Earlier diagnosis, access to disease-modifying therapies (DMTs), and improved supportive care have favorably altered the disease course of multiple sclerosis (MS), leading to an improvement in long-term outcomes for people with MS (PwMS). This success has changed the medical characteristics of the population seen in MS clinics. Comorbidities and the accompanying polypharmacy, immune senescence, and the growing number of approved DMTs make selecting the optimal agent for an individual patient more challenging. Glatiramer acetate (GA), a moderately effective DMT, interacts only minimally with comorbidities, other medications, or immune senescence. We describe here several populations in which GA may represent a useful treatment option to overcome challenges due to advanced age or comorbidities (e.g., hepatic or renal disease, cancer). Further, we weigh GA's potential merits in other settings where PwMS and their neurologists must base treatment decisions on factors other than selecting the most effective DMT, e.g., family planning, conception and pregnancy, or the need for vaccination.

Keywords: disease modifying treatment, glatiramer acetate, special populations, multiple sclerosis, comorbidities

INTRODUCTION

Glatiramer acetate (GA) was approved for the treatment of relapsing multiple sclerosis (MS) in 1996 in the US (1, 2), and 2001 in Europe (3), based on its beneficial effect on relapse rates in controlled trials (4–7). It is still widely prescribed as a safe and effective treatment after several million patient-years of exposure (8). Several generic alternatives have been developed (9, 10). GA is considered a platform therapy with modest effects on relapse-related clinical outcomes and no firmly established effect on delaying clinical progression or long-term disability (11). The continuing widespread use of this injectable agent despite newer, more efficacious DMTs may be attributable to its favorable safety profile with a lack of late adverse events and immunologic complications, or to its low level of interaction with comorbidities; however, part of the reason may also be the relatively few requirements for pre-treatment testing and on-treatment monitoring, the flexibility that it offers for family planning, or economic considerations. In this paper, we will discuss selected aspects and possible reasons for the enduring use of glatiramer acetate and its use in special populations of people with multiple sclerosis (PwMS).
MS, the most common chronic neuroinflammatory disease, causes demyelination, axonal degeneration, and gliosis, with focal inflammatory lesion activity usually predominating in the relapsing phase and diffuse inflammation and neurodegeneration becoming the main components for patient in the progressive phase (12). Although clinical distinctions are made between predominantly relapsing and progressive forms of MS (13, 14), the mechanisms underlying relapses and progression are present to varying degrees throughout the course of MS (13, 15–17). The prevalence of MS has increased in recent decades, and this may be due to the increasing sensitivity of radiographic methods and diagnostic criteria (18–22), and to longer survival (23).

Earlier diagnosis, access to disease-modifying therapies (DMTs), improved supportive care, and the fast-growing agency of PwMS have led to improvements in long-term outcomes (24–26). DMTs for MS suppress central nervous system (CNS) inflammation, reducing relapse rates and long-term disability. They work mainly during the predominantly relapsing phase by modulating the immune response, depleting immune cells or blocking their trafficking into the CNS (27). Important questions regarding treatment strategies include the optimal treatment approach in early MS, when and how to sequence treatments, including in patients with breakthrough activity, and when to de-escalate or discontinue treatment. The growing list of approved treatments for MS has made selecting the optimal agent for an individual patient more challenging. Current guidelines from the American Academy of Neurology (28), and European Committee for Treatment and Research in MS (29) provide only limited guidance on starting, switching, and discontinuing, whereas treatment algorithms are provided in the National Health Service England guidelines (30), and in a recent position paper from the Multiple Sclerosis Treatment Consensus Group (17).

The two general approaches to treating MS involve either the early use of highly effective DMTs or the initial use of modestly effective DMTs, with escalation to highly effective DMTs when treatment response is inadequate (27, 31). Early highly-effective therapy maximizes anti-inflammatory effects early in the disease course, when they are most likely to be beneficial (32–35). Recent evidence from cohort studies suggests that early treatment with highly-effective therapy may be associated with a lower risk of disability progression (35, 36), and conversion to secondary progressive MS (34); however, this approach may expose some patients to an unnecessary risk of severe adverse effects such as infections, cardiac dysfunction, liver damage, or an increased risk of autoimmune diseases (37–40) (Table 1).

In the traditional escalation approach, determining the optimal timing of escalation is challenging and requires balancing the need to allow adequate time for a therapeutic effect to manifest with the need for timely response to ongoing disease activity. A low threshold for escalation in the face of breakthrough activity may reduce future disability (58, 59). The criteria of “No Evidence of Disease Activity” (NEDA) has been proposed to guide tight control of MS activity (60, 61). This outcome focuses on inflammatory demyelination that causes transient disability, but it has limitations (62), and its use may not influence long-term progression (63), due to the underlying diffuse inflammation and neurodegeneration that appear to drive long-term disability (16, 63). While fully validated biomarkers to guide treatment decisions in MS are lacking, cerebrospinal fluid and plasma levels of neurofilament light chain reflect axonal damage in a wide variety of neurological disorders (64). Recently, this marker has shown promise for monitoring disease activity and response to therapy in PwMS (65).

