Hedera rhombea inhibits the biofilm formation of Candida, thereby increases the susceptibility to antifungal agent, and reduces infection

Daseul Kim, Ki-young Kim

1 Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do, Republic of Korea, 2 College of Life Science, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do, Republic of Korea

* kiyoung@khu.ac.kr

Abstract

Candida is an opportunistic pathogen and a common cause of fungal infections worldwide. Anti-fungal use against Candida infections has resulted in the appearance of resistant strains. The limited choice of anti-fungal therapy means alternative strategies are needed to control fungal infectious diseases. The aim of this study was to evaluate the inhibition of Candida biofilm formation by Hedera rhombea (Korean name: songak) extract. Biofilm formation was assessed using the crystal violet assay which showed a dose dependent reduction in the presence of extract with the biofilm formation inhibitory concentration of C. albicans (IC₅₀ = 12.5μg/ml), C. tropicalis var. tropicalis (IC₅₀ = 25μg/ml), C. parapsilosis var. parapsilosis (IC₅₀ = 6.25μg/ml), C. glabrata (IC₅₀ = 6.25μg/ml), C. tropicalis (IC₅₀ = 12.5μg/ml), and C. parapsilosis (IC₅₀ = 12.5μg/ml) without directly reducing Candida growth. Treatment with 6.25μg/mL of extract increased the antifungal susceptibility to miconazole from 32% decreasing of fungal growth to 98.8% of that based on the fungal growth assay. Treatment of extract dose-dependently reduced the dimorphic transition of Candida based on the dimorphic transition assay and treatment of 3.125μg/mL of extract completely blocked the adherence of Candida to the HaCaT cells. To know the molecular mechanisms of biofilm formation inhibition by extract, qRT-PCR analysis was done, and the extract was found to dose dependently reduce the expression of hyphal-associated genes (ALS3, ECE1, HWP1, PGA50, and PBR1), extracellular matrix genes (GSC1, ZAP1, ADH5, and CSH1), Ras1-cAMP-PKA pathway genes (CYR1, EFG1, and RAS1), Cph2-Tec1 pathway gene (TEC1) and MAP kinases pathway gene (HST7). In this study, Hedera rhombea extract showed inhibition of fungal biofilm formation, activation of antifungal susceptibility, and reduction of infection. These results suggest that fungal biofilm formation is good screen for developing the antifungal adjuvant and Hedera rhombea extract should be a good candidate against biofilm-related fungal infection.
Introduction

Candida albicans is an opportunistic pathogen which is responsible for systemic infections in immunocompromised patients. *C. albicans* can persist inside the host and can be aided by drug resistance traits which often lead to failure of therapeutic strategies [1]. One of the features of *Candida* species pathogenesis is their ability to form biofilms, and nosocomial infections are often related to the ability to produce biofilm on mucosal surfaces and implanted medical devices [2–5].

The formation of biofilms involves multiple interconnected signaling pathways [6–14], and is a finely controlled process that involves attachment to surface and embedment in the extracellular polymer matrix [15–18]. The biofilm matrix acts to structure microbial communities and includes sessile cells that are frequently much more resistant to antifungal agents. In fact, adherent *C. albicans* cells without specific drug resistant gene expression are up to 1,000 times more resistant to common antifungal agents than planktonic cells [19]. Therefore, the biofilm of *C. albicans* is a reservoir of viable fungal cells that can potentially cause systemic infections, with a mortality rate of around 40–60% [20, 21]. Efforts are being made to develop alternative strategies to eradicate biofilm-related infections [22, 23]. Medicinal plants are used for diverse traditional methods to treat cancer, infection, fever, asthma, and many other diseases. Herbal medicines usually have fewer side effects compared to over-the-counter medicines. Accordingly, medicinal plants should be a new provenance of replacement remedies to treat *Candida* infectious diseases [24–26].

Hedera rhombea is a species of ivy (genus *Hedera*) that is native to the coast and some islands of East Asia [27, 28]. In oriental medicine, *H. rhombea* is mainly used for arthritis, low back pain, hepatitis, high blood pressure, hemostasis, anti-rheumatism, facial paralysis, jaundice anti-inflammatory action, hypertension, and antitumor [27–29].

In this study, *H. rhombea* extract showed anti-biofilm formation activity against several fungi including *C. albicans*, *C. tropicalis*, *C. glabrata*, and *C. parapsilosis*. Interestingly, the activity of the extract also increased susceptibility to antibiotics. These results suggest that *H. rhombea* extract can be used as a potential anti-fungal adjuvant to control the biofilm-related infection.

