Original Research

Complex Hallucinations in Hospitalized Rehabilitation Patients With COVID-19

Mari Tobita, MD,a,b Shan-Pin Fanchiang, OTR/L, PhD,a,b,c Aida Saldivar, PhD, ABPP (RP), QME a Sarah Taylor, MS, CCC-SLP, MBA, BCS-S, CBIS a Barry Jordan, MD, MPH a,b,d

a Rancho Los Amigos National Rehabilitation Center, Department of Health Services, County of Los Angeles, Downey, CA
b Rancho Research Institute, Downey, CA
c Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA
d Department of Neurology, Keck Medicine of University of Southern California, Los Angeles, CA

Abstract

Objectives: To explore the characteristics of hallucinations in hospitalized rehabilitation patients with COVID-19.

Design: Retrospective review using medical records of patients with COVID-19 and admitted to the acute inpatient rehabilitation unit (ARU).

Setting: A public hospital in southern California, specializing in rehabilitation medicine. Participants: Patients with COVID-19 and hallucinations who were consecutively admitted from January 1st to April 30th, 2021.

Interventions: Not applicable.

Main Outcome Measures: Types and themes of hallucinations.

Results: Eight of the 37 patients (21.6%) admitted to the ARU with COVID-19 exhibited hallucinations. All were Hispanic and 7 of them were men; their average age was 56.5 (range: 38-71). Seven patients had COVID-19 pneumonia and 1 developed respiratory distress secondary to Guillain-Barre Syndrome. One patient had posterior reversible encephalopathy syndrome. The average length of stay in the intensive care unit (ICU) was 31.3 days (range: 8-48). Most of the hallucinations occurred during their ICU stay and 2 continued to their ARU stay. All recalled details of hallucinations with 7 exhibiting visual hallucinations, consistent with peduncular

KEYWORDS

COVID-19; Delirium; Hallucinations; SARS-CoV-2; Hospitals; Intensive Care Units; Rehabilitation

List of abbreviations: ARU, acute inpatient rehabilitation unit; CNS, central nervous system; ICU, intensive care unit; RBANS-a, attention subsets from the Repeatable Battery for the Assessment of Neuropsychological Status; SARS, severe acute respiratory syndrome; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

This work was presented as a poster at 2021 American Congress of Rehabilitation Medicine Annual Conference, New York (virtual) on September 27, 2021.

This clinical study is a part of the COVID-19 Registry at the Rancho Research Institute.

Disclosures: none.

Cite this article as: Arch Rehabil Res Clin Transl. 2022;4:100234

https://doi.org/10.1016/j.arrct.2022.100234

2590-1095/Published by Elsevier Inc. on behalf of American Congress of Rehabilitation Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Hallucinations are false sensory perceptions not associated with real external stimuli. The hallucinatory sensation can involve auditory, visual, olfactory, gustatory, tactile, and somatic sensations. Auditory hallucinations are closely linked to schizophrenia. It has been well-documented that hallucinations can be recognized in neurodegenerative disease, eye disease, and other medical conditions, including drug abuse, medication side effects, and delirium. COVID-19 is a multi-organ disease, involving the central nervous system (CNS), especially in hospitalized patients, and hallucinations have been increasingly reported in COVID-19. We report hallucinations seen in hospitalized rehabilitation patients with COVID-19, which resembled peduncular hallucinosis. We analyzed the described contents of the hallucinations and discussed the possible pathogenesis of the hallucinations in COVID-19 and their clinical importance in rehabilitation medicine.

Methods

We conducted a retrospective observational cohort study of patients with COVID-19 admitted to a public hospital in southern California for medical rehabilitation. The hospital provides medical care for patients of underserved populations. This study followed the STROBE guidelines for reporting observational studies. We reviewed the electronic health record of hospitalized patients who were consecutively admitted to the post-COVID-19 acute inpatient rehabilitation unit (ARU) from January 1st to April 30th, 2021. With local IRB approval, we extracted and compared medical histories and evaluations of all the patients. The informed consent was not applicable because of the nature of the study.

Cognition and depressed mood/anxiety

Cognition was evaluated by speech-language pathologists using 3 standardized tests at admission and discharge. The Montreal Cognitive Assessment was used to screen cognitive dysfunction. The Trail Making Test A and B helped examine visual attention and task switching, involving executive function. The attention subtests from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS-a) was implemented to explore auditory registration, visual scanning, and processing speed. Based on the electronic medical records documented by the providers’ notes and assessments by psychologists, depressed mood, anxiety, and delusion were identified.

