Abstract

Second-order semantic parsing with end-to-end mean-field inference has been shown good performance. In this work we aim to improve this method by modeling label correlations between adjacent arcs. However, direct modeling leads to memory explosion because second-order score tensors have sizes of \(O(n^3L^2) \) (\(n \) is the sentence length and \(L \) is the number of labels), which is not affordable. To tackle this computational challenge, we leverage tensor decomposition techniques, and interestingly, we show that the large second-order score tensors have no need to be materialized during mean-field inference, thereby reducing the computational complexity from cubic to quadratic. We conduct experiments on SemEval 2015 Task 18 English datasets, showing the effectiveness of modeling label correlations. Our code is publicly available at https://github.com/sustcsonglin/mean-field-dep-parsing.

1 Introduction

Syntactic dependency parsing has been well-studied and widely used in natural language processing. It provides approximation to the semantic relationship between dependent and head words, which is useful in many downstream natural language understanding tasks. However, the underlying tree-structured representation of syntactic dependency parsing limits the number and types of relationships that can be captured. For example, in Fig.1(a), the word cat is the subject of both wants and eat, and both of these two relationships could benefit downstream tasks. However, within a dependency tree, each word has exactly one head, thus the two relationships cannot be modeled simultaneously. To enrich the representation power, semantic dependency parsing (Oepen et al., 2014) aims to produce a labelled directed acyclic graph (DAG) for a given sentence, whereby each word can be attached to zero, one, or multiple heads. Fig.1(b-d) show three different semantic formalisms: DELPH-IN MRS (DM) (Flickinger et al., 2012), Predicate-Argument Structure (PAS) (Miyao and Tsujii, 2004), and Prague Semantic Dependencies (PSD) (Hajič et al., 2012), respectively.

Graph-based parsers achieve great success in dependency parsing. Higher-order parsers take into accounts interaction between multiple dependency arcs, thus are more powerful than first-order parsers. However, exact higher-order parsing is intractable except for projective tree parsing, making approximate decoding a necessity. Both syntactic and semantic dependency parsing can be formu-
lated as an inference problem on Markov Random Fields (MRFs) (Smith and Eisner, 2008; Wang et al., 2019) where dependency arcs are nodes, and higher-order parts (e.g., sibling and grandparent relationships) are factors, as shown in Fig. 2. In this sense, approximate inference algorithms of graphical models can be used for approximate parsing. Previous researchers have used loopy belief propagation (Smith and Eisner, 2008; Gormley et al., 2015; Wang et al., 2019), mean-field inference (Wang et al., 2019; Wang and Tu, 2020), and alternating directions dual decomposition (AD³) (Martins et al., 2011a, 2013; Martins and Almeida, 2014; Fonseca and Martins, 2020) for higher-order syntactic or semantic dependency parsing. The iterative inference steps of these inference algorithms are fully differentiable and can be unrolled as recurrent neural network layers for end-to-end learning (Domke, 2011; Zheng et al., 2015; Gormley et al., 2015; Wang et al., 2019; Wang and Tu, 2020; Niculae and Martins, 2020).

In this work, we aim to improve second-order semantic dependency parsing with end-to-end mean-field inference (Wang et al., 2019) by modeling label correlations between adjacent arcs. Intuitively, it is beneficial to model label correlations. For example, in Fig. 1(b), the arc \(\text{wants} \rightarrow \text{cat} \) labeled with \(\text{verb-AGR1} \) and the arc \(\text{wants} \rightarrow \text{eat} \) labeled with \(\text{verb-ARG2} \) are siblings. If the second-order sibling scores take labels into account, it is less likely to mistakenly classify both arcs as \(\text{verb-ARG1} \) or \(\text{verb-ARG2} \). Despite the obvious advantage of modeling label correlations, to the best of our knowledge, most if not all of existing second-order parsers only model unlabeled adjacent arcs, instead of the labeled ones. A possible reason is that taking labels into accounts would scale up the size of second-order score tensors from \(O(n^3) \) to \(O(n^3L^2) \), where \(n \) is the sentence length and \(L \) is the number of label, thereby leading to memory explosion. To tackle this computational challenge, we apply canonical-polyadic decomposition (CPD) (Rabanser et al., 2017) on second-order score tensors, and interestingly, mean-field inference can be greatly accelerated because the large second-order score tensors have no need to be materialized. Instead, only several smaller tensor multiplication operations are involved, thereby reducing the computational complexity from cubic to quadratic. Our contribution can be summarized as follows:

- We decrease the time and space complexity of second-order parsing with mean-field inference from cubic to quadratic.
- We validate the effectiveness of modeling label correlations on SemEval 2015 Task 18 English datasets.

