The Partition Bound for Classical Communication Complexity and Query Complexity

Rahul Jain∗ Hartmut Klauck†

Abstract

We describe new lower bounds for randomized communication complexity and query complexity which we call the partition bounds. They are expressed as the optimum value of linear programs. For communication complexity we show that the partition bound is stronger than both the rectangle/corruption bound and the γ_2/generalized discrepancy bounds. In the model of query complexity we show that the partition bound is stronger than the approximate polynomial degree and classical adversary bounds. We also exhibit an example where the partition bound is quadratically larger than the approximate polynomial degree and adversary bounds.

1 Introduction

The computational models investigated in communication complexity and query complexity, i.e., Yao’s communication model [Yao79] and the decision tree model, are simple enough to allow us to prove interesting lower bounds, yet they are rich enough to have numerous applications to other models as well as exhibit nontrivial structure. Research in both these models is concentrated on lower bounds and a recurring theme is methods to prove such bounds. In this paper we present a new method for proving lower bounds on randomized complexity in both of these models.

1.1 Communication Complexity

In the model of communication complexity there are several general methods to prove lower bounds in the settings of randomized communication and quantum communication. Linial and Shraibman [LS09] identified a quantity called γ_2, which not only yields lower bounds for quantum protocols, but also subsumes a good number of previously known bounds. Later, Sherstov [S08] described a quantity called generalized discrepancy (the name being coined in [CA08]), which also coincides with γ_2. The generalized discrepancy can be derived from the standard discrepancy bound (see [KN97], this bound was shown to be applicable in the quantum case by Kremer and Yao [Kre95]) in a way originally suggested by Klauck [K07]. In particular, Sherstov showed that the γ_2 method yields a tight $\Omega(\sqrt{n})$ bound for the quantum communication complexity of the Disjointness problem, arguably the most important single function considered in the area. This result was previously established by a more complicated method [Raz03], for a matching upper bound see [AA05]. This leaves our knowledge of lower bound methods in the world of quantum communication complexity

∗Centre for Quantum Technologies and Department of Computer Science, National University of Singapore. Email: rahul@comp.nus.edu.sg
†Centre for Quantum Technologies, National University of Singapore. Email: hklauuck@gmail.com
in a neat form, where there is one "master method" that seems to do better than everything else; the only potential competition coming from information theoretic techniques like in [JKS03, JRS03], which are not applicable to all problems, and not known to beat γ_2 either.

In the world of randomized communication things appear to be much less organized. Besides simply applying γ_2, the main competitors are the rectangle (aka corruption) bound (compare [Y83, BFS86, Raz92, K03, BPSW06]), as well as again information theoretic techniques. Both of the latter approaches are able to beat γ_2, by allowing $\Omega(n)$ bounds for the Disjointness problem [Raz03, BKKS04, KS92], and there is an information theoretic proof of a tight $\Omega(n)$ lower bound for the Tribes function (an AND of \sqrt{n} ORs of \sqrt{n} ANDs of distributed pairs of variables [JKS03]). With the rectangle bound one cannot prove a lower bound larger than \sqrt{n} for this problem, and neither with γ_2. So the two general techniques, rectangle bound and γ_2, are known to be quadratically smaller than the randomized communication complexity for some problems, and the information theoretic approach seems to be only applicable to problems of a "direct sum" type.

In this paper we propose a new lower bound method for randomized communication complexity which we call the partition bound\footnote{In this paper we are only concerned with the two-party model and the partition bound for other models can be defined analogously. For example for the Number on the Forehead Model it can be defined by replacing rectangles by cylinder intersections.}. We derive this bound from a linear program, which captures a relaxation of the fact that a randomized protocol is a convex combination of deterministic protocols and hence a convex combination of partitions of the communication matrix into rectangles. Linear programs have been previously used to describe lower bounds in communication complexity. Lovasz [L90] gives a program which, as we show, turns out to capture the rectangle bound. Our program for the partition bound however uses stricter constraints to overcome the one-sidedness of Lovasz’s program. Karchmer et al. [KKN95] give a linear program for fractional covers, as well as a linear program which can be seen to be equivalent to our zero-error partition bound for relations, where it was introduced as a lower bound to deterministic complexity.

We also describe a weaker bound to the partition bound which we call the "smooth rectangle bound". It is inherently a one-sided bound and is derived by relaxing constraints in the linear program for the partition bound. This bound has recently been used to prove a strong direct product theorem for Disjointness in [K09]. Another way to derive the smooth rectangle bound is as follows. Suppose we want to prove a lower bound for a function f. Then we could apply the rectangle bound, but sometimes this might not yield a large enough lower bound. Instead we apply the rectangle bound to a function g that is sufficiently close to f (under a suitable probability distribution), so that lower bounds for g imply lower bounds for f. Maximizing this over all g, close to f, gives us the smooth rectangle bound. This is the same approach that turns the discrepancy bound into the generalized discrepancy (see [S08, K07]). We will use the term smooth discrepancy in the following, because it better captures the underlying approach.

After defining the partition bound and the smooth rectangle bound we proceed to show that the smooth rectangle bound subsumes both the standard rectangle bound and γ_2/smooth discrepancy. We also show that the LP formulation of the smooth rectangle bound coincides with its natural definition as described above. This leaves us with one unified general lower bound method for randomized communication complexity, the partition bound.
1.2 Query Complexity

We then turn to randomized query complexity. Again there are several prominent lower bound methods in this area. Some of the main methods are the classical version of Ambainis’ adversary method (the quantum version is from [A02], and classical versions are by Laplante/Magniez [LM08] and Aaronson [A08]); the approximate polynomial degree [NS94, BBC+01]; the randomized certificate bound defined by Aaronson [A06] (this being the query complexity analogue of the rectangle bound in communication complexity), as well as older methods like block-sensitivity [Nis91].

We again propose a new lower bound, the partition bound, defined via a linear program, this time based on the fact that a decision tree partitions the Boolean cube into subcubes. We then proceed to show that our lower bound method subsumes all the other bounds mentioned above. In particular the partition bound is always larger than the classical adversary bound, the approximate degree, and block-sensitivity.

To further illustrate the power of our approach we describe a Boolean function, (AND of ORs), which we continue to call Tribes, for which the partition bound yields a tight linear lower bound, while both the adversary bound and the approximate degree are at least quadratically smaller.

2 Communication Complexity Bounds

In this section we present the definition of the partition bound and the smooth-rectangle bound followed by the definitions of the previously known lower bounds for randomized communication complexity. Subsequently, in the next subsection, we present key relationships and comparisons between various bounds.

2.1 Definitions

Let $f : X \times Y \rightarrow Z$ be a partial function. All the functions considered in this section are partial functions unless otherwise specified, hence we will drop the term partial henceforth. It is easily verified that strong duality holds for the programs that appear below and hence optima for the primal and dual are same. Let R be the set of all rectangles in $X \times Y$. We refer the reader to [KN97] for introduction to basic terms in communication complexity. Below we assume $(x,y) \in X \times Y, R \in R, z \in Z$, unless otherwise specified. Let $f^{-1} \subseteq X \times Y$ denote the subset where $f(\cdot)$ is defined. For sets A, B we denote $A - B \equiv \{a : a \in A, a \notin B\}$. We assume $\epsilon \geq 0$ unless otherwise specified.

2.1.1 New Bounds

Definition 1 (Partition Bound) The ϵ-partition bound of f, denoted $\text{prt}_\epsilon(f)$, is given by the optimal value of the following linear program.

Primal

min: $\sum_z \sum_R w_{z,R}$

$\forall (x,y) \in f^{-1}$: $\sum_{R : (x,y) \in R} w_{f(x,y),R} \geq 1 - \epsilon,$

$\forall (x,y) : \sum_{R : (x,y) \in R} \sum_z w_{z,R} = 1,$

$\forall z, \forall R : w_{z,R} \geq 0.$

Dual

max: $\sum_{(x,y) \in f^{-1}} (1 - \epsilon)\mu_{x,y} + \sum_{(x,y)} \phi_{x,y}$

$\forall z, \forall R : \sum_{(x,y) \in f^{-1}(z) \cap R} \mu_{x,y} + \sum_{(x,y) \in R} \phi_{x,y} \leq 1,$

$\forall (x,y) : \mu_{x,y} \geq 0, \phi_{x,y} \in \mathbb{R}.$

3
Below we present the definition of smooth-rectangle bound as a one-sided relaxation of the partition bound. As we show in the next subsection, it is upper bounded by the partition bound.

Definition 2 (Smooth-Rectangle bound) The ϵ-smooth rectangle bound of f denoted $\text{sec}_\epsilon(f)$ is defined to be $\max\{\text{sec}_\epsilon^z(f) : z \in Z\}$, where $\text{sec}_\epsilon^z(f)$ is given by the optimal value of the following linear program.

Primal

$$
\begin{align*}
\min: & \quad \sum_{R \in R} w_R \\
\forall (x, y) \in f^{-1}(z): & \quad \sum_{R : (x, y) \in R} w_R \geq 1 - \epsilon, \\
\forall (x, y) \in f^{-1}(z): & \quad \sum_{R : (x, y) \in R} w_R \leq 1, \\
\forall (x, y) \in f^{-1} - f^{-1}(z): & \quad \sum_{R : (x, y) \in R} w_R \leq \epsilon, \\
\forall R: & \quad w_R \geq 0.
\end{align*}
$$

Dual

$$
\begin{align*}
\max: & \quad \sum_{(x, y) \in f^{-1}(z)} ((1 - \epsilon)\mu_{x, y} - \phi_{x, y}) - \sum_{(x, y) \in f^{-1}(z)} \epsilon \cdot \mu_{x, y} \\
\forall R: & \quad \sum_{(x, y) \in f^{-1}(z) \cap R} (\mu_{x, y} - \phi_{x, y}) - \sum_{(x, y) \in (R \setminus f^{-1}(z))} \mu_{x, y} \leq 1, \\
\forall (x, y): & \quad \mu_{x, y} \geq 0; \phi_{x, y} \geq 0.
\end{align*}
$$

Below we present an alternate and "natural" definition of smooth-rectangle bound, which justifies its name. In the next subsection we show that the two definitions are equivalent.

Definition 3 (Smooth-Rectangle bound : Natural definition) In the natural definition, (ϵ, δ)-smooth-rectangle bound of f, denoted $\text{sec}_{\epsilon, \delta}(f)$, is defined as follows (refer to the definition of $\text{rec}_{\epsilon, \lambda}^z(g)$ in the next subsection):

$$
\text{sec}_{\epsilon, \delta}(f) \overset{\text{def}}{=} \max\{\text{sec}_{\epsilon, \delta}^z(f) : z \in Z\}.
$$

$$
\text{sec}_{\epsilon, \delta}^z(f) \overset{\text{def}}{=} \max\{\text{sec}_{\epsilon, \lambda}^z(f) : \lambda \text{ a (probability) distribution on } \mathcal{X} \times \mathcal{Y} \cap f^{-1}\}.
$$

$$
\text{sec}_{\epsilon, \delta}^z(\lambda) \overset{\text{def}}{=} \max\{\text{sec}_{\epsilon, \lambda}^z(g) : g : \mathcal{X} \times \mathcal{Y} \rightarrow Z; \Pr_{(x, y) \sim \lambda}[f(x, y) \neq g(x, y)] < \delta; \lambda(g^{-1}(z)) \geq 0.5\}.
$$

Below we define smooth-discrepancy via a linear program. In the next subsection we present the natural definition of smooth-discrepancy and in the subsequent subsection we show that the two definitions are equivalent. As we also show in the next subsection smooth-discrepancy is upper bounded by smooth-rectangle bound which in turn is upper bounded by the partition bound.

Definition 4 (Smooth-Discrepancy) Let $f : \mathcal{X} \times \mathcal{Y} \rightarrow \{0, 1\}$ be a Boolean function. The smooth-discrepancy of f, denoted $\text{sdisc}_\epsilon(f)$, is given by the optimal value of the following linear program.

