On \((\varepsilon, \delta)\)-Freudenthal Kantor triple systems and anti-structurable algebras with certain conditions

Noriaki Kamiya1, Daniel Mondoc2 and Susumu Okubo3

1 Center for Mathematical Sciences, University of Aizu, 965-8580 Aizuwakamatsu, Japan
2 Centre for Mathematical Sciences, Lund University, 22 100 Lund, Sweden
3 Department of Physics, University of Rochester, Rochester, NY 14627 USA
E-mail: kamiya@u-aizu.ac.jp, daniel.mondoc@math.lu.se, okubo@pas.rochester.edu

Abstract. In this paper we discuss a characterization of anti-structurable algebras in connection with their relation with \((-1, -1)\)-Freudenthal Kantor triple systems.

1. Introduction
Freudenthal, Tits \cite{52}, I.L. Kantor \cite{33, 34, 35} and Koecher \cite{38, 39} studied constructions of Lie algebras from nonassociative algebras and triple systems, in particular Jordan algebras, while B.N. Allison \cite{1, 2} defined the concept of structurable algebras, containing Jordan algebras. Recently, we have studied constructions of Lie (super)algebras from triple systems and anti-structurable algebras \cite{24, 26, 29, 30, 31}. As a continuation of \cite{29, 30} we are interested to characterize the structure properties of anti-structurable algebras. Especially, Jordan and Lie (super)algebras \cite{9, 12} play an important role in many mathematical and physical subjects \cite{5, 10, 11, 13, 15, 25, 28, 36, 46, 47, 51, 54, 55} and the construction and characterization of these algebras can be expressed in terms of triple systems \cite{19, 22, 23, 27, 37, 48} by the standard embedding method \cite{21, 40, 41, 49, 53}.

Summarizing the content of this paper we give an introduction in section \S1, definitions and preamble in section \S2, while in in section \S3 we give properties of anti-structurable algebras satisfying the second order condition, we discuss the notion left neutral pair for \((\varepsilon, \delta)\)-Freudenthal Kantor triple systems and give examples of anti-structurable algebras with left neutral pair.

2. Definitions and preamble
2.1. \((\varepsilon, \delta)\)-Freudenthal Kantor triple systems
In this paper triple systems are finite dimensional and defined over a field \(\Phi\) of characteristic \(\neq 2\) or \(3\). A vector space \(V\) over \(\Phi\) endowed with a trilinear operation \(V \times V \times V \rightarrow V, (x, y, z) \mapsto (xyz)\) is said to be a \textit{generalized Jordan triple system of second order} (for short GJTS of 2nd order) if the following conditions are fulfilled:

\[
(ab(xyz)) = ((abx)y)z - (x(by)z) + (xy(abz)), \tag{2.1}
\]

\[
K(K(a, b)x, y) - L(y, x)K(a, b) - K(a, b)L(x, y) = 0, \tag{2.2}
\]

for all \(a, b, x, y, z \in V\), where \(L(a, b)c := (abc)\) and \(K(a, b)c := (abc) - (bca), a, b, c \in V\).

Published under licence by IOP Publishing Ltd
A Jordan triple system (for short JTS) satisfies (2.1) and \((abc) = (cba)\), for all \(a, b, c \in V\).

We can generalize the concept of GJTS of 2nd order as follows (see [13, 14, 17, 18, 19, 20, 21, 53] and the earlier references therein).

For \(\varepsilon = \pm 1\) and \(\delta = \pm 1\), a triple product that satisfies the identities

\[
(ab(xyz)) = ((ab)x)yz + \varepsilon (x(bay))z + (xy(ab)z),
\]

\[
K(K(a, b)x, y) - L(y, x)K(a, b) + \varepsilon K(a, b)L(x, y) = 0,
\]

for all \(a, b, x, y, z \in V\), where

\[
L(a, b)c := (abc), \quad K(a, b)c := (acb) - \delta(bca), \quad a, b, c \in V,
\]

is called an \((\varepsilon, \delta)\)-Freudenthal Kantor triple system (for short \((\varepsilon, \delta)\)-FKTS).

Remark. We note that \(K(b, a) = -\delta K(a, b)\).

Remark. The concept of GJTS of 2nd order coincides with that of \((-1, 1)\)-FKTS. Thus we can construct the corresponding simple Lie algebras by means of the standard embedding method ([6, 13, 14, 15, 16, 17, 21, 24, 26, 35, 53]).

An \((\varepsilon, \delta)\)-FKTS \(U\) is called unitary if the identity map \(Id\) is contained in \(K(U, U)\) i.e., if there exist \(a_i, b_i \in U\), such that \(\Sigma K(a_i, b_i) = Id\).

If \(U\) is an \((\varepsilon, \delta)\)-FKTS and \(a, b \in U\) then \((a, b)\) is called a left neutral pair if \(L(a, b) = Id\).

For \(\delta = \pm 1\), a triple system \((a, b, c) \mapsto [abc], a, b, c \in V\) is called a \(\delta\)-Lie triple system (for short \(\delta\)-LTS) if the following three identities are fulfilled

\[
[abc] = -\delta [bac],
\]

\[
[abc] + [cba] + [cab] = 0,
\]

\[
[ab[xyz]] = [[ab]xyz] + [x[aby]z] + [xy[abz]],
\]

where \(a, b, x, y, z \in V\). An 1-LTS is a LTS while a \(-1\)-LTS is an anti-LTS, by [14].

