Can intraspecific variation in an herbivorous mite alter responses to drought-stressed host plant? A common garden experiment in the context of climate change

Alain Migeon, Philippe Auger, Odile Fossati, Ruth A. Hufbauer, Maëva Miranda, Ghais Zriki, Maria Navajas

Alain Migeon, CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
Philippe Auger, CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
Odile Fossati, CBGP, IRD, INRAR, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
Ruth A. Hufbauer, Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.
Maëva Miranda, CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France & CIRAD, UMR AGAP INSTITUT, F-34398 Montpellier, France.
Ghais Zriki, CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France & CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
Maria Navajas, CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
Abstract

The effects of drought stress on plants and phytophagous arthropods are topics currently extensively investigated in the context of climate change. Dryness not only impacts cultivated plants but also their parasites, which in some cases are favoured by drought. It represents a major challenge that agriculture is facing in a perspective of intensification of drought. Direct effects of drought on herbivorous arthropods typically produce bigger offspring and faster development but attractiveness can also occur. However, how much responses to abiotic factors differ among populations of a species remains poorly documented. The impact of drought-stressed plants on key life-history parameters is here investigated for a major agricultural pest, the two spotted spider mite, *Tetranychus urticae*, depending on the climatic conditions of the localities at origin. Sampled localities represent a rather wide range of core climate conditions across the mite’s native distribution area with contrasting climatic profiles, ranging from wet temperate to cool Atlantic localities to medium to dry hot Mediterranean localities. Plant drought stress effects on mites was estimated by measuring four life history traits: development time, fecundity, sex-ratio and emigration rate in a common garden experiment made of two modalities: well-watered and drought-stressed bean plants. Mites feeding on drought-stressed plants displayed shorter developmental time and attempted to leave leaf patches less often, and young females were more fecund. The mites originating from wet temperate to cool Atlantic localities respond more strongly to drought than mites originating from medium to dry hot Mediterranean localities, suggesting local adaptation of *T. urticae* populations to various aridity values and indicates that mite feeding behaviour is shaped by the climatic conditions they faced in the area of origin.

Keyword

Acari; *Tetranychus urticae*; Europe; Mediterranean; local adaptation; common garden experiment; life-history traits
“A Quarter of Humanity Faces Looming Water Crises”, that was the title of an article in The New York Times of August 6th, 2019 (Sengupta and Cain, 2019). It is a fact that drought is a major challenge around the World, with 17 countries facing extreme water shortages. One of the major consequences of water shortage, in addition to its impact on human survival and health, is the impact it has on agriculture. Many cities in the global South (Mitlin et al. 2019) face water shortages, which is leading to conflicts between immediate human needs and agriculture. Agricultural production currently represents 70% of the overall water consumption worldwide (OECD, https://www.oecd.org/agriculture/topics/water-and-agriculture/) and projections for 2050 indicate water use in agriculture will increase. Low water availability not only impacts cultivated plants but also their parasites, which in some cases are favoured by drought (Showler, 2013). Thus, both water availability and pests are major agricultural challenges that are increasing because of global change and the resulting intensification of drought.

Understanding the effects of drought and more precisely drought stress on plants and phytophagous organisms is important to supporting future agricultural production. Chaves et al. (2003) reviewed how drought affects plants physiology and Showler (2013) and Hummel et al. (2010) documented changes in the amino-acids and free sugar balances in drought-stressed plants. The impact of drought on plant-associated fauna has been documented at the population level. For example, Dale & Frank (2017) observed that fitness of scale insects increased on drought-stressed urban maple trees relative to well-watered trees. Effects of drought stress on herbivorous arthropods organisms has been also quantified experimentally. For example, drought stress in beans increased oviposition by the bug Orius insidiosus (Seagrave et al., 2011) and drought stress in the grass Holcus lanatus increased offspring and rates of emergence of the moth Spodoptera littoralis increasing their fitness overall relative to well-watered plants (Walter et al. 2012). Field and laboratory observations of spider mites have revealed diverse and sometimes divergent results. Drought stress of soybeans led to faster development and thus increased density of the spider mite Tetranychus turkestani (Nikolova et al. 2014). This pattern was also observed in Tetranychus urticae and Oligonychus pratensis on maize (Chandler et al. 1979), and in a mixed mite population (75% of Tetranychus pacificus and 25% of Panonychus citri) on almond (Youngman & Barnes, 1986; Youngman et al., 1988). Gillman et al. (1999) observed that the damage caused by T. urticae increased on drought stressed buddleia plants. Ximénez-Embun et al. (2016, 2017a, 2017b) observed a global increase of performance of three important tomato mite pests, Tetranychus evansi, T. urticae and Aculops lycopersici, reared on...
drought-stressed tomato plants, especially for tomato-adapted strains in the case of *T. urticae*. A non-linear response with an increase of density and fecundity of this mite was reported at an intermediate level of drought, and a linear increase of development rate at a severe drought stress regime (English-Loeb, 1989). In contrast, the opposite pattern was reported by Oloumi-Sadeghi et al. (1988) who observed a decrease of *T. urticae* abundance on drought-stressed soybean and by Sadras et al. (1998) for *T. urticae* on cotton.

The degree to which different populations of a phytophagous arthropods differ in responses to abiotic factors remains poorly documented. However, adaptation and phenotypic plasticity are regarded as main way that organisms respond to changing environments (Bowman et al. 2018). For example, Kelley et al. (2011) reported a latitudinal and temperature-linked gradient increasing maximum thermal tolerance of the crab *Carcinus maenas* populations from coldest to warmest localities. Among the tetranychids mites, common garden experiments revealed a latitudinal gradient of life history traits (fecundity, development time, sex-ratio and dispersal) from Western European core distribution of *T. urticae* to the northernmost part of the distribution area (Van Petegem et al. 2016). Diapause as a means of cold avoidance is another trait that varies according to the climate the mite experiences. For example, Koveos et al. (1993) reported a gradient of diapause duration linked to latitude and altitude in *T. urticae* where Japanese alpine populations displayed similar traits than the most northern mites indicating the importance of temperature on regulation of this trait. Similarly, Takafuji et al. (1991) also in *T. urticae* and Suwa & Gotoh (2006) in *Tetranychus puercaricola*, observed a South-North gradient in the diapause induction of these two species along the Japanese archipelago.

Thus, intraspecific variation is common in many organisms. Drought stress also varies historically in different geographic origins, and is becoming more common in some regions due to climate change. Here, we explore how drought stress in host plants affects different populations of an herbivorous mite that is a major plant pest, the two spotted spider mite, *T. urticae*. This work focuses on if and how responses depend on the geographic origin of the mites.
Material and methods

The effect of plant drought stress on mites was estimated by measuring four life history traits in two common garden experiments, each using well-watered and drought-stressed bean plants. We measured development time of females (experiment I) and fecundity, leaving rates and sex ratio of progeny (experiment II). *Tetranychus urticae* is an arrhenotokous mite, and sex ratio represents a way to respond to changing environments (Crozier, 1985).

1 Mite material

Origin of mites. *Tetranychus urticae* populations (green and red forms - Auger et al. 2013) originating from 12 different locations in Europe were chosen to provide diversity in our experiments (Table 1, Figure 1). Among the localities sampled, Greece, Cyprus and to a lesser extent Spain and Italy correspond to places with dry hot summers while France and United-Kingdom correspond to wet hot summer to medium summer.
Table 1: Characteristics of the populations of *Tetranychus urticae* used in the common garden experiments.

