Non-alcoholic fatty liver disease (NAFLD) in Filipino North American patients: Results from a multi-ethnic cohort

Shirley X Jiang MD, Roberto Trasolini MD, MSc, Michael Heer BSc, Benjamin Cox MD, Ciaran Galts MD, Vladimir Marquez MDCM, MSc, Eric M Yoshida MD, MHSc

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is more prevalent in certain ethnicities due to a combination of genetic, environmental, and metabolic factors. North American Filipino populations may have lifestyle and metabolic risk factors for NAFLD; however, the prevalence of NAFLD in this group is unknown. We sought to determine whether Filipino patients are over-represented in a multi-ethnic NAFLD cohort and describe their clinical presentation, primarily compared to other ethnicities in the same geographical region and secondarily compared to Manila-based Filipino patients.

METHODS: A cross-sectional study was conducted with patients with NAFLD who were followed at the Hepatology Clinic at Vancouver General Hospital, Canada, from January 2015 to August 2018. Data were extracted for clinicodemographic data, ethnicity, anthropometric measures, blood work, and transient elastography (TE). External comparison data was obtained online from the Metro Vancouver census and a NAFLD study conducted in Manila, Philippines.

RESULTS: Of 317 patients meeting inclusion criteria for the study, 224 patients had complete datasets. The mean age was 51.1 years, and 50% were female. There were 139 (62%) Caucasian and other ethnicity patients, 55 (25%) Asian patients, and 30 (13%) Filipino patients. Compared to other ethnic groups, the Filipino group had similar clinical characteristics, including NAFLD fibrosis scores and TE. Of included NAFLD patients, the proportion of Filipino patients (13.39%) was significantly greater than the proportion of Filipino residents in Metro Vancouver (5.52%, \(p < 0.01 \)). Our Filipino Canadians seemed to be younger, with fewer females and a lower proportion of diabetes mellitus, but a higher proportion of hypertension than the previously reported cohort from Manila.

CONCLUSIONS: While Filipino patients have not previously been examined in multi-ethnic NAFLD studies, they may represent a high-risk population. Further research is needed to clarify the prevalence and presentation of NAFLD in Filipino Canadian patients, as this appears to be a significant health issue in this community.

KEYWORDS: cirrhosis; ethnicity; fibrosis; Filipino; non-alcoholic fatty liver disease

Author Affiliation

1Division of General Internal Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 2Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada; 3Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada

Correspondence: Eric M Yoshida, Vancouver General Hospital, Diamond Health Care Centre, 5153-2775 Laurel Street, Vancouver, British Columbia V5Z 1M9 Canada. Telephone: 604-875-5371. Fax: 604-875-5447. E-mail: eric.yoshida@vch.ca
INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has an estimated prevalence of 25% in Canada (1). NAFLD is comprised of a spectrum of diseases, including simple steatosis, steatohepatitis, progressive liver fibrosis, and cirrhosis. The long-term consequences of NAFLD are cardiovascular morbidity and mortality, advanced liver fibrosis, hepatocellular carcinoma, and other liver-related mortality (2–4). Early identification allows for timely intervention, particularly intensive lifestyle changes such as weight loss and emerging pharmacotherapies.

The prevalence and behaviour of NAFLD differ by ethnic group. In the early 2000s, the Dallas Heart Study in the United States, with an enrollment of 2,287 patients, reported significant racial differences in NAFLD prevalence of 45% among Hispanic patients, 33% among Caucasian patients, and 24% among African American patients (5). More recently, this finding was confirmed in a meta-analysis that included 368,569 American patients in 34 studies, but Asian Americans were not included in the analysis (6). Globally, a recent meta-analysis reported a prevalence of 24% in North America, 27% in Asia, 30% in South America, and 31% in the Middle East (7). In addition to having a higher NAFLD prevalence, Asian and Hispanic populations also present at a younger age and with more severe disease (8). The “Asian paradox” has been well-described, whereby Asian patients develop NAFLD at a lower BMI and with more advanced histologic disease compared to higher BMI counterparts (9,10).

