Research Article

Serum Positive for the Autoantibody against the β_1-Adrenoceptor from Chinese Patients with Congestive Heart Failure Decreases I_{ss} in Mouse Cardiac Myocytes

Yuan-yuan Wang,1,2 Zhi-Yong Ma,1,2 Xiao-Dong Li,3 Jian-chun Wang,3 Wei Zhang,1,2 Li Li,1,2 and Yun Zhang1,2

1 Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan 250012, China
2 Department of Cardiology, Qilu Hospital, Shandong University, Jinan 250012, China
3 Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China

Correspondence should be addressed to
Li Li, lili8599@163.com

Received 5 November 2010; Accepted 7 April 2011

1. Introduction

It has become increasingly clear that autoimmune disorders are a feature of congestive heart failure (CHF) of various etiologies [1, 2]. Over the past few decades, several autoantibodies have been detected in the serum of patients with CHF, including autoantibodies against α-adrenoceptor [3, 4], β_1-adrenoceptor [5–9], and M_2-adrenoceptor [10–12]. Autoantibodies targeting the second extracellular loop of the β_1-adrenergic receptor (AAB-β_1) are specifically associated with the effects of β-blocker therapy and correct prediction of ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy [8, 13]. In vivo, AAB-β_1 can induce β_1-adrenergic receptor uncoupling, which causes cardiomyocyte apoptosis and sustained calcium influx that results in cardiac electrical instability [14]. These results suggest that AAB-β_1 displays agonist-like effects that may have a pathogenic role in the progression of heart failure.

Additional evidence has revealed the electrophysiological effects of AAB-β_1. AAB-β_1 and the IgG fraction containing this antibody significantly enhanced I_{ca} amplitude of adult rat ventricular myocytes [15]. The previous study also showed that purified autoantibodies enhanced cell shortening, prolonged action potential duration, and increased calcium current amplitude of rat ventricular myocytes; these positive effects of AAB-β_1 were indeed mediated via the β_1-adrenoceptor [14, 16]. However, the effects of AAB-β_1 on voltage-gated potassium channels in mouse ventricular myocytes remained unclear.

In cardiac myocytes, voltage-gated K$^+$ currents are responsible for the repolarization of the membrane potential and, therefore, influence action potential duration (APD).
Previous studies have described a steady state outward K⁺ current aside from the transient outward K⁺ current in rat ventricular cells [17–19]. This steady state current displayed a weak voltage-dependent inactivation and was negatively regulated by the β-adrenergic agonist isoproterenol. Thus, this steady state current might play an important role in determining APD during neurohormonal regulation. Therefore, we explored the effects of AAB-β₁-positive serum from Chinese patients with CHF on the activity of the peak transient outward potassium current (I_{to}) and the end 50 ms steady state potassium current (I_{ss}) in mouse cardiac myocytes.

2. Materials and Methods

2.1. Patients. Fourteen patients admitted to the Department of Cardiology of Qilu Hospital of Shandong University with stable CHF enrolled and submitted to serological tests, coronary angiography, and electro- and echocardiography to discard those with the following pathological conditions: Chagas’ disease, hypertrophic cardiomyopathy, acute coronary syndrome, severe hypertension, valvular heart disease, alcohol or drug abuse, insulin-dependent diabetes mellitus, and severe infection. All selected patients had left ventricular ejection fractions (LVEF) ≤ 45% determined by echocardiography (M mode). They were receiving standard therapy, including angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, diuretics, and digitalis glycosides during the study. None of them were being treated with β-blockers at enrollment. Five control sera were obtained from voluntary healthy blood donors. The blood was collected and fractioned, and the serum was stored at −20°C until immunological and/or electrophysiological assays were performed. This study was performed in compliance with the Declaration of Helsinki, and the protocol was approved by the ethics committee of Qilu Hospital. All patients gave informed consent for participation.

