Wall materials based on complex binders and organic aggregate

L V Zakrevskaya¹,², Andrei Gavrilenko¹, Ksenia Andreeva¹, Petr Lubin¹, Ilya Kapush¹ and Igor Udin¹

¹Vladimir State University named after Alexander and Nikolay Stoletovs, 600000 Vladimir, Russia
²E-mail: lvzak@mail.ru

Abstract. The technology of hards concrete developed in this study differs primarily by the binders - semi-burnt dolomite, related to magnesia cements. Grouting fluid is bischofite (MgCl₂) or magnesium sulfate (MgSO₄), density 1.2 g/cm³. One of the ways of strengthening and adding new properties to hards concrete, which can significantly expand its application domain, is an introduction of chrysotile to the concrete composition. The best specimen have density 570-585 kg/m³, strength 14.5 - 15.1 MPa and low thermal conductivity (0.065-0.074) W/(m·K), what allow them to serve as structural and thermal insulation material. Sound absorption coefficient is from 0.17 to 0.6 (at audio frequencies of 125-2000 Hz). Frost resistance exceeds 50 cycles, water absorption is 40-50%, shrinkage is less than 0.4%, fire stability is 0.75-1.54. Based on the results obtained, it can be concluded that the material is most applicable in low-rise construction. The developed material will solve the problem of utilizing of industrial hemp waste from textile production and dolomite waste in the form of a magnesian binder, thereby reducing the cost of the material in compare with existing world analogues.

1. Introduction

Wood concrete is a composite material based on organic natural aggregates such as wood chips, sawdust, flax shover, hemp hards, thatch of wheat and rye. Portland cement or lime is traditionally used as a binder. All types of wood concrete have good thermal characteristics [1-2]. The incontestable advantages of the material are:

- high bending strength;
- high sound absorption;
- low fire behavior (G1 according to Russian all-Union State Standard № 12.1.044-89);
- inflame-resistance (V1 according to Russian all-Union State Standard № 30402-96);
- good air permeability. [3]

However, its density and frost resistance often do not satisfy the consumer, in addition, it is rarely accurate in geometric parameters, biological resistance is also low, and the environmental indicators of the finished structure are 1.5 times higher than expected [4-5].

All of the above relates to concrete based on wood chips, which, among other things, has a reinforcing effect on concrete, in the case of using sawdust, the strength characteristics nosedive. Cold bridges in the joints (freezing joints) detract the thermal conditions of the premises [6].
Disadvantages of wood concrete: high moisture absorption requires external decoration, which means that economic indicators worsen [7-10]. All of the listed disadvantages of wood concrete are caused by such aggregate properties as:

- high chemical activity;
- development of pressure during swelling;
- anisotropy;
- low adhesion to the binder;
- elasticity during compaction, which affects the structure formation processes of the composite and its physical and mechanical properties [11].

Hemp hards is another natural organic aggregate for creating wood concrete, but has several advantages over similar materials, as:

- reinforcing filler;
- high strength;
- heat insulating;
- sound absorbing;
- frost resistant;
- fire resistant;
- bioproofness [12].

Hemp hards in its composition contains 40-48% of cellulose, 26% lignin, 22% pentosans.

The properties of wood concrete items like any artificial stone materials depend on the type of binder used in their synthesis. The most common inorganic binders are:

- lime;
- gypsum;
- magnesia cement;
- portland cement [13].

2. Methods

The technology of hards concrete developed in this study differs primarily by the binders – semi-burnt dolomite, related to magnesia cements. Grouting fluid is bischofite (MgCl₂) or magnesium sulphate (MgSO₄), density 1.2 g/cm³. One of the ways of strengthening and adding new properties to hards concrete, which can significantly expand its application domain, is an introduction of chrysotile to the concrete composition. Chrysotile (3MgO • 2SiO₂ • 2H₂O) is a mineral of the serpentine group, its crystal chemical composition is analogous to the magnesian binder obtained from dolomite. The properties of chrysotile fiber are given in table 1.

Tensile strength, kg/mm²	Mineral density, kg/mm²	Melting temperature, °C	Coefficient of friction (for iron)	Alkali resistance, pH	Thermal conductivity, W/(m·K)
300	2 400 – 2 600	1 450 – 1 500	0.8	9.1 – 10.3	0.05 – 0.07

Experimental samples were obtained according to the following scheme: hemp hards moistened with water, (the amount of which was calculated by 0.9C - 0.06 K [14]) and mixed with other components until an intimate mass is formed, when adding bischofite and mixing again. Further, the raw material mixture is uniformly compacted with the vibratory plate SMZH-539 for 2 minutes. Next, the mixture was placed in the formwork and was pressed with a force of 3 to 5 kg/mm² with the MS-500 press, and then the resulting building element was dried at room temperature in special box. On the second day, the blocks were dismantled.

