Fulde–Ferrell pairing instability in spin–orbit coupled Fermi gas

Lin Dong¹, Lei Jiang² and Han Pu¹,³

¹ Department of Physics and Astronomy, and Rice Quantum Institute, Rice University, Houston, TX 77251, USA
² Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
E-mail: hpu@rice.edu

New Journal of Physics 15 (2013) 075014 (13pp)
Received 13 February 2013
Published 17 July 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/7/075014

Abstract. We consider finite-momentum pairing of a superfluid ultracold Fermi gas subject to spin–orbit coupling and an effective Zeeman field. Based on our two-body and mean-field many-body calculations, we show that the Fulde–Ferrell-type superfluid dominates in both zero- and finite-temperature phase diagrams. We examine the origin and properties of this novel phase systematically.

³ Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
1. Introduction

The nature and the microscopic origin of fermionic pairing was first elucidated in the pioneering work by Bardeen et al [1], widely known as the BCS theory. The attractive pairwise interaction between electrons with opposite spin, albeit extremely weak, can give rise to an instability in normal electron gas toward the formation of zero-momentum Cooper pairs near Fermi surface and because of pair condensation, superconductivity associated with long-range order emerges naturally. When subjected to an external Zeeman field, the population balance between electrons with different spins may be broken. As a consequence, not all electrons can find a partner to pair up with. If spin-population imbalance is large enough, the pairing of fermions has to occur at finite center-of-mass momentum with deformed Fermi surface state [2]. This exotic possibility of inhomogeneous superfluid was first predicted by Fulde and Ferrell (FF) [3], and by Larkin and Ovchinnikov (LO) [4] a little later. FF refers to an order parameter with plane-wave form $\Delta(r) = \Delta_0 e^{i\mathbf{q}\cdot\mathbf{r}}$, which spontaneously breaks time-reversal symmetry, while LO considers the superfluid with a standing-wave order parameter $\Delta(r) = \Delta_0 \cos(q \cdot r)$, which explicitly breaks translational symmetry. Both phases have puzzled the solid-state community for decades in terms of unambiguous experimental evidence to prove their existence. Moreover, the FFLO state is also of interest in quantum chromodynamics at low temperature and high density, where the property of asymptotic freedom may favor color superconductivity [5].

In recent years, due to their exquisite controllability, ultracold atoms have emerged as an ideal platform to simulate many-body Hamiltonians. Adjustable interaction and high degrees of control over spin populations have enabled one with the feasibility of exploring the long sought FFLO phase. Tremendous theoretical and experimental efforts have been put into optimizing the best detectable parameter regime of this phase. The most promising route is now believed to probe the one-dimensional (1D) spin-imbalanced Fermi gas [6–16], where indirect evidence of FFLO phase has been found in a recent experiment [17]. However, for three-dimensional (3D) Fermi gas, the FFLO phase is not favored [18–21].

4 However, the parameter space for FFLO ground state may be enlarged in the presence of optical lattices. See for example [21].
Over the last few years, another milestone achievement in cold-atom research, the realization of artificial spin–orbit (SO) coupling, first in bosonic systems [22] and later in fermionic ones [23, 24] has occurred. By tailoring the laser fields that generate the SO coupling, various coupling schemes can be realized in principle. It has been realized very recently that, in a Fermi gas, the interplay between the SO coupling and an effective Zeeman field may lead to distortion of single-particle dispersion as well as the Fermi surface, in such a way that finite-momentum dimer state and/or Cooper pairs will be favored [25–29]. In this work, we provide a unified treatment of both two-body and the many-body physics for a Fermi gas subject to an isotropic 3D SO coupling (3DSOC) and an effective Zeeman field. The generation of such 3DSOC has been recently proposed by optically dressing four internal atomic states with a tetrahedral geometry [30, 31]. This version of the SO coupling is less explored and unfamiliar to the condensed matter community, where two-dimensional Rashba and Dresselhaus SO couplings are studied extensively. One important advantage of 3DSOC over lower-dimensional SO interaction is that it provides the greatest enhancement of fermionic pairing [25]. Furthermore, due to its isotropic nature, mathematical simplicity is ensured.

