of octanol aversion. The findings indicate that JUb39 mediates octanol modulation in the animals. *C. elegans* carrying mutations in the biosynthetic pathway for the neurotransmitter tyramine are defective in octanol modulation, and co-culturing with JUb39 restored some of this modulation. Furthermore, the authors were able to show that JUb39-produced tyramine functionally compensates for the loss of host-derived tyramine. They identified two bacterial genes that encode decarboxylases with the potential to generate tyramine, and those enzymes were necessary and sufficient for octanol modulation.

But how does JUb39-derived tyramine modulate octanol avoidance in worms? Further investigations revealed that host enzymes are likely to be involved in the conversion of bacterially derived tyramine to the neurotransmitter octopamine, which binds to the OCTR-1 receptor on sensory neurons of the host, which have previously been shown to affect aversive behaviour.

The findings led the authors to propose a model whereby JUb39 is ingested by *C. elegans* and successfully colonizes the host. These gut bacteria produce tyramine, which acts to reduce aversion to bacterially generated volatiles, such as those produced by JUb39. This in turn affects the feeding decisions of *C. elegans*, positively selecting for the increased consumption of JUb39. The bacteria present a rich food source for *C. elegans*, which suggest that the described mechanism promotes both host and microorganism fitness — thus, the relationship between the host and the commensal might be mutually beneficial.

In sum, this study provides important mechanistic insights into the gut–brain axis and opens avenues for further studies on how gut microbiome may modulate host behaviours.

Akila Sridhar

ORIgINAL ARTICLE O’Donnell, M. P. et al. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. *Nature* https://doi.org/10.1038/s41586-020-2395-5 (2020)

IN BRIEF

BACTERIAL PHYSIOLOGY

Isolation of manganese oxidizers

Chemolithoautotrophic microorganisms obtain energy by oxidizing inorganic compounds such as hydrogen, ferrous iron and ammonia. Manganese is one of the most abundant metals on Earth, but whether oxidation of manganese drives the growth of chemolithotrophs has remained unknown. Now, Yu and Leadbetter report the cultivation of a co-culture of two manganese oxidizers — *Candidatus Manganitrophus nodulisformans* and *Ramlbacter lithiophoricus* — that are dependent on manganese for CO₂ fixation and exponential growth. Transcriptomics of manganese-dependent growth revealed candidate metabolic pathways for coupling extracellular manganese oxidation to aerobic energy conservation and autotrophic CO₂ fixation. The findings of this study have important implications for the manganese biogeochemical cycle.

ORIgINAL ARTICLE Yu, H. & Leadbetter, J. R. Bacterial chemolithoautotrophy via manganese oxidation. *Nature* 583, 453–458 (2020)

HOST RESPONSE

Can COVID-19 strike twice?

Millions of cases of coronavirus disease 19 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been reported worldwide, but whether convalescing individuals can be re-infected with SARS-CoV-2 is unclear. Deng et al. generated a non-human primate model of SARS-CoV-2 infection in which rhesus macaques develop pneumonia and exhibit systemic viral dissemination. Once the macaques were in the early phases of recovery, they were rechallenged with the identical SARS-CoV-2 strain. Notably, these animals did not exhibit detectable viral dissemination, clinical symptoms and histopathological changes associated with COVID-19. The authors compared the humoral and cellular immune responses after primary infection and rechallenge and found enhanced neutralizing antibody and immune responses in the rechallenged macaques, which suggests that primary SARS-CoV-2 exposure may protect against reinfection.

ORIgINAL ARTICLE Deng, W. et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. *Science* https://doi.org/10.1126/science.abf3148 (2020)

VIRAL INFECTION

Snatching from the host

The first step of transcription for many negative-strand RNA viruses like influenza viruses and arenaviruses is a process known as ‘cap snatching’, whereby the viral RNA-dependent RNA polymerase cleaves 5’ capped host mRNAs to prime viral RNA synthesis. Ho et al. found that start codons within cap-snatched host mRNAs lead to a novel mechanism of gene origination that they call ‘start snatching’. Depending on the frame of the snatched start codon, start-snatching allows the translation of host–virus chimeric proteins that are either amino-terminus-extended viral proteins, or completely novel fteins that are out of frame with canonical viral open reading frames. The authors found that both chimeric forms are produced in influenza A virus-infected cells, that chimeric proteins contribute to virulence in vivo and that epitopes within the chimeric proteins are recognized by the adaptive immune system, which suggests that start snatching has a role in host–virus interactions.

ORIgINAL ARTICLE Hu, J. S. Y. et al. Hybrid gene origination creates human-virus chimeric proteins during infection. *Cell* 181, 1502–1517 (2020)