A NOTE ON ROUGH \(I \)-CONVERGENCE OF DOUBLE
SEQUENCES

PRASANTA MALIK*, MANOJIT MAITY** AND ARGHA GHOSH*

* Department of Mathematics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India. Email: pmjupm@yahoo.co.in, buagbu@yahoo.co.in
** Boral High School, Kolkata-700154, India. Email: mepsilon@gmail.com

Abstract. In this paper we study some basic properties of rough \(I \)-convergent
double sequences in the line of Düntar [8]. We also study the set of all
rough \(I \)-limits of a double sequence and relation between boundedness and
rough \(I \)-convergence of a double sequence.

Key words and phrases: Double sequence, ideal, rough \(I \)-convergence, rough
\(I \)-limit.

AMS subject classification (2010): 40A35, 40B99.

1. Introduction:

The concept of \(I \)-convergence of double sequences was introduced by Balcerzak et. al. [2]. The notion of \(I \)-convergence of a double sequence, which is
based on the structure of the ideal \(I \) of subsets of \(\mathbb{N} \times \mathbb{N} \), where \(\mathbb{N} \) is the set of
all natural numbers, is a natural generalization of the notion of convergence of
a double sequence in Pringsheim’s sense [17] as well as the notion of statistical
convergence of a double sequence [14].

A lot of work on \(I \)-convergence of double sequences can be found in ([3], [4],
[5], [7], etc.) and many others.

The concept of rough \(I \)-convergence of single sequences was introduced by Pal
et. al. [15] which is a generalization of the earlier concepts namely rough con-
vergence [16] and rough statistical convergence [1] of single sequences. Recently
rough statistical convergence of double sequences has been introduced by Mal-
lik and Maity [13] as a generalization of rough convergence of double sequences
[12] and investigated some basic properties of this type of convergence and also
studied relation between the set of statistical cluster points and the set of rough
limit points of a double sequence. Recently the notion of rough \(I \)-convergence
for double sequences has been introduced by Dündar [8]. In this paper we investigate some basic properties of rough I-convergence of double sequences in finite dimensional normed linear spaces which are not done earlier. We study the set of rough I-limits of a double sequence and also the relation between boundedness and rough I-convergence of a double sequence.

2. Basic Definitions and Notations

Throughout the paper \mathbb{N} denotes the set of all positive integers and \mathbb{R} denotes the set of all real numbers.

Definition 2.1 (12). Let $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ be a double sequence in a normed linear space $(X, \| \cdot \|)$ and r be a non-negative real number. x is said to be r-convergent to $\xi \in X$, denoted by $x \overset{r}{\to} \xi$, if for any $\epsilon > 0$ there exists $N_\epsilon \in \mathbb{N}$ such that for all $j, k \geq N_\epsilon$ we have $\|x_{jk} - \xi\| < r + \epsilon$.

In this case ξ is called an r-limit of x.

It is clear that rough limit of x is not necessarily unique (for $r > 0$). So we consider r-limit set of x which is denoted by LIM^r_x and is defined by $LIM^r_x = \{\xi \in X : x \overset{r}{\to} \xi\}$. x is said to be r-convergent if $LIM^r_x \neq \emptyset$ and r is called a rough convergence degree of x.

We recall that a subset K of $\mathbb{N} \times \mathbb{N}$ is said to have natural density $d(K)$ if

$$d(K) = \lim_{m \to \infty \atop n \to \infty} \frac{K(n, m)}{n \cdot m},$$

where $K(n, m) = |\{(j, k) \in \mathbb{N} \times \mathbb{N} : j \leq n, k \leq m\}|$.

Definition 2.2 (13). Let $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ be a double sequence in a normed linear space $(X, \| \cdot \|)$ and r be a non negative real number. x is said to be r- statistically convergent to ξ, denoted by $x \overset{r}{\text{st}-\to} \xi$, if for any $\epsilon > 0$ we have $d(A(\epsilon)) = 0$, where $A(\epsilon) = \{(j, k) \in \mathbb{N} \times \mathbb{N} : \|x_{jk} - \xi\| \geq r + \epsilon\}$. In this case ξ is called r-statistical limit of x.

Clearly for $r = 0$ from Definition 2.1 we get Pringsheim convergence of double sequences and from Definition 2.2 we get ordinary statistical convergence of double sequences.