Mite population	Country	Locality	Latitude (DD)	Longitude (DD)	Mite body color	Host plant name
IT-I	Italy	Lerici	44.086	9.889	Red	*Convolvulus arvensis*
SP-I	Spain	Palafolls	41.671	2.758	Red	*Phaseolus vulgaris*
CY-I	Cyprus	Paralimni	35.050	33.990	Red	*Convolvulus arvensis*
CY-II	Cyprus	Kouklia	34.693	32.578	Green	*Convolvulus arvensis*
CY-III	Cyprus	Kouklia	34.693	32.578	Green	*Malva sp*
GR-I	Greece	Karystos	38.027	24.404	Green	*Malva sp*
GR-II	Greece	Karystos	38.027	24.404	Green	*Xanthium italicum*
UK-I	U-K	East-Mailing	51.285	0.448	Green	*Urtica dioica*
FR-IV	France	Cappy	49.928	2.783	Green	*Solanum tuberosum*
FR-II	France	Burnhaupt	47.741	7.142	Red	*Urtica dioica*
FR-III	France	Guewenheim	47.756	7.091	Green	*Urtica dioica*
FR-I	France	Livron	43.227	-0.139	Red	*Urtica dioica*
FR-V	France	Salies	43.464	-0.916	Green	*Urtica dioica*
Figure 1. Map of the localities sampled. The background colour is scaled on Global Aridity Index (Trabucco & Zomer, 2019). The radar charts display the values of some important climatic variables: (from top, clockwise) annual temperature average (Tp Avg), 1/global aridity index (Aridity), precipitations of the coldest quarter (Prec Winter), precipitations of the warmest quarter (Prec Summer), total year precipitations (Prec Year), temperature annual range (Tp Year Range), minimal temperature of the coldest month (Tp Min), maximal temperature of the warmest month (Tp Max), mean diurnal range (Tp Day Range).
Mite rearing. Mite stock populations were maintained separately on detached bean leaves (*Phaseolus vulgaris cv* Contender) placed on moist cotton blanket in double-bottom plastic boxes (13.5 x 9.5 x 5 cm) with water reservoir and maintained in growth chambers at 21 ± 1 °C, 60 ± 10 % RH with a photoperiod of L/D 16/8 h. Each population was maintained for at least six generations before being used in the experiments. In experiment I, adult females of various ages were transferred directly to bean plants (see the experimental design description below and Fig. 2A.). In experiment II (see experimental design and Fig. 2B), to have adult females of known age and to avoid possible variation in feeding history we transferred females reared on detached leaves to drought-stressed or well-watered beans seedlings (according to the experimental treatment) and left to oviposit for 24 h. These females were subsequently removed and laid eggs were allowed to develop to adult. This produced known age adult females were then used in experiment II.

2 Plant material

Plant production. French bean (*Phaseolus vulgaris cv. Contender*) plants were grown from seeds in 2 L pots (diameter: 15 cm, height: 17 cm) (CEP, HR 17YPP) filled with 815 g (R.H. about 30%, measured with a soil moisture sensor HH150 (Delta-T Devices Ltd, Cambridge, UK)) of peat mix (Huminsubstrat N2, Neuhäus*, Klasmann-Deilmann, Geeste, Germany). Two sets of pots were differentiated according to the watering regime: well-watered plants (high water regime) were watered to saturation every day and drought-stressed plants (low water regime) were watered only once at seeding time with 200 ml of water. Pots were first kept in a regulated greenhouse with additional light when necessary (25 ± 7 °C / 40 ± 30 % RH) for ten days after sowing. Ten days after sowing, bean seedlings (two expanded seed leaves) were transferred to a climatic chamber with diurnal (25 ± 0.5 °C) and nocturnal (23 ± 0.5 °C) temperatures and using a light cycle of L/D 16/8 h. Plants were watered differentially according to treatment in the climatic chambers as described below. Light was provided by agro red and blue LED lamps (Philipps Green Power LED). Relative humidity was not regulated but limited using an air dehumidifier (Rexair 2500T, Rexair, 95330 Domont, France) and was 50 ± 20 % RH.
Figure 2. Assessment of development time in female mites in Experiment I (A); assessment of fecundity and sex ratio in Experiment II (B).
Drought stress maintenance and assessment. After transferring bean seedlings from the greenhouse to the climatic chamber, these continued to be exposed to two different water regimes: either well-watered or drought-stressed regime. These two modalities corresponded to soil moisture maintained above 45% and between 10-8% (8% is over the wilting point), respectively. Plant watering was carried out in two ways depending on the experiment: (1) in experiment I, all water regimes were ensured using an automatically regulated drip irrigation system. Soil water content (RH) was measured using 5 moisture sensors (SM150 with GP2 Data Logger, Delta-T Devices Ltd, Cambridge, UK) in each watering treatment and linked to DeltaLINK 3.1.1 PC software (Delta-T Devices Ltd, Cambridge, UK) for setting up and downloading data from a GP2 station. In the well-watered treatment, when the average soil moisture dropped to 45%, each plant was automatically watered for 30 seconds (delivering 17 ml of water) by a drip. In the drought-stressed treatment, watering was activated (same duration and amount of water per watering event) when soil moisture dropped to 8% (see Supplementary Figure 1 as an example); (2) in the experiment II, plants were watered manually. For the well-watered regime, beans daily received 100 ml of water. In the drought-stressed regime, they received once 20 ml of water when transferred to the climatic chamber (10 days after sowing) with no water delivered until 17 days after sowing; from when plants were daily watered with 20 ml of water.

Water stress level of plants was assessed several times during the experiments by measuring the following parameters: a) the leaf stomatal conductance (experiments I, II) reported to be a reliable drought indicator (Verslues et al., 2006), was assessed on 10 plants per water regime for each mite population tested using a leaf porometer (SC-1 Leaf Porometer, Decagon Devices, Inc., Pullman, WA, USA). For young seedlings, from 10 to 19 days after sowing, the sensor was placed head in the upper third of the seed leaf (the part closest to the petiole of the leaf), on the side of the leaf. For older seedlings, from 21 days after sowing and later, measurements were taken in the first trifoliate leaf, placing the sensor head on the side of the central leaflet; b) the soil moisture (experiment II) was assessed using a soil moisture sensor (HH150, Delta-T Devices Ltd, Cambridge, UK) and by weighing the pot (seedling, pit mix and pot) using a balance (KSR1 Proline, Darty Ptc©, UK).

3 Experimental design

Due to restricted space available, each population was assayed separately. All the experiments were conducted in a climate room with diurnal (25 ± 1 °C) and nocturnal (23 ± 1 °C) temperatures and using a light cycle of L/D 16/8 h. Relative humidity was maintained at 50 ± 20 % RH using a dehumidifier (Rexair 2500T, Rexair, 95330 Domont, France).
Experiment I (Figure 2A)

Experiment I was designed to estimate the development time of mites. Well-watered and drought-stressed plants corresponding to 2 expanded simple leaves (cotyledons) stage, were randomly arranged in the climatic chamber and then infested with mites when steady stress conditions were reached in plants assigned to the drought-stressed treatment (Supplementary Figure S1). As shown in Figure S2, water-stress of bean seedlings was assessed at seven time-points throughout the experience from 11 to 27 days after sowing, by using 10 bean plants per watering regime.

