On the distribution of the van der Corput sequence in arbitrary base

Bence Borda
Department of Mathematics, Rutgers University
110 Frelinghuysen Road, Piscataway, NJ-08854, USA
Email: bordabence85@gmail.com

Keywords: van der Corput sequence, L^p discrepancy, central limit theorem, large deviations
Mathematics Subject Classification (2010): 11K31, 11K38, 60F05, 60F10

Abstract

A central limit theorem with explicit error bound, and a large deviation result are proved for a sequence of weakly dependent random variables of a special form. As a corollary, under certain conditions on the function $f : [0, 1] \to \mathbb{R}$ a central limit theorem and a large deviation result are obtained for the sum $\sum_{n=0}^{N-1} f(x_n)$, where x_n is the base b van der Corput sequence for an arbitrary integer $b \geq 2$. Similar results are also proved for the L^p discrepancy of the same sequence for $1 \leq p < \infty$. The main methods used in the proofs are the Berry–Esseen theorem and Fourier analysis.

1 Introduction

For an integer $b \geq 2$ the base b van der Corput sequence x_n is defined the following way. If the base b representation of the integer $n \geq 0$ is $n = \sum_{i=1}^{m} a_i b^{i-1}$ for some digits $a_i \in \{0, 1, \ldots, b-1\}$, then

$$x_n = \sum_{i=1}^{m} \frac{a_i}{b^i}.$$

The main importance of this sequence is that it is of low discrepancy. Indeed, the discrepancy function of the base b van der Corput sequence

$$\Delta_N(x) = |\{0 \leq n < N : x_n < x\}| - Nx,$$

defined for nonnegative integers N, and $x \in [0, 1]$, satisfies

$$0 \leq \Delta_N(x) \leq \frac{b}{4} \log_b N + b.$$
The precise value of
\[\limsup_{N \to \infty} \sup_{x \in [0,1]} \frac{\Delta_N(x)}{\log N} \]
in terms of the base \(b \) was found by Faure (\[4\] Theorem 1, Theorem 2 and Sections 5.5.1–5.5.3).

In this article we study the random aspects of the base \(b \) van der Corput sequence. Let
\[\Phi(\lambda) = \int_{-\infty}^{\lambda} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx \]
denote the distribution function of the standard normal distribution. Our main result is that the sum
\[S(N) = \sum_{n=0}^{N-1} \left(\frac{1}{2} - x_n \right) \]
satisfies the following central limit theorem.

Theorem 1. Let \(x_n \) be the base \(b \) van der Corput sequence, where \(b \geq 2 \) is an arbitrary integer. Then for any integer \(M > b^2 \) and any real number \(\lambda \) we have
\[\frac{1}{M} \left| \left\{ 0 \leq N < M : \frac{S(N) - c(b) \log_b N}{\sqrt{d(b) \log_b N}} < \lambda \right\} \right| = \Phi(\lambda) + O \left(\frac{\sqrt{\log \log_b M}}{\sqrt{\log_b M}} \right), \]
where \(c(b) = \frac{b^2 - 1}{12b} \) and \(d(b) = \frac{b^4 + 120b^3 - 480b^2 + 600b - 241}{720b^2} \). The implied constant in the error term is absolute.

The following large deviation result complements Theorem 1.

Theorem 2. Let \(x_n \) be the base \(b \) van der Corput sequence, where \(b \geq 2 \) is an arbitrary integer. For any integer \(M > b \) and any real number \(\lambda \geq 3 \) we have
\[\frac{1}{M} \left| \left\{ 0 \leq N < M : \left| S(N) - \frac{b^2 - 1}{12b} \log_b M \right| \geq 25\lambda b \sqrt{\log_b M + 1} \right\} \right| \leq \frac{4\sqrt{\lambda}}{e^{\sqrt{\lambda} - 2}} + \frac{1}{b \sqrt{\log_b M - 2}}. \]
Since
\[\int_0^1 \Delta_N(x) \, dx = S(N), \] (1)
we have that \(S(N) = O(b \log_b M) \), therefore Theorem 2 is meaningful only when applied with \(\lambda = O\left(\sqrt{\log_b M}\right) \). Note that for all such values of \(\lambda \) the error term \(\frac{1}{b \sqrt{\log_b M} \log_b N} \) is of smaller order of magnitude than \(\frac{4}{e^{\sqrt{\log_b M}} - 1} \). The question of whether the upper bound in Theorem 2 can be improved to \(O\left(e^{-d \lambda}\right) \) or to \(O\left(e^{-d \lambda^2}\right) \) for some constant \(d > 0 \) is left open.

Observation (1) gives the idea that the sum \(S(N) \) is related to the \(L^p \) norm \(\|\Delta_N\|_p = \left(\int_0^1 |\Delta_N(x)|^p \, dx \right)^{\frac{1}{p}} \) of the discrepancy function. As simple corollaries to Theorem 1 and Theorem 2 we thus obtain that \(\|\Delta_N\|_p \) satisfies the same central limit theorem and large deviation result as \(S(N) \).

Theorem 3. Let \(x_n \) be the base \(b \) van der Corput sequence, where \(b \geq 2 \) is an arbitrary integer. Let \(1 \leq p < \infty \) be an arbitrary real. Then for any integer \(M > b^2 \) and any real number \(\lambda \) we have

\[
\frac{1}{M} \left\{ 0 \leq N < M : \left\| \Delta_N \right\|_p - c(b) \log_b N \sqrt{d(b) \log_b N} < \lambda \right\} = \Phi(\lambda) + O\left(\frac{\sqrt{\log \log_b M}}{\sqrt{\log_b M}}\right),
\]

where \(c(b) = \frac{b^2 - 1}{12b} \) and \(d(b) = \frac{b^4 + 120b^3 - 480b^2 + 600b - 241}{720b^2} \). The implied constant in the error term depends only on \(p \).

Theorem 4. Let \(x_n \) be the base \(b \) van der Corput sequence, where \(b \geq 2 \) is an arbitrary integer. Let \(1 \leq p < \infty \) be an arbitrary real. There exists a positive constant \(A \) depending only on \(p \) such that for any integer \(M > b^2 \) and any real number \(\lambda \geq 1 \) we have

\[
\frac{1}{M} \left\{ 0 \leq N < M : \left| \left\| \Delta_N \right\|_p - \frac{b^2 - 1}{12b} \log_b N \right| \geq A\lambda b \sqrt{\log_b N} \right\} \leq e^{-\sqrt{\lambda}}.
\]

Similar central limit theorems concerning the distribution of the van der Corput sequence have already appeared in the literature. In \[3\] Theorem 3 is proved in the special case when \(b = 2 \) with an error term \(o(1) \) of unspecified order of magnitude.
In Section 1.3 of [1] Theorem 1 is proved, again in the special case \(b = 2 \), with an error term \(O \left(\frac{\log \log M}{\sqrt{\log M}} \right) \). Our proof of Theorem 1 is the generalization of the proof in Section 1.3 of [1]. In a doctoral dissertation ([7] Theorem 4.1.1.) a central limit theorem for the supremum norm \(\| \Delta_N \|_\infty \) of the discrepancy function in the case of an arbitrary base \(b \geq 2 \), similar to Theorem 3 is proved. The main difference is that \(c(b) \) is to be replaced by \(c_\infty(b) = \frac{2b-1}{12} \) and \(d(b) \) is to be replaced by

\[
d_\infty(b) = \frac{4b^7 - 10b^6 + 10b^5 + 14b^4 - 77b^3 + 127b^2 - 68b + 8}{720b^2(b-1)^2(b+1)}.
\]

Moreover, the theorem is stated only in the special case when \(M \) is a power of the base \(b \), and the error term is of an unspecified order of magnitude \(o(1) \). In [3] and [7] central limit theorems for various generalizations of the van der Corput sequence are also studied. Large deviation results have not yet been obtained.

Finally, we give a method to generalize Theorem 1 and Theorem 2 for sums of the form \(\sum_{n=0}^{N-1} f(x_n) \), where the function \(f : [0, 1] \to \mathbb{R} \) is sufficiently nice, and \(x_n \) is the base \(b \) van der Corput sequence. Since the discrepancy satisfies

\[
\sup_{x \in [0,1]} |\Delta_N(x)| = O \left(b \log_b N \right),
\]

the Koksma inequality ([5] Chapter 2 Theorem 5.1) implies that if \(f : [0, 1] \to \mathbb{R} \) is of bounded variation, then

\[
\sum_{n=0}^{N-1} f(x_n) = N \int_0^1 f(x) \, dx + O \left(\log N \right),
\]

as \(N \to \infty \), with an implied constant depending only on \(b \) and the total variation of \(f \). Under more restrictive assumptions on the function \(f \) the error term actually satisfies a central limit theorem and a large deviation result. The following proposition reduces the problem of studying the distribution of \(\sum_{n=0}^{N-1} f(x_n) \) to that of \(S(N) \).

