Synthesis of a series of vicinal diamines with potential biological activity

Vanya Kurteva*, Maria Lyapova

Institute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria

Received 13 July 2004; accepted 23 August 2004

Abstract: A broad range of vicinal diamines based on styrene oxide are synthesised via mixtures of regioisomeric amino alcohols. The ring opening of the intermediate aziridinium ions by primary amines proceeds with high regioselectivity, leading to the target diamines as single regioisomers for all reaction series. The compounds are of potential biological interest as ligands for cisplatin analogues. Anticancer activity tests of both groups of compounds are in progress.

© Central European Science Journals. All rights reserved.

Keywords: Amino alcohols, aziridinium ion, ring opening, vicinal diamines, regioselectivity

1 Introduction

Vicinal diamines are an important class of organic compounds; they have been widely used as chelating agents in radiopharmaceuticals [1,2], as ligands in analytical chemistry, and for the synthesis of compounds with pharmaceutical importance. Compounds include precursors in the synthesis of azamacrocycles [3] and heterocyclic compounds [4], intermediates in the synthesis of analgesics. Chiral, nonracemic vicinal diamines are of great interest as chiral auxiliaries [5] in important reactions, such as the reduction of prochiral ketones, aldol reactions, etc., which achieve high reaction yields, similar to those of enzyme reactions.

Various natural and synthetic compounds, containing a 1,2-diamine moiety display a broad spectrum of biological activities. The anti-tumour properties of cisplatin were discovered in the mid 1960s [6], and it was successfully used in chemotherapy. Afterward,
many analogous compounds were investigated; among them were several that possess even higher activities [7-12]. Thus, the synthesis of platinum 1,2-diamino complexes has recently received great deal of interest in the search for drugs having greater activities and less toxicity, and to circumvent drug resistance that may develop in certain tumours [13,14].

Among the relevant methods for synthesising vicinal diamines [5], an efficient and expedient one [15-18] is based on the nucleophilic ring opening of epoxides by the action of a secondary amine, followed by substitution of the hydroxyl group on the immediately-formed amino alcohol by a primary amine. The substitution occurs via a tetrahedral aziridinium ion intermediate. The method is a simple, high yield protocol using cheap starting materials. In the case of aziridinium ions having a benzylic position [19], the observed regioselectivity of the transformation presents an additional advantage.

Herein is presented a synthesis of a broad range of vicinal diamines with potential biological activity as ligands for cisplatin analogues.

2 Results and discussion

Mixtures of regioisomeric vicinal amino alcohols (1 and 2) are synthesised from styrene oxide by epoxide ring opening using a series of secondary amines, such as piperidine, pyrrolidine, morpholine and N-phenyl piperazine, according to a known procedure and in high yields (Scheme 1).

Secondary alcohols are the major products, and the relative ratios of the regioisomers

Secondary alcohols are the major products, and the relative ratios of the regioisomers
are similar in all cases (Table 1). Subsequent mesylation of these amino alcohols is carried out using triethyl amine as a base, in order to form aziridinium ions that are not isolated in this procedure. Both regioisomeric amino alcohols give the same aziridinium ion and thus, mixtures of alcohols 1 and 2 can be used in this reaction without preliminary isolation. In situ treatment of the aziridinium ions with various primary amines leads to vicinal diamines (3-10, a-d) as a result of a ring opening reaction at the benzylic center (Scheme 1). The transformation occurs very smoothly, and the target diamines are obtained as the only products in moderate yields, contaminated slightly with impurities of the starting amino alcohols in some cases.

The reaction proceeds with high regioselectivity, and the diamines are formed as single regioisomers in all cases. This observation agrees with general findings, that if the aziridinium ion has a benzylic position it undergoes virtually exclusive ring opening by amines at this position, in contrast to the terminal where the preferential attack is at the least hindered position [19].

