Endometrium on-a-chip reveals insulin- and glucose-induced alterations in the transcriptome and proteomic secretome

Tiago H. C. De Bem1,2, Haidee Tinning1, Elton J. R. Vasconcelos3, Dapeng Wang3, Niamh Forde1,3,*.

1Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.

2Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil.

3 LeedsOmics, University of Leeds, Leeds, UK.

* Correspondence to be addressed to: N.Forde@leeds.ac.uk

Disclosure statement: The authors have nothing to disclose.
ABSTRACT

The molecular interactions between the maternal environment and the developing embryo that are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multi-cellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of non-pregnant cows in the early-luteal phase (Day 4-7), were seeded in the upper chamber of the device (epithelial cells; 4-6 10^4 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 10^4 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0 or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) were performed at a flow rate of 1µL/min for 72 hr. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid (ULF) were determined by RNA-sequencing and Tandem Mass Tagging Mass Spectrometry (TMT-MS), respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (p<0.05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight one potential mechanism by which changes to maternal glucose and insulin alter uterine function.

Keywords: Endometrium-on-a-chip, microfluidics, uterus, uterine luminal fluid, bovine, cattle
INTRODUCTION

Successful establishment of pregnancy in placental mammals requires bilateral interactions between the developing embryo and the maternal endometrium. While direct contact with the maternal environment is not strictly required, i.e. viable embryos can be successfully produced in vitro, interactions with the maternal tract substantially enhances the quality of the embryo (1–3). This increased developmental competency is mediated, in part, via the transport and secretion of endometrial-derived molecules (including proteins, amino acids, metabolites, lipids and RNA species encapsulated in extracellular vesicles (EVs)) that are taken up by the embryo and support development prior to establishment of the placenta (4, 5). The composition of uterine luminal fluid (ULF) and the molecular interactions between the mother and developing embryo are known to be influenced by maternal factors such as the metabolic status of the mother as well as the quality of the embryo present (reviewed by (6, 7)). Exposure to adverse conditions, such as nutritional insults, at specific developmental time points can alter an individual’s susceptibility to disease in later life (7). Despite a significant volume of literature describing the composition of ULF (8, 9), efforts to supplement culture media with known components have not substantially improved development suggesting there are likely still unknown components of ULF yet to be discovered.

The uterine epithelium, at least for a few key days, is potentially the most critical maternal tissue in the establishment of a healthy pregnancy (10). Thus, exposure of the endometrium to stressors can alter the developmental or epigenetic programming of the foetus. In the dairy cow, the early post-partum period is frequently associated with nutrition-associated metabolic stress as cows cannot take in sufficient dietary energy to off-set the demands of peak milk production. This induces a maternal metabolic environment characterized by high non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), and low insulin, IGF-I, and glucose (11, 12). Given the livestock production cycle, this postpartum altered environment typically occurs at the same time as which the next pregnancy is being established. There is a growing body of evidence to suggest that this metabolic
stress compromises the ability of the reproductive tract of the lactating dairy cow to support early development (11, 12) associated with alterations in global gene expression in the embryo/conceptus, the oviduct (9, 13), and endometrium (13–15). Conceptuses derived from early in lactation are less developmentally competent (metabolic stress) compared to late stages of lactation (16). Even if a high-quality embryo is produced, exposure to a suboptimal uterine environment such as that in high-producing lactating cows, can compromise developmental potential (16, 17).

Our understanding of the mechanism(s) through which individual metabolites alter endometrial function and the in utero environment is relatively limited. While traditional static cell culture models have been used to address the issue of conceptus-maternal interaction, they do have limitations; for example, they do not mimic the dynamic nature of these metabolic components to which the endometrium is exposed. Nor do they allow for assessment of how these metabolic extremes alter the interactions between the heterogenous cells types of the endometrium and the ULF that is produced as a consequence. Advances in microfluidics and organ-on-a-chip technologies in reproductive systems have facilitated the study of embryo development as well as cervical (18), ovarian (19), endometrial (20), and placental function (21, 22) in humans and mice. Such systems have been used to mimic the bovine oviduct environment (23) and as well as the menstrual cycle in vitro using a combination of human (fallopian tube, endometrium, ectocervix, liver) and murine (ovary) components (24). However, the power of these systems has not yet been exploited to investigate how maternal nutritional stressors alter the uterine environment to which the embryo is exposed, either at the level of the transcriptomic or proteomic secretome.

Here, we report for the first time the use of microfluidics to produce a multi-cellular endometrium in vitro, which was exposed to glucose and insulin concentrations associated with maternal metabolic stressors. We specifically have focussed on recapitulating days 4-7 of pregnancy when the embryo enters the uterus in vivo, transitions between the morula and blastocyst stages.
and is susceptible to reprogramming events (6). We used RNA sequencing to determine how these metabolites alter the cell-specific transcriptional response in the endometrium to these nutritional stressors. We further demonstrate how these changes alter the proteomic content of in vitro-derived ULF secreted from the endometrial epithelium. Collectively, these data highlight one potential mechanism by which changes to maternal glucose and insulin concentrations alter uterine function. We propose that these are candidate proteins that can modify the developmental potential of embryos.

MATERIALS AND METHODS

Unless otherwise stated, all chemical and reagents were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO). The in vitro experimental procedures were conducted in humidified incubators maintained at 38.5 °C with 5% CO₂ in air.

Primary Endometrial Cell Isolation and Culture

Endometrial cell isolation was carried out as previously described (25). Briefly, uteri from non-pregnant cows (Bos taurus), early in the luteal phase (Day 4-7 approximately) were selected on the basis of corpus luteum morphology as previously described (26). This stage of the cycle was chosen as it is when the embryo is present in the uterus and undergoes the transition from morula to blastocyst a key developmental timepoint where is can be susceptible to extremes in the maternal environment. Endometrial tissue was dissected from the underlying myometrium and incubated in 25 mL digest solution containing bovine serum albumin (1 mg/mL, BSA), trypsin EDTA (2.5 BAEE units/mL), collagenase (0.5 mg/mL) and DNase I (0.1 mg/mL) in Hanks Buffered Saline Solution (HBSS) in a shaking water bath for 1 hr at 37 °C. The digestion solution was filtered through a 100 μm mesh cell strainer over a 4 μm cell strainer, washed twice with HBSS (containing 10% FBS),
and centrifuged at 700 g for 7 min. The resulting cell pellet containing stromal cells was re-suspended in RPMI 1640 culture medium containing 10% FBS, streptomycin (50 μg/mL), and penicillin (50 IU/mL) amphotericin B (2.5 μg/mL). The 40 μm strainer was inverted and flushed with culture medium to recover epithelial cells. The cell populations were seeded at 1×10⁵ cells/mL into 75 cm² culture flasks (Greiner BioOne, Gloucestershire, UK). After 5-7 days of culture, cell populations were further purified using their differential plating times. To characterise the cellular populations, cells were washed in PBS, and 1x10⁶ cells from each cell type fixed and permeabilised using the FIX & PERM kit as per the manufacturers protocol (ThermoFisher Scientific). Primary antibodies were added to the cells following permeabilisation at the concentrations recommended by supplier, incubated for 15 min, washed, secondary antibody added and incubated for a following 15 min. Cells were then immediately analysed on a CytoFLEX S (Beckman Coulter) with appropriate gating to remove clumps of cells and cellular debris. To the epithelial cells specifically, the cells were stained with anti-keratin 18 rabbit IgG primary antibody and anti-rabbit IgG secondary antibody. The 640 nm lazer was used to analyse the samples. The stromal cells were stained with anti-vimentin primary IgG and anti-mouse IgG secondary antibody. The 488 nm lazer was used on the stromal cell samples (Figure 1).

Cell Seeding into the Microfluidic Device

All cells were seeded into the devices in RPMI 1640 medium as described above (Figure 2). Stromal-enriched cells were seeded in the lower chamber of the device (10 μm-slide membrane, IBIDI), using a 1 mL syringe, at concentration of 1.5-2×10⁴ cells/mL in a final volume of 300 μL. All devices were inverted for 2 hr to allow stromal cells to adhere to the underside of the porous membrane. Devices were placed in the normal orientation and epithelial cells seeded at 4-6×10⁴ cells/mL in a final volume of 55 μL into the upper chamber. Cells were left to become 60% confluent over two days with one medium change (48 hr) before beginning the flow perfusion. For the glucose experiment, on the day of experimentation medium was changed and 5 mL of medium without...
glucose was loaded into 5 mL syringes at the inlet (n = 2 technical replicates) with either 0.5, 5.0 or 50.0 mM of glucose. These were chosen as a dose response of glucose with 5.0 mM reflecting normal concentrations of glucose detected in the ULF (3.79 mM) and plasma (6.34 mM) during the early luteal phase of the cycle (27). For the insulin experiment, on the day of experimentation medium was also changed and 5 mL of medium with a physiologic concentration of glucose (5.0 mM) was loaded into 5 mL syringes at the inlet (n = 2 technical replicates) with either a vehicle control (acetic acid in PBS pH 3.0), 1.0 ng/mL or 10.0 ng/mL insulin. These were chosen as a dose response representing extremes of insulin observed in circulation of cows undergoing negative energy balance (28). The pump was set to flow medium through the device at a flow rate of 1 µL/min to mimic the rate of secretion in vivo (29) for 72 hr. Culture medium from the upper chamber (in vitro-derived ULF) was recovered with a pipette and snap-frozen in liquid nitrogen and the samples were stored at -80 °C. Epithelial and stromal cells were separately removed from the device via 0.5% trypsin, centrifuged at 2000 g for 10 min, snap-frozen in liquid nitrogen, and stored at -80 °C prior to processing.

