Quando e como tudo começou...

O Laboratório de Química do Estado Sólido (LQES) do Instituto de Química da Unicamp vem trabalhando desde 2008 com vanadatos, notadamente, o vanadato de prata. Em 2009, a partir de um projeto financiado pela FAPESP [1] de título "Desenvolvimento de Nanoestruturas baseadas em prata e vanádio como novos agentes bacterianos" , ligado à Bolsa de Doutoramento de Raphael Holtz, esta atividade ganhou grande intensidade no Laboratório.

Já em 2010, foi realizada a publicação dos resultados da síntese de nanofios de vanadato de prata (β-AgVO$_3$) na revista Nanotechnology [2] onde observou-se, através da microscopia eletrônica de varredura, a presença de nanofios de vanadato de prata com a superfície "decorada" com nanopartículas de prata (Figura 1). Além disso, mostrou-se que esse vanadato apresentava uma atividade antibacteriana altamente promissora, quase 100 vezes superior ao antibiótico oxacilina, frente a três cepas de *Staphylococcus aureus*. Os estudos da atividade antibacteriana foram conduzidos pelo Grupo do Prof. Marcelo Brocchi do Instituto de Biologia da Unicamp.

Figura 1. Nanofios de vanadato de prata "decorado" com nanopartículas de prata.

Créditos: LQES/RDH/OLA

Estudos mais detalhados através da microscopia eletrônica de transmissão (TEM), realizado no Instituto de Química da Unicamp financiados pelo INCT&I de Materiais Complexos Funcionais (INOMAT) e supervisionados pelo Dr. Carlos Leite, mostraram que as nanopartículas de prata que decoravam os nanofios de vanadato de prata se agrupavam, aleatoriamente, formando uma figura inusitada que lembrava o Mickey,
célebre personagem de Walt Disney. O então, "NanoMickey" correu mundo através do YouTube [3] e foi divulgado em sites e várias revistas de divulgação científica [4-5] (Figura 2).

![Image](image_url)

Figura 2. Nanofios de vanadato de prata "decorados" por nanopartículas de prata. No detalhe o "NanoMickey".

Pesquisa Fapesp. Imagem: LQES

Avançando sobre a toxicidade dos nanofios

A esta altura, havia a necessidade de se conhecer melhor a nanotoxicologia deste nanomaterial dentro da perspectiva de suas aplicações. Tal situação nos levou à realização de estudos de ecotoxicidade realizados no Grupo da Profa. Gisele Umbuzeiro da Faculdade de Tecnologia da Unicamp, em Limeira, SP.

Neste estudo avaliamos o papel da liberação de prata e vanádio na toxicidade aguda utilizando *Daphnia similis* (normalmente chamada de pulga de água). Estes microcrustáceos são comumente usados em bioensaios de ecotoxicologia aquática. Observou-se que os nanofios de vanadato de prata decorados com nanopartículas de prata são extremamente tóxicos para *D. similis* e que a prata liberada, aprisionada no intestino do animal, como também, a prata no meio de teste, eram responsáveis pela toxicidade observada [7].

O trabalho foi publicado na prestigiosa revista *Environmental - Toxicology and Chemistry*, publicada pela *Society of Environmental Toxicology and Chemistry* (SETAC) como trabalho de capa (Figura3).
A tese de Holtz denominada "Desenvolvimento de nanoestruturas de vanadatos de prata, cério e bismuto e avaliação como novos agentes antibacterianos" foi defendida no IQ-Unicamp em 2012 [8].

Na direção das aplicações

Dada as potencialidades de aplicação do vanadato de prata decorado com nanopartículas de prata foram feitos estudos da utilização destes nanomateriais como aditivos antibacterianos em formulações de tintas e vernizes. Os resultados deste estudo foram altamente impactantes, sobretudo, quando da sua avaliação frente cepas de bactérias multirresistentes, tais como a methicilin-resistant Staphylococcus aureus (MRSA) [9], abrindo grandes possibilidades de aplicação "em ambientes domésticos com muita umidade (como cozinhas, banheiros e vestiários esportivos) – condição que facilita a proliferação de bactérias –, e sobretudo seu uso em ambientes hospitalares." [5]. No que se refere a este último ponto, está sendo financiado através do INCT- INOMAT, projeto que visa o revestimento de instalações hospitalares com novas formulações de tintas, cremes e pomadas baseadas no vanadato de prata decorado com nanopartículas de prata.

O trabalho envolvendo as formulações de tintas de título: "The promising use of nanostructured silver vanadates as antibacterial additive to coatings used in places with risks of bacterial contamination" foi apresentado no 9th International Vanadium Symposium (V9), em Pádua, Itália, onde foi premiado com o Prize V9 Vanadis Award [10].

Paralelamente a estes estudos, o LQES iniciou colaboração com o Grupo da Prof. Andrea Cândido dos Reis da Faculdade de Odontologia da USP- Ribeirão Preto, que se interessou pelas propriedades antibacterianas do vanadato de prata decorado com
nanopartículas de prata perspetivando sua aplicação em odontologia. Os estudos foram financiados pela FAPESP [11] e NanoBioss/SisNano [12] e tiveram como objetivo avaliar in vitro a atividade antimicrobiana e antibiofilme, a morfologia e o desempenho mecânico de resinas acrílicas incorporadas com o vanadato de prata nanoestruturado. Esta colaboração, ainda em curso, deu origem a vários trabalhos publicados em revistas especializadas em odontologia [12-16] e uma patente envolvendo a USP e a Unicamp [17].