Description of hallucinations

Types of hallucinations, delusion, and delirium were reviewed and summarized in table 1. Music hallucination is a type of auditory hallucination; formication is a type of tactile hallucination; and similarly, peduncular hallucinosis is a type of visual hallucination. These descriptions were used as tools to differentiate the types of hallucinations patients with COVID-19 experienced and analyzed by authors M.T., S. F., and B.J.

Thematic analysis

Thematic analysis is a consistent, systematic way of understanding and processing qualitative information, or narratives using “coding” and interesting features of the narrative data. It can be described in short phrases to represent specific ideas which can be potential themes. It is a qualitative research method that can lead to descriptions of consistent patterns of underlying meanings. Thematic analysis was used to understand the main ideas that may be common among the descriptions of hallucinations that patients with COVID-19 experienced. A few themes were identified to summarize the hallucinations. Not all themes were shared by every patient with COVID-19 and hallucinations.

Results

A total of 37 post-COVID-19 patients were admitted to the ARU during the 4 months and the comparisons of the patients with and without hallucinations are shown in table 2. The average age upon their admission to the ARU was 56.2 years with no age difference between patients with and without hallucinations. Those with hallucinations had almost double the length of stay for their total hospitalization compared with those without hallucinations. There were significantly...
Table 1 Types of hallucinations, ICU delirium, and delusion

Term	Definition
Auditory hallucinations	Perceptions of sounds without identifiable external stimuli. They can be single or multiple voices talking to or about the person. Music hallucination is also a type.
Music hallucinations	Musical hallucinations are complex auditory perceptions in the absence of an external acoustic stimulus and are often consistent with previous listening experiences whereby patients experience formed music without an external source.
Tactile hallucinations	A type of external bodily hallucinations which involves external bodily, superficial sensations, or simulation of pressure on the skin. They have been associated with substance abuse, toxicity, or withdrawal.
Formication	A type of tactile hallucination in which the individual experiences the sensation of insects crawling over or under the skin.
Somatic hallucinations	Patients report perceptions of abnormal body sensations or physical experiences.
Visual hallucinations	They manifest as visual sensory perceptions in the absence of external stimuli can occur in non-psychiatric, neurologic diseases, for example, dementia with Lewy bodies, Parkinson’s disease, seizures, migraine, sleep disorders, delirium from medical diseases, or intoxication of some drugs.
Peduncular hallucinosis	These predominantly complex visual hallucinations occur during normal states of consciousness, typically consist of lively, colorful, people, scenes, or animals. They are with dream-like visual hallucinations intruding on normal consciousness.
Delusion	They are fixed beliefs that are not amenable to change in light of conflicting evidence.
Delirium	It is a clinical syndrome caused by a medical condition, substance intoxication or withdrawal, or medication side effect that is characterized by a disturbance of consciousness with a reduced ability to focus, sustain, or shift attention.
ICU delirium	A disturbance of consciousness and cognition that develops over a short period (hours to days) and fluctuates over time. It is characterized by impaired short-term memory, impaired attention, and disorientation. Prolonged mechanical ventilation is one of the main contributing factors.

Table 2 Patients admitted to the post-COVID-19 inpatient rehabilitation program

Parameters	Cohort (N=37)	Patients Without Hallucinations (n=29)	Patients With Hallucinations (n=8)	Group Comparison
Age (y) Mean ± SD (Range)	56.2±11.2 (27-76)	56.2±11.5 (27-76)	56.5±10.6 (38-71)	Not significant*
Length of hospitalization (days)	63.8±43.1 (6-167)	49.3±32.0 (6-126)	116.4±38.0 (52-167)	<.0001*
Length of rehabilitation (days)	19.5±13.5 (3-57)	16.6±11.0 (3-49)	30.0±17.0 (12-57)	.032*
Sex				
Women	16 (43.2)	15 (51.7)	1 (12.5)	.05*
Men	21 (56.8)	14 (48.3)	7 (87.5)	
Ethnicity/race				
Asian	1 (2.7)	1 (3.4)	0 (0.0)	Not significant*
Black	1 (2.7)	1 (3.4)	0 (0.0)	
Hispanic	34 (91.9)	26 (89.8)	8 (100.0)	
White	1 (2.7)	1 (3.4)	0 (0.0)	
Severity of COVID-19*				
Critical	18 (48.7)	10 (34.5)	8 (100.0)	.007*
Severe	6 (16.2)	6 (20.7)	0 (0.0)	
Moderate	0 (0.0)	0 (0.0)	0 (0.0)	
Mild	0 (0.0)	0 (0.0)	0 (0.0)	
Non-respiratory	12 (32.4)	12 (41.4)	0 (0.0)	
Unable to classify†	1 (2.7)	1 (3.4)	0 (0.0)	

