Two-dimensional superintegrable systems from operator algebras in one dimension

Ian Marquette¹, Masoumeh Sajedi² and Pavel Winternitz³

1 School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
2 Département de Mathématiques et de Statistiques, Université de Montréal, C.P.6128 succ. Centre-Ville, Montréal (QC) H3C 3J7, Canada
3 Centre de Recherches Mathématiques, Département de Mathématiques et de Statistiques, Université de Montréal, C.P.6128 succ. Centre-Ville, Montréal (QC) H3C 3J7, Canada

E-mail: i.marquette@uq.edu.au, sajedim@dms.umontreal.ca
and wintern@crm.umontreal.ca

Received 3 November 2018, revised 9 January 2019
Accepted for publication 24 January 2019
Published 14 February 2019

Abstract
We develop new constructions of 2D classical and quantum superintegrable Hamiltonians allowing separation of variables in Cartesian coordinates. In classical mechanics we start from two functions on a one-dimensional phase space, a natural Hamiltonian \(H \) and a polynomial of order \(N \) in the momentum \(p \). We assume that their Poisson commutator \(\{H, K\} \) vanishes, is a constant, a constant times \(H \), or a constant times \(K \). In the quantum case \(H \) and \(K \) are operators and their Lie commutator has one of the above properties. We use two copies of such \((H, K) \) pairs to generate two-dimensional superintegrable systems in the Euclidean space \(E_2 \), allowing the separation of variables in Cartesian coordinates. Nearly all known separable superintegrable systems in \(E_2 \) can be obtained in this manner and we obtain new ones for \(N = 4 \).

Keywords: superintegrable systems, Painlevé transcendents, ladder operators, separation of variables

1. Introduction

This article is part of a general study of superintegrable systems in quantum and classical mechanics. In a nutshell a superintegrable system with \(n \) degrees of freedom is a Hamiltonian system with \(n \) integrals of motion \(X_1, \ldots, X_n \) (including the Hamiltonian \(H \)) in involution and \(k \) further integrals \(Y_k, 1 \leq k \leq 2n - 1 \). The additional integrals \(Y_k \) commute (or Poisson commute) with the Hamiltonian, but not necessarily with each other, nor with the integrals \(X_i \). All the integrals are assumed to be well defined functionally independent functions on phase
space in classical mechanics. In quantum mechanics they are Hermitian operators in the enveloping algebra of the Heisenberg algebra H_n (or some generalization of the enveloping algebra) and are polynomially independent. For reviews we refer to [37, 52].

The best known superintegrable systems (in n dimensions) are the Kepler–Coulomb system [4, 23, 55] and the harmonic oscillator [34, 53] with the potentials $\frac{1}{2} \alpha r^2$ and ωr^2, respectively.

A systematic search for superintegrable systems in Euclidean spaces E_n was started in 1965 [19–21, 24, 39]. The integrals of motion were postulated to be second order polynomials in the momenta with coefficients that were smooth functions of the coordinates. Second order integrals were shown to be related to multiseparation of variables in the Schrödinger or Hamilton–Jacobi equation. Integrable and superintegrable systems with integrals that are higher order polynomials in the momenta were considered in [2, 7, 8, 14, 16–18, 26, 27, 35, 36, 38, 40–43, 51, 54, 56–61, 63–67].

A subset of the articles quoted above was devoted to a search for superintegrable systems in E_2 with 2 integrals of order 2 and one of order N with $3 \leq N \leq 5$. The order 2 ones were the Hamiltonian H, the second order one X was chosen so as to ensure separation of variables in Cartesian or polar coordinates, respectively. The third integral Y was of order $N \geq 3$. It turned out that the complexity of the calculations rapidly increased as N increased and that the obvious systematic and straightforward method became impractical for $N > 5$. On the other hand for $N \geq 3$ it turned out that quantum integrable and superintegrable systems could have different potentials than classical ones. In particular quantum superintegrable systems allowed the existence of ‘exotic potentials’ expressed in terms of elliptic functions, Painlevé transcendents and general functions having the Painlevé property.

The purpose of this paper is to further develop and apply a different method of constructing superintegrable systems in two and more dimensions. Namely, we shall study two copies of operator algebras in one dimension, expressed in terms of the coordinates x and y, respectively and combine these two to form superintegrable systems in E_2. The generalization to n copies and to superintegrable systems in E_n is immediate.

The article is organized as follows. In section 2 we formulate the problem and show how algebras of operators or functions in one dimension can be used to construct superintegrable systems in two dimensions. This is done both for quantum and classical mechanics. Section 3 is devoted to the classification of operator algebras in 1D quantum mechanics for operators K of order $1 \leq M \leq 5$. The same problem in classical mechanics, where H and K are functions on a 2D phase space is solved in section 4. The superintegrable classical and quantum systems in E_2 are presented in section 5. Section 6 is devoted to conclusions and a summary of results.

2. The general method

Let us consider a Hamiltonian in a 1D Euclidean space E_1

$$H_1 = \frac{p_x^2}{2} + V(x)$$

(1)

where x is a space coordinate. In classical mechanics p_x is the momentum canonically conjugate to x and in quantum mechanics we have $p_x = -i\hbar \partial_x$.

Let us also consider the polynomial

$$K_1 = \sum_{j=0}^{M} f_j(x) p'_x,$$

(2)

where $f_M(x) \neq 0$, and $f_j(x)$ are smooth functions.
Both in quantum and in classical mechanics we can consider the Lie algebra
\[[H_1, K_1] = \alpha K_1 + \beta H_1 + \gamma 1, \quad [H_1, 1] = [K_1, 1] = 0, \]
(3)
where \([...,]\) is the Lie commutator, or the Poisson commutator, respectively and \(\alpha, \beta\) and \(\gamma\) are constants. By change of basis we can reduce the algebra (3) into one of the 4 following forms
for \(\alpha = \beta = \gamma = 0; \quad \alpha = \beta = 0, \gamma \neq 0; \quad \alpha = \gamma = 0, \beta \neq 0; \quad \) and \(\alpha \neq 0\), respectively
\[[H_1, K_1] = 0, \] (4a)
\[[H_1, K_1] = \alpha_1, \] (4b)
\[[H_1, K_1] = \alpha_1 H_1, \] (4c)
\[[H_1, K_1] = -\alpha_1 K_1, \quad \alpha_1 \in R \backslash 0 \] (4d)
where \(\alpha_1 \neq 0\) is a constant. This constant could be normalized to \(\alpha_1 = 1\). We however leave it general and use it as a parameter to be chosen later. We shall refer to these relations as Abelian type (a), Heisenberg type (b), conformal type (c), and ladder type (d), respectively.

We shall call the systems \([H_1, K_1]\) in one dimension ‘algebraic Hamiltonian systems’. The classical case (d) of ladder and the corresponding Hamiltonian and functions \(K_1\) that are polynomials of order 3 and 4 in momentum have been studied in the [45–47]. For earlier work on ladder operators and separation of variables see [5]. The case of order 3 of these relations has been discussed in [25]. Some of these cases have been investigated e.g. in the case (c) [15] and case (b) [30]. The quantum case (d) has been studied for particular examples related with fourth and fifth Painlevé transcendents [3, 9, 42, 44, 46, 70]. Superintegrable deformations of the harmonic oscillator and the singular oscillator and many types of ladder operators have been studied [48–50]. The Heisenberg type relations have been investigated in a recent paper [30]. The Abelian type (a) has been studied by Hietarinta for third order operators and was referred to as pure quantum integrability [31, 32]. Furthermore, for the case (a) some interesting algebraic relations have been discussed [68, 69].

The existence of such operators \(K_1\) will impose constraints on the potential \(V(x)\) and on the coefficients \(f_j(x)\) in the polynomial \(K_1\). We shall construct such systems proceeding by order \(M\) in the following sections, both in quantum and classical physics.

We consider a second copy of \(E_1\) with the corresponding Hamiltonian \(H_2\) and operator \(K_2\) satisfying one of the relations (a)–(d) with
\[K_2 = \sum_{j=0}^{N} g_j(y) p_j^y, \]
(5)
Now let us consider the 2D Euclidean space \(E_2\) with the Hamiltonian
\[H = H_1 + H_2 = \frac{1}{2} (p_x^2 + p_y^2) + V_1(x) + V_2(y). \]
(6)
This Hamiltonian is obviously integrable because it allows the separation of variables in Cartesian coordinates, i.e. it allows an independent second order integral
\[A = K_1 - K_2, \]
(7)
where \(K_1\) and \(K_2\) are second order Abelian type operators.

We will use operators \(K_1, K_2\) of (2) and (5) to generate integrals of motion \(K\) in \(E_2\). Below the notation is \((u, v)\). The first label applies to the \(x\) axis and the second one to the \(y\) axis. Both
and take the values a, b, c and d, depending on the type of algebraic Hamiltonian system in (4). The combinations that lead to superintegrable systems in E_2 are

I.(a,a):

Obviously, any linear combination

$$K = c_1K_1 + c_2K_2$$

satisfies $[H, K] = 0$ and is hence an integral of motion. The interesting point is that in the case (a), H_1 and K_1 in E_1 cannot be polynomially independent, however in E_2 the operators H and K can be. The case of (6) and (7) is a trivial example. For higher order operators we shall produce nontrivial examples below (in quantum mechanics).

II.(b,b):

The operator

$$K = \alpha_2K_1 - \alpha_1K_2$$

will commute with H.

III.(c,b):

An integral of motion is

$$K = \alpha_2H_2K_1 - \alpha_1H_1K_2.$$

IV.(d,d):

The case (d) is somewhat more complicated. We change notations slightly and introduce an operator K_1^{\dagger} adjoint to K_1.

$$K_1^{-} \equiv K_1, \quad K_1^{\dagger} = (K_1^{-})^\dagger.$$

We now have

$$[H_1, K_1^{-}] = -\alpha_1K_1^{-}$$

$$[H_1, K_1^{\dagger}] = \alpha_1K_1^{\dagger}$$

$$K_1^{\dagger}K_1^{-} = \sum_{n=0}^{k_1} a_nH_1^n.$$

The fact that $K_1^{\dagger}K_1^{-}$ is a polynomial in H_1 follows from the commutation relation $[H_1, K_1^{\dagger}K_1^{-}] = 0$ [6].

The same relations are introduced for H_2, K_2^{-} and K_2^{\dagger}. In E_2 we have

$$[H_1 + H_2, (K_1^{\dagger})^m(K_2^{-})^n] = (m\alpha_1 - n\alpha_2)(K_1^{\dagger})^m(K_2^{-})^n.$$

To obtain an integral of motion we impose a rationality constraint on α_1 and α_2, namely

$$\frac{\alpha_1}{\alpha_2} = \frac{n}{m}.$$

With this constraint $(K_1^{\dagger})^m(K_2^{-})^n$ are all integrals of motion and

$$K = (K_1^{\dagger})^m(K_2^{-})^n - (K_1^{-})^m(K_2^{\dagger})^n$$

with m and n mutually prime K is the lowest order polynomial amongst them.

V.(c,c):

The integral of motion in this case is

$$K = \alpha_2H_2K_1 - \alpha_1H_1K_2.$$

Other possible combinations are
Table 1. Integrals of motion in E_2.