Ongoing controlled studies comparing escalation and early highly-effective treatment strategies may help to identify the most effective approach (NCT03500328, NCT03535298). Shared decision making is a theme that should guide the relationship between PwMS and their neurologists (66, 67). The growing number of available DMTs with different potential benefits and risks makes it difficult to identify the most appropriate treatment for each patient. Communication between patient and clinician can be suboptimal (68, 69). In the context of shared decision making, clinicians should contribute the medical basics for suitable treatments, considering drug properties, disease characteristics and other factors, e.g., comorbidities, while patients may express their informed preferences based on expected benefits and their personal risk tolerance (70).

Glatiramer Acetate

Glatiramer acetate is an immunomodulating drug consisting of a complex polypeptide mixture (non-biological complex drug) obtained through the polymerization of the amino acids L-glutamic acid, L-alanine, L-lysine and L-tyrosine, followed by partial hydrolysis (43). It is administered by subcutaneous injection. Its mechanism of action is complex and not fully characterized but appears to involve effects on both innate and adaptive immune mechanisms. Briefly, it is thought to down-regulate myelin-specific T-cell activation and may compete with myelin basic protein peptides for binding to MHC class II molecules on antigen-presenting cells, leading to increased differentiation of T helper cells (Th2), and T regulatory cells (Treg). Glatiramer acetate-reactive Th2 cells also suppress the activation of Th1 cells through “bystander suppression” and release neuroprotective factors, while the Treg cells reduce the secretion of proinflammatory cytokines by effector T cells. CD8+ T cells generated by antigen presentation of glatiramer acetate contribute to inhibiting myelin degradation (Figure 1) (71, 72).

SPECIAL POPULATIONS THAT MAY BENEFIT FROM GA TREATMENT

Patients With High Burden of Comorbidities

PwMS tend to have more comorbidities than the general population, and these can present specific challenges in treatment selection (73–75). The most common medical comorbidities include hyperlipidemia, hypertension, diabetes, gastrointestinal or thyroid diseases, which tend to increase with age (76). Diabetes, hypertension, and chronic obstructive pulmonary disease are associated with increased disability progression in PwMS (77). Vascular comorbidity correlates...
TABLE 1 | US Food and Drug Administration contraindications, warnings and precautions for representative DMTs for MS*

DMT	Contraindications	Warnings and precautions
Modest efficacy	**Interferons**: interferon beta-1a (41), interferon beta-1b (42)	Both agents: anaphylaxis and other allergic reactions; congestive heart failure, hepatic injury, seizures, thrombotic microangiopathy; monitoring for laboratory abnormalities interferon beta-1a only: depression, suicide, and psychotic disorders; decreased peripheral blood counts, autoimmune disorders interferon beta-1b only: depression and suicide, leukopenia, drug-induced lupus erythematosus, flu-like symptom complex, injection site necrosis and reactions
	Glatiramer acetate (43)	Post-injection reaction, chest pain, lipatrophy and skin necrosis, potential effects on immune response
	Teriflunomide (44)	Hepatotoxicity, embryofetal toxicity, bone marrow effects/immunosuppression potential/infections, hypersensitivity and serious skin reactions, peripheral neuropathy, increased blood pressure, respiratory effects, concomitant use with immunosuppressive or immunomodulating therapies
	Monomethyl fumarate (45)	All agents: lymphopenia, flushing anaphylaxis and angioedema, PML, liver injury
	Dimethyl fumarate (46)	Monomethyl fumarate only: herpes zoster and other serious opportunistic infections
	Diroximel fumarate (47)	
High efficacy	Natalizumab (48)	PML, herpes infections, hypersensitivity/antibody formation, hepatotoxicity, immunosuppression/infections, laboratory test abnormalities, immunizations
	Sphingosine-1-phosphate receptor modulators	All agents: bradyarrhythmia and atrioventricular blocks/conduction delays, infections, macular edema, posterior reversible encephalopathy syndrome, respiratory effects, liver injury, fetal risk, severe increase in disability after discontinuation, increased blood pressure
	Fingolimod (49)	Fingolimod, ozanimod, siponimod: immune system effects after discontinuation
	Ponesimod (53)	Fingolimod, ozanimod, siponimod: unintended additive immunosuppressive effects from prior treatment with immunosuppressive or immune-modulating therapies
	Ozanimod (51)	Fingolimod and ponesimod: malignancies
	Siponimod (52)	Fingolimod only: hypersensitivity reactions, PML
	Alemtuzumab (53)	
	Anti-CD20 B-cell depleting agents	
	Ocrelizumab (54)	Both agents: active hepatitis B virus infection; Ocrelizumab only: history of life-threatening infusion reaction to ocrelizumab
	Ofatumumab (55)	Both agents: infusion reactions, infections, reduction in immunoglobulins, malignancies Ofatumumab only: fetal risk
	Cladribine (56)	Malignancies, risk of teratogenicity, lymphopenia, infections, hematologic toxicity, graft-vs.-host-disease with blood transfusion, liver injury, hypersensitivity, cardiac failure
	Miloxantrone (57)	Cardiotoxicity, myelosuppression, secondary leukemia, potential human teratogen

*Refer to updated local prescribing information for each agent for complete information. PML, progressive multifocal leukoencephalopathy.

with poorer cognitive functioning and brain volume in PwMS (78).