For each population tested, 14 days after sowing plants were infested with females of unknown age (old females were excluded) from stock culture by gently transferring with a fine camel hairbrush 10 females per plant (5 per each simple leaf) in a squared arena built on leaves upper surface (Figure 3). Each squared arena was delimited by four flexible PVC tape stripes (electrical insulation tape, Coteka, Chaulnes, France) of 50 x 7.5 mm forming an internal square about 18 cm² glued onto the leaf surface. To avoid mite losses, Vaseline (CAS 8009-03-8; Gifrer, Décines-Charpieu, France) mixed with 10% organic olive oil (Bio Classico, Carapelli Firenze SpA, Tavarnelle Val di Pesa, Firenze, Italy) was applied on the tape stripe to form a cord (that delimits a squared arena) that spider mites cannot cross. Females placed in these arenas were allowed to lay eggs for 24 hours and then removed (Figure 2A) using a Rena® vacuum. At this time, individuals were recorded as living, dead or drowned in the oily barrier. The mites found in the barrier were recorded to estimate attempts to leave the patch of leaf. Twelve to 15 replicates (12-15 plants) per water regime were performed for each mite population. From day 9 to 13 after infestation, newly emerged adult females were recorded and then removed twice a day, at 8 am and 4 pm (Figure 2A), using a stereomicroscope Leica EZ4 (Leica microsystems CMS GmbH, Wetzlar, Germany).
Figure 3. Mite confining arena built on bean leaf.
Experiment II (Figure 2B)

Experiment II was designed to assess the effect of plant drought stress on females’ fecundity and on the sex ratio of their progeny. When drought stress conditions occurred in plants (Supplementary Figure 1) three days after their transfer in the climatic room (13 days after sowing), plants of both water regimes were infested with *T. urticae* females of specific ages collected from rearing plants. To simultaneously obtain females of known age in both watering modalities studied, the day of mite infestation of each treatment of rearing plants was calculated from the results of experiment I, resulting in simultaneous three-day-old females in both, well-watered and drought-stressed rearing plants. To ensure that the two watering modalities remained clearly distinct until the end of the experiment, water of bean seedlings stress was assessed as shown in Figures S3 and S4.

A first batch of plants was infested with three-day-old females and a second batch with nine-day-old females. Mites were reared on plant experiencing the same watering regime as the treatment they were transferred to. The procedures for plant infestation, mite confinement, and assessment of water status of plants were the same as those mentioned in experiment I, except water status assessment of plants which was also done by measuring the peat mix RH (%) and the weight of the pots on 10 replicates per watering treatment.

Females were allowed to lay eggs for 24 h and subsequently removed using a Rena® vacuum. At this time, individuals were recorded as living, dead or drowned in the oily barrier. The mites found in the barrier were recorded to estimate attempts to leave the patch of leaf. Female fecundity was assessed by counting eggs two days after females were removed from arena with the aid of a stereomicroscope Leica® EZ4 (Leica Microsystems, Weltzar, Germany). The eggs were kept on plants until hatching and offspring allowed to development to adulthood. The sex-ratio of newly emerged adult mites was then assessed 11 days after mite infestation.

4 Climate data and method of analysis

Climate data were retrieved from WolrdClim (Fick & Hijmans, 2017) and CGIAR (Trabuco & Zomer, 2019). We used monthly values of temperatures (minimum, maximum and average) to construct Gaussen climatograms. The Bioclimatic variables gather a set of 19 synthetic variables describing the climate. The Global Aridity Index (GAI) developed to quantify the precipitation availability over atmospheric demand (Trabuco & Zomer, 2019), was also used here. This is a synthetic variable expressing the moisture availability for potential growth of reference vegetation.
The 19 Bioclimatic variables plus the Global Aridity Index were analysed via a principal component analysis followed by a hierarchical clustering on principle components to obtain a pattern of the climates encountered in the 12 mite sampling locations.

5 Data analysis

All data analyses were conducted using R 3.5 (R Core Team, 2018). Principal component analysis (PCA) and hierarchical clustering on principle components (HCPC) using Euclidian distances and Ward’s clustering method were computed with the library FactoMineR (Lê et al., 2008). Graphics were produced using the libraries ggplot2 (Wickham, 2016) and factoextra (Kassambara & Mundt, 2019).

The development time of mites was calculated by using a logit regression (library MASS, Venables & Ripley, 2002) to determine the time of 50% of emergence of adults. For each population, an ANOVA analysis (Chi² model) was used to test the effect of watering regime on logistic regression representing the development time.

Differences in fecundity, leaving rate and sex ratio between mites from drought-stressed and well-watered plants were evaluated with t-tests for each population. Because escape rate (expressed as number of escaped females per plant / number of females deposited per plant) and sex-ratio (expressed as number of females per plant/ (number of females per plant + number of males per plant) are both limited from 0 to 1, they were respectively transformed to \[\text{arcsin}\sqrt{1-x}\] and \[\text{arcsin}\sqrt{x}\] before analysis.

Our estimate of development time is a population-level estimate, and thus there is only one value per population and plant watering regime. Similarly, there is only one difference value in fecundity, leaving rate and sex-ratio per population and watering regimes (the same plant cannot be drought-stressed and non-stressed).

ANOVAs were conducted separately to test significance (1) of stress factors; (2) between populations for each trait and (3) between age of females (3 and 9 days old). When the ANOVA analyses between watering regimes were significant, correlations were tested for the difference between water regimes and each of the 20 climatic variables (19 Bioclimatic variables + Global Aridity Index). In the same way, correlations were tested for non-stressed or drought-stressed traits’ plant data when the ANOVAs analyses between populations were significant.
Results

1 Climatic characteristics of the mite sampled locations

The sampled locations represent a quite wide range of climatic conditions encountered in Europe where *T. urticae* has been recorded (Migeon et al. 2019) and where the mite can develop (Litskas et al. 2019). The Global Aridity Index ranges from 0.2 in Kouklia (CY-II, Cyprus) to 1.13 in Salies-de-Béarn (FR-V, France), 0.2 being the threshold of the arid classification (Trabuco & Zomer, 2019). Other Cyprus and Greece locations sampled correspond to semi-arid classification (Global Aridity Index < 0.5), Spain locality to dry sub-humid (Global Aridity Index < 0.65) and Italy, France and United Kingdom to the humid classification (Global Aridity Index > 0.65). Among the humid and sub-humid locations sampled, important differences are to be noted: the French FR-I and FR-V locations display a very humid climate (Global Aridity Index > 1), and maximal summer temperature > 24 °C, whereas the United Kingdom and FR-II locations are less humid (Global Aridity Index < 1) and have colder summer (maximal summer temperature < 21 °C). Spain and Italy localities are characterized by hot summers (> 27 °C) with a drier tendency for the Spanish locality.

The analysis of Gaussen climatograms (Figure S5) reveals that Cyprus localities have 7 months of hydric deficit, Greece locality 6 months, Spain and Italy 1 month. All values are summarized in Figure 1.

According to the PCA analysis on sampled localities, completed by the HCPC based on the climate values (Figure 4), the first three axes gather 90% of the total variance and were retained for following analysis and clustering. The first axis opposed the arid and hot Mediterranean cluster (+) to the oceanic-continental wet and temperate cluster (-) localities. The second axis opposed the wet winter Pays Basque cluster (+) to the drier winter Channel and Alsace (-) localities, whereas the third axis discriminated the continental Alsace cluster (+) of the more oceanic Channel cluster (-) localities.

The Bioclimatic variables BIO02, BIO03, BIO04, BIO07 (annual and daily temperature ranges), BIO08 (temperature of the wettest quarter) contributed less (cos²) to the first two axes as a result of the choice of the sampled localities, maximizing Global Aridity Index extent.
Figure 4. PCA analysis on the 20 climatic variables analysed (19 Bioclim + Global Aridity Index, see Supplementary Table S1 for complete description). The Eigen values and hierarchical clustering are reported inside the cartridges.
2 Life History traits analyses

2.1 Development time

Mites from all populations developed faster when reared on drought-stressed plants (Table 2 and Figure 5). The reduction in development time from the egg to adult ranged from 0.54 day (GR-II) to 1.35 day (FR-II).
Table 2. Development duration for each population of *Tetranychus urticae* on non stressed and drought stressed plants. Logit values of the 50% adult emergence +/- CI (in days).

