Review of dose fractionation schemes for pontine glioma irradiation

Ferrat Dincoglan, Murat Beyzadeoglu, Omer Sager*, Selcuk Demiral, Bora Uysal, Hakan Gamsiz, Fatih Ozcan, Onurhan Colak and Bahar Dirican

Department of Radiation Oncology; University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey

Received: 30 May, 2020
Accepted: 13 June, 2020
Published: 15 June, 2020

*Corresponding author: Dr. Omer Sager, MD, Associate Professor of Radiation Oncology, Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, 06018, Etlik, Kecioren, Ankara, Turkey, Tel: +90 312 304 4683; Fax: +90 312 304 4680; Email: omersager@gmail.com

Keywords: Diffuse intrinsic pontine glioma (DIPG); Radiation therapy (RT); Conventional fractionation; Hyperfractionation; Hypofractionation

ORCID: https://orcid.org/0000-0001-7866-2598
https://www.peertechz.com

Abstract

Brainstem tumors constitute approximately 10% to 15% of CNS neoplasms in the pediatric population, and most common of brainstem tumors is diffuse intrinsic pontine glioma (DIPG). Children with DIPG are typically diagnosed at the 5th to 10th years of their lives, with tumors being more frequently located in the pons rather than the midbrain or medulla oblongata. Symptomatology of patients may be severe and associated with compression of nuclei and tracts in the pons leading to cranial nerve dysfunctions. The wide spectrum of symptomatology may result in profound deterioration of the patients’ quality of life, and management is required for symptomatic relief. Complete removal of DIPG is typically not achievable given the diffuse and infiltrating nature of the disease with significant risk of excessive toxicity associated with surgical interventions. Nevertheless, surgical biopsy may be considered as a technically feasible procedure for selected patients to allow for histopathological verification and acquisition of biological data to aid in decision making for management. Utility of chemotherapy, biological and targeted therapies is being actively investigated as a promising treatment strategy, however, there is still room for improvement for routine clinical use. Radiation therapy (RT) remains to be a principal management approach for DIPG. Herein, we provide a concise review of dose fractionation schemes for pontine glioma irradiation.

Introduction

Brain tumors in the pediatric population constitute a very frequent type of solid childhood cancers and a considerable part of all pediatric malignancies. These tumors are typically classified into supra and infratentorial with respect to their location. Another classification is based on age at diagnosis and includes congenital brain tumors, tumors of infancy period observed at younger than 1 year of age, and tumors observed in older children. Brain tumors account for about 20% of all childhood neoplasms [1-5]. Brainstem comprises a critical location for pediatric Central Nervous System (CNS) malignancies [5]. Critical parts of the brainstem include the medulla oblongata, pons, and the midbrain all of which are involved in critical functions of the human body [5].

Brainstem tumors constitute approximately 10% to 15% of CNS neoplasms in the pediatric population, and most common of brainstem tumors is Diffuse Intrinsic Pontine Glioma (DIPG) [5-7]. Children with DIPG are typically diagnosed at the 5th to 10th years of their lives, with tumors being more frequently located in the pons rather than the midbrain or medulla oblongata [5-8]. Location at the midbrain and medulla oblongata may be associated with a relatively more favorable prognosis compared to pontine location with frequent expansion and diffuse infiltration of more than half of the pons [5-10]. DIPG are typically categorized as World Health Organization (WHO) grade III or IV tumors with typically an aggressive disease course and grim prognosis [5-11]. Median Overall Survival (OS) is typically in the range of 8 to 11 months, with a low OS rate of about 30% at 1 year, and less than 10% at 2 years [11].

Diagnosis of pontine gliomas is typically based on detailed history, clinical examination and presentation findings, comprehensive neurological evaluation, and neuroimaging with Magnetic Resonance Imaging (MRI) [5]. Using the clinical and imaging findings for diagnosis has been suggested to avoid...
the considerable risk of complications associated with biopsy [12,13]. However, advances in surgery may render stereotactic and liquid biopsies to be performed for selected patients [14–16]. Histopathological verification and an improved understanding of the biology of DIPG may pave the way for development of novel treatment paradigms including immunotherapeutic strategies to combat with this dreadful disease [4,7,15–18]. The H3K27M mutation has been identified in the majority of DIPGs, and advances in epigenetic targeting of transcriptional tendencies have put forth potential molecular targets which could be further investigated [4,7,15–18].

