Algebras generated by reciprocals of linear forms

HIROAKI TERAO *
Tokyo Metropolitan University, Mathematics Department
Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

Abstract
Let Δ be a finite set of nonzero linear forms in several variables with coefficients in a field K of characteristic zero. Consider the K-algebra $C(\Delta)$ of rational functions generated by $\{1/\alpha \mid \alpha \in \Delta\}$. Then the ring $\partial(V)$ of differential operators with constant coefficients naturally acts on $C(\Delta)$. We study the graded $\partial(V)$-module structure of $C(\Delta)$. We especially find standard systems of minimal generators and a combinatorial formula for the Poincaré series of $C(\Delta)$. Our proofs are based on a theorem by Brion-Vergne [BrV] and results by Orlik-Terao [OrT2].

Mathematics Subject Classification (2000): 32S22, 13D40, 13N10, 52C35

1 Introduction and main results

Let V be a vector space of dimension ℓ over a field K of characteristic zero. Let Δ be a finite subset of the dual space V^* of V. We assume that Δ does not contain the zero vector and that no two vectors are proportional throughout this paper. Let $S = S(V^*)$ be the symmetric algebra of V^*. It is regarded as the algebra of polynomial functions on V. Let $S(0)$ be the field of quotients of S, which is the field of rational functions on V.

Definition 1.1. Let $C(\Delta)$ be the K-subalgebra of $S(0)$ generated by the set

$$\left\{ \frac{1}{\alpha} \mid \alpha \in \Delta \right\}.$$

Regard $C(\Delta)$ as a graded K-algebra with $\deg(1/\alpha) = 1$ for $\alpha \in \Delta$.

Definition 1.2. Let $\partial(V)$ be the K-algebra of differential operators with constant coefficients. Agree that the constant multiplications are in $\partial(V)$: $K \subset \partial(V)$.

partially supported by the Grant-in-aid for scientific research (No.1144002), the Ministry of Education, Sports, Science and Technology, Japan
If \(x_1, \ldots, x_\ell \) are a basis for \(V^* \), then \(\partial(V) \) is isomorphic to the polynomial algebra \(K[\partial/\partial x_1, \ldots, \partial/\partial x_\ell] \). Regard \(\partial(V) \) as a graded \(K \)-algebra with \(\deg(\partial/\partial x_i) = 1 \) (\(1 \leq i \leq \ell \)). It naturally acts on \(S_{[0]} \). We regard \(C(\Delta) \) as a graded \(\partial(V) \)-module. In this paper we study the \(\partial(V) \)-module structure of \(C(\Delta) \) (Theorem 1.3). In order to present our results we need several definitions. Let \(E_p(\Delta) \) be the set of all \(p \)-tuples composed of elements of \(\Delta \). Let \(E(\Delta) := \bigcup_{p \geq 0} E_p(\Delta) \). The union is disjoint. Write \(\prod \mathcal{E} := \alpha_1 \ldots \alpha_p \in S \) when \(\mathcal{E} = (\alpha_1, \ldots, \alpha_p) \in E_p(\Delta) \). Then one can write

\[
C(\Delta) = \sum_{\mathcal{E} \in E(\Delta)} K \left(\prod \mathcal{E} \right)^{-1}.
\]

Let

\[
E^i(\Delta) = \{ \mathcal{E} \in E(\Delta) \mid \mathcal{E} \text{ is linearly independent} \},
\]

\[
E^d(\Delta) = \{ \mathcal{E} \in E(\Delta) \mid \mathcal{E} \text{ is linearly dependent} \}.
\]

Note that \(\mathcal{E} \in E^d(\Delta) \) if \(\mathcal{E} \) contains a repetition. In a special lecture at the Japan Mathematical Society in 1992, K. Aomoto suggested the study of the finite-dimensional graded \(K \)-vector space

\[
AO(\Delta) := \sum_{\mathcal{E} \in E^i(\Delta)} K \left(\prod \mathcal{E} \right)^{-1}.
\]

Let

\[
\mathcal{A}(\Delta) = \{ \ker(\alpha) \mid \alpha \in \Delta \}.
\]