2.2. Autoantibodies. The target peptide was a fusion protein corresponding to the putative sequence of the second extracellular loop of the human β₁-adrenergic receptor (amino acids 197 to 222: H-W-W-R-A-E-S-D-E-A-R-R-C-Y-N-D-P-K-C-C-D-F-V-T-N-R), which was commercially synthesized. Peptide purity was ascertained by mass spectroscopy analysis. The presence of autoantibodies was determined by ELISA. ELISA was carried out as previously described [12, 20] with the following modifications: the wells of microtiter plates were coated with this peptide (10 μg/mL) and incubated for 2 hours. After washing the plate 3 times, 100 μL of 3% skim milk was added to each well for 2 hours. Then 100 μL of patient serum (at dilutions starting from 1:20) was added to the coated wells of the microtiter plate. After washing the plate 3 times, an affinity-purified anti-human immunoglobulin G peroxidase-conjugated antibody (diluted 1:5000) was added to each well for 1 hour. After washing the plates 4 more times, bound peroxidase-conjugated antibody were detected by incubation with the chromogenic substrate for peroxidase. The reaction was stopped with 50 μL of sulfuric acid, and the optical density was determined at 450 nm. A positive reaction was defined as ≥2.5 times the background level. Autoantibodies directed against the β₁-adrenergic receptor were detected in 6 patients (43%) by ELISA.

2.3. Cell Isolation. Ventricular myocytes were dissociated from the hearts of mice according to previously published protocol [14]. Briefly, 8-week-old male Kunming mice (30–40 g) were anaesthetized with pentobarbitone sodium (30–40 mg/kg), which were injected intravenously together with heparin (100 IU/kg). The heart was removed, washed in a cold calcium-free Joklik MEM (Sigma) solution, and perfused for 5 min on a Langendorff apparatus with the same calcium-free Joklik MEM (containing 11.0 g/L Joklik MEM and 10 mmol/L HEPES; the pH was adjusted to 7.3 with NaOH) warmed to 37°C. The heart was then perfused with collagenase-containing solution (collagenase, 1 mg/mL, Worthington, and BSA 1 mg/mL). After approximately 15 min, the ventricles were removed, placed in fresh solution, cut into 1 mm² sections, and gently agitated to dissociate the myocytes. Single ventricular myocytes were collected in KB solution (composition in mM: 30 KCl, 35 KOH, 3 MgSO₄, 50 L-glutamic acid, 0.5 EGTA, 20 taurine, 10 glucose, and 10 HEPES; pH adjusted to 7.2 with KOH). Cells were stored at 22–24°C.

2.4. Electrophysiological Recordings. The cardiac myocytes were transferred to a recording chamber mounted on an inverted microscope (NIKON TE2000-U) at least 10 min before patch clamping. Micropipettes were made from borosilicate glass capillary with an outside diameter of 1.5 mm. After being fire-polished and filled with pipette solution (composition in mM: 115 K-aspartate, 5 KCl, 4 Na₂ATP, 7 MgCl₂, 5 EGTA, and 10 HEPES; pH was adjusted with NaOH to 7.2), the resistance was 2–4 MΩ. The junction potential between the patch pipettes and bath solution was nullified immediately before GΩ seal formation. Cell capacitances were read from the potentiometer to set transient capacitances to zero. After the pipette and cell transient capacitance were compensated, the membrane was ruptured with gentle suction to obtain the whole cell voltage-clamp configuration using PCS-5200 micro-operation (Burleigh, USA). Signals were amplified with HEKA EPC-10 patch clamp amplifier and controlled with the Pulse software (HEKA, Lambrecht, Germany). Signals were sampled at 3 kHz and filtered at 1 kHz. The voltage protocol was a 1-s depolarizing step from −50 to +50 mV in 10 mV increments from a holding potential of −60 mV. The peak of the current was the transient outward potassium channel current (I_{to}), and the end 50 ms of plateau potential current was I_{ss}. All experiments were performed at room temperature (22–25°C). The ventricular myocytes were perfused with normal bath solution (BS, composition in mM: 135 ChCl, 5.4 KCl, 1.2 MgCl₂, 0.5 CdCl₂, 10 glucose, and 10 HEPES; pH was adjusted to 7.4 with NaOH) for 10 min to stabilize the currents. For analysis of autoantibody
Figure 1: Effect of AAB-β1-negative and -positive serum of CHF patients on outward K+ currents of mouse cardiomyocytes: (a), (b), (c), and (d), current traces obtained with 1-s depolarizing step from −50 to +50 mV in 10 mV increments from a holding potential of −60 mV. Voltage protocols are shown below the current traces. Under the present experimental conditions, the peak of the current was \(I_{to}\), and the end 50 ms of plateau potential current was \(I_{ss}\). (e), (f), corresponding current–voltage relationships during the application of AAB-β1-negative or -positive serum of CHF patients at the dilution of 1 : 20. AAB-β1 negative serum had no effect on the activity of \(I_{to}\), \(I_{ss}\) and the corresponding current-voltage curves (b, d, e, f). The AAB-β1-positive serum had no effect on activity of \(I_{to}\), but it produced a decrease in the currents of \(I_{ss}\) (a, c, e, f).

