Downward-going tau neutrinos and Dark Matter

Viviana Niro
Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino
via P. Giuria 1, I-10125 Torino, Italy
E-mail: viviana.niro@gmail.com

Abstract. We discuss the possibility of detecting the downward–going tau neutrino flux from Dark Matter annihilation inside the Sun. In our analysis we focused on the hadronic showers produced by charged–current tau neutrino interactions followed by hadronic tau decay. We include the various sources of tau neutrino backgrounds as well as experimental sources of background due to misidentification of electron and muon events. We find that the downward–going tau neutrino signal has potentially very good prospects for Mton–scale Cherenkov detectors, if the level of misidentification of non–tau events is at the level of percent. In this case, within few years of exposure, a 5σ significance discovery is potentially reachable for Dark Matter masses in the range from 20 to 300 GeV.

1. Introduction
Indirect Dark Matter (DM) searches look for the products of DM self–annihilation (or decay) occurring in the galactic halo, in the extragalactic environment or in those celestial bodies, like the Sun and the Earth, where they can be gravitationally trapped and accumulated. As a consequence of DM annihilations, a flux of high–energy neutrinos can emerge. In general, the flux is composed by all three neutrino flavours, but the typical signal which is looked at refers to the ν_μ component and consists of a flux of up–going muons in a neutrino detector. In this case, the major source of background is given by atmospheric muon neutrinos.

In this talk, which is based on Ref. [1], we propose, instead, a novel signature: the possibility of looking at the ν_τ component of the DM signal coming from the Sun. This is almost background–free in the downward–going direction, since the ν_τ amount in atmospheric neutrinos is negligible and atmospheric ν_μ do not sizably oscillate in the down–going baseline.

In Sect. 2 we discuss the neutrino fluxes coming from DM annihilation and the background fluxes: the atmospheric, solar corona and galactic neutrinos. The class of signals relevant for water Cherenkov detectors, i.e. the hadronic contained events, is then presented. We discuss both the signal events from tau decay as well as the background contributions due to misidentified electron and muon events. In Sect. 3 we show the level of sensitivity that can be achieved on the DM spin–independent cross section on protons σ_p. The capabilities of Mton–scale water Cherenkov detectors are also presented. Conclusions are given in Sect. 4.

2. Background and signal events
The neutrino flux at the detector, coming from DM annihilation inside the Sun, is calculated as described in Ref. [2], considering neutrino oscillations and neutrino neutral current ($N\nu$) and
charged current (CC) interactions. We consider two DM annihilation channels: into neutrinos with flavor–blind branching ratios and into tau leptons.

The ν_τ coming from oscillation of atmospheric ν_μ [3] represents one source of background to the ν_τ DM signal. There are, however, three other forms of background: the intrinsic ν_τ contribution to the atmospheric flux [4], the neutrino flux produced in the solar corona [5] and the fluxes of tau neutrinos from the galactic plane [6].

For (GeV–TeV) energies, $CC \nu_\tau$ interactions in water Cherenkov detectors will lead to multiple Cherenkov rings and the possibility of identifying these events is currently based only on statistical methods. Considering the hadronic decays of tau leptons, the misidentified events for the Super–Kamiokande detector is of the order of several percent [7, 8]. The experimental backgrounds that we consider are $N\bar{C}$ events from ν_τ and ν_μ atmospheric neutrinos and CC events from ν_e.

The expression for the contained hadronic tau events is given by [9]

$$N_{\tau}^{CC} \mid_{S,B} = M_{det} N_y \times \int_{E_{vis}^{min}}^{E_{vis}^{max}} dE_{vis} \int d\Omega \eta(\theta) \left(\frac{d^2T_{\tau}^{CC}}{d\Omega dE_{vis}} \right)_{S,B} ,$$

with $M_{det} N_y$ being the detector exposure, $\eta(\theta)$ the on–source duty factor and

$$\left(\frac{d^2T_{\tau}^{CC}}{d\Omega dE_{vis}} \right)_{S,B} = \int dE_\nu \int dE_\tau \frac{d^2\phi_{\nu_\tau}}{d\Omega dE_\nu} \left(\frac{\Sigma_{\tau}^{CC}(E_\tau, E_\nu)}{dE_{vis}} \right)_{S,B} + (\nu \to \bar{\nu}),$$

where S and B denote signal and background and $d^2\phi_{\nu_\tau}/d\Omega dE_\nu$ the ν_τ flux. The function Σ_{τ}^{CC} quantifies the number of interactions, while $d\Gamma_h/dE_{vis}$ the decay rate of tau into hadrons [1].

