Influence of irrigation regimes on competition indexes of winter and summer intercropping system under semi-arid regions of Pakistan

Amanullah1, Shah Khalid1, Farhan Khalil1 & Imranuddin2

An assessment of the competitive indexes in intercropping of different winter and summer based intercropping systems were studied, with the aim of increasing the productivity of these crops. Four winter crops, wheat (*Triticum aestivum* L.), barley (*Hordeum vulgare* L.), fababean (*Vicia faba*) and rapeseed (*Brassica napus*) and four summer crops, sorghum (*Sorghum bicolor* L.), pearl millet (*Pennisetum typhoidum* L.), pigeon pea (*Cajanus cajan*) and mung bean (*Vigna radiate* L.) were grown under two irrigation regimes with the pattern of two crops in each intercropping system, at Agronomy Research Farm, The University of Agriculture, Peshawar, Pakistan in both winter and summer season during 2015–16 to 2016–17. The results showed that higher grain yield (kg ha⁻¹) were recorded under sole cropping than intercropping. Higher grain yield was recorded in sole cropping, for all four crops. All crops grown in intercropping produced comparatively higher grains head⁻¹ and seeds pod⁻¹ than sole crop except pigeon pea. Intercropping systems were performed different in term of competition indexes which determined land utilization efficiency. Competition indexes revealed that in winter season wheat intercropped with fababean showed highest advantages of intercropping in term of land equivalent ratio (30%), relative crowding co-efficient (60%), actual yield loss (60%), area time equivalent ratio (27%), land utilization efficiency (83%), intercropping advantages (1060), monetary advantage index (Pakistani rupees (PKR) 46456) and system productivity index (3684) while in summer sorghum/pearl millet intercropped with pigeon pea was the most dominant intercropping systems in term of relative crowding co-Efficient (40%), actual yield loss (50%), land utilization efficiency (60%) intercropping advantages (1150) and system productivity index (1914). Aggressivity and competition ratio showed that cereals especially barley in winter and sorghum in summer season was highly competitive crops in the intercropping system. Most of the competition indexes values were higher for winter crops under limited irrigated condition while in case of summer crops intercropping indexes were higher under full irrigated condition. It was concluded that wheat intercropped with fababean, and sorghum/millet intercropped with mung bean was the most successful intercropping systems in winter and summer seasons, respectively under both irrigation regimes, for the semiarid region of Pakistan.

Intercropping is advances techniques in which two or more crops are grown on the same piece of land at the same time, to get maximum benefits of it on sustainable basis. For sustainable food and feed production intercropping is very essential, especially in limited land resources and inputs resources. Intercropping is important component of sustainable agriculture and used in may developed and developing countries as a sustainable practices. It provides security against crop yield reduction. Intercropping have many benefits on sustainable base i.e. improving crop yield and soil fertility and productivity, control soil erosion. Intercropping have more advantaged over monocropping in term of crop productivity, it provides highest land return and land use efficacy, by improving crop yield. It is an environmental friendly practice by decreasing the use of chemical fertilizers and pesticides. Intercropping of cereals with legumes has been popular in tropics and rain-fed areas of the world due to its advantages for soil conservation, weed control, lodging resistance, yield increase, and legume root parasite infections control.
Intercropping is an attractive and simple practice which improving crop yield by increasing total productivity of crop per unit area per unit time37. Additionally, intercropping reduced weed density and improving plant health by reducing disease incidence30. During intercropping designing crop nutrients uptake mechanism is very important as sharing the same soil and environmental resources29,30. In case of legumes and non-legumes intercropping system, atmospheric nitrogen can be fixed by rhizobia bacteria present in legume nodules while nonlegumes relay only on soil nitrogen2,33,34. Intercropping of legumes with cereal crops can improve crop yield and growth by the using same available resources, intercropping increase available crop productivity as compared to each sole cropping2,35,36 also reported intercropping advantages over monocropping.

Drought is a significant limiting factor for agricultural productivity and generally inhibits plant growth through reduced water absorption and nutrient uptake. Decreased water availability generally results in reduced growth and final yield in crop plants. However, plant species in a mixed cropping system may vary in their responses to growth under water stress because water availability is known to be spatially heterogeneous distributed in time and space35,38. The current challenge in agriculture is to produce more yields by utilizing less water, especially in regions with limited land and water resources39. Efficient irrigation systems require the selection of an appropriate method for the crop growth, adequate monitoring of the irrigation system and of water delivery and appropriate application rates depending on the growth stage of the crop. Irrigation requirements differ depending on the locations, soil types and cultural practices40.

To describe the efficiency of an intercropping system researchers have developed many mathematical formulas to calculate the intercropping possible advantages, and to describe the intra and inter specific competition among or between components crop of an intercropping system. Among these formulas land equivalent ratio (LER)41, aggressivity (A)42, competition ratio43, area time equivalent ratio (ATER), Relative crowding coefficient (RCC)44, actual yield loss45, intercropping advantages46 and land utilization efficiency (LUE) are the most important19,46. These mathematical expressions help the researchers to interprets, display and summaries their result from an intercropping system. The indexes can help to showed different aspects of competition in plant communities, including competitive effects, competition intensity and outcome of competition30.

The effect of different irrigation on competition indexes of intercropping is not fully explored so far. Therefore, the study being reported in this manuscript was envisaged and performed under different irrigation regimes (full and limited irrigation) for knowing its effect on four winter crops like wheat (\textit{Triticum aestivum} L.), barley (\textit{Hordeum vulgare} L.), fababean (\textit{Vicia faba}) and Rapeseed (\textit{Brassica napus}) as winter crops and four summer crops like sorghum (\textit{Sorghum bicolor} L.), pearl millet (\textit{Pennisetum typhoidum} L.), pigeonpea (\textit{Cajanus cajan} L.) and mungbean (\textit{Vigna radiate} L.) under the semiarid region of Peshawar, Pakistan, for two consecutive years. The aim of the study was to evaluate the effect of irrigation regimes on different competition indexes of winter and summer intercropping system.

Materials and Methods

Field experiment.

A two years field experiment was conducted during 2015–16 and 2016–17 at the Agronomy Research Farm, University of Agriculture, Peshawar. The experimental site has continental climate and is located at 34°27′12.46″N latitude and 71°27′56.4″E longitude with altitude of 359 m above sea level. Two adjacent fields were used separated by one meter viz. one under limited irrigation and the second one under full irrigation, both fields had similar physiochemical properties. The experiment under each irrigation regimes was adjacent fields were used separated by one meter viz. one under limited irrigation and the second one under full irrigation, both fields had similar physiochemical properties. The experiment under each irrigation regimes was

Property	Values/type
Sand (%)	17.23
Silt (%)	51.5
Clay (%)	31.23
Total Nitrogen (%)	0.04
Extractable Phosphorus (mg kg-1)	6.57
Extractable Zinc (mg kg-1)	0.7
Textural class	Silty clay loam
Organic Carbon	0.87%
soil pH	7.8

Table 1. Pre-sowing physiochemical properties of experimental site.
Factor A. Irrigation

1. **Limited irrigation**: only one irrigation (75 mm) was applied at booting stage of wheat to the winter crops, while in case of summer crops irrigations were given at pre-sowing and at anthesis stage of pearl millet.

2. **Full irrigation**: three irrigations, at tillering (95 mm), jointing (92 mm) and booting stage (75 mm) of wheat were applied to the winter crops, while in case of summer crops irrigation was applied at pre-sowing, stem elongation, anthesis and dough stage of pearl millet.

To calculate the amount of water applied at each irrigation “Float cut method” of Misra and Ahmad was applied.

Experiment one: four winter crops (wheat, barley, rapeseed & fababean).

Factor B. Intercropping system (winter crops)

1. Wheat sole crop
2. Barley sole crop
3. Fababean sole crop
4. Rapeseed sole crop
5. Wheat + barley
6. Wheat + fababean
7. Wheat + rapeseed
8. Barley + fababean
9. Barley + rapeseed
10. Fababean + rapeseed

Experiment two: four summer crops (sorghum, pearl millet, mungbean & pigeonpea).

Intercropping system (Summer crops)

Table 2. Treatments application and other agronomic practices during both winter and summer season experiments.
Table 3. Effect of different intercropping systems and irrigations on grains spike⁻¹ or seeds/pod⁻¹, 1000 grains/seeds weight (g) and grain/seed yield (kg ha⁻¹) of wheat, barley, fababean and rapeseed, respectively. Note; ns stand for statistically non-significant at 5% probability.

Intercropping	Grains spike⁻¹	1000 grains weight	Grain yield	Intercropping	Grains spike⁻¹	1000 grains weight	Grain yield
Sole Wheat	36 c	38.8 b	3005 a	Sole Barley	33.3 ab	33.9 c	1460 a
Wheat + Barley	37 c	40.5 ab	1163 d	Wheat + Barley	30.8 c	36.7 b	670 c
Wheat + Fababean	40 a	43.3 a	1963 b	Barley + Fababean	34.3 a	38.6 a	997 b
Wheat + Rapeseed	38 b	35.0 c	1377 c	Barley + Rapeseed	31.5 bc	36.3 b	613 d
Full irrigation	41 a	41.7 a	2033 a	Full irrigation	33.5	38.8 a	1007 a
Limited irrigated	35 b	35.2 b	1707 b	Limited irrigated	31.5	33.9 b	862 b
LSD (0.05) for irrigation	1.7	0.8	99	LSD (0.05) for irrigation	ns	0.9	61
LSD (0.05) for intercropping	1.2	1.5	136	LSD (0.05) for intercropping	1.8	1.3	63
LSD (0.05) for interaction	1.7	2.1	190	LSD (0.05) for interaction	ns	ns	88

Data were recorded on the following parameters.

