The ferritin nanocage is an endogenous protein that exists in almost all mammals. Its hollow spherical structure that naturally stores iron ions has been diversely exploited by researchers in biotherapeutics. Ferritin has excellent biosafety profiles, and the nanosized particles exhibit rapid dispersion and controlled/sustained release pharmacokinetics. Moreover, the large surface-to-volume ratio and the disassembly/reassembly behavior of the 24 monomer subunits into a sphere allow diverse modifications by chemical and genetic methods on the surface and inner cage of ferritin. Here, we critically review ferritin and its applications. We (i) introduce the application of ferritin in drug delivery; (ii) present an overview of the use of ferritin in imaging and diagnosis for biomedical purposes; (iii) discuss ferritin-based vaccines; and (iv) review ferritin-based agents currently in clinical trials. Although there are no currently approved drugs based on ferritin, this multifunctional protein scaffold shows immense potential in drug development in diverse categories, and ferritin-based drugs have recently entered phase I clinical trials. This golden shortlist of recent developments will be of immediate benefit and interest to researchers studying ferritin and other protein-based biotherapeutics.

FERRITINS IN BIOThERAPEUTICS

The hollow spherical core of ferritin allows the loading of various cargo. This is generally achieved via the mineral pores on the surface or pH-mediated disassembly/reassembly of the nanocage. There have been many investigations, mainly in anticancer therapy that attempted the targeted delivery of chemotherapeutic agents to tumors using ferritin as a delivery vehicle. Most of these studies resulted in successful tumor growth inhibition, superior efficacies, and diminished adverse effects compared to the free drug in both in vitro and in vivo models. Substantial progress has been made in the development of ferritin nanocages for use in drug delivery for cancer therapy. Doxorubicin-loaded ferritins have shown successful tumor growth inhibition in numerous mouse cancer models by many groups. In one example, Dox-loaded ferritin targeted and was internalized by transferrin receptor 1 (TfR1)-overexpressing tumor...
cells to mediate 10-fold higher intracellular levels compared to free doxorubicin. Moreover, the encapsulation of paclitaxel in ferritin showed potent apoptosis of MDA-MB-231 breast cancer cells in vivo models. This is an example of insoluble drug delivery via ferritin, with specific targeting to tumor cells alleviating the adverse effects of this chemotherapeutic agent. Similarly, gemcitabine was loaded onto ferritin and coadministered for photothermal therapy, showing effective adjunctive therapy against breast cancer models. Effective delivery of cisplatin was also achieved by ferritin, resulting in an improved therapeutic index of antiblastic therapy in an advanced, refractory gastric cancer model. Doxorubicin was also achieved by ferritin, resulting in an improved therapeutic index on the surface of ferritin nanocages. A successful attempt has been made to deliver this apoptosis-inducing ligand, IC\textsubscript{3} tumour growth inhibition, TR\textsubscript{1} transferrin receptor-1, PTT photothermal therapy, CD\textsubscript{3} carbon dot, ADNIR ADS-780 near-infrared (NIR) fluorescent dye, \textit{RB} rose bengal, \textit{DBN} 1,1-dioctadecyl-3,3,3-tetramethylindocarbocyanine iodide, CSCs cancer stem cells, PDT photodynamic therapy, \textit{PB} Prussian blue.

Table 1. Use of ferritin for chemotherapy.

Encapsulated drug	Target disease	Therapeutic effect	Ferritin	References
Cisplatin	Melanoma	Improved therapeutic index	Human HFn	8
Co(II)	Melanoma	Tumor cell apoptosis	Human HFn	34
Doxorubicin	Gastric cancer	Tumor growth inhibition (91.1%) (TR\textsubscript{1} + cells)	Human HFn	35
Doxorubicin	Liver cancer	Reduced cell viability in Hepa1-6 cells after PTT	Apoferritin (Au nanoshell)	36
Doxorubicin	Breast cancer	Tumor growth inhibition	Human HFn (CD-modified)	37
Doxorubicin and ADNIR	Colon cancer	Tumor growth inhibition (80.8%)	Apoferritin	38
Doxorubicin (Cu(II complex)	Glioblastoma	Tumor growth inhibition (89.6%)	Human HFn	6
Doxorubicin, \textit{RB}	Breast cancer	Cell inhibition rate 83%	Apoferritin	39
Epirubicin, \textit{DBN}	Breast cancer	Killed 80% of cancer stem cells (PDT)	Apoferritin	40
Gefitinib	Breast cancer	In vitro tumor inhibition	Human HFn	41
Gemcitabine (\textit{GEM})	Breast cancer	PB-Ft NPs damaged 4T1 cells	Human HFn (PB-modified)	7
Paclitaxel	Breast cancer	Tumor growth inhibition (64.6%)	Human HFn	7

