A JOINT MODEL OF X-RAY AND INFRARED BACKGROUNDS. II. COMPTON-THICK ACTIVE GALACTIC NUCLEUS ABUNDANCE*

YONG SHI1,2,3, GEORGE HELOU1, and LEE ARMUŚ1

1 Infrared Processing and Analysis Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
2 School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
3 Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, China

Received 2013 January 23; accepted 2013 July 20; published 2013 October 8

ABSTRACT

We estimate the abundance of Compton-thick (CT) active galactic nuclei (AGNs) based on our joint model of X-ray and infrared backgrounds. At $L_{\text{rest2–10keV}} > 10^{42}$ erg s$^{-1}$, the CT AGN density predicted by our model is a few $\times 10^{-4}$ Mpc$^{-3}$ from $z = 0$ up to $z = 3$. CT AGNs with higher luminosity cuts ($> 10^{43}$, 10^{44}, and 10^{45} erg s$^{-1}$) peak at higher redshift and show a rapid increase in number density from $z = 0$ to $z \sim 2–3$. The CT AGN to all AGN ratio appears to be low (2%–5%) at $f_{\text{2–10keV}} > 10^{-15}$ erg s$^{-1}$ cm$^{-2}$ but rises rapidly toward fainter flux levels. The CT AGNs account for $\sim 38\%$ of the total accreted supermassive black hole mass and contribute $\sim 25\%$ of the cosmic X-ray background spectrum at 20 keV. Our model predicts that the majority (90%) of luminous and bright CT AGNs ($L_{\text{rest2–10keV}} > 10^{44}$ erg s$^{-1}$ or $f_{\text{2–10keV}} > 10^{-15}$ erg s$^{-1}$ cm$^{-2}$) have detectable hot dust 5–10 μm emission, which we associate with a dusty torus. The fraction drops for fainter objects, to around 30% at $L_{\text{rest2–10keV}} > 10^{42}$ erg s$^{-1}$ or $f_{\text{2–10keV}} > 10^{-17}$ erg s$^{-1}$ cm$^{-2}$. Our model confirms that heavily obscured AGNs ($N_{\text{H}} > 10^{23}$ cm$^{-2}$) can be separated from unobscured and mildly obscured ones ($N_{\text{H}} < 10^{23}$ cm$^{-2}$) in the plane of observed frame X-ray hardness versus mid-IR/X-ray ratio.

Key words: galaxies: active – galaxies: nuclei

Online-only material: color figures

1. INTRODUCTION

Active galactic nuclei (AGNs) with Compton-thick (CT) nuclear obscuration ($N_{\text{H}} > 1.5 \times 10^{24}$ cm$^{-2}$) are crucial in the quest for a complete census of the AGN population. While Chandra and XMM-Newton have revealed a large population of AGNs, up to $z \sim 5$, and demonstrated unambiguously the dominance of supermassive black hole (SMBH) accretion in the obscured phase (Mainieri et al. 2002; Perola et al. 2004; Hasinger et al. 2005; Barger et al. 2005), the necessity of having a high signal-to-noise X-ray spectrum, including detection above and below rest-frame energies of 10 keV, largely limits the ability to detect the presence of CT AGNs in deep surveys (Tozzi et al. 2006; Georgantopoulos et al. 2009). However, there are several compelling reasons to suspect an abundant distant CT AGN population: (1) In the local universe the CT AGNs comprise roughly 50% of the optically selected AGN sample (Risaliti et al. 1999; Guainazzi et al. 2005); given the dusty high-z universe, the distant CT AGNs may be more abundant. (2) Cosmic X-ray background (CXB) population models invoke luminosity functions (LFs) of AGNs with different H_I columns to fit the X-ray survey data (Comastri et al. 1995; Gilli et al. 2007; Treister et al. 2009b), which requires a large number of CT AGNs to reproduce the CXB spectrum at its peak (20–30 keV); this general conclusion is largely independent of detailed assumptions in the model. (3) The multi-wavelength techniques that combine the X-ray data with optical/IR photometry offer powerful ways to identify CT candidates, and indicate an increasing spatial density of CT AGNs with redshift (Alexander et al. 2008; Daddi et al. 2007; Fiore et al. 2009; Luo et al. 2011; Treister et al. 2009a).

