Construction of intimately coupled mesoporous Al₂O₃ nanosphere deposited 2D CdO with boosted charge separation, visible-light photocatalysis and bactericidal applications

B. Janani⁰, S. Sudheer khan⁰,*

⁰Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.

⁰Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.

*Corresponding author
S. Sudheer khan
Email: sudheerkhan@bitsathy.ac.in

*Co-corresponding author
Asad syed
Abstract

Pristine Al₂O₃ and CdO are known to possess poor photocatalytic activity individually. The formation of CdO/Al₂O₃ heterojunction was investigated for the enhancement of photocatalytic performance. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) has been used to determine the crystalline feature and elemental composition of the NCs respectively. Peaks ascribed to Cd-O and O-Al-O was noted in fourier-transform infrared spectroscopy (FTIR) analysis. The NCs exhibits a high surface area (27.23 m²/g) to their contributing particles which was analysed using BET analyser. The band gap energy of CdO/Al₂O₃ NCs was observed to be 2.95 eV which shows a considerable energy shift from its individual particles, CdO (2.73 eV) and Al₂O₃ (3.94 eV). The results displayed that the degradation efficiency of the CdO-Al₂O₃ NCs was enhanced 14 times than pristine Al₂O₃ and 3.5 times than pristine CdO. The MB dye has showed the half life period of 80 min. TOC analysis of degraded product supported high mineralization of the pollutants. The dye degradation was driven by OH radicals and the CdO-Al₂O₃ nanocomposite possessed high reusability which was confirmed by six cycle test. Growth inhibition of E. coli, P. aeruginosa and B. subtilis was attained by exposure to CdO/Al₂O₃ NCs. The CdO-Al₂O₃ NCs can be a viable solution for degradation of organic contaminants effectively under natural sun light as well as an efficient antibacterial agent.

Key words: Photocatalysis; CdO-Al₂O₃; Nanocomposites; Antibacterial activity.
1. Introduction

The growing industrialization and urbanization led to a disposal of diverse range of toxic pollutants to the environment [1]. One among of them is the complex dyestuffs, which are difficult to degrade due to their high chemical stability [2]. The urge for an innovation or an efficient modification has become vital one to sort out this environmental threat. Although the current wastewater treatment is applicable, the recently emerged advanced oxidation process (AOP) is far better as it is cost efficient [3, 4, 5]. The production of hydroxyl radicals upon exposure to the light source is the basic mechanism behind this light driven catalytic process. The fabrication of photocatalyst with the metal oxide semiconductors is quite appreciable as it enhances the oxidation effectively.

Al_2O_3 is an insulator oxide with a wide bandgap range reported in literatures over 3.4 - 9 eV [6-9]. It has taken a lot of attention as it has a high surface area with an orderly arrangement of the nanopore structures and a non-toxic cost effective compound with high thermal stability [10]. This orderly arrangement of nanopores makes it an excellent photocatalyst and its appreciable usage in the drug delivery, biosensors and electronic devices [11]. It has been explored that nanostructure has appreciable optical properties and finds its usage in the optoelectronic devices [12]. The method by which they are synthesized also has an effect over the photocatalytic activity. These nanostructures can be synthesized through sol-gel, thermal treatment and anodization. Among them, the anodization is the refined one to fabricate with reliability [13].

As a n-type semiconductor, CdO has a bandgap of 2.2 – 2.9 eV [14]. It is a cost effective semiconductor with high electrical conductivity as it has shallow donors [15]. These shallow donors are offered by the oxygen vacancies and the cadmium atoms. It has been widely used in
the photocatalytic applications and other electrochemical devices such as the supercapacitors. Though CdO is cheapest with high surface-volume ratio yet it is less preferred due to toxicity. The size and structure of the semiconductors has direct effect over the catalytic efficiency. They can be synthesized through chemical co-precipitation method as it is a reliable cost effective one which brings forth excellent homogeneity [16]. In the present study, CdO-Al₂O₃ photocatalytic activity compared with pristine CdO and Al₂O₃. B. Subtilis, P. aeruginosa, E. coli and S. aureus has been used to evaluate the antibacterial activity of NCs.

2. Materials and methods

2.1. Materials

Staphylococcus aureus (MTCC 3160), *E. coli* (ATCC 14948), *Pseudomonas aeruginosa* (MTCC 1688), *Bacillus subtilis* (ATCC 11774) were procured from MTCC and ATCC. Methylene blue dye (Purity – 99%), Al₂(SO₄)₃, CdSO₄ and CdSO₄ are marketed from Merck (Germany).

2.2. Synthesis of CdO nanoparticles

Chemical co-precipitation was exploited for synthesis of CdO with 0.1 M CdSO₄ as the precursor. The precursor was dissolved in an aqueous solution and was homogenized under heat for a period of 30 min. Then 25 mL of alkaline NH₄OH was added up in a drop wise manner. Then the solution was vigorously heat stirred for 30 min. The obtained precipitate has been centrifuged for 10 min at 10000 rpm. The pellets obtained after centrifugation were dried under hot air oven at 90 °C for 2 h. The obtained CdO nanoparticle was calcinated at 500 °C for 1 h.

2.3. Synthesis of CdO/Al₂O₃ NCs

The synthesis of CdO/Al₂O₃ nanocomposite involves sonication and thermal treatment. The calcinated CdO (0.1 M) was dispersed in H₂O under sonication followed by addition of
$\text{Al}_2(\text{SO}_4)_3$ (0.05M) to the suspension. The mixture was then sonicated for 30 min. The obtained solution was heat stirred for 30 min and 25 ml of NH_4OH was added to the solution alongside. The precipitate collected was centrifuged at 10000 rpm for 10 min which was followed by water and ethanol wash. The collected NCs were calcinated for 1 h at 500 °C. Al_2O_3 was prepared in a similar procedure as that of CdO/Al$_2$O$_3$ without CdO, followed by thermal treatment for 1 h.

