulp is the splenic lymphatic tissue, composed mainly of lymphoid follicles with periarterial sheath (Fig. 10A). Meanwhile, the infected group showed noticeable pathological changes among splenic parenchyma when compared to control group. These changes include lymphocytic depletion and degeneration (Fig. 10B). Additionally, massively congested areas within the splenic red pulp were noted. Marked increasing of the area red pulp on the expense of the white one was also recorded among this infected group. RI group showed a significant difference from that of infected birds without any treatment including relative improvement of white pulp containing small-sized lymphoid follicles with mild to moderate congestion of splenic blood vessels along red pulp (Fig. 10C). Splenic parenchyma restored its architecture to almost the normal picture and appeared to be regenerated after fenugreek treatment with mild congestion of splenic blood vessels (Fig. 10D).

The present light microscopic study of thymic sections from control untreated birds revealed thin connective tissue capsule surrounded the gland; numerous fine septa of connective tissue originated from the capsule were divided the organ into incompletely separated lobules. Each lobule organized into a peripheral cortex and a central medulla with numerous thymocytes, few macrophages and diffuse Hassall’s corpuscles found (Fig. 11A). On the other hand, the thymus of CI group showed marked lymphocytic depletion when compared with the thymus of the control non-infected group along with blood vessels congestion and extravasated haemo biotic cells (Fig. 11B). Lymphocytic necrotic areas were also noted near the area of thymic cortex concomitant with an irregular arrangement of thymic cells within cortex.
and medulla. Hence, the boundaries between the cortex and medulla were mingled together. Both RI and FI revealed thymic architectural improvements, but the best pictures were observed in the infected group treated with fenugreek (Fig. 11C, D).

It is clearly noticed that the bursal sections obtained from CN group showed normal longitudinal mucosal folds projected into the lumen covered by follicular epithelium; numerous follicles filled the lamina propria of each fold. Each bursal follicle was composed of a peripheral cortex and a central medulla. The cortex composed mainly of many closely packed small lymphocytes; meanwhile, medulla contained fewer cells of various sizes (Fig. 12A). Meanwhile, that of the infected bird’s revealed mild to moderate lymphoid depletion with severe diffuse edema of the interfollicular connective tissue in the lamina propria (Fig. 12B). In the medulla of the follicles, some lymphocytes showed karyopyknosis. Regarding RI group, there was still tendency of interfollicular edema and mild lymphoid depletion among the examined sections (Fig. 12C); however, FI group showed an improvement of the degenerative changes when compared with infected group with less edematous area among the interfollicular connective tissue (Fig. 12D).

Discussion

The prohibition of nutritive antibiotic use in Europe, as well as the increased awareness of the consumers, triggered a need for natural and safe feed additives to achieve better poultry production. Herbal plants are used in animal nutrition as appetite, digestion stimulants, physiological functions stimulants, prevention and treatment of certain pathological conditions and antioxidants (Mohamed et al., 2016a; 2016b; Ismaiel et al., 2017; Abdellatif et al., 2017; Emam et al., 2018; Farouk et al., 2020; Gad et al., 2021). The current study focused on the comparative efficacy of rosemary and fenugreek as feed additives, growth promoters, immunostimulants and tissue protective agents against E. coli infection in broilers.

The decreasing effect of E. coli infection on B.W., B.W.G, FC and FCR, noted in the present study, may be attributed to colonizing of E. coli in the intestinal wall and secreting toxins and so affects intestinal integrity which reflected on feed intake and so on weight gain (Gomis et al., 1997; El-Baky et al., 2014). This assumption is proved by intestinal histopathological examination where E. coli badly affect intestinal tissues with atrophy, sloughing and necrosis of intestinal villi and glands along with leukocytic infiltration, which came in accordance with Moursi et al. (2008).

