Suplementação de vitamina D e seus análogos para tratamento de disfunção endotelial e doenças cardiovasculares

Supplementation with vitamin D and its analogs for treatment of endothelial dysfunction and cardiovascular disease

Felipe Esdras Lucas Cardoso, Leandro da Cruz Melgaço dos Santos, Adirlene Pontes de Oliveira Tenório, Matheus Rodrigues Lopes, Romero Henrique de Almeida Barbosa

Resumo
A vitamina D (1,25-dihidroxicolecalciferol) é um pró-hormônio que tem despertado a atenção de pesquisadores após estudos demonstrarem que seus efeitos não estão restritos ao metabolismo ósseo. Assim, a presente revisão sintetiza os achados mais recentes e discute a utilidade da prescrição de vitamina D e seus análogos no tratamento e prevenção de afecções cardiovasculares e disfunção endotelial. Este trabalho consiste em uma revisão narrativa da literatura feita a partir da seleção de artigos publicados no período de 2012 a 2019. Estudos demonstraram efeitos benéficos da vitamina D3 e seus análogos sobre a função endotelial; no entanto, tais resultados mostram-se controversos, visto que pesquisas com maior amostragem e duração não encontraram redução na morbimortalidade ou nos fatores de risco cardiovascular após o uso de tais substâncias. Frente ao estado atual da arte, não existe embasamento científico claro para suplementação de vitamina D ou seus análogos para tratamento de disfunção endotelial ou doenças cardiovasculares.

Palavras-chave: vitamina D; doenças cardiovasculares; endotélio; suplementos nutricionais.

Abstract
Vitamin D (1,25-dihydroxycolecalciferol) is a prohormone that has attracted the interest of researchers since studies have shown that its effects are not restricted to bone metabolism. Thus, the present review summarizes the most recent findings and discusses the usefulness of prescribing vitamin D and its analogues for treatment and prevention of cardiovascular disorders and endothelial dysfunction. The paper constitutes a narrative review of the literature, selecting articles published from 2012 to 2019. Studies have shown that vitamin D3 and its analogues have beneficial effects on endothelial function, but these results are controversial, since research with larger samples and of longer duration found no reduction in morbidity and mortality or cardiovascular risk factors after use of these substances. Given the current state of the art, there is no clear scientific basis for supplementation with vitamin D or its analogues for treatment of endothelial dysfunction or cardiovascular disease.

Keywords: vitamin D; cardiovascular diseases; endothelium; dietary supplements.

Como citar: Cardoso FEL, Santos LCM, Tenório APO, Lopes MR, Barbosa RHA. Suplementação de vitamina D e seus análogos para tratamento de disfunção endotelial e doenças cardiovasculares. J Vasc Bras. 2020;19:e20190150. https://doi.org/10.1590/1677-5449.190150

1 Universidade Federal do Vale do São Francisco – UNIVASF, Campus Paulo Afonso, Paulo Afonso, BA, Brasil.
Fonte de financiamento: Nenhuma.
Conflito de interesse: Os autores declararam não haver conflitos de interesse que precisam ser informados.
Submetido em: Dezembro 06, 2019. Aceito em: Março 17, 2020.

O estudo foi realizado na Universidade Federal do Vale do São Francisco (UNIVASF), Campus Paulo Afonso, Paulo Afonso, BA, Brasil.
INTRODUÇÃO

A vitamina D (1,25-dihidroxicolecalciferol) tem despertado a atenção de pesquisadores nos últimos anos, após estudos demonstrarem que seus efeitos não estão restritos ao metabolismo ósseo. Sabe-se que os receptores desse composto estão presentes em vários tipos celulares, incluindo células endoteliais. Uma vez que a patogênese de doenças cardiovasculares envolve alterações na homeostase do endotélio, algumas hipóteses foram propostas e levaram ao desenvolvimento de variadas pesquisas.

Considerando que a deficiência de vitamina D é um fator de risco para o desenvolvimento de disfunção endotelial1, muitos estudos abordaram a utilidade da suplementação da vitamina D e seus análogos no tratamento e prevenção de afecções como hipertensão, infarto do miocárdio, doença cerebrovascular, entre outras. Assim, a presente revisão sintetiza os achados mais recentes a respeito do tema e, de acordo com os resultados das pesquisas, discute a utilidade da prescrição de vitamina D e seus análogos na prática clínica.

