Efficient Pairings on Twisted Elliptic Curve

Yasuyuki Nogami
Communication Network Engineering,
Okayama University,
3-1-1, Tsushima-naka,
Okayama, 7008530, Japan
nogami@cne.okayama-u.ac.jp

Masataka Akane
Mitsubishi Electric Corporation,
Inazawa Works
1, Hishimachi, Inazawashi,
4928161, Aichi, Japan

Yumi Sakemi
Communication Network Engineering,
Okayama University,
3-1-1, Tsushima-naka,
Okayama, 7008530, Japan
sakemi@cne.okayama-u.ac.jp

Yoshitaka Morikawa
Communication Network Engineering,
Okayama University,
3-1-1, Tsushima-naka,
Okayama, 7008530, Japan
morikawa@cne.okayama-u.ac.jp

Abstract

This paper proposes an efficient implementation of Ate pairing on twisted elliptic curve. Suppose that a pairing-friendly elliptic curve E has a twisted elliptic curve E' of degree d, and let ψ_d be an isomorphic map from $E' (\mathbb{F}_{p^k})$ to the corresponding subgroup of $E(\mathbb{F}_{p^d})$. Then, consider $G_1' = \psi_d^{-1}(G_1)$ and $G_2' = \psi_d^{-1}(G_2)$ for G_1, G_2 at Ate pairing α. Let $P \in G_1$, $Q \in G_2$, $P' \in G_1'$ and $Q' \in G_2'$, the authors have shown $\alpha(Q, P) = f_{t-1,Q}(P)(p^k-1)/r = f_{t-1,Q'}(P')(p^k-1)/r$. This paper shows that this new Ate pairing, namely cross twisted (Xt) Ate pairing, provides an quite efficient implementation.

1 Introduction

Recently, pairing-based cryptographic applications such as ID-based cryptography [1] and group signature authentication [2] have received much attentions. In order to make these applications practical, pairing calculation needs to be efficiently carried out. For this purpose, several efficient pairings such as Tate [3], Ate [4], twisted Ate [5], and subfield-twisted Ate [6], [8] have been proposed. Consider an elliptic curve $E: y^2 = x^3 + ax + b$, $a, b \in \mathbb{F}_p$ and let its order $\# E(\mathbb{F}_p)$ be a prime number r for simplicity. Then, let the embedding degree be k, r divides $p^k - 1$ but not divide $p^i - 1$, $1 \leq i < k$. Moreover, r^2 divides $\# E(\mathbb{F}_{p^k})$ and thus pairing is considered on r-torsion group of $E(\mathbb{F}_{p^k})$.

Tate, Ate, and twisted Ate pairings can be roughly classified by the inputs for Miller’s algorithm [4]. In general, as the inputs, Miller’s algorithm needs two rational points and the number of calculation loops. Tate pairing $\tau(\cdot, \cdot)$ uses rational points $P \in E(\mathbb{F}_p)$ and $Q \in E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k})$, and the number of loops of Miller’s algorithm is $\lfloor \log_2 r \rfloor$. Tate pairing mainly uses P for elliptic curve additions and line calculations in the loops. Q is used only for assignment calculations. The output of Miller’s algorithm is denoted by $f_{r,P}(Q)$. Ate pairing $\alpha(\cdot, \cdot)$ uses rational points $P \in E(\mathbb{F}_p)$ and $Q \in E[r] \cap \ker(\phi - [p])$, but the number of loops is $\lfloor \log_2(t - 1) \rfloor$, where ϕ is Frobenius map for rational point, $E[r]$ is the subgroup of rational points of order r, and t is the Frobenius trace of $E(\mathbb{F}_p)$, that is $\# E(\mathbb{F}_p) = r = p + 1 - t$. The number of loops is about half of that of Tate pairing; however, Ate pairing mainly uses Q elliptic curve additions and line calculations in the loops. The output of Miller’s algorithm is denoted by $f_{t-1,Q}(P)$ and thus plain Ate pairing is slower than Tate pairing.

In the case that the embedding degree k is equal to $2e, 3e, 4e, 6e$, where e is a positive integer, it is known that an isomorphic map exists between a certain subgroup of
$E(\mathbb{F}_{p^k})$ and subfield–twisted curve $E'(\mathbb{F}_{p^e})$. Let $E : y^2 = x^3 + b$, $b \in \mathbb{F}_p$, be Barreto–Naehrig curve whose embedding degree is 12, Devegi et al. [6] accelerated Ate pairing by using subfield–twisted BN curve $E'(\mathbb{F}_{p^e})$ and OEF (optimal extension field) technique [7], where the twisted BN curve is given by $E' : y^2 = x^3 + b v^{-1}$ and v is a quadratic and cubic non residue in subfield \mathbb{F}_{p^e}. Denoting the isomorphic map from $E'(\mathbb{F}_{p^e})$ to the corresponding subgroup of $E(\mathbb{F}_{p^e})$ by ψ_6, it calculates $f_{t-1}.\psi_6(Q)(P)^{(p^{12}-1)/r}$, $P \in E(\mathbb{F}_p)$, $Q' \in \psi_6^{-1}(E[\mathbb{F}] \cap \text{Ker}(\phi - [\psi]))$ for which subfield–twisted curve $E'(\mathbb{F}_{p^e})$ and Q' are efficiently used. In this case, since the twist degree $d = k/e$ is 6, it is called sextic twist.

