Assessment of the influence of various tree species and their parameters on the behaviour of wind flows in urban environments (on the example of the RUDN University campus, Moscow)

S S Bukin¹, I A Fadeeva¹, A M Yaroslavtsev¹,², P I Konstantinov¹,², V I Vasenev¹, R Valentini¹,³,⁴

¹ Smart Urban Nature Laboratory, RUDN University, Moscow, Russia
² Moscow State University, Faculty of Geography, Moscow, Russia
³ Tuscia University, Viterbo, Italy
⁴ CMCC Foundation, Viterbo, Italy
⁵ Russian State Agrarian University, Moscow, Russia

E-mail: book_inc@mail.ru

Abstract. Urban environments are constantly growing, as a result of which natural surface covers are replaced by artificial materials. These changes have a strong impact on the wind fields in these urban environments, changing speeds and directions of wind flows. The aim of this study is to assess the effects of various tree parameters on the behaviour of wind flows in an urban environment. The EnviMet software package is used to model wind fields. The study is conducted in the city of Moscow on the RUDN University campus. Ten different kinds of trees are identified with characteristics such as tree height, crown width, trunk height, and the LAD (Leaf Area Density) index. For these species, a similar analysis is carried out to assess their impact on the wind field. The height of the trunk has a significant effect on the wind field at the pedestrian level; depending on the parameter, the wind speed and the area of wind gusts increase. Large crowns create a protective barrier, reducing wind activity. At the same time, a high LAD index creates low wind permeability, as a result of which the wind flows are refracted, and dangerous zones arise. On the other hand, a high LAD index reduces the area of wind gusts.

1. Introduction
The study of the behavior of wind flows in an urban environment is gaining popularity and is an urgent problem of urban climatology. Wind flows have a diverse effect on the urban climate: the distribution of pollutants [1-4], pedestrian comfort [5-9], the assessment of wind risks [10-14]. Recently, this problem is relevant, and many scientists are studying the behavior of wind in the city using micro-scale models [15-17]. For Moscow region, modeling studies were performed previously for thermal fields [18-21] as well as for thermal comfort conditions [22].
The urban structure significantly affects the behavior of wind flows. Buildings, trees, and other obstacles change the direction and speed of the wind, contributing to the formation of zones with reduced aeration [23-26] or, vice versa, leading to an acceleration of wind speed, up to dangerous values that can lead to destruction [27-31].

Most scientists are solely focused on studying the impact of urban development on wind flows [32-37], not paying due attention to green infrastructure as a natural obstacle.

This article discusses the effect of trees on a wind field in a city. The basics of the influence of trees on wind flows were described in the late 19th century by V.V. Dokuchaev and G.N. Vysotsky [38]. They developed a concept of forest belt to manage various climatic and agricultural problems, such as drought, even distribution of snow, low humidity of fields or high speeds of wind flows. They also found that forest belts contribute to a 40-50% reduction in wind speed.

Unlike other obstacles, trees have a more complex and diverse structure. Wind flows near trees and directly inside their vegetation cover are characterized by the formation of vortices, high resistance, and complex turbulence [39-41]. For reliable numerical modeling, it is customary to consider vegetation as a porous surface.

The field of the research on the influence of trees on wind flows remains under-explored at the time of writing of this article. Moreover, there are many works describing the effect of wind on trees [42-44]. In addition, the bulk of the work related to the influence of wind on trees is focused on windthrow in natural forests [45-46].

The aim of this research is to study the influence of various parameters of trees on the behavior of wind flows in urban environments by using the RUDN University campus as an example.

2. Materials and research methods
This study was conducted on the RUDN University campus located in the south-west of Moscow (Figure 1 (a)).

To obtain transparent results, meteorological data for May 29, 2017 when extremely high wind speed was observed in Moscow were used [47]. The average velocity of the incoming flow in the experiments is about 12 m/s, and the direction is southwest.

To simulate wind flows in this work, the EnviMet software package was used [48]. This tool is based on the method of computational fluid dynamics using the Navier-Stokes equations averaged by Reynolds [49-54].
Figure 1. Research area. Moscow map with marked RUDN University location (a). Research site map (RUDN University), green points are trees, grey polygons are buildings, numbers are building heights (b). 3D map of research site created by EnviMet software (c).