Materials and methods

Strains

The *Candida* strains used in this study are listed in Table 1. All strains were stored in 20% glycerol at −70 °C and cultured in YPD plates [peptone 20 g/L (BD Difco, Belgium), yeast extract 10 g/L (BD Difco, Belgium) and 2% glucose (w/v) (Daejung, Korea)].

Strain	Description	Source
C. albicans	KCTC 7965	Purchased form KCTC (Korean Collection for Type of Cultures) or KACC (Korean Agriculture Culture Collection)
C. tropicalis var. tropicalis	KCTC17762	
C. parapsilosis var. parapsilosis	KACC45480	
C. glabrata	KCTC 7219	
C. tropicalis	KCTC 7212	
C. parapsilosis	KACC49573	

https://doi.org/10.1371/journal.pone.0258108.t001
H. rhombea extraction

The leaf of *H. rhombea* was obtained from Jeju island. The extracts were produced using distilled water in 3L containing 300g of the sample at 80°C for 8 h, concentrate at 40°C using a rotary evaporator, and freeze-dried. 10mg of plant extract powder was dissolved in 1mL dimethyl sulfoxide for the experiments [15, 24–28, 30].

Inhibition of biofilm formation

H. rhombea extract ranging from 6.25 to 100μg/mL were prepared in 96-well flat-bottomed plates (SPL, Korea). Wells without test compounds served as controls (DMSO concentration of 0.1%). 1 × 10⁶ CFU/mL of *C. albicans* suspension were prepared in RPMI 1640 medium [26, 31–34, 36–40]. Then 100μl of the solution was inoculated into 96-well flat-bottomed plates. After incubation at 37°C for 24h, non-adherent cells were removed by washing with PBS and then 100ul of 1% aqueous crystal violet was applied for 30 minutes. Each well was washed three times with PBS and instantly de-stained with 150μl of 30% acetic acid for 15min. The absorbance was measured at 595nm with a microplate reader (Bio Tek Instruments, Korea). The experiments were performed in triplicate (Fig 1).

Combinatorial antifungal effects of *H. rhombea* extract with antifungal agents

C. albicans were grown overnight in YPD diluted to 1 × 10⁶ cells/mL. The induction of biofilm formation was performed as described above. Miconazole (3.125μg/mL), magnoflorine (3.125μg/mL) and dioscin (3.125μg/mL) alone or with the indicated concentration of *H. rhombea* extract were added and incubated at 37°C for 24 h [26, 30–34]. The experiments were performed in triplicate.

Fig 1. Inhibition of Candida spp. biofilm formation by *H. rhombea* extract. The biofilm formation of (A) *C. albicans*, (B) *C. tropicalis* var. *tropicalis*, (C) *C. parapsilosis* var. *parapsilosis*, (D) *C. glabrata*, (E) *C. tropicalis*, and (F) *C. parapsilosis* was induced in YPD media supplemented with 10% fetal bovine serum with the indicated concentrations of *H. rhombea* extract at 37°C for 24h.

https://doi.org/10.1371/journal.pone.0258108.g001
Dimorphic transition of C. albicans

C. albicans were grown overnight in YPD medium. 1×10^6 cells/mL of *Candida* with or without extracts were incubated in RPMI 1640 medium and YPD media supplemented with 10% fetal bovine serum medium to induce dimorphic transition at 37˚C for 4 h. RPMI without sodium barcarbonate and with glutamine buffered with MOPS [3-(N-morpholino) propanesulfonic acid] to pH 7. Inhibition quantification of the yeast-to-hyphal-form transition was accomplished by counting the number of hyphae cells in the population as previously described [26, 32–40]. More than 1,000 cells were counted for each well in duplicate, and all assays were repeated five times. Representative results of images were obtained using a fluorescence microscope (EVOS® FL, ThermoFisher Scientific, Waltham, MA, USA). The experiments were performed in triplicate.

Candida adherence test

A human epithelial keratinocyte HaCaT cells were maintained in DMEM supplemented with 10% fetal bovine serum at 37˚C in a humidified atmosphere of 5% CO$_2$.

