Cdt1 degradation to prevent DNA re-replication: conserved and non-conserved pathways
Youngjo Kim and Edward T Kipreos*

Address: Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607 USA
Email: Youngjo Kim - yjokim@uga.edu; Edward T Kipreos* - ekipreos@cb.uga.edu
* Corresponding author

Abstract
In eukaryotes, DNA replication is strictly regulated so that it occurs only once per cell cycle. The mechanisms that prevent excessive DNA replication are focused on preventing replication origins from being reused within the same cell cycle. This regulation involves the temporal separation of the formation of the pre-replicative complex (pre-RC) from the initiation of DNA replication. The replication licensing factors Cdt1 and Cdc6 recruit the presumptive replicative helicase, the Mcm2-7 complex, to replication origins in late M or G1 phase to form pre-RCs. In fission yeast and metazoa, the Cdt1 licensing factor is degraded at the start of S phase by ubiquitin-mediated proteolysis to prevent the reassembly of pre-RCs. In humans, two E3 complexes, CUL4-DDB1CDT2 and SCFSkp2, are redundantly required for Cdt1 degradation. The two E3 complexes use distinct mechanisms to target Cdt1 ubiquitination. Current data suggests that CUL4-DDB1CDT2-mediated degradation of Cdt1 is S-phase specific, while SCFSkp2-mediated Cdt1 degradation occurs throughout the cell cycle. The degradation of Cdt1 by the CUL4-DDB1CDT2 E3 complex is an evolutionarily ancient pathway that is active in fungi and metazoa. In contrast, SCFSkp2-mediated Cdt1 degradation appears to have arisen relatively recently. A role for Skp2 in Cdt1 degradation has only been demonstrated in humans, and the pathway is not conserved in yeast, invertebrates, or even among other vertebrates.

Cdt1 degradation and the control of DNA replication
To maintain genome integrity, DNA replication must be strictly regulated to occur only once per cell cycle. Replication is, therefore, tightly regulated to prevent the re-initiation of DNA replication within the same S phase. A failure to restrict DNA replication results in 're-replication', in which the genome is over-replicated within the same cell cycle via origin re-firing. In eukaryotes, the extent of DNA replication is controlled by temporally restricting the assembly of the pre-replicative complex (pre-RC) through a process termed 'replication licensing' (reviewed in [1,2]). Pre-RCs form on replication origins through the sequential binding of DNA replication proteins during late mitosis or G1 phase. The six-member origin recognition complex (ORC) binds replication origins on newly-synthesized chromatin. During late mitosis or G1 phase, the replication licensing factors Cdt1 and Cdc6 are recruited to the origin. Cdt1 and Cdc6 together load the presumptive replicative helicase, the Mcm2-7 complex, onto the origin to complete pre-RC formation. During S phase, pre-RCs are activated by phosphorylation via CDK and DDK (Dbf4-dependent kinase) activity. This phosphorylation allows the recruitment of essential replication
In humans, two distinct E3 complexes, CUL4-DDB1 and SCFSkp2, have been reported to target Cdt1 for ubiquitin-mediated degradation. Both of these E3s are members of the cullin-RING ligase (CRL) class of ubiquitin ligases. The two E3 complexes utilize distinct mechanisms for targeting Cdt1 ubiquitination. In this review, we will focus on the regulation of Cdt1 degradation in different species and explore the conservation of pathway components and mechanisms across species and phyla.

The CUL4-DDB1 complex targets Cdt1 for degradation

Studies in *C. elegans* first suggested the involvement of CUL4 in Cdt1 degradation. The inactivation of the *C. elegans* *cul-4* gene by RNAi causes proliferating cells to arrest in S phase and undergo massive levels of DNA reaplication [17]. The DNA content of the re-replicating cells increases up to 100 C (where 2 C is the normal diploid DNA content). In *C. elegans*, as in vertebrates and fission yeast, CDT-1 is degraded as cells enter S phase [17]. However, when *cul-4* is inactivated, CDT-1 is not degraded in S phase, but instead accumulates in the re-replicating cells [17]. Reduction of CDT-1 levels by half abolishes the re-appearance in *cul-4* RNAi cells, indicating that CDT-1 accumulation is a critical factor in causing the re-replication. This work showed that CUL-4 negatively regulates CDT-1 levels, but did not address whether CDT-1 is a direct target of the *CUL-4* complex. It was subsequently shown in humans, *Xenopus*, fission yeast, and *C. elegans* that the CUL4 ubiquitin ligase directly mediates Cdt1 degradation during S phase [13,16,21,22].

In humans and *Drosophila*, Cdt1 is rapidly degraded in response to DNA damage induced by UV- or γ-irradiation, presumably to prevent DNA replication until the DNA damage can be repaired [23]. CUL4 is also required for this Cdt1 degradation pathway [23,24]. The CUL4-mediated degradation of Cdt1 upon DNA damage occurs independently of DNA replication or the classic DNA damage pathway that includes the ATM/ATR and CHK1/CHK2 kinases [23]. The CUL4-dependent Cdt1 degradation in response to DNA damage can occur throughout the cell cycle (in G1, S, and G2 phases) [13,22-24]. Given the cell cycle-independent nature of the degradation, it is fair to ask whether the degradation is simply to prevent DNA replication in S phase or whether there is an additional cell cycle-independent role.