MRI constitutes the imaging modality of choice for DIPG with unique imaging characteristics [19,20]. Conventional MRI comprises a noninvasive mode of diagnosis for DIPGs which are typically expansile and infiltrative tumors located at the pons frequently with lateral extensions to the middle cerebellar peduncles, caudally to medulla oblongata and cranially to midbrain; and MRI typically reveals a isointense or hypointense lesion on T1-weighted MRI and hyperintense lesion on T2-weighted MRI with indistinct borders consistent with the infiltrative nature of DIPGS [19,20]. Exophytic growth into the prepons cistern may be seen in some patients and the basilar artery may also be engulfed by the lesion [20]. DIPGs may typically demonstrate mild heterogeneous enhancement or no enhancement, nevertheless, increased enhancement or ring enhancement may be suggestive of poorer prognosis [20–22].

Symptomatology of patients may be severe and associated with compression of nuclei and tracts in the pons leading to cranial nerve dysfunctions [5–8]. Headache, gait and visual disturbances, dysconjugate gaze and diplopia with abducens palsy, impaired alignment of the eyes, dysarthria, nausea and vomiting, impaired mobility and spasticity, Babinsky sign, weakness in legs and arms, facial weakness or asymmetry due to cranial nerve VII damage, behavioural alterations, impaired communication, and altered levels of consciousness may occur [5–8]. Gait, speech and coordination disturbances manifesting as ataxia, dysarthria, and dysmetria may be suggestive of multiple cranial neuropathies along with long tract and cerebellar signs referred to as the classical triad of DIPG [5–8,23–25]. Hydrocephalus may also be observed in a small group of affected patients due to blockade of cerebrospinal fluid flow with dorsal tumor extension [7,23,24]. The wide spectrum of symptomatology may result in profound deterioration of the patients’ quality of life, and management is required for symptomatic relief. Complete removal of DIPG is typically not achievable given the diffuse and infiltrating nature of the disease with significant risk of excessive toxicity associated with surgical interventions. Nevertheless, surgical biopsy may be considered for selected patients [4,7,15–18, 26–28]. Utility of chemotherapy, biological and targeted therapies is being actively investigated as a promising treatment strategy, however, there is still room for improvement for routine clinical use [29–31]. Radiation Therapy (RT) remains to be a principal management approach for DIPG. Herein, we provide a concise review of dose fractionation schemes for pontine glioma irradiation.

Irradiation of pontine gliomas by use of conventional fractionation

Conventionally fractionated RT (CFRT) has been traditionally utilized for management of pontine gliomas with the primary goal of achieving symptomatic relief and disease control. A total RT dose of 54 to 60 Gy is delivered over approximately 6 weeks with CFRT using a daily fraction dose of 1.8 to 2 Gy [5,8,9,32–34]. Use of steroids during the RT course may aid in management of symptoms due to peritumoral edema, typically with dose tapering after treatment completion. In a systematic review by Gallitto, et al. [33], CFRT constituted the majority of definitive RT series for DIPG management. Median OS with CFRT was 12 months whereas median OS was 10.2 months for hypofractionated RT and 7.9 months for hypofractionated RT regimens [33]. Freese et al [34] assessed outcomes of RT and subsequent irradiation in a study group of 26 patients with DIPG. Conventional fractionation was used as the dose fractionation scheme, and patients were treated using Intensity Modulated Radiation Therapy (IMRT) [34]. Reirradiation was utilized for 3 patients with a total dose of 20 Gy delivered again with conventional fractionation [34]. The authors concluded that advances in treatment techniques could allow for retreatment of patients after definitive management with RT [34].

Irradiation of pontine gliomas by use of hyperfractionated RT

Rationale behind hyperfractionation includes delivering higher biologically equivalent doses of RT whilst avoiding treatment related adverse effects. In this context, several trials have focused on hyperfractionated RT schemes [35–42]. Mandell, et al. [42] conducted a phase III randomized controlled trial comparing hyperfractionated RT and CFRT for management of newly diagnosed diffuse intrinsic brainstem tumors. A total of 130 patients were enrolled, and no clear evidence of effect was observed on OS [9,42]. Considering the absence of evidence demonstrating the superiority of hyperfractionation, it seems prudent not to opt for hyperfractionated RT regimens which also put forward additional issues including logistics, patient convenience, and potential requirements for repeated anaesthesia [5,9,33].