2.4. Characterization of nanoparticles

The elaborated details of instrumentations are provided in the supplementary material text S1.

2.5. Photocatalysis experimental arrangement

Photocatalytic efficiency of the NCs has been estimated based on the degradation of MB under visible light irradiation. The synthesized nanocomposite (10 mg) was dispersed in 20 mL of the methylene blue dye (25 mg/L). The obtained solution was placed in dark to attain adsorption/desorption equilibrium. The setup was then shifted under 800 W halogen lamp until the absorbance decrease ceases. The degradation kinetics of the sample was studied for every 20 min. UV-spectrophotometer was used for the determination of MB degradation at 550-750 nm.

The formulae given below was used for the calculation of percentage of degradation,

$$\text{Degradation}(\%) = \frac{A_0 - A_t}{A_0} \times 100$$

(1)

A_0 – absorbance at initial time (t=0).

A_t – absorbance at time t.

2.6. Reusability and scavenging

The scavengers chosen for carrying out the experiment includes 1 mM silver nitrate for oxidizing the electron radicals (e^-), benzoquinone for superoxide anion oxidation (O_2^-), isopropyl alcohol for the hydroxyl radical oxidation (OH) and EDTA for hydrogen radical oxidation ($\text{h}^+\text{).}$ The
same protocol was followed to study photocatalytic effect of NCs under the presence of 1 mL of each scavenger separately. The leftover dye in the sample was quantified by recording the absorbance at 665 nm. The scavenging efficiency was indicated based on the degradation percentage.

The reusability of the particles was checked to determine its efficient stability and practical use aside to the exhibited activity. The activity of NCs was tested in six successive photocatalytic cycles by MB dye degradation. During each cycle, the particles were collected, washed and employed for next set of runs by injecting fresh MB dye solution.

2.7. Antimicrobial activity

The bacterial species listed below were used to evaluate the antimicrobial activity of the NCs: P. aeruginosa, S. aureus, B. subtilis and E. coli. The species were cultured in LB broth for duration of 12-16 h, after which the bacterial cells were obtained upon centrifugation. Different concentrations of CdO/Al₂O₃ (0.1, 1, 10 and 100 mg/L) were used for evaluation of antibacterial activity. Plate count method and dilution method were exploited to determine the viable cells count after 4 h of bacterial-NCs interaction.

3. Results and discussion

3.1. Characterization

3.1.1 HRTEM, SAED and EDAX

HRTEM analysis was performed to understand the structure and morphology of the Al₂O₃ loaded CdO along with the size range (Fig. 1a). The image depicts partially rough crystal structure. It can be observed as the CdO are hexagonal shaped nanoplates on which there is a semi-homologous distribution of Al₂O₃ on the surface. The Al₂O₃ grain appeared to be
nanospherical in shape that looks almost uniform in size and distribution. The deposition of Al₂O₃ as appeared in HRTEM (fig. 1b) at 2 nm scale represents the attachment of highly crystalline Al₂O₃ nanospherical grains on CdO nanoplates. The uneven size of CdO nanoplates that result in porous channels will increase the number of active sites available for the surface reaction [M. Poloju et al., 2020]. This structure with high crystallinity, surface deposition and porous nature helps in both transmission of e⁻ and diffusion of O₂ gas and H₂O to the reaction sites. This benefit the contact between charge carries, O₂ and H₂O and thus enhance the photocatalyst performance by the generation of ROS [X. Xing et al., 2019]. HRTEM image of Al₂O₃ and CdO with lattice fringes is shown in fig. 1b. Further the excellent crystallinity of the material will help in the long-term stability of the photocatalyst. The interplanar distance of 0.19 nm assigned to the (116) plane of Al₂O₃ and 0.23 nm assigned to the (102) plane of cubic CdO. The deposition confirms the interface formation that resulted in CdO/Al₂O₃ heterojunction. SAED analysis was done to determine the crystalline nature of NCs. The SAED indicates the presence of several concetarted diffraction rings. The result indicated the polycrystalline nature of the NCs as shown in Fig. 1a.

Supplementary material fig. S1a represents the SEM image of CdO/Al₂O₃ NCs. The SEM images of CdO and Al₂O₃ was represented in supplementary material fig. S1b and c that represents the porous (dark black spots) morphology of prepared NCs. The EDAX profiles of CdO/Al₂O₃ showed three peaks corresponding to cadmium, aluminium and oxygen.

3.1.2 XRD

XRD was used to clarify the crystal phase of CdO/Al₂O₃ and the XRD patterns of pristine Al₂O₃, CdO and the NCs CdO-Al₂O₃ was represented in Fig. 1d. The XRD patterns of pure CdO fitted well with the crystal structure of hexagonal with space group: P6₃mc (186) with respect to
2θ positions and intensity (JCPDS card no. 01-076-8931). The XRD pattern of CdO with peaks at 2θ value of 29.4, 35.1, 48.9, 52.0, 56.0, 64.4, 67.0, and 74.3° were indexed to (100), (101), (110), (102), (103), (004), (202) and (104) respectively. In the hexagonal CdO structure, there is a close packing crystal structure with respect to P63mc space group, where the anions are located at the six-coordination sites, while the cations fill half of the four-coordinated sites [B. H. Park 2020].