Definition 2.3. A class I of subsets of a nonempty set X is said to be an ideal in X provided

(i) $\emptyset \in I$.

(ii) $A, B \in I$ implies $A \cup B \in I$.

(iii) $A \in I, B \subset A$ implies $B \in I$.

I is called a nontrivial ideal if $X \notin I$.
Definition 2.4. A non empty class F of subsets of a nonempty set X is said to be a filter in X provided
(i) \(\phi \notin F \).
(ii) \(A, B \in F \) implies \(A \cap B \in F \).
(iii) \(A \in F, A \subseteq B \) implies \(B \in F \).
If I is a nontrivial ideal in X, \(X \neq \phi \), then the class
\[F(I) = \{ M \subseteq X : M = X \setminus A \text{ for some } A \in I \} \]
is a filter on X, called the filter associated with I.

Definition 2.5 (4). A nontrivial ideal I in X is called admissible if \(\{ x \} \in I \) for each \(x \in X \).

Definition 2.6 (4). A nontrivial ideal I on \(\mathbb{N} \times \mathbb{N} \) is called strongly admissible if \(\{ i \} \times \mathbb{N} \) and \(\mathbb{N} \times \{ i \} \) belong to I for each \(i \in \mathbb{N} \).

Clearly every strongly admissible ideal is admissible. Throughout the paper we take I as a strongly admissible ideal in \(\mathbb{N} \times \mathbb{N} \).

Definition 2.7 (8). Let \(x = \{ x_{jk} \}_{j,k \in \mathbb{N}} \) be a double sequence in a normed linear space \((X, \| . \|)\) and \(r \) be a non negative real number. Then \(x \) is said to be rough ideal convergent or \(rI \)-convergent to \(\xi \), denoted by \(x \xrightarrow{rI} \xi \), if for any \(\varepsilon > 0 \) we have \(\{(j,k) \in \mathbb{N} \times \mathbb{N} : \| x_{jk} - \xi \| \geq r + \varepsilon \} \in I \). In this case \(\xi \) is called \(rI \)-limit of \(x \) and \(x \) is called rough \(I \)-convergent to \(\xi \) with \(r \) as roughness degree.

Throughout this paper \(x \) denotes the double sequence \(\{ x_{jk} \}_{j,k \in \mathbb{N}} \) in a normed linear space \((X, \| . \|)\) and \(r \) denotes a non negative real number.

For \(r = 0 \) we get the usual \(I \)-convergence of double sequences. But our main interest is on the case where \(r > 0 \). Because it may happen that a double sequence \(x = \{ x_{jk} \}_{j,k \in \mathbb{N}} \) is not \(I \)-convergent in usual sense but there exists a double sequence \(y = \{ y_{jk} \}_{j,k \in \mathbb{N}} \) which is \(I \)-convergent in usual sense and \(\| x_{jk} - y_{jk} \| \leq r \) for all \((j,k) \in \mathbb{N} \times \mathbb{N} \) (or \(\{(j,k) \in \mathbb{N} \times \mathbb{N} : \| x_{jk} - y_{jk} \| > r \} \in I \) for some \(r > 0 \)). Then \(x \) is \(rI \)-convergent.

From the definition it is clear that \(rI \)-limit of \(x \) is not necessarily unique (for \(r > 0 \)). So we consider \(rI \)-limit set of \(x \), which is denoted by \(I - LIM^r_x = \{ \xi \in X : x \xrightarrow{rI} \xi \} \). \(x \) is said to be \(rI \)-convergent if \(I - LIM^r_x \neq \emptyset \) and \(r \) is called a rough \(I \)-convergence degree of \(x \).

Definition 2.8. A double sequence \(x \) in X is said to be bounded if there exists a positive real number \(M \) such that \(\| x_{jk} \| < M \) for all \((j,k) \in \mathbb{N} \times \mathbb{N} \).

Definition 2.9. A double sequence \(x \) in X is said to be \(I \)-bounded if there exists a positive real number \(M \) such that \(\{(j,k) \in \mathbb{N} \times \mathbb{N} : \| x_{jk} \| \geq M \} \in I \).

