New Principles of Non-Linear Integral Inequalities on Time Scales

Lutfi Akin†

Faculty of Economics and Administrative Sciences Mardin Artuklu University, Mardin, Turkey

Abstract

The concept of inequalities in time scales has attracted the attention of mathematicians for a quarter century. And these studies have inspired the solution of many problems in the branches of physics, biology, mechanics and economics etc. In this article, new principles of non-linear integral inequalities are presented in time scales via diamond-\(\alpha\) dynamic integral and the nabla integral.

Keywords: Operator theory, Time scales, Integral inequalities

AMS 2010 codes: 47B38, 34N05, 35A23

1 Introduction

For a quarter century, the theory of time scales has played an important role in the representation of differential calculus and integral inequalities. The concept of time scales was introduced by Stefan Hilger in 1988 [1]. Later, this theory was studied by many authors. They have demonstrated various aspects of integral inequalities [2-13]. Dynamic equations and inequalities have many applications to quantum mechanics, phsical problems, wave equations, heat transfer and economic problems [26, 27, 28, 29]. For example; Aly R. Seadawy et al. have done a lot of research on the applications of dynamic equations in physics. As a result of these studies, they achieved good results [30]. The most important examples of time scale studies are differential calculus and inequalities [12]. Wong et al. [6, 7] expressed some time scale integral inequalities. Yang [13] obtained a generalization of the \(\alpha\)-integral Hölder’s inequality in time scales. Recently, Li Yin and Feng Qi [24] have introduced some non-linear integral inequalities under certain conditions.

Our aim of this article is to demonstrate new principles of non-linear integral inequalities in time scales via the \(\nabla\)-integral and the \(\diamond\alpha\)-integral.

†Corresponding author.
Email address: lutfiakin@artuklu.edu.tr
2 Auxiliary Statements and Definitions

Now, let us briefly give information about time scales and give the necessary definitions and notations for our article. For more details, we refer the reader to the articles [1-25].

Let \(\omega \) be a weight function on \(R \), i.e., \(\omega \) is a non-negative, almost everywhere positive on \(R \) and \(\int_R \omega(y) \, dy < \infty \). Let \(\sigma(t) \) be the forward jump operator and let \(\rho(t) \) be the backward jump operator in \(T \) (\(T \) is time scale) for \(t \in T \). Respectively, they are defined by

\[
\sigma(t) = \inf\{s \in T : s > t\}
\]

and

\[
\rho(t) = \sup\{s \in T : s > t\}.
\]

If \(\sigma : T \to T, \sigma(t) > t \), then \(t \) is right-scattered. If \(\rho : T \to T, \rho(t) < t \), then \(t \) is left-scattered. And, if \(\sigma : T \to T, \sigma(t) = t \), then \(t \) is called right-dense, and if \(\rho : T \to T, \rho(t) = t \), then \(t \) is called left-dense. Let two mappings \(\mu, \theta : T \to R^+ \) such that \(\mu(t) = \sigma(t) - t, \theta(t) = t - \rho(t) \) are called graininess mappings. If \(T \) has a left-scattered maximum \(u \in R \), then \(T^k = T / u \). If not \(T^k = T \). Briefly, if \(\sup T < \infty \), then \(T^k = [\rho \sup T, \sup T] \) and if \(\sup T = \infty \), then \(T^k = T \). By the same way, if \(\inf T < \infty \), then \(T^k = [\inf T, \sigma \inf T] \) and if \(\inf T = -\infty \), then \(T^k = T \). Let \(f : T \to R \) and \(f^\sigma : T \to R \) by \(f^\sigma(t) = f(\sigma(t)) \) for \(\forall t \in T \), i.e., \(f^\sigma = f \circ \sigma \). And let \(f : T \to R \) and \(f^\rho : T \to R \) by \(f^\rho(t) = f(\rho(t)) \) for \(\forall t \in T \), i.e., \(f^\rho = f \circ \rho \).

