HIV-Associated Tuberculosis: Does the Iron-Regulatory Hormone Hepcidin Connect Anemia With Poor Prognosis?

Andrew E. Armitage and Ed Moran

Coinfection with Mycobacterium tuberculosis represents one of the major global health challenges associated with the human immunodeficiency virus type 1 (HIV-1) pandemic. HIV-associated tuberculosis is the leading cause of AIDS-related mortality, predominantly affecting resource-limited settings in sub-Saharan Africa [1]. Anemia is a frequent comorbidity of HIV infection, M. tuberculosis infection, and HIV–M. tuberculosis coinfection; in each case, anemia is predictive of mortality, independently of other well-established risk factors [2, 3]. The etiology of these infection-associated anemias is likely multifactorial, but anemia of inflammation (commonly referred to as anemia of chronic disease), which is associated with perturbations in iron status, may play an important role [4]. Sequestration of iron within macrophages accompanied by impaired iron absorption is commonly observed during inflammation, leading to functional iron deficiency and, if persistent, to iron-restricted erythropoiesis and anemia. Importantly, these phenotypes are also hallmarks of increased activity of the iron-regulatory hormone hepcidin.

Hepcidin is a liver-produced peptide that determines both systemic levels and anatomical compartmentalization of iron [5]. It is expressed in response to iron to maintain homeostasis but also as part of the acute phase inflammatory response, primarily via the interleukin 6/STAT3 pathway. Conversely, iron deficiency and periods of erythropoietic demand result in hepcidin suppression. Hepcidin activity causes degradation of the enterocyte- and macrophage-expressed iron exporter ferroportin, resulting in inhibition of dietary iron uptake, sequestration of recycled erythrocyte iron in macrophages, and reductions in serum iron [6]. Although anemia of inflammation may be caused in part by direct cytokine-mediated suppression of erythropoiesis, iron-restricted erythropoiesis mediated by hepcidin is also becoming well established as a key component of the pathogenic mechanism [7, 8].

Iron is a pathogenic determinant of many infectious conditions, not only because of its relationship with anemia, but also since invading pathogens typically require iron for effective replication [9]. The impact of iron status on infection pathogenesis likely differs according to the specific niches of the invading pathogens—whether they are extracellular, macrophage-tropic, hepatocytic, or erythrocytic [9]. While hepcidin-induced hypoferremia may protect against extracellular infections in mice, hepcidin activity and associated shifts in iron compartmentalization may differentially affect pathogens that use alternative niches, such as Plasmodium or Salmonella species [10–12]. The macrophage-tropic M. tuberculosis uses diverse means of scavenging host cell iron, including direct uptake of iron-loaded transferrin and heme, and by producing siderophores, such as mycobactins [13–15]. Similarly, HIV-1 replication can be enhanced by increased cellular iron [16]. Despite all of this, investigations of hepcidin’s involvement in many human infectious conditions, including HIV–M. tuberculosis coinfection, remain limited.

In this issue of The Journal of Infectious Diseases, Kerkhoff et al present a detailed investigation of the relationships of hepcidin status with anemia, tuberculosis severity, and mortality risk in a well-characterized cohort of 232 HIV-infected adults from South Africa [17]. Participants were unselected, consecutively enrolled inpatients with newly diagnosed active M. tuberculosis coinfection or matched antiretroviral therapy–naïve ambulatory outpatients with or without M. tuberculosis coinfection. The cohort included patients with pulmonary, extrapulmonary, and disseminated tuberculosis, allowing the most thorough observational evaluation to date of the behavior of hepcidin in this context.

While one might expect an acute-phase reactant such as hepcidin to rise in severe HIV–M. tuberculosis coinfection, hepcidin...
transcription may be simultaneously regulated by multiple inputs representing diverse physiological systems, so this should not simply be assumed [5]. For example, although hepcidin is upregulated during uncomplicated malaria, it may be suppressed during severe malarial anemia despite significant inflammation, presumably as a suppressive signal related to inflammation being a significant contributor to the etiology of HIV–M. tuberculosis coinfection [18]. Likewise, hepatic hepcidin regulation is consistent with hepcidin being more closely linked to the disease process.

