Modulo factors with bounded degrees

Morteza Hasanvand

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
morteza.hasanvand@alum.sharif.edu

Abstract

Let G be a bipartite graph with bipartition (X, Y), let k be a positive integer, and let $f : V(G) \to \{-1, \ldots, k - 2\}$ be a mapping with $\sum_{v \in X} f(v) \equiv k \sum_{v \in Y} f(v)$. In this paper, we show that if G is essentially $(3k - 3)$-edge-connected and for each vertex v, $d_G(v) \geq 2k - 1 + f(v)$, then it admits a factor H such that for each vertex v, $d_H(v) \equiv f(v)$, and

$$\left\lfloor \frac{d_G(v)}{2} \right\rfloor - (k - 1) \leq d_H(v) \leq \left\lceil \frac{d_G(v)}{2} \right\rceil + k - 1.$$

Next, we generalize this result to general graphs and derive sufficient conditions for a highly edge-connected general graph G to have a factor H such that for each vertex v, $d_H(v) \in \{f(v), f(v) + k\}$. Finally, we show that every $(4k - 1)$-edge-connected essentially $(6k - 7)$-edge-connected graph admits a bipartite factor whose degrees are positive and divisible by k.

Keywords: Modulo factor; edge-connected; partition-connected; bipartite graph; vertex degree.

1 Introduction

In this article, graphs may have loops and multiple edges. Let G be a graph. The vertex set, the edge set, and the minimum degree of the vertices of G are denoted by $V(G)$, $E(G)$, and $\delta(G)$, respectively. We denote by $d_G(v)$ the degree of a vertex v in the graph G. If G has an orientation, the out-degree and in-degree of v are denoted by $d^+_G(v)$ and $d^-_G(v)$. For a vertex set A of G with at least two vertices, the number of edges of G with exactly one end in A is denoted by $d_G(A)$. Also, we denote by $e_G(A)$ the number of edges with both ends in A and denote by $d_G(A, B)$ the number of edges with one end in A and one end in B, where B is a vertex set. We denote by $G[A]$ the induced subgraph of G with the vertex set A containing precisely those edges of G whose ends lie in A, and denote by $G[A, B]$ the induced bipartite factor of G with the bipartition (A, B). A graph G is called m-tree-connected if it contains m edge-disjoint spanning trees. Note that by the result of Nash-Williams [18] and Tutte [24] every $2m$-edge-connected graph is m-tree-connected. In fact, the result of them says that a loopless graph G is m-tree-connected if and only if $e_G(P) \geq m(|P| - 1)$ for every partition P of $V(G)$, where $e_G(P)$ denotes the number of edges of G joining different parts of P. A graph
is termed essentially λ-edge-connected, if all edges of any edge cut of size strictly less than λ are incident with a common vertex. Let k be a positive integer. The cyclic group of order k is denoted by \mathbb{Z}_k. For two integers x and y, we say that $x \equiv y \pmod{k}$, if $x - y$ is divisible by k. For any integer n, we denote by $[n]_k$ the unique integer n_0 such that $n_0 \equiv n \pmod{k}$ and $n_0 \in \{-1, 0, \ldots, k-2\}$. An orientation of G is said to be p-orientation if for each vertex v, $\frac{d^+_G(v)}{k} \equiv \frac{p(v)}{k}$, where $p : V(G) \to \mathbb{Z}_k$ is a mapping. Likewise, an f-factor refers to a spanning subgraph H such that for each vertex v, $\frac{d_H^+(v)}{k} \equiv f(v)$, where $f : V(G) \to \mathbb{Z}_k$. For a graph G, we say that a mapping $f : V(G) \to \mathbb{Z}_k$ is compatible with G with respect to a bipartition X, Y of $V(G)$ if $\sum_{v \in X} f(v) - 2x \equiv \sum_{v \in Y} f(v) - 2y$ for two integers x with $0 \leq x \leq e_G(X)$ and $0 \leq y \leq e_G(Y)$. Note that one of x and y can be zero. Likewise, we say that a mapping f is compatible with G if it is compatible with G with respect to every bipartition X, Y of $V(G)$. We will show that when G is a $(2k - 3)$-edge-connected bipartite graph with bipartition (X, Y), f is compatible with G if and only if f is compatible with respect to the bipartition X, Y of $V(G)$; see Theorem 2.6. It is easy to see that if G has an f-factor, then f must be compatible with G. The bipartite index $bi(G)$ of a graph G is the smallest number of all $|E(G) \setminus E(H)|$ taken over all bipartite factors H. A modulo k-regular graph refers to a graph whose degrees are positive and divisible by k. A proper coloring of a graph G is to assign colors to vertices such that any two adjacent vertices receive different colors. The chromatic number $\chi(G)$ refers to the minimum number of necessary colors among all proper colorings. Throughout this article, all variables m are nonnegative integers and all variables k are positive integers.

In 2008 Shirazi and Verstraëte [19] introduced the concept of modulo factors and established a sufficient condition for the existence of f-factors modulo k in graphs with average degree $2k - 2$.

Theorem 1.1. ([19]) Let G be a graph, let k be a prime number, and let $f : V(G) \to \mathbb{Z}_k$ be an arbitrary mapping. If the number of orientations with out-degrees $k - 1$ is not divisible by k, then G has an f-factor.

In 2014 Thomassen formulated the following result about the existence of f-factors modulo k in $(3k - 3)$-edge-connected bipartite graphs. In this paper, we improve Theorem 1.2 by giving a sharp bound on degrees as mentioned in the abstract. Our result is based on a new improvement of the main result in [16] about the existence of modulo orientations with bounded out-degrees [9].

Theorem 1.2. ([22]) Let G be a bipartite graph with partition (X, Y), let k be an integer, $k \geq 2$, and let $f : V(G) \to \mathbb{Z}_k$ be a mapping with $\sum_{v \in X} f(v) \equiv \sum_{v \in Y} f(v)$. If G is $(3k - 3)$-edge-connected, then it has an f-factor.

In 2016 Thomassen, Wu, and Zhang [23] generalized Theorem 1.2 to $(6k - 7)$-edge-connected graphs with bipartite index at least $k - 1$ provided that k is odd. In Subsection 5.1, we extend their result to even integers k and improve it to the following bounded-degree version.

Theorem 1.3. Let G be a graph, let k be a positive integer, and let $f : V(G) \to \mathbb{Z}_k$ be a mapping. Assume that $bi(G) \geq k - 1$ and $(k-1) \sum_{v \in V(G)} f(v)$ is even. If G is $(6k - 7)$-edge-connected, then it has an f-factor.
such that for each vertex \(v \),

\[
\left\lfloor \frac{d_G(v)}{2} \right\rfloor - (k - 1) \leq d_H(v) \leq \left\lfloor \frac{d_G(v)}{2} \right\rfloor + k.
\]

As an application, we derive a sufficient condition for a highly edge-connected graph \(G \) to have a factor whose degrees fall in predetermined integer sets as the following corollary. In Subsection 5.2, we refine degree bounds for graphs with higher edge-connectivity.

Corollary 1.4. Let \(G \) be a graph, let \(k \) be a positive integer, and let \(f \) be a positive integer-valued function on \(V(G) \) satisfying \(f(v) \leq \frac{1}{2}d_G(v) < f(v) + k \) for each vertex \(v \). Assume that \(bi(G) \geq k - 1 \) and \((k - 1) \sum_{v \in V(G)} f(v) \) is even. If \(G \) is \((6k - 7)\)-edge-connected, then it has a factor \(H \) such that for each vertex \(v \),

\[
d_H(v) \in \{f(v), f(v) + k\}.
\]

In [22], Thomassen established a sufficient edge-connectivity condition for the existence of a special type of bipartite modulo \(k \)-regular factors by concluding the following result from Theorem 1.2. In Section 6, we push down the needed edge-connectivity to \(10k - 3 \) in essentially \((12k - 7)\)-edge-connected graphs. Moreover, we show that every \((4k - 1)\)-edge-connected essentially \((6k - 7)\)-edge-connected graph admits a bipartite modulo \(k \)-regular factor.

Theorem 1.5.([22]) Every \((12k - 7)\)-edge-connected graph of even order has a bipartite modulo \(k \)-regular factor whose degrees are not divisible by \(2k \).

In 1984 Alon, Friedland, and Kalai proposed the following elegant conjecture and confirmed it for the case that \(k \) is a prime power.

Conjecture 1.6.([1]) Let \(G \) be a loopless graph of order \(n \) and let \(k \) be a positive integer. If \(|E(G)| > (k - 1)n\), then \(G \) admits a modulo \(k \)-regular subgraph.

Recently, Botler, Colucci, and Kohayakawa (2020) [6, Lemma 3] proved a weaker version of this conjecture by replacing the lower bound by \((24k - 12)n\) based on Theorem 1.5, and applied it for their purpose. In this paper, we introduce a simpler technique to improve their result by replacing a better lower bound less than \(4(k - 1)n \).

2 Basic tools and preliminary results

2.1 Tools: Orientations modulo \(k \)

For making some results on the existence of modulo factors with bounded degree, we need to apply some results on the existence of modulo orientations with bounded out-degrees.
Theorem 2.1. ([9], see also Theorem 3.1 in [16]) Let G be a loopless graph with $z_0 \in V(G)$, let k be an integer, $k \geq 3$, and let $p : V(G) \to \mathbb{Z}_k$ be a mapping with $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. Let D_{z_0} be an orientation of the set of edges incident with z_0. Assume that G is essentially $(3k - 3)$-edge-connected, and

1. $d_G(z_0) \leq 2k - 1 + p(z_0)$, and the edges incident with z_0 are directed such that $d^+_G(z_0) \equiv p(z_0)$.

2. $d_G(v) \geq 2k - 1 + [p(v)]_k$, for each $v \in V(G) \setminus \{z_0\}$.

Then the orientation D_{z_0} can be extended to a p-orientation D of G such that for each vertex v,

$$\left\lfloor \frac{d_G(v)}{2} \right\rfloor - (k - 1) \leq d^+_G(v) \leq \left\lceil \frac{d_G(v)}{2} \right\rceil + (k - 1).$$

Corollary 2.2. Let G be a loopless graph with $z_0 \in V(G)$, let k be an integer, $k \geq 3$, and let $p : V(G) \to \mathbb{Z}_k$ be a mapping with $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. Let D_{z_0} be an orientation of the set of edges incident with z_0. Let s and s_0 be two nonnegative integer-valued functions on $V(G)$ satisfying $s_0(v) + s(v) < 2k$ for each vertex v, and $s(z_0) = s_0(z_0) = 0$. Assume that G is essentially $(3k - 3)$-edge-connected, and

1. $d_G(z_0) + \sum_{v \in V(G)} \max\{s(v), s_0(v)\} < 2k$, and the edges incident with z_0 are directed such that $d^+_G(z_0) \equiv p(z_0)$.

2. $d_G(v) \geq 2k - 1 + [p(v)]_k$, for each $v \in V(G) \setminus \{z_0\}$.

