Rooperol, an inhibitor of cytokine synthesis, decreases the respiratory burst in human and rat leukocytes and macrophages

A. Guzdek, B. Turyna, A. C. Allison, K. Stadek and A. Koj

CA Corresponding Author
Fax: (+48) 12 336907

Materials and Methods

Reagents

Mono-Poly resolving medium was obtained from ICN Biomedicals, Meckenheim, Germany. RPMI and antibiotics-antimycotics came from Gibco Life Technologies Inc., Grand Island, NY, USA. Fetal bovine serum (FBS), lipopolysaccharide from Escherichia coli 026:B6 (LPS), luminol (5-aminol, 2,3-dihydro-1,4-phthalazinedione), latex beads (1 μm), glucose were purchased from Sigma, St Louis, MO, USA. Rooperol tetraacetate (RTA) was kindly provided by Dr P. B. Kruger, ESP Group, Department of Pharmacology, Uni-
versity of Stellenbosch, South Africa. All other reagents obtained from POCH, Gliwice, Poland were of highest purity grade.

Cells, isolation and culture
Twenty μl of whole blood was taken from the finger of healthy volunteers (25–48 years of age) and used immediately for respiratory burst measurement. Neutrophils were isolated from fresh heparinized human blood of healthy donors by centrifugation with Mono-Poly resolving medium, washed in Hank’s Balanced Salt Solution (HBSS) without Ca$^{2+}$ and c. 5000 cells were used for experiments. Human lung macrophages were obtained by fibre-optic bronchoscopy of patients examined for diagnostic purposes following the guidelines of the American Thoracic Society. The cells were collected in sterile phosphate buffered saline (PBS), centrifuged, washed in PBS and c. 5000 cells were used for each experiment. The lungs of killed by ether overdose rats were lavaged with 3 × 10 ml of cold PBS. After centrifugation, the cell pellet was washed in cold PBS and 2 × 10^4 cells were used for respiratory burst estimation.

NO production by rat alveolar macrophages was evaluated in 24 h culture of the cells. Isolated rat macrophages were seeded on 12-well plates (Costar) in RPMI with 8% fetal bovine serum and antibiotics. After 2 h the unattached cells were discarded, and the adherent cells were cultured for 24 h. Then rooperol tetracetate (RTA) and/or LPS (500 ng/ml) in RPMI containing 2% FBS was added. NO was estimated in the medium collected after 24 h culturing the cells with the drugs.

Estimation of chemiluminescence (CL) and NO production
Whole blood in HBSS containing glucose and 0.5% FCS was incubated for 10 min with luminol (1.4 mM), RTA (0.6, 2, 5 and 10 μM) and/or 10 ng/ml LPS. The addition of 50 μl of latex beads (2 × 10^10) was the start point of chemiluminescence estimation in Scintillation Spectrometer Rackbeta 1211, LKB. Neutrophils and macrophages were incubated with luminol, RTA and/or LPS for 20 min. As a result of exposure to latex beads respiratory burst occurs and its intensity depends on phagocytes priming by LPS.

NO production was estimated with Griess reagent and nitrite concentration was determined by using dilutions of sodium nitrite in water as a standard. Rooperol tetracetate at 20 μM concentration had no effect on nitrite assay.

Statistical analysis
Data were analysed by paired Student’s t-test.

Results
Effect of rooperol on the respiratory burst of human cells
Addition of bacterial endotoxin (10 ng/ml) to fresh human blood or isolated neutrophils followed by latex beads increased chemiluminescence within the first 15–20 min (Table 1) and a decline occurred usually around 30–40 min after the addition of latex beads. However, considerable individual variations were observed, especially with full blood, in which the maximum was often delayed or prolonged (Fig. 1). When rooperol tetracetate was added to fresh human blood simultaneously with LPS a marked reduction of respiratory burst was found (Fig. 1a and 1ax) and occasionally the chemiluminescence was reduced below control (Fig. 1ax). Similar inhibitory effects of rooperol were also visible with neutrophils isolated from human peripheral blood (Fig. 1b) and human alveolar macrophages (Fig. 1c). These effects were dose-dependent and for human neutrophils and macrophages almost total inhibition of respiratory burst occurred at 10 μM RTA (Fig. 1b and 1c). In the case of full blood or isolated neutrophils 10 μM RTA reduced latex-beads-induced chemiluminescence by approximately three-fold (Fig. 2). A similar inhibition of chemiluminescence was observed in one experiment with isolated human blood monocytes (data not shown).

Table 1. Stimulatory effect of LPS (10 ng/ml) on latex-beads-induced chemiluminescence of cells present in 20 μl of fresh human blood or isolated neutrophils (~ 5000 cells). The chemiluminescence was recorded after 3, 9, 15 and 21 min following the addition of latex beads. The results are reported as percentage of control preparation (without LPS) assumed as 100% at any given time in each experiment: mean ±SD of between three and eight independent experiments. Statistically significant differences at *P < 0.05, **P < 0.01. *P < 0.005 and +++P < 0.002. NS, not significant

Cells	Time (min)			
	3	9	15	21
Full blood	132 ± 43**	163 ± 45*	191 ± 41*	242 ± 92*
Neutrophils	128 ± 28(NS)	176.29*	191.16*	161 ± 27**
Effect of rooperol on the respiratory burst and NO production by rat macrophages

The respiratory burst of rat alveolar macrophages primed with LPS was also quenched by rooperol (Fig. 3). In the conditions used, rat alveolar macrophages response to RTA was less pronounced in comparison with human macrophages. Moreover, the maximal response to 10 ng/ml of LPS occurred faster (in about 5 min after phagocytosis initiation) but also declined earlier (Fig. 3). When rat alveolar macrophages were cultured for 24 h with 500 ng/ml of LPS they produced significant amounts of nitric oxide determined as nitrite (123.8 ± 17.8 nmol/ml, n = 6). Rooperol reduced NO production in a dose-dependent manner (Fig. 4), the IC50 was found to be between 5 and 10 µM.