Metro Vancouver has a uniquely multi-ethnic population comprised of large visible minority groups, including East Asian (25%), South Asian (12%), and Filipino (5.5%) (11). Across Canada, Filipino immigration is growing, increasing from 662,600 persons in the 2011 census to 837,130 persons by the 2016 census (12). In 2016, the highest reported ethnic origin of recent immigrants was the Philippines, at 15.6% of all immigrants (13). Thus, the rapidly growing North American Filipino population warrants clinical scientific study as an independent population with a view to better serving this community. Based on anecdotal experience at our centre, Filipino patients appear to have a disproportionately high prevalence of NAFLD. Correspondingly, the literature suggests a higher prevalence of metabolic disease and lifestyle risk factors for NAFLD in North American Filipino populations (14,15). However, there is a paucity of literature on the prevalence of NAFLD in Filipino patients, and no studies have been conducted in a North American Filipino immigrant population. To our knowledge, only one study has been conducted in a Filipino cohort, and it was based in Manila, Philippines (16). We note that the prevalence of a disease within a North American ethnic community cannot be assumed to be the same as in the country of origin, given the environmental and cultural differences of North America. Given the variability in NAFLD globally and by ethnicity, we sought to study NAFLD prevalence in North American Filipino patients, as they comprise a significant local minority with significant risk factors. Further, we compared NAFLD prevalence and presentation between different groups, primarily comparing local Filipino patients to other ethnic groups in our centre and secondarily to Manila-based Filipino patients.

MATERIALS AND METHODS

Study design
This was an observational, retrospective cross-sectional study of patients referred for NAFLD evaluation at the Hepatology Clinic at Vancouver General Hospital from January 2015 to August 2018. Approval was obtained prior to chart review from the Clinical Ethics Review Board of the University of British Columbia. A convenience sample of patients was utilized.

Study population
The study included patients aged 18 years or greater, with liver disease compatible with NAFLD and who underwent transient elastography (TE). Liver disease compatible with NAFLD was defined as hepatic steatosis with no identified cause on global assessment and in the presence of metabolic disease risk factors including hypertension (≥140/90 mmHg), high serum triglyceride levels (≥1.7 mmol/L), glucose intolerance/diabetes (fasting plasma glucose >6.0 mmol/L, hemoglobin A1c ≥6.0%, 2-hour oral glucose tolerance test >7.7 mmol/L), truncal obesity (waist to hip ratio >0.9 or waist circumference >102 cm in men, and >0.85 or >88 cm, respectively, in women), or ethnic risk factors (Asian or Latin American descent).

Exclusion criteria were any genetic disorders of metabolism and other causes of liver disease,
Ethnicity data was collected from clinical charts and categorized into Caucasian, Filipino, East Asian, South Asian, and Other. For the purposes of analysis, ethnicity categories were collapsed into Filipino, Asian (not including Filipino), and Caucasian and Other ethnicity groups. Analysis was initially conducted using East and South Asian subgroups; however, as there were no significant differences on initial univariate analysis, the two groups were collapsed into an Asian ethnic group (excluding the Filipino group) for comparison with our group of interest. The 2016 Vancouver Metro Census (18) was utilized to compare the proportion of Filipino persons in the general population and proportion of Filipino persons in the NAFLD cohort. To compare the characteristics of a Filipino population with NAFLD in Manila, a recent study by De Lusong et al was utilized and designated by our team as “the Manila study” (16). The Manila study was a cross-sectional study collecting data from 134 patients diagnosed with NAFLD at the Philippine General Hospital in Manila from 1999 to 2004. This study was the most recent study on NAFLD in Filipino patients.

Data analysis
Mean and standard deviation (SD) were calculated for all continuous variables. Median and interquartile range (IQR) were collected for mean liver stiffness. Fisher’s exact test was used to compare categorical variables, and one-way ANOVA was used for continuous variables. To explore significant associations, Tukey’s multiple pairwise comparisons were conducted. A two-proportions z-test was used to compare the prevalence of each ethnicity with population data available from the 2016 Vancouver Metro Census (18). Categorical variables published in the Manila study (16) were compared to the study population using the z-test for two proportions. Boxplots were created to illustrate differences in BMI, LSM, and NFS by ethnicity. Statistical analyses were performed using R Statistical Software version 1.1.453 (Foundation for Statistical Computing, Vienna, Austria). Statistical significance was defined as a p value <0.05 with a two-tailed test.

