Abstract

The genetic code is connection between 64 codons, which are building blocks of the genes, and 20 amino acids, which are building blocks of the proteins. In addition to coding amino acids, a few codons code stop signal, which is at the end of genes, i.e. it terminates process of protein synthesis. This article is a review of simple modelling of the genetic code and related subjects by concept of p-adic distance. It also contains some new results. In particular, the article presents appropriate structure of the codon space, degeneration and possible evolution of the genetic code. p-Adic modelling of the genetic code is viewed as the first step in further application of p-adic tools in the information sector of life science.

Key Words: genetic code, p-adic distance, DNA and RNA, codons, amino acids, proteins, evolution, information

1 Introduction

Francis Crick (1916–2004), who together with James Watson discovered double helicoidal structure of DNA, in 1953 announced “We have discovered the secret of life” (Hayes, 1998). However, the life has still many secrets and the genetic code seems to be the most intriguing one. Although the standard genetic code was finally experimentally deciphered in 1966, its theoretical understanding has remained unsatisfactory and new models have been proposed occasionally. The genetic code is still subject of some investigations from mathematical, physical, chemical, biological and bioinformation point of view. However, many of these models are rather complicated and do not give complete description and understanding of the various properties of the genetic code.

It is instructive to recall discovery of quantum mechanics. Before its emergence, many physical experimental data could not be well described by classical methods. It was necessary to invent new appropriate physical concepts and to use suitable new mathematical methods. It seems that a similar situation should happen in theoretical description of
living processes in biological organisms. To this end, \(p \)-adic methods seem to be very promising tools in further investigation of the life.

In this article we emphasize the role of \(p \)-adic distance. Namely, some parts of a biological system can be considered simultaneously with respect to different metrics – the usual Euclidean metric, which measures spatial distances, and some other metrics, which measure nearness related to some bioinformation (or other) properties. Here we consider the genetic code using an ultrametric space, which elements are codons presented with some natural numbers and the distance between them is the \(p \)-adic one. An ultrametric space \(M \) is a metric space which distances satisfy strong triangle inequality (also called ultrametric inequality), i.e.

\[
d(x, y) \leq \max\{d(x, z), d(z, y)\}
\]

for any \(x, y, z \in M \). The ultrametric inequality was formulated by Felix Hausdorff in 1934 and ultrametric spaces were introduced by Marc Krasner in 1944. Ultrametrics is also named non-Archimedean metrics. Ultrametric spaces exhibit some exotic properties. The first application of ultrametricity was in biological taxonomy. Ultrametricity in physics (Rammal et al., 1986) was observed in 1984 in the context of the mean field theory of spin glasses and it induced a considerable research in many scientific fields (e.g. statistical physics, neural networks, conformational structure of proteins, diffusion processes, hierarchical systems).

Modelling the genetic code is an opportunity for application of \(p \)-adic distance. In 2006 we introduced (Dragovich B. and Dragovich A., 2006) a \(p \)-adic approach to DNA and RNA sequences, and to the genetic code. The central point of our approach is an appropriate identification of four nucleotides with digits 1, 2, 3, 4 of 5-adic number expansions and application of \(p \)-adic distances between obtained numbers. 5-Adic numbers with three digits form 64 integers which correspond to 64 codons. In (Dragovich B. and Dragovich A., 2007) we analyzed \(p \)-adic degeneracy of the genetic code. As one of the main results that we have obtained is explanation of the structure of the genetic code degeneracy using \(p \)-adic distance between codons. Paper (Dragovich B. and Dragovich A., 2010) contains consideration of possible evolution of the genetic code and some generalizations of \(p \)-adic modelling of the genetic code. Article (Dragovich, 2009) is related to the role of number theory in modelling the genetic code. A similar approach to the genetic code was reconsidered on diadic plane (Khrennikov and Kozyrev, 2007).

\(p \)-Adic models in mathematical physics have been actively considered since 1987 (see (Brekke et al., 1993; Vladimirov et al., 1994) for early reviews and (Dragovich, 2004; Dragovich, 2006; Dragovich et al., 2009) for some recent reviews). It is worth noting that \(p \)-adic models with pseudodifferential operators have been successfully applied to interbasin kinetics of proteins (Avetisov et al., 2002). Some \(p \)-adic aspects of cognitive, psychological and social phenomena have been also considered (Khrennikov, 2004).

To have a self-contained and comprehensible exposition of the genetic code, we shall first briefly review some basic notions from molecular biology.
2 Basic Notions of the Genomics and Proteomics

One of the essential characteristics that differ a living organism from all other material systems is related to its genome. The genome of an organism is its whole hereditary information encoded in the deoxyribonucleic acid (DNA), and contains both coding and non-coding sequences. In some viruses, which are between living and non-living objects, genetic material is encoded in the ribonucleic acid (RNA). Investigation of the entire genome is the subject of genomics. The human genome is composed of more than three billion DNA base pairs and its 97% is non-coding.

The DNA is a macromolecule composed of two polynucleotide chains with a double-helical structure. Nucleotides consist of a base, a sugar and a phosphate group. The sugar and phosphate groups provide helical backbone. There are four bases and they are building elements of the genetic information. They are named adenine (A), guanine (G), cytosine (C) and thymine (T). Adenine and guanine are purines, while cytosine and thymine are pyrimidines. In the sense of information, the nucleotide and its base present the same object. Nucleotides are arranged along chains of double helix through base pairs A-T and C-G bonded by 2 and 3 hydrogen bonds, respectively. As a consequence of this pairing there is an equal number of cytosine and guanine as well as the equal rate of adenine and thymine. DNA is packaged in chromosomes which are localized in the nucleus of the eukaryotic cells.

