Effect of subinhibitory concentrations of tigecycline and ciprofloxacin on the expression of biofilm-associated genes and biofilm structure of Staphylococcus epidermidis

Ewa Szczuka,* Lucyna Jabłońska and Adam Kaznowski

Abstract

Staphylococcus epidermidis is a leading cause of foreign body-associated infections. This is related to the bacterium’s ability to form biofilms on synthetic materials. Bacteria within a biofilm may be exposed to subinhibitory concentrations (sub-MICs) of antibiotics because of an agent’s limited penetration into the biofilm core. Here, we investigated the effect of sub-MICs of tigecycline and ciprofloxacin on the expression of biofilm-associated genes, i.e. icaA, altE and sigB, and the biofilm structure of five clinical isolates of S. epidermidis. For most tested isolates, the expression of these genes increased after exposure to 0.25 MIC and 0.5 MIC tigecycline. A slight decrease in icaA mRNA levels was observed only in two isolates in the presence of 0.25 MIC tigecycline. The effect of ciprofloxacin exposure was isolate-dependent. At 0.5 MIC, ciprofloxacin induced an increase of sigB and icaA mRNA levels in three of the five tested isolates. At the same time, expression of the altE gene increased in all isolates (from 1.3-fold to 42-fold, depending on the strain). Confocal laser scanning microscopy analysis indicated that sub-MIC ciprofloxacin decreased biofilm formation, whereas tigecycline stimulated this process. Our data suggest that sub-MIC tigecycline may have bearing on the outcome of infections.

INTRODUCTION

Staphylococcus epidermidis is the major cause of catheter-related bloodstream infections and other infections associated with implanted medical devices. Its pathogenesis is associated with the ability to attach to biomaterials and to develop a biofilm [1–6]. One autolysin protein, AtlE, mediates the primary attachment of S. epidermidis cells to a polystyrene surface; it is also involved in the adhesion to vitronectin, an extracellular matrix protein which encapsulates devices after implantation into the human body [7]. The most common molecule used by S. epidermidis strains for intercellular adhesion and cell accumulation is polysaccharide intercellular adhesion (PIA), encoded by an icaADBC operon [5, 8, 9]. The expression of an ica (intercellular adhesion gene) locus is regulated by the alternative sigma factor σB, which is encoded by four genes: rsbU, rsbV, rsbW (gene encoding the σB regulator) and sigB (gene encoding σB). The rsbU and rsbV gene products are responsible for stimulating sigB activity, whereas the rsbW gene product is a negative regulator. Synthesis of σB indirectly represses the transcription of the icaR gene, a negative regulator of icaADBC transcription, and therefore allows biofilm formation [10].

Bacteria inside biofilms can be up to 1000 times more tolerant to antimicrobial agents than their planktonic counterparts, which may hinder eradication of biofilm-associated infections [6]. Tigecycline, a glycylcycline antibiotic, is highly active in vitro against bacteria within a biofilm [11, 12]. Tigecycline acts by inhibiting protein translation in bacteria, mediated by binding to the 30S ribosomal subunit and by blocking the association of charged tRNA to the A site of the ribosome [13]. Animal model data indicate efficient eradication of staphylococcal biofilms by tigecycline [14]. Fluoroquinolones, including ciprofloxacin, may also be useful in the treatment of biofilm-associated infections, especially when high doses of the drug are employed [15]. Ciprofloxacin acts through inhibition of DNA gyrase and topoisomerase IV activity and inhibition of DNA synthesis [16].

