2-TRACK ALGEBRAS AND THE ADAMS SPECTRAL SEQUENCE

HANS-JOACHIM BAUES AND MARTIN FRANKLAND

Dedicated to Ronnie Brown on the occasion of his eightieth birthday.

Abstract. In previous work of the first author and Jibladze, the E_3-term of the Adams spectral sequence was described as a secondary derived functor, defined via secondary chain complexes in a groupoid-enriched category. This led to computations of the E_3-term using the algebra of secondary cohomology operations. In work with Blanc, an analogous description was provided for all higher terms E_r. In this paper, we introduce 2-track algebras and tertiary chain complexes, and we show that the E_4-term of the Adams spectral sequence is a tertiary Ext group in this sense. This extends the work with Jibladze, while specializing the work with Blanc in a way that should be more amenable to computations.

CONTENTS

1. Introduction 1
2. Cubes and tracks in a space 3
3. 2-track groupoids 4
4. 2-tracks in a topologically enriched category 10
5. 2-track algebras 13
6. Higher order chain complexes 14
7. The Adams differential d_3 17
8. Higher order resolutions 20
9. Algebras of left 2-cubical balls 21
Appendix A. Models for homotopy 2-types 23
References 29

1. Introduction

A major problem in algebraic topology consists of computing homotopy classes of maps between spaces or spectra, notably the stable homotopy groups of spheres $\pi^S_*(S^0)$. One of the most useful tools for such computations is the Adams spectral sequence $\textbf{1}$ (and its unstable analogues $\textbf{2}$), based on ordinary mod p cohomology. Given finite spectra X and Y, Adams constructed a spectral sequence of the form:

$$E^{s,t}_2 = \text{Ext}_{H^*}^{s,t}(H^*(Y; \mathbb{F}_p), H^*(X; \mathbb{F}_p)) \Rightarrow [\Sigma^{t-s} X, Y^\wedge]$$
where \mathfrak{A} is the mod p Steenrod algebra, consisting of primary stable mod p cohomology operations, and Y_p^\wedge denotes the p-completion of Y. In particular, taking sphere spectra $X = Y = S^0$, one obtains a spectral sequence

$$E_2^{s,t} = \operatorname{Ext}^{s,t}_{\mathfrak{A}}(\mathbb{F}_p, \mathbb{F}_p) \Rightarrow \pi^S_{t-s}(S^0)_p$$

abutting to the p-completion of the stable homotopy groups of spheres. The differential d_r is determined by r^{th} order cohomology operations \cite{14}. In particular, secondary cohomology operations determine the differential d_2 and thus the E_3-term. The algebra of secondary operations was studied in \cite{2}. In \cite{3}, the first author and Jibladze developed secondary chain complexes and secondary derived functors, and showed that the Adams E_3-term is given by secondary Ext groups of the secondary cohomology of X and Y. They used this in \cite{5}, along with the algebra of secondary operations, to construct an algorithm that computes the differential d_2.

Primary operations in mod p cohomology are encoded by the homotopy category $\operatorname{Ho}(\mathcal{K})$ of the Eilenberg-MacLane mapping theory \mathcal{K}, consisting of finite products of Eilenberg-MacLane spectra of the form $\Sigma^{n_1}H\mathbb{F}_p \times \cdots \times \Sigma^{n_k}H\mathbb{F}_p$. More generally, the n^{th} Postnikov truncation $P_n\mathcal{K}$ of the Eilenberg-MacLane mapping theory encodes operations of order up to $n+1$, which in turn determine the Adams differential d_{n+1} and thus the E_{n+2}-term \cite{4}. However, $P_n\mathcal{K}$ contains too much information for practical purposes. In \cite{6}, the first author and Blanc extracted from $P_n\mathcal{K}$ the information needed in order to compute the Adams differential d_{n+1}.

The resulting algebraic-combinatorial structure is called an *algebra of left n-cubical balls*.

In this paper, we specialize the work of \cite{6} to the case $n = 2$. Our goal is to provide an alternate structure which encodes an algebra of left 2-cubical balls, but which is more algebraic in nature and better suited for computations. The combinatorial difficulties in an algebra of left n-cubical balls arise from triangulations of the sphere $S^{n-1} = \partial D^n$. In the special case $n = 2$, triangulations of the circle S^1 are easily described, unlike in the case $n > 2$. Our approach also extends the work in \cite{3} from secondary chain complexes to tertiary chain complexes.

Organization and main results. We define the notion of 2-track algebra (Definition 5.1) and show that each 2-track algebra naturally determines an algebra of left 2-cubical balls (Theorem 7.3). Building on \cite{6}, we show that higher order resolutions always exist in a 2-track algebra (Theorem 8.7). We show that a suitable 2-track algebra related to the Eilenberg-MacLane mapping theory recovers the Adams spectral sequence up to the E_4-term (Theorem 7.3). We show that the spectral sequence only depends on the weak equivalence class of the 2-track algebra (Theorem 7.5).

Remark 1.1. This last point is important in view of the strictification result for secondary cohomology operations: these can be encoded by a graded pair algebra B_* over \mathbb{Z}/p^2 \cite[§5.5]{2}. The secondary Ext groups of the E_3-term turn out to be the usual Ext groups over B_* \cite[Theorem 3.1.1]{5}, a key fact for computations. We conjecture that a similar strictification result holds for tertiary operations, i.e., in the case $n = 2$.

Appendix \[A\] explains why 2-track groupoids are not models for homotopy 2-types, and how to extract the underlying 2-track groupoid from a bigroupoid or a double groupoid.

Acknowledgments. We thank the referee for their helpful comments. The second author thanks the Max-Planck-Institut für Mathematik Bonn for its generous hospitality, as well as David Blanc, Robert Bruner, Dan Christensen, and Dan Isaksen for useful conversations.
2. Cubes and tracks in a space

In this section, we fix some notation and terminology regarding cubes and groupoids.

Definition 2.1. Let \(X \) be a topological space.

An \(n \)-cube in \(X \) is a map \(a: I^n \to X \), where \(I = [0,1] \) is the unit interval. For example, a 0-cube in \(X \) is a point of \(X \), and a 1-cube in \(X \) is a path in \(X \).

An \(n \)-cube can be restricted to \((n-1) \)-cubes along the \(2n \) faces of \(I^n \). For \(1 \leq i \leq n \), denote:

\[
d_i^0(a) = a \text{ restricted to } I \times I \times \cdots \times \{0\} \times \cdots \times I
\]

\[
d_i^1(a) = a \text{ restricted to } I \times I \times \cdots \times \{1\} \times \cdots \times I.
\]

An \(n \)-track in \(X \) is a homotopy class, relative to the boundary \(\partial I^n \), of an \(n \)-cube. If \(a: I^n \to X \) is an \(n \)-cube in \(X \), denote by \(\{a\} \) the corresponding \(n \)-track in \(X \), namely the homotopy class of \(a \) rel \(\partial I^n \).

In particular, for \(n = 1 \), a 1-track \(\{a\} \) is a path homotopy class, i.e., a morphism in the fundamental groupoid of \(X \) from \(a(0) \) to \(a(1) \). Let us fix our notation regarding groupoids. In this paper, we consider only small groupoids.

Notation 2.2. A **groupoid** is a (small) category in which every morphism is invertible. Denote the data of a groupoid by \(G = (G_0, G_1, \delta_0, \delta_1, \text{id}_x^\square, \Box, (-)\Box) \), where:

- \(G_0 = \text{Ob}(G) \) is the set of objects of \(G \).
- \(G_1 = \text{Hom}(G) \) is the set of morphisms of \(G \). The set of morphisms from \(x \) to \(y \) is denoted \(G(x,y) \). We write \(x \in G \) and \(\text{deg}(x) = 0 \) for \(x \in G_0 \), and \(\text{deg}(x) = 1 \) for \(x \in G_1 \).
- \(\delta_0: G_1 \to G_0 \) is the source map.
- \(\delta_1: G_1 \to G_0 \) is the target map.
- \(\text{id}_x^\square: G_0 \to G_1 \) sends each object \(x \) to its corresponding identity morphism \(\text{id}_x^\square \).
- \(\Box: G_1 \times_{G_0} G_1 \to G_1 \) is composition in \(G \).
- \(f\Box: y \to x \) is the inverse of the morphism \(f: x \to y \).

Groupoids form a category \(\text{Gpd} \), where morphisms are functors between groupoids.

For any object \(x \in G_0 \), denote by \(\text{Aut}_G(x) = G(x,x) \) the automorphism group of \(x \).

Denote by \(\text{Comp}(G) = \pi_0(G) \) the components of \(G \), i.e., the set of isomorphism classes of objects \(G_0/\sim \).

Denote the fundamental groupoid of a topological space \(X \) by \(\Pi_1(X) \).

Definition 2.3. Let \(X \) be a pointed space, with basepoint \(0 \in X \). The constant map \(0: I^n \to X \) with value \(0 \in X \) is called the **trivial** \(n \)-cube.

A **left** 1-cube or **left path** in \(X \) is a map \(a: I \to X \) satisfying \(a(1) = 0 \), that is, \(d_1^1(a) = 0 \), the trivial 0-cube. In other words, \(a \) is a path in \(X \) from a point \(a(0) \) to the basepoint \(0 \). We denote \(\delta a = a(0) \).

A **left** 2-cube in \(X \) is a map \(\alpha: I^2 \to X \) satisfying \(\alpha(1,t) = \alpha(t,1) = 0 \) for all \(t \in I \), that is, \(d_1^1(\alpha) = d_2^1(\alpha) = 0 \), the trivial 1-cube.

More generally, a **left** \(n \)-cube in \(X \) is a map \(\alpha: I^n \to X \) satisfying \(\alpha(t_1, \ldots, t_n) = 0 \) whenever some coordinate satisfies \(t_i = 1 \). In other words, for all \(1 \leq i \leq n \) we have \(d_i^1(\alpha) = 0 \), the trivial \((n-1)\)-cube.
A left n-track in X is a homotopy class, relative to the boundary ∂I^n, of a left n-cube.

The equality $I^{m+n} = I^m \times I^n$ allows us to define an operation on cubes.

Definition 2.4. Let $\mu: X \times X' \to X''$ be a map, for example a composition map in a topologically enriched category \mathcal{C}. For $m, n \geq 0$, consider cubes

\begin{align*}
a &: I^m \to X \\
b &: I^n \to X'.
\end{align*}

The \textbf{⊗-composition} of a and b is the $(m + n)$-cube $a \otimes b$ defined as the composite

\[
a \otimes b: I^{m+n} = I^m \times I^n \xrightarrow{a \times b} X \times X' \xrightarrow{\mu} X''.
\]

For $m = n$, the \textbf{pointwise composition} of a and b is the n-cube defined as the composite

\[
ab: I^n \xrightarrow{(a \circ b)} X \times X' \xrightarrow{\mu} X''.
\]

The pointwise composition is the restriction of the \otimes-composition along the diagonal:

\[
I^n \xrightarrow{\Delta} I^n \times I^n \xrightarrow{a \otimes b} X''.
\]

Remark 2.5. For $m = n = 0$, the 0-cube $x \otimes y = xy$ is the pointwise composition, which is the composition in the underlying category. For higher dimensions, there are still relations between the \otimes-composition and the pointwise composition. In suggestive formulas, pointwise composition of paths is given by $(ab)(t) = a(t)b(t)$ for all $t \in I$, whereas the \otimes-composition of paths is the 2-cube given by $(a \otimes b)(s, t) = a(s)b(t)$.

