Thermodynamics of two-dimensional spin models with bimodal random-bond disorder

Baoming Tang,1,2 Deepak Iyer,1 and Marcos Rigol1

1Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
2Department of Physics, Georgetown University, Washington, DC 20057, USA

We use numerical linked cluster expansions to study thermodynamic properties of the two-dimensional spin-1/2 Ising, XY, and Heisenberg models with bimodal random-bond disorder on the square and honeycomb lattices. In all cases, the nearest-neighbor coupling between the spins takes values ±J with equal probability. We obtain the disorder averaged (over all disorder configurations) energy, entropy, specific heat, and uniform magnetic susceptibility in each case. These results are compared with the corresponding ones in the clean models. Analytic expressions are obtained for low orders in the expansion of these thermodynamic quantities in inverse temperature.

PACS numbers: 61.43.-j,05.50.+q,75.10.Jm,05.10.-a

I. INTRODUCTION

Solid-state materials deviate in various ways from the periodic idealizations sometimes used to describe them theoretically. In crystals, for example, such deviations can occur due to the presence of lattice distortions, impurity atoms (that may or may not be magnetic), and vacancies in the lattice, collectively termed as disorder. Disorder can significantly influence material properties. A dramatic example for noninteracting electrons is Anderson localization. In spin systems, the focus of this work, quenched disorder in the spin interactions leads to frustration and can generate spin glasses. A spin glass is a remarkable state of matter where, loosely speaking, spins are “frozen” in an irregular pattern, i.e., they display a very slow dynamics under external driving. Although this phase does not exhibit spin order in a traditional sense (e.g., as a ferromagnet), it is still distinctly different from a paramagnet. Experimentally, spin glasses are generally associated with a cusp in the ac susceptibility at a certain temperature above which the system behaves like a paramagnet. Whereas no standard order parameter captures a glassy transition, glass order parameters exist that do so (see, e.g., Refs. 2 and 3).

In two-dimensional (2D) lattices (the focus of this work), the effects of quenched disorder on classical spins have been extensively studied over the years. However, the calculation of thermodynamic properties and correlation functions continues to be a computational challenge. While it is generally believed that no spin-glass phase exists for nonzero temperatures, zero-temperature phases continue to be debated for various models of interest (see, e.g., Refs. 2 and 3). For quantum spins, the sign problem in quantum Monte Carlo simulations and the exponential growth of the Hilbert space, relevant to full exact diagonalization calculations, represent an even greater challenge. Because of this, the properties of disordered quantum spin systems, and of quantum spin glasses in particular, have remained essentially unexplored.

Our goal in this work is to use a recently introduced numerical linked cluster expansion (NLCE) for disordered systems10 to study the thermodynamic properties of spin-1/2 Ising, XY, and Heisenberg models with bimodal random-bond disorder on the square and honeycomb lattices. NLCEs allow us to obtain finite temperature properties of those models in the thermodynamic limit through the exact diagonalization of finite-size clusters. We specifically study the energy, entropy, specific heat, and uniform magnetic susceptibility (for magnetization in the z-direction) as a function of temperature. Since any glassy phase is only expected to emerge at zero temperature in these models, if at all, we do not study the spin-glass order parameter. In future work, we will study quantum quenches10–13 to examine the possibility of disorder driven localization in 2D.

Our results are briefly as follows: For clean systems, they match well with known results for the square lattice, while we report new results for the honeycomb lattice. For the disordered systems, we unveil some interesting features. In the Ising model, the uniform susceptibility χ ∼ 1/T for all orders of the linked cluster expansion – we demonstrate this explicitly. The susceptibility in the Heisenberg model also increases with decreasing temperature (up to the lowest temperature we can access). These two cases differ starkly from the XY model where the uniform susceptibility (for magnetization in the z-direction, i.e., the same quantity calculated in the other two models) shows a plateau at low temperatures. At high temperatures, the clean and disordered models behave identically as regards the energy, specific heat, and entropy up to third order in inverse temperature, and show identical susceptibilities up to second order – we show this explicitly in Sec. IV via a high temperature expansion.