As the preferred conformation of the ligand is important in the context of the complexation, a detailed study of the 1H and 13C NMR data of the products is given in Table 2. The assignment of the signals in 1H NMR spectra was made based upon the specific chemical shifts and coupling constants, while those of the 13C NMR signals were based upon DEPT and HMQC techniques. As the proton signals for the methylene and methyne groups of both amino alcohols 1 and 2 are in a region free of other signals, their assignments were made based upon the corresponding integrals and were confirmed by COSY cross peaks. The signals for the phenyl groups, heterocyclic rings, and N-substituents are in a common region, and since some of these signals are partially overlapped in the proton spectra, only the values of the skeleton nuclei are given in Table 1 and Table 2.

The CH proton appears as a doublet of doublets with different couplings to both protons of the diastereoisotopic CH$_2$ group, giving two sets of signals. This pattern is characteristic of all the products investigated herein. An aromatic N-substituent (products 6-8) shifts the CH-1 proton slightly downfield in its 1H NMR spectrum, while the C-1 carbon appears at higher field in its 13C NMR spectrum with respect to those signals in the other products. The same compounds (6-8) show average and large couplings, while small and large are observed for the rest. The similarity of all other data for the diamines reported here indicate that only the N-substituent slightly affects the preferred conformation of these compounds, while the heterocyclic ring has no influence.

3 Conclusion

A series of vicinal diamines with potential as ligands for cisplatin analogues were synthesised. The target diamines were formed as single regioisomers under these reaction conditions in accordance with the literature data. A detailed analysis of both the 1H and 13C NMR data shows that only an aromatic N-substituent has a slight influence on the preferred conformation of the diamine, while the heterocyclic ring present in the molecule does not affect it.
Anticancer activity tests of the vicinal diamines 3-10, as well as those of the regioisomeric mixtures of vicinal amino alcohols 1 and 2, are in progress.

4 Experimental

All reagents were purchased from Aldrich, Merck and Fluka and were used without any further purification. Diethyl ether was dried over sodium wire. Merck Silica gel 60 (0.040-0.063 mm) was used for column chromatography. Melting points were determined in capillary tubes and were not corrected. The NMR spectra were recorded on a Bruker DRX 250 spectrometer using deuterochloroform as the solvent; chemical shifts were reported in ppm relative to tetramethylsilane (TMS, δ=0 ppm), and the coupling constants were calculated in Hz. Microanalyses were carried out by the microanalyses service of the Institute of Organic Chemistry, Bulgarian Academy of Sciences.

General procedure for the preparation of diamines 3-10a – d:

A solution of styrene oxide (10 mmol) and a secondary amine (20 mmol), piperidine, pyrrolidine, morpholine or N-phenylpiperazine in ethanol (20 ml) was refluxed for 3 h. The solvent was removed in vacuo affording a mixture of regioisomeric amino alcohols 1 and 2 in 92-96 % yield as solid residue, which was used without further purification. The relative ratios of the amino alcohols and their NMR data are given in Table 1.

Triethylamine (30 mmol) was added to a solution of the thus-prepared amino alcohols 1 and 2 (10 mmol) in dry diethyl ether (20 ml) under atmosphere of argon. The reaction mixture was cooled to 0 °C, and methanesulphonyl chloride (MsCl, 12 mmol) was added. After 45 min, triethylamine (20 mmol) was added, and the mixture was warmed to room temperature, followed by addition of the primary amine (20 mmol) and water (20 mmol). Stirring was continued for 10 h at ambient temperature. The ether solution was extracted with brine, aq. NaHCO₃, and again with brine and was dried over MgSO₄. The solvent was evaporated to dryness, and the residue was purified by column chromatography on silica gel using diethyl ether as the mobile phase, affording the 1,2-diamines (3-10a-d). In the case of diamines 3 (R’=H), concentrated NH₃ was used as the reagent, and dioxane was used as the reaction media. The yields of the products and their physical and spectral data are summarised in Table 2.

References

[1] L. H. DeRiemer, C. F. Meares, D. A. Goodwin and C. I. Diamanti: “Bledta-II – synthesis of a new tumor-visualizing derivative of Co(III)-bleomycin”, J. Labelled Compd. Radiopharm., Vol. 18, (1981), pp. 1517–1534.