Moreover, the present findings indicated a decreasing of BW among RI birds compared with CN group, which came in agreement with Hernández et al. (2004), Abd El-Latif et al. (2013) and Soltani et al. (2016). This likely was due to reduction in feed intake that results from the strong flavor of rosemary which needs an adaptation period for accommodating oral and nasal sensing, preparing the gastrointestinal tract for food reception and modulating digestive secretions and gut motility. Additionally, it may be also due to the fact that rosemary leaves contain high crude fiber particularly, cellulose which may hampered nutrient utilization by chickens (Barelli, 2013; Soltani et al., 2016). Opposite to the results of Mathlouthi et al. (2012) who recorded good growth performance effects of rosemary, that may be due to the difference in the used rosemary form, source and concentration (Yesilbag et al., 2011). On the other hand, fenugreek cleared an elevating effect on BW and BWG, which comes in agreement with Park and Kim (2015). Meanwhile, it is not in harmony with the results of Saki et al. (2014) and Patel et al. (2014). Our finding may be attributed to the fenugreek controlling effect on potential pathogens in gut microflora, thus moving the animals from immune defense stress to increase absorption of essential nutrients, improving the digestive capacity of the small intestine and thereby helping animals to grow better, as mentioned by Hashemi and Davoodi (2011). Such results were clearly confirmed by histopathological evaluation that revealed less degenerative changes in RI intestine and normal villus architecture in fenugreek infected intestinal tissue. This good histological picture came in accordance with Gurkan et al. (2015).

In the current study, E. coli infection resulted in an increase in AST, ALT, UA, Cr and cholesterol, with a decline in glucose level. These findings are in accordance with Zak et al. (2012) and Abdel Ziz et al. (2016) who recorded that E. coli infection in chickens resulted in significant increase in liver enzymes (AST and ALT) activities. Our results also were in complete harmony with those reported by Joan and Pannel (1981), who stated that the E. coli infection produced alteration in cellular permeability due to changes in cell membrane which allows the escape of these enzymes into serum in abnormal high level. Our findings are magnified by histopathological examination of hepatic and renal tissues which are expressed as hepatocytic vacuolar degeneration and marked necrobiotic changes of hepatic tissue, along with renal tubular degenerative changes. This histopathological figures came in agreement with Moursi et al. (2008).

On contrary, rosemary succeeded to decrease AST, ALT, UA and Cr levels, which was proved by histopathological examination that revealed mild degenerative changes in hepatocytes. Similar data were obtained by Albasha and Azab (2014) and Mohamed et al. (2016a) who recorded the protective effect of rosemary supplementation against cadmium, gentamicin and lead acetate induced hepatorenal toxicity, respectively. Azab et al. (2016) related the hepatoprotective effect of rosemary to its principal antioxidant constituents (rosmarinic acid, diterpenoids such as...
carnosic acid, carnosol, carotenoid and alpha-tocopherol) which inhibit free radicals' generations. Also, Mohamed et al. (2016a) related the renal protecting effect of rosemary to synergistic interactions between its individual components with its antioxidant properties. Moreover, rosemary showed hypercholesteremic properties in RI group, which were also recorded by Ghazalah and Ali (2008) and Polat et al. (2011), who related it to leaves defatted portion rich in fibrous content that prevents intestinal cholesterol absorption. Additionally, fenugreek mediated a decrease of AST, ALT, UA, Cr and glucose levels than CI, which is magnified by histopathological examination that revealed near normal hepatocellular and renal architecture. These results were also recorded by Mamoun et al. (2014) and Park and Kim (2015). Mentreddy (2007) related the hypoglycemic effect of fenugreek to the steroidal saponins, alkaloids and 4-hydroxyisoleucine soluble dietary fiber fraction, exerting delaying effect on sucrose digestion and inhibition of carbohydrate hydrolyzing enzyme, as well as stimulating insulin secretion from the β pancreatic cells.

Our findings of increased IgG and IL-6 levels in CI group besides came in accordance with Eleiwa et al. (2011). The microbial pathogens stimulate the immune responses which produce cytokine IL-6, favor B-cell maturation and produce neutralizing antibodies IgG that neutralize bacterial toxins (D’Elios et al., 2011). Since, the efficacy of immune system in chickens mainly depends on the bursa of Fabricius and thymus for lymphocytic differentiation and initiating humeral and cellular-immune responses. So, the marked bursal and thymic lymphocytic depletion, induced by E. coli experimental infection, was previously reported by Madian et al. (2008) who reported an immunosuppressive effect of E. coli. Meanwhile, Nakamura et al. (1986) related this depletion to a combination of direct effects of E. coli toxic components and non-specific stress factors.

