Quantum Speedup for Higher-Order Unconstrained Binary Optimization and MIMO Maximum Likelihood Detection

Masaya Norimoto, Student Member, IEEE, Ryuhei Mori, Non Member, IEEE, and Naoki Ishikawa, Senior Member, IEEE

Abstract—In this paper, we propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization (HUBO) problem. This algorithm is based on the Grover adaptive search that originally supported HUBO with integer coefficients. Next, as an application example, we formulate multiple-input multiple-output maximum likelihood detection as a HUBO problem with real-valued coefficients, where we use the Gray-coded bit-to-symbol mapping specified in the 5G standard. The proposed approach allows us to construct a specific quantum circuit for the detection problem and to analyze specific numbers of required qubits and quantum gates, whereas other conventional studies have assumed that such a circuit is feasible as a quantum oracle. To further accelerate the convergence, we also derive a probability distribution of the objective function value and determine a unique threshold to sample better states for the quantum algorithm. Assuming a future fault-tolerant quantum computer, we demonstrate that the proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.

Index Terms—Grover adaptive search (GAS), quadratic unconstrained binary optimization (QUBO), higher-order unconstrained binary optimization (HUBO), multiple-input multiple-output (MIMO), maximum-likelihood detection (MLD).

1 INTRODUCTION

Marconi invented a practical long-range wireless system in 1895. Since then, driven by its intense demand, wireless communication has continued to become more sophisticated as if there were no limits. The limit of communication throughput is known as the Shannon capacity, which is constrained by the bandwidth, the signal-to-noise ratio (SNR), and the number of transmit and receive antennas for multiple-input multiple-output (MIMO) scenarios. Clearly, there are physical limits on bandwidth, SNR, and the number of antennas. The forward error correction techniques such as the low-density parity-check code (LDPC) and polar code can achieve near-capacity performance efficiently, but under a certain energy constraint, their performance is constrained by semiconductor miniaturization limits. Semiconductor companies may abandon their pursuit of Moore’s law in the 2020s [1, 2]. Marconi mentioned in 1932 that it is dangerous to put limits on wireless. However, wireless communication will reach its physical limits in the near future.

After the eventual end of Moore’s law, from a long-term perspective, we must rely on a different computing paradigm, and quantum computing in particular is believed to be promising. Since it is impossible to simulate a quantum computer in an efficient manner on a classical computer, quantum computers offer an essential speed advantage over classical computers [3]. Specifically, Shor’s algorithm [4] factors an \(n \)-bit integer with the complexity \(O(n^2 \log n \log \log n) \), while the best classical algorithm requires \(\exp(\Theta(n^{1/3} \log^{2/3} n)) \) operations [3], which is an exponential speedup. Grover’s algorithm [6] finds a specific element from a database of unsorted \(N \) elements with the query complexity \(O(\sqrt{N}) \), while the classic exhaustive search requires \(O(N) \) evaluations, which is a quadratic speedup.

Grover’s algorithm has been extended to support binary optimization problems. The pioneering algorithm, Grover adaptive search (GAS) [7], requires a complex quantum circuit to evaluate an objective function. To solve this issue, in [8, 9], Gilliam et al. used a quantum dictionary and allowed for the representation of an arbitrary polynomial function, including quadratic and higher-order terms. It was described in [9] that an example quadratic unconstrained binary optimization (QUBO) problem with integer coefficients was solved on a real-world quantum computer equipped with 32 qubits. Unlike other approaches such as the quantum annealing [10] and the quantum approximate optimization algorithm [11], the GAS proposed by Gilliam et al. is innovative in that it supports a higher-order unconstrained binary optimization (HUBO) problem with integer coefficients, which cannot be solved efficiently with state-of-the-art mathematical programming solvers on a classical computer, such as CPLEX and Gurobi.

In designing wireless systems, the trade-off between performance and complexity is in general a source of

1. \(O(\cdot) \) denotes the big-O notation, while \(\Theta(\cdot) \) denotes the big-\(\Theta \) notation [5].
concern for engineers and researchers. For example, low-complexity MIMO detectors and polar decoders inevitably involve the penalty of lower performance, and complexity is sacrificed to achieve optimal performance. In this situation, the speedup capability of quantum algorithms has inspired those who dream of striking the fundamental trade-off and achieving the optimal performance with reduced complexity. A pioneering attempt in wireless communications was provided in [12]. In [12], Botsinis et al. demonstrated the potential of quantum search algorithms to reduce the complexity involved in maximum likelihood detection (MLD). Specifically, they used the Grover-type algorithms, such as Boyer–Brassard–Høyer–Tapp (BBHT) [13] and the Dürr–Höyer (DH) searches [14], for performing MLD of data symbols on a quantum computer [15]. Following [12], a number of important studies have shown promising results [15–22]. However, in those studies, it was assumed that an ideal quantum circuit to evaluate the objective function is feasible as a quantum oracle, which will be detailed in Section 2. For more information on quantum optimization in wireless communications, a comprehensive survey can be found in [23, 24].

Against this background, we propose a quantum algorithm that supports a HUBO problem with real-valued coefficients. Then, as a first step toward breaking the trade-off between performance and complexity, we formulate the MIMO MLD as a real-valued HUBO problem and verify the capability of quadratic speedup. The major contributions of this paper are organized as follows.

1) While the conventional GAS [9] supports HUBO with integer coefficients, we modify the quantum algorithm to handle real-valued coefficients. This allows us to solve a HUBO problem even if the objective function contains real-valued coefficients, at the cost of one more query in the classical domain (CD).

2) As an application example, we formulate the objective function of MIMO MLD as a real-valued HUBO problem. This formulation is not a straightforward task because the objective function contains complex-valued random variables and a Frobenius norm calculation. This new formulation allows us to analyze specific numbers of qubits and quantum gates required in the constructed quantum circuits, which has been overlooked in conventional studies.

3) We clarify the probability distribution of the objective function value and determine the threshold used inside GAS more efficiently. Then, we demonstrate that the proposed threshold further accelerates the convergence of GAS to the optimal solution.

It is important to note that quantum circuits are sensitive to noise [25], and industrial applications require decades of effort and challenge. The noise induces quantum errors, and quantum error-correcting codes must be used to perform reliable arithmetic on a quantum computer. For example, if we use the surface code with code distance 27, which is one of the quantum error-correcting codes, a logical qubit requires 1568 physical qubits to correct errors [26]. This indicates that even a simple quantum circuit with fewer qubits, e.g., as in Fig. 1, may require many more physical qubits. Since this limitation is out of the scope of our contributions, we assume the realization of a future fault-tolerant quantum computer.

The remainder of this paper is organized as follows. Section 2 is a review of important related works, while in Section 3, we introduce the conventional GAS and its modification to support real-valued coefficients. In Section 4, a method to solve MIMO MLD on a quantum computer is proposed, and algebraic and numerical evaluations are given in Section 5. Finally, in Section 6, we conclude this paper. Italicized symbols represent scalar values, and bold symbols represent vectors and matrices. Table 1 summarizes a list of important mathematical symbols used in this paper.