Assume that \(h : T \to R, t \in T^k(t \neq \text{min} T) \).

i. Let \(h \) is \(\Delta \)-differentiable at point \(t \) and \(h \) is continuous at point \(t \).

ii. Let \(h \) is left continuous at point \(t \). \(t \) is right-scattered and \(h \) is \(\Delta \)-differentiable at point \(t \),

\[
h^\Delta(t) = (h^\sigma(t) - h(t))/\mu(t)
\]

iii. Let \(t \) is right-dense, \(h \) is \(\Delta \)-differentiable at point \(t \) and

\[
\lim_{s \to t} \frac{h(t) - h(s)}{t - s} = h^\Delta(t)
\]

then

\[
h^\Delta(t) = \lim_{s \to t} \frac{h(t) - h(s)}{t - s}
\]

iv. Let \(h \) is \(\Delta \)-differentiable at point \(t \), then

\[
h^\sigma(t) = h(t) + \mu(t)h^\Delta(t).
\]

Definition 2.1. [12] \(H : T \to R \) is called a \(\Delta \)-antiderivative of \(h : T \to R \). \(H^\Delta = h(t) \) holds for \(\forall s, t \in T \). We define the \(\Delta \)-integral of \(h \) by

\[
\int_s^t h(\tau) \Delta \tau = H(t) - H(s)
\]

for \(s, t \in T \).

Definition 2.2. [14] Let \(h : T_k \to R \) is called a \(\nabla \)-differentiable at \(t \in T_k, h^\nabla(t) \), if \(\varepsilon > 0 \) then there exists a neighborhood \(V \) of \(t \) such that

\[
|h(\rho(t)) - h(s) - h^\nabla(t)(\rho(t) - s)| \leq \varepsilon |\rho(t) - s|
\]
for \(\forall s \in V \).

Assume that \(h : T \to R, t \in T^k (t \neq \max T) \).

i. Let \(h \) is \(\nabla \)-differentiable at point \(t \) and \(h \) is continuous at point \(t \).

ii. Let \(h \) is right continuous at point \(t, t \in \text{left-scattered} \) and \(h \) is \(\nabla \)-differentiable at point \(t \),

\[
\nabla h(t) = \frac{h(t) - h^0(t)}{\nabla(t)}.
\]

iii. Let \(t \) is left-dense, \(h \) is \(\nabla \)-differentiable at point \(t \) and

\[
\lim_{s \to t} \frac{h(t) - h(s)}{t - s}.
\]

Then

\[
h^\nabla(t) = \lim_{s \to t} \frac{h(t) - h(s)}{t - s}.
\]

iv. Let \(h \) is \(\nabla \)-differentiable at point \(t \), then

\[
h^p(t) = h(t) - \vartheta(t)h^\nabla(t).
\]

Definition 2.3. [14] \(H : T \to R \) is called a \(\nabla \)- antiderivative of \(h : T \to R \). \(H^\nabla = h(t) \) holds for \(\forall s, t \in T \). Then, we define the \(\nabla \)-integral of \(h \) by

\[
\int_s^t h(\tau)\nabla \tau = H(t) - H(s)
\]

for \(s, t \in T \).

Let \(h(t) \) be differentiable on \(T \). And let \(b, t \in T \). Then,

\[
h^\diamond(t) = bh^\nabla(t) + (1 - b)h^\nabla(t), \quad 0 \leq b \leq 1.
\]

Proposition 2.4. [15] If we get \(f, g : T \to R, \diamond \)-differentiable at \(t \in T \), then

i. \((f + g)^\diamond(t) = f^\diamond(t) + g^\diamond(t) \)

ii. If \(c \in R \), then \((cf)^\diamond(t) = cf^\diamond(t) \).

iii. \((fg)^\diamond(t) = f^\diamond(t)g(t) + b f^\nabla(t)g^\nabla(t) + (1 - b)f^p(t)g^\nabla(t) \).

