Distribution Network Low Voltage Prediction Method Based on Least Squares Support Vector Machine

Zhiyang Yao*, Qingren Jin*, Guo Minb and Weidong Chenc

Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning, Guangxi of China

*Corresponding author e-mail: 121842734@qq.com, *jin_qr.sy@gx.csg.cn, bguo_m.sy@gx.csg.cn, cchen wd.sy@gx.csg.cn

Abstract. Due to the lack of a direct functional relationship between voltage and voltage related parameters in the distribution network, it is difficult to scientifically carry out low voltage prediction. Therefore, a low voltage prediction method based on least squares support vector machine is proposed. The method uses the parameters related to low voltage and voltage in the distribution network as the basic data, constructs the optimal problem equation, forms the decision function, uses the decision function to predict the predicted samples, and outputs the lowest voltage value at the end of the low voltage side of the distribution transformer. Finally, the voltage value is analyzed and the low voltage of the distribution network is predicted. The actual distribution network data is used to simulate and verify the proposed method. The results show that the predicted value and the actual value error meet the requirements of estimation accuracy. It is demonstrated that the low-voltage prediction method based on least squares support vector machine is practical.

1. Introduction

In many areas of China, the distribution network is too long, the power line end loss is too high, the power load is dispersed, the distribution transformer power supply capacity is insufficient, and the power line grid structure is weak, which causes the voltage of the distribution network to be low. In recent years, with the improvement of the living standards of residents, the gradual use of large-capacity electrical appliances, the power load is rapidly increased, and the voltage value at the end of the power line is further reduced. If this situation is not controlled, the voltage qualification rate is far below the national demand value, and it is difficult for the power supply enterprise to meet the needs of the people for high-quality electricity use.

In paper [1], the BP neural network method is used to estimate the voltage of all nodes using the voltage data of a few nodes, which solves the problem of difficult collection of operating parameters in the distribution area. The paper [2] proposed the concept of load moment margin, which can provide theoretical basis for the increase of load in the distribution area and the determination of distribution transformer capacity. However, the problem of load access caused by factors such as power line diameter and power line length is not considered. In paper [3], a method for assessing the health status of low-voltage distribution network based on order-entropy-weight method is proposed. In paper [4], a low-voltage prediction model based on self-organizing competitive neural network is
trained to realize automatic clustering of low-voltage risk. The papers [5-8] uses the artificial intelligence algorithm to estimate the line voltage to achieve the purpose of early warning of low voltage. In summary, the domestic work on the low voltage prediction of the distribution network area has done a lot of work, but most of them focus on theoretical research and model derivation. The case analysis is still relatively small, and most of the research does not fully consider the main factors affecting the voltage. The accuracy of voltage estimation is difficult to guarantee.

On the basis of summarizing and analyzing the papers in recent years, this paper analyzes the main reasons leading to the low voltage in the distribution area, and carries out research on low voltage prediction of distribution network, and proposed A low voltage prediction method for distribution network based on least squares support vector machine (LS-SVM). The voltage-related parameters of the distribution network area, such as the distribution capacity, the lowest voltage at the end of the power supply line, the longest power supply radius on the low-voltage side, the longest trunk line diameter on the low-voltage side, and the total number of users of the distribution transformer are used as the basic data. The vector machine prediction method is to use these parameters to construct the optimal problem equation and form the decision function, use the decision function to predict the prediction sample, calculate the lowest voltage value at the end of the power line, and complete the target of predicting and analyzing the low voltage of the distribution network. The case analysis of the distribution area data of a distribution area in Guangxi is carried out to verify the effectiveness of the method.

