Stability of spatial patterns in water chemistry across temperate ecoregions

Rémi Dupas1,2, Camille Minaudo3 and Benjamin W Abbott1

1 INRA, UMR 1069 SAS, F-35000 Rennes, France
2 EPFL, Physics of Aquatic Systems Laboratory, 1015 Lausanne, Switzerland
3 Brigham Young University, Department of Plant and Wildlife Sciences, Provo 84602, United States of America
4 Author to whom any correspondence should be addressed.

E-mail: remi.dupas@inra.fr

Keywords: water quality, stability, catchment, monitoring, river network

Abstract

Human activity has polluted freshwater ecosystems across the planet, harming biodiversity, human health, and the economy. Improving water quality depends on identifying pollutant sources in river networks, but pollutant concentrations fluctuate in time. Continuous monitoring of many points in river networks is expensive, impeding progress in developing countries where water quality is degrading fastest. In this study, we analyzed 4523 water chemistry time series of ten parameters (NO$_3^-$, PO$_4^{3-}$, TP, DOC, SO$_4^{2-}$, Cl$^-$, Na$^+$, Ca$^{2+}$, Mg$^{2+}$, K$^+$) across four temperate ecoregions in France (ca. 560 000 km2). We quantified the spatial stability of water chemistry across the monitoring stations using rank correlations between instantaneous concentrations and water quality metrics derived from 6-year time series (2010–2015). The strength of this rank correlation represents how well a water quality evaluation metric can be characterized with a single sampling for a given water quality parameter. Results show that a single sampling captured a mean of 88% of the spatial variability of these parameters, across ecoregions with different climate and land-use conditions. The spatial stability resulted both from high spatial variability among sites and high temporal synchrony among time series. These findings demonstrate that infrequent but spatially dense water sampling can achieve two of the major goals of water quality monitoring: identify pollutant sources and inform ideal locations for conservation and restoration interventions.

1. Introduction

Water pollution kills approximately 1.8 million people every year (Landrigan et al 2018) and degrades ecosystem functioning at a global scale (Foley et al 2011, Steffen et al 2015). In addition to pollutants that directly harm human health such as waterborne pathogens and toxins, excess nutrients from agriculture and urbanization can trigger cyanobacterial blooms and dead zones in freshwater and marine environments (Heathwaite 2010, Vorosmarty et al 2010, Elser and Bennett 2011, Sutton et al 2011, Van Meter and Basu 2017, Xie and Ringler 2017). These symptoms of over-fertilization, collectively known as eutrophication, affect two-thirds of freshwater and estuarine water bodies globally (Diaz and Rosenberg 2008, Conley et al 2009, Le Moal et al 2019).

In response to these water quality crises, national and international agencies invest billions of dollars annually in water quality monitoring (Hering et al 2010). These monitoring efforts are often designed to identify pollution sources and assess compliance with environmental legislation (Heathwaite 2010, Hering et al 2010, Skeffington et al 2015). Because water chemistry varies widely on event, seasonal, and inter-annual timescales (Kirchner and Neal 2013, Isaak et al 2014, Dupas et al 2018, Abbott et al 2018b), most monitoring frameworks sample locations repeatedly, in some cases nearly continuously (Jordan et al 2007, Skeffington et al 2015, Rode et al 2016, Bierozka et al 2018, Fovet et al 2018). While these high-frequency datasets can reveal important ecological dynamics (e.g. catchment and in-stream biogeochemical processing),
they are also expensive, precluding widespread deployment especially in developing countries, where water quality is degrading fastest (Crocker and Bartram 2014) and where poor water quality has the most direct consequences for public health (Landirigan et al. 2018). In this context, it is a global priority to quantify water quality status as efficiently as possible (Crocker and Bartram 2014, Skeffington et al. 2015).

