Nuf2, a Spindle Pole Body–associated Protein Required for Nuclear Division in Yeast

Mark A. Osborne,* Gabriel Schlenstedt,‡ Timothy Jinks,‡ and Pamela A. Silver‡

Chemistry and Molecular Pharmacology, Harvard Medical School, and Dana Farber Cancer Institute, Boston, Massachusetts 02115

Abstract. The NUF2 gene of the yeast Saccharomyces cerevisiae encodes an essential 53-kd protein with a high content of potential coiled-coil structure similar to myosin. Nuf2 is associated with the spindle pole body (SPB) as determined by coimmunofluorescence with known SPB proteins. Nuf2 appears to be localized to the intranuclear region and is a candidate for a protein involved in SPB separation. The nuclear association of Nuf2 can be disrupted, in part, by 1 M salt but not by the detergent Triton X-100. All Nuf2 can be removed from nuclei by 8 M urea extraction. In this regard, Nuf2 is similar to other SPB-associated proteins including Nuf1/SPC110, also a coiled-coil protein. Temperature-sensitive alleles of NUF2 were generated within the coiled-coil region of Nuf2 and such NUF2 mutant cells rapidly arrest after temperature shift with a single undivided or partially divided nucleus in the bud neck, a shortened mitotic spindle and their DNA fully replicated. In sum, Nuf2 is a protein associated with the SPB that is critical for nuclear division. Anti-Nuf2 antibodies also recognize a mammalian 73-kd protein and display centrosome staining of mammalian tissue culture cells suggesting the presence of a protein with similar function.

The process of nuclear division in the yeast Saccharomyces cerevisiae requires a large number of gene products, many of which have been characterized extensively. The yeast microtubule organizing center, the spindle pole body (SPB), is a large, trilaminar structure embedded in the nuclear envelope (Byers and Goetsch, 1974). Its behavior during the cell-cycle is morphologically well studied (Byers and Goetsch, 1975). At mitosis, the SPB duplicates, with two SPBs initially located side-by-side within the nuclear envelope; this stage is termed a monopolar spindle. The SPBs then separate, establishing a bipolar mitotic spindle across the interior of the nucleus. The duplicated SPB is oriented toward the daughter bud, and the spindle elongates as the nucleus is separated and enters the bud. At its maximum, the bipolar spindle extends from within the daughter bud through the bud neck into the mother cell. The mitotic spindle is responsible for correctly distributing the chromosomal complement to both the mother and daughter cell. Mutants in genes responsible for spindle formation and maintenance often display increases in chromosome loss (i.e., Rose and Fink, 1987; Brown et al., 1993; Goh and Kilmartin, 1993).

Several SPB proteins have been identified biochemically (Rout and Kilmartin, 1990, 1991; Kilmartin et al., 1993). One of these, Nuf1/Spcl10, is a coiled-coil containing protein (Mirzayan et al., 1992) shown to be a structural component of the SPB. Genetic screens have implicated other genes required for proper SPB duplication. These include CDC4, CDC31, CDC34, (Byers and Goetsch, 1975), KARI (Conde and Fink, 1976), NDC1 (Thomas and Botstein, 1986; Winey et al., 1993), MPS1, and MPS2 (Winey et al., 1991). Cells mutant in these genes are defective in SPB duplication or related processes and arrest with unseparated SPBs. The kinesin-related proteins, Cin8 and Kip1, are important for proper assembly (Roof et al., 1992) and movement of the duplicated SPBs to opposite sides of the nucleus (Saunders and Hoyt, 1992; Hoyt et al., 1992, 1993).

Yeast mutants have been identified which arrest at a stage later than SPB separation, but before spindle elongation. Byers and Goetsch (1974) show that one class of CDC mutants displayed a shortened mitotic spindle which did not traverse the maximum length of the nucleus, while other CDC mutants arrest with spindles extending the entire length of the nucleus. Mutants of the first class include CDC13, CDC16, CDC17, CDC20, CDC23, and CDC27. All display an increase in the rate of chromosome loss, while cdc13 and cdc17 cells also show an increase in the rate of mitotic recombination (Hartwell and Smith, 1985). All of these
genes are believed to be involved in chromosome segregation, DNA replication, or DNA repair, features consistent with their stage of arrest.

We report here the identification of a novel gene, NUF2, with a mutant phenotype of cell-cycle arrest with an unelongated bipolar spindle. Nuf2 is localized to the nuclear side of the SPB. Nuf2 contains a large region of coiled-coil potential and therefore is a candidate for a structural protein involved in SPB separation and spindle elongation.

Materials and Methods

Yeast Strains and Manipulations

Yeast strains are described in Table I. Yeast growth media were as described in Rose et al. (1990). High efficiency yeast transformation was performed according to Schiestl and Gietz (1989).

To integrate 8 LexA binding sites upstream of the aacZ gene, the plasmid pSH18-34 (SpeI derived from pSH18-34, a gift of Roger Brent, Harvard Medical School) was cut with ApaI to target the integration to the URA3 locus of GGY1, yielding PSY190. A Gal4 promoter driven NUP2 integrant was constructed in a diploid by transforming PSY198 with SacI-digested p42P+LEU2+GAL1-URA3+Gal1 (described in a following section). The integration was verified by Southern blot and the galactose-inducible expression of Nuf2 was detected by immunoblotting.

To integrate the nu2* genes into the genome, the plasmids YEpNUP2 (pPS553-565) containing the mutant copies of NUP2 were cleaved with SnaI (which cuts 3' to NUP2) and transformed into PSY450 (a spore of PSY498, the nu2-61/nuf2-61 homozygous diploid was obtained by mating PSY455 (nu2-61) with PSY481 (a spore of PSY196), sporulating and dissecting, and subsequently obtaining two spores: one MATa Ade" Trp" (PSY479), and one MATa, Ade+ Trp" (PSY474). These were mated to generate PSY498, and temperature sensitivity was verified by streaking colonies at 25°C and 36°C.

Two-Hybrid Screening

PSY190 was transformed with both plexA47-NUP1 (pPS363) and three separate pools of the yeast genomic library of Chien et al. (1991). LexA" his" transformants were selected and replica plated to LexA" his" sucrose plates containing 5-Bromo-4-Chloro-3-indoly-α-D-galactoside (X-Gal). After three days at 30°C, blue colonies were identified and restreaked from the master plate. After rechecking on X-gal plates, the cells were grown in Leu" liquid media to amplify the library plasmid. Plasmid DNA was prepared and used to transform E. coli strain MC1061 by electroporation. pGAD plasmids were retransformed into PSY190 along with plexA47-NUP1. Of six blue colonies identified and confirmed by restreaking from 30,000 transformants, all were blue on retransformation. One of these (pGADNUP235-41, pPS357) is detailed in this report.

To more rapidly screen the interactions between LexA fusions and Gal4-fusions, the X-gal filter assay was used (Rose et al., 1990).