Proposition 5. Let \(f : [0, 1] \to \mathbb{R} \) be twice differentiable with \(f'' \in L^1([0, 1]) \), and let \(x_n \) denote the base \(b \) van der Corput sequence, where \(b \geq 2 \) is an arbitrary integer. For any integer \(N > 0 \) we have

\[
\left| \sum_{n=0}^{N-1} f(x_n) - N \int_0^1 f(x) \, dx + (f(1) - f(0)) S(N) \right| \leq \frac{b}{3} \| f'' \|_1.
\]

The natural interpretation of the quantity \(f(1) - f(0) \) is that the periodic extension of \(f \) on \(\mathbb{R} \) with period 1 has jumps of this size.
In Section 2 we derive the normalizing factors \(c(b) \) and \(d(b) \) of Theorem 1. Section 3 is devoted to the proofs of Theorem 1 and Theorem 2, while the proofs of Theorem 3, Theorem 4 and Proposition 5 are given in Section 4.

2 The expected value and the variance of \(S(N) \)

We start by deriving a formula for the sum \(S(N) \) in terms of the base \(b \) digits of \(N \) as follows.

Proposition 6. Let \(b \geq 2 \) be an integer and let \(N = \sum_{i=1}^{m} a_i b^{i-1} \) be the base \(b \) representation of an integer \(N \geq 0 \), where \(a_i \in \{0, 1, \ldots, b-1\} \). Then

\[
S(N) = \sum_{i=1}^{m} \frac{(b+1)a_i - a_i^2}{2b} - \sum_{1 \leq i < j \leq m} \frac{a_ia_j}{b^{j-i+1}}.
\]

Proof. By splitting the sum \(S(N) \) we get

\[
S(N) = \sum_{n=0}^{a_mb^{m-1}-1} \left(\frac{1}{2} - x_n \right) + \sum_{n=a_mb^{m-1}}^{N-1} \left(\frac{1}{2} - x_n \right).
\]

Since

\[
\{x_n : 0 \leq n < a_mb^{m-1}\} = \left\{ \frac{k}{b^{m-1}} + \frac{a}{b^m} : 0 \leq k < b^{m-1}, \ 0 \leq a < a_m \right\},
\]

we obtain that the first sum in (2) is

\[
\sum_{n=0}^{a_mb^{m-1}-1} \left(\frac{1}{2} - x_n \right) = \sum_{k=0}^{b^{m-1}-1} \sum_{a=0}^{a_m-1} \left(\frac{1}{2} - \frac{k}{b^{m-1}} - \frac{a}{b^{m}} \right) = \frac{(b+1)a_m - a_m^2}{2b}.
\]

To compute the second sum in (2) note that for any \(a_mb^{m-1} \leq n < N \) the first base \(b \) digit of \(n \) is \(a_m \), and hence \(x_n = x_{n-a_mb^{m-1}} + a_m \). Therefore by reindexing the sum we obtain

\[
\sum_{n=a_mb^{m-1}}^{N-1} \left(\frac{1}{2} - x_n \right) = \sum_{n=0}^{N-a_mb^{m-1}-1} \left(\frac{1}{2} - x_n - \frac{a_m}{b^m} \right)
\]

\[
= S(N - a_mb^{m-1}) - a_m \frac{b^{m} - N}{b}.
\]
Using the base b representation of N we thus find the recursion

$$
S \left(\sum_{i=1}^{m} a_i b^{i-1} \right) = \frac{(b+1)a_m - a_m^2}{2b} - \frac{m-1}{b^m - i+1} + S \left(\sum_{i=1}^{m-1} a_i b^{i-1} \right).
$$

(3)

Applying the recursion (3) m times finishes the proof.

If N is a random variable uniformly distributed in $\{0, 1, \ldots, b^m - 1\}$ for some integers $b \geq 2$ and $m \geq 1$, then the base b digits a_1, \ldots, a_m of N are independent random variables, each uniformly distributed in $\{0, 1, \ldots, b - 1\}$. Therefore Proposition 6 can be used to find the expected value and the variance of the sum $S(N)$. Here and from now on the expected value and the variance of a real valued random variable X are denoted by $E(X)$ and $\text{Var}(X)$, respectively.

Proposition 7. Let N be a random variable which is uniformly distributed in $\{0, 1, \ldots, b^m - 1\}$ for some integers $b \geq 2$ and $m \geq 1$. Then

$$
\left| E \left(S(N) \right) - \frac{b^2 - 1}{12b^m} \right| \leq \frac{1}{4},
$$

$$
\text{Var} \left(S(N) \right) = \frac{b^4 + 120b^3 - 480b^2 + 600b - 241}{720b^2} m + O(b).
$$

The implied constant in the error term is absolute.

Proof. Using the independence of the base b digits a_1, \ldots, a_m of N, from Proposition 6 we get that the expected value of $S(N)$ is

$$
E \left(S(N) \right) = \sum_{i=1}^{m} \frac{(b+1)E(a_i) - E(a_i^2)}{2b} - \sum_{1 \leq i < j \leq m} \frac{E(a_i)E(a_j)}{b^{j-i+1}} = \frac{b^2 - 1}{12b^m} + \frac{1}{4} - \frac{1}{4b^m}.
$$

To find the variance of $S(N)$, first let us use the independence of a_1, \ldots, a_m again to obtain

$$
\text{Var} \left(\sum_{i=1}^{m} \frac{(b+1)a_i - a_i^2}{2b} \right) = \sum_{i=1}^{m} \text{Var} \left(\frac{(b+1)a_i - a_i^2}{2b} \right) = \frac{b^4 + 55b^2 - 56}{720b^2} m.
$$

(4)
\[
\text{Var} \left(\sum_{1 \leq i < j \leq m} \frac{a_i a_j}{b^{j-i+1}} \right) = \sum_{1 \leq i_1 < j_1 \leq m} \sum_{1 \leq i_2 < j_2 \leq m} \left(E(a_{i_1}a_{j_1}a_{i_2}a_{j_2}) - \frac{(b-1)^4}{16} \right) \frac{1}{b^{j_1-i_1+1}b^{j_2-i_2+1}}.
\]

(5)

We will group the terms according to the size of \(\{i_1, j_1\} \cap \{i_2, j_2\}\). If \(\{i_1, j_1\} \cap \{i_2, j_2\}\) is the empty set, then \(a_{i_1}, a_{j_1}, a_{i_2}, a_{j_2}\) are independent, and therefore the contribution is zero.

If \(\{i_1, j_1\} \cap \{i_2, j_2\}\) has size 1, then

\[
E(a_{i_1}a_{j_1}a_{i_2}a_{j_2}) - \frac{(b-1)^4}{16} = \frac{(b-1)^3(b+1)}{48}.
\]

Let \(s > 0, t > 0\) and \(1 \leq A \leq m - s - t\) be integers. The sum of over all \(1 \leq i_1 < j_1 \leq m\) and \(1 \leq i_2 < j_2 \leq m\) such that \(\{i_1, j_1\} \cup \{i_2, j_2\} = \{A, A+s, A+s+t\}\) is \(\frac{2}{b^{2s+t+2}} + \frac{2}{b^{s+t+2}} + \frac{2}{b^{s+2t+2}}\), hence we have that the contribution of this case in (5) is

\[
\sum_{s,t>0} \frac{(b-1)^3(b+1)}{48} (m - s - t) \left(\frac{2}{b^{2s+t+2}} + \frac{2}{b^{s+t+2}} + \frac{2}{b^{s+2t+2}} \right) = \frac{b^2 + 2b - 3}{24b^2} m + O(1).
\]

If \(\{i_1, j_1\} \cap \{i_2, j_2\}\) has size 2, then \(i_1 = i_2\) and \(j_1 = j_2\), and hence

\[
E(a_{i_1}a_{j_1}a_{i_2}a_{j_2}) - \frac{(b-1)^4}{16} = \frac{(7b^2 - 12b + 5)(b^2 - 1)}{144}.
\]