We addressed this monitoring conundrum with an analysis of water chemistry time series from 4523 monitoring stations in France. We quantified the spatial stability of water chemistry across the monitoring stations using Spearman’s rank correlations between instantaneous concentrations and water quality metrics derived from 6-year time series at each station. The strength of this rank correlation represents how well a water quality evaluation metric can be characterized with a single sampling for a given water quality parameter (Abbott et al. 2018a). We analyzed 10 publicly available parameters, including nutrients associated with anthropogenic activity (NO3-, PO43-, total phosphorus, and dissolved organic carbon), weathering products and atmospherically deposited solutes (SO42-, Cl-, Na+, Ca2+, Mg2+, and K+) (Moa-tar et al. 2017). We compared concentrations of the ten parameters with three commonly used water quality parameters with three commonly used water quality.

2.2. Data analysis

We computed median and 90th percentile concentrations, both of which are used to assess the water quality status of water bodies as part of the European Water Framework Directive (table S1). We also calculated the discharge weighted concentration, which is a common metric of solute flux (Johnes 2007, Cassidy and Jordan 2011).

$$DWC = \frac{\sum_i Ci * Qi}{\sum_i Qi},$$

where Ci and Qi represent the concentration and discharge at the time of sampling.

Spatial stability describes the persistence of spatial patterns of water chemistry through time (Abbott et al. 2018a). It is the product of spatial differences in concentration among sites and temporal variation of concentration of each individual site (figure 2), providing insight into basic ecosystem functioning and the hydrochemical footprint of human disturbance (Temmerud and Bishop 2005, Abbott et al. 2018a). We quantified stability by comparing the ranks of individual sampling dates with the ranks of the three metrics using Spearman’s correlations. A rank correlation of 1 indicates that it is possible to identify the relative water quality of all the stations from 2010–2015 time series, based on data from any individual sampling date (figure 2). Because sampling dates differed among water quality stations, we compared data sampled during the same month. When several samples were collected for one month, we selected one date randomly. All statistical analyses were performed with the R statistical software (R Development Core Team 2008).

Because the database included nested catchments, the monitoring stations are not spatially independent (Isaak et al. 2014). We tested the influence of this spatial dependence by computing the rank correlations for three classes of independent catchments: <100 km², 100–1000 km² and 1000–10 000 km².

We explored two hypotheses to explain high spatial stability (figure 2). First, temporal synchrony among catchments could preserve the relative ranking of solute concentration among stations through time (i.e. the time series of concentration cross less when they move up and down together; Erlandsson et al 2008, Abbott et al. 2018a). To test this hypothesis, we quantified the temporal synchrony with Pearson correlations between 10 000 pairs of catchments among 4523°2
possible pairs. Second, if there is higher spatial variability on concentrations than temporal variability, time-series cross less and the ranking of concentration among stations is preserved. We tested this hypothesis by quantifying spatial and temporal variability using the coefficient of variation (CV). We plotted median CV and an error bars representing 10th–90th percentiles.

3. Results and discussion

3.1. Spatially stable water chemistry across ecoregions
For all parameters and across all stations, average stability coefficients ranged from 0.83–0.97 for median concentrations, 0.80–0.96 for 90th percentiles, and
0.68–0.95 for discharge weighted concentrations (figure 3). These high spatial correlations demonstrate that a single sampling can assess both the central tendency and extreme behavior of multi-annual water quality. For nitrate (NO₃), which alone causes 0.2–2.3 trillion USD of ecosystem damage annually (Sutton 2013, Bodirsky et al 2014), average stability coefficients were 0.90 for all of France and ranged from 0.85–0.92 for the four ecoregions (figure S2). While stability coefficients showed limited temporal variation for most parameters, they varied seasonally for NO₃ and to a lesser extent phosphate (PO₄), meaning that certain times of the year were more representative of the water quality metrics of interest for these parameters. The most representative period was similar among ecoregions (figure S2) but differed by water quality parameters and metrics (figures 3 and S2). For example, winter months were more representative of median NO₃ while summer months were more representative of PO₄₃–90th percentile (figure 3).

