Introduction

On December 31, 2019, an outbreak of coronavirus disease (COVID-19) coronavirus infection was reported for the 1st time in Wuhan, China. Then, the prevalence of this disease took on a global scale, and on March 11, 2020, the World Health Organization (WHO) assigned COVID-19 the status of a pandemic. As of the beginning of 2021, the Russian Federation ranks fourth in terms of the prevalence of coronavirus infection. Over the period from March 2020 to February 2021, more than 84,000 fatal cases of the disease were recorded in Russia [1].

However, the information available at the moment about the results of therapy with existing medications does not allow us to draw an unambiguous conclusion about their effectiveness and safety for the treatment of COVID-19 novel coronavirus infection [2]. Therefore, it is required to assess the feasibility of using the medications proposed for the treatment of the disease from the standpoint of pharmacoeconomics and pharmacoepidemiology.

The purpose of our work is to conduct a pharmacoeconomic analysis of medications recommended by the Ministry of Health of the Russian Federation for the treatment of COVID-19 novel coronavirus infection on an outpatient basis and in an inpatient setting.

Materials and Methods

In the course of the study, the analysis of the cost of illness including complete treatment regimens in outpatient and inpatient settings was carried out, and...
the analysis of the cost-effectiveness of medications for etiotropic therapy recommended by the Ministry of Health in clinical guidelines (version 10, dated February 8, 2021).

We identified the following cost categories: Direct medical, direct non-medical, and indirect.

Direct medical costs include the cost of medication therapy, the cost of diagnostic procedures, and the cost of providing services by medical professionals.

Direct non-medical costs are determined only for inpatients: Cost of a bed-day (excluding medication therapy costs).

In terms of indirect costs, payments for temporary incapacity for work were calculated.

On an outpatient basis, the cost of individual medications was estimated based on the average prices of pharmacies in the city of Moscow [3].

Since medications are presented on the pharmaceutical market in different forms and dosages, it is recommended to perform calculations based on the active ingredient (AI). However, it should be borne in mind that on an outpatient basis, a patient, as a rule, buys medicines for their own money, and in a pharmacy, medications are sold in whole packages, even if the consumer does not need the full number of units of the particular dosage form. Therefore, a calculation based on the number of packages is also necessary. We took most medications of a low price category and, if possible, with a minimum difference between the required number of units of a dosage form and their number in a real package [4], [5], [6].

The required amount of AI or packages for a full course for a specific medicinal product was determined based on the dosage regimens recommended by the Ministry of Health of Russia [2].

The cost of individual medications recommended for use in a hospital setting was calculated based on the state register of maximum selling prices (except for remdesivir, which is not included in it). At the same time, the marginal wholesale mark-up allowed for Moscow and the Moscow region, and the value-added tax was added to the indicated prices [7].

The price for remdesivir was obtained from the Rustekhprom distributor.

Since medications from the Vital and Essential Drugs list are presented in different forms and dosages, the calculation was carried out based on the AI [4], [5], [6].

If the treatment regimen assumed relatively equivalent alternative solutions for the medications of symptomatic, pathogenetic, and antibacterial therapies, then the price calculated based on the arithmetic mean was taken for them.

We made a complete list of direct non-medical costs based on the information provided in the temporary clinical guidelines for the diagnosis, prevention, and treatment of COVID-19 coronavirus infection [2].

The cost of each medical intervention was estimated under Appendices 11, 8.2, 6 to the Tariff Agreement for 2020 dated December 30, 2019 [7], [8], [9].

The required number of visits to a medical specialist or diagnostic procedures was also determined based on clinical guidelines and consultation with health professionals. In particular, to assess the length of stay of patients in a hospital, we proposed the following gradation depending on the severity of the disease:

- Mild: 7 days;
- Moderate: 10 days;
- Severe, cytokine storm: 16 days, then the patient switched to another form of the disease;
- Extremely severe: 5 days on a ventilator, then the patient goes into a serious condition.

Direct non-medical costs, in particular, the cost of a bed (excluding the cost of medication therapy), which amounted to 1500 rubles/day, were estimated based on the average value of the price lists of clinics in the Moscow region.

