We discuss novel transverse plasmon-polaritons that are hosted by AA- and AB-stacked bilayer graphene due to perfect nesting. They are composed of oscillating counterflow currents in between the layers, giving a clear interpretation for these collective modes as magnetic excitations carrying magnetic moment parallel to the planes. For AA-stacked bilayer graphene, these modes can reach zero frequency at the neutrality point and we thus predict a symmetry broken ground-state leading to in-plane orbital ferromagnetism. Even though it could be hard to detect them in real solid-state devices, these novel magnetic plasmons should be observable in artificial set-ups such as optical lattices. Also, our results might be relevant for magic angle twisted bilayer graphene samples as their electronic properties are mostly determined by confined AA-stacked regions.

I. INTRODUCTION

Plasmonics in graphene-based materials has attracted much attention since the wavelength of light can be reduced by several orders of magnitude governed by the inverse fine-structure constant $\alpha^{-1} \sim 137$.1–7 This strong confinement further gives rise to various applications such as perfect absorption,8 the sensing of biochemical molecules,9 plasmon-induced transparency10 or plasmon-enhanced chirality.11 Also other two-dimensional systems have shown interesting plasmonic properties such as molybdenum disulfide,12 black phosphorous,13 or general van der Waals materials.14

Plasmonics is usually based on longitudinal or transverse-magnetic (TM) plasmons which consist of collective density oscillations collinear to the propagation direction. These excitations are strongly confined due to the enhanced Coulomb coupling between the electromagnetic field and the charge carrier density. On the other hand, transverse or transverse-electric (TE) plasmons can also exist in graphene which consist of collective current oscillations that are perpendicular to the propagation direction.15 These excitations are closely pinned to the light-cone and thus weakly confined, which allows for their detection in Otto configuration.16,17 Negative refractive index environments can help to enhance their confinement,18,19 and magnetically biased graphene-ferrite structures give rise to non-reciprocal plasmons.20 Also, in AB-stacked bilayer graphene the transverse modes are considerably more confined than in its monolayer counterpart.21 The non-linear response of transverse plasmons was analyzed in Ref. 22.

Transverse plasmons in single layer graphene arise from interband transitions close to the absorption threshold and it is difficult to visualize their magnetic character.23–25 This might further be a reason for their fragile nature, i.e., their ultrahigh refractive index sensitivity.

Here, we will study the antisymmetric transverse mode of AA or AB-stacked graphene bilayers that has not been mentioned in the literature, so far.26 They are considerably more stable as they arise from a resonant “magnetic” absorption, absent in uncoupled bilayers which were discussed in Ref. 27. Further, the antisymmetric counterflow leads to perfect screening outside the sample for $qa \to 0$ such that the plasmon dispersion does not depend on the two external, possibly different dielectric environments, contributing to additional stability. Finally, these antisymmetric modes have a clear physical interpretation.
II. ELECTROMAGNETIC RESPONSE IN BILAYERS

Following Ref. 28, the most general (bare) in-plane current response in isotropic (and non-chiral) bilayer systems can be written as

\[
\begin{pmatrix}
 j_\nu^l \\
 j_\nu^t
\end{pmatrix} = - \begin{pmatrix}
 \chi_{11} & \chi_{12} \\
 \chi_{21} & \chi_{22}
\end{pmatrix} \begin{pmatrix}
 A_\nu^1 \\
 A_\nu^2
\end{pmatrix},
\]

where \(A_\nu^\ell \) denotes the gauge field acting on layer \(\ell = 1, 2 \) and \(\nu = l, t \) defines the longitudinal and transverse channels, which are decoupled. Further, \(\chi_{\ell\ell'} = \langle j_\nu^\ell, j_\nu^\ell' \rangle \) is the current-current response with respect to layer \(\ell \) and \(\ell' \). Notice that the polarization subscript \(\nu \) is suppressed in \(\chi_{n,m} \) since both polarizations coincide in the \(q \to 0 \)-limit.

In a homogeneous dielectric environment, the propagators of the gauge fields with in-plane momentum \(q \) and frequency \(\omega \) are given by

\[
\mathcal{D}_\nu = d_\nu \left(\frac{1}{e^{-q'a} - e^{-q'a}} \right),
\]

with \(a \) the distance between layers, \(q' = \sqrt{q^2 - c^2} \), and \(\nu = l, t \).

III. GRAPHENE BILAYERS AND CURRENT RESPONSE

The transverse field propagator is purely imaginary in the \(qa \to 0 \) limit, making any current excitation to leak out to the propagating electromagnetic (EM) field for a single layer. This is avoided in the double layer by the combination \(1 - \exp(-2q'a) \) in \(d_\nu \), making the effective propagator for the antisymmetric mode real to lowest order in \(q \)-Leaking to the EM field thus only occurs in higher orders. Of course, this effective real magnetic coupling is still very small, but the condition for the self-sustained collective modes is guaranteed by the divergent nature of the current response \(\chi_- \) near sharp features of the spectrum as we will show below.

The response function \(\chi_- \) refers to the counterflow that leads to an in-plane magnetic moment. The intrinsic excitations are thus collective magnetic dipole oscillations or magnetic plasmons - contrary to the conventional plasmons which are collective electric dipole oscillations. Nevertheless, the resonance condition (4) is usually not fulfilled due to the weak magnetic coupling and a true magnetic plasmon cannot be formed.

In the next Section we will show that in typical graphene bilayers with AA and AB-stacking, the resonance condition can always be reached due to "perfect nesting" close to a frequency \(\omega_0 \), where the real part of \(\chi_- \) diverges as \((\omega - \omega_0)^{-1} \). For extremely clean samples, collective modes are thus guaranteed by the divergent nature of the current response \(\chi_- \) near sharp features of the spectrum and we predict genuine magnetic excitations close to the resonance condition.

Interestingly, in an inhomogeneous environment, i.e., if the bilayer is surrounded by two dielectrics with permittivities \(\epsilon_1 \) and \(\epsilon_2 \), and permeabilities \(\mu_1 \) and \(\mu_2 \), the final result for the antisymmetric modes does not change in the long-wavelength limit due to perfect screening. The antisymmetric eigenvalue of \(1 - \chi \mathcal{D}_t \) then reads (see Appendix B)

\[
\lambda^- = 1 + \frac{\mu_0 q a}{2} (\chi_{11} - \chi_{12}) (1 + \mathcal{O}(q'a)) .
\]

The magnetic mode, alternatively defined by \(\text{Re} \lambda^- = 0 \), is therefore essentially independent of the surrounding dielectric media. On the other hand, the symmetric plasmonic mode does depend on the environment, and the existence of excitations closely pinned to the light cone will strongly depend on the refractive index difference, \(n_1 - n_2 \).

