Ergosterol Peroxide and Stigmasterol from The Stembark of *Aglaia simplicifolia* (Meliaceae) and Their Cytotoxic against HeLa Cervical Cancer Cell Lines

Nunung Kurniasih¹*, Asep Supriadin¹, Desi Harneti², Rizky Abdulah³, Mohamad Nurul Azmi bin Mohamad Taib¹, Unang Supratman²,₅

¹Department of Chemistry, Faculty of Sciences and Technology, Sunan Gunung Djati Islamic State University Bandung 40614, Indonesia
²Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Jatinangor 45363, Indonesia
³Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran Jatinangor 45363, Indonesia
⁴School of Chemical Sciences, Universiti Sains Malaysia
11800 Minden, Penang, Malaysia
⁵Central Laboratory of Universitas Padjadjaran Jatinangor 45363, Indonesia

*Corresponding author: nunungkurniasih@uin SGD.ac.id

Received: March 2021; Revision: March 2021; Accepted: June 2021; Available online: June 2021

Abstract

Two steroid compounds, ergosterol peroxide (1) and stigmasterol (2) have been isolated from the stembark of *Aglaia simplicifolia* belong to Meliaceae family. The chemical structures of 1 and 2 were identified based on spectroscopic evidence including UV, IR, 1D NMR, 2D NMR as well as mass spectra and by comparison with those previously reported spectra data. Both compounds were evaluated for their cytotoxic effects against cervical cancer HeLa cells in vitro. Compounds 1 and 2 showed cytotoxicity activity against HeLa cervical cancer cells with IC₅₀ values of 0.80 and 26.42 µM, respectively.

Keywords: Ergosterol peroxide, stigmasterol, *Aglaia simplicifolia*, HeLa cervical cancer, IC₅₀

DOI: 10.15408/jkv.v7i1.20068

1. INTRODUCTION

Meliaceae is the important plant families that have utilized and generally grow in tropical countries. Meliaceae plant is known for the presence of the various secondary metabolite compounds that exhibit interesting biological activity such as hypoglycemia, anticancer, anti-inflammation, antifeedant, antitumor (Awang et al., 2012; Leong et al., 2016; Su et al., 2006) and insecticidal activity (Nugroho et al., 1999).

The *Aglaia* genus is a plant of the tropical rain forest in the Indomalesiana region and mainly distributed in tropical countries including India, Indonesia, Malaysia and parts of the Western Pacific. Aglaia is the largest genus belongs to the Meliaceae family contains more than 150 species (Hidayat et al., 2017b; Awang et al., 2012) and about 65 species grown in Indonesia (Wood, et al., 1970; Heyne 1982). Phytochemical studies on Aglaia species have led to the identification of main compounds such as sesquiterpenoid, diterpenoid, triterpenoid, limonoid, steroid, lignan, and alkaloid groups (Harneti & Supratman, 2021).

Aglaia simplicifolia is found in Sumatra and Kalimantan, Indonesia. So far, reports on the content of secondary metabolite compounds from this plant are the only senecracidiol isolated from the bark of the stem (Kurniasih et al., 2019). Although steroids of other Aglaia species have been investigated previously, the ergosterol peroxide of *A. simplicifolia* is yet to be reported.
2. MATERIALS AND METHOD

Tools and Materials

Thin layer chromatography (TLC): silica gel plates (GF254, Merck, 0.25 mm); visualized by heating and immersing in 10% H₂SO₄ in EtOH. Column chromatography (CC): commercial SiO₂ (100 – 200 and 200 – 300 mesh; Merck, Darmstadt, Germany), and reversed-phase C18 (RP-C18; 40 – 63 mm; Fuji Sylisia, Japan); fractions were monitored by TLC. IR Spectra: Perkin-Elmer spectrum-100 FT-IR (Waltwam, MA, USA); KBr disks. ¹H- and ¹³C-NMR spectra: Bruker Topspin spectrometer at 500 and 125 MHz respectively (Bruker BioSpin GmbH, Silberstreifen 4, D-76287 Rheinstetten, Germany); in CDCl₃; at room temperature; d in ppm relative to Me₄Si as internal standard, J in Hz. HR-TOF-MS: Synapt G2 mass spectrometer instrument (Waters, Milford, MA, USA); in m/z.