MÉTODOS

O presente trabalho é uma revisão bibliográfica narrativa da literatura. As buscas foram realizadas nas bases de dados PubMed, SciELO e LILACS. Na pesquisa, foram selecionados artigos de revisões narrativas e sistemáticas, artigos originais, ensaios clínicos e relatos de casos do período de 2013 a 2019 na literatura, utilizando as seguintes palavras-chave: função endotelial, vitamina D, fisiologia e doença cardiovascular.

DISCUSSÃO

Aspectos fisiológicos

A vitamina D é um pró-hormônio, ou seja, é biologicamente inativa, sendo necessário que ocorra ação da radiação ultravioleta solar sobre o 7-deidrocolesterol para sua ativação2. São necessárias duas hidroxilações para formação do composto ativo: a primeira ocorre no fígado, formando a 25-hidroxivitamina D (25-OHD3), denominada calcidiol. A segunda hidroxilação ocorre nos rins e forma seus dois metabólitos principais, a 1α,25-dihidroxivitamina D [1α,25-(OH)2D3], conhecida como calcitriol, e o 24R,25-dihidroxivitamina D3 [24R,25(OH)2D3], também conhecido como 24-hidroxicalcidiol3.

O rim é o local mais importante na regulação endócrina da vitamina D, a qual ocorre através do controle rigoroso da atividade da enzima 1-hidroxilase. A produção do calcitriol é modulada conforme as concentrações de cálcio e outras necessidades endócrinas do organismo. Os principais fatores reguladores da produção são a concentração do calcitriol circulante, sofrendo up-regulation pelo paratormônio (PTH) e down-regulation pelas concentrações séricas de cálcio, fósforo e FGF23 (fator de crescimento de fibroblastos), podendo o calcitriol ser produzido em diversos outros tecidos do organismo4,5 (Figura 1).

Ações da vitamina D

Uma das principais ações do calcitriol está relacionada à homeostase do cálcio. No intestino, ele é responsável por estimular a absorção de cálcio através da difusão facilitada. Por sua vez, a reabsorção renal de cálcio também é estimulada pelo 1,25(OH2)D3, mais precisamente nos túbulos distais dos glomérulos, de forma semelhante à absorção intestinal. Outro aspecto influenciado pelo calcitriol é o metabolismos dos ossos, que formam o maior reservatório de cálcio no organismo e utilizam esse íon para conferir resistência ao esqueleto. Dessa forma, a absorção e reabsorção de cálcio no intestino e rins, respectivamente, estão relacionadas à manutenção da integridade das estruturas ósseas3.

Pesquisas recentes com camundongos sem os genes Vdr (que codifica o receptor de vitamina D) e Cyp27B1 (que codifica a alfa-1-hidroxilase) demonstraram que esses animais possuíam altos níveis de renina e, consequentemente, de angiotensina II, provocando hipertensão e hipertrofia cardíaca. Foi demonstrado que a suplementação de vitamina D3 em indivíduos saudáveis promoveu o aumento de células mieloides

Figura 1. Esquema do metabolismo da vitamina D.
Vitamina D no tratamento de doenças vasculares

angiogênicas, que desempenham papel na regeneração vascular. Além disso, estudos transversais com seres humanos indicaram relação inversa entre níveis de 25(OH)D3 e risco de hipertensão. Dessa maneira, percebe-se que o calcitriol possui fundamental importância na fisiologia cardiovascular, o que despertou o interesse de pesquisadores a respeito da suplementação de vitamina D para tratamento e prevenção de doenças cardiovasculares.

Função endotelial

O endotélio é um tecido metabolicamente ativo formado por uma camada de células endoteliais com funções endócrinas, autócrinas e parácrinas. Ele tem a capacidade de modular tanto o lúmen vascular como o compartimento adjacente da musculatura lisa vascular, pela produção de substâncias antiproliferativas. O endotélio desempenha papel protetor do vaso sanguíneo. Essa ação acontece através de tensão de cisalhamento, ou shear stress, exercido pelo fluxo sanguíneo sobre as células endoteliais, que resulta na formação basal de óxido nítrico, mantendo o vaso sanguíneo em um estado constante de vasodilatação.