Case	Type	Integral type	K	Order of K
1	(a,a)	Polynomial	$K_1 + K_2$	$\max(k_1, k_2)$
2	(b,b)	Polynomial	$\alpha_2 K_1 - \alpha_1 K_2$	$\max(k_1, k_2)$
3	(c,b)	Polynomial	$\alpha_2 K_1 - \alpha_1 H_1 K_2$	$\max(k_1, k_2 + 2)$
4	(d,d)	Polynomial	$(K_1^1)^m(K_2^-)^n - (K_1^-)^m(K_1^1)^n$	$(mk_1 + nk_2 - 1)$
5	(c,c)	Polynomial	$\alpha_2 H_2 K_1 - \alpha_1 H_1 K_2$	$\max(k_1 + 2, k_2 + 2)$
6	(a,d)	Polynomial	$K_1 - K_2^\dagger K_2^\dagger$	$\max(k_1, 2k_2)$
7	(b,d)	Non polynomial	$e^{\frac{\alpha_2}{\alpha_1} K_2^\dagger}$	—
8	(c,d)	Non polynomial	$e^{\frac{\alpha_2}{\alpha_1} K_2^\dagger}$	—

VI.(a,d):

An integral of motion is $K_1 + K_2^\dagger K_1^\dagger$. However since $K_2^\dagger K_2^\dagger$ is a polynomial in H_2, this integral is trivial (a polynomial in H_1 and H_2).

In table 1, $k_1 = \text{order}(K_1)$ and $k_2 = \text{order}(K_2)$. For the operator of type (d), setting $K_1 = K_2^-$, we have $[H_1, K_1^\dagger] = \pm \alpha_1 K_1^\dagger$. Also in the case 4, $m\alpha_1 = n\alpha_2 = \lambda$.

Let us consider A as the second order integral of motion introduced in (7) and B as the Mth order one. In the classical case, the polynomial Poisson algebra \mathcal{P}_M, generated by functions A and B has Poisson brackets given by

$$\{A, B\}_p = C, \{A, C\}_p = R(A, B, H), \{B, C\}_p = S(A, B, H).$$

(16)

The polynomial Lie algebra, \mathcal{L}_M, which is the Mth order analogue of the classical Poisson algebra \mathcal{P}_M, has bracket operation given by

$$[A, B] = C, [A, C] = R(A, B, H), [B, C] = S(A, B, H)$$

(17)

with further constraints on parameters from the Jacobi identity. Further information on the algebra is given in table 2.

In this article we pursue the case where B is a polynomial. The cases 7 and 8 of table 1 will be treated elsewhere.

In table 2, $\kappa = \alpha_1^2 \alpha_2^2$ and

$$T(A, H) = 4 \lambda \rho \left(\frac{H + A}{2}\right)^{m-1} \rho \left(\frac{H - A}{2}\right)^{n-1} \left(n^2 Q \left(\frac{H + A}{2}\right) \rho \left(\frac{H - A}{2}\right) - m^2 Q \left(\frac{H - A}{2}\right) \rho \left(\frac{H + A}{2}\right)\right),$$

$$\tilde{T}(A, H) = -2 \prod_{n=1}^m \left(Q \left(\frac{H}{2} + \frac{A}{2} - (m - i) \alpha_1 \right) \prod_{j=1}^n \left(S \left(\frac{H}{2} - \frac{A}{2} + j \alpha_2 \right)\right)\right)$$

with $K_1^\dagger K_1^- = P(H_1)$, and $\{K_1^\dagger, K_1^-\} = Q(H_1)$.

3. Classification of quantum algebraic systems in one dimension

We consider the 1D Hamiltonian (1) and the Mth order operator K_1 (2) and their commutator $[H_1, K_1]$.

Once $[H_1, K_1]$ is chosen to be equal to 0, $\alpha_1, \alpha_1 H_1$ or $-\alpha_1 K_1$ as in (4), this will provide us with determining equations for the potential $V(x)$ and the coefficients $f_j(x)$, $0 \leq j \leq M$ in the operator K_1.

5
Using \(p_x = -i\hbar \partial_x \equiv -i\hbar D \) we obtain the following operator of order \(M + 1 \).

\[
[H_1, K_1] = -\hbar^2 \sum_{l=0}^{M} (-i\hbar)^l (f_l''D^l + 2f_l'D^{l+1}) - \sum_{l=1}^{M} (-i\hbar)^l f_l \sum_{j=0}^{l-1} C^l_j V^{(l-j)}D^j
\]

where \(C^l_j \) are the Newton binomial coefficients.

In order to obtain the determining equations for arbitrary \(M \) we must reorder the double summation in the second term in (18). We obtain

\[
[H_1, K_1] = \sum_{l=0}^{M+1} Z_l D^l
\]

with

\[
Z_{M+1} = (-i\hbar)^{M+2} f_M',
\]

\[
Z_M = -\frac{\hbar^2}{2} (-i\hbar)^M (2f_{M-1}' - i\hbar f_M'),
\]

\[
Z_l = -\frac{\hbar^2}{2} (-i\hbar)^{l-1} (2f_{l-1}' - i\hbar f_l') - \sum_{j=l+1}^{M} (-i\hbar)^j f_j C^l_j V^{(l-j)}, \quad 1 \leq l \leq M - 1,
\]

\[
Z_0 = -\frac{\hbar^2}{2} f_0' - \sum_{j=1}^{M} (-i\hbar)^j f_j V^{(j)}.
\]

The determining equations for arbitrary \(M \geq 1 \) are as follow.

Case(a):

We have

\(Z_l = 0, \quad 0 \leq l \leq M + 1. \)

In particular equations (20a) and (20b) imply \(f_M' = 0, f_{M-1}' = 0. \) Equation (20c) provide expressions for \(f_l' \) in terms of the potential \(V(x) \) and its derivatives for \(l = 0, \ldots, M - 1. \) Substituting \(f_l \) into (20d) we obtain a nonlinear ODE for the potential \(V(x). \)

Case(b):

Table 2. Polynomial algebra.

Case	Type	\(R(A, B, H) \)	\(S(A, B, H) \)	\(\tilde{R}(A, B, H) \)	\(\tilde{S}(A, B, H) \)
1	\((a,a)\)	0	0	0	0
2	\((b,b)\)	0	0	0	0
3	\((c,b)\)	\(\kappa (H + A) \)	0	\(\kappa (H + A) \)	0
4	\((d,d)\)	\(-4\lambda^2 B\)	\(T(A, H) \)	\(4\lambda^2 B \)	\(\tilde{T}(A, H) \)
5	\((c,c)\)	0	\(\frac{2}{\pi} A(H^2 - A^2) \)	0	\(\frac{2}{\pi} A(H^2 - A^2) \)
6	\((a,d)\)	0	0	0	0
7	\((b,d)\)	\(-4\alpha^2 B\)	0	—	—
8	\((c,d)\)	\(-4\alpha^2 B\)	0	—	—

I Marquette et al. J. Phys. A: Math. Theor. 52 (2019) 115202
The determining equations are
\[Z_0 = \alpha_1, \quad Z_l = 0, 1 \leq l \leq M + 1. \] (21)
Hence the functions \(f_j, \, 0 \leq l \leq M \) are the same as in case (a) but the equation for the potential \(V(x) \) is modified.

Case (c):
This case arises for \(M \geq 2 \). The determining equations are
\[Z_0 = \alpha_1 V(x), \quad Z_l = \alpha_1 \frac{2}{\hbar}, \quad 1 \leq l \leq M + 1. \] (22)
Again, equation (20d) provides an ODE for \(V(x) \).

Case (d):
The determining equations are
\[Z_{M+1} = 0, \quad Z_l = \alpha_1 f_j, \quad 0 \leq l \leq M. \] (23)
In this article we concentrate on the cases \(1 \leq M \leq 5 \) but it is clear that one can proceed iteratively for any given \(M \).

Let us now solve the determining equations for \(1 \leq M \leq 5 \).

The notation used below is \(V_{\gamma M} \) where \(\gamma = a, b, c, d \) refers to the four different cases in equation (4) and \(M = 1, 2, ..., 5 \) refers to the order of \(K_1 \) as a differential operator.

We note that in all cases the determining equation (20a) imply \(f = k \) a constant and we can normalize \(f = 1 \). We also note that in all cases we can add arbitrary powers of \(H \) to the operator \(K \). We shall omit case when \(V(x) \) is constant (e.g. \(V_a \)).

We are dealing with nonlinear ODEs of order \(2 \leq n \leq 5 \) which pass the Painlevé test [1]. These equations were analyzed in a series of articles by Chazy et al [10–13].

I. Operator of type (a):
\[V_a = V, \quad K_a = p_x^2 + \beta p_x + 2V. \] (24)
\[V_a = \hbar^2 \omega, \quad f_2 = \beta, \quad f_1 = 3 \hbar^2 \omega, \quad K_a = p_x^3 + \beta p_x^2 + 3 \hbar^2 \omega p_x + 2 \beta \hbar^2 \omega - \frac{3}{2} i \hbar^3 \omega'. \] (25)
where \(\omega(x) \) is the Weierstrass elliptic function. In the case \(f_2 = 0 \) the solution for \(V_a \), is
\[V(x) = \frac{\hbar^2}{x^2}, \quad K_a = 2 p_x^3 + \{ \frac{3 \hbar^2}{x^2}, p_x \}. \] (26)
\[V_a = \hbar^2 \omega, \quad K_a = p_x^4 + \beta p_x^3 + 4 \hbar^2 \omega \{ p_x + (3 \beta V - 4 i \hbar V') p_x + (\frac{3}{2} i \hbar \beta V' - 8 V^2) \}. \] (27)
\[V_a = V, \quad K_a = p_x^5 + \beta p_x^4 + 5 V p_x^3 + (\frac{15}{8} i \hbar V^3 - 2 \beta \hbar^2 V'' - \frac{15}{2} i \hbar VV' + 4 \beta V^2). \] (28)
In (28) \(V \) satisfies the equation
\[
h^4 V^{(4)} - 20h^2 V'' - 10h^2 V'^2 + 40V^3 = 0. \tag{29}
\]
Setting \(V = h^2 U \), we get
\[
U^{(4)} - 20UU'' - 10U'^2 + 40U^3 = 0. \tag{30}
\]
This equation is a special autonomous case of the equation \(F-V \), in [12, p42]. It has the Painlevé property and it is solvable in terms of hyperelliptic functions. The solution can be written as
\[
U = \frac{1}{4} (u_1 + u_2) \tag{31}
\]
where \(u_1(x) \) and \(u_2(x) \) are defined by inversion of the hyperelliptic integrals
\[
\int_{\infty}^{u_1(x)} \frac{dt}{\sqrt{P(t)}} + \int_{\infty}^{u_2(x)} \frac{dt}{\sqrt{P(t)}} = k_3, \tag{32}
\]
\[
\int_{\infty}^{u_1(x)} t \frac{dt}{\sqrt{P(t)}} + \int_{\infty}^{u_2(x)} t \frac{dt}{\sqrt{P(t)}} = x + k_4,
\]
with \(P(t) = t^5 + 32k_1 t + k_2 \), where \(k_1 \) and \(k_2 \) are constants of integration.

The functions \(u_1(x) \) and \(u_2(x) \) are not meromorphic separately, each having movable quadratic branch points, however the solution \(U \) is globally meromorphic.