Generally, herbs rich in flavonoids, vitamin C and carotenoids improve the immune system and present immunostimulant effect through enhancement of phagocytic activity, modulation of cytokine secretion, histamine release, immunoglobulin secretion, plasma myeloperoxidase and lysozyme activity increase (Mirzaei-Aghsaghali, 2012). Rosemary was able to increase IgG and decrease IL-6 in RI birds; these results agreed with Da Rosa et al. (2013) who related its anti-inflammatory activity to the effect on decreasing the proinflammatory cytokines with increasing the anti-inflammatory cytokine in mice that suffered from pleurisy. Additionally, fenugreek succeeded to increase IgG and decrease IL-6 in FI group; this immunostimulant effect is related to high total phenolic content following both fenugreek gastric and duodenal digestion (Jayawardena et al. 2015.).

E. coli endotoxin resulted in elevating the systemic cytokines (TNF and IL-6), which enhance production of superoxide anion, release of lysozyme, H2O2 and chemotaxis, as an adaptive mechanism to decrease reactive oxygen formation, besides increasing its uptake, resulting in the production of potent oxidant bactericidal agents (Dutta and Bishayi, 2009). Meanwhile, when the stress is too high, antioxidant activity is decreased and apoptosis is activated (Surai, 2015), which cleared the decrease in the SOD, CAT and TAC levels in our E. coli-infected group. Generally, antioxidant supplementation resulted in increased interleukin levels, elevated total lymphocytes, increased killer cell activity and antibody response to antigen stimulation. Moreover, use of antioxidants herbs in broiler feed is important not only for their health, but also for the oxidative stability of their meat products (Fellgenber and Speisky, 2006).

Rosemary can elevate the SOD, CAT and TAC in RI birds. Soltani et al. (2016) related the antioxidant properties of rosemary to the high phenolics containing hydroxyl groups that probably stop free radical formation. Furthermore, Polat et al. (2011) observed the greatest activity of SOD through broiler supplementation of rosemary in comparison to vitamin E. Moreover, fenugreek aplied to suppress oxidative stress indicated by the increase in SOD, CAT, and TAC level in FI birds. Maharana and Dadhich (2016) related these findings to the oxidative stress suppression, reduction in cell apoptosis and fibrosis to trigonelline present in fenugreek. Additionally, Mohammazadeh et al. (2015) recorded an elevation of catalase enzyme activities after treating rats with acetoniphen-liver toxicity by fenugreek.

Policy suggestion

Although herbal medicines have always been a form of therapy for livestock among poor farmers, in recent years, it gained extensive attention in the feed industry. Rosemary is a spice and medicinal herb, has been used as a tonic, stimulant and carminative as well as in treating dyspepsia, stomach pains, and nowadays as an antioxidant and anti-inflammatory agent, thus a therapeutic potential in treating many diseases condition. Historically, fenugreek was used as a medicinal herb having a nutritional value. Recent research studies have shown its effectiveness in promoting lean body mass, reducing blood glucose levels, lowering cholesterol and treating gastrointestinal disorders. In modern food technology, it is used as a food stabilizer, adhesive and emulsifying agent.

Managerial implication

The clinical study might have an implication for infectious research and might recommend against the use of a particular nutritive antibiotic. Therefore, implication signifies the impact of the current research, and recommendations might be concrete actions that the research proposes.
Conclusion

The prohibition of nutritive antibiotic use in Europe, as well as the increased awareness of the consumers, triggered a need for natural and safe feed additives to achieve better poultry production, so many alternatives such as probiotics, prebiotics, exogenous enzymes, antioxidants and herbaceous plants have been investigated to replace antimicrobials. Medicinal plant is added to feed as extracts obtained from dried plants or parts of the plants; its effect depends largely on the dosage used by active components.