The presentation is organized as follows. In section II we introduce the three models we study (the spin-1/2 Ising, XY, and Heisenberg) and summarize some of their known properties in the square and honeycomb lattices. Section III briefly describes NLCEs for systems with disorder. Numerical results for the latter, and their comparison with those for clean systems, are presented in Sec. IV. We conclude with a brief summary in Sec. V.
II. MODELS

We are interested in thermodynamic properties of various spin-1/2 models on the square and honeycomb lattices (see Fig. 1). In the absence of disorder, and for nearest neighbor interactions, those models do not exhibit frustration on either lattice, which are both bipartite. While the thermodynamic properties of the various models studied here are qualitatively similar on both lattice geometries, there are significant quantitative differences, e.g., in the critical temperatures for the onset of quasi-long-range order. These differences have their origin in the different coordination number in both lattices, with the honeycomb lattice having the smallest one. Hence, not surprisingly, for the spin-1/2 antiferromagnetic Heisenberg model, the staggered magnetization is significantly suppressed on the honeycomb lattice as compared with the square lattice. Disorder, on the other hand, leads to frustration on both lattices, and to a qualitative change of the intermediate to low temperature properties with respect to the clean systems. Frustration can be easily identified by trying to assign spins to the various sites in Fig. 1 to minimize the energy. If one takes the Ising Hamiltonian discussed below, one finds that for the overwhelming majority of disorder realizations there is no single spin configuration that minimizes the energy on all bonds.

We should stress that both for the clean and disordered cases, we expect quantum fluctuations to strongly modify the results for the spin-1/2 XY and Heisenberg models from their classical counterparts (see, e.g., Ref. 18 for examples of the effects of quantum fluctuations in frustrated spin-1/2 XY and Heisenberg models on the honeycomb lattice). Our focus in this work is on systems with bimodal random-bond disorder, where the nearest-neighbor coupling between the spins takes values ±J with equal probability.

FIG. 1. (Color online) Schematic of lattice models, square (left) and honeycomb (right), with bond disorder considered in this work. The red and blue bonds represent $J_{ij} = ±J$. Black dots at vertices represent the spins. It is easy to see that the bond disorder causes frustration by trying to arrange the spins to minimize energy.

A. Ising model

The Hamiltonian for the spin-1/2 Ising model can be written as

$$H_{\text{Ising}} = \sum_{\langle ij \rangle} J_{ij} S_i^z S_j^z$$

where $S_i^z = ±1/2$ is the spin at site-i, and the sum is over nearest neighbors. In the absence of disorder ($J_{ij} = J$ for all i, j), Eq. (1) has served as the quintessential model for magnetism and was solved exactly on a 2D square lattice by Onsager. Disorder, on the other hand, leads to frustration on both lattices, and to a qualitative change of the intermediate to low temperature properties with respect to the clean systems. Frustration can be easily identified by trying to assign spins to the various sites in Fig. 1 to minimize the energy. If one takes the Ising Hamiltonian discussed below, one finds that for the overwhelming majority of disorder realizations there is no single spin configuration that minimizes the energy on all bonds.

We should stress that both for the clean and disordered cases, we expect quantum fluctuations to strongly modify the results for the spin-1/2 XY and Heisenberg models from their classical counterparts (see, e.g., Ref. 18 for examples of the effects of quantum fluctuations in frustrated spin-1/2 XY and Heisenberg models on the honeycomb lattice). Our focus in this work is on systems with bimodal random-bond disorder, where the nearest-neighbor coupling between the spins takes values ±J with equal probability.

FIG. 1. (Color online) Schematic of lattice models, square (left) and honeycomb (right), with bond disorder considered in this work. The red and blue bonds represent $J_{ij} = ±J$. Black dots at vertices represent the spins. It is easy to see that the bond disorder causes frustration by trying to arrange the spins to minimize energy.

A. Ising model

The Hamiltonian for the spin-1/2 Ising model can be written as

$$H_{\text{Ising}} = \sum_{\langle ij \rangle} J_{ij} S_i^z S_j^z$$

where $S_i^z = ±1/2$ is the spin at site-i, and the sum is over nearest neighbors. In the absence of disorder ($J_{ij} = J$ for all i, j), Eq. (1) has served as the quintessential model for magnetism and was solved exactly on a 2D square lattice by Onsager. Disorder, on the other hand, leads to frustration on both lattices, and to a qualitative change of the intermediate to low temperature properties with respect to the clean systems. Frustration can be easily identified by trying to assign spins to the various sites in Fig. 1 to minimize the energy. If one takes the Ising Hamiltonian discussed below, one finds that for the overwhelming majority of disorder realizations there is no single spin configuration that minimizes the energy on all bonds.

We should stress that both for the clean and disordered cases, we expect quantum fluctuations to strongly modify the results for the spin-1/2 XY and Heisenberg models from their classical counterparts (see, e.g., Ref. 18 for examples of the effects of quantum fluctuations in frustrated spin-1/2 XY and Heisenberg models on the honeycomb lattice). Our focus in this work is on systems with bimodal random-bond disorder, where the nearest-neighbor coupling between the spins takes values ±J with equal probability.

