Sign-alternating interaction mediated by strongly correlated lattice bosons

S G Söyler1,4,5, B Capogrosso-Sansone1,2,4, N V Prokof’ev1,3 and B V Svistunov1,3

1 Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
2 Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center of Astrophysics, Cambridge, MA 02138, USA
3 Russian Research Center ‘Kurchatov Institute’, 123182 Moscow, Russia
E-mail: soyler@physics.umass.edu

New Journal of Physics 11 (2009) 073036 (8pp)
Received 27 April 2009
Published 17 July 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/7/073036

Abstract. We reveal a generic mechanism of generating sign-alternating intersite interactions mediated by strongly correlated lattice bosons. The ground-state phase diagram of the two-component hard-core Bose–Hubbard model on a square lattice at half-integer filling factor for each component, obtained by worm algorithm Monte Carlo simulations, is strongly modified by these interactions and features the solid + superfluid (SF) phase for strong asymmetry between the hopping amplitudes. The new phase is a direct consequence of the effective nearest-neighbor repulsion between ‘heavy’ atoms mediated by the ‘light’ SF component. Due to their sign-alternating character, mediated interactions lead to a rich variety of yet to be discovered quantum phases.

The first proposal for studying models of strongly correlated systems with cold atoms in optical lattices was put forward a decade ago [1]. Since then, control over lattice geometry and interaction strength has increased dramatically, opening up new directions in the study of quantum phases of cold gases. (For reviews, see [2, 3].) Thanks to refinements in experimental and theoretical tools, it is now possible to look at exotic quantum states that arise in bosonic systems with pseudospin degrees of freedom or multiple species. In the realm of two-component systems, one goal is to realize models of quantum magnetism by using hyperfine

4 These authors contributed equally.
5 Author to whom any correspondence should be addressed.
states of an atom [4]. By controlling superexchange interactions of particles confined in an optical lattice, it is possible to switch between different ground states [5]. Another important development is the experimental realization of heteronuclear bosonic mixtures of 87Rb–41K in a three-dimensional (3D) optical lattice [6]. Moreover, Thalhammer et al [7] report results for fine control over interspecies scattering length, including the zero-crossing point. These achievements indicate that two-component systems in optical lattices with tunable interspecies interaction via Feshbach resonances are within the reach of current experiments. The two-component 2D bosonic system is also in the focus of the Optical Lattice Emulator project supported by DARPA and aimed at the development, within the next few years, of experimental tools for accurately mapping phase diagrams of lattice systems by emulating them with ultracold atoms in optical lattices.

Experimental studies of lattice solids—states with broken translation symmetry—are intriguing and fundamentally important, especially in 2D. As a prominent example, we refer to the problem of deconfined criticality proposed for the solid-to-superfluid (SF) quantum phase transition in 2D. The matter of interdisciplinary interest here is to validate the idea of a (hidden) duality between the SF and solid orders leading to a conceptually new criticality [8]. Lattice solids also offer the possibility of having a supersolid phase featuring both broken translation symmetry and the ability to support a superflow, e.g. in a single-species square-lattice bosonic system with soft-core on-site interactions and appropriately strong nearest-neighbor interactions [9].

Solid phases in the single-species bosonic system require going beyond the on-site interaction. The standard Bose–Hubbard model [1] supports only two phases: an SF and a Mott insulator (MI); the latter is not a solid because it lacks broken translation symmetry. A considerable theoretical effort has been made to understand how intersite interactions can be generated in atomic gases. One proposal is to use cold polar molecules [10] featuring long-range dipole–dipole interactions (see also review [11], and references therein). In [12], the authors suggest a technique for tuning the shape of long-range interactions between polar molecules by applying static and microwave fields. Another experimentally more challenging proposal is to excite atoms to higher bands in an optical lattice [13].

