Six-Year Trends on Prevalence of Myopia among School Children in Liuyang, Central South China: Screening Data from 2013 to 2018

MengShi Chen
Central South University Xiangya School of Public Health

Xin Xu
Liuyang Center for Disease Control and Prevention

Julius Abesig
Central South University Xiangya School of Public Health

HuaJun Long
Liuyang Center for Disease Control and Prevention

Huan Wang
Central South University Xiangya School of Public Health

YanCong Chen
https://orcid.org/0000-0003-4960-0413

YuTing Xiong
Liuyang Center for Disease Control and Prevention

Hong Zhang
Liuyang Center for Disease Control and Prevention

Tiao Li
Liuyang Center for Disease Control and Prevention

Irene XY Wu
irenexywu@csu.edu.cn
Central South University Xiangya School of Public Health

Research article

Keywords: Myopia, Prevalence, School children, China

DOI: https://doi.org/10.21203/rs.3.rs-29869/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Myopia is the most common and leading cause of eye problems affecting people of all ages and yet a preventable cause of blindness. The prevalence of myopia in China varied a lot, and related study is lacking from Central South China. So the purpose of this study was to investigate the trends in the prevalence of myopia among under-college school children from 2013 to 2018 in Liuyang district, Central South of China.

Methods

This was a population-based retrospective study. Uncorrected visual acuity test with the Standard Logarithmic Visual Acuity E chart was used to detect myopia. The yearly age-specific prevalence was calculated and compared.

Results

A total of 854907 children from Grade 1 to 12 were included. The prevalence of myopia increased from 24.3% (2013) to 35.9% (2018), with a significant trend of increase ($p < 0.001$). Persistence higher prevalence was seen in girls than boys, urban dwellers than rural dwellers, and senior high school than that of junior high or primary school children. Significant increase trends in the prevalence of severe myopia were seen across time (from year 2013 to 2018) in each age group among students from 11 to 18 years old ($p < 0.001$).

Conclusions

There was a remarkable yearly increase in myopia prevalence among school children of all ages and across all grades in China from 2013 to 2018, especially in female, urban and high school students. It is urgently needed for an effective public health intervention for the control of myopia among all Chinese school children.

Background

Myopia is the most common and leading cause of eye problems affecting people of all ages and yet a preventable cause of blindness 1. There have been tremendous increases in myopia prevalence in most parts of the world recently, especially among school children due to the increase pressure in education. This increase is however with variation in different parts of the world, East Asia and South Asia are among the most hit 1,2. About 80% of the global myopia prevalence among children 0–19 years can be found in Asia with 35% of the cases in Southeast Asia 3. There exists a varying prevalence among Asian countries. The lowest prevalence was reported in Laos and Nepal, with the myopia prevalence of 0.8% among 6 to 11 years old children 4 and 1.2% among 5 to 15 years old children 5 respectively. Contrarily, high prevalence was reported from China 2, with the highest prevalence of 86.5% reported among adolescents of 13–17 years old from Yangxi, rural southern China 6.

However, the prevalence of myopia in China varied a lot, from 2.5% among 3 to 6 years old children in Guangzhou 7 to 86.5% in Yangxi 6. Furthermore, dramatic increases were reported in individual studies among children across China during the past several years, with 14.9% among 5 to 15-year-olds in Beijing 8,9 and 82.7% among 13 to 18-year-olds adolescents in Anyang 10. Although the variation of myopia prevalence observed among different studies could be
contributed to the heterogeneity of age, population, area and different criteria or test for myopia. Time trend is another potential contributor for the variation in myopia prevalence.11

As large variation in myopia prevalence was seen among different regions in China2, and related study is lacking from Central South China, it is worthwhile to investigate the myopia prevalence in this region. In this current study, we analyzed the longitudinal screening data obtained from primary to senior high school students in Liuyang district, Hunan province, China from 2013 to 2018, to determine the time series trends in myopia prevalence among school children, and to explore the potential impact factors along the education continuum to provide additional evidence from Central South China for early management, prevention and control of myopia in China.

