Microreview

Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant–microbe interactions

Ping He, Libo Shan and Jen Sheen*
Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.

Summary

Recent studies have uncovered fascinating molecular mechanisms underlying plant–microbe interactions that coevolved dynamically. As in animals, the primary plant innate immunity is immediately triggered by the detection of common pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs). Different MAMPs are often perceived by distinct cell-surface pattern-recognition receptors (PRRs) and activate convergent intracellular signalling pathways in plant cells for broad-spectrum immunity. Successful pathogens, however, have evolved multiple virulence factors to suppress MAMP-triggered immunity. Specifically, diverse pathogenic bacteria have employed the type III secretion system to deliver a repertoire of virulence effector proteins to interfere with host immunity and promote pathogenesis. Plants challenged by pathogens have evolved the secondary plant innate immunity. In particular, some plants possess the specific intracellular disease resistance (R) proteins to effectively counteract virulence effectors of pathogens for effector-triggered immunity. This potent but cultivar-specific effector-triggered immunity occurs rapidly with localized programmed cell death/hypersensitive response to limit pathogen proliferation and disease development. Remarkably, bacteria have further acquired virulence effectors to block effector-triggered immunity. This review covers the latest findings in the dynamics of MAMP-triggered immunity and its interception by virulence factors of pathogenic bacteria.

Introduction

Plants face constant threat from a wide range of microorganisms in their natural habitat. Without the adaptive immune system, plants rely on innate immunity to defend against most potential pathogens. The first line of plant innate immune response is triggered upon the detection of many common pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) that are not found in host cells (Boller, 1995; Nürnberger et al., 2004; Ausubel, 2005; Zipfel and Felix, 2005). The term MAMPs is used here since both non-pathogenic and pathogenic microbes produce effective MAMPs to activate immune responses (Ausubel, 2005; He et al., 2006; Jones and Dangl, 2006). Moreover, some pathogens actively suppress MAMP-triggered immunity (Kim et al., 2005; Li et al., 2005; He et al., 2006). The perception of different MAMPs by specific pattern-recognition receptors (PRRs) induces the defence responses that contribute plant immunity to both pathogenic and non-pathogenic microbes. In mammals, MAMPs are recognized by a limited number of PRRs, including Toll-like receptors (TLRs) and CATERPILLER/NOD-like receptors (NLRs), which detect distinct microbial components and activate immune responses (Ting and Davis, 2005; Akira et al., 2006; Fritz et al., 2006; Meylan et al., 2006). In contrast, there are hundreds of single-transmembrane receptor-like kinase (RLK) and receptor-like protein (RLP) genes in plant genomes. Some of them may play roles in the perception of different MAMPs in plants (Gomez-Gomez and Boller, 2000; Shiu and Bleecker, 2003; Shiu et al., 2004; Kaku et al., 2006; Zipfel et al., 2006).

The early immune responses downstream of MAMP perception share some common features in plants and animals, including the activation of conserved mitogen-activated protein kinase (MAPK) signalling cascades and the production of antimicrobial compounds (Nürnberger et al., 2004; Ausubel, 2005). In plants, different MAMPs likely activate convergent defence responses including changes in cytoplasmic Ca^{2+} levels, activation of MAPK cascades, induction of defence-related genes, the
production of phytoalexin, reactive oxygen species (ROS) and nitric oxide (NO), deposition of callose to reinforce the cell wall and stomatal closure to prevent bacterial entry (Ligterink et al., 1997; Felix et al., 1999; Lee et al., 2001; Asai et al., 2002; Fellbrich et al., 2002; Navarro et al., 2004; Zeidler et al., 2004; Ramonell et al., 2005; Daxberger et al., 2006; Kaku et al., 2006; Melotto et al., 2006; Qutob et al., 2006). Notably, successful pathogens have acquired multiple virulence factors to suppress host immunity for their survival. Many Gram-negative pathogenic bacteria inject a set of effector proteins into host cells through the type III secretion system (T3SS) to interfere with host innate immunity (Büttner and Bonas, 2003; Alfano and Collmer, 2004; Beth Mudgett, 2005; Nomura et al., 2002; Fellbrich et al., 2002; Wan et al., 2004; Daxberger et al., 2006; Qutob et al., 2006, Zipfel et al., 2006). The perception of several MAMPs is mediated by cell-surface receptors. The best-studied plant PRR is Arabidopsis flagellar receptor FLS2, a RLK protein with extracellular LRR (Gomez-Gomez and Boller, 2000). The 22 amino acid peptide (flg22) corresponding to the highly conserved amino terminus of flagellin is sufficient to trigger immune responses in Arabidopsis, tomato, tobacco and barley but not rice (Felix et al., 1999; Peck et al., 2001; Taguchi, 2003; Chinchilla et al., 2006; Hann and Rathjen, 2007; Shen et al., 2007). Affinity cross-linking and immunoprecipitation demonstrate direct interaction of flg22 with FLS2 (Chinchilla et al., 2006), but do not exclude the requirement of additional plant factors in receptor complex signalling. The established method will facilitate future studies of the receptor complexes for the initiation of MAMP-induced signalling.

Recently, one of the most abundant and conserved bacterial proteins, elongation factor EF-Tu from E. coli and many other bacteria, has been found to function as an MAMP in Arabidopsis. An N-acetylated peptide comprising the first 18 amino acids, termed elf18, is fully active (Kunze et al., 2004). Treating Arabidopsis seedlings with elf18 or flg22 induces a common set of responses including whole genome transcriptome profiles (Zipfel et al., 2006). Affinity cross-linking labelled a putative receptor protein, which was later identified as EF-Tu receptor (EFR) by a reverse genetic screen of mutants in LRR-RLKs related to FLS2 (Zipfel et al., 2006). The efr mutant is more susceptible to Agrobacterium tumefaciens infection. Intriguingly, EF-Tu has been found on the surface of Mycoplasma pneumoniae and Lactobacillus johnsonii, and may play a role in adhesion to mammalian host cells and activation of inflammatory responses (Dallo et al., 2002; Granato et al., 2004).

