WordNet::Similarity - Measuring the Relatedness of Concepts

Ted Pedersen
Department of Computer Science
University of Minnesota
Duluth, MN 55812
tpdersen@d.umn.edu

Siddharth Patwardhan
School of Computing
University of Utah
Salt Lake City, UT 84102
sidd@cs.utah.edu

Jason Michelizzi
Department of Computer Science
University of Minnesota
Duluth, MN 55812
mich0212@d.umn.edu

http://search.cpan.org/dist/WordNet-Similarity
http://wn-similarity.sourceforge.net

Abstract

WordNet::Similarity is a freely available software package that makes it possible to measure the semantic similarity or relatedness between a pair of concepts (or word senses). It provides six measures of similarity, and three measures of relatedness, all of which are based on the lexical database WordNet. These measures are implemented as Perl modules which take as input two concepts, and return a numeric value that represents the degree to which they are similar or related.

Introduction

Measures of similarity quantify how much two concepts are alike, based on information contained in an is–a hierarchy. For example, an automobile might be considered more like a boat than a tree, if automobile and boat share vehicle as a common ancestor in an is–a hierarchy.

The lexical database WordNet is particularly well suited for similarity measures, since it organizes nouns and verbs into hierarchies of is–a relations. In version 2.0, there are nine noun hierarchies that include 80,000 concepts, and 554 verb hierarchies that are made up of 13,500 concepts.

Is–a relations in WordNet do not cross part of speech boundaries, so WordNet–based similarity measures are limited to making judgments between noun pairs (e.g., cat and dog) and verb pairs (e.g., run and walk). While WordNet includes adjectives and adverbs, these are not organized into is–a hierarchies so similarity measures cannot be applied.

However, concepts can be related in many ways beyond being similar to each other. For example, a wheel is a part of a car, night is the opposite of day, snow is made up of water, a knife is used to cut bread, and so forth. As such WordNet provides additional (non–hierarchical) relations such as has–part, is–made–of, is–an–attribute–of, etc. In addition, each concept (or word sense) is described by a short written definition or gloss.

Measures of relatedness are based on these additional source of information, and as such can be applied to a wider range of concept pairs. For example, they can cross part of speech boundaries and assess the degree to which the verb murder and the noun gun are related. They can even measure the relatedness of concepts that do not reside in any is–a hierarchy, such as the adjectives violent and harmful.

Copyright © 2004, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.

Similarity Measures

Three similarity measures are based on path lengths between concepts: lch (Leacock & Chodorow 1998), wup (Wu & Palmer 1994), and path. The lch measure finds the shortest path between two concepts, and scales that value by the maximum path length in the is–a hierarchy in which they occur. wup finds the path length to the root node from the least common subsumer (LCS) of the two concepts, which is the most specific concept they share as an ancestor. This value is scaled by the sum of the path lengths from the individual concepts to the root. The measure path is equal to the inverse of the shortest path length between two concepts.

The three remaining similarity measures are based on information content, which is a corpus–based measure of the specificity a concept. These measures include res (Resnik 1995), lin (Lin 1998), and jcn (Jiang & Conrath 1997). The lin and jcn measures augment the information content of the LCS of two concepts with the sum of the information content of the individual concepts. The lin measure scales the information content of the LCS by this sum, while jcn subtracts the information content of the LCS from this sum (and then takes the inverse to convert it from a distance to a similarity measure).

By default, the information content of concepts is derived from the sense–tagged corpus SemCor. However, there are utility programs available in WordNet::Similarity that compute information content from untagged corpora such as the Brown Corpus, the Penn Treebank, the British National Corpus, or any given corpus of plain text.

WordNet::Similarity supports two hypothetical root nodes that can be turned on and off. When on, one root node subsumes all of the noun concepts, and another subsumes all of the verb concepts. This allows for similarity measures to be applied to any pair of nouns or verbs. If the hypothetical root nodes are off, then concepts must be in the same is–a hierarchy for a similarity measurement to be taken.

Measures of Relatedness

There are three relatedness measures supported in WordNet::Similarity: hso (Hirst & St-Onge 1998), lesk (Banerjee & Pedersen 2003), and vector (Patwardhan 2003). The hso measure is path based, and classifies relations in WordNet as having direction. For example, is–a relations are upwards,
while has–part relations are horizontal. It establishes the
relatedness between two concepts by trying to find a path
between them that is neither too long nor that changes direc-
tion too often.

Each concept (or word sense) in WordNet is defined by
a short gloss. The lesk and vector measures use the text of
that gloss as a unique representation for the underlying con-
cept. The lesk measure assigns relatedness by finding and
scoring overlaps between the glosses of the two concepts, as
well as concepts that are directly linked to them according
to WordNet.

