Using a novel *in vivo* model to study the function of nuclear factor kappa B in cerebral ischemic injury

Rui Wang[^1]^[2][3][4], Songlan Liang[^1]^[2][3][4], Hui Yue[^1]^[2][3][4], Lijie Chen[^1]^[2][3][4][5]

Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China

Source of support: Departmental sources

Summary

Background: Cerebral ischemia is a situation with a deficit blood supply to the brain, which eventually leads to cell death, inflammation, and tissue damage. Nuclear factor kappa B (NF-κB) plays an important role in inflammation and immune regulation. The aim of this study was to test the function of the activation of NF-κB *in vivo* in cerebral ischemic injury.

Material/Methods: We generated an animal model that used the method of occlusion of the middle cerebral artery (MCAO). The 60 traits were equally divided into 5 groups to investigate the role of NAC pretreatment: (1) sham-operation (control), (2) ischemia for 6 hours, (3) ischemia for 6 hours and NAC pretreatment, (4) ischemia for 24 hours, (5) ischemia for 24 hours and NAC pretreatment. The 36 rats were divided randomly into 3 groups: (A) recombinant adenovirus expressing wild-type κBα (AdIkBαM) group, (B) recombinant adenovirus expressing wild-type IkBα (AdIkBα) group, and (C) simple ischemia group. Triphenyltetrazolium chloride (TTC) was used to measure infarct volume. Detection of expression of NF-κB was by Immunohistochemistry analysis.

Results: The infarct size of the 24-hours ischemia groups were bigger than those of 6-hours ischemia groups (*P*<0.01). The infarct size of using NAC pretreatment groups was obviously reduced compared with saline control groups (*P*<0.01). The percentage of cortical p65-positive cells of the group of (A) were significantly less than the groups of (B) and (C).

Conclusions: Our data suggest that N-acetylcysteine (NAC) and Ad-IκBα-Mut can inhibit the activation of NF-κB *in vivo*, reduce the focal infarct size, and protect the brain tissue in ischemia.

key words: NF-κB • cerebral ischemia • neurionoprotect • adenovirus • inflammation

Full-text PDF: http://www.medscimonit.com/fulltxt.php?ICID=883539

Word count: 2943

Tables: 2

Figures: 3

References: 25

Author’s address: Lijie Chen, Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China, e-mail: lijiechen120@sina.com
Background

Cerebral ischemia occurs when the blood supply to the brain is deficient due to arterial obstruction or systemic hypoperfusion. The deprivation of oxygen and glucose in the ischemic brain eventually leads to cell death, inflammation, and tissue damage [1,2]. The risk of stroke is estimated at 10–20% in the 90 days after a transient ischemic attack [3]. In recency years, some studies have provided excellent methods for stroke prevention [4]; however, the molecular mechanism underlying cerebral ischemic injury is still poorly understood.

NF-xB plays an important role in inflammation and immune regulation [6]. Recent expression profile studies of damaged brain tissue have identified hundreds of genes that are upregulated, including NF-xB [5]. NF-xB is a family of transcription factors which commonly consists of the heterodimer of a 65 kDa protein (p65) and a 50 kDa protein (p50) that are sequestered in the cytoplasm by an anchor protein called inhibitor of NF-xB (IxB) [5,6]. The activation of NF-xB is tightly controlled by IxB, which binds to the cytoplasmic NF-xB complexes [7,8]. NF-xB activation is thought to play an important role in cerebral ischemic injury, but the exact mechanism remains controversial. Some reports have demonstrated that asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, increases the activity of NF-xB [9], and activation of NF-xB is able to prevent cerebral ischemic injury [10,11], whereas other reports have shown less consequence in the NF-xB-deficient animal models [12,15].

Phosphorylation of IxB on serines 32 and 36 by IxB kinase leads to its ubiquitination and degradation by proteosomal enzymes. This allows the NF-xB to translocate into the nucleus, regulating gene expression [14]. Substitution of serines 32 and 36 of IxB by alanines postpones IxB degradation [15,16]. Accordingly, overexpression of mutated IxB (denoted IxB-Mut) prevents NF-xB activation in transitively or stably transfected cells [15,17] and in transgenic mice [18].

