Spraying zinc (Zn) solutions onto the tree canopy is the standard method for supplying this nutrient to pecan trees [Carya illinoinensis (Wangenh.) K. Koch]. Zinc applied to soil reacts with hydroxyls and carbonates in alkaline and calcareous soils forming compounds of low solubility, limiting its plant availability (Agbenin, 2003; Lindsay, 1979; Udo et al., 1970). Foliar Zn sprays can reliably increase leaf Zn levels over threshold levels of $\approx 50 \, \mu g \, g^{-1}$, but this method has several disadvantages. Foliar application is time-consuming, requires investment in expensive equipment, uses fuel, repeated traffic through the orchard causes soil compaction, and spray schedules interfere with management of the orchard (mainly with irrigation). Additionally, repeated application are required during the growing season as a result of low mobility of sprayed Zn within the tree (Grauke et al., 1982; Wadsworth, 1970). Because of these disadvantages, growers would benefit from an effective and efficient method of applying Zn fertilizers to the soil.

Soil application of Zn has been successful in the acidic soils of the southeastern United States (Sparks, 1976; Wood, 2007) but is much less likely to be effective in alkaline and, particularly, calcareous soils. Response of pecan to soil Zn application can take several years depending on application rate, form of fertilizer, and method of application. On an acid soil in Georgia, using zinc sulfate (35 kg Zn/ha), zinc oxide (35 kg Zn/ha), and Zn-EDTA (3.5 kg Zn/ha), recovery of a Zn-deficient orchard was very slow, and it took 3 to 4 years to reach the optimum Zn levels in the leaf and eliminate deficiency symptoms (Worley et al., 1972). Zinc application rates from 0 to 4224 g Zn/ (as either ZnSO$_4$ or ZnO) placed over drip irrigation lines were evaluated on 4-year-old ‘Desirable’ trees in an acid soil in Georgia. In the first year of evaluation, 4 months after application, trees that received rates higher than 528 g Zn/tree had leaf Zn levels over $50 \, \mu g \, g^{-1}$. In the second year, only those with rates of at least 2112 g Zn/tree had leaf Zn levels over $50 \, \mu g \, g^{-1}$, and in the fourth year after application, treatments with rates higher than 132 g per tree had greater than $50 \, \mu g \, g^{-1}$ of Zn in the leaves (Wood, 2007).

In contrast, extremely high rates, as much as 126 kg of ZnSO$_4$/tree, were needed to provide adequate Zn to pecan trees in a calcareous soil in Texas (Storey et al., 1971). In a study of several forms of Zn fertilizer, ZnSO$_4$, ZnO, and Zn-EDTA were broadcast or placed in holes (six holes, each 2.5 cm in diameter \times 30 cm depth) in a Georgia soil that had been limed to a pH of 7.4 (Worley et al., 1972). Broadcast applications of either ZnO (applied at 22 g cm$^{-1}$ of trunk circumference, applied annually over 5 years) or Zn-EDTA (3.3 g cm$^{-1}$) increased leaf Zn relative to the untreated control; ZnSO$_4$ placed in holes did not. Response to broadcast Zn-EDTA was significant in Year 2, whereas ZnO effects were not apparent until Year 5. Zinc sulfate had no significant effect regardless of placement. Extractability of Zn in soils treated with EDTA at rates of 0.1 and 0.2 mg kg$^{-1}$ of soil was increased as EDTA rate was increased (Karaca et al., 2000). DTPA-extractable Zn was 6.29 for the 0.1 mg kg$^{-1}$ rate and 7.57 mg kg$^{-1}$ for the 0.2 mg kg$^{-1}$ rate versus 2.07 mg kg$^{-1}$ in the control. In a field demonstration study in Texas, Zn-EDTA was applied through a drip irrigation system in 1974 at annual rates of 0.8, 1.6, and 2.5 kg Zn/ha (Lindsey and Condra, unpublished data). Resulting leaf Zn levels were 39, 53, and 68 mg kg$^{-1}$, respectively. In 1975, the corresponding leaf Zn levels were 49, 54, and 70 mg kg$^{-1}$, respectively. These data suggest that drip irrigation-applied Zn-EDTA elevated leaf Zn levels; however, no unfertilized controls were included, and the data were not statistically analyzed.