We also assumed that on average:

- With outpatient treatment and mild therapy in a hospital, the period of temporary disability (TD) will last 14 days;
- With a moderate form it will last 17 days;
- In severe or extremely severe forms, or with cytokine storm, it will last 30 days.

The further calculation was carried out according to the formulas presented in Table 1.

Table 1: Formulas

Formula	Description
1) The costs due to TD	Cost (TD) = (GDPP + TD) * n
2) The average per capita GDP per year	GDP = GDPP
3) The average per capita GDP per day	GDPP = GDP
4) Per capita income	D = D/30
5) Payments on TD sheets	TD = D * (80/100)

The effectiveness criterion for cost-effectiveness analysis was determined based on the results of data
from clinical trials of medications for etiotropic therapy (umifenovir, remdesivir, and favipiravir) on the Internet, in particular, in PubMed, Clinical Trials, Cline Line, Cochrane and Library databases.

Hydroxychloroquine, which is used in Russia as a medication for etiotropic therapy, was recognized as ineffective against coronavirus infection in the framework of the Solidarity study initiated by the WHO. Therefore, it is not advisable to further evaluate it [12].

The main condition for inclusion in the analysis of clinical trials was the completeness of the data provided according to the following criteria: Study design, comparison medications, conditions of randomization, characteristics of participants, presented results, and at least complete information on the primary endpoint.

The list of clinical trials for the above medications with their brief characteristics is presented in Tables 2–4.

The cost-effectiveness ratio was calculated using the following formulas:

Comparative effectiveness research (CER) = Cost/Ef

where CER is the cost-effectiveness ratio of the technology;

Cost is the costs associated with technology in monetary terms;

Ef is the clinical effectiveness of the technology, expressed in the appropriate units [11].

CER = ((DC1 + IC1) – (DC2 + IC2))/(Ef1 – Ef2) (9)

Where, CER is an indicator of an increase in cost-effectiveness (demonstrating what additional investments are required to achieve one additional unit of effectiveness when using a more efficient technology);

DC1 is the direct costs when using technology 1;

IC1 is the indirect costs when using technology 1;

DC2 and IC2 are the direct and indirect costs for technology 2, respectively;

Ef1 and Ef2 are the treatment effects when using technologies 1 and 2, respectively [11].

Evaluation of the medications was carried out for a specific form of coronavirus infection, that is, for a

Table 2: List of clinical trials for the medication with the international non-proprietary name (INN) remdesivir

Source	Number of patients, age	Design of the study	Duration of the study	Comparison alternative	The severity of the disease	Primary endpoint
[13]	237 (158, 79), ≥18 years	Randomized, double-blind, placebo-controlled, multicenter trial	28 days	Remdesivir + lopinavir-ritonavir, interferons, corticosteroids, placebo + lopinavir-ritonavir, interferons, corticosteroids	Severe form	Time of clinical improvement up to 28 days on a 6-point scale of clinical status (21 – remdesivir, 23 – placebo)
[14]	596 (197, 199, 200), ≥18 years	Phase 3 randomized open-label trial	28 days	Remdesivir for 5 days, remdesivir for 10 days, CT for 10 days	Moderate form	Clinical status on the 11 th day on a 7-point scale: 68%: Remdesivir for 10 days, 74%: Remdesivir for 5 days, 64%: CT Recovery time: 10: Remdesivir, 15: Placebo
[15]	1062 (521, 541), ≥18 years	Randomized, double-blind, placebo-controlled, multicenter trial	29 days	Remdesivir, placebo	Mild, moderate, severe	
[16]	61, ≥18 years	Uncontrolled prospective observational study	28 days	Remdesivir	Severe	Clinical status on day 18 (improvement): 68%