Assume moreover that μ satisfies

\[
\mu(x, 0) = \mu(0, x') = 0
\]

for the basepoints $0 \in X, 0 \in X', 0 \in X''$. For example, μ could be the composition map in a category \mathcal{C} enriched in (Top_*, \wedge), the category of pointed topological spaces with the smash product as monoidal structure. If a and b are left cubes, then $a \otimes b$ and ab are also left cubes.

3. 2-Track Groupoids

We now focus on left 2-tracks in a pointed space X, and observe that they form a groupoid. Define the groupoid $\Pi_{(2)}(X)$ with object set:

\[
\Pi_{(2)}(X)_0 = \text{set of left 1-cubes in } X
\]

and morphism set:

\[
\Pi_{(2)}(X)_1 = \text{set of left 2-tracks in } X
\]

where the source δ_0 and target δ_1 of a left 2-track $\alpha: I \times I \to X$ are given by restrictions

\[
\delta_0(\alpha) = d^0_1(\alpha) \\
\delta_1(\alpha) = d^0_2(\alpha)
\]
and note in particular $\delta\delta_0(\alpha) = \delta\delta_1(\alpha) = \alpha(0, 0)$. In other words, a morphism α from a to b looks like this:

\[
\begin{array}{c}
\delta a = \delta b \\
\begin{array}{c}
\alpha \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\delta a = \delta b \\
\begin{array}{c}
\alpha \\
\end{array}
\end{array}
\]

Remark 3.1. Up to reparametrization, a left 2-track $\alpha: a \Rightarrow b$ corresponds to a path homotopy from a to b, which can be visualized in a globular picture:

\[
\delta a = \delta b \quad \blacklozenge \quad 0.
\]

However, the \otimes-composition will play an important role in this paper, which is why we adopt a cubical approach, rather than globular or simplicial.

Composition $\beta \boxtimes \alpha$ of left 2-tracks is described by the following picture:

(3.1)

\[
\begin{array}{c}
\delta a = \delta b \\
\begin{array}{c}
\alpha \\
\end{array}
\end{array}
\]

Remark 3.2. To make this definition precise, let $\alpha: a \Rightarrow b$ and $\beta: b \Rightarrow c$ be left 2-tracks in X, i.e., composable morphisms in $\Pi(2)(X)$. Choose representative maps $\tilde{\alpha}, \tilde{\beta}: I^2 \to X$. Consider the map $f_{\alpha,\beta}: [0, 1] \times [-1, 1] \to X$ pictured in (3.1). That is, define

\[
f(s, t) = \begin{cases}
\tilde{\alpha}(s, t) & \text{if } 0 \leq t \leq 1 \\
\tilde{\beta}(-t, s) & \text{if } -1 \leq t \leq 0.
\end{cases}
\]

Now consider the reparametrization map \(w: I^2 \to [0, 1] \times [-1, 1] \) illustrated in this picture:

Explicitly, the restriction \(w|_{\partial I^2} \) to the boundary is the piecewise linear map satisfying

\[
\begin{align*}
 w(0, 0) &= (0, 0) \\
 w(0, 1) &= (0, 1) \\
 w(\frac{1}{2}, 1) &= (1, 1) \\
 w(1, 1) &= (1, 0) \\
 w(1, \frac{1}{2}) &= (1, -1) \\
 w(1, 0) &= (0, -1)
\end{align*}
\]

and \(w(x) \) is defined for points \(x \in I^2 \) in the interior as follows. Write \(x = p(0, 0) + qy \) as a unique convex combination of \((0, 0)\) and a point \(y \) on the boundary \(\partial I^2 \). Then define \(w(x) = pw(0, 0) + qw(y) = qw(y) \). Finally, the composition \(\beta \Box \alpha: a \Rightarrow c \) is \(\{f_{\alpha, \beta} \circ w\} \), the homotopy class of the composite

\[
I^2 \xrightarrow{w} [0, 1] \times [-1, 1] \xrightarrow{f_{\alpha, \beta}} X
\]

relative to the boundary \(\partial I^2 \).

In other notation, we have inclusions \(d_2^0: I^1 \hookrightarrow I^2 \) as the bottom edge \(I \times \{0\} \) and \(d_1^0: I^1 \hookrightarrow I^2 \) as the left edge \(\{0\} \times I \), our \(w \) is a map \(w: I^2 \to I^2 \cup_{I^1} I^2 \), and \(\beta \Box \alpha \) is the homotopy class of the composite

\[
I^2 \xrightarrow{w} I^2 \cup_{I^1} I^2 \xrightarrow{[\alpha \beta]} X.
\]

Given a left path \(a \) in \(X \), the identity of \(a \) in the groupoid \(\Pi_{(2)}(X) \) is the left 2-track is pictured here:
More precisely, for points \(x \in I^2 \) in the interior, write \(x = p(0,0) + qy \) as a unique convex combination of \((0,0)\) and a point \(y \) on the boundary \(\partial I^2 \). Then define \(\text{id}_a^\square(x) = a(q) \).

The inverse \(\alpha \bowtie b \Rightarrow a \) of a left 2-track \(\alpha : a \Rightarrow b \) is the homotopy class of the composite \(\alpha \circ T \), where \(T : I^2 \to I^2 \) is the map swapping the two coordinates: \(T(x,y) = (y,x) \).

Lemma 3.3. Given a pointed topological space \(X \), the structure described above makes \(\Pi(2)(X) \) into a groupoid, called the **groupoid of left 2-tracks** in \(X \).

Proof. Standard. \(\square \)

Definition 3.4. A groupoid \(G \) is **abelian** if the group \(\text{Aut}_G(x) \) is abelian for every object \(x \in G_0 \). The groupoid \(G \) is **strictly abelian** if it is pointed (with basepoint \(0 \in G_0 \)), and is equipped with a family of isomorphisms

\[
\psi_x : \text{Aut}_G(x) \xrightarrow{\sim} \text{Aut}_G(0)
\]

indexed by all objects \(x \in G_0 \), such that the diagram

\[
\begin{array}{ccc}
\text{Aut}_G(y) & \xrightarrow{\varphi^f} & \text{Aut}_G(x) \\
\downarrow{\psi_y} & & \downarrow{\psi_x} \\
\text{Aut}_G(0) & & \text{Aut}_G(0)
\end{array}
\]

commutes for every map \(f : x \to y \) in \(G \), where \(\varphi^f \) denotes the “change of basepoint” isomorphism

\[
\varphi^f : \text{Aut}_G(y) \xrightarrow{\sim} \text{Aut}_G(x) \\
\alpha \mapsto \varphi^f(\alpha) = f\square\alpha\square f.
\]

Remark 3.5. A strictly abelian groupoid is automatically abelian. Indeed, the compatibility condition (3.2) applied to automorphisms \(f : 0 \to 0 \) implies that conjugation \(\varphi^f : \text{Aut}_G(0) \to \text{Aut}_G(0) \) is the identity.

Definition 3.6. A groupoid \(G \) is **pointed** if it has a chosen basepoint, i.e., an object \(0 \in G_0 \). Here \(0 \) is an abuse of notation: the basepoint is not assumed to be an initial object for \(G \).

The **star** of a pointed groupoid \(G \) is the set of all morphisms to the basepoint \(0 \), denoted by:

\[
\text{Star}(G) = \{ f \in G_1 \mid \delta_0(f) = 0 \}.
\]

For a morphism \(f : x \to 0 \) in \(\text{Star}(G) \), we write \(\delta f = \delta_0 f = x \).

If \(G \) has a basepoint \(0 \in G_0 \), then we take \(\text{id}_0^\square \in G_1 \) as basepoint for the set of morphisms \(G_1 \) and for \(\text{Star}(G) \subseteq G_1 \); we sometimes write \(0 = \text{id}_0^\square \). Moreover, we take the component of the basepoint \(0 \) as basepoint for \(\text{Comp}(G) \), the set of components of \(G \).

Proposition 3.7. \(\Pi(2)(X) \) is a strictly abelian groupoid, and it satisfies \(\text{Comp} \Pi(2)(X) \simeq \text{Star} \Pi(3)(X) \).
Proof. Let \(a \in \Pi_{(2)}(X)_0 \) be a left path in \(X \). To any automorphism \(\alpha : 0 \Rightarrow 0 \) in \(\Pi_{(2)}(X) \), one can associate the well-defined left 2-track indicated by the picture

\[
\begin{array}{c}
\text{Diagram (3.3)}
\end{array}
\]

which is a morphism \(a \Rightarrow a \). This assignment defines a map \(\text{Aut}_{\Pi_{(2)}(X)}(0) \rightarrow \text{Aut}_{\Pi_{(2)}(X)}(a) \) and is readily seen to be a group isomorphism, whose inverse we denote \(\psi_a \). One readily checks that the family \(\psi_a \) is compatible with change-of-basepoint isomorphisms.

The set \(\text{Comp}_{\Pi_{(2)}}(X) \) is the set of left paths in \(X \) quotiented by the relation of being connected by a left 2-track. The set \(\text{Star}_{\Pi_{(1)}}(X) \) is the set of left paths in \(X \) quotiented by the relation of path homotopy. But two left paths are path-homotopic if and only if they are connected by a left 2-track. \(\square \)

The bijection \(\text{Comp}_{\Pi_{(2)}}(X) \simeq \text{Star}_{\Pi_{(1)}}(X) \) is induced by taking the homotopy class of left 1-cubes. Consider the function \(q : \Pi_{(2)}(X)_0 \rightarrow \Pi_{(1)}(X)_1 \) which sends a left 1-cube to its left 1-track \(q(a) = \{a\} \). Then the image of \(q \) is \(\text{Star}_{\Pi_{(1)}}(X) \subseteq \Pi_{(1)}(X)_1 \) and \(q \) is constant on the components of \(\Pi_{(2)}(X)_0 \). We now introduce a definition based on those features of \(\Pi_{(2)}(X) \).

Definition 3.8. A 2-track groupoid \(G = (G_{(1)}, G_{(2)}) \) consists of:

- Pointed groupoids \(G_{(1)} \) and \(G_{(2)} \), with \(G_{(2)} \) strictly abelian.
- A pointed function \(q : G_{(2)}_0 \rightarrow \text{Star} G_{(1)} \) which is constant on the components of \(G_{(2)} \), and such that the induced function \(q : \text{Comp} G_{(2)} \xrightarrow{\approx} \text{Star} G_{(1)} \) is bijective.

We assign degrees to the following elements:

\[
\deg(x) = \begin{cases}
0 & \text{if } x \in G_{(1)}_0 \\
1 & \text{if } x \in G_{(2)}_0 \\
2 & \text{if } x \in G_{(2)}_1
\end{cases}
\]

and we write \(x \in G \) in each case.

A morphism of 2-track groupoids \(F : G \rightarrow G' \) consists of a pair of pointed functors

\[
F_{(1)} : G_{(1)} \rightarrow G'_{(1)} \\
F_{(2)} : G_{(2)} \rightarrow G'_{(2)}
\]

satisfying the following two conditions.
(1) \textit{(Structural isomorphisms)} For every object \(a \in G_{(2)0}\), the diagram
\[
\begin{array}{ccc}
\text{Aut}_{G_{(2)}}(a) & \xrightarrow{F_{(2)}} & \text{Aut}_{G'_{(2)}}(F_{(2)}a) \\
\downarrow \psi_a & & \downarrow \psi_{F_{(2)}a} \\
\text{Aut}_{G_{(2)}}(0) & \xrightarrow{F_{(2)}} & \text{Aut}_{G'_{(2)}}(0')
\end{array}
\]
commutes.

