Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by *Schistosoma mansoni* Eggs

Maha-Hamadien Abdulla1,2*, Kee-Chong Lim1, James H. McKerrow1, Conor R. Caffrey1

1 The Colorectal Research Center, Department of Surgery, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, 2 Sandler Center for Drug Discovery and Department of Pathology, University of California San Francisco, San Francisco, California, United States of America

Abstract

Background: Eggs deposited in the liver of the mammalian host by the blood fluke parasite, *Schistosoma mansoni*, normally drive a T-helper-2 (Th2)-mediated granulomatous response in immune-competent mice. By contrast, in mice deprived of T-cells and incapable of producing granulomata, egg-secreted proteins (ESP) induce acute hepatic injury and death. Previous work has shown that one such ESP, the T2 ribonuclease known as omega-1, is hepatotoxic *in vivo* that specific antisera to omega-1 prevent hepatocyte damage.

Methodology/Principal Findings: Using an in vitro culture system employing mouse primary hepatocytes and alanine transaminase (ALT) activity as a marker of hepatic toxicity, we demonstrated that *S. mansoni* eggs, egg-secreted proteins (ESP), soluble-egg antigen (SEA), and omega-1 are directly hepatotoxic and in a dose-dependent manner. Depletion of omega-1 using a monoclonal antibody abolished the toxicity of pure omega-1 and diminished the toxicity in ESP and SEA by 47 and 33%, respectively. Anion exchange chromatography of ESP yielded one predominant hepatotoxic fraction. Proteomics of that fraction identified the presence of IPSE/alpha-1 (IL-4 inducing principle from *S. mansoni* eggs), a known activator of basophils and inducer of Th2-type responses. Pure recombinant IPSE/alpha-1 also displayed a dose-dependent hepatotoxicity *in vitro*. Monoclonal antibody depletion of IPSE/alpha-1 abolished the latter’s toxicity and diminished the total toxicity of ESP and SEA by 32 and 35%, respectively. Combined depletion of omega-1 and IPSE/alpha-1 diminished hepatotoxicity of ESP and SEA by 60 and 58% respectively.

Conclusions: We identified IPSE/alpha-1 as a novel hepatotoxin and conclude that both IPSE/alpha-1 and omega-1 account for the majority of the hepatotoxicity secreted by *S. mansoni* eggs.

Introduction

Schistosomiasis is a chronic parasitic disease that affects more than 200 million people worldwide [1]. The central pathological characteristic during chronic infection is a granulomatous reaction around trapped parasite eggs in the host’s liver, bladder, or intestine [2]. Granulomatous inflammation in the liver may result in fibrosis, scarring, portal hypertension, and in the worst cases hemorrhaging and death [3].

Schistosoma mansoni infection in mice is the most common experimental model employed. Approximately five-to-six weeks post-infection, parasite eggs deposited by adult worms induce a T-helper-2 (Th2)-type-polarized immune response [4]. A number of the immunodominant molecules in eggs have been described [5,6,7,8], in addition to the two molecules central to this report (see below). The ability of *S. mansoni* eggs to induce Th2-type differentiation during infection is underscored by the observation that eggs alone, or soluble egg antigen (SEA) released by the eggs through pores in the shell, are sufficient to drive Th2 polarization in naive uninfected mice [9,10,11].

Research from the late 1960s and 1970s has documented that mice lacking T-cells due to genetic loss or surgical removal of the thymus [12,13,14], or administration of specific immunosuppressors [15,16,17], do not develop a typical granulomatous response to trapped parasite eggs. In these T-cell depleted mice, infection was associated with extensive hepatic parenchymal damage suggestive of a cytotoxic egg product(s) diffusing into hepatic tissue [18]. Histopathology of livers from schistosome-infected immunocompromised mice displayed microvesicular hepatocyte steatosis [18,19,20], nuclear degeneration, and hepatocyte apoptosis [21]. Coincident with hepatocyte injury, there is an increase in liver cell transaminases in the plasma [19]. Immunosuppressed mice also have higher mortality once egg deposition in the liver begins [17,19,19,19,22]. In immunologically intact mice, circumoval granulomata, and antibody responses to released *S. mansoni* egg components, likely protect against hepatocyte damage. Also, hepatotoxicity is prevented in infected T cell-deprived mice by transfer of serum from intact mice immunized with *S. mansoni* eggs or egg homogenate, whilst antiserum against other lifecycle stages do not prolong survival [19]. Egg-induced hepatotoxicity appears to be...
Author Summary

The flatworm disease, schistosomiasis, is a major public health problem in sub-Saharan Africa, South America and East Asia. A hallmark of infection with Schistosoma mansoni is the immune response to parasite eggs trapped in the liver and other organs. This response involves an infiltration of cells that surround the parasite egg forming a "granuloma." In mice deprived of T-cells, this granulomatous response is lacking, and toxic products released by eggs quickly cause liver damage and death. Thus the granuloma protect the host from toxic egg products. Only one hepatotoxic molecule, omega-1, has been described to date. We set out to identify other S. mansoni egg hepatotoxins using liver cells grown in culture. We first showed that live eggs, their secretions, and pure omega-1 are toxic. Using a physical separation technique to prepare fractions from whole egg secretions, we identified the presence of IPSE/alpha-1, a protein that is known to strongly influence the immune system. We showed that IPSE/alpha-1 is also hepatotoxic, and that toxicity of both omega-1 and IPSE/alpha-1 can be prevented by first mixing the proteins with specific neutralizing antibodies. Both proteins constitute the majority of hepatotoxicity released by eggs.

identified IPSE/alpha-1 as an abundant protein in egg secretions [5,36,37,30]. IPSE/alpha-1 binds immunoglobulin and activates naïve basophils, leading to histamine release and facilitating the production of Th2-type cytokines [32]. In vitro, IPSE/alpha-1 induces interleukin (IL)-4 secretion from murine basophils in an IgE-dependent but antigen-independent manner [39]. Most recently, IPSE/alpha-1 has been shown to contain a functional C-terminal, monopartite, nuclear localization sequence that binds DNA such that it may alter gene expression in the host cell [40].