RNA extraction and sequencing

Total RNA was extracted from epithelial and stromal cells using the Mini RNeasy kit (Qiagen, Crawley, UK) following the manufacturer’s recommendations. Cell samples were homogenized in 700 µL of Qiazol via vortexing for 1 min at RT. On-column DNase digestion was performed (15 min at room temperature (RT)) and RNA was eluted in 14 µL of RNase/DNase free water from the spin column membrane following centrifugation for 2 min at full speed and this step was performed twice.

RNA sequencing was performed as previously described (25) with minor modifications. Briefly, RNA quality and quantity were confirmed using the Agilent Bioanalyzer system, and all samples had an RNA integrity number of >7.9. Stranded RNA sequencing libraries were constructed
using the Encore Complete RNA-Seq library system of NuGEN. All libraries were sequenced on NextSeq generating 75 bp single-end reads. The raw FASTQ files were inspected using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), the adapter sequences were trimmed using Cutadapt (30) and additional quality control steps taken by fastq_quality_filter program as part of FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). The mapping process was performed using align function in Rsubread (31) package by aligning the clean fastq files against the cow reference genome retrieved from Ensembl release 96 (32) (Bos taurus) and only uniquely-mapped alignments were recorded. The resulting BAM files were sorted and indexed by SAMtools (33). The reads were summarized at the gene level by means of featureCounts (34). DESeq2 (35) in a paired sample design was used to identify differentially expressed protein-coding genes based on the cut-offs of a p value < 0.05 and a log₂ Fold Change > 0.1 or < -0.1. Variance stabilizing transformations were applied to the genes that had at least 10 reads in total for all samples. Heatmaps were created using the transformed read counts based on a pool of differentially expressed protein-coding genes for each experiment. PCA analysis was carried out for the protein-coding genes that have RPKM >= 1 in at least one sample and two normalisation approaches such as log2(RPKM+1) and quantile normalization were conducted prior to PCA analysis.

Quantitative proteomic analysis of in vitro-derived uterine luminal fluid recovered from the upper chamber

Medium (n=3 samples per group) from the upper chamber (in vitro-derived ULF) following glucose or insulin exposure were subjected to albumin depletion according to the manufacturer’s instructions (Thermo Fisher Scientific, Loughborough, UK). Individual samples were digested with trypsin (2.5 µg trypsin; 37 °C, overnight), labelled with Tandem Mass Tag (TMT) ten plex reagents according to the manufacturer’s protocol (Thermo Fisher Scientific) and pooled. The pooled sample was evaporated to dryness, resuspended in 5% formic acid, and then desalted using a SepPak
cartridge according to the manufacturer’s instructions (Waters, Milford, Massachusetts, USA). Eluate from the SepPak cartridge was again evaporated to dryness and resuspended in buffer A (20 mM ammonium hydroxide, pH 10) prior to fractionation by high pH reversed-phase chromatography using an Ultimate 3000 liquid chromatography system (Thermo Scientific). In brief, the sample was loaded onto an XBridge BEH C18 Column (130Å, 3.5 µm, 2.1 mm X 150 mm, Waters, UK) in buffer A and peptides eluted with an increasing gradient of buffer B (20 mM Ammonium Hydroxide in acetonitrile, pH 10) from 0-95% over 60 min. The resulting fractions were evaporated to dryness and resuspended in 1% formic acid prior to analysis by nano-LC MSMS using an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific).

Nano-LC Mass Spectrometry

High pH reversed-phase (RP) fractions were further fractionated using an Ultimate 3000 nano-LC system in line with an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific). Peptides in 1% (vol/vol) formic acid were injected onto an Acclaim PepMap C18 nano-trap column (Thermo Scientific). After washing with 0.5% (vol/vol) acetonitrile 0.1% (vol/vol) formic acid peptides were resolved on a 250 mm X 75 µm Acclaim PepMap C18 reverse phase analytical column (Thermo Scientific) over a 150 min organic gradient, using 7 gradient segments (1-6% solvent B over 1 min, 6-15% B over 58 min, 15-32% B over 58 min, 32-40% B over 5 min, 40-90% B over 1min, held at 90% B for 6 min and then reduced to 1% B over 1 min) with a flow rate of 300 nl min⁻¹. Solvent A was 0.1% formic acid and Solvent B was aqueous 80% acetonitrile in 0.1% formic acid. Peptides were ionized by nano-electrospray ionization at 2.0kV using a stainless-steel emitter with an internal diameter of 30 µm (Thermo Scientific) and a capillary temperature of 275 °C. All spectra were acquired using an Orbitrap Fusion Lumos mass spectrometer controlled by Xcalibur 4.1 software (Thermo Scientific) and operated in data-dependent acquisition mode using an SPS-MS3 workflow. Fourier transform mass analysers 1 (FTMS1) spectra were collected at a resolution of 120 000, with an automatic gain
control (AGC) target of 200 000 and a max injection time of 50 ms. Precursors were filtered with an intensity threshold of 5000, according to charge state (to include charge states 2-7) and with monoisotopic peak determination set to Peptide. Previously interrogated precursors were excluded using a dynamic window (60 s +/-10 ppm). The MS2 precursors were isolated with a quadrupole isolation window of 0.7 m/z. ITMS2 spectra were collected with an AGC target of 10 000, max injection time of 70ms and CID collision energy of 35%. For Fourier transform mass analysers 3 (FTMS3) analysis, the Orbitrap was operated at 50 000 resolution with an AGC target of 50 000 and a max injection time of 105ms. Precursors were fragmented by high energy collision dissociation (HCD) at a normalised collision energy of 60% to ensure maximal TMT reporter ion yield. Synchronous Precursor Selection (SPS) was enabled to include up to 5 MS2 fragment ions in the FTMS3 scan.

The raw data files were processed and quantified using Proteome Discoverer software v2.1 (Thermo Scientific) and searched against the UniProt Bos taurus database (downloaded June 2019: 46309 entries) using the SEQUEST algorithm. Peptide precursor mass tolerance was set at 10 ppm, and MS/MS tolerance was set at 0.6Da. Search criteria included oxidation of methionine (+15.9949) as a variable modification and carbamidomethylation of cysteine (+57.0214) and the addition of the TMT mass tag (+229.163) to peptide N-termini and lysine as fixed modifications. Searches were performed with full tryptic digestion and a maximum of 2 missed cleavages were allowed. The reverse database search option was enabled, and all data was filtered to satisfy false discovery rate (FDR) of 5%. Differences in protein abundance amongst groups were determined using an unpaired T-test following the FDR filtration step. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024218.
Regulatory networks and functional annotations of biological processes analysis were performed by bioinformatics using DAVID

Gene enrichment analysis was performed using DAVID (Database for annotation, visualization, and integrated discovery; Bioinformatics Resources 6.7) (36) to predict the regulatory networks (signalling pathways) and specific functional annotations from gene ontology (GO) terms related to the proteins and DEGs, respectively. The accession number from each protein (Uniprot) or gene (Ensembl Gene ID) were used. All the signalling pathways GO terms identified from biological process, cellular component, and molecular function were considered enriched a P<0.05 threshold. To perform and visualization of the networks of the signalling pathways was used the software platform Cytoscape version 3.7.2 (37). The signalling pathways were presented by the Fold Enrichment each networking and the GO terms were arranged by the Enrichment Score (-log_{10}[Pvalue]), respectively.

RESULTS

Characterisation of cellular phenotypes in the microfluidics devices

FACS analysis demonstrated that the epithelial cell population stained 96.5% positive for Keratin 18 with < 2.0% secondary antibody positivity. The stromal-enriched cell population were 94% positive for vimentin with 20% secondary antibody positivity (Figure 1). The epithelial and stromal cells both expressed mRNA for the progesterone receptor (PGR) and estrogen receptor (ESR1) however, there was no difference in expression of these between treatments (all normalised data are available via GEO accession number GSE167086).

Exposure of endometrial epithelial and stromal cells in vitro to high concentrations of glucose alters the transcriptional profile in a cell-specific manner

Principal Component Analysis (PCA; Figure 3) revealed distinct clustering of epithelial and stromal cells but there was no clear clustering between the glucose treatments (5 mM vs 50 mM).
Flow of high concentrations of glucose (50 mM) for 3 days altered the expression of 21 and 191 protein-coding genes in the epithelial and stromal cells, respectively, compared to control concentrations (5.0 mM glucose) (available at GEO database under accession number GSE167086). Functional annotation analysis determined n = 8 and n = 14 overrepresented biological processes, n = 6 and n = 5 overrepresented cellular components and n = 4 and n = 6 overrepresented molecular functions, for epithelial and stromal cells exposed to 50 mM glucose, respectively (Figure 4; Table 1).