(2) \textit{(Quotient functions)} The diagram
\[
\begin{array}{ccc}
G_{(2)0} & \xrightarrow{F_{(2)}} & G'_{(2)0} \\
\downarrow q & & \downarrow q' \\
\text{Star} G_{(1)} & \xrightarrow{F_{(1)}} & \text{Star} G'_{(1)}
\end{array}
\]
commutes.

Let \(\mathbf{Gpd}_{(1,2)}\) denote the category of 2-track groupoids.

\textbf{Remark 3.9.} If \(\alpha : a \Rightarrow b\) is a left 2-track in a space, then the left paths \(a\) and \(b\) have the same starting point \(\delta a = \delta b\). This condition is encoded in the definition of 2-track groupoid. Indeed, if \(\alpha : a \Rightarrow b\) is a morphism in \(G_{(2)}\), then \(a, b \in G_{(2)0}\) belong to the same component of \(G_{(2)}\). Thus, we have \(q(a) = q(b) \in \text{Star} G_{(1)}\) and in particular \(\delta q(a) = \delta q(b) \in G_{(1)0}\).

\textbf{Definition 3.10.} The \textbf{fundamental 2-track groupoid} of a pointed space \(X\) is
\[
\Pi_{(1,2)}(X) := (\Pi_{(1)}(X), \Pi_{(2)}(X)).
\]
This construction defines a functor \(\Pi_{(1,2)} : \text{Top} \to \mathbf{Gpd}_{(1,2)}\).

\textbf{Remark 3.11.} The grading on \(\Pi_{(1,2)}(X)\) defined in 3.8 corresponds to the dimension of the cubes. For \(x \in \Pi_{(1,2)}(X)\), we have \(\text{deg}(x) = 0\) if \(x\) is a point in \(X\), \(\text{deg}(x) = 1\) if \(x\) is a left path in \(X\), and \(\text{deg}(x) = 2\) if \(x\) is a left 2-track in \(X\). This 2-graded set is the left 2-cubical set \(\text{Nul}_2(X)\) [6 Definition 1.9].

\textbf{Definition 3.12.} Given a 2-track groupoid \(G\), its \textbf{homotopy groups} are
\[
\pi_0 G = \text{Comp} G_{(1)} \\
\pi_1 G = \text{Aut} G_{(1)}(0) \\
\pi_2 G = \text{Aut} G_{(2)}(0).
\]
Note that \(\pi_0 G\) is a priori only a pointed set, \(\pi_1 G\) is a group, and \(\pi_2 G\) is an abelian group.

A morphism \(F : G \to G'\) of 2-track groupoids is a \textbf{weak equivalence} if it induces an isomorphism on homotopy groups.

\textbf{Remark 3.13.} Let \(X\) be a topological space with basepoint \(x_0 \in X\). Then the homotopy groups of its fundamental 2-track groupoid \(G = \Pi_{(1,2)}(X, x_0)\) are the homotopy groups of the space \(\pi_i G = \pi_i(X, x_0)\) for \(i = 0, 1, 2\).

The following two lemmas are straightforward.
Lemma 3.14. \(\text{Gpd}_{(1,2)} \) has products, given by \(G \times G' = \left(G_{(1)} \times G'_{(1)}, G_{(2)} \times G'_{(2)} \right) \), and where the structural isomorphisms

\[
\psi_{(x,x')} \colon \text{Aut}_{G(2) \times G'(2)} ((x,x')) \xrightarrow{\sim} \text{Aut}_{G(2) \times G'(2)} ((0,0'))
\]

are given by \(\psi_x \times \psi_{x'} \), and the quotient function

\[
(G \times G')_{(2)0} = G_{(2)0} \times G'_{(2)0}
\]

\[
\text{Star}(G \times G')_{(1)} = \text{Star} G_{(1)} \times \text{Star} G'_{(1)}
\]
is the product of the quotient functions for \(G \) and \(G' \).

Lemma 3.15. The fundamental 2-track groupoid preserves products:

\[
\Pi_{(1,2)}(X \times Y) \cong \Pi_{(1,2)}(X) \times \Pi_{(1,2)}(Y).
\]

4. 2-TRACKS IN A TOPOLOGICALLY ENRICHED CATEGORY

Throughout this section, let \(C \) be a category enriched in \((\text{Top}_*, \wedge)\). Explicitly:

- For any objects \(A \) and \(B \) of \(C \), there is a morphism space \(C(A, B) \) with basepoint denoted \(0 \in C(A, B) \).
- For any objects \(A, B, \) and \(C \), there is a composition map

\[
\mu \colon C(B, C) \times C(A, B) \to C(A, C)
\]

which is associative and unital.

- Composition satisfies

\[
\mu(x, 0) = \mu(0, y) = 0
\]

for all \(x \) and \(y \).

We write \(x \in C \) if \(x \in C(A, B) \) for some objects \(A \) and \(B \). For \(x, y \in C \), we write \(xy = \mu(x, y) \) when \(x \) and \(y \) are composable, i.e., when the target of \(y \) is the source of \(x \). From now on, whenever an expression such as \(xy \) or \(x \otimes y \) appears, it is understood that \(x \) and \(y \) must be composable.

By Definition 2.4 we have the \(\otimes \)-composition \(x \otimes y \) for \(x, y \in \Pi_{(1)} C \) and \(\deg(x) + \deg(y) \leq 1 \). For \(\deg(a) = \deg(b) = 1 \), we have:

\[
ab = (a \otimes \delta_1 b) \Box (\delta_0 a \otimes b)
\]

\[
=(\delta_1 a \otimes b) \Box (a \otimes \delta_0 b).
\]

This equation holds in any category enriched in groupoids, where \(ab \) denotes the (pointwise) composition. Note that for paths \(\tilde{a} \) and \(\tilde{b} \) representing \(a \) and \(b \), the boundary of the 2-cube \(\tilde{a} \otimes \tilde{b} \) corresponds to the equation.

Conversely, the \(\otimes \)-composition in \(\Pi_{(1)} C \) is determined by the pointwise composition. For \(\deg(x) = \deg(y) = 0 \) and \(\deg(a) = 1 \), we have:

\[
\begin{align*}
x \otimes y &= xy \\
x \otimes a &= \text{id}_x^y a \\
a \otimes x &= \text{id}_x^a.
\end{align*}
\]
We now consider the 2-track groupoids $\Pi^{(1,2)}C(A, B)$ of morphism spaces in C, and we write $x \in \Pi^{(1,2)}C$ if $x \in \Pi^{(1,2)}C(A, B)$ for some objects A, B of C. By Definition 2.4, composition in C induces the \otimes-composition:

$$x \otimes y \in \Pi^{(1,2)}C$$

if x and y satisfy $\text{deg}(x) + \text{deg}(y) \leq 2$. For $\text{deg}(x) = \text{deg}(y) = 1$, x and y are left paths, hence $x \otimes y$ is well-defined. The \otimes-composition satisfies:

$$\text{deg}(x \otimes y) = \text{deg}(x) + \text{deg}(y).$$

The \otimes-composition is associative, since composition in C is associative. The identity elements $1_A \in C(A, A)$ for C provide identity elements $1 = 1_A \in \Pi^{(1,2)}C(A, A)$, with $\text{deg}(1_A) = 0$, and $x \otimes 1 = x = 1 \otimes x$.

Let us describe the \otimes-composition of left paths more explicitly. Given left paths a and b, then $a \otimes b$ is a 2-track from $\delta_0(a \otimes b) = (\delta a) \otimes b$ to $\delta_1(a \otimes b) = a \otimes (\delta b)$, as illustrated here:

\[
\begin{array}{ccc}
0 & \otimes & 0 \\
\delta_0(a \otimes b) = (\delta a) \otimes b & \otimes & a \otimes b \\
\delta_1(a \otimes b) = a \otimes (\delta b)
\end{array}
\]

Definition 4.1. The 2-track algebra associated to C, denoted $(\Pi^{(1)}C, \Pi^{(1,2)}C, \Box, \otimes)$, consists of the following data.

- $\Pi^{(1)}C$ is the category enriched in pointed groupoids given by the fundamental groupoids $(\Pi^{(1)}C(A, B), \Box)$ of morphism spaces in C, along with the \otimes-composition, which determines (and is determined by) the composition in $\Pi^{(1)}C$.
- $\Pi^{(1,2)}C$ is given by the collection of fundamental 2-track groupoids $(\Pi^{(1,2)}C(A, B), \Box)$ together with the \otimes-composition $x \otimes y$ for $x, y \in \Pi^{(1,2)}C$ satisfying $\text{deg}(x) + \text{deg}(y) \leq 2$.

Proposition 4.2. Let $x, \alpha, \beta \in \Pi^{(1,2)}C$ with $\text{deg}(x) = 0$ and $\text{deg}(\alpha) = \text{deg}(\beta) = 2$. Then the following equations hold:

$$\begin{cases}
x \otimes (\beta \Box \alpha) = (x \otimes \beta) \Box (x \otimes \alpha) \\
(\beta \Box \alpha) \otimes x = (\beta \otimes x) \Box (\alpha \otimes x).
\end{cases}$$

Proof. This follows from functoriality of $\Pi^{(2)}$ applied to the composition maps $\mu(x, -) : C(A, B) \to C(A, C)$ and $\mu(-, x) : C(B, C) \to C(A, C)$.

Proposition 4.3. Let $c, \alpha \in \Pi^{(1,2)}C$ with $\text{deg}(c) = 1$ and $\text{deg}(\alpha) = 2$. Then the following equations hold:

$$\begin{cases}
\delta_1 \alpha \otimes c = (\alpha \otimes \delta c) \Box (\delta_0 \alpha \otimes c) \\
c \otimes \delta_0 \alpha = (c \otimes \delta_1 \alpha) \Box (\delta c \otimes \alpha).
\end{cases}$$
Proof. Write $a = \delta_0 \alpha$ and $b = \delta_1 \alpha$, i.e., α is a left 2-track from a to b:

and note in particular $\delta a = \delta b$. Let $\bar{\alpha}$ be a left 2-cube that represents α and consider the left 3-cube $\bar{\alpha} \otimes c$:

Its boundary exhibits the equality of 2-tracks:

- top face \square right face = front face
- $(\alpha \otimes \delta c) \square (a \otimes c) = b \otimes c$
- $(\alpha \otimes \delta c) \square (\delta_0 \alpha \otimes c) = \delta_1 \alpha \otimes c$.

Likewise, for second equation, consider the left 3-cube \(c \otimes \tilde{\alpha} \):

\[
\begin{array}{c}
\begin{array}{c}
\delta c \otimes b \\
\delta c \otimes a \\
\delta c \otimes \tilde{\alpha}
\end{array}
\end{array}
\]

Its boundary exhibits the equality of 2-tracks:

\[
top \text{ face } \square \text{ right face } = \text{ front face}
\]

\[
(c \otimes b) \square (\delta c \otimes \alpha) = c \otimes a
\]

\[
(c \otimes \delta_1 \alpha) \square (\delta c \otimes \alpha) = c \otimes \delta_0 \alpha.
\]

5. 2-TRACK ALGEBRAS

We now collect the structure found in \((\Pi(1)C, \Pi(1,2)C, \square, \otimes) \) into the following definition.

