Study of $b\bar{b}$ correlations in high energy proton-proton collisions

Citation for published version:
Clarke, P, Cowan, G, Eisenhardt, S, Muheim, F, Needham, M, Playfer, S & Collaboration, LHC 2017, 'Study of $b\bar{b}$ correlations in high energy proton-proton collisions' Journal of High Energy Physics, vol 1711, Aaij:2017pvu, pp. 030. DOI: 10.1007/JHEP11(2017)030

Digital Object Identifier (DOI):
10.1007/JHEP11(2017)030

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of High Energy Physics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Study of $b\bar{b}$ correlations in high energy proton-proton collisions

The LHCb collaboration

E-mail: Ivan.Belyaev@cern.ch

ABSTRACT: Kinematic correlations for pairs of beauty hadrons, produced in high energy proton-proton collisions, are studied. The data sample used was collected with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV and corresponds to an integrated luminosity of 3 fb$^{-1}$. The measurement is performed using inclusive $b \rightarrow J/\psi X$ decays in the rapidity range $2 < y^{J/\psi} < 4.5$. The observed correlations are in good agreement with theoretical predictions.

KEYWORDS: Forward physics, Hadron-Hadron scattering (experiments), Heavy quark production, Particle and resonance production, QCD

ArXiv ePrint: 1708.05994
1 Introduction

The production of heavy-flavour hadrons in high energy collisions provides important tests for the predictions of quantum chromodynamics (QCD). Open-charm hadron production has been studied in pp collisions at the Large Hadron Collider (LHC) by the LHCb collaboration at centre-of-mass energies $\sqrt{s} = 5, 7$ and 13 TeV \cite{1-3}, by the ATLAS collaboration at $\sqrt{s} = 7$ TeV \cite{4} and by the ALICE collaboration at $\sqrt{s} = 2.76 \text{ and } 7$ TeV \cite{5-8}. In addition, the CDF collaboration has studied the production of open-charm hadrons in $p\bar{p}$ collisions at the Tevatron at $\sqrt{s} = 1.96$ TeV \cite{9, 10}. For beauty hadrons, the production cross-sections in high energy pp and $p\bar{p}$ collisions have been studied by a number of collaborations \cite{11-14}. Most recently, at the LHC, the LHCb collaboration at $\sqrt{s} = 7, 8$ and 13 TeV and the CMS collaboration at $\sqrt{s} = 8$ TeV studied beauty hadron production using semileptonic decays \cite{15, 16}, inclusive decays of beauty hadrons into J/ψ mesons \cite{17-19}, and exclusive $B^0 \to J/\psi K(892)^0$, $B^+ \to J/\psi K^+$, $B^0_s \to J/\psi K^+K^-$ \cite{20-23}, $\Lambda^0_b \to J/\psi pK^-$ \cite{24, 25} and $B^+_c \to J/\psi \pi^+$ \cite{26, 27} decays. The transverse momentum, p_T, and rapidity, y, spectra are found to be in agreement with calculations at next-to-leading order (NLO). These calculations are made using the general-mass variable-flavour-number scheme (GMVFNS) \cite{28-32}, POWHEG \cite{33} and fixed-order with next-to-leading-log resummation (FONLL) \cite{34-39}. For B^+_c mesons, a good agreement in the shapes of the p_T and y spectra is found \cite{27} with calculations based on a complete order-a_s^4 approach \cite{40-43}. However, the inclusive single-heavy-flavour hadron transverse momentum and rapidity spectra have limited sensitivity to the subprocesses of the production mechanism and the size of higher-order QCD corrections.
The kinematic correlations between the heavy quark and antiquark provide additional information and can enable a better understanding of the production mechanism, such as the contribution of the gluon-splitting, flavour-creation and flavour-excitation processes, as well as the role of higher-order corrections. Such correlations have been studied for pairs of open-charm mesons by the CDF collaboration in the central rapidity region $|y|<1$ [44, 45] and by the LHCb collaboration in the forward rapidity region $2<y<4$ [46]. The difference in the azimuthal angle, ϕ, between two reconstructed open-charm mesons shows a strong correlation, which demonstrates the importance of the gluon-splitting mechanism for the production of $c\bar{c}$ events. For charm production in the central rapidity region, the contributions from flavour-creation and flavour-excitation processes have been identified, in addition to that from gluon splitting [44, 45].

The azimuthal and rapidity correlations in $b\bar{b}$ production have been studied by the UA1 [47], D0 [48] and CDF [49–52] collaborations in $p\bar{p}$ collisions at $\sqrt{s} = 0.63, 1.8$ and 1.96 TeV. At the LHC, the first study of $b\bar{b}$ correlations in high energy pp collisions in the central rapidity region has been performed by the CMS collaboration [53]. The collaboration found that none of the available calculations describe the shapes of the differential cross-section well [54–58]. In particular, the region where the contributions of gluon-splitting processes are expected to be large is not adequately described by any of the predictions from MC@NLO [54–56], CASCADE [57, 58], PYTHIA 8 [59], or MADGRAPH [60, 61]. Recently, a study of $b\bar{b}$ correlations in pp collisions in the central rapidity region has been performed by the ATLAS collaboration [62] and a good agreement with calculations was obtained. The four-flavour MADGRAPH5 prediction [63] provides the best overall agreement with data, and performs better than the PYTHIA 8 and HERWIG++ [64] generators.

This paper reports the study of $b\bar{b}$ correlations in high energy hadron collisions in the forward rapidity region. The data sample used was collected with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV and corresponds to integrated luminosities of 1 and 2 fb$^{-1}$, respectively. The beauty hadrons are reconstructed via their inclusive decays into J/ψ mesons, denoted here as $b \rightarrow J/\psi X$ decays, using J/ψ mesons decaying into the $\mu^+\mu^-$ final state. The results are compared with the leading-order (LO) and NLO expectations from PYTHIA [59, 65] and POWHEG [66–69], respectively.

2 Detector and simulation

The LHCb detector [70, 71] is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region [72], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP),
is measured with a resolution of \((15 + 29/p_T)\) \(\mu\)m, where \(p_T\) is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [73].

The online event selection is performed by a trigger [74], which consists of a hardware stage, based on information from the calorimeter and muon systems; followed by a software stage, which applies a full event reconstruction. The hardware trigger selects pairs of opposite-sign muon candidates with a requirement that the product of the muon transverse momenta is larger than 1.7 (2.6) GeV\(^2/c^2\) for data collected at \(\sqrt{s} = 7 (8)\) TeV. The subsequent software trigger is composed of two stages, the first of which performs a partial event reconstruction. A full event reconstruction is then made at the second stage. In the software trigger, the invariant mass of well-reconstructed pairs of oppositely charged muons that form a vertex with good reconstruction quality is required to exceed 2.7 GeV/c\(^2\) and the vertex is required to be significantly displaced from all PVs.