The modular structure of CUL4-DDB1 ubiquitin ligase complex

The cullin-RING ubiquitin ligase (CRL) complexes represent the largest super-family of multisubunit E3s in eukaryotes [25]. The prototype of the CRL is the SCF complex, which comprises: the cullin CUL1 (which forms a rigid scaffold); the RING-H2 finger protein Roc1/Rbx1/Hrt1 (which is bound to the C-terminus of CUL1 and facilitates ubiquitin conjugating enzyme loading and activation); the adaptor protein Skp1 (which is bound to the
Two distinct molecular pathways for Cdt1 degradation. (A and B) CUL4-DDB1

Figure 1

CUL4-DDB1 and SCF

CDT2

CUL4

DDB1

CDT2

SCF

Skp2

Cyclin

CDK

Cdt1

PCNA

DNA

CDT2 and PCNA are required for Cdt1 degradation

The DCAF family is predicted to contain ~90 members in mammals, of which at least 49 have been shown to physically interact with CUL4 or DDB1, mainly by co-expression/co-IP in mammalian cells [27,33-35]. Five members of the DCAF family are known to function as SRSs, and the functions of their respective complexes are as follows. CUL4-DDB1CSA targets the degradation of the nucleotide excision repair protein CSB [36]. CUL4-DDB1WD40CSA, which includes a dimeric SRS consisting of hDET1 and hCOP1, targets the degradation of the transcription factor c-jun [31]. CUL4-DDB1VprBp is known to be hijacked by the Vpr protein of the human immunodeficiency virus (HIV) to induce cell cycle arrest [37]. CUL4-DDB1DD2 mediates stable ubiquitin modifications of histones H2A, H3 and H4 and the nucleotide excision repair protein XPC [38-40]. Finally, CUL4-DDB1CDT2 has been implicated in the degradation of mammalian p53, fission yeast Spd1, and Cdt1 (described below) [22,26,29,33,41,42]. It is likely that there will be additional CUL4-DDB1 complexes containing different DCAF proteins that function in a wide-range of molecular and physiological processes.
fied human Cdt1 can bind directly to purified DDB1 [24]. Further, in vitro translated C. elegans DDB-1 made with a wheat germ extract binds to bacterially-produced recombinant GST-CDT-1 [16]. The C. elegans experiments, however, do not rule out the possibility that a plant protein from the wheat germ extract bridges the interaction between DDB-1 and CDT-1. Additional experiments will be required to clarify exactly how the CUL4-DDB1CDT2 complex binds to Cdt1.

In Xenopus egg extract, the degradation of Cdt1 by CUL4-DDB1CDT2 in S phase requires the interaction between Cdt1 and PCNA [18,33] (Fig. 1A). Cdt1 binds PCNA through a PCNA-interacting protein (PIP) box motif in the Cdt1 N-terminus [18]. The PIP box is also required for the CUL4-DDB1-mediated degradation of Cdt1 during S phase in humans and C. elegans [13,16,43]. The degradation of Cdt1 in response to UV irradiation has similarly been shown to require the association of Cdt1 with PCNA in humans, Drosophila, and fission yeast [13,18,26,43,44]. This suggests that the two distinct Cdt1 degradation events, occurring in response to DNA damage or S-phase entry, are triggered by the same molecular signal: Cdt1 binding to chromatin-associated PCNA. PCNA forms a trimeric ring structure that is loaded onto DNA during both DNA replication and DNA repair [45,46]. One can hypothesize that chromatin-loaded PCNA (potentially in conjunction with other factors) is sufficient to promote Cdt1 binding and its subsequent degradation.

SCFSkp2 functions redundantly with CUL4-DDB1CDT2 to degrade Cdt1 in humans

In humans, the SCFSkp2 E3 complex also targets Cdt1 for degradation. Human Cdt1 is phosphorylated by cyclin-CDK complexes, and the phosphorylation is dependent on a cyclin-binding (Cy) motif within Cdt1 [47,48]. The phosphorylation on threonine 29 within the N-terminus of Cdt1 is required for its interaction with Skp2 [49]. Mutating the N-terminal CDK-phosphorylation sites of Cdt1 increases its half-life in asynchronous human cells [47]. Similarly, siRNA depletion of Skp2 increases the level of Cdt1 in asynchronous human cells [13,50]. These results indicate that SCFSkp2 regulates Cdt1 levels in response to CDK-phosphorylation (Fig. 1B).

There have been differing reports on the effect of inactivating the SCFSkp2 pathway on Cdt1 levels in human S-phase cells. One study indicated that Skp2 was required to allow S-phase degradation of Cdt1 [50]. A second study indicated that mutation of the cyclin-binding motif of Cdt1 (which prevents Skp2 binding) does not block the majority of Cdt1 degradation in S phase, although higher residual levels of Cdt1 protein are observed in S-phase cells [48]. Finally, three other reports indicate that inactivation of the SCFSkp2-mediated Cdt1 degradation pathway does not stabilize Cdt1 during S phase [13,43,49]. Recent work has clarified these apparent contradictions by showing that in human cells both SCFSkp2 and CUL4-DDB1CDT2 pathways redundantly target Cdt1 for degradation during S phase [13,43].

