A 5-ENGEL ASSOCIATIVE ALGEBRA WHOSE GROUP OF UNITS IS NOT 5-ENGEL

GALINA DERYABINA AND ALEXEI KRASILNIKOV

Abstract. Let R be an associative ring with unity and let $[R]$ and $U(R)$ denote the associated Lie ring (with $[a,b] = ab - ba$) and the group of units of R, respectively. In 1983 Gupta and Levin proved that if $[R]$ is a nilpotent Lie ring of class c then $U(R)$ is a nilpotent group of class at most c. The aim of the present note is to show that, in general, a similar statement does not hold if $[R]$ is n-Engel. We construct an algebra R over a field of characteristic $\neq 2,3$ such that the Lie algebra $[R]$ is 5-Engel but the group $U(R)$ is not.

1. Introduction

Let R be an associative ring with unity and let $[R]$ and $U(R)$ denote the associated Lie ring (with $[a,b] = ab - ba$) and the group of units of R, respectively. It is known that if $[R]$ is a nilpotent Lie ring of class c then $U(R)$ is a nilpotent group of class at most c (Gupta and Levin [7]). Also, if $[R]$ is metabelian then $U(R)$ is metabelian as well (Krasilnikov [9] and Sharma and Srivastava [17]).

If R is an associative ring such that $[R]$ is centre-by-metabelian then $U(R)$, in general, is not centre-by-metabelian. For instance, if F is an infinite field of characteristic 2 and $R = M_2(F)$ is the algebra of all 2×2 matrices over F then it is well-known that $[R]$ is centre-by-metabelian but $U(R)$ does not satisfy any non-trivial identity; in particular, $U(R)$ is not centre-by-metabelian.

However, suppose that R is a unital associative algebra over a field of characteristic 0 generated (as a unital algebra) by its nilpotent elements. Then if $[R]$ is centre-by-metabelian then $U(R)$ is also centre-by-metabelian (Krasilnikov and Riley [11]). Moreover, for such an algebra R, if $[R]$ satisfies an arbitrary multilinear Lie commutator identity then $U(R)$ satisfies the corresponding group commutator identity (see [11] for precise definitions); for example, if $[R]$ is solvable of length n then $U(R)$ is also solvable of length at most n.

It is natural to ask whether a similar result holds for Lie commutator identities that are not multilinear; in particular, whether it holds for the Engel identity. We show that this is, in general, not the case.

More precisely, let $[x,y] = [x,(1)y] = xy - yx$ and let $[x,(k+1)y] = [[[x,(k)y],y],y]$ for $k \geq 1$. Recall that a Lie ring L is n-Engel if $[u,(n)v] = 0$ for all
for all \(u, v \in L \). Similarly, a group \(G \) is \(n \)-Engel if \((u,(n) v) = 1 \) for all \(u, v \in G \), where \((x, y) = (x,1) y = x^{-1} y^{-1} xy \) and \((x, (k+1) y) = ((x, k) y, y) \) for \(k \geq 1 \). We are concerned with the following question.

Question. Let \(F \) be a field of characteristic 0 and let \(R \) be a unital associative \(F \)-algebra. Suppose that the Lie algebra \([R]\) is \(n \)-Engel. Is the group \(U(R) \) also \(n \)-Engel?

If \(n = 2 \) then the answer to this question is “yes”. Indeed, it is well-known (see, for instance, [18, Theorem 3.1.1]) that if \([R]\) is 2-Engel and \(\text{char} F \neq 3 \) then \([R]\) is nilpotent of class 2. Hence, by [7], \(U(R) \) is nilpotent of class at most 2 and, therefore, is 2-Engel. If \(n = 3 \) and the algebra \(R \) is generated (as a unital algebra) by its nilpotent elements then the answer is “yes” as well; this can be deduced from the results of [4] and [5] (see also [1]).

However, in general the answer to the question above is “no”. Our result is as follows.

Theorem 1.1. Let \(F \) be a field of characteristic \(\neq 2, 3 \). Then there is a unital associative \(F \)-algebra \(R \) such that \([R]\) is a 5-Engel Lie algebra but \(U(R) \) is not a 5-Engel group. This algebra \(R \) is generated (as a unital \(F \)-algebra) by 2 nilpotent elements.