Comorbidities increase the complexity of patient management by increasing the risk of drug-drug and drug-disease interactions. In addition to treatment for comorbidities, and for MS itself, PwMS often require pharmacotherapy to treat MS symptoms, such as fatigue, spasticity, pain, sleep disorders, depression, urogenital, sexual and bowel dysfunction (79). A
systematic literature review identified polypharmacy, defined as ≥ 5 prescription medications, in 15 to 59% of PwMS; rates increased with age, comorbidities, disability, cognitive deficits, and MS disease activity, and were associated with lower quality of life (80). Evidence to support treatment decisions in MS patients who have significant comorbidity is lacking. This knowledge gap can be attributed to the underrepresentation of such patients in clinical trials (81), limiting the possibility for evidence-based treatment. Thus, informed treatment decisions taking a patient’s comorbidities and their accompanying essential medications into account rely mainly on empirical knowledge.

Patients at Risk for Infections and Virus Reactivation

Infections represent a major cause of morbidity and mortality in the setting of MS (82, 83). PwMS are intrinsically prone to various infections such as urinary tract infections secondary to neurogenic bladder (84). Immunosuppressive DMTs may increase this risk (85, 86). All DMTs, except glatiramer acetate and interferons, impair immune surveillance to some degree (39, 40); however, it is important to distinguish between immunosuppressive drugs that impair immune function generally, increasing the risk for a broad range of infections, and immune modulating agents that selectively inhibit specific aspects of the immune system, thereby predisposing patient to a more restricted set of pathogens (87). There are continuing concerns about increased susceptibility to severe SARS-CoV-2 infection; however, PwMS have an infection risk similar to that of the general population (88). Among DMTs, the risk of infections in general is lower in patients receiving interferons and glatiramer acetate (89). Progressive multifocal leukoencephalopathy (PML), which is caused by emerging of neuropathogenic and neurovirulent pool of John Cunningham virus undergoing sequential genomic rearrangements in immunocompromised subjects, is also a major concern (90). Among DMTs for MS, natalizumab is associated with the highest risk for PML, but it also been reported very rarely with ocrelizumab, fingolimod, and dimethyl fumarate.

Evaluating the risk of infection has become one of the most important factors when choosing therapy or switching treatments (91), and monitoring for infections is an essential practice with some DMTs (Table 2).
TABLE 2 | Infection screening required for disease-modifying treatments in MS.

Disease-modifying drug	Basal infection screening	Infection monitoring
Alemtuzumab	TBC, VZV, HPV, HBV, HCV, HIV	Pneumocystis, HSV, CMV, Listeria, Candida, HPV, HIV
Cladribine	TBC, VZV, HBV, HCV, HIV	HSV
Dimethyl fumarate	-	-
Fingolimod	TBC, VZV, HPV, HBV, HCV, HIV	Pneumonia, HSV, HPV, Cryptococcus
Glatiramer acetate	-	-
Interferons	-	-
Natalizumab	VZV, JCV, HIV	HSV, JCV
Ocrelizumab	TBC, VZV, HBV, HCV, HIV	HBV, HIV, JCV
Teriflunomide	TBC, HIV	-

TBC, tuberculosis; VZV, varicella-zoster virus; HPV, human papillomavirus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HSV, herpes simplex virus; CMV, cytomegalovirus; JCV, John Cunningham virus (human polyomavirus 2). (Source: www.ema.europa.eu).

The risk of hepatitis B virus reactivation with glatiramer acetate is equal to that of the general population (92), and screening for latent tuberculosis is not required before prescribing glatiramer.

Patients With Concomitant Liver Disease or History of Drug Induced Liver Damage

The risk of liver injury can limit a patient’s treatment options. Several DMTs are associated with a risk of liver injury (alemtuzumab, fingolimod, interferons, mitoxantrone, teriflunomide) (93). Autoimmune hepatitis and reactivation of chronic liver infections can also occur during DMT treatment (93, 94). A retrospective Canadian study identified drug-induced liver injury in ~2% of MS patients treated with interferon beta (95). Baseline assessment of liver function is required for most DMTs, and several require periodic monitoring during treatment (Table 3).

Glatiramer acetate has a favorable overall liver safety profile (94). Sporadic reports of rare adverse liver effects with glatiramer acetate have included cases of suspected drug-induced liver injury and autoimmune hepatitis (93, 96), but no cases of hepatitis B virus or hepatitis C virus reactivation, or acute liver failure have been reported in patients treated with GA (94). Liver function testing is not required before initiating treatment with GA but the summary of product information suggests that patients be regularly monitored for signs of hepatic injury and instructed to seek immediate medical attention in case of symptoms of liver injury (97).