In Shi et al. (2013, hereafter Paper I), we presented a joint population model of X-ray and IR backgrounds that fits the survey data in the 0.5–60 keV and 24–1200 μm bands, with the goal of studying the cosmic evolution of AGNs and dusty starbursts. We discuss here the CT AGN abundance derived from this model. In contrast to CXB models, which only fit X-ray data primarily at energies below 10 keV, our approach is fundamentally different. CXB models usually use 0.1–10 keV data to fit the Compton-thin AGN counts, extrapolate the result to 20–30 keV, and then subtract this from the CXB spectrum to derive the abundance of CT AGNs. Our model constrains the Compton-thin AGNs from 0.5–10 keV data and starburst galaxies from far-IR data, and compares the 24 μm from these populations to the IR background and known distributions of 24 μm-detected sources. The residual of the 24 μm emission, after subtracting the contributions from Compton-thin and starburst galaxies, is assumed to be from CT AGNs. As a result, our model uses more observational information to constrain the CT AGN fractions as a function of luminosity and redshift, including both number counts and redshift distributions at 24 μm. In our model, we allow the redshift evolution of the CT AGN to be a free parameter, while the CXB models typically assume no evolution, fixed evolution, or an evolution that is the same as the Compton-thin AGN.

The spectral energy distribution (SED) of individual sources is crucial to any population model, but our joint model and the CXB models depend on different parts of the SED. The CXB model is sensitive to the X-ray SED above 10 keV (e.g., Gilli et al. 2007; Treister et al. 2009b), while ours relies on the 24 μm/2–10 keV ratio of the SMBH SED but also the star-forming IR SED. As a result, we ran four variants of the model to incorporate the SED uncertainties, including the reference one, the one with X-ray to IR ratio of the SMBH SED S_{SED} (0.2 dex) above the average ratio, the one with X-ray to IR ratio...
of the SMBH SED 3σ (0.2 dex) below the average ratio, and the one assuming strong redshift evolution in the star-forming SED (for details, see Paper I). Overall, our model provides a new way to constrain the CT AGN abundance using substantially more information from more diverse deep survey data. Paper I presented the detailed model construction and three basic outputs including the total IR LF, the SMBH energy density. For all filled areas, lines, and symbol cores, all symbols represent the observations. A symbol is plotted with a filled core plus a black envelope. For all filled areas, lines, and symbol cores, purple: $L_{2–10\,\text{keV}} > 10^{42}$ erg s$^{-1}$, cyan: $L_{2–10\,\text{keV}} > 10^{43}$ erg s$^{-1}$, orange: $L_{2–10\,\text{keV}} > 10^{44}$ erg s$^{-1}$, and red: $L_{2–10\,\text{keV}} > 10^{45}$ erg s$^{-1}$.

Figure 1. Comoving number density of CT AGNs above different intrinsic 2–10 keV luminosities as a function of redshift. The filled areas represent the predictions of our model in each of the four luminosity bins. The width of the curves reflects the uncertainties of the predictions. The solid, dotted, and dot–dashed lines are the predictions by the CXB models of Treister et al. (2009b), Gilli et al. (2007), and Draper & Ballantyne (2010), respectively. All symbols represent the observations. A symbol is plotted with a filled core plus a black envelope. For all filled areas, lines, and symbol cores, purple: $L_{2–10\,\text{keV}} > 10^{42}$ erg s$^{-1}$, cyan: $L_{2–10\,\text{keV}} > 10^{43}$ erg s$^{-1}$, orange: $L_{2–10\,\text{keV}} > 10^{44}$ erg s$^{-1}$, and red: $L_{2–10\,\text{keV}} > 10^{45}$ erg s$^{-1}$.

(A color version of this figure is available in the online journal.)

2. THE COMOVING NUMBER DENSITY OF CT AGNs

Figure 1 shows the predicted comoving number density of CT AGNs above different intrinsic rest-frame 2–10 keV luminosity limits as a function of redshift (filled areas with different colors). Symbols with the same color are the empirical estimates from the literature above the same limits. Among the different variants of our model, as reflected by the vertical width of the filled area in the figure, the predicted number density varies from a factor of two for low luminosity objects ($> 10^{41}$ erg s$^{-1}$) up to a factor of five for luminous ones ($> 10^{43}$ erg s$^{-1}$). For CT AGNs with intrinsic $L_{\text{rest,2–10\,keV}} > 10^{42}$ erg s$^{-1}$, our model predicts the density will peak at a few 10^{-4} Mpc$^{-3}$ around $z \sim 1–1.5$, declining slowly toward both higher and lower redshifts. The local densities, as measured by Treister et al. (2009b) and Ajello et al. (2012), are consistent with our predictions. The estimate at $z \sim 0.7$ by Luo et al. (2011) is only a factor of two lower than our prediction. They performed a Monte Carlo simulation to estimate the CT AGN fraction in a sample of IR-excess sources defined as having excess IR emission relative to the UV-based star-forming formation (log(SFRIR+UV/SFRUV,corr) > 0.5); e.g., Daddi et al. (2007). The stacked X-ray spectrum of these sources shows evidence of heavy extinction. However, due to the lack of CT signatures in individual galaxies, this statistical approach still shows large uncertainties.