Therefore the contribution of this case in (5) is

\[
\sum_{1 \leq i < j \leq m} \frac{1}{b^{2j-2i+2}} = \frac{7b^2 - 12b + 5}{144b^2} m + O(1).
\]

Altogether we find that

\[
\text{Var} \left(\sum_{1 \leq i < j \leq m} \frac{a_i a_j}{b^{j-i+1}} \right) = \frac{13b^2 - 13}{144b^2} m + O(1).
\]

(6)

Finally, it is easy to see that two times the covariance of the sums in question is
\[
2 \sum_{1 \leq i_1 \leq m \atop 1 \leq i_2 < j_2 \leq m} E \left(\left(\frac{(b+1)a_{i_1}-a_{i_1}^2}{2b} - \frac{b^2+3b-4}{12b} \right) \left(\frac{(b-1)^2}{4} - a_{i_2}a_{j_2} \right) \frac{1}{b_{j_2}} \right)
\]

\[
= \frac{b^3 - 5b^2 + 5b - 1}{6b^2} (m-1) + O(1), \quad (7)
\]

by noticing that the terms for which \(i_1 \notin \{i_2, j_2\}\) are all zero. Adding (1), (3) and (7), we obtain the desired formula for \(\text{Var}(S(N))\).

\[
\square
\]

3 Proofs of Theorem 1 and Theorem 2

Let \(N\) be a random variable again, uniformly distributed in \(\{0, 1, \ldots, b^m-1\}\). Proposition 6 expresses \(S(N)\) in terms of independent random variables \(a_1, \ldots, a_m\).

In this Section we prove a general central limit theorem and a large deviation result for random variables expressed in terms of independent variables in a similar way. These general results fit into the subject of weakly dependent random variables. The proof of Theorem 9 below is the generalization of the proof in Section 1.3 of [1].

For positive integers \(a\) and \(m\) let \([m]\) denote the set \(\{1, 2, \ldots, m\}\), and let

\[
\left([m] \atop \leq a \right) = \{A \subseteq [m] : |A| \leq a\}.
\]

For a finite set \(A\) of integers let \(\text{diam} A = \max A - \min A\), and for random variables \(X_1, \ldots, X_m\) let \(X_A = (X_i : i \in A)\) for any \(A \subseteq [m]\).

We are going to use the fact that for any real numbers \(\lambda\) and \(x\) we have

\[
\Phi(\lambda + x) = \Phi(\lambda) + O(|x|), \quad (8)
\]

\[
\Phi(\lambda(1 + x)) = \Phi(\lambda) + O(|x|). \quad (9)
\]

Note that \(\Phi(\lambda + x) - \Phi(\lambda)\) is the integral of \(\frac{1}{\sqrt{2\pi}} e^{-t^2/2}\) over an interval of length \(|x|\), therefore (8) in fact holds with implied constant \(\frac{1}{\sqrt{2\pi}}\). Since \(0 \leq \Phi \leq 1\), (8) holds for any \(|x| > \frac{1}{2}\) with implied constant 2. If \(|x| \leq \frac{1}{2}\), then for \(\lambda \geq 0\) \(\Phi(\lambda(1 + x)) - \Phi(\lambda)\) is an integral over an interval of length \(|\lambda x|\), moreover this interval is contained in \([\lambda/2, 3\lambda/2]\), therefore the integrand is at most \(\frac{1}{\sqrt{2\pi}} e^{-\lambda^2/2}\).

Hence
\[|\Phi(\lambda(1 + x)) - \Phi(\lambda)| \leq |\lambda x| \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \]

and clearly the same is true for \(\lambda < 0 \). Note that \(\frac{|\lambda|}{\sqrt{2\pi}} e^{-\frac{\lambda^2}{8}} \) is bounded on \(\mathbb{R} \), in fact the maximum is attained at \(\lambda = \pm 2 \) with maximum value less than 2. Thus altogether (9) holds with implied constant 2.

Proposition 8. Let \(2 \leq a \leq m \) be integers, and let \(X_1, X_2, \ldots, X_m \) be independent real valued random variables. For every \(A \in \binom{[m]}{\leq a} \) let \(f_A : \mathbb{R}^{|A|} \to \mathbb{R} \) be Borel measurable. Suppose that for every \(A \in \binom{[m]}{\leq a} \) we have

1. \(E f_A(X_A) = 0 \),
2. \(|f_A(X_A)| \leq e^{-c \cdot \text{diam} A} \)

for some constant \(c > 0 \). Let \(q = \left(\frac{2}{1 - e^{-c}} \right)^{a+\frac{1}{2}} \) and \(g(x) = \sum_{k=0}^{\infty} \frac{x^{2ak}}{(2ak)!} \).

1. For any integer \(k \geq 1 \) we have

\[E \left(\sum_{A \in \binom{[m]}{\leq a}} f_A(X_A) \right)^{2k} \leq q^{2k}(2ak)! \cdot m^k. \]

2. For any real number \(\lambda \geq 1 \) we have

\[\Pr \left(\left| \sum_{A \in \binom{[m]}{\leq a}} f_A(X_A) \right| \geq \lambda q \sqrt{m} \right) \leq \frac{\sqrt{\lambda}}{g(\sqrt{\lambda} - 1)}. \]

Proof. (1) Let \(L \) denote the left hand side of the claim. By expanding we get

\[L = E \left(\sum_{A \in \binom{[m]}{\leq a}} f_A(X_A) \right)^{2k} = \sum_{A_1, \ldots, A_{2k} \in \binom{[m]}{\leq a}} E \prod_{i=1}^{2k} f_{A_i}(X_{A_i}). \]

For each ordered \(2k \)-tuple \((A_1, \ldots, A_{2k}) \in \binom{[m]}{\leq a}^{2k}\) consider the hypergraph \(\mathcal{H} \) on \([m]\) with edges \(A_1, \ldots, A_{2k} \). In this proof by a hypergraph we mean an unordered collection of subsets of \([m]\), called edges, with possible repetitions. Let \(p \) denote the number of connected components of \(\mathcal{H} \), where \(1 \leq p \leq 2k \). Note that if
\(p > k \), then there exists an isolated edge in \(\mathcal{H} \), which using the independence of \(X_1, \ldots, X_m \) and condition (i) implies that

\[
E \prod_{i=1}^{2k} f_{A_i}(X_{A_i}) = 0.
\]

Suppose now that \(1 \leq p \leq k \). Let \(C_1, \ldots, C_p \) be the connected components of \(\mathcal{H} \), and let \(d_j = \text{diam} \bigcup C_j \). The main observation is that the connectedness implies

\[
d\bigcup C_j \leq \sum_{A \in C_j} \text{diam} A,
\]

\[
\sum_{j=1}^{p} d_j \leq \sum_{i=1}^{2k} \text{diam} A_i,
\]

\[
\left| \prod_{i=1}^{2k} f_{A_i}(X_{A_i}) \right| \leq \exp \left(-c \cdot \sum_{i=1}^{2k} \text{diam} A_i \right) \leq \exp \left(-c \cdot \sum_{j=1}^{p} d_j \right). \tag{11}
\]

Let \(M_j = \min \bigcup C_j \). Then \(\bigcup C_j \subseteq [M_j, M_j + d_j] \). We are going to group the terms of (10) according to the values \(p, M_1, \ldots, M_p, d_1, \ldots, d_p \) associated with the corresponding hypergraph \(\mathcal{H} \). For given \(p, M_1, \ldots, M_p, d_1, \ldots, d_p \) all the sets \(A_1, \ldots, A_{2k} \) have to be a subset of the set

\[
\bigcup_{j=1}^{p} [M_j, M_j + d_j]
\]

of size at most \(\sum_{j=1}^{p} d_j + p \). The number of ordered \(2k \)-tuples \((A_1, \ldots, A_{2k}) \in \binom{[m]}{\leq a}^{2k}\) for which the corresponding hypergraph \(\mathcal{H} \) has associated values \(p, M_1, \ldots, M_p, d_1, \ldots, d_p \) is therefore at most

\[
\left(\sum_{j=1}^{p} d_j + p \right)^{2ak}.
\]

This together with (11) implies that in (10) we have

\[
L \leq \sum_{p=1}^{k} \sum_{M_1, \ldots, M_p} \sum_{d_1, \ldots, d_p=0}^{\infty} \left(\sum_{j=1}^{p} d_j + p \right)^{2ak} \exp \left(-c \sum_{j=1}^{p} d_j \right).
\]