Within this framework, the two-component bosonic system with purely on-site interactions is a reasonable alternative route to obtain exotic single-species systems (at present, it is hard to reach low temperatures with lattice fermions). At commensurate filling and strong enough interaction, leading to the incompressible state in the particle-number sector, the two-component mixture becomes equivalent to a single-component system with nearest-neighbor interactions. The remaining degree of freedom describing the boson type on a given site can be mapped onto the effective iso-spin variable [14]–[17]. The checker-board (CB) solid phase arising in this case is equivalent to the Néel antiferromagnet [14, 15, 17]. The CB–SF quantum phase transition (with respect to the original components, the SF state is a super-counter-fluid (SCF) [15] or, equivalently, a planar ferromagnet in iso-spin terminology [15, 17]) is known to be of first order. Unfortunately, the supersolid phase is not predicted in this parameter regime. There have been extensive theoretical studies of quantum phases in two-component systems [15]–[19], but, to the best of our knowledge, all studies overlooked the possibility of having various solids in the absence of the net-charge localization. Namely, they missed a generic mechanism of inducing inter-site sign-alternating interactions by a strongly correlated bosonic environment (cf [20]), analogous to the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction mediated by fermions ([21] and references therein).
In this work, we reveal and quantify the mechanism of mediated sign-alternating interactions, and discuss it in the context of the ground state phase diagram for hard-core bosons, i.e. infinite intraspecies interaction, with repulsive interspecies interaction at half filling for each component:

\[H = - \sum_{\langle ij \rangle} \left(t_a a_i^\dagger a_j + t_b b_i^\dagger b_j \right) + U \sum_i n_i^{(a)} n_i^{(b)}, \]

where \(a_i^\dagger (a_i) \) and \(b_i^\dagger (b_i) \) are bosonic creation (annihilation) operators, \(t_a \) and \(t_b \) are hopping matrix elements between the nearest-neighbor sites for two species of bosons (A and B) on a simple square lattice with \(N = L \times L \) sites, and \(n_i^{(a)} = a_i^\dagger a_i \), \(n_i^{(b)} = b_i^\dagger b_i \). This model can be implemented experimentally [7] and is considered to be the simplest one with purely contact interactions and yet a highly nontrivial phase diagram.

Model (1) was studied previously using a combination of variational and mean-field theories [17] which, in general, cannot guarantee the accuracy of results. With Monte Carlo (MC) simulations using the worm algorithm [22], we obtain the first precise data for the ground state phase diagram. For weak asymmetry between \(t_a \) and \(t_b \) and large \(U \), our results confirm the basic phases and transitions between them proposed in [17]. We, however, find strong quantitative differences (up to 50–100\%) in the location of transition lines. For large asymmetry and moderate-to-weak interactions, we find a completely new structure of the phase diagram. It is shaped by the effective Hamiltonian obtained for the ‘heavy’ (small hopping) component after the ‘light’ component is integrated out. The resulting nearest-neighbor and longer-range interactions (similar to the effective potential between the ions in solids mediated by electrons) stabilize the CB solid phase of heavy atoms for sufficiently strong asymmetry between \(t_b \) and \(t_a \). A surprising result of the present study is that effective mediated interactions oscillate from strong on-site attraction to much weaker nearest-neighbor repulsion and back to a tiny attractive tail. In a broad perspective, this type of mediated interaction will result in interesting solid and guaranteed supersolid [9] orders in related models. Moreover, for soft-core bosons, one can look for phases and phase transitions that involve multi-particle bound states and order parameters (‘multi-mers’).

