Characterization of Atrazine-Induced Gonadal Malformations in African Clawed Frogs (Xenopus laevis) and Comparisons with Effects of an Androgen Antagonist (Cyproterone Acetate) and Exogenous Estrogen (17β-Estradiol): Support for the Demasculinization/Feminization Hypothesis

Tyrone B. Hayes, A. Ali Stuart, Magdalena Mendoza, Atif Collins, Nigel Noriega, Aaron Vonk, Gwynne Johnston, Roger Liu, and Dzifa Kpodzo

Laboratory for Integrative Studies in Amphibian Biology, Group in Endocrinology, Museum of Vertebrate Zoology, Energy and Resources Group, and Department of Integrative Biology, University of California, Berkeley, California, USA

Atrazine is a potent endocrine disruptor that both chemically castrates and feminizes male amphibians. It depletes androgens in adult frogs and reduces androgen-dependent growth of the larvalyx in developing male larvae. It also disrupts normal gonadal development and feminizes the gonads of developing males. Gonadal malformations induced by atrazine include hermaphrodites and males with multiple testes (single sex polynandism (SSP)), and effects occur at concentrations as low as 0.1 ppb (µg/L). Here, we describe the frequencies at which these malformations occur and compare them with morphologies induced by the estrogen, 17β-estradiol (E$_2$), and the antiandrogen cyproterone acetate, as a first step in testing the hypothesis that the effects of atrazine are a combination of demasculinization and feminization. The various forms of hermaphroditism did not occur in controls. Nonpigmented ovaries, which occurred at relatively high frequencies in atrazine-treated larvae, were found in four individuals out of more than 400 controls examined (1%). Further, we show that several types of gonadal malformations (SSP and three forms of hermaphroditism) are produced by E$_2$ exposure during gonadal differentiation, whereas a final morphology (nonpigmented ovaries) appears to be the result of chemical castration (disruption of androgen synthesis and/or activity) by atrazine. These experimental findings suggest that atrazine-induced gonadal malformations result from the depletion of androgens and production of estrogens, perhaps subsequent to the induction of aromatase by atrazine, a mechanism established in fish, amphibians, reptiles, and mammals (rodents and humans). Key words: amphibians, atrazine, chemical castration, endocrine disruption, feminization, hermaphroditism. Environ Health Perspect 114(suppl 1):134–141 (2006). doi:10.1289/ehp.8067 available via http://dx.doi.org/ [Online 24 January 2006]

The herbicide atrazine is probably the most widely used pesticide in the world (Capel and Larson 2001; Miller et al. 2000; Müller et al. 1997; Solomon et al. 1996). As a result, it is the most common contaminant of groundwater and surface water (Capel et al. 2001; Fenelon and Moore 1998; Fischer et al. 1995; Frank and Logan 1988; Frank and Sirons 1979; Frank et al. 1987a, 1987b, 1991; Insenese et al. 1990; Kolpin et al. 1998; Kucklick et al. 1994a, 1994b; Müller et al. 1997; Ober dorster et al. 2001; Pennington et al. 2001; Rudolf and Goss 1993; Scribner et al. 2000; Thurman and Cromwell 2000; Thurman et al. 1992). Atrazine contamination can spread well beyond areas where it is applied (Du Freet et al., 2005; Hayes et al. 2002a; Miller et al. 2000; Müller et al. 1997; Nations and Hallberg 1992; Thurman and Cromwell 2000; Van Dijk and Guichertia 1999), traveling up to 1,000 km (Van Dijk and Guichertia 1999), and can persist for decades after its use is halted (Hayes et al. 2002a; Hennon et al. 2004). Atrazine is also a potent endocrine disruptor that both chemically castrates and feminizes exposed male amphibians at ecologically relevant concentrations (as low as 0.1 ppb).

The adverse effects of atrazine on amphibian gonadal development were first demonstrated by Tavera-Mendoza et al. (2002a), who showed that atrazine decreased testicular volume ($p < 0.004$), decreased the frequency of nursing cells ($p < 0.0001$), and decreased the number of primary spermatogonial nests ($p < 0.0001$) in African clawed frogs (Xenopus laevis) after only 48 hr of exposure. Parshley (2000) reported that atrazine demasculinized exposed male larvae, causing a significant reduction in larval age in males ($p = 0.045$) in the same species (X. laevis). Our laboratory has shown that atrazine disrupted male gonadal development ($p < 0.05$) at concentrations as low as 0.1 ppb in X. laevis larvae (Hayes et al. 2002a) and confirmed findings reported by Parshley (2000). Carr et al. (2003) further confirmed these laboratory findings, showing similar gonadal abnormalities (multiple testes, $p = 0.0003$; hermaphroditism, $p = 0.0042$) at similar frequencies and over similar atrazine concentrations (Hayes 2004). The comparisons between the two studies and the graphic presentation were described by Hayes (2004). We then showed that atrazine feminized leopard frogs (Rana pipiens) in the laboratory ($p < 0.001$), inducing testicular oogenesis (Hayes et al. 2002b, 2002c).