3.2. What causes spatial stability in water quality?

Two non-exclusive factors could contribute to spatial stability of water quality (figure 2). First, if spatial variability among multiple stations is much greater than the temporal variability of those stations (Hammond and Kolasa 2014, McGuire et al 2014), relative concentration rank would be stable. Second, if temporal changes are synchronous among stations (Dupas et al 2017, 2018, Abbott et al 2018a), coincident increases and decreases would preserve spatial patterns despite temporal variability. To test these hypotheses, we quantified the temporal synchrony among stations for each parameter with Pearson correlations between time series from pairs of monitoring stations—a proxy of temporal covariance (Abbott et al 2018a), and we compared the spatial and temporal variability with coefficients of variation. We found that both temporal synchrony (figure 4(a)) and high spatial variability (figure 4(b)) contributed to the observed spatial stability. While many parameters showed high temporal variability (median coefficients of variation ranged from 16% for Ca²⁺ to 62% for TP, figure 4(b)), spatial coefficients of variation were higher than temporal coefficients of variation across all water quality parameters (figure 4(b)). Temporal correlations (i.e. synchronies) were positive in 70% of catchment pairs (figure 4(a)).

Spatial stability of different water chemistry parameters was negatively correlated with temporal variability, but stability was not correlated with synchrony (figure S3). The mean synchrony coefficients estimated in the present study were lower than those observed at catchment scales for the same parameters (0.2–0.8 in Abbott et al 2018a versus 0.1–0.3 in this study). The reasons for this lower synchrony were likely the different sampling dates during the same month, and the large spatiotemporal variability in rainfall and catchments’ responses to rainfall. We conclude that the influence of synchrony on spatial stability was weak at a national scale, compared to the high spatial variability. The effect of spatial nesting of upstream stations did not appear to influence estimates of spatial stability, which were similar for the catchment classes <100 km², 100–1000 km² and 1000–10 000 km² (figure 5). The fact that spatial stability of discharge weighted concentration was notably lower for the catchment classes <100 km² and 1000–10 000 km² can be explained by the low number of stations (figure S4(a)) and their relatively low spatial variability (figure S4(b)).

Figure 3. Spatial stability of three water quality metrics for ten water quality parameters. (a) median, (b) percentile 90th and (c) discharge weighted concentration.
3.3. Graduating from monitoring to managing global water quality crises

These finding are of ecological and practical importance because they demonstrate that water quality can still be efficiently assessed with spatially extensive sampling throughout river networks even when distinct socio-ecohydrological dynamics are at play in different locations and scales. The diverse land-use and climatic conditions across the ecoregions did not decrease spatial stability, potentially because these same conditions increase absolute magnitude of spatial variation (Thomas et al 2016, Abbott et al 2018a). If spatial stability of water chemistry is a general phenomenon in freshwater landscapes of the Anthropocene, our findings have different applications for developed and developing countries. Water quality is generally improving in the developed world (Grizzetti et al 2012, Jarvie et al 2013, Dupas et al 2018, Abbott et al 2018b), while it is projected to

Figure 4. Spatial stability can be attributed to synchronous catchment dynamics and high spatial variability. (a) Temporal synchrony (Pearson correlation) of 10 000 pairs of monitoring stations in France. (b) Comparison of the temporal coefficients of correlation (CV) with the spatial CV calculated for each month from 2010 to 2015 (median and 10th–90th percentile).