The more luminous CT AGNs at $L_{2–10\,\text{keV}} > 10^{43}$ erg s$^{-1}$ show a different trend, with a faster evolution starting at $z = 0$ and a higher peak redshift. The predicted local density is consistent with the empirical estimate by Treister et al. (2009b) and Severgnini et al. (2012) but three times lower than that by Ajello et al. (2012), yet still within the uncertainty. The work by Treister et al. (2009b) only includes the transmission AGNs, thus underestimating the total population if reflection-dominated CT AGNs are abundant. Beyond the local universe, the density around $z = 0.7$ by Treister et al. (2009a) is three times lower than the prediction of our model, while other high-z studies by Fiore et al. (2009), Daddi et al. (2007), and Alexander et al. (2011) give results consistent with the model. Among them, Daddi et al. (2007) give a solid upper limit, as they assume a CT nature for all of their IR-excess objects (log(SFRIR+UV/SFRUV,corr) > 0.5), while Alexander et al. (2011) derived a solid lower limit by only counting sources that satisfy the B-select specification detected in the X-ray.

At $L_{2–10\,\text{keV}} > 10^{44}$ erg s$^{-1}$, the comoving density of the CT AGN shows a rapid rise until $z \sim 2$ and almost a flat trend up to $z = 3$. The model’s prediction is more or less consistent with previous observations (Alexander et al. 2008; Fiore et al. 2009; Treister et al. 2009a), except for one data point around $z \approx 0.9$, but within the uncertainty (Tozzi et al. 2006). Tozzi et al. (2006) analyzed the X-ray spectra of sources in the 1Ms CDF-S and identified 14 CT AGNs, possibly missing the X-ray-undetected CT AGNs. At $L_{2–10\,\text{keV}} > 10^{45}$ erg s$^{-1}$, the model shows a rapid evolution in the model, with two orders of magnitude increase in density from $z = 0$ up to $z = 3$. The model prediction around $z \sim 2$ is lower than the estimate by Polletta et al. (2006). Although only X-ray-detected sources are accounted for in this measurement (Treister et al. 2009b), the low number of objects potentially indicates a large uncertainty associated with the measurement.

The predicted CT AGN number density of our model is generally similar to predictions by the CXB model of Gilli et al. (2007; dotted lines in Figure 1), but ours peaks at higher redshift. The model of Gilli et al. (2007) assumed all X-ray sources detected at 0.5–2 and 2–10 keV to be Compton-thin and derived their distributions as a function of redshift, luminosity, and Hα columns. After subtracting the contribution of these Compton-thin sources from the CXB spectrum, the residual is not zero, thus implying the existence of CT AGNs. By assuming the same redshift evolution for CT AGNs as for obscured Compton-thin AGNs, the number of CT AGNs is derived by matching to the CXB spectrum. At a given redshift and limiting X-ray luminosity, their results do not significantly deviate from ours. However, a significant difference between the two models is that they predict a lower redshift for the peak of the CT AGN number density. For $L_{2–10\,\text{keV}} > 10^{42}$ erg s$^{-1}$, our peak redshift is $z \sim 1–1.5$ compared to theirs, which is around $z \sim 0.7$. A difference
of $\Delta z = 0.5–1$ in the peak redshift is also found for the number density of CT AGNs at $L_{2–10}$ keV $> 10^{43.44 \pm 0.02}$ erg s$^{-1}$.

The CXB model of Treister et al. (2009b; solid lines in Figure 1) predicts lower CT AGN number densities than ours. At $L_{2–10}$ keV $> 10^{42}$ erg s$^{-1}$, our predicted CT density is $5–10$ times higher than theirs across the whole redshift range. At higher luminosities ($> 10^{43.45 \pm 0.02}$ erg s$^{-1}$), their predictions are similar to ours up to their turn-over redshift, but lower by $5–10$ at higher redshifts as our predicted density rises faster. This is not surprising, since Treister et al. hold the CT fraction in obscured AGNs constant at the local value, seen in the INTEGRAL and Swift data, allowing for no redshift evolution. In contrast, our model requires more CT AGNs at high redshifts to satisfy the various sets of observations (see Paper I). As shown in the next section, our model has no problem in reproducing the CT AGN fraction as observed by INTEGRAL and Swift.

In the CXB model of Draper & Ballantyne (2010; dot–dashed lines in Figure 1), low-luminosity CT AGNs ($> 10^{42}$ erg s$^{-1}$ and $> 10^{44}$) have comparable number densities to those predicted from our models at low redshift, but are noticeably lower than ours at high redshift. The opposite seems to be the case for high-luminosity CT AGNs, where the two models make similar predictions at high redshift, but differ at low redshift where the Draper & Ballantyne (2010) models predict more CT AGNs than our models. These differences reflect the weaker dependence of their models on luminosity and redshift (Draper & Ballantyne 2009, 2010).