The laboratory findings described above were supported by a field study reported in Reeder et al. (1998), which suggested that atrazine was associated with gonadal malformations (testicular oocytes) in cricket frogs (Acris crepitans) ($p = 0.07$). This work was followed by our field study in leopard frogs (R. pipiens) (Hayes et al. 2002b, 2002c) showing a similar association between atrazine contamination and feminized frogs in the wild ($p < 0.05$). Further, Du Preez et al. (2005) showed that feminized X. laevis males were associated with atrazine contamination ($≥ 0.1$ ppb) in the wild in South Africa in both corn-growing and non-corn-growing regions (although no noncontaminated, atrazine-free areas were examined for reference). Given the adverse effects of atrazine at such low concentrations, the ubiquity of atrazine contamination, and its persistence in the environment, the impact on amphibian populations can be quite significant. The present study is a first step in understanding atrazine’s mechanism of action in amphibians.

This article is part of the monograph “The Ecological Relevance of Chemically Induced Endocrine Disruption in Wildlife.”

Address correspondence to T.B. Hayes, Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720-3140 USA. Telephone: (510) 643-1054. Fax: (510) 643-6264. E-mail: tyrone@berkeley.edu

We thank Novarits, Syngenta Crop Protection, Ecorisk Inc., and members of the Atrazine Endocrine Ecological Risk Assessment Panel of Ecorisk Inc. for comments, criticisms, and encouragement.

All work was conducted in compliance with animal use protocol R209-0402BCR to T.B.H. We thank H.H. Wheeler and Park Water Company for funding parts of the work. This work was also funded by a grant from the National Science Foundation (IBN-9513362) and by the Biology Faculty Award, University of California–Berkeley to T.B.H. N.N. was a Presidential Fellow (University of California, Berkeley) when the work was conducted. D.K., R.L., and G.J. were funded by the Howard Hughes Biology Scholar’s Program.

The authors declare they have no competing financial interests.

Received 31 January 2005; accepted 23 January 2006.
Estrogens feminize exposed male amphibians in multiple species (Chang and Witschi, 1955; Hayes 1998; Richards and Nace 1978; Villapando and Merchant–Larios 1990), including the species feminized by atrazine in the laboratory studies described above (X. laevis and R. pipiens). Although atrazine has a negligible affinity for the estrogen receptor (Robarge et al. 2004), many studies have shown that atrazine exposure elevates estrogens in every species (and class of vertebrate) examined (see “Discussion”). Therefore, we hypothesized that atrazine may feminize amphibians via inappropriate estrogen synthesis in males after an increase in expression and/or activity of aromatase, the enzyme that converts androgens to estrogens (Figure 1) (Hayes et al. 2002a). Alternatively, some malformations may result from a decrease in androgens (as a substrate for aromatase) or through one of the several other mechanisms by which atrazine decreases androgen levels and/or activity (Babic-Gojmerac 1989; Kniewald et al. 1979, 1980, 1995, 2000; Šimic et al. 1991). As a first step to testing these hypotheses, we describe here the types of gonadal malformations observed with atrazine exposure in X. laevis and compare the types of malformations with morphologies produced by exposure to the antiandrogen cyproterone acetate (CPA) and exogenous estrogen [17β-estradiol (E2)].

Materials and Methods

Materials. Atrazine (2-chloro-4-ethylamino-6-isopropylamine-1,3,5-triazine) was obtained from Chemservice Inc. (Chester, PA). Cyproterone acetate (6-chloro-17β,22β-dihydro-17-hydroxy-3’-H-cyclopropa[1,2]-pregna-1,4,6-triene-3,20-dione acetate) and 17β-estradiol (1,3,5-triethynyl-3,17β-diol), human chorio-gonadotropin, and benzocaine (ethyl-p-amino benzoxo) were purchased from Sigma Chemical Co. (St. Louis, MO). All other reagents and histology supplies were obtained from Fisher Scientific (Fairlawn, NJ) except where indicated.

