The flip side of sirtuins: the emerging roles of protein acetyltransferases in aging

Prabakaran Nagarajan¹ and Mark R. Parthun¹

¹Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA

Correspondence to: Mark R. Parthun; email: parthun.1@osu.edu
Keywords: acetyltransferase, acetylation, aging, Sirtuin, KAT
Received: January 13, 2020 Accepted: March 7, 2020 Published: March 13, 2020

Copyright: Nagarajan and Parthun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Protein N-ε-lysine acetylation is an important post-translational modification that plays critical roles in the regulation of many cellular processes. A role for this modification in the process of aging goes back two decades to the discovery that the yeast NAD+-dependent histone deacetylase Sir2 regulates lifespan in yeast. While the Sirtuin family of protein deacetylases has been intensively studied in many model systems and is definitively linked to aging, the enzymes responsible for protein acetylation, protein acetyltransferases (KATs), have not received a similar level of attention. However, a series of recent studies have directly explored the role of specific KATs in aging. These studies have shown that modulation of KAT activity can influence cellular pathways important for aging and directly effect organismal lifespan.

The level of acetylation on a given protein is the result of a balance in the activity of opposing families of enzymes, protein lysine acetyltransferases that attach the acetyl moieties and protein deacetylases that remove the acetyl groups. The idea that protein acetylation plays an important role in the regulation of aging began with the pioneering work on the Sirtuin family of NAD+-dependent protein deacetylases. Levels of the yeast histone deacetylase Sir2 correlated with lifespan as increased levels of Sir2 increasing lifespan and deletion of Sir2 decreasing lifespan in S. cerevisiae [1,2]. Subsequent studies in model organisms such as, flies, worms and mice, showed that genetic or pharmacological modulation of Sirtuin activity influenced lifespan [3-9]. While a role for protein deacetylases in aging is firmly established, the enzymes on the other side of the equation, the protein lysine acetyltransferases, have not received a proportionate share of research into understanding their potential roles in the regulation of aging.

Protein N-ε-lysine acetyltransferases (KATs) are a diverse family of enzymes [10]. While many of these enzymes were originally identified as histone acetyltransferases, it is now clear that most, if not all, have multiple substrates. From a broad perspective, it is not surprising that KATs are likely to play key roles in the aging process. KATs modify proteins involved in many cellular processes including those linked to the hallmarks of aging [11]. A number of recent studies have directly examined specific KATs for a link to aging.

Hat1

Hat1 was the first KAT identified (also known as Kat1). It was originally isolated based on its role in the evolutionarily conserved diacetylation of newly synthesized histone H4 during the process of chromatin assembly [12,13]. While Hat1 is essential for viability in mice, a link between Hat1 and aging was identified by the analysis of Hat1+/− heterozygotes [14]. Hat1+/− animals are largely normal at birth but develop a number of phenotypes suggestive of early onset aging within their first year. These phenotypes include lordo-kyphosis, hind limb paralysis, muscle atrophy, loss of
subcutaneous fat and tumor development. Strikingly,
Hat1⁺⁻ mice have a significantly shortened lifespan of
approximately 69 weeks compared to greater than 120
weeks for wild type animals. A direct role for Hat1 in
the normal aging process is suggested by the
observeration that Hat1 expression, at both the mRNA
and protein levels, decreases dramatically with age in
wild type animals [15]. Although they have opposite
effects on protein acetylation, it is intriguing that
decreases in Hat1 activity have a similar effect on aging
as decreases in Sirtuin activity. This is consistent with
observations in yeast where deletions of Hat1 and Sir2
both lead to loss of telomeric silent chromatin structure
[16]. The mechanism(s) by which Hat1 influences
aging are not clear as Hat1 is involved in multiple
cellular process important to aging at the cellular level.
These include transcriptional regulation, DNA damage
repair, genome stability and mitochondrial function
[14,15,17-21]. In addition, a recent proteomic analysis
indicates that Hat1 influences the acetylation state of a
number of proteins known to be important for
mammalian aging (Agudelo Garcia, et al, bioRxiv
doi: https://doi.org/10.1101/825539).