- **Grains head⁻¹ and seeds pod⁻¹.** Grains head⁻¹ and seeds pod⁻¹ were recorded by selecting five heads in cereals and ten pods in legumes in each treatments and grains were counted and then averaged.

- **Thousand grains/seeds weight (g).** For thousand grains/seeds weight data; after threshing, thousand grains were counted from each plot of each crop and weighed with the help of electronic balance.

- **Grain yield (kg ha⁻¹).** The weighted harvested three central rows were sun dried, threshed, cleaned and weighed, and then weight were converted into kg ha⁻¹ using the following formula.

 \[
 \text{Grain yield (kg ha}^{-1}) = \frac{\text{Grain yield in three central rows in each plot}}{(\text{Row distance} \times \text{row length} \times \text{number of rows})} \times 10000
 \]

Aggressivity (A).

Aggressivity (A) indicates the relative yield increase in “a” crop is greater than of “b” crop in an intercropping system. The aggressivity can be derived from the following formula⁴²:

\[
A(\text{main crop}) = \frac{Y_{\text{ab}}}{Y_{\text{aa}}} - \frac{Y_{\text{ba}}}{Y_{\text{bb}}}
\]

Similarly, Aggressivity of intercrops can also be calculated by the formula⁴²:

\[
A(\text{intercrops}) = \frac{Y_{\text{ab}}}{Y_{\text{ab}}} - \frac{Y_{\text{ba}}}{Y_{\text{aa}}}
\]

Where \(Y_{\text{ab}}\) is the yield of main crop in intercropping and \(Y_{\text{ba}}\) is the yield of intercrop crop and proportion of intercrop in intercropping.
Competition ratio (CR). The CR simply represents the ratio of individual land equivalent ratio (PLER) of the component crops and takes into account the proportion of the crops in which they were sown. In case of 1:1

\[
CR_{main\ crop} = \frac{PLER_{main\ crop}}{PLER_{intercrops}} \\
CR_{intercrops} = \frac{PLER_{intercrops}}{PLER_{main\ crop}}
\]

Relative crowding coefficient (K). The K is the measure of relative dominance of one species over the other in intercropping. For 1:1 pattern K was calculated as:

\[
K_{(system)} = [k_{(main\ crop)}] \times [k_{(intercrop)}] \\
k_{(intercrop)} = \frac{(Yba)}{(Ybb - Yba)} \\
k_{(main\ crop)} = \frac{(Yab)}{(Yaa - Yab)}
\]

Where Yab stand for grain yield of main crop in intercropping, Yba is the yield of intercrop in intercropping, Yaa is the yield of main crop in monocropping and Ybb is the yield of intercrop in monocropping. When the K value of the system is higher than one, there is a yield advantage, if the value of K is one there is no yield advantage and if less than one there is no yield advantage and the system has disadvantage.
Land equivalent ratios (LER). The LER is the ratio of land required by pure (sole) crop to produce the same yield as that of intercrop. LER was determined according to the procedures used by Amanullah et al.48. Equivalent Ratio (LER) was calculated by the following formula:

\[\text{LER} = \frac{L_a + L_b}{L_a(L_a/Y_{aa}) + L_b(Y_{bb}/Y_{bb})} \]

Where \(L_a \) and \(L_b \) stand for partial LERs for the component crops, \(Y_{ab} \) and \(Y_{ba} \) are the grain yield of component crop in intercropping and \(Y_{aa} \) and \(Y_{bb} \) are the grain yield of sole crop43.

Actual yield loss (AYL). The AYL is the proportionate yield loss or gain of intercrops in comparison to the corresponding sole crop. In addition, partial AYL (main crops) and AYL (intercrops) represent the proportionate yield loss or gain of each species in intercropping compared to their yield in sole crops. The negative or positive values of AYL indicate the advantage or disadvantage of the intercropping21. AYL was calculated by using the following formula21.

\[\text{AYL} = \frac{(Y_{ab}/Z_{ab})/(Y_{aa}/Z_{aa}) - 1)}{1} \]

\[\text{AYL} = \frac{(Y_{ba}/Z_{ba})/(Y_{bb}/Z_{bb}) - 1)}{1} \]

\[\text{AYL} = \text{AYL} \text{(main crop) + AYL \text{(intercrop)}} \]

Area time equivalent ratio (ATER). ATER provides more realistic comparison of the yield advantage of intercropping over monocropping in terms of time taken by component crops in the intercropping systems. ATER was calculated using the following formula45:

\[\text{ATER} = \left(\frac{A}{T_{\text{sole}}} \right) \]

where \(T_{\text{sole}} \) is the duration of growth cycle of main crop; \(T_{\text{intercrop}} \) is the duration of growth cycle intercrop and \(T_i \) is the duration in days of the species with the longest growing period.

Monetary Advantage Index (MAI). For economic advantage of the intercropping system (MAI) was calculated as

Intercropping	Grains head⁻¹	1000 grains weight (g)	Grain yield	Intercropping	Grains head⁻¹	1000 grains weight (g)	Grain yield
Sole Millet	1029 c	10.8	1175 a	Sole Sorghum	635 d	19.8	1423 a
Millet + Sorghum	1100 b	10.8	394 d	Millet + Sorghum	647 c	19.6	809 c
Millet + Pigeonpea	1121 b	10.9	698 c	Millet + Pigeonpea	738 b	19.9	848 c
Millet + Mungbean	1210 a	11.2	776 b	Millet + Mungbean	820 a	22.1	935 b
Full irrigation	1339 a	11.6	991 a	Full irrigation	816 a	20.8	1164 a
Limited irrigated	891 b	10.2	630 b	Limited irrigated	604 b	19.9	844 b
LSD (0.05) for irrigation	67	0.29	46	LSD (0.05) for irrigation	15.1	0.4	70
LSD (0.05) for intercropping	40	ns	58	LSD (0.05) for intercropping	18.3	0.6	55
LSD (0.05) for interaction	56	ns	ns	LSD (0.05) for interaction	25.8	ns	ns
Intercropping	Seeds pod⁻¹	1000 seeds weight	Seed yield	Intercropping	Seeds pod⁻¹	1000 Seeds weight	Seed yield
Sole Pigeonpea	3.5 a	57.5 b	1149 a	Sole Mungbean	7.6 b	46.3 b	1069 a
Pigeonpea + Mungbean	3.5 b	59.1 a	773 b	Mungbean + Pigeonpea	8.1 b	47.5 a	544 b
Pigeonpea + Pearl millet	3.4 c	60.0 a	735 c	Mungbean + Pearl millet	7.6 ab	46.9 b	445 c
Pigeonpea + Sorghum	3.3 d	59.6 a	647 d	Mungbean + Sorghum	7.6 b	54.4 c	387 d
Full irrigation	3.5 a	64.7 a	950 a	Full irrigation	8.3 a	49.3 a	780 a
Limited irrigation	3.1 b	53.4 b	703 b	Limited irrigated	6.8 b	43.2 b	443 b
LSD (0.05) for intercropping	0.10	1.0	37	LSD (0.05) for intercropping	0.6	1.0	31
LSD (0.05) for irrigation	0.11	0.9	41	LSD (0.05) for irrigation	0.3	0.6	36
LSD (0.05) for interaction	0.15	1.5	52	LSD (0.05) for interaction	ns	1.5	44

Table 4. Effect of different intercropping systems and irrigations on grains/seeds head⁻¹/pod⁻¹, 1000 grains/seeds weight (g) and grain/seed yield (kg ha⁻¹) of pearl millet, sorghum, pigeonpea and mungbean, respectively. Note; ns stand for statistically non-significant at 5% probability.
The higher the MAI value the more gainful is the cropping system.

Intercropping advantages (IA). IA is the advantages or disadvantages of intercropping system depending on the sign of value, positive value mean advantages and vice versa. IA can be calculated by the following formula.

\[IA = \left[\frac{P_a}{P_{ab}} + \frac{P_b}{P_{ab}} \right] \times AYL_a + \left[\frac{P_a}{P_{ab}} + \frac{P_b}{P_{ab}} \right] \times AYL_b \]

In this equation, \(P_a \) is the price of species a, \(P_b \) is the price of species b, \(AYL_a \) is the partial actual yield loss or gain of species a and \(AYL_b \) is the partial actual yield loss or gain of species b.

Land utilization efficiency (LUE). By using ATER and LER values, the land utilization efficiency (LUE) was calculated according to equation as follows by

\[LUE = \frac{LER \times ATER}{2} \times 100 \]
System productivity index (SPI). SPI is another pointer used to assess intercropping that standardizes the yield of the secondary crop in terms of the primary crop and is calculated as follow by49:

$$SPI = \left(\frac{S_m}{S_i} \right) \times Y_m + Y_i$$

where S_m and S_i are the average yields of main crop and intercrop under monoculture, respectively, and Y_m and Y_i are the average yields of main crop and intercrop under intercropping, respectively.