DNA Manipulations

All DNA manipulations were performed as generally described by Sambrook et al. (1989).

Materials and Methods

Yeast Strains and Manipulations

Yeast strains are described in Table I. Yeast growth media were as described in Rose et al. (1990). High efficiency yeast transformation was performed according to Schiestl and Gietz (1989).

To integrate the nu2* genes into the genome, the plasmids YEpNUP2 (pPS553-565) containing the mutant copies of NUP2 were cleaved with SnaI (which cuts 3' to NUP2) and transformed into PSY450 (a spore of PSY498, the nu2-61/nuf2-61 homozygous diploid was obtained by mating PSY455 (nu2-61) with PSY481 (a spore of PSY196), sporulating and dissecting, and subsequently obtaining two spores: one MATa Ade" Trp" (PSY479), and one MATa, Ade+ Trp" (PSY474). These were mated to generate PSY498, and temperature sensitivity was verified by streaking colonies at 25°C and 36°C.

Two-Hybrid Screening

PSY190 was transformed with both plexA47-NUP1 (pPS363) and three separate pools of the yeast genomic library of Chien et al. (1991). LexA" his" transformants were selected and replica plated to LexA" his" sucrose plates containing 5-Bromo-4-Chloro-3-indoly-α-D-galactoside (X-Gal). After three days at 30°C, blue colonies were identified and restreaked from the master plate. After rechecking on X-gal plates, the cells were grown in Leu" liquid media to amplify the library plasmid. Plasmid DNA was prepared and used to transform E. coli strain MC1061 by electroporation. pGAD plasmids were retransformed into PSY190 along with plexA47-NUP1. Of six blue colonies identified and confirmed by restreaking from 30,000 transformants, all were blue on retransformation. One of these (pGADNUP235-41, pPS357) is detailed in this report.

To more rapidly screen the interactions between LexA fusions and Gal4-fusions, the X-gal filter assay was used (Rose et al., 1990).

DNA Manipulations

All DNA manipulations were performed as generally described by Sambrook et al. (1989).

Table I: Yeast Strains Used in This Study

Strain	Genotype*	Source
W303	ade2-1 trpl-1 leu2-3,112 his3-11,15 can1-100	A. Tzagoloff
GGY1	ura3-52 his3A leu2-3,112 Δgal4 Δgal80	Jun Ma
PSY190	ura3-52 his3A leu2-3,112 Δgal4 Δgal80 URA3::pSH18-34	This study
CTY105Δ	ura3-52 his3Δ200 leu2-3,112 Δgal4 Δgal80 trpl-901 URA3::pSH18-34	This study
GJIR156	adc15-2 ade his ura	J. Broach
GJH123-9-1	adc16-1 ade his7 leu ura	J. Broach
GJQ028 22	adc17-1 ade leu ura	J. Broach
GJH160-3-3	adc27-1 aro arg leu ura	J. Broach
PSY196 a/α	ura3-52 leu2-3,112 trplΔ1 ade2-1	M. Rose
ABYS1 a/α	ura3-52 leu2-3,112 + +	(MSB10)
W303a-42:URA3	pral pbrl prcl cps1 ade	D. H. Wolf
PSY450	ura3-52 leu2-3,112 trplΔ1	This study
PSY451	ura3-52 leu2-3,112 trplΔ1 nud2-3	This study
PSY452	ura3-52 leu2-3,112 trplΔ1 nud2-22	This study
PSY453	ura3-52 leu2-3,112 trplΔ1 nud2-45	This study
PSY455	ura3-52 leu2-3,112 trplΔ1 nud2-51	This study
PSY469 a/α	ura3-52 leu2-3,112 trplΔ1 ade2-1 nud2-Δ2::LEU2 ura3-52 leu2-3,112 + +	This study
PSY474	ura3-52 leu2-3,112 ade2-1 nud2-61	This study
PSY479	ura3-52 leu2-3,112 trplΔ1 nud2-61	This study
PSY481	ura3-52 leu2-3,112 ade2-1 nud2-61	This study
PSY493	ura3-52 leu2-3,112 trplΔ1 ade2-1 nud2-Δ2::LEU2 [YEpNUF2wne]	This study
PSY494	ura3-52 leu2-3,112 trplΔ1	This study
PSY497 a/α	ura3-52 leu2-3,112 trplΔ1 ade2-1 nud2-61 ura3-52 leu2-3,112 + + + +	This study
PSY498 a/α	ura3-52 leu2-3,112 trplΔ1 ade2-1 nud2-61 ura3-52 leu2-3,112 + + + +	This study

* Resident plasmid is indicated in braces ({}).
pPS539. The 2.2-kb Sac I fragment of pPS538 was subcloned into the Sac I site of pPS40, a pBS derivative containing the URA3 gene in the Xba I site (failed in with Klenow) of the polylinker, such that URA3 is transcribed in the direction from Kpn I toward Sac I.

pPS42. The 3-kb Hind III–Kpn I fragment from pPS41 encoding the complete NUF2 gene and upstream sequence subcloned into the Hind III and Kpn I sites of a pBS KS+ derivative which had its Sac I site destroyed.

pPS44. The Nhe I–Bgl II fragment of pPS42 replaced by the Xba I/Bam HI fragment containing the LEU2 gene of pJ525 (Jones and Prakash, 1990).

pPS46. The coding region of NUF2, from amino acids 1 to 359 (of pPS45), amplified by PCR using the primers: 5′-GCCGATCATGATAGAATTCAAGATGTG3′ and 5′-GCCGATCATCTCCATGTTTCCATA3′. The PCR product was purified as described by Crowe et al. (1991), digested with Bam HI, and ligated to pBS KS+ cut with Bam HI.

pPS47. The Bam HI fragment of pPS46 inserted into pPS293 such that the GAL1 promoter will direct transcription from the 3′ end of the NUF2 coding region.

pPS48. The 1.5-kb All III fragment (encoding amino acids 85–451 of Nuf2) from pPS42, was inserted into the Bam HI site of pBS KS+. pPS49. The Bam HI insert of pPS48 inserted into the Bam HI site of pPS9 (Qiagen, Chatsworth, CA), such that amino acids 85–451 are expressed as a fusion protein to six histidine residues at the NH2 terminus. pPS51. The Bam HI insert of pPS46 inserted into the Bam HI site of pPS9, such that a fusion protein is produced that has six histidine residues followed by amino acids 1–359 of Nuf2.

pPS52. A derivative of pPS42, in which the 1-kb Eco RV fragment has been deleted and the ends religated.

pPS551. The Bam HI–Kpn I fragment of pPS552 inserted into pRS314 (Sikorski and Hieter, 1989), a centromere-based vector carrying the TRP1 selectable marker.

pPS535–553. The Bam HI–Kpn I fragment of mutated pPS51 inserted into a YIp5 (New England BioLabs, MA) derivative whose Hind III site was converted into a Kpn I site.