Here, we generated a unique animal model with transient expression of wild-type and mutant IxB in vivo. We then combined this model with the cerebral ischemic injury animal model and successfully tested the function of the activation of NF-xB in vivo in cerebral ischemic injury. We demonstrated that inhibition of NF-xB activation in vivo is capable of preventing cerebral ischemic injury.

Material and Methods

Animals

All the animal experiments were performed in the animal facility of our institute with approved protocol (SYXX20020017).

Reagents

One hundred and twenty 2-month-old male Wistar rats were used in this study. Sixty rats were selected randomly from the total 120 Wister rats and were equally divided into 5 groups to investigate the role of NAC pretreatment: (1) sham-operation (control); (2) ischemia for 6 hours; (3) ischemia for 6 hours and NAC pretreatment; (4) ischemia for 24 hours; and (5) ischemia for 24 hours and NAC pretreatment. Simultaneously, 24 rats were randomly selected and were divided into 2 groups for cortical injection of recombinant adenovirus-expressed IxB (Ad-IxBa) and its mutant (Ad-IxBa-Mut), respectively (n=12). The other 36 rats were divided randomly into 3 groups: (A) AdIxBaM group, (B) AdIxBa group, and (C) simple ischemia group.

N-Acetylcysteine (Sigma), NF-xBp 65 polyclonal antibody (Santa Cruz), PV6001 Immunohistochemistry Detection (Zhong Shan Co) and In Situ Cell Death Detection (Boehringer Mannheim) were used in this study. Recombinant adenovirus AdIxBaM (mutation on serines 32 and 36 of IxB gene) and Ad-IxBa (containing wild-type IxB gene) were constructed and provided by Dr. Binqrong Liu at our institute [19]. Concentration of adenovirus was 2.5×10^13 particles/ml.

Animal model of middle cerebral artery occlusion (MCAO)

We used the method of MCAO adapted from Longa et al. [5]. Briefly, the rats were anesthetized with 10% chloral hydrate, 0.4g/kg i.p. The right common carotid artery (CCA), the right external carotid artery (ECA) and the right internal carotid artery (ICA) were tied permanently. The end-tips of the 0.165 mm nylon suture were burned with a flame. A microaneurysm clamp was applied to the ICA. Close to the CCA bifurcation and through a small opening in the CCA, the nylon suture was inserted into the CCA. The silk suture around the CCA was tightened and then the microaneurysm clamp was removed. The nylon suture was guided in the ICA up to the origin of the MCA. The length from the CCA bifurcation to the origin of the MCA was about 18.5±0.5 mm and the length in the Sham operated group is less than 15 mm.

The ischemia group animals were killed after 6 h or 24 h of occluding the middle cerebral artery. One group of animals was given with NAC in a dosage of 150 mg/kg 30 min before occlusion. Control rats received the same volume of saline solution.

Cortical injection of recombinant adenovirus.

Cortical injection of recombinant adenoviruses expressed with AdIxBaM and AdIxBa was carried out using a stereotaxic instrument. Each rat was subjected to 4 cortical injections in the following locations: (1) 1 mm caudal to the Bregma, 4.6 mm lateral to the midline of the skull, and 4 mm ventral to the exterior surface of the skull; (2) 2 mm caudal to the Bregma, 4.3 mm lateral to the midline of the skull, and 4 mm ventral to the exterior surface of the skull; (3) 3 mm caudal to the Bregma, 4.6 mm lateral to the midline of the skull, and 4 mm ventral to the exterior surface of the skull; and (4) 4 mm caudal to the Bregma, 5.2 mm lateral to the midline of the skull, and 4 mm ventral to the exterior surface of the skull. All the target points were in the right side of the brain (ie, the ipsilateral hemisphere) to the MCAO. Two microliters of adenoviral suspensions containing 1×10^11 particles/ml were injected into each point at a rate of 2.0 µl/min. The needle was withdrawn after a
course of 10 min. Recombinant adenovirus with AdkBtM, or AdkBtα and the same volume of saline solution were injected at 48 h before occlusion.

