Fractional nonlinear filtering problems and their associated fractional Zakai equations

SABIR UMAROV*, FREDERICK DAUM†, KENRIC NELSON ‡

Abstract

In this paper we discuss fractional generalizations of the filtering problem. The "fractional" nature comes from time-changed state or observation processes, basic ingredients of the filtering problem. The mathematical feature of the fractional filtering problem emerges as the Riemann-Liouville fractional derivative in the associated Zakai equation. We discuss fractional generalizations of the filtering problem whose state and observation processes are driven by time-changed Brownian motion or/and Lévy process.

1 Introduction

The filtering problem is formulated as follows. Let \((\Omega, \mathcal{F}, P)\) be a probability space with a state space \(\Omega\), sigma-algebra \(\mathcal{F}\), and probability measure \(P\). Let \(X_t : \Omega \to \mathbb{R}^n\) be an \(\mathbb{R}^n\)-valued stochastic process defined on \((\Omega, \mathcal{F}, P)\) and called a state process. We assume that \(X_t\) is governed by the stochastic differential equation

\[dX_t = b(t, X_t)dt + g(t, X_t)dB_t, \quad (1.1) \]

with initial condition \(X_{t=0} = X_0\), where \(X_0\) is a random variable independent of Brownian motion \(B_t\), the functions \(b(t, x)\) and \(g(t, x)\) defined for \(t > 0\) and \(x \in \mathbb{R}^n\) satisfy some growth and continuity conditions. The state process in the filtering problem can not be observed directly. Suppose \(Z_s, s \leq t,\) is \(\mathbb{R}^m\)-valued stochastic process called observation process and related to the process \(X_t\) in the noisy environment. The observation process \(Z_t\) can be expressed through a stochastic differential equation of the form

\[dZ_t = h(t, X_t)dt + dW_t, \quad Z_0 = 0, \quad (1.2) \]

where \(h(t, x), t > 0, x \in \mathbb{R}^n,\) is a function satisfying appropriate growth and continuity conditions, and \(W_t\) is an \(m\)-dimensional Brownian motion independent of \(B_t\). Let \(\mathcal{Z}_t\) be a \(\sigma\)-algebra generated by the observation process \(Z_t\). We assume that \(X_t\)

*Department of Mathematics, University of New Haven, 300 Boston Post Rd, West Haven, CT 06511; sumarov@newhaven.edu
†Raytheon, 235 Presidential Way Woburn, MA 01801; Frederick_Daum@raytheon.com, Kenric_P_Nelson@raytheon.com

AMS 2000 subject classifications: Primary 60H10, 35S10; secondary 60G51, 60H05.

Keywords: time-change, stochastic differential equation, filtering problem, Zakai equation, fractional order differential equation, distributed order differential equation, pseudo-differential operator, Lévy process, stable subordinator.
is Z_t-measurable. The filtering problem is to find the best estimation of X_t at time t given Z_t, in the mean square sense. Namely, to find a stochastic process X_t^* such that

$$E[\|X_t - X_t^*\|^2] = \inf E[\|X_t - Y_t\|^2],$$

where E is the expectation with respect to the probability measure P and \inf is taken over all Z_t-measurable stochastic processes $Y_t \in L_2(P)$. It follows from the abstract theory of functional analysis that X_t^* is the projection of X_t onto the space of stochastic processes $L(Z_t) = \{Y \in L_2(P) : Y_t$ is Z_t-measurable$\}$. The latter can be written in the form $X_t^* = E[X_t|Z_t]$.

Filtering problems arise in many engineering models. One simple example is transmitting of modulated signals. These signals are received with an effect of noisy environment. The received signal has to be filtered in order to be realizable. Thus in this situation filtering problem is about the best estimation of the stochastic process (the modulated signal transmitted in the noisy environment) given additional information obtained via measurement of parameters of the process (of the signal).

The filtering problem is called linear if the functions $b(t, x)$ and $g(t, x)$ depend on x linearly. The linear filtering problem was studied by Kalman and Bucy [13] in the 1960th. They reduced the linear filtering problem to a linear SDE and a deterministic Riccati type differential equation. In the case of non linear filtering Kushner [13], Lipster and Shiryaev [10], and Fujisaki, Kallianpur and Kunita [6] (see also [21]) obtained a non linear infinite dimensional stochastic differential equations for the posterior conditional density of X_t given Z_t. However, (1) it is not easy to solve these equations, and (2) it is computationally ‘expensive’ due to the two stage calculation procedure (prediction and correction) in the real time. Later Zakai [26] obtained a simpler form of the stochastic differential equation for the posterior unnormalized conditional density $\Phi(t, x) = p(t, x|Z_t)$ for X_t in the following form:

$$\Phi(t, x) = P(X_0 = x) + \int_0^t A^*\Phi(s, x)ds + \sum_{k=1}^m \int_0^t h_k(x)\Phi(s, x)dZ_s^{(k)}, \quad (1.3)$$

where the operator A^* is the dual of the infinitesimal generator A (see Section 2) of the Markov process X_t, and $h_k(x), k = 1, \ldots, m,$ are components of the random vector-function in equation (3.4). Equation (1.3) can be written in the differential form as follows

$$d\Phi(t, x) = A^*\Phi(t, x)dt + \sum_{k=1}^m h_k(x)\Phi(t, x)dZ_t^{(k)}, \quad \Phi(0, x) = P(X_0 = x). \quad (1.4)$$

Equation (1.3) (or (1.4)) is a linear stochastic partial differential equation, and therefore, the methods of solution of linear equations are applicable, including some explicit forms for the solution.

