Can a computer be “pushed” to perform faster-than-light?

Volkmar Putz and Karl Svozil

Institute for Theoretical Physics, Vienna University of Technology,
Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
http://tph.tuwien.ac.at/~svozil
putz@hep.itp.tuwien.ac.at, svozil@tuwien.ac.at

Abstract. We propose to “boost” the speed of communication and computation by immersing the computing environment into a medium whose index of refraction is smaller than one, thereby trespassing the speed-of-light barrier.

The Church-Turing and the Cook-Karp theses, as well as other, more general limits on computation, are under permanent “scrutiny” (cf., e.g., Ref. [1, p 11] or Ref. [2, p. 5]) by the physical sciences. Some recent issues which have been raised comprise Zeno-squeezed accelerated time scales [3][5][6][7] enabling the construction of “infinity machines” capable of hypercomputation [8][9][10], counterfactual computation [11][12] and cryptography [13] based on quantum counterfactuals [13][14], counterfactuals of measurement [13][14], as well as the dissipation limits to computation [15][16]. Here we shall consider the possibility to speed up optical [16] computations and communication by transgressing the speed of light barrier in vacuum. Note that, although the speed of light barrier appears to be a fundamental limit for the transfer of “freely willable” information [17][18], several ways for “signals” trespassing the relativistic light cone [18], even to the extent of time travel [19][20][21][22][23], have been proposed. There appears to be a consensus that, just as for quantum correlations featuring (un)controllable non-locality [24] via outcome dependence but parameter independence, “signal” signatures beyond the velocity of light limit [25] could be tolerated at the kinematical level [26] as long as they are “benign” and thus incapable of rendering diagonalization-type [1][27] paradoxes. This means that no paradoxes of self-referentiality, such as the “grandfather paradox” (e.g., by travelling back in time and killing one’s own biological grandfather before the latter has met one’s grandmother), should occur [28].

In what follows we propose to “boost” the speed of communication and computation by “pushing” the computer into a medium whose index of refraction is smaller than one. The speed of communication by light signals varies indirectly proportional to the index of refraction, differing greatly for various forms of media, substrata or “ethers” susceptible of the traversal of light. Quantum field theory allows the index of refraction to become smaller than one, thereby formally indicating a speed of photons exceeding the classical speed of light limit in vacuum.
How can one envisage such a computational substratum? One concrete realization would be the construction of an universal optical computer based on beam splitters \[29\] capable of rendering arbitrary discrete unitary transformations \[30,31,32\] immersed in a transparent medium occupied by charged fermions. Note that, as optical computers are far more than just photons or beams of light, a necessary requirement for any such computer to properly function would be that the optical components of the computer, such as in particular beam splitters and phase shifters, would work as expected in such a medium.

“Diagrammatically speaking” \[33,34,35\], i.e., in terms of perturbative quantum field theory, a photon, i.e., the “unit quantum of light” associated with a particular mode of the electromagnetic field, travels through the vacuum ether medium \[36\] by polarizing it through partly “splitting up” into an electron-positron pair and recombining. In solid state physics, this phenomenon gives rise to lattice excitations called phonons \[37\]. The electrons and positrons are themselves subject to higher order radiative corrections involving photons.

Thus, any change of vacuum polarization, such as finite boundary conditions, or increased or decreased pair production, alters the susceptibility of the vacuum ether medium for carrying electromagnetic waves, and thus results in a change of the velocity of light. Historically, this effect has first been studied for magnetic fields \[38,39,40\] and finite temperatures \[41\]. The first indication of a vacuum polarization-induced index of refraction smaller than one was reported by Scharnhorst \[42,43,44\] and Barton \[45,46\] in an attempt to utilize the reduced vacuum polarization in the “Casimir vacuum” \[47\] between two conducting parallel plates. More recently, trans-vacuum-speed metamaterials \[48,49,50,51,52\] as well as negative refractive indices in gyrotropically magnetoelectric media \[53\] have been suggested. It would be interesting to extend these calculations to the squeezed vacuum state by computing the polarization in such an “exotic” vacuum \[54\].