FIG. 1. (Color online) Schematic of lattice models, square (left) and honeycomb (right), with bond disorder considered in this work. The red and blue bonds represent $J_{ij} = ±J$. Black dots at vertices represent the spins. It is easy to see that the bond disorder causes frustration by trying to arrange the spins to minimize energy.
B. XY Model

The spin-1/2 XY model can be written as

$$\hat{H}_{XY} = \sum_{\langle ij \rangle} J_{ij} (\hat{S}_i^x \hat{S}_j^x + \hat{S}_i^y \hat{S}_j^y)$$

(2)

where $\hat{S}_i^{x,y}$ are spin operators at site i, proportional to the Pauli matrices. We consider only the isotropic case, where the model has a continuous $U(1)$ rotation symmetry in the plane. The presence of a continuous symmetry precludes, via the Mermin-Wagner theorem, a finite-temperature phase-transition involving the breaking of this continuous symmetry from occurring. For $d \leq 2$ dimensions, the fluctuations in any putative ordered phase appearing from breaking a continuous symmetry grow with system size for finite temperatures, destroying any order (see e.g., Ref. 27). Hence, this model has an ordered phase only at $T = 0$.

However, in 2D there can still be a finite temperature Berezinski-Kosterlitz-Thouless (BKT) transition below which the system exhibits quasi-long-range spin order. The critical temperature for the BKT transition in the spin-1/2 XY model in the square lattice is $T_c/|J| \approx 0.34_{-0.03}^{+0.02}$. We should stress that both classical and quantum models with continuous symmetries in 2D can exhibit this kind of behavior.\footnote{We should also mention that most studies in the literature report results for the ferromagnetic XY model ($J < 0$). However, like for the Ising model, in the square and honeycomb lattice a unitary transformation relates the ferro- and antiferromagnetic models and the critical temperature is the same in both. Our calculations for the susceptibility of the clean case on the square lattice converge down to temperatures of $T/|J| \approx 0.4$, which is compatible with the onset of quasi-long-range order for $T_c/|J| \lesssim 0.34_{-0.03}^{+0.02}$.

C. Heisenberg model

The spin-1/2 Heisenberg model, also known as the XXX model, can be written as

$$\hat{H}_{Heis} = \sum_{\langle ij \rangle} J_{ij} \hat{S}_i \cdot \hat{S}_j$$

(3)

where $\hat{S}_i = (\hat{S}_i^x, \hat{S}_i^y, \hat{S}_i^z)$, and $\hat{S}_i^{x,y,z}$ are spin operators at site i, proportional to the Pauli matrices. The Heisenberg model has an SU(2) symmetry, the highest of the three models considered in this work. The ground state in the clean case ($J_{ij} = J$) is an ordered ferromagnet or antiferromagnet depending on the sign of the coupling constant J. Unlike for the XY model, long-range order only occurs at zero temperature. However, in contrast to the XY model, the 2D Heisenberg model does not develop quasi-long-range order at finite temperature. This is due to the fact that the internal symmetry group, $SU(2)$ [$O(3)$] for the quantum (classical) Heisenberg model, is non-Abelian, as opposed to the XY model which has an Abelian symmetry group, $U(1)$ [$O(2)$] for the quantum (classical) cases. Vortices or point-defects, which are responsible for the BKT transition\footnote{Furthermore, in 2D, $O(N)$ models with $N \geq 3$ or $SU(N)$ models with $N \geq 2$, i.e., with non-Abelian symmetry groups, can be shown via perturbation theory to be asymptotically free, which for spin models translates to a renormalization group flow towards paramagnetism.\footnote{The results for the clean system presented here for the square lattice are nearly identical to the spin-1/2 results presented in Ref. 38, which also compares with other known results.}} occur only in the latter case.\footnote{Furthermore, in 2D, $O(N)$ models with $N \geq 3$ or $SU(N)$ models with $N \geq 2$, i.e., with non-Abelian symmetry groups, can be shown via perturbation theory to be asymptotically free, which for spin models translates to a renormalization group flow towards paramagnetism.\footnote{The results for the clean system presented here for the square lattice are nearly identical to the spin-1/2 results presented in Ref. 38, which also compares with other known results.}}