Table 3: List of clinical trials for the medication with INN favipiravir

Source	Number of patients, age	Design of the study	Duration of the study	Comparison alternative	The severity of the disease	Main endpoints
[17]	89 (44, 45), ≥16 years	Multicenter open-label randomized trial	45 days	Favipiravir (immediate and delayed intake)	Mild	Virus elimination by day 6: 66.7%, 56.1%, elimination by day 10: 86.1%, 83.1% Elimination of the virus on day 4: 22.86%, 17.78% Day 9: 58.25%, 35.55% Day 14: 91.43%, 62.22%
[18]	80 (35,45), ≥16 years	Multicenter open-label randomized trial	28 days	Favipiravir+Interferon (IFN) alpha, CT, Lopinavir/ritonavir + IFN-alpha, CT	Severe	Clinical recovery rates on the seventh day: 71/116, 62/120
[19]	236 (116, 120), ≥18 years	Prospective, randomized, controlled, open-label, multicenter study	17 days	CT+Favipiravir	Mild, moderate severity	The median time to achieve elimination of the virus on day 3 is 71.40%, 57.10% On the 9 th day: 81.20%, 67.90%
[20]	168 (112; 56)	Multicenter, open, randomized, Phase III clinical trial with active control in outpatients and inpatients	28 days	Favipiravir+INF-alpha/ Hydroxychloroquine+INF alpha	Mild, moderate severity	

Table 4: List of clinical trials for the medication with INN umifenovir

Source	Number of patients, age	Design of the study	Duration of the study	Comparison alternative	The severity of the disease	Main endpoints
[19]	236 (116, 120), ≥18 years	Prospective, randomized, controlled, open-label, multicenter study	17 days	CT+Favipiravir	Mild, moderate severity	Clinical recovery rates on the seventh day: 71/116, 62/120
[21]	86 (34, 35, 17), ≥18 years	A single-center randomized controlled trial	21 days	Lopinavir+Ritonavir, Umifenovir	Mild, moderate severity	Elimination of the virus on day 7: 35.3%, 37.1%, 41.2% On day 14: 85.3%, 91.4%, 76.5%
[22]	50 (34, 16), ≥18 years	Single-center randomized controlled trial	38 days	No therapy Lopinavir/Ritonavir, Arbidol	Moderate severity	Elimination of the virus on day 14: Arbidol: 100%, Lopinavir/Ritonavir: 56.4%
mild degree, a comparison of umifenovir and favipiravir is required, and for moderate and severe forms, favipiravir is compared with remdesivir.

Results and Discussion

The cost of illness analysis

The cost of medication therapy on an outpatient basis and in a hospital setting is indicated in Tables 5 and 6, respectively.

As can be seen from Table 5, in most cases, the cost of complete medication therapy is higher when calculated by the number of packages, which justifies our estimate of costs by the number of packages. Exceptions can be explained by the fact that there is a significant difference between the minimum and maximum prices for medications.

Direct medical costs (except for medication therapy) included in the outpatient setting included: Blood draw from a vein, bleeding; study of the erythrocyte sedimentation rate; study of the level of platelets in the blood; blood processing, including registration, an appointment with the district general practitioner (diagnostic, primary, and at home); an appointment with the district general practitioner (diagnostic, repeated, and outpatient visit); test of a blood smear for the analysis of abnormalities in the morphology of erythrocytes, platelets, leukocytes, performing the blood count, pulse oximetry, and polymerase chain reaction (PCR) diagnostics. In addition, for treatment regimens with hydroxychloroquine, electrocardiogram and determination of aspartate transaminase and alanine aminotransferase were taken into account. Furthermore, with a moderate degree, as a rule, an ambulance was called, and computed tomography of one anatomical region was performed in adults (without contrast).

In the hospital setting, for all forms, we took into account the ambulance visit, PCR diagnostics, pulse oximetry, computed tomography, general blood analysis, and consultation with a general practitioner in a hospital. For the moderate form, a coagulogram study is additionally carried out, and a study of the level of protein C, ferritin in the blood, and a biochemical blood test (11 indicators) are performed; for a severe form, consultations of narrow specialists are needed, for an extremely severe form, membrane oxygenation is taken into account.

The level of direct non-medical costs was calculated depending on the severity of the disease:

Mild form: 1500 * 7 = 10,500 rubles.
Moderate form: 1500 * 10 = 15,000 rubles.
Severe form: 1500 * 21 = 31,500 rubles.

Based on statistical data, it was found that the working-age population was 82,264 thousand people, the total GDP per year amounted to 185,534 billion rubles, and the monthly income per capita was 24,381.1 rubles [21].

Therefore, GDP = 85,534 * 10^9 / 82,264 * 10^3 = 2,255,348.63 rubles.