2 Related Works

Quantum computation has the potential to break through the fundamental trade-off between performance and complexity. Hence, it has been applied to multi-user detection [12, 15–17, 19, 27, 28], multiple symbol differential detection [18], channel coding [29, 30], wireless routing [20, 21], indoor localization [22], intelligent reflecting surfaces [31, 32], and codeword optimization problem [33]. In this section, we introduce important related works targeting detection problems in wireless communications.

2.1 Multi-User Detection Using DH Algorithm [15]

Botsinis et al. proposed a novel method of applying the DH algorithm to multi-user detection [15], which is a detection problem for multi-user scenarios. The original DH algorithm [14] is terminated if the sum of the number of Grover iterations becomes greater than or equal to $22.5\sqrt{N}$, where N denotes the search space size. By contrast, Botsinis et al. modified the algorithm to terminate early for an arbitrary number of queries smaller than $22.5\sqrt{N}$. Additionally, the modified algorithm calculates the output of a low-complexity detector, such as the zero-forcing (ZF) or minimum mean square error (MMSE) detector, and exploits the output as an initial value to sample better states. Both
contributions are innovative in that they accelerate the quantum algorithm more for a specific problem in wireless communications.

The objective function presented in [15] involves a Frobenius norm of complex-valued variables. However, the quantum circuit that evaluates the norm is idealized as an oracle, and no specific construction method is considered. Unlike in [15], we consider specific quantum circuits and analyze their hardware and query complexities, which is the missing piece in the literature.

2.2 MIMO MLD Using Quantum Annealing [27]

Kim et al. formulated MIMO MLD as a QUBO problem and solved it using quantum annealing, the D-Wave 2000Q quantum annealer [27]. Specifically, binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK) symbols are represented as first-order functions with respect to information bits, while gray-coded 16 quadrature amplitude modulation (QAM) symbols are represented as second-order functions. Since the objective function of MLD contains the squared norm, it may result in a higher-order function such as fourth, eighth, or higher, which is not supported by quantum annealing. To solve this problem, Kim et al. used first-order functions that represent higher-order modulation, such as 16-QAM or 64-QAM, without the Gray coding. Then, the objective function contains first- and second-order terms only. To achieve performance equivalent to that of the Gray-coded case, the projection between before and after Gray coding is used in CD. That is, encoding at the transmitter and decoding at the receiver require additional steps.

Unlike in the above study [27] targeting quantum annealing, we directly handle the Gray-coded data symbols specified in the 5G standard owing to the proposed real-valued GAS that supports higher-order terms. Our approach is capable of supporting any signal modulation, such as star-QAM and constellation shaping schemes, as long as data symbols can be represented as a function of information bits.

2.3 MIMO MLD Using DH Algorithm [28]

Mondal et al. proposed a method to solve MIMO MLD using the DH algorithm [28]. Specifically, to improve the success probability of the algorithm, the uniform selection of the number of Grover operators, \(L \), was modified to a random value from the Gamma distribution, leading to a better selection of \(L \). Here, the Gamma distribution depends on a scale parameter, and the scale parameter depends on the exact number of solutions to be marked. Since the exact number of solutions varies dynamically depending on the threshold, the quantum counting algorithm [34] is crucial, as stated in [28]. Additionally, the concept of reducing the search space was verified.

As with [15], a specific construction method for a quantum circuit is not considered in [28]. Herein, we determine a threshold in accordance with the distribution of objective function values, which is known in advance.

3 Grover Adaptive Search (GAS)

GAS [9] supports binary optimization problems with integer coefficients, including QUBO and HUBO problems. It requires \(n \) qubits for \(n \) binary variables \(b \in \mathbb{B}^n \) and \(m \) qubits for encoding the objective function value \(E(b) \in \mathbb{Z} \), resulting in a circuit equipped with \(n + m \) qubits. The classic exhaustive search requires \(O(2^n) \) queries, while GAS requires \(O(\sqrt{2^n}) \) queries, which provides a quadratic speedup. GAS obtains a global minimum solution by amplifying the states in which the objective function value \(E(b) \) is smaller than the current threshold \(y_i \in \mathbb{Z} \). Here, \(y_i \) is a temporal minimum and \(i \) is an iteration count in CD. We measure the quantum states and update the threshold, which is repeated until a termination condition is satisfied.

Before running GAS, it is not a straightforward task to determine an appropriate number of qubits \(m \). The objective function value is expressed as two's complement. Let the objective function value or its coefficient be an integer \(k \). Then, \(m \) must satisfy [9]

\[
-2^{m-1} \leq k < 2^{m-1}.
\]

As the threshold \(y_i \) is updated in each iteration of GAS, the calculated value may become \(E(b) - y_i \), which results in a smaller minimum value or a larger maximum value. Thus, it is necessary to set a sufficient \(m \) that might handle \(E_{\text{max}} + E_{\text{min}} \) without overflow, where \(E_{\text{max}} \) and \(E_{\text{min}} \) are the maximum and minimum of \(E(b) \), respectively.

3.1 Conventional GAS for Integer QUBO [9]

We review a specific construction method for the quantum circuit used in GAS. First, a state preparation operator \(A_y \) is constructed, in which an \(n \)-qubit input register is transformed into the equal superposition of all states and an \(m \)-qubit input register is used to represent the corresponding value \(E(b) - y \). Taking the binary variables \(b \) as a binary number and converting it to a decimal number \(b \), the state should be [9]

\[
A_y |0\rangle_n |0\rangle_m = \frac{1}{\sqrt{2^m}} \sum_{b=0}^{2^n-1} |b\rangle_n |E(b) - y\rangle_m .
\]

This operator \(A_y \) can be composed of the Hadamard gates \(H \), controlled unitary operators \(U_{G}(\theta) \), and the inverse quantum Fourier transform (IQFT). Let \(k \) be a constant term in the objective function. The non-controlled unitary operator \(U_{G}(\theta) \) is defined such that [9]

\[
U_{G}(\theta)H^\otimes m |0\rangle_m = \frac{1}{\sqrt{2^m}} \sum_{l=0}^{2^m-1} e^{i\theta l} |l\rangle_m ,
\]

where we have \(\theta = 2\pi k/2^m \). That is, it is constructed by

\[
U_{G}(\theta) = R(2^{m-1}\theta) \otimes R(2^{m-2}\theta) \otimes \cdots \otimes R(2\theta)
\]

and the phase gate

\[
R(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix} .
\]

Here, phase advance represents integer addition and phase delay represents subtraction. Following (3), IQFT yields only one state that represents the original integer value of \(k \).
The interaction between a binary variable and a coefficient can be represented by a controlled qubit. Similarly, the interaction between binary variables can be represented by controlled qubits on a register $|b\rangle_n$. As exemplified in Fig. 1, the constant term $+1$ corresponds to $U_G(\pi/4)$, the term $+b_0$ corresponds to controlled $U_G(\pi/4)$, and the term $-2b_1b_2$ corresponds to controlled $U_G(-2\pi/4)$. Likewise, higher-order terms, such as third or fourth order, can be represented by increasing the number of controlled qubits.

