World Health Organization Discontinues Its Drinking-Water Guideline for Manganese

Seth H. Frisbie,1,2 Erika J. Mitchell,1,2 Hannah Dustin,1 Donald M. Maynard,2 and Bibudhendra Sarkar3

1Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, USA; 2Better Life Laboratories, Inc., East Calais, Vermont, USA; 3Department of Molecular Structure and Function, Research Institute of the Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada

BACKGROUND: The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-μg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because “this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value.”

OBJECTIVE: In this commentary, we review the WHO guideline for Mn in drinking water—from its introduction in 1958 through its discontinuation in 2011.

METHODS: For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 μg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn.

DISCUSSION: Drinking water or potential drinking-water supplies with Mn concentrations > 400 μg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 μg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 μg/L may have been too high to adequately protect public health.

CONCLUSIONS: The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn.

KEY WORDS: drinking-water, guideline, manganese, public health, World Health Organization.

Environ Health Perspect 120:775–778 (2012). http://dx.doi.org/10.1289/ehp.1104693 [Online 14 February 2012]

For the past 53 years, the World Health Organization (WHO) has listed manganese (Mn) as a threat to potable water. However, in the recently released fourth edition of the WHO Guidelines for Drinking-Water Quality (WHO 2011a), the guideline for Mn was discontinued:

The 1958 WHO International Standards for Drinking Water suggested that concentrations of manganese greater than 0.5 mg/l [500 μg/L] would markedly impair the potability of the water. The 1963 and 1971 International Standards retained this value as a maximum allowable or permissible concentration. In the first edition of the Guidelines for Drinking-water Quality, published in 1984, a guideline value of 0.1 mg/l [100 μg/L] was established for manganese, based on its staining properties.

A health-based drinking-water guideline of 500 μg/L for Mn was issued in the second edition of Guidelines for Drinking-Water Quality, which was published in 1993. This 500-μg/L guideline was estimated—it was not calculated:

Although no single study is suitable for use in calculating a guideline value, the weight of evidence from actual daily intake [in humans] and from studies in laboratory animals given drinking-water in which neurotoxic and other effects were observed supports the view that a provisional health-based guideline value of 0.5 mg/litre [500 μg/L] should be adequate to protect public health. (WHO 1996)

The WHO issued a more protective health-based drinking-water guideline of 400 μg/L for Mn in the third edition of Guidelines for Drinking-Water Quality, published in 2004. This 400-μg/L guideline was calculated from “the upper range value of manganese intake . . . identified using dietary surveys, at which there are no observed adverse effects” (WHO 2004).

However, the 400-μg/L guideline for Mn was discontinued in the fourth edition of Guidelines for Drinking-Water Quality, published in 2011, because the WHO (2011b) asserted that this health-based value [400 μg/L] is well above concentrations of manganese normally found in drinking-water, so it is not considered necessary to derive a formal guideline value.

A review of WHO publications, peer-reviewed journal articles, government reports, published conference proceedings, and theses strongly suggests that Mn is found > 400 μg/L in drinking water or in potential drinking-water supplies in a substantial number of countries (Table 1). Affected areas include large population centers as well as small pockets of contamination that affect just a few households. In Bangladesh alone, it is likely that > 60 million people are drinking water with Mn > 400 μg/L (British Geological Survey 2001; Frisbie et al. 2002; Hasan and Ali 2010) (Figure 1).

In spite of the recent claim that Mn in drinking water is not found above 400 μg/L and is not a threat to human health, the WHO (1996) previously stated that Mn in drinking water from Greece and Japan greatly exceeded 400 μg/L and caused significant neurological damage in humans:

An epidemiological study was conducted in Greece where “the levels of manganese were 3.6–14.6 μg/litre in the control area and 81–282 μg/litre and 1,800–2,300 μg/litre in the test areas [2.300 μg/L is 5.75 times greater than the 400 μg/L guideline]. The authors concluded that progressive increases in the manganese concentration in drinking-water are associated with progressively higher prevalences of neurological signs of chronic manganese poisoning.