Definition 2.5. [15] If we get \(b, t \in T, f : T \to R \), then

\[
\int_b^t f(\gamma) \diamond \gamma = b \int_b^t f(\gamma)\nabla \gamma + (1 - b) \int_b^t f(\gamma)\nabla \gamma, \quad 0 \leq b \leq 1.
\]

Proposition 2.6. [15] Let \(u, v, t \in T, c \in R \) and if \(f(\gamma), g(\gamma) \) are \(\diamond \)-integrable functions on \([u, v]_T \), then the following statements are valid.

i. \(\int_u^v [f(\gamma) + g(\gamma)] \diamond \gamma = \int_u^v f(\gamma) \diamond \gamma + \int_u^v g(\gamma) \diamond \gamma \)

ii. \(\int_u^v cf(\gamma) \diamond \gamma = c \int_u^v f(\gamma) \diamond \gamma \)
Theorem 3.2. Let w be a weight function, $w \in \mathcal{C}_o$. Let ∇ prove these inequalities under the conditions of the Δ-functions. Later, we will prove their \bullet-differentiable weighted integral inequalities under certain conditions. Qi F. et al. [25] proved some inequalities under the condition of ∇-differentiable. In the next section, we will prove these inequalities under the conditions of the ∇-differentiable and the \circ_o-differentiable.

3 Main Result

In this section, we will prove non-linear ∇-differentiable weighted integral inequalities under certain conditions. Later, we will prove their \circ_o-differentiable extensions. We have listed these studies in the references of the article for the relevant readers.

Theorem 3.1. Let $h, w \in \mathcal{C}_o(T, R)$ and let w be a weight function and let $w(y), h(y) > 0, \int_u^v h(y)w(y)\nabla y < \infty$ and $p > 1$ or $q < 0$, while $1/p + 1/q = 1$. If $\int_u^v w(y)h(y) \geq (v - u)^{p-1}$, while $u, v \in T$, then

$$\int_u^v [h(y)w(y)]^p \nabla y \geq \left(\int_u^v h(y)w(y)\nabla y \right)^{p-1}. \quad (1)$$

Proof. Using Lemma 2.8, we obtain

$$\int_u^v [h(y)w(y)]^p \nabla y = \int_u^v \left[\frac{[\int_u^y h(y)w(y)\nabla y]}{[\int_u^y 1]} \right]^{p-1} \nabla y \geq \left(\int_u^v h(y)w(y)\nabla y \right)^{p-1}. \quad (2)$$

Theorem 3.2. Let w be a weight function, $w(y), g(y) > 0, \int_u^v g(y)w(y)\nabla y < \infty$ for $y \in (u, v)$ and $g, w \in C([u, v], R), \nabla$-differentiable in $(u, v).$ Let ε, ϕ be positive real numbers such that $1 < \phi < \varepsilon$. If

$$\left(wg \right)^{(\varepsilon - \phi) / (\varepsilon - 1)} \geq \frac{(\varepsilon - \phi) \phi^{1/(\varepsilon - 1)}}{\varepsilon - 1} \quad (2)$$
Theorem 3.3. Thus, inequality (3) holds.

Theorem 3.4. Let w be a weight function, $w(y), g(y) > 0$, $\int_u^v g(y)w(y)\nabla y < \infty$ for $y \in (u,v)$, $g, w \in C([u,v], \mathbb{R})$, $\varepsilon \in \mathbb{R}$. If $\varphi = 1$ and $[w(y)g(y)]^{1-\varphi} \leq 1$ for $\forall y \in (u,v)$, then (3) holds.

Proof. If we use Cauchy’s Mean Value Theorem consecutively for $\delta \in (u,v)$ and $\theta \in (u, \delta)$, then we obtain

\[
\frac{\int_u^\delta g(y)w(y)\nabla y}{\int_u^\delta w(y)g(y)\nabla y}^\varphi \geq \left[\frac{\int_u^\delta g(y)w(y)\nabla y}{w(y)g(\delta)} \right]^\varphi \quad \left[\frac{\varphi^{1/\varphi} - w(\delta)}{w(\delta)} \right]^{\varphi-1}.
\]

thus, (3) inequality holds.