GDP_d = 2,255,348.63/365 = 6179.04 rubles.
D_d = 24,381.1/30 = 812.70 rubles.
TD = 812.70 * 0.8 = 650.16 rubles.
650.16 * 14 = 9102.24 rubles.
650.16 * 17 = 11,052.72 rubles.
650.16 * 30 = 19,504.80 rubles.

Thus, the total costs of outpatient and inpatient therapy are presented in Tables 7 and 8, respectively.

Thus, it can be concluded that, in an outpatient setting, for all forms of the disease, treatment regimens with hydroxychloroquine will be the most beneficial from the economic point of view. The most expensive medication from the consumer’s point of view is favipiravir.

Table 5: Costs for a full course of medication therapy per one person on an outpatient basis

Form	Medications	Costs-1 (by number of packages)	Costs-2 (by AI)	The difference in the value of costs (1 vs. 2), %
Mild	Faviopiravir, INF-alpha (intranasal), paracetamol	11,476.50	10,360.00	10.78
Treatment regimen 1		12,702.38	13,080.00	-2.89
Treatment regimen 2	Hydroxychloroquine, INF-alpha (intranasal), paracetamol	1401.45	1440.00	-2.68
Treatment regimen 3	Umifenovir, INF-alpha (intranasal), paracetamol	2153.27	2352.00	-8.45
Moderate (without pneumonia)	Faviopiravir, INF-alpha (intranasal), paracetamol, Rivaroxaban OR Apixaban	14,841.81	13,080.25	13.47
Treatment regimen 1	Hydroxychloroquine, INF-alpha (intranasal), Paracetamol, Rivaroxaban OR Apixaban	16,067.69	15,800.25	1.69
Treatment regimen 2		4766.76	4160.25	14.58
Antibacterial therapy	Amoxicillin + clavulanic acid OR amoxicillin OR azithromycin OR levofloxacin OR moxfloxacin OR clarithromycin	812.68	803.85	1.00
(according to indications)				
Moderate with pneumonia	Faviopiravir, rivaroxaban OR apixaban, dexamethasone OR prednisolone OR methylprednisolone	14,574.09	12,467.15	16.90
Treatment regimen 1	Hydroxychloroquine, rivaroxaban OR apixaban, dexamethasone OR prednisolone OR methylprednisolone	15,799.97	15,187.15	
Treatment regimen 2		4499.04	3547.15	10.44
Antibacterial therapy	Amoxicillin + clavulanic acid OR amoxicillin OR azithromycin OR levofloxacin OR moxfloxacin OR clarithromycin	812.68	803.85	26.84

Open Access Maced J Med Sci. 2021 Oct 16; 9(E):1182-1189.
In a hospital setting, for mild-to-moderate forms, the use of hydroxychloroquine is also the least expensive alternative. The most expensive medication is the medication with INN remdesivir.

For severe and extremely severe forms, only one treatment regimen with INN is presented (favipiravir).

Regimens for the treatment of cytokine storms cannot be unambiguously compared, since their use is largely determined by the individual characteristics of the patient.

Cost-effectiveness analysis

To evaluate favipiravir and umifenovir, study No. 3 from Table 3 was selected since there is a direct comparison of these medications. The criterion of effectiveness is the frequency of complete elimination of the virus on day 7 (Tables 9 and 10).

The effectiveness coefficient is calculated according to formula 8, presented in the Materials and methods section.

If we focus only on the CER value, then the use of umifenovir is the most profitable in terms of cost-effectiveness ratio, since fewer costs are required to treat one person. However, the study found that the favipiravir contributed to the complete elimination of the virus in a larger number of people, therefore, incremental analysis is required to assess the increment of the cost-benefit unit according to formula 9:

CER = \(\frac{(986,000 - 119,381)/(61 - 52)}{96,291} \)

The resulting number is, therefore, the added cost of increasing the number of recoveries per 100 people/week using favipiravir.

To evaluate favipiravir and remdesivir, no studies were conducted that were completely identical in design and endpoints, therefore, based on the maximum possible similarity of endpoints, study No. 2 and No. 2 from Tables 2 and 3, respectively, were selected.

