Langevin equation in complex media and anomalous diffusion

Silvia Vitalia, Vittoria Sposinib,c, Oleksii Sliusarenkoc, Paolo Paradisid,c,*, Gastone Castellania, Gianni Pagninic,e,**

aDepartment of Physics and Astronomy, Bologna University, Viale Berti Pichat 6/2, I-40126 Bologna, Italy
bInstitute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam-Golm, Germany
cBCAM–Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
dISTI–CNR, Institute of Information Science and Technologies "A. Faedo (Consiglio Nazionale delle Ricerche), Viale Moruzzi 1, I-56124 Pisa, Italy
eIkerbasque–Basque Foundation for Science, Calle de María Díaz de Haro 3, E-48013 Bilbao, Basque Country, Spain

\section*{Abstract}

The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modeling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can be also somewhat alternative to each other, e.g., Continuous Time Random Walk (CTRW) and Fractional Brownian Motion (FBM). To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modeling of velocity dynamics. The complexity of the medium is parameterized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particle’s dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.

\textbf{Keywords:} anomalous diffusion, heterogeneous transport, complex media, space–time fractional diffusion equation, Langevin equation, Gaussian processes, fractional Brownian motion, stationary increments, biological transport

\textbf{2010 MSC:} 60Gxx, 26A33, 82C31, 92Bxx, 92C37

*Corresponding author
**Corresponding author

\textit{Email addresses:} paolo.paradisi@cnr.it (Paolo Paradisi), gpagnini@bcamath.org (Gianni Pagnini)
1. Introduction

The very rich dynamics of biosystem movements have been attracting the interest of many researchers in the field of statistical physics and complexity for its inherent temporal and spatial multi-scale character. Further, new techniques allowed to track the motion of large biomolecule in the cell with great temporal and spatial accuracy, both in vivo and in vitro [1, 2, 3]. Two main transport mechanisms were identified: (i) passive motion, determined by the cytoplasm crowding and (ii) active transport, given by the presence of molecular motors carrying biomolecules along filaments and microtubules (cytoskeleton) [4, 5, 6, 7]. Diffusion processes have been used to describe many biological phenomena such as molecular motion through cellular membrane [8, 9, 10, 11], DNA motility within cellular nucleus [6], chromosome dynamics and motility on fractal DNA globules [12], motion of mRNA molecules in Escherichia Coli bacteria [5] and of lipid granules in yeast cells [4].

Standard or normal diffusive (Brownian) motion is uniquely described by the Wiener process [13] and is associated with a Gaussian Probability Density Function (PDF) of displacements and linear time dependence of the Mean Square Displacement (MSD). It is well-known that normal diffusion emerges in the long-time limit \(t \gg \tau_c \) when the correlation time scale \(\tau_c \) is finite and non-zero [14] (see Section 5 of Supplementary Material for details). However, biosystems’ diffusion is often non-standard, with non-Gaussian PDF of displacements and non-linear time dependence of MSD:

\[
\sigma^2_X(t) = \langle (X_t - X_0)^2 \rangle \sim D \phi t^\phi \quad \phi > 0 ,
\]

where \(X(t) \) is the position. This is known as anomalous diffusion, distinguished in slow subdiffusion (\(\phi < 1 \)) and fast superdiffusion (\(\phi > 1 \)).

Normal diffusion is recovered for \(\phi = 1 \).

The general condition for anomalous diffusion to occur is to have a zero or infinite \(\tau_c \) [14] and, precisely:

- **Superdiffusion:**
 \[
 \tau_c = \infty : \langle X^2 \rangle \sim t^\phi \quad \text{with} \quad 1 < \phi \leq 2 \quad \text{or} \quad \langle X^2 \rangle = \infty.
 \]

- **Subdiffusion:**
 \[
 \tau_c = 0 : \langle X^2 \rangle \sim t^\phi \quad \text{with} \quad 0 < \phi \leq 1.
 \]

(see Section 5 of Supplementary Material for a detailed discussion about this point).

Both subdiffusion and superdiffusion have been found in cell transport, the first one being usually related to passive motion and the latter one to active motion...
(see, e.g., Refs. 13, 15, 16 for subdiffusion, and Refs. 6, 7, 17, 18 for superdiffusion).

At variance with normal diffusion different physical/biological conditions can originate anomalous diffusion 19, 20 and several models and interpretations were proposed in the recent literature 1, 3, 21, 22. Widely investigated models of anomalous diffusion are Continuous Time Random Walk (CTRW) 20 and Fractional Brownian Motion (FBM) 3, both models sharing the same anomalous diffusive scaling of Eq. 1. Many authors compared these models with each other and with data, essentially finding some features to be satisfied by the CTRW (weak ergodicity breaking and aging) 21, 24, 25 and other ones by the FBM (e.g., the p-variation index 26, 27, 28). Despite the efforts of many research groups, an exhaustive model explaining all the statistical features of experimental data does not yet exist and the research is recently focusing on alternative approaches, such as Heterogeneous Diffusivity Processes (HDPs) 29, 30, 31, 32, 33 or other similar approaches based on fluctuations of some dynamical parameter, e.g., fluctuating friction governed by a stochastic differential equation 34, 35, 36, mass of a Brownian-like particle randomly fluctuating in the course of time 37.

All these approaches can be linked to superstatistics 38, 39, whose main idea is that of a complex inhomogeneous environment divided into cells, each one characterized by a nearly uniform value of some intensive parameters. Then, a Brownian test particle experiences parameter fluctuations during a cell-to-cell transition 39. In general, superstatistics is successful to model: turbulent dispersion (energy dissipation fluctuations) 38, renewal critical events in intermittent systems 40, 41 and, for different distributions of the fluctuating intensive quantities, different effective statistical mechanics can be derived 39, e.g., Tsallis statistics with χ^2-distribution 38. Diffusing Diffusivity Models (DDMs), with position diffusivity governed by a stochastic differential equation 34, 35, 36, mass of a Brownian-like particle randomly fluctuating in the course of time 37.

In this framework, we propose a modeling approach to anomalous diffusion inspired by the constructive approach used to derive the Schneider grey noise, the grey Brownian Motion (gBM) 12, 13 and the generalized grey Brownian Motion (ggBM) 14, 16, 17, 31, 52 (see Section 9 of Supplementary Material for a brief survey about grey noise, gBM and ggBM). Such processes emerge to be equivalent to the product of the FBM $B_H(t)$ with an independent positive random variable λ, i.e., the amplitude associated to each single trajectory can change from one trajectory to another one (H is the self-similarity Hurst exponent). When the amplitude PDF is the Mainardi distribution $M_\beta(\lambda)$ with properly chosen scaling β (depending on the FBM scaling H) 22, 53, 55, grey noise is a stochastic solution of the Time Fractional Diffusion Equation (TFDE) 26, 57, 11, i.e., the gBM-PDF $P(x,t)$ is a solution of the TFDE (see Section 10 of Supplementary Material for a brief survey about the Mainardi function). The ggBM generalizes gBM by considering independent scaling parameters β and H and it was recently recognized to be a stochastic solution of the Erdélyi–Kober
Fractional Diffusion Equation (EKFDE)\[59\]. A further extension of the ggBM is given by the process introduced in Ref. \[25\], where the amplitude distribution is generalized to a combination of Lévy distributions by imposing the ggBM-PDF to be compatible with the Space-Time Fractional Diffusion Equation (STFDE) \[26\] \[57\] \[11\] \[61\]. Interestingly, ggBM can also describe nonstationary and aging behaviors. The potential applications of ggBM to biological transport were recently discussed in Ref. \[62\], where the ggBM compatible with EKFDE was investigated by means of several statistical indices commonly used in the analysis of particle tracking data. The authors showed that the ggBM approach accounts for the weak ergodicity breaking and aging (CTRW) and, at the same time, for the p-variation test (FBM). A DDM and a ggBm-like model (namely a randomly-scaled Gaussian process) with random position diffusivity governed by the same stochastic equation have been recently compared each other \[33\]. However, the physical interpretation of ggBM approach based on the FBM is not completely clear. Further, potential applications to transport in a viscous fluid needs to include at least the effect of viscosity.

In order to include the effect of viscosity, we describe the development of a model similar to the original ggBM, but with a friction-diffusion process instead of a Gaussian noise, thus involving an explicit modeling of system’s dynamics by substituting the FBM, used to built the ggBM, with the stochastic process resulting from Langevin equation for the particle velocity. In particular, we use a Langevin equation with a linear viscous term (Stokes drag) and an additive white Gaussian noise, also known as Ornstein–Uhlenbeck (OU) process \[13\]. The system’s complexity is described by proper random fluctuations of the parameters in the velocity Langevin equation: relaxation time, related to friction; velocity diffusivity, related to noise intensity. It is worth noting that the medium is here composed of the underlying fluid substrate and of the particle ensemble. Medium complexity is then not mimicked by random temporal fluctuations, but described by inter-particle fluctuations of parameters and, thus, by proper time-independent statistical distributions that characterize the complex medium. In next sections we show that this assumption allows to get anomalous diffusion if proper parameter distributions are chosen. In this sense, this model also generalizes the approach of HDPs as it also accounts for the heterogeneity of the friction parameter, thus including the effect of relaxation due to viscosity that, in other HDPs, is completely neglected. In this work we focus on superdiffusion, which is derived for a free particle motion by means of a general argument.

The paper is organized as follows. In Section \[2\] we introduce the randomized Langevin model for superdiffusion, based on the free motion of Brownian particles in a viscous medium. In Section \[3\] we show the results of numerical simulations. In particular, we numerically test some crucial assumptions, such as the existence of a generalized equilibrium/stationary condition in the long-time limit. In Section \[4\] we sketch some conclusions and discuss the potential applications of the proposed model. Mathematical details can be found in the
2. Free particle motion and superdiffusion

Consider the following linear Langevin equation for the velocity $V(t)$ of a particle moving in a viscous medium:

$$\frac{dV_t}{dt} = -\frac{V_t}{\tau} + \sqrt{2\nu} \xi_t$$

being τ the relaxation time scale\footnote{Given the particle mass m and the friction coefficient γ, it results: $\tau = m/\gamma$.} and ν the velocity diffusivity, which has dimensional units: $[\nu] = [V^2]/[T]$. The diffusivity ν determines the intensity of the Gaussian white noise ξ_t. This is a random uncorrelated force:

$$\langle \xi_t \rangle = 0; \quad \langle \xi_t \cdot \xi_{t'} \rangle = \delta(t - t'),$$

whose stochastic Itô integral is a Wiener process \cite{13}. When τ and ν are fixed parameters, Eq. (4) is a OU process (see, e.g., \cite{13}), which, together with the kinematic equation:

$$\frac{dX_t}{dt} = V_t,$$

is the most simple stochastic model for the one-dimensional free motion of a particle in a viscous medium, with thermal fluctuations depicted by the white noise ξ_t.

In the Langevin model with random parameters here proposed, single path dynamics are given by Eq. (4), but the statistical ensemble of paths is affected not only by randomness in the white noise ξ_t, but also in the parameters τ and ν, whose randomness describes the complex medium. In order to derive the overall statistical features of X_t and V_t, the computation is carried out in three steps. First we consider the averaging operation with respect to the noise term ξ_t and how the presence of a population for the parameters τ and ν affects some statistical properties of the process. Then we consider the average over the random parameter τ and we evaluate the PDF $g(\tau)$ in order to get an anomalous superdiffusive scaling. Finally we evaluate the PDF $f(\nu)$ in order to get the distribution $P(x,t)$ compatible with fractional diffusion, i.e., equal to the fundamental solutions of some class of fractional diffusion equations \cite{59,25}, or with other kinds of diffusion processes.

The averaging operation with respect to the noise term ξ_t gives the statistical features conditioned to the random parameters τ and ν, which result to be exactly the same as the standard OU process as shown in Box 1. In particular, we are interested in the stationary correlation function conditioned to τ and ν, which reads (see Eqs. 12 and 13, Box 1):

$$R(t|V_0, \tau, \nu) = \nu \tau e^{-t/\tau}.$$
Given Eq. (7) and considering statistically independent populations of τ and ν, the stationary correlation function of the ensemble is given by:

$$R(t) = \langle \nu \rangle \left\langle \tau e^{-t/\tau} \right\rangle = \int_0^\infty \nu f(\nu) d\nu \cdot \int_0^\infty \tau e^{-t/\tau} g(\tau) d\tau,$$

where $g(\tau)$ and $f(\nu)$ are the PDFs of the parameters τ and ν, respectively. The conditional MSD is derived from the conditional correlation function $R(t|V_0, \tau, \nu)$, Eq. (7), and, accordingly, the effective or global MSD (averaged over τ and ν), is derived from the global correlation function $R(t)$, Eq. (8) (see Section 5 of Supplementary Material). The standard OU process is recovered for $f(\nu) = \delta(\nu - \nu)$ and $g(\tau) = \delta(\tau - \tau)$, that is, when the parameters ν and τ are the same for all trajectories.

