Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores

Neil Brocklehurst

1 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany

Corresponding Author: Neil Brocklehurst
Email address: neil.brocklehurst@mfn-berlin.de

The evolution of herbivory in early tetrapods was crucial in the establishment of terrestrial ecosystems, although it is so far unclear what effect this innovation had on the macro-evolutionary patterns observed within this clade. The clades that entered this under-filled region of ecospace might be expected to have experienced an “adaptive radiation”: an increase in rates of morphological evolution and speciation driven by the evolution of a key innovation. However such inferences are often circumstantial, being based on the coincidence of a rate shift with the origin of an evolutionary novelty. The conclusion of an adaptive radiation may be made more robust by examining the pattern of the evolutionary shift; if the evolutionary innovation coincides not only with a shift in rates of morphological evolution, but specifically in the morphological characteristics relevant to the ecological shift of interest, then one may more plausibly infer a causal relationship between the two.

Here I examine the impact of diet evolution on rates of morphological change in one of the earliest tetrapod clades to evolve high-fibre herbivory: Captorhinidae. Using a method of calculating heterogeneity in rates of discrete character change across a phylogeny, it is shown that a significant increase in rates of evolution coincides with the transition to herbivory in captorhinids. The herbivorous captorhinids also exhibit greater morphological disparity than their faunivorous relatives, indicating more rapid exploration of new regions of morphospace. As well as an increase in rates of evolution, there is a shift in the regions of the skeleton undergoing the most change; the character changes in the herbivorous lineages are concentrated in the mandible and dentition. The fact that the increase in rates of evolution coincides with increased change in characters relating to food acquisition provides stronger evidence for a causal relationship between the herbivorous diet and the radiation event.
Rates of Morphological Evolution in Captorhinidae: an Adaptive Radiation of Permian Herbivores

Neil Brocklehurst¹

¹ Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany

Corresponding Author: Neil Brocklehurst, neil.brocklehurst@mfn-berlin.de, +493020938306
Abstract.

The evolution of herbivory in early tetrapods was crucial in the establishment of terrestrial ecosystems, although it is so far unclear what effect this innovation had on the macro-evolutionary patterns observed within this clade. The clades that entered this under-filled region of ecospace might be expected to have experienced an “adaptive radiation”: an increase in rates of morphological evolution and speciation driven by the evolution of a key innovation. However such inferences are often circumstantial, being based on the coincidence of a rate shift with the origin of an evolutionary novelty. The conclusion of an adaptive radiation may be made more robust by examining the pattern of the evolutionary shift; if the evolutionary innovation coincides not only with a shift in rates of morphological evolution, but specifically in the morphological characteristics relevant to the ecological shift of interest, then one may more plausibly infer a causal relationship between the two.

Here I examine the impact of diet evolution on rates of morphological change in one of the earliest tetrapod clades to evolve high-fibre herbivory: Captorhinidae. Using a method of calculating heterogeneity in rates of discrete character change across a phylogeny, it is shown that a significant increase in rates of evolution coincides with the transition to herbivory in captorhinids. The herbivorous captorhinids also exhibit greater morphological disparity than their faunivorous relatives, indicating more rapid exploration of new regions of morphospace. As well as an increase in rates of evolution, there is a shift in the regions of the skeleton undergoing the most change; the character changes in the herbivorous lineages are concentrated in the
mandible and dentition. The fact that the increase in rates of evolution coincides with increased change in characters relating to food acquisition provides stronger evidence for a causal relationship between the herbivorous diet and the radiation event.

Key Words: Captorhinidae; Adaptive Radiation; Herbivore; Paleozoic; Tetrapod

Introduction

The evolution of high fibre herbivory represents a major step in the establishment of terrestrial ecosystems. Prior to the appearance in the Pennsylvanian of tetrapods capable of feeding directly on plant matter, the vast majority of primary consumers in the terrestrial realm are thought to have been detritivorous invertebrates (Shear & Sheldon, 2001). By the end of the Cisuralian, five tetrapod lineages had independently evolved a herbivorous diet and terrestrial ecosystems were adopting a more modern set of trophic interactions, with a great abundance of large terrestrial vertebrates supporting a relatively small number of macro-carnivores (Olson 1966; Sues & Reisz 1998).

Although arthropod herbivores were present in terrestrial ecosystems prior to the evolution of herbivory in tetrapods, evidence both of body fossils and feeding damage to plants is rare (Labandeira 1998, 2007, Shear 2000). In a review of the Carboniferous flora of Mazon Creek, Scott & Taylor (1983) found only 4% showed any sign of having been bitten or chewed by arthropods. Terrestrial vertebrate herbivores were entering a somewhat under-filled region of ecospace, facing little competition. These early herbivores therefore provide an ideal opportunity
to examine the changes in rate and mode of evolution and diversification resulting from evolutionary innovations. Simpson’s adaptive radiation model (Simpson 1953) refers to the rapid emergence from a common ancestor of many species, coinciding with both ecological and phenotypic divergence of the descendants. Simpson posited that a “key” evolutionary novelty gives a lineage a selective advantage or allows it to enter a new ecological niche and thus leads to an increase in morphological diversification or speciation rates. Such a model is often invoked when analyses of diversification rate heterogeneity identify shifts that coincide with an innovation of interest (e.g. Benson & Choiniere 2013; Cook & Lessa 1998; Forest et al. 2007; Kazancioğlu et al. 2009; Kozak et al. 2005; McLeish et al. 2007; Ruber et al. 2003; Vences et al. 2002).

Since this seminal work, a substantial number of studies have refined our understanding of the evolutionary processes behind adaptive radiations. It has now been acknowledged that adaptive radiations do not necessarily require rapid speciation (Neige et al. 2013; Givnish 2015; Simões et al. 2016); increases in rates of morphological diversification may take place in the absence of increases in species richness and rates of speciation. The concept of the “key innovation”, critical to Simpson’s model, has come under scrutiny. Often these innovations are not a single trait, but instead a stepwise acquisition of traits or co-option of existing traits for a novel purpose (exaption) that allows the entry into a new region of ecospace (Donoghue 2009; Simões et al. 2016). Thus, the radiation may not coincide with the acquisition of a relevant trait (Lieberman 2012). Models of radiations dependant on diversity and abundance have been examined: colonists of new or depopulated adaptive landscapes where there is little competition would maximise selection for divergence (Givnish 2010, 2015). By extension, as the radiation fills the new region of ecospace, the rate of diversification should slow: an early burst model
(Blomberg et al. 2003). However, examination of empirical data has produced conflicting results regarding the ubiquity of an early burst model: Harmon et al (2010) suggested that early bursts were rare when examining size and shape data, but when examining discrete character data, Hughes et al. (2013) found early peaks in disparity followed by diversification slow-downs or decreases were the norm.