2 Background

2.1 Semantic dependency parsing as energy minimization

Given a sentence \(x = x_0, x_1, \cdots, x_n \) with \(x_0 \) being the root token, its labeled dependency graph \(y \) can be represented as an order-3 indicator tensor \(y \in R^{(n+1) \times (n+1) \times L} \) where \(y_{ijl} = 1 \) iff there is an arc \(x_i \rightarrow x_j \) with label \(l \) and \(y_{ijl} = 0 \) otherwise; \(L \) the size of label set. Dependency parsing can be formulated as an inference problem on MRFs (Smith and Eisner, 2008). Each variable node \((i,j) \) stands for a dependency arc \(x_i \rightarrow x_j \), and arc correlations such as sibling and grandparent relationships are represented as factors. Fig. 2 shows an example. Inference with MRFs is known as energy minimization. We can define the negative energy

\[E(y) = -\sum_{(i,j)} \sum_{l} \phi_{ijl}(y_{ijl}) \]

where \(\phi_{ijl} \) is the pairwise potential function.

\[\phi_{ijl}(y_{ijl}) = \begin{cases} 0 & \text{if } y_{ijl} = 1 \\ \infty & \text{otherwise} \end{cases} \]

\[\phi_{ijl}(y_{ijl}) = \sum_{(k,l) \neq (i,j)} \phi_{ijkl}(y_{ijkl}) \]

\[\phi_{ijkl}(y_{ijkl}) = \begin{cases} 0 & \text{if } y_{ijkl} = 1 \\ \infty & \text{otherwise} \end{cases} \]

1We use \(y \) to represent a dependency graph or its indicator tensor alternatively whenever the context is clear.
of a labeled dependency graph \(y\) as:

\[
- E(y) = \sum_{ija} s_{ija}^\text{arc} y_{ija} + \frac{1}{\beta} \sum_{ijkb} s_{ijkb}^\text{sib} y_{ija} y_{ikb} + \sum_{ijkb} s_{ijkb}^\text{cop} y_{ija} y_{kjb} + \sum_{ijkb} s_{ijkb}^\text{grad} y_{ija} y_{ikb} + 1
\]

(1)

where \(s_{ija}^\text{arc} \in R^{(n+1)\times(n+1)\times L}\) is the arc score, \(s_{ijkb}^\text{sib}, s_{ijkb}^\text{cop}, s_{ijkb}^\text{grad} \in R^{(n+1)\times(n+1)\times L}\) are the sibling scores, co-parent scores and grandparent scores, respectively. The label correlations are captured by the second-order scores. For example, \(s_{ijkb}^\text{sib}\) specifies how likely an arc \(x_i \rightarrow x_j\) with label \(a\) and another arc \(x_i \rightarrow x_k\) with label \(b\) exist simultaneously. Then dependency parsing becomes a discrete energy minimization problem.

There are many perspectives and understandings of the softmax function, and thus the solution is:

\[
- F^m_{ij} = s_{ija}^\text{arc} + \sum_{kb} (s_{ijkab}^m y_{ikb} + s_{ijkb}^\text{cop} y_{kjb} + s_{ijkb}^\text{grad} y_{ikb})
\]

(4)

and we set the initial energy \(-F^0 = s_{ija}^\text{arc}\). In summary, mean-field inference has two main steps during iterations, (1) each node aggregates the scores from all neighbors and itself (Eq. 4) based on the posteriors of the last iteration, and (2) the posteriors are updated by softmax mapping on the aggregated scores (Eq. 2).

2.3 CP decomposition

Given a tensor \(T \in R^{N_1 \times N_2 \cdots N_m}\) with \(N_k\) possible values in the \(k\)th dimension for each \(k \in \{1 \cdots m\}\), canonical-polyadic decomposition (CPD) aims to find a compact representation of \(T\) by decomposing it into the sum of outer product of vectors:

\[
T = \sum_{r=1}^{R} \lambda_r w_{r1} \otimes w_{r2} \otimes \cdots \otimes w_{rm}
\]

(5)

where \(\lambda_r \in R\) is the scalar coefficient, and can be absorbed into \(\{w_{rk}\}\), thus we omit it throughout the paper; \(w_{rk} \in R^{N_k}\); \(\otimes\) is the outer product. In this way, we only need \(R \times (N_1 + N_2 + \cdots + N_k)\) parameters to compactly represent the original tensor \(T\) whose size grows exponentially.