Analysis of published results suggests that SCFSkp2 mediates Cdt1 degradation throughout the cell cycle. This conclusion is based on the observation that Skp2 siRNA depletion in asynchronous cells leads to a three-fold increase in Cdt1 levels, even though Skp2 siRNA treatment does not affect S- or G2-phase levels of Cdt1 (because Cdt1 is still targeted for degradation by CUL4-DDB1CDT2) [13]. This implies that Cdt1 levels must increase in non-S- or G2-phase cells upon Skp2 siRNA treatment (presumably G1 phase cells). As described above, Skp2 redundantly targets Cdt1 for degradation during S and G2 phases. Therefore, it can be concluded that Skp2 targets Cdt1 degradation throughout the cell cycle. In contrast, CUL4-DDB1-mediated Cdt1 degradation is S-phase specific [13].

Cdt1 degradation in other metazoans and yeast

The roles of Skp2 and CUL4 in degrading Cdt1 have also been explicitly compared in C. elegans. Inactivation of C. elegans cul-4 or ddb-1 fully stabilizes CDT-1 during S phase [16,17]. In contrast, the C. elegans Skp2 homolog, skpt-1, does not contribute to CDT-1 degradation or re-division even in a sensitized ddb-1 mutant background [16]. skpt-1 null mutant homozygotes are completely viable and appear overtly wild-type with the exception of a low-penetration gonad migration defect, indicating that the gene is not required for any essential functions [16].

In Xenopus egg extract, CDK-phosphorylation of Cdt1 is not required for Cdt1 degradation [21]. This implies that SCFSkp2 is not required for Cdt1 degradation because CDK-phosphorylation of Cdt1 is a prerequisite for recognition by human Skp2 [47,48], and most SCFSkp2 substrates must be phosphorylated to be recognized [25]. In contrast, CUL4-DDB1 is essential for Cdt1 degradation in Xenopus egg extract, with DDB1 depletion blocking Cdt1 degradation during S phase [18]. These results suggest that CUL4-DDB1CDT2 is the predominant E3 for Cdt1 degradation in Xenopus, and that SCFSkp2 either has no role or has only a minor, subservient role in Cdt1 degradation.

In Drosophila, mutation of all of the N-terminal CDK-phosphorylation sites of Cdt1 is not able to block S-phase degradation, although it does provide a limited increase in overall stability [51]. This indicates that a phosphorylation-dependent pathway (and by implication SCFSkp2) either is not involved or is redundant for Cdt1 degradation during S phase in Drosophila. There are currently no reports on the function of the fly Skp2 homolog.
Fission yeast does not have a recognizable Skp2 homolog, but does express the CUL4-DDB1 \textit{CDT2} complex. Fission yeast CUL4-DDB1 \textit{CDT2} is essential for the degradation of Cdt1 during S phase and in response to DNA damage, indicating that it is the dominant pathway for regulating Cdt1 levels [22]. Taken together, these studies suggest that SCFSkp2-mediated degradation of Cdt1 is not conserved in non-mammalian species (Table 1).

Is the SCFSkp2-dependent Cdt1 degradation pathway conserved in mice?

The studies described above suggest that SCFSkp2-mediated degradation of Cdt1 is not conserved in yeast, invertebrates, or even the vertebrate Xenopus laevis. It is therefore valid to ask whether SCFSkp2-mediated Cdt1 degradation is conserved among mammals; and in fact, there is evidence that casts doubt on the conservation of the pathway in mice. Inactivation of Skp2 by siRNA treatment in human cells leads to an approximately three-fold increase in the steady state level of Cdt1 [13,50]. However, Skp2 -/- knockout mice or Skp2 -/- MEFs (mouse embryonic fibroblasts) do not have elevated levels of Cdt1 [13,52]. In contrast, DDB1 -/- knockout mice have elevated Cdt1 levels in proliferating tissues [53]. Further, Cdt1 protein level is stabilized after UV-irradiation in DDB1 -/- MEFs [53]. These results indicate that in mice, the CUL4-DDB1 complex is required non-redundantly for proper Cdt1 degradation during normal cell cycle progression and in response to DNA damage; in contrast, loss of Skp2 does not perturb these processes.

It is interesting that Skp2 -/- knock-out mice are completely viable and fertile [54]. This is particularly striking in light of the long list of human Skp2 substrates, including important cell cycle and transcriptional regulators: Cdt1, Orc1, p27Kip1, p21Cip1, cyclin E, cyclin D, cyclin A, c-Myc, b-Myb, p130/pRB2, E2F-1, p57Kip2, MKP-1, RAG-2, FOXO1, and Cdk9 [47,48,50,54-73]. Although Skp2 -/- mice are viable, they exhibit a minor defect of polyploidy and extra centrosomes in the cells of a few tissues [54]. Both of these defects arise as secondary consequences of a failure of these cells to enter mitosis, with the affected cells subsequently re-entering the next cell cycle and duplicating their DNA and centrosomes [52]. Significantly, the mitotic defect is suppressed by co-inactivation of p27Kip1, suggesting that the inability to degrade p27Kip1 causes the defect [52]. The lack of phenotypes associated with a failure to degrade other potential substrates suggests either that they are not substrates in mice, that their degradation is not important for development, or that they are under redundant control with other degradation pathways. Taken together, the available evidence suggests that CUL4-DDB1 \textit{CDT2} is the predominant ubiquitin ligase to mediate Cdt1 degradation in mice, and that SCFSkp2 either does not target Cdt1 for degradation or does so only as a minor pathway that cannot compensate for loss of CUL4-DDB1 \textit{CDT2}.