Then \(\mathcal{A}(\Delta) \) is a (central) arrangement of hyperplanes in \(V \). K. Aomoto conjectured, when \(K = \mathbb{R} \), that the dimension of \(AO(\Delta) \) is equal to the number of connected components of

\[
M(\mathcal{A}(\Delta)) := V \setminus \bigcup_{H \in \mathcal{A}(\Delta)} H.
\]

This conjecture was verified in [OrT2], where explicit \(K \)-bases for \(AO(\Delta) \) were constructed. This paper can be considered as a sequel to [OrT2]. (It should be remarked that constructions in [OrT2] were generalized for oriented matroids by R. Cordovil [Co].) We will prove the following

Theorem 1.3. Let \(\mathcal{B} \) be a \(K \)-basis for \(AO(\Delta) \). Let \(\partial(V)_+ \) denote the maximal ideal of \(\partial(V) \) generated by the homogeneous elements of degree one. Then

1. the set \(\mathcal{B} \) is a system of minimal generators for the \(\partial(V) \)-module \(C(\Delta) \),
2. \(C(\Delta) = \partial(V)_+ C(\Delta) \oplus AO(\Delta) \), and
3. \(\partial(V)_+ C(\Delta) = \sum_{\mathcal{E} \in E^i(\Delta)} K \left(\prod \mathcal{E} \right)^{-1} \). In particular, \(\partial(V)_+ C(\Delta) \) is an ideal of \(C(\Delta) \).
Let \(\text{Poin}(A(\Delta), t) \) be the Poincaré polynomial \([\text{OrT}1, \text{Definition 2.48}]\) of \(A(\Delta) \). (It is defined combinatorially and is known to be equal to the the Poincaré polynomial of \(M(A(\Delta)) \) when \(K = \mathbb{C} \) \([\text{OrS}, \text{OrT}1, \text{Theorem 5.93}]\).) Then we have

Theorem 1.4. The Poincaré series \(\text{Poin}(C(\Delta), t) \) of the graded module \(C(\Delta) \) is equal to \(\text{Poin}(A(\Delta), (1 - t)^{-1}) \).

In order to prove these theorems we essentially use a theorem by M. Brion and M. Vergne \([\text{BrV}, \text{Theorem 1}]\) and results from \([\text{OrT}2]\). By Theorem 1.4 and the factorization theorem (Theorem 2.4) in \([\text{Ter}1]\), we may easily show the following two corollaries:

Corollary 1.5. If \(A(\Delta) \) is a free arrangement with exponents \((d_1, \ldots, d_\ell)\) \([\text{Ter}1, \text{Definitions 4.15, 4.25}]\), then

\[
\text{Poin}(C(\Delta), t) = (1 - t)^{-(\ell + 1)} \prod_{i=1}^\ell (1 + (d_i - 1)t).
\]

Example 1.6. Let \(x_1, \ldots, x_\ell \) be a basis for \(V^* \). Let \(\Delta = \{x_i - x_j \mid 1 \leq i < j \leq \ell\} \). Then \(A(\Delta) \) is known to be a free arrangement with exponents \((0, 1, \ldots, \ell - 1)\) \([\text{OrT}1, \text{Example 4.32}]\). So, by Corollary 1.5, we have

\[
\text{Poin}(C(\Delta), t) = (1 - t)^{-(\ell + 1)} (1 + t)(1 + 2t)\ldots(1 + (\ell - 2)t).
\]

For example, when \(\ell = 3 \), we have

\[
\text{Poin}\left(K \left[\frac{1}{x_1 - x_2}, \frac{1}{x_2 - x_3}, \frac{1}{x_1 - x_3} \right], t \right) = (1 + t)/(1 - t)^2 = 1 + 3t + 5t^2 + 7t^3 + 9t^4 + \ldots,
\]

which can be easily checked by direct computation.

When \(A(\Delta) \) is the set of reflecting hyperplanes of any (real or complex) reflection group, Corollary 1.5 can be applied because \(A(\Delta) \) is known to be a free arrangement \([\text{Sai1}, \text{Ter}2]\).