The calculation of \(\chi_{11} \) and \(\chi_{12} \) only requires the knowledge of the underlying Hamiltonian. We consider the general low-energy Hamiltonian of graphene bilayers\(^{32-34}\)

\[
H = \sum_\mathbf{k} H_\mathbf{k} , \text{ with } H_\mathbf{k} = \begin{pmatrix}
 H^0_\mathbf{k} & U^\dagger_\mathbf{k} \\
 U_\mathbf{k} & H^0_\mathbf{k}
\end{pmatrix},
\]
where $H_{k} = \hbar v_{F} \sigma \cdot \mathbf{k}$ is the single layer graphene Dirac Hamiltonian acting on states of Bloch momentum \mathbf{k}. The 2×2-matrix U denotes the interlayer coupling, characterized by the interlayer hopping matrix element $t \sim 0.33 \text{eV}$.

We are interested in the generalized current-current response given by the Kubo formula \(^\text{30}\)

$$
\chi_{i,i'}^{\ell,\ell'} = \frac{e^{2}g_{s}g_{v}}{A} \sum_{n,m} \frac{f_{n} - f_{m}}{\hbar \omega - (\varepsilon_{m} - \varepsilon_{n}) + i\eta} v_{i,n;m}^{\ell} v_{i',m;n}^{\ell'}, (7)
$$

where $i, i' = x, y$ denote the spatial direction, $\ell, \ell' = 1, 2$ the different layers and n, m the set of quantum numbers; and $g_{s} = 2, g_{v} = 2$ are the spin and valley degeneracy respectively. The charge of the electron is e, f_{n} is the Fermi-Dirac distribution, and $v_{i,n;m} = \langle n|\hat{\mathbf{v}}|m \rangle$ are the matrix elements of the general velocity operator $\hat{\mathbf{v}}$, which in the local approximation ($q = 0$) couples states with the same momentum, \mathbf{k}.

The "magnetic" velocity can be defined by the counterflow between the two layers and the magnetic moment is thus proportional to this velocity and the area (distance) between the two layers. For the external gauge field in i-direction, the magnetic response is thus defined by $\chi_{-} = \chi_{11}^{\ell} - \chi_{12}^{\ell}$, but we will suppress the super-index in the following.

The magnetic susceptibility to an in-plane magnetic field can be obtained from the magnetic response. If $m_{||}$ and $B_{||}$ are moment and field, then writing $m_{||} = \chi_{||} B_{||}$, one has $2\chi_{||} = -a^{2}\chi_{-}$. Notice that the emergence of a magnetic mode requires paramagnetism for which $\chi_{||}$ becomes positive.

A. AA-stacked bilayer graphene

With $U = t \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, we describe AA-stacked graphene whose optical conductivity has been discussed in Ref. 35 and the plasmonic properties in Ref. 36.

The eigenstates are the bonding and anti-bonding states of single-layer graphene. The eigenenergies are given by $E_{k,n_{1},n_{2}} = n_{1}t + n_{2}\hbar v_{F}k$ and the eigenstates by $\psi_{k}^{n_{1},n_{2}} = \frac{1}{2}(n_{1}, n_{1}n_{2}e^{i\varphi_{k}}, 1, n_{2}e^{i\varphi_{k}})^{T}$ where $n_{1}, n_{2} = \pm$ and φ_{k} denotes the angle that \mathbf{k} forms with the x-axis. The velocity operator of layer ℓ is given by $\hat{\mathbf{v}}_{\ell} = \sigma \otimes \mathbf{1}_{\ell}$ where $\mathbf{1}_{\ell}$ performs a projection onto states of sublayer ℓ and σ are the Pauli matrices of the pseudospin variables.

The "electric"/"magnetic" excitations couple to the total/counterflow current $\hat{j}_{\pm} = -e\hat{\mathbf{v}}_{\pm} = -e(\hat{\mathbf{v}}_{1} \pm \hat{\mathbf{v}}_{2})$ and the relevant matrix element is

$$
v_{k,n_{1},n_{2};k,m_{1},m_{2}}^{\pm} = (n_{1}m_{1} \pm 1) \frac{v_{F}}{4} (m_{2}e^{i\varphi_{k}} + n_{2}e^{-i\varphi_{k}}). (8)
$$

This means that only transitions with $n_{1}m_{1} = -1$ yield a finite contribution to the imaginary part of the magnetic response. Interestingly, for $\hbar \omega = 2t$ there is a perfect matching that gives rise to a delta-function and which is only present in the "magnetic absorption" (see Fig. A1). The resonant contribution of the magnetic
response $2 \chi_- = \ll j^2 j^2 \gg$ at $T = 0$ reads

$$\text{Im} \chi_{\text{nested}}^{\text{nested}}(\omega) = -\frac{e^2 g_s g_v}{16 \hbar^2} \delta(\hbar \omega - 2t)$$

$$\times \left[2(\mu^2 + t^2) \theta(t - |\mu|) + 4t|\mu|\theta(|\mu| - t) \right].$$

The real part is given by the Kramers-Kronig relation

$$\text{Re} \chi_- (\omega) = \frac{1}{\pi} \int_0^\infty d\omega' \text{Im} \chi_- (\omega') \frac{2\omega'}{(\omega')^2 - \omega^2},$$

and the main contribution from the perfect nesting condition is thus given by

$$\text{Re} \chi_{\text{nested}}^{\text{nested}} = -\frac{1}{\pi} \frac{e^2 g_s g_v}{8 \hbar^2} \frac{2t}{(2t)^2 - (\hbar \omega)^2}$$

$$\times \left[2(\mu^2 + t^2) \theta(t - |\mu|) + 4t|\mu|\theta(|\mu| - t) \right].$$

In Fig. 2, we show the real and imaginary part of the full magnetic response as discussed in Appendix A for $\mu = 0$ and $\mu = \pm t$. The delta-function of the imaginary part of the analytical solution (full line) is broadened by the same value ($\eta = 0.1t$) as used in the numerical solution (dots). The singularity in the real part of the analytical solution, however, is plotted for the clean system which is algebraic for both chemical potentials at $\hbar \omega = 2t$. For $\mu = 0$, there is a logarithmic singularity at $\omega = 0$, which is responsible for the symmetry-broken ground-state.

B. AB-stacked bilayer graphene

With $U = t \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, we describe AB-stacked graphene whose optical conductivity has been discussed in Ref. 37 and the plasmonic properties in Ref. 38.