Statistical analysis. Experiments were carried out for two years. However, year has no significant effect on competitive indices and yield of crop. Thus, the data of both years were combined for statistical analysis. Mean values were calculated for each of the competitive indices with respect to irrigation and intercropping system. Data were subjected to analysis of variance (ANOVA) according to the methods described in Steel and Torrie50 and treatment means were compared using the least significant difference (LSD) at $P \leq 0.05$.

Results

Grains spike$^{-1}$, 1000 grains weight (g) and grain yield of wheat (kg ha$^{-1}$). Data regarding grains spike$^{-1}$, 1000 grains weight (TGW) and grain yield of wheat are presented in Table 3. Both irrigation and intercropping system and their interactive effect were significantly affected 1000 grains weight and grain yield of wheat. Maximum TGW and grain yield were recorded under full irrigated regime as compared with limited irrigation however under full irrigated regimes produced higher grains spike$^{-1}$ in case of intercropping system higher grains spike$^{-1}$ and TGW were recorded when wheat intercropped with fababean followed by wheat intercropped with rapeseed. Higher grain yield was recorded for wheat when grown as sole crop followed by wheat intercropped with fababean.

Interactive effect of different irrigations regimes and intercropping system showed that wheat intercropped with fababean showed the most productive intercropping system in term of grains spike$^{-1}$, TGW and grain yield (Fig. 1a–c) in wheat crop.

Grains spike$^{-1}$, 1000 grains weight (g) and grain yield of barley (kg ha$^{-1}$). Data concerning grains spike$^{-1}$, TGW and grain yield of barley are shown in Table 3. Data showed that intercropping was significantly affected grains spike$^{-1}$, TGW and grain yield. TWG and grain yield were also significantly affected by different

Land equivalent ratio	Winter Season	Summer Season							
Main crop	**Intercrop**	**System**							
Full Wheat	Barley	0.42 d	0.43 c	0.81 c	Sorghum	Pigeonpea	0.62 b	0.57 b	1.19 a
Full Wheat	Fababean	0.53 c	0.62 ab	1.12 ab	Sorghum	Pearl millet	0.58 bc	0.54 b	1.12 ab
Full Wheat	Rapeseed	0.41 d	0.63 a	1.03 b	Sorghum	Mungbean	0.68 a	0.37 d	1.05 b
Full Barley	Fababean	0.53 c	0.33 c	0.84 c	Pearl millet	Pigeonpea	0.63 b	0.64 a	1.26 a
Full Barley	Rapeseed	0.41 d	0.53 b	0.92 bc	Pearl millet	Mungbean	0.70 a	0.43 cd	1.13 ab
Full Fababean	Rapeseed	0.43 d	0.51 bc	0.91 bc	Pigeonpea	Mungbean	0.66 ab	0.45 c	1.11 ab
Limited Wheat	Barley	0.52 c	0.62 ab	1.13 ab	Sorghum	Pigeonpea	0.56 c	0.56 b	1.12 ab
Limited Wheat	Fababean	0.72 a	0.63 a	1.31 a	Sorghum	Pearl millet	0.55 c	0.46 c	1.01 b
Limited Wheat	Rapeseed	0.61 b	0.63 a	1.22 ab	Sorghum	Mungbean	0.62 b	0.35 cd	0.97 b
Limited Barley	Rapeseed	0.63 b	0.42 c	1.13 ab	Pearl millet	Pigeonpea	0.55 c	0.64 a	1.19 a
Limited Barley	Rapeseed	0.63 b	0.63 a	1.21 ab	Pearl millet	Mungbean	0.61 cd	0.38 cd	0.99 b
Limited Fababean	Rapeseed	0.52 c	0.62 ab	1.02 b	Pigeonpea	Mungbean	0.68 ab	0.60 ab	1.28 a

Table 5. Effect of irrigation regimes on land equivalent ratio in different intercropping system. Note; ns stand for statistically non-significant at 5% probability
irrigation regimes while grains spike$^{-1}$ was not significantly affected. Among different intercropping system higher grains spike$^{-1}$ and TGW were recorded in case of wheat intercropped with fababean while minimum grains spike$^{-1}$ were recorded when wheat intercropped with barley. Higher grain yield was recorded in case of sole barley followed by barely intercropped with wheat. Interactive effect of different intercropping system and irrigation regimes showed that highest grain yield was recorded when barley was grown as sole crop followed by barely intercropped with fababean under full irrigated regime (Fig. 1d).

Seeds pod$^{-1}$, 1000 seeds weight (g) and seed yield of fababean. Seeds pod$^{-1}$ and seed yield were significantly affected by intercropping system while TGW was not statistically different (Table 3). Different irrigations regimes significantly affected grains pod$^{-1}$, TGW and grain yield. Greater number of seeds pod$^{-1}$, TGW and seed yield were recorded for full irrigated regime. Maximum seeds pod$^{-1}$ were recorded for fababean intercropped with wheat which was statistically similar with intercropping of fababean with barley and sole fababean. Interactive effect of moisture regimes and intercropping for grain yield was found significant (Fig. 1c).

Grains pod$^{-1}$, 1000 grain weight (g) and grain yield of rapeseed. Data regarding pod plant$^{-1}$ and grain yield of rapeseed was significantly affected by intercropping system and irrigation regimes (Table 3). Under full irrigation regime maximum grains pod$^{-1}$, TWG and grain yield were produced as compared with limited irrigated regime. In case of intercropping system, maximum number of pods plant$^{-1}$ were recorded for sole rapeseed crop followed by rapeseed intercropped with wheat and fababean, while minimum pods plant$^{-1}$ were recorded when rapeseed intercropped with barley. Highest grain yield was recorded for sole rapeseed followed by rapeseed intercropped with wheat and fababean, respectively. Irrigation regimes and intercropping interaction had significantly affected grain yield of barley, higher grain yield was produced in intercropping system of rapeseed and fababean under full irrigated regime (Fig. 1f).

Grains pod$^{-1}$ and seeds head$^{-1}$, 1000 grains/seeds weight (TGW/TSW) and grain yield of sorghum and pearl millet. Data regarding grains head$^{-1}$ or seeds pod$^{-1}$, TGW and grain yield of pearl millet, sorghum, and seed yield of mungbean and pigeonpea are presented in Table 4. Data revealed that both, irrigation and intercropping were significantly affected grains head$^{-1}$ or seeds pod$^{-1}$, TGW and grain/seed yield of all studied summer crops. All crops under full irrigated
produced higher grains head$^{-1}$ was statistically similar with intercropping with pearl millet or grown as sole crop (Table 4). Mungbean intercropped with sorghum produced higher TGW, followed by intercropping with pigeonpea which affected TGW of all crops except pearl millet, in which the effect of intercropping was found non-significant.

Sorghum intercropped with mungbean produced higher grains head$^{-1}$ than intercropped with others crops or grown as sole crop. Sorghum intercropped with both legumes, produced higher grains head$^{-1}$ than intercropped with pearl millet (Fig. 2g). Pigeonpea intercropped with mungbean produced higher grains head$^{-1}$ than intercropped with pearl millet or sorghum. Moreover sorghum/pearl millet intercropped with mungbean produced higher grains head$^{-1}$ than sorghum/pearl millet intercropped with pigeonpea. Statistical analysis of the data of all crops revealed that irrigation and intercropping were significantly affected TGW of all crops except pearl millet, in which the effect of intercropping was found non-significant. Sorghum intercropped with mungbean produced higher TGW, followed by intercropping with pigeonpea which was statistically similar with intercropping with pearl millet or grown as sole crop (Table 4). Mungbean intercropped with pigeonpea produced higher TGW followed by intercropped with pearl millet or grown as sole crop while lower TSW was recorded in intercropping with sorghum (Fig. 2h). Mungbean intercropped with pigeonpea and/or pigeonpea intercropped with mungbean produced higher seed yield than intercropped with cereals (Fig. 2). Pigeonpea intercropped with pearl millet produced higher seeds pod$^{-1}$ (Fig. 2) which was statistically similar with pigeonpea intercropped with mungbean and sorghum. On the other hand, pigeonpea intercropped with mungbean and millets produced higher seed yield (Fig. 2k). Additionally, mungbean/ pigeonpea intercropped with pearl millet produced higher seed yield as compared with mungbean/pigeonpea intercropped with sorghum (Fig. 2).

Land equivalent ratio (LER). LER is intercropping terminology using to assess the land utilization under intercropping system than monocropping system. Among winter crops under full irrigated condition only intercropping of wheat with fababean showed higher LER than one with the remain all showed less than one which mean that only intercropping of wheat with fababean have intercropping advantages under full irrigated condition (Table 5). In case of limited irrigated condition all intercropping system had higher or equal LER to sole cropping which than under limited irrigated condition all the studied combination of crops had intercropping advantages. On the other side intercropping of summer crops showed higher LER than one except intercropping of mungbean with sorghum and pearl millet under both water regimes. The partial value of LER showed that sorghum had taken highest benefit of intercropping as when intercropped with mungbean. Partial LER greater than 0.5 showing intercropping advantages over monocropping. Table 5 showed that intercropping of summer cereals

Table 7. Effect of irrigation regimes on competition ratio in different intercropping systems.