Irradiation of pontine gliomas by use of hypofractionated RT

Given the limited life expectancy of patients with DIPG, hypofractionated RT regimens have been considered [43–48]. Primary aim of hypofractionation is shortened overall treatment time compared to CFRT. However, no improvement in OS has been achieved with hypofractionation and even inferior outcomes have been reported [9,33,43–48]. In the systemic review by Gallitto et al. [33], mean median OS for hypofractionated RT series was 7.9 months with a mean 1-year OS rate of 28.8%. Nevertheless, hypofractionated RT regimens may offer decreased treatment burden on patients and their families. In this context, selected patients may be considered for hypofractionated RT regimens despite need for further supporting evidence [49].
Reirradiation of pontine gliomas

Despite the poor prognosis of DIPG with limited survival durations, reirradiation may be considered [34]. Reirradiation schemes may include CFRT as well as radiosurgical applications [34,50–52]. Comprehensive studies addressed the utility of reirradiation for DIPG [53–58]. Janssens, et al. analyzed the benefit and toxicity of reirradiation at first progression of DIPG [56]. They treated 31 children aged 2–16 years with DIPG at first progression with a reirradiation dose of 19.8–30 Gy [56]. Median overall survival was 13.7 months for patients receiving reirradiation, and the authors concluded that majority of DIPG patients responding to upfront RT may benefit from reirradiation with acceptable toxicity [56]. Massimino, et al. assessed the results of nimotuzumab and vinorelbine, RT and reirradiation for diffuse pontine glioma in childhood [57]. Twenty five patients were enrolled, and 11 out of 16 patients with local relapse received reirradiation to a dose of 19.8 Gy delivered over 11 days [57]. Median progression free survival was 8.5 months and median overall survival was 15 months [57]. The authors concluded that the treatment strategy should be further investigated in view of the interesting results [57]. Wolff et al. reported their experience on treatment of recurrent DIPG including reirradiation as part of management in 7 patients out of the total 31 patients [58]. The authors concluded that reirradiation should be tested in a prospective clinical study in view of the encouraging response rates [58].

Recent years have witnessed significant advances in radiation oncology with widespread adoption of contemporary RT strategies including Image Guided Radiation Therapy (IGRT), Intensity Modulated Radiation Therapy (IMRT), and Adaptive Radiation Therapy [59–65]. Radiosurgery in the form of Stereotactic Radiosurgery (SRS), Stereotactic Body Radiation Therapy (SBRT) and Hypofractionated Stereotactic Radiation Therapy (HFSRT) may be used for focused irradiation of several CNS disorders as well as several other tumors throughout the human body [66–100]. Rationale of radiosurgery includes highly focused delivery of high and ablative RT doses to well defined targets with optimal normal tissue sparing with stereotactic localization, robust immobilization, and steep dose gradients around the target. Nevertheless, there is relatively limited experience with this relatively newer radiotherapeutic strategy.

Conclusions and future perspectives

RT plays a major role in management of pontine gliomas. Given the limited life expectancy of patients with DIPG, RT may be utilized for achieving at least a transient stabilization of disease and improvement in symptoms and quality of life. Improved understanding of the biology of DIPG may allow for utilization of targeted therapies to achieve an improved therapeutic ratio for pontine gliomas.