It is likely that cells within a biofilm are exposed to subinhibitory concentrations (sub-MICs) of antibiotics during antibiotic chemotherapy because of the limited penetration into the biofilm core [17, 18]. Several studies have demonstrated that sub-MIC antimicrobial agents can affect the expression of S. aureus virulence determinants, such as toxins, enzymes, regulatory proteins and adhesion, and other surface proteins [17–21]. For example, sub-MIC tigecycline...
re-suspended in 25 µl of RNase-free water. RNA integrity was validated by analysing 5µl of the total RNA samples by 1.5 % agarose gel electrophoresis in Tris-borate-EDTA (TBE) buffer. RNA concentration and purity were determined using the Nano-100 Micro-Spectrophotometer (Hangzhou Allsheng Instruments). cDNA was synthesized using the Thermo Scientific RevertAid First Strand cDNA Synthesis kit (Thermo Scientific) according to the manufacturer’s instructions, with 1 µg of RNA as the template. Real-time amplification was performed with 500 ng cDNA, 10 µl SYBR GreenER qPCR SuperMix (Invitrogen) and 1 µl each of forward and reverse primers (200 nM each). The reaction volume was adjusted to 20 µl with RNase- and DNase-free water. Primer sequences for icaA, altE, sigB and rRNA were as published [23, 24]. Real-time PCR was performed using the CFX96 Real-Time System C1000 Touch (Bio-Rad, Hemel Hempstead, UK) and the following cycle parameters: 50 °C for 2 min and 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and then 60 °C for 60 s. Samples for real-time RT-PCR were run in triplicate. The rRNA gene was used as an internal control to normalize the levels of expression between samples. Real-time RT-PCR data were analysed by the 2^−ΔΔC method [25].

Confocal laser scanning microscopy (CLSM)
Bacteria were grown overnight in Mueller–Hinton II broth supplemented with the appropriate antibiotic (at 0.25 MIC and 0.5 MIC) or without antibiotics in Lab-Tek II cell-culture chambers (Nunc) [26]. After removal of the medium and gentle washing of the wells three times with PBS to remove planktonic cells, the adherent cells were stained using SYTO stain and propidium iodide (Live/Dead BacLight Bacterial Viability kits; Invitrogen) for 15 min and observed by fluorescence microscopy (Carl Zeiss LSM 510/ Axioveut 200M). Carl Zeiss confocal software and the computer program COMSTAT were used to analyse the three-dimensional biofilm images and for data analysis [27, 28]. For every sample, three microscopic fields were analysed and the means were calculated.

RESULTS AND DISCUSSION
We examined the effect of sub-MIC tigecycline and ciprofloxacin, two antibiotics used to treat staphylococcal infections, on the expression of genes encoding proteins that contribute to the pathogenicity of S. epidermidis and on the overall biofilm structure of clinical bacterial isolates.

Effect of sub-MIC tigecycline and ciprofloxacin on expression of the S. epidermidis icaA gene
The icaA gene encodes a transmembrane protein with homology to N-acetyl-glucosaminyl transferases that synthesize PIA [5]. Increased icaA expression can stimulate the production of PIA, which can lead to increased intercellular adhesion of bacterial cells in a biofilm [23]. Recently, Gomes et al. [24] reported enhanced icaA expression in S. aureus strains exposed to rifampicin at sub-MIC as well as rifampicin in combination with gentamicin or clindamycin. Tetra-clin, quinupristin-dalfopristin and erythromycin at sub-MICs were also found to stimulate icaA expression [23,
In contrast, subinhibitory concentrations of penicillin, oxacillin, chloramphenicol, clindamycin, gentamicin, ofloxacin, vancomycin and teicoplanin had no effect on the expression of icaA [29].

The expression of icaA was increased by onefold to 52-fold when the isolates were grown in the presence of 0.5 MIC tigecycline (Fig. 1). Tigecycline at 0.25 MIC resulted in an increase in icaA mRNA levels (by 2.6-fold to 12.6-fold) in three of the five isolates tested, namely, MPU 52, MPU 57 and MPU 85. Under these conditions, icaA expression was slightly decreased (0.92-fold and 0.95-fold) in isolates MPU 76 and MPU 51. Tigecycline has previously been shown to reduce the expression of icaC, which encodes IcaC, the protein involved in the cytoplasmic membrane export of the extracellular poly-N-acetylglucosamine (PNAG) in S. aureus strains [17].

As shown in Fig. 2, the effect of ciprofloxacin on icaA expression was different in different isolates. For three isolates (MPU 52, MPU 57 and MPU 85), exposure to ciprofloxacin at 0.5 MIC increased icaA gene expression by 1.2-fold to 4.3-fold. Slightly decreased icaA mRNA levels were observed in the remaining clinical isolates (MPU 76 and MPU 51) exposed to 0.5 MIC of the antibiotic. In contrast, exposure to ciprofloxacin at 0.25 MIC resulted in decreased icaA expression in all isolates.