Then the orientation D_{z_0} can be extended to a p-orientation D of G such that for each vertex v,

$$\left\lfloor \frac{d_G(v) + s(v)}{2} \right\rfloor - (k - 1) \leq d^+_G(v) \leq \left\lceil \frac{d_G(v) - s_0(v)}{2} \right\rceil + (k - 1).$$

Proof. Define S to be the set of all $v \in V(G) \setminus \{z_0\}$ such that there is an integer $q(v)$ satisfying $q(v) \equiv p(v) \mod k$ and $d_G(v)/2 < q(v) \leq d_G(v)/2 + s(v)/2$. Likewise, define S_0 to be the set of all $v \in V(G) \setminus \{z_0\}$ such that there is an integer $q(v)$ satisfying $q(v) \equiv p(v) \mod k$ and $d_G(v)/2 - s_0(v)/2 \leq q(v) < d_G(v)/2$. Since $s(v) + s_0(v)/2 < 2k$, we must have $S \cap S_0 = \emptyset$. Let G' be the graph obtained from G by adding $|2q(v) - d_G(v)|$ new parallel edges vz_0 for all $v \in S \cup S_0$. We orient these new edges toward v when $v \in S$, and orient them toward z_0 when $v \in S_0$. Define $p'(v) = p(v)$ for each $v \in V(G) \setminus (S_0 \cup \{z_0\})$, $p'(v) = p(v) + |2q(v) - d_G(v)|$ for each $v \in S_0$, and $p'(z_0) = p(z_0) + \sum_{v \in S} |2q(v) - d_G(v)|$. It is easy to check that $|E(G')| \equiv \sum_{v \in V(G')} p'(v)$, and $d_{G'}(v) \geq 2k - 1 + [p'(v)]_k$ for each $v \in V(G) \setminus \{z_0\}$, and also $d_{G'}(z_0) = d_G(z_0) + \sum_{v \in S \cup S_0} |2q(v) - d_G(v)| \leq d_G(z_0) + \sum_{v \in V(G)} \max\{s(v), s_0(v)\} \leq 2k - 1 \leq 2k - 1 + p'(z_0)$. Therefore, by Theorem 2.1, the graph G' has a p'-orientation modulo k such that for each vertex v, $|d^+_{G'}(v) - d_{G'}(v)/2| < k$. Since for each $v \in S \cup S_0$, $p'(v) \equiv d_{G'}(v)/2$, we must have $d^+_{G'}(v) = d_{G'}(v)/2$. Thus this orientation induces a p-orientation for G such that for each $v \in S \cup S_0$, $d^+_G(v) = q(v)$. In addition, $|d^+_{G'}(v) - d_{G'}(v)/2| < k$ for each $v \in V(G) \setminus (S \cup S_0)$. According to the definition of S and S_0, we must therefore have $d_G(v)/2 - s(v)/2 - k < d^+_G(v) < d_G(v)/2 - s_0(v)/2 + k$ for all $v \in V(G)$. Hence the proof is completed. \qed
Corollary 2.3. (Corollary 3.3 in [9]) Let G be a loopless graph, let k be an integer, $k \geq 3$, let $p : V(G) \to \mathbb{Z}_k$ be a mapping with $|E(G)| = k \sum_{v \in V(G)} p(v)$. If G is essentially $(3k - 3)$-edge-connected and for each vertex v, $d_G(v) \geq 2k - 1 + |p(v)|_k$, then G has a p-orientation such that for each vertex v,

$$\left\lceil \frac{d_G(v)}{2} \right\rceil - (k - 1) \leq d_G^+(v) \leq \left\lfloor \frac{d_G(v)}{2} \right\rfloor + (k - 1).$$

Furthermore, for an arbitrary vertex z, $d_G^+(z)$ can be assigned to any plausible integer value in whose interval.

Proof. It is enough to apply Corollary 2.2 on the graph obtained from G by adding a new artificial vertex z_0 with degree zero. For the desired restriction on $d_G^+(z)$, we only need to set \{s(z), s_0(z)\} = \{0, 2k - 1\} and $s(v) = s_0(v) = 0$ for all vertices with v with $v \neq z$. \square

2.2 Compatible mappings

In the following, we shall provide some sufficient conditions for a mapping to be compatible. Before doing so, let us make the following lemma which can conclude that every $(2bi(G) + 1)$-edge-connected graph G has a unique bipartition X, Y of $V(G)$ satisfying $e_G(X) + e_G(Y) = bi(G)$. In particular, every connected bipartite graph has a unique bipartition.

Lemma 2.4. If G is a $(2bi(G) + 1 + i)$-edge-connected graph and $i \geq 0$, then there is a unique bipartition X, Y of $V(G)$ satisfying $e_G(X) + e_G(Y) \leq bi(G) + i$.

Proof. Let X, Y be a bipartition of $V(G)$ satisfying $e_G(X) + e_G(Y) = bi(G)$. Let X', Y' be another bipartition of $V(G)$ with $\{X', Y'\} \neq \{X, Y\}$. Set $A = (X' \cap X) \cup (Y' \cap Y)$. If A is empty, then it is easy to check that $X' = Y$ and $Y' = X$. Likewise, if $V(G) \setminus A$ is empty, then we must have $X' = X$ and $Y' = Y$. Thus A is a nonempty proper subset of $V(G)$. Therefore, $e_G(X') + e_G(Y') \geq d_G(A) - (e_G(X) + e_G(Y)) \geq (2bi(G) + 1 + i) - bi(G) > bi(G) + i$. Hence the proof is completed. \square

The following lemma introduces a lower bound on the bipartite index of k-tree-connected graphs.

Lemma 2.5. Let G be a graph. If $G[X, Y]$ is k-tree-connected and $e_G(X) + e_G(Y) \geq k$ for a bipartition X, Y of $V(G)$, then $bi(G) \geq k$.

Proof. Let X', Y' be a partition of $V(G)$ with $e_G(X') + e_G(Y') = bi(G)$. Let T_1, \ldots, T_k be k edge-disjoint spanning trees of $G[X, Y]$ and let e_1, \ldots, e_k be k distinct edges of the graph $G[X] \cup G[Y]$. Since T_i is a bipartite graph with the bipartition (X, Y), the graph $T_i + e_i$ must contain an odd cycle C_i which implies that $e_C(X') + e_C(Y') \geq 1$. Therefore, $bi(G) = e_G(X') + e_G(Y') \geq \sum_{1 \leq i \leq k} (e_{C_i}(X') + e_{C_i}(Y')) \geq k$. \square

The following theorem gives sufficient conditions for a mapping to be compatible with the main graph.
Theorem 2.6. Let G be a graph, let k be a positive integer, and let $f : V(G) \to \mathbb{Z}_k$ be a mapping with $(k - 1) \sum_{v \in V(G)} f(v)$ even. Then f is compatible with G if one of the following conditions holds:

1. k is even and $\text{bi}(G) \geq k/2 - 1$.
2. k is odd and $\text{bi}(G) \geq k - 1$; see [23].
3. $G[X, Y]$ is $(2k - 2)$-edge-connected and $e_G(X) + e_G(Y) \geq k - 1$ for a bipartition X, Y of $V(G)$.
4. G is $(2k - 3)$-edge-connected and f is compatible with G with respect to a bipartition X, Y of $V(G)$ satisfying $e_G(X) + e_G(Y) \leq k - 2$.

Proof. Let X, Y be a bipartition of $V(G)$. First assume that k is even and $e_G(X) + e_G(Y) \geq k/2 - 1$. By the assumption, $\sum_{v \in X} f(v) - \sum_{v \in Y} f(v)$ must be even. Thus there are two integers $x, y \in \{0, \ldots, k/2 - 1\}$ such that $\frac{1}{2}(\sum_{v \in X} f(v) - \sum_{v \in Y} f(v)) \equiv x$ and $\frac{1}{2}(\sum_{v \in X} f(v) - \sum_{v \in Y} f(v)) \equiv y$. Therefore, $x + y \equiv 0$ which can conclude that $x \leq e_G(X)$ or $y \leq e_G(Y)$. Now assume that k is odd and $e_G(X) + e_G(Y) \geq k - 1$. Let $x, y \in \{0, \ldots, k - 1\}$ be two integers such that $\sum_{v \in X} f(v) - \sum_{v \in Y} f(v) \equiv 2x$ and $\sum_{v \in Y} f(v) - \sum_{v \in X} f(v) \equiv 2y$. Therefore, $x + y \equiv 0$ which can conclude that $x \leq e_G(X)$ or $y \leq e_G(Y)$. These imply that f is compatible with G with respect to X, Y. Hence the first two assertions hold. To prove the third assertion, it is enough to apply Lemma 2.5 together with the first two assertions.

Now, assume that G is $(2k - 3)$-edge-connected and f is compatible with G with respect to a bipartition X, Y of $V(G)$ satisfying $e_G(X) + e_G(Y) \leq k - 2 = \text{bi}(G) + i$ and $i \geq 0$. Let X', Y' be another bipartition of $V(G)$. Since G is $(2\text{bi}(G) + 1 + i)$-edge-connected, by Lemma 2.4, we must have $e_G(X') + e_G(Y') \geq \text{bi}(G) + i + 1 \geq k - 1$. Thus one can conclude that f must be compatible with G with respect to X', Y' by repeating the proof of items (1) and (2). This can complete the proof. \qed

An immediate consequence of Theorem 1.1 and the following corollary says that if G is a graph satisfying $\text{bi}(G) \leq k - 2$, then the number of orientations with out-degrees $k - 1$ must be divisible by k, provided that k is a prime number; for example, see [19, Theorem 4]. Recall that if a graph G contains an f-factor modulo k, then f must be compatible with G.

Corollary 2.7. Let G be a graph, let k be an integer with $k \geq 2$. Let $k_0 = k$ when k is odd, and let $k_0 = k/2$ when k is even. Then $\text{bi}(G) \geq k_0 - 1$ if and only if every mapping $f : V(G) \to \mathbb{Z}_k$ with $(k - 1) \sum_{v \in V(G)} f(v)$ even is compatible with G.

Proof. Let X, Y be a bipartition of $V(G)$ with $e_G(X) + e_G(Y) = \text{bi}(G)$. For a vertex $z \in X$, define $f(z) = 2e_G(X) + 2 \, (\text{mod } k)$, and define $f(v) = 0$ for all $v \in V(G) \setminus \{z\}$. If $\text{bi}(G) < k_0 - 1$, then f is not compatible with G. Otherwise, there are two integers x and y with $0 \leq x \leq e_G(X)$ and $0 \leq y \leq e_G(Y)$ such that $\sum_{v \in X} f(v) - 2x \equiv k \sum_{v \in Y} f(v) - 2y$ which implies that $2(e_G(X) - x) + 2y \equiv 2(k - 1)$. Therefore, $(e_G(X) - x) + y \equiv (k_0 - 1)$ and so $k_0 - 1 \leq e_G(X) - x + y \leq e_G(X) + e_G(Y)$, which is a contradiction. Hence the proof can be completed using Theorem 2.6. \qed
2.3 Bipartite index and tree-connectivity

A well-known observation, attributed to Erdős (1965), says that every loopless graph with minimum degree at least $2m - 1$ contains a bipartite factor with minimum degree at least m, see [5, Theorem 2.4]. This result is developed to an edge-connected version by Thomassen (2008) as the following theorem.

Theorem 2.8. ([21]) Every $(2m - 1)$-edge-connected graph has an m-edge-connected bipartite factor.

In the following, we shall provide a tree-connected version for it which will be used several times in this paper. This theorem is also generalized in [11] for finding factors with bounded chromatic numbers.