In this paper, first let us suppose

$$G_1 = E[\mathbb{F}] \cap \text{Ker}(\phi - [1]),$$
$$G_2 = E[\mathbb{F}] \cap \text{Ker}(\phi - [p]),$$

where E is a pairing–friendly curve of embedding degree $k = 2e, 3e, 4e, 6e$. Let E' be degree $d = k/e$ twisted curve over \mathbb{F}_{p^e}. Then, one can consider an isomorphic map between $E(\mathbb{F}_{p^e})$ and $E'(\mathbb{F}_{p^e})$. Denoting it from $E'(\mathbb{F}_{p^e})$ to $E(\mathbb{F}_{p^e})$ by ψ_d, consider $G'_1 = \psi_d^{-1}(G_1)$ and $G'_2 = \psi_d^{-1}(G_2)$. Using $Q' \in G'_2$ and $P' \in G'_1$, this paper proposes a new Ate pairing that calculates

$$\alpha(Q', P') = f_{t-1}.\psi_d(Q')(P')^{(p^k-1)/r},$$

namely cross twisted (Xt) Ate pairing. Compared to plain Ate pairing and the previous work [6], Xt–Ate pairing can substantially use arithmetic operations in subfield \mathbb{F}_{p^e}, thus it leads to quite efficient implementation of Ate pairing. After that, this paper shows a simulation result by using BN curve and sextic twist. When order r is a 254–bit prime number, it is shown that Xt–Ate pairing with BN curve is carried out within 14.0 milli–seconds for which the authors uses Pentium4 (3.6GHz), C language, and GNU MP library [9]. Compared to the previous subfield–twisted Ate pairing [6], Xt–Ate pairing made the algorithmic implementation and cost evaluation much clearer.

Throughout this paper, p and k denote characteristic and embedding degree, respectively. \mathbb{F}_{p^e} denotes k-th extension field over \mathbb{F}_p, and $\mathbb{F}_{p^e}^*$ denotes the multiplicative group in \mathbb{F}_{p^e}. $X \mid Y$ and $X \nmid Y$ mean that X divides and does not divide Y, respectively.

2 Fundamentals

In this section, let us briefly go over some fundamentals of elliptic curve, twist technique, Ate pairing, and Miller’s algorithm.

2.1 Elliptic Curve

Let \mathbb{F}_p be prime field and E be an elliptic curve over \mathbb{F}_p defined as

$$E : y^2 = x^3 + ax + b, \ a, b \in \mathbb{F}_p.$$

$E(\mathbb{F}_p)$ that is a set of rational points on the curve, including the infinity point \mathcal{O}, forms an additive Abelian group. Let $\#E(\mathbb{F}_p)$ be its order, consider a large prime r that divides $\#E(\mathbb{F}_p)$. The smallest positive integer k such that r divides $p^k - 1$ is especially called embedding degree. One can consider pairings such as Tate and Ate pairings over $E(\mathbb{F}_p)$. $\#E(\mathbb{F}_p)$ is usually given as

$$\#E(\mathbb{F}_p) = p + 1 - t,$$

where t is the Frobenius trace of $E(\mathbb{F}_p)$.

2.2 Twist Technique

When embedding degree k is equal to $2e$, where e is a positive integer, from Eq.(3) the following quadratic–twisted elliptic curve E' is given.

$$E' : y^2 = x^3 + av^{-2}x + bv^{-3}, \ a, b \in \mathbb{F}_p.$$

where v is a quadratic non residue in \mathbb{F}_{p^e}. Then, between $E'(\mathbb{F}_{p^e})$ and $E(\mathbb{F}_{p^e})$, the following isomorphism is given:

$$\psi_2 : \begin{cases} E'(\mathbb{F}_{p^e}) & \rightarrow E(\mathbb{F}_{p^e}), \\ (x, y) & \mapsto (x, yv^3/2). \end{cases}$$

In this case, E' is called quadratic–twisted curve.

In the same, when embedding degree k satisfies the following conditions, we can respectively consider the twisted curves.

- $k = 3e$ (cubic twist)

 $$E : y^2 = x^3 + b, \ b \in \mathbb{F}_p,$$

 $$E' : y^2 = x^3 + bv^{-2},$$

 where v is a cubic non residue in \mathbb{F}_{p^e} and $3 \mid (p - 1)$.

 $$\psi_3 : \begin{cases} E'(\mathbb{F}_{p^e}) & \rightarrow E(\mathbb{F}_{p^e}), \\ (x, y) & \mapsto (xv^2/3, yv). \end{cases}$$

A bilinear map:

\[E : y^2 = x^3 + ax, \ b \in \mathbb{F}_p, \]
\[E' : y^2 = x^3 + av^{-1}, \]
where \(v \) is a quadratic non residue in \(\mathbb{F}_p \), and \(4 \mid (p - 1) \).

Thus, when twist degree \(d \) is even, \(x \)-coordinate \(x_{1/2d} \) belongs to proper subfield \(\mathbb{F}_{p^{2d/2}} \) because \(v^{2d/2} \in \mathbb{F}_{p^{2d/2}} \). In addition, when \(d = 2 \) or \(4 \), the coefficient of \(x \) of the twisted curve \(E' \) can be written as \(av^{-4/d} \).

2.3 Ate Pairing

Letting \(P \in \mathbb{G}_1 \) and \(Q \in \mathbb{G}_2 \), Ate pairing \(\alpha \) is defined as a bilinear map:

\[\alpha : \mathbb{G}_2 \times \mathbb{G}_1 \rightarrow \mathbb{F}_{p^{k/2}}((\mathbb{F}_{p^{k/2}})^r \setminus \ker(\phi - [1])), \]
where \(\mathbb{G}_1 \) and \(\mathbb{G}_2 \) are denoted by:

\[\mathbb{G}_1 = E[r] \cap \ker(\phi - [1]), \]
\[\mathbb{G}_2 = E[r] \cap \ker(\phi - [p]). \]

\(E[r] \) denotes a subgroup of order \(r \) in \(E(\mathbb{F}_{p^k}) \) and \([i] \) denotes \(i \) times scalar multiplication for a rational point. \(\phi \) denotes Frobenius endomorphism, i.e.,

\[\phi : E \rightarrow E : (x, y) \mapsto (x^p, y^p), \]
where \(x \) and \(y \) are \(x \)-coordinate and \(y \)-coordinate of a rational point, respectively. In general, \(A = f_{l-1,q}(P) \) is calculated by Miller's algorithm [3] and then so-called final exponentiation \(A^{(p^k-1)/r} \) follows.

