Document heading

In vitro Antimicrobial Activity of *Citrus aurantifolia* and its Phytochemical screening

Rafi Khan Pathan¹, Papi Reddi Gali¹, Parveen Pathan², Tananki Gowtham¹, Soujanya Pasupuleti¹

¹Department of Pharmacy, PRIST University, Thanjavur, Tamil Nadu, India.
²Department of Pharmacy, NIMRA College of Pharmacy, Ibrahimpatnam, A.P, India.

ARTICLE INFO

Abstract

Objective: To evaluate the antimicrobial efficacy of *Citrus aurantifolia* Linn (CA) against some microorganisms -- bacteria and fungus were *Staphylococcus aureus*, *Escherichia coli*, *Klebsiella pneumonia*, *Pseudomonas spp*, *Aspergillus niger*, *Aspergillus fumigates*, *Mucor spp* and *Pencillium*. **Methods:** 100 µl of 10 mg CA were assessed against eight test microorganisms by agar well Diffusion Method. Gentamicin and Ketoconazole 10 mg/ml were used as standards. A different solvent was used to obtain CA leaf extract by using maceration technique. **Results:** yield obtained for dried leaf extract of CA with chloroform, ethanol, acetone, petroleum ether and aqueous ethanol was approximately 15%, 18%, 9%, 11% and 24% respectively. Due to its high yield value hydroalcoholic extract of CA was used for estimating the antimicrobial activity and its phytochemical screening. Phytochemical screening of CA plant reveals the presence of Alkaloids, carbohydrates, flavonoids, steroids and tannins. **Conclusions:** The study demonstrates that the hydroalcoholic extract of CA leaf exhibit antibacterial activity on *Klebsiella pneumonia*, *Pseudomonas sp*, *Staphylococcus aureus* and antifungal activity among *Aspergillus niger*, *Aspergillus fumigates*, *Mucor species*. These recognized a good support to the use of this plant in herbal medicine and as base for the development of new drugs and phytomedicine.

1. Introduction

Today, Traditional structure of medicine is being practiced on many accounts. Medicinal plants are having great impact in the field of curing diseases and as a source of medicines for a wide variety of human ailments [1]. Several up to date research work and practical experience have shown that using medicinal plants is better than allopathic drugs by being safer besides having synergistic effect. Even though large number of medicinal plants is recognized by folklore system of medicine but their active constituents have not yet been investigated. Herbal medicines are prescribed widely even their biologically active constituents are unknown because of their fewer side effects relative low cost and effectiveness.

Human infections, particularly those involving the mucosal and skin surfaces, constitute a major problem, especially in tropical and subtropical developing countries. These microorganism will cause various diseases such like *Staphylococcus aureus* (pneumonia, impetigo, cellulitis, scalded skin syndrome, mastitis, chorioamnionitis and neonatal sepsis), *Escherichia coli* (diarrhea), *Klebsiella pneumonia* (pneumonia, thrombophlebitis, urinary tract infection, cholecystitis, diarrhea, upper respiratory tract infection, osteomyelitis, meningitis), *pseudomonas* (urinary tract infections, respiratory system infections, dermatitis, bacteremia, Pneumonia, Necrotising enterocolitis) *Aspergillus niger* and *Aspergillus fumigates* (Aspergillosis, Allergic Bronchopulmonary) and *mucor* (skin diseases) [2-4]

Citrus aurantifolia (CA) belong to the family Rutaceae and are used in traditional folklore structure of medicine to cure various diseases. *Caurantifolia* is commonly called as key lime or bitter orange because it promotes refreshment to the
tide mind. It can be helpful for rheumatism arthritis, obesity and cellulite and has an astringent and tonic action to clear oily skin and acne, helps with herpes, cuts and insect bites [5–7]. During last two decades, the plant has been subjected to extensive Physicochemical, pharmacological and clinical investigations and many interesting findings in the areas of Insecticidal Activity [31], Cardiac diseases, anticancer, Eye conditions, Inflammatory Bowel Disease and Improved lung function [32].

In present study phytochemical screening and antimicrobial activity of hydroalcoholic extracts of leaves of *Citrus aurantifolia* Linn was studied.