[2] S. Kasina, A. R. Fritzberg, D. L. Jonhson and D. J. Eshima: “Tissue distribution properties of technetium-99m-diamide-dimercaptide complexes and potential use as renal radiopharmaceuticals”, J. Med. Chem., Vol. 29, (1986), pp. 1933–1940.

[3] J.-M. Lehn: “Cryptates: the chemistry of macropolycyclic inclusion complexes”, Acc. Chem. Res., Vol. 11, (1978), pp. 49–57.
A.E. Popter: “Pyrazines and their benzo derivatives“, In: A.R. Katritzky and C.W.C. Rees (Eds.): Comprehensive Heterocyclic Chemistry, Vol. 3, Pergamon Press, Oxford, 1984, p. 179.

Review: D. Leucet, T. Legall and C. Mioskowski: “The chemistry of vicinal diamines”, Angew. Chem., Int. Ed., Vol. 37, (1998), pp. 2580–2627.

B. Rosenberg, L. VanCamp, J.E. Trosko and V.H. Mansour: “Platinum compounds – a new class of potent antitumor agents”, Nature, Vol. 222, (1969), pp. 385–386.

H. Brunner, P. Hankofer, U. Holzinger, B. Treitinger and H. Schönenberger: “Synthesis and antitumor activity of platinum(II) complexes containing substituted ethylenediamine ligands”, Eur. J. Med. Chem., Vol. 25, (1990), pp. 35–44.

H. Brunner, P. Hankofer, U. Holzinger and B. Treitinger: “Synthesis and antitumor activity of Pt(II) complexes of benzyl-1,2-diaminoethane ligands”, Chem. Ber., Vol. 123, (1990), pp. 1029–1038.

R. Gust, T. Burgemeister, A. Mannschreck and H. Schönenberger: “Aqua[1-(2,6-dichloro-4-hydroxyphenyl)-2-phenylethylenediamine](sulfato)platinum(II) complexes with variable substituents in the 2-phenyl ring. I. Synthesis and antitumor and estrogenic properties”, J. Med. Chem., Vol. 33, (1990), pp. 2535–2544.

L.R. Kelland, G. Abel, M.J. McKeage, M. Goddard, M. Valenti, B.A. Murrer and K.R. Harrap: “Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): an orally active platinum drug”, Cancer Res., Vol. 53, (1993), pp. 2581–2586.

D.-K. Kim, Y.-W. Kim, H.-T. Kim and K. H. Kim: “Synthesis and in vitro cytotoxicity of cis-dichloro[(2S,3R,4S)-2-aminomethyl-3,4-(O-isopropylidene)dihydroxy- or -3,4-dihydroxyppyrrolidine]platinum(II)”, Bioorg. Med. Chem. Lett., Vol. 6, (1996), pp. 643–646.

A. Pasini and F. Zunino: “New cisplatin analogs – on the way to better antitumor agents”, Angew. Chem., Int. Ed., Vol. 26, (1987), pp. 615–624.

J. Reedijk: “Improved understanding in platinium antitumour chemistry”, Chem. Commun., (1996), pp. 801–806.

S.E. Sousa, P. O’Brien and P. Pommellec: “Two expedient methods for the preparation of chiral diamines”, J. Chem. Soc., Perkin Trans. 1, (1998), pp. 1483–1492.

B.E. Rossiter, M. Eguchi, G. Miao, N.M. Swingle, A.E. Hernandez, E. Fluckiger, D. Vickers, R.G. Patterson and K.L. Reddy: “Enantioselective conjugate addition to cyclic enones with scalenic lithium organo(amido)cuprates, Part IV. Relationship between ligand structure and enantioselectivity”, Tetrahedron, Vol. 49, (1993), pp. 965–986.

R.K. Dieter, B. Lagu, J.W. Deiter, N. Deo and W.T. Pennington: „Synthesis of chiral triamine ligands from ephedrine and pseudoephedrine“, Synlett, (1990), pp. 109–110.

