The aims of the project are in the project’s title: Complex Research of Earthquake’s Forecasting Possibilities, Seismicity and Climate Change Correlations: to create a team for researching the above mentioned problem.

In the next table are presented the number of participated scientists, the Institutes and counties:

Number	Partner name	Partner short name	Country
04	Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences	INRNE BAS	Bulgaria
05	Geophysical Institute, Bulgarian Academy of Sciences	GPHI BAS	Bulgaria
07	Institute of Oceanography, Hellenic Center for Marine Research	HCMR	Greece
06	Josef Stefan Institute	JSI	Slovenia
02	Karst Research Institute, Scientific Research Centre of the Slovenian Academy of Science and Art	SRC SASA SI	Slovenia
04	Geological Institute, Bulgarian Academy of Sciences	GI BAS	Bulgaria
03	Central Laboratory of Geodesy, Bulgarian Academy of Sciences	CLG BAS	Bulgaria
03	Solar-Terrestrial Influences Laboratory, Bulgarian Academy of Sciences	STIL BAS	Bulgaria
03	“Ss. Cyril and Methodius” University in Skopje	SORM UKIM	Macedonia
05	Earth and Marine Sciences Institute, TUBITAK Marmara Research Center	TUBITAK MAM	Turkey
06	Western Survey for Seismic Protection SNCO, Ministry of Emergency Situations	WSSP	Armenia
12	M. Nodia Institute of Geophysics, Ministry of Education and Science of Georgia	GI MES	Georgia
06	Seismic Monitoring Center of Ilia State University State University	SMC ISU	Georgia
04	Institute of Geophysics, National Academy of Sciences of Ukraine	IG NASU	Ukraine
02	National Antarctic Scientific Centre of the Ministry of Education and Science of Ukraine	NASC	Ukraine
05	Odessa National Polytechnic University	ONPU	Ukraine
03	Institute for Nuclear Research, National Academy of Sciences of Ukraine	INR NASU	Ukraine
The main results achieved are as follows:

1. Creating a group which is able to fulfill a Complex Research of Earthquake’s Forecasting Possibilities.

 The main result is statistical prove of imminent forecasting possibility for seismic regional activity on the basis of the geomagnetic monitoring in the framework of special created data acquisition system for archiving, visualization and analysis.

 The approach was developed in the last 10-12 years (Mavrodiev, 2004, Mavrodiev, Pekevski, Jimseladze, 2008, Mavrodiev, Pekevski, Kukiashvili, 2012) and and explanation for everyday monitoring is presenting in http://theo.inrne.bas.bg/~mavrodi

2. Describing of the main result.

2.1. Using data:

 The data acquisition system (http://theo.inrne.bas.bg/~mavrodi), applied for BlackSeaHazNet every day geomagnetic and earthquake monitoring use:

 - the Balkan Intermagnet geomagnetic stations PAG, Bulgaria, SUA, Romania, GCK Serbia, minute data (http://www.intermagnet.org/),
 - software for calculation of the daily and minute Earth tide behavior (Dennis Milbert, NASA, http://home.comcast.net/~dmilbert/softs/solid.htm),
 - the Earth tide extremes (daily average maximum, minimum and inflexed point) as trigger of earthquakes,
 - the data for World A- indices (http://www.swpc.noaa.gov/alerts/a-index.html).

2.2. The simple mathematics for calculation of the Precursor signal and software for illustration the reliability of forecasting and its statistic estimation (see Fig. 1):

a. The variables X_m, Y_m, Z_m are the component of minute averaged values of Geomagnetic vector or its variations, m=1440.

 b. The variables dX_h, dY_h, DZ_h are standard deviation of X_m, Y_m, Z_m, calculated for 1 hour (h=1,...,24):

 $X_h = \frac{1}{60} \sum_{m=1}^{60} X_m$, where h=1,...,24,

 $dX_h = \sqrt{\frac{1}{60} \sum_{m=1}^{60} \left(1 - \frac{X_m}{X_h} \right)^2}$.

 c. and geomagnetic signal

 $GeomHourSig_h = \sqrt{\frac{dX_h^2 + dY_h^2 + dZ_h^2}{X_h^2 + Y_h^2 + Z_h^2}}$

 d. The A indices are the Low, Medium, High a-indices calculated by NOAA, Space weather prediction center: http://www.swpc.noaa.gov/alerts/a-index.html.
e. The variable \(GmSig_{\text{day}} \) is diurnal mean value of \(GmHourSig_h \):

\[
GeomSig_{\text{day}} = \frac{1}{24} \sum_{m=1}^{24} GeomHourSig_m
\]

and PrecursorSig_{\text{day}} is

\[
PrecursorSig_{\text{day}} = 2 \frac{GeomSig_{\text{day}} - GeomSig_{\text{yesterday}}}{Amg_{\text{day}} + Amg_{\text{yesterday}}}
\]

f. The indices of Eq’s magnitude value is the distance in hundred km from the monitoring point.

g. The variable \(SChtM \) is the eq’s modified energy surface density in the monitoring point \([\text{J/km}^2]\):

\[
SChtM = \frac{10^{(1.4M+4.8)}}{(40+\text{Depth}+\text{Distance})^2}
\]

h. The variable \(\text{PerDayEqSum} \) is the sum of energy density \(SChtM \) of all eq’s, occurred in the time period +/- 2.7 days before and next of the tide extreme. Obviously its value can serve as estimation of regional seismic activity for the time period around tide’s extreme.

i. The variable \(\text{SumEnergy} \) is the sum of energy density \(SChtM \) of all eq’s, occurred in the day,

j. The variable \(\text{TideMinute} \) is the module of Tide vector calculated every 15 minutes,

k. The variable \(\text{TideDay} \) is the diurnal mean value in time calculated in analogy of mass center formulae

\[
\text{Time}_{\text{TideDay}} = \frac{\sum_{m=1}^{360} m\text{TideDay}_m}{\sum_{m=1}^{360} \text{TideDay}_m}
\]

For seconds and more samples per second the generalization has to calculate geomagnetic components for every minute and correspondingly the \(GmSig_{\text{day}} \) has to be the mean value for 1440 minutes.

As one can see that the appearance of positive \(PrecursorSig_{\text{day}} \) value means that in the time period of next Tides extreme (minimum, maximum or inflex behaviour) the regional seismic activity increases (the bigger value of variable \(\text{PerDayEqSum} \)).