The eigenenergies are now given by $E_{k,n_1,n_2} = \frac{1}{2}(n_1 t + n_2 \xi_k)$ with $n_1,n_2 = \pm$ and $\xi_k = \sqrt{(2 \hbar v_F k)^2 + t^2}$. The eigenvectors are

$$\psi^{\pm}_k = N \begin{pmatrix} t - \xi_k \\ 2 \hbar v_F k \end{pmatrix} e^{i\varphi_k}, e^{-i\varphi_k}, t - \xi_k)^T$$

$$\psi^{\pm}_k = N \begin{pmatrix} t - \xi_k \\ 2 \hbar v_F k \end{pmatrix} e^{i\varphi_k}, e^{-i\varphi_k}, 1 \end{pmatrix}^T,$$

where φ_k denotes the angle that k forms with the x-axis and $N = (2(1 + (\xi_k/2 \hbar v_F k)^2))^{-\frac{1}{2}}$. The velocity operator of layer ℓ is again given by $\mathbf{v}_\ell = \mathbf{\sigma} \otimes 1_\ell$ and the matrix elements of the current counterflow read

$$v_{k+\ell,k-\ell}^{\pm} = i v_F \sin(\varphi_k), v_{k+\ell,k-\ell}^{\pm} = -v_F \cos(\varphi_k), v_{k+\ell,k-\ell}^{\pm} = v_F \cos(\varphi_k), v_{k+\ell,k-\ell}^{\pm} = i v_F \sin(\varphi_k)$$

and zero otherwise. Again, there is a perfect nesting condition, this time at $\hbar \omega = t$. This will also give rise to collective magnetic excitations and the resonant contribution of the magnetic response reads

$$\chi_{\text{nested}}^{\text{nested}}(\omega) = -\frac{e^2 g_s g_v}{32 \pi \hbar^2} \left[\frac{2t}{(t^2 - (\hbar \omega)^2) + i \delta(\hbar \omega - t)} \right]$$

$$\times \left[2|\mu|(t - |\mu|) + 4t|\mu|\theta(|\mu| - t) \right].$$

However, contrary to the AA-stacked bilayer, perfect nesting also occurs in the optical absorption of AB-stacked graphene and allows the existence of high-energy electronic or charged plasmons with frequency $\omega \approx t/\hbar$. 38

In Fig. 3, we show the real and imaginary part of the full magnetic response as discussed in Appendix A for $\mu = 0$ and $\mu = t$. The delta-function of the imaginary

![FIG. 3](image-url) Same as in Fig. 2, but for AB-stacked bilayer graphene.
part of the analytical solution (full line) is broadened by the same value ($\eta = 0.1t$) as used in the numerical solution (dots). The singularity in the real part of the analytical solution, however, is plotted for the clean system and for $\mu = 0$, this singularity is logarithmic, whereas for $\mu = t$ it is algebraic.

C. Numerical estimates

As discussed above, the transverse antisymmetric photonic propagator is given by $d_{\ell} = -(1-e^{-q a})/2\epsilon_0 c^2 q^2 \approx -a/2\epsilon_0 c^2$, and plasmonic excitations obey $1 - d_{\ell} \chi_\ell = 0$. Therefore, only a negative real response, $\text{Re} \chi_\ell(\omega) < 0$, allows for solutions. True dissipationless plasmons further demand $\text{Im} \chi_\ell(\omega) = 0$, and a finite value of $\text{Im} \chi_\ell(\omega)$ yields damped plasmons with plasmon frequency ω_ℓ given by $1 - d_{\ell} \chi_\ell(\omega_p) = 0$, and inverse lifetime $\gamma = \text{Im} \chi_\ell(\omega_p)/\partial_\omega \text{Re} \chi_\ell(\omega_p)$.39

Setting the doping level to $\mu = t$, the real part of the magnetic current response near the nesting frequency reads

$$\text{Re} \chi_\ell^{AA}(\omega) = \frac{16\sigma_0 t}{\pi \hbar} \frac{1}{(\hbar \omega/t)^2 - 4}, \quad (13)$$

$$\text{Re} \chi_\ell^{AB}(\omega) = \frac{4\sigma_0 t}{\pi \hbar} \frac{1}{(\hbar \omega/t)^2 - 1}, \quad (14)$$

where $\sigma_0 = e^2/4\hbar$ is the universal conductivity of graphene.40

With the fine-structure constant $\alpha = e^2/4\pi\epsilon_0 \hbar c \sim 1/137$, $\hbar c = 1973\text{eVÅ}$, $a = 3.4\text{Å}$ and $t = 0.33\text{eV}$, we thus have the following plasmonic resonances:

$$\hbar \omega_p^{AA} = \sqrt{1 - \frac{2at}{\hbar c} - 2t} = \sqrt{1 - 8.3 \times 10^{-6} t}, \quad (15)$$

$$\hbar \omega_p^{AB} = \sqrt{1 - \frac{2at}{\hbar c} - t} = \sqrt{1 - 8.3 \times 10^{-6} t}. \quad (16)$$

The plasmon frequencies are thus separated from the resonant or nesting energy by $2.7\mu\text{eV}$ and $1.4\mu\text{eV}$ for AA- and AB-stacked bilayers, respectively, which obviously calls for ultra-clean samples. In Fig. 4, we show its dependence on the magnetic potential.

Since the broadening of the delta-function is of the order of the free-mean path, the pole is normally superposed by the dissipative delta-function in the imaginary part. So, even though the predicted modes are not likely to be observed in actual bilayer graphene samples, these excitations might be observable in artificial systems such as cold atoms. E.g., if we set the separation between the layers to be $a = 100\text{nm}$, then we get $2t - \hbar \omega_p = 0.8\text{meV}$ (0.4meV) for AA (AB) bilayers which should be observable.

![Graph showing frequency of magnetic plasmons for AA and AB bilayer graphene](image)

FIG. 4. Frequency of the magnetic plasmons (\(\hbar \omega_p\)) for AA and AB bilayer graphene as a function of the Fermi level. We set $t = 0.33\text{eV}$. In both cases, we plot the difference between the plasmon frequencies and the nesting frequency.

IV. MAGNETIC INSTABILITY IN NEUTRAL AA-STACKED BILAYER GRAPHENE

The antisymmetric response of AA-stacked bilayer graphene at the neutrality point $\mu = 0$ is logarithmically diverging at $\omega = 0$, see Eq. (A11). This hints to a mode condensation or Condon instability as discussed in Refs. 41 and 42. The relevant equilibrium response function requires the order of limit to be $\omega \rightarrow 0$ and then $q \rightarrow 0$, opposite to the one calculated here. The difference between the two limit orders is a contact term related to the density of states, a finite magnitude that cannot compete with the divergence.43 Therefore, we can use our previous results for the ground-state stability analysis.