Simulated samples are used to determine the reconstruction and trigger efficiencies. Proton-proton collisions are generated using PYTHIA [59, 65] with a specific LHCb configuration [75]. Decays of hadronic particles are described by EvtGen [76], in which final-state radiation is generated using PHOTOS [77]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [78, 79] as described in ref. [80].

3 Signal selection and efficiency determination

Selected events are required to have two reconstructed \(J/\psi \rightarrow \mu^+ \mu^-\) candidates. In the following these two candidates are marked with subscripts 1 and 2, which are randomly assigned. The muon candidates must be identified as muons, have good reconstruction quality, \(p_T > 500\) MeV/c and \(2 < \eta < 5\) [73, 81]. Both reconstructed \(J/\psi\) candidates are required to have a good-quality vertex, a reconstructed mass in the range \(3.00 < m_{\mu^+\mu^-} < 3.18\) GeV/c\(^2\), \(2 < p_T^{J/\psi} < 25\) GeV/c and \(2 < \gamma^{J/\psi} < 4.5\). These criteria ensure a good reconstruction and trigger efficiency. Only events triggered by at least one of the \(J/\psi\) candidates are retained. The two \(J/\psi\) candidates are required to be associated with the same PV and, in order to suppress background from promptly produced \(J/\psi\) mesons, both dimuon vertices are required to be significantly displaced from that PV.

The two-dimensional distribution of the \(\mu^+\mu^-\) masses, \(m_1^{\mu^+\mu^-}\) and \(m_2^{\mu^+\mu^-}\), for the selected pairs of \(J/\psi \rightarrow \mu^+ \mu^-\) candidates is presented in figure 1 for several requirements on \(p_T^{J/\psi}\). A clear signal peak, corresponding to events with two \(J/\psi\) mesons detached from the PV, is visible.

The signal yield is determined by performing an extended unbinned maximum likelihood fit to the two-dimensional mass distribution. The distribution is fitted with the func-

\[F(m_1, m_2) = N_{SS} S(m_1) S(m_2) + \frac{N_{SB}}{2} \left(S(m_1) B'(m_2) + B'(m_1) S(m_2) \right) + N_{BB} B''(m_1, m_2), \]

where the first term corresponds to a signal of two J/\(\psi \) mesons, the second term corresponds to a combination of one J/\(\psi \) meson and combinatorial background; and the last term describes pure combinatorial background. The coefficients \(N_{SS} \), \(N_{SB} \), and \(N_{BB} \) are the yields for these three components. The signal component, denoted as \(S(m) \), is modeled by a double-sided Crystal Ball function [82, 83]. The background component, \(B'(m) \), is parameterized as the product of an exponential and a first-order polynomial function and the background component \(B''(m_1, m_2) \) is parameterized as the product of two exponential functions \(e^{-\tau m_1} \) and \(e^{-\tau m_2} \), with the same slope parameter, \(\tau \), and a symmetric second-order polynomial. With these parameterizations the overall function is symmetric, \(\mathcal{F}(m_2, m_1) = \mathcal{F}(m_1, m_2) \). The power-law tail parameters of the double-sided Crystal Ball function are fixed to the values obtained from simulation, leaving the mean and the core width as free parameters. Results of the extended unbinned maximum likelihood fit for
Figure 2. Projections of the extended unbinned maximum likelihood fit to (left) $m_1^{\mu^+\mu^-}$ and (right) $m_2^{\mu^+\mu^-}$ for $p_T^{J/\Psi} > 2$ GeV. The total fit function is shown as a solid thick orange line. The solid thin red curve shows the signal component, while the background with one true J/Ψ candidate is shown by the dashed magenta line and the pure combinatorial background is shown with a dotted thin blue line.

$p_T^{J/\Psi}$	N_{SS}	N_{SB}	N_{BB}
2 GeV/c	2066 ± 72	2066 ± 88	945 ± 73
3 GeV/c	1092 ± 50	949 ± 58	343 ± 50
5 GeV/c	302 ± 17	217 ± 17	39 ± 12
7 GeV/c	98 ± 13	40 ± 13	11 ± 9

Table 1. Signal and background yields from the extended unbinned maximum likelihood fit for different requirements on $p_T^{J/\Psi}$. The uncertainties are statistical only.

the different requirements on $p_T^{J/\Psi}$ are presented in Table 1. Figure 2 shows the projections of the fit for $p_T^{J/\Psi} > 2$ GeV/c.

Several background sources potentially contribute to the observed J/Ψ-pair signal. The first group of sources involves events where two J/Ψ mesons originate from different pp collision vertices: it includes events with two J/Ψ mesons from decays of beauty hadrons, events with one J/Ψ meson originating from a beauty hadron decay and another J/Ψ meson produced promptly and, finally, events with two prompt J/Ψ mesons. The second group of sources consists of events where both J/Ψ mesons originate from the same pp collision, namely prompt J/Ψ-pair production [83, 84], and associated production of a prompt J/Ψ meson and a $b\bar{b}$ pair, where one of the b hadrons decays into a J/Ψ meson.

The contribution from the first group of background sources is estimated from the measured production cross-sections for $b \to J/\Psi X$ and prompt J/Ψ events [17, 18], the multiplicity of pp collision vertices and the size of the beam collision region. Taking from simulation an estimate for the probability of reconstructing two spatially close PVs as a single PV, the total relative contribution from these sources is found to be less than 0.1%.

For the second group of background sources, the contribution from prompt J/Ψ-pair production is significantly suppressed by the requirement that both dimuon vertices are
displaced from the PV. Using the production cross-section for prompt J/\psi pairs,\(^1\) the relative contribution from this source is estimated to be less than 0.05%. The background from associated production of b\overline{b} and a prompt J/\psi meson in the same pp collision is calculated assuming double parton scattering is the dominant production mechanism, following ref. [85]. The relative contribution from this source is estimated to be less than 0.05%.

