Review Article

Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine

Xiao-Wu Chen,1 Yuan Ming Di,2 Jian Zhang,3 Zhi-Wei Zhou,2 Chun Guang Li,2 and Shu-Feng Zhou2,4

1 Department of General Surgery, The First People’s Hospital of Shunde, Southern Medical University, Shunde, Guangdong 528300, China
2 School of Health Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC 3083, Australia
3 Department of Surgery, The Third Hospital of Nanchang, Jiangxi, Nanchang 330009, China
4 Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC 30, Tampa, FL 33612, USA

Correspondence should be addressed to Shu-Feng Zhou, szhou@health.usf.edu

Received 7 June 2012; Accepted 8 July 2012

Academic Editors: H.-W. Chang, L.-Y. Chuang, and S. Yasmin

Copyright © 2012 Xiao-Wu Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer’s disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Huntington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach.

1. Introduction

The majority of clinical drugs achieve their effect by binding to a cavity and regulating the cavity, of its protein targets [1]. In general, drugs act on four main types of regulatory proteins that mediate the actions of hormones, neurotransmitters, and autacoids. These four types of regulatory proteins are carriers, proteins, ion channels, and receptors [2]. Certain characteristics are expected for therapeutic targets [3]. A potential target needs only not to be druggable but also linked to disease, most preferably playing critical and inimicable roles in disease state. Binding sites are to have certain structural and physicochemical properties to accommodate high-affinity site-specific binding and subsequent regulation of protein activity by drugs. They are not significantly involved in other important biological processes to avoid potential side effects. Useful information about these targets may be investigated by analysing their sequence properties, protein families, structural folds, biochemical classes, similarity proteins, gene location in the human genome, and associated pathways [4]. This information can be potentially useful in derivation of rule and developing predictive tools in the search for druggable and potential targets [4].

The number of molecular targets acted on by current drug therapy is still in dispute. In 1996, Drews and Ryser identified a total of 483 drug targets addressed by drug therapy [5, 6]. Approximately 45% are cell membrane receptors, 28% are enzymes, and the remaining classes comprise...
hormones (11%), ion channels (5%), nuclear receptors (2%), and DNA (2%). About 7% of the targets are not known biochemically. Later, Hopkins and Groom challenged this figure and suggested that “rule-of-five” compliant drugs acted primarily through only 120 underlying molecular targets [3, 7]. However, the statistical analysis of disease genes and related proteins suggested that the total number of the estimated potential targets in the human genome ranges from 600 to 1,500 [3]. In the meantime, another report showed the estimated total number of distinct targets is in the range of 1,700–3,000 [8]. Chen et al. reported targets collected in the Therapeutic Target Database [9] is 997 distinct proteins, 1,494 distinct protein subtypes, and 41 nucleic acids, which are only targeted by at least one marketed drug and 1,267 research targets, which are only targeted by investigational agents that are not approved for clinical use at present [4]. Targets for neoplasm diseases, circulatory system diseases, infectious diseases, and nervous system and sense organs disorders constitute the largest number of targets [1]. An increase in target numbers is made possible by advances in genomics, proteomics, better molecular understanding of diseases, and increased effort in the exploration of new therapeutic targets as well as increased knowledge of unknown or unreported targets of previous existing drugs. An improvement in technology for target identification and validation also contributes greatly.

Chinese herbal medicine (CHM) has always been an integral part of traditional Chinese medicine (TCM), which has been practiced in the east for thousands of years. Chinese herbs are usually in the forms of dried whole plants or parts of the plants (roots, leaves, body, etc.); sometimes shells and even minerals are used. Chinese herbs are often used in a compound formula, consisting of several different herbs hosting different roles according to the principle of Jun-Chen-Zuo-Shi described by the ancient Chinese. Each of Jun, Chen, Zuo, and Shi function together to harmonise the body, with Shi (courier) herbs are included in many formulae to ensure that all components in the prescription are well absorbed and to help to deliver or guide them to the target organs [10]. On some level, the guiding function of Shi herbs relates to modern drug delivery techniques, guiding the drug compound to target tissues. In the modern world, complementary medicine has gained vast popularity in the West. There has been increased use of herbal medicine to manage chronic diseases and promote wellbeing, in countries such as Australia, New Zealand, USA, and Europe [11]. Reports show that 18.9% of the American population used natural products in the precedent year [12]. This increase in popularity is closely related to its proven effectiveness in clinical practice over the past centuries. To date, more than 11,000 species of plants are used medicinally and about 300 are commonly used [13].

Despite its widespread use, CHM is associated with high levels of uncertainty. This is mainly due to lack of evidence, base of efficacy, targets, and safety data. During the process of therapeutic drug development, owing to the preselection of targets, researchers have a basic if not full understanding of which molecular structures the drug will react with or which biological pathway in the body it might alter. Knowledge on molecular interactions and modulations of the drug is anticipated and researched on. However, this is not the case for CHM. There is no preselection of molecular targets in the body but CHM has been used for thousands of years and is proven to be effective. The exact mechanism of the herbs actions is yet to be elucidated.

The proven clinical efficacy of some herbal medicines is considered to be due to the interaction of pharmacologically active components from the herbs with molecular targets in the body. Similar to synthetic drugs, active compounds of herbal medicine may bind to and undergo interactions with molecular structures or herbal targets to produce therapeutic or adverse effects. However, there is a lack of understanding of how CHMs exert their biological and clinical effects at a molecular level, which impedes development of CHMs and the incorporation of CHMs into mainstream medicine in the West.

Berberine (Figure 1, molecular formula C20H19NO5 and a molecular weight of 353.36) is a isoquinoline alkaloid found in many medicinal plants [14]. It is a major constituent of many medicinal plants of families Papaveraceae, Berberidaceae, Fumariaceae, Menispermaceae, Ranunculaceae, Rutaceae, and Annonaceae [15]. It is present in Hydrastis canadensis (goldenseal), Coptis chinensis (Coptis or goldenthread), Berberis aquifolium (Oregon grape), Berberis vulgaris (barberry), and Berberis aristata (tree turmeric). The berberine alkaloid can be found in the roots, rhizomes, and stem bark of the plants. Berberine is one of the main alkaloids found in the Chinese herb Huang Lian (Rhizoma coptidis) [16]. Huang Lian has traditionally been used to treat diarrhoea and diabetes. In China, berberine has been manufactured into the over-the-counter drug Huang Lian Su Pian, also known as Coptis Extract Tablets for the treatment of traveler’s diarrhoea [14, 17]. In recent years, there has been a growing interest in the pharmacological activities of berberine and many studies have been carried out to elucidate the mechanisms of action of berberine. This study aims to review molecular targets of berberine based on in vitro studies. Berberine has shown to have good hypoglycaemic effects, so we also reviewed the effects of berberine in animal and human studies, with a focus on diabetes mellitus.

2. Methods

2.1. Data Retrieval from the Literature. In vitro studies related to berberine and its targets were searched using Pubmed (from inception to April 2012). Search terms used were a combination of “berberine,” “in vitro,” “human cell,” and “mechanism.” Only studies using human cell lines were used to extract current berberine targets. Studies using animal cell lines or berberine derivatives or in a language other than English were excluded. Information extracted from these studies includes molecular targets of berberine (name and gene symbols), cell type, effects of berberine, and possible clinical applications.

2.2. PANTHER Analysis. Using the PANTHER Classification System, in vitro berberine targets were analysed using three
3. Results

3.1. Targets of Berberine. A total of 90 berberine targets were identified in our literature search, as shown in Table 1.

Extensive research has been carried out to study the effects of berberine on cancer cells in vitro. This may be related to recent discovery of anti-cancer drugs with natural compound origin, for example, paclitaxel and topotecan.

Various human cancer cell lines were used to demonstrate the anti-cancer effects of berberine in vitro. These include cancer cell lines of the tongue, stomach, lung, colon, liver, breast, prostate, nasopharyngeal, neurones, epidermal, and blood [18–28]. Berberine has shown to induce cancer cell death via several mechanisms such as regulation of apoptosis proteins and cell cycle arrest.

Berberine treatment increased the expression of apoptotic cell death proteins, promotes cell cycle arrest, and induces cell death in human cancer cell lines. For instance, in human prostate epithelial cells (PWR-1E), berberine-increased expression of BCL2-associated X protein (Bax) was observed after berberine treatment, inducing cell death and demonstrating pro-apoptotic properties [29]. Similar effects of berberine were observed in prostate carcinoma cells (DU145, PC-3, and LNCaP) [21, 30]. Berberine also increased levels of Bax in promyelocytic leukemia cells [31], gastric carcinoma cells [24], and lung cancer cells [20].

Berberine can also promote cell death by the regulation of antiapoptotic proteins. Decreased expression of antiapoptotic Bcl-2 protein was observed in human oral squamous cell carcinoma after berberine treatment [23]. Studies done in other cancer cell lines such as lung cancer, gastric cancer, and prostate cancer also showed reduced levels of Bcl-2 after berberine treatment [20, 21, 24, 30]. Cell cycle arrest at different phases has also been observed in human cancer cell lines after treatment with berberine. In giant cell carcinoma and prostate carcinoma cells, berberine also decreased G0/G1 phase-associated cyclins (D1, D2, E, Cdk2, Cdk4, and Cdk6), inducing G0/G1 arrest and suppressing cell proliferation [21, 25, 30, 32]. Further, in HepG2 cells, berberine acted on B-cell CLL/lymphoma 2 (BCL2), procaspase-3 and -9, and poly (ADP-ribose) polymerase (PARP), induced cell cycle arrest at G2/M phase and inhibited cell proliferation [22].

Further, berberine can promote cell death via the regulation of pro- and antiapoptotic proteins. In addition to this, berberine can also promote apoptosis via mitochondrial/caspase pathway. In cancer cell lines (tongue cancer, oral squamous cell carcinoma and prostate epithelial) [18, 23, 29, 33], activation of caspases-3 & -9 promotes G1 cell cycle arrest in different human cancer cell lines (lung, stomach, and prostate) [20, 21, 24, 30, 33].

Berberine also showed anti-metastatic properties in several cancer cell lines, acting on 72 kDa type IV collagenase (MMP2), Cdc42 effector protein 1 (CDC42EP1), and ras-related C3 botulinum toxin substrate 1 (RAC1), transforming protein RhoA (RHOA) and urokinase-plasminogen activator A (PLAU) [34, 35]. Further, berberine showed antitopoisoasemase I properties [36]; this observation can be useful as topoisoasemase I is responsible for DNA replication and antitopoisoasemase I compounds can be effective in cancer treatments.