*Independent-Sample Mann-Whitney U test employed.
† Fisher-Freeman-Halton Exact test used.
‡ Clinical Spectrum of SARS-CoV-2 infection (NIH 2021).
§ Non-respiratory COVID-19 includes non-respiratory or extrapulmonary manifestation (AlSamman, 2020; Gupta, 2020).
∥ Unable to classify the severity of COVID-19 because of the lack of documentation, but admitted for different rehabilitation diagnosis from COVID-19.
more men with hallucinations ($P < .05$). Thirty-four (91.9%) patients with COVID-19 in the ARU were Hispanic. All of those who experienced hallucinations were Hispanic. Most of the patients (18/37, 48.7%) had the “critical” COVID-19 followed by 24.3% (9/37) of them with “non-respiratory” COVID-19. Two patients (5.4%) were not able to be classified as to the severity. Eight of the 37 patients (21.6%) exhibited hallucinations. All patients with hallucinations required mechanical ventilation. One patient (12%) exhibited Guillain-Barré syndrome who required mechanical ventilation because of severe respiratory muscle weakness.

Among the 8 patients with hallucinations, the average ICU length of stay was 31.3 days ranging from 8 to 48 days (Table 3); patients also had a prolonged stay with an average of 83.8±36.3 days in the hospital prior to the transfer to ARU. None of them had history of pre-existing mental health problems. All patients exhibited cognitive impairment based on the ARU initial evaluation and most patients demonstrated improved cognitive test scores at the ARU discharge. Other neurologic complications are also listed in Table 3. Despite the severity of illness and dysfunction, all 8 patients were discharged home at the end of their ARU stay with overall functional gain and improvement in neurologic complications.

The description of the hallucinations and neuropsychiatric complications are listed in Table 4. Delirium was described in 5 patients and all resolved prior to the ARU transfer, except for patient A. Delusion was noted in 2 patients. Anxiety was reported in 4 patients and depressed mood was observed in 5 patients. Seven patients exhibited complex visual hallucinations as described, and the feature of which was similar to “peduncular hallucinations,” defined in Table 1, as vivid, colorful, and scenic visual hallucinations combined with auditory and/or tactile hallucinations.

Table 3 Patients with COVID-19 and hallucinations (n=8)

Case*	A	B	C	D	E	F	G	H	
Age	71	54	38	66	50	50	61	62	
Sex	M	F	M	M	M	M	M	M	
Length of stay (days) (mean ± SD)	46	8	45	20	32	48	9	>42	
ICU stay: 31.3±16.8	104	32	78	63	68	126	60	139	
ARU stay: 30.9±18.5	51	13	18	21	33	11	56	27	
Cognitive status	Montreal Cognitive Assessment (MoCA): the score of <26 indicates impairment.	20	22	21	16	11	24	na	17
Admission	22	22	29	19	22	26	20	27	
Discharge	166	49	26	164	63	62	na	183	
Trail Making Test, A: scores of >78 show impairment.	60	58	27	157	60	41	71	125	
Admission	312	156	208	na	283	87	na	382	
Discharge	200	210	208	na	149	74	278	337	
Trail Making Test, B: scores of >273 show impairment.	60	64	na	na	49	75	na	56	
Admission	64	82	64	43	68	94	46	53	
Discharge	60	64	na	na	49	75	na	56	
Repeatable Battery for Assessment of Neuropsychological Status attention subtests (RBANS-a): <69 denotes impairment.	+	+	+	+	+	+	+	+	
Neurological complications	Guillain-Barré syndrome	+	+	+	+	+	+	+	
Peripheral neuropathy	-	+	+	+	+	+	+	+	
Neuropathic pain	-	+	+	+	+	+	+	+	
Restless leg syndrome	+	+	+	+	+	+	+	+	
Anoxic brain injury, suspected	+	+	+	+	+	+	+	+	

F, female; M, male.

* Issues related to the length of stay: Case E had a 17-day in surgical service after the 21-day of his ARU stay; he also had 5 years of methamphetamine use 10 years ago. Case F also had 2 episodes of cardiac arrests, requiring cardiopulmonary resuscitation. Case G also had an acute respiratory failure with the Guillain-Barre syndrome involving muscle weakness, disturbed extraocular movements, and bulbar palsy; on levetiracetam. He was not able to perform tests using upper limbs although appeared to be cognitively impaired. Case H sustained contractures of the digits of the right hand and severe neuropathic pain in both upper limbs.

