Research Paper:
The Effect of Different Exercise Intensities on T-Box Transcription Factor 5 Gene Expression and Hypertrophy in the Heart Muscle of Male Rats

Elham Vosadi1, Mahbobeh Borjian Fard2

1. Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Shahrood University of Technology, Shahrood, Iran.
2. Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, University of Tehran, Tehran, Iran.

Abstract

Background: Exercise is one of the methods affecting cardiovascular adaptation, but its cellular and molecular pathways and mechanisms are unknown. T-Box Transcription Factor 5 (TBX5) gene seems to be one of the factors involved in regulating cardiac hypertrophy.

Objective: The aim of this study was to investigate the effect of an 8-week exercise program with different intensities on the expression of TBX5 gene in the heart of male Wistar rats.

Methods: In this experimental study, 24 male adult Wistar rats were divided into three groups of High Intensity Training (HIT), Low Intensity Training (LIT) and control. Training groups performed the exercise program for 8 weeks, 5 sessions per week. The exercise program for the HIT group consists of running on a treadmill with five 8-min intervals at 85-90% VO2 max intensity divided into 2-min intervals at 50-60% VO2 max intensity, while for the LIT group it was included five 8-min intervals with 50-60% VO2 max intensity divided into 2-min intervals with 45% -50% VO2 max intensity. The control group performed no exercise. The real-time Polymerase Chain Reaction (PCR) analysis was used to measure the expression level of TBX5 gene. The collected data were analyzed by one-way ANOVA and Tukey’s post hoc test.

Findings: The heart weight (P≤0.001 and P=0.004), heart-weight to body-weight ratio (P≤0.0001 and P=0.001), and left ventricular wall thickness were significantly higher in the HIT and LIT groups than in the control group (P≤0.0001 and P=0.38). The left ventricular wall thickness in the HIT group was significantly higher than in the LIT group (P=0.001). The TBX5 expression in the two training groups were not significantly different from that of control group (P=0.11).

Conclusion: It seems that more intensive exercise can have more significant effects on cardiac hypertrophy than less intensive exercise.

Keywords: T-box transcription factor TBX5, High intensity training, Low intensity training, Male adult rat

Extended Abstract

1. **Introduction**

Exercise has beneficial effects on increasing performance and health and reducing the risk of cardiovascular diseases. However, its exact mechanism is not known yet [1]. The cardiovascular system has a remarkable ability to adapt during exercise. These adaptations require the integration of systemic, cellular, and molecular signaling pathways in the cardiovascular system. Depending on the type of exercise, the cardiovascular system adapts to physiological requirements and dominant hemodynamic load. Therefore, the classification of the type of exercise can be done based on the physiologi-
cal and morphological changes resulted from exercise in the heart and cardiovascular system [2].

In order to understand the molecular adaptations in cardiac tissue following exercise, it is necessary to identify the cellular signaling pathways that are effective in transmitting physiological stimuli to downstream transcription factors and other regulatory mechanisms. T-Box Transcription Factor 5 (TBX5) is a transcription factor of the T-box family that promotes cardiac muscle growth [5]. Physiological growth of the heart results in increased cell size and myocyte mass of the heart muscle through exercise. This balanced and reversible physiological growth of the heart is mediated by cardiomyocyte hypertrophy through activating various signaling pathways, including the Insulin-like Growth Factor-1 phosphoinositide 3-kinase/protein kinase B (IGF-1-P3K/AKT), which causes increased gene expression of TBX5 that regulates cardiac hypertrophy [7].

TBX5 in cardiomyocytes is a transcription activator of cardiac gene expression and interacts directly with other cardiac transcription factors [8]. Since there is less information on the molecular mechanisms affecting the physiological hypertrophy of the heart based on TBX5 gene expression caused by exercise with different intensities, this study aimed to investigate the effect of different intensities of intermittent exercise on TBX5 gene expression.

2. Materials and Methods

The animals used in this study were 24 male adult Wistar rats weighting 160-180 g. They were kept under controlled conditions at a room temperature and 12:12h light:dark cycle and humidity of 40-60%. Food and water were available for them. They were divided into three groups of High Intensity Training (HIT), Low Intensity Training (LIT) and Control. The intermittent exercise program was performed for 8 weeks, 5 sessions per week. The exercise program for the HIT group consists of running on a treadmill with five 8-min intervals at 85-90% VO2 max intensity divided into 2-min intervals at 50-60% VO2 max intensity, while for the LIT group it was included five 8-min intervals with 50-60% VO2 max intensity divided into 2-min intervals with 45-50% VO2 max intensity. They performed exercises at a specific hour of the day and at the same time. The control group had no exercise.