Population	Non-stressed (NS)	Stressed (S)	Difference (S-NS)	F value	Df	P-value	Variation direction
CY-I	10.15 ± 0.02	9.22 ± 0.02	-0.93	3574	8	<0.001***	↘
CY-II	9.97 ± 0.03	9.16 ± 0.02	-0.81	2050	8	<0.001***	↘
FR-I	9.92 ± 0.02	8.61 ± 0.02	-1.31	3311	8	<0.001***	↘
FR-II	9.84 ± 0.02	8.49 ± 0.01	-1.35	3818	8	<0.001***	↘
FR-III	9.94 ± 0.02	9.08 ± 0.01	-0.86	2648	8	<0.001***	↘
FR-IV	9.97 ± 0.02	9.31 ± 0.02	-0.66	3803	8	<0.001***	↘
FR-V	10.60 ± 0.02	9.38 ± 0.02	-1.23	2586	8	<0.001***	↘
GR-I	10.00 ± 0.02	9.21 ± 0.02	-0.79	3276	8	<0.001***	↘
GR-II	9.82 ± 0.02	9.28 ± 0.02	-0.54	4947	8	<0.001***	↘
IT-I	10.05 ± 0.03	9.22 ± 0.02	-0.84	2355	8	<0.001***	↘
SP-I	9.77 ± 0.02	9.14 ± 0.02	-0.63	4239	8	<0.001***	↘
UK-I	9.84 ± 0.02	8.97 ± 0.01	-0.87	3847	8	<0.001***	↘
Mean	9.99	9.09	-0.90				
Figure 5. Development time from egg to adult of the twelve populations of *Tetranychus urticae* reared on drought-stressed and non-stressed plants. Values correspond to mean emergence rate of adults and error bar to standard error at each observation point. Curves represent the logit regression.							
ANOVA conducted on development time data showed highly significant variation between the water regimes ($P < 0.001$) but not between populations (Table 3). Thus we further only tested the correlations between the differences of development time and the climatic variables of the locations. We observed a positive correlation between the reduction in development time and Global Aridity Index (see Table 4). The development time was shorter on drought-stressed plants and the reduction increased for the mites originated from locations with high summer humidity (high Global Aridity Index). In addition, a significant correlation was also observed for five others climatic variables (see Table 4 and Supplementary Table 1). All but one of the climatic variables (BIO19, Winter Precipitations) refer to summer hydric local conditions that may be responsible for plant water stress, which is in line with the correlation obtained with the Global Aridity Index. Despite the fact that BIO19 was also correlated to others rainfall variables, the variable is not relevant for French, English and to a lesser extent, Spanish and Italian two spotted spider mite populations. While mites from these origins do experience a winter diapause, they are not subject to variations for theses climatic parameters during winter.							
Life history trait	df	Sum. of sq.	F value	P-value			
---	---	---	---	---	---		
Development duration	Stress factor	1	4.86	140.389	< 0.001 ***		
	Population	11	0.98	2.574	0.066		
	Residuals	11	0.38				
Fecundity of 3-day-old females	Stress factor	1	5.72	9.058	0.012 *		
	Population	11	34.75	5.000	0.006 **		
	Residuals	11	6.95				
Fecundity of 9-day-old females	Stress factor	1	0.60	1.586	0.234		
	Population	11	55.38	13.416	< 0.001 ***		
	Residuals	11	4.13				
Fecundity on non-stressed Plants	Age	1	41.87	52.074	< 0.001 ***		
	Population	11	37.46	4.235	0.012 *		
	Residuals	11	8.84				
Fecundity on drought stressed plants	Age	1	65.47	53.479	< 0.001 ***		
	Population	11	41.44	3.077	0.038 *		
	Residuals	11	13.47				
Progeny sex ratio of 3-day-old-females	Stress factor	1	0.001	1.805	0.206		
	Population	11	0.093	10.450	< 0.001 ***		
	Residuals	11	0.009				
Progeny sex ratio of 9-day-old-females	Stress factor	1	0.007	1.995	0.186		
	Population	11	0.152	3.818	0.018 *		
	Residuals	11	0.040				
Progeny sex-ratio on non-stressed plants	Age	1	0.226	65.152	< 0.001 ***		
	Population	11	0.099	2.599	0.064		
	Residuals	11	0.038				
Progeny sex-ratio on drought stressed plants	Age	1	0.273	69.85	< 0.001 ***		
	Population	11	0.114	2.65	0.061		
	Residuals	11	0.043				
Leaving rate of 3-day-old females	Stress factor	1	0.034	6.351	0.029 *		
	Population	11	0.119	1.995	0.134		
	Residuals	11	0.060				
Leaving rate of 9-day-old females	Stress factor	1	0.092	10.975	0.007 **		
	Population	11	0.317	3.464	0.025 *		
	Residuals	11	0.092				
Leaving rate of 9-day-old females on non-stressed plants	Age	1	0.076	6.769	0.025 *		
	Population	11	0.264	2.138	0.112		
	Residuals	11	0.123				
Leaving rate of 9-day-old females on drought-stressed plants

	Age	Population	Residuals
	1	11	11
R2	0.025	0.117	0.083
P-value	0.336	0.291	0.291

Table 4. Correlations between difference in development time between the two water regimes and climatic variables. Only significant values are reported.

Climatic variable	R²	P-value
GAI Global Aridity Index	0.386	0.031
BIO12 Annual Precipitations	0.427	0.021
BIO14 Precipitations Driest Month	0.391	0.03
BIO17 Precipitations Driest season	0.356	0.041
BIO18 Summer Precipitations	0.338	0.048
BIO19 Winter Precipitations	0.363	0.038
2.2 Fecundity

Life history traits variation in mite populations in response to host plant water regimes is summarised in Figure 6.
Figure 6. Life history trait variation among the 12 populations of *Tetranychus urticae* studied, in response to plant water stress regime. For each of the traits, populations are ordered by the climatic variable selected as a synthesis of the link between the trait and the climate: Annual Mean Temperature (blue line) for fecundity and Global Aridity Index (brown line) for progeny sex-ratio and leaving rate.
2.2.1 Three-day-old females

For all but one population (CY-II), we observed an increase in the fecundity of females reared on drought-stressed plants (Table 5) and it was significant for seven populations: FR-I, FR-III, FR-V, GR-I, GR-II, IT-I and UK-I. The two ANOVA analyses performed with differences in fecundities observed between water regimes and between mite populations, were significant (Table 3). Three sets of correlations were subsequently tested with the climatic variables on sampling locations and the differences of fecundity of three-day-old females, the values of fecundity three-day-old females reared on drought-stressed plants and the values of fecundity three-day-old females reared on non-stressed plants. Significant correlations were observed for fecundity differences of three-day-old females between water regimes and for fecundity of three-day-old females reared on drought-stressed plants. By contrast, none of the correlations were significant for fecundity of three-day-old females reared on non-stressed plants. Three climatic variables (BIO01, BIO06 and BIO11) showing significant correlations are the same for both (differences between water regimes and drought stressed plants) and are related to temperature, especially winter temperatures (see Table 6) with an increase in fecundity and with the difference of fecundity between the two water regimes for the locations with colder temperatures (Figure 6).

In summary, the fecundity of three-day-old females increased (Table 5) for 8 out of the 12 mite populations studied, showing significant greater values on drought-stressed plants. The increase was higher for mites from locations with cold winter and low annual mean temperatures (Figure 6).
Table 5. Fecundity of the females for each population of *Tetranychus urticae* on non-stressed and drought-stressed plants.