Normalized differential cross-sections [46, 85] are presented as a function of kinematic variables, defined below, and here generically denoted as \(v\),

\[
\frac{1}{\sigma} \frac{d\sigma}{dv} = \frac{1}{N_{\text{cor}}} \frac{\Delta N_{\text{cor}}^i}{\Delta v_i}, \tag{3.2}
\]

where \(N_{\text{cor}}\) is the total number of efficiency-corrected signal candidates, \(\Delta N_{\text{cor}}^i\) is the number of efficiency-corrected signal candidates in bin \(i\), and \(\Delta v_i\) is the corresponding bin width. The efficiency-corrected yields \(N_{\text{cor}}\) and \(\Delta N_{\text{cor}}^i\) are calculated as in refs. [46, 86]

\[
N_{\text{cor}} = \sum_j \frac{\omega_j}{\epsilon_{\text{tot}, J/\psi}},
\]

\[
\Delta N_{\text{cor}}^i = \sum_{j<i} \frac{\omega_j}{\epsilon_{\text{tot}, J/\psi}},
\]

where the sum runs over all pairs of J/\psi candidates in the case of \(N_{\text{cor}}\) and all pairs of J/\psi candidates in bin \(i\) in the case of \(\Delta N_{\text{cor}}^i\). Here \(\epsilon_{\text{tot}, J/\psi}\) is the total efficiency for the pair of J/\psi candidates and the weights \(\omega_j\) are determined using the sPlot technique [87].

The total efficiency of the J/\psi pair is estimated on an event-by-event basis as in refs. [46, 83–86]

\[
\epsilon_{\text{tot}} = \epsilon_{\text{acc}} \epsilon_{\text{rec&sel}} \epsilon_{\text{muID}} \epsilon_{\text{trg}}, \tag{3.3}
\]

where \(\epsilon_{\text{acc}}\) is the geometrical acceptance of the LHCb detector, \(\epsilon_{\text{rec&sel}}\) is the reconstruction and selection efficiency for candidates with all final-state muons inside the geometrical acceptance, \(\epsilon_{\text{muID}}\) is the muon identification (muID) efficiency for the selected candidates and \(\epsilon_{\text{trg}}\) is the trigger efficiency for the selected candidates satisfying the muID requirement. The efficiencies, \(\epsilon_{\text{acc}}, \epsilon_{\text{rec&sel}}\) and \(\epsilon_{\text{muID}}\), are factorized as

\[
\epsilon_{J/\psi} \equiv \epsilon_{J/\psi}^1 \epsilon_{J/\psi}^2, \tag{3.4}
\]

while the trigger efficiency is decomposed as in refs. [46, 83, 84]

\[
\epsilon_{\text{trg}} \equiv 1 - \left(1 - \epsilon_{\text{trg}}^1 \right) \left(1 - \epsilon_{\text{trg}}^2 \right). \tag{3.5}
\]

The efficiencies \(\epsilon_{\text{acc}}, \epsilon_{\text{rec&sel}}\) and \(\epsilon_{\text{trg}}\) are estimated as functions of the transverse momentum and rapidity of the J/\psi meson using simulation. The trigger efficiency for single J/\psi mesons, \(\epsilon_{\text{trg}}\), has been validated using data. The muon identification efficiency for J/\psi mesons is factorized as

\[
\epsilon_{\text{muID}} \equiv \epsilon_{\text{muID}}^+ \epsilon_{\text{muID}}^- , \tag{3.6}
\]

\(^1\)The production cross-section of J/\psi pairs is measured at \(\sqrt{s} = 7\text{ TeV}\) [83]. The cross-section at \(\sqrt{s} = 8\text{ TeV}\) is estimated using a linear interpolation between the measurements at \(\sqrt{s} = 7\text{ TeV}\) and \(\sqrt{s} = 13\text{ TeV}\) [84].
where the corresponding single-muon identification efficiency, ϵ_{μ}^{\pm}, is determined as a function of muon momentum and pseudorapidity using large samples of prompt J/ψ mesons.

3.1 Systematic uncertainties

The systematic uncertainty due to the imprecise determination of the luminosity does not enter in the normalized differential cross-sections. The systematic uncertainties, related to the evaluation of the efficiency-corrected signal yields N_{cor} and $\Delta N_{\text{trg}}^{\text{cor}}$ from eq. (3.2) are summarized in table 2 and are discussed in detail below.

Systematic uncertainties associated with the signal determination are studied by varying the signal and background shapes used for the fit function. For the signal parameterization, the power-law tail parameters of the double-sided Crystal Ball function are varied according to the results of fits to large samples of low-background $b \to J/\psi X$ and $B^+ \to J/\psi K^+$ candidates. The alternative signal shape parameterization from ref. [88] is also used in the fits. For the parameterization of the background functions, $B_0^0(m)$ and $B_0^0(m_1, m_2)$, the order of the polynomial functions is varied. The difference in the fitted signal yields does not exceed 1\% in all of the above cases.

The systematic uncertainty related to the muon identification is estimated to be 0.4\%. It is obtained from the uncertainties for the single-particle identification efficiencies, $\epsilon_{\mu\mu}^{\pm}$, using pseudoexperiments.

The efficiency $\epsilon_{\text{rec&sel}}^{J/\psi}$ is corrected on a per-track basis for small discrepancies between data and simulation using data-driven techniques [81, 89]. The uncertainty in the correction factor is propagated to the determination of the efficiency-corrected signal yields using pseudoexperiments. This results in a systematic uncertainty of 0.6\%. Added in quadrature to the (correlated) uncertainty from the track reconstruction of 0.4\% per track (1.6\% in total) these sources give an overall systematic uncertainty associated with the track reconstruction of 1.7\%.

The trigger efficiency has been validated using large low-background samples of $B^+ \to J/\psi K^+$ decays and inclusive samples of J/ψ mesons. Taking the largest difference between simulation and data for $\epsilon_{\text{trg}}^{J/\psi}$, the corresponding systematic uncertainty for the efficiency-corrected yields is 1.2\%.

The uncertainties in the efficiencies $\epsilon_{\text{acc}}^{J/\psi}$, $\epsilon_{\text{rec&sel}}^{J/\psi}$ and $\epsilon_{\text{trg}}^{J/\psi}$, which are due to the limited size of the simulation samples, are propagated to the efficiency-corrected signal yields using pseudoexperiments and are less than 0.1\%.

Source	Uncertainty [\%]
Signal determination	< 1.0
Muon identification	0.4
Track reconstruction	1.7
Trigger	1.2
Simulated sample size	< 0.1

Table 2. Summary of relative systematic uncertainties for the efficiency-corrected signal yield.
Part of the uncertainties, summarized in Table 2, cancel in the ratio $\frac{\Delta N_{\text{cor}}}{N_{\text{cor}}}$ and thus do not affect the normalized differential cross-sections. For all bins for which the normalized differential cross-sections are evaluated, the systematic uncertainty is much smaller than the corresponding statistical uncertainty and is therefore neglected hereafter.