Primal

$$
\begin{align*}
\min: & \quad \sum_{R \in R} w_R + v_R \\
\forall (x, y) \in f^{-1}(1): & \quad 1 + \epsilon \geq \sum_{R : (x, y) \in R} w_R - v_R \geq 1, \\
\forall (x, y) \in f^{-1}(0): & \quad 1 + \epsilon \geq \sum_{R : (x, y) \in R} v_R - w_R \geq 1, \\
\forall R: & \quad w_R, v_R \geq 0.
\end{align*}
$$

Dual

$$
\begin{align*}
\max: & \quad \sum_{(x, y) \in f^{-1}(1)} \mu_{x, y} - (1 + \epsilon)\phi_{x, y} \\
\forall R: & \quad \sum_{(x, y) \in f^{-1}(1) \cap R} (\mu_{x, y} - \phi_{x, y}) - \sum_{(x, y) \in (R \setminus f^{-1}(1))} \mu_{x, y} \leq 1, \\
\forall (x, y): & \quad \mu_{x, y} \geq 0; \phi_{x, y} \geq 0.
\end{align*}
$$
2.1.2 Known Bounds

Below we present the definition of the rectangle bound via a linear program. This program was first described by Lovasz [L90] although he did not make the connection to the rectangle bound.

Definition 5 (Rectangle-Bound) The ε-rectangle bound of f, denoted $\text{rec}_\varepsilon(f)$, is defined to be $\max\{\text{rec}_\varepsilon^z(f) : z \in \mathcal{Z}\}$, where $\text{rec}_\varepsilon^z(f)$ is given by the optimal value of the following linear program.

\[\begin{align*}
\text{Primal} & : \min & \sum_R w_R \\
& & \forall (x,y) \in f^{-1}(z) : \sum_{R,(x,y) \in R} w_R \geq 1 - \varepsilon, \\
& & \forall (x,y) \in f^{-1} - f^{-1}(z) : \sum_{R,(x,y) \in R} w_R \leq \varepsilon, \\
& & \forall R : w_R \geq 0.
\end{align*} \]

\[\begin{align*}
\text{Dual} & : \max & \sum_{(x,y) \in f^{-1}} (1 - \varepsilon) \cdot \mu_{x,y} - \varepsilon \cdot \mu_{x,y} \\
& & \forall R : \sum_{(x,y) \in f^{-1}(z) \cap R} \mu_{x,y} - \sum_{(x,y) \in (R \setminus f^{-1}) \setminus f^{-1}(z)} \mu_{x,y} \leq 1, \\
& & \forall (x,y) : \mu_{x,y} \geq 0.
\end{align*} \]

Below we present the alternate, natural and conventional definition of rectangle bound as used in several previous works [Y83, BFS86, Raz92, K03, BPSW06]. In the next subsection we show that the two definitions are equivalent.

Definition 6 (Rectangle-Bound: Conventional definition) In the conventional definition, ε-rectangle bound of f, denoted $\text{rec}_\varepsilon(f)$ is defined as follows:

\[\begin{align*}
\text{rec}_\varepsilon^z(f) & \overset{\text{def}}{=} \max\{\text{rec}_\varepsilon^{z'}(f) : z \in \mathcal{Z}\} \\
\text{rec}_\varepsilon(f) & \overset{\text{def}}{=} \max\{\text{rec}_\varepsilon^{z,\lambda}(f) : \lambda \text{ a distribution on } \mathcal{X} \times \mathcal{Y} \cap f^{-1} \text{ with } \lambda(f^{-1}(z)) \geq 0.5\}, \\
\text{rec}_\varepsilon^{z,\lambda}(f) & \overset{\text{def}}{=} \min\{\frac{1}{\lambda(f^{-1}(z) \cap R)} : R \in \mathcal{R} \text{ with } \lambda(f^{-1}(z) \cap R) \geq \lambda(R - f^{-1}(z))\}.
\end{align*} \]

Below we present the definition of discrepancy via a linear program followed by the conventional definition of discrepancy. It is easily seen that the two are exactly the same.

Definition 7 (Discrepancy) Let $f : \mathcal{X} \times \mathcal{Y} \to \{0,1\}$ be a Boolean function. The discrepancy of f, denoted $\text{disc}(f)$, is given by the optimal value of the following linear program.

\[\begin{align*}
\text{Primal} & : \min & \sum_R w_R + v_R \\
& & \forall (x,y) \in f^{-1}(1) : \sum_{R,(x,y) \in R} w_R - v_R \geq 1, \\
& & \forall (x,y) : v_R - w_R \geq 1, \\
& & \forall R : w_R, v_R \geq 0.
\end{align*} \]

\[\begin{align*}
\text{Dual} & : \max & \sum_{(x,y) \in f^{-1}} \mu_{x,y} \\
& & \forall R : \sum_{(x,y) \in f^{-1}(1) \cap R} \mu_{x,y} - \sum_{(x,y) \in (R \setminus f^{-1}(0)) \setminus f^{-1}(1)} \mu_{x,y} \leq 1, \\
& & \forall (x,y) : \mu_{x,y} \geq 0.
\end{align*} \]

Definition 8 (Discrepancy: Conventional definition) Let $f : \mathcal{X} \times \mathcal{Y} \to \{0,1\}$ be a Boolean
function. The discrepancy of f, denoted $\text{disc}(f)$, is defined as follows:

$$\text{disc}(f) = \max\{\text{disc}^\lambda(f) : \lambda \text{ a distribution on } \mathcal{X} \times \mathcal{Y} \cap f^{-1}\}.$$

$$\text{disc}^\lambda(f) = \min\left\{\frac{1}{\sum_{(x,y) \in R} (-1)^{f(x,y)} \cdot \lambda_{x,y}} : R \in \mathcal{R}\right\}.$$

Below we present the natural definition of smooth-discrepancy which has found shape in previous works \[K07, S08\]. It is defined in analogous fashion from discrepancy as smooth-rectangle bound is defined from rectangle bound.

Definition 9 (Smooth-Discrepancy: Natural Definition) Let $f : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ be a Boolean function. The δ- smooth-discrepancy of f, denoted $\tilde{\text{sdisc}}_\delta(f)$, is defined as follows:

$$\tilde{\text{sdisc}}_\delta(f) = \max\{\tilde{\text{sdisc}}^\lambda_\delta(f) : \lambda \text{ a distribution on } \mathcal{X} \times \mathcal{Y} \cap f^{-1}\}.$$

$$\tilde{\text{sdisc}}^\lambda_\delta(f) = \max\{\text{disc}^\lambda(g) : g : \mathcal{X} \times \mathcal{Y} \to \mathcal{Z} ; \Pr_{(x,y) \sim \lambda \left[f(x,y) \neq g(x,y) \right]} < \delta\}.$$

Below we define the γ_2 bound of Linial and Shraibman \[LS09\] and show in the next subsection that it is equivalent to smooth-discrepancy.

Definition 10 (\(\gamma_2\) bound \[LS09\]) Let A be a sign matrix and $\alpha \geq 1$. Then,

$$\gamma_2(A) = \min_{X,Y : XY = A} r(X)c(Y) ; \quad \gamma_2^\alpha(A) = \min_{B : \forall (i,j) 1 \leq A(i,j)B(i,j) \leq \alpha} \gamma_2(B).$$

Above $r(X)$ represents the largest ℓ_2 norm of the rows of X and $c(X)$ represents the largest ℓ_2 norm of the columns of Y.

Below we present two well-known lower bound methods for deterministic communication complexity.

Definition 11 (log-rank bound) Let $f : \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ be a total function. Let M_f denote the communication matrix associated with f; $D(f)$ denote the deterministic communication complexity of f and rank(\cdot) represents the rank over the reals. Then it is well known \[KN97\] that $D(f) \geq \log_2 \text{rank}(f)$.

Definition 12 (Fooling Set) Let $f : \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ be a total function. A set $S \subseteq \mathcal{X} \times \mathcal{Y}$ is called a fooling set (for f) if there exists a value $z \in \mathcal{Z}$, such that

- For every $(x, y) \in S$, $f(x, y) = z$.
- For every two distinct pairs (x_1, y_1) and (x_2, y_2) in S, either $f(x_1, y_2) \neq z$ or $f(x_2, y_1) \neq z$.

It is easily argued that $D(f) \geq \log_2 |S|$ \[KN97\].
2.2 Comparison between bounds

The following theorem captures key relationships between the bounds defined in the previous section. Below $R_{\text{pub}}^\epsilon(f)$ denotes the public-coin, ϵ-error communication complexity of f.

Theorem 1 Let $f : X \times Y \rightarrow Z$ be a function.

1. $R_{\text{pub}}^\epsilon(f) \geq \log \text{prt}_\epsilon(f)$.
2. $\text{prt}_\epsilon(f) \geq \text{srec}_\epsilon(f)$.
3. $\text{srec}_\epsilon(f) \geq \text{rec}_\epsilon(f)$.
4. Let $f : X \times Y \rightarrow Z$ be a total function, then $D(f) = O((\log \text{prt}_0(f) + \log n)^2)$. Later we exhibit that the quadratic gap between D and $\log \text{prt}_0$ is tight. For relations however there could be an exponential gap between $\log \text{prt}_0$ and D as shown in [KKN95].
5. Let $f : X \times Y \rightarrow Z$ be a total function, and let $S \subseteq X \times Y$ be a fooling set. Then $\text{prt}_0(f) \geq |S|$.

Proof

1. Let \mathcal{P} be a public coin randomized protocol for f with communication $c \overset{\text{def}}{=} R_{\text{pub}}^\epsilon(f)$ and worst case error ϵ. For binary string r, let \mathcal{P}_r represent the deterministic protocol obtained from \mathcal{P} on fixing the public coins to r. Let r occur with probability $q(r)$ in \mathcal{P}. Every deterministic protocol amounts to partitioning the inputs in $X \times Y$ into rectangles. Let R_r be the set of rectangles corresponding to different communication strings between Alice and Bob in \mathcal{P}_r. We know that $|R_r| \leq 2^c$, since the communication in \mathcal{P}_r is at most c bits. Let $z'_r \in Z$ be the output corresponding to rectangle R_r in \mathcal{P}_r. Let

$$w'_{z,R} \overset{\text{def}}{=} \sum_{r: R_r \in R} q(r) \cdot z'_r.$$

It is easily seen that for all $(x, y, z) \in X \times Y \times Z$:

$$\Pr[\mathcal{P} \text{ outputs } z \text{ on input } (x, y)] = \sum_{R: (x, y) \in R} w'_{z,R}.$$

Since the protocol has error at most ϵ on all inputs in f^{-1} we get the constraints:

$$\forall (x, y) \in f^{-1} : \sum_{R: (x, y) \in R} w'_{f(x), R} \geq 1 - \epsilon.$$

Also since the $\Pr[\mathcal{P} \text{ outputs some } z \in Z \text{ on input } (x, y)] = 1$, we get the constraints:

$$\forall (x, y) : \sum_{z} \sum_{R: (x, y) \in R} w'_{z,R} = 1.$$

Of course we also have by construction : $\forall z, \forall R : w'_{z,R} \geq 0$. Therefore $\{w'_{z,R} : z \in Z, R \in R\}$ is feasible for the primal of $\text{prt}_\epsilon(f)$. Hence,

$$\text{prt}_\epsilon(f) \leq \sum_{z} \sum_{R} w'_{z,R} = \sum_{r} q(r) \cdot |R_r| \leq 2^c \sum_{r} q(r) = 2^c.$$
2. Fix \(z' \in \mathbb{Z} \). We will show that \(\text{rec}_c^\epsilon(f) \leq \text{prt}_c(f) \); this will imply \(\text{rec}_c(f) \leq \text{prt}_c(f) \). Let \(\{w_{z,R} : z \in \mathbb{Z}, R \in \mathcal{R}\} \) be an optimal solution of the primal for \(\text{prt}_c(f) \). Let us define \(\forall R \in \mathcal{R} : w_R \overset{\text{def}}{=} w_{z',R}, \) hence \(\forall R \in \mathcal{R}, w_R \geq 0 \). Now,

\[
\forall (x, y) \in f^{-1}(z') : \sum_{R : (x,y) \in R} w_{z',R} \geq 1 - \epsilon \quad \Rightarrow \quad \sum_{R : (x,y) \in R} w_R \geq 1 - \epsilon,
\]

\[
\forall (x, y) \in f^{-1} - f^{-1}(z') : \sum_{R : (x,y) \in R} w_{f(x,y),R} \geq 1 - \epsilon \quad \Rightarrow \quad \sum_{R : (x,y) \in R} w_R \leq \epsilon,
\]

\[
\forall (x, y) : \sum_{R : (x,y) \in R} \sum_z w_{z,R} = 1 \quad \Rightarrow \quad \sum_{R : (x,y) \in R} w_R \leq 1.
\]

Hence \(\{w_R : R \in \mathcal{R}\} \) forms a feasible solution to the primal for \(\text{rec}_c^\epsilon(f) \) which implies \(\text{rec}_c^\epsilon(f) \leq \sum_R w_R \leq \sum_z \sum_R w_{z,R} = \text{prt}_c(f) \).