Population	Non-stressed (NS)	Stressed (S)	Difference (S-NS)	F value	Df	P-value	Variation direction
CY-I	10.56 ± 0.25	10.95 ± 0.32	0.39	-1.004	24	0.325	↑
CY-II	11.11 ± 0.26	9.68 ± 0.32	-1.43	3.859	28	<0.001***	↓
FR-I	10.97 ± 0.56	11.43 ± 0.61	0.46	-0.616	27	0.543	↑
FR-II	11.07 ± 0.59	13.69 ± 0.34	2.62	-4.155	24	<0.001***	↑
FR-III	10.67 ± 0.21	12.98 ± 0.58	2.31	-4.204	28	<0.001***	↑
FR-IV	10.19 ± 0.3	10.72 ± 0.73	0.53	-0.744	28	0.463	↑
FR-V	9.34 ± 0.31	10.18 ± 0.26	0.84	-2.346	28	0.026*	↑
GR-I	8.90 ± 0.24	10.04 ± 0.32	1.13	-3.171	27	0.004**	↑
GR-II	10.55 ± 0.29	11.33 ± 0.19	0.78	-2.592	30	0.015*	↑
IT-I	8.18 ± 0.3	10.58 ± 0.27	2.40	-6.142	24	<0.001***	↑
SP-I	13.10 ± 0.46	13.36 ± 0.52	0.26	-0.388	25	0.701	↑
UK-I	11.89 ± 0.42	13.31 ± 0.36	1.42	-2.907	29	0.007**	↑
Mean	10.54	11.52	0.98				

Table 6. Correlations between the fecundity of 3-day-old females: (1) difference between water regimes and (2) drought-stressed plants, and climatic variables. Only significant values are reported.

Climatic variable	Difference between water regimes	Drought-stressed plants
BIO01 Annual Mean Temp.	R² 0.361 P-value 0.039	R² 0.355 P-value 0.041
BIO03 Isothermality	0.427 0.021	-
BIO06 Min Temp. Coldest Month	0.484 0.012	0.416 0.024
BIO09 Mean Temp. Driest Quarter	-	0.373 0.035
BIO11 Mean Temp. Coldest Quarter	0.49 0.011	0.391 0.03
2.2.2 Nine-day-old females

We observed a significant increase (Table 5) of fecundity of females reared on drought-stressed plants for three populations (FR-III, GR-II and IT-I). Only the ANOVA analysis performed between populations show significant differences. Two sets of correlations were subsequently tested between the climatic variables on sampling locations and the fecundity of nine-day-old females reared on non-stressed plants and on drought-stressed plants. Only the BIO19 (Winter Precipitations) variable was significant with non-stressed plants.

2.2.3 Comparison between three- and nine-day-old fecundity

ANOVA analysis performed between fecundity of the two different age females (three-day-old and nine-day-old) were significant (Table 3). The nine-day-old females laid fewer eggs than the three-day-old females, for both non-stressed and drought-stressed plants. We also observed a correlation between females reared on well-watered plants (three-day-old and nine-day-old, $r^2=0.395$, $p=0.029$).

2.3 Leaving rate

2.3.1 Three-day-old females

Although ten of the twelve populations studied showed a decrease in the leaving rate of females on drought-stressed plants (Table 7), results were significant for only two of them (CY-I and FR-II). The ANOVA analysis on differences in leaving rate of three-day-old females calculated between plant water regimes was also significant (Table 3) and the average mite leaving rate was found to be approximately twice lower on drought-stressed plants than on non-stressed ones. Subsequently, one set of correlations was tested between the differences of leaving rate of three-day-old females and the climatic variables. Only the correlation with the climatic variable BIO07 (Annual Temperature Range) was significant.

2.3.2 Nine-day-old females

The leaving rate of nine-day-old females was generally higher for mites exposed to non-stressed plants. From the twelve populations studied, eleven showed an increase in the leaving rate on non-stressed plants (Table 7), and four of them (FR-I, FR-II, FR-III, FR-V) were significant. The two ANOVA analyses performed, one on differences calculated between plant water regimes and a second between populations were significant (Table 3). On average, the leaving rate was twice lower on drought-stressed plants than on non-stressed ones. Subsequently, three sets of correlations were
tested with the climatic variables and the differences calculated between plant water regimes of the
leaving rate of nine-day-old females, the values of the leaving rate of nine-day-old females reared on
non-stressed plants and the values of the leaving rate of nine-day-old females reared on drought-
stressed plants. Significant correlations (Table 8) with climatic variables were observed for
differences between plant water regimes and for drought-stressed plants, while none of the tests
involving non-stressed plants were significant. Each of climatic variables BIO12, BIO14, BIO17, BIO18
and BIO19 were correlated with the differences between water regimes and also with the leaving
rate on non-stressed plants. These represent precipitations variables and all but one (BIO19) denote
to summer precipitation or dryness. Global Aridity Index and BIO16 were also correlated with the
differences calculated between water regimes.

As observed for the development time pattern, mites originating from the four most humid localities
(FR-I, FR-II, FR-III, and FR-V) showed higher differences between the two water regimes and in line
with this, the climatic variables related to precipitation and dryness were linked to the correlations
with differences in the two water regimes.

2.3.3 Comparison between three and nine-day-old females

ANOVA analysis between female mites from the two age groups showed significant differences for
mites reared on non-stressed plants only (Table 3). The leaving rate of nine-day-old females was
twice that of the three-day-old females.
Table 7. Leaving rate of females for each population of *Tetranychus urticae* on non-stressed and drought stressed plants.

Population	Non-stressed (NS)	Stressed (S)	Difference (S-NS)	t on arcsin(sqrt(y))	Df	P-value	Variation direction
CY-I	0.05 ± 0.017	0 ± 0	-0.050	-2.825	24	0.009 **	↘
CY-II	0.02 ± 0.011	0.046 ± 0.019	0.026	1.021	28	0.316	↑
FR-I	0.133 ± 0.032	0.093 ± 0.025	-0.040	-0.693	27	0.494	↑
FR-II	0.173 ± 0.033	0.033 ± 0.019	-0.139	-4.541	24	<0.001 ***	↘
FR-III	0.067 ± 0.021	0.047 ± 0.027	-0.020	-0.915	28	0.368	↑
FR-IV	0.093 ± 0.023	0.047 ± 0.019	-0.047	-1.76	28	0.089	↑
FR-V	0.047 ± 0.017	0.02 ± 0.014	-0.027	-1.462	28	0.155	↑
GR-I	0.033 ± 0.013	0.014 ± 0.010	-0.019	-1.185	27	0.246	↑
GR-II	0.037 ± 0.015	0.025 ± 0.011	-0.012	-0.519	30	0.608	↑
IT-I	0.038 ± 0.031	0 ± 0	0.038	-1.375	24	0.182	↑
SP-I	0.038 ± 0.014	0.007 ± 0.007	0.031	-2.031	25	0.053	↑
UK-I	0.044 ± 0.018	0.087 ± 0.024	0.043	1.386	29	0.176	↑
Mean	0.064	0.035	-0.030				

Table 8. Correlations between leaving rate of 9-day-old females: (1) differences between water regimes and (2) non-stressed plants, and climatic variables. Only significant values are reported.