Elderly Patients

Peak MS incidence occurs in early adulthood, but prevalence peaks in late adulthood. Currently, the peak prevalence of PwMS is estimated to be between age 50 and 60 years (98, 99), meaning that many PwMS are older than the patient populations in pivotal trials for DMTs. The prevalence of MS in the elderly is increasing due to population aging, earlier diagnosis, access to DMTs, and improved supportive care (18–23). Moreover, about 5% of patients present with late-onset MS (onset at ≥ 50 years), often with motor dysfunction and a relatively poor prognosis (100–102).
compartmentalized inflammation driving neurodegenerative tissue responses to chronic inflammatory injury (117). These mechanisms driving progressive disease do not appear to respond to DMT. Unless there is evidence of active inflammation, a high risk/high efficacy DMT might not be the right choice.

The absence of effective treatment or neuroprotective strategies for progressive disease in elderly patients, combined with the observed reduction in the efficacy of DMTs in the elderly (32, 104, 118), suggest a need to consider carefully the benefit-risk profile in this population (6). Thus, one of the unique challenges when treating elderly PwMS is determining the appropriateness/timing of DMT de-escalation or discontinuation in stable patients without clinical or radiological disease activity (119, 120). In a recent survey of 377 MS patients age ≥ 45 years who had been receiving DMT for ≥ 5 years, only 12% reported that they would consider discontinuing DMTs if they had no evidence of disease activity (121). Predictors of relapse/rebound included younger age, female sex, moderate disability, and a relapse within 1 year of discontinuation (122). Reactivation of MS disease activity after discontinuation of DMTs is independently associated with age at discontinuation, MRI activity at discontinuation, and the duration of clinical stability (123).

Pregnancy and Family Planning

The typical age at MS onset overlaps with childbearing years. Pregnancy is associated with lower MS disease activity (124), and may provide natural protection when DMT is suspended. Ideally, all agents except interferon or GA should be discontinued before attempting conception. An increasing number of pregnancies are conceived in women who are receiving DMT. Depending on the DMT, discontinuation in this situation may result in increased disease activity (125, 126). However, most of the safety data on exposure come from the first month after conception and focus on teratogenic risks and do not cover late term complications e.g., due to immunologic effects (126, 127). MS patient registries show that the injectable DMTs glatiramer acetate and interferon beta are indeed safe before conception and in patients with first trimester exposure, although limited data are available on their continuation throughout pregnancy (128–130). In light of the favorable safety evidence, both the US Food and Drug Administration and the European Medicines Agency have removed the restriction on GA use in pregnancy; however, as a precaution it is generally preferred to avoid exposure during pregnancy unless the benefit to the mother outweighs the risk to the fetus. When deemed necessary, administering a bridging therapy with a safer agent can provide coverage while trying to conceive (126). Switching treatments when planning a pregnancy in clinically stable patients is common practice (131); however, bridging therapy must be initiated early enough to be effective during the first trimester, when relapse risk is highest. Other strategies may include administering highly effective therapies that have long effect durations (e.g., ocrelizumab, alemtuzumab, cladribine) before pregnancy while observing the

TABLE 4 | High impact adverse events of DMTs and correlation with increasing age (105).

Drug	Most important adverse events	(Potentially) increased risk with age	References
Natalizumab	Occurrence of PML	(†)	(106)
	Fatal cases of PML	(†)	(107)
	HSV1/VZV reactivation	↑	(108)
	Neutralizing antibodies	(†)	(109)
Fingolimod	Bradycardia	(†)	(110)
	Arterial hypertension	↑	(111)
	HSV1/VZV reactivation	↑	(112)
	PML	↑	(113)
	Skin malignancies (BCC)	↑	(114)
	HPV infection		
Alemtuzumab	HSV1/VZV reactivation	↑	(115)
	Listeriosis, candidiasis, nocardiosis		
	Secondary autoimmune diseases	↑	
Cladribine	HSV1/VZV reactivation	↑	(116)
	Tuberculosis	↑	
	Solid malignancies		
Ocrelizumab	HSV1/VZV reactivation	(†)	(117)
	HBV		
	Hypogammaglobulinemia	(†)	
	Breast cancer	↑	
	PML (carry over)	(†)	

† Generally higher risk with higher age independent of DMT; (†) potential higher risk with higher age and use of DMT.

*Ocrelizumab-associated cases of serious infections reported with higher age.

BCC, basal cell carcinoma; DMT, disease-modifying therapy; HBV, hepatitis B virus; HPV, human papilloma virus; HSV1, herpes simplex virus; PML, progressive multifocal leukoencephalopathy; VZV, varicella zoster virus.