Zinc fertilizer placement is also critical. ZnO and ZnSO$_4$ were broadcast on a limed Georgia soil with a pH of 7.3 in the top 2.5 cm and 6.2 in the 2.5 cm below that. A single application of 160 kg Zn/ha of either material increased tissue Zn above $50 \, \mu g \, g^{-1}$ in Year 2 when disked into the soil and in Year 4 when not incorporated (Wood and Payne, 1997). In another study, an application of ZnSO$_4$ was banded (0 to 391 kg ha$^{-1}$) or broadcast (0 to 448 kg ha$^{-1}$) on a Georgia soil with pH ranging from 4.8 to 5.2 in a single application. Leaf Zn levels increased over the next 5 years. Applications of at least 112 kg ZnSO$_4$/ha broadcast or 391 kg ZnSO$_4$/ha banded increased Zn levels to over $50 \, \mu g \, g^{-1}$. Greater broadcast application rates increased leaf Zn sooner. 448 kg ZnSO$_4$/ha increased Zn above the $50 \, \mu g \, g^{-1}$ threshold in the second year, 224 kg ZnSO$_4$/ha in Year 4 to 5, and 112 kg ZnSO$_4$/ha in Year 5. In banded treatments, 391 kg ZnSO$_4$/ha raised leaf Zn to $50 \, \mu g \, g^{-1}$ in Year 5 (Payne and Sparks, 1982b).

Soil Zinc Fertilization of ‘Wichita’ Pecan Trees Growing Under Alkaline Soil Conditions

Humberto Núñez-Moreno
Instituto Nacional de Investigaciones Forestales y Agropecuarias, Carr. Bahía de Kino Km 12.6, Hermosillo, Sonora, México, 83220

James L. Walworth1 and Andrew P. Pond
Department of Soil, Water and Environmental Science, University of Arizona, 429 Shantz Building #38, 1177 E. Fourth Street, Tucson, AZ 85721

Michael W. Kilby
Department of Plant Science, University of Arizona, 303 Forbes Building #36, Tucson, AZ 85721

Additional index words. Carya illinoinensis, Zn EDTA, nut quality, yield, mineral composition

Abstract. The effect of soil banding zinc sulfate and zinc (Zn)-EDTA was evaluated over a period of 4 years on established ‘Wichita’ pecans ([Carya illinoinensis (Wangenh.) K. Koch] growing in alkaline, calcareous soil. Treatments evaluated were ZnSO$_4$ applied at 74 kg Zn/ha and Zn-EDTA at 19 kg Zn/ha. These materials were applied just once on 23 Mar. 2005. Fertilizers were injected in two bands placed 1.2 m from either side of the trunk of the tree and 18 cm deep. Treatments were replicated four times in a randomized complete block design. Data collected included foliar Zn concentrations throughout the season, midseason foliar nutrient concentrations, leaflet growth, nut yield, and nut quality. Significant differences in foliar Zn levels were found 1 month after application of Zn-EDTA. Differences also were noted during the next 3 years on $\approx 25\%$ of the sampling dates. Yields of in-shell pecans averaged 2800 kg ha$^{-1}$ during the 3 years of harvest but were unaffected by treatments. Nut quality also was unaffected. Nut kernel percentage was very high, ranging from 61.2% to 63.6% during the study. Growth, measured as leaflet area and trunk cross-sectional area, was unaffected by Zn application. Chlorophyll index ranged from 47.5 to 48.0 in 2007 and from 44.7 to 45.4 in 2008 and was unaffected by applied treatments. Zn-EDTA increased Zn uptake slightly by ‘Wichita’ pecan trees in alkaline, calcareous conditions during 3 years after one soil band injection. Ongoing research on potted pecan trees (with the same soil used in the present study) suggests that Zn-EDTA can very effectively increase Zn uptake if placed in close proximity to the tree roots. Additional research is needed to refine application and placement methods in these types of soils to produce a more effective and consistent response.
There is a lack of studies of Zn applied to irrigated calcareous soils. We evaluated Zn uptake, tree growth, and nut yield after a one-time band application of ZnSO₄ and Zn-EDTA in a calcareous soil over a period of 4 years. The objective was to determine if these fertilizers can effectively enhance Zn uptake in young ‘Wichita’ pecan trees in an irrigated, alkaline desert soil.