2.1. Input data
To simulate wind flows using EnviMet, the following inputs were required:

- Shapefile of buildings (polygon), with the height values specified in the attribute table for each building.
- Shapefile of trees (points), with identification numbers indicated in the attribute table.
- Meteorological data in csv format.

Shapefiles were obtained through fieldwork and OSM (Open Street Map) data (a similar technology was described in [55]. Measurements of the heights of buildings were carried out, the tree species present on the site, their height, crown width were determined.

Meteorological data were provided by the observatory of Moscow State University. The experimental site was a plot of 615 m by 333 m. There are 815 trees and 3 buildings on the site (Figure 1 (b), (c)).

2.2. Description of species
Ten hypothetical tree species with different proportions were identified for a clear understanding of the influence of parameters on the behavior of wind flows. The hypothesis was that the following parameters mainly influence the behavior of the wind: tree height, crown width, crown height above Earth’s surface (trunk height), LAD (Leaf Area Density) index, and crown shape. The hypothesis is based on the experience of studying the effects of tree parameters on the risk of windthrow [56-59]. Based on these parameters, species in Table 1 were distinguished. The crown shape was set to be the same for all species. The effect of this parameter will be described later. Table 2 shows the objects of comparative analysis for these tree species.
Table 1. Parameters of tree species.

ID	31	32	33	34	35	36	37	38	39	40
Tree Height, m	5	5	10	10	10	10	10	15	15	10
Crown Width, m	3	3	7	7	3	3	11	11	7	7
Trunk Height, m	1	3	1	3	1	3	2	4	1	1
LAD	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	0.3	2

Table 2. Subject of the comparison.

ID	31	32	33	34	35	36	37	38	39	40
31	-	-	-	Height	-	-	-	-	-	-
32	*	-	-	-	-	-	-	-	-	-
33	-	-	-	Trunk	Crown	-	-	-	-	-
34	-	-	*	-	-	Crown	-	-	-	-
35	*	-	*	-	-	Trunk	-	-	-	-
36	-	*	-	*	-	-	-	-	-	-
37	-	-	*	-	-	-	-	Trunk	-	-
38	-	-	-	*	-	-	-	-	-	-
39	-	-	*	-	-	-	-	-	-	LAD

Modelling was carried out for each of the selected tree species. In each experiment on the plot trees of one specific species were placed at the same positions for all experiments.

2.3. Data analysis

The analysis included comparisons of the wind fields of the experimental sites. The site consisted of a grid with a resolution of 3m/3m/3m for each cell. The total area of the site is 204795 m². EnviMet provides results for each cell. That is, the wind speed in each grid cell is known. The following indicators were analysed:

- The average speed on the site.
- The maximum speed on the site.
- The area with the observed wind speed in the selected ranges (on the one hand, ranges from 0 to 18 m/s, in increments of 1 m/s; on the other hand, ranges from Table 3).

Table 3. Wind speed ranges.

Wind speed range	Effect
0-6 m/s	Low aeration
6-12 m/s	Perfect condition
12-13 m/s	No effect
>13m/s	Increase in wind speed

Also, in order to assess how much the situation on the experimental site changed as a whole, depending on one or another parameter of the tree, the Student’s t test was calculated for related samples. An area without trees was modelled. Further, the wind speed values in each grid cell of this site were subtracted from the wind speed values in the corresponding cells of the analysed site. Then the area with positive and negative values was calculated. The positive values show how much the speed has increased (increasing coefficient), and the negative ones, how much it has decreased (decreasing coefficient). After that, the mean was found for the positive and negative values. Based on
the data obtained, we can say what is the size of the site area where there is a decrease or increase in the wind speed and how significant this decrease/increase is.

3. Results and discussion

3.1. Trunk height

This part is a comparison of sites 31 and 32 for the effect of crown height above ground level (trunk height).

To begin with, consider the incoming flow velocity for each experiment and the average wind speed observed at the site. Based on the data presented in Table 4, the incoming flow velocity ranges from 11.7 m/s to 12.6 m/s, while the average speed increases with height from 8.36 m/s at a level of 1.5 meters up to 10.9 m/s at a height of 10.5 meters above the ground. It should be noted that the difference in the average speed between sites 31 and 32 decreases with increasing altitude.

Table 4. Mean, maximum, and input wind speed on TS-31 and TS-32.