Many genes encoding LRR-RLKs, such as FLS2 and EFR, are MAMP-inducible (Navarro et al., 2004; Zipfel et al., 2004; Qutob et al., 2006; Thilmony et al., 2006; Truman et al., 2006). However, the level of receptor protein is tightly controlled upon ligand binding. New evidence suggests that the receptors undergo endocytosis after MAMP signal perception (Robatzek et al., 2006). In the presence of flg22, membrane localized FLS2 quickly accumulates in intracellular vesicles that are likely followed by degradation. Mutational analysis indicates that T867 located in the intracellular juxta membrane region of FLS2 is critical for both FLS2 internalization and response. The cytoplasmic region of FLS2 possesses a PEST-like motif, implicated in ubiquitin-triggered receptor

MAMP perception through cell-surface LRR-RLK receptors

Plants respond to a wide array of MAMPs from both non-pathogenic and pathogenic microbes, including bacterial flagellin, lipopolysaccharide (LPS), elongation factor EF-Tu, and harpin (HrpZ), oomycete-derived Pep13, NEP1-like proteins (NLPs) and β-glucan, as well as fungal chitin and ergosterol (Boller, 1995; Ligterink et al., 1997; Zhang et al., 1998; Cardinale et al., 2000; Desikan et al., 2001; Lee et al., 2001; Asai et al., 2002; Fellbrich et al., 2002; Wan et al., 2004; Daxberger et al., 2006; Qutob et al., 2006, Zipfel et al., 2006). The perception of several MAMPs is mediated by cell-surface receptors. The best-studied plant PRR is Arabidopsis flagellar receptor FLS2, a RLK protein with extracellular LRR (Gomez-Gomez and Boller, 2000). The 22 amino acid peptide (flg22) corresponding to the highly conserved amino terminus of flagellin is sufficient to trigger immune responses in Arabidopsis, tomato, tobacco and barley but not rice (Felix et al., 1999; Peck et al., 2001; Taguchi, 2003; Chinchilla et al., 2006; Hann and Rathjen, 2007; Shen et al., 2007). Affinity cross-linking and immunoprecipitation demonstrate direct interaction of flg22 with FLS2 (Chinchilla et al., 2006), but do not exclude the requirement of additional plant factors in receptor complex signalling. The established method will facilitate future studies of the receptor complexes for the initiation of MAMP-induced signalling.

Recently, one of the most abundant and conserved bacterial proteins, elongation factor EF-Tu from E. coli and many other bacteria, has been found to function as an MAMP in Arabidopsis. An N-acetylated peptide comprising the first 18 amino acids, termed elf18, is fully active (Kunze et al., 2004). Treating Arabidopsis seedlings with elf18 or flg22 induces a common set of responses including whole genome transcriptome profiles (Zipfel et al., 2006). Affinity cross-linking labelled a putative receptor protein, which was later identified as EF-Tu receptor (EFR) by a reverse genetic screen of mutants in LRR-RLKs related to FLS2 (Zipfel et al., 2006). The efr mutant is more susceptible to Agrobacterium tumefaciens infection. Intriguingly, EF-Tu has been found on the surface of Mycoplasma pneumoniae and Lactobacillus johnsonii, and may play a role in adhesion to mammalian host cells and activation of inflammatory responses (Dallo et al., 2002; Granato et al., 2004).

Many genes encoding LRR-RLKs, such as FLS2 and EFR, are MAMP-inducible (Navarro et al., 2004; Zipfel et al., 2004; Qutob et al., 2006; Thilmony et al., 2006; Truman et al., 2006). However, the level of receptor protein is tightly controlled upon ligand binding. New evidence suggests that the receptors undergo endocytosis after MAMP signal perception (Robatzek et al., 2006). In the presence of flg22, membrane localized FLS2 quickly accumulates in intracellular vesicles that are likely followed by degradation. Mutational analysis indicates that T867 located in the intracellular juxta membrane region of FLS2 is critical for both FLS2 internalization and response. The cytoplasmic region of FLS2 possesses a PEST-like motif, implicated in ubiquitin-triggered receptor
endocytosis. A proteasome inhibitor MG132 blocks FLS2 internalization and degradation (Robatzek et al., 2006). It will be important to further define the cellular and molecular steps that connect FLS2 phosphorylation, ubiquitination and endocytosis with downstream signalling.

MAMP perception through cell-surface receptors without a kinase domain

MAMP receptors for certain fungal proteins and chitin fragments have been identified as cell-surface receptors without kinase domain in plants (Ron and Avni, 2004; Kaku et al., 2006). The 22-kDa fungal protein ethylene-inducing xylanase (EIX) activates defence responses independent of its enzymatic activity in many plant species (Furman-Matarasso et al., 1999). Two tomato genes, LeEix1 and LeEix2, have been identified by map-based cloning. They encode proteins with EIX binding activities when ectopically expressed in plant and mammalian cells (Ron and Avni, 2004). The EIX receptors contain a leucine zipper, an extracellular LRR domain, a transmembrane domain and a C-terminal domain with a mammalian endocytosis signal. The structure of EIX receptors is similar to a family of RLPs, such as tomato Cf2 and Cf9, the plasma membrane R proteins that respond to specific extracellular fungal avirulence (Avr) proteins for effector-triggered immunity. FLS2 and EFR also resemble a rice R protein XA21 as an LRR-RLK recognizing a specific molecule secreted from a pathogenic bacterium *Xanthomonas oryzae* pv *oryzae* (Xoo) (Lee et al., 2006). Thus, the signalling events acting downstream of MAMP and extracellular effector perception by cell-surface PRRs may share certain common features. Transcriptome and cDNA-AFLP analyses of early response genes identified some shared target genes activated by flag22 in *Arabidopsis* and Avr9-Cf9 signalling in tobacco (Navarro et al., 2004). It remains a future research challenge to precisely determine the shared or distinct signalling pathways triggered by MAMPs, extracellular and intracellular effectors.

The rice transmembrane protein with two extracellular LysM motifs binds to fungal cell wall elicitor, chitin oligosaccharide (Kaku et al., 2006). The LysM motif is found among both prokaryotes and eukaryotes, and was proposed to function as a peptidoglycan- and chitin-binding site. Interestingly, two RLKs with LysM motif have been recently indicated as the receptors of Nod-factor, a lipochitin-oligosaccharide produced by rhizobial bacteria to establish symbiosis with legume plants (Madsen et al., 2003; Radutoiu et al., 2003). Thus, the LysM motifs of these receptors could recognize both MAMP signal for defence and rhizobial signal for symbiosis, two distinct outcomes in plant–microbe interactions.