3 Method

3.1 Speed-up mean-field inference via CPD

We aim to improve the computational complexity of Eq. 4. We take sibling scores for example to demonstrate our idea, and other second-order scores can be manipulated in a similar fashion. Consider \(t\) defined as:

\[
t_{ija} := \sum_{k,b} s_{ijkb}^\text{sib} y_{ikb}^m
\]

(6)

we find it convenient to use the Einstein summation (einsum) notations, and rewrite it as:

\[
t = \text{einsum}(\"ijkab,ikb \rightarrow ij\", s_{ijkb}^\text{sib}, y^m)
\]

The computational complexity is \(O(n^3 L^2)\). To reduce it, we apply CPD on the order-5 tensor \(s_{ijkb}^\text{sib}\),

\[
s_{ijkb}^\text{sib} = \sum_{r=1}^{R} w_{ri} \otimes w_{rj} \otimes w_{rk} \otimes w_{ra} \otimes w_{rb}
\]
where \(w_{ri}, w_{rj}, w_{rk} \in R^{n+1}, w_{ra}, w_{rb} \in R^{L} \). For each \(t \in \{i, j, k, a, b\} \), stacking all \(w_{rt} \) for all \(r \) column-wise, we obtain five matrices \(I^{sib}, J^{sib}, K^{sib} \in R^{(n+1) \times R}, A^{sib}, B^{sib} \in R^{L \times R} \). Then we have

\[
s^{sib}_{ijkl} = \sum_{r=1}^{R} I^{sib}_{ir} J^{sib}_{jr} K^{sib}_{kr} A^{sib}_{ar} B^{sib}_{br}
\]

and Eq. 6 can be written as:

\[
t'_{ija} = \sum_{kb} \sum_{r=1}^{R} I^{sib}_{ir} J^{sib}_{jr} K^{sib}_{kr} A^{sib}_{ar} B^{sib}_{br} y_{ikb}^{m}
\]

\[
t'_{ija} = \sum_{r=1}^{R} J^{sib}_{jr} A^{sib}_{ar} \sum_{kb} I^{sib}_{ir} K^{sib}_{kr} B^{sib}_{br} y_{ikb}^{m}
\]

The key insight here is that we can change the order of summation, cache \(\text{Term1} \) so that it can be reused for arbitrary \(j, a \), thereby reducing computational complexity. The above equation can be written as the following einsum form,

\[
t' = \text{einsum}("ir, kr, br, ikb \rightarrow ir", I^{sib}, K^{sib}, B^{sib}, y_{ikb}^{m})
\]

\[
t = \text{einsum}("ir, jr, ar \rightarrow ija", t', J^{sib}, A^{sib})
\]

which reduces the computational complexity from cubic to quadratic, i.e., \(O(n^2 LR) \) with \(R \ll nL \). Notably, \(s^{sib} \) is never materialized during iterations.

3.2 Neural scoring

We use neural networks to compute \(s^{arc}, Q^{rel} \) where \(Q \in \{I, J, K, A, B\}, rel \in \{sib, cop, grd\} \). Fig. 3 depicts our model architecture. We feed the sentence \(x = x_0 \cdots x_n \) (\(x_0 \) is the root token) into BERT (Devlin et al., 2019) to obtain contextualized word embeddings:

\[
c_i = \text{BERT}(x_i)
\]

and we apply mean-pooling to the last layer of BERT to obtain word-level embedding. We concatenate \(c \) with POS tag and Lemma embeddings:

\[
e_i = c_i \oplus e_i^{\text{pos}} \oplus e_i^{\text{lemma}}
\]

and feed \(e_0 \cdots e_n \) into a three-layer bidirectional LSTM (Hochreiter and Schmidhuber, 1997) (BiLSTM):

\[
\cdots, (b_i, \hat{b_i}), \cdots = \text{BiLSTM}([\ldots, e_i, \ldots])
\]
Then we use deep biaffine attention (Dozat and Manning, 2017) to compute s^{arc}:

$$
e_i^{head/child} = \text{MLP}_{head/child}([\overrightarrow{b_i}; \overleftarrow{b_i}])$$

$$s_{i,j,l}^{arc} = [e_i^{head}; 1]^T W^l [e_j^{child}; 1]$$

where $W^l \in \mathbb{R}^{(k+1) \times (k+1)}$ is trainable parameter.