The Zea Longa’s neurological deficit score was based on a 5-point scale [20]: 0 = no neurological deficit; 1 = mild focal neurological deficit (failure to extend left forepaw fully); 2 = moderate focal neurological deficit (circling to the left), and 3 = severe focal neurological deficit (falling to the left); rats with a score of 4 did not walk spontaneously and had a depressed level of consciousness. The rats with scores of 1 to 3 were chosen for this study.

Detection of expression of IkBα

Immunohistochemical analysis with antibody against IkBα and fluorescein microscopy analysis by observing GFP/IkBαM was performed. The expression of IkBαM in the infected cortical region was successively detected at day 1 to day 6 after AdIkBαM injection. Brown coloring of nuclei was used as the positive signal of IkBαM staining of immunohistochemical analysis.

Measurement of infarct volume

After killing the rats, their brains were removed. The cerebrums were cut into 2 mm-thick coronal blocks for a total of 6 to 7 blocks in each rat. The sections were immersed in 1% triphenyltetrazolium chloride (TTC) at 37°C for 15 min, avoiding light. The posterior surface of each section was photographed. The total area and the colorless area of each section were measured by an image analysis system (Motic Images Advanced 3.0). The infarct volume was calculated with the following formula:

\[V_{\text{infarct volume}} = \frac{t(A1+A2+…+An)-t(A1+An)}{2} \times \frac{1}{\text{total volume}} \times 100\% \]

Fixation of samples

After the rat was sacrificed, its chest was opened to rapidly expose the heart. Through the left ventricle a soft tube was inserted into the aorta ascendens and the right auricle was cut. One hundred millimeters of normal saline was injected into the aorta ascendens, and then 100 ml of 40 g/L paraformaldehyde was slowly injected. Then the brains of rats were removed and were placed in paraformaldehyde solution for 24 hours, and they were cut into 3 mm-thick coronal blocks and dehydrated through gradient alcohol and xylene. Brains were embedded by paraffin and then sliced into sections of 5 μm thick used for immunohistochemistry analysis and for terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end-labeling (TUNEL) staining.

Detection of expression of NF-κB p65 by immunohistochemistry

The tissue sections were dewaxed with xylene and rehydrated. In 0.01 mol/L citrate buffer solution, pH6.0, the sections were repaired by high temperature and high pressure, and then washed 3 times with PBS for 3 min each time. The sections were incubated with 3% H₂O₂ for 10 min, washed with PBS 3 times for 3 min. Rabbit antibody against NF-κB p65 was added to the sections at a ratio of 1:100, and incubated at 4°C overnight. The sections were washed with PBS 3 times for 3 min. Goat antibody against rabbit (IgG)-HRP polymer was added into the sections and was incubated for 20 min at room temperature, and then they were washed again. The sections were stained with DAB, and then washed with tap water. Afterwards, they were counter-stained with hematoxylin. One hundred cells were counted in each field of vision under ×200 microscopic resolution (10 different fields of vision in each section). The NF-κB p65-positive cells were counted.

TUNEL staining for apoptotic cells

Sections were dewaxed with xylene and rehydrated. Then they were incubated with 3% H₂O₂ for 20 min at room temperature and washed 3 times with PBS for 3 min. Afterwards, they were incubated with protease K for 15 min at room temperature and washed 3 times with PBS for 3 min. A 50 μl TUNEL solution was added for 1 h at 37°C and washed 3 times with PBS for 3 min. A 50 μl converter-POD solution was added to each section and incubated at 37°C for 30 min and washed 3 times with PBS for 3 min. The sections were stained with DAB and counterstained with hematoxylin; dehydration, transparency and obstruction glass piece were performed. They were observed through a high-power microscope (×400), and the nuclei of apoptotic cells were brown. The percentage of TUNEL-positive cells was calculated (the count of TUNEL-positive cells/the count of total cells ×100%).