Proposition 2.1 ([14],[21]) Let \(U(\varepsilon, \delta)\) be an \((\varepsilon, \delta)\)-FKTS. If \(J\) is an endomorphism of \(U(\varepsilon, \delta)\) such that \(J < xyz > = < Jxjyjz >\) and \(J^2 = -\varepsilon Id\), then \((U(\varepsilon, \delta), [xyz])\) is a LTS (if \(\delta = 1\)) or an anti-LTS (if \(\delta = -1\)) with respect to the product

\[
[xyz] := < xJyz > - \delta < yJxz > + \delta < xJzy > - < yJzx >.
\]

Corollary 2.1 Let \(U(\varepsilon, \delta)\) be an \((\varepsilon, \delta)\)-FKTS. Then the vector space \(T(\varepsilon, \delta) = U(\varepsilon, \delta) \oplus U(\varepsilon, \delta)\) becomes a LTS (if \(\delta = 1\)) or an anti-LTS (if \(\delta = -1\)) with respect to the triple product defined by

\[
\begin{pmatrix}
L(a, d) - \delta L(c, b) - \varepsilon K(b, d) & \delta K(a, c) \\
-\varepsilon K(c, d) & (L(d, a) - \delta L(b, c))
\end{pmatrix}
\]

Thus we can obtain the standard embedding Lie algebra (if \(\delta = 1\)) or Lie superalgebra (if \(\delta = -1\)), \(L(\varepsilon, \delta) = D(T(\varepsilon, \delta), T(\varepsilon, \delta)) \oplus T(\varepsilon, \delta)\), associated to \(T(\varepsilon, \delta)\), where \(D(T(\varepsilon, \delta), T(\varepsilon, \delta))\) is the set of inner derivations of \(T(\varepsilon, \delta)\), i.e.

\[
D(T(\varepsilon, \delta), T(\varepsilon, \delta)) := \left\{ \begin{pmatrix} L(a, b) & \delta K(c, d) \\ -\varepsilon K(c, f) & \varepsilon L(b, a) \end{pmatrix} \right\} \text{span}, T(\varepsilon, \delta) := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \right\} \text{span}.
\]

Remark. We note that \(L(\varepsilon, \delta) := L_{-2} \oplus L_{-1} \oplus L_0 \oplus L_{1} \oplus L_{2}\) is the five graded Lie (super)algebra, such that \(L_{-1} \oplus L_1 = T(\varepsilon, \delta)\) and \(D(T(\varepsilon, \delta), T(\varepsilon, \delta)) = L_{-2} \oplus L_0 \oplus L_2\) with \([L_i, L_j] \subseteq L_{i+j}\).
2.2. δ-structurable algebras

The motivation for the study of such nonassociative algebras is as follows. The existence of the class of nonassociative algebras called structurable algebras is an important generalization of Jordan algebras giving a construction of Lie algebras. Hence from our concept, by means of triple products, we define a generalization to construct Lie superalgebras as well as Lie algebras.

Our start point briefly described in a historical setting is the construction of Lie (super) algebras starting from a class of nonassociative algebras. Hence within the general framework of (ϵ, δ)-FKTSs $(\epsilon, \delta = \pm 1)$ and the standard embedding Lie (super)algebra construction studied in [6, 7, 13, 14, 15, 26] (see also references therein) we define δ-structurable algebras as a class of nonassociative algebras with involution which coincides with structurable algebras for $\delta = 1$ as introduced and studied in [1, 2]. Structurable algebras are a class of nonassociative algebras with involution that include Jordan algebras (with trivial involution), associative algebras with involution, and alternative algebras with involution. They are related to GJTSs 2nd order, or $(-1,1]$-FKTSs, as introduced and studied in [33, 34] and further studied in [3, 4, 32, 42, 43, 44, 45, 50]. Their importance lies with constructions of 5-graded Lie algebras $L(U) := L(\epsilon, \delta) = L_{-2} \oplus L_{-1} \oplus L_0 \oplus L_1 \oplus L_2, [L_i, L_j] \subseteq L_{i+j}$. For $\delta = -1$ the anti-structurable algebras defined here are a new class of nonassociative algebras that may similarly shed light on the notion of $(-1, -1)$-FKTSs hence (by [6, 7]) on the construction of Lie superalgebras and Jordan algebras as it will be shown.

Let $(A, -)$ be a finite dimensional nonassociative unital algebra with involution (involutive anti-automorphism, i.e. $\overline{x} = x, \overline{xy} = y x, x, y \in A$) over Φ. The identity element of A is denoted by 1. Since $\text{char} \Phi \neq 2$, by [1] we have $A = {\mathcal H} \oplus S$, where $\mathcal{H} = \{a \in A|\overline{a} = a\}$ and $S = \{a \in A|\overline{a} = -a\}$.

Suppose $x, y, z \in A$. Put

$$[x, y] := xy - yx, \quad [x, y, z] := (xy)z - x(yz).$$

(2.8)

We note that $[x, y, z] = -[z, y, x]$.

Let the operators L_x and R_x be defined by $L_x(y) := xy, R_x(y) := yx, x, y \in A$ and for $\delta = \pm 1$ define

$$\delta V_{x,y} := L_{\overline{y}} + \delta (R_x R_{\overline{y}} - R_y R_{\overline{x}}),$$

$$\delta B_A(x, y, z) := \delta V_{x,y}(z) = (xy)z + \delta[(z\overline{y})x - (z\overline{x})y], x, y, z \in A.$$

(2.10)

$B_A(x, y, z)$ is called the triple system obtained from the algebra $(A, -)$. We will call $\overline{B_A(x, y, z)}$ the anti-triple system obtained from the algebra $(A, -)$. We write for short

$$V_{x,y} := \delta V_{x,y}, \quad B_A := (\delta B_A, A).$$

(2.11)

Remark. The upper left index notation is chosen in order not to be mixed with the upper right index notation of [1] which has a different meaning.