ID, height, m	TS 31, 1.5m	TS 32, 1.5m	TS 31, 4.5m	TS 32, 4.5m	TS 31, 10.5m	TS 32, 10.5m
Mean speed, m/s	8.36	8.97	8.94	9.30	10.89	10.90
Input speed, m/s	11.70	11.70	12.40	12.40	12.60	12.60
Maximum speed, m/s	14.06	15.14	14.69	15.11	16.59	16.53

Figure 1 (a) shows the percentage of the total area where wind speeds are observed in the indicated ranges at heights of 1.5, 4.5, and 10.5 meters. This diagram shows well that at a pedestrian height trees with a crown below 1.5 meters reduce the number of zones with increased wind activity and proportionally increase the number of zones with a wind speed below the input speed. The difference in areas with a wind speed of 10-11 m/s at a height of 1.5 m was approximately 15,000 sq. meters.

At a height of 4.5 meters the difference begins to decrease significantly, and at an altitude of 10.5 m it is practically absent. But if the height of these tree species is 5 m, it should be noted that there is a difference in the wind fields at a height of 10.5 meters (although at first glance it should not be) due to the turbulence of wind flows. This means that the changing behaviour of the downstream flows affects the upstream, just as the variability of the upstream affects the behaviour of the downstream.

A comparative analysis of sites 33 and 34 shows an identical effect of the trunk height on the wind behaviour. On site 33, a decrease in the zones with a speed approximately equal to the speed of the incoming flow is noted, and the zones with a low aeration level increase proportionally. At the same time, the difference in the wind fields of sites 33 and 34 is more pronounced (in comparison with sites 31 and 32) due to the fact that the trees in these sites have crowns more than twice as wide (Figure 1 (b)).

In contrast to the comparison of sites 31 and 32, at the level of up to 4.5 meters the difference in the area with a speed below 6 m/s between sites 33 and 34 is much greater. This phenomenon can lead to an increased risk of formation of "stagnant zones", which negatively affects the general ecology of the city and the health of the citizens.

Also, for sites 31-34 the Student's t-test for related samples described earlier was calculated. After that, the values were obtained which are presented in Figure 1 (c). In this case, we can see how strongly the trunk height affects the wind field as a whole. At the level of 1.5 meters there is a significant decrease in the wind speed on sites 31 and 33 relative to sites 32 and 34, respectively. This difference decreases at a height of 4.5 meters and almost disappears at a height of 10.5 meters. However, the difference in obstacles at the trunk level affects the wind field even at a level of 10 meters.
A comparative analysis for sites 33 and 34 showed a wind behaviour trend similar to the previous sites in this section. The only exception was the increase in the effect, as in the case of sites 33 and 34.

3.2. Crown width

A comparative analysis of sites 33 and 35 was carried out for the effect of the crown width on the wind activity. Table 5 shows the mean and maximum wind speed relative to the input flow speed at a height of 0.3 to 13.5 meters. The average speed on site 33 is significantly lower, which is a consequence of the increase in the area of trees as a natural obstacle due to the increase in the crown width. The given dependence is quite logical. Of greater interest is the increase in the maximum speed on site 33. This phenomenon is explained by the fact that trees located close to each other create turbulent zones, which leads to the formation of eddies. On site 35 with a smaller crown width there is more free space for the passage of wind currents.

It turns out that the crown width simultaneously leads to an increase in zones with low aeration level and an increase in wind speed.
Table 5. Mean, maximum, and input wind speed for sites TS-33 and TS-35.

	TS-33							
	0.3m	0.9m	1.5m	2.7m	4.5m	7.5m	10.5m	
mean speed, m/s	6.81	6.91	7.00	7.16	7.39	7.96	8.94	10.62
input speed, m/s	7.93	10.42	11.65	12.36	12.40	12.46	12.52	12.58
maximum speed, m/s	13.76	14.39	15.06	15.41	15.40	15.27	15.39	15.50
	TS-35							
mean speed, m/s	7.95	8.10	8.21	8.41	8.65	9.12	9.79	10.97
input speed, m/s	7.92	10.41	11.64	12.35	12.39	12.45	12.51	12.58
maximum speed, m/s	13.47	13.67	13.79	14.38	14.53	14.43	14.15	14.70

Table 6 shows the percentages of the total area for the zones with a specified wind speed ranges to estimate the scale of the impact described above. It should be noted that the area of the zones with low level of aeration on site 33 is twice as large as on site 35 and is as much as 37 percent at pedestrian level. At the same time, trees with a wide crown at a level of 10.5 m lead to the formation of a significant zone with increased wind activity, about 10,500 sq. meters.