Now we estimate the critical temperature. We start from the RPA instability $d_{\ell} - \chi_\ell = 1$, which can be thought of as a Stoner criterium. A proper analysis would require the calculation of a finite temperature response. On physical grounds, the latter can be inferred from the replacement $\hbar \omega \rightarrow k_B T$. For $\mu = 0$ and $\omega \rightarrow 0$, we have $\chi_\ell = t^2/2T \ln (\hbar k_B T / 2\hbar t)$, see Appendix A. We thus obtain for the critical temperature

$$k_B T_c = 2t \exp \left(-\frac{3}{4a} \frac{t_0 a_0 c}{t \sigma_p} \right), \quad (17)$$

where $t_0 \sim 2.7\text{eV}$ is the in-plane hopping amplitude and $a_0 = 1.42\text{Å}$ the carbon-carbon distance.

The critical temperature is virtually zero, however, it may increase after renormalization of the single-particle parameters in twisted bilayer graphene where the electron density is concentrated at the regions of local AA-
the contribution of transitions 1, 2 and 3 respectively. Performing the integrals gives

\[\text{Im} \chi_{\text{notnested}}(\omega) = -\pi \frac{e^2 g_s g_v}{2A} \frac{A}{(2\pi)^2} (\pi v_F^2) \int dk \left\{ \delta(\hbar \omega - (2t - 2\hbar v_F k)) \theta \left(\frac{t - |\mu|}{\hbar v_F} - k \right) + \delta(\hbar \omega - (2t + 2\hbar v_F k)) \theta \left(k - \frac{|\mu| - t}{\hbar v_F} \right) + \delta(\hbar \omega - (-2t + 2\hbar v_F k)) \theta \left(k - \frac{|\mu| + t}{\hbar v_F} \right) \right\}. \]

(A1)

In Fig. A1, we represent and label the allowed transitions of the magnetic current operator for AA and AB-bilayers. In the \(T = 0 \) limit, the Fermi distribution becomes the step function \(\theta(\mu - \epsilon) \) and taking \(\eta \to 0 \) in Eq. 7 allows for an easy evaluation of the imaginary part of the response function. The non resonant transitions yield the non-resonant or not nested part of the response function:

\[\text{Im} \chi_{\text{notnested}}(\omega) = -\frac{e^2 g_s g_v}{2A} \frac{A}{(2\pi)^2} (\pi v_F^2) \int dk \left\{ \delta(\hbar \omega - (2t - 2\hbar v_F k)) \theta \left(\frac{t - |\mu|}{\hbar v_F} - k \right) + \delta(\hbar \omega - (2t + 2\hbar v_F k)) \theta \left(k - \frac{|\mu| - t}{\hbar v_F} \right) + \delta(\hbar \omega - (-2t + 2\hbar v_F k)) \theta \left(k - \frac{|\mu| + t}{\hbar v_F} \right) \right\}. \]

(A2)

V. CONCLUSIONS

In this work, we have discussed the magnetic response of AA- and AB-stacked bilayer. For both stacking forms, we find a resonance due to perfect nesting which gives rise to an algebraic divergence in the real part of the magnetic instability. Within RPA, this gives rise to an oscillating in-plane magnetic moment leading to in-plane orbital ferromagnetism. By identifying in the electronic structure of simple models the key features for appearance, as we do here, we thus offer physical guidance for its search in other systems.

The magnetic excitations/instabilities are composed of counterflow currents in each layer, giving rise to a magnetic moment parallel to the planes, thus providing a clear intuition of the magnetic nature in contrary to the transverse excitations in a single layer. Also, they do not depend on the external dielectric environment including optical cavities which should help to stabilize them, thus paving the way to novel plasmonics that is not limited by charged impurities. Last, these excitations might play a role in magic angle twisted bilayer samples as their electronic properties are mostly determined by confined AA-stacked regions.

VI. ACKNOWLEDGMENTS

This work has been supported by Spain’s MINECO under Grants No. FIS2017-82260-P, PGC2018-096955-B-C22, PID2020-113164GB-I00, and CEX2018-000805-M as well as by the CSIC Research Platform on Quantum Technologies PTI-001. The access to computational resources of CESGA (Centro de Supercomputación de Galicia) is also gratefully acknowledged.

Appendix A: MAGNETIC RESPONSE IN AA AND AB-STACKED BILAYER GRAPHENE.

1. AA-stacked bilayer graphene

In this work, we have discussed the magnetic response of AA- and AB-stacked bilayer. For both stacking forms, we find a resonance due to perfect nesting which gives rise to an algebraic divergence in the real part of the magnetic instability. Within RPA, this gives rise to an oscillating in-plane magnetic moment leading to in-plane orbital ferromagnetism. By identifying in the electronic structure of simple models the key features for appearance, as we do here, we thus offer physical guidance for its search in other systems.

The magnetic excitations/instabilities are composed of counterflow currents in each layer, giving rise to a magnetic moment parallel to the planes, thus providing a clear intuition of the magnetic nature in contrary to the transverse excitations in a single layer. Also, they do not depend on the external dielectric environment including optical cavities which should help to stabilize them, thus paving the way to novel plasmonics that is not limited by charged impurities. Last, these excitations might play a role in magic angle twisted bilayer samples as their electronic properties are mostly determined by confined AA-stacked regions.

VI. ACKNOWLEDGMENTS

This work has been supported by Spain’s MINECO under Grants No. FIS2017-82260-P, PGC2018-096955-B-C22, PID2020-113164GB-I00, and CEX2018-000805-M as well as by the CSIC Research Platform on Quantum Technologies PTI-001. The access to computational resources of CESGA (Centro de Supercomputación de Galicia) is also gratefully acknowledged.

Appendix A: MAGNETIC RESPONSE IN AA AND AB-STACKED BILAYER GRAPHENE.

1. AA-stacked bilayer graphene

In this work, we have discussed the magnetic response of AA- and AB-stacked bilayer. For both stacking forms, we find a resonance due to perfect nesting which gives rise to an algebraic divergence in the real part of the magnetic instability. Within RPA, this gives rise to an oscillating in-plane magnetic moment leading to in-plane orbital ferromagnetism. By identifying in the electronic structure of simple models the key features for appearance, as we do here, we thus offer physical guidance for its search in other systems.