Let \(d = \sum_{j=1}^{p} d_j \). It is known that the number of representations of a given nonnegative integer \(d \) in this form is \(\binom{d+p-1}{p-1} \), therefore we get
\[L \leq \sum_{p=1}^{k} \sum_{d=0}^{\infty} \left(\frac{d + p - 1}{p - 1} \right) (d + p)^{2ak} e^{-cd} m^p \leq \sum_{p=1}^{k} \sum_{d=0}^{\infty} \frac{\prod_{j=1}^{2ak+p-1} (d + j)}{(p - 1)!} e^{-cd} m^p. \]

The series over \(d \) is in fact the well-known Taylor series
\[\sum_{d=0}^{\infty} (d + \ell) \cdots (d + 2)(d + 1)x^d = \frac{\ell!}{(1 - x)^{\ell+1}} \]
with \(\ell = 2ak + p - 1 \) and \(x = e^{-c} \), thus we have
\[L \leq \sum_{p=1}^{k} \frac{(2ak + p - 1)!}{(p - 1)!} \cdot \frac{m^p}{(1 - e^{-c})^{2ak+p}} = \sum_{p=1}^{k} \frac{(2ak + p - 1)}{2ak} (2ak)! \cdot \frac{m^p}{(1 - e^{-c})^{2ak+p}}. \]
Here for every \(1 \leq p \leq k \) we have
\[\frac{m^p}{(1 - e^{-c})^{2ak+p}} \leq \frac{m^k}{(1 - e^{-c})^{(2a+1)k}}. \]

We can also use the combinatorial identity and trivial estimate
\[\binom{n}{n} + \binom{n+1}{n} + \cdots + \binom{n+k-1}{n} = \binom{n+k}{n+1} \leq 2^{n+k} \]
with \(n = 2ak \) to finally obtain
\[L \leq 2^{(2a+1)k}(2ak)! \cdot \frac{m^k}{(1 - e^{-c})^{(2a+1)k}} = q^{2k}(2ak)!m^k. \]

(2) Let \(P \) denote the probability in the claim. Note that \(g(x) \) is monotone increasing on \([0, \infty)\). Therefore for any real number \(0 < \alpha < 1 \) we have
\[P = \Pr \left(\left\| \sum_{A \in \binom{[m]}{\alpha m}} f_A (X_A) \right\| \geq \lambda \sqrt{m} \right) \]
\[= \Pr \left(g \left(\frac{\alpha}{q^\frac{\alpha}{\sqrt{m}}} \sum_{A \in \binom{[m]}{\alpha m}} f_A (X_A) \right)^{\frac{1}{\alpha}} \right) \geq g \left(\alpha \lambda^{\frac{1}{\alpha}} \right). \]

Applying Markov’s inequality and Lebesgue’s monotone convergence theorem we obtain that
\[P \leq \frac{1}{g(\alpha \lambda^2)} \sum_{k=0}^{\infty} \frac{\alpha^{2k}}{q^{2k} m^{k}(2ak)!} E \left(\sum_{A \in \binom{[m]}{\leq a}} f_A(X_A) \right)^{2k}. \]

Proposition 8 (1) yields the upper bound

\[P \leq \frac{1}{g(\alpha \lambda^2)} \sum_{k=0}^{\infty} \alpha^{2k} = \frac{1}{1 - \alpha^{2a}} \cdot \frac{1}{g(\alpha \lambda^2)}. \]

Choosing \(\alpha = 1 - \frac{1}{\lambda} - a \) and noticing \(1 - \alpha^{2a} \geq 1 - \alpha = \lambda^{-\frac{1}{2}} \) finishes the proof.

\[\Box \]

Theorem 9. Let \(2 \leq a \leq m \) be integers, and let \(X_1, X_2, \ldots, X_m \) be independent real valued random variables. For every \(A \in \binom{[m]}{\leq a} \) let \(f_A : \mathbb{R}^{|A|} \rightarrow \mathbb{R} \) be Borel measurable. Suppose that for every \(A \in \binom{[m]}{\leq a} \) we have

(i) \(E f_A(X_A) = 0 \),

(ii) \(|f_A(X_A)| \leq e^{-c \cdot \text{diam} A} \),

(iii) \(\sigma_m^2 = E \left(\sum_{A \in \binom{[m]}{\leq a}} f_A(X_A) \right)^2 > 0 \)

for some constant \(c > 0 \). Then for any real number \(\lambda \) we have

\[\text{Pr}\left(\frac{1}{\sigma_m} \sum_{A \in \binom{[m]}{\leq a}} f_A(X_A) < \lambda \right) = \Phi(\lambda) + O\left(\frac{1}{\sqrt{\log m}} \cdot \frac{m^{\frac{3}{4}}}{\sigma_m^2} \right). \]

The implied constant in the error term depends only on \(a \) and \(c \).

Note that Proposition 8 (1) with \(k = 1 \) implies that \(\sigma_m^2 = O(m) \). The smallest attainable error term in Theorem 9 is therefore \(O\left(\frac{1}{\sqrt{\log m}} \cdot \frac{m^{\frac{3}{4}}}{\sigma_m^2} \right) \), which holds whenever \(\sigma_m^2 > d \cdot m \) for some constant \(d > 0 \).

Proof. Throughout this proof the implied constants in the \(O \) notation will depend only on \(a \) and \(c \). We may assume \(\sigma_m^2 \geq m^\frac{3}{4} \), otherwise the error term is larger than \(1 \). We start by partitioning the set \([m] \) into \(m_0 \) intervals of integers \(I_1, I_2, \ldots, I_{m_0} \), in such a way that \(\max I_i = \min I_{i+1} - 1 \) and \(|I_i| = \Theta\left(\frac{m}{m_0} \right) \) for any \(i \). Assume \(|I_i| > \frac{6}{c} \log m \) for all \(i \). Let
\[Y_i = \sum_{A \in \binom{I_i}{\leq a}} f_A(X_A), \]

\[Z_j = \sum_{A \in \binom{I_j}{\leq a}} f_A(X_A). \]

Then the random variable we are interested in can be written as

\[\sum_{A \in \binom{I_i}{\leq a}} f_A(X_A) = \sum_{i=1}^{m_0} Y_i + \sum_{j=1}^{m_0-1} Z_j + W, \quad (12) \]

where the random variable \(W \) is defined by (12). Then \(Y_1, \ldots, Y_{m_0} \) are independent, and the assumption \(|I_i| > \frac{3}{2} \log m \) implies that \(Z_1, \ldots, Z_{m_0-1} \) are also independent.

Since the number of sets \(A \in \binom{I_i}{\leq a} \) such that \(\text{diam } A = d \) is at most \(m \cdot (d+1)^a \), condition (ii) implies that

\[|W| \leq \sum_{\substack{A \in \binom{I_i}{\leq a} \\text{diam } A > \frac{3}{2} \log m}} e^{-c \text{diam } A} \leq \sum_{d>\frac{3}{2} \log m} m(d+1)^a e^{-cd} \]

\[= O \left(m \log^a m \cdot e^{-c \frac{3}{2} \log m} \right) = O \left(\frac{1}{m} \right). \quad (13) \]

Similarly,

\[|Y_i| \leq \sum_{A \in \binom{I_i}{\leq a}} e^{-c \text{diam } A} \leq \sum_{d=0}^{\infty} |I_i|(d+1)^a e^{-cd} = O \left(|I_i| \right) = O \left(\frac{m}{m_0} \right). \quad (14) \]

The number of sets \(A \in \binom{I_j}{\leq a} \) with \(A \subseteq [\max I_j - d, \max I_j + d] \) is at most \((2d+1)^a\), therefore condition (ii) implies

\[|Z_j| \leq \sum_{d=0}^{\infty} (2d+1)^a e^{-cd} = O(1). \quad (15) \]

Finally, note that the number of sets \(A \in \binom{I_j}{\leq a} \) such that \(\text{diam } A = d_1 \) which intersect \([\max I_j - d_2, \max I_j + d_2]\) is at most \((2d_1+2d_2+1)^a\), thus from conditions (i) and (ii) we obtain that for any \(i \) and \(j \) we have
\[|E (Y_i Z_j)| \leq \sum_{d_1, d_2 \geq 0} (2d_1 + 2d_2 + 1)^a (2d_2 + 1)^a e^{-cd_1} e^{-cd_2} = O(1). \quad (16) \]