Climatic variable	Difference between water regimes	Non-stressed plants		
	R^2	P-value	R^2	P-value
BIO12 Annual Precipitation	0.492	0.011	0.346	0.044
BIO14 Precipitation of Driest Month	0.44	0.019	0.429	0.021
BIO16 Precipitation of Wettest Quarter	0.395	0.029	-	-
BIO17 Precipitation of Driest Quarter	0.414	0.024	0.351	0.042
BIO18 Precipitation of Warmest Quarter	0.404	0.026	0.341	0.046
BIO19 Precipitation of Coldest Quarter	0.438	0.019	0.336	0.048
GAI Global Aridity Index	0.403	0.027	-	-
2.4 Progeny sex-ratio

2.4.1 Three-day-old females
Sex-ratio progeny showed significant differences between water regimes in four populations (Table 9). However, two of them corresponded to an increase (CY-II and FR-V) and two others (CY-I and SP-I) to a decrease of male proportion. ANOVA analysis between populations showed significant differences in this life trait (Table 3) but ANOVA analysis between drought regimes was not significant. Two sets of correlations were then tested between the climatic variables and the sex-ratio values of the progeny of three-day-old females reared on non-stressed plants and on drought-stressed plants. A significant correlation between the climatic variables and the sex ratio values was only found for the progeny of females reared on stressed-plants. These variables were Global Aridity Index and BIO12, BIO14, BIO17, BIO18. All of them denote precipitation regimes, in particular summer precipitation and dryness. As a result, the females originating from drier locations and reared on drought-stressed plants produced more females than the females originating from wet locations.

2.4.2 Nine-day-old females
A significant increase (Table 9) of male proportion was observed in five populations (CY-I, FR-V, GR-II, IT-I, UK-I) but a decrease in three others (FR-II, FR-III, SP-I). As for three-day-old females only the ANOVA analysis performed between populations showed significant differences in the value of progeny sex ratio. Subsequently, two correlations were tested between climatic variables and the sex-ratio values of nine-day-old female progeny reared on non-stressed plants and on drought-stressed plants. None of the tested correlations were significant.

2.4.3 Comparison between three and nine-day-old females
ANOVA comparing progeny sex ratio between the two different age females (three-day-old and nine-day-old) age showed significant differences for both, non-stressed and drought-stressed plants regimes (Table 3). For the two water regimes the sex-ratio of nine-day-old female progeny was lower, i.e. more males were produced by old females than by young females.
Table 9. Progeny sex-ratio for each population of *Tetranychus urticae* on non-stressed and drought-stressed plants.

Progeny sex-ratio of 3-day-old females (number of females/(number of males + females))

Population	Non-stressed (NS)	Stressed (S)	Difference (S-NS)	t on arcsin(sqrt(y))	Df	P-value	Variation direction
CY-I	0.794 ± 0.010	0.825 ± 0.007	0.032	-2.523	24	0.019 *	↗
CY-II	0.799 ± 0.012	0.752 ± 0.017	-0.047	2.139	28	0.041 *	↗
FR-I	0.624 ± 0.025	0.611 ± 0.025	-0.013	0.368	27	0.716	↘
FR-II	0.787 ± 0.012	0.774 ± 0.013	-0.013	0.686	24	0.499	↘
FR-III	0.671 ± 0.012	0.649 ± 0.012	-0.021	1.26	28	0.218	↘
FR-IV	0.744 ± 0.010	0.735 ± 0.011	-0.009	0.616	28	0.543	↘
FR-V	0.785 ± 0.017	0.706 ± 0.016	-0.080	3.504	28	0.002 **	↗
GR-I	0.711 ± 0.011	0.734 ± 0.018	0.023	-1.156	27	0.257	↘
GR-II	0.824 ± 0.014	0.802 ± 0.014	-0.022	1.081	30	0.289	↘
IT-I	0.777 ± 0.013	0.746 ± 0.018	-0.030	1.362	24	0.186	↘
SP-I	0.758 ± 0.007	0.799 ± 0.007	0.041	-4.301	25	<0.001***	↘
UK-I	0.767 ± 0.016	0.738 ± 0.019	-0.029	1.185	29	0.246	↘
Mean	0.753	0.739	-0.014				

Progeny sex-ratio of 9-day-old females (number of females/(number of males + females))

Population	Non-stressed (NS)	Stressed (S)	Difference (S-NS)	t on arcsin(sqrt(y))	Df	P-value	Variation direction
CY-I	0.756 ± 0.017	0.661 ± 0.030	-0.095	2.759	24	0.011 *	↘
CY-II	0.466 ± 0.028	0.436 ± 0.029	-0.030	0.729	24	0.473	↘
FR-I	0.475 ± 0.029	0.426 ± 0.032	-0.049	1.023	23	0.317	↘
FR-II	0.532 ± 0.028	0.621 ± 0.028	0.088	-2.179	22	0.040 *	↘
FR-III	0.500 ± 0.015	0.570 ± 0.023	0.070	-2.481	27	0.012 *	↘
FR-IV	0.600 ± 0.025	0.586 ± 0.040	-0.014	0.305	21	0.763	↘
FR-V	0.555 ± 0.023	0.464 ± 0.033	-0.091	2.283	19	0.034 *	↘
GR-I	0.524 ± 0.029	0.489 ± 0.043	-0.035	0.677	22	0.506	↘
GR-II	0.601 ± 0.024	0.470 ± 0.030	-0.131	3.134	23	0.005 **	↘
IT-I	0.693 ± 0.017	0.637 ± 0.008	-0.056	2.871	23	0.009 **	↘
SP-I	0.579 ± 0.022	0.671 ± 0.024	0.092	-2.823	27	0.009 **	↘
UK-I	0.598 ± 0.027	0.442 ± 0.023	-0.155	4.333	23	<0.001***	↘
Mean	0.573	0.539	-0.034				
Discussion

How much the climate in the geographical area of origin of organisms conditions their response to
drought stress is a central question in the context of climate change. This is the focus of the present
study which explores responses of a phytophagous mite, the two spotted spider mite, challenged to
feed on drought-stressed plants. In this study, we reveal that three main factors linked to the
increase of mite populations reared on drought-stressed plants act together in relation to the
climatic variables of the location of origin of mite populations: (1) a shortening of development time,
(2) an increase of fecundity and (3) a decrease of females’ emigration, resulting in longer staying on
the plant leaves.

The shortening of development time for all the studied populations is in line with Nikolova et al.
(2014) who characterised the population increase of a closely related mite species, *Tetranychus
turkestani*, as a result of development time shortening on drought-stressed plants. To be notice is
that mites collected from different origins did not respond significantly different for the development
time parameter when reared on well-watered plants, suggesting that mite development time is an
intrinsic parameter of the species which mainly depends on the host-plants species and the
temperature. Temperature is a well-known factor governing development time of ectotherms (Logan
et al., 1976). While Van Petegem et al. (2016) founded a relationship between development time and
latitude (which in their study corresponds to a thermal gradient), variation in development time was
mainly resulting of a development shortening in the northern edge of the mite’s distribution. The
absence of relationship of development time observed on well-watered plants and any of the
climatic variables in our study is in accordance with their results as attention was done to collect our
two spotted spider mite populations from localities with contrasting climatic profiles in a quite wide
range of core climate conditions distribution (Litskas et al., 2019) in which the mite can be observed
across its native distribution area (Navajas et al., 1998).

The increase of fecundity of mites reared on drought-stressed plants has already been reported by
Chandler et al. (1979), Youngman & Barnes (1986), and Youngman et al. (1988). Physiological
changes that occur in drought-stressed plants may also induce shifts in plant-feeding mites. For
example, development time may decrease and fecundity can increase, as found by Ximénez-Embun
et al. (2017a) and Santamaria et al. (2018) for *T. urticae* and also for another plant mite, *A. lycopersici*
(Ximénez-Embun et al. 2017b). These shifts in mite life history are likely linked to increased
concentration of essential amino acids and free sugars in tomato plants as it was observed by the
same authors, which improved the nutritional value of drought-stressed tomato plants. The increase of fecundity observed here is more modest than seen in Ximenez-Embun et al. (2017a). Differences between the two studies might be due to differences in methods used. For example, we measured fecundity as the number of eggs laid over a 24 h period, while Ximenez-Embun et al. (2017a) measured fecundity as “eggs laid and mobile forms” over a longer period which resulted in a combination of increased fecundity and decreased mite emigration when females were placed on drought-stressed whole plants.