The XRD patterns of pure Al$_2$O$_3$ fitted well with the crystal structure in space group: Pm3m with respect to 2θ positions and intensity (JCPDS card no. 00-011-0661). The presence of Al$_2$O$_3$ was inferred from the peaks spotted at the 2θ value of 22.6, 25.2, 28.8, 37.4, 38.6, 45.9, 52.3, 54.4, 57.9 and 67.4 were indexed to (100), (012), (104), (110), (113), (024), (114), (018), (116) and (214) respectively [19, 20].

On the surface of CdO, the loading of Al$_2$O$_3$ NPs in NCs was supported by peaks corresponding to both CdO and Al$_2$O$_3$. Here, the variation in intensity of the peaks corresponding to pristine counter parts compared with pure CdO and Al$_2$O$_3$ signifies the formation of hetero-connected mixture of samples at varied amount of constituents [B. H. Park 2020]. The interface formed in CdO/Al$_2$O$_3$ is judged to be created between random two particles due to the deposition of nano-Al$_2$O$_3$ spheres on CdO nano-plates. It is expected that there will not be a constant arrangements of atoms in different grains which is consistent with HRTEM and SAED analysis. Therefore this leads to the formation of oxygen defects at the CdO/Al$_2$O$_3$ interface. Several literatures reported that the crystal lattice with formation of oxygen defects pose a beneficial effect on the catalyst performance as it lead to the increased adsorption sites in the material [J.A. Nasir 2018]. The narrow interface formation may help in reducing resistance in charge transfer that could be beneficial in enhancing photocatalyst performance [B. H. Park 2020]. Meanwhile,
the CdO and Al₂O₃ mean crystallite size corresponding to the planes (102) and (116) was determined by applying Scherer’s equation [N. Rani, 2019]. The respective sizes of the specific crystal faces were 125.1 and 14.0 for CdO and Al₂O₃.

3.1.3 FTIR

The various bonds present in the NCs were determined by FTIR analysis based on the vibrational transition of bonds (Fig. 2a). In CdO/Al₂O₃, the peak denoting M-O for Al-O and Cd-O are noted at 421 cm⁻¹ [21]. The peak obtained at 1067 cm⁻¹ and 1406 cm⁻¹ denotes the non-bridging M-O terminal group and O-H bending respectively [22]. In CdO, peak at 1405 cm⁻¹ has indicated O–H bond [22]. Peaks at low wavenumbers were due to M-O bond [21]. Wide peak observed at 3276 cm⁻¹ was ascribed to stretching of OH [23]. In Al₂O₃, Al-O-Al bond was denoted by the bands near 650 and 967 cm⁻¹ and the peak obtained at 500 and 1068 cm⁻¹ were resulted from non-bridging Al-O terminal group [21, 22].

3.1.4 UV-visible-DRS

The optical bandgap of the NCs was determined by DRS analysis and Kubelka-Munk method by the below equation [24]:

\[F(R)\nu^2 = A(\nu - E_g) \]

(2)

where planck’s constant, bandgap, Kubelka-Munk function and the light frequency were denoted as h, E₉, F(R) and \(\nu \) respectively. From Kubelka-Munk plot, the calculated \(E_g \) values of pure CdO, Al₂O₃ NPs and CdO/Al₂O₃ NCs were 2.73, 3.94 and 2.95 eV (Fig. 2b). The synergistic effect facilitates visible-light sensitization compared to pure Al₂O₃. Hence, more amount of energy from natural sunlight will be utilized by the fabricated nanohybrid. The narrow bandgap of pristine CdO makes it visible light absorptive material. Nevertheless, the deposition of Al₂O₃
increases wide-visible range absorption from solar spectrum owing to the significance of presence of structural defects, and variation in energy band composition [M. R Islam, 2021].

3.1.5 Photoluminescence

The electron-hole pair migration in semiconductor nanohybrids was determined by photoluminiscence. The CdO/Al₂O₃ NCs PL spectrum was measured at excitation wavelength of 400 nm in room temperature. PL mainly exhibit two types of band: 1) shorter wavelength corresponds to near band edge emission and 2) longer wavelength, corresponds to trap-state emission. Many literatures such as Davar et al. [23] and Gadallah et al. [24] reported two types of band emission. In beginning, excitation photon at 400 nm gets absorbed. Afterward, the e⁻ gets excited simultaneously from valence band (VB) to conduction band (CB) of CdO. A hole is left in VB of CdO. Hence an exciton was formed. The excited e⁻ moves from CB of CdO to underlying defects level of Al₂O₃ [42]. Here, quenching occurs due to e⁻ transfer instead of e⁻/h⁺ recombination that give rise to a PL photon. This result implied the decrease in PL intensity of NCs than that of their individual precursors (Al₂O₃ and CdO) due to quenching mechanism. The e⁻/h⁺ pair recombination of CdO/Al₂O₃ NCs was prevented by interface formation indicating the presence of oxygen defects. An e⁻ transfer like this is of great interest in the application of photocatalysis. Generally, distance between interfaces governs the increase or decrease in intensity of luminescence. When there is an intimate contact, interfacial e⁻ migration between CdO and Al₂O₃ results decreased PL intensity, known as luminescence quenching. Here the better photocatalytic efficiency corresponds to the enhanced lifetime of charge carriers.

3.1.6 N₂ adsorption/desorption studies

The photocatalytic performance of CdO/Al₂O₃ was critically influenced by the surface area and porosity. N₂ sorption isotherm is depicted in Supplementary material Fig. 2a. At \(P/P_0 < 0.8 \) (low),
the CdO/Al₂O₃ showed type IV adsorption. The overlapping of adsorption and desorption was clearly seen with a relative flat pattern. This denotes adsorption occurring in the micropores. At \(\frac{P}{P_0} > 0.8 \) (high), a small lag loop is noted that may be due to the capillary agglomeration phenomenon [A]. BET analysis was carried out for CdO/Al₂O₃ and the corresponding surface area of the particle was determined to be 27.23 m²/g. The specific surface area of a nanomaterial is greatly related to its size, the smaller the material, the higher is the surface area. The CdO and Al₂O₃ NPs possess the surface area of 19.11 and 21.42 m²/g respectively. The high surface area of NCs provides more active sites. The mean pore volume and mean pore size of CdO/Al₂O₃ were 0.151 cm³/g and 3.2 nm respectively. The pore volume and size of CdO was 0.123 cm³/g and 2.4 nm and for Al₂O₃ were 0.134 cm³/g and 2.7 nm respectively.