Cervical cancer line HeLa was maintained in RPMI-1640 medium (Gibco) supplemented with 10% fetal bovine serum (FBS) and 1% pen strep (Gibco). Cultures were grown in a humidified incubator at 37 °C and 5% CO₂. The stembark collected from Bogor Botanical Garden and taxonomically identified as A. simplicifolia by Mr. Didik Widyatmoko. A voucher specimen (No. BO1295311) was deposited in Bogoriense Herbarium, Bogor, West Java Province, Indonesia.

Extraction and Isolation

Air-dried stems (1.10 kg) were extracted three times with MeOH (3x4 L; 3 h, 3 h, and 2 h, respectively) at room temperature. After removal of MeOH under reduced pressure with a rotary evaporator, the viscous residue was suspended in H₂O:MeOH (4:1) and partitioned successively with n-hexane (10 L), ethyl acetate (10 L), and n-butanol (10 L). Evaporated of these extracts resulted of n-hexane (14.5 g), ethyl acetate (28.0 g) and n-butanol (14.5 g), respectively.

The n-hexane-soluble extract (14.5 g) was fractionated by vacuum liquid chromatography (silica gel G60; aq. n-hexane-ethyl acetate-methanol, gradient) to give nine fractions, Frs. A – I, combined according to the TLC results. Fraction D (1.29 g) was further subjected to column chromatography (SiO₂; n-hexane-ethyl acetate 100:0 to 40:60, gradient) to give nine subfractions, Frs. D.1 – D.9. Fraction C.6 (142.3 mg) was subjected to CC (SiO₂; methylene chloride: ethyl acetate (49: 1) to yield compound 1 (5.6 mg). Fraction D.7 (109.0 mg) was separated by CC (SiO₂; methylene chloride: ethyl acetate (49: 1) to yield 2 (20.6 mg).

Cytotoxic Activity (Resazurin assay)

Cell viability was assessed by resazurin assay following the previously reported procedures (Sittampalam et al., 2004). Cells were seeded into a 96-well plates at a density of 17,000 cells/well and stabilized at 37 °C in 5% CO₂ for 24 h. Cells were incubated for 24 h with compounds 1 and 2. Ten cells were treated with 10 µL of Presto Blue™ Cell Viability Reagent for another 1-2 hours. Cell viability assessed by measuring the absorbance at 570 nm with a reference wavelength of 600 nm using an EMax Microplate Reader (Molecular Devices, Sunnyvale, CA, USA). For the positive control, cells were incubated for 24 h with 100 µL of Cisplatin.

3. RESULT AND DISCUSSION

Structure Elucidation

In our phytochemical research on A. simplicifolia, two steroids, ergosterol peroxide (1) and stigmasterol (2) (Figure 1) were isolated from the nonpolar fractions. Their structures were determined by a detailed analysis of their spectroscopic data.
Table 1. NMR data for compounds 1 and 2 (CDCl₃, 500 MHz for ¹H and 125 MHz for ¹³C) compared with Ergosterol Peroxide (Nowak et al., 2016) and Stigmasterol (Cayme & Ragasa, 2004)