Materials and Methods

A field study was conducted on a commercial pecan orchard in southeast Arizona (lat. 31°55’01.25” N, long. 110°57’27.50” E, elev. 844 m) on 'Wichita' trees (7 years old) from May 2005 to Nov. 2008. The trees are growing in an alkaline and calcareous Pima clay loam soil with a soil pH of 7.6 (fine clayed, mixed, thermic, Typic Hapludalf). The soil is thermic and semiard with mean annual soil temperatures from 15 to 22 °C and a mean annual precipitation between 25 to 40 cm (Hendricks, 1985). Table 1 presents general soil characteristics of the orchard site at 0 to 30 cm depth. The soil is typical of many southwestern U.S. soils and therefore many regional pecan orchards. Trees are planted in a square design and the space between trees is 9.15 m. The area between tree rows was mowed to keep the soil clean of weeds during the growing season. Trees were level basin flood-irrigated twice each month from April to October. A total of 1.50 m of water depth was applied annually. Beginning in 2007, the orchard was converted to organic production and pest control methods were changed accordingly. Before the conversion to organic production and pest control methods were changed, trees were hedged. Trees were hedged 3 m from the vertical toward the trunk with the top pruned at an angle of 160°.

Treatments evaluated were ZnSO₄ applied at a rate of 74 kg Zn/ha and Zn-EDTA at 19 kg Zn/ha and an untreated control treatment that did not receive any Zn application. Zinc materials were applied once only, on 23 Mar. 2005. Zinc sulfate was applied in 840 L H₂O/ha with 0.0026 mL H₂SO₄/L to increase solubility. Zn-EDTA was applied in 380 L H₂O/ha. Fertilizer solutions were injected using a single shank in bands placed 1 m from the trunk of the trees and 18 cm depth. Each tree row received two fertilizer bands, one on each side of the row. Treatments were replicated four times in a randomized complete block design. Each plot consisted of one row of 15 trees (n = 12). Every experimental plot was separated by one buffer row. Leaf sampling and growth measurements were collected from the 11 central trees in each plot row. Analysis of variance was conducted with SAS (Version 9.1; SAS Institute, Cary, NC). Mean separation was conducted with Tukey’s honestly significant difference.

Trunk circumferences were measured 20 cm above the ground for calculation of trunk cross-sectional area (TCSA) measurements. Trunk cross-sectional area was calculated from trunk circumferences in Feb. 2007 and Feb. 2008.

During 2005, 2006, 2007, and 2008, nut yield and quality were measured. Yield was calculated by mechanically harvesting the complete experimental plot. Cumulative nut yield was determined from the 4 years of harvest. Alternate bearing intensity was determined by the deviation of yield in successive years (Pearce and Dobereker-Urbanc, 1967) according to the formula:

\[
I = \frac{1}{n-1} \left(\frac{Y_1 - Y_2}{Y_1 + Y_2} + \frac{Y_2 - Y_1}{Y_2 + Y_3} + \cdots + \frac{Y_{n-1} - Y_n}{Y_{n-1} + Y_n} \right)
\]

where I = alternate bearing intensity, n = total numbers of years, and Y = year. Values are absolute numbers.

A subsample of ≈ 5 kg of the harvested nuts was used to determine meat yield, percent of good nuts, and stick-tight nuts (fruit with stuck remaining stuck to the shell after harvest). Yield efficiency was determined by calculating yield of nuts per square centimeter of tree TCSA. Kernel percent was determined by cracking 10 nuts from each experimental plot and separately weighing the shell and kernel. Weight per nut was calculated by counting the number of nuts per kilogram.

Twenty middle pairs of exterior leaflets from the leaves located in the middle part of the current season’s shoot growth on lower limbs (1.5 to 2.0 m height) from all the cardinal directions were collected every 2 or 3 weeks from May to October for Zn analysis. Complete nutrient analyses were conducted on leaflet samples collected in late July to determine the nutritional composition of the leaves. Immediately after sampling, leaves were washed using the following routine: washed in phosphate-free soap, rinsed in tap water, rinsed in distilled water, followed by three rinses in deionized water. Leaves were dried at 70 °C and ground with a mortar and pestle. During 2008, a rinse with hydrochloric acid (1% v/v) was added between the rinse with distilled water and rinse with deionized water. Complete analysis was conducted as follows. Nitrogen was determined by macro-Kjeldahl (Horowitz, 1980). For additional analysis, leaf tissue was ashed in a muffle furnace for 5 h at 500 °C. Hydrochloric acid (2.2 N) was used to dissolve the ash. Phosphorus was determined colorimetrically (Olsen and Sommmer, 1982). Potassium, calcium, magnesium, sulfur, iron, Zn, copper, manganese were assayed by atomic absorption spectroscopy (Motz Laboratory, Inc., Tempe, AZ).