Daum [3, 4, 5] developed algorithms for solution of nonlinear filtering problems in the class of distributions from the Gaussian family. In paper [3] he reduced a solution of the Zakai equation to a solution of the Fokker-Planck equation and a deterministic matrix Riccati equation, generalizing the classical result of Kalman and Bucy. In recent works [4, 5] particle flow algorithms were suggested which provide several orders of magnitude improvement in the processing of particle filters by computing
Bayes’ rule as a flow of the logarithm of the conditional density from the prior to
the posterior, and he derived the corresponding flow of particles from the prior to
the posterior.

All the works mentioned above relate to filtering problems with the underlying
Gaussian processes. However, many processes naturally arising in the modern science
(in particular, in biology, genetics, finance) and engineering do not obey the Gaussian
law. Filtering problems with the state and/or observation processes driven by a Lévy
process were discussed in recent publications [1, 18, 19].

In this paper we discuss fractional generalizations of the filtering problem to the
case when the state and observation processes are driven by time-changed Brownian
motion or Lévy processes. Fractional model of the filtering problem significantly
extends the scope of the filtering problems both theoretically and their engineering
and other applications. As a time change process we consider the inverse of the
Lévy stable subordinator with the stability index \(\beta \) or their mixtures. We note that
these processes are not Gaussian (exponential) and are not Lévy processes. These
processes are special type of semimartingales. The associated Zakai equations in
this case involve a fractional order derivative in the sense of Riemann-Liouville. For
instance, if the driving process is a time-changed Brownian motion where the time-
change process \(T_t \) is the first hitting time of the stable Lévy subordinator with the
stability index \(\beta, 0 < \beta < 1 \), then the associated Zakai equation is given by the
following partial stochastic differential equation driven by a semimartingale \(Z_{T_t} \) (see
for details in Section 3):

\[
d\Phi(t, x) = D_{t}^{1-\beta}A*\Phi(t, x)dt + \sum_{k=1}^{m} h_k(x)\Phi(t, x)dZ_{T_t}^{(k)}, \quad \Phi(0, x) = P(X_0 = x), \quad (1.5)
\]

where \(A* \) is the adjoint operator of the infinitesimal generator of the Markovian
process \(X_t \), and \(D_{t}^{1-\beta} \) is the fractional differentiation operator of order \(1-\beta \)
in the sense of Riemann-Liouville. By definition, the fractional derivative of order
\(\beta, 0 < \beta < 1 \), in the Riemann-Liouville sense is \(D_{t}^{1-\beta} = \frac{1}{\Gamma(1-\beta)} \frac{d}{dt} J^{\beta} \), where the fractional
integration operator \(J^{\beta} \) is defined as

\[
J^{\beta} f(t) = \frac{1}{\Gamma(\beta)} \int_{0}^{t} (t - \tau)^{\beta-1} f(\tau)d\tau, \quad t > 0.
\]

Due to the presence of the fractional derivative \(D_{t}^{1-\beta} \) in (1.5) it is natural to call
such a stochastic differential equation a fractional Zakai type equation. Obviously,
the usual Zakai equation is recovered if \(\beta \to 1 \).

In the mathematical literature stochastic differential equations driven by a frac-
tional Brownian motion are also called fractional. However, the nature of stochas-
tic differential equations (1.5), that is fractional Zakai type stochastic differential
equations, totally different from the nature of those fractional stochastic differential
equations driven by a fractional Brownian motion.

2 Generalized filtering problems

2.1 Generalization of the filtering problem with a Lévy processes. Many processes
in the modern science and engineering do not obey the Gaussian law for the state
satisfy the Lipschitz and linear growth conditions. The infinitesimal generator \(A \) of its characteristic function \(\Phi_t \) is continuous, hermitian, conditionally positive definite and \(\Psi(0) = 0 \). The infinitesimal generator of the Lévy process with characteristics \((\xi, \nu) \) is a pseudo-differential operator with the symbol \(\Psi(x, \xi) = E(e^{ixL_t}) = e^{i\Psi(x)} \), with

\[
\Psi(x, \xi) = i(b, \xi) - \frac{1}{2}(\Sigma, \xi, \xi) + \int_{\mathbb{R}^n \setminus \{0\}} \left(e^{i(w, \xi)} - 1 - i(w, \xi) \chi_{\{|w| \leq 1\}}(w) \right) \nu(dw). \tag{2.2}
\]

The function \(\Psi \) is called the Lévy symbol of \(L_t \). For any Lévy process, its Lévy symbol is continuous, hermitian, conditionally positive definite and \(\Psi(0) = 0 \). The infinitesimal generator of the Lévy process with characteristics \((b, \Sigma, \nu) \) is a pseudo-differential operator \(A = A(D_x) \) with the symbol \(\Psi(x) \) defined in (2.2).