References

1. Stillier CA, Nectoux J (1994) International incidence of childhood brain and spinal tumours. Int J Epidemiol 23: 458-464. Link: https://bit.ly/2Yzm3lx
2. Linabery AM, Ross JA (2008) Trends in childhood cancer incidence in the U.S. (1992-2004). Cancer 112: 416-432. Link: https://bit.ly/3d0d3er
3. Johnson KJ, Cullen J, Barnholtz-Sloan JS, Ostrom QT, Langer CE, et al. (2014) Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev 23: 2716-2736. Link: https://bit.ly/2Yv7WoY
4. Pollack IF, Agnihotri S, Broniscer A (2019) Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr 23: 261-273. Link: https://bit.ly/27N69JX
5. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2018) Radiation Therapy (RT) for Diffuse Intrinsic Pontine Glioma (DIPG) in Children. Arch Can Res 6: 14. Link: https://bit.ly/3f5pUY7
6. Frazier JL, Lee J, Thomale UW, Noggle JC, Cohen KJ, et al. (2009) Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. J Neurosurg Pediatr 3: 259-269. Link: https://bit.ly/3dWSQJK
7. Johung TB, Monje M (2017) Diffuse Intrinsic Pontine Glioma: New Pathophysiological Insights and Emerging Therapeutic Targets. Curr Neuropharmacol 15: 88-97. Link: https://bit.ly/3h5UBu8
8. Vanan MI, Eisenstat DD (2015) DIPG in children: What can we learn from the past?. Front Oncol 5: 237. Link: https://bit.ly/30FEnmo
9. Hu X, Fang Y, Hui X, Jv Y, You C (2016) Radiotherapy for diffuse brainstem glioma in children and young adults. Cochrane Database Syst Rev 6: CD010439. Link: https://bit.ly/2UD0xv6
10. Infinger LK, Stevenson CB (2017) Re-Examining the Need for Tissue Diagnosis in Pediatric Diffuse Intrinsic Pontine Glioma: A Review. Curr Neuropharmacol 15: 129-133. Link: https://bit.ly/2ZspS5k
11. Hargrave D, Bartels U, Bouffet E (2006) Diffuse brainstem glioma in children: Critical review of clinical trials. Lancet Oncol 7: 241-248. Link: https://bit.ly/37Ty7Ya
12. Albright AL, Packer RJ, Zimmerman R, Rorke LB, Boyett J, et al. (1993) Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: A report from the Children's Cancer Group Neurosurgery 33: 1026-1029. Link: https://bit.ly/37aS088
13. Epstein F, McCleary EL (1986) Intrinsic brain-stem tumors of childhood: Surgical indications. J Neurosurg 64: 11-15. Link: https://bit.ly/3ho99l9
14. Lu VM, Power EA, Zhang L, Daniels DJ (2019) Liquid biopsy for diffuse intrinsic pontine glioma: an update. J Neurosurg Pediatr 1-8. Link: https://bit.ly/2MWfcwU
15. Williams JR, Young CC, Vitanza NA, McGrath M, Ferroze AH, et al. (2020) Progress in diffuse intrinsic pontine glioma: advocating for stereotactic biopsy in the standard of care. Neurosurgery Focus 48: E4. Link: https://bit.ly/3d4TaTC
16. Vitanza NA, Monje M (2019) Diffuse Intrinsic Pontine Glioma: From Diagnosis to Next-Generation Clinical Trials. Curr Treat Options Neurol 21: 37. Link: https://bit.ly/3Fiijjx
17. Rashed WM, Mahner M, Adel M, Saber O, Zaghloul MS (2019) Pediatric diffuse intrinsic pontine glioma: where do we stand?. Cancer Metastasis Rev 38: 759-770. Link: https://bit.ly/3fprURu
18. Cohen KJ, Jabado N, Grill J (2017) Diffuse intrinsic pontine glioma: biological and clinical insights. Nat Rev Neurol 19: 1025-1034. Link: https://bit.ly/2WMHi2I
19. Barkovitch AJ, Krischer J, Kun LE, Packer R, Zimmerman RA, et al. (1991) Brain stem gliomas: A classification system based on magnetic resonance imaging. Pediatr Neurosurg 16: 73-83. Link: https://bit.ly/2UffYyEm
20. Tisnado J, Young R, Peck KK, Hague S (2016) Conventional and Advanced Imaging of Diffuse Intrinsic Pontine Glioma. J Child Neurol 31: 1386-1393. Link: https://bit.ly/2AmxBAn
21. Jansen MH, Veldhuijzen van Zanten SE, Sanchez Aliaga E, Heymans MW, Warmuth-Metz M, et al. (2015) Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria. Neuro Oncol 17: 150-166. Link: https://bit.ly/2YvTVj9

