Exploiting Graph Structure for Accelerating the Calculation of Shortest Paths in Wordnets

Holger Wunsch

University of Tübingen, Germany

Manchester, 22 August 2008
Motivation

- Frequent criticism: The relations in wordnets are too sparse
- Extend GermaNet (the German wordnet) with new relations (Lemnitzer, Wunsch, Gupta; 2008)
 - Extraction of verb-object and verb-subject pairs from the automatically parsed German newspaper corpus TüPP-D/Z (≈ 11.5 million sentences)
 - Ranking of the pairs according to mutual information and log-likelihood
 - Manual filtering (removal of nonsense pairs, support verb constructions, and words not present in GermaNet)
 - For each of the top 100 remaining pairs, a new relation is added to GermaNet ($arg1$ and $arg2$)

- Hypothesis: The better of both measures brings semantic fields closer together
Motivation

Many approaches for determining *semantic similarity* between two concepts depend on the *shortest path* connecting them.
Motivation

- Many approaches for determining *semantic similarity* between two concepts depend on the *shortest path* connecting them.
- Calculating all shortest paths takes a lot of time
 \[\Rightarrow \text{120 hours for GermaNet (approx. 53000 synsets), with Floyd-Warshall algorithm} \]
Many approaches for determining *semantic similarity* between two concepts depend on the *shortest path* connecting them.

Calculating all shortest paths takes a lot of time.

⇒ 120 hours for GermaNet (approx. 53000 synsets), with Floyd-Warshall algorithm.

No problem for one-time offline calculation.
Motivation

Many approaches for determining *semantic similarity* between two concepts depend on the *shortest path* connecting them.

Calculating all shortest paths takes a lot of time:
⇒ 120 hours for GermaNet (approx. 53000 synsets), with Floyd-Warshall algorithm.

No problem for one-time offline calculation.

But: How about repeatedly (semi-)automatically *extending and evaluating* the wordnet – with help of semantic similarity?
Motivation

- Many ("on-line") recalculations of shortest paths are a huge problem
- For GermaNet: 120 hours \(\times n \Rightarrow \text{infeasible} \)

- How to bring down processing time?
Motivation

- Many (“on-line”) recalculations of shortest paths are a huge problem
- For GermaNet: 120 hours $\times n \Rightarrow \text{infeasible}$

- How to bring down processing time?

- Use Structure Adapted Shortest Path Search
Wordnets and Graphs

Wordnets	Graphs
synset	node
(directed) relation	(directed) edge

- A **synset** is a set of words that are synonymous.
- Two types of relations in wordnets:
 - **directed relations**
 - specific terms vs. more general terms (hyponymy – hyperonymy)
 - **undirected relations**
 - opposites (antonymy)
In general graphs, there are multiple paths connecting two nodes.

A general algorithm for finding a shortest path must consider all possible alternatives.

Algorithms for finding all shortest paths

- Dijkstra’s algorithm \((n^3) \)
- Floyd-Warshall algorithm \((n^3) \)
 - Matrix-based (dynamic programming) approach
 - If there exists a shortest path between \(x \) and \(z \), and one between \(z \) and \(y \), then the shortest path between \(x \) and \(y \) is \(x - z - y \).
Are Wordnets Graphs?

They are for sure, but...

- Wordnets are (still) sparse
- Relatively few nodes in a dense central graph
- Numerous and large tree structures (biological and medical taxonomies, ...) on the fringe
Are Wordnets Graphs?

They are for sure, but...

- Wordnets are (still) sparse
- Relatively few nodes in a dense central graph
- Numerous and large tree structures (biological and medical taxonomies, ...) on the fringe

⇒ Wordnets are stars
Two-step Approach to Calculating Shortest Paths

- First pre-classify nodes
- Then use specialized algorithms for calculating the shortest path between nodes depending on their type
- Within trees: the path connecting two nodes is unique
- Within the graph part: use general path search algorithm
Node Classification

- Inner nodes
- Root nodes
- Tree nodes
- Leaf nodes
Node Classification

- Inner nodes
- Root nodes
- Tree nodes
- Leaf nodes
Node Classification

- Inner nodes
- Root nodes
- Tree nodes
- Leaf nodes
Node Classification

- Inner nodes
- Root nodes
- Tree nodes
- Leaf nodes
Node Classification

- Inner nodes
- Root nodes
- Tree nodes
- Leaf nodes
Node Classification

- Inner nodes
- Root nodes
- Tree nodes
- Leaf nodes
Path splitting

- From the start node...
- ...through the first tree...
- ...through the core graph...
- ...through the second tree...
- ...to the target node
Path splitting

- From the start node...
- ...through the first tree...
- ...through the core graph...
- ...through the second tree...
- ...to the target node
Path Calculation Proper

Path splitting

- From the start node...
- ...through the first tree...
- ...through the core graph...
- ...through the second tree...
- ...to the target node
Path Calculation Proper

Path splitting

- From the start node...
- ...through the first tree...
- ...through the core graph...
- ...through the second tree...
- ...to the target node
Path Calculation Proper

Path splitting

- From the start node...
- ...through the first tree...
- ...through the core graph...
- ...through the second tree...
- ...to the target node
$l_{xy} = l_{xr_x} + l_{r_x i_x} + l_{i_x i_y} + l_{i_y r_y} + l_{r_y y}$

with $l_{r_x i_x} = l_{i_y r_y} = 1$
Structure Adapted Shortest Path Search

\[l_{xy} = l_{xr_x} + 1 + l_{ix_iy} + 1 \]
\[l_{xy} = l_{xr_x} + 1 + l_{ix_iy} + 1 \]
Results

	Wordnet	GermaNet
Synsets	117659	53312
Inner nodes	4250	8728
Root nodes	7174	4641
Tree nodes	56532	18949
Leaf nodes	49704	20683
Classification time	≈ 1 sec	1.2 sec
plain Floyd-Warshall	> 35 days	120 hrs
Structure-adapted shortest path search	9 min	40 min
Exploitation of wordnet-specific structure substantially reduces processing time

Reduced memory overhead: Less housekeeping effort due to smaller graphs

Replace greedy path search algorithm with heuristic ones
Thank You

Web: http://www.sfs.uni-tuebingen.de/~wunsch
E-Mail: wunsch@sfs.uni-tuebingen.de
Lothar Lemnitzer, Holger Wunsch, Piklu Gupta (2008) : Enriching GermaNet with Verb-noun Relations – a Case Study of Lexical Acquisition. In: *Proceedings of LREC 2008*. Marrakech, Morocco, May 2008.