Definition 5.1. A **2-track algebra** \(\mathcal{A} = (\mathcal{A}_{(1)}, \mathcal{A}_{(1,2)}, \square, \otimes) \) consists of the following data.

1. A category \(\mathcal{A}_{(1)} \) enriched in pointed groupoids, with the \(\otimes \)-composition determined by Equation (4.1).
2. A collection \(\mathcal{A}_{(1,2)} \) of 2-track groupoids \((\mathcal{A}_{(1,2)}(A, B), \square)\) for all objects \(A, B \) of \(\mathcal{A}_{(1)} \), such that the first groupoid in \(\mathcal{A}_{(1,2)}(A, B) \) is equal to the pointed groupoid \(\mathcal{A}_{(1)}(A, B) \).
3. For \(x, y \in \mathcal{A}_{(1,2)} \), the \(\otimes \)-composition \(x \otimes y \in \mathcal{A}_{(1,2)} \) is defined. For \(\deg(x) = 0 \) and \(\deg(y) = 1 \), the following equations hold in \(\mathcal{A}_{(1)} \):

\[
\begin{cases}
q(x \otimes y) = x \otimes q(y) \\
q(y \otimes x) = q(y) \otimes x.
\end{cases}
\]

The following equations are required to hold.

1. **(Associativity)** \(\otimes \) is associative: \((x \otimes y) \otimes z = x \otimes (y \otimes z) \).
2. **(Units)** The units \(1 \in \mathcal{A}_{(1)} \), with \(\deg(1_A) = 0 \), serve as units for \(\otimes \), i.e., satisfy \(x \otimes 1 = x = 1 \otimes x \) for all \(x \in \mathcal{A}_{(1,2)} \).
3. **(Pointedness)** \(\otimes \) satisfies \(x \otimes 0 = 0 \) and \(0 \otimes y = 0 \).
4. For \(x, y, \alpha, \beta \in \mathcal{A}_{(1,2)} \) with \(\deg(x) = \deg(y) = 0 \) and \(\deg(\alpha) = \deg(\beta) = 2 \), we have:

\[
\begin{align*}
\delta_i(x \otimes \alpha \otimes y) &= x \otimes (\delta_i \alpha) \otimes y \quad \text{for } i = 0, 1 \\
x \otimes (\beta \square \alpha) \otimes y &= (x \otimes \beta \otimes y) \square (x \otimes \alpha \otimes y)
\end{align*}
\]
(5) For \(a, b \in \mathcal{A}_{(1,2)} \) with \(\deg(a) = \deg(b) = 1 \), we have:
\[
\begin{cases}
\delta_0(a \otimes b) = \delta a \otimes b \\
\delta_1(a \otimes b) = a \otimes \delta b.
\end{cases}
\]

(6) For \(c, \alpha \in \mathcal{A}_{(1,2)} \) with \(\deg(c) = 1 \) and \(\deg(\alpha) = 2 \), we have:
\[
\begin{cases}
\delta_1 \alpha \otimes c = (\alpha \otimes \delta c) \square (\delta_0 \alpha \otimes c) \\
c \otimes \delta_0 \alpha = (c \otimes \delta_1 \alpha) \square (\delta c \otimes \alpha).
\end{cases}
\]

Definition 5.2. A morphism of 2-track algebras \(F: \mathcal{A} \to \mathcal{B} \) consists of the following.

1. A functor \(F_{(1)}: \mathcal{A}_{(1)} \to \mathcal{B}_{(1)} \) enriched in pointed groupoids.
2. A collection \(F_{(1,2)} \) of morphisms of 2-track groupoids
\[
F_{(1,2)}(A, B): \mathcal{A}_{(1,2)}(A, B) \to \mathcal{B}_{(1,2)}(FA, FB)
\]
for all objects \(A, B \) of \(\mathcal{A} \), such that \(F_{(1,2)}(A, B) \) restricted to the first groupoid in \(\mathcal{A}_{(1,2)}(A, B) \) is the functor \(F_{(1)}(A, B): \mathcal{A}_{(1)}(A, B) \to \mathcal{B}_{(1)}(FA, FB) \).
3. (Compatibility with \(\otimes \)) \(F \) commutes with \(\otimes \):
\[
F(x \otimes y) = Fx \otimes Fy.
\]

Denote by \(\text{Alg}_{(1,2)} \) the category of 2-track algebras.

Definition 5.3. Let \(\mathcal{A} \) be a 2-track algebra. The underlying homotopy category of \(\mathcal{A} \) is the homotopy category of the underlying track category \(\mathcal{A}_{(1)} \), denoted
\[
\pi_0 \mathcal{A} := \pi_0 \mathcal{A}_{(1)} = \text{Comp} \mathcal{A}_{(1)}.
\]
We say that \(\mathcal{A} \) is based on the category \(\pi_0 \mathcal{A} \).

Definition 5.4. A morphism of 2-track algebras \(F: \mathcal{A} \to \mathcal{B} \) is a weak equivalence (or Dwyer-Kan equivalence) if the following conditions hold:

1. For all objects \(A \) and \(B \) of \(\mathcal{A} \), the morphism
\[
F_{(1,2)}: \mathcal{A}_{(1,2)}(A, B) \to \mathcal{B}_{(1,2)}(FA, FB)
\]
is a weak equivalence of 2-track groupoids (Definition 3.12).
2. The induced functor \(\pi_0 F: \pi_0 \mathcal{A} \to \pi_0 \mathcal{B} \) is an equivalence of categories.

6. Higher order chain complexes

In this section, we construct tertiary chain complexes, extending the work of [3] on secondary chain complexes. We will follow the treatment therein.

Definition 6.1. A chain complex \((A, d) \) in a pointed category \(\mathcal{A} \) is a sequence of objects and morphisms
\[
\cdots \longrightarrow A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \longrightarrow \cdots
\]
in \(\mathcal{A} \) satisfying \(d_{n-1}d_n = 0 \) for all \(n \in \mathbb{Z} \). The map \(d \) is called the differential.
A chain map \(f: (A, d) \to (A', d') \) between chain complexes is a sequence of morphisms \(f_n: A_n \to A'_n \) commuting with the differentials:

\[
\cdots \to A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \xrightarrow{d_{n-1}} \cdots
\]

\[
\cdots \to A'_{n+1} \xrightarrow{d'_{n+1}} A'_n \xrightarrow{d'_n} A'_{n-1} \xrightarrow{d'_{n-1}} \cdots
\]

i.e., satisfying \(f_n d_n = d'_n f_{n+1} \) for all \(n \in \mathbb{Z} \).

Definition 6.2. [3, Definition 2.6] Let \(B \) be a category enriched in pointed groupoids. A secondary pre-chain complex \((A, d, \gamma) \) in \(B \) is a diagram of the form:

\[
\cdots \to A_{n+2} \xrightarrow{d_{n+1}} A_{n+1} \xrightarrow{d_n} A_n \xrightarrow{d_{n-1}} A_{n-1} \xrightarrow{d_{n-2}} \cdots
\]

More precisely, the data consists of a sequence of objects \(A_n \) and maps \(d_n: A_{n+1} \to A_n \), together with left tracks \(\gamma_n: d_n d_{n+1} \Rightarrow 0 \) for all \(n \in \mathbb{Z} \).

\((A, d, \gamma) \) is a secondary chain complex if moreover for each \(n \in \mathbb{Z} \), the tracks

\[
d_{n-1} d_n d_{n+1} \Rightarrow d_{n-1}0 \Rightarrow 0
\]

and

\[
d_{n-1} d_n d_{n+1} \Rightarrow 0 d_{n+1} \Rightarrow 0
\]

coincide. In other words, the track

\[
\mathcal{O}(\gamma_{n-1}, \gamma_n) := (\gamma_{n-1} \otimes d_{n+1}) \square (d_{n-1} \otimes \gamma_n) : 0 \Rightarrow 0
\]
in the groupoid \(B(A_{n+2}, A_{n-1}) \) is the identity track of 0.

We say that the secondary pre-chain complex \((A, d, \gamma) \) is based on the chain complex \((A, \{d\}) \) in the homotopy category \(\pi_0 B \).

Remark 6.3. One can show that the notion of secondary (pre-)chain complex in \(B \) coincides with the notion of 1st order (pre-)chain complex in \(\text{Nul}_1 B \) described in [3, §4, c.f. Example 12.3].

Definition 6.4. A tertiary pre-chain complex \((A, d, \delta, \xi) \) in a 2-track algebra \(A \) is a sequence of objects \(A_n \) and maps \(d_n: A_{n+1} \to A_n \) in the category \(A_{(1)0} \), together with left
paths $\gamma_n \cdot d_n d_{n+1} \to 0$ in $A_{(1,2)}$, as illustrated in the diagram

\[\xymatrix{ & 0 \ar[dr] & & \cdots \ar[r] & A_{n+3} \ar[r]^{d_{n+2}} & A_{n+2} \ar[r]^{d_{n+1}} & A_{n+1} \ar[r]^{d_{n}} & A_{n} \ar[r]^{d_{n-1}} & A_{n-1} \ar[r] & \cdots \ar[ul] } \]

along with left 2-tracks $\xi_n : \gamma_n \otimes d_{n+2} \Rightarrow d_n \otimes \gamma_{n+1}$ in $A_{(1,2)}$, for all $n \in \mathbb{Z}$.

(A, d, γ, ξ) is a tertiary chain complex if moreover for each $n \in \mathbb{Z}$, the left 2-track:

$$d_{n-1} \otimes \gamma_n \otimes d_{n+2} \xrightarrow{d_{n-1} \otimes \xi_n} d_{n-1} d_n \otimes \gamma_n \otimes d_{n+2} \xrightarrow{\gamma_n \otimes d_{n+2}} d_{n-1} \otimes \gamma_n \otimes d_{n+2}$$

is the identity of $d_{n-1} \otimes \gamma_n \otimes d_{n+2}$ in the groupoid $A_{(2)}(A_{n+3}, A_{n-1})$. In other words, the element:

$$O(\xi_{n-1}, \xi_n) := \psi_{d_{n-1} \otimes \gamma_n \otimes d_{n+2}}((\xi_{n-1} \otimes d_{n+2}) \square (\gamma_{n-1} \otimes \gamma_{n+1}) \square (d_{n-1} \otimes \xi_n))$$

$$\in \pi_2 A_{(1,2)}(A_{n+3}, A_{n-1})$$

is trivial. Here, ψ is the structural isomorphism in the 2-track groupoid $A_{(1,2)}(A_{n+3}, A_{n-1})$, as in Definitions 3.4 and 3.8.

We say that the tertiary pre-chain complex (A, d, γ, ξ) is based on the chain complex $(A, \{d\})$ in the homotopy category $\pi_0 A$.