III. NUMERICAL LINKED CLUSTER EXPANSIONS

Numerical linked cluster expansions (NLCEs) are a computational technique that can be used to calculate extensive properties (per lattice site) of translationally invariant lattice systems. NLCEs were introduced in Ref. 39, where it was shown that the results obtained for thermodynamic properties were exact in the thermodynamic limit for systems with a finite correlation length. Furthermore, results could be obtained at significantly lower temperatures as compared to high-temperature expansions for models that develop long-range order at zero temperature. In several subsequent works, NLCEs have been shown to be a powerful computational technique for determining not only thermodynamic properties of a variety of lattice models\footnote{For completeness, we provide a brief description of NLCEs. Details of how to implement them can be found in Ref. 40.} but also for studying thermalization (or the lack thereof) at long times after a quench in isolated quantum systems.\footnote{In NLCEs, the expectation value of an extensive observable, per-site, \mathcal{O} in a translationally invariant system can be calculated as a sum over contributions from all clusters c of different sizes that can be embedded on the lattice}

$$\mathcal{O} = \sum_c M(c) \times W_\mathcal{O}(c),$$

(4)

where $M(c)$ is a combinatorial factor equal to the number of ways that a particular cluster c can be embedded on that lattice. $W_\mathcal{O}(c)$ is the weight of cluster c for the given observable, which is calculated via the inclusion-exclusion principle

$$W_\mathcal{O}(c) = \mathcal{O}(c) - \sum_{s \subset c} W_\mathcal{O}(s).$$

(5)

$\mathcal{O}(c)$ is the expectation value of the observable \mathcal{O} on the specific cluster c. Within NLCEs, $\mathcal{O}(c)$ is calculated using full exact diagonalization. The expansion is carried out order by order, i.e., by first considering clusters with
disorder average of the weights is in turn given by
\[W_{\mathcal{O}}(c) = \mathcal{O}(c) - \sum_{s \subset c} W_{\mathcal{O}}(s). \] (7)

In other words, the disorder average can be carried out order by order for each observable. The calculations then proceed as for the translationally invariant system if one replaces \(\mathcal{O}(c) \) by \(\overline{\mathcal{O}(c)} \).

The computations in the presence of disorder are much more challenging than for translationally invariant systems because of the additional average over all possible disorder realizations. For example, the largest clusters we consider here for the quantum models in the square lattice have 13 sites. At this order, there are a total of \(\sim 1.9 \times 10^6 \) connected clusters, of which 5,450 are topologically distinct. Each of these has to be fully diagonalized for the \(2^\ell \) disorder configurations corresponding to the \(\ell \) bonds in the cluster. This has to, of course, be carried out for all lower orders as well, each with a different set of topologically distinct clusters and disorder configurations. For the clean systems, we report results for cluster with up to 15 sites for the square lattice. In that case one has to diagonalize 42,192 topologically distinct clusters with 15 sites.

NLCE calculations fail to converge when correlations in the thermodynamic limit extend beyond the largest clusters considered. Therefore, NLCEs cannot be used to calculate observables in phases with long-range order unless one tailors the expansion to account for those. Since disorder usually shortens correlations at low temperatures, NLCEs are particularly useful to study quantum disordered systems, despite the increase of computational cost because of the disorder average. It will become apparent when we discuss our results for the various thermodynamic properties of interest in this work, that NLCEs converge to lower temperatures in disordered systems when compared to clean systems. As mentioned before, quantum Monte Carlo simulations in the presence of disorder are severely limited by the sign problem.

IV. RESULTS

In this section, we discuss the results of our NLCE based study of the three spin models described in Sec. III on the square and honeycomb lattices. In what follows, we set \(J = 1 \) as the energy scale. For each model and lattice geometry, we report the energy \((E) \), entropy \((S) \), specific heat \((C_v) \), and uniform susceptibility for the magnetization along the \(z \)-axis \((\chi) \) as a function of temperature. These quantities are defined as
\begin{align}
E &= \frac{\langle H \rangle}{N}, & C_v &= \frac{\langle H^2 \rangle - \langle H \rangle^2}{N T^2} \\
S &= \frac{\log Z}{N} + \frac{E}{T}, & \chi &= \frac{\langle (S^z)^2 \rangle - \langle S^z \rangle^2}{NT} \tag{8}
\end{align}
where the overline denotes a disorder average, the angle brackets denote the thermal expectation value in the
grand-canonical ensemble (at zero chemical potential), N is the number of sites, and T is the temperature. As mentioned earlier, the disorder average is carried out over all disorder configurations at each order in the NLCE. In all cases, the disorder averaged results are compared with the ones in clean systems.

For all observables, we report bare NLCE results for the highest two orders of our site-based NLCE expansion, which are determined by the number of sites l in the largest clusters studied. Namely, we report the results from Eq. (6) when the contributions of all clusters with up to l sites are added, where l takes the two largest values in our calculations for each model in each lattice geometry. We also report results using two different resummation schemes, indicated as Wynn and Euler. The subscript n denotes the order of the resummation process (see Ref. 44 for details). The resummation schemes allow us to access significantly lower temperatures than the bare results in some cases as indicated below.

