Technical Note

Arthroscopic Biceps Tenotomy Using a Single Portal for Working and Viewing: A Rabbit Model and Technique

Junjie Xu, M.D., Kang Han, M.D., Wei Su, M.D., and Jinzhong Zhao, M.D.

Abstract: Biceps tenotomy (BT) is a common surgery used to address anterior shoulder pain and joint dysfunction in humans. Using animal models to simulate human conditions is an effective and essential research strategy to further understand histologic and biomechanical processes that occur after BT, including the pathology of the detached biceps, secondary tendinopathic conditions of the rotator cuffs, and glenohumeral functional changes. This Technical Note presents a comprehensive step-by-step description of an arthroscopic BT procedure in rabbits. This technique is particularly beneficial, as the mini-invasive arthroscopic technique in a rabbit model is similar to that performed in humans, which resulted in less scarring and injuries to other adjacent structures in comparison with open surgery.

Lesions of the long head of the biceps tendon (LHBT) in humans are a recognized source of anterior shoulder pain and joint dysfunction,\(^1\) which is commonly associated with the presence of rotator cuff tendon pathology.\(^2\) Biceps tenotomy (BT) is one of the primary operations suggested or in conjunction with other interventions to address LHBT lesions.\(^5\)\(^,\)\(^6\)\(^,\)\(^7\) Notably, some biomechanical studies have determined the LHBT as an anterior stabilizer particularly in the presence of cuff tears that damage the anteroposterior force balance of the shoulder. Researchers have expressed concerns about the histologic changes and biomechanical consequences of its detachment, pertaining to its subsequent effects on joint damage and rotator cuff pathology. Therefore, BT has been performed in many animals to serve as a basic model for studying the pathophysiological and kinematic changes of the shoulder caused by biceps detachment.\(^5\)\(^,\)\(^6\)\(^,\)\(^8\)\(^-\)\(^1\)\(^3\) In this context, the creation of a mini-invasive BT technique in animal models that simulates the arthroscopic procedure in humans as much as possible is essential for better translation and extrapolation of basic sciences to clinical scenarios.

In previous studies, the mini-invasive BT technique, which may be arthroscopic or ultrasound-assisted, was mainly performed in large animals, such as sheep and canines.\(^1\)\(^0\)\(^,\)\(^1\)\(^3\)\(^,\)\(^1\)\(^4\) However, in some cost-effective small animals, the invasive open approach was the first choice, which may be a barrier to effectively reproduce clinical surgery.\(^8\)\(^,\)\(^5\)\(^,\)\(^1\)\(^1\)\(^,\)\(^1\)\(^2\) Therefore, this Technical Note aims to describe step-by-step an arthroscopic procedure that creates a BT model in a rabbit. This technique is a straightforward, feasible, and reproducible procedure for arthroscopic surgeons.

Surgical Technique (With Video Illustration)

In this Technical Note, Dr. Xu and Dr. Han performed all the procedures (Table 1). The use of animals was approved by the Institutional Animal Care and Use Committee. Dr. Su contributed to the specific design of the detailed procedure.

Step 1: Anesthesia and Positioning

Pentobarbital (3%, 30 mg/kg) was injected intravenously to anesthetize our animal model (skeletally mature male New Zealand White rabbits; age, \(~16\) weeks; weight, 3.3 kg), and the incision site of the
Table 1. Step-by-Step Procedure
1. Anesthetize a rabbit and place it in a supine position.
2. Palpate the surface bony marks of the surgical limb and create a mini-incision for a single anterolateral portal to be used for visualization and working. Place traction strings near the incision to enlarge the subcutaneous space.
3. Partially split the anterior deltoid and identify the proximal edge of the insertion of the pectoralis major on the humerus to locate the biceps tendon.
4. Open the pectoralis major aponeurosis and the transverse humeral ligament for biceps tendon exposure.
5. Perform ligature and cut the biceps tendon.
6. Confirm the complete detachment of the biceps tendon using an arthroscope.
7. Close the single mini-incision used for the anterolateral portal.
8. Postoperative care.