3.1.7 X-ray photoelectron spectroscopy and oxygen vacancy investigation

Chemical states in NCs were determined using XPS analysis (Fig. 3). The major components of CdO/Al₂O₃ NCs were observed as Al, O and Cd with no unwanted elements and contaminants. Lattice oxygen vacancy in CdO/Al₂O₃: The deconvoluted peaks of O1s provide two components at 529.9 and 531.1. The band at 529.9 corresponds to M-O oxygen that is the characteristic O²⁻ ions of the surface lattice oxygen in CdO/Al₂O₃ matrix. The typical oxygen vacancy formed in metal oxide NCs was identified by higher energy band at 531.1 eV attributed to the structural oxygen defects [S. Jain 2019]. The presence of the vacancy promotes the adsorption of H₂O and also increases the migration of e⁻ which facilitates charge separation [B. H. Park 2020]. A peak at 66.8 eV was noted in Al2p core level scan ascribed to Al₂O₃ presence [27]. The core level scan of Cd3d spectrum showed two components at 403.8 eV (Cd3d₅/₂) and 410.6 eV (Cd3d₃/₂) [28].

3.1.8 EIS analysis
The charge transfer in NCs was examined by EIS analysis and Nyquist plot (Supplementary material Fig. S2). The Nyquist plot obtained fitted with Randle's equivalent circuit model to represent it in semicircle form that denotes the charge transfer resistance [P.C. Dey 2019]. The small arc radius in NCs indicates smaller the charge transfer resistance and the better migration of charges than CdO and Al₂O₃. The results suggest us that the NCs have effective e-/h+ migrations.

3.2. Photocatalytic activity

3.2.1 Dye degradation

During photocatalysis, the MB dye degradation in presence of CdO-Al₂O₃ under visible light irradiation was recorded for 120 min. Fig. 4a depicts the MB spectra that possess the absorption maximum at 665 nm [29, 30, 31]. The chromogenic group in MB dye resulted in the absorption at 665nm in the visible light spectrum. The reducing absorbance value of λₘₐₓ directly corresponds to the decolourization of cationic MB dye indicating the degradation of MB chromophore.

3.2.2 Half-life calculation

The intersection of graph plotted between the time and Cₜ/C₀ and 1-Cₜ/C₀ was used to evaluate the half life of MB dye and it is represented in Fig. 4b. The t_{1/2} of MB was found to be 80 min in the presence of NCs.

3.2.3 Synergetic effect

The degradation efficiency of CdO/Al₂O₃ was compared with pristine CdO and Al₂O₃ to ensure the enhanced synergetic effect of fabricated CdO/Al₂O₃. In fig. 5a, the combined effect of NCs as CdO-Al₂O₃ was observed; this indicated the better efficiency of NCs than individual CdO and Al₂O₃ in dye degradation. The kinetic rate constant of CdO/Al₂O₃ was observed to be 14 ×
which was 3.5 times higher than CdO (4×10^{-3}) and 14 times higher than the pristine Al$_2$O$_3$ (1×10^{-3}) (Fig 5b). The degradation percentage of CdO-Al$_2$O$_3$, CdO and Al$_2$O$_3$ are represented in Fig. 5c, obtained after 220 min of visible light irradiation. The degradation percentage of CdO-Al$_2$O$_3$ was 97.3%, and it was higher compared to CdO (64%) and Al$_2$O$_3$ (27%) which might be the result of increased photocatalytic activity of NCs by enhanced light absorption. The heterojunction formation results in reduced recombination of photogenerated e^-/h^+ pair [33].

Further, total organic carbon (TOC) analyzer was used to measure TOC of the treated solution to provide some mineralization results as indicated in following equation:

$$\text{TOC removal (\%)} = 100 \times \left(1 - \frac{[\text{TOC}]_t}{[\text{TOC}]_0}\right)$$

where $[\text{TOC}]_0$ and $[\text{TOC}]_t$ are the TOC values of the solution in mg L$^{-1}$ at time 0 and time t, respectively. Similar to decolourization (97.3%) in 160 min, high TOC removal (87%) was attained for CdO/ZnFe$_2$O$_4$ NCs. MB molecules come in contact with ·OH and oxidize incompletely that may lead to the production of several intermediates. The high TOC removal indicates the high level of mineralization of MB under visible light irradiation.

3.2.4 Influence of NCs dosage

The effect of NCs in dye degradation was evaluated by using varying amount of photocatalyst from 5 to 20 mg. It has been observed that the increase in NCs amount enhanced the degradation efficiency which is represented in the supplementary material in fig.S3a. The increasing concentrations of the NCs quantity correspond to the better degradation of the MB dye. The active sites in the NCs played a vital role in degradation of MB dye. More active sites were observed when the concentration of MB (25 mg/L) was kept constant with an increasing NCs quantity. Here, the path length remained constant whereas the number of photons reaching to the
NCs surface increased as the colour intensity of the MB is same. This paved the way for more generation of free radicals.