1. To compute the average ICU stay, 42 days was used for the Case H.
2. The result was not available.
| Case | Description of Hallucination | Hallucination Types | Identified Themes | Neuropsychiatric Complications | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | Auditory | Tactile | Visual | Comfort-seeking | Fearfulness | Seeing Deceased Family | Delirium | Delusion | Anxiety | Depressed Mood |
| A | Saw living and deceased family members | + | + | + | + | + | + | + |
| | Saw people approaching to kill him | | | | | | | | | | |
| | People shooting at him with a machine gun | | | | | | | | | | |
| | His ICU room changed to a moving train car | | | | | | | | | | |
| | Objects floating in the air | + | + | + | + | + | + | + |
| B | Saw family members at the bedside, holding and massaging her hands and arms | + | + | + | + | + | + | + |
| C | Saw himself crawling on the street, thirsty, hungry, and begging for money | + | + | + | + | + | + | + |
| | A nurse and his brother spoke to him in a hospital in Arizona | | | | | | | | | | |
| | Kidnapped into a car that later caught the fire; heard voices telling him that he was the one to die | | | | | | | | | | |
| | Saw flames and felt the heat | + | + | + | + | + | + | + |
| | Saw flashes of lights in ICU and ARU | + | + | + | + | + | + | + |
| D | Saw family members in the hospital but recognized that they were not present in reality | + | + | + | + | + | + | + |
| | Saw he was working in a factory, interacting with people, and operating the machine | + | + | + | + | + | + | + |
| E | Saw his deceased brother pulling him back to the earth saying: "Don’t leave!" | + | + | + | + | + | + | + |
| | A friend who was a nurse took him to her home to provide care | | | | | | | | | | |
| | Experienced feeding his granddaughter at home while holding her in his arms | | | | | | | | | | |
| F | Experienced multiple episodes of standing on the street observing people talking to him while making | + | + | + | + | + | + | + |

(continued)
Case	Description of Hallucination	Hallucination Types	Identified Themes	Neuropsychiatric Complications				
		Comfort-seeking	Fearfulness	Seeing Deceased Family	Delirium	Delusion	Anxiety	Depressed Mood
		Auditory	Tactile[*]	Visual				
G	threatening remarks and harmful gestures	+	+	+	+			
	Experienced doctors and nurses leaving him alone into a large, deep, and cold container	+	+	+	+			
	Stood on the street, unable to move while people were walking past him	+						
	Sitting in a wheelchair, a short person verbally offered to take him to the hospital and pushed his wheelchair	+						
	This short person also spoke to him on multiple occasions	+						
	While lying in the hospital bed, saw outside the window a choir singing gospels in front of a church	+						
H	Experienced multiple abnormal sensations in his UEs including	+	?	+				
	Ants and finger-tips crawling	+						
	Right upper limb enlarging, with a bone or foreign object protruding out the limb	+						
	A mouse giving an electric “chunk”	+						
	“Small balls” coming out and “rolling around” on his hand and later associated with severe pain	+						
	An additional finger on his L hand moving toward his elbow	+						
	Painful liquid existing in right elbow	+						
	An abnormal positioning of right upper extremity	+						

[*] Tactile/somatosensory hallucinations.

[†] The patient was also diagnosed with post-traumatic stress disorder.
Five patients exhibited tactile/somatosensory hallucinations. Four patients also experienced an auditory component of hallucinations. The thematic analysis has yielded 3 themes, comfort-seeking, fearfulness, and seeing deceased family. The content of the hallucinations related to comfort-seeking appeared in 4 patients which seemed to offer pleasant, normative feelings. Five patients revealed hallucinations of fearful and threatening situations. Hallucinations of 6 patients resolved spontaneously prior to the ARU admission but they still discussed how the experience of their previous hallucinations had affected them during their ARU stay. Patients A and H had persistent hallucinations during their ARU stay. The hallucinations of patient A lasted for a total of 3 months after his ICU stay but they disappeared 1 month after his admission to the ARU. Patient H continued to have hallucinations at the ARU discharge, 166 days after the diagnosis of COVID-19.

Discussion

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects multi-organ systems, and CNS is also significantly involved in COVID-19. It has been reported in 25% of the patients in a meta-analysis. Neurological symptoms can be observed up to 73% in the hospitalized patients with COVID-19, and CNS manifestation represented 13%-40% among them. As one of the CNS symptoms, hallucination in COVID-19 has been increasingly reported; it can accompany COVID-19 associated neurologic complications, such as meningoencephalitis, delirium, stroke, posterior reversible encephalopathy syndrome, reversible splenial lesion syndrome, acute psychosis, and catatonia.

Hallucinations in the COVID-19 pandemic can appear or be more prominent with premorbid neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease, psychiatric disease, and Charles-Bonnet syndrome.