By taking the variance of (12) we get

\[
\sigma_m^2 = \sum_{i=1}^{m_0} \text{Var} (Y_i) + \sum_{j=1}^{m_0-1} \text{Var} (Z_j) + 2 \sum_{i=1}^{m_0} \sum_{j=1}^{m_0-1} E (Y_i Z_j) + 2 \sum_{i=1}^{m_0} E (Y_i W) + 2 \sum_{j=1}^{m_0-1} E (Z_j W) + \text{Var} (W).
\]

By noticing that \(E (Y_i Z_j) = 0 \) unless \(i = j \) or \(i = j + 1 \), the bounds (13)–(16) imply

\[
\sigma_m^2 = \sum_{i=1}^{m_0} \text{Var} (Y_i) + O (m_0). \quad (17)
\]

We now want to apply the Berry–Esseen theorem to the sum \(\sum_{i=1}^{m_0} Y_i \) of independent random variables. Applying Proposition 8 (1) with \(k = 2 \) we obtain

\[
E Y_i^4 = O (|I_i|^3) = O \left(\frac{m^2}{m_0^2} \right),
\]

therefore the Hölder inequality implies

\[
\sum_{i=1}^{m_0} E |Y_i|^3 \leq \sum_{i=1}^{m_0} (E Y_i^4)^\frac{3}{4} = O \left(\frac{m^2}{\sqrt{m_0}} \right).
\]

As long as \(m_0 = o (\sigma_m^2) \), we can see from (17) that

\[
\left(\sum_{i=1}^{m_0} \text{Var} (Y_i) \right)^\frac{3}{2} = \sigma_m^3 (1 + o(1)).
\]

Therefore the Berry–Esseen theorem ([2] Section 9.1 Theorem 3) implies that

\[
\Pr \left(\frac{1}{\sqrt{\sum_{i=1}^{m_0} \text{Var} (Y_i)}} \sum_{i=1}^{m_0} Y_i < \lambda \right) = \Phi (\lambda) + O \left(\frac{\sum_{i=1}^{m_0} E |Y_i|^3}{(\sum_{i=1}^{m_0} \text{Var} (Y_i))^\frac{3}{2}} \right)
\]

\[
= \Phi (\lambda) + O \left(\frac{m^\frac{3}{2}}{\sigma_m^3 \sqrt{m_0}} \right). \quad (18)
\]

14
From (17) we obtain
\[\frac{1}{\sqrt{\sum_{i=1}^{m_0} \text{Var}(Y_i)}} = \frac{1}{\sigma_m} \left(1 + O \left(\frac{m_0}{\sigma_m^2} \right) \right). \]

Therefore we can use (9) with \(x = O \left(\frac{m_0}{\sigma_m} \right) \) to replace the normalizing factor in the probability in (18) by \(\frac{1}{\sigma_m} \) to get
\[\text{Pr} \left(\frac{1}{\sigma_m} \sum_{i=1}^{m_0} Y_i < \lambda \right) = \Phi(\lambda) + O \left(\frac{m_0^2}{\sigma_m^3 \sqrt{m_0}} + \frac{m_0}{\sigma_m^2} \right). \] (19)

Recall that a simple version of the Chernoff bound states that if \(\zeta_1, \ldots, \zeta_n \) are independent random variables such that \(\text{E}(\zeta_j) = 0 \) and \(|\zeta_j| \leq 1 \) for every \(1 \leq j \leq n \), then for any \(t > 0 \) we have
\[\text{Pr} \left(\left| \sum_{j=1}^{n} \zeta_j \right| > t \sqrt{n} \right) \leq 2e^{-\frac{t^2}{2}}. \]

According to (15) there exists a constant \(K > 0 \) such that \(|Z_j| \leq K \) for all \(j \). Condition (i) ensures that \(\text{E}(Z_j) = 0 \) for all \(j \). Therefore we can apply the Chernoff bound to \(\zeta_j = Z_j/K \) with \(n = m_0 - 1 \) and \(t = \sqrt{\log m} \) to obtain
\[\text{Pr} \left(\frac{1}{\sigma_m} \sum_{j=1}^{m_0-1} Z_j > K \sqrt{\log m - \frac{m_0-1}{\sigma_m}} \right) \leq \frac{2}{\sqrt{m}}. \] (20)

From (12), (13) and (20) we get
\[\text{Pr} \left(\frac{1}{\sigma_m} \sum_{A \in \binom{[m]}{\leq s}} f_A(X_A) < \lambda \right) = \text{Pr} \left(\frac{1}{\sigma_m} \sum_{i=1}^{m_0} Y_i < \lambda + O \left(\sqrt{\log m - \frac{m_0}{\sigma_m} + \frac{1}{\sigma_m m}} \right) \right) + O \left(\frac{1}{\sqrt{m}} \right). \]

Combining (19) and (8) with \(x = O \left(\sqrt{\log m - \frac{m_0}{\sigma_m} + \frac{1}{\sigma_m m}} \right) \) we finally obtain
\[\Pr \left(\frac{1}{\sigma_m} \sum_{A \in \binom{[m]}{\leq 2}} f_A(X_A) < \lambda \right) = \Phi(\lambda) + O\left(\frac{m^2}{\sigma^2_m \sqrt{m}} + \frac{m_0}{\sigma^2_m} + \sqrt{\log m} \sqrt{m_0 \sigma_m} + \frac{1}{\sigma_m m} + \frac{1}{\sqrt{m}} \right). \]

The optimal choice for \(m_0 \) is when the first and the third error terms are equal, which holds when

\[m_0 = \Theta\left(\frac{m^2}{\log m \cdot \sigma^2_m} \right). \]

Using \(\sigma^2_m \geq m^2 \) it is easy to check that for this choice of \(m_0 \) both our assumptions \(|I_i| > 6 \log m c\) and \(m_0 = o(\sigma^2_m) \) hold.

\[\square \]

Proof of Theorem Suppose that \(M = b^m \) for some integer \(m \geq 2 \). Let \(N \) be a random variable uniformly distributed in \([0,1,\ldots,b^m - 1]\). Then the base \(b \) digits \(a_1,\ldots,a_m \) of \(N \) are independent random variables. Let \(K > 0 \) be a constant for which

\[\left| \frac{(b+1)a_i - a^2_i}{2b} - \mathbb{E} \left(\frac{(b+1)a_i - a^2_i}{2b} \right) \right| \leq Kb, \]

\[\left| \frac{a_ia_j}{b} - \mathbb{E} \left(\frac{a_ia_j}{b} \right) \right| \leq Kb \]

for any \(1 \leq i < j \leq m \). Using Proposition we can write \(S(N) \) in the form

\[S(N) - \mathbb{E} (S(N)) = Kb \sum_{A \in \binom{[m]}{\leq 2}} f_A(a_A), \]

where \(f_0 = 0, f_{\{i\}} (x) = \frac{(b+1)x-x^2}{2Kb^2} - \mathbb{E} \left(\frac{(b+1)a_i - a^2_i}{2Kb^2} \right) \) and for \(1 \leq i < j \leq m \)

\[f_{\{i,j\}} (x, y) = -\left(\frac{xy}{Kb^2} - \mathbb{E} \left(\frac{a_ia_j}{Kb^2} \right) \right) \cdot \frac{1}{b^{j-i}}. \]

Then the conditions of Theorem are satisfied with \(a = 2 \) and \(c = \log 2 \). According to Proposition we have \(\sigma^2_m = \frac{1}{K^2b^2} \operatorname{Var} (S(N)) = \Theta(m) \), hence we obtain

\[\Pr \left(\frac{S(N) - \mathbb{E} (S(N))}{\sqrt{\operatorname{Var} (S(N))}} < \lambda \right) = \Phi(\lambda) + O\left(\sqrt{\log m} \right). \]
Since $d(b) = \Theta(b^2)$, from Proposition 7 we can see that

$$\frac{1}{\sqrt{\text{Var}(S(N))}} = \frac{1}{\sqrt{d(b)m}} \left(1 + O\left(\frac{1}{bm}\right)\right),$$

$$\frac{E(S(N))}{\sqrt{d(b)m}} = \frac{c(b)m}{\sqrt{d(b)m}} + O\left(\frac{1}{b\sqrt{m}}\right).$$