MAMP perception through intracellular receptors

Although the mammalian cell-surface receptor TLR5 has been identified for bacterial flagellin (Akira et al., 2006), latest findings provide evidence that flagellin can also be delivered into the cytosol of mammalian macrophages during infection to trigger innate immune responses (Franchi et al., 2006; Miao et al., 2006; Molofsky et al., 2006; Ren et al., 2006; Subramanian and Qadri, 2006). Cytosolic flagellin of *Salmonella* is sensed by the pro-caspase-1-activating protein Ipaf, a member of the NOD-like receptors (NLRs) closely related to plant intracellular NB-LRRs for effector-triggered immunity (Franchi et al., 2006; Miao et al., 2006). Many mammalian NLRS are intracellular receptors for MAMPs, bacterial toxins and danger signals (Fritz et al., 2006; Meylan et al., 2006). Most strikingly, cytosolic flagellin-mediated immune responses require bacterial T3SS, but not the evolutionarily related flagellar secretion system (Miao et al., 2006). Introduction of purified flagellin into the cytoplasm activates Ipaf-dependent immune responses. From an evolutionary point of view, T3SS, a potent bacterial weapon, seems to mistakenly secrete some MAMPs that are recognized by hosts to trigger immune responses. Cytosolic flagellin of *Legionella pneumophila* is perceived by Nalp5, a member of NLRS, and activates caspase-1-mediated macrophage death (Molofsky et al., 2006; Ren et al., 2006). It seems that the pore-forming activity of *L. pneumophila* type IV secretion system is required for cytosolic flagellin immune responses in macrophage (Molofsky et al., 2006). Currently, no evidence has emerged yet to support the existence of cytosolic MAMP receptors in plants. We have observed that non-host bacteria induce stronger defence responses than their T3SS mutants (P. He, L. Shan and J. Sheen, unpubl. data). It is possible that either type III effectors in these bacteria or MAMPs including structural components of the T3SS travel through T3SS to trigger defence responses in host cells that warrants further characterization.

Specificity of MAMP perception

In general, MAMPs are evolutionarily conserved molecules that are present in many microbes and are often essential for their fitness, survival or virulence. However, a recent report has revealed surprisingly narrow recognition specificity of bacterial flagellin proteins at the subspecies level (Sun et al., 2006). The significant variation of defence-eliciting ability occurs among flagellin purified from different strains of *Xanthomonas campestris pv campestris* (Xcc). A single amino acid polymorphism in Xcc flagellin is critical for the FLS2-mediated defence-eliciting ability. However, the mutation of FLS2 does not significantly affect the growth of virulent Xcc strains and
symptom development in Arabidopsis using different infection assays (Sun et al., 2006). In contrast, FLS2 is important in the defense against the virulent Pseudomonas syringae tomato DC3000 in Arabidopsis (Zipfel et al., 2004). The finding suggests that the contribution of flagellin to elicit plant immunity may vary in different bacterial species, and raises the question that some MAMPs may exist as variable but not conserved products. MAMP specificity is not solely determined by sequence variation. For example, the flagellin from P. s. glycinea, but not from P. s. tabaci, triggers defense responses in tobacco although the flagellins from these two bacterial strains share identical sequence. A post-translational modification, glycosylation, of flagellin is responsible for the difference (Takeuchi et al., 2003; Taguchi et al., 2006). Apparently, some successful pathogens can acquire active mechanisms to modify MAMPs in order to avoid host recognition. However, most microbes are likely recognized by plant innate immune systems through the perception of multiple and distinct MAMPs.

MAMP perception can also be variable in different plants. For example, EF-Tu as an MAMP is recognized by Arabidopsis but not plants outside the Brassicaceae (Zipfel et al., 2006). Pep-13, a surface-exposed peptide of a cell wall transglutaminase in Phytophthora, acts as an MAMP in parsley and potato but not in Arabidopsis (Nümberger et al., 1994; Brunner et al., 2002). The perception of flg22 in Arabidopsis by FLS2 displays characteristics distinct from that in tomato and rice, suggesting the specificity in ligand–receptor interactions (Felix et al., 1999; Chinchilla et al., 2006). There are also a large family of NLP proteins produced by bacteria, fungi and oomycetes that play dual roles as MAMPs to elicit innate immune responses as well as phytotoxins to induce cell death in dicotyledonous plants but not monocots (Qutob et al., 2006). Continued evolution of MAMPs and their PRRs may be more dynamic than previously expected.

Convergent intracellular signalling triggered by MAMPs

The recent genome-wide transcriptome analyses have provided solid evidence for remarkable convergent signaling downstream of MAMP receptors. A set of largely overlapping genes are activated or repressed by different MAMPs, including bacterial flg22 and EF-Tu, and oomycete NLP (Zipfel et al., 2004; Qutob et al., 2006; Zipfel et al., 2006). The convergent MAMP signaling is also evident from the whole plant-bacteria infection experiments, in which the bacterial mutants with deficiency in flagellin production do not significantly alter the MAMP-triggered regulation of transcript profile at the genome level (Thilmony et al., 2006). These results collectively suggest that the responses to multiple MAMPs converge at a very early step very likely immediately after signal perception (He et al., 2006). The convergence of MAMP signaling is probably an evolutionary advantage for plants to secure MAMP-triggered immunity. The modification of individual MAMPs by microbes will not significantly dilute the overall MAMP-triggered immunity. Consequently, it has been difficult to study the functions of individual MAMPs using whole microbial organisms that carry multiple MAMPs. Many unknown MAMPs remain to be discovered.