Animal breeding and larval care. Adult frogs for breeding were obtained from a long-term captive colony maintained at the University of California, Berkeley. For each experiment, three males and three females were injected with human choriongonadotropin (1,000 IU) 6 hr before harvesting gametes. Eggs were manually stripped from the females and fertilized in vitro in 0.3x modified mammalian Ringer’s solution by using sperm obtained from the dissected testes of the three males. Embryos were allowed to hatch and after 4 days apportioned into experimental tanks, five at a time, until all tanks contained 30 larvae. Larvae were raised and experiments conducted in covered plastic mouse boxes in 4 L of 10% (0.1x) aerated Holtfreter’s solution (Holtfreter 1931). All experiments were conducted at 22°C (± 1) and rooms were maintained on a 12/12-hr light/dark cycle (lights on at 0600 hr). Double distilled, ultraviolet-treated, carbon-filtered, deionized water used to make Holtfreter’s solution was certified atrazine-free by three laboratories (detection limit at least 0.1 ppb); one university laboratory (Iowa State Hygienics Laboratory, University of Iowa, Iowa City, IA), one government laboratory (U.S. Geological Survey, Denver, CO; detection limit, 0.02 ppb), and one private laboratory (PTRL West, Richmond, CA) as described previously (Hayes et al. 2002a, 2002b, 2002c). Water was also analyzed by the U.S. Geological Survey and found to be free (< 0.025 ppb) of 21 other atrazine herbicides or metabolites, as well as free of alachlor, acetochlor, metolachlor, glyphosate, nicosulfuron, cyhalothrin, cyfluthrin, metazachlor, propiconizole, and diazinon. Larvae were fed a solution of homogenized Purina rabbit chow (Purina Mills LLC, St. Louis, MO) daily, and the amount was adjusted as larvae grew to ensure that animals were fed ad libitum. All treatments (described below) were replicated three times (three 4-L tanks of 30 larv each for a total of 90 larvae per treatment per experiment), and all tanks were color coded so that personnel delivering treatments and caring for animals were not aware of which groups were controls and which were experimental groups. Tanks were cleaned and solutions renewed every 3 days except during the E2 experiments (described below), when tanks were changed and solutions renewed daily. At each solution change, tanks were rotated around the rack to prevent position effects. Larvae were monitored daily, and animals were euthanized at the end of metamorphosis [Niewkoop and Faber (NF) stage 66; Niewkoop and Faber (1994) were removed daily, euthanized in a 0.2% benzocaine solution, weighed, measured, fixed in Bouin’s fixative for 48 hr, and then preserved and stored in 70% ethanol until analysis, as described previously (Hayes et al. 2002a). Upon preservation, each specimen was given a coded specimen number so that personnel conducting final analyses were not aware of the color or treatment type for each individual.

Experimental design. We compared gonadal malformations induced by 0.1, 0.4, 0.8, 1, and 25 ppb atrazine (as reported by Hayes et al. (2002a)) for morphologies resulting from steroid or steroid antagonist exposure. Two alternative but not mutually exclusive hypotheses were tested: a) one or more of the types of gonadal malformations induced by atrazine represented “demasculinization” or loss of androgens, and/or b) one or more of the types of gonadal malformations represented feminization as a result of inappropriate estrogen production. We conducted two experiments to distinguish between these possibilities.

Experiment 1: effects of exposure to the antiandrogen CPA. Here, we tested the possibility that one or more of the atrazine-induced malformations represented demasculinization of the gonads as a result of androgen depletion. Larvae were treated with the androgen receptor antagonist CPA (5 mg/mL) throughout development (NF stages 50–66) to examine the effect of demasculinization on the developing gonads. At NF stage 66, animals were euthanized, fixed, and preserved. Sex was determined and gonads analyzed as described below. CPA was predissolved in methanol, and controls for this experiment were treated with an equal amount of methanol. Compounds were added to 16.5 L of 0.1x Holtfreter’s solution (final methanol concentration, 0.004% for all treatments), and the solution was divided among the three replicates. We also maintained a three replicate set of untreated larvae (no solvent) for comparison with solvent-treated controls.

Experiment 2: effects of short-term E2 exposure. We tested the possibility that one or more of the atrazine-induced malformations represented partial feminization of the developing gonad. Although it is well known that estrogens induce 100% females in X. laevis (Chang and Witschi 1955; Gallien 1953; Hayes 1998), the concentration and timing of exposure are important for complete sex reversal of all exposed individuals. We treated larvae with E2 (100 µg/L) for 7 days (NF stages 50–53), 14 days (NF stages 50–55), or 49 days (NF stages 50–66) (Figure 2). Holtfreter’s solution was changed daily (as opposed to every 3 days) because previous studies showed that tadpoles rapidly metabolize exogenous estrogens (Hayes and Licht 1993). To deliver E2, the steroid was predissolved in 100% ethanol (final ethanol concentration, 0.004%), and the solution was divided among the nine replicates (three replicates each, representing each treatment regime described above). Controls were treated with an equal amount of ethanol for comparison with E2. We also maintained a three replicate set of untreated larvae (no solvent) for comparison with solvent-treated controls. At NF stage 66, animals were euthanized, fixed in

Figure 1. Proposed mechanism of atrazine action on amphibians. The induction of aromatase results in a decrease in androgens (aromatase substrate) and a subsequent increase in estrogens (aromatase product). Atrazine thus demasculinizes (chemically castrates) and feminizes amphibians. Molecular and endocrine support for the proposed mechanism has been demonstrated in amphibians as well as all other vertebrate classes examined (see “Discussion”).
Bouin’s, and preserved in 70% ethanol. Sex was determined by gross morphology and histology as described below.

Gonadal analysis. Gonadal type (ovaries or testes) was scored using a Nikon SMZ 10A dissecting scope, fitted with a 0.5Χ lens (Technical Instruments, Burlingame, CA). A subset of animals (n = 150) was prepared for histologic analysis following procedures described by Hayes et al. (2002a). Initially, we identified and characterized gonadal malformations (morphologies that occurred in atrazine-treated animals but not in controls) by identifying anomalies in 30 animals treated with 25 ppb atrazine. An atlas of these malformations (see “Results”) was used to score and determine the frequency of malformations in controls and in animals treated with a range of atrazine concentrations.

