Lepton Flavour Violation and θ_{13} in Minimal Resonant Leptogenesis

Frank F. Deppisch1,2,* and Apostolos Pilaftsis1,†

1School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
2Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

Abstract

We study the impact of minimal non-supersymmetric models of resonant leptogenesis on charged lepton flavour violation and the neutrino mixing angle θ_{13}. Possible low-scale flavour realisations of resonant τ, μ- and e-leptogenesis provide very distinct and predictive frameworks to explain the observed baryon asymmetry in the Universe by sphaleron conversion of an individual τ, μ- and e-lepton-number asymmetry which gets resonantly enhanced via out-of-equilibrium decays of nearly degenerate heavy Majorana neutrinos. Based on approximate flavour symmetries, we construct viable scenarios of resonant τ, μ- and e-leptogenesis compatible with universal right-handed neutrino masses at the GUT scale, where the required heavy-neutrino mass splittings are generated radiatively. The heavy Majorana neutrinos in such scenarios can be as light as 100 GeV and their couplings to two of the charged leptons may be large. In particular, we explicitly demonstrate the compelling role that the three heavy Majorana neutrinos play, in order to obtain successful leptogenesis and experimentally testable rates for lepton flavour violating processes, such as $\mu \to e\gamma$ and $\mu \to e$ conversion in nuclei.

PACS numbers: 11.30.Er, 14.60.St, 98.80.Cq

*Email: f.deppisch@ucl.ac.uk
†Email: apostolos.pilaftsis@manchester.ac.uk
1 Introduction

The observed baryon asymmetry in the Universe (BAU), which amounts to a baryon-to-photon ratio of number densities $\eta_B \approx 6.2 \times 10^{-10}$ \cite{1,2}, provides one of the strongest pieces of evidence for physics beyond the Standard Model (SM) \cite{3}. One interesting scenario for explaining the BAU is leptogenesis \cite{4}. Leptogenesis does have a profound link to neutrinos and the origin of their extraordinary small masses. In particular, the famous seesaw mechanism \cite{5} can give rise to their small observed masses through the presence of superheavy Majorana neutrinos close to the Grand Unified Theory (GUT) scale, $M_{\text{GUT}} \approx 2 \times 10^{16}$ GeV. These GUT-scale heavy neutrinos, being singlets under the SM gauge group, may possess large Majorana masses that violate lepton number (L) by two units. In an expanding Friedmann–Lemaître–Robertson–Walker (FLRW) Universe, the heavy Majorana neutrinos can decay out of equilibrium and produce a net leptonic asymmetry. The so-produced leptonic asymmetry gets rapidly reprocessed into the observed BAU \cite{4} by equilibrated $(B + L)$-violating sphaleron interactions \cite{6}.

A potentially interesting alternative to GUT-scale leptogenesis is the framework of low-scale resonant leptogenesis (RL) \cite{7,8}. Within this framework, the lowering of the scale may rely on a dynamical mechanism, in which heavy-neutrino self-energy effects \cite{9} on the leptonic asymmetry become dominant \cite{10} and get resonantly enhanced \cite{7}, when a pair of heavy Majorana neutrinos has a mass difference comparable to the heavy neutrino decay widths. As a consequence of thermal RL, the heavy Majorana mass scale can be as low as ~ 100 GeV, while maintaining agreement with the solar and atmospheric neutrino data \cite{8}. One of the advantages of low-scale RL is that the reheating temperature T_{reh} resulting from inflaton decays does not need to be very high, e.g. $T_{\text{reh}} \sim 1–10$ TeV \cite{11}, thereby avoiding comfortably the overproduction of gravitinos in supersymmetric models whose late decays may cause dissociation of the light elements during the nucleosynthesis era \cite{12}.

Flavour effects due to heavy-neutrino Yukawa couplings play an important role in models of RL \cite{13,14}. In particular, in \cite{13} a scenario was put forward, called resonant τ-leptogenesis (RτL), in which the BAU originates from a τ-lepton asymmetry, resonantly produced by quasi-in-equilibrium decays of heavy Majorana neutrinos. This mechanism makes use of the property that sphalerons preserve the individual quantum numbers $\frac{1}{3}B - L_{e,\mu,\tau}$ \cite{15,18}. In a RτL model, the generated excess in the L_{τ} number will be converted into the observed BAU, provided the L_{τ}-violating reactions are not strong enough to wash out such an excess. In such a scenario, the heavy Majorana neutrinos can be as light as 100 GeV and have sizeable couplings to two of the charged leptons, specifically to
electrons and muons. Consequently, depending on the flavour dynamics of heavy neutrino Yukawa coupling effects, phenomenologically testable models of RL can be built that could be probed at the LHC or in low energy experiments of lepton number violation (LNV) and lepton flavour violation (LFV). For instance, observables of particular interest are the neutrinoless double-beta ($0\nu\beta\beta$) decay of heavy nuclei [19], the photonic decay $\mu \rightarrow e\gamma$ analyzed by the MEG experiment [20] and the coherent $\mu \rightarrow e$ conversion in nuclei to be looked for in the planned COMET/PRISM experiment [21].

In this paper we study all possible alternatives to R\tau L, including the minimal models of resonant μ-leptogenesis (RμL) and resonant e-leptogenesis (ReL). Collectively, we refer to these three different lepton-flavour realisations of RL as RℓL. We assume that the RℓL models have an SO(3)-symmetric heavy neutrino mass spectrum at the GUT scale, with all heavy Majorana neutrinos being exactly degenerate at this scale. We consider a minimal non-supersymmetric framework, in which the heavy-neutrino mass splittings required for successful RL are generated radiatively [22] and can therefore be naturally comparable to the decay widths of the heavy neutrinos. Since all charged-lepton Yukawa couplings are in thermal equilibrium at temperatures $T \lesssim 10$ TeV [23], we consider a flavour diagonal basis for these couplings, while setting up the Boltzmann equations (BEs). In addition, we include the flavour effects due to individual heavy-neutrino Yukawa couplings [13,24], which can have a dramatic impact on the predictions for the BAU in RL models [13,14].

The layout of the paper is as follows. Section 2 describes the basic structure of the minimal SM with three heavy Majorana neutrinos and introduces the flavour symmetries needed to realize the different lepton-flavour scenarios associated with RℓL. As mentioned above, we assume a SO(3) symmetric heavy-neutrino sector at the GUT scale and calculate the renormalization-group (RG) effects on the mass spectrum of the electroweak-scale heavy Majorana neutrinos and their Yukawa couplings to charged leptons. Taking the light-neutrino oscillation data into account, we are able to determine most of the theoretical parameters of the RℓL models. In Section 3 we present analytic results and predictions for LFV observables in the three different RℓL models. Section 4 briefly reviews the basic framework of RL and presents the BEs, upon which our numerical analysis is based. We also clarify the necessity of having at least three heavy Majorana neutrinos in RL models in order to obtain experimentally testable LFV. Section 5 presents numerical estimates of representative RℓL models and their impact on the neutrino mixing angle θ_{13}. Finally, Section 6 summarizes our conclusions.
2 Flavour Models of Minimal Resonant Leptogenesis

In this section, we describe the basic theoretical framework underlying the different flavour models of minimal RL. In particular, our interest is in scenarios in which the BAU is generated by the production of an individual lepton number [13]. For definiteness, we first consider a minimal model for $R\tau L$ in Section 2.1, and then generalize to the other two cases $R\mu L$ and ReL in Sections 2.2 and 2.3 respectively.

The leptonic Yukawa and Majorana sectors of the SM symmetrically extended with one singlet right-handed neutrino ν_{iR} per i family (with $i = 1, 2, 3 = e, \mu, \tau$) are given by the Lagrangian

$$- L_{Y,M} = \bar{L} \Phi h^{\ell} l_R + \bar{L} \tilde{\Phi} h^\nu \nu_R + \bar{\nu}_R^C m_M \nu_R + \text{H.c.},$$ (2.1)

where Φ is the SM Higgs doublet and $\tilde{\Phi} = i\tau_2 \Phi^*$ its isospin conjugate. Moreover, we have suppressed the generation index i from the left-handed doublets $L_i = (\nu_{iL}, l_{iL})^T$, the right-handed charged leptons l_{iR} and the right-handed neutrinos ν_{iR}, while ordinary multiplication between vectors and matrices is implied.

To obtain a phenomenologically relevant model in this minimal setup, at least 3 singlet heavy Majorana neutrinos $\nu_{1,2,3R}$ are needed and these have to be nearly degenerate in mass [13]. To ensure the latter, we assume that to leading order, the singlet Majorana sector is SO(3) symmetric, i.e.

$$m_M = m_N 1_3 + \Delta m_M,$$ (2.2)

where 1_3 is the 3×3 identity matrix and Δm_M is a general SO(3)-breaking matrix induced by RG effects. As we will discuss below, compatibility with the observed light neutrino masses and mixings requires that $(\Delta m_M)_{ij}/m_N \lesssim 10^{-7}$, for electroweak-mass Majorana neutrinos, i.e. for $m_N \approx 0.1$–1 TeV. We will explicitly demonstrate, how such an SO(3)-breaking matrix Δm_M, of the required order, can be generated radiatively via the RG evolution of the right-handed neutrino mass matrix m_M from the GUT scale $M_X \approx 2 \times 10^{16}$ GeV to the mass scale of the right-handed neutrinos m_N.

To one-loop order, the RG equations governing the 3×3 matrices of the neutrino Yukawa couplings h^ν, the charged-lepton Yukawa couplings h^{ℓ} and the singlet Majorana

*Occasionally, we will also denote the individual lepton numbers with $L_{e,\mu,\tau}$, but hopefully the precise meaning of $L_{e,\mu,\tau}$ can be easily inferred from the context, without causing confusion.
neutrino masses m_M are given by \cite{25}
\begin{align}
\frac{dh^\nu}{dt} &= \frac{1}{16\pi^2} \left[\left(\frac{9}{4}g_2^2 + \frac{3}{4}g_1^2 - T \right)1_3 - \frac{3}{2} \left(h^\nu h^{\nu \dagger} - h^\ell h^{\ell \dagger} \right) \right] h^\nu, \quad (2.3) \\
\frac{dh^\ell}{dt} &= \frac{1}{16\pi^2} \left[\left(\frac{9}{4}g_2^2 + \frac{15}{4}g_1^2 - T \right)1_3 + \frac{3}{2} \left(h^\nu h^{\nu \dagger} - h^\ell h^{\ell \dagger} \right) \right] h^\ell, \quad (2.4) \\
\frac{dm_M}{dt} &= -\frac{1}{16\pi^2} \left[(h^{\nu \dagger} h^\nu) m_M + m_M(h^{\nu T} h^{\nu \ast}) \right], \quad (2.5)
\end{align}
where $t = \ln(M_X/\mu)$ and μ is the RG evolution scale. Moreover, g_1 and g_2 are the gauge couplings of the $U(1)_Y$ and $SU(2)_L$ gauge groups, respectively, and T is the shorthand notation for the trace
\[T \equiv \text{Tr}\left(3h^u h^{u \dagger} + 3h^d h^{d \dagger} + h^\nu h^{\nu \dagger} + h^\ell h^{\ell \dagger}\right). \quad (2.6) \]
Here, h^u and h^d are the 3×3 matrices for the up- and down-type Yukawa couplings, respectively. At the GUT scale M_X, we impose the universal boundary condition: $m_M(M_X) = m_N 1_3$. The corresponding boundary values for the neutrino Yukawa couplings h^ν depend on the particular model of RℓL, which we now discuss in detail.

2.1 Resonant τ-Leptogenesis

In the physical charged-lepton mass basis, the SO(3) symmetry imposed on the singlet Majorana sector at the GUT scale M_X gets explicitly broken by a set of neutrino Yukawa couplings to the subgroup of lepton symmetries: $U(1)_{L_e+L_\mu} \times U(1)_{L_\tau}$. The flavour charge assignments that give rise to such a breaking are presented in Table I.

As a consequence of the $U(1)_{L_e+L_\mu} \times U(1)_{L_\tau}$ symmetry, the neutrino Yukawa coupling matrix takes on the general form:
\begin{equation}
 h^\nu = \begin{pmatrix}
 0 & ae^{-i\pi/4} & ae^{i\pi/4} \\
 0 & be^{-i\pi/4} & be^{i\pi/4} \\
 0 & 0 & 0
 \end{pmatrix} + \delta h^\nu, \quad (2.7)
\end{equation}
and δh^ν vanishes, if the symmetry is exact. In this symmetric limit, the light neutrinos remain massless to all orders in perturbation theory, whilst a and b are free unconstrained complex parameters. The phases accompanying these parameters in (2.7) are simply chosen for convenience to maximize the lepton asymmetry in leptogenesis (see Section 4.1) when a and b are real. In order to give masses to the light neutrinos, the following minimal departure δh^ν from the flavour symmetric limit is considered:

$$
\delta h^\nu = \begin{pmatrix}
\epsilon_e & 0 & 0 \\
\epsilon_\mu & 0 & 0 \\
\epsilon_\tau & \kappa_1 e^{-i\pi/4 - \gamma_1} & \kappa_2 e^{i\pi/4 - \gamma_2}
\end{pmatrix},
$$

(2.8)

where $|\epsilon_e, \epsilon_\mu, \epsilon_\tau|$, $\kappa_{1,2} \ll |a|, |b|$ and the phases $\gamma_{1,2}$ are unrestricted. A more precise determination of the range of parameter values can be obtained from the low-energy neutrino data and successful leptogenesis.