So, the described geomagnetic quake approach using monitoring data from nearest geomagnetic station can serve as precursor for imminent estimation of regional seismic activity.

For boreholes water level data one do not use the A indices data, the \(GmSig \) has to be changed with Water level signal \(WlSig \) and Precursor signal is only a derivative:

\[
PrecursorSig_{\text{day}} = WlSig_{\text{day}} - WlSig_{\text{yesterday}}
\]

For statistic estimation of the reliability we calculate the variable day difference

\[
\text{DayDiff} = \text{EqTime} - \text{TideExtremTime} \text{[day]}
\]

and calculate its distribution for those earthquakes with biggest values of \(SChtM \).
3. The reliability of regional imminent seismic condition on the basis of Geomagnetic quake approach were tested statistically using the geomagnetic data of monitoring stations:

- Intermagnet PAG (Panagurichte, Bulgaria),

For the period from January 1, 2008 to 29 January 2014 were calculated the values of day difference between the times of predicted (by definition we suppose that predicted earthquakes are those which have maximal energy density in the monitoring point and occurred in +/- 2.7 days around tide’s extreme) and occurred earthquakes.

As one can see from the next figure the distribution is near to the Gauss one with $h_2^2 = 0.89$. The relation between sum of energies of occurred and predicted earthquakes $r = 6.48/5.51$. This facts can be interpreted as statistical prove that the geomagnetic quake approach is reliable for estimation of imminent regional seismic conditions.
For illustration the map of predicted (column/bar with values logarithm of variable SChtM) and occurred (circles) earthquakes is presented:
As one can see from the above figure the distribution is near to the Gauss one with $h^2 = 0.92$. The relation between sum of energies of occurred and predicted earthquakes $r = 11.0/8.83$.

- Intermagnet SUA (Surlari, Romania):
- Intermagnet GCK (Grocka, Serbia)
As one can see from the above figure the distribution is near to the Gauss one with \(h^2 = 0.93 \). The relation between sum of energies of occurred and predicted earthquakes

\[
r = \frac{2.25}{1.87}
\]
- Intermagnet L’Aquila (AQU, Italy)

AQU diurnal geomagnetic and earthquake monitoring (700 km)

Earth tide
(Dennis Milbert, http://home.comcast.net/~dmilbert/softs/solid.htm)

ChTm = EqS energy surface density
SumEnergy = Diurnal sum of ChTm

PerDenEnSum = Sum ChTm for +/-2.7 day around tide extrema and between

Eo's magnitude, Distance [100 km]

Precursor Gig, On Gig

A indices
Low, Medium, High

Visible dependence of local and global Eo variables

1 Mar - 12 May, 2009

Data by: Intermagnet AQU, EMSC, NOAA

© Mavrodić 2004, Pekovski, Mavrodić 2013, Pekovski, Mavrodić, Kiknavashvili 2014

209 predicted, Sum of ChTm = 1.05e11 J/km²
727 occurred, Sum of ChTm = 1.15e11 J/km²

1 Jan 2008 - 30 May 2013
91 percent

Model

\[y = y_0 + (A/w) e^{-((x-x_0)^2)/2w^2} \]

Reduced Chi-Sq

135.1876

Adj. R-Square

0.87282

Count vs. DayDiff

AQU, L'Aquila, Italy
As one can see from the above figure the distribution is near to the Gauss one with $\text{hi}^2 = 0.87$. The relation between sum of energies of occurred and predicted earthquakes $r = 1.15/1.05$

- BlackSeaHazNet second station, Skopje, Macedonia,
- Dusheti, Georgia (fluxgate magnetometers with minutes and second samples),
- MES NSSP Netwok, Armenia, Stepanavan geomagnetic station (Proton magnetometer, hour samples)
For Kiev and Lvov (Ukraine) data is not possible to do the above conclusions about Gauss distribution, because of irregularity of monitoring and the data analysis.

4. Big world earthquakes and Intermagnet data. During our investigation of relation between regional geomagnetic and seismic activity in areas of interest, close to particular Intermagnet geomagnetic observatories (GMO), it was found that in case of strong earthquake occurred on epicenter distances less than 600 - 1000km from geomagnetic observatory, clear precursor signal was evident.

5. Imminent regional confirmation of forecasting based on the geomagnetic quake (positive jump of PrecursorSig_{day}) approach:
 - Dusheti, Georgia flux gate second magnetometer - Mw 7.1, depth 7.2 km, 2011, 23 Oct, 36.63N, 43.49E, Van, Turkey earthquake;
 - Skopje, Macedonia (second) and Panagurichte (minute) flux gate magnetometers – Mw 5.6, Depth 9.4 km, 42.66 N, 23.01 E, 00.00 hour, 22 May, 2012;
 - Grocka, Serbia and Panagurichte (minute) flux gate magnetometers – Mw 6.1, Depth 18km, 26 Jan 2014, 13:55, 38.19 N, 20.41 E; Mw 6.0, depth 2km, 3 Feb, 2014, 03:08, 38.25 N, 20.32 E, Mw5.6, Depth 9.4km.

6. The acquisition system for archiving, visualization and analysis of the water level variations in boreholes as earthquake precursor was created for Georgia and Armenia data (http://theo.inrne.bas.bg/~mavrodi , http://dspace.nplg.gov.ge/handle/1234/9101):
7. Another geophysical network was tested in Ukraine and Antarctica: seismic, meteorological, electromagnetic (VLF), geomagnetic, infrasound, radon monitoring. Estimated probability for earthquakes with M> 5 was 0.8, Vrancha, Romania and earthquakes with M>6.5 was 0.6 for the Scotia Sea region, Antarctica.