Corollary 1.7. If \(A(\Delta) \) is generic (i.e., \(|\Delta| \geq \ell \) and any \(\ell \) vectors in \(\Delta \) are linearly independent), then

\[
\text{Poin}(C(\Delta), t) = (1 - t)^{-(\ell + 1)} \sum_{i=0}^{\ell-1} \binom{|\Delta| - \ell + i - 1}{i} t^i.
\]

2 Proofs

In this section we prove Theorems 1.3 and 1.4. For \(\varepsilon \in E(\Delta) \), let \(V(\varepsilon) \) denote the set of common zeros of \(\varepsilon : \ V(\varepsilon) = \bigcap_{i=1}^p \ker(\alpha_i) \) when \(\varepsilon = (\alpha_1, \ldots, \alpha_p) \). Define

\[
L = L(\Delta) = \{ V(\varepsilon) \mid \varepsilon \in E(\Delta) \}.
\]
Agree that $V(\varepsilon) = V$ if ε is the empty tuple. Introduce a partial order \leq into L by reverse inclusion: $X \leq Y \iff X \supseteq Y$. Then L is equal to the intersection lattice of the arrangement $A(\Delta)$ [OrT1, Definition 2.1]. For $X \in L$, define

$$E_X(\Delta) := \{ \varepsilon \in E(\Delta) \mid V(\varepsilon) = X \}.$$

Then

$$E(\Delta) = \bigcup_{X \in L} E_X(\Delta) \quad \text{(disjoint)}.$$

Define

$$C_X(\Delta) := \sum_{\varepsilon \in E_X(\Delta)} K(\prod \varepsilon)^{-1}.$$

Then $C_X(\Delta)$ is a $\partial(V)$-submodule of $C(\Delta)$. The following theorem is equivalent to Lemma 3.2 in [OrT2]. Our proof is a rephrasing of the proof there.

Proposition 2.1.

$$C(\Delta) = \bigoplus_{X \in L} C_X(\Delta).$$

Proof. It is obvious that $C(\Delta) = \sum_{X \in L} C_X(\Delta)$. Suppose that $\sum_{X \in L} \phi_X = 0$ with $\phi_X \in C_X(\Delta)$. We will show that $\phi_X = 0$ for all $X \in L$. By taking out the degree p part, we may assume that $\deg \phi_X = p$ for all $X \in L$. Let $S = \{X \in L \mid \phi_X \neq 0\}$. Suppose S is not empty. Then there exists a minimal element X_0 in S (with respect to the partial order by reverse inclusion). Let $X \in S \setminus \{X_0\}$ and write

$$\phi_X = \sum_{\varepsilon \in E_X(\Delta)} c_\varepsilon (\prod \varepsilon)^{-1}$$

with $c_\varepsilon \in K$. Let $\varepsilon \in E_X(\Delta)$. Because of the minimality of X_0, one has $X_0 \not\subseteq X$. Thus there exists $\alpha_0 \in \varepsilon$ such that $X_0 \not\subseteq \ker(\alpha_0)$. Let $I(X_0)$ be the prime ideal of S generated by the polynomial functions vanishing on X_0. Then $\alpha_0 \notin I(X_0)$. Thus

$$(\prod \Delta)^p (\prod \varepsilon)^{-1} \in I(X_0)^p |\Delta_{X_0}| - p + 1,$$

where $\prod \Delta := \prod_{\alpha \in \Delta} \alpha$ and $\Delta_{X_0} = \Delta \cap I(X_0)$. Multiply $(\prod \Delta)^p$ to the both sides of

$$\phi_{X_0} = - \sum_{X \in S} \phi_X$$

to get

$$(\prod \Delta)^p \phi_{X_0} = - \sum_{\varepsilon \in E_X(\Delta) \setminus X_0} (\prod \Delta)^p \phi_X$$

$$= - \sum_{X \in S} \sum_{\varepsilon \in E_X(\Delta) \setminus X_0} c_\varepsilon (\prod \Delta)^p (\prod \varepsilon)^{-1} \in I(X_0)^p |\Delta_{X_0}| - p + 1.$$
Since $\prod \Delta / (\prod \Delta X_0) \in S \setminus I(X_0)$ and $I(X_0)^{|\Delta X_0| - p + 1}$ is a primary ideal, one has

$$(\prod \Delta X_0)^p \phi X_0 \in I(X_0)^{|\Delta X_0| - p + 1}.$$

This is a contradiction because

$$\deg(\prod \Delta X_0)^p \phi X_0 = p|\Delta X_0| - p.$$

Therefore $S = \phi$. Q.E.D.