[modified from Schweitzer et al. (105) with addition of secondary autoimmunity with alemtuzumab-reference EMA, Lemtrada EPAR added].
appropriate washout periods (126) or leveraging the fact that monoclonal antibodies do not cross the placenta until the second trimester (132).

Recent data from the German MS and Pregnancy Registry showed no evidence of adverse effects of GA exposure during breastfeeding on infant development, hospitalization, or the use of antibiotics (133). This has led to removal of the restriction on GA use while breastfeeding (134).

Vaccination

Vaccination does not appear to increase MS disease activity (135, 136). On the contrary, a variety of vaccine-preventable infections can exacerbate disease activity and trigger relapses (137–140); therefore, vaccination against preventable infections, for example influenza, can improve disease control. Guidelines from the American Academy of Neurology recommend following local vaccination schedules unless vaccination is contraindicated (e.g., PwMS already receiving immunosuppressive or immunomodulating therapy) or the patient is experiencing a relapse. In relapsing patients, vaccination should be delayed until resolution or until the relapse is no longer active or progressing (141). Moreover, PwMS should undergo a vaccination status assessment and updating of vaccinations soon after MS diagnosis to carefully plan and administer vaccinations early in the course of MS, before starting DMT (141, 142). Seroconversion after vaccination is attenuated in patients receiving anti-CD20 therapy, and the response to novel antigens (not encountered previously in life) is weakened (143), including after COVID-19 mRNA vaccination (144). Vaccines are less effective in the elderly, and immunodepleting therapy may further reduce the response to vaccines in this population.

In PwMS receiving GA, seroconversion was lower after the 2009 H1N1 pandemic influenza vaccine (n = 37) and the 2010 seasonal influenza vaccine (n = 12), compared to healthy controls (145). Because of this observation, the 2019 American Academy of Neurology guidelines stated that GA is “possibly” associated with a reduction in vaccine response. However, in a study of seroconversion after the 2010/2011 and 2011/2012 influenza vaccines, patients receiving GA (n = 26) had normal post-vaccination seroconversion rates for the 3 influenza antigens (H1N1 88.5%, H3N2 73.1%, B strain 80.8%, n = 26) (146). Response to the 2012/2013 seasonal influenza vaccine in patients receiving GA (n = 23) was also similar to healthy controls after 3, 6, and 12 months (147). Moreover, seroconversion after vaccination against SARS-CoV-2 is not attenuated in patients receiving GA (148–150). Live vaccinations are contraindicated in people receiving DMTs, except GA. Most oral DMTs interfere with response to hepatitis B virus vaccinations, whereas injectables therapies do not (151).

CONCLUSIONS

Given the difficulty of predicting the long-term course of MS at diagnosis, and although the early use of higher efficacy therapies may be warranted to prevent long-term disability, especially in patients with highly active disease, GA may be considered in scenarios where high efficacy therapies would pose more risk. GA may be appropriate later in the disease course in response to evolving patient conditions (e.g., aging, accumulating comorbidities, chronic treatment with corticosteroids and other immunosuppressants), or as a bridging therapy during conception, pregnancy, and breastfeeding. Similarly, it may be useful for vaccinations strategies, e.g., use of live or attenuated vaccines as well as vaccines against hepatitis B virus or SARS-CoV-2.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

FUNDING

This study received funding from Viatris Inc. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

ACKNOWLEDGMENTS

Editorial support and medical writing were provided by Ethos S.r.l.

REFERENCES

1. US Food and Drug Administration. Glatopa (Glatiramer Acetate) Injection, 20 mg/mL. *Approved Lett.* (2014). Available online at: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2015/090218Orig1s000ltr.pdf (accessed October 25, 2021).

2. U.S. Food and Drug Administration. Glatopa (Glatiramer Acetate) Injection, 40 mg/mL. *Approved Lett.* (2018). Available online at: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2018/206921Orig1s000ltr.pdf (accessed October 25, 2021).

3. European Medicines Agency - Human Medicines Evaluation Division. List of nationally authorised medicinal products Active substance: glatiramer. (2018). Available online at: https://www.ema.europa.eu/en/documents/psusa/glatiramer-list-nationally-authorised-medicinal-products-psusa-00001529-202011_en.pdf (accessed October 25, 2021).

4. Bornstein MB, Miller AI, Teitelbaum D, Arnon R, Sela M. Multiple sclerosis: trial of a synthetic polypeptide. *Ann Neurol.* (1982) 11:317–9. doi: 10.1002/ana.410110314

5. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. *The Copolymer 1 Multiple Sclerosis Study Group. Neurology.* (1995) 45:1268–76. doi: 10.1212/WNL.45.7.1268

6. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and...
mirabella et al.