For Q_{rel}, denote the label embedding matrix as P, we first obtain type-specific representations:

$$e_i^{rel,I/J/K} = \text{MLP}_{rel,I/J/K}([\overrightarrow{b_i}; \overleftarrow{b_i}])$$

$$e_i^{rel,A/B} = \text{MLP}_{rel,A/B}(P_i)$$

Then we apply affine transformations to compute Q_{rel}:

$$Q_i^{rel} = [e_i^{rel,Q}; 1] W_{rel,Q}$$

where $W_{rel,Q} \in \mathbb{R}^{(k+1) \times R}$.

3.3 Loss and parsing

After running n iterations of mean-field inference, we obtain the final energy F^n (Eq. 4). Let t_{ij} denote the index of the label of arc $x_i \rightarrow x_j$. If there is no such arc in the gold dependency graph, we set t_{ij} to the index of the NULL label, i.e., $t_{ij} = 0$. Then we use cross-entropy to define the loss L:

$$L = - \sum_{i,j} \log \frac{\exp(-F^n_{ijlt})}{\sum_{l'} \exp(-F^n_{ijl'})}$$

Since mean-field inference is fully differentiable, we use automatic differentiation to update parameters. For parsing, let $y_{ij}^* = \arg \max_l -F^n_{ijl}$. If $y_{ij}^* = 0$, i.e., the predicted label is NULL, then the arc $x_i \rightarrow x_j$ does not exist, otherwise we add it to the final predicted semantic graph.

4 Experiments

4.1 Setup

We conduct experiments on the SemEval 2015 Task 18 English datasets (Oepen et al., 2015). Sentences are annotated with three formalism: DM, PAS, and PSD. We use the same data splitting as previous works (Martins and Almeida, 2014; Du et al., 2015) with 33,964 sentences in the training set, 1,692 sentences in the development set, 1,410 sentences in the in-domain (ID) test set and 1,849 sentences in the out-of-domain (OOD) test set from the Brown Corpus (Francis and Kucera, 1982). We use POS tags and lemmas as additional features, use “bert-base-cased” as contextual word embedding. We report the labeled F-measure scores (LF1) in the ID and OOD test sets for each formalism. The reported results are averaged over three runs with different random seeds. In each run, we select the best model based on the performance on the development set.

4.2 Hyper-parameters

The hyper-parameters are summarized in Table 1. Besides, the maximum training epoch is set to 30 for DM; 20 for PAS and PSD.

Architecture hyper-parameters	
BERT embedding dimension	768
POS/Lemma embedding dimension	100
Embeddings dropout	0.33
BiLSTM encoder layers	3
BiLSTM encoder size	1000
BiLSTM layers dropout	0.33
MLP layers	1
MLP activation function	LeakyReLU
MLP layers dropout	0.33
MLP dimension	300
Rank dimension	300
Mean-field inference iterations (training)	2
Mean-field inference iterations (testing)	10

Hyper-parameters regarding training
BERT learning rate
Other learning rate
Optimizer
Scheduler
Warmup rate
Gradient clipping
Tokens per batch
Maximum training sentence length

Table 1: Summary of hyper-parameters.
Table 2: Labeled F1 scores on three formalisms of SemEval 2015 Task 18. +char and +lemma means using character and lemma embeddings. Pointer: Fernández-González and Gómez-Rodríguez (2020).

Parser	DM ID	OOD ID	PAS ID	OOD ID	PSD ID	OOD ID	Avg ID	OOD ID
Dozat and Manning (2017) +char+lemma	93.7	88.9	93.9	90.6	81.0	79.4	89.5	86.3
Kurita and Søgaard (2019) +lemma	92.0	87.2	92.8	88.8	79.3	77.7	88.0	84.6
Wang et al. (2019) (MF) +char+lemma	94.0	89.7	94.1	91.3	81.4	79.6	89.8	86.9
Wang et al. (2019) (LBP) +char+lemma	93.9	89.5	94.2	91.3	81.4	79.5	89.8	86.8
Pointer +char+lemma	93.9	89.6	94.2	91.2	81.8	79.8	90.0	86.9
Zhang et al. (2019) +char+BERTLARGE	92.2	87.1	-	-	-	-	-	-
Lindemann et al. (2019) +BERTBASE	94.1	90.5	94.7	92.8	82.1	81.6	90.3	88.3
Lindemann et al. (2020) +BERTBASE	93.9	90.4	94.7	92.7	81.9	81.6	90.2	88.2
He and Choi (2020) +lemma+Flair+BERTBASE	94.6	90.8	96.1	94.4	86.8	79.5	92.5	88.2
Pointer +char+lemma+BERTLARGE	94.4	91.0	95.1	93.4	82.6	82.0	90.7	88.8
Ours +lemma+BERTLARGE	95.0	91.8	95.4	93.5	82.7	82.2	91.0	89.2
w/o label correlation	94.8	91.7	94.6	93.0	82.4	81.6	90.6	88.8