In the left panel of Fig. 1, we show the number of downward–going signal events from hadronic tau decay as a function of the DM mass m_χ, for $M_{det} N_y = 1$ Mton\timesyear and for $\sigma_p = 10^{-41}$ cm2. The number of signal events can reach the level of 50 or more, depending on m_χ. For the annihilation channels under study, this signal is most sensitive to DM masses in the range from 30 GeV up to 200–300 GeV. In the same figure, we also show the negligible number of CC events expected from the ν_τ background. The $N\bar{C}$ events from atmospheric ν_μ and ν_e as well as the CC events from ν_e are also shown. These classes of events pose a problem if they are not controlled at a level better than a few percent.

3. Detectability and statistical significance

To quantify the discovery reach of present and future water Cherenkov detectors, we use the statistical significance ς, defined as the signal–to–noise ratio:

$$\varsigma \equiv \frac{S}{\sqrt{S+B}} .$$

In the ideal case, in which no misidentification is present and the detector efficiency for tau leptons ϵ_{τ} is 100%, the background contribution is given by $B_{ideal} = N_{\tau}^{CC} \mid_B$. In a more realistic case, in which the misidentification and the detection efficiency for taus are considered, we have:

$$B_{realistic} = \epsilon_{\tau} N_{\tau}^{CC} \mid_B + \epsilon_{\mu}^{min} N_{\mu}^{CC} \mid_B + \epsilon_{e}^{min} \left(N_{e}^{NC} \mid_B + N_{e}^{CC} \mid_B \right).$$

We show in the right panel of Fig. 1 the contours for $\varsigma = 1.64$ (which corresponds to a 90% C.L. upper bound) in the plane σ_p vs. m_χ, for an exposure $M_{det} N_y = 1$ Mton\timesyear. The dotted lines represent the limits without considering misidentification, while the solid lines correspond to $\epsilon_{\tau} = 40\%$ and $\epsilon_{e}^{min} = 4\%$. We show the allowed regions obtained from the DAMA [10],
Figure 1. Left: Number of downward–going ν_τ hadronic events as a function of m_χ, for $\sigma_p = 10^{-41}$ cm2 and $M_{\text{det}}N_y = 1$ Mton\timesyear. The horizontal lines represent the NC events expected from the atmospheric ν_e and ν_μ, and the CC events from atmospheric ν_e and background ν_τ. Right: Limits at 90% C.L. ($\varsigma = 1.64$) on σ_p as a function of m_χ, for $M_{\text{det}}N_y = 1$ Mton\timesyear. The dotted lines represent the limits without considering misidentification, while the solid lines correspond to $\epsilon_\tau = 40\%$ and $\epsilon_{\text{mis}} = 4\%$. We show also the allowed regions from DAMA (orange solid line: without channeling, orange dashed line: with channeling), CoGeNT (dot–dashed red curve) and CRESST (cyan regions), and the limits from XENON 100 (green dashed line) and CDMS (gray dashed line) experiments.

Figure 2. Iso–contours of statistical significance ($\varsigma = 2$, 3 and 5 σ) for the detection of downward–going ν_τ hadronic events as a function of detector exposure (in kton \times year) and DM mass m_χ, for $\sigma_p = 10^{-41}$ cm2 (left panel: annihilation into neutrinos, right panel: annihilation into tau leptons). The two horizontal lines denote the exposures that can be reached by a 0.5 Mton detector, like HK, in 1 and 10 years. The detection efficiency is fixed to $\epsilon_\tau = 70\%$, while the misidentification to $\epsilon_{\text{mis}} = 1\%$.
CoGeNT [11] and CRESST [12] positive results, see Ref. [13] for more details. The constraints from the XENON [14] and CDMS [15] experiments are also shown [16].