In addition to its effects on cancer cells, berberine also acts on molecular targets related to insulin resistance. In free-fatty-acid-induced insulin resistance muscle cells, berberine improves insulin resistance and improves glucose uptake by decreasing PPARγ and FAT/CD36 protein expression [37]. Another study reported increased insulin receptor (InsR) mRNA and protein expression increases insulin sensitivity in liver cells after berberine treatment [38]. In Caco-2 cells, berberine inhibited alpha-glucosidase and disaccharidases activities, leading to reduced glucose levels [39]. In Hep G2
Target gene symbol	Target names	Cells	Effects	Possible clinical applications	References
MMP2	72 kDa type IV collagenase	HUVECs, tongue cancer SCC-4 cells, gastric carcinoma SNU-5 cells, lung cancer A549 cells, and MMP-2 levels	Downregulation of MMP-2 mRNA and protein expression, reduced MMP-2 levels	Antimetastatic	[18, 69–72]
Acetyl-Coenzyme A carboxylase-α	Acetyl-Coenzyme A carboxylase-α	HepG2 hepatoma cells	Reduced secretion of alpha fetoprotein	Antihyperlipidemic	[73]
α-Fetoprotein	α-Fetoprotein	HepG2 hepatoma cells	Reduced amyloid-β peptide (Aβ) levels via modulation of AβPP	Apoptosis	[74]
APP	Amyloid-β (Aβ) precursor protein	Neuroglioma H4 cells	Reduces amyloid-β peptide (Aβ) levels in AD	Cell apoptosis, anticancer, and anti-inflammatory	[19–21, 30, 76, 77]
Bcl-X	Bcl-X	Jurkat cells, colonic carcinoma cells (SW480)	Suppresses expression of antiapoptosis factor IAP1	Anticancer	[77]
BIRC2	Baculoviral IAP repeat-containing protein 2 (antiapoptosis factor IAP2)	Jurkat cells	Suppresses expression of antiapoptosis factor IAP2	Anticancer	[77]
BIRC3	Baculoviral IAP repeat-containing protein 3	Jurkat cells	Suppresses expression of antiapoptosis factor IAP3	Anticancer	[77]
BIRC5	Baculoviral IAP repeat-containing protein 5 (Survivin)	Jurkat cells	Suppresses expression of survivin	Anticancer and anti-inflammatory agent	[77]
BCL2	B-cell lymphoma 2	Jurkat cells, colonic carcinoma cells (SW480)	Increase expression of proapoptotic BAD protein	Anticancer	[23]
BCL3	B-cell lymphoma 3-encoded protein	Jurkat cells, colonic carcinoma cells (SW480)	Downregulation of Bcl-3	Increased expression of proapoptotic BCL3 protein	[24]
BAD	B-cell lymphaoma 3-encoded protein	Human oral squamous cell carcinoma		Gastric cancer	[24]
Bcl-2 antagonism of cell death	BCL2	Human oral squamous cell carcinoma		Anticancer	[23]
Target names	Target gene symbol	Cells	Effects	Possible clinical applications	References
---	--------------------	--	---	--	----------------
BCL2-associated X protein	BAX	Gastric carcinoma SNU-5 cells, prostate carcinoma cells (DU145, PC-3, LNCaP and PWR-1E), leukemia HL-60, tongue cancer SCC-4 cells, lung cancer cells, activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLS)	Upregulation of Bax, increased expression. G2/M phase arrest	Cell apoptosis, gastric cancer	[18, 20, 21, 24, 29, 30, 83, 84]
BH3-interacting domain death agonist p11	BID	Colonic carcinoma cells/HepG2 cells	JNK/p38 pathway and induction of ROS production	Induction of apoptosis	[19, 76]
C/EBP homologous protein (CHOP) or growth arrest- and DNA damage-inducible gene 153 (GADD153) or DNA damage-inducible transcript 3	GADD153/DDIT3	Cervical cancer Ca Ski cells	Induced expression of GADD153	Cervical cancer	[85]
CASP8 and FADD-like apoptosis regulator subunit p12	CFLAR/cFLIP	Jurkat cells	Suppresses expression of cFLIP	Anticancer and anti-inflammatory	[77]
Caspase 3	CASP3	Tongue cancer SCC-4 cells, neuroblastoma (SK-N-SH), glioblastoma T98G cells, gastric carcinoma SNU-5 cells, HL-60 cells, prostate carcinoma cells (DU145, PWR-1E, PC-3 and LNCaP), colonic carcinoma cells, hepatoma cells, oral squamous cell carcinoma, promonocytic U937 cells, lung cancer A549, H1301 cells, activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), BU-87 and T24 bladder cancer cells	Activation of caspase-3, G2/M phase arrest	Anticancer	[18–21, 23–25, 30, 33, 76, 83, 86–89]
Caspase 8	CASP8	Tongue cancer SCC-4 cells, colonic carcinoma cells, hepatoma cells, oral squamous cell carcinoma	Activated caspase 8	Anticancer	[18, 19, 23, 76]
Target names	Target gene symbol	Cells	Effects	Possible clinical applications	References
------------------------------	--------------------	--	--	--	------------
Caspase 9	CASP9	Tongue cancer SCC-4 cells, glioblastoma T98G, oral squamous carcinoma, promonocytic U937 cells, prostate carcinoma cells (DU145 and PC-3, LNCaP), activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), BIU-87 and T24 bladder cancer cells	Activation of caspase 9	Cell apoptosis, anticancer	[18, 21, 23, 30, 33, 83, 86, 87, 89, 90]
Cdc42 effector protein 1	CDC42EP1	Nasopharyngeal carcinoma (HONE1) cells	Suppression of Rho GTPases activation (Cdc42)	Cancer metastasis inhibition	[91]
Cell division protein 6	CDK6	Prostate carcinoma cells (DU145 and PC-3, LNCaP), activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLS)	Decrease in Cdk6	Cell apoptosis, cancer	[21, 30, 83]
Cellular tumor antigen p53	TP53	Gastric carcinoma SNU-5 cells, osteosarcoma	Increased expression of p53 protein, cell cycle arrest at G1/G2/M phase arrest	Anticancer (gastric cancer, osteosarcoma)	[24, 92]
Chemokine (C-C motif) ligand 2 (monocyte chemotactic protein-1)	CCL2	Retinal pigment epithelial cell line	Inhibits CCL2 (MCP-1) expression	Anti-inflammatory	[93]
Cyclic AMP-dependent transcription factor ATF-3	ATF3	Colorectal cancer cells	Induces ATF3 expression	Colorectal cancer	[94]
Cyclin-dependant kinase 1/cell division control protein 2 homolog	CDK1/CDC2	HL-60 cell, gastric carcinoma SNU-5 cells	Inactivation of Cdk2 (CDK1) or decreased protein expression	Antiproliferative and proapoptotic	[24, 95]
Cyclin E1	CCNE1	Neuroblastoma (SK-N-SK), glioblastoma T98G cells, activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLS)	Decrease in cyclin E	Anticancer	[25, 83, 90]
Cyclin-dependent kinase 2	CDK2	Neuroblastoma (SK-N-SK), glioblastoma T98G cells, prostate carcinoma cells (DU145 and PC-3, LNCaP), activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLS)	Decrease in Cdk2	Cell apoptosis, anticancer	[21, 25, 30, 83, 90]
Target names	Target gene symbol	Cells	Effects	Possible clinical applications	References
--------------	--------------------	-------	---------	-------------------------------	------------
Cyclin-dependent kinase 4	**CDK4**	Neuroblastoma (SK-N-SK), glioblastoma T98G cells, prostate carcinoma cells (DU145 and PC-3, LNCaP), activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs)	Decrease in Cdk4	Cell apoptosis, anticancer	[21, 25, 30, 83, 90]
Cyclin-dependent kinase inhibitor 1 (p21)	**CDKN1A**	Breast cancer MCF-7 (estrogen receptor+) cells, epidermoid carcinoma A431 cells, activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs)	Increased expression of p21	Breast cancer, ER antagonist adjuvant therapy	[21, 30, 82, 83]
Cyclin-dependent kinase inhibitor 1B (P27/KIP1)	**CDKN1B**	Epidermoid carcinoma A431 cells, activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs)	Increased expression of Cdki proteins	Cell apoptosis, cancer	[21, 30, 83]
Cytochrome c-1	**CYC1**	Tongue cancer SCC-4 cells, colon cancer cells, promyelocytic leukemia HL-60 cells	Release of cytochrome c-1	Anticancer	[18, 19, 84, 86]
CYP2C9	**CYP2C9**	Recombinant CYP	Inhibition of CYP2C9	Drug interactions	[96]
CYP2D6	**CYP2D6**	Recombinant CYP	Inhibition of CYP2D6	Drug interactions	[96]
CYP3A4	**CYP3A4**	Caco-2 cells, patients	CYP3A4 Downregulation and inhibition	Drug interactions	[97, 98]
Dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2)	**DPP4**	Recombinant DPP4	Inhibition of DPP4	—	[99]
Early activation antigen CD69	**CD69**	Human peripheral lymphocytes	Reduced expression of CD69	Immunosuppressive agent	[100]
Epidermal growth factor receptor	**EGFR**	Breast cancer MCF-7 (estrogen receptor+) cells	EGFR downregulated	Breast cancer, ER antagonist adjuvant therapy	[82]
Ezrin	**EZR**	Nasopharyngeal carcinoma 5–8F cells	Ezrin inhibition	Anticancer	[26]
G1/S-specific cyclin-D1	**CCND1**	Giant cell carcinoma cell line, HL-60 cell, prostate carcinoma cells (DU145 and PC-3, LNCaP), Jurkat cells, neuroblastoma (SK-N-SK), activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs)	Inhibits expression of cyclin D1	Antiproliferative and prosapoptotic, anticancer, anti-inflammatory	[21, 25, 30, 32, 77, 83, 95]
Target names	Target gene symbol	Cells	Effects	Possible clinical applications	References
--------------------------------------	--------------------	--	--	----------------------------------	-------------
G1/S-specific cyclin-D2	CCND2	Prostate carcinoma cells (DU145 and PC-3, LNCaP), activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs)	Decrease in cyclin D2	Cell apoptosis, cancer	[21, 30, 83]
G1/S-specific cyclin-E1	CCNE1	Prostate carcinoma cells (DU145 and PC-3, LNCaP), activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs)	Decrease in cyclin E	Cell apoptosis, cancer	[21, 30, 83]
G2/mitotic-specific cyclin-B1	CCNB1	Gastric carcinoma SNU-5 cells	Decreased cyclin B, G2/M phase arrest	Cell apoptosis, anticancer	[24]
Glucagon-like peptide (GCG/GLP-1/GLP-2)	GCG	NCI-H716 cells	Enhanced glucagon-like peptide (GLP)-1	Antidiabetic agent	[42]
Growth/differentiation factor 15 (NAG-1)	GDF15	Colorectal cancer cells	Induces NAG-1 expression	Colorectal cancer	[94]
Hypoxia-inducible factor 1α	HIF1A	HUVECs, HepG2 cells	Prevention and reduction of HIF-1 alpha expression	Tumour angiogenesis	[101, 102]
Induced myeloid leukemia cell differentiation protein Md-1	MCL1	Oral cancer cells	Inhibition of Md-1 expression	Induced apoptosis	[103]
Inhibitor of NF-κB kinase subunit alpha (1αB kinase)	CHUK(1KK)	Jurkat cells	Inhibition of IκB kinase (IKK)	Anticancer and anti-inflammatory agent	[77]
Interferon-γ	IFNB1	Breast cancer MCF-7 (estrogen receptor+) cells	IFN-beta upregulated	Breast cancer, ER antagonist adjuvant therapy	[82]
Interleukin 8	IL8	Retinal pigment epithelial cell line	Inhibits IL-8 expression	Anti-inflammatory	[93]
Interleukin-1β	IL1B	Fibroblasts (HFL1)	Induces IL-1β productions	Pulmonary inflammation	[104]
Interleukin-2 receptor α-chain	IL2RA/CD25	Human peripheral lymphocytes	Reduced expression of CD25	Immunosuppressive agent	[100]
Interleukin-6	IL6	Keratinocytes	Reduces and IL-6 expression	Antiskin ageing agent	[105]
Low-density lipoprotein receptor (familial hypercholesterolemia)	LDLR	HepG2 cells	Increased mRNA and protein expression	Hyperlipidemia	[106–108]
Matrix metallopeptidase 1 (27 kDa interstitial collagenase)	MMP1	Dermal fibroblasts, U-87 glioma cells	MMP-1 expression decreased	Antiskin ageing agent, anticancer	[70, 109]
Matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase)	MMP9	Tongue cancer SCC-4 cells, keratinocytes, gastric carcinoma SNU-5	Inhibition	Anticancer	[34, 70, 105]
Matrix metalloproteinase-16	MMP16	Jurkat cells	Suppresses expression of MMP-16	Anticancer and anti-inflammatory agent	[77]
Mitogen-activated protein kinase 3	ERK1/MAPK3	Peripheral blood monocytes (PBMC)	ERK1 protein expression inhibition	Antiatherosclerotic effects	[110]
Target names	Target gene symbol	Cells	Possible clinical applications		
--------------	-------------------	-------	------------------------------		
Mitogen-activated protein kinase 4	ERK2/ERK1/MAPK4	Peripheral blood monocytes (PBMC)	Antiatherosclerotic effects		
Mitogen-activated protein kinase 8	ERK2/ERK1/MAPK4	Peripheral blood monocytes (PBMC)	Antiatherosclerotic effects		
Phosphatidylinositol 3-kinase (PI3K)	PI3K	HLE-B60 cell	Antiproliferative and prosprrophic effects		
Multi-drug resistance protein 1 (P-gp, P-170)	ABCB1	Tumor cell lines	Significantly inhibited P-gp and MDR activity reversal		
Myc proto-oncogene protein	MYC	U-87 glioma cells	Significantly decreased		
Nuclear factor NF-κB subunit-α	NFKBIA	Lung epithelial cells (A-549)	Anti-inflammatory and Anticancer		
Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)	NR3C1	HepG2 cells	Reduced GR levels		
Platelet glycoprotein 4	CD62P	Leukemic stem cells (LSCs)	Inhibitors of AML cell migration		
Poly(ADP-ribose) polymerase family member 1	PARP	HEPG2 cells	Cleavage of poly (ADP-ribose) polymericase		
Potassium voltage-gated channel subfamily H member 2	KCNH2/HERG1	Leukemic stem cells (LSCs)	Inhibitors of AML cell migration		