On drought-stressed plants, the decrease of development time and the increase of fecundity of young females are concomitant. Nevertheless, the higher fecundity of young female is not counterbalanced by the lower fecundity of nine-day-old females. These results are not in accordance with Youngman et al. (1988) with *T. pacificus* on almond trees. They observed a shift in peak fecundity, the increase of the first ten days on drought-stressed plant was counterbalanced by a decrease after ten days. Nevertheless, our experimental design did not allow us to observe such a shift with females older than 9-day-old females. When mites were placed on well-watered tomatoes plants, Alzate et al. (2017) described a quadratic relationship between fecundity and longevity, suggesting an optimal balance between these two traits. Our experiments highlight this relationship between fecundity of young and older females and reinforce Alzate et al. (2017) hypothesis of optimal balance. Thus, fecundity appears as an intrinsic population trait according to the correlations observed between three-day-old and nine-day-old females reared on well-watered plants. These results are also in line with Van Petegem et al. (2016) who reported variation in lifetime fecundity of mites for populations originated from the mite’s core distribution varying in a scale from 20 to 110 eggs per female and not linked to latitude or temperature. Fecundity, dispersal and sex-ratio are often linked by complex relationships (Van Petegem et al. 2016) and the quality of the environment which in turn can shape the nutritional quality and the appetite of the host plants, also impacts these relationships. The hypothesis tends to be supported in the literature: for example, Wrensch and Young (1983) observed an increase in the proportion of females on plants of poor nutritional value that was linked to a decrease of fecundity and Yano and Takafuji (2002), using an artificial selection experiment of low and high dispersal strains, observed an increase of diapause incidence and a decrease of general performance, especially in non-appetent plants for highly dispersal strains.

Our study reveals changes in life-history traits of mites when exposed to feed on drought-stressed plants, with a shortened development time and an increased fecundity along with a decrease of mite dispersal. Importantly, not all mites tested responded equally but changes varied depending on the climate conditions experienced in their area of origin. Mite responses while complex, can be, at least
partially, explained by the climatic conditions in the sampled locations. Since all the females coming
from the different localities were reared under identical conditions in a common garden experiment,
it is reasonable to accept that observed variation resulted from genetic differentiation in the tested
populations. Mites originating from wet to cool localities (Alsace and Pays Basque) had seldom
experience of drought-stressed host plants while mites from Cyprus and Greece had to face harsh
climate and dryness half of the year. Previous studies (Chen et al., 2020) highlighted that genetic
variation for two closely related species *Tetranychus truncatus* and *Tetranychus pueraricola*, were
associated with climatic parameters, mainly temperature and precipitation across China. For both
species, genotype association was stronger with precipitation parameters together with the
neuropeptide receptor NPR-9 gene adjacent genomic region. The NPR-9 affects foraging behaviour
and nutrient storage (Bendena et al., 2015) and as a consequence development time and fecundity.
Literature tends then to support that local adaptation to diverse levels of aridity could shape mite
responses allowing them to adjust feeding behaviour in accordance with native local climatic
conditions and nutritional quality of the host plants.

Under a climate change scenario, it is expected that mites will experience harsher drought episodes
with environmental conditions leading to the selection of drought-adapted mites. In agricultural, in-
tensification of damage in humid areas during the first years of drought (see Legrand et al., 2000 for
an example) will probably be limited by physiological costs but progressively lead to adaptation as
suggested by the mite responses in the driest areas of this study. These are important issues to be
taking into account for future strategies of pest management.
Acknowledgements

We thank Judit Linka (NIAB EMR, East Malling, United Kingdom), Lucía Adriana Escudero-Colomar (IRTA, Estació Experimental Agrícola Mas Badia, Spain), Vassilis Litskas and Menelaos Stavrinides (Cyprus University of Technology, Cyprus) and Jean-Baptiste Thibord and Cyril Hannon (Arvalis - Institut du Végétal, France) who helped us for providing mites populations and Nathalie Smit (INRAE Montpellier) for her statistical advice. This work was funded by the FACCE ERA-NET Plus—FACCE JPI GENOMITE project through EC and national sources (EC contract 618105), including the French Agence Nationale de la Recherche (Grant ANR-14-JFAC-0006-01), and the metaprogramme Adaptation of Agriculture and Forest to Climate Change launched by the French National Institute for Agricultural Research (INRAE). The works was initiated before 2018 but completed during the SuperPests grant, supported by the European Union's Horizon2020 research and innovation program (grant 773 902-SuperPests). RAH was supported by USDA NIFA Hatch project 1012868 during this work.

Data

Data and statistical analysis are available here

https://doi.org/10.15454/ICM8EF
References

Alzate A., Bisschop K., Etienne R.S., Bonte D. 2017. Interspecific competition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host. Journal of Evolutionary Biology, 30: 1966-1977.

Antonio T., Robert Z. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 [Internet]. Available from: https://figshare.com/articles/dataset/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448

Auger P., Migeon A., Ueckermann E.A., Tiedt L., Navajas M. 2013. Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, Prostigmata, Tetranychidae): Review and new data. Acarologia, 53: 383-415.

Bendena W.G., Boudreau J.R., Papanicolaou T., Maltby M., Tobe S.S., Chin-Sang I.D. (2008) A Caenorhabditis elegans allatostatin/galanin-like receptor NPR-9 inhibits local search behavior in response to feeding cues. Proceedings of the National Academy of Sciences, 105: 1339-1342.

Boubou A., Migeon A., Roderick G., Navajas M. 2011. Recent emergence and worldwide spread of the red tomato spider mite, Tetranychus evansi: genetic variation and multiple cryptic invasions. Biological Invasions, 13: 81-92.

Boubou A., Migeon A., Roderick G.K., Auger P., Cornuet J.-M., Magalhães S., Navajas M. 2012. Test of colonisation scenarios reveals complex invasion history of the red tomato spider mite Tetranychus evansi. Plos One, 7: e35601.

Bowden J.J., Høye T.T., Buddle C.M. 2013. Fecundity and sexual size dimorphism of wolf spiders (Araneae: Lycosidae) along an elevational gradient in the Arctic. Polar Biology, 36: 831-836.

Bowman L.L., Kondrateva E.S., Timofeyev M.A., Yampolsky L.Y. 2018. Temperature gradient affects differentiation of gene expression and SNP allele frequencies in the dominant Lake Baikal zooplankton species. Molecular Ecology, 27: 2544-2559.

Chandler L.D., Archer T.L., Ward C.R., Lyle W.M. 1979. Influences of Irrigation Practices on Spider Mite Densities on Field Corn. Environmental Entomology, 8: 196-201.

Chavés M.M., Maroco J.P., Pereira J.S. 2003. Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology, 30: 239-264.

Chen L., Sun J.-T., Jin P.-Y., Hoffmann A.A., Bing X.-L., Zhao D.-S., Xue X.-F., Hong X.-Y. (2020) Population genomic data in spider mites point to a role for local adaptation in shaping range shifts. Evolutionary Applications, 00: 1-15.

Crozier R.H. 1985. Adaptative consequences of male-haploidy. In: Helle W., Sabelis M.W., (Eds). Spider mites. Their biology, natural enemies and control. Amsterdam. p. 201-222.
Dale A.G., Frank S.D. 2017. Warming and drought combine to increase pest insect fitness on urban trees. Plos One, 12: e0173844.

English-Loeb G.M. 1989. Nonlinear responses of spider mites to drought-stressed host plants. Ecological Entomology, 14: 45-55.

Fick S.E., Hijmans R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315.

Gillman J.H., Rieger M.W., Dirr M.A., Braman S.K. 1999. Drought Stress Increases Densities but Not Populations of Two-spotted Spider Mite on Buddleia davidii `Pink Delight'. 34: 280.