The inference of a causal relationship between innovation and shift in diversification rate is in most cases circumstantial, based solely on the coincidence of the shift and the evolutionary novelty. In order to more reliably infer a causal relationship, one must also examine the precise nature of the shift. For example, Brocklehurst et al. (2015) showed that, although early amniotes do exhibit lineage diversification rate increases coinciding with various “key” innovations, the shifts did not represent increases in speciation rate but instead coincided with periods of increased extinction rate. Thus, it was inferred that these innovations did not cause Simpsonian adaptive radiations, but instead buffered against high levels of extinction.

In the same way, when attempting to infer a causal relationship between a key innovation and a shift in rates of morphological evolution, it is not enough to point to a rate shift along the branch where the innovation appeared, but one must examine the morphological changes occurring subsequent to the shift; is the clade of interest showing a higher rate of changes in features relevant to the exploitation of the new ecological niche allowed by the key innovation? If not, there is unlikely to be a causal link between the two.

This logic is here applied to an examination of rates of morphological evolution in the earliest herbivores, using the family Captorhinidae as a case study. Captorhinids were a diverse clade of sauropsids (reptile-line amniotes) that appeared during the Late Pennsylvanian (Müller & Reisz 2005) and survived until the end of the Permian. Herbivorous members of this clade
appear in the Kungurian, characterised by the multiple rows of teeth and a propalineal motion of
the lower jaw in order to grind and shred plant matter (Dodick & Modesto 1995; Modesto et al.
2007). In this paper, I examine the rates of morphological evolution in this family using a
method incorporating a time calibrated phylogeny and a matrix of discrete characters (Lloyd et
al. 2012). Emphasis is placed not only on examining whether rate increases coincide with shifts
in diet, but also on examining whether a shift in diet coincides with increased frequency
character-state transformation in regions related to feeding, such as the dentition. In this way, a
more robust inference may be made concerning the possibility of an adaptive radiation
coinciding with the origin of herbivory in this family.

Materials and Methods

Phylogeny and time calibration

The phylogeny used was that presented in Liebrecht et al. (2016), currently the most
comprehensive cladistic analysis of captorhinids. The phylogeny was time calibrated in the R
3.1.2 (R Core Team 2014) using the method proposed by Lloyd et al. (2016), itself an expansion
of a method put forward by Hedman (2010). The method of Hedman (2010) was intended to
infer confidence intervals on the age of a specific node in the tree. It is a Bayesian approach
using the ages of successive straigraphically consistent outgroup taxa relative to the age of the
node of interest to make inferences about the quality of sampling; large gaps between the age of
the node of interest and that of the outgroups implies a poorly sampled fossil record, and
therefore the age of the node of interest may be inferred to be older. Lloyd et al. (2016) designed
a procedure whereby this approach could date an entire tree rather than just a specific node. In applying this method, successive outgroups are required to the total clade. The outgroups to Captorhinidae employed were: *Paleothyris* and *Hylonomus* (found to be the outgroups to Captorhinidae in the Bayesian analyses of Müller & Reisz [2005]), *Archaeothyris* (the earliest known synapsid [Reisz et al. 1972]), and *Westlothiana* (a reptiliamorph outside the amniote crown according to Ruta & Coates [2007]). A maximum age constraint was set as 334.7 million years ago, the oldest reliable estimate using molecular dating for the origin of Amniota published within the last five years at the moment of data collection (Parfrey et al. 2011).

Uncertainty surrounding the ages of taxa was accounted for using the method of Pol and Norrell (2006). For each taxon (including the outgroups), 100 first appearances and last appearances were drawn at random from a uniform probability distribution covering the full possible range of ages for that taxon. 100 time-calibrated trees were produced from the 100 sets of ages.

Since the analysis of Liebrecht et al. (2016) produced two most parsimonious trees (MPTs), half the time calibrated trees were based on the first, and half on the seconds. All analyses described below were carried out on all 100 of these trees. All 100 of these trees are available in supplementary data 1, and the age ranges allowed for each taxon in supplementary data 2.

Reconstruction of dietary evolution

A dietary character with three states, carnivore, herbivore and omnivore, was scored for all taxa present in the phylogeny. Ancestral character states were deduced using conditional (joint) likelihood, employing the *ace* function in the ape package (Paradis et al. 2004) in R. This
function allow three models of discrete character change: an equal rates model (transitions
between all states in all directions are equally probable), a symmetrical model (transitions
between two character states occur with equal probability in either direction, but different pairs
of character states have different probabilities of transition) and an all-rates-different model
(each transition has a different probability). In order to deduce which model was best for the data
available, these models were fit to the captorhinid phylogeny using likelihood methods,
employing the fitDiscrete function in the R package geiger (Harmon et al. 2008). The Akaike
weights were used to deduce the best fitting model.

Since this likelihood ancestral state reconstruction produced uncertain results surrounding
the character state at three nodes (see below), an alternative Bayesian approach for optimizing
the dietary character at these nodes was used as an independent test in the program BayesTraits
V2 (Barker et al. 2007). A reversible jump Markov chain Monte Carlo (RJ MCMC) approach is
used to reconstruct the ancestral states of the discrete character, allowing different combinations
of character states to have different transition rates. The analysis was run for 10,000,000
iterations with 100,000 discarded as burn-in, sampling every 1000 generations. These results are
presented in the electronic supplement, and the analyses described below are based on the
likelihood results.

Analysis of Rate Variation

Analysis of rate variation was carried out using the method of Lloyd et al. (2012), later
refined by Brusatte et al. (2014) and Close et al. (2015). Discrete morphological character scores
may be taken from the matrices used in cladistic analyses, and ancestral states are deduced using
likelihood. This allows the number of character changes along each branch to be counted, and
rates of character change are calculated by dividing the number of changes along a branch by the branch length. The absolute value calculated for the rate of each branch, however, can be misleading due to the presence of missing data (Lloyd et al. 2012). As such it is more useful to identify branches and clades where the rates of character change are significantly higher or lower than others, rather than comparing the raw numbers. This is assessed by comparing two models using a likelihood ratio test, one where the rates of change are uniform across the whole tree and one where the branch of interest has a different rate to the rest of the tree. A similar method is used to compare rates of evolution through time and identify bins where rates of evolution are significantly high or low.

The character data used is from the matrix of Liebrecht et al. (2016). The time bins used to examine rate variation through time were substages, dividing the international stages into two bins, early and late. The analysis was carried out in R using functions from the package Claddis (Lloyd 2016) on all 100 of the time calibrated trees. The data matrix is presented in supplementary data 3.

Due to the uncertainty surrounding the optimisation of the dietary character, a stochastic mapping approach was used to examine rate heterogeneity in the different dietary classes. For each of the 100 time calibrated trees, the dietary character containing three states (carnivore, omnivore and herbivore) was mapped onto the tree using likelihood. Using the character state probabilities identified at each node, 100 possible evolutionary histories of diet in that tree were generated for each of the 100 phylogenies following the procedure outlined by Bollback (2006), giving a total of 10,000 stochastic maps. The mean rate of herbivorous branches, carnivorous branches and omnivorous branches were calculated in each stochastic map, along with the mean
rate of a randomly selected set of branches with a sample size equal to the number of herbivorous branches in that map.

