ON DEGENERATE q-BERNOUlli POLYNOMIALS

TAEKYUN KIM

Abstract. In this paper, we introduce the degenerate Carlitz q-Bernoulli numbers and polynomials and give some interesting identities and properties of these numbers and polynomials which are derived from the generating functions and p-adic integral equations.

1. Introduction

Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_p. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = \frac{1}{p}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, we assume that $|q| < 1$. If $q \in \mathbb{C}_p$, we assume $|q-1|_p < p^{-\nu_p(q)}$ so that $q^x = \exp(x \log q)$ for $|x|_p < 1$. We use the notation $[x]_q = \frac{1-q^x}{1-q}$. Note that $\lim_{q \to 1} [x]_q = x$.

In [2], L. Carlitz considered q-Bernoulli numbers as follows:

$$(1.1) \quad \beta_0,q = 1, \quad q(q\beta_q + 1)^n - \beta_n,q = \begin{cases} 1, & \text{if } n = 1, \\ 0, & \text{if } n > 1, \end{cases}$$

with the usual convention about replacing β^n_q by $\beta_{n,q}$. The q-Bernoulli polynomials are defined by

$$(1.2) \quad \beta_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} \beta_{l,q} q^l [x]_q^{n-l} \quad (\text{see } [2, 8]).$$

In [4, 3], L. Carlitz defined the degenerate Bernoulli polynomials which are given by the generating function to be

$$(1.3) \quad \frac{t}{(1+\lambda t)^{\frac{1}{\lambda}} - 1} (1+\lambda t)^{\frac{1}{\lambda}} = \sum_{n=0}^{\infty} \beta_n(x|\lambda) \frac{t^n}{n!} \quad (\text{see } [2, 5]).$$

Received July 20, 2015; Revised March 7, 2016.

2010 Mathematics Subject Classification. 05A10, 11B68, 11S80, 05A19.

Key words and phrases. q-Bernoulli polynomial, degenerate Bernoulli polynomials, q-Volkenborn integral.
When \(x = 0, \beta_n(\lambda) = \beta_n(0|\lambda) \) are called the degenerate Bernoulli numbers. Note that \(\lim_{\lambda \to 0} \beta_n(x|\lambda) = B_n(x) \), where \(B_n(x) \) are the ordinary Bernoulli polynomials (see [1-12]). Let \(UD(\mathbb{Z}_p) \) be the space of uniformly differentiable functions on \(\mathbb{Z}_p \). For \(f \in UD(\mathbb{Z}_p) \), the \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) is defined by

\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x) q^x \quad (\text{see [8]}).
\]

The Carlitz’s \(q \)-Bernoulli polynomials can be represented by \(p \)-adic \(q \)-integrals on \(\mathbb{Z}_p \) as follows:

\[
\int_{\mathbb{Z}_p} [x + y]^n d\mu_q(y) = \beta_{n,q}(x) \quad (n \geq 0).
\]

Thus, by (1.4), we get

\[
\int_{\mathbb{Z}_p} e^{[x+y]t} d\mu_q(y) = \sum_{n=0}^{\infty} \beta_{n,q}(x) \frac{t^n}{n!} \quad (\text{see [8]}).
\]

From (1.6), we can derive the following equation:

\[
\beta_{m,q}(x) = \frac{1}{(1-q)^m} \sum_{j=0}^{m} \binom{m}{j} (-1)^j q^j \frac{j+1}{j+1} t^n \quad (m \geq 0).
\]

In this paper, we introduce the degenerate Carlitz \(q \)-Bernoulli numbers and polynomials and give some interesting identities and properties of these numbers and polynomials which are derived from the generating functions and \(p \)-adic integral equations on \(\mathbb{Z}_p \).

2. Degenerate Carlitz \(q \)-Bernoulli numbers and polynomials

In this section, we assume that \(\lambda, t \in \mathbb{C}_p \) with \(0 < |\lambda|_p \leq 1, |t|_p < p^{-\frac{1}{p-1}} \).