Hummel I., Pantin F., Sulpice R., Piques M., Rolland G., Dauzat M., Christophe A., Pervent M., Bouteillé M., Stitt M. et al. 2010. Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis. Plant Physiology, 154: 357-372.

Kassambara A., Mundt F. 2019. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.6. [Internet]. [cited]. Available from: https://CRAN.R-project.org/package=factoextra

Kelley A.L., de Rivera C.E., Buckley B.A. 2011. Intraspecific variation in thermotolerance and morphology of the invasive European green crab, Carcinus maenas, on the west coast of North America. Journal of Experimental Marine Biology and Ecology, 409: 70-78.

Koveos D.S., Kroon A., Veerman A. 1993. Geographic variation of diapause intensity in the spider mite Tetranychus urticae. Physiological Entomology, 18: 50-56.

Lê S., Josse J., Husson F. 2008. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25: 1-18.

Le Grand G., Wauters A., Muchembled C., Richard-Molard M. 2000. The common yellow spider mite (Tetranychus urticae Koch) (Acari: Tetranychidae) in sugarbeet in Europe: a new problem. 63e Congrès Institut International de Recherches Betteravières, Interlaken, Switzerland.

Litskas V.D., Migeon A., Navajas M., Tixier M.-S., Stavrinides M.C. 2019. Impacts of climate change on tomato, a notorious pest and its natural enemy: small scale agriculture at higher risk. Environmental Research Letters, 14: 084041.

Logan J.A., Wolffkind D.J., Hoyt S.C., Tanigoshi L.K. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology, 5: 1133-1140.

Magalhães S., Forbes M.R., Skoracka A., Osakabe M., Chevillon C., McCoy K.D. 2007. Host race formation in the Acari. Experimental and Applied Acarology, 42: 225-238.
Meynard C.N., Migeon A., Navajas M. 2013. Uncertainties in predicting species distributions under climate change: a case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. Plos One, 8: e66445.

Migeon A., Auger P., Hufbauer R., Navajas M. 2015. Genetic traits leading to invasion: plasticity in cold hardiness explains current distribution of an invasive agricultural pest, Tetranychus evansi (Acari: Tetranychidae). Biological Invasions, 17: 2275-2285.

Migeon A., Dorkeld F. 2019. Spider Mites Web: a comprehensive database for the Tetranychidae [Internet]. INRA; [cited]. Available from: http://www.montpellier.inra.fr/CBGP/spmweb

Migeon A., Tixier M.-S., Navajas M., Litskas V.D., Stavrinides M.C. 2019. A predator-prey system: Phytoseiulus persimilis (Acari: Phytoseiidae) and Tetranychus urticae (Acari: Tetranychidae): worldwide occurrence datasets. Acarologia, 59: 301-307.

Mitlin D., Beard V.A., Satterthwaite D., Du J. 2019. Unaffordable and Undrinkable: Rethinking Urban Water Access in the Global South. Washington, DC: World Resources Institute. Working Paper.

Navajas M., Lagnel J., Gutierrez J., Boursot P. 1998. Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity, 80: 742-752.

Nikolova I., Georgieva N., Naydenova J. 2014. Development and reproduction of spider mites Tetranychus turkesteni (Acari: Tetranychidae) under water deficit condition in soybeans Pesticidi i fitomedicina, 29: 187-195.

Oloumi-Sadeghi H., Helm C.G., Kogan M., Schoeneweiss D.F. 1988. Effect of water stress on abundance of twospotted spider mite on soybeans under greenhouse conditions. Entomologia Experimentalis et Applicata, 48: 85-90.

R Core Team R.C. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Sadras V.O., Wilson L.J., Lally D.A. 1998. Water Deficit Enhanced Cotton Resistance to Spider Mite Herbivory. Annals of Botany, 81: 273-286.

Santamaria M.E., Auger P., Martinez M., Migeon A., Castanera P., Diaz I., Navajas M., Ortego F. 2018. Host plant use by two distinct lineages of the tomato red spider mite, Tetranychus evansi, differing in their distribution range. Journal of Pest Science, 91: 169-179.

Santamaria M.E., Diaz I., Martinez M. 2018. Dehydration stress contributes to the enhancement of plant defense response and mite performance on barley. Front. Plant Sci. 9:458

Seagraves M.P., Riedell W.E., Lundgren J.G. 2011. Oviposition Preference for Water-Stressed Plants in Orius insidiosus (Hemiptera: Anthocoridae). J Insect Behav, 24: 132-143.

Sengupta S., Cai W. 2019. A Quarter of Humanity Faces Looming Water Crises. The New York Times.

New-York.
Showler A.T. 2013. Water Deficit Stress - Host Plant Nutrient Accumulations and Associations with Phytaphagous Arthropods. In: Vahdati K., Leslie C., (Eds). Abiotic Stress - Plant Responses and Applications in Agriculture. London: IntechOpen. p. 387-410.

Stillwell R.C., Blanckenhorn W.U., Teder T., Davidowitz G., Fox C.W. 2010. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annu Rev Entomol, 55: 227-245.

Suwa A., Gotoh T. 2006. Geographic variation in diapause induction and mode of diapause in Tetranychus pueraricola. Journal of Applied Entomology, 130: 329-335.

Takafuji A., So P.M., Tsuno N. 1991. Inter- and intra-population variations in diapause attribute of the two-spotted spider mite, Tetranychus urticae Koch, in Japan. Researches on Population Ecology, 33: 331-344.

Trabucco A., Zomer. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 [Internet]. [cited]. Available from: https://figshare.com/articles/dataset/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448

Van Petegem K.H.P., Boeye J., Stoks R., Bonte D. 2016. Spatial selection and local adaptation jointly shape life-history evolution during range expansion. Am. Nat., 188: 485-498.

Venables W.N., Ripley B.D. 2002. Modern Applied Statistics with S. New-York: Springer.

Verslues P.E., Agarwal M., Katiyar-Agarwal S., Zhu J., Zhu J.-K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45: 523-539.

Walter J., Hein R., Auge H., Beierkuhnlein C., Löffler S., Reifenrath K., Schädler M., Weber M., Jentsch A. 2012. How do extreme drought and plant community composition affect host plant metabolites and herbivore performance? Arthropod-Plant Interactions, 6: 15-25.

Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.

Wrensch D.L., Young S.S.Y. 1983. Relationship between Primary and Tertiary Sex Ratio in the Two-Spotted Spider Mite (Acarina: Tetranychidae). Annals of the Entomological Society of America, 76: 786-789.

Ximénez-Embún M.G., Castañera P., Ortego F. 2017a. Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae. Journal of Insect Physiology, 96: 73-81.

Ximénez-Embún M.G., Glas J.J., Ortego F., Alba J.M., Castañera P., Kant M.R. 2017b. Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses. Experimental and Applied Acarology, 73: 297-315.
Ximénez-Embún M.G., Ortego F., Castañera P. 2016. Drought-Stressed Tomato Plants Trigger Bottom-Up Effects on the Invasive Tetranychus evansi. PLoS One, 11: e0145275.

Yano S., Takafuji A. 2002. Variation in the life history pattern of Tetranychus urticae (Acari: Tetranychidae) after selection for dispersal. Experimental and Applied Acarology, 27: 1-10.

Youngman R.R., Barnes M.M. 1986. Interaction of Spider Mites (Acari: Tetranychidae) and Water Stress on Gas-exchange Rates and Water Potential of Almond Leaves. Environmental Entomology, 15: 594-600.

Youngman R.R., Sanderson J.P., Barnes M.M. 1988. Life History Parameters of Tetranychus pacificus McGregor (Acari: Tetranychidae) on Almonds Under Differential Water Stress. Environmental Entomology, 17: 488-495.