O óxido nítrico é a principal substância responsável pela dilatação vascular dependente do endotélio. Além disso, inibe a proliferação das células musculares lisas, o recrutamento, a adesão e a diferenciação de células inflamatórias, a agregação plaquetária e a produção do fator tecidual trombogênico, influenciando também na redução da expressão de várias mediadores inflamatórios.

A vitamina D, ao ativar o receptor de vitamina D (VDR) nas células endoteliais, promove a expressão de fator de crescimento endotelial vascular (VEGF). Esse importante fator angiogênico age sobre os receptores de VEGF, alterando várias atividades celulares, como proliferação e sobrevivência celulares, permeabilidade vascular, entre outras. A sinalização do VEGF, por sua vez, também está envolvida em diversas doenças cardiovasculares, mediando processos como cardiomiopatias hipertróficas e formação de placas ateroscleróticas.

Sabe-se que a forma ativa da vitamina D pode ser sintetizada em células endoteliais, por meio da ação de a-hidroxilase específica. O produto, 1,25(OH2)D3, possui atividade sobre mediadores inflamatórios, modulando a ação de células do sistema imune como macrófagos, monócitos e linfócitos B e T. Além disso, a exposição da forma ativa da vitamina D a células endoteliais diminui a expressão de substâncias pró-inflamatórias, como IL-1β, que está inversamente relacionada à função endotelial normal. Assim, é possível perceber a relação entre a fisiologia da vitamina D e sua relação com a função normal do endotélio bem como o envolvimento dessa substância na patogênese de diversas doenças cardiovasculares (Figura 2).

Repercussões da suplementação de calcitriol e seus análogos na função endotelial

Foi demonstrado, in vitro, o envolvimento da vitamina D na proteção ao estresse oxidativo em um estudo com células endoteliais da veia umbilical humana, no qual parte das células foi exposta a vitamina D por 24 horas e, posteriormente, a estresse oxidativo causado por H$_2$O$_2$, enquanto outra parte não foi exposta a vitamina D. O grupo de células tratado com a vitamina D foi protegido desse estresse oxidativo mediado por anión superóxido. Além disso, foi observado que a apoptose mediada pela ativação da cascata foi inibida. Também foi notada a ativação do eixo MEK/ERK/SirT-1 mediada pela vitamina D, que reduziu disfunção e lesão endoteliais causadas pelo estresse oxidativo.

![Figura 2. Ação da vitamina D na função endotelial. IL = interleucina; VEGF = fator de crescimento endotelial vascular.](https://doi.org/10.1590/1677-5449.190150)
A atividade do calcitriol sobre a função renovascular foi avaliada *in vitro* após a exposição de artérias renais a calcitriol, havendo aumento da dilatação arterial renal além de menor expressão de enzimas relacionadas ao estresse oxidativo, como NOX-2, NOX-4, entre outras. Também houve diminuição das contrações endotélio-dependentes.

O paricalcitol, análogo de vitamina D não hipercaleêmico, teve seus efeitos avaliados num modelo de lesão renal aguda induzida por isquemia/reperfusão em camundongos. Sabe-se que a lesão renal abrange relações complexas entre dano das células tubulares, inflamação e disfunção endotelial. Nesse contexto, um grupo de camundongos foi pré-tratado com paricalcitol 1 dia antes da isquemia. Outro grupo recebeu o mesmo volume de veículo. Após os testes, concluiu-se que os animais tratados com paricalcitol apresentaram atenuação da inflamação e da disfunção renais por meio da diminuição dos níveis de citocinas e da infiltração de leucócitos nos rins.

Takanaka et al. avaliaram o potencial da vitamina D na supressão do estresse oxidativo usando quatro grupos de ratos hipertensos: controles (C); tratados com irbesartana (I); tratados com calcitriol (V); e tratados com irbesartana e calcitriol (I + V). O grupo tratado com irbesartana e calcitriol (I + V) apresentou atenuação da albuminúria e redução da concentração de angiotensina II renal. As vantagens do tratamento apenas com calcitriol incluíram menores níveis de angiotensina II plasmática e aumento de klotho. Essa substância apresenta efeitos antioxidantes, pois induz a produção de superóxido dismutase, uma enzima importante na proteção contra efeitos lesivos das espécies de oxigênio.