One of the possibilities which have not been discussed so far is the immersion of the computing environment into a vacuum ether medium “filled” with electrons or positrons. In such an environment, the Pauli exclusion principle would “attenuate” pair creation, thereby reducing the polarization of the medium, resulting in a reduced index of refraction as well as in an increase of the velocity of light.

\[\text{Fig. 1. Lowest order vacuum polarization diagram.}\]
agram is depicted in Fig. 1) can be written as

\[\Delta \Pi_{\mu\nu}(k^2) = -(g_{\mu\nu}k^2 - k_{\mu}k_{\nu}) \frac{2\alpha}{3\pi} \log \frac{\varepsilon_F}{m}, \]

(1)

where \(m \) stands for the electron rest mass and \(\varepsilon_F \) denotes the cutoff associated with the filled electron or positron modes; the calculation assumed \(k^2 < m \). Let \(\epsilon_{\mu} \) stand for the vacuum polarization. Then we can introduce an effective mass term

\[M(k) = \epsilon^\mu \Pi_{\mu\nu}(k) \epsilon^\nu \]

(2)

such that the eigenvalue equation is

\[k^2 + M(k) = (k^0)^2, \]

(3)

where \(k^\mu = (k, k^0 = \omega) \); and

\[|k| \approx \omega - \frac{1}{2\omega}M(k). \]

(4)

Thus the index of refraction can be defined by

\[n(\omega) = \frac{|k|}{\omega} \approx 1 - \frac{1}{2\omega^2}M(k). \]

(5)

Hence the change of the refractive index is given by

\[\Delta n(\omega) \approx -\frac{\alpha}{3\pi \omega^2} (\epsilon^\mu k_{\mu})^2 \log \frac{\varepsilon_F}{m}. \]

(6)

The group velocity is given by [44, Eqn. (2)] \(v_{gr} = c/n_{gr} \) with \(n_{gr}(\omega) = n(\omega) + \omega \left[\partial n(\omega)/\partial \omega \right] \), which, for transversal waves, turns out to be \(n(\omega) \). As a result, the speed of light \(c/(1 - \Delta n) \approx c + \Delta c \) is changed by \(\Delta c = c\Delta n \).

Note that group velocities, like phase velocities and energy velocities, are not in general signal velocities. Thus a group velocity exceeding the vacuum speed of light \(c \) does not contradict relativity [60/61/10].

Nevertheless, as has already pointed out, this effect can be used to “push” the computer into a domain of faster-than-light computation; with the possibility to decrease its time cycles accordingly. One should keep in mind that at present such a possibility merely remains a theoretical speculation; this hypothetical character being shared with some relativistic “realizations” of hypercomputers. Nevertheless it might be interesting to pursue the possibilities related to temporal quantum field theoretical speedup further, for in principle nothing prevents \(\Delta n \) in Eq. (6) or in other “exotic” vacuum states from approaching one, yielding an unbounded cycle speed, associated with expanding memory requirements [62].

In summary we have discussed field theoretic options for the “speedup” of communication and computation. These are based on the alteration of the polarization of “exotic vacua” and the respective changes of the index of refraction. The speed of light is modified in indirect proportion to the refractive index of the medium it is travelling through. Thus for materials with a refractive index...
smaller than unity, light travels faster than it does in “normal” vacuum whose index of refraction is associated with unity. Hence, optical computers operating in such an “exotic” medium, if they existed, could compute faster than computers in “normal” vacuum or ordinary materials which have refractive indices equal to or greater than unity. Feasible realization of universal computers utilizing this effect could employ generalized beam splitters capable of realizing arbitrary discrete unitary operators.

We have discussed a general physical framework for “exotic” vacua with indices of refraction strictly smaller than unity. One such vacuum state is responsible for the hypothetical Scharnhorst effect, for which the polarizability of the vacuum “medium” is effectively reduced by the boundary conditions of the electromagnetic field between two conductors (e.g., parallel plates). Another possibility which is introduced here is the occupancy of charged fermionic, in particular electronic, states, which would partially inhibit the pair production of fermion-antifermion (electron-positron) pairs contributing to the vacuum polarization even in lowest nontrivial order of the perturbation series. It should be emphasized that these findings do not represent the possibility to circumvent relativistic causality, nor are they inconsistent with the present formalism of relativity theory or the theory of quantized fields.