Leaflet size and chlorophyll index were determined on samples of 60 leaflets each summer. Chlorophyll index was obtained using a Konica Minolta SPAD 502 m (Konica Minolta Sensing America Inc., Ramsey, NJ) by optical density difference at two wavelengths (650 and 940 nm). Chlorophyll readings were conducted on the middle pair of leaflets. Leaflets were scanned on a flatbed scanner and leaflet area obtained using Scion Image software (Scion Corp., Frederick, MD). Weights of dried leaves were also measured. During late July or early August, 20 middle pairs of leaflets were collected from the upper part of the canopy to compare leaf Zn concentration and leaf area with the ground level samples described previously.

Results

Zinc concentration in leaf tissue collected during the study is shown in Table 2. Significant differences were found as early as 1 month after injection of Zn fertilizers, although differences were not consistent over the duration of the study. Significant differences were found in ≈25% of the samples collected from 2005 through 2007, but not at all in 2008.

Soil test	Method	Units	Value
pH	Saturated paste	SU	7.5
Electrical conductivity	Saturated paste	dSm⁻¹	0.44
Calcium	NH₄OAc (pH 8.5)	mg kg⁻¹	4000
Magnesium	NH₄OAc (pH 8.5)	mg kg⁻¹	310
Potassium	NH₄OAc (pH 8.5)	mg kg⁻¹	510
Zinc	DTPA	mg kg⁻¹	3.2
Iron	DTPA	mg kg⁻¹	5.1
Manganese	DTPA	mg kg⁻¹	9.4
Copper	DTPA	mg kg⁻¹	2.4
Nickel	DTPA	mg kg⁻¹	0.12
NO₃-N	Cd reduction	mg kg⁻¹	8.8
PO₄-P	Olsen	mg kg⁻¹	9.0
SO₄-S	Hot water	mg kg⁻¹	22
Boron	Hot water	mg kg⁻¹	0.28
Free lime	Effervescence	High	
Exchangeable sodium percent	Calculated	%	1.8
Cation exchange capacity	Calculated	cmol kg⁻¹	24.3

Table 1. Orchard soil characteristics at the beginning of the study.
Foliar Zn levels were consistently lower than the critical level of 50 μg g−1 for pecans (Sparks, 1993, 1994) until 2008, when this level was reached in all treatments. Throughout the study, trees never exhibited visual Zn deficiency symptoms. In the first season after soil Zn application (2005), late July leaflet Zn concentrations were higher than in the other treatments; however, even in this treatment, leaflet Zn concentrations than the other two treatments. In the 2007 study, the Zn-EDTA-treated trees had higher Zn-EDTA treatment than the rest of the treatments. In 2008, there was no difference in leaf Zn concentration in the two parts of the trees. In 2008, differences in leaf Zn between lower and upper leaflets were not significant for the control treatment, but leaf Zn levels in the Zn-EDTA and zinc sulfate treatments were lower in the upper canopy compared with the lower part of the tree.

Zinc treatments did not affect growth of pecan trees (Table 3). Trunk cross-sectional area was unaffected and growth from 2006 to 2008 was unaffected by treatments. The increase in TCSA was slightly higher for the Zn-EDTA treatment than the rest of the treatments; however, differences were not significant. Chlorophyll indices ranged from 2.6% to 11.2%. Neither disorder nor the degree of foliar symptoms related to the high Zn concentrations in 2008, although Zn-EDTA treatment than the rest of the treatments. The reasons for this are not clear. However, in 2007, manure applications were started as part of a switch from “conventional” to “organic” production. This may be related to the high Zn concentrations in 2008, although it does not explain the increase from 2005 to 2006. In 2008, numerous fruiting bodies of the ectomycorrhizal fungi Pisolithus tinctorius and Scleroderma bovista were found in the orchard. Development of mycorrhizal fungi is known to enhance uptake of several nutrients, including Zn. It is not known whether these fungi were a factor in data obtained in the current study.