2.4 Miller's Algorithm

Several improvements for Miller's algorithm have been given. Barreto et al. proposed BKLS algorithm. Algorithm 1 shows the calculation flow of the BKLS algorithm for \(f_{s,q}(P) \). It consists of functions shown in Table 1.

In this algorithm, main computation part is Step 4, Step 5, Step 7 and Step 8. In this paper, let Step 4 and Step 5 be main routine, and let Step 7 and Step 8 be sub routine. In the case of Ate pairing, \(P(x_P, y_P) \in \mathbb{G}_1, Q(x_Q, y_Q) \in \mathbb{G}_2, s = t - 1 \), and then \(f_{s,q}(P) \) becomes an element in \(\mathbb{F}_{p^{k/2}} \).

Algorithm 1: BKLS Algorithm
Input: \(s, P \in \mathbb{G}_1, Q \in \mathbb{G}_2 \)
Output: \(f_{s,q}(P) \in \mathbb{F}_{p^{k/2}} \)
Procedure:
1. \(f \leftarrow 1 \)
2. \(T \leftarrow Q \)
3. for \(i \leftarrow \lfloor \log_2 s \rfloor \) down to 1 do:
4. \(f \leftarrow f^2 \cdot l_{T,T}(P)/l_{T,T,\phi}(P) \)
5. \(T \leftarrow T + T \)
6. if \(s_i = 1 \) then:
7. \(f \leftarrow f \cdot l_{T+Q,T}(P)/l_{T+Q,\phi}(P) \)
8. \(T \leftarrow T + Q \)
9. end if
10. end for
11. return \(f \)

Table 1. Notations in Algorithm 1
\(s_i \): \(i \)-th bit of \(s \) from the lowest bit.
\(l_{T,T} \): the tangent line at \(T \).
\(l_{T,Q} \): the line passing through \(T \) and \(Q \).
\(l_{2T,\phi} \): the vertical line passing through \(2T \).
\(l_{T+Q,\phi} \): the vertical line passing through \(T + Q \).
From the discussion in Sec. 2.3, Ate pairing operations by isomorphic maps such as Eq. (6). Thus, twist Eq. (5), it can be efficiently reduced to subfield arithmetic operations in doubling that use rational points in.

3.1 Xt–Ate Pairing

In this section, a new fast pairing, namely *cross twisted* (Xt–) Ate pairing, is proposed.

3.1.1 Xt–Ate Pairing

Supposing that the pairing–friendly curve \(E \) has a degree \(d = k/e \) twist and \(E' \) be a \(d \)-th twisted curve such as Eq. (5). From the discussion in Sec. 2.3, Ate pairing \(\alpha \) is given as

\[
\begin{align*}
\alpha : \mathbb{G}_2 \times \mathbb{G}_1 & \rightarrow \mathbb{F}_{p^k}^* / (\mathbb{F}_{p^k}^*)^r, \\
(Q, P) & \mapsto f_{s, Q}(P)(p^k - 1)/r.
\end{align*}
\]

\(\alpha' \)

\[
\alpha'(Q', P') = \alpha(Q, P).
\]

The main feature of Xt–Ate pairing is that the isomorphic map \(\psi_d^{-1} \) is to \(P = P' = \psi_d^{-1}(P) \). In other words, \(P \in E(\mathbb{F}_p) \) is extended to \(P' \in E'(\mathbb{F}_{p^k}) \) and \(Q \in E(\mathbb{F}_p) \) is compressed to \(Q' \in E'(\mathbb{F}_{p^k}) \). Thus, the authors named it *cross twisted* (Xt–) Ate pairing. \(\text{Fig. 1} \) shows the key map of Xt–Ate pairing with \(\mathbb{G}_1' \) and \(\mathbb{G}_2' \). In spite of the inputted points \(P' \) and \(Q' \) on the twisted curve, the miller loop \(s \) is given by \(t - 1 \), where \(t \) is the trace of \(E(\mathbb{F}_p) \).

As shown in the algorithm, elliptic curve addition and doubling that use rational points in \(E(\mathbb{F}_{p^k}) \) needs arithmetic operations in \(\mathbb{F}_{p^k} \). If it has *subfield–twisted* curve such as Eq.(5), it can be efficiently reduced to subfield arithmetic operations by isomorphic maps such as Eq.(6). Thus, twist degree \(d \) is preferred to be large such as 6, that is sextic twist. When the \(d \) is even number, the denominator calculations in Algorithm 1 can be ignored.

3 Main Proposal

In this section, a new fast pairing, namely *cross twisted* (Xt–) Ate pairing, is proposed.

3.1 Xt–Ate Pairing

The following three lemmas lead to Eq.(16).

Lemma 1.

\[
d(p^k - 1) \mid (p^k - 1)/r.
\]

Proof. From the definition of embedding degree,

\[
r \nmid (p^k - 1).
\]

Figure 1. Xt–Ate pairing with \(\mathbb{G}_1' \) and \(\mathbb{G}_2' \)

The following three lemmas lead to Eq.(16).