Table 2 shows the compositions of synthesized composites.
Table 2. Compositions of synthesized composites.

Composite, % mass.	Composition name title	KM-1	KM-2	KM-3	KM-4	KM-5	KM-6	KM-7	KM-8
Hemp hards		20	21	22	23	24	25	26	27
Semi-burnt dolomite		44	46	42	43	45	42.5	44.5	45
Chrysotile		4	1	6	1.5	2.5	3.5	3.5	2
Bischofite		32	33	30	32.5	28.5	25	26	26

Strength test was carried out with a non-destructive shock pulse testing method. Thermal conductivity was measured with MIT-1 device by the probe technique. Water absorption was measured with a VLAGOMER-MG4B indicator.

3. Results and Discussion

The results of studying the operational characteristics of the synthesized composites are presented in Table 3.

Table 3. Performance characteristics of synthesized composites.

Composition name title	Rc, MPa	Density, g/cm³	Thermal conductivity, W/(m·K)	Water absorption, %
KM-1	13.6	681	0.091	12.5
KM-2	13.1	669	0.087	12.8
KM-3	13.8	646	0.085	13.0
KM-4	13.0	621	0.08	13.5
KM-5	13.7	600	0.074	13.8
KM-6	14.5	585	0.074	13.8
KM-7	15.1	580	0.07	14.0
KM-8	14.6	570	0.065	14.0

Figure 1 shows correlation between physical and technical characteristics and composition of composites.

![Figure 1. Physical and technical characteristics correlation chart.](image)
thermal insulation material in accordance with Russian all-Union State Standard № 19222-84 "Wood concrete and products from it. General specifications" (table 4).

Table 4. General properties.

Wood concrete type	Compressive Strength Class	Axial compression strength grade	Average density, kg/m³, wood concrete based on Crushed wood	Crushed shover or crushed cotton caulis	Crushed hemp hards	Crushed paddy straw
Heat-insulating						
B0.35	M5	400-500	400-450	400-450	500	
B0.75	M10	450-500	450-500	450-500	500	
B1.0	M15	500	500	500	500	
Constructional						
B1.5	-	500-650	550-650	550-650	600-700	
B2.0	M25	500-700	600-700	600-700	-	
B2.5	M35	600-750	700-800	-	-	
B3.5	M50	700-850	-	-	-	

Thermal performance meets the requirements (U ≤ 0.23 W/(m·K)) without additional insulation [15].

The explanation of the results lies in the synergistic effect of all components of the composite:
- hards and chrysotile take on the role of fiber;
- semi-burned dolomite, bischofite and chrysotile as magnesial components boost binding properties in the formation of a stone-like structure;
- chrysotile take on the role of the component strengthening the structure as a natural nano particle.

Figure 2 shows samples of hards concrete recommended for in-process testing.

Figure 2. Samples of hards concrete.

Primary studies have confirmed previous studies [16-19] that failure under load when the bearing capacity is exceeded (by 70-80%) occurs slowly, and not instantly, due to a hards, which is characterized by reversible plastic deformations.

Hards is a reinforcing filler and the wall of hards concrete does not collapse further with differential settlements. Sound absorption coefficient is from 0.17 to 0.6 (at audio frequencies of 125-
2000 Hz. Frost resistance exceeds ≥ 50 cycles, water absorption is 40-50%, shrinkage is less than 0.4%, and fire stability is 0.75-1.54.

Based on the results obtained, it can be concluded that the material is most applicable in low-rise construction. At the same time, dome can be the most power efficient form of the building. The developed material allows to create dome shape of structures both as cast-in-place so prefabricated using standardized hards concrete blocks for dome forms [20]. Additional saving of thermal energy can be achieved through the use of heating window sills, in the body of which heating elements are introduced. In this case, the cold air from the window is cut off by the warm upward flow from the panel.

4. Conclusions
The designed composite material has improved thermotechnical characteristics compared with the existing wood concrete and cheaper in compare with latter due to the use of industrial waste. Hards concrete can be used in low-rise construction as a structural and heat-insulating material immune to biological destruction. The developed material will solve the problem of utilizing of industrial hemp waste from textile production and dolomite waste in the form of a magnesian binder, thereby reducing the cost of the material in compare with existing world analogues.