II. Operator of type (b):
\[
V_{b_1} = \frac{\alpha_1}{h} x, \tag{33}
\]
\[
K_{b_1} = p + \beta.
\]
\[
V_{b_2} = \frac{\alpha_1}{\beta h} x, \tag{34}
\]
\[
K_{b_2} = p^2 + \beta p + 2V.
\]
\[
V_{b_3} = V, \quad f_2 = \beta, \tag{35}
\]
\[
K_{b_3} = p^3 + \beta p^2 + 3vp + 2\beta_1 V - \frac{3}{2}iV',
\]
where \(V \) satisfies the first Painlevé equation
\[
V''' = \frac{6}{h^2} V^2 + \frac{4\alpha_1}{h^3} x, \tag{36}
\]
and thus
\[
V(x) = h^2 \omega_1^2 P_l(\omega_1 x), \quad \omega_1 = \frac{\sqrt{4\alpha_1}}{h}. \tag{37}
\]
\[
V_{b_4} = V, \tag{38}
\]
\[
K_{b_4} = p^4 + \beta p^3 + 4Vp^2 + 3\beta V - 4iV' - 2h^2 V'' - \frac{3}{2}iV' + 4V^2
\]
where \(V \) satisfies the first Painlevé equation.
The potential V satisfies

$$h^4 V^{(4)} - 20h^2 V V'' - 10h^2 V'^2 + 40V^3 + \frac{16\alpha_1 x}{h} = 0. \quad (40)$$

Setting $V = h^2 U$, we get

$$U^{(4)} - 20UU'' - 10U'^2 + 40U^3 + \frac{16\alpha_1 x}{h} = 0. \quad (41)$$

This equation is also a special case of the equation $F-V$ in [12, p 42]. The exact solution of it is not known and it is possible that its solution cannot be expressed in terms of classical transcendent nor one of the original Painlevé transcendents.

III. Operator of type (c):

$$V_{c_1} = V, \quad K_{c_1} = p_x^2 + 5Vp_x^3 + (-\frac{15}{2}\hbar V' + 4\beta V)p_x^2 + \left(\frac{25}{4} \hbar^2 V'' - 4i\beta \hbar V' + \frac{15}{2} V^2\right)p_x, \quad (39)$$

The potential V satisfies

$$\frac{\hbar^4}{4} V^{(4)} = -20\hbar^2 V V'' - 10\hbar^2 V'^2 + 40V^3 + \frac{16\alpha_1 x}{\hbar} = 0. \quad (40)$$

Setting $V = \hbar^2 U$, we get

$$U^{(4)} - 20UU'' - 10U'^2 + 40U^3 + \frac{16\alpha_1 x}{\hbar} = 0. \quad (41)$$

III. Operator of type (c):

$$V_{c_2} = \frac{\beta}{x^2}, \quad K_{c_2} = p_x^2 + \frac{\alpha_1}{\hbar^2} x p_x + \frac{2\beta}{x^2}. \quad (42)$$

$$V_{c_3} = V, \quad K_{c_3} = p_x^2 + \beta p_x + (3V + \frac{i}{2\hbar} x)p_x + 2\beta V - \frac{3i}{2} \hbar V'. \quad (43)$$

Setting $V = \hbar^2 U - \frac{\alpha_1}{2\hbar} x$, $U(x)$ is the solution of the following equation

$$U^{(3)} = 12UU' - 4\frac{\alpha_1}{\hbar^2} x U' - \frac{2\alpha_1}{\hbar^3}. \quad (44)$$

It admits the first integral

$$2UU'' - U'^2 - 8U^3 + 4\frac{\alpha_1}{\hbar^3} x U^2 = k \quad (44)$$

where k is an integration constant. For $k = 0$, by the change of variables

$$x = \frac{1}{\lambda} X, \quad U = \lambda^2 W^2; \quad \lambda = \frac{1}{\hbar} \sqrt[3]{\alpha_1},$$

we get a special case of the second Painlevé equation

$$W'' - 2W^3 - XW = 0. \quad (45)$$

Therefore, the solution for $V(x)$ is

$$V(x) = -\alpha_1 \frac{i}{\lambda} p_x^2 - \alpha_1 \frac{i}{\lambda} \lambda x$$

with $p_x = p_x(\frac{1}{\lambda} \sqrt[3]{\alpha_1} x)$. For $k \neq 0$, by the following transformation

$$x = \lambda X, \quad U = \sqrt{-k\lambda^2 W}; \quad \lambda = \frac{\sqrt[3]{\hbar^3}}{2\alpha_1},$$
we transform (44) to
\[W'' = \frac{W'^2}{2W} + 4\lambda^2 \sqrt{-k\lambda^2}W^2 - XW - \frac{1}{2W} \] (46)
which is Ince-XXXIV [33, p 340] with the solution
\[2\lambda^2 \sqrt{-k\lambda^2}W = p'_2 + p'^2_2 + \frac{1}{2}X \]
where \(p_2 \) satisfies the second Painlevé equation
\[p''_2 = 2p'^2_2 + XP_2 - 2\lambda^2 \sqrt{-k\lambda^2} - \frac{1}{2}. \]
The solution for \(V \) is
\[V(x) = \left(\frac{2\alpha_1}{2} \right)^2 (p'_2 + p'^2_2). \]
for \(p_2 = (\sqrt{\frac{2\alpha_1}{2\beta}})^2 \).
\(V_{ci} = V \),
\[K_{ci} = p'^4_2 + \beta p'^3_2 + 4Vp'^2_2 + (-4i\beta V + 3\beta V + \frac{i\alpha_1}{2\beta})p_x - 2\beta V'' - \frac{3}{2}i\beta hV' + 4V. \] (47)
For \(\beta = 0 \), \(V = \frac{k}{x^2} \), and for \(\beta \neq 0 \), setting \(V = h^2 U - \frac{\alpha_1}{\beta h}x \), \(U(x) \) is the solution of the following equation
\[U^{(4)} = 12UU'' + 12U'^2 + \frac{2\alpha_1}{\beta h} U' + \frac{2\alpha_1^2}{3\beta^2 h^6} \]
which is again a special case of equation F-I [11]. Its solution can be expressed in terms of the second Painlevé transcendent.
\(V_{cs} = V \),
\[K_{cs} = p'^4_2 + \beta p'^3_2 + 5Vp'^2_2 + (-\frac{15}{2}i\beta V + 4\beta V) p'_2 + (\frac{25}{4}h^2 V'' - 4i\beta h V' + \frac{15}{2}V + \frac{i\alpha_1}{2h}) p_x + \frac{15}{8}i\beta h^2 V^{(3)} - 2\beta h^2 V'' - \frac{15}{4}i\beta h V' + 4\beta V. \] (48)
The potential \(V \) satisfies
\[h^5 V^{(5)} - 20h^3 VV^{(3)} - 40h^3 V'V'' + 40h^2 V^3 V'' + 120hV^2 V' + 8\alpha_1 V'V'' + 16\alpha_1 V = 0. \] (49)
Setting \(V = h^5 U(X) \), \(X = h^2 x \), we get
\[U^{(5)} - 20U^{(3)} U + 120U^2 U' - 40U' U'' + \frac{8\alpha_1 X}{h^{15}} U' + \frac{16\alpha_1}{h^{15}} U + 0 = 0. \] (50)
This equation is Fif-III in [12, p 25, equation (2.71)] and it has the Painlevé property. A first integral of it is
\[2uu'' - u^2 - 8Uu^2 + k = 0 \]
where \(u = U'' - 6U^2 - \frac{2\alpha_1}{h}X. \).
When \(k = 0 \), a particular solution of (50) can be obtained by setting \(u = 0 \). This solution is \(U = P_t \), where \(P_t(X) \) satisfies the Painlevé first equation.
IV. Operator of type (d):

\[V_{d_1} = \frac{\alpha_1^2}{4\hbar}x^2, \]
\[K_{d_1} = p_x - \frac{\alpha_1}{\hbar}ix, \]
\[V_{d_2} = \frac{\alpha_1^2}{8\hbar^2}x^2 + \frac{\beta}{x^2}, \]
\[K_{d_2} = p_x^2 - \frac{\alpha_1}{\hbar}ixp_x - \frac{\alpha_2}{\hbar^2}x^2 + \frac{2\beta}{x^2}. \] (52)

\[V_{d_3} = V(x), \]
\[K_{d_3} = p_x^3 - \frac{\alpha_1}{\hbar}ip_x^2 + (3V - \frac{\alpha_1^2}{2\hbar^2}x^2)p_x + \left(\frac{\hbar^3}{4\alpha}iV'(\alpha) - \frac{3\hbar}{\alpha}iV'' - \left(\frac{5}{2}\frac{\alpha}{\hbar^2} - \frac{\alpha}{\hbar^2}\right)iV' + \frac{\alpha^2}{2\hbar}ux \right). \] (53)

Setting \(V = \hbar^2 U(x) + \frac{\alpha_1^2}{8\hbar^2}x^2 - \frac{\alpha_2}{\alpha}, U \) is the solution of

\[U^{(4)} = 12UU'' + 12U'^2 - \frac{8\alpha_1^2}{\hbar^2}xU' - \frac{8\alpha_1^4}{3\hbar^6}x^2 \]

which is a special case of equation F-I [11]. The solution for \(V(x) \) is

\[V(x) = \epsilon \alpha_1 P'_4 + \frac{2\alpha_1^2}{\hbar^2}(P'_4 + xP_4) + \frac{\alpha_1^2}{4\hbar^2}x^2 + (\epsilon - 1)\frac{\alpha_1}{3} - \frac{\hbar^2}{6}k_1, \] (54)

where \(\epsilon = \pm 1 \) and \(P_4 \) satisfies the fourth Painlevé equation

\[P''_4 = \frac{(P'_4)^2}{2P_4} + \frac{6\alpha_1^2}{\hbar^2}P'_4 + \frac{8\alpha_1^2}{\hbar^2}xP_4 + \left(\frac{2\alpha_1^2}{\hbar^2}x^2 - k_1 \right)P_4 + \frac{k_2}{P_4}. \] (55)

\(k_1 \) and \(k_2 \) are integration constants.

\[V_{d_4} = V, \]
\[K_{d_4} = p^4 - \frac{i\alpha x}{\hbar}p^3_x + (4V - \frac{\alpha_1^2}{\hbar^2}x^2)p^2_x + f_1p_x + f_0 \] (56)

setting \(u(x) = \int Vdx \), we get

\[f_1 = -\frac{i\alpha_1^2}{2\hbar} + \frac{i\alpha_1^2}{6\hbar} \frac{\alpha_1 u}{\hbar} - \frac{3i\alpha_1 u'}{\hbar} - 4iu'', \]
\[f_0 = -\frac{\alpha_1^2}{2\hbar^2}x^2 + \frac{\alpha_1^4}{24\hbar^4}x^4 - \frac{\alpha_1^2}{\hbar^2}x u + (\alpha x - \frac{\alpha_1^2}{\hbar^2}x^2)u' + 4u^2 - \frac{3}{2}\alpha_1 x u'' - 2\hbar u'' \] (57)

thus \(u(x) \) is the solution of the following equation

\[0 = k - \alpha_1^2 x^2 + 3\alpha_1^2 x^4 \frac{4\hbar^2}{4\hbar^2} + \frac{4\alpha_1^2 x^6}{3\hbar^2}u + \frac{2\alpha_1^2}{3\hbar^2}u' + 2u^2 - 2\hbar u' - 6\alpha_1 x^2 u' \]
\[+ \frac{2\alpha_1^2}{3\hbar^2}u'' - 4xu' - 6x^2 u'^2 + 2\hbar x u'' + \hbar^2 u'''. \] (58)