Além destes estudos, está em andamento projeto de colaboração com o BCMaterials - Basque Center for Materials, Applications & Nanostructures, País Basco, Espanha, que objetiva o estudo de géis inorgânicos antimicrobianos e nanocompósito envolvendo o vanadato de prata, iniciado no final de 2016.

Em 2017, o Laboratório de Química do Estado Sólido foi convidado pela Dra. Pilar Aranda (ICMM, Espanha), Prof. Clément Sanchez (Collège de France, França) e Dr. Katsuhiko Ariga (NIMS, Japão), (Guest Editors), para publicação de artigo sobre vanadato de prata em número especial do periódico Chemical Record, jornal de "high-impact" da Chemical Society of Japan, publicado conjuntamente com Angewandte Chemie and Chemistry-An Asian Journal. O artigo de título: "Nano Silver Vanadate AgVO3: Synthesis, New Functionalities and Applications" foi publicado em julho de 2018. [19].

Plataforma vanadato de prata (VPNpAg)

O vanadato de prata decorado com nano- partículas de prata é uma das Plataformas de Pesquisa do Laboratório de Química do Estado Sólido e se encontra em constante diversificação, em função das propriedades deste nanomaterial. Além dos estudos de escalonamento da produção, do refinamento de suas propriedades eletrônicas e estruturais, estão sendo realizados estudos básicos das suas interações com sistemas biológicos (efeitos hemolíticos e corona protêico, etc.) e nanocotoxicologia, dentro da perspectiva do conceito safe-by-design.

Do ponto de vista das aplicações, continuam os estudos dentro da perspectiva da aplicação em odontologia, inclusive com a fabricação de dentes (próteses) por impressão 3D e a formulação de produtos com atividade antibiofilme para aplicações médicas tópicas, entre outras.

Estas atividades são financiadas pelo INCT - INOMAT e pelo NanoBioss/SisNano.

Bibliografia e Informações Adicionais

[1] Fapesp. Processo:08/57974-9.

[2] R.D. Holtz, A.G. Souza Filho, M. Brocchi, D. Martins, N. Durán and O.L. Alves*Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent*, Nanotechnology, Vol. 21 (18): 185102 (2010).
[3] https://www.youtube.com/watch?v=rIkNotUAuNQ. YouTube, 01/09/2010 (10.296 visualizações).

[4] "Apareceu o Mickey", Revista Fapesp, Edição 168, 04/02/2010.

[5] "Nanomaterial para combater bactérias", Ciência Hoje On-line. 23/03/2011.

[6] "Pesquisadores da Unicamp encontram "Mickey" em imagem microscópica", Site da Revista Galileu, 07/02/2010.

[7] M.C. Artal, R.D. Holtz, F. Kummrow, O.L. Alves and G.A. Umbuzeiro
The role of silver and vanadium release in the toxicity of silver vanadate nanowires toward Daphnia similis, Environmental Toxicology and Chemistry, Vol. 32 (4), 908-912 (2013).

[8] "Quadragésima primeira tese realizada no LQES". LQES NEWS. 16/03/2012.

[9] R.D. Holtz, B.A. Lima, A.G. Souza Filho, M. Brocchi and O.L. Alves
Nanostructured silver vanadate as a promising antibacterial additive to water-based paints, Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 8 (6), 935-940 (2012).

[10] "Vanâdio em alta!". LQES NEWS. 20/07/2014.

[11] Fapesp. Processo: 12/09124-1.

[12] NanoBioss/SisNano. CNPq: Processo nº402280/2013-0.

[13] D.T. Castro, R.D. Holtz, O.L. Alves, E. Watanabe, M.L.C. Valente, C.H.L. Silva and A.C. Reis
Development of a novel resin with antimicrobial properties for dental application
Journal of Applied Oral Science, Vol. 22 (5), 442-449 (2014).

[14] D.T. Castro, M. Valente, J.A. Agnelli, C.L. da Silva, E. Watanabe, R. Siqueira, O.L. Alves, R.D. Holtz and A.C. dos Reis
In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial
The Journal of Prosthetic Dentistry, Volume 115 (2), 238–246 (2016).

[15] D.T. Castro, M.L. Valente, C.L. Silva, E. Watanabe, R.L. Siqueira, M.A. Schiavon, O.L. Alves and A.C. dos Reis
Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles
Archives of Oral Biology, Vol. 67, 46-53 (2016).

[16] D.T. Castro, M.L. Valente, C.Aires, O.L. Alves and A.C. dos Reis
Elemental ion release and cytotoxicity of antimicrobial acrylic resins incorporated with nanomaterial
Gerodontology, Vol. 34 (3),320-325 (2017).

[17] D.T. de Castro, C. do Nascimento, O.L. Alves, E.S. Santos, J.A.M. Agnelli and A.C. dos Reis
Analysis of the oral microbiome on the surface of modified dental polymers
Archives of Oral Biology, Vol. 93, 107–114 (2018).
[18] A.C. dos Reis, D.T. de Castro, O.L. Alves, R.D. Holtz e M.L.C. Valente
Composição antimicrobiana consistida de um material moldável e um agente antimicrobiano, e seu uso.
IQ-Unicamp/USP. BR102014025317. 10.10.2014.

[19] A.P.M. Monteiro, R.D. Holtz, L.C. Fonseca, C.H.Z. Martins, M. Sousa, L.A.V. Luna, D.S. Maia and O.L. Alves
Nano silver vanadate AgVO3: Synthesis, new functionalities and applications
Chemical Record, Vol. 18 (7-8), 973-985 (2018).

Oswaldo Luiz Alves - Coordenador Científico do LQES.

LQES NEWS. Posted: Julho 30, 2018.