Tertiary Lymphoid Structures: Autoimmunity Goes Local

Elena Pipi1,2†, Saba Nayar1†, David H. Gardner1, Serena Colafrancesco3, Charlotte Smith1 and Francesca Barone1*1

1Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom, 2Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom, 3Reumatologia, University of Rome, Sapienza, Italy

Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.

Keywords: tertiary lymphoid structures (TLS), autoantibodies, germinal center response, glycosylation, B-cells

INTRODUCTION

The polyclonal expansion of autoreactive B cells is a cardinal feature of autoimmune conditions. Whether directed against a single antigen or playing part in a poly-specific response, autoreactive B cells support the persistence of the autoimmune process and, in several cases are directly pathogenic.

The development of an autoreactive B cell repertoire during the natural history of the autoimmune condition is regulated by the process of affinity maturation against single or multiple autoantigens that occurs within the inner part of the B cell follicles, classically within secondary lymphoid organs (SLOs) (1). Formation of B cell follicles and germinal centers (GC) has been also described in ectopic or tertiary lymphoid structures (TLS) in a process defined “ectopic lymphoneogenesis.” TLS form at target organs of chronic inflammatory/autoimmune process, localized infections and in the areas surrounding solid tumors (2–11). The prognostic value of these structures is debated. TLS formation in target organs autoimmune disease is classically associated with disease persistence and worst clinical manifestations. In solid tumors TLS have instead been associated with the generation of an anti-tumor response, however in some cases the ability of tumor cells to induce T regulatory cells (Treg) and suppress the host immune response has been described Table 1.

Often indicated as “tertiary lymphoid organs,” TLS fail to adhere to the proper definition of organs as they lack a stable structural organization, including a capsule, and are better classified as “tertiary lymphoid structures” or TLS (97). TLS are not present in embryonic life and form in adult life to support local aggregation of lymphocytes at the target organ of disease. Other terms

including “ectopic lymphoid structures” (ELS) or “ectopic germinal centers”. The latter, however, should only be used when GC formation is determined histologically within the ectopic lymphoid tissue (97–101). The cross-over between TLS and SLO is the subject of debate and has been reviewed by ourselves and others in recent publications (9, 98).

The term “tertiary lymphoid” tissue in the literature dates back to 1992 and was introduced by Louis Picker and Eugene Butcher (102) to describe the formation of extra-lymphoid sites, where memory lymphocytes and/or precursors can be re-stimulated by antigen to induce further clonal expansion or terminal effector responses. By definition, TLS arise in tissues whose main function is other than the generation of immune cells or the initiation of an adaptive immune response. This excludes the bone marrow and thymus, (as primary lymphoid organs) and spleen, lymph nodes and Peyer’s patches (which are defined as SLOs). The kidneys, heart, pancreas, synovium and salivary glands are not embryologically predisposed to host the presence of lymphoid tissue therefore lymphocyte assembly at these sites should be considered TLS. The liver provides a hematopoietic function during embryonic development (103) however, this function is lost postnatally, thus including this organ among those that host TLS in adult life (97).

TLS form in response to a series of pro-inflammatory cytokines and TNF receptor family members following the local cross-talk between inflammatory immune cells and resident stromal cells. Fibroblasts, perivascular myo-fibroblasts and resident mesenchymal cells have been differently implicated in TLS development (39, 75, 104–112). Their role has been recently reviewed elsewhere (97, 113, 114). Probably evolved before SLO, TLS might have developed in ectopic tissues to fulfill the survival need of aggregated leucocytes, prior to placenta and development of SLOs. As such, the ability of TLS to be initiated independently from Lymphotoxin (LT) upon the expression of inflammatory cytokines and in absence of lymphoid tissue inducer cells (LTi) might

TABLE 1 | TLS in different conditions.