Taxonomic jack-knifing was used as a sensitivity analysis to examine the robusticity of the results. In each iteration, three randomly selected taxa (the maximum number that could be deleted leaving at least one member of each dietary regime) were dropped prior to running the analyses of rate variation described above.

Disparity

The character matrix of Liebrecht et al. (2016) was also used to examine morphological diversity (disparity). Morphological distances between taxa were calculated using the Maximum Observable Rescaled Distance (MORD) distance measure of Lloyd (2016), which was shown to perform better in datasets with large amounts of missing data. Following the suggestion of Brusatte et al. (2008), the internal nodes of the phylogeny were treated as data points, with their character scores inferred using ancestral state reconstruction, in order to account for the incomplete sampling of the fossil record; these data points represent ancestral taxa that may have possessed character combinations not observed in sampled taxa.

Having generated a distance matrix, once again the stochastic mapping approach was used to compare disparity in different dietary classes. For each of the 10,000 evolutionary histories generated, each taxon (both tip and node) was assigned a dietary class, and the mean MORD distance for each of the three dietary classes was calculated.

Disparity through time was investigated by subjecting the MORD distance matrices to a principal coordinate analysis. Disparity in each time bin was calculated as the sum of variances of the PC scores of each taxon in that bin. An attempt was also made to incorporate both ghost
lineages and internal branches into the analysis using a novel method illustrated in Figure 1. Taxon A is present in time bin 3, and its ancestral node is inferred to be in time bin 1. Therefore there must be a ghost lineage present in time bin 2 (Fig. 1a), which would be ignored in the disparity analysis under the method of Brusatte et al. (2011), wherein only node and tip morphologies were included. The morphology inferred in time bin 2 will depend on which model of evolution is preferred; under a gradualistic model of evolution, assuming no change in rate along the branch (Fig. 1b), the principal coordinate score in time bin 2 may be inferred by calculating the rate of change in the principal coordinate along that branch, and the amount of time between the ancestral node and the midpoint of time bin 2. Alternatively one may assume a punctuated model of evolution, where the morphological change occurs rapidly at the time of speciation in time bin 1, and the lineage experiences morphological stasis for the remaining time; thus the PC scores inferred in time bin 2 will be identical to that of the tip in time bin 3 (Fig. 1c). Both methods are used here to compare the results. Again, the stochastic mapping approach was used to assign a diet to each branch, allowing the comparison of patterns of disparity through time in each of the dietary regimes. The function used to infer trait disparity through time while including ghost lineages is presented in Supplementary data 5.

Lineage density

Sidlauskas (2008) highlighted that rate heterogeneity is not the only means by which different clades may have different disparities. The “efficiency” with which the taxa explore morphospace will also have an influence. A clade which continually returns to the same region of morphospace will exhibit a lower disparity than a clade that explores novel regions of morphospace, even if the rates of morphological change do not vary (Sidlauskas 2008). In fact, it
has been observed that increased disparity can occur even alongside decreases in evolutionary rates; when examining the evolution of mammals across the Cretaceous/Paleogene boundary, Slater (2013) demonstrated that, although rates of body size evolution were lower after the boundary, an increase in variance was possible due to the release of evolutionary constraint. Sidlauskas (2008) introduced a method to examine this concept: Lineage Density. This is a measure of the amount of evolutionary change within a clade relative to the area of morphospace explored. It is calculated by dividing the sum of the morphometric branch lengths within a clade by the volume of the 95% confidence hyperellipsoid or convex hull of the clade’s morphospace. A lower lineage density indicates that the taxa are exploring novel regions of morphospace rather than continuously returning to the same morphologies.

The principal coordinate analysis described above was used as the basis for calculating lineage density. For each of the 10,000 dietary histories generated by stochastic mapping, the branch lengths within each dietary regime were calculated as the Euclidean distance between each data point i.e. the morphological distance travelled by that branch. The 95% confidence hyperellipsoid volume of each dietary regime was calculated using the functions in the R package Cluster (Maechler et al. 2008). The lineage density of each dietary regime was calculated using the equation provided by Sidlauskas (2008).

Character change histories

The character list of Liebrecht et al. (2016) was divided into five categories based on the region to which the characters referred to: Skull, Palate, Mandible, Dentition and Postcranium. The functions in the package Claddis automatically calculates the most likely combination of character changes for each of the 100 time calibrate phylogenies alongside the analysis of rate
variation. These character change histories were used to assess which region of the skeleton underwent the greatest change within each dietary regime. Using the 10,000 stochastic maps of the dietary character, the number of characters from each region changing within each dietary regime was counted. These counts for each region were divided by the total number of character changes occurring across the entire tree in that region to account for the fact that the characters were not evenly distributed. The list of characters and the region to which they were assigned is presented in supplementary data 4.

Results

Dietary evolution

Fitting of discrete models of character evolution to the dietary character indicates an equal rates model best fits the captorhinid phylogeny (Fig. 2). It should be noted that this support is not overwhelming; although the ER model is found to fit best in all 100 trees, in none does it receive an akaike weights score of above 0.8. Using this model in ancestral state reconstructions (Fig. 3) indicates a single transition to a herbivorous diet is most probable. *Labidosaurus*, judged to be an omnivore by Modesto et al. (2007) on the basis of the dental morphology, is found to most likely have evolved from a herbivorous ancestor, rather than *Captorhinikos chozaensis* and the Moradisaurinae representing convergent transitions to herbivory from an omnivorous ancestor. There is, however, considerable uncertainty; the probability of a herbivorous ancestor is not much more than 50%. There is further uncertainty surrounding the ancestral diet of the clade containing the three species of *Captorhinus, Captorhinikos chozaensis, Labidosaurus* and the Moradisaurinae; while an omnivorous ancestor receives the highest likelihood, the
probability is not much better than that of a carnivorous ancestor. This has implications for the transition to herbivory; the transition from carnivory to herbivory may have passed through an omnivorous phase, which was retained by the genus *Captorhinus* (Dodick & Modesto 1995; Kissel et al. 2002), or the genus *Captorhinus* may represent a transition to omnivory from carnivory independent of the transition to herbivory.

For the three uncertain nodes, the ancestral state reconstruction using the RJ MCMC method produced similar results. In fact this approach suggested less uncertainty surrounding the ancestral states (supplementary figure 1). Thus the most probable evolutionary history inferred is a single transition to herbivory via omnivory, with *Labidosaurus* representing a reversal to an omnivorous diet from a herbivorous ancestor.