Are there potential mechanisms through which hepcidin could be involved more directly in the pathogenesis of HIV–M. tuberculosis coinfection? On one hand, in vitro studies suggest hepcidin may have direct antimycobacterial properties (noting that the hepcidin concentrations tested were likely supraphysiological) [24, 25], so hepcidin upregulation in infected macrophages might represent a host response aimed at limiting infection. On the other hand, the better-established systemic function of hepcidin may simultaneously contribute to 2 processes relevant to clinical course: first, as described above, hepcidin may promote development of HIV–M. tuberculosis coinfection–associated anemia through serum iron restriction; and second, hepcidin activity enriches iron in the macrophage niche, potentially providing an iron source to favor mycobacterial (and, to an extent, viral) replication [9], while also potentially influencing macrophage immune effector functions [26]. Gene expression profiling suggests that M. tuberculosis experiences the macrophage phagosome as a relatively iron-poor environment, as several iron-acquisition genes, including siderophore genes, are upregulated [27]. Since iron is a crucial factor for M. tuberculosis growth in macrophages [13], increased macrophage iron retention during severe disease may, therefore, provide a source of iron to aid replication and further exacerbate disease in a positive feedback loop. Furthermore, hepcidin-mediated iron retention in lymphocytes may also enhance HIV-1 replication [16]. Additionally, recent studies report that altered iron indices including hepcidin...
predict subsequent diagnosis of active *M. tuberculosis* infection in HIV-infected individuals; while the times between iron status assessment and *M. tuberculosis* diagnosis were relatively short (in the order of months), the data suggest that perturbations in iron status related to hepcidin may precede development of active disease [21, 28, 29].

Should further basic science investigations provide mechanistic support for involvement of the hepcidin-iron axis in the pathogenic process of HIV-associated tuberculosis, a potential point of intervention may be revealed. Antagonists of hepcidin production or activity are currently under development, with anemia of inflammation a prime target [7]. Whether these would be effective as means of reducing the pool of accessible macrophage-based iron for *M. tuberculosis* and/or HIV replication while simultaneously alleviating HIV–*M. tuberculosis* coinfection–associated anemia is an interesting question worthy of further examination.

Notes

Financial support. This work was supported by the UK Medical Research Council.