The heart muscle was removed, and the rate of hypertrophy was determined by evaluating the ratio of heart-weight to body-weight, Left Ventricular (LV) wall thickness and cardiomyocyte length. The expression of TBX5 gene was measured by Real-time Polymerase Chain Reaction (PCR) analysis. Finally, the data were analyzed using one-way ANOVA and Tukey’s post hoc test.

3. Results

The heart weight (P≤0.001 and P=0.004), heart-weight to body-weight ratio (P≤0.0001 and P=0.001), and LV wall thickness were significantly higher in the HIT and LIT groups than in the control group (P≤0.0001 and P=0.38). LV wall thickness in the HIT group was significantly higher than in the LIT group (P=0.001). The TBX5 expression in the two training groups were not significantly different from that of control group (P=0.11).

4. Discussion

The findings of the present study indicated that the heart weight, ratio of heart-weight to body-weight and LV wall thickness in the HIT and LIT groups were significantly higher than in the control group. The LV wall was significantly thicker in the HIT group than in the LIT group. Hematoxylin & eosin staining showed a significant increase in the cardiomyocyte area in the two exercise groups; the amount of this increase in the HIT group was significantly higher than in the LIT group.

Exercise can affect cardiac hypertrophy by affecting some cellular and molecular factors. According to studies, exercise through various signaling pathways including Neuregulin-1 (NRG-1), ERB, C/EBPβ, and IGF-I-P3K/AKT can affect the function and growth of the heart muscle [22]. Cardiomyocyte length seems to increase after exercise. Therefore, it is generally accepted that exercise-induced heart growth is due to an increase in cardiomyocyte length rather than a change in the number of heart cells. Moreover, along with increased heart mass, the heart tissue is exposed to morphological changes depending on the type of exercise [23].

TBX5, as one of the most important members of the T-box family involved in cardiovascular development, plays an important role in cardiac morphogenesis [24]. In the present study, TBX5 expression level was directly related to the intensity of exercise. In the LIT and HIT groups, the differences in TBX5 expression were two and three times higher than in the control group, respectively, but these differences were not statistically significant. In overall, it seems that more intensive exercise can have more significant effects on cardiac hypertrophy than less intensive exercise.
Ethical Considerations

Compliance with ethical guidelines

All animal experiments were performed in accordance with guidelines of the Ethics Committee of the University of Tehran (Code: 370299/141).

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

Resources, validation, editing, supervision, project administration, and funding acquisition: Mahbobeh Borjianfard; Conceptualization, methodology, writing and data analysis: Elham Vosadi

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the Faculty of Physical Education and Sports Sciences at University of Tehran for their valuable cooperation in conducting this study.
تأثیر شدید‌های مختلف ورزشی بر پیان Zn5 و هایپرتروفی در عضله قلب رهنه‌گیران ویستار

الهام وسیدی ۱، محبوبه پرچالی فرد ۲

۱ گروه فیزیولوژی ورزشی دانشکده فنی و مهندسی شاهرود، شاهرود، ایران.
۲ گروه فیزیولوژی ورزشی، دانشکده فنی و مهندسی شاهرود، شاهرود، ایران.

چکیده

اثربخشی نیروی محرک مصرفی در ورزش‌های مختلف بر شدید‌های مختلف ورزشی معرفی گردیده است. این پژوهش به هدف بررسی میزان شدید‌های مختلف ورزشی و در نهایت قلب رهنه‌گیران نسبت به معیارهای شناسایی ویستار در قلب رهنه‌گیران ویستار انجام شد. از جمله عواملی است که می‌تواند در تغییر شدید‌های ورزشی مؤثر باشد، ضخامت بطن چپ و تفاوت معنی‌داری بین گروه تمرین تناوبی و گروه کنترل، که در زمان وقوع تاکید گردید.

مقدمه

ورشتهای فیزیولوژیک و مورفولوژیکی

نلبی از تمرین الکتریک قلب و پیشگیری از ابتلا به بیماری‌های قلبی–عروقی می‌باشد. ضخامت بطن چپ در قلب رهنه‌گیران نسبت به قلب رهنه‌گیران، تفاوت معنی‌داری داشت.

مراجع

کلیوپنیه‌ها: TBX5، فعالیت ورزشی، پرگسته، فعالیت ورزشی، تکنیک ورزشی کد هسته‌ای رتر نیاز گزین می‌شود.
اکنون مطالعات اینجا گزارش عمده‌ای از نتایج در این زمینه ارائه نمی‌شود. با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری ندارد. در این مطالعه، نتایج نشان داد که تمرینات ورزشی تأثیرات گوناگونی بر رشد عضله قلبی داشته و با توجه به اینکه تمرینات ورزشی موجب افزایش قلب قلبی می‌شود، باید توجه کرد که این افزایش ممکن است باعث افزایش شدت و کاهش این کاهش بوده و نتایج بسگاهی موثری Nfx2.5

6. Windel et al
7. Bartrom et al

1. T-box transcription factor TBX5
2. T-box transcription factor TBX5
3. Verboven et al
4. Moderate Intensity Training (MIT)
5. High Intensity Interval Training (HIIT)
فیلمات ورزشی بیان‌زن تن5 در بهبود پرداخته.

مواد و روش‌ها

مطالعه تحقیق حاضر که در سال 1397 در دانشکده تربیت بدنی دانشگاه تهران انجام شد. ۳۴ رست و ژرمن (۲۵-۲۰ ساله) به صورت تصادفی به دو گروه تمرینی بخشیده و گروه تمرینی ورزشی کم‌تصویری تحت شرایط کنترل شده در ماهی ۱۲۴ درجه سانتی‌گراد و تحت چرخه خلوی بی‌بازاری در سه ماه به روزروشی شدند. درصد ۱۳ سانتی‌گراد و در طی ۶۰ ماه به لایه ترمیم شد. پس از اطمینان از اطلاعات مورد نیاز پس از جمع‌آوری، توسط نرم‌افزار آماری SPSS، نتایج بهینه‌سازی شرایط آزمایش رسم شد و بیان داده‌ها توسط digimizer ار ذوب برای بررسی داده‌ها و نمودار ارد به پس از جمع‌آوری اطلاعات آغازگرها د ر

۱۲، ۱۱ و ۱۰. به روش PCR یک هفته بر روی نوارگردان با سرعت ۶۰ رست بر اساس طراحی کرویک هیپرتروفی قلب از ارزیابی نسبت وزن قلب به وزن بد نمایان بود. درصد هم‌کننده گروه تمرینی رضایتگر (با سن ۵۰-۶۰ ساله) تردید مصرفی با توجه به پژوهش‌ها این نمونه با توجه به پژوهش‌های

13. National Center for Biotechnology Information
12. QIAGEN, Germany
11. Fermentas, USA
10. SciVerse, Germany
9. Qiagen, Germany
8. National Center for Biotechnology Information
7. SPSS
6. Mean±SEM
5. P<0.05/0.01/0.001
4. Glyceroldehyde-3-phosphate dehydrogenase
3. 207-22
2. 24-53
1. 12-11

مانگانوز گروه تحت‌کنترل از گروه‌بندی دامنه‌ای پس از هشت هفته فیلمات ورزشی بیان‌زن تن5 در بهبود پرداخته.
می‌تواند عملکرد و رشد به گروه کنترل به ترتیب تفاوت د و و سه برابری د اشت، اما این مستقیم و د ر گروه تمرین تناوبی کم شد ت و پرشد ت نسبت.

های بافت قلب د ر معرض تغییرات ریختگانی قرار می‌گیرد که به تعداد سلول‌های قلبی. همچنین همسو با افزایش د ر توده قلب به د لیل افزایش د ر اند ازه میوئیت است و نه تغییر د بنابراین عموماً پذیرفته شد ه است که رشد قلب ناشی از فعالیت به د نبال تمرینات ورزشی تمایز یافته و اند ازه آن افزایش می‌یابد. میوئیت قلبی سرانجام

تصور گرفته تمرینات ورزشی از طریق مسیرهای مختلفی شامل بخیه تکامل قلبی عروقی نقش مهمی د ر مورفولوژی قلب د ارد به عنوان یکی از مهمترین اعضای خانواده تریک‌پل، عامل رشد شبه انسولین نوع 1 (IGF-I) و

TBX5 به طور معنی‌داری بیشتر از گروه کنترل بود. همچنین ضخامت بطن د یواره بطن چپ د ر گروه‌های تمرین تناوبی با شدت زیاد و کم به طور معنی‌داری از گروه تمرین تناوبی با شدت زیاد و کم بیشتر بود. رنگ آمیزی هماتوکسیلین ـ ائوزین، افزایش معنی‌داری بیشتر از گروه کنترل بود.

تعداد تیتانیوم یافته نشان می‌دهد که این شاخص به وسیله ارزیابی ضخامت دیواره ای جفت باز

ولی در گروه‌های تمرین تناوبی با شدت زیاد و کم کمتر بود. تحقیق‌های قبلی نشان داد که تمرینات ورزشی به وسیله افزایش هورمون‌های نیرونجی و سیتی‌باتر فعالیت را تحت تأثیر قرار د د هد (تصویر 1د)

(جدول 1) ماحال مjis جمعیت و سنی آزمون‌های استفاده شده.

(جدول 2) مقادیر میانگین و انحراف استاندارد وزن پایانی بد ن و وزن قلب در گروه‌های مختلف

پیش‌بینی گروه‌های ایجاد

یافته‌های پژوهش حاضر حاکی از این مطلب است که

جدول 1 توانایی طول محصول و صای آزمون‌های استفاده‌شده

جدول 2 مقادیر میانگین و انحراف استاندارد وزن پایانی بد ن و وزن قلب در گروه‌های مختلف
بهرامیان و نادری همراه با داوری مطالعه دانشجویان TBX5، تفاوت نسبت وزن قلب به وزن بد ن، ضخامت بطن چپ قلب، مساحت کاردیومیوسیت‌های قلب و میانگین تغییرات بیان ژن TBX5 را در شاخص‌های عملکرد قلب دانستند.

این در حالتی است که نتایج تحقیق موثر نشان دهنده تأثیر ورزشی بر بیان ژن TBX5 بوده و محقق تغییرات بیان ژن TBX5 را در شاخص‌های عملکرد قلب دانست.

این نتایج نشان دهنده تأثیر ورزشی بر بیان ژن TBX5 بوده و محقق تغییرات بیان ژن TBX5 را در شاخص‌های عملکرد قلب دانست.

این نتایج نشان دهنده تأثیر ورزشی بر بیان ژن TBX5 بوده و محقق تغییرات بیان ژن TBX5 را در شاخص‌های عملکرد قلب دانست.

این نتایج نشان دهنده تأثیر ورزشی بر بیان ژن TBX5 بوده و محقق تغییرات بیان ژن TBX5 را در شاخص‌های عملکرد قلب دانست.

این نتایج نشان دهنده تأثیر ورزشی بر بیان ژن TBX5 بوده و محقق تغییرات بیان ژن TBX5 را در شاخص‌های عملکرد قلب دانست.

این نتایج نشان دهنده تأثیر ورزشی بر بیان ژن TBX5 بوده و محقق تغییرات بیان ژن TBX5 را در شاخص‌های عملکرد قلب دانست.

این نتایج نشان دهنده تأثیر ورزشی بر بیان ژن TBX5 بوده و محقق تغییرات بیان ژن TBX5 را در شاخص‌های عملکرد قلب دانست.
کسر تزریقی، کسر عصبی و سایر شاخص‌های آناتومیک قلب در تمرینی که به تنیو ورزشی با دو شدت پایین (55 تا 60 درصد حداکثر آکسیژن مصرفی) و بالا (65 تا 90 درصد حداکثر آکسیژن مصرفی) پرداخته بودند به صورت متغیری افزایش یافت که این تغییرات در گروه تنیوی با دو شدت بالا و از آنجا که تغییرات در تراکم واریزی و تراکم قلبی هر شدت تمرینی متوسط و بالا به شکل مشابهی نسبت به گروه تنیوی بالا و تنیوی پایین گزارش شده بود [10].

نتایج مطالعه ویندل این اثربخشی را نشان می‌دهند که این تغییرات دو شدت بالا و تنیوی پایین به شکل مشابهی نسبت به گروه تنیوی بالا و تنیوی پایین داشته و باعث افزایش وزن قلب و نسبت وزن قلب به وزن بد شده‌اند.