6 Analysis

6.1 Ablation study

In Table 2, “w/o label correlation” amounts to the mean-field model of Wang et al. (2019), but uses the same neural encoder and hyper-parameters as ours for fair comparison. As we can see, modeling label correlations brings 0.6 and 0.4 average LF1 score improvement in ID and OOD (test sets) respectively, validating its effectiveness. The improvement on DM is the smallest: only 0.2 and 0.1 LF1 score in ID and OOD. We speculate that this is because DM has the most coarse-grained labels, as we can see from Fig.1 (b). PAS has a more fine-grained label set (Fig.1(b) vs. Fig.1(c) for example), and we observe a larger improvement: 0.8 and 0.5 LF1 in ID and OOD. Previous works found that PSD is the most difficult to learn as it has the most fine-grained label set and the largest label set size (Wang et al., 2019), and modeling label correlations results in 0.3 and 0.6 LF1 improvement in DM and PSD among all listed models.

Figure 4: LF1 of different sentence lengths on three semantic formalisms.
ID and OOD. This ablation study indicates that it is more advantageous to model label correlations when the label set size is large and the labels are fine-grained.

6.2 Error analysis

Fig.4 plots the LF1 against different sentence lengths in three semantic formalisms. We compare our model with “w/o label correlation”. We can see that modeling label correlations benefit the prediction of sentences of medium length (21-50). When the sentence length is small (1-20) or large (51-70), modeling label correlations has no clear advantages.

6.3 Speed comparison

To show the advantage of applying CPD to accelerate labeled mean-field inference, we compare the running speed of two cases: (1) apply CPD (“w/ CPD”) (2) not apply CPD (“w/o CPD”). The first case is what we described previously. In the latter case, we first recover the order-5 second-order score tensors, then run the standard mean-field inference (i.e., the not accelerated one). We set the rank size to 300, batch size to 1, the number of mean-field inference iteration to 3, and report the total time of running 100 times. The experiment is conducted on a single Titan V GPU. We plot the change of running time with the change of label set size L in Fig. 5. We can see that when $L = 1$, i.e., unlabeled mean-field inference, “w/ CPD” is slower. Although it has a quadratic complexity, which is lower than the cubic complexity of “w/o CPD”, it introduces a constant that is larger than the sentence length. When increasing the label size, the running time of “w/o CPD” grows quadratically, and becomes much slower than “w/ CPD”. Notably, it is common to have a label set size > 50, e.g., PSD has 91 labels, making “w/o CPD” impractical to use. Besides, “w/o CPD” quickly encounters the out-of-memory issue due to the large space complexity. On the other hand, “w/ CPD” is much more memory efficient, as the second-order score tensors have no need to be materialized.

7 Related work

Semantic dependency parsing. Since the Se-mEval 2015 Task 18 (Oepen et al., 2015), there are many studies in semantic dependency parsing, which can mainly be categorized into two groups: graph-based methods and transition-based methods. For graph-based methods, (Almeida and Martins, 2015) adapt the Turbo parser (Martins et al., 2013), which is originally designed for syntactic dependency parsing, to produce DAGs. It additionally leverages co-parent information (Martins and Almeida, 2014), and adopts AD$_3$ algorithm for approximate decoding. This work is extended by (Peng et al., 2017) with BiLSTM feature extraction and multi-task learning. Sun et al. (2017) propose a Maximum Subgraph parsing algorithm and Chen et al. (2018) conduct experiments using this algorithm. Cao et al. (2017) devise a novel algorithm for quasi-second-order Maximum Subgraph parsing. Dozat and Manning (2018) adapt the seminal Biaffine Parser (Dozat and Manning, 2017) to perform semantic dependency parsing. This work is extended by Wang et al. (2019) who introduce a similar deep Triaffine attention to score second-order factors, and unroll mean-field inference or belief propagation for end-to-end learning; and by He and Choi (2020) who use contextual string embeddings (i.e., Flair (Akbik et al., 2018)) to enhance performance. Jia et al. (2020) use CRF-autoencoder (Ammar et al., 2014) for semi-supervised semantic dependency parsing.

As for transition-based methods, Wang et al. (2018) adapt the list-based arc-eager transition system (Choi and McCallum, 2013) for neural semantic dependency parsing. Kurita and Søgaard (2019) use reinforcement learning to build DAGs sequentially. Fernández-González and Gómez-Rodríguez (2020) adapt the left-to-right dependency parser of Fernández-González and Gómez-Rodríguez (2019) to produce DAGs.