We employed a primary hepatocyte in vitro culture system to identify and measure direct toxicity of S. mansoni eggs and their derived fractions, including pure proteins. Hepatotoxicity of omega-1 was confirmed, and IPSE/alpha-1 was identified as a novel hepatotoxin. Both proteins together account for more than half of the egg-derived toxicity measured.

Materials and Methods

Ethics statement

These studies were performed in accordance with the recommendations by the University of California San Francisco Institutional Animal Care and Use Committee. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of California San Francisco (Permit Number: AN000237-03). All surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. The protocol followed these guidelines in the study: All U.S. Federal Policy and Guidelines governing the use of laboratory animals, Public Health Service Policy on Humane Care and Use of Laboratory Animals, Guide for the Care and Use of Laboratory Animals, National Academy Press, USDA Animal Welfare Act and Regulations, and NIH Office of Laboratory Animal Welfare Guidelines.

In vitro maintenance of S. mansoni and collection of Egg-Secreted Proteins (ESP)

S. mansoni eggs were isolated from the livers of female golden hamsters six weeks following infection with 500 cercariae, as previously described [41]. Approximately 0.5 million eggs were washed twice in serum-free RPMI-1640 supplemented with 100 mg/ml streptomycin. Eggs were then resuspended in 2 ml RPMI-1640, and 500 μl aliquots were placed in 12-well culture plates (Costar). Cultures were checked daily by microscopy to ensure sterility. Medium was harvested after 72 h, and centrifuged for 10 min at 200 ×g to remove eggs. ESP, usually containing approximately 0.5 mg/ml protein by Bradford assay [42], was stored at −80°C. After collection of ESP, egg viability was confirmed by hatching of miracidia; normally >85% of the eggs hatched. Hatching of eggs during the collection period was <1%. SEA was prepared, as described previously [43].

Purified natural omega-1 [30] and recombinant (r)IPSE/alpha-1 proteins [32], and anti-omega-1 (140-3E11) and anti-IPSE/alpha-1 (74-1G2) monoclonal antibodies [32] were kindly supplied by Drs. Gabrielle Schrann and Helmut Haas of the Research Center Borstel, Germany. Experiments to deplete ESP and SEA (each 10 μg/ml) of omega-1 and IPSE/alpha-1 involved incubation for 1 h with 5 μg/ml of the respective monoclonal antibodies bound to Protein G Sepharose (GE healthcare Biosciences Pittsburgh, PA). Protein G Sepharose was then removed by centrifugation for 30 min at 100 ×g.

Fractionation of ESP by anion exchange chromatography

ESP (2 mg) were added to 2 ml 30 mM Tris-HCl, pH 8.0, and centrifuged at 5000 ×g for 10 min at 4°C. The supernatant was loaded onto an Hr 5/5 Mono Q column (GE Healthcare), and
equilibrated with the same buffer and elute by a 0 to 1 M linear NaCl gradient in 6 column volumes of Tris-NaCl buffer. Flow-through and eluted fractions (1 ml) were stored at −80°C prior to testing for toxicity with cultured primary hepatocytes (applied volume 100 μl of each fraction to 2 × 10⁶ hepatocytes/0.5 ml).

Primary hepatocyte preparation, culture and exposure to egg-derived material

Hepatocytes were isolated from C57/BL6 mice by *in situ* perfusion of liver with collagenase, as described previously [44]. The portal vein was severed to permit outflow followed by cannulation of the inferior vena cava with a 22-gauge catheter. The liver was then flushed with a calcium-chelating buffer (liver perfusion medium) for 3 to 5 min, followed by perfusion with collagenase (liver digest medium) for an additional 6–8 min. At the end of the digestion, the liver was removed to a sterile dish and minced thoroughly with a scissors. This crude liver cell isolate was suspended in 25 ml of Dulbecco's modified Eagle's medium/Ham's F-12, filtered through sterile gauze, centrifuged at 70 × g for 2 min, and resuspended in Dulbecco's modified Eagle's medium/Ham's F-12. After an additional round of centrifugation and resuspension, hepatocytes were isolated by centrifugation using a 50% Percoll gradient. Hepatocytes were cultured at a density of 2 × 10⁷/0.5 ml per well in a 12-well culture plate (Costar), previously coated with a 5 mm layer of matrigel (BD Bioscience) [45], which is a tumor biomatrix prepared from the Engelbroth-Holm-Swarm mouse sarcoma [46]. Hepatocytes were allowed to attach for 1 hour at 37°C. Culture plates were gently swirled and the medium containing unattached cells and debris was aspirated. Cultures were then incubated for 72 h in a final volume of 0.5 ml RPMI medium containing 50, 100, or 200 eggs, unfraccionated ESP (10 μg/ml) or 100 μl of chromatography fractions. Supernatants were collected and stored at −20°C and analyzed for alanine transaminase (ALT), a serum marker of hepatotoxicity [47]) using a Beckman Chemical Analyzer in the Clinical Chemistry Laboratory of the San Francisco Veterans Affairs Medical Center (VAMC).