8. The reality of Climate Seismicity correlation and axion-geo -nuclear -reactors hypothesis for Climate changes reasons
In the Rusov’s talk in Ohrid, Macedonia 2011 workshop was presented the hypothesis and some experimentally arguments that Solar processes are the host power pacemaker of Earth climate behavior and its seismicity.
The causality link processes are as follows:
- the burn of one Sun axion from two gamma quanta in the field of iron nuclei (the strait Primakoff effect);
- the burn of two gamma quanta (the inverse Primakoff effect) in the field of iron nuclei in the Earth’s nuclei and the increasing of temperature, which leads to the activation of geo nuclear set of reactors (Feoktistov type 238U, 232Th reactors with fast neutrons) in the canyons on the nuclei’s surface;
- as a result there is more heat, more intensive lifting of magma, more activity in the oceans rift zones, more intensive Wegener’s plates movement, and, consequently, more seismic and volcanic activity as well as change of climate behavior.
- as well as the discovery of neutrino was based on the conservation laws, we can hope that some estimations for the axions existence, its mass, the spatial distribution and characteristics of geo – reactors will be achieved after creation of the more accurate Earth’s heat balance models and the experimental measuring of neutrino’s type and energy distribution.

Time evolution: (a) of the variations of magnetic flux in the bottom of the Sun convective zone (tachocline zone); (b) of the geomagnetic field secular variations (Y-component, nT/year), the values of which are obtained at the
Eskdalemuir Observatory (England), where the variations ($\delta Y/\delta t$) are directly proportional to the westward drift of magnetic features; (c) of the variation of the Earth rotation velocity; (d) of the variations of the average global ocean level (PDO+AMO, cm/year); (e) the number of large earthquakes (with magnitude $M > 7.0$). All curves are smoothed by sliding intervals in 5 and 11 years. The pink area is the prediction region. Note: formation of the second peaks on curves (c) – (e) is mainly predetermined by nuclear tests in 1945–1990.

9. Geo electromagnetic measurements: for the first time in Bulgaria territory were measured in the same point the Earth electric currents and geomagnetic field component using the station GEOMAG-02 and magnetometers GEOMAG-02M: Main technical characteristics of MTS GEOMAG-02 are: measuring range of full MF±65000nT; measuring range of MF variations ±3200nT; resolution of MF variation registration to FLASH-card 0.01nT; temperature drift <0.2nT/°C; tolerance of component non-orthogonally of MF sensor <30ang. min; automatic compensation range of contact MF in each component ±65000nT; EF variation measuring range ±200mV; ±2000mV; resolution of EF variation registration to FLASH-card 1µV; measuring channel frequency band DC - 1 (3, 10)Hz; measuring channel information sampling numbers 10-15 in sec; data averaging during recording to FLASH-card 0.1…60s; capacity of FLASH-card «CompactFlash» (FAT-16, FAT-32) 64MB…64GB; operating temperature range 10°-40°; connecting cable length between MF sensor and electronic unit up to 50m; power consumption 12V; 0.1A.

10. Radon mapping was caring out on the territory Georgia and Slovenia for fixed active fault system and gas concentration monitoring was starting, including in the cave system. Bat there was not enough long time series for receiving the estimation of Radon concentration variations as regional earthquake’s precursor.

11. Meteorology and seismicity correlations: Investigation of the possible correlation between meteorology variables and regional seismic activity was started.

12. Ozone and temperature spatial distributions and its possible correlations with regional seismic activity: There is a good correspondence between geomagnetic field, near surface air temperature and pressure spatial distributions in Northern hemisphere during XX century. The alteration of the near tropopause temperature (by O_3 variations at these levels) changes the amount of the water vapor in the driest part of the upper troposphere/lower stratosphere. Application of non-linear statistical methods for analysis of climatic and magnetic field data reveals the important role of energetic particles and lower stratospheric ozone in climate variations.

13. Electromagnetic scanning: The research of deep Earth’s crust structure and upper mantle study using the inverse problem analysis of the Earth electromagnetic radiation in radio diapason, measured with “Astrogon” device was performed in Greece and Bulgaria in different profiles. The device is a passive sensor type sensitive to the three components
of the magnetic field within a wide range of frequencies (5 – 100 kHz). The comparison with geological knowledge for the Crust in the profiles and the inverse problem results give a hope for perspectives of such kind of studies and that the method has to be included in the permanent regional monitoring. Really, during the project fulfilling, the method of the electromagnetic tomography of the Earth crust and upper mantle was developed, which gives the possibility to determine the location of the future earthquake hypocenters as the most stressed volume of the crust (or mantle). Moreover, the stationary EM measurements by the same device (or new one DS-4, designed and produced during the project fulfilling) show the existence of electromagnetic precursor in a wide frequency diapason, which coincide with that of low frequency signal in Intermagnet data. So the base of the project task solution – where and when – is grounded.

14. Other precursors research are as follows: The first is TM 71 extensometer monitoring, which is carried out to observe micro-displacements along fault movements (or landslide movements connected with active tectonics) in karts caves, fault scarps or in trenches where was found anomaly in velocities 3-4 months before regional strong earthquake. The second represents 2D displacements of static vertical pendulum in 25m deep karst shaft that are registered each 10 seconds. Changes in stress direction are detected. The studies were oriented towards the aim to connect the periods of micro-displacements with local and worldwide seismicity. The third represents the temperature monitoring of two sulphidic waters, which are situated near important regional faults. The fourth includes microbiological monitoring site on the fault planes in the Postojna Cave (Slovenia) to find the possible connection between microbial biomass and tectonic displacements.

15. Schuman resonance measurement device: it was developed the construction design and software for measuring device were tested.
16. The website of the Project was created:
http://theo.inrne.bas.bg/~mavrodi/blackseahaznet/

During the project many young scientists visited research centers of the Black Sea region, which facilitated their contacts with colleagues. They take part in project conferences, seminars, joint field works and processing data in hosting countries. As a result, joint publications were published in journals and conference proceedings.

In the case of project prolongation until the end of 2014 in the frame of the remaining budget (around 34% or approximately 160000EUR) the main expected results which are based on the project current achievements will be:

A. Preparation of the project proposal for regional electromagnetic monitoring under, on and above Earth’s surface and near space and as well meteorological data for creating of complex data acquisition system on the basis of which to start solving the inverse problem for regional imminent forecasting of time, coordinates, depth, magnitude and intensity of incoming earthquakes.

B. Creation of project proposal/s for Sun – Earth interaction balances models which describe its influences on climate change, seismicity, volcanism and continental plate’s movement.

C. Development of long term collaboration for complex research in the framework of bilateral, regional and other European 2020 programs.