3.2.5 Kinetics study

Several degradation processes are understood based on the degradation kinetics using Langmuir and Freundlich isotherm. Langmuir isotherm is the best method to understand active sites with same energy whereas the available sites with unequal energies and heterogeneity are indicated by Freundlich isotherm [34]. At weak absorbance and lower concentration of MB, Langmuir Hinshelwood equation (L-H) is exploited for evaluating the reaction kinetic [35]. The simplified L-H given as follows:

\[R = \frac{dc}{dt} = -kC \]

(3)

The above equation is integrated to:

\[\ln(C) = -kt + \ln(C_0) \]

(4)

where k and C_0 denotes the first order kinetics reaction constant and the initial concentration of MB respectively. The graph plotted between \(\ln \frac{C_t}{C_0} \) and time (0 to 220 min) was used to evaluate first order kinetics constant for varied NCs quantity [36]. As per the literatures, experimental data with high regression coefficients \(R^2 = 0.923 \) to 0.962) for varied NCs concentration best suits for Langmuir isotherm model [37, 38]. MB molecules have an equal affinity on the active sites of NCs, hence at the time of absorption, MB could provide a monolayer coverage on surface of NCs. The k value was found to be \(18 \times 10^{-3} \), \(17 \times 10^{-3} \), \(14 \times 10^{-3} \) and \(9 \times 10^{-3} \) for varying quantity of NCs as 20, 15, 10 and 5 mg respectively (Supplementary material Fig. S3b). The rate constant of MB in the absence of CdO/Al₂O₃ has been obtained as \(0.9 \times 10^{-3} \) under irradiation of visible light, which proves that the dye degradation was carried by the action of NCs indeed.
3.2.6 Stability and reusability

In dye degradation, the particle stability is a critical factor as the photocatalytic activity. The similar protocol is followed on subsequent repeated cycles for degradation. The degradation percentage of MB was calculated on each cycle (fig 6a). The degradation percentage of MB for the 1st run was observed to be 97.3%, which was sustained with a negligible difference even after the 6th run (96.6%), indicating the high stability and reusing capacity of CdO-Al2O3. In addition, the structural stability of the photocatalyst was monitored by performing XRD, TEM and XPS analysis of recovered NCs. The XPS showed negligible change in the pattern and intensity that ensured that the particles were free from photo-corrosion. Stability was further confirmed by XRD analysis of the recycled NCs irradiated under light after photocatalysis. The negligible changes in peak indicate the photostability and non-corrosive nature of particles (Supplementary figure S4a). Further the TEM analysis (Supplementary figure S4b) verified that there was no change in morphology of NCs.

3.3 Possible mechanism

3.3.1 Scavengers study

The reaction mechanism of the dye degradation was evaluated by scrutinizing the role of each reactive species. The available free electrons were quenched by the scavengers and thus declining the photocatalytic activity. Higher reduction in the degradation activity corresponded to the vital role of a particular radical. In this report, EDTA, AgNO3, isopropyl alcohol, and p-benzoquinone were exploited to quench the h+, e−, OH− and O2− respectively. In fig. 6b reduction in degradation has been observed in the order of isopropyl alcohol > EDTA > AgNO3 > p-benzoquinone. It indicates the ·OH as a major contributor followed by h+ and e−.

3.3.2 CdO catalyst performance
Due to the narrow bandgap of CdO (2.73 eV), it is active in visible region (Fig. 7 Scheme 1) [39]. The photoinduced e\(^-\) excited from the Valence band (VB) of CdO to the conduction band (CB) under visible light irradiation. Nevertheless, as a single system photocatalyst, the photoinduced e\(^-\)/h\(^+\) pair recombines faster. This results in decreased lifetime of charge carriers. This makes fewer e\(^-\)/h\(^+\) pairs available for the photo-degradation of dye. The h\(^+\) react with water to generate free radical (OH\(^-\)). The MB dye is attacked and oxidized by generated radicals with the release of H\(_2\)O and CO\(_2\).

3.3.3 Al\(_2\)O\(_3\) catalyst performance

Al\(_2\)O\(_3\) possess relatively large bandgap (3.94 eV) that makes it active in UV region [40]. The Under visible-light irradiation, there is no photo-excitation of e\(^-\) in Al\(_2\)O\(_3\). It resulted in reduced photocatalytic performance compared to CdO under visible light (Fig. 7 Scheme 2).

3.3.4 Photocatalytic activity of CdO/Al\(_2\)O\(_3\) NCs

The schematic representation was photocatalysis mechanism is represented in (Fig. 7 Scheme 3). The bandgap of 2.95 eV facilitates visible light photocatalysis with enhanced utilization of energy [41]. The e\(^-\) jumps from (VB) valance band to the (CB) conduction band of CdO under visible light irradiation, which leaves behind an h\(^+\) in VB of CdO. Although Al\(_2\)O\(_3\) CB potential is higher, the photo-excited e\(^-\) from CdO tends to migrate to low lying Al\(_2\)O\(_3\) defect levels. Owing to its porous nature, the Al\(_2\)O\(_3\) act as electron sink as it contains more number of defect sites [42]. This aids e\(^-\)/h\(^+\) pair separation [8]. The role of Al\(_2\)O\(_3\) is to provide support and not used to facilitate activity in visible region. The position of CB in Al\(_2\)O\(_3\) does not be able to participate in charge transfer. Therefore, Al\(_2\)O\(_3\) alone does not give any activity. On contrary, CdO with a small bandgap is sensitive in the visible region. Al\(_2\)O\(_3\) was selected as support due to its low cost, non-toxic and stable nature [43]. Further, electric field induced between n-type CdO and p-type
Al₂O₃ heterojunction, the photo-generated e⁻/h⁺ separations are made quite comfortable. This interfacial charge transfer increases the life time of e⁻/h⁺. Hence, photocatalytic activity is enhanced for NCs. The enriched h⁺ accumulation on VB of CdO reacts with available water to form radicals. The formed OH⁻ radicals subsequently degrade the dye molecules by releasing CO₂ and H₂O [44].