Analyses of Rate Heterogeneity

In the overwhelming majority of the 100 time calibrated trees, a significant rate increase is identified along the branch leading to the Moradisaurinae (Fig. 4), the clade containing exclusively herbivorous taxa. This result is robust to taxonomic jack-knifing: in 94% of the jack-knife iterations a significant rate increase is identified along this branch. The position of other significant increases in rate depends on the tree topology and the uncertainty in dating the taxa, but in more than half of the trees the branch leading to the clade containing the Moradisaurinae, *Labidosaurus* and *Captorhinikos chozensis* (the clade inferred to have a herbivorous ancestor) are found to exhibit a rate increase, as is the lineage leading to the clade containing *Labidosaurus* and Moradisaurinae in more than two thirds of the trees. Significant rate decreases are observed in the lineages leading to *Saurorictus* and to *Labidosaurus* in the majority of the 100 trees.
While the analyses did identify rate heterogeneity when comparing branches of the phylogeny, when comparing rates of evolution in different time bins, very little was identified. In all of the 100 time calibrate trees, a constant rate through time was found to have a higher likelihood than a different rate in each time bin.

Rates and Disparity in Different Dietary Regimes

Of the 10,000 stochastic maps of dietary evolution in captorhinids, the herbivores have a higher mean rate of discrete character change than the omnivores in 9845 maps, and a higher rate than the carnivores in 9986 (Fig. 5a). When the mean rates of herbivores are compared to an equal number of branches drawn at random, the herbivores have a higher mean rate in 9484 of the stochastic map (Fig. 5b). This result is robust to taxonomic jack-knifing; in 98% of jack-knife iterations the mean rates of character change in herbivores are higher than the carnivores, and are higher than the omnivores in 97% of the iterations (supplementary figure 2). In all 10,000 stochastic maps, the mean morphological distance between the herbivorous taxa is greater than that of the omnivores and the carnivores, indicating a greater disparity (Fig. 6).

Disparity Through Time

When evolutionary change is assumed to be gradual (Fig. 7a), the carnivorous captorhinids show a gradual increase in morphological disparity up to a peak in the early Artinskian. Through the late Artinskian and Kungurian their disparity decreases, culminating in a fall to zero across the Kungurian/Roadian boundary, after which only one carnivorous captorhinid is included in the phylogeny (*Saurorictus*). The omnivorous captorhinids show a similarly gradual increase in disparity between the Asselian and Kungurian. Again, their
disparity falls to zero across the Kungurian/Roadian boundary. The initial establishment of the
disparity of the herbivorous lineages is more rapid than that of the carnivores, having exceeded
the disparity of the carnivorous captorhinids by the early Kungurian. A disparity peak is reached
in the late Kungurian, higher than the peaks observed either in the carnivorous or omnivorous
curves. Herbivore disparity falls across the Kungurian/Roadian boundary, but recovers by the
Wuchiapingian.

If morphological change is assumed to be punctuated, with the morphological change
occurring at the speciation events (Fig. 7b), then in all three dietary classes peak morphological
disparity is reached soon after that regime’s appearance and disparity remains fairly constant in
the bins following. As observed when using the gradualistic model, however, peak disparity of
the herbivores is higher than either the omnivores or the carnivores. Interestingly, the disparity of
herbivores already exceeds that of the other two dietary regimes by the Artinskian when using
the punctuated model. Moreover, the decrease in disparity observed in the herbivorous lineages
across the Kungurian/Roadian boundary is of a much lesser extent and disparity has recovered by
the Wordian.

Lineage Density

While there is considerable variation in the absolute lineage densities calculated within
each dietary regime (Fig. 8), the overwhelming majority of the 10,000 evolutionary histories
examined show the same relative pattern. In 9926 of these, the lowest lineage density is found in
the herbivores, while the highest lineage density is observed in the omnivores. In only 58 of the
10,000 stochastic maps do the carnivores have a lower lineage density than the herbivores.
Character Change Histories

The majority of character changes in the carnivorous lineages occurred in the skull and postcranium (Fig. 9a). In most the 10,000 stochastic maps the feeding apparatus (teeth and mandible) remain more conservative, with a lower proportion of character changes occurring in these regions. This changes with the transition to herbivory: the majority of the characters changing in herbivorous captorhinids are dental characters and, in many of the stochastic maps (but not all), mandibular characters (Fig. 9c). The postcranium and skull, the most plastic regions in the carnivorous captorhinids, show lower proportions of character change in this new dietary regime. There is little difference in the proportions of characters changing in each region in the omnivorous captorhinids (Fig. 8b).

Discussion

The link between a supposed “key innovation” and an adaptive radiation must always, to a certain extent, be circumstantial; one may identify the branch in a phylogeny along which the evolutionary novelty likely appeared, and one may identify the location of shifts in rates of evolution and diversification, but conclusively proving a causal relationship between the two is extremely difficult. Nevertheless, the evidence supporting an adaptive radiation of captorhinids coinciding with the origin of herbivory in this clade is compelling. It is only along herbivorous branches that significant increases in rates of morphological evolution are identified in the majority of the 100 time calibrated trees, and in the overwhelming majority stochastic maps the mean rate evolution in herbivorous lineages is higher not only than in the other dietary categories but crucially is also higher than in randomly selected clusters of taxa with an equal sample size.
in more than 94% of the stochastic maps. Further support for higher rates of evolution among herbivorous captorhinids than in other dietary regimes can be found in the lineage leading to Labidosaurus; a reversal from a herbivorous ancestor to an omnivorous taxon usually coincides with a significant decrease in rates of evolution. The herbivorous captorhinids also occupy a wider range of morphologies than the other dietary categories, indicating that the increased rate of evolution was an exploration of new morphologies, not simply re-entering established regions of morphospace. This inference is supported by them consistently showing a lower lineage density than either of the other two dietary regimes. When one examines the phylomorphospace (Fig. 10), one may observe that the carnivorous lineages are concentrated in a small region: low values of PC1 and PC2. The Omnivores are found at higher values of PC2. The herbivores, however, explore a great range of values along PC1, and represent the extreme values of PC2.

While carnivorous and omnivorous captorhinids both show a gradual increase in disparity up to a peak in the Artinskian and Kungurian respectively, the herbivorous captorhinids show a much more rapid increase in morphological diversity. Herbivorous taxa don’t appear in the fossil record until the Kungurian (although calibrating the phylogeny using the Hedman approach indicates an earlier origin), yet by the late Kungurian they already show a greater morphological diversity than either the carnivores or omnivores show at any point in their evolutionary history. Although the disparity of herbivores falls across the Kungurian/Roadian boundary, a trough possibly related to the mass extinction event known as Olson’s Extinction (Sahney & Benton 2008; Brocklehurst et al. 2015) the morphological diversity recovers during the Guadalupian and Lopingian, reaching an even higher peak of disparity by the Wuchiapingian. Even though the species richness of captorhinids is substantially decreased by Olson’s extinction, the herbivorous lineages continue to show increased morphological innovation. It is possible that the herbivorous
captorhinids were more resilient to extinction than others: they make up the majority of the post-
extinction diversity, and Middle/Late Permian carnivorous species exhibit low abundances (Jalil
and Dutuit 1996; Golubev 2000; Smith & Modesto 2001). Moreover, the late Permian carnivore
included in this analysis, *Saurorictus*, appears to experience a significant decrease in rates of
evolution contrasting with its herbivorous relatives (Figure 4). This pattern has been previously
observed in Paleozoic and Mesozoic amniotes: the higher species richness of specialist
herbivores appears to be driven not by increased origination rates but by higher extinction rates
in their close relatives (Brocklehurst et al. 2015).