The effectiveness criterion is the frequency of complete virus elimination on day 11 in the remdesivir group and the frequency of complete virus elimination on day 9 in the favipiravir group (Tables 11 and 12).

The effectiveness coefficient is calculated according to formula 1 presented in section 2.1.

Table 6: Costs for a full course of medication therapy per one person in a hospital setting

Form	Medications	Costs
Mild	Treatment regimen 1	14,234.37
	Hydroxychloroquine, INF-alpha (intranasal), enoxaparin sodium	16,654.37
	Treatment regimen 2	5965.01
	Treatment regimen 3	6958.17
Moderate	Treatment regimen 1	47,714.80
	Remdesivir, baricitinib OR tofacitinib, enoxaparin sodium	50,134.80
	Treatment regimen 2	149,244.80
	Treatment regimen 3	39,445.44
	Treatment regimen 4	65,645.00
	Treatment regimen 5	167,175.00
	Treatment regimen 6	57,375.64
Severe (pneumonia with respiratory insufficiency (RI) or acute respiratory distress syndrome (ARDS))	Treatment regimen 1	163,981.46
	Treatment regimen 2	155,733.18
	Treatment regimen 3	2,403,397.23
	Treatment regimen 4	2,404,046.43
	Treatment regimen 5	5370.18
	Treatment regimen 6	155,511.46
Cytokine storm	Treatment regimen 1	163,981.46
	Methylprednisolone, tocilizumab OR sarilumab, enoxaparin sodium	156,382.38
	Treatment regimen 2	155,733.18
	Treatment regimen 3	2,403,397.23
	Treatment regimen 4	2,404,046.43
	Treatment regimen 5	5370.18
	Treatment regimen 6	155,511.46

Table 7: The results of the cost of illness analysis per one person in an outpatient setting

Form	Medications	Costs
Mild	Treatment regimen 1	14,234.37
	Hydroxychloroquine, INF-alpha (intranasal), enoxaparin sodium	16,654.37
	Treatment regimen 2	5965.01
	Treatment regimen 3	6958.17
Moderate	Treatment regimen 1	47,714.80
	Remdesivir, baricitinib OR tofacitinib, enoxaparin sodium	50,134.80
	Treatment regimen 2	149,244.80
	Treatment regimen 3	39,445.44
	Treatment regimen 4	65,645.00
	Treatment regimen 5	167,175.00
	Treatment regimen 6	57,375.64
Severe (pneumonia with RI, ARDS)	Treatment regimen 1	163,981.46
	Treatment regimen 2	155,733.18
	Treatment regimen 3	2,403,397.23
	Treatment regimen 4	2,404,046.43
	Treatment regimen 5	5370.18
	Treatment regimen 6	155,511.46
Cytokine storm	Treatment regimen 1	163,981.46
	Methylprednisolone, tocilizumab OR sarilumab, enoxaparin sodium	156,382.38
	Treatment regimen 2	155,733.18
	Treatment regimen 3	2,403,397.23
	Treatment regimen 4	2,404,046.43
	Treatment regimen 5	5370.18
	Treatment regimen 6	155,511.46

https://oamjms.eu/index.php/mjms/index
Table 8: The results of the cost of disease analysis in a hospital setting for one person