Effect of sub-MIC tigecycline and ciprofloxacin on expression of the S. epidermidis altE gene

The altE gene encodes AtlE autolysin, which mediates the adhesion of bacteria to vitronectin and their initial attachment to polystyrene surfaces [7]. Expression of altE was increased when the S. epidermidis isolates were grown in the presence of both 0.25 and 0.5 MIC tigecycline (by 1.9-fold to 11.9-fold and by 2.2-fold to 16.1-fold, respectively). Previously, it was shown that sub-MIC tigecycline increased the expression of S. aureus genes encoding adhesion molecules, such as cna (encoding collagen-binding protein), clfB (encoding fibrinogen-binding protein) and fnbA (encoding fibronectin-binding protein) [17]. Increased expression of adhesin-encoding genes may result in more efficient microbial adhesion to biological and abiotic surfaces, which is considered the first, and probably the most crucial, step in the establishment of infection.

As shown in Fig. 2, exposure to 0.5 MIC ciprofloxacin led to increased altE mRNA levels in all tested isolates (from 1.3-fold to 42-fold, depending on the isolates). Additionally, increased altE gene expression (by 9.9-fold to 15.6-fold) was
observed in MPU 52, MPU 57 and MPU 85 clinical isolates upon exposure to ciprofloxacin at 0.25 MIC. Decreased altE gene expression was observed in MPU 76 and MPU 51 cells grown in the presence of 0.25 MIC ciprofloxacin.

Effect of sub-MIC tigecycline and ciprofloxacin on expression of the *S. epidermidis* sigB gene

Tigecycline at sub-MIC concentrations led to increased sigB mRNA levels in all tested isolates. Expression of sigB was increased by >twofold in isolates MPU 76, MPU 51, MPU 52 and MPU 85 and expression of sigB increased by 1.1-fold in MPU 57 in response to 0.5 MIC tigecycline. Exposure to tigecycline at 0.25 MIC resulted in increased sigB expression in four isolates (＞twofold); expression of sigB increased to a lesser extent in MPU 57 (1.3-fold). Ciprofloxacin exposure (0.5 MIC) resulted in decreased sigB expression in two isolates (MPU 76 and MPU 51). Overall, with the exception of isolates MPU 52 and MPU 57, exposure to sub-MIC tigecycline increased *S. epidermidis* sigB gene expression to a greater extent than sub-MIC ciprofloxacin treatment. Previous studies demonstrated the role of the sigB gene in biofilm stability [30]. However, sigB status does not affect the primary attachment of cells to plastic and the early phase of biofilm development [30, 31]. Therefore, it may be speculated that increased sigB expression may improve the structural integrity of a biofilm. Subsequently, the biofilm might become more resistant to physical forces, such as shear forces produced by blood flow. This might enable the establishment of infection and infection persistence in the host.

Effect of sub-MIC tigecycline and ciprofloxacin on the structure of *S. epidermidis* biofilms

Following the gene expression analyses, we investigated the effect of sub-MIC tigecycline and ciprofloxacin on *S. epidermidis* biofilm structure in vitro. CLSM was used to visualize the biofilm structure, and the COMSTAT program was used to analyse physical biofilm parameters, i.e. biofilm thickness, the area occupied by bacterial layers, biomass (i.e. biomass volume divided by the area of view), surface area-to-biovolume ratio and roughness coefficient (an indicator of biofilm heterogeneity).
The number of adherent bacteria was reduced in the presence of 0.5 MIC ciprofloxacin with changes in the overall biofilm morphology, thickness, substratum coverage and roughness (Table 1). For example, the MPU 76 isolate exposed to ciprofloxacin formed a biofilm that was structured differently compared to that of the untreated control, i.e. the biofilm was composed of individual clusters of bacteria widely dispersed on the glass coverslip surface. The effect of ciprofloxacin was concentration-dependent, i.e. a lower number of adherent cells was observed in the presence of 0.5 MIC than in the presence of 0.25 MIC ciprofloxacin. Similarly to our results, Yassien and Khardori [15] reported that sub-MIC ciprofloxacin inhibits the adhesion of bacteria to vascular catheters, leading to reduced biofilm

\[\text{Table 1. Effect of sub-MIC tigecycline (TIG) and ciprofloxacin (CIP) on the properties of biofilms formed by S. epidermidis isolates} \]

The COMSTAT program was used to analyse physical biofilm parameters, i.e. biofilm thickness, the area occupied by bacterial layers, biomass (i.e. biomass volume divided by the area of view), surface area-to-biovolume ratio and roughness coefficient (an indicator of biofilm heterogeneity. For every sample, three microscopic fields were analysed and the means were calculated. In the table we show only the P value for this test.