Table 6. Exposure area in analysed ranges on sites TS-33 and TS-35 at different heights.

Area TS-33, %	0.3m	0.9m	1.5m	2.7m	4.5m	7.5m	10.5m
0-6m/s	36.8	37.0	37.1	36.6	35.3	30.2	20.5
6-12m/s	54.7	54.1	53.5	48.7	45.5	45.4	49.0
12-13m/s	1.5	1.9	2.4	7.6	11.9	15.5	20.0
>13m/s	0.02	0.03	0.1	0.2	0.6	2.2	5.1

Area TS-35, %	0.3m	0.9m	1.5m	2.7m	4.5m	7.5m	10.5m
0-6m/s	18.8	18.5	18.6	18.3	17.5	14.7	10.7
6-12m/s	74.0	74.0	73.6	68.1	63.1	59.1	58.6
12-13m/s	0.2	0.5	0.8	6.5	12.4	18.8	22.3
>13m/s	0.004	0.009	0.02	0.2	0.3	0.7	3.1

Similarly to the analysis from the previous section, the Student's test was calculated for related samples on sites 33 and 35. As one can see from the results presented in Figure 2, site 33 shows a significant decrease in the wind speed in comparison with site 35. At the same time, the ratio of the areas with increasing and decreasing speed is relatively the same. This result is similar to the results described in the previous section, except that in the case of a change in the crown width the difference in the wind fields remains at levels up to 13 meters and above.
Figure 3. T-Test for sites TS-33 and TS-35 (a). T-Test plot for TS-31 - TS-35 (b), black numbers show exposure area in % (b). Exposure area for wind speed >12m/s on sites TS-31 and TS-35 (c).

A comparative analysis of sites 34 and 36 gave similar results, only with a smaller difference.

3.3. Tree height

Comparative analysis of experimental sites 31 and 35 for the effect of tree height. Table 7 shows the input flow, average and maximum wind speed values at heights of 2.7 m, 7.5 m, and 10.5 m. At a level of 2.7 m the values are approximately the same, since the field of obstacles at the indicated height is the same, small deviations exist only due to the turbulent influence of the overlying wind flows. At a height of 7.5 meters on site 31, the average and maximum speeds are noticeably higher than on site 35, due to the fact that the tree height on this site is 5 meters.

Table 7. Mean, maximum and input for sites TS-31 and TS-35 on different height.

TS/height	TS-31, 2.7m	TS-35, 2.7m	TS-31, 7.5m	TS-35, 7.5m	TS-31, 13.5m	TS-35, 13.5m
Mean speed	8.86	8.32	10.21	9.12	11.69	10.97
Input speed	12.36	12.35	12.50	12.45	12.59	12.58
Maximum speed	14.33	14.04	15.78	14.43	16.68	14.70

The most interesting results are obtained at 13.5 and 16.5 meters. At this height, the field of obstacles on sites 31 and 35 is the same, since the tree height is 5 and 10 meters, respectively. At the same time, the turbulence of the flows created by the trees spreads to a level exceeding the tree height,
which creates a noticeable increase in the zones with a speed above 12m/s on site 31 relative to site 35 (Figure 3 (a)).

In addition, the calculation of the Student’s t-test for related samples was carried out (Figure 3 (b)). The results of this analysis show that on 35 at an altitude of 13.5 inclusive, the increasing coefficient relative to site 33 is significantly higher. However, the area of zones with increased wind speed on site 33 is 2-2.5 times higher at the same height. It follows that high trees increase the average maximum speed on the site but reduce the overall speed. On the other hand, at altitudes up to 4.5 meters inclusive, the average minimum wind speed on site 31 is lower. At a height of 10.5 and 13.5 meters on site 35, both increasing and decreasing coefficients are higher. In this case, the average maximum wind speed on site 35 is higher and the average minimum wind speed is lower. At the same time, at a height of 16.5 meters the situation is opposite.

In addition, the results obtained demonstrate a strong influence of the tree height on the overlying (above the tree level) flows, significantly changing the wind field. A comparative analysis of sites 32 and 36 gave approximately the same results as in the case of 31 and 35. Only the difference in the average speed increased.

