Prevention of Age-related T Cell Apoptosis Defect in CD2-fas-transgenic Mice

By T. Zhou,* C. K. Edwards III,† and J. D. Mountz*

From the *Veterans Administration Medical Center and The University of Alabama at
Birmingham, Birmingham, Alabama 35294; and the †Marion Merrell Dow Research Institute,
Cincinnati, Ohio 45215

Summary

T cell dysfunction and thymic involution are major immunologic abnormalities associated with aging. Fas (CD95) is a bifunctional molecule that is critical for apoptosis and stimulation during T cell development, but the role of Fas during aging has not been determined. Fas expression and function on T cells from old (22–26-mo-old) mice was compared with young (2-mo-old) mice and old CD2-fas–transgenic mice. Fas expression and ligand-induced apoptosis were decreased on T cells from old mice compared with young mice. This correlated with an age-related increase in CD44+Fas− T cells. There was a marked decrease in the proliferation of T cells from old mice after anti-CD3 stimulation compared with young mice. Anti-CD3-stimulated T cells from young mice exhibited increased production of interleukin (IL)-2 and decreased production of interferon-γ and IL-10 compared with old mice. There was an age-related decrease in the total thymocyte count from 127 ± 10 cells in young mice compared with 26 ± 8 × 10^6 in old mice. In 26-mo-old CD2-fas–transgenic mice, Fas and CD44 expression, Fas-induced apoptosis, T cell proliferation, and cytokine production were comparable to that of the young mice. These results suggest that T cell senescence with age is associated with defective apoptosis, and that the CD2-fas transgene allows maintenance of Fas apoptosis function and T cell function in aged mice comparable to that of young mice.

Materials and Methods

Mice. CD1 mice were obtained from Charles River Breeding Laboratories, Inc. (Wilmington, MA) and kept in specific pathogen-free conditions.

1 Abbreviation used in this paper: SMLR, syngeneic mixed lymphocyte reaction.

Age-related immune dysfunctions of T cells include thymic involution (1), decreased T cell response to mitogens or antigens (2–6), altered cytokine expression (7–10), and altered phenotype (11–13). The decrease in spleen or LN T cell responsiveness has been related to an increase in senescent memory T cells (11, 13), which exhibit defective phosphorylation after stimulation (14–18). Thymic involution has been proposed to be due either to defects in thymocyte precursors derived from stem cells or a defect in expression of thymic factors or growth factors required for normal T cell development (19–23). Recent evidence indicates that depletion of thymocyte stem cells cannot completely account for thymic involution with age (24). Evidence to support an age-related deficiency of growth factors has been provided by the observation that replacement of growth factors or hormones can inhibit thymic involution or T cell dysfunction with aging (19–23).

Fas/Apo-1 (CD95) is a cell surface–signaling molecule that mediates apoptosis (25, 26). The apoptosis defect that results from defective Fas expression in lpr mice results in survival of self-reactive T cells, loss of self-tolerance, autoimmunity, and lymphoproliferation (27). There is a close association between apoptosis and proliferation mediated by Fas and other apoptosis molecules, including p53 and c-myc (28, 29). Apoptosis that follows stimulation and proliferation has been proposed to be critical for the regulation of the T cell response to stimuli by removing cells with metabolic defects or autoimmune potential (30, 31). We propose that this process of selective depletion of T cells is necessary throughout the life span of the animal to prevent accumulation of dysfunctional senescent T cells.

This article demonstrates that Fas expression and function are decreased in T cells of old mice. Age-related Fas dysfunction can be circumvented in CD2-fas–transgenic mice. The presence of the CD2-fas transgene allows the maintenance of thymocyte numbers in aged mice comparable to that observed in young mice. The syngeneic mixed lymphocyte reaction (SMLR) and the response of peripheral T cells to stimulation by CD3 cross-linking is comparable to that of young animals. Cytokine expression after stimulation was also comparable to levels observed in young mice.
Production of CD2-fas Transgenic CD1 Mice. CD1 mice were used for superovulation and production of the CD2-fas--transgenic mice as previously described (32). The CD2-fas construct was made by ligation of a full-length murine fas cDNA into an EcoRI site in front of exon 1 of a human CD2 minigene consisting of 5.5 kb of the 5' flanking sequence, exon 1, the first intron, fused exons 2-5, and 2.1 kb of the 3' flanking sequence. The 3' sequence of this CD2 minigene has been shown to be sufficient to allow copy-dependent, integration-independent expression primarily in CD2+ T cells in transgenic mice (33, 34). Transgenic mice were identified by tail DNA analysis and housed with littermate controls for 24 mo while being maintained on food and water ad libitum. The young 2-mo-old CD1 mice used in these experiments were derived from a breeding colony of CD1 mice.