RESULTS
On initial screening, 317 patients met the criteria to be included in the study. When patients with incomplete data were removed, 224 patients remained and contributed data to this study. For the entire sample,
Table 1: Patient characteristics

Variable	All	Caucasian & other	Asian	Filipino	P
N	224	139 (62)	55 (25)	30 (13)	
Female	112 (50)	64 (46)	26 (47)	15 (50)	0.22
Age, y, mean (SD)	51.1 (12)	51.7 (12)	49.4 (11)	51.1 (13)	0.52
Mean estimated ethanol intake (g/wk)	25.1	36.0	7.9†	6.9	0.02

Comorbidities

BMI, kg/m², mean (SD)	29.1 (6.2)	30.1 (7.0)	27.1 (4.1)†	28.1 (3.5)	<0.01
BMI >30	76 (34)	59 (42)	11 (20)	6 (20)	<0.01
Impaired fasting glucose	49 (22)	32 (23)	6 (11)	7 (23)	0.80
Hypertension	83 (37)	51 (37)	19 (35)	12 (40)	0.96

Laboratory measures, mean (SD)

LDL, mmol/L	2.83 (0.9)	2.91 (0.9)	2.52 (0.8)†	2.97 (1)	0.04
Triglycerides, mmol/L	1.77 (1)	1.77 (1)	1.70 (1)	1.95 (1)	0.65
HbA1c, %	6.0 (1)	5.9 (1)	6.2 (2)	6.1 (1)	0.55
AST, IU/L	39 (39)	39 (46)	38 (20)	39 (26)	0.99
ALT, IU/L	55 (50)	54 (55)	59 (41)	60 (36)	0.77
Platelets, ×10³/L	248 (66)	246 (61)	253 (79)	251 (63)	0.76
Bilirubin, mmol/L	11.0 (6)	10.6 (7)	11.5 (5)	11.0 (6)	0.72
INR	1.0 (0.09)	1.0 (0.09)	1.0 (0.09)	1.0 (0.1)	0.52
Albumin, g/L	44 (4)	43 (4)	44.3 (4)	43.7 (3)	0.25
Ferritin, µg/L	269 (383)	236 (347)	364 (482)	245 (318)	0.10
NFS	-2.05 (1.5)	-1.86 (1.5)	-2.42 (1.5)†	-2.28 (1.6)	0.04

Transient elastography

| Median LSM, kPa (IQR) | 5.2 (4.4–6.8) | 5.1 (4.5–6.6) | 5.4 (4.4–6.4) | 5.2 (4.7–7.9) | 0.43 |

Note: Boldface indicates statistically significant at P <0.05
*Unless otherwise indicated
† P <0.05 on Tukey multiple pairwise comparison to “Caucasian & other” group
LDL = Low-density lipoprotein; AST = Aspartate aminotransferase; ALT = Alanine aminotransferase;
LSM = Liver stiffness measure; NFS = NAFLD fibrosis score; NAFLD = Non-alcoholic fatty liver disease; IQR = Interquartile range

the mean age was 51.1 years, and 50% were female. Mean BMI was 29.1 kg/m², and 76 (34%) patients had a BMI greater than 30 kg/m². Forty-nine (22%) patients had impaired fasting glucose or diabetes, and 83 (37%) had hypertension. Mean LDL was 2.83 mmol/L, and mean HbA1c was 6.0%. Mean AST and ALT were 39 IU/L and 55 IU/L, respectively. Median LSM was 5.2 kPa (IQR 4.4–6.8) (Table 1).