Lemma 1.

\[
d(p^k - 1) \mid (p^k - 1)/r.
\]

Proof. From the definition of embedding degree,

\[
r \nmid (p^k - 1).
\]
Then, we have
\[
\frac{(p^k - 1)}{p^d - 1} = \left(p^{(d-1)e} + p^{(d-2)e} + \ldots + 1 \right) / r
\]
\[
= \left(\sum_{i=1}^{d} p^{(d-i)e} \right) / r
\]
\[
= \left(\sum_{i=1}^{d} (p^{(d-i)e} - 1) + d \right) / r. \quad (19)
\]
Since \(d \mid (p - 1) \) and \(\gcd(d, r) = 1 \), this lemma is shown. \(\blacksquare \)

Lemma 2.

\[
l_{T', T'}(P')^{(p^k - 1)/r} = l_{T, T}(P)^{(p^k - 1)/r}, \quad (20)
\]
\[
l_{T', Q'}(P')^{(p^k - 1)/r} = l_{T, Q}(P)^{(p^k - 1)/r}. \quad (21)
\]

Proof. Using \(T', Q' \in \mathbb{F}_{p^e} \) such that \(T = \psi_d(T') \) and \(Q = \psi_d(Q') \), the slopes \(\lambda_{T, T} \) and \(\lambda_{T, Q} \) are written as

\[
\lambda_{T, T} = \frac{3x_T^2 + a}{2y_T} = 3 \left(x_T u^{2/d} \right)^2 + a
\]
\[
= \frac{3x_T^2 + a}{2x_T v^{3/d}} \cdot \frac{u^{4/d}}{v^{3/d}}
\]
\[
= \frac{3x_T^2 + a'}{2x_T} \cdot \frac{u^{4/d}}{v^{3/d}}
\]
\[
= \lambda_{T', T'} \cdot v^{1/d}. \quad (22a)
\]

\[
\lambda_{T, Q} = \frac{y_Q - y_T}{x_Q - x_T}
\]
\[
= \frac{y_Q u^{3/d} - y_T u^{3/d}}{x_Q u^{2/d} - x_T u^{2/d}}
\]
\[
= \frac{y_Q - y_T}{x_Q - x_T} \cdot \frac{u^{3/d}}{u^{2/d}}
\]
\[
= \lambda_{Q', T'} \cdot v^{1/d}. \quad (22b)
\]

Thus, regardless of whether or not \(T = Q \), we have
\[
\lambda_{T, Q} = \lambda_{T', Q'} v^{1/d}. \quad (23)
\]

Then, we have
\[
l_{T, Q}(P) = (x_P - x_T) \lambda_{T, Q} - (y_P - y_T)
\]
\[
= (x_P u^{2/d} - x_T u^{2/d}) \lambda_{T', Q'} v^{1/d}
\]
\[
= (y_P - y_T) (x_P - x_T) \lambda_{T', Q'} v^{3/d} - (y_P - y_T) u^{3/d}
\]
\[
= l_{T', Q'}(P') \cdot v^{3/d}. \quad (24)
\]
Since \(v \in \mathbb{F}_{p^e} \), the following equation holds.
\[
\left(v^{3/d} \right)^{((p^e - 1)/d)} = \left(v^{(p^e - 1)} \right)^3 = 1. \quad (25)
\]
Therefore, according to **Lemma 1**, Eq.(24) becomes 1 at final exponentiation of \(\text{Xt–Ate pairing} \). Thus, this lemma is shown. \(\blacksquare \)

Lemma 3.

\[
l_{T', \text{O}}(P')^{(p^k - 1)/r} = l_{T, \text{O}}(P)^{(p^k - 1)/r}. \quad (26)
\]

Proof. Since the following equation holds,
\[
l_{T, \text{O}}(P) = x_P - x_T
\]
\[
= x_P u^{2/d} - x_T u^{2/d}
\]
\[
= (x_P - x_T) \cdot u^{2/d}
\]
\[
= l_{T', \text{O}}(P') \cdot v^{2/d}. \quad (27)
\]
noting \(v \in \mathbb{F}_{p^e} \), we have
\[
\left(u^{2/d} \right)^{((p^e - 1)/d)} = \left(v^{(p^e - 1)} \right)^2 = 1. \quad (28)
\]
Therefore, according to **Lemma 1**, Eq.(27) becomes 1 at final exponentiation of \(\text{Xt–Ate pairing} \). Thus, this lemma is shown. \(\blacksquare \)

\(\text{f}_{t-1, Q}(P) \) is calculated with \(l_{T, T}(P) \), \(l_{T, Q}(P) \), and \(l_{T, \text{O}}(P) \). Therefore, according to **Lemma 2** and **Lemma 3**, Eq.(16) is shown.

3.2 Calculation Procedure

Suppose the following \(d \)-th twisted curve \(E' \) over \(\mathbb{F}_{p^e} \).
\[
E' : y^2 = x^3 + a' x + b', \quad a', b' \in \mathbb{F}_{p^e}. \quad (29)
\]
Noting that \(P' \in G'_1 \subset E'(\mathbb{F}_{p^e}) \) and \(Q' \in G'_2 \subset E'(\mathbb{F}_{p^e}) \), Xt–Ate pairing is computed by **Algorithm 2**.
3.3 Cost Evaluation

We evaluate the calculation cost of Xt–Ate pairing. In order to simplify the cost evaluation, we only take the calculation of Eq. (32b) can be ignored.