Continued Role for Glatiramer Acetate

maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group. Neurology. (1998) 50:701–8. doi: 10.1212/WNL.50.3.701

7. Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging–measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol. (2001) 49:290–7. doi: 10.1002/ana.64

8. Wynn DR. Enduring Clinical Value of Copaxone® (Glatiramer Acetate) in Multiple Sclerosis after 20 Years of Use. Mult Scler Int. (2019) 2019:7151685. doi: 10.1155/2019/7151685

9. Cohen J, Belova A, Selmaj K, Wolf C, Sormani MP, Oberyé R, et al. Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. (2018) 90:777–88. doi: 10.1212/WNL.000000000005347

10. Montalban X, Gold R, Thompson AI, Otero-Romero S, Amato MP, Chandrachurda R, et al. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler. (2018) 24:96–120. doi: 10.1177/1352458517751049

11. Reich DS, Lucchetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. (2018) 378:169–80. doi: 10.1056/NEJMr1401483

12. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. (2014) 83:278–86. doi: 10.1212/WNL.000000000000560

13. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Development of Glatopa® (Glatiramer Acetate): The First FDA-Approved Generic Disease-Modifying Therapy for Relapsing Forms of Multiple Sclerosis. J Pharm Pract. (2018) 31:881–9. doi: 10.1177/1092648817752984

14. Nakata M, Furumai L, Lovati R. Glatiramer acetate for multiple sclerosis. Cochrane Database Syst Rev. (2010) CD004678. doi: 10.1002/14651858.CD004678.pub2

15. Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging–measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol. (2001) 50:701–8. doi: 10.1001/jamaneurol.2017.4011

16. Ekestern E, Lebhart G. Mortality from multiple sclerosis in Austria 1970–2019. JAMA Neurol. (2021) 78:184–91. doi: 10.1001/jamaneurol.2020.3365

17. Weideman AM, Tapia-Maltos MA, Johnson K, Greenwood M, Bielekova B. Meta-analysis of the Age-Dependent Efficacy of Multiple Sclerosis Treatments. Front Neurol. (2017) 8:577. doi: 10.3389/fneur.2017.00577

18. Harding K, Williams O, Willis M, Hrastelj J, Rimmer A, Joseph F, et al. Comparative Effectiveness of Rituximab and Other Initial Treatment Choices for Multiple Sclerosis. JAMA Neurol. (2018) 75:320–7. doi: 10.1001/jamaneurol.2017.4011

19. Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A, et al. Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA. (2019) 321:175–87. doi: 10.1001/jama.2018.20588

20. Harding K, Williams O, Willis M, Hrastelj J, Rimmer A, Joseph F, et al. Clinical Outcomes of Escalation vs Early Intensive Disease-Modifying Therapy in Patients With Multiple Sclerosis. JAMA Neurol. (2019) 76:536–41. doi: 10.1001/jamaneurol.2018.4905

21. Klotz L, HAVA, Swab N, Hoehfeld R, Barnett M, Reddel S, et al. Risks and risk management in modern multiple sclerosis immunotherapeutic treatment. Ther Adv Neurol Disord. (2019) 12:1756286419836571. doi: 10.1177/1756286419836571

22. Alperin PS, Burman J, Fink K, Fogdell-Hahn A, Gunnarsson M, et al. Infection Risks Among Patients With Multiple Sclerosis Treated With Fingolimod, Natalizumab, Rituximab, and Injectable Therapies. JAMA Neurol. (2020) 77:184–91. doi: 10.1001/jamaneurol.2019.3365

23. Schwenkenbecher P, Wurster U, Koen FF, Gingele S, Suhs KW, Wattrjes MP, et al. Impact of the McDonald Criteria 2017 on Early Diagnosis of Relapsing-Remitting Multiple Sclerosis. Front Neurol. (2019) 10:188. doi: 10.3389/fneur.2019.00188

24. Wijnands JMA, Zhu F, Kingwell E, Fisk JD, Evans C, Marrie RA, et al. Disease-modifying drugs for multiple sclerosis and infection risk: a cohort study. J Neurol Neurosurg Psychiatry. (2018) 89:1050–6. doi: 10.1136/jnnp-2017-317493

25. Mori M, Saper JR. Trends in survival and cause of death in Danish patients with multiple sclerosis. Brain J Neurol. (2004) 127:844–50. doi: 10.1093/brain/awh104
83. Kingwell E, Zhu F, Evans C, Duggan T, Oger J, Tremlett H. Causes that contribute to the Excess Mortality Risk in Multiple Sclerosis: A Population-Based Study. *Neuropediatrics*. (2020) 54:131–9. doi: 10.1159/000504804

84. Medeiros Junior WLG de, Demore CC, Mazaro LP, de Souza MFN, Nelson RE, Xie Y, DuVall SL, Butler J, Kamauu AWC, Knippenberg VM, et al. Liver injury with drugs used for multiple sclerosis: A contemporary analysis of the FDA Adverse Event Reporting System. *Mult Scler*. (2019) 25:1633–40. doi: 10.1177/1352458118799598

85. Antonazzo IC, Poluzzi E, Forcesi E, Riise T, Bjornevik K, Baldin E, et al. Older Age at Multiple Sclerosis Onset Is an Independent Factor of Poor Prognosis: a population-based cohort study. *Neuropediatrics*. (2017) 48:179–87. doi: 10.1159/000479516