42P+LEU2+GAL1+NUF2. A Pest XI–Spe I fragment encoding a region 5′ to the Nuf2 coding sequence in pBS (42P) was digested with Eco RV to remove all of the Nuf2 coding region and ligated with Pest I linkers. The LEU2 gene, on a Pest I fragment from pJ525 was then inserted. An Eco RI/Hind III fragment of pPS547 was inserted into the Eco RI and Hind III sites. The Sac I sites used to integrate this fragment into the NUF2 locus are at the 5′ end of the polylinker and within the Nuf2 coding sequence. pPS556–557. nuf2-61 was amplified from the genome by PCR with the 5′ primer used to generate pPS546 and the 3′ primer 5′-CCGGATCATAGCTTACATCATG3′. The PCR products were cleaved with Bam HI and the ends religated into pBS KS+.

Recovery of the 5′ End of NUF2

As the pGAD insert from the library plasmid contained only the 3′ portion of the gene to which Gal4 was fused, the remaining 5′ portion was cloned by the integration/excision method of Roeder and Fink (1980). pPS539 was cleaved with Bgl II and used to transform strain W303a. DNA recovered from a stable Ura+ colony was digested with Bam HI, religated, and used to transform E. coli. One clone (pPS541) containing 8 kb of DNA 5′ of NUF2.
Sequencing of NUF2

All DNA was sequenced by the chain-termination method of Sanger et al. (1977), using the Sequence 2.0 kit (United States Biochemical, Cleveland, OH). The sequence of the entire region between the Eco RV and Kpn I sites was determined on both strands.

The mutations responsible for the temperature-sensitive growth phenotype of the nuf2-61 allele were determined by sequencing of pPS567-569, using unique primers that allowed sequencing of the entire coding region on one strand. The sequence of these primers is available upon request.

Antibody Generation

Plasmids pQE-NUF245-359 and pQE-NUF21-359 were transformed into E. coli strain M15[pREP4] (Qiagen), expression was induced with 1 mM IPTG, and the fusion protein purified by chromatography on Ni⁺-NTA resin exactly as described by the manufacturer.

Fractions containing Nuf2 were run on 10% SDS gels and electrotransferred to PVDF. Nuf2 was excised from the filter and eluted with 50 mM Tris pH 9.0, 2% SDS, 1% Triton X-100 for 30 min at room temperature. Roughly 500 μg of purified protein was diluted 1:1 with Freund's complete adjuvant (Gibco Life Technologies, Grand Island, NY) and injected into a New Zealand white rabbit. Anti-Nuf2 antibodies were affinity purified by adsorption to Nuf2 coupled to sepharose.

Mouse monoclonal antibodies were prepared after injection of two BALB/c mice with a purified Nuf2 fragment (amino acids 1-359). Positive subclones were identified by ELISA and tested on immunoblots and for indirect immunofluorescence. Monoclonal antibodies were used at dilutions of 1:100 for immunoblots and 1:1,000 for immunofluorescence.

Anti-Nspl antibodies were prepared from extracts of E. coli strain CC9 (containing a malE::Tnl0 insertion, a gift of T. Silhavy, Princeton University) carrying pPS274, encoding a MalE-Nspl fusion protein, by amylose chromatography as described by the manufacturer (New England Biolabs). The eluate was treated with factor Xa, run on SDS gels, electroblotted to PVDF, and eluted as described for Nuf2. The protein was injected into a rabbit and antibodies prepared as described for Nuf2. Anti-Nspl IgG preparations were used at 13 μg/ml for immunoblotting. Affinity-purified anti-Nuf2 antibodies were prepared from crude serum exactly as described by Mirzayan et al. (1992) and used at 0.14 μg/ml for immunoblotting. The anti-90-kd and anti-80-kd SPB antibodies were kindly provided by J. Kilmartin (MRC, Cambridge). The anti-centrosome antibody was kindly provided by R. Balczon (U. of S. Alabama).

Indirect Immunofluorescence

Indirect immunofluorescence for anti-tubulin was performed as described (Sadler et al., 1989) with the following modification. Spheroplasting was preceded by treatment of cells with 0.1 M dithiothreitol in 0.01 M Tris pH 9.4 for 15 min at 30°C, followed by washing in P buffer (1.2 M sorbitol, 0.1 M KPi, pH 6.5).

For immunofluorescence with anti-Nuf2, the anti-80-kd, and the anti-90-kd monoclonal antibodies, cells were converted to spheroplasts as above, and processed as described by Kilmartin and Adams (1984). Briefly, cells were fixed in -20°C methanol for 5 min followed by acetone for 30 s at 25°C. Cells were blocked with 5 mg/ml BSA in PBS for 1-4 h and 1° antibodies were incubated at 25°C overnight. After washing, 2° antibodies conjugated to FITC were used at a dilution of 1:100 and Texas red conjugated to a 90-kd monoclonal antibody, and processed as described by the manufacturer (MRC, Cambridge). The anti-centrosome antibody was kindly provided by R. Balczon (U. of S. Alabama).

Figure 2. Antibodies to Nuf2 recognize a band of 53,000 Mr in crude yeast extracts. (A) (Left) Premune serum (0.5 μg/ml) and (Right) affinity-purified rabbit anti-Nuf2 antibodies (0.5 μg/ml) were used on immunoblots of yeast extracts to detect Nuf2. Lane 1, W303a yeast extract; lane 2, W303a containing plasmid YEpGAL-NUF2 grown in glucose; lane 3, W303a containing plasmid YEpGAL-NUF2 grown in galactose for 11 h. (B) Monoclonal antibody 3H3 was used at 1:100 dilution from tissue culture supernatant. W303a containing plasmid YEpGAL-NUF2 grown in glucose (−) and W303a containing plasmid YEpGAL-NUF2 grown in galactose for 11 h (+). (C) Affinity-purified rabbit anti-Nuf2 anti-bodies (0.5 μg/ml) were used to an immunoblot of NIH 3T3 nuclear extracts to detect a cross-reacting protein. The right panel is the same extract probed with the preimmune serum.
equipped for epifluorescence. Confocal microscopy was performed using a BioRad MRC 600 scanning device with a krypton/argon laser mounted to a Zeiss Axiohot microscope. A Zeiss Plan-neofluor 63 × objective lens was used. All images were collected as a 3× scanning zoom and averaged using the Kalmer filter algorithm.

Yeast Subcellular Fractionation and Extraction of Nuclei

Cell fractionation was performed as described by Mirzayan et al. (1992) using strain ABYS1. For nuclear extractions, 250 μg of nuclear protein was diluted to 500 μl with 0.5 M sucrose, 20 mM KPi, pH 6.5, 0.5 mM MgCl2, 1 mM PMSF, and 1 μg/ml each chymostatin, antipain, aprotinin, leupeptin, and pepstatin A, or the same buffer containing 0.2 M NaCl, 0.5 M NaCl, 1 M NaCl, 1% Triton X-100, 1 mM NaCl and 1% Triton X-100, 8 M urea, or 0.25 mg/ml RNase A plus 0.25 mg/ml DNase I, respectively. The mixtures were incubated on ice for 30 min and centrifuged for 30 min at 4°C.