2. Materials and methodology

2.1 Plant Material

The leaves of CA were collected from the city of Thanjavur, Tamil Nadu, India. The plant was identified and authenticated (BSI/SRC/5/23/2011–12/Tech–1053) by Dr. G.V.S. Murthy, Head of office, Tamil Nadu Agriculture University, Botanical Survey of India, Coimbatore, Tamil Nadu, India.

2.2 Preparation of Extracts

Collected leaves were cleaned and shade air dried. The dried leaves were pulverized by using electrical grinder and passed through a 20–mesh sieve. A powdered leaf (50 g) was successively extracted with Chloroform, ethanol, acetone, petroleum ether and hydro alcohol using cold maceration method [8]. The extraction was carried out for 72 hrs at room temperature with mild shaking. The extracts were filtered and concentrated at 35°C, and the weight of each residue was recorded and percentage yield was calculated.

2.3 Test organisms

The test microorganisms used in this study were Bacteria: Staphylococcus aureus, *Escherichia coli*, Klebsiella pneumonia, *Pseudomonas* spp. and fungus: Aspergillus niger, *Aspergillus fumigates*, mucor spp, and Pencillium. The test organisms were clinical isolates and obtained from the Department of Microbiology, PRIST University, Thanjavur, Tamil Nadu, India.

2.4 Preliminary Phytochemical Screening

Hydroalcoholic extracts of CA plant (bark, stem, roots, peel and leaves) were subjected to preliminary phytochemical screening for the presence or absence of various active metabolites [9, 10],

2.5 Antibacterial activity

The antibacterial activity of the hydroalcoholic extract was determined in accordance with the agar–well diffusion method. The bacteria was first isolated and grown in a nutrient broth for 18 h before use and standardize the culture to 106cfu/ml. Mueller–Hinton agar (Oxoid) was prepared and bored the wells into the agar using a sterile 4 mm diameter cork borer. 200 μl of the standardized cell culture was spread on a MH agar. Approximately 100 μl of the hydroalcoholic extract at 10 mg/ml was introduced into the wells, allowed to stand at room temperature for about 2 h and then incubated at 37°C. After 24 h the plates were observed for zones of inhibition.

The zone of inhibition was compared with that of control and standard Gentamicin at a concentration of 10 μg/ml [21–22].

2.6 Antifungal activity

The fungal organisms were first isolated and allowed to grow on a rose bengal agar (RBA) (Oxoid) at 25°C for 72 h. The fungi were harvested after sporulation by pouring distilled water on the surface of the plate and later scraped the spores with a sterile glass rod. 100 μl of the standardized fungal spore suspension was spread on the Potassium Dextrose Agar (PDA) using a glass spreader. Sterile 4 mm diameter of cork borer was used to bored wells into the PDA. Approximately 100 μl of 10 mg *Citrus aurantifolia* extract were introduced into the wells and allowed to stand (1h) for proper diffusion of the extract into the media. The plates were observed for zones of inhibition after 72 h at 25°C and compared with ketoconazole at a concentration of 10 mg/ml [23–30].

3. Results

Various parts of *Citrus aurantifolia* plant (leaves, stem, roots, bark and peel) were used to estimate the presence of active constituents. Preliminary phytochemical screening of Hydroalcoholic extracts of *Citrus aurantifolia* plant was shown in Table 1.

The leaves was extracted by using different solvents such like Chloroform, ethanol, Acetone, Petroleum ether and hydro alcohol that obtained % yield value was 15%, 18%, 09%, 11% and 24% respectively. In this study hydroalcoholic leaf extract of CA possesses’ high solubility property and high % yield value hence it is used for evaluating its antimicrobial activity. The obtained zone of inhibition indicates that hydro CA leaves exhibited in-vitro antibacterial activity against Gram–positive and Gram–negative organisms. Control group represents the diameter of sterile cork borer of 4 mm without any zone of inhibition. All the bacterial strains established some degree of sensitivity to the plant. Among the four organisms, the CA extract showed a higher activity on Klebsiella pneumonia and Staphylococcus aureus. (Table–2).