Materials And Methods

Study population

A retrospective study was conducted from 2013 to 2018 in Liuyang, which is a county-level city located in the Northeast of Hunan province, China. Liuyang has jurisdiction of 4 city districts and 33 towns, including 1.49 million populations. Liuyang was ranked as 19th among the ‘top 100 national strong counties’ in China in 2016.12 From 2006, Liuyang Health Bureau has appointed the Liuyang Center for Disease Control and Prevention (CDC) to conduct annual physical examination among school students from grades 1 to 12. As a health policy aimed to improve the health of school children, the annual physical examination is requested to cover all the students in primary, junior and senior high schools under Liuyang jurisdiction. As part of the yearly compulsory routine physical examination that all students are requested to undergo, the eye examination records of all students were routinely collected each year by Jili hospital (also named as Liuyang Eye Hospital) in Liuyang City. The facility mandated for the physical examination for the students in the district. In this study, data related to the eye examination from 2013 to 2018 were retrieved for analysis.

All students’ records were electronically registered by file numbers, name, gender, age, ethnicity, school, and address. All the data were submitted to the Liuyang CDC, the institution that was in charge of the physical examination. The Liuyang CDC is the custodian of the database and data retrieval was conducted with de-identification of all students in May 2019, with the official permission from the Liuyang CDC.

Ethical approval

Since this study was based on routing data with all the subjects being de-identified. Ethical approval was waved from the Xiangya School of public health, Central South University and Liuyang CDC. The study followed the guidelines of the Declaration of Helsinki.13

Data collection

The following data were retrieved from the dataset: age, sex, residency type (rural/urban), education level, height, weight and results of eye examination. Details about height and weight measurements were presented in Appendix 1. Any record with missing data regarding the above listed variables, logic errors or had an age lower than 6 or larger than 18 was excluded from the final data analysis.
Eye examination

The Eye examination was conducted by an experienced group of ophthalmologists optometrists and nurses according to the Chinese National standard for students' physical examination (GB11533). All were staffs from the department of ophthalmology in Jili Hospital. Each student's uncorrected visual acuity (UCVA) was measured monocularly at a distance of 5 meters using the Standard Logarithmic Visual Acuity (LogMAR) Chart with tumbling-E optotypes under room lighting. The acuity of the LogMAR Chart that can be measured ranges from 4.0 to 5.3. If a score lower than 5.0 UCVA and a slit lamp examination also excluded opacity of optical media and other eye conditions, then it was recorded abnormal vision (myopia). Students who have UCVA lower than 5.0, were further classified as slight myopia (4.9 ≤ UCVA < 5.0), moderate myopia (4.6 ≤ UCVA ≤ 4.8) and severe myopia (UCVA ≤ 4.5).

Body mass index (BMI) calculation

BMI for age was calculated by the formula weight (kg)/height (m^2). BMI was further categorized using the World Health Organization's Z score chart for children 5-19 years (appendix 2).

Statistical analysis

Mean with standard deviations (SD), and frequencies with percentages were reported in the descriptive statistical analyses for the continuous variables and the categorical variables, respectively. The data from the left eye was used for the estimation of myopia prevalence as a highly significant correlation of 0.89 (p>0.001) (Appendix 3) between the left and right eyes was reported.

Myopia prevalence was calculated one-time for each year and by age group from 2013 to 2018. Line graphs were used to describe and compare the annual prevalence trends of myopia, within each sex and one-year time age interval (6 to 18 years) from 2013 to 2018. Linear-by-Linear association test was used to test the trends of myopia prevalence at each age group with the increase of age (from 6 years to 18 years) and year going on (from 2013 to 2018). Differences in myopia prevalence among different groups were compared with Chi-squared test. Multivariable logistic regression analysis was used to identify the association between demographic variables and myopia within each year from 2013 to 2018, and the total population. Among each logistic regression analysis, myopia status was used as the dependent variables; sex, BMI status, grade and residency type were used as the independent variables. Sensitivity analyses on multivariable logistic regressions were conducted by excluding students from senior high schools as enrollment rates decreased from over 99% in primary school and junior high school to around 88% in senior high school, and a relative low eye examination rate was observed in senior high school. Age was not included in the logistic regression for its collinearity with grade group. The model fitting was checked with Hosmer and Lemeshow (HL) test, with P-value greater than 0.1 being considered as adequate model fit. Adjusted Odds Ratio (OR) with 95% confidence interval (CI) was calculated. A P-value of less than 0.05 (two-tailed) was accepted as statistically significant (except for HL test). All data analyses were performed using SPSS statistics version 21.0 (SPSS Inc., Chicago, Illinois, USA) and Graphical presentations by Microsoft Excel version 10.