Disease	Type	Localization	Specific antigens identified	Role/prognosis	Human studies	Mouse studies
GPA/WG	AID	Lungs	ANCAsg	pathogenic	(12, 13)	
Hashimoto’s Thyroiditis	AID	Thyroid	Thyroglobulin, Thyroperoxidase	pathogenic	(14, 15)	(16, 17)
MS	AID	CNS	Myelin (in mice)	pathogenic	(18–21)	(22–28)
Myasthenia gravis	AID	Thymus	Acetylcholine receptor	pathogenic	(29, 30)	(31)
Primary biliary cirrhosis,	AID	Liver	No	N/A	(32)	
Rheumatoid Arthritis	AID	Synovium	RF, Citrullinated proteins	pathogenic	(33, 34)	(33, 35)
Sjogren’s Syndrome	AID	Salivary/Lachrymal glands, Lung	SSA/Ro & SSB/La	pathogenic	(36–38)	(39, 40)
SLE	AID	Kidneys	No	pathogenic	(41)	(42, 43)
Breast cancer	Can	Breast	Tumor associated antigens	favorable	(44–47)	
Colorectal cancer	Can	Colon	No	favorable	(48, 49)	(49)
Lung cancer	Can	Lung	No	favorable	(50, 51)	
Ovarian cancer	Can	Ovarian	No	favorable	(52)	
Melanoma	Can	Skin	No	favorable	(53)	
PCD	Can	Pancreas	No	favorable	(54)	
Prostate cancer	Can	Prostate	No	favorable	(55)	
Atherosclerosis	CID	Arteries	No	protective (in mice)	(56, 57)	(58, 59)
COPD	CID	Lung	No	pathogenic (in mice)	(60–64)	(60, 62, 65)
IBD	CID	Gut	No	pathogenic (in mice)	(66–68)	(70–74)
PSC	CID	Liver	No	N/A	(75)	
Lyme disease	Inf	Joints	No direct evidence	N/A	(76)	
HCV	Inf	Liver	No direct evidence	N/A	(77–80)	
Helicobacter pylori	Inf	Gastric wall	No direct evidence	Pathogenic	(81–83)	(84)
Mycobacterium tuberculosis	Inf	Lungs	No direct evidence	Protection against pathogen	(85–87)	(85, 86, 88)
Allograft transplants	Tra	Heart, lung, kidney	Allo-antigens	Highly controversial	(89–94)	(95, 96)

GPA/WG, Granulomatosis polyangiitis/Wegener’s granulomatosis; COPD, Chronic Obstructive Pulmonary Disease; IBD, Inflammatory Bowel Disease; PSC, Primary Sclerosing Cholangitis AID, Autoimmune disease; CID, Chronic inflammatory disease; PDC, Pancreatic duct carcinoma; HCV, Hepatitis C virus; Can, Cancer; Tran, Transplantation; Inf, Infection. (Note: Studies on mice are presented only if there is evidence from human studies for the presence of TLSs in these different conditions).
have remained as heritage of their developmental ancestry (97).

Physiologically, the generation of a humoral response requires the physical interaction of naïve B cells with antigen experienced T cells within the confined space of a microenvironment rich in survival and chemotactic factors (115). Lymphocytes are recruited from the bloodstream to the SLO in response to a chemotactic gradient that regulates cell positioning and interactions (116, 117). CXCL13 and CCL19/CCL21, ligands for the chemokine receptors CXCR5 and CCR7, respectively, regulate the recirculation of naïve B cells between the inner part of the B cell follicle to the outer area of the T/B cell boundary (118), thus enabling the contact of B cells with antigen-experienced, activated T cells (119). Within the follicles, antigen-experienced B cells migrate toward the dark zone of the GC, a highly hypoxic CXCL12-rich area. Within this area they become highly proliferating centroblasts and upregulate the enzyme activation-induced cytidine deaminase (AID) (120, 121), that regulates the introduction of single base-pair substitutions of antibody gene segments in the immunoglobulin (Ig) variable-region genes, in a process defined as somatic hypermutation (SHM) (122).

Following SHM, B cells stop proliferating and undergo the process of affinity maturation (123). Differentiated, non-dividing B cells (centrocytes) upregulate CXCR5 and migrate along the CXCL13 gradient toward the GC light zone (120), herby establishing connections with the network of follicular dendritic cells (FDC) that provide survival factors (124, 125) and antigen presentation via the CR2 receptor (125, 126). Within the light zone, centrocytes also encounter mature T follicular helper cells (Tfh), known to provide signals for selection and terminal differentiation into long-lived plasma cells or memory B cells (127–130). Once exited from the GC, affinity matured B cells undergo the process of class switch recombination (CSR), that regulates isotype switching and ultimate effector function of the immunoglobulins (Igs). This latter process is also regulated by AID (130–142) (Figure 1A).