A unital non-associative algebra with involution $(A, -)$ is called a structurable algebra if the following identity is fulfilled

$$[V_{u,v}, V_{x,y}] = V_{u,v(x),y} - V_{x,v(u)y}.$$

(2.12)

for $V_{u,v} = \overline{V_{v,u}}, V_{x,y} = \overline{V_{y,x}}, u, v, x, y \in A$, and we will call $(A, -)$ an anti-structurable algebra if the identity (2.12) is fulfilled for $V_{u,v} = \overline{V_{v,u}}, V_{x,y} = \overline{V_{y,x}}$.

If $(A, -)$ is structurable then, by [34], the triple system B_A is called a generalized Jordan triple system (abbreviated GJTS) and by [8], B_A is a GJTS of 2nd order, i.e. satisfies the identities (2.3) and (2.4). If $(A, -)$ is anti-structurable then we call B_A an anti-GJTS.
3. Main results

3.1. Properties satisfying the second order condition

From now on we assume $\delta = -1$ (unless otherwise specified) and let $(A, -)$ be an anti-structurable algebra. Define $C(a, b, c) \in \text{End} A$ by

$$C(a, b, c) := \lfloor ab, d, c \rfloor - \lfloor a, b, d \rfloor c, \quad a, b, c, d \in A.$$ \hfill (3.13)

We say that A satisfies condition \mathcal{C} if

$$C(x, y, w) - C(w, y, x) = C(w, x, y) - C(y, x, w), \quad x, y, w \in A.$$ \hfill (3.14)

Theorem 3.1. Let $(A, -)$ be an anti-structurable algebra. Then the second order condition (2.4) and condition \mathcal{C} are equivalent.

Proof. Suppose first that A satisfies condition \mathcal{C}. We show then that the second order condition (2.4) is fulfilled for $\delta = -1 = \varepsilon$.

By (3.14) we have

$$C(x, y, w) - C(w, y, x) = C(w, x, y) - C(y, x, w), \quad x, y, w \in A,$$

that is, by (3.13),

$$[x, y, z]w - [x, y, z]w - [w, y, z]x = [w, x, z, y] - [w, x, z]y - [y, x, z, w] + [y, x, z]w.$$ \hfill (3.15)

Then, by (2.8), the last identity is equivalent to

$$((xy)z)w - (xy)(zw) - ((xy)z)w = ((xy)z)w - ((xy)z)w,$$

and canceling the first with the third term and the fifth with the seventh term both in the left and in the right hand side of the last identity we obtain

$$\begin{align*}
(x(yz))w - (xy)(zw) - (w(yz))x + (wy)(zx) = \\
(w(xz))y - (w(xz))y = (w(xz))y - (w(xz))y.
\end{align*}$$

(3.15)

Set in (3.15) $x = d, y = c, z = a\bar{b} + b\bar{a}$, hence $z = \bar{c}$, and then, by using the involution properties, we obtain

$$\begin{align*}
(d(xz))w - (d(xz))w = (w(xz))d + (w(xz))d = \\
(w(xz))d - (w(xz))d = (c(zd))w + (c(zd))w.
\end{align*}$$

(3.16)

Now, by definitions (2.5) and (2.10) follows $L(x, y)z = (x\bar{y})z - (z\bar{y})x + (z\bar{y})y, x, y, z \in A$, so the identity (3.16) can be written

$$L(d, A(a, b)c) + L(c, A(a, b)d)w = A(c, d)(A(a, b)w).$$

(3.17)

for all $w \in A$, where

$$A(a, b) := L(a, b) + L(b, a), a, b \in A,$$

(3.18)

thus $A(a, b)c = (a\bar{b} + b\bar{a})c = zc$. Then, by (3.17),

$$L(d, A(a, b)c) + L(c, A(a, b)d) = A(c, d)A(a, b).$$

(3.19)

By [30] §2, we have $[A(a, b), L(c, d)] = L(A(a, b)c, d) - L(c, A(a, b)d)$, or equivalently,

$$A(a, b)L(c, d) = L(A(a, b)c, d) - L(c, A(a, b)d) + L(c, d)A(a, b).$$

(3.20)
Then, by (3.18), the identity (3.20) is equivalent to

\[A(a,b)L(c,d) = L(A(a,b)c,d) - L(c,A(a,b)d) + A(c,d)A(a,b) - L(d,c)A(a,b). \]

(3.21)

Now, by (3.19), \(A(c,d)A(a,b) - L(c,A(a,b)d) = L(d,A(a,b)c) \) so (3.21) is equivalent to

\[A(a,b)L(c,d) = L(A(a,b)c,d) + L(d,A(a,b)c) - L(d,c)A(a,b), \]

(3.22)

that is, by (3.18),

\[A(a,b)L(c,d) = A(a,b)c,d) - L(d,c)A(a,b). \]

(3.23)

Further, by (2.5) and (2.10), \(K(a,b)c = L(a,c)b + L(b,c)a = (a\overline{b} + b\overline{a})c = A(a,b)c, \) for all \(a, b, c \in A, \) so (3.23) is equivalent to \(K(a,b)L(c,d) = K(K(a,b)c,d) - L(d,c)K(a,b), \) that is the second order condition (2.4) is fulfilled.