The main findings of our work are: (i) under arbitrarily weak Zeeman field, the zero-momentum dimer state and conventional BCS superfluid phase are no longer stable. (ii) For a many-body system, the FF state is inherently robust and ultimately connects to the normal phase in a smooth manner as Zeeman field strength is increased, cf figure 3. Moreover, this type of exotic superfluid has a different origin in comparison with the previously studied FFLO state. In the absence of the SO coupling, individual particle number with different spins is conserved, hence the imbalance-induced finite-momentum pairing has parity symmetry between \(q \) and \(-q \), which should be called LO phase by definition; on the other hand, in the presence of the SO coupling, the Zeeman field breaks time-reversal symmetry explicitly and causes the single-particle dispersion to be asymmetric, which underlines the idea of finite-momentum dimer-bound state [25] and the FF pairing instability. The center-of-mass momentum of the Cooper pair can be as large as the Fermi momentum. This result should be very encouraging for future experimental exploration.

The rest of the paper is organized as follows. In section 2, we formulate the physical model and introduce the functional path integral approach. We apply this general formalism to the system with 3DSOC and discuss our results on two-body physics in section 3 and on many-body physics in section 4. And finally we conclude in section 5.

2. Physical model and general formalism

In this section, we first present the model Hamiltonian under study and then introduce the widely used functional path integral approach. Using this approach, we can discuss both two-body and many-body physics at zero and finite temperatures in a unified way.

2.1. Model Hamiltonian

We start by formulating the Hamiltonian for a non-interacting homogeneous spin-1/2 Fermi gas in 3D:

\[
H_0 = \int d\mathbf{r} \psi^\dagger(\mathbf{r}) \left\{ \xi_\mathbf{k} + \sum_{i=x,y,z} (v_i k_i + \Lambda_i) \sigma_i \right\} \psi(\mathbf{r}),
\]

\[\text{(1)}\]
Figure 1. (a) Fermi surfaces (a cut in the $k_y = 0$ plane) in the absence of the Zeeman field. The two concentric Fermi surfaces are spherically symmetric. The inner blue sphere represents the Fermi surface of the $+$ helicity branch, while the outer yellow sphere of the $-$ helicity branch. (b) Fermi surfaces in the presence of the Zeeman field along the z-axis: both Fermi surfaces are deformed in such a way that the cylindrical symmetry about the k_z-axis is still preserved, but the reflection symmetry about the $k_z = 0$ plane is broken.

where $\xi_k = \hbar^2 k^2/(2m) - \mu$ and $\psi = [\psi^+(\mathbf{r}), \psi^-(\mathbf{r})]^T$ is the fermionic annihilation field operator. We have defined SO coupling strength vector $\mathbf{v} = (v_x, v_y, v_z)$ and the Zeeman field vector $\mathbf{\Lambda} = (\Lambda_x, \Lambda_y, \Lambda_z)$. $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ are Pauli matrices acting on the atomic (pseudo-)spin degrees of freedom. This description is a general model valid for various SO coupling schemes. The single-particle spectrum is given by $E^\gamma(\mathbf{k}) = \xi_k^2 + \gamma\sqrt{\sum_i (v_i k_i + \Lambda_i)^2}$ with $\gamma = \pm 1$ denoting the two helicity branches. The experimentally realized [22–24] equal weight Rashba–Dresselhaus SO coupling takes the form of equation (1) with $\mathbf{v} = (0, 0, \hbar^2 k_r/m)$ and $\mathbf{\Lambda} = (\Omega/2, 0, \delta)$ where k_r is the laser-recoil momentum, Ω the Raman laser coupling strength and δ the two-photon detuning. The Rashba SO coupling [33, 34] can be recognized with $\mathbf{v} = (v_x, v_y, 0)$ and $v_x = v_y = \hbar^2 k_r/m$. In our work, we will focus on the 3DSOC [30, 31] with $v_x = v_y = v_z = v$. For this case, due to the isotropic nature of the SO coupling term, the direction of the Zeeman field is irrelevant and we shall choose it to be along the z-axis, and hence $\mathbf{\Lambda} = (0, 0, \hbar)$.