Before discussing each model and observable in detail, we make a few general observations. In all models and observables discussed here, the numerical results at intermediate to high temperatures in the presence of disorder are close to those of the corresponding clean system. Namely, we report the results we make a few general observations. In all models and observables discussed here, the numerical results at intermediate to high temperatures in the presence of disorder are close to those of the corresponding clean system. Namely, we report the results

\begin{equation}
\log \frac{Z}{N} = \log 2 + \frac{\beta^2}{2} \cdot 2^N N \text{Tr} \left[\sum_{ij} J_{ij} \tilde{H}_{ij}^2 + \frac{N h^2}{4} \right]
\end{equation}

Let us treat the above terms one by one. In the first term, for $\langle ij \rangle \neq \langle kl \rangle$, the trace is identically zero as shown above. For the case when $i \neq l$, but $j = k$, we effectively have a new Hamiltonian for three neighboring spins. It is easy to verify explicitly that this trace also vanishes. The only possibility left for a nonvanishing contribution is $\langle ij \rangle = \langle kl \rangle$. The trace of second term in the brackets is nonzero only for $i = j$. In the third term, again for $k \neq i$ or j, the trace is zero. For, say $j = k$, considering only the diagonal elements of the matrix, $\tilde{S}_i^z \tilde{S}_j^z \tilde{S}_j^z \propto \tilde{S}_i^z$, we see that the trace vanishes. Taking these into account, and writing $\log Z$ to $O(\beta^3)$, we have

\begin{equation}
\log \frac{Z}{N} = \log 2 + \frac{\beta^0}{4} \left(J^2 \text{Tr}_2 \tilde{H}_2^2 + \frac{h^2}{2} \right) + O(\beta^3)
\end{equation}

where \tilde{H}_2 is the Hamiltonian for a two-site system and the subscript “2” on the trace indicates a trace over the Fock space of a two-site system. The disorder average does not change the above expression, and therefore to this order, the clean and the disordered systems behave identically. The energy, for instance, is given to this order by $E = -(\partial \log Z/\partial \beta)/N = -\beta J^2 \text{Tr}_2 (\tilde{H}_2^2)/2$, the specific heat is $C_v = \beta^2 J^2 \text{Tr}_2 (\tilde{H}_2^2)/2$, and the uniform susceptibility deviates. The following expression can be derived along the lines of Eqs. (9)–(11) for the third order correction to the partition function:

\begin{equation}
\log \frac{Z}{N} = \log 2 + \frac{\beta^3}{4} \left(J^2 \text{Tr}_2 \tilde{H}_2^2 + \frac{h^2}{2} \right) - \frac{\beta^3 h^2}{12} J_{ij} \text{Tr}_2 \tilde{H}_{ij} \tilde{S}_i^z \tilde{S}_j^z.
\end{equation}

There is no sum over i,j, which represent the two sites in a 2-site system. For the clean model one just needs to replace J_{ij} with J in the above formula, while for the disordered one, the disorder average produces two terms for $\pm J$ (which cancel each other, implying that disorder extends the paramagnetic behavior in the susceptibility to lower temperatures). One can see that for $h = 0$, all thermodynamic quantities studied here, except the susceptibility, are identical in the clean and disordered cases up to $O(\beta^3)$. One can further verify that this changes at fourth order, where differences emerge between clean and
disordered systems. An example of a term that makes a difference at fourth order is a square loop with four sites and four bonds (see Fig. 2). Even in the Ising case, the Hamiltonian $H_{12}H_{23}H_{34}H_{41} = 1/64$ has a nonzero trace with a product of four different J_{ij}.

We should stress that, in all models studied here in the presence of disorder, we find that there is a significant amount of residual entropy (when comparing with the clean systems) at the lowest temperatures we are able to access with NLCEs. This is a clear indication of the lack of order at those temperatures. The behavior of the entropy, coupled with a saturation of the energy observed at the lowest temperatures accessible to us, confirms that there are many energy levels close to each other at low energies. This is the hallmark of frustration.

A. Ising model

Figures 3 and 4 show the energy (a), entropy (b), specific heat (c), and uniform susceptibility (d) for the disordered spin-1/2 Ising model on the square and honeycomb lattices, respectively. For the square lattice, we also plot the exact results for E, S, and C_v for the clean model. Several approximate analytic estimates exist for the susceptibility, but there is no closed form expression for all temperatures.

