Long wavelength perfect fluidity from short distance jet transport in quark-gluon plasmas

Jiechen Xua, Jinfeng Liaob,c, Miklos Gyulassya

aDepartment of Physics, Columbia University, 538 West 120th Street, New York, NY, USA
bPhysics Department and CEEM, Indiana University, 2401 North Milo B. Sampson Lane, Bloomington, IN 47408, USA
cRIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

We build a new phenomenological framework that bridges the long wavelength bulk viscous transport properties of the strongly-coupled quark-gluon plasma (sQGP) and short distance hard jet transport properties in the QGP. The full nonperturbative chromo-electric (E) and chromo-magnetic (M) structure of the near “perfect fluid” like sQGP in the critical transition region are integrated into a semi-Quark-Gluon-Monopole Plasma (sQGMP) model lattice-compatibly and implemented into the new CUJET3.0 jet quenching framework. All observables computed from CUJET3.0 are found to be consistent with available data at RHIC and LHC simultaneously. A quantitative connection between the shear viscosity and jet transport parameter is rigorously established within this framework. We deduce the $T = \frac{160}{600}$ MeV dependence of the QGP’s η/s: its near vanishing value in the near T_c regime is determined by the composition of E and M charges, it increases as T rises, and its high T limit is fixed by color screening scales.

Keywords: Relativistic Heavy Ion Collisions, Jet Quenching, Perfect Fluidity, Quark-Gluon Plasmas

1. Introduction

To probe the fundamental properties of hot quark matter and the mechanism of color confinement through ultrarelativistic nucleus-nucleus collisions, it is necessary to consider both the perturbative and nonperturbative aspects of QCD carefully in heavy-ion phenomenology. Present quantitative analyses of the strongly-coupled quark-gluon plasma (sQGP) created in A+A reactions at RHIC and LHC \cite{1} nevertheless divide in the two aspects: on the one hand, in the “soft” nonperturbative regime, the low transverse momentum (p_T) long wavelength “perfect fluidity” of the sQGP is described by relativistic hydrodynamical simulations; on the other hand, in the “hard” regime, high p_T short distance jet transport properties in the QGP computed from perturbative QCD (pQCD) models are compatible with a wide range of data \cite{2}. A unified framework incorporating both aspects is however missing; it is therefore challenging to translate conveniently between heavy-ion and confinement physics.

Concentrated on pQCD, to build up such a framework, both the long and short distance transport properties of the QGP must be accounted for more systematically. In the “soft” sector, the “perfect fluid” like sQGP has a near vanishing shear viscosity to entropy density ratio $\eta/s = 1/4\pi$ bounded by quantum fluctuations \cite{3} \cite{4}. however from leading order (LO) pQCD estimate, the QGP in the weakly-coupled limit (wQGP) has an $\eta/s \approx 0.071(\alpha_s^2 \log(1/\alpha_s))^{-1}$ that approaches 1 \cite{5}. In the “hard” sector, it has been found
that most jet energy loss can describe the high p_T light hadrons’ and open heavy flavors’ nuclear modification factor (R_{AA}) data, but the azimuthal elliptic anisotropy (v_2) is underestimated by 50% at RHIC and LHC near-universally [8].

The above necessitates (1) exploring the full nonperturbative chromo-electric (E) and chromo-magnetic (M) structure of QCD in the region near the critical transition temperature (T_c), (2) developing a microscopic, lattice-compatible description of the sQGP, and (3) implementing it into a systematic pQCD jet energy loss model and testing with high p_T data. The new CUJET3.0 framework achieved all of them [9].

2. The CUJET3.0 framework

In CUJET3.0 [9], accounting for both chromo-electric (E) and chromo-magnetic (M) quasi-particles (QPs) as in the EM seesaw scenario proposed by Liao and Shuryak [10], the dynamical running coupling DGLV [11] energy loss kernel in CUJET2.0 [12] is generalized to:

\[\frac{dN}{dx} \propto \int d^2q \left[\rho \frac{\alpha}{2} \left(q_+^2 f_E^2 \right) \right] \rightarrow \int d^2q \left[\rho_E (\alpha q_+^2 q_T^2 + f_E^2) f_M^2 \right] \quad . \quad (1) \]