It is important to notice that the flavour structure of the neutrino Yukawa couplings h^ν is preserved through the RG evolution, as long as δh^ν remains a small perturbation. In detail, RG effects violate the SO(3)-invariant form of the Majorana mass matrix $m_M(M_X) = m_N 1_3$ by the 3-by-3 matrix Δm_M. In the leading-log approximation, the SO(3)-breaking matrix Δm_M reads:

$$
\Delta m_M = -\frac{m_N}{8\pi^2} \ln \left(\frac{M_X}{m_N} \right) \Re \left[h^\nu d(M_X) h^\nu (M_X) \right] = -\frac{m_N}{8\pi^2} \ln \left(\frac{M_X}{m_N} \right) \quad (2.9)
$$

with $\gamma_{1,2} = \gamma_{1,2} + \frac{\pi}{4}$. Correspondingly, the neutrino and charged-lepton Yukawa couplings modify via RG running from M_X to m_N as follows:

$$
h^\nu(m_N) = \begin{bmatrix} 1_3 + \frac{\ln \left(\frac{M_X}{m_N} \right)}{16\pi^2} & \left(\begin{array}{ccc}
U - 3a^2 & -3ab & 0 \\
-3ab & U - 3b^2 & 0 \\
0 & 0 & U + \frac{3}{2}h_\tau^2
\end{array} \right) \end{bmatrix} h^\nu(M_X),
$$

(2.10)

$$
h^\ell(m_N) = \begin{bmatrix} 1_3 + \frac{\ln \left(\frac{M_X}{m_N} \right)}{16\pi^2} & \left(\begin{array}{ccc}
U' + 3a^2 & 3ab & 0 \\
3ab & U' + 3b^2 & 0 \\
0 & 0 & U' - \frac{3}{2}h_\tau^2
\end{array} \right) \end{bmatrix} h^\ell(M_X),
$$

(2.11)

where U and U' stand for the shorthand expressions

$$
U \equiv \frac{9}{4}g_2^2 + \frac{3}{4}g_1^2 - 3h_b^2 - 3h_t^2 - h_\tau^2 - 2a^2 - 2b^2,
$$

$$
U' \equiv \frac{9}{4}g_2^2 + \frac{15}{4}g_1^2 - 3h_b^2 - 3h_t^2 - h_\tau^2 - 2a^2 - 2b^2.
$$

(2.12)
Observe that the universal contributions U and U' are dominated by the top-quark Yukawa coupling h_t and are approximately equal, i.e. $U \approx U' \sim -3$. For the models of interest to us, we have $a, b, h_t \sim 10^{-2} \ll h_t$, so the RG effects give rise to an overall rescaling of the charged and neutrino Yukawa couplings, h' and h''. Without loss of generality, we may assume that the charged lepton Yukawa-coupling matrix h' is positive and diagonal at the scale m_N, i.e. close to the electroweak scale. Given the form invariance of h'' under RG effects, we may therefore define all input parameters at the right-handed neutrino mass scale m_N, where the matching with the light neutrino data is performed.

We may now determine the Yukawa parameters $(a, b, \epsilon_e, \epsilon_\mu, \epsilon_\tau)$, in terms of the light-neutrino mass matrix m'' in the positive and diagonal charged lepton Yukawa basis. To do so, we first notice that the chosen symmetry $U(1)_{L_e+L_\mu} \times U(1)_{L_\tau}$ is sufficient to ensure the vanishing of the light neutrino mass matrix m''. In fact, if it is an exact symmetry of the theory, the light neutrino mass matrix will vanish to all orders in perturbation theory [26]. To leading order in the symmetry-breaking parameters Δm_M and $\delta h''$, the tree-level light neutrino mass matrix m'' is given by

$$m'' = -\frac{v^2}{2} h'' m''^{-1} h''^T = -\frac{v^2}{2m_N} \left(h'' \Delta m_M h''^T m_N - h'' h''^T \right)$$

$$= -\frac{v^2}{2m_N} \begin{pmatrix} \frac{\Delta m_N}{m_N} a^2 - \epsilon_e^2 & \frac{\Delta m_N}{m_N} ab - \epsilon_e \epsilon_\mu & \frac{\Delta m_N}{m_N} b^2 - \epsilon_\mu^2 \\ -\epsilon_e \epsilon_\mu & \epsilon_\mu^2 & -\epsilon_\mu \epsilon_\tau \\ -\epsilon_e \epsilon_\tau & -\epsilon_\mu \epsilon_\tau & \epsilon_\tau^2 \end{pmatrix}, \quad (2.13)$$

where $v = 2M_W/g_w = 245$ GeV is the vacuum expectation value of the SM Higgs field Φ. In deriving the last equation in (2.13), we have also assumed that $\sqrt{\frac{\Delta m_N}{m_N}} \kappa_{1,2} \ll \epsilon_{e,\mu,\tau}$, where Δm_N stands for the expression

$$\Delta m_N \equiv 2(\Delta m_M)_{23} + i \left[(\Delta m_M)_{33} - (\Delta m_M)_{22} \right]$$

$$= -\frac{m_N}{8\pi^2} \ln \left(\frac{M_X}{m_N} \right) \left[2\kappa_1 \kappa_2 \sin(\gamma_1 + \gamma_2) + i(\kappa_2^2 - \kappa_1^2) \right]. \quad (2.14)$$

As a consequence of the flavour symmetry $U(1)_{L_e+L_\mu} \times U(1)_{L_\tau}$, the symmetry-violating parameters $\epsilon_{e,\mu,\tau}$ and $\kappa_{1,2}$ enter the tree-level light neutrino mass matrix m'' in (2.13) quadratically. This in turn implies that for electroweak-scale heavy neutrinos $m_N \sim v$, the symmetry-breaking Yukawa couplings $\delta h''$ in (2.8) need not be much smaller than the electron Yukawa coupling $h_e \sim 10^{-6}$. Moreover, one should observe that only a particular combination of SO(3)-violating terms $(\Delta m_M)_{ij}$ appears in m'' through Δm_N. Nevertheless, for electroweak-scale heavy neutrinos with mass differences $|\Delta m_N|/m_N \lesssim 10^{-7}$, one should have $|a|, |b| \lesssim 10^{-2}$ to avoid getting too large light neutrino masses much above 0.5 eV.
Given the analytic form (2.13) of the light neutrino mass matrix, we may directly compute the neutrino Yukawa couplings \((a, b, \epsilon_e, \epsilon_\mu, \epsilon_\tau)\), as functions of \(m_N\), the phenomenologically constrained neutrino mass matrix \(m^\nu\) and the symmetry-breaking parameters \(\kappa_{1,2}\) and \(\gamma_{1,2}\):

\[
a^2 = \frac{2m_N}{v^2} \frac{8\pi^2}{\ln(M_X/m_N)} \left(m_{11}^\nu - \frac{(m_{13}^\nu)^2}{m_{33}^\nu} \right) \left[2\kappa_1\kappa_2 \sin(\gamma_1 + \gamma_2) + i(\kappa_2^2 - \kappa_1^2) \right]^{-1},
\]

\[
b^2 = \frac{2m_N}{v^2} \frac{8\pi^2}{\ln(M_X/m_N)} \left(m_{22}^\nu - \frac{(m_{23}^\nu)^2}{m_{33}^\nu} \right) \left[2\kappa_1\kappa_2 \sin(\gamma_1 + \gamma_2) + i(\kappa_2^2 - \kappa_1^2) \right]^{-1},
\]

\[
\epsilon_e^2 = \frac{2m_N}{v^2} \frac{(m_{13}^\nu)^2}{m_{33}^\nu},
\]

\[
\epsilon_\mu^2 = \frac{2m_N}{v^2} \frac{(m_{23}^\nu)^2}{m_{33}^\nu},
\]

\[
\epsilon_\tau^2 = \frac{2m_N}{v^2} m_{33}^\nu.
\]

Since the approximate light-neutrino mass matrix \(m^\nu\) in (2.13) has rank 2, the lightest neutrino mass eigenstate \(\nu_1\) will be massless in this approximation. The relations given in (2.15) will be used to obtain numerical estimates of the BAU, in terms of \(m_N\) and the symmetry-breaking parameters \(\kappa_{1,2}\) and \(\gamma_{1,2}\), for both normal and inverted hierarchy scenarios of light neutrinos. In the following, we discuss the two remaining flavour variants of RL: R\(\mu\)L and ReL.

2.2 Resonant \(\mu\)-Leptogenesis

The flavour scenario of R\(\mu\)L gets realized, once the GUT-scale \(\text{SO}(3)\) symmetry gets broken to \(U(1)_{L_e + L_\tau} \times U(1)_{L_\mu}\). The flavour charge assignments related to this breaking are presented in Table 2. As a consequence, the neutrino Yukawa coupling \(h^\nu\) takes on the form:

\[
h^\nu = \begin{pmatrix} 0 & ae^{-i\pi/4} & ae^{i\pi/4} \\ 0 & 0 & 0 \\ 0 & be^{-i\pi/4} & be^{i\pi/4} \end{pmatrix} + \delta h^\nu,
\]

where the subdominant neutrino Yukawa-coupling matrix,

\[
\delta h^\nu = \begin{pmatrix} \epsilon_e & 0 & 0 \\ \epsilon_\mu & \kappa_1 e^{-i(\pi/4 - \gamma_1)} & \kappa_2 e^{i(\pi/4 - \gamma_2)} \\ \epsilon_\tau & 0 & 0 \end{pmatrix},
\]

breaks minimally the \(U(1)_{L_e + L_\tau} \times U(1)_{L_\mu}\) flavour symmetry.
\begin{align*}
\begin{array}{cccccc}
L_e, e_R & L_\mu, \mu_R & L_\tau, \tau_R & \nu_1 & \nu_2 \pm i\nu_3 \\
U(1)_{L_e + L_\tau} & 1 & 0 & 1 & 0 & \pm 1 \\
U(1)_{L_\mu} & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\end{align*}

Table 2: Flavour charge assignments for the breaking \(SO(3) \rightarrow U(1)_{L_e + L_\tau} \times U(1)_{L_\mu} \).

As in the \(R_\tau L \) case, we assume that the Majorana-mass matrix \(m_M \) is proportional to \(1_3 \) at the GUT scale \(M_X \) and gets radiatively broken via RG effects at the heavy Majorana neutrino scale \(m_N \). Taking into account both symmetry-breaking terms \(\Delta m_M \) and \(\delta h' \), the light-neutrino mass matrix acquires an analogous form in \(R_\mu L \):

\[
\mathbf{m}' = -\frac{v^2}{2m_N} \begin{pmatrix}
\Delta m_N & a^2 - \epsilon_e^2 & -\epsilon_e\epsilon_\mu & \frac{\Delta m_N}{m_N} ab - \epsilon_e\epsilon_\tau \\
-\epsilon_e\epsilon_\mu & -\epsilon_\mu^2 & -\epsilon_\mu\epsilon_\tau & \frac{\Delta m_N}{m_N} ab - \epsilon_e\epsilon_\tau \\
\frac{\Delta m_N}{m_N} ab - \epsilon_e\epsilon_\tau & -\epsilon_\mu\epsilon_\tau & \epsilon_\mu^2 - \epsilon_\tau^2 & \frac{\Delta m_N}{m_N} ab - \epsilon_e\epsilon_\tau \\
\frac{\Delta m_N}{m_N} ab - \epsilon_e\epsilon_\tau & \frac{\Delta m_N}{m_N} ab - \epsilon_e\epsilon_\tau & \epsilon_\mu^2 - \epsilon_\tau^2 & \epsilon_\tau^2
\end{pmatrix}, \tag{2.18}
\]

where \(\Delta m_N \) is given by (2.14). Correspondingly, the neutrino Yukawa coupling parameters \((a, b, \epsilon_e, \epsilon_\mu, \epsilon_\tau) \) may be analogously expressed, in terms of \(\mathbf{m}' \), \(m_N \), \(\kappa_{1,2} \) and \(\gamma_{1,2} \) as follows:

\[
\begin{align*}
a^2 &= \frac{2m_N}{v^2} \frac{8\pi^2}{\ln(M_X/m_N)} \left(m_{11}' - \frac{(m_{12}')^2}{m_{22}'} \right) \left[2\kappa_1\kappa_2 \sin(\gamma_1 + \gamma_2) + i(\kappa_2^2 - \kappa_1^2) \right]^{-1}, \\
b^2 &= \frac{2m_N}{v^2} \frac{8\pi^2}{\ln(M_X/m_N)} \left(m_{33}' - \frac{(m_{23}')^2}{m_{22}'} \right) \left[2\kappa_1\kappa_2 \sin(\gamma_1 + \gamma_2) + i(\kappa_2^2 - \kappa_1^2) \right]^{-1}, \\
\epsilon_e^2 &= \frac{2m_N}{v^2} \frac{(m_{12}')^2}{m_{22}'}, \\
\epsilon_\mu^2 &= \frac{2m_N}{v^2} \frac{(m_{23}')^2}{m_{22}'}, \\
\epsilon_\tau^2 &= \frac{2m_N}{v^2} \frac{(m_{23}')^2}{m_{22}'}. \tag{2.19}
\end{align*}
\]

2.3 Resonant \(e \)-Leptogenesis

A third possible flavour scenario pertinent to \(R e L \) is realized by the symmetry-breaking pattern \(SO(3) \rightarrow U(1)_{L_\mu + L_\tau} \times U(1)_{L_e} \), where the flavour charge assignments are given in Table 3. In \(R e L \), the neutrino Yukawa coupling \(h' \) has the structure:

\[
h' = \begin{pmatrix}
0 & 0 & 0 \\
0 & ae^{-i\pi/4} & ae^{i\pi/4} \\
0 & be^{-i\pi/4} & be^{i\pi/4}
\end{pmatrix} + \delta h', \tag{2.20}
\]
Table 3: Flavour charge assignments for the breaking $SO(3) \rightarrow U(1)_{L_{\mu}+L_{\tau}} \times U(1)_{L_e}$.

and the breaking terms δh^ν of the $U(1)_{L_{\mu}+L_{\tau}} \times U(1)_{L_e}$ flavour symmetry are

$$\delta h^\nu = \begin{pmatrix} \epsilon_e & \kappa_1 e^{-i(\pi/4-\gamma_1)} & \kappa_2 e^{i(\pi/4-\gamma_2)} \\ \epsilon_\mu & 0 & 0 \\ \epsilon_\tau & 0 & 0 \end{pmatrix}.$$ (2.21)