HaCaT cells (0.5×106 cells per well) were grown to confluence on 24 well plates for 24 h. DMEM were drained and then plates were cautiously washed three times with PBS to remove nonadherent cell. 1×10^6 cell/mL *C. albicans* mixed with *H. rhombea* extract ranged 1.56–25μg/mL concentration was treated into each well. The 24 well plates were incubated at 37˚C for 24 h. Representative results of images were obtained using a microscope [32, 34]. The experiments were performed in triplicate.

qRT-PCR analysis

C. albicans was grown overnight in YPD and diluted to 1×10^6 cells/mL. The diluted suspension with 6.25–100μg/mL of *H. rhombea* extract was incubated RPMI 1640 at 37˚C for 24 h with shaking. Total RNA was isolated using TRIzol reagent (Life Technology, Thermo Fisher Scientific, USA) according to the manufacturer’s instruction and the reverse transcriptase (NanoHelix, Korea) reaction was prepared using 1 μg of RNA to obtain cDNA. qRT-PCR was carried out with the 2X SybrGreen qPCR Mater Mix (CellSafe, Korea). The transcript level of detected genes was calculated using the formula $2^{-\Delta\Delta CT}$. Primer sequences used are listed in Table 2. *ACT1* was used as internal control [26, 30–34, 38–40]. The experiments were performed in triplicate.

MTT assay

The cytotoxicity of *H. rhombea* extract against HaCaT and THP-1 were tested by a slightly modified MTT assay [26, 32–34]. Briefly, 1×10^4 HaCaT and THP-1 in DMEM and RPMI1640 medium, respectively were added to each well containing the indicated concentration of extract and incubated for 24 h. Cell viability was calculated by optical density (OD$_{540}$) values measured using a microplate reader (BioTek Instruments, Korea) and is reported as the percentage of the vehicle control [32]. The experiments were performed in triplicate.

Growth inhibition assay for C. albicans

Fungal culture was prepared with the fresh YPD to 1×10^6 cells/mL of *C. albicans* [30–33, 40]. 100μg/mL of *H. rhombea* extract was added and then incubated at 37˚C. The growth was evaluated by measuring OD$_{600}$ using microplate reader after 0, 1, 2, 4, 8, 12, and 24 h [30–32]. The experiments were performed in triplicate.
All experiments were performed at least three times and data were presented as the ± mean S.D.

Table 2. Primers for C. albicans genes used in this study.

Genes	Primer sequence	Gene function	References
ACT1	F: TAGGTTTGGAAGCTGCTGG	Control	[10]
	R: CCTGGAGAATAGTGATGTC		
CAN2	F: GCGGAATGGATATGGG	Biofilm formation	In this study
	R: CGGATCTTCTGGGAGAAGC		
EHT1	F: TCGGAAAGCTTGGGAAAGC	Biofilm formation	In this study
	R: ATTTGGGCAAAGCAGGATC		
TPO4	F: GCCTAAGGTATAGCAGGAT	Biofilm formation	In this study
	R: CGGATTGCTCTGGGAAAGC		
OPT7	F: TTTGATCCGCGGCGAGGAT	Biofilm formation	In this study
	R: ACATGAGCACAGCAGGACC		
CYR1	F: GTTTCCAACCCACACTCA	Ras1-cAMP-Efg1 pathway	[10]
	R: TTTGTCGAAATGACAAACAGG		
EFG1	F: TTTGATCCGCGGCGAGGAT	Ras1-cAMP-Efg1 pathway	[10]
	R: ACTGGAGCACAGCAGGAC		
HST7	F: GCGCAATGGCAGGAGGAT	MAP kinases pathway	[10]
	R: ACATGAGCACAGCAGGACC		
RAS1	F: GAGAGGTTGTGGTGTGTA	Ras1-cAMP-Efg1 pathway	[10]
	R: TTTGTCGAAATGACAAACAGG		
TEC1	F: GCAGCTGCTTCAAGTCAAG	Extracellular matrix	[10]
	R: GCAGCTGCTTCAAGTCAAG		
ALS3	F: GTTATCGGCTCTGGTGTG	Hyphal-specific genes	[10]
	R: TCTGATCCGAGGTCTGTCC		
ECE1	F: ACAGTTCTCCAGGACCCAT	Hyphal-specific genes	[10]
	R: TTTGTCGAGATGACCAAGGCA		
HWP1	F: ACAGGTTGACGCTCAAGG	Ras1-cAMP-Efg1 pathway	[10]
	R: GGGCTCTCAAGTGTCTGTCC		
PBR1	F: TTTGCTGCTGGTCTGTCC	Hyphal-specific genes	In this study
	R: GGGTCTGCTGCTGGTCTGTCC		
PGA50	F: ATTTGCAAGGGTGCAAAGTG	Hyphal-specific genes	In this study
	R: AAGCAGTCGAAATGGAGGTTG		
ADH5	F: ACCTGCAAAGGCTCATTC	Extracellular matrix	[10]
	R: GGCTCTCAAACCTGTCTCTA		
CSH1	F: CGTGGAGGAGGAGAAAT	Extracellular matrix	[10]
	R: CGAAAGGAGGAGGAAAT		
GSC1	F: CCCATTCTACGGCAAGA	Extracellular matrix	[10]
	R: ATCAACACACACTGGAGG		
ZAP1	F: ATCTGCTCAGTTGGTGGTTGTA	Extracellular matrix	[10]
	R: AGGCTCTTGGAAAGTGTG		