Treatment	Strain MPU 52	Strain MPU 85	Strain MPU 76	Strain MPU 57	Strain MPU 51
Average thickness (µm)	28±2	30±2	29±1	29±2	31±2
Biomass (µm²)/µm³	38±6 (P=0.0076)*	44±3 (P=0.0016)	36±3 (P=0.0331)	39±6 (P=0.010)	39±6 (P=0.0028)
Substratum coverage (%)	24±1 (P=0.0008)	22±4 (P=0.0070)	18±3 (P=0.0092)	24±1 (P=0.00038)	26±1 (P=0.00030)
Roughness	3.55±0.32	4.46±0.39	5.90±1.76	5.90±1.16	5.90±1.31
Surface area-to-biovolume ratio (µm²)/µm³	4.02±0.22	4.46±0.39	5.90±1.76	5.90±1.31	

*Thickness of biofilm. Values are data from image stocks.
†Mean value of biofilm biomass.
‡Percentage of the area occupied by bacterial layers. 100 % area was defined as when all of the visual field was covered by bacterial biofilm.
§Mean value of roughness coefficient, which is an indicator of biofilm heterogeneity.
‖Mean value of surface area-to-biovolume ratio.
¶The differences between control (without antibiotic) groups and experiments (groups) was tested by t-test.

P-Value of standard deviation.
density. In contrast, Haddadin et al. [32] demonstrated neither an inhibitory nor a stimulatory effect of ciprofloxacin on biofilm formation by S. aureus strains. This discrepancy may be explained by the inhibitory effect of sub-MIC ciprofloxacin on bacteria and subsequent biofilm growth. A significant reduction in c.f.u. in the presence of 0.5 MIC ciprofloxacin was demonstrated previously [15].

Exposure of S. epidermidis isolates to 0.5 MIC tigecycline resulted in a more compact three-dimensional biofilm structure, covering most of the glass coverslip surface, compared to antibiotic-untreated biofilm. We observed a change in the bacterial count and in the thickness of the biofilm formed in the presence of sub-MIC tigecycline.

This study clearly demonstrates that tigecycline and ciprofloxacin, with different antimicrobial modes of action, also affect bacteria in biofilm differently.

Our study documents the different effects of sub-MIC tigecycline and ciprofloxacin on the expression of the icaA, altE and sigB genes in clinical S. epidermidis isolates. The effect of ciprofloxacin appeared to be isolate-dependent. Generally, tigecycline treatment (both at 0.25 and 0.5 MIC) led to increased expression of the icaA, altE and sigB genes in the isolates. The only exception was isolates MPU 51 and MPU 76, where icaA mRNA levels were slightly decreased upon exposure to 0.25 MIC tigecycline. Sub-MIC tigecycline also affected biofilm architecture. These data suggest that sub-MIC tigecycline may alter the pathogenesis of staphylococcal infections. In contrast, ciprofloxacin, at levels below the MIC for bacteria, may still display anti-staphylococcal biofilm activity, thereby limiting the progression of staphylococcal disease.

Our study provides insight into the response of S. epidermidis to antimicrobial agents employed at sub-MICs or in situations where antimicrobial agents cannot achieve their MIC, e.g. when the bacteria are encased in a biofilm with decreased drug concentration in the biofilm core.