Result

Characteristics of the study population
A total of 887,496 records from the dataset, after excluded records based on the inclusion criteria, 854,907 records were included in the final data analysis (Figure 1). By comparing with the statistical data from the Liuyang Education Bureau, from 2015 to 2018, 95.00%-96.71% students from primary school, 92.81%-94.22% students from junior high school, and 45.98%-98.22% students from junior high school received the physical examination and were included in this study (Appendix 4). Statistical data on total number of students in 2013 and 2014 is not available.

There were more students from primary school (ranged from 59.6% in 2018 to 69.3% in 2014) than that of junior high school (ranged from 22.2% in 2013 to 27.1% in 2015) and senior high school (ranged from 5.2% in 2014 to 14.2% in 2018). There were more students from rural area each year, with the proportion ranged from 71.9% (year 2013) to 74.9% (year 2014). Male students account for an average of around 50.9%, with a stable gender proportion across the studied six years (Table 1, Appendix 5). There is a slight trend in the prevalence of overweight and obesity from 2013 (11.9%) to 2018 (14.1%). Details regarding the demographic characteristics and distribution on schools of the students for each year from 2013 to 2018 are presented in Table 1.

Results of UCVA score from 2013 to 2018

Generally slight trends of decreasing in mean UCVA score were observed from 2013 to 2018 among each age group. Furthermore, the decreasing trends in mean UCVA score were more obvious as the students grow, with the mean UCVA score of 4.99 (SD=0.12) on 6 years old and of 4.53 (SD=0.41) on 18 years old (Appendix 6).

Prevalence of myopia from 2013 to 2018

The total prevalence of myopia increased each year from 2013 (24.3%) to 2018 (35.9%), with a significant trend of increase in myopia prevalence across the past six years ($p<0.001$). Similar trends were observed in each educational level subgroup from primary school to senior high school ($p<0.001$). Within each educational level subgroup, girls showed statistically significant higher prevalence of myopia each year ($p<0.001$). Details are reported in Table 2.

From year 2013 to 2018, lowest prevalence of myopia was observed in age eight (ranging from 10.5% in 2015 to 16.6% in 2018) and highest prevalence in age 18 (ranging from 69.8% in 2013 to 79.9% in 2018) (Appendix 7A). By using age eight as the cutoff point, a negative association between age and prevalence of myopia was observed for students from six years old to eight years old each year, while a positive association between age and prevalence of myopia was observed for students from eight years old to 18 years old each year (Figure 2A). That positive association also applied to different subgroups including male or female students (Figure 2B, Appendix 7A), and students from rural area or urban area (Figure 2C, Appendix 7B), although respectively female students, students from urban area showed higher prevalence of myopia than that of male students (Figure 2B, Appendix 7A), students from rural area (Figure 2C, Appendix 7B) at each age group within each year.

Figure 2 Myopia Prevalence from 2013 -2018

A: prevalence of myopia within each age group for each year from 2013 to 2018. B: prevalence of myopia for male or female students within each age group for each year from 2013 to 2018. C: prevalence of myopia for students from rural area or urban area within each age group for each year from 2013 to 2018.
Changes in severity of myopia from 2013 to 2018

There are different trends in severity of myopia across age groups from 2013 to 2018. A decrease in prevalence of mild myopia across age groups (from six years to 18 years) was observed each year, with the highest prevalence of mild myopia being observed in age six (ranging from 10.9% in 2014 to 19.7% in 2018) and lowest prevalence of mild myopia in age 18 (ranging from 5.3% in 2016 to 7.0% in 2013) (Figure 3A, Appendix 8). On the other hand, increase trends in prevalence across age groups were (from six years to 18 years) observed for both moderate (Figure 3B, Appendix 8) and severe myopia (Figure 3C, Appendix 8), especially for severe myopia. The prevalence of severe myopia ranged from 0.6% (year 2013) to 1.3% (year 2018) in six years old students, while increased to 46.4% (year 2013) to 60.8% (year 2018) in 18 years old students (Figure 3C, Appendix 8). Similar trends were observed in both male and female students. Trends of increase in prevalence of severe myopia from year 2013 to 2018 were observed in each age group among students aged from 11 to 18 years old (Figure 3C, Appendix 8).