References:
- [10]
- [110]
- [9, 110]
- [111]
- [112]
- [71]
- [113–115]
- [37, 38]
- [19, 21, 30, 76, 83, 87]
- [35]
| Target names | Target gene symbol | Cells | Effects | Possible clinical applications | References |
|--|--------------------|---|---|--|-----------------------------------|
| Processed sterol regulatory element-binding protein 2 | SREBP2 | HepG2 cells | Reduction of SREBP2 | Hyperlipidemia | [101] |
| Proprotein convertase subtilisin/kexin type 9 | PCSK9 | HepG2 cells | Suppression of PCSK9 mRNA and protein levels | Hyperlipidemia | [101, 107] |
| Prostaglandin G/H synthase 2 | PTGS2/COX2 | Peripheral blood monocytes (PBMC), oral cancer cell lines OC2 and KB cells, breast cancer MCF-7 (estrogen receptor+) cells, Jurkat cells, colon cancer cells | Decrease of Cox-2 mRNA and protein expression | Antiatherosclerotic effects, anti-inflammatory, anticancer, breast cancer ER antagonist adjuvant therapy, Anticancer | [27, 77, 82, 103, 110, 118] |
| Ras-related C3 botulinum toxin substrate 1 | RAC1 | Nasopharyngeal carcinoma (HONE1) cells | Suppression of Rho GTPases activation (Rac1) | Cancer metastasis inhibition | [91] |
| Receptor tyrosine-protein kinase erbB-2 | ERBB2/HER2 | Breast cancer MCF-7 (estrogen receptor+) cells | HER2 downregulated | Breast cancer, ER antagonist adjuvant therapy | [82] |
| Rho-associated protein kinase 1 | ROCK1/RHO | Nasopharyngeal carcinoma 5–8F cells | Suppression of Rho kinase activity | Anticancer | [91] |
| Runt-related transcription factor 2 | RUNX2 | Osteoblast cells | Promotes transcriptional activity of Runx2 | Osteoblast differentiation and bone formation in osteoporosis | [120] |
| SDF-1-α (3–67) (SDF-1) | CXCL12 | Acute myeloid leukemia (AML) | Reduces SDF-1 chemokine | Inhibits AML cell migration | [35] |
| Sucrase-isomaltase (α-glucosidase) | SI | Caco-2 cells | Inhibit alpha-glucosidase | Antihyperglycaemic | [39] |
| Topoisomerase (DNA) 1 | Top1 | Recombinant human topoisomerase 1 | Top1 inhibition | Anticancer | [121] |
| Transcription factor AP-1 | AP-1 | Hepatoma cells, MDA-MB-231 breast cancer cells, giant cell carcinoma cell line, colon cancer cells, U-87 glioma cells, HeLa cells | Inhibition of AP-1 activity, AP-1 DNA suppression | Antitumor activity, Anticancer | [27, 32, 71, 115, 118, 122–124] |
| Transforming protein RhoA | RHOA | Nasopharyngeal carcinoma (HONE1) cells | Suppression of Rho GTPases activation (RhoA) | Cancer metastasis inhibition | [91] |
| Tumor necrosis factor-α | TNFA | Macrophages, fibroblasts (HFL1) | Inhibition of TNF-α | Anti-inflammatory | [104, 125] |
| Urokinase-plasminogen activator | PLAU | Lung cancer A549 cells, tongue cancer SCC-4 cells | Reduced urokinase-plasminogen activator (u-PA) | Antitumorstatic, Anticancer | [34, 72] |
| Vascular endothelial growth factor A | VEGFA | HUVECs | Prevention of VEGF expression | Tumour angiogenesis | [102] |
| Wee1-like protein kinase | Wee1 | Gastric carcinoma SNU-5 cells | Increased expression of Wee1 protein, G2/M phase arrest | Gastric cancer | [24] |
Table 2: Berberine’s target classification based on PANTHER.

Target names	Target gene symbol	PANTHER molecular function	Biological process	Pathway categories		
Multidrug resistance protein 1 (Pgp, Pgp-170)	ABCB1	ATPase activity, coupled to transmembrane movement of substances, transmembrane transporter activity	Immune system process, extracellular transport, carbohydrate metabolic process, response to toxin	ATP-binding cassette (ABC) transporter		
ATP-binding cassette sub-family G member 2	ABCG2	ATPase activity, coupled to transmembrane movement of substances, transmembrane transporter activity, anion channel activity	Immune system process, anion transport, lipid transport, oxygen and reactive oxygen species, metabolic process, lipid metabolic process, response to stress	N/A		
Acetyl-coenzyme A carboxylase-α	ACACA	Other ligase	Gluconeogenesis, monosaccharide metabolism, fatty acid biosynthesis, coenzyme metabolism	N/A		
α-Fetoprotein	AFP	Other transfer/carrier protein	Transport, mesoderm development, oncosogenesis	N/A		
Transcription factor AP-1	AP-1	DNA binding, transcription factor activity	Cell cycle, intracellular signaling cascade, nucleobase, nucleoside, nucleotide, and nucleic acid, metabolic process, cell cycle, signal transduction			
Amyloid-β (A4) precursor protein (peptidase nexin-II, Alzheimer disease)	APP	Other signaling molecules	Other signal transduction, cell communication, other intracellular protein traffic	Alzheimer disease-amyloid secreatse pathway, Alzheimer disease-presenilin pathway, blood coagulation, Alzheimer disease-presenilin pathway, Alzheimer disease-amyloid secretase pathway		
Cyclic AMP-dependent transcription factor ATF-3	ATF3	DNA binding, transcription factor activity	Transcription factor activity, immune system process, neurological system process, induction of apoptosis, nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	Apoptosis signaling pathway		
Bcl2 antagonist of cell death	BAD	N/A	N/A	PDGF signaling pathway, apoptosis signaling pathway, angiogenesis, PI3 kinase pathway, VEGF signaling pathway, interleukin signaling pathway		
BCL2-associated X protein	BAX	Other signaling molecule	Induction of apoptosis, gametogenesis, hematopoiesis, cell cycle control, cell proliferation and differentiation, tumor suppressor	p53 pathway, apoptosis signaling pathway, Huntington disease		
Target names	Target gene symbol	Pathway categories	Biological process	Nucleic acid function	Biological process	Nucleic acid function
--------------	------------------	------------------	------------------	---------------------	------------------	---------------------
B-cell CLL/Lymphoma 2	BCL2	Other signaling molecule	Other signaling molecule	N/A	N/A	N/A
BCL2	BCL2	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
B-cell lymphoma 3-encoded protein	Bcl-3	Signaling pathway	Inflammation mediated by chemokine and cytokine signaling pathway, Angiogenesis	N/A	N/A	N/A
BH3-interacting domain death agonist BIAP	BID	N/A	N/A	N/A	N/A	N/A
Bcl-3-interacting protein 2 BHAP	BIRC2	N/A	N/A	N/A	N/A	N/A
Bcl-3-interacting protein 3 BHAP	BIRC3	N/A	N/A	N/A	N/A	N/A
Bcl-3-interacting protein 5 BHAP	BIRC5	N/A	N/A	N/A	N/A	N/A
BH3 interacting-domain death agonist p11	BID	N/A	N/A	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Bcl-3	Bcl-3	Receptor binding	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A	N/A	N/A
Target names	Target gene symbol	PANTHER molecular function	Biological process	Pathway categories		
--	--------------------	--	--	---		
G1/S-specific cyclin-E1	CCNE1	Protein binding, kinase activator activity, kinase regulator activity	Mitosis	p53 pathway, cell cycle, Parkinson disease, p53 pathway feedback loops 2		
Interleukin-2 receptor alpha chain	IL2RA/CD25	Cytokine receptor activity	Immune system process, cell surface receptor-linked signal transduction, intracellular signaling cascade, cell-cell signalling, signal transduction, cell-cell signalling, cellular defense response	Interleukin signaling pathway		
Platelet glycoprotein 4	CD36/FAT	Receptor activity	Macrophage activation, lipid transport, apoptosis, signal transduction, cell adhesion, lipid metabolic process, signal transduction, cell adhesion, cellular component, morphogenesis	N/A		
Early activation antigen CD69	CD69	Receptor activity, receptor binding	B-cell-mediated immunity, natural killer cell activation, cellular defense response	Membrane-bound signaling molecule		
M-phase inducer phosphatase 1	CDC25A	Hydrolase activity, acting on ester bonds, phosphatase activity	Phosphatase activity cell cycle, phosphate metabolic process, protein metabolic process, cell cycle	p53 pathway		
Cdc42 effector protein 1	CDC42EP1	N/A	N/A	N/A		
Cyclin dependant kinase 1/cell division control protein 2 homolog	CDK1/CDC2	Kinase activity	Immune system process, mitosis, intracellular signaling cascade, protein metabolic process, cell motion, mitosis, signal transduction, response to stress	p53 pathway		
Cyclin-dependent kinase 2	CDK2	Nonreceptor serine/threonine protein kinase	Protein phosphorylation, cell cycle control, mitosis	p53 pathway, p53 pathway feedback loops 2		
Cyclin-dependent kinase 4	CDK4	Nonreceptor serine/threonine protein kinase	Protein phosphorylation, cell cycle control, mitosis	N/A		
Cell division protein kinase 6	CDK6	Kinase activity	Immune system process, mitosis, intracellular signaling cascade, protein metabolic process, cell motion, mitosis, signal transduction, response to stress	N/A		
Cyclin-dependent kinase inhibitor 1 (p21)	CDKN1A	Protein binding, kinase inhibitor activity, kinase regulator activity	Cell cycle	Interleukin signaling pathway, p53 pathway feedback loops 2, p53 pathway		
Cyclin-dependent kinase inhibitor 1B (P27/KIP1)	CDKN1B	Protein binding, kinase inhibitor activity, kinase regulator activity	Cell cycle	Interleukin signaling pathway		
CASP8-and FADD-like apoptosis regulator subunit p12	CFLAR/cFLIP	Peptidase activity, protein binding, peptidase inhibitor activity	Apoptosis, protein metabolic process	Apoptosis signaling pathway, FAS signaling pathway		
Inhibitor of NF-κB kinase subunit alpha (IκB kinase)	CHUK(IKK)	Kinase activity	Immune response, intracellular signaling cascade, protein metabolic process, signal transduction, response to stimulus	Interleukin signaling pathway, apoptosis signaling pathway, T-cell activation, toll receptor signaling pathway, B-cell activation		
Target names	Target gene symbol	PANTHER molecular function	Biological process	Pathway categories		
--------------	-------------------	---------------------------	--------------------	-------------------		
SDF-1-α (3–67) (SDF-1)	CXCL12	N/A	N/A	Axon guidance-mediated by Slit/Robo		
Cytochrome c-1	CYC1	Reductase	Oxidative phosphorylation	FAS signaling pathway, ATP synthesis, Huntington disease		
Cytochrome P450, family 2, subfamily C, polypeptide 9	CYP2C9	Oxygenase	Fatty acid metabolism, steroid metabolism, electron transport	N/A		
Cytochrome P450, family 2, subfamily D, polypeptide 6	CYP2D6	Oxygenase	Other lipid, fatty acid and steroid metabolism, electron transport	Vitamin D metabolism and pathway		
Cytochrome P450, family 3, subfamily A, polypeptide 4	CYP3A4	Oxygenase	Steroid hormone metabolism, electron transport	N/A		
Dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2)	DPP4	Serine protease	Proteolysis, cell surface receptor mediated signal transduction, T-cell-mediated immunity	N/A		
Epidermal growth factor receptor	EGFR	Kinase activity, transmembrane receptor protein tyrosine kinase activity, transmembrane receptor protein kinase activity, receptor binding	Female gamete generation, immune system process, negative regulation of apoptosis, cell cycle, cell surface receptor linked signal transduction, intracellular signaling cascade, cell-cell signalling, cell-cell adhesion, protein metabolic process, cell motion, cell cyclisignal transduction, cell-cell signalling, dorsal/ventral axis specification, ectoderm development, mesoderm development, embryonic development, nervous system development	EGF receptor signaling pathway, cadherin signaling pathway		
Receptor tyrosine-protein kinase erbB-2	ERBB2/HER2	Kinase activity, transmembrane receptor protein tyrosine kinase activity, transmembrane receptor protein kinase activity, receptor binding	Female gamete generation, immune system process, negative regulation of apoptosis, cell cycle, cell surface receptor linked signal transduction, intracellular signaling cascade, cell-cell signalling, cell-cell adhesion, protein metabolic process, cell motion, cell cyclisignal transduction, cell-cell signalling, dorsal/ventral axis specification, ectoderm development, mesoderm development, embryonic development, nervous system development	EGF receptor signaling pathway, cadherin signaling pathway		
Target names	Target gene symbol	PANTHER molecular function	Biological process	Pathway categories		
--------------	--------------------	----------------------------	--------------------	-------------------		
Mitogen-activated protein kinase 3	ERK1/MAPK3	Kinase activity	Immune system process, mitosis, cell surface receptor linked signal transduction, intracellular signaling cascade, carbohydrate metabolic process, protein metabolic process, cell motion, signal transduction, segment specification, ectoderm development, mesoderm development, embryonic development, nervous system development, response to stress	Apoptosis signaling pathway, Alzheimer disease-amyloid secretase pathway, B-cell activation, Ras pathway, interleukin signaling pathway, angiogenesis, T-cell activation, toll receptor signaling pathway, insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade, FGF signaling pathway, Parkinson disease, PDGF signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway, VEGF signaling pathway, interferon-gamma signaling pathway, endothelin signaling pathway, angiogenesis, TGF-beta signaling pathway, integrin signalling pathway, EGF receptor signaling pathway		
Mitogen-activated protein kinase 4	ERK2/MAPK4	Kinase activity	Immune system process, mitosis, cell surface receptor linked signal transduction, intracellular signaling cascade, carbohydrate metabolic process, protein metabolic process, cell motion, mitosis, signal transduction, segment specification, ectoderm development, mesoderm development, embryonic development, nervous system development, response to stress	Alzheimer disease-amyloid secretase pathway, interleukin signaling pathway, angiogenesis, VEGF signaling pathway, integrin signalling pathway		
Ezrin	EZR	Structural constituent of cytoskeleton	Cellular component, morphogenesis	N/A		
C/EBP homologous protein (CHOP) or growth arrest- and DNA damage-inducible gene 153 (GADD153) or DNA damage-inducible transcript 3	GADD153/DDIT3	N/A	N/A	Oxidative stress response		
Glucagon-like peptide (GCG/GLP-1/GLP-2)	GCG	Receptor binding	Signal transduction, cell-cell signalling, carbohydrate metabolic process, lipid metabolic process, signal transduction, cell-cell signalling, cellular glucose homeostasis	Peptide hormone		
Target names	Target gene symbol	PANTHER molecular function	Biological process	Pathway categories		
--	--------------------	--	--	--		
Growth/differentiation factor 15 (NAG-1)	GDF15	Receptor binding	Female gamete generation, cell surface receptor linked signal transduction, signal transduction, ectoderm development, mesoderm development, skeletal system development, heart development, muscle organ development	TGF-beta signaling pathway		
Hypoxia-inducible factor 1α	HIF1A	DNA binding, transcription factor activity	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process, ectoderm development, nervous system development	Hypoxia response via HIF activation, VEGF signaling pathway, angiogenesis		
Interferon-β	IFNB1	Receptor binding	Response to interferon-gamma, induction of apoptosis, negative regulation of apoptosis, cell surface receptor linked signal transduction, intracellular signaling cascade, cell-cell signalling, signal transduction, cell-cell signalling, cellular defense response	Toll receptor signaling pathway		
Interleukin-1β	IL1B	Receptor binding	Immune response, macrophage activation, cell surface receptor linked signal transduction, cell-cell signalling, signal transduction, cell-cell signalling, response to stimulus	Inflammation mediated by chemokine and cytokine signaling pathway		
Interleukin-6	IL6	Receptor binding	Immune system process, negative regulation of apoptosis, cell surface receptor linked signal transduction, intracellular signaling cascade, cell-cell signalling signal transduction, cell-cell signalling	Inflammation mediated by chemokine and cytokine signaling pathway, interleukin signaling pathway		
Interleukin 8	IL8	Chemokine	Cytokine- and chemokine-mediated signaling pathways, calcium-mediated signalling, NF-kappaB cascade, ligand-mediated signalling, T-cell-mediated immunity, macrophage-mediated immunity, granulocyte-mediated immunity, angiogenesis, cell proliferation and differentiation, cell motility	Inflammation mediated by chemokine and cytokine signaling pathway, interleukin signaling pathway		
Potassium voltage-gated channel subfamily H member 2	KCNH2/HERG1	Receptor activity, cation transmembrane transporter activity, voltage-gated potassium channel activity, cation channel activity	Cation transport, signal transduction	Ligand-gated ion channel		
Low-density lipoprotein receptor (familial hypercholesterolemia)	LDLR	Other receptor	Oogenesis	Alzheimer disease-presenilin pathway		
Table 2: Continued.