In the classical Grover search [6], an oracle operator O identifies the states of interest and inverts the phases of these states. Only the inverted states are amplified by the Grover operator. The operator A_y above calculates the values $E(b) - y$ for all 2^n states in parallel. Here, states that are better than the current threshold y, i.e., states that satisfy $E(b) - y < 0$, should be marked to find the minimum solution. Since the calculated values are represented by the two’s complement, we can identify the negative states by focusing only on the beginning of the m qubits, and O can be constructed by applying the Z-gate only to that qubit.

Let the Grover diffusion operator be D [6]. The Grover operator is finally constructed by $G = A_y D A_y^T O$, and we evaluate $G^L A_y |0\rangle_{n+m}$, which will maximize the amplitudes of the states of interest. The ideal L that successfully maximizes the amplitude is given by [35]

$$L_{opt} = \left\lfloor \frac{\pi}{4} \sqrt{\frac{N}{N_s}} \right\rfloor,$$

where N denotes the search space size, 2^n, and N_s denotes the number of solutions.

From (6), the query complexity of GAS can be derived as $O(\sqrt{2^n})$ [9] in the quantum domain (QD). Since N_s, the number of states better than the current threshold, is unknown in advance, L is typically drawn from a uniform distribution ranging from 0 to a specific value that increases by a factor of $\lambda = 8/7$ at each iteration. GAS is terminated if the sum of the Grover operators is greater than $22.5\sqrt{2^n}$, which is the same as the conventional DH algorithm. In the Qiskit implementation, the number of times no improvement is observed is also considered as one of termination conditions. Overall, GAS is summarized in Algorithm 1.

As a specific example, Fig. 1 shows a quantum circuit of GAS that tries to minimize the objective function $E(b) = 1 + b_0 - 2b_1b_2$. The Hadamard gate at the beginning initializes the qubits and creates an equal superposition of $|0\rangle$. From (6), the query complexity of GAS can be derived as $O(\sqrt{2^n})$ [9] in the quantum domain (QD). Since N_s, the number of states better than the current threshold, is unknown in advance, L is typically drawn from a uniform distribution ranging from 0 to a specific value that increases by a factor of $\lambda = 8/7$ at each iteration. GAS is terminated if the sum of the Grover operators is greater than $22.5\sqrt{2^n}$, which is the same as the conventional DH algorithm. In the Qiskit implementation, the number of times no improvement is observed is also considered as one of termination conditions. Overall, GAS is summarized in Algorithm 1.

![Fig. 1. Quantum circuit corresponding to $E(b) = 1 + b_0 - 2b_1b_2$.](image1)

![Fig. 2. Output probabilities of the circuit shown in Fig. 1](image2)

Algorithm 1 Conventional GAS designed for integer coefficients [9]

Input: $E : \mathbb{B}^n \rightarrow \mathbb{Z}$, $\lambda = 8/7$

Output: b

1. Uniformly sample $b_0 \in \mathbb{B}^n$ and set $y_0 = E(b_0)$.
2. Set $k = 1$ and $i = 0$.
3. repeat
4. Randomly select the rotation count L_i from the set \{0, 1, ..., $[k - 1]$\}.
5. Evaluate $G^{L_i} A_{y_i} |0\rangle_{n+m}$ and obtain b and y_i. \{Grover search\}
6. if $y_i < y_i$ then
7. $b_{i+1} = b_i, y_{i+1} = y_i$, and $k = 1$. \{Improvement found\}
8. else
9. $b_{i+1} = b_i, y_{i+1} = y_i$, and $k = \min \{\lambda k, \sqrt{2^n}\}$. \{No Improvement\}
10. end if
11. $i = i + 1$.
12. until a termination condition is met.

Polynomials may contain real-valued coefficients. For dealing with real-valued coefficients, Gilliam et al. proposed the following two methods [9].
3.2.1 Integer Approximation

Multiplying the objective function by a positive constant does not affect the minimization process. A real-valued coefficient can be approximated by multiplying a large number and rounding down to an integer. Specifically, real coefficients are approximated as fractions with a common denominator, the denominator is multiplied to the objective function, and the numerators become approximated integer coefficients. As can be inferred from (1), the drawback is that the number of required qubits \(m \) increases as the value range of the objective function expands. If \(m \) is kept small, this approximation becomes less accurate.

3.2.2 Direct Encoding

In this method, an integer \(k \) in \(\theta = 2\pi k/2^m \) of (3) is replaced with a real-valued coefficient \(a \in \mathbb{R} \). Then, the output probability indicates multiple integers, which is known as the Fejér distribution. Specifically, the state \(U_{\text{Fejér}}(\theta)|0\rangle_m \) after applying IQFT to \(U_G(\theta)H^\otimes m|0\rangle_m \) is given by [9]

\[
U_{\text{Fejér}}(\theta)|0\rangle_m = \sum_{l=0}^{2^m-1} |g(\theta), g(2\pi l / 2^m)\rangle |l\rangle,
\]

where we have \(\theta = 2\pi a/2^m \) and \(g(\theta) = [1, e^{i\theta}, \ldots, e^{i(2^m-1)\theta}] / \sqrt{2^m} \). The number of qubits \(m \) must satisfy [9]

\[
-2^m-1 \leq a < 2^m-1.
\]

In this distribution, the probabilities of two integers close to a given real number \(a \) are greater than the other probabilities. For example, if \(m = 3 \) qubits and \(a = -2.5 \), from (7), \(-2 \) and \(-3 \) are observed with equal probability. If \(a = -2.3 \), \(-2 \) is observed more frequently than \(-3 \).

3.3 Proposed GAS for Real-Valued HUBO

As previously reviewed in Section 3.2, in the innovative study [9], Gilliam et al. proposed two methods for handling real-valued coefficients, but did not specifically investigate how GAS behaves in the case of direct encoding. In such a case, our evaluation, GAS samples a wrong value of the objective function, which obeys the Fejér distribution. For example, if the objective function value is \(-2.5 \), we may observe an integer value less than or equal to \(-3 \). A value lower than the actual value is updated as the minimum and set as a new threshold \(y \). Then, no states satisfy \(E(b) - y < 0 \), and one of all states is randomly sampled. As a result, GAS will not be able to obtain an optimal solution.

A possible solution here is that we ignore \(y \) evaluated in QD. Instead, we use \(b \) returned by GAS and calculate a correct objective function value \(y = E(b) \) in CD. Since the quantum circuit using the direct encoding amplifies the states of interest with high probability, with this simple modification, GAS obtains an optimal solution correctly. Overall, the above procedure is summarized in Algorithm 2.

We have two major drawbacks. First, it increases query complexity in CD, although the asymptotic order remains the same. Second, the probability amplification may not be sufficient, which is illustrated in Fig. 4.

2. This definition differs from [9], but is essentially identical.

Algorithm 2 Proposed GAS designed for real-valued coefficients.