Conferences presentations, papers
The members of Project participated 8 International Conferences, Congresses and Workshops with presentations as well as published many papers.
1. Kilifarska N.A., Bakhmutov V.G., Martazinova V.F., Melnyk G.V., Ivanova E.K., Geomagnetic field influence on the climatic parameters, Second Intern. Conference on “Актуальные проблемы электромагнитных зондирующих систем”, Kiev, Ukraine, 1-4 October, 2012.
2. Kilifarska N.A., Climate Variability Initiated by Helio- and Geomagnetic fields–Evidences and Mechanisms, TOSCA MS meeting, 29 Sept–4 Oct, 2013, Prague.
3. Kilifarska N.A., Near tropopause O3 – variability and climate implication, 12th Scientific Assembly of the IAGA, August 25-31, 2013, Mérida, México.
4. Kilifarska N., Bakhmutov V., Melnik G., Atmospheric ozone and Antarctic climate, VI International Antarctic Conference, May 15–17, 2013, Kiev, Ukraine
5. Kilifarska N., Bakhmutov V., Melnik G., Geomagnetic field as a driver of Climate variability, XII Intern. Conf. on Geoinformatics: theoretical and applied aspects, 13-16 May 2013, Kiev, Ukraine
6. Maksimenko O., Bakhmutov V., Shenderovskaya O., Trend changes of the geomagnetic field at the observatory Akademik Vernadsky (AIA): effect in Sq variations, VI International Antarctic Conference, May 15–17, 2013, Kiev, Ukraine

7. E. Botev, D. Dimitrov, I. Georgiev and V. Protopopova, Investigations of the 22 May 2012 Earthquake in Pernik Region, Bulgaria, 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

8. Georgiev, D. Dimitrov and E. Botev, Crustal Motion Monitoring in Bulgaria and Surrounding Regions by Permanent GPS Array, 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

9. D. Dimitrov, I. Georgiev, L. Dimitrova and E. Botev, Deformations and Seismicity in the Region of Mirovo Salt Deposit, Bulgaria, 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

10. K.D. Hadjiyski, S.M. Simeonov, E.A. Botev, The May 22, 2012 Mw = 5.6 Pernik Earthquake – Local Effects and Seismic Impact on Sofia city, 50 years SE–EEE, 1963-2013.

11. S. Simeonov, K. Hadjiyski and E. Botev, On the Seismic Vulnerability of Pernik Region (West Bulgaria) Bulgaria, 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

12. V. Protopopova, I. Georgiev, D. Dimitrov and E. Botev, Fault Plane Solutions and Geodynamics of Bulgarian Territory and Some Adjacent Lands, 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

13. Georgieva K., Kirov B., Koucká-Knižová P., Mošna, Z., Kouba, D., Asenovska, Y., Solar influences on atmospheric circulation, Journal of Atmospheric and Solar-Terrestrial Physics 2012 http://dx.doi.org/10.1016/j.jastp.2012.05.010S.

14. Kirov B., В.Н. Обридко, К. Георгиева, Е.В. Непомнящая, Б.Д. Шельтинг, Вековые вариации магнитного поля Солнца и геомагнитной активности, Труды Всероссийской ежегодной конференции по физике Солнца, Пулково 2012, стр. 447-452, 2012, ISSN 0552-5829

15. Климов С.И., В.А. Грушин, Л.Д. Белякова, Д.И. Новиков, В.Г. Родин, В.Н. Ангаров, Б.Б. Киров, Р. Недков, Г.А. Станев, Методика пространственно-временных измерений плазменно-волновых процессов в ионосфере с использованием инфраструктуры Российского сегмента Международной Космической Станции, Доклад на Юбилеен международен конгрес „40 години България – космическа държава”, 2012, ISBN 978-954-577-636-6

16. К. Георгиева, В. Киров, Long-term variations of the solar and heliospheric magnetic fields and their relation to solar influences on climate. Fourth Workshop "Solar influences on the ionosphere and magnetosphere", Sozopol, Bulgaria, 4-8 June, 2012, http://www.stil.bas.bg/

17. М. Adibekyan, B. Eremyan, N. Martirosyan, G. Bagdasaryan, A. Sardaryan, S. Kalashyan, S. Asenovski, Y. Asenovska, K. Georgieva, В. Киров, Relation Between high speed solar wind streams and seismic activity in the Caucasus region. Ninth Scientific Conference with International Participation SPACE, ECOLOGY, SAFETY (SES 2013), 20-22 November, 2013, Sofia, Bulgaria

18. S. Asenovski, В. Киров, K. Georgieva, D. Bachvarov, S. Klimov, V. Grushin, First results from Langmuir Probe measurements aboard the International Space Station: First Results, Ninth Scientific Conference with International Participation SPACE, ECOLOGY, SAFETY (SES 2013), 20-22 November, 2013, Sofia, Bulgaria

19. В. Киров, K. Georgieva, Solar Wind, Earth Rotation and Atmospheric Circulation, TOSCA science meeting, 30.09 – 04.10.2013 Prague, Czech Republic

20. Kapanadze Nino, Bezek Mateja, Vaupotic Janja, Melikadze George, Radon and thoron levels in air at selected places in Georgia
21. Melikadze George, Todadze Mariam, Kapanadze Nino, Körtin Olga, Müller Birgit, Vaupotic Janja, Andreeva Polina, Kiselinov Hristo. *Study interaction between seismicity and gas emission on the territory of Georgia.*

22. Šebela Stanka, Vaupotic Janja, Kachalin Igor, Liashchuk Oleksandr. *Underground geophysical observations in caves.*

23. Two contributions have been accepted for the Second East European Radon Symposium, Niš, Serbia, May 26–29, 2014:

24. Melikadze George, Kapanadze Nino, Vaupotic Janja, Bezek Mateja, Šebela Stanka. Levels of radon, thoron, ions and gamma radiation in air of the Sataplia and Prometheus caves in Georgia (oral presentation)

25. Kapanadze Nino, Melikadze George, Bezek Mateja, Vaupotic Janja. Radon levels in selected waters in Georgia (poster presentation)

26. Dobrev, N. 2012. Joint Bulgarian-Romanian early warning system from marine geohazards. *Mining and geology,* 2-3, 45-48 (in Bulgarian).