Effects, cells were separately perfused with BS including AAB-β1-negative serum and AAB-β1-positive serum for 5 min. For the concentration-dependence analysis of autoantibody effects, cells were perfused with the following bath solutions: serum dilution ranging from 1/100, 1/50, 1/20 to 1/10.

The recordings were analyzed using IGOR and the Origin software. The value of current was expressed with the density of current (pA/pF) to eliminate the capacitance error. Current amplitude was determined as the difference between peak inward current and current at the end of the depolarising step.

2.5. Statistics. All of the data were presented as the means ± S.E. One-way ANOVA with repeated measures and analysis of variance were used for statistical analysis where appropriate. Statistical analysis was performed using the SPSS12.0 software, and \(P < .05\) was considered statistically significant.

AAB-β1-positive serum dilution-response curves were fitted using the equation: \(I = a/(1 + (\text{EC}_{50}/\text{dilution})^{nH})\), where \(a\) was the amplitude of the \(I_{ss}\) current, the \(\text{EC}_{50}\) was the dilution where a half-maximal response was induced, and \(nH\) was the Hill coefficient.

3. Results

Under these experimental conditions (in the presence of ChCl and CdCl to block the Na+ currents and Ca\(^{2+}\) currents, resp.), outward K+ currents were recorded in mouse myocytes. These readings were composed of rapidly activating and inactivating currents (\(I_{to}\)) and slowly activating but noninactivating current (\(I_{ss}\)) (Figure 1(a), 1(b), 1(c), 1(d)).

The AAB-β1-negative serum of CHF patients had no effect on the activity of \(I_{to}\) and \(I_{ss}\) in mouse ventricular myocytes (Figures 1(b) and 1(d)). The negative serum also
Figure 2: Comparison of AAB-β1-negative serum and -positive serum from patients with heart failure (dilution at 1:20) on the mean current of outward K+ currents at a voltage of 50 mV. Compared to currents at normal bath solution and AAB-β1-negative serum ($n = 5$ cells, dilution at 1:20), AAB-β1-positive serum ($n = 7$ cells, dilution at 1:20) had no effect on I_{to} ($P > .05$). I_{ss} on the AAB-β1-positive serum decreased significantly compared to the normal bath solution ($P < .05$) and had also significant decrease compared to the AAB-β1-negative serum ($P < .05$).

Figure 3: Different concentrations of AAB-β1-positive serum (dilution ranging from 1:100, 1:50, 1:20 to 1:10) on the outward K+ currents at a voltage of 50 mV: I_{to} showed no changes at different concentrations of AAB-β1-positive serum (a). A low concentration of AAB-β1-positive serum (1:100) had a small inhibitory effect on I_{to} (b, c). However, AAB-β1-positive serum at 1:10, 1:20, and 1:50 significantly decreased I_{ss} ($P < .05$, b, c). Additionally, there were no significant differences in currents at 1/10 and 1/20 AAB-β1-positive serum treatment (b, c). AAB-β1-positive serum had no effect on the I-V relationship at any concentration (a, b). * $P < .05$.
showed no effect on the current-voltage curves of I_{ss} and I_{s} (Figures 1(e) and 1(f)). The AAB-\(\beta_1\)-positive serum had no effect on activity of I_{ss}, but it produced a decrease in the currents of I_{ss} (Figure 1(a), 1(c), 1(e), 1(f)). Compared to the currents at normal bath solution and AAB-\(\beta_1\)-negative serum (dilution at 1:20), AAB-\(\beta_1\)-positive serum (dilution at 1:20) had no effect on I_{ss} but caused a significant decrease in I_{ss} myocyte currents ($P < .05$, Figure 2).