By the following transformation

\[X = x^2, U = -\frac{x}{2\hbar} + \frac{3\hbar^4 - 9\alpha_1 \hbar^3 x^2 + \alpha_2^2 x^4}{48\hbar^4} \]
we transform (58) to
\[X^2U^{(3)} = -2(U'(3XU' - 2U) - \frac{\alpha_1^2}{8h^2} X(XU' - U) + k_1X + k_2) - XU'', \quad (59) \]
where \(k_1 = \frac{-2\gamma^2}{8h^2}, \quad k_2 = \frac{-4k - 3\alpha h^2}{12h^2}. \) The equation (59) is a special case of the Chazy class I equation [10, 13]. It admits the first integral
\[X^2U'' = -4(U'^2(U' - U) - \frac{\alpha_1^2}{16h^2} (XU' - U)^2 + k_1(U' - U) + k_2U' + k_3) \]
where \(k_3 \) is the integration constant. The equation is the canonical form SD-I.b. The solution is
\[
U = \frac{1}{4} \left(\frac{XP'_{5}}{P_{5} - 1} - P_{5} \right)^2 - \frac{1}{2} \left(1 - \sqrt{2} \right) (P_{5} - 1) - 2 \beta \frac{P_{5} - 1}{P_{5}} + \gamma X \frac{P_{5} + 1}{P_{5} - 1} + 2 \delta \frac{X^2P_{5}}{(P_{5} - 1)^2},
\]
\[
U' = - \frac{X}{4P_{5}(P_{5} - 1)} \left(P'_{5} - \sqrt{2} \right) \frac{P_{5} - 1}{X^2} - \frac{\beta}{2X} \frac{P_{5} - 1}{P_{5}} - \frac{1}{2} \delta X \frac{P_{5}}{P_{5} - 1} - \frac{1}{4} \gamma, \quad (61)
\]
where \(P_{5} = P_{5}(x^2) \), satisfies the fifth Painlevé equation
\[
P''_{5} = \left(\frac{1}{2P_{5}} + \frac{1}{P_{5} - 1} \right) P''_{5} - \frac{1}{X} P'_{5} + \frac{(P_{5} - 1)^2}{X^2} \left(\lambda P_{5} + \frac{\beta}{P_{5}} \right) + \gamma \frac{P_{5}}{X} + \delta \frac{P_{5}(P_{5} + 1)}{P_{5} - 1}, \quad (62)
\]
with
\[
\alpha_1^2 = -8h^3 \delta, \quad k_1 = -\frac{1}{4} \left(\gamma^2 + 2\beta \delta - \delta(1 - \sqrt{2} \lambda)^2 \right), \quad k_2 = -\frac{1}{2} \gamma (1 - \sqrt{2} \lambda)^2, \quad k_3 = -\frac{1}{32} \left(\gamma^2 ((1 - \sqrt{2} \lambda)^2 - 2\beta) - \delta ((1 - \sqrt{2} \lambda)^2 + 2\beta)^2 \right).
\]
The solution for the potential is
\[
V(x) = \frac{\alpha_1^2}{8h^2} x^2 + h^2 \left(\frac{\gamma}{P_{5} - 1} + \frac{1}{x^2} (P_{5} - 1) (\sqrt{2} \lambda + \lambda (2P_{5} - 1) + \frac{\beta}{P_{5}}) \right.
\]
\[
+ x^2 \left(\frac{P_{5}^2}{2P_{5}} - \frac{\alpha_1^2}{8h^2} P_{5} \right) (2P_{5} - 1) - \frac{P_{5}^2}{P_{5} - 1} - 2 \lambda \sqrt{2} \lambda P_{5} \right) + \frac{3h^2}{8x^2}. \quad (63)
\]
We could also choose the values of \(k_{i}, \) \(i = 1, 2, 3 \) in a way to have (62) with the following parameter values:
\[
\lambda = -\beta = \frac{p^2}{8}, \quad \gamma = 0, \quad \delta = 2\lambda^2 \neq 0
\]
we can then reduce the fifth Painlevé equation with such parameters to a third Painlevé equation [28, theorem 34.3 (p 170), theorem 41.2 (p 208), theorem 41.5 (p 210)]. Hence in this case we can obtain a solution in terms of third Painlevé transcendent.
\[
V_{ds} = V,
\]
\[
K_{ds} = P_{5}^5 - \frac{101}{h} x p_{5} + \left(-\frac{\alpha_1^2}{2h^2} x^2 + 5V \right) p_{3}^3 + f_{1}p_{5}^2 + f_{1}p_{4} + f_{0}
\]
\[
\text{setting } u(x) = \int V \mathrm{d}x, \text{ we get}
\]
\[f_2 = -\frac{i\alpha_1^2}{2\hbar} x + \frac{i\alpha_1^4}{6\hbar^3} x^3 - \frac{i\alpha_1}{\hbar} u - \frac{4i\alpha_1}{\hbar} xu' - \frac{15}{2} i\hbar u'', \]
\[f_1 = -\alpha_1^2 x^2 + \frac{\alpha_1^4}{24\hbar^4} x^4 - \frac{\alpha_1^2}{\hbar^2} xu + \alpha_1 u' - \frac{3\alpha_1^2}{2\hbar^2} x^2 u' + \frac{15}{2} u^2 - 4\alpha_1 xu'' - \frac{25}{4} \hbar^2 u''^3, \]
\[f_0 = \frac{i}{48\alpha_1 \hbar^3} (3\hbar^8 x^{(6)} + 114\alpha_1 \hbar^4 u^{(4)} + 60\hbar^6 u^{(4)} u' + 120\hbar^8 u^{(3)} u'' - 6\alpha_1^3 \hbar^4 x^2 u^{(4)} + 48\alpha_1^3 \hbar^4 x u^{(3)} - 96\alpha_1^3 \hbar^4 u'' u'' - 360\alpha_1^4 \hbar^2 u'^2 u'' + 84\alpha_1^3 \hbar^2 x^2 u'' + 48\alpha_1^3 \hbar^2 x u'' + 96\alpha_1^3 \hbar^2 x u' + 72\alpha_1^3 \hbar^2 x u'' + 24\alpha_1^3 \hbar^2 u + 36\alpha_1^3 \hbar^2 x - 2\alpha_1^3 x^2 u'' - 4\alpha_1^3 x^3) \]

and
\[9\hbar^{10} (x u^{(6)} - u^{(5)}) + 18\hbar^6 x (-10\hbar^2 u' + 12\alpha_1^2 x^2 - 4\alpha_1^2 x^2) u^{(4)} + \hbar^6 (-360\alpha_1^2 x^2 u^{(3)} + 180\alpha_1^2 x^2 u' + 12\alpha_1^2 x^2 + 72\alpha_1^2 h^2) u^{(3)} + 90\hbar^8 u^{(2)} + (1080\hbar^6 x u^2 + 10\hbar^4 x^4 - 144\alpha_1^2 \hbar^2 x^2 u' - 216\alpha_1^2 \hbar^2 x u' - 144\alpha_1^2 \hbar^2 x^2 u + 6\alpha_1^4 \hbar^2 x^2 - 144\alpha_1^3 \hbar^2 x^3 + 288\alpha_1^3 \hbar^2 x u') u'' + 360\alpha_1^2 \hbar^6 x u' - 432\alpha_1^2 \hbar^6 x u'^2 - 468\alpha_1^2 \hbar^4 x^2 u'^2 - 144\alpha_1^2 \hbar^4 x u'^2 - 288\alpha_1^2 \hbar^4 u - 432\alpha_1^2 \hbar^4 x^2 u' + 42\alpha_1^2 \hbar^6 x u' + 72\alpha_1^2 \hbar^2 x u + 48\alpha_1^2 \hbar^2 x u' + 90\alpha_1^2 \hbar^4 x^2 u - 36\alpha_1^3 \hbar^2 x^4 - \alpha_1^3 x^6 = 0. \]

This equation passes the Painlevé test. Substituting the Laurent series
\[u = \sum_{k=0}^{\infty} d_k (x - x_0)^{k+p}, \quad d_0 \neq 0, \]
in (66), we find \(p = -1 \). The resonances are \(r = 1, 2, 5, 6, 8 \) and we obtain \(d_0 = -\hbar^2 \). The constants \(d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8, d_9, d_{10} \) are arbitrary, as they should be. It is not known whether (66) can be solved in terms of known functions.

4. Classification of classical algebraic systems in one dimension

We consider the Hamiltonian (1) and polynomial \(K_1 \) (2) in classical mechanics and require that they satisfy one of the equation (4) where \([H_1, K_1] \equiv \{H_1, K_1\}_P\) is now a Poisson bracket. Instead of (19) we now have
\[\{H_1, K_1\}_P = \sum_{l=0}^{M+1} Z_l(x) p^l \]
with
\[Z_0 = f_1 V', \quad Z_l = (l+1) f_{l+1} V' - f_{l-1}, \quad 1 \leq l \leq M - 1, \quad Z_M = -f_M, \quad Z_{M+1} = -f_M. \]
For all the algebras in (4) we obtain \(f_M = k \) a constant, so we can set \(f_M = 1 \).

I. Polynomial of type (a):

We have \(Z_l = 0, 0 \leq l \leq M \) and the result is trivial. In the case that \(K_1 \) is of order 1, 3 and 5 we get a constant potential. For \(K_1 \) of order 2 and 4, the only function of \(x \) and \(p \), that Poisson commutes with the Hamiltonian is a function of \(H_1 \) itself. In particular the polynomial \(K_1 \) is any polynomial in \(H \). For all \(M \) we find that either \(V \) is constant or \(K \) is a polynomial in \(H \). Notice that this is quite different from the quantum case (24), (32) where we obtain potentials expressed in terms of nonlinear special functions having the Painlevé property.
The types (b)–(d) are more interesting and provide specific potentials that will generate super-integrable systems in E_2.