Considering the obtained findings, it can be concluded that rosemary or fenugreek supplementation is beneficial in improvement of both biochemical and histological alterations induced by E. coli infection in broilers. However, the present study suggests the protective, anti-inflammatory, antioxidant and immunomodulatory effects of rosemary or fenugreek on E. coli-induced toxicity; the most protective efficacy was recorded in infected chicks treated with fenugreek. Moreover, the use of fenugreek as feed additive may be a good strategy against oxidative stress induced by E. coli, knowing that it is prohibited to administer in case of hypoglycemia. To strengthen these findings, further investigations are needed to explore each rosemary phenolic substances and fenugreek seeds chemical components’ mechanism of action against E. coli toxicity in broilers.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-021-18358-6.

Author contribution SMF, HGA, OAA and NGE contributed equally to the design and implementation of the research, to the analysis and discussion of the results.

Funding This study was self-funded by authors.

Data Availability All data generated or analyzed during this study are included in this article.

Declarations

Ethics approval and consent to participate The current scientific research scenario was considered and approved by the Committee Research Ethics Board at the Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Abd El-Latif A, Saleh NS, Tamer SA, Ghazy E (2013) The effects of Rosemary (Rosmarinus officinalis) and Garlic (Allium sativum) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens. Br J Poultry Sci 2(2):16–24

Abdellatif SA, Galal AAA, Farouk SM, Abdel-Daim MM (2017) Ameliorative effect of parsley oil on cisplatin-induced hepatocardiotoxicity: a biochemical, histopathological, and immunohistochemical study. Biomed Pharmacother 86:482–491

Abdel Ziz SA, Abdel-Motaal SMA, Abdallah OE, Sarhan M (2016) Concurrent use of ciprofloxacin and metronidazole for controlling some bacterial infections in broiler chickens. Benha Vet Med J 3(1):83–92

Ahmadani A, Javan M, Semnani S, Bharat E, Kamalinejad M (2001) Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum leaves extract in the rat. J Ethnopharmacol 75:283–286

Akbari S, Abdurahman NH, Yunus RM, Alara OR, Abayomi OO (2019) Extraction, characterization and antioxidant activity of fenugreek (Trigonella-Foenum Graecum) seed oil. Mater Sci Energy Technol 2(2):349–355

Albasha MO, Azab AES (2014) Effect of cadmium on the liver and amelioration by aqueous extracts of fenugreek seeds, rosemary, and cinnamon in guinea pigs: histological and biochemical study. Cell Biol 2(2):7–17

Al-Kassie G, Abd-Al-Jaleel R (2011) The effect of a mixture of anise and rosemary on broiler performance. Agric Biol J N Am 2(9):1279–1282

Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20(4):470–475

Amin A, Alkaabi A, Al-Falasi S, Daoud SA (2005) Chemopreventive activities of Trigonella foenum-graecum (fenugreek) against breast cancer. Cell Biol Int 29:687–694

Asai T, Masani K, Sato C, Hiki M, Usui M, Baba K, Ozawa M, Harada K, Aoki H, Sawada T (2011) Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan. Acta Vet Scand 53:52

Azab AE, Albasha MO, Elsayed ASI (2016) Prevention of hepatotoxicity with Curcuma longa and Rosmarinus officinalis in gentamicin treated guinea pigs. Indo Am J Phar Res 6(3):1746–1751

Baba W N, Tabasum Q, Muzzaffar F A., WaniI, Ganie S, Ahmadian S, Ahmadian S, Ahmadian S, Ahmadian S, Ahmadian S (2017) Antifungal and antibacterial activity of fenugreek seed (Trigonella foenum-graecum) crude seeds by HPLC–DAD–ESI/MS analysis. Int J Mol Sci 15(11):20668–20685

Barelli S (2013) Essential oils in veterinary use: a survey of recent data from the last decade. Universitat Wien 1–72

Basch E, Ulbricht C, Kuo G, Szapary P, Smith M (2003) Therapeutic applications of fenugreek. Alterno Med Rev 8:20–27