86. Richter D, Faissner S, Bartig D, Tönges L, Hellwig K, Ayzenberg I, et al. Liver injury with drugs used for multiple sclerosis. *Mult Scler Relat Disord.* (2021) 50:102816. doi: 10.1016/j.msard.2021.102816

87. Ritter C, Svačina MKR, Bobylev I, Joshi A, Schneider T, Lehmann H, et al. The Relationship of Age with the Clinical Phenotype in Multiple Sclerosis. *Mult Scler.* (2016) 22:1750–8. doi: 10.1177/1352458516630396

88. Blankenbach K, Schwab N, Hofner B, Adams O, Keller-Stanislawski B, Warnecke C. Natalizumab-associated progressive multifocal leukoencephalopathy. *J Neurol*(2015) 262:165–73. doi: 10.1007/s00415-018-9117-z

89. Lechner-Scott J, Waubant E, Levy M, Hawkes C, Giovannoni G. Is multiple sclerosis a risk factor for infections? *Mult Scler Relat Disord.* (2020) 41:102184. doi: 10.1016/j.msard.2020.102184

90. Cortese I, Reich DS, Nath A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. *Nat Rev Neurol*. (2016) 12:217–33. doi: 10.1038/nrneurol.2016.21

91. Celli EG. Infections in patients with multiple sclerosis: Implications for disease-modifying therapy. *Acta Neurol Scand.* (2017) 136 Suppl34–6. doi: 10.1111/ane.12835

92. Perrillo RP, Gish R, Falck-Ytter YT. American Gastroenterological Association Institute technical review on prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. *Gastroenterology*. (2015) 148:221–244.e3. doi: 10.1053/j.gastro.2014.10.038

93. Antonazzo IC, Poluzzi E, Forseei E, Riise T, Bjornevik K, Baldin E, et al. Liver injury with drugs used for multiple sclerosis: A contemporary analysis of the FDA Adverse Event Reporting System. *Mult Scler*. (2019) 25:1633–40. doi: 10.1177/1352458118799598

94. Biolo M, Bianco A, Lucchini M, Gasbarrini A, Mirabella M, Greco A. The Disease-Modifying Therapies of Relapsing-Remitting Multiple Sclerosis and Liver Injury: a narrative review. *CNS Drugs*. (2021) 35:861–80. doi: 10.1007/s40263-021-00842-9

95. Almeida J, Solá-Valls N, Pose E, Blanco Y, Sepúlveda M, Llufriu S, et al. Liver injury and glatiramer acetate, an uncommon association: case report and literature review. *Ther Adv Neurol Disord.* (2017) 10:367–72. doi: 10.1177/1756285617722352
114. European Medicines Agency. LEMTRADA epat-product-information. Available online at: https://www.ema.europa.eu/en/documents/product-information/lemtrada-epat-product-information_en.pdf (accessed September 30, 2021).

115. European Medicines Agency. Mavenclad, INN-cladribine (2017). Available online at: https://www.emea.europa.eu/en/documents/product-information/mavenclad-epat-product-information_en.pdf (accessed October 26, 2021).

116. European Medicines Agency. Ocrevus European Public Assessment Report. Available online at: https://www.ema.europa.eu/en/documents/product-information/ocrevas-epat-product-information_en.pdf (accessed September 30, 2021).

117. Absinta M, Lassmann H, Trapp BD. Mechanisms underlying progression in multiple sclerosis. Curr Opin Neurol. (2020) 33:277–85. doi: 10.1097/WCO.0000000000000818

118. Dahlke F, Arnold DL, Aarden P, Gangaji H, Haring DA, Cukina J, et al. Characterisation of MS phenotypes across the age span using a novel data set integrating 34 clinical trials (NO-MS cohort): Age is a key contributor to presentation. Mult Scler. (2021) 27:2062–76. doi: 10.1177/1352458520988637

119. Ostolaza A, Corroza J, Ayuso T. Multiple sclerosis and aging: comorbidity and treatment challenges. Mult Scler Relat Disord. (2021) 50:102815. doi: 10.1016/j.msard.2021.102815

120. Hartung HP, Meuth SG, Miller DM, Comi G. Stopping disease-modifying therapy in relapsing and progressive multiple sclerosis. Curr Opin Neurol. (2021) 34:598–603. doi: 10.1097/WCO.0000000000001090

121. McGinley MP, Cola PA, Fox RJ, Cohen JA, Corboy JJ, Miller D. Perspectives of individuals with multiple sclerosis on discontinuation of disease-modifying therapies. Mult Scler. (2020) 26:1581–9. doi: 10.1177/1352458519867314

122. Kister I, Spelman T, Patti F, Duquette P, Trojano M, Izquierdo G, Hartung HP, Meuth SG, Miller DM, Comi G. Stopping disease-modifying therapy in relapsing and progressive multiple sclerosis. Curr Opin Neurol. (2020) 33:277–85. doi: 10.1097/WCO.0000000000000818