3. THE TYPE-2 AND CT AGN FRACTION

Figure 2 plots the fractions of AGN that are type-2 ($N_{\text{H}_1} > 10^{22}$ cm$^{-2}$) and CT at different $2–10$ keV and $20–40$ keV fluxes. The two fractions show similar behaviors, i.e., a flat trend at bright fluxes along with a rapid rise toward fainter ends. Constant type-2 fractions of $30\% \pm 10\%$ and $35\% \pm 10\%$ are found at $2–10$ keV and $20–40$ keV above fluxes of 10^{13} erg s$^{-1}$ cm$^{-2}$, respectively, while the CT AGN fractions remain around $3\% \pm 3\%$ and $4\% \pm 3\%$ at $2–10$ keV and $20–40$ keV above fluxes of 10^{15} erg s$^{-1}$ cm$^{-2}$, respectively. In Paper I, our model predicts a rapid redshift evolution of the type-2 and CT AGN fractions at given intrinsic X-ray luminosities, causing the two fractions to increase with decreasing flux which, combined with further obscuration to CT/type-2 objects, results in a flat trend at bright fluxes but a rapid rise toward lower fluxes.

As shown in the figure, the predicted type-2 AGN fractions are consistent with empirical constraints as compiled in the work of Gilli et al. (2007) as well as Barger et al. (2005, Mainieri et al. 2002, Perola et al. 2004, Piccinotti et al. 1982), Piconcelli et al. (2003), and Tozzi et al. (2006). All of these studies identified the type-2 in X-ray flux-limited samples through X-ray spectral analysis. For the CT AGN fraction as a function of the $2–10$ keV flux, we compared our predictions to empirical estimates based on studies of three X-ray flux-limited samples (Tozzi et al. 2006; Georganopoulos et al. 2009; Brightman & Ueda 2012) that are constructed from Chandra 1 Ms, 2 Ms, and 4 Ms survey data, respectively. The first two identified CT AGNs through X-ray spectral analysis and derived CT fractions of 5% down to $f_{2–10}$ keV $= 10^{15}$ erg s$^{-1}$ cm$^{-2}$, consistent with the predictions of our model. The majority of these objects are CT AGNs whose transmitted light dominates over the reflected radiation in X-ray. Brightman & Ueda (2012) carried out X-ray spectral analysis of 449 X-ray sources down to a flux 10 times lower ($f_{2–10}$ keV $= 10^{16}$ erg s$^{-1}$ cm$^{-2}$), with average photon counts $3–5$ times smaller than the other two studies. After corrections for these two effects, they argued for $20\% \pm 2\%$ CT AGN fraction, lower than our model’s prediction but within the uncertainty. At $20–40$ keV, our result is consistent with the CT fraction as identified in Swift/INTEGRAL data (Treister et al. 2009b), in which all CT AGNs are identified as transmission sources. The recently launched NuSTAR mission should offer strong constraints on the CT AGN fraction down to 10^{14} erg s$^{-1}$ cm$^{-2}$.

As already discussed in the previous section, our model predicts roughly the same CT AGN abundance as that of Gilli et al. (2007) but our predicted CT AGN number density peaks at higher redshift. This is also reflected in Figure 2.

Figure 2. Fraction of type-2 (upper band) and CT AGNs (lower band) in all AGNs as a function of $2–10$ keV (left panel) and $20–40$ keV (right panel) fluxes. The filled areas are our model’s predictions with the vertical width reflecting the uncertainty. The empirical estimates from the literature are indicated by symbols that are plotted with filled cores, plus green outlines. For all symbol cores and filled areas, blue stands for type-2 AGN fraction (upper band) while red is for the CT AGN fraction (lower band). In the right panel, the two solid lines are the CT AGN fractions predicted by models of Gilli et al. (2007) and Treister et al. (2009b). The dashed lines give the typical survey limits of NuSTAR, Swift, and INTEGRAL. (A color version of this figure is available in the online journal.)
(right panel) where our CT fraction is lower than theirs above 10^{-15} erg s$^{-1}$ cm$^{-2}$ but exceeds theirs at fainter flux levels. Compared to the model of Treister et al. (2009b), our model predicts more abundant CT AGNs at high redshift, resulting in a similar CT fraction above 10^{-15} erg s$^{-1}$ cm$^{-2}$ but a significantly higher fraction at fainter fluxes.