This organizational program in SLOs is maintained by the anatomical differentiation of specialized, resident stromal cells that regulate migration and functional activation of the immune cells in the different part of the follicle (138, 143–149). The development of this stromal network and the signals required for his homeostasis have been reviewed elsewhere (150). TLS display a similar anatomical structure to support naïve B and T cell recirculation, including the expression of homeostatic lymphoid chemokines CXCL13, CCL21 and CCL19 and the molecular complex peripheral node addressin (PNAd) (97, 98, 151, 152). However, the complex anatomical compartmentalization displayed in SLO is rarely acquired in TLS. While the majority of reports on TLS describe a certain degree of T/B cell segregation, vascular/stromal cell specialization and expression of lymphoid chemokines, the presence of a more complex organization of the TLS and the formation of functional GC is highly variable within and amongst diseases (4, 153–155). In TLS that form during chronic autoimmune processes, the establishment of such disorganized microenvironment, rich in survival factors and pro-inflammatory cytokines, but likely missing key checkpoints for autoreactive cells screening, is likely responsible for the local generation of pathogenic autoantibody specificities and oncogenic mutations, ultimately favoring disease progression (1, 9, 97, 98).

TLS IN AUTOIMMUNE CONDITIONS: A LESSON FROM RHEUMATOID ARTHRITIS AND SJÖGREN’S SYNDROME

In 1996, Nancy Ruddle described the presence of a “structural chronic inflammatory process” caused by ectopic production of lymphotoxin, in the context of chronic inflammation of the pancreas (156). Since then, TLS formation has been associated with a localized process of inflammation at sites of infection, autoimmunity, cancer, and allograft rejection. The ultimate pathogenic role of TLS is still debated (98, 151) and most likely depends on the context, organ and type of disease. For the scope of this review we will focus on the role of TLS in supporting the autoimmune process in chronic autoimmune conditions and we will discuss the role of TLS in Rheumatoid Arthritis (RA) and primary Sjögren’s Syndrome (pSS) (33, 36, 135, 151, 157–162).

RA is the most common rheumatic autoimmune condition, affecting 0.5–1% of the global adult population. The pathological features of the disease include severe inflammation of the synovial membrane that, in some cases, leads to tissue destruction and subchondral bone erosions (163–166). Histologically, the disease can be classified in 3 main histopathological subtypes: a lymphoid type, mainly characterized by T and B cell aggregates that form TLS; a myeloid type, characterized by diffuse infiltration of prevalent monocyte and macrophages; and the fibroid type, defined by scarce or no immune cell infiltration and prevalent synovial fibroblast hyperplasia (151).

The presence of a “...marked infiltration of chronic inflammatory cells (lymphocytes or plasma cells predominating) with tendency to form “lymphoid nodules” was recognized already in the 1957 RA classification criteria (167). In 1972, Munthe and Natvig suggested that the RA synovial membrane is similar to an active lymphoid organ, containing many lymphoid follicles with GC that undergo local division and differentiation into plasma cells with restricted Ig production (168). Later, Steere and colleagues described “elements found in normal organized lymphoid tissue” in synovial lesions from both RA and Lyme disease patients (169); suggesting that the formation of GC-like structures in the synovium is not specific for RA and can be driven by the local antigenic stimulation. It took, however, more than 40 years after these first descriptions to introduce the concept that B-cell affinity maturation could arise within the inflamed synovium (170). It is now accepted that TLS are present in less than half of RA patients who display so called “lymphoid” synovitis (151) and that, in those patients, the presence of TLS is associated with differential prognosis and disease manifestations (151). TLS formation in the synovia have been also identified in patients with psoriatic arthritis (171) and ankylosing spondylitis (172, 173).