In practice, the main routine (Step 4&5 in Algorithm 2) and the sub routine (Step 7&8 in Algorithm 2) are computed as follows. First, compute

\[
\lambda_{T', T''} = \frac{3x_{T''} + a'}{2y_{T''}}, \quad \lambda_{T', Q'} = \frac{y_{Q'} - T'}{x_{Q'} - x_{T'}}.
\]

Regardless of whether or not \(T' = Q' \), we have

\[
x_{T' + Q'} = \frac{\lambda_{T', Q'} - x_{Q'} - x_{T'}}{\lambda_{T', Q'} - y_{Q'}}, \quad y_{T' + Q'} = \frac{\lambda_{T', Q'} - x_{Q'} - x_{T'}}{\lambda_{T', Q'} - y_{Q'}},
\]

and the next line calculations are computed as

\[
l_{T', Q'}(P') = (x_{P'} - x_{Q'}) \lambda_{T', Q'} - (y_{P'} - y_{Q'}),
\]

\[
l_{T', Q'}(P') = x_{P'} - x_{T'}.
\]

Every calculation excluding the one multiplication shown in Eq. (32a) are carried out in subfield \(\mathbb{F}_{p^e} \). Thus, most of this algorithm is efficiently carried out by subfield arithmetic operations in \(\mathbb{F}_{p^e} \).

Note that the Eq.(32a) needs the multiplication between elements in \(\mathbb{F}_{p^e} \) and \(\mathbb{F}_{p^{k-1}} \). When the twist degree \(d \) is even number, it has a little advantage. Of course, when the \(d \) is even, as previously introduced, the calculation of Eq.(32b) can be ignored.

The main routine and the sub routine of Xt–Ate pairing can be written as the following algorithms.

Algorithm 2 : Xt–Ate pairing

Input : \(s = t - 1, P' \in \mathbb{G}_1', Q' \in \mathbb{G}_2' \)
Output : \(\alpha'(Q', P') = f_{s, Q'}(P')\rho^s/r \)

Procedure :
1. \(f \leftarrow 1 \)
2. \(T' \leftarrow Q' \)
3. for \(i \leftarrow \lfloor \log_2 s \rfloor \) downto 1 do:
 4. \(f \leftarrow f^2 \cdot l_{T', T''}(Q')/l_{2T', Q'}(P') \)
 5. \(T'' \leftarrow T' + T'' \)
 6. if \(s_i = 1 \) then:
 7. \(f \leftarrow f \cdot l_{T', Q'}(P')/l_{T'+Q', Q'}(P') \)
 8. \(T' \leftarrow T' + Q' \)
 9. end if
10. end for
11. \(f \leftarrow f^{(p^s-1)/r} \)
12. return \(f \)

Main routine (Step 4&5 in Algorithm 2)

Procedure	Computation
1.	\(\lambda \leftarrow (3x_{T''} + a')/(2y_{T''}) \)
2.	\(x_{2T''} \leftarrow \lambda^2 - 2x_{T''} \)
3.	\(y_{2T''} \leftarrow (x_{T''} - x_{2T''}) \lambda - y_{T''} \)
4.	\(f \leftarrow f^2 \)
5.	\(l_{T', T'}(P') \)
6.	\(l_{2T', Q'}(P') \leftarrow x_{P'} - x_{2T'} \lambda - y_{P'} - y_{T'} \)
7.	\(f \leftarrow f \cdot l_{T', T'}(P') \)
8.	\(f/l_{2T', Q'}(P') \)

Sub routine (Step 7&8 in Algorithm 2)

Procedure	Computation
1.	\(T' + Q' \)
2.	\(l_{T', Q'}(P') \)
3.	\(f/l_{T'+Q', Q'}(P') \)

calculation costs for multiplication, squaring, and inversion in finite field into account. Notations in Table 2 are used.

Table 2. Notations for cost evaluation

Notation	Description
\(M_i \)	the calculation costs of a multiplication, squaring, and inversion in \(\mathbb{F}_{p^i} \), respectively.
\(M_{ij} \)	the calculation cost of a multiplication between two elements in \(\mathbb{F}_{p^i} \) and \(\mathbb{F}_{p^j} \).
\(\text{Hw}(s) \)	the Hamming weight of \(s \).

Let the calculation costs of main routine and sub routine in Algorithm 2 be \(T_{\text{MAIN}} \) and \(T_{\text{SUB}} \), respectively. When the number of the calculation loops of Miller’s algorithm is \(\lfloor \log_2 s \rfloor \), Xt–Ate pairing excluding the final exponentiation needs the following cost.

\[
(\lfloor \log_2 s \rfloor - 1)T_{\text{MAIN}} + (\text{Hw}(s) - 1)T_{\text{SUB}},
\]

−1’s in the above equation denote that it is no needed to calculate for the most significant bit.

When \(d \) is even such as 2, 4, and 6, \(T_{\text{MAIN}} \) and \(T_{\text{SUB}} \)
are given as

\[\text{TMAIN} = 2S_e + 2M_e + I_e + M_{e,k/gcd(d,2)} + S_k + M_k, \]
\[\text{TSUB} = S_e + 2M_e + I_e + M_{e,k/gcd(d,2)} + M_k. \]

(34)

When \(d = 3 \), since the vertical line calculation is needed, they become

\[\text{TMAIN} = 2S_e + 2M_e + I_e + M_{e,k/gcd(d,2)} + S_k + 2M_k, \]
\[\text{TSUB} = S_e + 2M_e + I_e + M_{e,k/gcd(d,2)} + 2M_k. \]

(35)

Following the cost evaluation manner of [5], [4], \(M_{2^i/3^j} \) be \(3^j5^iM_e, M_{i,j} = (j/i)M_i \), and \(S_i = M_i \) for simplicity. Then, we have Table 3.