The vector measure creates a co–occurrence matrix from
a corpus made up of the WordNet glosses. Each content
word used in a WordNet gloss has an associated context vec-
tor. Each gloss is represented by a gloss vector that is the
average of all the context vectors of the words found in the
gloss. Relatedness between concepts is measured by finding
the cosine between a pair of gloss vectors.

Using WordNet::Similarity

WordNet::Similarity is implemented with Perl’s object ori-
ented features. It uses the WordNet::QueryData package
(Rennie 2000) to create an object representing WordNet.
There are a number of methods available that allow for the
inclusion of existing measures in Perl source code, and also
for the development of new measures.

When an existing measure is to be incorporated into a Perl
program, an object of that measure must be created via the
new() method. Then the getRelatedness() method can be
called for a pair of word senses that appear in WordNet, and
their similarity or relatedness value will be returned.

WordNet::Similarity can also be utilized via a command
line interface provided by the utility program similarity.pl.
This allows a user to run the measures interactively for spe-
cific pairs of concepts when given in word#pos#sense form.
For example, car#n#3 refers to the third WordNet noun
sense of car. It also allows for the specification of all the
possible senses associated with a word or word#pos combi-
nation. In addition, there is a web interface that is based on
this utility.

Regardless of how it is run, WordNet::Similarity supports
detailed tracing that shows a variety of diagnostic informa-
tion specific to each of the different kinds of measures. For
example, for the measures that rely on path lengths (lch, wip, path) the tracing shows all the paths found between the
concepts. Tracing for the information content measures (res,
lin, jcn) includes both the paths between concepts as well as
the least common subsumer. Tracing for the hso measure
shows the actual paths found through WordNet, while the
tracing for lesk shows the gloss overlaps in WordNet found
for the two concepts and their nearby relatives. The vector
tracing shows the word vectors that are used to create the
gloss vector of a concept.

We have incorporated WordNet::Similarity into a gener-
alized approach to word sense disambiguation that is based
on semantic relatedness (Patwardhan, Banerjee, & Pedersen
2003). This is implemented in the SenseRelate package
(http://senserelate.sourceforge.net). The premise of this al-
gorithm is that the sense of a word can be determined by
finding which of its senses is most related to the possible
senses of its neighbors. We are now exploring the use of
similarity and relatedness measures in evaluating the lexical
choice component of a text generation system.

Acknowledgments

This work has been partially supported by a National
Science Foundation Faculty Early CAREER Development
award (#0092784), and by a Grant-in-Aid of Research,
Artistry and Scholarship from the Office of the Vice Pres-
ident for Research and the Dean of the Graduate School of
the University of Minnesota.

WordNet::Similarity is distributed under the Gnu Public
License (GPL). It is freely available from the Comprehen-
sive Perl Archive Network and SourceForge.

References

Banerjee, S., and Pedersen, T. 2003. Extended gloss over-
laps as a measure of semantic relatedness. In Proceedings
of the Eighteenth International Joint Conference on Artifi-
cial Intelligence, 805–810.

Hirst, G., and St-Onge, D. 1998. Lexical chains as rep-
resentations of context for the detection and correction of
malapropisms. In Fellbaum, C., ed., WordNet: An elec-
tronic lexical database. MIT Press. 305–332.

Jiang, J., and Conrath, D. 1997. Semantic similarity based
on corpus statistics and lexical taxonomy. In Proceedings
on International Conference on Research in Computational
Linguistics, 19–33.

Leacock, C., and Chodorow, M. 1998. Combining local
context and WordNet similarity for word sense identifica-
tion. In Fellbaum, C., ed., WordNet: An electronic lexical
database. MIT Press. 265–283.

Lin, D. 1998. An information-theoretic definition of sim-
ilarity. In Proceedings of the International Conference on
Machine Learning.

Patwardhan, S.; Banerjee, S.; and Pedersen, T. 2003. Us-
ing measures of semantic relatedness for word sense dis-
ambiguation. In Proceedings of the Fourth International
Conference on Intelligent Text Processing and Computa-
tional Linguistics, 241–257.

Patwardhan, S. 2003. Incorporating dictionary and cor-
pus information into a context vector measure of semantic
relatedness. Master’s thesis, Univ. of Minnesota, Duluth.

Rennie, J. 2000. WordNet::QueryData: a Perl
module for accessing the WordNet database.
http://search.cpan.org/dist/WordNet-QueryData.

Resnik, P. 1995. Using information content to evaluate
semantic similarity in a taxonomy. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence,
448–453.

Wu, Z., and Palmer, M. 1994. Verb semantics and lexical
selection. In 32nd Annual Meeting of the Association for
Computational Linguistics, 133–138.