3. Fix \(z \in \mathbb{Z} \). Since the primal program for \(\text{rec}_c^\epsilon(f) \) has extra constraints over the primal program for \(\text{rec}_c(f) \), it implies that \(\text{rec}_c^\epsilon(f) \leq \text{rec}_c(f) \). Hence \(\text{rec}_c(f) \leq \text{rec}_c^\epsilon(f) \).

4. (Sketch) Let \(W \overset{\text{def}}{=} \{w_{z,R}\} \) be an optimal solution to the primal for \(\text{prt}_0 f \). It is easily seen that \(w_{z,R} > 0 \Rightarrow ((x, y) \in R \Rightarrow f(x, y) = z) \).

Using standard Chernoff type arguments we can argue that there exists subset \(W' \subseteq W \) with \(|W'| = O(n \text{prt}_0 f) \) such that:

\[
\forall (x, y) \in f^{-1} : \sum_{R : (x,y) \in R,w_{f(x,y),R} \in W'} w_{f(x,y),R} > 0.
\]

Hence \(W' \) is a cover of \(\mathcal{X} \times \mathcal{Y} \) using monochromatic rectangles. Now using arguments as in Theorem 2.11 of [KN97] it follows that \(D(f) = O((\log \text{prt}_0 f + \log n)^2) \).

5. Define \(\mu_{x,y} \overset{\text{def}}{=} 1; \phi_{x,y} \overset{\text{def}}{=} 0 \) if \((x, y) \in S \) and \(\mu_{x,y} = \phi_{x,y} \overset{\text{def}}{=} 0 \) otherwise. Since no two elements of \(S \) can appear in the same rectangle, it is easily seen that the constraints for the dual of \(\text{prt}_0(f) \) are satisfied by \(\{\mu_{x,y}, \phi_{x,y}\} \). Hence \(\text{prt}_0(f) \geq \sum_{(x,y)} (\mu_{x,y} - \phi_{x,y}) = |S| \).

\[\square \]

The following lemma shows the equivalence of the two definitions of the rectangle bound.

Lemma 1 Let \(f : \mathcal{X} \times \mathcal{Y} \to \mathbb{Z} \) be a function and let \(\epsilon > 0 \). Then for all \(z \in \mathbb{Z} \),

1. \(\text{rec}_c^\epsilon(f) \leq \tilde{\text{rect}}_2^\epsilon(f) \).

2. \(\text{rec}_c^\epsilon(f) \geq \frac{1}{2} \cdot (\frac{1}{2} - \epsilon) \cdot \tilde{\text{rect}}_2^\epsilon(f) \).

Proof
1. Fix $z \in \mathbb{Z}$. Let $k \overset{\text{def}}{=} \text{rec}^z(f)$. Let $\{\mu_{x,y} : (x,y) \in \mathcal{X} \times \mathcal{Y}\}$ be an optimal solution to the dual for $\text{rec}^z(f)$. We can assume without loss of generality that $(x,y) \notin f^{-1} \Rightarrow \mu_{x,y} = 0$. Let $k_1 \overset{\text{def}}{=} \sum_{(x,y) \in f^{-1}(z)} \mu_{x,y}$ and $k_2 \overset{\text{def}}{=} \sum_{(x,y) \in f^{-1} - f^{-1}(z)} \mu_{x,y}$. Then,

$$k = (1 - \epsilon) \sum_{(x,y) \in f^{-1}(z)} \mu_{x,y} - \epsilon \sum_{(x,y) \in f^{-1} - f^{-1}(z)} \mu_{x,y}$$

$$\Rightarrow \quad k = (1 - \epsilon)k_1 - \epsilon k_2$$

$$\Rightarrow \quad k_1 \geq k \text{ and } k_1 \geq \epsilon k_2 \quad \text{(since } k,k_2 \geq 0 \text{).} \quad (1)$$

Let us define $\lambda_{x,y} \overset{\text{def}}{=} \frac{\mu_{x,y}}{2k_1}$ iff $f(x,y) = z$ and $\lambda_{x,y} \overset{\text{def}}{=} \frac{\mu_{x,y}}{2k_2}$, otherwise. It is easily seen that λ is a distribution on $\mathcal{X} \times \mathcal{Y} \cap f^{-1}$ and $\lambda(f^{-1}(z)) = 0.5$. For all $R \in \mathcal{R}$,

$$\sum_{(x,y) \in f^{-1}(z) \cap R} \mu_{x,y} = \sum_{(x,y) \in (R \cap f^{-1}) - f^{-1}(z)} \mu_{x,y} \leq k$$

$$\Rightarrow \quad \sum_{(x,y) \in f^{-1}(z) \cap R} 2k_1 \lambda_{x,y} = \sum_{(x,y) \in (R \cap f^{-1}) - f^{-1}(z)} 2k_2 \lambda_{x,y} \leq 1$$

$$\Rightarrow \quad \sum_{(x,y) \in f^{-1}(z) \cap R} 2k_1 \lambda_{x,y} \lambda_{x,y} - \sum_{(x,y) \in (R \cap f^{-1}) - f^{-1}(z)} \frac{2k_1}{\epsilon} \lambda_{x,y} \leq 1 \quad \text{(from \,(1)\,)}$$

$$\Rightarrow \quad \epsilon \left(\sum_{(x,y) \in f^{-1}(z) \cap R} \lambda_{x,y} - \frac{1}{2k_1} \right) \leq \sum_{(x,y) \in (R \cap f^{-1}) - f^{-1}(z)} \lambda_{x,y}$$

Let $R \in \mathcal{R}$ be such that $\sum_{(x,y) \in f^{-1}(z) \cap R} \lambda_{x,y} \geq \frac{1}{k}$. Then we have from above

$$\frac{\epsilon}{2} \left(\sum_{(x,y) \in f^{-1}(z) \cap R} \lambda_{x,y} \right) \leq \sum_{(x,y) \in (R \cap f^{-1}) - f^{-1}(z)} \lambda_{x,y} \quad \text{(2)}$$

Therefore by definition $\text{rec}^{z,\lambda}_{\frac{\epsilon}{2}}(f) \geq k$ which implies $\text{rec}^{z}_{\frac{\epsilon}{2}}(f) \geq k$.

2. Fix $z \in \mathbb{Z}$. Let $k = \text{rec}^{z}_{2\epsilon}(f)$. Let λ be a distribution on $\mathcal{X} \times \mathcal{Y} \cap f^{-1}$ such that $\text{rec}^{z}_{2\epsilon}(f) = \text{rec}^{z,\lambda}_{2\epsilon}(f)$ and $\lambda(f^{-1}(z)) \geq 0.5$. Let us define $\mu_{x,y} \overset{\text{def}}{=} k \cdot \lambda_{x,y}$ iff $f(x,y) = z$; $\mu_{x,y} \overset{\text{def}}{=} k \cdot \frac{\lambda_{x,y}}{2\epsilon}$ iff $(x,y) \in f^{-1} - f^{-1}(z)$ and $\mu_{x,y} = 0$ otherwise. Now let $R \in \mathcal{R}$ be such that $\lambda(f^{-1}(z) \cap R) \leq \frac{1}{k}$, then

$$\sum_{(x,y) \in f^{-1}(z) \cap R} \lambda_{x,y} \leq \frac{1}{k} \Rightarrow \sum_{(x,y) \in f^{-1}(z) \cap R} \mu_{x,y} \leq 1 \text{.}$$

Let $\lambda(f^{-1}(z) \cap R) > \frac{1}{k}$, then

$$2\epsilon \sum_{(x,y) \in f^{-1}(z) \cap R} \lambda_{x,y} \leq \sum_{(x,y) \in (R \cap f^{-1}) - f^{-1}(z)} \lambda_{x,y}$$

$$\Rightarrow \sum_{(x,y) \in f^{-1}(z) \cap R} \mu_{x,y} \leq \sum_{(x,y) \in (R \cap f^{-1}) - f^{-1}(z)} \mu_{x,y} \text{.}$$
Hence the constraints of the dual program for $\text{rec}_z^e(f)$ are satisfied by \{\mu_{x,y} : (x,y) \in \mathcal{X} \times \mathcal{Y}\}. Now,

$$\text{rec}_z^e(f) \geq \sum_{(x,y) \in f^{-1}(z)} (1 - \epsilon) \cdot \mu_{x,y} - \sum_{(x,y) \in f^{-1} - f^{-1}(z)} \epsilon \cdot \mu_{x,y}$$

$$= k \cdot \left(\sum_{(x,y) \in f^{-1}(z)} (1 - \epsilon) \cdot \lambda_{x,y} - \frac{\lambda_{x,y}}{2} \right)$$

$$\geq \frac{k}{2} \cdot \frac{1}{2} \cdot \sum_{(x,y) \in f^{-1}(z)} \epsilon$$ \ (since $\lambda(f^{-1}(z)) \geq 0.5$).

\[\square \]

The following lemma shows the equivalence of the two definitions of the smooth-rectangle bound.

Lemma 2 Let $f : \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ be a function and let $\epsilon > 0$. Then for all $z \in \mathcal{Z}$,

1. $\text{rec}_z^e(f) \leq \text{rec}_{\frac{2 - \epsilon}{2}}(f)$.

2. $\text{rec}_z^e(f) \geq \frac{1}{\epsilon} \cdot (\frac{1}{\epsilon} - \epsilon) \cdot \text{rec}_{\frac{2}{\epsilon} - 1}(f)$.

Proof

1. Fix $z \in \mathcal{Z}$. Let \{\mu_{x,y}, \phi_{x,y} : (x,y) \in \mathcal{X} \times \mathcal{Y}\} be an optimal solution to the dual for $\text{rec}_z^e(f)$. We can assume w.l.o.g. that $(x,y) \notin f^{-1} \Rightarrow \mu_{x,y} = \phi_{x,y} = 0$; also that $(x,y) \notin f^{-1}(z) \Rightarrow \phi_{x,y} = 0$. Let us observe that we can assume w.l.o.g. that $\forall (x,y) \in f^{-1}(z)$, either $\mu_{x,y} = 0$ or $\phi_{x,y} = 0$. Otherwise let us say that for some $(x,y) \in f^{-1}(z) : \mu_{x,y} \geq \phi_{x,y} > 0$. Then using $\mu'_{x,y} \stackrel{\text{def}}{=} \mu_{x,y} - \phi_{x,y}$ and $\phi'_{x,y} \stackrel{\text{def}}{=} 0$ instead of $(\mu_{x,y}, \phi_{x,y})$, and the rest the same, is a strictly better solution; that is the objective function is strictly larger in the new case. A similar argument can be made if for some $(x,y) \in f^{-1}(z) : \phi_{x,y} \geq \mu_{x,y} > 0$.