Exposure to high concentrations of glucose alters the proteomic content of in vitro-derived ULF

PCA (Figure 5A) revealed that exposure of endometrium on-a-chip to physiological extremes of glucose (0.5 mM and 50 mM) altered the overall composition of proteins in the in vitro-derived ULF. The highest concentration of glucose (50 mM) changed the abundance of 23 proteins compared to controls (5 mM), the majority of which were increased (p < 0.05: Figure 5B). When the lower concentration (0.5 mM) was compared with the control (5 mM), only one protein was altered. Finally, when the physiologic extremes (0.5 mM vs 50 mM) were compared, eight proteins were found to be differentially abundant in in vitro-derived ULF. Functional annotation analysis revealed the proteins up-regulated following glucose treatment were involved in Platelet and Lysosome pathways (Table 2). There were no over-represented pathways associated with the proteins that were decreased in abundance following glucose exposure (P>0.05).

Exposure of the endometrium to different concentrations of Insulin alters the transcriptome in a cell specific manner.

The PCA plot showed clear separation of epithelial cells (on the left-hand side of the plot) and stromal cell populations (on the right-hand side of the plot) with limited treatment effect (Figure 6A). Exposure of cells to 1 ng/mL of insulin for 72 hr changed expression of four transcripts (non-specific serine/threonine protein kinase (ARAF), Ubiquitin-40S ribosomal protein S27a (RPS27A), NADH-ubiquinone oxidoreductase chain 4L (M-ND4L), and NADH-ubiquinone oxidoreductase chain 6
(MTND6)) in stromal cells and one unknown transcript (ENSBTAG00000052092) in epithelial cells compared to vehicle control. Exposure to the higher concentrations of insulin (10 ng/mL) altered 10 transcripts in epithelial cells (NADH-ubiquinone oxidoreductase chain 2 (MT-ND2)), (NADH-ubiquinone oxidoreductase chain 3 (MT-ND3)), (NADH-ubiquinone oxidoreductase chain 5 (ND5)), (CCAAT/enhancer-binding protein beta (CEBPB)), (Ferritin heavy chain 1 (FTH1)), (ATP synthase protein 8 (MT-ATP8)), (Nuclear receptor subfamily 4 group A member 2 (NR4A2)), (Fibronectin (FN1)), (Collagenase 3 (MMP13)) and (Cytochrome b (MT-CYB)) and two transcripts in stromal cells: Insulin-like growth factor-binding protein 6 (IGFBP6), and receptor for retinol uptake (STRA6).

In addition, when the physiological extremes of insulin (1 ng vs 10 ng/mL) were compared, one transcript was differentially expressed in epithelial cells (Insulin-like growth factor-binding protein 3 (IGFBP3)) while nineteen transcripts were altered in the stromal cells (Insulin-like growth factor-binding protein 5 (IGFBP5)), tensin 4 (TNS4), ETS domain-containing transcription factor (EHF), cytochrome P450, subfamily IIIA, polypeptide 4 (CYP3A4), sphingolipid delta(4)-desaturase (DES1), CCAAT/enhancer-binding protein beta, C/EBP beta (CEBPB), creatine kinase U-type, mitochondrial (CKMT1A), claudin-7 (CLDN7), mucin 16 (MUC16), glycine amidinotransferase, mitochondrial (GATM), claudin 6 (CLDN6), receptor protein-tyrosine kinase (ERBB3), ATP binding cassette subfamily A member 1 (ABCA1), epithelial membrane protein 1 (EMP1), solute carrier family 2, facilitated glucose transporter member 3 (SLC2A3), adseverin (SCIN), aldehyde dehydrogenase 1 family member A3 (ALDH1A3), vascular endothelial growth factor A (VEGFA), and NADH-ubiquinone oxidoreductase chain 6 (MT-ND6)). Functional annotation analysis found no overrepresented terms associated with the lower concentration of Insulin compared to control. However, DEGs associated with the higher concentration of insulin were overrepresented in three cellular components (Respiratory chain, Mitochondrial respiratory chain complex I and Mitochondrial inner membrane) and one molecular function (NADH dehydrogenase (ubiquinone) activity).
Altering insulin concentrations modifies the secretome of in vitro-derived ULF

PCA did not reveal distinct clustering in the overall proteomic profile of in vitro-derived ULF (Figure 7A). However, exposure of our endometrium on-a-chip to physiological extremes of insulin (1 and 10 ng/mL) changed the abundance of 195 proteins (Figure 7B). The majority of these proteins (n = 67) were altered (P<0.05) in cells treated with the 1 ng/mL of insulin compared to vehicle control (Figure 7). The higher concentration of insulin altered 57 proteins in total (P<0.05), while comparison of the two physiological extremes of insulin (1 vs 10 ng/mL) revealed 51 differentially abundant proteins (P<0.05) proteins in in vitro-derived ULF. Venn diagram analysis showed that 17 proteins were altered in more than one group (Figure 7B). Proteins up-regulated following treatment with 1 ng/mL of insulin were overrepresented in pathways associated with biosynthesis of amino acids (n = 2), carbon metabolism (n = 3), biosynthesis of antibiotics (n = 4), and metabolic pathways (n = 5). The down-regulated proteins were associated with complement and coagulation cascades (n = 3), protein processing in endoplasmic reticulum (n = 5), and amoebiasis (n = 3). Down-regulated proteins were overrepresented when cells were treated with 10 ng/mL of insulin were related with protein digestion and absorption (n = 3), ECM-receptor interaction (n = 3) and proteoglycans in cancer (n = 4). All the pathways related with up- or down-regulated proteins are presented in Figure 8.

DISCUSSION

This study aimed to generate a novel in vitro model to study the interactions between the maternal metabolic environment and endometrial function. Using a microfluidics approach to mimic the bovine endometrium in vitro, we identified the transcriptomic pathways that are changed by different physiologically relevant concentrations of glucose and insulin as well as the consequences for the secreted proteomic composition of the uterine luminal fluid produced in vitro. These provide evidence for the potential mechanism of action of two key manifestations of metabolic stress in circulation (glucose and insulin) independently on uterine function and allow improved
understanding of how maternal nutritional stressors contribute to uterine dysfunction and ultimately early pregnancy loss.

This device is composed of predominantly pure population of epithelial cells along with a stromally-enriched population allowing interaction between these two cell types to better mimic in vitro, what occurs in vivo. Moreover, these cells express both steroid hormone receptors which represent the expression patterns observed in vivo in the early luteal phase of the estrous cycle (38). Concentrations of glucose and insulin are decreased in the circulation of dairy cows experiencing negative energy balance (39, 40). In vivo experiments have investigated how the oviduct and endometrium as well as their secretions are modified by the metabolic status of the maternal environment (8, 9, 15, 17). While reduced blood glucose and insulin concentrations alone are not detrimental for fertility and embryo survival (41), they result in a modified uterine environment that has consequences for offspring health (15, 42). Lactation results in a complex metabolic environment which not only has low concentrations of glucose and insulin but elevated concentrations of NEFA and BHB. Up to now, it has not been possible to determine the specific role played by nutritional stressors in modifying uterine function. Most in vitro models of bovine endometrium use traditional static cell culture or explants (25, 43–46) and while microfluidics have been used to recapitulate the human menstrual cycle (24) or the bovine oviduct (23), to our knowledge this is the first paper to report the use of microfluidics to mimic the bovine endometrium. This allowed us to determine the mechanism by which individual nutritional stressors alter endometrial function.

In early development, mammalian embryos use glucose as the main energy source to synthesize glycogen, nucleic acids, proteins, and lipids (47, 48). It is critical, therefore, that sufficient glucose is transported into the uterine lumen to support embryo development; however, glucose can also act to modify the transcriptional response of a cell which modifies the uterine environment. We demonstrated that exposure to altered concentrations of glucose changed the expression of
transcripts involved in the biological processes of collagen fibril organization, blood vessel development, regulation of interferon α and β production, positive regulation of MAPK and ERK1/2 and positive regulation of energy homeostasis as well as the molecular functions of ECM structural constituent, platelet-derived growth factor binding. Platelet activation is a complex signaling pathway positively dependent on several components as well as glycoprotein (GP) Ib-IX-V complex (GPIb-IX), phosphoinositide 3-kinase (PI3K-Akt), immunoreceptor tyrosine-based activation motif (ITAM), mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1 and 2 (ERK1/2), among others (49). Interactions between cells such as epithelial and stromal cells of the endometrium, involve mechanisms and ECM constituents, including cell surface receptors (integrins) and receptors for fibronectin, collagen, and laminin. Stimulation of suspended platelets is an event dependent of collagen and thrombin and increase in intracellular Ca^{2+} is a key element in this process. Some of these events were connected with the GO terms involved with the DEGs when the endometrial cells were exposed to physiological extremes of glucose. Exposure to different concentrations of glucose not only altered DEGs in endometrial cells, but also altered the protein composition of in vitro ULF. This included proteins involved in Platelet Activation and Lysosome pathways.