Before we discuss our findings in more detail, let us review the key phases and limiting cases of model (1). In the strong coupling limit, \(U \gg t_a, t_b \), it can be mapped (within second-order perturbation theory) onto the spin-1/2 Hamiltonian (see e.g. [14, 15, 17]) \(H_{XXZ} = \sum_{\langle ij \rangle} \left(-J_{xy} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + J_z \sigma_i^z \sigma_j^z \right) \) with positive \(J_{xy}, J_z \sim t_2^2/U \). The latter features two possible ground states: (i) an antiferromagnetic state with \(z \)-Néel order for \(J_z > J_{xy} \), and (ii) an \(XY \)-ferromagnetic state for \(J_{xy} > J_z \). In bosonic language, the \(z \)-Néel state corresponds to the CB solid order for both A and B particles (we will abbreviate it as 2CB). It is characterized by nonzero structure factor \(S_{ab}(k) = N^{-1} \sum_r \exp[ikr] \langle n_{0}^{(a)} n_{r}^{(b)} \rangle \). The \(XY \) state represents the SCF phase featuring an order parameter \(\langle \sigma_i^x \rangle \). Both 2CB and SCF have to be regarded as MIs as far as the total number of particles is concerned, i.e. there exists a finite gap to dope the system. Thus only counter-propagating A and B currents with zero net particle flux possess SF properties in the SCF state. Under the mapping one finds that \(J_z > J_{xy} \) everywhere except at \(t_a = t_b \) when the spin Hamiltonian becomes \(SU(2) \)-symmetric. Thus higher order symmetry-breaking terms are necessary to decide which phase, 2CB or SCF, survives. Altman et al [17] provided a variational argument showing that SCF is stabilized in the vicinity of the \(t_a = t_b \) line, and our data unambiguously confirm the validity of this conclusion.

New Journal of Physics 11 (2009) 073036 (http://www.njp.org/)
Figure 1. Phase diagram of model (1) on a square lattice at half-integer filling factor for each component. The observed transition lines are 2CB–SCF (first-order), SCF–2SF (second-order), 2CB–2SF (first-order), 2CB–CB + SF (second-order) and CB + SF–2SF (first-order). Lines are used to guide the eye.

At weak interspecies interaction, $U \ll t_a$, t_b, we expect that the ground state is that of two miscible strongly interacting (due to hard-core intracomponent repulsion) superfluids (2SF). Finally, for $t_b \ll U \leq t_a$ we should have a phase where B particles form the CB solid if effective interactions mediated by the SF A component are repulsive and short-ranged (we abbreviate it as CB + SF).

Our simulation method is based on the lattice path integral representation and the worm algorithm [22]. The original version was generalized to deal with two-component systems following ideas introduced for classical j-current models [23]. The simulation configuration space now includes the possibility of having two types of disconnected worldlines (worms) representing off-diagonal correlation functions (Green’s functions). In order to allow efficient sampling of the SCF phase (any paired phases for that matter) it is necessary to enlarge the configuration space and consider worldline trajectories with two worms propagating simultaneously. The results for the phase diagram are summarized in figure 1. To detect the SCF phase, we have calculated the stiffness of the relative SF flow from the standard winding number formula [24] $\rho_{SCF} = \beta^{-1}(W_a - W_b)$, where $W_a(b)$ are winding numbers of worldlines A (B), and β is the inverse temperature. In SCF, the sum of winding numbers is zero in the thermodynamic limit. We confirm the SCF ground state for $t_a \sim t_b$ and sufficiently strong interactions. It survives at arbitrary large U along the diagonal $t_a = t_b$, directly demonstrating that higher order terms in the effective spin-1/2 Hamiltonian break the $SU(2)$ symmetry in favor of XY order. To locate the weakly first-order SF–solid 2CB-SCF line (circles in figure 1) we have used the flowgram method, which works well for both first- and second-order transitions and is particularly helpful for telling the former from the latter (see [25] for details).

Although the 2CB–SCF transition is expected to be first order, one may not exclude the possibility of the intermediate supersolid phase. We did search for evidence of the state featuring
both SCF and CB orders, but did not find any. On the contrary, we observed phase coexistence which brings us to the conclusion that the 2CB–SCF line remains unsplit.

The continuous SCF–2SF transition (squares in figure 1) is expected to be in the \((d+1)\)-dimensional \(U(1)\) universality class characteristic of the MI–SF quantum phase transition \([23]\). As the system crosses into the 2SF phase, it develops single-component order parameters \(\langle a \rangle \neq 0\) and \(\langle b \rangle \neq 0\) along with the nonzero SF stiffness in the total winding number channel, \(\rho_{2SF} = \beta^{-1}(W_a + W_b)^2\). To locate the transition line precisely we have employed standard finite size scaling arguments and extracted the critical point from the intersection of \(\rho_{2SF}(U/t_{a,b})L\) curves calculated for different system sizes \(L\) at \(\beta \propto L\).