Let $g : \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ be such that $g(x,y) = f(x,y)$ iff $\phi_{x,y} = 0$ and $g(x,y) \neq f(x,y)$ otherwise (g remains undefined wherever f is undefined). For all (x,y) let $\mu'_{x,y} \stackrel{\text{def}}{=} \mu_{x,y}$ if $\phi_{x,y} = 0$ and $\mu'_{x,y} = \phi_{x,y}$ otherwise. Then $\forall (x,y), \mu'_{x,y} \geq 0$ and

$$\forall R \in \mathcal{R} : \sum_{(x,y) \in f^{-1}(z) \cap R} (\mu_{x,y} - \phi_{x,y}) - \sum_{(x,y) \in (R \cap f^{-1}) - f^{-1}(z)} \mu_{x,y} \leq 1$$

$$\Rightarrow \forall R \in \mathcal{R} : \sum_{(x,y) \in g^{-1}(z) \cap R} \mu'_{x,y} - \sum_{(x,y) \in (R \cap g^{-1}) - g^{-1}(z)} \mu'_{x,y} \leq 1.$$ \ (3)

Hence \{\mu'_{x,y} : (x,y) \in \mathcal{X} \times \mathcal{Y}\} is a feasible solution to the dual of $\text{rec}_z^e(g)$. Now,

$$k \stackrel{\text{def}}{=} \sum_{(x,y) \in g^{-1}(z)} (1 - \epsilon) \cdot \mu'_{x,y} - \sum_{(x,y) \in g^{-1} - g^{-1}(z)} \epsilon \cdot \mu'_{x,y}$$

$$= \sum_{(x,y) \in f^{-1}(z)} (1 - \epsilon) \cdot \mu_{x,y} - \sum_{(x,y) \in f^{-1} - f^{-1}(z)} \epsilon \cdot \mu_{x,y}$$

$$\geq \sum_{(x,y) \in f^{-1}(z)} (1 - \epsilon) \cdot \mu_{x,y} - \sum_{(x,y) \in f^{-1} - f^{-1}(z)} \epsilon \cdot \mu_{x,y}$$

$$= \text{rec}_z^e(f).$$ \ (5)
Let \(k_1 \equiv \sum_{(x,y) \in g^{-1}(z)} \mu_{x,y} \) and \(k_2 \equiv \sum_{(x,y) \in g^{-1} - g^{-1}(z)} \mu_{x,y}' \). Let \(\lambda_{x,y} \equiv \frac{\mu_{x,y}}{2k_1} \) iff \(g(x, y) = z \) and \(\lambda_{x,y} \equiv \frac{\mu_{x,y}'}{2k_2} \), otherwise. It is clear that \(\lambda \) is a distribution on \(\mathcal{X} \times \mathcal{Y} \cap g^{-1} \) and \(\lambda(g^{-1}(z)) = 0.5 \). As in the proof of Part 1. of Lemma 1 using (3) and (4), we can argue that \(\text{rec}^z_{\frac{2}{2k_1}}(g) \geq \text{rec}^z_{\frac{2}{2k_2}}(g) \geq k \). Also since \(\sum_{(x,y) \in (f^{-1}) \setminus (f^{-1}(z))} (\mu_{x,y} - \phi_{x,y}) - \sum_{(x,y) \in (f^{-1} - f^{-1}(z))} \mu_{x,y} \leq 1 \) we can argue that \(\sum_{(x,y) \in f^{-1}(z)} \phi_{x,y} \leq (1 - \epsilon)k_2 \) (we assume \(\text{sec}^z_{\frac{2}{2k_1}}(f) \) is at least a large constant). Therefore,

\[
\Pr_{(x,y) \sim \lambda} [g(x, y) \neq f(x, y)] = \sum_{(x,y) \in f^{-1}(z)} \phi_{x,y} \leq \frac{1 - \epsilon}{2}.
\]

Hence by definition, \(\text{sec}^z_{\frac{2}{2k_1}}(f) = \text{sec}^z_{\frac{2}{2k_2}}(f) \geq \text{sec}^z_{\frac{2}{2k_2}}(g) \geq (1 - \epsilon)k_2 \leq 1 \). Let \(R \subseteq \mathcal{X} \times \mathcal{Y} \) be such that \(g(x, y) \neq f(x, y) \) iff \((x, y) \in R \) and \(\lambda(g^{-1}(z)) = 0.5 \). As in the proof of Part 1. of Lemma 1 using (3) and (4), we can argue that \(\text{rec}^z_{\frac{2}{2k_1}}(g) \geq \text{rec}^z_{\frac{2}{2k_2}}(g) \geq k \). Also since \(\sum_{(x,y) \in (f^{-1}) \setminus (f^{-1}(z))} (\mu_{x,y} - \phi_{x,y}) - \sum_{(x,y) \in (f^{-1} - f^{-1}(z))} \mu_{x,y} \leq 1 \) we can argue that \(\sum_{(x,y) \in f^{-1}(z)} \phi_{x,y} \leq (1 - \epsilon)k_2 \) (we assume \(\text{sec}^z_{\frac{2}{2k_1}}(f) \) is at least a large constant). Therefore,

\[
\Pr_{(x,y) \sim \lambda} [g(x, y) \neq f(x, y)] = \sum_{(x,y) \in f^{-1}(z)} \phi_{x,y} \leq \frac{1 - \epsilon}{2}.
\]
Lemma 3 Let \(k \in \mathbb{R} \) and let \(\epsilon > 0 \). Then

1. \(\text{sdisc}_{\frac{1}{2} - \epsilon} \geq \text{sdisc}_\epsilon \).

2. \(\frac{1}{2} \cdot \text{sdisc}_{\frac{1}{2} + \epsilon} \leq \text{sdisc}_\epsilon \).

Proof

1. Let \(k \equiv \text{sdisc}_\epsilon \). Let \(\{ \mu_{x,y}, \phi_{x,y} \} \) be an optimal solution to the dual for \(\text{sdisc}_\epsilon \). As in the proof of Lemma 2, we can argue that for all \((x, y) \in f^{-1} \), either \(\mu_{x,y} = 0 \) or \(\phi_{x,y} = 0 \). For \((x, y) \in f^{-1} \), let us define \(\lambda'_{x,y} \equiv \max \{ \mu_{x,y}, \phi_{x,y} \} \) and let \(\lambda_{x,y} = \frac{\lambda'_{x,y}}{\sum_{(x,y) \in f^{-1}} \lambda'_{x,y}} \). It is clear that \(\lambda \) is a distribution on \(f^{-1} \). Let us define \(g : \mathcal{X} \times \mathcal{Y} \to \{0, 1\} \) such that \(g^{-1} = f^{-1} \). For \((x, y) \in f^{-1} \), let \(g(x, y) = f(x, y) \) iff \(\phi_{x,y} = 0 \) and let \(g(x, y) \neq f(x, y) \) iff \(\phi_{x,y} \neq 0 \). Now

\[
\forall R : | \sum_{(x,y) \in f^{-1}(1) \cap R} (\mu_{x,y} - \phi_{x,y}) - \sum_{(x,y) \in R \cap f^{-1}(0)} (\mu_{x,y} - \phi_{x,y}) | \leq 1
\]

\[
\Rightarrow \forall R : | \sum_{(x,y) \in g^{-1}(1) \cap R} \lambda'_{x,y} - \sum_{(x,y) \in R \cap g^{-1}(0)} \lambda'_{x,y} | \leq 1
\]

\[
\Rightarrow \forall R : | \sum_{(x,y) \in g^{-1}(1) \cap R} \lambda_{x,y} - \sum_{(x,y) \in R \cap g^{-1}(0)} \lambda_{x,y} | \leq \frac{1}{\sum_{x,y} \mu_{x,y} + \phi_{x,y}} \leq \frac{1}{k} .
\]

Hence \(\text{disc}^\lambda(g) \geq k \). Also since \(\sum (x,y) \mu_{x,y} - (1 + \epsilon) \phi_{x,y} \geq 0 \),

\[
\Pr_{(x,y) \sim \lambda} [g(x, y) \neq f(x, y)] = \frac{1}{\sum_{x,y} \mu_{x,y} + \phi_{x,y}} \sum_{(x,y)} \phi_{x,y} \leq \frac{1}{2 + \epsilon} \leq \frac{1}{2} - \frac{\epsilon}{8} .
\]

Hence our result.
2. Let \(\delta \) be a distribution on \(f^{-1} \) such that \(k \) and \(\Pr_{(x,y) \sim \lambda}[g(x,y) \neq f(x,y)] \) are \(\delta \) for \(f \). Let \(\lambda \) be a distribution on \(f^{-1} \) such that \(k \) and \(\Pr_{(x,y) \sim \lambda}[g(x,y) \neq f(x,y)] \) are \(\delta \) for \(f \).

\[
\forall R : \left| \sum_{(x,y) \in R \cap f^{-1}(z)} \lambda_{x,y} - \sum_{(x,y) \in R \cap f^{-1}(0)} \lambda_{x,y} \right| \leq \frac{1}{k}
\]

\[
\Rightarrow \forall R : \left| \sum_{(x,y) \in f^{-1}(1) \cap R} (\mu_{x,y} - \phi_{x,y}) - \sum_{(x,y) \in R \cap f^{-1}(0)} (\mu_{x,y} - \phi_{x,y}) \right| \leq 1 .
\]

Hence \(\{\mu_{x,y}, \phi_{x,y}\} \) form a feasible solution to the dual for \(\text{sdisc}_\lambda(f) \). Now,

\[
\text{sdisc}_\epsilon(f) \geq \sum_{(x,y)} \mu_{x,y} - (1 + \epsilon)\phi_{x,y} > k((1 - \delta) - (1 + \epsilon)\delta) = k(1 - (2 + \epsilon)\delta) = \frac{k}{2} .
\]

\[
\square
\]

The following lemma states the rectangle bound dominates the discrepancy bound for Boolean functions and hence the smooth-rectangle bound dominates the smooth-discrepancy bound.

Lemma 4 Let \(f : \mathcal{X} \times \mathcal{Y} \to \{0,1\} \) be a function; let \(z \in \{0,1\} \) and let \(\lambda \) be a distribution on \(\mathcal{X} \times \mathcal{Y} \cap f^{-1} \). Let \(\epsilon, \delta > 0 \), then

\[
\text{rec}_\epsilon^z(f) \geq (\frac{1}{2} - \epsilon)\text{disc}_\lambda^z(f) - \frac{1}{2} .
\]

This implies by definition and Lemma 7

\[
\text{rec}_\epsilon^z(f) \geq (\frac{1}{2} - \epsilon)\text{disc}_\lambda^z(f) - \frac{1}{2} .
\]

\[
\Rightarrow \text{rec}_\epsilon^z(f) \geq (\frac{1}{2} - \epsilon)\text{disc}_\lambda^z(f) - \frac{1}{2} .
\]

Proof Let \(k = \text{disc}_\lambda^z(f) \). Let \(\forall (x,y) \in f^{-1} : \mu_{x,y} \defeq k \cdot \lambda_{x,y} \) and \(\mu_{x,y} = 0 \) otherwise. Then we have:

\[
\forall R : \left| \sum_{(x,y) \in R \cap f^{-1}(z)} \lambda_{x,y} - \sum_{(x,y) \in R \cap f^{-1}(0)} \lambda_{x,y} \right| \leq \frac{1}{k}
\]

\[
\Rightarrow \forall R : \left| \sum_{(x,y) \in R \cap f^{-1}(z)} \mu_{x,y} - \sum_{(x,y) \in R \cap f^{-1}(0)} \mu_{x,y} \right| \leq 1 .
\]
Hence the constraints for the dual of the linear program for $\text{rec}_c^\epsilon(f)$ are satisfied by $\{\mu_{x,y} : (x,y) \in \mathcal{X} \times \mathcal{Y}\}$. Now,

$$\text{rec}_c^\epsilon(f) \geq \sum_{(x,y) \in f^{-1}(z)} (1 - \epsilon) \cdot \mu_{x,y} - \sum_{(x,y) \in f^{-1} - f^{-1}(z)} \epsilon \cdot \mu_{x,y}$$

$$= k \cdot \left(\sum_{(x,y) \in f^{-1}(z)} (1 - \epsilon) \cdot \lambda_{x,y} - \sum_{(x,y) \notin f^{-1}(z)} \epsilon \cdot \lambda_{x,y} \right)$$

$$= k \cdot \left(\sum_{(x,y) \in f^{-1}(z)} \lambda_{x,y} - \epsilon \right)$$

$$\geq k \cdot \left(\frac{1}{2} - \frac{1}{2k} - \epsilon \right) = \left(\frac{1}{2} - \epsilon \right)k - \frac{1}{2}$$.

The last inequality follows since $\text{disc}^\lambda(f) = k$. □

For a function $g : \mathcal{X} \times \mathcal{Y} \to \{0,1\}$, let A_g be the sign matrix corresponding to g, that is $A_g(x,y) \overset{\text{def}}{=} (-1)^{g(x,y)}$. Similarly for a sign matrix A, let g_A be the corresponding function given by $g_A(x,y) \overset{\text{def}}{=} (1 - A(x,y))/2$. For distribution λ on $\mathcal{X} \times \mathcal{Y}$, let P_λ be the matrix defined by $P_\lambda(x,y) \overset{\text{def}}{=} \lambda(x,y)$. For matrix B, define $\|B\|_\Sigma \overset{\text{def}}{=} \sum_{i,j} |B(i,j)|$. For matrices C,D, let $C \circ D$ denote the entry wise Hadamard product of C,D. Following lemma states the equivalence between smooth-discrepancy and the γ_2 bound.