Generation of Temperature-Sensitive Mutants in NUF2

Temperature-sensitive (ts) mutants of NUF2 were generated by the methods of Leung et al. (1989) and Caplan et al. (1992). Using the universal (∼20) and a unique primer that hybridizes to the region at the Kpn I site of NUF2 (see Fig. 1 a) the complete NUF2 gene including the promoter could be amplified from plasmid pS511. Using the mutagenic conditions (0.5 mM MnCl2, 0.04 μM dATP), 10 ng of YCPNUF2 was amplified by PCR (30 s at 94°C, 30 s at 50°C, 1 min at 72°C) for 30 cycles. The product was split into four parts (10 μl of the 100 μl reaction per tube) and reamplified under standard conditions. As a control, PCR under standard conditions was performed (and reamplified). At this point, the product was split in half. One half of each reaction was used to construct a library by inserting the Bam H1-Kpn I digested PCR product into pRS314 (Silkorski and Hieter, 1989). The libraries were then used to transform yeast strain PSY493 (containing a chromosomal deletion of NUF2 and plasmid YEpNUF2neo). The second half of the PCR products were mixed with YCpNUF2 that had been cleaved with Nhe I and Bgl II and used to transform PSY493 by the gap repair method (Caplan et al., 1992). All yeast transformants were replica plated to two SC (−Trp) containing 1 mg/ml 5-FOA, and incubated at 25 or 36°C. NUF2ts mutants were tested for temperature sensitivity on 5-FOA-containing plates after retransformation of the recovered plasmid DNA into PSY493.

To determine the rapidity of the cell-cycle arrest phenotype, wild-type and nuf2-61 mutant cells were grown at 25°C to a density of 1.5 × 106 cells/ml and treated with α-factor for 5 h at 25°C. They were then centrifuged, washed with fresh YPD, recentrifuged and resuspended in YPD, and incubated at 25°C or 36°C for 4 h, at which time they were fixed with formaldehyde and stained with DAPI to visualize their DNA.

Preparation of yeast cells for flow cytometry was exactly as described by Meluh (1993), which is a modification of the method of Hutter and Eipel (1978).

Chromosome loss was assayed in a manner similar to Spencer et al. (1990) by comparing the mating ability of PSY498 and PSY196 Mat α/c+ strains (both of a and, mating types) to mate with mating type tester strains. Cells were grown from a single colony at either 23°C or 30°C in YPD to 107 cells/ml, patched onto YPD plates, and uniform lawns allowed to develop at either 23 or 30°C. Cells were then replica-plated onto lawns of mating type tester strains and scored for the presence of MAb and MATα cells.

Mating efficiency was measured by comparing the ability of nuf2-61 mutants and wild-type strains to mate with mating type tester strains as well as with each other. As a positive control, a kar1-I mutant strain was used. Cells were mated at 25°C for 12 h and 24 h before being replica plated to selective media. Benomyl sensitivity and resistance was determined by streaking mutant and wild-type strains onto several YPD plates containing 5, 10, 20, 30, 40, and 50 μg/ml benomyl.

Results

Identification of NUF2

We originally sought to identify proteins that interact with the nucleoporin Nup1 (Davis and Fink, 1990) through the use of the two-hybrid system (Fields and Song, 1989; Chien
Figure 4. Nuf2 is located at the spindle pole body as determined by immunofluorescence. Yeast cells were prepared for immunofluorescence and probed with antibodies to localize Nuf2 and other SPB-associated proteins. (A) A—cells stained with anti-90 kd monoclonal antibodies; B—the same cells probed with anti-Nuf2 rabbit polyclonal antibodies; C—the same cells stained with DAPI; and D—the same cells viewed by Nomarski. (B) Confocal laser scanning microscopy of the same cells as in A. Nuf2 is labeled green, while the 90-kd SPB is red. (C) A—cells stained with DAPI; B—cells stained with anti-Nuf2 monoclonal antibody 3H3; and C—the same cells viewed by Nomarski.

et al., 1991). Fusions between the bacterial DNA binding protein LexA and amino acids 14-1076 of Nup1 (plexA_{NUP1}) were constructed and their expression verified with anti-lexA antibodies (data not shown). Six potential interactors were isolated (as described in Materials and Methods) and one of these, Nuf2, is described in detail here.

The complete NUF2 open reading frame (Fig. 1 A) was sequenced and found to encode a protein of 451 amino acids (Fig. 1 B), with a predicted Mr of 53,000 and pI of 4.4.

NUF2 Is Similar to Coiled-coil Containing Proteins

Comparison of the NUF2 open reading frame to protein sequence databases reveals significant similarities to proteins
containing α-helical coiled-coil structures. This similarity is restricted to amino acids 160–451; no significant similarities are observed within the first 160 amino acids. The presence of a coiled-coil structure is further supported by the algorithm described in Lupas et al. (1991), which predicts four separate regions of Nuf2 with high (P > 0.95) likelihood of α-helicity (residues 181–221, 260–297, 340–371, and 401–433).

A proposed structural alignment of the heptad repeats in the coiled-coil region is shown in Fig. 1 C. Hydrophobic amino acids in positions a and d, when present in an α-helix, would face another hydrophobic surface. Columns a and d contain predominantly (69%) hydrophobic or uncharged amino acids, while positions b, c, and f contain a large number of polar residues (77%). These percentages are in agreement with those proposed for coiled-coil-containing proteins (Cohen and Parry, 1986, 1990). Due to its similarities in predicted structure and subcellular localization to another yeast nuclear filamentous protein, Nufl (Mirzayan et al., 1992), we propose the name Nuf2 (Nuclear filament-containing protein).

NUF2 Is Essential for Cell Viability

To determine if *NUF2* is an essential gene, a disruption was constructed that replaced codons 26–451 with the *LEU2* gene. The DNA fragment was integrated into a diploid strain and the proper gene replacement at the genomic *NUF2* locus was confirmed by Southern blotting. Sporulation and dissection of 20 tetrads yielded only two viable spores per tetrad.
Each viable spore was Leu−, indicating that it contained the undisrupted copy of NUF2. Thus, NUF2 is essential for yeast cell growth.