27. Dobrev, N., Ivanov, P., Berov, B., Krastanov, M. 2012. Report on field survey after May 22, 2012 Pernik earthquake, June 6, 2012. Part 2: Secondary seismic effects. http://www.geology.bas.bg/docum/Coseismic%20geological%20effects%20Pernik%20%28Bulgaria%20%20Mw%205.6%20%28Bulgaria%20%20Mw%205.6%20earthquake.pdf

28. Dobrev N., K. Kostov. 2012. In-situ monitoring of cracks at western periphery of Madara Plateau at vicinity of the historical rock bas-relief. Protected karst territories – monitoring and management. International scientific and applied conference. 16-20 September, 2012, Shumen. 65-67.

29. Dobrev N. 2012. 3D monitoring of active faults in Bulgaria and relationship of detected movements with the recent seismicity. *5th Int. Conf. 110 Anniversary of the seismological survey in Azerbaijan,* 2012, 465-475.

30. Berov, B., P.Ivanov, N. Dobrev, R. Nankin, M. Krastanov. 2013. State of the art for landslides along the North Bulgarian Black Sea coast. *In: Landslide Science and Practice,* Springer Berlin Heidelberg, pp 97-102.

31. Dobrev N., P. Ivanov, K. Kostov, O. Dimitrov, M. Krastanov, V. Nikolov, B. Berov. 2013. Identification of types of exogenic geological hazards along Bulgarian Black Sea coast. Proc. Blackseahaznet workshop, Sofia.

32. T.Matcharashvili, T.Chelidze, Z.Javakhishvili, N. Jorjiashvili, N Zhukova,. 2012, Scaling Features of Ambient Noise at Different Levels of Local Seismic Activity: A Case Study for the Oni Seismic Station. Acta Geophysica. vol. 60, no. 3, pp. 809-832. DOI: 10.2478/s11600-012-0006-z

33. N. Tsereteli, G. Tanircan, E. Safak, O. Varazanashvili, T. Chelidze, A. Gvencadze, N. Goguadze. Seismic Hazard Assessment for Southern Caucasus – Eastern Turkey Energy Corridors: The Example of Georgia.2012.In: NATO Science for Peace and Security Series - E: Human and Societal Dynamics. “Correlation Between Human Factors and the Prevention of Disasters” by David L. Barry, Wilhelm G. Coldewey, Dieter W.G. Reimer, Dmytro V. Rudakov (Eds), Volume 94, 96 - 111

34. L. Telesca, T. Matcharashvili, and T. Chelidze. 2012. Investigation of the temporal fluctuations of the 1960–2010 seismicity of Caucasus. *Nat. Hazards Earth Syst. Sci.,* 12, 1905–1909, www.nat-hazards-earth-syst-sci.net/12/1905/2012/doi:10.5194/nhess-12-1905-2012

35. Amiranashvili, T. Matcharashvili, T. Chelidze.2012. Climate Change in Georgia; statistical and nonlinear dynamics predictions. Journal of Georgian Geophysical Society, 15 A. 67-88.
36. T. Chelidze. 2012. Pitfalls and Reality in Global and Regional Hazard and Disaster Risk Assessments. Journal of Georgian Geophysical Society, 15 A. 3-14.
37. T. Chelidze, N. Zhukova, T. Matcharashvili. 2012. SEISMOTOOL – easy way to see, listen, analyze seismograms. Journal of Georgian Geophysical Society, 15 A. 42-49.
38. Tsereteli E., Gaprindashvili M., Gaprindashvili G., Chelidze T., Varazanashvili O., Tsereteli N. 2012. Problems of natural and anthropogenic disasters in Georgia. Journal of Georgian Geophysical Society, 15 A. 14-23.
39. Amiranashvili, T. Matcharashvili, T. Chelidze. 2012. Climate Change in Georgia; statistical and nonlinear dynamics predictions. Jornal of Georgian Geophysical Society, 15, 67-88.
40. Janja Vaupotič, Mateja Bezek, Nino Kapanadze, George Melikadze, Teona Makharadze, RADON AND THORON MEASUREMENTS IN WEST GEORGIA, Journal of the Georgian Geophysical Society, Issue A. Physics of Solid Earth, vol. 15A, 128-137, 2012.
41. Tamar Jimsheladze, George Melikadze, Alexander Chankvetadze, Robert Gagua, Tamaz Matiashvili, THE GEOMAGNETIC VARIATION IN DUSHETI OBSERVATORY RELATED WITH EARTHQUAKE ACTIVITY IN EAST GEORGIA, Journal of the Georgian Geophysical Society, Issue A. Physics of Solid Earth, vol. 15A, p.118-128, 2012.
42. T. Chelidze and T. Matcharashvili. 2013. Triggering and Synchronization of Seismicity: Laboratory and Field Data - a Review.In: Earthquakes – Triggers, Environmental Impact and Potential Hazards. (Ed. K. Konstantinou), Nova Science Pub.165-231.
43. Matcharashvili T., Chelidze T., Javakhishvili Z., Zhukova N., Jorjiashvili N., Shengelia I. 2013. Discrimination between stochastic dynamics patterns of ambient noises (case study for Oni seismic station). Acta Geophysica, DOI: 10.2478/s11600-013-0141-1
44. T. Matcharashvili, L. Telesca, and T. Chelidze. 2013. Analysis of temporal variation of earthquake occurrences in Caucasus from 1960 to 2011. Tectonophysics.v.608, 857-865, DOI: 10.1016/j.tecto.2013.07.033
45. L Telesca, T Matcharashvili, T Chelidze, N Zhukova. 2013 Investigating the dynamical features of the time distribution of the reservoir-induced seismicity in Enguri area (Georgia). Natural Hazards. DOI 10.1007/s11069-013-0855-z
46. Eftaxias, K., Potirakis, S. M., and Chelidze, T. 2013.On the puzzling feature of the silence of precursory electromagnetic emissions, Nat. Hazards Earth Syst. Sci., 13, 2381-2397, doi:10.5194/nhess-13-2381-2013,
47. V. Bakhmutov. Geophysical observatory “Ukrainian Antarctic station Akademik Vernadsky” XI-th International Conference "Geoinformatics: Theoretical and Applied Aspects", which will be held from 14-17 May 2012 in Kiev
48. V. Bakhmutov. Palaeosecular variations of the Earth magnetic field. Workshop on the last results from BlackSeaHazNet project, 19 June 2012, Sofia (see APPENDIX 2).
49. N.A. Kilifarska, V.G. Bakhmutov, G. V. Melnyk, T. Mozgova, Variability of surface air temperature and earthquakes in Balkan region, BlackSeaHazNet workshop, 16-19 Dec, 2013, Sofia, Bulgaria.
50. N.A. Kilifarska, V.G. Bakhmutov, G. V. Melnyk, Earth’s magnetic filed and climate – real link or coincidental statistics, BlackSeaHazNet workshop, 16-19 Dec, 2013, Sofia, Bulgaria.
51. Kilifarska N., Bakhmutov V., Melnik G., Does geomagnetic field influence climate variability?” BlackSeaHazNet workshop, 7 November, 2013, Tbilisi, Georgia.
52. A.M. Abramova, I.M. Varencov., C. Kovachnikova, I.M. Logvinov, 3D geoelectrical model of the earth crust over Bulgaria.