Definition 2.10 (5). A point \(\xi \in X \) is said to be an \(I \)-cluster point of a double sequence \(x = \{ x_{jk} \}_{j,k \in \mathbb{N}} \) if and only if for each \(\varepsilon > 0 \) the set \(\{(j,k) \in \mathbb{N} \times \mathbb{N} : \| x_{jk} - \xi \| < \varepsilon \} \notin I \). We denote the set of all \(I \)-cluster points of \(x \) by \(I(\Gamma_x) \).
Theorem 2.1. An I-bounded double sequence $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ of real numbers is I-convergent if and only if $I-\limsup x = I-\liminf x$.

Theorem 2.2. Let $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ be a bounded double sequence of real numbers, then

(i) $I-\limsup x = \max I(\Gamma_x)$,

(ii) $I-\liminf x = \min I(\Gamma_x)$.

The above result is also true for I-bounded double sequences. So it can be stated as follows.

Theorem 2.3. Let $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ be an I-bounded double sequence of real numbers, then

(i) $I-\limsup x = \max I(\Gamma_x)$,

(ii) $I-\liminf x = \min I(\Gamma_x)$.

Theorem 2.4. For a double sequence $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ in a normed linear space $(X, \|\cdot\|)$ we have $\text{diam}(I-\text{LIM}_r x) \leq 2r$. In particular if $x \to I \xi$, then $I-\text{LIM}_r x = B_r(\xi) = \{y \in X : \|y - \xi\| \leq r\}$ and so $\text{diam}(I-\text{LIM}_r x) = 2r$.

Note 2.1. When $r=0$, then $\text{diam}(I-\text{LIM}_r x) = 0$. Therefore $I-\text{LIM}_r x$ is either \emptyset or singleton. This implies the uniqueness of limit of I-convergent double sequence.

Theorem 2.5. Let $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ be a double sequence in X and $c \in I(\Gamma_x)$. Then $\|\xi - c\| \leq r$ for all $\xi \in I-\text{LIM}_r x$ i.e. $I-\text{LIM}_r x \subseteq B_r(c)$.

We now consider an example of a double sequence which is rough I-convergent but not rough convergent.

Example 2.1. We consider the ideal $I_d = \{A \subset \mathbb{N} \times \mathbb{N} : d(A) = 0\}$. Let $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ be a double sequence in the normed linear space $(\mathbb{R}, \|\cdot\|)$ defined by

$$x_{jk} = \begin{cases} 2jk & \text{if } j \text{ and } k \text{ are squares}, \\ (-1)^{j+k} & \text{otherwise}. \end{cases}$$

Then

$$I_d-\text{LIM}_r x = \begin{cases} \emptyset & \text{if } r < 1 \\ [1-r, r] & \text{if } r \geq 1 \end{cases}$$

and $\text{LIM}_r x = \emptyset$ for all $r \geq 0$.

From the above example we see that $I-\text{LIM}_r x \neq \emptyset$ does not imply $\text{LIM}_r x \neq \emptyset$. But $\text{LIM}_r x \neq \emptyset$ always implies that $I-\text{LIM}_r x \neq \emptyset$.
3. Main Results

We first establish a relation between boundedness and rough I-convergence of double sequences.

Theorem 3.1. If a double sequence $x = \{x_{jk}\}$ is bounded, then there exists $r \geq 0$ such that $I - LIM^r_x \neq \emptyset$.

Proof. The proof is similar to the proof of Theorem 2.4 [13], so is omitted. □

Note 3.1. Taking $I = \{A \in \mathbb{N} \times \mathbb{N} : d(A) = 0\}$, from Note 3.2 [13] we see that the converse of Theorem 3.1 is not true.

We now show that the converse of Theorem 3.1 is true if the double sequence x is I-bounded.

Theorem 3.2. A double sequence x is I-bounded if and only if there exists $r \geq 0$ such that $I - LIM^r_x \neq \emptyset$.

Proof. Let x be an I-bounded double sequence. Then there exists a positive real number M such that $A = \{(j, k) \in \mathbb{N} \times \mathbb{N} : \|x_{jk}\| \geq M\} \in I$. Let $r' = \sup\{\|x_{jk}\| : (j, k) \in \mathbb{N} \times \mathbb{N} \setminus A\}$. Then $0 \in I - LIM^{r'}_x$ and so $I - LIM^{r'}_x \neq \emptyset$.