Localization of Nuf2 in Yeast and Mammalian Cells

Antibodies were generated to Nuf2 protein fragments expressed in E. coli. Fusions to Nuf2 amino acids 85–451 and 1–359 were made to include six histidine residues at the NH2 terminus, allowing purification of the fusion proteins over a Ni2+-NTA resin (see Materials and Methods). Both affinity-purified rabbit polyclonal antibodies and mouse monoclonal antibodies were prepared. Immunoblots of yeast extracts from wild-type cells (Fig. 2 A, right panel, lane 1) and cells containing overproduced Nuf2 (Fig. 2 A, right panel, lanes 2 and 3) were probed with the antibodies. Both the affinity-purified rabbit anti-Nuf2 antibodies (Fig. 2 A) and the monoclonal antibody 3H3 (Fig. 2 B) recognize the 53-kd Nuf2 protein on immunoblots whereas the rabbit preimmune serum did not (Fig. 2 A, left panel). Although 3H3 is unable to detect wild-type levels of Nuf2 (Fig. 2 B, [−]), the 53-kd band is visualized when NUF2 is placed under control of the strong GAL1 promoter and induced in galactose (Fig. 2 B, [+]). The rabbit antibody also recognizes a band migrating at ~85–90 kd under these conditions. However, only the 53-kd band increases upon galactose induction of NUF2 (Fig. 2 A, right panel, lane 3).

To determine the intracellular location of Nuf2, cell fractionation and immunofluorescence experiments were performed. As a control for localization of the proteins of the nuclear pore complex, rabbit polyclonal antibodies were raised to the yeast nucleoporin Nsp1 (Hurt, 1988; Nehrbass et al., 1990; see Materials and Methods). As expected, the antiserum recognizes a band of ~100 kd in yeast extracts (Fig. 3 A, right panel) and decorates the yeast nuclear envelope in a punctate manner in immunofluorescence experiments (Schlenstedt et al., 1993). To determine the location of the Nuf2 protein, yeast cells were fractionated into whole-cell, cytosol, and nuclear fractions and assayed by immunoblot. Nuf2 (Fig. 3 A, left panel) and Nsp1 (Fig. 3 A, right panel) both cofractionate with nuclei and neither protein is detected in the crude cytosolic fraction. (The higher molecular weight protein, which cross-reacts with anti-Nuf2 antibodies, fractionates with the cytosol.)

To localize Nuf2 within the nucleus, indirect immunofluorescence was performed. Conventional formaldehyde fixation of yeast cells, even for times as brief as five minutes resulted in an undetectable Nuf2 fluorescence signal. However, using the methanol fixation conditions of Kilmartin and Adams (1984), bright staining was observed in a dot eccentric to the nucleus with both the affinity-purified rabbit polyclonal anti-Nuf2 antibodies (Fig. 4 A, upper right, B) and the monoclonal 3H3 anti-Nuf2 antibody (Fig. 4 C, middle panel B), which only reacts with Nuf2 (Fig. 2 B).

The bright perinuclear dot resembled the staining of SPB proteins (Rout and Kilmartin, 1990) so we performed a double-labeling experiment with both the rabbit anti-Nuf2 antibodies and monoclonal antibodies directed against a SPB protein of 90 kd. The results indicate that Nuf2 (Fig. 4 A, upper right panel B) and the 90-kd antigen (Fig. 4 A, upper left panel A) are closely associated. However, in cells where the SPBs have duplicated but are still closely spaced, the anti-90-kd mAb gives two distinct dots while the anti-Nuf2 antibodies show a continuous region of fluorescence (as indicated by the arrowheads in the Fig. 4 A; A and B), suggesting that Nuf2 may only, in part, colocalize with or be immediately adjacent to the 90-kd antigen.

Confocal laser scanning microscopy further defines the spatial relationship between the 90-kd protein and Nuf2. As shown in Fig. 4 B, the red staining of the 90-kd antibody is frequently observed to flank the Nuf2 staining (green). This is also seen in cells where the SPBs have recently duplicated.
Once they have separated, the 90-kd and Nuf2 staining are very close together and sometimes appear partially coincident (yellow indicates the area of overlap of staining by the two antibodies in Fig. 4 B). In all cases where the nucleus was visible, Nuf2 was on the nuclear side of the 90-kd protein. The anti-90 kd monoclonal antibody recognizes a protein localized by immuno-electron microscopy to both the outer and inner electron-dense laminar structures of the SPB just beyond the nuclear membrane (Rout and Kilmartin, 1990).

Because of the lack of precise coincident localization, another antibody, recognizing a SPB antigen of 80-kd, was tested for colocalization with Nuf2. The 80-kd protein is located proximal to the laminar structure at the nuclear side of the SPB (Rout and Kilmartin, 1990). Nuf2 and the 80-kd SPB protein appear to colocalize. When cells simultaneously probed with both anti-Nuf2 and anti-80 kd antibodies were viewed by standard epifluorescence (data not shown) or confocal laser scanning microscopy, the staining was completely coincident (Fig. 5 A; Nuf2 staining is green, 80 kd staining is purple and the overlap is white). The arrows in Fig. 5 A indicate recently separated SPBs where the staining with the two antibodies is still coincident. This is distinct from what is observed in nuf2 ts mutants (Fig. 5 B) where Nuf2 staining (green) is no longer completely coincident with the 80-kd staining (purple). This will be discussed further (see below). As the 80-kd protein has been localized towards the end of microtubules at the SPB, this seems likely to also be the subnuclear location for Nuf2. These results are in agreement with those of Rout and Kilmartin (1990) with regard to the relative location of the 80-kd and 90-kd SPB-associated proteins.

Using the same fixation conditions, mouse NIH 3T3 cells were stained with rabbit anti-Nuf2 antibodies. As shown in Fig. 6 B, the antibodies stain a dot near the nucleus. Occasionally, cells were observed to possess two dots, usually both flanking the nucleus (arrows in Fig. 6, A and B). This staining pattern is similar to that reported for centrosomal proteins. To confirm this, the same cells were probed with a human autoimmune antibody known to react with centrosomes (Osborn et al., 1982; Balczon and West, 1991). The staining with the anti-centrosome antisera (Fig. 6 A) was exactly coincident with the anti-Nuf2 staining (Fig. 6 B).

Mouse NIH 3T3 cells probed with the preimmune sera or with only the secondary antibodies showed no staining. In mitotic cells, anti-Nuf2 staining remained at the centrosomes (data not shown). Immunoblotting of NIH 3T3 cell nuclear extracts revealed one major immuno-reactive band of ~73 kd and occasionally a faint higher molecular weight band of ~90 kd (Fig. 2 C, left lane). The major 73-kd band was detected in nuclear extracts. The preimmune serum from the same rabbit showed no reactivity with mammalian nuclear extracts (Fig. 2 C, right lane).

Nuf2 Is Tightly Associated with the Yeast Nucleus

To determine the nature of the association of Nuf2 with the nuclear compartment, nuclei were extracted with salt and detergent and the supernatant and pellet fractions assayed by immunoblotting. Nuf2 is tightly associated with nuclei, as it is only partially extractable by 1 M NaCl (Fig. 3 B, top panel). Its extraction profile is largely similar to that of Nspl (Fig. 3 B, middle panel; Hurt, 1988), but it is more readily removable from nuclei than the SPB protein Nufl/Spc110 (Fig. 3 B, lower panel; Mirzayan et al., 1992). Nufl/Spc110, Nuf2, and Nspl are all completely extracted by 8 M urea (Fig. 3 C and data not shown for Nuf1). Neither Nuf2 nor Nspl are removed from nuclei by treatment with nucleases (data not shown), as shown for Nufl (Mirzayan et al., 1992).