4 Results

The normalized differential production cross-sections defined by Eq. (3.2) are presented as a function of the following variables:

- $|\Delta \phi^*|$, the difference in the azimuthal angle, ϕ^*, between the two beauty hadrons, where ϕ^* is estimated from the direction of the vector from the PV to the decay vertex of the J/ψ meson;
- $|\Delta \eta^*|$, the difference in the pseudorapidity, η^*, between the two beauty hadrons, where η^* is estimated from the direction of the vector from the PV to the decay vertex of the J/ψ meson;
- $A_T \equiv \left(\frac{p_T^{J/\psi_1} - p_T^{J/\psi_2}}{p_T^{J/\psi_1} + p_T^{J/\psi_2}}\right)$, the asymmetry between the transverse momenta of two J/ψ mesons;
- $m_{J/\psi}$, the mass of the J/ψ pair;
- $p_{T_{J/\psi}}$, the transverse momentum of the J/ψ pair;
- $y_{J/\psi}$, the rapidity of the J/ψ pair.

The differential cross-sections with respect to other variables are given in Appendix A. The shapes for the differential production cross-sections for $|\Delta \phi^*|$ and $|\Delta \eta^*|$ variables are independent of the decay of the long-lived beauty hadrons and directly probe the production properties of pairs of beauty hadrons. The other variables have a minor dependence both on the branching fractions of different beauty hadrons, as well as on the $b \rightarrow J/\psi X$ decay kinematics.

The normalized differential production cross-sections are shown in Figures 3, 4, 5 and 6 for different requirements on the minimum transverse momentum of the J/ψ mesons. Since the distributions obtained for data accumulated at $\sqrt{s} = 7$ and 8 TeV are very similar, they are treated together. In general, the width of the resolution function is much smaller than the bin width, i.e. the results are not affected by bin-to-bin migration. The exception to this is a small fraction of events with $2.0 < p_{T_{J/\psi}} < 2.5$ GeV/c, where the resolution for $|\Delta \phi^*|$ and $|\Delta \eta^*|$ is close to half of the bin-width.

The normalized differential production cross-sections are compared with expectations from Powheg [66–69] and Pythia [59, 65, 75] using the parton distribution functions from CT09MCS [90], CTEQ6L1 [91] and CTEQ6.6 [92] for the samples produced with Powheg, Pythia 6 and Pythia 8, respectively. Since no visible difference between Pythia 6 and Pythia 8 samples are found, they are combined. For the Powheg samples
Figure 3. Normalized differential production cross-sections (points with error bars) for a) $|\Delta \phi^*|/\pi$, b) $|\Delta \eta^*|$, c) A_T, d) $m_{J/\Psi J/\Psi}$, e) $p_T^{J/\Psi J/\Psi}$ and f) $y^{J/\Psi J/\Psi}$ together with the POWHEG (orange line) and PYTHIA (green band) predictions. The expectations for uncorrelated $b\bar{b}$ production are shown by the dashed magenta line. The uncertainties in the POWHEG and PYTHIA predictions due to the choice of factorization and renormalization scales are shown as orange cross-hatched and green solid areas, respectively.
Figure 4. Normalized differential production cross-sections (points with error bars) for a) $|\Delta \phi^*|/\pi$, b) $|\Delta \eta^*|$, c) A_T, d) $m_{J/\Psi J/\Psi}$, e) $p_{T_{J/\Psi}}$ and f) $y_{J/\Psi J/\Psi}$ together with the POWHEG (orange line) and PYTHIA (green band) predictions. The expectations for uncorrelated $b\bar{b}$ production are shown by the dashed magenta line. The uncertainties in the POWHEG and PYTHIA predictions due to the choice of factorization and renormalization scales are shown as cross-hatched and green solid areas, respectively.
Figure 5. Normalized differential production cross-sections (points with error bars) for a) $|\Delta \phi^*|/\pi$, b) $|\Delta \eta^*|$, c) A_T, d) $m_{J/\Psi J/\Psi}$, e) $p_T^{J/\Psi J/\Psi}$ and f) $y_{J/\Psi J/\Psi}$ together with the Powheg (orange line) and Pythia (green band) predictions. The expectations for uncorrelated $b\bar{b}$ production are shown by the dashed magenta line. The uncertainties in the Powheg and Pythia predictions due to the choice of factorization and renormalization scales are shown as orange cross-hatched and green solid areas, respectively.
Figure 6. Normalized differential production cross-sections (points with error bars) for a) $|\Delta \phi^*|/\pi$, b) $|\Delta \eta^*|$, c) A_T, d) $m_{J/\Psi J/\Psi}$, e) $p_T^{J/\Psi J/\Psi}$ and f) $y_{J/\Psi J/\Psi}$ together with the POWHEG (orange line) and PYTHIA (green band) predictions. The expectations for uncorrelated $b\bar{b}$ production are shown by the dashed magenta line. The uncertainties in the POWHEG and PYTHIA predictions due to the choice of factorization and renormalization scales are shown as orange cross-hatched and green solid areas, respectively.
the default configuration is used except for the b-quark mass, which is set to 4.75 GeV/c². To illustrate the size of the correlations between the two b quarks, predictions from an artificial data-driven model of uncorrelated b\bar{b} production are also presented. This model is based on the measured transverse momenta and rapidity spectra for b \to J/\psi X decays [17, 18], assuming uncorrelated production of b and \bar{b} quarks. The momenta of the two J/\psi mesons are sampled according to the measured (p_{TJ/\psi}, y_{J/\psi}) spectra, assuming a uniform distribution in the azimuthal angle, \phi_{J/\psi}. This allows the distributions for all variables except for |\Delta \eta| to be predicted. This model is considered as an extreme case that corresponds to uncorrelated b\bar{b} production; in contrast, the leading-order collinear approximation, where the transverse momentum of the b\bar{b} system from the gg \to b\bar{b} process is zero, results in maximum correlation. The smearing of the transverse momenta of the initial gluons could result in significant decorrelations of the initially highly correlated heavy-flavour quarks. It should be noted that the model using uncorrelated b\bar{b} pairs also mimics a possible small contribution of double parton scattering to b\bar{b} pair production.

In general, both POWHEG and PYTHIA describe the data well for all distributions, suggesting that NLO effects in b\bar{b} production in the studied kinematic region are small compared with the experimental precision. Unlike the measurements with open-charm mesons [44–46], no significant contribution from gluon splitting is observed at small |\Delta \phi|.

