Numerical analysis of thermal phenomena during surface heat treatment of AlZn5.5MgCu aluminum alloy by GTA welding method

J Winczek¹, J Iwaszko² and M Matuszewski¹

¹ Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Armii Krajowej 21, 42-201 Częstochowa, Poland
² Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Armii Krajowej 19, 42-201 Częstochowa, Poland

E-mail: winczek@imipkm.pcz.czest.pl

Abstract. In work, the modelling of a three-dimensional temperature field during surface modification of AlZn5.5MgCu aluminum alloy using GTAW (Gas Tungsten Arc Welding) technology is presented. GTAW is widely used for making welded joints using additional material (filler material). In the analyzed process, no additional material was used, and the effect of heat treatment was obtained by directly applying the electric arc to the surface of the material. The calculations were performed using Finite Element Method. The Goldak's double ellipsoidal heat source model has been used in modelling. The thermal-mechanical properties of the material were assumed to depend on the temperature. The Workbench, DesignModeler, Mechanical, Fluent and CFD-Post modules of the ANSYS program were used for numerical simulations. In the description of the geometry of element heat treated, cube type elements were used, with density of grid in the heat affected zone. The temperature distributions in cross-sections of heated element as well as welding thermal cycles at selected points were analyzed. The results of numerical simulations were verified experimentally. Comparison of calculated and obtained in the experiment the fusion lines showed satisfactory compatibility.

1. Introduction
Welding methods are used not only to connect elements made of metals and their alloys, but also to improve the surface of these elements by heat (laser) treatment [1, 2] or by applying coatings [3–10]. The GTA (Gas Tungsten Arc) welding method without the use of additional material is often used for welding joints. In work [11] and patent [12], the authors were proposed to use this method in inert gas shielding for surface heat treatment of AlZn5.5MgCu aluminum alloy sheets. This paper presents a thermal phenomena analysis during this process and compares it with the results of experimental tests.

2. Experiment
Experimental tests of surface treatment of 7075 aluminum alloy were carried out in the laboratory of the Częstochowa University of Technology. The machining was performed by the GTAW (142) method [13] for 4 different passage welding velocities (figure 1).

Diagram of the surface treatment process of aluminium alloy sheet is shown in figure 2. Tables 1 and 2 present chemical composition [14] and thermo-mechanical properties [15] of the aluminum alloy AlZn5.5MgCu.
Welding speed

1 pass – 20 cm min\(^{-1}\)

2 pass – 40 cm min\(^{-1}\)

3 pass – 50 cm min\(^{-1}\)

4 pass – 60 cm min\(^{-1}\)

Figure 1. Machining macroscopic effect, pass 1–4.

Figure 2. Scheme of the GTAW surface treatment process.

Table 1. The chemical composition of Alloy 7075 (with accordance with EN 573-1 [14]).
Element
Mg
Mn
Fe
Si
Cu
Zn
Cr
Ti
Zr
Other
Al

Table 2. Thermomechanical properties of Alloy 7075 in 26 °C [15].

Property	Value
Density	2810 (kg m\(^{-3}\))
Specific heat	860 (J kg\(^{-1}\) K\(^{-1}\))
Thermal conductivity	130 (W m\(^{-1}\) K\(^{-1}\))
Solidus temperature	480 (°C)
Liquidus temperature	640 (°C)
The surface treatment process was carried out on a 70×100×15 mm aluminum alloy plate using the GTAW method (142). The test was performed using the FALTIG 315 AC/DC welding device (OZAS, Opole, Poland) [16] shown in figure 3. The treatment was carried out with direct current with positive polarity, using a tungsten electrode with ThO$_2$ and welding parameters set in table 3.

![Figure 3. Faltig 315 AC/DC.](image)

Table 3. Welding parameters during GTA welding.

Parameter	Value
Current type	Direct
Voltage	15.2 A
Current	130 A
Diameter of electrode	2.4 mm
Shielding gas	Ar 4.5
Intensity of shielding gas	15 l min$^{-1}$

3. Examples of numerical simulations

Modeling the temperature field during surface treatment of 7075 aluminum alloy, the finite element method was solved using ANSYS software. To solve the problems it was necessary to use 4 programs from the ANSYS package [17, 18]:

- Ansys DesignModeler used to perform solid geometry,
- Ansys Meshing used to divide the slab into finite elements,
- Ansys Fluent used to define the model and calculations,
- Ansys CFD-Post for results analysis.