The shoulder was injected with lidocaine subcutaneously. The rabbit was then positioned on an incandescent lamp heating pad, and bandages were fixed to fix the nonsurgical limbs (1 forelimb and 2 hindlimbs) on the surgical bed to prevent any movements during the procedure except for the surgical limb. Two wet gauzes were placed on the eyes of rabbits to prevent corneal trauma and drying. Next, the hair of the surgical forelimb was shaved, and the skin was disinfected with iodophor 3 times. The rabbit was positioned supine and covered with a sterile surgical drape that has a small window for accessing the surgical site. After externally rotating the shoulder, the highest point of the greater tuberosity, clavicle, scapular spine, and humerus shaft were palpated and outlined with surface landmarks (Fig 1A). The SSP insertion site was 10 mm long. A mini-invasive incision (~8 mm) was then made (Fig 1B).

Step 2: Portal Creation and Skin Traction String Placement
This incision can serve as a standard anterolateral portal. In this rabbit model, we used a 30° otoscope (Jiu Tan, Shenzhen, China) as an “arthroscope” for monitoring, as the routine arthroscope in humans is too large for rabbit model (Fig 2A). Two sutures were stitched in the skin near the incision to enlarge the subcutaneous space as traction strings (Fig 2B), which helps in placing the arthroscope and instruments simultaneously in this single anterolateral portal. Considering the convenience and feasibility of this operation, an arthroscopic irrigation system and trocar instruments were not used in this animal model.

Step 3: Biceps Location and Exposure
The inferior border of the anterior deltoid was partially split along the medial edge of the humerus shaft using a #15-blade scalpel, and the anterior cuff was exposed (Fig 3A). Next, the back of the scalpel was slid from proximal to distal. The proximal edge of the insertion of the pectoralis major on the humerus was identified when resistance was felt during this sliding maneuver. The proximal extension of the pectoralis major aponeurosis and the transverse humeral ligament was opened using a #15-blade scalpel (Fig 3B and Video 1) under monitoring through the anterolateral portal to expose the biceps in the bicipital groove (Fig 3C and Video 1).

Step 4: Biceps Ligation and Tenotomy
The proximal biceps tendon underwent loop ligation with a 2-0 suture (Ethicon, Piscataway, NJ). A custom curved soft-tissue probe device, a long needle...
(0.9 mm × 80 mm, KDL Co. Ltd., Zhejiang, China) with a crooked end (Fig 4), was used to grasp the biceps for suture loop ligation. The midportion of the biceps tendon was both viewed and grasped through the anterolateral portal from beneath the bicipital groove (Fig 5A and Video 1). Next, the ophthalmic microtweezer shuttled 2 suture limbs onto the curved end of the probe, which pulls the suture through the bottom of the biceps tendon. Subsequently, the suture was retrieved from the anterolateral portal using tweezers (Fig 5 B and C; Video 1). The self-cinching suture loop was then manually created outside (Fig 5D). It was shuttled through the anterolateral portal and onto the biceps tendon to tighten the loop, using the tweezer as a knot pusher (Fig 5E). After manually tensioning the suture loop for tendon traction, a #15-blade scalpel was used to perform the BT proximal to the previously placed suture loop with monitoring done via the anterolateral portal (Fig 5F and Video 1).

Step 5: Arthroscopic Biceps Detachment Confirmation

After tenotomy, the biceps tendon was freed from the groove. The elbow was moved to confirm the complete detachment of the biceps tendon via an arthroscope inserted through the anterolateral portal, ensuring no connecting tendon tissues remained (Fig 6 and Video 1).

Step 6: Mini-Incision Closure

The mini-incision for the anterolateral portal was closed using a 3-0 ETHILON suture (Johnson & Johnson) (Fig 7). The total procedure time was approximately 10 minutes. The specialized instruments used for animal model creation are presented in Figure 8. All tips and tricks used in this technique are listed in Table 2.

Step 7: Postoperative Care

Postoperatively, this animal was allowed to recover from anesthesia in a recovery cage with a heating incandescent lamp. A prophylactic antibiotic—ampicillin...
50 mg/kg body weight—was administered for 3 days after surgery. Postoperatively, the animal was returned to the housing cage, cared for by a veterinarian, and monitored daily for signs of pain and infection.