Citation: Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Uysal B, et al. (2020) Review of dose fractionation schemes for pontine glioma irradiation. J Surg Oncol 12 (6): 37-078.DOI: https://dx.doi.org/10.17352/2455-2968.000101
22. Poussaint TY, Kocak M, Vajapeyam S, Packer RI, Robertson RL, et al. (2011) MRI as a central component of clinical trials analysis in brainstem glioma: a report from the Pediatric Brain Tumor Consortium (PBTC). Neuro Oncol 13: 417-427. Link: https://bit.ly/3hKpQ4

23. Donaldson SS, Lamingon F, Fisher PG (2006) Advances toward an understanding of brainstem gliomas. J Clin Oncol 24: 1266-1272. Link: https://bit.ly/2W29JN

24. Schroeder KM, Hoeman CM, Becher OJ (2014) Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res 75: 205-209. Link: https://go.nature.com/37pNQ2Z

25. Panitch ES, Berg BO (1970) Brain stem tumors of childhood and adolescence. Am J Dis Child 119: 465-472. Link: https://bit.ly/37iVsU8

26. Gupta N, Gonnurova LC, Manley P, Chi SN, Neuberg D, et al. (2018) Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro Oncol 20: 1547-1555. Link: https://bit.ly/2YOApfl

27. Wang ZJ, Rao L, Bhambhani K, Miller K, Poulk J, et al. (2015) Diffuse intrinsic pontine glioma biopsy: a single institution experience. Pediatr Blood Cancer 62: 163-165. Link: https://bit.ly/3e2ex9o

28. Walker DA, Liu J, Kieran M, Jabado N, Picton S, et al. (2013) A Multi-Disciplinary Consensus Statement Concerning Surgical Approaches to Low-Grade, High-Grade Astrocytomas and Diffuse Intrinsic Pontine Gliomas in Childhood (CPN Paris 2011) Using the Delphi Method. Neuro Oncol 15: 462-468. Link: https://bit.ly/2MT7IP0

29. Gokce-Samar Z, Beuriat PA, Faure-Conter C, Carrie C, Chabaud S, et al. (2016) Experience and literature review. Asia Pac J Clin Oncol 13: e153-e160. Link: https://bit.ly/2YxBJWs

30. Gokce-Samar Z, Beuriat PA, Faure-Conter C, Carrie C, Chabaud S, et al. (2016) Pre-radiation chemotherapy improves survival in pediatric diffuse intrinsic pontine glioma. Childs Nerv Syst 32: 1415-1423. Link: https://bit.ly/30E53e3

31. Gwak HS, Park HJ (2017) Developing chemotherapy for diffuse pontine intrinsic gliomas (DIPG). Crit Rev Oncol Hematol 120: 111-119. Link: https://bit.ly/37ojea3

32. Kebudi R, Cakir FB (2013) Management of diffuse pontine gliomas in children: recent developments. Paediatr Drugs 15: 351-362. Link: https://bit.ly/2XYbJW8

33. Yoshida K, Sulaiman NS, Miyawaki D, Ejima Y, Nishimura H, et al. (2017) Radiotherapy for brainstem gliomas in children and adults: a single-institution experience and literature review. Asia Pac J Clin Oncol 13: e153-e160. Link: https://bit.ly/2AuT7Ty

34. Gallitto M, Lazarev S, Wasserman I, Stafford JM, Wolden SI, et al. (2019) Role of Radiation Therapy in the Management of Diffuse Intrinsic Pontine Glioma: A Systematic Review. Adv Radiat Oncol 4: 520-531. Link: https://bit.ly/30CJOa0

35. Freese C, Takiar V, Laperriere N, Hukin J, et al. (2018) Radiation and subsequent reirradiation outcomes in the treatment of diffuse intrinsic pontine glioma and a systematic review of the reirradiation literature. Pract Radiat Oncol 7: 86-92. Link: https://bit.ly/30DUpqf

36. Marcus KJ, Dutton SC, Barnes P, Coleman CN, Pomeroy SL, et al. (2003) A phase I trial of etanidazole and hyperfractionated radiotherapy in children with diffuse brainstem glioma. Int J Radiat Oncol Biol Phys 55: 1182-1185. Link: https://bit.ly/2B2Ay9h