Discussion

Acetate esters of rooperol, a dicatechol from the South African plant Hypoxis rooperi, were shown to inhibit production of TNFα, IL-1β and IL-6 in endotoxin-stimulated human alveolar macrophages, blood monocytes and U937 promonocytic cell line. Rooperol tetracetate (RTA) was effective in low micromolar range (IC50 = 10–20 µM) and at this concentration had no effect on cell viability as shown by the incorporation of 14C-leucine into macro-
Phage proteins and cellular contents of lactate dehydrogenase. Subsequent studies revealed that RTA may inhibit cytokine synthesis in promonocytic U937 cell line at the pretranslational level. All those results suggested that rooperol esters are potential anti-inflammatory drugs.

The experiments described here clearly demonstrate another anti-inflammatory activity of rooperol, i.e. inhibition of the respiratory burst. We found that RTA at micromolar concentrations significantly decreased chemiluminescence of human blood leukocytes and alveolar macrophages, as well as of rat alveolar macrophages, that had been primed with LPS and stimulated to phagocytosis by latex beads. The mechanism of respiratory burst inhibition by rooperol is not elucidated but may involve events related to LPS priming, direct interaction with enzymatic pathway of oxygen radicals formed by NADP oxidase, or involvement of cell membrane constituents including protein kinase C as described for coenzyme Q which is structurally related to rooperol.

Our results confirm earlier observations that RTA can also inhibit NO production in rat alveolar macrophages and murine endothelial cells. The broad spectrum of biological activities of rooperol suggests that this compound may be beneficial in the treatment of various inflammatory diseases, such as asthma or rheumatoid arthritis, in which overproduction of acute phase cytokines, nitric oxide and reactive oxygen intermediates has been reported. It should be remembered, however, that by quenching free radicals production rooperol may also diminish the resistance of organism to bacterial infections.
References

1. Maly FE, Schurer-Maly CC. How and why cells make superoxide: the ‘phagocytic’ NADPH oxidase. News Physiol Sci 1995; 10: 233–238.
2. Scheek R, Albermann K, Bauerle PA. Nuclear factor-κB: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Rad Res Commun 1992; 17: 221–237.
3. Kaplan SS, Lancaster JR Jr, Basford RE, Simmons RL. Effect of nitric oxide on staphylococcal killing and interactive effect with superoxide. Infect Immun 1996; 64: 60–76.
4. Kroncke KD, Feibel K, Kolb-Bachofen V. Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities. Biol Chem Hoppe-Seyler 1995; 376: 327–343.
5. Miesel R, Karpisz M, Kroeger H. Suppression of inflammatory arthritis by simultaneous inhibition of nitric oxide synthase and NADPH oxidase. Free Radical Biol Med 1996; 20: 75–81.
6. Eugui EM, DeLustro B, Rebaiza S, Illnica M, Lee SW, Wilhelm R, Allison AC. Some antioxidants inhibit, in a coordinate fashion, the production of tumor necrosis factor-α, IL-1β, and IL-6 by human peripheral blood mononuclear cells. Int Immunol 1994; 6: 409–422.
7. Gazdak A, Nizankowska E, Allison AC, Kruger PB, Koj A. Cytokine production in human and rat macrophages and dicatechol rooperol and esters. Biochim Pharmacol 1996; 52: 991–998.
8. Gazdak A, Rakita H, Cichy J, Allison AC, Koj A. Rooperol tetraacetate, inhibitor of cytokine synthesis, decreases TNFα, IL-1β and IL-6 mRNA levels and binding activity of transcription factors in U937 cells. Biochim Pharmacol (submitted).
9. American Thoracic Society Guidelines. Summary and recommendation of a workshop on the investigational use of fiberoptic bronchoscopy and bronchoalveolar lavage in asthmatics. Am Rev Respir Dis 1985; 132: 180–182.
10. Turyna B, Mlej J, Łaczka A, Cholewa K, Łaczka M. Biocompatibility of glass-crystalline materials obtained by the sol-gel method: effect on macrophage function. Biomaterials 1996; 17: 1779–1386.
11. Ding AH, Nathan CE, Stuchl D. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production. J Immunol 1988; 141: 2407–2410.
12. Landmann R, Scherer E, Schumann R, Link S, Sanudo S, Zimmerle W. LPS directly induces oxygen radical production in human monocytes via LPS binding protein and CD14. J Leukocyte Biol 1995; 57: 440–449.
13. Kanno T, Utsumi T, Takehara Y, Ide A, Akiyama J, Yoshioka T, Horton A, Utsumi K. Inhibition of neutrophil superoxide generation by alphatocopherol and coenzyme Q. Free Radical Res 1996; 24: 281–289.
14. Bereta J, Bereta M, Allison AC, Kruger PB, Koj A. Inhibitory effect of dicatechol rooperol on VCAM-1 and iNOS expression in cytokine-stimulated epithelium. Life Sci 1997; 60: 323–334.
15. Barnes PJ, Liew FY. Nitric oxide and asthmatic inflammation. Immunol Today 1995; 16: 128–130.
16. Evans TJ, Buttery LDK, Carpenter A, Springall DR, Polak JM, Cohen J. Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc Natl Acad Sci USA 1996; 93: 9553–9558.

ACKNOWLEDGEMENTS. This work was supported in part by grant no. 1227/1995/95/08 to A.K. from the Committee of Scientific Research (KBN, Warsaw, Poland).

Received 24 October 1996; accepted in revised form 27 November 1996