\textit{TGI} tumor growth inhibition, \textit{TR\textsubscript{1}} transferrin receptor-1, \textit{PTT} photothermal therapy, \textit{CD} carbon dot, \textit{ADNIR} ADS-780 near-infrared (NIR) fluorescent dye, \textit{RB} rose bengal, \textit{DBN} 1,1-dioctadecyl-3,3,3-tetramethylindocarbocyanine iodide, CSCs cancer stem cells, PDT photodynamic therapy, \textit{PB} Prussian blue.

In another interesting work, the phagocytosis-inducing peptide \textit{SIRPa} was displayed by doxorubicin-loaded ferritin to achieve an intrinsic vaccination effect. By the cross priming of effector CD\textsubscript{8} + T cells, the simultaneous delivery of SIRP\textalpha{\textit{a}}s and doxorubicin, an immunogenic cell death (ICD)-inducer, achieved potent tumor growth inhibition in a melanoma model and even against tumor rechallenge in a colon cancer model. This study attempted to trigger the presentation of cancer cell neoantigens to the host immune system, facilitating the persistent amplification of antitumour T cells, which resulted in an especially interesting and effective therapeutic approach. There are also other interesting approaches using ferritin in addition to the abovementioned studies, such as a study by Seo et al. that proposed a thrombolytic ferritin expressing multivalent clot-targeting peptides and fibrin degradation enzymes for coadministration with chemotherapy. Similarly, a study by Lee et al. used \textit{y}-carboxyglutamic acid of protein C (PC-Gla) and thrombin receptor agonist peptide (TRAP) to treat acute inflammatory sepsis in vivo mouse models.

Table 2. Use of ferritin for immunotherapy.

Immunotherapy agent	Target disease	Therapeutic effect	Ferritin	References
PD-L1\textsubscript{pep1}	All types	Promotion of PD-1 immune checkpoint	Human HFn	42
PD-1	All types	Promotion of T-cell activation in the lymph node	Human HFn	43
\textit{SIRP\alpha}	Colon cancer	Effective tumor growth inhibition, tumor-specific CD\textsubscript{8} + T-cell activation	Human HFn	13
\textit{Trimer-mimetic TNF}	Colon cancer	Effective induction of apoptosis of tumor cells in vivo model	Human HFn	10
\textit{Superfamily ligand}	All types	Effective induction of apoptosis of tumor cells in in vivo model	Human HFn	10
\textit{Trimeric TRAIL}	All types	Tumor growth inhibition in breast and pancreatic cancer model	Human HFn	11
\textit{Tumor-specific antigens or IC}	All types	TSA-specific CD\textsubscript{8} + T-cell activation	Human HFn	11

\textit{PD-L1}\textsubscript{pep1} PD-L1 binding peptide, \textit{PD-1} programmed-cell death receptor 1, \textit{SIRP\alpha} signal-regulatory protein alpha, \textit{TNF} tumor necrosis factor, \textit{TRAIL} TNF-related apoptosis-inducing ligand, \textit{IC} immune checkpoint molecule, \textit{TSA} tumor-specific antigens.

FERRITINS IN IMAGING AND DIAGNOSIS

Ferritin nanocages have been readily modified to develop diagnostic agents for various imaging methods (computer tomography, CT/magnetic resonance imaging MRI). Fluorescent molecules can be incorporated or loaded as cargo at the same time as targeting peptides on the ferritin surface for targeting...
disease biomarkers. This would allow multimodal imaging techniques for ferritin-based agents with enhanced diagnostic accuracy, and the ferritin-based agents developed are listed below (Table 3).