A similar phenomenon of leucocyte aggregation in lymphoid like structures occurs in the salivary glands of patients affected...
FIGURE 1 | (A) In TLS, naïve B cells (NB), enter the follicle to initiate a classical germinal center reaction. In the dark zone, centroblasts (CB) proliferate and acquire somatic hypermutations in their variable region. In the light zone, centrocytes (CC) are selected after their interaction with specific antigen found on the surface of follicular dendritic cells (FDCs). Lectin-BCR signaling can potentially result in enhanced selection of B cells. Failure to receive survival signals from either TFH (T follicular helper cells) or FDCs leads to B cell apoptosis. Successful affinity maturation results in either mature B cell (MB) of plasma cells generation. GC microenvironment can control the outcome of the immune response by regulating the glycosylation profile of the antibodies. (B) TLS display a less organized anatomical structure and a predominant infiltration of MB and marginal zone B cells (MB). Aberrant production of survival and chemoattractant signals is observed at these sites.

by pSS, a disease characterized by chronic inflammation of the exocrine glands, with progressive loss of function (sicca syndrome) and systemic activation of the humoral response (174). Excessive B cell hyperactivity and extra-glandular manifestation are observed in ∼30% of pSS patients and an increased risk for lymphoma development has been described in this condition. In 1974, Chused et al. first described the presence of lymphoid-like structures in the salivary glands of patients with pSS (175). This was followed by the report of local antigenic stimulation within GC-like structures in the salivary glands (176) and, 10 years later, by the description of FDC network formation within the aggregates (177). In 1998, Stott and colleagues provided the first experimental evidence of an antigen-driven GC response, defined by clonal B cell proliferation and clone hypermutation within the salivary gland inflammatory foci (37), and, since then, several features associated with
lymphogenesis have been reported within pSS aggregates (157, 178).

It is now recognized that during pSS, TLS form in the minor salivary and/or parotid gland in around 30–40% of patients (151) and those structures host a phenomenon of oligoclonal B cell expansion and SHM of the Ig variable genes (37). The formation of TLS in pSS salivary glands correlates with increased B cell hyperactivity, the presence of anti-SSA and anti-SSB autoantibodies, hypergammaglobulinemia and cryoglobulinemia, supporting the hypothesis that TLS persistence contributes to disease progression in pSS (179). Our group has contributed to these reports, describing both the expression of lymphoid chemokines and of AID within highly organized aggregates that harbor in the salivary gland of patients with pSS and MALT lymphoma (135, 180). The relationship between TLS formation and disease progression in pSS is still debated. TLS detection has been associated with high antibody titer, systemic manifestations and lymphoma development. However, the direct correlation between GC formation in the salivary glands and lymphoma formation has not been demonstrated, suggesting that the development of GC+TLS within the salivary glands represent one of the stages in the process of lymphomagenesis but is not per se sufficient to induce lymphoma (135, 154, 161, 180–182).

In order to better understand the pathogenic effect that TLS play in disease it is important to dissect the elements, present within these structures that contribute to their function and persistence in the tissue.

STRUCTURAL ELEMENTS OF TLS

Antigen

There is enough evidence to support the hypothesis that TLS form to provide an immune response against locally displayed antigens. There are suggestions that TLS formation is an antigen (Ag)-driven process. In the mucosal associated lymphoid tissue that forms during Helicobacter *Pilori* gastritis antigen clearance following antibiotic treatment impacts on TLS maintenance and progression to lymphoma (183), similarly inducible bronchial associated lymphoid tissue can dissolve upon antigen clearance (184). Maffia and colleagues explored the properties of Ag presentation within TLS (58, 185) demonstrating that Ag presentation is regulated by a random process of diffusion, rather than selective Ag uptake by DCs. Those data are reinforced by the anatomical structure of TLS where conduits, able to support Ag movement and APC migration have been described (186). In this context, the absence of a capsule could favor not only the initial Ag delivery in the tissue, but the progressive accumulation of new antigen specificities during the course of the immune response, favoring the persistence of these structures in the tissue.

During a classical immune response, the antigens are collected by antigen presenting cells in the periphery and moved, via a complex network of lymphatic vessels, to draining lymph nodes (LN) (187–189). LN space is pre-formed during the embryonic development and anatomically set before the generation of the immune response to accommodate optimal interaction between APC, Ag and immune cells. Differently by SLOs, TLS organization is not anatomically predisposed to organize such a response and Ag presentation is often provided by non-immune cells, such as stromal cells and epithelial cells (190–193).

Lack of Ag drainage could mechanistically explain TLS formation. TLS form spontaneously in the lungs of mice deficient for CCR7, a chemokine receptor required for the migration of antigen-charged dendritic cells (DCs) to draining lymph nodes (194). However, the reconstitution of these animals with CCR7-sufficient cells is enough to re-establish the physiological delivery of the antigen to the lymph node and to induce TLS resolution in the tissue. This evidence appears to suggest that an intrinsic defect in DCs is sufficient to trigger TLS establishment. However, it is not clear whether this phenomenon could be also supported by a defect of lymphatic drainage from the inflamed tissue.