The main role of DNA is to storage genetic information and there are two main processes to exploit this information. The first one is replication, in which DNA duplicates giving two new DNA containing the same information as the original one. This is possible owing to the fact that each of two chains contains complementary bases of the other one. The second process is related to the gene expression, i.e. the passage of DNA gene information to proteins. It performs by the messenger ribonucleic acid (mRNA), which is usually a single polynucleotide chain. The mRNA is synthesized during the first part of this process, known as transcription, when nucleotides C, A, T, G from DNA are respectively transcribed into their complements G, U, A, C in mRNA, where T is replaced by U (U is the uracil, which is a pyrimidine). The next step in gene expression is translation, when the information coded by codons in the mRNA is translated into proteins. In this process participate also transfer tRNA and ribosomal rRNA.

Protein synthesis in all eukaryotic cells performs in the ribosomes of the cytoplasm. Proteins (Finkelstein and Ptitsyn, 2002) are organic macromolecules composed of amino acids arranged in a linear chain. The sequence of amino acids in a protein is determined by sequence of codons contained in RNA genes. Amino acids are molecules that consist of amino, carboxyl and R (side chain) groups. Depending on R group there are 20 standard amino acids. These amino acids are joined together by a peptide bond. Proteins are substantial ingredients of all living organisms participating in various processes in cells and determining the phenotype of an organism. There are more proteins than genes in DNA, because of alternative splicing of genes and translational modifications. In the human body there may be about 2 million different proteins. The study of proteins,
Table 1. List of 20 standard amino acids used in proteins by living cells. 3-Letter and 1-letter abbreviations of amino acids, their chemical structure of side chains, polarity and hydrophobicity are presented.

Amino acids	Abbreviations	Side Chain (R)	Polar	Hydrophobic
Alanine	Ala, A	-CH$_3$	no	yes
Cysteine	Cys, C	-CH$_2$SH	no	yes
Aspartate	Asp, D	-CH$_2$COOH	yes	no
Glutamate	Glu, E	-(CH$_2$)$_2$COOH	yes	no
Phenylalanine	Phe, F	-CH$_2$C$_6$H$_5$	no	yes
Glycine	Gly, G	-H	no	yes
Histidine	His, H	-CH$_2$-C$_3$H$_3$N$_2$	yes	no
Isoleucine	Ile, I	-CH(CH$_3$)CH$_2$CH$_3$	no	yes
Lysine	Lys, K	-(CH$_2$)$_4$NH$_2$	yes	no
Leucine	Leu, L	-CH$_3$CH(CH$_3$)$_2$	no	yes
Methionine	Met, M	-(CH$_2$)$_2$SCH$_3$	no	yes
Asparagine	Asn, N	-CH$_2$CONH$_2$	yes	no
Proline	Pro, P	-(CH$_2$)$_3$-	yes	no
Glutamine	Gln, Q	-(CH$_2$)$_2$CONH$_2$	yes	no
Arginine	Arg, R	-(CH$_2$)$_3$NHC(NH)NH$_2$	yes	no
Serine	Ser, S	-CH$_2$OH	yes	no
Threonine	Thr, T	-CH(OH)CH$_3$	yes	no
Valine	Val, V	-CH(CH$_3$)$_2$	no	yes
Tryptophan	Trp, W	-CH$_2$C$_8$H$_6$N	no	yes
Tyrosine	Tyr, Y	-CH$_2$-C$_6$H$_4$OH	yes	yes
especially their structure and functions, is called proteomics. The complete proteome is the entire set of proteins in an organism.

Some properties of amino acids are presented in Table 1. For a more detailed and comprehensive information on genomics and proteomics one can use book (Watson et al., 2004) on molecular biology.

3 General Features of the Genetic Code

Experimental study of the connection between ordering of nucleotides in DNA (and RNA) and ordering of amino acids in proteins led to the deciphering of the standard genetic code in the mid-1960s. The genetic code is understood as a dictionary for translation of codons from DNA (and RNA) to amino acids during synthesis of proteins. The information on amino acids is contained in codons: each codon codes either an amino acid or termination signal (see, e.g. Table 2 as a standard table of the vertebrate mitochondrial genetic code).

To the sequence of codons in RNA corresponds quite definite sequence of amino acids in a protein, and this sequence of amino acids determines primary structure of the protein. At the time of deciphering, it was mainly believed that the standard code is unique, result of a chance and fixed a long time ago. Crick (Crick, 1968) expressed such belief in his "frozen accident" hypothesis, which has not been supported by later observations. Moreover, it has been discovered so far about 20 different genetic codes. However, differences are not drastic and many common general properties have been found: four nucleotides, trinucleotide codons, the same mechanism of proton synthesis, ... At the first glance the genetic code looks rather arbitrary, but it is not. Namely, mutations between synonymous codons give the same amino acid. When mutation alter an amino acid then it is like substitution of the original by similar one. In this respect the code is almost optimal.

The relation between codons, on the one hand, and amino acids and stop signal, from the other hand, is known as the genetic code.

Codons are ordered triples composed of C, A, U (T) and G nucleotides. Each codon presents an information which controls use of one of the 20 standard amino acids or stop signal in synthesis of proteins. It is obvious that there are $4 \times 4 \times 4 = 64$ codons.

Although there are about 20 known codes, the most important are two of them: the standard code and the vertebrate mitochondrial code.

In the sequel we shall mainly have in mind the vertebrate mitochondrial genetic code, because it is a simple one and the others may be viewed as its slightly modified versions. In the vertebrate mitochondrial code, 60 of codons are distributed on the 20 different amino acids and 4 codons make termination signal. According to experimental observations, two amino acids are coded by six codons, six amino acids by four codons, and twelve amino acids by two codons. This property that some amino acids are coded by more than one codon is known as genetic code degeneracy. This degeneracy is a very important property of the genetic code and gives an efficient way to minimize errors caused by mutations.

Since there is in principle a huge number (between 10^{71} and 10^{84} (Hornos J. and Hornos J., 2004)
Table 2. The standard (Watson-Crick) table of the vertebrate mitochondrial genetic code. Ter denotes the terminal (stop) signal.