Competition ratio	Winter Season			Summer Season			
Irrigation	Main crop	Intercrop	Main crop	Intercrop	Main crop	Intercrop	
Full	Wheat	Barley	0.83 de	1.20 ab	Sorghum	1.06 bc	0.94 ab
Full	Wheat	Fababean	0.89 de	1.13 b	Sorghum	1.15 bc	0.87 ab
Full	Wheat	Rapeseed	0.75 e	1.34 a	Sorghum	1.52 a	0.66 b
Full	Barley	Fababean	1.79 a	0.56 e	Pearl millet	1.05 bc	0.95 ab
Full	Barley	Rapeseed	0.78 e	1.28 ab	Pearl millet	1.37 ab	0.66 b
Full	Fababean	Rapeseed	0.83	1.23 ab	Pigeonpea	1.23 b	0.81 b
Limited	Wheat	Barley	0.99 dc	1.01 bc	Sorghum	1.07 bc	0.94 ab
Limited	Wheat	Fababean	1.25 c	0.80 c	Sorghum	1.16 bc	0.86 ab
Limited	Wheat	Rapeseed	1.12 c	0.89 c	Sorghum	1.30 b	0.77 b
Limited	Barley	Fababean	1.49 b	0.67 d	Pearl millet	1.09 bc	0.92 ab
Limited	Barley	Rapeseed	0.96 d	1.04 bc	Pearl millet	1.18 bc	0.85 ab
Limited	Fababean	Rapeseed	0.83 de	1.21 ab	Pigeonpea	1.01 c	0.99 a

Intercropping means:

Intercropping means	Wheat	Barley	0.91 c	1.10 a	Sorghum	1.06 c	0.94 a
	Wheat	Fababean	1.07 b	0.97 b	Sorghum	1.16 c	0.87 a
	Wheat	Rapeseed	0.93 c	1.11 a	Sorghum	1.41 a	0.71 b
	Barley	Fababean	1.64 a	0.61 c	Pearl millet	1.07 c	0.93 a
	Barley	Rapeseed	0.87 c	1.16 a	Pearl millet	1.27 b	0.75 b
	Fababean	Rapeseed	0.83 c	1.22 a	Pigeonpea	1.12 c	0.90 a

Irrigation means:

Irrigation means	Full irrigation	Limited irrigation	LSD (0.05) for intercropping	LSD (0.05) for irrigation
	0.98 b	1.11 a	0.11	0.11
	1.23 a	0.81 b	0.13	0.13
	0.94 b	0.94 b	0.11	0.08
	0.19	0.15	0.11	0.05
with legumes crops taking highest benefits of intercropping. In summer, cereal legumes intercropping system, intercropping pigeonpea with pearl millet and sorghum were the most promising system under both irrigated and limited irrigated condition by the best land utilization over monocropping.

Aggressivity. Aggressivity is a competition index used to describe the relative yield increase in crop “a” than crop “b” in an intercropping system. Aggressivity of the winter season showed that all crops combination are not similar in competition under both moisture conditions, higher aggressivity was recorded for barley grown in intercropping with fababean under both water regimes followed by wheat intercropped with rapeseed then wheat intercropped with fababean under high and low moist condition, respectively, while lowest aggressivity was recorded under high moist condition (Table 6). In case of wheat intercropped with barley and fababean, while in case of limited irrigated condition lowest aggressivity was determined in intercropping of barley with wheat and rapeseed. Aggressivity value of the summer intercropping also revealed that companion crop did not compete equally. Sorghum or pearl millet intercrop with mungbean shown highest positive aggressivity over mungbean. Sorghum/ pearl millet intercrop with pigeonpea showed least positive aggressivity value which mean that these crops are compatible with each other. Under low moisture condition pigeonpea intercrop with mung bean showed least aggressivity. Among winter cereals barley is the strongest competitor with other crops no one is able to compress it expect rapeseed which slight aggressiveness over barley under both water regimes.

Competition ratio (CR). Competition ratio showed different response of winter crops under both irrigation regimes. Intercropped with legumes crops, rapeseed was the dominant crop than fababean, having highest CR over winter cereals i.e. wheat and barley, while in case of winter cereals, barley was the most dominant species over wheat, having higher CR than wheat, under intercropping system of wheat/barley with fababean and rapeseed (Table 7). In case of wheat- fababean/ rapeseed intercropping system, rapeseed and fababean were the dominant species over wheat, having higher CR than wheat, under intercropping system of wheat/barley with fababean and rape-

Table 8. Effect of irrigation regimes on relative crowding co-efficient (K) in different intercropping systems.

Winter Season	Main crop	Intercrop	Main crop	Intercrop	System	Summer Season	Intercrop	Main crop	Intercrop	System
Irrigation										
Full Wheat	Barley	0.61	0.82	0.50	Sorgunm	1.71	1.51	2.58		
Full Wheat	Fababean	1.11	1.43	1.59	Sorgunm	1.32	0.91	1.21		
Full Wheat	Rapeseed	0.82	1.53	1.26	Sorgunm	2.12	0.82	1.73		
Full Barley	Fababean	1.02	0.42	0.42	Pearl millet	1.63	1.52	2.47		
Full Barley	Rapeseed	0.72	1.12	0.81	Pearl millet	1.91	0.81	1.54		
Full Fababean	Rapeseed	0.71	1.03	0.73	Pigeonpea	2.22	1.32	2.94		
Limited Wheat	Barley	1.22	1.31	1.60	Sorgunm	1.11	0.91	1.00		
Limited Wheat	Rapeseed	1.62	1.23	1.99	Sorgunm	1.31	0.81	1.06		
Limited Barley	Fababean	1.91	0.81	1.56	Pearl millet	1.11	0.91	1.01		
Limited Barley	Rapeseed	1.41	1.51	2.13	Pearl millet	1.31	0.91	1.19		
Limited Fababean	Rapeseed	0.82	1.23	0.99	Pigeonpea	1.51	1.51	2.28		

Intercropping means

Winter Season	Main crop	Intercrop	Main crop	Intercrop	System	Summer Season	Intercrop	Main crop	Intercrop	System
Irrigation										
Full irrigation	Limited irrigation	0.83	1.06	0.88	Full irrigation	1.82	1.15	2.08		
Full irrigation	Limited irrigation	1.58	1.23	1.93	Limited irrigation	1.26	0.99	1.28		
LSD sub for intercropping	0.14	0.13	0.15	LSD sub for intercropping	0.15	0.14	0.20			
LSD sub for irrigation	0.32	0.13	0.45	LSD sub for irrigation	0.43	0.10	0.45			
LSD sub for irrigation × intercropping	0.20	0.19	0.22	LSD sub for irrigation × intercropping	0.23	0.18	0.25			
Actual yield loss

Winter Season

Irrigation	Main crop	Intercrop	System	Main crop	Intercrop	System				
Full	wheat	barley	−0.31 d	−0.13 c	−0.43 e	Sorghum	pigeonpea	0.21 b	0.21 b	0.42 b
Full	wheat	fababean	0.02 c	0.21 ab	0.23 c	Sorghum	pearl millet	0.21 b	0.11 b	0.22 c
Full	wheat	rapeseed	−0.11 cd	0.23 a	0.14 dc	Sorghum	mungbean	0.44 a	−0.31 e	0.13 cd
Full	barley	fababean	0.02 c	−0.42 d	−0.44 e	Pearl millet	pigeonpea	0.21 b	0.32 a	0.53 ab
Full	barley	rapeseed	−0.22 d	0.11 ab	−0.13 d	Pearl millet	mungbean	0.41 a	−0.31 d	0.12 cd
Full	fababean	rapeseed	−0.21 d	0.03 c	−0.14 d	Pigeonpea	mungbean	0.31 ab	−0.11 c	0.20 cd
Limited	wheat	barley	0.11 bc	0.13 b	0.24 c	Sorghum	pigeonpea	0.12 b	0.11 b	0.22 c
Limited	wheat	fababean	0.42 a	0.12 ab	0.64 a	Sorghum	pearl millet	0.12 b	−0.10 c	0.01 d
Limited	wheat	rapeseed	0.22 b	0.12 ab	0.44 b	Sorghum	mungbean	0.21 b	−0.32 e	−0.11 d
Limited	barley	fababean	0.31 ab	−0.12	0.23 c	Pearl millet	pigeonpea	0.11 b	0.31 ab	0.42 b
Limited	barley	rapeseed	0.22 b	0.21 ab	0.42 bc	Pearl millet	mungbean	0.22 b	−0.20 d	0.03 d
Limited	fababean	rapeseed	−0.12 cd	0.11 ab	0.03 d	Pigeonpea	mungbean	0.41 a	0.21 b	0.62 a

Summer Season

Irrigation	Main crop	Intercrop	System	Main crop	Intercrop	System			
Full	Full wheat barley	−0.02 c	0.16 c	Full wheat fababean	0.02 c	0.16 c	Full wheat rapeseed	0.44 e	0.16 c
Full	Full barley fababean	0.13 a	0.32 e	Full barley rapeseed	0.23 d	0.32 e	Full barley fababean	0.11 d	0.32 e
Full	Full fababean rapeseed	0.11 c	0.32 c	Full fababean rapeseed	0.10 c	0.32 c	Full fababean rapeseed	0.09 c	0.32 c