MAPK signalling cascades in MAMP-triggered immunity

Activation of MAPK signalling cascades is a convergent and immediate-early response in MAMP-triggered immunity (Tena et al., 2001; Zhang and Klessig, 2001; Pedley and Martin, 2005). A MAPK cascade generally involves a MAPKKK(MTK)-MAPKK(MKK)-MAPK(MPK) module that transduces extracellular signals through the receptors into a wide range of intracellular responses in eukaryotic cells. Arabidopsis genome encodes at least 20 MPKs (MAPK Group, 2002). Arabidopsis MPK3, MPK4 and MPK6, and their orthologues in other plant species are rapidly activated by multiple MAMPs including bacterial elicitors flg22, HrpZ, EF-Tu, oomycete elicitors Pep 13, NPP1 and β-glucan and fungal elicitor chitin and ergosterol (Ligterink et al., 1997; Zhang et al., 1998; Cardinale et al., 2000; Desikan et al., 2001; Lee et al., 2001; Asai et al., 2002; Fellibrich et al., 2002; Droiillard et al., 2004; Wan et al., 2004; Daxberger et al., 2006; Zipfel et al., 2006). A functional genomic approach has led to the identification of Arabidopsis MAPK cascades comprising MEKK1, MKK4/ MKK5 and MPK3/MPK6 that provide redundant functions downstream of the flagellin receptor FLS2 and upstream of WRKY and other transcription factors (Asai et al., 2002). Activation of the MAPK cascades triggers massive transcript changes and confers resistance to multiple pathogens, suggesting the importance of MAPK cascade signaling in plant innate immunity. More comprehensive functional genomic screens of Arabidopsis MAPK cascades with 68 MTKs, 10 MKKs and 20 MPKs have revealed surprisingly large number of MTKs that may share similar functions with MEKK1 (G. Tena and J. Sheen, unpubl. data). Due to functional redundancy, thorough genetic evidence for the critical roles of specific MAPK cascade components in MAMP-induced signalling requires quantitative analysis of single and higher order mutants.

Recently, several groups have reported the isolation and characterization of mekk1 knockout plants (ichimura et al., 2006; Nakagami et al., 2006; Suarez-Rodriguez et al., 2007). The mekk1-deficient plants display constitutive cell death during the emergence of first pair of true
leaves accompanied by the production of H$_2$O$_2$, deposition of callose and activation of pathogenesis-related (PR) genes. The lethality is partially eliminated by high temperature or the removal of high level of salicylic acid (SA). Surprisingly, the lethal defect of mekk1 mutant has been rescued by the MEKK1 protein without the kinase activity (Suarez-Rodriguez et al., 2007). The results suggest that MEKK1 has both protein kinase (PK)-dependent and PK-independent functions. It is possible that MEKK1 acts as a scaffold protein to hold other proteins together to prevent cell death and SA/H$_2$O$_2$ accumulation. In addition, the regulatory domain, not the kinase domain, of MEKK1 interacts directly with MPK4 in the yeast two-hybrid assay (Ichimura et al., 1998). As a kinase, MEKK1 can activate MPK4 in response to signals, such as flg22 or H$_2$O$_2$ (Teige et al., 2004; Nakagami et al., 2006). It is important to determine which MKKs are involved in this MAPK cascade. The results indicate that MEKK1 has multiple functions as the positive and negative regulators in plant development and innate immunity. In the absence of external signals, MPK4 kinase activity is required to prevent SA accumulation (Petersen et al., 2000). The functional significance of MPK4 activated by external signals through MEKK1 remains to be elucidated. The analysis of one mkk1 mutant has also suggested very complex roles of MKK1 as both a positive regulator in MPK3/4/6 activation by flg22 and a negative regulator in flg22-activation of gene expression (Meszaros et al., 2006). It remains unclear how MKK1 controls MPK3/6 that do not serve as its substrate (Asai et al., 2002; Hua et al., 2006). In the future, it is necessary to employ integrative approaches and pathway-specific assays to study the complexity of the MAPK cascade signalling networks in plant innate immunity.

Type III effectors as suppressors of MAMP-triggered immunity

It has long been observed that the T3SS-deficient bacteria can trigger broader plant defence responses than bacteria with functional T3SS (Jakobek et al., 1993; Espinosa and Alfano, 2004; Beth Mudgett, 2005; Nomura et al., 2005; Abramovitch et al., 2006; Grant et al., 2006). This observation led to the hypothesis that virulent bacteria secrete type III effectors to suppress plant defence.

Recently, many type III effectors of plant pathogenic bacteria have been reported to suppress effector-triggered immunity or MAMP-triggered immunity (Espinosa and Alfano, 2004; Beth Mudgett, 2005; Abramovitch et al., 2006; Grant et al., 2006). Arabidopsis transgenic plants expressing a P. s. tomato effector, AvrPto, inhibit the callose deposition-mediated cell wall defence triggered by a T3SS-deficient mutant and support the growth of this bacterium (Hauck et al., 2003). Two P. syringae type III effectors, AvrRpm1 and AvrRpt2, suppress flg22-mediated callose deposition and GST6 expression (Kim et al., 2005). Nine effectors from P. s. tomato have been found to inhibit flg22-triggered expression of NHO1, which encodes a glycerol kinase and is important for Arabidopsis non-host immunity to certain bacteria. The deletion of flagellin from a non-host bacterium enhances its growth in Arabidopsis, supporting an essential role of flagellin in plant non-host immunity (Li et al., 2005). However, this result is surprising because multiple MAMPs are expected to provide redundant functions in triggering defence signalling, and the bacteria with or without flagellin induce the same Arabidopsis transcriptome changes (Thilmony et al., 2006).

Specific effectors as suppressors of early MAMP-induced signalling

It is possible that a large number of type III effectors have the ability to suppress MAMP-triggered immunity. Currently, it remains a great challenge to elucidate the overlapping or specific mechanisms of individual effectors as suppressors of MAMP-triggered immunity. Commonly used assays rely on relatively late defence outcomes, including cell wall modification, disease symptom development and bacterial growth. New assays with higher temporal and spatial resolution are required to differentiate the molecular actions of many effectors that seemingly share similar suppressor activities.

Based on an effector screen using a MAMP-specific and early responsive marker gene in Arabidopsis leaf cells, AvrPto and AvrPtoB from P. s. tomato have been identified as unique and potent suppressors of MAMP-triggered immunity. Commonly used assays rely on relatively late defence outcomes, including cell wall modification, disease symptom development and bacterial growth. New assays with higher temporal and spatial resolution are required to differentiate the molecular actions of many effectors that seemingly share similar suppressor activities.

Based on an effector screen using a MAMP-specific and early responsive marker gene in Arabidopsis leaf cells, AvrPto and AvrPtoB from P. s. tomato have been identified as unique and potent suppressors of MAMP-triggered immunity. Commonly used assays rely on relatively late defence outcomes, including cell wall modification, disease symptom development and bacterial growth. New assays with higher temporal and spatial resolution are required to differentiate the molecular actions of many effectors that seemingly share similar suppressor activities.

Based on an effector screen using a MAMP-specific and early responsive marker gene in Arabidopsis leaf cells, AvrPto and AvrPtoB from P. s. tomato have been identified as unique and potent suppressors of MAMP-triggered immunity. Commonly used assays rely on relatively late defence outcomes, including cell wall modification, disease symptom development and bacterial growth. New assays with higher temporal and spatial resolution are required to differentiate the molecular actions of many effectors that seemingly share similar suppressor activities.