4. THE CONTRIBUTION OF CT AGNs TO SMBH GROWTH AND CXB

An SMBH grows through accretion, and the accretion disk is responsible for the optical through X-ray emission. By introducing the radiative efficiency ϵ_r, the observed SMBH luminosity and accretion rate are related by:

$$L_\text{ox} = \epsilon_r M_{\text{BH}} \dot{m} c^2,$$

where L_ox is the luminosity integrated from the optical to the X-ray (1 μm to 200 keV), ϵ_r is the mass to energy conversion rate, M_{BH} is the SMBH mass accretion rate, and c is the speed of light. As constructed in Paper I, our quasar SED invokes the luminosity-dependent optical to X-ray ratio, and thus the correction from 2 to 10 keV to the luminosity from 1 μm to 200 keV is luminosity dependent with an average value around a factor of 30. Figure 3 shows the comoving SMBH accretion rate (upper panel) and total accreted SMBH mass across the redshift is caused by that above while the discrepancy in the cumulative accreted SMBH mass across the redshift is related to the large uncertainties in deriving the observed AGN LFs at these redshifts. The derived local SMBH mass density is $(5.8 \pm 1.0) \times 10^5 M_\odot$ Mpc$^{-3}$ given $\epsilon_r = 0.1$. This number is consistent with those derived from local bulge mass functions through the bulge/BH-mass relationship, $(2.9 \pm 0.5) \times 10^5 M_\odot$ Mpc$^{-3}$ (Yu & Tremaine 2002), $(4.2 \pm 1.1) \times 10^5 M_\odot$ Mpc$^{-3}$ (Shankar et al. 2004), and $4.6^{+1.9}_{-1.4} \times 10^5 M_\odot$ Mpc$^{-3}$ (Marconi et al. 2004). Our model further predicts that only 33% of local SMBH mass is accreted in the type-1 phase while the CT accretion contributes as much as 38% to the local SMBH mass density.

Figure 4 shows our prediction for the CXB spectrum at 1–200 keV as compared with observations. Our model predicts a peak at around 20 keV. Below 20 keV, our model prediction matches the results of RXTE/PCA (Revnivtsev et al. 2003) and ASCA/SIS (Gendreau et al. 1995), but is about 20% lower than those of Swift/XRT (Moretti et al. 2009) and INTEGRAL/JEM-X (Churazov et al. 2007). At 20–100 keV, the model is systematically lower by 20%–30% than the observations (Gruber et al. 1999; Ajello et al. 2008; Türi et al. 2010). We do not know exactly what causes the discrepancy but we have noticed that the model cannot reproduce the local 15–55 keV counts of Ajello et al. (2012) and the CXB spectrum above 20 keV at the same time. If the model fits the Ajello et al. (2012) counts, it underproduces the CXB spectrum above 20 keV. However, if the model is forced to fit the CXB spectrum, it would overpredict the counts of Ajello et al. (2012). As noted in Ajello et al. (2012), previous CXB models have a similar problem,
including those of Gilli et al. (2007), Treister et al. (2009b), and Draper & Ballantyne (2010), where they fit the CXB spectrum well but overpredict the local 15–55 keV counts. A key observational input for the CXB models to fit both the Ajello et al. (2008) counts and the CXB spectrum above 20 keV is the rest-frame SED at energies above 20 keV, which is still not well constrained given limited observations. But we cannot exclude the possibility that our model has limitations in reproducing the CXB spectrum above 20 keV, as it fits so many data points over a very large frequency range (X-ray and IR/submm) to minimize χ^2.

As shown in Figure 4, type-1 AGNs dominate the CXB below 5 keV, above which type-2s are responsible for the majority of CXB emissions. The CT AGN contribution rises quickly from low energy and peaks around ~25% at 20 keV.

5. DISCUSSION

Our model predicts an abundant CT AGN population, especially at high-z. By comparing Figure 1 to the type-1 unobscured AGN number density as measured by Hasinger et al. (2005), our predicted CT AGN density is 3–5 times higher at $L_{2-10\text{keV}} > 10^{42}$ erg s$^{-1}$. At $L_{2-10\text{keV}} > 10^{44}$ erg s$^{-1}$, the predicted CT AGN density is still comparable to their type-1 AGN, around $z \sim 2$. As shown in Paper I, our model predicts an increasing CT AGN fraction with redshift, resulting in a larger CT AGN population at high redshift as compared to the predictions of Gilli et al. (2007) and Treister et al. (2009b). The large CT AGN fraction around $z \sim 2$ may be consistent with observational evidence for high gas fractions and associated high star formation rates (SFRs) of $z \sim 2$ galaxies (Tacconi et al. 2010). The high velocity dispersion of $z \sim 2$ gas disks implies a large vertical height (Forster Schreiber et al. 2006; Law et al. 2007; Genzel et al. 2008), as might result from continuous stirring by ongoing star formation (Elmegreen & Burkert 2010). If such behavior persists as gas is transported down to the central 1–10 pc scale around the nuclear BH (Wada & Norman 2002; Hopkins et al. 2012), the dusty torus of high redshift AGNs might have a larger vertical extent and subsequently cover a larger solid angle, resulting in a larger CT AGN fraction at high redshift (Fabian 1999). Despite their abundance in our model, as shown in Figure 2, CT AGNs only dominate at $f_{2-10\text{keV}} < 10^{-15}$ erg s$^{-1}$ cm$^{-2}$, where few data are available from current X-ray missions to reliably identify these objects. Another possibility to explain the increasing obscured fraction is related to redshift evolution of major mergers, as shown by Treister et al. (2010), in which abundant dust and gas brought in by mergers obscure the nucleus before they are disrupted by radiation pressure to reveal a type-1, unobscured quasar phase.