Form	Treatment regimen	Cost category	Costs, rubles	Total costs, rubles
Mild	Treatment regimen 1 (with favipiravir)	Direct medical	24,123.35	55,103.47
		Direct non-medical	10,500.00	
		Indirect	9102.24	
	Treatment regimen 2 (with hydroxychloroquine)	Direct medical	14,839.29	34,441.53
		Direct non-medical	10,500.00	
		Indirect	9102.24	
	Treatment regimen 1 (with umifenovir)	Direct medical	15,637.15	35,239.39
		Direct non-medical	10,500.00	
		Indirect	9102.24	
Moderate	Treatment regimen 1 (with favipiravir + kinase inhibitor)	Direct medical	62,507.42	88,560.14
		Direct non-medical	15,000.00	
		Indirect	11,052.72	
	Treatment regimen 2 (with remdesivir + kinase inhibitor)	Direct medical	162,827.42	188,880.14
		Direct non-medical	15,000.00	
		Indirect	11,052.72	
	Treatment regimen 3 (with hydroxychloroquine + kinase inhibitor)	Direct medical	53,223.36	79,276.08
		Direct non-medical	15,000.00	
		Indirect	11,052.72	
	Treatment regimen 4 (with favipiravir + monoclonal antibodies [MA])	Direct medical	81,647.62	107,700.34
		Direct non-medical	15,000.00	
		Indirect	11,052.72	
	Treatment regimen 5 (with remdesivir + MA)	Direct medical	180,757.62	206,810.34
		Direct non-medical	15,000.00	
		Indirect	11,052.72	
Severe	Treatment regimen 1 (with favipiravir)	Direct medical	199,114.86	250,119.76
		Direct non-medical	31,500.00	
		Indirect	19,504.80	
	Treatment regimen 6 (with hydroxychloroquine + MA)	Direct medical	623,137.09	674,141.89
		Direct non-medical	31,500.00	
		Indirect	19,504.80	
Extremely severe	Treatment regimen 1 (with favipiravir)	Direct medical	188,322.67	239,327.47
		Direct non-medical	187,673.47	238,678.27
		Indirect	31,500.00	
Cytokine storm	Treatment regimen 1	Direct medical	2,435,337.52	2,486,342.32
		Direct non-medical	2,435,866.72	2,486,991.52
		Indirect	31,500.00	
	Treatment regimen 2	Direct medical	2,435,784.72	2,486,890.32
		Direct non-medical	31,500.00	
		Indirect	19,504.80	
	Treatment regimen 3	Direct medical	187,451.75	238,456.55
		Direct non-medical	187,673.47	238,678.27
		Indirect	31,500.00	
	Treatment regimen 4	Direct medical	2,436,115.80	2,486,120.60
		Direct non-medical	2,435,986.72	2,486,991.52
		Indirect	31,500.00	
	Treatment regimen 5 (in case of contraindications to genetically engineered medications)	Direct medical	2,436,115.80	2,486,120.60
		Direct non-medical	2,435,986.72	2,486,991.52
		Indirect	31,500.00	
	Treatment regimen 6 (in case of contraindications to hyaluronic acid (HA))	Direct medical	2,436,115.80	2,486,120.60
		Direct non-medical	2,435,986.72	2,486,991.52
		Indirect	31,500.00	
	Treatment regimen 6 (in case of contraindications to hyaluronic acid (HA))	Direct medical	2,436,115.80	2,486,120.60
		Direct non-medical	2,435,986.72	2,486,991.52
		Indirect	31,500.00	

Table 9: Required information on the clinical trial for the umifenovir and favipiravir medications

Medication	Number of people	Observed effect, %	The cost of the medication for one person, rub
Favipiravir	116	71/116, 61.2%	9860.00
Umifenovir	120	62/120, 51.67%	1193.81

Therefore, in this case, the cheapest and most effective alternative is favipiravir. Therefore, incremental analysis is not required.

Table 10: Results of the cost-effectiveness analysis for umifenovir and favipiravir

Medication	Number of people	Observed effect (out of 100 people)	CER
Favipiravir	100	61	986,000/61 = 16,163.93
Umifenovir	100	52	119,381/52 = 2295.79

Conclusion

In the course of the cost of illness analysis, calculations and estimates of direct medical, direct non-medical, and indirect costs were carried out. As a result of this study, it was found that the most appropriate from an economic point of view is the use of hydroxychloroquine for the treatment of mild and moderate forms of infection.

Table 11: Required information on the clinical trial for remdesivir and favipiravir

Medication	Number of people	Observed effect, %	The cost of the medication for one person, rub
Remdesivir	199	49.24%	110,000
Favipiravir	80	56.21%	9860.00

However, the cost-effectiveness analysis found that the use of this medication as an etiotropic therapy is not justified. Therefore, according to the results of the study, the most effective medication for the treatment of moderate and severe forms is favipiravir. When conducting a similar analysis for the...
References

1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):S33-4. https://doi.org/10.1016/s1473-3099(20)30120-1 PMid:32087114

2. Ministry of Health of the Russian Federation. Prevention, diagnostics and treatment of new coronavirus infection (COVID-19):Temporarymethodologicalrecommendations; 2021. Available from: https://www.statisticsof.ru/system/attachments/000/054/662/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%B1%8B%D0%BD%D0%9C%D0%AO_COVID-19_%28v.10.29. pdf. [Last accessed on 2021 Oct 04].