53. B. Srebrov, B. Ladanivskiy, I.M. Longvinov, Geoelectrical characteristics of Panagurishte observatory.

54. S.Cht. Mavrodiev, L. Pekevski, B. Srebrov, T. Mozgova, G. Melnik. Recent results from the BlackSeaHazNet project regarding the regional short-time forecasting of the increased seismic activity. The second International Conference “Topical problems of up-to-date probing electromagnetic systems” http://www.ipgph.kiev.ua

55. V. D. Rusov, V. A. Tarasov, I. V. Sharph, V. M. Vaschenko, E. P. Linnik, T. N. Zelentsova, M. E. Beglayan, S. A. Chernegenko, S. I. Kosenko, P. A. Molchinikolov, V. P. Smolyar, E. V. Grechans, On some essential peculiarities of the traveling wave reactor operation. // arXiv:0605244v3 [physics.geo-ph] 1 Odessa National Polytechnic University, Odessa, Ukraine 2 State Ecological Academy for Postgraduate Education and Management, Kyiv, Ukraine

56. V.D. Rusov, V.A. Tarasov, V.M. Vaschenko, E.P. Linnik, T.N. Zelentsova, M.E. Beglayan, S.A. Chernegenko, S.I. Kosenko, P.A. Molchinikolov, V.P. Smolyar, E.V. Grechans, Fukushima plutonium effect and blow-up regimes in neutron-multiplying media // arXiv:1209.0648 [nucl-th]

57. 1 Odessa National Polytechnic University, Odessa, Ukraine 2 State Ecological Academy for Postgraduate Education and Management, Kyiv, Ukraine

58. V. D. Rusov, V. Yu. Maksymchuk, R. Ilić, V. M. Pavlovych, R. Jaćimović, V. G. Bakhmutov, O. A. Kakaev, V. M. Vaschenko, J. Skvarč, L. Hanžič, J. Vaupotič, M. E. Beglayan, E. P. Linnik, S. I. Kosenko, D. N. Saranuk, V. P. Smolyar, A. A. Gudyma, The peculiarities of cross-correlation between two secondary precursors - radon and magnetic field variations, induced by stress transfer changes // arXiv:0605244v3 [physics.geo-ph] (Submitted on 29 May 2006 (v1), last revised 12 Aug 2012 (this version, v3)) 1 Odessa National Polytechnic University, Shevchenko av. 1, 65044 Odessa, Ukraine 2 Carpathian Branch of Institute of Geophysics, National Academy of Science, Naukova st. 3-b, 79053 Lviv, Ukraine 3 Faculty of Civil Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia 4 J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia 5 Institute for Nuclear Research, Pr. Nauki 47, 03028 Kiev, Ukraine 6 Institute of Geophysics, National Academy of Science, Palladinav av. 32, 03680 Kiev, Ukraine 7 Ukrainian Antarctic Centre, Tarasa Shevchenko Blvd. 10, 01601 Kiev, Ukraine 8 State Ecological Academy for Postgraduate Education and Management, Uritskogo str. 35,

59. V.D. Rusov, D.A. Litvinov, E.P. Linnik, V.N. Vaschenko, T.N. Zelentsova, M.E. Beglayan, V.A. Tarasov, S.A. Chernegenko, V.P. Smolyar, P.O. Molchinikolov, K.K. Merkotan, P.E. Kavatskyy, KAMLAND-Experiment and Soliton-Like Nuclear Georeactor. Part 1. Comparison of Theory with Experiment // JMP, Vol.4 No.4, April 2013 (DOI: 10.4236/jmp.2013.44075) 1 Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Odessa, Ukraine 2 State Ecological Academy for Postgraduate Education and Management, Kyiv, Ukraine 3 Research Institute of Sustainable Development Technologies “Live Earth”, Kyiv, Ukraine

60. V.D. Rusov, V.A. Tarasov, V.M. Vaschenko, E.P. Linnik, T.N. Zelentsova, M.E. Beglayan, V.A. Tarasov, S.A. Chernegenko, S.I. Kosenko, P.A. Molchinikolov, V.P. Smolyar, E.V. Grechans, Fukushima Plutonium Effect and Blow-Up Regimes in Neutron-Multiplying Media // WJNST Vol.3 No.2A, June 2013 (DOI: 10.4236/wjnst.2013.32A002) 1 Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Odessa, Ukraine 2 State Ecological Academy for Postgraduate Education and Management, Kyiv, Ukraine

61. V.D. Rusov, V.P. Smolyar, M.V. Eingorn, T.N. Zelentsova, E.P. Linnik, M.E. Beglayan, B. Vachev, Does the problem of global warming exist at all? Insight from the temperature drift induced by inevitable colored noise // arXiv:1310.0511 [physics.ao-ph] 1 Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Odessa, Ukraine, 2 Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences, Sofia, Bulgaria

62. V.D. Rusov, I.V. Sharf, V.A. Tarasov, M.V. Eingorn, V.P. Smolyar, D.S. Vlasenko, T.N. Zelentsova,
E.P. Linnik, M.E. Beglaryan, Axion mechanism of Sun luminosity, dark matter and extragalactic background light // arXiv:1304.4127 [astro-ph.SR] Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Odessa, Ukraine

63. V.D. Rusov¹, K. Kudela², I.V. Sharph¹, M.V. Eingorn³, V.P. Smolyar¹, D. Vlasenko¹, T.N. Zelentsova¹, M.E. Beglaryan¹, E.P. Linnik¹, Axion mechanism of Sun luminosity and TSI variations: light shining through the solar radiation zone // arXiv:1401.3024 [astro-ph.SR] ¹Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Odessa, Ukraine ²Institute of Experimental Physics, SAS, Kosice, Slovakia ³CREST and NASA Research Centers, North Carolina Central University, Durham, North Carolina, U.S.A.