2. Causes of low voltage
There is resistance and reactance in the transmission line of the distribution network. When the power is transmitted on the transmission line, the voltage of the line is divided, so that there is a voltage difference at the first end, resulting in a decrease in the voltage at the end of the line. The equivalent circuit of the low-voltage line of the distribution network is shown in Fig. 1:

![Figure 1. Transmission line equivalent circuit and vector diagram.](image)

It can be seen from Fig. 1 that the starting voltage \hat{U}_1 and the terminal voltage \hat{U}_2 of the line have the following relationship:

$$\triangle \hat{U}_1 = \hat{U}_1 - \hat{U}_2 = (R + jX) \hat{I} \quad (1)$$

The voltage drop $\triangle U_i$ of the equation (1) is split into the projection $\mathbb{V} U_i$ in the vertical direction of \hat{U}_2 and the projection $\mathbb{V} U_2$ in the same direction as \hat{U}_2, that is, the transverse component and the longitudinal component of F, and the formula is:

$$\triangle U_2 = R I \cos \phi + X I \sin \phi \quad (2)$$

$$\triangle U_h = X I \cos \phi - R I \sin \phi \quad (3)$$

Assume that the end power is:
The power representations V_{U_2} and V_{U_2} are:

\[
\begin{align*}
\triangle U_2 &= \frac{PR + QX}{U_2} \\
\triangle U_{U_2} &= \frac{PR - QR}{U_2}
\end{align*}
\]

(5)

It can be known from equation (5) that the voltage loss is related to the grid component parameters. The smaller the power line diameter, the longer the power supply distance, and the greater the power transmitted, the greater the voltage loss generated. In this paper, the distribution transformer capacity, the longest power supply radius, the longest trunk line diameter, and the total number of users of the distribution transformer are taken as the main factors affecting the voltage level at the end of the distribution line.

3. Principle of least squares support vector machine

3.1. Overview of least squares support vector machine

The least square support vector machine is a machine learning method developed on the basis of statistical learning theory, and has a good effect in solving the problem of complex parameter relationships in power systems. It is used to integrate the relationship between the parameters related to the voltage of the distribution network in this paper, and has a very good effect on predicting the voltage at the end of the distribution line. LS-SVM has many unique advantages in solving small samples, high dimensionality, nonlinearity, local minimum values, etc, especially reducing computational complexity and speeding up the solution, so it has good application effect.

3.2. Principle of least squares support vector machine

3.2.1. Definition of optimization function. Since the distribution network voltage prediction method in this paper is a nonlinear system, consider the linear regression function:

\[f(x) = (\omega, \phi(x)) + b \]

(6)

Set a set of data points $(x_i, y_i), i=1,\ldots, l, x_i \in \mathbb{R}^d$ is related to the minimum voltage at the end of the low-voltage side of the forecasting station. Such as the distribution capacity, the lowest voltage at the end of the line on the low-voltage side, the longest power supply radius on the low-voltage side, the longest main line diameter on the low-voltage side, and the total number of users in the distribution transformer. d is the dimension of the selected input variable, $y_i \in \mathbb{R}$ is the expected value of the forecast, l is the total number of known data points. $\Phi(x)$ is a nonlinear mapping from the input space to the high dimensional feature space. According to the structure minimization principle, the LS-SVM optimization target can be expressed as:

\[
\min \frac{1}{2} \|\omega\|^2 + \frac{1}{2} \gamma \sum_{i=1}^l e_i^2
\]

(7)

s.t. $\omega^T \phi(x_i) + b + e_i = y_i, i = 1, \ldots, l$
Among them, e_i is the error, $e \in \mathbb{R}^l$ is the error vector, γ is the regularization parameter, and the degree of punishment for the error is controlled.

3.2.2. Definition of the Lagrange function.

Introducing Lagrange multipliers, $\lambda \in \mathbb{R}^l$, Equation (7) can be converted into:

$$
\min J = \frac{1}{2} \|e\|^2 + \frac{1}{2} \gamma \sum_{i=1}^l e_i^2 - \sum_{i=1}^l \lambda_i (\phi(x_i)^T \phi(x_i) + b + e_i - y_i)
$$

By KKT conditions, you get:

\[
\begin{align*}
\frac{\partial J}{\partial \omega} &= 0 \rightarrow \sum_{i=1}^l \lambda_i \varphi(x_i) \\
\frac{\partial J}{\partial b} &= 0 \rightarrow \sum_{i=1}^l \lambda_i = 0 \\
\frac{\partial J}{\partial e_i} &= 0 \rightarrow \lambda_i = \gamma e_i, i = 1, 2, \ldots, l \\
\frac{\partial J}{\partial \lambda_i} &= 0 \rightarrow \omega^T \varphi(x_i) + b + e_i - y_i = 0, i = 1, 2, \ldots, l
\end{align*}
\]