Nut yield and quality did not appear to be related to leaflet Zn, although lack of response of foliar Zn concentrations to soil Zn fertilizer treatments made this relationship difficult to assess. It is possible that all trees

![Table 2. Effect of soil zinc (Zn) fertilization on leaflet Zn concentration during the growing season in 'Wichita' pecan trees (μg g−1 dry weight).](image)

Year	Zn source	18 May	20 June	11 July	5 Aug.	2 Sept.	30 Sept.	5 Aug. top
2005	Control	35	23 a	29 a	29 a	27 b	27 b	27 a
	Zinc sulfate	36	33	33	33	33	32 ab	27 a
	Zn-EDTA	36	33	33	33	33	32 ab	27 a
	Pr > F	NS	NS	NS	NS	NS	NS	NS
2006	Control	45	30	32	32	29	29	25 b
	Zinc sulfate	62	35	35	33	33	33	32 ab
	Zn-EDTA	64	37	37	42	42	35	35 a
	Pr > F	NS	NS	NS	NS	NS	NS	NS
2007	Control	45	37	35	32	29	29	25 b
	Zinc sulfate	50	38	38	33	33	33 a	30 b
	Zn-EDTA	50	38	38	33	33	33 a	30 b
	Pr > F	NS	NS	NS	NS	NS	NS	NS
2008	Control	48	50	50	50	56	45	40
	Zinc sulfate	56	64	44	58	63	46	45
	Zn-EDTA	56	74	53	71	67	46	48
	Pr > F	NS	NS	NS	NS	NS	NS	NS

Table 3. Effect of soil zinc (Zn) fertilization on growth parameters of ‘Wichita’ pecan trees.

Year	Zn source	2005	2006	2007	2008
	Trunk cross-sectional area (cm2/tree)	40	125	112	122
	Control	NS	NS	NS	NS
	Zinc sulfate	NS	NS	NS	NS
	Zn-EDTA	NS	NS	NS	NS
	Pr > F	NS	NS	NS	NS
	Leaflet area top (cm2/leaflet)	23.5	23.5	23.5	23.5
	Control	9.4	24.3	24.1	24.5
	Zinc sulfate	9.4	22.3	22.3	23.5
	Zn-EDTA	19.7	24.1	24.5	20.4
	Pr > F	NS	NS	NS	NS
	Leaflet area ground (cm2/leaflet)	20.0	45.6	45.4	44.7
	Control	27.8	24.3	24.5	20.4
	Zinc sulfate	27.8	24.3	24.5	20.4
	Zn-EDTA	26.5	24.4	23.3	20.4
	Pr > F	NS	NS	NS	NS
	Chlorophyll index (SPAD)	NS	NS	NS	NS
	Control	47.8	45.6	45.4	44.7
	Zinc sulfate	48.0	45.6	45.4	44.7
	Zn-EDTA	47.5	45.6	45.4	44.7
	Pr > F	NS	NS	NS	NS
of foliage, and the CV was 60% (Beverly and Brodbeck, 1988).

These data imply that a critical level of 50 μg g⁻¹ is probably too high. Pecans grown in hydroponic sand culture with nutrient solution omitting Zn exhibited interveinal necrosis in leaves with 7.2 μg g⁻¹, motting at 9.8 μg g⁻¹, and no symptoms in leaves with 11.2 μg g⁻¹ (Kim et al., 2002). The size of the leaflets (23.5 to 24.5 cm²/leaflet) was larger than those reported for ‘Chocaw’ pecan trees in studies that compared normal with Zn-deficient trees. The size of the leaves (23.5 to 24.5 cm²/leaflet) is probably too high. Pecans grown in hydroponic sand culture with nutrient solution omitting Zn exhibited interveinal necrosis in leaves with 7.2 μg g⁻¹, motting at 9.8 μg g⁻¹, and no symptoms in leaves with 11.2 μg g⁻¹ (Kim et al., 2002). Because the yield and quality of nuts from the studied trees were excellent in this study, the chlorophyll indices of these trees can be considered acceptable for ‘Wichita’ pecan trees in the irrigated southwestern United States. ‘Pawnee’ leaflets in Texas had similar values as those obtained for ‘Wichita’ in our study (Lombardini et al., 2005). In several crops as birch, wheat, and potato, soil plant analysis development (SPAD) indices of 50 to 52 represent chlorophyll concentrations of 4 to 5 mg of total chlorophyll per gram (fresh weight) of leaf (Uddling et al., 2007). We calculated that 1 g of fresh leaflet tissue in our

Table 6. Effect of soil zinc (Zn) fertilization on nut quality of ‘Wichita’ pecan trees.