Hence if we replace $\text{Var}(S(N))$ by $d(b)m$, and then $E(S(N))$ by $c(b)m$ in the probability, then using (9) with $x = O\left(\frac{1}{bm}\right)$ and (8) with $x = O\left(\frac{1}{b\sqrt{m}}\right)$ the error we make is $O\left(\frac{1}{bm} + \frac{1}{b\sqrt{m}}\right)$. Thus

$$\text{Pr}\left(\frac{S(N) - c(b)m}{\sqrt{d(b)m}} < \lambda\right) = \Phi(\lambda) + O\left(\frac{\sqrt{\log m}}{\sqrt{m}}\right). \quad (21)$$

We now show that (21) holds for any $M > b^2$. Let $M = \sum_{i=1}^{m} c_i b^{i-1}$ be the base b representation of M, where $c_i \in \{0, 1, \ldots, b - 1\}$ and $c_m > 0$. Let

$${M^* = \sum_{m \log m - 1 \leq i \leq m} c_i b^{i-1}.}$$

Let N be a random variable uniformly distributed in $\{0, 1, \ldots, M^* - 1\}$, and consider its base b representation $N = \sum_{i=1}^{m} a_i b^{i-1}$. Note that we allow a_m to be zero. Then the random variables $(a_i : 1 \leq i < m - \log m - 1)$ are independent, and each is uniformly distributed in $\{0, 1, \ldots, b - 1\}$. Let us introduce new random variables a_j^* for every $m - \log m - 1 \leq j \leq m$, such that

$$(a_i, a_j^* : 1 \leq i < m - \log m - 1 \leq j \leq m)$$

are identically distributed independent random variables. Let

$$N^* = \sum_{1 \leq i < m - \log m - 1} a_i b^{i-1} + \sum_{m - \log m - 1 \leq j \leq m} a_j^* b^{j-1}.$$

Then $S(N^*)$ satisfies (21). Note that there are $O(\log m)$ base b digits at which N and N^* differ. According to the formula in Proposition 6 if a single base b digit of N is changed, $S(N)$ can change by at most $O(b)$. Hence $S(N^*) = S(N) + O(b \log m)$. Using (8) with $x = O\left(\frac{\log m}{\sqrt{m}}\right)$, the error of replacing $S(N^*)$ in (21) by $S(N)$ is $O\left(\frac{\sqrt{\log m}}{\sqrt{m}}\right)$, therefore

$$\frac{1}{M^*} \left\{0 \leq N < M^* : \frac{S(N) - c(b)m}{\sqrt{d(b)m}} < \lambda\right\} = \Phi(\lambda) + O\left(\frac{\sqrt{\log m}}{\sqrt{m}}\right).$$
Here the error of replacing M^* by M is

$$O \left(\frac{M - M^*}{M} \right) = O \left(\frac{b^m - \log m - 1}{b^m - 1} \right) = O \left(\frac{\sqrt{\log m}}{\sqrt{m}} \right).$$

Finally, note that $\frac{M}{m} \leq N \leq M$ with probability $1 - O \left(\frac{1}{m} \right)$, and for all such N we have $\log_b N = m + O (\log m)$. Using (8) with $x = O \left(\frac{\log m}{\sqrt{m}} \right)$, the error of replacing $c(b)m$ by $c(b) \log_b N$ is $O \left(\frac{\log m}{\sqrt{m}} \right)$. Using (9) with $x = O \left(\frac{\log m}{m} \right)$, the error of replacing $\sqrt{d(b)m}$ by $\sqrt{d(b) \log_b N}$ is $O \left(\frac{\log m}{m} \right)$. Hence we get

$$\frac{1}{M} \left\{ 0 \leq N < M : \frac{S(N) - c(b) \log_b N}{\sqrt{d(b) \log_b N}} < \lambda \right\} = \Phi(\lambda) + O \left(\frac{\sqrt{\log m}}{\sqrt{m}} \right).$$

The error term can be expressed in terms of M by noting $m \geq \log b M$.

Proof of Theorem

First, assume $M = b^m$ for some integer $m \geq 2$. Let N be a random variable uniformly distributed in $\{0, 1, \ldots, b^m - 1\}$, and let $N = \sum_{i=1}^{m} a_i b^{i-1}$ be the base b representation of N, where a_1, \ldots, a_m are independent random variables, each uniformly distributed in $\{0, 1, \ldots, b - 1\}$. Note that for any $1 \leq i < j \leq m$ we have

$$\left| \frac{(b + 1)a_i - a_j^2}{2b} - \frac{(b + 1)E(a_i) - E(a_j^2)}{2b} \right| \leq \frac{3}{4} b,$$

$$\left| \frac{a_i a_j}{b} - \frac{E(a_i)E(a_j)}{b} \right| \leq \frac{3}{4} b.$$

Using Proposition 6 we can write $S(N)$ in the form

$$S(N) - E (S(N)) = \frac{3}{4} b \sum_{A \in \{\{0\} \cup \{i\} \cup \{i,j\} \cup \{\{i,j\}\}} f_A (a_A),$$

where $f_\emptyset = 0$, $f_{\{i\}} (x) = \frac{4}{3b} \frac{(b+1)x-x^2}{2b} - \frac{4}{3b} E \left(\frac{(b+1)a_i - a_i^2}{2b} \right)$ and for $1 \leq i < j \leq m$

$$f_{\{i,j\}} (x, y) = -\frac{4}{3b} \left(\frac{xy}{b} - E \left(\frac{a_i a_j}{b} \right) \right) \cdot \frac{1}{b^{j-i}}.$$

Then the conditions of Proposition 8 (2) are satisfied with $a = 2$, $c = \log 2$, $q = 32$ and

$$g(x) = \sum_{k=0}^{\infty} \frac{x^{4k}}{(4k)!} = e^x + e^{-x} \frac{\cos x}{4} + \frac{\cos x}{2} \geq \frac{e^x - 2}{4}.$$
Therefore Proposition 8 (2) yields

\[
\Pr \left(|S(N) - \mathbb{E}(S(N))| \geq 24\lambda b \sqrt{m} \right) = \Pr \left(\left| \sum_{A \in \binom{[m]}{\leq 2}} f_A (a_A) \right| \geq 32\lambda \sqrt{m} \right) \leq \frac{4\sqrt{\lambda}}{e^{\sqrt{\lambda} - 1} - 2}.
\] (22)

Now we prove (22) holds for any integer \(M > b \). Let \(M = \sum_{i=1}^{m} c_i b^{i-1} \) be the base \(b \) representation of \(M \), where \(c_i \in \{0, 1, \ldots, b-1\} \) and \(c_m > 0 \). Let

\[
N^* = \sum_{m-\sqrt{m} + 1 \leq i \leq m} c_i b^{i-1}.
\]

Let \(N \) be a random variable uniformly distributed in \(\{0, 1, \ldots, M^* - 1\} \), and consider its base \(b \) representation \(N = \sum_{i=1}^{m} a_i b^{i-1} \). Then \((a_i : 1 \leq i < m - \sqrt{m} + 1) \) are independent random variables, each uniformly distributed in \(\{0, 1, \ldots, b-1\} \). Let us introduce new random variables \(a^*_j \) for \(m - \sqrt{m} + 1 \leq j \leq m \) such that

\[
(a_i, a^*_j : 1 \leq i < m - \sqrt{m} + 1 \leq j \leq m)
\]

are identically distributed independent random variables. Let

\[
N^* = \sum_{1 \leq i < m - \sqrt{m} + 1} a_i b^{i-1} + \sum_{m - \sqrt{m} + 1 \leq j \leq m} a^*_j b^{j-1}.
\]

Then \(S(N^*) \) satisfies (22). Using Proposition 6 and Proposition 7 we get the following estimates:

\[
\left| \mathbb{E}(S(N^*)) - \frac{b^2 - 1}{12b} m \right| \leq \frac{1}{4} \leq \frac{\lambda b \sqrt{m}}{24 \sqrt{2}},
\]

\[
\left| \frac{b^2 - 1}{12b} m - \frac{b^2 - 1}{12b} \log_b M \right| \leq \frac{b^2 - 1}{12b} \leq \frac{\lambda b \sqrt{m}}{36 \sqrt{2}},
\]

\[
|S(N) - S(N^*)| \leq \frac{(b+1)^2}{8b} \sqrt{m} + 2\sqrt{m} \leq \frac{41}{96} \lambda b \sqrt{m}.
\]

Since

\[
24 + \frac{1}{24 \sqrt{2}} + \frac{1}{36 \sqrt{2}} + \frac{41}{96} < 25,
\]

these estimates imply
$$\frac{1}{M^*} \left\{ 0 \leq N < M^* : \left| S(N) - \frac{b^2 - 1}{12b} \log_b M \right| \geq 25\lambda b \sqrt{\log_b M + 1} \right\} \leq \frac{4\sqrt{\lambda}}{e^{\sqrt{\lambda}} - 2}. $$

Finally, note that the error of replacing M^* by M is at most

$$\frac{M - M^*}{M} \leq \frac{b^{m-\sqrt{m}+1}}{b^{m-1}} \leq \frac{1}{b^{\sqrt{\log_b M} - 2}}. $$

\[\square\]

4 Proofs of Theorem 3 and Theorem 4

In this Section the proofs of Theorem 3, Theorem 4 and Proposition 5 are given.