It is important to note that the Zeeman field does induce an asymmetry in the single-particle dispersion relation. To illustrate this, we consider a filled Fermi sea with simple topology (cf [32]) at zero temperature. In figure 1, we plot Fermi surface without and with Zeeman field. In the absence of the Zeeman field, the Fermi surfaces for both helicity branches are represented by spheres centered at zero momentum, as shown in figure 1(a). When we turn on the Zeeman field, both Fermi surfaces are distorted and no longer possess reflection symmetry about the $k_z = 0$ plane, as can be clearly seen in figure 1(b). In this perspective, the ground state is associated with non-zero total momentum along the k_z-axis.
Next, we consider the attractive s-wave contact interaction between unlike spins which, in terms of the creation and annihilation field operators for the original spin states, is represented by

\[\mathcal{H}_{\text{int}} = U_0 \int d\mathbf{r} \psi^+_1(\mathbf{r}) \psi^+_1(\mathbf{r}) \psi^-_1(\mathbf{r}) \psi^-_1(\mathbf{r}), \]

(2)

where \(U_0 \) is the bare coupling strength to be renormalized using the s-wave scattering length \(a_s \). In this work, we constrain our attention to the experimentally exploited broad Feshbach resonances, which are well captured by the single-channel Hamiltonian prescribed above.

2.2. Functional path integral formalism

In this section, we briefly outline the functional path integral technique [35–37] and start from the partition function \(Z = \int \mathcal{D}[\psi(\mathbf{r}, \tau), \bar{\psi}(\mathbf{r}, \tau)] \exp \{-S[\psi(\mathbf{r}, \tau), \bar{\psi}(\mathbf{r}, \tau)]\} \), where the action

\[S[\psi, \bar{\psi}] = \int_0^\beta d\tau \left[\int d\mathbf{r} \sum_\sigma \bar{\psi}_\sigma(\mathbf{r}, \tau) \partial_\tau \psi_\sigma(\mathbf{r}, \tau) + \mathcal{H}(\psi, \bar{\psi}) \right] \]

(3)

is written as an integral over the imaginary time \(\tau \). Here \(\beta = 1/(k_B T) \) is the inverse temperature and \(\mathcal{H}(\psi, \bar{\psi}) \) is obtained by replacing field operators \(\psi^\dagger \) and \(\psi \) with Grassmann variables \(\bar{\psi} \) and \(\psi \), respectively. We can integrate out the quartic interaction term using the Hubbard–Stratonovich transformation [37], from which the pairing field \(\Delta(\mathbf{r}, \tau) \) is defined. If we assume the mean-field order parameter to be of FF-type \(\Delta = \Delta_0 e^{i q \cdot \mathbf{r}} \) and further integrate out the fermionic fields, we arrive at an effective action as

\[S_{\text{eff}} = \int_0^\beta d\tau \int d\mathbf{r} \left(-\frac{\beta^2}{U_0} - \frac{1}{2} \text{Tr} \log[-G_{\Delta}^{-1}] + \beta \sum_\mathbf{k} \xi_{k+q/2} + \xi_{-k+q/2} \right), \]

(4)

\[G_{\Delta}^{-1}(\mathbf{k}, i\omega_n) = \begin{bmatrix} i\omega_m - \xi_{k+q/2} - f_+ & \frac{i}{2} \Delta_0^\delta_x \\ -i\Delta_0^\delta_y & i\omega_m + \xi_{-k+q/2} - f_- \end{bmatrix}, \]

(5)

where \(f_\pm = \sum_\sigma (v_\sigma (k_\pm \frac{q}{2}) \pm \lambda_\sigma) \sigma \). In the second term of equation (4), the trace is to be taken over the Nambu spinor space \(\Phi(\mathbf{r}, \tau) = [\psi_\uparrow, \psi_\downarrow, \bar{\psi}_\uparrow, \bar{\psi}_\downarrow]^T \), the real-coordinate space and imaginary time. The last term in equation (4) comes from interchanging fermionic fields \(\bar{\psi}_\uparrow \) and \(\bar{\psi}_\downarrow \) with \(\psi_\uparrow \) and \(\psi_\downarrow \) and the corresponding equal-time limiting procedure [37]. From equation (4), we can further sum over Matsubara frequencies to arrive at the grand thermodynamic potential