Note that if \(R \) is an associative unital ring and \([R]\) is \(n \)-Engel then \(U(R) \) is \(m \)-Engel for some \(m = m(n) \) (Riley and Wilson [16] and independently Amberg and Sysak [1]). If \(R \) is an algebra over a field of characteristic 0 then the existence of such \(m = m(n) \) follows also from the results of Zelmanov [19] and Gupta and Levin [7]. One can check that in our example below the group \(U(R) \) is 6-Engel (and nilpotent of class 7).

We obtain Theorem 1.1 as a corollary of the result below about the adjoint groups of associative algebras.

Let \(R \) be an associative ring with or without unity. It can be easily checked that \(R \) is a monoid with respect to adjoint multiplication defined by \(u \circ v = u + v + uv \) \((u, v \in R)\). The group of units of this monoid is called the adjoint group \(R^o \) of \(R \). It is well-known that if \(R \) is nilpotent, that is, if \(R^n = \{0\} \) for some positive integer \(n \), then \(R^o = R \). On the other hand, if \(R \) is a ring with unity 1 then \(R^o \) is isomorphic to the group of units \(U(R) \) (the mapping \(R^o \to R \) such that \(a \to 1 + a \) is an isomorphism of \(R^o \) onto \(U(R) \)).

Note that one can easily deduce from the results of [7, 9, 17] that, for an associative ring \(R \), if the Lie ring \([R]\) is nilpotent of class \(c \) or metabelian then the adjoint group \(R^o \) is also nilpotent of class at most \(c \) or metabelian, respectively. Furthermore, if \(R^o = R \) then the converse also holds: if \(R^o \) is nilpotent of class \(c \) then \([R]\) is nilpotent of class \(c \) (Du [6]) and if \(R^o \) is metabelian then \([R]\) is metabelian (Amberg and Sysak [3]).

Let \(F \) be a field and let \(A \) be the free associative \(F \)-algebra without 1 on free generators \(x, y \). Let \(m(x, y), n(x, y) \in A \) be monic monomials
in x,y. If $n(x,y) = m_1(x,y)m(x,y)m_2(x,y)$ for some monic monomials $m_1(x,y), m_2(x,y) \in A \cup \{1\}$ we say that $m(x,y)$ divides $n(x,y)$ and $n(x,y)$ is a multiple of $m(x,y)$.

Let I be the ideal in A generated by the following elements:

i) all monomials of degree 8;

ii) all monomials of degree greater than 2 in x;

iii) all monic monomials of degree 7 except yxy^3xy and y^2xyxy^2;

iv) all monic monomials of degree less than 7 which do not divide the monomials yxy^3xy and y^2xyxy^2;

v) the polynomial $2xy^3xy - 5yxyxy^2 - 2yxy^3x + 5y^2xyxy$;

vi) the polynomial $2yxy^3xy - 5y^2xyxy^2$.

Let $B = A/I$. It can be easily seen that $B^8 = 0$. Thus, the associative algebra B is nilpotent and, therefore, $B^6 = B$.

Theorem 1.2. Let F be a field of characteristic $\neq 2,3$ and let $B = A/I$. Then $[B]$ is a 5-Engel Lie algebra but the adjoint group B^0 is not 5-Engel.

To deduce Theorem 1.1 from Theorem 1.2 we embed a non-unital F-algebra B into its unital hull. Let $B_1 = F \oplus B$ be a direct sum of F-vector spaces F and B. Then B_1 has a natural associative algebra structure in which the elements of F act on B by scalar multiplication. Further, the element 1 of F is unity for B_1 and the set $1 + B$ forms a group under multiplication isomorphic to the adjoint group B^0 (the mapping $B^0 \to B_1$ such that $u \to 1 + u$ is an isomorphism of B^0 onto $1 + B$).

It can be easily checked that, since $[B]$ is 5-Engel, so is the Lie ring $[B_1]$. On the other hand, since B^0 is not 5-Engel, so are the subgroup $(1 + B) \simeq B^0$ of $U(B_1)$ and the group $U(B_1)$. Thus, we have

Corollary 1.3. Let F be a field of characteristic $\neq 2,3$ and let B_1 be the unital hull of B. Then the Lie algebra $[B_1]$ is 5-Engel but the group $U(B_1)$ is not 5-Engel.

Theorem 1.1 follows immediately from Corollary 1.3 (with $R = B_1$).