Platelet activation plays a critical role in the function of platelets and it is involved in coagulation and inflammatory processes. Normally, platelet activation is induced by collagen or soluble platelet agonists that bind to G protein receptors, which stimulates the activation of platelet receptors (integrin αIIbβ3), mediating platelet adhesion and aggregation (49). Interestingly, the Platelet-Activating Factor (PAF), a potent lipid mediator of inflammation and allergy, is involved in several reproductive processes (50) and PAF receptors are present in the oviduct of hamsters (51) and mice (52) and the oviduct and endometrium of cows (53). In humans, PFA increases vascular permeability and vasodilation, necessary processes for embryo implantation and plays an important paracrine role in stromal and epithelial cells interactions during this process (50). We have shown
components of this pathway are altered by glucose and propose that may contribute to reduced endometrial function associated with altered glucose concentrations.

The other signaling pathway related with the proteins from the in vitro ULF is the Lysosome pathway. The lysosome pathway is the primary site of cell digestion, lysosomes support cell function, recycling and providing a set of metabolites, such as amino acids, saccharides, lipids, ions and nucleobases and a key integrator and organizer of cellular adaptation and survival (54). Lysosomes link important metabolic processes encoded by AMPK (adenosine monophosphate-activated protein kinase) and GSK3β (glycogen synthase kinase 3) signaling hubs. AMPK is a primary cellular sensor for energy stress and glucose levels, promoting catabolic programs in response to low energy levels (55). AMPK has been linked to endometrial cancer in humans and depending on the context, AMPK can promote proliferation or cellular death (56). In addition, GSK3β is a kinase with apparently contradictory functions (57); for example, the presence of GSK3β in lysosomes can stimulate cell growth and survival, while its presence in the nucleus can promote cell death functions (58). In humans, GSK3β is expressed in endometrial cells and GSK-3β phosphorylated form exhibits cyclic variation. Furthermore, phosphorylation of GSK-3β is regulated by progesterone and the inhibition of GSK-3β is temporally regulated with the increased glycogen synthesis in the endometrial cells during the luteal phase (48, 59). Thus, incorrect inactivation of GSK-3β could result in inadequate glycogen production and could potentially affect embryo implantation (48). In a previous study with dairy cows, increasing the circulating energy substrate, by exogenous infusion of glucose, was directly associated with a decrease in embryo development (size, width and area) (42), in contrast to what was expected. We propose that physiological glucose extremes may directly affect these important signaling pathways (Platelet activation and Lysosome) and interfering in processes such as receptivity and embryonic implantation.

Insulin plays an essential metabolic role in regulating energy homeostasis in the body and insulin-dependent signaling also has key functions in reproductive events and early development. In
cattle, insulin concentrations vary throughout the estrous cycle (60); however, when an embryo is present in uterus, there is a decline insulin concentrations in ULF (61). The bovine pre- and peri-implantation embryo expresses receptors for IGF and insulin receptors (62, 63) indicating the embryo is sensitive to concentrations of insulin during pre-implantation development (61). Depending on the nutritional status of the cow, insulin is suggested to have a metabolic function, regulating glucose levels in the uterus (64). Microfluidic exposure of endometrial cells to different concentrations of insulin in vitro in this study altered signaling pathways in both epithelial and stromal cells related to metabolism. In vivo, low circulating levels of insulin are associated with negative energetic balance and the consequence of these low concentrations range from a delay in ovulation to an unfavourable environment for embryo development and even for the pregnancy maintenance (61). On the other hand, high concentrations of insulin, although favourable for ovulation, are detrimental for early embryo development (65, 66). Insulin supplementation during in vitro development has lead to conflicting results with some improvement to morula stage embryos reported and some increase in cell number in the blastocysts, but most authors did not observe any effects on the blastocyst rate – a key developmental checkpoint (67–72). Even in the absence of effects on blastocyst development, an improvement in the number of cells in embryos could indicate a beneficial effect on the establishment of pregnancy. This may occur since blastocysts are able to produce and release embryotropins, involved in modulating endometrial transcripts mediated by interferon-tau and prostaglandin metabolism (73, 74). However, to the best of our knowledge, the effects of insulin during the early luteal phase in vitro bovine endometrial cells had not previously been investigated.

We observed that components of the complement and coagulation cascade were altered when the endometrium on-a-chip was exposed to a low concentration of insulin. The complement system is involved in the innate immune system and mostly functions to remove pathogens, dead cells, and debris. During early pregnancy there are changes to immune cells and markers in the endometrium (75, 76). In ruminants, receptivity to implantation involves a set of orchestrated
events, among which is the suppression of genes for immune recognition of the conceptus (embryo/fetus and associated membranes) and the increase in vascularization of the endometrium (reviewed by (77)). Exposure to different concentrations of insulin may modify these processes and contribute to dysregulated endometrial function.

Exposure of endometrial cells to physiological extremes of insulin also changed the composition of proteins in the in vitro-derived ULF. In general, the proteins up-regulated in low insulin concentration were associated with signaling pathways mainly related to metabolic events (Carbon metabolism, Biosynthesis of amino acids, Biosynthesis of antibiotics and Metabolic pathways). The proteins down-regulated when the endometrial cells were exposed to high concentrations of insulin were associated with Protein digestion and absorption, ECM-receptor interaction and Proteoglycans in cancer. Proteoglycans (including Syndecan-4 which we observed in our study) are often found on the cell surface or in the ECM and perform multiple functions in cancer and angiogenesis through their ability to interact with both ligands and receptors that regulate neoplastic growth and neovascularization (78). Syndecan-4 connects two important signaling pathways (Proteoglycans in cancer and ECM-Receptors interactions) and it has been reported that blocking interactions between syndecan-4 and fibronectin decreases focal adhesions in cells, leading to increased cell proliferation in tumors. Thus, syndecan-4 has a key role in regulating cell adhesion, migration and proliferation in some tumors (79). The protein thrombospondin-1 (THBS1) was also associated with the ECM-receptor interaction pathway. This glycoprotein can bind to fibrinogen, fibronectin, laminin, collagen types V and VII and integrins mediating the interactions between cells and ECM. Also, THBS1 is involved in regulation of angiogenesis (80).

In humans, changes in ECM and/or in ECM-related signaling pathways are often attributed to pathological events, including premature birth, cervical incompetence, endometriosis, polycystic ovary syndrome and neoplasms in the reproductive tract (81). Thus, demonstrating that ECM-
receptor interactions pathway can be also involved in other tissues and biological events. In ruminant livestock species, it was previously reported that the characteristic post-hatching elongation of the conceptus requires interaction between the trophectoderm and the uterine luminal epithelium that causes a mosaic of interactions between integrins and ECM, which act together to promote adhesion during implantation (82, 83). While our investigations were carried out in the pre-elongation stage of development, insulin-regulated changes to ECM components of the endometrium in early development may contribute to a compromised uterine environment and pregnancy loss. We found limited correlation between the transcriptomics signature of the epithelial cells and the protein content of the secretome. This is not unusual given differences in rates of translation from mRNA into proteins as well as protein turnover and degradation rates (84). Moreover, there is an order of magnitude in the difference of detection of transcripts via RNAseq and proteins via mass spectrometry likely contributing to the differences observed.

In summary, we are the first to report the use of microfluidics to mimic the bovine endometrium in vitro. We demonstrate that this approach allows us to determine how alterations in individual components of the maternal metabolism impact endometrial function. We specifically demonstrate at the transcriptional and proteomic levels that altered concentrations of glucose and insulin change ECM components of the endometrium. We propose that changes to these ECM components contribute to the compromised uterine environment associated with metabolic extremes in maternal circulation.
ACKNOWLEDGMENTS

This work was supported by BBSRC grant number BB/R017522/1, QR-GCRF, and FAPESP (2016/22790-1 and 2018/14137-1). We would like to acknowledge the assistance of Stefania Mountevedi in helping with the bovine cell isolation and culture. We would like to thank Dr Ian Carr, Morag Raynor and Ummey Hany from the University of Leeds’s next generation sequencing facility core for undertaking sequencing analyses and the University of Bristol Proteomics core facility. We acknowledge Biorender in our production of components of Figure 2, and Pizza Loco & Rabbit Hole coffee for providing space, caffeine, and carbohydrates that helped fuel the writing of this manuscript during a global pandemic.