CBP/p300

The paralogs CBP and p300 are transcriptional
coactivators that possess protein acetyltransferase
activity. CBP and p300 participate in multiple signaling
pathways and are key factors in disease states such as
cancer and neurodegeneration [22]. Several lines of
evidence indicate that these KATs are also critical
factors in several aspects of aging. First, p300 has been
shown to be an important regulator of cellular
senescence, which is an important driver of decreased
tissue function during aging [23-25]. Second,
acetylation of several proteins by p300 and/or CBP have
been shown to be involved in being involved in aging-
related processes, including WRN, C/EBPz and TAU
[26-29]. Third, lifespan extension in model organisms,
through either dietary/caloric restriction or pharma-

cological mimetics of dietary restriction, requires CBP
and p300 [30-36]. Finally, studies in C. elegans have
directly demonstrated that reduced expression of CBP
or p300 shortens lifespan [37-40].

CLOCK

The KAT protein CLOCK is an integral component of
the of the molecular clock that maintains circadian
rhythms [41]. Circadian rhythms play an important role
in a variety of processes, including stress responses,
immune function, metabolism and sleep regulation.
Disruptions of the circadian rhythms can have serious
pathological consequences including improper meta-
bolism, sleep disorders, cardiovascular disease and
neurodegenerative diseases [42-44]. Mutational
analyses in flies and mice have indicated that loss of
CLOCK activity is linked to age-dependent tissue
defects. In flies, CLOCK is required in pacemaker
neurons to prevent premature locomotor aging.
Interestingly, this effect is independent of the role of
CLOCK in the circadian rhythm [45]. In mice,
expression of a CLOCK mutant lacking exon 19
(Clock^{∆19}/^{∆19}) results in accelerated aging in both the
heart and liver [46,47].

Chameau

Chameau (Chm) is the D. melanogaster homolog of
Hbo1 (KAT7). Hbo1 is a MYST family acetyl-
transferase that functions in regulating gene expression
and DNA replication [48]. In a recent study examining
changes in metabolism and histone acetylation during
aging, it was found that flies with a catalytically
inactive Chm mutation had a significant increase in
lifespan. It was proposed that the Chm mutation
extended lifespan through the attenuation of
transcriptional changes associated with aging [49].

These recent studies have now shown that several KATs
are directly linked to the aging process and that genetic
and pharmacological manipulation of KATs can
influence lifespan. Our understanding of the link
between KATs and aging clearly has a long way to go
to match our understanding of Sirtuins. Important
questions that need to be addressed include determining
the relevant aging-related cellular processes that each
KAT functions in and identifying aging-relevant
substrates for each KAT. It will take intensive
investigation to decipher the molecular mechanisms
underlying the influence of KATs on aging and
lifespan.

CONFLICTS OF INTEREST

The authors have no conflict of interests to declare.

FUNDING

This work was supported by a grant from the National
Institutes of Health (R01 GM062970 to M.R.P.).

REFERENCES

1. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4
complex and SIR2 alone promote longevity in
Saccharomyces cerevisiae by two different
mechanisms. Genes Dev. 1999; 13:2570–80.
https://doi.org/10.1101/gad.13.19.2570
PMID:10521401
2. Kim S, Benguria A, Lai CY, Jazwinski SM. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell. 1999; 10:3125–36. https://doi.org/10.1091/mbc.10.3.3125 PMID:10512855

3. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001; 410:227–30. https://doi.org/10.1038/35065638 PMID:11242085

4. Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA. 2004; 101:15998–6003. https://doi.org/10.1073/pnas.0404184101 PMID:15520384