Statistical analysis. Effects on sex ratios and frequency of gonadal malformations were analyzed using the G-test as described by Sokal and Rohlf (1981). First, we determined whether the sex ratio in untreated controls differed from the expected ratio of 50:50:0, male:female:malformed, after conducting a test of heterogeneity (G_H) to determine whether there were any tank effects. Next, we tested each set of controls (from the three experiments) to determine if there were significant differences between the sex ratios of ethanol or methanol-treated larvae and untreated controls. Then, we examined each experiment separately (atrazine, CPA, and E2 treatments). We first conducted a test for heterogeneity, and if significant effects were found (p < 0.05), we then examined each experimental group using a test of heterogeneity to determine if there were any tank effects within each treatment. Finally, we examined each treatment group for deviation from the expected sex ratios, using results from the solvent-only controls to generate the expected ratios. Statistical significance was accepted at p<0.05.

Results
Normal gonadal differentiation. Under the described conditions in our laboratory, gonadal differentiation occurs between NF stages 52 and 54, as determined by histologic analysis. At metamorphosis (complete tail reabsorption, NF stage 66), males and females can be distinguished by gross morphology of the gonads under the dissecting scope. Testes are shorter than ovaries (approximately one-third the length of the kidney) and lack pigment (Figure 3A). Ovaries extend the entire length of the kidney and are lobed and interspersed with melanin (Figure 3B). Histologically, testes are characterized by medullary development and distinguishable testicular lobules (Figure 3C). Ovaries are characterized by cortical development with a central ovarian cavity surrounded by a ring of connective tissue (Figure 3D). Oocytes are not observed in females even at NF stage 66 under the conditions used in our laboratory. In addition to the animals examined here, this characterization is based on more than 10,000 observations over 10 years of study in our laboratory and consistent with multiple reports from the literature dating back to 1953 (Gallien 1953; Hayes 1998, 2005b). In the present study, analysis of untreated controls and all solvent-only controls revealed that none differed from the expected sex ratio 50:50:0, male:female:malformed gonads (p > 0.5 in all cases). Analysis of heterogeneity revealed that there were no tank effects among controls, neither solvent (ethanol or methanol) affected the sex ratio, and control groups from across the three experiments were homogeneous (G_H = 8.45, df = 22, p > 0.995).

Types and frequencies of gonadal malformations induced by atrazine. By definition, “gonadal malformations” were defined initially as morphologies observed in atrazine-exposed larvae but not in controls. Gonadal malformations observed in atrazine-treated animals included two types of polygonadism (maximum six gonads): single-sex polygonadism (SSP; previously described as broken, lobed, or discontinuous testes; Carr et al. 2003; Hayes et al. 2002a, 2002b), where animals contained more than two distinct testes (Figure 4); and hermaphroditism, where individuals developed multiple combinations of testes and ovaries. Three morphologic types of hermaphrodites were observed. Morphologies included
mixed hermaphrodites (Figure 5) in which animals contained multiple testes and ovaries, lateral hermaphrodites (Figure 6) in which animals contained only one pair of gonads with a complete testis on one side and an ovary on the other (no noted bias in which side was male and which was female), and rostral-caudal hermaphrodites (Figure 7) in which animals had two pair of gonads: one sex anterior and the other posterior. In a final type of malformation, animals had a single pair of gonads that appeared to be ovaries but lacked pigment (Figure 8). In some cases, the nonpigmented gonads were lobed like an ovary, whereas in others, the gonads had only shallow lobes or no lobes at all. Nonpigmented ovaries were the most common abnormality in atrazine-exposed animals. The second most common malformation was SSP. The frequency of all malformations varied between concentrations and the highest number of total malformations occurred at 1 ppb, although nonpigmented ovaries occurred at the highest frequency at 0.4 ppb, whereas hermaphrodites and SSP occurred at the highest frequency at 1 ppb (Figure 9). Atrazine caused a significant increase in the number of malformations in all cases ($p < 0.001$; Table 1). Although malformations were initially defined as morphologies found in atrazine-exposed animals but absent from controls, three methanol-treated controls from one replicate and a single ethanol-treated from controls, three methanol-treated controls found in atrazine-exposed animals but absent in controls, three methanol-treated controls reported in our work, but treatments and husbandry differed greatly, and animals were not examined for this type of malformation in our studies. Also, reports in a recent study (Jooste et al. 2005) suggested that as many as 57% of atrazine-treated and control male \textit{X. laevis}
have testicular oocytes at metamorphosis. Testicular oocytes (although observed in other species) were not observed in any of our analyses in *X. laevis* (treated or control) and, in fact, have not been reported in any other study in *X. laevis* dating back to the 1950s (Carr et al. 2003; Chang and Witschi 1955; Coady et al. 2005; Gallien 1953; Hayes 2005b; Merchant-Larios and Villapando 1981; Villapando and Merchant-Larios 1990). The single report that described these effects was based on larvae reared at near-lethal feminizing temperatures (10°C) during critical stages of gonadal development, which likely explains this isolated anomalous finding (Hayes 2005b).