Figure 5. Spatial stability of three water quality metrics for three classes of independent catchments: (a) <100 km², (b) 100–1000 km² and (c) 1000–10 000 km².
substantially degrade in developing countries (Seitzinger et al. 2010, Crocker and Bartram 2014). In developed countries, reducing the routine monitoring frequency would allow an increase in the spatial extent and density of sampling or allow for a broader range of chemical analyses, including emerging pollutants, microbiological parameters, and more integrative ecological assessment (Landrigan et al. 2018). In the developing world, infrequent but extensive synoptic screening could locate priority catchments which are either highly degraded and therefore candidates for restoration, or still pristine and therefore candidates for conservation (Abbott et al. 2018a). It could also identify catchments that are resilient to anthropogenic nutrient loading, potentially allowing increased agricultural productivity without degrading water quality. In all socioeconomic contexts, these findings suggest ways that environmental agencies could reallocate resources for pollution monitoring and mitigation, if they decide to adopt a robust qualitative assessment instead of the current uncertain quantitative assessment.

We point out that the stability concept does not resolve the perennial issue of the large uncertainties encountered in quantitative water quality assessments when using medium-frequency monitoring (Skeffington et al. 2015). However, because spatial stability, temporal variability, and temporal synchrony are easy to calculate with existing data, they can be quantified for many parameters of interest across a broad range of socioecological conditions. It would be particularly interesting to test the stability concept with compounds such as micro-pollutants, which are potentially more chemodynamic than the parameters included in this study, as figure S3 shows decreasing stability for increasing temporal CV. The increasing number of high-frequency monitoring data-sets worldwide will also soon allow testing the stability concept with sub-hourly data. When spatial stability of water chemistry is detected, it could provide a shortcut to identifying compromised river reaches and pollutant sources, enabling efficient action on three of society’s most urgent issues in the 21st century: loss of clean water for human use, degradation of aquatic habitat, and alteration of biogeochemical fluxes (Vorosmarty et al. 2010, Elser and Bennett 2011, Sutton et al. 2011, Landrigan et al. 2018).

Data

Water quality data for France is publicly available at http://naiades.eaufrance.fr/.

ORCID iDs

Rémi Dupas @ https://orcid.org/0000-0002-5932-4056
Camille Minaudo @ https://orcid.org/0000-0003-0979-9595
Benjamin W Abbott @ https://orcid.org/0000-0001-5861-3481