During modelling the temperature field for solids, Ansys Fluent uses the following energy transport equation:

$$\frac{\partial}{\partial t}(\rho h) + \nabla \cdot (\nabla h) = \nabla (k \nabla T) + Q$$ \hspace{1cm} (1)

where: ρ – density, h – enthalpy, k – conductivity, T – temperature, Q – volumetric heat source, ∇ – speed field. As a volumetric heat source in the process of modeling the temperature field during surface treatment, a double ellipsoidal mobile heat source described by Goldak [19] illustrated in figure 4 was used. The Goldak model consists of two semi-ellipsoidal volumes forming a heat flux, for the points (x, y, z) describe the equations for ellipsoids: in front of the source:

$$q_f(x, y, z) = \frac{6\sqrt{3} \pi \rho}{abc \sqrt{\pi}} \exp \left(\frac{-3x^2}{a^2}\right) \exp \left(\frac{-3y^2}{b^2}\right) \exp \left(\frac{-3z^2}{c^2}\right)$$ \hspace{1cm} (2)
and for the back of the source:

$$q_r(x, y, \xi) = \frac{6\sqrt{3}Q}{abc\pi^{3/2}} \exp \left(\frac{-3x^2}{a^2} \right) \exp \left(\frac{-3y^2}{b^2} \right) \exp \left(\frac{-3\xi^2}{(c_r)^2} \right)$$

(3)

where: a, b, c_r, c_f are the parameters of the ellipsoidal heat source, f_f and f_r – proportionality coefficients corresponding to heat in the front and rear parts of the heat source respectively, where $f_f + f_r = 2$, ξ – distance of current source position to point (x, y, z).

Figure 4. Double ellipsoidal Goldak’s model of heat source.

3.1. Modeling of the temperature field during surface treatment of 7075 aluminum alloy sheet with the GTAW (142) method

The block was divided into 495776 cubic elements and 571927 nodes. The mesh was compacted in the bead area (figure 5).

Figure 5. Finite element mesh for surface machining of 7075 aluminum alloy sheet by GTAW (142).

Boundary conditions:

- **Dirichlet boundary condition:**
 $$T_s = f(x, y, z, t)$$
 (4)

- **Neumann boundary condition:**
 $$q_s = -k \frac{dT(0, t)}{dx}$$
 (5)

- **Convection boundary condition:**
 $$q_{conv} = h(T_{free} - T_s)$$
 (6)

- **Radiative condition:**
 $$q_{rad} = \varepsilon \sigma (T_{\infty}^4 - T_s^4)$$
 (7)
Thermo-mechanical parameters in relation to temperature are presented in Table 4 and Figures 6–8.

Table 4. Thermal-mechanical parameters in relation to temperature.

Temperature (°C)	Density (kg m⁻³)	Specific heat (J kg⁻¹°C⁻¹)	Thermal conductivity (W m⁻¹°C⁻¹)
26.85	2810	862	121.62
126.85	2780	913	131.69
226.85	2760	955	140.74
326.85	2740	994	148.75
426.85	2720	1036	155.74
526.85	2696	1084	161.70
626.85	2670	1146	166.63
726.85	2642	1225	170.53
826.85	2612	1324	173.51

Figure 6. Effect of temperature on Al7075 alloy density.

Figure 7. Effect of temperature on Al7075 alloy specific heat.

Figure 8. Effect of temperature on Al7075 alloy thermal conductivity.
Parameters of the surface treatment process for individual 4 passes are in table 5 presented.

	Pass 1	Pass 2	Pass 3	Pass 4
Power arc (W)	1710	1710	1710	1710
Arc energy (J mm⁻¹)	513	513	513	513
Velocity of welding (m s⁻¹)	0.00333	0.00667	0.00833	0.01
Heat transfer coefficient (W m⁻²K⁻¹)	30	30	30	30
External emissivity	0.5	0.5	0.5	0.5

3.2. Modeling of the temperature field during surface treatment of 7075 aluminum alloy sheet with the GTAW (142) method at velocity 20 cm min⁻¹.