3.4. LAD index
An analysis of sections 39 and 40 on the influence of the LAD index on the behaviour of wind currents was carried out. Trees in the sites have the same parameters of height, crown width, and trunk height, but radically different LAD indexes. For site 39 LAD = 0.3, and for site 40 LAD = 2.

Figure 4 shows wind field maps for sites 39 and 40 at a height of 4.5 meters. The major differences are clearly visible. In site 40, on the one hand, the area of zones with insufficient aeration (shown in blue) is significantly larger, and on the other hand, the area of zones with increased wind activity is larger. In addition, in site 40 the maximum speed is higher than in site 39 (Table 8). That is, it turns out that high density of the canopy is a rough barrier to the wind flows.
Figure 4. Wind field maps for different LAD indexes: LAD=0,3 for TS-39(a) and LAD=2 for TS-40(b), the height is 4.5m. Black polygons are buildings, green polygons are trees.

Table 8. Mean, maximum, and input wind speed for sites TS-39 and TS-40 at different heights.

	TS-39								
	0.3m	0.9m	1.5m	2.7m	4.5m	7.5m	10.5m	13.5m	
mean speed, m/s	7.20	7.34	7.46	7.65	7.91	8.40	9.28	10.45	
input speed, m/s	13.42	13.60	13.73	13.84	13.88	13.86	14.06	15.07	
maximum speed, m/s									
TS-40	0.3m	0.9m	1.5m	2.7m	4.5m	7.5m	10.5m	13.5m	
mean speed, m/s	6.63	6.71	6.79	6.93	7.16	7.72	8.73	10.53	
input speed, m/s	14.77	15.38	15.99	16.26	16.27	16.14	16.23	16.22	

4. Conclusions

Within the framework of this study, an assessment was made of the influence of tree height, crown width, crown height above ground level, and the LAD index on the behaviour of wind flows. A strong variability of the wind field was revealed at various values of the indicated parameters. Trees with low...
canopy create more zones of reduced aeration at the pedestrian level, and the zones with a speed equal to the speed of the input flow have decreased. At the same time, at a level of 10 meters an increase in the zones with high wind activity was also revealed. Trees with a wide crown create a powerful barrier to wind flows, resulting in a large area with low aeration. On the other hand, wide crowns of neighbouring trees lead to the formation of wind gusts. Due to the turbulence of wind flows, the height of a tree can affect the wind field even at the pedestrian level. In general, low trees create a risk of wind gusts at the pedestrian level. In addition, a strong influence of the LAD index on the wind field was revealed. Trees with a high LAD value, due to their high density, create tough barriers comparable to a building. This leads to the formation of stagnant zones, as well as to a significant increase in the maximum wind speed.

Acknowledgments
The work of Sergey Bukin, Pavel Konstantinov, Riccardo Valentini, and Vyacheslav Vasenev was supported by the Russian Science Foundation (project no. 19-77-30012).

References
[1] Nuterman R B 2008 Modeling of turbulent flows and transport of impurities in the elements of urban development Tomsk State University https://www.dissercat.com/content/modelirovanie-turbulentnykh-technii-i-perenosa-primesiv-v-elementakh-gorodskoi-zastroiki
[2] Vranckx S, Vos P, Maiheu B and Janssen S 2015 Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium Sci. Total Environ. 532 474–83
[3] Yu Y, Kwok K C S, Liu X P and Zhang Y 2017 Air pollutant dispersion around high-rise buildings under different angles of wind incidence J. Wind Eng. Ind. Aerodyn. 167 51–61
[4] Pampaloni D, Nassini P C, Paccati S, Palanti L, Andreini A, Cerutti M and Riccio G 2018 Numerical predictions of pollutant emissions of novel natural gas low nox burners for heavy duty gas turbine 2018 Joint Propulsion Conference, https://arc.aiaa.org/doi/10.2514/6.2018-4562
[5] Blocken B, Janssen W D and van Hooff T 2012 CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus Environ. Model. Softw. 30 15–34
[6] Blocken B 2018 LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Build. Simul. 11 821–70
[7] He Y, Tablada A and Wong N H 2019 A parametric study of angular road patterns on pedestrian ventilation in high-density urban areas Build. Environ. 151 251–67
[8] Willemsen E and Wisse J A 2007 Design for wind comfort in The Netherlands: Procedures, criteria and open research issues J. Wind Eng. Ind. Aerodyn. 95 1541–50
[9] Nazarian N, Fan J, Sin T, Norford L and Kleissl J 2017 Predicting outdoor thermal comfort in urban environments: A 3D numerical model for standard effective temperature Urban Clim. 20 251–67
[10] Gross G 2018 A windthrow model for urban trees with application to storm “Xavier” Meteorol. Zeitschrift 27 299–308
[11] Lekes V and Dandul I 2000 Using airflow modelling and spatial analysis for defining wind damage risk classification (WINDARC) Forest Ecology and Management vol 135 pp 331–44
[12] Gardiner B, Peltola H and Kellomäki S 2000 Comparison of two models for predicting the critical wind speeds required to damage coniferous trees Ecol. Modell. 129 1–23
[13] Ver Planck N R and MacFarlane D W 2019 Branch mass allocation increases wind throw risk for Fagus grandifolia For. An Int. J. For. Res. 92 490–9
[14] Oh S, Jung J, Jufri F H and Choi M H 2019 Predicting the Damage of Distribution System by Strong Wind 2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019 pp 3970–4