Zn source	2005	2006	2007	2008
Zn-EDTA	69	28	69	41
Zinc sulfate	75	22	57	45
Control	73	25	57	42
Pr>F	NS	NS	NS	NS
Nut weight (g)	Cumulative	1,071	1,061	5,916
Zn-EDTA	10.5	12	10.5	12
Zinc sulfate	11.0	12	11.0	12
Control	11.5	12	11.5	12
Pr>F	NS	NS	NS	NS
Nut yield efficiency (g cm⁻²)	Cumulative	5,902	5,916	112
Zn-EDTA	2.079	692	2,127	1071
Zinc sulfate	2,077	612	2,160	1061
Control	2,141	719	2,498	1,221
Pr>F	NS	NS	NS	NS
Yield of kernel (kg ha⁻¹)	Cumulative	6,270	5,916	112
Zn-EDTA	2,079	692	2,127	1071
Zinc sulfate	2,077	612	2,160	1061
Control	2,141	719	2,498	1,221
Pr>F	NS	NS	NS	NS

There are few previously published chlorophyll index values for pecan leaves with which to compare our data. A previous study positively related leaf chlorophyll content to Zn concentration (Hu and Sparks, 1991). Because the yield and quality of nuts from the studied trees were excellent in this study, the chlorophyll indices of these trees can be considered acceptable for ‘Wichita’ pecan trees in the irrigated southwestern United States. ‘Pawnee’ leaflets in Texas had similar values as those obtained for ‘Wichita’ in our study (Lombardini et al., 2005). In several crops as birch, wheat, and potato, soil plant analysis development (SPAD) indices of 50 to 52 represent chlorophyll concentrations of 4 to 5 mg of total chlorophyll per gram (fresh weight) of leaf (Uddling et al., 2007). We calculated that 1 g of fresh leaflet tissue in our

Table 6. Effect of soil zinc (Zn) fertilization on leaf mineral composition of adult pecan ‘Wichita’ pecan trees (July leaf samples, dry matter).

Treatment	Nitrogen (g kg⁻¹)	Phosphorus (g kg⁻¹)	Potassium (g kg⁻¹)	Calcium (g kg⁻¹)	Magnesium (g kg⁻¹)	Sulfur (g kg⁻¹)	Iron (mg kg⁻¹)	Zinc (mg kg⁻¹)	Copper (mg kg⁻¹)	Manganese (mg kg⁻¹)	Boron (mg kg⁻¹)
Control	25.0	0.9	10.8	13.8	3.1	1.9	58.5	15.0	4.6	262	112
Zn sulfate	25.0	1.0	11.8	14.8	3.2	2.0	75	22.0	5.2	290	125
Zn-EDTA	24.0	0.9	11.0	13.8	3.1	2.0	66	20.0	4.7	265	112
Pr>F	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2006											
Control	26.5	1.2	11.5	22.0	4.5	2.5	81	33.0	14.8	298	109
Zn sulfate	27.3	1.1	11.5	21.3	4.4	2.5	86	34.0	14.8	291	109
Zn-EDTA	27.3	1.1	11.5	20.0	4.3	2.5	88	38.0	15.5	255	99
Pr>F	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2007											
Control	24.7	1.2	12.6	25.5	5.4	3.0	76	39.0	9.6	275	98
Zn sulfate	24.4	1.2	12.9	26.2	5.3	2.8	71	32.0	9.0	281	100
Zn-EDTA	24.3	1.2	12.9	24.8	5.6	3.0	76	42.0	9.8	246	98
Pr>F	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2008											
Control	22.0	1.1	13.5	24.3	4.9	2.0	86	44.0	8.7	267	98
Zn sulfate	21.5	1.0	13.0	24.0	4.6	2.0	98	48.0	8.5	247	105
Zn-EDTA	21.3	1.0	13.5	24.0	4.8	2.0	90	58.0	8.5	218	106
Pr>F	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

*Numbers in a column followed by different letters are significantly different at P < 0.05.
ns, *, ** = Nonsignificant or significant at P ≤ 0.05 or 0.01, respectively.
study contained \(\approx 4 \) to 5 mg of chlorophyll. Hu and Sparks (1991) found that fresh ‘Mohawk’ leaflets contained 3.2 mg of chlorophyll/g of fresh leaves.