The expansion of a functional network of lymphatic vessels is required for appropriate antigen delivery to the SLOs. There are several reports describing the dramatic remodeling of the lymphatic vessels during inflammation, whereby the activation of NF-κB pathway supported by the expression of LT, IL-1 and TNFα, stimulates the expression of Proxl and increases the transcripts for the VEGF-R3, both of which are factors involved in lymphangiogenesis (195–201). TLS lack the presence of an organized lymphatic system such as the one described in SLOs (152). However, the expansion of the lymphatic vascular system has been observed in these structures, in response to the same cytokine milieu that regulates the maturation of the non-vascular stroma at these sites (97, 105). It is not clear whether these newly formed vascular structures are, however, able to establish viable connections with pre-existing lymphatics. The failure to do so would prevent efficient drainage of the antigen to the SLOs and support the excessive antigenic stimulation in the peripheral tissue (89, 202–206).

Lymphangiogenesis associated with tertiary lymphoid structure (TLS) has been reported in numerous studies. Defects in lymphangiogenesis in RA present with a reduction in lymphatic flow, absence of lymphatic pulse and collapse of draining LNs is observed during disease and is associated with flare onsets as has been shown in vivo and ex vivo studies performed by Schwarz and colleagues (207). Accordingly, effective therapeutic approaches in RA, including anti-TNF and B cell have been associated with the expansion of the lymphatic bed (208) and increase in cell drainage from the synovium (209).

In a model of pSS our group demonstrated that during TLS assembly an expansion of the lymphatic vascular network takes place and this is regulated by the sequential engagement of IL-7 and LTβR signaling; suggesting the presence of a natural pro-resolving mechanism for lymphocyte exit from the tissues during TLS establishment (105).

The open questions related to the mobilization of Ag loaded APC to the draining SLOs could be addressed in the future by inducing TLS formation and tracking the movement of labeled antigen-loaded DCs across vessels. The possibility to interfere pharmacologically or genetically with the process of lymphangiogenesis and with the molecules responsible for cell migration across these structures, is likely to elucidate this complex phenomenon and to provide evidences on the role of
aberrant antigen presentation and vascular disturbances in TLS establishment and persistence.

Both RA and pSS are characterized by antibody production against a discrete set of autoantigens and a large body of research in this area has been focused around the identification of antigen specificities within the TLS in the context of these diseases. The presence of citrullinated proteins has been reported within the synovia of RA patients by Baeten (210) and others, and associated with the local expression of the enzyme peptidyl arginine deiminase (PAD) in patients characterized by high systemic and local levels of anti-citrullinated antibodies (APCA) (211). This report fails to demonstrate the presence of the citrullinated proteins within the synovial TLS and is in disagreement with other studies reporting the detection of citrullinated proteins in non-RA synovium lacking classical TLS (212); casting doubts on the exclusive association between citrullinated protein expression and TLS development in RA. Additional evidence that associate the presence of TLS with the generation of auto-antibody specificity against citrullinated peptides (but not necessarily local display of the defined antigen) will be discussed in a different section of this review.

Stronger evidences supporting the link between TLS and local auto-antigen presentation have been provided in pSS. Ro/SSA 52 kDa, Ro/SSA 60 kDa and La/SSB belong to a intracellular complex of RNA binding proteins that is physiologically involved in the intrinsic response to viruses (213). The aberrant expression of Ro and La has been reported in pSS patients upon cellular apoptosis or extracellular transport in vesicles (214–216). Moreover, the presence of anti-Ro52/TRIM21 specific plasma cells has been demonstrated, at the boundaries of well-organized TLS in pSS salivary glands, establishing a clear connection between local antigen presentation and TLS formation in this disease (158). The presence of extractable nuclear antigen (ENA) antibodies against these two ribonucleoproteins is pathognomonic for Sjogren’s and associated with more severe systemic manifestation and worst prognosis (214, 216, 217).