The magnetic excitations/instabilities are composed of counterflow currents in each layer, giving rise to a magnetic moment parallel to the planes, thus providing a clear intuition of the magnetic nature in contrary to the transverse excitations in a single layer. Also, they do not depend on the external dielectric environment including optical cavities which should help to stabilize them, thus paving the way to novel plasmonics that is not limited by charged impurities. Last, these excitations might play a role in magic angle twisted bilayer samples as their electronic properties are mostly determined by confined AA-stacked regions.
For the resonant transitions, the imaginary part becomes:

\[
\text{Im}\chi^\text{nested}_-(\omega) = -\frac{e^2 g_v g_s}{2A} \frac{A}{(2\pi)^2} (\pi v_F^2) \int kdk \left\{ \delta(\hbar\omega - 2t) \theta \left(k - \frac{-(t + \mu)}{\hbar v_F} \right) \theta \left(\frac{t - \mu}{\hbar v_F} - k \right) + \delta(\hbar\omega - 2t) \theta \left(k - \frac{\mu - t}{\hbar v_F} \right) \theta \left(\frac{\mu + t}{\hbar v_F} - k \right) \right\}. \tag{A3}
\]

The first and second term are the contribution of transitions 4 and 5 respectively. Equivalently,

\[
\text{Im}\chi^\text{nested}_-(\omega) = -\frac{e^2 g_v g_s}{8} \frac{v_F^2}{(2\hbar v_F^2)} \delta(\hbar\omega - 2t) \left\{ 4(\mu^2 + t^2)\theta(t - |\mu|) + 8|\mu|t\theta(|\mu| - t) \right\} \tag{A4}
\]

The total response is the sum of the non resonant and the resonant part:

\[
\text{Im}\chi^\text{-}(\omega) = -\frac{e^2 g_v g_s}{16\hbar^2} \left\{ \hbar\omega\theta(\hbar\omega - 2t) + 2t\theta(2t - \hbar\omega) \right\} \theta(\hbar\omega - 2|\mu|) + \left[2(\mu^2 + t^2)\theta(t - |\mu|) + 4t|\mu|\theta(|\mu| - t) \right] \delta(\hbar\omega - 2t). \tag{A5}
\]

In terms of the dimensionless energy, \(x = \frac{\hbar\omega}{t} \), and the universal conductivity of graphene, \(\sigma_0 = \frac{e^2}{\pi} \), yields with \(g_v = g_s = 2 \)

\[
\text{Im}\chi^\text{-}(x) = -\frac{\sigma_0 t}{\hbar} \left\{ x \left[\theta(x - 2) + \frac{2}{x}\theta(2 - x) \right] \theta(x - 2|\mu|/t) + \left[2 \left(\frac{t^2}{t^2 + 1} \right) \theta(1 - |\mu|/t) + \frac{4|\mu|}{t}\theta(|\mu|/t - 1) \right] \theta(x - 2) \right\}. \tag{A6}
\]

For the real part we use the Kramers-Kronig relation

\[
\text{Re}\chi^\text{-}(\omega) = \frac{2}{\pi} \mathcal{P} \int_0^\infty d\omega' \text{Im}\chi^\text{-}(\omega') \frac{\omega'}{\omega'^2 - \omega^2}, \tag{A7}
\]

where \(\mathcal{P} \) denotes the Cauchy principal value.

The delta function can be integrated directly which gives the contribution of the resonant transitions to the real part presented in the main text,

\[
\text{Re}\chi^\text{nested}_-(\omega) = -\frac{e^2 g_v g_s}{8\pi\hbar^2} \frac{2t}{(2t^2 - (\hbar\omega)^2)} \left[2(\mu^2 + t^2)\theta(t - |\mu|) + 4t|\mu|\theta(|\mu| - t) \right]. \tag{A8}
\]
Again, with diamagnetic currents cancels exactly the cut-off dependent term, as required by gauge invariance. The first term of the real part gives always non-zero in AA bilayer. \(\mu > t \) separating the divergent part and the second term can easily be integrated. The total real part of \(\chi \) is

\[
\text{Re} \chi_{\text{notnested}}(\omega) = -\frac{e^2 g_s g_v}{8 \pi \hbar^2} \left[\frac{\omega'}{\omega^2 - \omega'^2} \left[\hbar \omega' \theta(\hbar \omega' - 2t) + 2t \theta(2t - \hbar \omega') \right] \right]
\]

with \(y = \omega'/\omega \) and \(z = (\omega'/\omega)^2 \). The first integral diverges in the Dirac cone approximation, so we proceed by separating the divergent part \(y^2/(y^2 - 1) = 1 + 1/(y^2 - 1) \) and integrate up to a frequency cutoff \(\Lambda \). With this scheme, the first term of the real part gives

\[
\hbar \omega' \int_{\max(2|\mu|/\hbar \omega,2t/\hbar \omega)}^{\infty} \frac{dy}{y^2 - 1} = \hbar \Lambda - \max(2t,2|\mu|) - \frac{\hbar \omega}{2} \log \left(\frac{\hbar \omega - \max(2t,2|\mu|)}{\hbar \omega + \max(2t,2|\mu|)} \right),
\]

and the second term can easily be integrated. The total real part of \(\chi \) is thus

\[
\text{Re} \chi_{\text{not}}(\omega) = -\frac{e^2 g_s g_v}{8 \pi \hbar^2} \left[-\max(2t,2|\mu|) - \frac{\hbar \omega}{2} \log \left(\frac{\hbar \omega - \max(2t,2|\mu|)}{\hbar \omega + \max(2t,2|\mu|)} \right) + t \log \left(\frac{(2t)^2 - (\hbar \omega)^2}{(2|\mu|)^2 - (\hbar \omega)^2} \right) \theta(t - |\mu|) \right]
\]

\[
+ \frac{2t}{(2t)^2 - (\hbar \omega)^2} \left[2(\mu^2 + t^2) \theta(t - |\mu|) + 4t|\mu|\theta(|\mu| - t) \right].
\]

We have removed the part proportional to \(\Lambda \) above, because the constant contribution of the response due to the diamagnetic currents cancels exactly the cut-off dependent term, as required by gauge invariance. Again, with \(g_s, g_v = 2 \) and in terms of \(x = \hbar \omega / 2 \) and \(\sigma_0 = \frac{\pi^2}{8} \), the real part reads

\[
\text{Re} \chi_{\text{not}}(x) = -\frac{\sigma_0 t}{\pi \hbar} \left[-4 \max(1,|\mu|/t) - 4 \log \left(\frac{x - 2 \max(1,|\mu|/t)}{x + 2 \max(1,|\mu|/t)} \right) + 2 \log \left(\frac{1 - (x/2)^2}{(|\mu|/t)^2 - (x/2)^2} \right) \theta(1 - \mu|/t) \right]
\]

\[
+ \frac{8}{4 - x^2} \left[\left(1 + \frac{x^2}{4} \right) \theta(1 - |\mu|/t) + \frac{2|\mu|}{t} \theta(|\mu|/t - 1) \right].
\]