5. Kanfi Y, Naiman S, Amir G, Peshri V, Zinnman G, Nahum L, Bar-Joseph Z, Cohen HY. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012; 483:218–21. https://doi.org/10.1038/nature10815 PMID:22367546

6. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006; 124:315–29. https://doi.org/10.1016/j.cell.2005.11.044 PMID:16439206

7. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004; 430:686–89. https://doi.org/10.1038/nature02789 PMID:15254550

8. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425:191–96. https://doi.org/10.1038/j.cell.2005.11.044 PMID:12939617

9. Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016; 17:679–90. https://doi.org/10.1038/nrm.2016.93 PMID:27552971

10. Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol. 2007; 8:284–95. https://doi.org/10.1038/nrm2145 PMID:17380162

11. López-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013; 153:1194–217. https://doi.org/10.1016/j.cell.2013.05.039 PMID:23746838

12. Parthun MR, Widom J, Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell. 1996; 87:85–94. https://doi.org/10.1016/S0092-8674(00)81325-2 PMID:8858151

13. Kleff S, Andruleis ED, Anderson CW, Sterniglans R. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem. 1995; 270:24674–77. https://doi.org/10.1074/jbc.270.42.24674 PMID:7559580

14. Nagarajan P, Ge Z, Sirbu B, Doughty C, Agudelo Garcia PA, Schlederer M, Annunziato AT, Cortez D, Kenner L, Parthun MR. Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4. PLoS Genet. 2013; 9:e1003518. https://doi.org/10.1371/journal.pgen.1003518 PMID:23754951

15. Nagarajan P, Agudelo Garcia PA, Iyer CC, Popova LV, Arnold WD, Parthun MR. Early-onset aging and mitochondrial defects associated with loss of histone acetyltransferase 1 (Hat1). Aging Cell. 2019; 18:e12992. https://doi.org/10.1111/acel.12992 PMID:31290578

16. Kelly TJ, Qin S, Gottschling DE, Parthun MR. Type B histone acetyltransferase Hat1p participates in telomeric silencing. Mol Cell Biol. 2000; 20:7051–58. https://doi.org/10.1128/MCB.20.19.7051-7058.2000 PMID:10982821

17. Agudelo Garcia PA, Hoover ME, Zhang P, Nagarajan P, Freitas MA, Parthun MR. Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly. Nucleic Acids Res. 2017; 45:9319–35. https://doi.org/10.1093/nar/gkx545 PMID:28666361

18. Qin S, Parthun MR. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol. 2002; 22:8353–65. https://doi.org/10.1128/MCB.22.23.8353-8365.2002 PMID:12417736

19. Sadler AJ, Suliman BA, Yu L, Yuan X, Wang D, Irving AT, Sarvestani ST, Banerjee A, Mansell AS, Liu JP, Gerondakis S, Williams BR, Xu D. The acetyltransferase HAT1 moderates the NF-κB response by regulating the transcription factor PLZF. Nat Commun. 2015; 6:6795. https://doi.org/10.1038/ncomms7795 PMID:25865065

20. Gruber JJ, Geller B, Lipchik AM, Chen J, Salahudeen AA, Ram AN, Ford JM, Kuo CJ, Snyder MP. HAT1
Coordinates Histone Production and Acetylation via H4 Promoter Binding. Mol Cell. 2019; 75:711–724.e5. https://doi.org/10.1016/j.molcel.2019.05.034 PMID: 31278053

21. Marin TL, Gongol B, Zhang F, Martin M, Johnson DA, Xiao H, Wang Y, Subramaniam S, Chien S, Shyy JY. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal. 2017; 10:10. https://doi.org/10.1126/scisignal.aaf7478 PMID: 28143904

22. Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb Perspect Med. 2017; 7:7. https://doi.org/10.1101/cshperspect.a026534 PMID: 27881443