This observation is in agreement with expectations, since the contribution from gluon splitting is suppressed due to the large mass of the beauty quark. For p_{TJ/\psi} > 5 and 7 GeV, there is a hint of a small enhancement at small |\Delta \phi|. This also agrees with the expectation of a larger contribution of gluon splitting at higher p_{T}. Another large enhancement towards the threshold in m_{J/\psi J/\psi} is predicted by POWHEG for p_{TJ/\psi} > 5 and 7 GeV, due to large leading-logarithm corrections [93]. No evidence for this enhancement is observed in the LHCb data, as can be seen in figures 5d and 6d. The data agree well with the model of uncorrelated b\bar{b} production for y_{J/\psi J/\psi} and A_T, and also for p_{TJ/\psi J/\psi} and m_{J/\psi J/\psi} in the p_{TJ/\psi} > 2 GeV/c region. This suggests gluon emission from the initial and/or final state, or large effective smearing of the transverse momenta of the gluons, O(3 GeV/c), resulting in large decorrelation of the produced heavy quarks.

5 Summary and conclusions

Kinematic correlations for pairs of beauty hadrons, produced in high energy proton-proton collisions, are studied. The data sample used was collected with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV and corresponds to an integrated luminosity of 3 fb⁻¹. The measurement is performed using b \to J/\psi X decays in the kinematic range 2 < y_{J/\psi} < 4.5, 2 < p_{TJ/\psi} < 25 GeV/c. The observed correlations agree with PYTHIA (LO) and POWHEG (NLO) predictions, suggesting NLO effects in b\bar{b} production are small. In particular, no large contribution from gluon splitting is observed. The present data do not allow discrimination of theory predictions in the region of large p_{T} of the J/\psi mesons, where the difference between POWHEG and PYTHIA predictions is larger. Such discrimination will be possible with future measurements with larger data samples at higher energy.
Acknowledgments

We would like to thank P. Nason and A.K. Likhoded for interesting and stimulating discussions on the production of heavy-flavours. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (U.S.A.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (U.S.A.). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), ANR, Labex P2IO, ENIGMASS and OCEVU, and Région Auvergne-Rhône-Alpes (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, the Royal Society, the English-Speaking Union and the Leverhulme Trust (United Kingdom).

A Additional variables

In this appendix the normalized differential production cross-sections are studied for additional variables, namely

- \(|\Delta \phi^{J/\psi}|\), the difference in the azimuthal angle \(\phi^{J/\psi}\) between the momentum directions of two \(J/\psi\) mesons;
- \(|\Delta \eta^{J/\psi}|\), the difference in the pseudorapidity \(\eta^{J/\psi}\) between the momentum directions of two \(J/\psi\) mesons;
- \(|\Delta y^{J/\psi}|\), the difference in the rapidity \(y^{J/\psi}\) between the two \(J/\psi\) mesons.

Unlike \(|\Delta \phi^*|/\pi\) and \(|\Delta \eta^*|\), which are largely independent on the decays of beauty hadrons, all these variables have a minor dependence both on the branching fractions of different beauty hadrons, as well as on the \(b \rightarrow J/\psi X\) decay kinematics.

The corresponding differential cross-sections are presented in figures 7 and 8. They are compared with expectations from the POWHEG [66–69] and PYTHIA [59, 65, 75] generators and with expectations from the data-driven model of uncorrelated \(b\bar{b}\) production, described in section 4. Also in this case both POWHEG and PYTHIA describe the data well for all distributions, suggesting a small role of next-to-leading order effects in \(b\bar{b}\) production in the studied kinematical range compared to the experimental precision. The data agree
Figure 7. Normalized differential production cross-sections (points with error bars) for $p_{T}^{J/\Psi} > 2 \text{GeV/c}$ (left) and $p_{T}^{J/\Psi} > 3 \text{GeV/c}$ (right) data for a,b) $|\Delta \phi^{J/\Psi}| / \pi$, c,d) $|\Delta \eta^{J/\Psi}|$, and e,f) $|\Delta y^{J/\Psi}|$, together with the Powheg (orange line) and Pythia (green band) predictions. The expectations for uncorrelated $b\bar{b}$ production are shown by the dashed magenta line. The uncertainties in the Powheg and Pythia predictions due to the choice of factorization and renormalization scales are shown as orange cross-hatched and green solid areas, respectively.

well with the model of uncorrelated $b\bar{b}$ production for $|\Delta \eta^{J/\Psi}|$ and $|\Delta y^{J/\Psi}|$, supporting the hypothesis of large effective decorrelation of the produced heavy quarks.
Figure 8. Normalized differential production cross-sections (points with error bars) for $p_T^{J/\psi} > 5$ GeV/c (left) and $p_T^{J/\psi} > 7$ GeV/c (right) data for a,b) $|\Delta \phi^{J/\psi}|/\pi$, c,d) $|\Delta \eta^{J/\psi}|$, and e,f) $|\Delta y^{J/\psi}|$, together with the POWHEG (orange line) and PYTHIA (green band) predictions. The expectations for uncorrelated $b\bar{b}$ production are shown by the dashed magenta line. The uncertainties in the POWHEG and PYTHIA predictions due to the choice of factorization and renormalization scales are shown as orange cross-hatched and green solid areas, respectively.
Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at $\sqrt{s} = 5$ TeV, JHEP 06 (2017) 147 [arXiv:1610.02230] [inSPIRE].

[2] LHCb collaboration, Prompt charm production in pp collisions at $\sqrt{s} = 7$ TeV, Nucl. Phys. B 871 (2013) 1 [arXiv:1302.2864] [inSPIRE].

[3] LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at $\sqrt{s} = 13$ TeV, JHEP 03 (2016) 159 [Erratum ibid. 09 (2016) 013] [Erratum ibid. 05 (2017) 074] [arXiv:1510.01707] [inSPIRE].

[4] ATLAS collaboration, Measurement of D^{\pm}, D^{\pm} and D_s^{\pm} meson production cross sections in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Nucl. Phys. B 907 (2016) 717 [arXiv:1512.02913] [inSPIRE].

[5] ALICE collaboration, Measurement of charm production at central rapidity in proton-proton collisions at $\sqrt{s} = 2.76$ TeV, JHEP 07 (2012) 191 [arXiv:1205.4007] [inSPIRE].

[6] ALICE collaboration, Measurement of charm production at central rapidity in proton-proton collisions at $\sqrt{s} = 7$ TeV, JHEP 01 (2012) 128 [arXiv:1111.1553] [inSPIRE].

[7] ALICE collaboration, D_s^+ meson production at central rapidity in proton-proton collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. B 718 (2012) 279 [arXiv:1208.1948] [inSPIRE].

[8] ALICE collaboration, D-meson production in p-Pb collisions at $\sqrt{NN} = 5.02$ TeV and in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Rev. C 94 (2016) 054908 [arXiv:1605.07569] [inSPIRE].

