Ferreira Bento, Ricardo; Vuono Brito Neto, Rubens; Koji Tsuji, Robinson; Queiroz Telas Gomes, Marcos; Schmidt Goffi-Gomez, Maria Valéria

Implante auditivo de tronco cerebral: técnica cirúrgica e resultados auditivos precoces em pacientes com neurofibromatose tipo 2

Brazilian Journal of Otorhinolaryngology, vol. 74, núm. 5, septiembre-octubre, 2008, pp. 647-651

Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial

São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=392437854002
Implante auditivo de tronco cerebral: técnica cirúrgica e resultados audítivos precoces em pacientes com neurofibromatose tipo 2

Ricardo Ferreira Bento¹, Rubens Vuono Brito Neto², Robinson Koji Tsuji³, Marcos Queiroz Telas Gomes⁴, Maria Valéria Schmidt Gofti-Gomez⁵

Resumo / Summary

O implante auditivo de tronco cerebral foi desenvolvido para restaurar alguma audição útil em pacientes que apresentam ausência de nervo coclear bilateralmente. Objetivos: Discutir a indicação, cirurgia e resultados em quatro pacientes submetidos à cirurgia para colocação de implante auditivo de tronco cerebral. Casuística e Métodos: Quatro pacientes com diagnóstico de schwannomas vestibulares bilaterais foram submetidos à cirurgia para colocação de Implante Auditivo de Tronco Cerebral durante o mesmo ato cirúrgico utilizado para a exérese de um dos tumores. Aspectos clínicos e técnicos e as referências anatômicas da cirurgia e os resultados auditivos foram analisados. Resultados: Em todos os casos foram identificados as referências anatômicas ao forame de Luschka. As complicações cirúrgicas se resumiram à fistula líquórica em dois pacientes. O eletrodo foi bem posicionado e a sensação auditiva foi suficiente para reconhecimento de sons e auxílio à leitura labial. Conclusão: Os resultados auditivos de nossos pacientes abrem uma perspectiva importante aos pacientes com surdez profunda bilateral sem integridade anatômica das vias auditivas centrais.

Auditory Brainstem Implant: surgical technique and early audiological results in patients with neurofibromatosis type 2

Auditory Brainstem Implants were developed to partially restore the hearing capabilities of patients without cochlear nerves bilaterally. **Aim:** this paper aims to discuss the clinical and surgical findings of four ABI patients. **Materials and method:** four patients diagnosed with bilateral schwannomas received auditory brainstem implants (ABI) and had one of their tumors resected in the same surgical procedure. Clinical aspects, surgical technique, anatomic landmarks, and outcomes were analyzed. **Results:** the anatomic landmarks were identified in all four patients in relation to the foramina of Luschka. Two patients had CSF leaks. The electrodes were well positioned and hearing sensation was good enough to allow for sound recognition and assist patients perform lip reading. **Conclusion:** the outcomes observed in our patients were quite encouraging and offer great perspectives for those suffering from deep bilateral deafness and impaired central auditory pathways.

Palavras-chave: cirurgia, implante auditivo de tronco encefálico, neurofibromatose acústica bilateral, resultados.

Keywords: surgery, auditory brain stem implantation, neurofibromatosis type 2, results.

¹ Professor Titular da Disciplina de Otorrinolaringologia da Faculdade de Medicina da USP.
² Professor Livre-Docente da Disciplina de Otorrinolaringologia da Faculdade de Medicina da USP.
³ Pós-Graduando. Médico assistente da Divisão de Clínica Otorrinolaringológica do HC-FMUSP.
⁴ Médico assistente da Disciplina de Neurocirurgia da Faculdade de Medicina da USP.
⁵ Doutora. Fonoaudiológica da Divisão de Clínica Otorrinolaringológica do HC-FMUSP.

Endereço para correspondência: Rubens de Brito Neto - Av. Angélica 1968 cj. 91 Higienópolis SP SP 01228-200.