37. Allen J, Siffert J, Donahue B, Nirenberg A, Jakacki R, et al. (1999) A phase I/II study of carboplatin combined with hyperfractionated radiotherapy for brainstem gliomas. Cancer 86: 1064-1069. Link: https://bit.ly/2xzl5HRW

38. Packer RJ, Prados M, Phillips P, Nicholson HS, Boyett JM, et al. (1994) Treatment of children with newly diagnosed brain stem gliomas with intranovus recombinant beta-interferon and hyperfractionated radiation therapy: A children’s cancer group phase I/II study. Cancer 77: 2150-2156. Link: https://bit.ly/30ArB8F

39. Packer RJ, Boyett JM, Zimmermann RA, Albright AL, Kaplan AM, et al. (1994) Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy. A Children’s cancer group phase I/II trial. Cancer 74: 1827-1834. Link: https://bit.ly/2YHhW8

40. Kretschmar CS, Tarbell NJ, Barnes PD, Krischer JP, Burger PC, et al. (1993) Pre-irradiation chemotherapy and hyperfractionated radiation therapy 66 Gy for children with brain stem tumors: A phase II study of the Pediatric Oncology Group, Protocol 8833. Cancer 72: 1404-1413. Link: https://bit.ly/3cT8RNg

41. Freeman CR, Krischer JP, Sanford RA, Cohen ME, Burger PC, et al. (1993) Final results of a study of escalating doses of hyperfractionated radiotherapy in brain stem tumors in children: A Pediatric Oncology Group study. Int J Radiat Oncol Biol Phys 27: 197-206. Link: https://bit.ly/2AwAgHS

42. Mandell LR, Kadota R, Freeman C, Douglass EC, et al. (1999) There is no role for hyperfractionation radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys 43: 959-964. Link: https://bit.ly/3dWQDvW

43. Janssens GO, Gidding CE, Van Lintd EJ, Oldburger FR, Erasmus CE, et al. (2009) The role of hyperfractionation radiotherapy for diffuse intrinsic brainstem glioma in children: A pilot study. Int J Radiat Oncol Biol Phys 73: 722-726. Link: https://bit.ly/2ZAvFI7

44. Negretti L, Bouchrie K, Levy-Piedbois C, Habrand JL, Dhemrian F, et al. (2011) Hypofractionated radiotherapy in the treatment of diffuse intrinsic pontine glioma in children: A single institution’s experience. J Neurooncol 104: 773-777. Link: https://bit.ly/3hs4mWh

45. Zaghloul MS, Eldeebawy E, Ahmed S, Mousa AG, Amin A, et al. (2014) Hypofractionated conformal radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): A randomized controlled trial. Radiother Oncol 111: 35-40. Link: https://bit.ly/2MSDF6e

46. Hankinson TC, Patibandla MR, Green A, Hemenway M, Foreman N, et al. (2016) Hypofractionated radiotherapy for children with diffuse intrinsic pontine gliomas. Pediatr Blood Cancer 63: 716-718. Link: https://bit.ly/2UFe8BP

47. Hayashi A, Ito E, Omura M, Aida N, Tanaka M, et al. (2020) Hypofractionated radiotherapy in children with diffuse intrinsic pontine glioma. Pediatr Int 62: 47-51. Link: https://bit.ly/30C0xQb

48. Izzuddeen Y, Gupta S, Haresh KP, Sharma D, Giridhar P, et al. (2020) Hypofractionated radiotherapy with temozolomide in diffuse intrinsic pontine gliomas: a randomized controlled trial. J Neurooncol 146: 1-9. Link: https://bit.ly/3e1vsu7

49. Zaghloul MS, Akoush H, Ahmed S (2018) Hypofractionated radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): Younger children have better survival. Int J Radiat Oncol Biol Phys 101: 1008-1009. Link: https://bit.ly/3fo94tQ

50. Lassaletta A, Sbrother D, Lapierre N, Hukin J, Vanan M, et al. (2018) Reirradiation in patients with diffuse intrinsic pontine gliomas: The Canadian experience. Pediatr Blood Cancer 65: e2698. Link: https://bit.ly/2MWA5Il