Alternate bearing intensity (I) measured as a variation in yield in consecutive years was very high, over 0.45 in 2 years of study, over 0.44 in 3 years, and more than 0.43 over 4 years. In Sonora, Mexico, I for ‘Wichita’ pecan trees has been reported to be 0.26 over seven seasons (Nunez, 2001) and in Georgia 0.51 in young trees and 0.67 in mature trees (Comer and Worley, 2000).

Yield efficiency was high in the “on” years and very low in the “off” years. It increased in the Zn-EDTA plots over the course of the study, and this treatment had the highest cumulative yield efficiency, but no differences could be attributed to treatments.

Zn-EDTA application decreased Mn leaflet levels. This could be the result of an antagonism between Zn and Mn, which has previously been reported (Mengel and Kirkby, 1987). It has also been noted that low leaf Zn is accompanied by high leaf Mn concentrations (Kim et al., 2002). Additionally, increasing the Mn concentration in a nutrient medium from 0 to 14.78 g·L⁻¹ decreased leaf Zn levels in ‘Desirable’ pecan seedling leaflets from 137 to 43.5 μg·g⁻¹ (O’Barr et al., 1987). Leaflet Mn increased from 187 to 4525 μg·g⁻¹.

In our study, leaflet Zn levels were not consistently affected by banding Zn in a calcareous soil. Similarly, banding a comparable rate of Zn (69 kg Zn/ha as zinc sulfate) in an acidic soil (pH 4.8 to 5.2) did not increase leaflet Zn levels above 50 μg·g⁻¹ (Payne and Sparks, 1982a). In that study, leaflet Zn levels above this critical level were obtained by only applying 138 kg Zn/ha, and these concentrations were reached 6 years after Zn was banded. Banding 63 kg Zn/ha as ZnSO₄ over a drip-emitter irrigation system did not raise leaf Zn levels above 50 μg·g⁻¹ until 4 years after application in young ‘Desirable’ trees (Wood, 2007).

Four years after the initiation of this study in a calcareous soil with a pH of 7.6, all treatments, including the control treatment, had leaflet Zn levels above the critical level. Reasons for the increase in foliar Zn concentration over the course of the study could be related to the conversion of this orchard to organic production, which included a shift to mowing for weed control instead of the previously used soil cultivation. Extensive earthworm and mycorrhizae activity is now much more apparent than at the beginning of the study. Also, increased presence of feeder roots was noted in the shallow surface soil and in the leaf litter. These conditions can affect nutrition of plants (Sharpe and Marx, 1986).

Zn-EDTA occasionally increased Zn uptake by ‘Wichita’ pecan trees in alkaline, calcareous soil over the 4 years after a single band application. Yield, nut quality, and growth were unaffected by any of the experimental treatments. At this time, this Zn fertilization method cannot be recommended for established pecans in the southwestern United States. Additional research to evaluate application methods and Zn sources is needed to find appropriate methods for soil Zn application in southwestern pecan orchards.

Literature Cited

Agbenie, J.O. 2003. Zinc fractions and solubility in a tropical semiarid soil under long-term cultivation. Biol. Fertil. Soils 37:83–89.

Andersen, P.C. and B.V. Brodbeck. 1988. Net CO₂ assimilation and plant water relations characteristics of pecan growth flushes. J. Amer. Soc. Hort. Sci. 113:444–450.

Beverly, R.B. and R.E. Worley. 1992. Preliminary DRIRIS diagnostic norms for pecan. HortScience 27:271.

Comer, P.J. and R.E. Worley. 2000. Alternate bearing intensity of pecan cultivars. HortScience 35:1067–1069.

Grauke, L.J., J.B. Storey, E.R. Emino, and D.W. Reed. 1982. The influence of leaf surface, leaf age, and humidities on the foliar absorption of zinc from 2 zinc sources by pecan. HortScience 17:474.

Hendricks, D.M. 1985. Arizona soils. College of Agriculture University of Arizona, Tucson, AZ.

Horowitz, W. 1980. Official methods of analysis of the Association of Analytical Chemist. Assn. Offic. Anal. Chem. Washington DC.

Hu, H. and D. Sparks. 1991. Zinc-deficiency inhibits chlorophyll synthesis and gas-exchange in Stuart pecan. HortScience 26:267–268.