Higher-order syntactic dependency parsing.

Considering that there are many works adapting
higher-order syntactic parsers for semantic dependency parsing, it is worthy to introduce some related works of higher-order syntactic parsing. Before the deep learning era, first-order dependency parsing (McDonald et al., 2005) has been considered insufficient in capturing rich contextual information. To capture higher-order information, researchers develop many interesting dynamic programming algorithms for higher-order parsing (McDonald and Pereira, 2006; Carreras, 2007; Koo and Collins, 2010; Ma and Zhao, 2012). However, these algorithms have two drawbacks: (1) they can only handle projective trees as higher-order nonprojective parsing is NP-hard (McDonald and Pereira, 2006) and (2) they have a high parsing complexity when the order is greater than two. For instance, third-order parsing has an $O(n^4)$ parsing complexity (Koo and Collins, 2010). The parsing community then resorts to approximate algorithms to tackle the aforementioned problems. Smith and Eisner (2008) use loopy belief propagation to do third-order projective parsing in cubic time without much accuracy degeneration. Koo et al. (2010); Rush et al. (2010) use dual decomposition for higher-order nonprojective dependency parsing. However, the subgradient algorithm of dual decomposition is inefficient when there are many overlapping components (Martins et al., 2011a). To tackle this, Martins et al. (2011a, 2013) use alternating directions dual decomposition (AD3 (Martins et al., 2011b, 2015)) instead for faster convergence. In the deep learning age, researchers use neural networks for scoring instead of relying on hand-crafted features. Inspired by the deep biaffine attention (Dozat and Manning, 2017), Wang and Tu (2020); Zhang et al. (2020) use the deep triaffine attention to score second-order factors for their second-order parsers, and show better performance than the first-order biaffine parser. Wang and Tu (2020) use mean-field inference and Fonseca and Martins (2020) use AD3 for second-order nonprojective dependency parsing.

8 Conclusion

In this work, we have presented a simple and efficient method to model label correlations for second-order semantic dependency parsing. We leveraged CP decomposition to decrease the computational complexity of mean-field inference from cubic to quadratic. Experiments on SemEval 2015 Task 18 English datasets validated the effectiveness of modeling label correlations.

References

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual string embeddings for sequence labeling. In COLING 2018, 27th International Conference on Computational Linguistics, pages 1638–1649.

Mariana S. C. Almeida and André F. T. Martins. 2015. Lisbon: Evaluating TurboSemanticParser on multiple languages and out-of-domain data. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 970–973, Denver, Colorado. Association for Computational Linguistics.

Waleed Ammar, Chris Dyer, and Noah A. Smith. 2014. Conditional random field autoencoders for unsupervised structured prediction. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3311–3319.
Junjie Cao, Sheng Huang, Weiwei Sun, and Xiaojun Wan. 2017. Quasi-second-order parsing for 1-endpoint-crossing, pagenumber-2 graphs. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 24–34, Copenhagen, Denmark. Association for Computational Linguistics.

Xavier Carreras. 2007. Experiments with a higher-order projective dependency parser. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 957–961, Prague, Czech Republic. Association for Computational Linguistics.

Yufei Chen, Sheng Huang, Fang Wang, Junjie Cao, Weiwei Sun, and Xiaojun Wan. 2018. Neural maximum subgraph parsing for cross-domain semantic dependency analysis. In Proceedings of the 22nd Conference on Computational Natural Language Learning, pages 562–572, Brussels, Belgium. Association for Computational Linguistics.

Jinho D. Choi and Andrew McCallum. 2013. Transition-based dependency parsing with selectional branching. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1052–1062, Sofia, Bulgaria. Association for Computational Linguistics.

Shay B. Cohen and Michael Collins. 2012. Tensor decomposition for fast parsing with latent-variable pcfgs. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, pages 2528–2536.

Shay B. Cohen, Giorgio Satta, and Michael Collins. 2013. Approximate PCFG parsing using tensor decomposition. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 487–496, Atlanta, Georgia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Justin Domke. 2011. Parameter learning with truncated message-passing. CVPR 2011, pages 2937–2943.

Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for neural dependency parsing. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017. Conference Track Proceedings. OpenReview.net.

Timothy Dozat and Christopher D. Manning. 2018. Simpler but more accurate semantic dependency parsing. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 484–490, Melbourne, Australia. Association for Computational Linguistics.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and Xiaojun Wan. 2015. Peking: Building semantic dependency graphs with a hybrid parser. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 927–931, Denver, Colorado. Association for Computational Linguistics.