Southern Blot Analysis. Tail DNA was prepared and digested with the indicated restriction enzymes. Approximately 10 μg of the digested DNA was separated on a 0.7% agarose gel, blotted to a nylon membrane, and hybridized with a 32P-labeled full-length fas cDNA probe extending from 49 to 1,033 bp of the murine sequence as previously described (32).

Expression of Murine Fas Ligand. The murine Fas ligand was cloned and sequenced using PCR primers that were prepared according to the sequence of the known mouse Fas ligand (35, 36). The full-length murine Fas ligand cDNA was cloned into the pcDNA1 expression vector (Invitrogen, San Diego, CA). 20 μg of purified plasmid DNA was precipitated with 500 μg/ml of DEAE-Dextran (Sigma Chemical Co., St. Louis, MO), added to 5 × 105 COS7 cells in a 10-cm cell culture dish containing 10 ml of serum-free RPMI 1640 and 10 mM choline (Sigma Chemical Co., St. Louis, MO), and incubated at 37°C for 4 h. The transfected cells were then treated with 10% DMSO + RPMI 1640 for 2 min, and grown in 12% FCS + RPMI 1640 for 72 h. The supernatant was collected and then stored at −20°C until use.

Preparation of Murine Fas–Human IgG1 Fusion Protein. A murine Fas–human IgG1 (fas-hlg) fusion protein was prepared as previously described (37). Briefly, the extracellular domain of the mouse fas cDNA was fused with the Fc portion of human IgG1 gene to form an open reading frame. The fusion gene was cloned into the pcDNA1 eukaryotic expression vector (Invitrogen) and transfected into COS7 cells as described above. The fusion protein was purified on an anti–human IgG agarose column (Sigma Chemical Co.) and concentrated to 1 mg/ml in PBS.

T Cell Enrichment. Single-cell suspensions of lymphocytes or spleen cells were enriched using a T cell enrichment column (R&D Systems, Inc., Minneapolis, MN) according to the directions of the manufacturer. Purified T cell populations were >98% T cells as determined by flow cytometry analysis of CD3 expression.

Flow Cytometry Analysis. Anti-CD3 (clone: 145.2C11), anti-CD4 (clone: GK 1.5), anti-CD8 (clone: 53-67.17 and anti-CD44 (clone: IM7), and anti–mouse Fas (clone: Jo2) were purchased from PharMingen (San Diego, CA). Single cell suspensions of lymphocytes, spleen cells, or thymocytes (106 per sample) were stained in FACS® buffer (PBS with 5% FCS and 0.1% sodium azide; Becton Dickinson & Co., Mountain View, CA) and optimal concentrations of antibodies. For two- and three-color analyses, cells were labeled with optimal concentrations of FITC-conjugated anti-CD4 and PE-conjugated anti-CD8 or biotin-conjugated anti-Fas or anti-CD44. Biotinylated conjugated antibodies were revealed by Tandem–avidin. Viable cells were determined by forward and side light scatter using standard methods and were <6% of the sample size. Viable cells (10,000 per sample) were analyzed by flow cytometry on a FACScan® (Becton Dickinson & Co.) with logarithmic scales.
cells from aged mice, and development of this apoptosis defect was prevented in CD2-fas-transgenic aged mice (Fig. 3).