Like most anurans, *X. laevis* does not have morphologically distinguishable sex chromosomes, so it is not possible to determine the genetic sex of the hermaphrodites by karyotype (are they genetic females with testes or genetic males with ovaries?). Exposure to estrogens throughout the larval period results in 100% females in *X. laevis* (produces ovaries in genetic males) (Chang and Witschi 1955), but female sex differentiation is not altered by exogenous sex steroids in *X. laevis* exogenous androgens induce testicular development in genetic females of other anuran species (Hayes 1998), but androgens do not affect primary sex differentiation in genetic female *X. laevis* larvae (Hayes 1998). Given the immutability of ovarian differentiation in female *X. laevis* larvae, we suggest that the hermaphrodites represent males that have been partially feminized rather than females that have been masculinized. The observation that SSP occurs in males only (females with multiple ovaries are not observed) further suggests that only males are affected. In addition, in other species, female secondary sex characteristics, including oocytes (Hayes 2005a; Hayes et al. 2002b, 2002c; Reeder et al. 1998), vitellogenin (Miyahara et al. 2003), and skin coloration (McCoy et al. 2002), are observed in male amphibians exposed to atrazine, but females with masculine secondary sex features have not been observed.

Further supporting our suggestion that the atrazine only affects male gonads, Carr et al. (2003), who reported significant induction of similar gonadal malformations, observed that the frequency of animals with gonadal malformations was matched by a paucity of males in their studies and suggested that only males are affected by atrazine:

The effects seem to be restricted to males, since the percentage reduction in males was proportional to the increase in intersex animals and atrazine did not affect the percentage of females, which remained at 50%.

Our findings with atrazine are in agreement with those of Carr et al. (2003), and we similarly suggest that the hermaphrodites represent demasculinized/feminized males, as opposed to masculinized/defeminized females.

Given that only males are affected, the true frequency of affected *X. laevis* in our previous report was 32–40% of the exposed males (hermaphrodites + SSP + unpigmented ovaries) as opposed to 16–20% of the total exposed population reported in Hayes et al. (2002a). Further, in the Carr et al. study (2003), the frequency of gonadal malformations (SSP and hermaphrodites only) ranged from 10 to 26% of the males [compared with 10–28% (SSP and hermaphrodites only) in our studies] in a concentration-dependent manner. The frequency reported by Carr et al. (2003) did not include nonpigmented ovaries; thus, the frequency of gonadal malformations (already 3-fold higher at some concentrations when only hermaphrodites
and SSP are considered; Hayes 2004) was significantly higher than frequencies observed in our studies.

The malformations induced by atrazine in *X. laevis* (Carr et al. 2003; Hayes et al. 2002a) were reproduced in the present study by exposure to an antiandrogen (nonpigmented ovaries) or exposure to exogenous estrogen (hermaphroditism and SSP). The ability of antiandrogens and estrogens to produce the same types of malformations as atrazine provides support for the aromatase hypothesis: atrazine-exposed larvae suffer from a combination of androgen reduction and increased estrogen production. The highly significant induction of unpigmented ovaries by the antiandrogen CPA suggests that this malformation is the result of androgen depletion in atrazine-treated larvae, potentially as a result of the induction of aromatase (which uses androgen as a substrate for estrogen production), although atrazine reduces androgens through other mechanisms (Babic-Gojmerac et al. 1989; Kniewald et al. 1979, 1980, 1995, 2000; Smic et al. 1991). It is also notable that the frequency of females was low in the CPA-treated group, however. The high mortality in the CPA treatment (42%; Figure 11) may explain the sex ratio skew (differential mortality with females more susceptible), but this hypothesis needs to be further tested.

Miyahara et al. (2003) showed that atrazine affects aromatase in *X. laevis*, although they were not able to track aromatase induction with malformations in males consistently (Tooi O, personal communication). Another research group was unable to show a significant induction of aromatase in captive *X. laevis* adults, but as reported by the authors, the study was not robust enough to identify such differences: “Based on the relatively low power to determine significant differences between plasma hormone concentrations in atrazine treated and control frogs it cannot be ruled out entirely that there have been some minor influences of atrazine treatment on plasma E2 or T [testosterone]” (Hecker et al. 2005). Consistent with our findings and hypotheses presented in the present study, this same research group detected negative relationships between plasma testosterone levels and atrazine in *X. laevis* in the wild. Although no relationship between atrazine and aromatase activity was reported, Hecker et al. (2005) concluded that “effects of atrazine or co-applied pesticides on sex steroid homeostasis cannot be excluded at this point.” It should also be pointed out that localized induction of aromatase and subsequent developmental effects of the resulting estrogens do not require (and often are not associated with) elevated plasma hormone levels. For example, in breast cancer, uterine cancer, endometriosis (Bulun et al. 2005), and prostate cancer (Ellem et al. 2004) or in normal processes such as sex differentiation of the brain in fish (Goto-Kazeto et al. 2004), birds (Ball and Balthazart 2004), and mammals (Ikeda et al. 2005), local induction of aromatase has permanent effects on cell and tissue differentiation through paracrine, autocrine, and even intracrine actions but does not result in changes in plasma sex steroid hormones.