Position	Compound (1)	Ergosterol peroxide	Stigmasterol			
	δ ¹H (Integral, mult., J=Hz)	δ ¹³C	δ ¹H (Integral, mult., J=Hz)	δ ¹³C	δ ¹H (Integral, mult., J=Hz)	δ ¹³C
1	1.70, dd, J = 13.8, 3.4	34.7	1.73, dd, J = 13.8; 3.4	34.7	1.08; m; 1.84; m	37.4 (t)
2	30.13	30.1	30.1	31.8 (t)	1.49; m; 1.81; m	30.1
3	3.95, m	66.47	3.98, m	66.5	3.52, m	72.0 (d)
4	36.98	37.0	2.28, dd, J = 2.0; 5.2	42.5 (t)	2.30, dd, J = 2.0; 5.2	37.0
5	82.15	82.2	-	140.9 (s)	-	82.2
6	6.22, d, J=8.5	135.41	6.25, d, J = 8.5	135.4	5.35, d, J = 5.2	121.9 (d)
7	130.75	130.8	1.54, m; 1.96, m	32.1 (t)	6.52, d, J = 8.6	130.8
8	79.42	79.4	1.46, m	32.0 (d)	-	79.4
9	51.13	51.1	0.94, m	50.3 (d)	-	51.1
10	36.95	36.9	-	36.7 (s)	-	36.9
11	20.63	20.6	1.46, m; 1.49, m	21.3 (t)	1.23, m; 1.55, m	20.6
12	39.36	39.4	1.15, m; 1.95, m	39.9 (t)	1.27, m; 1.98, m	39.4
13	44.57	44.6	-	42.5 (s)	-	44.6
14	51.69	51.7	1.03, m	56.9 (d)	1.59, m	51.7
15	23.40	23.4	1.07, m; 1.56, m	24.5 (t)	1.42, m; 1.66, m	23.4
16	28.62	28.7	1.26, m; 1.67, m	28.4 (t)	1.33, m; 1.81, m	28.7
17	56.23	56.2	1.13, m	56.1 (d)	1.25, m	56.2
18	0.81s	0.83, s	0.67, s	12.1 (q)	0.83, s	12.9
19	0.83 s	0.72	1.00, s	19.5 (q)	0.89, s	18.2
20	2.03, m	39.69	2.05, m	39.7	2.02, m	40.7 (d)
21	1.00, d, J = 6.7	20.87	1.00, d, J = 6.7	20.9	0.92, d, J = 6.5	21.2 (q)
22	135.19	135.2	5.16, dd, J = 5.1; 15.3	138.5 (d)	5.16, dd, J = 7.5; 15.3	135.2
23	132.33	132.3	5.00, dd, J = 8.5; 15.0	129.5 (d)	5.14, dd, J = 8.0; 15.3	132.3
24	42.78	42.8	1.53, m	51.4 (d)	1.86, m	42.8
25	33.07	33.1	1.45, m	31.8 (d)	1.6, m	33.1
26	19.63	19.6	0.84, d, J = 6.4	21.3 (q)	0.82, d, J = 6.8	19.6
27	19.93	20.0	0.82, d, J = 6.1	19.1 (q)	0.83, d, J = 6.6	20.0
28	17.55	17.6	1.15, t, J = 3.2	25.6 (d)	0.91, d, J = 6.8	17.6
29	0.91, d, J = 6.8	18.5	0.80, t, J = 6.0	12.2 (q)	0.91, d, J = 6.8	17.6

(CDCl₃, 500 MHz for ¹H and 125 MHz for ¹³C)

© (CDCl₃, 400 MHz for ¹H and 100 MHz for ¹³C)*

Compound 1 was obtained as colorless needles with a melting point between 179–182 °C. The HR-TOF-MS result at m/z 451.3748 ([M + Na⁺]; calc. 428.3704) indicated that it has a molecular formula of C₃₀H₄₄O₃ with seven degrees of unsaturation. The IR spectrum showed the functional group of hydroxyl (3401 cm⁻¹) and ether groups (1052
cm⁻¹). The 13C-NMR spectrum showed 28 carbons signals (Table 1), which could be classified with the help of HSQC data as six Me, seven CH₂, and eleven CH groups (two oxygenated), and four C=O- atoms. The presence of two disubstituted olefins (δ 130.78 (C-7), 132.33 (C-23), 135.41 (C-6), 135.19 (C-22)), indicating that the sterol fragment of compound 1 is an ergosterol derivative. Besides, two oxygenated quaternary carbons of δ 82.15 (C-5) and 79.42 (C-8) suggested the presence of a peroxide structure.

The signals at δ_H 6.22 and 6.51 (d, J = 8 Hz, 2H, H-6, H-7) in the ¹H-NMR spectrum revealed the presence of a disubstituted double bond which were correlated with carbon signals of 135.41 (C-6) and 130.78 (C-7) in the HMBC spectrum. The ¹H-NMR showed also signals for six methyl groups, two singlets at 0.81 and 0.83, and four doublets at 0.84 (J = 6.8 Hz), 0.87 (J = 6.6 Hz), 0.93 (J = 6.8 Hz) and 1.17 (J = 6.7 Hz). Moreover, a multiplet at 3.95, characteristic of a steroid oxymethylene signal located at C-3, was observed. The 2D-NMR experiments confirmed that compound 1 is a steroid, containing a peroxy function at C-5/C-8 and two double bonds in the side chain and at C-6/C-7.