Potential conflict of interest. Both authors: No reported conflicts. Both authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. WHO. Global tuberculosis report 2014. Geneva: WHO, 2014.
2. Belperio PS, Rhew DC. Prevalence and outcomes of anemia in individuals with human immunodeficiency virus: a systematic review of the literature. Am J Med 2004; 116(suppl 7A):275–83.
3. Kerkhoffs AD, Wood R, Cobeles FS, Gupta-Wright A, Bekker LG, Lawn SD. The predictive value of current haemoglobin levels for incident tuberculosis and/or mortality during long-term antiretroviral therapy in South Africa: a cohort study. BMC Med 2015; 13:70.
4. Minchella PA, Donkor S, Owolabi O, Sutherland JS, McDermid JM. Complex anemia in tuberculosis: the need to consider causes and timing when designing interventions. Clin Infect Dis 2015; 60:764–72.
5. Ganz T. Systemic iron homeostasis. Physiol Rev 2013; 93:1721–41.
6. Nemeth E, Tuttle MS, Powellson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306:2090–3.
7. Fung E, Nemeth E. Manipulation of the hepcidin pathway for therapeutic purposes. Haematologica 2013; 98:1667–76.
8. Sasu BJ, Cooke KS, Arvedson TL, et al. Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood 2010; 115:3616–24.
9. Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. Science 2012; 338:768–72.
10. Arjona I, Jung G, Gabayan V, et al. Hepcidin-induced hypoferraemia is a critical host defense mechanism against the siderophilic bacterium *Vibrio vulnificus*. Cell Host Microbe 2015; 17:47–57.
11. Kim DK, Jeong JH, Lee JM, et al. Inverse agonist of estrogen-related receptor gamma controls Salmonella typhimurium infection by modulating host iron homeostasis. Nat Med 2014; 20:419–24.
12. Portugal S, Carret C, Recker M, et al. Host-mediated regulation of superinfection in malaria. Nat Med 2011; 17:732–7.
13. Boelaert JR, Vandecasteelie SJ, Appelberg R, Gorderre VR. The effect of the host’s iron status on tuberculosis. J Infect Dis 2007; 195:1745–53.
14. Boradia VM, Malhotra H, Thakkar JS, et al. *Mycobacterium tuberculosis* acquires iron by cell-surface sequestration and internalization of human holotransferrin. Nat Commun 2014; 5:4730.
15. Tullius MV, Harmston CA, Owens CP, et al. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A 2011; 108:5051–6.
16. Xu M, Kashanchi F, Foster A, et al. Hepcidin induces HIV-1 transcription inhibited by ferroportin. Retrovirology 2010; 7:104.
17. Kerkhoffs AD, Meinities G, Burton R, Vogt M, Wood R., Lawn SD. Relationship between blood concentrations of hepcidin and anemia severity, mycobacterial burden, and mortality among patients with HIV-associated tuberculosis. J Infect Dis 2016; 213:61–70.
18. Casals-Pascual C, Huang H, Lakhal-Littleton S, et al. Hepcidin demonstrates a biphasic association with anemia in acute Plasmodium falciparum malaria. Haematologica 2012; 97:1695–8.
19. Girelli D, Pasino M, Goodnough JB, et al. Reduced serum hepcidin levels in patients with chronic hepatitis C. J Hepatol 2009; 51:845–52.
20. Armitage AE, Stacey AR, Giannoulou E, et al. Distinct patterns of hepcidin and iron regulation during HIV-1, HBV, and HCV infections. Proc Natl Acad Sci U S A 2014; 111:12187–92.
21. Wisaksana R, de Mast Q, Alisjahbana B, et al. Inverse relationship of serum hepcidin levels with CD4 cell counts in HIV-infected patients selected from an Indonesian prospective cohort study. PLoS One 2013; 8:e79904.
22. Koots JJ, van Herwaarden AE, Tjalma H, Jansen RT, Hendriks FC, Swinkels DW. Second round robin for plasma hepcidin methods: first steps toward harmonization. Am J Hematol 2012; 87:977–83.
23. Pasricha SR, Atkinson SH, Armitage AE, et al. Expression of the iron hormone hepcidin distinguishes different types of anemia in African children. Sci Transl Med 2014; 6:235re3.
24. Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 2007; 82:934–45.
25. Sow FB, Nandakumar S, Vedu V, et al. *Mycobacterium tuberculosis* components stimulate production of the antimicrobial peptide hepcidin. Tuberculosis 2011; 91:314–21.
26. Nair M, Schroll A, Demetz E, Tancervski I, Theurl I, Weiss G. ‘Ride on the ferrous wheel’–the cycle of iron in macrophages in health and disease. Immunobiology 2015; 220:280–94.
27. Schnappinger D, Eckert S, Voskuil MI, et al. Transcriptional adaptation of *Mycobacterium tuberculosis* within macrophages: insights into the phagosomal environment. J Exp Med 2003; 198:693–704.
28. Minchella PA, Armitage AE, Darboe B, et al. Elevated hepcidin at HIV diagnosis is associated with incident tuberculosis in a retrospective cohort study. Int J Tuberc Lung Dis 2014; 18:1337–9.
29. McDermid JM, Hennig BJ, van der Sande M, et al. Host iron redistribution as a risk factor for incident tuberculosis in HIV infection: an 11-year retrospective cohort study. BMC Infect Dis 2013; 13:48.

EDITORIAL COMMENTARY • JID 2016:213 (1 January) • 5