When did genes for the two Cdt1-degradation pathways arise during evolution?

To determine when the genes for the CUL4-DDB1 \textit{CDT2} and SCFSkp2 complexes arose during evolution, we analyzed divergent species using reciprocal BLAST searches [74]. We limited our analysis to those organisms in which the whole genome had been sequenced, so that a failure to detect a gene would be meaningful. Cullin genes were not found in bacteria or archaea, but at least two cullins were found in all of the eukaryotic genomes that we examined (Table 2). The observation of cullins in protists suggests that the cullin gene family arose early in the eukaryotic lineage (Table 2, Fig. 2). All eukaryotic species examined contain cullins that were most similar to metazoan CUL1 and CUL4 in reciprocal BLAST analysis, with the exception of budding yeast (which lacks a CUL4-like gene) (Table 2). This suggests that an ancestral duplication that gave rise to CUL1-like and CUL4-like genes occurred early in eukaryotic evolution. This result matches a phylogenetic analysis of cullins, in which the first branch point of the cullin phylogeny creates two clades, with the first clade giving rise to CUL1, CUL2 and CUL5, and the second clade giving rise to CUL3 and CUL4 [75]. The adaptor proteins Skp1 and DDB1 are present whenever CUL1-like and CUL4-like genes are observed, suggesting that the association between the cullins and their adaptor proteins is ancient (Table 2, Fig. 2).

The substrate-specific components CDT2 and Skp2 appear to have arisen at different points in eukaryotic evolution. CDT2 is observed in all animals analyzed, and a majority of fungi and plants, but is not observed in protists (Table 2, Fig. 2). This suggests that CDT2 arose in the main ancestral eukaryote lineage after the protist lineages were divergent species using reciprocal BLAST searches [74]. We limited our analysis to those organisms in which the whole genome had been sequenced, so that a failure to detect a gene would be meaningful. Cullin genes were not found in bacteria or archaea, but at least two cullins were found in all of the eukaryotic genomes that we examined (Table 2). The observation of cullins in protists suggests that the cullin gene family arose early in the eukaryotic lineage (Table 2, Fig. 2). All eukaryotic species examined contain cullins that were most similar to metazoan CUL1 and CUL4 in reciprocal BLAST analysis, with the exception of budding yeast (which lacks a CUL4-like gene) (Table 2). This suggests that an ancestral duplication that gave rise to CUL1-like and CUL4-like genes occurred early in eukaryotic evolution. This result matches a phylogenetic analysis of cullins, in which the first branch point of the cullin phylogeny creates two clades, with the first clade giving rise to CUL1, CUL2 and CUL5, and the second clade giving rise to CUL3 and CUL4 [75]. The adaptor proteins Skp1 and DDB1 are present whenever CUL1-like and CUL4-like genes are observed, suggesting that the association between the cullins and their adaptor proteins is ancient (Table 2, Fig. 2).

The substrate-specific components CDT2 and Skp2 appear to have arisen at different points in eukaryotic evolution. CDT2 is observed in all animals analyzed, and a majority of fungi and plants, but is not observed in protists (Table 2, Fig. 2). This suggests that CDT2 arose in the main ancestral eukaryote lineage after the protist lineages were divergent species using reciprocal BLAST searches [74]. We limited our analysis to those organisms in which the whole genome had been sequenced, so that a failure to detect a gene would be meaningful. Cullin genes were not found in bacteria or archaea, but at least two cullins were found in all of the eukaryotic genomes that we examined (Table 2). The observation of cullins in protists suggests that the cullin gene family arose early in the eukaryotic lineage (Table 2, Fig. 2). All eukaryotic species examined contain cullins that were most similar to metazoan CUL1 and CUL4 in reciprocal BLAST analysis, with the exception of budding yeast (which lacks a CUL4-like gene) (Table 2). This suggests that an ancestral duplication that gave rise to CUL1-like and CUL4-like genes occurred early in eukaryotic evolution. This result matches a phylogenetic analysis of cullins, in which the first branch point of the cullin phylogeny creates two clades, with the first clade giving rise to CUL1, CUL2 and CUL5, and the second clade giving rise to CUL3 and CUL4 [75]. The adaptor proteins Skp1 and DDB1 are present whenever CUL1-like and CUL4-like genes are observed, suggesting that the association between the cullins and their adaptor proteins is ancient (Table 2, Fig. 2).