When considering the ethnic origin of patients, 139 (62%) were Caucasian and other, 55 (25%) were Asian, and 30 (13%) were Filipino. Mean age and gender distribution were similar between groups. Compared to the Asian ethnicity group, the Caucasian and other group had significantly higher weekly ethanol intake (36 versus 27.1 g/wk), BMI (30.1 versus 21.2), LDL (2.91 versus 2.52 mmol/L), and NFS (−1.86 versus −2.42) (Figure 1). The Filipino group did not have any significantly different clinico-demographic characteristics when compared with the Asian or Caucasian and other group but did trend numerically toward having lower ethanol intake, BMI, and NFS compared to the Caucasian and
Table 2: Ethnic variability in NAFLD patients compared to local population

Ethnic group	Total, N	East Asian		South Asian		Filipino	
NAFLD patient sample	224	36 (16.07%)		19 (8.48%)		30 (13.39%)	
Vancouver (Metro) census	2,426,235	607,295 (25.03%)		287,900 (11.87%)		133,925 (5.52%)	
P		<0.01		0.14		<0.01	

Note: Boldface indicates statistically significant at P <0.05
NAFLD = Non-alcoholic fatty liver disease

Figure 1: Box plots of BMI, LSM, and NFS by ethnicity

LSM = Liver stiffness measure; NFS = NAFLD fibrosis score; NAFLD = Non-alcoholic fatty liver disease

Other group. Median liver stiffness was numerically highest in the Asian group at 5.4 kPa, followed by 5.2 kPa in the Filipino group and 5.1 kPa in the Caucasian and Other group (Table 1, Figure 1).

The proportion of Filipino patients in this NAFLD cohort (13.39%) was significantly higher than the proportion of Filipino residents in the Vancouver Metro census (5.52%, P <0.01). In contrast, the proportion of East Asian patients (16.07%) was significantly lower than the local census (25.03%, P <0.01). The proportion of South Asian patients was similar to the local census (8.48% versus 11.87%, respectively, P = 0.14) (Table 2).

Compared to the Manila study patients (16) (n = 134), the local NAFLD patients of Filipino origin (n = 30) did not demonstrate female predominance (15 [50%] versus 95 [71%] in Manila, P = 0.05) were also numerically older (mean age 51.1 years versus 42.2 years in the Manila study). When considering comorbidities, local Filipino patients had a lower prevalence of diabetes (7 [23%] versus 92 [69%] in Manila, P <0.01) and obesity (6 [20%] versus 80 [60%] in Manila, P <0.01), with lower mean BMI of 28.2 kg/m² (versus 31.8 kg/m² in Manila). Local Filipino patients had a numerically higher prevalence of hypertension compared to Manila patients (12 [40%] versus 29 [22%], respectively, P = 0.06). Local Filipino patients also had lower AST (39 versus 150 IU/L in the Manila study) and lower ALT (60 versus 192 IU/L in the Manila study) (Table 3).
Table 3: Characteristics of Filipino patients compared to the Manila study

Variable	Ethnic group		
	Manila study patients	Local Filipino patients	P’
Total patients with NAFLD	134	30	
Female, no. (%)	95 (71)	15 (50)	0.05
Age, y, mean (SD)	42.2 (2.1)	51.1 (13.5)	
BMI, mean (SD)	31.8 (7.2)	28.2 (3.6)	
Comorbidities, no. (%)			
BMI >30 kg/m²	80 (60)	6 (20)	<0.01
Diabetes	92 (69)	7 (23)	<0.01
Hypertension	29 (22)	12 (40)	0.06
Laboratory measures, mean (SD)			
Albumin, g/L	33.5 (6)	43.7 (3)	
AST, IU/L	150 (19)	39 (26)	
ALT, IU/L	192 (17)	60 (36)	

Note: Boldface indicates statistically significant at P <0.05
* z-test for two proportions
NAFLD = Non-alcoholic fatty liver disease; AST = Aspartate aminotransferase; ALT = Alanine aminotransferase

DISCUSSION

Given the rising prevalence of NAFLD, an understanding of the relationship between ethnicity and NAFLD can optimize diagnosis and management in increasingly diverse populations. Our cross-sectional study of NAFLD patients found a significant over-representation of Filipino patients with NAFLD at a proportion that was 2-fold greater than the expected proportion based on local ethnic distributions. To our knowledge, Filipino patients have not been identified in the North American literature to be a high-risk group for NAFLD and have not previously been examined as an independent group in multi-ethnic NAFLD studies. This is most likely because Asian populations are often studied as a single homogeneous group. Many studies report Asian Americans as a single category without a breakdown into the differing Asian community subgroups, such as Filipino, Chinese, Japanese, Korean, and so on. Further compounding the difficulty of studying NAFLD, or any other disease process, in Asian groups is the fact that American studies rarely differentiate South Asians (ie, Indo-American) from East Asians (ie, Chinese/Japanese/Korean/Filipino Americans) despite these being heterogeneous groups. Due to these factors, the NAFLD experience of the Filipino community in North America has been unexplored, and our study is, to the best of our knowledge, the first to be reported.