51. Yen CP, Sheehan J, Steiner M, Patterson G, Steiner L (2007) Gamma knife surgery for focal brainstem gliomas. J Neurosurg 106: 8-17. Link: https://bit.ly/3fn2TGt

52. Fuchs I, Keel W, Sutter B, Papaetsehouyi G, Pendl G (2002) Gamma knife radiosurgery of brainstem gliomas. Acta Neurochir Suppl 84: 85-90. Link: https://bit.ly/3Fn09qQ

53. Emroian R, MacDonald S, Laack NNI, Baldini E, Breneman J (2019) Reirradiation in Pediatric Patients With Recurrent Brain Tumors: A Last Hope, But One With Greatly Feared Consequences. Int J Radiat Oncol Biol Phys 102: 1-4. Link: https://bit.ly/2xWJzbW

54. Kline C, Liu SJ, Duriseti S, Banerjee A, Nicolaides T, et al. (2018) Reirradiation and PD-1 inhibition with nivolumab for the treatment of recurrent diffuse intrinsic pontine glioma: a single-institution experience. J Neurooncol 140: 629-638.

Citation: Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Uysal B, et al. (2020) Review of dose fractionation schemes for pontine glioma irradiation. J Surg Surgical Res 6(1): 73-078. DOI: https://dx.doi.org/10.17352/2455-2968.000101
62. Sager O, Dinçoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2018) Evaluation of hypofractionated stereotactic radiotherapy (HSRT) for who grade I anterior clinoid meningiomas (ACM). Jpn J Radiol 34: 730-737. Link: https://bit.ly/2XXY8Lq

63. Dincoglan F, Sager O, Uysal B, Demiral S, Gamsiz H, Beyzadeoglu M (2015) Stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. Indian J Cancer 56: 202-206. Link: https://bit.ly/2UiOHi8s

64. Dincoglan F, Sager O, Demiral S, Gamsiz H, Uysal B, et al. (2019) Fractionated stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. J Surg Oncol 120: 318-323. Link: https://bit.ly/3fn3asy

65. Fontanilla HP, Pinnix CC, Ketonen LM, Woo SY, Vats TS, et al. (2012) Palliative re-irradiation for progressive diffuse intrinsic pontine glioma. Am J Clin Oncol 35: 51-57. Link: https://bit.ly/3Ck6sFW

66. Janssens GO, Gandola L, Bolle S, Manivelle H, Ramos-Albaci M, et al. (2017) Conformal radiotherapy in prostate cancer treatment. Balkan Med J 30: 54-57. Link: https://bit.ly/3cVtnNh

67. Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Uysal B, et al. (2020) Stereotactic radiosurgery for intracranial tumors: A single center experience. Gulhane Med J 54: 190-198. Link: https://bit.ly/3cYmv1J

68. Dincoglan F, Sager O, Demiral S, Uysal B, et al. (2011) Management of patients with recurrent glioblastoma using hypofractionated stereotactic radiosurgery. J Neurooncol 106: 391-397. Link: https://bit.ly/37zk0EX

69. Sager O, Beyzadeoglu M, Dinçoglan F, Oysul K, Kahya YE, et al. (2012) Evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. Tumori 99: 76-82. Link: https://bit.ly/37oS5s4

70. Wolff JE, Ryttling ME, Vats TS, Zage PE, Ater JL, et al. (2012) Treatment of Recurrent Diffruse Intrinsic Pontine Glioma: The MD Anderson Cancer Center Experience. J Neurooncol 106: 391-397. Link: https://bit.ly/37zk0EX

71. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2013) Management of vestibular schwannomas with linear accelerator-based stereotactic radiosurgery: A single center experience. Tumori 99: 617-722. Link: https://bit.ly/2MUJpFT

72. Demiral S, Beyzadeoglu M, Uysal B, Oysul K, et al. (2013) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of meningiomas: a single center experience. J BUON 18: 717-722. Link: https://bit.ly/3c2YLM

73. Janssens GO, Gandola L, Bolle S, Mandeville H, Ramos-Albaci M, et al. (2017) Results of nimotuzumab and vinorelbine, radiation and re-irradiation in de myeloproliferative disorders. Tumori 101: 84-90.