Then, as \(|\lambda|_p < p^{-\frac{1}{p-1}}, |\log(1 + \lambda t)|_p = |\lambda t|_p \) and hence \(|\frac{1}{\lambda} \log(1 + \lambda t)|_p = |t|_p < p^{-\frac{1}{p-1}} \) and now it makes sense to take the limit as \(\lambda \to 0 \).

In the viewpoint of (1.3), we consider the degenerate Carlitz \(q \)-Bernoulli polynomials which are given by the generating function to be

\[
\int_{\mathbb{Z}_p} (1 + \lambda t)^{[x+y]_q} d\mu_q(y) = \sum_{n=0}^{\infty} \beta_{n,q}(x|\lambda) \frac{t^n}{n!}.
\]

When \(x = 0, \beta_{n,q}(\lambda) = \beta_{n,q}(0|\lambda) \) are called the degenerate Carlitz \(q \)-Bernoulli numbers.

Now, we observe that

\[
\int_{\mathbb{Z}_p} (1 + \lambda t)^{[x+y]_q} d\mu_q(y) = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \left(\frac{[x+y]_q}{\lambda} \right) d\mu_q(y) \lambda^n t^n
\]

\[
= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \left(\frac{[x+y]_q}{\lambda} \right) d\mu_q(y) \lambda^n t^n.
\]
where \(\frac{[x+y]_q}{\lambda} \) = \(\frac{[x+y]_q}{\lambda} \times \frac{[x+y]_q}{\lambda} - 1 \times \cdots \times \frac{[x+y]_q}{\lambda} - n + 1 \).

Now, we define \([x + y]_{n,\lambda}\) as \([x + y]_{0,\lambda} = 1\),

\[
[x + y]_{n,\lambda} = [x + y]_q ([x + y]_q - \lambda) \cdots ([x + y]_q - (n - 1)\lambda) \quad (n \geq 1).
\]

Therefore, by (2.1), (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. For \(n \geq 0 \), we have

\[
\int_{\mathbb{Z}_p} [x + y]_{n,\lambda} d\mu_q(y) = \beta_{n,q}(x|\lambda).
\]

Let \(S_1(n, m) \) be the *Stirling numbers of the first kind* which are defined by

\[
(x)_n = \sum_{l=0}^{n} S_1(n, l) x^l, \quad (n \geq 0).
\]

Then, by (2.2), we get

\[
\int_{\mathbb{Z}_p} \left[\frac{x + y}{\lambda}\right]^n \ d\mu_q(y) = \sum_{l=0}^{n} S_1(n, l) \lambda^{-l} \int_{\mathbb{Z}_p} \left[\frac{x + y}{\lambda}\right]^l d\mu_q(y)
\]

\[
= \sum_{l=0}^{n} S_1(n, l) \lambda^{-l} \beta_{l,q}(x).
\]

Therefore, by (2.2) and (2.4), we obtain the following theorem.

Theorem 2.2. For \(n \geq 0 \), we have

\[
\beta_{n,q}(x|\lambda) = \sum_{l=0}^{n} S_1(n, l) \lambda^{n-l} \beta_{l,q}(x).
\]

Note that \(\lim_{\lambda \to 0} \beta_{n,q}(x|\lambda) = \beta_{n,q}(x) \).

Corollary 2.3. For \(n \geq 0 \), we have

\[
\beta_{n,q}(x|\lambda) = \sum_{l=0}^{n} \sum_{j=0}^{l} \frac{S_1(n, l)}{(1-q)^j} \binom{l}{j} (-1)^j q^j x^j + 1 \frac{\lambda^n}{l+1}.
\]

We observe that

\[
(1 + \lambda t)^{[x+y]_q} = e^\frac{[x+y]_q}{\lambda} \log(1 + \lambda t) = \sum_{n=0}^{\infty} \left(\frac{[x+y]_q}{\lambda} \right)^n \frac{1}{n!} (\log(1 + \lambda t))^n
\]