	UUU Phe	UUC Phe	UUA Leu	UUG Leu	CUU Leu	CUC Leu	CUA Leu	CUG Leu	AUU Ile	AUC Ile	AUA Met	AUG Met	GUU Val	GUC Val	GUA Val	GUG Val
	UCU Ser	UCC Ser	UCA Ser	UCG Ser	CCU Pro	CCC Pro	CCA Pro	CCG Pro	ACU Thr	ACC Thr	ACA Thr	ACG Thr	GCU Ala	GCC Ala	GCA Ala	GCG Ala
	UAU Tyr	UAC Tyr	UAA Ter	UAG Ter	CAU His	CAC His	CAA Gln	CAG Gln	AAU Asn	AAC Asn	AAA Lys	AAG Lys	GAU Asp	GAC Asp	GAA Glu	GAG Glu
	UGU Cys	UGC Cys	UGA Trp	UGG Trp	CGU Arg	CGC Arg	CGA Arg	CGG Arg	AGU Ser	AGC Ser	AGA Ter	AGG Ter	GGU Gly	GGC Gly	GGA Gly	GGG Gly
Y., 1993)) of all possible assignments between codons and amino acids, and only a very small number of them is represented in living cells, it has been permanent theoretical challenge to find an appropriate model explaining contemporary genetic codes. There are many papers in this direction scattered in various journals, with theoretical approaches based more or less on chemical, biological and mathematical aspects of the genetic code. The first genetic model was proposed in 1954 by physicist George Gamow (1904–1968), which he called the diamond code. In his model codons are composed of three nucleotides and proteins are directly synthesized at DNA: each cavity at DNA attracts one of 20 amino acids. This is an overlapping code and was ruled out by analysis of correlations between amino acids in proteins, but concept of trinucleotide codons was correct. The next model of the genetic code was proposed in 1957 by Crick, and is known as the comma-free code. This model was so elegant that it was almost universally accepted. However, an experiment in 1961 demonstrated that UUU codon codes amino acid phenylalanine, while by this code it codes nothing. Gamow’s and Crick’s models are very pretty but wrong – living world prefers actual codes, which are more stable with respect to possible errors (for a popular review of the early models, see (Hayes, 1998)).

Let us mention some models of the genetic code after deciphering standard code. In 1966 physicist Yuri Rumer (1901–1985) emphasized the role of the first two nucleotides in the codons (Rumer, 1966). There are models which are based on chemical properties of amino acids (see, e.g. (Swanson, 1984)). In some models connections between number of constituents of amino acids and nucleotides and some properties of natural numbers are investigated (see (Scherbak, 2003; Rakočević, 2004; Negadi, 2007) and references therein). A model based on the quantum algebra $U_q(sl(2) \oplus sl(2))$ in the $q \to 0$ limit was proposed as a symmetry algebra for the genetic code (see (Frappat et al., 2001) and references therein). In a sense this approach mimics quark model of protons and neutrons. Besides some successes of this approach, there is a problem with rather many parameters. There are also papers, see, e.g. (Hornos J. and Hornos Y., 1993; Forger and Sachse, 2000; Bashford et al., 1997) starting with 64-dimensional irreducible representation of a Lie (super)algebra and trying to connect multiplicity of codons with irreducible representations of subalgebras arising in a chain of symmetry breaking. Although interesting as an attempt to describe evolution of the genetic code these Lie algebra approaches did not progress further. For a very brief review of these and some other theoretical approaches to the genetic code one can see (Frappat et al., 2001).

Despite of remarkable experimental successes and some partial theoretical descriptions, there is no simple and generally accepted theoretical understanding of the genetic code. Hence, the foundation of biological coding is still an open problem. In particular, it is not clear why genetic code exists just in a few known ways and not in many other possible ones. What is origin and evolution of the genetic code? Is there a mathematical principle behind genetic coding? We keep in mind these and similar questions trying to find simple and general approach, which seems to be p-adic ultrametricity.
4 Ultrametric 5-Adic Space

Before than consider \(p \)-adic properties of the genetic code in a self-contained way we shall recall some mathematical preliminaries.

As a new tool to study the Diophantine equations, \(p \)-adic numbers are introduced by German mathematician Kurt Hensel in 1897. They are involved in many branches of modern mathematics. An elementary introduction to \(p \)-adic numbers can be found in the book (Goueva, 1993). However, for our purposes we will use here only a small portion of \(p \)-adics, mainly some finite sets of integers and ultrametric distances between them.

Consider the set of natural numbers

\[
C_5[64] = \{ n_0 + n_1 5 + n_2 5^2 : n_i = 1, 2, 3, 4 \},
\]

where \(n_i \) are digits different from zero. This is a finite expansion to the base 5. It is obvious that 5 is a prime number and that the set \(C_5[64] \) contains 64 natural numbers.

In the sequel we shall often denote elements of \(C_5[64] \) by their digits to the base 5 in the following way:

\[
n_0 + n_1 5 + n_2 5^2 \equiv n_0 n_1 n_2.
\]

Note that here ordering of digits is the same as in the expansion, i.e this ordering is opposite to the usual one.

It is often important to know a distance between numbers. Distance can be defined by a norm. On the set \(\mathbb{Z} \) of integers there are two kinds of nontrivial norm: usual absolute value \(| \cdot |_\infty \) and \(p \)-adic absolute value \(| \cdot |_p \), where indices \(\infty \) and \(p \) denote real and \(p \)-adic case, respectively \((p \) is any prime number\). The usual absolute value is well known from elementary mathematics and the corresponding ordinary distance between two numbers \(x \) and \(y \) is

\[
d_\infty(x, y) = |x - y|_\infty.
\]

The \(p \)-adic absolute value is related to the divisibility of integers by prime numbers. Difference of two integers is again an integer. \(p \)-Adic distance between two integers can be understood as a measure of divisibility of their difference by \(p \) (the more divisible, the shorter). By definition, \(p \)-adic norm of an integer \(m \in \mathbb{Z} \), is \(|m|_p = p^{-k} \), where \(k \in \mathbb{N} \cup \{0\} \) is degree of divisibility of \(m \) by prime \(p \) (i.e. \(m = p^k m', \ p \nmid m' \) and \(|0|_p = 0 \)). This norm is a mapping from \(\mathbb{Z} \) into non-negative rational numbers and has the following properties:

(i) \(|x|_p \geq 0, \ |x|_p = 0 \) if and only if \(x = 0 \),
(ii) \(|xy|_p = |x|_p |y|_p \),
(iii) \(|x + y|_p \leq \max \{|x|_p, |y|_p\} \leq |x|_p + |y|_p \) for all \(x, y \in \mathbb{Z} \).