In a single but large referral medical center study, hallucinations were reported around 11% (auditory hallucinations 8% and visual hallucinations 3%). An international COVID-19 survey with participants from 56 countries, 3762 individuals completed self-reported survey for the 7-month follow-up, the overall prevalence of hallucinations was 23.2%, mean prevalence of visual hallucinations 10.4%, auditory hallucinations 6.5%, and tactile hallucinations 3.1%, respectively. The participants with COVID-19 in this study had various severity from home isolations to hospitalization. In our study, the prevalence of hallucinations was 21.6%, which was similar to the overall prevalence of the international patient survey study, although all our patients were seriously sick in the hospitalized setting with a prolonged course. The similarity of prevalence regardless the severity of the disease suggests that hallucinations were not uncommonly seen in COVID-19.

Our study focused on the content of the hallucinations, which revealed that the hallucinations were consistent with peduncular hallucinosis in 7 of the 8 hallucinatory patients (table 1). Peduncular hallucinosis is characterized by vivid, colorful, and scenic visual hallucinations, or visual hallucinations combined with auditory and tactile hallucinations. The term peduncular hallucinosis was coined in 1927 after Lhermitte reported the first case in 1922 presenting with complex visual hallucinations and brainstem symptoms. Peduncular hallucinosis is rare as Galetta and Prasad found 85 cases in their literature review approximately in the past 100 years. Considering the general prevalence of peduncular hallucinosis, we found surprisingly much more prevailing peduncular hallucinosis among our patients with COVID-19. Although the etiology of peduncular hallucinosis still remains unknown, it is speculated that releasing activities of the cortices cause the hallucinations by impaired function of the ascending reticular activating system in the brainstem. The ascending reticular activating system arises from neuronal clusters with multiple different neurotransmitters in the brainstem and activates the forebrain, thalamus, and cortex mainly in wakefulness. SARS-CoV-2 can directly invade into the brain from the olfactory bulb and can disseminate the virus into the amygdala, basal forebrain, hippocampus, striatum, and cerebral cortex. Also, the immune responsive pathology of SARS-CoV-2 can affect those regions. Those findings support the manifestation of peduncular hallucinosis in COVID-19. Furthermore, the CNS manifestation of COVID-19 can occur without focal brain stem signs that are usually seen in peduncular hallucinosis. All our patients with hallucinations exhibited cognitive impairment, especially in attention, memory, and executive functions, which are common in the CNS symptoms in COVID-19. Although Patient H did not exhibit peduncular hallucinosis, he exhibited tactile and somatosensory hallucinations associated with severe neuropathy and posterior reversible encephalopathy syndrome.

Examining the severe acute respiratory syndrome (SARS) epidemic in 2003, with the same coronavirus family of SARS-CoV-2, Cheng et al reported 10 cases with psychiatric and psychological complications in the acute treatment phase, and 2 presented visual and auditory hallucinations. It was speculated that the stress from the illness required ICU care, separation from family, and high-dose steroid use to treat ARDS. Many of our patients were documented receiving a high dose of steroid of dexamethasone. Of note, none of our 8 patients were treated with hydroxychloroquine, which was used for COVID-19 and can cause hallucinations. The surrounding social environment resembles between the current COVID-19 pandemic and the SARS epidemic. Patients with COVID-19 suffer similarly with a long period of separation from the family due to hospitalization and infection control-related quarantine, the heightened social stress being in the pandemic, the lockdown of cities, and limited social interaction, which makes the current COVID-19 pandemic a much more extensive problem than the 2003 epidemic of SARS. Both medical and socio-economic factors seem to contribute to the etiology of hallucinations with COVID-19.

None of our patients experiencing hallucinations exhibited a history of prior psychiatric illness, but 5 patients were documented presenting delirium during their hospital stay. Delirium is an acute onset of symptoms including impaired attention, awareness, and other cognition with evidence that a direct physiological consequence of another medical disorder (in Diagnostic and statistical manual of mental disorders [5th ed.], table 1), which should be differentiated from primary psychiatric disease. In delirium, patients...
can exhibit hallucinations,71,72 and the most common hallucinations in delirium are visual hallucinations.70,71 Delirium can be prolonged more than 4 weeks, after acute medical problems resolve.73 Our findings of hallucinations may reflect delirium, but the content of the hallucinations in delirium has been rarely described.74