In close analogy with the previous two scenarios of $R_{\tau L}$ and $R_{\mu L}$, the light neutrino mass matrix in $R e L$ is given by

$$m^\nu = -\frac{v^2}{2m_N} \begin{pmatrix} -\epsilon_e^2 & -\epsilon_e \epsilon_\mu & -\epsilon_e \epsilon_\tau \\ -\epsilon_e \epsilon_\mu & \Delta m_N a^2 - \epsilon_\mu^2 & \Delta m_N ab - \epsilon_\mu \epsilon_\tau \\ -\epsilon_e \epsilon_\tau & \Delta m_N ab - \epsilon_\mu \epsilon_\tau & \Delta m_N b^2 - \epsilon_\tau^2 \end{pmatrix},$$ (2.22)

where Δm_N retains its analytic form of (2.14). By analogy, we may derive in $R e L$ the relations of the neutrino Yukawa coupling parameters $(a, b, \epsilon_e, \epsilon_\mu, \epsilon_\tau)$ to $m^\nu, m_N, \kappa_{1,2}$ and $\gamma_{1,2}$. These are given by

$$a^2 = \frac{2m_N}{v^2} \frac{8\pi^2}{\ln(M_X/m_N)} \left(m_{22}^\nu \left(\frac{m_{12}^\nu}{m_{11}^\nu} \right)^2 \right) \left[2\kappa_1 \kappa_2 \sin(\gamma_1 + \gamma_2) + i(\kappa_2^2 - \kappa_1^2) \right]^{-1},$$

$$b^2 = \frac{2m_N}{v^2} \frac{8\pi^2}{\ln(M_X/m_N)} \left(m_{33}^\nu \left(\frac{m_{13}^\nu}{m_{11}^\nu} \right)^2 \right) \left[2\kappa_1 \kappa_2 \sin(\gamma_1 + \gamma_2) + i(\kappa_2^2 - \kappa_1^2) \right]^{-1},$$

$$\epsilon_e^2 = \frac{2m_N}{v^2} \frac{m_{11}^\nu}{m_{11}^\nu},$$

$$\epsilon_\mu^2 = \frac{2m_N}{v^2} \frac{(m_{12}^\nu)^2}{m_{11}^\nu},$$

$$\epsilon_\tau^2 = \frac{2m_N}{v^2} \frac{(m_{13}^\nu)^2}{m_{11}^\nu}.$$ (2.23)

3 Low Energy Observables

Low-energy neutrino data provide indisputable evidence for neutrino oscillations. We use these data to determine and constrain the fundamental parameters of the theory. We also present the full range of predictions for the half life of neutrinoless double beta decay of a
heavy nucleus, within the different flavour scenarios of RL. In the same context, we present analytic results and estimates for LFV observables, such as \(\mu \rightarrow e\gamma \) and \(\mu \rightarrow e \) conversion in nuclei.

3.1 Light Neutrino Oscillation Data

The interpretation of the experimental results on solar neutrinos suggests that \(\nu_e \rightarrow \nu_{\mu,\tau} \) oscillations are mainly driven by the mass squared difference \(\Delta m_{12}^2 = m_{\nu_2}^2 - m_{\nu_1}^2 \), while the corresponding experimental data on atmospheric neutrinos are interpreted by \(\nu_\mu \rightarrow \nu_\tau \) oscillations driven by \(\Delta m_{23}^2 = m_{\nu_3}^2 - m_{\nu_2}^2 \), within a minimal scheme of three active neutrinos. For the present analysis, we use the global fits performed in [27], even though global fits of other groups give compatible results [28]. The best fit values for the light neutrino masses and mixings, including their uncertainties at the 2\(\sigma \) level, are given by

\[
\sin^2 \theta_{12} = 0.32^{+0.05}_{-0.04}, \quad \sin^2 \theta_{23} = 0.50^{+0.13}_{-0.12}, \quad \sin^2 \theta_{13} = 0.007^{+0.026}_{-0.007},
\]

\[
\Delta m_{12}^2 = (7.6^{+0.5}_{-0.3}) \times 10^{-5} \text{ eV}^2, \quad |\Delta m_{13}^2| = (2.4^{+0.3}_{-0.3}) \times 10^{-3} \text{ eV}^2,
\]

(3.1)

where the sign of \(\Delta m_{13}^2 \equiv \Delta m_{12}^2 + \Delta m_{23}^2 \) remains still undetermined, corresponding to the cases of the so-called normal (\(\Delta m_{13}^2 > 0 \)) and inverted (\(\Delta m_{13}^2 < 0 \)) neutrino mass hierarchy, respectively. As outlined in Section 2, we use the oscillation parameters as input to reduce the number of free parameters in the neutrino Yukawa coupling matrix \(h^\nu \).

3.2 \(0\nu\beta\beta \) Decay

Models that include Majorana neutrinos violate the \(L \)-number and so can give rise to neutrinoless double beta decay (\(0\nu\beta\beta \)) of a heavy nucleus \(A Z X \), where two single \(\beta \) decays [29,31] can occur simultaneously in one nucleus, \(\frac{A}{2} Z X \rightarrow \frac{A}{2} Z + 2 X + 2 e^- \). The measurement of the half life of this decay provides further information on the structure of the light neutrino mass matrix \(m^\nu \). The half life \(T_{1/2}^{0\nu\beta\beta} \) for a \(0\nu\beta\beta \) decay mediated by light Majorana neutrinos is given by

\[
(T_{1/2}^{0\nu\beta\beta})^{-1} = \left(\frac{\langle m \rangle^2}{m_e^2} \right) |M_{0\nu\beta\beta}|^2 G_{01},
\]

(3.2)

where \(\langle m \rangle \) denotes the effective Majorana neutrino mass, \(m_e \) is the electron mass and \(M_{0\nu\beta\beta} \) and \(G_{01} \) are the nuclear matrix element and the phase space factor of the decay, respectively. The effective neutrino mass \(\langle m \rangle \) is given by the entry \(\{11\} \equiv \{ee\} \) of the
light neutrino mass matrix m^ν, which can be expressed as

$$\langle m \rangle \equiv |m^\nu_{ee}| = \sum_{i=1}^{3} (U^\nu_{ei})^2 m_{\nu i}, \quad (3.3)$$

where U^ν is the PMNS neutrino-mixing matrix [32]. As described in Section 2, R\ell models realise a light neutrino mass spectrum with a vanishing lightest neutrino mass, $m_{\nu 1} = 0$, and either a normal or inverted mass hierarchy. The prediction for the effective Majorana neutrino mass for these two scenarios is given by

$$\langle m \rangle = \begin{cases} (2.5^{+3.0}_{-2.5}) \times 10^{-3} & \Delta m^2_{13} > 0 \\ (2.9^{+3.0}_{-1.9}) \times 10^{-2} & \Delta m^2_{13} < 0 \end{cases}, \quad (3.4)$$

The above prediction takes into account the uncertainty of the observed oscillation parameters at the 2\sigma level and the variation of the unknown Dirac and Majorana phases. These predictions are to be compared to the experimental bound $T^{0\nu\beta\beta}_{1/2} > 1.9 \times 10^{25}$ years in the isotope ^{76}Ge reported by the Heidelberg–Moscow collaboration [33], implying an upper limit on $\langle m \rangle$ in the range:

$$\langle m \rangle_{\text{exp}} < (0.3 - 0.6) \text{ eV}. \quad (3.5)$$

Here, the main uncertainty is due to the choice for the nuclear matrix element that occurs in (3.2). Future $0\nu\beta\beta$-decay experiments are expected to probe $\langle m \rangle$ to sensitivities of order 10^{-2} [19] and so fall within the range given in (3.4) to validate the mass scenario of inverted hierarchy.

3.3 $l_1 \to l_2\gamma$

Heavy Majorana-neutrino loop effects may induce sizeable LFV couplings to the photon and the Z boson. These couplings give rise to LFV decays, such as $\mu \to e\gamma$ [34], $\mu \to eee$ [35] and $\mu \to e$ conversion in nuclei. The strength of LFV is controlled by the effective coupling matrix

$$\Omega_{l_1 l_2} = \frac{\alpha^2}{2m_N^2} (h^\nu h^{\nu\dagger})_{l_1 l_2}, \quad (3.6)$$

which governs the flavour transition between the charged leptons $l_{1,2} = e, \mu, \tau$ in LFV processes. The LFV decay $l_1 \to l_2\gamma$, $l_1 \in \{\mu, \tau\}$, with $l_2 \in \{\mu, e\}$, $l_2 \neq l_1$, whose branching fraction is given by

$$B(l_1 \to l_2\gamma) = \frac{\alpha_w^3 s_w^2}{256 \pi^2} \frac{m_{l_1}^4}{M_W^4} \frac{m_{l_1}}{\Gamma_{l_1}} |G^{l_1 l_2}|^2 . \quad (3.7)$$
In the above, Γ_{l_1} is the decay width of lepton l_1 and $G_{\gamma}^{l_1l_2}$ is a composite form-factor given by [35]

$$G_{\gamma}^{l_1l_2} = -\Omega_{l_1l_2} G_{\gamma} \left(\frac{m_N^2}{m_W^2} \right),$$ \hspace{1cm} (3.8)

with

$$G_{\gamma}(x) = -\frac{2x^3 + 5x^2 - x}{4(1-x)^3} - \frac{3x^3}{2(1-x)^4} \ln x.$$ \hspace{1cm} (3.9)

Given that the experimentally measured muon and tau decay widths are $\Gamma_\mu = 2.997 \times 10^{-19}$ GeV and $\Gamma_\tau = 2.158 \times 10^{-12}$ GeV [36], the LFV branching ratios can be expressed as

$$B(\mu \rightarrow e\gamma) \approx 8.0 \cdot 10^{-4} \times g \left(\frac{m_N}{m_W} \right) |\Omega_{\mu e}|^2,$$ \hspace{1cm} (3.10)

$$B(\tau \rightarrow l_2\gamma) \approx 1.5 \cdot 10^{-4} \times g \left(\frac{m_N}{m_W} \right) |\Omega_{\tau l_2}|^2, \hspace{1cm} l_2 = e, \mu.$$ \hspace{1cm} (3.11)

Here, we defined $g(x) \equiv 4G_{\gamma}^2(x^2)$, which possesses the limits $g \rightarrow 1$ for $m_N \gg m_W$ and $g \rightarrow 1/16$ for $m_N = m_W$. Our theoretical predictions will be contrasted to the current experimental upper limits [36]

$$B_{\text{exp}}(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11},$$

$$B_{\text{exp}}(\tau \rightarrow \mu\gamma) < 6.8 \times 10^{-8},$$

$$B_{\text{exp}}(\tau \rightarrow e\gamma) < 1.1 \times 10^{-7},$$ \hspace{1cm} (3.12)

and the expected sensitivity of the MEG experiment [20],

$$B_{\text{MEG}}(\mu \rightarrow e\gamma) \approx 10^{-13}.$$ \hspace{1cm} (3.13)

In R\ell\L models, only two of the right-handed neutrinos, ν_{2R} and ν_{3R}, have appreciable e- and μ-Yukawa couplings, $a, b \approx 10^{-2}$, $\kappa_{1,2} = 10^{-5} - 10^{-3}$, and will be relevant to LFV effects. For example, in the $R\tau\L$ model, the parameters $|\Omega_{l_1l_2}|^2$ are, to a good approximation, given by

$$|\Omega_{\mu e}|^2 \approx \frac{v^4}{m_N^4} a^2 b^2, \hspace{1cm} |\Omega_{\tau l_2}|^2 \approx \frac{v^4}{m_N^4} \max(\kappa_1^2, \kappa_2^2) b^2, \hspace{1cm} |\Omega_{\tau e}|^2 \approx \frac{v^4}{m_N^4} \max(\kappa_1^2, \kappa_2^2) a^2.$$ \hspace{1cm} (3.14)

Because of the relations [2,15], a and b are approximately inversely proportional to $\kappa_{1,2}$, $a, b \approx 3 \times 10^{-7}\kappa_{1,2}^{-1}$ (in the case of a normal light neutrino mass hierarchy), and for a typical value of $\kappa_{1,2} \approx 10^{-4}$, a and b are of the order $a, b \approx 3 \times 10^{-3}$. Thus, in the $R\tau\L$ scenario,
the following typical values for the branching ratios of the photonic LFV \(\mu \) and \(\tau \) decays are predicted:

\[
B(\mu \to e\gamma)_{RrL} \approx 10^{-13}, \quad B(\tau \to l_2\gamma)_{RrL} \approx 10^{-17}.
\] (3.15)

Consequently, only \(B(\mu \to e\gamma) \) is expected to be within reach of future experiments, whereas the LFV \(\tau \) decays are far beyond the realm of detection. By analogy, the predictions in the Re(\(\mu \))L model are found to be

\[
B(\mu \to e\gamma)_{\text{Re}(\mu)\text{L}} \approx 10^{-16}, \quad B(\tau \to l_2\gamma)_{\text{Re}(\mu)\text{L}} \approx 10^{-14}.
\] (3.16)

Again, \(B(\tau \to \mu\gamma) \) and \(B(\tau \to e\gamma) \) are expected to be below current and future experimental sensitivities for parameter choices compatible with successful leptogenesis. While the prediction for \(B(\mu \to e\gamma) \) is far below the expected MEG sensitivity, the LFV \(\mu \to e \) transition rate might still be high enough to be testable at future experiments measuring \(\mu \to e \) conversion in nuclei (see next section). Because of the inverse proportionality between \(a, b \) and \(\kappa_{1,2} \), the prediction for \(B(\mu \to e\gamma) \) is essentially independent of the choice for \(\kappa_{1,2} \). In Section 5, we present detailed numerical results for LFV \(\mu \)- and \(\tau \)-decays that confirm the validity of these simple estimates.