Theorem 3.3. Let w be a weight function, $w(y), g(y) > 0$, $\int_u^v g(y)w(y)\nabla y < \infty$ for $y \in (u,v)$, $g, w \in C([u,v], \mathbb{R})$, $\varepsilon \in \mathbb{R}$. If $\varphi = 1$ and $[w(y)g(y)]^{1-\varphi} \leq 1$ for $\forall y \in (u,v)$, then (3) holds.

Proof. For $\varphi = 1$, inequality (3) reduced to

\[
\int_u^v g(y)w(y)\nabla y \geq \int_u^v w(y)g(y)\nabla y.
\]

If we use Cauchy’s Mean Value Theorem, we obtain the following equation

\[
\int_u^\delta g(y)w(y)\nabla y \geq \left[w(\delta)g(\delta) \right]^\varphi \quad \left[w(\delta)g(\delta) \right]^{\varphi-1}.
\]

Theorem 3.4. Let w be a weight function, $\int_u^v g(y)w(y)\nabla y < \infty$ for $y \in (u,v)$, $m \in \mathbb{N}$ and $1 \leq \varphi \leq m + 1$, there exist $(wg)^m(y)$ derivative of the m-th order on $[u,v]$ and $(wg)^m(y)$ is increasing, then $g^{(m)}(y) \geq 0$, $g^{(j)}(u) = 0$ for $0 \leq j \leq m - 1$. If $w(y)g(y) \geq \frac{(y-\varepsilon)^{\varphi-1}}{\varphi^{\varphi-1}}$, then (3) holds.

Proof. If we use Cauchy’s Mean Value Theorem together with the condition given in the theorem, we get the following.

\[
\frac{\int_u^\delta g(y)w(y)\nabla y}{\int_u^\delta w(y)g(y)\nabla y}^\varphi = \frac{[c_1 - u]w(c_1)g(c_1)]^{\varphi-1}}{\varphi^{\varphi-1}} = \frac{(c_1 - u)w(c_1)g(c_1)]^{\varphi-1}}{\varphi^{\varphi-1}}.
\]

If we use Cauchy’s Mean Value Theorem consecutively in (7), we obtain

\[
\frac{(c_1 - \varepsilon)w(c_1)g(c_1)]^{\varphi-1}}{\varphi^{\varphi-1}} = m \frac{(c_{m+1} - \varepsilon)(wg)^m}{(wg)^{m-1}(c_{m+1})}
\]

for $\forall y \in (u,v)$, then

\[
\int_u^v g(y)w(y)\nabla y \geq \left[\int_u^v g(y)w(y)\nabla y \right]^\varphi.
\]

Proof. If we use Cauchy’s Mean Value Theorem consecutively for $\delta \in (u,v)$ and $\theta \in (u, \delta)$, then we obtain

\[
\frac{\int_u^\delta g(y)w(y)\nabla y}{\int_u^\delta w(y)g(y)\nabla y}^\varphi = \frac{\varphi^{\varphi-1}w(y)g(y)}{|[w(y)g(\delta)]^{\varphi-1}} = \frac{1}{\varphi^{\varphi-1}}\left[\frac{(\varphi-1)\varphi^{\varphi-1}w(y)g(y)}{[w(y)g(\delta)]^{\varphi-1}} \right] \leq \frac{(\varphi-1)\varphi^{\varphi-1}w(y)g(y)}{[w(y)g(\delta)]^{\varphi-1}}.
\]

thus, (3) inequality holds.
But \((w^g)^{(m-1)}(k) = (w^g)^{(m-1)}(k) - (w^g)^{(m-1)}(u) = (k-u)(w^g)^m(k_1)\) for \(k_1 \in (u,k)\). If \((w^g)^m(k_1) \leq g^m(k)\), then \((w^g)^m(y)\) is increasing.