Several factors can be considered in the higher prevalence of NAFLD in the Filipino population. The PNPLA3 gene, which regulates lipid metabolism, has been shown to have single-nucleotide polymorphisms that confer susceptibility to developing NAFLD and metabolic syndrome. The highest frequency of putative variants has been reported in Hispanic and East Asian populations (19,20). Filipino patients may be at risk genetically given the historical Spanish and East Asian admixture in the Philippines. The only published study by Baclig et al examined the PNPLA3 gene in Filipino patients; however, it was ultimately inconclusive due to the small sample size. Further research in larger populations is required to determine whether contemporary Filipino populations may also have a genetic susceptibility (21).

Further, it is well-established in the literature that NAFLD is associated with metabolic syndrome, hypertension, obesity, and diabetes (22). Studies show that Filipino populations in North
America have a higher prevalence of hypertension, diabetes, metabolic syndrome, and visceral adipose tissue, despite having similar or lower BMI to Caucasian counterparts (14,23,24). Similarly, studies in Filipino American populations have demonstrated a high incidence of dietary habits suboptimal for metabolic syndrome and limited physical activity, which are established extrinsic factors in NAFLD development (15,25). In areas of growing Filipino American populations, the role of initiatives to address metabolic disease has been explored and implemented with success (26–28). Similar health needs assessments on NAFLD prevalence, health awareness, and lifestyle risk factors should be considered in the local Filipino Canadian population, given our findings of higher NAFLD prevalence.

Interestingly, local Filipino patients had more similarities in NAFLD presentation to other local ethnic groups than Filipino patients in the Manila study (16). Local patients did not demonstrate a female predominance and were older with a mean age of 51 years, similar to a mean age of 53 years in a recent large US study (29). Local patients also had a higher prevalence of hypertension (40%) but less obesity (20%) and diabetes (23%) compared to Manila study patients. Comparatively, North American NAFLD patients had a similar prevalence of hypertension (36%–50%), obesity (36%–71%) and diabetes (13%–26%) in pooled estimates from a recent meta-analysis (7). Further, when comparing within our North American cohort, Filipino patients did not have significant differences in diabetes and hypertension compared to other ethnic groups. Overall, the clinicodemographic characteristics of local Filipino patients had more similarities to other North American patients than Filipino patients included in the Manila study. There may be several factors accounting for these observed differences. First, patient data from the Manila study was collected from 1999 to 2004, and the prevalence of NAFLD risk factors, such as metabolic disease, has increased dramatically in the Philippines. For example, from 1999 to 2016, the global Non-Communicable Disease Risk Collaboration estimates a rise in national obesity rates from 2.3% to 5.5% in men and 4.2% to 7.9% in women (30,31). Unfortunately, there is a lack of more recent comparison data of Filipino patients with NAFLD. Another consideration is the effect of the environmental influences of Western lifestyles, such as diet and activity level. As previous studies have suggested a higher risk of NAFLD in

Our study is inconclusive for whether Filipino patients present with lean NAFLD, which has been previously described in patients of Asian ethnicity. Only 20% of local Filipino patients with NAFLD were obese, though 60% were overweight (BMI greater than 25). Comparatively, in the Manila study, 60% of patients were obese, and 9% were overweight. It is important to note that BMI cut-off values for obesity differ based on ethnicity; whereby Asian patients are considered obese at a lower BMI, this has not been determined for the Filipino population. As such, both our study and the Manila study utilized Western cut-offs for obesity. Our data, when taken in conjunction with the Manila study, demonstrates that 20%–30% of NAFLD patients present with a BMI less than 25. Further study is required to clarify whether the proportion of NAFLD patients with normal BMI is secondary to population variation or if lean NAFLD is truly prominent in this population.