Recall that if L is a nilpotent Lie algebra over a field of characteristic 0 then L is a group with the multiplication $*$ defined by the Baker-Campbell-Hausdorff formula: $x * y = \log(e^x e^y) = x + y + \frac{1}{2}[x,y] + \ldots$ (for details see, for example, [8, §9.2]). We denote this group by L^*. If L^* is an n-Engel group for some $n \geq 1$ then L is an n-Engel Lie algebra; this is well-known and can be deduced, for instance, from [8 Lemma 10.12 (d)]). However, the converse statement is false.

Indeed, if B is a nilpotent associative algebra over a field of characteristic 0 then it is well-known that $[B]^* \simeq B^0$ (see, for instance, [11]). Thus, by Theorem 1.2 we have

Corollary 1.4. Let F be a field of characteristic 0 and let $B = A/I$ be the associative F-algebra defined above. Let $L = [B]$. Then L is a 5-Engel Lie algebra such that the group L^* is not 5-Engel.
Remarks. 1. Theorems [11] [12] Corollary [1.3] and their proofs remain valid for algebras over a unital associative and commutative ring F such that $6 \neq 0$ in F.

2. One can check that if R is a nilpotent associative algebra over an infinite field and the group R° is n-Engel then the Lie algebra $[R]$ is also n-Engel.

3. For an associative ring R, the Lie ring $[R]$ is nilpotent of class c if and only if the adjoint semigroup (R, \circ) is nilpotent of class c in the sense of Mal’cev [12] or Neumann-Taylor [13]. The “only if” part of this statement has been proved independently by Krasilnikov [10] and Riley and Tasic [15] and the “if” part by Amberg and Sysak [2]. Note that if a group G, viewed as a semigroup, is Mal’cev or Neumann-Taylor nilpotent of class c then G is a nilpotent group of class c in the usual sense [12] [13].

In [14] Riley posed the following problem:

Given any positive integer n, does there exist a semigroup variety P_n with the property that, for every associative ring R, the Lie ring $[R]$ is n-Engel if and only if the adjoint semigroup (R, \circ) lies in P_n?

This problem is not yet solved. Theorem 1.2 shows that, if such a variety of semigroups P_n exists, the groups that belong to P_n are not necessarily n-Engel.

2. Proof of Theorem 1.2

Let I_0 be the two-sided ideal in A generated by the polynomials i)–iv) above. Let $C = A/I_0$. It is clear that $C = \bigoplus_{k=7}^{k=7} C(k)$ where $C(k)$ is the linear span of the monomials of degree k in $x + I_0$, $y + I_0$.

It follows easily from the item iv) that

$$x^2, xy^2 x, y^4, y^2 xy^3, x y y x^2, y^3 xy x \in I_0.$$

On the other hand, it can be easily checked that all monic monomials in x, y satisfying iv) are multiples of the monomials above. Note that every monomial in x, y of degree 1 in x and of degree 5 or 6 in y belongs to I_0 because such a monomial is a multiple of either y^4 or $y^2 xy^2$ and the latter monomials belong to I_0. It is straightforward to check that an F-basis of $C(6)$ is formed by the images of

$$xy^3 xy, y xy x^2, x y x^2, x^2 xy y$$

and an F-basis of $C(7)$ is formed by the images of

$$y xy^3 x y, y^2 xy x^2.$$

By the definition of I, I/I_0 is the ideal of C generated by the images of the polynomials

$$h_1 = 2 x y^3 x y - 5 y x x y y^2 - 2 y x y x^3 x + 5 y^2 x y x y$$

and

$$h_2 = 2 x y x^3 x y - 5 y^2 x y x y^2.$$
Note that \(xh_1 \equiv h_1 x \equiv 0 \pmod{I_0},\) \(yh_1 \equiv -h_1 y \equiv h_2 \pmod{I_0}\) and \(xh_2 \equiv h_2 x \equiv yh_2 \equiv y2y \equiv 0 \pmod{I_0}\). Hence, \(h_1 + I_0\) and \(h_2 + I_0\) form an \(F\)-basis of the ideal \(I/I_0\). In particular, \(C(7) \cap I/I_0\) is a one-dimensional vector subspace in \(C(7)\) generated by the image of \(h_2\) and \(C(7)/(C(7) \cap I/I_0)\) is a one-dimensional vector space generated by the image of \(y^2xyxy^2\).