Statistical analysis

All experiments were performed at least three times and data were presented as the ± mean S.D.

Result

Inhibition of Candida biofilm formation by the treatment of H. rhombea extract

Biofilm is especially important for the fungi to survive and infect. H. rhombea was used to test whether it blocked fungal biofilm formation or not. H. rhombea extract dose-dependently
H. rhombea extract inhibited the *Candida* biofilm formation in all the tested strains (Table 1) with the IC\textsubscript{50} value of approximately 6.25\(\mu\)g/mL for *C. albicans* (Fig 1A).

IC\textsubscript{50} values of other strains were 6.25\(\mu\)g/mL (*C. parapsilosis* var. *parapsilosis* and *C. glabrata*), 12.5\(\mu\)g/mL (*C. tropicalis* and *C. parapsilosis*), and 25\(\mu\)g/mL (*C. tropicalis* var. *tropicalis*) (Fig 1B, 1C, 1D, 1E and 1F).

H. rhombea extract increased the susceptibility to an antifungal agent against *C. albicans*

H. rhombea extract increased the susceptibility of antifungal agents against *C. albicans*. Treatment of 3.125\(\mu\)g/mL of extract increased the susceptibility to miconazole with 99% of fungal growth inhibition from 38% inhibition by miconazole treatment. The extract also increased the susceptibility to plant-derived antifungal candidates including magnoflorine (99% growth inhibition by 6.25\(\mu\)g/mL of extract compared with 29% growth inhibition by 3.125\(\mu\)g/ml of only magnoflorine treatment) and dioscin (99% growth inhibition by 6.25\(\mu\)g/mL of extract compared with 39% growth inhibition by 3.125\(\mu\)g/ml of only dioscin treatment) (Fig 2A, 2B and 2C).

H. rhombea extract blocked dimorphic transition from yeast to hyphae form

The yeast-to-hyphae conversion is an important virulence property of *C. albicans*. The formation of hyphae aids the subsequent invasive growth of *C. albicans* to penetrate host tissues and lead to the establishment of systemic infection [7]. Extract tested whether the dimorphic transition was influenced and found 1.56\(\mu\)g/mL of the extract significantly inhibited hyphae formation in RPMI 1640 or a 10% FBS YPD medium, and extract with higher than 6.25\(\mu\)g/mL completely blocked the hyphae formation (Fig 3A, 3B, 3C and 3D).

H. rhombea extract reduced fungal adherence to the HaCaT cells

Fungal biofilm formation on device-associated infection is an important medical problem. *H. rhombea* extract showed dose-dependently reduced adhesion of the fungi to the human HaCaT cells with 90% reduction by treatment of 1.56\(\mu\)g/mL of extract (Fig 4).

H. rhombea extract inhibited the expression of biofilm formation and infection related genes

To understand the molecular basis of *H. rhombea* extract of inhibition of biofilm formation and thereby reducing the infection of *Candida*, the expression of genes related to biofilm formation, hyphae growth, and cell adhesion was tested by qRT-PCR. The expression of biofilm formation related genes [*CAN2* (IC\textsubscript{50} = 1.56\(\mu\)g/mL), *EHT1* (IC\textsubscript{50} = 1.56\(\mu\)g/mL), *TPO4* (IC\textsubscript{50} = 1.56\(\mu\)g/mL), and *OPT7* (IC\textsubscript{50} = 1.56\(\mu\)g/mL)], Ras1-cAMP-PKA pathway related genes [*RAS1* (IC\textsubscript{50} = 1.56\(\mu\)g/mL), *EFG1* (IC\textsubscript{50} = 1.56\(\mu\)g/mL), *TEC1* (IC\textsubscript{50} = 3.125\(\mu\)g/mL), *HST7* (IC\textsubscript{50} = 3.125\(\mu\)g/mL), and *CYR1* (IC\textsubscript{50} = 1.56\(\mu\)g/mL)], hyphal-specific genes [*ALS3* (IC\textsubscript{50} = 1.56\(\mu\)g/mL), *ECE1* (IC\textsubscript{50} = 3.125\(\mu\)g/mL), and *HWP1* (IC\textsubscript{50} = 3.125\(\mu\)g/mL)] and extracellular matrix-related genes [*GSC1* (IC\textsubscript{50} = 1.56\(\mu\)g/mL), *ADH5* (IC\textsubscript{50} = 3.125\(\mu\)g/mL), and *CSH1* (IC\textsubscript{50} = 1.56\(\mu\)g/mL)] were significantly decreased by treatment of extract (Fig 5A, 5B, 5C and 5D).