2. AB-Stacked bilayer graphene

Similarly to AA-stacked graphene, the imaginary part of the magnetic response can be decomposed into a sum of non resonant and resonant transitions. The non resonant or not-nested part (excitations 1 and 2 in Fig.A1) reads

\[
\text{Im} \chi_{\text{notnested}}(\omega) = -\pi \frac{e^2 g_s g_v}{A} \frac{A}{(2\pi)^2 (\pi e^2 c_F^2)} \int d\epsilon \left[\delta(\hbar \omega - \xi_k) \theta(\xi_k - 2|\mu| + t/2) + \delta(\hbar \omega - \xi_k) \theta(\xi_k - 2|\mu| - t/2) \right].
\]
The prefactor has the same origin as in the AA-stacked case. In this case, \(\pi v_F^2 \) is the angular integral of \(v_F^2 \cos^2(\phi_k) \) or \(v_F^2 \sin^2(\phi_k) \) depending on the transition. Performing the integral yields

\[
\text{Im} \chi_{\text{notnested}}(\omega) = -\frac{e^2 g_s g_v}{8} v_F^2 \left(\frac{\hbar \omega}{2 h v_F} \right)^2 \left[\theta(\hbar \omega - 2|\mu| + t/2) + \theta(\hbar \omega - 2|\mu| - t/2) \right] \theta(\hbar \omega - t). \tag{A14}
\]

On the other hand, the nested transitions 3 and 4 of Fig. A1 contribute with

\[
\text{Im} \chi_{\text{nested}}(\omega) = -\frac{e^2 g_s g_v}{32 \hbar^2} \delta(\hbar \omega - t) \int kdk \left\{ \theta(\xi_k - (2\mu - t)) \theta(2\mu + t - \xi_k) + \theta(\xi_k - (-2\mu - t)) \theta(-2\mu + t - \xi_k) \right\}. \tag{A15}
\]

Keeping in mind that \(\xi_k = \sqrt{t^2 + (2h v_F k)^2} \), the resonant part reads

\[
\text{Im} \chi_{\text{nested}}(\omega) = -\frac{e^2 g_s g_v}{32 \hbar^2} \left\{ 2|\mu|(|\mu| + t) \theta(t - |\mu|) + 4|\mu| t \theta(|\mu| - t) \right\} \delta(\hbar \omega - t). \tag{A16}
\]

Finally, the total imaginary part is the sum of both contributions which yields

\[
\text{Im} \chi_-(\omega) = -\frac{e^2 g_s g_v}{32 \hbar^2} \left(\hbar \omega \left[\theta(\hbar \omega - 2|\mu| + t/2) + \theta(\hbar \omega - 2|\mu| - t/2) \right] \right) \theta(\hbar \omega - t) \tag{A17}
\]

Using the dimensionless variable \(x = \frac{\hbar \omega}{t} \) and the constant \(\sigma_0 = \frac{e^2}{4\pi} \), we get with \(g_s = g_v = 2 \)

\[
\text{Im} \chi_-(x) = -\frac{e^2 g_s g_v}{16 \pi \hbar^2} \left\{ x \left[\theta(x - 2|\mu|/t + 1/2) + \theta(x - 2|\mu|/t - 1/2) \right] \right\} \theta(x - 1) \tag{A18}
\]

Again, we calculate the real part via the Kramers-Kronig relations. The delta function gives

\[
\text{Re} \chi_{\text{nested}}(\omega) = -\frac{e^2 g_s g_v}{16 \pi \hbar^2} \left[2|\mu|(|\mu| + t) \theta(t - |\mu|) + 4|\mu| t \theta(|\mu| - t) \right] \frac{t}{t^2 - (\hbar \omega)^2}. \tag{A19}
\]

The non resonant part can be calculated in a way similar to the AA-stacked case and gives

\[
\text{Re} \chi_{\text{notnested}}(\omega) = -\frac{e^2 g_s g_v}{16 \pi \hbar^2} \left\{ 2|\mu|(|\mu| + t) \theta(t - |\mu|) + 4|\mu| t \theta(|\mu| - t) \right\} \frac{\hbar \omega}{t^2 - (\hbar \omega)^2}. \tag{A20}
\]

After cancelling the cut-off term by the diamagnetic contribution, the total real part of the response function then reads

\[
\text{Re} \chi_-(\omega) = -\frac{e^2 g_s g_v}{16 \pi \hbar^2} \left\{ -\left(\max(t, 2|\mu| - t/2) \right) + \max(t, 2|\mu| + t/2) \right\} + \frac{\hbar \omega}{2} \log \left(\frac{\max(t, 2|\mu| - t/2) - \hbar \omega}{\max(t, 2|\mu| + t/2) + \hbar \omega} \right) \tag{A21}
\]

In dimensionless variables this yields

\[
\text{Re} \chi_-(x) = -\frac{\sigma_0 t}{\pi \hbar} \left\{ -\left(\max(1, 2|\mu|/t - 1/2) \right) + \max(1, 2|\mu|/t + 1/2) \right\} + \frac{x}{2} \log \left(\frac{\max(1, 2|\mu|/t - 1/2) - x}{\max(1, 2|\mu|/t + 1/2) + x} \right) \tag{A22}
\]

\[
+ \frac{x}{2} \log \left(\frac{\max(1, 2|\mu|/t + 1/2) - x}{\max(1, 2|\mu|/t + 1/2) + x} \right) + \frac{2|\mu|}{t} \left(\frac{|\mu|}{t} + 1 \right) \theta(1 - |\mu|/t) + \frac{4|\mu|}{t} \theta(|\mu|/t - 1) \frac{1}{1 - x^2}. \]
The transverse photonic Green’s function when the bilayer lies between to dielectrics is given by

\[D_t = -\frac{\mu_1 \mu_2 \mu_0 q^2}{N_t} \left(\frac{\cosh(q'a) + \frac{q_a}{\mu_2} \sinh(q'a)}{1 + \cosh(q'a) + \frac{q_a}{\mu_2} \sinh(q'a)} \right), \]