Este artigo foi submetido no SGP (Sistema de Gestão de Publicações) da RBOIL em 18 de abril de 2007. cod. 4463

Artigo aceito em 11 de agosto de 2007.
O implante auditivo de tronco cerebral foi desenvolvido para restaurar alguma audição útil em pacientes que apresentam ausência de nervo coclear bilateralmente. Foi desenvolvido primeiramente como um eletrodo monocanal no House Ear Institute (HEI), em Los Angeles, Califórnia. Este primeiro modelo foi utilizado em 25 pacientes entre 1979 e 1992 com resultados clínicos precários. A partir desta experiência foi desenvolvido o implante multicanal, em uma parceria do HEI, da Cochlear Corporation (Englewood, Colorado) e a Huntington Medical Research Institute (Pasadena, Califórnia). O aparelho era constituído de uma unidade interna contendo um cabo de silicone com eletrodos de platina em forma de disco e uma interface ao processador de fala Nucleus Mini-22.

Os pacientes que classicamente se beneficiam deste tipo de prótese auditiva eletrônica cirurgicamente implantável são aqueles com diagnóstico de neurofibromatose tipo 2 (NF-2), por apresentarem schwannomas vestibulares bilaterais ou crianças com aplasia congênita de nervo coclear. Atualmente a indicação do implante auditivo de tronco cerebral se ampliou e pacientes sem integridade neural do VIII par e impossibilidade de colocação de um implante coclear convencional, como portadores de cócleas ossificadas após meningite, são potenciais candidatos a esta cirurgia. A primeira cirurgia para implantação de um eletrodo auditivo em tronco cerebral datou de 1979, apenas em outubro de 2000 houve aprovação para seu uso clínico pela agência de regulamentação nos Estados Unidos (FDA).

OBJETIVOS

Discutir a indicação, cirurgia e resultados dos quatro primeiros casos submetidos à cirurgia para colocação de implante auditivo de tronco cerebral, discutindo os critérios de indicação, técnica cirúrgica e resultados.

CASUÍSTICA E MÉTODO

Quatro pacientes com diagnóstico de schwannomas vestibulares bilaterais foram submetidos à cirurgia para colocação de Implante Auditivo de Tronco Cerebral durante o mesmo ato cirúrgico utilizado para a exérese de um dos tumores. Este trabalho foi aprovado pela comissão de ética médica (protocolo M.16-196/2007).

O acesso cirúrgico utilizado para a ressecção dos tumores e exposição do núcleo coclear na parede lateral do IV ventrículo (Forâmen de Luschka) foi o translabiríntico. Todos os casos receberam uma unidade interna modelo Cochlear N24® ABI. Os pares cranianos VII, IX, X e XI foram monitorizados por eletrofisiologia contínua durante a cirurgia e audimetria de tronco cerebral por respostas elétricas foi utilizada para se verificar a correta disposição dos eletrodos.

Os resultados auditivos após três meses de ativação foram realizados por audimetria em campo livre.

Os pacientes e data da cirurgia e da ativação da unidade externa estão sintetizados na Tabela 1. As Figuras 1-4 mostram a imagem radiológica dos tumores operados.

RESULTADOS

O acesso escolhido, o translabiríntico clássico, mostrou-se suficiente para a exérese dos tumores e identificação do Forame de Luschka. As referências anatômicas ao forame, IX par craniano e flóculus cerebelar foram acessados de forma satisfatória pelo cirurgião, bastando para isto o completo descobrimento do bulbo da veia a esta cirurgia. Apesar da primeira cirurgia para implantação de um eletrodo auditivo em tronco cerebral datar de 1979, apenas em outubro de 2000 houve aprovação para seu uso clínico pela agência de regulamentação nos Estados Unidos (FDA).

Tabela 1. Pacientes, datas da cirurgia e ativação da unidade externa.