Here $\alpha(\rho^2) \equiv \alpha(\rho_E^2) = \alpha / (1 + \frac{g}{\rho} \log(T_c^2 / T \rho_E^2))$ where the Polyakov loop $L(T) \equiv \langle \exp(i g^2 T_c^2 / T) \rangle$ is renormalized such that $L(T) \to \infty = 1$, c_q and c_T are Stefan-Boltzmann fraction coefficients. In the critical transition region, the semi-QGP degrees of freedom (DOFs) and emergent chromo-magnetic monopoles form a semi-Quark-Gluon-Monopole Plasma (sQMP) [9]. The parameter f_E and f_M is defined via $f_E \equiv \mu_{E} / \mu = \sqrt{T_c}$ and $f_M \equiv \mu_{M} / \mu = c_M \mu_{E}$, where μ_{E} and μ_{M} are the E and M screening mass respectively, and $\rho = \sqrt{4 \pi \alpha(\mu^2)} = \mu / (T \sqrt{T_c + N_f / 6})$.

The $L(T)$, $\mu_{E,M}(T)$, $\rho / T^3 \sim \rho / T^4 = \frac{1}{T^4} \log Z$, and equation of state (EOS) are all constrained by lattice QCD data, as shown in Fig. 1. A theoretical uncertainty in CUJET3.0 is originated from choosing the diagonal u-quark number susceptibility $\chi_3^T(T) = \frac{d^2(\rho_{u,T}^2)}{d(\mu_{u,T}^2)}$ over the Polyakov loop for the quark deconfinement rate, i.e. $\chi_3^T \rightarrow \chi_3^{QGP}(T) / \chi_3^{QGP}(\infty) + c_q L^2$, which will be analyzed lately. All other computational details in CUJET3.0 are the same as in CUJET2.0, including the 2+1D viscous hydrodynamical background profiles generated from VISHNU simulations [15].

![Fig. 1.](image-url) (Color online) (a) The parameterized fit to lattice QCD data [6] of the renormalized Polyakov loop L and diagonal light quark susceptibility χ_3^T in the χ_3^T and χ_3^Q scheme within CUJET3.0. The inset shows the chromo-electric (E) and chromo-magnetic (M) quasi-particle fractions in corresponding schemes. (b) The temperature dependence of the E and M screening mass $\mu_{E,M}$ in CUJET2.0 (HTL QGP) and CUJET3.0 (sQGP) compare with lattice simulations [7]. (c) The HotQCD equation of state (EOS, pressure p, entropy density s) [8], the “bag” pressure (B), as well as the E and M quanta number density $\rho_{E,M}$ embedded in the CUJET3.0 framework.
3. Results and discussions

Jet quenching observables from three different schemes in the CUJET3.0 framework will be studied: (i) $\alpha_s=0.95$, $c_{\mu}=0.3$, x^2_T; (ii) $\alpha_s=0.95$, $c_{\mu}=0.4$, x^2_T; (iii) $\alpha_s=1.33$, $c_{\mu}=0.3$, x^2_T. The parameter set (α_s, c_{μ}) is constrained by the reference datum at LHC 20-30% Pb+Pb $\sqrt{s_{NN}} = 2.76$TeV $R^{pT}_{AA}(p_T = 12.5$GeV $) = 0.3$ and lattice date of $\mu_{E,M}(T)$ as shown in Fig. 3(b). Fig. 2 compares the CUJET3.0 results of leading light hadron (LH) and open heavy flavor (HF)'s $R_{AA}(p_T > 8$GeV) and $v_2(p_T > 8$GeV) at RHIC and LHC semiperipheral A+A collisions with corresponding data.

For high p_T LHs, all three schemes can simultaneously describe the R_{AA} and v_2 data at RHIC and LHC. The phenomenon that scheme (i) and (ii) generate a relatively larger v_2 than scheme (iii) implies that the azimuthal asymmetry is sensitive to how the relative value of μ_E and μ_M inverses near T_c – the higher the inversion temperature, the longer the path length that jets interact with the monopole dominated medium at later time of the QGP evolution, the larger the high p_T v_2.