All our patients in the study received ICU care with mechanical ventilation. Post-extubation psychosis is considered a part of post-intensive care syndrome, which refers “to physical, cognition, and mental impairment that occur during ICU stay, after ICU discharge or hospital discharge, as well as the long-term prognosis of ICU patients.”75 Psychotic symptoms during ICU stay were reported to be associated with delirium, and delirium was seen in 40\% or more of the patients in ICU.76 Tachibana et al. (2021) reported that 25.9\% of patients with delirium consulted to psychiatry presented with hallucinations. Alcohol drinking, benzodiazepine withdrawal, use of angiotensin II receptor blockers, and dopamine receptor agonists were most frequently associated with hallucinations in patients with delirium.77 The aforementioned situations were not documented among the 8 patients in our study with hallucinations. Based on the reviews of McGuire et al. (2000) and Tachibana et al. (2021), hallucinations might be calculated to appear in 10.4\% or more of the patients with post-ICU syndrome.78 In 1 case series study of post-ICU with mechanical ventilation, Guttmerson (2014) reported the incidence of hallucinations was 27.1\% among the 35 post-ventilator patients who experienced mechanical ventilation greater than 24 hours in ICU, for whom the interview was conducted after ICU discharge in the hospital ward or a long-term ventilator unit.79 In other survey studies, the incidence of hallucinations varies from 2.0 to 16\%.79-81

The results of the thematic analysis indicated 3 themes: patients’ comfort-seeking, fearfulness, and seeing deceased family members. The notion of comfort-seeking reflected the inclination that the hallucinations helped generate positive, pleasant feelings in tactile sensation or to resume regular daily activities in their own non-hospital context. The theme of fearfulness was most commonly experienced which can potentially lead to post-hallucination distress, anxiety, and depressed mood (patient E). Two patients saw the deceased family in their hallucinations which may reflect the desire to have peace and the warm presence of their loved one, commonly noticed in end-of-life dreams and visions.82

Hallucinations are not necessarily a manifestation of a psychiatric disease, and most of our patients with hallucinations in COVID-19 were assured that further psychiatric interventions were not indicated. However, for some of the patients, hallucinations caused distress. Obtaining detailed descriptions of the hallucinations can be helpful as opportunities to mitigate motivational and psychological barriers in their participation of the ARU.83 The content analysis of the hallucinations can be useful to assess the distress or contentment of the patients with hallucinations. Also, the non-pharmacologic interdisciplinary team approach in ARU effectively worked to ease and solve the distress of the hallucinations. All our patients recovered well and returned home with conventional interdisciplinary management in ARU.

Study limitations

There are 2 notable limitations of this study. Firstly, this retrospective study had a small sample size of the patients with COVID-19 in a public hospital providing care to underserved patient populations. The extrapolation of the study results to the general population is potentially limited. However, the study is important because of its focus on the under-represented people in our society. Another limitation of the study is related to the consistency of clinical documentation and the use of standardized measures. Thus, the sign, symptoms, and contents of hallucinations might not be completely, consistently documented in the electronic health record. It is more likely that the hallucinations experienced by these patients were under-reported. Furthermore, full sets of standardized psychological assessments of cognition, depression, and anxiety were not employed systematically as they are not in the protocol of the rehabilitation program at the ARU for regular implementations. Such limitations may hinder the comparison with similar studies focusing on COVID-19 related hallucinations.

Conclusions

The hallucinations were not uncommon (21.6\%) among hospitalized patients with COVID-19 who benefitted from conventional medical rehabilitation. The features of the hallucinations seemed to be consistent with peduncular hallucinosis, a type of visual hallucination that has been rarely observed; the content of hallucinations seems to reflect patients’ comfort-seeking, fearfulness, and seeing deceased family members. Further investigation of the hallucinations of COVID-19 is necessary to diagnose and determine the treatment procedures for hallucinated patients with distress. The hallucinations can be a part of delirium; however, they can be manifestations in the CNS of SARS-CoV-2 infection. The etiology of the hallucinations should be warranted in future studies. Patients with COVID-19 who had experienced hallucinations may still benefit from inpatient medical rehabilitation and the interdisciplinary team approach could effectively manage those patients with the awareness that experienced hallucinations may affect the participation of the medical rehabilitation by patients with COVID-19.

Corresponding author

Mari Tobita, MD, 7601 E Imperial Highway, Downey, CA 90242. E-mail address: mtobita2@dhs.lacounty.gov.

References

1. American Psychiatric Association DS, & American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. Washington, DC: American Psychiatric Association; 2013 Vol. 5.