Possible factors associated with myopia

Female students (OR: 1.52, 95%CI: 1.51-1.54), students from urban area (OR: 1.82, 95%CI: 1.80-1.84) were more likely to be myopic than male students and those who are from rural area, respectively. Compared to students from primary schools, those from Junior high school (OR: 3.43, 95%CI: 3.39-3.47), senior high school (OR: 10.02, 95%CI: 9.86-10.18) were more likely to be myopic. BMI status was associated with myopia, with overweight (OR: 1.12, 95%CI: 1.10-1.15) and obese students (OR: 1.15, 95%CI: 1.13-1.18) more likely to be myopic than students with normal weight. Results from logistic regression analyses conducted independently based on each year showed consistent associations (Table 3). P values of all HL test were >0.1, indicating good model fit for all the multivariate logistic regression analyses. No substantial changes on risk factors were observed in the sensitivity analysis (Appendix 9).
	2013	2014	2015	2016	2017	2018	Total	p-value
No. of Students								
Residency Type (%)								
Rural	66782 (71.9)	96683 (74.9)	105125 (73.1)	112477 (73.1)	122599 (74.1)	122688 (72.3)	626354 (73.3)	0.001
Urban	26163 (28.1)	32425 (25.1)	38614 (26.9)	41437 (26.9)	42960 (25.9)	46954 (27.7)	228553 (26.7)	
Gender (%)								
Female	44989 (48.4)	63209 (49.0)	70437 (49.0)	75761 (49.2)	81660 (49.3)	83526 (49.2)	419582 (49.1)	0.001
Male	47956 (51.6)	65899 (51.0)	73302 (51.0)	78153 (50.8)	83899 (50.7)	86116 (50.8)	435325 (50.9)	
BMI Status (%)								
Underweight	9385 (10.1)	13340 (10.3)	14642 (10.2)	16240 (10.6)	15420 (9.3)	14103 (8.3)	83130 (9.7)	0.001
Normal	72499 (78.0)	100860 (78.1)	112441 (78.2)	119949 (77.9)	128854 (77.8)	131604 (77.6)	666207 (77.9)	
Overweight	5659 (6.1)	7484 (5.8)	8500 (5.9)	9174 (6.0)	10749 (6.5)	11842 (7.0)	53408 (6.2)	
Obesity	5402 (5.8)	7424 (5.8)	8156 (5.7)	8551 (5.6)	10536 (6.4)	12093 (7.1)	52162 (6.1)	
Grade Group								
Primary School	64179 (69.1)	89452 (69.3)	94581 (65.8)	96726 (62.8)	99780 (60.3)	101148 (59.6)	545866 (63.9)	
Junior High School	20624 (22.2)	32902 (25.5)	38890 (27.1)	40530 (26.3)	42755 (25.8)	44371 (26.2)	220072 (25.7)	0.001
Senior High School	8142 (8.8)	6754 (5.2)	10268 (7.1)	16658 (10.8)	23024 (13.9)	24123 (14.2)	88969 (10.4)	
Age Group (%)								
6–12 years	68648 (73.9)	95046 (73.6)	100150 (69.7)	102700 (66.7)	105536 (63.7)	107083 (63.1)	579163 (67.7)	
	2013	2014	2015	2016	2017	2018	Total	p-value
----------------	------------	------------	------------	------------	------------	------------	------------	---------
13–15 years	17104 (18.4)	27720 (21.5)	35078 (24.4)	38583 (25.1)	41512 (25.1)	42617 (25.1)	202614 (23.7)	0.001
16–18 years	7193 (7.7)	6342 (4.9)	8511 (5.9)	12631 (8.2)	18511 (11.2)	19942 (11.8)	73130 (8.6)	
Total No. of students	92945 (100.0)	129108 (100.0)	143739 (100.0)	153914 (100.0)	165559 (100.0)	169642 (100.0)	854907 (100.0)	
No. Of Schools								
Primary School	185	187	193	200	205	210	1180	
Junior High School	51	51	52	52	51	52	309	n.a
Senior High School	11	11	12	12	13	15	74	
Total No. of Schools	247	249	257	264	269	277	1563	
Table 2
Prevalence rate of myopia among school children in each educational level for boys and girls from 20113 – 2018