\[
= \sum_{m=0}^{\infty} \left(\frac{[x+y]_q}{\lambda} \right)^m \frac{1}{m!} \sum_{n=m}^{\infty} \frac{n!}{n!} S_1(n, m) \frac{\lambda^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \lambda^{n-m} S_1(n, m) [x+y]_q^m \right) \frac{t^n}{n!}.
\]
Thus, by (2.5), we get
\[
\int_{\mathbb{R}_p} \left(1 + \lambda t \right)^{[x+y]_q} \, d\mu_q(y) = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \lambda^{n-m} S_1(n,m) \int_{\mathbb{R}_p} [x+y]_q^m \, d\mu_q(x) \right) \frac{t^n}{n!} \\
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \lambda^{n-m} S_1(n,m) \beta_{m,q}(x) \right) \frac{t^n}{n!}.
\]
Replacing \(t \) by \(\frac{1}{\lambda} (e^{\lambda t} - 1) \) in (2.1), we get
\[
\int_{\mathbb{R}_p} e^{[x+y]_q t} \, d\mu_q(y) = \sum_{m=0}^{\infty} \beta_{m,q}(x|\lambda) \frac{1}{m!} \left(e^{\lambda t} - 1 \right)^m \\
= \sum_{m=0}^{\infty} \beta_{m,q}(x|\lambda) \lambda^{-m} \sum_{n=m}^{\infty} S_2(n,m) \frac{\lambda^n t^n}{n!} \\
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \beta_{m,q}(x|\lambda) \lambda^{n-m} S_2(n,m) \right) \frac{t^n}{n!},
\]
where \(S_2(n,m) \) are the Stirling numbers of the second kind.

We note that the left hand side of (2.6) is given by
\[
\int_{\mathbb{R}_p} e^{[x+y]_q t} \, d\mu_q(y) = \sum_{n=0}^{\infty} \int_{\mathbb{R}_p} [x+y]_q^n \, d\mu_q(y) \frac{t^n}{n!} \\
= \sum_{n=0}^{\infty} \beta_{n,q}(x) \frac{t^n}{n!}.
\]
Therefore, by (2.6) and (2.7), we obtain the following theorem.

Theorem 2.4. For \(n \geq 0 \), we have
\[
\beta_{n,q}(x) = \sum_{m=0}^{n} \beta_{m,q}(x|\lambda) \lambda^{n-m} S_2(n,m).
\]

Note that
\[
(1 + \lambda t)^{[x+y]_q} = (1 + \lambda t)^{[x]_q} (1 + \lambda t)^{[y]_q} \\
= \left(\sum_{m=0}^{\infty} [x]_q m \frac{t^m}{m!} \right) \left(\sum_{l=0}^{\infty} [y]_q l \frac{t^l}{l!} \right) \\
= \left(\sum_{m=0}^{\infty} [x]_q m \frac{t^m}{m!} \right) \left(\sum_{k=0}^{\infty} \sum_{l=0}^{k} \lambda^{k-l} q^{l} [y]_q^l S_1(k,l) \frac{t^k}{k!} \right) \\
= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{n!}{(n-k)!} \lambda^{k-n} q^{n-k} [x]_q^{n-k} [y]_q^k S_1(k,l) \frac{t^n}{n!}.
\]
Thus, by (2.8), we get

\[
\sum_{n=0}^{\infty} \beta_{n,q}(x|\lambda) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sum_{l=0}^{k} [x]_{n-k,\lambda} \lambda^{k-l} q^{l \ell} \int_{\mathbb{Z}_p} \left[y_1^q d\mu_q(y) S_1(k,l) \right] \left(\begin{array}{c} n \\ k \end{array} \right) \right) \frac{t^n}{n!}.
\]

Therefore, by (2.3), we obtain the following theorem.

Theorem 2.5. For \(n \geq 0 \), we have

\[
\beta_{n,q}(x|\lambda) = \sum_{k=0}^{n} \sum_{l=0}^{k} \left(\begin{array}{c} n \\ k \end{array} \right) [x]_{n-k,\lambda} \lambda^{k-l} q^{l \ell} \beta_{k,l,q} S_1(k,l) \beta_{l,q}.
\]

For \(r \in \mathbb{N} \), we define the **degenerate Carlitz q-Bernoulli polynomials of order** \(r \) as follows:

\[
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + \lambda t) \frac{\left[x_1 + \cdots + x_r + x \right]^n}{n!} d\mu_q(x_1) \cdots d\mu_q(x_r) = \sum_{n=0}^{\infty} \beta^{(r)}_{n,q}(x|\lambda) \frac{t^n}{n!}.
\]