Benayad Z, Gómez-Cordovés C, Es-Safi NE (2014) Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC–DAD–ESI/MS analysis. Int J Mol Sci 15(11):20668–20685

Chalghoumi R, Mabrouki S, Abdouli H, Line JE (2016) Antibacterial activity of fenugreek seed (Trigonella foenum-graecum) crude extracts against a rabbit Escherichia coli isolate. Acad J Microbiol Res 4(11):139–144

Crowley LV (1967) The Reitman-Frankel colorimetric transaminase procedure in suspected myocardial infarction. Clin Chem 13(6):482–487

Da Rosa JS, Fachchin BM, Bastos J, Siqueira MA, Micke GA, Dalmarco EM, Frödev T (2013) Systemic administration of Rosemarinus officinalis attenuates the inflammatory response induced by carrageenan in the mouse model of pleurisy. Planta Med 79(17):1605–1614

D’Elia M, Benagiano M, Bella CD, Amede A (2011) T-cell response to bacterial agents. J Infect Develop Countries 5(9):640–645

Demir E, Sarica S, Özcan MA, Suicmez M (2003) The use of natural feed additives as alternatives for an antibiotic growth promoter in broiler diets. Br Poult Sci 44:44–45
Djeridane A, Yousfi M, Nadjemi B, Boutassonna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660

Dutta K, Bishayi B (2014) Clinical and immunopathological studies on Pediococcus acidilactici in chickens. J Egypt Vet Med Assoc 74(5):889–910

El-Baky AAA, Mohamed AH, Bashandy M, Awaad MH (2014) Clinical, immunopathological and microbiological study of three commercial prebiotics in enhancing broiler performance. Adv Res Agri Vet Sci 1(1):6–11

Elbushra ME (2012) Effect of dietary fenugreek seeds (Trigonella foenum-graecum) as natural feed additive on broiler chicks performance. J Sci Technol Agri Vet Sci (JAVS NO.2): 13(2)

Eleiwa NZ, El Sayed EM, Nazim AA (2011) Prophylactic and therapeutic evaluation of the phytobiotic (Orego-stim)® in chicken experimentally infected with E. coli. J Am Sci 7(8): 91–102

Emam MA, Farouk SM, Abdel M (2018) The ameliorative potential of probiotics and/or silymarin on thioacetamide induced hepatotoxicity in rats: histological and immunohistochemical study. Int J Morphol 36(2):661–669

SM Farouk FA Gad MA Emam 2020 Comparative immuno-modulatory effects of basil and sesame seed oils against diazinon-induced toxicity in rats; a focus on TNF-α immunolocalization Environ Sci Pollut Res [https://doi.org/10.1007/s11356-020-10840-x]

Fellenger MA, Spechly H (2006) Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability. World Poultry Sci J 62:53–70

Fossati P, Principe L, Bertì G (1980) Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26(2):227–231

Gad FA, Farouk SM, Emam MA (2021) Antiapoptotic and antioxidant capacity of phytochemicals from Roselle (Hibiscus sabdariffa) and their potential effects on monosodium glutamate-induced testicular damage in rat. Environmental Science and Pollution Research. Environ Sci Pollut Res 28:2379–2390

Genena AK, Hense H, Smânia Junior A, Souza SM (2008) Rosemary (Rosmarinus officinalis); a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Ciênc Tecnol Aliment 28(2):463–469

Ghazallah AA, Ali AM (2008) Rosemary leaves as a dietary supplement for growth in broiler chickens. Int J Poult Sci 7(3):234–239

Ghozlans SA, El-Far AH, Sadek KM, Abourawash AA, Abdel-Latif MA (2017) Effect of rosemary (Rosmarinus Officinalis) dietary supplementation in broiler chickens concerning immunity, antioxidant status, and performance. AJVS 55(1):152–161

Gomis SM, Watts T, Riddell C, Potter AA, Allan BJ (1997) Experimental reproduction of Escherichia coli cellulitis and septicemia in broiler chickens. Avian Dis 41(1):234–240