Os efeitos da vitamina D sobre o sistema renina-angiotensina-aldosterona foram também avaliados num estudo comparativo entre pacientes hipertensos essenciais com hipovitaminose D, pacientes hipertensos essenciais com níveis normais de vitamina D e indivíduos normotensos. Os indivíduos com hipertensão e hipovitaminose D, ao serem submetidos à suplementação com colecalciferol por 8 semanas, apresentaram redução dos níveis de renina plasmática e aumento de klotho. Essa substância apresenta efeitos antioxidantes, pois induz a produção de superóxido dismutase, uma enzima importante na proteção contra efeitos lesivos das espécies de oxigênio.

Os efeitos da vitamina D sobre o sistema renina-angiotensina-aldosterona foram também avaliados num estudo comparativo entre pacientes hipertensos essenciais com hipovitaminose D, pacientes hipertensos essenciais com níveis normais de vitamina D e indivíduos normotensos. Os indivíduos com hipertensão e hipovitaminose D, ao serem submetidos à suplementação com colecalciferol por 8 semanas, apresentaram redução dos níveis de renina plasmática e aumento de klotho. Essa substância apresenta efeitos antioxidantes, pois induz a produção de superóxido dismutase, uma enzima importante na proteção contra efeitos lesivos das espécies de oxigênio.

Além da deficiência de vitamina D, a obesidade e o sobrepeso figuram como importantes fatores de risco relacionados ao desenvolvimento de disfunção endotelial. Baseados nesse fato, Bori et al. conduziram um estudo randomizado, duplo-cego e placebo-controlado com indivíduos obesos e com sobrepeso, não hipertensos e não diabéticos. Os participantes receberam ergocalciferol ou placebo. Ao final do estudo, não foi percebida mudança significativa na dilatação endotélio-dependente no grupo que recebeu ergocalciferol em relação ao grupo que recebeu placebo.

Um ensaio randomizado controlado avaliou o impacto da suplementação de vitamina D3 sobre 200 participantes hipertensos e com níveis de 25-hidroxitiamina D abaixo de 30 ng/ml. O grupo das 100 pessoas que receberam vitamina D3 durante o ensaio foi comparado ao grupo dos 100 indivíduos restantes que receberam apenas placebo. O parâmetro primário de avaliação foi a pressão sistólica em 24 horas; os parâmetros secundários incluíram pressão diastólica em 24 horas, níveis de renina, aldosterona e de porção N-terminal do pró-hormônio do peptídeo natriurético do tipo B (NT-proBNP), intervalo QT corrigido pela frequência cardíaca, excreção urinária de albumina em 24 horas, entre outros. Cento e oitenta e oito pacientes completaram o ensaio, no qual não foi observado efeito benéfico significante da vitamina D3 sobre a pressão arterial e sobre outros fatores de risco cardiovasculares.

Esse achado foi consistente com os resultados do ensaio *DAYLIGHT*, que observou os efeitos da suplementação de vitamina D sobre níveis pressóricos de pacientes hipertensos e pré-hipertensos. Dos 383 pacientes que completaram o estudo de 6 meses, o grupo que recebeu altas doses de suplementação não apresentou reduções significativas na pressão sistólica média de 24 horas, em relação ao grupo ao qual foram administradas doses mais baixas.

Recentemente, um estudo randomizado e placebo-controlado comparou os efeitos da administração de vitamina D (2000 UI/dia) sobre a prevenção de doenças cardiovasculares e câncer com a mera administração de placebo. A pesquisa, que durou 5 anos e envolveu 25.871 pessoas, demonstrou que não houve incidência significativamente menor de eventos cardiovasculares (infarto do miocárdio, acidente vascular encefálico e morte por causas cardiovasculares) no grupo que recebeu a substância quando comparado ao grupo que recebeu placebo. Do mesmo modo, não houve redução na incidência de mortes por câncer no grupo que recebeu vitamina D.