Does such stationarity correspond to an equilibrium condition? An equilibrium state is defined by the equilibrium velocity distribution, which is independent of the initial conditions and it is reached by the system after a transient time. When equilibrium is reached, the process becomes stationary: the nonstationary term of the correlation function becomes negligible and only the stationary correlation given in Eq. (7) survives. The decay of the nonstationary correlation term corresponds rigorously to equilibrium in the standard OU process with fixed τ and ν as shown in Box 1. However, it is not straightforward that this feature also extends to the Langevin equation with random parameters, Eq. [4].

It is worth noting that the average of the conditional stationary velocity variance (Eq. (13), Box 1) over τ and ν gives:

$$\langle V^2 \rangle_{st} = R(0) = \langle \nu \rangle \langle \tau \rangle,$$

which resembles an equilibrium condition extending that of the standard OU process, by considering the mean values of τ and ν. This condition cannot be assumed a priori, but, if equilibrium exists, it surely needs a stationary assumption, so that, in the following, we assume that, in the long-time regime $t_1, t_2 \gg \langle \tau \rangle$, the stationary state defined by Eq. (9) is reached within a good approximation. Consequently, in this model we consider an approximated stationary condition by setting to zero the non-stationary term of the correlation function in Eq. (11) (Box 1). The validity of the stationary assumption and its coincidence with the emergence of an equilibrium distribution will be discussed later and verified by means of numerical simulations (see Subsection 3.2).

2 The existence of an equilibrium distribution is actually verified by means of numerical simulations and it is also shown to coincide with the validity of Eq. (9) in the long-time regime. As a consequence, by applying the average over τ and ν to the conditional velocity correlation function (Eq. (11), Box 1), we find that the first term is exactly zero when the initial velocity distribution is the equilibrium one and this proves that our model is self-consistent.
Box 1. OU statistics conditioned to τ and ν

The statistical features conditioned to the values of τ and ν are given by the same mathematical expressions of the standard OU process [13]. Given the initial condition $V_0 = V(0)$, the solution for $t \geq 0$ of Eq. (4) is given by:

$$V_t = e^{-t/\tau} \left[V_0 + \sqrt{2 \nu} \int_0^t e^{t'/\tau} \xi_{t'} dt' \right]. \quad (10)$$

This solution can be exploited to derive the conditional velocity correlation function, where the average is here made over the noise ξ_t:

$$\langle V_t, V_{t'} | V_0, \tau, \nu \rangle = \left(V_0^2 - \nu \tau \right) e^{-(t_1 + t_2)/\tau} + \nu \tau e^{-|t_1 - t_2|/\tau}. \quad (11)$$

The conditional dependence of the average on the initial velocity V_0 and on the parameters τ and ν has been explicitly written. The choice of the initial velocity distribution affects the way the system relaxes to the equilibrium condition, but not the equilibrium condition itself. The correlation function includes two terms: the first one is the nonstationary transient associated with the memory of the initial condition V_0, while the second one is the stationary component depending only on the time lag between t_1 and t_2. In the long time limit $t_1, t_2 \gg \tau$, the first term becomes negligible, thus giving the conditional stationary correlation function:

$$R(t | V_0, \tau, \nu) = \langle V_{t_1} V_{t_1 + t} | V_0, \tau, \nu \rangle = R(0 | V_0, \tau, \nu) e^{-t/\tau}, \quad (12)$$

being $t = |t_2 - t_1|$ the time lag and:

$$R(0 | V_0, \tau, \nu) = \langle V^2 | V_0, \tau, \nu \rangle_{st} = \nu \tau, \quad (13)$$

the conditional stationary velocity variance, which results to be independent of time t_1 and of the initial velocity V_0.

The correlation function $R(t)$ defined in Eq. (8) and the PDF $g(\tau)$ must satisfy a list of features to describe superdiffusion, i.e., $\sigma_X^2(t) \sim t^{\phi}$; $R(t) \sim t^{\phi - 2}$; $1 < \phi < 2$, concerning the asymptotic time scaling of the functions, normalization and finite mean conditions for the distribution of time scales $g(\tau)$ (see Box 2 in Supplementary Material).

It is worth noting that the statistical distribution of ν does not affect the scaling of the correlation function in Eq. (8), but it only introduces a multiplicative factor. Therefore a constructive approach similar to that adopted to built up the generalized grey Brownian motion [14, 15, 17, 25] can be applied to our model, randomness of τ determining the anomalous diffusion scaling and that of ν the non-Gaussianity of both velocity and position distributions.

Regarding the PDF $g(\tau)$, the following:

$$g(\tau) = \frac{\eta}{\Gamma(1/\eta)} \frac{1}{\tau^{\eta}} L^{-\eta} \left(\frac{\tau}{\langle \tau \rangle} \right) ; \quad 0 < \eta < 1, \quad (14)$$

indeed satisfies all the required constrains (i-iv) listed in the Supplementary Material (Box 2, proofs in Section 6). We stress that the choice of $g(\tau)$ is not arbitrary, but addressed (not derived) by the required constrains listed in Box 2 of Supplementary Material.
In the above expression, \(g(\tau) \) depends on the parameter \(\eta \), which is the index of the Lévy stable, unilateral PDF \(L_{-\eta} \), and on the mean relaxation time scale \(\langle \tau \rangle \). With the above choice, we get the following asymptotic behavior for the stationary correlation function, conditioned to \(\nu \), when \(t \to \infty (t \gg \langle \tau \rangle) \) (see Section 6 of Supplementary Material for details):

\[
R(t|\nu) = \nu \frac{\Gamma(1 + \eta)}{\Gamma(1 - \eta)} \left(\frac{\Gamma(1/\eta)}{\eta} \langle \tau \rangle^1 \right)^{1+\eta} t^{-\eta}. \tag{15}
\]

By applying Eq. (28, Supplementary Material) we get the (superdiffusive) scaling for the MSD:

\[
\sigma^2_{X}(t|\nu) \propto t^{\phi} \quad \text{with} \quad 1 < \phi = 2 - \eta < 2.
\]

Notice that the calculations are here made under the assumption of the approximated stationary condition discussed previously. In this regime, \(X(t) \) is exactly a Gaussian variable, as it can be reduced to a sum, over time, of almost independent Gaussian distributed velocity increments. Eq. (28) (or, equivalently, Eq. (29)) in Supplementary Material, which is essentially a sum of variances of Gaussian distributed variables, so that the overall effect of \(g(\tau) \) is the emergence of a Gaussian variable with the anomalous, nonlinear, scaling of the variance given in Eq. (2) \(^3\). The resulting PDF of \(X_t \) conditioned to \(\nu \) is then given by the following Gaussian law:

\[
P(x,t|\nu) = G(x, \sigma^2_{X}(t|\nu)) = \frac{1}{\sqrt{2\pi \sigma^2_{X}(t|\nu)}} \exp \left\{ -\frac{x^2}{2\sigma^2_{X}(t|\nu)} \right\}; \tag{16}
\]

\[
\sigma^2_{X}(t|\nu) = 2 C \nu t^\phi; \quad 1 < \phi = 2 - \eta < 2; \quad \tag{17}
\]

\[
C = \frac{\Gamma(\eta + 1)}{\Gamma(3 - \eta)} \left(\frac{\Gamma(1/\eta)}{\eta} \right)^{\eta} \langle \tau \rangle^{1+\eta}. \tag{18}
\]

The conditional dependence of \(G(x, t|\nu) \) on \(\nu \) is clearly included in \(\sigma^2_{X}(t|\nu) \). The one-time PDF of the diffusion variable \(X_t \) is given by the application of the conditional probability formula:

\[
P(x,t) = \int^\infty_0 \mathcal{G}(x, 2C\nu t^\phi) f(\nu) d\nu = \int^\infty_0 \frac{\exp \left\{ -\frac{x^2}{4C\nu t^\phi} \right\}}{\sqrt{4\pi C t^\phi \nu}} f(\nu) d\nu. \tag{19}
\]

This relationship is formally similar to Eq. (3.9) of Ref. \([25]\). Thus, comparing with this same equation and after some algebraic manipulation, Eq. (19) can be generalized to the following general form by including the scaling exponent \(\phi \):

\[
\frac{1}{(C t^\phi)^{1/2}} \mathcal{K}_{\alpha,\beta}^0 \left(\frac{x}{(C t^\phi)^{1/2}} \right) = \int^\infty_0 \mathcal{G}(x, 2C\nu t^\phi) \frac{1}{\nu^{1/2}} \mathcal{K}_{\alpha/2,\beta} \left(\frac{\nu}{\nu} \right) d\nu, \tag{20}
\]

\(^3\) It is worth noting that the random superposition of Langevin equations with randomized \(\tau \) is an example of a Gaussian process with anomalous diffusion scaling that is different from the standard fractional Brownian motion (fBm).
with \(1 < \phi = 2 - \eta < 2 \), \(f(\nu) = \frac{1}{\nu^{C/2}} K_{\alpha/2,\beta/2}(\nu) \) and \(C = C(\eta, \langle \tau \rangle) \) given by Eq. (18). The reference scale \(\nu \) is needed to give the proper physical dimensions to the random velocity diffusivity \(\nu \). As we consider only symmetric diffusion, \(\theta = 0 \), the general range of parameters \(\alpha \) and \(\beta \) is given by:

\[
0 < \alpha \leq 2, \quad 0 < \beta \leq 1 \quad \text{or} \quad 1 < \beta \leq \alpha \leq 2.
\]

Eq. (20) is, in general, driven by three scaling indices: (i) \(\alpha \) and \(\beta \), which are related to the shape of the distribution, and (ii) \(\phi \), i.e., the anomalous superdiffusive scaling of the MSD, related to the scaling exponent \(\eta \) of the correlation function \(R(t) \): \(\phi = 2 - \eta \), \(0 < \eta < 1 \). The fundamental solution of the Space-Time Fractional Diffusion equation (Section 11, Supplementary Material), that is of particular interest for applications, is obtained with the choice of parameters: \(\phi = 2\beta/\alpha \); \(1 < \phi < 2 \). Interestingly, when \(\phi \neq 2\beta/\alpha \), Eq. (20) describes a generalized space-time fractional diffusion that is not compatible with the Space-Time Fractional Diffusion equation.

3. Numerical simulations

3.1. Simulation setup

In this section we carry out numerical simulations of the superdiffusive model given by Eqs. (6-4) with random \(\tau \) and \(\nu \), both to compare with analytical results and to verify the accuracy of our assumptions. A total of 10,000 stochastic trajectories are computed for each simulation. To this goal, a statistical sample of 10,000 couples \((\tau, \nu)\) is firstly extracted by the respective distributions, each couple being associated to one trajectory in the simulated ensemble. In all simulations the following values are chosen: \(\nu = 1 \); initial conditions \(X_0 = 0 \) and \(V_0 = 0 \) for all trajectories; total simulation \(T_{\text{sim}} = 10^3 \langle \tau \rangle \).

Regarding the sampled populations of \(\nu \) we consider three different distributions \(f(\nu) \), corresponding to different kinds of anomalous diffusion:

1. **Gaussian anomalous diffusion with long-range correlations**: A fixed value of \(\nu \) is chosen to be equal for all trajectories. This is a reduced model, whose 1-time PDF is given by Eqs. (16-18) and, for long time lags, the stationary correlation function is given by Eq. (15) with \(0 < \eta < 1 \). The only random parameter labeling the trajectories is the correlation time \(\tau \). It is interesting to note that this model belongs to the class of Gaussian stochastic processes with stationary increments and long-range correlations, thus sharing the same basic features of FBM, but within a completely different physical framework.

2. **Erdélyi–Kober fractional diffusion and Mainardi distribution** [59, 51]:
 (parameter range: \(\alpha = 2, \ 0 < \beta < 1, \ 1 < \phi < 2 \))

\[
\frac{1}{(C\nu^\psi)^{1/2}} \int_0^{\infty} \frac{1}{2} M_{\beta/2} \left(\frac{x}{(C\nu^\psi)^{1/2}} \right) = \int_0^{\infty} G(x, 2C\nu^\psi) \frac{1}{\nu^{\beta/2}} M_{\beta} \left(\frac{\nu}{\nu} \right) d\nu, \quad \text{(22)}
\]
being $M_{\beta/2}/2 = K_2^{0\beta}$; $M_\beta = K_1^{-1\beta}$. This is the solution of a fractional diffusion equation with Erdélyi–Kober fractional derivative in time [59, 51].