\[\frac{\Omega}{V} = -\frac{1}{\beta} \ln Z = -\frac{1}{4\pi \hbar^2 a_s} \frac{|\Delta|^2}{4} + \frac{1}{V} \sum_\mathbf{k} \left\{ \frac{\xi_{k+q/2} + \xi_{-k+q/2}}{2} - \frac{1}{4} \sum_{\alpha=1}^4 |E_{k}^{\alpha}| \right. \]

\[+ \frac{|\Delta|^2}{2\epsilon_k} - \frac{1}{2\beta} \sum_{\alpha=1}^4 \ln \left(1 + \exp(-\beta |E_{k}^{\alpha}|) \right) \right\}, \]

(6)

where we have regularized the bare interaction strength \(U_0 \) in terms of the s-wave scattering length \(a_s \) by \(\frac{1}{U_0} = \frac{m}{4\pi \hbar^2 a_s} - \frac{1}{V} \sum_\mathbf{k} \frac{1}{2\epsilon_k} \). \(E_{k}^{\alpha} \) \(\alpha = 1, 2, 3 \) and 4) are the quasi-particle energy dispersion, which are just the four eigenvalues obtained by solving \(\text{det}[G_{\Delta}^{-1}(\mathbf{k}, E_{k}^{\alpha})] = 0 \). In our case, \(E_{k}^{4} \) are too complicated to be presented here.

In the following sections, we restrain our attention to the isotropic 3DSOC with Zeeman field along the z-axis, i.e. \(\Lambda = (0, 0, h) \), and use the ansatz for FF-order parameter \(\Delta(\mathbf{r}) = \Delta e^{iqz} \).
Figure 2. Finite momentum dimer-bound state solution for 3DSOC. The coloring shows the magnitude of q_{2b}, varying with the SO coupling strength v and Zeeman field strength h; the inset shows bound state energy E_q as a function of q/k_F (along the z-axis) for different h, from top to bottom $h/E_F = 0, 0.1, 0.2$. We fix scattering length as $1/(k_F a_s) = -1$.

3. Results on two-body problem

Following the path integral approach, we can characterize two-body properties at low-energy sector by inverse-vertex function, see [38] for more details. We found consistent results reported in our previous paper [25] which are obtained by solving the two-body Schrödinger equation.

For a bound state with total momentum q, the corresponding energy E_q is obtained by solving the following equation:

$$
\frac{m}{4\pi \hbar^2 a_s} = \frac{1}{V} \sum_k \left\{ \frac{1}{\mathcal{E}_{k,q} - \mathcal{E}_{k,q} - \frac{1}{\mathcal{E}_{k,q} - \mathcal{E}_{k,q} - \frac{\hbar^2 k^2}{(2k+\nu)^2 k_\perp^2 + k_z^2}} + \frac{1}{2\mathcal{E}_k}} \right\},
$$

where $\mathcal{E}_{k,q} = E_q - \epsilon_{q+k} - \epsilon_{q-k}$ and $\epsilon_k = \hbar^2 k^2/(2m)$. For a given set of parameters h, v and a_s, we can numerically obtain the eigenenergy of the dimer-bound state E_q as a function of q. The momentum q_0 at which E_q reaches the minimum labels the dimer state with lowest energy. The binding energy is defined as $\epsilon_b = 2E_{\text{min}} - E_{q_0}$, where E_{min} is the ground-state energy of single-particle spectrum $E^- (k)$. Only when $\epsilon_b > 0$ can we consider the dimer as a true two-body bound state. Otherwise, its energy lies in the single particle continuum. For the convenience of further comparison with many-body state, here we take the laser-recoil momentum k_r, which determines the SO coupling strength, to be equal to Fermi momentum k_F, which is determined by typical atomic density in experiments [22–24].