Compared with the normal bath solution, the current density of I_{ss} showed no change at different concentrations of AAB-\(\beta_1\)-positive serum (Figure 3(a)). A low concentration of AAB-\(\beta_1\)-positive serum (1/100) had a small inhibitory effect on I_{ss} (Figures 3(b) and 3(c)). However, AAB-\(\beta_1\)-positive serum at 1:10, 1:20 and 1:50 significantly decreased I_{ss} ($P < .05$, Figures 3(b) and 3(c)). Additionally, there were no significant differences in the I_{ss} currents between 1/10 and 1/20 AAB-\(\beta_1\)-positive serum (Figures 3(b) and 3(c)) treatments. Similarly, AAB-\(\beta_1\)-positive serum had no effect on the $I-V$ relationship at any concentration (Figures 3(a) and 3(b)). The concentration-dependence analysis showed that the EC\(_{50}\) of AAB-\(\beta_1\)-positive serum was 1/60.24, and its nH was 2.86 (Figure 4).

4. Discussion

Increasing evidence demonstrates that the contribution of AAB-\(\beta_1\) to the pathogenesis of chronic heart failure is not just a correlation. In the present study, we found for the first time that serum positive for autoantibodies against the β_1-adrenoceptor decreases the current density of I_{ss} in mouse ventricular myocytes in a concentration-dependent manner, with no effect on I_{ss}. AAB-\(\beta_1\)-positive serum at the dilution of 1:10, 1:20, and 1:50 significantly decreased I_{ss}. Concentration-dependence analysis showed that the EC\(_{50}\) was 1/60.24 and nH was 2.86.

The autoantibodies for the β_1-adrenergic receptor have been found in sera not only from patients with idiopathic dilated cardiomyopathy [5], but also from patients with CHF of various etiologies [21, 22]. Previous studies have conclusively demonstrated that autoantibodies targeting the second extracellular loop of the β_1-adrenergic receptor showed agonist-like effects: inducing receptor uncoupling, causing cardiomyocyte apoptosis, and permitting sustained calcium influx [14, 23]. In the present study, serum positive for autoantibodies against the β_1-adrenoceptor decreased the current density of I_{ss} without any effect on I_{ss}, which is similar to the inhibitory effect of the β_1-adrenergic agonist isoproterenol [17]. From this close resemblance of macroscopic I_{ss} after stimulation with AAB-\(\beta_1\) and isoproterenol, we suggest that both activators mediate their effects via similar signal transduction pathways.

Autoantibodies are thought to induce activation of the receptor that leads to intracellular signaling involving the classical PKA pathway [24–27]. Other groups have reported effects of purified autoantibodies or AAB-\(\beta_1\)-positive serum on calcium channels. Christ et al. found that immunoglobulin G derived from patients positive for the β_1-adrenoceptor autoantibodies increased Ca\(^{2+}\) current to a similar extent, but prolonged the plateau of duration of action potentials to a lesser extent compared to isoproterenol [14]. However, Del Corso et al. found that serum from patients with IDC induced a significant decrease in isoproterenol-stimulated L-type Ca\(^{2+}\) currents in rabbit ventricular myocytes. This activation is known to involve the PKA pathway [12]. Furthermore, Christ et al. concluded that AAB-\(\beta_1\) may not only enhance I_{Ca} via stimulation of the β_1-adrenoceptors, but may also inhibit this β_1-adrenoceptor-mediated increase upon stimulation with catecholamines [16]. In our study, AAB-\(\beta_1\)-positive serum inhibited I_{ss} in a concentration-dependent manner with no effect on the current-voltage curves. Therefore, the regulatory effect of AAB-\(\beta_1\) on ion channel currents may all involve the classical PKA pathway in the different studies.

Furthermore, AAB-\(\beta_1\)-positive serum only decreased I_{ss} with no effect on I_{ss}, which was similar to the results of β_1-adrenergic agonist isoproterenol treatment [17]. Several hypotheses can be proposed to account for such a difference in threshold dose and potency. The channels may be more easily accessible to phosphorylation in I_{ss} than I_{ss}, which is a possible effect according to the theory of CAMP compartmentalization. Another possibility is that the channels may be more sensitive to phosphorylation in I_{ss} than I_{ss}; for example, phosphorylation at one site on I_{ss} may be sufficient to induce an effect while I_{ss} requires phosphorylation of several sites. The above suggested mechanisms may also lead to the dose-dependence of I_{ss}.