The obtained zone of inhibition indicates that CA leaves exhibited in-vitro antifungal activity against Aspergillus niger, *Aspergillus fumigates* and Mucor spp. Control group represents the diameter of sterile cork borer of 4 mm without any zone of inhibition. Hydro alcoholic extract of CA show antifungal activity on Aspergillus niger, *Aspergillus fumigates* and Mucor spp (Table 3). The results reveal that extracts of *C.aurantifolia* were significantly effective against Mucor spp.
4. Discussion

Now a day’s many research are focused on herbal medicines and their natural compounds. In traditional systems of medicines Citrus fruits having its own importance to treat various human ailments. Citrus juice is used as antidepressant, promoting resistance against various infections and famously used for scurvy disease which is caused due to the lack of Vitamin C. In the present study we evaluate the antibacterial and antifungal efficacy of Citrus aurantifolia leaves although these citrus plants are very likely to infestation by scale insects, whitefly and aphids. A different solvent was used to prepare CA extract by using maceration technique. Preliminary phytochemical screening of Hydroalcoholic leaf extract of Citrus aurantifolia revealed the presence of Carbohydrates, Alkaloids, Flavonoids, Steroids and Tannins. This is well known, since tannins and saponins are important plant metabolites which is majorly responsible for antimicrobial activity (33). Our results shows that CA leaf extract has antibacterial activity against Klebsiella pneumonia, Staphylococcus aureus and antifungal activity amongst Aspergillus niger, Aspergillus fumigates, Mucor species. The percentage bacterial inhibition of CA leaf extract was obtained as Staphylococcus aureus (85.7%), Klebsiella pneumonia (80%) and Pseudomonas spp (62.5%) when compared to standard Gentamicin. The percentage fungal inhibition of CA leaf extract was obtained as Aspergillus niger (66.6%), Aspergillus fumigates (70.5) and Mucor spp (76.1%) when compared to standard Ketoconazole. Our result indicates that Hydroalcoholic leaf extract possess’s strongest antibacterial activity specifically against Staphylococcus aureus.

5. Conclusions

In the present study the results indicates that the hydro alcoholic extracts of Citrus aurantifolia leaves possess good antibacterial and antifungal activity, confirming the great possible of bioactive compounds and are useful for rationalizing the use of this plant in primary health care. The results suggest that the extract of C.aurantifolia were significantly effective against Mucor spp in case of fungi and showed a higher activity on Klebsiella pneumonia and Staphylococcus aureus amongst bacteria. In vivo information may be helpful in determining the actual potential usefulness of this plant for the handling of causal organisms of infectious diseases. Thus further work can be carried on the isolation procedure for finding out the exact

Table 1

Phytochemical Test	Leaves	Roots	Stem	Bark	Peel
Carbohydrates (Molisch’s test)	+	+	+	+	+
Proteins (Trichloroacetic acid test)	-	-	-	-	-
Amino acids (Ninhydrine test)	-	-	-	-	-
Alkaloids (Dragendorff’s reagent)	+	+	+	+	+
Flavonoids (Shinoda test)	+	-	-	+	+
Steroids (Liebermann-Burchard test)	+	-	-	-	-
Triterpenoids (salkowski test)	+	-	+	-	-
Tannins (Ferric chloride test)	+	-	-	-	-

(+) = Present (-) = Absent

Table 2

Microorganism	Zone of Inhibition (mm)	Gram +/−	Test samples	Control	CA	Gentamicin
Staphylococcus aureus	04			12	14	15
Escherichia coli	04			−	10	
Klebsiella pneumonia	04			12	15	
Pseudomonas spp	04			10	16	

Table 3

Microorganism	Zone of Inhibition (mm)	Gram +/−	Test samples	Control	CA	Ketoconazole
Aspergillus niger	04			10	15	
Aspergillus fumigates	04			12	17	
Mucor spp	04			16	21	
Pencillium	04			−	18	
moiety responsible for the biological activity.

Acknowledgement

The authors are gratefully thanks to Hon’ble Chancellor Prof. P.Murugesan, PRIST University, Thanjavur.