3. Farmindex RF. Nivolumabum; 2021. Available from: https://www.pharmindex.ru/opdivo.html. [Last accessed on 2021 Oct 04].

4. Belousov DY, Zyryanov SK, Kolbin AS, editors. Inclusion of Medications in Restrictive Lists: A Step-by-step Algorithm. Moscow: Izkatelstvo OKI, Buki Vedi; 2019.

5. Federal State Budgetary Institution “Center of Expertise and Control of Medical Assistance Quality” (FGBU TsEKKMP) of the Ministry of Health of Russia. Methodical Recommendations for Conducting a Comparative Clinical and Economic Assessment of a Medicinal Product (New Edition). Moscow: Utverzhdeny Prikazom FGBU TsEKKMP Minzdrava Rossii ot 29.12.2018 No. 242-od Approved by order No. 242-od of the Federal State Budgetary Institution Center of Expertise and Control of Medical Assistance Quality (FGBU TsEKKMP) of the Ministry of Health of Russia; 2018. Available from: https://www.rosmedex.ru/wp-content/uploads/2019/06/MR-KE%60I_novaya-redaktsiya_2018-g.pdf. [Last accessed on 2021 Oct 04].

6. Federal State Budgetary Institution “Center of Expertise and Control of Medical Assistance Quality” (FGBU TsEKKMP) of the Ministry of Health of Russia. Methodical Recommendations for Calculating Costs when Conducting Clinical and Economic Studies of Medications. Utverzhdeny prikazom FGBU TsEKKMP Minzdrava Rossii ot 29.12.2017 No. 185-od Approved by order No. 185-od of the Federal State Budgetary Institution “Center of Expertise and Control of Medical Assistance Quality” (FGBU TsEKKMP) of the Ministry of Health of Russia; 2017. Available from: https://www/rosmedex.ru/wp-content/uploads/2018/02/ Methodicheskie-rekomendatsii-po-raschetu-zatrazt-pri-provedenii-kliniko-o%60ekonomicheskikh-issledovaniy-lekarstvennyih-preparatov-2017.pdf. [Last accessed on 2021 Oct 04].

7. Moscow City Fund of Compulsory Health Insurance. Prilozhenie No. 11 k Tarifnomu soglasheniyu na 2020 god ot 30 Dekabrya 2019 goda. Tarify Na Oplatu Meditsinskoi Pomoshchi, Okazyvaemoi v Ambulatornykh Ustrovekh v Ramakh Territorialnoi Programmy OMS, Primenaemye v Tom Chisle Dyia Oshustchestvleniya Gornorazotnykh Raschetov (za Issklyucheniem Profilya “Stomatologiya”) Appendix No. 11 to the Tariff Agreement for 2020. Tariffs for Payment of Medical Care Provided on an Outpatient Basis Within the Framework of the Territorial Compulsory Medical Insurance Program Used Among Other Things for Horizontal Settlements (Except for the “Dentistry” Profile); 2019. Available from: https://www.mgfoms.ru/sites/default/files/prilozhenie_no_21_k_dok._no_05-00-02_20-4 ot_10.01.2020_o_prilozhenie_no_6_k_tarifnomu_soglasheniyu na_2020_12146774_v1.pdf. [Last accessed on 2021 Oct 04].

8. Moscow City Fund of Compulsory Health Insurance. Prilozhenie No. 6 k Tarifnomu Soglasheniyu na 2020 God od 30 Dekabrya 2019 Goda. Tarfy Na Oplatu Meditsinskoi Pomoshchi, Okazyvaemoi v Ambulatornykh Ustrovekh v Ramakh Territorialnoi Programmy OMS, Primenaemye v Tom Chisle Dyia Oshustchestvleniya Gornorazotnykh Raschetov (za Issklyucheniem Profilya “Stomatologiya”) Appendix No. 6 to the Tariff Agreement for 2020. Tariffs for Payment of Medical Care Provided on an Outpatient Basis Within the Framework of the Territorial Compulsory Medical Insurance Program Used Among Other Things for Horizontal Settlements (Except for the “Dentistry” Profile); 2019. Available from: https://www.mgfoms.ru/sites/default/files/prilozhenie_no_21_k_dok._no_05-00-02_20-4 ot_10.01.2020_o_prilozhenie_no_6_k_tarifnomu_soglasheniyu na_2020_12146774_v1.pdf. [Last accessed on 2021 Oct 04].