In an epidemiological study in Japan, adverse effects were seen in humans consuming manganese dissolved in drinking-water, probably at a concentration close to 28 mg/litre [28,000 μg/L is 70 times greater than the 400 μg/L guideline]. The manganese was derived from 400 dry-cell batteries buried near a drinking-water well. A total of 16 cases of poisoning were reported, the symptoms including lethargy, increased muscle tone, tremor, and mental disturbances.

This tragedy in Japan underscores the fact that the drinking-water guidelines must apply to both natural and anthropogenic sources of contamination. Drinking water guidelines are used to decide whether or not water from a particular source is safe to drink.

Address correspondence to B. Sarkar, Department of Molecular Structure and Function, Research Institute of the Hospital for Sick Children, and Department of Biochemistry, University of Toronto, 555 University Ave., Toronto, Ontario M5G 1X8, Canada. Telephone: (416) 813-5921. Fax: (416) 813-5379. E-mail: bsarkar@sickkids.ca

This study was supported by Norwich University, Better Life Laboratories, the Research Institute of the Hospital for Sick Children, and the University of Toronto. S.H.F. is employed by Norwich University. E.J.M. and H.D. are students at Norwich University, S.H.F., E.J.M., and D.M.M. are volunteers at Better Life Laboratories, a nonprofit corporation with U.S. Internal Revenue Service 501(c)(3) tax-exempt status. D.M.M. is also employed by the Johnson Company, a for-profit environmental science and engineering firm. D.M.M. donated mapping expertise to this project; he did not receive any financial compensation for this work. B.S. is emeritus professor at the Research Institute of the Hospital for Sick Children and the University of Toronto. The authors declare they have no actual or potential competing financial interests.

Received 3 November 2011; accepted 14 February 2012.

Environmental Health Perspectives • VOLUME 120 | NUMBER 6 | June 2012 775
Most drinking-water guidelines issued by the WHO are for industrial pollutants such as dichlorodiphenyltrichloroethane (DDT), tetrachloroethylene (PCE), or vinyl chloride (WHO 2011b), but guidelines are also issued for toxins such as arsenic that may be of either natural or anthropogenic origin. Industrial pollution, such as the improper disposal of dry-cell batteries or other toxic wastes, can easily yield Mn concentrations well above those “normally found in drinking-water” (WHO 2011b) and cause significant harm to public health.

Mn is a powerful neurotoxin that causes learning disabilities and deficits in intellectual function in children (Barlow 1983; Bouchard et al. 2007, 2011; Collipp et al. 1983; Ericson et al. 2007; Henn et al. 2011; Kim et al. 2009; Menezes-Filho et al. 2011; Riojas-Rodríguez et al. 2010; Takser et al. 2003; Wasserman et al. 2006; Woolf et al. 2002; Wright et al. 2006; Yousef et al. 2011) and manganism and Mn-induced parkinsonism in adults (Aschner et al. 2009; Barceloux 1999; Beuter et al. 1999; Calne et al. 1994; Erikson et al. 2005; Guilarte 2010; Lucchini et al. 2009; Perl and Olano 2007; Rodríguez-Agudelo et al. 2006; Sikk et al. 2007; Standridge et al. 2008) and children (Sahni et al. 2007), as well as compulsive behaviors, emotional lability, hallucinations, and attention disorders (Bowler et al. 1999; Kawamura et al. 1941; Kondakis et al. 1989; Solís-Vivanco et al. 2009). In addition, high maternal Mn levels are associated with low fetal birth weight (Gražulevičiene et al. 2009; Zota et al. 2009) and increased infant mortality (Hafeman et al. 2007; Spangler and Spangler 2009). Mn in drinking water also

Table 1. Examples of countries with documented instances of drinking water or potential drinking water sources with Mn concentrations > 400 μg/L.