5. Conclusions

Autoantibodies against β_1-adrenoceptor from Chinese patients with congestive heart failure can inhibit I_{ss} in mouse cardiomyocytes in a concentration-dependent manner. Because I_{ss} plays an important role in the repolarization of action potentials, AAB-\(\beta_1\) may influence action potential duration via this current.
5.1. Study Limitations and Clinical Implications. In the present study, we did not investigate the mechanism behind the inhibitory effect of AAB-β₁ on I_{Na}. It would require much more work to establish whether AAB-β₁ inhibits I_{Na} directly or indirectly. Recent studies reported that AAB-β₁ may influence the effects of β-blocker therapy and that specific removal of AAB-β₁ by immunoadsorption can improve cardiac function in patients with DCM. These results suggest that anti-β₁-adrenergic receptor autoantibodies have a pathogenic role in the onset and progression of heart failure. Because I_{Na} has biophysical properties of being slowly activated and noninactivated (steady state), AAB-β₁ may prolong repolarization and action potential duration by inhibiting I_{Na}; this would subsequently result in cardiac electrical instability.

Conflict of Interests

The authors declare no conflict of interest.

Acknowledgments

This paper was supported by the Natural Science Foundation (Y2005C32) from the Department of Science and Technology of Shandong Province, by the Shangdong Province Young and Middle-Aged Scientists Research Awards Fund (Y2005C32) from the Department of Science and Technology of Shandong Province, China (2009GG10002034). Y.-Y. Wang and Z.-Y. Ma contributed equally to this paper.

References

[1] M. Fu and S. Matsui, “Is cardiomyopathy an autoimmune disease?” Keio Journal of Medicine, vol. 51, no. 4, pp. 208–212, 2002.

[2] J. Müller, G. Wallukat, M. Dandel et al., “Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy,” Circulation, vol. 101, no. 4, pp. 385–391, 2000.

[3] Z. Zhou, Y.-H. Liao, Y. Wei et al., “Cardiac remodeling after long-term stimulation by antibodies against the α₁-adrenergic receptor in rats,” Clinical Immunology, vol. 114, no. 2, pp. 164–173, 2005.

[4] G. Bkaily, N. El-Bizri, M. Bui, R. Sukarieh, D. Jacques, and M. L. X. Fu, “Modulation of intracellular Ca²⁺ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the α₁-adrenoceptors,” Canadian Journal of Physiology and Pharmacology, vol. 81, no. 3, pp. 234–246, 2003.

[5] Y. Magnusson, S. Marullo, S. Hoyer et al., “Mapping of a functional autoimmune epitope on the β₁-adrenergic receptor in patients with idiopathic dilated cardiomyopathy,” Journal of Clinical Investigation, vol. 86, no. 5, pp. 1658–1663, 1990.

[6] Y. Magnusson, G. Wallukat, F. Waagstein, A. Hjalmarson, and J. Hoebeke, “Autoimmunity in idiopathic dilated cardiomyopathy: characterization of antibodies against the β₁-adrenoceptor with positive chronotropic effect,” Circulation, vol. 89, no. 6, pp. 2760–2767, 1994.

[7] G. Wallukat and A. Wollenberger, “Effects of the serum gamma globulin fraction of patients with allergic asthma and dilated cardiomyopathy on chronotropic beta adrenergic function in cultured neonatal rat heart myocytes,” Biomedica Biochimica Acta, vol. 46, no. 8-9, pp. 5634–639, 1987.

[8] M. Iwata, T. Yoshikawa, A. Baba, T. Anzai, H. Mitamura, and S. Ogawa, “Autoantibodies against the second extracellular loop of β₁-adrenergic receptors predict ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy,” Journal of the American College of Cardiology, vol. 37, no. 2, pp. 418–424, 2001.

[9] R. Jahns, V. Boivin, L. Hein et al., “Direct evidence for a β₁-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy,” Journal of Clinical Investigation, vol. 113, no. 10, pp. 1419–1429, 2004.

[10] L. X. Fu, Y. Magnusson, C. H. Bergh et al., “Localization of a functional autoimmunity epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy,” Journal of Clinical Investigation, vol. 91, no. 5, pp. 1964–1968, 1993.

[11] F. C. Retondaro, P. C. Dos Santos Costa, R. C. Pedroza, and E. Kurtenbach, “Presence of antibodies against the third intracellular loop of the m2 muscarinic receptor in the sera of chronic chagasic patients,” FASEB Journal, vol. 13, no. 14, pp. 2015–2020, 1999.

[12] C. Del Corso, C. A. Campos De Carvalho, H. F. Martino, and W. A. Varanda, “Sera from patients with idiopathic dilated cardiomyopathy decrease I_{Ca} in cardiomyocytes isolated from rabbits,” American Journal of Physiology, vol. 287, no. 5, pp. H1928–H1936, 2004.