3.4 Coherent \(\mu \to e \) Conversion in Nuclei

One of the most sensitive probes of LFV is the coherent conversion of \(\mu \to e \) in nuclei [37,38]. The \(\mu \to e \) conversion rate in a nucleus with nucleon numbers \((N, Z)\) is given by [37–39]

\[
B_{\mu e}(N, Z) \equiv \frac{\Gamma[\mu (N, Z) \to e (N, Z)]}{\Gamma[\mu (N, Z) \to \text{capture}]} \approx \frac{\alpha_{\text{em}}^3 \alpha_{\mu}^4 m_\mu^5}{16\pi^2 m_W^4 \Gamma_{\text{capt}}} \frac{Z_{\text{eff}}^4}{Z} |F(-m_\mu^2)|^2 |Q_W|^2 ,
\] (3.17)

where \(\alpha_{\text{em}} = 1/137 \) is the electromagnetic fine structure constant, \(Z_{\text{eff}} \) is the effective atomic number and \(\Gamma_{\text{capt}} \) is the muon nuclear capture rate. For \(^{48}\text{Ti}\), experimental measurements give \(Z_{\text{eff}} \approx 17.6 \) [40] and \(\Gamma_{\text{capt}} \approx 1.705 \times 10^{-18} \) GeV [41]. Moreover, \(|F(-m_\mu^2)| \approx 0.54 \) is the nuclear form factor [42] and

\[
Q_W = V_u(2Z + N) + V_d(Z + 2N)
\] (3.18)

is the weak matrix element, where

\[
V_u = -\left[1 + \frac{1}{3} s_w^2 + \left(\frac{3}{8} - \frac{8}{9} s_w^2\right) \ln \frac{m_N^2}{m_W^2}\right] \Omega_{\mu e} + \frac{1}{2} \left(\frac{1}{4} + \frac{2}{3} s_w^2\right) \frac{m_N^2}{m_W^2} (\Omega^2)_{\mu e} ,
\] (3.19)

\[
V_d = \left[1 - \frac{1}{6} s_w^2 + \left(\frac{3}{8} - \frac{4}{9} s_w^2\right) \ln \frac{m_N^2}{m_W^2}\right] \Omega_{\mu e} + \frac{1}{2} \left(\frac{1}{4} - \frac{1}{3} s_w^2\right) \frac{m_N^2}{m_W^2} (\Omega^2)_{\mu e} .
\] (3.20)
In the case of $^{48}_{22}$Ti, $B_{\mu e}(26, 22)$ is then approximately related to $B(\mu \to e\gamma)$ through

$$B_{\mu e}(26, 22) \approx 10^{-1} \times B(\mu \to e\gamma), \quad (3.21)$$

for a right-handed neutrino mass scale $m_N \approx 100$ GeV. On the experimental side, the strongest upper bound is obtained from data on $\mu \to e$ conversion in $^{48}_{22}$Ti [43],

$$B_{\mu e}^{\exp}(26, 22) < 4.3 \times 10^{-12}. \quad (3.22)$$

Using the relation (3.21), we observe that this sensitivity is comparable to the current bound on $B(\mu \to e\gamma)$. However, the proposed COMET and mu2e experiments, measuring $\mu \to e$ conversion in $^{27}_{13}$Al, are expected to be sensitive to conversion rates of order 10^{-16} [44, 45], thereby improving the sensitivity compared to the current limit by four orders of magnitude.

4 Leptogenesis

In this section, we briefly review the central results of the field-theoretic formalism for RL developed in [7, 8] which will be used in our analysis. We then set up the BEs and present approximate solutions for the kinematic regime of interest to us. Finally, we clarify the necessity of introducing at least three right-handed neutrinos into the theory, in order to explain the BAU and obtain testable rates of LFV, such as $B(\mu \to e\gamma) \sim 10^{-12}$–$10^{-13}$.

4.1 Leptonic Asymmetries

Within the framework of leptogenesis, a net non-zero leptonic asymmetry results from the CP-violating decays of the heavy Majorana neutrinos N_α into the left-handed charged leptons l_L^\pm and light neutrinos ν_{lL}. Consequently, we have to calculate the partial decay width of the heavy Majorana neutrino N_α into a particular lepton flavour l,

$$\Gamma_{\alpha l} = \Gamma(N_\alpha \to l_L^\pm + W^+) + \Gamma(N_\alpha \to \nu_{lL} + Z, H). \quad (4.1)$$

For temperatures above the electroweak phase transition, the SM VEV vanishes and only the would-be Goldstone and Higgs modes will predominantly contribute to $\Gamma_{\alpha l}$.

In RL models, resumming the absorptive parts of the heavy Majorana-neutrino self-energy transitions $N_\beta \to N_\alpha$ plays an important role in the computation of $\Gamma_{\alpha l}$ [7,8]. In
order to take this resummation consistently into account, we first introduce the lepton-flavour dependent absorptive transition amplitude

\[A_{\alpha\beta}^l(h^\nu) \equiv \frac{h_{\alpha}^{\nu} h_{\beta}^{\nu*}}{16\pi} , \]

(4.2)

which represents the contribution of a single charged lepton and light neutrino flavour \(l \) running in the loop. Summing over all flavours \(l \), we then get the total transition amplitude

\[A_{\alpha\beta}(h^\nu) \equiv \sum_{l=e,\mu,\tau} A_{\alpha\beta}^l(h^\nu) = \frac{(h^{\nu\dagger}h^{\nu\nu})_{\alpha\beta}^{*}}{16\pi} . \]

(4.3)

Note that the diagonal transition amplitude \(A_{\alpha\alpha}(h^\nu) \) is related to the tree-level decay width of the heavy Majorana neutrino \(N_\alpha \) through: \(\Gamma_{N_\alpha}^{[0]} = 2 m_{N_\alpha} A_{\alpha\alpha}(h^\nu) \).

Since all charged-lepton Yukawa couplings will be in thermal equilibrium in the low-scale leptogenesis scenarios of our interest, we consider the weak basis in which the matrices \(h^l \) and \(m_M \) are both diagonal and positive. To account for unstable-particle mixing effects between the 3 heavy Majorana neutrinos, we follow [7,8] and define the resummed effective Yukawa couplings \(h_{\nu}^{\nu\nu} \) and their CP-conjugate ones \(h_{\nuC}^{\nu\nu} \) related to the vertices \(L\tilde{\Phi}N_\alpha \) and \(L\tilde{\Phi}^*N_\alpha \), respectively. The resummed neutrino Yukawa couplings \(h_{\nu}^{\nu\nu} \) are given by [8,46]

\[h_{\nu}^{\nu\nu}(h^\nu) = h_{\nu}^{\nu\nu} - i \sum_{\beta,\gamma=1}^{3} |\varepsilon_{\alpha\beta\gamma}| h_{\beta\gamma}^{\nu} \]

(4.4)

\[\times \frac{m_\alpha(m_\alpha A_{\alpha\beta} + m_\beta A_{\beta\alpha}) - iR_{\alpha\gamma} [m_\alpha A_{\alpha\gamma}(m_\alpha A_{\alpha\gamma} + m_\gamma A_{\gamma\alpha}) + m_\beta A_{\beta\gamma}(m_\alpha A_{\gamma\alpha} + m_\gamma A_{\gamma\alpha})]}{m_\alpha^2 - m_\beta^2 + 2i m_\alpha^2 A_{\beta\beta} + 2i R_{\alpha\gamma} (m_\alpha^2 |A_{\beta\gamma}|^2 + m_\beta m_\gamma R_{\beta\gamma})} , \]

where \(|\varepsilon_{\alpha\beta\gamma}| \) is the modulus of the usual Levi–Civita anti-symmetric tensor \((\varepsilon_{123} = 1) \), \(m_\alpha^2 \equiv m_{N_\alpha}^2, A_{\alpha\beta} \equiv A_{\alpha\beta}(h^\nu) \) and

\[R_{\alpha\beta} = \frac{m_\alpha^2}{m_\alpha^2 - m_\beta^2 + 2i m_\alpha^2 A_{\beta\beta}} . \]

(4.5)

The respective CP-conjugate effective Yukawa couplings \(h_{\nuC}^{\nu\nu}(h^\nu) \) are obtained from (4.4) by replacing the tree-level couplings \(h_{\nu}^{\nu\nu} \) with their complex conjugates \(h_{\nu}^{\nu\nu*} \):

\[h_{\nuC}^{\nu\nu}(h^\nu) = h_{\nuC}^{\nu\nu}(h^{\nu*}) . \]

(4.6)

In our calculations, we neglect the 1-loop corrections to the proper vertices \(L\tilde{\Phi}N_\alpha \), whose absorptive parts are numerically insignificant in RL. In terms of the absorptive transition amplitudes \(A_{\alpha\beta}^l \) given in (4.2), the partial decay widths \(\Gamma_{\alpha l} \) and their CP-conjugates \(\Gamma_{\alpha l}^C \) may now be expressed in the compact form:

\[\Gamma_{\alpha l} = m_{N_\alpha} A_{\alpha\alpha}^l(h^\nu) , \quad \Gamma_{\alpha l}^C = m_{N_\alpha} A_{\alpha\alpha}^l(h^{\nuC}) . \]

(4.7)
where we have explicitly indicated the dependence of the absorptive transition amplitudes on h^ν and $h^{\nu C}$. Given the analytic expressions (4.7), it is straightforward to compute the leptonic asymmetries for each individual lepton flavour:

$$
\delta_{\alpha l} \equiv \frac{\Gamma_{\alpha l} - \Gamma_{\alpha l}^C}{\sum_{\ell=e,\mu,\tau} \left(\Gamma_{\alpha l} + \Gamma_{\alpha l}^C \right)} = \frac{|h^\nu_{\alpha l}|^2 - |h^{\nu C}_{\alpha l}|^2}{(|h^{\nu l}_{\alpha l}|^2 + |h^{C\nu l}_{\alpha l}|^2)}.
$$

(4.8)

The analytic results for the leptonic asymmetries $\delta_{\alpha l}$ simplify considerably in the 2-heavy neutrino mixing limit, in which $R_{\alpha\beta}$ defined in (4.5) is set to zero. In this limit, $\delta_{\alpha l}$ are given by [7, 8]

$$
\delta_{\alpha l} \approx \frac{\text{Im} \left[(h^{\nu l}_{\alpha l} h^{\nu}_{l\beta}) (h^{\nu l}_{\alpha l} h^{\nu}_{l\beta}) \right]}{(h^{\nu l}_{\alpha l} h^{\nu}_{l\alpha})(h^{\nu l}_{\alpha l} h^{\nu}_{l\beta})} \frac{(m^2_{N_{\alpha}} - m^2_{N_{\beta}}) m_{N_{\alpha}} \Gamma_{N_{\beta}}^{(0)}}{(m^2_{N_{\alpha}} - m^2_{N_{\beta}})^2 + m^2_{N_{\alpha}} \Gamma_{N_{\beta}}^{(0)2}},
$$

(4.9)

where $\alpha, \beta = 1, 2$ and $\Gamma_{N_{\alpha}}^{(0)}$ is the tree-level decay width of the heavy Majorana neutrino N_{α}, given after (4.3). Based on the simplified expression (4.9), the following two conditions for having resonantly enhanced leptonic asymmetries $\delta_{\alpha l} \sim \mathcal{O}(1)$ may be derived [7]:

(i) \[|m_{N_{\alpha}} - m_{N_{\beta}}| \sim \frac{\Gamma_{N_{\alpha}\beta}}{2}, \]

(ii) \[\frac{\text{Im} \left[(h^{\nu l}_{\alpha l} h^{\nu}_{l\beta}) (h^{\nu l}_{\alpha l} h^{\nu}_{l\beta}) \right]}{(h^{\nu l}_{\alpha l} h^{\nu}_{l\alpha})(h^{\nu l}_{\alpha l} h^{\nu}_{l\beta})} \sim 1. \]

(4.11)

Note that the first resonant condition (i) is exactly met, when the unitarity limit on the resummed heavy-neutrino propagator gets saturated [47], i.e. when the regulating expression in (4.9),

$$
f_{\text{reg}} \equiv \frac{|m^2_{N_{\alpha}} - m^2_{N_{\beta}}| m_{N_{\alpha}} \Gamma_{N_{\beta}}^{(0)}}{(m^2_{N_{\alpha}} - m^2_{N_{\beta}})^2 + m^2_{N_{\alpha}} \Gamma_{N_{\beta}}^{(0)2}} \leq 1,
$$

(4.12)

takes its maximal possible value: $f_{\text{reg}} = 1$. Within our RL scenarios, the first condition in (4.10) is naturally fulfilled as the heavy-neutrino mass splittings are generated via RG effects and are of the required order. The second condition is crucial as well and controls the size of the leptonic asymmetries. As we will see below, the condition (ii) in (4.10) has a non-trivial impact on approximate L-conserving RL models.

4.2 Comparison with Other Methods

It is now worth commenting on some of the attempts made in the literature [48–50] to calculate the resonant part of the leptonic asymmetries $\delta_{\alpha l}$. Their results differ by the way...
in which the singularity \(m_{N_2} \to m_{N_1}\) occurring in the denominator of the second fraction in (4.9) gets regulated, when heavy-neutrino width effects are taken into consideration. Specifically, the various approaches differ in their derivations for the analytic form of \(f_{\text{reg}}\) given in (4.12). For instance, the authors of [48] use a perturbative quantum-mechanical approach to obtain a regulator of the form:

\[
f_{\text{reg}} = \frac{\Delta m_N \Gamma_{N_{1,2}}^{(0)}/2}{(\Delta m_N)^2 + \frac{1}{(16\pi)^2} m_N^2 \text{Re}^2(h^{\nu^* } h^{\nu})_{12}},
\]

where \(m_N = \frac{1}{2}(m_{N_1} + m_{N_2})\) and \(\Delta m_N = |m_{N_1} - m_{N_2}|\). It is easy to observe that for scenarios, for which \(\text{Re}(h^{\nu^* } h^{\nu})_{12} = 0\), but \(\text{Re}(h^{\nu^* } h^{\nu})_{22} \neq 0\), the unitarity upper bound given in (4.12) gets violated, in the degenerate heavy-neutrino mass limit \(m_{N_2} \to m_{N_1}\). In particular, in the same limit, the individual lepton-flavour asymmetries \(\delta_{ll}\) (with \(l = e, \mu, \tau\)) become singular. Although this singularity disappears when the lepton-flavour sum \(\delta_{N_{1,2}} = \sum_{l=e,\mu,\tau} \delta_{l,l}\) is taken, the regulator (4.13) will still be inapplicable to lepton-flavour RL scenarios, for which \(\Delta m_N/m_N \sim \text{Re}(h^{\nu^* } h^{\nu})_{12}/(16\pi) \ll \Gamma_{N_{1,2}}/m_N\).