Lymphocytic Components of TLS

We have recently reviewed the role of non-haematopoietic cells in TLS establishment and organization (97, 98) and for the scope of this issue focused on autoantibodies, we will limit the discussion in this manuscript to the lymphocytic compartment.

Whilst mainly constituted of B cells and associated with aberrant humoral responses and GC formation, TLS establishment and maintenance strongly relies on T cells. In humans, the presence of a shared TCR specificity among different follicles in the RA synovium, has been described, suggesting the presence of a common antigen for different TLS that form within the synovial tissue (218). In line with this finding, depletion of CD8+ T cells in human synovium-SCID mouse chimeras hinders the formation on TLS (218).

Recently, efforts have been made to identify the cells and signals required for TLS establishment and a series of reports have highlighted the important role of IL-17+ T cells. Th17 cells are required for iBALT formation (219) and for TLS establishment in a model of experimental autoimmune encephalomyelitis (EAE); the latter, dependent on the production of LT-αβ, IL-17 and IL-22 (22, 23, 220, 221). In human renal allograft rejection, Th17 cells have been shown to promote ectopic GC formation in an IL-21 dependent manner (222). Aberrant differentiation of Th17 cells in the absence of IL-27 has been also associated with aberrant TLS formation in an experimental model of arthritis and in a model of pSS (223, 224).

Our group has recently demonstrated the requirement of IL-22 producing T cells in the early phases of TLS establishment in murine salivary glands (39). In this model, IL-22 production, similarly to the IL-17 production in the lungs and brain, appears to regulate, independently but also in synergy with lymphotoxin and TNF, the ectopic production of lymphoid chemokines that defines TLS formation (97). These studies demonstrate that T cells, and in particular Th17/Th22 cells, play an important role in shaping the constituents of TLS in a manner that can support subsequent B cell recruitment and germinal center formation.

Whether TLS provide a site of aggregation for naïve T cell is not clear and whilst naïve T cell recruitment and priming has been reported within TLS that form in pancreatic tissue in NOD mice (225), it is more likely that effector T cells and central memory recirculate in these structures, in particular in the earliest phases of TLS assembly. On the contrary it is now well accepted that TLS function as a site for functional T cell polarization. TLS maintenance appears to hinge on the functional relationship between T-follicular helper cells and regulatory T cell populations. T cells displaying a Tfh phenotype have been described in TLS, where they are expected to regulate the GC reaction and the activation of resident proliferating B cells (1). In the TLS that form outside the arterial wall and control the atherosclerotic plaque development, the presence of Tfh correlates with the organization and maintenance of the ectopic B cell clusters (226). Functional interference of the Tfh by ICOS-L blockade results in decreased TLS formation and aberrant atherosclerotic plaque formation. The opposite effect is obtained by depletion of T regulatory cells, previously demonstrated to play a critical role in the homeostatic control of the TLS and in the atherosclerotic process (58).

The developmental program of Tfh in TLS is debated. There are suggestions that this population in TLS derives from a population of peripheral CXCR5+ T cells that migrate to the peripheral tissue following the newly established CXCL13 gradient. These circulating CXCR5+ cells do not bear classical signs of activation and would, by definition, preferentially migrate to SLOs; however, the local differentiation of HEVs and the expression of PNAd (the ligand for L-selectin) supports their homing to the TLS (227). Others suggest that, within TLS, Tfh locally differentiate from other T cell subpopulations, including Th17. In support of this hypothesis, in EAE, Th17 cells appear to acquire some characteristics of Tfh including the expression of CXCR5, ICOS and Bcl6 (23). Similarly, within the inflamed joints of RA patients, a population of PD1hiCXCR5 hi CD4+ T cells termed “peripheral helpers” has been described that appear to fulfill the function of Tfh within the periphery (228). In pSS the expansion of Tfh cells has been reported and correlates with the increasing frequency of memory B and plasma cells in the tissue and blood (229, 230).
Genetic manipulation in conditional knockouts is currently in use to induce TLS formation in mice deficient for specific T cell populations and will allow better definition of cellular requirements for TLS formation.