Table 3. Use of ferritins in imaging and diagnosis.

Application	Ferritin Cargo	Modification	References	
Fluorescence imaging	Short ferritin	Tumor-targeting proapoptotic peptide, GFP	Genetic modification	44
CT imaging,	Horse spleen ferritin	Bi2S3	Incubation (Inlaying)	7
Peroxidase nanoenzyme	Pyrococcus furiosus ferritin	Co2O4	Mineralization	46
Fluorescence imaging, MRI	Human HFn	Cy5.5, Fe3O4	Chemical conjugation, mineralization	24
SPECT, MRI	Human HFn	Fe3O4, 125I	Mineralization, chemical conjugation (Iodogen method)	18
Peroxidase nanoenzyme	Horse spleen ferritin	Prussian blue	Mineralization	46
MRI	Horse spleen ferritin	Mn(III)OOH	Mineralization	47
Fluorescence imaging, MRI	Archeoglobus fulgidus ferritin	GQDs, Fe	Disassembly/reassembly	48
Fluorescence imaging, MRI	Human HFn	GFP, Fe3O4	Genetic modification, mineralization	49
Fluorescence imaging	Human HFn	RFP	Genetic modification	21
Fluorescence imaging	Human HFn	Indocyanine Green	Disassembly/reassembly	23
Fluorescence imaging, PAI	Human HFn	Tricarbocyanine	Disassembly/reassembly	19
Fluorescence imaging	Human HFn	ZnF16PC, ZW800	Disassembly/reassembly, chemical conjugation	6
PET imaging, fluorescence imaging	Human HFn	Cy5.5, 64Cu	Chemical conjugation, genetic modification, disassembly/reassembly	50
PET imaging, MRI, PAI	Horse spleen ferritin	Melanin, 64Cu	Disassembly/reassembly, incubation	51
Fluorescence imaging	Human HFn	Cy5.5, BHQ-3	Bioconjugation, chemical conjugation, disassembly/reassembly	50

CT computed tomography, MRI magnetic resonance imaging, SPECT single-photon emission computed tomography, GQD graphene quantum dot, GFP green fluorescent protein, RFP red fluorescent protein, PAI photoacoustic imaging, ZW800 zwitterionic near-infrared fluorophore, PET positron emission tomography, BHQ black hole quencher.

FERRITIN-BASED VACCINES IN IMMUNOTHERAPY

Ferritin-based vaccines have attracted considerable interest due to their potency and safety. Conventional vaccines composed of inactivated viruses or organisms carry the potential risk of triggering reversion, and thus, attempts to develop more immunogenic yet safe vaccines continue. Antigen display on the ferritin surface has many desirable features, such as the uniform presentation of 24 epitopes, as well as monodispersity and thermal and pH stability of the ferritin nanocage. Furthermore, the particle-mediated delivery of peptides has been shown to trigger more potent stimulation than soluble peptides.

Ferritin nanocages, due to their size (10–12 nm), can be readily taken up by dendritic cells (DCs) for migration to the lymph node to augment cellular and humoral immune responses. Due to these numerous advantages, ferritin-based vaccines have proven especially potent and can be applied not only to infectious diseases but also to cancer vaccines and vaccines for autoimmune diseases.

Representative ferritin-based vaccines target influenza, SARS-CoV-2 and Epstein–Barr viruses, and some have entered phase I clinical trials. Ferritin-based vaccines have proven biocompatible yet immunogenic with no significant adverse effects. However, the challenging features of ferritin-based vaccine development are nanoparticle heterogeneity, inadequate folding of antigens and intersubunit interactions resulting in antigen interference. Since antigens are encoded onto the ferritin protein...
scaffold, the self-assembled expression and purification of ferritin-based vaccines still require careful optimization. The selected clinical trials of ferritin nanocages currently in vaccine development are listed below (Table 4).