[15] Liu S, Pan W, Zhang H, Cheng X, Long Z and Chen Q 2017 CFD simulations of wind distribution in an urban community with a full-scale geometrical model Build. Environ. 117 11–23

[16] Huttner S 2012 Further development and application of the 3D microclimate simulation ENVI-met Mainz: Johannes Gutenberg-Universitat in Mainz 147

[17] Blocken B, Stathopoulos T and van Beeck J P A J 2016 Pedestrian-level winds around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment Build. Environ. 100 50–81

[18] Varentsov M I, Konstantinov P I and Samsonov T E 2017 Mesoscale modelling of the summer climate response of Moscow metropolitan area to urban expansion IOP Conference Series: Earth and Environmental Science vol 96 (Institute of Physics Publishing) https://iopscience.iop.org/article/10.1088/1755-1315/96/1/012009

[19] Varentsov M, Wouters H, Platonov V and Konstantinov P 2018 Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Moscow, Russia Atmosphere (Basel). 9 https://www.mdpi.com/2073-4439/9/2/50

[20] Kislov A V and Konstantinov P I 2011 Detailed spatial modeling of temperature in Moscow Russ. Meteorol. Hydrol. https://link.springer.com/article/10.3103/S1068373911050037

[21] Konstantinov P I, Varentsov M I and Malinina E P 2014 Modeling of thermal comfort conditions inside the urban boundary layer during Moscow’s 2010 summer heat wave (case-study) Urban Clim. 10 https://www.sciencedirect.com/science/article/abs/pii/S2212095514000340?via%3Dihub

[22] Ramponi R, Blocken B, de Coo L B and Janssen W D 2015 CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths Build. Environ. 92 152–66

[23] Zhang Q, Lau S S Y and Jiang B 2018 Wind-driven Natural Ventilation Strategies of Green Buildings in Asian Megacities: Case studies in Singapore and Shanghai Proceedings - 2018 2nd International Conference on Green Energy and Applications, ICGEA 2018 pp 161–5

[24] Nicol F 2004 Adaptive thermal comfort standards in the hot-humid tropics Energy and Buildings vol 36 pp 628–37

[25] Krüger E L, Minella F O and Rasia F 2011 Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil Build. Environ. 46 621–34

[26] Drăgoi M and Barnoaiea I 2018 Accounting for windthrow risk in forest management planning: A Romanian tailor-made solution For. Syst. 27

[27] Fukui Y, Miyamoto T, Tamai Y, Koizumi A and Yajima T 2018 Use of DNA sequence data to identify wood-decay fungi likely associated with stem failure caused by windthrow in urban trees during a typhoon Trees - Struct. Funct. 32 1147–56

[28] Adelekan I O 2012 Vulnerability to wind hazards in the traditional city of Ibadan, Nigeria Environ. Urban. 24 597–617

[29] Gardiner B, Marshall B, Achim A, Belcher R and Wood C 2005 The stability of different silvicultural systems: A wind-tunnel investigation Forestry 78 471–84

[30] Yang F, Qian F and Lau S S Y 2013 Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai Build. Environ. 70 122–37
[32] Blocken B, Moonen P, Stathopoulos T and Carmeliet J 2008 Numerical study on the existence of the venturi effect in passages between perpendicular buildings J. Eng. Mech. 134 1021–8