Statistical analysis

Statistical analysis was performed with SPSS11.5. All data are expressed as means ± s (X±s). Statistical comparison used analysis of variance of completely random design. LSD-test was used to detect the difference between the 2 groups. P<0.05 was considered to be statistically significant.

Results

Generation of animals with transient expression of wild-type and mutant IkBα

Diffused distribution of green fluorescence in brain tissues adjacent to the needle trace were observed by fluorescent microscopy 1 day after Ad-IkBα-MUT injection. Green fluorescence became much stronger 2 or 3 days after injection (Figure 1), and almost no green fluorescence could be found 6 days after injection. By contrast, only a weak basal immunoreactive signal was detected in the wild-type Ad-IkBα-injected rats (Figure 1).

To verify the specificity of IkBα expression in the generated animals, we used specific antibody against IkBα to detect the expression of IkBα in tissue sections of animals. As shown in Figure 2, the expression of IkBα-Mut in brain tissue following Ad-IkBα-Mut injection was strongly positive by immunohistochemistry at 2 and 3 days after Ad-IkBα-Mut injection.

Inhibition of NF-κB p65 Activity by chemical inhibitor NAC and mutant IkBα in vivo

The sham operated group showed that NF-κB p65 is mainly in the cytoplasm, and is not expressed in nuclei. In 6-hr and
24-hr ischemia groups, NF-κB apparently translocated from the cytoplasm to the nuclei. The positive cells whose nuclei were stained were mainly in the ischemic penumbra. On the other hand, in the center of the ischemic area, the positive cells decreased and most of cells were stained in the cytoplasm. From the cell classification, we could see that positive cells were mainly neurons. There were few astrocytes and microgliocytes. As Table 1 shows, there were fewer NF-κB p65-positive cells in the groups that used NAC than in the groups that used saline as control (P<0.01, Figure 3). The percentage of NF-κB p65-positive cells in cortical fields of Ad-IκBα-Mut injection groups were significantly less than in the groups of wild-type Ad-IκBα injection and simple ischemia (P<0.01). However, there was no difference in the percentage of positive cells between groups with Ad-IκBα injection and simple ischemia (P>0.05, Table 2).

Inhibition of NF-κB in vivo prevents the cerebral ischemic injury

In total, 113 rats were used in this study and all data were statistically analyzed without losses. In the test of NAC pretreatment, the sham-operated group had no infarctions. The infarct size of the 24-hr ischemia groups were bigger than those of the 6-hr ischemia groups (P<0.01). The infarct size of groups using NAC pretreatment was obviously reduced compared with saline control groups (P<0.05, Table 1).

In the test of cortical adenovirus injection, compared with adenovirus Ad-IκBα groups and simple focal ischemia groups, the infarct size of Ad-IκBα-Mut injection groups decreased significantly (P<0.01). However, the difference in percentage of infarct volume between Ad-IκBα injection...
Inhibition of NF-κB p65 prevents apoptosis

We then explored cell apoptosis after treatment with NF-κB inhibitors to gain insight into the putative mechanism leading to the prevention of cerebral ischemic injury. There were no apoptotic cells in the sham-operated group. The nuclei of apoptotic cells in ischemic and reperfusion groups were brown; most of them were neurons, located mainly around ischemic areas, and some apoptotic cells were found in the center of ischemic zones. Through ×400 microscopic resolution, we could see late apoptotic cells with small bodies and altered shapes. The nucleus was pyknotic and was divided into several parts. Apoptotic bodies were also present. There were fewer apoptotic cells in the NAC groups compared with saline groups (Table 1). The percentage of TUNEL-positive cells in cortical fields of Ad-IκBα-Mut injection groups were significantly lower than in wild-type Ad-IκBα injection and simple ischemia groups (P<0.01). However, there was no difference in the percentage of positive cells between wild-type Ad-IκBα injection and simple ischemia groups (P>0.05, Table 2).