For open heavy flavors, scheme (ii) and (iii)'s R_{AA} overlap, both are larger than scheme (i)'s. Since the former two have the same color deconfinement scheme x^2_T that is different from the latter's x^2_T, it is implicit that the HF's high p_T R_{AA} in CUJET3.0 is sensitive to the rate at which electric DOFs are liberated ($r_d = d\chi_T/dT$), i.e. the detailed composition of E and M DOFs near T_c. Meanwhile, Fig. 2(d) shows that the HFs' v_2's are all different in scheme (i)(ii)(iii). It is therefore fair to conclude that the open charm and beauty's $R_{AA}(p_T)$ and $v_2(p_T)$ are excellent probes of the nonperturbative E and M structure of the sQGMP (r_d, μ_E, μ_M) near T_c within CUJET3.0.

The jet transport parameter $\hat{q}(T, E) \equiv (q^2_T)/A$ in CUJET3.0 and CUJET2.0 can be extracted as in [9] and [12] [17] respectively. They are plotted in Fig. 3(a). Extrapolated $\hat{q}(T, E)$ down to thermal energy scales $E \sim 3T$, one can estimate the η/s using kinetic theory, i.e. $\eta/s = \frac{1}{4\pi} \sum_{a} \rho_{a}(p) \omega_{a} l_{a} = \frac{mpT}{\pi^{2}} \sum_{a} \rho_{a}/\eta_{a}(T, E = 3T)$, where $\rho_{a}(T)$ is the quasi-parton number density of type $a = q, g, m$. The η/s results from both CUJET3.0 and CUJET2.0 are shown in Fig. 3(b).
Fig. 3. (Color online) (a) The temperature dependence of the scaled jet transport parameter \(\hat{q}/T^3 \) for a quark jet (in the fundamental representation \(F \) of \(SU(N_c=3) \)) with initial energy \(E_0 = 10 \) GeV in various schemes within the CUJET3.0 framework, compared with the CUJET2.0 counterpart, as well as \(N = 4 \) Supersymmetric Yang-Mills (SYM) \(\hat{q}_{\text{SYM}} \) results from leading order (LO) AdS/CFT calculations \(\hat{q}_{\text{SYM}} = \frac{\pi^3}{15} \sqrt{T^3} \sqrt{T^3} / \sqrt{\pi^3} \). Note that \(3T_{\text{SYM}}^3 = T^3 \) because of different number of degrees of freedom in \(N_c = 3 \) SYM and three-flavor QCD [17]. The gray band with dashed black edges corresponds to using \('t \) Hooft coupling \(\lambda = 12r_{AA}(Q^2) \).

(b) The shear viscosity to entropy density ratio \(\eta/s \) estimated in the kinetic theory extrapolation \(\eta/s \sim T^3/\hat{q} \) from jet quenching parameters in panel (a). Note that \(T_c = 160 \) MeV. In CUJET3.0, a clear \(\hat{q}/T^3 \) maximum and \(\eta/s \) minimum appear at \(T \sim 1.3 - 1.4T_c \) where the scaled number density of emergent chromo-magnetic monopoles near \(T_c \) peaks. The \(\eta/s \) is determined by the deconfinement scheme \(\chi_{\text{L}}^2 \), i.e. EQP and MQP fractions near \(T_c \), and it approaches the KSS quantum bound \(\eta/s = 1/4\pi \). These indicate within the CUJET3.0 framework, the long wavelength “perfect fluidity” of the sQGP is generated from short distance jet transport properties controlled by \(\hat{q} \), and a quantitative \(\eta/s \sim T^3/\hat{q} \) connection is robustly established in a wide temperature range.

4. Summary

We conclude that taking full advantage of the new CUJET3.0 jet energy loss framework, data of high \(p_T \) light hadron (LH) and open heavy flavor (HF)’s \(R_{AA} \) and \(v_2 \) in heavy-ion collisions at RHIC and LHC can provide stringent constraints on the nonperturbative properties of the QCD matter near \(T_c \). After fixed model parameters with LH’s \(R_{AA} \) data, (1) LH’s \(v_2 \) regulates the E and M screening mass difference \((\mu_E(T) - \mu_M(T)) \) near \(T_c \), (2) HF’s \(R_{AA} \) determines the rate at which color DOFs are deconfined \((r_c(T)) \), (3) HF’s \(v_2 \) distinguishes \(r_c(T) \), \(\mu_E(T) \) and \(\mu_M(T) \).