2. World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. World Health Organization; 1992 https://apps.who.int/iris/handle/10665/37958?show=full.
Complex hallucinations in COVID-19

3. Arciniegas DB. Psychosis. Continuum (Minneapolis Minn) 2015; 21:715-36.
4. Ali S, Patel M, Avenido J, Jabeen S, Riley WJ. Hallucinations: common features and causes. Curr Psychiatry 2011;10:22-9.
5. Waters F, Fernyhough C. Hallucinations: a systematic review of points of similarity and difference across diagnostic classes. Schizophr Bull 2017;43:32-43.
6. Badcock JC, Laroi F, Kamp K, et al. Hallucinations in older adults: a practical review. Schizophr Bull 2020;46:1382-95.
7. Naibandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med 2021;27:601-15.
8. Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: a systematic review. J Neurol Sci 2020;413:116832.
9. Maury A, Loubi A, Pefflier-Smadja N, de Broucker T, Meppel I. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: a narrative review for clinicians. Rev Neurol 2021;177:51-64.
10. Duong L, Xu P, Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020. Brain Behav Immun 2020;87:33.
11. Paterson RW, Brown RL, Benjamin L, et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain: J Neurol 2020;143:310420.
12. Clouden TA. Persistent hallucinations in a 46-year-old woman after COVID-19 infection: a case report. Cureus 2020;12:e11993.
13. Nagyomukti Mertse NW, Zenorini L, Müri R. Intracerebral hemorrhage, visual hallucination and COVID-19 infection: what is the connection? A case-related review of the literature on peduncular hallucinosis following intracerebral hemorrhage. Clin Transl Neurosci 2021;5:15.
14. Ghosh R, Lahiri D, Dubey S, Ray BK, Benito-León J. Hallucinatory palinopsia in COVID-19-induced posterior reversible encephalopathy syndrome. J Neuro-ophthalmol 2020;20:523-6.
15. Hixon AM, Thaker AA, Pelak VS. Persistent visual dysfunction following posterior reversible encephalopathy syndrome due to COVID-19: case series and literature review. Eur J Neurol 2021;28:3289-302.
16. Bektaş G, Akcay N, Boydag K, Şevketoğlu E. Reversible splenial lesion syndrome associated with SARS-CoV-2 infection in two children. Brain Dev 2021;43:230-3.
17. Haddad PM, Al Abdulla M, Latoo J, Ibqal Y. Brief psychotic disorder associated with quarantine and mild COVID-19. BMJ Case Rep 2020;10:e240088.
18. Caan MP, Lim CT, Howard M. A case of catatonia in a man with COVID-19. Psychosomatics 2020;61:556.
19. Zain SM, Muthukanagaraj P, Rahman N. Excited catatonia—a delayed neuropsychiatric complication of COVID-19 infection. Cureus 2021;13:e13891.
20. Zandifar A, Badrfram R. Exacerbation of psychosis accompanied by seizure and catatonia in a patient with COVID-19: a case report. Psychiatry Clin Neurosci 2021;75:62-4.
21. Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021:38:101019.
22. Mirfazeli FS, Sarabi-Jamab A, Jahanbakhshi A, et al. Neuropsychiatric manifestations of COVID-19 can be clustered in three distinct symptom categories. Sci Rep 2020;10:20957.
23. Manford M, Andermann F. Complex visual hallucinations. Clinical and neurobiological insights. Brain: J Neurol 1998;121(Pt 10):1819-40.
24. Benke T. Peduncular hallucinosis. J Neurol 2006;253:1561-71.
25. Kosty JA, Mejia-Munne J, Dossain R, Savaredekar A, Guthikonda B. Jacques Jean Lhermitte and the syndrome of peduncular hallucinosis. Neurosurg Focus 2019;47:E9.
26. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008;61:344-9.
49. COVID-19 Treatment Guidelines. Clinical spectrum of SARS-CoV-2 infection. https://www.covid19treatmentguidelines.nih.gov/overview-clinical-spectrum/. Accessed September 26, 2022.

50. Gupta A, Madhavan MV, Sehgal K, et al. Extrapolary manifestations of COVID-19. Nat Med 2020;26:1017–32.

51. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with Coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020;77:683–90.

52. El Haj M, Larøi F, Gallouj K. Hallucinations and Covid-19: increased occurrence of hallucinations in patients with Alzheimer’s disease during lockdown. Psychiatr Q 2021;92:1531–9.

53. Antonini A, Leta V, Teo J, Chaudhuri KR. Outcome of Parkinson disease patients affected by COVID-19. Mov Disord 2020;35:905–8.

54. Fischer M, Coogan AN, Faltraco F, Thome J. COVID-19 paranoia increased occurrence of hallucinations in patients with Alzheimer’s disease during lockdown. Psychiatr Q 2021;92:1531–9.

