Synthesis of phosphorothioates using thiophosphate salts

Babak Kaboudin* and Fatemeh Farjadian

Address: Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan 45195-1159, Iran
Email: Babak Kaboudin* - kaboudin@iasbs.ac.ir; Fatemeh Farjadian - farjadian@iasbs.ac.ir
* Corresponding author

Abstract
Reactions of \(O,O' \)'-dialkyl thiophosphoric acids with alkyl halides, in the presence of a base, provide a direct synthetic route to phosphorothioates via \(O,O' \)'-dialkyl thiophosphate anion formation. Studies on the reaction of ambident nucleophile ammonium \(O,O' \)'-diethyl thiophosphate with benzyl halides and tosylate in different solvents show that only \(S \)-alkylation is obtained. Reaction of this ambident nucleophile with benzoyl chloride (a hard electrophile), gave the \(O \)-acylation product. A simple, efficient, and general method has been developed for the synthesis of phosphorothioates through a one-pot reaction of alkyl halides with the mixture of diethyl phosphate in the presence of triethylamine/sulfur/and acidic alumina under solvent-free conditions using microwave irradiation.

Introduction
Organophosphorus compounds have found a wide range of application in the areas of industrial, agricultural, and medicinal chemistry owing to their biological and physical properties as well as their utility as synthetic intermediates. [1] The synthesis of phosphate esters is an important objective in organic synthesis, since they have found use in the preparation of biologically active molecules, and also versatile intermediate in synthesis of amides and esters. [2-4] Among the phosphate esters, phosphorothioate derivatives are of interest as effective pesticides. [5-8] In recent years a number of phosphorothioates have been introduced as potential chemotherapeutic agent. [9-12] Despite their wide range of pharmacological activity, industrial and synthetic applications, the synthesis of phosphorothioates has received little attention. The following methods, not generally applicable, have been reported in the literature: (i) reaction of dialkyl phosphites with sulfenyl chlorides,[13] sulfenyl cyanides,[14] thiosulfonates,[15,16] disulfides,[17] and sulfur, [18-21] (ii) condensation of phosphorochloridate with thiols [22-26] and (iii) redox-type reactions of phosphorus triesters with thiols in the presence of tellurium (IV) chloride. [27,28] However, all of these methods have problems, including drastic reaction conditions and also some severe side reactions. Surface-mediated solid phase reactions are of growing interest [29-35] because of their ease of set-up, work-up, mild reaction conditions, rate of the reaction, selectivity, high yields, lack of solvent and the low cost of the reactions in comparison with their homogeneous counterparts. The application of microwave energy to accelerate organic reactions is of increasing interest and offers several advantages over conventional techniques. [36] Synthesis of molecules that normally require long reaction times, can be achieved conveniently and very rapidly in a microwave oven. As a part of our efforts to explore the utility of surface-mediated reactions for the synthesis of organophosphorus compounds, [37-48] we report a new method for the preparation of phosphorothioates by reaction of diethyl phosphite with alkyl halides in the presence of a mixture of ammonium acetate/sulfur/alumina...
under solvent-free conditions using microwave irradiation
which produces high yields of phosphorothioates (Scheme 1).

![Scheme 1](image)

Scheme 1: Synthesis of phosphorothioates using microwave irradiation

Results and Discussion

Recently we have found that ammonium \(O,O'\)-diethyl thiophosphate can be obtained by reaction of diethylphosphite in the presence of a mixture of ammonium acetate/ sulfur/acidic alumina under solvent-free conditions using microwave irradiation. [49] This reagent can be used as an efficient reagent for the conversion of epoxides to thiiranes. This ambident nucleophile has two potentially attacking atoms (S or O) and can attack with either of them, depending on conditions, and mixtures are often obtained in the reaction with electrophilic centers (Scheme 2). [50]

![Scheme 2](image)

Scheme 2: Ambident nucleophile ammonium \(O,O'\)-diethylthiophosphate

We have found that the reaction of diethyl phosphite with alkyl halides in the presence of a mixture of ammonium acetate/sulfur/alumina under solvent-free conditions using microwave irradiation produces high yields of phosphorothioates (S-alkylation, Scheme 1). [44] We decided to investigate the reaction of this ambident nucleophile under different conditions (different leaving groups and solvents).

Firstly, we introduce a novel method for large-scale synthesis of ammonium \(O,O'\)-diethyl thiophosphate. The reaction of sulfur with diethylphosphite in the presence of ammonium hydrogen carbonate under reflux condition produces high yields of ammonium \(O,O'\)-diethyl thiophosphate (Scheme 3).

![Scheme 3](image)

Scheme 3: Synthesis of ammonium \(O,O'\)-diethyl thiophosphate

The results of the reaction of this reagent with benzyl bromide, chloride and tosylate in different aprotic and protic solvents show that \(S\)-benzyl \(O,O'\)-diethyl phosphorothioate (S-alkylation) was formed as sole product (Scheme 4).