Because of the strong triangle inequality \(|x + y|_p \leq \max \{|x|_p, |y|_p\} \), \(p \)-adic absolute value belongs to non-Archimedean (ultrametric) norm. One can easily conclude that \(0 \leq |m|_p \leq 1 \) for any \(m \in \mathbb{Z} \) and any prime \(p \).

\(p \)-Adic distance between two integers \(x \) and \(y \) is

\[
d_p(x, y) = |x - y|_p.
\]

Since \(p \)-adic absolute value is ultrametric, the \(p \)-adic distance (2) is also ultrametric, i.e. it satisfies inequality

\[
d_p(x, y) \leq \max \{d_p(x, z), d_p(z, y)\} \leq d_p(x, z) + d_p(z, y),
\]

(3)
where \(x, y \) and \(z \) are any three integers.

5-Adic distance between two numbers \(a, b \in \mathbb{C}_5[64] \) is

\[
d_5(a, b) = |a_0 + a_1 5 + a_2 5^2 - b_0 - b_1 5 - b_2 5^2|_5,
\]

where \(a_i, b_i \in \{1, 2, 3, 4\} \). When \(a \neq b \) then \(d_5(a, b) \) may have three different values:

- \(d_5(a, b) = 1 \) if \(a_0 \neq b_0 \),
- \(d_5(a, b) = 1/5 \) if \(a_0 = b_0 \) and \(a_1 \neq b_1 \),
- \(d_5(a, b) = 1/5^2 \) if \(a_0 = b_0, a_1 = b_1 \) and \(a_2 \neq b_2 \).

We see that the largest 5-adic distance between numbers is 1 and it is maximum \(p \)-adic distance on \(\mathbb{Z} \). The smallest 5-adic distance on the space \(\mathbb{C}_5[64] \) is \(5^{-2} \). Let us also note that 5-adic distance depends only on the first two digits of different numbers \(a, b \in \mathbb{C}_5[64] \).

If we use real (standard) distance \(d_\infty(a, b) = |a_0 + a_1 5 + a_2 5^2 - b_0 - b_1 5 - b_2 5^2|_\infty \), then third digits \(a_2 \) and \(b_2 \) would play more important role than those at the second position (i.e. \(a_1 \) and \(b_1 \)), and digits \(a_0 \) and \(b_0 \) are of the smallest importance. At real \(\mathbb{C}_5[64] \) space distances are also discrete, but take values 1, 2, \(\cdots \), 93. The smallest real and the largest 5-adic distance are equal 1. While real distance describes metric of the ordinary physical space, this \(p \)-adic one may serve to describe ultrametricity of the information space.

Ultrametric space \(\mathbb{C}_5[64] \) can be viewed as 16 quadruplets with respect to the smallest 5-adic distance, i.e. quadruplets contain 4 elements and 5-adic distance between any two elements within quadruplet is \(1/5^2 \). In other words, within each quadruplet elements have the first two digits equal and third digits are different.

With respect to 2-adic distance, the above quadruplets may be viewed as composed of two doublets: \(a = a_0 a_1 1 \) and \(b = a_0 a_1 3 \) make the first doublet, and \(c = a_0 a_1 2 \) and \(d = a_0 a_1 4 \) form the second one. 2-Adic distance between codons within each of these doublets is \(1/2 \), i.e.

\[
d_2(a, b) = |(3 - 1) 5^2|_2 = \frac{1}{2}, \quad d_2(c, d) = |(4 - 2) 5^2|_2 = \frac{1}{2},
\]

because \(3 - 1 = 4 - 2 = 2 \). By this way ultrametric space \(\mathbb{C}_5[64] \) of 64 elements is arranged into 32 doublets.

5 5-Adic Codon Space

It is not difficult to note that ultrametric space of numbers in \(\mathbb{C}_5[64] \) and distribution of codons in Table 2 of the vertebrate mitochondrial code have some similarity. Already at the first glance, one can see that both have 64 elements and that there are quadruplets with equal the first two blocks of triples of letters and triples of digits.

Identifying appropriately nucleotides by digits, we obtain the corresponding ultrametric structure of the codon space in the vertebrate mitochondrial genetic code. We take
the following assignments between nucleotides and digits in $C_5[64]$: C (cytosine) = 1, A (adenine) = 2, T (thymine) = U (uracil) = 3, G (guanine) = 4. Ordering 5-adic numbers in increasing way one obtains rearranged codon space and it is presented in Table 3. There is now evident one-to-one correspondence between codons in three-letter notation and three-digit $n_0n_1n_2$ number representation of ultrametric space $C_5[64]$.

The above introduced set $C_5[64]$ endowed by p-adic distance we shall call p-adic codon space, i.e. elements of $C_5[64]$ are also codons denoted by $n_0n_1n_2$.

Let us now explore distances between codons and their role in formation of the genetic code degeneration.

