A fast and simple $O(z \log n)$-space index for finding approximately longest common substrings

Nick Fagan, Jorge Hermo González and Travis Gagie

December 6, 2022

Abstract

We describe how, given a text $T[1..n]$ and a positive constant ϵ, we can build a simple $O(z \log n)$-space index, where z is the number of phrases in the LZ77 parse of T, such that later, given a pattern $P[1..m]$, in $O(m \log \log z + \text{polylog}(m + z))$ time and with high probability we can find a substring of P that occurs in T and whose length is at least a $(1 - \epsilon)$-fraction of the length of a longest common substring of P and T.

1 Introduction

Finding a longest common substring (LCS) of two strings $P[1..m]$ and $T[1..n]$ is a classic problem, first solved in optimal $O(m + n)$ time fifty years ago when Weiner [10] showed how to build a suffix tree for T in $O(n)$ time. Since a suffix tree for T takes $\Omega(n)$ space with a fairly large constant coefficient hidden in the asymptotic notation, however, researchers have shown how to solve the problem quickly with a suffix array for T (in space bounded in terms of the empirical entropies of T), LZ77-indexes and grammar-based indexes for T (in $O(z \log n)$ space, where z is the number of phrases in the LZ77 parse of T) and, most recently, with an index based on the run-length compressed Burrows-Wheeler Transform of T (in space proportional to the number r of runs in transformed T plus $O(z \log n)$). We refer the reader to Navarro’s text citeNav16 for descriptions of all these data structures except the last, which Bannai, Gagie and I [2] proposed and Rossi et al. [9] implemented recently.

For highly repetitive datasets such as genomic databases, LZ77-indexes and grammar-based indexes are the smallest of these data structures, but the approaches to finding LCSs with them so far are either slow or complicated. Gagie, Gawrychowski and Nekrich [5] gave the first non-trivial solutions, using either $O(z \log n)$ space and $O(m \log^2 z)$ query time or $O(z (\log n + \log^2 z))$ space and $O(m \log(z) \log \log z)$ query time. Abedin, Hooshmand, Ganguly and Thankachan [1] showed how to use $O(z \log n)$ space and $O(m \log(z) \log \log z)$ query time with high probability. Gao [6] showed how to compute the matching statistics of P with respect to T — from which in $O(m)$ time we can compute the maximal exact matches (MEMs) of P with respect to T, a longest of which is an LCS of P and T — using either $O(\delta \log(n/\delta))$ space and $O(m^2 \log^2 \gamma + m \log n)$ query time, or $O(\delta \log(n/\delta) + \gamma \log \gamma)$ space and $O(m^2 + m \log(\gamma) \log \log \gamma + m \log n)$ query time, where $\delta \leq \gamma \leq z$ are more sophisticated measures of compressibility. Most recently, Navarro [8] showed how to compute the MEMs of P with respect to T using $O(\delta \log(n/\delta))$ space and $O(m \log(m) (\log m + \log^z n))$. None of these solutions have been implemented, however.
In this paper we describe how, given T and a positive constant ϵ, we can build a simple $O(z \log n)$-space index such that later, given P, in $O(m \log \log z + \text{polylog}(m + z))$ time and with high probability we can find a substring of P that occurs in T and whose length is at least a $(1 - \epsilon)$-fraction of the length of an LCS of P and T.

2 Data Structures

Given a text $T[1..n]$ and a positive constant ϵ, we first compute the LZ77 parse of T and then build the sets

$$S_L = \left\{ T[i..j] : j - i + 1 = \lceil (1/(1 - \epsilon))^e \rceil \geq 1 \text{ for some integer } e \text{ and some LZ77 phrase ends with } T[j] \right\}$$

and

$$S_R = \left\{ T[j + 1..k] : k - j = \lceil (1/(1 - \epsilon))^e \rceil \text{ for some integer } e \text{ and some LZ77 phrase begins with } T[j + 1] \right\}$$

of substrings of T. Notice S_R contains the empty substring but S_L does not.