The SCF phase disappears for \(U/t_{a,b} \lesssim 8\). In this parameter region, the system undergoes the first-order 2CB-2SF transition (stars in figure 1) up to \(U/t_{a,b} \simeq 4\) where the 2CB phase disappears.

Not too surprisingly for the 2D case, the mean-field and variational treatments turn out to be rather inaccurate quantitatively: the actual transition lines are 50–100\% away from the predicted ones. For comparison, in figure 1 we have used the same units as in \([17]\) (\(z = 4\) is the coordination number on the square lattice). Even for strong interspecies interaction \(U/t_{a,b} \sim 16\), we do not find good quantitative agreement.

We now turn to the most interesting, for the purposes of this paper, region of the phase diagram with strong asymmetry between hopping amplitudes. In this regime, one of the components is much heavier (let it be component B) than the other. As the hopping amplitude \(t_a\) increases, the light component undergoes a second-order MI–SF transition in \((d+1)\)-dimensional \(U(1)\) universality class (diamonds in figure 1). (Since translation invariance is broken by the CB order of B particles, the filling factor of A particles is unity per unit cell.) Beyond this transition, the SF A bosons provide an effective interaction for B bosons, which for sufficiently small \(t_b\) stabilizes the CB order in the heavy component. Although formally CB+SF breaks both translation and gauge symmetries, it cannot be called a supersolid because the density wave in the A-component is induced from ‘outside’ by an insulating heavy phase (this is reminiscent of conventional solid-state superconductors). However, in cold atomic systems with A and B particles referring to different hyperfine states of the same atom we have an experimental ‘knob’ to render the CB+SF phase a genuine supersolid by inducing an arbitrary small hybridizing interaction \(g(a^\dagger b + h.c.)\).

To describe the CB+SF phase semiquantitatively let us look at the limit \(t_b \ll U \ll t_a\). This corresponds to the Born–Oppenheimer approximation when effective interactions are calculated by considering heavy particles being fixed on the lattice and working in the lowest (second)-order perturbation theory in \(U\). Since interaction \(U\) involves only one B-density operator, the second order in \(U\) terms reduces to pairwise effective interparticle couplings of the order of \(U^2/zt_a\). The superfluid liquid of hard-core A particles is strongly correlated, and thus the actual strength and form of \(V_{\text{eff}}\) have to be computed numerically. Given two heavy particles occupying sites \(i\) and \(j\), the Hamiltonian reads as \(H = H_a + U_j n_i^a + U_i n_j^a\), where \(H_a\) is the Hamiltonian of light particles and \(U_i = U_j = U\). Using the Hellmann–Feynman theorem, the effective interaction can be determined from the exact (at \(U/t_a \to 0\)) relations:

\[
V_{\text{eff}}(r) = U_i U_j \frac{\partial^2 \langle H \rangle}{\partial U_i \partial U_j} = U_i U_j \frac{\partial \langle n_i^a \rangle}{\partial U_i} = (U^2/t_a) C(r),
\]

with \(|i - j|\) and \(C(r)\) describing an induced density change at distance \(r\) when the local chemical potential at the origin is reduced by a small amount \(U\) within the linear response.
Figure 2. The $C(r)$ function in a system of light hard-core bosons at half-integer filling; the distance r is measured in units of lattice spacing. The calculation was done for the $L \times L = 10 \times 10$ system at low temperature. The nearest-neighbor repulsion is clearly visible, although the overall strength of the effective coupling is very small. Error bars are smaller than the symbol size.
In conclusion, we have presented accurate results, based on path integral MC, for the phase diagram of the two-component hard-core Bose–Hubbard model on a square lattice and half-integer filling factor for each component. The system can be realized experimentally with heteronuclear bosonic mixtures in optical lattices with tunable interspecies interactions. We reveal the existence of an additional CB + SF state that radically changed the topology of the phase diagram. The CB + SF phase, which exists for strong asymmetry between the hopping amplitudes and weak enough interaction, is a direct consequence of effective interactions mediated by the light, strongly correlated SF component. Mediated interactions are sign alternating, and lead to exciting possibilities of realizing new quantum phases in two-species bosonic systems.