DATA AVAILABILITY

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024218 (https://www.ebi.ac.uk/pride/archive?keyword=PXD024218). All RNA sequencing data are available via GEO database number GSE167086 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE167086).
REFERENCES

1. Rizos, D., Clemente, M., Bermejo-Alvarez, P., de La Fuente, J., Lonergan, P., and Gutiérrez-Adán, A. (2008) Consequences of In Vitro Culture Conditions on Embryo Development and Quality. *Reprod. Domest. Anim.* **43**, 44–50

2. Rizos, D., Ward, F., Duffy, P., Boland, M. P., and Lonergan, P. (2002) Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: Implications for blastocyst yield and blastocyst quality. *Mol. Reprod. Dev.* **61**, 234–248

3. Maillo, V., Lopera-Vasquez, R., Hamdi, M., Gutierrez-Adan, A., Lonergan, P., and Rizos, D. (2016) Maternal-embryo interaction in the bovine oviduct: Evidence from in vivo and in vitro studies. *Theriogenology* **86**, 443–450

4. de Ávila, A. C. F. C. M. and da Silveira, J. C. (2019) Role of extracellular vesicles during oocyte maturation and early embryo development. *Reprod. Fertil. Dev.* **32**, 56

5. Nguyen, H. P. T., Simpson, R. J., Salamonsen, L. A., and Greening, D. W. (2016) Extracellular Vesicles in the Intrauterine Environment: Challenges and Potential Functions. *Biol. Reprod.* **95**, 109–109

6. Bianco-Miotto, T., Craig, J. M., Gasser, Y. P., van Dijk, S. J., and Ozanne, S. E. (2017) Epigenetics and DOHaD: from basics to birth and beyond. *J. Dev. Orig. Health Dis.* **8**, 513–519

7. Pérez-Cerezales, S., Ramos-Ibeas, P., Rizos, D., Lonergan, P., Bermejo-Alvarez, P., and Gutiérrez-Adán, A. (2018) Early sex-dependent differences in response to environmental stress. *Reproduction* **155**, R39–R51

8. Forde, N., Simintiras, C. A., Sturmey, R. G., Graf, A., Wolf, E., Blum, H., and Lonergan, P. (2017) Effect of lactation on conceptus-maternal interactions at the initiation of implantation in cattle: I. Effects on the conceptus transcriptome and amino acid composition of the uterine...
luminal fluid. *Biol. Reprod.* **97**, 798–809

9. Gegenfurtner, K., Fröhlich, T., Kösters, M., Mermillod, P., Locatelli, Y., Fritz, S., Salvetti, P., Forde, N., Lonergan, P., Wolf, E., and Arnold, G. J. (2019) Influence of metabolic status and genetic merit for fertility on proteomic composition of bovine oviduct fluid. *Biol. Reprod.* **101**, 893–905

10. Leese, H. J., Hugentobler, S. A., Gray, S. M., Morris, D. G., Sturmey, R. G., Whitear, S.-L., and Sreenan, J. M. (2008) Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. *Reprod. Fertil. Dev.* **20**, 1

11. Rizos, D., Carter, F., Besenfelder, U., Havlicek, V., and Lonergan, P. (2010) Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. *J. Dairy Sci.* **93**, 1022–1029

12. Maillo, V., Rizos, D., Besenfelder, U., Havlicek, V., Kelly, A. K., Garrett, M., and Lonergan, P. (2012) Influence of lactation on metabolic characteristics and embryo development in postpartum Holstein dairy cows. *J. Dairy Sci.* **95**, 3865–3876

13. Locatelli, Y., Forde, N., Blum, H., Graf, A., Piégu, B., Mermillod, P., Wolf, E., Lonergan, P., and Saint-Dizier, M. (2019) Relative effects of location relative to the corpus luteum and lactation on the transcriptome of the bovine oviduct epithelium. *BMC Genomics* **20**, 233

14. Bauersachs, S., Ulbrich, S. E., Reichenbach, H.-D., Reichenbach, M., Büttner, M., Meyer, H. H., Spencer, T. E., Minten, M., Sax, G., Winter, G., and Wolf, E. (2012) Comparison of the Effects of Early Pregnancy with Human Interferon, Alpha 2 (IFNA2), on Gene Expression in Bovine Endometrium. *Biol. Reprod.* **86**, 1–15

15. Bauersachs, S., Simintiras, C. A., Sturmey, R. G., Krebs, S., Bick, J., Blum, H., Wolf, E., Lonergan,
16. Valour, D., Degrelle, S. A., Ponter, A. A., Giraud-Delville, C., Campion, E., Guyader-Joly, C., Richard, C., Constant, F., Humblot, P., Ponsart, C., Hue, I., and Grimard, B. (2014) Energy and lipid metabolism gene expression of D18 embryos in dairy cows is related to dam physiological status. *Physiol. Genomics* **46**, 39–56

17. Cerri, R. L. A., Thompson, I. M., Kim, I. H., Ealy, A. D., Hansen, P. J., Staples, C. R., Li, J. L., Santos, J. E. P., and Thatcher, W. W. (2012) Effects of lactation and pregnancy on gene expression of endometrium of Holstein cows at day 17 of the estrous cycle or pregnancy. *J. Dairy Sci.* **95**, 5657–5675

18. Arslan, S. Y., Yu, Y., Burdette, J. E., Pavone, M. E., Hope, T. J., Woodruff, T. K., and Kim, J. J. (2015) Novel Three Dimensional Human Endocervix Cultures Respond to 28-Day Hormone Treatment. *Endocrinology* **156**, 1602–1609

19. Laronda, M. M., Rutz, A. L., Xiao, S., Whelan, K. A., Duncan, F. E., Roth, E. W., Woodruff, T. K., and Shah, R. N. (2017) A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. *Nat. Commun.* **8**, 15261

20. Gnecco, J. S., Pensabene, V., Li, D. J., Ding, T., Hui, E. E., Bruner-Tran, K. L., and Osteen, K. G. (2017) Compartmentalized Culture of Perivascular Stroma and Endothelial Cells in a Microfluidic Model of the Human Endometrium. *Ann. Biomed. Eng.* **45**, 1758–1769

21. Sticker, D., Rothbauer, M., Lechner, S., Hehenberger, M.-T., and Ertl, P. (2015) Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol–ene epoxy thermoset for organ-on-a-chip applications. *Lab Chip* **15**, 4542–4554

22. Blundell, C., Tess, E. R., Schanzer, A. S. R., Coutifaris, C., Su, E. J., Parry, S., and Huh, D. (2016)
A microphysiological model of the human placental barrier. *Lab Chip* **16**, 3065–3073

23. Ferraz, M. A. M. M., Rho, H. S., Hemerich, D., Henning, H. H. W., van Tol, H. T. A., Hölker, M., Besenfelder, U., Mokry, M., Vos, P. L. A. M., Stout, T. A. E., Le Gac, S., and Gadella, B. M. (2018) An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. *Nat. Commun.* **9**, 4934

24. Xiao, S., Coppeta, J. R., Rogers, H. B., Isenberg, B. C., Zhu, J., Olalekan, S. A., McKinnon, K. E., Dokic, D., Rashedi, A. S., Haifleneder, D. J., Malpani, S. S., Arnold-Murray, C. A., Chen, K., Jiang, M., Bai, L., Nguyen, C. T., Zhang, J., Laronda, M. M., Hope, T. J., Maniar, K. P., Pavone, M. E., Avram, M. J., Sefton, E. C., Getsios, S., Burdette, J. E., Kim, J. J., Borenstein, J. T., and Woodruff, T. K. (2017) A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. *Nat. Commun.* **8**, 14584

25. Tinning, H., Taylor, A., Wang, D., Constantinides, B., Sutton, R., Oikonomou, G., Velazquez, M. A., Thompson, P., Treumann, A., O’Connell, M. J., and Forde, N. (2020) The role of CAPG in molecular communication between the embryo and the uterine endometrium: Is its function conserved in species with different implantation strategies? *FASEB J.* **34**, 11015–11029

26. Ireland, J. J., Murphee, R. L., and Coulson, P. B. (1980) Accuracy of Predicting Stages of Bovine Estrous Cycle by Gross Appearance of the Corpus Luteum. *J. Dairy Sci.* **63**, 155–160

27. Hugentobler, S. A., Humpherson, P. G., Leese, H. J., Sreenan, J. M., and Morris, D. G. (2008) Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. *Mol. Reprod. Dev.* **75**, 496–503

28. Forde, N., O’Gorman, A., Whelan, H., Duffy, P., O’Hara, L., Kelly, A. K., Havlicek, V., Besenfelder, U., Brennan, L., and Lonergan, P. (2016) Lactation-induced changes in metabolic status and follicular-fluid metabolomic profile in postpartum dairy cows. *Reprod. Fertil. Dev.* **28**, 1882
29. Segura-Aguilar, J. and Reyley, M. (2005) The uterine tubal fluid: secretion, composition and biological effects. *Anim Reprod* 2, 91–105

30. Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* 17, 10

31. Liao, Y., Smyth, G. K., and Shi, W. (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. *Nucleic Acids Res.* 47, e47–e47

32. Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M. R., Armean, I. M., Bennett, R., Bhai, J., Billis, K., Boddu, S., Cummins, C., Davidson, C., Dodiya, K. J., Gall, A., Girón, C. G., Gil, L., Grego, T., Haggerty, L., Haskell, E., Hourlier, T., Izuogu, O. G., Janacek, S. H., Juettemann, T., Kay, M., Laird, M. R., Lavidas, I., Liu, Z., Loveland, J. E., Marugán, J. C., Maurel, T., McMahon, A. C., Moore, B., Morales, J., Mudge, J. M., Nuhn, M., Ogeh, D., Parker, A., Parton, A., Patricio, M., Abdul Salam, A. I., Schmitt, B. M., Schuilenburg, H., Sheppard, D., Sparrow, H., Stapleton, E., Szuba, M., Taylor, K., Threadgold, G., Thormann, A., Vullo, A., Walts, B., Winterbottom, A., Zadissa, A., Chakiachvili, M., Frankish, A., Hunt, S. E., Kostadima, M., Langridge, N., Martin, F. J., Muffato, M., Perry, E., Ruffier, M., Staines, D. M., Trevanion, S. J., Aken, B. L., Yates, A. D., Zerbino, D. R., and Flicek, P. (2019) Ensembl 2019. *Nucleic Acids Res.* 47, D745–D751

33. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079

34. Liao, Y., Smyth, G. K., and Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* 30, 923–930

35. Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550

36. Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res.* **37**, 1–13

37. Shannon, P. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Res.* **13**, 2498–2504

38. Okumu, L. A., Forde, N., Fahey, A. G., Fitzpatrick, E., Roche, J. F., Crowe, M. A., and Lonergan, P. (2010) The effect of elevated progesterone and pregnancy status on mRNA expression and localisation of progesterone and oestrogen receptors in the bovine uterus. *Reproduction* **140**, 143–153

39. Butler, W. R. (2001) Nutritional effects on resumption of ovarian cyclicity and conception rate in postpartum dairy cows. *BSAP Occas. Publ.* **26**, 133–145

40. Beam, S. W. and Butler, W. R. (1999) Effects of energy balance on follicular development and first ovulation in postpartum dairy cows. *J. Reprod. Fertil. Suppl.* **54**, 411–424

41. Lucy, M. C. and Crooker, B. A. (2001) Physiological and genetic differences between low and high index dairy cows. *BSAP Occas. Publ.* **26**, 223–236

42. Leane, S., Herlihy, M. M., Curran, F., Kenneally, J., Forde, N., Simintiras, C. A., Sturmey, R. G., Lucy, M. C., Lonergan, P., and Butler, S. T. (2018) The effect of exogenous glucose infusion on early embryonic development in lactating dairy cows. *J. Dairy Sci.* **101**, 11285–11296

43. Cronin, J. G., Turner, M. L., Goetze, L., Bryant, C. E., and Sheldon, I. M. (2012) Toll-Like Receptor 4 and MYD88-Dependent Signaling Mechanisms of the Innate Immune System Are Essential for the Response to Lipopolysaccharide by Epithelial and Stromal Cells of the Bovine Endometrium1. *Biol. Reprod.* **86**
44. Fasciani, A., Bocci, G., Xu, J., Bielecki, R., Greenblatt, E., Leyland, N., and Casper, R. F. (2003) Three-dimensional in vitro culture of endometrial explants mimics the early stages of endometriosis. *Fertil. Steril.* **80**, 1137–1143

45. Passaro, C., Tutt, D., Bagés-Arnal, S., Maicas, C., Laguna-Barraza, R., Gutierrez-Adán, A., Browne, J. A., Rath, D., Behura, S. K., Spencer, T. E., Fair, T., and Lonergan, P. (2019) Global transcriptomic response of bovine endometrium to blastocyst-stage embryos. *Reproduction* **158**, 223–235

46. Mathew, D. J., Sánchez, J. M., Passaro, C., Charpigny, G., Behura, S. K., Spencer, T. E., and Lonergan, P. (2019) Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome. *Biol. Reprod.* **100**, 365–380

47. Riley, J. K. and Moley, K. H. (2006) Glucose utilization and the PI3-K pathway: mechanisms for cell survival in preimplantation embryos. *Reproduction* **131**, 823–835

48. Salameh, W., Helliwell, J. P., Han, G., McPhaul, L., and Khorram, O. (2006) Expression of endometrial glycogen synthase kinase-3β protein throughout the menstrual cycle and its regulation by progesterone. *MHR Basic Sci. Reprod. Med.* **12**, 543–549

49. Estevez, B. and Du, X. (2017) New Concepts and Mechanisms of Platelet Activation Signaling. *Physiology* **32**, 162–177

50. Tiemann, U. (2008) The Role of Platelet-activating Factor in the Mammalian Female Reproductive Tract. *Reprod. Domest. Anim.* **43**, 647–655

51. Velasquez, L. A. (2001) PAF receptor and PAF acetylhydrolase expression in the endosalpinx of the human Fallopian tube: possible role of embryo-derived PAF in the control of embryo transport to the uterus. *Hum. Reprod.* **16**, 1583–1587

52. Lash, G. E. and Legge, M. (2001) Localization and Distribution of Platelet Activating Factor
Receptors in the Mouse Ovary and Oviduct During the Estrous Cycle and Early Pregnancy. *Am. J. Reprod. Immunol.* **45**, 123–128

53. Tiemann, U., Viergutz, T., Jonas, L., Wollenhaupt, K., Pöhland, R., and Kanitz, W. (2001) Fluorometric detection of platelet activating factor receptor in cultured oviductal epithelial and stromal cells and endometrial stromal cells from bovine at different stages of the oestrous cycle and early pregnancy. *Domest. Anim. Endocrinol.* **20**, 149–164

54. Inpanathan, S. and Botelho, R. J. (2019) The Lysosome Signaling Platform: Adapting With the Times. *Front. Cell Dev. Biol.* **7**

55. Carroll, B. and Dunlop, E. A. (2017) The lysosome: a crucial hub for AMPK and mTORC1 signalling. *Biochem. J.* **474**, 1453–1466

56. Han, J., Zhang, L., Guo, H., Wysham, W. Z., Roque, D. R., Willson, A. K., Sheng, X., Zhou, C., and Bae-Jump, V. L. (2015) Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. *Gynecol. Oncol.* **138**, 668–675

57. Beurel, E., Grieco, S. F., and Jope, R. S. (2015) Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. *Pharmacol. Ther.* **148**, 114–131

58. Bautista, S. J., Boras, I., Vissa, A., Mecica, N., Yip, C. M., Kim, P. K., and Antonescu, C. N. (2018) mTOR complex 1 controls the nuclear localization and function of glycogen synthase kinase 3β. *J. Biol. Chem.* **293**, 14723–14739

59. Yang, Z.-Z., Tschopp, O., Hemmings-Mieszczak, M., Feng, J., Brodbeck, D., Perentes, E., and Hemmings, B. A. (2003) Protein Kinase Ba/Akt1 Regulates Placental Development and Fetal Growth. *J. Biol. Chem.* **278**, 32124–32131

60. Armstrong, D. G., McEvoy, T. G., Baxter, G., Robinson, J. J., Hogg, C. O., Woad, K. J., Webb, R.,
and Sinclair, K. D. (2001) Effect of Dietary Energy and Protein on Bovine Follicular Dynamics and Embryo Production In Vitro: Associations with the Ovarian Insulin-Like Growth Factor System. *Biol. Reprod.* 64, 1624–1632

61. Laskowski, D., Sjunnesson, Y., Humblot, P., Andersson, G., Gustafsson, H., and Båge, R. (2016) The functional role of insulin in fertility and embryonic development—What can we learn from the bovine model? *Theriogenology* 86, 457–464

62. Schultz, G., Hogan, A., Watson, A., Smith, R., and Heyner, S. (1992) Insulin, insulin-like growth factors and glucose transporters: temporal patterns of gene expression in early murine and bovine embryos. *Reprod. Fertil. Dev.* 4, 361

63. Velazquez, M. A., Zaraza, J., Oropeza, A., Webb, R., and Niemann, H. (2009) The role of IGF1 in the in vivo production of bovine embryos from superovulated donors. *REPRODUCTION* 137, 161–180

64. Muñoz, M., Corrales, F. J., Caamaño, J. N., Díez, C., Trigal, B., Mora, M. I., Martín, D., Carrocera, S., and Gómez, E. (2012) Proteome of the Early Embryo–Maternal Dialogue in the Cattle Uterus. *J. Proteome Res.* 11, 751–766

65. Adamiak, S. J., Mackie, K., Watt, R. G., Webb, R., and Sinclair, K. D. (2005) Impact of Nutrition on Oocyte Quality: Cumulative Effects of Body Composition and Diet Leading to Hyperinsulinemia in Cattle. *Biol. Reprod.* 73, 918–926

66. Garnsworthy, P. C., Fouladi-Nashta, A. A., Mann, G. E., Sinclair, K. D., and Webb, R. (2009) Effect of dietary-induced changes in plasma insulin concentrations during the early post partum period on pregnancy rate in dairy cows. *REPRODUCTION* 137, 759–768

67. Zhang, L., Blakewood, E. G., Denniston, R. S., and Godke, R. A. (1991) The effect of insulin on maturation and development of -fertilized bovine oocytes. *Theriogenology* 35, 301
68. Shamsuddin, M., Larsson, B., and Rodriguez-Martinez, H. (1993) Culture of bovine IVM/IVF embryos up to blastocyst stage in defined medium using insulin, transferrin and selenium. growth factors. *Reprod. Domest. Anim.* **28**, 209–210