Proteomic Analysis of ESP

ESP was fractionated by SDS-PAGE, then silver stained [48,49], and 40 evenly spaced protein bands were sliced out of the gel (Fig S1). The gel slices were then diced into small cubes, reduced and alkylated with diithiothreitol and iodoacetamide, and in-gel digested with trypsin [50,51]. The resulting peptides were extracted and analyzed by on-line liquid chromatography/mass spectrometry, using an Eksigent nanoflow pump and a Famos autosampler, which were coupled to quadrupole-orthogonal-acceleration-time-of-flight hybrid mass spectrometer (QStar XL, Applied Biosystems). Peptides were fractionated on a reversed-phase column (C18, 0.75 × 150 mm), and a “5–50% B gradient-in-gradient” was developed in 35 min at a 350-nl/min flow-rate. Solvent A was 0.1% formic acid in water and solvent B was 0% formic acid in acetonitrile. Data were acquired in information-dependent acquisition mode: 1 sec MS surveys were followed by 3 sec CID experiments on computer-selected multiply charged precursor ions. Peak lists were generated using Analyst 2.0 software (Applied Biosystems) with the Mascot script 1.6b20 (Matrix Science). Database searches were performed using ProteinProspector v. 5.1.7 [http://prospector2.ucsf.edu] [52]. Searches were performed first on the SwissProt databank (December 16, 2008, 405,506 entries) to evaluate sample purity, followed by searching in the *S. mansoni* database SchistoDB v. 4.0 (www.schistodb.net; 13,174 entries downloaded July 2009). Batch-Tag settings were selected for samples prepared with trypsin allowing a maximum of one missed cleavage and no non-specific cleavages. Peptide modifications searched for included carboxamide (Cys) as the only fixed modification, and up to two variable modifications from among the following: oxidation (Met), acetyl (N-term), oxidized acetyl (N-term), pyroglutamate (Gln) and Met-loss (N-term). The mass accuracy considered was 200 ppm, and 300 ppm for the precursor and fragment ions, respectively. The following acceptance scores for database matches were required: a minimum protein score of 22, a minimum peptide score of 15, and a maximum expectation value of 0.02 required for both peptide and protein identification. These criteria resulted in an approximate 2% false determination rate. Protein identifications are reported with a minimum of two peptide matches per protein. For the analysis of ESP anion exchange fraction #11, the maximum expectation value was changed to 0.05, and no decoy proteins were identified using these acceptance criteria.

Results

5. *S. mansoni* eggs and their secretions are hepatotoxic *in vitro*

To measure hepatotoxicity caused by parasite eggs ESP, and their chromatographic fractions, we employed an *in vitro* system involving murine primary hepatocytes cultured on matrigel. ALT was employed as a hepatotoxicity biomarker. With parasite eggs, measurements were taken 24, 48 and 72 h. No alteration in ALT levels was seen at 24 or 48 h (not shown); however, by 72 h, ALT had increased markedly and in a dose-dependent manner (Figure 1A). Dose-dependent hepatocellular injury elicited by ESP was also measured after 72 h (Figure 1B).

To aid identification of those ESP constituents responsible for hepatotoxicity, ESP was fractionated by Mono Q anion exchange chromatography. The flow-through (component not bound to the column), and each of the eluted fractions (100 μL), was co-incubated with cultured hepatocytes. At 72 h, fraction #11 induced an approximate two-fold greater release of ALT relative to the other eluted fractions and flow-through, such that it was the equivalent of 10 μg/ml unfraccionated ESP (Figure 2).

Proteomic analysis of ESP and hepatotoxic fraction #11: identification of IPSE/alpha-1

SDS-PAGE and trypic digestion followed by mass spectrometry of ESP and hepatotoxic fraction #11 identified 99 and nine proteins, respectively (Tables 1 and 2). Previously, total proteomic analysis of ESP identified 188 proteins [36], and many are common between this and the present dataset (Table 1). Among the nine proteins identified in fraction #11 were metabolic enzymes involved in glucose metabolism, glycogen storage, in addition to chaperones. IPSE/alpha-1 was also identified; and, given its potent immunomodulatory properties [32,34], was of immediate interest in discovering of whether or not it was hepatotoxic.

In vitro confirmation that Omega-1 is hepatotoxic

Omega-1 is an egg-secreted glycoprotein with RNase activity and in vivo-demonstrated hepatotoxicity [18,28]. To measure direct toxicity to primary cultured hepatocytes, purified native omega-1 was co-incubated with primary hepatocytes. At 72 h, a dose-dependent release of ALT was measured (Figure 3A). Likewise, *Aspergillus oryzae* T2 RNase (25 μg/ml) Invitrogen, # 18031-013 Carlsbad, CA) was toxic. Importantly, pre-incubation of pure omega-1 with a monoclonal anti-omega-1 antibody bound
to Protein G Sepharose abolished cytotoxicity (Figure 3B). Depleting ESP and SEA with the same antibody decreased toxicity by 47 and 33%, respectively. All reductions in hepatoxicity were statistically significant (Figure 3B).

IPSE/alpha-1 is also a hepatotoxin in vitro

IPSE/alpha-1 was an abundant protein in the hepatotoxic fraction #11 from anion exchange chromatography (Table 2). Recombinant IPSE/alpha-1 was added to hepatocyte cultures, and a dose-dependent
Table 1. Proteins identified in ESP by geLC-MS/MS and searching in SchistoDB.