The substrate-specific components CDT2 and Skp2 appear to have arisen at different points in eukaryotic evolution. CDT2 is observed in all animals analyzed, and a majority of fungi and plants, but is not observed in protists (Table 2, Fig. 2). This suggests that CDT2 arose in the main ancestral eukaryote lineage after the protist lineages were divergent species using reciprocal BLAST searches [74]. We limited our analysis to those organisms in which the whole genome had been sequenced, so that a failure to detect a gene would be meaningful. Cullin genes were not found in bacteria or archaea, but at least two cullins were found in all of the eukaryotic genomes that we examined (Table 2). The observation of cullins in protists suggests that the cullin gene family arose early in the eukaryotic lineage (Table 2, Fig. 2). All eukaryotic species examined contain cullins that were most similar to metazoan CUL1 and CUL4 in reciprocal BLAST analysis, with the exception of budding yeast (which lacks a CUL4-like gene) (Table 2). This suggests that an ancestral duplication that gave rise to CUL1-like and CUL4-like genes occurred early in eukaryotic evolution. This result matches a phylogenetic analysis of cullins, in which the first branch point of the cullin phylogeny creates two clades, with the first clade giving rise to CUL1, CUL2 and CUL5, and the second clade giving rise to CUL3 and CUL4 [75]. The adaptor proteins Skp1 and DDB1 are present whenever CUL1-like and CUL4-like genes are observed, suggesting that the association between the cullins and their adaptor proteins is ancient (Table 2, Fig. 2).

Table 1: Cdt1 degradation directed by CUL4-DDB1 \textit{CDT2} and SCFSkp2 in different species.

Species	CUL4-DDB1 \textit{CDT2}	SCFSkp2
Human	Yes	Yes
Mice	Yes	(No)a
Frogs	Yes	No
Flies	Yes	?b
Nematodes	Yes	No
Fission yeast	Yes	Noc

a Available evidence suggests that SCFSkp2 does not directly target Cdt1 degradation in mice, however direct experiments have not been performed (see text).

b No published studies have addressed the role of Skp2 in Drosophila.

c Fission yeast lack a recognizable Skp2 homolog. See text for references and discussion.
diverged, but prior to the generation of plants. In contrast, Skp2 apparently arose later in evolution. Skp2 is present in animals, but is not detected in fungi or plants, suggesting that it arose after the branching of fungi from the main eukaryotic lineage but prior to the genesis of metazoa (Table 2, Fig. 2). This analysis implies that CDT2, and by extension the CUL4-DDB1CDT2 complex, is more ancient than Skp2 and the SCF^{Skp2} complex.

The finding that the CUL4-DDB1^{CDT2} complex targets Cdt1 for degradation in fission yeast and C. elegans, while SCF^{Skp2} does not, suggests that the CUL4-DDB1^{CDT2} pathway is the ancient, conserved pathway for controlling the extent of DNA replication via Cdt1 degradation. A prediction of this hypothesis is that yeast or metazoan species that have lost genes for the CUL4-DDB1CDT2 complex would have to employ a different strategy to restrict Cdt1 activity during S phase. In this regard, it should be noted that budding yeast (unlike other fungi) does not contain CUL4, DDB1, or CDT2 (Table 2). Strikingly, budding yeast employ a strategy for regulating Cdt1 that has not been observed in any other species: Cdt1 is exported from the nucleus with the Mcm2-7 complex rather than being degraded [3]. The fungal ancestor of budding yeast must have originally had the genes for the CUL4-DDB1CDT2 complex and then lost them, because the genes are found diverged, but prior to the genesis of plants. In contrast, Skp2 apparently arose later in evolution. Skp2 is present in animals, but is not detected in fungi or plants, suggesting that it arose after the branching of fungi from the main eukaryotic lineage but prior to the genesis of metazoa (Table 2, Fig. 2). This analysis implies that CDT2, and by extension the CUL4-DDB1CDT2 complex, is more ancient than Skp2 and the SCF^{Skp2} complex.

The finding that the CUL4-DDB1^{CDT2} complex targets Cdt1 for degradation in fission yeast and C. elegans, while SCF^{Skp2} does not, suggests that the CUL4-DDB1^{CDT2} pathway is the ancient, conserved pathway for controlling the extent of DNA replication via Cdt1 degradation. A prediction of this hypothesis is that yeast or metazoan species that have lost genes for the CUL4-DDB1CDT2 complex would have to employ a different strategy to restrict Cdt1 activity during S phase. In this regard, it should be noted that budding yeast (unlike other fungi) does not contain CUL4, DDB1, or CDT2 (Table 2). Strikingly, budding yeast employ a strategy for regulating Cdt1 that has not been observed in any other species: Cdt1 is exported from the nucleus with the Mcm2-7 complex rather than being degraded [3]. The fungal ancestor of budding yeast must have originally had the genes for the CUL4-DDB1CDT2 complex and then lost them, because the genes are found

Table 2: Conservation of CUL4-DDB1^{CDT2} and SCF^{Skp2} components in prokaryotic and eukaryotic species.