TUNEL staining showed that apoptotic cells were mainly in the ischemic penumbra, the same as in the NF-κB-positive cells. In the ischemic center, NF-κB was mainly in the cytoplasm.

Discussion

Because mutant IκB (IκBα-MUT) prolongs IκB’s expression and activity, we generated an in vivo model to express...
wild-type and mutant IKKa to test NF-kB function in cerebral ischemic injury. The plasmids of adenovirus with expression of mutant (Ad-IκBα-MUT) and wild-type IκBα (Ad-IκBα) were generated as described in the Methods section. Plasmids contained the green fluorescent protein (GFP) gene; therefore, infection of adenovirus was evaluated by observing the expression of GFP. Therefore, recombinant adenovirus effectively infected brain tissues and expressed IκBα-MUT protein. Because IκBα is an inhibitor of NF-kB, the proliferation of IKKa activity from mutant IκBα-MUT presumably will inhibit NF-kB activation longer than wild-type IKKa.

We found that the percentage of cortical p65-positive cells of Ad-IκBα-MUT injection groups were significantly lower than in the Ad-IκBα injection and simple ischemia groups, demonstrating that the activation of NF-kB was inhibited by Ad-IκBα-MUT. The infarct size of Ad-IκBα-MUT injection groups was significantly reduced compared to Ad-IκBα groups and simple ischemia groups, indicating that Ad-IκBα-MUT can reduce the cerebral infarct area.

Antioxidant NAC is a precursor of glutathione and can increase the amount of glutathione within the cells, stabilize the cell membranes, and protect the activity of cells. It can also directly delete reactive oxygen species (ROS), and prevent the expression of adhesion molecules and the immunosuppression of neutrophilic granulocytes. NAC also is a chemical inhibitor of NF-kB. We therefore administered this chemical in vivo to study the function of NF-kB in cerebral ischemic injury.

From the results of our test, we found that p65 has low levels of activity in normal brain tissue. The nuclear localization apparently increased in cerebral ischemia groups compared with the sham-operated group, demonstrating that cerebral ischemia can lead to the activation of NF-kB. Injecting NAC decreased the activation of p65 and reduced the infarct area.

The above findings indicate a close relationship between NF-kB and neurocyte apoptosis [21,22]. NAC, an inhibitor of NF-kB, is potent because it can decrease number of apoptotic cells and reduce infarct area. The infarct zones in 24-hr ischemia groups were larger than in 6-hr ischemia groups. However, the activation of NF-kB p65 did not noticeably increase, indicating that in addition to NF-kB activation there are other reasons affecting the process of cerebral ischemia [23–25].

In summary, we have generated a unique animal model with transient expression of wild-type and mutant IKKa to inhibit NF-kB activation. By combining this model with the cerebral ischemic injury animal model, we successfully tested the function of NF-kB activation in vivo in cerebral ischemia. Our data suggest that NAC and Ad-IκBα-MUT can inhibit the activation of NF-kB in vivo, reduce the focal infarct size, and protect the brain tissue in ischemia. Therefore, our results let us optimistically predict that inhibition of NF-kB activation might be an effective strategy for the development of novel treatments or even prevention methods for cerebral ischemic injury.

Conclusions

In summary, we have generated a unique animal model with transient expression of wild-type and mutant IKKa to inhibit NF-kB activation. By combining this model with the cerebral ischemic injury animal model, we successfully tested the function of the NF-kB activation in vivo in cerebral ischemia. Our data suggest that NAC and Ad-IκBα-MUT can inhibit the activation of NF-kB in vivo, reduce the focal infarct size, and protect the brain tissue in ischemia.