Syngeneic Mixed Lymphocyte Response. Spleen cells from 2-mo-old mice exhibited a weak SMLR characterized by a minimal proliferative response (Fig. 4 A). This was not caused by an absence of IL-2 since the cells were cultured in the presence of 50 U/ml of IL-2. In contrast, there was a statistically significant increased proliferative response (p <0.001) after SMLR which peaked at 96 h using enriched spleen T cells of 26-mo-old mice. The SMLR response of spleen cells from 26-mo-old CD2-fas-transgenic mice was similar to that observed in 2-mo-old mice. On days 1 and 3 of the SMLR, there was minimum apoptosis (20–30%) in all three groups of mice (p <0.05). However, on days 5 and 7, apoptosis increased to 60–70% of spleen cells in both 2- and 26-mo-old CD2-fas-transgenic mice (Fig. 4 B). In contrast, the percentage of cells undergoing apoptosis remained significantly lower in aged mice on days 5 and 7 of the SMLR (p <0.001).

Figure 1. Analysis of CD2-fas-transgenic CD1 mice by Southern blot analysis. Tail DNA was digested with the EcoRI restriction enzyme, which releases the 1.1-kb fas cDNA insert from CD2-fas-transgenic mice.

Figure 2. Expression of Fas on thymocytes and spleen cells. Single-cell suspensions of thymocytes and spleen cells from 2-mo-old, 26-mo-old, and 26-mo-old Fas-transgenic mice (10⁶ per sample) were stained with anti-Fas. The histograms of Fas expression are representative of at least 10 mice from each group. The gates used to define lymphocyte populations are indicated by the vertical lines. Negative control staining is shown as the dotted curve. There was a statistically significant increase in Fas- cells in the groups of 26-mo-old mice compared with 2-mo-old and 26-mo-old Fas-transgenic mice (p <0.01). Viable cells (10,000 per sample) were analyzed by flow cytometry on a FACSScan™ with logarithmic scales.

Figure 3. Correction of Fas ligand-induced apoptosis in CD2-fas-transgenic aged mice. Lymphocyte suspensions (10⁶ per sample) were cultured for 18 h with different dilutions of supernatant of COS7 cells expressing the Fas ligand ranging from 0 to 0.5 (50:50 vol/vol). Lymphocytes were obtained from 2- (■), 22- (○), or 26-mo-old CD2-fas-transgenic mice (▲). Apoptosis was determined by the in situ nick translation assay of single-cell suspensions of lymphocytes as previously described (50). The results represent the mean ± SEM for three separate mice assayed individually in triplicate culture wells.
To determine if the cells undergoing SMLR were sensitive to Fas mediated apoptosis, SMLR was carried out in the presence of 1 μg/ml of purified anti-Fas antibody. Anti-Fas antibody did not prevent the SMLR proliferative responses by spleen cells from 26-mo-old nontransgenic mice and had no effect on the percentage of cells undergoing apoptosis (compare Fig. 4, A and B with Fig. 4, C and D). Blocking of the Fas–Fas ligand interaction during SMLR with a Fas fusion protein resulted in a statistically increased proliferative response and decreased apoptosis in young 2-mo-old mice and in 26-mo-old CD2-fas-transgenic mice (Fig. 4, E and F) (p < 0.001). In contrast, the SMLR and apoptosis responses from 26-mo-old mice was not significantly affected by the presence of Fas fusion protein (p > 0.05). These results indicate that the increased SMLR exhibited by spleen cells from 26-mo-old mice is associated with defective Fas signaling and apoptosis, which is present in 2- and in 26-mo-old CD2-fas-transgenic mice, and that the increased SMLR in aged mice is caused by a defect in apoptosis. This failure could not be corrected by stimulation with anti-Fas antibody, consistent with the finding that Fas expression is defective on T cells from aged mice.