For a Zeeman field along the z-axis, we have $q_0 = q_{2b} \hat{z}$. Following the above-mentioned protocol, we plot q_{2b} as a function of the SO coupling strength and Zeeman field strength h in figure 2. As one would expect, Zeeman field tends to destroy two-body bound state, whereas SO coupling enhances its formation. The competition between these two outlines the critical
boundary value, beyond which ϵ_b becomes negative and no stable bound state can be found. With increasing h, the minimum of E_q deviates further away from zero momentum to some finite value. As long as Zeeman field is non-zero, the lowest-energy bound state would occur at finite center-of-mass momentum q_{2b}. Our calculation shows that the magnitude of q_{2b} can be as high as $0.2k_F$.

4. Results on many-body problem

Motivated by the two-body results, one naturally attempts to explore the direct analogue for the many-body system, which we study in this section.

We take a canonical ensemble approach by considering a homogeneous system with fixed particle number N and volume V, and hence the density $n = N/V = k_F^3/(3\pi^2)$. The important quantity that determines the mean-field phase diagram shall be the free energy, also known as the Landau potential, defined as $F = \Omega + \mu N$. At zero temperature, it coincides with the ground state energy. For a given set of parameters (including the SO coupling strength v, Zeeman field strength h, interaction parameter $1/(k_Fa_s)$ and temperature T), order parameter Δ, chemical potential μ and the FF momentum $q = q_{FF} \hat{z}$ should be determined self-consistently by stationary conditions

$$\frac{\partial F}{\partial \Delta} = 0, \quad \frac{\partial F}{\partial \mu} = 0, \quad \frac{\partial F}{\partial q} = 0.$$ \hfill (8)

We shall explicitly consider three types of phases: normal gas ($\Delta = 0, q = 0$), BCS state ($\Delta \neq 0, q = 0$) and FF state ($\Delta \neq 0, q_{FF} \neq 0$).

4.1. Zero-temperature phase diagram on the Bardeen, Cooper and Schrieffer side

We shall first focus on a relatively weak-interacting regime on the BCS side of the crossover and take $1/(k_Fa_s) = -1$. In this regime, we can easily justify the mean-field treatment at both zero and finite temperatures, and furthermore the SO coupling effect would be more pronounced [39–42].

To get some insights first, in figure 3, we plot free energy as a function of h for a given SO coupling strength $v = E_F/k_F$. We choose this relatively large SO strength, to avoid possible complications, for example, Sarma phase [43], phase separation (PS) [44], etc. It is very remarkable to notice that the FF state is energetically favored for the arbitrarily small h. For instance, at $h = 0.02E_F$, the gain of energy over the BCS pairing phase is $\Delta F = F_{BCS} - F_{FF} \approx 4.54588 \times 10^{-5} N E_F$. However, this energy gain quickly increases as h is increased. For example, at $h = 0.28E_F$, we have $\Delta F = 1.13728 \times 10^{-2} N E_F$, which is more than two orders of magnitude larger and represents a very-large energy value on the BCS side of Feshbach resonance. Once again, the idea of favoring FF phase is backed by the picture of Fermi surface deformation (cf figure 1) and two-body bound state solutions (equation (7) and figure 2). When we further increase h, BCS superfluid is taken over by normal phase as the BCS-order parameter drops to zero rather sharply (see the inset of figure 3); on the other hand, FF state connects to normal phase very smoothly at a much larger value of h.

The FF state here has a different origin with the conventional FFLO states in the absence of the SO coupling [10–12], in which case, for a given interaction strength and with increasing population imbalance (i.e. Zeeman field), one would expect that competitions among various
quantum phases (BCS, Sarma, FFLO and normal phases) could lead to both first- and second-order phase transitions. By contrast in the presence of SO coupling, especially 3DSOC, FF state dominates almost the entire phase diagram, as we map out in the v–h plane, figure 4(a). The BCS phase only exists on the axis (i.e. in the absence of either the Zeeman field or the SO coupling). Normal phase and FF phase are connected by a smooth boundary, which we identify by setting a threshold value of energy difference $|\Delta E_{\text{FF}} - \Delta E_{\text{normal}}| \approx 10^{-5} N E_F$. Note that close to the boundary, ΔE_{FF} also becomes exceedingly small. For illustration purposes, we schematically added two small regions near $v = 0$, the LO (green) and the PS (blue) regions, in the phase diagram. The boundaries of these two phases in the absence of the SO coupling (i.e. at $v = 0$), which are well studied, are obtained from previous results [43–45]. It has been shown that, with increasing SO coupling strength, both these phases are suppressed rather rapidly [45].