FERRITINS IN CLINICAL TRIALS

Clinical trials with ferritin-based vaccines are in the early stages (Table 5). One example is the work of Kanekiyo et al.\(^{29}\), in which trimeric hemagglutinin (HA) was fused to the 3-fold axis of ferritin, giving the display of eight trimeric viral spikes. The ferritin-HA trimeric hemagglutinin (HA) was fused to the 3-fold axis of ferritin, providing many possibilities for modification. Ferritin has excellent biocompatibility and biodegradability and the hollow cage structure allows the delivery of various poorly soluble proteins, which can be achieved by one-step genetic modification or direct conjugation via chemical methods. Furthermore, the triggering of immunomodulatory responses. Additionally, the hollow cage structure allows the delivery of various poorly soluble or cytotoxic drugs by disassembly/reassembly or mineralization.

Table 4. Ferritin-based vaccines.

Application	Ferritin	Antigen	Target	References
DC-targeting	P. furiosus	OT-1, OT-2	T-cell receptors OT-1, OT-2	19
Tumor targeting	Human HFn	RGD4C peptide	Tumor vasculature (αvβ3 integrin)	52
Tumor targeting	Human HFn	RFP	RFP-expressing melanoma	21
Tumor targeting	Human Fn	HPV16 E7 peptide	MC38 colon cancer	7
Viral vaccination	H. pylori	S protein	SARS-CoV-2	28
Viral vaccination	H. pylori	S protein	SARS-CoV-2	32, 53
Viral vaccination	H. pylori-bullfrog hybrid	RBD of S protein	SARS-CoV-2	15
Viral vaccination	–	S protein	SARS-CoV-2	23
Viral vaccination	E. coli K12	hRID-RBD of S protein	MERS-CoV	54
Viral vaccination	H. pylori-bullfrog hybrid	RBD of HA	Influenza virus	55
Viral vaccination	H. pylori-bullfrog hybrid	gp350(D123)	EBV	33
Viral infection	H. pylori	VP6	Rotavirus A	7
Bacterial infection	H. pylori-bullfrog hybrid	OspA	B. burgdorferi outer membrane surface	56

Agent	Disease	Results	Phase/Status	Trial number	References
Ferritin-HA	Influenza	Seroconversion rates of 40% or 90% and ICON50 titers of 1×10³ or 3×10³	I/Completed	NCT03186781	31
Ferritin-HA	Influenza	–	I/Completed	NCT03814720	29, 30
Ferritin-HA	Influenza	–	I/Ongoing	NCT04579250	29, 30
Ferritin-gp140	SARS-CoV-2	–	I/Ongoing	NCT04784767	32
Ferritin-gp350	EBV	–	I/Recruiting	NCT04645147	33

OT-1/2 CD8\(^+\) and CD4\(^+\) T-cell epitopes corresponding to res 257-264 and 323-339 of ovalbumin, respectively, RGD4C active peptide targeting the αvβ3 integrins, RFP red fluorescent protein, HPV16 human papillomavirus type 16, MC38 murine colon adenocarcinoma, S protein spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), MERS-CoV Middle East respiratory syndrome coronavirus, RBD receptor binding domain, HA hemagglutinin from influenza virus, gp350(D123) res 2-415 of the ectodomain of glycoprotein 350/220 from Epstein–Barr virus (EBV), VP6 intermediate capsid protein of human rotavirus A, OspA lipoprotein on Borrelia burgdorferi outer membrane surface when the bacteria reside in the tick gut.

Table 5. Ferritin in clinical trials.

Agent	Disease	Results	Phase/Status	Trial number	References
Ferritin-HA	Influenza	Seroconversion rates of 40% or 90% and ICON50 titers of 1×10³ or 3×10³	I/Completed	NCT03186781	31
Ferritin-HA	Influenza	–	I/Completed	NCT03814720	29, 30
Ferritin-HA	Influenza	–	I/Ongoing	NCT04579250	29, 30
Ferritin-gp140	SARS-CoV-2	–	I/Ongoing	NCT04784767	32
Ferritin-gp350	EBV	–	I/Recruiting	NCT04645147	33

OT-1/2 CD8\(^+\) and CD4\(^+\) T-cell epitopes corresponding to res 257-264 and 323-339 of ovalbumin, respectively, RGD4C active peptide targeting the αvβ3 integrins, RFP red fluorescent protein, HPV16 human papillomavirus type 16, MC38 murine colon adenocarcinoma, S protein spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), MERS-CoV Middle East respiratory syndrome coronavirus, RBD receptor binding domain, HA hemagglutinin from influenza virus, gp350(D123) res 2-415 of the ectodomain of glycoprotein 350/220 from Epstein–Barr virus (EBV), VP6 intermediate capsid protein of human rotavirus A, OspA lipoprotein on Borrelia burgdorferi outer membrane surface when the bacteria reside in the tick gut.