References
[1] Marceau S, Glé P, Guéguen-Minerbe M, Gourlay E, Moscardelli S, Nour I and Amziane S 2017 Influence of accelerated aging on the properties of hemp concretes Constr. Build. Mater. 139 524–30
[2] Moujalled B, Aït Ouméziane Y, Moissette S, Bart M, Lanos C and Samri D 2018 Experimental and numerical evaluation of the hygrothermal performance of a hemp lime concrete building: A long term case study Build. Environ. 136 11–27
[3] Tran Le A D, Maalouf C, Mai T H, Wurtz E and Collet F 2010 Transient hygrothermal behaviour of a hemp concrete building envelope Energy Build. 42 1797–806
[4] Koivula M, Kymäläinen H R, Virta J, Hakkarainen H, Hussein T, Komulainen J, Koponen H, Hautala M, Hämeri K, Kanerva P, Pehkonen A and Sjöberg A M 2005 Emissions from thermal insulations - Part 2: Evaluation of emissions from organic and inorganic insulations Build. Environ. 40 803–14
[5] Le Quang H 2016 Estimations and bounds of the effective conductivity of composites with anisotropic inclusions and general imperfect interfaces Int. J. Heat Mass Transf. 99 327–43
[6] Kon M, Kobayashi K and Watanabe M 2016 Liquid temperature dependence of kinetic boundary condition at vapor-liquid interface Int. J. Heat Mass Transf. 99 317–26
[7] Nguyen-Sy T, Tran-Le A D, Nguyen-Thoi T and Langlet T 2018 A multi-scale homogenization approach for the effective thermal conductivity of dry lime–hemp concrete J. Build. Perform. Simul. 11 179–89
[8] Ghione A, Noel B, Vinai P and Demazière C 2016 Assessment of thermal-hydraulic correlations for narrow rectangular channels with high heat flux and coolant velocity Int. J. Heat Mass Transf. 99 344–56
[9] Wen J L, Xue B L, Xu F, Sun R C and Pinkert A 2013 Unmasking the structural features and property of lignin from bamboo Ind. Crops Prod. 42 332–43
[10] Li X, Wang S, Du G, Wu Z and Meng Y 2013 Variation in physical and mechanical properties of hemp stalk fibers along height of stem Ind. Crops Prod. 42 344–8
[11] Sáez-Pérez M P, Brümmer M and Durán-Suárez J A 2020 A review of the factors affecting the properties and performance of hemp aggregate concretes J. Build. Eng. 31
[12] Ji T, Chen C Y and Zhuang Y Z 2012 Evaluation method for cracking resistant behavior of reactive powder concrete Constr. Build. Mater. 28 45–9
[13] Arnaud L and Gourlay E 2012 Experimental study of parameters influencing mechanical
properties of hemp concretes Constr. Build. Mater. 28 50–6
[14] Page J, Sonebi M and Amziane S 2017 Design and multi-physical properties of a new hybrid hemp-flax composite material Constr. Build. Mater. 139 502–12
[15] Gourlay E, Glé P, Marceau S, Foy C and Moscardelli S 2017 Effect of water content on the acoustical and thermal properties of hemp concretes Constr. Build. Mater. 139 513–23
[16] Bourdot A, Moussa T, Gacoin A, Maalouf C, Vazquez P, Thomachot-Schneider C, Bliard C, Merabtine A, Lachi M, Douzane O, Karaky H and Polidori G 2017 Characterization of a hemp-based agro-material: Influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties Energy Build. 153 501–12
[17] Collet F and Pretot S 2014 Thermal conductivity of hemp concretes: Variation with formulation, density and water content Constr. Build. Mater. 65 612–9
[18] Dartois S, Mom S, Dumontet H and Ben Hamida A 2017 An iterative micromechanical modeling to estimate the thermal and mechanical properties of polydisperse composites with platy particles: Application to anisotropic hemp and lime concretes Constr. Build. Mater. 152 661–71
[19] Khatib J, Jahami A, Elkordi A and Baalbaki O 2019 Structural performance of reinforced concrete beams containing plastic waste caps Mag. Civ. Eng. 91 73–9
[20] Tolstoy A D, Lesovik V S and Milkina A S 2018 Improving New Generation Concretes (NGCs) by Introducing Technogenic Materials IOP Conf. Ser. Mater. Sci. Eng. 463