We observe that

\[
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + \lambda t) \frac{\left[x_1 + \cdots + x_r + x \right]^n}{n!} d\mu_q(x_1) \cdots d\mu_q(x_r)
\]

\[
= \sum_{m=0}^{\infty} \lambda^{-m} \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x_1 + \cdots + x_r + x]^m d\mu_q(x_1) \cdots d\mu_q(x_r) \frac{1}{m!} (\log(1 + \lambda t))^m
\]

\[
= \sum_{m=0}^{\infty} \beta^{(r)}_{m,q}(x) \lambda^{-m} \sum_{n=m}^{\infty} S_1(n,m) \frac{\lambda^n}{n!} \frac{t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \lambda^{-m} \beta^{(r)}_{m,q}(x) S_1(n,m) \right) \frac{t^n}{n!},
\]

where \(\beta^{(r)}_{m,q}(x) \) are the Carlitz q-Bernoulli polynomials of order \(r \).

Therefore, by (2.10) and (2.11), we obtain the following theorem.

Theorem 2.6. For \(n \geq 0 \), we have

\[
\beta_{n,q}^{(r)}(x|\lambda) = \sum_{m=0}^{n} \lambda^{-m} \beta^{(r)}_{m,q}(x) S_1(n,m).
\]
Replacing \(t \) by \(\frac{1}{\lambda} (e^{\lambda t} - 1) \) in (2.10), we have

\[
\int_{\mathbb{Z}} \cdots \int_{\mathbb{Z}} e^{[x_1 + \cdots + x_r + \varepsilon]t} d\mu_q(x_1) \cdots d\mu_q(x_r)
\]

\[
= \sum_{m=0}^{\infty} \beta_{m,q}^{(r)}(x|\lambda)\frac{1}{m!} \lambda^{-m} (e^{\lambda t} - 1)^m
\]

(2.12)

\[
= \sum_{m=0}^{\infty} \beta_{m,q}^{(r)}(x|\lambda)\lambda^{-m} \sum_{n=m}^{\infty} S_2(n, m) \frac{\lambda^n t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \lambda^{n-m} \beta_{m,q}^{(r)}(x|\lambda) S_2(n, m) \right) \frac{t^n}{n!}.
\]

The left hand side of (2.12) is given by

(2.13)

\[
\int_{\mathbb{Z}} \cdots \int_{\mathbb{Z}} e^{[x_1 + \cdots + x_r + \varepsilon]t} d\mu_q(x_1) \cdots d\mu_q(x_r) = \sum_{n=0}^{\infty} \beta_{n,q}^{(r)}(x) \frac{t^n}{n!}.
\]

By comparing the coefficients on the both sides of (2.12) and (2.13), we obtain the following theorem.

Theorem 2.7. For \(n \geq 0 \), we have

\[
\beta_{n,q}^{(r)}(x) = \sum_{m=0}^{n} \lambda^{n-m} S_2(n, m) \beta_{m,q}^{(r)}(x|\lambda).
\]

We recall that

\[
\int_{\mathbb{Z}} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x) q^x
\]

\[
= \lim_{N \to \infty} \frac{1}{[d^N]_q} \sum_{x=0}^{d^N-1} f(x) q^x,
\]

where \(d \in \mathbb{N} \) and \(f \in UD(\mathbb{Z}_p) \).

Now, we observe that

(2.14) \[
\beta_{n,q}(x|\lambda) = \sum_{l=0}^{n} S_1(n, l) \lambda^{n-l} \int_{\mathbb{Z}} [x + y]_q^l d\mu_q(y),
\]

and

(2.15) \[
\int_{\mathbb{Z}} [x + y]_q^l d\mu_q(y) = \frac{1}{[m]_q^l} \sum_{i=0}^{m-1} q^i [m]_q^l \int_{\mathbb{Z}} \left[\frac{x + i}{m} + y \right]_q^l d\mu_q(y)
\]

\[
= [m]_q^{l-1} \sum_{i=0}^{m-1} q^i \beta_{l,q}^{(n)} \left(\frac{x + i}{m} \right),
\]

where \(l \in \mathbb{Z}_{\geq 0} \) and \(m \in \mathbb{N} \).
Therefore, by (2.14) and (2.15), we obtain the following theorem.