Conversely, to show that (2.4) implies condition \(\mathcal{C} \) it is straightforward and we omit it here. □

Remark. An anti-structurable algebra satisfying the condition \(\mathcal{C} \) is a \((-1,-1)\)-FKTS.

3.2. Lie admissible structures

In this section we announce results demanding extensive proofs which will to be presented elsewhere.

Theorem 3.2 Let \((A,^-)\) be an anti-structurable algebra such that \(- = Id. \) Then \(A\) is a LTS with respect to the new product \([x,y,z] = B_A(x,y,z) - B_A(y,x,z), x,y,z \in A.\)

Theorem 3.3 Let \((A,^-)\) be an anti-structurable algebra satisfying the second order condition (2.4). Then

i) \(A\) is a Lie admissible, i.e. the Jacobi identity is fulfilled:

\[[[x,y],z] + [[y,z],x] + [[z,x],y] = 0, x,y,z \in A, \]

ii) \([x,y,z] + [z,y,x]\) is totally symmetric in any exchanges of \(x, y, z \in A,\)

iii) \([h,x,y] = [x,h,y] = [x,y,h] = 0, \) for all \(h \in \mathcal{H}, x,y \in A.\)

Theorem 3.4 Let \((A,^-)\) be an anti-structurable algebra satisfying the second order condition (2.4) and let \(F(x,y,z) \in EndA\) be defined by

\[F(x,y,z)w := [x\overline{y},w,z] + [z,x\overline{y},w] + ([x,y,w] - [y,x,w])z, \quad x,y,z,w \in A. \]

Then the following identities are fulfilled:

i) \(F(x,y,z) = -F(y,x,z), \quad x,y,z \in A,\)

ii) \(F(x,y,z) + F(y,z,x) + F(z,x,y) = 0, \quad x,y,z \in A.\)

Remark. We have also \(K(u,v)K(x,y) + K(x,y)K(u,v) = K(K(u,v)x,y) + K(x,K(u,v)y), \) for \(x,y,u,v \in A\) so the set of \(K(x,y), x,y \in A,\) form a Jordan algebra (see [30] for details).

3.3. Left neutral pair and invertible elements

In this section we discuss the notion of left neutral pair for \((\varepsilon, \delta)\)-FKTSs.

Lemma 3.1 Let \(U\) be an \((\varepsilon, -1)\)-FKTS, \(\varepsilon = \pm 1, \) with product \((abc), a,b,c \in U, \) and a left neutral pair \((u,v), u,v \in U.\) Then \(R(v,u)^2 = Id, \) where \(R(v,u)w := (wvu), u,v,w \in U.\)
Proposition 3.1
Let \Box

The proof is a direct consequence of Lemma 3.3 for we have

$$2K(u,v)y - 2L(y,v)u + 2\varepsilon K(u,v)L(v,y)v = 0$$

or equivalent $(uvy) + (yvu) - (yvu) + \varepsilon(u(vvy)u) = 0$ so $y = -\varepsilon(u(vvy)u)$, for all $y \in U$.

On the other hand, by (2.3), replacing $b = y = v, x = z = u$ follows

$$(av(uvu)) = ((av)vu) + \varepsilon(u(vav)u) + (uvav),$$

hence $(av) = ((av)vu) + \varepsilon(u(vav)u) + (uvav)$, that is $(av)vu) = -\varepsilon(u(vav)u)$, for all $a \in U$. Since we have shown above that $a = -\varepsilon(u(vav)u)$ follows from the last identity that $a = ((av)vu)$, for all $a \in U$, hence $R(v,u)^2 = Id$. □

Lemma 3.2
Let U be an (ε,δ)-FKTS, $\varepsilon,\delta = \pm 1$, with product $(abc), a,b,c \in U$, and a left neutral pair $(u,v), u,v \in U$. Then

$$R(v,u)^2 = 2\delta + 1)R(v,u) + (2\delta + 1)Id = 0, \quad \text{where } R(v,u)w := (wvu), u,v,w \in U. \quad (3.24)$$

Proof. We remark first that (3.24) is equivalent to $(R(v,u) - Id)(R(v,u) - (2\delta + 1)Id) = 0$. Then the proof is clear from Lemma 3.1 for the case $\delta = -1$ while the case corresponding $\delta = 1$ follows from Lemma 1 ([15]). □

Remark. For $\delta = -1$ we note that the following decomposition is valid $U := U(\varepsilon, -1) = U_1(u,v) \oplus U_{-1}(u,v)$, while, for $\delta = 1$ we have $U := U(\varepsilon, 1) = U_1(u,v) \oplus U_3(u,v)$, by [19], where

$${U_i}(\varepsilon, \delta) = \{x \in U|R(v,u)x = ix\}. \quad (3.25)$$

Lemma 3.3
Let U be an $(\varepsilon, -1)$-FKTS, $\varepsilon = \pm 1$, with product $(abc), a,b,c \in U$, and a left neutral pair $(u,v), u,v \in U$. Then we have $U_1(u,v) = \{x \in U|K(x,u)v = 2x\}$ and $U_{-1}(u,v) = \{x \in U|K(x,u) = 0\}$, where $U_i(\varepsilon, -1)$ are defined by (3.25).

Proof. Consider $x \in U_{-1}(u,v)$. Then, by (3.25), $(xvu) = -x$. Since $(uvx) = x$ then $(xvu) + (uxv) = 0$, hence $K(u,v)xv = 0$. Since, by (2.4),

$$K(u,x) = K((wvu),x) = -K(u,(uxv)) - \delta K(u,v)K(u,v)xv = -K(u,x)$$

then it follows $K(u,x) = 0$.