123. DeSecco J, Williams AL, Bowman CJ, Hurt ME. The placenta, transfer of immunoglobulins, and safety assessment of biopharmaceuticals in pregnancy. Crit Rev Toxicol. (2012) 42:185–210. doi: 10.3109/10408444.2011.653487

124. Confavreux C, Suissa S, Saddier P, Bourdès V, Vukusic V. Vaccinations and the risk of relapse in multiple sclerosis. Vaccines in Multiple Sclerosis Study Group. N Engl J Med. (2001) 344:343–26. doi: 10.1056/NEJM200101043440301

125. Correale J, Fiol M, Gilmore W. The risk of relapses in multiple sclerosis during systemic infections. Neurology. (2006) 67:652–9. doi: 10.1212/01.wnl.0000233834.09743.3b

126. Di Filippo M, Cordioli C, Malucchi S, Annovazzi P, Cavalla P, Torri Clerici V, et al. mRNA COVID-19 vaccines do not increase the short-term risk of clinical relapses in multiple sclerosis. J Neurol Neurosurg Psychiatry. (2021) 93:448–50. doi: 10.1136/jnnp-2021-327200

127. Nguyen AL, Havrdova EK, Horakova D, Izquierdo G, Kalincik KM. Antibody response to seasonal influenza vaccination in patients with multiple sclerosis: The VELOCE study. Neurology. (2019) 93:584–94. doi: 10.1212/WNL.0000000000006815

128. Metze C, Winkelmann A, Loebermann M, Hecker M, Schweiger B, et al. Immunogenicity and predictors of response to a single dose trivalent seasonal influenza vaccine in multiple sclerosis patients receiving disease-modifying therapies. CNS Neurosci Ther. (2019) 25:245–54. doi: 10.1111/cns.13054

129. Olberg HK, Eide GE, Cox RJ, Jul-Larsen Å, Larseth LM, Vedeler CA, Myhr KM. Antibody response to seasonal influenza vaccination in patients with multiple sclerosis receiving immunomodulatory therapy. Eur J Neurol. (2018) 25:527–34. doi: 10.1111/ejn.13537

130. Ciampi E, Uribé-San-Martín R, Soler B, Garcia L, Guzman J, Pelayo C, et al. Safety and humoral response rate of inactivated and mRNA vaccines against SARS-CoV-2 in patients with Multiple Sclerosis. Mult...
Scler Relat Disord. (2022) 59:103690–103690. doi: 10.1016/j.msard.2022.103690

149. Bock H, Juretzek T, Handreka R, Ruhnau J, Lübela M, Reuner K, et al. Humoral and cellular immune responses to SARS CoV-2 vaccination in People with Multiple Sclerosis and NMOSD patients receiving immunomodulatory treatments. *Mult Scler Relat Disord.* (2022) 59:103554–103554. doi: 10.1016/j.msard.2022.103554

150. Sabatino JJJ, Mittl K, Rowles WM, McPolin K, Rajen JV, Laurie MT, et al. Multiple sclerosis therapies differentially affect SARS-CoV-2 vaccine-induced antibody and T cell immunity and function. *JCI Insight.* (2022) 7:doi: 10.1172/jci.insight.156978

151. Faustino P, Coutinho M, Leitão L, Capela C, Brum M, Parra J, et al. Seroconversion rate following HBV vaccination in clinical practice: The role of age and DMT treatment. *Mult Scler Relat Disord.* (2021) 50:102859. doi: 10.1016/j.msard.2021.102859

Conflict of Interest: MM received consulting and/or speaking fees, research support or travel grants from Almirall, Bayer Schering, Biogen, CSL Behring, Sanofi-Genzyme, Merck, Novartis, Teva, Roche, Viatris (Mylan). JC received personal compensation for consulting for Biogen, Bristol-Myers Squibb, Convelo, Genentech, Janssen, NervGen, Novartis, and PSI; speaking for H3 Communications; and serving as an Editor of Multiple Sclerosis Journal. CW is a partner at Lycalis sprl. His organization has received compensation for consulting and speaking from Viatris (Mylan), Merck KAAg, Roche, Immunic, BMS-Celgene, Novartis, Teva, Synthon, 2BBB, ICON, and Desitin. WB has received speaker honoraria and/or participated in advisory boards for Biogen, Celgene, Merck, Novartis, Roche, Sanofi and Viatris. PA received honoraria for lecturing and/or participation in advisory boards, and/or travel expenses for attending congresses and meetings from Almirall, Biogen, BMS-Celgene, Merck, Novartis, Roche, Sanofi-Genzyme, Teva Italia, and Viatris. CK received speaker honoraria and/or participated in advisory boards for Alexion, Biogen, Celgene, CSL Behring, Janssen-Cilag, MedDay, Merck, Novartis, Roche, Sanofi Genzyme, Teva and Viatris.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Mirabella, Annovazzi, Brownlee, Cohen, Kleinschnitz and Wolf. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.