Total RNA was extracted from *C. albicans* treated with the indicated concentration of *H. rhombea* extract using RNA extraction kit, converted to cDNA, and analyzed by qPCR with the respective primers.
A

![Bar graph A](image1)

	Control	MCZ	MCZ+HR
Percent(%)	100	63	0.8

B

![Bar graph B](image2)

	Control	MF	MF+HR
Percent(%)	100	71	0.02

C

![Bar graph C](image3)

	Control	Do	Do+HR
Percent(%)	100	61	0.003
H. rhombea extract did not affect the growth of human originated cell

The cytotoxic effects of *H. rhombea* extract on HaCaT cells and macrophage THP-1 were checked using an MTT assay. *H. rhombea* extract has no significant cytotoxic effect on both macrophage THP-1 and HaCaT cells (Fig 6A and 6B).

![Fig 2. H. rhombea extracts increased the susceptibility of C. albicans to miconazole etc.](https://doi.org/10.1371/journal.pone.0258108.g002)

Fig 2. *H. rhombea* extracts increased the susceptibility of *C. albicans* to miconazole etc. *H. rhombea* extract (6.25μg/mL) increased the susceptibility to miconazole (3.125μg/mL) (A), magnoflorine (3.125μg/mL) (B) and dioscin (3.125μg/mL) (C) against *C. albicans*. The biofilm formation was induced for 24 h by growing of *C. albicans* in YPD media supplemented with 10% fetal bovine serum. MCZ: Miconazole, MF: Magnoflorine, Do: Dioscin, HR: *H. rhombea* extract.

![Fig 3. Inhibition of C. albicans dimorphic transition by H. rhombea extract in different hyphal-inducing media.](https://doi.org/10.1371/journal.pone.0258108.g003)

Fig 3. Inhibition of *C. albicans* dimorphic transition by *H. rhombea* extract in different hyphal-inducing media. (A) *C. albicans* dimorphic transition was induced using RPMI 1640 and images of *C. albicans* cells (B) were obtained using a microscope. A: *C. albicans* without extract, B: *C. albicans* with 1.56μg/mL of extract treated, C: *C. albicans* with 6.25μg/mL of extract treated, D: *C. albicans* with 25μg/mL of extract treated. (C) *C. albicans* dimorphic transition was induced using 10% FBS YPD medium and images of *C. albicans* cells (D) were obtained using a microscope. A: *C. albicans* without extract, B: *C. albicans* with 1.56μg/mL of extract treated, C: *C. albicans* with 6.25μg/mL of extract treated, D: *C. albicans* with 25μg/mL of extract treated.
Several antifungal agents inhibit fungal biofilm formation because they can kill the fungi and indirectly decrease biofilm formation. Extract of *H. rhombea* have no effect on the growth of *C. albicans* after 24h of incubation and that suggested the biofilm formation inhibition of extract is not because of the reduced growth of *Candida* (Fig 7).

Discussion

Many fungi including *Candida* live in and on the human body, but when *Candida* begins to grow uncontrollably, it can cause an infection known as candidiasis. In fact, *Candida* is the most common cause of fungal infections in humans [41]. Antifungal drugs can cause side effects and resistance, and there have been multiple recent reports of resistance including in the emerging problematic organism *Candida auris* [42–44]. Outbreak response is complicated by the limited treatment options and inadequate disinfection strategies. So new approaches with a new target for the anti-fungal agents are required.

In the present study, *H. rhombea* extract was tested for inhibition of *Candida* biofilm formation and showed strong anti-biofilm formation activity against all tested *Candida* species including *C. albicans*, *C. glabrata*, *C. tropicalis*, and *C. parapsilosis* (Fig 1).