Karaca, A., O. Turgay, and S. Arcak. 2000. Effect of EDTA on the extractability of zinc, cadmium, and nickel in soils. Proceedings of International Symposium on Desertification, p. 422–428, 13–17 June 2000, Konya, Turkey.

Kim, T., H.A. Mills, and H.Y. Wetzstein. 2002. Studies on the relationship of calcium, zinc, and nutrient uptake in pecan. J. Plant Nutr. 25:1987–2000.

Lane, R.H.F. Perkins, and J.F.E. Johnstone. 1965. Studies on the relationship of calcium, zinc, and pH in pecan production. Proc. S.E. Pecan Growers Assn. 58:21–24.

Lindsay, W.L. 1979. Chemical equilibria in soils. John Wiley & Sons, New York, NY.

Medina, C. 2004. Normas DRIS preliminares para nogal pecano. Terra 22:445–450.

Mengel, K., and E.A. Kirkby. 1987. Principles of plant nutrition. Int. Potash Inst. Bern, Switzerland.

Nunez, H. 2001. Desarrollo del nogal pecanero, Carya-Illinoensis (Wang.) K. Koch. INIFAP, Hermosillo, Sonora.

O’Barr, R.D., J.M. McBride, and K. Hanson. 1978. Pecan leaf sampling reveals shortages of fertilizer nutrients. Louisiana Agr. 21:6–7.

O’Barr, R.D., S. Rachal, K. Koone, and J. Kowalzniak. 1987. Influence of manganese applications on zinc levels in pecan leaves, trunk and roots. Louisiana Agricultural Expt. Sta. Circ. Circ. 102–112.

Payne, J.A. and D. Sparks. 1982a. Effect of broadcast and band application on zinc uptake by pecan trees. Pecan South. 9:25–27.

Payne, J.A. and D. Sparks. 1982b. Zinc levels in pecan leaflets from broadcast and band applications over a 6-year period. HortScience 17:235–236.

Pearce, S.C. and Z. Dobereck-Urbane. 1967. The measurement of irregularity in growth and cropping. J. Hort. Sci. 42:295–305.

Pond, A., J. Walworth, W.M. Kilby, R. Gibson, R. Call, and H. Nunez. 2006. Leaf nutrient levels for pecans. HortScience 41:1339–1341.

Sharpe, R.R. and D.H. Marx. 1986. Influence of soil pH and Pisolithus tinctorius ectomycorrhizae on growth and nutrient-uptake of pecan seedlings. HortScience 21:1388–1390.

Sparks, D. 1976. Zinc nutrition and the pecan. A review. Pecan South. 3:304–334.

Sparks, D. 1978. Nutrient concentrations of pecan leaves associated with deficiency symptoms and normal growth. HortScience 13:256–257.

Sparks, D. 1993. Threshold leaf levels of zinc that influence nut yield and vegetative growth in pecan. HortScience 28:1100–1102.

Sparks, D. 1994. Leaf zinc for maximum yield, growth in pecan. Pecan South. 27:19–24.

Sparks, D. and J.A. Payne. 1982. Zinc concentration in pecan leaflets associated with zinc deficiency symptoms. HortScience 17:670–671.

Storey, J.B., G. Wadsworth, M. Smith, and D. Westfall. 1971. Pecan zinc nutrition. Proc. S.E. Pecan Growers Assn. 64:87–91.

Udding, J., J. Gelang-Alfredson, and K. Piikki. 2007. Evaluating the relationship between chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91:37–46.

Udo, E.J., H.L. Bohn, and T.C. Tucker. 1970. Zinc adsorption by calcareous soils. Soil Science Society of American Proc. 34:405–407.

Wadsworth, G. 1970. Absorption and translocation of zinc in pecan trees [Carya illinoinesis (Wang.) K. Koch]. TAMU, College Station, TX. MSc thesis.

Wood, B.W. 2007. Correction of zinc deficiency in pecan by soil banding. HortScience 42:1554–1558.

Wood, B.W. and J.A. Payne. 1997. Comparison of ZnO and ZnSO₄ for correcting severe foliar zinc deficiency in pecan. HortScience 32:53–56.

Worley, R.E., R.L. Carter, and S.A. Harmon. 1972. Effect of zinc sources and methods of application on yield and leaf mineral concentration of pecan, Carya-illinoensis. Koch. J. Amer. Soc. Hort. Sci. 97:364.