[9] CDF collaboration, D. Acosta et al., Measurement of prompt charm meson production cross sections in pp collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 91 (2003) 241804 [hep-ex/0307080] [inSPIRE].

[10] CDF collaboration, T.A. Aaltonen et al., Measurement of the D^+-meson production cross section at low transverse momentum in pp collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. D 95 (2017) 092006 [arXiv:1610.08989] [inSPIRE].

[11] UA1 collaboration, C. Albajar et al., Measurement of the bottom quark production cross-section in proton-anti-proton collisions at $\sqrt{s} = 0.63$ TeV, Phys. Lett. B 213 (1988) 405 [inSPIRE].

[12] D0 collaboration, S. Abachi et al., Inclusive μ and B quark production cross-sections in pp collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. Lett. 74 (1995) 3548 [inSPIRE].

[13] CDF collaboration, F. Abe et al., Measurement of the B meson differential cross-section, $\mathrm{d}N/\mathrm{d}p_T$, in pp collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. Lett. 75 (1995) 1451 [hep-ex/9503013] [inSPIRE].

[14] CDF collaboration, A. Abulencia et al., Measurement of the B^+ production cross-section in pp collisions at $\sqrt{s} = 1960$ GeV, Phys. Rev. D 75 (2007) 012010 [hep-ex/0612015] [inSPIRE].

[15] LHCb collaboration, Measurement of $\sigma(pp \to b\bar{b}X)$ at $\sqrt{s} = 7$ TeV in the forward region, Phys. Lett. B 694 (2010) 209 [arXiv:1009.2731] [inSPIRE].
Open charm hadroproduction and charmed-meson fragmentation

Reconciling open charm

Inclusive charmed-meson production

Measurement of forward \(J/\psi \) and \(\Upsilon \) mesons

Production of inclusive charmed-meson production

Study of the production of forward \(J/\psi \) and \(\Upsilon \) mesons

Measurement of forward \(J/\psi \) and \(\Upsilon \) mesons

Measurement of the charm content of the proton

Measurement of forward \(J/\psi \) and \(\Upsilon \) mesons

Measurement of forward \(J/\psi \) and \(\Upsilon \) mesons

Measurement of forward \(J/\psi \) and \(\Upsilon \) mesons
[33] R. Gauld, J. Rojo, L. Rottoli and J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy, JHEP 11 (2015) 009 [arXiv:1506.08025] [insPIRE].

[34] M. Cacciari, M. Greco and P. Nason, The p_T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [insPIRE].

[35] M. Cacciari, S. Frixione and P. Nason, The p_T spectrum in heavy flavor photoproduction, JHEP 03 (2001) 006 [hep-ph/0102134] [insPIRE].

[36] M. Cacciari and P. Nason, Charm cross-sections for the Tevatron run II, JHEP 09 (2003) 006 [hep-ph/0306212] [insPIRE].

[37] M. Cacciari, P. Nason and C. Oleari, A study of heavy flavored meson fragmentation functions in e^+e^- annihilation, JHEP 04 (2006) 006 [hep-ph/0510032] [insPIRE].

[38] M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [insPIRE].

[39] M. Cacciari, M.L. Mangano and P. Nason, Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at $\sqrt{s} = 7$ and 13 TeV, Eur. Phys. J. C 75 (2015) 610 [arXiv:1507.06197] [insPIRE].

[40] C.-H. Chang and Y.-Q. Chen, The hadronic production of the B_c meson at Tevatron, CERN LHC and SSC, Phys. Rev. D 48 (1993) 4086 [insPIRE].

[41] C.-H. Chang, Y.-Q. Chen, G.-P. Han and H.-T. Jiang, On hadronic production of the B_c meson, Phys. Lett. B 364 (1995) 78 [hep-ph/9408242] [insPIRE].

[42] A.V. Berezhnoy, A.K. Likhoded and M.V. Shevlyagin, Hadronic production of B_c mesons, Phys. Atom. Nucl. 58 (1995) 672 [Yad. Fiz. 58N4 (1995) 730] [hep-ph/9408284] [insPIRE].

[43] K. Kolodziej, A. Leike and R. Rückl, Production of B_c mesons in hadronic collisions, Phys. Lett. B 355 (1995) 337 [hep-ph/9505298] [insPIRE].

[44] CDF collaboration, B. Reisert et al., Charm production studies at CDF, Nucl. Phys. Proc. Suppl. 170 (2007) 243 [insPIRE].

[45] CDF and D0 collaborations, B. Reisert, Charm and beauty production at the Tevatron, in Proceedings, 15th International Workshop on deep-inelastic scattering and related subjects (DIS 2007), Munich Germany, (2007), pg. 829 [insPIRE].

[46] LHCb collaboration, Observation of double charm production involving open charm in pp collisions at $\sqrt{s} = 7$ TeV, JHEP 06 (2012) 141 [Addendum ibid. 03 (2014) 108] [arXiv:1205.0975] [insPIRE].

[47] UA1 collaboration, C. Albajar et al., Measurement of $b\bar{b}$ correlations at the CERN pp collider, Z. Phys. C 61 (1994) 41 [insPIRE].

[48] D0 collaboration, B. Abbott et al., The $b\bar{b}$ production cross section and angular correlations in pp collisions at $\sqrt{s} = 1.8$ TeV, Phys. Lett. B 487 (2000) 264 [hep-ex/9905024] [insPIRE].

[49] CDF collaboration, F. Abe et al., Measurement of $b\bar{b}$ production correlations, $B^0\bar{B}^0$ mixing and a limit on e_Λ in pp collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. D 55 (1997) 2546 [insPIRE].

[50] CDF collaboration, F. Abe et al., Measurement of $b\bar{b}$ rapidity correlations in pp collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. D 61 (2000) 032001 [insPIRE].
CDF collaboration, D. Acosta et al., *Measurements of $b\bar{b}$ azimuthal production correlations in pp collisions at $\sqrt{s} = 1.8$ TeV*, *Phys. Rev. D* **71** (2005) 092001 [hep-ex/0412006] [insPIRE].

CDF collaboration, T. Aaltonen et al., *Measurement of correlated $b\bar{b}$ production in pp collisions at $\sqrt{s} = 1.960$ GeV*, *Phys. Rev. D* **77** (2008) 072004 [arXiv:0710.1895] [insPIRE].

CMS collaboration, *Measurement of $B\bar{B}$ angular correlations based on secondary vertex reconstruction at $\sqrt{s} = 7$ TeV*, *JHEP* **03** (2011) 136 [arXiv:1102.3194] [insPIRE].

S. Frixione and B.R. Webber, *Matching NLO QCD computations and parton shower simulations*, *JHEP* **06** (2002) 029 [hep-ph/0204244] [insPIRE].