Dados mais conclusivos sobre a eficiência da suplementação de vitamina D na prevenção de doenças cardiovasculares foram obtidos através de metanálise conduzida por Barbarawi et al. Nesse trabalho, 21 ensaios clínicos randomizados, que incluíram mais de 83.000 participantes, foram analisados quanto à possível eficácia da suplementação de vitamina D na redução de eventos cardiovasculares. Não foi observada diminuição significativa em eventos cardiovasculares ou cerebrovasculares nem na mortalidade por tais morbidades.
CONCLUSÃO

É bem descrita na literatura a necessidade de manter níveis fisiológicos normais de vitamina D no organismo, uma vez que a hipovitaminose está relacionada ao risco de desenvolver disfunção endotelial. Apesar de diversos estudos apontarem ações benéficas da vitamina D e de seus análogos sobre a função endotelial e aspectos diretamente ligados a ela, esses resultados são controversos. Pesquisas recentes, de grande amostragem e duração, não encontraram melhoras significativas na função endotelial ou em fatores de risco cardiovasculares.

Assim, concluímos não haver embasamento científico claro para suplementação de vitamina D ou de seus análogos no tratamento de disfunção endotelial ou doenças cardiovasculares. Vale ressaltar, no entanto, que ainda existe a necessidade de maiores pesquisas sobre o tema para melhor elucidar a questão e, assim, permitir maior certeza aos profissionais de saúde quanto à necessidade de suplementação de vitamina D.

REFERÊNCIAS

1. Won S, Sayeed I, Peterson BL, Wali B, Kahn JS, Stein DG. Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways. PLoS One. 2015;10(3):e0122821. http://dx.doi.org/10.1371/journal.pone.0122821. PMid:25815722.

2. Peters BSE, Martini LA. Funções plenamente reconhecidas de vitaminas D. 2. ed. São Paulo: International Life Sciences Institute do Brasil; 2014 [citado 2019 out 17]. https://ilsi.org/brasil/wp-content/uploads/sites/9/2016/05/artigo_vitamina_d.pdf

Tabela 1. Dados dos estudos incluídos na revisão de literatura.

Estudo	Tipo de estudo	Métodos	Resultados principais
Dong et al.19	Estudo com células endoteliais da aorta humana ou de rato	Exposição de artérias renais ao calcitriol ou à angiotensina II	A ativação in vivo e in vitro do receptor de vitamina D com calcitriol melhora a função endotelial
Polidoro et al.14	Estudo in vitro	Administração de vitamina D em células endoteliais da veia umbilical humana	Proteção contra estresse oxidativo, mediada por superóxido
Lee et al.18	Estudo in vivo com camundongos e in vitro com células HK-2	Avaliação da lesão e inflamação renal e do efeito direto do paricalcitol nas células tubulares	Efeito renoprotetor na lesão renal aguda isquêmica
Takenaka et al.17	Estudo experimental com ratos hipertensos	Ratios hipertensos, uninefrectomizados e tratados com vitamina D	Melhora na expressão do klotho e supressão do estresse oxidativo e da albuminúria sem alterações substanciais nos níveis renais de angiotensina II
Wong et al.15	Estudo in vivo e in vitro	Suplementação com vitamina D3 em doadores saudáveis e em camundongos	Melhora da regeneração vascular após lesão em indivíduos saudáveis e diabéticos
Pilz et al.16	Ensaio clínico randomizado, duplo-cego, controlado com placebo	Suplementação de vitamina D3 por 8 semanas com 200 participantes hipertensos e com níveis de 25-hidroxivitamina D baixos	Não foi observado efeito benéfico significante da vitamina D3 sobre a pressão arterial e outros fatores de risco cardiovasculares, mas foi associada a um aumento significativo de triglicéridos
Carrara et al.19	Estudo clínico caso-controle	Trinta e três pacientes com hipertensão essencial e hipovitaminose D foram submetidos à terapia com colecalciferol por 8 semanas	Restauração dos níveis normais de vitamina D é capaz de inibir o sistema renina-angiotensina e melhorar a dilatação mediada por fluxo
Borgi et al.20	Estudo clínico randomizado, duplo-cego, controlado com placebo	Quarenta e seis indivíduos não hipertensos, com sobrepeso não diabéticos ou obesos com deficiência de vitamina D receberam ergocalciferol ou placebo correspondente durante 8 semanas	Não houve melhora na função endotelial após a reposição de vitamina D
Arora et al.21	Estudo multicêntrico, randomizado, duplo-cego,	Suplementação de vitamina D em altas ou baixas doses em 534 indivíduos com deficiência de vitamina D, hipertensos ou pré-hipertensos	Sem reduções significativas na pressão sistólica média de 24 horas
Manson et al.22	Estudo clínico randomizado, controlado com placebo	Administração de vitamina D3 e ácidos graxos ômega-3 marinhos em um total de 25.871 participantes, para prevenção primária de câncer e doenças cardiovasculares	A suplementação com vitamina D não resultou em menor incidência de câncer invasivo ou eventos cardiovasculares quando comparada ao placebo
Barbarawi et al.23	Metanálise de 21 ensaios clínicos randomizados	Eficácia da suplementação de vitamina D na redução de eventos cardiovasculares e mortalidade por todas as causas, incluindo 83.291 pacientes, dos quais 41.669 receberam vitamina D e 41.622 receberam placebos	Não foi observada diminuição significativa em eventos cardiovasculares ou cerebrovasculares nem na mortalidade
3. Inda AJ Fo, Melamed ML. Vitamina D e doença renal. O que nós sabemos e o que nós não sabemos. J Bras Nefrol. 2013;35(4):323-31. http://dx.doi.org/10.5935/0101-2800.20130051.P.Mid:24420112.