We compute the Karp-Rabin fingerprints of the $O(z \log n)$ substrings in S_L and store those fingerprints in an $O(z \log n)$-space map that, given a fingerprint of a substring $T[i..j] \in S_L$, in constant time returns the co-lexicographic range of phrases ending with $T[i..j]$. (Although it is the possible source of error in our result, for simplicity, we ignore the exponentially small probability of collisions.) We also compute the Karp-Rabin fingerprints of the $O(z \log n)$ substrings in S_R and store those fingerprints in an $O(z \log n)$-space map that, given a fingerprint of a substring $T[j + 1..k] \in S_R$, in constant time returns the lexicographic range of suffixes starting with $T[i..j]$ at phrase boundaries. Finally, we build a $z \times z$ grid with a point at (x, y) if the co-lexicographically xth phrase is immediately followed by the lexicographically yth suffix starting at a phrase boundary, and store an $O(z \log \log z)$-space data structure supporting $O(\log \log z)$-time 2-dimensional range-emptiness queries on this grid [3].

3 Queries

Farach and Thorup [4] observed that, by the definition of the LZ77 parse, the first occurrence of any substring of T touches a phrase boundary (meaning the phrase boundary splits the substring into a non-empty prefix and possibly-empty suffix). It follows that we can easily use our data structures as an $O(z \log n)$-space index for T such that, given a pattern $P[1..m]$, in $O(m \log^2(m) \log \log z)$ time we can find a substring of P that occurs in T and whose length is at least a $(1 - \epsilon)$-fraction of the length of an LCS of P and T. To do this, we first compute the Karp-Rabin fingerprint of each prefix of P, so we can compute the fingerprint of any substring of P in constant time. For each j between 1 and m, each of the $O(\log m)$ values of i such that $P[i..j]$ could be in S_L, and each of the $O(\log m)$ values of k such that $P[j + 1..k]$ could be in S_R, we check whether $P[i..j] \in S_L$ and $P[j + 1..k] \in S_R$. If so, we check whether there are any points on the grid in the rectangle that is the product of the horizontal co-lexicographic range of phrases ending with $P[i..j]$ and the vertical range of suffixes starting with $P[j + 1..k]$ at phrase boundaries. If that rectangle is not empty, then $P[i..k]$ occurs in T. This takes $O(\log \log z)$ time for each choice of j, i and k, or $O(m \log^2(m) \log \log z)$ time overall.

To see why we will find a substring of P that occurs in T and whose length is at least a $(1 - \epsilon)$-fraction of the length of an LCS of P and T (ignoring the possibility of collisions), let $T[i'..k']$ be
the leftmost occurrence in T of any LCS of P and T. By Farach and Thorup’s observation, $T[i'..k']$ touches a phrase boundary; let $T[j]$ be the character immediately to the left of that phrase boundary, let $T[i]$ be the leftmost character with $i' \leq i$ such that $T[i..j] \in S_L$, and let $T[k]$ be the rightmost character with $k \leq k'$ such that $T[j+1..k] \in S_R$ (remembering that $T[j+1..k]$ could be empty, in which case $k = j$). Notice that $j-i+1 = \lceil (1/(1-\epsilon))^e \rceil$ for some integer e and $j-i' + 1 < (1/(1-\epsilon))^{e+1}$ (otherwise we would choose a smaller value of i), so $(j-i+1) > (1-\epsilon)(j-i' + 1)$. Similarly, $k-j = \lceil (1/(1-\epsilon))^e \rceil$ for some integer e and $k'-j < (1/(1-\epsilon))^{e+1}$ (otherwise we would choose a larger value of k), so $(k-j) > (1-\epsilon)(k'-j)$. Our search will find $T[i..k]$ (ignoring the possibility of collisions) and $k-i+1 > (1-\epsilon)(k'-i' + 1)$.