A natural generalization of the filtering problem (1.1)-(1.2) is to replace Brownian motions \(B_t \) in (1.1) and \(W_t \) in (1.2) with Lévy processes \(L_t \) and \(M_t \), respectively. Namely, consider a state process \(X_t \) governed by the Lévy process \(L_t \):

\[
X_t = X_0 + \int_0^t b(X_{s-})ds + \int_0^t \sigma(X_{s-})dB_s + \int_0^t \int_{|w| < 1} H(X_{s-}, w)\tilde{N}(ds, dw) + \int_0^t \int_{|w| \geq 1} K(X_{s-}, w)N(ds, dw), \tag{2.3}
\]

where \(X_0 \) is a random variable independent of \(B_t \) and \(N(t, \cdot) \); the continuous mappings \(b : \mathbb{R}^n \to \mathbb{R}^n \), \(\sigma : \mathbb{R}^n \to \mathbb{R}^{n \times m} \), \(H : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) and \(K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) satisfy the Lipschitz and linear growth conditions. The infinitesimal generator \(A \) of the process \(X_t \) is a pseudo-differential operator with the symbol

\[
\Psi(x, \xi) = i(b(x), \xi) - \frac{1}{2}(\Sigma(x), \xi, \xi) + \int_{\mathbb{R}^n \setminus \{0\}} \left(e^{iG(x,w),\xi} - 1 - iG(x,w),\xi \chi_{\{|w| \leq 1\}}(w) \right) \nu(dw), \tag{2.4}
\]

where \(G(x, w) = H(x, w) \) if \(|w| < 1 \), and \(G(x, w) = K(x, w) \) if \(|w| \geq 1 \). By definition, a pseudo-differential operator \(A \) with the symbol \(\Psi(x, \xi) \) is

\[
A\varphi(x) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^n} \Psi(x, \xi) \hat{\varphi}(\xi) e^{-i\omega\xi} d\xi, \tag{2.5}
\]
where $\hat{\phi}$ is the Fourier transform of ϕ in the domain of A (see details in [2, 9]). Let the observation process is given by

$$Z_t = \int_0^t \mu(s, X_{s-}) ds + \int_0^t \nu(s, X_{s-}) dW_s$$

$$+ \int_0^t \int_{|w|<1} g(X_{s-}, w) \tilde{M}(ds, dw) + \int_0^t \int_{|w|\geq 1} f(X_{s-}, w) M(ds, dw), \quad (2.6)$$

where Brownian motion W_t is independent of B_t in equation (2.3), the measures M_t and \tilde{M}_t are a compound Poisson random measure and a compensated Poisson martingale-valued measure, and mappings $\mu(t, x)$, $\nu(t, x)$, $g(t, x, w)$, and $f(t, x, w)$ satisfy the Lipschitz and linear growth conditions. Let Z_t be the sigma-algebra generated by the process Z_s, $0 \leq s \leq t$. Now the generalized filtering problem is formulated as follows: find the best estimation of X_t given Z_t.

Particular cases of this problem is discussed in Chapter 4 of [1] and in papers [18, 19]. Namely, consider the following two cases:

1. the state process is driven by a Lévy process, and
2. the observation process is driven by a Lévy process.

In the first case the filtering model is formulated as follows: The state process is given by stochastic differential equation (2.5) driven by a Lévy process, and the observation process is given by

$$Z_t = Z_0 + W_t + \int_0^t h(X_s) ds, \quad (2.7)$$

where X_t and Z_t are respectively an R^n-valued and R^m-valued stochastic processes. Then (see [18]) the unnormalized conditional distribution of $f(X_t)$ given Z_t, that is $\phi_t(f) = E[f(X_t)|Z_t]$ under some conditions, satisfies the Zakai type stochastic partial differential equation

$$\phi_t(f) = \phi_0(f) + \int_0^t \phi_s(Af) ds + \sum_{k=1}^m \int_0^t \phi_s(fh_k) dZ_{ks}, \quad (2.8)$$

where A is the infinitesimal generator of the process X_t defined in (2.5), and h_k and Z_k are components of vectors $h(x) = (h_1(x), ..., h_m(x))$ and $Z_t = (Z_{1t}, ..., Z_{mt})$.

In the second case of the filtering model the state process is given by

$$X_t = X_0 + \int_0^t b(X_s) ds + \sigma(X_s) dB_s, \quad (2.9)$$

and the observation process is

$$Z_t = Z_0 + \int_0^t h(s, X_s) ds + W_t + \int_R wN_\lambda(dt, dw), \quad (2.10)$$
where N_λ is an integer valued random measure with predictable compensator $\lambda(t, X_t, \omega)dt d\nu$, with a Lévy measure ν. Let $\Phi(t, x)$ be a filtering density, that is for arbitrary infinitely differentiable function f with a compact support the relation

$$\phi_t(f) = \int_{\mathbb{R}^n} f(x) \Phi(t, x) dx$$

holds. Then (see [19]) the corresponding Zakai type equation has the form

$$\Phi(t, x) = \rho_0(x) + \int_0^t A^* \Phi(s, x) ds + \int_0^t h(s, x) \Phi(s, x) dB_s + \int_0^t \int_{\mathbb{R}} (\lambda(s, x, w) - 1) \Phi(s, x) \tilde{N}(ds, dw),$$

(2.11)

where A^* is the dual of the infinitesimal generator A of X_t and

$$\tilde{N}(ds, dw) = N(ds, dw) - ds d\nu.$$

We note that in this case due to absence of jump components of the state process X_t its infinitesimal generator A is not a pseudo-differential operator. The operator A is a second order elliptic differential operator

$$A\varphi(x) = \frac{1}{2} \sum_{i,k=1}^n a_{ik}(x) \frac{\partial^2 \varphi(x)}{\partial x_i \partial x_k} + \sum_{k=1}^n b_k(x) \frac{\partial \varphi(x)}{\partial x_k},$$

(2.12)

with the coefficients $a_{ik}(x)$, entries of the matrix-function $a(x) = \{a_{ik}(x)\}_{i,k=1}^n$ obtained by multiplying $\sigma(x)$ by its transpose $\sigma(x)^t$.