Phenotypic Characterization of Temperature-Sensitive Mutants of NUF2

To learn more about the function of Nuf2, ts mutants in NUF2 were generated as described in Materials and Methods. Of the 90 candidate ts mutants identified initially, 70 remained ts after rescue of the plasmid in *E. coli* and retransformation into PSY493. As an independent test, 70 cells were transformed with a plasmid encoding wild-type NUF2 or vector alone. Cells reverted to temperature-resistance only with wild-type NUF2, verifying that the NUF2 insert carries the determinant of temperature-sensitivity.

To confirm that the NUF2 coding region had been mutagenized, the plasmids containing several of the nuf2 ts alleles were partially sequenced. All contained multiple NUF2 mutations, confirming the mutagenesis (Osborne, 1993).
To analyze the behavior of the NUF2 mutants, the extreme thermophobes were introduced into the chromosomal copy of NUF2. Nine chromosomal nuf2~ alleles were obtained (Fig. 7, A–C). To confirm that the temperature-sensitivity is due to a NUF2 mutation, the ts strains PSY451, 452, 453, and 456, were transformed with pPS511. All mutants were complemented by the plasmid, as judged by their ability to grow at 36°C (Fig. 7 D), demonstrating that the ts phenotype was due to NUF2 and also showing the recessivity of the mutations.

The nuf2~ mutants were grown at 25°C, and then shifted to 36°C for varying amounts of time. In all mutants tested, after three hours at 36°C, cells displayed a cell-cycle arrest with large buds (Fig. 8 B) and partially divided nuclei (Fig. 8 A). Since all mutants examined were similar, further analysis was carried out with nuf2-61, which gave a uniform arrest phenotype, with 70–90% of all cells arrested with large buds after 4 h at 36°C. To identify the specific amino acid changes responsible for conferring the ts phenotype, the NUF2 coding region from the nuf2-61 mutant was amplified by PCR and subcloned. The NUF2 ORF was completely sequenced from three independent PCR-generated subclones and eight mutations were found (Table 1). Seven of eight mutations are A to G or C to T transitions, while there is one A to T transversion. All eight mutations are located within the COOH-terminal proposed coiled-coil region.

The growth of nuf2-61 and wild-type cells was monitored at 36°C by cell counting. Nuf2-61 cells stopped growing after 3 h, while wild-type cells continued to divide (data not shown). The cell-division-cycle defect observed in nuf2-61 cells is observed within the first division after temperature shift, as α-factor arrested cells released from α-factor then arrest at 36°C with large buds after 3 h. Wild-type cells appear normal, as cells with no buds or small buds are frequently observed (data not shown).

Figure 7. NUF2 temperature-sensitive mutants. Strains PSY450 (NUF2), PSY451 (nuf2-3), PSY452 (nuf2-22), PSY453 (nuf2-45), PSY454 (nuf2-60), PSY455 (nuf2-61), PSY457 (nuf2-12), PSY-

Figure 8. nuf2-61 mutant cells arrest uniformly at 36°C. PSY498 (nuf2-61/nuf2-61) were streaked on YPD plates at 37°C and 25°C (RT) and incubated for 3 d. The top (12 o'clock position) of each pair of plates is PSY450 (NUF2). Counter clockwise from the left (A) nuf2-3, nuf2-12, and nuf2-13; (B) nuf2-22, nuf2-23, and nuf2-45; (C) nuf2-60, nuf2-61, and nuf2-76; (D) nuf2 mutants can be rescued by YCpNUF2. The drawing at the bottom of the figure indicates the NUF2 allele number (NUF2 is wild-type). [+] indicates the presence of YCpNUF2, (−) indicates no plasmid. Cells were streaked out on YPD plates at the temperatures indicated.
After a 3-h temperatures shift to 36°C, both NUF2 and nuf2-61 cells were processed for immunofluorescence. DAPI-staining of DNA reveals that the nucleus is located at or within the bud neck (Fig. 9 E), and staining with anti-tubulin antibodies shows that the arrested cells possess a short spindle contained within the nucleus, which has migrated to the bud neck (Fig. 9 D). Staining with antibodies directed against the nuclear proteins Npl3 (Bossie et al., 1992) and Nsp1 showed the nuclei to have an abnormally elongated shape and to be located within the bud neck (data not shown). From this data, it would appear that nuf2-61 mutants have a nuclear division defect.

In a separate experiment, nuf2-61 cells were processed for immunofluorescence with anti-Nuf2 and anti-80 kd antibodies. Localization of Nuf2 along the spindle occurred in cells shifted to 36°C for 3.5 h (Fig. 5 B). This is best demonstrated when Nuf2 localization is compared to the distribution of the 80-kd protein (Nuf2 is green, the 80-kd protein is purple and the overlap of the two is white in Fig. 5). Nuf2 is partially colocalized with the 80-kd protein at the non-permissive temperature. Most of the Nuf2 protein is located at the spindle between the poles (see arrows in Fig. 5 B).

The DNA of nuf2-61 cells arrested at the non-permissive temperature has replicated, as determined by flow-activated cell sorting (Fig. 10, lower panel) and as compared to similarly treated wild-type cells (Fig. 10, upper panel). There are also cells with greater than 2N DNA content in the nuf2-61 cell population. Chromosome loss and mitotic recombination appear to be no greater in the nuf2-61/nuf2-61 strain than the PSY196 parent, as determined by mating ability when cells were grown at the permissive temperature of 23°C. However, nuf2-61/nuf2-61 homozygous diploids cultivated at the semi-permissive temperature of 30°C demonstrated a 10–30-fold increase over similarly grown otherwise isogenic NUF2/NUF2 diploids in their ability to mate as MATa or MATα cells. This indicates an increased loss of chromosome III in nuf2-61 cells at the semi-permissive temperature and is consistent with the presence of cells with greater than 2N DNA content after a shift to the non-permissive temperature.

Karyogamy assays indicate that both a and α mating types of nuf2-61 mutants mate normally with each other and with wild-type strains. Benomyl sensitivity and resistance was indistinguishable from wild-type cells. Alpha-mating hormone does not alter the steady state level of Nuf2 (data not shown).

Table II. Mutations Found within nuf2-61

Position	Mutation	Amino acid change
1215/313	A → G	none
1288/338	A → C	T → P
1294/340	A → T	I → K
1424/383	A → G	Y → C
1491/405	T → C	none
1505/410	T → C	L → S
1588/441	A → T	K → I
1612/446	A → T	M → L

* Nucleotide #/amino acid #.
~: Nucleotide change (sense strand).
§: Single-letter code abbreviations for amino acids changed by mutation.