S. Frixione, P. Nason and B.R. Webber, *Matching NLO QCD and parton showers in heavy flavor production*, *JHEP* **08** (2003) 007 [hep-ph/0305252] [insPIRE].

S. Frixione and B.R. Webber, *The MC and NLO 3:4 event generator*, arXiv:0812.0770 [insPIRE].

H. Jung and G.P. Salam, *Hadronic final state predictions from CCFM: the hadron level Monte Carlo generator CASCADE*, *Eur. Phys. J. C* **19** (2001) 351 [hep-ph/0012143] [insPIRE].

S. Catani, M. Ciafaloni and F. Hautmann, *High-energy factorization in QCD and minimal subtraction scheme*, *Phys. Lett. B* **307** (1993) 147 [insPIRE].

T. Sjöstrand, S. Mrenna and P.Z. Skands, *A brief introduction to PYTHIA 8.1*, *Comput. Phys. Commun.* **178** (2008) 852 [arXiv:0710.3820] [insPIRE].

F. Maltoni and T. Stelzer, *MadEvent: automatic event generation with MadGraph*, *JHEP* **02** (2003) 027 [hep-ph/0208156] [insPIRE].

J. Alwall et al., *MadGraph/MadEvent v4: the new web generation*, *JHEP* **09** (2007) 028 [arXiv:0706.2334] [insPIRE].

J. Alwall et al., *ATLAS detector performance summary for heavy-flavor hadroproduction at 7 TeV*, arXiv:1705.03374 [insPIRE].

J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations*, *JHEP* **07** (2014) 079 [arXiv:1405.0301] [insPIRE].

M. Bahr et al., *HERWIG++ physics and manual*, *Eur. Phys. J. C* **58** (2008) 639 [arXiv:0803.0883] [insPIRE].

T. Sjöstrand, S. Mrenna and P.Z. Skands, *PYTHIA 6.4 physics and manual*, *JHEP* **05** (2006) 026 [hep-ph/0603175] [insPIRE].

P. Nason, *A new method for combining NLO QCD with shower Monte Carlo algorithms*, *JHEP* **11** (2004) 040 [hep-ph/0409146] [insPIRE].

S. Frixione, P. Nason and C. Oleari, *Matching NLO QCD computations with parton shower simulations: the POWHEG method*, *JHEP* **11** (2007) 070 [arXiv:0709.2092] [insPIRE].

S. Frixione, P. Nason and G. Ridolfi, *A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction*, *JHEP* **09** (2007) 126 [arXiv:0707.3088] [insPIRE].

S. Alioli, P. Nason, C. Oleari and E. Re, *A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX*, *JHEP* **06** (2010) 043 [arXiv:1002.2581] [insPIRE].
[70] LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [inSPIRE].
[71] LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [inSPIRE].
[72] R. Aaij et al., Performance of the LHCb vertex locator, 2014 JINST 9 09007 [arXiv:1405.7808] [inSPIRE].
[73] A.A. Alves, Jr. et al., Performance of the LHCb muon system, 2013 JINST 8 P02022 [arXiv:1211.1346] [inSPIRE].
[74] R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [inSPIRE].
[75] LHCb collaboration, Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [inSPIRE].
[76] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [inSPIRE].
[77] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [inSPIRE].
[78] GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [inSPIRE].
[79] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [inSPIRE].
[80] LHCb collaboration, The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [inSPIRE].
[81] F. Archilli et al., Performance of the muon identification at LHCb, 2013 JINST 8 P10020 [arXiv:1306.0249] [inSPIRE].
[82] T. Skwarnicki, A study of the radiative cascade transitions between the Y' and Y resonances, Ph.D. thesis, Institute of Nuclear Physics, Krakow Poland, (1986) [DESY-F31-86-02] [inSPIRE].
[83] LHCb collaboration, Observation of J/ψ pair production in pp collisions at √s = 7 TeV, Phys. Lett. B 707 (2012) 52 [arXiv:1109.0963] [inSPIRE].
[84] LHCb collaboration, Measurement of the J/ψ pair production cross-section in pp collisions at √s = 13 TeV, JHEP 06 (2017) 047 [Erratum ibid. 10 (2017) 068] [arXiv:1612.07451] [inSPIRE].
[85] LHCb collaboration, Production of associated Y and open charm hadrons in pp collisions at √s = 7 and 8 TeV via double parton scattering, JHEP 07 (2016) 052 [arXiv:1510.05949] [inSPIRE].
[86] LHCb collaboration, Observation of associated production of a Z boson with a D meson in the forward region, JHEP 04 (2014) 091 [arXiv:1401.3245] [inSPIRE].
[87] M. Pivk and F.R. Le Diberder, SPlot: a statistical tool to unfold data distributions, Nucl. Instrum. Meth. A 555 (2005) 356 [physics/0402083] [inSPIRE].
[88] D. Martínez Santos and F. Dupertuis, Mass distributions marginalized over per-event errors, Nucl. Instrum. Meth. A 764 (2014) 150 [arXiv:1312.5006] [inSPIRE].
[89] LHCb collaboration, Measurement of the track reconstruction efficiency at LHCb, 2015 JINST 10 P02007 [arXiv:1408.1251] [INSPIRE].

[90] H.-L. Lai et al., Parton distributions for event generators, JHEP 04 (2010) 035 [arXiv:0910.4183] [INSPIRE].

[91] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

[92] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

[93] P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].
The LHCb collaboration