It is not hard to verify that both cases recover the classical Zakai equation (1.3) if the jump component of the Lévy process is absent, that is if $\nu \equiv 0$.

2.2. Generalization of the filtering problem with time-changed Lévy processes.

We note that the driving stochastic processes in the filtering model (2.3) and (2.6) are semimartingales with independent increments. If T is a Lévy subordinator then L_T is still a Lévy process. Therefore, replacement of Lévy processes L_t and M_t in (2.3) and (2.6) with their time-changed ones L_T and M_T, where T_1 and T_2 are Lévy subordinators, does not expand the scope of the filtering models given by equations (2.3) and (2.6). If T is an inverse to a Lévy subordinator then the time-changed process L_T is no longer a Lévy process. However, it is a semimartingale. Therefore, stochastic integrals driven by time-changed processes L_T, where T is the inverse to a stable Lévy subordinator, are well defined.

Consider the following model of the filtering problem driving process of which is a time-changed Lévy process. The state process in this context is given by

$$X_t = X_0 + \int_0^t b(X_{s-})dT_s + \int_0^t \sigma(X_{s-})dB_{Ts},$$

$$+ \int_0^t \int_{|w| < 1} H(X_{s-}, w)\tilde{N}(dT_s, dw) + \int_0^t \int_{|w| \geq 1} K(X_{s-}, w)N(dT_s, dw),$$

(2.13)
and the observation process is

\[Z_t = \int_0^t \mu(s, X_{s-})dE_s + \int_0^t \nu(s, X_{s-})dW_s + \int_0^t \int_{|w|<1} g(X_{s-}, w)M(dE_s, dw) + \int_0^t \int_{|w|\geq 1} f(X_{s-}, w)M(dE_s, dw), \]

where \(T_t \) and \(E_t \) are inverse processes to stable Lévy subordinators. Notice, that if \(T_t = t \) and \(E_t = t \) then the filtering model \((2.13)\) and \((2.14)\) represents the model \((2.3)\) and \((2.6)\) for a filtering problem driven by Lévy processes. Therefore, replacement of Lévy processes \(L_t \) and \(M_t \) in the filtering model \((2.3), (2.6)\) with \(L_T \) and \(M_E \), respectively, where \(T \) and \(E \) are inverse Lévy subordinators does expand essentially the scope of the model \((2.3), (2.6)\).

In Section 3 we will solve this problem under certain constraints. We will need some preliminary facts on Lévy subordinators and their inverses. Let \(E_t \) be the first hitting time process for a stable subordinator \(D_t \) with stability index \(\beta \in (0, 1) \).

The process \(E_t \) is also called an inverse to \(D_t \). The relation between \(E_t \) and \(D_t \) can be expressed as \(E_t = \text{min}\{\tau : D_{\tau} \geq t\} \). The process \(D_t, t \geq 0 \), is a self-similar Lévy process with \(D_0 = 0 \), that is \(D_{ct} = e^{\frac{c}{1-\beta}}D_t \) as processes in the sense of finite dimensional distributions, and its Laplace transform is \(\mathbb{E}(e^{-sD_t}) = e^{-ts^{\beta}} \). The density \(f_{D_t}(\tau) \) of \(D_t \) is infinitely differentiable on \((0, \infty)\), with the following asymptotics at zero and infinity [17, 25]:

\[f_{D_t}(\tau) \sim \frac{\beta}{\sqrt{2\pi(1-\beta)}} e^{-(1-\beta)(\tau^{1-\beta})^{\frac{1}{1-\beta}}} \tau^{-\frac{1}{1-\beta}}, \tau \to 0; \]

\[f_{D_t}(\tau) \sim \frac{\beta}{\Gamma(1-\beta)\tau^{1+\beta}}, \tau \to \infty. \]

Since \(D_t \) is strictly increasing, its inverse process \(E_t \) is continuous and nondecreasing, but not a Lévy process. Likewise for any Lévy process \(L_t \) the time-changed process \(L_{E_t} \) is also not a Lévy process (see details in [7, 8]).

Let \(g_t(\tau) \) be the density function of \(E_t \) for each fixed \(t > 0 \). If \(f_{D_t}(t) \) is the density function of \(D_t \), then

\[g_t(\tau) = -\frac{\partial}{\partial \tau} J f_{D_t} \left(\frac{t}{\tau^{1/\beta}} \right) = -\frac{\partial}{\partial \tau} \int_0^{\tau^{-1/\beta}} f_{D_t}(u)du = \frac{t}{\beta \tau^{1+\beta}} f_{D_t} \left(\frac{t}{\tau^{1/\beta}} \right). \]

Since \(f_{D_t}(u) \in C^\infty(0, \infty) \), it follows from representation \((2.17)\) that \(g_t(\tau) = \varphi(t, \tau) \in C^\infty(\mathbb{R}^2_+) \), where \(\mathbb{R}^2_+ = (0, \infty) \times (0, \infty) \). Further properties of \(g_t(\tau) \) are represented in the following lemma.