3.4 Anti-bacterial activity

In Fig. 8a, the role of NCs against S. aureus, B. subtilis, P. aeruginosa and E. coli as an antibacterial agent has been shown. Varying NPs concentration (0.1 to 100 mg/L) has been studied for toxicity. It has been observed that the toxicity increased in accordance with the NPs concentration. As compared to S. aureus, P. aeruginosa and B. subtilis, the E. coli has been observed to be more sensitive. After NCs interaction, P. aeruginosa, S. aureus, B. subtilis and E. coli growth was inhibited to 71, 55, 46 and 87% for 10 mg/L and all species showed 100% growth inhibition for 100 mg/L NCs concentration. The toxicity of individual particle (CdO and Al₂O₃) exhibited the same tendency but with lower toxicity in comparison with NCs. (Fig 8b and c) This in turn indicated the higher ROS generation in NCs. When subjected to 100 mg/L of nanoparticle, CdO toxicity upon P. aeruginosa, S. aureus, B. subtilis and E. coli were observed as 73, 46, 35 and 84% respectively and for Al₂O₃ it was 49, 28, 23 and 67% respectively. As gram negative bacteria with a thin peptidoglycan wall, E. coli showed enhanced penetration of NCs leading to its increased toxicity [46]. The nano-sized particles led to generation of more amounts of ROS species. ROS interaction leads to damage in cellular proteins that induce apoptosis. When NPs incorporate cytoplasm, they can induce plasma membrane damage alters cell permeability. Further the NPs penetrate inside the nucleus which may lead to DNA damages via point mutations. This results in arrested cell division. Therefore the growth is inhibited. Also,
positive ions release form NPs, if any will interact with the negatively charged bacterial cell membrane. This action prohibits the permeability of the proteins by entering into the cell membrane ultimately lead to bacterial death [47].

4. Conclusion

The photocatalytic activity of CdO NCs was enhanced after fabrication of Al₂O₃. The NCs was prepared by chemical co-precipitation method. XRD, TEM, FTIR, XPS and BET analysis were used for the characterization of NCs. The kinetic rate constant was 14 × 10⁻³ for NCs which was 14 times higher than Al₂O₃ (1 × 10⁻³) and 3.5 times higher than CdO (4 × 10⁻³), respectively. The NCs also exhibited excellent antimicrobial activity against all the mentioned bacteria. The degradation exhibited first order kinetic trend. The hydroxyl radical served a vital role in the mechanism of dye degradation. Even after six cycles, the NC expressed good stability and reusability.

Acknowledgement

Authors sincerely thank the management of Bannari Amman Institute of Technology, Tamil Nadu for providing the necessary facilities for carrying out this work.

References

[1] S. B. Khan, F. Ali, T. Kamal, Y. Anwar, A. M. Asiri, J. Seo, CuO embedded chitosan spheres as antibacterial adsorbent for dyes, International Journal of Biological Macromolecules, 88 (2016) 113-119.

[2] A. K. Dutta, U. K. Ghorai, K. K. Chattopadhyay, D. Banerjee, Removal of textile dyes by carbon nanotubes: A comparison between adsorption and UV assisted photocatalysis, Physica E: Low-dimensional Systems and Nanostructures, 99 (2018) 6-15.

[3] P. Dash, A. Manna, N. C. Mishra, S. Varma, Synthesis and characterization of aligned ZnO nanorods for visible light photocatalysis, Physica E: Low-dimensional Systems and Nanostructures, 107 (2019) 38-46.

[4] I. Ahmad, S. B. Khan, T. Kamal, A. M. Asiri, Visible light activated degradation of organic pollutants using zinc–iron selenide, Journal of Molecular Liquids, 229 (2017) 429-435
[5] N. Ali, A. Khan, A. Riaz, A. M. Asiri, T. Kamal, Photocatalytic performance evaluation of bismuth doped tin-dioxide under UV and direct sunlight irradiation for congo red dye degradation, Journal of the Chemical Society of Pakistan, 42 (2020) 687-695.

[6] S. Balamurugan, A. R. Balu, V. Narasimman, G. Selvan, K. Usharani, J. Srivind, M. Suganya, N. Manjula, C. Rajashree, V. S. Nagarethim, Multi metal oxide CdO–Al₂O₃–NiO nanocomposite - synthesis, photocatalytic and magnetic properties, Materials research express, 6 (2019) 015022.

[7] W. N. Zhang, J. L. Tu, A. Aierken, G. Y. Song, X. Z. Xu, P. Y. Yan, X. Y. Sun, K. Hu, L. Li, P. Q. Xu, Effect of 1 MeV electron irradiation on TiO₂/Al₂O₃/MgF₂ anti-reflective coating for GaInP/InGaAs/Ge triple junction solar cells, Optical Materials, 109 (2020) 110278.

[8] A. Kanwal, S. Sajjad, S. A. K. Leghari, Z. Yousaf, Cascade electron transfer in ternary CuO/α-Fe₂O₃/γ-Al₂O₃ nanocomposite as an effective visible photocatalyst, Journal of Physics and Chemistry of Solids, 151 (2021) 109899.

[9] D. Liu, J. Robertson, Oxygen vacancy levels and interfaces of Al₂O₃, Microelectronic Engineering, 86 (2009) 1668-1671.

[10] S. Ateş, E. Baranb, B. Yazıcı, The nanoporous anodic alumina oxide formed by two-step anodization, Thin Solid Films, 648 (2018) 94-102.