9. Moscow City Fund of Compulsory Health Insurance. Prilozhenie No. 8.2 k Tarifnomu Soglasheniyu na 2020 God od 30 Dekabrya 2019 Goda. Tarfy Na Oplatu Meditsinskoi Pomoshchi, Okazyvaemoi v Stationarnykh Ustrovekh po Otdelnym Meditsinskim Uslugam v Ramakh Territorialnoi Programmy OMS, Appendix No. 8.2 to the Tariff Agreement for 2020. Tariffs for Payment of Medical Care Provided in Inpatient Conditions for Certain Medical Services Under the Territorial Compulsory Medical Insurance Program; 2019. Available from: https://www.mgfoms.ru/sites/default/files/prilozhenie_no_27_k_dok._no_05-00-02_20-4 ot_10.01.2020_o_prilozhenie_no_8.2_k_tarifnomu_soglasheniyu na_2020_12146893_v1.pdf. [Last accessed on 2021 Oct 04].

10. Yadgudina RI, Serpik VG. Methodology of cost analysis. Farmakoekon Teor Prakt. 2016;4(2):5-9.

11. Yadgudina RI, Serpik VG, Sorokovikov IV. The methodological basics of the cost-effectiveness analysis. Farmakoekon Teor Prakt. 2014;2(2):23-6.

12. World Health Organization. Coronavirus COVID-19 Coronavirus; 2021. Available from: https://www.who.int/ru/emergencies/diseases/novel-coronavirus-2019.

13. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-78. https://doi.org/10.1016/s0140-6736(20)33202-9

14. Spinner CD, Gottlieb RL, Criner GJ, Arribas López JR, Cattelan AM, Viladomiu AS, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19. JAMA. 2020;324(11):1048. https://doi.org/10.1001/jama.2020.16349 PMid:32821939

15. NIAID. Adaptive COVID-19 Treatment Trial (ACTT); 2020. Available from: https://clinicaltrials.gov/show/NCT04280705. [Last accessed on 2021 Oct 04].

16. Augustin M, Hallek M, Nitschmann S. Remdesivir bei Patienten mit schwerer COVID-19. Internist. 2020;61(6):644-5. https://doi.org/10.1007/s00108-020-00800-5

17. JRCT. Favipiravir for SARS-CoV-infected Patients. Japan Register of Clinical Trials; 2020. Available from: https://www.jrct.niph.go.jp/en-latest-detail/jRCTs041190120. [Last accessed on 2021 Oct 04].

18. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with Favipiravir for COVID-19: An open-label control study. Engineering. 2020;6(10):1192-8. https://doi.org/10.1016/j.eng.2020.03.007 PMid:32346491

19. Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J, et al. Favipiravir versus Arbidol for COVID-19: A randomized clinical trial. MedRxiv. 2020. https://doi.org/10.1101/2020.03.17.20037432

20. Ruzhentsova TA, Chukhlyaev PV, Khavkina DA, Garbuzzov AA, Ploskireva AA, Osesthyuk RA, et al. Efficacy and safety of favipiravir in a complex therapy of mild to moderate disease. MedPharm. 2021. https://oamjms.eu/index.php/mjms/index
COVID-19. Infect Dis News Opin Train. 2020;9(4):26-38. https://doi.org/10.33029/2305-3496-2020-9-4-26-38

21. Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. 2020;81(1):e21-3. https://doi.org/10.1016/j.jinf.2020.03.060
PMid:32283143

22. Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y, et al. Efficacy and safety of Lopinavir/Ritonavir or Arbidol in adult patients with mild/moderate COVID-19: An exploratory randomized controlled trial. Med (N Y). 2020;1(1):105-13.e4. https://doi.org/10.1016/j.medj.2020.04.001
PMid:32838353