(B1)

with \(N_t = q'(\mu_2 q_2' + \mu_1 q_1') \cosh(q'a) + (q_1' q_2' + \mu_1 \mu_2 q^2) \sinh(q'a) \), and \(q' = \sqrt{q^2 - \epsilon_i \mu_i (\omega/c)^2} \). In between the two graphene layers, we assume vacuum with wave number \(q' = \sqrt{q^2 - (\omega/c)^2} \). Plasmons are the solutions of \(\det(1 - \chi D_t) = 0 \). The zero eigenvalues of \(1 - \chi D_t \) are the symmetric and antisymmetric plasmonic excitations. Let us calculate those. Expanding in powers of the \(q_a' \)’s, the Green’s function becomes

\[D_t = -\frac{\mu_1 \mu_2 \mu_0 a}{\mu_1 q_2 a + \mu_2 q_1 a} \left(1 - \left(\frac{q_1 a}{\mu_1} \right) \left(\frac{q_2 a}{\mu_2} \right) \right) \left(1 + \frac{q_2 a}{\mu_2} + \frac{(q'a)^2}{2} \right) \left(1 + \frac{q_2 a}{\mu_1} + \frac{(q'a)^2}{2} \right). \]

(B2)

Hence, the eigenvalues \(\lambda' \) of the matrix

\[\begin{pmatrix} \chi_{11} & \chi_{12} \\ \chi_{12} & \chi_{11} \end{pmatrix} \begin{pmatrix} 1 + q_2 a/\mu_2 + (q'a)^2/2 \\ 1 \end{pmatrix} \]

(B3)

are related to the eigenvalues \(\lambda \) of \(1 - \chi D_t \) by

\[\lambda = 1 + \frac{\mu_1 \mu_2 \mu_0 a}{\mu_1 q_2 a + \mu_2 q_1 a} \left(1 - \left(\frac{q_1 a}{\mu_1} \right) \left(\frac{q_2 a}{\mu_2} \right) \right) \lambda'. \]

(B4)

Up to order \((q'a)^2 \), these solutions read:

\[\lambda' = (\chi_{11} + \chi_{12}) + \chi_{11} \left(\frac{(q'a)^2}{2} + \frac{1}{2} \left(\frac{q_1 a}{\mu_1} + \frac{q_2 a}{\mu_2} \right) \right) \pm \left(\chi_{11} + \chi_{12} \right) + \chi_{12} \left(\frac{(q'a)^2}{2} + \frac{1}{2} \left(\frac{q_1 a}{\mu_1} + \frac{q_2 a}{\mu_2} \right) \right) + \chi_{11} - \chi_{12} \left(\frac{q_1 a}{\mu_1} - \frac{q_2 a}{\mu_2} \right)^2. \]

(B5)

Therfore, the plasmonic resonances of the system are the zeroes of the following eigenvalues:

\[\lambda^+ = 1 + \frac{\mu_0 a (\chi_{11} - \chi_{12})}{2} \left(1 - \frac{1}{4} \left(\frac{q_2 a}{\mu_2} + \frac{q_1 a}{\mu_1} \right) + \mathcal{O}((q'a)^2) \right) \]

(B6)

\[\lambda^- = 1 + \frac{\mu_0 a (\chi_{11} + \chi_{12})}{2} \left(2 + \frac{(q_1 a/\mu_1 - q_2 a/\mu_2)^2 - (2q'a)^2}{2 (q_1 a/\mu_1 + q_2 a/\mu_2)} \right) + \frac{2 (q_1 a/\mu_1) (q_2 a/\mu_2) + (q'a)^2}{q_1 a/\mu_1 + q_2 a/\mu_2} \]

\[\frac{2 (q'a)^2}{2} + \frac{(q_1 a/\mu_1) (q_2 a/\mu_2)}{8} + \frac{\chi_{11} - \chi_{12}}{8} (q_1 a/\mu_1 - q_2 a/\mu_2)^2 + \mathcal{O}((q'a)^2) \]

(B7)

One thing to note is that this approximation breaks down if the dielectric media 1 and 2 are the same for \(q_1' = 0 \). In that case, when approaching the slower light cone, \(q_1 a \) and \(q_2 a \) tend to 0 while \(q'a \) tends to a constant, and the terms with \((q'a)^2/(q_1 a/\mu_1 + q_2 a/\mu_2) \) are no longer small, in fact become infinite. However, the divergence kicks off at very small values of \(q_2 a \) and we can trust the formula for essentially the entire dynamic range of \(q \), as we will see.

A simple calculation tells us that \((q'a)^2/(2q_1 a/\mu_1) \sim 1 \) when \(qa \sim \omega a/c + \mu_1^2/8((c/c_1)^2 - 1)^2 (c_1/c)(\omega a/c)^3 \), or equivalently, \(q_1 a \sim \mu_1/2((c/c_1)^2 - 1)(\omega a/c)^3 \) (where \(c_1 \) is the speed of light in medium 1). Taking the frequency to be of order the interlayer coupling, \(\hbar \omega = 0.5 \text{ eV} \), we have \(\omega a/c \sim 10^{-3} \), \(qa \sim \omega a/c_1 + 10^{-3} \) and \(q_1 a \sim 10^{-6} \). On the other hand, setting the momentum scale to, say \(q_0 = G/100 \sim 3 \times 10^5 \text{m}^{-1} \), where \(G \) is the modulus of the reciprocal lattice vector of graphene, and the interlayer distance to \(a = 3.4 \text{Å} \) we have that our approximation is valid up to \(q_1'/q_0 \sim 10^{-5} \), or \(q/q_0 \sim 10^{-8} \) to the right of the light cone of the dielectric.

Setting \(q_1 a, q_2 a = 0 \) in Equation B1, the eigenvalues at the dielectric light cone are \(\lambda^+ = 1 + 2\mu_0 a (\chi_{11} + \chi_{12})/(q'a)^2 \) and \(\lambda^- = 1 - \mu_0 a (\chi_{11} - \chi_{12})/2 \). In conclusion, the symmetric eigenvalue remains bounded and we can trust Equation B6 even at \(q_1' = 0 \).

On the other hand, if the dielectric media are not the same, the quantity \((q'a)^2/(q_1 a/\mu_1) + (q_2 a/\mu_2) \) will not blow up, and for refractive indices \(|n_1 - n_2| \sim 10^{-6} \) the approximation is good all the way up to \(q_1' = 0 \)(being 1 the slower medium).
Appendix C: INFLUENCE OF AN OPTICAL CAVITY.