Prevention of Age-related Decrease in Proliferation and Apoptosis in CD2-fas-transgenic Mice. T cell proliferation after anti-CD3 cross-linking peaked at 72 h in 2-mo-old CD1 mice (Fig. 5 A). In contrast, T cells from 26-mo-old mice exhibited a statistically significant decreased proliferative response (p < 0.01) on days 2-4 after anti-CD3 cross-linking and a statistically significant increase (p < 0.01) on days 5-7 after anti-CD3 cross-linking. The anti-CD3 proliferative responses in 26-mo-old CD2-fas-transgenic mice (and 2-mo-old CD2-fas-transgenic mice, data not shown) were significantly decreased (p < 0.01) but similar to those observed in 2-mo-old mice with peak proliferation on day 3 followed by a decrease in proliferation. Apoptosis after anti-CD3 stimulation was significantly increased (p < 0.01) in 2-mo-old CD1 mice and in 26-mo-old CD2-fas-transgenic mice compared with 26-mo-old nontransgenic mice (Fig. 5 B).

Correction of Cytokine Response in CD2-fas-transgenic Aged Mice. Decreased IL-2 production after anti-CD3 cross-linking has been noted in old mice and humans (3–5). The 50% decrease in IL-2 production after anti-CD3 cross-linking in 22-mo-old mice was partially corrected in 22-mo-old CD2-fas-transgenic mice (Fig. 6 A). There was an increase in IL-4 production on days 2 and 4 after anti-CD3 cross-linking in 22-mo-old mice with peak proliferation on day 3 followed by a decrease in proliferation. Apoptosis after anti-CD3 stimulation was significantly increased (p < 0.01) in 2-mo-old CD1 mice and in 26-mo-old CD2-fas-transgenic mice compared with 26-mo-old nontransgenic mice (Fig. 5 B).

Correction of CD44 Expression on Thymocytes and Spleen Cells. Thymocyte subpopulations exhibiting defective Fas expression were primarily CD4⁺ CD8⁻ (double-positive) and CD4⁻ CD8⁻ (double-negative) thymocytes in 26-mo-old nontransgenic CD1 mice (Fig. 7 A). Most of the thymocytes with low Fas expression exhibited increased expression of CD44. Thymocytes from 26-mo-old CD2-fas-transgenic mice were phenotypically similar to those from 2-mo-old mice. Less than 20% of enriched T cells from the spleen of 2-mo-old nontransgenic mice express CD44, and ~90% were Fas⁺. In 26-mo-old nontransgenic CD1 mice, 60% of...
enriched spleen T cells were Fas−, and ~80% were CD44+. In 26-mo-old Fas-transgenic mice, expression of CD44, CD4, and Fas was similar to that observed in 2-mo-old mice.

Prevention of Thymic Involution in Aged CD2-fas-transgenic Mice. There was a markedly decreased number of thymocytes in 22-mo-old CD1 mice compared with 2-mo-old CD1 mice, which was prevented in the presence of the 22-mo-old CD2-fas-transgenic mice (Fig. 8 A). Consistent with the finding of increased thymocyte numbers in young and aged CD2 Fas–transgenic mice, thymocyte apoptosis was decreased in young and aged CD2-fas–transgenic mice on days 2–6 after CD3 cross-linking (Fig. 8 B). In contrast, in 22-mo-old mice, there was increased apoptosis on days 2–6 after CD3 cross-linking, suggesting high utilization of programmed cell death mechanisms within the aged thymus. These results indicate that the CD2-fas transgene might provide an intrathymic signal for thymic development, thereby preventing apoptosis after CD3 cross-linking in vitro.

Discussion

The immunologic mechanism underlying defective Fas function with age is not known. One possibility is that there is an intrinsic age-related defect in transcriptional or the posttranscriptional factors that regulate Fas expression. This view is supported by the fact that Fas is a member of a family of receptors that contain cysteine repeat domains and this family of receptors includes TNF-R and CD40-L, which also exhibit decreased expression with age (39–41). Another possibility is that the Fas signaling–function might be impaired with aging, which could further accentuate an expression defect. Fas signaling involves a phosphatase dependent pathway, which is decreased with aging (42). Further investigation into the mechanisms of defective Fas signaling with aging could lead to novel intervention therapies to restore normal Fas signaling.