Toda brackets of length 3 and 4. Let \mathcal{C} be a category enriched in (Top, \wedge). Let $\pi_0 \mathcal{C}$ be the category of path components of \mathcal{C} (applied to each mapping space) and let

$$Y_0 \xrightarrow{y_1} Y_1 \xrightarrow{y_2} Y_2 \xrightarrow{y_3} Y_3 \xrightarrow{y_4} Y_4$$

be a diagram in $\pi_0 \mathcal{C}$ satisfying $y_1 y_2 = 0$, $y_2 y_3 = 0$, and $y_3 y_4 = 0$. Choose maps x_i in \mathcal{C} representing y_i. Then there exist left 1-cubes a, b, c as in the diagram

\[\xymatrix{ & 0 \ar[dr] & & 0 \ar[dr] & & \cdots \ar[r] & Y_0 \ar[r]^{x_1} & Y_1 \ar[r]^{x_2} & Y_2 \ar[r]^{x_3} & Y_3 \ar[r]^{x_4} & Y_4. \ar[ul] } \]

Definition 6.5. The Toda bracket of length 3, denoted $\langle y_1, y_2, y_3 \rangle \subseteq \pi_1 \mathcal{C}(Y_3, Y_0)$, is the set of all elements in $\text{Aut}(0) = \pi_1 \mathcal{C}(Y_3, Y_0)$ of the form

$$O(a, b) := (a \otimes x_3) \square (x_1 \otimes b)$$

as above.

Assume now that we can choose left 2-tracks $\alpha : a \otimes x_3 \Rightarrow x_1 \otimes b$ and $\beta : b \otimes x_4 \Rightarrow x_2 \otimes c$ in $\Pi_{(1,2)} \mathcal{C}$. Then the composite of left 2-tracks

$$(\alpha \otimes x_4) \square (a \otimes c) \square (x_1 \otimes \beta)$$
is an element of \(\text{Aut}(x_1 \otimes b \otimes x_4) \), to which we apply the structural isomorphism

\[
\psi_{x_1 \otimes b \otimes x_4} : \text{Aut}(x_1 \otimes b \otimes x_4) \xrightarrow{\cong} \pi_2 \mathcal{C}(Y_4, Y_0).
\]

The set of all such elements is the Toda bracket of length 4, denoted \(\langle y_1, y_2, y_3, y_4 \rangle \subseteq \pi_2 \mathcal{C}(Y_4, Y_0) \).

Note that the existence of \(\alpha \), resp. \(\beta \), implies that the bracket \(\langle y_1, y_2, y_3 \rangle \), resp. \(\langle y_2, y_3, y_4 \rangle \) contains the zero element.

Remark 6.6. For a secondary pre-chain complex \((A, d, \gamma)\), we have

\[
\mathcal{O}(\gamma_{n-1}, \gamma_n) \in \langle d_{n-1}, d_n, d_{n+1} \rangle
\]

for every \(n \in \mathbb{Z} \). Likewise, for a tertiary pre-chain complex \((A, d, \gamma, \xi)\), we have

\[
\mathcal{O}(\xi_{n-1}, \xi_n) \in \langle d_{n-1}, d_n, d_{n+1}, d_{n+2} \rangle
\]

for every \(n \in \mathbb{Z} \). However, the vanishing of these Toda brackets does not guarantee the existence of a tertiary chain complex based on the chain complex \((A, \{d\})\). In a secondary chain complex \((A, d, \gamma)\), these Toda brackets vanish in a compatible way, that is, the equations \(\mathcal{O}(\gamma_{n-1}, \gamma_n) = 0 \) and \(\mathcal{O}(\gamma_n, \gamma_{n+1}) = 0 \) involve the same left track \(\gamma_n : d_n d_{n+1} \Rightarrow 0 \).

7. The Adams differential \(d_3 \)

Let \(\text{Spec} \) denote the topologically enriched category of spectra and mapping spaces between them. More precisely, start from a simplicial (or topological) model category of spectra, like that of Bousfield–Friedlander [9, §2], or symmetric spectra or orthogonal spectra [13], and take \(\text{Spec} \) to be the full subcategory of fibrant-cofibrant objects; c.f. [6, Example 7.3].

Let \(H := H F_p \) be the Eilenberg-MacLane spectrum for the prime \(p \) and let \(\mathfrak{A} = H^* H \) denote the mod \(p \) Steenrod algebra. Consider the collection \(\text{EM} \) of all mod \(p \) generalized Eilenberg-MacLane spectra that are bounded below and of finite type, i.e., degree-wise finite products \(A = \prod_i \Sigma^{n_i} H \) with \(n_i \in \mathbb{Z} \) and \(n_i \geq N \) for some integer \(N \) for all \(i \). Since the product is degree-wise finite, the natural map \(\bigvee_i \Sigma^{n_i} H \to \prod_i \Sigma^{n_i} H \) is an equivalence, so that the mod \(p \) cohomology \(H^* A \) is a free \(\mathfrak{A} \)-module. Moreover, the cohomology functor restricted to the full subcategory of \(\text{Spec} \) with objects \(\text{EM} \) yields an equivalence of categories in the diagram:

\[
\begin{array}{ccc}
\pi_0 \text{Spec}^{\text{op}} & \xrightarrow{H^*} & \text{Mod}_{\mathfrak{A}} \\
\downarrow & & \downarrow \\
\pi_0 \text{EM}^{\text{op}} & \xrightarrow{H^*} & \text{Mod}_{\mathfrak{A}}^{\text{fin}}
\end{array}
\]

where \(\text{Mod}_{\mathfrak{A}}^{\text{fin}} \) denotes the full subcategory consisting of free \(\mathfrak{A} \)-modules which are bounded below and of finite type.

Given spectra \(Y \) and \(X \), consider the Adams spectral sequence:

\[
E_2^{s,t} = \text{Ext}_{\mathfrak{A}}^{s,t}(H^* X, H^* Y) \Rightarrow [\Sigma^{t-s} Y, X_p^*].
\]

Assume that \(Y \) is a finite spectrum and \(X \) is a connective spectrum of finite type, i.e., \(X \) is equivalent to a CW-spectrum with finitely many cells in each dimension and no cells below a certain dimension. Then the mod \(p \) cohomology \(H^* X \) is an \(\mathfrak{A} \)-module which is bounded
below and degreewise finitely generated (as an \mathcal{A}-module, or equivalently, as an \mathbb{F}_p-vector space). Choose a free resolution of H^*X as an \mathcal{A}-module:

$$
\cdots \longrightarrow F_2 \xrightarrow{e_1} F_1 \xrightarrow{e_0} F_0 \xrightarrow{\lambda} H^*X
$$

where each F_i is a free \mathcal{A}-module of finite type and bounded below. This diagram can be realized as the cohomology of a diagram in the stable homotopy category $\pi_0\text{Spec}$:

$$
\cdots \longrightarrow A_2 \xrightarrow{d_1} A_1 \xrightarrow{d_0} A_0 \xrightarrow{\epsilon} A_{-1} = X
$$

with each A_i in EM (for $i \geq 0$) and satisfying $H^*A_i \cong F_i$. We consider this diagram as a diagram in the opposite category $\pi_0\text{Spec}^{\text{op}}$ of the form:

$$
\cdots \longrightarrow A_2 \xrightarrow{d_1} A_1 \xrightarrow{d_0} A_0 \xrightarrow{\epsilon} A_{-1} = X
$$

Since $A_\bullet \rightarrow X$ is an EM-resolution of X in $\pi_0\text{Spec}^{\text{op}}$, there exists a tertiary chain complex (A, d, γ, ξ) in $\Pi_{(1,2)}\text{Spec}^{\text{op}}$ based on the resolution $A_\bullet \rightarrow X$, by Theorem 8.7.

Notation 7.1. Given spectra X and Y, let $\text{EM}\{X, Y\}$ denote the topologically enriched subcategory of Spec consisting of all spectra in EM and mapping spaces between them, along with the objects X and Y, with the mapping spaces $\text{Spec}(X, A)$ and $\text{Spec}(Y, A)$ for all A in EM; c.f. [3, Remark 4.3] [6, Remark 7.5]. We consider the 2-track algebra $\Pi_{(1,2)}\text{EM}\{X, Y\}^{\text{op}}$, or any 2-track algebra A weakly equivalent to it. In the following construction, everything will take place within $\Pi_{(1,2)}\text{EM}\{X, Y\}^{\text{op}}$, but we will write $\Pi_{(1,2)}\text{Spec}^{\text{op}}$ for notational convenience.

Start with a class in the E_2-term:

$$
x \in E^{s,t}_2 = \text{Ext}_{\mathcal{A}}^{s,t}(H^*X, H^*Y) = \text{Ext}_{\mathcal{A}}^{s,0}(H^*X, \Sigma^t H^*Y)
$$

represented by a cocycle $x': F_s \rightarrow \Sigma^t H^*Y$, i.e., a map of \mathcal{A}-modules satisfying $x'd_s = 0$. Realize x' as the cohomology of a map $x'': A_s \rightarrow \Sigma^t Y$ in Spec^{op}. The equation $x'd_s = 0$ means that $x''d_s$ is null-homotopic; let $\gamma: x''d_s \rightarrow 0$ be a null-homotopy. Consider the diagram in Spec^{op}:

$$
\cdots \longrightarrow A_{s+2} \xrightarrow{d_{s+1}} A_{s+1} \xrightarrow{d_s} A_s \xrightarrow{d_{s-1}} A_{s-1} \cdots \longrightarrow A_0 \xrightarrow{\epsilon} X
$$

Now consider the underlying secondary pre-chain complex in $\Pi_{(1)}\text{Spec}^{\text{op}}$:

$$
(7.1) \quad \cdots \longrightarrow A_{s+3} \xrightarrow{d_{s+2}} A_{s+2} \xrightarrow{d_{s+1}} A_{s+1} \xrightarrow{d_s} A_s \xrightarrow{x''} \Sigma^t Y
$$

in which the obstructions $O(\gamma_i, \gamma_{i+1})$ are trivial, for $i \geq s$.
Theorem 7.2. The obstruction $O(\gamma, \gamma_s) \in \pi_1 \text{Spec}^{op}(A_{s+2}, \Sigma Y) = \pi_0 \text{Spec}^{op}(A_{s+2}, \Sigma^{t+1} Y)$ is a (co)cycle and does not depend on the choices, up to (co)boundaries, and thus defines an element:

$$d_2(x) \in \text{Ext}_{\mathbb{A}}^{s+2, t+1}(H^*X, H^*Y).$$

Moreover, this function

$$d_2: \text{Ext}_{\mathbb{A}}^{s,t}(H^*X, H^*Y) \to \text{Ext}_{\mathbb{A}}^{s+2, t+1}(H^*X, H^*Y)$$

is the Adams differential d_2.

Proof. This is [3, Theorems 4.2 and 7.3], or the case $n = 1, m = 3$ of [6, Theorem 15.11]. Here we used the natural isomorphism:

$$\text{Ext}^{i,j}_{\pi_0 \text{EM}^{op}}(H^*X, H^*Y) \cong \text{Ext}^{i,j}_{\mathbb{A}}(H^*X, H^*Y).$$

where the left-hand side is defined as in Example 8.4. Using the equivalence of categories $H^*: \pi_0 \text{EM}^{op} \cong \text{Mod}_{\mathbb{A}}^{\text{fin}}$, this natural isomorphism follows from the natural isomorphisms:

$$\pi_0 \text{Spec}^{op}(A_{s+2}, \Sigma^{t+1} Y) = \text{Hom}_{\mathbb{A}}(F_{s+2}, H^*\Sigma^{t+1} Y) = \text{Hom}_{\mathbb{A}}(F_{s+2}, \Sigma^{t+1} H^* Y).$$

Cocycles modulo coboundaries in this group are precisely $\text{Ext}_{\mathbb{A}}^{s+2, t+1}(H^*X, H^*Y)$. □

Now assume that $d_2(x) = 0$ holds, so that x survives to the E_3-term. Since the obstruction

$$O(\gamma, \gamma_s) = (\gamma \otimes d_{s+1}) \Box (x'' \otimes \gamma_s)$$

vanishes, one can choose a left 2-track $\xi: \gamma \otimes d_{s+1} \Rightarrow x'' \otimes \gamma_s$, which makes (7.1) into a tertiary pre-chain complex in $\Pi_{(1,2)} \text{Spec}^{op}$. Since (A, d, γ, ξ) was a tertiary chain complex to begin with, the obstructions $O(\xi_i, \xi_{i+1})$ are trivial, for $i \geq s$.

