CP asymmetries at D0

K Holubyev
Lancaster University, UK

Using two independent measurements of the semileptonic CP asymmetry in the B_s system, we constrain the CP-violating phase of the B_s system to be $\phi_s = -0.70^{+0.47}_{-0.39}$. The data sample corresponds to an integrated luminosity of 1.1 fb$^{-1}$ accumulated with D0 detector at the Fermilab Tevatron Collider. We also measure the direct CP violating asymmetry in the decay $B^+ \to J/\psi K^+$ to be $A_{CP}(B^+ \to J/\psi K^+) = +0.0067 \pm 0.0074$(stat)$\pm 0.0026$(syst). The data corresponds to an integrated luminosity of 1.6 fb$^{-1}$.

I. SEMILEPTONIC CP ASYMMETRY IN THE B_s SYSTEM

In the Standard Model (SM), the light (L) and heavy (H) mass eigenstates of the mixed B_s^0 system are expected to have sizable mass and decay width differences: $\Delta M_s \equiv M_H - M_L$ and $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H$. The two mass eigenstates are expected to be almost pure CP eigenstates. The CP-violating mixing phase is predicted [1] to be $\phi_s = (4.2 \pm 1.4) \times 10^{-3}$. New phenomena may alter ϕ_s leading to a reduction of the observed $\Delta \Gamma_s$ compared to the SM prediction $\Delta \Gamma^S_M$: $\Delta \Gamma_s = \Delta \Gamma^S_M \times |\cos \phi_s|$. While $B_s^0 - \bar{B}_s^0$ oscillations have been detected [2] and the mass difference has recently been measured [3], the CP-violating phase remains unknown.

Both CP-violating phase ϕ_s and decay width difference $\Delta \Gamma_s$ of the B_s system were for the first time directly constrained at D0 from the fit to the time-dependent angular distribution of the decay products in the decay sequence $B_s^0 \to J/\psi \phi$, $J/\psi \to \mu \mu$, $s \to K^+K^-$ [6]. The result remained 4-fold ambiguous due to undefined CP-conserving strong phases. The semileptonic asymmetry in the B_s-system, which is in general defined as

$$A_{SL}^\pm = \frac{N(B_s^\pm \to l^\pm + X) - N(B_s^\mp \to l^- + X)}{N(B_s^0 \to l^+ + X) + N(B_s^0 \to l^- + X)}, \quad \text{(1)}$$

is related to both ϕ_s and $\Delta \Gamma_s$ via

$$A_{SL}^\pm = \frac{\Delta \Gamma_s}{\Delta M_s} \tan \phi_s. \quad \text{(2)}$$

Its measurement gives independent access to ϕ_s, both resolving the mentioned ambiguity and adding statistics to the measurement.

Recently we at D0 accessed the semileptonic asymmetry A_{SL}^\pm indirectly, by measuring the dimuon asymmetry in the inclusive dimuon sample [4], and directly, by measuring the untagged asymmetry in the exclusive sample of events consistent with the decay $B_s^\pm \to \mu \mu D_s$, $D_s \to \phi \pi^\pm$ [2]. The combination of the two results gives the best estimate of the charge asymmetry in semileptonic B_s^0 decays: $A_{SL}^\pm = 0.0001 \pm 0.0090$ [7]. Using (2) and the result $\Delta M_s = 17.8 \pm 0.1$ ps$^{-1}$ from CDF experiment [3] we obtained $\Delta \Gamma_s \cdot \tan \phi_s = A_{SL}^\pm \cdot \Delta M_s = 0.02 \pm 0.16$ ps$^{-1}$. Using this constraint we repeated the fit to the $B_s^0 \to J/\psi \phi$ data. In Fig. [1] we show the likelihood contours in $\Delta \Gamma_s$ vs ϕ_s plane without (dashed line) and with (solid line) the constraint from the measurements of the semileptonic asymmetry A_{SL}^\pm in the B_s^0 decays. The contours indicate error ellipses, $\Delta \ln(L) = 0.5$, corresponding to the confidence level of 39%.

Finally, from the fit likelihood profile we found for $\phi_s < 0$ the decay width difference and the CP-violating phase in the B_s-system to be $\Delta \Gamma_s = 0.13 \pm 0.09$ ps$^{-1}$, $\phi_s = -0.70^{+0.47}_{-0.39}$. The measurement uncertainty is dominated by limited statistics. The systematic uncertainties include a variation of the background model in the analysis of the decay $B_s^0 \to J/\psi \phi$, detector acceptance, and sensitivity to the details of track and vertex reconstruction. The results are consistent with the SM predictions [4].

*Electronic address: holubyev@fnal.gov
II. DIRECT CP VIOLATION IN THE DECAY $B^+ \to J/\psi K^+$

A direct CP asymmetry in the decay $B^+ \to J/\psi K^+$, $A_{CP}(B^+ \to J/\psi K^+)$, has recently been measured at D0:

$$A_{CP}(B^+ \to J/\psi K^+) = \frac{N(B^- \to J/\psi K^-) - N(B^+ \to J/\psi K^+)}{N(B^- \to J/\psi K^-) + N(B^+ \to J/\psi K^+)}$$ \hspace{1cm} (3)

This decay proceeds via $b \to c\bar{s}s$ transition which is predominantly tree level. The SM gives the order of magnitude estimate $A_{CP}(B^+ \to J/\psi K^+) = \mathcal{O}(0.003)$ \cite{9}, which in the realistic New Physics (NP) models can be enhanced to 0.01 or higher \cite{5}.

