Data Article

Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading

Rakish Shrestha a, Jutima Simsiriwong b, Nima Shamsaei a,b,*

a Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762, USA
b Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, Mississippi State, MS 39762, USA

ARTICLE INFO

Article history:
Received 21 December 2015
Received in revised form 23 January 2016
Accepted 25 January 2016
Available online 3 February 2016

Keywords:
Fatigue
Cyclic deformation
Thermoplastic
Polyether ether ketone
Strain-life experiments
Frequency effects

ABSTRACT

In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress–strain responses for each cycle, and the hysteresis stress–strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Engineering
More specific subject area	Fatigue of polymers

* Corresponding author at: Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762, USA. Tel.: +1 662 325 3260; fax: +1 662 325 7223.
E-mail address: shamsaei@me.msstate.edu (N. Shamsaei).

http://dx.doi.org/10.1016/j.dib.2016.01.052
2352-3409/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- The data provided in this paper are the results of the experimental investigation using the ε–N approach to obtain the fatigue properties of PEEK thermoplastic, which can be used to validate various fatigue models for polymers.
- The presented data provide the overall cyclic deformation and fatigue behavior of PEEK polymer under different cyclic loading modes. The test method can be generalized for other semi-crystalline polymers.
- The stress–strain responses provided in this paper can be used to obtain the frequency effects on PEEK fatigue behavior.

1. Data

The presented data sets are categorized into four Microsoft Excel workbooks according to the type of tests. The workbook named (1) "Nominal Temperature," contains the strain-controlled fatigue tests with adjusted frequency to achieve nearly fixed strain rates, and thus, similar nominal temperature rise in all fatigue tests, (2) "Frequency Effect Tests," contains the strain-controlled fatigue tests with various frequencies, (3) "Load-Controlled Test," contains load-controlled fatigue tests under constant amplitude loadings, and (4) "Load-controlled Step Test," contains load-controlled fatigue tests with step loadings. A summary of each test with corresponding strain/stress amplitudes, test frequency, specimen name, and fatigue life are presented in Tables 1 and 2 for strain-controlled and load-controlled tests, respectively. The data have been deposited to the Data in Brief Dataverse: http://dx.doi.org/10.7910/DVN/YSFURO.

2. Experimental design, materials and methods

The study was conducted on a neat PEEK polymer [1]. Fatigue specimens were machined using a CNC lathe to produce a cylindrical dog-bone shape with the gage diameter of 6.35 mm and gage length of 18 mm following ASTM E606-04 standard [2]. The specimens were further polished using different grit sand papers to remove any mark from machining on the gage section of the specimen.

All of the uniaxial fully-reversed fatigue tests were conducted under strain-controlled or load-controlled loading condition following the ASTM D7791 standard [3]. The fatigue tests were performed using MTS 858 closed-loop servo hydraulic load frame with a 25 kN load cell. The strain introduced on the gage section of the specimen was obtained using a MTS axial extensometer with a gage length of 15 mm. Due to high damping characteristic of polymers, the rise in temperature in PEEK specimens is sensitive to the test frequency (i.e. strain rate) and strain/load amplitude. Thus, a
Table 1
Summary for uniaxial fully-reversed ($R = -1$) strain-controlled fatigue tests.

Specimen ID	Strain amplitude, ε_a (mm/mm)	Frequency (Hz)	Reversals to failure, $2N_f$
Nominal Temperature Tests			
S50	0.02	3	1,449,114
S21	0.025	1	948,248
S22	0.03	0.75	475,810
S19	0.03	0.75	179,018
S46	0.035	0.5	208,896
S47	0.04	0.5	124,030
S42	0.04	0.5	92,078
S43	0.04	0.5	48,090
S35	0.04	0.5	46,772
S24	0.04	0.5	306
S25	0.04	0.5	18,454
S23	0.04	0.5	14,172
			7766
Frequency Effect Tests			
S20	0.02	1	1,723,898
S94	0.025	2	1,460,066
S26	0.03	0.75	437,176
S28	0.03	0.5	51,472
S53	0.035	1	15,716
S59	0.035	0.75	216,650
S34	0.035	0.5	32,076
S4	0.035	0.25	53,968
S8	0.035	0.75	153,206
S56	0.035	0.25	46,772
S95	0.04	0.75	4306

Table 2
Summary for uniaxial fully-reversed ($R = -1$) load-controlled fatigue tests.

Specimen ID	Stress amplitude, σ_a (MPa)	Frequency (Hz)	Reversals to failure, $2N_f$
Load-Controlled Tests			
S61	45	0.75	> 2,000,000
S71	7	0.75	> 2,000,000
S72	70	2	109,294
S68	80	0.5	6444
S69	80	0.75	7404
S70	80	1.5	9716
Load-Controlled Step Tests			
S65	100–45	0.4	172
S64	100–45	0.4	306
S66	100–45	0.6	> 52,810
S63	100–45	0.75	> 2,000,000

a Specimen failed due to necking.
laser thermometer was used to monitor the temperature on the gage section of the specimen during fatigue tests [1].

Acknowledgments

This effort was sponsored by the U.S. Government under Other Transaction no. W15QKN-13-9-001 between the consortium for Energy, Environment and Demilitarization, and the Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements either expressed or implied, of the U.S. Government.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.01.052.

References

[1] R. Shrestha, J. Simsiriwong, N. Shamsaei, R.D. Moser, Cyclic deformation and fatigue behavior of polyether ether ketone (PEEK). Int. J. Fatigue 83 (3) (2016) 427–441.
[2] ASTM E606-04, Standard Practice for Strain-Controlled Fatigue Testing, ASTM International, West Conshohocken, PA, 2004.
[3] ASTM D7791-12, Standard Test Method for Uniaxial Fatigue Properties of Plastics, ASTM International, West Conshohocken, PA, 2012.