Theorem 7.3. The obstruction $O(\xi, \xi_s) \in \pi_2 \text{Spec}^{op}(A_{s+3}, \Sigma Y) = \pi_0 \text{Spec}^{op}(A_{s+3}, \Sigma^{t+2} Y)$ is a (co)cycle and does not depend on the choices up to (co)boundaries, and thus defines an element:

$$d_3(x) \in E_3^{s+3, t+2}(X, Y).$$

Moreover, this function

$$d_3: E_3^{s,t}(X, Y) \to E_3^{s+3, t+2}(X, Y)$$

is the Adams differential d_3.

Proof. This is the case $n = 2, m = 4$ of [6, Theorem 15.11]. More precisely, by Theorem 9.3 the tertiary chain complex (A, d, γ, ξ) in $\Pi_{(1,2)} \text{Spec}^{op}$ yields a 2nd order chain complex in $\text{Nu}_2 \text{Spec}^{op}$ based on the same EM-resolution $A_{\bullet} \to X$ in $\pi_0 \text{Spec}^{op}$. The construction of d_3 above corresponds to the construction d_3 in [6, Definition 15.8]. □

Remark 7.4. The groups $E_3^{s,t}(X, Y)$ are an instance of the secondary Ext groups defined in [3, §4]. Likewise, the next term $E_4^{s,t}(X, Y) = \ker d_3/\im d_3$ is a higher order Ext group as defined in [6, §15].
Theorem 7.5. A weak equivalence of 2-track algebras induces an isomorphism of higher Ext groups, compatible with the differential $d_{(3)}$. More precisely, let $F: \mathcal{A} \to \mathcal{A}'$ be a weak equivalence between 2-track algebras \mathcal{A} and \mathcal{A}' which are weakly equivalent to $\Pi_{(1,2)}EM\{X,Y\}^{\text{op}}$. Then F induces isomorphisms $E_{3,\mathcal{A}}^{s,t}(X,Y) \cong E_{3,\mathcal{A}'}^{s,t}(FX,FY)$ making the diagram

$$\egin{array}{ccc}
E_{3,\mathcal{A}}^{s,t}(X,Y) & \xrightarrow{d_{(3),\mathcal{A}}} & E_{3,\mathcal{A}}^{s+3,t+2}(X,Y) \\
\cong & & \cong \\
E_{3,\mathcal{A}'}^{s,t}(FX,FY) & \xrightarrow{d_{(3),\mathcal{A}'}} & E_{3,\mathcal{A}'}^{s+3,t+2}(FX,FY)
\end{array}$$

commute. Here the additional subscript \mathcal{A} or \mathcal{A}' denotes the ambient 2-track category in which the secondary Ext groups and the differential are defined.

Proof. This follows from the case $n = 2$ of [6, Theorem 15.9], or an adaptation of the proof of [3, Theorem 5.1]. \qed

8. Higher order resolutions

In this section, we specialize some results of [6] about higher order resolutions to the case $n = 2$. We use the fact that a 2-track algebra has an underlying algebra of left 2-cubical balls, which is the topic of Section 9.

First, we recall some background on relative homological algebra; more details can be found in [3, §1].

Definition 8.1. Let \mathcal{A} be an additive category and $\mathfrak{a} \subseteq \mathcal{A}$ a full additive subcategory.

1. A chain complex (A,d) is \mathfrak{a}-exact if for every object X of \mathfrak{a} the chain complex $\text{Hom}_\mathcal{A}(X,A)$ is an exact sequence of abelian groups.
2. A chain map $f: (A,d) \to (A',d')$ is an \mathfrak{a}-equivalence if for every object X of \mathfrak{a}, the chain map $\text{Hom}_\mathcal{A}(X,f)$ is a quasi-isomorphism.
3. For an object A of \mathcal{A}, an A-augmented chain complex A_\bullet is a chain complex of the form

$$\cdots \to A_1 \xrightarrow{d_0} A_0 \xrightarrow{\epsilon} A \to 0 \to \cdots$$

i.e., with $A_{-1} = A$ and $A_n = 0$ for $n < -1$. Such a complex can be viewed as a chain map $\epsilon: A_\bullet \to A$ where A is a chain complex concentrated in degree 0. The map $\epsilon = d_{-1}$ is called the augmentation.
4. An \mathfrak{a}-resolution of A is an A-augmented chain complex A_\bullet which is \mathfrak{a}-exact and such that for all $n \geq 0$, the object A_n belongs to \mathfrak{a}. In other words, an \mathfrak{a}-resolution of A is a chain complex A_\bullet in \mathfrak{a} together with an \mathfrak{a}-equivalence $\epsilon: A_\bullet \to A$.

Example 8.2. Consider the category $\mathcal{A} = \text{Mod}_R$ of R-modules for some ring R, and the subcategory \mathfrak{a} of free (or projective) R-modules. This recovers the usual homological algebra of R-modules.

Definition 8.3. Let \mathcal{A} be an abelian category and $F: \mathcal{A} \to \mathcal{A}$ an additive functor. The \mathfrak{a}-relative left derived functors of F are the functors $L^n_\mathfrak{a}F: \mathcal{A} \to \mathcal{A}$ for $n \geq 0$ defined by

$$(L^n_\mathfrak{a}F)A = H_n(F(A_\bullet))$$

where $A_\bullet \to A$ is any \mathfrak{a}-resolution of A.
Likewise, if $F: \mathbf{A}^{\text{op}} \to \mathbf{A}$ is a contravariant additive functor, its \textbf{a-relative right derived functors} of F are defined by

$$(R^n_a F)A = H^n (F(A_a)) \, .$$

\textbf{Example 8.4.} The a-relative Ext groups are given by

$$\text{Ext}^n_a(A, B) := (R^n_a \text{Hom}_A(-, B))(A) = H^n \text{Hom}_A(A_{\bullet}, B).$$

\textbf{Proposition 8.5} (Correction of 1-tracks). Let \mathbf{B} be a category enriched in pointed groupoids, such that its homotopy category $\pi_0 \mathbf{B}$ is additive. Let $a \subseteq \pi_0 \mathbf{B}$ be a full additive subcategory. Then there exists a secondary pre-chain complex in \mathbf{B} based on an a-resolution $A_{\bullet} \to X$ of an object X in $\pi_0 \mathbf{B}$. Then there exists a secondary chain complex (A, d, γ') in \mathbf{B} with the same objects A_i and differentials d_i. In particular (A, d, γ') is also based on the a-resolution $A_{\bullet} \to X$.

\textbf{Proof.} This follows from an adaptation of the proof of \cite[Lemma 2.14]{B}, or the case $n = 1$ of \cite[Theorem 13.2]{B}.

\textbf{Proposition 8.6} (Correction of 2-tracks). Let \mathbf{A} be a 2-track algebra such that its homotopy category $\pi_0 \mathbf{A}$ is additive. Let $a \subseteq \pi_0 \mathbf{A}$ be a full additive subcategory. Then there exists a tertiary chain complex (A, d, γ, ξ') in \mathbf{A} with the same objects A_i, differentials d_i, and left paths γ_i. In particular, (A, d, γ, ξ') is also based on the a-resolution $A_{\bullet} \to X$.

\textbf{Proof.} This follows from the case $n = 2$ of \cite[Theorem 13.2]{B}.

\textbf{Theorem 8.7} (Resolution Theorem). Let \mathbf{A} be a 2-track algebra such that its homotopy category $\pi_0 \mathbf{A}$ is additive. Let $a \subseteq \pi_0 \mathbf{A}$ be a full additive subcategory. Then there exists a tertiary chain complex in \mathbf{A} based on the resolution $A_{\bullet} \to X$.

\textbf{Proof.} This follows from the resolution theorems \cite[Theorems 8.2 and 14.5]{B}.

\section{9. \textbf{Algebras of left 2-cubical balls}}

\textbf{Proposition 9.1.} Every left cubical ball of dimension 2 is equivalent to C_k for some $k \geq 2$, where $C_k = B_1 \cup \cdots \cup B_k$ is the left cubical ball of dimension 2 consisting of k closed 2-cells going cyclically around the vertex 0, with one common 1-cell e_i between successive 2-cells B_i and B_{i+1}, where by convention $B_{k+1} := B_1$.

See Figure 3, which is taken from \cite[Figure 3]{B}.

\textbf{Proof.} Let B be a left cubical ball of dimension 2. For each closed 2-cell B_i, equipped with its homeomorphism $h_i: I^2 \cong B_i$, the faces $\partial^i_1 B_i$ and $\partial^i_2 B_i$ are required to be 1-cells of the boundary $\partial B \cong S^1$, while the faces $\partial^i_0 B_i$ and $\partial^i_2 B_i$ are not in ∂B, and therefore must be faces of some other 2-cells. In other words, we have $\partial^i_0 B_i = \partial^i_1 B_j$ or $\partial^i_1 B_i = \partial^i_2 B_j$ for some other 2-cell B_j, in fact a unique B_j, because B is homeomorphic to a 2-disk.

Pick any 2-cell of B and call it B_1. Then the face $e_1 := \partial^2_1 B_1$ appears as a face of exactly one 2-cell, which we call B_2. The remaining face e_2 of B_2 appears as a face of exactly one other 2-cell, which we call B_3. Repeating this process, we list distinct 2-cells B_1, \ldots, B_k, and B_{k+1} is one of the previously labeled 2-cells. Then B_{k+1} must be B_1, with $e_k = \partial^2_1 B_1$, since
a 1-cell cannot appear as a common face of three 2-cells. Finally, this process exhausts all 2-cells, because all 2-cells share the common vertex 0, which has a neighborhood homeomorphic to an open 2-disk. □

Figure 1. The left cubical balls C_2, C_3, and C_4.

Proposition 9.2. A left 2-cubical ball ([6, Definition 10.1]) in a pointed space X corresponds to a circular chain of composable left 2-tracks:

$$a = a_0 \overset{\alpha_1}{\rightarrow} a_1 \overset{\alpha_2}{\rightarrow} \cdots \overset{\alpha_k}{\rightarrow} a_{k-1} \overset{\alpha_k}{\rightarrow} a_k = a$$

where the sign $\epsilon_i = \pm 1$ is the orientation of the 2-cells in the left cubical ball ([6, Definition 10.8]). Moreover, such an expression $(\alpha_1, \ldots, \alpha_k)$ of a left 2-cubical ball is unique up to cyclic permutation of the k left 2-tracks α_i. For example, $(\alpha_1, \alpha_2, \ldots, \alpha_k)$ and $(\alpha_2, \ldots, \alpha_k, \alpha_1)$ represent the same left 2-cubical ball. See Figure 2.