The events consistent with the decay chain $B^+ \to J/\psi K^+$, $J/\psi \to \mu^+\mu^-$ and its charge conjugate were selected. The $J/\psi K^+$ mass peak was modeled using unbinned likelihood fit to the sum of contributions from $B \to J/\psi K$, $B \to J/\psi\pi$, and $B \to J/\psi K^*$ decays, as well as combinatorial background, see Fig. [2].

The systematic shift from the detector-induced asymmetries was accounted for in the detector model (for the first time applied in \cite{4}), which expresses the number of signal events with the kaon charge q, the sign of the kaon pseudorapidity γ, and the solenoid polarity at which the event was recorded β, and different asymmetries A_i (see section IV of \cite{4} for the explanation of N, ϵ^β, and different A_i):

$$n_q^{\beta\gamma} = \frac{1}{4} N\epsilon^\beta(1 + qA)(1 + q\epsilon A_{det})(1 + q\beta\gamma A_{q\beta\gamma})(1 + q\beta\gamma A_{q\beta\gamma}).$$ \hspace{1cm} (4)

The initial data sample of Fig. [2] was divided into subsamples corresponding to eight possible combinations of β, γ, and q, in each subsample the unbinned fit was performed to find the number of events in the $J/\psi K^+$ peak, $n_q^{\beta\gamma}$, and the system [4] was solved for all asymmetries.

A systematic shift from charge asymmetric kaon interactions with detector material was estimated from data by comparing the exclusive decay $c \to D^{*+} \to D^0\pi^+$, $D^0 \to \mu^+\mu^-K^-$ and its charge conjugate. To account for the momentum dependence of the kaon cross-section \cite{3}, the kaon asymmetry in the D^* sample was measured in kaon momentum bins to convolve it with the PDF of the kaon momentum of the $J/\psi K$ sample.

Finally, after subtracting kaon asymmetry, we obtained $A_{CP}(B^+ \to J/\psi K^+) = +0.0067 \pm 0.0074(stat) \pm 0.0026(syst)$, which is consistent with the PDG-2007 world average, $A_{CP}(B^+ \to J/\psi K^+) = +0.015 \pm 0.017$ \cite{9}, but has a factor of two better precision, thus providing the most stringent bounds for new models predicting large values of $A_{CP}(B^+ \to J/\psi K^+)$. The measurement uncertainty is mainly due to limited statistics. Systematic uncertainty is largely dominated by the variation of the $J/\psi K$ mass peak model.

\begin{thebibliography}{10}
\bibitem{1} A Lenz and U Nierste 2007 \textit{JHEP} 0308:031 \texttt{hep-ph/0612167}
\bibitem{2} D0 Collaboration, V M Abazov et al 2006 \textit{Phys. Rev. Lett.} \textbf{97} 021802 \texttt{hep-ex/0603029}
\bibitem{3} CDF Collaboration, A Abulencia et al 2006 \textit{Phys. Rev. Lett.} \textbf{97} 242003 \texttt{hep-ex/0609040}
\bibitem{4} D0 Collaboration, V M Abazov et al 2006 \textit{Phys. Rev. D} \textbf{74} 092001 \texttt{hep-ex/0609014}
\bibitem{5} D0 Collaboration, V M Abazov et al 2007 \textit{Phys. Rev. Lett.} \textbf{98} 151801 \texttt{hep-ex/0701007}
\bibitem{6} D0 Collaboration, V M Abazov et al 2007 \textit{Phys. Rev. Lett.} \textbf{98} 121801 \texttt{hep-ex/0701012}
\bibitem{7} D0 Collaboration, V M Abazov et al 2007 \texttt{hep-ex/0702030}
\bibitem{8} W-S Hou, M Nagashima and A Soddu 2006 \texttt{hep-ph/0605080}
\bibitem{9} Particle Data Group (PDG), W-M Yao et al 2006 \textit{J. Phys. G} \textbf{33} 1 and 2007 partial update for edition 2008 (URL: \texttt{http://pdg.lbl.gov})
\bibitem{10} Heavy Flavor Averaging Group (HFAG), E Barberio et al 2006 Averages of b-hadron properties as of 2006, in preparation
\end{thebibliography}
FIG. 1: The error ellipse ($\Delta \ln(L) = 0.5$) in the plane ($\Delta \Gamma_s$, ϕ_s) for the fit to the $B^0_s \rightarrow J/\psi \phi$ data (dashed line) and for the fit with the constraint from the two D0 measurements of the charge asymmetry A^{SL}_{2L} in semileptonic B^0_s decays (solid line). The central values of four solutions of the unconstrained fit are indicated by squares. Also shown is the band representing the relation $\Delta \Gamma_s = \Delta \Gamma_s^{SM} \times |\cos \phi_s|$ with $\Delta \Gamma_s^{SM} = 0.088 \pm 0.017$ ps$^{-1}$ [1] (dark shade) and the area corresponding to $\Delta \Gamma_s \cdot \tan \phi_s = 0.02 \pm 0.16$ ps$^{-1}$ [3] (light shade).

FIG. 2: Result from the unbinned fit of the invariant mass distribution of the $J/\psi K$ system in the $B^+ \rightarrow J/\psi K^+$ decay and its charge conjugate.