Hence

\[(w^g)^m(k)(k-u) \geq (w^g)^{(m-1)}(k) > 0. \tag{9} \]

Applying (9) to (8) yields

\[\frac{(c_1-\varepsilon)g(c_1)}{\int_u^c g(y)\,dy} \geq m + 1. \tag{10} \]

Hence

\[\frac{\int_u^c g(y)^\varphi \,dy}{\int_u^c g(y)^\varphi \,dy} \geq \left(\frac{m+1}{\varphi}\right)^{\varphi-1} \]

for \(1 \leq \varphi \leq m+1\).

Theorem 3.5. Suppose that \(w^g\) be a weight function \(\int_u^c w(y)g(y)\,dy < \infty\) for \(y \in (u,v)\), \(m \in \mathbb{N}\), \(1 < \varphi \leq m+1\), there exist \((w^g)^{(m)}(y)\) derivative of the \(m\)-th order on \([u,v]\) and \((w^g)^{(m)}(y)\) is increasing, then \((w^g)^{(m)}(y) > 0\) and \(g^{(j)}(u) = 0\) for \(m-1 \geq j > 0\).

If \(w(y)g(y) \geq \left[\frac{\varphi(y-e)(\varphi-1)}{(\varphi-1)^2}\right]^{1/(\varphi-e)}\) for \(y \in (u,v)\), \(g^{(j)}(u) = 0\) for \(m-1 \geq j > 0\), then \((w^g)^{(m)}(y) \geq 0\).

Proof. If \(w(y)g(y) \geq \left[\frac{\varphi(y-e)(\varphi-1)}{(\varphi-1)^2}\right]^{1/(\varphi-e)}\), (6) becomes

\[\frac{\int_u^c [w(y)g(y)]^\varphi \,dy}{\int_u^c w(y)g(y)\,dy} \geq \left[\frac{(c_1-\varepsilon)w(c_1)g(c_1)}{(\varphi-1)\int_u^c w(y)g(y)\,dy}\right]^{\varphi-1}. \]

If all terms of (8) are positive, then \(\frac{(c_1-\varepsilon)w(c_1)g(c_1)}{\int_u^c w(y)g(y)\,dy} \geq m\).

Now let’s consider the \(o_a\) integrals in time scales.

Theorem 3.6. Let \(w^g\) be a weight function, \(h(y), w(y) > 0, \int_u^c w(y)h(y)\,dy \text{ for } y \in (u,v)\), \(p > 1\) or \(q < 0\), while \(1/p + 1/q = 1\) and \(h, w \in C_{ad}(T,R)\). If \(\int_u^c w(y)h(y)\,dy \geq (v-u)^{p-1}\) for \(u, v \in T\), then

\[\int_u^c [w(y)h(y)]^p \,dy \geq \left[\int_u^c w(y)h(y)\,dy\right]^{p-1}. \tag{11} \]

Proof. See proof of Theorem 3.1. Moreover, when \(\alpha = 0\), (11) reduce to (1).

Theorem 3.7. Let \(g, w \in C_{ad}(T,R)\) differantiable on \((u,v)\), and let \(w^g\) be a weight function, \(\int_u^c w(y)h(y) \,dy \geq (v-u)^{p-1}\) for \(y \in (u,v)\), \(w(y)g(y) > 0\), and let \(\varepsilon, \varphi\) be positive real numbers such that \(1 < \varphi < \varepsilon\). If

\[\left[\frac{(w^g)(\varphi-1)/(\varphi-1)}{\varphi-1}\right]^{\varphi-1} \geq \left(\frac{(w^g)(\varphi-1)/(\varphi-1)}{\varepsilon-1}\right). \tag{12} \]

for \(y \in (u,v)\), then

\[\int_u^c [w(y)g(y)]^\varphi \,dy \geq \left[\int_u^c w(y)g(y)\,dy\right]^{\varphi}. \tag{13} \]