Most significant, the proposed mechanism of action for atrazine (aromatase induction) has been observed in all vertebrate classes examined: aromatase gene expression (cytochrome P450-19 hydroxylase) is increased by atrazine in *X. laevis* metamorphs (Miyahara et al. 2003), human cells (Sanderson et al. 2000, 2001), and human tissues (Foster et al. 2002; Holloway et al. 2003). Atrazine induces aromatase activity and/or expression in fish (Moore and Waring 1998; Spano et al. 2004; Yukinori et al. 2002), amphibians (Miyahara et al. 2003), and two orders of reptiles (alligators, Crain et al. 1997; turtles, Keller and McClellan-Green 2004). Atrazine increases circulating estrogen levels in rodents (Eldridge and Wetzel 1999; Eldridge et al. 1994; Stevens et al. 1994; Wetzel et al. 1994) and is associated with estrogen-like activities and estrogen-dependent effects in fish (Moore and Waring 1998; Spano et al. 2004), amphibians (Carr et al. 2003; Carr and Solomon 2003; Du Preez et al., 2005; Gross et al. 2003; Hayes 2004, 2005a; Hayes et al. 2002a, 2002b, 2002c; Reeder et al. 1998; Tavera-Mendoza et al. 2002a, 2002b), reptiles (Crain et al. 1997; Keller and McClellan-Green 2004), and birds (Matsumita 2003; Matsushita S, personal communication). Atrazine also increases estrogen-sensitive reproductive cancers in rodents (Eldridge and Wetzel 1999; Eldridge et al. 1994; Stevens et al. 1994; Wetzel et al. 1994) and is associated with similar estrogen-sensitive reproductive cancers.

![Figure 8](image)

Figure 8. An animal with nonpigmented ovaries. The individual shown was exposed to 0.1 ppb atrazine. Abbreviations: K, kidney; O, ovary; UO, unpigmented ovaries. (A) The entire dissected, Bouin’s-fixed kidney–interrenal–gonadal complex. Although the individual shown has distinct lobes, some animals with this morphology had only very shallow indications of lobes. (B) A transverse cross-section (8 µm) through the geometric center of the animal’s kidney and gonads. The section is stained in Mallory’s trichrome stain. This histology revealed that the animals were in fact females, even though their gonads lacked pigment, typical of normal ovaries. Scale bar: (A) 0.1 mm; (B) 40 µm.

![Figure 9](image)

Figure 9. (A) Frequency of males, females, and specimens with gonadal malformations in controls and atrazine-treated animals (0.1–25 ppb). Numbers above bars are samples sizes and represent the number surviving to metamorphosis (of 90). Dashed line indicates 50%. (B) Frequency of gonadal malformations only. X-axis is categorical.

Atrazine (ppb)	G	df	p-Value
0	−1.1×10⁻¹³	2	>0.995
0.1	24.94	2	<0.001
0.4	38.92	2	<0.001
0.8	29.21	2	<0.001
1.0	58.13	2	<0.001
25	25.70	2	<0.001

Table 1. Statistics for effects of atrazine on frequency of gonadal malformations.
in humans (Kettles et al. 1997; Maclennan et al. 2002). Likewise, the demasculinization is consistent with the chemical castration (testosterone depletion) and decreased milt induced by atrazine in fish (Moore and Waring 1998) and adult X. laevis (Hayes et al. 2002a), androgen depletion and decrease in sperm in rodents (Babic-Gojmerac and Kniewald 1989; Friedmann 2002; Kniewald et al. 1995; Trentacoste et al. 2001), and the association between poor semen quality and atrazine exposure in human males (Swan et al. 2003). Thus, the combined demasculinization (depletion of androgens) and feminization (elevation of estrogens) has been demonstrated in fish, amphibians, reptiles, and mammals (including humans). With a single study showing similar effects in birds (Matsushita 2003; Matsushita S, personal communication), this mechanism has been demonstrated now in all vertebrate classes with the exception of Chondrichthyes (e.g., sharks and rays) and agnathid (e.g., lampreys), which have not been examined. These data collected independently across all vertebrate classes examined support the warning of Sanderson et al. (2000), who first reported atrazine’s mechanism of action in a human cell line:

A logical concern would be that exposure to triazine herbicides, which are produced and used in large quantities, and are ubiquitous environmental contaminants, may similarly contribute to estrogen-mediated toxicities and inappropriate sexual differentiation.

REFERENCES

Babic-Gojmerac T, Kniewald Z, Kniewald J. 1989. Testosterone metabolism in neuroendocrine organs in male rats under atrazine and deethylatrazine influence. Steroid Biochem 33:141–146.

Ball G, Balthazart J. 2004. Hormonal regulation of brain circuits mediating male sexual behavior in birds. Physiol Behav 83:329–336.

Bulun S, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, et al. 2005. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev 57:289–303.

Capel P, Larson S. 2001. Effect of scale on the behavior of atrazine in surface waters. Environ Sci Technol 35:648–657.

Carr J, Gentles A, Smith E, Goleman W, Urquidi L, Thuett K, et al. 2003. Response of larval Xenopus laevis to atrazine: assessment of growth, metamorphosis, and gonadal and laryngeal morphology. Environ Toxicol Chem 22:396–405.

Carr JA, Solomon KR. 2003. Is atrazine causing frog deformities at very low doses? SETAC Globe 4:130–132.

Chang C, Witschi E. 1995. Genic control and hormonal reversal of rodent embryonic sex. J Toxicol Environ Health 43:155–167.