In the HMBC correlations (Figure 2), these three methylene proton signals were correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carbon signal at δ_C 83.10 (C-5) and 135.80 (C-6) in 5α,8α-epidioxy system. The methyl proton signal at δ_H 0.89 (H-19) was long-range-correlated to the methine carb
Ergosterol peroxide and stigmasterol from the stem bark of Aglaia simplicifolia (Meliaceae)

Kurniasih, et. al.

ergosterol peroxide from marine fungus Phoma sp. The bioassay results demonstrated that ergosterol peroxide reduced the viability of various cancer cells. EP induced caspase-dependent apoptosis through mitochondrial damage, induced ROS generation and apoptosis, and reduced the LPS/ATP induced proliferation and migration of A549 cells through attenuated NLRP3 inflammasome activity.

Figure 3. Effects of 24 h treatment various concentrations of compound 1 and 2 to HeLa cervical cancer cell (CPI: cell proliferation inhibition)

4. CONCLUSIONS

Two steroid compounds, ergosterol peroxide (1) and stigmasterol (2) have been isolated from the stem bark of Aglaia simplicifolia and were shown for the first time in this species. The presence of peroxide in steroid structure plays an important role in cytotoxic activity against HeLa cervical cancer cells.

ACKNOWLEDGMENTS

This work was supported by Directorate General of Higher Education, Ministry of Research, Technology and Higher Education, Indonesia (Postgraduate Grant, 2016-2018 by Unang Supratman) and Directorate General of Higher Islamic Education, Ministry of Religion Indonesia (Prosale Program, Mora Scholarship).

REFERENCES

Awang K., Loong XM, Leong KH, Supratman U., Litauon M., Mukhtar MR., Mohamad K. 2012. Triterpenes and steroids from the leaves of Aglaia exima (Meliaceae). Fitoterapia 83:1391-1395.

Cai X., Wang Y., Zhao P., Li Y., Luo X. 2010. Dolabellane diterpenoids from Aglaia odorata. Phytochemistry. 71:1020–1024.

Cayme J., Ragasa C. 2004. Structure elucidation of -stigmasterol and -sitosterol from Sesbania grandiflora (Linn). Pers and -carotene from Heliotropium indicum Linn by NMR spectroscopy. Journal Kimika. 20:5-12.

Farabi K., Harneti D., Nurlelasari, Maharani R., Hidayat AC., Awang K., Supratman U., Shiono Y. 2017. New cytotoxic protolimonoids from the stem bark of Aglaia argentea (Meliaceae). Phytochemistry Letters. 21:211-215.

Harneti D., Supratman U. 2021. Phytochemistry and biological activities of Aglaia species. Phytochemistry 181:112540

Harneti D., Supriadin A., Ulfah M., Safari A., Supratman U., Awang K., Hayashi H. 2014. Cytotoxic constituents from the bark of Aglaia eximia (Meliaceae). Phytochem. Lett. 8:28–31.

Harneti D., Tjokronegoro R., Safari A., Supratman U., Loong XM., Mukhtar MR., Mohamad K., Awang K., Hayashi H. 2012. Cytotoxic triterpenoids from the bark of Aglaia smithii. Phytochemistry Letters. 5:496–499.

Heyne K. 1982. The Useful Indonesian Plants. Jakarta: Ministry of Forestry.

Hidayat AT, Farabi K., Harneti D., Nurlelasari, Maharani R., Mayanti T., Supratman U., Shiono Y. 2017a. A Cytotoxic Rocaglate Compound from The Stembark of Aglaia argentea (Meliaceae). Molekul. 2:146-152.

Hidayat AT, Farabi K., Harneti D., Maharani R., Darwati, Nurlelasari, Mayanti T., Arlette SSAS, Supratman U., Shiono Y. 2017b. Cytotoxicity and Structure Activity Relationship of Dammarane-TypeTriterpenoids from the Bark of Aglaia elliptica against P-388 Murine Leukemia Cells. Natural Product Sciences. 4:291-298.

Joycharat N., Plodpai P., Panthong K., Yingyongnarongkul B., Voravuthikunchai SP. 2010. Terpenoid constituents and antifungal activity of Aglaia forbesii seed against phytopathogens. Canadian Journal of Chemistry. 88:937–944.

Kurniasih N., Milawati H., Fajar M., Hidayat AT, Abdulah R., Harneti D., Supratman U., Azmi
MN. 2018. Sesquiterpenoid Compounds from The Stembark of Aglaia minahassae (Meliaceae). Molekul. 13 (1):56-62.