For $\phi = \beta$ the solution of the Time Fractional Diffusion equation is recovered, i.e., Eq. (114) of Supplementary Material with $\alpha = 2$. In this case the mean velocity diffusivity $\langle \nu \rangle$ is finite and can be computed by applying the formula for the moments of M_β [11]:

$$\langle \lambda^\delta \rangle = \int_0^\infty \lambda^\delta M_\beta(\lambda) d\lambda = \frac{\Gamma(\delta + 1)}{\Gamma(\beta\delta + 1)}, \quad \delta > -1. \quad (23)$$

Thus:

$$\langle \nu \rangle = \int_0^\infty \nu f(\nu) d\nu = \int_0^\infty \nu \frac{\nu}{\nu} M_\beta \left(\frac{\nu}{\nu} \right) d\nu = \frac{\Gamma(2)}{\Gamma(1 + \beta)} \bar{\nu} \quad (24)$$

(3) **Generalized Space Fractional Diffusion and extremal Lévy distributions.** (parameter range: $\beta = 1; 1 < \alpha < 2; 1 < \phi < 2$)

$$\frac{1}{\langle C \tau^\phi \rangle^{1/2}} L_0^0 \left(\frac{x}{\langle C \tau^\phi \rangle^{1/2}} \right) = \int_0^\infty g(x, 2C\nu t^\phi) \frac{1}{\nu} L_{-\alpha/2}^{-\alpha/2} \left(\frac{\nu}{\nu} \right) d\nu, \quad (25)$$

where L_0^0 is the Lévy stable density of scaling α and asymmetry θ and $L_0^0 = K_{0,1}^0; L_{-\alpha/2}^{-\alpha/2} = K_{-2,1}^{-\alpha/2}$. The moments of both PDFs L_0^0 and $L_{-\alpha/2}^{-\alpha/2}$ are not finite. In particular: $\langle \nu \rangle = \infty$. For $\phi = 2/\alpha$ the solution of the Space Fractional Diffusion equation is recovered, i.e., Eq. (114) of Supplementary Material with $\beta = 1$.

For the random generation of ν we refer to the algorithms discussed and used in Ref. [25] (Eq. (4.9) for the Lévy extremal distribution and Eq. (4.6) for the Mainardi distribution), based on the Chambers–Mallows–Stuck algorithm for the generation of Lévy random variables [9, 10]. The sampled population of τ is extracted from the PDF $g(\tau)$, Eq. (14), using the numerical random generator described in Section 8 of Supplementary Material. It is worth noting that this algorithm is semi-analytical, that is, asymptotic solutions are used for both short and long τ, while in the intermediate regime the algorithm is completely numerical. The numerical scheme for the Langevin equation is described in the Supplementary Material, Section 7.

3.2. Discussion of numerical results

Numerical simulations have been carried out for different values of scaling parameters and show qualitatively good agreement with analytical results for both ensemble averaged MSD $\sigma_X^2(t)$ and PDF $P(x,t)$. The goodness of comparison decreases as the parameters get closer to the extremal allowed values of the scaling parameters that are more far from standard and/or Markovian diffusion (i.e., $\eta = 1, \alpha = 2, \beta = 1$).
It is important to notice that, while the random generator of ν does not essentially determine any criticality in the numerical algorithm, the role of the parameter τ in the numerical implementation of the model is much more delicate. This aspect is strictly related to the equilibrium properties of single trajectories and of the overall system. In fact, the derivation of our model is based on the assumption of an equilibrium/stationary condition for all the sample paths in the statistical ensemble. This condition is exactly true only for $t = \infty$, while, for whatever finite time t, is clearly well approximated only for those trajectories satisfying the condition $\tau < t$. Conversely, due to the slow decaying power-law tail in the $g(\tau)$ distribution, relaxation times τ much longer than $\langle \tau \rangle$ have non-negligible probabilistic weights. Thus, $\langle \tau \rangle$ does not really characterize the relaxation/correlation time of all stochastic trajectories, each one experiencing its own time scale to reach the equilibrium/stationary condition.

Then, two crucial aspects need to be verified: does an equilibrium condition exist? Is the time scale to reach such equilibrium finite?

The working hypothesis to be checked is that, despite the inverse power-law tail in $g(\tau)$, the statistical weights of sufficiently large τ are negligible enough to get a global equilibrium condition in the range $t \gg \langle \tau \rangle$. This is a crucial aspect regarding the self-consistency of the model with respect to the existence of a global stationary condition and, least but not last, the comparison with experimental data.

The numerical simulations proved that a (global) stationary state indeed exists and that the equilibrium condition and the expected anomalous diffusion regime in the MSD are reached for times sufficiently larger than $\langle \tau \rangle$. In Fig. 1 we show the results for the simulation of a statistical sample of 10,000 trajectories with $\eta = 0.5$ and fixed $\nu = 1$ (Gaussian case). From bottom panel (a) and panel (b) it is clear that the system reaches the stationary state within a time of the order $t \approx 10\langle \tau \rangle$ or less, which is the time the particle needs to reach the theoretical stationary velocity variance $\langle V^2 \rangle_{st} = \langle \nu \rangle \langle \tau \rangle$ (bottom panel (a)) and the long-time diffusive scaling $\phi = 2 - \eta = 1.5$ (top panel (a)). From panel (b) it is clear that velocity fluctuations reached a stationary/equilibrium condition.

This characteristic time depends on η as it decreases while η increases. This feature is due to $g(\tau)$ that, for η approaching 1, becomes more and more peaked tending towards a Dirac δ function. For $\eta = 1$ a unique value of τ is chosen for all particles, so that the relaxation time of the whole system becomes τ itself and we fall back into standard diffusion. Thus, numerical simulations show that the stationary condition is reached at reasonable (i.e., not too much large) times. This is a good indication that the model can well compare with experimental data, anomalous diffusion emerging in a given temporal range that is not too short neither too long. This is true for values of scaling indices that are not too close to extremes of the definition interval (e.g., β far from 0), except those extremal values corresponding to time and space locality, i.e., standard diffusion and/or Markovian processes.

In the case of inverse power-law tails, different statistical samples extracted from the distribution $g(\tau)$ can have quite different statistics (e.g., different $\langle \tau \rangle$). Due to the slow power-law decay and the unavoidable finiteness of the statistical sam-
ple, the maximum value τ_{max} can also vary significantly among different samples. Numerical simulations for five different sampled sets of τ are carried out with $\langle \tau \rangle = 0.52, 0.44, 0.5, 0.46, 0.66$ and $\tau_{\text{max}} = 279.2, 75.2, 91.9, 200.4, 1580.7$. The simulations are found to be well comparable with each other. This can be seen in Fig. 2 where we compare the two sampled sets of τ having the minimum and maximum values of τ_{max} (Gaussian model). Even if these values are different by orders of magnitude (from 75.2 to 1580.7), the dependence on τ_{max} is weak, as the time to reach stationarity changes from about 10^{-30} to 60^{-80} (see the velocity variances in the bottom panels). Further, the time to reach the stationary state does not change when comparing the Gaussian model with non-Gaussian ones (ν).

Figure 1: Superdiffusion with $\eta = 0.5$ ($\phi = 2 - \eta = 1.5$, $\langle \tau \rangle = 0.52$) and fixed $\nu = 1$ (Gaussian case). (a) MSD of velocity (bottom panel) and position (top panel); (b) velocity (Gaussian) PDF $P(v, t)$ at different times.

Fig. 3 qualitatively shows the changes in the shape of the position PDF $P(x, t)$ due to the ν randomization. The top panel displays a typical Gaussian shape. Finally, in Fig. 4 we compare the asymptotic tails of analytical solutions for the position PDF $P(x, t)$ with the corresponding histograms computed from numerical simulations. The comparison, carried out for $\eta = 0.5$, show a good agreement for all the used values of α and β. Similar agreement was seen in simulations, not shown here, that were carried out for $\eta = 0.25$ and $\eta = 0.75$.

4. Concluding remarks

We have introduced and discussed a novel modeling approach based on a linear Langevin equation (friction-diffusion process) driven by a population of two parameters: relaxation time τ and velocity diffusivity ν, with distributions properly chosen to get anomalous diffusion (Gaussian or fractional). It is worth noting that both τ and ν directly characterize the velocity’s dynamics and
Figure 2: Superdiffusion with $\eta = 0.5$ ($\phi = 2 - \eta = 1.5$, $\langle \tau \rangle = 0.52$) and fixed $\nu = 1$ (Gaussian case). MSD of velocity (bottom panels) and position (top panels) (a) Sampled set with $\langle \tau \rangle = 0.44$ and $\tau_{\text{max}} = 75.2$; (b) Sampled set with $\langle \tau \rangle = 0.66$ and $\tau_{\text{max}} = 1580.7$.

Figure 3: Superdiffusion with $\eta = 0.5$ ($\phi = 2 - \eta = 1.5$, $\langle \tau \rangle = 0.52$). Comparison of PDFs $P(x,t)$ for different distributions $f(\nu)$. Top panel: ν fixed, i.e., $f(\nu) = \delta(\nu - \nu)$ with $\nu = 1$ (Gaussian case); intermediate panel: $M_\beta(\mu)$ distribution, $\beta = 0.5$ (Erdélyi–Kober fractional diffusion); bottom panel: $L^{-\alpha/2}$ distribution, $\alpha = 0.5$ (Generalized space fractional diffusion).

only indirectly the position dynamics. In particular, ν determines the diffusion properties of velocity and, for normal diffusion, its dimensional units are $[\nu] = [V^2]/[T]$. Gaussian anomalous diffusion is obtained by considering a constant velocity diffusivity and imposing the correct power-law correlation function compatible with MSD anomalous scaling. Fractional diffusion is derived by imposing the particular PDFs that are fundamental solutions of EKFDE or STFDE. Our stochastic model can also generate a generalized fractional diffusion, whose more general expression for the 1-time PDF is given in Eq. (20). In this PDF the space-time scaling relationship is not related to the scaling indices
Figure 4: Superdiffusion with $\eta = 0.5$ ($\phi = 2 - \eta = 1.5$, $\langle \tau \rangle = 0.52$). Comparison of analytical and numerical position PDFs $P(x, t)$ in the asymptotic regime. Top panels: different values of the scaling index α ($L^{\alpha/2}$, Generalized space fractional equation); bottom panels: different values of the scaling index β (M^β, Erdélyi–Kober fractional diffusion).

At variance with other HDPs, the inclusion of viscosity in our model allows us to include the effect of relaxation. The distribution of relaxation times τ is then a crucial property that is here derived by imposing the emergence of anomalous diffusion, retaining at the same time the Gaussianity and stationarity of velocity increments.

Another interesting aspect is the weak ergodicity breaking established in biological motion data [21, 24, 65] and defined by the inequality of ensemble and time averaged MSD in anomalous diffusion processes. In particular, even if the ensemble averaged MSD is given by Eq. (1), the time averaged MSD depends linearly on the time lag. In the model here proposed, the single trajectory is driven by the linear Langevin equation describing the Ornstein–Uhlenbeck process, which is characterized by the crossover between a short-time ballistic diffusion: $\sigma_X^2(t) \sim t^2$; and a long-time standard (Gaussian) diffusion: $\sigma_X^2(t) \sim t$. Thus, the single trajectory naturally follows a standard diffusion law in the long-time limit. The non-ergodic behavior is modelled by considering the randomness
of physical properties and, in particular, relaxation time and velocity diffusivity, the first one driving the drift (linear viscous drag) and the second one driving the noise, respectively.

An important observation regarding the comparison between our ggBM-like modeling approach and other similar approaches is in order. All these heterogeneity–based models attempt to describe the role of heterogeneity in triggering the emergence of long-range correlations and anomalous diffusion. However, superstatistics and other models (fluctuating friction or mass, DDMs) lie on mimicking heterogeneity through the temporal stochastic dynamics or modulation of some parameters driving the particle’s dynamics. On the contrary, ggBM-like models explicitly describe the heterogeneity as inter-particle fluctuations of parameters that are responsible for long-range correlations, in agreement with approaches based on polydispersity where classical thermodynamics holds [66].