Lemma 2.1. Let \(g_t(\tau) \) be the function given in \((2.17)\). Then

(a) \(\lim_{t \to +0} g_t(\tau) = \delta_0(\tau) \) in the sense of the topology of the space of tempered distributions \(D'(\mathbb{R}) \);

(b) \(\lim_{\tau \to +0} g_t(\tau) = \frac{t^{-\beta}}{\Gamma(1-\beta)}, \ t > 0; \)
\[(c) \lim_{\tau \to \infty} g_t(\tau) = 0, \quad t > 0;\]
\[(d) \mathcal{L}_{t \to s}[g_t(\tau)](s) = s^{\beta-1}e^{-\tau s^\beta}, \quad s > 0, \quad \tau \geq 0,\]
where \(\mathcal{L}_{t \to s}\) denotes the Laplace transform with respect to the variable \(t\).

Lemma 2.2. Function \(g_t(\tau)\) defined in (2.17) for each \(t > 0\) satisfies the following equation
\[
D^\beta_{\tau,t}g_t(\tau) = -\frac{\partial}{\partial \tau} g_t(\tau) - \frac{t^{-\beta}}{\Gamma(1-\beta)}\delta_0(\tau), \tag{2.18}
\]
in the sense of tempered distributions.

We refer the reader to papers [7, 8] for proofs of these two lemmas.

3 Fractional filtering problem. Main results

First, for simplicity we consider the filtering problem with the state process given in the differential form as
\[
dX_t = b(X_t)\,dT_t + \sigma(X_t)\,dB_{T_t}, \quad X_{t=0} = X_0, \tag{3.1}
\]
and driven by a time-changed Brownian motion with drift, where \(T_t\) is the inverse of the \(\alpha\)-stable subordinator with the stability index \(\beta \in (0,1)\). The natural observation process associated with the state process (3.1) with invented time-change has the form
\[
dV_t = h(X_t)\,dT_t + dW_{T_t}, \quad V_{t=0} = 0. \tag{3.2}
\]

In the theorem below we assume that the input data of this filtering model satisfy the following conditions:

\(\text{(C1)}\) the vector-functions \(b(x)\) and \(h(x)\) and \(n \times m\)-matrix-function \(\sigma(x)\) are infinite differentiable and bounded;

\(\text{(C2)}\) the time-change process \(T_t\) and Brownian motions \(B_t\) and \(W_t\) are independent processes;

\(\text{(C3)}\) the initial random vector \(X_0\) is independent of processes \(B_t\), \(W_t\), and \(T_t\) and has an infinite differentiable density function \(p_0(x)\) decaying at infinity faster than any power of \(|x|\).

We note that the conditions on infinite differentiability of \(b(x), h(x),\) and \(\sigma(x)\) in (C1), as well as of the density function \(p_0(x)\) in (C3) and its decay condition near infinity can be weakened.

The filtering problem (3.1), (3.2) is closely related to the filtering problem whose state process is given by the following (non time-changed) \(\hat{\text{I}}\)to stochastic differential equation
\[
dY_t = b(Y_t)\,dt + \sigma(Y_t)\,dB_t, \quad Y_{t=0} = X_0, \quad t > 0, \tag{3.3}
\]
and whose corresponding observation process is given by
\[
dZ_t = h(Y_t)\,dt + dW_t, \quad Z_{t=0} = 0. \tag{3.4}
\]
Introduce the process
\[\rho(t) = \exp\left\{ -\sum_{k=1}^{m} \int_0^t h_k(Y_s) dW_s - \frac{1}{2} \int_0^t |h(Y_s)|^2 ds \right\} \]
and the probability measure \(dP_0 = \rho(t) dP \). Further, let
\[\Lambda_t = \hat{E}\left(\frac{dP}{dP_0} | Z_t \right), \quad (3.5) \]
where the expectation \(\hat{E} \) is under the reference measure \(P_0 \).

Then, as is known, the optimal filtering solution of the filtering problem (3.3), (3.4) is given by the following Kallianpur-Striebel’s formula (see, e.g. [18, 21])
\[E[f(Y_t) | Z_t] = \hat{E}[f(X_t) \Lambda_t | Z_t], \]
where \(A \) is a second order elliptic differential operator given by equation (2.12).

Further, introducing the filtering density \(U(t, x) \) through
\[p_t(f) = \int_{\mathbb{R}^n} f(x) U(t, x) dx \quad (3.7) \]
one can show that \(U(t, x) \) solves the (adjoint) Zakai equation
\[dU(t, x) = A^* U(t, x) dt + \sum_{k=1}^{m} h_k(x) U(t, x) dZ_k(t), \quad (3.8) \]
with the initial condition \(U(0, x) = p_0(x) \). Here \(A^* \) is the dual operator of \(A \).

