Estimation of the radiation hazard indices in most types of Pasta spread in the Iraqi markets

Azhar S. Alaboodi¹, Inass Abdulah Zgair¹, Shaymaa Awad Kadhim¹, Shatha F. Alhous¹, Baydaa A.Kadhim²

¹Physics Department, Faculty of Science, University of Kufa , Najaf, Iraq.
²University of Alkafeel /Iraq.

Abstract. pasta (Macaroni) is a dry, hollow pastry, made from cereals such as wheat, rice, barley, etc. It is a diet rich in carbohydrates for different age groups. In this research study examines the emergence of the long-lived gamma radiation emitters in the various types of pasta available in the Iraqi market. We found concentration of (²³⁸U), (²³²Th) and (⁴⁰K) measured in (20) Various types for pasta that could be obtained in the Iraqi market. (Radium equivalent),, (internal hazard index), and (absorbed dose rate) were also calculated for all studied samples. radiometric measurements by using the gamma spectrometry NaI(Tl) detector. The specific activity in Macaroni samples were wide-ranging from (0.232±0.195) Becquerel /kg to (22.869±2.005) Becquerel /kg and at a rate (6.081) Becquerel /kg for ²³⁸U. For ²³²Th From (0.018±0.36) Becquerel /kg to (114.269±1.40) Becquerel /kg and at a rate (21.672) Becquerel /kg and for ⁴⁰K from (58.724±2.28) Bq/kg to (1145.99±10.57) Becquerel /kg and at a rate (663.092) Becquerel /kg. Also, Where we found that the internal risk index as well as the radium equivalent in the samples (pasta) ranged from (0.0135) to (0.8031) Becquerel /kg and at a rate (0.2672) Becquerel /kg and for the equivalent radium, the values were from (4.780) Becquerel /kg to (274,515) Becquerel /kg, and at a rate (177.262) Becquerel /kg. This study showed that risk indicators calculated in this study are safe and do not constitute any health threat to humans.

Keywords. Gamma Spectroscopy, Macaroni food, pasta, Iraq.

1. Introduction
Pasta is dry Macaroni. It's formed in different forms. It's made with unyielding wheat, it is usually cut in short lengths. The curved macaroni may be referred to as prod macaroni. Some macaroni shapes can make by home machines. Macaroni is commonly made by large-scale extrusion commercially [1]. The word “Macaroni”, In north America, It is used synonymously with elbow noodles, as it is the most used variety in pasta and cheese formulas. While the name "Maccheroni” refers to the straight square and square noodle "short length noodles" in Italy. Maccheroni may also refer to long noodle dishes such as "Maccheroni alla chitarra” and "frittata di Maccheroni”, ready with long pasta similar to spaghetti [1]. The name originates from the Italian "Maccheroni” or "makke’ro:ni”’, which is the plural form of "Maccherone” [2]. The texture specifies the type of pasta, so these types are different from each other, therefore; are on two types: “rigatoni” and “tortiglioni” [3] .Sampling food and measuring the concentrations of radionuclides in it provides more health information to the consumer whether it is
valid or not. If, for example, 131I is launched in Almarai, and its concentration in the produced milk will provide significantly more meaningful data than in air, sedimentation or silage samples [4,5]. However, 131I measurements in pasture grass may be very important in providing an important mark of the expected concentration in milk. A comprehensive understanding of agricultural practices such as fertilizer, approved irrigation method, and the nature of food consumption must be taken into consideration when sampling food. [6]. This information can be obtained from national food papers or from competent local specialists. Care must be taken when taking samples regarding manpower requirements, expenditures and the need to avoid overloading in laboratory facilities in general. [5, 7].

Natural radioactivity may be result in the environment in a number of ways, including the presence of a natural radioactive substance "NORM". The most effective and common potassium isotopes 40K, uranium 238U and its decay chain, and thorium 232Th and its chain of decay. In addition to being long-lived (about 1010 years), these radionuclides are naturally present in water, air and soil in various quantities and activities. [8]. Natural radionuclides travel from soil to crops, to livestock, and from water to fish, and thus the nuclides find their way to humans by swallowing these various foods, applying adequate procedures in investigating radionuclides in food may require international efforts cooperatively [9] to lay down basic guidelines for defense against high levels of internal exposure caused by food consumption [10].