Furthermore, in figure 4(a), FF phase is divided into the gapped and the gapless regions by examining the single-particle excitation gap $\Delta E = \min(|E_k^\alpha|)$, where E_k^α are quasi-particle dispersions introduced in equation (6). As shown in figure 4(b), ΔE decreases monotonically as a function of h and drops to zero at some critical value of h_c which depends on the SO coupling strength v. The critical value h_c is represented by the green-dashed line in figure 4(a). At h_c, both q_{FF} and ΔE_{FF} exhibit kinks for relatively small SO coupling strength. These kinks get washed out quickly with increasing v (see, for instance, the inset of figure 3). On the other hand, in the limit of $v = 0$, these kinks become true jumps signaling the first-order phase transition between the BCS phase and the FF phase region. In figure 4(c), we plot q_{FF} and ΔE_{FF} as functions of v for a fixed h. We note that even though ΔE_{FF} increases monotonically as v, the FF momentum q_{FF} shows non-monotonic behavior: it first increases and then decreases as v is increased from zero.

It is instructive to make comparisons between the two-body results and the many-body results. To this end, we consider a cloud of degenerate Fermi gas typically realized in
Figure 4. (a) Zero-temperature phase diagram at $1/k_F a_s = -1$ in the parameter space spanned by h and v. The FF phase is divided into gapped and gapless region by the green dashed line. The BCS state only exists strictly on the axis marked by two red straight lines. The two blue lines indicate the smooth boundary between FF state and normal phase. Within the FF phase, the color scale indicates the momentum q_{FF}. LO and PS regions are added schematically for illustration purpose. (b) Single-particle excitation gap ΔE, FF-order parameter Δ_{FF} and momentum q_{FF} as functions of h. The SO coupling strengths are $v = 0.2 E_F/k_F$ (red curves) and $0.5 E_F/k_F$ (black curves). (c) Δ_{FF} and q_{FF} as functions of v for $h = 0.28 E_F$. In all plots, the energy is in units of E_F and momentum in units of k_F.

experiment, with density $n = 10^{12}$ cm$^{-3}$, which defines k_F and E_F. We compare the two-body dimer momentum q_{2b} with the many-body FF pairing momentum q_{FF} in figure 5 at two different values of SO coupling strengths. Note that the range of h values for which the two-body bound state exists is much smaller than that for the existence of the FF state. For example, at $v = 1.3 E_F/k_F$, two-body bound states only exist for $h < 0.1 E_F$, while the FF state extends all the way up to about $h \approx E_F$. As such, the largest q_{FF} that can be achieved is much larger than the largest q_{2b}. In the region where both two-body bound state and the FF state exist, q_{FF} and q_{2b} are comparable with the latter somewhat larger. The difference between them, however, becomes smaller as the SO coupling strength increases, indicating that at large SO coupling strength, the many-body properties of the system are also dominated by the two-body physics.

Before ending this subsection, we want to remark on the gapless FF state. For Zeeman field strength above the critical value h_c, one or more quasi-particle energy $E^*_{k_z}$ will vanish at certain values of momentum k. Such momenta form closed surfaces (nodal Fermi surface) in momentum space with cylindrical symmetry around the k_z-axis and reflection symmetry about the $k_z = 0$ plane. Hence, such nodal Fermi surfaces always appear in pairs and may be measured using the technique of momentum-resolved radio-frequency spectroscopy. Two examples are illustrated in figure 6.
Figure 5. Momentum comparison of the FF state and two-body bound state at $1/k_F a_s = -1$.

Figure 6. Nodal Fermi surface plots in momentum space. The closed surfaces are formed by momentum values at which the excitation gap ΔE vanishes. Both figures have the same interaction parameter $1/k_F a_s = -1$ as in phase diagram figure 3 and coupling strength $v = 0.5 E_F/k_F$, while $h = 0.2 E_F$ for (a) and $h = 0.35 E_F$ for (b).