One interesting point to note is that, although herbivores overall show increased rates,
disparity and exploration of novel morphotypes than carnivores or omnivores, the significant rate
increases appear to be concentrated along the backbone of the herbivorous lineage; in very few
of the time calibrated trees are rate increases observed along terminal herbivorous lineages (Fig.
4). This may also be seen in plots of the phylomorphospace (Fig. 10); the greatest changes in
morphology occurred along the lineage leading to Moradisaurinae and the lineage leading to the
clade containing *Rothianiscus* and the specimen MBCN 15739 (the captorhinid from Mallorca).
The only herbivorous terminal branch along which a similar quantity of morphological change is
observed is *Rothianiscus*, and this taxon is returning to an already-explored region of
morphospace. From this, one may perhaps infer a slow-down of the diversification rate following
the initial rate increase during the first appearance of herbivory, i.e. an early-burst model.

While the coincidence of the rate and disparity increase with the “key innovation” does
not necessarily indicate cause and effect, the nature of the morphological changes provides much
stronger evidence. It is not only that the rate of character changes increases coinciding with the
shift in diet, but it is that the character changes within the herbivores are those referring to the
mandible and dentition; that is, the characters related to the feeding apparatus. In the carnivorous
captorhinids, the majority of the character changes occur in the skull and the postcranium, while
the dentition remains extremely conservative. It is this observation that moves the inference of an
adaptive radiation driven by a key innovation beyond one based on the circumstantial evidence
discussed above. The evolution of a herbivorous diet occurs alongside not only an increase in the
rate of character changes, but a shift in the pattern of the changes. The changes occurring during
the adaptive radiation are directly related to the innovation supposedly driving it, a stronger
indicator of a causal relationship.

Prior to the evolution of herbivory in captorhinids the overwhelming majority of
vertebrate herbivores were large (Reisz & Fröbisch 2014; Reisz & Sues 2000). Edaphosaurids
were the most diverse and abundant high-fibre herbivores throughout much of the Pennsylvanian
and the Early Permian (Pearson et al. 2013; Reisz & Sues 1998), although they go into decline
before the end of the Cisuralian. In the latest Cisuralian Hennessey Formation of Oklahoma they
are represented solely by some neural spine fragments (Daly 1973), whilst the only supposed
edaphosaurid from the contemporary Clear Fork Group of Texas was recently re-described as an
indeterminate moradisaurine captorhinid (Modesto et al. 2016).

It has been suggested that edaphosaurids and mordaisaurine captorhinids were occupying
similar ecological niches (Modesto et al. 2014); they both convergently evolved similar
strategies to deal with plant material (upper and lower tooth-plates and a propalineal motion of
the lower jaw). The possibility of competition has been mooted (Modesto et al. 2014), with the
moradisaurines replacing the edaphosaurids. However, Modesto et al. (2016) rejected this due to
the limited stratigraphic overlap between the two. Moreover, while edaphosaurids show selection
towards larger body size (Reisz & Fröbisch 2014; Brocklehurst & Brink 2017), the herbivorous
459 captorhinids show a greater tendency towards decreases in body size than increases
460 (Brocklehurst 2016), possibly indicating niche partitioning instead of competition. During the
461 latest Cisuralian genera such as Captorhinikos and Labidosaurikos become the most abundant
462 small herbivores (Brocklehurst et al. 2017), rather than replacing edaphosaurids as large
463 herbivores.
464 Instead of viewing them as supplanting edaphosaurids, Modesto et al. (2016) suggested
465 that the changing climate of the time was responsible for the radiation of the moradisaurine
466 captorhinids. It is true that the radiation of the Moradisaurinae does coincide with a shift towards
467 a warmer, drier, more seasonal climate, and the captorhinids continue to thrive in the arid
468 equatorial regions for the rest of the Permian (Dutuit 1976; Ricqlès et al. 1982; O’Keefe et al.
469 2005, Brocklehurst et al. 2017), in contrast to their rarity in temporal regions. However, the
470 analysis of rates through time casts doubt on this explanation. An extrinsic driver of increased
471 morphological diversity, such as climate changes, should produce a rate shift during a specific
472 interval of time rather than in a specific clade. The data presented here, on the other hand,
473 suggests no significant increase in rate during the Kungurian. In fact, in all the time calibrated
474 phylogenies a constant rate through time best fits the observed data. The shifts in rate occur
475 along specific branches, not during a specific interval, and therefore must be associated with an
476 intrinsic cause.
477 It is therefore considered more likely that the shift in diet is the cause for the adaptive
478 radiation; specifically, the shift into the “small herbivore” niche that did not require competition
479 with edaphosaurids, caseids and diadectids. Although bolosaurid parareptiles did occupy this
480 niche in some areas during the early and middle Permian, they are comparatively rare and exhibit
481 low species richness (Reisz & Fröbisch 2014). The radiation observed in captorhinids represents
an expansion into an extremely under-filled region of ecospace, which they could occupy more
efficiently than bolosaurids. It is possible that the increased dental and mandibular innovation
allowed the captorhinids their greater success. Herbivorous captorhinids possess multiple tooth
rows (in some taxa as many as eleven) and the ability to move the jaw propalineally (Heaton
1979; Doddick & Modesto 1995; Modesto et al. 2007, 2014), creating an effective surface for
grinding and shredding plant matter. Other dental and mandibular innovations appearing within
the Moradisaurinae include a saddle-shaped occlusal surface of the teeth and a more robust
ramus of the jaw.

Conclusions

- A single transition to herbivory in Captorhinidae is most found to be most probably,
 although whether from a carnivorous or omnivorous ancestor is unclear. *Labidosaurus*
appears to represent a reversal to an omnivorous diet from a herbivorous ancestor.
- Significant increases in rates of discrete character change are observed coinciding with
 the origin of herbivory. The herbivorous lineages are found to have higher rates of
evolution than their carnivorous and omnivorous relatives.
- The herbivorous captorhinids were more morphologically diverse than their carnivorous
 and omnivorous relatives, and reached their peak disparity more rapidly.
- The shift to higher rates of discrete character change is accompanied by a shift towards
 increased evolution of the mandible and dentition, supporting a causal link between the
 origin of a herbivorous diet and the radiation observed in captorhinids during the
 Kungurian.
Acknowledgements

I would like to thank Graeme Lloyd for helpful discussion and assistance with the R package Claddis. Roger Close offered comments on an early draft of the manuscript. Martin Ezcurra, Manabu Sakamoto and an anonymous reviewer made many helpful suggestions which greatly improved the manuscript.

References

Benson RBJ, and Choiniere JN. 2013. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proceedings of the Royal Society B 280:20131780.

Bollback JP. 2006. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC bioinformatics 7:88.

Brocklehurst N. 2016. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae. PeerJ 4:e1555.

Brocklehurst N, and Brink K. 2016. Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous. Facets 2: 68-84.