Let \(a = x + I, b = y + I\). Then, by (1), we have

\[
a^2 = ab+b^2 = b^2ab = abab = ba = 0.
\]

It is clear that \(B = \bigoplus_{k=1}^{7} B(k)\) where \(B(k)\) is the linear span of monomials of degree \(k\) in \(a, b\). Note that \(B(7) \simeq C(7)/(C(7) \cap I/I_0)\) is a one-dimensional vector subspace in \(B\) generated by \(y^2abab^2\).

To prove that \([B]\) is 5-Engel it suffices to check that \([u, (5)v] = 0\) for all \(u, v \in B\). Let

\[
u = \alpha_1a + \beta_1b + \gamma_1ab + \delta_1 ba + \mu_1 b^2 + u', \quad v = \alpha_2a + \beta_2b + \gamma_2 ab + \delta_2 ba + \mu_2 b^2 + v',
\]

where \(u'\) and \(v'\) are linear combinations of monomials in \(a, b\) of degree at least 3. Then it is straightforward to check that

\[
[u, (5)v] = \alpha_1[a_{(5)}v] + \beta_1[b_{(5)}v] + \gamma_1[ab_{(5)}v] + \delta_1[ba_{(5)}v] + \mu_1[b^2_{(5)}v]
= \alpha_1\beta_2 f_0 + \alpha_1\alpha_2\beta_2 f_1 + \alpha_1\beta_1^3 f_2 + \alpha_2\beta_3 f_3 + \alpha_1\beta_2 \delta_2 f_4 + \alpha_1\alpha_2 \beta_2^2 \mu_2 f_5
+ \beta_1\alpha_2 \beta_1^2 f_6 + \beta_1\alpha_2 \beta_2 f_7 + \beta_1\beta_2^2 \gamma_2 f_8 + \beta_1\alpha_2 \beta_3 \gamma_2 f_9 + \beta_1\beta_2 \delta_2 f_{10}
+ \beta_1\alpha_2 \beta_2 \delta_2 f_{11} + \beta_1\alpha_2 \beta_2^2 \mu_2 f_{12} + \beta_1\alpha_2 \beta_2 \gamma_2 f_{13} + \gamma_1 \beta_2 f_{14}
+ \gamma_1 \alpha_2 \beta_2^3 f_{15} + \delta_1 \beta_2 f_{16} + \delta_1 \alpha_2 \beta_2 f_{17} + \mu_1 \alpha_2 \beta_2 f_{18} + \mu_1 \alpha_2 \beta_2^3 f_{19},
\]

where \(f_i\) are multihomogeneous polynomials in \(a, b\) of (total) degree 6 or 7.

Recall that every monomial in \(x, y\) of degree 1 in \(x\) and of degree 5 or 6 in \(y\) belongs to \(I_0\). Hence, every monomial in \(a, b\) of degree 1 in \(a\) and of degree 5 or 6 in \(b\) is equal to 0. It follows immediately that \(f_0 = f_4 = f_6 = f_8 = f_{10} = f_{12} = f_{14} = f_{16} = f_{18} = 0\).

It is straightforward to check that

\[
f_1 = [a, b, a, b, b, b] + [a, b, b, a, b, b] + [a, b, b, a, b, a] + [a, b, b, b, b, a],
\]

\[
f_2 = [a, ab, b, b, b, b] + [a, ab, b, b, b] + [a, b, ab, b, b]
+ [a, b, b, ab, b] + [a, b, b, b, ab],
\]

\[
f_3 = [a, ba, b, b, b, b] + [a, ba, b, b, b] + [a, b, ba, b, b]
+ [a, b, b, ba, b] + [a, b, b, b, ba],
\]

\[
f_4 = [a, b^2, a, b, b, b] + [a, b^2, a, b, b] + [a, b^2, b, a, b] + [a, b^2, b, b, a]
+ [a, b, b^2, a, b] + [a, b, b^2, b, a] + [a, b, b^2, b, b] + [a, b, a, b^2, b, b]
+ [a, b, b, b^2, a] + [a, b, b, b^2] + [a, b, a, b, b^2] + [a, b, b, a, b^2],
\]