Discussion

We have characterized NUF2, an essential gene of the yeast *Saccharomyces cerevisiae*, which encodes a novel protein associated with the spindle pole body. The COOH terminus of the 53-kd Nuf2 protein is predicted to form an α-helical coiled-coil, and mutations conferring temperature-sensitivity are located in this region. Temperature-sensitive mutants in NUF2 display uniform cell division-cycle arrest with a partially divided nucleus and a short bipolar spindle. In wild-type cells, Nuf2 colocalizes with the previously
identified 80-kd SPB antigen on the nucleoplasmic face of the SPB. Nuf2 contains a region conserved in evolution, as anti-Nuf2 antibodies recognize a related antigen in mammalian cells.

Nuf2 was identified through a genetic interaction with the nuclear pore complex protein Nup1 (Davis and Fink, 1990). Although it remains a formal possibility that Nuf2 and Nup1 interact, the placement of Nuf2 at the SPB under the conditions used here and not the nuclear pore complex appears to make this unlikely. One possibility is that there is some transient interaction of nucleoporins such as Nup1 with the SPB during nuclear pore assembly. In this regard, yeast mutants defective in RNA export have shown clustering of pore complexes at the SPB (Amberg, D., C. Copeland, M. Snyder and C. Cole, personal communication). Alternatively, the isolation of NUF2 may reflect a particular bias in the two-hybrid screen. Along this line, other putative Nuf2 interaction proteins identified in this screen also possess regions of coiled-coil potential (Schlendstedt, G., and P. Silver, unpublished results). Attempts to show a direct association between Nup1 and Nuf2 by other methods have, thus far, been unsuccessful.

The location of Nuf2 at the SPB was detected via immunofluorescence staining with other known SPB components. Rout and Kilmartin (1990) have purified yeast SPBs and raised antibodies against several of its major protein components. Antibodies against the 110-, 90-, and 80-kd proteins were used to confirm their SPB location by immunofluorescence. Immunoelectron microscopy further localized each antigen to distinct locations within the SPB. We now present the results of double-labeling experiments with anti-Nuf2 and either the anti-90 kd or anti-80 kd antibodies. There is costaining with the 80-kd and Nuf2 proteins, whereas the Nuf2 and 90-kd proteins were often located side-by-side as determined by confocal microscopy. The colocalization of Nuf2 and the 80-kd SPB protein then localizes Nuf2 to the nucleoplasmic side of the SPB, at the end of the microtubules. This location suggests that Nuf2 may be involved in SPB function, e.g., in microtubule dynamics. This suggestion is supported by the phenotype of mutants with temperature-sensitive mutations in NUF2.

There has been ambiguity with regard to the subcellular location of several potential SPB proteins. This appears to be due to problems with the level of expression and the fixation conditions used. Recently, Nuf1, initially identified as a nuclear matrix component (Mirzayan et al., 1992), has been shown to be the 110-kd protein of the SPB (Kilmartin et al., 1993). Nuf1/SPC110, like Nuf2, contains a large region of coiled-coil structure and deletion of the coil region alters the structure of the SPB. Similarly, during our initial analysis of Nuf2 (which employed formaldehyde fixation), we could only see overproduced protein in the nucleus. It was only when we modified the fixation conditions to those of Rout and Kilmartin (1990) that we could visualize wildtype levels of Nuf2 at the SPB. This raises the possibility that some proteins such as Nuf1 and Nuf2 may be redistributing during the various fixation processes. Thus, it is also possible that Nuf2 is actually a nuclear microtubule-associated protein. Since most of the microtubules appear to disassemble under the fixation conditions used, the observed Nuf2 staining might be due to colocalization with residual nuclear microtubules. One protein similar to Nuf2 in the GenBank/EMBL database is Mlp1 (Kolling et al., 1993), which was localized to "dots" adjacent to the nucleus in cells overexpressing the protein. These dots resemble SPB staining; however, no costaining with SPB antibodies was done to confirm this possibility.

Anti-Nuf2 antibodies were shown to cross-react with a 73-kd mammalian nuclear protein and to stain centrosomes in mammalian tissue culture cells. Based on these results, it is tempting to speculate that there is a functional Nuf2 homologue present in mammals. If there is indeed conservation between the yeast SPB and the mammalian centrosome, one might be able to identify additional centrosomal proteins based on similarity to yeast proteins.

Temperature sensitive mutants in NUF2 behave in a manner similar to a subset of previously described CDC mutants, which arrest uniformly with a large partially divided nucleus. Mutants in this class include cdc16, cdc17, cdc20, cdc23, and cdc27. However, the phenotype of nuf2 mutants cells is different from other mutants in SPB components.
Mutants in mps1, mps2 (Winey et al., 1991), kari (Rose and Fink, 1987), cdc31, ctk1 (Page and Snyder, 1992), ndel (Thomas and Botstein, 1986; Winey et al., 1993), and cdc4 arrest with a monopolar spindle or no spindle, whereas nuf2-63 cells have a partially elongated bipolar spindle. This may indicate that Nuf2 is involved in a process distinct from that of these other SPB proteins.

Little is known about the molecular requirements for separation of duplicated SPBs. Because of its predicted coiled-coil structure, Nuf2 may form filaments that serve as a framework or scaffold for other proteins that perform the work of separation of duplicated SPBs. The location of Nuf2 at the nuclear extreme of the SPB makes it a candidate for such a protein. Force generating proteins such as Kar3, Cin8, and Kip1 may also be required in this process (Roof et al., 1992; Saunders and Hoyt, 1992). Perhaps as yet unidentified proteins exclusively required for SPB separation may bind to Nuf2. Nuf2 is, in some ways, similar to the previously described mammalian NuMA protein (Lyderon and Petijohn, 1980), which is located at centrosomes in mitotic cells (Compton et al., 1992). Both are potential coiled-coil proteins and NuMA is important for establishment of the mitotic spindle apparatus (Yang and Snyder, 1992). Similar to Nuf2, NuMA has also been suggested to have a structural role during mitosis. Future genetic analysis of Nuf2 and other SPB associated proteins will further elucidate the mechanism of SPB duplication.

We thank Gail Barcelo and Marlies Schlenstedt for technical assistance, Carolyn Osborne for reference management, Ulla Stochaj for assistance in extract. We thank the NIH Genetics Training Grant awarded to Princeton University, G. Chien, C. P. Bartel, R. Sternglanz, and S. Fields. 1991. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA. 88:9578-9582.

We thank Michael Snyder, Jonathan Loeb, and David PeUman, Laura Davis, Mark Rose, and Charles Stiles, Philip Hieter, John Geiser, John Kilmartin, Ronald Balc- zon, Dick Sassy, and members of the Silver and Rose labs are appreciated.

Condescending. D. A., I. Szilak, and D. W. Cleveland. 1992. Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J. Cell Biol. 116:1395-1408.

Conde, J., and G. R. Fink. 1976. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA. 73:3651-3655.

Crowe, J. S., H. J. Cooper, M. A. Smith, M. J. Sims, D. Parker, and D. Gewert. 1991. Improved cloning efficiency of polymerase chain reaction (PCR) products after proteinase K digestion. Nucleic Acids Res. 19:184. Davis, L., and G. R. Fink. 1990. The NUP1 gene encodes an essential compo- nent of the yeast nuclear pore component. Cell. 61:965-978.