Proof. See proof of Theorem 3.2. Moreover, (13) inequality is an extension of (3) inequality. When \(\alpha = 0\), (13) reduce to (3).
Theorem 3.8. Let \(a \in R \), \(w \) be a weight function, \(\int_u^v \mathbf{w}(y)g(y) \varphi_y < \infty \) for \(y \in (u, v) \), \(g(y), \mathbf{w}(y) > 0 \), \(g, \mathbf{w} \in C([u, v], R) \) and \([w(y), g(y)]\), \(\varphi \)-differantiable on \((u, v)\). If \(\varphi = 1 \) and \([w(y), g(y)]^{1-\varphi} \leq 1 \) for \(\forall y \in (u, v) \), then
\[
\int_u^v [\mathbf{w}(y)g(y)]^\varphi \varphi_y \geq \left[\int_u^v \mathbf{w}(y)g(y) \varphi_y \right]^\varphi.
\]

Proof. See proof of Theorem 3.3. Moreover, (14) inequality is an extension of (3) inequality. When \(\alpha = 0 \), (14) reduce to (3).

Theorem 3.9. Suppose that \(w \) be a weight function, \(\int_u^v \mathbf{w}(y)g(y) \varphi_y < \infty \) for \(y \in (u, v) \). \(g, \mathbf{w} \in C([u, v], R) \) and \([w(y), g(y)]\), \(\varphi \)-differantiable on \((u, v)\), \(m \in N \), \(1 \leq \varphi \leq m + 1 \). There exist \((\mathbf{w}g)^{(m)}(y) \) derivative of the \(m \)-th order on \([u, v]\). (\(\mathbf{w}g \)) \(\varphi \)-differantiable in \((u, v)\), then \(\alpha \) inequality holds.

Proof. See proof of Theorem 3.4. Moreover, (15) inequality is an extension of (3) inequality. When \(\alpha = 0 \), (15) reduce to (3).

Theorem 3.10. Suppose that \(w \) be a weight function, \(\int_u^v \mathbf{w}(y)g(y) \varphi_y < \infty \) for \(y \in (u, v) \). \(g, \mathbf{w} \in C([u, v], R) \) and \([w(y), g(y)]\), \(\varphi \)-differantiable on \((u, v)\), \(m \in N \), \(1 \leq \varphi \leq m + 1 \). There exist \((\mathbf{w}g)^{(m)}(y) \) derivative of the \(m \)-th order on \([u, v]\). (\(\mathbf{w}g \)) \(\varphi \)-differantiable in \((u, v)\), then \(\alpha \) inequality holds.

Proof. See proof of Theorem 3.5. Moreover, (16) inequality is an extension of (3) inequality. When \(\alpha = 0 \), (16) reduce to (3).

Conclusion

Integral inequalities and dynamic equations are the cornerstones of both time scales and harmonic analysis. Mathematicians proved many integral inequalities on time scales [4–9]. And they also showed generalized forms of these inequalities [10, 11, 13, 25]. Time scales theory has also been of interest in different sciences. For example, quantum mechanics, wave equations, physical problems, heat transfer, electrical engineering and economics [26–30]. In this article, we proved non-linear integral inequalities in time scales via the \(\nabla \)-integral and the \(\varphi \)-integral. We think that the multidimensional and multivariate cases of the inequalities proved in this article are also worth examining.
References

[1] S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988.

[2] R.P. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey. Math. Inequal. Appl., 2001, 4, 535-555. https://doi.org/10.7153/mia-04-48

[3] E. Akin-Bohner, M. Bohner, F. Akin, Pochatke inequalities on time scales. Journal of Inequalities in Pure and Applied Mathematics, 2005, 6(1), 1-23

[4] W.N. Li, Nonlinear Integral Inequalities in Two Independent Variables on Time Scales. Adv Differ Equ. 2011, 283926. doi:10.1155/2011/283926

[5] G.A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities. Mathematical and Computer Modelling, 2010, 52, 556-566. https://doi.org/10.1016/j.mcm.2010.03.055

[6] F.-H. Wong, C.-C. Yeh, S.-L. Yu, C.-H. Hong, Young’s inequality and related results on time scales, Appl. Math. Lett. 2005, 18, 983–988.