23. Prieur A, Besnard E, Babled A, Lemaitre JM. p53 and p16(INK4A) independent induction of senescence by chromatin-dependent alteration of S-phase progression. Nat Commun. 2011; 2:473. https://doi.org/10.1038/ncomms1473 PMID: 21915115

24. Li Y, Zhong H, Wu M, Tan B, Zhao L, Yi Q, Xu X, Pan H, Bi Y, Yang K. Decline of p300 contributes to cell senescence and growth inhibition of hUC-MSCs through p53/p21 signaling pathway. Biochem Biophys Res Commun. 2019; 515:24–30. https://doi.org/10.1016/j.bbrc.2019.05.061 PMID: 31122700

25. Sen P, Lan Y, Li CY, Sidoli S, Donahue G, Dou Z, Frederick B, Chen Q, Luense LJ, Garcia BA, Dang W, Johnson FB, Adams PD, et al. Histone Acetyltransferase p300 Induces De Novo Super-Enhancers to Drive Cellular Senescence. Mol Cell. 2019; 73:684–698.e8. https://doi.org/10.1016/j.molcel.2019.01.021 PMID: 30773298

26. Min SW, Chen Y, Tracy TE, Li Y, Zhou Y, Wang C, Shirakawa K, Minami SS, Defensor E, Mok SA, Sohn PD, Schilling B, Cong X, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med. 2015; 21:1154–62. https://doi.org/10.1038/nm.3951 PMID: 26390242

27. Zaini MA, Müller C, de Jong TV, Ackermann T, Hartleben G, Kortman G, Gührs KH, Fusetti F, Krämer OH, Guryev V, Calkhoven CF. A p300 and SIRT1 Regulated Acetylation Switch of C/EBPa Controls Mitochondrial Function. Cell Rep. 2018; 22:497–511. https://doi.org/10.1016/j.celrep.2017.12.061 PMID: 29320743

28. Muftuoglu M, Kusumoto R, Speina E, Beck G, Cheng WH, Bohr VA. Acetylation regulates WRN catalytic activities and affects base excision DNA repair. PLoS One. 2008; 3:e1918. https://doi.org/10.1371/journal.pone.0001918 PMID: 18398454

29. Li K, Casta A, Wang R, Lozada E, Fan W, Kane S, Ge Q, Gu W, Orren D, Luo J. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem. 2008; 283:7590–98. https://doi.org/10.1074/jbc.M709707200 PMID: 18203716

30. Vora M, Shah M, Ostafi S, Onken B, Xue J, Ni IZ, Gu S, Driscoll M. Deletion of microRNA-80 activates dietary restriction to extend C. elegans healthspan and lifespan. PLoS Genet. 2013; 9:e1003737. https://doi.org/10.1371/journal.pgen.1003737 PMID: 24009527

31. Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov. 2014; 13:727–40. https://doi.org/10.1038/nrd4391 PMID: 25212602

32. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016; 22:1428–38. https://doi.org/10.1038/nm.4222 PMID: 27841876

33. Pietrocola F, Lachkar S, Enot DP, Niso-Santano M, Bravo-San Pedro JM, Sica V, Izzo V, Maiuri MC, Madeo F, Mariño G, Kroemer G. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ. 2015; 22:509–16. https://doi.org/10.1038/cdd.2014.215 PMID: 25526088

34. Tezil T, Chamoli M, Ng CP, Simon RP, Butler VJ, Jung M, Andersen J, Kao AW, Verdin E. Lifespan-increasing drug nordihydroguaiaretic acid inhibits p300 and activates autophagy. NPJ Aging Mech Dis. 2019; 5:7. https://doi.org/10.1038/s41514-019-0037-7 PMID: 31602311

35. Wang J, Gallagher D, Devito LM, Cancino GI, Tsui D, He L, Keller GM, Frankland PW, Kaplan DR, Miller FD. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell. 2012; 11:23–35. https://doi.org/10.1016/j.stem.2012.03.016 PMID: 22770240