Lemma 5 Let $f : \mathcal{X} \times \mathcal{Y} \to \{0,1\}$ be a Boolean function and let $\alpha > 1$. Then

$$\frac{1}{2} \cdot \text{sdisc}_{\frac{1}{2}(\alpha + 1)}(f) \leq \gamma_2^\alpha(A_f) \leq 8 \cdot \text{sdisc}_{\frac{1}{\alpha + 1}}(f).$$

Proof We have the following facts:

Fact 1 ([LS09]) For every sign matrix A,

$$\gamma_2^\alpha(A) = \max_B \frac{1}{2\gamma_2^\alpha(B)} ((\alpha + 1) \langle A,B \rangle - (\alpha - 1)\|B\|_\Sigma).$$

Above, $\gamma_2^\alpha(\cdot)$ is the dual norm of $\gamma_2(\cdot)$.

Fact 2 ([LS09]) Let A be a sign matrix and let λ be a distribution. Then,

$$\frac{1}{8\gamma_2^\alpha(A \circ P_\lambda)} \leq \text{disc}^\lambda(g_A) \leq \frac{1}{\gamma_2^\alpha(A \circ P_\lambda)}.$$
Therefore we have,
\[
\gamma_2^\alpha(A_f) = \max_B \frac{1}{2\gamma_2^\alpha(B)}((\alpha + 1)(A_f, B) - (\alpha - 1)||B||_2)
\]
\[
= \max_B:\text{||}B||_2=1 \frac{1}{2\gamma_2^\alpha(B)}((\alpha + 1)(A_f, B) - (\alpha - 1))
\]
\[
= \max_{g, \lambda} \frac{1}{\gamma_2^\alpha(A_g \circ P_\lambda)}(1 - (\alpha + 1)\lambda(f \neq g))
\]
\[
\leq \max_{g, \lambda} 8 \cdot \text{disc}^\lambda(g) (1 - (\alpha + 1)\lambda(f \neq g))
\]
\[
\leq \max\{8 \cdot \text{disc}^\lambda(g) : g, \lambda \text{ such that } \lambda(f \neq g) < \frac{1}{\alpha + 1}\}
\]
\[
= 8 \cdot \text{sdisc}_{\frac{1}{\alpha + 1}}(f)
\]

Similarly,
\[
\gamma_2^\alpha(A_f) = \max_{g, \lambda} \frac{1}{\gamma_2^\alpha(A_g \circ P_\lambda)}(1 - (\alpha + 1)\lambda(f \neq g))
\]
\[
\geq \max_{g, \lambda} \text{disc}^\lambda(g) (1 - (\alpha + 1)\lambda(f \neq g))
\]
\[
\geq \max\{\frac{1}{2} \cdot \text{disc}^\lambda(g) : g, \lambda \text{ such that } \lambda(f \neq g) < \frac{1}{2(\alpha + 1)}\}
\]
\[
= \frac{1}{2} \cdot \text{sdisc}_{\frac{1}{2(\alpha + 1)}}(f)
\]

\[\Box\]

From Lemma 4 and Lemma 5 we have the following corollary.

Corollary 1 Let \(f : \mathcal{X} \times \mathcal{Y} \to \{0, 1\} \) be a Boolean function; let \(z \in \{0, 1\} \); let \(\alpha > 1, \epsilon > 0 \). Then,
\[
\text{sec}_{\frac{\epsilon}{2(\alpha + 1)}}^z(f) \geq (\frac{1}{2} - \epsilon) \frac{1}{8} \gamma_2^\alpha(A_f) - \frac{1}{2}
\]

2.3 Partition bound for relations

Here we define the partition bound for relations.

Definition 13 (Partition Bound for relation) Let \(f \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \) be a relation. The \(\epsilon \)-partition bound of \(f \), denoted \(\text{prt}_\epsilon(f) \), is given by the optimal value of the following linear program.

Primal

\[
\begin{align*}
\min : & \sum_z \sum_R w_{z,R} \\
\forall (x, y) : & \sum_{R : (x, y) \in R} \sum_{z : (x, y, z) \in f} w_{z,R} \geq 1 - \epsilon, \\
\forall (x, y) : & \sum_{R : (x, y) \in R} \sum_z w_{z,R} = 1, \\
\forall z, \forall R : & w_{z,R} \geq 0.
\end{align*}
\]

Dual

\[
\begin{align*}
\max : & \sum_{(x, y)} (1 - \epsilon)\mu_{x,y} + \phi_{x,y} \\
\forall z, \forall R : & \sum_{(x, y) : (x, y, z) \in f} \mu_{x,y} + \sum_{(x, y) \in R} \phi_{x,y} \leq 1, \\
\forall (x, y) : & \mu_{x,y} \geq 0, \phi_{x,y} \in \mathbb{R}.
\end{align*}
\]
As in Theorem 1, we can show that partition bound is a lower bound on the communication complexity. Its proof is skipped since it is very similar.

Lemma 6 Let \(f \subseteq X \times Y \times Z \) be a relation. Then, \(R^\text{pub}_f(\epsilon) \geq \log \text{prt}_f(\epsilon) \).

2.4 Las Vegas Partition Bound

In this section we consider the Las Vegas communication complexity. Las Vegas protocols use randomness and for each input they are allowed to output "don’t know" with probability \(\frac{1}{2} \), however when they do give an answer then it is required to be correct. An equivalent way to view is that these protocols are never allowed to err, but for each input we only count the expected communication (over the coins), instead of the worst case communication (as in deterministic protocols). Below we present a lower bound for Las Vegas protocols via a linear program, which we call the Las Vegas partition bound.

Definition 14 (Las Vegas Partition Bound) Let \(f : X \times Y \rightarrow Z \) be a partial function. The Las Vegas-partition bound of \(f \), denoted \(\text{prt}^\ast_{LV}(f) \), is given by the optimal value of the following linear program. Let \(R_f \) denote the set of monochromatic rectangles for \(f \).

\[
\begin{align*}
\text{Primal} & : \quad \min \quad \sum_{R \in R_f} w_R + \sum_{R \in R_f} v_R \\
& \quad \forall (x,y) \in f^{-1} : \sum_{R \in R_f : (x,y) \in R} w_R \geq \frac{1}{2}, \\
& \quad \forall (x,y) : \sum_{R \in R_f : (x,y) \in R} w_R + \sum_{R \in R_f : (x,y) \in R} v_R = 1, \\
& \quad \forall R : w_R, v_R \geq 0.
\end{align*}
\]

\[
\begin{align*}
\text{Dual} & : \quad \max \quad \sum_{(x,y) \in f^{-1}} \frac{1}{2} \cdot \mu_{x,y} + \sum_{(x,y) \in f^{-1}} \phi_{x,y} \\
& \quad \forall R \in R_f : \sum_{(x,y) \in f^{-1}(z) \cap R} \mu_{x,y} + \sum_{(x,y) \in R} \phi_{x,y} \leq 1, \\
& \quad \forall R : \sum_{(x,y) \in R} \phi_{x,y} \leq 1, \\
& \quad \forall (x,y) : \mu_{x,y} \geq 0, \phi_{x,y} \in \mathbb{R}.
\end{align*}
\]

The following lemma follows easily using arguments as before. Below \(R_0(f) \) represents the Las Vegas communication complexity of \(f \); please refer to \([KN97]\) for explicit definition of \(R_0(f) \).

Lemma 7 Let \(f : X \times Y \rightarrow Z \) be a partial function. Then, \(R_0(f) \geq \log \text{prt}^\ast_{LV}(f) \).

Let \(\text{prt}^\ast_{LV}(f) \) be defined similarly to \(\text{prt}_{LV}(f) \), except that the constraints

\[
\forall (x,y) \in f^{-1} : \sum_{R \in R_f : (x,y) \in R} w_R \geq \frac{1}{2}
\]

are replaced by

\[
\forall (x,y) \in f^{-1} : \sum_{R \in R_f : (x,y) \in R} w_R = \frac{1}{2}.
\]

Then we can observe \(\text{prt}_0(f) \geq \text{prt}^\ast_{LV}(f) \geq \frac{1}{2} \text{prt}_0(f) \). Note that \(\log \text{prt}^\ast_{LV}(f) \) forms a lower bound for \(R_0(f) \) if there is a Las Vegas protocol for \(f \) that has the probability of output 'don’t know' for all inputs.
2.5 Separations between bounds

In this section, we discuss some separations between some of the bounds we mentioned.

Theorem 2

1. $\log \text{pr}_t(\text{Disj}) \geq \log \text{rec}_t(\text{Disj}) = \Omega(n)$, while $\log \gamma^0_2(\text{Disj}) = O(\sqrt{n})$ for all $\epsilon < 1/2$ and $\alpha > 1$.

2. There is a function $f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$ such that $\log \text{pr}_t(f) \geq \log \text{rec}_t(f) = \Omega(n)$, while $\log \text{rank}(f) = O(n^{0.62})$ for all $\epsilon < 1/2$.

3. Let the function $\text{LNE} : \{0, 1\}^{n^2} \times \{0, 1\}^{n^2} \rightarrow \{0, 1\}$ be defined as

\[\text{LNE}(x_1, \ldots, x_n; y_1, \ldots, y_n) = 1 \iff \forall i : x_i \neq y_i \]

where all x_i, y_j are strings of length n. Then $D(\text{LNE}) = \text{rank}(\text{LNE}) = n^2$, however $R_0(\text{LNE}) = O(n)$ and $\log \text{pr}_0(\text{LNE}) = O(n)$.

Proof

1. The lower bound is from [Raz92], the upper bound follows from [AA05].

2. The function is described in [NW95].

3. The lower bound $D(\text{LNE}) = n^2$ is shown in [KN97] where it was shown that $\log \text{rank}(\text{LNE}) = n^2$. It is not hard to see that the Las Vegas complexity of LNE is $O(n)$ which is also shown in [KN97].

In order to show $\log \text{pr}_0(\text{LNE}) = O(n)$, we describe a solution to the primal program for the partition bound for LNE. We will assign a positive weight w_R, to every monochromatic rectangle R such that the sum of weights is small. In this case one can set $w_z, R = w_R$ where z is the color of the monochromatic rectangle R (all other $w_{z', R}$ are 0). We present the analysis below assuming that none of $x_1 \ldots x_n, y_1 \ldots y_n$ is 0^n. The analysis can be extended easily if such is the case.

First we consider the 1-inputs of LNE. Let $R_{z_1, \ldots, z_n; s_1, \ldots, s_n}$ be the rectangle that contains all inputs with $\sum_j x_i(j) \cdot z_i(j) = s_i \mod 2$ and $\sum_j y_i(j) \cdot z_i(j) \neq s_i \mod 2$ for all i. Note that these are 1-chromatic rectangles. We give weight $2^n/2^{n^2}$ to each such rectangle. For every 1-input $x_1, \ldots, x_n; y_1, \ldots, y_n$ and all s_1, \ldots, s_n

\[
\Pr_{z_1, \ldots, z_n} \left(\sum_j x_i(j) \cdot z_i(j) = s_i \mod 2 \land \sum_j y_i(j) \cdot z_i(j) \neq s_i \mod 2 \right. \left. \text{for all } i \right) = 1/4^n
\]

for uniform z_1, \ldots, z_n. Hence

\[
\sum w_{R_{z_1, \ldots, z_n; s_1, \ldots, s_n}} = 2^n \cdot \frac{2^{n^2}}{4^n} \cdot \frac{2^n}{2^{n^2}} = 1,
\]

when the sum is over all $R_{z_1, \ldots, z_n; s_1, \ldots, s_n}$ consistent with $x_1, \ldots, x_n; y_1, \ldots, y_n$. The sum of the weights $w_{R_{z_1, \ldots, z_n; s_1, \ldots, s_n}}$ of all such rectangles is exactly 2^{2n}.

17
Now we turn to the 0-inputs. For each of them there is a position \(k+1 \), where \(x_{k+1} = y_{k+1} \) but \(x_i \neq y_i \) for all \(i \leq k \). Let \(R_{z_1,,z_k,s_1,,s_k,u} \) denote the rectangle that contains all inputs with \(\sum_j x_i(j) \cdot z_i(j) = s_i \) mod 2 and \(\sum_j y_i(j) \cdot z_i(j) \neq s_i \) mod 2 for all \(i \leq k \) and \(x_{k+1} = y_{k+1} = u \). The rectangle \(R_{z_1,,z_k,s_1,,s_k,u} \) receives weight \(2^k/2^{nk} \). As before it can be argued that every 0-input lies in \(2^{nk}/2^k \) such rectangles, so the constraints are satisfied. The overall sum of rectangle weights is at most
\[
\sum_{k=0}^{n-1} 2^{kn} \cdot 2^k \cdot 2^n \cdot \frac{2^k}{2^{kn}} \leq 2 \cdot 2^3n.
\]
Hence \(\log \text{prt}_0(\text{LNE}) \leq \log \sum_{R \in R_{\text{LNE}}} w_R = O(n) \).

\[\square\]

3 Query Complexity Bounds

In this section we define the partition bound for query complexity and also other previously known bounds.