Figures 3(a) and 4(a) show that, as mentioned before, a generic feature in the presence of disorder is that the energy tends to plateau at the lowest temperatures accessible to us. In that regime, the entropy is significantly higher than in the clean systems [Figs. 3(b) and 4(b)]. Distinct to the Ising models, the sharp divergence in the specific heat in the clean case [see Figs. 3(c) and 4(c)], which indicates the phase transition, is replaced by what appears to be smooth peak in the presence of disorder. The maximum of that peak appears at temperatures lower than the critical temperature in the clean case. At higher temperatures, Eq. (11) gives results that agree for E, C_v, and S down to $T \approx 1$. We note that NLCE results for the disordered model are well converged down to $T \approx 0.2$ to 0.3, while the NLCE results for the clean model converge to temperatures that are close to T_c, and agree with the analytic results in the disordered phase.

Results for the uniform susceptibility in Figs. 3(d) and 4(d) show that this quantity behaves very differently in the clean and disordered systems. In the disordered case it exhibits a $1/T$ behavior at all temperatures, both on the square and honeycomb lattices. An order by order linked cluster expansion reveals that the only nonvanishing contribution to the susceptibility in the disordered case comes from the single-site system, and is trivially
proportional to $1/T$. All higher order contributions vanish. We show this for the first few orders of the NLCE on the square lattice. Below are the expressions for the disorder averaged log Z for the clusters with one, two, and three sites shown in Fig. 2.

\[
\begin{align*}
\log Z^{(1)} &= \log \left(e^{-\beta h/2} + e^{\beta h/2} \right) \\
\log Z^{(2)} &= \frac{1}{2} \log \left(2e^{-\beta h/2} + e^{\beta(J+h)/2} + e^{\beta(J-h)/2} \right) + \beta \rightarrow -\beta \\
\log Z^{(3)} &= \frac{1}{2} \log \left(e^{\beta h/2} + e^{3\beta h/2} + e^{\beta(J+h)/2} + e^{\beta(J-h)/2} \right) + \beta \rightarrow -\beta \\
&\quad + \frac{1}{4} \left[\log \left(2e^{\beta h/2} + 2e^{-\beta h/2} + e^{\beta(3J+h)/2} + e^{\beta(3J-h)/2} \right) + \beta \rightarrow -\beta \right]
\end{align*}
\]

The uniform susceptibility can be obtained from $\chi = \beta^{-1}(\partial^2 \log Z)/(\partial h)^2$ evaluated at $h = 0$. We get for the above three orders,

\[
\chi^{(1)} = \frac{\beta}{4}, \quad \chi^{(2)} = \frac{2\beta}{4}, \quad \chi^{(3)} = \frac{3\beta}{4}.
\]

Already, one can see that no new contributions appear at the higher orders. To confirm this, we calculate the weights of the three clusters (see Ref. 40 for details about

![Figure 5](image-url)

FIG. 5. (Color online) **Spin-1/2 XY model on the square lattice.** Panels (a)–(d) show the energy, entropy, specific heat, and uniform susceptibility vs T, respectively. Solid lines depict disorder averaged quantities, while dashed lines depict results for the clean system. Thin lines report bare results for the last two orders of the NLCE, while thick lines report the results of two resummation techniques. A thin continuous line following the results of the resummations reports results for a lower order of the same resummation technique and is used to gauge their stability. The dotted vertical line marks the position of the phase transition.

![Figure 6](image-url)

FIG. 6. (Color online) **Spin-1/2 XY model on the honeycomb lattice.** Panels (a)–(d) show the energy, entropy, specific heat, and uniform susceptibility vs T, respectively. Solid lines depict disorder averaged quantities, while dashed lines depict results for the clean system. Thin lines report bare results for the last two orders of the NLCE, while thick lines report the results of two resummation techniques. A thin continuous line following the results of the resummations reports results for a lower order of the same resummation technique and is used to gauge their stability. Note that the results converge to similar temperatures as in the square lattice.
der on the square lattice found a low-temperature scaling of the specific heat (i.e., the exponent α in a power law fit of the low-temperature specific heat, $C_v \sim T^{-\alpha}$) that is different from the model with continuous disorder. At even lower temperatures, a crossover in the scaling behavior of C_v has been reported. Unfortunately, our results do not converge at low enough temperatures to observe such power laws. However, for $T > 0.3$, our results are consistent with those in other studies (since we consider $S^z = \pm 1/2$, our temperatures are lower by a factor of four from those studies, which took $S^z = \pm 1$).