There did not appear to be significantly more advanced liver disease in Filipino patients in our NAFLD cohort compared to other ethnic groups. The mean NFS was lowest in Asian patients and highest in patients of Caucasian and Other ethnicities, but there were no statistical differences in NFS when comparing Filipino patients to either group. All NFS were less than –1.455, with a negative predictive value of 88%–93% for advanced fibrosis (17). As serum-based score systems can have varying sensitivity in different ethnic groups and the NFS incorporates BMI cut-offs validated for a North American population, more research is required to investigate the accuracy of serum scores in Filipino NAFLD patients (33). Nonetheless, in our study, TE was used as a more sensitive measure of advanced fibrosis. The resulting median LSM was similar in all ethnic groups and less than 8.0 kPa, corresponding to a 95% negative predictive value for fibrosis stage F3 or greater (34).

Limitations

There are several limitations to our study. As a single centre hepatology clinic based in a tertiary hospital, our study sample may not represent the greater population. As the clinic is dependent on referrals from family physicians, there may be a referral bias if Filipino patients are over-referred compared to other ethnicities. Further, to allow for the
most accurate comparison between NAFLD ethnicity and local population proportions, we utilized the Vancouver Metro census to match the clinic’s catchment area. Further, the census data was collected in 2016, which is temporally comparable to our data collection from 2015–2018; while it is possible that there was further influx of Filipino immigrants since the latest census, it likely does provide a close estimate for our purposes. There are also uncertainties in the measurement of NAFLD and advanced liver fibrosis that have yet to be established in Filipino patients, including BMI cut-off for obesity and the performance of non-invasive serum scores in a Filipino-specific ethnic group. As such, we utilized TE in addition to serum scores to provide a more accurate assessment of liver fibrosis. Finally, the small sample size of ethnic groups limited the generalizability of the results to broader Filipino populations and the statistical power of our analysis. Further study should include larger samples over a longer observation period.

CONCLUSIONS
In conclusion, we found that Filipino patients have a higher prevalence of NAFLD than would be expected based on their local ethnic distribution. There is a paucity of NAFLD studies in Filipino patients, despite an abundance of studies demonstrating risk factors for NAFLD, including higher prevalence of hypertension, metabolic syndrome, diabetes, obesity, and associated lifestyle factors. In our study, Filipino patients presented similarly to other North American patients and did not have more advanced liver fibrosis based on non-invasive testing. More studies are required on screening, diagnosis, and management of NAFLD, focusing on Filipino populations. From a public health perspective, the Filipino Canadian community may benefit from targeted education initiatives regarding fatty liver disease.

CONTRIBUTIONS: Conceptualization, EM Yoshida; Data Curation, SX Jiang, M Heer, R Trasolini, B Cox, C Galts, V Marquez; Data Analysis, SX Jiang, V Marquez; Writing – Original Draft, SX Jiang, R Trasolini, M Heer, B Cox, C Galts, V Marquez, EM Yoshida; Writing – Review & Editing, SX Jiang, R Trasolini, M Heer, B Cox, C Galts, V Marquez, EM Yoshida.

ETHICS APPROVAL: Approval was obtained for retrospective chart review from the Clinical Ethics Review Board of the University of British Columbia. This retrospective chart review study involving human participants was in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

INFORMED CONSENT: N/A

REGISTRY AND THE REGISTRATION NO. OF THE STUDY/TRIAL: N/A

FUNDING: No funding was received for this study.

DISCLOSURES: This work has been accepted for presentation as a poster at the 2021 Liver Meeting of the American Association for the Study of Liver Disease, Anaheim, California, USA. EM Yoshida has been an investigator of clinical trials sponsored by Intercept, Pfizer, Madrigal, Genfit, Celgene, Novodisc, Gilead, Merck, and Abbvie; he has received an unrestricted research grant from Paladin Laboratories, and has received honouraria for CME/Ad Board lectures sponsored by Intercept, Lupin, Gilead, and Abbvie. The other authors have nothing to disclose.

PEER REVIEW: This article has been peer reviewed.