Classically, fully established TLS are mainly characterized by B cell infiltration and the inversion of the B/T cell ratio within TLS has been used as an index of disease severity (231, 232). In SLO, naïve B cells are known to receive antigen education and co-stimulation; however, whether a similar phenomenon would regularly occur in TLS is debated. Patients with pSS display altered peripheral blood B cell frequencies with a predominance of CD27− naïve B cells, diminished frequencies/absolute numbers of CD27+ memory B cells in the periphery, and an enrichment of mature B cells in the salivary glands (233, 234). The presence of CD20+CD27+ B cells and plasmablasts is a consistent finding in pSS salivary glands biopsies (235). Whilst we have reported the presence of IgD+ naïve B cells, in particular in large TLS (180), memory B cells remain the predominant component of the infiltrates (180, 236). This casts doubts over the possibility that naïve B cells are primed within the TLS (235). In support of this hypothesis, bona fide GC B cells (CD10+CD21+/−CD24+/CD27−CD38+IgD− that express AID) are rarely found within the B cell aggregates of TLS, that are mainly inhabited by CD10−CD21+/−CD24+CD27−CD38−IgD+ marginal zone-like type II transitional B cells (159) (Figure 1B).

The connection between the marginal zone (MZ) and TLS establishment is also not clear. There are several evidences supporting the involvement of MZ B cells in autoimmunity, including reports of preferential SHM and B cell proliferation in MRL Fas/lpr mice spleen (237) and the presence of RF+ cells in the splenic marginal sinus bridging channels (238). The low threshold of BCR activation, the numerous effector functions of MZ B cells and the link between autoimmunity, TLS and MZ lymphoma development in pSS suggests a direct involvement of this population in TLS pathology (239, 240). However, the origin of the MZ-like B cells and the relationship between those and the ectopic GC has not been proven. In humans, MZ B cells are allegedly able to recirculate and carry a highly mutated B cell receptor (241–243), thus suggesting a post-GC origin of this population. This is not the case in mice, where MZ B cells are stable and permanently located in the spleen (242–244). Interestingly, however, MZ-B cells in humans share some phenotypic features of transitional B cells, a highly autoreactive B cell population that emerge from the BM and mature inside the spleen before entering the follicle (245–248), suggesting the possibility that transitional immature autoreactive cells are inhabiting the ectopic follicles. The recirculation pattern and screening of transitional B cells has been described from Spencer and co-authors in an elegant work that describes the migration and BCR editing of this population in the gut-associated lymphoid tissue (GALT) (245). This process, aimed at modifying the specificity of autoreactive clones, is altered in systemic lupus erythematosus (SLE), resulting in the expansion of the autoreactive B cell repertoire (245). In diseases characterized by TLS formation, such as pSS and RA, this recirculation pathway could be also altered, favoring the migration of autoreactive clones from the lymphoid organs to the TLS. Hereby, the aberrant expression of survival factors and chemokines would support clonal expansion in the absence of BCR editing and support persistence of autoimmunity.

The use of mass cytometry on digested tissue and sections are needed to better characterize in humans the phenotype and functional features of the B cells inhabiting the TLS. The use of transgenic mice engineered to track cells in vivo (249) will be useful in inducible models of TLS to perform migration studies in vivo.

TLS AS ABERRANT MICROENVIRONMENTS FOR AUTOREACTIVE B CELL SURVIVAL AND DIFFERENTIATION

More than simply acting as a hub for lymphocyte migration, TLS have also been shown to provide critical survival signals for incoming lymphocytes and differentiated long-lived plasma cells such as BAFF, IL-7, and CXCL12 (98, 250). The persistence of TLS in the tissue, despite peripheral B cell depletion of post Rituximab, has been reported in RA (251), SS and lymphoma (252) and, more recently in peri-bronchial TLS described in two patients with cystic fibrosis and chronic Pseudomonas aeruginosa infection treated with B cell depletion therapy before transplantation. The reason for this persistence most probably resides on the excess survival factors, such as B cell activating factor (BAFF) or IL-7 present within the TLS that protects tissue infiltrating cells.

BAFF is a potent B-cell survival factor produced within SLO GCs and in the periphery by fibroblasts and epithelial cells (159, 248–253). Excess BAFF is known to rescue self-reactive B-cells from peripheral deletion and allows their entry into forbidden follicular and marginal zone niches (253). The connection between BAFF, MZ B cells, loss of tolerance and TLS emerged from studies in mice transgenic for BAFF (BAFF-Tg), that develop a lupus-like syndrome followed by infiltration of MZ-like B cells within salivary glands TLS (254). Interestingly, BAFF-Tg asplenic mice that lack MZ-B and B1a cells, but retain normal B1b cell numbers, develop lupus nephritis but lack TLS in the salivary glands, suggesting that both BAFF and MZ-B cells are required for TLS establishment in this model (255).