Based on a modified version of the field-theoretic approach introduced in [7,8], the authors of [49,50] obtain a different regulating expression for the leptonic asymmetry \(\delta_{ll}\):

\[
f_{\text{reg}} = \frac{|m_{N_1}^2 - m_{N_2}^2| m_{N_1} \Gamma_{N_2}^{(0)}}{(m_{N_1}^2 - m_{N_2}^2)^2 + (m_{N_1} \Gamma_{N_1}^{(0)} - m_{N_2} \Gamma_{N_2}^{(0)})^2}.
\]

It is not difficult to observe that \(f_{\text{reg}}\) diverges as \((m_{N_1} - m_{N_2})^{-1}\) in RL scenarios, for which \((h^{\nu^* } h^{\nu})_{11} = (h^{\nu^* } h^{\nu})_{22}\), even though one could still have \((h^{\nu^* } h^{\nu})_{11} \neq (h^{\nu^* } h^{\nu})_{22}\) for each single lepton flavour \(l\). For instance, such a situation can naturally occur in approximate lepton-number conserving models of RL discussed recently in [51,52]. Evidently, the prediction for the leptonic asymmetries \(\delta_{N_{1,2}}\) in such scenarios may get overestimated by many orders of magnitude.

In order to illustrate this last point, let us consider a one-generation inverse seesaw model [53] with two singlet neutrinos of opposite lepton number, \(\nu_R\) and \(S_L\). The neutrino sector of this model is described by the lepton-number-conserving Lagrangian

\[
-\mathcal{L}_{\text{inverse}} = \frac{1}{2} \left(\bar{S}_L, \bar{\nu}_R^c \right) \begin{pmatrix} 0 & M \\ M & 0 \end{pmatrix} \begin{pmatrix} S_L^c \\ \nu_R \end{pmatrix} + h_R \left(\bar{\nu}_L, \bar{L}_L \right) \tilde{\Phi} \nu_R + \text{H.c.} \quad (4.15)
\]

Without loss of generality, the kinematic parameters \(M\) and \(h_R\) can be rephased to become real. Following closely the discussion in [7], we introduce into the Lagrangian (4.15) the lepton-number violating operators \(\frac{1}{2} \mu_R \bar{\nu}_R^c \nu_R\), \(\frac{1}{2} \mu_L \bar{S}_L^c S_L\) and \(h_L (\bar{\nu}_L, \bar{L}_L) \tilde{\Phi} S_L^c\). In order to
minimally break both the lepton number and CP, it was shown in [7] that at least two of the aforementioned $\Delta L = 2$ operators are needed. In fact, this result is a direct consequence of the Nanopoulos–Weinberg (NW) no-go theorem [54]. The NW theorem states that no net baryon asymmetry can be generated by a single B- and CP-violating operator to all orders in perturbation theory.

It is interesting to provide an estimate of the lepton asymmetry obtained within a simple model of approximate lepton-number conservation, where $\mu_L = -i\mu_R = \mu$ and $h_L = 0$. For these parameters, we adopt the same ballpark of values as in [51]: $m_N \approx M = 1$ TeV, $h_R = 3 \times 10^{-2}$ and $\Delta m_N \approx \mu/\sqrt{2} = 2 \times 10^{-10} M$. With these input parameters, we may estimate that $\Gamma_{N_{1,2}}^{(0)} \approx 2 \times 10^{-8} m_N$, leading to $\Delta m_N/\Gamma_{N_{1,2}}^{(0)} \approx 10^{-5}$. The first fraction containing the CP-violating phases in (4.9) is rather suppressed, of order $\mu/M \sim \Delta m_N/m_N \sim 10^{-10}$, whilst $f_{\text{reg}} \approx 2\Delta m_N/\Gamma_{N_{1,2}} \approx 2 \times 10^{-5}$ within our resummation approach. This gives rise to dismally small lepton asymmetries:

$$\delta_{1l} \approx \delta_{2l} \sim \frac{\mu}{M} \frac{\mu}{\Gamma_{N_{1,2}}} \sim 10^{-15}. \quad (4.16)$$

Notice that the lepton asymmetries $\delta_{1,2l}$ are proportional to μ^2 in agreement with the NW theorem and, as they should, both vanish identically in the L-conserving limit $\mu \to 0$. As we will see in the next section, lepton asymmetries of order 10^{-15} will fall short by at least 7 orders of magnitude to explain the BAU. Instead, had one used the regulator f_{reg} in (4.14), one would have obtained the enormous enhancement: $f_{\text{reg}} \approx \Gamma_{N_{1,2}}/\mu \sim 10^5 \gg 1$, leading to lepton asymmetries of order [51]: $\delta_{1,2l} \sim \Gamma_{N_{1,2}}/m_N \sim 10^{-5}$. However, this result is independent of the L-conserving parameter $\mu = \mu_L = -i\mu_R$, and taking the L-conserving limit $\mu \to 0$, one obtains a non-zero lepton asymmetry, which clearly signifies an erroneous result. The above exercise shows that one has to go beyond the two-heavy neutrino mixing framework and consider non-trivial lepton flavour effects [13], in order to obtain a phenomenologically relevant model that predicts testable rates for LFV.

4.3 Baryon Asymmetry

In this section we present the relevant Boltzmann equations (BEs) which will be used to evaluate the heavy-Majorana-neutrino-, the lepton- and the baryon-number densities, $\eta_{N_{1,2,3}} = n_{N_{1,2,3}}/n_\gamma$, $\eta_{L_e,\mu,\tau} = n_{L_e,\mu,\tau}/n_\gamma$ and $\eta_B = n_B/n_\gamma$, normalised to the photon number density n_γ. In our computations, we include the dominant collision terms related to the $1 \to 2$ decays of the right-handed neutrinos and to resonant $2 \to 2$ lepton scatterings that
describe $\Delta L = 2$ and $\Delta L = 0$ transitions. We neglect chemical potential contributions from the right-handed charged leptons and quarks.

In order to appropriately take into account the flavour effects on the BEs for $\eta_{N_1,2,3}$ and $\eta_{e,\mu,\tau}$, we closely follow the approach and the notation established in [14]. More explicitly, the BEs are found to be

$$
\frac{d\eta_{N_\alpha}}{dz} = -\frac{z}{n_\gamma H_N} \left(\frac{\eta_{N_\alpha}}{\eta_{eq}} - 1 \right) \gamma_{N_\alpha}^N, \tag{4.17}
$$

$$
\frac{d\eta_{L_l}}{dz} = \frac{z}{n_\gamma H_N} \left[\sum_{\alpha=1}^{3} \left(\frac{\eta_{N_\alpha}}{\eta_{eq}} - 1 \right) \delta_{\alpha l} \gamma_{L_l}^{N_\alpha} C - \frac{2}{3} \eta_{L_l} \sum_{k=e,\mu,\tau} \left(\gamma_{L_k}^{L_l} + \gamma_{L_l}^{L_k} \right) \right], \tag{4.18}
$$

where $\alpha = 1, 2, 3$ and $l = e, \mu, \tau$. In addition, $H_N \approx 17 \times m_N^2/M_P$ is the Hubble parameter at $T = m_N$, where $M_P = 1.2 \times 10^{19}$ GeV is the Planck mass. The T-dependence of the BEs (4.17) and (4.18) is expressed by virtue of the dimensionless parameter

$$
z = \frac{m_N}{T}, \tag{4.19}
$$

in terms of which the photon number density is given by

$$
n_\gamma = \frac{2T^3}{\pi^2} \zeta(3) = \frac{2m_N^3}{\pi^2} \frac{\zeta(3)}{z^3}, \tag{4.20}
$$

where $\zeta(3) \approx 1.202$ is Apéry’s constant. Finally, $\eta_{eq}^{N_\alpha}$ in (4.17) and (4.18) is the equilibrium number density of the heavy Majorana neutrino N_α, normalised to the number density of photons, i.e.

$$
\eta_{eq}^{N_\alpha} \approx \frac{1}{2} z^2 K_2(z), \tag{4.21}
$$

where $K_n(x)$ is the nth-order modified Bessel function [55].

The BEs (4.17) and (4.18) include the collision terms for the decays $N_\alpha \to L_l \Phi$, as well as the $\Delta L = 0, 2$ resonant scatterings: $L_k \Phi \leftrightarrow L_l \Phi$ and $L_k \Phi \leftrightarrow L_l \Phi^\dagger$, which are defined as [14]

$$
\gamma_{N_\alpha}^{L_\Phi} \equiv \sum_{k=e,\mu,\tau} \left[\gamma(N_\alpha \to L_k \Phi) + \gamma(N_\alpha \to L_k \Phi^\dagger) \right], \tag{4.22}
$$

$$
\gamma_{L_k}^{L_l} \equiv \gamma(L_k \Phi \to L_l \Phi) + \gamma(L_k^\dagger \Phi \to L_l \Phi^\dagger), \tag{4.22}
$$

$$
\gamma_{L_k}^{L_l \Phi^\dagger} \equiv \gamma(L_k \Phi \to L_l \Phi^\dagger) + \gamma(L_k^\dagger \Phi \to L_l \Phi). \tag{4.22}
$$
Since we are only interested in the resonant part of the above $2 \to 2$ scatterings, we make use of the narrow width approximation (NWA) for the resummed heavy-neutrino propagators. Thus, at the amplitude squared level, we employ the NWA for the complex-conjugate product of Breit–Wigner propagators [56]:

$$\frac{1}{s - m_{N_\alpha}^2 - i m_{N_\alpha} \Gamma_{N_\alpha}} \approx \frac{1}{m_{N_\alpha}^2 - m_{N_\beta}^2 + i \frac{1}{2} (m_{N_\alpha} + m_{N_\beta}) (\Gamma_{N_\alpha} + \Gamma_{N_\beta})}.$$

(4.23)

Note that the NWA relation (4.23) is valid for any range of parameter values for $\Gamma_{N_1,2,3}$ and $m_{N_1,2,3}$, as long as $\Gamma_{N_1,2,3} \ll m_{N_1,2,3}$. This last condition is naturally fulfilled within the RfL models.

The collision term pertinent to the heavy-Majorana-neutrino decays $\gamma_{L,\Phi}^{N_\alpha}$ is given by

$$\gamma_{L,\Phi}^{N_\alpha} = \frac{m_{N_\alpha}^3}{\pi^2 z} K_1(z) \Gamma_{N_\alpha},$$

(4.24)

whilst the corresponding collision terms for the $\Delta L = 0,2$ lepton-flavour transitions are calculated by means of the NWA (4.23) to be

$$\gamma_{L,\Phi}^{L,\Phi} = \sum_{\alpha,\beta=1}^3 \left(\gamma_{L,\Phi}^{N_\alpha} + \gamma_{L,\Phi}^{N_\beta} \right) \frac{2 \left(\bar{h}_{l\alpha}^{\nu*} \bar{h}_{l\beta}^{\nu*} \bar{h}_{l\beta}^{\nu} \bar{h}_{l\beta}^{\nu} + \bar{h}_{l\alpha}^{\nu*} \bar{h}_{l\rho}^{\nu*} \bar{h}_{l\rho}^{\nu} \bar{h}_{l\rho}^{\nu} \right)}{\left(\bar{h}_{\nu}^{\nu} \bar{h}_{\nu}^{\nu} \right)_{\alpha\alpha} + \left(\bar{h}_{\nu}^{\nu} \bar{h}_{\nu}^{\nu} \right)_{\alpha\beta} + \left(\bar{h}_{\nu}^{\nu} \bar{h}_{\nu}^{\nu} \right)_{\beta\beta}} \times \left(1 - 2i \frac{m_{N_\alpha} - m_{N_\beta}}{\Gamma_{N_\alpha} + \Gamma_{N_\beta}} \right)^{-1},$$

(4.25)

$$\gamma_{L,\Phi}^{L,\Phi\dagger} = \sum_{\alpha,\beta=1}^3 \left(\gamma_{L,\Phi}^{N_\alpha} + \gamma_{L,\Phi}^{N_\beta} \right) \frac{2 \left(\bar{h}_{l\alpha}^{\nu*} \bar{h}_{l\beta}^{\nu} \bar{h}_{l\beta}^{\nu*} \bar{h}_{l\beta}^{\nu} + \bar{h}_{l\alpha}^{\nu*} \bar{h}_{l\beta}^{\nu*} \bar{h}_{l\beta}^{\nu} \bar{h}_{l\beta}^{\nu} \right)}{\left(\bar{h}_{\nu}^{\nu} \bar{h}_{\nu}^{\nu} \right)_{\alpha\alpha} + \left(\bar{h}_{\nu}^{\nu} \bar{h}_{\nu}^{\nu} \right)_{\alpha\beta} + \left(\bar{h}_{\nu}^{\nu} \bar{h}_{\nu}^{\nu} \right)_{\beta\beta}} \times \left(1 - 2i \frac{m_{N_\alpha} - m_{N_\beta}}{\Gamma_{N_\alpha} + \Gamma_{N_\beta}} \right)^{-1}. $$

(4.26)

The scattering collision terms (4.25) and (4.26) contain all contributions from the resonant exchange of right-handed neutrinos in the NWA, including contributions from the so-called real intermediate states (RISs) [57]. The latter are obtained when only the diagonal terms $\alpha = \beta$ are taken in the summation over the heavy Majorana states $N_{\alpha,\beta}$.

21
Separating the diagonal $\alpha = \beta$ RIS contributions from the off-diagonal $\alpha \neq \beta$ terms in the sum, we may rewrite the BE (4.18) in the form [14]

\[
\frac{d\eta_{Ll}}{dz} = \frac{z}{n_\gamma H_N} \left\{ \sum_{\alpha=1}^{3} \left(\frac{\eta_{N\alpha}}{\eta_{eq}} - 1 \right) \delta_{al}\gamma_{L\Phi}^{N\alpha} - \frac{2}{3} \eta_{Ll} \left[\sum_{\alpha=1}^{3} \gamma_{L\Phi}^{N\alpha} B_{al} + \sum_{k=e,\mu,\tau} \left(\gamma_{L\Phi}^{\ell_k^\Phi} + \gamma_{L\Phi}^{\ell_l^\Phi} \right) \right]
- \frac{2}{3} \sum_{k=e,\mu,\tau} \eta_{Lk} \left[\sum_{\alpha=1}^{3} \delta_{al}\delta_{ak}\gamma_{L\Phi}^{N\alpha} + \left(\gamma_{L\Phi}^{\ell_k^\Phi} - \gamma_{L\Phi}^{\ell_l^\Phi} \right) \right] \right\},
\]

where $\gamma_X^Y = \gamma_X^Y - (\gamma_X^Y)_{RIS}$ denote the RIS-subtracted collision terms and B_{al} are the branching ratios

\[
B_{al} = \frac{\sum_{k=e,\mu,\tau} \left(\Gamma_{al}^C + \Gamma_{al}^C \right) \left(\Gamma_{ak}^C + \Gamma_{ak}^C \right)}{\sum_{k=e,\mu,\tau} \left(\Gamma_{al}^C + \Gamma_{al}^C \right) \left(\Gamma_{ak}^C + \Gamma_{ak}^C \right)} = \frac{\left| \mathbf{h}_{al}^C \right|^2 + \left| \mathbf{h}_{al}^C \right|^2}{\left(\mathbf{h}_{al}^C + \mathbf{h}_{al}^C \right)_{aa} + \left(\mathbf{h}_{al}^C + \mathbf{h}_{al}^C \right)_{aa}}.
\]

The collision terms proportional to η_{Lk} and to $\delta_{al}\delta_{ak}$ on the RHS of (4.27) turn out to be numerically negligible for the $R\ell L$ scenarios under consideration. Instead, the RIS-subtracted collision terms proportional to η_{Ll} in (4.27) become significant. Their importance in RL models was originally raised in [8, 14] and confirmed most recently in [51].