Theorem 3.1. Let \(T_t \) be the inverse to a stable Lévy subordinator \(D_t \) and \(\phi_t(f) = \hat{E}[f(X_t) A_T | V_t] \), where \(V \) is the filtration generated by \(V_t \). Suppose conditions (C1)-(C3) are verified. Then \(\phi_t(f) \) satisfies the following Zakai type equation corresponding to filtering problem (3.1)-(3.2):
\[\phi_t(f) = p_0(f) + J^3 \phi_t(Af) + \sum_{k=1}^{m} \int_0^t \phi_s(h_k f) dZ_T^k \quad (3.9) \]
Moreover, equation (3.9) has a unique solution represented in the form

$$\phi_t(f) = \int_0^\infty g_t(\tau)p_\tau(f)d\tau,$$

(3.10)

where $g_t(\tau)$ is the density function of the process T_t and $p_t(f)$ is the unnormalized filtering distribution of the Zakai equation (3.6) corresponding to the filtering model (3.3) - (3.4).

Proof. Let conditions (C1)-(C3) be verified. Then, in particular, the conditions for the existence of an unnormalized filtering distribution $p_t(f) = \hat{E}[f(Y_t)|Z_t]$ which solves the Zakai equation (3.6), is also verified. Here Y_t is a solution to stochastic differential equation (3.3). According to Theorem 3.3 in [7] the time-changed process $X_t = Y_{T_t}$ solves stochastic differential equation (3.1).

The connection $X_t = Y_{T_t}$ between the state processes X_t and Y_t implies the connection $V_t = Z_{T_t}$ between the observation processes V_t and Z_{T_t}. Indeed, letting $T_1 = \tau$, or the same $D_t = t$, one obtains from the relation $dV_t = h(Y_{T_t})dT_t + dW_{T_t}$ and (3.1) that $Z_{T_t} = V_{T_t}$, or the same $V_t = Z_{T_t}$. It follows that the filtration V_t coincides with the filtration $Z \circ T_t = Z_{T_t}$ generated by the time-changed observation process Z_{T_t}.

Further, the unnormalized filtering distribution $\phi_t(f) = \hat{E}[f(X_t)\Lambda_t|Z \circ T_t]$ corresponding to the filtering problem (3.1) - (3.2) is determined by conditioning on T_t, namely $\phi_t(f) = \hat{E}[\hat{E}[f(Y_{\tau})\Lambda_{\tau}|Z_{\tau}]|\tau = T_t]$. The latter can be written in the form

$$\phi_t(f) = \int_0^\infty g_t(\tau)p_\tau(f)d\tau,$$

(3.11)

where $g_t(\tau)$, $\tau \in (0, \infty)$, is the density function of the time-change process T_t for each $t \in (0, \infty)$, defined in equation (2.17). Applying the fractional integration operator J^β to equation (2.18), we have

$$g_t(\tau) - \lim_{t \to 0+} g_t(\tau) = -\frac{\partial}{\partial \tau} J^\beta_t g_t(\tau) - \frac{\delta_0(\tau)}{\Gamma(1 - \beta)} J^\beta_t t^{-\beta},$$

in the sense of distributions. Due to part (a) of Lemma 2.1 we have $\lim_{t \to 0+} g_t(\tau) = \delta_0(\tau)$. This fact together with the equation $J^\beta_t t^{-\beta} = \Gamma(1 - \beta)$ implies

$$g_t(\tau) = -\frac{\partial}{\partial \tau} J^\beta_t g_t(\tau).$$

(3.12)

Now multiplying both sides of equation (3.6) by $p_\tau(f)$ and integrating over the interval $(0, \infty)$ with respect to the variable τ, and taking into account the conditioning on the time-change process T_t, one obtains

$$\phi_t(f) - p_0(f) = \int_0^\infty g_t(\tau)\left[\int_0^\tau p_s(Af)ds\right]d\tau + \sum_{k=1}^m \int_0^{T_t} p_s(h_k f)dZ_s^{(k)}. (3.13)$$

Due to relation (3.12) the first term on the right side of (3.13) can be written in the
form
\[
\int_{0}^{\infty} g_t(\tau) \left[\int_{0}^{\tau} p_s(Af) ds \right] d\tau = - \int_{0}^{\infty} \frac{\partial}{\partial \tau} J_1^\beta g_t(\tau) \left[\int_{0}^{\tau} p_s(Af) ds \right] d\tau \\
= - \int_{0}^{\infty} \left[\int_{0}^{\tau} p_s(Af) ds \right] d \left[J_1^\beta g_t(\tau) \right]
\]
(3.14)

Now the integration by parts in (3.14) implies
\[
\int_{0}^{\infty} g_t(\tau) \left[\int_{0}^{\tau} p_s(Af) ds \right] d\tau = J_1^\beta g_t(\tau) \int_{0}^{\tau} p_s(Af) ds = \int_{0}^{\tau} \phi_t(Af) ds,
\]
(3.15)

since \(J_1^\beta g_t(\tau) \to 0 \) as \(\tau \to \infty \), and \(\int_{0}^{\infty} p_s(Af) ds \) is bounded due to conditions (C1)-(C3). The second term on the right side of (3.13)
\[
\sum_{k=1}^{m} \int_{0}^{T_t} p_s(h_k f) dZ_s^{(k)} = \sum_{k=1}^{m} \int_{0}^{T_t} \hat{E} [h_k(Y_s)f(Y_s)|Z_s] dZ_s^{(k)}
\]
(3.16)