3.1 Definitions

Let \(f : \{0,1\}^n \rightarrow \{0,1\}^m \) be a function. Henceforth all functions considered are partial unless otherwise specified. An assignment \(A : S \rightarrow \{0,1\}^m \) is an assignment of values to some subset \(S \) of \(n \) variables. We say that \(A \) is consistent with \(x \in \{0,1\}^n \) if \(x_i = A(i) \) for all \(i \in S \). We write \(x \in A \) as shorthand for ’\(A \) is consistent with \(x \)’. We write \(|A| \) to represent the size of \(A \) which is the cardinality of \(S \) (not to be confused with the number of consistent inputs). Furthermore we say that an index \(i \) appears in \(A \), if \(i \in S \) where \(S \) is the subset of \([n]\) corresponding to \(A \). Let \(A \) denote the set of all assignments. Below we assume \(x \in \{0,1\}^n \), \(A \in A \) and \(z \in \{0,1\}^m \), unless otherwise specified.

3.1.1 Partition Bound

Definition 15 (Partition Bound) Let \(f : \{0,1\}^n \rightarrow \{0,1\}^m \) be a function and let \(\epsilon \geq 0 \). The \(\epsilon \)-partition bound of \(f \), denoted \(\text{prt}_\epsilon(f) \), is given by the optimal value of the following linear program.

Primal

\[
\begin{align*}
\text{min:} & \quad \sum_x \sum_A w_{x,A} \cdot 2^{|A|} \\
\forall x \in f^{-1} : & \quad \sum_{A : x \in A} w_{f(x),A} \geq 1 - \epsilon, \\
\forall x : & \quad \sum_{A : x \in A} \sum_z w_{x,A} = 1, \\
\forall z, \forall A : & \quad w_{z,A} \geq 0.
\end{align*}
\]

Dual

\[
\begin{align*}
\text{max:} & \quad (1-\epsilon)\mu_x + \sum_x \phi_x \\
\forall A, \forall z : & \quad \sum_{x \in f^{-1}(z) \cap A} \mu_x + \sum_{x \in A} \phi_x \leq 2^{|A|}, \\
\forall x : & \quad \mu_x \geq 0, \phi_x \in \mathbb{R}.
\end{align*}
\]

18
3.1.2 Known Bounds

In this section we define some known complexity measures of functions. All of these except the (errorless) certificate complexity are lower bounds for randomized query complexity. See the survey by Buhrman and de Wolf [BW02] for further information.

Definition 16 (Certificate Complexity) For $z \in \{0,1\}^m$, a z-certificate for f is an assignment A such that $x \in A \Rightarrow f(x) = z$. The certificate complexity $C_x(f)$ of f on x is the size of the smallest $f(x)$-certificate that is consistent with x. The certificate complexity of f is $C(f) \overset{\text{def}}{=} \max_{x \in f^{-1}} C_x(f)$. The z-certificate complexity of f is $C_z(f) \overset{\text{def}}{=} \max_{x : f(x) = z} C_x(f)$.

Definition 17 (Sensitivity and Block Sensitivity) For $x \in \{0,1\}^n$ and $S \subseteq [n]$, let x^S be x flipped on locations in S. The sensitivity $s_x(f)$ of f on x is the number of different $i \in [n]$ for which $f(x) \neq f(x^{i})$. The sensitivity of f is $s(f) \overset{\text{def}}{=} \max_{x \in f^{-1}} s_x(f)$.

The block sensitivity $bs_x(f)$ of f on x is the maximum number b such that there are disjoint sets B_1, \ldots, B_b for which $f(x) \neq f(x^{B_i})$. The block sensitivity of f is $bs(f) \overset{\text{def}}{=} \max_{x \in f^{-1}} bs_x(f)$. If f is constant, we define $s(f) = bs(f) = 0$. It is clear from definitions that $s(f) \leq bs(f)$.

Definition 18 (Randomized Certificate Complexity [A06]) A ϵ-error randomized verifier for $x \in \{0,1\}^n$ is a randomized algorithm that, on input $y \in \{0,1\}^n$, queries y and (i) accepts with probability 1 if $y = x$, and (ii) rejects with probability at least $1 - \epsilon$ if $f(y) \neq f(x)$. If $y \neq x$ but $f(y) = f(x)$, the acceptance probability can be arbitrary. Then $RC_x^\epsilon(f)$ is the maximum number of queries used by the best ϵ-error randomized verifier for x, and $RC_x(f) \overset{\text{def}}{=} \max_{x \in f^{-1}} RC_x^\epsilon(f)$.

The above definition is stronger than the one in [A06].

Definition 19 (Approximate Degree) Let $f : \{0,1\}^n \rightarrow \{0,1\}$ be a Boolean function and let $\epsilon > 0$. A polynomial $\mathbb{R}^n \rightarrow \mathbb{R}$ is said to ϵ-approximate f, if $|p(x) - f(x)| < \epsilon$ for all $x \in f^{-1}$ and $0 \leq p(x) \leq 1$ for all $x \in \{0,1\}^n$. The ϵ-approximate degree $deg_\epsilon(f)$ of f is the minimum degree among all multi linear polynomials that ϵ-approximate f. If $\epsilon = 0$ we write $deg(f)$.

Definition 20 (Classical Adversary Bound) Let $f : \{0,1\}^n \rightarrow \{0,1\}^m$ be a function. Let $p = \{p_x : x \in \{0,1\}^n\}$, p_x is a probability distribution on $[n]$. The classical adversary bound for f denoted $cadv(f)$, is defined as

$$cadv(f) \overset{\text{def}}{=} \min_p \max_{x,y : f(x) \neq f(y)} \frac{1}{\sum_{i : x_i \neq y_i} \min(p_x(i), p_y(i))}.$$

The classical adversary bound is defined in an equivalent but slightly different way by Laplante and Magniez [LM08]; the above formulation appears in their proof and is made explicit in [SS06]. Aaronson [A08] defines a slightly weaker version as observed in [LM08]. Laplante and Magniez do not show an general upper bound for the classical adversary bound, but it is easy to see that $cadv(f) = O(C(f))$ for all total functions.

Definition 21 (Quantum Adversary Bound) Let $f : \{0,1\}^n \rightarrow \mathbb{Z}$ be a function. Let Γ be a Hermitian matrix whose rows and columns are labeled by elements in $\{0,1\}^n$, such that $\Gamma(x,y) = 0$ whenever $f(x) \neq f(y)$. For $i \in [n]$, let D_i be a Boolean matrix whose rows and columns are labeled
by elements in \(\{0,1\}^n\), such that \(D_i(x,y) = 1\) if \(x_i \neq y_i\) and \(D_i(x,y) = 0\) otherwise. The quantum adversary bound for \(f\), denoted \(\text{adv}(f)\) is defined as

\[
\text{adv} \overset{\text{def}}{=} \max_{\Gamma \neq 0} \frac{||\Gamma||}{\max_i ||\Gamma \circ D_i||}.
\]

3.2 Comparison between bounds

The following theorem captures the key relations between the above bounds. Below \(R_\epsilon(f)\) denotes the \(\epsilon\)-error randomized query complexity of \(f\).

Theorem 3 Let \(f : \{0,1\}^n \rightarrow \{0,1\}^m\) be a function, then

1. \(R_\epsilon(f) \geq \frac{1}{3} \log \text{prt}_\epsilon(f)\).
2. \(\log \text{prt}_0(f) \geq C(f)\).
3. Let \(\epsilon < 1/2\), then \(\log \text{prt}_{\frac{2}{2}}(f) \geq \epsilon \cdot \text{bs}(f) + \log \epsilon - 2\).
4. \(\log \text{prt}_\epsilon(f) \geq RC_{\frac{2}{2}}(f) + \log \epsilon\).
5. \(\log \text{prt}_\epsilon(f) \geq (1 - 4\epsilon) \cdot \text{adv}(f) + \log \epsilon\).
6. Let \(f : \{0,1\}^n \rightarrow \{0,1\}\) be a Boolean function. Then, \(\log \text{prt}_\epsilon(f) \geq \text{deg}_{2\epsilon}(f) + \log \epsilon\).
7. Let \(f : \{0,1\}^n \rightarrow \{0,1\}\) be a Boolean function. Then, \(D(f) = O(\log \text{prt}_0(f) \cdot \log \text{prt}_{1/3}(f))\) and \(D(f) = O(\log \text{prt}_{1/3}(f)^3)\), where \(D(f)\) represents the deterministic query complexity of \(f\).

Proof

1. Let \(\{w_{z,A}\}\) be an optimal solution to the primal of \(\text{prt}_\epsilon(f)\). Let \(P\) be a randomized algorithm which achieves \(R_\epsilon(f)\). Then \(P\) is a convex combination of deterministic algorithms where each deterministic algorithm is a decision tree of depth at most \(R_\epsilon(f)\). As in the proof of Part 1. of Theorem 1, we can argue that \(\sum_z \sum_A w_{z,A} \leq 2^{R_\epsilon(f)}\). Now since for each \(A\) above \(|A| \leq R_\epsilon(f)\),

\[
\text{prt}_\epsilon(f) = \sum_z \sum_A w_{z,A} 2^{|A|} \leq 2^{R_\epsilon(f)} \left(\sum_{z \in \{0,1\}^n} \sum_A w_{z,A} \right) \leq 2^{2R_\epsilon(f)}.
\]

Hence our result.

2. Let \(\{w_{z,A}\}\) be an optimal solution to the primal of \(\text{prt}_0(f)\). It is easily observed that \(w_{z,A} > 0\) implies that \(A\) is a \(z\)-certificate. Fix \(x \inf^{-1}\), now

\[
\text{prt}_0(f) = \sum_z \sum_A w_{z,A} \cdot 2^{|A|} \geq \sum_{A : x \in A} w_{f(x),A} \cdot 2^{|A|} \geq 2^{C_x(f)} \cdot \left(\sum_{A : x \in A} w_{f(x),A} \right) = 2^{C_x(f)}.
\]

Hence \(\log \text{prt}_0(f) \geq \max_{x \in f^{-1}} \{C_x(f)\} = C(f)\).
3. Fix \(x \in f^{-1} \). Let \(b \equiv b_x(f) \) and let \(B_1, \ldots, B_b \) be the blocks for which \(f(x) \neq f(x^{B_i}) \). Let \(\mu_x \equiv 2^{\epsilon b - 1}; \phi_x \equiv -(1 - \epsilon) \mu_x \) and for each \(i \in [b] \), let \(-\phi_x u_i = \mu_x u_i \equiv 2^{\epsilon b - 1} \). Let \(\phi_y = \mu_y \equiv 0 \) for \(y \notin \{x, x^{B_1}, \ldots, x^{B_b}\} \).

(a) Let \(|A| \geq \epsilon b \). It is clear that \(\forall z \in \{0, 1\}^m : \sum_{x' \in f^{-1}(z) \cap A} \mu_{x'} + \sum_{x' \in A} \phi_{x'} \leq 2^{\epsilon b} \leq 2|A| \).

(b) Let \(|A| < \epsilon b \). Let \(z \neq f(x) \) or \(x \notin A \). It is clear that \(\sum_{x' \in f^{-1}(z) \cap A} \mu_{x'} + \sum_{x' \in A} \phi_{x'} \leq 0 \leq 2|A| \).

(c) Let \(|A| < \epsilon b \) and \(z = f(x) \) and \(x \in A \). Since at most \(\epsilon b \) blocks among \(B_1, \ldots, B_b \) can have non-empty intersection with the subset \(S \subseteq [n] \) corresponding to \(A \), at least \((1 - \epsilon) b \) among \(\{x^{B_1}, \ldots, x^{B_b}\} \) belong to \(A \); therefore (since \(\epsilon < 0.5 \))

\[
\sum_{x' \in f^{-1}(z) \cap A} \mu_{x'} + \sum_{x' \in A} \phi_{x'} \leq \epsilon \cdot 2^{\epsilon b - 1} - (1 - \epsilon) b \frac{2^{\epsilon b - 1}}{b} < 0 \leq 2|A|.
\]

Therefore the constraints for \(\text{prt}_A^\epsilon(f) \) are satisfied. Now,

\[
\text{prt}_A^\epsilon(f) \geq \sum_x (1 - \frac{\epsilon}{4}) \mu_x + \phi_x = (1 - \frac{\epsilon}{4}) 2^{\epsilon b} - (2 - \epsilon) 2^{\epsilon b - 1} = \epsilon 2^{\epsilon b - 2} .
\]

Hence our result.