To this end let us again turn to Table 3 as a representation of the $C_5[64]$ codon space. Namely, we observe that there are 16 quadruplets such that each of them has the same first two digits. Hence 5-adic distance between any two different codons within a quadruplet is

$$d_5(a, b) = |a_0 + a_1 5 + a_2 5^2 - a_0 - a_1 5 - b_2 5^2|_5 = |(a_2 - b_2)5^2|_5 = |a_2 - b_2|_5 5^{-2},$$

because $a_0 = b_0, a_1 = b_1$ and $|a_2 - b_2|_5 = 1$. According to (6) codons within every quadruplet are at the smallest distance, i.e. they are closest comparing to all other codons.

Since codons are composed of three ordered nucleotides, each of which is either a purine or a pyrimidine, it is natural to try to quantify similarity inside purines and pyrimidines, as well as distinction between elements from these two groups of nucleotides. Fortunately there is a tool, which is again related to the p-adics, and now it is 2-adic distance. One can easily see that 2-adic distance between pyrimidines C and U is $d_2(1, 3) = |3 - 1|_2 = 1/2$ as the distance between purines A and G, namely $d_2(2, 4) = |4 - 2|_2 = 1/2$. However 2-adic distance between C and A or G as well as distance between U and A or G is 1 (i.e. maximum).

One can now look at Table 3 as a system of 32 doublets. Thus 64 codons are clustered by a very regular way into 32 doublets. Each of 21 subjects (20 amino acids and 1 termination signal) is coded by one, two or three doublets. In fact, there are two, six and twelve amino acids coded by three, two and one doublet, respectively. Residual two doublets code termination signal.

Note that 2 doublets code 2 amino acids (Ser and Leu) which are already coded by 2 quadruplets, thus amino acids Serine and Leucine are coded by 6 codons (3 doublets).

To have a more complete picture of the genetic code it is useful to consider possible distances between codons of different quadruplets as well as between different doublets. Also, we introduce distance between quadruplets or between doublets, especially when distances between their codons have the same value. Thus 5-adic distance between any two quadruplets in the same column is 1/5, while such distance between other quadruplets is 1. 5-Adic distance between doublets coincides with distance between quadruplets, and this distance is 1/5 when doublets are within the same quadruplet.

The 2-adic distances between codons, doublets and quadruplets are more complex. There are three basic cases:
• codons differ only in one digit,
• codons differ in two digits,
• codons differ in all three digits.

In the first case, 2-adic distance can be $\frac{1}{2}$ or 1 depending whether difference between digits is 2 or not, respectively.

Let us now look at 2-adic distances between doublets coding Leucine and also between doublets coding Serine. These are two cases of amino acids coded by three doublets. One has the following distances:

• $d_2(332, 132) = d_2(334, 134) = \frac{1}{2}$ for Leucine,
• $d_2(311, 241) = d_2(313, 243) = \frac{1}{2}$ for Serine.

If we use usual distance between codons, instead of p-adic one, then we would observe that two synonymous codons are very far (at least 25 units), and that those which are close code different amino acids. Thus we conclude that not usual metric but ultrametric is inherent to codon space.

How degeneracy of the genetic code is connected with p-adic distances between codons? The answer is in the following basic p-adic degeneracy principle: Amino acids are coded by doublets of codons, where a doublet contains two nucleotides of the smallest $\frac{1}{5}$ 5-adic distance and $\frac{1}{2}$ 2-adic distance. Here p-adic distance plays a role of similarity: the closer, the more similar. Taking into account the standard genetic code, there is a slight violation of this principle. Now it is worth noting that in modern particle physics just broken of the fundamental gauge symmetry gives its standard model. There is a sense to introduce a new principle (let us call it reality principle): Reality is realization of some broken fundamental principles. It seems that this principle is valid not only in physics but also in all sciences. In this context modern genetic code, especially the standard genetic code, is an evolutionary broken the above p-adic degeneracy principle.

Let us now turn to Table 2. We observe that this table can be regarded as a big rectangle divided into 16 equal smaller rectangles: 8 of them are quadruplets which one-to-one correspond to 8 amino acids, and other 8 rectangles are divided into 16 doublets coding 14 amino acids and termination (stop) signal (by two doublets at different places). However there is no manifest symmetry in distribution of these quadruplets and doublets.

In order to get a symmetry we have rewritten this standard table into new one by rearranging 16 rectangles. As a result we obtained Table 3 which exhibits a symmetry with respect to the distribution of codon quadruplets and codon doublets. Namely, in our table quadruplets and doublets form separately two figures, which are symmetric with respect to the mid vertical line (a left-right symmetry), i.e. they are invariant under interchange $C \leftrightarrow G$ and $A \leftrightarrow U$ at the first position in codons at all horizontal lines. The observed left-right symmetry is now invariance under the corresponding transformations $1 \leftrightarrow 4$ and $2 \leftrightarrow 3$. In other words, at each horizontal line one can perform doublet \leftrightarrow
Table 3. The p-adic vertebrate mitochondrial genetic code.

111	CCC Pro	211	ACC Thr	311	UCC Ser	411	GCC Ala
112	CCA Pro	212	ACA Thr	312	UCA Ser	412	GCA Ala
113	CCU Pro	213	ACU Thr	313	UCU Ser	413	GCU Ala
114	CCG Pro	214	ACG Thr	314	UCG Ser	414	GCG Ala
121	CAC His	221	AAC Asn	321	UAC Tyr	421	GAC Asp
122	CAA Gln	222	AAA Lys	322	UAA Ter	422	GAA Glu
123	CAU His	223	AUA Asn	323	UAU Tyr	423	GAU Asp
124	CAG Gln	224	AAG Lys	324	UAG Ter	424	GAG Glu
131	CUC Leu	231	AUC Ile	331	UUC Phe	431	GUC Val
132	CUA Leu	232	AUA Met	332	UUA Leu	432	GUA Val
133	CUU Leu	233	AUU Ile	333	UUU Phe	433	GUU Val
134	CUG Leu	234	AUG Met	334	UUG Leu	434	GUG Val
141	CGC Arg	241	AGC Ser	341	UGC Cys	441	GGC Gly
142	CGA Arg	242	AGA Ter	342	UGA Trp	442	GGA Gly
143	CGU Arg	243	AGU Ser	343	UGU Cys	443	GGU Gly
144	CGG Arg	244	AGG Ter	344	UGG Trp	444	GGG Gly

12
doublet and quadruplet ↔ quadruplet interchange around vertical midline. Recall that also DNA is symmetric under simultaneous interchange of complementary nucleotides C ↔ G and A ↔ T between its strands. All doublets in this table form a nice figure which looks like letter T.