Theorem 2.9. Every $2m$-tree-connected loopless graph G has an m-tree-connected bipartite factor H such that for every vertex set A, $d_H(A) \geq \lceil d_G(A)/2 \rceil$.

Proof. Let H be a bipartite factor of G with the maximum $|E(H)|$. We claim that H is the desired factor. Suppose, to the contrary, that $d_H(A) < d_G(A)/2$ for a vertex set A. Define $X_0 = (X \setminus A) \cup (A \cap Y)$ and $Y_0 = (Y \setminus A) \cup (A \cap X)$, where (X, Y) is the bipartition of H. It is not difficult to see that the graph $G[X_0, Y_0]$ is a bipartite factor of G with more edges than H which is a contradiction. Now, let P be a partition of $V(G)$. Since G is $2m$-tree-connected, we must have $e_G(P) \geq 2m(|P| - 1)$, where $e_G(P)$ denotes the number of edges of G joining different parts of G. Therefore, $e_H(P) = \sum_{A \in P} \frac{1}{2}d_H(A) \geq \sum_{A \in P} \frac{1}{2}d_G(A) = \frac{1}{2}e_G(P) \geq m(|P| - 1)$. Hence by the well-known result of Nash-Williams [18] and Tutte [24], the graph H must be m-tree-connected. \hfill \Box

The following corollary gives a criterion for the existence of edge-disjoint odd cycles in $2k$-tree-connected graphs in terms of bipartite index. The edge-connected version of this corollary is mentioned in [20, Section 7].

Corollary 2.10. Let G be a $2k$-tree-connected graph. Then $\text{bi}(G) \geq k$ if and only if G contains k edge-disjoint odd cycles.

Proof. Let X, Y be a partition of $V(G)$. If C is an odd cycle, then obviously $e_C(X) + e_C(Y) \geq 1$. This implies that $e_G(X) + e_G(Y) \geq k$ provided that G contains k edge-disjoint odd cycles. Now, assume that $\text{bi}(G) \geq k$. By Theorem 2.9, there exists a bipartition X, Y of $V(G)$ such that $G[X, Y]$ is k-tree-connected. Since $e_G(X) + e_G(Y) \geq \text{bi}(G) \geq k$, by Lemma 2.5, the graph G contains k edge-disjoint odd cycles. \hfill \Box

Corollary 2.11. Every $2k$-tree-connected graph G satisfying $\text{bi}(G) \geq k$ contains a subgraph H with maximum degree at most $2k$ satisfying $\text{bi}(H) \geq k$.

Proof. By Corollary 2.10, the graph G contains k edge-disjoint odd cycles which the union of them is the desired subgraph. \hfill \Box

7
Corollary 2.12. Every $(2m + 4)$-tree-connected graph G can be decomposed into two factors G_1 and G_2 such that G_1 is Eulerian, $G_2[X, Y]$ is m-tree-connected for a bipartition X, Y of $V(G)$, and
\[e_{G_2}(X) + e_{G_2}(Y) = \min\{k, bi(G)\}, \]
where k is an arbitrary nonnegative integer.

Proof. By Theorem 2.9, there exists a bipartition X, Y of $V(G)$ such that $G[X, Y]$ is $(m + 2)$-tree-connected. Decompose $G[X, Y]$ into two spanning trees T_0 and T and an m-tree-connected factor H. Since $e_G(X) + e_G(Y) \geq bi(G)$, we can decompose $G[X] \cup G[Y]$ into two factors M_0 and M such that $|E(M)| = \min\{k, bi(G)\}$. Let F be a spanning forest of T such that for each vertex v, $d_F(v)$ and $d_{T_0}(v) + d_{M_0}(v)$ have the same parity. It is enough to set $G_1 = T_0 \cup M_0 \cup F$ and $G_2 = G \setminus E(G_1)$ to complete the proof.

Corollary 2.13. Let G be a graph with $bi(G) \geq k$. If G is $4k$-tree-connected, then it has k edge-disjoint spanning Eulerian subgraphs with odd size.

Proof. By Theorem 2.9, $G[X, Y]$ is $2k$-tree-connected for a partition X, Y of $V(G)$. Thus $G[X, Y]$ contains $2k$ edge-disjoint spanning trees T_1, \ldots, T_k and T'_1, \ldots, T'_k. By the assumption, $e_G(X) + e_G(Y) \geq k$. Thus we can take e_1, \ldots, e_k to be k edges of $G[X] \cup G[Y]$. Define $H_i = T'_i + e_i$. Let F_i be a spanning forest of T_i such that for each vertex v, $d_{F_i}(v)$ and $d_{H_i}(v)$ have the same parity. It is enough to set $G_i = F_i \cup H_i$ to construct the desired parity factors.

3 Factors modulo 2

In this section, we consider the existence of parity factors. Our results are based on the following lemma which is a special case of a result due to Lovász (1970) who gave a criterion for the existence of parity (g, f)-factors. Here, we denote by $\omega(G)$ the number of components of a graph G, and a parity (g, f)-factor refers to a spanning subgraph H such that for each vertex v, $g(v) \leq d_H(v) \leq f(v)$ and $d_H(v) \equiv g(v) \equiv f(v)$.

Lemma 3.1. (14; see also [10, Lemma 6.1]) Let G be a connected graph and let g and f be two integer-valued functions on $V(G)$ with $g \leq f$ satisfying $\sum_{v \in V(G)} f(v) = 0$, and $f(v) \equiv g(v)$ for each vertex v. Then G has a parity (g, f)-factor, if for any two disjoint subsets A and B of $V(G)$ with $A \cup B \neq \emptyset$,
\[\omega(G \setminus (A \cup B)) \leq 1 + \sum_{v \in A} f(v) + \sum_{v \in B} (d_G(v) - g(v)) - d_G(A, B). \]

It is known that edge-connectivity 1 is sufficient for a graph to have an f-factor modulo 2, see [8, 23]. The following theorem shows that edge-connectivity 2 is sufficient for a graph to have an f-factor modulo 2 whose degrees fall in predetermined short intervals.
Theorem 3.2. Let G be a graph and let $f : V(G) \rightarrow \mathbb{Z}_2$ be a mapping with $\sum_{v \in V(G)} f(v) \equiv 0$. If G is 2-edge-connected, then it has an f-factor H such that for each vertex v,

$$\left\lfloor \frac{d_G(v)}{2} \right\rfloor - 1 \leq d_H(v) \leq \left\lceil \frac{d_G(v)}{2} \right\rceil + 1.$$

Furthermore, for an arbitrary vertex z, $d_H(z)$ can be assigned to any plausible integer value in whose interval.

Proof. For each vertex v, define $g'(v) \in \{ \lfloor d_G(v)/2 \rfloor, \lceil d_G(v)/2 \rceil + 1 \}$ such that $g'(v) \equiv f(v) \equiv f'(v)$. Obviously, $g'(v) \leq f'(v)$. Note that if $g'(z) < f'(z)$, we allow to replace $g'(z)$ by $g'(z) + 2$ or replace $f'(z)$ by $f'(z) - 2$ with respect to our purpose related to z. For the first choice, we have $|d_G(z)/2 - g'(z)| \leq 3/2$ and for the second choice, we have $|d_G(z)/2 - f'(z)| \leq 3/2$. Let A and B be two disjoint subsets of $V(G)$ with $A \cup B \neq \emptyset$. Since G is 2-edge-connected, it is not hard to check that

$$\omega(G \setminus (A \cup B)) \leq \sum_{A \cup B} \frac{1}{2} d_G(v) - e_G(A \cup B) \leq \sum_{A \cup B} \frac{1}{2} d_G(v) - d_G(A, B).$$

Therefore,

$$\omega(G \setminus (A \cup B)) < 2 + \sum_{v \in A} f'(v) + \sum_{v \in B} (d_G(v) - g'(v)) - d_G(A, B),$$

whether $z \in A \cup B$ or not. Thus by Lemma 3.1, the graph G has a parity (g', f')-factor and the proof is completed.

The following well-known result on Eulerian graphs is a special case of Theorem 3.2.

Corollary 3.3. Every Eulerian graph G with $z \in V(G)$ has a factor H such that for each $v \in V(G) \setminus \{z\}$, $d_H(v) = d_G(v)/2$, and $d_H(z) \in \{d_G(z)/2, d_G(z)/2 + 1\}$.

Proof. For each $v \in V(G) \setminus \{z\}$, define $f(v) = d_G(v)/2 \pmod{2}$, and also define $f(z) = \sum_{v \in V(G) \setminus \{z\}} f(v) \pmod{2}$. Since G is 2-edge-connected, by Theorem 3.2, the graph G has an f-factor H such that for each $v \in V(G) \setminus \{z\}$, $d_G(v)/2 - 1 \leq d_H(v) \leq d_G(v)/2 + 1$, and $d_G(z)/2 \leq d_H(z) \leq d_G(z)/2 + 1$. Hence H is the desired factor.

An interesting application of Theorem 3.2 is given in the following corollary.

Corollary 3.4. Every connected 2r-regular graph G with $(r + 1)|V(G)|$ even can be decomposed into two factors whose degrees lie in the set $\{r - 1, r + 1\}$.

Proof. For each vertex v, define $f(v) = r + 1 \pmod{2}$. By Theorem 3.2, the graph G has an f-factor such that for each vertex v, $r - 1 \leq d_G(v)/2 - 1 \leq d_H(v) \leq d_G(v)/2 + 1 \leq r + 1$. Hence H and its complement are the desired factors whose degrees lie in the set $\{r - 1, r + 1\}$.

Remark 3.5. Note that Theorem 3.2 can conclude Theorem 11 in [7]. A generalization of it is formulated in [10, Theorem 6.2].
In the following theorem, we develop Theorem 3.2 to a partition-connected version. A graph G is said to be (m, l_0)-partition-connected, if it can be decomposed into an m-tree-connected factor and a factor F which admits an orientation such that for each vertex v, $d_F(v) \geq l_0(v)$, where l_0 is a nonnegative integer-valued function on $V(G)$.