Many questions remain open. Finite temperature properties and melting of the z-Néel/xy-ferromagnet phases are of interest in the study of quantum magnetism. Studies of soft-core bosons are of special interest because they admit the possibility of forming ‘multi-mers’ due to strongly mediated on-site attraction. One may also study supersolid phases on square and triangular lattices, not to mention the need for dealing with more realistic systems, i.e. including effects of parabolic confinement and a finite number of particles as in experimental setups.

Acknowledgments

We thank L Pollet, E Demler and M Lukin for fruitful discussions. This work was supported by ITAMP, DARPA OLE program and NSF grant PHY-0653183.

References

[1] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[3] Lewenstein M, Sanpera A, Ahufinger V, Damski B, De A S and Sen U 2008 Adv. Phys. 56 243
[4] Fölling S, Trotzky S, Cheinet P, Feld M, Saers R, Widera A, Müller T and Bloch I 2007 Nature 448 1029
Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D and Porto J V 2007 Nature 448 452
[5] Trotzky S, Cheinet P, Fölling S, Feld M, Schnorrberger U, Rey A M, Polkovnikov A, Demler E A, Lukin M D and Bloch I 2008 Science 319 294
[6] Catani J, De Sarlo L, Barontini G, Minardi F and Inguscio M 2008 Phys. Rev. A 77 011603
[7] Thalhammer G, Barontini G, De Sarlo L, Catani J, Minardi F and Inguscio M 2008 arXiv:0803.2763 [cond-mat]
[8] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490
Senthil T, Balents L, Sachdev S, Vishwanath A and Fisher M P A 2004 Phys. Rev. B 70 144407
Motrunich O I and Vishwanath A 2004 Phys. Rev. B 70 075104
[9] Sengupta P, Pryadko L P, Alet F, Troyer M and Schmid G 2005 Phys. Rev. Lett. 94 207202
[10] Goral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406
[11] Pupillo G, Micheli A, Büchler H P and Zoller P 2008 Cold Molecules: Creation and Applications (London: Taylor and Francis)
[12] Büchler H P, Demler E, Lukin M, Micheli A, Prokof’ev N, Pupillo G and Zoller P 2007 Phys. Rev. Lett. 98 060404
Micheli A, Pupillo G, Büchler H P and Zoller P 2007 Phys. Rev. A 76 043604
[13] Scarola V W and Das Sarma S 2005 Phys. Rev. Lett. 95 033003
[14] Boninsegni M 2001 Phys. Rev. Lett. 87 087201
[15] Kuklov A B and Svistunov B V 2003 Phys. Rev. Lett. 90 100401

New Journal of Physics 11 (2009) 073036 (http://www.njp.org/)
[16] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[17] Altman E, Hofstetter W, Demler E and Lukin M 2003 New J. Phys. 5 113
[18] Kuklov A, Prokof’ev N and Svistunov B 2004 Phys. Rev. Lett. 92 050402
[19] Isacsson A, Cha M C, Sengupta K and Girvin S M 2005 Phys. Rev. B 72 184507
[20] Heiselberg H, Pethick C J, Smith H and Viverit L 2000 Phys. Rev. Lett. 85 2418
[21] Van Vleck J H 1962 Rev. Mod. Phys. 34 681
[22] Prokof’ev N V, Svistunov B V and Tupitsyn I S 1998 Phys. Lett. A 238 253
 Prokof’ev N V, Svistunov B V and Tupitsyn I S 1998 Sov. Phys.—JETP 87 310
[23] Kuklov A, Prokof’ev N and Svistunov B 2004 Phys. Rev. Lett. 92 030403
[24] Pollock E L and Ceperley D M 1987 Phys. Rev. B 36 8343
[25] Kuklov A B, Prokof’ev N V, Svistunov B V and Troyer M 2006 Ann. Phys. 321 1602