The next step is to include the effect of the $(B + L)$-violating sphaleron processes [6]. For temperatures T larger than the critical temperature $T_c \approx 135$ GeV of the electroweak phase transition, the conversion of the total lepton-to-photon ratio $\sum_{l=e,\mu,\tau} \eta_{Ll}$ to the baryon-to-photon ratio η_B^c at T_c is given by the relation:

\[
\eta_B^c = -\frac{28}{51} \sum_{l=e,\mu,\tau} \eta_{Ll}.
\]

For $T < T_c$, the so-generated baryon asymmetry η_B^c gets diluted by standard photon interactions until the recombination epoch, leading to the BAU

\[
\eta_B \approx \frac{1}{27} \eta_B^c.
\]

This theoretical prediction can now be compared with the current observational value for the baryon-to-photon asymmetry [2],

\[
\eta_B^{\text{obs}} = (6.20 \pm 0.15) \times 10^{-10}.
\]

It is instructive to derive approximate numerical solutions to the BEs (4.17) and (4.27). To this end, we re-express the BEs in terms of the out-of-equilibrium deviation parameters $\delta\eta_{Na} = \eta_{Na}/\eta_{eq}^N - 1$ and neglect the suppressed $O(\delta_{al}^2)$ collision terms. For simplicity,
Figure 1: Numerical solutions to BEs (4.32) and (4.33) for \(\delta \eta_{N_1} = \eta_{N_1}/\eta_{eq}^N - 1 \) and \(\eta_{L\tau} \), respectively, in a R\(\tau \)L model with \(m_N = 220 \) GeV, \(K_1 = 10^6 \), \(K_{\tau}^{\text{eff}} = 10^2 \), \(\delta_{\tau} = 10^{-6} \) and \(z_c = m_N/T_c = 1.6 \).

Initially ignore the RIS subtracted collision terms. But, as we will see below, their inclusion is straightforward. With these approximations and simplifications, the BEs may be recast into the compact form:

\[
\frac{d\delta \eta_{N_1}}{dz} = \frac{K_1(z)}{K_2(z)} \left[1 + \left(1 - K_{\alpha} z \right) \delta \eta_{N_1} \right], \tag{4.32}
\]

\[
\frac{d\eta_{L\tau}}{dz} = z^3 K_1(z) \sum_{\alpha=1}^3 K_{\alpha} \left(\delta \eta_{N_1} \delta_{\alpha l} - \frac{2}{3} B_{\alpha l} \eta_{l\tau} \right), \tag{4.33}
\]

with \(K_{\alpha} = \Gamma_{N_\alpha}/[\zeta(3) H_N] \). In the kinematic regime \(z > z_{1}^{\alpha} \approx 2K_{\alpha}^{-1/3} \), the solution to (4.32) may well be approximated by

\[
\delta \eta_{N_1}(z) = \left(K_{\alpha} z \right)^{-1}, \tag{4.34}
\]

independently of the initial conditions (see Figure 1). In this regime, the BE (4.33) becomes

\[
\frac{d\eta_{L\tau}}{dz} = z^2 K_1(z) \left(\delta_{l\tau} - \frac{2}{3} z K_{l\tau} \eta_{l\tau} \right), \tag{4.35}
\]
with \(\delta_l = \sum_{\alpha=1}^{3} \delta_{\alpha l} \) and \(K_l = \sum_{\alpha=1}^{3} K_{\alpha} B_{\alpha l} \). We may include the numerically significant RIS-subtracted collision terms proportional to \(\eta_{L_l} \) in (4.27), by rescaling \(K_l \to \kappa_l K_l \equiv K_l^{\text{eff}} \), where

\[
\kappa_l \equiv \frac{\sum_{k=e,\mu,\tau}^{3} \left(\gamma_{L_l}^k \Phi^k + \gamma_{L_k}^l \Phi^l \right)}{\sum_{\alpha=1}^{3} \gamma_{L_k}^l B_{\alpha l}} - \gamma_{L_l}^l \Phi^l = \frac{3}{\sum_{\alpha=1}^{3} \gamma_{L_k}^l B_{\alpha l}} \sum_{\alpha,\beta=1}^{3} \left(\frac{\hbar_{\alpha l}^{\nu} \hbar_{\alpha l}^{\nu} + \hbar_{\alpha l}^{\nu C} \hbar_{\alpha l}^{\nu C}}{\hbar_{\nu l}^{\nu} + \hbar_{\nu l}^{\nu C}} \right) \left[\frac{\hbar_{\alpha l}^{\nu} \hbar_{\alpha l}^{\nu}}{\hbar_{\nu l}^{\nu}} + \frac{(\hbar_{\nu l}^{\nu C})_{\alpha l}}{(\hbar_{\nu l}^{\nu C})_{l l}} \right] \left[(\hbar_{\nu l}^{\nu})_{\alpha l} + (\hbar_{\nu l}^{\nu C})_{\alpha l} + (\hbar_{\nu l}^{\nu C})_{\beta l} + (\hbar_{\nu l}^{\nu C})_{\beta l} \right] \right] \times \left(1 - 2l \frac{m_{N_{\alpha}} - m_{N_{\beta}}}{\Gamma_{N_{\alpha}} + \Gamma_{N_{\beta}}} \right)^{-1}.
\]

(4.36)

In determining the scaling factor \(\kappa_l \), we have assumed that \(\eta_{L_l \neq \ell} \gg \eta_{L_k \neq \ell} \) in (4.18), which is a valid approximation within a given R/L scenario under study. Note that if only the diagonal \(\alpha = \beta \) terms representing the RIS contributions are considered in the sum, \(\kappa_l \) reaches its maximum value, i.e. \(\kappa_l = 1 + \mathcal{O}(\delta_l^2) \). We also have checked that in the \(L_l \)-conserving limit of the theory, the parameter \(\kappa_l \) vanishes, as it should.

As is illustrated in Figure 1, the solution \(\eta_{L_l} \) to (4.35) exhibits different behaviour in the three kinematic regimes, characterized by the specific values of the parameter \(z = m_N/T \):

\[
z_2^l \approx 2(K_l^{\text{eff}})^{-1/3}, \quad z_3^l \approx 1.25 \ln (25K_l^{\text{eff}}) .
\]

(4.37)

For \(z \) values in the range \(z_2^l < z < z_3^l \), the solution \(\eta_{L_l} \) may well be approximated by

\[
\eta_{L_l}(z) = \frac{3}{2} \frac{\delta_l}{K_l^{\text{eff}} z}.
\]

(4.38)

For \(z > z_3^l \), the lepton number density \(\eta_{L_l} \) freezes out and approaches the constant value \(\eta_{L_l} = (3\delta_l)/(2K_l^{\text{eff}} z_3^l) \). The general behaviour of \(\eta_{L_l} \) in the different regimes is displayed in Figure 1.

In this paper we only consider R/L scenarios, for which the washout is strong enough, such that the critical temperature \(z_c = m_N/T_c \) where the baryon asymmetry \(\eta_B \) decouples.
from the lepton asymmetries η_L^l is situated in the linear drop-off or constant regime. Specifically, we require that

$$z_c > 2 K^{1/3}_\alpha, \quad z_c > 2 (K_{l}^{\text{eff}})^{-1/3},$$

(4.39)

for all heavy neutrino species $N_\alpha = N_{1,2,3}$ and lepton flavours $l = e, \mu, \tau$. As a consequence, the baryon asymmetry η_B becomes relatively independent of the initial values of η_L^l and η_{N_α}. In this case, taking into account all factors in (4.29), (4.30) and (4.38), the resulting BAU is estimated to be

$$\eta_B \approx -3 \cdot 10^{-2} \sum_{l=e,\mu,\tau} \frac{\delta_l}{K_{l}^{\text{eff}} \min(z_c, z_{l}^{3})}.$$

(4.40)

We note that the formula (4.40) provides a fairly good estimate of the BAU η_B to less than 20%, in the applicable regime of approximations given by (4.39) for $K_{l}^{\text{eff}} \gtrsim 5$ for a right-handed neutrino mass scale of the order of the EW scale. Hence, to account for the observed BAU η_B^{obs} given in (4.31), lepton asymmetries $\delta_l \gtrsim 10^{-7}$ are required. In the next section, we present numerical estimates of the BAU for R/L scenarios, based on the simplified BEs (4.32) and (4.35), with K_l replaced by K_{l}^{eff} as defined by means of (4.36).

5 Numerical Results

In this section we present numerical estimates of the BAU η_B and the low-energy LFV observables for $\mu \to e$ and $\tau \to (e, \mu)$ transitions, based on the analytic results derived in Sections 3 and 4. Our aim is to delineate the viable parameter space of the R/L models: RτL, RμL and ReL, by considering both cases of a normal and inverted hierarchy for the light neutrino mass spectrum. In all the R/L scenarios under study, the lightest neutrino is massless. As described in Section 2, we use the neutrino oscillation data to determine the theoretical parameters of the light neutrino mass matrix m^ν. Specifically, we invert the seesaw formula and solve for the neutrino Yukawa couplings a, b and $\epsilon_{e,\mu,\tau}$. In addition, the electroweak-scale flavour structure of the right-handed neutrino mass matrix m^M is generated from a flavour-universal heavy-neutrino mass matrix $m^M(M_X) = m_N 1_3$ at the GUT scale M_X, after taking into account RG-running effects.

For a given light neutrino mass matrix m^ν, the solution obtained for a and b is unique up to a common sign factor. This sign degeneracy could be eliminated, only if the sign
Figure 2: The baryon asymmetry η_B (blue contours) and the LFV observables $B(\mu \to e\gamma)$ and $B_{\mu e}(^{48}\text{Ti})$ (red contours) as functions of κ_1 and κ_2 in the $R\tau L$ model with $m_N = 120$ GeV, assuming a normal light neutrino mass spectrum. The remaining parameters are chosen to be: $\gamma_1 = 3\pi/8$, $\gamma_2 = \pi/2$, $\phi_1 = \pi$, $\phi_2 = 0$, $\text{Re}(a) > 0$ (left panel); $\gamma_1 = \pi/2$, $\gamma_2 = 3\pi/8$, $\phi_1 = 0$, $\phi_2 = 0$, $\text{Re}(a) < 0$ (right panel). The neutrino oscillation parameters are set at their best fit values, with $\sin^2\theta_{13} = 0.033$ at its 2σ upper limit. The blue shaded regions denote the parameter space where the baryon asymmetry is larger than the observational value $\eta_B^{\text{obs}} = 6.2 \times 10^{-10}$. The green shaded areas labelled as ‘$\delta m^\nu_\nu = 0.25$’ and ‘0.10’ indicate the parameter space where the inversion of the light-neutrino mass matrix is violated at the 25% and 10% level, respectively.

of $\text{Re}(a)$ were known. There is also a similar freedom for an overall sign in the $\epsilon_{e,\mu,\tau}$ parameters, but this turns out to be irrelevant, since it applies to a complete column in the neutrino Yukawa matrix h^ν and can be rotated away. In addition to the light neutrino masses and mixings, the light neutrino mass matrix may also contain the CP-violating Dirac phase δ and the Majorana phases $\phi_{1,2}$. As our ansatz for the neutrino Yukawa matrix h^ν uses maximal CP phases for a and b, the inclusion of the light neutrino CP phases is not expected to increase or change significantly our predictions for the baryon asymmetry η_B. We therefore consider only the extreme cases of CP parities, $\delta, \phi_{1,2} = 0, \pi$, as natural choices which can help us to reduce the dimensionality of the parameter space.

As well as $\sin^2\theta_{12}, \sin^2\theta_{23}, \sin^2\theta_{13}, \Delta m^2_{12}, |\Delta m^2_{13}|$, the sign of $(\Delta m^2_{13}), \delta$ and $\phi_{1,2}$, we also
Figure 3: The same as in Figure 2 but assuming an inverted light neutrino mass spectrum. The remaining parameters are chosen as follows: $\gamma_1 = 3\pi/8$, $\gamma_2 = \pi/2$, $\phi_1 = 0$, $\phi_2 = 0$, $\text{Re}(a) > 0$ (left panel); $\gamma_1 = \pi/2$, $\gamma_2 = 3\pi/8$, $\phi_1 = 0$, $\phi_2 = 0$, $\text{Re}(a) > 0$ (right panel).

have the free parameters $\kappa_{1,2}$, $\gamma_{1,2}$, the sign of $\text{Re}(a)$ and m_N in our Rell models. Unless otherwise stated, we use the best fit values of [27] for the measured neutrino oscillation parameters.

To start with, we show in Figure 2 numerical estimates of the baryon asymmetry η_B and the LFV observables $B(\mu \to e\gamma)$ and $B_{\mu e}(^{48}\text{Ti})$, as functions of the Yukawa-coupling parameters κ_1 and κ_2, in a RτL model with $m_N = 120$ GeV and a normal hierarchical light neutrino mass spectrum. The neutrino mixing angle $\sin^2 \theta_{13}$ is set to its upper experimental 2σ limit [27]: $\sin^2 \theta_{13} = 0.033$. The remaining theoretical parameters are chosen to maximise the overlap between successful generation of the required baryon asymmetry and high LFV rates. For definiteness, we set $\gamma_1 = 3\pi/8$, $\gamma_2 = 1/2\pi$ (left panel) and $\gamma_1 = 1/2\pi$, $\gamma_2 = 3\pi/8$ (right panel). The blue shaded areas denote the parameter space where the numerically predicted baryon asymmetry η_B is larger than the observational value $\eta_B^{\text{obs}} = 6.2 \times 10^{-10}$. These areas should be regarded as representing regions of viable parameter space for successful leptogenesis, given the freedom of re-adjusting the CP phases $\gamma_{1,2}$ of the Yukawa couplings $\kappa_{1,2}$.