Proof. By our convention for the \square-composition, a left 2-track α defines a morphism between left paths $\alpha: d^0_i \alpha \Rightarrow d^2_i \alpha$. The gluing condition for a left 2-cubical ball $(\alpha_1, \ldots, \alpha_k)$ based on a left cubical ball $B = B_1 \cup \cdots \cup B_k$ as in Proposition 9.1 is that the restrictions $\alpha_i|_{e_i}$ and $\alpha_{i+1}|_{e_i}$ agree on the common edge $e_i \subset B_i \cap B_{i+1}$. This is the composability condition for $\alpha_{i+1} \square \alpha_i$. Indeed, up to a global sign, the sign of B_i is:

$$\epsilon_i = \begin{cases} +1 & \text{if } e_i = \partial^2_i B_i \\ -1 & \text{if } e_i = \partial^0_i B_i \end{cases}$$

so that we have $\alpha_i^{\epsilon_i}: \alpha_i|_{e_i-1} \Rightarrow \alpha_i|_{e_i}$ and we may take $a_i = \alpha_i|_{e_i}$.

Figure 2. A left 2-cubical ball.
Theorem 9.3.
(1) A 2-track algebra \mathcal{A} yields an algebra of left 2-cubical balls ([6 Definition 11.1]) in the following way. Consider the system $\Theta(\mathcal{A}) := ((\mathcal{A}_{(1,2)}, \otimes), \pi_0\mathcal{A}, D, \mathcal{O})$, where:
- $(\mathcal{A}_{(1,2)}, \otimes)$ is the underlying 2-graded category of \mathcal{T} (described in Definition 5.1).
- $\pi_0\mathcal{A}$ is the homotopy category of \mathcal{A}.
- $q: (A)^0 = \mathcal{A}_{(1)0} \to \pi_0\mathcal{A}$ is the canonical quotient functor.
- $D: (\pi_0\mathcal{A})^{op} \times \pi_0\mathcal{A} \to \text{Ab}$ is the functor defined by $D(A, B) = \pi_2\mathcal{A}_{(1,2)}(A, B)$.
- The obstruction operator \mathcal{O} is obtained by concatenating the corresponding left 2-tracks and using the structural isomorphisms ψ of the mapping 2-track groupoid:
$$\mathcal{O}_B(\alpha_1, \alpha_2, \ldots, \alpha_k) = \psi_a(\alpha^0_1 \square \cdots \square \alpha^0_i \square \cdots \square \alpha^0_k \square \alpha^0_l) \in \text{Aut}_{\mathcal{A}_{(2)}(A, B)}(0) = \pi_2\mathcal{A}_{(1,2)}(A, B)$$
where we denoted $a = \delta_0 \alpha_1 = \delta_1 \alpha_k$.
(2) Given a category \mathcal{C} enriched in pointed spaces, $\Theta(\Pi_{(1,2)}\mathcal{C})$ is the algebra of left 2-cubical balls
$$(\text{Nul}_2 \mathcal{C}, \pi_0\mathcal{C}, \pi_2\mathcal{C}(-, -), \mathcal{O})$$
described in [6 §11].
(3) The construction Θ sends a tertiary pre-chain complex (A, d, δ, ξ) in \mathcal{A} to a 2nd order 2-track category of $\Theta(\mathcal{A})$, in the sense of [6 Definition 11.4]. Moreover, (A, d, δ, ξ) is a tertiary chain complex if and only if the corresponding 2nd order 2-track pre-chain complex in $\Theta(\mathcal{A})$ is a 2nd order 2-track chain complex.

Proof. Let us check that the obstruction operator \mathcal{O} is well-defined. By 9.2 the only ambiguity is the starting left 1-cube a_i in the composition. Two such compositions are conjugate in the groupoid $\mathcal{A}_{(2)}(A, B)$:

$$\alpha_{i-1}^0 \square \cdots \square \alpha_i^0 \square \alpha_1^0 \square \cdots \square \alpha_{i+1}^0 \square \alpha_i^0$$

$$= (\alpha_{i-1}^0 \square \cdots \square \alpha_i^0) \square \alpha_k^0 \square \cdots \square \alpha_{i+1}^0 \square \alpha_i^0 \square \cdots \square \alpha_i^0 \square (\alpha_{i-1}^0 \square \cdots \square \alpha_i^0) \square$$

$$= \beta^0 \square \alpha_k^0 \square \cdots \square \alpha_i^0 \square \beta$$

with $\beta = (\alpha_{i-1}^0 \square \cdots \square \alpha_i^0) \Rightarrow: a_i \Rightarrow a_0$. Since $\mathcal{A}_{(2)}(A, B)$ is a strictly abelian groupoid, we have the commutative diagram:

$$\begin{array}{ccc}
\text{Aut}(a_0) & \xrightarrow{\psi_a} & \text{Aut}(a_i) \\
\downarrow{\psi_{a_0}} & & \downarrow{\psi_{a_i}} \\
\text{Aut}(0) & & \\
\end{array}$$

so that $\mathcal{O}_B(\alpha_1, \ldots, \alpha_k)$ is well-defined.

The remaining properties listed in [6 Definition 11.1] are straightforward verifications. \(\square\)

Appendix A. Models for Homotopy 2-types

Recall that the left n-cubical set $\text{Nul}_n(X)$ of a pointed space X depends only on the n-type P_nX of X [6 §1]. In particular the fundamental 2-track groupoid $\Pi_{(1,2)}(X)$ depends only on the 2-type P_2X of X. There are various algebraic models for homotopy 2-types in the literature, using 2-dimensional categorical structures. Let us mention the weak 2-groupoids of [15], the bigroupoids of [12], the double groupoids of [10], the two-typical double groupoids of [7], and the double groupoids with filling condition of [11].
In contrast, 2-track groupoids are not models for homotopy 2-types, not even of connected homotopy 2-types. In the application we are pursuing, the functor $\Pi(1,2)$ will be applied to topological abelian groups, hence products of Eilenberg-MacLane spaces. We are not trying to encode the homotopy 2-type of the Eilenberg-MacLane mapping theory, but rather as little information as needed in order to compute the Adams differential d_3.

The fundamental 2-track groupoid $\Pi(1,2)(X)$ encodes the 1-type of X, via the fundamental groupoid $\Pi(1)(X)$. Moreover, as noted in Remark 3.13 it also encodes the homotopy group $\pi_2(X)$. However, it fails to encode the $\pi_1(X)$-action on $\pi_2(X)$, as we will show below.

A.1. Connected 2-track groupoids. Recall that a category \mathcal{C} is called skeletal if any isomorphic objects are equal. A skeleton of \mathcal{C} is a full subcategory on a collection consisting of one representative object in each isomorphism class of objects of \mathcal{C}. Every groupoid is equivalent to a disjoint union of groups, that is, a coproduct of single-object groupoids. The inclusion $\text{sk}G \sim \rightarrow G$ of a skeleton of G provides such an equivalence. A similar construction yields the following statement for 2-track groupoids.

Lemma A.1. Let $G = (G(1), G(2))$ be a 2-track groupoid.

1. There is a weak equivalence of 2-track groupoids $\text{sk}(1)G \sim \rightarrow G$ where the first groupoid of $\text{sk}(1)G$ is skeletal.

2. If G is connected and $G(1)$ is skeletal, then there is a weak equivalence of 2-track groupoids $\text{sk}(2)G \sim \rightarrow G$ where both groupoids of $\text{sk}(2)G$ are skeletal.

In particular, if G is connected, then $\text{sk}(2)\text{sk}(1)G \sim \rightarrow \text{sk}(1)G \sim \rightarrow G$ is a weak equivalence between G and a 2-track groupoid whose constituent groupoids are both skeletal.

Lemma A.2. Let G and G' be connected 2-track groupoids whose constituent groupoids are skeletal. If there are isomorphisms of homotopy groups $\varphi_1 : \pi_1 G \simeq \pi_1 G'$ and $\varphi_2 : \pi_2 G \simeq \pi_2 G'$, then there is a weak equivalence $\varphi : G \sim \rightarrow G'$.

Proof. Since $G(1)$ and $G'(1)$ are skeletal, they are in fact groups, and the group isomorphism φ_1 is an isomorphism of groupoids $\varphi_1 : G(1) \sim \rightarrow G'(1)$.

Now we define a functor $\varphi_2 : G(2) \rightarrow G'(2)$. On objects, it is given by the composite

$$G_{(2)0} = \text{Comp} G_{(2)} \xrightarrow{q} \text{Star} G_{(1)} = G(1)(0,0) = \pi_1 G \xrightarrow{\varphi_1} \pi_1 G' = G'(1)(0,0) = \text{Star} G'(1) \xrightarrow{q} \text{Comp} G'_{(2)} = G'_{(2)0}$$

which is a bijection. On morphisms, φ_2 is defined as follows. We have $G_{(2)}(a,b) = \emptyset$ when $a \neq b$, so there is nothing to define then. On the automorphisms of an object $a \in G_{(2)0}$, define φ_2 as the composite

$$G_{(2)}(a,a) = \text{Aut}_{G(2)}(a) \xrightarrow{\psi_a} \text{Aut}_{G(2)}(0) = \pi_2 G \xrightarrow{\varphi_2} \pi_2 G' = \text{Aut}_{G'(2)}(0') \xrightarrow{\psi'_a} \text{Aut}_{G'(2)}(\varphi(a)) = G'_{(2)}(\varphi(a), \varphi(a)).$$
Then $\varphi(2)$ is a functor and commutes with the structural isomorphisms, by construction. Thus $\varphi = (\varphi(1), \varphi(2)) : G \to G'$ is a morphism of 2-track groupoids, and is moreover a weak equivalence.

Corollary A.3. Let G and G' be connected 2-track groupoids with isomorphic homotopy groups $\pi_i G \simeq \pi_i G'$ for $i = 1, 2$. Then G and G' are weakly equivalent, i.e., there is a zigzag of weak equivalences between them.

Proof. Consider the zigzag of weak equivalences

$$
\begin{array}{ccc}
G & \sim & G' \\
\downarrow & & \downarrow \\
\text{sk}(1)G & \sim & \text{sk}(1)G' \\
\downarrow & & \downarrow \\
\text{sk}(2)\text{sk}(1)G & \varphi & \text{sk}(2)\text{sk}(1)G'
\end{array}
$$

where the bottom morphism φ is obtained from Lemma A.2. □

By Remark 3.13 the functor $\Pi_{(1,2)} : \text{Top}^* \to \text{Gpd}_{(1,2)}$ induces a functor

(A.1) \[\Pi_{(1,2)} : \text{Ho} \left(\text{connected 2-Types} \right) \to \text{Ho} \left(\text{Gpd}_{(1,2)} \right) \]

where the left-hand side denotes the homotopy category of connected 2-types (localized with respect to weak homotopy equivalences), and the right-hand side denotes the localization with respect to weak equivalences, as in Definition 3.12.

Proposition A.4. The functor $\Pi_{(1,2)}$ in (A.1) is not an equivalence of categories.

Proof. Let X and Y be connected 2-types with isomorphic homotopy groups π_1 and π_2, but distinct π_1-actions on π_2. Then X and Y are not weakly equivalent, but $\Pi_{(1,2)}(X)$ and $\Pi_{(1,2)}(Y)$ are weakly equivalent, by Corollary A.3. □

A.2. **Comparison to bigroupoids.** Any algebraic model for (pointed) homotopy 2-types has an underlying 2-track groupoid. Using the globular description in Remark 3.1, the most direct comparison is to the bigroupoids of [12]. A pointed bigroupoid (resp. double groupoid) will mean one equipped with a chosen object, here denoted x_0 to emphasize that it is unrelated to the algebraic structure of the bigroupoid.