[33] Moonen P, Defraeye T, Dorer V, Blocken B and Carmeliet J 2012 Urban Physics: Effect of the micro-climate on comfort, health and energy demand Front. Archit. Res. 1 197–228

[34] Montazeri H and Montazeri F 2018 CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings Renew. Energy 118 502–20

[35] Ramponi R and Blocken B 2012 CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters Build. Environ. 53 34–48

[36] Liu S, Pan W, Zhao X, Zhang H, Cheng X, Long Z and Chen Q 2018 Influence of surrounding buildings on wind flow around a building predicted by CFD simulations Build. Environ. 140 1–10

[37] Montazeri H and Blocken B 2013 CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: Validation and sensitivity analysis Build. Environ. 60 137–49

[38] Dokuchaev V V (1949) Selected Works Our steppes before and now (Moscow) p 317 - 438

[39] Dubov A S, Bykova L P, Marunich S V 1978 Turbulence in the vegetation cover Gidrometeoizdat, https://search.rsl.ru/ru/record/01007776653

[40] Ishikawa H, Amano S and Yakushiji K 2007 Flow around a living tree JSME Int. Journal, Ser. B Fluids Therm. Eng. 49 1064–9

[41] Endalew A M, Hertog M, Delele M A, Baetens K, Persoons T, Baelmans M, Ramon H, Nicolaï B M and Verboven P 2009 CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture Int. J. Heat Fluid Flow 30 356–68

[42] Thevs N, Gombert A J, Strenge E, Lleshi R, Aliev K and Emileva B 2019 Tree wind breaks in Central Asia and their effects on agricultural water consumption Land 8

[43] Coutts M P and Grace J 1995 Wind and trees Wind trees 7 41–7

[44] Cook G D and Goyens C M A C 2008 The impact of wind on trees in Australian tropical savannas: Lessons from Cyclone Monica Austral Ecol. 33 462–70

[45] Virot E, Ponomarenko A, Dehandschoewercker, Quéré D and Clanet C 2016 Critical wind speed at which trees break Phys. Rev. E 93

[46] Schelhaas M J, Kramer K, Peltola H, van der Werf D C and Wijdeven S M J 2007 Introducing tree interactions in wind damage simulation Ecol. Modell. 207 197–209

[47] Kuksova N E, Toropov P A 2019 Mechanisms of formation of a squall in the Moscow region May 29, 2017 International Youth School and Conference on Computational Information Technologies for Environmental Sciences CITES 2019

[48] Huttner S 2012 Further development and application of the 3D microclimate simulation ENVI-met Mainz: Johannes Gutenberg-Universitat in Mainz 147

[49] Tominaga Y and Stathopoulos T 2011 CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS J. Wind Eng. Ind. Aerodyn. 99 340–8

[50] Defraeye T, Blocken B, Koninckx E, Hespel P and Carmeliet J 2010 Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests J. Biomech. 43 1262–8

[51] Fröhlich J and von Terzi D 2008 Hybrid LES/RANS methods for the simulation of turbulent flows Prog. Aerosp. Sci. 44 349–77

[52] Iaccarino G, Ooi A, Durbin P A and Behnia M 2003 Reynolds averaged simulation of unsteady separated flow Int. J. Heat Fluid Flow 24 147–56

[53] Shur M L, Spalart P R, Strelets M K and Travin A K 2008 A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities Int. J. Heat Fluid Flow 29 1638–49

[54] Temmerman L, Hadžiabdić M, Lesehrzíner M A and Hanjalić K 2005 A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers Int. J. Heat Fluid Flow 26 173–90
[55] Samsonov T E, Konstantinov P I and Varentsov M I 2015 Object-oriented approach to urban canyon analysis and its applications in meteorological modeling Urban Clim. 13 122–39 https://www.sciencedirect.com/science/article/abs/pii/S2212095515300134?via%3Dihub

[56] King D A 1986 Tree form, height growth, and susceptibility to wind damage in Acer saccharum. Ecology 67 980–90

[57] Morakinyo T E and Lam Y F 2016 Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort Build. Environ. 103 262–75

[58] Hale S A, Gardiner B, Peace A, Nicoll B, Taylor P and Pizzirani S 2015 Comparison and validation of three versions of a forest wind risk model Environ. Model. Softw. 68 27–41

[59] Moore J, Gardiner B and Sellier D 2018 Tree mechanics and wind loading Plant Biomechanics: From Structure to Function at Multiple Scales pp 79–106