We start by estimating an exponential sum in terms of the base b van der Corput sequence. Proposition 10 below is a special case of Lemma 3 in [6]. Nevertheless, for the sake of completeness a proof is included.

Proposition 10. Let $b \geq 2$ be an integer and let x_n denote the base b van der Corput sequence. If ℓ is an integer such that $b^s \nmid \ell$ for some positive integer s, then for any positive integer N we have

$$\left|\sum_{n=0}^{N-1} e^{2\pi i \ell x_n} \right| < b^s. $$

Proof. Let $N = \sum_{j=1}^{m} a_j b^{j-1}$ be the base b representation of N with base b digits $a_j \in \{0, 1, \ldots, b-1\}$ with $a_m \neq 0$. By splitting the sum we get

$$\left|\sum_{n=0}^{N-1} e^{2\pi i \ell x_n} \right| \leq \left|\sum_{n=0}^{a_m b^{m-1}-1} e^{2\pi i \ell x_n} \right| + \left|\sum_{n=a_m b^{m-1}}^{N-1} e^{2\pi i \ell x_n} \right|. \tag{23} $$

Note that for any $a_m b^{m-1} \leq n < N$ the base b representation of n starts with the digit a_m. From the definition of the base b van der Corput sequence we know that for any such n we have $x_n = x_{n-a_m b^{m-1}} + \frac{a_m}{b^m}$, therefore we can reindex the second sum to obtain

$$\left|\sum_{n=a_m b^{m-1}}^{N-1} e^{2\pi i \ell x_n} \right| = \left|\sum_{n=0}^{N-a_m b^{m-1}-1} e^{2\pi i \ell \frac{a_m}{b^m} x_{n+a_m b^{m-1}}} \right|. $$

Using the base b representation of N, repeated application of the triangle inequality in (23) yields
\[
\left| \sum_{n=0}^{N-1} e^{2\pi i t x_n} \right| \leq \sum_{j=1}^{m} \left| \sum_{n=0}^{a_j b^{j-1} - 1} e^{2\pi i t x_n} \right|.
\]

(24)

For any \(1 \leq j \leq m\) we have

\[
\{x_n : 0 \leq n < a_j b^j\} = \left\{ \frac{k}{b^{j-1}} + \frac{a}{b^j} : 0 \leq k < b^{j-1}, \ 0 \leq a < a_j \right\},
\]

therefore

\[
\left| \sum_{n=0}^{a_j b^j - 1} e^{2\pi i t x_n} \right| = \left| \sum_{k=0}^{b^{j-1} - 1} e^{2\pi i \frac{t}{b^{j-1}} k} \right| \cdot \left| \sum_{a=0}^{a_j - 1} e^{2\pi i \frac{t a}{b^j}} \right|.
\]

The assumption \(b^s \nmid \ell\) implies that the first factor is zero whenever \(s \leq j - 1\). Thus we get from (24) that

\[
\left| \sum_{n=0}^{N-1} e^{2\pi i t x_n} \right| \leq \sum_{j=1}^{s} \left| \sum_{n=0}^{a_j b^j - 1} e^{2\pi i t x_n} \right| \leq \sum_{j=1}^{s} a_j b^j - 1 < b^s.
\]

\(\Box\)

Proof of Theorem 3. It is enough to prove the theorem in the special case when \(p\) is a positive even integer. Indeed, if \(p \geq 1\) is arbitrary, we can choose a positive even integer \(p' > p\). Observation (1) then implies

\[
S(N) \leq \|\Delta_N\|_p \leq \|\Delta_N\|_{p'}.
\]

Theorem 1 and Theorem 3 with \(p'\) thus imply Theorem 3 with \(p\).

From now on we assume \(p\) is a positive even integer. Every implied constant in the \(O\) notation will depend only on \(p\). From the alternative form of the discrepancy function

\[
\Delta_N(x) = \sum_{n=0}^{N-1} \left(\chi([x_n,1]) - x \right),
\]

where \(\chi\) denotes the characteristic function of a set, one obtains via routine integration that for any integer \(\ell \neq 0\) we have

\[
\int_{0}^{1} \Delta_N(x)e^{-2\pi i t x} \, dx = \frac{1}{2\pi i \ell} \sum_{n=0}^{N-1} e^{-2\pi i t x_n}.
\]

21
Therefore Parseval’s formula and observation (1) yield

\[\int_0^1 (\Delta_N(x) - S(N))^2 \, dx = \sum_{\ell \neq 0} \frac{1}{4\pi^2 \ell^2} \left| \sum_{n=0}^{N-1} e^{-2\pi i \ell x_n} \right|^2. \]

Let \(N = \sum_{j=1}^{m} a_j b^{j-1} \) be the base \(b \) representation of \(N \), where \(a_j \in \{0, 1, \ldots, b-1\} \) and \(a_m > 0 \). Note \(N < b^m \). Let \(b^s \parallel \ell \) denote the fact that \(b^s \mid \ell \) but \(b^{s+1} \nmid \ell \).

By splitting the sum according to the highest power of \(b \) dividing \(\ell \), and applying Proposition 10 and a trivial estimate we obtain

\[\int_0^1 (\Delta_N(x) - S(N))^2 \, dx \]

\[= \sum_{s=0}^{m-2} \sum_{\ell \neq 0, b^s \parallel \ell} \frac{1}{4\pi^2 \ell^2} \left| \sum_{n=0}^{N-1} e^{-2\pi i \ell x_n} \right|^2 + \sum_{\ell \neq 0, b^{m-1} \parallel \ell} \frac{1}{4\pi^2 \ell^2} \left| \sum_{n=0}^{N-1} e^{-2\pi i \ell x_n} \right|^2 \]

\[\leq \sum_{s=0}^{m-2} \sum_{\ell \neq 0, b^s \parallel \ell} \frac{1}{4\pi^2 \ell^2} 4^{2s+2} + \sum_{\ell \neq 0, b^{m-1} \parallel \ell} \frac{1}{4\pi^2 \ell^2} b^{2m} \]

\[\leq \sum_{s=0}^{m-1} \sum_{\ell \neq 0, b^s \parallel \ell} \frac{b^2}{4\pi^2 \ell^2} = \frac{b^2}{12} m \leq \frac{b^2}{12} (\log_b N + 1). \quad (25) \]

For a positive even integer \(p \) consider the binomial formula

\[\Delta_N(x)^p = S(N)^p + pS(N)^{p-1} (\Delta_N(x) - S(N)) \]

\[+ \sum_{k=2}^{p} \binom{p}{k} S(N)^{p-k} (\Delta_N(x) - S(N))^k. \]

By integrating on \([0, 1]\) we get

\[\int_0^1 \Delta_N(x)^p \, dx = S(N)^p + \sum_{k=2}^{p} \binom{p}{k} S(N)^{p-k} \int_0^1 (\Delta_N(x) - S(N))^k \, dx. \]

Using the facts that \(\Delta_N(x) = O(b (\log_b N + 1)) \) and \(S(N) = O(b (\log_b N + 1)) \), we get from (25) that for any \(2 \leq k \leq p \)
\[
\int_0^1 (\Delta_N(x) - S(N))^k \, dx \leq \sup_{x \in [0, 1]} |\Delta_N(x) - S(N)|^{k-2} \int_0^1 (\Delta_N(x) - S(N))^2 \, dx
\]

\[
= O \left(b^k (\log_b N + 1)^{k-1} \right).
\]

Thus we have

\[
\int_0^1 \Delta_N(x)^p \, dx = S(N)^p + O \left(b^p (\log_b N + 1)^{p-1} \right).
\]

(26)