Target names	Target gene symbol	PANTHER molecular function	Biological process	Pathway categories
Mitogen-activated protein kinase 8 (JNK)	MAPK8	Kinase activity	Immune system process, mitosis, cell surface receptor linked signal transduction, intracellular signaling cascade, carbohydrate metabolic process, protein metabolic process, cell motion, mitosis, signal transduction, segment specification, ectoderm development, mesoderm development, embryonic development, nervous system development, response to stress	Alzheimer disease-amyloid secretase pathway, Ras pathway, EGF receptor signaling pathway, Parkinson disease, angiogenesis, FGF signaling pathway, FAS signaling pathway, toll receptor signaling pathway, TGF-beta signaling pathway, PDGF signaling pathway, Huntington disease, integrin signalling pathway, T-cell activation, B-cell activation, interferon-gamma signalling pathway, oxidative stress response, apoptosis signaling pathway, integrin signalling pathway
Induced myeloid leukemia cell differentiation protein Md-1	MCL1	Receptor binding	Gamete generation, induction of apoptosis, negative regulation of apoptosis, cell cycle, mesoderm development, hemopoiesis	Apoptosis signaling pathway
Matrix metalloproteinase 1 (27 kDa interstitial collagenase)	MMP1	Peptidase activity	Protein metabolic process	Plasminogen activating cascade, Alzheimer disease-presenilin pathway, plasminogen activating cascade
Matrix metalloproteinase-16	MMP16	Peptidase activity	Protein metabolic process	Alzheimer disease-presenilin pathway
72 kDa type IV collagenase	MMP2	Metalloprotease, other extracellular matrix	Proteolysis	Alzheimer disease-presenilin pathway
Matrix metalloproteinase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase)	MMP9	Metalloprotease, other extracellular matrix	Proteolysis	Alzheimer disease-presenilin pathway, plasminogen activating cascade
Myc proto-oncogene protein	MYC	DNA binding, transcription factor activity	Induction of apoptosis, cell cycle, nucleobase, nucleoside, nucleotide, and nucleic acid, metabolic process, cell cycle	Oxidative stress response, p53 pathway feedback loops 2, Wnt signaling pathway, interleukin signaling pathway, PDGF signaling pathway
Arylamine N-acetyltransferase 1	NAT	Acyltransferase activity	Metabolic process	Acetyltransferase
Target names	Target gene symbol	PANTHER molecular function	Biological process	Pathway categories
--------------	-------------------	----------------------------	--------------------	-------------------
Nuclear factor NF-κB p50 subunit (NF-κB)	NFKB1	DNA binding, transcription factor activity	B-cell-mediated immunity, negative regulation of apoptosis, intracellular signaling cascade, nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process, signal transduction, cellular defense response	T-cell activation, B-cell activation, toll receptor signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway, apoptosis signaling pathway
NF-κB inhibitor-α	NFKBIA	Protein binding	Immune system process, intracellular protein transport apoptosis, intracellular signaling cascade, nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process, signal transduction, response to stress	Apoptosis signaling pathway, toll receptor signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway, T-cell activation, B-cell activation
Nucleophosmin (nucleolar phosphoprotein B23) and telomerase	NPM1	N/A	Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	N/A
Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)	NR3C1	Nuclear hormone receptor, transcription factor, nucleic acid binding	N/A	N/A
Poly(ADP-ribose) polymerase family, member 1	PARP	Glycosyltransferase	DNA repair, protein ADP-ribosylation, stress response	FAS signaling pathway
Proprotein convertase subtilisin/kexin type 9	PCSK9	Serine protease	Proteolysis	N/A
Urokinase-plasminogen activator	PLAU	Peptidase activity	Immune system process, signal transduction, protein metabolic process, cell motion, signal transduction, blood coagulation	Blood coagulation, plasminogen activating cascade
Peroxisome proliferator-activated receptor-γ	PPARG	Nuclear hormone receptor, transcription factor, nucleic acid binding	Monosaccharide metabolism, regulation of lipid, fatty acid, and steroid metabolism, mRNA transcription regulation, ligand-mediated signalling, stress response, developmental processes, cell proliferation and differentiation	N/A
Prostaglandin G/H synthase 2	PTGS2/COX2	Oxido-reductase activity	Immune system process	Endothelin signaling pathway, toll receptor signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway

Table 2: Continued.
Target names	Target gene symbol	PANTHER molecular function	Biological process	Pathway categories
Ras-related C3 botulinum toxin substrate 1	RAC1	GTPase activity, protein binding	Intracellular protein transport, endocytosis, cell surface receptor linked signal transduction, intracellular signaling cascade, signal transduction	Axon guidance mediated by Slit/Robo, integrin signalling pathway, inflammation mediated by chemokine and cytokine signaling pathway, Huntington disease, axon guidance mediated by Slit/Robo, FGF signalling pathway, T-cell activation, axon guidance mediated by netrin, EGF receptor signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway, cytoskeletal regulation by Rho GTPase, axon guidance mediated by semaphorins, cytoskeletal regulation by Rho GTPase, B-cell activation, Ras pathway
Rho-associated protein kinase 1	ROCK1/RHO	Kinase activity	Mitosis, intracellular signaling cascade, cell adhesion, protein metabolic process, cell motion, mitosis, signal transduction, cell adhesion, embryonic development	Inflammation mediated by chemokine and cytokine signaling pathway, cytoskeletal regulation by Rho GTPase
Transforming protein RhoA	RHOA	GTPase activity, protein binding	Intracellular protein transport, endocytosis, cell surface receptor linked signal transduction, intracellular signaling cascade, signal transduction	Axon guidance mediated by Slit/Robo, angiogenesis, heterotrimeric G-protein signaling pathway-Gq alpha; and Go alpha mediated pathway, axon guidance mediated by semaphorins, inflammation mediated by chemokine and cytokine signaling pathway, integrin signalling pathway, Ras pathway, cytoskeletal regulation by Rho GTPase, PDGF signalling pathway
Proto-oncogene tyrosine-protein kinase ROS	ROS1	Kinase activity, transmembrane receptor protein tyrosine kinase activity, transmembrane receptor protein kinase activity, receptor binding	Female gamete generation, immune system process, visual perception, sensory perception, negative regulation of apoptosis, cell cycle, cell surface receptor linked signal transduction, intracellular signaling cascade, cell-cell signalling, cell-cell adhesion, protein metabolic process, cell motion, cell cycle, signal transduction, ectoderm development, mesoderm development, embryonic development, nervous system development	N/A
Target names	Target gene symbol	PANTHER molecular function	Biological process	Pathway categories
--	--------------------	---	--	--
Runt-related transcription factor 2	RUNX2	DNA binding, transcription factor activity	Mesoderm development, skeletal system development, hemopoiesis	N/A
Sucrase-isomaltase (Alpha-glucosidase)	SI	Hydrolase activity, hydrolyzing O-glycosyl compounds	Carbohydrate metabolic process, protein metabolic process	N/A
Processed sterol regulatory element-binding protein 2	SREBP2	DNA binding, transcription factor activity	Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process, lipid metabolic process	Basic helix-loop-helix transcription factor
Tumor necrosis factor/tumor necrosis factor-α	TNFA	Tumor necrosis factor family member	Cytokine- and chemokine-mediated signaling pathways, ligand-mediated signalling, immunity and defense, induction of apoptosis	Wnt signaling pathway, apoptosis signaling pathway
Topoisomerase (DNA) I	Top1	DNA topoisomerase	DNA replication, general mRNA transcription activities	DNA replication
Cellular tumor antigen p53	TP53	DNA binding, transcription factor activity	Induction of apoptosis, cell cycle, nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process, cell cycle	Apoptosis signaling pathway, Huntington disease, p53 pathway feedback loops 1, p53 pathway, p53 pathway by glucose deprivation, p53 pathway feedback loops 2, Wnt signaling pathway
Vascular endothelial growth factor A	VEGFA	Receptor binding	Immune system process, cell cycle, cell surface receptor linked signal transduction, intracellular signalling cascade, cell-cell signalling, cell cycle signal transduction, mesoderm development, angiogenesis, response to stress	Angiogenesis, VEGF signaling pathway
Wee1-like protein kinase	Weel	Kinase activity	Mitosis, protein metabolic process	Protein kinase
cells, berberine also improved insulin signal transduction through various mechanisms such as decreased phosphorylation of PERK and eIF2-α, increased phosphorylation of IRS-1 tyrosine and AKT serine [40]. In intestinal NCI-H716 cells, berberine enhanced glucagon-like peptide 1 (GLP-1) release and promotes proglucagon mRNA expression [41]. These results demonstrate that berberine has great potential for insulin resistance treatment and should be explored further in animal and human studies.

3.2. PANTHER Analysis of Berberine Targets. Distribution of berberine therapeutic targets in vitro varied in each of these functional classifications. Tables 3, 4, and 5 show various distributions of the most frequent occurring berberine targets in vitro based on molecular functions, biological processes, and pathways, respectively.