Brocklehurst N, Ruta M, Müller J, and Fröbisch J. 2015. Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study. Scientific Reports 5:17104.

Brocklehurst N, Day MO, Rubidge BS, Fröbisch J. 2017. Olson’s extinction and the latitudinal biodiversity gradient of tetrapods in the Permian. Proceedings of the Royal Society B: In Press
Brusatte SL, Lloyd GT, Wang SC, and Norell MA. 2014. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Current Biology 24:2386-2392.

Brusatte SL, Montanari S, Hong-yu Y, and Norell MA. 2011. Phylogenetic corrections for morphological disparity analysis: new methodology and case studies. Paleobiology 37:1-22.

Close RA, Friedman M, Lloyd GT, and Benson RBJ. 2015. Evidence for a mid-Jurassic adaptive radiation in mammals. Current Biology 25:2137-2142.

Cook JA, and Lessa EP. 1998. Are rates of diversification in subterranean South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae) unusually high? Evolution 52:1521-1527.

Daly E. 1973. A Lower Permian vertebrate fauna from southern Oklahoma. Journal of Paleontology 47:562-589.

Dodick JT, and Modesto S. 1995. The cranial anatomy of the captorhinid reptile Labidosaurikos meachami from the Lower Permian of Oklahoma. Palaeontology 38:687.

Donoghue MJ. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31:77-93.

Forest F, Chase MW, Persoon C, Crane PR, and Hawkins JA. 2007. The role of biotic and abiotic factors in evolution of ant dispersal in the milkwort family (Polygalaceae). Evolution 61:1675-1694.

Givnish TJ. 2010. Ecology of plant speciation. Taxon 59:1326-1366.
Givnish TJ. 2015. Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytologist 207: 297-303.

Golubev, V.K., 2000. The faunal assemblages of Permian terrestrial vertebrates from eastern Europe. Paleontological Journal 34:211-224.

Harmon LJ, Weir JT, Brock CD, Glor RE, and Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-131.

Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL, Jennings BW, Kozak KH, McPeek MA, Moreno-Roark F, Near TJ, and Purvis A. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:2385-2396.

Heaton MJ. 1979. Cranial anatomy of primitive captorhinid reptiles from the Late Pennsylvanian and Early Permian, Oklahoma and Texas. Bulletin of the Oklahoma Geological Survey 127:1-84.

Hedman MM. 2010. Constraints on clade ages from fossil outgroups. Paleobiology 36:16-31.

Hughes M, Gerber S, and Wills MA. 2013. Clades reach highest morphological disparity early in their evolution. Proceedings of the National Academy of Sciences 110: 13875-13879.

Jalil NE, and Dutuit JM. 1996. Permian captorhinid reptiles from the Argana Formation, Morocco. Palaeontology 39:907-918.

Kazancioğlu E, Near TJ, Hanel R, and Wainwright PC. 2009. Influence of sexual selection and feeding functional morphology on diversification rate of parrotfish (Scaridae). Proceedings of the Royal Society B 276:3439-3446.
Kissel RA, Dilkes DW, and Reisz RR. 2002. *Captorhinus magnus*, a new captorhinid (Amniota: Eureptilia) from the Lower Permian of Oklahoma, with new evidence on the homology of the astragulus. Canadian Journal of Earth Sciences 39:1363-1372.

Kozak KH, Larson AA, Bonett RM, and Harmon LJ. 2005. Phylogenetic analysis of ecomorphological divergence, community structure, and diversification rates in dusky salamanders (Plethodontidae: *Desmognathus*). Evolution 59:2000-2016.

Labandeira CC. 1998. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences 26:329-377.

Labandeira CC. 2007. The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Science 14:259-275.

Leibrecht T, Fortuny J, Galobart A, Müller J, and Sander M. 2016. A large, multiple-tooth-rowed captorhinid reptile (Amniota: Eureptilia) from the upper Permian of Mallorca (Balearic Islands, western Mediterranean). Journal of Vertebrate Paleontology: In Press.

Lloyd GT. 2016. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress and future directions. Biological Journal of the Linnean Society 118:131-115.

Lloyd GT, Bapst DW, Friedman M, and Davis KE. 2016. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds. Biology Letters 12:20160609.

Lloyd GT, Wang SC, and Brusatte SL. 2012. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66:330-348.
McLeish MJ, Chapman TW, and Schwarz MP. 2007. Host-driven diversification of gall-inducing Accacia thrips and the aridification of Australia. BMC Biology 5:doi:10.1186/1741-7007-1185-1183.

Modesto S, and Smith RM. 2001. A new Late Permian captorhinid reptile: a first record from the South African Karoo. Journal of Vertebrate Paleontology 21:405-409.

Modesto S, Flear VJ, Dilney MM, and Reisz RR. 2016. A large moradisaurine tooth plate from the Lower Permian of Texas and its biostratigraphic implications. Journal of Vertebrate Paleontology:e1221832.

Modesto S, Lamb AJ, and Reisz RR. 2014. The captorhinid reptile Captorhinikos valensis from the lower Permian Vale Formation of Texas, and the evolution of herbivory in eureptiles. Journal of Vertebrate Paleontology 34:291-302.

Modesto S, Scott D, Berman DS, Müller J, and Reisz RR. 2007. The skull and palaeoecological significance of Labidosaurus hamatus, a captorhinid reptile from the Lower Permian of Texas. Zoological Journal of the Linnean Society 149:237-262.

Müller J, and Reisz RR. 2005a. An early captorhinid reptile (Amniota, Eureptilia) from the Upper Carboniferous of Hamilton, Kansas. Journal of Vertebrate Paleontology 25:561-568.

Müller J, and Reisz RR. 2005b. The phylogeny of early eureptiles: comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade. Systematic Biology 55:503-511.

Neige P, Dera G, and Dommergues JL. 2013. Adaptive radiation in the fossil record: a case study among Jurassic ammonoids. Palaeontology 56:1247-1261.
O'Keefe FR, Sidor CA, Larsson HC, Maga A, and Ide O. 2005. The vertebrate fauna of the Upper Permian of Niger—III, morphology and ontogeny of the hindlimb of Moradisaurus grandis (Reptilia, Captorhinidae). Journal of Vertebrate Paleontology 25:309-319.

Olson EC. 1966. Community evolution and the origin of mammals. Ecology 47:291-302.

Paradis E, Claude J, and Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290.

Parfrey LW, Lahr DJ, Knoll AH, and Katz LA. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences 108:13624-13629.

Pearson MR, Benson RBJ, Upchurch P, Fröbisch J, and Kammerer CF. 2013. Reconstructing the diversity of early terrestrial herbivorous tetrapods. Palaeogeography, Palaeoclimatology, Palaeoecology 372:42-49.

Pol D, and Norell MA. 2006. Uncertainty in the age of fossils and the stratigraphic fit to phylogenies. Systematic Biology 55:512-521.

R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

Reisz RR. 1972. Pelycosaurian reptiles from the Middle Pennsylvanian of North America. Bulletin of the Museum of Comparative Zoology 144:27-60.