\[
f_5 = [a, b^2, a, b, b, b] + [a, b^2, a, b, b] + [a, b^2, b, a, b] + [a, b^2, b, b, a]
+ [a, b, b^2, a, b] + [a, b, b^2, b, a] + [a, b, a, b^2, b, b] + [a, b, a, b, b^2, b]
+ [a, b, b, b^2, a] + [a, b, b, b^2] + [a, b, a, b, b^2] + [a, b, b, a, b^2],
\]

\[
f_6 = [a, b^3, a, b, b, b] + [a, b^3, a, b, b] + [a, b^3, b, a, b] + [a, b^3, b, b, a]
+ [a, b, b^3, a, b] + [a, b, b^3, b, a] + [a, b, a, b^3, b, b] + [a, b, a, b, b^3, b]
+ [a, b, b, b^3, a] + [a, b, b, b^3] + [a, b, a, b, b^3] + [a, b, b, a, b^3],
\]
\[f_7 = [b, a, a, b, b, b] + [b, a, b, a, b, b] + [b, a, b, b, a, b] + [b, a, b, b, b, a] = -f_1, \]

\[f_9 = [b, a, ab, b, b, b] + [b, a, b, ab, b, b] + [b, a, b, b, ab, b] + [b, a, b, b, b, ab] + [b, ab, a, b, b, b] + [b, ab, b, a, b, b] + [b, ab, b, b, a, b] + [b, ab, b, b, b, a] \]

\[f_{11} = [b, a, ba, b, b, b] + [b, a, b, ba, b, b] + [b, a, b, b, ba, b] + [b, a, b, b, b, ba] + [b, ba, a, b, b, b] + [b, ba, b, a, b, b] + [b, ba, b, b, a, b] + [b, ba, b, b, b, a] \]

\[f_{13} = [b, a, b^2, a, b, b] + [b, a, b^2, b, a, b] + [b, a, a, a, b^2, b, b] + [b, a, a, b, b^2, b] + [b, a, a, b, a, b^2] + [b, a, a, b, b, a^2] + [b, a, a, b, b, b] + [b, a, b, a, b^2] \]

\[f_{15} = [ab, a, b, b, b, b] + [ab, a, b, b, b, b] + [ab, a, b, b, b, b] + [ab, b, a, b, b, a] + [ab, b, b, a, b, a] + [ab, b, b, b, a, b] + [ab, b, b, b, b, a] \]

\[f_{17} = [ba, a, b, b, b, b] + [ba, a, b, b, b, b] + [ba, a, b, b, b, b] + [ba, b, a, b, b, b] + [ba, b, b, a, b, b] + [ba, b, b, b, a, b] \]

\[f_{19} = [b^2, a, a, b, b, b] + [b^2, a, b, a, b, b] + [b^2, a, b, b, a, b] + [b^2, a, b, b, b, a] \]

To proceed further we need the following lemma which is well-known and can be easily proved by induction.

Lemma 2.1. \[x, (k) y = \sum_{i=0}^{k} (k^i)y^i x y^{k-i} \].

Now we will check that \(f_1 = 0 \). We have

\[[a, b, a] = [ab - ba, a] = aba - ba^2 - a^2 b + aba = 2aba \]

because, by (2), \(a^2 = 0 \). Therefore,

\[[a, b, a, b, b, b] = 2[aba, b, b, b]. \]

By Lemma 2.1,

\[[aba, b, b, b] = abab^3 - 3babab^2 + 3b^2 abab - b^3 aba, \]

where, by (2), \(abab^3 = b^3 aba = 0 \). Hence,

\[[aba, b, b, b] = -3babab^2 + 3b^2 abab \]

and

\[[a, b, a, b, b, b] = -6babab^2 + 6b^2 abab. \]

It is straightforward to check that \([a, b, b, a] = [a, b, a, b] \) so

\[[a, b, a, b, b, b] = [a, b, a, b, b, b]. \]

Further, by Lemma 2.1,

\[[a, b, b, b] = ab^3 - 3bab^2 + 3b^2 ab - b^3 a \]
Therefore,

By (2), \(\text{bab}^2a = b^3a^2 = a^2b^3 = ab^2ab = 0 \), we have

\[[a, b, b, b, a] = 2ab^3a + 3b^2aba + 3abab^2. \]

By (2), \(\text{bab}^3 = b^3aba = 0 \) so

\[[a, b, b, b, a, b] = 2ab^3ab + 3b^2abab + 3abab^3 - 2bab^3a - 3b^3aba - 3babab^2. \]