Conversely, let $I - LIM^r_x \neq \emptyset$ for some $r \geq 0$. Let $\xi \in I - LIM^r_x$. Take $\varepsilon = 1$. Then $B = \{(j, k) \in \mathbb{N} \times \mathbb{N} : \|x_{jk} - \xi\| \geq 1 + r\} \in I$. Now $(j, k) \in \mathbb{N} \times \mathbb{N} : \|x_{jk} \geq 1 + r + \|\xi\|\} \subseteq B$ and so $(j, k) \in \mathbb{N} \times \mathbb{N} : \|x_{jk} \geq 1 + r + \|\xi\|\} \in I$. This shows that x is I-bounded. □

Next we present an alternative proof of Theorem 2.4 [8] which gives a topological property of the rI-limit set of a double sequence.

Theorem 3.3. For all $r \geq 0$, the rI-limit set $I - LIM^r_x$, of a double sequence $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ is closed.

Proof. Let ξ be a limit point of $I - LIM^r_x$. Then for any $\varepsilon > 0$, $B^\varepsilon(\xi) \cap I - LIM^r_x \neq \emptyset$. Let $\alpha \in B^\varepsilon(\xi) \cap I - LIM^r_x$. Since $\alpha \in I - LIM^r_x$ so $A^\varepsilon(\alpha) = \{(j, k) \in \mathbb{N} \times \mathbb{N} : \|x_{jk} - \alpha\| \geq r + \varepsilon\} \in I$. Let $B(\varepsilon) = \{(j, k) \in \mathbb{N} \times \mathbb{N} : \|x_{jk} - \xi\| \geq r + \varepsilon\}$. Now $(j, k) \notin A^\varepsilon(\alpha)$ implies $(j, k) \notin B(\varepsilon)$. Thus $(j, k) \in B(\varepsilon)$ implies $(j, k) \in A^\varepsilon(\alpha)$. This implies $B(\varepsilon) \subseteq A^\varepsilon(\alpha)$ and so $B(\varepsilon) = \{(j, k) \in \mathbb{N} \times \mathbb{N} : \|x_{jk} - \xi\| \geq r + \varepsilon\} \in I$. Therefore $\xi \in I - LIM^r_x$. Hence $I - LIM^r_x$ is a closed set in X. □

Theorem 3.4. Let $x = \{x_{jk}\}_{j,k \in \mathbb{N}}$ be a double sequence in X. Then x is I-convergent to ξ if and only if $I - LIM^r_x = \overline{B^r(\xi)}$.

Proof. It directly follows from Theorem 2.4 that if x is I-convergent to ξ, then $I - LIM^r_x = \overline{B^r(\xi)}$.

Conversely, let $I - LIM^r_x = \overline{B^r(\xi)}$. We have to show that x is I-convergent to ξ, i.e. for all $a > 0$, $A(a) = \{(j, k) \in \mathbb{N} \times \mathbb{N} : \|x_{jk} - \xi\| \geq a\} \in I$. Now fixed
Let us choose \(r > 0 \) and \(\varepsilon > 0 \) such that \(r + \varepsilon < a \). For \(\xi \in I - LIM_\infty^x \), \(\{ (j, k) \in \mathbb{N} \times \mathbb{N} : \| x_{jk} - \xi \| \geq r + \varepsilon \} \in I \). Since \(\{ (j, k) \in \mathbb{N} \times \mathbb{N} : \| x_{jk} - \xi \| \geq a \} \subset \{ (j, k) \in \mathbb{N} \times \mathbb{N} : \| x_{jk} - \xi \| \geq r + \varepsilon \} \). So \(\{ (j, k) \in \mathbb{N} \times \mathbb{N} : \| x_{jk} - \xi \| \geq a \} \in I \). Hence \(x \) is \(I \)-convergent to \(\xi \).

Theorem 3.5. Let \((\mathbb{R}, \| . \|) \) be a strictly convex space and \(x = \{ x_{jk} \}_{j,k \in \mathbb{N}} \) be double sequence in \(\mathbb{R} \). For any \(r > 0 \), let \(y_1, y_2 \in I - LIM_\infty^x \) with \(\| y_1 - y_2 \| = 2r \). Then \(x \) is \(I \)-convergent to \(\frac{1}{2}(y_1 + y_2) \).