CONCLUSION

Protein nanocarriers contribute numerous advantages to the field of disease diagnosis and drug development, and current approaches in diverse categories of biotherapeutics, immunotherapy, and vaccines will in no doubt provide therapeutic benefit. Ferritin has excellent biocompatibility and biodegradability and provides many possibilities for modification. The subunit structure of ferritin allows the uniform display of 24 peptides on its surface, which can be achieved by one-step genetic modification or direct conjugation via chemical methods. Furthermore, the triggering of a more potent response by the particle-mediated delivery of peptides is a well-known phenomenon in peptide delivery, as is the triggering of immunomodulatory responses. Additionally, the hollow cage structure allows the delivery of various poorly soluble or cytotoxic drugs by disassembly/reassembly or mineralization.

Experimental & Molecular Medicine (2022) 54:1652 – 1657
through surface pores. Ferritin is an all-in-one multifunctional protein scaffold.

The major strength of ferritin nanocages in nanomedicine is in vaccine development. Three vaccines against influenza have entered phase I clinical trials, and one has provided positive results. The efficacy of ferritin-based vaccines has triggered investigations into optimizations for developing other ferritin-based vaccines in clinical trials. Ferritin holds great potential in disease diagnosis, prevention and therapy.

DATA AVAILABILITY
All data are included in this published article.

