Options for Control of Reactive Power by Distributed Photovoltaic Generators

Petr Sulc1

Konstantin Turitsyn1

Scott Backhaus2

Michael Chertkov1

1Theoretical Division, Los Alamos National Laboratory

2Materials, Physics and Applications Division, Los Alamos National Laboratory
Objectives / Outline

- Distribution circuits with a high penetration of PV generation may
 - experience rapid changes in cloud cover. Inducing…
 - rapid variations in PV generation. Causing…
 - reversals of real power flow and potentially large voltage variations

- We seek to control the voltage variations by controlling PV-inverter reactive power generation because
 - it does not affect the PV owners ability to generate, and
 - we can make a significant impact with modest oversizing of inverters

- Control of reactive power also allows for reducing distribution circuit losses, but
 - voltage regulation and loss reduction are fundamentally competing objectives, and
 - analysis and engineering judgment are required to find the appropriate balance

- Questions we will try to (at least partially) answer:
 - Should control be centralized or distributed (i.e. local)?
 - What variables should we use as control inputs?
 - How to turn those variables into effective control?
 - Does the control equitably divide the reactive generation duty?
Simplified Models

Schematic physical model

Power flow model

\[P_j + iQ_j \]

\[V_{j-1}, V_j, V_{j+1} \]

\[p_{j-1}^c, p_{j-1}^g, p_j^c, p_j^g, p_{j+1}^c, p_{j+1}^g \]

\[q_{j-1}^c, q_{j-1}^g, q_j^c, q_j^g, q_{j+1}^c \]
Power Flow—Voltage Variations and Losses

\[P_j + iQ_j \]

\[V_{j-1} \]

\[p_{j-1}^c \]

\[q_{j-1}^c \]

\[V_j \]

\[p_j^c \]

\[q_j^c \]

\[V_{j+1} \]

\[p_{j+1}^c \]

\[q_{j+1}^c \]

\[V_n \]

Loss \(j \) = \(r_j \frac{P_j^2 + Q_j^2}{V_0^2} \)

\[\Delta V_j = -(r_jP_j + x_jQ_j) \]

Competing objectives

\- Minimize losses \(\rightarrow Q_j = 0 \)

\- Voltage regulation \(\rightarrow Q_j = -(r_j/x_j)P_j \)
Fundamental Problem—Import versus Export

\[
\text{Loss}_j = r_j \frac{P_j^2 + Q_j^2}{V_0^2}
\]

\[
\Delta V_j = -(r_j P_j + x_j Q_j)
\]

- Rapid reversal of real power flow can cause undesirably large voltage changes
- Rapid PV variability cannot be handled by current electromechanical systems
- Use PV inverters to generate or absorb reactive power to restore voltage regulation
- In addition... optimize power flows for minimum dissipation
Parameters Available to Affect Control of V_j

$P_j + iQ_j$

0	j -1	j	j +1	n
V_{j-1}	V_j	V_{j+1}		

p_j^c q_j^c p_j^g q_j^g p_{j+1}^c q_{j+1}^c

- **Not available**—should serve (all types of) load
- **Not available**—should not curtail PV generation
- **Available**—minimal impact on customer, extra inverter duty
- No duty to non-PV-enabled customers
Limits on Control—Inverter Capacity (s)

\[P_j + iQ_j \]

\[0 \quad j-1 \quad j \quad j+1 \quad n \]

\[V_{j-1} \quad V_j \quad V_{j+1} \]

\[p_j^c + p_j^g \]

\[q_j^c + q_j^g \]

\[|q_j^{(g)}| \leq \sqrt{s^2 - (p_j^{(g)})^2} \]
Availability of Inputs to a Local Control Scheme

Available via advanced metering assuming meter-to-inverter communication

\[q_j^g = F(p_j^c, q_j^c, p_j^g, V_j) \]

\[|q_j^g| < \sqrt{s_j^2 - (p_j^g)^2} = q_j^{\text{max}} \]
Consider a Few Simple Schemes

Baseline—Do Nothing—IEEE 1547 compliant

\[q_j^g = 0 \]