36. Moreno CL, Mobbs CV. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Mol Cell Endocrinol. 2017; 455: 33-40.
37. Zhou L, He B, Deng J, Pang S, Tang H. Histone acetylation promotes long-lasting defense responses and longevity following early life heat stress. PLoS Genet. 2019; 15:e1008122. https://doi.org/10.1371/journal.pgen.1008122 PMID:31034475

38. Ganner A, Gerber J, Ziegler AK, Li Y, Kandzia J, Matulenski T, Kreis S, Breves G, Klein M, Walz G, Neumann-Haefelin E. CBP-1/p300 acetyltransferase regulates SKN-1/Nrf cellular levels, nuclear localization, and activity in C. elegans. Exp Gerontol. 2019; 126:110690. https://doi.org/10.1016/j.exger.2019.110690 PMID:31419472

39. Cai H, Dhondt I, Vandemeulebroucke L, Vlaeminck C, Rasuolova M, Braeckman BP. CBP-1 Acts in GABAergic Neurons to Double Life Span in Axenically Cultured Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2019; 74:1198–205. https://doi.org/10.1093/gerona/glx206 PMID:29099917

40. Zhang M, Poplawski M, Yen K, Cheng H, Bloss E, Zhu X, Patel H, Mobbs CV. Role of CBP and SATB-1 in aging, dietary restriction, and insulin-like signaling. PLoS Biol. 2009; 7:e1000245. https://doi.org/10.1371/journal.pbio.1000245 PMID:19924292

41. Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 2006; 125:497–508. https://doi.org/10.1016/j.cell.2006.03.033 PMID:16678094

42. Dierickx P, Van Laake LW, Geijsen N. Circadian clocks: from stem cells to tissue homeostasis and regeneration. EMBO Rep. 2018; 19:18–28. https://doi.org/10.15252/embr.201745130 PMID:29258993

43. Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019; 20:49–65. https://doi.org/10.1038/s41583-018-0088-y PMID:30459365

44. Terzibasi-Tozzini E, Martinez-Nicolas A, Lucas-Sánchez A. The clock is ticking. Ageing of the circadian system: from physiology to cell cycle. Semin Cell Dev Biol. 2017; 70:164–76. https://doi.org/10.1016/j.semcdb.2017.06.011 PMID:28630025

45. Vaccaro A, Issa AR, Seugnet L, Birman S, Klarsfeld A. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function. PLoS Genet. 2017; 13:e1006507. https://doi.org/10.1371/journal.pgen.1006507 PMID:28072817

46. Alibhai FJ, LaMarre J, Reitz CJ, Tsimakouridze EV, Kroetsch JT, Bolz SS, Shulman A, Steinberg S, Burris TP, Oudit GY, Martino TA. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J Mol Cell Cardiol. 2017; 105:24–37. https://doi.org/10.1016/j.yjmcc.2017.01.008 PMID:28223222

47. Yuan G, Hua B, Cai T, Xu L, Li E, Huang Y, Sun N, Yan Z, Lu C, Qian R. Clock mediates liver senescence by controlling ER stress. Aging (Albany NY). 2017; 9:2647–65. https://doi.org/10.18632/aging.101353 PMID:29283886

48. Lan R, Wang Q. Deciphering structure, function and mechanism of lysine acetyltransferase HBO1 in protein acetylation, transcription regulation, DNA replication and its oncogenic properties in cancer. Cell Mol Life Sci. 2020; 77:637–49. https://doi.org/10.1007/s00018-019-03296-x PMID:31535175

49. Peleg S, Feller I, Forne I, Schiller E, Sévin DC, Schauer T, Regnard C, Straub T, Prestel M, Klima C, Schmitt Nogueira M, Becker L, Klopstock T, et al. Life span extension by targeting a link between metabolism and histone acetylation in Drosophila. EMBO Rep. 2016; 17:455–69. https://doi.org/10.15252/embr.201541132 PMID:26781291