Our data indicate that Fas function is decreased more than Fas expression in old mice. One possibility is that high Fas expression is required for Fas-induced apoptosis. Enforced up-regulation of Fas in the CD2-fas–transgenic mice allows the maintenance of Fas function and production of Fas-sensitive T cells in aged mice. This dissociation of Fas expression and function has also been observed in the thymus, where all cells express intermediate to high levels of Fas, but not all thymocytes are sensitive to Fas-induced apoptosis (Zhou, T., P. Yang, Z. Wang, and J. D. Mountz, manuscript submitted for publication). Another possibility may be that alternatively spliced or nonfunctional forms of the Fas molecule might be present.
Figure 7. Correction of CD44 expression on thymocytes and spleen cells in aged CD2-Fas-transgenic mice. Single-cell suspensions of thymocytes and spleen cells from 2-, 26-, and 26-mo-old Fas-transgenic mice (10^6 per sample) were analyzed for expression of CD4 and/or CD8, Fas, and CD44. (A) Thymocytes were labeled with anti-Fas, anti-CD4, and anti-CD8, or anti-Fas and anti-CD44. Fas⁺ and Fas⁻ thymocyte populations are defined as in Fig. 2. (B) Enriched spleen T cells were labeled with anti-CD44, anti-CD4, and anti-Fas. The gates used to define lymphocyte populations are defined by the vertical and horizontal lines. Viable cells (10,000 per sample) were analyzed by flow cytometry on a FACScan® with logarithmic scales.
on T cells from aged mice, and that these forms can interact with the Fas antibody but do not signal apoptosis. We have reported the presence of an alternatively spliced Fas molecule that results in the secretion of soluble Fas and inhibition of apoptosis (37). Additionally, other investigators have reported a mutation of Fas leading to defective apoptosis signaling in CBA/H-HeN-lpr/lpr mice (27).

Previous results indicate that there are at least two pathways for apoptosis of thymocytes (28, 29, 43). Apoptosis of thymocytes that have undergone DNA damage by x-irradiation require p53, whereas steroid-induced apoptosis does not. In the Fas-mutant lpr mouse, there is an increase in steroid-induced apoptosis of thymocytes, but a decrease in Fas-induced apoptosis caused by the Fas mutation (44). The present results also indicate that there is more than one pathway for apoptosis of T cells in the thymus and LN. One is active in young mice, whereas a second Fas-independent pathway is active for deletion of T cells from aged mice after stimulation. The shift from Fas-dependent to Fas-independent apoptosis with aging may account for altered phenotype and function of T cells with aging.

Loss of Fas function with age is associated with a decrease of the Th1 cytokine IL-2 and an increase of the Th2 cytokines IL-4 and IL-10. The overuse of the Th2 pathway with aging has also been previously reported by other investigators (45, 46). We have shown recently that T cells that have been stimulated to undergo preferential development since Th1 T cells express Fas and Fas ligand, whereas T cells stimulated to undergo development as Th2 T cells do not express Fas or Fas ligand (Zheng, R., J. Pan, J. Mountz, T. Zhou, and C. T. Weaver, manuscript submitted for publication). The shift of Th1 to Th2 T cells with aging may be caused by defective Fas–Fas ligand signaling. The restoration of preferential development of Th1 cells by the fas transgene in aged mice suggests that Fas interaction with its ligand has been corrected, and that Fas interaction may play a critical role in T cell development as well as T cell apoptosis with aging.

Immune system aging is associated with an increase in percentage of memory T cells characterized by expression of CD44 and CD45RO (11–13, 47–50). In 26-mo-old nontransgenic mice, approximately one third of thymocytes and 50–60% of purified spleen T cells, increased CD44 expression was associated with low expression of cell surface Fas. CD44+ memory T cells would therefore be insensitive to Fas-induced apoptosis. The percentage of CD44+ T cells was greatly reduced in CD2-fas-transgenic aged mice. These results indicate that development of CD44+ memory T cells in aged mice is related to several aspects of cell development, including Fas expression. In both the spleen and thymus, there was also a small population of cells that express high Fas and also high CD44, indicating that other factors in addition to Fas expression influence CD44 expression.