Theorem 3.6. Let G be a graph and let $f : V(G) \to \mathbb{Z}_2$ be a mapping with $\sum_{v \in V(G)} f(v) \equiv 2 \pmod{2}$. Let s, s_0, and l_0 be three integer-valued functions on $V(G)$ satisfying $s(v) + s_0(v) < d_G(v)$ and $\max\{s(v), s_0(v)\} \leq l_0(v)$ for each vertex v. If G is $(1, l_0)$-partition-connected, then it has an f-factor H such that for each vertex v,

$$s(v) \leq d_H(v) \leq d_G(v) - s_0(v).$$

Proof. For each vertex v, define $g'(v) \in \{s(v), s(v) + 1\}$ and $f'(v) \in \{d_G(v) - s_0(v) - 1, d_G(v) - s_0(v)\}$ such that $g'(v) \equiv f(v) \equiv f'(v)$. Note that the condition $s(v) + s_0(v) < d_G(v)$ implies that $g'(v) \leq f'(v) + 1$ and hence $g'(v) \leq f'(v)$, because those have the same parity. By the assumption, the graph G can be decomposed into two factors T and F such that T is a spanning tree and F admits an orientation such that for each vertex v, $d_F(v) \geq l_0(v)$. Let A and B be two disjoint subsets of $V(G)$. It is not hard to check that

$$\omega(G \setminus (A \cup B)) \leq \omega(T \setminus (A \cup B)) = \sum_{A \cup B} (d_T(v) - 1) + 1 - e_T(A \cup B) \leq \sum_{A \cup B} (d_T(v) - 1) + 1 - d_T(A, B).$$

Since $d_F(v) \geq l_0(v) \geq \max\{s(v), s_0(v)\}$ for each vertex v, we must have

$$0 \leq \sum_{v \in A \cup B} d_F(v) - d_F(A, B) \leq \sum_{v \in A} (d_F(v) - s_0(v)) + \sum_{v \in B} (d_F(v) - s(v)) - d_F(A, B).$$

Therefore,

$$\omega(G \setminus (A \cup B)) \leq \sum_{v \in A} (d_G(v) - s_0(v) - 1) + \sum_{v \in B} (d_G(v) - s(v) - 1) - d_G(A, B) + 1,$$

which implies that

$$\omega(G \setminus (A \cup B)) \leq \sum_{v \in A} f'(v) + \sum_{v \in B} (d_G(v) - g'(v)) - d_G(A, B) + 1.$$

Thus by Lemma 3.1, the graph G has a parity (g', f')-factor and the proof is completed.

\[\square\]

4 Factors modulo k: Almost bipartite graphs

4.1 Bipartite graphs

There is a special one-to-one mapping between orientations and factors of any bipartite graph, which was utilized by Thomassen in [22] in order to establish Theorem 1.2. Using the same arguments, we derive the following strengthened version.
Theorem 4.1. Let G be a bipartite graph with bipartition (X,Y), let k be a positive integer, and let $f : V(G) \to \mathbb{Z}_k$ be a mapping with $\sum_{v \in X} f(v) \equiv \sum_{v \in Y} f(v)$. If G is essentially $(3k-3)$-edge-connected and $d_G(v) \geq 2k - 1 + \lfloor f(v) \rfloor_k$ for each vertex v, then G has an f-factor H such that for each vertex v,

$$\left\lfloor \frac{d_G(v)}{2} \right\rfloor - (k-1) \leq d_H(v) \leq \left\lfloor \frac{d_G(v)}{2} \right\rfloor + (k-1).$$

Furthermore, for an arbitrary vertex z, $d_H(z)$ can be assigned to any plausible integer value in whose interval.

Proof. The special case $k = 2$ follows from Theorem 3.2. Assume $k \geq 3$. For each $v \in X$, define $p(v) = f(v)$, and for each $v \in Y$, define $p(v) = d_G(v) - f(v)$. Since f is compatible with G, $\sum_{v \in X} f(v) \equiv \sum_{v \in Y} f(v)$ which can conclude that $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. By the assumption for each $v \in X$, $d_G(v) \geq 2k - 1 + \lfloor f(v) \rfloor_k = 2k - 1 + [p(v)]_k$. Also, for each $v \in Y$, $d_G(v) \geq 2k - 1 + [f(v)]_k = 2k - 1 + [d_G(v) - p(v)]_k$ which can imply that $d_G(v) \geq 2k - 1 + [p(v)]_k$. More precisely, if we let $i = d_G(v) - 2k$, then since $i - [f(v)]_k \geq -1$, we must have $d_G(v) \geq 2k + i - [f(v)]_k - 1 \geq 2k - 1 + [i - f(v)]_k = 2k - 1 + [p(v)]_k$. Thus by Corollary 2.3, the graph G has a p-orientation modulo k such that for each vertex v, $\lfloor d_G(v)/2 \rfloor - (k-1) \leq d^+_G(v) \leq \lfloor d_G(v)/2 \rfloor + (k-1)$. Take H to be the factor of G consisting of all edges directed from X to Y. Since for all vertices $v \in X$, $d_H(v) = d^+_G(v)$, and for all vertices $v \in Y$, $d_H(v) = d_G(v) - d^+_G(v)$, the graph H is the desired f-factor. The remaining case $k = 1$ can be proved similarly, because it is known that every graph G has an orientation such that for each vertex v, $\lfloor d_G(v)/2 \rfloor \leq d^+_G(v) \leq \lfloor d_G(v)/2 \rfloor$; in particular, we can arbitrarily have $d^+_G(z) = \lfloor d_G(z)/2 \rfloor$ or $d^+_G(z) = \lceil d_G(z)/2 \rceil$ by reversing the orientation (if necessary). \hfill \Box

Bensmail, Merker, and Thomassen (2017) [4] applied a weaker version of the following corollary to deduce that every 16-edge-connected bipartite graph admits a decomposition into at most two locally irregular subgraphs. Their proof is based on Theorem 5.2 in [4] for the special case $k = 6$. By replacing the following result in their proof, this number can be pushed down to 15.

Corollary 4.2. Let G be a bipartite graph with bipartition (X,Y), let k be a positive integer, and let $f : V(G) \to \mathbb{Z}_k$ be a mapping with $\sum_{v \in X} f(v) \equiv \sum_{v \in Y} f(v)$. If G is $(3k-3)$-edge-connected, then it has an f-factor H such that for each vertex v,

$$\left\lfloor \frac{d_G(v)}{2} \right\rfloor - (k-1) \leq d_H(v) \leq \left\lfloor \frac{d_G(v)}{2} \right\rfloor + (k-1).$$

Furthermore, for an arbitrary vertex z, $d_H(z)$ can be assigned to any plausible integer value in whose interval.

Proof. Apply Theorem 4.1 with the fact that for each vertex v, $d_G(v) \geq 3k - 3 \geq 2k - 1 + [f(v)]_k$. \hfill \Box

We have the following immediate conclusions similar to Corollaries 3.8 and 3.9 in [9]. Note the required edge-connectivity $3k - 3$ of the first one can be replaced by odd edge-connectivity $3k - 2$ and the second one can be replaced by the condition $d_G(A) \geq 6k - 2$, where A is a subset of $V(G)$ with odd size.
Corollary 4.3. Let G be a bipartite graph and let k be an odd positive integer. If G is $(3k - 3)$-edge-connected, then it has a factor H such that for each vertex v,

$$d_H(v) \in \{ \frac{d_G(v)}{2} - \frac{k}{2}, \frac{d_G(v)}{2}, \frac{d_G(v)}{2} + \frac{k}{2}\}.$$

Proof. For each vertex v, define $f(v) = d_G(v)/2 \pmod{k}$ when $d_G(v)$ is even, and define $f(v) = (d_G(v) + k)/2 \pmod{k}$ when $d_G(v)$ is odd. Let (X, Y) be the bipartition of G. Obviously, $\sum_{v \in X} f(v) = \frac{|E(G)|}{2} + n_xk/2$ and $\sum_{v \in Y} f(v) = \frac{|E(G)|}{2} + n_yk/2$, where n_x and n_y are the number of vertices in X and Y with odd degrees, respectively. Since n_x and n_y have the same parity, $\sum_{v \in X} f(v) = \sum_{v \in Y} f(v)$. Thus by Corollary 4.2, the graph G has an f-factor such that for each vertex v, $\lfloor d_G(v)/2 \rfloor - (k - 1) \leq d_H(v) \leq \lceil d_G(v)/2 \rceil + (k - 1)$. If $d_G(v)$ is even, then $d_H(v) = d_G(v)/2$. Otherwise, since $d_G(v)/2 - 3k/2 < d_H(v) < d_G(v)/2 + 3k/2$, we must have $d_H(v) \in \{d_G(v)/2 - k/2, d_G(v)/2 + k/2\}$. Hence H is the desired factor. □

Corollary 4.4. Let G be a bipartite Eulerian graph of even order and let k be a positive integer. If G is $(6k - 2)$-edge-connected, then it has a factor H such that for each vertex v,

$$d_H(v) \in \{ \frac{d_G(v)}{2} - k, \frac{d_G(v)}{2}, \frac{d_G(v)}{2} + k\}.$$

Proof. For each vertex v, define $f(v) = d_G(v)/2 + k \pmod{2k}$, and let (X, Y) be the bipartition of G. Obviously, $\sum_{v \in X} d_G(v)/2 = |E(G)|/2 = \sum_{v \in Y} d_G(v)/2$. Since $|V(G)|$ is even, we must have $\sum_{v \in X} f(v) = \sum_{v \in Y} f(v)$. Thus by Corollary 4.2, the graph G has an f-factor H such that for each vertex v, $d_G(v)/2 - 3k < d_G(v)/2 - (2k - 1) \leq d_H(v) \leq d_G(v)/2 + 2k - 1 < d_G(v)/2 + 3k$. Hence H is the desired factor. □

The following corollary is an improved version of Lemma 4.1 in [17]. Note the required edge-connectivity $3k$-3 can be replaced by the condition $d_G(A) \geq 3k - 3$, where A is a subset of $V(G)$ satisfying $0 < |A \cap Y| < |Y|$; by replacing Corollary 3.8 in [9] in the proof.

Corollary 4.5. Let G be a $(3k - 3)$-edge-connected bipartite graph on classes X and Y, where each vertex in X has even degree. For every function $f : Y \to \mathbb{Z}_k$ satisfying $\sum_{v \in Y} f(v) = \frac{k}{2} |E(G)|$, there exists a factor H of G such that

1. $d_H(v) = \frac{1}{2} d_G(v)$ for each $v \in X$.

2. $|d_H(v) - \frac{1}{2} d_G(v)| < k$ and $d_H(v) = \frac{k}{2} f(v)$ for each $v \in Y$.

Proof. For each $v \in X$, define $f(v) = d_G(v)/2 \pmod{k}$. According to the assumption, $\sum_{v \in X} f(v) = \frac{k}{2} |E(G)| = \sum_{v \in X} d_G(v)/2 = \frac{1}{2} |E(G)| = \sum_{v \in Y} f(v)$. Thus by Corollary 4.2, the graph G has an f-factor H such that for each vertex v, $d_G(v)/2 + k < |d_G(v)/2| - (k - 1) \leq d_H(v) \leq |d_G(v)/2| + (k - 1) < d_G(v)/2 + k$ which implies that $|d_H(v) - \frac{1}{2} d_G(v)| < k$. For each $v \in X$, we therefore have $d_H(v) = d_G(v)/2$. This completes the proof. □
For proving the remaining two theorems, we need the following two lemmas. Recall that a graph G is said to be (m,l_0)-partition-connected, if it can be decomposed into an m-tree-connected factor and a factor F which admits an orientation such that for each vertex v, $d^+_F(v) \geq l_0(v)$, where l_0 is a nonnegative integer-valued function on $V(G)$.

Lemma 4.6. (9) Let G be a graph, let k be an integer, $k \geq 3$, and let $p : V(G) \to \mathbb{Z}_k$ be a mapping with $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. Let $s, s_0,$ and l_0 be three integer-valued functions on $V(G)$ satisfying $s(v) + s_0(v) + k - 1 \leq d_G(v)$ and $\max\{s(v), s_0(v)\} \leq l_0(v) + (k-1)$ for each vertex v, and $\max\{s(z), s_0(z)\} \leq l_0(z)$ for a vertex z. If G is $(2k-2, l_0)$-partition-connected, then it has a p-orientation such that for each vertex v,

$$s(v) \leq d^+_G(v) \leq d_G(v) - s_0(v).$$

Lemma 4.7. (9) Let G be a graph of order at least two, let k be an integer, $k \geq 3$, and let $p : V(G) \to \mathbb{Z}_k$ be a mapping with $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. If G is $(2k-2)$-tree-connected, then it has a p-orientation such that for each vertex v,

$$k/2 - 1 \leq d^+_G(v) \leq d_G(v) - k/2 + 1.$$

The following theorem provides a partition-connected version for Theorem 4.1.