Conversely, let $K(u,x) = 0$ hence $K(u,x)v = 0$. Thus we get $(xvu) + (uxv) = 0$ hence $(xvu) = -x$, that is $x \in U_{-1}(u,v)$. Hence $U_{-1}(u,v) = \{x \in U|K(x,u) = 0\}$.

On the other hand, let $x \in U_1(u,v)$. Then, by (3.25), $(xvu) = x$. Since $(uvx) = x$ then $(xvu) + (uxv) = 2x$, hence $K(u,v)xv = 2x$.

Conversely, if $K(x,u)v = 2x$ then $(xvu) + (uxv) = 2x$, hence $(xvu) = x$, that is $x \in U_1(u,v)$. Hence $U_1(u,v) = \{x \in U|K(x,u) = 0\}$. □

Theorem 3.5
Let U be an (ε,δ)-FKTS, $\varepsilon,\delta = \pm 1$, with product $(abc), a,b,c \in U$, and a left neutral pair $(u,v), u,v \in U$. Then, $U := U(\varepsilon, \delta) = U_1(u,v) \oplus U_{-1}(u,v)$, where for $\delta = -1$ we have $U_1(u,v) = \{x \in U|K(x,u)v = 2x\}$ and $U_{-1}(u,v) = \{x \in U|K(x,u) = 0\}$, while for $\delta = 1$ we have $U_1(u,v) = \{x \in U|K(x,u) = 0\}$ and $U_3(u,v) = \{x \in U|K(x,u) = 2x\}$.

Proof. The proof is a direct consequence of Lemma 3.3 for $\delta = -1$, while for $\delta = 1$ the proof follows from [15]. □

Proposition 3.1
Let $U := U(\varepsilon, -1)$ be an $(\varepsilon, -1)$-FKTS, $\varepsilon = \pm 1$, with product $(abc), a,b,c \in U$, and a left neutral pair $(u,v), u,v \in U$. Then $U_1(u,v) \simeq \tilde{K} := \{K(a,b)\}_{a,b \in U}^{\text{span}}$ as a JTS with respect to a map $\eta : \tilde{K} \rightarrow U_1(u,v), \eta(K(a,b)) = K(a,b)v$.
Proof. We show that η is a bijection and

$$
\eta \{ K(a,b)K(c,d)K(e,f) \} = (\eta (K(a,b)) \eta (K(c,d)) \eta (K(e,f))).
$$

(3.26)

Indeed, from (2.4) follows the identity $K((uxz), y) + K(x, (uvy)) - K(u, K(x, y)v) = 0$, hence $K(K(x, y)v, u) = 2K(x, y)$, since (u, v) is a left neutral pair. Then, by Lemma 3.3, the last identity implies $K(x, y)v \in U_1(u, v)$.

Now, if $\theta := \frac{1}{2} K(., u)$, then $(\theta \circ \eta)(K(x, y)) = \frac{1}{2} K(K(x, y)v, u) = K(x, y)$.

Similarly, for $x \in U_1(u, v)$, $(\eta \circ \theta)(x) = \frac{1}{2} \eta (K(x, u)) = \frac{1}{2} K(x, u)v = x$. Hence η is a bijection with $\eta^{-1} = \theta = \frac{1}{2} K(., u)$. Furthermore, the left hand side of (3.26) is equal to

$$
K(K(a,b)c, K(e,f)d) v + K(K(e,f)c, K(a,b)d) v,
$$

by Proposition 2.3 ([30]), and equals the right hand side (3.26), by the definition of η. □

Remark. We note that $U_3(u, v) \simeq K := \{ K(a,b) | a, b \in U \}$ span as a JTS under the assumption of existence of a left neutral pair $(u, v), u, v \in U$ and $\delta = 1$, by [15].

Proposition 3.2 Let U be an $(\varepsilon, -1)$-FKTS, $\varepsilon = \pm 1$, with product $(abc), a, b, c \in U$, and a left neutral pair $(u, v), u, v \in U$. Then the maps U_u, U_v are invertible, where $U_x : U \to U, U_x(y) := (xyx)$.

Proof. Since $L(u, v) = Id$ then $[L(x, y), L(u, v)] = 0, x, y \in U$.

By (2.3), $L((xyu), v) = -\varepsilon L((uyx), v)$. Putting $y = v$ in the last identity and applying both sides to u follows $R^2(v, u) = -\varepsilon U_u U_v$. Thus the map U_u is onto and U_v is one to one. Since U is finite dimensional, U_u is one to one, thus invertible so U_v is invertible. □

Remark. An analogous result was obtained for the case of a $(\varepsilon, 1)$-FKTS in [15].

Remark. These results can be applied to the $(-1, -1)$-FKTS $U := M_{k,k}(\Phi)$ of square matrices of order k over Φ with product $(xyz) = xy^\top z - zy^\top x + zx^\top y$ ([29]), where x^\top denotes the transposed matrix of x. Also, we emphasize that this triple system is an anti-structurable algebra satisfying the second order condition.

Proposition 3.3 Let U be an unitary $(-1, -1)$-FKTS, with product $(abc), a, b, c \in U$, and a left neutral pair $(u, v), u, v \in U$. Then $U_3(\Phi) = \{ E, F, H \}$ span as a subalgebra of the corresponding Lie superalgebra $L(U)$ of U and $L(v, u) = Id$.