The featureless mid-IR emission from the dusty torus of AGNs has been a powerful method to infer the intrinsic accretion luminosity. In particular, when appearing along with weak or no X-ray emission, this continuum offers a strong indicator of CT Hα columns (Lacy et al. 2004; Stern et al. 2005; Alonso-Herrero et al. 2006; Treister et al. 2009a; Alexander et al. 2008). Figure 5 gives the predicted median and 20%–80% probability range of 6.2μm aromatic feature EW of CT AGNs in three intrinsic X-ray luminosity ranges, 10^{42}–10^{43} erg s$^{-1}$, 10^{43}–10^{44} erg s$^{-1}$, and $>10^{44}$ erg s$^{-1}$. Note that the EW of star-forming templates in our model has a value of 0.6 μm, so smaller values indicate the presence of the contribution from the dusty torus. In Paper I, we compared our model’s predictions on the EW distributions to observations for two Spitzer legacy programs (GOALS and 5MUSES) and found a general consistency. Figure 5 also gives the observed EW of individual CT AGNs drawn from the literature, where the local sample is from Risaliti et al. (1999) and high-z (Alexander et al. 2008) CT AGNs. For all shaded areas and symbols, black: $L_{2-10\text{keV}} = 10^{42}$–$10^{43}$ erg s$^{-1}$, blue: $L_{2-10\text{keV}} = 10^{43}$–$10^{44}$ erg s$^{-1}$, and red: $L_{2-10\text{keV}} > 10^{44}$ erg s$^{-1}$. Note that in our model, pure star formation has an EW of 0.6 μm; any value below that is due to contributions from AGN emission.

(A color version of this figure is available in the online journal.)

Figure 5. Predicted median EW$_{6.2\mu m,\text{PAH}}$ and 20%–80% probability range of CT AGNs in three intrinsic X-ray luminosity ranges. Symbols are observations of low-z (Risaliti et al. 1999) and high-z (Alexander et al. 2008) CT AGNs. For all shaded areas and symbols, black: $L_{2-10\text{keV}} = 10^{42}$–$10^{43}$ erg s$^{-1}$, blue: $L_{2-10\text{keV}} = 10^{43}$–$10^{44}$ erg s$^{-1}$, and red: $L_{2-10\text{keV}} > 10^{44}$ erg s$^{-1}$. Note that in our model, pure star formation has an EW of 0.6 μm; any value below that is due to contributions from AGN emission.
Figure 6. Predicted distribution of 6.2 μm aromatic feature EW for CT AGNs above different intrinsic rest-frame 2–10 keV luminosities. In our model, pure star formation has an EW of 0.6 μm; any value below that is due to contributions from AGN emission.

Figure 7. Cumulative surface density of CT AGNs (intrinsic rest-frame 2–10 keV luminosity above 10^{42} erg s$^{-1}$ and N_{H_1} column density above 10^{24} cm$^{-2}$) and CT AGNs with 6.2 μm aromatic feature EW lower than 0.4 (from which the AGN mid-IR featureless emission can be detected). (A color version of this figure is available in the online journal.)

Figure 8. Distribution of AGNs with different N_{H_1} columns in the X-ray hardness vs. IR/X-ray ratio plane: log($f_{2–10\text{keV}}/f_{0.5–2\text{keV}}$) vs. log($f_{\text{IRAC-8}\mu\text{m}}/f_{0.5–2\text{keV}}$) for the upper panel and log($f_{20–40\text{keV}}/f_{0.5–2\text{keV}}$) vs. log($f_{\text{IRAC-8}\mu\text{m}}/f_{0.5–2\text{keV}}$) for the lower panel. Orange and green contours are for unobscured and mildly obscured AGNs ($N_{\text{H}_1} < 23$) and heavily obscured AGNs ($N_{\text{H}_1} > 23$), respectively. For each contour, two levels enclose 60% and 90% of objects, respectively. The diamond symbols give distributions of all CDF-S sources (Xue et al. 2011) while filled circles are CT AGN candidates from Alexander et al. (2008, 2011). (A color version of this figure is available in the online journal.)