55. van Bogaert L. Lhermitte J. Syndrome de la calotte du pedoncule cerebral. Les troubles psycho-sensoriels dans les lesions du mesocephale. Rev Neurol (Paris) 1922;38:1359–65.

56. Jones L, Ditzel-Finn L, Potts J, Moosajee M. Exacerbation of visual hallucinations in Charles Bonnet syndrome due to the social implications of COVID-19. BMJ Open Ophthalmol 2021;6:e000670.

57. van Bogaert L. L’hallucinose pedunculaire. Rev Neurol 1927;43:608–17.

58. Lhermitte J. Syndrome of the calotte of the peduncle cerebral. Les troubles psycho-sensoriels dans les lesions du mesocephale. Rev Neurol (Paris) 1922;38:1359–65.

59. Galetta KM, Prasad S. Historical trends in the diagnosis of peduncular hallucinosis. J Neuro-ophthalmol 2018;38:438–41.

60. Boes AD, Prasad S, Liu H, et al. Network localization of neurological symptoms from focal brain lesions. Brain 2015;138:3061–75.

61. Chokroverty S, Provini F. Sleep, breathing, and neurologic disorders. Sleep disorders medicine. Springer, New York, NY: Springer; 2017. p. 787–90.

62. Holst SC, Landolt HP. Sleep-wake neurochemistry. Sleep Med Clin 2018;13:137–46.

63. Borah P, Deb PK, Chandrasekaran B, et al. Neurological consequences of SARS-CoV-2 infection and concurrence of treatment-induced neuropsychiatric adverse events in COVID-19 patients: navigating the uncharted. Front Mol Biosci 2021;8:27.

64. Tripathy S, Singh N, Singh A, Kar SK. COVID-19 and psychotic symptoms: the view from psychiatric immunology. Curr Behav Neurosci Rep 2021;8:172–8.

65. Daroische R, Hemminghylth MS, Elертsen TH, Breitve MH, Chwisczczuk LJ. Cognitive impairment after COVID-19—a review on objective test data. Front Neurol 2021;12:699582.

66. Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 2020;7:875–82.

67. Cheng SKW, Tsang JSK, Ku KH, Wong CW, Ng YK. Psychiatric complications in patients with severe acute respiratory syndrome (SARS) during the acute treatment phase: a series of 10 cases. Br J Psychiatr 2004;184:359–60.

68. Loehde LW, Novakovic M. Acute and transient psychotic disorder induced by fear of coronavirus infection. Eur J Psychotraumatol 2021;12:1954777.

69. Urso D, Gnoni V, Filardi M, Logroscino G. Delusion and delirium in neurodegenerative disorders: an overlooked relationship? Front Psychiatr 2022;12:808724.

70. Gleason OC. Delirium. Am Fam Physician 2003;67:1027–34.

71. Teeple RC, Caplan JP, Stern TA. Visual hallucinations: differential diagnosis and treatment. Prim Care Companion J Clin Psychiatry 2009;11:26–32.

72. Leonard M, McInerney S, McFarland J, et al. Comparison of cognitive and neuropsychiatric profiles in hospitalised elderly medical patients with delirium, dementia and comorbid delirium-dementia. BMJ Open 2016;6:e009212.

73. Lee KH, Ha YC, Lee YK, Kang H, Koo KH. Frequency, risk factors, and prognosis of prolonged delirium in elderly patients after hip fracture surgery. Clin Orthop Relat Res 2011;469:2612–20.

74. Darbyshire JL, Greig PR, Vollam S, Young JD, Hinton L. I can remember sort of vivid People... but to me they were plasticine. "delusions on the intensive care unit: what do patients think is going on? PLoS One 2016;11:e0153775.

75. Inoue S, Hatakeyama J, Kondo Y, et al. Post-intensive care syndrome: its pathophysiology, prevention, and future directions. Acute Med Surg 2019;6:233–46.

76. McGuire BE, Basten CJ, Ryan CJ, Gallagher J. Intensive care unit syndrome: a dangerous misnomer. Arch Intern Med 2000;160:906–9.

77. Tachibana M, Inada T, Ichida M, Ozaki N. Factors affecting hallucinations in patients with delirium. Sci Rep 2021;11:13005.

78. Gutormson JL. Releasing a lot of poisons from my mind: ‘I think is going on? PLoS One 2016;11:e0153775.

79. Depner RM, Grant PC, Byrwa DJ, et al. Expanding the understanding of content of end-of-life dreams and visions: a consensus qualitative research analysis. Palliative Med Rep 2020;1:103–10.

80. Smith CM, Gilbert EB, Riordan PA, et al. COVID-19-associated psychosis: a systematic review of case reports. Gen Hosp Psychiatry 2021;73:84–100.