As shown in Table 3, berberine acts on a diverse range of molecular targets in vitro. The most common classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Known berberine targets in vitro from the receptor binding class include epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA), interleukin-1β (IL1B) and interleukin-6 (IL6), growth/differentiation factor 15 (NAG-1), and glucagon-like peptide (GLP1).

Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved (Table 4). In vitro berberine targets involved signal transduction include cyclin-dependant kinases (CDK1 and CDK6), inhibitor of nuclear factor kappa-B kinase subunit alpha (CHUK), epidermal growth factor receptor (EGFR), receptor tyrosine-protein kinase (ERBB2), glucagon-like peptide (GCG), growth/differentiation factor 15 (GDF15), interferon beta (IFNB1), interleukins (IL1B, IL2RA, and IL6), ATPase activity, coupled to transmembrane movement of substances

PANTHER molecular function	Number of targets
Acyltransferase activity	1
Anion channel activity	1
ATPase activity, coupled to transmembrane movement	2
Cation channel activity	1
Cation transmembrane transporter activity	1
Chemokine	1
Cyclic nucleotide-gated ion channel activity	1
Cysteine protease	3
Cytokine receptor activity	1
DNA binding	9
DNA topoisomerase	1
Glycosyltransferase	1
GTase activity	2
Hydrolase activity, acting on ester bonds	1
Hydrolase activity, hydrolyzing O-glycosyl compounds	1
Kinase activator	1
Kinase activator activity	4
Kinase inhibitor activity	11
Kinase inhibitor activity	1
Kinase regulator activity	6
Metalloprotease	2
Not classified	10
Non-receptor serine/threonine protein kinase	3
Nuclear hormone receptor	2
Nucleic acid binding	2
Other extracellular matrix	2
Other ligase	1
Other receptor	1
Other signaling molecule	3
Other transfer/carrier protein	1
Oxidoreductase activity	1
Oxygenase	3
Peptidase activity	4
Peptidase inhibitor activity	1
Phosphatase activity	1
Protein binding	10
Receptor activity	3
Receptor binding	12
Reductase	1
Serine protease	2
Structural constituent of cytoskeleton	1
Transmembrane transporter activity	2
Transcription factor	2
Transcription factor activity	9
Transmembrane receptor protein kinase activity	3
Transmembrane receptor protein tyrosine kinase activity	3
Tumor necrosis factor family member	1
Voltage-gated potassium channel activity	1

According to the PANTHER Classification System, in vitro berberine targets correlate with a mixture of biological pathways, such as Alzheimer disease-presenilin and secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Huntington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways (Table 5).

The targets of berberine distributed across a large number of PANTHER classifications of molecular functions, biological processes, and pathways. This can be an advantage in terms of drug discovery using berberine. Seen that berberine targets are involved in a wide range of molecular activities, in turn, can alter many pathological states of the body. Thus, berberine can be explored for the treatment
Table 4: Distribution of berberine's targets \textit{in vitro} according to biological functions.

PANTHER biological functions	Number of targets
Angiogenesis	2
Anion transport	1
Apoptosis	6
B-cell-mediated immunity	2
Blood coagulation	1
Calcium-mediated signaling	1
Carbohydrate metabolic process	7
Cation transport	1
Cell adhesion	3
Cell communication	1
Cell cycle	11
Cell cycle control	5
Cell cycle intracellular signaling cascade	1
Cell cycle signal transduction	1
Cell motility	1
Cell motion	10
Cell proliferation and differentiation	3
Cell proliferation and differentiation	1
Cell surface receptor linked signal transduction	14
Cell surface receptor-mediated signal transduction	1
Cell-cell adhesion	3
Cell-cell signaling	9
Cellular component morphogenesis	2
Cellular defense response	4
Cellular glucose homeostasis	1
Coenzyme metabolism	1
Cytokine- and chemokine-mediated signaling pathways	2
Developmental processes	1
DNA repair	1
DNA replication	2
Dorsal/ventral axis specification	1
Ectoderm development	1
Ectoderm development	8
Electron transport	3
Embryonic development	7
Endocytosis	2
Extracellular transport	2
Fatty acid biosynthesis	1
Fatty acid metabolism	1
Female gamete generation	4
Gamete generation	2
Gametogenesis	1
General mRNA transcription activities	1
Gluconeogenesis	1
Granulocyte-mediated immunity	1
Heart development	1
Hematopoiesis	1

Table 4: Continued.

PANTHER biological functions	Number of targets
Hemopoiesis	3
Immune response	2
Immune system process	16
Immune system process Mitosis	1
Immunity and defense	1
Induction of apoptosis	9
Intracellular protein transport	3
Intracellular signaling cascade	18
Ligand-mediated signaling	3
Lipid metabolic process	4
Lipid transport	2
Macrophage activation	2
Macrophage-mediated immunity	1
Mesoderm development	12
Mitosis	4
Monosaccharide metabolism	2
mRNA transcription regulation	1
Muscle organ development	1
Not classified	9
Natural killer cell activation	1
Negative regulation of apoptosis	8
Nervous system development	7
Neurological system process	1
NF-κB cascade	1
Nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process	10
Oncogenesis	3
Other intracellular protein traffic	1
Other lipid, fatty acid and steroid metabolism	1
Other signal transduction	1
Oxidative phosphorylation	1
Oxygen and reactive oxygen species metabolic process	1
Phosphatase activity cell cycle	1
Phosphate metabolic process	1
Protein ADP-ribosylation	1
Protein metabolic process	17
Protein phosphorylation	3
Proteolysis	7
Regulation of lipid, fatty acid and steroid metabolism	1
Response to interferon-γ	1
Response to stimulus	2
Response to stress	8
Response to toxin	2
Segment specification	3
Sensory perception	1
Signal transduction	25
of different diseases. On the other hand, the nature of multitargeting of berberine lacks in target specificity which can become difficult for drug design. Further, because berberine can have interactions with so many molecular structures and involve in different pathways, much attention must be paid to avoid interactions with other therapeutic drugs.

3.3. Data from In Vivo Studies with a Focus on Diabetes Mellitus. In China, Huang Lian (Rhizoma coptidis) has been used to treat diabetes for more than 1,400 years [16]. Berberine is one of the main active alkaloids present in Rhizoma Coptidis and has shown to have good hypoglycaemic effects in vitro [37–39, 42]. Further, the chemical structure of berberine is different from the commonly used other hypoglycaemic agents such as sulphonylureas, biguanides, thiazolidinediones, or acarbose [14]. Thus, it is meaningful to investigate the efficacy and safety of berberine treatments for diabetes mellitus to confirm the possibility of berberine serving as a new class of antidiabetic medications. Extensive research has been done to investigate the hypoglycaemic effects of berberine in animal models. This section will highlight the effects of berberine in diabetic animal studies, focusing on different mechanisms of actions of berberine.

Hyperglycemia is a hallmark metabolic abnormality associated with metabolic diseases such as type 2 diabetes. Berberine has shown to significantly decrease fasting blood glucose levels in diabetic rats (diet or drug induced), this has been observed in a number of studies [43–46]. Berberine can reduce fasting blood glucose level via different mechanisms. For example, Liu et al. [43] reported that berberine reduced fasting blood glucose (FBG) levels by inhibiting intestinal disaccharidases in a concentration-dependent manner. Xia et al. [46] reported berberine reduced fasting glucose level via the inhibition of gluconeogenesis, via decreased PEPCK and G6Pase genes in the liver, reduced hepatic steatosis, and inhibition of FAS expression.

Current diabetes therapies do not address the key driver of this condition, β-cell dysfunction [47, 48], and do not alter the progressive nature of insulin secretory deficit [49]. Berberine increased pancreatic β-cell numbers and β-cell mass in streptozotocin-induced diabetic rats [41, 50]. It also reversed pathological changes of pancreatic β-cells in diabetic rats induced by streptozotocin and diet [51]. Further,
in berberine treated diabetic rats, the pancreatic and plasma insulin levels increased after glucose load, reducing blood glucose levels [41, 50]. These observations are significant as berberine may be explored further as an additional therapy to existing antidiabetic drugs to effectively preserve β-cell functions, reverse β-cell damage, and promote insulin secretion in diabetes patients.

Further to β-cell dysfunction and insulin secretory deficit in diabetes, defects in insulin receptor (InsR) expression or function can cause insulin resistance and diabetes mellitus [52]. Thus, regulation of InsR expression may improve insulin resistance in diabetes mellitus. Berberine increases InsR mRNA and protein expression in human liver cells and in animal model in a dose- and time-dependent manner [38]. Berberine upregulates InsR and leads to enhanced insulin signalling pathway, confirming berberine as an insulin sensitisir.

Glucagon-like peptide 1 (GLP-1) is an intestinal peptide hormone released in response to food ingestion [53]. GLP-1 enhances meal-related insulin secretion and promotes glucose tolerance. In streptozotocin-induced rats, berberine enhanced GLP-1 release and promotes proglucagon mRNA expression, increased beta cell mass and pancreas insulin levels after glucose load [41]. This observation was in line with the groups, previous experiments in vitro. Lu et al. [50] also reported that berberine increased proglucagon mRNA expression and plasma insulin levels in streptozotocin-induced diabetic rats. The glucagon gene encodes GLP-1 and the increased expression of proglucagon mRNA assists in controlling the blood glucose homeostasis.

Berberine also reduced body weight and caused a significant improvement in glucose tolerance without altering food intake in db/db mice [54]. Oral glucose tolerance improvement in diabetic rats after berberine treatment has also been observed in other studies [55, 56].

Long-term hyperglycaemia can lead to increased risk of cardiovascular complications. In hyperglycemia and hypercholesterolemia rats with injured cardiac functions, berberine (15, 30 mg/kg/day, i.g for 6 weeks) increased cardiac output, left ventricular systolic pressure, and +dp/dtmax by 64, 16, and 79%, but decreased left ventricular end diastolic pressure and −dp/dtmax by 121 and 61% in the rats receiving HSFD/streptozotocin, respectively, when compared with the untreated rats of hyperglycemia and hypercholesterolemia [57]. Berberine caused significant increase in cardiac fatty acid transport protein-1 (159%), fatty acid transport proteins (56%), fatty acid beta-oxidase (52%), and glucose transporter-4. These results demonstrate the cardioprotective functions of berberine in hyperglycemia/hypercholesterolemia through alleviating cardiac lipid accumulation and promoting glucose transport 4 [57].

Another study also showed improved vasorelaxation in impaired aorta in diabetic rats after berberine treatment (100 mg/kg/day, 8 weeks) [45]. Thus, in addition to its hypoglycaemic effects, berberine can also be investigated for cardiomyopathy in diabetes.

Berberine also regulates lipid metabolism which is closely related to diabetes. In rats with induced diabetic hyperlipidaemia, berberine (75, 150, 300 mg/kg/day for 16 weeks) effectively reduced liver weight and liver/body weight ratio, levels of total cholesterol, triglycerides, and low-density lipoprotein-cholesterol [58]. In rats with a high fat diet, berberine significantly reduced body weight, alleviated liver steatosis, and improved insulin resistance [59]. This observation indicates that berberine can be an effective treatment for diabetes with obesity.

Clinically, preeminent factors for monitoring glycaemia and evaluating the risks of complications of diabetes include FBG, haemoglobin A1c (HbA1c) [60]. Triglyceride synthesis is closely associated with glucose metabolism so serum triglyceride levels are determined. Clinical studies often measure FBG, HbA1c, and triglyceride levels, along with other factors to study the hypoglycaemic effects of berberine. The efficacies of berberine in type 2 diabetes patients have been reported. Through literature search, key clinical studies on berberine effects on type 2 diabetes patients are summarised.

Zhang et al. [61] conducted a randomized, double-blind, placebo-controlled multicenter trial (n = 116). The authors found that when berberine (1.0 g daily) was administered for 3 months in type 2 diabetes patients with dyslipidemia, the fasting and postload plasma glucose levels decreased from 7.0 ± 0.8 to 5.6 ± 0.9 and from 12.0 ± 2.7 to 8.9 ± 2.8 mM/L, HbA1c from 7.5 ± 1.0% to 6.6 ± 0.7%. Further, in the treatment group, triglyceride levels were reduced from 2.51 ± 2.04 to 1.61 ± 1.0 mM/L, total cholesterol from 5.31 ± 0.98 to 4.35 ± 0.96 mM/L, and LDL-cholesterol from 3.23 ± 0.81 to 2.55 ± 0.77 mM/L. Results from the treatment group was significant compared to the control group. In the treatment group, patient’s body weight was also significantly reduced. Mild-to-moderate constipation was reported in 5 patients from the treatment group and 1 patient from the control group; however, this finding was not statistically significant. No other adverse events were reported. At 3 months, berberine was found to be effective in lowering blood glucose, lipids, body weight, and blood pressure with a good safety profile.