69. Bowles, C. and Lishman, A. (1998) Attempts to improve the yield of bovine blastocysts by incorporating insulin, selenium and transferrin in the in vitro system. *S. Afr. J. Anim. Sci.* **28**

70. Byrne, A. T., Southgate, J., Brison, D. R., and Leese, H. J. (2002) Regulation of apoptosis in the bovine blastocyst by insulin and the insulin-like growth factor (IGF) superfamily. *Mol. Reprod. Dev.* **62**, 489–495

71. Fouladi-Nashta, A. A. and Campbell, K. H. S. (2006) Dissociation of oocyte nuclear and cytoplasmic maturation by the addition of insulin in cultured bovine antral follicles. *Reproduction* **131**, 449–460

72. Wydooghe, E., Heras, S., Dewulf, J., Piepers, S., Van den Abbeel, E., De Sutter, P., Vandaele, L., and Van Soom, A. (2014) Replacing serum in culture medium with albumin and insulin, transferrin and selenium is the key to successful bovine embryo development in individual culture. *Reprod. Fertil. Dev.* **26**, 717

73. Wydooghe, E., Vandaele, L., Heras, S., De Sutter, P., Deforce, D., Peelman, L., De Schauwer, C., and Van Soom, A. (2017) Autocrine embryotropins revisited: how do embryos communicate with each other in vitro when cultured in groups? *Biol. Rev.* **92**, 505–520

74. Sponchiado, M., Gomes, N. S., Fontes, P. K., Martins, T., del Collado, M., Pastore, A. de A., Pugliesi, G., Nogueira, M. F. G., and Binelli, M. (2017) Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle. *PLoS One* **12**, e0175954

75. Fair, T. (2015) The Contribution of the Maternal Immune System to the Establishment of Pregnancy in Cattle. *Front. Immunol.* **6**
76. Abdulrahman, N. and Fair, T. (2019) Contribution of the immune system to follicle differentiation, ovulation and early corpus luteum formation. *Anim. Reprod.* **16**, 440–448

77. Bazer, F. W., Burghardt, R. C., Johnson, G. A., Spencer, T. E., and Wu, G. (2008) Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. *Reprod. Biol.* **8**, 179–211

78. Iozzo, R. V. and Sanderson, R. D. (2011) Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. *J. Cell. Mol. Med.* **15**, 1013–1031

79. Huang, W., Chiquet-Ehrismann, R., Moyano, J. V, Garcia-Pardo, A., and Orend, G. (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. *Cancer Res.* **61**, 8586–8594

80. Bornstein, P. (2009) Thrombospondins function as regulators of angiogenesis. *J. Cell Commun. Signal.* **3**, 189–200

81. Jorge, S., Chang, S., Barzilai, J. J., Leppert, P., and Segars, J. H. (2014) Mechanical Signaling in Reproductive Tissues. *Reprod. Sci.* **21**, 1093–1107

82. Burghardt, R. C., Burghardt, J. R., Taylor, J. D., Reeder, A. T., Nguen, B. T., Spencer, T. E., Bayless, K. J., and Johnson, G. A. (2009) Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal–conceptus interface and uterine wall during ovine pregnancy. *REPRODUCTION* **137**, 567–582

83. Bazer, F. W., Wu, G., Johnson, G. A., Kim, J., and Song, G. (2011) Uterine Histotroph and Conceptus Development: Select Nutrients and Secreted Phosphoprotein 1 Affect Mechanistic Target of Rapamycin Cell Signaling in Ewes. *Biol. Reprod.* **85**, 1094–1107

84. Bludau, I. and Aebersold, R. (2020) Proteomic and interactomic insights into the molecular basis of cell functional diversity. *Nat. Rev. Mol. Cell Biol.* **21**, 327–340
FIGURE LEGENDS

Figure 1. Flow cytometry validation of bovine endometrial A) stromal-enriched or B) epithelial-enriched cell types. Primary bovine endometrial cells were isolated as described and cultured to confluency. Cells were lifted using trypsin (0.025%) in PBS, washed in PBS, and 1x10^6 cells from each cell type fixed and permeabilised using the FIX & PERM kit as per the manufacturers protocol (ThermoFisher Scientific). A) Anti-keratin 18 rabbit IgG (1µg/ml) (SAB5500126) was added to the epithelial-enriched cell fraction, incubated for 15 minutes, washed with PBS, and incubated with anti-rabbit IgG with 680nm flurophore (1µg/ml) (SAB4600395) for 15 minutes. After a final wash cells were immediately analysed on a CytoFLEX S (Beckman Coulter) (640nm lazer). B) Anti-vimentin mouse IgG (1µg/ml) (SAB4200761) was added to the stromal-enriched cell fraction, incubated for 15 minutes, washed in PBS, and incubated with anti-mouse IgG with 488nm flurophore (1µg/ml) (SAB4600029) for 15 minutes. After a final wash cells were immediately analysed on a CytoFLEX S (488nm lazer). Appropriate gating was used to exclude cell debris and clumps of cells, and control samples including no antibody, primary only, and secondary only were included. The % of positively stained cells were determined by gating the area to the right of the unstained peak.

Figure 2. A) Schematic diagram of endometrium on-a-chip microfluidic device and experimental design used to mimic the physiological extremes of glucose and insulin. Representative images of B) epithelial cells seeded into the upper chamber, (C) cells attached on and under the porous membrane, and D) stromal cells seeded into the lower chamber. The rate of flow for both experiments was performed at 1µL/min per 72h.

Figure 3. A) Principal Component Analysis (PCA) plot of overall transcriptional profile determined via RNA sequencing of bovine endometrial epithelial and stromal cells exposed to either 5 mM or 50
mM of glucose for 72 hr under flow (n=3 biological replicates). Epithelial (left hand side) and stromal cells (right hand side) clustered into two distinct populations. **B)** Heatmap showing the transcript expression for individual samples with lower levels (blue) and those with higher expression shown in red. Samples from epithelial cells (n = 6) and samples from stromal cells (n = 6) are arranged from left to the right.

Figure 4. Gene Ontology overrepresented Biological Process, Cellular Component, and Molecular Function from DEGs in **A)** epithelial (n=21) and, **B)** stromal cells (n=191) following exposure to different concentrations of glucose *in vitro*. The transcript accession numbers (Ensembl Transcript ID) were inputted into DAVID - Functional Annotation Tool (DAVID Bioinformatics Resources 6.7, NIAID/NIH - https://david.ncifcrf.gov/summary.jsp) and those that were significantly overrepresented in the list of DEGs are presented above for biological processes (blue bars), cellular component (orange bars) and molecular function (plum bars) with associated enrichment score.

Figure 5. **A)** Principal component analysis (PCA) plot shows the distribution of *in vitro*-derived ULF following Tandem Mass Tag (TMT)-mass spectrometry analysis of the proteomic content following exposure to: 0.5mM (green circle), 5.0mM (yellow circle), or 50mM (red circle) concentrations of glucose for 72 hr (n=3 biological replicates). **B)** Venn diagram analysis of overlap and unique proteins that are differentially abundance following exposure to different concentrations of glucose. Fold change differences in protein abundances between groups was determined using paired t-tests and were considered significant when P<0.05.

Figure 6. **A)** Principal Component Analysis (PCA) plot of overall transcriptional profile determined via RNA sequencing of bovine endometrial epithelial and stromal cells exposed to either vehicle control,
1 ng/mL, or 10 ng/mL of Insulin for 72 hr under flow (n=3 biological replicates). Epithelial (left hand side) and stromal cells (right hand side) clustered into two distinct populations. B) Heatmap showing the transcript expression for individual samples with lower levels (blue) and those with higher expression shown in red. Samples from epithelial cells (n = 9) and samples from stromal cells (n = 9) are arranged from left to the right.

Figure 7. A) Principal component analysis (PCA) plot shows the distribution of in vitro-derived ULF following Tandem Mass Tag (TMT)-mass spectrometry analysis of the proteomic content following exposure to: vehicle control (green circle), 1 ng/mL Insulin (yellow circle), or 10 ng/mL Insulin (red circle) for 72 hr (n=3 biological replicates). B) Venn diagram analysis of overlap and unique proteins that are differentially abundant following exposure to different concentrations of insulin. Fold change differences in protein abundances between groups was determined using paired t-tests and were considered significant when P<0.05.

Figure 8. Network interaction between the differentially abundant proteins and their signaling pathways (P<0.05) from in vitro-derived ULF from endometrium on-a-chip exposed to insulin for 72 hr. A) GO pathways associated with proteins altered in abundance following treatment with 1.0 ng/mL of insulin compared to vehicle control. B) GO pathways associated with proteins altered in abundance following treatment with 10.0 ng/mL of insulin was compared to vehicle control. The color circle represents an individual signaling pathway and the proteins around it are proteins identified as altered in our treatments associated with that signaling pathway (s) what are either up-regulated (red) or down-regulated (blue) following insulin treatment. The color scale represents the Fold Enrichment that reflects the involvement of the proteins in each signaling pathway.
TABLES

Table 1. Functional annotation of gene ontology (GO) terms related to the differentially expressed genes following exposure on endometrium on-a-chip to high concentrations of glucose (5 mM vs 50 mM of glucose). Biological process (BP), cellular component (CC), and molecular function (MF).