References

1. Davis, M.: Computability and Unsolvability. McGraw-Hill, New York (1958)
2. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990) 400 (1985) 97–117
3. Weyl, H.: Philosophy of Mathematics and Natural Science. Princeton University Press, Princeton (1949)
4. Hogarth, M.L.: Does general relativity allow an observer to view an eternity in a finite time? Foundations of Physics Letters 5 (1992) 173–181
5. Durand-Lose, J.: Abstract geometrical computation for black hole computation. In Margenstern, M., ed.: Machines, Computations, and Universality, 4th International Conference, MCU 2004, Saint Petersburg, Russia, September 21-24, 2004, Revised Selected Papers. Volume 3354 of Lecture Notes in Computer Science., Springer (2005) 176–187
6. Németi, I., Dávid, G.: Relativistic computers and the Turing barrier. Applied Mathematics and Computation 178 (2006) 118–142 Special Issue on Hypercomputation.
7. Svozil, K.: On the brightness of the Thomson lamp: A prolegomenon to quantum recursion theory. In Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G., eds.: UC ’09: Proceedings of the 8th International Conference on Unconventional Computation, Berlin, Heidelberg, Springer Verlag (2009) 236–246
8. Davis, M.: Why there is no such discipline as hypercomputation. Applied Mathematics and Computation 178 (2006) 4–7
9. Doria, F.A., Costa, J.F.: Introduction to the special issue on hypercomputation. Applied Mathematics and Computation 178 (2006) 1–3
10. Ord, T.: The many forms of hypercomputation. Applied Mathematics and Computation 178 (2006) 143–153
11. Mitchison, G., Jozsa, R.: Counterfactual computation. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457 (2001) 1175–1193
12. Noh, T.G.: Counterfactual quantum cryptography. Physical Review Letters 103 (2009) 230501
13. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Foundations of Physics 23 (1993) 987–997
14. Vaidman, L.: Counterfactuals in quantum mechanics. In Greenberger, D., Hentschel, K., Weinert, F., eds.: Compendium of Quantum Physics. Springer, Berlin, Heidelberg (2007) 132–136
15. Leff, H.S., Rex, A.F.: Maxwell’s Demon. Princeton University Press, Princeton (1990)
16. Chiao, R.Y., Milonni, P.W.: Fast light, slow light. Optics & Photonics News 13 (2002) 26–30
17. Recami, E.: Superluminal motions? A bird’s-eye view of the experimental situation. Foundation of Physics 31 (2001) 1119–1135
18. Alcubierre, M.: The warp drive: hyper-fast travel within general relativity. Classical and Quantum Gravity 11 (1994) L73–L77
19. Gödel, K.: A remark about the relationship between relativity theory and idealistic philosophy. In Schilpp, P.A., ed.: Albert Einstein, Philosopher-Scientist. Tudor Publishing Company, New York (1949) 555–561 Reprinted in Ref. [63, pp. 202-207].
20. Nahin, P.J.: Time Travel (Second edition). AIP Press and Springer, New York (1998)
21. W.Hawking, S.: Chronology protection conjecture. Physical Review D 46 (1992) 603–611
22. Deutsch, D.: Quantum mechanics near closed timelike lines. Physical Review D 44 (1991) 3197–3217
23. Greenberger, D.M., Svozil, K.: Quantum theory looks at time travel. In A. Elitzur, S.D., Kolenda, N., eds.: Quo Vadis Quantum Mechanics?, Berlin, Springer Verlag (2005) 63–72
24. Shimony, A.: Controllable and uncontrollable non-locality. In et al., S.K., ed.: Proceedings of the International Symposium on the Foundations of Quantum Mechanics, Tokyo, Physical Society of Japan (1984) 225–230 See also J. Jarrett, Bell’s Theorem, Quantum Mechanics and Local Realism, Ph. D. thesis, Univ. of Chicago, 1983; Nous, 18, 569 (1984).
25. Milonni, P.W.: Controlling the speed of light pulses. Journal of Physics B: Atomic, Molecular and Optical Physics 35 (2002) R31–R56
26. Liberati, S., Sonego, S., Visser, M.: Faster-than-c signals, special relativity, and causality. Annals of Physics 298 (2002) 167–185
27. Smullyan, R.M.: Gödel’s Incompleteness Theorems. Oxford University Press, New York, New York (1992)
28. Bell, J.L.: Time and causation in Gödel’s universe. Transcendent Philosophy 3 (2002) 1