Reisz RR, and Fröbisch J. 2014. The oldest caseid synapsid from the Late Pennsylvanian of Kansas and the evolution of herbivory in terrestrial vertebrates. PlosOne 9:e94518.

Reisz RR, and Sues H-D. 2000. Herbivory in late Paleozoic and Triassic terrestrial vertebrates. In: Sues H-D, ed. Evolution of Herbivory in Terrestrial Vertebrates: Perspectives from the Fossil Record. Cambridge: Cambridge University Press.
Ricqlès AD, and Taquet P. 1982. La faune de vertébrés du Permien supérieur du Niger. I. Le Captorhinomorphe Moradisaurus grandis (Reptilia, Cotylosauria)—Le crâne. Annales de Paléontologie 68:33-106.

Ruber L, Van Tassell JL, and Zardoya R. 2003. Rapid speciation and ecological divergence in the American seven-spines gobies (Gobiidae, Gobiosomatini) inferred from a molecular phylogeny. Evolution 57:1584-1598.

Ruta M, and Coates MI. 2007. Dates, nodes and character conflict: addressing the lissamphibian origin problem. Journal of Systematic Palaeontology 5:69-122.

Sahney S, and Benton MJ. 2008. Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society B 275.

Scott AC, and Taylor TN. 1983. Plant/animal interactions during the Upper Carboniferous. The Botanical Review 49: 259-307.

Shear WA. 2000. The early development of terrestrial ecosystems. In: Gee, H, ed. Shaking the tree: readings from nature in the history of life. Chicago: University of Chicago Press, pp.169-179.

Sidlauskas, B. 2008. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62:3135-3156

Simpson GG. 1953. The Major Features of Evolution. New York: Columbia University Press.

Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC, Heins L, Herzog K, and Lieberman BS. 2016. The evolving theory of evolutionary radiations. Trends in Ecology & Evolution 31:27-34.

Slater, G. 2013. Phylogenetic evidence for a shift in the mode of mammalian bodysize evolution at the Cretaceous-Palaeogene boundary. Methods in Ecology and Evolution 4:734-744
Sues H-D, and Reisz RR. 1998. Origins and early evolution of herbivory in tetrapods. Trends in Ecology and Evolution 13:141-145.

Vences M, Andreone F, G. F, Kosuch J, Meyer A, Schaefe HC, and Veith M. 2002. Exploring the potential of life-history key innovation: brook breeding in the radiation of the Malagasy treefrog genus *Boophis*. Molecular Ecology 11:1453-1463.

Figure Captions

Figure 1

Title: An illustration of the methods used to calculate disparity in this study

Legend: (A) A hypothetical phylogeny illustrating as solid dots the data points that would be included under the method of Brusatte et al. (2010): the tip taxa A, B and C, and the Nodes 1 and 2; (B) The phylogeny plotted against a hypothetical trait, illustrating how the morphology of the lineage leading to Taxon C in time bin 1 and the morphology of the lineage leading to taxon A in time bin 2 may be inferred assuming a gradual model of evolution with no rate variation along a branch; (C) An illustration of how the same morphologies are inferred assuming a punctuated model of evolution, where the morphological change occurs at the speciation event

Figure 2

Title: The fit of models of diet evolution to the phylogeny of Captorhinidae.

Legend: Boxplots illustrating the distribution of 100 Akaike weights values calculated for each of the models of the evolution of diet as a discrete character, fit to the 100 time calibrated
Figure 3
Title: The phylogeny of Captorhinidae, illustrating the evolution of diet.
Legend: Two of the 100 time calibrate phylogenies used in the analysis. The thick branches represent the observed ranges of each taxon. The colours of the tip labels represent the diet inferred for that taxon: Red = Carnivore, Blue = Omnivore, Green = Herbivore. The pie charts at each node represent the probability of each dietary regime inferred for that node, deduced by maximum likelihood ancestral state reconstruction. (A) MPT 1: *Opisthodontosaurus* is the sister to the clade containing *Rhiodenticulatus* and all captorhinids more derived. (B) MPT 2: *Opisthodontosaurus* is the sister to *Concordia*.

Figure 4
Title: The phylogeny of Captorhinidae, illustrating the location of significant changes in rates of evolution.
Legend: Two of the 100 time calibrate phylogenies used in the analysis. The thick branches represent the observed ranges of each taxon. The colours of the tip labels represent the diet inferred for that taxon: Red = Carnivore, Blue = Omnivore, Green = Herbivore. The pie charts on each branch represent the proportion of the 100 time calibrated phylogenies which show significantly high or low rates of evolution along that branch: Red = significantly high rates, Blue = significantly low rates, White = no significant rate variation. (A) MPT 1: *Opisthodontosaurus* is the sister to the clade containing
Rhiodenticulatus and all captorhinids more derived. (B) MPT 2: *Opisthodontosaurus* is the sister to *Concordia*.

Figure 5

Title: A comparison of the mean rates of evolution within each dietary regime.

Legend: (A) Histogram illustrating the mean rate of discrete character evolution calculate for each dietary regime in each of the 10,000 stochastic maps of dietary evolution; (B) Histogram illustrating the mean rate of discrete character evolution calculate for the herbivorous lineages compared to a random selection of branches with an equal sample size in each of the 10,000 stochastic maps of dietary evolution.

Figure 6

Title: A comparison of the morphological distances between taxa within each dietary regime.

Legend: Histogram illustrating the mean MORD distance between each taxon in each dietary regime in each of the 10,000 stochastic maps of dietary evolution.

Figure 7

Title: A comparison of disparity through time of the captorhinids in each dietary regime

Legend: The disparity (sum of variances) calculated for all taxa within each dietary regime in each time bin. Values shown in the graph are the means of the values calculated in 10,000 stochastic maps of dietary evolution. The dashed line represents the mass extinction event dubbed Olson’s Extinction. (A) Morphology along each branch calculated assuming a
gradualist model of evolution; (B) Morphology along each branch calculated assuming a punctuated model of evolution.

Figure 8
Title: Lineage densities of captorhinids in each dietary regime
Legend: Boxplots indicating the distribution lineage densities of the captorhinids in each dietary regime, calculated in each of the 10,000 stochastic maps of dietary evolution.

Figure 9
Title: The proportion of characters within each skeletal region changing within each dietary regime
Legend: Boxplots illustrating the distribution of the proportions of character changes in each skeletal region occur in each dietary regime, calculated in each of the 10,000 stochastic maps of dietary evolution. (A) Carnivores; (B) Omnivores; (C) Herbivores.