Using the change of variable formula (see [11], Proposition 10.21)
\[
\int_{0}^{T_t} H_s dZ_s = \int_{0}^{T_t} H_T_s dZ_T_s,
\]
for stochastic integrals driven by a semimartingale, we obtain
\[
\sum_{k=1}^{m} \int_{0}^{T_t} p_s(h_k f) dZ_s^{(k)} = \sum_{k=1}^{m} \int_{0}^{T_t} \hat{E} [h_k(Y_s)f(Y_s)|Z_s] dZ_s^{(k)}
\]
\[
= \sum_{k=1}^{m} \int_{0}^{T_t} \phi_t(h_k f) dZ_s^{(k)}.
\]
(3.17)

Equations (3.12), (3.15), and (3.17) imply the desired equation (3.9).

\[\square\]

Remark 3.2. (1) The process \(Z_{T_t} \) is a semimartingale, therefore SDE (3.9) is meaningful (see, e.g. [20]).

(2) The time-changed processes \(B_T \) and \(W_T \) are not Markovian and has no independent increments. Therefore, the model (3.1), (3.2) can be applied to a class of correlated filtering processes. We note also that the classical Zakai equation is recovered when \(\beta \to 1 \).

The differential form of (3.9) involves a factional derivative in the Riemann-Liouville sense. The differential form of the Zakai equation (3.9) is
\[
d\phi_t(f) = D_t^{1-\beta} \phi_t(Af) dt + \sum_{k=1}^{m} \phi_t(h_k f) dZ_s^{(k)}, \quad \phi_t=0(f) = p_0(f).
\]
(3.18)

*there are no jumps in this particular case
Stochastic partial differential equations of the form (3.18) (or (3.9) in the integral form), which involve fractional order derivatives (or fractional order integrals in its integral form) will be called fractional Zakai type equations.

Further, we introduce a filtering density and derive the adjoint Zakai equation generalizing the equation (3.8). Let $\Phi(t, x)$ be defined as a generalized function
$$
\phi_t(f) = \int_{\mathbb{R}^n} f(x)\Phi(t, x)dx,
$$
for arbitrary infinite differentiable function f with compact support. The function $\Phi(t, x)$ is called a filtering density associated with the filtering measure $\phi_t(f)$.

Theorem 3.3. Let the conditions (C1)-(C3) are verified. Then the filtering density $\Phi(t, x)$ associated with the filtering measure $\phi_t(f)$ in equation (3.18) satisfies the following fractional Zakai type equation
$$
d\Phi(t, x) = D_1^{1-\beta}A^*\Phi(t, x)dt + \sum_{k=1}^m h_k(x)\Phi(t, x)dZ^{(k)}_{T_t},
$$
with the initial condition $\Phi(0, x) = P(X_0 = x)$.

The proof of this theorem immediately follows from equation (3.18) substituting $\phi_t(f)$ in (3.19).

Now we generalize the results of Theorem 3.1 and 3.3 to two different cases of filtering problems whose either state or observation processes are driven by a time-changed Lévy process. Without time-changed driving processes these two cases were discussed in Section 2. Let L_t be the Lévy process given by equation (2.1). The first case is the fractional filtering problem the state process of which is given by stochastic differential equation (2.13) and the observation process of which is given by equation (3.2). Suppose that the input data of this filtering model satisfy the conditions:

(C1) the vector-functions $b(x), h(x), H(x, w), K(x, w)$ and the matrix-function $\sigma(x)$ are infinite differentiable and bounded;

(C2) the time-change process T_t, Brownian motions B_t and W_t, and Poisson random measures $\tilde{N}(t, \cdot)$ and $N(t, \cdot)$ are independent processes;

(C3) the initial random vector X_0 is independent of processes B_t, W_t, $\tilde{N}(t, \cdot)$, $N(t, \cdot)T_t$ and has an infinite differentiable density function $p_0(x)$ decaying at infinity faster that any power of $|x|$.

Theorem 3.4. Let T_t be the inverse to a stable Lévy subordinator D_t and $\phi_t(f) = \hat{E}[f(X_t)|\mathcal{A}_{T_t}, \mathcal{T} \circ T_t]$, where \mathcal{T} is the filtration generated by T_t and Λ_t is defined by (3.5). Suppose conditions (C1)’-(C3)’ are verified. Then $\phi_t(f)$ satisfies the following Zakai type equation corresponding to filtering problem (2.13), (3.2):
$$
\phi_t(f) = p_0(f) + J^\beta \phi_t(Af) + \sum_{k=1}^m \int_0^t \phi_s(h_k f)dZ^{(k)}_{T_s},
$$

(3.21)
where the operator \(A \) is a pseudo-differential operator with the symbol \(\Psi(x, \xi) \) given by (2.1). Moreover, equation (3.21) has a unique solution represented in the form

\[
\phi_t(f) = \int_0^\infty g_t(\tau)p_{\tau}(f)d\tau,
\]

where \(g_t(\tau) \) is the density function of the process \(T_t \) and \(p_t(f) \) is the unnormalized filtering measure of the Zakai equation (2.8) corresponding to the filtering model (2.3), (2.7).

The second case is the filtering problem whose state process is driven by a time-changed Brownian motion and the observation process is driven by a time-changed Lévy process. Namely, let the state process be given by equation (3.1) and the observation process be given by the following stochastic differential equation

\[
dH_t = h(X_t)dT_t + dW_{T_t} + \int_R wN_\lambda(dT_t, dw), \quad V_0 = 0,
\]

where the random measure \(N_\lambda \) has the predictable compensator \(\lambda(t, X_t)dt\nu(dw) \) with a Lévy measure \(\nu \).