Intercropping means

- **wheat** × **barley** −0.10 c 0.00 b −0.10 d **Sorghum** × **pigeonpea** 0.16 b 0.16 b 0.32 b
- **wheat** × **fababean** 0.22 a 0.17 a 0.44 a **Sorghum** × **pearl millet** 0.17 b 0.01 c 0.12 c
- **wheat** × **rapeseed** 0.06 b 0.17 a 0.29 b **Sorghum** × **mungbean** 0.32 a −0.31 d 0.01
- **barley** × **fababean** 0.17 a −0.27 c −0.10 d **Pearl millet** × **pigeonpea** 0.16 b 0.32 a 0.48 a
- **barley** × **rapeseed** 0.00 bc 0.16 a 0.14 c **Pearl millet** × **mungbean** 0.31 a −0.25 d 0.07
- **fababean** × **rapeseed** −0.16 c 0.07 ab −0.05 d **Pigeonpea** × **mungbean** 0.36 a 0.05 c 0.41 a

Irrigation means

- **Full irrigation** −0.13 b 0.00 a −0.13 b
- **Limited irrigation** 0.19 a 0.09 b 0.33 a
- **LSD** for intercropping 0.11 0.10 0.15
- **LSD** for irrigation 0.19 0.01 0.12
- **LSD** for irrigation × intercropping 0.18 0.15 0.20

Table 9. Effect of irrigation regimes on actual yield loss in different intercropping systems. Note: ns stand for statistically non-significant at 5% probability

Relative crowding co-efficient (K)

Relative Crowding Co-Efficient (K) is an intercropping index which evaluating and comparing the competitive ability of one species to the other in a mixture. To calculate the relative dominance of crop species over the other species of crop in intercropping system, relative crowding coefficient is the best option (Table 8). Under irrigated condition of winter crops K showed that intercropping of wheat with fababean and rapeseed were the most successfully combination among others. The lowest value for K was recorded for intercropping system of barley with wheat and fababean under irrigated condition, while under limited irrigated condition highest K valued was calculated for intercropping of wheat with fababean, and barley with rapeseed. While on the other hand, intercropping of pigeonpea with mungbean, pearl millet and sorghum showed highest intercropping system due highest value for K (pigeonpea + mungbean > pigeonpea + pearl millet > pigeonpea + sorghum) under irrigated condition, while under limited irrigated condition highest intercropping of pigeonpea + mungbean showed higher value for K followed by pearl millet intercropped with mungbean while intercropping of sorghum with pigeonpea, pearl millet, mungbean showed no considerable increase than one, which mean intercropping of these crops under limited irrigated condition similar to the their respective monocropping.

Actual yield loss (AYL)

The AYL is the proportionate yield loss or gain of intercrops compared to sole crop. AYL give more accurate evidence about intercropping than the other indexes on the intra- and inter-specific competition and behavior of the component crops. In case of winter crops, intercropping of barley with wheat/ fababean/ rapeseed showed a disadvantage of intercropping system due to negative value for AYL under full irrigated condition, while under limited irrigated all the intercropping combination have positive value for intercropping (Table 9). Highest AYL was observed for wheat and fababean when intercropped with barley, under both water regimes intercropping of wheat with fababean was the most successfully intercropping system in trasm of positive AYL value, followed by wheat intercropped with rapeseed. In case of summer crops, all intercropping system have positive AYL value, followed by wheat intercropped with mungbean. Pigeonpea was the strongest competitor crop in these intercropping system by maintaining positive value of AYL as intercropped with strongest summer cereals i.e., sorghum and pearl millet under both water regimes.
Area time equivalent ratio (ATER). Data regarding ATER of both winter and summer crops showed in Table 10. ATER provides more realistic comparison of the yield advantage of intercropping over sole cropping in terms of variation in time taken by the component crops of different intercropping systems. In all the treatments, the ATER values were lesser than LER values indicating the over estimation of resource utilization. ATER is free from problems of over estimation of resource utilization contrary to LEA. In case of winter crops all intercropping combination have less than one ATER except wheat intercropped fababean and rapeseed under both water regimes and wheat intercropped with barley intercropped with rapeseed and wheat under limited irrigation condition only (Table 10). While in case of summer season crops, ATER of all intercropping system showed less than one except sorghum intercropped with pearl millet under full irrigated condition and pigeonpea intercropped with mung bean under limited irrigated condition. All the intercropping system which have less than one ATER value had a disadvantage of intercropping in term of field occupation time.

Land utilization efficiency (LUE). An intercropping system utilization of land is the main indicator which show the efficiency of an intercropping system. LUE value greater than 50 showed advantages of intercropping over mono cropping. Highest LUE value was recorded for wheat intercropped with fababean followed by wheat intercropped with rapeseed under both water regimes. Barley intercropped with wheat, fababean and rapeseed showed lowest land utilization efficiency under full irrigated condition, while under limited irrigated condition a little increase was observed (Table 11). On the other hand, summer crops all most all crops showed higher LUE than 50 except sorghum/millet intercropped with mungbean, with highest LUE value for intercropping of pigeonpea intercropped with mungbean under limited irrigated condition and sorghum intercropped with pearl millet under full irrigated condition followed by pearl millet intercropped with pigeonpea.

Intercropping advantages (IA). Intercropping advantage (IA) is also an indicator of the economic feasibility of intercropping systems. IA of the data showed that intercropping system of wheat with fababean and rapeseed had highest intercropping advantages over monoculture as showed by their positive for IA under both water regimes, followed by wheat intercropped with rapeseed while the rest of intercropping system had a disadvantages of intercropping under full irrigated condition, while under limited irrigated condition all of the intercropping system had intercropping advantages except fababean intercropped with barley and rapeseed (Table 12). Barley intercropped with wheat show negative IA for both component crops under full irrigated condition which mean wheat and barley intercropping system under normal water condition had disadvantages of intercropping. In case of wheat intercropped with rapeseed highest advantages of intercropping system had taken by rapeseed due to it.

Area time equivalent ratio	**Winter Season**	**Summer Season**				
Irrigation	**Main crop**	**Intercrop**	**System**	**Main crop**	**Intercrop**	**System**
Full	wheat	barley	0.78 d	Sorghum	pigeonpea	0.99 b
Full	wheat	fababean	1.09 bc	Sorghum	pearl millet	1.15 a
Full	wheat	rapeseed	1.01 c	Sorghum	mungbean	0.99 b
Full	barley	fababean	0.67 e	Pearl millet	pigeonpea	0.95 bc
Full	barley	rapeseed	0.83 d	Pearl millet	mungbean	0.77
Full	fababean	rapeseed	0.82 d	Pigeonpea	mungbean	0.90 bc
Limited	wheat	barley	1.07 bc	Sorghum	pigeonpea	0.91 bc
Limited	wheat	fababean	1.28 a	Sorghum	pearl millet	1.10 b
Limited	wheat	rapeseed	1.15 bc	Sorghum	mungbean	0.86 c
Limited	barley	fababean	0.93 cd	Pearl millet	pigeonpea	0.92 bc
Limited	barley	rapeseed	1.05 bc	Pearl millet	mungbean	0.91 bc
Limited	fababean	rapeseed	0.88 d	Pigeonpea	mungbean	1.01 b

Intercropping means

Irrigation	**Main crop**	**Intercrop**	**System**
Full	wheat	barley	0.92 c
Full	wheat	fababean	1.19 a
Full	wheat	rapeseed	1.08 b
Limited	barley	fababean	0.80 d
Limited	barley	rapeseed	0.94 c
Limited	fababean	rapeseed	0.85 d

Irrigation means

Irrigation	**Full irrigation**	**Limited irrigation**	**LSD (0.05) for intercropping**	**LSD (0.05) for irrigation**	**LSD (0.05) for irrigation × intercropping**	
Full	0.86 b	1.06 a	0.07	0.13	0.11	
Limited	LSD (0.05) for intercropping	LSD (0.05) for irrigation	LSD (0.05) for irrigation × intercropping	0.08	0.01	0.13

Table 10. Effect of irrigation regimes on area time equivalent ratio in different intercropping systems.
high positive IA value while wheat had a disadvantages of intercropping but the overall system had positive value foe IA due high price of rapeseed which overcome the loss of wheat during intercropping system. Intercropping systems of summer crops showed positive value for IA except mungbean intercropped with sorghum and pearl millet under both water regimes. Sorghum and pearl millet intercropped with mungbean got highest beneficent of intercropping system by getting highest positive value for IA while the growth of mung bean was highly suppressed, which conform by the highest negative value of IA, but the overall system of had a positive value which mean increase in sorghum and pearl millet yield as result of intercropping with mungbean compensated mungbean yield reduction. While intercropping of pigeonpea with sorghum or pearl millet showed strongest competitive ability due to it comparatively high stature as compared with mung bean and branched nature.

Monetary advantage index (MER). MER is one of the economic profitability indices which is used to identify the profitability or productivity of intercropping system over mono cropping (Table 13). MERs of the data showed that wheat intercropped with fababean had highest economic return followed by wheat intercropped with rapeseed while the rest of the system had a disadvantages of the intercropping as decreased of IA under full irrigated regimes, under limited irrigated regimes all the intercropping system have positive value for which mean all of the had intercropping advantages with highest value for MERs was recorded an intercropping wheat with fababean followed by rapeseed, while lowest value was recorded for MERs in case of barley intercropped with fababean under full irrigated condition. On the other hand, intercropping system of summers crops showed positive value for MERs in all intercropping system except pearl millet intercropped with mungbean under limited irrigated regimes.