Theorem 4.8. Let G be a bipartite graph with bipartition (X,Y), let k be an integer, $k \geq 3$, and let $f : V(G) \to \mathbb{Z}_k$ be a mapping with $\sum_{v \in X} f(v) \equiv \sum_{v \in Y} f(v)$. Let $s, s_0,$ and l_0 be three integer-valued functions on $V(G)$ satisfying $s(v) + s_0(v) + k - 1 \leq d_G(v)$ and $\max\{s(v), s_0(v)\} \leq l_0(v) + (k-1)$ for each vertex v, and $\max\{s(z), s_0(z)\} \leq l_0(z)$ for a vertex z. If G is $(2k-2, l_0)$-partition-connected, then it admits an f-factor H such that for each vertex v,

$$s(v) \leq d_H(v) \leq d_G(v) - s_0(v).$$

Proof. For each $v \in X$, define $p(v) = f(v)$, $s'(v) = s(v)$, $s'_0(v) = s_0(v)$, and for each $v \in Y$, define $p(v) = d_G(v) - f(v)$, $s'(v) = s_0(v)$, $s'_0(v) = s(v)$. By the assumption, we must have $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. By Lemma 4.6, the graph G has a p-orientation modulo k such that for each vertex v, $s'(v) \leq d^+_G(v) \leq d_G(v) - s'_0(v)$. Take H to be the factor of G consisting of all edges directed from X to Y. Since for all vertices $v \in X$, $d_H(v) = d^+_G(v)$, and for all vertices $v \in Y$, $d_H(v) = d_G(v) - d^+_G(v)$, the graph H is the desired f-factor we are looking for. \qed

An application of the following theorem is stated in Section 6.

Theorem 4.9. Let G be a bipartite graph of order at least two with bipartition (X,Y), let k be an integer, $k \geq 3$, and let $f : V(G) \to \mathbb{Z}_k$ be a mapping with $\sum_{v \in X} f(v) \equiv \sum_{v \in Y} f(v)$. If G is $(2k-2)$-tree-connected, then it has an f-factor H such that for each vertex v, $k/2 - 1 \leq d_H(v) \leq d_G(v) - k/2 + 1$.

13
Proof. For each \(v \in X \), define \(p(v) = f(v) \), and for each \(v \in Y \), define \(p(v) = d_G(v) - f(v) \). By the assumption, we must have \(|E(G)| \leq \sum_{v \in V(G)} p(v)\). By Lemma 4.7, the graph \(G \) has a \(\rho \)-orientation such that for each vertex \(v \), \(k/2 - 1 \leq d_G^+(v) \leq d_G(v) - k/2 + 1 \). Define \(H \) to be the factor of \(G \) consisting of all edges directed from \(X \) to \(Y \). It is easy to check that \(H \) is the desired factor we are looking for. \(\square \)

4.2 Graphs with small bipartite index

The following theorem establishes a non-bipartite version for Theorem 4.1 with a stronger version.

Theorem 4.10. Let \(G \) be a graph, let \(k \) be an integer, \(k \geq 3 \), and let \(f : V(G) \to \mathbb{Z}_k \) be a compatible mapping. If \(G \) is essentially \((3k - 3)\)-edge-connected and \(d_G(v) \geq 2k-1 + [f(v)]_k \) for each vertex \(v \), and \(e_G(X) + e_G(Y) \leq k-1 \) for a bipartition of \(X, Y \) of \(V(G) \), then \(G \) has an \(f \)-factor \(H \) such that for each vertex \(v \),

\[
\left\lfloor \frac{d_G(v) + s(v)}{2} \right\rfloor - (k - 1) \leq d_H(v) \leq \left\lfloor \frac{d_G(v) - s_0(v)}{2} \right\rfloor + (k - 1),
\]

where \(s \) and \(s_0 \) are two nonnegative integer-valued functions on \(V(G) \) satisfying \(s_0(v) + s(v) < 2k \) for each vertex \(v \), and \(e_G(X) + e_G(Y) + \frac{1}{2} \sum_{v \in V(G)} \max\{s(v), s_0(v)\} < k \).

Proof. Let \(M \) be the graph \(G[X] \cup G[Y] \). Since \(f \) is compatible, there are two integers \(x \) and \(y \) with \(0 \leq x \leq e_G(X) = e_M(X) \) and \(0 \leq y \leq e_G(Y) = e_M(Y) \) such that \(2y - 2x \equiv \sum_{v \in Y} f(v) - \sum_{v \in X} f(v) \). Let \(M_1 \) be a factor of \(M \) such that \(e_{M_1}(X) = x \) and \(e_{M_1}(Y) = y \), and let \(M_0 = M \setminus E(M_1) \). We are going to construct a new graph \(L \) that plays an important role in the proof. First, we add a new vertex \(z_0 \) to \(G \setminus E(M) \). Next, for each edge \(uv \in E(M) \), we add two edges \(z_0u \) and \(z_0v \) directed as follows. Both them are directed toward \(z_0 \), if either \(uv \in E(M_1) \cap E(G[X]) \) or \(uv \in E(M_0) \cap E(G[Y]) \), and also directed away from \(z_0 \), if either \(uv \in E(M_0) \cap E(G[X]) \) or \(uv \in E(M_1) \cap E(G[Y]) \). Note that we might have some multiple edges incident with \(z_0 \). Call the resulting loopless graph \(L \). Note also that \(d_G(v) = d_L(v) \) for all \(v \in V(G) \).

![Figure 1: An orientation of all edges incident with \(z_0 \).](image)

Define \(p(z_0) = d_L^+(z_0) = 2e_{M_0}(X) + 2e_{M_1}(Y) \), and for each \(v \in V(L) \setminus \{z_0\} \), define

\[
p(v) = \begin{cases}
 d_L(v) - f(v), & \text{if } v \in Y; \\
 f(v), & \text{if } v \in X.
\end{cases}
\]
Thus
\[\sum_{v \in V(L)} p(v) \equiv k p(z_0) + \sum_{v \in V(G)} p(v) \equiv 2e_{M_0}(X) + 2e_{M_1}(Y) + \sum_{v \in X} f(v) + \sum_{v \in Y} (d_L(v) - f(v)), \]
and so
\[\sum_{v \in V(L)} p(v) \equiv 2e_{M_1}(Y) - 2e_{M_1}(X) + \sum_{v \in X} f(v) - \sum_{v \in Y} f(v) + |E(L)| \equiv |E(L)|. \]

Obviously, \(L \) is essentially \((3k - 3)\)-edge-connected, \(d_L(v) = d_G(v) \geq 2k - 1 + [f(v)]_k = 2k - 1 + [p(v)]_k \) for each \(v \in X \), and \(d_L(v) = d_G(v) \geq 2k - 1 + [f(v)]_k \) for each \(v \in Y \) which can imply that \(d_L(v) \geq 2k - 1 + [d_L(v) - f(v)]_k = 2k - 1 + [p(v)]_k \). In addition, \(d_L(z_0) + \sum_{v \in V(G)} \max\{s'(v), s'_0(v)\} = 2|E(M)| + \sum_{v \in V(G)} \max\{s'(v), s'_0(v)\} < 2k \), where \(s'(v) = s(v) \) and \(s'_0(v) = s_0(v) \) when \(v \in X \) and \(s'(v) = s_0(v) \) and \(s'_0(v) = s(v) \) when \(v \in Y \). Therefore, by Theorem 2.1, the orientation of the edges of \(L \) incident with \(z_0 \) can be extended to a \(p \)-orientation of \(L \) such that for each vertex \(v \), \([(d_L(v) + s'(v))/2] - (k - 1) \leq d_L^+(v) \leq [(d_L(v) - s'_0(v))/2] + (k - 1) \). Let \(F \) be the factor of \(G \) consisting of all edges of \(L - z_0 \) directed from \(X \) to \(Y \). Define \(H = M_1 \cup F \). According to the construction of \(H \), for each \(v \in V(H) \), we have
\[d_H(v) = d_{M_1}(v) + d_F(v) = \begin{cases} d_L^+(v), & \text{if } v \in Y; \\ d_L^+(v), & \text{if } v \in X. \end{cases} \]
Thus \([(d_L(v) + s'(v))/2] - (k - 1) \leq d_H(v) \leq [(d_L(v) - s'_0(v))/2] + (k - 1) \). Hence it is not hard to check that \(H \) is the desired \(f \)-factor we are looking for. \(\square \)

The following corollary plays an essential role in the proof of Theorem 5.6 in Subsection 5.2.

Corollary 4.11. Let \(G \) be a graph, let \(k \) be an integer, \(k \geq 3 \), and let \(f : V(G) \to \mathbb{Z}_k \) be a compatible mapping. If \(G \) is \((3k - 3)\)-edge-connected and \(e_G(X) + e_G(Y) \leq k - 1 \) for a bipartition of \(X, Y \) of \(V(G) \), then \(G \) has an \(f \)-factor \(H \) such that for each vertex \(v \),
\[\left\lfloor \frac{d_G(v)}{2} \right\rfloor - (k - 1) \leq d_H(v) \leq \left\lceil \frac{d_G(v)}{2} \right\rceil + (k - 1). \]
Furthermore, for an arbitrary given vertex \(z \) of odd degree, the upper bound and the lower bound can be reduced by one.

Proof. Apply Theorem 4.10 by setting \(s(z) = s_0(z) = 1 \) and \(s(v) = s_0(v) = 0 \) for all \(v \in V(G) \setminus \{z\} \). \(\square \)

The following theorem establishes a non-bipartite version for Corollary 4.2 and plays an essential role in the subsequent section. Let \(Q \) be a trail-decomposition of the edges of a graph \(G \) and let \(X \subseteq V(G) \). Here, we say that \(Q \) is \(X \)-parity trail-decomposition, if every trail in \(Q \) of odd size has exactly one end in \(X \) and every trail in \(Q \) of even size has both ends in either \(X \) or \(V(G) \setminus X \).

Theorem 4.12. Let \(G \) be a graph, let \(k \) be an integer, \(k \geq 3 \), and let \(f : V(G) \to \mathbb{Z}_k \) be a compatible mapping. Let \(G_0 \) be a factor of \(G \) such that its complement admits an \(X \)-parity trail-decomposition and
Let \(e_G(X) + e_G(Y) = k - 1 \), where \(X, Y \) is a bipartition of \(V(G) \). If \(G_0 \) is \((3k-3)\)-edge-connected, then \(G \) has an \(f \)-factor \(H \) such that for each vertex \(v \),
\[
\left\lfloor \frac{d_G(v)}{2} \right\rfloor - (k-1) \leq d_H(v) \leq \left\lfloor \frac{d_G(v)}{2} \right\rfloor + (k-1).
\]

Furthermore, for an arbitrary given vertex \(z \) of odd degree, the upper bound and the lower bound can be reduced by one.