References:

1. del Zotto G, Ginnis I, Hallenbeck JM et al: Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol, 2009; 19: 90–112
2. Mehta SL, Manhas N, Raghubir R: Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev, 2007; 54: 34–66
3. Bernard SA, Gray TW, Buist MD et al: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med, 2002; 346: 557–63
4. Xu T, Gong Z, Zhu WZ et al: Remote ischemic preconditioning protects neurocognitive function of rats following cerebral hyperperfusion. Med Sci Monit, 2011; 17(11): BR299–304
5. Ghosh S, Hayden MS: New regulators of NF-kappaB in inflammation. Nat Rev Immunol, 2008; 8: 837–48
6. Ghosh S, May MJ, Kopp EB: NF-kappaB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998; 16: 225–60
7. Karin M: The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem, 1999; 274: 27359–62
8. Baldwin AS Jr: The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996; 14: 649–83
9. Wei-Kang G, Dong-Liang Z, Xin-Xin W et al: Actin cytoskeleton modulation by NF-kappaB nuclear translocation and ICAM-1 expression in endothelial cells. Med Sci Monit, 2011; 17(9): BR242–47
10. Nurmi A, Lindberg PF, Kostinahlo M et al: Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke, 2004; 35: 987–91
11. Schneider A, Martin-Villahza A, Weih F et al: NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med, 1999; 5: 534–59
12. Li J, Lu Z, Li WL et al: Cell death and proliferation in NF-kappaB p50 knockout mouse after cerebral ischemia. Brain Res, 2008; 1250: 281–89
13. Mito T, Nemoto M, Kanova H et al: Decreased damage from transient focal cerebral ischemia by transduction of zero-link hemoglobin polymers in mouse. Stroke, 2009; 40: 278–84
14. Baeserle PA: IkappaB/NF-kappaB structures: at the interface of inflammation control. Cell, 1998; 95: 729–31
15. Trenkner EB, Pahl HL, Henkel T et al: Phosphorylation of human I kappa B alpha on serines 32 and 36 controls I kappa B-alpha proteolysis in mouse. EMBO J, 1995; 14: 2676–83
16. Brockman JA, Scherer DC, McKinsey TA et al: Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol, 1995; 15: 2809–18
17. Ferreira V, Tarantino N, Korner M: Discrimination between Re1A and Re1B transcriptional regulation by a dominant negative mutant of IkappaBalpha. J Biol Chem, 1998; 273: 592–99
18. Ferreira V, Sedunov N, Tarantino N et al: In vivo inhibition of NF-kappa B in Lineage cells leads to a dramatic decrease in cell proliferation and cytokine production and to increased cell apoptosis in response to mitogenic stimuli, but not to abnormal thymopoiesis. J Immunol, 1999; 162: 6448–52
19. Liu AJ, Ruan HM, Cheng YC et al: Cloning and sequence analysis of Chinese IκBα gene. Massachusetts Zhi, 2002; 18: 81–84
20. Longa EZ, Weinstein PR, Carbon T, Cummins R: Reversible middle cerebral artery occlusion without cranectomy in rats. Stroke, 1989; 20: 84–91
21. Aso KA, Lemmuy F, Fuma K et al: Expression of transforming growth factor-b in 3, 3 isoforms and type I and II receptors in acute focal cerebral ischemia: an immunohistochemical study in rat after transient and permanent occlusion of middle cerebral artery. Acta Neuropathol, 1999; 97: 47–55
22. Dixon EP, Stephenson DT, Clemens JA, Little SP: Bcl-Xshort is elevated following severe global ischemia in rat brains. Brain Res, 1997; 776: 222–29

23. Carroll JE, Hess DC, Howard EF, Hill WD: Is nuclear factor-kappaB a good treatment target in brain ischemia/reperfusion injury? Neuroreport, 2000; 11: R1–4

24. Blondeau N, Widmann C, Lazdunski M, Heurteaux C: Activation of the nuclear factor-kappaB is a key event in brain tolerance. J Neurosci, 2001; 21: 4668–77

25. Ravati A, Ahlemeyer B, Becker A et al: Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappaB. J Neurochem, 2001; 78: 909–19