B. XY model

Figures 7 and 8 show results for the spin-1/2 XY model on the square and honeycomb lattice, respectively. The results for all quantities are well converged down to about $T \approx 0.1$ to 0.2. Figures 7(a),(b) and 8(a),(b) show that the behavior of energy and the entropy is qualitatively similar to the one observed in the Ising model. However, the results for the XY model in the presence of disorder converge at lower temperature than those for the Ising model. For the XY model, the specific heat in the presence of disorder exhibits a peak that is well resolved by our NLCE [Figs. 7(c) and 8(c)]. We note that the energy, entropy, and specific heat follow the second order result in Eq. (11) for $T > 2$ in the square lattice and $T > 0.7$ in the honeycomb lattice.

Interestingly, Figs. 7(d) and 8(d) show that in the XY model the uniform (z-)susceptibility in the presence of disorder exhibits a plateau for low temperatures. This is qualitatively different from the behavior observed for the Ising model. The fact that the response to an external magnetic field in the z-direction is independent of temperature for low temperatures shows that increasing temperature does not increase the disorder in the spin correlations in the z-direction.

We should add that the classical XY model has been studied in the presence of Gaussian-random dilution and bimodal dilution of ferromagnetic bonds. In these works, the BKT transition was seen to slowly disappear as the dilution was increased. Here we only have considered the fully disordered case, i.e., an equal distribution of ferro- and antiferromagnetic bonds, so we do not expect that any remnants of the BKT phase are present in our calculations.

C. Heisenberg model

Figures 7 and 8 show results for the spin-1/2 Heisenberg model on the square and honeycomb lattices, respectively. In Figs. 7(a) and 8(a), one can see that the plateau in the energy at low temperatures is the closest of all models studied in this work. The onset of this plateau occurs at $T \approx 0.2$ for both models. Remarkably, in the honeycomb geometry, the energy in the presence of disorder converges down to $T \approx 0.02$. The entropy [Figs. 7(b) and 8(b)] behaves similarly to the entropy in the XY model, but also converges to very low temperatures ($T \approx 0.03$ to 0.04) in the honeycomb geometry. Like for the XY model, the specific heat exhibits a clear peak in the presence of disorder. The temperature at which the maximum of that peak occurs is very close (but slightly larger) to the one in the clean model.

In contrast to the XY model, the uniform susceptibility in the presence of disorder increases rapidly with decreasing temperature at the lowest temperatures accessible to us. The susceptibility therefore behaves qual-
It is worth emphasizing that our results for all observables in the honeycomb lattice appear to converge at temperatures significantly below $T = 0.1$, and quite close to $T = 0.01$ for the energy, entropy, and uniform susceptibility.

Our calculations for the Heisenberg model reach lower temperatures and access regimes beyond what has been possible with quantum Monte Carlo simulations. For example, Ref. [51] studied the case of diluting an antiferromagnetic model with ferromagnetic bonds of varying concentration. The results presented there did not reach the equal probability $J = \pm 1$ case discussed here because of the sign problem. For lower concentrations of ferromagnetic bonds (below 30%), the calculations were still limited to temperatures above $T \approx 0.3$.

V. SUMMARY

We have used numerical linked cluster expansions to study thermodynamic properties of spin models with bimodal ($\pm J$) bond disorder. The results reported are in the thermodynamic limit at temperatures for which they are well converged.

We have unveiled various interesting effects of disorder in spin-1/2 Ising, XY, and Heisenberg models. For all models we find that disorder leads to a saturation of the energy at the lowest temperatures accessible to us, in a regime where the entropy is higher than in clean systems. This makes apparent that there are many low lying energy states. For the disordered classical Ising model, on both the square and the honeycomb lattice, the divergence of the specific heat in the clean case is replaced by a peak, and the uniform susceptibility follows an inverse temperature law for all temperatures in the presence of disorder. This was explicitly verified order by order. In the Heisenberg model, we also find that the susceptibility increases with decreasing temperature for all temperatures accessible to us in the presence of disorder. In the XY model, on the other hand, we find that the susceptibility exhibits a plateau at low temperatures. On both the XY and Heisenberg models, our NLCE calculations were able to resolve a peak in the specific heat.

VI. ACKNOWLEDGMENTS

We acknowledge support from the National Science Foundation (NSF), Grant No. OCI-0904597, and the U.S. Office of Naval Research.