Mohammed Haroon Dupty and Wei Sun Lee. 2020. Neuralizing efficient higher-order belief propagation. CoRR, abs/2010.09283.

Greg Durrett and Dan Klein. 2014. A joint model for entity analysis: Coreference, typing, and linking. Transactions of the Association for Computational Linguistics, 2:477–490.

Daniel Fernández-González and Carlos Gómez-Rodríguez. 2019. Left-to-right dependency parsing with pointer networks. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 710–716, Minneapolis, Minnesota. Association for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-Rodríguez. 2020. Transition-based semantic dependency parsing with pointer networks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7035–7046, Online. Association for Computational Linguistics.

Dan Flickinger, Yi Zhang, and Valia Kordoni. 2012. Deepbank, a dynamically annotated treebank of the wall street journal. In Proceedings of the 11th International Workshop on Treebanks and Linguistic Theories, pages 85–96.

Erick Fonseca and André F. T. Martins. 2020. Revisiting higher-order dependency parsers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8795–8800, Online. Association for Computational Linguistics.

Winthrop Nelson Francis and Henry Kucera. 1982. Frequency analysis of English usage: Lexicon and usage. Houghton Mifflin.

Matthew R. Gormley, Mark Dredze, and Jason Eisner. 2015. Approximation-aware dependency parsing by belief propagation. Transactions of the Association for Computational Linguistics, 3:489–501.
Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall, Ondřej Bojar, Silvie Cinková, Eva Fučíková, Marie Mikulová, Petr Pajas, Jan Popelka, Jiří Semecký, Jana Sindlerová, Jan Štěpánek, Josef Toman, Zdeněk Urešová, and Zdeněk Žabokrtský. 2012. Announcing Prague Czech-English Dependency Treebank 2.0. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), pages 3153–3160, Istanbul, Turkey. European Language Resources Association (ELRA).

Han He and Jinho D. Choi. 2020. Establishing strong baselines for the new decade: Sequence tagging, syntactic and semantic parsing with BERT. In Proceedings of the Thirty-Third International Florida Artificial Intelligence Research Society Conference, Originally to be held in North Miami Beach, Florida, USA, May 17-20, 2020, pages 228–233. AAAI Press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Zixia Jia, Youmi Ma, Jiong Cai, and Kewei Tu. 2020. Semi-supervised semantic dependency parsing using CRF autoencoders. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6795–6805, Online. Association for Computational Linguistics.

Zixia Jia, Zhaohui Yan, Haoyi Wu, and Kewei Tu. 2022. Span-based semantic role labeling with argument pruning and second-order inference. In AAAI.

Terry Koo and Michael Collins. 2010. Efficient third-order dependency parsers. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 1–11, Uppsala, Sweden. Association for Computational Linguistics.

Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag. 2010. Dual decomposition for parsing with non-projective head automata. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1288–1298, Cambridge, MA. Association for Computational Linguistics.

Shuhei Kurita and Anders Søgaard. 2019. Multi-task semantic dependency parsing with policy gradient for learning easy-first strategies. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2420–2430, Florence, Italy. Association for Computational Linguistics.

D Khuê Lê-Huu and Karteek Alahari. 2021. Regularized frank-wolfe for dense crfs: Generalizing mean field and beyond. Advances in Neural Information Processing Systems, 34.

Zuchao Li, Hai Zhao, Rui Wang, and Kevin Parnow. 2020. High-order semantic role labeling. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1134–1151, Online. Association for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexander Koller. 2019. Compositional semantic parsing across graphbanks. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4576–4585, Florence, Italy. Association for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexander Koller. 2020. Fast semantic parsing with well-typedness guarantees. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3929–3951, Online. Association for Computational Linguistics.

Xuezhe Ma and Hai Zhao. 2012. Fourth-order dependency parsing. In Proceedings of COLING 2012: Posters, pages 785–796, Mumbai, India. The COLING 2012 Organizing Committee.

André Martins, Miguel Almeida, and Noah A. Smith. 2013. Turning on the turbo: Fast third-order non-projective turbo parsers. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 617–622, Sofia, Bulgaria. Association for Computational Linguistics.

André Martins, Noah Smith, Mário Figueiredo, and Pedro Aguiar. 2011a. Dual decomposition with many overlapping components. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 238–249, Edinburgh, Scotland, UK. Association for Computational Linguistics.

André F. T. Martins and Mariana S. C. Almeida. 2014. Priberam: A turbo semantic parser with second order features. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 471–476, Dublin, Ireland. Association for Computational Linguistics.