Yin et al. reported a 3-month study comparing berberine to antidiabetic drug metformin (0.5 g t.i.d) [14]. In this study, berberine exhibited identical effect as metformin in the regulation of glucose metabolism, significant decreases in HbA1c, (by 2%, P < 0.01), FBG (by 3.8 mmol/L; P < 0.01), and postprandial blood glucose (PBG) (by 8.8 mmol/L; P < 0.01). Further, the regulation of lipid metabolism was
better in the berberine group than the metformin group. Triglycerides and total cholesterol levels were significantly lower than in the metformin group \((P < 0.05)\). At the same time, the same group of researchers used berberine as a combination therapy to evaluate its additive or synergistic effects on the commonly used hypoglycemic agents, such as sulphonylureas, biguanides, thiazolidinediones, and acarbose. Patients were given 500 mg berberine three times daily for 3 months in addition to their previous treatment. At week 5, berberine significantly \((P < 0.01)\) reduced HbA1c (from 8.1% to 7.3%), FBG, PBG, and fasting insulin levels. Blood lipids including triglyceride, total cholesterol, and LDL-C decreased significantly lowered compared to baseline. In both studies, incidences of gastrointestinal adverse events were observed, including diarrhea, constipation, flatulence, and abdominal pain. Interestingly, patients did not suffer from severe gastrointestinal adverse events when berberine was used alone and in combination therapy; adverse effects disappeared after berberine dosage was reduced. No pronounced elevation in liver enzymes or creatinine was observed, suggesting that berberine did not cause damage to the liver or kidneys.

Another clinical study \([62]\) randomly divided 97 type 2 diabetes mellitus patients into berberine treatment (1 g/day) for 2 months, using metformin therapy (1.5 g/day) and rosiglitazone group (4 mg/b.i.d) as reference groups. Blood samples were taking before and after treatments to measure FBG, HbA1c, triglyceride, and serum insulin levels. Compared to values prior to treatment, berberine significantly lowered FBG by 25.9% \((P < 0.001)\), HbA1c by 18.1% \((P < 0.00)\), and triglycerides by 17.6% \((P < 0.01)\). The hypoglycaemic effects of berberine were comparable to metformin and rosiglitazone. Serum insulin level was declined significantly \((P < 0.01)\) by 28.2%; this indicates increased insulin sensitivity in peripheral tissues by berberine treatment. Peripheral blood lymphocytes from berberine treated patients were isolated to examine the InsR expression. The surface expression of InsR significantly elevated by 3.6-fold after berberine treatment.

Metformin and rosiglitazone are not recommended for use in diabetic patients with liver function damage \([54, 63]\). So the effect of berberine was tested in hyperglycaemic patients with hepatitis. Hepatitis B and C patients with hyperglycaemia received berberine at 1 g/day for 2 months. In both diabetic hepatitis B and C patients, berberine significantly reduced FBG and triglyceride levels. Berberine treatment also reduced the elevated alanine transaminase and aspartate aminotransferase levels in these patients. Overall, berberine is safe and effective in hyperglycaemic patients with liver function damage.

Table 6 compares clinical studies of berberine in diabetes patients. Across the studies, berberine has shown significantly reduce FBG, PBG, and HbA1c levels. Berberine also demonstrated ability to reduce triglyceride and cholesterol levels. Minimal gastrointestinal side effects were shown but no liver or kidney damage was observed. These observations in diabetes patients demonstrate that berberine is a safe and effective antidiabetic agent.

4. Discussion

The “rule-of-five” analysis by Lipinski et al. \([7]\) shows that poor absorption or permeation of a compound is more likely when there are more than five hydrogen-bond donors; the molecular mass is more than 500 Da; the lipophilicity is high (expressed as cLog \(P > 5\)); the sum of nitrogen and oxygen is more than 10. Specific structural and physiochemical properties, such as “rule-of-five,” are required for clinical drugs to have sufficient levels of efficacy, bioavailability, and safety, which define target sites to which drug-like molecules can bind \([4]\).

Plant compounds exhibit enormous structural diversity and only a small portion of the diversity has been explored for its pharmacological potential \([64]\). In recent years, herbal compounds have been source of new drugs \([64]\). Approximately 28% of new molecular entities (NMEs) between 1981 and 2002 were natural products or natural product derived; further to this, 20% of these NMEs were natural product mimics \([65]\). There are a number of successful plant-derived drugs, especially in anti-cancer treatment. Medicinal herbal compounds have become an important source for the discovery of new drugs. Further, drugs derived from medicinal plants can also be used as drug leads suitable for optimization by medicinal and synthetic chemists \([65]\).

As Chinese herbal medicine becomes increasingly popular in the west, researchers are spending more time looking into mechanisms of actions of crude extracts and herbal compounds such as berberine. In recent years, extensive research has been done to explore the effects of berberine on various cell lines in vitro. In cell-based studies, berberine has shown effects on multiple molecular targets and alters various biological pathways. Berberine associates with a range of conditions, particularly diabetes, hyperlipidemia, and cancer. Many in vitro studies showed potent anticancer properties of berberine against various cancer cells. This observation is valuable in the search for new anti-cancer therapeutics with potent anti-cancer effects but reduced side effect. So berberine may potentially be developed into an anticancer agent, like other natural compounds (taxol, camptothecin) that have been developed and used as anticancer agents.

Diabetes mellitus is a major health problem around the world and its prevalence is on the rise. Diabetes mellitus drug therapy is limited by availability of effective medications, as existing oral hypoglycaemic agents often have side effects and fails in long-term administration \([14]\). Berberine has shown significant results in fasting blood glucose levels reduction, increase in insulin sensitivity, and improvement in insulin resistance in vitro, in diabetic animal models and in diabetic patients. Further, berberine shows mechanism that current antidiabetic drugs do not have. For instance, berberine has shown effects on pancreatic β-cell number and mass improvement \([41, 50, 51]\). In addition, berberine has a good safety profile and does not show side effects such as hypoglycaemia, weight gain, or liver and kidney damage. Metformin and rosiglitazone are not recommended for use in diabetic patients with liver function damage \([54, 63]\). Berberine has shown to be effective in the reduction of blood glucose level and is safe in diabetic patients with
Table 6: Comparison of clinical studies of berberine in diabetes patients.

Study type	Study subjects	Berberine dosage	Control treatment	Major findings	Side effects	Reference
Randomised, double-blind, placebo-controlled, multiple-center	Type 2 diabetes and dyslipidemia \((n = 116)\)	0.5 g, b.i.d for 3 months	Placebo	Significantly reduced fasting and postload plasma glucose, HbA1c	Mild to moderate constipation in 5 patients	[61]
Randomised, blinded, placebo-controlled	Type 2 diabetes \((n = 36)\)	0.5 g, t.i.d for 3 months	Metformin (0.5 g t.i.d)	Significantly reduced FBG, PBG, and HbA1c	Transient gastrointestinal adverse effects. No liver or kidney damage	[14]
Randomised	Type 2 diabetes poorly controlled \((n = 48)\)	0.5 g, t.i.d for 3 months	Existing anti-diabetic treatment	Significantly reduced fasting plasma insulin and HOMA-IR		
Randomised	Type 2 diabetes \((n = 97)\)	1 g/day for 2 months	Metformin (1.5 g/day); rosiglitazone (4 mg/day)	Significantly reduced FBG, HbA1c, and triglycerides		[62]
Randomised	Type 2 diabetes with chronic hepatitis \((n = 35)\)	1 g/day for 2 months	N/A	Significantly reduced FBG and triglyceride levels		

b.i.d: twice daily; t.i.d: three times daily; FBG: fasting blood glucose; HOMA-IR: homeostasis model of assessment—insulin resistance; PBG: postprandial blood glucose.

Viral hepatitis [62]. Berberine can therefore be investigated as an effective diabetes therapy with patients with liver function damage. In addition to its hypoglycemic effects in diabetic patients, berberine also reduced triglyceride and cholesterol levels. Abnormalities in lipid metabolism often deteriorate diabetes and cause complications. The regulation of lipid metabolism in diabetes patients by berberine may have clinical significance in managing diabetic patients with hyperlipidemia. Although there are only a small number of clinical studies and evidence is limited, current reports still show a promising future for berberine being developed into a new antidiabetic agent.

In China, berberine has been manufactured into the over-the-counter drug Huang Lian Su Pian, also known as Coptis Extract Tablets for the treatment of traveler’s diarrhea [14, 17]. However, in vitro and in vivo studies have shown that berberine has potent anti-cancer, antidiabetic, antilipidemic, and anti-inflammatory effects. Therefore, further clinical studies are warranted to investigate the potential of berberine in the application of cancer and diabetes treatments in the future.

Pharmacological activity of CHMs begins with the binding of the active components to their molecular targets. CHMs are considered as typical multitherapeutics that can interact simultaneously with multiple targets. The origins and the progression of diseases are multifactorial. Complex disorders such as cancer, cardiovascular disease, and depression tend to result from multiple molecular abnormalities, not from a single defect [66]. Biochemical and genetic studies revealed the molecular mechanism that underlie common illnesses [66]. Reports show that targets for neoplasm diseases, circulatory system diseases, infectious diseases, and nervous
system and sense organs disorders constitute the largest number of targets [1]. Because drug targets are presented at the molecular level, increased knowledge of herbal targets can facilitate deeper understanding of complex diseases at its fundamental level. In turn, it is likely to determine the optimal molecular targets for therapeutic intervention [6].

Further to assisting the molecular dissection of the mechanism of action of CHMs, knowledge on herbal targets makes it possible to use disease specific targets and design more desirable herbal drugs/formulas with increased specificity and efficacy. Target-oriented synthesis in drug discovery involves in preselected protein targets [67]. Binding of drugs to preselected protein target/s is dependent on which biological pathway the drug is aimed to modulate the target or the diseased pathway(s) [67]. Target and disease specific drug design results in improved efficacy and reduced side effects, especially in high impact diseases that require more effective and more treatment options. However, due to the fact that diseases often involve in multiple molecular abnormalities, diversity-oriented syntheses are used in efforts to identify simultaneously therapeutic protein targets and their small-molecule regulators [67]. Target-oriented drug design allows more focused drug design, which in turn costs less time and money for pharmaceutical companies.

Protein structure of well-validated old and new targets should be able to guide the chemical effort directed at new drugs [68]. Study of various aspects of known targets including molecular mechanism of their binding agents and related adverse effects is useful for finding clues to new target identification [9]. Based on the knowledge of molecular targets and molecular understanding of disease state and using this knowledge will allow some direction in identifying potential targets. Potential herbal targets may come from the same class as confirmed therapeutic targets and have similar physiological functions, or maybe a structure along a biological pathway. Additionally, with increased number of potential targets from ∼500 to >5,000, the nature of pharmaceutical research has changed. This increase in numbers has given researchers more opportunities to discover and design new and improved drugs.

Target selection may be one of the most important determinants of attrition and the overall R&D productivity. There are few ways to overcome this challenge and improve the target selection process, in turn, improving R&D productivity. First of all, researchers can discover new target classes. Targets of herbal medicine are becoming a popular resource to find new target classes. In addition, increased understanding of genetic variations/polymorphisms of drug targets or drug metabolising enzymes can assist in target selection and drug metabolism. Further, the use of new technology can help to speed up the early exploratory discovery phase of drug discovery.

In summary, updated knowledge of herbal targets is valuable contribution to complex disease understanding and clinical responses. Further, drug discovery and development from herbal medicines can be supported by new target discovery and target-focused drug design. This will speed up the exploratory phase of drug R&D and benefit the pharmaceutical industry in terms of cost and time.

Abbreviations

- Bax: BCL2-associated X protein
- FBG: Fasting blood glucose
- GLP-1: Glucagon like peptide 1
- Hba1c: Hemoglobin A1c
- InsR: Insulin receptor
- PBG: Postprandial blood glucose

Authors’ Contribution

Xiao-Wu Chen and Yuan Ming Di contributed equally to this work.

