Commentary: Benefits and risks of antimicrobial use in food-producing animals

Schlundt, Jørgen; Aarestrup, Frank Møller

Published in:
Frontiers in Microbiology

Link to article, DOI:
10.3389/fmicb.2017.00181

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Schlundt, J., & Aarestrup, F. M. (2017). Commentary: Benefits and risks of antimicrobial use in food-producing animals. Frontiers in Microbiology, 8, [181]. https://doi.org/10.3389/fmicb.2017.00181

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Commentary: Benefits and risks of antimicrobial use in food-producing animals

Jørgen Schlundt1* and Frank M. Aarestrup2

1 NTU Food Technology Centre, Nanyang Technological University, Singapore, Singapore, 2 Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Copenhagen, Denmark

Keywords: antimicrobial drug, risk, animal food production, public health, antimicrobial resistance

A commentary on

Benefits and risks of antimicrobial use in food-producing animals

by Hao, H., Cheng, G., Iqbal, Z., Ai, X., Hussain, H. I., Huang, L., et al. (2014). Front. Microbiol. 5:288. doi: 10.3389/fmicb.2014.00288

In a recent general attempt to review literature related to documentation of policy changes in the area of antimicrobial use in agriculture we have read the article by Hao et al. (2014) and have found it full of flaws and misinterpretations. We cannot comment on all but would like to address some claims specifically focusing on the effects of banning antimicrobial growth promoters in Denmark. The claims put forward in the review are all based on references, but they seem to be selected to reflect a perspective by the pharmaceutical industry. The authors claim that morbidity rate of enteric infections increased by 600%. We have been unable to find these figures in the two references cited. The authors also cite a review for an increase in mortality among piglets from 2.7 to 3.5% comparing only the years immediately before and after the ban. We have previously analyzed these data on mortality and productivity in much more detail (Aarestrup et al., 2010). Looking at longer term trend data clearly suggest that Danish piglets in the period around the ban (1998) had a general increase in mortality probably unrelated to the ban and actually immediately after the ban an increase in average daily gain. Longer term data also shows that the mortality increase changed to a decrease by 2002 and has continued to drop since. In a paper published in Food Control (Wielinga et al., 2014) we suggest that the continued improvement in productivity in the Danish pig sector is partially explained by improved animal management through increased veterinary oversight (while veterinarians in Denmark since 1995 were legally banned from making a direct profit from sales of antimicrobials).

The authors also claim that the ban of AGP resulted in a compensatory increase in the use of therapeutic antimicrobials. Once again the authors over-simplify the situation by just selecting 2 years to make their point. The overall consumption of antimicrobial agents in the Danish pig production has fluctuated over time and in the same time-period the production of pigs has increased by almost 50%, which naturally influences consumption. More detailed data and adjustments to productivity are provided in Aarestrup (2015).

The authors also cite a Danish study (Heuer et al., 2001) for the claim that the population of Campylobacter in broilers fed without antimicrobials was threefold higher than that in the broilers fed with any antimicrobials. This is absolutely not true. The study in question was performed after the ban on AGP had been implemented and compared organic and conventional broiler systems in Denmark, both produced with a very low level of antimicrobial agents. The main reason for the differences in campylobacter prevalence between conventional and organic production is most likely related to out-door raising of organic broilers whereas conventional systems are in-door.
The authors further continue to blame the Danish animal production for an increased incidence of *Clostridium difficile* infections among humans in Denmark. This has to our knowledge never been documented, but the misunderstanding could stem from erroneously linking *Clostridium perfringens* infections in animals with *Clostridium difficile* infections in humans.

Finally, the authors select the year 2006 to claim that productivity of broiler, cattle and dairy cattle systems has decreased in Denmark. This is approximately 8 years after the Danish ban of AGPs for these animal species and nothing amongst the selected data even seems to indicate this. Strangely the authors forget to mention that Danish pig production in the same time period has increased by almost 50%, now resulting in a Danish status as no. 1 (or no. 2) exporter of pork in the world.

In conclusion, this review is completely flawed, at least with respect to the description and analysis of Danish data. We have not investigated whether this is also the case for the remaining part of the manuscript, but this should be investigated before any of the conclusions stated can be trusted—or characterized as science-based.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual contribution to the work, and approved it for publication.

REFERENCES

Aarestrup, F. M. (2015). The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370:20140085. doi: 10.1098/rstb.2014.0085

Aarestrup, F. M., Jensen, V. F., Emborg, H. D., Jacobsen, E., and Wegener, H. C. (2010). Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark. Am. J. Vet. Res. 71, 726–733. doi: 10.2460/ajvr.71.7.726

Hao, H., Cheng, G., Iqbal, Z., Ai, X., Hussain, H. I., Huang, L., et al. (2014). Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 5:288. doi: 10.3389/fmicb.2014.00288

Heuer, O. E., Pedersen, K., Andersen, J. S., and Madsen, M. (2001). Prevalence and antimicrobial susceptibility of thermophilic Campylobacter in organic and conventional broiler flocks. Lett. Appl. Microbiol. 33, 269–274. doi: 10.1046/j.1472-765x.2001.00994.x

Wielinga, P. R., Jensen, V. F., Aarestrup, F. M., and Schlundt, J. (2014). Evidence-based policy for controlling antimicrobial resistance in the food chain in Denmark. Food Control 40, 185–192. doi: 10.1016/j.foodcont.2013.11.047

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Schlundt and Aarestrup. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.