R.K. Dieter, N. Deo, B. Lagu and J.W. Deiter: „Stereo- and regioselective synthesis of chiral diamines and triamines from pseudoephedrine and ephedrine“, J. Org. Chem., Vol. 57, (1992), pp. 1663–1673.
[19] P. O’Brien and T.D. Towers: “Diamine synthesis: Exploring the regioselectivity of ring opening of aziridinium ions”, *J. Org. Chem.*, Vol. 67, (2002), pp. 304–307; and references cited therein.

[20] D. Bhuniya, A. DattaGupta and V. Singh: “Design, Synthesis, and Application of Chiral Nonracemic Lithium Amide Bases in Enantioselective Deprotonation of Epoxides”, *J. Org. Chem.*, Vol. 61, (1996), pp. 6108–6113.
Pr.	Relative ratio (%)	Formula, MW	Analysis (%)^a, Found (Calcd)	H-1/C-1	H-2/C-2	
1a	64	C₁₃H₁₉NO	4.718; J 3.8,10.4, 2.383; J 10.4,12.4	4.718; J 3.8,10.4	2.383; J 10.4,12.4	
		H₁/C₁ 2.383; J 10.4,12.4	C 75.87 (76.05), 68.575	68.575	66.890	
2a	36	C₁₂H₁₇NO	3.965; J 8.8,9.1	3.965; J 8.8,9.1	59.795	70.213
		H₂/C₂ 3.965; J 8.8,9.1	H 9.51 (9.33), 6.63 (6.82), 3.600; J 5.2,9.1	3.600; J 5.2,9.1	3.672; J 5.2,8.8	
1b	68	C₁₂H₁₇NO	4.697; J 3.3,10.6, 2.456; J 3.3,12.2	4.697; J 3.3,10.6	2.456; J 3.3,12.2	
		H₁/C₁ 2.456; J 3.3,12.2	C 75.53 (75.35), 70.668	70.668	64.106	
2b	32	C₁₂H₁₇NO₂	3.851; J 5.8,10.7	3.851; J 5.8,10.7	64.294	70.010
		H₂/C₂ 3.851; J 5.8,10.7	H 8.82 (8.96), 7.57 (7.32), 3.778; J 5.8,10.7	3.778; J 5.8,10.7	3.407; J 5.8	
1c	62	C₁₂H₁₇NO₂	4.724; J 5.7,8.1, 2.463; J 8.1,12.6	4.724; J 5.7,8.1	2.463; J 8.1,12.6	
		H₁/C₁ 2.463; J 8.1,12.6	C 69.32 (69.54), 68.386	68.386	66.435	
2c	38	C₁₂H₁₇NO₂	3.906; J 8.5,10.2	3.906; J 8.5,10.2	60.750	70.545
		H₂/C₂ 3.906; J 8.5,10.2	H 8.43 (8.27), 6.92 (6.76), 3.754; J 5.7,10.2	3.754; J 5.7,10.2	3.505; J 5.7,8.5	
1d	65	C₁₈H₂₂N₂O	4.767; J 5.6,8.3, 2.529; J 8.3,12.4	4.767; J 5.6,8.3	2.529; J 8.3,12.4	
		H₁/C₁ 2.529; J 8.3,12.4	C 76.82 (76.56), 68.705	68.705	66.112	
2d	35	C₁₈H₂₂N₂O	4.026; J 10.5,12.0	4.026; J 10.5,12.0	60.469	69.975
		H₂/C₂ 4.026; J 10.5,12.0	H 7.71 (7.85), 9.68 (9.92), 3.735; J 5.0,12.0	3.735; J 5.0,12.0	3.724; J 5.0,10.5	

^a Determined as mixtures of regioisomers.