[13] Y. Fukuda, S. Miyoshi, K. Tanimoto et al., “Autoimmunity against the second extracellular loop of β₁-adrenergic receptors induces early afterdepolarization and decreases in K⁺ channel density in rabbits,” Journal of the American College of Cardiology, vol. 43, no. 6, pp. 1090–1100, 2004.

[14] T. Christ, E. Wettwer, D. Dobrev et al., “Autoantibodies against the β₁-adrenoceptor from patients with dilated cardiomyopathy prolong action potential duration and enhance contractility in isolated cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 8, pp. 1515–1525, 2001.

[15] T. Christ, S. Schindelhauer, E. Wettwer, G. Wallukat, and U. Ravens, “Interaction between autoantibodies against the β₁-adrenoceptor and isoprenaline in enhancing L-type Ca²⁺ current in rat ventricular myocytes,” Journal of Molecular and Cellular Cardiology, vol. 41, no. 4, pp. 716–723, 2006.

[16] T. Christ, E. Adolph, S. Schindelhauer et al., “Effects of immunoglobulin G from patients with dilated cardiomyopathy on rat cardiomyocytes,” Basic and Clinical Pharmacology and Toxicology, vol. 96, no. 6, pp. 445–452, 2005.

[17] F. Scamps, “Characterization of a β-adrenergically inhibited K⁺ current in rat cardiac ventricular cells,” Journal of Physiology, vol. 491, no. 1, pp. 81–97, 1996.

[18] M. Apkon and J. M. Nerbonne, “Characterization of two distinct depolarization-activated K⁺ currents in isolated adult rat ventricular myocytes,” Journal of General Physiology, vol. 97, no. 5, pp. 973–1011, 1991.

[19] Z. Wang, B. Fermieri, and S. Nattel, “Sustained depolarization-induced outward current in human atrial myocytes: evidence for a novel delayed rectifier K⁺ current similar to Kv1.5 cloned channel currents,” Circulation Research, vol. 73, no. 6, pp. 1061–1076, 1993.

[20] R. S. Warraich, M. J. Dunn, and M. H. Yacoub, “Subclass specificity of autoantibodies against myosin in patients with idiopathic dilated cardiomyopathy: pro-inflammatory antibodies in DCM patients,” Biochemical and Biophysical Research Communications, vol. 259, no. 2, pp. 253–261, 1999.
[21] R. Jahns, V. Boivin, C. Siegmund, G. Inselmann, M. J. Lohse, and F. Boege, “Autoantibodies activating human β_1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure,” Circulation, vol. 99, no. 5, pp. 649–654, 1999.

[22] H. R. Liu, R. R. Zhao, X. Y. Jiao, Y. Y. Wang, and M. Fu, “Relationship of myocardial remodeling to the genesis of serum autoantibodies to cardiac beta-β_1-adrenoceptors and muscarinic type 2 acetylcholine receptors in rats,” Journal of the American College of Cardiology, vol. 39, no. 11, pp. 1866–1873, 2002.

[23] Y. Staudt, R. Mobini, M. Fu, S. B. Felix, J. P. Kühn, and A. Staudt, “β_1-adrenoceptor antibodies induce apoptosis in adult isolated cardiomyocytes,” European Journal of Pharmacology, vol. 466, no. 1-2, pp. 1–6, 2003.

[24] W.-Z. Zhu, S.-Q. Wang, K. Chakir et al., “Linkage of β_1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca$^{2+}$/calmodulin kinase II,” Journal of Clinical Investigation, vol. 111, no. 5, pp. 617–625, 2003.

[25] N. J. Freedman, S. B. Liggett, D. E. Drachman, G. Pei, M. G. Caron, and R. J. Lefkowitz, “Phosphorylation and desensitization of the human β_1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase,” Journal of Biological Chemistry, vol. 270, no. 30, pp. 17953–17961, 1995.

[26] X. Y. Huang, A. D. Morielli, and E. G. Peralta, “Molecular basis of cardiac potassium channel stimulation by protein kinase A,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 2, pp. 624–628, 1994.

[27] G. G. Wilson, C. A. O’Neill, A. Sivaprasadarao, J. B. C. Findlay, and D. Wray, “Modulation by protein kinase A of a cloned rat brain potassium channel expressed in Xenopus oocytes,” Pflügers Archiv European Journal of Physiology, vol. 428, no. 2, pp. 186–193, 1994.