Even though the mechanism of *Candida* biofilm formation is diverse depending on the species, *H. rhombea* extract inhibited *Candida* biofilm formation that suggests there should be a common mechanism to induce the biofilm among the *Candida* species, but further studies must be conducted. Moreover, *H. rhombea* increased the antifungal activity of miconazole, magnoflorine, and dioscin (Fig 2), and reduced *Candida* infection (Figs 3 and 4), these results confirmed that biofilm formation is related to the susceptibility of antifungal agents and fungal infection, but further studies should be undertaken. In the case of the *H. rhombea* we tested, no inhibition of growth was observed. However, in the experiments in the reference literature [29], *H. rhombea* extract showed inhibition of growth. The reason might be the differences in the method of extracting plants.

Based on the gene expression analysis, the expression of genes related to biofilm formation, hyphae growth, and cell adhesion was significantly reduced by treatment with *H. rhombea* extract. The biofilm formation is tightly related to adherence to *Candida* and the early step is the attachment mechanism. *C. albicans* biofilm formation is determined by various
transcription factors including BCR1, EFG1, TEC1, and NDT80 that function as components in several pathways and influence adherence of Candida, suggesting that even though biofilm formation was initially tested, adherence or infection factors could be also regulated by treatment of H. rhombea extract. Further studies, including the precise target determination of H. rhombea extract, effector components, and in vivo testing must be carried out.

Fig 5. H. rhombea extract inhibited the expression of genes related to biofilm formation and virulence of C. albicans. H. rhombea extract reduced the expression of genes related with biofilm formation (A), Ras1-cAMP-Efg1 pathways (B), hyphal-specific (C) and extracellular matrix (D).

https://doi.org/10.1371/journal.pone.0258108.g005

Fig 6. H. rhombea extract did not show any toxicity against the human skin cells. Cytotoxicity of H. rhombea extract against HaCaT cells (A) and THP-1 cells (B). Each cell (10^4 per well) was incubated with the indicated concentration of H. rhombea extract in 96-well for 24 h and the cell viability was evaluated by MTT assay.

https://doi.org/10.1371/journal.pone.0258108.g006
In conclusion, *H. rhombea* extract inhibited *C. albicans* biofilm formation, increased the antifungal activity of antibiotics and putative antifungal agents, and decreased fungal adherence to the host cell. Therefore, *H. rhombea* extract could be a good treatment option for biofilm-forming fungal infections.

Supporting information

S1 Data. (XLSX)

Author Contributions

Data curation: Daseul Kim.

Formal analysis: Daseul Kim.

Funding acquisition: Ki-young Kim.

Investigation: Daseul Kim.

Supervision: Ki-young Kim.

Writing – original draft: Daseul Kim.

Writing – review & editing: Daseul Kim, Ki-young Kim.

References

1. Pfalter MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007; 20(1):133–163. https://doi.org/10.1128/CMR.00029-06 PMID: 17223626

2. Cavalheiro M, Teixeira MC. Candida biofilms: threats, challenges, and promising strategies. Front Med (Lausanne) 2018; 5:28. https://doi.org/10.3389/fmed.2018.00028 PMID: 29487851

3. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen *Candida albicans*: development, architecture, and drug resistance. J Bacteriol 2001; 183(18):5385–5394. https://doi.org/10.1128/JB.183.18.5385-5394.2001 PMID: 11514524

4. Dongri-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J. Characterization of mucosal *Candida albicans* biofilms. PLoS One 2009; 4(11): e7967. https://doi.org/10.1371/journal.pone.0007967 PMID: 19956771
5. Hasan F, Xess I, Wang X, Jain N, Fries BC. Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect 2009; 11(8-9):753–761. https://doi.org/10.1016/j.micinf.2009.04.018 PMID: 19409507

6. Araújo D, Henriques M, Silva S. Portrait of Candida Species biofilm regulatory network genes. Trends Microbiol 2017; 25(1):62–75. https://doi.org/10.1016/j.tim.2016.09.004 PMID: 27717660

7. Biswas S, Van DP, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 2007; 71(2):348–376. https://doi.org/10.1128/MMBR.00009-06 PMID: 17554048

8. Chong PP, Chin VK, Wong WF, Madhavan P, Young VC, Looi CY. Transcriptomic and genomic approaches for unravelling Candida albicans biofilm formation and drug resistance-an update. Genes 2018; 9(11):540. https://doi.org/10.3390/genes9110540 PMID: 30405082