Country	Type of contamination	Reference
Australia	N	Zaw and Chiswell 1999
Bangladesh	N	Frisbie et al. 2002
Benin	A	Bhuian et al. 2010
Bolivia	A	González Alonso et al. 2010
Botswana	A	Staudt 2003
Bulgaria	U	Litvinov 1982
Cambodia	U	Buschmann et al. 2007
Canada	U	Barbeau et al. 2011
Chile	U	Araya-Valenzuela and Espejo-Guasp 2003
China	N	Weng et al. 2007
Croatia	N	Stembal et al. 2005
Czech	N	Kožišek et al. 2008
East Timor	U	Michael 2006
Egypt	A	Taha et al. 2004
Ghana	U	Amoako et al. 2011
Greece	U	Kondakis et al. 1989
Honduras	U	Meerroff et al. 2007
Hungary	U	Deák et al. 1993
India	U	Ramakrishmaiah et al. 2009
Indonesia	U	Stauder and Eggers 2010
Ireland	U	Toner et al. 2003
Italy	U	Roccaro et al. 2007
Japan	A	Kawamura et al. 1941
Kenya	A	Kithia and Ongwenyi 1997
Laos	U	Charpiwat 2011
Lesotho	U	Pullanikkatil 2008
Lithuania	U	Gražulevičienė and Baltus 2009
Madagascar	U	Rasolotinorina et al. 2004
Malaysia	A	Hasan et al. 2011
Mexico	U	Huizar-Alvarez 1997
Mongolia	N	Smidley et al. 2003
Morocco	N	Azzauoi et al. 2002
Myanmar	U	Aye et al. 2010
Nepal	U	Mahat and Shrestha 2008
New Zealand	U	Daughneye 2003
Nigeria	A	Gbadede and Taiwo 2011
Pakistan	A	Majidano and Khuhawar 2009
Poland	U	Bray and Oliczuk-Neyman 2003
Romania	A	Dima et al. 2006
Russia	U	Senkov et al. 2009
Rwanda	A	Julius 2011
Saudi Arabia	U	Alabdula’aly et al. 2011
Slovakia	U	Barlokonov and Ilavský 2009
Sri Lanka	U	Institute for Global Environmental Strategies 2007
Sweden	U	Ljung et al. 2007
Taiwan	U	Shyu et al. 2011
Thailand	U	Promma et al. 2002
Turkey	A	Demirel 2007
Uganda	U	Taylor and Howard 1994
United	U	Homonick et al. 2010
Kingdom		
United States	U	Groschen et al. 2008
Vietnam	U	Buschmann et al. 2007
Zambia	A	Karonde 1993
Zimbabwe	A	Meck et al. 2009

Abbreviations: A, Mn from anthropogenic sources; N, Mn from natural sources; U, Mn from unspecified sources.
has been correlated with all-cancer rates (Spangler and Reid 2010).

Many key studies documenting the neurotoxic effects of Mn in children (Bouchard et al. 2007, 2011; Henn et al. 2011; Wasserman et al. 2006) and adults (Huang 2007; Lucchini et al. 2009; Perl and Olanow 2007) were published within the past 5 years. This research was not yet available in 2004 when the WHO set its health-based guideline of 400 μg/L. Based on these new toxicity findings, several authors have argued that the 400 μg/L health-based guideline was too high to adequately protect human health and recommended a reexamination of the Mn guideline (Ljung and Valter 2007).

Examples of drinking water or potential drinking-water supplies with Mn concentrations > 400 μg/L can be found worldwide. Knowledge about the toxic effects of Mn, particularly with human exposure through drinking water, has grown considerably over the past 10 years. The WHO drinking-water guidelines are used by many governments to help set regulations to protect the public health of their citizens. In the absence of a WHO guideline on Mn, governments and other stakeholders must take into consideration the likelihood of exposure to Mn through drinking water for their populations as well as research results on toxic effects of Mn in setting their own regulations for Mn.