Let us consider the bilayer placed inside an optical cavity, with boundaries at \(z = \pm L/2 \). In such a setting, the Green’s function or photonic propagator for the transverse fields of a source located at \(z' \) takes the form

\[
D_t(z, z') = \frac{\mu_0}{q'} \frac{\sinh(q'(z^+ - L/2)) \sinh(q'(z^- + L/2))}{\sinh(q' L)},
\]

for \(-L/2 < z < L/2\) and \(D_t(z, z') = 0 \) otherwise (where \(z^- = \min(z, z') \) and \(z^+ = \max(z, z') \)). If the bilayer is located at \(z = \pm a/2 \), the Green’s function of the double layer structure is

\[
D_t = \frac{\mu_0}{q' \sinh(q' L)} \left(\frac{\sinh((a - L)/2) \sinh((a + L)/2)}{\sinh((L - a)/2)} - \frac{\sinh^2((L - a)/2)}{\sinh((a - L)/2) \sinh((a + L)/2)} \right),
\]

Transverse plasmons are obtained after the in-phase and out-of-phase (counterflow) combinations:

\[
1 + \frac{\mu_0 a \chi_+}{q' a} \cosh((L - a)/2) = 0 \quad \text{(C3)}
\]

\[
1 + \frac{\mu_0 a \chi_-}{q' a} \sinh((L - a)/2) = 0 \quad \text{(C4)}
\]

The form factors are increasing functions of \(L \), so the light-matter coupling is larger when there is no cavity. Hence, the presence of the cavity does not favour the presence of these elusive excitations, as was already pointed out in Ref. 41. This is due to the “perfect” screening of the magnetic excitations.

1. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrat-tanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, Nature 487, 77 (2012).
2. Z. Fei, A. S. Rodin, G. O. Andreeva, V. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemen, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nature 487, 82 (2012).
3. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nature Photon. 6, 749 (2012).
4. Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, Int. J. Mod. Phys. B 27, 1341001 (2013).
5. T. Stauber, Journal of Physics: Condensed Matter 26, 123201 (2014).
6. P. A. D. Gonçalves and N. M. R. Peres, An Introduction to Graphene Plasmonics (World Scientific, Singapore, 2016).
7. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, Nat Mater 16, 182 (2017).
8. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, Nano Letters 11, 3370 (2011).
9. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, Science 349, 165 (2015).
10. M. A. Baqir, P. K. Choudhury, A. Farmani, T. Younas, J. Arshad, A. Mir, and S. Karimi, IEEE Photonics Journal 11, 1 (2019).
11. T. Stauber, T. Low, and G. Gómez-Santos, Nano Letters 20, 8711 (2020).
12. A. Scholz, T. Stauber, and J. Schliemann, Phys. Rev. B 88, 035135 (2013).
13. T. Low and P. Avouris, ACS Nano 8, 1086 (2014).
14. D. N. Basov, M. M. Fogler, and F. J. García de Abajo, Science 354 (2016).
15. S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007).
16. F. Ramos-Mendieta, J. A. Hernández-López, and M. Palomeno-Ovando, AIP Advances 4, 067125 (2014).
17. S. G. Menabde, D. R. Mason, E. E. Kornev, C. Lee, and N. Park, Scientific Reports 6, 21523 (2016).
18. X. Zhang, H. Hu, X. Lin, L. Shen, B. Zhang, and H. Chen, npj 2D Materials and Applications 4, 25 (2020).
19. A. Reserbat-Plantey, I. Epstein, I. Torre, A. T. Costa, P. A. D. Gonçalves, N. A. Mortensen, M. Polini, J. C. W. Song, N. M. R. Peres, and F. H. L. Koppens, ACS Photonics 8, 85 (2021).
20. N. Chamamara and C. Caloz, Phys. Rev. B 94, 075413 (2016).
21. M. Jablan, H. Buljanc, and M. Soljavecč, Opt. Express 19, 11236 (2011).
22. V. Andreeva, M. Luskin, and D. Margetis, Phys. Rev. B 98, 195407 (2018).
23. A. Principi, M. Polini, and G. Vignale, Phys. Rev. B 80, 075418 (2009).
24. T. Stauber and G. Gómez-Santos, Phys. Rev. B 82, 155412 (2010).
25. A. Gutiérrez-Rubio, T. Stauber, and F. Guinea, Journal of Optics 15, 114005.
26. D. N. Basov, A. Asenjo-Garcia, P. J. Schuck, X. Zhu, and A. Rubio, Nanophotonics 10, 549 (2021).
27. T. Stauber and G. Gómez-Santos, Phys. Rev. B 85, 075410.
T. Stauber, T. Low, and G. Gómez-Santos, Phys. Rev. Lett. 120, 046801 (2018).

T. Stauber and G. Gómez-Santos, New Journal of Physics 14, 105018 (2012).

G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, 2005).

O. Kotov, M. Kol’chenko, and Y. E. Lozovik, Opt. Express 21, 13533 (2013).

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

E. McCann and M. Koshino, Reports on Progress in Physics 76, 056503 (2013).

A. Rozhkov, A. Sboychakov, A. Rakhmanov, and F. Nori, Physics Reports 648, 1 (2016).

C. J. Tabert and E. J. Nicol, Phys. Rev. B 86, 075439 (2012).

R. Roldán and L. Brey, Phys. Rev. B 88, 115420 (2013).

D. S. L. Abergel and V. I. Fal’ko, Phys. Rev. B 75, 155430 (2007).

T. Low, F. Guinea, H. Yan, F. Xia, and P. Avouris, Phys. Rev. Lett. 112, 116801 (2014).

T. Stauber, Journal of Physics: Condensed Matter 26, 123201 (2014).

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).

P. Nataf, T. Champel, G. Blatter, and D. M. Basko, Phys. Rev. Lett. 123, 207402 (2019).

G. M. Andolina, F. M. D. Pellegrino, V. Giovannetti, A. H. MacDonald, and M. Polini, Phys. Rev. B 102, 125137 (2020).

T. Stauber, T. Low, and G. Gómez-Santos, Phys. Rev. B 98, 195414 (2018).

A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Nano Letters 21, 4299 (2021).

D. Guerci, P. Simon, and C. Mora, Phys. Rev. B 103, 224436 (2021).

A. L. Rakhmanov, A. V. Rozhkov, A. O. Sboychakov, and F. Nori, Phys. Rev. Lett. 109, 206801 (2012).

L. Brey and H. A. Fertig, Phys. Rev. B 87, 115411 (2013).

D. S. de la Peña, M. M. Scherer, and C. Honerkamp, Annalen der Physik 526, 366 (2014).