4.2. Effects of interaction

So far we have focused on the zero-temperature phase diagram of a weakly interacting system. Now we briefly discuss the effects of interaction in this subsection and those of finite temperature in the next. In figures 7(a) and (b), we present two zero-temperature phase diagrams in the h–v plane for $1/k_F a_s = -2$ and 0, respectively. They are qualitatively similar to the one presented in figure 4(a) for $1/k_F a_s = -1$. As we move from the BCS limit towards unitarity, the region of normal phase shrinks and the FF superfluid remains dominant. Furthermore, the region for gapped FF phase increases quickly. At unitarity, the whole parameter space presented in figure 7(b) is occupied by the gapped FF phase. On the other hand, for fixed h and v, the FF
4.3. Effects of temperature

Finally, we consider the effects of finite temperature. In figure 8(a), we plot the phase diagram in the parameter space spanned by \(h \) and \(T \) by taking \(1/k_F a_s = -1 \) and \(v = E_F/k_F \). The FF superfluid phase dominates at small \(h \) and low \(T \). There is a second-order transition towards
normal phase as h and/or T increases. The BCS phase again only lives on the $h = 0$ axis. In figure 8(b), we compare the free energies for all three phases at $T = 0.1T_F$ and clearly show that the FF phase possesses the lowest free energy at any finite values of h as long as h is below a threshold at which the system turns normal.

5. Conclusion

In summary, we have studied SO coupled Fermi gas subject to an effective Zeeman field. Based on the picture of Fermi surface deformation, the two-body calculations, and the mean-field many-body results, we conclude that the BCS state with zero-momentum Cooper pairs is not stable against Fulde–Ferrell superfluid pairing at any finite Zeeman field strength. The FF phase is robust against interaction and finite temperature, and the corresponding center-of-mass momentum of the Cooper pair can be comparable with the Fermi momentum. The finite-momentum dimer state in the two-body situation and the FF state in the many-body setting both originate from the asymmetric momentum distribution as a consequence of the interplay between SO coupling and the Zeeman field. This asymmetry also determines the direction of the momentum for the dimer state or the Cooper pairs. In this sense, the FF state we discussed in this work is not exactly the same as the FF or LO state in the context of a spin-imbalanced Fermi gas without SO coupling. In the latter case, the direction of the momentum of the Cooper pairs is determined through the mechanism of spontaneous symmetry breaking. For a similar reason, we only considered FF state in our work, not the LO state. The LO state requires that the Cooper pairs possess two momenta with equal magnitude but opposite directions. However, in our case, the asymmetric momentum distribution uniquely picks one particular momentum rather than an opposite pair.

Acknowledgments

HP was supported by the NSF, the Welch Foundation (grant no. C-1669) and the DARPA OLE program. We thank Hui Hu and Xia-ji Liu for stimulating discussions, Xiangfa Zhou and Wei Yi for helpful comments and B Ramachandhran for the help in improving the quality of some figures. We thank Wei Yi for sending us their preprint [46] in which they investigated the same system from a grand canonical ensemble approach. The essential results of our works agree with each other.

References

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106 162
Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 (erratum)
[2] Sedrakian A, Mur-Petit J, Polls A and Muther H 2005 Phys. Rev. A 72 013613
[3] Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550
[4] Larkin A I and Ovchinnikov Y N 1964 Sov. Phys.—JETP 20 762
[5] Casalbuoni R and Nardulli G 2004 Rev. Mod. Phys. 76 263320
[6] Yang K 2001 Phys. Rev. B 63 140511
[7] Feiguin A E and Heidrich-Meisner F 2007 Phys. Rev. B 76 220508
[8] Lüscher A, Noack R M and Läuchli A M 2008 Phys. Rev. A 78 013637
[9] Casula M, Ceperley D M and Mueller E J 2008 Phys. Rev. A 78 033607
[10] Orso G 2007 Phys. Rev. Lett. 98 070402

New Journal of Physics 15 (2013) 075014 (http://www.njp.org/)