References

[1] C. J. Zheng, L. Y. Han, C. W. Yap, B. Xie, and Y. Z. Chen, “Trends in exploration of therapeutic targets,” *Drug News and Perspectives*, vol. 18, no. 2, pp. 109–127, 2005.
[2] B. Bryant and K. Knights, *Pharmacology for Health Professionals*, Mosby Elsevier, Chatswood, Australia, 3rd edition, 2011.
[3] A. L. Hopkins and C. R. Groom, “The druggable genome,” *Nature Reviews Drug Discovery*, vol. 1, no. 9, pp. 727–730, 2002.
[4] C. J. Zheng, L. Y. Han, C. W. Yap, Z. L. Ji, Z. W. Cao, and Y. Z. Chen, “Therapeutic targets: progress of their exploration and investigation of their characteristics,” *Pharmacological Reviews*, vol. 58, no. 2, pp. 259–279, 2006.
[5] J. Drews, “Genomic sciences and the medicine of tomorrow,” *Nature Biotechnology*, vol. 14, no. 11, pp. 1516–1518, 1996.
[6] J. Drews and S. Ryser, “The role of innovation in drug development,” *Nature Biotechnology*, vol. 15, no. 13, pp. 1318–1319, 1997.
[7] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” *Advanced Drug Delivery Reviews*, vol. 46, no. 1–3, pp. 3–26, 2001.
[8] X. Chen, C. J. Zheng, L. Y. Han, B. Xie, and Y. Z. Chen, “Trends in the exploration of therapeutic targets for the treatment of endocrine, metabolic and immune disorders,” *Endocrine, Metabolic and Immune Disorders*, vol. 7, no. 3, pp. 225–231, 2007.
[9] X. Chen, Z. L. Ji, and Y. Z. Chen, “TTD: therapeutic target database,” *Nucleic Acids Research*, vol. 30, no. 1, pp. 412–415, 2002.
[10] J. Qiu, “Traditional medicine: a culture in the balance,” *Nature*, vol. 448, no. 7150, pp. 126–128, 2007.
[11] R. Stone, “Biochemistry: lifting the veil on traditional Chinese medicine,” *Science*, vol. 319, no. 5864, pp. 709–710, 2008.
[12] P. Barnes, E. Powell-Griner, K. McFann, and R. Nahin, “Complementary and alternative medicine use among adults: United States, 2002,” *Advanced Data From Vital and Health Statistics 343*, National Center for Health Statistics, Hyattsville, Md., USA.
[13] E. Ernst and M. H. Pittler, “Herbal medicine,” *Medical Clinics of North America*, vol. 86, no. 1, pp. 149–161, 2002.
[14] J. Yin, H. Xing, and J. Ye, “Efficacy of berberine in patients with type 2 diabetes mellitus,” *Metabolism: Clinical and Experimental*, vol. 57, no. 5, pp. 712–717, 2008.
[15] L. Grycová, J. Dostál, and R. Marek, “Quaternary protoberberine alkaloids,” *Phytochemistry*, vol. 68, no. 2, pp. 150–175, 2007.
M. S. Choi, D. Y. Yuk, J. H. Oh et al., "Berberine inhibits apoptotic cell death in human tongue squamous carcinoma cancer cells," *Anticancer Research*, vol. 29, no. 10, pp. 4063–4070, 2009.

W. H. Hsu, Y. S. Hsieh, H. C. Kuo et al., "Berberine induces apoptosis in SW620 human colon carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and Fasl," *Archives of Toxicology*, vol. 81, no. 10, pp. 719–728, 2007.

S. K. Katiyar, S. M. Meeran, N. Katiyar, and S. Akhtar, "P53 cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo," *Molecular Carcinogenesis*, vol. 48, no. 1, pp. 24–37, 2009.

K. K. W. Auyeung and J. K. S. Ko, "Coptis chinensis inhibits hepatocellular carcinoma cell growth through nonsteroidal anti-inflammatory drug-activated gene activation," *International Journal of Molecular Medicine*, vol. 24, no. 4, pp. 571–577, 2009.

K. Inoue, U. Kulsam, S. A. Chowdhury et al., "Tumor-specific cytotoxicity and apoptosis-inducing activity of berberines," *Anticancer Research*, vol. 25, no. 6, pp. 4053–4059, 2005.

J. P. Lin, J. S. Yang, J. H. Lee, W. T. Hsieh, and J. G. Chung, "Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line," *World Journal of Gastroenterology*, vol. 12, no. 1, pp. 21–28, 2006.

M. S. Choi, D. Y. Yuk, J. H. Oh et al., "Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis," *Anticancer Research*, vol. 28, no. 6, pp. 3777–3784, 2008.

F. Tang, D. Wang, C. Duan et al., "Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting rho kinase-mediated ezrin phosphorylation at threonine 567," *Journal of Biological Chemistry*, vol. 284, no. 40, pp. 27456–27466, 2009.

K. Fukuda, Y. Hibiya, M. Mutoh, M. Koshiji, S. Akao, and H. Fujiwara, "Inhibition by berberine of cyclooxygenase-2 kinase-mediated ezrin phosphorylation at threonine 567," *Journal of Ethnopharmacology*, vol. 66, no. 2, pp. 227–233, 1999.

J. G. Chung, G. W. Chen, C. F. Hung et al., "Effects of berberine on arylamine N-acetyltransferase activity and 2-aminofluorene-DNA adduct formation in human leukemia cells," *American Journal of Chinese Medicine*, vol. 28, no. 2, pp. 227–238, 2000.

M. S. Choi, J. H. Oh, S. M. Kim et al., "Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells," *International Journal of Oncology*, vol. 34, no. 5, pp. 1221–1230, 2009.

S. K. Mantena, S. D. Sharma, and S. K. Katiyar, "Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells," *Molecular Cancer Therapeutics*, vol. 5, no. 2, pp. 296–308, 2006.

C. C. Lin, S. T. Kao, G. W. Chen, H. C. Ho, and J. G. Chung, "Apoptosis of human leukemia HL-60 cells and murine leukemia WEHI-3 cells induced by berberine through the activation of caspase-3," *Anticancer Research*, vol. 26, no. 1, pp. 227–242, 2006.

Y. Luo, Y. Hao, T. P. Shi, W. W. Deng, and N. Li, "Berberine inhibits cyclin D1 expression via suppressed binding of AP-1 transcription factors to CCND1 AP-1 motif," *Acta Pharmacologica Sinica*, vol. 29, no. 5, pp. 628–633, 2008.

S. Jantova, L. Cipak, and S. Letasiova, "Berberine induces apoptosis through a mitochondrial/caspase pathway in human promonocytic U937 cells," *Toxicology in Vitro*, vol. 21, no. 1, pp. 25–31, 2007.

Y. T. Ho, J. S. Yang, T. C. Li et al., "Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9," *Cancer Letters*, vol. 279, no. 2, pp. 155–162, 2009.

H. Li, L. Guo, S. Jie et al., "Berberine inhibits SDF-1-induced AML cells and leukemia stem cells migration via regulation of SDF-1 level in bone marrow stromal cells," *Biomedicine and Pharmacotherapy*, vol. 62, no. 9, pp. 573–578, 2008.

G. C. M. Bruschi, C. C. De Souza, M. R. V. Z. Fagundes et al., "Sensitivity to camptothecin in Aspergillus nidulans identifies a novel gene, scaA", related to the cellular DNA damage response," *Molecular and General Genetics*, vol. 265, no. 2, pp. 264–275, 2001.

Y. Chen, Y. Li, Y. Wang, Y. Wen, and C. Sun, "Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor γ and fatty acid transferase expressions," *Metabolism: Clinical and Experimental*, vol. 58, no. 12, pp. 1694–1702, 2009.

W. J. Kong, H. Zhang, D. Q. Song et al., "Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression," *Metabolism: Clinical and Experimental*, vol. 58, no. 1, pp. 109–119, 2009.

G. Y. Pan, Z. J. Huang, G. J. Wang et al., "The antihyperglycemic activity of berberine arises from a decrease of glucose absorption," *Planta Medica*, vol. 69, no. 7, pp. 632–636, 2003.

Z. S. Wang, F. E. Lu, L. J. Xu, and H. Dong, "Berberine reduces endoplasmic reticulum stress and improves insulin signal transduction in Hep G2 cells," *Acta Pharmacologica Sinica*, vol. 31, no. 5, pp. 578–584, 2010.

Y. Yu, L. Liu, X. Wang et al., "Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies," *Biochemical Pharmacology*, vol. 79, no. 7, pp. 1000–1006, 2010.

J. Yu, B. K. Piao, Y. X. Pei, X. Qi, and B. J. Hua, "Protective effects of tetrahydropalmatine against γ-radiation induced damage to human endothelial cells," *Life Sciences*, vol. 87, no. 1–2, pp. 55–63, 2010.

L. Liu, Y. L. Yu, J. S. Yang et al., "Berberine suppresses intestinal disaccharidases with beneficial metabolic effects in diabetic states, evidences from in vivo and in vitro study," *Naunyn-Schmiedeberg's Archives of Pharmacology*, vol. 381, no. 4, pp. 371–381, 2010.

L. Q. Tang, W. Wei, L. M. Chen, and S. Liu, "Effects of berberine on diabetes induced by alloxa and a high-fat/high-cholesterol diet in rats," *Journal of Ethnopharmacology*, vol. 108, no. 1, pp. 109–115, 2006.
β-cell failure in diabetes and preservation by clinical treatment,” Endocrine Reviews, vol. 28, no. 2, pp. 187–218, 2007.

[45] B. L. Wajchenberg, “Haemoglobin A1c—a marker for complications of type 2 diabetes: the experience from the UK Prospective Diabetes Study (UKPDS),” Clinical Chemistry and Laboratory Medicine, vol. 41, no. 9, pp. 1182–1190, 2003.

[46] Y. Zhang, X. Li, D. Zou et al., “Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine,” The Journal of Clinical Endocrinology & Metabolism, vol. 93, pp. 2559–2565, 2008.

[47] H. Zhang, J. Wei, R. Xue et al., “Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression,” Metabolism: Clinical and Experimental, vol. 59, no. 2, pp. 285–292, 2010.

[48] R. J. Heine, M. Diamant, J. C. Mbanya, and D. M. Nathan, “Management of hyperglycaemia in type 2 diabetes,” British Medical Journal, vol. 333, no. 7580, pp. 1200–1204, 2006.

[49] S. S. Lu, Y. L. Yu, H. J. Zhu et al., “Berberine promotes glucagon-like peptide-1 (7–36) amide secretion in streptozotocin-induced diabetic rats,” Journal of Endocrinology, vol. 200, no. 2, pp. 159–165, 2009.

[50] J. Zhou, S. Zhou, J. Tang et al., “Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats,” European Journal of Pharmacology, vol. 606, no. 1–3, pp. 262–268, 2009.

[51] J. Hone, D. Accili, L. I. Al-Gazali, G. Lestringant, T. Orban, and S. I. Taylor, “Homozygosity for a new mutation (Ile119—Met) in the insulin receptor gene in five sibs with familial insulin resistance,” Journal of Medical Genetics, vol. 31, no. 9, pp. 715–716, 1994.

[52] J. J. Holst, “The physiology of glucagon-like peptide 1,” Physiological Reviews, vol. 87, no. 4, pp. 1409–1439, 2007.

[53] S. H. Leng, F. E. Lu, and L. J. Xu, “Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion,” Acta Pharmacologica Sinica, vol. 25, no. 4, pp. 496–502, 2004.

[54] Y. Wang, T. Campbell, B. Perry, C. Beaurepaire, and L. Qin, “Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats,” Metabolism: Clinical and Experimental, vol. 60, no. 2, pp. 298–305, 2011.

[55] S. F. Dong, Y. Hong, M. Liu et al., “Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats,” European Journal of Pharmacology, vol. 660, no. 2–3, pp. 368–374, 2011.

[56] J. Y. Zhou, S. W. Zhou, K. B. Zhang et al., “Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats,” Biological and Pharmaceutical Bulletin, vol. 31, no. 6, pp. 1169–1176, 2008.

[57] X. Chang, H. Yan, J. Fei et al., “Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats,” Journal of Lipid Research, vol. 51, no. 9, pp. 2504–2515, 2010.

[58] S. Manley, “Haemoglobin A1c—a marker for complications of type 2 diabetes: the experience from the UK Prospective Diabetes Study (UKPDS),” Clinical Chemistry and Laboratory Medicine, vol. 41, no. 9, pp. 1182–1190, 2003.

[59] Y. S. Lee, W. S. Kim, K. H. Kim et al., “Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states,” Diabetes, vol. 55, no. 8, pp. 2256–2264, 2006.

[60] T. H. Lin, H. C. Kuo, F. P. Chou, and F. J. Lu, “Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide,” BMC Cancer, vol. 8, article 58, 2008.

[61] C. W. Chi, Y. F. Chang, T. W. Chao et al., “Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2,” Toxicology and Applied Pharmacology, vol. 214, no. 1, pp. 8–15, 2006.

[62] J. M. Brusq, N. Ancellin, P. Grondin et al., “Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine,” Journal of Lipid Research, vol. 47, no. 6, pp. 1281–1288, 2006.

[63] C. W. Chi, Y. F. Chang, T. W. Chao et al., “Flowcytometric analysis of the effect of berberine on the expression of glucocorticoid receptors in human hepatoma HepG2 cells,” Toxicology, vol. 113, no. 1, pp. 129–135, 2006.
[77] M. K. Pandey, B. Sung, A. B. Kunnumakkara, G. Sethi, M. M. Chaturvedi, and B. B. Aggarwal, “Berberine modifies cysteine 179 of IkappaB kinase, suppresses nuclear factor-xB-regulated antiapoptotic gene products, and potentiates apoptosis,” Cancer Research, vol. 68, no. 13, pp. 3570–3579, 2008.