Year	Primary School	Junior High School	Senior High School	Total									
	Girls (%)	Boys (%)	Total	Girls (%)	Boys (%)	Total	Girls (%)	Boys (%)	Total				
2013	5542 (17.8)	5047 (15.3)	10589	9 (16.5)	3904 (40.4)	3094 (28.3)	6998 (33.9)	2842 (68.4)	2118 (53.2)	4960 (60.9)	1228 (27.3)	1025 (9.1)	2254 (24.3)
2014	8229 (18.8)	7077 (15.5)	15306	6 (17.1)	6853 (43.6)	5381 (31.3)	1223 (37.2)	2835 (74.8)	1990 (67.1)	4825 (71.4)	1791 (28.9)	1444 (21.9)	3236 (25.1)
2015	7969 (17.4)	6889 (14.1)	14858	7 (15.1)	9357 (49.2)	7080 (35.6)	1643 (42.3)	4027 (72.8)	2805 (59.2)	6832 (66.5)	2135 (30.3)	1677 (22.9)	3812 (26.5)
2016	1045 (22.4)	9090 (18.2)	19549	2 (53.2)	1051 (53.9)	7931 (38.2)	1844 (45.5)	6923 (74.8)	4621 (62.5)	1154 (69.3)	2789 (36.8)	2164 (27.7)	4953 (32.2)
2017	1060 (22.0)	9245 (17.9)	19849	9 (19.9)	1152 (54.9)	8476 (38.9)	1999 (46.8)	9675 (77.0)	6573 (62.9)	1624 (70.6)	3180 (38.9)	2429 (29.0)	5609 (33.9)
2018	1187 (24.6)	1018 (21.3)	22059	2 (56.0)	1222 (40.1)	9035 (38.0)	2126 (47.9)	1037 (57.8)	7209 (66.6)	1758 (72.9)	3447 (41.3)	2642 (30.7)	6090 (35.9)

*Linear-by-Linear association test for the prevalence of myopia from 2013 to 2018 among students in primary schools, in junior high schools, senior high schools and total prevalence of all the students: all the p-values are less than 0.001.
Table 3
Association between demographic characteristics and myopia from 2013 to 2018: logistic regression analyses

Factors	2013	2014	2015	2016	2017	2018	TOTAL
Sex *							
Female	1	1	<	1	<	1	<
Male	4	3	.0	4	4	.0	5
Education level ‡							
Urban	8	8	.0	8	8	.0	6
Rural	8	2	0	4	0	8	.0

Keys: CI = confidence interval; OR = odds ratio; * male was used as references; † Rural was used as references; ‡ Primary school was used as references; § normal weight was used as the references.
Factors	2013	2014	2015	2016	2017	2018	TOTAL					
	O	9	p	O	9	p	O	9	p	O	9	p
	R	%		R	%		R	%		R	%	
	C	I		C	I		C	I		C	I	
Junior high	2	.2	.2	2	.2	.2	4	.4	.4	3	.3	.3
Senior high	7	6	0	2	1	0	8	6	0	5	0	6
	6	2	.0	2	9	.0	0	6	.0	7	0	8
	2	1	.1	3	1	.1	1	1	.1	1	.1	.1
	8	3	.0	4	.7	.4	4	.4	.4			
	6	9	.7	5	.5	.6	7					
Senior high	8	7	.4	4	.4	.4	3	.3	.3	1	.1	.1
	3	9	.0	0	9	.0	3	.3	.3	9	6	.0
	9	8	0	8	9	2	0	9	2	0	5	3
	2	3	.1	1	.1	.1	4	.4	.4	2	.2	.2
	3	6	.3	8	.2	.2	9	.7	.7			
BMI status	1	1	.1	1	.1	.1	1	.1	.1	1	.1	.1
Obesity	1	0	.0	1	.1	.1	0	.0	.0	1	.0	.0
	6	8	0	6	0	.0	3	7	0	1	6	.0
		0	.0	5	0	.0	7	.2	.2	0	.2	.2
	1	.1	.1	1	.1	.1	1	.1	.1			
	2	3	.0	7	.5	.5	2	.2	.2			
Obesity	1	1	.1	1	.1	.1	1	.1	.1	1	.1	.1
	8	0	.0	6	0	.0	3	0	.0	5	.0	.5
		0	.0	2	.6	.0	0	.5	.5	3	.0	.3
	1	.1	.1	1	.1	.1	1	.1	.1			
	2	3	.2	7	1	0	6	.6	.6			
	6	3	.7	1	1	1	1	1	1			