ANIMAL STUDIES: N/A

REFERENCES
1. Swain MG, Ramji A, Patel K, et al. Burden of nonalcoholic fatty liver disease in Canada, 2019–2030: a modelling study. CMAJ Open. 2020;8(2):E429–E36. https://doi.org/10.9778/cmao.20190212. Medline:32518095
2. Adams LA, Harmsen S, St.Sauver JL, et al. Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. Am J Gastroenterol.2010;105(7):1567–73. https://doi.org/10.1038/ajg.2010.18. Medline:20145609
3. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol. 2016;65(3):589–600. https://doi.org/10.1016/j.jhep.2016.05.013. Medline:27212244
4. Younossi Z, Stepanova M, Ong JP, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol. 2019;17(4):748–55.e743. https://doi.org/10.1016/j.cgh.2018.05.057. Medline: 29908364

5. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40(6):1387–95. https://doi.org/10.1002/hep.20466. Medline: 15565570

6. Rich NE, Oji S, Mufti AR, et al. Racial and ethnic disparities in non-alcoholic fatty liver disease prevalence, severity, and outcomes in the United States: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(2):198–210.e2. https://doi.org/10.1016/j.cgh.2017.09.041. Medline: 28970148

7. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. https://doi.org/10.1002/hep.28431. Medline: 26707365

8. Mohanty SR, Troy TN, Huo D, O’Brien BL, Jensen DM, Hart J. Influence of ethnicity on histological differences in non-alcoholic fatty liver disease. J Hepatol. 2009;50(4):797–804. https://doi.org/10.1016/j.jhep.2008.11.017. Medline: 19231016

9. Singh S, Kuftinec GN, Sarkar S. Non-alcoholic fatty liver disease in South Asians: a review of the literature. J Clin Transl Hepatol. 2017;5(1):76–81. https://doi.org/10.14218/JCTH.2016.00045. Medline: 28507930

10. Soookoian S, Pirola CJ. Systematic review with meta-analysis: the significance of histological disease severity in lean patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2018;47(1):16–25. https://doi.org/10.1111/apt.14401. Medline: 29083036

11. Statistics Canada. Census Profile, 2016 Census: British Columbia [Province] and Canada [Country]. Statistics Canada catalogue no. 98-316-X2016001. Ottawa, ON: Statistics Canada; 2016[released2017Feb29;updated2019Jun18]. Available from: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E.

12. Statistics Canada. Vancouver, CMA, British Columbia (Code 933). National Household Survey (NHS) Profile. National Household Survey. Statistics Canada catalogue no. 99-004-XWE. Ottawa, ON: Statistics Canada; 2013 [released 2013 Sep 11; updated 2015 Nov 27]. Available from: http://www12.statcan.gc.ca/nhs-enm/2011/dp-pd/prof/index.cfm?Lang=E.

13. Statistics Canada. Table 2: Top 10 countries of birth of recent immigrants, Canada, 2016. Ottawa, ON: Statistics Canada; 2017 [released 2017 Oct 25; updated 2017 Nov 1]. Available from: https://www150.statcan.gc.ca/n1/daily-quotidien/171025/t002b-eng.htm.

14. Araneta MRG, Wingard DL, Barrett-Connor E. Type 2 diabetes and metabolic syndrome in Filipina-American women: a high-risk nonobese population. Diabetes Care. 2002;25(3):494–9. https://doi.org/10.2337/diacare.25.3.494. Medline:11874936

15. Bayog MLG, Waters CM. Cardiometabolic risks, lifestyle health behaviors and heart disease in Filipino Americans. Eur J Cardiovasc Nurs. 2017;16(6):522–9. https://doi.org/10.1177/1474515117697886. Medline:28756695

16. De Lusong MAA, Labio E, Daez L, Gloria V. Non-alcoholic fatty liver disease in the Philippines: comparable with other nations? World J Gastroenterol. 2008;14(6):913–17. https://doi.org/10.3748/wjg.14.913. Medline:18240349

17. Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45(4):846–54. https://doi.org/10.1002/hep.21496. Medline:17393509

18. Statistics Canada. 2016 Census Profile, 2016 census: Vancouver [Census metropolitan area], British Columbia and British Columbia [Province]. Statistics Canada catalogue no. 98-316-X2016001. Ottawa, ON: Statistics Canada; 2017 [released 2017 Nov 29; updated 2019 Aug 9; cited 2021 May 11]. Available from: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E.
19. Tepper CG, Dang JHT, Stewart SL, et al. High frequency of the PNPLA3 rs738409 [G] single-nucleotide polymorphism in Hmong individuals as a potential basis for a predisposition to chronic liver disease. Cancer. 2018;124(Suppl 7):1583–9. https://doi.org/10.1002/cncr.31122. Medline:29578593

20. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5. https://doi.org/10.1038/ng.257. Medline:18820647

21. Baclig MO, Lozano-Kühne JP, Mapua CA, Gomez-Cervantes J, Natividad FF; St. Luke’s Liver Diseases Study Group. Genetic variation I148M in patatin-like phospholipase 3 gene and risk of non-alcoholic fatty liver disease among Filipinos. Int J Clin Exp Med. 2014;7(8):2129–36. Medline:25232397

22. Lonardo A, Bellentani S, Argo CK, et al. Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups. Dige Liver Dis. 2015;47(12):997–1006. https://doi.org/10.1016/j.dld.2015.08.004. Medline:26454786

23. Jiali Y, Rust G, Baltrus P, Daniels E. Cardiovascular risk factors among Asian Americans: results from a national health survey. Ann Epidemiol. 2009;19(10):718–23. https://doi.org/10.1016/j.annepidem.2009.03.022. Medline:19560369

24. Fuller-Thomson E, Roy A, Chan KTK, Kobayashi KM. Diabetes among non-obese Filipino Americans: Findings from a large population-based study. Can J Public Health. 2017;108(1):e36–e42. https://doi.org/10.17269/CJPH.108.5761. Medline:31820422

25. Ma GX, Lee M, Bhimla A, et al. Risk assessment and prevention of hypertension in Filipino Americans. J Community Health. 2017;42(4):797–805. https://doi.org/10.1007/s10900-017-0320-0. Medline:28161775

26. Bhimla A, Yap L, Lee M, Seals B, Aczon H, Ma GX. Addressing the health needs of high-risk Filipino Americans in the Greater Philadelphia Region. J Community Health. 2017;42(2):269–77. https://doi.org/10.1007/s10900-016-0252-0. Medline:27639868

27. Ma GX, Bhimla A, Zhu L, et al. Development of an intervention to promote physical activity and reduce dietary sodium intake for preventing hypertension and chronic disease in Filipino Americans. J Racial Ethn Health Disparities. 2021;8(2):283–92. https://doi.org/10.1007/s40615-020-00781-z. Medline:32495306

28. Domingo JLB, Gavero G, Braun KL. Strategies to increase Filipino American participation in cardiovascular health promotion: a systematic review. Prev Chronic Dis. 2018;15:E59. https://doi.org/10.5888/pcd15.170294. Medline:29786501

29. Le MH, Devaki P, Ha NB, et al. Prevalence of non-alcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in the United States. PLoS One. 2017;12(3):e0173499. https://doi.org/10.1371/journal.pone.0173499. Medline:28346543

30. Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. The Lancet. 2017;390(10113):2627–42. https://doi.org/10.1016/S0140-6736(17)32129-3. Medline:29029897

31. Non-Communicable Disease Risk Factor Collaboration (NCD–RisC). Data downloads [webpage on the Internet]. London, UK: NCD–RisC; c2017 [cited 2021 Sep 17]. https://www.ncdrisc.org/data-downloads.html.

32. Neukam K, Bhagani S, Rodger A, et al. High prevalence of non-alcoholic fatty liver disease (NAFLD) among Gujarati Indians in North London: a population-based study. Clin Lipidol. 2017;12(1):33–9. https://www.tandfonline.com/doi/full/10.1080/17584299.2017.1326709.

33. Samji NS, Snell PD, Singal AK, Satapathy SK. Racial disparities in diagnosis and prognosis of nonalcoholic fatty liver disease. Clin Liver Dis (Hoboken). 2020;16(2):66–72. https://doi.org/10.1002/cld.948. Medline:32922753

34. Wong V, Wong G, Chim A, et al. Validation of the NAFLD fibrosis score in a Chinese population with low prevalence of advanced fibrosis. Am J Gastroenterol. 2008;103(7):1682–8. https://doi.org/10.1111/j.1572-0241.2008.01933.x. Medline:18616651