REFERENCES

Alabudula’Al, Al Zarih Al, Khan MA. 2011. Assessment of trace metals in groundwater sources used for drinking purposes in Riyadh region. Int J Water Resour Aquat Environ 11(1):1–13.

Amoako J, Karkari AY, Ana-Asare OD. 2011. Physico-chemical quality of boreholes in Densu Basin of Ghana. Appl Water Sci 1:21–41.

Araña-Vázquez JL, Espejo-Guasp R. 2003. Use of creeping Barbeau B, Carrière A, Bouchard M. 2011. Spatial and temporal variations of manganese concentrations in drinking water. Int J Water Resour Aquat Environ 46(6):808–816.

Barboux B, Carrière A, Bouchard M. 2011. Intellectual impairment in schoolage children exposed to manganese in tap water. Environ Health Perspect 119:138–143.

Bowler R, Mergler D, Sassine MP, Larribe F, Hudnell HK. 1999. Neuropsychiatric effects of manganese on mood. Neurotoxicology 20(6):839–845.

Bray R, Oláriczuk-Neymann. 2003. Treatment of groundwater containing high amounts of manganese and ammonia using activated filtration beds. In: Environmental Engineering Studies: Polish Research on the Way to the E.U. (Pawłowski L, Dudzińska M, Pawlowską A, eds). New York:Kluwer Academic/Plenum, 87–94.

British Geological Survey. 2001. Arsenic Contamination of Groundwater in Bangladesh. Vol 2: Final Report (Kimburgh DG, Stedman DJ, Syverson T, Aschner J, Aschner M. 2005. Arsenic and manganese in drinking-water resources in Cambodia: coincidence of risk areas with low relief topography. Environ Geochem Technol 41(7):2164–2152.

Calne DB, Chu NS, Huang CC, Lu CS, Glazov W. 1994. Manganese and idiopathic parkinsonism: similarities and differences. Neurology 44(9):1583–1586.

Chapman P, Sthiappanoko S, Cho KH, Kim KW, van S, Svunthonth B, et al. 2011. Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR. Environ Pollut 159(2):567–576.

Collip PJ, Chen SY, Malinsky S. 1983. Manganese in infant formula and manganese in New Zealand’s groundwater. J NZ 42(11):21–16.

Deák J, Fériz J, Deszo É, Hertelendi E. 1993. Origin of groundwater and dissolved ammonium in SE Hungary: evaluation by environmental isotopes. In: Tracers in Hydrology. Proceedings of an international symposium, 21–23 July 1993, Yokohama, Japan. IAHS Publication No. 215. (Peters R, Hoehn E, Leibundgut C, Tasse N, Wallingford, UK:International Association of Hydrological Sciences, 117–124.

Demirel Z. 2007. Monitoring of heavy metal pollution of groundwater in the Içmi River by atomic absorption spectroscopy. Rumanian J Phys 51(5–6):687–694.

Ericson JE, Aprile AJ, Clarke-Stewart KA, Allhusen VD, Collipp PJ, Diemer Z, Maitinsky S. 1983. Manganese in infant formula and manganese in New Zealand’s groundwater. J NZ 42(11):21–16.

Kondakis XG, Makris N, Leotsinidis M, Prinou M, Papapetropoulos K, et al. 2011. Aquifer System of the Northern United States. U.S. Geological Survey Scientific Investigations Report 2009–5006 Reston, WV: U.S. Geological Survey, National Water-Quality Assessment Program.

Koslońska-Jakubiec. 2010. Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080.

Koslońska-Jakubiec. 2010. Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080.

Koslońska-Jakubiec & K. 2010. Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080.

Koslońska-Jakubiec & K. 2010. Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080.
Sahni V, Léger Y, Panaro L, Allen M, Griffin S, Fury D, et al. 2007. Case report: a metabolic disorder presenting as pediatric manganese exposure. Environ Health Perspect 115:1776–1779.