Specific effectors as suppressors of early MAMP-induced signalling

It is possible that a large number of type III effectors have the ability to suppress MAMP-triggered immunity. Currently, it remains a great challenge to elucidate the overlapping or specific mechanisms of individual effectors as suppressors of MAMP-triggered immunity. Commonly used assays rely on relatively late defence outcomes, including cell wall modification, disease symptom development and bacterial growth. New assays with higher temporal and spatial resolution are required to differentiate the molecular actions of many effectors that seemingly share similar suppressor activities.

Based on an effector screen using a MAMP-specific and early responsive marker gene in Arabidopsis leaf cells, AvrPto and AvrPtoB from P. s. tomato have been identified as unique and potent suppressors of MAMP-triggered immunity. Commonly used assays rely on relatively late defence outcomes, including cell wall modification, disease symptom development and bacterial growth. New assays with higher temporal and spatial resolution are required to differentiate the molecular actions of many effectors that seemingly share similar suppressor activities.

Based on an effector screen using a MAMP-specific and early responsive marker gene in Arabidopsis leaf cells, AvrPto and AvrPtoB from P. s. tomato have been identified as unique and potent suppressors of MAMP-triggered immunity. Commonly used assays rely on relatively late defence outcomes, including cell wall modification, disease symptom development and bacterial growth. New assays with higher temporal and spatial resolution are required to differentiate the molecular actions of many effectors that seemingly share similar suppressor activities.

Based on an effector screen using a MAMP-specific and early responsive marker gene in Arabidopsis leaf cells, AvrPto and AvrPtoB from P. s. tomato have been identified as unique and potent suppressors of MAMP-triggered immunity. Commonly used assays rely on relatively late defence outcomes, including cell wall modification, disease symptom development and bacterial growth. New assays with higher temporal and spatial resolution are required to differentiate the molecular actions of many effectors that seemingly share similar suppressor activities.

Based on an effector screen using a MAMP-specific and early responsive marker gene in Arabidopsis leaf cells, AvrPto and AvrPtoB from P. s. tomato have been identified as unique and potent suppressors of MAMP-triggered immunity. Commonly used assays rely on relatively late defence outcomes, including cell wall modification, disease symptom development and bacterial growth. New assays with higher temporal and spatial resolution are required to differentiate the molecular actions of many effectors that seemingly share similar suppressor activities.
level of MAPKs is relatively high. Thus, only the most potent and early suppressors could stand out. The results may be different if the expression level of effectors is much higher than that of MAPKs. As effectors are hypothesized to function at minute amount during natural infection, it is critical to control the relative expression level of effectors and their host targets in the study of effector functions. Confirmation with bacterial strains carrying specific effector gene mutation will provide further support for the biological relevance of effector functions, if functional redundancy of effectors can be overcome (He et al., 2006).

Interestingly, the N-terminal region of AvrPtoB is required and sufficient for its suppressor activity in MAMP-triggered immunity, and the C-terminal region with E3 ligase activity is indispensable for the inhibition of hypersensitive response (HR), a defence-associated cell death (Janjusevic et al., 2006; He et al., 2006). These studies suggest that a single type III effector could exhibit distinct virulence functions using different domains. In Nicotiana benthamiana, AvrPto and AvrPtoB also suppress diverse defence responses triggered by flagellin and the oomycete elicitor INF1 (Hann and Rathjen, 2007). However, AvrPtoB, but not AvrPto, when delivered from a non-host bacterium, suppressed Arabidopsis MAMP-triggered immunity (de Torres et al., 2006). This is likely caused by the restricted bacteria–host interaction specificity of these two effectors (Kim et al., 2002). Importantly, expression of AvrPto (He et al., 2006) or AvrPtoB (de Torres et al., 2006; Hann and Rathjen, 2007) in Arabidopsis or N. benthamiana blocks flg22 signalling and supports the growth of non-host bacterial strains. A non-host P. syringae strain expressing AvrPtoB causes disease in Arabidopsis (de Torres et al., 2006). The data collectively support the importance of MAMP-induced signalling in plant non-host immunity.

Host targets of type III effectors

Type III effectors suppress MAMP-triggered immunity through modification of host proteins. It has been proposed that AvrRpm1 and AvrRpt2 suppress flg22-mediated responses via the manipulation of RIN4, a repressor of plant basal defence. RIN4 is phosphorylated by AvrRpm1 and cleaved by AvrRpt2 and it also plays a pivotal role in AvrRpm1- and AvrRpt2-triggered immunity (Mackey et al., 2002; Axtell and Staskawicz, 2003; Mackey et al., 2003). However, whether degradation or phosphorylation of RIN4 is directly connected to AvrRpm1 and AvrRpt2 virulence remains to be resolved. Interestingly, AvrB, another effector interacting with RIN4, suppresses flg22-mediated cell wall defence through RAR1, a protein regulating the stability of some NB-LRR disease resistance proteins (Shang et al., 2006). Like rin4 plants, rar1 mutants display enhanced cell wall defence in response to flg22, suggesting that both RIN4 and RAR1 negatively regulate MAMP-triggered immunity. It is interesting that AvrB coimmunoprecipitates with RAR1, but does not interact directly with RAR1 in the yeast two-hybrid assay. The result suggests that RAR1 and AvrB are in a same complex through the interaction of other proteins. One candidate to bridge RAR1 and AvrB is RIN4 because it interacts with AvrB, AvrRpm1 and AvrRpt2. However, RIN4 is not detected in the RAR1 complex (Shang et al., 2006). Interestingly, RAR1 is also required for AvrPtoB but not AvrPto virulence (Hann and Rathjen, 2007). It would be interesting to see whether there is differential suppression of MAPK and early gene activation by flg22 between AvrPto and AvrPtoB in rar1 mutant. RAR1 likely collaborates with cytosolic HSP90 to maintain NB-LRR protein levels (Shirasu et al., 1999; Mackey et al., 2002; Hubert et al., 2003). The exact mechanism of RIN4 and RAR1 as negative regulators of MAMP-triggered immunity will be future research interests.