Discussion

As BT is a common surgery performed to address anterior shoulder pain and joint dysfunction, this model has been widely used to investigate its effects on the biceps, the secondary pathophysiological changes of the rotator cuff tendons, and the kinematics of the shoulder joint caused by biceps detachment.5,6,8-13 Beach et al.9 found that BT altered the adjacent intact tendons and glenoid cartilage in the presence of a supraspinatus tear. However, Chen et al.8 reported that the procedure partially preserved shoulder function and restored tendon health without causing detrimental effects to the joint cartilage in the presence of chronic massive rotator cuff tears. Similarly, Hong et al.12 also found that no shoulder functional changes occur after BT. These findings in animal models, although not completely consistent, help in further understanding BT and rotator cuff tendon pathology in humans. Invasive open surgery for model creation in these animal studies may likely cause interference as excessive acute inflammatory responses and postoperative tissue adhesions are inevitable postoperatively.16,17 Based on anatomy, these posttraumatic complications in this model creation procedure may directly influence adjacent cuff tendons, which may possibly cover up the tendinopathic conditions induced by overuse or the imbalance of the force couples of the shoulder joint. Moreover, joint functional and kinematic assessments and glenohumeral cartilage analysis in these animals...
may be limited as post-traumatic tissue responses may result in joint stiffness, especially in combination with the creation of a rotator cuff tear model.6,8

Therefore, in this Technical Note, we described step-by-step a detailed arthroscopic procedure to create a BT model in rabbits. All advantages and disadvantages are displayed in Table 3. With only a single mini-incision created for positioning a portal that facilitates working and viewing, this technique minimizes the problems caused by open surgery for model creation as seen in previous studies, resulting in less risks of scarring and tissue adhesion, decreased postoperative analgesia requirements, and an early return to activities for animals. These postoperative conditions are more consistent with those in humans who undergo arthroscopic BT. Despite the requirement of some additional instruments for animal models or some technical difficulties using arthroscopy, this technique is reproducible and robust using off-the-shelf materials for most arthroscopic surgeons who intend to perform BT model creation in a rabbit. The rabbit model is cost-effective, with a relatively shorter study period compared with some large animals. Meanwhile, as the rat or mouse model is relatively small with less maneuverability, the rabbit model may be more appropriate to investigate the effectiveness of surgical techniques in sports medicine. Hopefully, this technique can assist other researchers in performing related animal studies more effectively and reasonably.

Acknowledgments

The authors thank Dr. Wu for providing guidelines and helping with video editing and postproduction.

Table 3. Advantages and Disadvantages

Advantages
1. Mini-invasive model creation using arthroscopy
2. Decreasing undue tissue adhesion that inevitably occur in open surgery
3. Decreasing early acute inflammatory tissue reactions caused by excessive incision and tissue separation

Disadvantages
1. Requirement of an “arthroscopic system” and more specialized instruments for animal models
2. Higher surgical skills and technical difficulties
3. Relatively more time to create models

Fig 7. The mini-incision for the anterolateral portal is closed using a 3-0 ETHILON suture.