System productivity index (SPI). SPI data of both winter and summer crops presented in Table 14. The data showed intercropping system of cereal with legumes showed that highest SPI under both winter and summer season regardless of water regimes. In case of winter crops highest SPI was recorded in intercropping system of wheat and fababean followed wheat and rapeseed. barley intercropped with fababean or with rapeseed showed least SPI. In case of summer crops, highest SPI was calculated when sorghum intercropped with pigeonpea followed by pearl millet intercropped with pigeonpea. Data in Table 14 showed that pigeonpea is more productive and can be more successfully grown as compared with mungbean in sorghum or pearl millet intercropping system.

Table 11. Effect of irrigation regimes on land utilization efficiency in different intercropping systems.

Winter Season	Main crop	Intercrop	System	Main crop	Intercrop	System
Full wheat	barley	31 b	Sorghum	pearl millet	64 a	
Full wheat	fababean	60 ab	Sorghum	mung bean	51 ab	
Full wheat	rapeseed	50 b	Sorghum	mung bean	51 ab	
Full barley	fababean	27 b	Pearl millet	60 a		
Full barley	rapeseed	36 b	Pearl millet	43 b		
Full fababean	rapeseed	37 b	Pigeonpea	50 b		
Limited wheat	barley	59 ab	Sorghum	pigeonpea	51 ab	
Limited wheat	fababean	83 a	Sorghum	pearl millet	55 ab	
Limited wheat	rapeseed	69 ab	Sorghum	mung bean	42 b	
Limited barley	fababean	51 b	Pearl millet	55 ab		
Limited barley	rapeseed	62 ab	Pearl millet	45 b		
Limited fababean	rapeseed	44 b	Pigeonpea	65 a		

Intercropping means
wheat barley 45 b Sorghum
wheat fababean 72 a Sorghum
wheat rapeseed 60 ab Sorghum
barley fababean 39 b Pearl millet
barley rapeseed 49 b Pearl millet
fababean rapeseed 40 b Pigeonpea

Irrigation means
Full irrigation 40 b
Limited irrigation 61 a
LSD for intercropping 18
LSD for irrigation 17
LSD for irrigation intercropping 31
Intercropping advantages

Winter Season	Summer Season									
Irrigation	Intercrop	Main crop	Main crop	Intercrop	System	Intercrop	Main crop	Main crop	Intercrop	System
Full	wheat	barley	−420 i	−160 j	−50 f	Sorghum	pigeonpea	450 c	250 c	700 c
Full	wheat	fababean	0.5 e	1000 a	1000 a	Sorghum	pearl millet	450 c	200 c	650 d
Full	wheat	rapeseed	−140 g	640 b	500 b	Sorghum	mung bean	900 ab	−675 f	225 e
Full	barley	fababean	0.002 f	−2000 k	−2000 h	Pearl millet	pigeonpea	400 c	750 a	1150 b
Full	barley	rapeseed	−321 h	319 e	−1 d	Pearl millet	pigeonpea	799 b	−676 f	124 e
Limited	fababean	rapeseed	−1001 j	−1 i	−1001 g	Pigeonpea	mung bean	750 b	−226 d	525 d
Limited	wheat	barley	141 d	161 f	301 c	Sorghum	pigeonpea	226 d	251 d	476 d
Limited	wheat	fababean	560 a	500 d	1060 a	Sorghum	pearl millet	225 d	−200 d	25 e
Limited	wheat	rapeseed	280 c	320 e	600 b	Sorghum	mung bean	450 c	−675 f	−225 g
Limited	barley	fababean	480 b	−500 j	−20 d	Pearl millet	pigeonpea	200 d	750 a	950 c
Limited	barley	rapeseed	320 c	640 c	960 a	Pearl millet	mung bean	400 c	−450 e	−50 f
Limited	fababean	rapeseed	−500 hi	320 e	−180 e	Pigeonpea	mung bean	1000 a	450 b	1450 a

Intercropping means

Crop	Main crop	Intercrop	Effect	LSD (0.05) for irrigation
Full irrigation	33 b	−33 b	−346 b	62 b
Limited irrigation	213 a	240 a	453 a	416 b
LSD (0.05) for intercropping	55	65	70	125
LSD (0.05) for irrigation	51	59	56	176
LSD (0.05) for irrigation × intercropping	85	94	110	195

Table 12. Effect of irrigation regimes on intercropping advantages in different intercropping systems.

Discussion

LER were high for all intercropping systems than sole cropping under both water regimes. Koocheki, et al.51, reported that intercropping of corn and beans, gave higher LER as compared to sole corn. In intercropping of wheat and lentil, the maximum LER was achieved in lentil and wheat as mixed cropping system52. Shaker-Koohi and Nasrollahzadeh53 reported that intercropping of sorghum produced maximum LER in both water regimes, this might be due to conducive environment to each other's. Pearl millet and pigeonpea intercropping had high LER than sorghum and pigeonpea, it might be due to the suppressive and allelopathic effect of the sorghum on pigeonpea due to its high stature. The results are in line with Egbe and Kalu54, they reported that under high stature sorghum the growth and performance of the pigeonpea was low which resulted in lower LER. However, all crops combination showed higher LER than monocropping, which showed the supremacy of intercropping over monocropping. Legumes intercropped with legumes or legumes intercropped with cereals produced higher LER than cereal intercropped with cereals, one of the major reasons might be due the nitrogen fixation by legumes. In sorghum + mungbean intercropping the growth of mungbean was reduced significantly while the growth of sorghum was increased tremendously, it might due to the strong root system and high nutrients and water absorption capacity of the sorghum. Similar results were reported by the previous researcher like36,55,56 they all reported that in cereal-legumes intercropping system cereals were the dominant and aggressive crops while legumes were the suppressive ones. LER value showed the suitability of the mungbean + pigeonpea and pearl millet + pigeonpea intercropping. Alizadeh, et al.57 reported that intercropping reduced the weed density, in barley and pea intercropping weed biomass than the sole cropping of pea34. Barley was more competitive and aggressive in most planting patterns, which is also supported by the finding of Esmaeili et al.58. Wheat intercropped with fababean gives higher LER than other intercropping system. Intercropping of wheat with fababean had significant effect soil and environmental resources utilization as result product higher LER59,60. LER for fababean was lower than 0.5 when intercropped with barley, these results are in line with Dhima et al.21. They reported that LER of fababean was low in intercropping with barley which that barley taking advantages of intercropping while fababean had disadvantages of intercropping. Wheat intercropped with fababean produced higher LER than intercropping with rapeseed. Similar results were reported by Khatun, et al.61 in wheat-cowpea intercropping highest LER (1.71) was recorded while lowest (1.46) was recorded in wheat mustard intercropping.
Aggressivity value of the intercropping revealed that companion crop did not compete equally. In both seasons i.e., winter and summer cereal showed more aggressivity over their companions’ crops, while might be due the fact that legumes increased nitrogen nutrition of cereals as a result improved it grain yield. Similar results were reported by Kaci, et al. who reported that intercropping fababean with wheat, increase wheat grain nitrogen contents. Sorghum or pearl millet intercrop with mungbean shown highest positive aggressivity over mungbean, it might be due shorter plant stature of mungbean, which was over shaded by sorghum and pearl millet due to which growth of mungbean was severely suppressed and highest benefits of intercropping was got by sorghum and pearl millet. Similar reported was reported by Salih who stated that sorghum intercropped with legumes removed higher nitrogen from the legumes and suppressed them. Sorghum/millet intercropped with pigeonpea showed least positive aggressivity value which mean that pigeonpea was most competitive crop with sorghum and pearl millet, it might be due deep-rooted system and high stature of pigeonpea, which make it stronger competitor than mug bean.

The CR is another tool to find the competitive ability of one crop with a companion crop in intercropping. Higher value of CR revealed strong competition on companion crop, under both, water regimes sorghum shown the highest CR value followed by pearl millet over mungbean, which mean that sorghum and pearl millet were most dominant crops over mungbean i.e. mungbean was less competitive with sorghum and pearl millet grown in intercropping for sharing same soil and environmental resources. Relative crowding coefficient (RCC) plays a vital role in finding the competitive effects and intercropping advantages. Barley showed higher RCC than other studied crops except Rapeseed, it might be due the This capacity may be due to the strong nutrient and water competetiveness associated to barley roots in comparison to those of fababean. Agegnehu, et al. also reported similar result that barely have strong dominances over fababean by decrease 50 kg ha^{-1} of fababean. Under full irrigated condition intercropping of pigeonpea + mungbean and sorghum + pigeonpea was highest RCC value. In intercropping of sorghum and mungbean, sorghum was highest RCC value while mungbean had lowest RCC value, which show that sorghum was more superior to mungbean in both water regimes. These results are in line with Banik, et al. in chickpea-wheat intercropping; Ghosh groundnut-cereal intercropping and Dhima, et al. in cereal-vetch intercropping, cereals were dominant over legumes.