4. Christakos S, Dwhan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365-408. http://dx.doi. org/10.1152/physrev.00014.2015. PMid:26681795.

5. Negre A. Active vitamin D in chronic kidney disease: getting right back where we started from? Kidney Dis. 2019;5(2):59-68. http://dx.doi.org/10.1159/000495138. PMid:31019920.

6. Wong MS, Leisegang MS, Kruse C, et al. Vitamin D promotes vascular regeneration. Circulation. 2014;130(12):976-86. http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010650. PMid:25015434.

7. Teixeira BC, Lopes AL, Macedo RCO, et al. Inflammatory markers, endothelial function and cardiovascular risk. J Vasc Bras. 2014;13(2):108-15. http://dx.doi.org/10.1590/vjb.2014.054.

8. Melo JB, FIGUEIREDO Neto JA, Campos RCA, Meireles MF, Costa ECC, Leal MCM. Study of endothelial function in Brazil: cardiovascular disease prevention. Rev Bras Cardiol. 2014;27(2):120-7.

9. Neves JA, Neves JA, Oliveira PCM. Biomarcadores de função endotelial em doenças cardiovasculares: hipertensão. J Vasc Bras. 2016;15(3):224-33. http://dx.doi.org/10.1590/1677-5449.000316. PMid:29930594.

10. Carvalho CC. O endotélio: estrutura, função e disfunção endotelial. Med Leg Costa Rica. 2017;34(2):90-100.

11. Sarkar S, Chopra S, Rohit MK, Banerjee D, Chakraborti A. Vitamin D regulates the production of vascular endothelial growth factor: a triggering cause in the pathogenesis of rheumatic heart disease? Med Hypotheses. 2016;95(6):62-6. http://dx.doi.org/10.1016/j.mehy.2016.09.001. PMid:27692170.

12. Alyami A, Soares MJ, Sherriff JL, Mamo JC. Vitamin D & endothelial function. Indian J Med Res. 2014;140(4):483-90. PMid:25484411.

13. Gonzalez-Curiel I, Marin-Luevano P, Trujillo V, Enciso-Moreno JA, Gonzalez-Castillo C, Rivas-Santiago B. Calcitriol prevents function. Indian J Med Res. 2014;130(2):108-15. http://dx.doi.org/10.1590/vjb.2014.054.

14. Polidoro L, Properzi G, Marampon F, et al. Vitamin D protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress. Eur Heart J. 2012;33(23):2980-90. http://dx.doi.org/10.1093/eurheartj/ehs259. PMid:22216182.

15. Dong J, Wong SL, Lau CW, et al. Calcitriol protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress. Eur Heart J. 2012;33(23):2980-90. http://dx.doi.org/10.1093/eurheartj/ehs259. PMid:22216182.

16. Lee JW, Kim SC, Ko YS, et al. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-B pathway in ischemia/reperfusion-induced acute kidney injury. Biochem Biophys Res Commun. 2014;444(2):121-7. http://dx.doi.org/10.1016/j.bbrc.2014.01.005. PMid:24434153.