29. Zeilinger, A.: General properties of lossless beam splitters in interferometry. American Journal of Physics 49 (1981) 882–883
30. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Physical Review Letters 73 (1994) 58–61
31. Zukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Physical Review A (Atomic, Molecular, and Optical Physics) 55 (1997) 2564–2579
32. Svozil, K.: Noncontextuality in multipartite entanglement. J. Phys. A: Math. Gen. 38 (2005) 5781–5798
33. Feynman, R.P.: Quantum Electrodynamics. Addison-Wesley, Redwood City, CA (1962)
34. Schweber, S.: Relativistic Quantum Field Theory. Harper and Row, New York (1984)
35. ‘t Hooft, G., Veltman, M.: Diagrammar. CERN preprint 73-9 (1973)
36. Dirac, P.A.M.: Is there an aether? Nature 168 (1951) 906–907
37. Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, Cambridge (2005)
38. Erber, T.: Velocity of light in a magnetic field. Nature 190 (1961) 25–27
39. Erber, T.: High-energy electromagnetic conversion processes in intense magnetic fields. Reviews of Modern Physics 38 (1966) 626–659
40. Adler, S.L.: Photon splitting and photon dispersion in a strong magnetic field. Annals of Physics 67 (1971) 599–647
41. Gies, H., Dittrich, W.: Light propagation in non-trivial QED vacua. Physics Letters B 431 (1998) 420 – 429
42. Scharnhorst, K.: On propagation of light in the vacuum between plates. Physics Letters B 236 (1990) 354–359
43. Milonni, P., Svozil, K.: Impossibility of measuring faster-than-c signaling by the Scharnhorst effect. Physics Letters B 248 (1990) 437–438
44. Scharnhorst, K.: The velocities of light in modified QED vacua. Annalen der Physik 7 (1998) 700–709
45. Barton, G.: Faster-than-c light between parallel mirrors. The Scharnhorst effect rederived. Physics Letters B 237 (1990) 559–562
46. Barton, G., Scharnhorst, K.: QED between parallel mirrors: light signals faster than c, or amplified by the vacuum. Journal of Physics A: Mathematical and General 26 (1993) 2037–2046
47. Milonni, P.W.: The Quantum Vacuum. Academic Press, San Diego (1994)
48. Ziolkowski, R.W.: Superluminal transmission of information through an electromagnetic metamaterial. Physical Review E 63 (2001) 046604
49. Ziolkowski, R.W., Cheng, C.Y.: Existence and design of trans-vacuum-speed metamaterials. Physical Review E 68 (2003) 026612
50. Tretyakov, S.A.: Comment on “existence and design of trans-vacuum-speed metamaterials”. Physical Review E 70 (2004) 068601
51. Ziolkowski, R.W.: Reply to “comment on ‘existence and design of trans-vacuum-speed metamaterials’”. Physical Review E 70 (2004) 068602
52. Shvartsburg, A.B., Marklund, M., Brodin, G., Stenflo, L.: Superluminal tunneling of microwaves in smoothly varying transmission lines. Physical Review E 78 (2008) 016601
53. Qiu, C.W., Zouhdi, S.: Comment on “negative refractive index in gyrotropically magnetoelectric media”. Phys. Rev. B 75 (2007) 196101
54. Putz, V., Svozil, K.: Quantum electrodynamics in the squeezed vacuum state: electron mass shift. Il Nuovo Cimento B 119 (2004) 175–179
55. Pauli, W., Villars, F.: On the invariant regularization in relativistic quantum theory. Reviews of Modern Physics 21 (1949) 434–444
56. Feynman, R.P.: Space-time approach to quantum electrodynamics. Physical Review 76 (1949) 769–789
57. Schwinger, J.: On gauge invariance and vacuum polarization. Physical Review 82 (1951) 664–679
58. Tsai, W., Erber, T.: Photon pair creation in intense magnetic fields. Physical Review D \textbf{10} (1974) 492–499
59. Tsai, W., Erber, T.: Propagation of photons in homogeneous magnetic fields: Index of refraction. Physical Review D \textbf{12} (1975) 1132–1137
60. Chiao, R.Y.: Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations. Phys. Rev. A \textbf{48} (1993) R34–R37
61. Diener, G.: Superluminal group velocities and information transfer. Physics Letters A \textbf{223} (1996) 327 – 331
62. Calude, C.S., Staiger, L.: A note on accelerated Turing machines. CDMTCS preprint nr. 350, 7 p. (2009)
63. Gödel, K. In Feferman, S., Dawson, Jr., J.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J., eds.: Collected Works. Publications 1938-1974. Volume II. Oxford University Press, Oxford (1990)