Keys: CI = confidence interval; OR = odds ratio; * male was used as references; † Rural was used as references; ‡ Primary school was used as references; § Normal weight was used as the references.
Discussion

The prevalence of myopia among a large-scale population-based school child (n=854,907) across the whole under-college education course were summarized and compared for the past six years from 2013 to 2018 in Central South China. A remarkable continuously increasing trend of myopia was seen among Chinese school children, from 24.3% in 2013 to 35.9% in 2018. A similar increases trend was also observed across age groups (from age 6 to 18) within each of the six years. This study showed remarkable increasing trends in prevalence of severe myopia from 2013 to 2018 across age 6 to 18. The same increasing trends were reported from other studies as well. It is noted that a more remarkable increase in trends were observed among female students, both in terms of longitudinal years and ages. Results from logistic regression analysis showed that being female is positively associate with being myopic (OR=1.52). That is consistent with several previous studies. It should be noted that the differences among male and female students were not found in young age (6-8 years old). Another study from Shanghai covered preschool children also did not find any significant difference between boys and girls. Evidence has demonstrated that near work is a risk factor for myopia. Girls read a lot more hours than their counterparts boys. That also helps to explain that higher education level is positively associated with myopia prevalence observed in this study.

This current study showed a significant association between myopia and BMI status. Possible explanation was that overweight and obesity are the results of physical inactivity, while outdoor activities have been reported to be a protecting factor for myopia. However, data on children's outdoor activity have not been collected in this study, future studies are needed to confirm whether BMI is an independent risk factor for myopia.

There are several strengths of this study. Firstly, this study was a very large-scale population-based study including 854,907 participants, covered all the under-college school children aged 6-18, provided clear information on myopia prevalence in each age and grade group. Secondly, the study was a long time series prevalence survey, which described periodic changes with time trends of myopia prevalence for the past six years. Lastly, the detailed description on the age-specific myopia prevalence provides evidence for the targeted population regarding myopia prevention strategies.
Some limitations of the study should be acknowledged as well. First and foremost, we used the LogMAR Chart to measure students’ UCVA. Both cyclogenic and non-cyclogenic refractions were not utilized in this survey due to screening nature of the study with a large-scale population included. However, evidence has suggested UCVA showed a reasonable accurate estimate of myopia prevalence and could be used for population screening purpose. A diagnostic test on LogMAR chart showed a sensitivity of 83.6% and specificity of 98.2% in detecting myopia among Chinese under-college students. Potential false positive of the LogMAR chart might lead to overestimation of the myopia prevalence in this study. However, as a uniform standard was used throughout the study years, we believed that the information on the trends of myopia and difference severity of myopia prevalence in terms of time and age progress is less likely to be influenced.

Secondly, this study focused on school children, although the Nine-year compulsory education policy is well implemented in China, and the national enrollment rate was over 99% in primary school and junior high school, and was over 88% in senior high school since 2012. The results should not be extrapolated to the children with the same age while are not enrolled in the under-college education. Furthermore, the increase prevalence in senior high school could also be contributed by selection bias due to the decreased low enrollment rate. Further cohort studies are needed to confirm the net risk of increase education level to the development of myopia. However, as the prevalence was calculated based on majority of the high school students, especially after 2017, the results indicated immediate public health strategies are needed to improve the eye health among school students.