Proposition A.5. Let $\Pi_2^{\text{BiGpd}}(X)$ denote the homotopy bigroupoid of a space X constructed in [12], where it was denoted $\Pi_2(X)$.

1. There is a forgetful functor U from pointed bigroupoids to 2-track groupoids.
2. For a pointed space X, there is a natural isomorphism of 2-track groupoids $\Pi_{(1,2)}(X) \simeq U\Pi_2^{\text{BiGpd}}(X)$.

Proof. Let B be a bigroupoid. We construct a 2-track groupoid UB as follows. The first constituent groupoid of UB is the underlying groupoid of B

$$UB_{(1)} := \pi_0 B$$
obtained by taking the components of each mapping groupoid $B(x, y)$. The second constituent groupoid of UB is a coproduct of mapping groupoids

$$UB_{(2)} := \coprod_{x \in \text{Ob}(B)} B(x, x_0).$$

The quotient function $q: UB_{(2)0} \to \text{Star}UB_{(1)}$ is induced by the natural quotient maps $\text{Ob}(B(x, x_0)) \to \pi_0 B(x, x_0)$. To define the structural isomorphisms

$$\psi_a: \text{Aut}(a) \xrightarrow{\simeq} \text{Aut}(c_{x_0})$$

for objects $a \in UB_{(2)0}$, which are 1-morphisms to the basepoint $a: x \to x_0$, consider the diagram

\[
\begin{array}{ccc}
 x & \xrightarrow{\lambda} & x_0 \\
 \downarrow \text{id}^2_a & & \downarrow \alpha \\
 a & \xleftarrow{c_{x_0}} & c_{x_0}
\end{array}
\]

where $\lambda: c_{x_0} \circ a \Rightarrow a$ is the left identity coherence 2-isomorphism, \circ denotes composition of 1-morphisms, and c_{x_0} is the identity 1-morphism of the object x_0. (We kept our notation \Box for composition of 2-morphisms.) The inverse $\psi_a^{-1}: \text{Aut}(c_{x_0}) \to \text{Aut}(a)$ is defined by going from top to bottom in the diagram, namely

$$\psi_a^{-1}(\alpha) = \lambda \Box (\alpha \cdot \text{id}^2_a) \Box \lambda.$$

One readily checks that UB is a 2-track groupoid, that this construction U is functorial, and that $U\Pi^\text{BiGpd}_2(X)$ is naturally isomorphic to $\Pi_{(1,2)}(X)$ as 2-track groupoids.

A.3. Comparison to double groupoids. The homotopy double groupoid $\rho^\square_2(X)$ from [10] is a cubical construction. Following the terminology therein, double groupoid will be shorthand for edge symmetric double groupoid with connection.

Let us recall the geometric idea behind $\rho^\square_2(X)$. A path $a: I \to X$ has an underlying semitrack $\langle a \rangle$, defined as its equivalence class with respect to thin homotopy rel ∂I. A semitrack $\langle a \rangle$ in turn has an underlying track $\{a\}$. A square $u: I^2 \to X$ has an underlying 2-track $\{u\}$. A 2-track $\{u\}$ in turn has an underlying equivalence class $\{u\}_T$ with respect to cubically thin homotopy, i.e., a homotopy whose restriction to the boundary ∂I^2 is thin (not necessarily stationary). The homotopy double groupoid $\rho^\square_2(X)$ encodes semitracks $\langle a \rangle$ in X and 2-tracks $\{u\}_T$ up to cubically thin homotopy.

Proposition A.6. Let $\rho^\square_2(X)$ denote the homotopy double groupoid of a space X constructed in [10].

1. There is a forgetful functor U from pointed double groupoids to 2-track groupoids.
(2) For a pointed space X, there is a natural weak equivalence of 2-track groupoids
$$\Pi_{(1,2)}(X) \xrightarrow{\sim} U_{\rho_2^3}(X).$$

Proof. We adopt the notation of [10], including that compositions in a double groupoid are
written in diagrammatic order, i.e., $a + b$ denotes the composition $x \to y \to z$. However, we
keep our graphical convention for the two axes:

Let D be a double groupoid, whose data is represented in the diagram of sets

![Diagram of a double groupoid](image)

along with connections $\Gamma^-, \Gamma^+: D_1 \to D_2$. Two 1-morphisms $a, b \in D_1$ with same endpoints
$\partial_1^{-}(a) = \partial_1^{-}(b) = x, \partial_1^{+}(a) = \partial_1^{+}(b) = y$ are called homotopic if there exists a 2-morphism
$u \in D_2$ satisfying $\partial_2^{-}(u) = a, \partial_2^{+}(u) = b, \partial_1^{-}(u) = \epsilon(x), \partial_2^{+}(u) = \epsilon(y)$. We write $a \sim b$ if a and b are homotopic.

We now define the underlying 2-track groupoid UD. The first constituent groupoid $UD_{(1)}$
has object set D_0 and morphism set D_1/\sim, with groupoid structure inherited from the
groupoid (D_0, D_1). The second constituent groupoid $UD_{(2)}$ has object set
$$UD_{(2)} := \{a \in D_1 \mid \partial_1^{+}(a) = x_0\}.$$

A morphism in $UD_{(2)}$ from a to b is an element $u \in D_2$ satisfying $\partial_1^{-}(u) = a, \partial_2^{-}(u) = b,$
$\partial_1^{+}(u) = \epsilon(x_0), \partial_2^{+}(u) = \epsilon(x_0)$, as illustrated here:

![Diagram of a 2-track morphism](image)

Composition in $UD_{(2)}$ is defined as follows. Given 1-morphisms $a, b, c: x \to x_0$ in D_1 and
morphisms $u: a \Rightarrow b$ and $v: b \Rightarrow c$ in $UD_{(2)}$, their composition $v \Box u: a \Rightarrow c$ is defined by
$$v \Box u = (\Gamma^{+}(b) +_2 u) +_1 (v +_2 \circ_{x_0})$$
$$= (\Gamma^{+}(b) +_2 u) +_1 v$$
$$= (\Gamma^{+}(b) +_1 v) +_2 u$$
The identity morphisms in \(UD_2 \) are given by \(\text{id}^\Box_a = \Gamma^-(a) \). The inverse of \(u: a \Rightarrow b \) is given by

\[
 u^\Xi = \left((-1) \Gamma^+(b) + (-1)u \right) + 1 \left(\epsilon_2(a) + 2 \Gamma^-(a) \right)
\]

\[
 = (-1) \Gamma^+(b) + 2 (-1)u + 1 \Gamma^-(a)
\]

as illustrated here:

The structural isomorphisms \(\psi_a^{-1}: \text{Aut}(\epsilon(x_0)) \rightarrow \text{Aut}(a) \) are defined by

\[
 \psi_a^{-1}(u) = \left(\Gamma^-(a) + 2 \odot x_0 \right) + 1 \left(\odot x_0 + 2 u \right)
\]

\[
 = \Gamma^-(a) + 1 u
\]

\[
 = \Gamma^-(a) + 2 u
\]

as illustrated here:
The quotient function $q: UD(2) \to \text{Star } UD(1)$ is induced by the quotient function $D_1 \to D_1/\sim$. One readily checks that UD is a 2-track groupoid, and that this construction U is functorial.

For a pointed space X, define a comparison map $\Pi_{(1,2)}(X) \to U\rho^2_2(X)$ which is an isomorphism on $\Pi_{(1)}(X)$, and which quotients out the thin homotopy relation between left paths in X and the cubically thin homotopy relation between left 2-tracks. This defines a natural weak equivalence of 2-track groupoids.

References

[1] J. F. Adams, *On the structure and applications of the Steenrod algebra*, Comment. Math. Helv. 32 (1958), 180–214. MR0096219 (20 #2711)

[2] H.-J. Baues, *The algebra of secondary cohomology operations*, Progress in Mathematics, vol. 247, Birkhäuser Verlag, Basel, 2006. MR2220189 (2008a:55015)

[3] H.-J. Baues and M. Jibladze, *Secondary derived functors and the Adams spectral sequence*, Topology 45 (2006), no. 2, 295–324, DOI 10.1016/j.top.2005.08.001. MR2193337 (2006k:55031)

[4] H. J. Baues and D. Blanc, *Stems and spectral sequences*, Algebr. Geom. Topol. 10 (2010), no. 4, 2061–2078, DOI 10.2140/agt.2010.10.2061. MR2728484 (2012c:55017)

[5] H.-J. Baues and M. Jibladze, *Dualization of the Hopf algebra of secondary cohomology operations and the Adams spectral sequence*, J. K-Theory 7 (2011), no. 2, 203–347, DOI 10.1017/is010010029jkt133. MR2787297 (2012b:55023)

[6] H.-J. Baues and D. Blanc, *Higher order derived functors and the Adams spectral sequence*, J. Pure Appl. Algebra 219 (2015), no. 2, 199–239, DOI 10.1016/j.jpaa.2014.04.018. MR3250522

[7] D. Blanc and S. Paoli, *Two-track categories*, J. K-Theory 8 (2011), no. 1, 59–106, DOI 10.1017/is010003020jkt116. MR2826280 (2012h:18021)

[8] A. K. Bousfield and D. M. Kan, *The homotopy spectral sequence of a space with coefficients in a ring*, Topology 11 (1972), 79–106. MR0283801 (44 #1031)

[9] A. K. Bousfield and E. M. Friedlander, *Homotopy theory of Γ-spaces, spectra, and bisimplicial sets*, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 80–130. MR513569 (80e:55001)

[10] R. Brown, K. A. Hardie, K. H. Kamps, and T. Porter, *A homotopy double groupoid of a Hausdorff space*, Theory Appl. Categ. 10 (2002), 71–93. MR1883479 (2003d:18010)

[11] A. M. Cegarra, B. A. Heredia, and J. Remedios, *Double groupoids and homotopy 2-types*, Appl. Categ. Structures 20 (2012), no. 4, 323–378, DOI 10.1007/s10485-010-9240-1. MR2943635

[12] K. A. Hardie, K. H. Kamps, and R. W. Kieboom, *A homotopy bigroupoid of a topological space*, Appl. Categ. Structures 9 (2001), no. 3, 311–327, DOI 10.1023/A:1011270417127. MR1836257 (2002f:18011)

[13] M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, *Model categories of diagram spectra*, Proc. London Math. Soc. (3) 82 (2001), no. 2, 441–512, DOI 10.1112/S0024611501012692. MR1806878 (2001k:55025)

[14] C. R. F. Maunder, *On the differentials in the Adams spectral sequence*, Proc. Cambridge Philos. Soc. 60 (1964), 409–420. MR0167980 (29 #5245)
[15] Z. Tamsamani, *Sur des notions de n-catégorie et n-groupoïde non strictes via des ensembles multisimpliciaux*, K-Theory 16 (1999), no. 1, 51–99, DOI 10.1023/A:1007747915317 (French, with English summary). MR1673923 (99m:18007)

E-mail address: baues@mpim-bonn.mpg.de

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

E-mail address: franklan@mpim-bonn.mpg.de

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany