Defying Strain in the Synthesis of an Electroactive Bilayer Helicene

Margarita Milton,† Nathaniel J. Schuster,*† Daniel W. Paley,² Raúl Hernández Sánchez,³ Fay Ng,¹ Michael L. Steigerwald,*¹ and Colin Nuckolls*¹

¹Department of Chemistry, Columbia University, New York, New York 10027, USA
²Columbia Nano Initiative, Columbia University, New York, New York 10027, USA
³Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
†M.M. and N.J.S. contributed equally.

Email addresses of the corresponding authors:
njs2154@columbia.edu
mls2064@columbia.edu
cn37@columbia.edu

Table of Contents

I. Figures Referenced in the Communication 2
II. General Experimental Details 8
III. Synthesis and Characterization 11
IV. Resolution of the Enantiomers of PPDH-OPe 21
V. Absorbance and Fluorescence of PPDH, PPDH-OPe and NPDH in Cyclohexane 22
VI. ¹H-NMR and ¹³C-NMR Spectra 23
VII. DFT-Optimized Molecular Structures and TD-DFT Excited State Calculations 32
VIII. Single-crystal X-ray Diffraction Data 65
IX. References 67
I. Figures Referenced in the Communication

Figure S1. Resolution of the enantiomers of PPDH by chiral preparative HPLC. The enantiomers were resolved from 8 mg of racemate dissolved in 6 mL of 1:2 (v/v) dichloromethane/hexanes. This solution was injected in 1 mL aliquots onto a CHIRALPAK® IB-3 column (30 mm I.D. × 250 mm, 5 µm), with 20% dichloromethane/hexanes flowing at 28.5 mL/min at room temperature. The (-) and (+) correspond to the sign of the longest-wavelength Cotton effect observed for these enantiomers (Δε₅₄₀ nm = -80 and +82 M⁻¹ cm⁻¹).
Figure S2. To show that the large extent of aryl surface overlap in PPDH inhibits racemization, we heated (-)-PPDH (1.7 mg) in diphenyl ether (0.75 mL) at 250 °C for 1 h. These are the HPLC traces of the solution before (a) and after (b) 1 h at 250 °C. This solution was injected in 10 µL aliquots onto a CHIRALPAK® IB-3 column (4.6 mm I.D. × 250 mm, 3 µm), with 20% dichloromethane/hexanes flowing at 1 mL/min at room temperature. The small peak at ~6 min corresponds to the complete elution of diphenyl ether. There is no trace of (+)-PPDH, confirming that PPDH does not racemize under these conditions.
Figure S3. From SCXRD, racemic PPDH stacks into heterochiral columns (red, \(M\)-PPDH; blue, \(P\)-PPDH). Solvent, the CH(CH\(_3\))\(_2\) chains, and hydrogen atoms have been hidden to provide a clear view of the aryl surface.
Figure S4. From SCXRD, the intermolecular junction between two molecules of PPDH consists of 24 pairs of overlapping π-bonded carbon atoms (shown in pink). (a) The four closest pairs, which approach to within twice the van der Waals radius of the carbon atom (i.e., 3.4 Å), are designated with black arrows. (b) Top view of the same PPDH molecules as in (a), only the uppermost and bottommost PDI subunits have been removed for clarity. The distances between the overlapping atoms (in Å) are indicated to the right of each pair, and the four nearest neighbors are underlined in bold. Free solvent, the CH(C₅H₁₁)₂ chains, and hydrogen atoms have been hidden to provide a clear view of the aryl surface. Thermal ellipsoids are set at 30% probability.
Figure S5. We define the bend angle of each PDI subunit in PPDH as the dihedral of the least-squares-fit planes defined by the pink and blue naphthalene fragments. From SCXRD, the bend angle of one PDI subunit in PPDH measures 11°, whereas the bend angle of the other PDI subunit (planes not shown) measures 9°. Free solvent, the CH(C$_5$H$_{11}$)$_2$ chains, and hydrogen atoms have been hidden to provide a clear view of the aryl surface. Thermal ellipsoids are set at 30% probability.
Figure S6. Structure of PPDH-OPe from SCXRD. (a) α,α,α-Trifluorotoluene – the solvent used in this crystallization – occupies the cavity between the PDI faces. (b and c) Different views of M-PPDH-OPe, with the solvent hidden. (d) PPDH-OPe packs into heterochiral columns (red, M-PPDH-OPe; blue, P-PPDH-OPe). The CH(C₅H₁₁)₂ imide chains, C₆H₆ alkyl fragments of the pentoxy groups, and hydrogen atoms have been hidden to provide a clear view of the aryl surface.
II. General Experimental Details

Synthesis and Materials: All reactions were conducted in oven-dried glassware with magnetic stirring. Schlenk flasks were evacuated and backfilled with argon or nitrogen three times prior to use. Anhydrous tetrahydrofuran was obtained from a Glass Contour solvent system consisting of a Schlenk manifold with purification columns packed with activated alumina and supported copper catalyst. These solvents were dispensed from Pure-Pac™ containers purchased from Sigma-Aldrich. Anhydrous, Sure/Seal™ 1,4-dioxane was used as purchased from Sigma-Aldrich. Bis(pinacolato)diboron was used as purchased from Matrix Scientific. 1-Bromoperylene-3,4,9,10-tetracarboxylicdiimide (PDIBr) was prepared using a procedure developed by Rajasingh et al.¹ 3,6-Dibromophenanthrene was synthesized using a procedure by Scott et al.² 3,6-Dibromophenanthrene-9,10-quinone was synthesized using a procedure by Francke et al.³ Potassium acetate was stored in a 200 °C oven for at least 24 h prior to use. Phenanthrene-9,10-quinone, 1-bromopentane, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium were purchased from Sigma-Aldrich. All remaining reagents and solvents were purchased from commercial sources and used without additional purification. SATCO 55 W Bright White (3700 lumens) compact fluorescent lamps (CFLs) were used during the oxidative photocyclizations.

Purification: Automated flash chromatography was performed using a Teledyne Isco CombiFlash Rf200 and Redisep Rf Silica columns. Silica plugs consisted of Silicycle SiliaFlash® P60 40-63 μm silica gel. Preparative thin-layer chromatography (TLC) employed Silicycle SiliaPlate™ Glass Backed TLC silica gel plates, 60 Å, 20 × 20 cm, 2000 μm thickness, F-254 indicator. Analytical TLC plates were cut from Silicycle SiliaPlate™ Glass Backed TLC Extra Hard Layer silica gel plates, 60 Å, 20 × 20 cm, 250 μm thickness, F-254 indicator.

NMR Spectroscopy: ¹H-NMR spectra were recorded on Bruker 500 MHz or 400 MHz spectrometers. ¹³C-NMR spectra were recorded on Bruker 126 MHz or 100 MHz spectrometers with complete proton decoupling. Chemical shifts for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃: δ 7.26; C₂H₂Cl₄: δ 6.00). Chemical shifts for carbon are reported in ppm downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.16, C₂D₂Cl₄: δ 73.78). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, m = multiplet, bm = broad multiplet), coupling constants in hertz, and integration.

High-Resolution Mass Spectrometry (HRMS): HRMS data were obtained at the Columbia University Mass Spectrometry facility using a Waters XEVO G2XS instrument equipped with a
UPC² SFC inlet, electrospray (ESI) and atmospheric pressure chemical (APCI) ionization, and a QToF mass spectrometer.

UV-Visible-Near-Infrared Absorbance Spectroscopy: The absorbance spectra in Figures 2b and S11 were obtained on a Jasco V-750 spectrophotometer.

Fluorescence: The fluorescence spectra in Figures 2b and S11 were recorded using a Jasco FP-8300 spectrofluorometer. Fluorescence quantum yields were measured with a Jobin Yvon FluoroMax4 spectrofluorometer equipped with a Horiba Scientific integrating sphere. Very dilute solutions of PPDH and PPDH-OPE in cyclohexane (absorbance of ~0.08 at the long wavelength peaks of 489 and 494 nm, respectively) were used in these quantum yield experiments. At room temperature, the solutions were excited from 395-405 nm, and their emissions were measured from 475-675 nm.

Voltammetry: Cyclic voltammograms in Figure 4 were recorded on a CHI600C electrochemical workstation using Ag/AgCl as the reference electrode, glassy carbon (3 mm diameter) as the working electrode, and a platinum wire as the counter electrode. Experiments were performed under argon in dichloromethane with [Bu₄N][PF₆] as the supporting electrolyte at a scan rate of 0.05 V/s.

Chiral Resolution: Racemic samples were analyzed by an Agilent 1200 Series analytical HPLC equipped with a diode array detector. Racemic samples were separated into their enantiomers by preparative HPLC using a Waters Prep150 LC System equipped with a UV-vis detector and an automated fraction collector. Further details are provided in the captions of Figures S1, S2, S9, and S10.

Electronic Circular Dichroism: The ECD spectra were recorded using a Jasco J-810 spectropolarimeter. A 10 mm path length high precision cell made of Quartz SUPRASIL® from Hellma Analytics was used in the collection of the spectra in Figure 2a.

Single-crystal X-ray Diffraction: Data for all compounds were collected on an Agilent SuperNova diffractometer using mirror monochromated Cu Kα radiation. Data collection, integration, scaling (ABSPACK), and absorption correction (face-indexed Gaussian integration or numeric analytical methods) were performed in CrysAlisPro (CrysAlisPro 1.171.38.41. Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England). The structure was solved by intrinsic phasing/Agilent Technologies UK Ltd, Yarnton, England). The structure was solved by intrinsic phasing using SHELXT and refined with full-matrix least-squares on F² in SHELXL using the OLEX2 interface. Successive cycles of least-square refinement followed by difference Fourier syntheses revealed the positions of the remaining non-hydrogen atoms. Hydrogen atoms were added in idealized positions.
Crystallographic data for **PPDH** and **PPDH-OPe** are given in Section VIII. Slow vapor diffusion of acetonitrile into a solution of **PPDH** in anisole afforded bright red prisms. Slow vapor diffusion of acetonitrile into a solution of **PPDH-OPe** in α,α,α-trifluorotoluene afforded small orange rods. The crystals were mounted on MiTeGen Kapton loops (polyimide) using paratone oil. Data were collected at 100 K.

Quantum Mechanical Calculations: All quantum chemical calculations were performed using Jaguar, version 8.3, Schrodinger, Inc., New York, NY, 2014. The geometries were optimized in the gas phase using the B3LYP functional and the 6-31G** basis set. For the optimized geometries of **PPDH** and **PPDH-OPe**, the associated absorption spectra were calculated using the TD-DFT method that is included in the Jaguar package. The B3LYP functional and the 6-31G** basis set were used in these calculations. All alkyl chains (CH[C₅H₁₁]₂ and C₅H₁₁) were modeled as methyl groups.

The effects of dispersion were also assessed in the geometric optimizations of **PPDH** and **PPDH-OPe**. In their energy benchmark study of 47 density functionals, Goerigk and Grimme emphasized the efficacy of DFT-D3 in modeling noncovalent interactions. They regard Zhao and Truhlar’s PW6B95, coupled with the DFT-D3 correction, as “the most robust and very accurate general purpose hybrid-functional.” Therefore, the PW6B95-D3/6-31G** level of theory was also used to optimize the gas-phase geometries of **PPDH** and **PPDH-OPe**. These optimized geometries diverge substantially from the SCXRD structures of **PPDH** and **PPDH-OPe**, which closely resemble the geometries predicted by B3LYP/6-31G** (Figure S23). Steric repulsion between the PDI subunits evidently predominates in these systems, which makes the B3LYP functional an appropriate choice for the calculation of strain (see Section VII).
III. Synthesis and Characterization

Scheme S1. Synthesis of PPDH and 5PPD

Scheme S2. Synthesis of PPDH-OPe
3,6-Dibromophenanthrene (S1): *trans*-4,4’-Dibromostilbene (0.362 g, 1.07 mmol, 1 eq), iodine (0.603 g, 2.38 mmol, 2.22 eq), and propylene oxide (2.0 ml, 29 mmol, 27 eq) were combined with 310 mL of benzene in a 320-mL quartz round-bottom flask and sparged with nitrogen for 10 minutes. The flask was placed in a Rayonet photoreactor (The Southern New England Ultraviolet Company) with sixteen 300 nm lamps and stirred under UV light for 8 h. This reaction mixture was combined with another batch that started with 0.314 g of dibromostilbene. The solvent was removed under reduced pressure. The solid was purified by hot recrystallization from hexanes to yield 0.499 g of white needles (1.48 mmol, 74% over two batches). All spectra matched those reported in the literature.

S2: S1 (0.107 g, 0.318 mmol, 1 eq), bis(pinacolato)diboron (0.176 g, 0.692 mmol, 2.18 eq), potassium acetate that had been dried in a 200 °C oven (0.243 g, 2.48 mmol, 7.79 eq), and [1,1’-bis(diphenylphosphino)ferrocene]dichloropalladium (0.0163 g, 0.0223 mmol, 7.00 mol%) were placed in an oven-dried 10-mL Schlenk flask, then evacuated and back-filled with nitrogen three times. In a separate oven-dried 10-mL round-bottom flask, 2 mL of anhydrous 1,4-dioxane were sparged for 8 min, then transferred to the reaction mixture and sparged for 3 min. The Schlenk flask was sealed with a glass stopcock and heated to 80 °C overnight, at which point it was added to 50 mL of deionized water. The aqueous layer was extracted with 3 x 50 mL of ethyl acetate. The organic layer was dried with MgSO₄, filtered, and the solvent removed with a rotary evaporator. Purification by column chromatography (SiO₂, gradient from 100% hexanes to 100% dichloromethane) afforded the white solid S2 (0.0406 g, 0.0944 mmol, 30%). ¹H NMR (400 MHz, CDCl₃, 300 K) δ 9.30 (s, 2H), 8.02 (dd, J = 10.8, 0.9 Hz, 2H), 7.88 (d, J = 9.9 Hz, 2H), 7.77 (s, 2H), 1.45 (s, 24H). ¹³C NMR (100 MHz, CDCl₃, 300 K) δ 134.24, 132.17, 130.37, 130.05, 128.20, 127.88, 84.16, 25.10. HRMS (APCI+) calculated m/z for [C₂₆H₃₂B₂O₄+H]⁺ is 431.2560; found 431.2575.
S3: PDIBr (0.152 g, 0.196 mmol, 2.12 eq), S2 (0.0398 g, 0.0925 mmol, 1 eq), K₂CO₃ (0.300 g, 2.17 mmol, 24.4 eq), and [1,1’-bis(diphenylphosphino)ferrocene]dichloropalladium (0.0088 g, 0.012 mmol, 13 mol%) were placed in a 10-mL Schlenk flask, then evacuated and back-filled with nitrogen three times. In a separate 10-mL round-bottom flask, 3 mL of tetrahydrofuran and 1 mL of deionized H₂O were sparged with nitrogen for 10 min, then transferred to the reaction mixture and sparged for 4 min. The Schlenk flask was sealed with a glass stopcock and heated at 75 °C overnight, at which point it was added to 35 mL of deionized water. It was extracted with dichloromethane until the aqueous layer turned colorless. The organic layer was dried with Na₂SO₄, filtered, and the solvent removed with a rotary evaporator. Purification by column chromatography (SiO₂, gradient from 100% hexanes to 100% dichloromethane) afforded the dark red solid S3 (0.133 g, 0.0847 mmol, 92%).

\[^{1}H \text{ NMR (500 MHz, } C₂D₂Cl₄, 403 K) \delta 9.12 (s, 2H), 8.77-8.65 (many overlapping signals, 10H), 8.13 (two overlapping doublets, 4H), 8.06 (s, 2H), 7.97 (d, } J = 8.3 \text{ Hz, 2H}, 7.69 (d, } J = 8.2 \text{ Hz, 2H}), 7.69 \text{ (d, } J = 8.2 \text{ Hz}, 2H), 5.17 \text{ (bm, 4H), 1.94 (bm, 8H), 1.34 (broad, overlapping signals, 55H), 0.88 (broad, overlapping signals, 25H).} \]

\[^{13}C \text{ NMR (126 MHz, } C₂D₂Cl₄, 403 K) \delta 163.73, 163.70, 163.45, 141.39, 141.32, 135.96, 134.77, 134.31, 134.19, 132.54, 132.28, 131.79, 130.66, 130.51, 130.00, 129.94, 129.07, 128.58, 128.08, 127.56, 127.44, 123.91, 123.57, 123.11, 122.98, 122.79, 122.52, 122.32, 74.03, 54.89, 54.70, 32.34, 31.39, 26.36, 22.06, 13.42. \]

HRMS (APCI+) calculated m/z for [C₁₀₆H₁₁₄N₄O₇+Na]⁺ is 1594.8562; found 1594.8595.

PPDH and 5PPD: PPD (0.0308 g, 0.0196 mmol, 1 eq), iodine (0.0322 g, 0.127 mmol, 6.48 eq), and K₂CO₃ (0.545 g, 3.94 mmol, 201 eq) were dissolved in 98 mL of benzene in a 150-mL round-bottom flask. The solution was sparged with nitrogen for 30 min and left under positive pressure of nitrogen while being irradiated by two 55 W CFLs for 24 h at 30 °C (the temperature
to which the light bulbs heated the solution) in a pristine oil bath. The solvent was removed by rotary evaporation and the material was loaded onto a small silica plug and dried with air. The plug was flushed with acetonitrile (40 mL) to remove iodine and benzene (but not the products, which are insoluble in acetonitrile and stay on the baseline). The mixture of products was brought down with 9:1 (v/v) dichloromethane/ethyl acetate and the solvent was removed by rotary evaporation. 1H NMR was taken of this mixture in CD$_2$Cl$_4$ at 393 K (Figure S7). To isolate the products, the mixture was loaded onto a plug again and flushed with 9:1 (v/v) dichloromethane/hexanes, then dichloromethane. These dichloromethane washes contained only 5PPD (0.0108 g, 0.0689 mmol, 35% isolated yield). PPDH was brought down with 9:1 (v/v) dichloromethane/ethyl acetate and the solvent removed by rotary evaporation to give a red solid (0.0193 g, 0.0123 mmol, 63% isolated yield). PPDH: 1H NMR (500 MHz, CD$_2$Cl$_4$, 393 K) δ 10.27 (s, 2H), 9.48 (d, $J = 8.7$ Hz, 2H), 9.08 (d, $J = 8.1$ Hz, 2H), 8.97 (d, $J = 8.2$ Hz, 2H), 8.75 (two overlapping doublets, 4H), 8.61 (s, 2H), 8.39 (d, $J = 8.1$ Hz, 2H), 8.33 (s, 2H), 5.35 (bm, 2H), 4.50 (bm, 2H), 2.35-2.20 (several overlapped signals, 8H), 1.69-0.79 (many overlapped signals, 80H). 13C NMR (126 MHz, CD$_2$Cl$_4$, 393 K) δ 164.16, 163.97, 162.72, 162.25, 132.84, 131.82, 129.91, 129.68, 129.66, 129.01, 128.49, 127.84, 127.72, 127.17, 126.25, 125.44, 125.31, 125.09, 123.80, 123.76, 123.43, 123.01, 122.68, 122.54, 121.87, 121.48, 119.47, 74.03, 55.35, 53.55, 32.73, 32.57, 31.61, 31.55, 31.26, 30.91, 30.78, 30.65, 26.85, 26.73, 25.95, 25.85, 22.22, 22.06, 13.56, 13.45, 13.41. HRMS (APCI+) calculated m/z for [C$_{106}$H$_{110}$N$_4$O$_8$+H]$^+$ is 1568.8430; found 1568.8474. 5PPD: 1H NMR (500 MHz, CD$_2$Cl$_4$, 393 K) δ 10.58 (s, 1H), 10.43 (s, 1H), 10.32 (s, 1H), 10.17 (s, 1H), 10.00 (s, 1H), 9.44-9.41 (three overlapping doublets, 3H), 9.19 (d, $J = 8.2$ Hz, 1H), 9.14-9.09 (three overlapping doublets, 3H), 9.04 (s, 1H), 9.02 (d, $J = 8.0$ Hz, 1H), 8.92 (d, $J = 8.0$ Hz, 1H), 8.67 (d, $J = 8.7$ Hz, 1H), 8.54 (d, $J = 8.6$ Hz, 1H), 8.38 (d, $J = 8.7$ Hz, 1H), 5.43 (bm, 2H), 4.98 (bm, 1H), 4.66 (bm, 1H), 2.46 (bm, 4H), 2.11-1.90 (overlapping peaks, 8H), 1.58-1.36 (overlapping peaks, 44 H), 0.98-0.48 (overlapping peaks, 32H). 13C NMR (126 MHz, CD$_2$Cl$_4$, 393 K) δ 164.42, 164.35, 164.29, 164.10, 163.80, 163.76, 163.67, 162.96, 134.13, 133.77, 133.64, 133.59, 133.32, 133.23, 132.29, 130.14, 129.54, 129.48, 129.39, 128.86, 128.86, 128.57, 128.10, 127.95, 127.85, 127.73, 127.62, 127.40, 127.29, 126.58, 126.52, 125.02, 125.01, 124.94, 124.88, 124.83, 124.70, 124.50, 123.55, 123.52, 123.24, 123.01, 122.88, 122.81, 74.03, 55.14, 53.79, 32.52, 32.47, 32.07, 31.75, 31.53, 31.41, 30.83, 26.53, 26.42, 25.68, 25.62, 22.31, 22.23, 22.08, 21.63, 21.60, 13.65, 13.59, 13.24, 13.19. HRMS (APCI+) calculated m/z for [C$_{106}$H$_{110}$N$_4$O$_8$+H]$^+$ is 1568.8430; found 1568.8464.

This reaction was repeated with PPD (0.0331 g, 0.0211 mmol, 1 eq), iodine (0.0371 g, 0.146 mmol, 6.94 eq), and K$_2$CO$_3$ (0.634 g, 4.59 mmol, 218 eq) in 106 mL of benzene at 70 °C for 24 h in a pristine oil bath. Isolation and purification followed the same procedure as above to give 0.0274 g (0.0175 mmol, 83%) of PPDH.

This reaction was repeated with PPD (0.0268 g, 0.0171 mmol, 1 eq), iodine (0.0291 g, 0.115 mmol, 6.72 eq), and K$_2$CO$_3$ (0.476 g, 3.44 mmol, 202 eq) in 90 mL of chlorobenzene at 110 °C for 24 h in a pristine oil bath. Isolation and purification followed the same procedure as above to give 0.0242 g (0.0154 mmol, 91%) of PPDH.
Figure S7. 1H-NMR spectra (500 MHz, C$_2$D$_2$Cl$_4$, 393 K) of the product mixtures (after an acetonitrile plug to remove iodine and benzene) resulting from the oxidative photocyclization of PPD at different temperatures. The integral shown for PPDH corresponds to two protons and the integral shown for 5PPD corresponds to one proton.
3,6-Dibromophenanthrene-9,10-quinone (S3): This molecule was synthesized according to a published procedure. All spectra matched those previously reported.

S4: 3,6-Dibromophenanthrene-9,10-quinone S3 (5.45 g, 14.9 mmol, 1 eq), Na₂S₂O₄ (25.9 g, 149 mmol, 10.0 eq), and tetrabutylammonium bromide (4.82 g, 15.0 mmol, 1.00 eq) were placed in a 500-mL round-bottom flask. Tetrahydrofuran (110 mL) and deionized water (110 mL) were added. The flask was capped and shaken for 6 min. 1-Bromopentane (8.1 mL, 65 mmol, 4.4 eq) was added, followed by KOH (22.0 g, 392 mmol, 26.3 eq) in 110 mL of water. The mixture became dark. It was allowed to stir for 48 h, after which it was judged complete by TLC (95:5 [v/v] hexane/ethyl acetate). The aqueous layer was extracted with 3 x 200 mL of ethyl acetate. The organic layers were combined and washed with water (2 x 200 mL), brine (1 x 100 mL), dried with Na₂SO₄, decanted, and the solvent removed with a rotary evaporator to yield a brown oil. Ethanol was added to precipitate the product, which was further washed with ethanol, leaving 4.59 g (9.03 mmol, 61%) of a pale yellow solid. This product contained trace (<5% by NMR) S4-deO, a molecule that lacks one oxygen. S4-deO could not be removed from S4 by silica gel column chromatography or recrystallization, so the product was carried forward. The monodeoxygenated impurity was removed by preparative HPLC after the oxidative photocyclization of PPD-OPe. An analytically pure sample of S4 and (and S4-deO, whose ¹H-NMR spectrum is included in Section VI) were obtained by preparative TLC (cyclohexane). ¹H NMR (500 MHz, CDCl₃, 300 K) δ 8.64 (s, 2H), 8.09 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H), 4.18 (t, J = 6.7 Hz, 4H), 1.91 (m, 4H), 1.54 (m, 4H), 1.44 (m, 4H), 0.97 (t, J = 7.3, 6H). ¹³C NMR (125 MHz, CDCl₃, 300 K) δ 143.28, 130.58, 129.00, 128.88, 125.52, 124.33, 120.44, 73.87, 30.26, 28.51, 22.72, 14.22. HRMS (APCI⁺) calculated m/z for [C₂₄H₂₈Br₂O₂]⁺ is 508.0436; found 508.0456.
S5: A 50-ml Schlenk flask was charged with S4 (0.982 g, 1.93 mmol, 1 eq), tetrahydrofuran (36 mL), and N,N,N′,N′-tetramethylethylenediamine (0.64 mL, 4.3 mmol, 2.2 eq). The flask was immersed in an acetone/dry ice bath. After being cooled for 15 min, 1.59 M n-butyllithium in hexanes (2.7 mL, 4.3 mmol, 2.2 eq) was added dropwise over 9 min and the solution was allowed to stir for an hour. 2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.91 mL, 4.4 mmol, 2.3 eq) was added and the solution was stirred cold for 20 min, then warmed up to room temperature. The reaction was monitored by TLC (95:5 [v/v] hexanes:ethyl acetate) and judged complete after 1 h. The reaction mixture was poured into saturated aqueous NH₄Cl (100 mL) and extracted with ethyl acetate (3 x 100 mL). The organic layer was dried with MgSO₄, filtered, and the solvent removed with a rotary evaporator to yield a slowly solidifying brown solid. The solid was recrystallized twice from ethanol to give 0.62 g (1.04 mmol, 54%) of white crystals. ¹H NMR (500 MHz, CDCl₃, 323 K) δ 9.22 (s, 2H), 8.23 (d, J = 8.2 Hz), 8.02 (d, J = 8.2 Hz), 4.21 (t, J = 6.7 Hz, 4H), 1.91, (m, 4H), 1.55 (m, 4H), 1.44-1.40 (two overlapped peaks, 28H), 0.96 (t, J = 7.3 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃, 323 K) δ 144.27, 132.33, 131.77, 130.25, 128.40, 121.46, 84.12, 73.79, 30.30, 28.54, 25.09, 22.73, 14.24. HRMS (APCI+) calculated m/z for [C₃₆H₅₂B₂O₆+H]⁺ is 603.4035; found 603.4047.

PPD-OPe: PDIBr (0.498 g, 0.640 mmol, 2.17 eq), S5 (0.178 g, 0.295 mmol, 1 eq), K₂CO₃ (1.32 g, 9.53 mmol, 32.3 eq) and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium (48.1 mg, 0.0657 mmol, 22.3 mol%) were placed in a two-neck 50-mL round-bottom flask fitted with a reflux condenser. The flask was evacuated and backfilled with nitrogen three times. In a separate flask, tetrahydrofuran (18 mL) and H₂O (2 mL) were sparged for 30 min with nitrogen. The solvents were transferred into the flask with the solids by syringe and sparged for 15 min. The reaction mixture was heated to reflux for 16 h, at the end of which it was added to 50 mL of deionized water. The aqueous layer was extracted with dichloromethane until it became clear
(≈100 mL). The organic layer was dried with MgSO₄, filtered, and the solvent removed with a rotary evaporator. Purification by column chromatography (SiO₂, gradient from 100% hexanes to 90% dichloromethane) afforded a red solid (0.348 g, 0.200 mmol, 68%). ¹H NMR (500 MHz, C₂D₂Cl₄, 403 K) δ 9.06 (s, 2H), 8.76-8.65 (several overlapped peaks, 10H), 8.51 (d, J = 8.3 Hz, 2H), 8.16 (d, J = 8.1 Hz, 2H), 8.01 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 5.18 (bm, 4H), 4.51 (bm, 4H), 2.25 (bm, 8H), 2.11 (m, 4H), 1.94 (bm, 8H), 1.73 (m, 4H), 1.61 (m, 4H), 1.35 (bm, 48H), 1.09 (t, J = 7.1 Hz, 6H), 0.89 (bm, 24H).

¹³C NMR (126 MHz, C₂D₂Cl₄, 403 K) δ 163.72, 163.47, 143.90, 141.48, 140.25, 136.06, 134.75, 134.42, 134.22, 132.49, 130.65, 130.61, 130.16, 130.03, 129.94, 129.88, 129.08, 128.53, 128.08, 127.45, 127.41, 124.62, 123.87, 123.56, 123.10, 122.91, 122.71, 122.36, 122.29, 73.95, 54.84, 54.67, 32.34, 31.40, 29.99, 28.26, 26.35, 22.24, 22.08, 13.54, 13.44. HRMS (APCI⁺) calculated m/z for [C₁₁₆H₁₃₄N₄O₁₀+H]⁺ is 1745.0206; found 1745.0222.

PPDH-OPe: PPD-OPe (0.0291 g, 0.0167 mmol, 1 eq), iodine (0.0285 g, 0.112 mmol, 6.73 eq), and K₂CO₃ (0.460 g, 3.33 mmol, 200 eq) were dissolved in 78 mL of benzene in a 150-mL round-bottom flask. The solution was sparged with nitrogen for 30 min and left under positive pressure of nitrogen while being irradiated by two 55 W CFL light bulbs for 76 h in a pristine oil bath. The amount of mono-cyclized intermediate decreased over this time, as observed by TLC (4:1 [v/v] dichloromethane/hexanes). However, the amount of decomposition also increased, so the reaction was halted. The solvent was removed by rotary evaporation and the material was loaded onto a small silica plug and dried with air. The plug was flushed with acetonitrile (40 mL), followed by 9:1 (v/v) dichloromethane/hexanes, then dichloromethane. These dichloromethane washes contained the mono-cyclized intermediate and decomposition (which have a combined mass of 4 mg. The decomposition product has broad, unidentifiable peaks in its ¹H-NMR spectrum and a mass that corresponds to loss of the pentyl groups). PPDH-OPe was brought down with 9:1 (v/v) dichloromethane/ethyl acetate and the solvent removed by rotary evaporation to give a red solid (0.0256 g, 88%). Due to the difficulty of separating S₄ from S₄-deO on a large scale, PPDH-OPe contains a small amount of the [7]helicene PPDH-OPe-deO (<5% of the product by NMR [Figure S8]). The separation between such similar molecules by HPLC is poor and the recovery is 76%, with the rest remaining in mixed fractions (Figure S9). ¹H NMR (500 MHz, C₂D₂Cl₄, 393 K) δ 10.26 (s, 2H), 9.47 (d, J = 9.0 Hz, 2H), 9.14 (d, J = 8.9
Hz, 2H), 9.08 (d, $J = 8.1$ Hz, 2H), 8.97 (d, $J = 8.2$ Hz, 2H), 8.74 (d, $J = 8.2$ Hz, 2H), 8.37 (d, $J = 8.1$ Hz, 2H), 8.29 (s, 2H), 5.35 (m, 2H), 4.84 (m, 2H), 4.69 (m, 2H), 4.49 (m, 2H), ~2.35-2.20 (bm, 12H), 1.89 (m, 4H), ~1.76-0.79 (several overlapping signals, 90H). 13C NMR (126 MHz, C$_2$D$_2$Cl$_4$, 363 K) δ 164.17, 164.01, 162.71, 162.35, 145.67, 132.79, 131.72, 130.19, 129.56, 129.28, 128.42, 127.88, 127.61, 127.10, 126.36, 125.44, 125.01, 124.15, 123.70, 123.50, 123.40, 123.00, 122.98, 122.59, 122.50, 122.43, 121.78, 121.37, 119.33, 74.76, 55.31, 53.53, 32.74, 32.55, 31.62, 31.55, 31.28, 30.81, 30.64, 30.15, 28.38, 26.87, 26.73, 25.98, 25.91, 22.39, 22.23, 22.10, 22.06, 13.70, 13.57, 13.48, 13.42. HRMS (ESI+) calculated m/z for [C$_{116}$H$_{130}$N$_4$O$_9$+Na]$^+$ is 1762.9712; found 1762.9644. For PPDH-OPe-deO, HRMS (APCI+) calculated m/z for [C$_{116}$H$_{130}$N$_4$O$_9$+H]$^+$ is 1724.9944; found 1724.9944.

Figure S8. 1H-NMR spectrum (CDCl$_3$, 323 K) of the mixture of PPDH-OPe and PPDH-OPe-DeO after a dichloromethane wash to remove the mono-cyclized intermediate and decomposition byproducts.
Figure S9. Separation of PPDH-OPe from the mono-deoxygenated impurity, PPDH-OPe-deO, by preparative HPLC. PPDH-OPe (~80 mg) was dissolved in 8 mL of 1:3 (v/v) dichloromethane/hexanes and injected in 1000 µL aliquots onto a CHIRALPAK® IA-3 column (21 mm I.D. × 250 mm, 5 µm), with 18% dichloromethane/hexanes flowing at 18 mL/min at room temperature. PPDH-OPe-deO is the small peak at 22 min. The splitting of the major peak is due to minimal separation of the enantiomers of PPDH-OPe on this chiral column.
Figure S10. Resolution of the enantiomers of PPDH-OPe by chiral preparative HPLC. The enantiomers of PPDH-OPe were resolved from 13 mg of racemic material dissolved in 9 mL of 1:8 [v/v] dichloromethane/hexanes. This solution was injected in 1000 µL aliquots onto a CHIRALPAK® IB-3 column (30 mm I.D. × 250 mm, 5 µm), with 16% polar eluent/hexanes (where the polar eluent was a mixture of 99:1 [v/v] dichloromethane/ethyl acetate) flowing at 19 mL/min at room temperature. The (-) and (+) correspond to the sign of the longest-wavelength Cotton effect observed for these enantiomers (Δε_{555 nm} = -68 and +65 M⁻¹ cm⁻¹).
V. Absorbance and Fluorescence of PPDH, PPDH-OPe, and NPDH in Cyclohexane

![Graph showing UV-visible absorbance spectra of PPDH, PPDH-OPe, and NPDH in cyclohexane (10 µM, 1 cm path length) and fluorescence spectra of PPDH and PPDH-OPe in cyclohexane (3 µM, λ_{ex} = 410 nm). Inset shows PPDH (left vial) and PPDH-OPe (right vial) in cyclohexane under a UV lamp emitting ~254 and ~365 nm light.](image)

Figure S11. UV-visible absorbance spectra of PPDH, PPDH-OPe, and NPDH in cyclohexane (10 µM, 1 cm path length) and fluorescence spectra of PPDH and PPDH-OPe in cyclohexane (3 µM, λ_{ex} = 410 nm). Inset shows PPDH (left vial) and PPDH-OPe (right vial) in cyclohexane under a UV lamp emitting ~254 and ~365 nm light.
VI. 1H-NMR and 13C-NMR Spectra
Part A: Calculating Strain Energy

We minimized the geometries of PPDH, 5PPD, and PPPD by DFT at the B3LYP/6-31G** level of theory. We calculated the strain energy of the helicenes by the formula:

\[E_{PPDH \text{ or } 5PPD} - E_{PPPD} = \text{Strain Energy} \]

The total energies (in hartrees) of the six phenanthrene-bridged PDI-dimers are provided on pages 34, 43, 46, 50, 58, and 61. As an isomer of PPDH and 5PPD, PPPD is a good reference because it is nearly planar and, therefore, virtually unstrained. The CH(C5H11)2 and C5H11 chains were modeled as methyl groups to simplify the calculations.

Figure S12. The strain energies of PPDH, PPDH-OPe, and their isomers calculated using Equation 1.
Part B: Molecular Orbitals, DFT-Optimized Molecular Structure, and TD-DFT Excited State Calculations of PPDH

Figure S13. Highest- and lowest-unoccupied molecular orbitals of PPDH from DFT (B3LYP/6-31G**). Orbital isosurfaces are illustrated at 0.05 electrons Bohr$^{-3}$. Methyl groups are used in place of CH(C$_3$H$_{11}$)$_2$ chains to simplify the calculations.
Figure S14. DFT-optimized model of M-PPDH (B3LYP/6-31G**) from different perspectives. Methyl groups substitute for the CH(C\textsubscript{5}H\textsubscript{11})\textsubscript{2} chains to simplify the calculation.

Methyl groups substitute for the CH(C\textsubscript{5}H\textsubscript{11})\textsubscript{2} chains to simplify the calculation.

Total energy = -3354.306915 hartrees

atom	x	y	z	
C1	-2.1825497627	2.3646560901	0.5642590288	
C2	-2.331990342	0.9473396360	0.6142325285	
C3	-3.6326258133	0.3828062069	0.713625847	
C4	-4.7698597722	1.2114987737	0.7198552691	
C5	-4.6130520846	2.5914442904	0.6393076515	
C6	-3.3411544063	3.1562672986	0.5694617036	
C7	-1.1944491725	0.0789899441	0.5685160729	
C8	-1.3572951154	-1.3182444480	0.7087202744	
C9	-2.6726642468	-1.8443531697	0.8362093940	
C10	-3.7762523313	-1.0299459981	0.8200673835	
C11	-5.1262558308	-1.6429916531	0.9040079896	
N12	-6.2185285434	-0.7690334209	0.8696219768	
C13	-6.1345020186	0.6325351371	0.7985908192	
C14	-0.8309694905	2.9298789953	0.5413201136	
C15	0.2913216198	2.0491575481	0.4755506099	
C16	0.1196271254	0.6280881949	0.4300483123	
C17	-0.5870339442	4.3106135527	0.6027554415	
C18	0.7053809046	4.8298245361	0.6163868064	
C19	1.8053602630	3.9804088846	0.5592726976	
C20	1.6064187463	2.5907367724	0.4750537014	
C21	2.7243552835	1.7098411410	0.4306898059	
C22	2.5379788605	0.3551211655	0.3357614853	
C23	1.2390650937	-0.2300358563	0.2842089163	
C24	3.1756387790	4.5436994595	0.6178125216	
N25	4.2405298814	3.6298581940	0.6137277191	
C26	4.1124669790	2.2378878000	0.4991329208	
C27	-7.5446775066	-1.3922604035	0.9305253111	
C28	5.5875267511	4.2022707797	0.7071227562	
O29	3.3978486391	5.7456100477	0.6814394228	
Atom	x	y	z	
------	-----------	-----------	-----------	
O30	5.0967158642	1.5102796891	0.4568807883	
O31	-5.3061262985	-2.8507213894	0.9944672970	
O32	-7.1408417845	1.3283745218	0.7962132003	
C33	1.0504631032	-1.6688510699	0.2542451371	
C34	-0.2016192432	-2.1870125774	0.6688503614	
C35	2.1147882900	-2.6084352431	-0.0459346356	
C36	2.0605833275	-3.8837590586	0.5795990208	
C37	0.8290756377	-4.3322150309	1.1359253988	
C38	-0.2874640679	-3.5508115651	-0.6378786769	
C39	3.2316062280	-4.6925557819	0.6436855706	
C40	-0.2016192432	-2.1870125774	0.6688503614	
C41	4.4095939755	-4.2427410480	0.1181839858	
C42	3.2316062280	-4.6925557819	0.6436855706	
C43	-0.2016192432	-2.1870125774	0.6688503614	
C44	4.4562454166	-0.8842839981	-2.4888289404	
C45	5.6730919082	-1.4911766621	-2.0512490310	
C46	5.6527944926	-2.6044301366	-1.2629863170	
H47	-5.5012172675	3.2134590926	0.6378786769	
H48	-3.2612557279	4.2353351397	0.5187355932	
H49	-2.8461623198	-2.9105468656	0.9007977274	
H50	-1.4172533864	5.0042253146	0.6591381071	
H51	0.8782319326	5.8983715752	0.6822286368	
H52	3.4218322258	-0.2646038930	0.3497466782	
H53	-8.2869805505	-0.6033075839	0.9007977274	
H54	-7.6464833186	-2.1150326982	0.1186354263	
H55	-7.6639547653	-1.9245922737	1.8769948257	
H56	5.6233361272	4.9050438804	1.5404710353	
H57	6.2877954596	3.8388777751	0.8534219337	
H58	5.8332390211	4.7448190481	-0.2092152517	
H59	0.7845201090	-5.3279303726	1.5675264899	
H60	-1.2285099785	-3.9451460266	1.4441862417	
H61	5.3309123218	-4.8019782664	0.2534809292	
H62	-3.1794213551	-5.6452349990	1.1625913616	
H63	6.6212020488	-1.1229893970	-2.4209816134	
H64	6.5723791109	-3.1355276428	-1.0352954500	
C65	3.2604164895	0.6383396320	-4.0354250978	
C66	4.4637141670	0.2266307582	-3.4169170019	
C67	5.6556159657	0.9518928244	-3.6939510218	
C68	5.6588053411	2.0381135448	-4.5311633214	
C69	6.5928043919	0.6952183933	-3.2183904005	
C70	4.4630536306	2.4552435848	-5.1813350566	
C71	3.2566033430	1.7375126800	-4.9524736186	
C72	2.0699493214	2.1201950906	-5.6458725487	
C73	2.1264883846	3.2380560477	-6.4924974214	
C74	3.3058578959	3.9542506567	-6.6845119758	
C75	4.4784016110	3.566886351	-6.0445753467	
---	---	---	---	---
H76	1.2390505982	3.5649090161	-7.0193472247	
H77	3.3348599879	4.8179725819	-7.3395115298	
C78	2.0509074959	-0.0831934301	-3.7825561976	
C79	2.0285352735	-1.1150846980	-2.8099359895	
C80	0.8610205602	-1.9295666437	-2.7320309875	
C81	-0.2535818755	-1.6804271253	-3.4917943635	
H82	0.8405889980	-2.8051399604	0.040404	
C83	2.0509074959	-0.0831934301	-3.7825561976	
C84	0.8610205602	-1.9295666437	-2.7320309875	
C85	-0.2535818755	-1.6804271253	-3.4917943635	
H86	0.8405889980	-2.8051399604	0.040404	
H87	0.8599076066	1.3143768338	-5.4708942969	
H88	-0.3184468351	1.551863735	-6.1963723828	
H89	-1.4452481133	0.7466147772	-6.052693403	
C90	-1.4355802785	-0.3215442761	-5.1594534320	
H91	-0.3610942013	2.3668230175	-6.070202725	
H92	-2.3419002007	0.9283945762	-6.323847345	
C93	6.9293448876	2.7765155213	-4.7506367231	
N94	6.8769933132	3.8812449870	-5.6089106918	
C95	5.7266086537	4.3357428133	-6.277256058	
C96	8.1371532357	4.6053953265	-5.8068486462	
O97	5.7638582965	5.3146652177	-7.0106267156	
O98	7.9860424153	2.4579116491	-4.2211394241	
C99	-2.6259317065	-1.1974838740	-5.0466079035	
C100	-2.5408127169	-2.270477317	-4.152370417	
C101	-1.4243602201	-2.5860440902	-3.3623605423	
C102	-3.7227296647	-3.1386736675	-4.0647913075	
O103	-3.6470358155	-1.0187218090	-5.6971455369	
O104	-1.4292476141	-3.5473689031	-2.6041389457	
H105	7.9449957691	5.4235811799	-6.4961955111	
H106	8.4994534768	4.9861273318	-4.8494268788	
H107	8.8923837103	3.9284903235	-6.2116497072	
H108	-3.5517541522	-3.8561008361	-3.2662802860	
H109	-4.6048469060	-2.5304416711	-3.8596050394	
H110	-3.8779070215	-3.6573552991	-5.0140533031	
PPDH Frontier Molecular Orbital Energies (eV):

LUMO+9	LUMO+8	LUMO+7	LUMO+6	LUMO+5
-1.27349	-1.38669	-1.63296	-1.63813	-1.76983
LUMO+4	LUMO+3	LUMO+2	LUMO+1	LUMO
-1.81963	-2.16793	-2.27134	-3.2602	-3.28605
HOMO	HOMO-1	HOMO-2	HOMO-3	HOMO-4
-5.88855	-6.00528	-6.24093	-6.39033	-6.86163
HOMO-5	HOMO-6	HOMO-7	HOMO-8	HOMO-9
-7.28585	-7.28912	-7.29266	-7.29783	-7.3166

Restricted Singlet Excited State 1:
2.2136 eV 560.11 nm

excitation	X coeff.
HOMO-3 => LUMO	0.13047
HOMO-1 => LUMO+1	-0.36785
HOMO => LUMO	-0.91680

Transition dipole moment (debye):
X = -2.5697 Y = -0.8561 Z = 1.4840
Tot = 3.0884

Oscillator strength, f = 0.0801

Restricted Singlet Excited State 3:
2.3857 eV 519.70 nm

excitation	X coeff.
HOMO-3 => LUMO+1	-0.17611
HOMO-2 => LUMO	0.31161
HOMO-1 => LUMO	-0.86374
HOMO => LUMO+1	0.32718

Transition dipole moment (debye):
X = -0.3208 Y = 0.0556 Z = 0.0341
Tot = 0.3274

Oscillator strength, f = 0.0010

Restricted Singlet Excited State 2:
2.2312 eV 555.69 nm

excitation	X coeff.
HOMO-1 => LUMO	-0.37572
HOMO => LUMO+1	-0.91712

Transition dipole moment (debye):
X = -0.5835 Y = 0.8871 Z = -0.3855
Tot = 1.1296

Oscillator strength, f = 0.0108

Restricted Singlet Excited State 4:
2.4107 eV 514.30 nm

excitation	X coeff.
HOMO-3 => LUMO	0.25271
HOMO-2 => LUMO+1	-0.40311
HOMO-1 => LUMO+1	0.81908
HOMO => LUMO	-0.28766

Transition dipole moment (debye):
X = -4.2084 Y = -2.3244 Z = 0.1421
Tot= 4.8097
Oscillator strength, f= 0.2115

Restricted Singlet Excited State 5:
2.5447 eV 487.23 nm

excitation X coeff.

HOMO-3 => LUMO -0.36853
HOMO-2 => LUMO+1 -0.85960
HOMO-1 => LUMO+1 -0.29278
HOMO-1 => LUMO+3 0.10909

Transition dipole moment (debye):
X= 3.0354 Y= 0.4303 Z= -2.2792
Tot= 3.8201

Oscillator strength, f= 0.1408

Restricted Singlet Excited State 6:
2.5508 eV 486.06 nm

excitation X coeff.

HOMO-3 => LUMO+1 -0.14627
HOMO-2 => LUMO -0.90971
HOMO-1 => LUMO -0.26449
HOMO-1 => LUMO+2 0.13558
HOMO => LUMO+1 0.11117
HOMO => LUMO+3 -0.16955

Transition dipole moment (debye):
X= 0.8624 Y= -2.2525 Z= 1.1692
Tot= 2.6806

Oscillator strength, f= 0.0695

Restricted Singlet Excited State 7:
2.7162 eV 456.47 nm

excitation X coeff.

HOMO-3 => LUMO 0.11614
HOMO-3 => LUMO+1 -0.92730
HOMO-2 => LUMO 0.13272
HOMO-1 => LUMO 0.16736
HOMO-1 => LUMO+2 0.16659
HOMO => LUMO+1 -0.15063
HOMO => LUMO+3 -0.11268

Transition dipole moment (debye):
X= 0.8625 Y= -0.2002 Z= 0.2345
Tot= 0.9160

Oscillator strength, f= 0.0086

Restricted Singlet Excited State 8:
2.7302 eV 454.13 nm

excitation X coeff.

HOMO-3 => LUMO 0.85153
HOMO-3 => LUMO+1 0.12604
HOMO-2 => LUMO+1 -0.26610
HOMO-1 => LUMO+1 -0.29203
HOMO => LUMO 0.23787
HOMO => LUMO+2 0.13932

Transition dipole moment (debye):
X= 5.2292 Y= 3.2302 Z= 0.5136
Tot= 6.1679

Oscillator strength, f= 0.3939

Restricted Singlet Excited State 9:
3.0560 eV 405.71 nm

excitation X coeff.

HOMO-4 => LUMO -0.21411
HOMO-3 => LUMO -0.16221
HOMO-3 => LUMO+2 -0.11509
HOMO => LUMO+2 0.93945

Transition dipole moment (debye):
X= 0.1461 Y= -1.2442 Z= -3.0535
Tot= 3.3005
Oscillator strength, f= 0.1262

Restricted Singlet Excited State 10:
3.0980 eV 400.21 nm

excitation X coeff.

HOMO-4 => LUMO+1 0.75396
HOMO-3 => LUMO+1 0.14918
HOMO-2 => LUMO 0.11780
HOMO-2 => LUMO+2 -0.21848
HOMO => LUMO+2 0.26659
HOMO => LUMO+3 -0.49329

Transition dipole moment (debye):
X= -0.3509 Y= 0.4947 Z= -0.0646
Tot= 0.6099

Oscillator strength, f= 0.0044

Restricted Singlet Excited State 11:
3.1223 eV 397.09 nm

excitation X coeff.

HOMO-4 => LUMO 0.90768
HOMO-1 => LUMO+3 0.26559
HOMO => LUMO+2 0.24154
HOMO => LUMO+8 0.10068

Transition dipole moment (debye):
X= 1.1601 Y= -2.0057 Z= 0.9037
Tot= 2.4870

Oscillator strength, f= 0.0753

Restricted Singlet Excited State 12:
3.2095 eV 386.30 nm

excitation X coeff.

HOMO-4 => LUMO+1 0.57124
HOMO-3 => LUMO+3 -0.24053
HOMO-2 => LUMO+2 0.53001
HOMO-1 => LUMO+2 -0.14452
HOMO => LUMO+3 0.49289

Transition dipole moment (debye):
X= 1.0936 Y= -2.0057 Z= 0.9037
Tot= 2.4870

Oscillator strength, f= 0.0044

Restricted Singlet Excited State 13:
3.2819 eV 377.78 nm

excitation X coeff.

HOMO-9 => LUMO -0.14136
HOMO-5 => LUMO+1 0.11636
HOMO-3 => LUMO+2 -0.12191
HOMO-1 => LUMO+2 -0.87206
HOMO => LUMO+3 -0.36694

Transition dipole moment (debye):
X= 0.3332 Y= -0.4694 Z= 0.1413
Tot= 0.5927

Oscillator strength, f= 0.0044

Restricted Singlet Excited State 14:
3.2998 eV 375.74 nm

excitation X coeff.

HOMO-8 => LUMO 0.57376
HOMO-8 => LUMO+1 -0.52210
HOMO-8 => LUMO+4 -0.14112
HOMO-8 => LUMO+5 -0.14075
HOMO-7 => LUMO -0.11002
HOMO-6 => LUMO -0.25775
HOMO-6 => LUMO+1 0.15197
HOMO-5 => LUMO 0.29499
HOMO-5 => LUMO+1 -0.34221
Transition dipole moment (debye):
X = 0.0437 Y = 0.0078 Z = -0.0314
Tot = 0.0543

Oscillator strength, f = 0.0000

Restricted Singlet Excited State 15:
3.3003 eV 375.68 nm

excitation	X coeff.
HOMO-8 => LUMO+1	-0.13728
HOMO-7 => LUMO	0.61064
HOMO-7 => LUMO+1	0.62574
HOMO-7 => LUMO+4	-0.14990
HOMO-7 => LUMO+5	0.13082
HOMO-6 => LUMO	0.14907
HOMO-6 => LUMO+1	0.19854
HOMO-5 => LUMO	0.23658
HOMO-5 => LUMO+1	0.14604

Transition dipole moment (debye):
X = -0.0008 Y = -0.0194 Z = 0.0077
Tot = 0.0209

Oscillator strength, f = 0.0000

Restrict
ed Singlet Excited State 16:
3.3051 eV 375.14 nm

excitation	X coeff.
HOMO-9 => LUMO	-0.19346
HOMO-9 => LUMO+1	0.24490
HOMO-8 => LUMO	0.39086
HOMO-8 => LUMO+1	-0.35373
HOMO-7 => LUMO+1	-0.10065
HOMO-6 => LUMO	0.52238
HOMO-6 => LUMO+1	-0.24968
HOMO-6 => LUMO+4	0.10091
HOMO-5 => LUMO	-0.28908
HOMO-5 => LUMO+1	0.34856

HOMO-5 => LUMO+5 -0.10747

Transition dipole moment (debye):
X = -0.1122 Y = 0.0691 Z = 0.2005
Tot = 0.2399

Oscillator strength, f = 0.0007

Restricted Singlet Excited State 17:
3.3066 eV 374.96 nm

excitation	X coeff.
HOMO-9 => LUMO	0.29690
HOMO-9 => LUMO+1	0.17003
HOMO-8 => LUMO	-0.12352
HOMO-7 => LUMO+1	-0.27316
HOMO-7 => LUMO+5	-0.23739
HOMO-6 => LUMO	0.40322
HOMO-6 => LUMO+1	0.53161
HOMO-6 => LUMO+5	-0.12477
HOMO-5 => LUMO+1	0.41062
HOMO-5 => LUMO+1	0.22268

Transition dipole moment (debye):
X = -0.0085 Y = -0.0292 Z = 0.1554
Tot = 0.1583

Oscillator strength, f = 0.0003

Restricted Singlet Excited State 18:
3.3541 eV 369.65 nm

excitation	X coeff.
HOMO-4 => LUMO	0.27739
HOMO-2 => LUMO+3	0.15924
HOMO-1 => LUMO+3	-0.91730

Transition dipole moment (debye):
X = 3.3030 Y = 0.5397 Z = -3.1973
Tot = 4.6286

Oscillator strength, f = 0.0003
Oscillator strength, $f = 0.2725$

Restricted Singlet Excited State 19:
3.5138 eV 352.85 nm

excitation	X coeff.
HOMO-14 => LUMO	-0.13882
HOMO-14 => LUMO+1	0.24200
HOMO-12 => LUMO	0.44063
HOMO-12 => LUMO+1	-0.23780
HOMO-11 => LUMO	-0.22887
HOMO-10 => LUMO	0.37037
HOMO-10 => LUMO+1	-0.48523
HOMO-9 => LUMO	-0.27289
HOMO-5 => LUMO	0.19775
HOMO-2 => LUMO+2	-0.20486
HOMO => LUMO+3	0.16180

Transition dipole moment (debye):
X = 0.7011 Y = -1.0255 Z = 0.3112
Tot = 1.2807

Oscillator strength, $f = 0.0219$

Restricted Singlet Excited State 20:
3.5194 eV 352.29 nm

excitation	X coeff.
HOMO-14 => LUMO	-0.31622
HOMO-14 => LUMO+1	-0.15302
HOMO-12 => LUMO	-0.17282
HOMO-12 => LUMO+1	-0.44696
HOMO-11 => LUMO	0.30640
HOMO-11 => LUMO+1	0.41568
HOMO-10 => LUMO	0.44651
HOMO-10 => LUMO+1	0.11264
HOMO-9 => LUMO	0.13533
HOMO-5 => LUMO	-0.10344

HOMO-3 => LUMO+2 0.19620
HOMO-2 => LUMO+2 0.13555
HOMO => LUMO+3 0.17698
HOMO => LUMO+3 -0.10381

Transition dipole moment (debye):
X = -0.0603 Y = 0.7066 Z = -0.5898
Tot = 0.9223

Oscillator strength, $f = 0.0114$
Figure S15. The simulated UV-visible absorbance spectrum of PPDH from TD-DFT (B3LYP/6-31G**), with (a) 35-nm-full-width-at-half-maximum electronic transitions and (b) zero-bandwidth. The energies of these transitions have not been scaled to match the experimental spectrum; instead, their wavelengths correspond to the singlet excited states listed above.
Part C: DFT-Optimized Molecular Structure of 5PPD

Figure S16. DFT-optimized model of \textbf{M-5PPD} (B3LYP/6-31G**) from different perspectives. Methyl groups substitute for the CH(C\textsubscript{5}H\textsubscript{11})\textsubscript{2} chains to simplify the calculation.

Total energy = -3354.322628 hartrees

atom	x (angstroms)	y (angstroms)	z (angstroms)
C1	0.1469196515	3.4161950451	3.3037084652
C2	-0.7260532238	2.2957728989	3.4361563417
C3	-1.8305777977	2.3684355978	4.3290863537
C4	-2.0940603206	3.5523880971	5.0430088841
C5	-1.2559904971	4.6500002093	4.8800168198
C6	-0.1528040808	4.5769886424	4.0319355190
C7	-0.5042164416	1.0901466897	2.6998704525
C8	-1.3331067240	-0.0371710657	2.9018172153
C9	-2.4098078035	0.0646332229	3.8248041957
C10	-2.6651439453	1.2291433196	4.5036923367
C11	-3.8270962012	1.2835941700	5.4264904555
N12	-4.0456099466	2.4917869192	6.0965045891
C13	-3.2501733044	3.6440630435	5.9676995517
C14	1.3342293647	3.2912957748	2.4548258065
C15	1.5498722251	2.0747711117	1.7423927041
C16	0.6065402524	0.9980251040	1.8020400751
C17	2.2865700585	4.3136554049	2.3310353959
C18	3.4391483971	4.1553959045	1.5665134796
C19	3.6782190797	2.9596363974	0.8983957447
C20	2.7316690102	1.9212721651	0.9684885797
C21	2.9743251240	0.6847177581	0.3049581123
C22	2.0335561527	-0.3131659269	0.328398440
C23	0.7922618961	-0.1655626631	1.0157074849
C24	4.9351693092	2.7830882993	0.1349492240
N25	5.1531001419	1.5272099086	-0.4499741530
C26	4.2519301260	0.4522418689	-0.4193693180
C27	-5.2004844984	2.5309367293	6.9996786162
C28	6.4263818598	1.3559947242	-1.1562732091
O29	5.773536724	3.6674739685	0.2099905556
C30	4.5130814128	-0.6105891902	-0.9662535939
O31	-4.5742752756	0.3314500607	5.6107798095
C32	-3.5075336367	4.6646921715	6.5911032031
C33	-0.1880473155	-1.2413876421	1.0562725297
C34	-1.1088273683	-1.2480685376	2.1390349909
C35	-0.1933512249	-2.3618359634	0.1410693830
C36	-0.7520024225	-3.5825648413	0.5875724427
C37	-1.5214064966	-3.6102008977	1.7804429705
C38	-1.7698925134	-2.4624791841	2.4791192749
C39	0.2605202580	-2.3151254462	-1.2459263552
C40	0.4669962347	-3.5393702589	-1.9610931241
C41	0.0909439189	-4.7832571410	-1.3570536499
C42	-0.5564138216	-4.7903637274	-0.1638107521
C43	0.3805819714	-1.1246592529	-1.9733082485
C44	0.8109573243	-1.0787616838	-3.3041764951
C45	1.1614485575	-2.3016113302	-3.9610962692
C46	0.9466393967	-3.4991859453	-3.2744019370
H47	-1.4741985096	5.5553303056	5.4356932745
H48	0.4846873566	5.4484468284	3.9500549959
H49	-3.0887927586	-0.7601237854	3.9968324970
H50	2.1417239317	5.2534596121	2.8485345585
H51	4.1732675986	4.9498470880	1.4893805390
H52	2.2793397502	-1.2395242329	-0.1701606787
H53	-5.248205199	3.5258779481	7.4349205490
H54	-6.1127814500	2.3098583507	6.4417168687
H55	-5.0861087748	1.7749900705	7.7796213650
H56	7.2540899441	1.5640855375	-0.4752999594
H57	6.4710945887	0.3304507318	-1.5140695396
H58	6.4869755031	2.0564918021	-1.9920671585
H59	-1.9539352028	-4.5533898268	2.1014942958
H60	-2.4184961164	-2.5019367947	3.3449853680
H61	0.2694204627	-5.7061257359	-1.9012126743
H62	-0.9309247690	-5.7188103898	0.2579914214
H63	1.1138030062	-4.4492795042	-3.7666387802
C64	1.3515116428	0.1869524914	-5.3749306979
C65	0.9113033634	0.1790496990	-4.0312187954
C66	0.5886589887	1.4150052941	-3.4122023605
C67	0.6634117656	2.6043255730	-4.0927874232
H68	0.2789166783	1.4691517700	-2.3770442993
C69	1.0740372771	2.6343265357	-5.4533288990
C70	1.4337537858	1.4194190236	-6.1014398558
Part D: DFT-Optimized Molecular Structure of PPPD

![DFT-optimized model of PPPD](image_url)

Figure S17. DFT-optimized model of **PPPD** (B3LYP/6-31G**) from different perspectives. Methyl groups substitute for the CH(C_5H_11)_2 chains to simplify the calculation.

Total energy = -3354.339834 hartrees

atom	x	y	z
C1	2.2393104037	1.3695645337	0.1298593516
C2	3.3905808018	0.5812658660	0.0858623426
C3	4.6541732192	1.253642053	0.0800503198
C4	4.6939876124	2.6467550378	0.0764406851
C5	3.5382079681	3.4380577513	0.0985790450
C6	2.2708322392	2.7772207944	0.1504586052
C7	3.3745988638	-0.8879454743	0.0544182241
C8	4.6221162482	-1.5890307264	0.0778193147
C9	5.8625673954	-0.8580623608	0.0941979397
C10	5.8778815086	0.4944709057	0.0833757129
C11	3.6000114661	4.8920927198	0.0707157385
C12	2.408345975	5.6516311901	0.1070743265
C13	1.1317144036	4.9920060128	0.1921057489
C14	1.0547819105	3.5772121370	0.2262404904
C15	4.8417213631	5.5769160353	-0.022806059
C16	4.9145354134	6.9458687760	-0.0405448313
C17	3.7306090145	7.7308977932	-0.0074076972
C18	2.4648786449	7.0840263559	0.0688831931
C19	1.2810316908	7.8797894341	0.1066840524
C20	-0.0194403366	7.2109476909	0.1990390723
C21	-0.0624457142	5.7837442363	0.2474785922
C22	-1.3237390941	5.1336558411	0.3547854191
C23	-1.3754759287	3.7146271627	0.4198934615
C24	-0.2235761942	2.9710181397	0.3527780664
C25	-1.2275934136	7.9203987987	0.2467620221
C26	-2.4569354334	7.2714909780	0.3459986730
C27	-2.5144734553	5.8852177412	0.4036351670
C28	3.8190611465	9.1364815682	-0.0495407481
C29	2.6568249437	9.8964445518	-0.0166763016
C30	1.4120151161	9.2749925733	0.0605498303
C31	-3.8302454392	5.2106406661	0.5155705142
N32	-3.8238213616	3.8115314908	0.5876665200
C33	-2.6748172553	3.0061982488	0.5717750038
C34	6.2495143334	7.5935956428	-0.1179844801
C35	-2.7465622732	1.7898436671	0.6757344479
O36	-4.8890502624	5.8238322806	0.5497274523
C37	7.2960548096	6.9586530434	-0.1553416067
O38	-2.7465622732	1.7898436671	0.6757344479
O39	7.2960548096	6.9586530434	-0.1553416067
C40	5.2370933917	11.0378080042	0.5497274523
C41	2.2069167597	-1.6500804130	-0.0067730857
C42	2.2054582421	-3.0578067793	-0.0283948164
C43	3.4569184403	-3.7477665213	0.0363735344
C44	4.6299057540	-2.9827351825	0.0774031833
C45	0.9717352744	-3.8292063621	-0.1190841919
C46	-0.2925844627	-3.1939360247	0.0452979023
C47	1.0166670964	-5.2453000721	-0.1004216079
C48	2.2769483336	-5.9346858906	-0.0067682123
C49	3.4850499284	-5.2032813564	0.0552979023
C50	-2.7414431691	-3.1670236295	-0.4757927300
C51	1.1964913756	-9.5341900124	-0.2017447480
C52	2.4249039046	-10.1854849399	0.0686665787
C53	3.6035264336	-9.4530414542	0.1306728308
C54	-2.6478486848	-6.0512428888	-0.361202116
C55	-2.6213124717	-7.4389310620	-0.3261372007
C56	-1.4072659322	-8.1156518831	-0.2237421950
C57	-2.7414431691	-3.1670236295	-0.4757927300
C58	-3.9084591508	-3.9446034657	-0.5182046534
C59	-3.9470997715	-5.3445650327	-0.4739546262
C60	4.9014816055	-10.1673597135	0.2220196743
C61	6.0559725243	-9.3672087918	0.2808037298
C62	6.0675333158	-7.9683985140	0.2615818930
C63	-5.0190008640	-5.9326926430	-0.5304376069
	x	y	z
---	-----	-----	-----
O74	-2.7840228353	-1.9473104728	-0.5543075370
O75	7.1278727002	-7.3588389715	0.3199472360
O76	4.9745218708	-11.3885218640	-0.2451556123
C77	7.3633850844	-10.0255855535	0.3713133396
C78	-5.2010746951	-3.262539069	-0.6378133148
H79	1.2786251550	0.8756614303	0.1507783198
H80	5.6716179869	3.1116977176	0.3199472360
H81	7.3633850844	10.3885218640	0.2451556123
H82	-3.848010940	7.8314866420	0.3823725507
H83	2.7420066612	10.9769024336	-0.0505311360
H84	0.5307702023	9.9039185779	0.0867436679
H85	-4.9699618428	2.0879901417	0.7185268675
H86	-5.6240109822	3.4840055441	1.6300831929
H87	-5.7645190309	3.4516926896	-0.1336974451
H88	7.4525782710	10.6953276411	-0.2498397397
H89	8.1926719220	9.3243050820	0.6357196024
H90	2.7420066612	10.9769024336	-0.0505311360
H91	7.1944002715	-11.0993877208	0.3692209489
H92	7.9642446486	-9.7312739070	-0.4773707102
H93	8.1132304421	9.2819488130	-1.1312675475
H94	1.2581882233	-1.134209568	-0.0426633088
H95	5.9562675705	-3.4701333295	0.1052416102
H96	-0.3836477607	-2.1162653949	-0.284352767
H97	5.6598739591	3.4516926896	0.1974828525
H98	0.3012149851	10.1414993185	-0.0683772535
H99	7.1944002715	9.2819488130	-1.1312675475
H100	-1.4285106207	-9.1975308261	-0.2024636214
H101	7.1944002715	-11.0993877208	0.3692209489
H102	7.9642446486	-9.7312739070	-0.4773707102
H103	8.1132304421	9.2819488130	-1.1312675475
H104	5.9562675705	-3.4701333295	0.1052416102
H105	-0.3836477607	-2.1162653949	-0.284352767
H106	5.6598739591	3.4516926896	0.1974828525
H107	0.3012149851	10.1414993185	-0.0683772535
H108	7.1944002715	9.2819488130	-1.1312675475
Part E: Molecular Orbitals, DFT-Optimized Molecular Structure, and TD-DFT Excited State Calculations of PPDH-OPe

![Diagram of molecular orbitals](image)

Figure S18. Highest- and lowest-unoccupied molecular orbitals of PPDH-OPe by DFT (B3LYP/6-31G**). Orbital isosurfaces are illustrated at 0.05 electrons Bohr$^{-3}$. We substitute methyl groups for the CH(C$_5$H$_{11}$)$_2$ and C$_5$H$_{11}$ chains to simplify the calculations.
Figure S19. DFT-optimized model of *M-PPDH-OPe* (B3LYP/6-31G**) from different perspectives. Methyl groups substitute for the CH(C₅H₁₁)₂ and C₅H₁₁ chains to simplify the calculation.

Total energy = -3583.346743 hartrees

Atom	x (Å)	y (Å)	z (Å)	
C1	-2.2733393585	2.3430114030	0.4296357562	
C2	-2.4072544101	0.9255901905	0.5238128084	
C3	-3.7016047842	0.3521714363	0.6660156968	
C4	-4.847318783	1.1695465076	0.6653322870	
C5	-4.705673021	2.5475708611	0.5350910721	
C6	-3.4412920582	3.1219446442	0.4252128530	
C7	-1.2628117011	0.0664563982	0.4914387514	
C8	-1.411056674	-1.3298374598	0.6619526493	
C9	-2.7200317874	-1.8616995796	0.8261298560	
C10	-3.8303376161	-1.0577030612	0.8148351905	
C11	-5.1713995617	-1.6791654167	0.9613868674	
N12	-6.2721768412	-0.8154401972	0.938063229	
C13	-6.2039048715	0.5822707877	0.8018175560	
C14	-0.9297005362	2.9230068222	0.3812699269	
C15	0.2011857869	2.0519437553	0.354597477	
C16	0.0456297687	0.6267900865	0.3481600565	
C17	-0.7025884139	4.3089191108	0.387447860	
C18	0.5842348029	4.8418060431	0.3947653642	
C19	1.6937160465	4.0023236433	0.3855314787	
C20	1.5100593592	2.6081610655	0.3510846585	
C21	2.6359724760	1.7361613242	0.3566354988	
C22	2.4652162789	0.3765392410	0.305553316	
C23	1.1748457979	-0.2246170570	0.2402794229	
C24	3.0577482297	4.5806536072	0.4423830487	
N25	4.1317333871	3.6780717161	0.4734999217	
C26	4.0181683265	2.2801275244	0.4250797652	
C27	-7.5888709605	-1.4459613023	1.0770016017	
C28	5.4708688814	4.2705185753	0.5524465120	
O29	3.2682777530	5.785902271	0.4735417993	
---	--------	--------	--------	--------
O30	5.0088373687	1.5602918161	0.4320052348	
O31	-5.3369717530	-2.8845680964	1.0979008283	
O32	-7.2166207371	1.2691742567	0.7966380082	
C33	1.0026470111	-1.6667312890	0.2232594489	
C34	-0.2502441153	-2.1923859496	0.6255221960	
C35	2.0803839585	-2.5982634721	-0.0620498475	
C36	2.0216628332	-3.8749746585	0.5579837889	
C37	0.7852005094	-4.3395224417	1.0892312563	
C38	-0.3329874941	-3.5608545296	1.0265736002	
C39	3.2206802830	1.2691742567	0.7966380082	
C40	-0.2502441153	-2.1923859496	0.6255221960	
C41	2.0803839585	-2.5982634721	-0.0620498475	
C42	2.0216628332	-3.8749746585	0.5579837889	
C43	0.7852005094	-4.3395224417	1.0892312563	
C44	-0.3329874941	-3.5608545296	1.0265736002	
H47	-5.600245705	3.1608975706	0.5307004891	
H48	-3.3744691208	4.1997364034	0.3407548363	
H49	-2.886047187	-2.9256810049	0.9275268445	
H50	-1.5406626697	4.9946925188	0.4066366109	
H51	0.7460606878	5.9138133036	0.4199845836	
H52	3.3548317394	-0.2330029098	0.3568951647	
H53	-8.3396625979	-0.6614872630	1.028711474	
H54	-7.7363833518	-2.171692235	0.2745486086	
H55	-7.6467818443	-1.9761654447	2.0300956719	
H56	5.5511769926	4.8802886168	1.4548132249	
H57	6.1922790909	3.4575849137	0.5729461443	
H58	5.643544891	4.9151742924	-0.3117780204	
H59	0.7479251444	-5.3431173295	1.4954439782	
H60	-1.2756517279	-3.9680158553	1.3672932829	
O61	5.5568913441	-4.936333176	0.3035326814	
O62	3.093470132	-5.9164534513	1.2603472635	
H63	6.6355550831	-1.0732045361	-2.3106399598	
H64	6.5530808061	-3.1100183080	-0.9491677665	
C65	3.3134216966	0.7057471498	-3.9806318121	
C66	4.5018883440	0.2848259841	-3.3402578649	
C67	5.7011696742	1.0117573295	-3.5805112936	
C68	5.7261767093	2.1021170374	-4.4122633989	
H69	6.6256852121	0.7521209461	-3.081469333	
C70	4.5479697991	2.5226757550	-5.0917288832	
C71	3.3336614175	1.8100802830	-4.8908389150	
C72	2.1649337045	2.2011852319	-5.6081804780	
C73	2.2476718879	3.3139519171	-6.4586423041	
C74	3.4344789229	4.0226722432	-6.6269072292	
C75	4.5886550475	3.6323679244	-5.9561512117	

51
PPDH-OPe Frontier Molecular Orbital Energies (eV):

LUMO+9 LUMO+8 LUMO+7 LUMO+6 LUMO+5
-1.22261 -1.35322 -1.60057 -1.6033 -1.73146

LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO
-1.78806 -2.08521 -2.25637 -3.23108 -3.24768

HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4
-5.84555 -5.92066 -6.07848 -6.34978 -6.79387

HOMO-5 HOMO-6 HOMO-7 HOMO-8 HOMO-9
-7.20884 -7.26136 -7.26191 -7.26953 -7.2698

Restricted Singlet Excited State 1:
2.1994 eV 563.71 nm

excitation X coeff.
----------- ----------
HOMO-3 => LUMO -0.10911
HOMO-1 => LUMO+1 -0.49546
HOMO => LUMO -0.85248

Transition dipole moment (debye):
X= 2.1911 Y= 0.4411 Z= -1.4716
Tot= 2.6760

Oscillator strength, f= 0.0597

Restricted Singlet Excited State 3:
2.2955 eV 540.12 nm

excitation X coeff.
----------- ----------
HOMO-3 => LUMO -0.13048
HOMO-2 => LUMO -0.13009
HOMO-2 => LUMO+1 0.38241
HOMO-1 => LUMO -0.35829
HOMO-1 => LUMO+1 0.70703
HOMO => LUMO -0.37567
HOMO => LUMO+1 0.17696

Transition dipole moment (debye):
X= 2.7541 Y= 1.1239 Z= 0.7256
Tot= 3.0618

Oscillator strength, f= 0.0816

Restricted Singlet Excited State 2:
2.2144 eV 559.90 nm

excitation X coeff.
----------- ----------
HOMO-2 => LUMO 0.10531
HOMO-1 => LUMO -0.42892
HOMO => LUMO+1 -0.88307

Transition dipole moment (debye):
X= 0.4612 Y= -1.2410 Z= 0.6630
Tot= 1.4806

Oscillator strength, f= 0.0184

Restricted Singlet Excited State 4:
2.2983 eV 539.47 nm

excitation X coeff.
----------- ----------
HOMO-3 => LUMO+1 0.11806
HOMO-2 => LUMO -0.28694
HOMO-2 => LUMO+1 -0.18368
HOMO-1 => LUMO -0.77348
HOMO-1 => LUMO+1 -0.33324

HOMO => LUMO 0.17650
HOMO => LUMO+1 0.32817

Transition dipole moment (debye):
X= -0.5787 Y= -1.8561 Z= 0.1862
Tot= 1.9532

Oscillator strength, f= 0.0332

Restricted Singlet Excited State 5:
2.4940 eV 497.14 nm

excitation X coeff.
-------- --------
HOMO-3 => LUMO+1 0.20489
HOMO-2 => LUMO 0.90594
HOMO-1 => LUMO -0.23055
HOMO-1 => LUMO+2 0.12595
HOMO => LUMO+1 0.18552
HOMO => LUMO+3 -0.10745

Transition dipole moment (debye):
X= -0.8142 Y= 2.1419 Z= -1.0870
Tot= 2.5361

Oscillator strength, f= 0.0608

Restricted Singlet Excited State 6:
2.5010 eV 495.73 nm

excitation X coeff.
-------- --------
HOMO-3 => LUMO -0.40388
HOMO-2 => LUMO+1 -0.83391
HOMO-1 => LUMO+1 0.29490
HOMO => LUMO -0.15501

Transition dipole moment (debye):
X= 4.6828 Y= 1.5194 Z= -2.1029
Tot= 5.3534

Oscillator strength, f= 0.2718

Restricted Singlet Excited State 7:
2.7070 eV 458.01 nm

excitation X coeff.
-------- --------
HOMO-3 => LUMO+1 0.92809
HOMO-2 => LUMO -0.18354
HOMO-1 => LUMO 0.12435
HOMO-1 => LUMO+2 0.17491
HOMO => LUMO+1 -0.15612
HOMO => LUMO+3 -0.11575

Transition dipole moment (debye):
X= -0.2535 Y= 0.7636 Z= -0.2444
Tot= 0.8409

Oscillator strength, f= 0.0073

Restricted Singlet Excited State 8:
2.7263 eV 454.77 nm

excitation X coeff.
-------- --------
HOMO-3 => LUMO -0.86865
HOMO-2 => LUMO+1 0.31278
HOMO-1 => LUMO+1 -0.18374
HOMO => LUMO 0.23897
HOMO => LUMO+2 0.15343

Transition dipole moment (debye):
X= -5.1380 Y= -3.2027 Z= -0.6309
Tot= 6.0872

Oscillator strength, f= 0.3831

Restricted Singlet Excited State 9:
3.0251 eV 409.86 nm

excitation X coeff.
-------- --------
HOMO-4 => LUMO -0.17602
HOMO-3 => LUMO 0.17070
HOMO-3 => LUMO+2 0.11572
HOMO => LUMO+2 0.94588
Transition dipole moment (debye):
X= -0.0874 Y= 1.1406 Z= 2.9201
Tot= 3.1362
Oscillator strength, f= 0.1128

Restricted Singlet Excited State 10:
3.0452 eV 407.15 nm

excitation X coeff.
------------ ---------
HOMO-4 => LUMO+1 0.52857
HOMO-3 => LUMO+1 -0.19286
HOMO-3 => LUMO+3 -0.12062
HOMO-2 => LUMO+2 0.26617
HOMO-1 => LUMO+2 0.60270
HOMO => LUMO+3 -0.44421

Transition dipole moment (debye):
X= 0.1619 Y= -0.4630 Z= -0.0100
Tot= 0.4906
Oscillator strength, f= 0.0028

Restricted Singlet Excited State 11:
3.0981 eV 400.19 nm

excitation X coeff.
------------ ---------
HOMO-4 => LUMO 0.92761
HOMO-2 => LUMO+3 -0.11865
HOMO-1 => LUMO+3 0.20517
HOMO => LUMO+2 0.20068
HOMO => LUMO+8 0.10152

Transition dipole moment (debye):
X= -1.4040 Y= -0.2670 Z= 1.1252
Tot= 3.1236 eV 396.93 nm

Oscillator strength, f= 0.0002

Restricted Singlet Excited State 12:
3.1236 eV 396.93 nm

excitation X coeff.
------------ ---------
HOMO-4 => LUMO+1 -0.77321
HOMO-3 => LUMO+3 -0.17299
HOMO-2 => LUMO+2 0.39945
HOMO-1 => LUMO+2 0.39257
HOMO-1 => LUMO+8 0.10120

Transition dipole moment (debye):
X= 0.5488 Y= -1.0852 Z= 0.5105
Tot= 1.3189
Oscillator strength, f= 0.0206

Restricted Singlet Excited State 13:
3.2659 eV 379.63 nm

excitation X coeff.
------------ ---------
HOMO-5 => LUMO -0.19165
HOMO-2 => LUMO+2 -0.56082
HOMO-1 => LUMO+2 0.59300
HOMO => LUMO+3 0.50791

Transition dipole moment (debye):
X= -0.0424 Y= -0.0329 Z= 0.0657
Tot= 0.0849
Oscillator strength, f= 0.0001

Restricted Singlet Excited State 14:
3.3023 eV 375.44 nm

excitation X coeff.
------------ ---------
HOMO-9 => LUMO 0.15460
HOMO-9 => LUMO+1 -0.18845
HOMO-9 => LUMO+4 0.10635
HOMO-9 => LUMO+5 -0.11989
HOMO-7 => LUMO 0.14153
HOMO-7 => LUMO+1 -0.39011
HOMO-6 => LUMO -0.64551
HOMO-6 => LUMO+1 0.53091

Transaction dipole moment (debye):
X= -0.0540 Y= -0.0281 Z= 0.0060
Tot= 0.0612

Oscillator strength, f= 0.0000

Restricted Singlet Excited State 15:
3.3025 eV 375.43 nm

excitation X coeff.
------------- ---------
HOMO-8 => LUMO -0.15502
HOMO-8 => LUMO+1 -0.19297
HOMO-8 => LUMO+4 -0.11016
HOMO-8 => LUMO+5 -0.11523
HOMO-7 => LUMO 0.65526
HOMO-7 => LUMO+1 0.51639
HOMO-6 => LUMO 0.15859
HOMO-6 => LUMO+1 0.37967

Transaction dipole moment (debye):
X= -0.0733 Y= -0.0450 Z= -0.0056
Tot= 0.0862

Oscillator strength, f= 0.0001

Restricted Singlet Excited State 16:
3.3107 eV 374.50 nm

excitation X coeff.
------------- ---------
HOMO-9 => LUMO+1 -0.32565
HOMO-8 => LUMO 0.68351
HOMO-8 => LUMO+1 0.52261
HOMO-7 => LUMO 0.14764
HOMO-7 => LUMO+1 0.14044
HOMO-7 => LUMO+5 -0.11931
HOMO-6 => LUMO 0.11695
HOMO-5 => LUMO 0.13704

Transaction dipole moment (debye):
X= 0.2030 Y= -0.0529 Z= -0.1712

Oscillator strength, f= 0.0009

Restricted Singlet Excited State 17:
3.3110 eV 374.46 nm

excitation X coeff.
------------- ---------
HOMO-9 => LUMO -0.66302
HOMO-9 => LUMO+1 0.53541
HOMO-8 => LUMO+1 0.30119
HOMO-7 => LUMO 0.14936
HOMO-6 => LUMO -0.14137
HOMO-6 => LUMO+1 0.16417
HOMO-5 => LUMO+1 0.12645
HOMO-1 => LUMO+3 0.13832

Transaction dipole moment (debye):
X= 0.3953 Y= 0.0800 Z= -0.4888
Tot= 0.6337

Oscillator strength, f= 0.0050

Restricted Singlet Excited State 18:
3.3286 eV 372.48 nm

excitation X coeff.
------------- ---------
HOMO-4 => LUMO 0.21604
HOMO-1 => LUMO+3 -0.93422

Transition dipole moment (debye):
X= -4.0268 Y= -0.8034 Z= 3.4747
Tot= 5.3790

Oscillator strength, f= 0.3652

Restricted Singlet Excited State 19:
3.4495 eV 359.43 nm
Excitation X coeff.

HOMO-X => LUMO+Y	X coeff.
HOMO-15 => LUMO+1	-0.11213
HOMO-12 => LUMO	-0.14599
HOMO-11 => LUMO+1	0.14764
HOMO-5 => LUMO	0.45510
HOMO-4 => LUMO+1	0.25132
HOMO-2 => LUMO+2	0.48036
HOMO => LUMO+3	0.59245

Transition dipole moment (debye):

X = -2.1021 Y = 3.5609 Z = -1.4997
Tot = 4.3986

Oscillator strength, f = 0.2531

Restricted Singlet Excited State 20:

Excitation X coeff.
HOMO-11 => LUMO
HOMO-5 => LUMO+1
HOMO-3 => LUMO+2
HOMO-2 => LUMO+3
HOMO => LUMO+4

Transition dipole moment (debye):

X = -0.1367 Y = -0.0575 Z = -0.2912
Tot = 0.3268

Oscillator strength, f = 0.0014

Figure S20. The simulated UV-visible absorbance spectrum of PPDH-OPe from TD-DFT (B3LYP/6-31G**) with (a) 35-nm-full-width-at-half-maximum electronic transitions and (b) zero-bandwidth. The energies of these transitions have not been scaled to match the experimental spectrum; instead, their wavelengths correspond to the singlet excited states listed above.
Part F: DFT-Optimized Molecular Structure of 5PPD-OPe

Figure S21. DFT-optimized model of \textit{M-5PPD-OPe} (B3LYP/6-31G**) from different perspectives. Methyl groups substitute for the CH(C$_{3}$H$_{11}$)$_{2}$ and C$_{5}$H$_{11}$ chains to simplify the calculation.

Total energy = -3583.364068 hartrees

atom	x	y	z			
C1	0.2230794379	3.4575002304	3.3252731050			
C2	-0.7074600619	2.3803165053	3.4137239584			
C3	-1.8425784290	2.5041421581	4.2611978348			
C4	-2.0788959710	3.6987486123	4.9670207894			
C5	-1.1880769068	4.7585871742	4.8375895284			
C6	-0.0550967434	4.6339039835	4.0366300681			
C7	-0.5166206706	1.1706623001	2.6747686431			
C8	-1.4107361173	0.0868283765	2.8308097745			
C9	-2.5135561233	0.2362913540	3.7159087352			
C10	-2.7366757665	1.4056911315	4.3970124116			
C11	-3.9258990856	1.5103104366	5.2804757568			
N12	-4.1114507346	2.7256753982	5.9482766376			
C13	-3.2639607995	3.8431320253	5.8473400876			
C14	1.4419361912	3.2730766145	2.5350454110			
C15	1.6243759289	2.0544318103	1.8169820508			
C16	0.6232058073	1.0293788731	1.8212443149			
C17	2.4599678948	4.2367869919	2.4776292034			
C18	3.6378098777	4.0215763363	1.7667320135			
C19	3.8365555309	2.8269571804	1.0835337337			
C20	2.8301474127	1.8443284288	1.0944949157			
C21	3.0257131794	0.6090331413	0.4137350819			
C22	2.0314730359	-0.3347122588	0.3770411431			
C23	0.7771374161	-0.1322754747	1.0245514449			
C24	5.1133448328	2.5903550136	0.3698988179			
N25	5.2730274894	1.3413195300	-0.2474592880			
C26	4.3145802010	0.3154002691	-0.2633614528			
----	----	----	----	----	----	----
C27	-5.2910689567	2.8143146164	6.8151628247			
C28	6.5566456836	1.1129737333	-0.9179040192			
O29	6.0107357959	3.4211490273	0.3168287135			
O30	4.5385792204	-0.7534796650	-0.8152290754			
O31	-4.7216266773	0.5931926490	5.4365382827			
O32	-3.5002369787	4.8754823228	6.4596991706			
C33	-0.2577689789	-1.1554509390	1.0170241100			
C34	-1.2195102164	-1.1263910965	2.0631970949			
C35	-0.2838963026	-2.2620920320	0.0863737488			
C36	-0.9168494244	-3.4587420674	0.4967389044			
C37	-1.7351185768	-3.4630370151	1.6568677535			
C38	-1.9555026567	-2.3091424797	2.3557365083			
C39	0.2053267217	-2.2128039074	-1.2856235310			
C40	0.3766400820	-3.4325137480	-2.0169939294			
C41	-0.0354779058	-4.6792119510	-1.4300286445			
C42	-0.7539849518	-4.6739273251	-0.2639191586			
C43	0.3900301006	-1.0149645272	-1.9865467015			
C44	0.8102044855	-0.9648107508	-3.3203672617			
C45	1.1101653498	-2.1915324724	-3.9951732629			
C46	0.8667104910	-3.3944138538	-3.3260169686			
H47	-1.3901398940	5.6747120984	5.3814297092			
H48	0.6217708412	5.4766992303	3.9760603481			
H49	-3.2366637964	-0.5563823862	3.8547609334			
H50	2.3485732119	5.1732282835	3.0093741895			
H51	4.4220503844	4.7701471832	1.7425383698			
H52	2.2443380275	-1.2624259094	-0.1346174790			
H53	-5.2957728946	3.8022673133	7.2685676492			
H54	-6.1968583822	2.6575081796	6.2255209464			
H55	-5.2446373868	2.0380345957	7.581813719			
H56	7.3718604430	1.2012658293	-0.1964573189			
H57	6.5328760980	0.1148055019	-1.3477125574			
H58	6.7063671790	1.8650439603	-1.6952541342			
H59	-2.2142416012	-4.3902790602	1.9459009870			
H60	-2.6446059234	-2.3244626547	3.1907031215			
H61	0.9934617097	-4.3440964736	-3.8258990774			
C62	1.3297371827	0.3052162356	-5.3949310899			
C63	0.9139952488	0.2958358083	-4.0430079112			
C64	0.5783818614	1.5288653923	-3.4254533148			
C65	0.6260736311	2.7175616315	-4.1092597968			
H66	0.2614818044	1.5778318025	-2.3927281630			
C67	1.0308092125	2.7507446091	-5.4707443896			
C68	1.3976180743	1.5386597996	-6.1210908936			
C69	1.8171749081	1.5811087346	-7.4853529480			
C70	1.8357398562	2.8204035038	-8.1395836801			
C71	1.4649639176	3.9995695970	-7.4952554129			
C72	1.0650030429	3.9765933409	-6.1652506612			
H73	2.1426858497	2.8812515225	-9.1765289736			
H74	1.4823130554	4.9507058805	-8.0157601313			
C75	1.6902686883	-0.9245738192	-6.0527917128			
C76	1.6022612127	-2.1555324734	-5.3645141397			
-------	---------------	-----------------	----------------			
C77	2.0027408269	-3.3413214850	-6.0326231531			
C78	2.4504144578	-3.3269133377	-7.3300192613			
H79	1.9799274453	-4.3001735249	-5.5322894898			
C80	2.5207636154	-2.1041215626	-8.0515336844			
C81	2.1397234318	-0.8903140156	-7.4172444605			
C82	2.2124423814	0.3328821892	-8.1456232605			
C83	2.6611456058	0.2903524930	-9.4724137602			
C84	3.0345387070	-0.9036736367	-10.086875548			
C85	2.9691390950	-2.1009600987	-9.3872029209			
H86	2.7287845643	1.2029432055	-10.0507407589			
H87	3.3815111434	-0.9206499848	-5.5322894898			
C88	0.2410979113	3.9671870676	-3.4048435316			
N89	0.2849633982	5.1499427665	-4.1504365547			
C90	0.6750418768	5.2438920300	-5.4982284930			
C91	-0.1104227416	6.3738678580	-3.4464089866			
O92	0.6876078546	6.3200252339	-6.086621040			
O93	-0.1053394445	3.9900516912	-2.2301705770			
C94	3.3745925138	-3.3623824878	-10.0521890312			
N95	3.2952595359	-4.5375424640	-9.2916078167			
C96	2.8585266020	-4.6104092348	-7.9607471518			
C97	3.7087332287	-5.7730733334	-9.9648007081			
O98	3.7667638493	-3.4063484248	-11.2108173668			
O99	2.8777985481	-5.6770770299	-7.3612404459			
H100	-0.0408284128	7.1988970301	-4.1508578697			
H101	-1.1313128187	6.2706465632	-3.0726296767			
H102	0.5504323302	6.5402934840	-2.5929744612			
H103	3.5960501292	-6.5897159163	-9.2562593597			
H104	3.0868689170	-5.9397418530	-10.8467958569			
H105	4.7473987360	-5.6865566722	-10.2906736266			
H106	0.1579933337	-0.0957200376	-1.4722493786			
O107	-1.2839211423	-5.8220638318	0.2735656863			
C108	-2.3026207952	-6.4648995882	-0.5115526792			
O109	0.1932248527	-5.8291659345	-2.1449723171			
C110	1.0679812265	-6.7765217467	-1.5076171191			
H111	-3.1500087886	-5.7887103399	-0.6689387054			
H112	-1.9121486703	-6.7938820201	-1.4779591466			
H113	-2.6298058194	-7.3271389560	0.0719667542			
H114	0.6450925066	-7.1317006273	-0.5635910986			
H115	1.1709669324	-7.6076337928	-2.2068208897			
H116	2.0509261432	-6.3282464394	-1.3254584339			
Part G: DFT-Optimized Molecular Structure of PPPD-Ope

![Molecular Structure Diagram]

Figure S22. DFT-optimized model of PPPD-Ope (B3LYP/6-31G**) from different perspectives. Methyl groups substitute for the CH(C$_5$H$_{11}$)$_2$ chains and C$_5$H$_{11}$ chains to simplify the calculation.

Total energy = -3583.381789 hartrees

atom	x (angstroms)	y (angstroms)	z (angstroms)																																														
C1	2.2598805513	1.3603290604	0.1812935206																																														
C2	3.4122529676	0.5789790315	0.0945306698																																														
C3	4.6720296636	1.255681675	0.0586297546																																														
C4	4.7077704088	2.6487375438	0.0380361469																																														
C5	3.5452071677	3.4306326167	0.0873434689																																														
C6	2.2844019426	2.7669877221	0.2016791977																																														
C7	3.3958810283	-0.8866885057	0.0488671190																																														
C8	4.6386700195	-1.5926674887	0.1052300813																																														
C9	5.8888567960	-0.8643524407	0.1356623332																																														
C10	5.9059378272	0.4980596755	0.0540292277																																														
C11	3.5941916041	4.8846156191	0.0307814001																																														
C12	2.4011968376	5.6380971944	0.1261047196																																														
C13	1.1364305317	4.9735402866	0.2974148909																																														
C14	1.0706665036	3.5596228206	0.3453175462																																														
C15	4.8236278295	5.5750513947	-0.1363859946																																														
C16	4.8830232919	6.9437786916	-0.2075156012																																														
C17	3.6980530854	7.7225114547	-0.1092835337																																														
C18	2.4445183278	7.0699651544	0.0619699433																																														
C19	1.2596962131	7.8592531241	0.1660315770																																														
C20	-0.0267141504	7.1842087052	0.3598647897																																														
C21	-0.0569218004	5.7576254469	0.4253265271																																														
C22	-1.3038376004	5.1013148573	0.6266292120																																														
C23	-1.3417035271	3.6829908278	0.7068061160																																														
C24	-0.1922205935	2.9481546224	0.5630426955																																														
C25	-1.2334693086	7.8856986213	0.4891641585																																														
C26	-2.4486093606	7.2314422836	0.6824863503																																														
C27	-2.4932570419	5.8453811663	0.7550677640																																														
C28	3.7725693164	9.1276752876	-0.1830133307																																														
	C29	C30	C31	C32	C33	C34	C35	C36	C37	C38	C39	C40	C41	C42	C43	C44	C45	C46	C47	C48	C49	C50	C51	C52	C53	C54	C55	C56	C57	C58	C59	C60	C61	C62	C63	C64	C65	C66	C67	C68	C69	C70	C71	C72	C73	C74	C75	C76	C77
---	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------			
	2.6093657355	9.8811977430	-0.0865548263	1.3767245162	9.2543167451	0.0854222252	-3.7926907666	5.1631592842	0.9688730295	2.6204180118	9.6660479900	0.9605544444	6.2038133865	7.5982387520	-0.3925175700	6.2123009218	8.9959236997	-0.4546067816	5.0748442494	9.8167428876	-0.3628273931	6.2576787429	8.0167428876	-0.3657456931	5.1653897523	11.035279237	-0.4295984493	6.0629792462	3.1077253354	1.2758604519	7.5233924047	9.6284724129	-0.6333324946	2.2227989162	-1.6410279930	-0.0586912522	2.2210718958	-3.0475403730	-0.833149626										
	2.3762002134	1.0003279439	1.0234605432	3.9004012039	2.6093657355	9.8811977430	-0.0865548263	1.3767245162	9.2543167451	0.0854222252	2.6204180118	9.6660479900	0.9605544444	6.2038133865	7.5982387520	-0.3925175700	6.2123009218	8.9959236997	-0.4546067816	5.0748442494	9.8167428876	-0.3628273931	6.2576787429	8.0167428876	-0.3657456931	5.1653897523	11.035279237	-0.4295984493	6.0629792462	3.1077253354	1.2758604519	7.5233924047	9.6284724129	-0.6333324946	2.2227989162	-1.6410279930	-0.0586912522	2.2210718958	-3.0475403730	-0.833149626									
Atom	X	Y	Z	Coordinates																																													
------	-------------	-------------	-------------	-------------																																													
C78	-5.1185902700	-3.2129100906	-1.2476083917																																														
C79	7.0446986223	-1.6077013047	0.1725264146																																														
O80	7.0785010605	1.2140929325	0.0404502641																																														
C81	7.8991104229	1.0326987215	-1.1268287994																																														
C82	7.8324466932	-1.4606462286	1.3669980930																																														
C83	1.3048370253	0.8592102899	0.2435838444																																														
O84	5.6842806668	3.1091257574	0.0011642720																																														
C85	7.8991104229	1.0326987215	-1.1268287994																																														
C86	7.8324466932	-1.4606462286	1.3669980930																																														
O87	7.0446986223	-1.6077013047	0.1725264146																																														
O88	7.0785010605	1.2140929325	0.0404502641																																														
C89	7.9624635533	-9.7661461160	-0.0637432961																																														
C90	7.8991104229	1.0326987215	-1.1268287994																																														
O91	7.8324466932	-1.4606462286	1.3669980930																																														
C92	1.3048370253	0.8592102899	0.2435838444																																														
O93	5.6842806668	3.1091257574	0.0011642720																																														
C94	7.9624635533	-9.7661461160	-0.0637432961																																														
C95	7.8991104229	1.0326987215	-1.1268287994																																														
O96	7.8324466932	-1.4606462286	1.3669980930																																														
C97	1.3048370253	0.8592102899	0.2435838444																																														
O98	5.6842806668	3.1091257574	0.0011642720																																														
C99	7.9624635533	-9.7661461160	-0.0637432961																																														
O100	7.8991104229	1.0326987215	-1.1268287994																																														
O101	7.8324466932	-1.4606462286	1.3669980930																																														
C102	1.3048370253	0.8592102899	0.2435838444																																														
O103	5.6842806668	3.1091257574	0.0011642720																																														
C104	7.9624635533	-9.7661461160	-0.0637432961																																														
O105	7.8991104229	1.0326987215	-1.1268287994																																														
O106	7.8324466932	-1.4606462286	1.3669980930																																														
C107	1.3048370253	0.8592102899	0.2435838444																																														
O108	5.6842806668	3.1091257574	0.0011642720																																														
O109	7.9624635533	-9.7661461160	-0.0637432961																																														
O110	7.8991104229	1.0326987215	-1.1268287994																																														
O111	7.8324466932	-1.4606462286	1.3669980930																																														
O112	1.3048370253	0.8592102899	0.2435838444																																														
O113	5.6842806668	3.1091257574	0.0011642720																																														
O114	7.9624635533	-9.7661461160	-0.0637432961																																														
O115	7.8991104229	1.0326987215	-1.1268287994																																														
O116	7.8324466932	-1.4606462286	1.3669980930																																														
Part H: Superimposition of the SCXRD Structures and DFT-Optimized Geometries

Figure S23. Optimization in the gas phase at the B3LYP/6-31G** level of theory returns geometries of PPDH and PPDH-OPe (depicted in red) that resemble the corresponding structures from SCXRD (orange). In contrast, optimization at the PW6B95-D3/6-31G** level of theory gives highly compressed bilayers (blue). We substituted methyl groups for the CH(C₆H₁₁)₂ and C₆H₁₁ chains to simplify the DFT calculations. These alkyl groups have been hidden in the structures above to provide an unobstructed view of the aryl surfaces.
VIII. Single-crystal X-ray Diffraction Data

Crystallographic data corresponding to PPDH have been deposited with the Cambridge Crystallographic Data Centre (CCDC #1864290).

PPDH·Anisole
Formula
MW
Space group
a (Å)
b (Å)
c (Å)
α (°)
β (°)
γ (°)
V (Å³)
Z
ρ_{calc} (g cm⁻³)
T (K)
λ (Å)
2θ_{min}, 2θ_{max}
Nref
R(int), R(σ)
μ(mm⁻¹)
Size (mm)
T_{min} / T_{max}
Data
Restraints
Parameters
R₁(obs)
wR₂(all)
S
Peak, hole (e⁻ Å⁻³)
Crystallographic data corresponding to PPDH-OPe have been deposited with the Cambridge Crystallographic Data Centre (CCDC #1864289).

PPDH-OPe·CF₃Ph

Property	Value
Formula	C₁₂₃H₁₃₅F₃N₄O₁₀
MW	1886.34
Space group	P-1
a (Å)	16.011(3)
b (Å)	17.232(3)
c (Å)	19.864(3)
α (°)	68.468(15)
β (°)	77.568(14)
γ (°)	82.152(13)
V (Å³)	4968.3(15)
Z	2
ρ calc (g cm⁻³)	1.261
T (K)	100
λ (Å)	1.54184
2θ min, 2θ max	7, 78
N ref	13770
R(int), R(σ)	.0894, .1413
μ(mm⁻¹)	0.659
Size (mm)	.16 x .03 x .02
T min / T max	.760
Data	5376
Restraints	101
Parameters	687
R₁(obs)	0.0960
wR₂(all)	0.2985
S	1.019
Peak, hole (e⁻ Å³)	0.46, -0.38

R₁ = \left[\sum (F_o - F_c)^2 / \sum F_o^2 \right]^{1/2}; wR2 = \left[\sum [w(F_o^2 - F_c^2)^2] / \sum w(F_o^2) \right]^{1/2}, w = 1/[σ²(F_o^2) + (aP)^2 + bP], where P = [max(F_o^2,0) + 2(F_c^2)]/3
IX. References

(1) Rajasingh, P.; Cohen, R.; Shirman, E.; Shimon, L. J. W.; Rybtchinski, B. Selective Bromination of Perylene Diimides under Mild Conditions. *J. Org. Chem.* **2007**, *72*, 5973–5979.

(2) Scott, D. W.; Bunce, R. A.; Materer, N. F. Synthesis of 3,6-Dihalophenanthrene Derivatives. *Org. Prep. Proced. Int.* **2006**, *38*, 325–331.

(3) Francke, R.; Little, R. D. Optimizing Electron Transfer Mediators Based on Arylimidazoles by Ring Fusion: Synthesis, Electrochemistry, and Computational Analysis of 2-Aryl-1-Methylphenanthro[9,10-d]Imidazoles. *J. Am. Chem. Soc.* **2014**, *136*, 427–435.

(4) Blanc, E.; Schwarzenbach, D.; Flack, H. D. The Evaluation of Transmission Factors and Their First Derivatives with Respect to Crystal Shape Parameters. *J. Appl. Crystallogr.* **1991**, *24*, 1035–1041.

(5) Clark, R. C.; Reid, J. S. The Analytical Calculation of Absorption in Multifaceted Crystals. *Acta Crystallogr. Sect. A* **1995**, *51*, 887–897.

(6) Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. Sect. A* **2015**, *71*, 3–8.

(7) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *Acta Crystallogr. Sect. C* **2015**, *71*, 3–8.

(8) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Crystallogr.* **2009**, *42*, 339–341.

(9) Bochevarov, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A. Jaguar: A High-Performance Quantum Chemistry Software Program with Strengths in Life and Materials Sciences. *Int. J. Quantum Chem.* **2013**, *113*, 2110–2142.

(10) Goerigk, L.; Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. *Phys. Chem. Chem. Phys.* **2011**, *13*, 6670–6688.