Since pasta is one of the usual foods consumed at the table in everyday life, it is necessary to determine the baseline for radiation exposure from various types of pasta samples. [11]. Macaroni has been a staple food for humans for more than 200 years and remains the most consumed [12]. Moreover, many studies have been conducted all over the world to examine the natural radionuclides in foods consumed because of their critical importance to human health. [13]. The current study focused on calculating the concentrations of natural radionuclides in different types of pasta because they are commonly used among different age groups [14].

2. Materials and methods
Twenty models of macaroni (the majority of the types available in the Iraqi markets) have been collected for measuring unusual activity. The sorts of testers are programmed in table (1). The first step after collecting the samples is the pasta grinding process to obtain a homogeneous sample, after which it is kept with a sealed plastic container with a capacity of one liter, and then stored in the laboratory for a month and that up to countenance secular equilibrium to be reached between 222Rn and its parent 226Ra in Uranium chain [15].

Sample code	Name of Samples	Origin of samples
M_1	Alkafeel Makaron	Turkey
M_2	Altuns Spaghetti	Turkey
M_3	Altuns Makaron	Turkey
M_4	Tak-Mak	Iran
M_5	Zer-Mak	Turkey
M_6	Pasta	Iraq
M_7	Samira Pasta	Iran
M_8	Aldahabi Pasta	Iraq
M_9	Zulfikar	Turkey
M_10	Rezgul Co.	Turkey
M_11	Nawras	Turkey
M_12	OBA	Turkey
M_13	Divella	Italy
M_14	Madilla	Iran
M_15	La Fonte	Indonesia
M_16	Mak Pasta	Iran
M_17	Zara Pasta	Italy
Concentrations of radionuclides were calculated using the sodium iodide NaI(Tl) detector of (3*3) as shown in figure (1) measurements in this research and spectroscopy of samples using the MAESTRO-32 software on a Windows computer. The activity concentrations of nuclides were calculated assuming secular equilibrium with their decay products as for Potassium at the top (1460 keV) and Uranium at the transmission line of 214Bi (1765 keV), and the chain Thorium at the transmission line of 208Tl (2614 keV), the measurement time for samples was 18000 seconds.

3. Calculations

For each separate isotope, the specific activity in Bq/kg units has been calculated using the relationship (1) [16].

$$\mathcal{A}_n = \frac{(C_n - C_b)}{\varepsilon \gamma I \mu s}$$

where \mathcal{A}_n has represented the specific activity of each radionuclide, C_n has represented the count rate for all samples, (C_b) has represented the count rate for background, $(\varepsilon \gamma)$ and $(I \mu s)$ have represented discovery efficiency and emission possibility of γ-ray respectively, (μs) was representing the counting time and (m_s) is the sample mass in kilograms.

In rocks and soil, the participation of radionuclides 40K, 226Ra and 232Th is not equal, so the radium equivalent is calculated as a common factor for the effect of these radionuclides therefor, a common factor was used for comparing its united radiological effects. This factor has represented the Radium equivalent activity (Ra_{eq}) [17].

$$Ra_{eq} = Ra + 1.43Th + 0.077K$$

Where Ra, Th, and K are the specific activity of 226Ra, 232Th and 40K respectively.

The external (H_{ex}) and internal (H_{in}) hazard indices were calculated using Equations (3) and (4) [18].

$$H_{ex} = \frac{Ra}{370} + \frac{Th}{259} + \frac{K}{4810}$$

$$H_{in} = \frac{Ra}{185} + \frac{Th}{259} + \frac{K}{4810}$$

Their values should be greater than unity because Radioactivity may harmful for the population.

Equation (5) was used to calculate the outdoor dose (D_{out}) [18], and the average value should be 51 nGy/h as suggested by the UNSCEAR (2000) report.

$$D_{out} = 0.462Ra + 0.604Th + 0.0417K$$

While the indoor absorbed dose rate for agricultural soil samples have intended by using the following relation (6) [18].

$$D_{in} = 0.92Ra + 1.1Th + 0.08K$$

the recommended value of indoor absorbed dose rate should be 70 nGy/h [19]

4. Results and Discussion

Specific activity values for pasta (Macaroni) samples and their ratios are shown in table (2).