Protein Name	Accession #	Peptides	% Cov	Score	Expect	MW (kDa)	Gel Band
phosphoenolpyruvate carboxykinase	Smp_00580	34	46	4.76	2.50E-08	70.4	8, 13, 14, 19, 20, 30 ++
macroglobulin/complement	Smp_089670	30	12	4.57	7.50E-08	222.2	34–36 –
enolase (2-phosphoglycerate dehydratase)	Smp_024110	22	42	4.96	1.40E-08	47.0	8, 9, 12, 24, 25 ++
fructose 1,6 bisphosphate aldolase	Smp_042160.2	20	53	4.75	3.40E-08	39.6	20–22 ++
beta tubulin	Smp_035760	17	37	5.9	2.60E-10	49.8	12–14, 19, 20 ++
glutathione S-transferase 26 kDa (GST 26) (GST class-mu)	Smp_102070	20	68	4.62	6.00E-08	25.3	15–18 ++
phosphoglycerate mutase	Smp_096760	17	56	5.19	5.30E-09	28.4	18 ++
thioredoxin peroxidase (Prx 1)	Smp_059480	17	51	5.11	7.60E-09	21.1	12–14, 20, 21 ++
glutathione S-transferase 28 kDa (GST 28) (GST class-mu)	Smp_054160	19	57	4.46	1.20E-07	23.8	16–18 ++
malate dehydrogenase	Smp_035270.2	18	34	5.98	1.90E-10	36.2	10, 11, 14–16, 20, 21 ++
triosephosphate isomerase	Smp_003990	16	43	4.81	2.70E-08	28.1	16–18 +
purine nucleoside phosphorylase	Smp_090520	15	31	4.76	3.30E-08	45.2	16–18 ++
family C56 non-peptidase homologue (C56 family)	Smp_082030	10	69	6.02	1.50E-10	19.1	12, 13 ++
alpha tubulin	Smp_090120.1	9	24	5.52	1.30E-09	50.0	9, 12–15, 26 ++
alpha-galactosidase/alpha-n-acetylgalactosaminidase	Smp_179260	12	10	3.57	1.10E-06	108.5	19, 20, 25, 26 +
interleukin-4-inducing protein precursor (IPSE/alpha-1)	Smp_112110	9	49	4.83	2.50E-08	15.4	13, 14, 19–21, 24 ++
hepatotoxic ribonuclease omega-1 precursor	Smp_193860	13	63	3.31	1.60E-06	15.1	12, 18, 19 ++
aminopeptidase PILS (M01 family)	Smp_174530	14	13	2.9	1.40E-05	110.8	29, 31, 34, 35 –
heat shock protein 70	Smp_106930.1	11	19	4.72	1.50E-08	69.0	10, 16, 17, 24, 32, 39 ++
thioredoxin glutathione reductase	Smp_048430	9	16	4.3	2.40E-07	64.8	8, 27, 28–31 ++
peroxiredoxin, Prx-2	Smp_158110	12	30	3.71	3.60E-07	21.7	8, 12, 13 ++
peroxiredoxins, prx-1, prx-2, prx-3	Smp_062900	5	14	4.5	1.00E-07	21.7	12–14 –
proteasome subunit alpha 2 (T01 family)	Smp_179630	4	20	4.08	5.90E-07	19.5	18, 25, 26 +
ATP:guanidino kinase (Smc74), putative	Smp_150240	10	18	3.21	5.10E-07	31.1	9, 12–15, 26 ++
annexin	Smp_096890	10	45	3.53	4.40E-06	25.8	16 –
expressed protein	Smp_152710.2	8	34	2.9	5.90E-07	22.0	9, 13, 14–16 ++
actin	Smp_046950	7	17	4.87	1.70E-08	41.7	8, 10, 11, 13, 19 ++
serpin	Smp_090080	13	25	2.27	2.10E-05	46.0	20, 25–30 +
ferritin light chain	Smp_087760	8	25	3.43	5.90E-07	20.2	11, 14 –
nucleoside diphosphate kinase	Smp_092750	11	52	3.22	2.60E-07	16.9	11–13 +
phosphoglycerate kinase	Smp_187370	7	33	5.8	3.90E-10	18.5	11, 12, 19, 20, 25 ++
expressed protein	Smp_150240	10	18	3.21	5.10E-07	31.1	9, 15, 21, 24, 25, 32, 33 +
Table 1. Cont.