Note that the above invariance leaves also unchanged polarity and hydrophobicity of the corresponding amino acids in all but three cases: Asn ↔ Tyr, Arg ↔ Gly, and Ser ↔ Cys.

It is also worth noting that four nucleotides are related to prime number 5 by their correspondence to the four nonzero digits (1, 2, 3, 4) of $p = 5$. It is inappropriate to use the digit 0 for a nucleotide because it leads to non-uniqueness in representation of the codons by natural numbers. For example, 123 = 123000 as numbers, but 123 would represent one and 123000 two codons. This is also a reason why we do not use 4-adic representation for codons, since it would contain a nucleotide presented by digit 0. One can use 0 as a digit to denote absence of any nucleotide.

6 5-Adic Amino Acids Space

At Table 4 we assigned numbers $x_0x_1 ≡ x_0 + x_15$ to 16 amino acids which are assumed to be present in dinucleotide coding epoch, and $x_0 = 1, 2, 3, 4$ is attached to four late amino acids which were added during trinucleotide coding. Having these 5-adic numbers for amino acids one can consider distance between codons and amino acids: there are 23 codon doublets which are at $\frac{1}{25}$ 5-adic distance with the corresponding 15 amino acids, i.e. these codons within doublets and related amino acids are at the same 5-adic distance.

7 Possible Evolution of the Genetic Code

There are two types of evolution of the genetic code: 1) evolution of the codon space and 2) evolution of amino acids sector with fixed trinucleotide codon space. We shall discuss
mainly the first type of evolution.

The origin and early evolution of the genetic code are among the most interesting and important investigations related to the origin and evolution of the life. However, since there are no concrete fossils from that early period, it gives rise to many speculations. Nevertheless, one can hope that some of the hypotheses may be tested looking for the corresponding traces in the contemporary genomes.

It seems natural to consider biological evolution as an adaptive development of simpler living systems to more complex ones. Namely, living organisms are open systems in permanent interaction with environment. Thus the evolution can be modelled by a system with given initial conditions and guided by some internal rules taking into account environmental factors.

We are going now to conjecture on the evolution of the genetic code using our p-adic approach to the codon space, and assuming that preceding codes used simpler codons and older amino acids.

Consider general p-adic codon space $C_5[(p-1)^m]$ which has two parameters: p - related to $p-1$ building blocks, and m - multiplicity of the building blocks in codons. Then

• Case $C_2[1]$ is a trivial one and useless for a primitive code.

• Case $C_5[2^m]$ with $m = 1, 2, 3$ does not seem to be realistic.

• Case $C_5[4^m]$ with $m = 1, 2, 3$ offers a possible pattern to consider evolution of the genetic code. Namely, the codon space could evolve in the following way: $C_5[4] \rightarrow C_5[4^2] \rightarrow C_5[4^3] = C_5[64]$.

According to Table 5 the primary code, containing codons in the single nucleotide form (C, A, U, G), encoded the first four amino acids (see Table 6): Gly, Ala, Asp and Val. From the last column of Table 4 we conclude that the connection between digits and amino acids is: 1 → Ala, 2 → Asp, 3 → Val, 4 → Gly. In the primary code these digits occupied the first position in the 5-adic expansion (Table 5), and at the next step, i.e. $C_5[4] \rightarrow C_5[4^2]$, they moved to the second position adding digits 1, 2, 3, 4 in front of each of them.

In $C_5[4^2]$ one has 16 dinucleotide codons which can code up to 16 new amino acids. Addition of the digit 4 in front of already existing codons 1, 2, 3, 4 leaves their meaning unchanged, i.e. 41 → Ala, 42 → Asp, 43 → Val, 44 → Gly. Adding digits 3, 2, 1 in front of the primary 1, 2, 3, 4 codons one obtains 12 possibilities for coding some new amino acids. To decide which amino acid was encoded by which of 12 dinucleotide codons, we use as a criterion their immutability in the trinucleotide coding on the $C_5[4^3]$ space. This criterion assumes that amino acids encoded earlier are more fixed than those encoded later. According to this criterion we decide in favor of the first row in each rectangle of Table 3 and result is presented in Table 7.

Transition from dinucleotide to trinucleotide codons occurred by attaching nucleotides 1, 2, 3, 4 at the third position, i.e. behind each dinucleotide. By this way one obtains
Table 5. 5-Adic system including digit 0, and containing single nucleotide, dinucleotide and trinucleotide codons.

000	100	200	300	400
010	110	210	310	410
020	120	220	320	420
030	130	230	330	430
040	140	240	340	440
001	101	201	301	401
011	111	211	311	411
021	121	221	321	421
031	131	231	331	431
041	141	241	341	441
002	102	202	302	402
012	112	212	312	412
022	122	222	322	422
032	132	232	332	432
042	142	242	342	442
003	103	203	303	403
013	113	213	313	413
023	123	223	323	423
033	133	233	333	433
043	143	243	343	443
004	104	204	304	404
014	114	214	314	414
024	124	224	324	424
034	134	234	334	434
044	144	244	344	444

Ignoring numbers which contain digit 0 in front of any 1, 2, 3 or 4, one has one-to-one correspondence between 1-digit, 2-digits, 3-digits numbers and single nucleotides, dinucleotides, trinucleotides, respectively. It seems that evolution of codons has followed transitions: single nucleotides → dinucleotides → trinucleotides.
Table 6. Temporal appearance of the 20 standard amino acids (Trifonov, 2004).