Proof. Let \(Q \) be an \(X \)-parity trail-decomposition of \(G \setminus E(G_0) \). Let \(T \) be a graph with \(V(T) = V(G) \) and for each trail in \(Q \) having different end vertices \(v \) and \(u \) add the edge \(uv \) in \(T \); adding parallel edges if necessary. Note that \(T \) is loopless. For each vertex \(v \), we denote by \(t(v) \) the number of times trails pass through \(v \) but not finish and start at \(v \) plus the number of closed trails started at \(v \). Let \(M = G_0[X] \cup G_0[Y] \) so that \(|E(M)| = k - 1 \). Since \(f \) is compatible, \(\sum_{v \in X} f(v) - \sum_{v \in Y} f(v) \) is even when \(k \) is even. On the other hand, since \(Q \) is an \(X \)-parity trail-decomposition, one can conclude that \(\sum_{v \in Y} t(v) - \sum_{v \in X} t(v) + e_T(Y) - e_T(X) \) must be even (by splitting into similar expressions corresponding to trails of \(Q \)). Thus there is a factor \(M_1 \) of \(M \) such that \(2e_{M_1}(Y) - 2e_{M_1}(X) = \frac{k}{2} \sum_{v \in Y} (f(v) - t(v)) - \frac{k}{2} \sum_{v \in X} (f(v) - t(v)) - e_T(Y) + e_T(X) \). Let \(M_0 = M \setminus E(M_1) \).

We are going to construct a new graph \(L \) similarly to the proof of Theorem 4.10. First, we add a new vertex \(z_0 \) to \(G_0 \setminus E(M) \). Next, for each edge \(uv \in E(M) \), we add two edges \(z_0u \) and \(z_0v \) directed as follows. Both are directed toward \(z_0 \), if either \(uv \in E(M_1) \cap E(G[X]) \) or \(uv \in E(M_0) \cap E(G[Y]) \), and also directed away from \(z_0 \), if either \(uv \in E(M_0) \cap E(G[X]) \) or \(uv \in E(M_1) \cap E(G[Y]) \). Call the resulting loopless graph \(L \). Note that for each \(v \in V(G) \), \(d_L(v) = d_L(v) + d_T(v) + 2t(v) \). Define \(p(z_0) = d_L^k(z_0) = 2e_{M_0}(X) + 2e_{M_1}(Y) \), and for each \(v \in V(L) \setminus \{z_0\} \), define
\[
p(v) = \begin{cases} d_L(v) + d_T(v) - (f(v) - t(v)), & \text{if } v \in Y; \\ f(v) - t(v), & \text{if } v \in X. \end{cases}
\]

Thus
\[
\sum_{v \in V(L)} p(v) = p(z_0) + \sum_{v \in V(G)} p(v) = 2e_{M_0}(X) + 2e_{M_1}(Y) + \sum_{v \in X} (f(v) - t(v)) + \sum_{v \in Y} (d_L(v) + d_T(v) - (f(v) - t(v))),
\]

and so
\[
\sum_{v \in V(L)} p(v) = 2e_{M_1}(Y) - 2e_{M_1}(X) + e_T(Y) - e_T(X) + \sum_{v \in X} (f(v) - t(v)) - \sum_{v \in Y} (f(v) - t(v)) + |E(L)| + |E(T)|.
\]

This implies that \(\sum_{v \in V(L)} p(v) \geq |E(L)| + |E(T)| \). Obviously, \(L \) is essentially \((3k-3)\)-edge-connected, \(d_L(v) = d_G(v) \geq 3k-3 \geq 2k-1+|p(v)|k \) for all \(v \in V(L) \setminus \{z_0\} \), and \(d_L(z_0) + d_T(z_0) + 1 \leq 2|E(M)| + 1 = 2k - 1 \). Thus by Theorem 2.1, the orientation of the edges of \(L \) incident with \(z_0 \) can be extended to a \(p \)-orientation of \(L \cup T \) such that for each vertex \(v \),
\[
\left| \frac{1}{2} (d_L(v) + d_T(v)) \right| - (k-1) \leq d_T^-(v) + d_T^+(v) \leq \left| \frac{1}{2} (d_L(v) + d_T(v)) \right| + (k-1).
\]

In addition, we can have \(\left| \frac{1}{2} (d_L(z) + d_T(z) + 1) \right| - (k-1) \leq d_T^-(z) + d_T^+(z) \leq \left| \frac{1}{2} (d_L(z) + d_T(z) - 1) \right| + (k-1) \).
Define \(F \) to be the factor of \(G_0 \) consisting of all edges of \(L - z_0 \) directed from \(X \) to \(Y \). Let \(v_0, \ldots, v_n \) be an arbitrary trail in \(Q \) such that the edge \(v_0v_n \) directed from \(v_0 \) to \(v_n \) in \(T \). If \(v_0 \in X \), we select all edges \(v_2v_3, \ldots, v_{2i+1}v_{2i+2} \) of this trail, and if \(v_0 \in Y \), we select all edges \(v_2v_3, \ldots, v_{2i+1}v_{2i+2} \). Let \(T' \) be the factor of \(T \) consists of all selected edges. Since \(Q \) is an \(X \)-parity trail-decomposition, we must have \(d_{T'}(v) = d_{T'}^+(v) + t(v) \) for each \(v \in X \), and \(d_{T'}(v) = d_{T'}^-(v) + t(v) \) for each \(v \in Y \). Define \(H = M_1 \cup F \cup T' \). According to the construction of \(H \), for each \(v \in V(H) \), we have

\[
d_H(v) = d_{M_1}(v) + d_F(v) + d_{T'}(v) = \begin{cases}
d_L^+(v) + d_T^+(v) + t(v), & \text{if } v \in Y; \\
d_L^-(v) + d_T^-(v) + t(v), & \text{if } v \in X.
\end{cases}
\]

Therefore, \([d_G(v)/2] - (k - 1) \leq d_H(v) \leq [d_G(v)/2] + (k - 1)\), and also \([d_G(z)/2] - (k - 1) \leq d_H(z) \leq [d_G(z)/2] + (k - 1)\). Hence it is not hard to check that \(H \) is the desired \(f \)-factor we are looking for. \(\square \)

5 Factors modulo \(k \): General graphs

Our aim in this section is to generalize Corollary 4.2 to general graphs using the same degree bounds and characterize the exceptional graphs with high enough edge-connectivity. We begin with a similar version by increasing the upper bound \([d_G(v)/2] + k - 1\) to \([d_G(v)/2] + k\).

5.1 General graphs

The following theorem improves the condition of edge-connectivity of Theorem 1.3.

Theorem 5.1. Let \(G \) be a graph, let \(k \) be a positive integer, and let \(f : V(G) \rightarrow \mathbb{Z}_k \) be a compatible mapping. If \(G \) contains a \((3k - 3)\)-edge-connected bipartite factor, then \(G \) has an \(f \)-factor \(H \) such that for each vertex \(v \),

\[
\left[\frac{d_G(v)}{2} \right] - (k - 1) \leq d_H(v) \leq \left[\frac{d_G(v)}{2} \right] + k.
\]

Proof. The special case \(k = 1 \) can be proved by Corollary 3.3. More precisely, when \(G \) is not Eulerian, we need to add an artificial vertex \(z \) and join it to all vertices with odd degrees. Moreover, Theorem 3.2 confirms the case \(k = 2 \). So, suppose \(k \geq 3 \). Let \(X, Y \) be a bipartition of \(V(G) \) such that \(G[X, Y] \) is \((3k - 3)\)-edge-connected. Define \(G_0 \) to be a factor of \(G \) containing all edges of \(G[X, Y] \) such that \(e_{G_0}(X) + e_{G_0}(Y) = \min\{k - 1, e_G(X) + e_G(Y)\} \). If \(G_0 = G \), then the assertion follows from Corollary 4.11. Thus we may assume that \(e_{G_0}(X) + e_{G_0}(Y) \geq k - 1 \). Let \(T \) be a factor of \(G \) obtained by selecting edge-disjoint trails of length two from \(G \setminus E(G_0) \) as long as possible. Since both ends of each selected trails lie either in \(X \) or in \(Y \), the graph \(T \) admits an \(X \)-parity trail-decomposition. Let \(M = G \setminus (E(G_0) \cup E(T)) \). According to the construction of \(T \), the graph \(M \) must be a matching. For each vertex \(v \), define \(f'(v) = f(v) - d_{M_1}(v) \) (mod \(k \)). Since \(f \) is compatible with \(G \), \(\sum_{v \in V(G)} f'(v) \) must be even when \(k \) is even. Therefore, \(f' \) must be compatible with \(G_0 \cup T \) by applying Theorem 2.6 (iii). Thus by Theorem 4.12, the graph \(G_0 \cup T \) has an \(f' \)-factor \(F \) such
that for each vertex \(v \), \([(d_G(v) - d_M(v))/2] - (k - 1) \leq d_H(v) \leq [(d_G(v) - d_M(v))/2] + (k - 1) \). Hence it is not hard to check that \(F \cup M \) is the desired \(f \)-factor we are looking for.

Corollary 5.2. Let \(G \) be a graph, let \(k \) be a positive integer, and let \(f : V(G) \to \mathbb{Z}_k \) be a mapping. Assume that \((k - 1) \sum_{v \in V(G)} f(v) \) is even and \(b_i(G) \geq k_0 - 1 \), where \(k_0 = k \) when \(k \) is odd, and \(k_0 = k/2 \) when \(k \) is even. If \(G \) is \((6k - 7) \)-edge-connected, then it has an \(f \)-factor \(H \) such that for each vertex \(v \),

\[
\left\lfloor \frac{d_G(v)}{2} \right\rfloor - (k - 1) \leq d_H(v) \leq \left\lfloor \frac{d_G(v)}{2} \right\rfloor + k.
\]

Proof. By Theorem 2.8, the graph \(G \) has a bipartite \((3k-3)\)-edge-connected factor. Also, by Theorem 2.6, the mapping \(f \) is compatible with \(G \). Thus the assertion follows from Theorem 5.1.

The following corollary is a supplement of Corollary 4.4 for the special case \(k = 2 \).

Corollary 5.3. Every non-bipartite 18-edge-connected Eulerian graph \(G \) of even size admits a factor \(H \) such that for each vertex \(v \),

\[
d_H(v) \in \{d_G(v)/2 - 2, d_G(v)/2 + 2\}.
\]

Proof. For each \(v \), define \(f(v) = d_G(v)/2 + 2 \) (mod 4). Since \(G \) is non-bipartite and \(|E(G)| \) is even, \(bi(G) \geq 1 = 4/2 - 1 \) and \(\sum_{v \in V(G)} f(v) \equiv |E(G)| \equiv 0 \) (mod 4). This implies that \(f \) is compatible with \(G \) (modulo 4) using Theorem 2.6. Thus by applying Corollary 5.2 with \(k = 4 \), the graph \(G \) has an \(f \)-factor \(H \) such that for each vertex \(v \), \(d_G(v)/2 - 3 \leq d_H(v) \leq d_G(v)/2 + 4 \). Since \(d_H(v) \equiv d_G(v)/2 + 2 \), we must have \(d_H(v) \in \{d_G(v)/2 - 2, d_G(v)/2 + 2\} \). Hence the proof is completed.

The following result is an interesting application of Theorem 5.1. This result will be refined for 6\(k \)-tree-connected graphs by replacing Theorem 5.6 in the proof.