Paciente	Idade	Sexo	Diagnóstico	Tamanho do tumor	Data da cirurgia	Data da ativação
1	28	M	NF2	3,5 cm	Jan 2006	Fev 2006
2	25	F	NF2	IC	Mar 2006	Abr 2006
3	25	M	NF2	4,0 cm	Mar 2006	Abr 2006
4	26	M	NF2	2,0 cm	Dez 2006	Jan 2007

Figura 1. RM (T1 com contraste) em corte axial pré-operatória do caso 1.
jugular da camada óssea que o envolve e a completa exposição de toda dura-máter das fossas cerebrais média e posterior. A abertura da dura-máter da fossa posterior foi ampla, com limites no bulbo da veia jugular, seio sigmóide e seio petroso superior. As cirurgias foram realizadas sem intercorrências, e o eletrodo foi posicionado em contato com o núcleo coclear na parede lateral do IV ventrículo, que por se encontrar no interior do forame, firma-se por pressão das estruturas adjacentes. Fístula líquórica ocorreu nos pacientes 2 e 3, tratadas com punção lombar (paciente 3) e nova cirurgia para obliteração com gordura abdominal (paciente 2).

As ativações foram realizadas em média 30 dias após a cirurgia, com o paciente em ambiente cirúrgico e com monitorização cardiológica. Com exceção do paciente 1, com sensação sonora em apenas 1 eletrodo, todos os outros referiram sensação auditiva em mais de 12 eletrodos. Os efeitos colaterais foram observados em 88% nos membros superiores, inferiores e abdômen e em 12% na cabeça e pescoço (garganta e náuseas). O Gráfico 1 mostra os resultados auditivos em audiometria em campo livre tonais 3 meses após a ativação.