Category	Term	Count	%	P-Value
GOTERM_BP_DIRECT	GO:0030199~collagen fibril organization	3	15.0	0.000500
GOTERM_BP_DIRECT	GO:0071230~cellular response to amino acid stimulus	3	15.0	0.001200
GOTERM_BP_DIRECT	GO:0090131~mesenchyme migration	2	10.0	0.005800
GOTERM_BP_DIRECT	GO:0043589~skin morphogenesis	2	10.0	0.008100
GOTERM_BP_DIRECT	GO:0070208~protein heterotrimerization	2	10.0	0.010000
GOTERM_BP_DIRECT	GO:0060325~face morphogenesis	2	10.0	0.032000
GOTERM_BP_DIRECT	GO:0001568~blood vessel development	2	10.0	0.032000
GOTERM_BP_DIRECT	GO:0008217~regulation of blood pressure	2	10.0	0.039000
GOTERM_BP_DIRECT	GO:0090263~positive regulation of canonical Wnt signaling pathway	2	10.0	0.065000
Category	Term	Count	%	P-Value
--------------	--	-------	----	---------
GOTERM_CC_DIRECT	GO:0005615~extracellular space	7	35.0	0.000720
GOTERM_CC_DIRECT	GO:0005581~collagen trimer	3	15.0	0.002200
GOTERM_CC_DIRECT	GO:0005584~collagen type I trimer	2	10.0	0.002500
GOTERM_CC_DIRECT	GO:0005578~proteinaceous extracellular matrix	3	15.0	0.020000
GOTERM_CC_DIRECT	GO:0044297~cell body	2	10.0	0.046000
GOTERM_CC_DIRECT	GO:0030175~filopodium	2	10.0	0.049000
GOTERM_CC_DIRECT	GO:0030018~Z disc	2	10.0	0.088000
GOTERM_MF_DIRECT	GO:0005201~extracellular matrix structural constituent	3	15.0	0.000910
GOTERM_MF_DIRECT	GO:0048407~platelet-derived growth factor binding	2	10.0	0.003700
GOTERM_MF_DIRECT	GO:0008201~heparin binding	3	15.0	0.007200
GOTERM_MF_DIRECT	GO:0042802~identical protein binding	3	15.0	0.012000

Stromal Cells
Term	GO ID	Description	Count	Score	Adjusted P-Value
Positive regulation of interferon-alpha production	GO:0032727		3	1.7	0.00240
Negative regulation of B cell proliferation	GO:0030889		3	1.7	0.00380
Negative regulation of peptidyl-tyrosine phosphorylation	GO:0050732		3	1.7	0.00460
Response to hypoxia	GO:0001666		5	2.9	0.00510
Positive regulation of interferon-beta production	GO:0032728		3	1.7	0.01400
Negative regulation of viral genome replication	GO:0045071		3	1.7	0.01700
Regulation of Rho protein signal transduction	GO:0035023		4	2.3	0.02900
Defense response to virus	GO:0051607		5	2.9	0.03100
Positive regulation of ERK1 and ERK2 cascade	GO:0070374		5	2.9	0.03500
Positive regulation of T-helper 2 cell cytokine production	GO:2000553		2	1.2	0.03700
Positive regulation of MAP kinase activity	GO:0043406		3	1.7	0.04300
Positive regulation of fibroblast proliferation	GO:0048146		3	1.7	0.04600
Positive regulation of energy homeostasis	GO:2000507		2	1.2	0.04600
Homotypic cell-cell adhesion	GO:0034109		2	1.2	0.04600
Regulation of cell proliferation	GO:0042127		5	2.9	0.05000
Response to type I interferon	GO:0034340		2	1.2	0.05600
Multicellular organismal water homeostasis	GO:0050891		2	1.2	0.05600
Category	Term	Count	%	P-Value	
----------------------	--	-------	-----	---------	
GOTERM_BP_DIRECT	GO:0045087~innate immune response	6	3.5	0.06500	
GOTERM_BP_DIRECT	GO:0001755~neural crest cell migration	3	1.7	0.06500	
GOTERM_BP_DIRECT	GO:0009615~response to virus	3	1.7	0.06500	
GOTERM_BP_DIRECT	GO:0051639~actin filament network formation	2	1.2	0.07300	
GOTERM_BP_DIRECT	GO:0002376~immune system process	2	1.2	0.08200	
GOTERM_BP_DIRECT	GO:0016064~immunoglobulin mediated immune response	2	1.2	0.08200	
GOTERM_BP_DIRECT	GO:0048545~response to steroid hormone	2	1.2	0.08200	
GOTERM_BP_DIRECT	GO:0051764~actin crosslink formation	2	1.2	0.09100	
GOTERM_BP_DIRECT	GO:0060158~phospholipase C-activating dopamine receptor signaling pathway	2	1.2	0.09100	
GOTERM_CC_DIRECT	GO:0070062~extracellular exosome	49	28.5	0.000000	
GOTERM_CC_DIRECT	GO:0005923~bicellular tight junction	5	2.9	0.007100	
GOTERM_CC_DIRECT	GO:0048471~perinuclear region of cytoplasm	10	5.8	0.009500	
GOTERM_CC_DIRECT	GO:0005737~cytoplasm	43	25.0	0.011000	
GOTERM_CC_DIRECT	GO:0071944~cell periphery	3	1.7	0.022000	
GOTERM_CC_DIRECT	GO:0030175~filopodium	3	1.7	0.059000	
GOTERM_CC_DIRECT	GO:0005886~plasma membrane	30	17.4	0.063000	
Category	Term	Count	%	P-Value	
-------------------	---	-------	----	---------	
GOTERM_CC_DIRECT	GO:0016324~apical plasma membrane	5	2.9	0.073000	
GOTERM_CC_DIRECT	GO:0031528~microvillus membrane	2	1.2	0.083000	
GOTERM_CC_DIRECT	GO:0045121~membrane raft	4	2.3	0.090000	
GOTERM_MF_DIRECT	GO:0016817~hydrolase activity, acting on acid anhydrides	3	1.7	0.000890	
GOTERM_MF_DIRECT	GO:0003950~NAD+ ADP-ribosyltransferase activity	3	1.7	0.011000	
GOTERM_MF_DIRECT	GO:0003725~double-stranded RNA binding	4	2.3	0.011000	
GOTERM_MF_DIRECT	GO:0005509~calcium ion binding	12	7.0	0.021000	
GOTERM_MF_DIRECT	GO:0005550~pheromone binding	2	1.2	0.028000	
GOTERM_MF_DIRECT	GO:0003727~single-stranded RNA binding	3	1.7	0.031000	
GOTERM_MF_DIRECT	GO:0030246~carbohydrate binding	4	2.3	0.058000	
GOTERM_MF_DIRECT	GO:0036094~small molecule binding	2	1.2	0.083000	
GOTERM_MF_DIRECT	GO:0003924~GTPase activity	5	2.9	0.085000	
Table 2. Functional annotation analysis of the proteins up-regulated in the in vitro uterine luminal fluid (ULF) produced following glucose treatment.

Proteins were over-represented in pathways associated with platelet activation and focal adhesion (5mM vs 50mM of glucose) and the Lysosome pathways (0.5mM vs 50mM).

50mM vs 5mM

Category	Term	Genes	Count	%	P-Value	Fold Enrichment	Benjamini	FDR
KEGG_PATHWAY	bta04611:Platelet activation	Q28824, Q95ND9	2	22.2	0.0500	29.7	0.64	32
KEGG_PATHWAY	bta04510:Focal adhesion	Q28824, Q95ND9	2	22.2	0.0800	18.1	0.57	47

0.5mM vs 50mM

Category	Term	Genes	Count	%	P-Value	Fold Enrichment	Benjamini	FDR
KEGG_PATHWAY	bta04142: Lysosome	P49951, Q0VD19	2	66.7	0.03300	39.9	0.29000	18
Figure 1A)

Unstained Secondary

Unstained Secondary

Primary

B)

Unstained Secondary

Unstained Secondary

Primary
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

A

GO pathways in 1ng of insulin vs Vehicle

Up-regulated proteins

[Diagram showing molecular pathways and proteins like Carbon metabolism, Biosynthesis of antibiotics, etc.]

Down-regulated proteins

[Diagram showing molecular pathways and proteins like CANX, PDIA6, etc.]

B

GO pathways in 10ng of insulin vs Vehicle

Down-regulated proteins

[Diagram showing molecular pathways and proteins like PTPN1, SLC5A2, etc.]

Protein digestion and absorption

Proteoglycans in cancer

ECM-receptor interaction

[Diagram showing molecular pathways and proteins like THBS1, COL6A2, etc.]