Figure 10
Title: Phylomorphospace of captorhinids.
Legend: The phylogeny of captorhinids plotted over principal coordinates 1 and 2. Colours of lineages represent the die found to have the highest probability by the likelihood ancestral state reconstruction. Taxon labels – 1: *Thuringothyris*; 2: *Concordia*; 3: *Opisthodontosaurus*; 4: *Rhiodenticulatus*; 5: *Reiszorhinus*; 6: *Romeria prima*; 7: *Romeria texana*; 8: *Protocaptorhinus*; 9: *Saurorictus*; 10: *Captorhinus laticeps*; 11: *Captorhinus aguti*; 12: *Captorhinus magnus*; 13: *Captorhinikos chozensis*; 14: *Labidosaurus*; 15:
Captorhinikos valensis; 16: Labidosaurikos; 17: Moradisaurus; 18: Gansurhinus; 19:
Rothianiscus; 20: MBCN 15730.
Figure 1

An illustration of the methods used to calculate disparity in this study

(A) A hypothetical phylogeny illustrating as solid dots the data points that would be included under the method of Brusatte et al. (2010): the tip taxa A, B and C, and the Nodes 1 and 2; (B) The phylogeny plotted against a hypothetical trait, illustrating how the morphology of the lineage leading to Taxon C in time bin 1 and the morphology of the lineage leading to taxon A in time bin 2 may be inferred assuming a gradual model of evolution with no rate variation along a branch; (C) An illustration of how the same morphologies are inferred assuming a punctuated model of evolution, where the morphological change occurs at the speciation event.
Figure 2

The fit of models of diet evolution to the phylogeny of Captorhinidae

Boxplots illustrating the distribution of 100 Akaike weights values calculated for each of the models of the evolution of diet as a discrete character, fit to the 100 time calibrated phylogenies of captorhinids. ER = Equal Rates; SYM = Symmetrical; ARD = All Rates Different.
Figure 3

The phylogeny of Captorhinidae, illustrating the evolution of diet.

Two of the 100 time calibrate phylogenies used in the analysis. The thick branches represent the observed ranges of each taxon. The colours of the tip labels represent the diet inferred for that taxon: Red = Carnivore, Blue = Omnivore, Green = Herbivore. The pie charts at each node represent the probability of each dietary regime inferred for that node, deduced by maximum likelihood ancestral state reconstruction. (A) MPT 1: *Opisthodontosaurus* is the sister to the clade containing *Rhiodenticulatus* and all captorhinids more derived. (B) MPT 2: *Opisthodontosaurus* is the sister to *Concordia*.
A.

- **Moscovian**
- **Kasimovian**
- **Gzhelian**
- **Asselian**
- **Sakmarian**
- **Artinskian**
- **Kungurian**
- **Roadian**
- **Wordian**
- **Capitanian**
- **Wuchiapingian**
- **Changhsingian**

Carboniferous

- **Permian**

MBCN 15730

- **Rothianiscus**
- **Gansurhinus**
- **Moradisaurus**

- **Labidosaurikos**
- **Captorhinikos valensis**
- **Labidosaurus**
- **Captorhinikos chozensis**

- **Captorhinus magnus**
- **Captorhinus aguti**
- **Captorhinus laticeps**

- **Romeria texana**
- **Romeria prima**

- **Rhoidenticulatus**
- **Opisthodontosaurus**

- **Reiszorhinus**

- **Saurorictus**

Thuringothyris

B.

Moscovian

Kasimovian

Gzhelian

Asselian

Sakmarian

Artinskian

Kungurian

Roadian

Wordian

Capitanian

Wuchiapingian

Changhsingian

Carboniferous

Permian

MBCN 15730

- **Rothianiscus**
- **Gansurhinus**
- **Moradisaurus**

- **Labidosaurikos**
- **Captorhinikos valensis**
- **Labidosaurus**
- **Captorhinikos chozensis**

- **Captorhinus magnus**
- **Captorhinus aguti**
- **Captorhinus laticeps**

- **Romeria texana**
- **Romeria prima**

- **Rhoidenticulatus**
- **Opisthodontosaurus**

- **Reiszorhinus**

- **Saurorictus**

Thuringothyris
Figure 4

The phylogeny of Captorhinidae, illustrating the location of significant changes in rates of evolution.

Two of the 100 time calibrate phylogenies used in the analysis. The thick branches represent the observed ranges of each taxon. The colours of the tip labels represent the diet inferred for that taxon: Red = Carnivore, Blue = Omnivore, Green = Herbivore. The pie charts on each branch represent the proportion of the 100 time calibrated phylogenies which show significantly high or low rates of evolution along that branch: Red = significantly high rates, Blue = significantly low rates, White = no significant rate variation. (A) MPT 1: *Opisthodontosaurus* is the sister to the clade containing *Rhiodenticulatus* and all captorhinids more derived. (B) MPT 2: *Opisthodontosaurus* is the sister to *Concordia*.
Figure 5

A comparison of the mean rates of evolution within each dietary regime.

(A) Histogram illustrating the mean rate of discrete character evolution calculate for each dietary regime in each of the 10,000 stochastic maps of dietary evolution; (B) Histogram illustrating the mean rate of discrete character evolution calculate for the herbivorous lineages compared to a random selection of branches with an equal sample size in each of the 10,000 stochastic maps of dietary evolution.
Figure 6

A comparison of the morphological distances between taxa within each dietary regime.

Histogram illustrating the mean MORD distance between each taxon in each dietary regime in each of the 10,000 stochastic maps of dietary evolution.
Figure 7

A comparison of disparity through time of the captorhinids in each dietary regime

The disparity (sum of variances) calculated for all taxa within each dietary regime in each time bin. Values shown in the graph are the means of the values calculated in 10,000 stochastic maps of dietary evolution. The dashed line represents the mass extinction event dubbed Olson’s Extinction. (A) Morphology along each branch calculated assuming a gradualist model of evolution; (B) Morphology along each branch calculated assuming a punctuated model of evolution.
Figure 8

Lineage densities of captorhinids in each dietary regime

Boxplots indicating the distribution lineage densities of the captorhinids in each dietary regime, calculated in each of the 10,000 stochastic maps of dietary evolution.
Figure 9

The proportion of characters within each skeletal region changing within each dietary regime

Boxplots illustrating the distribution of the proportions of character changes in each skeletal region occur in each dietary regime, calculated in each of the 10,000 stochastic maps of dietary evolution. (A) Carnivores; (B) Omnivores; (C) Herbivores.
Figure 10

Phylomorphospace of captorhinids

The phylogeny of captorhinids plotted over principal coordinates 1 and 2. Colours of lineages represent the die found to have the highest probability by the likelihood ancestral state reconstruction. Taxon labels – 1: *Thuringothyris*; 2: *Concordia*; 3: *Opisthodontosaurus*; 4: *Rhiodenticulatus*; 5: *Reiszorhinus*; 6: *Romeria prima*; 7: *Romeria texana*; 8: *Protocaptorhinus*; 9: *Saurorictus*; 10: *Captorhinus laticeps*; 11: *Captorhinus aguti*; 12: *Captorhinus magnus*; 13: *Captorhinikos chozensis*; 14: *Labidosaurus*; 15: *Captorhinikos valensis*; 16: *Labidosaurikos*; 17: *Moradisaurus*; 18: *Gansurhinus*; 19: *Rothianiscus*; 20: MBCN 15730.