Recent novel findings show that a conserved P. syringae type III effector HopM1 promotes pathogenicity by interacting and destabilizing a host protein MIN7 (HopM1 interacting protein) through proteasome. MIN7 encodes an ARF GEF (guanine nucleotide exchange factor), a key component of the vesicle trafficking system in eukaryotic cells. HopM1 may be involved in the inhibition of a host vesicle trafficking pathway whose acceleration is associated with a polarized cell wall-associated defence in plants (Nomura et al., 2006). Importantly, the Arabidopsis min7-deficient plants only exhibit increased susceptibility to the P. syringae ΔCEL mutant, which lacks hopM1 gene, but not to the virulent Pst DC3000 or the T3SS mutant. The use of specific bacterial mutants can greatly facilitate the dissection of individual effector functions in plants.

It appears to be common that a single type III effector targets multiple host components to enhance bacterial pathogenicity. For example, both AvrRpt2 and AvrRpm1 still contribute to Pseudomonas virulence in the rin4-deficient plants (Belkhadir et al., 2004; Lim and Kunkel, 2004). HopM1 expressing plants are more susceptible to the infection of P. syringae ΔCEL mutant than min7 knockout plants, suggesting that other host factors could be targeted by HopM1 (Nomura et al., 2006). Alternatively, HopM1 could more efficiently target MIN7 when it is overexpressed in plants than it is delivered naturally by bacteria. Nevertheless, plants may use multiple host components to subdue the virulence of bacterial effectors.

Reprogramming of host transcriptome by type III effectors

The global gene expression or proteomic changes of Arabidopsis plants in response to different pathogenic and
non-pathogenic bacteria have provided valuable information on the function of type III effectors (Jones et al., 2006; Thilmony et al., 2006; Truman et al., 2006; de Torres-Zabala et al., 2007). Not surprisingly, non-pathogenic bacteria including T3SS mutants and human pathogens induce a large set of genes predominately through MAMP signals. Many of these genes are suppressed by type III effectors secreted by virulent bacteria. Among these MAMP-inducible and type III effector-repressible genes, the genes encoding receptor-like kinases are over-represented. The results suggest that diminution of MAMP perception is a powerful means for the successful virulent pathogens.

By comparing the *Pst* DC3000 wild type and the T3SS mutant bacterial strains, it is striking that type III effectors from virulent bacteria activate a significant number of host genes (Thilmony et al., 2006; Truman et al., 2006). Among 880 type III effector-regulated genes, 282 were repressed and 598 were induced by effector activities (Truman et al., 2006). It is known that effectors of *Xanthomonas* could activate the transcription of plant genes, some of which may encode factors to increase plant susceptibility (Yang et al., 2006). One *Pst* effector-regulated gene, *RAP2.6* (*At1g43160*) encoding an ERF family transcription factor, has been shown to be activated by a few type III effectors, and its activation is associated with the virulence of different *P. syringae* strains (He et al., 2004). Many *Pst* DC3000 effector-activated genes can potentially attenuate the essential kinase signalling pathways in MAMP-triggered immunity and/or associate with plant hormone biosynthesis and signalling pathways to promote pathogenicity (Truman et al., 2006; de Torres-Zabala et al., 2007). The activation of these genes may negatively regulate plant immune responses through novel mechanisms.

Surprisingly, many SA-mediated defence genes are dramatically activated by type III effectors from *Pst* DC3000. These genes have been shown extensively to function as positive regulators in SA-mediated defence to *Pst* DC3000 (Glazebrook, 2005). They are either not or weakly activated by MAMP signals in T3SS-deficient bacteria, but are highly induced by *Pst* DC3000 type III effectors (Thilmony et al., 2006). Our studies indicate that these genes are specifically activated at an early time point in effector-triggered immunity in a gene-for-gene-dependent manner (P. He, L. Shan and J. Sheen, unpubl. data). It is possible that some ‘virulence’ type III effectors could also be recognized by host proteins to activate part of the secondary immune responses, such as early defence gene transcription without inducing cell death (HR). In effector-triggered immunity, emerging evidence suggests that defence gene transcription and cell death could represent two separable immune responses (Yu et al., 1998; P. He, L. Shan and J. Sheen, unpubl. data).

Our understanding of the roles of bacterial effectors in plant defence is limited and deserves further exploration.

Coronatine as suppressor of MAMP-triggered immunity

Phytoxins coronatine contributes to virulence in several pathovars of *P. syringae* by promoting bacterial multiplication and lesion formation in many plant species. Coronatine consists of two components, coronafacic acid and coronamic acid, which are structurally similar to jasmonic acid (JA) and aminocyclopropane carboxylic acid, the immediate precursor of ethylene, respectively (Bender et al., 1999). Coronatine is known to function as a molecular mimic of JA, a plant hormone that could activate the defence to necrotrophic pathogens and suppress SA-mediated defence to biotrophic pathogens (Zhao et al., 2003; Glazebrook, 2005; Nomura et al., 2005). The coronatine insensitive mutants, *coi1* and *jai1* of *Arabidopsis* and tomato, display enhanced resistance to *P. syringae* infection through de-repression of SA signalling (Kloeck et al., 2001; Zhao et al., 2003). Evidence also suggests the synergistic effect of T3SS and coronatine in targeting JA signalling pathway to promote *P. syringae* pathogenesis (Zhao et al., 2003; He et al., 2004).

It was puzzling that the growth of coronatine-deficient bacteria was greatly reduced compared with the wild-type strain only when inoculated onto the leaf surface, but not when infiltrated directly into the apoplast (Mittal and Davis, 1995). This mystery is solved recently in the discovery of the role of coronatine in disabling stomatal-mediated defence. Pathogenic bacteria enter the internal plant tissues through natural openings or wounds in the plant surface. Stomata, the microscopic pores in plant epidermis, have been thought to function as passive ports of bacterial entry during infection. An interesting study reveals that stomatal closure is an active innate immune response targeted and inhibited by coronatine (Melotto et al., 2006). As many defence responses, stomatal closure could be activated by non-pathogenic bacteria and different MAMPs, such as *flg22* and LPS, and suppressed by pathogenic *Pst* DC3000. However, unlike many other responses, *flg22*-mediated stomatal closure is dependent on intact SA signalling. Coronatine, but not type III effector, is the surprising virulence factor responsible for suppressing stomatal defence. The purified coronatine could interfere with *flg22*- or LPS-induced stomatal closure. Although coronatine is thought to function as a molecular mimic of JA, unlike coronatine, JA actually causes stomatal closure (Suhita et al., 2004).