AYL was also an important tool for accessing advantages or disadvantages of intercropping. The results revealed that all the main crops resulted positive value for AYL, which showed that main crops were in advantages of intercropping. The highest grain yield gain was recorded for pigeonpea when intercropped with mungbean, followed by sorghum and pearl millet intercropped with mungbean, respectively, under both, full irrigated and limited irrigation regimes. The results revealed that companion crop did not compete equally. In both seasons i.e., winter and summer cereal showed more aggressivity over their companions’ crops, while might be due the fact that legumes increased nitrogen nutrition of cereals as a result improved it grain yield. Similar results were reported by Kaci, et al. who reported that intercropping fababean with wheat, increase wheat grain nitrogen contents. Sorghum or pearl millet intercrop with mungbean shown highest positive aggressivity over mungbean, it might be due shorter plant stature of mungbean, which was over shaded by sorghum and pearl millet due to which growth of mungbean was severely suppressed and highest benefits of intercropping was got by sorghum and pearl millet. Similar reported was reported by Salih who stated that sorghum intercropped with legumes removed higher nitrogen from the legumes and suppressed them. Sorghum/millet intercropped with pigeonpea showed least positive aggressivity value which mean that pigeonpea was most competitive crop with sorghum and pearl millet, it might be due deep-rooted system and high stature of pigeonpea, which make it stronger competitor than mug bean.

The CR is another tool to find the competitive ability of one crop with a companion crop in intercropping. Higher value of CR revealed strong competition on companion crop, under both, water regimes sorghum shown the highest CR value followed by pearl millet over mungbean, which mean that sorghum and pearl millet were most dominant crops over mungbean i.e. mungbean was less competitive with sorghum and pearl millet grown in intercropping for sharing same soil and environmental resources. Relative crowding coefficient (RCC) plays a vital role in finding the competitive effects and intercropping advantages. Barley showed higher RCC than other studied crops except Rapeseed, it might be due the This capacity may be due to the strong nutrient and water competetiveness associated to barley roots in comparison to those of fababean. Agegnehu, et al. also reported similar result that barely have strong dominances over fababean by decrease 50 kg ha^{-1} of fababean. Under full irrigated condition intercropping of pigeonpea + mungbean and sorghum + pigeonpea was highest RCC value. In intercropping of sorghum and mungbean, sorghum was highest RCC value while mungbean had lowest RCC value, which show that sorghum was more superior to mungbean in both water regimes. These results are in line with Banik, et al. in chickpea-wheat intercropping; Ghosh groundnut-cereal intercropping and Dhima, et al. in cereal-vetch intercropping, cereals were dominant over legumes.

AYL was also an important tool for accessing advantages or disadvantages of intercropping. The results revealed that all the main crops resulted positive value for AYL, which showed that main crops were in advantages of intercropping. The highest grain yield gain was recorded for pigeonpea when intercropped with mungbean, followed by sorghum and pearl millet intercropped with mungbean, respectively, under both, full irrigated and limited irrigation regimes.
In limited irrigated conditions it might be due to the high stature of sorghum and pearl millet which over shed the low stature mungbean and decrease the sunlight penetration. Under full irrigated regime all the crops intercropped with sorghum showed disadvantages of intercropping except pigeonpea, while under limited irrigated condition all the crops intercropped with cereals showed negative value for AYL. The highest grain yield loss was recorded for mungbean when intercropped with sorghum and pearl millet under full irrigated condition. Intercropping of pigeonpea and mungbean resulted positive value for both, pigeonpea and mungbean under both water regimes. These results are in line with those of Banik, et al., who reported that in intercropping of wheat and chickpea, it was observed that the chickpea yield in mixture significantly decreased. Layek, et al., also found that soybean yield losses in intercropping with maize due to direct competition for light, space and nutrients. All intercropping systems showed advantages of intercropping. Highest advantage was recorded for pigeonpea, mungbean intercropping system followed by sorghum and pearl millet under full irrigated condition. Intercropping of pigeonpea and mungbean resulted positive value of for both, pigeonpea and mungbean under both water regimes. These results are in line with those of Banik, et al., who reported that in intercropping of wheat and chickpea, it was observed that the chickpea yield in mixture significantly decreased. Layek, et al., also found that soybean yield losses in intercropping with maize due to direct competition for light, space and nutrients. All intercropping systems showed advantages of intercropping. Highest advantage was recorded for pigeonpea, mungbean intercropping system followed by sorghum and pearl millet under full irrigated condition. Intercropping of pigeonpea and mungbean resulted positive value of for both, pigeonpea and mungbean under both water regimes. These results are in line with those of Banik, et al., who reported that in intercropping of wheat and chickpea, it was observed that the chickpea yield in mixture significantly decreased. Layek, et al., also found that soybean yield losses in intercropping with maize due to direct competition for light, space and nutrients. All intercropping systems showed advantages of intercropping. Highest advantage was recorded for pigeonpea, mungbean intercropping system followed by sorghum and pearl millet under full irrigated condition. Intercropping of pigeonpea and mungbean resulted positive value of for both, pigeonpea and mungbean under both water regimes. These results are in line with those of Banik, et al., who reported that in intercropping of wheat and chickpea, it was observed that the chickpea yield in mixture significantly decreased. Layek, et al., also found that soybean yield losses in intercropping with maize due to direct competition for light, space and nutrients. All intercropping systems showed advantages of intercropping. Highest advantage was recorded for pigeonpea, mungbean intercropping system followed by sorghum and pearl millet under full irrigated condition. Intercropping of pigeonpea and mungbean resulted positive value of for both, pigeonpea and mungbean under both water regimes. These results are in line with those of Banik, et al., who reported that in intercropping of wheat and chickpea, it was observed that the chickpea yield in mixture significantly decreased. Layek, et al., also found that soybean yield losses in intercropping with maize due to direct competition for light, space and nutrients. All intercropping systems showed advantages of intercropping. Highest advantage was recorded for pigeonpea, mungbean intercropping system followed by sorghum and pearl millet under full irrigated condition. Intercropping of pigeonpea and mungbean resulted positive value of for both, pigeonpea and mungbean under both water regimes.

In comparison, intercropping cereals with legumes showed more sophisticated one than intercropping of cereals with cereals crops. It might be due nutrients availability especially nitrogen, in the process of nitrogen fixation by the legumes and strong nutrients and water absorption capacity of the cereals crops as compared with legumes. Similar result was reported by, they reported that an intercropping of fababean + barley, fababean case can cause in crease of 50% in barely aerial biomass, it might be strong root system of barley as compared with fababean. In case of cereals and legumes intercropping system, cereals get more benefits of intercropping and decrees the growth of the legumes Mouradi, et al., who reported that intercropping of barley with fababean, decrease the stem dry weight, root growth weight of fababean. It this experiment that intercropping of fababean with barley is not profitable for the fababean. Growth and yield parameter show negatively effect in fababean as intercropped with cereals particularly with barley. In this research intercropping of cereals with legumes showed most promising interaction with each other and improved the yield and growth of cereals in tram of CR, A, RCC, ATM, LER, LUE etc. it might be due the nitrogen fixation and phosphorus acquisition due to its capability to fixe atmospheric nitrogen and root exudation which improve P solubilization and ensure P availability in soil. Fababean is important crop for intercropping with cereals due to several important characteristics like shade tolerance Nasrullahzadeh, et al., nitrogen fixation Li, et al., and high protein content are the unique characteristics which it more suitable to intercropped with cereals.
Higher grains spike$^{-1}$ was recorded under full irrigated regime than under limited irrigated water regime. These results substantiate the outcome noted by El-Sarag.44 Sarwar25 indicated steady growth of TGW effectively enhanced with required moisture in association to limited water regime. TGW of wheat is statistically significantly affected by irrigation, intercropping and its interaction. Results are at par with results of Ranawake, \textit{et al}.26 Among intercropping system wheat + fababean gave highest grain weight. Grain weight significantly varied by intercropping system25.