4. Let \(\{w_{z,A}\} \) be an optimal solution to the primal of \(\text{prt}_A^\epsilon(f) \). Let \(\alpha \equiv \sum_z \sum_A w_{z,A} \cdot 2|A| \). Let \(A' \equiv \{A : |A| \leq \log \frac{\alpha}{\epsilon}\} \). Then \(\sum_z \sum_{A \notin A'} w_{z,A} \leq \epsilon \). Fix \(x \in f^{-1} \). Let \(A'_x \equiv \{A \in A' : x \in A\} \). We know that

\[
\alpha_x \equiv \sum_{A \in A'_x} w_f(x,A) \geq \sum_{A : x \in A} w_f(x,A) - \epsilon \geq 1 - 2\epsilon.
\]

The verifier \(V_x \) for \(x \) acts as follows:

(a) Choose \(A \in A'_x \) with probability \(\frac{w_f(x,A)}{\alpha_x} \).

(b) Query locations in \(A \).

(c) Accept iff locations queried are consistent with \(A \). Reject otherwise.

Now it is clear that if the input is \(x \) then \(V_x \) accepts with probability 1. Also the number of queries of \(V_x \) are at most \(\log \frac{\alpha}{\epsilon} \) on any input \(y \). Let \(y \) be such that \(f(y) \neq f(x) \). Let \(A'_x,y \equiv \{A \in A'_x : y \in A\} \). Then,

\[
\sum_{A \in A'_x,y} w_f(x,A) \leq \sum_{A \in A' : y \in A} \sum_z w_{z,A} \leq \sum_{A \in A' : y \in A} w_{z,A} + \epsilon \leq 2\epsilon.
\]

Hence \(y \) would be accepted with probability at most \(\frac{2\epsilon}{\epsilon_x} \leq \frac{2\epsilon}{1 - 2\epsilon} \). Hence our result.

5. Let \(\{w_{z,A}\} \) be an optimal solution to the primal of \(\text{prt}_A^\epsilon(f) \). Let \(\alpha \equiv \sum_z \sum_A w_{z,A} \cdot 2|A| \) and \(k \equiv \log \frac{\alpha}{2} \). Let \(A' \equiv \{A : |A| \leq k\} \); then \(\sum_z \sum_{A \notin A'} w_{z,A} \leq \epsilon \). We set \(p \) as in the definition of \(\text{cadv} \) as follows. For all \(x \in f^{-1} \), let \(A'_x \equiv \{A \in A' : x \in A\} \). Define distributions \(p_x \) on \([n] \) as follows:

\[
21
\]
(a) Choose \(A \in \mathcal{A}_x\) with probability \(q(x, A) \overset{\text{def}}{=} \frac{w_{f(x), A}}{\sum_{A' \in \mathcal{A}_x'} w_{f(x), A'}}\).

(b) Choose \(i\) uniformly from the set \(\{i : i \text{ appears in } A\}\).

It is easily seen that \(p_x\) is a distribution on \([n]\). We will show that

\[
\max_{x, y : f(x) \neq f(y)} \frac{1}{\sum_{i : x_i \neq y_i} \min\{p_x(i), p_y(i)\}} \leq \frac{k}{1 - 4\epsilon},
\]

which proves our main claim.

Take any \(x, y\) such that \(f(x) \neq f(y)\). Let’s define \(\forall i \in [n], q_x(i) \overset{\text{def}}{=} \sum_{A \in \mathcal{A}_x' : i \text{ appears in } A} q(x, A)\); similarly define \(q_y(i)\). It is clear that \(\forall i \in [n] : q_x(i) \geq \frac{p_x(i)}{k}\) and \(q_y(i) \geq \frac{p_y(i)}{k}\). We will show:

\[
\sum_{i : x_i \neq y_i} \min\{q_x(i), q_y(i)\} \geq 1 - 4\epsilon,
\]

which implies (6).

Now assume for a contradiction that \(\sum_{i : x_i \neq y_i} \min\{q_x(i), q_y(i)\} < 1 - 4\epsilon\). Consider a hybrid input \(r \in \{0, 1\}^n\) constructed in the following way: if \(q_x(i) \geq q_y(i)\) then \(r_i \overset{\text{def}}{=} x_i\), otherwise \(r_i \overset{\text{def}}{=} y_i\). Now,

\[
\sum_{A : r \in A} \sum_z w_{z, A} \geq \sum_{A \in \mathcal{A}_x'} \sum_z w_{z, A} \\
\geq \sum_{A \in \mathcal{A}_x'} w_{f(x), A} - \sum_{i : q_x(i) < q_y(i)} \sum_{A \in \mathcal{A}_y'} w_{f(y), A} - \sum_{i : q_y(i) \leq q_x(i)} \sum_{A \in \mathcal{A}_y'} \min\{q_x(i), q_y(i)\} \\
\geq \sum_{A : x \in A} w_{f(x), A} + \sum_{A : y \in A} w_{f(y), A} - \sum_{i : x_i \neq y_i} \min\{q_x(i), q_y(i)\} - 2\epsilon \\
\geq 2(1 - \epsilon) - (1 - 4\epsilon) - 2\epsilon > 1.
\]

This contradicts the assumption that \(\{w_{z, A}\}\) is a feasible solution to the primal of \(\text{prt}_i(f)\).

6. Let \(\{w_{z, A}\}\) be an optimal solution to the primal of \(\text{prt}_i(f)\). Let \(\alpha \overset{\text{def}}{=} \sum_z \sum_A w_{z, A} \cdot 2^{\lfloor |A| / 2 \rfloor}\). Let \(\mathcal{A}' \overset{\text{def}}{=} \{A : |A| \leq \log \frac{2}{\epsilon}\}\); then \(\sum_z \sum_{A \in \mathcal{A}' \cdot A} w_{z, A} \leq \epsilon\). For \(A \in \mathcal{A}'\), let \(m_A(x)\) be a monomial which is 1 iff \(x \in A\). Let \(p(x) \overset{\text{def}}{=} \sum_{A \in \mathcal{A}'} w_{1, A} \cdot m_A(x)\). Note that the degree of \(p(x)\) is at most \(\log \frac{2}{\epsilon}\). Now since the constraints of the primal of \(\text{prt}_i(f)\) are satisfied by \(\{w_{z, A}\}\), we get,

\[
\forall x \in f^{-1}(1) : 1 \geq p(x) = \sum_{A \in \mathcal{A}' : x \in A} w_{1, A} \geq \sum_{A \in \mathcal{A} : x \in A} w_{1, A} - \epsilon \geq 1 - 2\epsilon,
\]

and

\[
\forall x \in f^{-1}(0) : 0 \leq p(x) = \sum_{A \in \mathcal{A}' : x \in A} w_{1, A} \leq \sum_{A \in \mathcal{A} : x \in A} w_{1, A} + \epsilon \leq 2\epsilon,
\]

and

\[
\forall x : 0 \leq p(x) \leq 1.
\]

Therefore \(p(x)\), \(2\epsilon\)-approximates \(f\) and hence our result.
7. For a Boolean function f, it is known that $D(f) = O(C(f)bs(f))$ and $D(f) = O(bs(f)^3)$ (refer to [BW02]). The desired result is implied now using earlier parts of this theorem.

\[\square \]

3.3 Example: Tribes

In this section we give an example of applying the partition bound. We consider the Tribes function $f : \{0, 1\}^n \to \{0, 1\}$, which is defined by an AND of \sqrt{n} ORs of \sqrt{n} variables $x_{i,j}$. Note that $C(f) \leq \sqrt{n}$, and hence $\text{cadv}(f) \leq O(\sqrt{n})$, and that furthermore $\hat{\deg}_{1/3}(f)$ is known to lie between $\Omega(n^{1/3})$ and $O(\sqrt{n})$. So both of the standard general purpose lower bound methods cannot handle this problem well.

Theorem 4 Let f be as above and let $\epsilon \in (0, 1/16)$, then

$$R_\epsilon(f) \geq \frac{1}{2} \log \text{prt}_\epsilon(f) \geq \Omega(n).$$

Proof We exhibit a solution to the dual of the linear program for $\text{prt}_\epsilon(f)$. In fact we use a one-sided relaxation of the LP for $\text{prt}_\epsilon(f)$, similar to the smooth rectangle bound. It is easily observed that the optimum of the LP below, denoted $\text{opt}_\epsilon(f)$ is at most $\text{prt}_\epsilon(f)$.

Primal

\[
\begin{align*}
\min: & \quad \sum_A w_A \cdot 2^{|A|} \\
\forall x & \text{ with } f(x) = 1: \sum_{A : x \in A} w_A \geq 1 - \epsilon, \\
\forall x & \text{ with } f(x) = 1: \sum_{A : x \in A} w_A \leq 1, \\
\forall x & \text{ with } f(x) = 0: \sum_{A : x \in A} w_A \leq \epsilon, \\
\forall A & : w_A \geq 0.
\end{align*}
\]

Dual

\[
\begin{align*}
\max: & \quad \sum_{x : f(x) = 1} (1 - \epsilon) \mu_x - \sum_{x : f(x) = 0} \epsilon \mu_x + \sum \phi_x \\
\forall A & : \sum_{x \in f^{-1}(1) \cap A} \mu_x - \sum_{x \in f^{-1}(0) \cap A} \mu_x + \sum_{x \in A} \phi_x \leq 2^{|A|}, \\
\forall x & : \mu_x \geq 0, \phi_x \leq 0. \nonumber
\end{align*}
\]

We will work with the dual program and will assign nonzero values for (μ_x, ϕ_x) on three types of inputs. Denote the set $\{(i, j) : j = 1, \ldots, \sqrt{n}\}$ by B_i. This is a block of inputs that feeds into a single OR. The first set of inputs has exactly one $x_{i,j} = 1$ per block B_i. Clearly these are inputs with $f(x) = 1$, and there are exactly $\sqrt{n^2}$ such inputs. Denote the set of these inputs by T_1. Then we consider a set of inputs with $f(x, y) = 0$. Denote by T_0 the set of inputs in which all but one block B_i have exactly one 1, and one block B_i has no $x_{i,j} = 1$. Again, there are $\sqrt{n^2}$ such inputs. Finally, T_2 contains the set of inputs, in which all B_i except one have exactly one 1, and
one block has two 1’s. There are $(\sqrt{n})^2(n - \sqrt{n})/2$ such inputs. Let $\delta \overset{\text{def}}{=} \frac{1}{4} - 4\epsilon$ and,

For all $x \in T_1$: $\mu_x = \frac{2\delta n}{\sqrt{n}\sqrt{n}}$; $\phi_x = 0$,

For all $x \in T_0$: $\mu_x = \frac{2\delta n}{4\epsilon \cdot \sqrt{n}\sqrt{n}}$; $\phi_x = 0$,

For all $x \in T_2$: $\phi_x = \frac{-4 \cdot 2\delta n}{3(n - \sqrt{n})\sqrt{n}\sqrt{n}}$; $\mu_x = 0$,

For all $x \notin T_0 \cup T_1 \cup T_2$: $\mu_x = \phi_x = 0$.

Claim 1 \{μx, φx\} as defined is feasible for the dual for optε(f).

Proof Clearly \forall x : μx ≥ 0, φx ≤ 0. Let A be an assignment with |A| ≥ δn; in this case,

\[
\sum_{x \in f^{-1}(1) \cap A} \mu_x - \sum_{x \in f^{-1}(0) \cap A} \mu_x + \sum_{x \in A} \phi_x \leq \sum_{x \in f^{-1}(1)} \mu_x \leq 2\delta n \leq 2|A|.
\]

From now on |A| < δn. Let A fix at least two input positions to 1 in a single block B_i. In this case clearly,

\[
\sum_{x \in f^{-1}(1) \cap A} \mu_x - \sum_{x \in f^{-1}(0) \cap A} \mu_x + \sum_{x \in A} \phi_x \leq 0 \leq 2|A|.
\]

Hence from now on consider A which fixes at most a single input position to 1 in each block B_i. For block i let α_i denote the number of positions fixed to 0 in B_i, let β_i \in \{0, 1\} denote the number of positions fixed to 1 and let γ_i denote the number of free positions, i.e., √n - α_i - β_i.