Theorem 3.5. Let \(T_0 \) be the inverse to a stable Lévy subordinator \(D_t \) and \(\phi_t(f) = E[f(X_t)\mathbb{L}_t[H_t]], \) where \(H \) is the filtration generated by the process \(H_t \) in equation (3.23) and \(\mathbb{L}_t \) is defined by (3.24). Suppose conditions (C1), (C2)', and (C3)' are verified. Then \(\phi_t(f) \) satisfies the following Zakai type equation corresponding to filtering problem (3.21), (3.23):

\[
\phi_t(f) = p_0(f) + J^\beta \phi_t(Af) + \sum_{k=1}^m \int_0^t \phi_s(h_k f)dZ^k_{T_s} + \int_0^t \int_{R\setminus\{0\}} p_s((\lambda(s, \cdot, w) - 1)f)d\hat{N}_{T_s}(ds, dw),
\]

where \(\hat{N}_{T_s}(ds, dw) = N_{T_s}(ds, dw) - dT_s\nu(dw) \) and the operator \(A \) is defined in equation (2.12). Moreover, equation (3.25) has a unique solution represented in the form

\[
\phi_t(f) = \int_0^\infty g_t(\tau)p_{\tau}(f)d\tau,
\]

where \(g_t(\tau) \) is the density function of the process \(T_t \) and \(p_t(f) \) is the unnormalized filtering measure of the Zakai equation adjoint to (2.11) corresponding to the filtering model (2.9), (2.11).

Proofs of Theorems 3.4 and 3.5 are similar to the proof of Theorem 3.1.
References

[1] The Oxford Handbook of Nonlinear Filtering. (2011) Editors: Dan Crisan and Boris Rozovskii. Oxford University Press.

[2] Applebaum, D. (2004). Lévy Processes and Stochastic Calculus. Cambridge University Press.

[3] Daum F. E. (1987) Solution of the Zakai equation by separation of variables. *IEEE Transactions on automatic control.* AC-32 (10), 941-943.

[4] Daum F. and Huang J. (2010) Exact particle flow for nonlinear filters: seventeen dubious solutions to a first order linear underdetermined PDE. *Proceedings of IEEE Asilomar conference,* November 2010.

[5] Daum F. and Huang J. Particle flow for Bayes' rule with non-zero diffusion. *Proceedings of SPIE conference,* Baltimore MD, April 2012.

[6] Fujisaki M., Kallianpur G. and Kunita H. (1972) Stochastic differential equations for the nonlinear filtering problem. *Osaka J. of Mathematics,* 9 (1), 19-40.

[7] Hahn M., Kobayashi K., and Umarov S. (2012) SDEs driven by a time-changed Lévy process and their associated pseudo-differential equations. *J. Theoret. Probab.*, 25, 262-279.

[8] Hahn M. and Umarov S. (2011) Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations. *Frac. Calc. Appl. Anal.* 14 (1), 56-79.

[9] Hörmander, L. (1983). *The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients.* Springer-Verlag, Berlin.

[10] Jacob, N. (2002). *Pseudo Differential Operators and Markov Processes. Vol. II. Generators and their Potential Theory.* Imperial College Press, London.

[11] Jacod, J. (1979). *Calcul Stochastique et Problèmes de Martingales.* Lecture Notes in Mathematics, 714. Springer, Berlin.

[12] Jacod, J. and Shiryaev, A. N. (1987). *Limit Theorems for Stochastic Processes.* Springer-Verlag, Berlin.

[13] Kalman R.E. and Bucy R.S. (1961) New results in linear filtering and prediction theory. *Journal of basic engineering,* 83, 95-108.

[14] Kobayashi, K. (2010). Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations. *J. Theoret. Probab.,* 24, 789-820.

[15] Kushner H. J. (1967). Dynamical equations for optimal nonlinear filtering. *Journal of Differential Equations.* 3, 179-190.
[16] (2002) Lipster R. Sh. and Shiryaev A.N. Statistics of Random Processes, I, II. Springer, NY.

[17] Mainardi, F., Luchko, Y., and Pagnini, G. (2001) The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 2 153–192.

[18] Popa S. and Sritharan S. S. (2009) Nonlinear filtering of Što- Levy stochastic differential equations with continuous observations. Communications on Stochastic Analysis. 3 (3) 313-330.

[19] Meyer-Brandis T., and Proske F. (2004) Explicit solution of a non-linear filtering problem for Lévy processes with applications to finance. Appl. Math. Optim. 50.

[20] Protter, P. (2004). Stochastic Integration and Differential Equations, 2nd ed. Springer.

[21] Rozovskii B. L. (1990) Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering. Kluver Academic Publishers, Dordrecht.

[22] Rubin, B. (1996). Fractional Integrals and Potentials. Longman, Harlow.

[23] Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers.

[24] Sato, K-i. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.

[25] Uchaikin, V. V. and Zolotarev, V. M. (1999) Chance and Stability. Stable distributions and their applications. VSP, Utrecht.

[26] Zakai M. (1969) On the optimal filtering of diffusion processes. Z. Wahrsch. Verw. Gebiete. 11 (3), 230-243.