Comparison of the Reliability and Sensitivity of Three Serological Procedures in Detecting Antibody to *Yersinia pestis* (*Pasteurella pestis*)

JOHN D. MARSHALL, JR., JOSEPH A. MANGIAFICO, AND DAN C. CAVANAUGH

Microbiology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21701; Microbiology Division, Biological Defense Research Laboratory, Fort Detrick, Maryland 21701; and Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington, D.C. 20012

Received for publication 31 March 1972

Three serological procedures, the agar-gel precipitin inhibition, the complement fixation, and the indirect hemagglutination tests, were used to detect and measure antibody to *Yersinia pestis* in the sera from 383 individuals. Although all three tests were useful in detecting plague antibody, the most reliable and sensitive test procedure was indirect hemagglutination.

Various serological tests for the detection of antibody to *Yersinia pestis* (*Pasteurella pestis*) have been employed as diagnostic procedures, in epidemiological surveys, and in studies to determine the efficacy of plague vaccines (6-9, 15, 16). The agglutination test has been found to be nonspecific; plague bacilli are agglutinated by sera containing antibodies against *Yersinia pseudotuberculosis*, which limits its value in rodent surveys. The mouse protective antibody indexes (MPI) test (12), although probably the truest indirect measure of immunity, requires large numbers of mice, extensive animal holding facilities, and cannot be used to evaluate sera containing preservatives such as sodium azide.

Three additional tests have frequently been used, the indirect hemagglutination (IHA) test (4), the complement fixation (CF) test (5), and the agar-gel precipitin inhibition (AGPI) test (13). Proponents of each test have presented evidence for the specificity, sensitivity, and simplicity of their method. To compare the relative merits of the three tests, a series of 400 sera were tested, and the results were compared.

MATERIALS AND METHODS

Serological procedures. AGPI tests were performed as described by Ray and Kadull (13). The titer was taken as the greatest dilution of unknown serum that completely inhibited the formation of a visible precipitin line. CF tests were carried out according to the method of Chen and Meyer (5) as modified for microtiter technique by Cavanaugh et al. (3). The IHA test of Chen and Meyer (4) was modified by employing pyruvate-stabilized sheep red blood cells (SRBC) (14) sensitized by coupling *Y. pestis* fraction 1 antigen to the SRBC with chronic chloride.

Test subjects. Sera from 383 individuals were tested. Single serum samples were obtained from 307 individuals with a well documented history of from 1 to 48 plague immunizations and from 75 subjects who had never received an inoculation of plague vaccine. Eighteen sera from one confirmed pneumonic plague patient were obtained prior to, during, and subsequent to the clinical episode (1). Complete immunization histories including the number of inoculations, total volume of vaccine received, and the dates of immunization and bleedings were available for each person.

RESULTS

The results of AGPI, IHA, and CF tests for the detection of *Y. pestis* antibody in the sera of 307 immunized and 75 nonimmunized individuals are shown in Table 1. The CF test, although highly specific, failed to detect antibody in the majority of immunized persons. The AGPI test, whereas three times as sensitive as the CF test in demonstrating antibody in the immunized group, was relatively nonspecific as demonstrated by 26.7% positive reactions among nonimmunized individuals. In addition to a high degree of specificity, the IHA test was the most sensitive for detection of *Y. pestis* antibody produced in response to plague immunization.

When data were analyzed according to parameters of the number of inoculations of plague vaccine administered and time since
last inoculation (Tables 2 and 3), the efficiency of the IHA procedure was evident. The 58 (19.9%) immunized individuals with no detectable IHA antibody had received an average of less than two inoculations of plague vaccine. Of this group, the AGPI test detected antibody in 19 (32.8%), but failed to detect it in 83 (21.7%) other persons who had received an average of 9.5 inoculations and who had IHA antibody.

In the study of actual infection with *Y. pestis*, all three tests show a dramatic rise in titer in sera obtained during the acute phase of the disease. Figure 1 represents the antibody titers of an individual with laboratory-acquired pneumonic plague. The preinfection IHA titer was due to four plague vaccine inoculations. Antibody detected by the IHA test persisted at high titer for at least 1 year, whereas antibody detectable by the other two tests had disappeared.

Table 1. Comparison of three serological tests for detection of *Yersinia pestis* antibody in sera of 382 individuals

Plague immunization	No. persons	AGPI positive	IHA positive	CF positive		
	No.	%	No.	%	No.	%
+	203	60.3	249	81.1	58	19.9
-	75	26.7	1	1.3	0	0.0

* Agar-gel precipitin inhibition.
* Indirect hemagglutination.
* Complement fixation.

Table 2. Efficiency of serological procedures for detection of *Yersinia pestis* antibody in sera from 307 individuals inoculated with plague vaccine

Positive tests	No. individuals	Avg. no. inoculations	Avg. no. months since last inoculation
None	39	1.8	14.9
AGPI	19	1.7	16.6
IHA	76	9.5	16.9
AGPI	115	16.5	18.0
IHA	51	17.0	18.9
CF	7	9.0	28.7

* AGPI, agar-gel precipitin inhibition; IHA, indirect hemagglutination; CF, complement fixation.

Table 3. Comparison of serological tests for *Yersinia pestis* antibody with immunization history of 307 individuals

Test result	No. individuals	Avg. no. immunizations	Avg. no. months since last immunization
AGPI –	122	6.5	16.9
AGPI +	149	15.1	18.1
IHA –	58	1.8	15.5
IHA +	249	14.0	18.2
CF –	249	10.9	17.1
CF +	58	15.1	21.1

* AGPI, agar-gel precipitin inhibition; IHA, indirect hemagglutination; CF, complement fixation.

FIG. 1. Agar-gel precipitin inhibition (AGPI), complement fixation (CF), and indirect hemagglutination (IHA) titers of sera from a pneumonic plague patient.

DISCUSSION

All three serological test procedures were of value in determining the antibody response to acute infection with *Y. pestis*. However, with sera obtained from a population of vaccinated and nonvaccinated individuals, the IHA test was a superior procedure for the detection of plague antibody.

Past experience with the IHA test has shown that the degree of specificity was directly correlated to the purity and concentration of the fraction 1 antigen employed in sensitizing the SRBC (14), i.e., when the 75 sera from the nonvaccinated individuals were tested with nonstandardized fraction 1, sensitized, nonstabilized tannic acid-treated cells, 12 sera gave false-positive reactions due to the presence of a minor protein contaminant found in all lots of fraction 1 prepared from several strains of
Y. pestis. Since outdated, whole-cell Formalin-killed plague vaccine was the antigen used in the AGPI test, the false positive reactions may have resulted from antibody reactions with antigens other than the fraction 1 component, possibly one or more of the 22 known antigens common to Y. pestis and Y. pseudotuberculosis.

The IHA and CF procedures have been routinely used to test sera from a great variety of wild and domestic mammals for the presence of plague antibody. Considerable difficulties have been encountered with the CF test due to nonreactivity with the sera of certain species (11), and anticomplementary activity of many sera collected from the field. Conversely, with the exception of approximately 20% of the sera obtained from Herpestes (mongoose), no technical difficulties have been encountered with the IHA test (2). The AGPI test has not been used to test animal sera from field studies and therefore no comparisons can be made concerning the reliability of this test. However, the large percentage of nonspecific positive results obtained with human sera indicate that this test would be of questionable value for field studies. Although all three tests were useful in detecting plague antibody, the most reliable and sensitive test procedure was IHA hemagglutination.

ACKNOWLEDGMENT

We thank Gilbert Edunk, Ronald Huntley, Linwood Lothrop, and Dennis Schaberg for their technical assistance.

LITERATURE CITED

1. Burmeister, R. W., W. D. Tigertt, and E. L. Overholt. 1962. Laboratory-acquired pneumonic plague—report of a case and review of previous cases. Ann. Intern. Med. 56:798–800.
2. Cavanaugh, D. C., P. J. Deoras, D. H. Hunter, J. D. Marshall, Jr., D. V. Quy, J. H. Rust, Jr., S. Purnaveja, and P. E. Winter. 1970. Some observations on the necessity for serological testing of rodent sera for Pasteurella pestis antibody in a plague control pro-
grame. Bull. W.H.O. 42:451–459.
3. Cavanaugh, D. C., B. D. Thorpe, J. B. Bushman, P. S. Nicholes, and J. H. Rust, Jr. 1965. Detection of an enzootic plague focus by serological methods. Bull. W.H.O. 32:197–203.
4. Chen, T. H., and K. F. Meyer. 1964. Studies on immunization against plague VIII. A hemagglutination test with the protein fraction of Pasteurella pestis: a serologic comparison of virulent and avirulent strains with observations on the structure of the bacterial cells and its relationship to infection and immunity. J. Immunol. 72:282–298.
5. Chen, T. H., S. F. Quan, and K. F. Meyer. 1952. Studies on immunization against plague II. The complement fixation test. J. Immunol. 68:147–158.
6. Crampton, M. J., and D. A. L. Davies. 1956. An antigenic analysis of Pasteurella pestis by diffusion of antigens and antibodies in agar. Proc. Roy. Soc. Ser. B Biol. Sci. (London) 145:109–134.
7. Devignat, R. 1951. Une reaction d'agglutination initiale entre antigene pestieux adsorbe sur colloid et son anticoepse et vice versa. Rev. Immunol. 15:177–181.
8. Eisler, D. M., and E. VonMetz. 1961. Precipitins against Pasteurella pestis in normal and antibacterial sera. J. Immunol. 86:17–21.
9. Jawetz, E., and K. F. Meyer. 1943. Avirulent strains of Pasteurella pestis. J. Infect. Dis. 73:124–143.
10. Lawton, W. D., G. M. Fukui, and M. J. Surgalla. 1960. Studies on the antigens of Pasteurella pestis and Pasteurella pseudotuberculosis. J. Immunol. 84:475–479.
11. Marshall, J. D., Jr., D. N. Harrison, J. A. Murr, and D. C. Cavanaugh. 1972. The role of domestic animals in the epidemiology of plague III. Experimental infection of swine. J. Infect. Dis. 128:556–569.
12. Meyer, K. F., and L. E. Foster. 1948. Measurement of protective serum antibodies in human volunteers inoculated with plague prophylactics. Stanford Med. Bull. 6:75–79.
13. Ray, J. F., and P. J. Kadull. 1965. Agar-gel precipitin-inhibition technique for plague antibody determinations. Applied Microbiol. 13:925–930.
14. Rust, J. H., Jr., S. Berman, W. H. Habig, J. D. Marshall, Jr., and D. C. Cavanaugh. 1972. A stable reagent for the detection of antibody to the specific fraction I antigen of Yersinia pestis. Applied Microbiol. 23:721–724.
15. Seel, S. C. 1951. Studies in Pasteurella pestis, Pasteurella pseudotuberculosis and their variants II. Serology-agglutination, cross agglutination, absorption and cross-absorption of agglutinins. Ann. Biochem. Exp. Med. 11:143–170.
16. Vafaye, R. K. 1963a. Differentiation of the microbes of plague and pseudotuberculosis of rodents. Zh. Mikrobiol. Epidemiol. Immunobiol. 34:23–26.