sample code	Specific Activity (Bq/kg)	Ratios				
226Ra	232Th	40K	Ra/K	Th/K	Th/Ra	
M1	2.164±1.05	12.539±0.59	323.034±6.09	0.007	0.039	5.794
The specific activity resulting from ^{238}U, ^{232}Th and ^{40}K in pasta (Macaroni) samples as detailed in table (2) also in figures (1), (2) and (3), respectively. The specific activity of ^{238}U was found in the range of (0.232 ± 0.195) Bq/kg to (22.869 ± 2.005) Bq/kg with an average (6.081) Bq/kg for ^{238}U, For ^{232}Th From (0.018 ± 0.36) Bq/kg to (114.269 ± 1.40) Bq/kg with an average (21.672) Bq/kg and for ^{40}K from (58.724 ± 2.28) Bq/kg to (1145.99 ± 10.57) Bq/kg with an average (663.092) Bq/kg. The radiation hazard indices, (R_{eq}) and (H_{int}) were calculated in table (3), figure (4) and (5), Then They have varied from (4.780) Bq/kg to (274.515) Bq/kg with an average (177.262) Bq/kg and from (0.0135) to (0.8031) with an average (0.2672) respectively.

M_2	1.627 ± 0.90	114.269 ± 0.36	61.701 ± 3.48	0.026	1.852	70.251
M_3	4.440 ± 1.12	0.847 ± 0.59	58.724 ± 3.96	0.076	0.014	0.191
M_4	2.831 ± 0.72	4.278 ± 0.53	130.074 ± 5.07	0.022	0.033	1.511
M_5	3.612 ± 0.86	8.162 ± 0.59	313.822 ± 5.38	0.012	0.026	2.260
M_6	12.036 ± 1.95	21.927 ± 1.40	1145.991 ± 10.5	0.011	0.019	1.822
M_7	3.609 ± 1.34	0.018 ± 0.64	67.484 ± 2.28	0.003	0.000	0.080
M_8	17.457 ± 1.89	19.045 ± 1.22	1035.411 ± 8.84	0.017	0.018	1.091
M_9	3.609 ± 1.07	10.784 ± 0.65	326.242 ± 6.08	0.011	0.033	2.988
M_{10}	1.335 ± 0.24	13.426 ± 0.51	915.095 ± 7.25	0.001	0.015	16.178
M_{11}	3.190 ± 0.42	17.027 ± 0.63	1145.991 ± 10.5	0.076	1.852	70.251
M_{12}	1.715 ± 0.24	11.981 ± 0.44	738.844 ± 5.94	0.002	0.016	6.987
M_{13}	6.559 ± 0.55	15.818 ± 0.51	804.357 ± 6.48	0.012	0.020	1.634
M_{14}	5.393 ± 0.62	18.033 ± 0.56	825.347 ± 6.97	0.004	0.022	6.068
M_{15}	2.972 ± 0.77	10.445 ± 1.22	1035.411 ± 8.84	0.017	0.018	1.091
M_{16}	9.678 ± 0.62	0.018 ± 0.64	67.484 ± 2.28	0.003	0.000	0.080
M_{17}	0.781 ± 0.19	12.639 ± 0.49	838.397 ± 6.98	0.001	0.015	16.178
M_{18}	3.987 ± 0.43	13.883 ± 0.50	845.159 ± 7.01	0.005	0.016	3.482
M_{19}	3.352 ± 0.24	17.027 ± 0.63	1087.881 ± 8.85	0.003	0.016	5.337
M_{20}	1.553 ± 0.24	11.981 ± 0.44	738.844 ± 5.94	0.002	0.016	6.987
Max.	22.869 ± 2.00	114.269 ± 0.36	1145.991 ± 10.5	0.076	1.852	70.251
Min.	0.232 ± 0.19	0.018 ± 0.64	67.484 ± 2.28	0.003	0.000	0.080
Mean.	6.081 ± 0.896	21.672 ± 1.31	663.092 ± 12.79	0.015	0.185	9.814
Figure 1. Specific Activity of 238U in (Bq/Kg).

Figure 2. Specific Activity of 232Th in (Bq/Kg).

Figure 3. Specific Activity of 40K in (Bq/Kg).

Table 3. Radiological hazard indexes in the Macaroni samples.