[11] S.Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, A. Yasumori, Large-Scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization, Journal of the Electrochemical Society, 153 (2006) 384-391.

[12] T.S. Shih, P.S. Wei, Y.S. Huang, Optical properties of anodic aluminum oxide films on Al1050 alloys, Surface and Coatings Technology, 202 (2008) 3298-3305.

[13] W.M. de Azevedoa, D.D. de Carvalho, H.J. Khoury, E.A. de Vasconcelos, E.F. da Silva, Spectroscopic characteristics of doped nanoporous aluminum oxide, Materials Science and Engineering, 112 (2004) 171-174.

[14] S. Kumar, A.K. Ojha, B. Walkenfort, Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation, Journal of Photochemistry and Photobiology B: Biology, 159 (2016) 111-119.

[15] R. Henriquez, P. Grez, E. Muñoz, E.A. Dalchiele, R.E. Marotti, H. Gómez, Template-free non-aqueous electrochemical growth of CdO nanorods, Thin Solid Films, 520 (2011) 41-46.

[16] J. Chang, R.S. Mane, D. Ham, W. Lee, B.W. Cho, J.K. Lee, S.-H. Han, Electrochemical capacitive properties of cadmium oxide films, Electrochimica Acta, 53 (2007) 695-699.

[17] S. Jia, Y. Feng, H. Zhang, D. Jiang, Q. Zhan, Interface engineered fabrication of Bi₂O₃/BiOCl 1D/2D p-n heterojunction for enhanced visible light driven photocatalysis, Optical Materials, 109 (2020) 110174.
[18] J. Zhang, B. Qiao, Z. Liang, P. Zuo, Q. Wu, Z. Xu, L. Piao, S. Zhao, Near-infrared light-induced photocatalysis of NaYF$_4$:Yb, Tm@Cu$_2$O core-shell nanocomposites, Optical Materials, 84 (2018) 89-93.

[19] M. T. S. Chani, S. B. Khan, A. M. Asiri, K. S. Karimov, M. A. Rub, Photo-thermoelectric cells based on pristine α-Al$_2$O$_3$ co-doped CdO, CNTs and their single and bi-layer composites with silicone adhesive, Journal of the Taiwan Institute of Chemical Engineers, 52 (2015) 93-99.

[20] M. M. Alam, M. M. Rahman, M. T. Uddin, A. M. Asiri, Inamuddin, M. T. S. Chani, M. A. Islam, Development of l-glutamic acid biosensor with ternary ZnO/NiO/Al$_2$O$_3$ nanoparticles, Journal of Luminescence, 227 (2020) 117528

[21] R. Romero, V. R. Santoyo, C. D. M. Sánchez, M. M. Rosales, Effect of aluminum precursor on physicochemical properties of Al$_2$O$_3$ by hydrolysis/precipitation method, Nova Scientia, 10 (2018) 83

[22] T. M. S. Dawoud, V. Pavitra, P. Ahmad, A. Syed, G. Nagaraju, Photocatalytic degradation of an organic dye using Ag doped ZrO$_2$ nanoparticles: Milk powder facilitated eco-friendly synthesis, Journal of King Saud University – Science, 32 (2020) 1872−1878.

[23] V. Seshan, M. Sundar, Prema, On the preparation, structural and magnetic properties of ZnO:Co nanoparticles, The European Physical Journal Applied Physics, 66 (2014) 10602

[24] Y. A. Alibwaini, O. M. Hemeda, R. El-Shater, T. Sharshar, A. H. Ashour, A. Ajlouni, E. A. Arrasheer, A. M. A. Henaish, Synthesis, characterizations, optical and photoluminescence properties of polymer blend PVA/PEG films doped eosin Y (EY) dye, Optical Materials, (2020) 110600.

[25] B. Janani, A. Syed, A. M. Thomas, S. Al-Rashed, L. L. Raju, S. S. Khan, Designing spinel NiCr$_2$O$_4$ loaded Bi$_2$O$_3$ semiconductor hybrid for mitigating the charge recombination and tuned band gap for enhanced white light photocatalysis and antibacterial applications, Journal of Alloys and Compounds, (2021) 158735.

[26] A. Kumar, L. Rout, L. S. K. Achary, S. Mohanty, P. Dash, A combustion synthesis route for magnetically separable graphene oxide-CuFe$_2$O$_4$-ZnO nanocomposite with enhanced solar light-mediated photocatalytic activity, New journal of chemistry, 41 (2017) 10568-10583.

[27] G. Nie, Y. Li, P. Sheng, Z. Tian, W. Liu, H. Wu, Y. Bao, S. Wu, Fabrication of Al$_2$O$_3$/AlN composite ceramics with enhanced performance via a heterogeneous precipitation coating process, Ceramics International, 46 (2020) 21156-21165

[28] F. Wang, B. Liu, Z. Zhang, S. Yuan, Synthesis and properties of Cd-doped ZnO nanotubes, Physica E: Low-dimensional Systems and Nanostructures, 41 (2009) 879-882.

[29] M. Goswami, Enhancement of photocatalytic activity of synthesized Cobalt doped Zinc Oxide nanoparticles under visible light irradiation, Optical Materials, 109 (2020) 110400.
A. Khalil, N. Ali, A. Khan, A. M. Asiri, T. Kamal, Catalytic potential of cobalt oxide and agar nanocomposite hydrogel for the chemical reduction of organic pollutants, International Journal of Biological Macromolecules, 164 (2020) 2922-2930.

F. Ali, S. B. Khan, T. Kamal, K. A. Alamry, E. M. Bakhsh, A. M. Asiri, T. R. A. Sobahi, Synthesis and characterization of metal nanoparticles templated chitosan-SiO$_2$ catalyst for the reduction of nitrophenols and dyes, Carbohydrate Polymers, 192 (2018) 217-230.