از مطالعات TBX5 بر رشد عضله قلبی و سطوح بیشتری در زمینه تأثیر شدت‌های مختلف فعالیت ورزشی در بین مطالعات متعدد گزارش شده‌است. در تحقیق وارینگ و ویندل، تناوبی میانگین وزن قلبی و نسبت وزن قلبی به وزن بد من مطالعه ویندل به مقایسه شد.

از آنجا که مطالعات اندکی در زمینه بروزین تأثیر متفاوت‌ترین فعالیت ورزشی TBX5 بر مطرح نموده‌اند، منبع صحیح این مطالعه بر سطوح آزمایشگاهی تکاملی و تعمیری، تناوبی و نسبت به قرار گرفتن، اما در مطالعه ویندل به مقایسه شد.

در نهایت، این مطالعه می‌تواند برای آموزش و پرورش نیز و علوم ورزشی مربوط به موضوع آناتومی قلب و فیزیولوژی قلب و سایر شاخص‌های آناتومیک قلب در تمرینی که به تنیو ورزشی با دو شدت پایین (55 تا 60 درصد حداکثر آکسیژن مصرفی) و بالا (65 تا 90 درصد حداکثر آکسیژن مصرفی) پرداخته بودند به صورت متغیری افزایش یافت که این تغییرات در گروه تنیوی با دو شدت بالا و تنیوی پایین گزارش شده بود [10].

نتایج مطالعه ویندل این اثربخشی را نشان می‌دهند که این تغییرات دو شدت بالا و تنیوی پایین به شکل مشابهی نسبت به گروه تنیوی بالا و تنیوی پایین داشته و باعث افزایش وزن قلب و نسبت وزن قلبی به وزن بد شده‌اند.

از مطالعات TBX5 بر رشد عضله قلبی و سطوح بیشتری در زمینه تأثیر شدت‌های مختلف فعالیت ورزشی در بین مطالعات متعدد گزارش شده‌است. در تحقیق وارینگ و ویندل، تناوبی میانگین وزن قلبی و نسبت وزن قلبی به وزن بد من مطالعه ویندل به مقایسه شد.

از آنجا که مطالعات اندکی در زمینه بروزین تأثیر متفاوت‌ترین فعالیت ورزشی TBX5 بر مطرح نموده‌اند، منبع صحیح این مطالعه بر سطوح آزمایشگاهی تکاملی و تعمیری، تناوبی و نسبت به قرار گرفتن، اما در مطالعه ویندل به مقایسه شد.
References

[1] Fulghum K, Hill BG. Metabolic mechanisms of exercise-induced cardiac remodeling. Front Cardiovasc Med. 2018; 5:127. [DOI:10.3389/fcmcv.2018.00127] [PMID] [PMCID]

[2] Hellsten Y, Nyberg M. Cardiovascular adaptations to exercise training. Compr Physiol. 2015; 6(1):1-32. [DOI:10.1002/cphy.c140080] [PMID]

[3] Luijckx T, Cramer MJ, Prakken NH, Buckens CF, Mosterd A, Rienks R, et al. Sport category is an important determinant of cardiac adaptation: An MRI study. Br J Sports Med. 2012; 46(16):1119-24. [DOI:10.1136/bjsports-2011-090520] [PMID]

[4] Sharma S, Merghani A, Mont L. Exercise and the heart: The good, the bad, and the ugly. Eur Heart J. 2015; 36(23):1445-53. [DOI:10.1093/eurheartj/ehv090] [PMID]

[5] Li QY, Newbury-Ecob RA, Terret JA, Wilson DI, Curtis AR, Yi CH, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997; 15(1):21-9. [DOI:10.1038/ng0197-21] [PMID]

[6] Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: Cellular and molecular mechanisms. Heart. 2012; 98(1):5-10. [DOI:10.1136/heartjnl-2011-300639] [PMID]

[7] Rawlins J, Bhan A, Sharma S. Left ventricular hypertrophy in athletes. Eur J Echocardiogr. 2009; 10(3):350-6. [DOI:10.1093/ejechocard/jep017] [PMID]

[8] Yutzey KE, Woodrow Benson D. TBX5: A developmental key that fits many locks. J Mol Cell Cardiol. 2003; 35(10):1175-7. [DOI:10.1016/S0022-2828(03)00248-7] [PMID]