Fig 8. The specialized instruments for the arthroscopic biceps tenotomy technique in the rabbit model, which includes an otoscopic system that comprises a 2.7-mm otoscope, camera and illuminant, #15-blade, and bending or straight micro-tweezers.
References
1. Smuin DM, Vannatta E, Ammerman B, Stauch CM, Lewis GS, Dhawan A. Increased load to failure in biceps tenodesis with all-suture suture anchor compared with interference screw: A cadaveric biomechanical study. Arthroscopy 2021;37:3016-3021. https://doi.org/10.1016/j.arthro.2021.03.085.
2. Rudisill SS, Best MJ, O’Donnell EA. Clinical outcomes of revision biceps tenodesis for failed long head of biceps surgery: A systematic review. Arthroscopy 2021;37:3529-3536. https://doi.org/10.1016/j.arthro.2020.04.063.
3. Desai SS, Mata HK. Long head of biceps tendon pathology and results of tenotomy in full-thickness reparable rotator cuff tear. Arthroscopy 2017;33:1971-1976. https://doi.org/10.1016/j.arthro.2017.06.018.
4. Virk MS, Cole BJ. Proximal biceps tendon and rotator cuff tears. Clin Sports Med 2016;35:153-161. https://doi.org/10.1016/j.csm.2015.08.010.
5. Boileau P, Baqué F, Valerio L, Ahrens P, Chuinard C, Trojani C. Isolated arthroscopic biceps tenotomy or tenodesis improves symptoms in patients with massive irreparable rotator cuff tears. J Bone Joint Surg Am 2007;89:747-757. https://doi.org/10.2106/JBJS.E.01097.
6. Koh KH, Ahn JH, Kim SM, Yoo JC. Treatment of biceps tendon lesions in the setting of rotator cuff tears: Prospective cohort study of tenotomy versus tenodesis. Am J Sports Med 2010;38:1584-1590. https://doi.org/10.1177/0363546510364053.
7. van Deurzen DFP, Auw Yang KG, Onstenk R, et al. Long head of biceps tenotomy is not inferior to supraspectomy tenodesis in arthroscopic repair of nontraumatic rotator cuff tears: A multicenter, non-inferiority, randomized, controlled clinical trial. Arthroscopy 2021;37:1767-1776. e1. https://doi.org/10.1016/j.arthro.2021.01.036.
8. Chen M, Shetye SS, Huegel J, et al. Biceps detachment preserves joint function in a chronic massive rotator cuff tear rat model. Am J Sports Med 2018;46:3486-3494. https://doi.org/10.1177/0363546518805091.
9. Beach ZM, Tucker JJ, Thomas SJ, et al. Biceps tenotomy in the presence of a supraspinatus tear alters the adjacent intact tendons and glenoid cartilage. J Biomech 2017;63:151-157. https://doi.org/10.1016/j.jbiomech.2017.08.021.
10. Lane D, Schiller T. Technique description: Incisionless ultrasound-assisted biceps tenotomy in dogs. Open Vet J 2021;10:457-464. https://doi.org/10.4314/ovj.v10i4.14.
11. Kim SH, Shin SH, Oh JH, Baek GH. Biomechanical and histological analysis after tenotomy of the long head of the biceps in the rabbit shoulder model. J Orthop Res 2012;30:416-422. https://doi.org/10.1002/jor.21546.
12. Hong C-K, Yeh M-L, Chang C-H, et al. Comparison of changes in shoulder functions between biceps tenotomy and tenodesis in an animal model. Asia Pac J Sports Med Arthrosc Rehabil Technol 2019;15:17-22. https://doi.org/10.1016/j.asmart.2018.11.001.
13. Pfeil DJF von, Steinberg EJ, Dycus D. Arthroscopic tenotomy for treatment of biceps tendon luxation in two apprehension police dogs. J Am Vet Med Assoc 2020;257:1157-1164. https://doi.org/10.2460/javma.2020.257.11.1157.
14. Longo UG, Forriol F, Candela V, et al. Arthroscopic tenotomy of the long head of the biceps tendon and section of the anterior joint capsule produce moderate osteoarthritic changes in an experimental sheep model. Int J Environ Res Public Health 2021;18(14). https://doi.org/10.3390/ijerph18147471.
15. Tang J, Zhao J. Arthroscopic extra-articular 2-position fixation of the long head of the biceps. Arthrosc Tech 2020;9:e1715-e1720. https://doi.org/10.1016/j.eats.2020.07.015.
16. Yildiz F, Bilsel K, Pulatkan A, et al. Comparison of two different superior capsule reconstruction methods in the treatment of chronic irreparable rotator cuff tears: A biomechanical and histologic study in rabbit models. J Shoulder Elbow Surg 2019;28:530-538. https://doi.org/10.1016/j.jse.2018.08.022.
17. Hasegawa A, Miñata T, Itami Y, Fukunishi K, Neo M. Histologic changes during healing with autologous fascia lata graft after superior capsule reconstruction in rabbit model. J Shoulder Elbow Surg 2021;30:2247-2259. https://doi.org/10.1016/j.jse.2021.02.019.