Launched in 2012 June, NuSTAR (Harrison et al. 2013) should quickly help to constrain the distribution of CT AGNs. Figure 9 shows the predicted redshift distribution of all AGNs and CT AGNs above three flux limits targeted in NuSTAR surveys, namely $f_{10–30\text{keV}} > 2 \times 10^{-14}, 4 \times 10^{-14}$, and 1.5×10^{-13} erg s$^{-1}$ cm$^{-2}$. Given 0.3, 1–2, and 3 deg2 for those three flux limits, respectively, our model predicts ~ 100 AGNs in total but only a few CT AGNs that will be detected by NuSTAR at 10–30 keV. Our predicted total number of AGNs is similar to recent predictions by Ballantyne et al. (2011), but our predicted number of CT AGNs is lower than theirs with the differences (a factor of 2–5) depending on the X-ray LFs they have adopted.
Figure 9. Predicted redshift distribution of NuSTAR AGNs (upper panel) and NuSTAR CT AGNs (lower panel) for three survey depths, as listed in Harrison et al. (2013).

(A color version of this figure is available in the online journal.)

6. CONCLUSIONS

We use our joint population model of X-ray and IR backgrounds to predict the CT AGN abundance and compare it to a diverse set of empirical determinations. The main conclusions are as follows.

1. At intrinsic \(L_{\text{rest, 2-10 keV}} > 10^{42} \) erg s\(^{-1}\), the CT AGN density is predicted to be around a few \(\times 10^{-4} \) Mpc\(^{-3}\). The density of higher luminosity CT AGNs increases rapidly from \(z = 0 \) to \(z \sim 2 \)–3 and peaks at higher \(z \).

2. The CT AGN fraction appears to be low (2%–5%) at \(f_{\text{2-10 keV}} > 10^{-15} \) erg s\(^{-1}\) cm\(^{-2}\) but increases rapidly at fainter flux levels.

3. The SMBH accretion in CT AGNs accounts for 38% of the total accreted SMBH mass and contributes to 25% of the CXB spectrum at its peak.

4. We also investigate the mid-IR spectra of CT AGNs based on techniques that have been developed to identify CT objects. The model predicts that the majority (90%) of bright CT AGNs (\(L_{\text{rest, 2-10 keV}} > 10^{42} \) erg s\(^{-1}\) or \(f_{\text{2-10 keV}} > 10^{-15} \) erg s\(^{-1}\) cm\(^{-2}\)) have detectable hot dust emission from dusty tori; the fraction drops for faint objects, reaching 30% at \(L_{\text{rest, 2-10 keV}} > 10^{42} \) erg s\(^{-1}\) or \(f_{\text{2-10 keV}} > 10^{-17} \) erg s\(^{-1}\) cm\(^{-2}\). Based on this, we conclude that heavily obscured AGNs (\(N_{\text{H1}} > 10^{23} \) cm\(^{-2}\)) can be separated from lower H i column AGNs through the plane of the observed-frame X-ray hardness versus mid-IR/X-ray ratio.

We thank the anonymous referee for helpful comments that have improved the paper significantly. The work is supported through the Spitzer 5MUSES Legacy Program 40539. The authors acknowledge support by NASA through awards issued by JPL/Caltech.