[9] Steimle JD, Moskowitz IP . TBX5: A key regulator of heart development. In: Frasch M, editor. Current Topics in Developmental Biology. T-box Genes in Development and Disease. Vol. 46(16):1119-24. [DOI:10.1038/nature01973-21] [PMID]

[10] Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. Eur Heart J. 2014; 35(39):2722-31. [DOI:10.1093/eurheartj/ehs338] [PMID] [PMCID]

[11] Verboven M, Cuypers A, Deluyker D, Lambrecht I, Ejinde BO, Hansen D, et al. High intensity training improves cardiac function in healthy rats. Sci Rep. 2019; 9(1):5612. [DOI:10.1038/s41598-019-42023-1] [PMID] [PMCID]

[12] Windi Gunadi J, Tarawan VM, Setiawan I, Lesmana R, Wahyudianingsih R, Supratman U. Cardiac hypertrophy is stimulated by altered training intensity and correlates with autophagy modulation in male Wistar rats. BMC Sports Sci Med Rehabil. 2019; 11:9. [DOI:10.1186/s13102-019-0121-0] [PMID] [PMCID]

[13] Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panaková D, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010; 143(7):1072-83. [DOI:10.1016/j.cell.2010.11.036] [PMID] [PMCID]

[14] Hemati Nafar M, Gaeini AA, Kordi MR, Chobineh S, Karimzadeh F. The effect of exercise training intensity on cardiac regeneration capacity in rats with myocardial infarction. J Sport Biosci. 2019; 11(1):17-34. [In Persian] [DOI: 10.22059/jasb.2019.134611.1006]

[15] Bahramian A, Mirzaei B, Karimzadeh F, Ramhmaninia F, Gaeini AA, Naderi N, et al. The effects of exercise training intensity on the expression of C/EBPβ and GATA4 in rats with myocardial infarction. Asian J Sport Med. 2018; 9(4):e59300. [DOI:10.5812/ajsm.59300]

[16] Naderi N, Hemmatinafar M, Gaeini AA, Bahramian A, Ghardashi-Afousi AR, Kordi MR, et al. High-intensity interval training increase GATA4, CITED4 and c-KIT and decreases C/EBPβ in rats after myocardial infarction. Life Sci. 2019; 221:319-26. [DOI:10.1016/j.lfs.2019.02.045] [PMID]

[17] Hayward MA, Wisloff U, Kemi OJ, Ellingsen O. Running speed and maximal oxygen uptake in rats and mice: Practical implications for exercise training. Eur J Cardiovasc Prev Rehabil. 2007; 14(6):753-60. [DOI:10.1097/HCR.0b013e3281eacef1] [PMID]

[18] Kemi OJ, Haram PM, Loennechen JP, Osnes JB, Skomedal T, Wisloff U, et al. Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res. 2005; 67(1):161-72. [DOI:10.1016/j.cardiores.2005.03.010] [PMID]

[19] Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015; 21(4):584-95. [DOI:10.1016/j.cmet.2015.02.014] [PMID] [PMCID]

[20] Passier R, Zeng H, Frey N, Naya FI, Nicol RI, McKinsey TA, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest. 2000; 105(10):1395-406. [DOI:10.1172/JCI8851] [PMID] [PMCID]

[21] Willis MS, Ike C, Li L, Wang DZ, Glass DJ, Patterson C. Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res. 2007; 100(4):456-9. [DOI:10.1161/01.RES.0000259559.48597.32] [PMID]

[22] Tao L, Bei Y, Zhang H, Xiao J, Li X. Exercise for the heart: Signaling pathways. Oncotarget. 2015; 6(25):20773-84. [DOI:10.18632/oncotarget.4770] [PMID] [PMCID]

[23] Gharraat MA, Kashef M, Jameie B, Rajabi H. Effect of endurance and high intensity interval swimming training on cardiac structure and Hand2 expression of rats. J Shahid Sadoughi Univ Med Sci. 2017; 25(9):748-58. [In Persian] http://jssu.ssu.ac.ir/article-1-4279-en.html

[24] Hatcher CJ, Kim MS, Mah CS, Goldstein MM, Wong B, Miura JSB.2019.134611.1006

[25] Lacernmüller C, Rosenzweig A. Mechanisms of exercise-induced cardiac growth. Drug Discov Today. 2014; 19(7):1003-9. [DOI:10.1016/j.drudis.2014.03.010] [PMID]