Lastly, the coverage of the examination among the targeted children might impact the validity of the results. Based on the official statistical data from 2015 to 2018, we believe that we sampled the majority of the students in primary and junior high school. Selection bias might be existed among students in senior high school before 2016. Based on the data from 2017 and 2018 that had optimal coverage for senior high school students, similar trend of increase in myopia prevalence was observed with the results before 2016.

Conclusions

There was a marked yearly increase of myopia prevalence among school children of all ages and across all grades in China from 2013 to 2018, prominent especially in high school. Similar increase trends were seen in severe myopia within the past six years. Girls showed higher prevalence of myopia than that of boys with each age group, especially in high school. It is urgently needed of evidence-proved effective strategies/ public health intervention programs for the control of myopia and myopia correction among all Chinese school children.

Abbreviations

Body mass index (BMI); Center for Disease Control and Prevention (CDC); Confidence interval (CI); Hosmer and Lemeshow (HL); Odds Ratio (OR); Standard deviations (SD); Uncorrected visual acuity (UCVA).

Declarations

Ethics approval and consent to participate:

Since this study was based on routing data with all the subjects being de-identified. Ethical approval was waved from the Xiangya School of public health, Central South University and Liuyang CDC. The study followed the guidelines of the Declaration of Helsinki.
Consent for publication:

Not applicable.

Availability of data and materials:

Relevant supporting data aside those found in the main text will be available from the corresponding author on request.

Competing interests:

None of the following authors have any proprietary interests or conflicts of interest related to this submission.

Funding:

This research was supported by the High-level Talents Introduction Plan from Central South University (No. 502045003) and The Hunan Nature Science Foundation (No. 2019JJ40348).

Authors' contributions:

MSC, XX, XYW conceived the idea for and designed this study; HJL, YTX, TL and HZ conducted the study; JA, HW and YCC performed the statistical analysis; JA wrote the first draft of the manuscript and XYW revised the article. All authors critically revised and approved the final manuscript.

Acknowledgement:

We gratefully acknowledge the valuable contribution of the staff of education commission, Jili eye hospital and the Liuyang centers for disease control and prevention.

References

1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016; 123:1036-42.

2. Hashemi H, Fotouhi A, Yekta A, Pakzad R, Ostadimoghaddam H, Khabazkhoob M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J Curr Ophthalmol. 2018; 30:3-22.

3. Rudnicka AR, Kapetanakis VV, Wathern AK, Logan NS, Gilmartin B, Whincup PH, et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol. 2016; 100:882-90.

4. Casson RJ, Kahawita S, Kong A, Muecke J, Sisaleumsak S, Visonnavong V. Exceptionally Low Prevalence of Refractive Error and Visual Impairment in Schoolchildren from Lao People's Democratic Republic. Ophthalmology. 2012; 119:2021-7.
5. Pokharel GP, Negrel AD, Munoz SR, Ellwein LB. Refractive error study in children: results from Mechi Zone, Nepal. American Journal of Ophthalmology. 2000; 129:436-44.

6. He M, Huang W, Zheng Y, Huang L, Ellwein LB. Refractive Error and Visual Impairment in School Children in Rural Southern China. Ophthalmology. 2007; 114:374-82.e1.

7. Lan W, Zhao F, Lin L, Li Z, Zeng J, Yang Z, et al. Refractive errors in 3-6 year-old Chinese children: a very low prevalence of myopia? PloS one. 2013; 8:e78003-e.

8. Guo Y, Duan JL, Liu LJ, Sun Y, Tang P, Lv YY, et al. High myopia in Greater Beijing School Children in 2016. PLoS One. 2017; 12:e0187396.

9. Guo Y, Liu LJ, Xu L, Lv YY, Tang P, Feng Y, et al. Outdoor activity and myopia among primary students in rural and urban regions of Beijing. Ophthalmology. 2013; 120:277-83.

10. Li H, Li S, Liu L, Li S, Kang M, Ji Y, et al. Distribution of refraction and ocular biometric parameters in a population of junior middle school children in Anyang of Henan province. Zhonghua yi xue za zhi. 2014; 94:1284-8.

11. Chen M, Wu A, Zhang L, Wang W, Chen X, Yu X, et al. The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. BMC Ophthalmol. 2018; 18:159.