Operation at net unity power factor—RSI study

\[q_j^g = q_j^c \]

Proportional control on \(V_j \)—EPRI White Paper
Prototypical Distribution Circuit

- $V_0 = 7.2$ kV line-to-neutral
- $n = 250$ nodes
- Distance between nodes = 200 meters
- Line impedance = $0.33 + i \ 0.38$ Ω/km
- 50% of nodes are PV-enabled with 2 kW maximum generation
- Inverter capacity $s = 2.2$ kVA – 10% excess capacity
Import and Export Cases

Import—Heavy cloud cover
- \(p^c = \) uniformly distributed 0-2.5 kW
- \(q^c = \) uniformly distributed 0.2\(p^c \)-0.3\(p^c \)
- \(p^g = 0 \) kW
- Average import per node = 1.25 kW

Export—Full sun
- \(p^c = \) uniformly distributed 0-1.0 kW
- \(q^c = \) uniformly distributed 0.2\(p^c \)-0.3\(p^c \)
- \(p^g = 2.0 \) kW
- Average export per node = 0.5 kW

Measures of control performance
- \(\delta V \)—maximum voltage deviation in transition from export to import
- Average of import and export circuit dissipation relative to “Do Nothing-Base Case”
Performance of Simple Schemes

- Distributed (local) control is sufficient to maintain voltage regulation.
- 10% excess inverter capacity ($s = 1.1 p_{g,\text{max}}$) is sufficient.
- Clearly important differences between different control inputs (here, q^c vs. V).
- Volt-control schemes increase dissipation.
- q^c scheme reduces dissipation, but small gains in δV.
More Sophisticated Schemes?—Improve Voltage Regulation of $q^g=q^c$

- Use heuristics to infer line flows P_j and Q_j—for example, circuit segment j has no voltage drop if
 \[-\Delta V_j = r_j P_j + x_j Q_j = 0\]

- This suggests that the following control scheme for PV-enabled nodes
 \[r_j (p^c_j - p^g_j) + x_j (q^c_j - q^g_j) = 0\]

- Or, equivalently…..
 \[q^g_j = F^V = q^c_j + \alpha (p^c_j - p^g_j)\]

- Blend F^V with $q^g=F^L=q^c$ to achieve both loss reduction and voltage regulation:
 \[q^g_j = F = K q^c_j + (1 - K)[q^c_j + \alpha (p^c_j - p^g_j)]\]
 \[q^g_j = F = K F^L + (1 - K) F^V\]
Performance of Composite Control $F(K)$

- Voltage regulation is somewhat improved, but at a high cost of increased losses
- Can we do better?

$$q_j^g = F = KF^L + (1 - K)F^V$$
Hybrid Control Schemes

- $q^g=q^c$ achieves good loss reduction
- Proportional control on V_j achieves good voltage regulation

Set $q^g=q^c$ when $V_j=1$ p.u.

\[q^g_j (V_j = 1) = K F^L + (1 - K) F^V \]
Leverage nodes that already have $V_j \approx 1.0$ p.u. for loss minimization

- Provides voltage regulation and loss reduction
- K allows for trade between loss and voltage regulation
- Scaling factor provides related trades

$$q^g_j (V_j = 1) = K F^L + (1 - K) F^V$$
Conclusions

- In high PV penetration distribution circuits where difficult transient conditions will occur, adequate voltage regulation and reduction in circuit dissipation can be achieved by:
 - Local control of PV-inverter reactive generation (as opposed to centralized control)
 - Moderately oversized PV-inverter capacity ($s \sim 1.1 \, p_{g,\text{max}}$)

- Using voltage as the only input variable to the control may lead to increased average circuit dissipation
 - Other inputs should be considered such as p^c, q^c, and p^g.
 - Blending of schemes that focus on voltage regulation or loss reduction into a hybrid control shows improved performance and allows for simple tuning of the control to different conditions.

- Equitable division of reactive generation duty and adequate voltage regulation will be difficult to ensure simultaneously.
 - Cap reactive generation capability by enforcing artificial limit given by $s \sim 1.1 \, p_{g,\text{max}}$