Protein Name	Accession #	Peptides	% Cov*	Score	Expect	MW (kDa)	Gel Band	
heat shock protein (Major egg antigen, P40)	Smp_049250	7	21	2.38	1.30E-04	40.2	14, 22	++
superoxide dismutase (Cu-Zn)	Smp_176200	3	44	5.32	3.10E-09	15.9	11	++
dihydrolipoamide dehydrogenase	Smp_046740	6	14	2.49	2.80E-05	52.9	10, 11, 25, 26	++
proteasome subunit alpha 6 (T01 family)	Smp_130110	4	5	3.64	3.90E-06	76.9	10, 17	–
thioredoxin	Smp_008070	4	40	4.05	2.50E-07	11.9	6–8	–
expressed protein	Smp_011030	3	16	4.32	2.10E-07	20.1	6, 7, 14	++
expressed protein	Smp_088720	5	20	3.09	8.40E-07	27.4	16, 18, 19	–
transaldolase	Smp_070600	7	18	1.92	4.70E-05	37.8	18-20, 22	+
calcium-binding protein	Smp_096390	3	21	4.48	1.10E-07	16.7	9, 10	2
calpain (C02 family)	Smp_157500	3	2	4.3	1.00E-07	172.9	12, 13	++
22.6kDa tegument-associated antigen	Smp_086470	3	12	3.77	2.00E-08	21.6	4, 8, 9	++
phosphomannomutase	Smp_087860	3	14	4.01	8.10E-07	28.1	16, 18	+
glucose-6-phosphate isomerase	Smp_22400	4	6	3.37	2.10E-07	61.1	26	+
14-3-3 protein, putative	Smp_009760	8	30	2.06	1.20E-05	32.0	30, 31	–
200-kDa GP1-anchored surface glycoprotein	Smp_017730	3	2	3.6	1.70E-06	36.0	8, 14	–
uridine phosphorylase	Smp_082420	2	12	5.15	6.20E-09	32.8	10, 18	2
cyclophilin	Smp_040130	5	22	3.54	1.90E-07	17.7	8, 11–13	++
ferritin light chain	Smp_047650	5	16	3.1	6.90E-09	19.7	36	+
alpha-glucosidase	Smp_133210	7	8	1.72	3.10E-05	102.5	32–34	–
expressed protein	Smp_187410	2	8	5.42	1.00E-10	32.0	30, 31	2
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)	Smp_056970.1	4	12	2.78	3.10E-06	36.4	11, 20, 21	++
glycogen phosphorylase	Smp_143840	8	11	1.75	1.50E-04	80.0	8, 9, 31, 33	++
proteasome subunit alpha 3 (T01 family)	Smp_092280	3	13	3.46	7.20E-08	28.1	17, 18	2
ribose-5-phosphate isomerase, putative	Smp_092220	3	3	2.9	4.90E-06	159.4	18	2
venom allergen-like (VAL) 5 protein	Smp_120670	2	11	3.87	8.70E-07	16.4	16	2
expressed protein	Smp_170410	6	19	2.19	2.90E-06	29.3	25, 26, 29	–
leucine aminopeptidase (M17 family)	Smp_030000	6	11	2.28	1.30E-05	56.7	26–28	–
methylthioadenosine phosphorylase	Smp_028190	3	11	3.55	1.50E-07	34.6	12, 13	–
superoxide dismutase [Mn]	Smp_056440	3	11	2.68	1.20E-05	24.3	15	++
L-lactate dehydrogenase, putative	Smp_089370	4	16	3.22	4.20E-07	30.0	8, 14	+
NAD dependent epimerase/dehydratase	Smp_089370	4	16	2.19	7.10E-06	29.8	5, 9, 10	–
PwLAP aminopeptidase (M17 family)	Smp_083870	7	13	1.49	2.90E-05	59.7	27, 28	–
annexin	Smp_045560	5	18	2.07	2.30E-05	36.9	19, 20	+
SmVal26	Smp_154260	2	15	2.52	1.40E-04	20.5	10, 11	–
proteasome catalytic subunit 2 (T01 family)	Smp_074500.2	2	11	3.23	1.80E-06	22.8	14	–
ribosomal protein related	Smp_160460	2	9	1.81	3.00E-04	53.8	8, 19, 26	++
dynein light chain	Smp_056780	2	27	2.81	1.40E-06	10.8	8, 9	–
cytochrome c	Smp_033400	2	18	2.99	1.80E-06	12.0	9	–
SmVal27	Smp_154290	3	20	1.92	3.10E-05	20.7	12	–
calmodulin	Smp_026560.1	1	10	3.75	1.30E-06	17.2	12	+
titin, putative	Smp_126240	3	1	1.47	4.20E-05	67.4	35, 36	–
peptidylglycine mono-oxygenase	Smp_145300	3	7	1.46	2.10E-04	26.5	25, 29	++
SmVal23	Smp_160250	1	6	3.36	6.60E-06	22.8	12	–
inosine triphosphate pyrophosphatase	Smp_063120.1	2	10	1.77	6.40E-05	21.2	13	–
toxicity was measured at 72 h ALT levels that was significantly elevated relative to negative controls (Figure 4A). Similar to that found for omega-1, specific neutralization of rIPSE/alpha-1 with an anti-rIPSE/alpha-1 monoclonal antibody abolished activity and decreased the cytotoxicity of ESP and SEA by 32 and 35%, respectively (Figure 4B). All reductions in hepatoxicity were statistically significant.

Table 1. Cont.

Protein Name	Accession #	Peptides	% Cov	Score	Expect	MW (kDa)	Gel Band	
Sodium/potassium-transporting ATPase subunit beta	Smp_033550	2	9	1.73	1.40E-05	32.1	20	–
proteasome subunit alpha 7 (T01 family)	Smp_076230	2	13	2.33	1.20E-05	29.7	18, 19	–
low-density lipoprotein receptor (LDL)	Smp_159420	4	4	1.17	3.50E-04	102.7	35	–
arginase	Smp_059980	2	7	2.45	1.40E-06	39.9	11, 20	+
heme binding protein	Smp_016730	3	22	1.55	2.10E-05	20.6	14	+
dipeptidyl-peptidase III (M49 family)	Smp_019010	2	3	1.81	7.90E-05	76.2	31, 32	+
expressed protein	Smp_153230	2	2	1.71	9.90E-06	146.3	36	–
ATP synthase alpha subunit mitochondrial	Smp_002880.1	4	9	1.55	1.70E-05	59.6	26	–
adenylate kinase	Smp_071390	2	10	1.52	1.30E-04	22.3	14	+

Note: cutoff above 70% (++), below (+) and (–) not found.

doi:10.1371/journal.pntd.0001368.t001

Table 2. Proteins identified in hepatotoxic fraction #11 by LC/MS/MS analysis after SDS-PAGE fractionation and in-gel digestion, or after in-solution digestion.