Sample code	H_{int}	H_{ext}	$R_{Ra_{eq}}$ (Bq/kg)	$D_{outdoor}$	D_{indoor}
M1	0.1273	0.12142	044.968	23.115	030.0495
M2	0.4628	0.45842	169.782	78.994	102.6918
M3	0.0395	0.02748	010.174	04.982	006.4767
M4	0.0589	0.05121	018.965	09.634	012.5247
M5	0.1163	0.10652	039.449	20.440	026.5723
M6	0.3880	0.35544	131.633	68.933	089.6123
M7	0.1290	0.11921	044.150	22.708	029.5206
M8	0.0154	0.01473	005.454	03.013	003.9169
M9	0.3832	0.33598	124.418	64.585	083.9600
Table 1. Radiological Characteristics of Macaroni Samples

Sample	Hazard Index	Mean Activity	Median Activity	Maximum Activity	Average Activity
M10	0.4154	0.35360	130.939	67.202	087.3621
M11	0.2573	0.24924	092.310	48.696	063.3052
M12	0.2806	0.25445	094.232	49.191	063.9483
M13	0.2807	0.26293	097.376	51.459	066.8965
M14	0.3153	0.30073	111.377	59.220	076.9859
M15	0.2509	0.24009	088.917	47.235	061.4052
M16	0.2273	0.22521	083.412	44.752	058.1772
M17	0.2493	0.24570	090.997	48.807	063.4496
M18	0.3092	0.30053	111.306	59.413	077.2371
M19	0.2091	0.20450	075.739	40.434	052.5644
M20	0.2651	0.25374	093.972	49.905	064.8768
Max.	0.4628	0.45842	169.782	78.994	102.6918
Min.	0.0154	0.01473	005.454	03.013	003.9169
Mean.	0.2672	0.22519	177.262	43.136	056.0766

Figure 4. A radiation hazard indexes for Macaroni samples.

Figure 5. A radiation hazard indexes for Macaroni samples.

Conclusions

Nationally, the present study was extremely important to investigate the radioactivity of studied pasta samples. It was found that local consumption of pasta is safe for all ages and in different diets. From the above results above, it is possible to create a database that will serve as a baseline for other future studies on the effect of radiation from ingestion of food.

References

[1] Hou, G., Oriental noodles. 2001.
[2] Serianni, L. and M. Trifone, Il Devoto-Oli, Vocabolario della lingua italiana 2007. 2006.
[3] Constantinou, S. and M. Meyer, Emotions and Gender in Byzantine Culture. 2019: Springer.
[4] Crick, M. and G. Linsley, An assessment of the radiological impact of the Windscale reactor fire, October 1957. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 1984. 46(5): p. 479-506.
[5] Guidebook, A., Measurement of Radionuclides in Food and the Environment. 1989, International Atomic Energy Agency IAEA, Vienna, Austria.
[6] Underwood, E.J., The mineral nutrition of livestock. 1999: Cabi.
[7] Atkin, B. and A. Brooks, Total facility management. 2015: John Wiley & Sons.
[8] Alrefae, T., T.N. Nageswaran, and T. Al-Shemali, Radioactivity of long lived gamma emitters in canned seafood consumed in Kuwait. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2014. 15(1): p. 6-9.
[9] Eisenbud, M. and T.F. Gesell, Environmental radioactivity from natural, industrial and military sources: from natural, industrial and military sources. 1997: Elsevier.
[10] Fu, J., et al., High levels of heavy metals in rice (Oryzasativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere, 2008. 71(7): p. 1269-1275.
[11] Weiss, B., Behavioral toxicology and environmental health science: Opportunity and challenge for psychology. American Psychologist, 1983. 38(11): p. 1174.
[12] Fieldhouse, P., Food and nutrition: customs and culture. 2013: Springer.
[13] Al-Masri, M., et al., Natural radionuclides in Syrian diet and their daily intake. Journal of Radioanalytical and Nuclear Chemistry, 2004. 260(2): p. 405-412.
[14] Alrefae, T., T. Nageswaran, and T. Al-Shemali, Radioactivity of long-lived gamma emitters in breakfast cereal consumed in Kuwait and estimates of annual effective doses. World, 2012. 4: p. 11.
[15] Kamunda, C., Human health risk assessment of environmental radionuclides and heavy metals around a gold mining area in Gauteng Province, South Africa. 2017, North-West University (South Africa) Mafikeng Campus.
[16] Adamiec, G. and M.J. Aitken, Dose-rate conversion factors: update. Ancient tL, 1998. 16(2): p. 37-50.
[17] Faheem, M. and S. Mujahid, Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province-Pakistan. Radiation Measurements, 2008. 43(8): p. 1443-1447.
[18] Pashazadeh, A.M., et al., Annual effective dose from environmental gamma radiation in Bushehr city. Journal of Environmental Health Science and Engineering, 2014. 12(1): p. 4.
[19] Ereeş, F., et al., Assessment of dose rates around Manisa (Turkey). Radiation Measurements, 2006. 41(5): p. 598-601.