Input: \(E : \mathbb{B}^n \to \mathbb{R}, \lambda = 8/7 \)
Output: \(b \)
1: Uniformly sample \(b_0 \in \mathbb{B}^n \) and set \(y_0 = E(b_0) \). \{This step will be improved in Section 4.3\}
2: Set \(k = 1 \) and \(i = 0 \).
3: repeat
4: Randomly select the rotation count \(L_i \) from the set \(\{0, 1, \ldots, [k-1]\} \).
5: Evaluate \(G^{L_i}A_{y_i}|0\rangle_{n+m'} \) and obtain \(b \).
6: Evaluate \(y = E(b) \) in CD. \{This is the additional step\}
7: if \(y < y_i \) then
8: \(b_{i+1} = b, y_{i+1} = y, \) and \(k = 1 \).
9: else
10: \(b_{i+1} = b, y_{i+1} = y_i, \) and \(k = \min\{\lambda k, \sqrt{2^m}\} \).
11: end if
12: \(i = i + 1 \).
13: until a termination condition is met.

![Fig. 3. Quantum circuit corresponding to \(E(b) = 1 + b_0 - 1.8b_1b_2b_3 \).](image)

![Fig. 4. Output probabilities of the circuit shown in Fig. 3, where only the top 16 states were shown.](image)

As a specific example, Fig. 3 shows a quantum circuit corresponding to the objective function \(E(b) = 1 + b_0 - 1.8b_1b_2b_3 \), where we set \(n = 4 \) and \(m = 3 \). Since we used the direct encoding method, \(-1.8b_1b_2b_3 \) was represented as \(U_G(-1.8\pi/4) \), and it was associated with three qubits \(|b_1\rangle, |b_2\rangle, \) and \(|b_3\rangle \). Additionally, Fig. 4 shows the output probabilities of Fig. 3, where only the top 16 states were shown for simplicity. The state of interest here is \(b = [0 \ 1 \ 1 \ 1] \) and...
where \(b = 1 - 1.8 = -0.8 < 0 \). As shown in Fig. 4, the states \((0111, -1)\) and \((0111, -2)\) were amplified as the number of Grover operators \(L \) increased. The bad state \((0111, -2)\) was observed with a lower probability than \((0111, -1)\). The wrong state \((1111, -1)\) was also observed with a low probability. This is the reason why the correction of the objective function value is required for real-valued GAS, as summarized in Algorithm 2.

3.4 Evaluation Metrics

In the literature, a quantum circuit has been evaluated by the number of qubits, gates, and its depth, while a quantum algorithm has been evaluated by query complexity.

3.4.1 Number of Qubits, Gates and Depth

The size of the quantum circuit determines its feasibility. As the number of qubits and gates in a quantum circuit increases, more advanced quantum computation becomes possible. At the same time, however, it becomes more susceptible to noise and more difficult to implement in hardware. In our evaluations, the number of required qubits is represented as \(n + m \), and the number of quantum gates is derived as a function with respect to \(n \) and \(m \).

3.4.2 Query Complexity [15]

To investigate query complexity, we count how many times the objective function is queried. Specifically, the query complexity in the classical domain (CD) is the number of times the objective function is evaluated, i.e., \(i \) in Algorithm 1. By contrast, the query complexity in the quantum domain (QD) is the number of times the Grover operator \(G \) is applied, i.e., \(L_0 + L_1 + \cdots + L_i \) in Algorithm 1.

4 Quantum Speedup for MIMO MLD

Conventional studies on quantum-assisted wireless communications have not considered a specific construction method of quantum circuit. In many cases, the circuit to calculate an objective function has been idealized as a blackbox quantum oracle. In this section, we formulate the MIMO MLD as a new real-valued HUBO problem, which can be represented by a quantum circuit, as described in Section 3. We also analyze the probability distribution of the objective value for enabling further speedup.

4.1 System Model

We consider a MIMO communication scenario with \(N_t \) transmit antennas and \(N_r \) receive antennas as illustrated in Fig. 5. The input \(n \)-bit sequence \(b = [b_0, b_1, \ldots, b_{n-1}] \in B^n \) is mapped to a symbol vector \(s = [s_0, s_1, \ldots, s_{N_t-1}] \in C^{N_t \times 1} \), where \(s_t \) for \(0 \leq t \leq N_t - 1 \) denotes a Gray-coded data symbol specified in 5G NR [36]. We represent this bit-to-symbol mapper as \(s = M(b) = M(b_0, \ldots, b_{n-1}) \), which will be defined in detail in Section 4.2. The baseband received symbols \(r \in C^{N_t \times 1} \) is given by

\[
r = \frac{1}{\sqrt{N_t}} H_c s + \sigma v,
\]

where \(H_c \in C^{N_t \times N_t} \) denotes the channel matrix, and \(v \in C^{N_t \times 1} \) denotes the additive white Gaussian noise. Here, we assume the narrowband Rayleigh flat fading. That is, each element of \(H_c \), \(h_{ut} \), and each element of \(v, v_{ur} \) follow the standard complex Gaussian distribution \(CN(0, 1) \) for \(0 \leq u \leq N_r - 1 \) and \(0 \leq t \leq N_t - 1 \). The SNR is defined as \(\gamma = 1/\sigma^2 \) because the symbol vector has the power constraint \(E[|s/\sqrt{N_t}|^2] = E[\sum_{t=0}^{N_t-1}|s_t|^2/N_t] = 1 \). The constellation size, or modulation order, is denoted by \(L_c \), and the transmission rate is calculated by

\[
n = N_t \log_2(L_c) \text{ [bit/symbol]}.
\]

From (11), the exhaustive search by a classical computer requires the computational time complexity of \(O(2^n) \), which is equivalent to the query complexity in CD. Both complexities increase exponentially with the transmission rate \(n \).

To mitigate the exponential complexity, a number of low-complexity detectors have been proposed in the literature. The classic ZF detector uses the pseudo-inverse matrix of

\[
W_{ZF} = (H_c^H H_c)^{-1} H_c^H
\]

and enables independent detection of data symbols as

\[
\hat{b}_0, \ldots, \hat{b}_{n-1} = M^{-1}(W_{ZF} r),
\]

where \(M^{-1}(\cdot) \) denotes the hard-decision symbol-to-bit demapper. Similarly, the MMSE detector uses

\[
W_{MMSE} = (H_c^H H_c + \sigma^2 I)^{-1} H_c^H
\]

and obtains

\[
\hat{b}_0, \ldots, \hat{b}_{n-1} = M^{-1}(W_{MMSE} r).
\]

An MMSE-based interference cancelation method has been adopted in typical wireless standards such as 5G NR. The performance of ZF or MMSE detector is worse than that of MLD. In general, low-complexity detectors improve complexity at the sacrifice of performance.

The above system model and detectors are typical and common in the field of wireless communications. Since we consider a general MIMO system, the simulation results
given in this paper are the same as those considering a multi-carrier scenario without inter-subcarrier interference, or an uplink multi-user scenario in which N_i single-antenna user terminals transmit their symbols and these symbols are received simultaneously at a base station equipped with N_r antennas.

4.2 Proposed Method to Transform MLD into HUBO

As described in Section 3, the proposed GAS is capable of solving a real-valued HUBO problem. We transform the objective function of MIMO MLD (12) into a HUBO of solving a real-valued HUBO problem. We transform the objective function of (12) into a HUBO form. Further, it is known that the objective function can be transformed into a quadratic form in the 64-QAM case.