References

[1] Iqbal Ahmad , Arina Z. Beg. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. *Journal of Ethnopharmacology*. 2001; 74: 113–123.
[2] Rajpal Bansal et al., Pharmaceutical Microbiology, 1 edition, Birla Publications Pvt. LTD, 2009.
[3] R.C.Dubey and P.K. Maheshwari. A Textbook of Microbiology. S Chand and company LTD. 1998/1999.
[4] Rosamund M. Baird. *Hand book of Microbiology quality control*. CRC press, 2006.
[5] C.K. Kokate; A.P. Purohit; S.B.Gokhale. *Pharmacognosy*. Nirali Prakashan, 42 edition, pg no: A1–A6.
[6] C. P. Khare, *Indian Medicinal Plants: An Illustrated Dictionary*. Springer publication, 2007; Pg 153–157.
[7] Rease and Evans. Pharmacognosy. 15 edition, Published by Elsevier, 2005; pg: 266–267.
[8] Sukhdev Swami Handa, Suman Preet Sing Khanuja, Gennaro Longo, Dev Dutt Rakesh. Extraction technologies for medicinal and aromatic plants, 2008; 22.
[9] C.K. Kokate; A.P. Purohit; S.B.Gokhale. Pharmacognosy. Nirali Prakashan, 42 edition, pg no: A1–A6.
[10] Raji Khan. P, Karthikeyan. A textbook of Microbiology. S Chand and company LTD, 1998/1999.
[11] C. P. Khare, Indian Medicinal Plants: An Illustrated Dictionary, Springer publication, 2007; Pg 153–157.
[12] Rease and Evans. Pharmacognosy. 15 edition, Published by Elsevier, 2005; pg: 266–267.
[13] Sukhdev Swami Handa, Suman Preet Sing Khanuja, Gennaro Longo, Dev Dutt Rakesh. Extraction technologies for medicinal and aromatic plants, 2008; 22.
[14] C.K. Kokate; A.P. Purohit; S.B.Gokhale. Pharmacognosy. Nirali Prakashan, 42 edition, pg no: A1–A6.
[15] Raji Khan. P, Karthikeyan. A textbook of Microbiology. S Chand and company LTD, 1998/1999.
[16] C. P. Khare, Indian Medicinal Plants: An Illustrated Dictionary, Springer publication, 2007; Pg 153–157.
[17] Rease and Evans. Pharmacognosy. 15 edition, Published by Elsevier, 2005; pg: 266–267.
[18] Sukhdev Swami Handa, Suman Preet Sing Khanuja, Gennaro Longo, Dev Dutt Rakesh. Extraction technologies for medicinal and aromatic plants, 2008; 22.
[19] C.K. Kokate; A.P. Purohit; S.B.Gokhale. Pharmacognosy. Nirali Prakashan, 42 edition, pg no: A1–A6.
[20] Raji Khan. P, Karthikeyan. A textbook of Microbiology. S Chand and company LTD, 1998/1999.
[21] C. P. Khare, Indian Medicinal Plants: An Illustrated Dictionary, Springer publication, 2007; Pg 153–157.
[22] Rease and Evans. Pharmacognosy. 15 edition, Published by Elsevier, 2005; pg: 266–267.
[23] Sukhdev Swami Handa, Suman Preet Sing Khanuja, Gennaro Longo, Dev Dutt Rakesh. Extraction technologies for medicinal and aromatic plants, 2008; 22.
[24] C.K. Kokate; A.P. Purohit; S.B.Gokhale. Pharmacognosy. Nirali Prakashan, 42 edition, pg no: A1–A6.
[25] Raji Khan. P, Karthikeyan. A textbook of Microbiology. S Chand and company LTD, 1998/1999.
[26] C. P. Khare, Indian Medicinal Plants: An Illustrated Dictionary, Springer publication, 2007; Pg 153–157.
[27] Rease and Evans. Pharmacognosy. 15 edition, Published by Elsevier, 2005; pg: 266–267.
[28] Sukhdev Swami Handa, Suman Preet Sing Khanuja, Gennaro Longo, Dev Dutt Rakesh. Extraction technologies for medicinal and aromatic plants, 2008; 22.
[29] C.K. Kokate; A.P. Purohit; S.B.Gokhale. Pharmacognosy. Nirali Prakashan, 42 edition, pg no: A1–A6.
[30] Raji Khan. P, Karthikeyan. A textbook of Microbiology. S Chand and company LTD, 1998/1999.
[31] C. P. Khare, Indian Medicinal Plants: An Illustrated Dictionary, Springer publication, 2007; Pg 153–157.
[32] Rease and Evans. Pharmacognosy. 15 edition, Published by Elsevier, 2005; pg: 266–267.