References

Abbott B W et al. 2018a Unexpected spatial stability of water chemistry in headwater stream networks Ecology Lett. 21 296–308
Abbott B W, Moatar F, Gauthier O, Fovet O, Antoine V and Rauguneau O 2018b Trends and seasonality of river nutrients in agricultural catchments: 18 years of weekly citizen science in France Sci. Total Environ. 624 845–58
Bieroza M Z, Heathwaite A L, Bechmann M, Kyllmar K and Jordan P 2018 The concentration-discharge slope as a tool for water quality management Sci. Total Environ. 630 738–49
Bodirsky B L et al. 2014 Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution Nat. Commun. 5 3858
Cassidy R and Jordan P 2011 Limitations of instantaneous water quality sampling in surface-water catchments: comparison with near-continuous phosphorus time-series data J. Hydrol. 405 182–93
Conley D J et al. 2009 Controlling eutrophication: nitrogen and phosphorus Science 323 1014–5
Crocker J and Bartram J 2014 Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries Int. J. Environ. Res. Public Health 11 7336–46
Diaz R J and Rosenberg R 2008 Spreading dead zones and consequences for marine ecosystems Science 321 926–9
Dupas R et al. 2017 Carbon and nutrient export regimes from headwater catchments to downstream reaches Biogeochemistry 4391–407
Dupas R, Minaudo C, Gruau G, Ruiz I and Gascuel-Odoux C 2018 Multidecadal trajectory of riverine nitrogen and phosphorus dynamics in rural catchments Water Resour. Res. 54 5327–40
Elser J and Bennett E 2011 A broken biogeochemical cycle Nature 478 29–31
Erlandsson M, Buffam I, Folster J, Laudon H, Turner J, Weyhenmeyer G A and Bishop K 2008 Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate Global Change Biol. 14 1191–8
Foley J A et al. 2011 Solutions for a cultivated planet Nature 478 337–42
Fovet O et al. 2018 Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data J. Hydrol. 559 282–93
Grizzetti B, Bouraoui F and Aloe A 2012 Changes of nitrogen and phosphorus loads to European seas Global Change Biol. 18 769–82
Hammond M P and Kolasa J 2014 Spatial variation as a tool for inferring temporal variation and diagnosing types of mechanisms in ecosystems PLoS One 9 e89245
Heathwaite A L 2010 Multiple stressors on water availability at global to catchment scales: understanding human impact on nutrient cycles to protect water quality and water availability in the long term Freshwater Biol. 55 241–57
Hering D et al. 2010 The european water framework directive at the age of 10: a critical review of the achievements with recommendations for the future Sci. Total Environ. 408 4007–19
Isaak D J et al. 2014 Applications of spatial statistical network models to stream data Wiley Interdiscip. Rev.-Water 1 277–94
Jarvie H P, Sharples A N, Withers P J A, Scott J T, Haggard B E and Neal C 2013 Phosphorus mitigation to control river eutrophication: murky waters, inconvenient truths, and ‘postnormal’ science J. Environ. Qual. 42 295–304
Johnes P J 2007 Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseline index and catchment population density J. Hydrol. 332 241–58
Jordan P, Arnscheidt A, McGrogan H and McCormick S 2007 Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser Hydrol. Earth Syst. Sci. 11 372–81
Kirchner J W and Neal C 2013 Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection Proc. Natl Acad. Sci. 110 12213–8
Landrigan P J et al 2018 The Lancet commission on pollution and health Lancet 391 462–312
McGuire K J, Torgersen C E, Likens G E, Buso D C, Lowe W H and Bailey S W 2014 Network analysis reveals multiscale controls on streamwater chemistry Proc. Natl Acad. Sci. 111 7030–5
Le Moal M et al 2019 Eutrophication: a new wine in an old bottle Sci. Total Environ. 651 1–11
Moatar F, Abbott B W, Minaudo C, Curie F and Pinay G 2017 Elemental properties, hydrology, and biology interact to shape concentration–discharge curves for carbon, nutrients, sediment, and major ions Water Resour. Res. 53 1270–87
R Development Core Team 2008 R: A Language and Environment for Statistical Computing (Vienna, Austria: R Foundation for Statistical Computing)
Rode M et al 2016 Sensors in the stream: the high-frequency wave of the present Environ. Sci. Technol. 50 10297–307
Seitzinger S P et al 2010 Global river nutrient export: a scenario analysis of past and future trends Glob. Biogeochem. Cycles 24 GB0A08
Skeffington R A, Halliday S J, Wade A J, Bowes M J and Loewenthal M 2015 Using high-frequency water quality data to assess sampling strategies for the EU water framework directive Hydrol. Earth Syst. Sci. 19 2491–504
Steffen W et al 2015 Planetary boundaries: guiding human development on a changing planet Science 347
Sutton M A (ed) 2013 Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution (Edinburgh: NERC/ Centre for Ecology & Hydrology) p 114
Sutton M A, Oenema O, Erisman J W, Leip A, van Grinsven H and Winiwarter W 2011 Too much of a good thing Nature 472 159–61
Temnerud J and Bishop K 2005 Spatial variation of streamwater chemistry in two swedish boreal catchments? Implications for environmental assessment Environ. Sci. Technol. 39 1463–9
Thomas Z, Abbott B W, Troccaz O, Baudry J and Pinay G 2016 Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments Biogeosciences 13 1863–75
Van Meter K J and Basu N B 2017 Time lags in watershed-scale nutrient transport: an exploration of dominant controls Environ. Res. Lett. 12 084017
Vorosmarty C J et al 2010 Global threats to human water security and river biodiversity Nature 467 555–61
Xie H and Ringler C 2017 Agricultural nutrient loadings to the freshwater environment: the role of climate change and socioeconomic change Environ. Res. Lett. 12 104008