Table 1 Relative ratios (as determined by ¹H NMR) and analytical and NMR data (CDCl₃, δ referenced to TMS as an internal standard, J in Hz) of the skeleton nuclei of amino alcohols 1 and 2.
Pr.	Yield (%)	Mp (°C)	Formula, MW	Analysis (%), Found (Calcd)	H-1/C-1	H-2/C-2
3a	74 oil	204.319	C$_{13}$H$_{20}$N$_2$	C 76.45 (76.42), H 9.63 (9.87), N 13.58 (13.71)	2.200; J 3.4,10.8	67.242
				H 2.567; J 10.8,12.6		
4a	76 oil	218.346	C$_{14}$H$_{22}$N$_2$	C 76.87 (77.01), H 10.32 (10.16), N 12.74 (12.83)	2.241; J 3.4,10.8	66.625
				H 2.418; J 11.0,12.4		
5a	81 oil	232.373	C$_{15}$H$_{24}$N$_2$	C 77.68 (77.53), H 10.57 (10.41), N 11.83 (12.06)	2.289; J 3.4,10.5	66.070
				H 2.765; J 10.7,12.6		
6a	93 80-81°	280.417	C$_{19}$H$_{24}$N$_2$	C 81.22 (81.31), H 8.81 (8.63), N 9.73 (9.99)	2.456; J 5.7,9.9	66.061
				H 2.473; J 9.9,11.4		
7a	92 98-99°	294.444	C$_{20}$H$_{26}$N$_2$	C 81.43 (81.58), H 8.78 (8.90), N 9.71 (9.51)	2.415; J 5.7,12.0	66.082
				H 2.465; J 9.9,12.0		
8a	86 81-82°	310.444	C$_{20}$H$_{26}$N$_2$O	C 77.57 (77.38), H 8.13 (8.44), N 9.31 (9.02)	2.432; J 5.4,10.2	66.144
				H 2.454; J 10.2,12.3		
9a	82 40-41°	294.444	C$_{20}$H$_{26}$N$_2$	C 81.73 (81.58), H 8.97 (8.90), N 9.36 (9.51)	2.205; J 3.4,11.2	66.379
				H 2.450; J 11.2,12.3		
10a	93 65-66°	368.525	C$_{23}$H$_{32}$N$_2$O$_2$	C 74.73 (74.96), H 8.91 (8.75), N 7.81 (7.60)	2.220; J 3.6,12.3	66.244
				H 2.249; J 10.9,12.3		
4b	82 oil	204.319	C$_{13}$H$_{20}$N$_2$	C 76.57 (76.42), H 9.83 (9.87), N 13.68 (13.71)	2.226; J 3.4,11.9	63.840
				H 2.831; J 10.9,11.9		
6b	91 73-74°	266.390	C$_{18}$H$_{22}$N$_2$	C 80.97 (81.16), H 8.51 (8.32), N 10.67 (10.52)	2.561; J 5.6,10.6	63.349
				H 2.978; J 5.6,12.0		
7b	93 64-65°	280.417	C$_{19}$H$_{24}$N$_2$	C 81.23 (81.38), H 8.58 (8.63), N 10.13 (9.99)	2.504; J 10.5,12.0	63.418
				H 2.944; J 6.3,12.0		

Table 2: Analytical and NMR data (CDCl$_3$, δ referenced to TMS as an internal standard, J in Hz) of the skeleton nuclei of diamines 3–10.
Table 2 (continue) Analytical and NMR data (CDCl₃, δ referenced to TMS as an internal standard, J in Hz) of the skeleton nuclei of diamines 3–10.