Gurkan M, Yilmaz S, Kaya H, Ergun S, Alkan S (2015) Influence of three spice powders on the survival and histopathology of Oroychomis moseambicus before and after Streptococcus iniae infection. Marine Sci Technol Bull 30(4):994–1000

Hariane M, Moya H (2015) A comprehensive study of the use of Cu(1)/4,4-Dicarboxy-2,2-biquinoline complexes to measure the total reducing capacity: application in herbal extracts. Molecules 20(12):22411–22421

Hashemi SR, Davoodi H (2011) Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet Res Commun 35(3):169–180

Hernández F, Madrid J, García V, Orenjo J, Megías MD (2004) Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult Sci 83(2):169–174

Ibarra A, Cases J, Bily A, He K, Bai N, Roller M, Coussaert A, Ripoll C (2010) Importance of extract standardization and in vitro/ ex vivo assay selection for the evaluation of antioxidant activity of botanicals: a case study on three Rosmarinus officinalis L. extracts. J Med Food, 13(5):1167–1175

Ismaiel SL, Farouk SM, El-Ramady RA, Khalil FW (2017) Ameliorative impacts of Tribulus terrestris against ivunemtin-induced hepato-renal toxicity in rabbit: pharmacological and histopathological study. Am J Anim Vet Sci 12(1):8–16

Jafaran SA, Pashazadeh M (2020) Study of chemical composition and antimicrobial properties of Rosemary (Rosmarinus officinalis) essential oil on Staphylococcus aureus and Escherichia coli in vitro. Int J Life Sci Biotechnol 3(1):62–69

Jayawardena N, Watawana MI, Jayathilaka RT, Waisundara VY (2015) Evaluation of the total antioxidant capacity, polyphenol contents and starch hydrolyase inhibitory activity of ten edible plants in an in vitro model of digestion. Evid Based Complement Altern Med 70(1):71–76

Joan F, Pannel P (1981) Clinical chemistry in diagnosis and treatment, 3rd edn. Llayment-luke, London

Khan IA, Abourashed E (2010) Leungs encyclopedia of common natural ingredients used in food, drugs and cosmetics (3rd edition). Carbohydrate Polymers (Vol. 58). Hoboken, New Jersey.: John Wiley and Sons, Inc

Kavirasan S, Naik GH, Gangabagirathi R, Anuradha CV, Priyadarshini KI (2007) In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum-graecum) seeds. Food Chem 103:31–37

Kenny O, Smyth TJ, Hewage CM, Brunton NP (2013) Antioxidant properties and quantitative UPLC–MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem 141:4295–4302

Kinoshita T, Hiraga Y, Nakamura N, Kjajo A, Inuma F (1979) Determination of glucose in blood using glucose oxidase-peroxidase system and 8 hydroxyquinine-p-anisidine. Chem Pharm Bull 27(2):568–570

Koivunen ME, Krogsrud RL (2006) Principles of immunoochemical techniques used in clinical laboratories. Lab Med 37(8):490–497

Landau S, Everitt B (2004) A handbook of statistical analyses using SPSS. Stat Med (Vol. 24)

Lau GL, Seeo CC, Tan WS, Hair-Bejo M, Jalila A, Ho YW (2010) Efficacy of a bacteriophage isolated from chickens as a therapeutic agent for colibacillosis in broiler chickens. Poult Sci 89:2589–2596

Madian K, El-Ghany WAA, Kamel GM (2008) Efficacy of pefloxacin in the treatment of broiler chickens experimentally infected with Escherichia coli O78: K 80. Proceeding of the 3rd Scientific Congress of the Egyptian Society for Animal Management. October, 28th – 29th, 94–105

Maharana L, Dadich OP (2016) Review on role of herbal drug in the prevention and management of kidney disease. Int J Res AYUSH Allied Syst 3(1):500–508

Maiorano G, Stadnicka K, Tavaniello S, Abiuso C, Bogucka A, Bednarczyk M (2016) In ovo validation model to assess the efficacy of botanicals: a case study on three Rosmarinus officinalis L. Phytother Res 30(2):224–231