Rescue of thymocytes from apoptosis as the provision of necessary signaling molecules or growth factors may be an important mechanism in the restoration of T cell function with aging. This is consistent with a number of reports that certain growth factors, including growth hormone from transplanted pituitary glands (23), can prevent age-related thymic atrophy. Fas has been proposed to serve as a costimulatory molecule during thymic development of T cells (51), and our data show that decreased Fas expression and function with age leads to increased apoptosis of thymocytes. These results were unexpected because Fas was first identified as a molecule capable of inducing apoptosis in certain cell lines (25, 26). However, it is likely that Fas signaling leads to different responses, depending on the cell type and stage of differentiation. In support of this, in Fas-defective lpr/lpr mice, and Fas ligand–defective gld/gld mice, defective apoptosis of thymocytes has been difficult to detect (52), and the primary defect in these mice is abnormal T cell differentiation and tolerance loss (53, 54). Therefore, we propose that defective intrathymic Fas signaling with age leads to a developmental defect and increases thymocyte apoptosis by a Fas-independent pathway, and that defective Fas signaling plays a major role in development of thymic atrophy with aging.

Figure 8. Thymocyte cell count and apoptosis after anti-CD3 cross-linking. Single-cell suspensions of thymocytes were prepared from 2-, 22-, or 22-mo-old CD2-fas-transgenic mice. Thymocyte suspensions (106 per sample) were cultured in 96-well plates that had been precoated with anti-CD3 (10 μg/ml). (A) Total number of thymocytes. (B) Percentage of thymocytes undergoing apoptosis at different time points after CD3 stimulation as determined by the in situ nick translation method. Each data point represents the average of five mice per group, and the error bars represent the SEM.
References

1. Hadden, J.W., P.H. Malec, J. Coto, and E.M. Hadden. 1992. Thymic involution in aging. Prospects for correction. *Ann. NY Acad. Sci.* 673:231-239.

2. Powers, D.C., and R.B. Belshe. 1993. Effect of age on cyto-toxic T lymphocyte memory as well as serum and local antibody responses elicited by inactivated influenza virus vaccine. *J. Infect. Dis.* 167:584-592.

3. Flurkey, K., R.A. Miller, and D.E. Harrison. 1992. Cellular determinants of age-related decrements in the T-cell mitogen response of B6CBAF1 mice. *J. Gerontol.* 47:B115-B120.

4. Kirschmann, D.A., and D.M. Murasko. 1992. Splenic and inguinal lymph node T cells of aged mice respond differently to polyclonal and antigen-specific stimuli. *Cell. Immunol.* 139: 426-437.

5. Song, L.J., J.E. Nagel, F.J. Chrest, G.D. Collins, and W.H. Adler. 1993. Comparison of CD3 and CD2 activation pathways in T cells from young and elderly adults. *Aging (Milano)*. 4: 307-315.

6. McElhaney, J.E., G.S. Meneilly, B.L. Beattie, C.D. Helgason, S.F. Lee, R.D. Devine, and R.C. Bleackley. 1992. The effect of influenza vaccination on IL2 production in healthy elderly: implications for current vaccination practices. *J. Gerontol.* 47:M3-M8.

7. Ernst, D.N., W.O. Weigle, D.J. Noonan, D.N. McQuitty, and M.V. Hobbs. 1993. The age-associated increase in IFN-gamma synthesis by mouse CD8+ T cells correlates with shifts in the frequencies of cell subsets defined by membrane CD44, CD45RB, 3G11, and MEL-14 expression. *J. Immunol.* 151:575-587.

8. Ershler, W.B. 1993. Interleukin-6: a cytokine for gerontologists. *J. Am. Geriatr. Soc.* 41:176-181.

9. al-Rayes, H., W. Pachas, N. Mirza, D.J. Ahern, R.S. Geha, and D. Vercelli. 1992. IgG regulation and lymphokine patterns in aging humans. *J. Allergy Clin. Immunol.* 90:630-636.

10. Daynes, R.A., and B.A. Araneo. 1992. Natural regulators of T-cell lymphokine production in vivo. *J. Immunother.* 12:174-179.

11. Northcutt, M., T. Higuchi, Y. Takeuchi, K. Inada, K. Nakahara, and H. Matsuda. 1993. Age-related accumulation of LFA-1+ cells in a CD8+CD45RA+ T cell population. *Eur. J. Immunol.* 23:1057-1063.