Pr.	Yield (%)	Mp (°C)	Formula, MW	Analysis (%), Found (Calcd)	H-1/C-1	H-2/C-2
8b	92	56-57°	C₁₅H₂₄N₂O	296.417	4.146; 2.387; J 10.2,12.0	2.845; J 5.8,12.0
			296.417	H 8.32 (8.16)	N 9.63 (9.45)	58.117
					63.418	
9b	90	oil	C₁₉H₂₄N₂	280.417	3.685; J 3.3,11.4	2.198; J 3.3,12.0
			280.417	H 8.49 (8.63)	N 9.73 (9.99)	60.421
					63.625	
10b	76	43-44°	C₂₂H₃₀N₂O₂	354.498	3.669; J 3.6,10.9	2.225; J 3.6,11.9
			354.498	H 8.71 (8.53)	N 7.69 (7.90)	62.093
					63.432	
3c	76	oil	C₁₂H₁₈N₂O	206.292	4.099; J 3.9,9.8	2.342; J 3.9,12.3
			206.292	H 8.92 (8.80)	N 13.55 (13.58)	51.812
					66.916	
4c	78	oil	C₁₃H₂₀N₂O₂	220.319	3.721; J 3.4,9.3	2.340; J 3.4,12.5
			220.319	H 9.39 (9.15)	N 12.87 (12.72)	61.575
					65.976	
5c	73	oil	C₁₄H₂₂N₂O	234.346	3.788; J 3.6,10.9	2.325; J 3.6,12.4
			234.346	H 9.51 (9.46)	N 11.68 (11.95)	59.421
					66.006	
6c	95	94-95°	C₁₄H₂₂N₂O	282.390	4.301; J 5.5,10.0	2.528; J 10.0,12.5
			282.390	H 7.81 (7.85)	N 9.71 (9.92)	55.054
					65.612	
7c	76	103-104°	C₁₉H₂₄N₂O	296.417	4.263; J 5.4,9.7	2.492; J 5.4,12.3
			296.417	H 8.31 (8.16)	N 9.38 (9.45)	55.267
					65.646	
8c	74	99-100°	C₁₉H₂₄N₂O₂	312.417	4.238; J 5.0,8.3	2.491; J 5.0,12.4
			312.417	H 7.85 (7.74)	N 8.82 (8.97)	55.674
					65.737	
9c	86	65-66°	C₁₉H₂₄N₂O	296.417	3.684; J 3.4,11.0	2.203; J 3.4,12.4
			296.417	H 8.23 (8.16)	N 9.58 (9.45)	57.266
					65.734	
10c	72	82-83°	C₂₂H₃₀N₂O₃	370.498	3.712; J 3.5,10.9	2.279; J 3.5,12.1
			370.498	H 8.31 (8.16)	N 7.72 (7.56)	59.435
					65.723	
Pr.	Yield (%)	Mp (°C)	Formula	Analysis (%)	H-1/C-1	H-2/C-2
-----	-----------	---------	---------	--------------	---------	---------
4d	83	78-79°	C_{19}H_{25}N_{3}	C 77.17 (77.25)	3.671; J 3.4,10.8	2.383; J 3.4,12.4
				H 8.49 (8.53)		2.547; J 10.8,12.4
				N 14.47 (14.22)	362.183	65.814
6d	81	134-135°	C_{24}H_{27}N_{3}	C 80.42 (80.63)	4.328; J 4.7,10.5	2.537; J 4.7,12.3
				H 7.83 (7.61)		2.644; J 10.5,12.3
				N 11.91 (11.75)	55.440	65.165
7d	72	97-98°	C_{25}H_{29}N_{3}	C 80.91 (80.82)	4.275; J 4.7,10.9	2.501; J 4.7,12.3
				H 7.68 (7.87)		2.565; J 10.9,12.3
				N 11.45 (11.31)	55.593	65.096
8d	74	128-129°	C_{25}H_{29}N_{3}O	C 77.62 (77.48)	4.266; J 4.8,10.7	2.541; J 4.8,12.4
				H 7.33 (7.54)		2.661; J 10.7,12.4
				N 10.67 (10.84)	55.690	65.271
9d	76	110-111°	C_{25}H_{29}N_{3}	C 80.62 (80.82)	3.833; J 3.4,11.2	2.364; J 3.4,12.4
				H 7.98 (7.87)		2.622; J 11.2,12.4
				N 11.45 (11.31)	57.709	65.414
10d	73	116-117°	C_{28}H_{33}N_{3}O_{2}	C 75.62 (75.47)	3.733; J 3.4,10.8	2.326; J 3.4,12.2
				H 7.78 (7.92)		2.472; J 10.8,12.4
				N 9.52 (9.43)	59.934	65.250

Table 2 (continue) Analytical and NMR data (CDCl₃, δ referenced to TMS as an internal standard, J in Hz) of the skeleton nuclei of diamines 3–10.