II. Polynomial of type (b):

The determining equations in this case are

\[f_1 V' = \alpha_1, \quad f'_{M-1} = 0, \]
\[(l + 1) f_{l+1} V' - f'_{l-1} = 0, \quad 1 \leq l \leq M - 1. \]

They were already solved by Güngör et al [30]. For completeness we reproduce some of their results in our notations.

\[V_{b_1} = \alpha_1 x, \]
\[K_{b_1} = p_x + \beta. \]

\[V_{b_2} = \frac{\alpha_1}{\beta} x, \]
\[K_{b_2} = 2H_1 + \beta p_x. \]

\[V_{b_3} = \epsilon \sqrt{\frac{2\alpha_1}{3} x}; \quad \epsilon = \pm 1; \]
\[K_{b_3} = p_x(2H_1 + V) + 2\beta H_1. \]

\[V_{b_4} = \epsilon \sqrt{\frac{2\alpha_1}{3\beta} x}; \quad \epsilon = \pm 1; \]
\[K_{b_4} = 4H_1^2 + 2\beta p_x H_1 + \beta V p_x. \]

\[V_{b_5} = \sqrt{\frac{2\alpha_1}{5} x}, \]
\[K_{b_5} = 4p_x H_1^2 + 4\beta h_1^2 + 2V p_x H_1 + \frac{3}{2} V_2 p_x. \]

III. Polynomial of type (c):

The determining equations are

\[f_1 V' = \alpha_1 V, \quad 3f_3 V' - f'_3 = \frac{\alpha_1}{2}, \quad f'_{M-1} = 0, \quad M \neq 2, \]
\[(l + 1) f_{l+1} V' - f'_{l-1} = 0, \quad 1 \leq l \leq M - 1, \quad l \neq 2. \]

The case when K_1 is a first order polynomial does not exist. The solutions for $2 \leq M \leq 5$ are

\[V_{c_2} = \frac{c}{x^2}, \]
\[K_{c_2} = 2H_1 - \frac{\alpha_1}{2} x p_x. \]

\[V_{c_3} = V; \quad (\alpha_1 x - 2V)^2 V = c, \]
\[K_{c_3} = p_x^3 + \beta p_x^2 + (3V - \frac{\alpha_1}{2}) p_x + 2\beta V. \]

\[V_{c_4} = V; \quad (2\beta V - \alpha_1 x)^2 V = c, \]
\[K_{c_4} = p_x^4 + \beta p_x^3 + 4V p_x^2 + (3\beta V - \frac{\alpha_1}{2} x) p_x + 4V^2. \]
\[V_{c} = V; \quad (\alpha_1 x - 3 V^2)^2 V = c, \]
\[K_{c} = p^5_x + \beta p^4_x + 5 V p^3_x + 4 \beta V^2 p^2_x + \left(\frac{15}{2} V^2 - \frac{\alpha_1}{2} x \right) p_x + 4 \beta V^2. \]
(79)

IV. Polynomial of type (d):

In this case we define polynomial ladder operators as
\[K_{1}^{\pm} = \sum_{l=0}^{M} f_l p^l_x \]
(80)
where \(f_l = c g_l \), with
\[c = \begin{cases} \mp i & \text{for } l \text{ even} \\ 1 & \text{for } l \text{ odd} \end{cases} \]
(81)
and they satisfy the algebraic relations
\[\{ H_1, K_{1}^{\pm} \} = \pm i \alpha_1 K_{1}^{\pm}. \]

The determining equations are
\[g_1 V' = \alpha_1 g_0, \quad g'_{M-1} = (-1)^{M-1} \alpha_1 g_m, \]
\[(l + 1) g_{l+1} V' - g'_{l-1} = -\alpha_1 g_l, \quad 1 \leq l \leq M - 1. \]
(82)

Their solutions are
\[V_{d1} = \frac{\alpha_1^2 x^2}{2}, \]
\[K_{d1} = p_x + \alpha_1 x. \]
(83)

\[V_{d2} = \frac{\alpha_1 x^2}{8} + \frac{\gamma}{x^2}, \]
\[K_{d2} = p^2_x - \alpha_1 x p_x + 2 V - \frac{\alpha_1^2}{2} x^2. \]
(84)

\[V_{d3} = V, \]
\[K_{d3} = p^3_x + \alpha_1 x p^2_x + (3V - \frac{\alpha_1^2}{2} x^2) p_x - \left(\frac{\alpha_1^2 x^2 - 6V}{2 \alpha_1} \right) V'. \]
(85)

The potential \(V \) satisfies
\[24 \alpha_1 x V' - 4 \alpha_1^2 x^3 V' - 12 V^2 - 12 \alpha_1^2 x^2 V + \alpha_1^4 x^4 + 4d = 0. \]
(86)

It admits the following first integral
\[9V^4 - 14 \alpha_1^2 x^2 V^3 + \left(\frac{15}{2} \alpha_1^4 x^4 - 6d \right) V^2 - 2 \alpha_1^2 x^2 \left(\frac{3}{4} \alpha_1^4 x^4 - d \right) V + \left(\frac{\alpha_1^2}{16} x^8 + \frac{1}{2} d \alpha_1^4 x^4 + d^2 \right) = 0. \]
(87)

\[V_{d4} = V, \]
\[K_{d4} = p^4_x - \alpha_1 x p^3_x + (4u' - \frac{\alpha_1^2}{2} x^2) p^2_x + \left(\frac{\alpha_1^2}{6} x^3 - \alpha_1 u - 3 \alpha_1 x u' \right) p_x + \left(\frac{\alpha_1^2}{6} x^3 - u - 3 x u' \right) u''. \]
(88)
where \(u(x) = \int V \, dx \) and \(u \) satisfies
\[
3x^2 u'^2 + 2xu'' - \frac{1}{3} \alpha_1^2 x^4 u' - u^2 = \frac{2}{3} \alpha_1^4 x^6 + \frac{\alpha_1^4 x^6}{72} + k_1 x + k_2 = 0.
\]

Also using (11) we find that \(V(x) \) satisfies the following 5th order algebraic equation
\[
0 = -32 \alpha_1^2 x^2 V^5 + (128d + 17\alpha_1^4 x^4) V^4
\]
\[
+ (-96c - \frac{128d^2}{\alpha_1^4 x^4} - \frac{512e}{\alpha_1^4 x^4} - 32d_1 \alpha_1^4 x^4 - \frac{7\alpha_1^6 x^6}{2}) V^3
\]
\[
+ (-40d^2 + 352e + \frac{256c^2}{\alpha_1^4 x^4} + \frac{256cd}{\alpha_1^4 x^4} + 32\alpha_1^4 x^4 + 3d_1 \alpha_1^4 x^4 + \frac{11\alpha_1^6 x^6}{32}) V^2
\]
\[
+ (-16cd - \frac{128cd^2}{\alpha_1^4 x^4} - \frac{512ce}{\alpha_1^4 x^4} - \frac{64d^2}{\alpha_1^4 x^4} + \frac{256de}{\alpha_1^4 x^4} - \frac{\alpha_1^6 x^6}{64}) V
\]
\[
+ 64c^2 + 4d^3 + 112de - \frac{16d^4}{\alpha_1^4 x^4} + \frac{128d^2e}{\alpha_1^4 x^4} + \frac{256c^2}{\alpha_1^4 x^4} + \frac{256de}{\alpha_1^4 x^4} + \frac{64d^2}{\alpha_1^4 x^4} - \frac{12\alpha_1^6 x^6}{4096},
\]
\[
f_5 = -\alpha_1 u, f_2 = \left(-\frac{1}{2} \alpha_1^2 x^2 + 4V\right), f_1 = \frac{1}{8\alpha_1 x}(16d + \alpha_1^4 x^4 + 8e - 16\alpha_1^2 x^2 V - 32V^2),
\]
\[
f_0 = (\sqrt{-16e + 16V} - 16dV^2 + 16V^4).
\]

\[
V_{d_{\alpha}} = V,
\]
\[
K_{d_{\alpha}} = p_1^5 + \alpha_1^4 p_1^4 + (5u' - \frac{\alpha_1^2}{2} x^2) p_1^3 + (4\alpha_1 x u' + \alpha_1 u - \frac{1}{6} \alpha_1^3 x^3) p_1^2
\]
\[
+ \frac{1}{24}(180u'^2 - 36\alpha_1^2 x^2 u' - 24\alpha_1^4 x^4) p_1
\]
\[
+ \frac{1}{24\alpha_1}(\alpha_1^4 x^4 - 24\alpha_1^4 x^4 u' - 36\alpha_1^2 x^2 u' + 180u^2) u''
\]

where \(u(x) = \int V \, dx \) and \(u \) satisfies
\[
(\alpha_1^4 x^4 - 24\alpha_1^2 x^2 u - 36\alpha_1^2 x^2 u' - 180u^2) u'' - 60u'^4 - 78\alpha_1^2 x^2 u'^2 - 24\alpha_1^4 x^4 u' + 7\alpha_1^4 x^4 u'
\]
\[
+ 12\alpha_1^2 x^2 + 8\alpha_1^2 x^4 u - \frac{1}{6} \alpha_1^3 x^6 = 0.
\]

We could also use (11) to get an algebraic equation for \(V \), but it is not very illuminating.

The solutions for \(H_{d_{\alpha}} \) and \(H_{d_{\alpha}} \) are presented in [45, 47].

The list of Hamiltonians reduces to \(H_{b_0} \equiv H_{b_0}, H_{d_{\alpha}}, H_{c_{\alpha}}, H_{d_{\alpha}}, H_{a_{\alpha}} \equiv H_{a_{\alpha}}, H_{b_0} \equiv H_{b_0}, H_{e_{\alpha}}, H_{d_{\alpha}}, H_{d_{\alpha}}, H_{a_{\alpha}}, H_{b_0}, H_{c_{\alpha}}, H_{d_{\alpha}} \).

5. Classification of superintegrable systems up to fifth order integrals: quantum and classical systems

In section 3 we classified all quantum algebraic systems in one dimension with \(M \) satisfying \(1 \leq M \leq 5 \). Here we shall use 2 copies of these algebras \(H_1, K_1 \) and \(H_2, K_2 \) to construct 2D superintegrable systems as described in section 2 and table 1.
In table 3, column 1 gives the order of the operator K in the 2D systems. In column 2 all entries have the form (z_i, w_j). The letters z and w run through the type a, b, c, d as in (4) with z referring to the x variable and w to the y. The indices i and j correspond to the orders of the corresponding operators K_1 and K_2 and run between 1 and 5. The values (α_1, α_2) in column 3 refer to the value of α_1 in (4b)–(4d) in x-space and y-space, respectively.

The systems in E_2 can however admit lower order integrals of motion as this construction does not necessarily provide integrals of the lowest order. As an example for one of the Smorodinsky–Winternitz potential the ladder operators lead to an integral of order 3 that is in fact the commutator or Poisson commutator of two integrals of order 2. The same phenomena occurs for some of the Gravel potentials.

The potential (19) in Gravel’s list can be obtained by (d_2, d_2) construction of 8th order integral with $(\alpha_1, \alpha_2) = (\alpha, 3\alpha)$. The potentials Q_1^1, Q_2^1, Q_2^2 and Q_1^3 in [51] are the cases $(d_4, d_2), (c_2, c_3), (c_2, b_3)$ and (a_1, a_3) respectively.

Let us present the list of obtained quantum superintegrable systems.

Quantum superintegrable systems that occur in infinite families:

Jauch–Hill potentials:

These anisotropic harmonic oscillator potentials have the form $V = \omega^2(nx^2 + my^2)$ where n and m are two mutually prime positive integers [34].

$$(d_1, d_1) : \quad V = \frac{\alpha^2}{2}\left(\frac{1}{\hbar^2}(x^2 + 4y^2), \right.$$

$$K = (K_1)^2(K_2) - (K_1^2) = (yp_x - xp_y) p_x.$$

$$V = \frac{\alpha^2}{2}\left(\frac{1}{\hbar^2}(x^2 + 9y^2), \right.$$

$$K = (K_1)^3(K_2) - (K_1^2) = (xp_y - yp_x) p_x^2.$$

$$V = \frac{1}{2\hbar^2}(\alpha_1^2 x^2 + \alpha_2^2 y^2),$$

$$(\alpha_1, \alpha_2) = (\alpha, 4\alpha) : \quad K = (K_1)^4(K_1^2) - (K_1^2) = (xp_y - yp_x) p_x^4.$$

$$(\alpha_1, \alpha_2) = (2\alpha, 3\alpha) : \quad K = (K_1)^2(K_2) - (K_1^2) = (xp_y - yp_x) p_x^2 p_y.$$

$$(\alpha_1, \alpha_2) = (\alpha, \alpha) : \quad K = (K_1)^3(K_2) - (K_1^2) = (xp_y - yp_x) p_x^3 p_y.$$

$$(\alpha_1, \alpha_2) = (\alpha, 2\alpha) : \quad K = (K_1)^4(K_2) - (K_1^2) = (xp_y - yp_x) p_x^4 p_y.$$

$$(\alpha_1, \alpha_2) = (\alpha, 5\alpha) : \quad K = (K_1)^5(K_2) - (K_1^2) = (xp_y - yp_x) p_x^4.$$

All values of n and m can be obtained in this manner. The \hbar in the denominator of V has no meaning since we can have $\alpha_1^2 = nh^2$, $\alpha_2^2 = mh^2$.