After eliminating and, the solution of equation (9) is:

\[
\begin{bmatrix}
0 \\
I^T \\
\Omega + \gamma I
\end{bmatrix}
\begin{bmatrix}
b \\
Y
\end{bmatrix}
=
\begin{bmatrix}
0 \\
Y
\end{bmatrix}
\]

among them, $\mathcal{T} = [\lambda_1, \lambda_2, \ldots, \lambda_l]^T, \mathcal{T} = [1, 1, \ldots, 1]^T$ is Dimension vector, $Y = [y_1, y_2, \ldots, y_l]^T, \Omega \in \mathbb{R}^{l^2},$ and $\Omega_y = \phi(x_i)^T \phi(x_i), \Omega_y = K(x_i, x_j), K$ is a kernel function that satisfies the Mercer condition, $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ replace the dot product operation in the high dimensional feature space with the kernel function of the original space, simplifying the calculation.

3.2.3. Nonlinear prediction model.

Therefore, the expression of the nonlinear prediction model is:

$$
y = \sum_{i=1}^l \lambda_i K(x_i, x) + b
$$

Among them, λ, b can be obtained by solving the linear equation of equation (10), and $K(\cdot, \cdot)$ is a nonlinear mapping from input space to high-dimensional feature space.

4. Implementation steps

4.1. Principle of least squares support vector machine

4.1.1. The basic data of the distribution network area in a certain area is taken from the database, including the distribution capacity, the lowest voltage at the end of the line on the low-voltage side of the transformer, the longest power supply radius on the low-voltage side, the longest main line
diameter on the low-voltage side of the distribution transformer, and the total number of users of the
distribution transformer are used as training data, the training data set is as shown in equation (12).

\[S = \{(x_1, y_1), \ldots, (x_t, y_t)\} \subset \mathbb{R}^n \times \mathbb{R} \]
(12)

4.1.2. Choosing the appropriate kernel function, because the radial basis function representation is
simple and well interpreted, the radial basis function is used as the kernel function in the regression
model, as shown in equation (13).

\[K(x, x_i) = \exp\left(-\frac{\|x - x_i\|^2}{\sigma^2}\right) \]
(13)

where: \(x \) is the \(m \)-dimensional input vector, \(x_i \) is the center of the \(i \)th radial basis function, and has
the same dimension as \(x \), \(\sigma \) is the normalized parameter, which determines the width of the function
around the center point, according to experience=2, \(\|x - x_i\| \) is the norm of the vector \(x - x_i \),
indicating the distance between the \(x \) and the \(x_i \).

4.1.3. Construct and solve the optimization problem formula, get the optimal solution
\(\alpha = (\alpha_1, \alpha_1^*, \ldots, \alpha_t, \alpha_t^*)^T \), construct the decision function, as shown in equation (14):

\[f(x) = \sum_{i=1}^{t} (\alpha_i^* - \alpha_i) K(x_i, x) + b \]
(14)

4.1.4. The prediction function is used to predict the predicted sample, and the lowest voltage at the
end of the low-voltage side of the output area is output, and the minimum voltage prediction at the
end of the station is completed.

4.2. Verification case

4.2.1. Forecast data. Taking the data of the distribution network in a certain area of Guangxi to
predict the minimum voltage at the end of the station, the simulation environment is MALAB2008a.
After the training sample data is formed into a training set and the construction of the decision
function is completed, the prediction function data of Table 1 can be calculated using the decision
function.

Table 1. Prediction sample data.