First consider the case when $k \overset{\text{def}}{=} \sum_i \beta_i \leq (1 - 4\epsilon)\sqrt{n}$ and w.l.o.g. assume that the last k blocks contain a 1. The number of inputs in T_1 consistent with A is exactly $\prod_{i=1}^{\sqrt{n} - k} \gamma_i$. The number of inputs in T_0 consistent with A is

\[
\sum_{i=1}^{\sqrt{n} - k} \prod_{j=1, \ldots, \sqrt{n} - k; j \neq i} \gamma_j \geq \frac{\sqrt{n} - k}{\sqrt{n}} \cdot \prod_{i=1}^{\sqrt{n} - k} \gamma_i \geq 4\epsilon \prod_{i=1}^{\sqrt{n} - k} \gamma_i.
\]

Hence,

\[
\sum_{x \in f^{-1}(1) \cap A} \mu_x - \sum_{x \in f^{-1}(0) \cap A} \mu_x + \sum_{x \in A} \phi_x \leq \frac{2\delta n}{\sqrt{n}\sqrt{n}} (1 - 4\epsilon) \prod_{i=1}^{\sqrt{n} - k} \gamma_i \leq 0.
\]

Now assume that $k = \sum_i \beta_i \geq (1 - 4\epsilon)\sqrt{n}$. Again w.l.o.g. the last k blocks have β_i = 1. There are $\prod_{i=1}^{\sqrt{n} - k} \gamma_i$ inputs in T_1 \cap A. The number of inputs in T_2 \∩ A is at least

\[
\left(\prod_{i=1}^{\sqrt{n} - k} \gamma_i\right) \cdot \left(\sum_{i=\sqrt{n} - k + 1}^{\sqrt{n}} \gamma_i\right) \geq \left(\prod_{i=1}^{\sqrt{n} - k} \gamma_i\right) \cdot n(1 - \delta - 4\epsilon),
\]

\[14\]
because we can choose a single 1 for the first $\sqrt{n} - k$ blocks, and a second 1 in any of the last k blocks. Hence

$$\sum_{x \in A \cap T_2} \phi_x \leq -\left(\prod_{i=1}^{\sqrt{n} - k} \gamma_i\right) \cdot n(1 - \delta - 4\epsilon) \cdot \frac{4 \cdot 2^{\delta n}}{3(n - \sqrt{n})\sqrt{n}}$$

$$= -\left(\sum_{x \in A \cap T_1} \mu_x\right) \cdot n(1 - \delta - 4\epsilon) \cdot \frac{4}{3(n - \sqrt{n})}$$

$$\leq -\left(\sum_{x \in A \cap T_1} \mu_x\right) \cdot (1 - \delta - 4\epsilon) \cdot \frac{4}{3} = -\left(\sum_{x \in A \cap T_1} \mu_x\right).$$

Hence the constraints for dual of opt $\epsilon(f)$ are satisfied by all A. □

Finally we have,

$$\text{prt}_\epsilon(f) \geq \text{opt}_\epsilon(f) \geq \sum_{x: f(x) = 1} (1 - \epsilon)\mu_x - \sum_{x: f(x) = 0} \epsilon\mu_x + \sum_{x} \phi_x$$

$$= 2^{\delta n} \left(1 - \epsilon - \frac{\epsilon}{4\epsilon} - \frac{2}{3}\right) = 2^{\Omega(n)}.$$

Hence our result. □

3.4 Partition bound for relations

Here we define the partition bound for query complexity for relations.

Definition 22 (Partition Bound for relations) Let $f \subseteq \mathcal{X} \times \mathcal{Z}$ be a relation, let $\epsilon \geq 0$. The ϵ-partition bound of f, denoted $\text{prt}_\epsilon(f)$, is given by the optimal value of the following linear program.

Primal

$$\underset{\text{min}}{\text{min:}} \sum_{z} \sum_{A} w_{z,A} \cdot 2^{|A|}$$

$$\forall x : \sum_{A : x \in A} \sum_{z \in A} w_{z,A} \geq 1 - \epsilon,$$

$$\forall x : \sum_{A : x \in A} w_{z,A} = 1,$$

$$\forall z, \forall A : w_{z,A} \geq 0.$$

Dual

$$\underset{\text{max:}}{\text{max:}} \sum_{x} (1 - \epsilon)\mu_x + \phi_x$$

$$\forall z, \forall A : \sum_{x \in A \cap (x,z) \in f} \mu_x + \sum_{x \in A} \phi_x \leq 2^{|A|},$$

$$\forall x : \mu_x \geq 0, \phi_x \in \mathbb{R}.$$

As in Theorem 3 we can show that partition bound is a lower bound on the randomized query complexity of f. Its proof is skipped since it is very similar.

Theorem 5 Let $f \subseteq \mathcal{X} \times \mathcal{Z}$ be a relation, let $\epsilon > 0$. Then, $R_\epsilon(f) \geq \frac{1}{2} \log \text{prt}_\epsilon(f)$.

3.5 Separations between bounds

In this section we discuss separation between some of the bounds mentioned.
Theorem 6

1. \(\log \text{prt}_\epsilon(\text{Tribes}) = \Omega(n) \), while \(C(\text{Tribes}), \text{cadv}(\text{Tribes}), \text{adv}(\text{Tribes}), \tilde{\deg}(\text{Tribes}) = O(\sqrt{n}) \).

2. There is a function \(f : \{0, 1\}^n \to \{0, 1\} \) such that \(\log \text{prt}_\epsilon(f) \geq \Omega(\text{bs}(f)) = \Omega(n) \), while \(\deg(f) = O(n^{0.62}) \) for all \(\epsilon < 1/2 \).

Proof

1. The lower bound \(\log \text{prt}_\epsilon(\text{Tribes}) = \Omega(n) \) is shown in Theorem 4. The upper bound on \(C(\text{Tribes}) \) is obvious, and implies the bound on \(\text{cadv} \). The remaining bound follow from the existence of efficient quantum query algorithms for the problem.

2. Examples of such functions are given in [NS94, NW95] with the best construction attributed to Kushilevitz in the latter paper.

\[\square \]

In the first result above the partition bound with error beats all of the "standard" lower bound methods for randomized query complexity (as well as \(C \)). In the second result the partition bound is better than the exact degree. By composing \(\text{Tribes} \) with the function \(f \) above we can also get a function for which \(\log \text{prt}_\epsilon \) is polynomially larger than \(C \) and \(\deg \) simultaneously.

3.6 Boosting

We remark, without proof, that the error in the partition bound (both communication and query) and its relatives can in general be boosted down in the same way as the error for randomized protocols, for example we have: For all relations \(f \): \(\log \text{prt}_{2-k}(f) = O(k \cdot \log \text{prt}_{1/3}(f)) \).

4 Open Questions

Here we state some of the questions left open.

Communication Complexity

1. Is \(R_{1/3}(f) = \text{poly}(\log \text{prt}_{1/3}(f)) \) for all relations \(f \)?

2. Is \(\text{prt}_{1/3}(\text{Tribes}) = \Omega(n) \)?

Query Complexity

1. Is \(R_{1/3}(f) = O(\log^2 \text{prt}_{1/3}(f)) \) or better still is \(R_{1/3}(f) = O(\log \text{prt}_{1/3}(f)) \)?

2. Is \(\text{adv}(f) = O(\log \text{prt}_{1/3}(f)) \)?

3. Is \(\deg(f) = \tilde{O}(\text{prt}_0(f)) \)?

Acknowledgment

We thank Shengyu Zhang for helpful discussions. The work done is supported by the internal grants of the Centre for Quantum Technologies, Singapore.
References

[A06] S. Aaronson. Quantum certificate complexity. In SIAM J. Comput., 35(4), pages 804–824, 2006.

[A08] S. Aaronson. Lower Bounds for Local Search by Quantum Arguments. In J. Comput. Syst. Sci., 74(3), pages 313–322, 2008.

[AA05] S. Aaronson and A. Ambainis. Quantum search of spatial regions. In Theory of Computing, 1(1), pages 47–79, 2005.

[A02] A. Ambainis. Quantum Lower Bounds by Quantum Arguments. In J. Comput. Syst. Sci., 64(4), pages 750–767, 2002.

[BFS86] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory. In Proceedings of 27th IEEE FOCS, pages 337–347, 1986.

[BKKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar. An information statistics approach to data stream and communication complexity. In J. Comput. Syst. Sci., 68(4): 702-772, 2004.

[BPSW06] Paul Beame, Toniann Pitassi, Nathan Segerlind, Avi Wigderson. A Strong Direct Product Theorem for Corruption and the Multiparty Communication Complexity of Disjointness. In Computational Complexity, 15(4): 391-432, 2006.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in FOCS’98. quant-ph/9802049

[BW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey. Theoretical Computer Science, 288(1):21–43, 2002.

[CA08] A. Chattopadhyay, A. Ada. Multiparty Communication Complexity of Disjointness. ECCC Technical Report 15(002), 2008.

[JRS03] Rahul Jain, Jaikumar Radhakrishnan, Pranab Sen. A Lower Bound for the Bounded Round Quantum Communication Complexity of Set Disjointness. In FOCS 2003, pages 220-229, 2003.

[JKS03] T. S. Jayram, Ravi Kumar, D. Sivakumar. Two applications of information complexity. In STOC 2003, pages 673-682, 2003.

[KS92] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.

[KKN95] Mauricio Karchmer, Eyal Kushilevitz, Noam Nisan. Fractional Covers and Communication Complexity. In SIAM J. Discrete Math., 8(1): 76-92, 1995.

[K03] Hartmut Klauck. Rectangle Size Bounds and Threshold Covers in Communication Complexity. In: IEEE Conference on Computational Complexity 2003, pages 118-134, 2003.

27
[K07] Hartmut Klauck. Lower Bounds for Quantum Communication Complexity. *SIAM J. Comput.*, 37(1): 20-46, 2007.

[K09] Hartmut Klauck. A Strong Direct Product Theorem for Disjointness. arXiV:0908.2940, 2009.

[Kre95] I. Kremer. Quantum communication. Master’s thesis, Hebrew University, Computer Science Department, 1995.

[KN97] E. Kushilevitz and N. Nisan. *Communication Complexity*. Cambridge University Press, 1997.

[LM08] Sophie Laplante, Frédéric Magniez. Lower Bounds for Randomized and Quantum Query Complexity Using Kolmogorov Arguments. *SIAM Journal on Computing*, 38(1), pages 46–62, 2008.

[LS09] Nati Linial, Adi Shraibman. Lower bounds in communication complexity based on factorization norms. *Random Struct. Algorithms*, 34(3), pages 368–394, 2009.

[L90] L. Lovasz. Communication Complexity: A Survey. In *Paths, Flows, and VLSI Layout, edited by B. H. Korte*, Springer, 1990.

[Nis91] N. Nisan. CREW PRAMs and decision trees. *SIAM Journal on Computing*, 20(6):999–1007, 1991.

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. *Computational Complexity*, 4(4):301–313, 1994.

[NW95] N. Nisan and A. Wigderson. On Rank vs. Communication Complexity. *Combinatorica*, 15(4):557–565, 1995.

[Raz92] A. Razborov. On the distributional complexity of disjointness. *Theoretical Computer Science*, 106(2):385–390, 1992.

[Raz03] A. Razborov. Quantum communication complexity of symmetric predicates. *Izvestiya of the Russian Academy of Science, mathematics*, 67(1):159–176, 2003. quant-ph/0204025.

[S08] Alexander A. Sherstov. The pattern matrix method for lower bounds on quantum communication. *STOC 2008*, pages 85-94, 2008.

[SS06] Robert Spalek, Mario Szegedy. All Quantum Adversary Methods are Equivalent. *Theory of Computing*, 2(1):1–18, 2006.

[Yao79] A. C-C. Yao. Some Complexity Questions Related to Distributive Computing. In *Proceedings of STOC 1979*, pages 209–213, 1979.

[Y83] A.C.C. Yao. Lower Bounds by Probabilistic Arguments. *24th IEEE Symp. Foundations of Computer Science*, pp. 420–428, 1983.