Smorodinsky–Winternitz potentials:

The original multiseparable potentials in E_2 were

$$V(x, y) = \omega^2(x^2 + y^2) + \frac{\beta}{x^2} + \frac{\gamma}{y^2}$$ \quad (93)$$

that is separable in Cartesian, polar and elliptic coordinates, and
\[V(x, y) = \omega^2 (x^2 + 4y^2) + \frac{\gamma}{y^2} \]
(94)

that is separable in Cartesian and parabolic coordinates.

Both allow second order integrals of motion [24, 39]. These, plus two further ones, not allowing separation in Cartesian coordinates, were later called Smorodinsky–Winternitz potentials [19–21, 29]. For \(\omega = 0 \) ‘degenerate’ forms of the Smorodinsky–Winternitz potentials exist, such as

\[V(x, y) = \alpha y + \frac{\beta}{x^2} + \frac{\gamma}{y^2}. \]
(95)

In the present approach the potentials (93) and (94) are built into infinite sets of potentials generalizing the Smorodinsky–Winternitz potentials both in classical and quantum mechanics [22, 62]. They occur when we consider the cases \((d_1, d_2)\) and \((d_2, d_2)\).

\[V = \omega^2 (n^2 x^2 + m^2 y^2) + \frac{\beta}{x^2} + \frac{\gamma}{y^2}, \]
(96)

\[K = (K_1^{(n)})^m (K_2^{-n}) - (K_1^{-n})^m (K_2^{n}). \]
(97)

Taking \(m = n \geq 1, \omega \neq 0, \beta \neq 0 \) and \(\gamma \neq 0 \), we obtain the potential (93). Taking \(m = 2n, \beta = 0 \) we obtain (94). The pair \((d_1, d_2)\) provides (96) with \(\beta = 0 \). The degenerate one (95) is obtained as \((c_2, b_1)\). The potentials (96) have been called ‘caged harmonic oscillators’ [22].

Elliptic and hyperelliptic function potentials:

\((a_3, a_3)\):

\[V = \hbar^2 (\varphi(x) + \varphi(y)), \]

\[K = K_1 + K_2. \]

\((a_3, a_5)\):

\[V = \hbar^2 \varphi(x) + \hbar^2 g(y), \quad K = K_1 + K_2 \]

\((a_5, a_5)\):

\[V = \hbar^2 (f(x) + g(y)), \quad K = K_1 + K_2 \]

where \(f(x) \) and \(g(y) \) are hyperelliptic functions satisfying equation (30) and are defined in (31).

Potentials in terms of the first Painlevé transcendent:

\((b_3, b_3)\):

\[V = \hbar^2 (\omega_1^2 P_I + \omega_2^2 P_I), \]

\[K = \alpha_2 K_1 - \alpha_1 K_2. \]

\((b_1, b_3)\):

\[V = \frac{\alpha_1}{\hbar} x + \hbar^2 (\omega_2^2 P_I), \]

\[K = \alpha_2 K_1 - \alpha_1 K_2. \]

\((c_2, b_3)\):

\[V = \frac{\beta}{x^2} + \hbar^2 \omega_2^2 P_I (\omega_2 y), \quad \omega_2 = \frac{\sqrt{4 \alpha_2}}{\hbar}, \quad K = \alpha_2 K_1 - \alpha_1 H_1 K_2. \]
Order of integrals	Type	\((\alpha_1, \alpha_2)\)
1	\((b_1, b_1)\)	\((\alpha_1, \alpha_2)\)
	\((d_1, d_1)\)	\((\alpha, \alpha)\)
2	\((d_1, d_1)\)	\((\alpha, 2\alpha)\)
	\((d_1, d_2)\)	\((\alpha, \alpha)\)
3	\((a_3, a_3)\)	\((\alpha_1, \alpha_2)\)
	\((b_3, b_3)\)	\((\alpha_1, \alpha_2)\)
	\((b_1, b_3)\)	\((\alpha_1, \alpha_2)\)
	\((c_2, b_1)\)	\((\alpha_1, \alpha_2)\)
	\((c_3, b_1)\)	\((\alpha_1, \alpha_2)\)
	\((d_1, d_3)\)	\((\alpha, \alpha)\)
	\((d_1, d_2)\)	\((\alpha, \alpha)\)
	\((d_2, d_2)\)	\((\alpha, \alpha)\)
	\((d_1, d_1)\)	\((\alpha, 3\alpha)\)
4	\((d_4, d_1)\)	\((\alpha, \alpha)\)
	\((d_1, d_3)\)	\((\alpha, 2\alpha)\)
	\((d_1, d_2)\)	\((\alpha, 3\alpha)\)
	\((d_1, d_1)\)	\((\alpha, 4\alpha)\)
	\((b_5, b_1)\)	\((\alpha_1, \alpha_2)\)
	\((b_5, b_3)\)	\((\alpha_1, \alpha_2)\)
	\((c_2, b_3)\)	\((\alpha_1, \alpha_2)\)
	\((c_5, b_3)\)	\((\alpha_1, \alpha_2)\)
	\((c_5, b_1)\)	\((\alpha_1, \alpha_2)\)
	\((c_5, b_1)\)	\((\alpha_1, \alpha_2)\)
	\((d_5, d_1)\)	\((\alpha, \alpha)\)
	\((d_1, d_2)\)	\((\alpha, \alpha)\)
	\((d_4, d_3)\)	\((\alpha, \alpha)\)
	\((d_4, d_2)\)	\((\alpha, \alpha)\)
	\((d_1, d_4)\)	\((\alpha, 2\alpha)\)
	\((d_1, d_3)\)	\((\alpha, 2\alpha)\)
	\((d_1, d_3)\)	\((\alpha, 3\alpha)\)
5	\((a_5, a_5)\)	\(...\)
	\((a_5, a_5)\)	\(...\)
	\((b_1, b_5)\)	\((\alpha_1, \alpha_2)\)
	\((b_5, b_3)\)	\((\alpha_1, \alpha_2)\)
	\((c_2, c_3)\)	\((\alpha_1, \alpha_2)\)
	\((c_3, c_3)\)	\((\alpha_1, \alpha_2)\)
	\((c_2, c_1)\)	\((\alpha_1, \alpha_2)\)
	\((c_5, b_3)\)	\((\alpha_1, \alpha_2)\)
	\((c_3, b_3)\)	\((\alpha_1, \alpha_2)\)
	\((d_5, d_1)\)	\((\alpha, \alpha)\)
	\((d_4, d_2)\)	\((\alpha, \alpha)\)
	\((d_4, d_3)\)	\((\alpha, \alpha)\)
	\((d_1, d_4)\)	\((\alpha, 2\alpha)\)
	\((d_1, d_3)\)	\((\alpha, 2\alpha)\)
	\((d_1, d_3)\)	\((\alpha, 3\alpha)\)
	\((d_1, d_2)\)	\((\alpha, 4\alpha)\)
	\((d_1, d_1)\)	\((\alpha, 5\alpha)\)
Potentials in terms of the second Painlevé transcendent:

\((c_3, b_1)\):

\[V = -\alpha_1^2 P_2^2 - \alpha_1 \frac{\alpha_1}{\hbar} x + \frac{\alpha_1}{\hbar} y, \quad P_2 = P_2\left(\frac{1}{\hbar} \sqrt{2\alpha_1 x} \right) \]

and

\[V = \frac{\hbar^2}{2} (\alpha P_2^2 + P_2^2) + \frac{\alpha_2}{\hbar} y, \quad P_2 = P_2\left(\frac{\sqrt{2\alpha_1}}{\hbar^3} x \right), \]

\[K = \alpha_2 K_1 - \alpha_1 H_1 K_2 = \alpha_2 p_z^3 - \frac{\alpha_1}{2} p_y^2 p_z. \]

\((c_3, c_3)\):

\[V = \hbar^2 (f(x) + g(y)) - \frac{1}{2\hbar} (\alpha_1 x + \alpha_2 y), \quad K = \alpha_2 H_2 K_1 - \alpha_1 H_1 K_2 = (\alpha_2 p_x - \alpha_1 p_y) p_y^2. \]

\((c_2, c_3)\):

\[V = \frac{\beta}{x^2} + \hbar^2 g(y) - \frac{\alpha_2}{2\hbar} y, \quad K = \alpha_2 H_2 K_1 - \alpha_1 H_1 K_2. \]

\((c_3, b_3)\):

\[V = f(x) + \hbar^2 \omega^2 P_2 (\omega_2 y), \quad \omega_3 = \frac{\sqrt{3} \alpha_2}{\hbar}, \quad K = \alpha_2 K_1 - \alpha_1 H_1 K_2 \]

where \(f(x) \) and \(g(y) \) satisfy equation (44).

Potentials in terms of the fourth Painlevé transcendent:

\((d_1, d_3)\):

\[V = \frac{\alpha^2}{2\hbar^2} (x^2 + y^2) + \epsilon \alpha P_4 + \frac{2\alpha^2}{\hbar^2} (P_4^2 + yP_4), \quad K = (K_1^1)(K_2^2) - (K_1^2)(K_2^1). \]

\((d_3, d_2)\):

\[V = \frac{\alpha^2}{8\hbar^2} (4x^2 + y^2) + \frac{\beta}{y^2} + \epsilon \alpha P_4 + \frac{2\alpha^2}{\hbar^2} (P_4^2 + xP_4), \]

\[K = (K_1^1)(K_2^2) - (K_1^2)(K_2^1) = (xp_y - yp_x) p_y^3. \]

\((d_1, d_3)\):

\[V = \frac{\alpha^2}{2\hbar^2} (x^2 + 4y^2) + 2\epsilon \alpha P_4 + \frac{8\alpha^2}{\hbar^2} (P_4^2 + yP_4), \quad K = (K_1^1)^2(K_2^2) - (K_1^2)^2(K_2^1) = (xp_y - yp_x) p_y p_z. \]

\[V = \frac{\alpha^2}{2\hbar^2} (x^2 + 9y^2) + 3\epsilon \alpha P_4 + \frac{18\alpha^2}{\hbar^2} (P_4^2 + yP_4), \quad K = (K_1^1)^3(K_2^2) - (K_1^2)^3(K_2^1) = (xp_y - yp_x) p_y^2 p_z. \]

\((d_3, d_3)\):

\[V = f(x) + g(y), \quad K = (K_1^1)(K_2^2) - (K_1^2)(K_2^1) = (xp_y - yp_x) p_y^2 p_z. \]

where \(f(x) \) and \(g(y) \) are given in (54) and \(\alpha_1 = \alpha_2 = \alpha. \)
Potentials in terms of the fifth Painlevé transcendent:

\((d_1,d_2)\):

\[
V = \frac{\alpha^2}{8\hbar^2} (x^2 + y^2) + \frac{3\hbar^2}{8x^2} + h^2\left(\frac{\gamma}{P_3 - 1} + \frac{1}{x^2}(P_5 - 1)(\sqrt{2\lambda} + \lambda(2P_3 - 1) + \frac{\beta}{P_5}) \right)
+ x^2\left(\frac{P_5^2}{2P_3} - \frac{\alpha^2}{8\hbar^2} P_3 \right) \left(\frac{2P_3 - 1}{(P_3 - 1)^2} - \frac{P'_s}{P_3 - 1} - 2\sqrt{2\lambda}P'_s \right),
\]

\(K = (K^1_1)^2(K^-_2) = (K^-_1)^2(K^1_2) = (x_p - y_p) p^3 p_s^5.\)

\((d_3,d_2)\):

\[
V = \frac{\alpha^2}{8\hbar^2} (x^2 + y^2) + \frac{3\hbar^2}{8x^2} + h^2\left(\frac{\gamma}{P_3 - 1} + \frac{1}{x^2}(P_5 - 1)(\sqrt{2\lambda} + \lambda(2P_3 - 1) + \frac{\beta}{P_5}) \right)
+ x^2\left(\frac{P_5^2}{2P_3} - \frac{\alpha^2}{8\hbar^2} P_3 \right) \left(\frac{2P_3 - 1}{(P_3 - 1)^2} - \frac{P'_s}{P_3 - 1} - 2\sqrt{2\lambda}P'_s \right),
\]

\(K = (K^1_1)^2(K^-_2) - (K^-_1)^2(K^1_2) = (x_p - y_p) p^3 p_s^5.\)

\((d_1,d_3)\):

\[
V = \frac{\alpha^2}{2\hbar^2} (x^2 + y^2) + \frac{3\hbar^2}{8x^2} + h^2\left(\frac{\gamma}{P_3 - 1} + \frac{1}{x^2}(P_5 - 1)(\sqrt{2\lambda} + \lambda(2P_3 - 1) + \frac{\beta}{P_5}) \right)
+ x^2\left(\frac{P_5^2}{2P_3} - \frac{\alpha^2}{2\hbar^2} P_3 \right) \left(\frac{2P_3 - 1}{(P_3 - 1)^2} - \frac{P'_s}{P_3 - 1} - 2\sqrt{2\lambda}P'_s \right),
\]

\(K = (K^1_1)^2(K^-_2) - (K^-_1)^2(K^1_2) = (x_p - y_p) p^3 p_s^5.\)

Potentials satisfying higher order nonlinear equations passing the Painlevé test:

\((b_1,b_3)\):

\[
V = \frac{\alpha_1}{\hbar} x + g(y), \quad K = \alpha_2 K_1 - \alpha_1 K_2.
\]

\((b_3,b_5)\):

\[
V = \hbar^2 \omega_1^2 P_1(\omega_1 x) + g(y), \quad \omega_1 = \sqrt{4\alpha_1 / \hbar}.
\]

\(K = \alpha_2 K_1 - \alpha_1 K_2.\)

\((b_5,b_5)\):

\[
V = f(x) + g(y), \quad K = \alpha_2 K_1 - \alpha_1 K_2
\]

where \(f(x) + g(y)\) satisfy equation \((40)\).

\((d_5,d_1)\):

\[
V = f(x) + \frac{\alpha^2}{2\hbar^2} y^2, \quad K = (K^1_1)(K^-_2) - (K^-_1)(K^1_2) = y p^5_s
\]

where \(F(x) = \int f dx\) satisfies equation \((66)\).

\((c_3,b_1)\):

\[
V = \hbar^2 f(\hbar^2 x) + \frac{\alpha_1}{\hbar} x, \quad K = \alpha_2 K_1 - \alpha_1 H_1 K_2
\]

\((c_5,b_3)\):
\[V = \hbar^2 f(h^2 x) + \hbar^2 \omega_2^2 p_y, \quad \omega_2 = \sqrt{\frac{4\alpha_2}{\hbar}}, \quad K = \alpha_2 K_1 - \alpha_1 H_1 K_2 \]

where \(f(X) \) satisfies equation (50).

Classical superintegrable system:

The systems constructed by \((d_1, d_1), (d_1, d_2)\) and \((d_2, d_2)\), i.e. the Jauch–Hill and Smorodinsky–Winternitz potentials, are the same as in the quantum case. Those related to \((a_i, a_j)\) have no classical analog. In the approach of this article we generate the following potentials and integrals.

\((b_3, b_3)\):

\[V = \epsilon(\sqrt{\frac{2\alpha_1}{3} x} + \sqrt{\frac{2\alpha_2}{3} y}); \quad \epsilon = \pm 1, \]

\[K = \alpha_2 K_1 - \alpha_1 K_2. \]

\((b_1, b_3)\):

\[V = \alpha_1 x + \epsilon \sqrt{\frac{2\alpha_2}{3} y}, \]

\[K = \alpha_2 K_1 - \alpha_1 K_2. \]

\((c_2, b_3)\):

\[V = \beta \frac{x^2}{x^2} + \epsilon \sqrt{\frac{2\alpha_2}{3} y}, \quad K = \alpha_2 K_1 - \alpha_1 H_1 K_2 \]

\((c_3, b_1)\):

\[V = f(x) + \alpha_2 y, \quad K = \alpha_2 K_1 - \alpha_1 H_1 K_2 \]

\((c_3, b_3)\):

\[V = f(x) + \epsilon \sqrt{\frac{2\alpha_2}{3} y}, \quad K = \alpha_2 K_1 - \alpha_1 H_1 K_2 \]

where \(f(x) \) satisfies equation

\[(\alpha_1 x - 3f^2)^2 f = c \]

\((c_3, b_1)\):

\[V = g(x) + \alpha_2 y, \quad K = \alpha_2 K_1 - \alpha_1 H_1 K_2 = \alpha_2 p^2 - \frac{\alpha_1}{2} p^2 p_y \]

\((c_2, c_3)\):

\[V = g(x) + g(y), \quad K = \alpha_2 H_2 K_1 - \alpha_1 H_1 K_2 = (\alpha_2 p_x - \alpha_1 p_y) p^2 p_y \]

\((c_2, c_3)\):

\[V = \beta \frac{x^2}{x^2} + g(y), \quad K = \alpha_2 H_2 K_1 - \alpha_1 H_1 K_2. \]

\((c_3, b_3)\):

\[V = g(x) + \epsilon \sqrt{\frac{2\alpha_2}{3} y}, \quad K = \alpha_2 K_1 - \alpha_1 H_1 K_2 \]
where $g(x)$ satisfies equation
\[(\alpha_1 x - 2g)^2 g = c\]

(d_1, d_3):
\[
V = \frac{\alpha^2}{2} x^2 + h(y), \alpha_2 = \alpha, \ K = (K_1^1)(K_2^-) - (K_1^-)(K_2^1)
\]

(d_3, d_2):
\[
V = h(x) + \frac{\alpha^2}{8} y^2 + \frac{\beta}{y^2}, \quad
K = (K_1^1)(K_2^-) - (K_1^-)(K_2^1) = (xp_y - yp_x)p_y^2p_y.
\]

(d_1, d_3):
\[
V = \frac{\alpha^2}{2} x^2 + h(y), \alpha_2 = 2\alpha, \ K = (K_1^1)^2(K_2^-) - (K_1^-)^2(K_2^1) = (xp_y - yp_x)p_y^2p_y.
\]

(d_3, d_3):
\[
V = h(x) + h(y), \ K = (K_1^1)(K_2^-) - (K_1^-)(K_2^1) = (xp_y - yp_x)p_y^2p_y.
\]

where h satisfies the nonlinear ODE (86), or equivalently the algebraic equation (87).

(d_4, d_1):
\[
V = k(x) + \frac{\alpha^2}{2} y^2, \quad
K = (K_1^1)(K_2^-) - (K_1^-)(K_2^1) = (xp_y - yp_x)p_y^2.
\]

(d_4, d_2):
\[
V = k(x) + \frac{\alpha^2}{8} y^2 + \frac{\beta}{y^2}, \quad
K = (K_1^1)(K_2^-) - (K_1^-)(K_2^1) = (xp_y - yp_x)p_y^3p_y.
\]

(d_1, d_4):
\[
V = \frac{\alpha^2}{2} x^2 + k(y), \alpha_2 = 2\alpha, \ K = (K_1^1)^2(K_2^-) - (K_1^-)^2(K_2^1) = (xp_y - yp_x)p_y^3.
\]

where k satisfies the nonlinear ODE (89), or equivalently the fifth order algebraic equation (90).

(b_1, b_5):
\[
V = \alpha_1 x + \sqrt{\frac{2\alpha_2}{5}} y, \ K = \alpha_2K_1 - \alpha_1K_2.
\]
(b₃, b₅):
\[V = \epsilon \sqrt{\frac{2\alpha_1}{3} x} + \sqrt{\frac{2\alpha_2}{5} y} \]
\[K = \alpha_2 K_1 - \alpha_1 K_2. \]

(b₅, b₅):
\[V = \sqrt{\frac{2\alpha_1}{5} x} + \sqrt{\frac{2\alpha_2}{5} y}, \quad K = \alpha_2 K_1 - \alpha_1 K_2 \]
where \(f(x) \) and \(g(y) \) satisfy equation (40).

(d₁, d₁):
\[V = f(x) + \frac{\alpha^2}{2} y^2, \quad K = (K_1)(K_2^-) - (K_1^-)(K_2) = yp_x^5 \]
where \(F(x) = \int f(x) \) satisfies equation (92).

6. Conclusion

Our main conclusion is that the systematic use of quantum or classical algebraic systems in one dimension is an efficient method of generating superintegrable systems in a 2D Euclidean space. By construction, all systems thus obtained allow the separation of variables in Cartesian coordinates in the Schrödinger and the Hamilton–Jacobi equation, respectively. The algebraic systems consist of a pair \((H_1, K_1) \) where \(H_1 \) is a natural Hamiltonian as in (1) and \(K_1 \) a polynomial as in (2). The four types of algebras considered are as in (4) and all of them should be constructed in \(x \) and \(y \) spaces independently.

Let us again run through all combinations of the type \((z_i, w_j) \) where \(z \) is in \(x \)-space and \(w \) in \(y \)-space. The subscripts give the order of the corresponding polynomial \(K_l \), \(l = 1, 2 \).

The pair \((d_1, d_1) \) with \((\alpha_1, \alpha_2) = \omega^2(n, m) \) yields the Jauch and Hill potentials.

The pair \((d_2, d_2) \) gives an infinite set of generalizations of the Smorodinsky–Winternitz potentials in particular the ‘caged harmonic oscillator’ of [62] and [22].

Pairs of the type \((a_i, a_j) \) in quantum mechanics give potentials in terms of elliptic or hyper-elliptic functions. In classical mechanics their limit is free motion \((V = \text{constant}) \).

All other pairs in quantum mechanics lead to ‘exotic potentials’ expressed in terms of Painlevé transcendent or their generalizations that are solutions of higher order ODEs. This is true for all examples so far considered and we conjecture that this is true for all values of \(i \) and \(j \). In the classical case exotic potentials also exist. Very often they satisfy nonlinear algebraic equations. The obtained ODEs are also nonlinear of lower order than in the quantum case and they do not have the Painlevé property.

