Eosinophil-derived neurotoxin enhances airway remodeling in eosinophilic chronic rhinosinusitis and correlates with disease severity

Author names:
Takeshi Tsuda¹–³, Yohei Maeda¹–³, Masayuki Nishide²³, Shohei Koyama²³, Yoshitomo Hayama²³, Satoshi Nojima²⁴, Hyota Takamatsu²³, Daisuke Okuzaki⁵, Yuhei Kinehara²³, Yasuhiro Kato²³, Takeshi Nakatani²³, Sho Obata⁶, Hitoshi Akazawa¹, Takashi Shikina¹⁷, Kazuya Takeda¹, Masaki Hayama¹, Hidenori Inohara¹ and Atsushi Kumanogoh²³⁸

Affiliations:
¹Department of Otorhinolaryngology–Head and Neck Surgery, Osaka University Graduate School of Medicine
²Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine
³Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center
⁴Department of Pathology, Osaka University Graduate School of Medicine
⁵Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University
⁶Department of Otolaryngology, Osaka Rosai Hospital
⁷Department of Otolaryngology, Ikeda Municipal Hospital
⁸The Institute for Open and Transdisciplinary Research Initiatives (OTRI)
Abstract

Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis (CRS) that is characterized by intractable nasal polyp formation. Eosinophil-derived neurotoxin (EDN) is an eosinophil granule protein that is closely related to allergic inflammation, but the pathological implications of EDN in ECRS remain unknown. In this study, we evaluated the function of EDN in ECRS pathogenesis and assessed its potential as a disease activity marker. Serum EDN levels were significantly higher in patients with ECRS than in those with other nasal and paranasal diseases, and were positively correlated with clinical disease activity. Production of EDN from isolated human eosinophils was induced by stimulation with IL-5 in vitro. Human nasal epithelial cells were stimulated with EDN, and the resultant changes in gene expression were detected by RNA sequencing. Pathway analysis revealed that the major canonical pathway affected by EDN stimulation was ‘regulation of the epithelial–mesenchymal transition pathway’; the only gene in this pathway to be up-regulated was matrix metalloproteinase 9 (MMP-9). Consistent with this, immunostaining analysis revealed intense staining of both EDN and MMP-9 in nasal polyps from patients with ECRS. In conclusion, our data demonstrate that serum EDN level is a useful marker for the evaluation of ECRS severity. Furthermore, EDN induces production of MMP-9 from the nasal epithelium, which may be involved in the pathogenesis of ECRS.

Takeshi Tsuda
Department of Otorhinolaryngology, National Hospital Organization Osaka National Hospital

新しい事への挑戦

津田 武
国立病院機構大阪医療センター 耳鼻咽喉科

Broaden my horizons

このたびは日本耳鼻咽喉科免疫アレルギー学会記念誌への寄稿という機会をいただきまことにありがとうございます。この場をお借りして日本耳鼻咽喉科免疫アレルギー学会理事長 大久保裕教授ならびに日本耳鼻咽喉科感染症・エアロゾル学会理事長 原渕保明教授に深く御礼申し上げます。

私が研究生活を開始したのは、大学院に進学した卒後10年目になります。一般的な大学院進学時期としては遅めであり、4年間臨床を離れることに強い不安を感じましたが周りの先生方や家族からの後押しがあり進学を決断しました。出向先である大阪大学呼吸器免疫内科では熊ノ郷浩教授・西出真之先生のご指導のもと好酸球性副鼻腔炎において好酸球が果たす役割について広く研究を行ってまいりました。第37回日本耳鼻咽喉科免疫アレルギー学会の間に発表させていただいたテーマ「Eosinophil derived neurotoxin（EDN）と難治性鼻茸形成」は当時研究していた内容とは別に、偶然熊ノ郷教授
から ELISA kit の紹介を受け血清濃度を測定したことから始まりました。網羅的解析を含めた In vitro の実験と臨床検体を用いた実験を組み合わせた研究は、私にとってより“医療の現場”を意識させる内容であり興味深いものでした。結果が思うように出ない時期に悩んだことも多数ありましたが、興味を持った内容で学術奨励賞をいただいたのは非常に幸運でした。

私自身は昨年度で大学院を卒業し、現在は大阪医療センターで臨床業務を行っています。研究に割く時間は減ってしまいましたが、2 名の医師が鼻副鼻腔グループから大学院に進学し研究を継続しています。自身では single cell RNA-sequence を用いたプロジェクトを継続しており、こちらについても結果を出していければと思っています。

4 年間の研究生活で疾患の捉え方も大きく変わり大学院で研究をして良かったと心から感じています。また私事ながら幼稚園に通っていた 2 人の子供との時間も多く取ることができました。研究を行うことに迷いを感じている先生がいらっしゃいましたら、是非挑戦していただければと思います。

最後に大学院生活の間、頑張ってくれた妻や子供達、臨床業務負担を軽減し研究に集中できる環境を与えいただいた大阪大学耳鼻咽喉科・頭頸部外科 猪原秀典教授に感謝申し上げます。