Mano J, Girib X, Vilar Francesa M, Loain CJO, Allan GM, Costa L, Ramis A (1997) Turkey rhinotracheitis virus and Escherichia coli experimental infection in chickens: histopathological, immunocytochemical and microbiological study. Vet Microbiol 135(7/8):29–40

Mamoun T, Mukhtar MA, Tabidi MH (2014) Effect of fenugreek seed powder on the performance, carcass characteristics and some blood serum attributes. Adv Res Agri Vet Sci 1(1):6–11

Mathlouthi N, Bouzaïennne T, Oueslati I, Reccouillay F, Hamdi M, Urdaci M, Bergaoui R (2012) Use of rosemary, oregano, and a
commercial blend of essential oils in broiler chickens: in vitro antimicrobial activities and effects on growth performance. J Anim Sci 90(3):813–823

Meghwal M, Goswami TK (2012) A review on the functional properties, nutritional content, medicinal utilization and potential application of Fenugreek. J Food Process Technol 3(9):1–10

Mentreddy SR (2007) Medicinal plant species with potential antioxidative properties. J Sci Food Agric 87:743–750

Mohamed WAM, Abd-Elhakim YM, Farouk SM (2016a) Protective effects of ethanolic extract of rosemary against lead-induced hepatic damage in rabbits. Exp Toxicol Pathol 68(8):451–461

Mohamed WAM, Ismail T, Farouk SM (2016b) The ameliorative potential of ethanolic extract of propolis on hematotoxicity and structural neuronal damage in hyperthermia-exposed rats. Iran J Basic Med Sci 19(8):875–882

Mohammadzadeh A, Gol A, Oloomi H (2015) The effects of fenugreek seed powder on oxidant and antioxidant factors in male rats with acetaminophen-induced liver toxicity. J Babol Univ Med Sci 17:44–51

Moursi MK, Gharieb E-G (2008) Pathological and immunological studies on dietary T-2 toxin with concurrent E. coli infection in chickens and some relevant control trial. SCVMJ, XIII 2:565–602

Nakamura K, Imada Y, Maeda M (1986) Lymphocytic depletion of bursa of Fabricius and thymus in chickens inoculated with Escherichia coli. Vet Pathol 23(6):712–717

National Research Council (NRC) (1994) Nutritional requirement of poultry, 9th, rev. National Academy Press, Washington, DC

Nobo G, Moreki JC, Nsoso SJ (2012) Feed intake, body weight, age daily gain, feed conversion ratio and carcass characteristics of helmeted guinea fowl fed varying levels of Phane meal (Imbrasia bursa of Fabricius and thymus in chickens inoculated with Escherichia coli. Vet Pathol 23(6):712–717

National Research Council (NRC) (1994) Nutritional requirement of poultry, 9th, rev. National Academy Press, Washington, DC

Nobo G, Moreki JC, Nsoso SJ (2012) Feed intake, body weight, age daily gain, feed conversion ratio and carcass characteristics of helmeted guinea fowl fed varying levels of Phane meal (Imbrasia belina) as replacement of fishmeal under intensive system. Int J Poult Sci 11(6):378–384

Ojeda-Sanaa AM, Baren CMV, Juárez EMAA, M, Moreno S, (2013) New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control 31(1):189–195

Owen J, Iogo B, Scandrett FJ, Stewart CP (1954) The determination of creatinine in plasma or serum, and in urine; a critical examination. Biochem J 58(3):426–437

Park JHA, Kim IHA (2015) Interactive effects of fenugreek (Trigonella foenum-graecum L.) seed extract supplementation and dietary metabolisable energy levels on the growth performance, total tract digestibility, blood profiles, and excreta gas emission in broiler chicken. Animal Prod Sci 56(10):1677–1682

Patel RM, Garg DD, Patel VR, Vahora SG, Katariya MA, Choubey M (2014) Effect of dietary supplementation of garlic (Allium sativum) and fenugreek (Trigonella foenum-graecum L.) seed powder on growth performance and blood biochemical parameters in broilers. Indian J Poultry Sci 49(1):17–20