![Scheme 4](image)

Scheme 4: Solvent and leaving group effects on the synthesis phosphorothioates

We conclude here that changing of leaving group and use of different media gives no \(O\)-alkylation product (i.e. changing from soft to hard leaving group and aprotic to protic solvent). Although ammonium \(O,O'\)-diethyl thiophosphate is a potential ambident nucleophile, only its soft center is reactive in this case.

Recently the synthesis of \(S\)-thioacyl dithiophosphates has been reported as an efficient and chemoselective thioacylating agent using the reaction of acyl chlorides with dithiophosphoric acid in the presence of pyridine or triethylamine. [51-53] In another study we decided to investigate the reaction of the ambident nucleophile ammonium \(O,O'\)-diethyl thiophosphate salt with acyl chlorides. Reaction of ammonium \(O,O'\)-diethyl thiophosphate with benzoyl chloride, as a model compound, in acetonitrile gave benzamide as the major product (Scheme 5).

![Scheme 5](image)

Scheme 5: Reaction of ammonium \(O,O'\)-diethyl thiophosphate with benzoyl chloride

Benzoyl chloride reacts with ammonia (from ammonium \(O,O'\)-diethyl thiophosphate) faster than anion \(O,O'\)-diethyl thiophosphate to give benzamide. All efforts for solving this problem failed and in all cases benzamide was obtained as the major product.

We decided to replace this ammonium ion with a triethyl ammonium ion and then to study the reaction of new salt with benzoyl chloride. Triethylammonium \(O,O'\)-diethyl thiophosphate was obtained by reaction of diethylphosphate, sulfur and triethyl amine. [54-57] We found that reaction of triethylammonium \(O,O'\)-diethyl thiophosphate with benzoyl chloride gave benzoyl \(O,O'\)-diethyl phosphorothioate with \(O\)-acylation product (Scheme 6).
We conclude that replacement of benzyl with benzoyl group (hard electrophilic center) gives the O-acylation product.

As a part of our efforts to explore the utility of surface-mediated reactions for the synthesis of organophosphorus compounds, [16-18] herein we report a new method for the preparation of phosphorothioates by reaction of diethyl phosphate with alkyl halides in the presence of a mixture of triethylamine/sulfur/alumina under solvent-free conditions using microwave irradiation. We found that a mixture of triethylamine/sulfur/alumina under solvent-free conditions using microwave irradiation gave triethyl phosphate, giving the product. Reaction of this ambident nucleophile with benzoyl chloride (hard electrophilic center), gave the O-acylation product.

Additional material

Table 1: Reaction of alkyl halides and tosylates in the presence of a mixture of triethylamine/sulfur/alumina with diethyl phosphate under solvent-free conditions

R	X	Reaction Time (min)	Yield %
PhCH₂	Br	3	62
PhCH₂	OTs	3	67
PhCH₂CH₂	Br	2	72
p-NO₂C₆H₄CH₂	Br	4	70
p-NO₂C₆H₄CH₂	OTs	5	83
o-MeC₆H₄CH₂	Br	3	65
o-MeC₆H₄CH₂	Cl	3	65
p-ClC₆H₄CH₂	OTs	2	67
m-ClC₆H₄CH₂	OTs	2	55
p-MeC₆H₄CH₂	Br	4	62
I-Butyl	Br	2	76
I-Hexyl	Cl	5	75

a: Isolated Yields

In summary, a simple work-up, low consumption of solvent, fast reaction rates, mild reaction conditions, good to excellent yields, relatively clean reactions with no tar formation make these methods an attractive and a useful contribution to present methods for the preparation of phosphorothioates. Studies on the reaction of ambident nucleophile ammonium O,O'-diethyl thiophosphate with benzyl halides and tosylate in different solvents show that only S-alkylation will be obtained as sole product. Reaction of this ambident nucleophile with benzoyl chloride (hard electrophilic center), gave the O-acylation product.

Acknowledgements

The Institute for Advanced Studies in Basic Sciences (ASBS) is thanked for supporting this work.