DISCUSSÃO

O conceito de implante auditivo de tronco cerebral é semelhante ao do implante coclear disponível atualmente, com a diferença de configuração do eletrodo, desenhado para ser introduzido ao nível do nervo coclear e não na rampa timpânica da cóclea. Se beneficiam deste tratamento pacientes que por motivos anatômicos ou funcionais não
possam receber estímulos elétricos pela orelha interna. Em países sociologicamente avançados, a principal causa da perda estrutural das vias auditivas periféricas bilateralmente é a neurofibromatose tipo 2, cuja característica essencial é a de evoluir com schwannomas vestibulares bilaterais. Porém, isto não ocorre no Brasil. Infelizmente, as etiologias infecciosas ainda são responsáveis pela maioria dos casos de surdez, e, entre elas, a meningite certamente é a principal. Aproximadamente 23,9% de todos os nossos casos já implantados com algum tipo de implante coclear são pacientes que perderam a audição após meningite. Este fato é preocupante, uma vez que o prognóstico da função auditiva após a implantação está intimamente relacionado à quantidade de elementos neurais viáveis à implantação e ao correto posicionamento dos eletrodos na cóclea. A meningite contraria estes dois fatores. Primeiro, é a etiologia que mais leva à destruição de células ciliadas da cóclea e neurônios do nervo coclear e, em segundo, comumente leva à algum grau de ossificação da cápsula ótica. Além da questão funcional, a meningite foi responsável por todos os nossos seis casos de falha técnica no posicionamento do eletrodo durante a cirurgia, com consequente explanação da unidade interna e necessidade de nova cirurgia para implantação de novos eletrodos. Este fator infeccioso amplia muito a necessidade de se tornar disponível uma alternativa ao implante coclear convencional no Brasil. Os pacientes com neurofibromatose tipo 2 são raros, mesmo em um serviço de referência. Porém, levando em conta a evolução trágica, mas lentamente progressiva desta doença, o impacto do restauro de alguma audição útil a estes pacientes é extremamente elevado. Em nossos primeiros casos, procuramos realizar a cirurgia em pacientes cuja indicação cirúrgica, tanto em relação à exérese do tumor, quanto na implantação do eletrodo, eram clássicas. O paciente 1 foi primeiramente selecionado por apresentar pleno conhecimento do procedimento, uma vez que há anos se dedica, como leigo, ao estudo da NF2 e já passou por procedimentos cirúrgicos anteriores. O pleno conhecimento das possibilidades e limitações do procedimento proposto é fundamental para adequar a expectativa do paciente e, portanto, à satisfação no pós-operatório. Este fato é de suma importância e consideramos prioritário o correto conhecimento pelo paciente e familiares tanto da história natural da NF2 quanto do procedimento cirúrgico e da possibilidade de restauro parcial da audição com o implante. Pacientes e familiares passam por criteriosa avaliação psicológica e social, além da visão médica e audiológica. Em relação à via de acesso utilizada para a implantação dos eletrodos no tronco cerebral, duas são as principais: a via retrossigmoidea suboccipital e a via translabiríntica. Acreditamos que a via de acesso escolhida deva ser ampla o suficiente para permitir a correta identificação dos parâmetros anatômicos utilizados como referência ao correto posicionamento dos eletrodos, e a escolha entre estes dois acessos é feita conforme a experiência do cirurgião com cada um deles. A maioria dos otorrinolaringologistas opta pelo acesso translabiríntico em cirurgias para exérese de schwannomas vestibulares grandes ou com audição deteriorada, e, portanto, em se realizando a implantação no mesmo tempo cirúrgico, este acesso é o escolhido por nós. A técnica cirúrgica utilizada para a implantação do eletrodo de tronco cerebral é semelhante à utilizada na remoção do schwannoma vestibular. O complexo de núcleo coclear, composto pelo núcleo coclear ventral e dorsal, é o local para a colocação do eletrodo. O núcleo coclear ventral é o principal núcleo de transmissão de impulsos neurais do VIII par e seus axônios formam a principal via ascendente do nervo coclear. Tanto o núcleo ventral como o dorsal não são visíveis durante a cirurgia e sua localização depende de identificação de estruturas anatômicas adjacentes. A terminação lateral do quarto ventrículo, o forame de Luschka, se situa entre as saídas dos nervos glossofaríngeo e facial. Em se afastando o flóculus, o cirurgião visualiza uma depressão entre os pares cranianos mencionados, local onde se deve inserir o eletrodo. Normalmente apenas um coto do nervo coclear é identificado, podendo também ser usado como referência ao recesso lateral. É necessário lembrar que a exérese de grandes tumores leva a uma alteração da anatoma na região, principalmente em relação à emergência do VIII par na ponte, difícil de se reconhecer com a perda da integridade do nervo durante a cirurgia, e em presença de restos de aracnóide. A observação de regiões anatomicamente preservadas além do leito tumoral, distal ou proximal, e a eletromiografia intra-operatória sem dúvida são parâmetros úteis durante o procedimento de posicionamento dos eletrodos. Em nossos quatro casos os parâmetros anatômicos estavam bem preservados, principalmente nos primeiros dois pacientes cujos tumores eram pequenos. No paciente 1, o pequeno tamanho do tumor e a não-projeção deste à fossa cerebral posterior deixava a superfície do tronco cerebral intacta e, portanto, com todas as referências bem identificáveis. Em relação ao paciente 2, a principal referência foram os pares bulbares e o flóculus cerebelar, estando o forame de Luschka bem preservado anatomicamente. A paciente 2 apresentava lesão intracanalicular bilateral e disausia profunda recente, o que a tornava uma ótima candidata para o primeiro caso, tanto do ponto de vista cirúrgico, uma vez que os parâmetros anatômicos ao forame de Luschka não estariam deformados pelo tumor, quanto pelo prognóstico auditivo, bom devido à recente privação sensorial. Embora esta análise tenha se mostrado correta, a paciente evoluiu de maneira incomum no pós-operatório, apresentando fistula liquórica não-responsiva à derivação lombar e consequente necessidade de reabordagem para fechamento cirúrgico. Além disto, o liquor
de rotina apresentou células neoplásicas e, finalmente, o anatomopatológico descreveu a lesão como um papiloma deplexo coróide. A evolução agressiva da lesão e a necessidade de quimioterapia e radioterapia levaram a paciente a abandonar o uso do implante durante o tratamento. Atualmente a paciente se encontra com doença estável e bem clinicamente, utilizando o implante diariamente. A presença de metástase em conduto auditivo interno é bastante rara, e na maioria das vezes impossível de ser diferenciada de pequenos schwannomas vestibulares radiologicamente. Este é um fato bastante importante de ser lembrado, pois atualmente uma das condutas em pequenos tumores acústicos é o acompanhamento clínico, e este diagnóstico diferencial raro deve estar na mente do médico e do paciente nesta opção.