	Gly	Ala	Asp	Val
1				
2				
3				
4				
5	Pro			
6		Ser		
7			Glu	
8				Leu
9	Thr			
10	Arg			
11		Ile		
12				Gln
13	Asn			
14		His		
15			Lys	
16				Cys
17	Phe			
18		Tyr		
19			Met	
20				Trp

Table 7. The dinucleotide genetic code based on the p-adic codon space C_5.\footnote{42}

	CC	Pro	AC	Thr	UC	Ser	GC	Ala
11								
12	CA	His						
13	CU							
14	CG	Arg						
	21	AC	Thr					
	22	AA						
	23	AU	Ile					
	24	AG						
	25							
	26							
	27							
	28							
	29							
	30							
	31	UC		Ser				
	32	UA	Tyr					
	33	UU	Phe					
	34	UG	Cys					
	35							
	36							
	37							
	38							
	39							
	40							
	41	GC		Ala				
	42	GA	Asp					
	43	GU	Val					
	44	GG	Gly					

Note that this code encodes 15 amino acids without stop codon, but encodes Serine twice.
new codon space $C_5[4^3] = C_5[64]$, which is significantly enlarged and provides a pattern to generate known genetic codes. This codon space $C_5[64]$ gives possibility to realize at least three general properties of the modern code:

- (i) encoding of more than 16 amino acids,
- (ii) diversity of codes,
- (iii) stability of the gene expression.

Let us give some relevant clarifications.

(i) For functioning of contemporary living organisms it is necessary to code at least 20 standard (Table 1) and 2 non-standard amino acids (selenocysteine and pyrrolysine). Probably these 22 amino acids are also sufficient building units for biosynthesis of all necessary contemporary proteins. While $C_5[4^2]$ is insufficient, the codon space $C_5[4^3]$ offers approximately three codons per one amino acid.

(ii) The standard code was deciphered around 1966 and was thought to be universal, i.e., common to all organisms. When the human mitochondrial code was discovered in 1979, it gave rise to believe that the code is not frozen and that there are also some other codes which are mutually different. According to later evidences, one can say that there are about 20 slightly different mitochondrial and nuclear codes (for a review, see (Knight et al., 2001; Osawa et al., 1992) and references therein). Different codes have some codons with different meaning. So, in the standard genetic code there are the following changes in Table 3:

- 232 (AUA): Met \rightarrow Ile,
- 242 (AGA) and 244 (AGG): Ter \rightarrow Arg,
- 342 (UGA): Trp \rightarrow Ter.

(iii) Each of the 20 codes is degenerate and degeneration provides their stability against possible mutations. In other words, degeneration helps to minimize codon errors.

Genetic codes based on single nucleotide and dinucleotide codons were mainly directed to code amino acids with rather different properties. This may be the reason why amino acids Glu and Gln are not coded in dinucleotide code (Table 7), because they are similar to Asp and Asn, respectively. However, to become almost optimal, trinucleotide codes have taken into account structural and functional similarities of amino acids.

We presented here a hypothesis on the genetic code evolution taking into account possible codon evolution, from 1-nucleotide to 3-nucleotide, and amino acids temporal appearance. This scenario may be extended to the cell evolution, which probably should be considered as a coevolution of all its main ingredients (for an early idea of the coevolution, see (Wong, 1975)).

8 Concluding Remarks

There are two aspects of the genetic code related to:
(i) multiplicity of codons which code the same amino acid,
(ii) concrete assignment of codon multiplets to particular amino acids.

The above presented \(p \)-adic approach gives quite satisfactory description of the aspect (i). Ultrametric behavior of \(p \)-adic distances between elements of the \(C_5 \) [64] codon space radically differs from the usual ones. Quadruplets and doublets of codons have natural explanation within 5-adic and 2-adic nearness. Degeneracy of the genetic code in the form of doublets, quadruplets and sextuplets is direct consequence of \(p \)-adic ultrametricity between codons. \(p \)-Adic \(C_5 \) [64] codon space is our theoretical pattern to consider all variants of the genetic code: some codes are direct representation of \(C_5 \) [64] and the others are its slight evolutional modifications.

(ii) Which amino acid corresponds to which doublet of codons? An answer to this question should be expected from connections between physicochemical properties of amino acids and anticodons. Namely, enzyme aminoacyl-tRNA synthetase links specific tRNA anticodon and related amino acid. Thus there is no direct interaction between amino acids and trinucleotide codons, as it was believed for some time in the past. However, from our \(p \)-adic analysis follows that at an epoch of dinucleotide codons connection of codons and amino acids should be direct. Namely, at that time \(p \)-adic distance between dinucleotide codons and some amino acids was zero.

Note that there are in general 4! ways to assign digits 1, 2, 3, 4 to nucleotides C, A, U, G. After an analysis of all 24 possibilities, we have taken C = 1, A = 2, U = T = 3, G = 4 as a quite appropriate choice. In addition to various properties already presented in this paper it exhibits also complementarity of nucleotides in the DNA double helix by relation C + G = A + T = 5.

One can express many above considerations of \(p \)-adic information theory in linguistic terms and investigate possible linguistic aspects.

In this paper we have employed \(p \)-adic distances to measure similarity between codons, which have been used to describe degeneracy of the genetic code and to propose its evolution. It is worth noting that in other contexts \(p \)-adic distances can be interpreted in quite different meanings. For example, 3-adic distance between cytosine and guanine is \(d_3(1, 4) = \frac{1}{7} \), and between adenine and thymine \(d_3(2, 3) = 1 \). This 3-adic distance seems to be natural to relate to hydrogen bonds between complements in DNA double helix: the smaller distance, the stronger hydrogen bond. Recall that C-G and A-T are bonded by 3 and 2 hydrogen bonds, respectively.