Table 3. Calculation costs of TMAIN and TSUB for Xt–Ate pairing

\(d \)	TMAIN	TSUB
2	\(11M_e + I_e \)	\(7M_e + I_e \)
4	\(22M_e + I_e \)	\(12M_e + I_e \)
3	\(19M_e + I_e \)	\(13M_e + I_e \)
6	\(34M_e + I_e \)	\(18M_e + I_e \)

Supposing that \(\text{Hw}(s) \approx \lceil \log_2 s \rceil / 2, M_{5e} = 15M_e \), and roughly \(I_e = 7M_i \), thus we have Table 4.

Table 4. Calculation costs of Xt–Ate pairing

\(\lceil \log_2 p \rceil \)	\(\lceil \log_2 r \rceil \)	\(k \)	\(d \)	cost
384	256	8	4	14784 M1
256	256	10	2	44352 M1
256	256	12	6	20396 M1

4 Efficiency of Xt–Ate Pairing

This section shows the efficiency of Xt–Ate pairing.

4.1 Comparison of Pairings

Table 5 shows the comparison of the input parameters of Miller’s algorithm between various pairings.

Consider the inputs for Miller’s algorithm calculating \(f_{s,A}(B) \) with \(s, A, \) and \(B \). In detail, the number of calculation loops of Miller’s algorithm is given by \(\lceil \log_2 s \rceil \), the point \(A \) is used for a lot of calculations, and the point \(B \) has little effect on the efficiency. Therefore, plain Tate pairing uses \(A \in E(\mathbb{F}_p) \). Twisted Ate pairing [5] uses \((t - 1)^{k/d} \mod r \) as \(s \). For cyclotomic families such as Barreto–Naehrig curve, \((t - 1)^{k/d} \mod r \) is smaller than \(t - 1 \) in general. Thus, twisted Ate pairing is more efficient than plain Tate pairing.

Ate pairing made the number of the calculation loops of Miller’s algorithm, that is \(t - 1 \), smaller than that of Tate pairing but it uses \(A \in E(\mathbb{F}_{p^k}) \). Thus, plain Ate pairing is not superior to Tate pairing. However, Ate pairing generally uses \(A \in E'(\mathbb{F}_{p^2}) \) instead of that in \(E(\mathbb{F}_{p^k}) \).

Xt–Ate pairing is more efficient than the Ate pairing. It uses \(B \in G'_1 = \psi_d^{-1}(G_1) \), where \(G_1 \subseteq E(\mathbb{F}_p) \). Xt–Ate pairing does not calculates \(l_{T,Q}(P) \) by eq.(37) and it calculates \(l_{T',Q'}(P') \) by eq.(32a) for Miller’s algorithm since every calculation is carried out over twisted curve \(E' \).

It is noted that Xt–Ate pairing uses \(G'_2 \) and \(G'_1 \); however, for pairing–based cryptographic applications such that a lot of scalar multiplications are needed, \(G_1 \subseteq E(\mathbb{F}_p) \) and \(G'_2 \) should be used for them. Appropriately using isomorphic map \(\psi_d \) and \(\psi_d^{-1} \), not only Xt–Ate pairing but also scalar multiplications will be efficiently carried out.

As the most recent works, Vercauteren [10], Lee et al. [11], and the authors [12] have proposed efficient Ate pairings, namely optimal pairing, \(R \)-Ate pairing, Xate pairing, respectively. They have reduced the number of the calculation loops of Miller’s algorithm less than \(t - 1 \). For their works, cross–twist technique can be efficiently applied.

4.2 Xt–Ate pairing for BN curve

In order to show the efficiency of Xt–Ate pairing, this subsection considers Barreto–Naehrig (BN) curve [13] of 254–bit prime order with \(k = 12 \) and \(d = 6 \). Since sextic twist is efficiently applied, embedding degree 12 is one of the most competitive research targets. As a typical feature of BN curve, characteristic \(p \), order \(r \), and Frobenius trace \(t \) are given by using an integer variable \(\chi \) as
\[p(\chi) = 36\chi^4 - 36\chi^3 + 24\chi^2 - 6\chi + 1, \quad (36a) \]
\[r(\chi) = 36\chi^4 - 36\chi^3 + 18\chi^2 - 6\chi + 1, \quad (36b) \]
\[t(\chi) = 6\chi^2 + 1. \quad (36c) \]

For BN curve, Devegili et al. [6] proposed an improved Ate pairing whose Miller’s algorithm calculates elliptic curve operations of \(\mathbb{G}_2 \in E'(\mathbb{F}_{p^6}) \). Then, \(\mathbb{G}_2 \) is isomorphic to \(\mathbb{G}_2 \) with \(v_6 \) defined by Eq. (4c), for every loop of Miller’s algorithm, it needs to calculate \(l_{T,Q}(P) \) as follows:

\[l_{T,Q}(P) = (x_P - x_Q)\lambda_{T,Q} - (y_P - y_Q) \]
\[= (-y_P) + (x_P \cdot \lambda_{T',Q'})z + (y_{T'} - x_{T'} \cdot \lambda_{T',Q'})z^3. \quad (37) \]

This calculation needs 3 times \(\mathbb{F}_p \) multiplications. On the other hand, X–Ate pairing needs 9 times \(\mathbb{F}_p \) multiplications to calculate \(l_{T',Q'}(P') \). Thus, in this view point, Devegili et al. work is more efficient than X–Ate pairing.

Though the Devegili et al. work restricts the parameters of pairing friendly curve. As also introduced in [6],[14],[15], \(\chi \) of small Hamming weight is efficient for not only Miller’s algorithm but also final exponentiation. Table 6 shows all \(\chi \)'s of Hamming weight 3 that gives 254–bit prime order BN curve. Note that, in this case, there are no \(\chi \)'s of Hamming weight 2 such that order \(r \) becomes 254–bit prime number.