By Lemma 2.1 and (2),

\[[a, b, b, b, b, a] = ab^4 - 4bab^3 + 6b^2ab^2 - 4b^3ab + b^4a = -4ab^3 - 4b^3ab \]

so, again by (2), we have

\[[a, b, b, b, b, a, b] = -4ab^3a - 4b^3aba + 4abab^3 + 4ab^3ab = -4ab^3a + 4ab^3ab. \]

Thus, by (3), (4), (5) and (6), we have

\[f_1 = -12babab^2 + 12b^2abab + 2ab^3ab + 3b^2abab - 2bab^3a - 3babab^2 - 4bab^3a + 4ab^3ab \]

\[= -15babab^2 + 15b^2abab - 6bab^3a + 6ab^3ab. \]

By the item v) of the definition of the ideal I, \(f_1 = 0 \). Since \(f_7 = -f_1 \), we have \(f_7 = 0 \) as well.

One can check in a similar way using Lemma 2.1 (2) and the item vi) of the definition of the ideal I that \(f_2 = f_3 = f_5 = f_9 = f_{11} = f_{13} = f_{15} = f_{17} = f_{19} = 0 \).

More precisely, one can check using the relations (2) that

\[[b^2, a, b, b, b] = [b^2, a, b, a, b, b] = [b^2, a, b, b, a, b] = [b^2, a, b, b, b, a] = 0. \]

It follows that \(f_{19} = 0 \). Similarly, \(f_5 = f_{13} = 0 \) because \(f_5 \) and \(f_{13} \) are sums of certain commutators and one can check using (2) that all these commutators are equal to 0.

Further, it can be checked using (2) that \(f_2 = f_3 = 0 \) although the commutator summands of \(f_2 \) and \(f_3 \) are not, in general, equal to 0. Finally, one needs the relations (2) as well as the item vi) of the definition of the ideal I to check that \(f_9 = f_{11} = f_{15} = f_{17} = 0 \).

Thus, \([B] \) is a 5-Engel Lie ring, as required.

Now we prove that the group \(B^{0} \) is not 5-Engel. We will check that in \(U(B_1) \)

\[((1 + a), (1 + b)) = 1 + 6b^2abab^2 \ne 1. \]

Hence, the subgroup \(1 + B \) of \(U(B_1) \) is not 5-Engel. Since \(B^{0} \) is isomorphic to \(1 + B \), the group \(B^{0} \) is not 5-Engel as well.

Note that if \(u \in B \) then \(u^8 = 0 \) so \((1 + u)^{-1} = 1 - u + u^2 - \cdots - u^7 \). It is straightforward to check that, for all \(u, v \in B \),

\[((1 + u), (1 + v)) = 1 + [u, v] - u^2v + uvu + v^2u - vuv + w \]
where \(w \) is a linear combination of monomials of degree at least 4 in \(u, v \).

It follows that if \(u = u(a, b) \) is a linear combination of some monomials of degree \(k \geq 2 \) in \(a, b \) and, possibly, some monomials of degree \(> k \) then

\[
(8) \quad ((1 + u), (1 + b)) = 1 + [u, b] + b^2u - bab + w' = 1 + [u, b] - b[u, b] + w'
\]

where \(w' \in B^{k+3} \).

By (7), we have

\[
((1 + a), (1 + b)) = 1 + [a, b] + aba - a^2b + b^2a - bab + w_1
\]

\[
= 1 + [a, b] + aba + b^2a - bab + w_1
\]

where \(w_1 \in B^4 \).

Let \(u_1 = [a, b] + aba + b^2a - bab + w_1 \); then \(((1 + a), (1 + b)) = 1 + u_1 \). By (8), we have

\[
((1 + a), (2) (1 + b)) = ((1 + u_1), (1 + b)) = 1 + [u_1, b] - b[u_1, b] + w'_2
\]

\[
= 1 + [a, b, b] + [(aba + b^2a - bab), b] - b[a, b, b] + w_2
\]

\[
= 1 + [a, b, b] + abab - baba - 2b[a, b, b] + w_2
\]

where \(w'_2, w_2 \in B^5 \).