References

1. Engel R: Chem Rev 1977, 77:349.
2. Deloude L, Laszlo P: J Org Chem 1996, 61:6360.
3. Varma RS, Meshram HM: Tetrahedron Lett 1997, 38:7973.
4. Smyth MS, Ford JrH, Burke TR: Tetrahedron Lett 1992, 33:4137.
5. Burke TR, Smyth MS, Nomizu M, Otaka A, Roller PP: J Org Chem 1993, 58:1336.
6. Burke TR, Smyth MS, Otaka A, Roller PP: Tetrahedron Lett 1993, 34:4125.
7. Benayound F, Hammond GB: Chem Commun 1996, 1447.
8. Fest C, Schmidt K-J: The Chemistry of Organophosphorus Pesticides Springer-Verlag Berlin Heidelberg New York; 1982.
9. Uhlman E, Peyman A: Chem Rev 1990, 90:543.
10. Stein CA, Cheng YC: Science 1993, 261:1004.
11. Crooke ST, Bennett CF: Annu Rev Pharmacol Toxicol 1996, 36:107.
12. Elzagheid MI, Mattila K, Oiva nen M, Jones BCNM, Cosstick R, Lonnin H: Eur J Org Chem 2000:1987.
13. Yoshido M, Maeda T, Sugiyama H: Japanese Patent 1541 (C1.16 C 92), 1967.
14. Folkin AV, Kolomiets AF, Iznoskova MG: Izv Akad Nauk SSSR Ser Khim 1974: 2837; Chem Abstr 1975, 82:97323.
15. Michalski J, Modro T, Wieczorkowski J: J Chem Soc 1960:1665.
16. Michalski J, Wasiak J: J Chem Soc 1962:5056.
17. Michalski J, Wieczorkowski J, Wasiak J, Pilska B: Rocz Chem 1959, 33:247. Chem Abstr 1959, 53:17884.
18. Harvey RG, Jacobson HI, Jensen EV: J Am Chem Soc 1963, 85:1618.
19. Torii S, Tanaka H, Sayo N: J Org Chem 1979, 44:1938.
20. Sato Z, Takagi K, Imariya Y, Shimizu F, Kusano S: Ger. Offen. 2 601 313 (C1. COTF9/17), 1976. Chem Abstr 1976, 85:12628.
21. Hashimoto T, Ohkubo T: Japanese Patent 77 10 868 (C1. COTF9/06). Chem Abstr 1977, 87:134503.
22. Schrader G, Lorenz W: U.S. Patent 2 862 017, 1958. Chem Abstr 1960, 54:4383a.
23. Farbenfabriken Bayer Akt.-Ges: British Patent 814332, 1959. Chem Abstr 1960, 54:17330C.
24. Kabachnik MI, Mistrykova TA: Zh Obshch Khim 1955, 25:1924. Chem Abstr 1956, 50: 8499d.
27. Schrader G, Lorenz W: German Patent 817 057 (Cl. 45l, 3ol) 1951. Chem Abstr 1954, 48:6643d.
28. Sailmann R: Swiss Patent 324980, 1957. Chem Abstr 1958, 52:14960a.
29. Fadel A, Yefash R, Saluan J: Synthesis 1987:37.
30. Rosini G, Galarini R, Marotta E, Righi R: J Org Chem 1990, 55:781.
31. Kodomari M, Sakamoto T, Yoshitomi S: J Chem Soc Chem Commun 1990:701.
32. Kropp PJ, Daus KA, Crawford SD, Tubergren MW, Kepler KD, Craig SL, Wilson VP: J Am Chem Soc 1990, 112:7433.
33. Hondrogiannis G, Pagni RM, Kabalka GW, Anisoki P, Kurt R: Tetrahedron Lett 1990, 31:5433.
34. Pantney HK: Tetrahedron Lett 1991, 32:2259.
35. Pauter F, Daudon M: Tetrahedron Lett 1991, 32:1457.
36. Caddick S: Tetrahedron 1995, 55:10403.
37. Sardarian AR, Kaboudin B: Synth Commun 1997, 27:543.
38. Sardarian AR, Kaboudin B: Tetrahedron Lett 1997, 38:2543.
39. Kaboudin B: Tetrahedron Lett 2000, 41:3169.
40. Kaboudin B: Chem Lett 2001:880.
41. Kaboudin B, Nazari R: Tetrahedron Lett 2001, 42:8211.
42. Kaboudin B, Nazari R: Synth Commun 2001, 31:2245.
43. Kaboudin B, Balakrishna MS: Synth Commun 2001, 31:2773.
44. Kaboudin B: Tetrahedron Lett 2002, 43:8713.
45. Kaboudin B: Tetrahedron Lett 2003, 44:1051.
46. Kaboudin B, Rahmani A: Synthesis 2003:2705.
47. Kaboudin B, Norouzi H: Synthesis 2004:2035.
48. Kaboudin B, Saadat F: Synthesis 2004:1249.
49. Kaboudin B, Norouzi H: Tetrahedron Lett 2004, 45:1283.
50. Frey PA, Sammons RD: Science 1985, 228:541.
51. Doszczak L, Rachon J: Chem Comm 2000:2093.
52. Doszczak L, Rachon J: J Chem Soc Perkin Trans 1 2002:1271.
53. Doszczak L, Rachon J: Synthesis 2002:1047.
54. Chojnowski J, Cypryk M, Fortuniak W, Michalski J: Synthesis 1977:683.
55. Pogosyan AS, Torgomyan AM, Indzhikyan MG: J Gen Chem USSR 1990, 60:1383.
56. Nasser FAK, Mastrukova TA: J Organomet Chem 1983, 244:17.
57. Desforges E, Grysan A, Ogct N, Sindt M, Mieloszyzki JL: Tetrahedron Lett 2003, 44(6273R).