Next we will study the structure of $C_X(\Delta)$ for each $X \in L$. Let $A_O X(\Delta)$ be the K-subspace of $A_O(\Delta)$ generated over K by

$$\{(\prod \varepsilon)^{-1} \mid \varepsilon \in E(\Delta) \cap E_X(\Delta)\}.$$

Then

$$A_O(\Delta) = \bigoplus_{X \in L} A_O X(\Delta)$$

by Proposition 2.1. Let B_X be a K-basis for $A_O X(\Delta)$. Then we have

Proposition 2.2. The $\partial(V)$-module $C_X(\Delta)$ can also be regarded as a free $\partial(V/X)$-module with a basis B_X. In other words, there exists a natural graded isomorphism

$$\partial(V/X) \otimes_K A_O X(\Delta) \simeq C_X(\Delta).$$

Proof. First assume that Δ spans V^* and $X = \{0\}$. Then $E(\Delta)^i \cap E_X(\Delta)$ is equal to the set of K-bases for V^* which are contained in Δ. Thus $A_O X(\Delta)$ is generated over K by

$$\{(\prod \varepsilon)^{-1} \mid \varepsilon \in E(\Delta) \text{ is a basis for } V\}.$$

Similarly C_X is spanned over K by

$$\{(\prod \varepsilon)^{-1} \mid \varepsilon \in E(\Delta) \text{ spans } V\}.$$

Then Theorem 1 of [BrV] is exactly the desired result. Next let $X \in L$ and $\overline{V} = V/X$. Regard the dual vector space \overline{V} as a subspace of V^* and the symmetric algebra $S := S(\overline{V})$ of \overline{V} as a subring of S. Then $\Delta_X := I(X) \cap \Delta$ is a subset of \overline{V} and Δ_X spans \overline{V}. Consider $A_O(\Delta_X)$ and $C(\Delta_X)$ which are both contained in $S(0)$. Note that $C_X(\Delta_X)$ can be regarded as a $\partial(V/X)$-module because $\partial(X)$ annihilates $C_X(\Delta)$. Denote the zero vector of \overline{V} by \overline{X}. Then it is not difficult to see that

$$C_X(\Delta_X) \simeq C_X(\Delta) \quad \text{(as } \partial(\overline{V})\text{-modules),}$$

$$A_O X(\Delta_X) \simeq A_O X(\Delta) \quad \text{(as } K\text{-vector spaces).}$$

Since there exists a natural graded isomorphism

$$C_X(\Delta_X) \simeq \partial(\overline{V}) \otimes_K A_O X(\Delta_X),$$

\text{(5)}
Proof of Theorem 1.3. By Proposition 2.2, $C_X(\Delta)$ is generated over $\partial(V)$ by $AO_X(\Delta)$. Since

$$C(\Delta) = \bigoplus_{X \in L} C_X(\Delta) \quad \text{(Proposition 2.1)},$$

and

$$AO(\Delta) = \bigoplus_{X \in L} AO_X(\Delta),$$

the $\partial(V)$-module $C(\Delta)$ is generated by $AO(\Delta)$. So B generates $C(\Delta)$ over $\partial(V)$. Define

$$J(\Delta) := \sum_{\varepsilon \in E(\Delta)} K(\prod \varepsilon)^{-1},$$

which is an ideal of $C(\Delta)$. Then it is known by [OrT2, Theorem 4.2] that

$$C(\Delta) = J(\Delta) \oplus AO(\Delta) \quad \text{(as K-vector spaces)}.$$

It is obvious to see that

$$\partial(V)C(\Delta) \subseteq J(\Delta).$$

On the other hand, we have

$$C(\Delta) = \partial(V)AO(\Delta) = \partial(V)AO(\Delta) + AO(\Delta) = \partial(V)C(\Delta) + AO(\Delta).$$

Combining these, we have (2) and (3) at the same time. By (2), we know that B minimally generates $C(\Delta)$ over $\partial(V)$, which is (1).