Crain D, Guillette LJ, Rooney AA, Pickford D. 1997. Alterations in steroidogenesis in alligators (Alligator mississippiensis) exposed naturally and experimentally to environmental contaminants. Environ Health Perspect 105:528–533.

Ellegren J, Reineke-Heyser D, Exton P, Wetzel L, Breckenridge C, Gillis J, et al. 1994. Short-term effects of chlorotriazines on estrus in female Sprague-Dawley and Fischer 344 rats. J Toxicol Environ Health 43:155–167.

Eldridge J, Wetzel L, Troy L. 1999. Estrous cycle patterns of Sprague-Dawley rats during acute and chronic atrazine administration. Reprod Toxicol 13:491–498.

Ellem S, Schmitt J, Pedersen J, Frydenberg M, Risbridger G. 2004. Local aromatase expression in human prostate is altered in malignancy. J Clin Endocrinol Metab 89:2434–2441.

Fenelon J, Moore R. 1998. Transport of agrichemicals to ground and surface waters in a small central Indiana watershed. J Environ Qual 27:884–894.

Fischer J, Apedale B, Vancleef L. 1995. Seasonal loadings of atrazine and metolachlor to a southeastern Ontario river from surface runoff and groundwater discharge. Water Qual Res J Canada 30:533–539.

Foster W, Daya S, Holloway A. 2002. Inapposite estrogen production induced by environmental toxicants (Abstract). In: 48th Annual Meeting, Canadian Fertility, Andrology Society, 25–28 September 2002, Charvevoix, Quebec.

Frank R, Dlegg B, Riley B, Braun H. 1987a. Investigations of pesticide contaminants in rural wells, 1979–1984, Ontario Canada. Environ Contam Toxicol 16:9–22.

Hayes et al.

Figure 10. Unpigmented ovaries induced by CPA exposure. Abbreviations: FB, fat body; K, kidneys; UO, unpigmented ovary. Scale bar = 0.1 mm.

Figure 11. Frequency of males, females, and animals with nonpigmented ovaries in animals exposed to CPA compared with solvent (methanol)-treated controls. Numbers above bars are samples sizes and represent the number surviving to metamorphosis (of 90). Dashed line indicates 50%.

Figure 12. SSP (A) and hermaphroditism (B) in animals treated for 7 days (NF stage 50–53) with 100 µg/L E2. Six testes (three on each side) are numbered in A. Abbreviations: O, ovary; T, testis. Scale bar = 0.1 mm for A and B.

Figure 13. Frequency of males, females, animals with SSP, and hermaphrodites in animals treated for 7, 14, or 49 days with 100 µg/L E2. X-axes is categorical. Control bar shows the control sex ratio. NF stages below the bars indicate the stage at which E2 exposure was terminated. All E2 exposures began at NF stage 50 (Figure 2). Numbers above bars are samples sizes and represent the number surviving to metamorphosis (of 90). Dashed line indicates 50%.

Figure 14. UO, unpigmented ovary. Scale bar = 0.1 mm.
Friedmann A. 2002. Atrazine inhibition of testosterone production in rat males following peripheral exposure. Reprod Toxicol 16:275–279.

Gallien L. 1993. Inversion totale du sexe chez Xenopus laevis Daud. À la suite d’un traitement gynogène par le benzoate de oestradiol, administré pendant la vie larvaire. C R Acad Sci 237:1956–1966.

Goto-Karato R, Kight K, Zohar Y, Place A, Trant J. 2004. Localization and expression of aromatase mRNA in adult zebrafish. Gen Comp Endocrinol 139:72–94.

Gross TS, Smith EE, Wiebe E, Sepulveda MG, Carr J, Du Preez LH, et al. 2003. An evaluation of gonadal anomalies and agri-chemical exposures for the cano tail (Buo marinus) in south Florida. In: 24th Annual Meeting in North America, Soc Environ Toxicol Chem, Austin, Texas. Available: http://abstracts.co.allenpress.com/pweb/setac2003 [accessed 25 March 2005].

Hayes TB. 1998. Sex determination and primary sex differentiation in Xenopus laevis. J Exp Zool 281:373–395.

Hayes TB. 2004. There is no denying this defusing the confusion about atrazine. Biodiversity 54:1138–1149.

Hayes TB. 2005a. Comment on ‘Gonadal development of larval Xenopus laevis exposed to atrazine in outdoor microcosms’. Environ Sci Technol 39(19):7757–7758.

Hayes TB. 2005b. Welcome to the revolution: integrative biology and environmental and public health. J Integr Comp Biol 45:321–329.

Hecker MJ, Giesy JP, Jones P, Joost AM, Carr J, Solomon KR, et al. 2004. Plasma sex steroid concentrations and gonadal aromatase activities in African clawed frogs (Xenopus laevis) exposed to atrazine and its metabolites. Environ Toxicol Chem 23:1996–2002.

Hecker MJ, Kim W, Park J-W, Murphy M, Villeneuve D, Coady K, et al. 2005. Plasma concentrations of estradiol and testosterone, gonadal aromatase activity and ultrastructure of the testis in Xenopus laevis exposed to estradiol or atrazine. Aquat Toxicol (Amsterdam) 72:233–396.