Group	Phylum or Division	Species	Cullins*	DDB1	CDT2	Skp1	Skp2
Eubacteria							
Fimbriae							
Firmicutes							
Proteobacteria							
Archaea							
Crenarchaeota							
Euryarchaeota							
Protist							
Apicomplexa							
Euglenozoa							
Slime Mold							
Amoebozoa							
Plant							
Magnoliophyta							
Fungi							
Ascomycota							
Basidiomycota							
Invertebrate							
Nematoda							
Arthropoda							
Vertebrate							
Chordata							

A recognizable homolog in the species is designated by a check mark, and the absence of a homolog by a dash.

* The number of cullins is recorded in each organism. The metazoan cullin (CUL1-CUL5) for which each cullin is most related (by reciprocal BLAST analysis) is indicated in parentheses (e.g., 2 (1, 4) = two cullins that are most related to CUL1 and CUL4, respectively). The divergent CUL7 is listed separately for humans.

**For Danio rerio (zebrafish), genes that were predicted to encode cullin proteins of less than 100 amino acids were not included.
Figure 2
The genesis of CUL4-DDB1CDT2 and SCFSkp2 E3 components. CUL4-DDBCDT2 and SCFSkp2 complex components were examined in representative organisms of diverse phyla (Table 2). A phylogenetic tree of the taxa analyzed, from euubacteria to mammals, is presented. Note that distances between branches are not to scale. Species and major classifications are color-coordinated, and the temporal locations of the presumed origins of E3 component genes are in red. CUL1-like and CUL4-like, as well as their adaptor proteins DDB1 and Skp1, respectively, appear to have arisen early in eukaryotes, as they are absent from archaea and bacteria but are found in the eukaryotes examined. CDT2, the SRS for a CUL4-DDB1 E3 complex, appears to have arisen prior to the generation of green plants. Skp2, the SRS for a CUL1 E3 complex, appears to have arisen after the genesis of fungi but prior to the generation of metazoa. The branching order is based on a phylogenetic analysis using rRNA [76]. Note that other phylogenies, based on protein sequences, reverse the order of plants and slime molds [77]. Combining our genomic data with this alternative branching of phyla (not shown) would imply that CDT2 was created prior to plants in the main eukaryotic lineage but then lost within the slime mold lineage.

in plants and other fungi (Fig. 2). It is possible that the loss of these genes put pressure on budding yeast to develop a novel strategy to regulate Cdt1 during S phase. Alternatively, the nuclear-export strategy may have developed and co-existed with the CUL4-DDB1CDT2 pathway, but the redundancy between the two pathways subsequently allowed the loss of the CUL4-DDB1CDT2 genes.

Conclusion
In humans, both CUL4-DDB1CDT2 and SCFSkp2 redundantly target Cdt1 for degradation. SCFSkp2-mediated degradation of Cdt1 is not restricted to S phase in humans, but instead occurs throughout the cell cycle. In contrast, CUL4-DDB1CDT2-mediated degradation of Cdt1 is S-phase specific. The current evidence suggests that in fission yeast, \textit{C. elegans}, \textit{Xenopus}, and potentially even in mice, SCFSkp2 does not contribute significantly to Cdt1 regulation, while the CUL4-DDB1CDT2 complex is a major regulator of Cdt1 degradation in these species. The extent to which SCFSkp2-mediated Cdt1 degradation is conserved in mammals other than humans is not yet clear. Genome comparisons suggest that the CUL4-DDB1CDT2 complex arose earlier in evolution than SCFSkp2 based on the finding that a CDT2 ortholog is present in plants and fungi, while a Skp2 homolog is absent in these organisms. We propose that CUL4-DDB1CDT2 is the ancient and paradigm ubiquitin ligase for the degradation of Cdt1 in response to S-phase entry and DNA damage. Further experiments will be required to address the interesting question of when during early eukaryotic evolution the CUL4-DDB1 complex first began to regulate DNA replication.

Competing interests
The author(s) declare that they have no competing interests.

Acknowledgements
This work was supported by a grant from the National Institutes of Health (National Institute of General Medical Sciences) to ETK. We thank members of the Kipreos laboratory for comments on the manuscript.

References
1. Blow JJ, Dutta A: Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 2005, 6(6):476-486.
2. Machida YJ, Hamlin JL, Dutta A: Right place, right time, and only once: replication initiation in metazoans. Cell 2005, 123(1):13-24.
3. Tanaka S, Diffley JF: Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol 2002, 4(3):198-207.
4. Feng H, Kipreos ET: Preventing DNA re-replication–divergent safeguards in yeast and metazoan. Cell Cycle 2003, 2(5):431-434.
5. Kim J, Feng H, Kipreos ET: \textit{C. elegans} CUL-4 Prevents Rereplication by Promoting the Nuclear Export of CDC-6 via a CKI-1-Dependent Pathway. Curr Biol 2007, 17(11):966-972.
6. Zhu W, Chen Y, Dutta A: Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol 2004, 24(16):7140-7150.
7. Melixetian M, Ballabeni A, Maisiero L, Gasparini P, Zamponi R, Bartek J, Lukas J, Helin K: Loss of Geminin induces rereplication in the presence of functional p53. J Cell Biol 2004, 165(4):473-482.
8. Mihaylov IS, Kondo T, Jones L, Ryzhikov S, Tanaka J, Zheng J, Higa LA, Minamino N, Cooley L, Zhang H: Control of DNA replication and chromosome ploidy by geminin and cyclin A. Mol Cell Biol 2002, 22(6):1869-1880.
9. Quinn LM, Herr A, McGarry TJ, Richardson H: The \textit{Drosophila} Geminin homolog: roles for Geminin in limiting DNA replication, in anaphase and in neurogenesis. Genes Dev 2001, 15(20):2741-2754.
10. Kulartz M, Knippers R: The replicative regulator protein geminin on chromatin in the \textit{HeLa} cell cycle. J Biol Chem 2004, 279(40):41686-41694.
11. Nishitani H, Lygerou Z, Nishimoto T: Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of geminin through its N-terminal region. J Biol Chem 2004, 279(29):30807-30816.
12. Nishitani H, Taraviras S, Lygerou Z, Nishimoto T: The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 2001, 276(48):44905-44911.
13. Nishitani H, Sugimoto N, Roukos V, Nakashima Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T: Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4,
target human Cdt1 for proteolysis. *Embo J* 2006, 25(3):1126-1136.