Finally, let us compare the results of this article with those of the direct approach for potentials allowing the separation of variables in Cartesian coordinates [26, 27, 51]. Here we have reobtained all but two previously known superintegrable potentials in real 2D Euclidean space with additional integrals of order \(N < 5 \). The two exceptions are \(Q_{11} \) and \(Q_{13} \) of section 7 in [51]. These are both non confining exotic potentials expressed in terms of the Painlevé transcendent \(P_3 \). The corresponding fourth order integrals have leading terms of the type \(L^2 p^2_x \) and \(L_x p^2_x \), respectively. We cannot rule out the possibility that the present approach will also yield these \(P_3 \) potentials if we go to higher order operators in the 1D space and we plan to return to this question in a future article. In any case the 1D approach gives at least a very large class of
solutions. It can be extended to higher order integrals than the direct approach and should be useful for proving general theorems on \(N\)-dimensional integrals.

Acknowledgments

The research of PW was partially supported by an NSERC Discovery grant. MS thanks the University of Montreal for a ‘bourse d’admission’ and a ‘bourse de fin d’études doctorales’. The research of IM was supported by the Australian Research Council through Discovery Early Career Researcher Award DE130101067 and a DP160101376 grant.

ORCID iDs

Masoumeh Sajedi
https://orcid.org/0000-0001-7230-7982

References

[1] Ablowitz M J, Ramani A and Segur H 1978 Non-linear evolution equations and ordinary differential-equations of Painlevé type Lett. Nuovo Cimento 23 333–8

[2] Abouamal I and Winternitz P 2018 Fifth-order superintegrable quantum systems separating in Cartesian coordinates: doubly exotic potentials J. Math. Phys. 59 022104

[3] Andrianov A, Cannata F, Ioffe M and Nishnianidze D 2000 Systems with higher-order shape invariance: spectral and algebraic properties Phys. Lett. A 266 341

[4] Bargmann V 1936 Zur theorie des Wasserstoffatoms Z. Phys. 99 576–82

[5] Boyer C P and Miller W Jr 1974 A classification of second order raising operators for Hamiltonians in two variables J. Math. Phys. 15 1484

[6] Burchnall J L and Chaundy T W 1923 Commutative ordinary differential operators Proc. Lond. Math. Soc. s2–21 420–40

[7] Calzada J A, Kuru Ş and Negro J 2014 Superintegrable Lissajous systems on the sphere Eur. Phys. J. Plus 129 164

[8] Calzada J A, Kuru Ş and Negro J 2014 Polynomial symmetries of spherical Lissajous systems e-print (arXiv:1404.7066)

[9] Carballo J M, Fernández C D J, Negro J and Nieto L M 2004 Polynomial Heisenberg algebras J. Phys. A: Math. Gen. 37 10349

[10] Chazy J 1911 Sur les équations différentielles de troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes Acta Math. 33 317–85

[11] Cosgrove C M 2006 Higher-order Painlevé equation in the polynomial class II: bureau symbol P1. Stud. Appl. Math. 116 321–413

[12] Cosgrove C M 2000 Higher-order Painlevé equation in the polynomial class I: bureau symbol P2 Stud. Appl. Math. 104 1–65

[13] Cosgrove C M 2000 Chazy classes IX–XI of third-order differential equations Stud. Appl. Math. 104 171–228

[14] Demircioğlu B, Kuru Ş, Önder M and Verçin A 2002 Two families of superintegrable and isospectral potentials in two dimensions J. Math. Phys. 43 2133

[15] Doebner H-D and Zhidanov R Z 1999 The stationary KdV hierarchy and so(2, 1) as a spectrum generating algebra J. Math. Phys. 40 4995

[16] Escobar-Ruiz A M, López Vieyra J C and Winternitz P 2017 Fourth order superintegrable systems separating in polar coordinates. I. Exotic potentials J. Phys. A: Math. Theor. 50 495206

[17] Escobar-Ruiz A M, López Vieyra J C, Winternitz P and Yurdüşen I 2018 Fourth-order superintegrable systems separating in polar coordinates. II. Standard potentials J. Phys. A: Math. Theor. 51 455202

[18] Escobar-Ruiz A M, Winternitz P and Yurdüşen I 2018 General Nth order superintegrable systems separating in polar coordinates J. Phys. A: Math. Theor. 51 40LT01

[19] Evans N W 1990 Superintegrability in classical mechanics Phys. Rev. A 41 5666–76
[20] Evans N W 1990 Superintegrability of the Winternitz system Phys. Lett. A 147 483–6
[21] Evans N W 1991 Group theory of the Smorodinsky–Winternitz system J. Math. Phys. 32 3369–75
[22] Evans N W and Verrier P E 2008 Superintegrability of the caged anisotropic oscillator J. Math. Phys. 49 092902
[23] Fock V 1935 Zur theorie des wasserstoffatoms Z. Phys. A 98 145–54
[24] Friš J, Mandrosov V, Smorodinsky Ya A, Uhlíř M and Winternitz P 1965 On higher symmetries in quantum mechanics Phys. Lett. 16 354–6
[25] Fushchych W I and Nikitin A G 1997 Higher symmetries and exact solutions of linear and nonlinear Schrödinger equation J. Math. Phys. 38 5944
[26] Gravel S 2004 Hamiltonians separable in Cartesian coordinates and third-order integrals of motion J. Math. Phys. 45 1003–19
[27] Gravel S and Winternitz P 2002 Superintegrability with third-order integrals in quantum and classical mechanics J. Math. Phys. 43 5902–12
[28] Gromak V I, Laine I and Shimomura S 2002 Painlevé Differential Equations in the Complex Plane (Studies in Mathematics vol 28) (Berlin: de Gruyter)
[29] Grosche C, Pogosyan G S and Sissakian A N 1995 Path integral discussion for Smorodinsky–Winternitz potentials. I. Two and three dimensional Euclidean space Fortschr. Phys. 43 453–521
[30] Güngör F, Kuru S, Negro J and Nieto L M 2017 Heisenberg-type higher order symmetries of superintegrable systems separable in Cartesian coordinates Nonlinearity 30 1788
[31] Hietarinta J 1989 Solvability in quantum mechanics and classically superfluous invariants J. Phys. A: Math. Gen. 22 L143–7
[32] Hietarinta J 1998 Pure quantum integrability Phys. Lett. A 246 97–104
[33] Ince E L 1956 Ordinary Differential Equations (New York: Dover)
[34] Jauch J M and Hill E L 1940 On the problem of degeneracy in quantum mechanics Phys. Rev. 57 641–5
[35] Kalnins E G, Kress J M and Miller W Jr 2011 A recurrence relation approach to higher order quantum superintegrability SIGMA 7 031
[36] Kalnins E G and Miller W Jr 2012 Structure results for higher order symmetry algebras of 2D classical superintegrable systems J. Nonlinear Syst. Appl. 3 29
[37] Kalnins E G, Kress J M and Miller W Jr 2018 Separation of Variables and Superintegrability: the Symmetry of Solvable Systems (Beograd: Institute of Physics) (https://doi.org/10.1088/978-0-7503-1314-8)
[38] Marchesini A, Post S and Snobl L 2015 Third-order superintegrable systems with potentials satisfying only nonlinear equations J. Math. Phys. 56 102104
[39] Makarov A A, Smorodinsky Ya A, Valiev K and Winternitz P 1967 A systematic search for nonrelativistic systems with dynamical symmetries Il Nuovo Cimento A 52 1061–84
[40] Marquette I and Winternitz P 2007 Polynomial Poisson algebras for classical superintegrable systems with a third-order integral of motion J. Math. Phys. 48 012902
[41] Marquette I 2009 Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials J. Math. Phys. 50 012101
[42] Marquette I 2009 Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendental potentials J. Math. Phys. 50 095202
[43] Marquette I 2009 Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion J. Math. Phys. 50 122102
[44] Marquette I 2010 Superintegrability and higher order polynomial algebras J. Phys. A: Math. Theor. 43 135203
[45] Marquette I 2010 Construction of classical superintegrable systems with higher order integrals of motion from ladder operators J. Math. Phys. 51 072903
[46] Marquette I 2011 An infinite family of superintegrable systems from higher order ladder operators and supersymmetry J. Phys.: Conf. Ser. 284 012047
[47] Marquette I 2012 Classical ladder operators, polynomial Poisson algebras, and classification of superintegrable systems J. Math. Phys. 53 012901
[48] Marquette I and Quesne C 2013 Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators J. Phys. A: Math. Theor. 46 155201
[49] Marquette I and Quesne C 2013 New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems J. Math. Phys. 54 102102
[50] Marquette I and Quesne C 2014 Combined state-adding and state-deleting approaches to type III multi-step rationally extended potentials: applications to ladder operators and superintegrability J. Math. Phys. 55 112103
[51] Marquette I, Sajedi M and Winternitz P 2017 Fourth order superintegrable systems separating in Cartesian coordinates I. Exotic quantum potentials J. Phys. A: Math. Theor. 50 315201
[52] Miller W Jr, Post S and Winternitz P 2013 Classical and quantum superintegrability with applications J. Phys. A: Math. Theor. 46 423001
[53] Moshinsky M and Smirnov Yu F 1996 The Harmonic Oscillator in Modern Physics vol 9 (New York: Harwood Academic)
[54] Nikitin A G 2004 Higher-order symmetry operators for Schrödinger equation CRM Proc. and Lecture Notes vol 37 (Providence, RI: American Mathematical Society)
[55] Pauli W 1926 Über das Wasserstoffspektrum von Standpunk der neuen Quanten-mechanik Z. Phys. 36 336–63
[56] Popperi I, Post S and Winternitz P 2012 Third-order superintegrable systems separable in parabolic coordinates J. Math. Phys. 53 062105
[57] Post S and Riglioni D 2015 Quantum integrals from coalgebra structure J. Phys. A: Math. Theor. 48 075205
[58] Post S and Winternitz P 2010 An infinite family of superintegrable deformations of the Coulomb potential J. Phys. A: Math. Theor. 43 22201
[59] Post S and Winternitz P 2011 A nonseparable quantum superintegrable system in 2D real Euclidean space J. Phys. A: Math. Theor. 44 152001
[60] Post S and Winternitz P 2015 General nth order integrals of motion in the Euclidean plane J. Phys. A: Math. Theor. 48 405201
[61] Rañada M F 1997 Superintegrable $n = 2$ systems, quadratic constants of motion, and potentials of Drach J. Math. Phys. 38 4165–78
[62] Rodríguez M A, Tempesta P and Winternitz P 2008 Reduction of superintegrable systems: the anisotropic harmonic oscillator Phys. Rev. E 78 046608
[63] Sheftel M B, Tempesta P and Winternitz P 2001 Superintegrable systems in quantum mechanics and classical Lie theory J. Math. Phys. 42 659–73
[64] Tempesta P, Turbiner A V and Winternitz P 2001 Exact solvability of superintegrable systems J. Math. Phys. 42 419–36
[65] Tremblay F, Turbiner V and Winternitz P 2009 An infinite family of solvable and integrable quantum systems on a plane J. Phys. A: Math. Theor. 42 242001
[66] Tremblay F and Winternitz P 2010 Third-order superintegrable systems separating in polar coordinates J. Phys. A: Math. Theor. 43 175206
[67] Tsiganov A V 2000 The Drach superintegrable systems J. Phys. A: Math. Gen. 33 7407
[68] Turbiner A 1995 Invariant identities in the Heisenberg algebra Funct. Anal. Appl. 29 291–4
[69] Turbiner A 1996 Interesting relations in Fock space (arXiv:q-alg/9602019)
[70] Veselov A P and Shabat A 1993 Dressing chains and the spectral theory of the Schrödinger operator Funkc. Anal. Priloz. 27 1