Concluding remarks

Although plants lack the elaborate adaptive immune system found in mammals, they have expanded the
innate immune system through the evolution of a large set of cell-surface PRRs for recognizing generic MAMPs, and intracellular NB-LRR proteins for detecting highly specific pathogen-encoded virulence factors (Fig. 1) (Ausubel, 2005; Chisholm et al., 2006; DeYoung and Innes, 2006; Jones and Dangl, 2006). Successful plant bacterial pathogens have evolved numerous type III effectors and other virulence factors to suppress plant MAMP-triggered immunity (Alfano and Collmer, 2004; Beth Mudgett, 2005; Grant et al., 2006). To survive, individual plants have further evolved highly specific resistance genes to counteract specific pathogen-encoded virulence factors and trigger the second line of immunity, effector-triggered immunity. The intracellular resistance proteins are largely encoded by a family of proteins with a nucleotide binding site and leucine-rich repeat domain (NB-LRR) and variable N-terminal region. The interaction between type III effectors and intracellular NB-LRR proteins could be direct or indirect through other host proteins (H). Evidence also suggests that bacterial effectors have the ability to suppress effector-triggered immunity by blocking cell death. A link between early transcription triggered by effectors and PAMPs/MAMPs may exist.

Although much effort has been devoted to understand the signalling networks activated downstream of PRRs that respond to highly conserved MAMPs or NB-LRR proteins that respond to specific pathogen-encoded virulence factors, the signalling overlaps and distinctions of these two types of immunity remain unsolved. It has been suggested that MAMP-triggered immunity and effector-triggered immunity are largely overlapping and only differ in quantitative nature and timing (Tao et al., 2003; Navarro et al., 2004). However, gene expression analysis comparing pathogenic and non-pathogenic bacteria clearly shows that some of the earliest MAMP-induced signalling events are shut down by virulence factors in pathogenic bacteria (He et al., 2006). The recent genome-wide transcriptome analyses of Arabidopsis plants responding to bacteria with or without T3SS provide better distinction between MAMP-triggered signalling and type III effector-triggered signalling (Jones et al., 2006; Thilmony et al., 2006; Truman et al., 2006). In the future, comparison of early gene-expression profiles induced by purified MAMPs, individual type III effectors, and different bacterial strains will more precisely define genes that are either specific or common to MAMP-triggered and effector-triggered defence pathways or induced by abiotic stresses.

To avoid infection by a wide range of potential pathogens, a robust defence system is essential. The conserved MAMP-induced signalling components, such as MAPK cascades and WRKY transcription factors, are encoded by functionally redundant genes in plants. It has been difficult to genetically dissect the function of MAMP-induced signalling components. Many MAPK cascade genes also play critical and multiple functions in both development and innate immunity, thus creating more complexity and challenges (Asai et al., 2002; Wang et al., 2007). In addition, existing evidence suggests the involve-
Acknowledgements

Our research has been supported by the NSF (DBI 0077692, MCB 0446109, IOB 0618292) and the NIH (R01 G70567). We thank three anonymous reviewers for valuable comments and suggestions.

References

Abramovitch, R.B., Anderson, J.C., and Martin, G.B. (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7: 601–611.

Akira, S., Uematsu, S., and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124: 783–801.

Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., et al. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977–983.

Ausubel, F.M. (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6: 973–979.

Axtell, M.J., and Staskawicz, B.J. (2003) Initiation of RPS2-specific disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112: 369–377.

Belkhadir, Y., Nimchuk, Z., Hubert, D.A., Mackey, D., and Dangl, J.L. (2004) Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16: 2822–2835.

Bender, C.L., Alarcon-Chaidez, F., and Gross, D.C. (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63: 266–292.

Beth Mudgett, M. (2005) New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol 56: 509–531.

Boller, T. (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46: 189–214.

Brunner, F., Rosahl, S., Lee, J., Rudd, J.J., Geiler, C., Kauppinen, S., et al. (2002) Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora trans-glutaminases. EMBO J 21: 6681–6688.

 Büttner, D., and Bonas, U. (2003) Common infection strategies of plant and animal pathogenic bacteria. Curr Opin Plant Biol 6: 312–319.

Cardinael, F., Jonak, C., Ligerink, W., Niehaus, K., Boller, T., and Hirt, H. (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem 275: 36734–36740.

Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18: 465–476.

Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803–814.

Dallo, S.F., Kannan, T.R., Blaylock, M.W., and Baseman, J.B. (2002) Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol 46: 1041–1051.

Daxberger, A., Nemak, A., Mithofer, A., Fließmann, J., Ligerink, W., Hirt, H., and Ebel, J. (2006) Activation of members of a MAPK module in beta-glucan elicitor-mediated non-host resistance of soybean. Planta (in press). doi: 10.1007/s00425-006-0442-6.

Desikan, R., Hancock, J.T., Ichimura, K., Shinozaki, K., and Neill, S.J. (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126: 1579–1587.

DeYoung, B.J., and Innes, R.W. (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7: 1243–1249.

Drollard, M.J., Boudsocq, M., Barbier-Brygoo, H., and Lauriere, C. (2004) Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett 574: 42–48.

Espinoza, A., and Alfano, J.R. (2004) Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Cell Microbiol 6: 1027–1040.

Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18: 265–276.

Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., et al. (2002) NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 32: 375–390.

Franchi, L., Amer, A., Body-Malapel, M., Kanneganti, T.D., Ozoren, N., Jagirdar, R., et al. (2006) Cytotoxic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7: 576–582.
Franz, J.H., Ferrero, R.L., Philpott, D.J., and Girardin, S.E. (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7: 1250–1257.

Furman-Matarasso, N., Cohen, E., Du, Q., Chejanovsky, N., Hanania, U., and Avni, A. (1999) A point mutation in the ethylene-inducing xylanase elicitor inhibits the beta-1,4-endoxylanase activity but not the elicitation activity. Plant Physiol 121: 345–351.

Galan, J.E., and Wolf-Watz, H. (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567–573.

Glazebrook, J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43: 205–227.

Gomez-Gomez, L., and Boller, T. (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5: 1003–1011.

Granato, D., Bergonzelli, G.E., Pridmore, R.D., Marvin, L., Fritz, J.H., Ferrero, R.L., Philpott, D.J., and Girardin, S.E. 1394

Ichimura, K., Casais, C., Peck, S.C., Shinozaki, K., and Shirasu, K. (2006) MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281: 36969–36976.
Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., and Dangl, J.L. (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112: 379–389.

Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczygowski, K., et al. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425: 637–640.

MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7: 301–308.

Melotto, M., Underwood, W., Koczian, J., Nomura, K., and He, S.Y. (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969–980.

Meszaros, T., Helfer, A., Hatzimasoura, E., Magyar, Z., Serazetdinova, L., Rios, G., et al. (2006) The Arabidopsis MAP kinase gene of the LysM type is involved in legume perception of rhizobial signals. Cell 126: 809–834.

Meylan, E., Tschopp, J., and Karin, M. (2006) Intracellular pattern recognition receptors in the host response. Nature 442: 39–44.

Miao, E.A., Alpuche-Aranda, C.M., Dors, M., Clark, A.E., Bader, M.W., Miller, S.I., and Aderem, A. (2006) Cyttoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7: 569–575.

Mittal, S., and Davis, K.R. (1995) Role of the phytotoxin coronatine in the infection of tomato by Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 8: 165–171.

Molofsky, A.B., Byrne, B.G., Whitfield, N.N., Madigan, C.A., Fuse, E.T., Tateda, K., and Swanson, M.S. (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203: 1093–1104.

Nakagami, H., Soukupova, H., Schikora, A., Zarsky, V., and Hirt, H. (2006) A mitogen-activated protein kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281: 38697–38704.

Navarro, L., Zipfel, C., Rowland, O., Keller, I., Rotbatzek, S., Boller, T., and Jones, J.D. (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135: 1113–1128.

Nomura, K., Melotto, M., and He, S.Y. (2005) Suppression of host defense in compatible plant–Pseudomonas syringae interactions. Curr Opin Plant Biol 8: 361–368.

Nomura, K., Debroy, S., Lee, Y.H., Pumpin, N., Jones, J., and He, S.Y. (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313: 220–223.

Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W.R., Hahlbrock, K., and Scheel, D. (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460.

Nürnberger, T., Brunner, F., Kemmerling, B., and Piater, L. (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198: 249–266.

Peck, S.C., Nuhse, T.S., Hess, D., Iglesias, A., Meins, F., and Boller, T. (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13: 1467–1475.

Pedley, K.F., and Martin, G.B. (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 8: 541–547.

Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhardt, U., Johansen, B., et al. (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111–1120.

Qutob, D., Kemmerling, B., Brunner, F., Kufner, I., Engelhardt, S., Gust, A.A., et al. (2006) Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18: 3721–3744.

Radutoiu, S., Madsen, L.H., Madsen, E.B., Felle, H.H., Umehara, Y., Gronlund, M., et al. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425: 585–592.

Ramonell, K., Berrocal-Lobo, M., Koh, S., Wan, J., Edwards, H., Stacey, G., and Somerville, S. (2005) Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol 138: 1027–1036.

Ren, T., Zamboni, D.S., Roy, C.R., Dietrich, W.F., and Vance, R.E. (2006) Flagellin-deficient Legionella mutants evade caspase-1 and Naip5-mediated macrophage immunity. PLoS Pathog 2: e18.

Robatzek, S., Chinchilla, D., and Boller, T. (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20: 537–542.

Ron, M., and Avni, A. (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16: 1604–1615.

Shang, Y., Li, X., Cui, H., He, P., Thilmory, R., Chintamanani, S., et al. (2006) RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. Proc Natl Acad Sci USA 103: 19200–19205.

Shen, Q.H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., et al. (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315: 1098–1103.

Shirasu, K., Lahaye, T., Tan, M.W., Zhou, F., Azevedo, C., and Schulze-Lefert, P. (2004) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99: 355–366.

Shiu, S.H., and Bleecker, A.B. (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132: 530–543.

Shiu, S.H., Karlswork, W.M., Pan, R., Tzeng, Y.H., Mayer, K.F., and Li, W.H. (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16: 1220–1234.

Suarez-Rodriguez, M.C., Adams-Phillips, L., Liu, Y., Wang, H., Su, S.H., Jester, P.J., et al. (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143: 661–669.

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd, Cellular Microbiology, 9, 1385–1396
Subramanian, N., and Qadri, A. (2006) Lysophospholipid sensing triggers secretion of flagellin from pathogenic salmonella. Nat Immunol 7: 583–589.

Suhita, D., Raghavendra, A.S., Kwak, J.M., and Vavasseur, A. (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134: 1536–1545.

Sun, W., Dunning, F.M., Pfund, C., Weingarten, R., and Bent, A.F. (2006) Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell 18: 764–779.

Taguchi, F., Shimizu, R., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y. (2003). Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol 44: 342–349.

Taguchi, K., Taguchi, F., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y. (2003) Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J Bacteriol 185: 6658–6665.

Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., et al. (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15: 317–330.

Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., et al. (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15: 141–152.

Tena, G., Asai, T., Chiu, W.L., and Sheen, J. (2001) Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol 4: 392–400.

Thilmony, R., Underwood, W., and He, S.Y. (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46: 34–53.

Ting, J.P., and Davis, B.K. (2005) CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 23: 387–414.

de Torres, M., Mansfield, J.W., Grabov, N., Brown, I.R., Ammounsheh, H., Tsiamis, G., et al. (2006) Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J 47: 368–382.

de Torres-Zabala, M., Truman, W., Bennett, M.H., Lafforgue, G., Mansfield, J.W., Rodriguez Egea, P., et al. (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26: 1434–1443.

Truman, W., de Zabala, M.T., and Grant, M. (2006) Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J 46: 14–33.

Wan, J., Zhang, S., and Stacey, G. (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol 5: 125–135.

Wang, H., Ngwenyama, N., Liu, Y., Walker, J.C., and Zhang, S. (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19: 63–73.

Yang, B., Sugio, A., and White, F.F. (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103: 10503–10508.

Yu, I.C., Parker, J., and Bent, A.F. (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA 95: 7819–7824.

Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., et al. (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101: 15811–15816.

Zhang, S., and Klessig, D.F. (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6: 520–527.

Zhang, S., Du, H., and Klessig, D.F. (1998) Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitors from Phytophthora spp. Plant Cell 10: 435–450.

Zhao, Y., Thilmony, R., Bender, C.L., Schaller, A., He, S.Y., and Howe, G.A. (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36: 485–499.

Zipfel, C., and Felix, G. (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8: 353–360.

Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764–767.

Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749–760.