REFERENCES

Ajello, M., Alexander, D. M., Greiner, J., et al. 2012, ApJ, 749, 21
Ajello, M., Greiner, J., Sato, G., et al. 2008, ApJ, 689, 666
Alexander, D. M., Bauer, F. E., Brandt, W. N., et al. 2011, ApJ, 738, 44
Alexander, D. M., Chary, R.-R., Pope, A., et al. 2008, ApJ, 687, 835
Alonso-Herrero, A., Pérez-González, P. G., Alexander, D. M., et al. 2006, ApJ, 640, 167
Ballantyne, D. R., Draper, A. R., Madsen, K. K., Rigby, J. R., & Treister, E. 2011, ApJ, 736, 56
Barger, A. J., Cowie, L. L., Mushotzky, R. F., et al. 2005, AJ, 129, 578
Brightman, M., & Ueda, Y. 2012, MNRAS, 423, 702
Churazov, E., Sunyaev, R., Revnivtsev, M., et al. 2007, A&A, 467, 529
Comastri, A., Setti, G., Zamorani, G., & Hasinger, G. 1995, A&A, 296, 1
Daddi, E., Alexander, D. M., Dickinson, M., et al. 2007, ApJ, 670, 173
Draper, A. R., & Ballantyne, D. R. 2009, ApJ, 707, 778
Draper, A. R., & Ballantyne, D. R. 2010, ApJL, 715, L99
Elmegreen, B. G., & Burkert, A. 2010, ApJ, 712, 294
Fabian, A. C. 1999, MNRAS, 308, L39
Fiore, F., Puccetti, S., Brusa, M., et al. 2009, ApJ, 693, 47
Förster Schreiber, N. M., Genzel, R., Lehnert, M. D., et al. 2006, ApJ, 645, 1062
Gendreau, K. C., Mushotzky, R., Fabian, A. C., et al. 1995, PASJ, 47, L5
Genzel, R., Burkert, A., Bouché, N., et al. 2008, ApJ, 687, 59
Georgantopoulos, I., Akylas, A., Georgakakis, A., & Rowan-Robinson, M. 2009, A&A, 507, 747
Gilli, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79
Gruber, D. E., Matteson, J. L., Peterson, L. E., & Jung, G. V. 1999, ApJ, 520, 124
Guanazzi, M., Matt, G., & Perola, G. C. 2005, A&A, 444, 119
Harrison, F. A., Craig, W. W., Christensen, F. E., et al. 2013, ApJ, 770, 103
Hasinger, G., Miyagi, T., & Schmidt, M. 2005, A&A, 441, 417
Hopkins, P. F., Hayward, C. C., Narayanan, D., & Hernquist, L. 2012, MNRAS, 420, 320
Hopkins, P. F., Richards, G. T., & Hernquist, L. 2007, ApJ, 654, 731
Lacy, M., Storrie-Lombardi, L. J., Sajina, A., et al. 2004, ApJS, 154, 166
Law, D. R., Steidel, C. C., Erb, D. K., et al. 2007, ApJ, 669, 929
Luo, B., Brandt, W. N., Xue, Y. Q., et al. 2011, ApJ, 740, 37
Mainieri, V., Bergeron, J., Hasinger, G., et al. 2002, A&A, 393, 425
Marconi, A., Risaliti, G., Gilli, R., et al. 2004, MNRAS, 351, 169
Mateos, S., Alonso-Herrero, A., Carrera, F. J., et al. 2013, arXiv: 1305.7237
Moretti, A., Pozzetti, L., Cava, A., et al. 2009, ApJ, 702, 156
Perola, G. C., Puccetti, S., Fiore, F., et al. 2004, A&A, 421, 491
Piccioni, G., Mushotzky, R. F., Boldt, E. A., et al. 1982, ApJ, 253, 485
Piconcelli, E., Cappi, M., Bassani, L., Di Cocco, G., & Dadina, M. 2003, A&A, 412, 689
Polletta, M. d. C., Wilkes, B. J., Siana, B., et al. 2006, ApJ, 642, 673
Revnivtsev, M., Gilfanov, M., Sunyaev, R., Jahoda, K., & Markwardt, C. 2003, A&A, 411, 329
Risaliti, G., Maiolino, R., & Salotti, M. 1999, ApJ, 522, 157
Savaglio, P., Ciacconi, A., & Della Ceca, R. 2012, A&A, 542, 446
Shankar, F., Salucci, P., Granato, G. L., De Zotti, G., & Danese, L. 2004, MNRAS, 354, 1020
Shi, Y., Helou, G., Armus, L., Stierwalt, S., & Dale, D. 2013, ApJ, 764, 28
Stern, D., Eisenhardt, P., Gorjian, V., et al. 2005, ApJ, 631, 163
Stern, W., Brandt, W. N., Surace, J. A., et al. 2013, ApJ, 706, 201
Tacconi, L. J., Genzel, R., Neri, R., et al. 2010, Natur, 463, 781
Tozzi, P., Gilli, R., Mainieri, V., et al. 2006, A&A, 451, 457
Treister, E., Cardamone, C. N., Schawinski, K., et al. 2009a, ApJ, 706, 535
Treister, E., Natarajan, P., Sanders, D. B., et al. 2010, Sci, 328, 600
Treister, E., Urry, C. M., & Virani, S. 2009b, ApJ, 696, 110
Türling, M., Chernyakova, M., Courvoisier, T. J.-L., et al. 2010, A&A, 512, A49
Wada, K., & Norman, C. A. 2002, ApJL, 566, L21
Wuyts, S., Helou, G., Armus, L., et al. 2010, ApJ, 723, 895
Xue, Y. Q., Luo, B., Brandt, W. N., et al. 2011, ApJS, 195, 10
Yu, Q., & Tremaine, S. 2002, MNRAS, 335, 965