14. McGarry TJ, Kirschner MW: Geminin, an inhibitor of DNA replication, is degraded during mitosis. *Cell* 1998, 93(6):1043-1053.

15. McGarry TJ: Geminin deficiency causes a Cdk1-dependent G2 arrest in *Xenopus*. *Mol Biol Cell* 2002, 13(10):3662-3671.

16. Kim Y, Kipreos ET: The Caenorhabditis elegans replication licensing factor CDT-1 is targeted for degradation by the CUL-4/DDB1 complex. *Mol Cell Biol* 2007, 27(4):1394-1406.

17. Zhong W, Feng H, Santiago FE, Kipreos ET: CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing during mitosis. *Nature* 2006, 443:434-439.

18. Arias EE, Walter JC: PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. *Nat Cell Biol* 2006, 8(1):84-90.

19. Pickart CM: Back to the future with ubiquitin. *Cell* 2004, 116(2):181-184.

20. Pickart CM, Fushman D: Polyubiquitin chains: polymeric protein signals. *Curr Opin Chem Biol* 2004, 8(6):10-16.

21. Pickart CM, Fushman D: Polyubiquitin chains: polymeric protein signals. *Curr Opin Chem Biol* 2004, 8(6):10-16.

22. Ralph E, Boye E, Kearsey SE: DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent on Cdt2 and Ddb1. *EMBO Rep* 2006, 7(11):133-9.

23. Higa LA, Mihaylov IS, Banks DP, Zheng J, Zhang H: Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complex constitutes a new checkpoint. *Nat Cell Biol* 2003, 5(15):1008-1015.

24. Hj Hu, McCall CM, Ohta T, Xiong Y: Targeted ubiquitination of Cdt1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. *Nat Cell Biol* 2006, 8(10):1024-1025.

25. Petrofski MD, Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. *Nat Rev Mol Cell Biol* 2005, 6(1):9-20.

26. Higa LA, Mihaylov IS, Banks DP, Zheng J, Zhang H: Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. *Nat Cell Biol* 2003, 5(15):1008-1015.

27. Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N: Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. *Nature* 2006, 443(7111):590-593.

28. Li T, Chen X, Garburt KC, Zhou P, Zheng N: Structure of DDB1 in complex with a paramyxovirus X protein: viral hijack of a propeller cluster in ubiquitin ligase. *Cell* 2006, 124(1):105-117.

29. Liu C, Poietses M, Watson A, Yoshida SH, Shimoda C, Holenberg C, Nakan Q, Carminatti R: Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase. *Embo J* 2005, 24(22):3940-3951.

30. Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Kobayashi R, Hanaoka F: The DDB1-CUL4ADDB2 ubiquitin ligase facilitates cellular response to DNA damage. *Mol Cell* 2006, 22(3):383-394.

31. Kapetanaki MG, Guerrero-Santoro J, Bai DC, Hsieh CL, Rapic-Otrin V, Levine AS: The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. *Proc Natl Acad Sci USA* 2006, 103(8):2588-2593.

32. Sugasawa K, Okuda Y, Saito M, Nishi R, Matsuda N, Chu G, Mori T, Tanaoka T, Tanaka K, Tani T, Funahashi T: UV-induced ubiquitination of XPC protein mediated by UV-DBB ubiquitin ligase complex. *Cell 2005, 121(3):387-400.

33. Sansam CL, Shepard JL, Lakai A, Danianis PS, Amsterdama A, Hopkins N, Lees JA: DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint. *Genes Dev* 2006, 20(22):3117-3129.

34. Banks D, Wu M, Higa LA, Gavrilova N, Quan J, Ye T, Kobayashi R, Sun H, Zhang H: L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. *Cell Cycle* 2006, 5(15):1719-1729.

35. Senga T, Sivaprasad U, Zhu W, Park JH, Arias EE, Walter JC, Dutta A: PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. *J Biol Chem* 2006, 281(28):37528-37535.

36. Migea G, Hubacher U: Proliferating cell nuclear antigen (PCNA): a dancer with many partners. *J Cell Sci* 2003, 116(Pt 15):3051-3060.