Example (QPSK): As a specific example, we consider the QPSK case (18) with $N_t = N_r = 2$. The objective function of (12) can be transformed into

$$E(b_0, b_1, b_2, b_3)$$

$$= 2 \sum_{u=0}^{N_t-1} \sum_{t=0}^{N_r-1} (\text{Re}(h_{ut} r_u^* b_{2t} - \text{Im}(h_{ut} r_u^* b_{2t+1})$$

$$+ 2a_1(b_0 b_2 + b_1 b_3) + 2a_2(b_0 b_3 - b_1 b_2)$$

$$- (a_1 + a_2)(b_0 + b_3) - (a_1 - a_2)(b_1 + b_2),$$

(21)

where we have $a_1 = \text{Re}(h_{00} h_{01}^*) + \text{Re}(h_{10} h_{11}^*)$ and $a_2 = \text{Im}(h_{00} h_{01}^*) + \text{Im}(h_{10} h_{11}^*)$. This function (21) is in a quadratic form.

Example (16-QAM): Additionally, Fig. 7 exemplifies a specific quantum circuit for the 16-QAM case with $N_t = N_r = 2$, where we have $n = 8$ qubits for binary variables, $m = 6$ qubits for real-valued encoding, and random channel coefficients. As shown in Fig. 7, the objective function results in a quartic form.

4.3 Proposed Threshold for Further Speedup

GAS obtains a global minimum solution by updating the threshold value y_t and amplifying the probability amplitudes corresponding to values smaller than the threshold. The query complexity can be reduced by setting the initial threshold in a different manner rather than the classic random sampling, although the asymptotic performance may not change. In this section, we derive the probability distribution of the objective function value, and use it to determine a strict threshold, which enables further speedup.

If the information bits in (12) are estimated correctly, the minimum value of (12) is the Frobenius norm of additive noise $v \in \mathbb{C}^{N_r \times 1}$ as follows:

$$E_{\text{min}} = \sigma^2 \sum_{u=0}^{N_r-1} |v_u|^2.$$

(22)

That is, E_{min} depends on the noise variance σ^2, which is typically known at the receiver, and instantaneous noise v_u, which is unknown in any case. Since the noise is assumed to follow the complex Gaussian distribution, the magnitude of
the norm follows the Rayleigh distribution, and its square follows the exponential distribution. As a result, E_{min} in (22) follows the Erlang distribution, whose probability density function is

$$f(y) = \frac{\gamma^N y^{N-1} e^{-\gamma y}}{(N-1)!}, \quad (23)$$

where we have SNR $\gamma = 1/\sigma^2$. The corresponding cumulative distribution function (CDF) is given by

$$F(y) = \Pr[Y \leq y] = 1 - e^{-\gamma y} \sum_{u=0}^{N-1} \frac{(\gamma y)^u}{u!}. \quad (24)$$

As an example, if we consider the case with $N_\gamma = 2$, the CDF is calculated as

$$F(y) = \Pr[Y \leq y] = 1 - e^{-\gamma y}(1 + \gamma y) \quad (25)$$

from (24). Fig. 8 exemplifies CDF (25) when SNR is varied from $\gamma = 5$ to 20 dB. Additionally, the CDF of the simulated objective function values with $N_\gamma = 2$ and QPSK is also plotted. As shown in Fig. 8, if the SNR is sufficient, such as above 10 dB, the theoretical and simulated values are identical. Thus, it is possible to know in advance that the minimum value to be calculated is below a certain threshold, which can be determined with a very high degree of certainty. Given an SNR γ, theoretical values of (24) can be used to determine a strict threshold.

From (24), the probability that the threshold y is below the minimum value is

$$\Pr[Y > y] = e^{-\gamma y}(1 + \gamma y). \quad (26)$$

Let \tilde{y} be the threshold to be determined and P be a small constant probability, such as $P = 10^{-3}$ and 10^{-4}. Replacing y and $\Pr[Y > y]$ in (26) with \tilde{y} and P yields

$$P = e^{-\gamma \tilde{y}}(1 + \gamma \tilde{y}). \quad (27)$$

Dividing both sides by $-e$ gives

$$-\frac{P}{e} = -(1 + \gamma \tilde{y})e^{-(1 + \gamma \tilde{y})}. \quad (28)$$

Then, using the Lambert W function, we obtain

$$W_{-1}\left(-\frac{P}{e}\right) = -(1 + \gamma \tilde{y}) = -\left(1 + \frac{\tilde{y}}{\sigma^2}\right), \quad (29)$$

where $W_{-1}(\cdot)$ denotes the lower branch of the Lambert W function, i.e., $W_{-1}(\cdot) \leq -1$ and $W_{-1}(-1/\sigma^2) = -1$. Finally, the threshold to be determined is

$$\tilde{y} = \frac{\sigma^2}{\text{known}} \frac{\nu}{\text{known}}, \quad (30)$$

which is similar to (22), and

$$\nu = -1 - W_{-1}\left(-\frac{P}{e}\right). \quad (31)$$

Here, ν is a positive constant and is calculated once before running our proposed algorithm. For example, we have $\nu = 9.23$ if $P = 10^{-3}$ and $\nu = 11.8$ if $P = 10^{-4}$.

For further speedup, we opt to use the output of the MMSE detector (15). In [15], Botsinis et al. proposed the MMSE-based threshold of

$$\tilde{y} = E(\tilde{b}_0), \quad (32)$$

where we have a rough estimate $\tilde{b}_0 = M^{-1}W_{\text{MMSE}}$. Our proposed threshold \tilde{y}, which is simpler than \tilde{y}, can be used together with \tilde{y}. Specifically, we calculate both \tilde{y} and \tilde{y} at the beginning of Algorithm 2, set the initial threshold as the smaller of the two, and initialize the first solution with \tilde{b}_0. Let b_0 be a random n-bit sequence. The initial threshold
used for the proposed Algorithm 2 can be summarized as follows:

\[
y_0 = \begin{cases}
E(b_0) & \text{(Original GAS [9])} \\
\bar{y} & \text{(MMSE-based threshold [15])} \\
imin(\bar{y}, \hat{y}) & \text{(Proposed threshold)} \\
min(\bar{y}, \hat{y}) & \text{(Proposed combination)}
\end{cases}. \tag{33}
\]