Gel-band	Rank	Protein Name	Acc #	Num Unique	% Cov	Best Disc Score	Best Expect Val	Protein MW
1	[1]	glycogen phosphorylase	Smp_143840	32	50.7	5.36	2.60E-09	80035
1	[2]	glycogen phosphorylase	Smp_143850	7	51.1	4.32	2.10E-07	16835
2	[1]	heat shock protein 70	Smp_182190.2	31	41.3	5.61	8.90E-10	69830
3	[1]	aldehyde dehydrogenase	Smp_050390	5	11.6	4.33	2.10E-07	53763
3	[2]	expressed protein	Smp_170410	2	4.2	2.7	1.70E-05	29253
4	[1]	heat shock protein (Major egg antigen (P40))	Smp_049250	10	25.1	4.76	3.30E-08	40192
5	[1]	heat shock protein 70	Smp_182190.2	39	52	5.48	1.50E-09	69830
6	[1]	aldehyde dehydrogenase	Smp_050390	11	28.9	4.9	1.90E-08	53763
6	[2]	utp-glucose-1-phosphate uridylytransferase 2	Smp_133600	4	12.8	4.92	1.70E-08	52729
6	[3]	expressed protein	Smp_170410	3	9.2	3.57	5.30E-06	29253
6	[4]	heat shock protein 70	Smp_106930	2	3.3	0.99	2.30E-04	69004
7	[1]	heat shock protein (Major egg antigen (P40))	Smp_049250	2	6.9	2.86	1.10E-04	40192
8	[1]	heat shock protein (Major egg antigen (P40))	Smp_049250	4	10.8	2.99	6.20E-05	40192
8	[2]	fructose-1,6-bisphosphatase-related	Smp_097370	3	6.1	0.64	0.01	37472
9	[1]	interleukin-4-inducing protein precursor (IPSE/ALPHA-1)	Smp_112110	3	25.4	4.82	2.60E-08	15358
9	[2]	heat shock protein	Smp_049250	2	4.7	2.75	1.70E-04	40192
in solution	[1]	heat shock protein 70	Smp_106930	21	33.2	5.7	5.90E-10	69004
in solution	[2]	heat shock protein, (Major egg antigen (P40))	Smp_049250	8	17.7	4.15	4.50E-07	40192
in solution	[3]	glycogen phosphorylase	Smp_143840	5	6.6	3.12	3.50E-05	80035
in solution	[4]	aldehyde dehydrogenase	Smp_050390	5	11.6	2.22	4.30E-05	53763
in solution	[6]	macroglobulin/complement	Smp_089670	2	0.9	0.72	0.0054	222171

doi:10.1371/journal.pntd.0001368.t002
Omega-1 and IPSE/alpha-1 are major hepatotoxins in ESP and SEA

To measure the combined contributions of omega-1 and IPSE/alpha-1 to the hepatotoxicity of ESP and SEA in vitro, both egg-derived preparations were depleted of both omega-1 and IPSE/alpha-1 with specific monoclonal antibodies prior to incubation with hepatocytes. The combination of both antibodies diminished hepatotoxicity of ESP and SEA by 60 and 58%, respectively (Figure 5).

Discussion

The pathogenesis of hepatic schistosomiasis is due to the host's granulomatous response to eggs deposited in the liver [2]. The initial cellular granuloma is characterized by the presence of activated macrophages, lymphocytes, and eosinophils, as reviewed in both Agnew and Pearce [23,53]. Over time, granulomata become fibrotic, and their accumulation in perportal areas, as is the case in chronic S.mansoni infection, can lead to portal hypertension, hemorrhaging, and death [3]. Ironically, in the

Figure 3. Omega (ω)-1 exhibits dose-dependent hepatotoxicity that is neutralized by a specific monoclonal antibody. (A) Hepatocyte cultures (0.5 ml in Dulbecco's modified Eagle's medium were co-incubated with various amounts of purified native omega-1, and egg-derived material (10 μg/ml). After 72 h, ALT, a biomarker for hepatotoxicity, was measured. Polymyxin B (80 μg/ml) was included in co-incubations with omega-1 to neutralize any potential LPS. Control cultures contained polymyxin B alone. Aspergillus oryzae T2 RNase (25 U/ml) was also used as a comparison in light of omega-1's described T2 RNase activity. A combination of 5 mM D-galactosamine hydrochloride (D-gal) and 1 μg/ml rTNF-α (D-gal/TNF-α) was employed as a known hepatotoxic control and negative control cultures used PBS. (B) Pre-incubation of a specific monoclonal antibody (5 μg/ml) with omega-1 abolished the latter's toxicity and respectively decreased cytotoxicity of ESP and SEA by 47 and 33%. Data are presented as the means ± SD from two independent experiments each performed in duplicate. *P<0.02, **P<0.001 and ***P<0.0001 using a one-sided paired Student's t-test.

doi:10.1371/journal.pntd.0001368.g003

Figure 4. IPSE exhibits dose-dependent heptotoxicity that is neutralized by specific monoclonal antibody. (A) Hepatocytes were co-incubated with various amounts of rIPSE. After 72 h, the presence of ALT in the medium was measured. As positive controls, cells were co-incubated with 10 μg/ml each of ESP or SEA. A combination of 5 mM D-galactosamine hydrochloride (D-gal) and 1 μg/ml rTNF-α (D-gal/TNF-α) was employed as a known hepatotoxic control and negative control cultures used PBS. (B) Pre-incubation of a specific monoclonal antibody (5 μg/ml) with rIPSE abolished the latter’s toxicity and respectively decreased cytotoxicity of ESP and SEA by 32 and 35%. Data are displayed as the mean ± S.D. from two experiments each performed in duplicate. *P<0.05, **P<0.001 and ***P<0.0001 using a one-sided paired Student’s t-test. The hatched line represents the control baseline.