REFERENCES

1. Lee, E. J., Lee, N. K. & Kim, I. S. Bioengineered protein-based nanocage for drug delivery. Adv. Drug Deliv. Rev. 106, 157–171 (2016).
2. Wang, Z. et al. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11, 633–646 (2017).
3. Juch, D. I., Rijn, P. Santoso Miranda, B. & Boker, A. Ferritin: a versatile building block for biofunctionalization. Chem. Rev. 115, 1653–1701 (2015).
4. Truffi, M. et al. Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol. Res. 107, 57–65 (2016).
5. Song, N. et al. Ferritin: a multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery. Acc. Chem. Res. 54, 3313–3325 (2021).
6. Zhen, Z., Tang, W., Todd, T. & Xie, J. Ferritins as nanoplatforms for imaging and drug delivery: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano 7, 6988–6996 (2013).
7. Zhang, Q. et al. Inlaying radiosensitizer onto the polypeptide shell of drug-loaded ferritin for imaging and combinatorial chemo-radiotherapy. Theranostics 9, 2779–2790 (2019).
8. Falvo, E. et al. Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale 5, 12278–12285 (2013).
9. Palombarini, F., Di Fabio, E., Boffi, A., Macone, A. & Bonamore, A. Ferritin nanocages for protein delivery to tumor cells. Molecules 25, 825 (2020).
10. Khi, M. et al. Designed trimere-mimetic TNF superfamily ligands on self-assembling nanoparticles. Biomater. 180, 67–77 (2018).
11. Yoo, J. D. et al. Designed ferritin nanocages displaying trimeric TRAIL and tumor-targeting peptides confer superior anti-tumor efficacy. Sci. Rep. 10, 19997 (2020).
12. Je, H. et al. Overcoming therapeutic efficiency limitations against TRAIL-resistant tumors using re-sensitizing agent-loaded trimeric TRAIL-presenting nanocages. J. Control. Rel. 331, 7–18 (2021).
13. Lee, J. E. et al. Nanocage-therapeutics prevailing phagocytosis and immunogenic cell death awakens immunity against cancer. Adv. Mater. https://doi.org/10.1002/adma.201705581 (2018).
14. Seo, J. et al. A targeted ferritin-microplasmid based thermoblastic nanocage selectively dissolves blood clots. Nanomedicine 14, 633–642 (2018).
15. Yoo, J. D. et al. Self-assembled ferritin nanocages display anti-tumor activity in vitro and in vivo. Sci. Rep. 10, 19997 (2020).
16. Je, H. et al. Overcoming therapeutic efficiency limitations against TRAIL-resistant tumors using re-sensitizing agent-loaded trimeric TRAIL-presenting nanocages. J. Control. Rel. 331, 7–18 (2021).
17. Lee, E. J. et al. Nanocage-therapeutics prevailing phagocytosis and immunogenic cell death awakens immunity against cancer. Adv. Mater. https://doi.org/10.1002/adma.201705581 (2018).
18. Seo, J. et al. A targeted ferritin-microplasmid based thermoblastic nanocage selectively dissolves blood clots. Nanomedicine 14, 633–642 (2018).
19. Lee, J. E. et al. Nanocage-therapeutics prevailing phagocytosis and immunogenic cell death awakens immunity against cancer. Adv. Mater. https://doi.org/10.1002/adma.201705581 (2018).
20. Geninatti Crich, S. et al. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells. Nanoscale 7, 6527–6533 (2015).
21. Kuruppu, A. I. et al. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv. Healthc. Mater. 4, 2816–2821 (2015).
22. Jeon, I. S. et al. Anticancer nanocage platform for combined immunotherapy designed to harness immune checkpoints and deliver anticancer drugs. Biomaterials 270, 120685 (2021).
23. Kim, G. B. et al. Design of PD-1–decorated nanocages targeting tumor-draining lymph node for promoting T cell activation. J. Control. Rel. 333, 328–338 (2021).
24. Kim, S. et al. Double-chambered ferritin platform: dual-function payloads of cytotoxic peptides and fluorescent protein. Biomacromolecules 17, 12–19 (2016).
25. Jiang, B. et al. Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin cages. Nanoscale 7, 4036–4046 (2016).
26. Zhang, W. et al. Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. J. Nanosci. Nanotechnol. 13, 60–67 (2013).
27. Szabo, I., Crich, S. G., Alberti, D., Kalman, F. K. & Aime, S. Mn loaded apoferritin as an MRI sensor of melanin formation in melanoma cells. Chem. Commun. 48, 2436–2438 (2012).
28. Nanoskalifi, F. et al. Incorporation of graphene quantum dots, iron, and doxorubicin in/on ferritin nanocages for bimodal imaging and drug delivery. Adv. Therapeutics https://doi.org/10.1002/adtp.201900183 (2020).
29. Li, K. et al. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale 4, 188–193 (2012).
30. Lin, X. et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 11, 814–819 (2011).
31. Yang, M. et al. Dragon fruit-like biocage as an iron trapping nanoplatform for improving the distribution and therapeutic efficacy of anticancer drugs. Exp. Mol. Med. 53, 1–15 (2021).
32. Lee, B. et al. Engineered human ferritin nanocages for direct delivery of tumor antigens to lymph node and cancer immunotherapy. Sci. Rep. 6, 35182 (2016).
33. Lin, X. et al. Hybrid ferritin nanoparticles as activatable probes for tumor imaging. Angew. Chem. Int. Ed. Engl. 50, 1569–1572 (2011).
34. Sitia, L. et al. Development of tumor-targeted indocyanine green-loaded ferritin nanocages for intraoperative detection of cancers. ACS Omega 5, 12035–12045 (2020).
35. TERASHIMA, M. et al. Human ferritin cages for imaging vascular macrophages. Biomaterials 32, 1430–1437 (2011).

N.K. Lee et al.
ACKNOWLEDGEMENTS
This work was supported by the National Research Foundation (NRF) of Korea, funded by the Ministry of Science (No. 2017R1A3B1023418, 2021R1A6A3A01088199) and the National Cancer Center.

AUTHOR CONTRIBUTIONS
N.K.L., conceptualization and writing; S.C., conceptualization and writing; and I.-S.K., writing – reviewing and editing and funding acquisition.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s12276-022-00859-0.

Correspondence and requests for materials should be addressed to In-San Kim.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022