1. P. W. Anderson, Phys. Rev. 109, 1492 (1958)
2. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986)
3. M. Weissman, Rev. Mod. Phys. 65, 829 (1993)
4. H. G. Katzgraber, L. W. Lee, and I. A. Campbell, Phys. Rev. B 75, 014412 (2007)
5. F. Parisen Toldin, A. Pelissetto, and E. Vicari, Phys. Rev. E 84, 051116 (2011)
6. C. Thomas and A. Middleton, Phys. Rev. E 87, 043303 (2013)
7. C. Thomas, D. Huse, and A. Middleton, Phys. Rev. Lett. 107, 047203 (2011)
8. P. Henelius and A. Sandvik, Phys. Rev. B 62, 1102 (2000)
9. M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 172021 (2005)
10. B. Tang, D. Iyer, and M. Rigol, arXiv:1411.0699
11. M. Rigol, Phys. Rev. Lett. 112, 170601 (2014)
12. B. Wouters, J. De Nardis, M. Brockmann, D. Fiotello, M. Rigol, and J.-S. Caux, Phys. Rev. Lett. 113, 117202 (2014)
13. M. Rigol, Phys. Rev. E 90, 031301(R) (2014)
14. M. Sykes and M. E. Fisher, Physica 28, 919 (1962)
15. Z. Weinong, J. Ottman, and C. Hamer, Phys. Rev. B 44, 11809 (1991)
16. A. Di Ciolo, J. Carrasquilla, F. Becca, M. Rigol, and V. Galitski, Phys. Rev. B 89, 094413 (2014)
17. L. Ousager, Phys. Rev. 65, 117 (1944)
18. S. F. Edwards and P. W. Anderson, J. Phys. F: Met. Phys. 5, 965 (1975)
19. M. E. Fisher, Physica 25, 521 (1959)
20. S. Cho and M. P. A. Fisher, Phys. Rev. B 55, 1025 (1997)
21. J. A. Blackman, J. R. Gonçalves, and J. Poulter, Phys. Rev. E 58, 1502 (1998)
22. A. K. Hartmann and A. P. Young, Phys. Rev. B 64, 180404 (2001)
23. I. Gruzberg, N. Read, and A. Ludwig, Phys. Rev. B 63, 104422 (2001)
24. C. Amoruso and A. K. Hartmann, Phys. Rev. B 70, 134425 (2004)
25. J. Lukic, A. Galluccio, E. Marinari, O. C. Martin, and G. Rinaldi, Phys. Rev. Lett. 92, 117202 (2004)
26. H. G. Katzgraber and L. W. Lee, Phys. Rev. B 71, 134404 (2005)
27. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)
28. A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge Univ. Press, 2006).
29. V. L. Berezinskii, Sov. JETP 34, 610 (1972).
30. J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973)
31. K. Harada and N. Kawashima, J. Phys. Soc. Jpn. 67, 2768 (1998)
32. J. Carrasquilla and M. Rigol, Phys. Rev. A 86, 043629 (2012)
33. V. L. Berezinskii, Sov. JETP 32, 493 (1971).
34. J. Fröhlich and T. Spencer, Comm. Math. Phys. 81, 527 (1981)
35. R. Kenna, arXiv:cond-mat/0512356 (2005).
36. D. F. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)
37. D. J. Gross, Nucl. Phys. B - Proc. Suppl. 74, 426 (1999) (QCD) 98.
A. Cuccoli, V. Tognetti, R. Vaia, and P. Verrucchi, Phys. Rev. B 56, 14456 (1997).
M. Rigol, T. Bryant, and R. R. P. Singh, Phys. Rev. Lett. 97, 187202 (2006).
M. Rigol, T. Bryant, and M. Rigol, Phys. Rev. E 75, 061118 (2007).
M. Rigol, T. Bryant, and M. Rigol, Phys. Rev. E 75, 061119 (2007).
E. Khatami and M. Rigol, Phys. Rev. B 83, 134431 (2011).
E. Khatami and M. Rigol, Phys. Rev. A 84, 053611 (2011).

B. Tang, T. Paiva, E. Khatami, and M. Rigol, Phys. Rev. Lett. 109, 205301 (2012).
B. Tang, T. Paiva, E. Khatami, and M. Rigol, Phys. Rev. B 88, 125127 (2013).
B. Tang, E. Khatami, and M. Rigol, Comput. Phys. Commun. 184, 557 (2013).
E. Khatami, R. R. P. Singh, and M. Rigol, Phys. Rev. B 84, 224411 (2011).
K. Huang, Statistical mechanics (Wiley, 1987).
Y.-B. Deng and Q. Gu, Chin. Phys. Lett. 31, 020504 (2014).
T. Surungan and Y. Okabe, Phys. Rev. B 71, 184438 (2005).
A. W. Sandvik, Phys. Rev. B 50, 15803 (1994).