Kurniasih N, Supriadin A, Fajar M, Abdullah R, Harneti D, Supratman U, Azmi MN. 2019. Cytotoxic sesquiterpenoid compound from the stembark of Aglaia simplicifolia (Meliaceae). J. Phys.: Conf. Ser. 1402:055037

Leong KH, Looi CY, Loong XW, Cheah FK, Supratman U, Litaudon M, Mohd Rais Mustafa MR, Awang K. 2016. Cycloart-24-ene-26-ol-3-one, a New Cycloartane Isolated from Leaves of Aglaia exima Triggers Tumour Necrosis Factor-Receptor 1-Mediated Caspase-Dependent Apoptosis in Colon Cancer Cell Line. PLOS ONE. 4:1-17.

Liu S, Liu SB, Zuo W, Guo Z, Mei W, Dai H. 2014. New sesquiterpenoids from Aglaia odorata var. microphylla and their cytotoxic activity. Fitoterapia. 92:93–99.

Nowak R, Drozd M, Mendyk E, Lemieszek M, Krakowiak O, Kisiel W, Rzeski W, Szewczyk K. 2016. A New Method for the Isolation of Ergosterol and Peroxyergosterol as Active Compounds of Hygrophoropsis aurantiaca and in Vitro Antiproliferative Activity of Isolated Ergosterol Peroxide. Molecules. 21: 946

Nagroho BW, Edrada RA, Wray V, Witte L, Bringmann G, Gehling M, Proksch P. 1999. An insectisidal rocaglamida derivate and related compounds from Aglaia odorata (Meliaceae). Phytochemistry. 51:367-376.

Pan L, Kardonos LBS, Riswan S, Chai H, Carcache de Blanco EJ, Pannell CM, Soejarto DD, McCloud TG, Newman DJ, Kinghorn AD. 2010. Isolation and characterization of minor analogues of silvestrol and other constituents from a large-scale re-collection of Aglaia foveolata. Journal of Natural Products. 4: 1873–1878.

Sianturi J, Harneti D, Darwati, Mayanti T, Supratman U, Awang K. 2016. A New(−)-5′,6-dimethoxyisolariciresinol-(3″,4″-dimethoxy)-3α-O-β-glucopyranoside from the bark of Aglaia exima (Meliaceae). Natural Products Research. 30:2204-2208.

Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, Austin C, Baell J, Bejeck B, Cavaeiro JMM, Chung TDY, Dahlin JL, Devanaryan V, Foley TL, Glicksman M, Hall MD, Haas JV, Inglese J, Iversen PW, Kahl SD, Kales SC, Lal-Nag M, Li Z, McGee J, McManus O, Riss T, Trask Jr O J, Weidner JR, Wildey MJ, Xia M, Xu X. 2018. Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences Bethesda (MD).

Su B, Chai H, Mi Q, Riswan S, Kardono LBS, Afriastini JJ, Santarsiero BD, Mesecar AD, Fransworth NR, Cordell GA, Swanson SM, Kinghorn D. 2006. Activity-guided isolation of cytotoxic constituents from the bark of Aglaia crassinervia collected in Indonesia. Bioorganic and Medicinal Chemistry. 14:960-972.

Wood D L, Silverstain R M & Nakajima M. 1970. Control of Insects Behavior by Natural Product. New York: Academic Press.

Wu HY, Yang FL, Li LH, Rao YK, Ju TC, Wong WT, Hsieh CY, Filhin MV, Hua KH, Wu SH. 2018. Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Scientific Reports 8:17956

Xie BJ, Yang SP, Chen HD, Yue JM. 2007. Triterpenoids from Aglaia daperreana. Journal of Natural Products. 70:1532-1535.

Yodsaoue O, Sonprasit J, Karalai C, Ponglimanont C, Tewtrakul S, Chantaramormma S. 2012. Triterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata. Phytochemistry. 76:83-91.

Zhang F, Wang JS, Gu YC, Kong LY. 2010. Triterpenoids from Aglaia abbreviata and their cytotoxic activities. Journal of Natural Products. 73:2042-2046.

Zhang F, Zhu Y, Li Q, Cen J. 2016. Four New Pregnane Steroids from Aglaia abbreviata and Their Cytotoxic Activities. Helv. Chim. Acta. 99:73-77.