Now we prove the theorem. Let \(M > b^2 \), and let \(N \) be a random variable uniformly distributed in \(\{0, 1, \ldots, M - 1\} \). We know from Theorem 1 that the event

\[
\frac{S(N) - c(b) \log_b N}{\sqrt{d(b) \log_b N}} > -\frac{c(b)}{4 \sqrt{d(b)}} \sqrt{\log_b M}
\]

has probability

\[
1 - \Phi \left(-\frac{c(b)}{4 \sqrt{d(b)}} \sqrt{\log_b M} \right) = 1 - O \left(\frac{\sqrt{\log \log_b M}}{\sqrt{\log_b M}} \right).
\]

The event \(M^{3/4} \leq N < M \) also has probability

\[
1 - O \left(\frac{1}{\sqrt{M}} \right) = 1 - O \left(\frac{\sqrt{\log \log_b M}}{\sqrt{\log_b M}} \right).
\]

Therefore it is enough to consider the intersection of these two events, on which

\[
S(N) > c(b) \left(\log_b N - \frac{1}{4} \sqrt{\log_b N \log_b M} \right)
\]

\[
\geq c(b) \left(\frac{3}{4} \log_b M - \frac{1}{4} \sqrt{\log_b M \log_b M} \right) = \frac{1}{2} c(b) \log_b M
\]

holds. For every such \(N \) we get from (26) that

\[
\int_0^1 \Delta_N(x)^p \, dx = S(N)^p \left(1 + O \left(\frac{1}{\log_b M} \right) \right),
\]

\[
\|\Delta_N\|_p = S(N) \left(1 + O \left(\frac{1}{\log_b M} \right) \right) = S(N) + O(b).
\]
Theorem 3 is thus reduced to Theorem 1.

\[\Box \]

Proof of Theorem 4. Similarly to the proof of Theorem 3 we may assume that \(p \) is a positive even integer. Since \(\| \Delta_N \|_p = O \left(b \left(\log_b N + 1 \right) \right) \), by choosing \(A \) large enough we may assume that \(\lambda \leq \sqrt{\log_b M} \). Recall (26) from the proof of Theorem 3:

\[
\int_0^1 \Delta_N(x)^p \, dx = S(N)^p + O \left(b^p \left(\log_b N + 1 \right)^{p-1} \right)
\]

for any \(N > 0 \). Let \(N \) be a random variable which is uniformly distributed in \(\{0, 1, \ldots, M - 1\} \). We know from Theorem 2 that \(S(N) > \frac{1}{2} c(b) \log_b M \) with probability

\[
1 - O \left(e^{-c \sqrt{\log_b M}} + \frac{1}{b \sqrt{\log_b M} - 2} \right)
\]

for some constant \(c > 0 \). We also have \(\frac{M}{b \sqrt{\log_b M}} \leq N < M \) with probability at least \(1 - O \left(\frac{1}{b \sqrt{\log_b M}} \right) \). For all such \(N \) we have \(\| \Delta_N \|_p = S(N) + O(b) \) and

\[
\log_b N = \log_b M + O \left(\sqrt{\log_b M} \right),
\]

\[
\sqrt{\log_b N} = \sqrt{\log_b M} + O(1).
\]

These estimates together with Theorem 2 yield

\[
\frac{1}{M} \left| \left\{ 0 \leq N < M : \| \Delta_N \|_p - \frac{b^2 - 1}{12b} \log_b N \geq A \lambda b \sqrt{\log_b N} \right\} \right|
= O \left(\frac{\sqrt{\lambda}}{e^{\sqrt{\lambda} - 1} - 2} + e^{-c \sqrt{\log_b M}} + \frac{1}{b \sqrt{\log_b M} - 2} \right)
\]

for any \(\lambda \geq 3 \) with some constant \(A > 0 \) depending only on \(p \). By replacing \(A \) by a larger constant we can simplify the upper bound to \(e^{-\sqrt{\lambda}} \) and relax the condition \(\lambda \geq 3 \) to \(\lambda \geq 1 \).

\[\Box \]

Proof of Proposition 5. Let us write \(f(x) \) in the form

\[
f(x) = \int_0^1 f(t) \, dt + (f(1) - f(0)) \left(x - \frac{1}{2} \right) + g(x), \quad (27)
\]
where \(g : [0, 1] \to \mathbb{R} \) is defined via (27). Then we have \(\int_0^1 g(x) \, dx = 0 \) and \(g(0) = g(1) \). Note that (27) is the expansion of \(f(x) \) with respect to the Bernoulli polynomials with an explicit remainder term. For any integer \(N > 0 \) we have

\[
\sum_{n=0}^{N-1} f(x_n) = N \int_0^1 f(t) \, dt - (f(1) - f(0)) S(N) + \sum_{n=0}^{N-1} g(x_n).
\]

We now have to show that the last sum is negligible. Since \(g \) is twice differentiable on \([0, 1]\) and \(g(0) = g(1) \), we have that the periodic extension of \(g \) to \(\mathbb{R} \) with period 1 is Lipschitz, therefore its Fourier series converges to \(g \):

\[
g(x) = \sum_{\ell \in \mathbb{Z}} \hat{g}(\ell) e^{2\pi i \ell x}
\]

for any \(x \in [0, 1] \), where

\[
\hat{g}(\ell) = \int_0^1 g(x) e^{-2\pi i \ell x} \, dx.
\]

We have \(\hat{g}(0) = 0 \), because \(\int_0^1 g(x) \, dx = 0 \). Since \(g(0) = g(1) \), integration by parts yields that for any integer \(\ell \neq 0 \)

\[
\hat{g}(\ell) = \frac{g'(1) - g'(0)}{4\pi^2 \ell^2} - \int_0^1 g''(x) \frac{e^{-2\pi i \ell x}}{4\pi^2 \ell^2} \, dx = \frac{1}{4\pi^2 \ell^2} \int_0^1 g''(x) (1 - e^{-2\pi i \ell x}) \, dx,
\]

\[
|\hat{g}(\ell)| \leq \frac{1}{2\pi^2 \ell^2} \int_0^1 |g''(x)| \, dx = \frac{\|f''\|_1}{2\pi^2 \ell^2}.
\]

Therefore

\[
\left| \sum_{n=0}^{N-1} g(x_n) \right| = \left| \sum_{n=0}^{N-1} \sum_{\ell \neq 0} \hat{g}(\ell) e^{2\pi i \ell x_n} \right| \leq \sum_{\ell \neq 0} \frac{\|f''\|_1}{2\pi^2 \ell^2} \left| \sum_{n=0}^{N-1} e^{2\pi i \ell x_n} \right|.
\]

We can split up the sum according to the highest power of \(b \) dividing \(\ell \). Proposition 10 hence gives

\[
\left| \sum_{n=0}^{N-1} g(x_n) \right| \leq \sum_{s=0}^{\infty} \sum_{t \neq 0} \frac{\|f''\|_1}{2\pi^2 t^2} \left| \sum_{n=0}^{N-1} e^{2\pi i \ell x_n} \right| \leq \sum_{s=0}^{\infty} \sum_{t \neq 0} \frac{\|f''\|_1}{2\pi^2 b^s t^2} b^{s+1} = \frac{b^2}{6(b-1)} \|f''\|_1 \leq \frac{b}{3} \|f''\|_1.
\]

\(\square \)
References

[1] J. Beck: Probabilistic Diophantine Approximation. Randomness in Lattice Point Counting. Springer Monographs in Mathematics. Springer, Cham (2014) xvi+487 pp. ISBN: 978-3-319-10740-0.

[2] Y. S. Chow, H. Teicher: Probability Theory. Independence, Interchangeability, Martingales. Third edition. Springer Texts in Statistics. Springer-Verlag, New York (1997) xxii+488 pp. ISBN: 0-387-98228-0.

[3] M. Drmota, G. Larcher, F. Pillichshammer: Precise distribution properties of the van der Corput sequence and related sequences. Manuscripta Math. 118, no. 1 (2005), 11–41

[4] H. Faure: Discrépances de suites associées à un système de numération (en dimension un). Bull. Soc. Math. France 109, no. 2 (1981), 143–182

[5] L. Kuipers, H. Niederreiter: Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney (1974) xiv+390 pp. ISBN: 0-471-51045-9.

[6] P. Proinov, V. Grozdanov: On the diaphony of the van der Corput–Halton sequence. J. Number Theory 30, no. 1 (1988), 94–104

[7] A. Wohlfarter: Distribution Properties of Generalized van der Corput Sequences (Doctoral dissertation). TU Wien (2009)