74. Janssens GO, Gandola L, Bolle S, Mandeville H, Ramos-Albaci M, et al. (2017) Dosimetric evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. Tumori 99: 76-82. Link: https://bit.ly/37oS5s4

75. Sager O, Beyzadeoglu M, Dinçoglan F, Uysal B, Demiral S, et al. (2015) Adaptive splenic radiotherapy for symptomatic splenomegaly in myeloproliferative disorders. Tumori 101: 84-90. Link: https://bit.ly/37pznxS

76. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, Beyzadeoglu M (2017) Splenic Irradiation: A Concise Review of the Literature. J App Hem Bl Tran 1: 101. Link: https://bit.ly/3hoQtas

77. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2013) Dosimetric evaluation of intensity modulated radiotherapy and 4-field 3d conformal radiotherapy in prostate cancer treatment. Balkan Med J 30: 54-57. Link: https://bit.ly/2B41WQd

78. Sager O, Beyzadeoglu M, Dinçoglan F, Demiral S, et al. (2015) Management of patients with ≥4 brain metastases using stereotactic radiosurgery boost after whole brain irradiation. Tumori 100: 302-306. Link: https://bit.ly/30C2vV

79. Demiral S, Beyzadeoglu M, Sager O, Dinçoglan F, Gamsiz H, et al. (2014) Management of Patients with Recurrent Glioblastoma Using Hypofractionated Stereotactic Radiotherapy. Neurosurgery 74: 1352-1358. Link: https://bit.ly/3dZ0eQ7

80. Sager O, Beyzadeoglu M, Dincoglan F, Uysal B, Demiral S, et al. (2014) Management of pulmonary oligometastases by stereotactic body radiotherapy. Tumori 100: 179-183. Link: https://bit.ly/3kh0hN

81. Sager O, Dinçoglan F, Uysal B, Demiral S, et al. (2019) Breathtaking adapted radiotherapy for leukemia relapse in the breast: A case report. World J Clin Oncol 10: 369-374. Link: https://bit.ly/2UEbcWk

82. Sager O, Dinçoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2019) Breathtaking radiation therapy for leukemia: Leukemia relapse in the breast. J Clin Oncol 38: 369-374. Link: https://bit.ly/2BEt7f

83. Dincoglan F, Sager O, Uysal B, Demiral S, Gamsiz H, et al. (2017) Clinical experience of a single center with Vojnosanit Pregl 68: 961-966. Link: https://bit.ly/3hgfBGB

84. Sager O, Dinçoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2018) Management of patients with recurrent glioblastoma using hypofractionated stereotactic radiosurgery. J Neurooncol 106: 391-397. Link: https://bit.ly/37zk0EX

85. Sager O, Dinçoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Image-guided positioning in intracranial non-invasive stereotactic radiosurgery for the treatment of brain metastases. Tumori 98: 630-635. Link: https://bit.ly/2Bt0OZa

86. Dinçoglan F, Sager O, Gamsiz H, Demiral S, Uysal B, et al. (2012) Management of arteriovenous malformations by stereotactic radiosurgery: A single center experience. J Neurooncol 106: 391-397. Link: https://bit.ly/37zk0EX

87. Dincoglan F, Sager O, Demiral S, Uysal B, et al. (2012) Fractionated stereotactic radiosurgery for intracranial tumors: A single center experience. J Surg Oncol 106: 391-397. Link: https://bit.ly/37zk0EX

88. Sager O, Dinçoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2017) Management of patients with recurrent glioblastoma using hypofractionated stereotactic radiotherapy. J Neurooncol 106: 391-397. Link: https://bit.ly/37zk0EX

89. Sager O, Dinçoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2017) Hypofractionated stereotactic radiotherapy (HSRT) for who grade I aneurysmal subarachnoid hemorrhage: A single center experience. J Neurooncol 120: 318-323. Link: https://bit.ly/3fn3asy
Review of dose fractionation schemes for pontine glioma irradiation. J Surg Oncol Int J 6(1): 73-078. DOI: https://dx.doi.org/10.17352/2455-2968.000101

Copyright: © 2020 Dincoglan F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Uysal B, et al. (2020) Review of dose fractionation schemes for pontine glioma irradiation. J Surg Oncol Res 6(1): 73-078. DOI: https://dx.doi.org/10.17352/2455-2968.000101