In Fig. 2 we present the iso–contours of statistical significance, $\zeta = 2, 3$ and 5 σ, for the detection of downward–going ν_τ hadronic events as a function of m_χ and of the detector exposure. We consider $e_{\tau} = 70\%$, $e_{\mu}^{\text{mis}} = e_{\mu}^{\text{mis}} = 1\%$ and $\sigma_p = 10^{-41}$ cm2. The horizontal lines denote the exposures that can be reached by a 0.5 Mton detector, like Hyper-Kamiokande (HK) [17], in 1 and 10 years. A few years of exposure would suffice to cover almost the whole DM mass range for our benchmark value of σ_p. The recent analyses of direct detection annual modulation effects observed by DAMA [10] and CoGeNT [11] (and the excess reported by CRESST [12]) point toward a DM candidate with $m_\chi \simeq 10$ GeV and σ_p of the order of 10^{-42} cm$^2 - 10^{-40}$ cm2. For this type of particle, we would expect, for direct annihilation into neutrinos, between 9 and 900 hadronic events and a detection close to 5 σ with a 10 years exposure on HK (5 Mton×yr).

4. Conclusion

We propose a new channel for DM searches at neutrino telescopes: the downward–going hadronic tau events originated by the ν_τ signal produced in DM annihilations in the Sun. This specific signal potentially represents a very good opportunity for DM detection, since the background of atmospheric downward–going ν_τ is extremely reduced with respect to the upward–going ν_μ, case commonly considered.

At water Cherenkov detectors, unfortunately, the hadronic tau events cannot be easily distinguished from \mathcal{NC} events, mostly coming from atmospheric ν_e and ν_μ, and by \mathcal{CC} e–like events. We found that the misidentification of non–tau events needs to be kept at the level of percent to have potentially good prospects for detecting DM through the downward–going tau neutrinos signal at future Mton–size Cherenkov detectors.

We showed that several tens of events per year (depending on the DM mass and annihilation channel) are potentially collectible in a Mton–scale detector. In the case of $e_{\tau} = 70\%$ and of $e_{\mu}^{\text{mis}} = e_{\mu}^{\text{mis}} = 1\%$, a 5 σ significance discovery is potentially reachable for DM masses in the range from 20 to 300 GeV with a few years of exposure, and for $\sigma_p = 10^{-41}$ cm2.

Acknowledgments

We acknowledge Research Grants funded jointly by MIUR, Università di Torino and INFN within the Astroparticle Physics Project (MIUR: PRIN 2008NR3EBK; INFN: FA51).

References

[1] Fornengo N and Niro V 2011 JHEP 11 133 (Preprint 1108.2630)
[2] Cirelli M et al. 2005 Nucl. Phys. B727 99–138 (Preprint hep-ph/0506298)
[3] Honda M, Kajita T, Kasahara K and Midorikawa S 2011 (Preprint 1102.2688)
[4] Pasquali L and Reno M 1999 Phys. Rev. D59 093003 (Preprint hep-ph/9811268)
[5] Ingelman G and Thunman M 1996 Phys. Rev. D54 4385–4392 (Preprint hep-ph/9604288)
[6] Athar H, Lee F F and Lin G L 2005 Phys. Rev. D71 103008 (Preprint hep-ph/0407183)
[7] Abe K et al. 2006 Phys. Rev. Lett. 97 171801 (Preprint hep-ex/0607059)
[8] Kato T 2007 Ph.D. thesis Stony Brook University
[9] Giordano G, Mena O and Mocioiu I 2010 Phys. Rev. D81 113008 (Preprint 1004.3519)
[10] Bernabei R et al. (DAMA Collaboration) 2010 Eur. Phys. J. C67 39–49 (Preprint 1002.1028)
[11] Aalseth C et al. (CoGeNT Collaboration) 2011 (Preprint 1106.0650)
[12] Angloher G et al. (CRESST–II Collaboration) 2011 (Preprint 1109.0702)
[13] Belli P et al. 2011 Phys. Rev. D84 055014 (Preprint 1106.4667)
[14] Aprile E et al. (XENON100 Collaboration) 2011 Phys. Rev. Lett. (Preprint 1104.2549)
[15] Ahmed Z et al. (CDMS–II Collaboration) 2010 Science 327 1619–1621 (Preprint 0912.3592)
[16] Fornengo N, Panci P and Regis M 2011 Phys. Rev. D84 115002 (Preprint 1108.4661)
[17] Nakamura K 2003 Int. J. Mod. Phys. A18 4053–4063