64. V. D. Rusov¹, V. Yu. Maksymchuk², R. Ilić³, V. M. Pavlovyč⁵, R. Jaćimović⁴, V. G. Bakhmutov⁶, O. A. Kakaev¹, V. M. Vaschenko⁷, J. Skvarč⁴, L. Hanžič³, J. Vaupotić⁴, M. E. Beglaryan¹, E. P. Linnik¹, S. I. Kosenko¹, D. N. Saranuk¹, V. P. Smolyar¹, A. A. Gudyma⁸, The peculiarities of cross-correlation between two secondary precursors - radon and magnetic field variations, induced by stress transfer changes // arXiv:physics/0605244v3 [physics.geo-ph], submitted to Radiation Measurements. ¹Odessa National Polytechnic University, Shevchenko av. 1, 65044 Odessa, Ukraine ²Carpathian Branch of Institute of Geophysics, National Academy of Science, Naukova st. 3-b, 79053 Lviv, Ukraine ³Faculty of Civil Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia ⁴J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia ⁵Institute for Nuclear Research, Pr. Nauki 47, 03028 Kiev, Ukraine ⁶Institute of Geophysics, National Academy of Science, Palladina av. 32, 03680 Kiev, Ukraine ⁷Ukrainian Antarctic Centre, Tarasa Shevchenko Blvd. 16, 01601 Kiev, Ukraine ⁸State Ecological Academy for Postgraduate Education and Management, Uritskogo str. 35.

65. V. D. Rusov¹, V. A. Tarasov¹, I. V. Sharph¹, V. M. Vaschenko², E. P. Linnik¹, T. N. Zelentsova¹, M. E. Beglaryan¹, S. A. Chernegenko¹, S. I. Kosenko¹, P. A. Molchinaťolov³, V. P. Smolyar¹, E. V. Grechan⁴, On some essential peculiarities of the traveling wave reactor operation. // arXiv:physics/0605244v3 [physics.geo-ph], submitted to Annals of Nuclear Energy, ¹Odessa National Polytechnic University, Odessa, Ukraine ²State Ecological Academy for Postgraduate Education and Management, Kiev, Ukraine

66. Kilifarska, N.A., Mechanism of lower stratospheric ozone influence on climate, Int. Rev. Phys., 6 (3), 279-290, 2012.

67. Kilifarska N.A. Ozone as a mediator of galactic cosmic rays’ influence on climate, Sun and Geosphere, v.7 (2), 97-102, 2012.

68. Kilifarska N.A. Climate sensitivity to the lower stratospheric ozone variations, J. Atmos.Sol-Terr.Phys., 90–91, 9–14, 2012.

69. B.Srebrov, L. Pashova, Study of the ionospheric state over Sofia area during the geomagnetic storm in October 2003 using measured and modeled parameters, Comptes rendus de L’Academie bulgare des Sciences, Tome 65, № 10, 2012, 1419 -1426

70. Ron, C., Ya. Chapano, J. Vondrák, Solar excitation of bicentennial Earth rotation oscillations, Acta geodinamica et geomatelia, vol.9, No.3(167), 2012, 259-268, ISSN:1214-9705.

71. Kilifarska N.A. Statistical methods for analysis of climatic time series and factors controlling their variability, Proceedings of the 2nd workshop of the EU FP7 project BlackSeaHazNet, September 2011, Tbilisi, Georgia, ISSN 2233-3681, 111-124, 2012.

72. Chamati, M., Nenovski, P., Vellante, M., Villante, U., Schwingenschuh, K., Boudjada, M., Wesztergom, V., Application of DFA method to magnetic field data. (Complex research of earthquake’s forecasting possibilities, seismicity and climate change correlations), 13-16 September 2011, Tbilisi, Georgia, Volume 2, ISSN 2233-3681, 72-79, 2012.

73. Nenovski, P., M. Chamati, U. Villante, M. De Lauretis, M. Vellante, P. Francia, V. Wesztergom, K. Schwingenschuh, M. Boudjada, G. Prattes, DFA analysis of segma magnetic field data around the M6.3 Aquila EQ, Proceedings of the 2nd workshop of EU FP7 project BlackSeaHazNet (Complex
research of earthquake’s forecasting possibilities, seismicity and climate change correlations), 13-16 Sep 2011, Tbilisi, Georgia, Volume 2, ISSN 2233-3681,157-163, (2012).

74. Kilifarska N.A., Bakhmutov V.G., Melnyk G.V., Energetic particles influence on the southern Hemisphere ozone variability, *Compt. rend. Acad. bulg. Sci.*, 66(11), 1613-1622, 2013.

75. Kilifarska N.A., Bakhmutov V.G., Melnyk G.V., Geomagnetic influence on Antarctic climate – evidences and mechanism, *Int. Rev. Phys.*, 7 (3), 242-252, 2013.

76. Kilifarska N., An autocatalytic cycle for ozone production in the lower stratosphere initiated by Galactic Cosmic rays, *Compt. rend. Acad. bulg. Sci.*, 66(2), 243-252, 2013.

77. Srebrov B., Ladanyvskyy B., Logvinov I. Application of space generated geomagnetic variations for obtaining geoelectrical characteristics at Panagyurishte geomagnetic observatory region, *Compt. rend. Acad. bulg. Sci.*, 66(6), 857-864, 2013.

78. Tassev J., Kilifarska N.A., Tomova D., Statistical analysis of solar proton flux influence on the thermodynamics of the middle atmosphere in the Northern Hemisphere, *Compt. rend. Acad. bulg. Sci.*, 67(1), 857-864, 2014.

79. Kilifarska N.A., V.G. Bakhmutov, G. V. Melnyk, The mystery of Antarctic climate change and its relation to geomagnetic field, *Ukrainian Antarctic Journal*, 12, accepted, 2013.