Future investigations are needed not only to better understand these last observations but also, on one side, to characterize our proposed model in terms of several statistical indicators that are commonly used in the analysis of biological motions and, on the other side, to better understand the link of the parameter distributions to the observable physical properties of the complex medium. Finally, our modeling approach can be extended to the subdiffusive case by considering a kind of trapping mechanism such as a stable fixed point.

Acknowledgements

This research is supported by the Basque Government through the BERC 2014–2017 and BERC 2018–2021 programs, and by the Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa accreditation SEV–2013–0323 and through project MTM2016–76016–R ”MIP”. VS acknowledges BCAM, Bilbao, for the financial support to her internship research period during which she developed her Master Thesis research useful for her Master degree in Physics at University of Bologna, and SV acknowledges the University of Bologna for the financial support through the ”Marco Polo Programme” for her PhD research period abroad spent at BCAM, Bilbao, useful for her PhD degree in Physics at University of Bologna. PP acknowledges financial support from Bizkaia Talent and European Commission through COFUND scheme, 2015 Financial Aid Program for Researchers, project number AYD–000–252 hosted at BCAM, Bilbao.

References

References

[1] F. Hofling, T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76 (4) (2013) 046602.

[2] B. Regner, D. Vucinic, C. Domnisoru, T. Bartol, M. Hetzer, D. Tartakovskyy, T. Sejnowski, Anomalous diffusion of single particles in cytoplasm, Biophys. J. 104 (2013) 16521660.
[3] C. Manzo, M. Garcia-Parajo, A review of progress in single particle tracking: from methods to biophysical insights, Rep. Progr. Phys. 78 (2015) 124601.

[4] I. M. Tolić-Nørrelykke, E.-L. Munteanu, G. Thon, L. Odderhede, K. Berg-Sørensen, Anomalous diffusion in living yeast cells, Phys. Rev. Lett. 93 (2004) 078102.

[5] I. Golding, E. C. Cox, Physical nature of bacterial cytoplasm, Phys. Rev. Lett. 96 (2006) 098102.

[6] A. Javer, N. Kuwada, Z. Long, V. Benza, K. Dorfman, P. Wiggins, P. Cicuta, M. Lagomarsino, Persistent super-diffusive motion of escherichia coli chromosomal loci, Nat. Comm. 5 (2014) 3854.

[7] A. Caspi, R. Granek, M. Elbaum, Enhanced diffusion in active intracellular transport, Phys. Rev. Lett. 85 (2000) 5655–5658.

[8] A. V. Weigel, B. Simon, M. M. Tankun, D. Krapf, Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking, Proc. Natl. Acad. Sci. USA 108 (16) (2011) 6438–43.

[9] M. Javanainen, H. Hammaren, L. Monticelli, J.-H. Jeon, M. S. Miettinen, H. Martinez-Seara, R. Metzler, I. Vattulainen, Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes, Faraday Discuss. 161 (2013) 39741.

[10] D. Krapf, G. Campagnola, K. Nepal, O. Peersen, Strange kinetics of bulk-mediated diffusion on lipid bilayers, Phys. Chem. Chem. Phys. 18 (2016) 12633.

[11] R. Metzler, J.-H. Jeon, A. Cherstvy, Non–Brownian diffusion in lipid membranes: Experiments and simulations, Biochim. Biophys. Acta 1858 (2016) 24512467.

[12] M. Tamm, L. Nazarov, A. Gavrilov, A. Chertovich, Anomalous diffusion in fractal globules, Phys. Rev. Lett. 114 (2015) 178102.

[13] H. Risken, The Fokker–Planck Equation. Methods of Solution and Applications, 2nd Edition, Springer-Verlag, 1989.

[14] G. I. Taylor, Diffusion by continuous movements, Proc. London Math. Soc. 20 (1) (1921) 196–211.

[15] A. Caspi, R. Granek, M. Elbaum, Diffusion and directed motion in cellular transport, Phys. Rev. E 66 (2002) 011916.

[16] I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai, Y. Garini, Transient anomalous diffusion of telomeres in the nucleus of mammalian cells, Phys. Rev. Lett. 103 (2009) 018102.
[17] D. Robert, T. Nguyen, F. Gallet, C. Wilhelm, In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology, PLoS ONE 5 (4) (2010) e10046.

[18] J. F. Reverey, J.-H. Jeon, H. Bao, M. Leippe, R. Metzler, C. Sellhuber-Unkel, Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic acanthamoeba castellanii, Sci. Rep. 5 (2015) 11690.

[19] J.-P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep. 195 (4-5) (1990) 127–293.

[20] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (1) (2000) 1–77.

[21] S. Burov, J.-H. Jeon, R. Metzler, E. Barkai, Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking, Phys. Chem. Chem. Phys. 13 (5) (2011) 1800–1812.

[22] R. Metzler, J.-H. Jeon, A. G. Cherstvy, E. Barkai, Anomalous diffusion models and their properties: non–stationarity, non–ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys. 16 (2014) 24128.

[23] B. B. Mandelbrot, J. W. Van Ness, Fractional brownian motions, fractional noises and applications, SIAM Rev. 10 (4) (1968) 422–437.

[24] Y. He, S. Burov, R. Metzler, E. Barkai, Random time-scale invariant diffusion and transport coefficients, Phys. Rev. Lett. 101 (2008) 058101.

[25] J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Sellhuber-Unkel, K. Berg-Sørensen, L. Oddershede, R. Metzler, In vivo anomalous diffusion and weak ergodicity breaking of lipid granules, Phys. Rev. Lett. 106 (4) (2011) 048103.

[26] M. Magdziarz, A. Weron, K. Burnecki, J. Klafter, Fractional Brownian Motion versus the Continuous–Time Random Walk: A simple test for sub-diffusive dynamics, Phys. Rev. Lett. 103 (2009) 180602.

[27] E. Kepten, I. Bronshtein, Y. Garini, Ergodicity convergence test suggests telomere motion obeys fractional dynamics, Phys. Rev. E 83 (4, part 1) (2011) 041919.

[28] K. Burnecki, E. Kepten, J. Janczura, I. Bronshtein, Y. Garini, A. Weron, Universal algorithm for identification of Fractional Brownian Motion. a case of telomere subdiffusion, Biophys. J. 103 (9) (2012) 1839–1847.

[29] A. Cherstvy, A. Chechkin, R. Metzler, Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes, New J. Phys. 15 (2013) 083039.
[30] P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. Garcia-Parajo, M. Lewenstein, G. J. Lapeyre Jr, Nonergodic subdiffusion from brownian motion in an inhomogeneous medium, Phys. Rev. Lett. 112 (15) (2014) 150603.

[31] M. V. Chubynsky, G. W. Slater, Diffusing diffusivity: A model for anomalous, yet brownian, diffusion, Phys. Rev. Lett. 113 (2014) 098302.

[32] A. Cherstvy, R. Metzler, Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes, Phys. Chem. Chem. Phys. 18 (2016) 23840.

[33] V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, R. Metzler, Random diffusivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian diffusion, New J. Phys. 20 (2018) 043044.

[34] R. Rozenfeld, J. Luczka, P. Talkner, Brownian motion in a fluctuating medium, Phys. Lett. A 249 (1998) 409–414.

[35] J. Luczka, P. Talkner, P. Hänggi, Diffusion of Brownian particles governed by fluctuating friction, Physica A 278 (2000) 18–31.

[36] J. Luczka, B. Zaborek, Brownian motion: A case of temperature fluctuations, Acta Phys. Pol. B 35 (2004) 2151–2164.

[37] M. Ausloos, R. Lambiotte, Brownian particle having a fluctuating mass, Phys. Rev. E 73 (2006) 011105.

[38] C. Beck, Dynamical foundations of nonextensive statistical mechanics, Phys. Rev. Lett. 87 (2001) 180601.

[39] C. Beck, E. G. D. Cohen, Superstatistics, thermodynamics, and fluctuations, Physica A 322 (2003) 267–275.

[40] P. Paradisi, R. Cesari, P. Grigolini, Superstatistics and renewal critical events, Cent. Eur. J. Phys. 7 (2009) 421–431.

[41] O.C. Akin, P. Paradisi, P. Grigolini, Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems, J. Stat. Mech.: Theory Exp. (2009) P01013.

[42] R. Jain, K. Sebastian, Diffusing diffusivity: a new derivation and comparison with simulations, J. Chem. Sci. 129 (7) (2017) 929–937.

[43] A. V. Chechkin, F. Seno, R. Metzler, I. M. Sokolov, Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities, Phys. Rev. X 7 (2017) 021002.

[44] Y. Lanoiselée, D. Grebenkov, A model of non-Gaussian diffusion in heterogeneous media, J. Phys. A: Math. Theor. 51 (14) (2018) 145602.
[45] W. R. Schneider, Grey noise, in: S. Albeverio, et al. (Eds.), Stochastic processes, physics and geometry, World Sci. Publ., Teaneck, NJ, 1990, pp. 676–681.

[46] W. Schneider, Grey noise, in: Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, pp. 261–282.

[47] A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis, Lambert Academic Publishing, 2011, ph.D. Thesis, Physics Department, University of Bologna, 2008.

[48] A. Mura, M. Taqqu, F. Mainardi, Non-Markovian diffusion equations and processes: Analysis and simulations, Physica A 387 (2008) 5033–5064.

[49] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion, J. Phys. A: Math. Theor. 41 (2008) 285003.

[50] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics, Integr. Transf. Spec. F. 20 (3–4) (2009) 185–198.

[51] G. Pagnini, A. Mura, F. Mainardi, Generalized fractional master equation for self-similar stochastic processes modelling anomalous diffusion, Int. J. Stoch. Anal. 2012 (2012) 427383.

[52] G. Pagnini, A. Mura, F. Mainardi, Two-particle anomalous diffusion: Probability density functions and self-similar stochastic processes, Phil. Trans. R. Soc. A 371 (2013) 20120154.

[53] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in time-fractional diffusion processes: A tutorial survey, Int. J. Differ. Equations 2010 (2010) 104505.

[54] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes, Fract. Calc. Appl. Anal. 16 (2) (2013) 436–453.

[55] G. Pagnini, Short note on the emergence of fractional kinetics, Physica A 409 (2014) 29–34.

[56] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion, Chem. Phys. 284 (2002) 521–541.

[57] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Fractional diffusion: probability distributions and random walk models, Physica A 305 (1-2) (2002) 106–112.
[58] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2) (2001) 153–192.

[59] G. Pagnini, Erdélyi–Kober fractional diffusion, Fract. Calc. Appl. Anal. 15 (1) (2012) 117–127.

[60] G. Pagnini, P. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 19 (2) (2016) 408–440.

[61] C. Li, Q. Yi, J. Kurths, Fractional convection, J. Comput. Nonlinear Dynam. 13 (1) (2017) 011004.

[62] D. Molina-García, T. M. Pham, P. Paradisi, C. Manzo, G. Pagnini, Fractional kinetics emerging from ergodicity breaking in random media, Phys. Rev. E 94 (2016) 052147.

[63] J. M. Chambers, C. L. Mallows, B. W. Stuck, A method for simulating skewed stable random variables, J. Amer. Statist. Assoc. 71 (1976) 340–344.

[64] R. Weron, On the Chambers–Mallows–Stuck method for simulating skewed stable random variables, Statist. Probab. Lett. 28 (1996) 165–171, corrigendum: http://mpra.ub.uni-muenchen.de/20761/1/RWeron96_Corr.pdf or http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_96_01.pdf.

[65] J. H. P. Schulz, E. Barkai, R. Metzler, Aging effects and population splitting in single-particle trajectory averages, Phys. Rev. Lett. 110 (2013) 020602.

[66] S. Gheorghiu, M.-O. Coppens, Heterogeneity explains features of anomalous thermodynamics and statistics, Proc. Natl. Acad. Sci. USA 101 (2004) 15852–15856.
5. General condition for the emergence of anomalous diffusion

Diffusion is described through the following simple, but general stochastic equation:

\[
\frac{dX_t}{dt} = V_t
\]

(26)

being \(V_t \) a stochastic process describing a generic random fluctuating signal. Here \(X_t \) and \(V_t \) are the position and velocity of a particle moving in a random medium, respectively. For a generic, nonstationary process, the two-time Probability Density Function (PDF) \(p(V_1, t_1; V_2, t_2) \) depends on both times \(t_1 \) and \(t_2 \). Similarly, the correlation function

\[
\langle V_{t_1} \cdot V_{t_2} \rangle = \int V_1 V_2 p(V_1, t_1; V_2, t_2) dV_1 dV_2
\]

is, in general, a function of the times \(t_1 \) and \(t_2 \).

