SRSF1 Regulates Exosome microRNA Enrichment in Human Cancer Cells

Yi-Fan Xu
Xiaohui Xu
Amy Gin
Jean D. Nshimiyimana
Blaine H.M. Mooers
Massimo Caputi
Bethany N. Hannafon
Wei-Qun Ding

Video Byte

Keywords: SRSF1, exosome, miRNA, miR-1246, pancreatic cancer, cancer, vesicle, Cell Communication and Signaling

DOI: https://doi.org/10.21203/rs.3.rs-106626/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Exosomes are extracellular vesicles that can be transferred from cancer cells to surrounding cells in the tumor microenvironment. Despite their tiny size, exosomes have a huge effect on cell-to-cell communication, facilitating tumor progression and contributing to metastasis. Their widespread effects have drawn the attention of scientists hoping to develop new cancer therapies. A recent study focused on a specific type of exosome cargo – microRNAs (miRNAs), which can act as nucleic acid messengers between cells. Certain miRNAs are known to be enriched in cancer cell exosomes, but how this enrichment occurs is unclear. Using a pancreatic cancer cell line, researchers identified RNA-binding proteins that could bind to a common cancer-associated miRNA, miR-1246. They found that the protein SRSF1 could bind strongly with miR-1246. Reducing SRSF1 expression decreased the enrichment of miRNAs in exosomes, while overexpressing SRSF1 enhanced the enrichment. A common motif was shared by many SRSF1-associated exosome miRNAs, and using decoys for the consensus motif inhibited binding of SRSF1 to miR-1246. These results provide insight into the cellular processes initiating miRNA signaling via exosomes and suggest new targets for developing therapeutic measures against cancer.