37. Barsky D, Venclovova C: DNA sliding clamps: just the right twist to load onto DNA. *Curr Opin Chem Biol* 2003, 7(1):108-117.

38. Liu E, Li X, Yan F, Zhao Q, Wu X: Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. *J Biol Chem* 2004, 279(17):17283-17288.

39. Sugimoto N, Tateyama T, Tsurumi T, Matsukage A, Kiyono T, Nishitani H, Uemizuki M: Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. *J Biol Chem* 2004, 279(19):19691-19697.

40. Takada DY, Parvin JD, Dutta A: Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. *J Biol Chem* 2005, 280(24):23416-23423.

41. Li X, Zhao Q, Liao R, Sun P, Wu X: The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. *J Biol Chem* 2008, 283(13):8054-8068.

42. Thomer M, May NR, Aggarwal BD, Kwok G, Calvi BR: Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. *Development* 2004, 131(19):4807-4818.

43. Nakayama K, Nakagama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, Kitagawa M, Iemura S, Nakayama KI: Skp2-mediated degradation of p27 regulates progression into mitosis. *Dev Cell* 2006, 12(7):929-940.

44. Cang Y, Zhang J, Bastien J, Liu B, Zhou P, Goff SP: Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. *Cell* 2006, 127(5):929-940.

45. Nakayama K, Nakagama H, Minamishima YA, Matsunomo M, Nakamura I, Kitagawa K, Shirane M, Tsunematsu R, Tsuchiya T, Ishida N, Nakayama K, Nakayama K: Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyplody and centrosome duplication. *Embo J* 2000, 19(9):2069-2081.

46. Kondo T, Kobayashi M, Tanaka J, Yokoyama A, Suzuki S, Katoh N, Onozawa M, Chiba K, Hashino S, Imamura M, Minami Y, Minamino N,
Asaka M: Rapid degradation of Cdt1 upon UV-induced DNA damage is mediated by SCFSkp2 complex. J Biol Chem 2004, 279(24):27315-27319.

56. Yu ZK, Gervais JL, Zhang H: Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 1998, 95(19):11324-11329.

57. Marti A, Wirbelauer C, Scheffner M, Krek W: Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1999, 1(1):14-19.

58. Carrano AC, Eytan E, Hershko A, Pagano M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999, 1(4):193-199.

59. Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W: p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999, 1(4):207-214.

60. Tedesco D, Lukas J, Reed SI: The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev 2002, 16(22):2946-2957.

61. Tsvekov LM, Yeh KH, Lee SJ, Sun H, Zhang H: p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 1999, 9(12):661-664.

62. Bornstein G, Bloom J, Sitry-Shehav D, Pagano M, Her- sko A: Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 2003, 278(28):25752-25757.

63. Bendjennat M, Boulanger J, Jascur T, Brickner H, Barbier V, Sarasin A, Fotedar A, Fotedar R: UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promote DNA repair. Cell 2003, 114(5):599-610.

64. Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, Hatakeyama S, Nakayama K, Nakayama KI: Degradation of p57Kip2 mediated by SCF(Skp2)-dependent ubiquitylation. Proc Natl Acad Sci USA 2003, 100(18):10231-10236.

65. Barboric M, Zhang F, Besenicar M, Plemenitas A, Peterlin BM: Ubiquitylation of Cdk9 by Skp2 facilitates optimal Tat transactivation. J Virol 2005, 79(17):11135-11141.

66. Kierman RE, Emiliani S, Nakayama K, Castro A, Labbe JC, Lorca T, Nakayama KI, Benkirane M: Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome. Mol Cell Biol 2001, 21(23):7956-7970.

67. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama KI, Soderberg O, Kasuga TK, Larsson LG: The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 2003, 11(5):1189-1200.

68. Bhattacharya S, Garriga J, Calbo J, Yong T, Haines DS, Grana X: SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene 2003, 22(16):2443-2451.

69. Mendez J, Zou-Yang XH, Kim SY, Hidaka M, Tansey WP, St말lent B: Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell 2002, 9(3):481-491.

70. Charrasse S, Carena I, Brondani V, Klemmnauer KH, Ferrari S: Degradation of B-Myb by ubiquitin-mediated proteolysis: involvement of the Cdc34-SCF(p45Skp2) pathway. Oncogene 2000, 19(26):2986-2995.

71. Lin YW, Yang JL: Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem 2006, 281(2):915-926.

72. Jiang H, Chang FC, Ross AE, Lee J, Nakayama K, Nakayama K, Desiderio S: Ubiquitylation of RAG-2 by Skp2-SCF links destruction of the V(D)J recombinase to the cell cycle. Mol Cell 2005, 18(6):699-709.

73. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ: Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 2005, 102(5):1649-1654.

74. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.

75. Nayak S, Santiago FE, Jin H, Lin D, Schedl T, Kipreos ET: The Caenorhabditis elegans Skp1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis. Curr Biol 2002, 12(4):277-287.

76. Philippe H, Gnérot A: Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol Biol Evol 2000, 17(9):830-834.

77. Baudoul SL, Roger AJ, Wenk-Siefert I, Doolittle WF: A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000, 290(5493):972-977.