The translation of codon sequences into proteins is highly an information-processing phenomenon. \(p \)-Adic information modelling presented in this paper offers a new approach to systematic investigation of ultrametric aspects of DNA and RNA sequences, the genetic code and the world of proteins. It can be embedded in computer programs to explore \(p \)-adic side of the genome and related subjects.

The above considerations and obtained results may be viewed as contribution to foundation of \(p \)-adic theory of the genetic code, but also to theory of \(p \)-adic information.
Acknowledgements

The work on this paper was partially supported by the Ministry of Education and Science, Serbia, contracts 173052 and 174012. The author would like to thank Alexandra Yu. Dragovich and Miloje Rakočević for fruitful discussions of various aspects of the genetic code. The author also appreciate activity of Sultan Tarlaci, Chief-Editor, and Tidjani Negadi, editor of this issue, on edition of the special issue of the journal NeuroQuantology devoted to the modern developments in understanding the genetic code and related topics.

References

Avetisov VA, Bikulov AKh, Kozyrev SV and Osipov VA. p-Adic Models of Ultrametric Diffusion Constrained by Hierarchical Energy Landscape. J Phys A: Math Gen 2002; 35 (2): 177–189. arXiv:cond-mat/0106506.

Bashford JD, Tsohantjis I and Jarvis PD. Codon and Nucleotide Assignments in a Super-symmetric Model of the Genetic Code. Phys Lett A 1997; 233: 481–488.

Brekke L and Freund PGO. p-Adic Numbers in Physics. Phys Reports 1993; 233: 1–66.

Crick F. The Origin of the Genetic Code. J Mol Biol 1968; 38: 367–379.

Dragovich B. p-Adic and Adelic Quantum Mechanics. Proc VA Steklov Inst Math 2004; 245: 72–85. arXiv:hep-th/0312046.

Dragovich B. p-Adic and Adelic Cosmology: p-Adic Origin of Dark Energy and Dark Matter. p-Adic Mathematical Physics. AIP Conference Proceedings 2006; 826: 25–42. arXiv:hep-th/0602044.

Dragovich B. Genetic Code and Number Theory. To apper in book "Modern Topics in Science". arXiv:0911.4014v1 [q-bio.OT]

Dragovich B and Dragovich A. p-Adic Degeneracy of the Genetic Code. SFIN A 2007; 20 (1): 179–188. arXiv:0707.0764v1[q-bio.GN].

Dragovich B and Dragovich A. A p-Adic Model of DNA Sequence and Genetic Code. p-Adic Numbers, Ultrametric Analysis and Applications 2009; 1 (1): 34–41. arXiv:q-bio.GN/0607018v1.

Dragovich B and Dragovich A. p-Adic Modelling of the Genome and the Genetic Code. Computer Journal 2010; 53 (4): 432–442. arXiv:0707.3043v1 [q-bio.OT].

Dragovich B, Khrennikov AYu, Kozyrev SV and Volovich IV. On p-Adic Mathematical Physics. p-Adic Numbers, Ultrametric Analysis and Applications 2009; 1 (1): 1–17. arXiv:0904.4205v1[math-ph].
Finkelshtein AV and Ptitsyn OB. Physics of Proteins. Academic Press, London, 2002.

Forger M and Sachse S. Lie Superalgebras and the Multiplet Structure of the Genetic Code I: Codon Representations. J Math Phys 2000; 41 (8): 5407–5422. arXiv:math-ph/9808001.

Frappat L, Sciarrino A and Sorba P. Crystalizing the Genetic Code. J Biol Phys 2001; 27: 1–38. arXiv:physics/0003037.

Gouvea FQ. p-Adic Numbers: An Introduction. (Universitext), Springer, Berlin, 1993.

Hayes B. The Invention of the Genetic Code. American Scientist 1998; 86 (1): 8–14.

Hornos JEM and Hornos YMM. Algebraic Model for the Evolution of the Genetic Code. Phys Rev Lett 1993; 71: 4401–4404.

Khrennikov A. Information Dynamics in Cognitive, Psychological, Social and Anomalous Phenomena. Kluwer AP, Dordrecht, 2004.

Khrennikov A and Kozyrev S. Genetic Code on a Diadic Plane. Physica A: Stat Mech Appl 2007; 381: 265–272. arXiv:q-bio/0701007.

Knight RD, Freeland SJ and Landweber LF. Rewiring the Keyboard: Evolvability of the Genetic Code. Nat Rev Genet 2001; 2: 49–58.

Negadi T. The Genetic Code Multiplet Structure, in One Number. Symmetry: Culture and Science 2007; 18 (2-3): 149–160. arXiv:0707.2011v1 [q-bio.OT].

Osawa S, Jukes TH, Watanabe K and Muto A. Recent Evidence for Evolution of the Genetic Code. Microb Rev 1992; 56 (1): 229–264.

Rakočević MM. A Harmonic Structure of the Genetic Code. J Theor Biol 2004; 229: 221–234.

Rammal R, Toulouse G and Virasoro MA. Ultrametricity for Physicists. Rev Mod Phys 1986; 58: 765–788.

Rumer YuB. On Systematization of Codons in the Genetic Code. Doklady Acad Nauk USSR 1966; 167 (6): 1393–1394.

Shcherbak VI. Arithmetic Inside the Universal Genetic Code. Biosystems 2003; 70: 187–209.

Swanson R. A Unifying Concept for the Amino Acid Code. Bull Math Biol 1984; 46 (2): 187–203.

Trifonov EN. The Triplet Code From First Principles. J Biomol Struct Dynam 2004; 22 (1): 1–11.
Vladimirov VS, Volovich IV and Zelenov EI. *p*-Adic Analysis and Mathematical Physics. World Scientific, Singapore, 1994.

Watson JD, Baker TA, Bell SP, Gann A, Levine M and Losick R. Molecular Biology of the Gene. CSHL Press, Benjamin Cummings, San Francisco, 2004.

Wong JTF. A Co-Evolution Theory of the Genetic Code. Proc Nat Acad Sci USA 1975; 72: 1909–1912.