If $M = \bigoplus_{p \geq 0} M_p$ is a graded vector space with $\dim M_p < +\infty \quad (p \geq 0)$, we let

$$\text{Poin}(M, t) = \sum_{p=0}^{\infty} (\dim M_p) t^p$$

be its Poincaré (or Hilbert) series. Recall [OrT1, 2.42] the (one variable) Möbius function $\mu : L(\Delta) \to \mathbb{Z}$ defined by $\mu(V) = 1$ and for $X > V$ by $\sum_{Y \subseteq X} \mu(Y) = 0$. Then the Poincaré polynomial $\text{Poin}(A(\Delta), t)$ of the arrangement $A(\Delta)$ is defined by

$$\text{Poin}(A(\Delta), t) = \sum_{X \in L} \mu(X)(-t)^{\text{codim } X}.$$
Recall $C(\Delta)$ is a graded $\partial(V)$-module. Since $C(\Delta)$ is infinite dimensional, $\text{Poin}(C(\Delta), t)$ is a formal power series. We now prove Theorem 1.4 which gives a combinatorial formula for $\text{Poin}(C(\Delta), t)$.

Proof of Theorem 1.4. We have

$$\text{Poin}(C(\Delta), t) = \sum_{X \in L} \text{Poin}(C_X(\Delta), t) = \sum_{X \in L} \text{Poin}(\partial(V/X), t)\text{Poin}(AO_X(\Delta), t)$$

by Propositions 2.1 and 2.2. Since the K-algebra $\partial(V/X)$ is isomorphic to the polynomial algebra with $\text{codim} X$ variables, we have

$$\text{Poin}(C(\Delta), t) = \sum_{X \in L} (1 - t)^{-\text{codim} X} \text{Poin}(AO_X(\Delta), t).$$

By Proposition 2.3, we have

$$\text{Poin}(AO_X(\Delta), t) = (-1)^{\text{codim} X} \mu(X)t^{\text{codim} X}.$$

Thus

$$\text{Poin}(C(\Delta), t) = \sum_{X \in L} (-1)^{\text{codim} X} \mu(X) \left(\frac{t}{1 - t} \right)^{\text{codim} X} = \text{Poin}(A(\Delta), (1 - t)^{-1}t). \qed$$

Let Der be the S-module of derivations:

$$\text{Der} = \{ \theta : \theta : S \to S \text{ is a } K\text{-linear derivations} \}. $$

Then Der is naturally isomorphic to $S \otimes_K V$. Define

$$D(\Delta) = \{ \theta \in \text{Der} | \theta(\alpha) \in \alpha S \text{ for any } \alpha \in \Delta \},$$

which is naturally an S-submodule of Der. We say that the arrangement $A(\Delta)$ is **free** if $D(\Delta)$ is a free S-module [OrT1, Definition 4.15]. An element $\theta \in D(\Delta)$ is said to be **homogeneous of degree** p if

$$\theta(x) \in S_p \text{ for all } x \in V^*.$$

When $A(\Delta)$ is a free arrangement, let $\theta_1, \cdots, \theta_\ell$ be a homogeneous basis for $D(\Delta)$. The ℓ nonnegative integers $\text{deg} \theta_1, \cdots, \text{deg} \theta_\ell$ are called the **exponents** of $A(\Delta)$. Then one has

Proposition 2.4. (Factorization Theorem [Ter1], [OrT1, Theorem 4.137])

If $A(\Delta)$ is a free arrangement with exponents d_1, \cdots, d_ℓ, then

$$\text{Poin}(A(\Delta), t) = \prod_{i=1}^\ell (1 + d_i t).$$
By Theorem 1.4 and Proposition 2.4, we immediately have Corollary 1.5.

The arrangement $A(\Delta)$ is generic if $|\Delta| \geq \ell$ and any ℓ vectors in Δ are linearly independent. In this case, it is easy to see that [OrT1, Lemma 5.122]

$$\text{Poin}(A(\Delta), t) = (1 + t)^{\ell - 1} \sum_{i=0}^{\ell - 1} \binom{|\Delta| - 1}{i} t^i.$$

Proof of Corollary 1.7. By Theorem 1.4, one has

$$\text{Poin}(C(\Delta), t) = \frac{1}{1-t} \sum_{i=0}^{\ell - 1} \binom{|\Delta| - 1}{i} \left(\frac{t}{1-t} \right)^i.$$

On the other hand, we have

$$\sum_{j=0}^{k} (-1)^j \binom{|\Delta| - 1}{k-j} \binom{\ell-k+j-1}{j} = \binom{|\Delta| - \ell + k - 1}{k}$$

by equating the coefficients of x^k in $(1+x)^{|\Delta| - \ell + k - 1}$ and $(1+x)^{|\Delta| - 1}(1+x)^{-(\ell-k)}$. This proves the assertion.