Corollary 5.4. Let \(G \) be a graph, let \(k \) be a positive integer, and let \(f \) be a positive integer-valued function on \(V(G) \) satisfying \(f(v) \leq \frac{1}{2} d_G(v) < f(v) + k \) for each vertex \(v \). Assume that \(f \) is compatible with \(G \) (modulo \(k \)). If \(G \) is \((6k-7)\)-edge-connected, then \(G \) has a factor \(H \) such that for each vertex \(v \),

\[
d_H(v) \in \{f(v), f(v) + k\}.
\]

Proof. By Theorem 2.8, the graph \(G \) has a bipartite \((3k-3)\)-edge-connected factor. Thus by Theorem 5.1, the graph \(G \) has an \(f \)-factor \(H \) (mod \(k \)) such that for each vertex \(v \), \(f(v) - (k - 1) \leq \left\lfloor \frac{d_G(v)}{2} \right\rfloor - (k - 1) \leq d_H(v) \leq \left\lfloor \frac{d_G(v)}{2} \right\rfloor + k \leq f(v) + 2k - 1 \). Hence \(H \) is the desired factor.

We can also formulate the following theorem similar to Theorem 5.1.

Theorem 5.5. Let \(G \) be a graph of order at least two, let \(k \) be an integer, \(k \geq 3 \), and let \(f : V(G) \to \mathbb{Z}_k \) be a compatible mapping. If \(G \) contains a \((2k-2)\)-tree-connected bipartite factor, then it has an \(f \)-factor \(H \) such that for each vertex \(v \), \(k/2 - 1 \leq d_H(v) \leq d_G(v) - k/2 + 1 \).
Proof. Let X, Y be a bipartition of $V(G)$ such that $G[X, Y]$ is $(2k-2)$-tree-connected. Let $G_0 = G[X, Y]$. Since f is compatible, there are two nonnegative integers x and y with $x \leq e_G(X)$ and $y \leq e_G(Y)$ and $\sum_{v \in X} f(v) - 2x + k \leq \sum_{v \in Y} f(v) - 2y$. Let M be a factor of $G[X] \cup G[Y]$ such that $e_M(X) = x$ and $e_M(Y) = y$. For each vertex v, define $f'(v) = f(v) - d_M(v)$. Obviously, $\sum_{v \in X} f'(v) = \sum_{v \in Y} f'(v) + k$. Thus by Theorem 4.9, the graph G_0 has an f'-factor F such that for each vertex v, $k/2 - 1 \leq d_F(v) \leq d_{G_0}(v) - k/2 + 1$. Hence it is not hard to check that $F \cup M$ is the desired f-factor we are looking for.

\[\blacksquare \]

5.2 Improving degree bounds: highly edge-connected graphs

The following result improves the upper bound stated in Theorem 5.1 for highly edge-connected graphs.

Theorem 5.6. Let G be a graph with $z \in V(G)$, let k be a positive integer, and let $f : V(G) \rightarrow \mathbb{Z}_k$ be a compatible mapping. If G is $(6k-2)$-tree-connected, then G has an f-factor H such that for each vertex v,

$$\frac{d_G(v)}{2} - (k - 1) \leq d_H(v) \leq \begin{cases} \lfloor \frac{d_G(v)}{2} \rfloor + k, & \text{when } v = z; \\ \lceil \frac{d_G(v)}{2} \rceil + (k - 1), & \text{otherwise.} \end{cases}$$

Furthermore, for the vertex z, the upper bound can be reduced to $\lfloor d_G(z)/2 \rfloor + (k - 1)$ if and only if one of the following conditions hold:

- k is even.
- G has a vertex of odd degree.
- G is an Eulerian graph of even size.
- There is a vertex v for which $f(v) \equiv d_G(v)/2.$

Proof. The special case $k = 1$ can be proved by Corollary 3.3; see [15, Problem 41, Page 61]. More precisely, when G is not Eulerian, we need to add an artificial vertex z' and join it to all vertices with odd degrees, and this new vertex should play the role of the vertex z in Corollary 3.3. Moreover, Theorem 3.2 confirms the case $k = 2$. So, suppose $k \geq 3$. If $bi(G) \leq k - 1$, then the statement follows from Corollary 4.11 and Theorem 2.8. We may assume that $bi(G) \geq k$. By Corollary 2.12, the graph G can be decomposed into two factors G_1 and G_2 such that G_1 is Eulerian and G_2 is $(3k-3)$-edge-connected, and $e_{G_1}(X) + e_{G_2}(Y) = k - 1$ for a bipartition X, Y of $V(G)$. According to Corollary 3.3, the graph G_1 has a factor F_1 such that for each $v \in V(G) \setminus \{z\}$, $d_{F_1}(v) = d_{G_1}(v)/2$, and $d_{F_1}(z) \in \{d_{G_1}(z)/2, d_{G_1}(z)/2 + 1\}$. For each vertex v, define $f'(v) = f(v) - d_{F_1}(v) \pmod{k}$. Since f is compatible with G, $(k - 1)\sum_{v \in V(G)} f(v)$ is even and hence $(k - 1)\sum_{v \in V(G)} f'(v)$ is even. Thus by Theorem 2.6, f' must be compatible with G_2. According to Corollary 4.11, the graph G_2 has an f'-factor F_2 such that for each vertex v, $\lfloor d_{G_2}(v)/2 \rfloor - (k - 1) \leq d_{F_2}(v) \leq \lfloor d_{G_2}(v)/2 \rfloor + (k - 1)$, and also $d_{F_2}(z) \leq \lfloor d_{G_2}(z)/2 \rfloor + (k - 1)$. Hence $H = F_1 \cup F_2$ is the desired factor we are looking for.
Assume that the upper bound cannot be reduced to \(\lceil d_G(z)/2 \rceil + (k - 1) \). If \(d_G(z) \) is odd, then obviously the upper bound is the same number \(\lceil d_G(z)/2 \rceil + (k - 1) \). Thus we may assume that all vertices of \(G \) have even degree (otherwise, we can select a vertex of odd degree for playing the role of \(z \)). If \(f(z) \neq d_G(z)/2 \), then obviously the upper bound can also be reduced to \(\lceil d_G(z)/2 \rceil + (k - 1) \). Thus we may assume that \(f(v) \equiv d_G(v)/2 \) for all vertices \(v \). On the other hand, by applying Corollary 3.3, the graph \(G \) has a factor \(H \) such that for each \(v \in V(G) \setminus \{z\} \), \(d_H(v) = d_G(v)/2 \), and \(d_H(z) \in \{d_G(z)/2, d_G(z)/2 + 1\} \). If \(|E(G)| \) is even, then \(\sum_{v \in V(G)} d_G(v)/2 \) is even which implies that \(d_H(z) = d_G(z)/2 \). Thus \(|E(G)| \) must be odd. If \(k \) is even, then \(\sum_{v \in V(G)} f(v) \) is even and hence \(|E(G)| \) is even, which is a contradiction. Therefore, \(k \) must be odd.

Conversely, assume that \(G \) is an Eulerian graph of odd size and \(G \) has an \(f \)-factor \(H \) such that for each vertex \(v \), \(f(v) \equiv d_G(v)/2 \) and \(\lceil d_G(v)/2 \rceil - (k - 1) \leq d_H(v) \leq \lceil d_G(v)/2 \rceil + (k - 1) \). This implies that \(d_H(v) = d_G(v)/2 \) for each vertex \(v \). Since \(\sum_{v \in V(G)} d_H(v) \) is even, \(|E(G)| \) must be even, which is a contradiction. Hence the proof is completed. \(\square \)

Remark 5.7. Note that the needed tree-connectivity of Theorem 5.6 can be reduced by one and two for odd and even integers \(k \) using a little extra effort.

The following corollary is a refined version of Corollary 5.4 for highly tree-connected graphs.

Corollary 5.8. Let \(G \) be a graph, let \(k \) be a positive integer, and let \(f \) be a positive integer-valued function on \(V(G) \) satisfying \(f(v) \leq \frac{1}{2} d_G(v) \leq f(v) + k \) for each vertex \(v \). Assume that \(f \) is compatible with \(G \) (modulo \(k \)). If \(G \) is \((6k - 2)\)-tree-connected, then \(G \) has a factor \(H \) such that for each vertex \(v \),

\[d_H(v) \in \{f(v), f(v) + k\}. \]

Proof. Let \(z \in V(G) \). By Theorem 5.6, the graph \(G \) has an \(f \)-factor \(H \) (mod \(k \)) such that for each \(v \in V(G) \setminus \{z\} \), \(f(v) - (k - 1) \leq \lfloor d_G(v)/2 \rfloor - (k - 1) \leq d_H(v) \leq \lceil d_G(v)/2 \rceil + (k - 1) \leq f(v) + 2k - 1 \) which implies that \(d_H(v) \in \{f(v), f(v) + k\} \). In addition, we can have \(f(z) - (k - 1) \leq \lfloor d_G(z)/2 \rfloor - (k - 1) \leq d_H(z) \leq \lceil d_G(z)/2 \rceil + k \). If the last upper bound can be improved by one or \(d_G(z)/2 \leq f(z) + k - 1 \), then we must also have \(d_H(z) \in \{f(z), f(z) + k\} \). Otherwise, \(G \) must be Eulerian and \(d_G(v)/2 = f(v) + k \) for all vertices \(v \). In this case, we first apply Theorem 5.6 to find a factor \(H_0 \) such that for each vertex \(v \),

\[d_{H_0}(v) \in \{d_G(v) - f(v) - k, d_G(v) - f(v)\}. \]

Next, we set \(H = G \setminus E(H_0) \). Note that the function \(d_G(v) - f(v) \) is compatible with \(G \) as well. More precisely, if there are two integers \(x \) and \(y \) satisfying \(0 \leq x \leq e_G(X), 0 \leq y \leq e_G(Y) \), and \(\sum_{v \in X} f(v) - 2x \equiv \sum_{v \in Y} f(v) - 2y \), then \(\sum_{v \in X} (d_G(v) - f(v)) - 2(e_G(X) - x) \equiv \sum_{v \in Y} (d_G(v) - f(v)) - 2(e_G(Y) - y) \), where \(X, Y \) is an arbitrary bipartition of \(V(G) \). Hence the proof is completed. \(\square \)
6 Modulo k-regular factors and subgraphs

6.1 Bipartite modulo k-regular factors

The following well-known theorem gives a sufficient condition for the existence of even factors. In this subsection, we develop this result for the existence of bipartite modulo k-regular factors.

Theorem 6.1. (Lovász [15, Problem 42, Page 61]) Every 2-edge-connected loopless graph G with $\delta(G) \geq 3$ admits a modulo 2-regular factor.

We begin with the following corollary which provides a bipartite version for Theorem 6.1. Note that this result is sharp by considering that there exits a class of 4-edge-connected graphs without bipartite modulo 2-regular factors. (For example, consider a number of copies of the complete graph of order four and add a new vertex and join it to all other vertices).

Corollary 6.2. Every 3-edge-connected loopless graph G with $\delta(G) \geq 5$ admits a bipartite modulo 2-regular factor.

Proof. By Theorem 2.9, the graph G has a bipartite factor H such that for every vertex set X, $d_H(X) \geq \lceil d_G(X)/2 \rceil$. Since G is 3-edge-connected and $\delta(G) \geq 5$, the graph H must 2-edge-connected and $\delta(H) \geq 3$. Hence by Theorem 6.1 the graph H admits a modulo 2-regular factor. □

The following theorem gives sufficient edge-connectivity conditions for the existence of bipartite modulo k-regular factors.