12. Tengxun Web. List of top 100 national strong counties has been released [in Chinese]. 2016 [cited 2019 5th October]; Available from: https://baike.baidu.com/reference/1006909/ab3bT4sMu_6FGWdJ3GUMYc7RpTtWPm78rgmsfD8sgzh78Wq51-qlPBWUMfrTc2c-Qzx6NmPbB79Wh6Y-GmFXx7xjzg.

13. Sun JT, An M, Yan XB, Li GH, Wang DB. Prevalence and Related Factors for Myopia in School-Aged Children in Qingdao. J Ophthalmol. 2018; 2018:9781987.

14. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007; 85:660-7.

15. Ma Y, Zou H, Lin S, Xu X, Zhao R, Lu L, et al. Cohort study with 4-year follow-up of myopia and refractive parameters in primary schoolchildren in Baoshan District, Shanghai. Clin Exp Ophthalmol. 2018; 46:861-72.

16. Ministry of Education of the People's Republic of China. Statistical Communiqué on National Education Development in 2018. 2019 [cited 2020 3 March]; Available from: http://www.moe.gov.cn/jyb_sjzl/sjzl_fztjgb/201907/t20190724_392041.html.

17. Lin L, Shih H, Hsiao C, Chen C. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singapore. 2004; 33:27-33.

18. Wu JF, Bi HS, Wang SM, Hu YY, Wu H, Sun W, et al. Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study. PloS one. 2013; 8:e82763-e.

19. Hyman L, Gwiazda J, Hussein M, Norton TT, Wang Y, Marsh-Tootle M, et al. Relationship of Age, Sex, and Ethnicity with myopia progression and axial elongation in the correction of myopia trial. Arch Ophthalmol. 2005; 2005;123:977:977.

20. Wei S, Sun Y, Li SM, Hu J, Cao K, Du J, et al. Visual impairment and spectacle use in university students in central China: The Anyang University Students Eye Study. Am J Ophthalmol. 2019.

21. Chiang SY, Weng TH, Lin CM, Lin SM. Ethnic disparity in prevalence and associated risk factors of myopia in adolescents. J Formos Med Assoc. 2019.
22. Hu M, Zhou Y, Huang S, Congdon N, Jin L, Wang X, et al. Population prevalence of myopia, glasses wear and free glasses acceptance among minority versus Han schoolchildren in China. PLoS One. 2019; 14:e0215660.

23. Li T, Zhou X, Chen X, Qi H, Gao Q. Refractive Error in Chinese Preschool Children: The Shanghai Study. Eye Contact Lens. 2019; 45:182-7.

24. Dolgin E. The myopia boom Short-sightedness is reaching epidemic proportions. Some scientists think they have found a reason why. Nature. 2015; 519:276-8.

25. Guo K, Yang DY, Wang Y, Yang XR, Jing XX, Guo YY, et al. Prevalence of myopia in schoolchildren in Ejina: the Gobi Desert Children Eye Study. Invest Ophthalmol Vis Sci. 2015; 56:1769-74.

26. He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J, et al. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial. JAMA. 2015; 314:1142-8.

27. Tong L, Saw SM, Tan D, Chia KS, Chan WY, Carkeet A, et al. Sensitivity and specificity of visual acuity screening for refractive errors in school children. Optometry and vision science : official publication of the American Academy of Optometry. 2002; 79:650-7.

28. Cox TA, Naidoo KS, Ellwein LB, Group RW. The Relationship Between Visual Acuity and Myopia in Children. Investigative Ophthalmology & Visual Science. 2005; 46:5615-.

29. Leone JF, Mitchell P, Morgan IG, Kifley A, Rose KA. Use of Visual Acuity to Screen for Significant Refractive Errors in Adolescents: Is It Reliable? JAMA Ophthalmology. 2010; 128:894-9.

30. Wu X, Pei C, Hua W, Yang J, Jiang X, Jin J, et al. Comparison studies of the screening methods of school myopia in children and adolescents [in Chinese]. Chinese Journal of School Health. 2018; 39:1613-6.

Figures

![Flow chart of participant's inclusion and exclusion](image.png)
Figure 2

Myopia Prevalence from 2013 -2018
Figure 3

Levels of Myopia Prevalence among Students

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Appendix19.pdf