Distribution number	Distribution capacity (kVA)	Distribution longest power supply radius	Distribution longest trunk line diameter (²)	Total number of customers
1	30	350	25	113
2	80	400	50	160
3	125	780	70	110
4	80	420	35	147
5	160	968	35	87
6	100	487	25	158
7	100	670	35	110
8	80	690	50	138
9	80	500	50	138
10	160	360	25	211
4.2.2. Prediction result. The prediction function predicts the lowest voltage at the end of the distribution, and the predicted result is compared with the actual value of the actual distribution end data. The prediction results of the lowest voltage at the end of the low-voltage side of the distribution transformer are shown in Table 2:

Distribution number	Actual value (V)	Predictive value (V)	Predictive value (V)	Relative error %
1	183	180.59	2.41	1.315
2	189	190.04	-1.04	0.552
3	188	185.51	2.49	1.324
4	165	168.59	-3.59	2.175
5	190	187.25	2.75	1.446
6	182	179.95	2.05	1.126
7	187	183.63	3.37	1.802
8	192	190.07	1.93	1.003
9	190	192.69	-2.68	1.413
10	174	172.03	1.97	1.130
average value	184	183.04	0.96	1.328

From the comparison and comparison of prediction results, we can see that: The relative prediction error of the low voltage prediction method for distribution network based on least squares support vector machine is 1.328%, the result shows that the error is small. The lowest voltage at the end of the line on the low-voltage side of the transformer and the lowest voltage at the end of the line on the low-voltage side of the transformer are shown in Figure 2:

![Figure 2. Minimum voltage comparison at the end of the line.](image)

Figure 2 shows the node data with "△" and "∗", and connects the corresponding nodes into a curve. The curve of the node symbol "△" represents the actual value of the lowest voltage at the end of the line on the low-voltage side of the distribution transformer, and the curve of the node symbol "∗" represents the lowest voltage predicted value at the end of the line on the low voltage side of the distribution transformer. It can be seen from the deviation of the 10 distribution voltage values of the two curves in the figure that the actual value and the predicted value of the lowest voltage at the end of the distribution voltage are approximated. In summary, the low voltage prediction method of the distribution network based on the least squares support vector machine has a small deviation.
between the predicted value and the actual value, and can complete the prediction of the minimum voltage at the end of the line on the low voltage side of the distribution transformer.

5. Conclusion
Low-voltage prediction method for distribution network based on least squares support vector machine, considering the parameters related to the voltage at the end of the distribution line, such as power line radius, power line length, power distribution capacity, minimum voltage at the end of the power line, and number of users of the distribution transformer, these parameters are analyzed and data pre-processed, the optimal problem equation is constructed, and the decision function is formed. The decision function is used to predict the predicted samples, and the lowest voltage value at the end of the distribution is formed to achieve the purpose of low voltage prediction. This method is used to predict the voltage of the distribution area of a distribution network in a certain area of Guangxi, and the analysis results verify the effectiveness of the prediction method. In summary, the low voltage prediction method based on least squares support vector machine based on this paper is simple and easy to implement. Can provide theoretical basis for distribution network planning, low voltage station prediction, and low voltage control.

Acknowledgements
The authors gratefully acknowledge the financial supports Supported by Science and Technology Project of China Southern Power Grid under Grant numbers GXKJXM 20160047, I would like to express my sincere thanks to all those who have lent me hands in the course of my writing this paper.