Proof. From the unitary property follows $I \in \tilde{K} := \{ K(a,b) | a, b \in U \}$ span. Let $L(U)$ be the corresponding Lie superalgebra of U ([15, 29]). Then $E, F, H \in L(U)$ where

$$
E := \begin{pmatrix} 0 & Id \\ 0 & 0 \end{pmatrix}, \quad F := \begin{pmatrix} 0 & 0 \\ -Id & 0 \end{pmatrix}, \quad H := [E, F] = \begin{pmatrix} -Id & 0 \\ 0 & Id \end{pmatrix}.
$$

On the other hand, since $\begin{pmatrix} L(u, v) & 0 \\ 0 & -L(v, u) \end{pmatrix} \in L(U)$ by [15], and $L(u, v) = Id$ it follows $L(v, u) = Id$. □

3.4. Examples of $(-1, -1)$-FKTS with left neutral pairs

We give examples of $(-1, -1)$-FKTS with left neutral pairs and invertible elements. Let

$$
GL_k(\Phi) := \{ A \in M_{k,k}(\Phi) | \det A \neq 0 \}.
$$

If $u \in GL_k(\Phi)$ then set $v = (u^\top)^{-1}$, where the involution is transposition and so $L(u, v)z = uu^{-1}z - zu^{-1}u + u^\top (u^\top)^{-1} = z$. Thus there exists a left neutral pair $(u, (u^\top)^{-1})$. Also we have

$$
U_u z = u^\top zu - u^\top zu + u^\top uz, \quad U_{(u^\top)^{-1}} = (u^\top)^{-1}((u^\top)^{-1})(u^\top)^{-1} z = (u^\top)^{-1} u^{-1} z,
$$
thus by straightforward calculation follows $U_u U_{(u^T)^{-1}} z = z$. Then the map U_u is invertible. This implies that with any $u \in GL_k(\Phi)$ there can be constructed a left neutral pair $(u, (u^T)^{-1})$.

Set $O(\Phi) := \{ A \in M_{k,k}(\Phi) \mid AA^T = Id \}$. Then in the example above, if any element $u \in O(\Phi)$ it follows that (u, u) is a left neutral pair, i.e. u is a left unit element.

Theorem 3.6 Let U be a $(-1, -1)$-FKTS. Then (u, v) is a left neutral pair if and only if (v, u) is a left neutral pair.

Proof. We shall prove that $L(u, v) = Id$ if and only if $L(v, u) = Id$.

If $L(u, v) = Id$ then $[L(u, v), L(v, x)] = 0$ so $L((uvx), x) = L((uvx), (vxu)) = 0$, by (2.3), hence $L(v, x - (vxu))v = 0$, since $L(u, v) = Id$. Now, since U_v is invertible follows from the last identity that $(vxu) = x$, hence $L(v, u) = Id$.

Conversely, if $L(v, u) = Id$ follows then that $L(u, v) = Id$, by an analogous proof. □

3.5. Almost complex structure and complex structure

Let U be an (ϵ, δ)-FKTS and $T(\delta)$ be the δ-Lie triple systems associated with U ([21]). Let us set $E := \begin{pmatrix} 0 & Id \\ 0 & 0 \end{pmatrix}$, $F := \begin{pmatrix} 0 & 0 \\ Id & 0 \end{pmatrix}$ and $J = \delta E - \epsilon F$. Then it follows $J^2 = -\epsilon \delta Id$.

We shall call it an (ϵ, δ)-almost complex structure. Thus we can define the following operation

$$N(X, Y) = [JX, JY] - J[JX, Y] - J[X, JY] + J^2[X, Y], \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad Y = \begin{pmatrix} z \\ w \end{pmatrix} \in T(\delta).$$

Then from Proposition 6.1 ([21]) we have that the identity $N(X, Y) = 0$, for $X, Y \in T(\delta)$, is equivalent to $K(x, y) = L(y, x) - \delta L(x, y)$.

Remark. For anti-structurable algebras with product (2.10), $\epsilon = \delta = -1$. Since then $K(x, y) = L(y, x) + L(x, y)$ we can easily show that there exists a complex structure on the associated anti-LTS $T(-1)$ if $Id \in \mathcal{K} := \{ K(a, b) \mid a, b \in U \}_{span}$ (i.e. unitary).

A structurable algebra has no property of complex structure.

Remark. For the $(-1, -1)$-FKTS $U := M_{k,k}(\Phi)$ of square matrices of order k over Φ with product $(xyz) = xy^Tz - zy^Tx + zx^Ty$ ([29]), since $K(x, y) = L(y, x) + L(x, y)$ we can easily show that there exists a complex structure on the associated anti-LTS $T(-1)$. Moreover, by [29], the standard embedding Lie superalgebra $L(U)$ corresponding to the $(-1, -1)$-FKTS above is $\mathfrak{osp}(2m|4m)$ or $\mathfrak{osp}(2m + 1|4m + 2)$ if $k = 2m$ or $k = 2m + 1$, respectively.

3.6. Examples of anti-structurable algebras with left neutral pairs

We give examples of anti-structurable algebras with left neutral pairs and invertible elements.

From the fact that $U := M_{k,k}(\Phi)$ with the product $(xyz) = xy^Tz - zy^Tx + zx^Ty$ is an anti-structurable algebra satisfying the second order condition (2.4) we have the following.