One problem with the proposed threshold \(\hat{y} \) and the combination \(\min(\bar{y}, \hat{y}) \) is that both may become smaller than the actual minimum. In this case, since there are no states of interest, GAS will be in a state where the solution \(b_0 \) in Algorithm 2 is not updated. The probability of this undesired event occurring is \(P \), i.e.,

\[
Pr[\bar{y} < E_{\text{min}}] = Pr[\min(\bar{y}, \hat{y}) < E_{\text{min}}] = P, \tag{34}
\]

because we have a relationship \(Pr[\bar{y} < E_{\text{min}}] = 0. \) Then, it can be expected that the proposed threshold \(\hat{y} \) may degrade the bit error ratio (BER) significantly if \(P \) is not appropriate. Specifically, the BER of the proposed threshold \(\hat{y} \) is approximated by

\[
P \cdot 0.5 + (1 - P) \cdot \text{BER}_{\text{MLD}}, \tag{35}
\]

where \(\text{BER}_{\text{MLD}} \) is the BER of MLD. In the proposed combination method, we initialize the first solution with the MMSE output \(b_0 \). Since the initial threshold \(\min(\bar{y}, \hat{y}) \) becomes smaller than the actual minimum with probability \(P \), the BER of the proposed combination method is approximated by

\[
P \cdot \text{BER}_{\text{MMSE}} + (1 - P) \cdot \text{BER}_{\text{MLD}}, \tag{36}
\]

where \(\text{BER}_{\text{MMSE}} \) is the BER of the MMSE detector. Both (35) and (36) indicate that the design of \(P \) has no significant effect as long as it is smaller than \(\text{BER}_{\text{MLD}} \), which can be calculated exactly in a closed form in advance. In our performance analysis, the effect of \(P \) will be investigated in Fig. 13.

5 Performance Analysis

In this section, we analyze the number of quantum gates required by GAS, which is represented as a function of the numbers of qubits \(n \) and \(m \). Then, we investigate the performance of the proposed algorithm in terms of convergence. Here, both integer approximation and direct encoding are considered. Finally, we evaluate the effects of the proposed threshold.

5.1 Algebraic Analysis of the Number of Quantum Gates

A quantum circuit for GAS is composed of \(H, X, Z, \) phase, controlled-phase gates, and the IQFT. In particular, the state preparation operator \(A_y \) is the most complex part corresponding to the objective function and is dynamically configured depending on the threshold \(y \). In the quantum circuit \(A_y \), the number of controlled-phase gates depends on the number of terms in the objective function. We therefore derive the number of terms in the objective function that correspond to each order in an algebraic manner. Ignoring the power scaling factor, the objective function of MIMO MLD (12) is transformed into

\[
\sum_{u=0}^{N_t-1} |ru - hu_0s_0 - hu_1s_1 - \cdots - hu_{(N_t-1)}s_{(N_t-1)}|^2
\]

\[
\sum_{u=0}^{N_t-1} (ru - hu_0s_0 - hu_1s_1 - \cdots - hu_{(N_t-1)}s_{(N_t-1)})^2
\]

\[
(ru - hu_1s_0 - hu_1s_1 - \cdots - hu_{(N_t-1)}s_{(N_t-1)})^2, \tag{37}
\]

Here, we focus on three types of terms: first-order terms such as \(-ru_0h_0s_0\) and \(-ru_0h_0s_0\), squares of the same symbol such as \(|h_{00}|^2|s_0|^2\) and \(|h_{01}|^2|s_1|^2\), and products of two symbols such as \(h_{00}h_{10}|s_0s_1|^2\) and \(h_{00}h_{01}|s_0s_1|^2\).

For example, in the relatively simple QPSK case, squares of the same symbol result in constant terms because of (18). First-order terms directly result in first-order terms with respect to binary variables. Products between two symbols result in products of binary variables. If \(N_t = 2 \) and \(N_p = 2 \), four second-order terms appear: \(b_0b_1, b_1b_3, b_0b_3, \) and \(b_1b_2 \). The number of corresponding terms is equal to the combination of two choices from \(N_t \) antennas, e.g.,

\[
\binom{N_t}{2} = \frac{N_t(N_t - 1)}{2} = \frac{n(n-2)}{8}, \tag{38}
\]

where we have the relationship \(n = N_t \cdot \log_2(L_c) = 2N_t \). In total, the number of second-order terms is calculated as \(4 \cdot \binom{N_t}{2} = n(n-2)/2\).

Extending the QPSK case, we counted the number of terms in the objective function for each modulation order and derived the number of quantum gates required by GAS. Table 2 summarizes the derived results, where the quantum gates were categorized by type. As given in Table 2, the number of controlled-phase gates mainly depends on the number of binary variables \(n \). Here, 1-CR represents the controlled-phase gate, and 2-CR, 3-CR, \(\cdots \) represent the multi-controlled-phase gates. Since we have the relationship \(n = N_t \cdot \log_2(L_c) \), the quantum circuit becomes more complex on the order of the square of the number of antennas \(N_t \) and the modulation order \(L_c \).

We analyze the number of quantum gates in the entire circuit \(G^L_i \cdot A_y |0\rangle_{n+m} \) where we have \(G = A_y \cdot D^H \cdot O \). In each iteration, the Grover operator is applied \(L_i \) times, where \(L_i \) is a uniform random number. \(O \) is composed of a single \(Z \) gate and \(D \) is the Grover diffusion operator, each of which is repeated \(L_i \) times. The other part contains \((2L_i+1)(n+m)\) H gates, \((2L_i+1)m\) phase gates, \((2L_i+1)c\) controlled-phase gates, and \((2L_i+1)\) IQFT, where \(c \) is the number of controlled-phase gates given in Table 2. In summary, \(N_t \) and \(L_c \) affect the number of gates on the order of square, while \(m \) and \(L_i \) affect it on the linear order. Here, the only parameter that can be designed is \(m \). Later, we investigate whether the real-value support of GAS can reduce \(m \).

5.2 Effects of Integer Approximation

First, Fig. 9 shows BER of the classic MLD and the proposed formulations that consider the integer approximation with different accuracies. Specifically, the real values were multiplied by 1, 3, 10 or 20, and approximated by
TABLE 2
Number of quantum gates required for A_y (n-bit transmission with m-bit accuracy)

Gate	BPSK	QPSK	16-QAM	64-QAM
H	$n + m = O(n + m)$			
R	$m = O(m)$	$m = O(m)$	$m = O(m)$	$m = O(m)$
1-CR	$nm = O(nm)$	$nm = O(nm)$	$nm = O(nm)$	$nm = O(nm)$
2-CR	$n(n - 1)m/2 = O(n^2m)$	$n(n - 2)m/2 = O(n^2m)$	$n(n - 3)m/2 = O(n^2m)$	$n(n - 4)m/2 = O(n^2m)$
3-CR	$0 = O(0)$	$0 = O(0)$	$0 = O(0)$	$0 = O(0)$
4-CR	$0 = O(0)$	$0 = O(0)$	$0 = O(0)$	$0 = O(0)$
5-CR	$0 = O(0)$	$0 = O(0)$	$0 = O(0)$	$0 = O(0)$
6-CR	$0 = O(0)$	$0 = O(0)$	$0 = O(0)$	$0 = O(0)$
IQFT	$1 = O(1)$	$1 = O(1)$	$1 = O(1)$	$1 = O(1)$

rounding them to the nearest integers. As references, the BER curves of ZF, MMSE, and the real-valued formulation were also plotted. To analyze the effects of approximation accuracy, BER values were calculated using the state-of-the-art optimization solver, IBM CPLEX, instead of quantum simulations. As shown in Fig. 9, BER performance varied significantly depending on the approximation accuracy. The high approximation accuracy leads to large integers, resulting in an increase in the number of qubits m. In contrast, the proposed real-valued formulation achieved the same performance as the classic MLD. This observation indicates that the proposed real-valued GAS algorithm has to be invoked to achieve the quantum speedup of the MIMO MLD problem.