12. Howard, C.J., P. Sopp, and K.R. Parsons. 1992. L-selectin expression differentiates T cells isolated from different lymphoid tissues in cattle but does not correlate with memory. *Immunology.* 77:228-234.

13. Thoman, M.L., D.N. Ernst, M.V. Hobbs, and W.O. Weigle. 1993. T cell differentiation and functional maturation in aging mice. *Adv. Exp. Med. Biol.* 330:93-106.

14. Shi, J., and R.A. Miller. 1993. Differential tyrosine-specific protein phosphorylation in mouse T lymphocyte subsets. Effect of age. *J. Immunol.* 151:730-739.

15. Hoyeck, S.D., and L.J. Berg. 1993. Developmental regulation of a murine T-cell-specific tyrosine kinase gene. *Proc. Natl. Acad. Sci. USA.* 90:669-673.

16. Patel, H.R., and R.A. Miller. 1992. Age-associated changes in mitogen-induced protein phosphorylation in murine T lymphocytes. *Eur. J. Immunol.* 22:253-260.

17. Witkowski, J., and R.A. Miller. 1993. Increased function of P-glycoprotein in T lymphocyte subsets of aging mice. *J. Immunol.* 150:1296-1306.

18. Saimi, A., and Y. Sei. 1993. Age-related impairment of early and late events of signal transduction in mouse immune cells. *Life Sci.* 52:1759-1765.

19. Hadden, E.M., P. Malec, M. Sosa, and J.W. Hadden. 1992. Mixed interleukins and thymosin fraction V synergistically induce T lymphocyte development in hydrocortisone-treated aged mice. *Cell. Immunol.* 144:228-236.

20. Candore, G., G. Di Lorenzo, C. Caruso, M.A. Modica, A.T. Colucci, G. Crescimanno, A. Ingrassi, G.B. Sangiorgi, and A. Salerno. 1992. The effect of age on mitogen responsive T cell precursors in human beings is completely restored by interleukin-2. *Mech. Ageing Dev.* 63:297-307.

21. Goso, C., D. Frasca, and G. Doria. 1993. Effect of synthetic thymic humoral factor (THF-gamma 2) on T cell activities in immunodeficient aging mice. *Clin. Exp. Immunol.* 87:346-351.

22. Fridkis-Hareli, M., L. Abel, and A. Globerson. 1992. Patterns of dual lymphocyte development in co-cultures of foetal thymus and lymphoepithelial cells from young and old mice. *Immunology.* 77:185-188.

23. Li, Y.M., D.L. Brunke, R. Dantzer, and K.W. Kelley. 1992. Pituitary epithelial cell implants reverse the accumulation of CD4+CD8+ lymphocytes in thymus glands of aged rats. *Endocrinology.* 130:2703-2709.

24. Mehr, R., L. Abel, P. Ubezio, A. Globerson, and Z. Ahur. 1993. A mathematical model of the effect of aging on bone marrow cells colonizing the thymus. *Mech. Ageing Dev.* 67:159-172.

25. Itoh, N., S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata. 1991. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. *Cell.* 66:233-241.

26. Yonehara, S., A. Ishii, and M. Yonehara. 1989. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen downregulated with the receptor of tumor necrosis factor.
37. Cheng, J., T. Zhou, N.G. Copeland, N.A. Jenkins, and S. Nagata. 1992. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature (Lond.). 356:314–317.

28. Clarke, A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wylie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature (Lond.). 362:849–852.

29. I. owe, S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, and Clarke, A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wylie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature (Lond.). 362:849–852.

27. Watanabe-Fukunaga, R., C.I. Brannan, N.G. Copeland, N.A. Jenkins, and S. Nagata. 1992. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature (Lond.). 356:314–317.

26. Watanabe-Fukunaga, R., C.I. Brannan, N.G. Copeland, N.A. Jenkins, and S. Nagata. 1992. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature (Lond.). 356:314–317.

25. I. owe, S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, and Clarke, A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wylie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature (Lond.). 362:849–852.