Now, by integrating in time the above kinematic equation (26), making the square and the ensemble average, we get the Mean Square Displacement (MSD):

\[
\sigma^2_{X}(t) = \langle (X_t - X_0)^2 \rangle = \int_0^t dt' \int_0^t dt'' \langle V_{t'} \cdot V_{t''} \rangle ,
\]

(27)

where, in order to get \(\langle X_t \rangle = X_0 \), we assumed a uniform initial position \(X_0 \). In the stationary case, the two-time statistics, including the correlation function, depends only on the time lag \(t = |t_1 - t_2| \), and the above formula reduces to:

\[
\sigma^2_{X}(t) = \int_0^t dt' \int_0^t dt'' R(|t' - t''|) = 2 \int_0^t (t - s) R(s) ds ,
\]

(28)

or, equivalently:

\[
\frac{d\sigma^2_{X}(t)}{dt} = 2 \int_0^t R(s) ds .
\]

(29)

where \(R(t) = \langle V_{t+t} \cdot V_t \rangle = \langle V_t \cdot V_0 \rangle \) is the stationary correlation function. Notice that these expressions have very general validity, independently of the particular statistical features of \(V_t \).

These expressions were firstly published by Taylor in 1921 [1], which implicitly formulated the following:

Theorem (Taylor 1921)

Given the stationary correlation function \(R(t) \), let us define the correlation time scale:

\[
\tau_c = \int_0^\infty \frac{R(s)}{R(0)} ds , \quad R(0) = \langle V^2 \rangle_{st} \]

(30)

4 This also means that the statistics of \(V_t \) increments: \(\Delta V_{t_1,t} = V_{t_1+t} - V_{t_1} \), depend not only on the time lag \(t \), but also on the initial time \(t_1 \).

5 Notice that the variance \(\langle V^2 \rangle_{st} \), being a one-time statistical feature, is a constant in the stationary case.
Then, if the following condition occurs:
\[0 \neq \tau < +\infty , \] (31)

normal diffusion always emerges in the long-time regime:
\[t \gg \tau_c \implies \sigma_X^2(t) = 2 D_X t , \] (32)

thus defining the long-time spatial diffusivity \(D_X \):
\[D_X := \frac{1}{2} \lim_{t \to +\infty} \frac{d\sigma_X^2(t)}{dt} \] (33)

independently from the details of the microdynamics driving the fluctuating velocity \(V_t \).

It is worth noting that, substituting Eq. (29) into Eq. (33) and using \(R(0) = \langle V^2 \rangle_{st} \) (Eq. (30)), we get:
\[D_X = \tau_c \langle V^2 \rangle_{st} , \] (34)

which is a general form of the Einstein–Smoluchovsky relation \(^\text{6}\).

Taylor’s theorem gives in Eq. (31) the general conditions to get normal diffusion, i.e., a linear scaling in the variance: \(\langle X^2 \rangle \sim t \). This result has a very general validity, independently from the statistical features of the stochastic process \(V_t \). The theorem also establishes the regime of validity of normal diffusion, given by the asymptotic condition \(t \gg \tau_c \). As a consequence, the emergence of anomalous diffusion is strictly connected to the failure of the assumption (31). In particular, we get two different cases:

- **Superdiffusion**: \(\tau_c = \infty : \langle X^2 \rangle \sim t^\phi \) with \(1 < \phi \leq 2 \) or \(\langle X^2 \rangle = \infty \). (35)

- **Subdiffusion**: \(\tau_c = 0 : \langle X^2 \rangle \sim t^\phi \) with \(0 < \phi \leq 1 \). (36)

In order to get \(\tau_c = 0 \) and, thus, subdiffusion, velocity anti-correlations must emerge. This means that there exist time lags \(t \) such that \(R(t) < 0 \) (e.g., the anti-persistent Fractional Brownian Motion, with \(H < 0.5 \)). Being \(R(0) = \)
\((V^2)_\text{st} > 0 \), in subdiffusion the correlation function is surely positive in the short-time regime and (i) becomes negative in the long-time regime or (ii) oscillates between positive and negative values.\(^7\)

The failure of Taylor’s theorem and of condition (31) is the main guiding principle exploited here to derive stochastic models for anomalous diffusion.

5.1. Application to Fractional Brownian Motion

The Fractional Brownian Motion (FBM) \(B_H(t) \) was introduced by Mandelbrot and Van Ness in their famous 1968’s paper. Since then, thousands of papers have been devoted to both theoretical investigations and applications of FBM (see, e.g., [3] for a review). FBM is a Gaussian process with self-similar stationary increments and long-range correlations. In formulas, FBM has the following properties:

- \(B_H(t) \) has stationary increments;
- \(B_H(0) = 0; \langle B_H(t) \rangle = 0 \) for \(t \geq 0 \);
- \(\langle B_H^2(t) \rangle = t^{2H} \) for \(t \geq 0 \);
- \(B_H(t) \) has a Gaussian distribution for \(t > 0 \);
- the correlation function is given by:

\[
\langle B_H(t)B_H(s) \rangle = \frac{1}{2} \left\{ t^{2H} + s^{2H} - |t-s|^{2H} \right\} \tag{37}
\]

The FBM increments are given by:

\[
V_{\delta t}(s) = B_H(s + \delta t) - B_H(s).
\]

The process \(V_{\delta t}(s) \) is also called *fractional Gaussian noise*.\(^8\) Both \(B_H(t) \) and \(V_{\delta t}(s) \) are self-similar stochastic processes but, at variance with \(B_H(t) \), the increments \(V_{\delta t}(s) \) are also stationary, i.e., their statistical features do not depend on \(s \), but only on \(\delta t \). \(V_{\delta t}(s) \) is a Gaussian process and is uniquely defined by the mean, variance and correlation function, which are derived from the above listed properties of FBM:

\[
\langle V_{\delta t}(s) \rangle = 0; \quad \langle V_{\delta t}^2(s) \rangle = (\delta t)^{2H} \tag{38}
\]

\(^7\) A correlation time scale, different from the above definition of \(\tau_c \), can be sometimes introduced for subdiffusion (e.g., the time period in a harmonic correlation function), but it does not have the meaning of discriminating a long-time regime with normal diffusion from a short-time regime.

\(^8\) This can be considered as a kind of velocity for the FBM, even if it must be kept in mind that FBM, such as standard Brownian motion, does not have a smooth velocity. In any case, the above considerations about velocity and position and their statistical relationship can here be applied by substituting velocity with the fractional Gaussian noise, i.e., the FBM increments over a finite time step \(\delta t \).
\[R(t) = \langle V_\delta(s)V_\delta(s+t) \rangle = \frac{1}{2} \left\{ |t+\delta t|^{2H} - 2t^{2H} + |t-\delta t|^{2H} \right\} \quad (39) \]

Then, we can say that FBM is a Gaussian process with stationary and self-similar increments \(V_\delta(\delta t) \), while FBM is Gaussian, self-similar but not stationary. Eq. (39) also shows that, with the exception of the standard Brownian motion \((H = 1/2) \), increments \(V_\delta(s) \) are not independent each other. Fractional Gaussian noise and FBM are exactly self-similar, i.e., they satisfy the relationship: \(X(at) = a^H X(t) \), the increment \(V_1(s) \) with \(\delta t = 1 \) is usually considered in both theoretical and experimental studies, as a generic \(\delta t \) can be obtained by simply rescaling the process with the self-similarity relationship. In Fig. 5 the increment correlation functions of a persistent \((H > 0.5) \) and of an antipersistent \((H < 0.5) \) FBM are compared. It is evident that antipersistent FBM is associated with anticorrelations, and this is the reason why subdiffusion emerges in this case.

The asymptotics of the correlation function are easily obtained by rewriting it in the following way (see [4], pages 6-7):

\[R(t) = \langle V_\delta(s)V_\delta(s+t) \rangle = \frac{1}{2} t^{2H} h_H \left(\frac{\delta t}{t} \right) \], \quad (40)\]

being, for \(x = \delta t/t < 1 \):

\[h_H(x) = (1+x)^{2H} - 2 + (1-x)^{2H} \]. \quad (41)\]

The limit \(t \to \infty \) corresponds to \(x \to 0 \) and the Taylor expansion of \(h_H(x) \) gives:

\[h_H(x) = 2H(2H-1)x^2 + O(x^4) \], \quad (42)\]
so that \[R(t) \simeq H(2H - 1)(\delta t)^{2H-2}. \] (43)

Regarding the correlation time \(\tau_c \) defined in Eq. (30), we can exploit the same asymptotic expansion used for \(R(t) \). Firstly, we apply Eq. (30) to a finite time \(t \):

\[
\tau_c(t) = \int_0^t \frac{R(s)}{R(0)} ds, \quad R(0) = \langle V^2 \rangle_{st},
\]

so that: \(\tau_c = \lim_{t \to \infty} \tau_c(t) \). Then, for the fractional Gaussian noise we get:

\[
\tau_c(t) = \frac{\delta t}{4H + 2} \left\{ \left(1 + \frac{t}{\delta t}\right)^{2H+1} - 2 \left(\frac{t}{\delta t}\right)^{2H+1} + \frac{t}{\delta t} - 1 \right\}^{2H+1}. \quad (45)
\]

Analogously to \(R(t) \), this can be written as:

\[
\tau_c(t) = \frac{\delta t}{4H + 2} \left(\frac{t}{\delta t}\right)^{2H+1} h_{H+1/2}(x) ; \quad x = \delta t / t, \quad (46)
\]

and, for \(x < 1 \), \(h_{H+1/2}(x) \) is again given by Eq. (41), but with \(H + 1/2 \) instead of \(H \). Then, an asymptotic formula similar to Eq. (42) can be derived:

\[
h_{H+1/2}(x) = 2H(2H + 1)x^2 + O(x^4), \quad (47)
\]

and, finally:

\[
\tau_c(t) = H (\delta t)^{2-2H} t^{2H-1} \quad \text{for} \quad t \to \infty. \quad (48)
\]

Clearly, the mathematical limit \(t \to \infty \) corresponds to the physical regime \(t \gg \delta t \). Exploiting the asymptotic behavior of \(\tau_c(t) \) given in Eq. (48), we can now derive the values of the correlation time scale \(\tau_c = \tau_c(\infty) \):

\[
\tau_c = \lim_{t \to \infty} \tau_c(t) = \begin{cases} +\infty & 1/2 < H \leq 1; \\ \delta t/2 < \infty & H = 1/2; \\ 0 & 0 < H < 1/2. \end{cases} \quad (49)
\]

The three cases correspond to persistent (superdiffusive) FBM, normal Brownian motion and antipersistent (subdiffusive) FBM, respectively.
Box 2. Properties of \(R(t) \) and \(g(\tau) \)
The use of Laplace transform, defined by the expression:
\[
\tilde{u}(s) = L_{t \to s}[u(t)](s) = \int_0^{\infty} e^{-st}u(t)dt,
\]
gives important information about the normalization and moments of distributions. The stationary correlation function \(R(t) \) and the distribution \(g(\tau) \) are related by Eq. (8). For any choice of the distribution \(g(\tau) \), the correlation function \(R(t) \) and \(g(\tau) \) must satisfy the following properties:

(i) The distribution \(g(\tau) \) must be a PDF normalized to 1:
\[
\tilde{g}(0) = 1,
\]
which determines a constrain on the behavior of the first derivative of the correlation function:
\[
\lim_{s \to +\infty} s \cdot L \left[-\frac{dR(t)}{dt} \right](s) = -\frac{dR}{dt}(0+) = \langle \nu \rangle.
\]

(ii) The MSD is a power-law of time with superdiffusive scaling \(1 < \phi < 2 \) in the asymptotic long-time limit:
\[
\lim_{t \to \infty} \frac{\sigma_X^2(t)}{t^\phi} = C_1; \quad \lim_{s \to 0} s^{1+\phi} \cdot \tilde{\sigma_X^2}(s) = C_2.
\]
where \(C_1 \) and \(C_2 \) are proper constants and the second asymptotic limit follows from the Tauberian theorem \([5]\). From Eq. (28) or Eq. (29) it results:
\[
\frac{d^2 \sigma_X^2(t)}{dt^2} = 2 R(t); \quad \tilde{\sigma_X^2}(s) = \frac{2}{s^2} \tilde{R}(s),
\]
we get equivalently the following expression for the stationary correlation function:
\[
\lim_{t \to \infty} \frac{R(t)}{t^{\phi-2}} = C_3; \quad \lim_{s \to 0} s^{1-\eta} \cdot \tilde{R}(s) = C_4
\]
with \(\eta = 2 - \phi, \ 0 < \eta < 1 \). Note that the above limits can be equivalently written as asymptotic behaviors, e.g.: \(R(t) \sim t^{\phi-2} \) for \(t \to \infty \), which means that the function \(R(t) \) is approximated by \(C_3 t^{\phi-2} \) in the long time range.