The temperature distribution at the cross section in time \(t = 15.8 \) s from the start of treatment for the first pass is in figure 9 presented. The graph shows the temperature change when the distance to the heat source changes. We can notice a sharp drop in temperature in the initial phase of the chart. Figure 10 shows a welding thermal cycle for two points, which have been simulated for surface treatment of 7075 aluminum alloy sheets by the GTAW method (142) during first run.

The correctness of the simulation results is confirmed by experimental measurements (figure 11). The calculated full melted zone in which the material has reached a temperature above liquidus is marked in red. Comparison of the theoretical dimensions of the melting zones with the specified experimentally showed differences of less than 5 %.

![Figure 9. Temperature distribution during surface treatment of 7075 aluminum alloy sheet by GTAW (142) at time \(t = 15.8 \) s from the beginning of the process.](image-url)
Figure 10. Thermal cycles for two points during surface treatment of 7075 aluminum alloy sheet by GTAW (142).

Figure 11. The remelting zone during modeling of the temperature field by surface treatment of 7075 aluminum alloy by GTAW (142) in comparison with the experimental study for first pass.

3.3. Modeling of the temperature field during surface treatment of 7075 aluminum alloy sheet with the GTAW (142) method at velocity 40 cm min⁻¹

The temperature distribution at the cross section in time \(t = 7.8 \) s from the start of treatment for the second run is in figure 12 presented and thermal welding cycles are shown in figure 13.

Similarly to the previous study, satisfactory agreement was obtained between numerical and experimental results (figure 14).
Figure 12. Temperature distribution during surface treatment of aluminum alloy sheet 7075 by GTAW (142) at time $t = 7.8$ s from the beginning of the process.

Figure 13. Thermal cycles for two points during surface treatment of aluminum alloy sheet 7075 by GTAW (142).
Figure 14. The remelting zone during modeling of the temperature field by surface treatment of 7075 aluminum alloy by GTAW (142) in comparison with the experimental study for second pass.

3.4. Modeling of the temperature field during surface treatment of 7075 aluminum alloy sheet with the GTAW (142) method at velocity 50 cm min⁻¹

Temperature distribution during third pass in GTAW treatment of aluminum alloy sheet at time $t = 6.4 \text{ s}$ from the beginning of the process is shown in figure 15. The calculated welding thermal cycles for the selected two cross-sectional points are illustrated in figure 16.

The results of the numerical simulations performed give satisfactory results (figure 17). The red remelting zone marked in red on the left is obtained in the simulation for velocity 50 cm min⁻¹. The dimensions of the total remelting zone have been compared with experimental tests and give discrepancies below 5%.

Figure 15. Temperature distribution during surface treatment of aluminum alloy sheet 7075 by GTAW (142) at time $t = 6.4 \text{ s}$ from the beginning of the process.
3.5. Modeling of the temperature field during surface treatment of 7075 aluminum alloy sheet with the GTAW (142) method at velocity 60 cm min^{-1}

Temperature distribution in cross-section of GTAW surface treatment of aluminum alloy sheet 7075 by during fourth pass at time $t = 5.2 \text{ s}$ from the beginning of the process is presented in figure 18. Welding thermal cycles were calculated for two selected points of this section, which are shown in figure 19. As in the previous three numerical and experimental studies give satisfactory consistency of results (figure 20). Comparison of the theoretical dimensions of the melting zones with the specified experimentally showed differences of less than 5%.
Figure 18. Temperature distribution during surface treatment of aluminum alloy sheet 7075 by GTAW (142) at time $t = 5.2$ s from the beginning of the process.

Figure 19. Thermalcycles for two points during surface treatment of aluminum alloy sheet 7075 by GTAW (142).
Figure 20. Remelting zone during modeling of the temperature field by surface treatment of 7075 aluminum alloy by GTAW (142) in comparison with the experimental study for fourth pass.