Theorem 6.3. Every $(4k - 1)$-edge-connected essentially $(6k - 7)$-edge-connected graph with $k \geq 3$ admits a bipartite modulo k-regular factor. In addition, this result is true for bipartite $2k$-edge-connected essentially $(3k - 3)$-edge-connected graphs.

Proof. By Theorem 2.9, the graph G has a bipartite factor G_0 such that for every vertex set X, $d_{G_0}(X) \geq \lceil d_G(X)/2 \rceil$. Since G is $(4k - 1)$-edge-connected and essentially $(6k - 7)$-edge-connected, the graph G_0 must be $2k$-edge-connected and essentially $(3k - 3)$-edge-connected. For each vertex v, define $f(v) = 0$. Obviously, f is compatible with G. Thus by Theorem 4.1, the graph G_0 has an f-factor F modulo k such that for each vertex v, $d_F(v) \geq \lceil d_{G_0}(v)/2 \rceil - (k - 1) > 0$. Thus F is a bipartite modulo k-regular factor of G. □

The following theorem provides a tree-connected version for Theorem 6.3.

Theorem 6.4. Every $(4k - 4)$-tree-connected graph with $k \geq 3$ admits a bipartite modulo k-regular factor. In addition, this result is true for bipartite $(2k - 2)$-tree-connected graphs.
Proof. If G is $(4k-4)$-tree-connected, then by Theorem 2.9, the graph G contains a $(2k-2)$-tree-connected bipartite factor G_0. By Theorem 4.9, the bipartite graph G_0 contains a modulo k-regular factor, which can complete the proof. □

Finally, we formulate the following improved version of Theorem 3 in [22].

Theorem 6.5. Every $(10k-3)$-edge-connected essentially $(12k-7)$-edge-connected graph of even order admits a modulo k-regular factor whose degrees are not divisible by $2k$. In addition, this result is true for bipartite $(5k-1)$-edge-connected essentially $(6k-3)$-edge-connected graphs of even order.

Proof. By Theorem 2.9, the graph G has a bipartite factor G_0 such that for every vertex set X, $d_{G_0}(X) \geq \lceil d_G(X)/2 \rceil$. Since G is $(10k-3)$-edge-connected and essentially $(12k-7)$-edge-connected, the graph G_0 must be $(5k-1)$-edge-connected and essentially $(6k-3)$-edge-connected. For each vertex v, define $f(v) = k \pmod{2k}$. Since G_0 has even order, f must be compatible with G_0. Thus by Theorem 4.1, the graph G_0 has an f-factor F modulo $2k$. Note that for each vertex v, we have $d_{G_0}(v) \geq 5k-1 = 2(2k-1) + \lceil f(v) \rceil$. Thus F is the desired factor of G. □

6.2 Bipartite modulo k-regular subgraphs

The following theorem completely confirms Conjecture 1.6 for prime powers. We shall below replace another condition for the existence of bipartite modulo k-regular subgraphs.

Theorem 6.6. ([1]) Let G be a loopless graph of order n and let q be a prime power. Then G admits a modulo q-regular subgraph if

\[|E(G)| > (q-1)n. \]

In addition, the lower bound can be improved to $(q-1)(n-1)$ when G is bipartite.

Lemma 6.7. ([12]) Let k and q be two positive integers with $k \leq q$. Let G be a bipartite graph and let f be a nonnegative integer-valued function on $V(G)$. If G has a factor H satisfying $d_H(v) = qf(v)$ for each vertex v, then G has a factor F satisfying $d_F(v) = kf(v)$ for each vertex v.

Proof. We split every vertex v of H into $f(v)$ vertices such that the resulting graph H_0 would be a q-regular bipartite graph. Thus H_0 has a k-regular factor F_0 using König’s Theorem [13]. Obviously, this factor F_0 induces a factor F of H satisfying $d_F(v) = kf(v)$ for each vertex v. Hence the proof is completed. □

The following theorem is an improved version of Lemma 3 in [6]. By a computer search, we observed that for small positive integers k (at most nine digits), there are some prime powers less than $(1 + 1/10)k + 1$. 22
On the other hand, Baker, Harman, and Pintz (2001) [3] proved that for every sufficiently large integer \(x \), there is a prime number \(p \in [x - x^{0.525}, x] \). This shows that the following lower bound can be replaced by \((2 + \varepsilon)(k - 1)(n - 1)\) for sufficiently large \(k \).

Theorem 6.8. A loopless graph \(G \) of order \(n \) has a bipartite modulo \(k \)-regular subgraph if \(\chi(G) \leq 2t \) and

\[
|E(G)| > (2 - \frac{1}{t})(q(k) - 1)(n - 1),
\]

where \(q(k) \) denotes the smallest prime power with \(q(k) \geq k \). Consequently, if \(|E(G)| > (2q(k) - \frac{5}{2})(n - 1) \) or \(|E(G)| > (4k - 6)(n - 1) \), then \(G \) has a bipartite modulo \(k \)-regular subgraph.

Proof. We may assume that \(k \geq 2 \). We first show that the graph \(G \) has a bipartite factor \(H \) such that

\[
|E(H)| \geq \frac{4}{2t - 1}|E(G)|,
\]

see [2]. Let \(X_1, \ldots, X_{2t} \) be a partition of \(V(G) \) such that every \(G[X_i] \) has no edge. Let \(S \) be a subset of \(1, \ldots, 2t \) with size \(t \), and let \(H_S \) be the bipartite factor of \(G \) with one partite set \(\cup_{i \in S} X_i \). The number of such factors is obviously \(\binom{2t}{t} \). On the other hand, every edge is contained in exactly \(2\binom{2t - 2}{t - 2} \) such factors. Among all such factors, we consider \(H \) with the maximum size. Thus

\[
\binom{2t}{t}|E(H)| \geq \frac{4}{2t - 1}|E(G)| > (q(k) - 1)(n - 1),
\]

which implies that \(|E(H)| \geq \frac{4}{2t - 1}|E(G)| > (q(k) - 1)(n - 1) \). Thus by Theorem 6.6, the graph \(H \) has a modulo \(q(k) \)-regular subgraph \(F \). According to Lemma 6.7, the bipartite graph \(F \) has a modulo \(k \)-regular factor and so the graph \(G \) has a bipartite modulo \(k \)-regular subgraph.

Let us prove the first conclusion. Suppose, to the contrary, \(G \) has no bipartite modulo \(k \)-regular subgraph and \(|E(G)| > (2q(k) - 5/2)(n - 1) \). Thus every subgraph \(G' \) of \(G \) contains at most \(2(q(k) - 1)|V(G')| - 1 \) edges, and so it has minimum degree at most \(4q(k) - 5 \). Therefore, one can conclude that the graph \(G \) its chromatic number is at most \(4q(k) - 4 \) (using a greedy algorithm with the fact that \(G \) is \((4q(k) - 5)\)-degenerate). Thus the graph \(G \) contains at most \((2 - \frac{1}{2q(k) - 2})(q(k) - 1)(n - 1) \) edges, which is a contradiction. For proving the second conclusion, it is enough to check that \(q(k) \leq 2^{i+1} \leq 2k - 2 \) when \(k = 2^i + r \) and \(0 < r < 2^i \). Hence the proof is completed.

When \(k = 3 \) and \(t = 2 \), Theorem 6.8 becomes simpler as the following version. Note that the graph \(G \) obtained from the Cartesian product of two cycles of order three by joining its vertices to a new vertex is a 4-chromatic simple graph of size \(3(|V(G)| - 1) \) having no bipartite modulo 3-regular subgraph.

Corollary 6.9. A loopless graph \(G \) of order \(n \) has a bipartite modulo 3-regular subgraph if \(|E(G)| > (3 + \frac{1}{2})(n - 1), \) or \(\chi(G) \leq 4 \) and \(|E(G)| > 3(n - 1) \).

Finally, we propose the following conjecture to introduce a sharp version of Corollary 6.9. Note also the graph \(G \) obtained from the complete graph of order five by inserting a new copy of a triangle is a graph of size \((3 + \frac{1}{2})(|V(G)| - 1) \) having no bipartite modulo 3-regular subgraph.

Conjecture 6.10. A loopless graph \(G \) of order \(n \) has a bipartite modulo 3-regular subgraph if \(|E(G)| > (3 + \frac{1}{2})(n - 1), \) or \(G \) is simple and \(|E(G)| > 3(n - 1) \).
References

[1] N. Alon, S. Friedland, and G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B 37 (1984) 79–91.

[2] L.D. Andersen, D.D. Grant, and N. Linial, Extremal k-colorable subgraphs, Ars Combinatoria 16 (1983) 259–270.

[3] R.C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. 83 (2001) 532–562.

[4] J. Bensmail, M. Merker, and C. Thomassen, Decomposing graphs into a constant number of locally irregular subgraphs, European J. Combin. 60 (2017) 124–134.

[5] J.A. Bondy and U.S.R. Murty, Graph theory, Springer, London, 2008.

[6] F. Botler, L. Colucci, and Y. Kohayakawa, The mod k chromatic index of graphs is $O(k)$, J. Graph Theory 102 (2023) 197–200.

[7] C. Bujtás, S. Jendrol’, and Z. Tuza, On specific factors in graphs, Graphs Combin. 36 (2020) 1391–1399.

[8] J. Edmonds and E.L. Johnson, Matching, Euler tours and the Chinese postman, Mathematical Programming 5 (1973) 88–124.

[9] M. Hasanvand, Modulo orientations with bounded out-degrees, Discrete Math. 347 (2024) 113634. arXiv:1702.07039.

[10] M. Hasanvand, Equitable factorizations of edge-connected graphs, Discrete Appl. Math. 317 (2022) 136–145.

[11] M. Hasanvand, Bipartite partition-connected factors with small degrees, arXiv:1905.12161.

[12] A.J. Hoffman, Generalization of a theorem of König, J. Washington Acad. Sci. 46 (1956) 211–212.

[13] D. König, Über graphen und ihre anwendung auf determinantentheorie und mengenlehre, Mathematische Annalen, 77 (1916) 453–465.

[14] L. Lovász, The factorization of graphs II, Acta Math. Acad. Sci. Hungar. 23 (1972) 223–246.

[15] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam (1979).

[16] L.M. Lovász, C. Thomassen, Y. Wu, and C.-Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, J. Combin. Theory Ser. B 103 (2013) 587–598.

[17] M. Merker, Decomposing highly edge-connected graphs into homomorphic copies of a fixed tree, J. Combin. Theory Ser. B 122 (2017) 91–108.
[18] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445–450.

[19] H. Shirazi and J. Verstraëte, A note on polynomials and f-factors of graphs, Electron. J. Combin. 15 (2008) Note 22, 5.

[20] C. Thomassen, The Erdős-Pósa property for odd cycles in graphs of large connectivity, Combinatorica 21 (2001) 321–333.

[21] C. Thomassen, Edge-decompositions of highly connected graphs into paths, Abh. Math. Semin. Univ. Hambg. 78 (2008) 17–26.

[22] C. Thomassen, Graph factors modulo k, J. Combin. Theory Ser. B 106 (2014) 174–177.

[23] C. Thomassen, Y. Wu, and C.-Q. Zhang, The 3-flow conjecture, factors modulo k, and the 1-2-3-conjecture, J. Combin. Theory Ser. B 121 (2016) 308–325.

[24] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961) 221–230.