80. Maksimenko O., Bakhmutov V., Kilifarska N., Shenderovskaya O., Trends in recent Sq variations of geomagnetic field at the observatory Acad.Vernadsky (AIA), *Ukrainian Antarctic Journal*, 12, accepted, 2013

81. Botev E., D. Dimitrov, I. Georgiev and V. Protopopova, Investigations of the 22 May 2012 Earthquake in Pernik Region, Bulgaria, Proceedings of the 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

82. Georgiev I., D. Dimitrov and E. Botev, Crustal Motion Monitoring in Bulgaria and Surrounding Regions by Permanent GPS Array, Proceedings of the 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

83. Dimitrov D., I. Georgiev, L. Dimitrova and E. Botev, Deformations and Seismicity in the Region of Mirovo Salt Deposit, Bulgaria, Proceedings of the 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

84. Hadjiyski K.D., S.M. Simeonov, E.A. Botev, The May 22, 2012 Mw = 5.6 Pernik Earthquake – Local Effects and Seismic Impact on Sofia city, Proceedings of 50yr SE–EEE, 1963-2013.

85. Simeonov S., K. Hadjiyski and E. Botev, On the Seismic Vulnerability of Pernik Region (West Bulgaria) Bulgaria, Proceedings of the 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

86. Protopopova V., I. Georgiev, D. Dimitrov and E. Botev, Fault Plane Solutions and Geodynamics of Bulgarian Territory and Some Adjacent Lands, Proceedings of the 7th Congress of Balkan Geophysical Society – Tirana, Albania, 7-10 October 2013.

87. Bezek Mateja, Gregoric Asta, Kávási Norbert, Vaupotic Janja. Diurnal and seasonal variations of concentration and size distribution of nanoaerosols (10–1100 nm) enclosing radon decay products in the Postojna Cave, Slovenia. *Radiation Protection Dosimetry*, 2012, 152(1/3), 174–178. [COBISS.SI-ID 26054183]

88. Mulec Janez, Vaupotic Janja, Walochnik Julia. Prokaryotic and eukaryotic airborne microorganisms as tracers of microclimatic changes in the underground (Postojna Cave, Slovenia). *Microbial Ecology*, 2012, 64(3), 654–667. [COBISS.SI-ID 34079277]
89. Vaupotic Janja, Žvab Rožic Petra, Barišic Delko. Environmental aspect of radon potential in terra rossa and eutric cambisol in Slovenia. *Environmental Earth Sciences*, 2012, 66(1), 223–229. [COBISS.SI-ID25187623]

90. Vaupotic Janja, Bezek Mateja, Kapanadze Nino, Melikadze George, Makharadze Teona, Machaidze Zurab, Todadze Mariam. Radon and thoron measurements in West Georgia = Izmerenie radona i torona v zapadnoj Gruzii. *Sakartvelos Geopizikuri Sazogadoebis Žurnali. Seria a, Dedamicis Fizika*, ISSN 15121127, 2012, 15a, 128–137. [COBISS.SI-ID27068711]

91. Gregoric Asta, Vaupotic Janja, Šebela Stanka. The role of cave ventilation in governing cave air temperature and radon levels (Postojna Cave, Slovenia). *International Journal of Climatology*, ISSN 0899-8418, 2013, 13 str., doi: 10.1002/joc.3778. [COBISS.SI-ID 2795259]

92. Gregoric Asta, Vaupotic Janja, Gabrovšek, Franci. Reasons for large fluctuation of radon and CO levels in a dead-end passage of a karst cave (Postojna Cave, Slovenia). *Natural Hazards and Earth System Sciences*, 2013, 13(2), 287–297. [COBISS.SI-ID 26528295]

93. Gregoric Asta, Vaupotic Janja, Kardos Richárd, Horváth Mária, Bujtor Tibor, Kovács Tibor. Radon emanation of soils from different lithological units. *Carpatian Journal of Earth and Environmental Sciences*, 2013, 8(2), 185–190. [COBISS.SI-ID 26765351]

94. Kovács Tibor, Szeiler Gábor, Fábiáni Ferenc, Kardos Richárd, Gregoric Asta, Vaupotic Janja. Systematic survey of natural radioactivity of soil in Slovenia. *Journal of Environmental Radioactivity*, 2013, 122, 70–78. [COBISS.SI-ID 26660135]

95. Bezek Mateja, Gregoric Asta, Vaupotic Janja. Radon decay products and 10–1100 nm aerosol particles in Postojna Cave. *Natural Hazards and Earth System Sciences*, 2013, 13(3), 823–831. [COBISS.SI-ID26637095]

96. Yu.A.Bogdanov, V.M.Pavlovych, S.G.Shpirko, C.Tsabarits, D. Patiris,G.Drakatos. Deep Crust Structure Study across the Peloponnesus Peninsula by the Analysis of the Earth Electromagnetic Radiation. (Is preparing for publication).

97. Yu.A.Bogdanov, V.M.Pavlovych, S.Mavrodiev, B.Srebrow. Crust structure study across the West Bulgaria (Lom-Sofia-Kulata) by means of Earth electromagnetic radiation analysis. (Is preparing for publication).

Acknowledgments:

We are very thankful to all participation of the project for active work and enthusiasm.

Without the everlasting efforts of coordinators Natalia Kilifarska, Christos Tsabarits, Jania Vaupotich, Stanka Sebela, Nikolai Dobrev, Katia Georgieva, Lazo Pekevski, Erham Alparslan, Hrachya Petrosyan, Tamaz Chelidze, George Melikadze, Vladymyr Bakhmutov, Vazira Martazinova, Oleksandr Lyashchuk, Vitalii Rusov and Volodymyr Pavlovych the results of Project could not be so good.

We have to note the special roll and big work of Person in charge of administrative, legal and financial aspects of the Project B.Vachev.

We would like to thank heartily the REA project officers heartily Dr. Oscar Perez-Punzano and Dr. Atantzta Uriarte-Iraola, for their invaluable support in the process of negotiation and executing the project.

We would like also to express our sincere gratitude to the DG Institute for Nuclear Research and Nuclear Energy, BAS in the face of Directore Assoc. Prof. Dr.
Dimitar Tonev and Vice Director Assoc. Prof. Dr. Lachezar Georgiev, for the encouragement and valuable assistance, as well as to Dr. Frank Marx, and in his face – to the European Commission, for the financial support for the BlackSeaHazNet project realization.