Next, Fig. 10 shows the average objective function values when increasing the number of iterations, where iterations in both CD and QD were considered. We assumed a sufficiently high SNR and the fixed channel matrix given in (39). We used the original GAS with a random initial threshold and terminated the simulation if the objective function value remained the same more than 20 times in CD. In Fig. 10(a), real values were multiplied by 3 and rounded down to integers, and in Fig. 10(b), real values were multiplied by 7 and were approximated. The number of qubits m required for encoding the value $E(b^*) - y_i$ was set to an integer

3. Note that we observed the same trend for different channel coefficients and SNRs.
\[H_c = \begin{bmatrix} 0.748510754737062 - 0.014877263039446401j & 1.3215983896521515 + 0.06298233870206783j \\ 0.6371630706424066 - 0.14262155021296025j & -0.3888005272494009 - 0.15170387681055802j \end{bmatrix} \]. (39)

sufficient not to overflow, i.e., \(m = 6 \) in Fig. 10(a) and \(m = 8 \) in Fig. 10(b). It should be noted again that the integer approximation requires more qubits to encode the value. Because quantum simulations with \(n + m = 16 \) qubits were time-consuming, we fixed the input bits to 00110101 in Fig. 10(b), while the bits were generated randomly in Fig. 10(a). For a clear illustration, we added a constant value to the objective function so that \(E_{\text{min}} = 0 \). It was observed in Fig. 10(a) that the query complexities of GAS in CD and QD were almost the same as the exhaustive search of MLD. By contrast, in Fig. 10(b), GAS exhibited better query complexities in both CD and QD than did MLD. That is, the advantage of quadratic speedup improved as the problem size increased.

5.3 Effects of Direct Encoding

Similar to Fig. 10, Fig. 11 shows the average objective function values when increasing the number of iterations in CD and QD, where we used the direct encoding. The simulation parameters were the same as those used in Fig. 10 except for the real-valued expression and the number of required qubits \(m \). Specifically, the number of qubits \(m = 6 \) in Fig. 10(a) was reduced to \(m = 5 \) in Fig. 11(a). Similarly, the number of qubits was reduced from \(m = 8 \) to \(m = 6 \) in Fig. 11(b). As shown in Fig. 11, the same trend as in Fig. 10 was observed. The important aspect here is that almost the same query complexities were achieved despite the reduction in the number of required qubits \(m \). Hence, our proposed real-valued GAS is capable of reducing the size of quantum circuits although it maintains a good performance.

Depending on the channel coefficients and noise, the integer approximation requires a different number of qubits. Since both follow the standard Gaussian distribution, the probability of 0 is the highest, and to deal with smaller values, a larger factor must be multiplied to the objective function, resulting in a larger \(m \). By contrast, the direct encoding is capable of keeping \(m \) constant. The only disadvantage is that the probability amplification of \(G^L \) may become insufficient, which was also demonstrated in Fig. 4.

To investigate the disadvantage of the proposed real-valued GAS and insufficient amplification, in Fig. 12, we generated random channel coefficients and investigated the probability density distribution of the number of queries required to reach the optimal solution, where the parameters were the same as those used in Fig. 10(a) except for \(m \) and \(m \) was minimized depending on the random channel coefficients. It was observed in Fig. 12 that query complexities in CD and QD increased compared with the ideal case. Here, the same trend was observed for different SNRs. Albeit at this expense, the proposed algorithm could reach the optimal solution in any case. Note that the integer approximation with the same \(m \) as in the direct encoding could not be plotted in Fig. 12 because it was unable to reach the solution in most cases.

5.4 Effects of Initial Threshold for Further Speedup

Finally, in Fig. 13, we evaluated the proposed initial threshold for GAS described in Section 4.3. Here, we averaged BER with random channel coefficients and noise, considered SNR of 20 dB, and assumed idealized quantum circuits to examine the impact of the initial threshold only. Other parameters were the same as those used in Fig. 11(a). Fig. 13(a) shows the number of queries in CD, while Fig. 13(b) shows these in QD. Note that the vertical axis is BER rather than the objective function value. Specifically, at the left end of Fig. 13, BER of 0.5 corresponds to the bit errors between the input bits \(b \) and the random bits \(b_0 \), and BER of \(6.8 \times 10^{-3} \) corresponds to the errors between \(b \) and the MMSE output \(\bar{b}_0 \). As shown in Fig. 13, in both CD and QD, the proposed threshold, \(\tilde{y} \), converged to the optimal solution.
Fig. 12. Number of queries required to reach the optimal solution.

Fig. 13. BER transition with respect to the number of iterations, where we used random channel coefficients and SNR = 20 dB.

much faster than the classic random threshold. The slopes in the random and proposed thresholds differed significantly. This is because the random threshold ranged from the best to the worst cases, resulting in slow convergence in some cases. By contrast, the proposed threshold is determined by constant factors, P and SNR, which constantly improved convergence in many cases.

It was also found in Fig. 13 that the proposed threshold achieved the best performance for $P = 10^{-4}$ and exhibited lower performance for $P = 10^{-3}$. As described in Section 4.3, P equals the probability that GAS is in a state where the solution is not updated. That is, an event of BER = 0.5 occurred with probability $P = 10^{-3}$, and it resulted in the error floor of BER around 10^{-3}. This result indicates that the parameter P has no significant impact if it is smaller than BER. Since the exact BER at a given SNR can be calculated in a closed form in advance, an appropriate P can be also determined in advance accordingly.

Additionally, in Fig. 13, the proposed threshold combined with the MMSE output achieved a faster convergence compared with the conventional MMSE only case. This improvement was greater for CD than for QD. That is, the proposed threshold is particularly useful for improving the query complexity in CD. In our simulations, this improvement increased upon increasing SNR, which can be verified from the results shown in Fig. 8. As confirmed in Fig. 8, the gap between simulated and theoretical values decreased upon increasing SNR.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed the GAS-based quantum algorithm that supports real-valued HUBO. Then, as an application example, we formulated the MIMO MLD as a HUBO problem. The complexity of MLD exponentially increases with the transmission rate, and low-complexity detectors sacrifice the achievable performance. Unlike conventional studies, we constructed specific quantum circuits instead of assuming an idealized quantum oracle. This enabled us to analyze the number of qubits and quantum gates in an algebraic manner. To further accelerate the algorithm, we derived the probability distribution of the objective function value and conceived a unique threshold to sample better states. Numerical simulations demonstrated that the proposed algorithm could reduce query complexity in CD and achieve quadratic speedup in QD.