Theorem 2.8. For $n \geq N \geq 0$, $m \in \mathbb{N}$, we have

$$\beta_{n,q}(x|\lambda) = \sum_{l=0}^{n} \sum_{i=0}^{m-1} S_1(n,l) \lambda^{n-l} |m|_q^{l-1} q^i \beta_{l,q}^m \left(\frac{x+i}{m} \right).$$

From (1.4), we note that

$$qI_q(f_1) - I_q(f) = (q-1)f(0) + \frac{q-1}{\log q} f'(0),$$

where $f'(0) = \left. \frac{df(x)}{dx} \right|_{x=0}$.

By (2.16), we get

$$q\beta_{n,q}(x+1|\lambda) - \beta_{n,q}(x|\lambda) = (q-1)\lambda^n \left(\frac{[x]_q}{\lambda} \right)_n + \sum_{l=1}^{n} S_1(n,l) \lambda^{n-l} [x]_q^{l-1} q^x,$$

where $n \in \mathbb{N}$.

Therefore, by (2.17), we obtain the following theorem.

Theorem 2.9. For $n \geq 0$, we have

$$q\beta_{n,q}(x+1|\lambda) - \beta_{n,q}(x|\lambda) = (q-1)\lambda^n \left(\frac{[x]_q}{\lambda} \right)_n + \sum_{l=1}^{n} S_1(n,l) \lambda^{n-l} [x]_q^{l-1} q^x.$$

Acknowledgements. The author expresses his sincere gratitude to the anonymous referee for the careful reading of the original manuscript and useful comments that helped to improve the presentation of the paper.

References

[1] A. Bayad and T. Kim, *Higher recurrences for Apostol-Bernoulli-Euler numbers*, Russ. J. Math. Phys. 19 (2012), no. 1, 1–10.

[2] L. Carlitz, *q-Bernoulli numbers and polynomials*, Duke Math. J. 15 (1948), 987–1000.

[3] L. Carlitz, *A degenerate Staudt-Clausen theorem*, Arch. Math. (Basel) 7 (1956), 28–33.

[4] L. Carlitz, *Degenerate Stirling, Bernoulli and Eulerian numbers*, Utilitas Math. 15 (1979), 51–88.

[5] J. Choi, T. Kim, and Y. H. Kim, *A note on the extended q-Bernoulli numbers and polynomials*, Adv. Stud. Contemp. Math. 21 (2011), no. 4, 351–354.

[6] D. Kang, S. J. Lee, J.-W. Park, and S.-H. Rim, *On the twisted weak weight q-Bernoulli numbers and polynomials*, Proc. Jangjeon Math. Soc. 16 (2013), no. 2, 195–201.

[7] D. S. Kim, N. Lee, J. Na, and K. H. Park, *Abundant symmetry for higher-order Bernoulli polynomials (I)*, Adv. Stud. Contemp. Math. 23 (2013), no. 3, 461–482.

[8] T. Kim, *q-Volkenborn integration*, Russ. J. Math. Phys. 9 (2002), no. 3, 288–299.

[9] T. Kim, *q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients*, Russ. J. Math. Phys. 15 (2007), 51–57.

[10] T. Kim, *On the weighted q-Bernoulli numbers and polynomials*, Adv. Stud. Contemp. Math. 21 (2011), no. 2, 201–205.

[11] J. W. Park, *New approach to q-Bernoulli polynomials with weight or weak weight*, Adv. Stud. Contemp. Math. 24 (2014), no. 1, 39–44.
[12] J.-J. Seo, S.-H. Rim, S.-H. Lee, D. V. Dolgy, and T. Kim, *q*-Bernoulli numbers and polynomials related to p-adic invariant integral on \mathbb{Z}_p, Proc. Jangjeon Math. Soc. **16** (2013), no. 3, 321–326.

Taekyun Kim
Department of Mathematics
Kwangwoon University
Seoul 139-701, Korea
E-mail address: tkkim@kw.ac.kr