References
[1] Yin Zhongdong, Mu Kai, Jin Yongtao, Tong Li, Zhao Qicheng. Voltage Estimation of Low-voltage Distribution Network Based on BP Neural Network [J], Journal of North China Electric Power University, 2017(05). 5.
[2] Zhang Linyao, Wang Kai, WU Guilian, Zheng Jieyun, Bai Qiang, Sun Shengxian. Normalization load moment based analysis for distribution area’s load margin [J]. Journal of electric power science and technology. 2016, vol31.(2).
[3] Ma Ji, Liu Xizhe. Evaluation of health status of low voltage distribution network based on order relation entropy weight method [J]. Power System Protection and Control, 2017, 45(6):87-93.
[4] Zhang Ying, Zhang Shu Xin. Prediction Model of Low Voltage Area based on sel f-organizing Compe ti tive Neura ne twork [J]. Wa t rResources and Powe r 2012 30(12):170–1.C. D. Smith and E. F. Jones, “Load-cycling in cubic press,” in Shock Compression of Condensed Matter-2001, AIP Conference Proceedings 620, edited by M. D. Furnish et al. American Institute of Physics, Melville, NY, 2002, pp. 651–654.
[5] Bai Muke, Tang Wei, Zhang Lu, etc, Estimation of voltage drop of middle voltage distribution network based on BP neural network group, 2014, 42(2):132–138.
[6] Prng Chunliu, Chen Yuehui, Zhu Jiran, Guo Wenming. Development and Application of Low Voltage Monitoring and Early Warning System Based on the Platform of Big Data System [J]. Hunan Electric Power, 2018, 2, 5-8.
[7] Zhang Zhonghui, Zeng Ruxia, Lai Feiyi. Low Voltage Governance for Rural Power Distribution Network Based on Fuzzy Analytic Hierarchy Process [J]. Guangdong Electric Power, 2017, vol 30(9). Information on http://www.weld.labs.gov.cn.
[8] Wang Wenbin, Wu Xiaosheng, Chen Lin, etc. Research on automatic planning of low voltage management in distribution network based on improved ant colony algorithm [J]. Engineering Journal of Wuhan University. 2018, 51(9).
[9] Wu Xiaobing, Huang Yanlu, "Low Voltage" Integrated Governance Strategy Considering Engineering Cycle and User Demand [J], Power grid construction, 2018, (11):21-25.
[10] Ouyang Sen, Yang Jiahao, Geng Hongjie, Wu Yusheng, Chen Xinhui. Comprehensive
evaluation method of transformer area state oriented to transformer area management and its application [J]. Automation of Electric Power Systems, 2015, 39(11):187-192. Information on http://www.weld.labs.gov.cn.

[11] Zhang Yongfei, Tian Jinfang, Yang Lizhou, et al. Discussion of reactive compensation technology in low voltagedistribution [J]. Power Demand Side Management, 201113(6):41-43.

[12] Wu Xiaomeng, Liu Jian, Bi Pengxiang. Research on voltage stability of distribution networks [J]. Power System Technology, 2006 30(24):3135.

[13] Pan Feng, Zhang Yujun, Zhou Min. A comprehensive evaluation hierarchy for MV distribution network based on connection modes [J]. Power System Protection and Control, 2009, 37(19):19-21, 35.

[14] Bernardondp p, Sperandio M,Garcia V Jet al. AHP Decision-making Algorithm to Allocate Remotely Controlled Switchesin Distribution Networks [J]. IEEE Transactions on Power Delivery, 2011, 26(3):1884-1892. Information on http://www.weld.labs.gov.cn.

[15] SPATTI D H, A-SILVA I N, SIDA W F, et al. Real-time Voltage Regulation in Power Distribution System Using Fuzzy Control [J]. IEEE Transactions on Power Delivery, 2010, 25(2):1112-1123. Information on http://www.weld.labs.gov.cn.

[16] Maurizo D, Gianpietro P, Granelli P M, et al. Optimal capacitor placement using deterministic and genetic algorithms [J]. IEEE Transactions on Power Systems, 2000, 15(3):1041-1046. Information on http://www.weld.labs.gov.cn.

[17] Lan Fei, Yao Zhiyang, Li Jinghua, Tao li. Modeling and Simulation of No-Load Cutting-In Operation Control for Doubly-Fed Induction Generator [J]. Electric Power Construction, vol (37), No9.

[18] Peng Chunliu, Chen Yuehui, Zhu Jian, GUO Wenming. Development and Application of Low Voltage Monitoring and Early Warning System Based on the Platform of Big Data System [J]. Hunan Electric Power, 2018, 2, 5-8.

[19] WANG Jinli, DUAN Xinangjun, LI Yunjiang, ZHAO Xiaolong. Causes and Comprehensive Governance Measures of Low Voltage Problem in Distribution Network [J], DISTRIBUTION&UTILIZATION, 2016.07.

[20] IEEE Std 1459-2000 Definition for the measurement of electric power quantities under sinusoidal nonsinusoidal, balanced, or unbalanced condition [S]. 2000.