doi:10.1371/journal.pntd.0001368.g004
absence of a granulomatous response, experimental hepatic schistosomiasis in mice leads to a more acute and lethal disease [17,18,19,20,22,54]. The understanding from such observations is that schistosome eggs release hepatotoxins, toxins that are normally prevented from diffusing by circumoval granulomata. To date, the only hepatotoxic molecule identified in S. mansoni eggs is omega-1 [18], which is RNaseT2 [28], that also induces a Th2 response [30]. We established an in vitro primary hepatocyte culture system using ALT as the metric for cell injury to identify egg components with direct hepatotoxicity. We first confirmed the toxicity of S. mansoni eggs and their derivatives, ESP and SEA, and then showed that pure native omega-1 is hepatotoxic in vitro, consistent with previous in vivo observations. Based on the present system, omega-1 was a major toxin released by S. mansoni eggs, as depletion of ESP or SEA with a specific monoclonal antibody decreased ALT levels by 47 and 33%, respectively.

To search for additional hepatotoxins, we combined anion exchange chromatography of ESP with proteomics. A single hepatotoxic fraction (#11) was identified which contained a short list of nine proteins. IPSE/alpha-1 stood out as a molecule of interest given its potent immunomodulatory properties [39,53]. Subsequent characterization of pure rIPSE/alpha-1 demonstrated that the molecule is indeed directly hepatotoxic. The finding was confirmed using a specific monoclonal antibody that essentially neutralized IPSE/alpha-1 toxicity while decreasing the cell injury produced by both ESP and SEA by approximately one-third. Further depletion of ESP and SEA with a combination of monoclonal antibodies targeting both omega-1 and IPSE/alpha-1 indicated that approximately 60% of the toxicity of the egg-derived material is due to these two proteins. This leaves room for additional hepatotoxins to be identified, perhaps by different chemical and physical separation approaches. We also note that although both omega-1 and IPSE/alpha-1 were identified in the total ESP proteome, only IPSE/alpha-1 was subsequently found in the single hepatotoxic fraction #11. This suggests that omega-1 was below the mass spectrometry detection limits used to identify proteins.

Recently, IPSE/alpha-1 was reported to be internalized by Chinese hamster ovary cells (CHO) and primary monocyte-derived dendritic cells, but not by peripheral blood basophils [40]; and in each case without apparent toxicity. This suggests that host cell-specific factors determine how cells interact with and respond to IPSE/alpha-1. Such factors might explain why IPSE/alpha-1 is directly toxic to hepatocytes. Studies to understand the mechanism of hepatotoxicity induced by IPSE/alpha-1, and other hepatotoxins such as omega-1, can now be undertaken with the present in vitro system. Ribonuclease activity is often associated with cytotoxicity, and Steinfelder et al noted that omega-1 was initially characterized as a hepatotoxic agent from S. mansoni [28]. Nevertheless, the Th2-promoting activity of omega-1 cannot be explained by a cytotoxic effect, as the molecule failed to induce a detectable reduction in dendritic cell viability. The exact mechanism(s) by which the ribonuclease activity of omega-1 may promote Th2 responses is currently under investigation [31].

The results presented here underscore the paradox of the granulomatous response in hepatic schistosomiasis. Though detrimental to the host in the longer term due to its contribution to disease sequelae such as portal hypertension, it nevertheless protects against more acute hepatocyte injury resulting from toxins released by the schistosome egg.

Supporting Information

Figure S1 SDS-PAGE preparation of ESP. ESP (20 μg) was loaded into SDS-PAGE, the gel was silver stained, then sliced into 40 bands as indicated for in gel trypsin digestion and peptide sequencing by LC-MS/MS. The picture shows Fluorescence image for SyproRuby stained gel.

Acknowledgments

The authors are very grateful to Drs. Gabriele Schramm and Helmut Haas of the Research Center Borstel, Borstel, Germany for generously providing us with critical reagents and advice. We thank Howard Leong of the Clinical Chemistry Laboratory at the San Francisco Veterans’ Affairs Medical Center (VAMC) for ALT analysis. We thank Omar Al-Obiad of King Saud University for advice. We also thank the UCSF Liver Center for preparing hepatocyte cultures and Dr. Jacquelyn J. Maher for advice.

Author Contributions

Conceived and designed the experiments: M-HA K-CL CRC JHM. Performed the experiments: M-HA K-CL CRC. Analyzed the data: M-HA K-CL. Contributed reagents/materials/analysis tools: M-HA K-CL CRC. Wrote the paper: M-HA CRC JHM.

References

1. Utzinger J, N’Goran EK, Caffrey CR, Keiser J (2010) From innovation to application: Social-ecological context, diagnostics, drugs and integrated control of schistosomiasis. Acta Trop. (2010), doi:10.1016/j.actatropica.2010.08.020.

2. Wynn TA, Thompson RW, Cheever AW, Mentink-Kane MM (2004) Immunopathogenesis of schistosomiasis. Immunol Rev 201: 156–167.

3. Boros DL (1989) Immunopathology of Schistosoma mansoni infection. Clin Microbiol Rev 2: 250–269.
4. Grzych JM, Pearce E, Cheever A, Caudalza ZA, Caspar P, et al. (1991) Egg deposition is the major stimulus for the production of Th2 cytokines in murine schistosomiasis mansoni. J Immunol 146: 1322–1327.