Let $(u, v), u, v \in U$ be a left neutral pair and $GL_k(\Phi) := \{ A \in M_{k,k}(\Phi) \mid \det A \neq 0 \}$. If $u \in GL_k(\Phi)$ then set $v = (u^T)^{-1}$, where the involution is transposition and so $L(u, v)z = uu^Tz - zu^{-1}u + uz^Tu^{-1} = z$. Thus there exists a left neutral pair $(u, (u^T)^{-1})$. Also we have

$$U_u z = u^Tzu - u^Tzu + u^T uz, \quad U_{(u^T)^{-1}} = (u^T)^{-1}((u^T)^{-1})(u^T)^{-1}z = (u^T)^{-1}u^{-1}z,$$

thus by straightforward calculation follows $U_u U_{(u^T)^{-1}} z = z$. Then the map U_u is invertible. This implies that with any $u \in GL_k(\Phi)$ there can be constructed a left neutral pair $(u, (u^T)^{-1})$.

Set $O(\Phi) := \{ A \in M_{k,k}(\Phi) \mid AA^T = Id \}$. Then in the example above, if any element $u \in O(\Phi)$ it follows that (u, u) is a left neutral pair, i.e. u is a left unit element.

Theorem 3.7 Let $(\mathcal{A}, -)$ be an anti-structurable algebra satisfying the second order condition (2.4). Then (u, v) is a left neutral pair if and only if (v, u) is a left neutral pair.

Proof. It is a direct consequence of Theorem 3.6 and Theorem 3.1 and its remark. □
Acknowledgments
The first two authors, N. Kamiya and D. Mondoc, acknowledge partial support for this research by Grant-in-Aid for Scientific Research No. 19540042 (C),(2), Japan Society for the Promotion of Science. The third author, S. Okubo, acknowledges partial support for this research by U.S. Department of Energy Grant No. DE-FG02-91ER40685.

References
[1] Allison B N 1978 A class of nonassociative algebras with involution containing the class of Jordan algebras Math. Ann. 237 133-56
[2] Allison B N 1979 Models of isotropic simple Lie algebras Comm. Algebra 7 1835-75
[3] Asano H and Yamaguti K 1980 A construction of Lie algebras by generalized Jordan triple systems of second order Nederl. Akad. Wetensch. Indag. Math. 42 249-53
[4] Asano H 1991 Classification of non-compact real simple generalized Jordan triple systems of the second kind Hiroshima Math. J. 21 463-89
[5] Bertram W 2002 Complex and quaternionic structures on symmetric spaces - correspondence with Freudenthal-Kantor triple systems Theory of Lie Groups and Manifolds vol 45, ed R Miyaoka and H Tamaru (Tokyo: Sophia Kokyuroku in Math.) 61-80
[6] Elduque A, Kamiya N and Okubo S 2003 Simple $(−1,−1)$ balanced Freudenthal Kantor triple systems Glasgow Math. J. 11 353-72
[7] Elduque A, Kamiya N and Okubo S 2005 $(−1,−1)$ balanced Freudenthal Kantor triple systems and noncommutative Jordan algebras J. Algebra 294 19-40
[8] Faulkner J R 1994 Structurable triples, Lie triples, and symmetric spaces Forum Math. 6 637-50
[9] Frappat L, Sciarrino A and Sorba P 2000 Dictionary on Lie Algebras and Superalgebras (San Diego: Academic Press)
[10] Jacobson N 1949 A balanced Freudenthal Kantor triple systems Amer. J. Math. 71 149-70
[11] Jacobson N 1968 Structure and representations of Jordan algebras Vol 39 (Providence: Amer. Math. Soc. Colloq. Publ.)
[12] Kac V G 1977 Lie superalgebras Advances in Math. 26 8-96
[13] Kamiya N 1987 A structure theory of Freudenthal-Kantor triple systems J. Algebra 110 108-23
[14] Kamiya N 1988 A construction of anti-Lie triple systems from a class of triple systems Mem. Fac. Sci. Shimane Univ. 22 51-62
[15] Kamiya N 1989 A structure theory of Freudenthal-Kantor triple systems, II Comment. Math. Univ. St. Paul. 38 41-60
[16] Kamiya N 1991 On (ε,δ)-Freudenthal-Kantor triple systems. Nonass. alg. and related topics (Hiroshima) (River Edge: World Sci. Publ.) 65-75
[17] Kamiya N 1991 The construction of all simple Lie algebras over \mathbb{C} from balanced Freudenthal-Kantor triple systems Contributions to general algebra (Vienna) vol 7, (Vienna: Hölder-Pichler-Tempsky) 205-13
[18] Kamiya N 1994 On Freudenthal-Kantor triple systems and generalized structurable algebras Nonass. alg. and its appl. (Oseda) Math. Appl. vol 303 (Dordrecht: Kluwer Acad. Publ.) 198-203
[19] Kamiya N 1997 On the Peirce decompositions for Freudenthal-Kantor triple systems Commun. Algebra 25 1833-44
[20] Kamiya N 1998 On a realization of the exceptional simple graded Lie algebras of the second kind and Freudenthal-Kantor triple systems Bull. Polish Acad. Sci. Math. 46 55-65
[21] Kamiya N and Okubo S 2000 On δ-Lie supertriple systems associated with (ε,δ)-Freudenthal-Kantor supertriple systems Proc. Edinburgh Math. Soc. 43 243-60
[22] Kamiya N and Okubo S 2002 A construction of Jordan superalgebras from Jordan-Lie triple systems Nonass. alg. and its appl. Lect Notes Pure and Appl. Math. vol 211, ed R Costa, A Grishkov, H Guzzo and I Peresi (New York: Marcel Dekker Inc.) 171-6
[23] Kamiya N and Okubo S 2002 A construction of simple Jordan superalgebra of F type from a Jordan-Lie triple system Ann. Mat. Pura Appl. 181 339-48
[24] Kamiya N and Okubo S 2003 Construction of Lie superalgebras $D(2; 1; \alpha), G(3)$ and $F(4)$ from some triple systems Proc. Edinburgh Math. Soc. 46 87-98
[25] Kamiya N and Okubo S 2003 On generalized Freudenthal-Kantor triple systems and Yang-Baxter equations Proc. XXIV Inter. Colloq. Group Theoretical Methods in Physics (Paris) vol 173, ed J-P Gazeau, R Kerner, J-P Antoine, S Metens and J-Y Thibon (Paris: IPCS) 815-8
[26] Kamiya N and Okubo S 2004 A construction of simple Lie superalgebras of certain types from triple systems Bull. Australian Math. Soc. 69 113-23.
[27] Kamiya N 2005 Examples of Peirce decomposition of generalized Jordan triple system of second order-
Balanced cases. Noncommutative geometry and representation theory in mathematical physics. Contemp. Math. vol 391 (Providence: Amer. Math. Soc.) 157-65