Hennion M, Pichon V, Legay M, Cohen M. 2004. A ten-year survey of water quality: high persistence of some pesticide metabolites [Abstract]. In: The Ninth Symposium on Chemistry and Fate of Modern Pesticides, 16-18 April 2004 Vail, CO.

Holloway A, Beece M, Sinacor S, Youngha E, Daya S, Edmunds K. 2002. Environmental toxicant induced changes in aromatase activity in estrogen sensitive target tissues [Abstract]. In: Society for the Study of Reprouction, 36th Annual Meeting, 19–22 July 2003, Cincinnati, OH. Biol Reprod 68(S1):148.

Hofstetter J. 1913. Über die Aufzucht isolierter Teile des Amphibian Keimes II. Arch F Ent Mech 124:404–405.

Ikeda M, Mitsuji T, Setano K, Tamura M, Kayakaya M, Sone H, et al. 2005. Environmental toxicant induced changes in aromatase activity in estrogen sensitive target tissues [Abstract]. In: Society for the Study of Reprouction, 36th Annual Meeting, 19–22 July 2003, Cincinnati, OH. Biol Reprod 68(S1):148.

Inseros A, Nash R, Helling C. 1980. Effect of conventional vs. not-toxic pesticides on guppy leaching to shallow groundwater. J Env Qual 19:434–440.

Jooste AM, Du Preez LH, Carr J, Giesy JP, Gross C, Kendall RJ, et al. 2005. Gonadal development of larval Xenopus laevis exposed to atrazine in outdoor microcosms. Environ Sci Technol 39:5255–5261.

Keller J, McClanen-Green P. 2004. Effects of organochlorine compounds on cytochrome F450 aromatase activity in an immortal cell lines derived from Tomistomius vignieri. Kettles MA, Browning SR, Prince TS, Hostman SW. 1997. Testis tissue and breast cancer incidence: an ecologic study of the National Water-Quality Assessment Program. Environ Sci Technol 32:558–566.

Kucklick J, Bidleman T. 1994a. Organic compounds in Winyah Bay South Carolina II: using natural fluorescence to follow atrazine levels and river mixing. Mar Environ Res 37:79–91.

Kucklick J, Bidleman T. 1994b. Organic compounds in Winyah Bay South Carolina II: using natural fluorescence to follow atrazine levels and river mixing. Mar Environ Res 37:79–91.

McLennan P, Delzell E, Sathiakumar N, Myers S, Cheng H, Grizzle W, et al. 2002. Cancer incidence among triazine herbicide manufacturing workers. J Occup Environ Med 44:1048–1058.

Matsushita S. 2003. Atrazine effect on the reproductive tract in the chicken [Abstract]. In: 6th Annual EDC Meeting, Sendai, Japan, 2003.

McCoy KA, Sepulveda MS, Gross T, 2002. Atrazine exposure and semen quality in relation to biomarkers of pesticide exposure. Environ Health Perspect 111:1478–1484.

Tavares-Mendoza L, Ruby S, Brousseau P, Fournier M, Cyr D, Marcogliese D. 2002a. Response of the amphibian tadpole (Xenopus laevis) to atrazine during sexual differentiation of the testis. Environ Toxicol Chem 21:527–531.

Tavares-Mendoza L, Ruby S, Brousseau P, Fournier M, Cyr D, Marcogliese D. 2002b. Response of the amphibian tadpole (Xenopus laevis) to atrazine during sexual differentiation of the ovary. Environ Toxicol Chem 21:1264–1267.

Thurman E, Crowmell A. 2000. Atmospheric transport, deposition, and fate of triazine herbicides and their metabolites in pristine aquatic ecosystems. Environ Sci Technol 34:3073–3085.

Thurman E, Goosby D, Meyer M, Mills M, Pomesol K, Dolpin C. 1992. A reconnaissance study of herbicides and their metabolites in surface water of the midwestern United States using immunoassay and gas chromatography/mass spectrometry. Environ Sci Technol 26:2440–2447.

Treanta Santos, Friedman A, Youker R, Breckenridge C, Zirkin B. 2001. Atrazine effects on testosterone levels and androgen-dependent reproductive organs in peripubertal male rats. J Androl 22:142–148.

Van Dijk H, Guichet R. 1998. Atmospheric dispersion of current- use pesticides: a review of the evidence from monitoring studies. Water Air Soil Pollut 115:211–270.

Villapando I, Merchant-Larios H. 1993. Determination of the sensi- tive stages for gonadal sex-reversal in Xenopus laevis tad- poles. Environ Toxicol Chem 12:4301–4309.

Wetzel LT, Luepert LD III, Breckenridge CB, Tielod MD, Stevens JH, Thakur AK, et al. 1994. Chronic effects of atrazine on estrus and mammary gland function in female Sprague-Dawley and Fischer 344 rats. J Toxicol Environ Health 43:227–236.

Yukinori K, Place A, Trant J. 2002. Possible roles of estrogenic disrup- ting chemical on the expression of CYP19 genes in zebrafish [Abstract]. In: 35th Annual Meeting of the Society for the Study of Reproduction, 28–31 July 2002, Baltimore MD. Biol Reprod 66(suppl):120.