The parameters $\kappa_{1,2}$ are varied within the range 10^{-5}–10^{-3}; smaller values of $\kappa_{1,2}$ would lead to too large values for $a, b > 0.1$, whereas larger $\kappa_{1,2}$ values would violate the
Figure 4: The branching ratio $B(\mu \to e\gamma)$ as a function of $\sin^2 \theta_{13}$, in $R\tau L$ scenarios with a normal (blue) and inverted (red) light neutrino mass spectra. The model parameters for these two cases are as in Figures 2 (left panel) and 3 (left panel), respectively, with $\kappa_1 = 10^{-5}$ and $\kappa_2 = 10^{-4}$. The horizontal solid (dashed) line denotes the current (expected future) limit on $B(\mu \to e\gamma)$. The vertical solid and dashed lines denote the 2σ upper limit and the nominal best fit value of $\sin^2 \theta_{13}$, the latter roughly corresponding to the expected sensitivity of future oscillation experiments.

The assumed approximation $\kappa_{1,2} \ll a, b$, required to invert the seesaw formula. The degree of violation of this approximation is indicated by the green shaded areas in Figure 2. These green shaded areas denote the parameter space, in which the quantity

$$\delta m^\kappa_\nu \equiv \frac{\Delta m_N}{m_N} \left(\frac{\max(\kappa_1, \kappa_2)}{\min(\|\epsilon_e\|, \|\epsilon_\mu\|, \|\epsilon_\tau\|)} \right)^2$$ \hspace{1cm} (5.1)

is bigger than 0.25 (dark green) and 0.10 (light green), respectively. The quantity δm^κ_ν is a measure that quantifies the accuracy of our analytic approximation for neglecting the contribution of the neutrino Yukawa couplings $\kappa_{1,2}$ in the light neutrino mass matrix m^ν [cf. (2.13)]. Hence, the values of $\delta m^\kappa_\nu = 0.10$ and 0.25 mean that the inversion of the light neutrino mass matrix is accurate at the 10% and 25% level, respectively, due to the assumed absence of the $\kappa_{1,2}$ terms. It should be stressed that the corresponding parameter space is not ruled out; larger values of $\kappa_{1,2} \gtrsim 5 \times 10^{-4}$ would require a numerical approach to invert the light neutrino mass matrix m^ν, beyond our analytic approximation.
Figure 5: The baryon asymmetry η_B as a function of the ratio κ_1/κ_2 in a $R\tau L$ scenario, where $\kappa_1\kappa_2 = 10^{-8}$ is fixed. All other parameters are as in Figure 2 (left panel). The solid line corresponds to the full numerical solution of η_B using the three-heavy-neutrino mixing formula given in (4.4), the dashed line describes the two-heavy-neutrino mixing approximation with $R_{\alpha\beta} = 0$, and the dotted line is obtained by neglecting the RIS-subtracted collision terms in the BE (4.27), or equivalently by setting the parameter κ_τ defined in (4.30) equal to 1 in the BE (4.33). The specific choice for the phases $\gamma_{1,2}$ in Figure 2 approximately maximises the numerically predicted baryon asymmetry η_B compatible with testable LFV decay rates. Specifically, the areas around $(\kappa_1, \kappa_2) \approx (10^{-5}, 10^{-4})$ (left panel) and $(10^{-4}, 10^{-5})$ (right panel), where $B(\mu \to e\gamma) \approx 10^{-12}$ can be achieved, are only present for sufficiently asymmetric values $\gamma_1 \neq \gamma_2$, and only for specific choices for the remaining discrete parameter in the $R\tau L$ model. As a consequence, the requirement of both a successful generation of the baryon asymmetry η_B and potentially observable LFV rates for $\mu \to e$ transitions puts severe constraints on the model parameter space. We note that the dependence of the baryon asymmetry η_B on the right-handed neutrinos mass scale m_N is weak in the physically interesting region of $m_N = 100$–500 GeV. Finally, the LFV τ decays are extremely suppressed with $B(\tau \to l_2\gamma) \sim 10^{-17}$ ($l_2 = e, \mu$), and so remain far beyond the realm of detection.

In Figure 3 we display numerical estimates of η_B and the LFV observables $B(\mu \to e\gamma)$...
and $B_{\mu e}(^{48}\text{Ti})$, as functions of κ_1 and κ_2, in a RτL model with $m_N = 120$ GeV and an inverted hierarchical light neutrino mass spectrum, characterised by $\Delta m^2_{13} < 0$. As before, we set the neutrino mixing angle $\sin^2 \theta_{13}$ to its upper experimental 2σ limit [27]: $\sin^2 \theta_{13} = 0.033$. As can be seen from Figure 3, the regions of the parameter space that yield successful baryon asymmetry η_B are smaller than those found in the normal hierarchical case for the light neutrino mass spectrum. If such a scenario gets realized in nature, then successful leptogenesis implies rates for $B_{\mu e}(^{48}\text{Ti}) \lesssim 10^{-16}$, which can still be within reach of the projected PRISM experiment [21].

The higher rates for the LFV $\mu \to e$ transitions in a RτL model with an inverted hierarchical light-neutrino mass spectrum may be attributed to the fact that the squared...
Figure 7: The same as in Figure 6 but for an inverted light neutrino mass spectrum and the following choice of parameters: $\gamma_1 = 3\pi/8$, $\gamma_2 = \pi/2$, $\phi_1 = 0$, $\phi_2 = 0$, $Re(a) < 0$ (left panel); $\gamma_1 = \pi/2$, $\gamma_2 = 3\pi/8$, $\phi_1 = 0$, $\phi_2 = 0$, $Re(a) > 0$ (right panel).

Parameter a^2 is proportional to the not yet well determined neutrino-mixing angle $sin^2 \theta_{13}$. In detail, the branching ratio $B(\mu \rightarrow e\gamma)$ is enhanced in the case of an inverted hierarchical light neutrino mass spectrum ($\Delta m^2_{13} < 0$). Instead, in the normal hierarchical light-neutrino scenario with $\Delta m^2_{13} > 0$, $B(\mu \rightarrow e\gamma)$ is essentially independent of $sin \theta_{13}$. This is demonstrated in Figure 4 showing $B(\mu \rightarrow e\gamma)$ as a function of $sin^2 \theta_{13}$, where $\kappa_1 = 10^{-5}$ and $\kappa_2 = 10^{-4}$. In the same figure, the vertical solid and dashed lines denote the current best fit value and the expected sensitivity of future experiments for measuring $sin^2 \theta_{13}$, respectively. The branching ratio $B(\mu \rightarrow e\gamma)$ depends linearly on $sin^2 \theta_{13}$ in the inverted hierarchical light-neutrino scenario where $\Delta m^2_{13} < 0$. Unlike in the normal light-neutrino scenario, the predicted value for η_B in the RτL model with an inverted hierarchical light neutrino mass spectrum falls short of explaining the BAU by two orders of magnitude, for a potentially observable branching ratio of $B(\mu \rightarrow e\gamma) \sim 10^{-13}$.

In Figure 5 we illustrate the importance of including the full three-heavy-neutrino mixing in the calculation of the baryon asymmetry. We present a comparison between the full calculation based on using the effective Yukawa couplings $\mathbf{\tilde{H}}_{\alpha\alpha}$ given in (4.4) (solid line) and its two-heavy-neutrino mixing approximation (dashed line) where we set $R_{\alpha\beta} = 0$. Note that the two-heavy-neutrino mixing approximation can differ from the full calculation.
Figure 8: The baryon asymmetry η_B (blue contours) and the branching ratio $B(\tau \to \mu\gamma)$ (red contours) as functions of κ_1 and κ_2 in the ReL model with $m_N = 120$ GeV, considering a normal light neutrino mass spectrum. The following choice of the remaining parameters: $\gamma_1 = 3\pi/8$, $\gamma_2 = \pi/2$, $\phi_1 = \pi$, $\phi_2 = 0$, $Re(a) > 0$ (left panel); $\gamma_1 = \pi/2$, $\gamma_2 = 3\pi/8$, $\phi_1 = 0$, $\phi_2 = \pi$, $Re(a) > 0$ (right panel). The neutrino oscillation parameters are chosen at their best fit values but with $\sin^2 \theta_{13} = 0.033$ at its 2σ upper limit. The blue shaded regions denote the parameter space where the baryon asymmetry is larger than $\eta_B^{\text{obs}} = 6.2 \times 10^{-10}$. The green shaded areas labeled as ‘$\delta m^2_\nu = 0.25$’ and ‘0.10’ indicate the parameter space where the inversion of the light-neutrino mass matrix is violated at the 25% and 10% levels, respectively.

by up to one order of magnitude. In addition, Figure 5 shows the baryon asymmetry η_B calculated by omitting the RIS-subtracted collision terms in the BE (4.27) (dotted line), or equivalently by taking the parameter κ_τ defined in (4.36) equal to 1 in the BE (4.33). Such a simplification may reduce the predicted values for η_B by as much as 60%.

Figures 6 and 7 present numerical estimates, for a RμL scenario with normal and inverted light neutrino mass spectra, respectively. We see that the baryon asymmetry η_B exhibits a similar dependence on κ_1 and κ_2 as in the RτL scenario. Due to the large e- and τ-Yukawa couplings present in the RμL model, the largest LFV rate can be observed in the $\tau \to e$ transitions, e.g. in the LFV process $\tau \to e\gamma$, with $B(\tau \to e\gamma) \sim 10^{-10}$. Since the current experimental sensitivity to this process is $B_{\text{exp}}(\tau \to e\gamma) \approx 10^{-7}$ which is
Figure 9: The same as in Figure 8 but for an inverted light neutrino mass spectrum and the following choice of parameters: $\gamma_1 = 3\pi/8$, $\gamma_2 = \pi/2$, $\phi_1 = 0$, $\phi_2 = \pi$, $Re(a) < 0$ (left panel); $\gamma_1 = \pi/2$, $\gamma_2 = 3\pi/8$, $\phi_1 = 0$, $\phi_2 = 0$, $Re(a) > 0$ (right panel).

not expected to increase by more than one order of magnitude in the foreseeable future, it would be difficult to probe the parameter space of the $R_{\mu L}$ scenario compatible with observable BAU. On the other hand, the $\mu \rightarrow e$ transitions in the $R_{\mu L}$ model, although being proportional to $\max(\kappa_1, \kappa_2)^2 a^2$ and so smaller than the predictions obtained in $R_{\tau L}$ scenario, are still sizeable enough to produce a $\mu \rightarrow e$ conversion rate of $B_{\mu e}(^{48}\text{Ti}) \approx 2 \times 10^{-17}$ (for $\Delta m_{13}^2 > 0$) and 5×10^{-16} (for $\Delta m_{13}^2 < 0$). As the parameters a and b are approximately inversely proportional to $\kappa_{1,2}$, these values are largely independent of $\kappa_{1,2}$ and apply to the whole (κ_1, κ_2) parameter plane, as depicted in Figures 6 and 7. Consequently, this scenario could be probed at a future $\mu \rightarrow e$ conversion experiment with a sensitivity of $\sim 10^{-16}$ (COMET, μ2e), or $\sim 10^{-18}$ (PRISM) \cite{PRISM}.

Finally, Figures 8 and 9 display numerical estimates, for a $R_{e L}$ scenario with normal and inverted light neutrino mass spectra, respectively. Our results are quite analogous to the $R_{\mu L}$ case. Correspondingly, the largest LFV rate is obtained for the process $\tau \rightarrow \mu \gamma$. However, successful $R_{e L}$ requires $B(\tau \rightarrow \mu \gamma) \sim 10^{-14}$, which is far beyond the reach of the next generation experiments. In analogy to the $R_{\mu L}$ case, the rates for coherent $\mu \rightarrow e$ conversion in nuclei are found to be sizeable. Specifically, we obtain $B_{\mu e}(^{48}\text{Ti}) \approx 3 \times 10^{-17}$ (for $\Delta m_{13}^2 > 0$) and 7×10^{-16} (for $\Delta m_{13}^2 < 0$). Interestingly enough, these rates are well
within reach of the proposed PRISM experiment [21].

6 Conclusions

We have analyzed minimal low-scale seesaw scenarios of resonant leptogenesis and studied their potential implications for observables of charged LFV, such as $\mu \rightarrow e\gamma$ and $\mu \rightarrow e$ conversion in nuclei. We have considered three physically interesting flavour realisations of resonant leptogenesis, where the observed BAU originates from an individual τ-, μ- or e-lepton-number asymmetry which gets resonantly enhanced via the out-of-equilibrium decays of nearly degenerate heavy Majorana neutrinos.

By means of approximate lepton-flavour symmetries, we have been able to construct viable and natural models of R/\ell L compatible with universal right-handed neutrino masses at the GUT scale, where the required heavy-neutrino mass splittings are generated via RG effects. Particular attention has been paid that the effective resummation method introduced in [7] and used in our study to compute the resonantly enhanced lepton asymmetries respects the Nanopoulos-Weinberg no-go theorem [54] in the L-conserving limit of the theory. Specifically, we have checked that the leptonic asymmetries $\delta_{\alpha l}$ given in (4.8) and (4.9) vanish in all parametrically possible L-conserving limits of the R/\ell L scenarios. In agreement with earlier studies [13,14], we find that at least three heavy Majorana neutrinos are required, in order to potentially have both successful leptogenesis and experimentally testable rates for LFV processes, such as $\mu \rightarrow e\gamma$ and $\mu \rightarrow e$ conversion in nuclei.