[78] C. C. Lin, L. T. Ng, F. F. Hsu, D. E. Shieh, and L. C. Chiang, “Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth,” Clinical and Experimental Pharmacology and Physiology, vol. 31, no. 1–2, pp. 65–69, 2004.

[79] J. G. Lin, J. G. Chung, L. T. Wu, G. W. Chen, H. L. Chang, and T. F. Wang, “Effects of berberine on arylamine N-acetyltransferase activity in human colon tumor cells,” American Journal of Chinese Medicine, vol. 27, no. 2, pp. 265–275, 1999.

[80] D. Y. Wang, C. C. Yeh, J. H. Lee, C. F. Hung, and J. G. Chung, “Berberine inhibited arylamine N-acetyltransferase activity and gene expression and DNA adduct formation in human malignant astrocytoma (G9T/VGH) and brain glioblastoma multiforms (GBM 8401) cells,” Neurochemical Research, vol. 27, no. 9, pp. 883–889, 2002.

[81] J. B. Kim, E. Ko, W. Han, I. Shin, S. Y. Park, and D. Y. Non, “Berberine diminishes the side population and ABCG2 transporter expression in MCF-7 breast cancer cells,” Planta Medica, vol. 74, no. 14, pp. 1693–1700, 2008.

[82] J. Liu, C. He, K. Zhou, J. Wang, and J. X. Kang, “Coptis extracts enhance the anticancer effect of estrogen receptor antagonists on human breast cancer cells,” Biochemical and Biophysical Research Communications, vol. 378, no. 2, pp. 174–178, 2009.

[83] X. H. Wang, S. M. Jiang, and Q. W. Sun, “Effects of berberine on human rheumatoid arthritis fibroblast-like synoviocytes,” Experimental Biology and Medicine, vol. 236, no. 7, pp. 859–866, 2011.

[84] C. C. Lin, S. Y. Lin, J. G. Chung, J. P. Lin, G. W. Chen, and S. T. Kao, “Down-regulation of cyclin B1 and Up-regulation of Wee1 by berberine promotes entry of leukemia cells into the G2/M-phase of the cell cycle,” Anticancer Research, vol. 26, no. 2, pp. 1097–1104, 2006.

[85] J. P. Lin, J. S. Yang, N. W. Chang et al., “GADD153 mediates berberine-induced apoptosis in human cervical cancer Caski cells,” Anticancer Research, vol. 27, no. 5, pp. 3379–3386, 2007.

[86] Y. T. Ho, J. S. Yang, C. C. Lu et al., “Berberine inhibits human tongue squamous carcinoma cancer tumor growth in a murine xenograft model,” Phytomedicine, vol. 16, no. 9, pp. 887–890, 2009.

[87] S. M. Meeran, S. Katiyar, and S. K. Katiyar, “Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation,” Toxicology and Applied Pharmacology, vol. 229, no. 1, pp. 33–43, 2008.

[88] S. Nishida, S. Kikuichi, S. Yoshioka et al., “Induction of apoptosis in HL-60 cells treated with medicinal herbs,” American Journal of Chinese Medicine, vol. 31, no. 4, pp. 551–562, 2003.

[89] K. Yan, C. Zhang, J. Feng et al., “Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells,” European Journal of Pharmacology, vol. 661, no. 1–3, pp. 1–7, 2011.

[90] X. S. Eom, J. M. Hong, M. J. Youn et al., “Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway,” Biological and Pharmaceutical Bulletin, vol. 31, no. 4, pp. 558–562, 2008.

[91] C. M. Tsang, E. P. W. Lau, K. Di et al., “Berberine inhibits Rho GTPases and cell migration at low doses but induces G2 arrest and apoptosis at high doses in human cancer cells,” International Journal of Molecular Medicine, vol. 24, no. 1, pp. 131–138, 2009.

[92] Z. Liu, Q. Liu, B. Xu et al., “Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage,” Mutation Research, vol. 662, no. 1–2, pp. 75–83, 2009.

[93] H. S. Cui, S. Hayasaka, X. Y. Zhang, Y. Hayasaka, Z. L. Chi, and L. S. Zheng, “Effect of berberine on interleukin 8 and monocyte chemotactic protein 1 expression in a human retinal pigment epithelial cell line,” Ophthalmic Research, vol. 38, no. 3, pp. 149–157, 2006.

[94] R. Piyanuch, M. Sukhthankan, G. Wande, and S. J. Baek, “Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells,” Cancer Letters, vol. 258, no. 2, pp. 230–240, 2007.

[95] M. Khan, B. Giessrigl, C. Vonach et al., “Berberine and a Berberis lyceum extract inactivate Cdc25A and induce α-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis,” Mutation Research, vol. 683, no. 1–2, pp. 123–130, 2010.

[96] P. Chatterjee and M. R. Franklin, “Human cytochrome P450 inhibition and metabolic-intermediate complex formation by goldenseal extract and its methylenedioxyphenyl components,” Drug Metabolism and Disposition, vol. 31, no. 11, pp. 1391–1397, 2003.

[97] X. Wu, Q. Li, H. Xin, A. Yu, and M. Zhong, “Effects of berberine on the blood concentration of cyclosporin A in renal transplanted recipients: clinical and pharmacokinetic study,” European Journal of Clinical Pharmacology, vol. 61, no. 8, pp. 567–572, 2005.

[98] J. W. Budzinski, V. L. Trudeau, C. E. Drouin, M. Panahi, J. T. Arnason, and B. C. Foster, “Modulation of human cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) in Caco-2 cell monolayers by selected commercial-source milk thistle and goldenseal products,” Canadian Journal of Physiology and Pharmacology, vol. 85, no. 9, pp. 966–978, 2007.

[99] I. M. Al-Masri, M. K. Mohammad, and M. O. Tahaa, “Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24, no. 5, pp. 1061–1066, 2009.

[100] L. Xu, Y. Liu, and X. He, “Inhibitory effects of berberine on the activation and cell cycle progression of human peripheral lymphocytes,” Cellular & Molecular Immunology, vol. 2, no. 4, pp. 295–300, 2005.

[101] H. Li, B. Dong, S. W. Park, H. S. Lee, W. Chen, and J. Liu, “Hepatocyte nuclear factor 1α plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine,” Journal of Biological Chemistry, vol. 284, no. 42, pp. 28885–28895, 2009.

[102] S. Lin, S. C. Tsai, C. C. Lee, B. W. Wang, J. Y. Liou, and K. G. Shyu, “Berberine inhibits HIF-1α expression via enhanced proteolysis,” Molecular Pharmacology, vol. 66, no. 3, pp. 612–619, 2004.

[103] C. L. Kuo, C. W. Chi, and T. Y. Liu, “Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells,” In Vivo, vol. 19, no. 1, pp. 247–252, 2005.

[104] C. H. Lee, J. C. Chen, C. Y. Hsiang, S. L. Wu, H. C. Wu, and T. Y. Ho, “Berberine suppresses inflammatory agents-induced...
interleukin-1β and tumor necrosis factor-α productions via the inhibition of IκB degradation in human lung cells,” *Pharmacological Research*, vol. 56, no. 3, pp. 193–201, 2007.

[105] S. Kim, Y. Kim, J. E. Kim, K. H. Cho, and J. H. Chung, “Berberine inhibits TPA-induced MMP-9 and IL-6 expression in normal human keratinocytes,” *Phytotherapy Research*, vol. 15, no. 5, pp. 340–347, 2008.

[106] P. Abidi, Y. Zhou, J. D. Jiang, and J. Liu, “Extracellular signal-regulated kinase-dependent stabilization of hepatic low-density lipoprotein receptor mRNA by herbal medicine berberine,” *Arteriosclerosis, Thrombosis, and Vascular Biology*, vol. 25, no. 10, pp. 2170–2176, 2005.

[107] J. Cameron, T. Ranheim, M. A. Kulseth, T. P. Leren, and K. E. Berge, “Berberine decreases PCSK9 expression in HepG2 cells,” *Atherosclerosis*, vol. 201, no. 2, pp. 266–273, 2008.

[108] Y. Li, G. Ren, Y. X. Wang et al., “Bioactivities of berberine metabolites after transformation through CYP450 isoenzymes,” *Journal of Translational Medicine*, vol. 9, article 62, 2011.

[109] S. Kim and J. H. Chung, “Berberine prevents UV-induced MMP-1 and reduction of type I procollagen expression in human dermal fibroblasts,” *Phytotherapy Research*, vol. 15, no. 9, pp. 749–753, 2008.

[110] Y. Guo, Q. Z. Wang, F. M. Li, X. Jiang, Y. F. Zuo, and L. Wang, “Biochemical pathways in the antiatherosclerotic effect of berberine,” *Chinese Medical Journal*, vol. 121, no. 13, pp. 1197–1203, 2008.

[111] Y. D. Min, M. C. Yang, K. H. Lee, K. R. Kim, S. U. Choi, and K. R. Lee, “Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica makino,” *Archives of Pharmacal Research*, vol. 29, no. 9, pp. 757–761, 2006.

[112] S. Lee, H. J. Lim, J. H. Park, K. S. Lee, Y. Jang, and H. Y. Park, “Berberine-induced LDLR up-regulation involves JNK pathway,” *Biochemical and Biophysical Research Communications*, vol. 362, pp. 853–857, 2007.

[113] C. Y. Hsiang, S. L. Wu, S. E. Cheng, and T. Y. Ho, “Acetaldehyde-induced interleukin-1β and tumor necrosis factor-α production is inhibited by berberine through nuclear factor-κB signaling pathway in HepG2 cells,” *Journal of Biomedical Science*, vol. 12, no. 5, pp. 791–801, 2005.

[114] J. P. Hu, K. Nishishita, E. Sakai et al., “Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-κB and Akt pathways,” *European Journal of Pharmacology*, vol. 580, no. 1-2, pp. 70–79, 2008.

[115] D. C. Chao, L. J. Lin, S. T. Kao et al., “Inhibitory effects of Zuo-Jin-Wan and its alkaloidal ingredients on activator protein 1, nuclear factor-κB, and cellular transformation in HepG2 cells,” *Fitoterapia*, vol. 82, no. 4, pp. 696–703, 2011.

[116] H. L. Wu, C. Y. Hsu, W. H. Liu, and B. Y. Yung, “Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity,” *International Journal of Cancer*, vol. 81, pp. 923–929, 1999.

[117] Y. Li, P. Wang, Y. Zhuang et al., “Activation of AMPK by berberine promotes adiponectin multimerization in 3T3-L1 adipocytes,” *FEBS Letters*, vol. 585, no. 12, pp. 1735–1740, 2011.

[118] C. L. Kuo, C. W. Chi, and T. Y. Liu, “The anti-inflammatory potential of berberine in vitro and in vivo,” *Cancer Letters*, vol. 203, no. 2, pp. 127–137, 2004.

[119] Y. S. Hsieh, W. H. Kuo, T. W. Lin et al., “Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells,” *Journal of Agricultural and Food Chemistry*, vol. 55, no. 25, pp. 10437–10445, 2007.

[120] W. L. Hyun, H. S. Jung, H. N. Kim et al., “Berberine promotes osteoblast differentiation by Runx2 activation with p38 MAPK,” *Journal of Bone and Mineral Research*, vol. 23, no. 8, pp. 1227–1237, 2008.

[121] Y. Qin, J. Y. Pang, W. H. Chen, Z. Z. Zhao, L. Liu, and Z. H. Jiang, “Inhibition of DNA topoisomerase 1 by natural and synthetic mono- and dimeric protoberberine alkaloids,” *Chemistry and Biodiversity*, vol. 4, no. 3, pp. 481–487, 2007.

[122] K. Fukuda, Y. Hibiya, M. Mutoh, M. Koshiji, S. Akao, and H. Fujiwara, “Inhibition of activator protein 1 activity by berberine in human hepatoma cells,” *Planta Medica*, vol. 65, no. 4, pp. 381–383, 1999.

[123] S. Kim, H. C. Jae, B. K. Jong et al., “Berberine suppresses TNF-α-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells,” *Molecules*, vol. 13, no. 12, pp. 2975–2985, 2008.

[124] S. Mahata, A. C. Bharti, S. Shakla, A. Tyagi, S. A. Husain, and B. C. Das, “Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells,” *Molecular Cancer*, vol. 10, article 39, 2011.

[125] F. L. Chen, Z. H. Yang, Y. Liu et al., “Berberine inhibits the expression of TNFα, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARγ pathway,” *Endocrine*, vol. 33, no. 3, pp. 331–337, 2008.