[7] F.-H. Wong, C.-C. Yeh, W.-C. Lian, An extension of Jensen’s inequality on time scales, Adv. Dynam. Syst. Appl. 2006, 1 (1), 113–120

[8] J. Kuang, Applied inequalities, Shandong Science Press, Jinan, 2003.

[9] D. Uğur, V.F. Hatipoğlu, A. Akincaţi, Fractional Integral Inequalities On Time Scales. Open J. Math. Sci., 2018, Vol. 2, No. 1, pp. 361-370 (2018).

[10] U.M. Özkan, M.Z. Sarıkaya, H. Yıldırım, Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 2008, 21, 993–1000.

[11] J.-F. Tian, M.-H. Ha, Extensions of Hölder-type inequalities on time scales and their applications, J. Nonlinear Sci. Appl., 2017,10, 937–953.

[12] V. Kac, P. Cheung, Quantum Calculus. Universitext Springer, New York 2002.

[13] W.-G. Yang, A functional generalization of diamond-α integral Hölder’s inequality on time scales, Appl. Math. Lett., 2010, 23, 1208–1212.

[14] M. Bohner, A. Peterson, Dynamic equations on time scales, An introduction with applications. Birkhauser, Boston, 2001. https://doi.org/10.1007/978-1-4612-0201-1

[15] Q. Sheng, M. Fadag, J. Henderson, J.M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl., 2006, 7, 395–413.

[16] F. Qi, Several integral inequalities. RGMIA Res. Rep. Coll. 1999, 2(7), Art. 9, 1039–1042. http://rgmia.org/v2n7.php

[17] F. Qi, Several integral inequalities. J. Inequal. Pure Appl. Math. 2000, 1(2), Art. 19. http://www.emis.de/journals/JIPAM/article113.html

[18] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 1990 18, 18–56.

[19] R.P. Agarwal, D. O’Regan, S.H. Saker, Dynamic Inequalities on Time Scales, Springer, Heidelberg/New York/Dro drrecht/London 2014.

[20] W.N. Li, Nonlinear Integral Inequalities in Two Independent Variables on Time Scales. Adv Differ Equ. 2011, 283926. doi:10.1155/2011/283926

[21] M. Bohner, R.P. Agarwal, Basic calculus on time scales and some of its applications. Resultate der Mathematik, 1999, 35, 3-22. https://doi.org/10.1007/BF03322019

[22] M. Bohner, G.S. Guseinov, Multiple Lebesgue integration on time scales. Adv. Differ. Equ.2006, 026391. doi:10.1155/ADE/2006/26391.

[23] G. Chen, C. Wei, A functional generalization of diamond-α integral Dresher’s inequality on time scales. Adv. Differ. Eq. 2014, 324:doi: 10.1186/1687-1847-2014-324.

[24] L. Yin, F. Qi, Some Integral Inequalities on Time Scales, Results. Math. 2013, 64,371–381. DOI 10.1007/s00025-013-0320-z.

[25] F. Qi, A.-J. Li, W.-Z. Zhao, D.-W. Niu, J. -Cao, Extensions of several integral inequalities. J. Inequal. Pure Appl. Math.2006 7(3), Art. 107. http://www.emis.de/journals/JIPAM/article706.html

[26] V. Spedding, Taming nature’s numbers, New Scientist, July 19 (2003), 28–31

[27] C. C. Tisdell, A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling. Nonlinear Anal.68, 3504–3524 (2008)

[28] M. Bohner, J. Heim, A. Liu, Qualitative analysis of Solow model on time scales. J. Concrete Appl. Math. 13, 183–197 (2015)

[29] D. Brigo, F. Mercurio, Discrete time vs continuous time stock-price dynamics and implications for option pricing. Finance Stochast. 4, 147–159 (2000)

[30] A. R. Seadawy, M. Iqbal and D. Lu, Nonlinear wave solutions of the Kudryashov–Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity, Journal of Taibah University for Science, 2019, 13:1, 1060-1072, DOI: 10.1080/16583655.2019.1680170.