Funding information

The authors received no specific grant from any funding agency.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

1. Rupp ME, Archer GL. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 1994;19: 231–243.
2. Arciola CR, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 2001; 39:2151–2156.
3. Mack D, Rohde H, Harris LG, Davies AP, Horstkotte MA et al. Biofilm formation in medical device-related infection. Int J Artif Organs 2006;29:343–359.
4. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C et al. Polysaccharide intercellular adhesive or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007;28:1711–1720.
5. Otto M. Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol 2012;34:201–214.
6. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev 2014;27:870–926.
7. Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 2003;188:706–718.
8. Stevens NT, Greene CM, O’Gara JP, Humphreys H. Biofilm characteristics of Staphylococcus epidermidis isolates associated with device-related meningitis. J Med Microbiol 2009;58:855–862.
9. Böttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 2015;5:14.
10. Knobloch JK, Jäger S, Horstkotte MA, Rohde H, Mack D. RsblU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor αρ by repression of the negative regulator gene icaR. Infect Immun 2004; 72:3838–3848.
11. Aybar Y, Ozaras R, Besirli K, Engin E, Karabulut E et al. Efficacy of tigecycline and vancomycin in experimental catherater-related Staphylococcus epidermidis infection: microbiological and electron microscopic analysis of biofilm. Int J Antimicrob Agents 2012;39: 338–342.
12. Szczuka E, Grabska K, Kaznowski A. In vitro activity of rifampicin combined with daptomycin or tigecycline on Staphylococcus haemolyticus biofilms. Curr Microbiol 2015;71:184–189.
13. Petersen PJ, Labthavikul P, Jones CH, Bradford PA. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by checkerboard and time-kill kinetic analysis. J Antimicrob Chemother 2006;57:573–576.
14. Yin LY, Lazzarini L, Li F, Stevens CM, Calhoun JH. Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model. J Antimicrob Chemother 2005;55:999–1002.
15. Yassien M, Khardori N. Interaction between biofilms formed by Staphylococcus epidermidis and quinolones. Diagn Microbiol Infect Dis 2001;40:79–89.
16. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005;41:S120–S126.
17. Smith K, Gould KA, Ramage G, Gemmell CG, Hinds J et al. Influence of tigecycline on expression of virulence factors in biofilm-associated cells of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2010;54:380–387.
18. Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs 2011;34:737–751.
19. Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 2006;9:445–453.
20. Joo HS, Chan JL, Cheung GY, Otto M. Subinhibitory concentrations of protein synthesis-inhibiting antibiotics promote increased expression of the agr virulence regulator and production of phenol-soluble modulin cytolsins in community-associated methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2010;54:4942–4944.
21. Otto MP, Martin E, Badiou C, Lebrun S, Bes M et al. Effects of sub-inhibitory concentrations of antibiotics on virulence factor expression by community-acquired methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2013;68:1524–1532.
22. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Third Informational Supplement, CLSI document M100-S23. Wayne, PA: 2013.
23. Wang G, Sun FJ, Liu Y, Xiong LR, Xie LL et al. Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaABCD-positive and -negative clinical isolates of Staphylococcus epidermidis. Antimicrob Agents Chemother 2010;54:2707–2711.
24. Gomes F, Teixeira P, Cerca N, Ceri H, Oliveira R. Virulence gene expression by *Staphylococcus epidermidis* biofilm cells exposed to antibiotics. *Microb Drug Resist* 2011;17:191–196.

25. Valasek MA, Repa JJ. The power of real-time PCR. *Adv Physiol Educ* 2005;29:151–159.

26. Qin Z, Yang X, Yang L, Jiang J, Ou Y et al. Formation and properties of in vitro biofilms of ica-negative *Staphylococcus epidermidis* clinical isolates. *J Med Microbiol* 2007;56:83–93.

27. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M et al. Quantification of biofilm structures by the novel computer program COMSTAT. *Microbiology* 2000;146:2395–2407.

28. www.comstat.dk

29. Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming *Staphylococcus epidermidis*. *Antimicrob Agents Chemother* 2000;44:3397–3363.

30. Pintens V, Massonet C, Merckx R, Vandecasteele S, Peetermans WE et al. The role of αB in persistence of *Staphylococcus epidermidis* foreign body infection. *Microbiology* 2008;154:2827–2836.

31. Jäger S, Mack D, Rohde H, Horstkotte MA, Knobloch JK. Disintegration of *Staphylococcus epidermidis* biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor αB. *Appl Environ Microbiol* 2005;71:5577–5581.

32. Haddadin RN, Saleh S, Al-Adham IS, Buultjens TE, Collier PJ. The effect of subminimal inhibitory concentrations of antibiotics on virulence factors expressed by *Staphylococcus aureus* biofilms. *J Appl Microbiol* 2010;108:1281–1291.

Edited by: M. Holden and T. Msadek

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.