17. Takenaka T, Inoue T, Ohno Y, et al. Calcitriol supplementation improves endothelium-dependent vasodilation in rat hypertensive renal injury. Kidney Blood Press Res. 2014;39(1):17-27. http://dx.doi.org/10.1159/0003555773. PMid:24821359.

18. Carraça D, Bruno RM, Bacca A, et al. Cholecalciferol treatment downregulates renin–angiotensin system and improves endothelial function in essential hypertensive patients with hypovitaminosis D. J Hypertens. 2016;34(11):2199-205. http://dx.doi.org/10.1097/HJH.0000000000001072. PMid:27648718.

19. Borgi L, McMullan C, Wohlhueter A, Curhan GC, Fisher ND, Forman JP Effect of vitamin D on endothelial function: a randomized, double-blind, placebo-controlled trial. Am J Hypertens. 2017;30(2):124-9. http://dx.doi.org/10.1093/ajh/hpw135. PMid:28077419.

20. Pill S, Gaksh M, Kienreich K, et al. Effects of vitamin D on blood pressure and cardiovascular risk factors: a randomized controlled trial. Hypertension. 2015;65(6):1195-201. http://dx.doi.org/10.1161/ HYPERTENSIONAHA.115.053191. PMid:25801871.

21. Arora P, Song Y, Dusek J, et al. Vitamin D therapy in individuals with prehypertension or hypertension: the DAYLIGHT trial. Circulation. 2015;131(3):254-62. http://dx.doi.org/10.1161/CIRCULATIONAHA.114.011732. PMid:25359163.

22. Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33-44. http://dx.doi.org/10.1056/NEJMoa1809944. PMid:30415629.

23. Barbarawi M, Kheiri B, Zayed Y, et al. Vitamin D supplementation and cardiovascular disease risks in more than 83 000 individuals in 21 randomized clinical trials: a meta-analysis. JAMA Cardiol. 2019;4(8):765. http://dx.doi.org/10.1001/jamacardio.2019.1870.

24. Oruc CU, Akpinar YE, Amikishiev S, et al. Hypovitaminosis D is associated with endothelial dysfunction in patients with metabolic syndrome. Curr Vasc Pharmacol. 2017;15(2):152-7. http://dx.doi. org/10.2174/15701611146661610030934. PMid:27397067.

Correspondência
Matheus Rodrigues Lopes
Rua da Aurora, s/n, Quadra 27, Lote 3 - Bairro Alves de Souza 48067-190 - Paulo Afonso (BA), Brasil
Tel. (75) 3282-3656
E-mail: matheuslopesbio@gmail.com

Informações sobre os autores
FELC e LCMS - Discentes de Medicina, Universidade Federal do Vale do São Francisco.
APOT - Residência médica na área de Nefrologia, Faculdade de Medicina de São José do Rio Preto (SP), Mestrado Profissional em Saúde Rural, Universidade Federal do Vale do São Francisco, Docente, Universidade Federal do Vale do São Francisco.
MRL - Doutor em Ciências (Fisiopatologia Médica), Universidade Estadual de Campinas (UNICAMP), Docente, Universidade Federal do Vale do São Francisco.
RHAB - Residência médica em Clínica Médica, Hospital Universitário Oswaldo Cruz - FCM/UEP, Residência médica em Cardiologia, Fundação para o Incentivo ao Ensino e Pesquisa da Cardiologia (FUNCORDIS), Mestrado Profissional em Saúde Rural, Universidade Federal do Vale do São Francisco, docente da Universidade Federal do Vale do São Francisco.

Contribuições dos autores
Concepção e desenho do estudo: LCMS, FELC, RHAB
Análise e interpretação dos dados: LCMS, FELC
Coleta de dados: LCMS, FELC
Redação do artigo: LCMS, FELC, APOT, MRL, RHAB
Revisão crítica do texto: APOT, MRL, RHAB
Aprovação final do artigo: LCMS, FELC, APOT, MRL, RHAB
Análise estatística: N/A.
Responsabilidade geral pelo estudo: RHAB

*Todos os autores leram e aprovaram a versão final submetida ao J Vasc Bras.