So far, however, our solution is slower than existing ones. To speed it up, we keep track of the length ℓ of the longest match we have seen so far and, for each choice of positions j and i in P, we ignore choices of k which cannot give us longer matches. There are only polylog(m) possible lengths of matches we can return, so we spend a total of polylog($m+z$) time checking matches for which we increase ℓ. It follows that we use $O(m \log(m) \log \log z + \text{polylog}(m+z))$ time overall.

Our solution is still worse than Abedin et al.’s, so we now remove the log m factor in our query time. Again, we ignore choices of k which cannot give us longer matches than we have seen so far. We also ignore matches for which we increase ℓ, since we spend a total of polylog($m+z$) time checking them. Finally, we ignore choices of j, i and k such that $j-i+1 < k-j$, since they are symmetric to cases in which $j-i+1 \geq k-j$. Therefore, for each choice of j, we consider only the $O(1)$ choices of i such that $\ell/2 \leq j-i+1 \leq \ell$. It follows that we use $O(m \log \log z + \text{polylog}(m+z))$ time overall. Apart from the polylog($m+z$) term, this is the best query time achieved so far.

Theorem 1 Given a text $T[1..n]$ and a positive constant ϵ, we can build a simple $O(z \log n)$-space index such that later, given a pattern $P[1..m]$, in $O(m \log \log z + \text{polylog}(m+z))$ time and with high probability we can find a substring of P that occurs in T and whose length is at least a $(1-\epsilon)$-fraction of the length of a longest common substring of P and T.

4 Future Work

Although our index is simple and has competitive worst-case bounds, it is probably not practical. We expect that we can make it practical, at the cost of worsening the worst-case bounds, by capping the maximum length of a pattern at M — so S_L and S_R have size $O(z \log M)$ — and replacing the sophisticated range-emptiness data structure by a wavelet tree — increasing the worst-case query time to $O(m \log z + \text{polylog}(m+z))$ — and replacing the LZ77 parse by the LZ-End parse \[^7\] — increasing the worst-case space bound to $O(z \log^2 n)$ according to current knowledge.

We conjecture that switching to the LZ-End parse will actually reduce the space usage in practice, because no one has yet found a string on which the size of the LZ-End parse is $\omega(z)$ and, more importantly, if phrases’ sources end at phrase boundaries then it seems likely many of the substrings we would add to S_L and S_R will be duplicates, which we can ignore. We are currently implementing this modified solution and will report our experimental results in a future version of this paper.
References

[1] Paniz Abedin, Sahar Hooshmand, Arnab Ganguly, and Sharma V Thankachan. The heaviest induced ancestors problem: better data structures and applications. *Algorithmica*, pages 1–18, 2022.

[2] Hideo Bannai, Travis Gagie, and Tomohiro I. Refining the r-index. *Theoretical Computer Science*, 812:96–108, 2020.

[3] Timothy M Chan, Kasper Green Larsen, and Mihai Pătrașcu. Orthogonal range searching on the ram, revisited. In *Proceedings of the twenty-seventh annual symposium on Computational geometry*, pages 1–10, 2011.

[4] Martin Farach and Mikkel Thorup. String matching in Lempel-Ziv compressed strings. *Algorithmica*, 4(20):388–404, 1998.

[5] Travis Gagie, Pawel Gawrychowski, and Yakov Nekrich. Heaviest induced ancestors and longest common substrings. In *25th Canadian Conference on Computational Geometry*, pages 145–150. University of Waterloo, 2013.

[6] Younan Gao. Computing matching statistics on repetitive texts. In *2022 Data Compression Conference (DCC)*, pages 73–82. IEEE, 2022.

[7] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences. *Theoretical Computer Science*, 483:115–133, 2013.

[8] Gonzalo Navarro. Computing MEMs on repetitive text collections. *arXiv preprint arXiv:2210.09914*, 2022.

[9] Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. MONI: A pangenomic index for finding maximal exact matches. *Journal of Computational Biology*, 29(2):169–187, 2022.

[10] Peter Weiner. Linear pattern matching algorithms. In *14th Annual Symposium on Switching and Automata Theory (swat 1973)*, pages 1–11. IEEE, 1973.