We have found that the heavy Majorana neutrinos in R/\ell L scenarios can be as light as 100 GeV, whilst their couplings to two of the charged leptons may be large so as to lead to LFV effects that could be tested by the MEG and the COMET/PRISM experiments. Specifically, in the RτL model with a normal light neutrino mass hierarchy, there is a sizeable model parameter space with successful leptogenesis and large LFV process rates, with $B(\mu \rightarrow e\gamma) \approx 10^{-12}$. This prediction is largely independent of $\sin^2 \theta_{13}$ and the other light neutrino oscillation parameters. On the other hand, in the RτL model with inversely hierarchical light neutrinos, $B(\mu \rightarrow e\gamma)$ is linearly proportional to $\sin^2 \theta_{13}$, and can be enhanced by more than one order of magnitude compared to the normal hierarchy case for $\sin^2 \theta_{13}$ close to its upper experimental 2σ limit. Unfortunately, the generated baryon asymmetry η_B is suppressed in this scenario, and to test the viable parameter space for successful leptogenesis would require an experiment for $\mu \rightarrow e$ conversion in nuclei which is sensitive to $B_{\mu e} \approx 10^{-17}$–$10^{-16}$. This feature is also quite generic for the case of the RμL
and ReL models, where $\mu \rightarrow e$ flavour transitions are suppressed by the small τ-Yukawa couplings $\kappa_{1,2}$. In all RℓL models, charged LFV in the τ-lepton sector turns out to be at least 6 orders of magnitude beyond the current experimental sensitivity, as the predicted branching ratios are $B(\tau \rightarrow e\gamma, \mu\gamma) < 10^{-14}$ in parameter regions required for successful leptogenesis.

Further studies will be needed to analyze the full range of theoretical, phenomenological and cosmological implications of the three different universal models of ReL, RµL and RτL. For instance, the consideration of thermal effects [58] may provide a significant improvement on the standard framework of classical BEs adopted in the present analysis. An equally significant issue is whether our minimal RL models can account for the well-known problem of cold Dark Matter (CDM) in the Universe. An obvious solution would be to consider supersymmetric versions of RℓL scenarios [59,60] and study the relic abundance of the lightest stable SUSY particle, which could be a thermal right-handed sneutrino [61]. Alternatively, one may consider scale-invariant extensions of the SM with right-handed neutrinos [62,63], which are minimally augmented with one complex singlet scalar field whose one-loop induced VEV can naturally explain the origin of the electroweak-scale mass of the heavy Majorana neutrinos. It has been shown recently [63] that a minimal Z_4-symmetric variant of these models can stay perturbative up to the Planck scale, as well as provide a CDM candidate through the so-called Higgs-portal mechanism [61]. It is therefore rather motivating to perform a dedicated analysis of observing electroweak-scale heavy Majorana neutrinos within the specific context of the RℓL scenarios studied here, through their possible like-sign dilepton [26,65] and/or trilepton [66] signatures at the LHC or at other future high-energy colliders.

Acknowledgements

This work is supported in part by the STFC research grant: PP/D000157/1.
References

[1] G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 180 (2009) 225.

[2] E. Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” arXiv:1001.4538 [astro-ph.CO].

[3] For reviews, see,
W. Buchmuller, R. D. Peccei and T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311;
T. Ibrahim and P. Nath, Rev. Mod. Phys. 80 (2008) 577;
R. Allahverdi, R. Brandenberger, F. Y. Cyr-Racine and A. Mazumdar, arXiv:1001.2600 [hep-th].

[4] M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986) 45.

[5] P. Minkowski, Phys. Lett. B 67 (1977) 421;
M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, eds. D.Z. Freedman and P. van Nieuwenhuizen (North-Holland, Amsterdam, 1979);
T. Yanagida, in Proc. of the Workshop on the Unified Theory and the Baryon Number in the Universe, KEK, Tsukuba, Japan, 1979, eds. O. Sawada and A. Sugamoto;
R. N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44 (1980) 912.

[6] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155 (1985) 36.

[7] A. Pilaftsis, Phys. Rev. D 56 (1997) 5431.

[8] A. Pilaftsis and T.E.J. Underwood, Nucl. Phys. B 692 (2004) 303.

[9] J. Liu and G. Segré, Phys. Rev. D 48 (1993) 4609.

[10] M. Flanz, E. A. Paschos and U. Sarkar, Phys. Lett. B 345 (1995) 248;
L. Covi, E. Roulet and F. Vissani, Phys. Lett. B 384 (1996) 169.

[11] A. Pilaftsis, Int. J. Mod. Phys. A 14 (1999) 1811.

[12] M. Y. Khlopov and A. D. Linde, Phys. Lett. B 138 (1984) 265;
J. R. Ellis, J. E. Kim and D. V. Nanopoulos, Phys. Lett. B 145 (1984) 181;
J. R. Ellis, D. V. Nanopoulos and S. Sarkar, Nucl. Phys. B 259 (1985) 175.

[13] A. Pilaftsis, Phys. Rev. Lett. 95 (2005) 081602.
[14] A. Pilaftsis and T. E. J. Underwood, Phys. Rev. D 72 (2005) 113001.

[15] S. Y. Khlebnikov and M. E. Shaposhnikov, Nucl. Phys. B 308 (1988) 885.

[16] J. A. Harvey and M. S. Turner, Phys. Rev. D 42 (1990) 3344.

[17] H. Dreiner and G. G. Ross, Nucl. Phys. B 410 (1993) 188.

[18] M. Laine and M. E. Shaposhnikov, Phys. Rev. D 61 (2000) 117302.

[19] C. Aalseth et al., “Neutrinoless double beta decay and direct searches for neutrino mass,” hep-ph/0412300.

[20] See proposal by MEG collaboration at http://meg.web.psi.ch/docs/index.html.

[21] Y. Kuno, Nucl. Phys. Proc. Suppl. 149 (2005) 376.

[22] R. Gonzalez Felipe, F. R. Joaquim and B. M. Nobre, Phys. Rev. D 70 (2004) 085009; K. Turzynski, Phys. Lett. B 589 (2004) 135; G. C. Branco, R. Gonzalez Felipe, F. R. Joaquim and B. M. Nobre, Phys. Lett. B 633 (2006) 336; G. C. Branco, A. J. Buras, S. Jager, S. Uhlig and A. Weiler, JHEP 0709 (2007) 004.

[23] R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Nucl. Phys. B 575 (2000) 61; E. Nardi, Y. Nir, J. Racker and E. Roulet, JHEP 0601, 068 (2006); A. Abada, S. Davidson, F. X. Josse-Michaux, M. Losada and A. Riotto, JCAP 0604 (2006) 004.

[24] T. Endoh, T. Morozumi and Z. h. Xiong, Prog. Theor. Phys. 111 (2004) 123; O. Vives, Phys. Rev. D 73 (2006) 073006.

[25] P. H. Chankowski and Z. Pluciennik, Phys. Lett. B 316 (1993) 312; K. S. Babu, C. N. Leung and J. T. Pantaleone, Phys. Lett. B 319 (1993) 191; S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Phys. Lett. B 519 (2001) 238; S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, JHEP 0503 (2005) 024.

[26] A. Pilaftsis, Z. Phys. C 55 (1992) 275.

[27] For a recent analysis, see, M. Maltoni, T. Schwetz, M. A. Tortola and J. W. Valle, New J. Phys. 6 (2004) 122.
[28] M. C. Gonzalez-Garcia, M. Maltoni and J. Salvado, JHEP 1004 (2010) 056.

[29] M. Doi, T. Kotani and E. Takasugi, Prog. Theor. Phys. Suppl. 83 (1985) 1.

[30] For example, see the textbook by K. Grotz and H.V. Klapdor, “The Weak Interaction in Nuclear, Particle und Astrophysics,” (Adam Hilger, Bristol, 1989).

[31] H. V. Klapdor-Kleingrothaus, “Sixty Years of Double Beta Decay,” (World Scientific, Singapore, 2001);
H. V. Klapdor-Kleingrothaus, A. Dietz, H. L. Harney, I. V. Krivosheina, Mod. Phys. Lett. A 16 (2001) 2409;
H. V. Klapdor-Kleingrothaus, A. Dietz and I. V. Krivosheina, Part. Nucl. Lett. 110 (2002) 57;
Foundations of Physics 32 (2002) 1181.

[32] B. Pontecorvo, Sov. Phys. JETP 7, 172-173 (1958);
Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870.

[33] H. V. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina and O. Chkvorets, Nucl. Instrum. Meth. A522 (2004) 371.

[34] T. P. Cheng and L. F. Li, Phys. Rev. Lett. 45 (1980) 1908.

[35] A. Ilakovac and A. Pilaftsis, Nucl. Phys. B 437 (1995) 491.

[36] K. Nakamura et al. (Particle Data Group), J. Phys. G 37 (2010) 075021.

[37] G. Feinberg and S. Weinberg, Phys. Rev. Lett. 3 (1959) 111; 527 (Erratum);
W. J. Marciano and A. I. Sanda, Phys. Rev. Lett. 38 (1977) 1512;
O. Shanker, Phys. Rev. D 20 (1979) 1608;
J. Bernabéu, E. Nardi and D. Tommasini, Nucl. Phys. B 409 (1993) 69.

[38] For reviews, see, J. D. Vergados, Phys. Rep. 133 (1986) 1;
T. S. Kosmas, G. K. Leontaris and J. D. Vergados, Prog. Part. Nucl. Phys. 33 (1994) 397.

[39] A. Ilakovac and A. Pilaftsis, Phys. Rev. D 80 (2009) 091902.

[40] J. C. Sens, Phys. Rev. 113 (1959) 679;
K. W. Ford and J. G. Wills, Nucl. Phys. 35 (1962) 295;
J. Bernabeu, Nuovo Cim. A4, 715-730 (1971);
H. C. Chiang, E. Oset, T. S. Kosmas, A. Faessler and J. D. Vergados, Nucl. Phys. A 559 (1993) 526.

[41] T. Suzuki, D. F. Measday and J. P. Roalsvig, Phys. Rev. C 35 (1987) 2212.

[42] For instance, see, B. Frois and C. N. Papanicolas, Ann. Rev. Nucl. Sci. 37 (1987) 133, and references therein.

[43] C. Dohmen et al. (SINDRUM II Collaboration), Phys. Lett. B 317 (1993) 631.

[44] A. Kurup, In the Proceedings of 1st International Particle Accelerator Conference: IPAC’10, Kyoto, Japan, 23-28 May 2010, pp WEPE055.

[45] D. Glenzinski, AIP Conf. Proc. 1222 (2010) 383.

[46] A. Pilaftsis, Phys. Rev. D 78 (2008) 013008.

[47] A. Pilaftsis, Nucl. Phys. B 504 (1997) 61.

[48] M. Flanz, E. A. Paschos, U. Sarkar and J. Weiss, Phys. Lett. B 389 (1996) 693.

[49] W. Buchmüller and M. Plüümacher, Phys. Lett. B 431 (1998) 354.

[50] A. Anisimov, A. Broncano and M. Plüümacher, Nucl. Phys. B 737 (2006) 176.

[51] S. Blanchet, T. Hambye and F. X. Josse-Michaux, JHEP 1004 (2010) 023.

[52] S. Blanchet, P. S. B. Dev and R. N. Mohapatra, arXiv:1010.1471 [hep-ph].

[53] R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D 34 (1986) 1642; S. Nandi and U. Sarkar, Phys. Rev. Lett. 56 (1986) 564.

[54] D. V. Nanopoulos and S. Weinberg, Phys. Rev. D 20 (1979) 2484.

[55] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Verlag Harri Deutsch, Frankfurt, 1984).

[56] F. F. Deppisch, Diploma Thesis, University of Würzburg, 2000, available from http://theorie.physik.uni-wuerzburg.de/wehner/publications/Dipl/deppisch.ps.gz.

[57] E. W. Kolb and S. Wolfram, Nucl. Phys. B 172 (1980) 224 [Erratum-ibid. B 195 (1982) 542].
[58] G. F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Nucl. Phys. B 685 (2004) 89;
V. Cirigliano, A. De Simone, G. Isidori, I. Masina and A. Riotto, JCAP 0801 (2008) 004;
M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Phys. Rev. D 81 (2010) 085027;
M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Nucl. Phys. B 838 (2010) 1.

[59] B. Garbrecht, C. Pallis and A. Pilaftsis, JHEP 0612 (2006) 038.

[60] J. R. Ellis, M. Raidal and T. Yanagida, Phys. Lett. B 546 (2002) 228;
Y. Grossman, T. Kashti, Y. Nir and E. Roulet, Phys. Rev. Lett. 91 (2003) 251801;
G. D’Ambrosio, G. F. Giudice and M. Raidal, Phys. Lett. B 575 (2003) 75;
T. Hambye, J. March-Russell and S. M. West, JHEP 0407 (2004) 070;
E. J. Chun, Phys. Rev. D 69 (2004) 117303;
K. S. Babu, A. G. Bachri and Z. Tavartkiladze, Int. J. Mod. Phys. A 23 (2008) 1679;
C. S. Fong and M. C. Gonzalez-Garcia, JHEP 0806 (2008) 076;
C. S. Fong, M. C. Gonzalez-Garcia, E. Nardi and J. Racker, arXiv:1009.0003 [hep-ph].

[61] F. F. Deppisch and A. Pilaftsis, JHEP 0810 (2008) 080;
D. G. Cerdeno, C. Munoz and O. Seto, Phys. Rev. D 79 (2009) 023510.

[62] R. Foot, A. Kobakhidze, K. L. McDonald and R. R. Volkas, Phys. Rev. D 76 (2007) 075014;
K. A. Meissner and H. Nicolai, Eur. Phys. J. C 57 (2008) 493.

[63] L. Alexander-Nunneley and A. Pilaftsis, JHEP 1009 (2010) 021.

[64] V. Silveira and A. Zee, Phys. Lett. B 161 (1985) 136;
J. McDonald, Phys. Rev. D 50 (1994) 3637.

[65] A. Datta, M. Guchait and A. Pilaftsis, Phys. Rev. D 50 (1994) 3195;
F. del Aguila, J. A. Aguilar-Saaavedra and R. Pittau, JHEP 0710 (2007) 047;
S. Bray, J. S. Lee and A. Pilaftsis, Nucl. Phys. B 786 (2007) 95;
J. Kersten and A. Y. Smirnov, Phys. Rev. D 76 (2007) 073005;
A. Atre, T. Han, S. Pascoli and B. Zhang, JHEP 0905 (2009) 030.

[66] F. del Aguila and J. A. Aguilar-Saaavedra, Nucl. Phys. B 813 (2009) 22.