9. Kim MJ, Kil MK, Jung JH, Kim JM. Roles of zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic yeast Candida albicans. J Microbiol Biotechnol 2008; 18(2):242–247. PMID: 18309267

10. Lane S, Zhou S, Pan T, Dai Q, Liu H. The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Mol Cell Biol 2001; 21(9):6418–6428. https://doi.org/10.1128/MCB.21.19.6418-6428.2001 PMID: 11533231

11. Leberer E, Dignard D, Johnson L, Ushinsky S, Thomas DY, et al. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signaling pathways in the pathogenic fungus Candida albicans. Mol Microbiol 2001; 42(3):673–687. https://doi.org/10.1046/j.1365-2958.2001.02672.x PMID: 11722734

12. Noble CJ, Nett JE, Andes DR, Mitchell AP. Function of Candida albicans adhesion hwp1 in biofilm formation. Eukaryot Cell 2006; 5(10):1604–1610. https://doi.org/10.1128/EC.00019-06 PMID: 17030992

13. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL. Candida biofilms: an update. Eukaryot Cell 2005; 4(4):633–638. https://doi.org/10.1128/EC.4.4.633-638.2005 PMID: 15821123

14. Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol 2001; 9:737–748. https://doi.org/10.1046/j.1365-2958.2001.02459.x PMID: 11454197

15. Chandra S, Bhadra S, Roy S, Saha SK, Islam MdS, Bachar SC. Analgesic and anti-inflammatory activities of ethanolic root extract of bioactive medicinal plant, Swertia chirata. Jordan J Biol Sci 2005; 5(1):31–36.

16. Donian RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15(2):167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002 PMID: 11932229

17. Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol 2003; 11(1):30–36. https://doi.org/10.1016/s0966-642x(02)00002-1 PMID: 12526852

18. Noble CJ, Nett JE, Hemday AD, Homann OR, Dunneault JS, Nantel A, et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 2008; 7(6):e1000133. https://doi.org/10.1371/journal.pbio.1000133 PMID: 18529758

19. Ramage G, VandeWalle K, Lopez-Ribot JL, Wickes BL. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 2002; 214(1):95–100. https://doi.org/10.1111/j.1574-6968.2002.tb11330.x PMID: 12024378

20. Viudes A, Peman J, Canton E, Ubeda P, Lopez-Ribot L, Gobernado M. Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome, and risk factors for death. Eur J Clin Microbiol Infect Dis 2002; 21(11):767–774. https://doi.org/10.1007/s10096-002-0822-1 PMID: 12461585

21. Wenzel RP, Gennings C. Bloodstream infections due to Candida species in the intensive care unit: identifying especially high-risk patients to determine prevention strategies. Clin Infect Dis 2005; 6:389–393. https://doi.org/10.1086/430923 PMID: 16108005

22. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: Chemical composition and role in drug resistance. J Med Microbiol 2006; 55(Pt8):999–1008. https://doi.org/10.1099/jmm.0.46569-0 PMID: 16847919

23. Bonhomme J, d’Enfert C. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr Opin Microbiol 2013 16(4), 398–403. https://doi.org/10.1016/j.mib.2013.03.007 PMID: 23566895

24. Siti NHMA, Zainuddin AM, Sharifah RWA Lee SC, Azizul AM, Nor AY. Herbal processing and extraction technologies. Sep Purif Rev 2016; 45(4):305–320. https://doi.org/10.1080/15422119.2016.1145395

25. Nagappan R. Evaluation of aqueous and ethanol extract of bioactive medicinal plant, Cassia didymobotrya (Fresenius) Irwin & Barneby against immature stages of filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Asian Pac J Trop Biomed 2012; 2(9):707–711. https://doi.org/10.1016/S2221-1691(12)60214-7 PMID: 23569999
26. Yang LF, Liu X, Zhong L, Sui Y, Quan G, Huang Y, et al. Dioscin inhibits virulence factors of C. albicans. Biomed Res Int 2018; 4651726. https://doi.org/10.1155/2018/4651726 PMID: 30589896

27. Lee IR, Lee MS, Choi KA, Seo EK. Pharmacological activities of leaves of Hedera rhombea bean (II): On the constituents of the leaves. Arch Pharm Res 1993; 16(4):331–335.