Proof. Let \(y_3 \) be an arbitrary \(I \)-cluster point of \(x \). Now since \(y_1, y_2 \in I - LIM_\infty^x \), so by Theorem 2.5 we have

\[
\| y_1 - y_3 \| \leq r \quad \text{and} \quad \| y_2 - y_3 \| \leq r.
\]

Then \(2r = \| y_1 - y_2 \| \leq \| y_1 - y_3 \| + \| y_3 - y_2 \| \leq 2r \). Therefore \(\| y_1 - y_3 \| = \| y_2 - y_3 \| = r \). Now

\[
\frac{1}{2}(y_1 - y_2) = \frac{1}{2}((y_3 - y_1) + (y_2 - y_1)).
\]

Since \(\| y_1 - y_2 \| = 2r \), so \(\frac{1}{2} \| y_2 - y_1 \| = r \). Again since the space is strictly convex, so by (1) we get \(\frac{1}{2}(y_2 - y_1) = y_3 - y_1 = y_2 - y_3 \). Thus \(y_3 \) is the unique \(I \)-cluster point of the double sequence \(x \). Again by the given condition \(I - LIM_\infty^x \neq \emptyset \), so by Theorem 3.2 \(x \) is \(I \)-bounded. Since \(y_3 \) is the unique \(I \)-cluster point of the \(I \)-bounded double sequence \(x \), so by Theorem 2.1 and Theorem 2.3 \(x \) is \(I \)-convergent to \(y_3 = \frac{1}{2}(y_1 + y_2) \).

Acknowledgement: The authors are grateful to Prof. Pratulananda Das, Department of Mathematics, Jadavpur University for his advice during the preparation of this paper.

References

[1] S. Aytar: Rough statistical convergence, Numer. Funct. Anal. And Optimiz., 29(3)(2008), 291-303.

[2] M. Balcerzak, K. Dems: Some types of convergence and related Baire systems, Real Anal. Exchange, 30(1)(2004/2005), 267-276.

[3] P. Das, P. Malik: On the statistical and \(I \)-variation of double sequences, Real Anal. Exchange, 33(2007), 351-364.

[4] P. Das, P. Kostyrko, W. Wilczyński, P. Malik: \(I \) and \(I^* \)-convergence of double sequences, Math. Slovaca, 58(2008), 605-620.

[5] P. Das, P. Malik: On extremal \(I \)-limit points of double sequences, Tatra Mt. Math. Publ, 40 (2008), 91-102.

[6] K. Demirci: \(I \)-limit superior and limit inferior, Math. Commun., 6(2)(2001), 165-172.

[7] K. Dems: On \(I \)-Cauchy sequences, Real Anal. Exchange, 30(1)(2004/2005), 123-128.

[8] E. Dündar: On rough \(I_2 \)-convergence of double sequences, Numer. Funct. Anal. And Optimiz., DOI:10.1080/01630563.2015.1136326.
[9] P. Kostyrko, T. Šalát, W. Wilczyński: \textit{I}-convergence, Real Anal. Exchange, 26(2)(2000/2001), 669-685.
[10] P. Kostyrko, M. Macaz, T. Šalát, M. Sleziak: \textit{I}-convergence and external \textit{I}-limit points, Math. Slovaca, 55(4)(2005), 443-454.
[11] B.K. Lahiri, P. Das: \textit{I} and \textit{I}*- convergence in topological spaces, Math. Bohemica, 130(2)(2005), 153-160.
[12] P. Malik and M. Maity: On rough convergence of double sequence in normed linear spaces, Bull. Allah. Math. Soc., 28(1)(2013), 89-99.
[13] P. Malik and M. Maity: On rough statistical convergence of double sequences in normed linear spaces, Afr. Mat., (2016) 27: 141-148.
[14] M. Mursaleen, O.H.H. Edely: Statistical Convergence of double sequences, J. Math. Anal. Appl, 288 (2003), 223-231.
[15] S.K. Pal, D. Chandra, S. Dutta: Rough ideal convergence, Hacettepe J. of Math. and Stat., 42(6)(2013), 633-640.
[16] H.X. Phu: Rough convergence in normed linear spaces, Numer. Funct. Anal. And Optimiz., 22(2001), 201-224.
[17] A. Pringsheim: Zur theortie der Gamma-Functionen, Math. Annalen, 31 (1888), 455-481.
[18] A. Zygmund: Trigonometric Series, Cambridge University Press, Cambridge, UK, 1979.