(iii) The MSD at time zero is zero:
\[
\lim_{t \to \infty} \sigma_X^2(t) = 0; \quad \lim_{s \to +\infty} s \cdot \tilde{\sigma_X^2}(s) = 0
\]

(iv) Furthermore being \(0 < R(0) < \infty \), from Eq. (9) the distribution \(g(\tau) \) must have non-zero, finite mean:
\[
\lim_{s \to +\infty} s \cdot \tilde{R}(s) = R(0) \propto \langle \tau \rangle.
\]
6. Derivation of the PDF $g(\tau)$

The properties that must be satisfied by the stationary correlation function $R(t)$ and by the PDF $g(\tau)$ are listed in the above Box 1.

We now prove the following

Theorem (PDF $g(\tau)$)

Given Eq. (8) defining the stationary correlation function of the Langevin equation with random parameters, Eq. (4), the PDF $g(\tau)$ given in Eq. (14) satisfies all the required constrains (i-iv) listed in Box 1.

Proof:

(i) normalization and (iv) finite mean:

Let us write:

$$g(\tau) = \frac{C}{\tau} L^{-\eta}_\tau \left(\frac{\tau}{\tau_*} \right),$$

where τ_* must be introduced to get an adimensional parameter as argument of $L^{-\eta}_\tau$. The mean correlation time is given by:

$$\langle \tau \rangle = \int_0^\infty \tau g(\tau) d\tau = C \int_0^\infty L^{-\eta}_\tau \left(\frac{\tau}{\tau_*} \right) d\tau = C \tau_*, \quad (52)$$

so that we have:

$$g(\tau) = \frac{C}{\tau} L^{-\eta}_\tau \left(C \frac{\tau}{\langle \tau \rangle} \right). \quad (53)$$

The normalization constant C can be obtained by imposing $\mathcal{L}[g(\tau)](0) = 1$. Exploiting the relationship $\int_0^\infty \exp(-\xi \tau) d\xi = \exp(-\xi \tau)/\tau$ and making the change of variables $\tau = (\langle \tau \rangle/C)^{\eta} \xi$, we get:

$$\mathcal{L}[g(\tau)](s) = C \cdot \int_0^{\infty} \mathcal{L}[L^{-\eta}_\tau(\tau)](\xi) d\xi$$

$$= C \cdot \int_0^{\infty} e^{-\xi s} d\xi = (x = \xi^{\eta})$$

$$= C \cdot \frac{1}{\eta} \int_0^{\infty} \frac{1}{\eta} e^{-x^{1/\eta}} d\xi$$

and:

$$\mathcal{L}[g(\tau)](0) = C \cdot \int_0^{\infty} \frac{1}{\eta} e^{-x^{1/\eta}} d\xi$$

$$= C \cdot \frac{\Gamma(1/\eta)}{\eta} = 1. \quad (55)$$
Substituting this relationship into Eq. (53) we finally get Eq. (14), which is a properly normalized PDF.

(ii) superdiffusive scaling

We now prove that \(R(t) \sim t^{-\eta} \), with \(0 < \eta < 1 \), a condition leading to the superdiffusive scaling for the position variance: \(\sigma^2_X(t) \sim t^{\phi} \), \(1 < \phi = 2 - \eta < 2 \). This can be proven thanks to the integral representation of the extremal Lévy density:

\[
L^{-\eta}_\eta(x) = \frac{1}{\eta x} \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\Gamma(s/\eta)}{\Gamma(s)} x^s ds, \quad 0 < \eta < 1.
\]

(56)

Hence, we have:

\[
R(t) = \langle \nu \rangle \frac{\eta}{\Gamma(1/\eta)} \int_0^\infty e^{-t/\tau} L^{-\eta}_\eta \left(\frac{\tau}{\tau_*} \right) d\tau
\]

\[= \langle \nu \rangle \frac{\eta}{\Gamma(1/\eta)} \int_0^\infty e^{-t/\tau} \left[\frac{1}{\eta} \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\Gamma(s/\eta)}{\Gamma(s)} \left(\frac{\tau}{\tau_*} \right)^{(s-1)} ds \right] d\tau
\]

\[= \langle \nu \rangle \frac{\eta}{\Gamma(1/\eta)} \frac{1}{\eta} \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\Gamma(s/\eta)}{\Gamma(s)} \left[\int_0^\infty e^{-t/\tau} \left(\frac{\tau}{\tau_*} \right)^{s-1} d\tau \right] ds = \quad (57)
\]

\[= \langle \nu \rangle \frac{\eta}{\Gamma(1/\eta)} \frac{1}{\eta} \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\Gamma(s/\eta)}{\Gamma(s)} \left(\frac{t}{\tau_*} \right)^s d\xi \left(\frac{t}{\tau_*} \right)^s ds,
\]

where \(\tau_* = \langle \tau \rangle \Gamma(1/\eta)/\eta \). It is useful to rewrite the expression as:

\[
R(t) = \langle \nu \rangle \langle \tau \rangle \frac{1}{\eta} \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\Gamma(s/\eta)}{\Gamma(s)} \left[\int_0^\infty e^{-t/\tau} \left(\frac{\tau}{\tau_*} \right)^{s-1} d\tau \right] \left(\frac{t}{\tau_*} \right)^s ds
\]

\[= \langle \nu \rangle \langle \tau \rangle \frac{1}{\eta} \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\Gamma(s/\eta)}{\Gamma(s)} \left(\frac{t}{\tau_*} \right)^s ds,
\]

(58)

which can be solved through the residues theorem considering the poles \(s/\eta+1 = -n \) or \(s = n \), with \(n = 0, 1, 2, \ldots \infty \).

In the first case we have:

\[
R(t) = \langle \nu \rangle \langle \tau \rangle \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{\Gamma(\eta(n+1))}{\Gamma(1-\eta(n+1))} \left(\frac{t}{\tau_*} \right)^{-\eta(n+1)}
\]

\[= \langle \nu \rangle \langle \tau \rangle \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \frac{\Gamma(\eta n)}{\Gamma(-\eta n)} \left(\frac{t}{\tau_*} \right)^{-\eta n}
\]

(59)
where each term of the series is obtained by the limit:

\[
\begin{align*}
\lim_{s \to -\eta(n+1)} & (s + \eta(n+1)) \frac{\Gamma(s/\eta + 1)\Gamma(-s)}{\Gamma(s+1)} \left(\frac{t}{\tau_*} \right)^s \\
\lim_{s \to -\eta(n+1)} & \eta((s/\eta + 1) + n) \frac{\Gamma(s/\eta + 1)\Gamma(-s)}{\Gamma(s+1)} \left(\frac{t}{\tau_*} \right)^s \\
\lim_{s \to -\eta(n+1)} & \frac{\eta((s/\eta + 1) + n) \Gamma(s/\eta + n + 2)\Gamma(-s)}{\Gamma(s+1)} \left(\frac{t}{\tau_*} \right)^s \\
\lim_{s \to -\eta(n+1)} & \frac{\eta(-1)^n \Gamma(\eta(n+1))}{n! \Gamma(1 - \eta(n+1))} \left(\frac{t}{\tau_*} \right)^{-\eta(n+1)}
\end{align*}
\]

(60)

When \(t \to \infty \) only the first term survives and we find:

\[
R(t) = \langle \nu \rangle \langle \tau \rangle \frac{\Gamma(\eta + 1)}{\Gamma(1 - \eta)} \left(\frac{t}{\tau_*} \right)^{-\eta}.
\]

(61)

Substituting \(\tau_* = \langle \tau \rangle \frac{\Gamma(1/\eta)}{\eta} \), we finally get Eq. (15), from which we obtain the superdiffusive scaling of the position variance \(\sigma_X^2(t) \propto t^\phi \), with \(\phi = 2 - \eta \).

Considering the poles in the other semi-plane, \(s = n \) with \(n = 0, 1, 2, \ldots \infty \), we find that:

\[
R(t) = \langle \nu \rangle \langle \tau \rangle \frac{1}{\eta} \sum_{n=0}^{\infty} (-1)^n \frac{\Gamma(n/\eta)}{n! \Gamma(n)} \left(\frac{t}{\tau_*} \right)^n
\]

(62)

converges to \(R(0) = \langle \nu \rangle \langle \tau \rangle \), as already shown before.

(iii) MSD at time zero is zero:

The condition \(\sigma^2_X(t = 0) = 0 \) is clearly verified.

Example:

In the special case \(\eta = 1/2 \), the extremal Lévy function corresponds to the Lévy–Smirnov distribution, the whole exercise can be solved analytically and we may consider for simplicity \(\langle \tau \rangle \frac{\Gamma(1/\eta)}{\eta} = 1 \):

\[
g(\tau) = \frac{1}{\sqrt{4\pi\tau^5}} e^{-1/(4\tau)}
\]

(63)

Solving the integral the analytical form of the correlation function turns to be:

\[
R(t) = \frac{\Gamma(1/2)}{\sqrt{4\pi}} \left(t + \frac{1}{4} \right)^{-1/2}
\]

(64)

which leads to the following exact formula for the position variance:

\[
\sigma^2_X(t) = \frac{\Gamma(1/2)}{\sqrt{\pi}} \left[\frac{4}{3} \left(t + \frac{1}{4} \right)^{3/2} - t - \frac{1}{6} \right]
\]

(65)

satisfying both superdiffusive long-time scaling and \(\sigma^2_X(0) = 0 \) conditions.
NOTE: The Einstein–Smoluchovsky relation

By substituting Eq. (12) into Eq. (30) it is easy to see that \(\tau_c = \tau \). Using the following equation (see the last equation in Box 1 of the Main Text):

\[
R(0|V_0, \tau, \nu) = \langle V^2 | V_0, \tau, \nu \rangle_{st} = \nu \tau,
\]

and substituting Eq. (12) into the definition of \(D_X \), Eq. (33), we get the Einstein–Smoluchowsky relation:

\[
D_X = \nu \tau^2 = \tau \langle V^2 | V_0, \tau, \nu \rangle_{st},
\]

which, apart from the conditional statistics, is essentially the same as Eq. (34).

For a standard OU process with fixed \(\nu \) and \(\tau \), \(\langle V^2 | V_0, \tau, \nu \rangle_{st} = \langle V^2 \rangle_{eq} \) and Eq. (66) relates the diffusion \((D_X) \) and relaxation \((\tau) \) properties through the equilibrium distribution \((\langle V^2 \rangle_{eq}) \). In his 1905 paper \[2\], Einstein studied the Brownian motion in a gas at equilibrium, where velocity distribution is given by the Maxwell–Boltzmann law. In this case, the Einstein–Smoluchowsky relation becomes:

\[
D_X = \tau \langle V^2 \rangle_{st} = \tau \frac{kT}{m},
\]

being \(T, m \) and \(k \) the gas temperature, the Brownian particle mass and the Boltzmann constant, respectively.

7. Numerical scheme for the Langevin equation

In order to avoid stability problems, the numerical algorithm for the simulation of Eqs. (26) and (4) was implemented using an implicit scheme with order of strong convergence 1.5 \[6\]. This is given by the following expression:

\[
V_{n+1} = V_n + b \Delta W_n + \frac{1}{2} \{ a(V_{n+1}) + a(V_n) \} + \frac{1}{2\sqrt{\Delta t}} \{ a(V_+) - a(V_-) \} \left(\Delta Z_n - \frac{1}{2} \Delta W_n \Delta t \right),
\]

being \(V_n = V(n\Delta t) \), \(\Delta t \) the time step, \(\Delta W_n = W(t_n + \Delta t) - W(t_n) \) the increments of the Wiener process, \(a(V) = -V/\tau \) and \(b = \sqrt{2\nu} \) the drift and noise terms, respectively. Further, we have:

\[
\nabla_{\pm} = V_n + a(V_n) \Delta t \pm b \sqrt{\Delta t},
\]

\[
\Delta Z_n = \frac{1}{2} (\Delta t)^{3/2} \left(u_1(n) + \frac{1}{\sqrt{3}} u_2(n) \right),
\]

being \(u_1(n) \) and \(u_2(n) \) two independent random numbers with uniform distributions in [0, 1]. A suitable time step \(\Delta t \), also depending on the time scale \(\tau \), is necessary to maintain the accuracy of the numerical scheme. To take into account both the ensemble variability of the relaxation time \(\tau \), which is different for different trajectories, and the time variability of drift and noise terms along
the same trajectory, we applied a variable time step according to the scheme given in Ref. [7]:

$$\Delta t = \min \left\{ 0.05 \frac{b}{|a|}, 0.1 \right\}.$$ \hspace{1cm} (70)

This adaptive time step allows to avoid any problem of convergence and accuracy in the numerical scheme, Eqs. (68) and (69). At the same time, in the range of short τ, this algorithm can give very short time steps, thus determining very long simulation times for a consistent number of trajectories. To overcome this problem we note that the short time regime $\tau \ll \langle \tau \rangle$ of the PDF $g(\tau)$ does not significantly affect the anomalous scaling of diffusion, which mostly depends on the asymptotic tail of the distribution $g(\tau)$. A cut-off was then introduced in the short-time regime. By comparing the numerical simulations with theoretical results we chose the cut-off value $\tau_{\text{min}} = 0.004$, much smaller than $\langle \tau \rangle$, which is always of the order $0.5 - 1$ for all sampled sets of τ.