Serikov LV, Tropina EA, Shiyan L, Frimmel FH, Metreveli G, Delay M. 2009. Iron oxidation in different types of groundwater in different regions of western Siberia. J Soil Sediments 9:103–110.

Shyu G-S, Cheng B-Y, Chiang C-T, Yau P-H, Chang T-K. 2011. Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. Int J Environ Res Public Health 8(4):1084–1109.

Sik K, Taba P, Halde S, Bergequist J, Nyholm D, Zjablov G, et al. 2007. Irreversible motor impairment in young addicts—ependrhone, manganese or both? Acta Neurol Scand 115(6):385–389.

Smedley PL, Zhang M, Zhang G, Luo Z. 2003. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huuhut Basin, Inner Mongolia. Appl Geochem 18(9):1463–1477.

Solís-Vivanco R, Rodríguez-Aguedelo Y, Rios-Rodríguez H, Rios C, Rosas I, Montes S. 2009. Cognitive impairment in an adult Mexican population non-occupationally exposed to manganese. Environ Toxicol Pharmacol 28(2):172–178.

Spangler AH, Spangler JG. 2009. Groundwater manganese and infant mortality rate by county in North Carolina: an ecological analysis. Ecohealth 6(4):596–600.

Spangler JG. 2008. Environmental manganese and cancer mortality rates by county in North Carolina: an ecological study. Biol Trace Elem Res 133(2):128–135.

Staudinger JS, Bhattacharya A, Soppuck P, Cox G, Haynes E. 2008. Effects of chronic low level manganese exposure on postural balance: a pilot study of residents in southern Ohio. J Occup Environ Med 50(12):1421–1429.

Stauder S, Eggers J. 2010. Drinking water supply in a rural area in the Southeast Nile Delta, Egypt. Emirates J Engin Res 9(1):24–29.

Stollmann R, Huhn F, Metreveli G, Frimmel FH, Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P, et al. 2006. Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 114:124–129.

Weng H-X, Qin Y-C, Chen X-H. 2007. Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the Hang-Jia-Hu Plain, China. Hydrogeol J 15(4):715–728.

WHO (World Health Organization). 1996. Guidelines for Drinking-Water Quality. Second edition. Volume 2: Health Criteria and Other Supporting Information. Geneva:WHO.

WHO (World Health Organization). 2004. Guidelines for Drinking-Water Quality. Third edition. Volume 1: Recommendations. Geneva:WHO.

WHO (World Health Organization). 2011a. Histories of Guideline Development for the Fourth Edition: Chemical Fact Sheets. Chemical Contaminants in Drinking-Water: Manganese: History of Guideline Development. Available: http://www.who.int/water_sanitation_health/dwq/manganese/history_guideline_mang.pdf [accessed 13 October 2011].

WHO (World Health Organization). 2011b. Guidelines for Drinking-Water Quality. Fourth edition. Geneva:WHO.

Wright RD, Amarsirwadena C, Woolf A, Jim R, Bellinger DC. 2006. Neurobehavioural changes in children of hair arsenic, manganese and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27(2):210–216.

Youssel S, Adam A, Zoubidi T, Kosanovic M, Mabrouk AA, Eapen V. 2011. Attention deficit hyperactivity disorder and environmental toxic metal exposure in the United Arab Emirates. J Trop Pediatr 57(6):457–460.

Zav M, Chiswell B. 1999. Iron and manganese dynamics in lake water. Water Res 33(8):1900–1910.

Zogo D, Bawo LM, Soclo HH, Atchekpé D. 2011. Influence of pre-oxidation with potassium permanganate on the efficiency of iron and manganese removal from surface water by coagulation-flocculation using aluminium sulphate: case of the Okpaa dam in the Republic of Benin. J Environ Chem EcoToxicol 31(1):1–8.

Zota AR, Ettinger AS, Bouchard M, Amarsirwadena C, Schwartz J, Hu H, et al. 2009. Maternal blood manganese levels and infant birth weight. Epidemiology 2013:367–373.