5. Hernandez HJ, Edson CM, Harn DA, Lavel C, Stadecker MJ (1998) Schistosoma mansoni: genetic restriction and cytokine profile of the CD4+ helper cell response to dominant epitope peptide of major egg antigen Smp-60. Exp Parasitol 90: 122–130.

6. Chen Y, Boes DL (1998) Identification of the immunodominant T cell epitope of Smp-60, a major antigen, and characterization of the epitope-specific Th2 responsiveness during murine schistosomiasis mansoni. J Immunol 160: 5420–5427.

7. Schramm G, Hamilton JV, Bolog C, Weitk M, Grou D, et al. (2009) Molecular characterization of kapp-5, a major antigenic glycoprotein from Schistosoma mansoni eggs. Mol Biochem Parasitol 166: 4–14.

8. Pearce EF (2005) Priming of the immune response by schistosome eggs. Parasite Immunol 27: 263–270.

9. Vella AT, Hulsemuth MD, Pearce EF (1992) Schistosoma mansoni eggs induce antigen-responsive CD4+Th2 helper cells 2 and IL-4 secrete CD4+Th2. Potential for T helper 2 subset differentiation is evident at the precursor level. Immunol 119: 1742–1754.

10. Vella AT, Pearce EF (1992) CD4+ Th2 response induced by Schistosoma mansoni eggs develops rapidly, through an early, transient, Th0-like stage. J Immunol 148: 2283–2290.

11. Jankovic D, Kulberg MC, Caspar P, Sher A (2004) Parasite-induced Th2 polarization is associated with down-regulated dendritic cell responsiveness to Th1 stimuli and a transient delay in T lymphocyte cycling. J Immunol 173: 2419–2427.

12. Byram JE, von Lichtenberg F (1977) Altered schistosome granuloma formation in T-cell-deprived mice. Am J Trop Med Hyg 26: 944–956.

13. Byram JE, Sher A, DiPietro J, von Lichtenberg F (1979) Potentiation of schistosome granuloma formation by lentinan–T cell adjuvant. Am J Pathol 94: 201–222.

14. Davis BH, Mahonas AU, Warren KS (1974) Granulomatous hypersensitivity to Schistosoma mansoni eggs in thymectomized and breast-censoreded chimpanzees. J Immunol 113: 1064–1067.

15. Akpom CA, Warren KS (1975) Calorie and protein malnutrition in chronic murine schistosomiasis mansoni: effect on the parasite and the host. J Infect Dis 132: 6–14.

16. Domingo EO, Cowan RB, Warren KS (1976) The inhibition of granuloma formation around Schistosoma mansoni eggs I. Immunosuppressive drugs. Am J Trop Med Hyg 25: 284–292.

17. Lucas S, Mussallam R, Bain J, Hassounah O, Bickle Q, et al. (1990) The pathologic effects of immunosuppression of Schistosoma mansoni-infected mice, with particular reference to survival and hepatotoxicity after thymectomy and treatment with antithymocyte serum, and treatment with hydrocortisone acetate. Trans R Soc Trop Med Hyg 74: 633–643.

18. Dunne DW, Lucas S, Bickle Q, Pearson S, Madgwick L, et al. (1991) Identification and partial purification of an antigen (omega 1) from Schistosoma mansoni eggs which is putatively hepatotoxic in T-cell deprived mice. Trans R Soc Trop Med Hyg 75: 54–71.

19. Dunne DW, Pearson S, Dunne DW, Bickle Q, Lucas S, et al. (1981) Immunological control of hepatotoxicity and parasite egg excretion in Schistosoma mansoni infection in adult rats. Trans R Soc Trop Med Hyg 75: 41–53.

20. Amiri P, Locksley RM, Pearson S, Locksley RM, et al. (1984) Tumour necrosis factor alpha restores granulomas and induces parasite egg-laying in anti-Th2 immunized T-cell-deprived mice. Nature 307: 604–607.

21. Davies SJ, Likic M, Blank RB, Kim JH, Lucas KD, et al. (2004) Involvement of TNF in limiting liver pathology and promoting parasite survival during schistosomiasis infection. Int J Parasitol 34: 27–36.

22. Buchanan RD, Fine DP, Colley DG (1973) Schistosoma mansoni infection in mice depleted of thymus-dependent lymphocytes. II. Pathology and altered pathogenesis. Am J Pathol 71: 207–218.

23. Agnew AM, Murare BM, Doenhoff MJ (1989) Specific cross-protection between Schistosoma bovis and S. haematobium induced by highly irradiated infections in mice. Parasitology 111: 341–349.

24. Murare EM, Dunne DW, Bain J, Doenhoff MJ (1992) Schistosoma mansoni: control of hepatotoxicity and egg excretion by immune serum in infected mice with group-specific antibodies. Exp Parasi tol 75: 329–339.

25. Dunne DW, Bain J, Lileywhite J, Doenhoff MJ (1984) The stage-, strain- and species-specificity of a Schistosoma mansoni egg antigen fraction (CEF6) with prodiagnostic potential. Trans R Soc Trop Med Hyg 78: 460–470.

26. Dunne DW, Jones FM, Doenhoff MJ (1991) The purification, characterization, serological activity and hepatotoxic properties of two cationic glycoproteins (alpha and omega 1) from Schistosoma mansoni eggs. Parasitology 101 Pt 2: 225–236.

27. Dunne DW, Hillen TW, Vazquez GI (1988) Schistosoma mansoni egg cationic antigens (CEF6): immunoserology with oxamniquine-treated patients and strain-specific. Exp Parasitol 75: 329–339.