We now consider the nbc (=no broken circuit) bases [Bjo1] [Bjo2] [BjZ] [InT] [OrT2] p.72. Suppose that Δ is linearly ordered: $\Delta = \{\alpha_1, \cdots, \alpha_n\}$. Let $X \in L$ with codim $X = p$. Define

$$\text{nbc}_X(\Delta) := \{\varepsilon \in E_X(\Delta) \mid \varepsilon = (\alpha_{i_1}, \cdots, \alpha_{i_p}), i_1 < \cdots < i_p, \text{ contains no broken circuits}\}.$$

Let $B_X = \{(\prod \varepsilon)^{-1} \mid \varepsilon \in \text{nbc}_X(\Delta)\}$ for $X \in L$. Then we have

Proposition 2.5. (OrT2, Theorem 5.2) Let $X \in L$. The set B_X is a K-basis for $AO_X(\Delta)$.

Thanks to Propositions 2.1, 2.2 and 2.3, we easily have

Proposition 2.6. Let $B = \bigcup_{X \in L} B_X = \{\phi_1, \cdots, \phi_m\}$. Write $\text{supp}(\phi_i) = X$ if $\phi_i \in B_X$. Then, for any $\phi \in C(\Delta)$ and $j \in \{1, \cdots, m\}$, there uniquely exists $\theta_j \in \partial(V/\text{supp}(\phi_j))$ such that

$$\phi = \sum_{j=1}^{m} \theta_j(\phi_j).$$

8
Remark 2.7. Suppose that Δ spans V^* and that $AO_{\{0\}}(\Delta) = \sum_{j=1}^{q} K \phi_j$, where $q = |\mu(\{0\})|$. Then the mapping

$$
\phi \mapsto \sum_{j=1}^{q} \theta_j^{(0)}(\phi_j) \in AO_{\{0\}}(\Delta)
$$

is the restriction to $C(\Delta)$ of the Jeffrey-Kirwan residue $[BrV, Definition 6]$ $[Sze]$. Here $\theta_j^{(0)}$ is the degree zero part of θ_j ($j = 1, \ldots, q$).

References

[Bjo1] Björner, A.: On the homology of geometric lattices. Algebra Universalis, 14 (1982) 107–128

[Bjo2] Björner, A.: Homology and shellability of matroids and geometric lattices. Cambridge University, (1992) 226–283

[BjZ] Björner, A., Ziegler, G.: Broken circuit complexes: Factorizations and generalizations. J. Combin. Theory Ser. B 51 (1991), 96–126

[BrV] Brion, M., Vergne, M.: Arrangement of hyperplanes I. Rational functions and Jeffrey-Kirwan residue. Ann. scien. Éc. Norm. Sup., 32 (1999) 715–741

[Cor] Cordovil, R.: A commutative algebra for oriented matroids. preprint, 2000

[JaT] Jambu, M., Terao, H.: Arrangements of hyperplanes and broken-circuits. Contemporary Math. 90, Amer. Math. Soc., Providence, R.I., 1989, 147-162

[OrS] Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Inventiones math. 56 (1980), 167–189

[OrT1] Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der Math. Wiss. 300, Springer Verlag, 1992

[OrT2] Orlik, P., Terao, H.: Commutative algebras for arrangements, Nagoya J. Math., 134 (1994) 65 – 73

[Sai1] Saito, K.: On the uniformization of complements of discriminant loci. In: Conference Notes. Amer. Math. Soc. Summer Institute, Williamstown, 1975

[Sze] Szenes, A.: Iterated residues and multiple Bernoulli polynomials. Internat. Math. Res. Notices 1998, 937–956

[Ter1] Terao, H.: Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula. Inventiones math. 63, no.1, 159-179 (1981).
[Ter2] Terao, H.: Free arrangements of hyperplanes and unitary reflection groups. Proc. Japan Acad. Ser. A 56 (1980) 389–392