8. Numerical algorithm for the random generator of τ

Here we describe a method to generate random variables τ distributed according to the law of Eq. (14),

$$g(\tau) = A(\eta)L^{-\eta}_\tau(\tau)/\tau,$$ \hspace{1cm} (71)

where $A(\eta)$ is the normalization coefficient, and τ is already dimensionless.

For this, we use a well-known inverse transform sampling method (see, e.g. [8]), so the procedure is straightforward.

First, we generate a set of extremal Lévy density random numbers $L^{-\eta}_\tau(\tau)$ by using the generator described in Refs. [9] [10], see Eq. (3.2) of the latter paper, and extract its histogram. Since the beginning of the histogram has much statistical noise (red curve in Fig. 6a), it is a good solution to replace these values with analytical asymptote at small arguments [11] (blue curve in Fig. 6a). Moreover, we also expand the histogram with another asymptote, at large τs (green curve in Fig. 6a):

$$L^{-\eta}_\tau(\tau) \sim A_1 \tau^{-a_1} \exp(-b_1 \tau c_1), \quad \tau \to 0^+, \hspace{1cm} (72)$$

$$L^{-\eta}_\tau(\tau) \sim C_1(\eta) |\tau|^{-1+\eta}, \quad \tau \to \infty, \hspace{1cm} (73)$$

where

$$A_1 = \left\{ [2\pi(1-\eta)]^{-1} \eta^{\eta/(1-\eta)} \right\}^{1/2}, \hspace{1cm} (74)$$

$$a_1 = \frac{2 - \eta}{2(1-\eta)}, \quad b_1 = (1-\eta)\eta^{\eta/(1-\eta)}, \quad c_1 = \frac{\eta}{1-\eta} \hspace{1cm} (75)$$

$$C_1(\eta) \approx \frac{1}{\pi} \sin \left(\frac{\pi \eta}{2} \right) \Gamma(1+\eta). \hspace{1cm} (76)$$

Then, we divide the obtained histogram by argument and find the normalization coefficient numerically in order that the resulting PDF is normalized to
Figure 6: (color online) (a) Simulated Lévy extremal density (red) together with asymptotics at small arguments (blue) and large ones (green). (b) Cumulative distribution function of $g(\tau)$.

unity. Finally, we calculate the semi-analytical cumulative distribution function (CDF) (see Fig. 5):

$$F(\tau_k) = \sum_{i=0}^{k} g(\tau_i) \delta\tau_i, \quad \tau_k \leq \tau_n; \quad (77)$$

$$F(\tau) = \sum_{i=0}^{n} g(\tau_i) \delta\tau_i + \int_{\tau_n}^{\tau} \frac{A(\eta)}{\eta^{2+2\eta}} d\tau', \quad \tau > \tau_n, \quad (78)$$

where $\delta\tau_i$ is the ith histogram’s bin width, $i = 0, 1, 2..n$.

Now, we draw a random variable τ obeying the target pdf (71) with

$$\tau = F^{-1}(u), \quad (79)$$

where $u \in [0, 1)$ is a uniformly distributed random variable: F^{-1} is a numerically (or if $u > F(x_n)$, semi-analytically) inverted CDF.

Let us take out a verification and compare the original PDF $g(\tau)$ used for the simulations and the histogram of the generated 10^7 random numbers with this algorithm $g_{\text{sim}}(\tau)$. The result is shown in Fig. 7. At intermediate values of τ the inaccuracy is about 1%, increasing due to statistical error at very small and large τs (where $g(\tau)$ is small).

The software for the numerical simulations were written in C++ language (Debian gcc 4.9) and Python 2.7 and can be downloaded at the following web-site: https://gitlab.bcamath.org/opensource/lecm.

The codes include the algorithms described in this section and in the previous one. The simulation runs were performed on computational facilities of BCAM-Basque Center for Applied Mathematics.
9. Schneider grey noise, gBM and ggBM

We here provide an intuitive presentation of the Schneider grey noise, the grey Brownian motion and the generalized grey Brownian motion. More rigorous details can be found in [12, 13, 14, 15, 16, 17, 18, 19].

The grey noise is a generalization on the basis of the Mittag–Leffler function of the white noise. The Mittag-Leffler function \(E_\beta(z) \) is defined as

\[
E_\beta(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\beta n + 1)},
\]

and it is a generalization of the exponential function that is recovered as special case when \(\beta = 1 \), i.e., \(E_1(-z) = e^{-z} \). As well as the exponential function, when \(0 < \beta < 1 \), the Mittag–Leffler function is a completely monotonic function. A useful formula for what follows is

\[
-\frac{d^2}{dz^2} E_\beta(-z^2 q) \bigg|_{z=0} = \frac{2}{\Gamma(1+\beta)} q.
\]

For any characteristic functional \(\Phi(z) \) there exists a unique probability measure \(\mu \) such that

\[
\Phi(z) = \int_{-\infty}^{\infty} e^{iz\tau} d\mu(\tau),
\]

and if \(\Phi(z) = E_\beta(-z^2), 0 < \beta < 1 \), the probability measure \(\mu \) is the so-called Schneider grey noise [12, 13, 17]. When \(\beta = 1 \) we have \(E_1(-z^2) = e^{-z^2} \), and the Gaussian white noise follows.

Let us introduce the stochastic process \(X(t) \) driven by the noise \(\mu \) and we look for its probability density function. The characteristic function is

\[
\langle e^{izX(t)} \rangle = \int_{-\infty}^{\infty} e^{izX(t)} d\mu(t) = E_\beta(-z^2 \varphi_\alpha^2(t)),
\]

Figure 7: (color online) (a) Comparison of the original PDF (red) and the PDF histogram of generated numbers (blue). (b) Relative error between original and simulated PDFs.
where function $\varphi_\alpha(t)$ takes into account what remains of parameter t after the integration, and it is related to the scaling in time of $X(t)$. By the inversion of (83) we have the probability density function of $X(t)$ as follows

$$p(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-izx} E_\beta(-z^2 \varphi^2_\alpha(t))dz = \frac{1}{2} \varphi_\alpha(t) M_{\beta/2} \left(\frac{|x|}{\varphi_\alpha(t)} \right),$$

(84)

where $M_{\beta/2}$ is the M-Wright/Mainardi function. By using (83) and (81), we have that the variance of $X(t)$ is

$$\langle x^2 \rangle = -\frac{d^2}{dz^2} E_\beta(-z^2 \varphi^2_\alpha(t)) \bigg|_{z=0} = \frac{2}{\Gamma(1+\beta)} \varphi^2_\alpha(t).$$

(85)

In the same spirit, the correlation function of the process $X(t)$ can be computed. In fact from (83) it holds

$$\langle e^{iz[X(t)-X(s)]} \rangle = \int_{-\infty}^{+\infty} e^{iz[X(t)-X(s)]} d\mu(t,s) = E_\beta(-z^2 \varphi^2_\alpha(t,s)), \tag{86}$$

and by applying again formula (81) the correlation function results to be

$$\frac{1}{\Gamma(1+\beta)} (\varphi_\alpha(t) + \varphi_\alpha(s) - \varphi_\alpha(t,s)).$$

(87)

Now we discuss how to establish function $\varphi_\alpha(t)$. Let $\mathbb{I}_{[a,b]}$ be the indicator function such that it is equal to 1 when $a < t < b$ and to 0 elsewhere. In analogy with the Wiener process where the Brownian motion is $B(t) = \int_0^t dW(\tau)$, we write the process $X(t)$ as

$$X(t) = \int_0^t d\mu(\tau) = \mathbb{I}_{[0,t]} X_0(\mathbb{I}_{[0,t]}), \tag{88}$$

where X_0 is a random variable equivalent in distribution to $X(t)$ but independent of t, i.e., the probability density function of X_0 is $p_0(x) = p(x,t = 1)$. From (88) we have that

$$\langle [X(t)]^2 \rangle = \langle [\mathbb{I}_{[0,t]}]^2 \rangle \langle [X_0]^2 \rangle,$$

(89)

and from comparison with (85) and (87), we obtain that $\varphi_\alpha(t)$ is established through the stochastic process $\mathbb{I}_{[a,b]}$ that meets

$$\langle [\mathbb{I}_{[0,t]}]^2 \rangle = \varphi^2_\alpha(t), \tag{90}$$

$$\langle \mathbb{I}_{[s,t]} \mathbb{I}_{[0,a]} \rangle = \frac{1}{2} (\varphi^2_\alpha(t) + \varphi^2_\alpha(s) - \varphi^2_\alpha(t,s)).$$

(91)

Finally we observe that, by setting $\varphi^2_\alpha(t) = t^{\alpha}$, $X(t)$ is the Brownian motion when $\alpha = \beta = 1$, and we refer to it as the grey Brownian motion and the
generalized grey Brownian motion when $0 < \alpha = \beta < 1$ and $0 < \alpha < 2$, $0 < \beta < 1$, respectively. Moreover, in order to have a process with stationary increments we assume $\varphi^2_\alpha(t, s) = |t - s|^{\alpha}$, the correlation function results to be

$$\frac{1}{\Gamma(1 + \beta)} (t^\alpha + s^\alpha - |t - s|^\alpha).$$

(92)

The corresponding stochastic process is obtained with a randomly-scaled Gaussian process, i.e., a Gaussian process multiplied for a non-negative independent random variable not dependent on time.

From integral representation formulae of the M function [20], we have that X_0 has the same density of $X(1)$ if, for example, we state $X_0 = \sqrt{\Lambda} B(1)$ where Λ is a non-negative random variable distributed according to M_β and $B(1)$ is a Gaussian variable. Finally, we obtain that

$$X(t) = \sqrt{\Lambda} 1_{[0,t]} B(1_{[0,t]}).$$

(93)

Looking at (85) and (87), the process $1_{[0,t]} B(1_{[0,t]})$ is the fractional Brownian motion $X_H(t)$ [21] characterized by

$$\langle [X_H(t)]^2 \rangle = t^{2H},$$

(94)

$$\langle X(t)X(s) \rangle = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H}).$$

(95)

Finally, by setting $H = \alpha/2$, the trajectories of the process $X(t)$ can be generated by

$$X(t) = \sqrt{\Lambda} X_H(t).$$

(96)

Since the fBm $X_H(t)$ is fully characterized by the variance and the correlation function, the process $X(t)$ is also fully characterized by the variance and the correlation function.

With a somewhat forced terminology, the term ggBM can be thought to include any randomly scaled Gaussian process, i.e., any processes defined by the product of a Gaussian process with an independent and constant non-negative random variable.

10. Mainardi distribution and Lévy densities

Fractional diffusion processes are a generalization of classical Gaussian diffusion, mainly in the direction of the time-fractional diffusion, i.e., by replacing the first derivative in time with a time-fractional derivative, and in the direction of the space-fractional diffusion, i.e., by replacing the second derivative in space with a space-fractional derivative. In the case of time-fractional diffusion the Gaussian particle density is generalized by the so-called M-Wright/Mainardi functions [22, 23], and in the case of the space-fractional diffusion the particle density is generalized by the so-called Lévy stable densities [11].