28. Akhisa T, Yasukawa K, Yamaura M. Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J Agric Food Chem 2000; 48(6):2313–2319. https://doi.org/10.1021/ja000135o PMID: 10888543

29. Choi HA, Cheong DE, Lim HD, Kim WH, Ham MH, Oh MH, et al. Antimicrobial and anti-biofilm activities of the methanol extracts of medicinal plants against dental pathogens Streptococcus mutans and Candida albicans. J. Microbiol. Biotechnol. 2017; 27(7):1242–1248. https://doi.org/10.4014/jmb.1701.01026 PMID: 28478657

30. Cho JY, Choi HM, Lee JY, Kim MS, Sohn HY, Lee DG. The Antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim Biophys Acta 2013; 1828(3):1153–1158. https://doi.org/10.1016/j.bbamem.2012.12.010 PMID: 23262192

31. Kim JG, Ha QBT, Shin YK, Kim KY. Antifungal activity of magnoflorine against Candida strains. World J Microbiol Biotechnol 2018; 34(11):167. https://doi.org/10.1007/s11274-018-2549-x PMID: 30382403

32. Lingmei S, Kai L, Dayoung W. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS One 2015; 10(2): e0117695. https://doi.org/10.1371/journal.pone.0117695 PMID: 25710475

33. Khodavandi A, Alizadeh F, Harmal NS, Sidik SM, Othman F, Sekawi Z, et al. Comparison between efficacy of allicin and fluconazole against Candida albicans in vitro and in a systemic candidiasis mouse model. FEMS Microbiol Lett 2011; 315(2):87–93. https://doi.org/10.1111/j.1574-6968.2010.02170.x PMID: 21204918

34. Paola M, Roberta F, Cosmeri R, Tavanti A, Lupetti A. Inhibition of Candida albicans biofilm formation by the synthetic Lactoferricin derived peptide hLF1-11. PLoS One 2016; 11(11): e0167470. https://doi.org/10.1371/journal.pone.0167470 PMID: 27902776

35. Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, et al. A Candida biofilm-induced pathway for matrix glycan delivery: implications for drug resistance. PLoS Pathog 2012; 8(8): e1002848. https://doi.org/10.1371/journal.ppat.1002848 PMID: 22876186

36. Toenjes KA, Munsee SM, Ibrahim AS, Jeffrey R, Edwards JE Jr, Johnson DI. Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 2005; 49(3):963–972. https://doi.org/10.1128/AAC.49.3.963-972.2005 PMID: 15728890

37. Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanism in human pathogenic fungi. Med Mycol 2008; 46(8):749–772. https://doi.org/10.1080/13693780802206435 PMID: 18651303

38. Yang L, Liu X, Zhuang X, Feng X, Zhong L, Ma T. Antifungal Effects of Saponin Extract from Rhizomes of Dioscorea panthaiica Prain et Burk against Candida albicans. Evid Based Complement Alternat Med. 2017; 2017:4780746. https://doi.org/10.1155/2017/4780746 PMID: 29853962

39. Zhang LL, Lin H, Liu W, Dai B, Yan L, Cao YB, et al. Antifungal Activity of the Ethanolic Extract From Flos Rosea Chinensis with Activity against Fluconazole-Resistant Clinical Candida. Evid Based Complement Alternat Med 2018; 2018:6095307. https://doi.org/10.1155/2018/6095307 PMID: 29853962

40. Bonifácio BV, Vila TVM, Masiero IF, Silva PBD, Silva ICD, Lopes EDO, et al. Antifungal Activity of a Hydroethanolic Extract From Astronium urundeuva Leaves Against Candida albicans and Candida glabrata. Front Microbiol 2019; 10: 2642. https://doi.org/10.3389/fmicb.2019.02642 PMID: 31803166

41. Hogan DA, Sundstrom P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol 2009; 4(10):1263–1270. https://doi.org/10.2217/fmb.09.106 PMID: 19995187

42. Raz-Pasteur A, Ullmann Y, Berdichevsky I. The pathogenesis of Candida infections in a human skin model: scanning electron microscope observations. ISRN Dermatol 2011; 2011: 150642. https://doi.org/10.5402/2011/150642 PMID: 22363844

43. Dahiya S, Chhillar AK, Sharma N, Choudhary P, Punia A, Balhara M, et al. Candida auris and nosocomial infection. Curr Drug Targets 2020; 21(4):365–373. https://doi.org/10.2174/1389450120666190924155631 PMID: 31549952

44. Kordalewska M, Perlin DS. Identification of drug resistant Candida auris. Front Microbiol 2019; 10:1918. https://doi.org/10.3389/fmicb.2019.01918 PMID: 31481947