Petit P, Sauvaire Y, Ponsin G, Manteghetti M, Fave A, Ribes G (1993) Effect of a fenugreek seed extraction on feeding behaviour in the rat: metabolic-endocrine correlates. Pharmacol Biochem Behav 45:369–374

Petropoulos GA (2002) Fenugreek—the genus Trigonella. Taylor and Francis, London, UK; New York, NY, USA, pp 1–255

Polut U, Yesilbag D, Eren M (2011) Serum biochemical profile of broiler chickens fed diets containing rosemary and rosemary volatile oil. J BIOL ENVIRON SCI 5(13):23–30

Qureshi S, Banday MT, Adil S, Shakeel I, Munshi ZH (2015) Effect of dandelion leaves and fenugreek seeds with or without enzyme addition on performance and blood biochemistry of broiler chicken, and evaluation of their in vitro antibacterial activity Indian J Animal Sci 85 (11): 1248–1254

Rajalakshmi R, Nanavaty K, Gumashta A (1964) Effect of cooking procedures on the free and total niacin content of certain food. J Nutr Diet 1:276–280

Saki AA, Kalantar M, Rahmatnejad E, Mirzaaghtabar F (2014) Health characteristics and performance of broiler chicks in response to Trigonella foenum graecum and Foeniculum vulgare. Iran J Anim Sci 3(4):387–391

Sarica S, Ciftci A, Demir E, Kilinc K, Yildirim Y (2007) Use of an antibiotic growth promoter and two herbal natural feed additives with and without exogenous enzymes in wheat-based broiler diets. S Afr J Anim Sci 35(1):61–72

Shang M, Cais Han J, Li J, Zhao Y, Zheng J, Namba T, Kadota S, Tezuka Y, Fan W (1998) Studies on flavonoids from fenugreek (Trigonella foenum graecum L.). Zhongguo Zhong Yao Za Zhi 23:614–639

Sharma RD, Raghuram TC, Rao NS (1990) Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur J Clin Nutr 44:301–306

Snehla H, Dande P (2012) Trigonella foenum-graecum. Int J Curr Pharm Res Rev 2(4):170–187

Soltani M, Tabeidjan SA, Ghalamkari G, Adeljoo AH, Mohammadrezaei M, Fossoul SSAS (2016) Effect of dietary extract and dried aereal parts of Rosmarinus officinalis on performance, immune responses and total serum antioxidant activity in broiler chicks. Asian Pac J Trop Dis 6(3):218–222

Srinivasan K (2006) Fenugreek (Trigonella foenum-graecum): a review of health beneficial physiological effects. Food Rev Int 22:203–224

Stark A, Madar Z (1993) The effect of an ethanol extract derived from fenugreek (Trigonella foenum-graecum) on bile acid absorption and cholesterol levels in rats. Br J Nutr 69:277–287

Sujaipandian R, Anuradha VV, Viswanathan P (2002) Gastroprotective effect of fenugreek seeds (Trigonella foenum-graecum) on experimental gastric ulcer in rats. J Ethnopharmacol 81:393–397

Surai PF (2015) Antioxidant systems in poultry biology: superoxide dismutase. Anim Nutr 1:1–17

Suvarna SK, Layton C, Bancroft JD (2012) Bancroft’s theory and practice of histological techniques book. citeulike.org

Taylor WG, Zaman MS, Mir Z, Mir PS, Achary SN, Mears GJ, Elder JL (1997) Analysis of steroidal sapogenins from amber fenugreek (Trigonella foenum-graecum) by capillary gas chromatography and combined gas chromatography/mass spectrometry. J Agric Food Chem 45:753–759

Wheeler C, Salzman JA, Elsayed NM, Omaye ST, Korte DW Jr (1990) Analysis of steroidal sapogenins from amber fenugreek (Trigonella foenum-graecum) by capillary gas chromatography and combined gas chromatography/mass spectrometry. J Agric Food Chem 45:753–759

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.