Since this paper focused on a specific construction method for quantum circuits and their algebraic analysis, we considered only the hard-decision MLD, instead of error-correcting codes and soft-decision decoding for classical bits, which are common in wireless standards. The error correction capability improves with increasing code distance and length. For example, the maximum code length of 5G NR is 1024 for polar code and 8448 for LDPC. However, with the current computing resources, it is a challenging task to represent such a large-scale system as a specific quantum circuit. The proposed real-valued GAS can be applied to the soft-decision decoding, which will be addressed in our future work.
ACKNOWLEDGEMENT

IBM, CPLEX and Qiskit are trademarks of International Business Machines Corporation.

REFERENCES

[1] M. M. Waldrop, “The chips are down for Moore’s law,” Nature News, vol. 530, no. 7589, p. 144, Feb. 2016.
[2] F. B. McCormick, J. Shalf, A. Mitchell, A. L. Lentine, and M. Marinella, “Solving the information technology challenge beyond Moore’s law: A new path to scaling,” Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), Tech. Rep. SAND-2018-2328R, Mar. 2018.
[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed. Cambridge ; New York: Cambridge University Press, 2010.
[4] P. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science, Nov. 1994, pp. 124–134.
[5] D. E. Knuth, “Big Omicron and big Omega and big Theta,’’ ACM SIGACT News, vol. 8, no. 2, pp. 18–24, 1976.
[6] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing - STOC ’96. Philadelphia, Pennsylvania, United States: ACM Press, 1996, pp. 212–219.
[7] D. Bulger, W. Baritompa, and G. Wood, “Implementing pure adaptive search with Grover’s quantum algorithm,” Journal of Optimization Theory and Applications, vol. 116, pp. 517–529, Mar. 2003.
[8] A. Gilliam, M. Pistoia, and C. Gonciulea, “Optimizing quantum search using a generalized version of Grover’s algorithm,” arXiv:2005.06468 [quant-ph], May 2020.
[9] A. Gilliam, S. Woerner, and C. Gonciulea, “Grover adaptive search for constrained polynomial binary optimization,” Quantum, vol. 5, p. 428, Apr. 2021.
[10] T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Phys. Rev. E, vol. 58, pp. 5355–5363, Nov 1998.
[11] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv:1411.4028 [quant-ph], Nov. 2014.
[12] P. Botsinis, S. X. Ng, and L. Hanzo, “Quantum search algorithms, quantum wireless, and a low-complexity maximum likelihood iterative quantum multi-user detector design,” IEEE Access, vol. 1, pp. 94–122, 2013.
[13] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschritte der Physik, vol. 46, no. 4-5, pp. 493–505, 1998.
[14] C. Durr and P. Høyer, “A quantum algorithm for finding the minimum,” arXiv:quant-ph/9807014, Jan. 1999.
[15] P. Botsinis, S. X. Ng, and L. Hanzo, “Fixed-complexity quantum-assisted multi-user detection for CDMA and SDMA,” IEEE Transactions on Communications, vol. 62, no. 3, pp. 990–1000, Mar. 2014.
[16] P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Low-complexity soft-output quantum-assisted multiuser detection for direct-sequence spreading and slow subcarrier-hopping aided SDMA-OFDM systems,” IEEE Access, vol. 2, pp. 451–472, 2014.
[17] P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo, “Iterative quantum-assisted multi-user detection for multi-carrier interleave division multiple access systems,” IEEE Transactions on Communications, vol. 63, no. 10, pp. 3715–3727, Oct. 2015.

[18] ——, “Noncoherent quantum multiple symbol differential detection for wireless systems,” IEEE Access, vol. 3, pp. 569–596, 2015.
[19] W. Ye, W. Chen, X. Guo, C. Sun, and L. Hanzo, “Quantum search-aided multi-user detection for sparse code multiple access,” IEEE Access, vol. 7, pp. 52804–52817, 2019.
[20] D. Alanis, P. Botsinis, Z. Babar, H. V. Nguyen, D. Chandra, S. X. Ng, and L. Hanzo, “A quantum-search-aided dynamic programming framework for pareto optimal routing in wireless multihop networks,” IEEE Transactions on Communications, vol. 66, no. 8, pp. 3485–3500, Aug. 2018.
[21] ——, “Quantum-aided multi-objective routing optimization using back-tracing-aided dynamic programming,” IEEE Transactions on Vehicular Technology, vol. 67, no. 8, pp. 7856–7860, Aug. 2018.
[22] P. Botsinis, D. Alanis, S. Feng, Z. Babar, H. V. Nguyen, D. Chandra, S. X. Ng, R. Zhang, and L. Hanzo, “Quantum-assisted indoor localization for uplink mm-wave and downlink visible light communication systems,” IEEE Access, vol. 5, pp. 23327–23351, 2017.
[23] P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo, “Coherent versus non-coherent quantum-assisted solutions in wireless systems,” IEEE Wireless Communications, vol. 24, no. 6, pp. 144–153, Dec. 2017.
[24] P. Botsinis, D. Alanis, Z. Babar, H. V. Nguyen, D. Chandra, S. X. Ng, and L. Hanzo, “Quantum search algorithms for wireless communications,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1209–1242, 2019.
[25] K. Fujii, “Noise threshold of quantum supremacy,” arXiv:1610.03632 [quant-ph], Oct. 2016.
[26] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits,” Quantum, vol. 5, p. 433, Apr. 2021.
[27] M. Kim, D. Venturelli, and K. Jamieson, “Leveraging quantum annealing for large MIMO processing in centralized radio access networks,” Proceedings of the ACM Special Interest Group on Data Communication, pp. 241–255, Aug. 2019.
[28] S. Mondal, M. R. Laskar, and A. K. Dutta, “ML criterion based signal detection of a MIMO-OFDM system using quantum and semi-quantum-assisted modified DHA/BIBHT search algorithm,” IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1688–1698, Feb. 2021.
[29] Z. Babar, Z. B. Kaykac Egilmez, L. Xiang, D. Chandra, R. G. Maunder, S. X. Ng, and L. Hanzo, “Polar codes and their quantum-domain counterparts,” IEEE Communications Surveys Tutorials, vol. 22, no. 1, pp. 123–155, 2020.
[30] T. Matsumine, T. Koike-Akino, and Y. Wang, “Channel decoding with quantum approximate optimization algorithm,” in IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 2574–2578.
[31] T. Ohyama, Y. Kawamoto, and N. Kato, “Intelligent reflecting surface (IRS) allocation scheduling method using combinatorial optimization by quantum computing,” IEEE Transactions on Emerging Topics in Computing, in press.
[32] ——, “Quantum computing based optimization for intelligent reflecting surface (IRS)-aided cell-free network,” IEEE Transactions on Emerging Topics in Computing, in press.
[33] N. Ishikawa, “Quantum speedup for index modulation,” IEEE Access, vol. 9, pp. 11114–111124, 2021.
[34] G. Brassard, P. Høyer, and A. Tapp, “Quantum counting,” arXiv:quant-ph/9805082, vol. 1443, pp. 820–831, 1998.
[35] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and estimation,” arXiv:quant-ph/0005055, vol. 305, pp. 53–74, 2002.
[36] 3GPP, “TS 138 211 - V15.2.0 - 5G; NR: Physical channels and modulation (3GPP TS 38.211 version 15.2.0 Release 15),” 2018.