[28] Kamiya N and Okubo S 2006 Composition, quadratic, and some triple systems. Non-associative algebra and its applications. Lect. notes pure appl. math. vol 246 (Boca Raton: Chapman & Hall/CRC) 205-31

[29] Kamiya N and Mondoc D 2008 A new class of nonassociative algebras with involution. Proc. Japan Acad. Ser. A 84 68-72

[30] Kamiya N, Mondoc D and Okubo S 2010 A structure theory of $(-1, -1)$-Freudenthal Kantor triple systems. Bull. Australian Math. Soc. 81 132-55

[31] Kamiya N and Mondoc D 2009 On anti-structurable algebras and extended Dynkin diagrams. J. Gen. Lie Theory Appl. 3 185-92

[32] Kaneyuki S and Asano H 1988 Graded Lie algebras and generalized Jordan triple systems. Nagoya Math. J. 112 81-115

[33] Kantor I L 1970 Graded Lie algebras. Trudy Sem. Vect. Tens. Anal. 15 227-66

[34] Kantor I L 1972 Some generalizations of Jordan algebras. Trudy Sem. Vect. Tens. Anal. 16 407-9

[35] Kantor I L 1973 Models of exceptional Lie algebras. Soviet Math. Dokl. 14 254-8

[36] Kantor I L 1998 A generalization of the Jordan approach to symmetric Riemannian spaces. The Monster and Lie algebras (Columbus) Ohio State Univ. Math. Res. Inst. Publ. vol 7 (Berlin: de Gruyter) 221-34

[37] Kantor I L and Kamiya N 2003 A Peirce decomposition for generalized Jordan triple systems of second order. Commun. Algebra 31 5875-913

[38] Koecher M 1967 Embedding of Jordan algebras into Lie algebras I. Amer. J. Math. 89 787-816

[39] Koecher M 1968 Embedding of Jordan algebras into Lie algebras II. Amer. J. Math. 90 476-510

[40] Lister W G 1952 A structure theory of Lie triple systems. Trans. Amer. Math. Soc. 72 217-42

[41] Meyberg K 1972 Lectures on algebras and triple systems. Lecture Notes (Charlottesville: Virginia Univ. Press)

[42] Mondoc D 2006 Models of compact simple Kantor triple systems defined on a class of structurable algebras of skew-dimension one. Commun. Algebra 34 3801-15

[43] Mondoc D 2007 On compact realifications of exceptional simple Kantor triple systems. J. Gen. Lie Theory Appl. 1 29-40

[44] Mondoc D 2007 Compact realifications of exceptional simple Kantor triple systems defined on tensor products of composition algebras. J. Algebra 307 917-29

[45] Mondoc D 2007 Compact exceptional simple Kantor triple systems defined on tensor products of composition algebras. Commun. Algebra 35 3699-712

[46] Neher E 1987 Jordan triple systems by the grid approach. Lecture notes in mathematics vol 1280 (Berlin: Springer-Verlag)

[47] Okubo S 1995 Introduction to octonion and other non-associative algebras in physics. Montroll Memorial Lect. Ser. in Mathematical Physics vol 2 (Cambridge: Cambridge Univ. Press)

[48] Okubo S and Kamiya N 1997 Jordan-Lie superalgebra and Jordan-Lie triple system. J. Algebra 198 388-411

[49] Okubo S and Kamiya N 2002 Quasi-classical Lie superalgebras and Lie supertriple systems. Commun. Algebra 30 3825-50

[50] Okubo S 2005 Symmetric triality relations and structurable algebras. Linear Algebra Appl. 396 189-222

[51] Scheunert M 1979 The theory of Lie superalgebras. An introduction. Lecture notes in mathematics vol 716 (Berlin: Springer-Verlag)

[52] Tits J 1962 Une classe d’algèbres de Lie en relation avec les algèbres de Jordan. Nederl. Acad. Wetensch. Proc. Ser. A 65 530-5

[53] Yamaguti K and Ono A 1984 On representations of Freudenthal-Kantor triple systems $U(\varepsilon, \delta)$. Bull. Fac. School Ed. Hiroshima Univ. 7 43-51

[54] Zhevlakov K A, Slinko A M, Shestakov I P and Shirshov A I 1982 Rings that are Nearly Associative (New York: Academic Press Inc.)

[55] Zelmanov E 1983 Primary Jordan triple systems. Sibirsk. Mat. Zh. 4 23-37