TGW and number of grains head$^{-1}$ or seeds pod$^{-1}$ of all crops were higher in full irrigated condition than limited irrigated condition. The increase in grains weight and number of grains head$^{-1}$/pod$^{-1}$ might the proper moisture availability in the grain's formation and grain filling stage, which increase the solubility, uptake and transport of plant nutrients. The present results are similar with finding of Khalili27 they reported that grains weight reduced under moisture stress condition. Reduction in grains weight are also in line with results of Robertson, \textit{et al}.28 who reported decrease in grains weight under moisture stress in mungbean. TGW of all crops were significantly affected by intercropping except millet. Sorghum produced less TGW when intercropped with mungbean; mungbean produced higher TGW when intercropped with pigeonpea, while pigeonpea produced maximum TGW when intercropped with millet. The decrease in grain weight of sorghum intercropped in mungbean might be due to the reason of high number of grains head$^{-1}$, which lead to inadequate assimilate to all grains as result grains weight decreased. The results are in contrast with those of Kumar and Roberts29 who reported that different ratios of intercropping did not significant effect on chickpea seed weight. Cereals produced maximum grains head$^{-1}$ in intercropping with legumes than intercropped in another cereal or grown as sole crop. The possible reason might be less interspecific competition in intercropping with legumes. In contrast pigeonpea produced maximum grains pod$^{-1}$ in intercropped with mungbean or grown as sole than intercropped with cereals. But number of grains pod$^{-1}$ of mungbean was statistically similar in intercropping. It might be due to the varying competition among crops for water, space and soil resource, both sorghum and millet were strong competitor with legume as result it suppressed most of the growth of legumes80. Pandita \textit{et al}.81 also revealed smaller number of grain pod$^{-1}$ in intercropping than sole crop of legumes. Nasarullahzadeh and Koohi82 also reported that grains pod$^{-1}$ in mungbean was not significantly affect by intercropping. Under full irrigation condition all crops produced maximum grain yield than limited irrigation condition. The increase in grain yield under full irrigated condition might be due to the high moisture content in the soil, which increased nutrient availability and update and also plant probably increased rate of photosynthesis and translocation of assimilate from leaves and stem toward grains which resulted given higher grain yield. Similar results were reported by Zerbini and Thomas83, and Al-Suhaibani84, they all reported that increase in grain yield of crops under no water stress condition than water stress condition. High moisture contents in the soil, maintain and improved the turgidity of the plant cells and growth of the plant. Thus, more water uptake by the plants helped in higher transpiration rate, produced more leaf area, high rate of photosynthesis and translocation of assimilate from source to sinks, as result more TGW, high number of grains head, and finally higher grain yield was produced. Similar advantageous effects of high moisture contents in soil on yield attributes, grain and biological yields and dry matter production of millet were also described by Khippal and Hooda85 and Imma and Jose86. All crops produced higher grain yield in sole cropping than intercropped, probably due to the greater number of plants per unit area in sole cropping. Similar result were reported by Kumar \textit{et al}.42; Sharma \textit{et al}.48 and Barod \textit{et al}.49, they all reported that in mono-cropping the yield of the crops were high than intercropping due to high planting density. Intercropping of cereal with both legumes produced higher grain yield than intercropped with another cereal. The increase in yield was possible due to the conducive environment, less competition for soil resource and more space, more sunlight, to developed high crop canopy as result plants get more assimilate partition and accumulation occurred. Similar results were reported by Tsubo90 also reported similar result that beans did not show strong competition in cereal- legumes intercropping. In contrast legumes intercropped in legumes produced higher yield than intercropped with cereals, it might be due to the shading effect of tall cereals and high competition for above and underground resources. The results are in line with Pal \textit{et al}.88, who reported that pigeonpea intercropped with urd-bean produced higher yield than intercropped with sorghum.

Conclusion

From the results derived that all competition indexes showed that intercropping has considerable superiority to monocropping which accredited to better economics and land use efficiency. Competition indexes like land equivalent ratio, aggressivity, competition ratio, area time equivalent ratio, relative crowding coefficient and land utilization efficiency, system productivity index, values were maximum for wheat intercropped fababean in winter season and sorghum/millet intercropped with pigeonpea which indicating the better intercropping system under both irrigation regimes for the semi-arid regions.

Received: 4 March 2019; Accepted: 19 April 2020;
Published online: 18 May 2020

References

1. Lithourgidis, A., Dordas, C., Damalas, C. A. & Vlachostergios, D. Annual intercrops: an alternative pathway for sustainable agriculture. Aust. J. crop sci. 5, 396 (2011).
2. Bedoussac, L. \textit{et al}. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Devel. 38, 911–935 (2013).
3. Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17 (2012).
4. Sadeghpour, A., Jahanzad, E., Esmaeili, A., Hosseini, M. & Hashemi, M. Forage yield, quality and economic benefit of intercropped barley and annual medic in semi-arid conditions: additive series. Field Crops Res. 148, 43–48 (2013).
5. Seran, T. H. & Brintha, I. Review on maize based intercropping. J. Agron. 9, 135–145 (2010).
6. Bedoussac, L. \textit{et al}. Annual intercrops: an alternative pathway for sustainable agriculture. Aust. J. crop sci. 5, 396 (2011).
7. Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17 (2012).
8. Seran, T. H. & Brintha, I. Review on maize based intercropping. J. Agron. 9, 135–145 (2010).
6. Ali, R., Awan, T., Ahmad, M., Saleem, M. & Akhtiar, M. Diversification of rice-based cropping systems to improve soil fertility, sustainable productivity and economics. J. Agril. Sci. 22, 108–112 (2012).

7. Mousavi, S. R. & Eskandari, H. A general overview on intercropping and its advantages in sustainable agriculture. J. Appl. Environ. Biol. Sci. 1, 482–486 (2011).

8. Zhang, X., Huang, G., Bian, X. & Zhao, Q. Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant Soil Environ. 59, 80–88 (2013).

9. Manna, M., Ghosh, P. & Acharaya, C. Sustainable crop production through management of soil organic carbon in semiarid and tropical India. J. Sustainable Agric. 21, 85–114 (2003).

10. Nyokoi, D. & Ndakidemi, P. A. Yield Response of Intercropped Soybean and Maize Under Rhizobia (Bradyrhizobium japonicum) Inoculation and P and K Fertilization. Commum. Soil Sci. Plant Anal. 49, 1168–1185 (2018).

11. Wei, Y., Rui, Y. & Pertot, J. Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Industrial Crops and Products 77, 295–306 (2015).

12. Razi, Y., Wei, Y., Ghassemi-Golezani, K. & Torabian, S. In Biological Forum. 534 (Research Trend).

13. Lithourgidis, A., Vasilakoglou, I., Dhima, K., Dordas, C. & Yiakoulaki, M. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Res. 99, 106–113 (2006).

14. Seran, T. & Jeyakumarun, J. Effect of planting geometry on yield of Capsicum (Capsicum annum L.) intercropping with vegetable cowpea (Vigna unguiculata L.). J. Sci. 6, 11–19 (2009).

15. Mashigaizde, A. B. Improving weed management and crop productivity in maize systems in Zimbabwe (2004).

16. Hauggaard-Nielsen, H. & Jensen, E. S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Res. 72, 185–196 (2001).

17. Tsobo, M., Walker, S. & Ogindo, H. A simulation model of cereal–legume intercropping systems for semi-arid regions: I. Model development. Field Crops Res. 93, 10–22 (2005).

18. Banik, P., Sasmal, T., Ghosal, P. & Bagchi, D. Evaluation of mustard (Brassica compestris Var. Taria) and legume intercropping under 1: 1 and 2: 1 row-replacement series systems. J. Agron. Crop Sci. 185, 9–14 (2000).

19. Ghosh, P. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Res. 88, 227–237 (2004).

20. Agegnehu, G., Ghizaw, A. & Moursy, M. E. Response of Peanut to some Kind of organic Fertilizers under Drip and Sprinkler system. 88-100 (Pitman London, 1983).

21. Dhima, K., Lithourgidis, A., Vasilakoglou, I. & Dordas, C. Intercropping systems. In Book of abstracts. In National seminar on shifting cultivation.

22. Trautwein, E. A., Reichhoff, D. & Erbersdohler, H. F. The cholesterol lowering effect of psyllium a source dietary fiber. Ernahrung-Umschau 44, 214–216 (1997).

23. Gumas, A. et al. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture. Nat. Cycl. Agroecosyst. 78, 83–96 (2007).

24. Zhang, F., Y. T. W., Zhao, X. N. & Cheng, X. F. Water-saving mechanisms of intercropping system in improving cropland water use efficiency. Chin. J. Appl. Ecol. 23, 1400–1406 (2012).

25. Abd El-halim, A. K., Awad, A. M. & Moursy, M. E. Response of Peanut to some Kind of organic Fertilizers under Drip and Sprinkler system. 88-100 (Pitman London, 1983).

26. Willey, R. et al. in Better crop for food 88-100 (1983).

27. McGilchrist, C. Analysis of competition experiments. Biometrics, 975–985 (1965).

28. Willey, R. & Rao, M. A competitive ratio for quantifying competition between intercrops. Exp. Agric. 16, 117–125 (1980).

29. Rabinowitz, D., Rapp, J. K. & Dixon, P. M. Competitive abilities of sparse grass species: means of persistence or cause of abundance. Ecology 65, 1144–1154 (1984).

30. Banik, P. Evaluation of wheat (Triticum aestivum) and legume intercropping under 1: 1 and 2: 1 Row replacement system series. J. Agron. Crop Sci. 176, 289–294 (1996).

31. Mead, R. & Willey, R. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp. Agric. 16, 217–228 (1980).

32. Misra, R. D. A. M. A. Manual on Irrigation Agriculture. Oxford and IBH Publishing Co., Ltd., New Delhi, 220–293 (1987.).

33. Amanullah, F. K., Muhammad, H., Jan, A. & Ali, G. Land equivalent ratio, growth, yield and yield components response of monocropped vs. inter-cropped common bean and maize with and without compost application. Agric. Biol. JN Am 7, 40–49 (2016).

34. Lithourgidis, A., Vlachostergios, D., Dordas, C. & Damalas, C. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. Eur. J. Agron. 34, 287–294 (2011).
Acknowledgements
We are thankful to the Department of Agronomy, The University of Agriculture Peshawar, Pakistan for helping and encouraging us to conduct these studies.

Author contributions
Amanullah (A.) wrote the manuscript and guided the two students (S.K. and F.K.) in the field as major supervisor. S.K. and F.K. conducted field experiments for two years. S.K. made the tables and figures and analyzed the data too. Imranuddin (I) added references to the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020