Os pacientes 3 e 4 tinham tumores maiores, o que dificultou a identificação do forame de Luschka pela alteração anatômica da região. Uma vez encontrado, o eletrodo pode ser bem posicionado em ambos os casos.

Os resultados auditivos de nossos quatro pacientes foram bastante animadores. Em nossa amostra, a presença de limiares auditivos correspondentes a uma perda leve ou até limiares normais em algumas frequências sugere a possibilidade de percepção da presença de muitos sons ambientais, inclusive de frequências agudas, mostrando que a habilidade de perceber sons ambientais é reconhecimento da fala com auxílio à leitura labial pode ser restaurada com este tipo de implante8,9. Embora tenham comparado os resultados do implante do tronco cerebral com aqueles dos implantes cocleares monocanais10, os nossos resultados precoces em audiometria em campo livresurpreenderam positivamente, principalmente pela adesão dos pacientes ao uso diário do aparelho.

CONCLUSÃO

Embora precoces, acreditamos que os resultados auditivos de nossos pacientes abrem uma perspectiva importante aos pacientes com surdez profunda bilateral sem integridade anatômica das vias auditivas centrais.

REFERÊNCIAS BIBLIOGRÁFICAS

1. Toh EH, Luxford WM. Cochlear and brainstem implantation. Otolaryngol Clin N Am 2002;35:325-42.
2. Brackmann DE, Hietelberger WE, Nelson RA, Moore J, Waring MD, Portillo F, Shannon RV, Telish FF. Auditory brainstem implant: issues in surgical implantation. Otolaryngol Head Neck Surg 1995;108:624-33.
3. Colletti V, Fiorino FG, Garner M, Moorell V, Guida M, Colletti L. Auditory brainstem implant as a salvage treatment after unsuccessful cochlear implantation. Otol Neurotol 2004;25:485-96.
4. Grayeli AB, Bouccara D, Kalamarides M, Ambet-Dahan E, Coudert C, Cyna-Gorse F, Sollmann WP, Rey A, Sterkers O. Auditory brainstem implant in bilateral and completely ossified cochlea. Otol Neurotol 2003;24:79-82.
5. Briggs RJ, Egan P, Atlas M, Kaye AH, Sheehy J, Hollow R, Shaw S, Clark GM. Multichannel auditory brainstem implantation: the Australian experience. J Laryngol Otol 2000;114:46-9.
6. Bento RF, Brito Neto RV, Castilho AM, Goffi Gomez MA, Giorgi SB, Guedes MC. Resultados auditivos com o implante coclear multicanal em pacientes submetidos a cirurgia no Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Rev Bras Otorrinolaringol 2004;70:652-7.
7. Vautrin R, Mertens P, Streichenberger N, Ceres P, Truy E. Abordage neuro-chirurgique des noyaux cochléaires. Intérêt dans l’implantation auditive du tronc cerebral. Rev Laryngol Otol Rhinol 1998;119:171-6.
8. Nevison B, Laszig R, Sollmann WP, Leranz T, Sterkers O, Ramsden R, Fraysse B, Mannique M, Rask-Anderson H, Garcia-Ibanez E, Colletti V, Wallenberg E. Results from a European Clinical Investigation of the Nucleus Multichannel Auditory Brainstem Implant. Ear Hear 2002;23:170-83.
9. Sollmann WP, Laszig R, Marangos N. Surgical experiences in 58 cases using the Nucleus 22 multichannel auditory brainstem implant. J Laryngol Otol 2000;114:23-6.
10. Lenarz M, Mathiakies C, Shiedal AL, Frohne C, Rosi U, Illg A, Battmer BD, Sammi M, Lanerz T. Auditory brainstem implant part II: Subjective assessment of functional outcome. Otol Neurotol 2002;23:691-7.