Y.B. Kim, D. Cho, W.H. Park, Fabrication and characterization of TiO$_2$/poly(dimethyl siloxane) composite fibers with thermal and mechanical stability, Journal of Applied Polymer Science, 116 (2010) 449–454.

J. Ma, C. Lu, C. Liu, M. Qi, X. Xu, D. Yang, X. Xu, Electrophoretic deposition of ZnSnO$_3$/MoS$_2$ heterojunction photoanode with improved photoelectric response by low recombination rate, Journal of Alloys and Compounds, 810 (2019) 151845

N. Hegyesi, R.T. Vad, B. Pukánszky, Determination of the specific surface area of layered silicates by methylene blue adsorption: the role of structure, pH and layer charge, Applied Clay Science, 146 (2017) 50–55.

I.K. Konstantinou, T.A. Albanis, TiO$_2$-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic, mechanistic investigations: a review, Applied Catalysis B: Environmental, 49 (2004) 1–14.

S.K. Mohapatra, N. Kondamudi, S. Banerjee, M. Misra, Functionalization of self-organized TiO$_2$ nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination, Langmuir, 24 (2008) 11276–11281.

A.N. Kadam, R.S. Dhabbe, M.R. Kokate, K.M. Garadkar, Room temperature synthesis of CdS nanoflakes for photocatalytic properties, Journal of Materials Science: Materials in Electronics, 25 (2014) 1887–1892.

H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, I. Deerdj, Surfactant-assisted synthesis of CeO$_2$ nanoparticles, their application in wastewater treatment, RSC Advances, 2 (2012) 12413–12423.

Ian M. Bake, II-VI Narrow Bandgap Semiconductors: Optoelectronics, Springer Handbook of Electronic and Photonic Materials, (2017) 1.

A. Zarubica, R. Ljupković, J. Papan, I. Vukoje, S. Porobić, S. P. Ahrenkiel, J. M. Nedeljkić, Visible-light-responsive Al$_2$O$_3$ powder: Photocatalytic study, Optical Materials, 106 (2020) 110013

N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, Journal of Photochemistry and Photobiology, 85 (1995), pp. 247-255
[42] F. Li, Y. Zhao, Q. Wang, X. Wang, Y. Hao, R. Liu, D. Zhao, Enhanced visible-light photocatalytic activity of active Al$_2$O$_3$/g-C$_3$N$_4$ heterojunctions synthesized via surface hydroxyl modification, Journal of Hazardous Materials, 283 (2015) 371-381.

[43] R. Bagtache, F. Saib, K. Abdmeziem, M. Trari, A new hetero-junction p-CuO/Al$_2$O$_3$ for the H$_2$ evolution under visible light, International Journal of Hydrogen Energy, 44 (2019) 22419-22424.

[44] N. T. D. Cam, H. Pham, T. Pham, T. T. T. Phuong, C. V. Hoang, M. H. T. Tung, N. T. Trung, N. T. Huong, T. T. T. Hien, Novel photocatalytic performance of magnetically recoverable MnFe$_2$O$_4$/BiVO$_4$ for polluted antibiotics degradation, Ceramics International, (2020) In press

[45] I. Talat, A. Arshad, Q. Mansoor, Graphene nanoplatelets/Cr$_2$O$_3$ nanocomposites as novel nanoantibiotics: Towards control of multiple drug resistant bacteria, Ceramics International, (2020) In press

[46] S. Zada, A. Ahmad, S. Khan, X. Yu, K. Chang, A. Iqbal, A. Ahmad, S. Ullah, M. Raza, A. Khan, S. Ahmad, P. Fu, Biogenic synthesis of silver nanoparticles using extracts of Leptolyngbya JSC-1 that induce apoptosis in HeLa cell line and exterminate pathogenic bacteria, Artificial Cells, Nanomedicine, and Biotechnology, 46 (2018) S471-S480.

[47] T. Munawar, F. Mukhtar, M. S. Nadeem, M. Riaz, M. N. ur Rahman, K. Mahmood, M. Hasan, M. I. Arshad, F. Hussain, A. Hussain, F. Iqbal, Novel photocatalyst and antibacterial agent; direct dual Z-scheme ZnO–CeO$_2$–Yb$_2$O$_3$ heterostructured nanocomposite, Solid State Sciences, 109 (2020) 106446.

Figure captions
Figure 1. Characterization of CdO/Al₂O₃ NCs: (a) TEM (inset – SAED), (b) HRTEM, (c) EDAX and (d) XRD pattern of CdO/Al₂O₃.

Figure 2. (a) FT-IR spectrum, (b) Kubelka Munk function vs energy plot and (c) CdO/Al₂O₃ photoluminescence emission.

Figure 3. Full-scan XPS spectrum and corresponding deconvoluted peaks in the high resolution for O1s, Al2p and Cd3d elements of NCs.

Figure 4. (a) UV-vis spectral change of MB dye after addition of CdO/Al₂O₃, (b) The plot of C/C₀ and 1-(C/C₀) versus time.

Figure 5. (a) The plot of C/C₀ versus time, (b) the plot of lnC₀/C versus time and (c) degradation (%) for CdO/Al₂O₃, CdO and Al₂O₃.

Figure 6. (a) Photocatalytic performance of CdO/Al₂O₃ during six successive cycles and (b) Effect of different scavengers on photocatalytic performance.

Figure 7. Schematic representation of photocatalytic mechanism of CdO/Al₂O₃, CdO and Al₂O₃.

Figure 8. The antimicrobial influence of (a) CdO/Al₂O₃, (b) CdO and Al₂O₃ on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Bacillus subtilis.