4. Conclusion
Numerical simulations of the temperature field during surface treatment of 7075 aluminum alloy sheet without additional material at different heat source travel speeds allowed the determination of the remelting zone in the conducted tests. The simulation results have been experimentally verified by comparing the dimensions of remelting zones obtained in the simulation with the metallographic specimen obtained as a result of experimental tests. The correctness of the numerical model confirms the compatibility of the shapes and dimensions of the remelting zones defined theoretically (numerically) and obtained experimentally.

5. References
[1] Kumar U, Gope D K, Srivastava J P, Chattopadhyaya S, Das A K and Krołczyk G 2018 Experimental and numerical assessment of temperature field and analysis of microstructure and mechanical properties of low power laser annealed welded joints Materials 11 1514 doi:10.3390/ma11091514
[2] Winczek J, Modrzycka A and Gawrońska E 2016 Analytical description of the temperature field induced by laser heat source with any trajectory Procedia Engineering 149 553–558
[3] Górka J 2018 Assessment of steel subjected to the thermomechanical control process with respect to weldability Metals 8 169 doi:10.3390/met8030169
[4] Berezshnaya O V, Gribkov E P and Kuznestov V D 2016 Investigation of thermostressed state coating formation at electric contact surfacing of shaft type parts Advances in Materials Science and Engineering 2016 6597317 http://dx.doi.org/10.1155/2016/6597317
[5] Gucwa M, Winczek J, Bęczkowski R and Dośpiał M 2016 Structure and properties of coatings made with self shielded cored wire Archives of Foundry Engineering 16 39–42
[6] Golański D, Dymny G, Kujawińska M and Chmielewski T 2016 Experimental investigation of displacement/strain fields in metal coatings deposited on ceramic substrates by thermal spraying Solid State Phenomena 240 174–182
[7] Gucwa M, Bęczkowski R, Winczek J and Wyklecjal T 2017 The effect of type of welding sequence during hardfacing chromium cast iron for erosion resistance Archives of Foundry Engineering 17 51–54
[8] Chmielewski T, Golański D, Włośiński W and Zimmerman J 2015 Utilizing the energy of kinetic friction for the metallization of ceramics Bulletin of the Polish Academy of Sciences, Technical Sciences 63 201–207 DOI: 10.1515/bpasts-2015-0023
[9] Chmielewski T, Golański D and Włośiński W 2015 Metallization of ceramic materials based on
the kinetic energy of detonation waves Bulletin of the Polish Academy of Sciences, Technical Sciences, 63 449–456 DOI: 10.1515/bpasts-2015-0051

[10] Murčinková Z, Baron P, Tiňo L, Pollák M and Murčinko J 2017 Research and analysis of stress distribution in multilayers of coated tools Int. J. Mater. Res. (formerly Z. Metallkd.) 108 495–506 DOI 10.3139/146.111504

[11] Iwaszko J, Strzelecka M and Kudla K 2017 Surface modification of AZ91 magnesium alloy using GTAW technology Bull. Pol. Ac.: Tech. 65 917–926

[12] Kudla K and Iwaszko J 2018 The method of modifying the surface layer of metallic materials Patent description. PL 230589 B1. PCT. No. 419653, dated 12/01/2016. Publ. 04/06/2018 WUP 11/18. Patent Office of the Republic of Poland. Protection of the Republic of Poland

[13] PN-EN ISO 4063:2011 Arc welding process numbers

[14] PN-EN 573-3:2019-12. Aluminum and aluminum alloys - Chemical composition and types of wrought products - Part 3: Chemical composition and types of products

[15] Jude S A B, Jinu G R and Franco P A 2016 Comparison of experimental and simulated weld bead geometry by varying the weld speed in TIG welded AA7075 aluminium alloy Mechanic and Mechanical Engineering 20 377–392

[16] Operation and maintenance manual documentation, Device Faltig - 315 AC/DC

[17] Madenci E and Guven I 2006 The Finite Element Method and Applications in Engineering Using ANSYS® (New York: Springer)

[18] Moaveni S. 2008 Finite Element Analysis: Theory and Application with ANSYS (New York: Pearson Prentice Hall)

[19] Goldak J, Chakravarti A and Bibby M 1984 A new finite element model for welding heat sources Metall. Mater. Trans. B 15 299–305