R. Aaij, B. Adeva, M. Adinolfi, Z. Ajaltouni, S. Akar, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, S. Ali, G. Alkhazov, P. Alvarez Cartelle, A.A. Alves Jr., S. Amato, S. Anerio, Y. Amhis, L. An, L. Anderlini, G. Andreassi, M. Andreotti, J.E. Andrews, R.B. Appleby, F. Archilli, P. d’Argenio, J. Arnau Romeu, A. Artamonov, M. Artuso, E. Aslanides, G. Auerniema, M. Baalouch, I. Babuschkin, S. Bachmann, J.J. Back, A. Badalov, C. Baesso, S. Baker, V. Balagura, W. Baldini, A. Baranov, R.J. Barlow, C. Barschel, S. Barsuk, W. Barter, F. Baryshnikov, V. Batozskaya, V. Battista, A. Bay, L. Beaucourt, J. Bedow, F. Bedeschi, I. Bediaga, A. Beiter, J.L. Bel, N. Belyi, V. Bello, N. Belloli, K. Belous, I. Belyaev, A. Ben-Haim, G. Bencivenni, S. Benson, B. Beranek, A. Berezhnyi, R. Bernet, D. Berninghoff, E. Bertholet, A. Bertolin, C. Betancourt, F. Bett, M.-O. Better, M. van Burenkoma, Ia. Bezshyiko, S. Bifani, P. Biloi, A. Birnkraut, A. Bitadze, A. Bizzeti, M. Bjorn, T. Blake, F. Blanc, J. Blouw, S. Blush, V. Bocci, T. Boettcher, A. Bondar, N. Bonder, W. Bonivento, I. Bordyuzhin, A. Borgheresi, S. Borghi, M. Borisay, M. Borsato, F. Bosso, M. Boudria, J.T.J. Bowcock, E. Bowen, C. Bozzi, S. Braun, T. Britton, J. Brodzicka, D. Brundu, E. Buchanan, C. Burr, A. Bursche, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, R. Calabrese, R. Calladine, M. Calvo, A. Camboni, P. Campana, D.H. Campora Perez, L. Capriotti, A. Carbone, G. Carboni, R. Cardinale, A. Cardini, L. Carson, K. Carvalho AkiBu, G. Casse, L. Cassina, L. Castillo Garcia, M. Cattaneo, G. Cavallero, R. Cenci, D. Chamont, M.G. Chapman, M. Charles, P. Charpentier, G. Chatzikostantinidis, M. Chefdievile, S. Chen, S.F. Cheung, S.-G. Chitic, V. Chobanova, M. Chrzaszcz, A. Chubykin, P. Ciambrone, X. Cid Vidal, G. Ciezarek, P.E.L. Clarke, M. Clemencic, H.V. Clift, J. Cloisier, J. Cogan, E. Cogneras, V. Cogoni, L. Cojocariu, P. Collins, T. Colombo, A. Comerma-Montells, A. Contu, A. Cook, G. Coombs, S. Coqueauf, G. Corti, M. Corvo, C.M. Costa Sobral, B. Couturier, G.A. Cowan, D.C. Craik, A. Crocombe, M. Cruz Torres, R. Currie, C. D’Ambrosio, F. Da Cunha Marinho, E. Dall’Oppo, J. Dalseno, A. Davis, O. De Aguilar Francisco, S. De Capua, M. De Cian, J. De Miranda, L. De Paula, M. De Serio, P. De Simone, C.T. Doan, D. Decamp, L. Del Buono, H.-P. Dembinski, M. Demmer, A. Dendek, D. Derkach, O. Deschamps, F. Dettori, B. Dey, A. Di Canto, P. Di Nezza, H. Dijkstra, F. Dordel, M. Dorigo, A. Dosil Suarez, L. Douglas, A. Dovbnya, K. Dreimanis, L. Dufour, G. Dujany, P. Durante, R. Dzhelyadin, M. Dzwiekietki, A. Dziroua, A. Dzyuba, S. Easo, M. Ebert, U. Egede, V. Egorychev, S. Eidelman, S. Eisenhardt, U. Eitscher, O. Ekelhof, L. Eklund, S. Ely, S. Esen, H.M. Evans, T. Evans, A. Falabella, N. Farley, S. Farry, R. Fay, D. Fazzini, L. Federici, D. Ferguson, G. Fernandez, P. Fernandez Declara, A. Fernandez Prieto, F. Ferrari, F. Ferreia Rodrigues, M. Ferro-Luzzi, M. Filipov, R.A. Fini, M. Fiore, M. Fiorini, M. Firlej, C. Fitzpatrick, T. Fiatowski, F. Fleuret, K. Fohi, M. Fontana, F. Fontanelli, D.C. Forshaw, R. Forty, V. Franco Lima, M. Frank, C. Frei, J. Fu, W. Funk, E. Furfaro, C. Färber, E. Gabriel, A. Gallas Torreira, D. Galli, S. Gallorini, S. Gambetta, M. Gandelmann, P. Gandini, Y. Gao, L.M. Garcia Martin, J. Garcia Pardiñas, J. Garra Tico, L. Garrido, P.J. Garsed, D. Gascon, C. Gaspar, L. Gavardi, G. Gazzoni, D. Gerick, E. Gersabeck, M. Gersabeck, T. Gershon.
LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
1 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
2 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
3 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
4 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
5 School of Physics, University College Dublin, Dublin, Ireland
6 Sezione INFN di Bari, Bari, Italy
7 Sezione INFN di Bologna, Bologna, Italy
8 Sezione INFN di Cagliari, Cagliari, Italy
9 Università e INFN, Ferrara, Ferrara, Italy
10 Sezione INFN di Firenze, Firenze, Italy
11 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
12 Sezione INFN di Genova, Genova, Italy
13 Università e INFN, Milano-Bicocca, Milano, Italy
14 Sezione di Milano, Milano, Italy
15 Sezione INFN di Padova, Padova, Italy
16 Sezione INFN di Pisa, Pisa, Italy
17 Sezione INFN di Roma Tor Vergata, Roma, Italy
18 Sezione INFN di Roma La Sapienza, Roma, Italy
19 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
20 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
21 National Center for Nuclear Research (NCBJ), Warsaw, Poland
22 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
23 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
24 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
25 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
26 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
27 Yandex School of Data Analysis, Moscow, Russia
28 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
29 Institute for High Energy Physics (IHEP), Protvino, Russia
30 ICCUB, Universitat de Barcelona, Barcelona, Spain
31 Universidade de Santiago de Compostela, Santiago de Compostela, Spain
32 European Organization for Nuclear Research (CERN), Geneva, Switzerland
33 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
34 Physik-Institut, Universität Zürich, Zürich, Switzerland
35 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
36 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
37 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
38 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
39 University of Birmingham, Birmingham, United Kingdom
40 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
41 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
42 Department of Physics, University of Warwick, Coventry, United Kingdom
43 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
44 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
45 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
46 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
47 Imperial College London, London, United Kingdom
48 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
University of Cincinnati, Cincinnati, OH, United States
University of Maryland, College Park, MD, United States
Syracuse University, Syracuse, NY, United States
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
University of Chinese Academy of Sciences, Beijing, China, associated to
School of Physics and Technology, Wuhan University, Wuhan, China, associated to
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to
Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia, associated to
Institut für Physik, Universität Rostock, Rostock, Germany, associated to
National Research Centre Kurchatov Institute, Moscow, Russia, associated to
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to
Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to
Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to
Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Laboratoire Leprince-Ringuet, Palaiseau, France
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Viet Nam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Università degli Studi di Milano, Milano, Italy
Università di Urbino, Urbino, Italy
Università della Basilicata, Potenza, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Iligan Institute of Technology (IIT), Iligan, Philippines
Novosibirsk State University, Novosibirsk, Russia
Deceased