35
The M-Wright/Mainardi function \(M_\nu(r) \), \(r \geq 0, \, 0 < \nu < 1 \), is defined by the series:

\[
M_\nu(r) = \sum_{n=0}^{\infty} \frac{(-r)^n}{n![-\nu n + (1 - \nu)]} = \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{(-r)^n}{(n-1)!} \Gamma(\nu n) \sin(\pi \nu n), \tag{97}
\]

and it provides a generalization of the Gaussian and Airy functions:

\[
M_{1/2}(r) = \frac{1}{\sqrt{\pi}} e^{-r^2/4}, \quad M_{1/3}(r) = 3^{2/3} \text{Ai}(r/3^{1/3}). \tag{98}
\]

Moreover, the following limit holds:

\[
\lim_{\nu \to 1^-} M_\nu(r) = \delta(r - 1). \tag{99}
\]

The M density function is related to the Mittag–Leffler function through the Laplace transform:

\[
\int_0^{\infty} e^{-\lambda r} M_\nu(r) \, dr = E_\nu(-\lambda), \tag{100}
\]

and it has an exponential decay for \(r \to \infty \), i.e.:

\[
M_\nu(r) \sim \frac{Y^{\nu-1/2}}{\sqrt{2\pi(1-\nu)^2}} e^{-Y}, \quad Y = (1 - \nu)(\nu^\nu r)^{1/(1-\nu)}, \tag{101}
\]

which allows for finite moments that can be computed through the formula:

\[
\int_0^{\infty} r^q M_\nu(r) \, dr = \frac{\Gamma(q + 1)}{\Gamma(q + 1)}, \quad q > -1. \tag{102}
\]

A remarkable formula of the Mainardi density is the following integral representation with \(r \geq 0, \, 0 < \nu, \eta, \beta < 1 \) [20]:

\[
M_\nu(r) = \int_0^{\infty} g_\eta \left(\frac{r}{\tau \eta} \right) M_\beta(\tau) \frac{d\tau}{\tau \eta} \quad \nu = \eta \beta, \tag{103}
\]

that, in the special case \(\eta = 1/2 \), provides the following link with the Gaussian density:

\[
M_{1/2}(r) = \int_0^{\infty} \frac{e^{-r^2/(4\tau)}}{\sqrt{\pi \tau}} M_\beta(\tau) \frac{d\tau}{\tau \eta}. \tag{104}
\]

The Lévy stable density \(L_\alpha^\theta(z), -\infty < z < +\infty, \, 0 < \alpha < 2, \, |\theta| = \min\{\alpha, 2 - \alpha\}, \) is defined through the Fourier transform:

\[
\int_{-\infty}^{+\infty} e^{i\kappa z} L_\alpha^\theta(z) \, d\kappa = e^{-\Psi(\kappa)}, \quad \Psi(\kappa) = |\kappa|^\alpha e^{i(\text{sgn} \, \kappa) \theta \pi/2}. \tag{105}
\]

In the case \(\theta = -\alpha, \, 0 < \alpha < 1 \), the Lévy density reduces to a one-side density on the positive semi-axis (when \(\theta = \alpha \) on the negative semi-axis) and it is defined through the Laplace transform:

\[
\int_0^{\infty} e^{sz} L_\alpha^{-\alpha}(z) \, dz = e^{-s^\alpha}. \tag{106}
\]
The asymptotic behaviour for $|z| \to \infty$ is the power-law

$$L_\alpha^\beta(z) = O(|z|^{-(\alpha+1)}) ,$$

and, for extremal densities, the following exponential decay holds for $z \to 0$:

$$L_\alpha^{-\alpha}(z) \sim \frac{z^{-2(\alpha-1)/(1-\alpha)}}{\sqrt{2\pi(1-\alpha)\alpha^{1/(\alpha-1)}}} e^{-Y} , \quad Y = (1-\alpha)\alpha^{\alpha/(1-\alpha)}z^{\alpha/(1-\alpha)} .$$

Important special cases are the Gaussian, the Cauchy and the Lévy–Smirnov density, i.e.:

$$L_0^2(z) = \frac{e^{-z^2/4}}{2\sqrt{\pi}} , \quad L_1^0(z) = \frac{1}{\pi(1+z^2)} , \quad L_{1/2}^{-1/2}(z) = \frac{z^{-3/2}}{2\sqrt{\pi}} e^{-1/(4z)} .$$

Moreover, the following limit holds:

$$\lim_{\alpha \to 1} L_\alpha^{-\alpha}(z) = \delta(z-1) .$$

A remarkable formula of the Lévy density is the following integral representation for $z \geq 0$, $0 < \beta < 1$:

$$L_\alpha^\beta(z) = \int_0^\infty L_\alpha^\alpha \left(\frac{z}{\tau^{1/\alpha_q}} \right) L_\beta^{-\beta}(\tau) \frac{d\tau}{\tau^{1/\alpha_q}} , \quad \alpha_p = \beta\alpha_q , \quad \theta_p = \beta\theta_q ,$$

that, in the special case $\alpha_q = 2$, $\theta_q = 0$, provides the following link with the Gaussian density [20, 24]:

$$L_\alpha^0(z) = \int_0^\infty \frac{e^{-z^2/(4\tau)}}{\sqrt{\pi\tau}} L_\alpha^{-\alpha/2}(\tau) d\tau .$$

The $M_\nu(r)$ function, $r \geq 0$, $0 < \nu < 1$, and the extremal Lévy density $L_{\nu}^{-\nu}(r)$ are related by the formula:

$$\frac{1}{c^{1/\nu}} L_{\nu}^{-\nu} \left(\frac{r}{c^{1/\nu}} \right) = \frac{c\nu}{\nu+1} M_\nu \left(\frac{c}{\nu+1} \right) , \quad c > 0 .$$

In the present paper we consider such special densities in order to highlight the relation of the proposed formulation with the fractional diffusion. However, the asymptotic behaviour of the modeled diffusion can be achieved by using the asymptotic behaviour of the involved densities. This means, by using exponential and power-law functions rather than special functions.

11. Space-Time Fractional Diffusion

For the particular choice of parameters: $\phi = 2\beta/\alpha ; \quad 1 < \phi < 2$, Eq. [20] reduces to the fundamental solution of the following Space-Time Fractional Diffusion equation:

$$t D_\alpha^\beta p(x;t) = A_\alpha x D_0^\alpha p(x;t) , \quad -\infty < x < +\infty , \quad t \geq 0 ,$$

37
with:

\[A_\alpha = (C\nu)^{\alpha/2}. \]

(115)

The nonlocal operators \(iD_t^\beta \) and \(xD_x^\alpha \) are the Caputo fractional time derivative and the Riesz-Feller space derivative, respectively (see [11] for the definition of these operators). This is the same equation discussed in Refs. [11, 25], but with a generalized fractional diffusivity \(A_\alpha \) different from 1.

The solution reads:

\[K_{\alpha,\beta}^{\theta}(x,t) = \frac{1}{(A_\alpha)^{1/\alpha} t^{\beta/\alpha}} K_{\alpha,\beta}^{\theta} \left(\frac{x}{(A_\alpha)^{1/\alpha} t^{\beta/\alpha}} \right), \]

with \(\theta = 0 \) in this case. \(^9\) The superdiffusive regime determines the following constrain on \(\alpha \) and \(\beta \): \(\alpha/2 < \beta < \alpha \).

Given the solutions of the Time Fractional Diffusion equation and of the Space Fractional Diffusion equation with diffusivity 1 and \(A_\alpha \), respectively [11, 26]:

- \(M_\beta(x,t) = 1/t^{\beta} M_\beta(x/t^\beta) \) (Mainardi probability density) and
- \(L_\theta^{\alpha}(x,t) = 1/(A_\alpha t^{1/\alpha}) L_\theta^{\beta} \left(x/(A_\alpha t^{1/\alpha}) \right) \) (Lévy probability density),

the general solution \(K_{\alpha,\beta}^{\theta} \) can be written as a combination of these same solutions:

\[K_{\alpha,\beta}^{\theta}(x,t) = \int_0^\infty L_\theta^{\alpha}(x,\tau) M_\beta(\tau,t) \, d\tau, \]

(116)

then the general solution emerges as a linear combination of the temporal (Mainardi) and spatial (Lévy) solutions. The Mainardi density is related to the extremal Lévy density by the following relationship (see Section [10] for details):

\[\frac{t}{\beta^2 \tau^{1+\beta}} \frac{1}{\Gamma(1/\beta)} L_\beta^{\alpha} \left(\frac{t}{\beta^2 \tau^{1+\beta}} \right) = \frac{1}{\Gamma(1/\beta)} M_\beta \left(\frac{T}{\beta^2 \tau^{1+\beta}} \right), \quad 0 < \beta \leq 1, \quad \tau, t \geq 0, \]

(117)

Supplementary Material: References

References

[1] G. I. Taylor, Diffusion by continuos movements, Proc. London Math. Soc. s2-20 (1) (1921) 196–211. [arXiv:http://plms.oxfordjournals.org/content/s2-20/1/196.full.pdf+html, doi:10.1112/plms/s2-20.1.196](http://plms.oxfordjournals.org/content/s2-20/1/196.short)

\(^9\) Due to the self-similar property, here and in the following we use the same symbol for the two-variable function \(F(x,t) \) and the associated one-variable function written in terms of the similarity variable. Then, given the scaling exponent \(\Lambda \) and the coefficient \(A \), we write: \(F(x,t) = 1/t^\Lambda F(x/(At^\Lambda)) \). This notation is not ambiguous as the meaning clearly follows from the number of independent variables.
[2] A. Einstein, Über die von der molekularkinetischen theorie der warme geforderte bewegung von in ruhenden flussigkeiten suspendierten teilchen, Annalen der Physik 322 (8) (1905) 549–560.

[3] B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (4) (1968) 422–437.

[4] T. Dieker, Simulation of fractional Brownian motion 2004, ph.D. Thesis, Physics Department of Mathematical Sciences, University of Twente. URL http://www.columbia.edu/~ad3217/fbm/thesis.pdf

[5] W. Feller, An Introduction to Probability Theory and its Applications, 2nd Edition, Vol. 2, Wiley, New York, 1971.

[6] P. E. Kloeden, E. Platen, Numerical solution of Stochastic Differential Equations, Springer-Verlag, 1992.

[7] D. J. Thomson, Criteria for the selection of stochastic models of particle trajectories in turbulent flows, J. Fluid Mech. 180 (1987) 529–556.

[8] L. Devroye, Nonuniform random variate generation, Handbooks in operations research and management science 13 (2006) 83–121.

[9] J. M. Chambers, C. L. Mallows, B. W. Stuck, A method for simulating skewed stable random variables, J. Amer. Statist. Assoc. 71 (1976) 340–344.

[10] R. Weron, On the Chambers–Mallows–Stuck method for simulating skewed stable random variables, Statist. Probab. Lett. 28 (1996) 165–171, corrigendum: http://mpra.ub.uni-muenchen.de/20761/1/RWeron96_Corr.pdf or http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC96_01.pdf.

[11] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2) (2001) 153–192.

[12] W. R. Schneider, Grey noise, in: S. Albeverio, et al. (Eds.), Stochastic processes, physics and geometry, World Sci. Publ., Teaneck, NJ, 1990, pp. 676–681.

[13] W. Schneider, Grey noise, in: Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, pp. 261–282.

[14] A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis, Lambert Academic Publishing, 2011, ph.D. Thesis, Physics Department, University of Bologna, 2008.
[15] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion, J. Phys. A: Math. Theor. 41 (2008) 285003.

[16] A. Mura, M. Taqqu, F. Mainardi, Non-Markovian diffusion equations and processes: Analysis and simulations, Physica A 387 (2008) 5033–5064.

[17] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics, Integr. Transf. Spec. F. 20 (3–4) (2009) 185–198.

[18] M. Grothaus, F. Jahnert, F. Riemann, J. da Silva, Mittag–Leffler analysis I: Construction and characterization, J. Funct. Anal. 268 (2015) 1876–1903.

[19] M. Grothaus, F. Jahnert, Mittag–Leffler analysis II: Application to the fractional heat equation, J. Funct. Anal. 270 (2016) 2732–2768.

[20] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes, Fract. Calc. Appl. Anal. 6 (4) (2003) 441–459.

[21] F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, 2008.

[22] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in time-fractional diffusion processes: A tutorial survey, Int. J. Differ. Equations 2010 (2010) 104505.

[23] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes, Fract. Calc. Appl. Anal. 16 (2) (2013) 436–453.

[24] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin convolution for subordinated stable processes, J. Math. Sci. 132 (5) (2006) 637–642.

[25] G. Pagnini, P. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 19 (2) (2016) 408–440.

[26] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion, Chem. Phys. 284 (2002) 521–541.