Table 6. \(\chi \) of small Hamming weight that gives 254–bit prime order BN curve

\(\chi \)	Hw(s)	\(E \)
\(2^{62} + 2^{35} + 2^{24} \)	12	\(y^2 = x^3 + 10 \)
\(2^{62} + 2^{25} + 1 \)	12	\(y^2 = x^3 + 7 \)
\(-2^{62} - 2^{41} - 2^{23} \)	12	\(y^2 = x^3 + 13 \)

5 Simulation

This section shows a simulation result of X–Ate pairing.

5.1 Parameters of pairing–friendly curve

In this simulation, the authors used the following \(\chi \) and BN curve,

\[\chi = 2^{62} + 2^{35} + 2^{24}, \quad (38) \]
\[E : \quad y^2 = x^3 + 10, \quad (39) \]

then \(r = \#E(\mathbb{F}_p) \) becomes 254–bit prime number and the order of \(\mathbb{F}_{p^{12}} \) becomes 3048–bit number.

5.2 Representation of extension field

This simulation First, the authors prepared \(\mathbb{F}_{p^4} \) with type–(1, 4) Gauss period normal basis (GNB) [3] and also \(\mathbb{F}_{p^3} \) with type–(2, 3) GNB. Then, the authors prepared \(\mathbb{F}_{p^{12}} \) as tower field \(\mathbb{F}_{(p^3)^4} \) by towering (2, 3) GNB over \(\mathbb{F}_{p^4} \) [16]. For multiplication with GNB, the authors implemented our previous work cyclic vector multiplication algorithm (CVMA) [17]. For example, CVMA calculates a multiplication in \(\mathbb{F}_{(p^m)^n} \) by

\[M_{mn} = \frac{n(n + 1)}{2} M_m = \frac{mn(m + 1)(n + 1)}{4} M_1. \quad (40) \]

For inversions in extension field and prime field, the authors implemented Itoh–Tsujii inversion algorithm [18] and binary extended Euclidean algorithm [19], respectively. Since GNB is normal basis, one can easily prepare arithmetic operations in subfields \(\mathbb{F}_{p^2}, \mathbb{F}_{p^3}, \mathbb{F}_{(p^2)^3} \). Table 7 shows the timing of each operation.

Table 7. Timings of each arithmetic operation

extension field	operation type	time [\(\mu \text{s} \)]
\(\mathbb{F}_p \)	\(M_1 \)	0.65
	\(I_1 \)	8.30
\(\mathbb{F}_{p^2} \)	\(M_2 \)	1.65
	\(I_3 \)	11.5
\(\mathbb{F}_{p^3} \)	\(M_4 \)	4.40
	\(I_4 \)	20.4
\(\mathbb{F}_{p^6} \)	\(M_6 \)	7.84
	\(I_6 \)	32.2
\(\mathbb{F}_{p^{12}} \)	\(M_{12} \)	21.5
	\(I_{12} \)	80.7
	\(S_{12} \)	19.6

5.3 Final Exponentiation

Using several Frobenius mappings, the final exponentiation is carried out as Algorithm 3 [6], where we note that the exponent \((p^{12} - 1)/r \) is factorized as

\[(p^{12} - 1)/r = (p^2 + 1)(p^6 - 1)p^4 p^2 + 1/r. \quad (41) \]
f^p's shown in Algorithm 3 are given by Frobenius mappings. In the case of BN curve of embedding degree 12, referring to [6], final exponentiation is carried out by Algorithm 3. Note that Frobenius maps such as f^p in Algorithm 3 do not need any arithmetic operations because GNB is normal basis.

Algorithm 3: Final exponentiation

| Input: f given by $f_{t-1,Q'}(P')$, χ, p |
| Output: $f^{(p^6-1)(p^2+1)(p^3-p^2+1)/r}$ |

Procedure:

1. $f \leftarrow f^{p^6} \cdot f^{-1}$
2. $f \leftarrow f^{p^2} \cdot f$
3. $a \leftarrow (f^6) \chi \cdot (f^5)^{p^6}$
4. $b \leftarrow a^p$
5. $b \leftarrow a \cdot b$
6. compute f^p, f^{p^2}, and f^{p^3}
7. $c \leftarrow b \cdot (f^p)^2 \cdot f^{p^2}$
8. $f \leftarrow f^p \cdot (c^\chi) \cdot c \cdot b \cdot (f^{p} \cdot f)^{n} \cdot a \cdot f^4$
9. return f

From Algorithm 3, it is found that the exponentiations of χ and χ^2 needs hard exponentiations such as binary method (square and multiply method). The calculation cost of an exponentiation closely depends on the binary representation of the exponent.

The calculation cost of final exponentiation Algorithm 3 is evaluated as

$$ \{4 + [\log_2 \chi] + [\log_2 \chi^2]\} S_{12} $$

$$ + \{17 + Hw(\chi) + Hw(\chi^2)\} M_{12} + 2 I_{12}. \quad (42) $$

Substituting $S_{12} = 0.9 M_{12}$ and $I_{12} = 4 M_{12}$ that is base on the simulation result Table 7, we have

$$ \{28.6 + 2.7 [\log_2 \chi] + Hw(\chi) + Hw(\chi^2)\} M_{12}. \quad (43) $$

5.4 Simulation Result

Table 8 shows the simulation result. Xt–Ate pairing of 254–bit and 3048–bit security levels is carried out within 14.0 milli–seconds. Thus, it is shown that cross twist technique is quite efficient for Ate pairing. The authors simulated Xt–Ate pairing using Eq.(38) with the computational environment Table 9.