Similarly, one can check that

\[
((1 + a), (3) (1 + b)) = 1 + [a, b, b, b] + abab^2 - 2babab
\]

\[
+ b^2aba - 3b[a, b, b, b] + w_3
\]

where \(w_3 \in B^6 \),

\[
((1 + a), (4) (1 + b)) = 1 + [a, b, b, b, b] - 3babab^2 + 3b^2abab - 4b[a, b, b, b] + w_4
\]

where \(w_4 \in B^7 \) and

\[
((1 + a), (5) (1 + b)) = 1 + [a, b, b, b, b, b] + 6b^2abab^2 - 5b[a, b, b, b, b, b] + w_5
\]

where \(w_5 = 0 \) because \(w_5 \in B^8 \) and \(B^8 = 0 \) and \([a, b, b, b, b] = 0 \) because the Lie algebra \([B]\) is 5-Engel.

Thus, \((1 + a), (5) (1 + b)) = 1 + 6b^2abab^2\). Since \(B_{(7)} \) is a one-dimensional vector subspace in \(B \) generated by \(b^2abab^2 \), we have \(b^2abab^2 \neq 0 \) and \((1 + a), (5) (1 + b)) \neq 1 \). It follows that \(B^0 \) is not 5-Engel group, as required.

The proof of Theorem 1.2 is completed.

References

[1] B. Amberg and Ya.P. Sysak, Radical rings with Engel conditions, J. Algebra 231 (2000), 364–373.
[2] B. Amberg and Ya. Sysak, Associative rings whose adjoint semigroup is locally nilpotent, Arch. Math. (Basel) 76 (2001), 426–435.
[3] B. Amberg and Ya. Sysak, Associative rings with metabelian adjoint group, J. Algebra 277 (2004), 456–473.
[4] Yu. Billig, D. Riley, V. Tasic, Nonmatrix varieties and nil-generated algebras whose units satisfy a group identity, J. Algebra 190 (1997), 241–252.
A 5-ENGEL ASSOCIATIVE ALGEBRA WHOSE GROUP OF UNITS IS NOT 5-ENGEL

[5] O. Dickenschied, Endlichkeit- und Nilpotenzbedingungen fur radikale Ringe, dissertation, Universität Mainz, 1997.
[6] X. Du, The centers of a radical ring, Canad. Math. Bull. 35 (2) (1992), 174–179.
[7] N.D. Gupta and F. Levin, On the Lie ideals of a ring, J. Algebra 81 (1983), 225–231.
[8] E. I. Khukhro, Automorphisms of finite p-groups, London Math. Soc., Lecture Notes Series 246, Cambridge University Press, 1998.
[9] A.N. Krasil’nikov, On the group of units of a ring whose associated Lie ring is metabelian, Russian Math. Surveys 47 (1992), no. 6, 214–215.
[10] A.N. Krasil’nikov, On the semigroup nilpotency and the Lie nilpotency of associative algebras, Math. Notes 62 (1997), 426–433.
[11] A.N. Krasilnikov and D.M. Riley, The transfer of a commutator identity in a nil-generated algebra, Int. J. Algebra Comput. 12 (2002), 437–443.
[12] A.I. Malcev, Nilpotent semigroups, Ivanov. Gos. Ped. Inst. Uchen. Zap. Fiz.-Mat. Nauki 4 (1953), 107–111 (in Russian).
[13] B.H. Neumann and T. Taylor, Subsemigroups of nilpotent groups, Proc. Roy. Soc. Ser. A 274 (1963), 1–4.
[14] D.M. Riley, Engel varieties of associative rings and the number of Mersenne primes, J. Algebra 261 (2003), 19–30.
[15] D.M. Riley and V. Tasic, Malcev nilpotent algebras, Arch. Math. (Basel) 72 (1999), 22–27.
[16] D.M. Riley and M.C. Wilson, Associative rings satisfying the Engel condition, Proc. Amer. Math. Soc. 127 (1999), 973–976.
[17] R.K. Sharma and J.B. Srivastava, Lie centrally metabelian group rings, J. Algebra 151 (1992), 476–486.
[18] M.R. Vaughan-Lee. The Restricted Burnside Problem, second edition. Oxford University Press (1993).
[19] E.I. Zel’manov. Engel Lie algebras, Dokl. Akad. Nauk SSSR 292 (1987), 265–268.

Department of Computational Mathematics and Mathematical Physics (FS-11), Bauman Moscow State Technical University, 2-nd Baumanskaya Street, 5, 105005 Moscow, Russia

Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília, DF, Brazil

E-mail address: alexei@unb.br