In the CUJET3.0 framework, after included the semi-QGP suppression of chromo-electric charges and the emergence of chromo-magnetic monopoles in the nonperturbative near-critical QGP, the long wavelength “perfect fluidity” \(\eta/s \sim 1/4\pi \) is successfully generated from the short distance hard parton transport properties that are controlled by the jet quenching parameter \(\hat{q} \). Within this framework, a robust \(\eta/s \sim T^3/\hat{q} \) connection is established in all temperature ranges above \(T_c \). Overall, CUJET3.0 provides a quantitative bridge between heavy-ion phenomenology and fundamental confinement physics.

We thank Peter Petreczky for insightful discussions. JX acknowledges helpful conversations with Gabriel Denicol, Rob Pisarski, Chun Shen and Xin-Nian Wang. The research of JX and MG is supported by U.S. DOE Nuclear Science Grants No. DE-FG02-93ER40764. The research of JL is supported by the National Science Foundation (Grant No. PHY-1352368). JL also acknowledges partial support from the RIKEN BNL Research Center.
References

[1] M. Gyulassy and L. McLerran, Nucl. Phys. A 750, 30 (2005).
[2] B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 719, 18 (2013); Phys. Lett. B 720, 52 (2013); G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 707, 330 (2012); S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 72, 1945 (2012); Phys. Rev. Lett. 109, 022301 (2012); A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 101, 232301 (2008); 105, 142301 (2010); Phys. Rev. C 87, 034911 (2013); B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 80, 044905 (2009).
[3] P. Danielewicz and M. Gyulassy, Phys. Rev. D 31, 53 (1985).
[4] P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005).
[5] T. Hirano and M. Gyulassy, Nucl. Phys. A 769, 71 (2006).
[6] A. Bazavov et al., Phys. Rev. D 80, 014504 (2009); S. Borsanyi et al. [Wuppertal-Budapest Collaboration], JHEP 1009, 073 (2010); S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti and K. Szabo, JHEP 1201, 138 (2012).
[7] A. Nakamura, T. Saito and S. Sakai, Phys. Rev. D 69, 014506 (2004).
[8] B. B. Abelev et al. [ALICE Collaboration], Phys. Rev. C 90, no. 3, 034904 (2014); S. Cao, G. Y. Qin and S. A. Bass, Phys. Rev. C 92, 024907 (2015); B. Betz and M. Gyulassy, JHEP 1408, 090 (2014) [JHEP 1410, 043 (2014)]; arXiv:1503.07671 [hep-ph]; D. Molnar and D. Sun, arXiv:1305.1046 [nucl-th].
[9] J. Xu, J. Liao and M. Gyulassy, Chin. Phys. Lett. 32, 092501 (2015); arXiv:1508.00552 [hep-ph].
[10] J. Liao and E. Shuryak, Phys. Rev. C 75, 054907 (2007); Phys. Rev. Lett. 101, 162302 (2008); 102, 202302 (2009).
[11] M. Gyulassy et al., Nucl. Phys. B 594, 371 (2001); M. Djordjevic et al., Nucl. Phys. A 733, 265 (2004); Phys. Rev. Lett. 101, 022302 (2008); S. Wicks et al., Nucl. Phys. A 784, 426 (2007); A. Buzzatti et al., Phys. Rev. Lett. 108, 022301 (2012).
[12] J. Xu, A. Buzzatti and M. Gyulassy, JHEP 1408, 063 (2014); Nucl. Phys. A 932, 128 (2014).
[13] R. D. Pisarski, Phys. Rev. D 74, 121703 (2006); Y. Hidaka and R. D. Pisarski, Phys. Rev. D 78, 071501 (2008); 81, 076002 (2010); A. Dumitru et al., 86, 105017 (2012); C. Gale et al., Phys. Rev. Lett. 114, 072301 (2015).
[14] B. G. Zakharov, JETP Lett. 101, 587 (2015); A. Iwazaki, arXiv:1511.02271 [hep-ph].
[15] H. Song and U. W. Heinz, Phys. Rev. C 78, 024902 (2008); C. Shen, U. Heinz, P. Huovinen and H. Song, Phys. Rev. C 82, 054904 (2010); C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput. Phys. Commun. 199, 61 (2016).
[16] H. Liu, K. Rajagopal and U. A. Wiedemann, Phys. Rev. Lett. 97, 182301 (2006).
[17] K. M. Burke et al. [JET Collaboration], Phys. Rev. C 90, 014909 (2014).