Table 8. Timings of operations with 254–bit prime order BN curve

	[unit:ms]
Xt–Ate pairing	
Miller’s algorithm	8.80
final exponentiation	4.49
total	13.3

elliptic curve scalar multiplication†	
$G_1 \in E(\mathbb{F}_{p^3})$	2.65
$G_2 \in E(\mathbb{F}_{p^2})$	7.02

| exponentiation† | |
| $G_3 \in \mathbb{F}_{p^{12}}$ | 7.88 |

† with 254–bit random scalars/exponents. † Projective coordinate is used.

	Pentium4 3.6GHz
CPU	
cash size	2048KB
OS	Linux 2.6.21
Language	C
compiler	gcc 4.2.1
option	-O3 -march=pentium4 -fforce-mem
library	Gnu MP 4.2.1 [9]

6 Conclusion

In this paper, supposing

$$ G_1 = E[r] \cap \text{Ker}(\phi - [1]), $$

$$ G_2 = E[r] \cap \text{Ker}(\phi - [p]), $$

where E was a pairing–friendly curve of embedding degree $k = 2e, 3e, 4e, 6e$, then denoting the isomorphic map from $E'(\mathbb{F}_{p^e})$ to $E(\mathbb{F}_{p^k})$ by ψ_d, we considered $G'_1 = \psi_d^{-1}(G_1)$ and $G'_2 = \psi_d^{-1}(G_2)$. Using $Q' \in G'_2$ and $P' \in G'_1$, this paper proposed a new Ate pairing that calculates

$$ x(Q', P') = f_{t-1,Q'}(P')^{(p^{k-1})/r}, $$

namely cross twisted (Xt) Ate pairing. Compared to plain Ate pairing and Devegili’s work, Xt–Ate pairing could substantially use arithmetic operations in subfield \mathbb{F}_{p^e}, thus it lead to quite efficient implementation of Ate pairing. Then, this paper showed a simulation result by using BN curve and sextic twist. When order r was a 254–bit prime number, it was shown that Xt–Ate pairing with BN curve was...
carried out within 14.0 milli–seconds for which the authors used Pentium4 (3.6GHz), C language, GNU MP library.

References

[1] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” Proc. of Asiacrypt2001, LNCS 2248, pp. 514-532, 2001.

[2] T. Nakanishi and N. Funabiki, “Verifier-Local Revocation Group Signature Schemes with Backward Unlinkability from Bilinear Maps,” Asiacrypt2005, LNCS 3788, Springer-Verlag, pp. 443-454, 2005.

[3] H. Cohen and G. Frey, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Mathematics and Its Applications, Chapman & Hall CRC, pp. 280-285, p. 458, 2005.

[4] F. Hess, N. Smart, and F. Vercauteren, “The Eta Pairing Revisited,” IEEE Trans. Information Theory, pp. 4595-4602, 2006.

[5] S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto, “Optimised versions of the Ate and Twisted Ate Pairings,” IACR, ePrint, available at http://eprint.iacr.org/2007/013.pdf

[6] A. J. Devegili, M. Scott, and R. Dahab, “Implementing Cryptographic Pairings over Barreto-Naehrig Curves,” LNCS, Vol. 4575, pp. 197-207, 2007.

[7] D. Bailey and C. Paar, “Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms,” Proc. Asiacrypt2000, LNCS 1976, pp. 248-258, 2000.

[8] M. Akane, H. Kato, T. Okimoto, Y. Nogami, and Y. Morikawa, “An Improvement of Miller’s Algorithm in Ate Pairing with Barreto–Naehrig Curve,” Proc. of Computer Security Symposium 2007 (CSS2007), pp. 489–494, 2007.

[10] F. Vercauteren, “Optimal Pairings,” IACR ePrint archive, available at http://eprint.iacr.org/2008/096.

[11] E. Lee, H. Lee, and C. Park, “Efficient and Generalized Pairing Computation on Abelian Varieties,” IACR ePrint archive, available at http://eprint.iacr.org/2008/040.

[12] Y. Nogami, M. Akane, Y. Sakemi, H. Kato, and Y. Morikawa, “Integer Variable χ–based Ate Pairing,” to appear in S. D. Galbraith and K. G. Paterson (eds.), Pairing 2008, Springer LNCS (2008).

[13] P. S. L. M. Barreto, and M. Naehrig, “Pairing–Friendly Elliptic Curves of Prime Order,” SAC2005, LNCS 3897, pp. 319-331, 2006.

[14] Y. Sakemi, H. Kato, M. Akane, T. Okimoto, Y. Nogami, and Y. Morikawa, “An Improvement of Twisted Ate Pairing Using Integer Variable with Small Hamming Weight,” The 2008 Symposium on Cryptography and Information Security (SCIS2008), Jan. 22-25, 2008.

[15] M. Akane, H. Kato, T. Okimoto, Y. Nogami, and Y. Morikawa, “Efficient Parameters for Ate Pairing Computation with Barreto-Naehrig Curve,” Proc. of Computer Security Symposium 2007 (CSS2007), pp. 495–500, 2007.

[16] Y. Nogami and Y. Morikawa, “A Fast Implementation of Elliptic Curve Cryptosystem with Prime Order Defined over F_{p^n},” Memoirs of the Faculty of Engineering Okayama University, vol. 37, no. 2, pp. 73-88, 2003.

[17] H. Kato, Y. Nogami, T. Yoshida, and Y. Morikawa, “Cyclic Vector Multiplication Algorithm Based on a Special Class of Gauss Period Normal Basis,” ETRI Journal, vol. 29, no. 6, pp. 769–778, 2007, available at http://etrij.etri.re.kr/Cyber/servlet/BrowseAbstract?paperid=RP0702-0040

[18] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in $GF(2^m)$ Using Normal Bases,” Inf. and Comp., vol. 78, pp. 171-177, 1988.

[19] D. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms, Addison-Wesley, 1981.