Evans, G. L., G. K. Lewis, G. Ramsay, and J. M. Bishop. 1985. Isolation of monoclonal antibodies specific for human c-my-c proto-oncogene product. Mol. Cell. Biol. 5:3610-3616.

Fields, S., and O. K. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature (Lond.). 340:245-246.

Goh, P. Y., and J. V. Kilmartin. 1993. NDC10: a gene involved in chromo- some segregation in Saccharomyces cerevisiae. J. Cell Biol. 121:503-512.

Hartwell, L. H., and D. Smith. 1985. Altered fidelity of mitotic chromosome transmission in cell-cycle mutants of S. cerevisiae. Genetics. 110:381-395.

Hey, M. A., L. He, K. K. Loo, and W. S. Saunders. 1992. Two Sac- charomyces cerevisiae kinisin-related gene products required for mitotic spindle assembly. J. Cell Biol. 118:109-120.

Hoyt, M. A., L. He, L. Totis, and W. S. Saunders. 1993. Loss of function of Saccharomyces cerevisiae-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics. 135:35-44.

Hunt, E. C. 1988. A novel nucleoskeleton-like protein located at the nuclear per-iphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J. Eur. Mol. Biol. Organ. J. 7:4323-4334.

Hunter, K. L., and H. E. Eipel. 1978. Flow cytometric determinations of cellular substances in algae, bacteria, molds and yeast. Antonie Leeuwenhoek. Microbiol. Serol. 44:269-282.

Jones, J. S., and L. Prakash. 1990. Yeast Saccharomyces cerevisiae selectable markers in PUC18 polylinkers. Yeast. 6:363-366.

Kilmartin, J. V., and A. E. M. Adams. 1984. Structural rearrangements of tabulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98:922-933.

Kilmartin, J. V., S. L. Dyos, D. Kershaw, and J. T. Finch. 1993. A spacer protein in the Saccharomyces cerevisiae spindle pole body whose transcript is cell-cycle regulated. J. Cell Biol. 123:1175-1184.

Kolling, R., T. Nguyen, E. Y. Chen, and D. Borstein. 1993. A new yeast gene with a myosin-like heptad repeat structure. Mol. Gen. Gen. Med. 237:359-369. Leung, D. W., E. Chen, and D. V. Goodell. 1989. A method for random muta- genesis of a defined DNA segment using a modified polymerase chain reac- tion. Technique. 1:11-15.

Lupas, A., M. van Dyke, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science (Wash. DC). 252:1162-1164.

Lyderon, B. K., and D. E. Petijohn. 1980. Human-specific nuclear protein that associates with the pole of the mitotic apparatus: distribution in a human/hamster hybrid cell. Cell. 22:489-499.

Meluh, P. 1993. KA R3, a kinisin-related gene required for nuclear fusion, mito- sis, and meiosis in Saccharomyces cerevisiae. Ph. D. Thesis. Princeton University, Princeton, NJ. p. 171.

Mizayyan, C., C. S. Copeland, and M. Snyder. 1992. The NUF1 gene encodes an essential coiled-coil related protein that is a potential component of the yeast nucleoskeleton. J. Cell Biol. 116:1319-1352.

Neher, H., H. Kern, A. Mueve, H. Horstemm, B. Marshallsay, and E. C. Hurt. 1990. NSPI: a yeast nuclear envelope protein localized at the nuclear pores exerts its essential function by its carboxy-terminal domain. Cell. 61:979-980.

Osborne, T. G., N. J. Patel, S. C. Ross, and N. E. Bauer. 1982. Antinuclear antibody staining only centrosomes in a patient with scleroderma. New Engl. J. Med. 307:253-254.

Osborne, M. A. 1993. Nuclear protein transport and nuclear structure in Sac- charomyces cerevisiae. Ph.D. Thesis. Princeton University, Princeton, NJ. 158-160.

Page, B., and M. Snyder. 1992. CTK1: a developmentally regulated spindle pole body-associated protein important for microtubule functions in Sac- charomyces cerevisiae. Genet. Dev. 6:1414-1429.

Roeder, G. S., and G. R. Fink. 1980. DNA rearrangements associated with a myosin-like heptad repeat structure. J. Cell Biol. 106:22-229.

Roeder, G. S., and G. R. Fink. 1980. DNA rearrangements associated with a myosin-like heptad repeat structure. J. Cell Biol. 116:1395-1408.

Roeder, G. S., and G. R. Fink. 1980. DNA rearrangements associated with a myosin-like heptad repeat structure. J. Cell Biol. 116:1395-1408.

Roeder, G. S., and G. R. Fink. 1980. DNA rearrangements associated with a myosin-like heptad repeat structure. J. Cell Biol. 116:1395-1408.
Rout, M. P., and J. V. Kilmartin. 1990. Components of the yeast spindle and spindle pole body. *J. Cell Biol.* 111:1913–1927.

Rout, M. P., and J. V. Kilmartin. 1991. Yeast spindle pole body components. *Cold Spring Harbor Symp. Quant. Biol.* 51:687–692.

Sadler, L. A., Chiung, T. Kurihara, J. Rothblatt, J. Way, and P. Silver. 1989. A yeast gene important for assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an E. coli heat shock protein. *J. Cell Biol.* 109:2665–2675.

Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. *Proc. Natl. Acad. Sci. USA.* 74:5463–5467.

Saunders, W. S., and M. A. Hoyt. 1992. Kinesin-related proteins required for structural integrity of the mitotic spindle. *Cell.* 70:451–458.

Schiestl, R. H., and R. D. Geitz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. *Curr. Genet.* 16:339–346.

Schlenstedt, G., E. Hurt, V. Doye, and P. Silver. 1993. Reconstitution of nuclear protein transport with semi-intact yeast cells. *J. Cell Biol.* 123:785–798.

Skorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. *Genetics.* 122:19–27.

Spencer, F., S. L. Gerring, C. Connelly, and P. Hieter. 1990. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. *Genetics.* 124:237–249.

Thomas, J. H., and D. Botstein. 1986. A gene required for the separation of chromosomes on the spindle apparatus in yeast. *Cell.* 44:65–76.

Winey, M., M. A. Hoyt, C. Chan, L. Goetsch, D. Botstein, and B. Byers. 1991. MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. *J. Cell Biol.* 114:745–754.

Winey, M., M. A. Hoyt, C. Chan, L. Goetsch, D. Botstein, and B. Byers. 1993. NDC1: a nuclear periphery component required for yeast spindle pole body duplication. *J. Cell Biol.* 122:743–751.

Yang, C. H., and M. Snyder. 1992. The nuclear-mitotic apparatus protein is important in the establishment and maintenance of the bipolar mitotic spindle apparatus. *Mol. Biol. Cell.* 3:1259–1267.