André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q. Aguiar, Noah A. Smith, and Eric P. Xing. 2011b. An augmented lagrangian approach to constrained MAP inference. In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 169–176. Omnipress.

André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q. Aguiar, Noah A. Smith, and Eric P. Xing. 2015. Ad3: alternating directions dual decomposition for MAP inference in graphical models. J. Mach. Learn. Res., 16:495–545.

Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online large-margin training of dependency parsers. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages 91–98, Ann Arbor, Michigan. Association for Computational Linguistics.
Ryan McDonald and Fernando Pereira. 2006. \textit{Online learning of approximate dependency parsing algorithms}. In 11th Conference of the European Chapter of the Association for Computational Linguistics, pages 81–88, Trento, Italy. Association for Computational Linguistics.

Yusuke Miyao and Jun’ichi Tsujii. 2004. \textit{Deep linguistic analysis for the accurate identification of predicate-argument relations}. In \textit{COLING 2004, 20th International Conference on Computational Linguistics, Proceedings of the Conference, 23-27 August 2004, Geneva, Switzerland}.

Jason Naradowsky, Sebastian Riedel, and David Smith. 2012a. \textit{Improving NLP through marginalization of hidden syntactic structure}. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 810–820, Jeju Island, Korea. Association for Computational Linguistics.

Jason Naradowsky, Tim Vieira, and David Smith. 2012b. \textit{Grammarless parsing for joint inference}. In Proceedings of COLING 2012, pages 1995–2010, Mumbai, India. The COLING 2012 Organizing Committee.

Vlad Niculae and André F. T. Martins. 2020. \textit{Lp-sparsemap: Differentiable relaxed optimization for sparse structured prediction}. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 7348–7359. PMLR.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan Hajič, and Zdenka Urešová. 2015. \textit{SemEval 2015 task 18: Broad-coverage semantic dependency parsing}. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 915–926, Denver, Colorado. Association for Computational Linguistics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina Ivanova, and Yi Zhang. 2014. \textit{SemEval 2014 task 8: Broad-coverage semantic dependency parsing}. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 63–72, Dublin, Ireland. Association for Computational Linguistics.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017. \textit{Deep multitask learning for semantic dependency parsing}. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pages 93–99, Suzhou, China. Association for Computational Linguistics.

Letian Peng, Zuchao Li, and Hai Zhao. 2021. \textit{Sparse fuzzy attention for structured sentiment analysis}. CoRR, abs/2109.06719.

Stephan Rabanser, Oleksandr Shchur, and Stephan Günnemann. 2017. \textit{Introduction to tensor decompositions and their applications in machine learning}. CoRR, abs/1711.10781.

Alexander M. Rush, David Sontag, Michael Collins, and Tommi Jaakkola. 2010. \textit{On dual decomposition and linear programming relaxations for natural language processing}. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1–11, Cambridge, MA. Association for Computational Linguistics.

David Smith and Jason Eisner. 2008. \textit{Dependency parsing by belief propagation}. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 145–156, Honolulu, Hawaii. Association for Computational Linguistics.

Weiwei Sun, Junjie Cao, and Xiaojun Wan. 2017. \textit{Semantic dependency parsing via book embedding}. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 828–838, Vancouver, Canada. Association for Computational Linguistics.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019. \textit{Second-order semantic dependency parsing with end-to-end neural networks}. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4609–4618, Florence, Italy. Association for Computational Linguistics.

Xinyu Wang and Kewei Tu. 2020. \textit{Second-order neural dependency parsing with message passing and end-to-end training}. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pages 81–88, Vancouver, Canada. Association for Computational Linguistics.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting Liu. 2018. \textit{A neural transition-based approach for semantic dependency graph parsing}. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 5561–5568. AAAI Press.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021a. \textit{Neural bi-lexicalized PCFG induction}. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 2688–2699, Online. Association for Computational Linguistics.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021b. \textit{PCFGs can do better: Inducing probabilistic context-free grammars with many symbols}. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van Durme. 2019. Broad-coverage semantic parsing as transduction. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3786–3798, Hong Kong, China. Association for Computational Linguistics.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Efficient second-order TreeCRF for neural dependency parsing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3295–3305, Online. Association for Computational Linguistics.

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip H. S. Torr. 2015. Conditional random fields as recurrent neural networks. In 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 1529–1537. IEEE Computer Society.

Shilin Zhou, Qingrong Xia, Zhenghua Li, Yu Zhang, and Min Zhang. 2021. Fast and accurate span-based semantic role labeling as graph parsing. CoRR, abs/2112.02970.