Other lymphoid survival cytokines including IL-7 have been described in association with TLS establishment in chronic diseases (162, 256–258). Gene expression levels of IL-7, IL-7 receptor (both IL-7Rα and IL-2Rγ subunits) and its downstream signaling gene JAK3 are significantly elevated in RA patient biopsies displaying TLS (259). Similarly, engagement of the IL-7/IL-7R axis has been linked to formation of TLS in salivary glands and associated with pSS pathology (22, 23, 33, 36, 37, 39, 58, 75, 89, 102–112, 112–262). Among other critical homeostatic functions, IL-7 can abrogate the suppressive ability of Treg, altering the balance between pro-inflammatory effector cells vs. suppressive T cells (162, 256, 258). Consistent with these observations, in vivo studies demonstrated the ability of IL-7 to induce TLS formation (263–265). The reciprocal expression of T and B cell survival factors in TLS is somehow strictly regulated by
the critical balance between infiltrating T and B cells, probably in
response to gradients of lymphotoxin and TNF family members. The
mechanism regulating this production and the resulting segregation
of lymphocytes in T or B cell rich areas is still under
investigation (266).

We and others have provided evidence that a functional GC
response takes place within these structures. This supports the
concept that even if TLS do not initiate disease they are involved
in its progression. In particular, we have demonstrated that AID is
expressed in pSS salivary gland TLS in association with networks
of follicular dendritic cells (135) and that its expression is retained
in the large GCs found in parotid pSS-MALT lymphomas. On
the contrary, neoplastic B cells are found to be consistently
negative for AID expression (135). AID expression in GC B
cells controls susceptibility to apoptosis, ultimately regulating
the magnitude of the GC response (267). In SLO, low levels of
AID expression have been associated with defective somatic
hypermutation and decreased peripheral B cell tolerance (268).
AID expression in TLS is consistently low (as compared to SLOs),
thus potentially explaining the aberrant survival and lack of
selection of autoreactive B-cell clones in ectopic GCs.

Other data have been generated supporting the functional role
of TLS in sustaining the generation of novel antibody specificities.
Transplantation of TLS from pSS salivary glands infected with
Epstein-Barr virus (EBV) into SCID mice have been shown to
support the production of anti-Ro 52/anti-La 48 and anti-
EBV antibodies and the survival of autoreactive B cell clones
(158). Similar data have been produced for RA. The presence of
CD138+ plasma cells, characterized by immune reactivity against
citrullinated fibrinogen, has been described within AID+/CD21+
follicular structures (33). Moreover, the survival of these clones in
a transfer model of human biopsies in SCID mice, alongside the
detection of gamma-Cmu circular transcripts in synovial grafts,
has been reported. These observations provide evidence that
synovial TLS represents an independent compartment for B cell
maturation (33).

AUTOANTIBODY PRODUCTION GOES LOCAL

The contribution of the immune response that arises within
TLS toward disease severity, including the production of
autoantibodies, remains controversial (151). Nonetheless there
are substantial evidences in support of local antibody production
within the inflamed synovium and convincing documentation
that the synovial microenvironment could independently favor
the production of RA specific antibodies (33)

Mellors et al. firstly described the presence of “plasma B
cells” that are able to react with FITC-labeled human IgG,
interpreting this result as evidence of synovial production of
rheumatoid factors (RF) by tissue-resident plasma cells (269).
The first solid indication of local IgG production in RA is dated
 to 1968 with the report of Ig synthesis in rheumatoid synovium in
vitro (270). Further studies supported this observation suggesting
that gene selection, usage of kappa/lambda chains and class
switching follows a non-stochastic process in the RA synovium
(168). Similarly, the enrichment in RF+ B cells producing mono-
reactive, affinity matured, class switched antibodies in the RA
synovium is highly suggestive of a local process of affinity
maturaton (271–273). On the contrary, clones producing mono-
reactive RF have not been obtained from the synovial tissue of
patients with osteoarthritis, where TLS do not form, supporting
the link between chronic autoimmune diseases and TLS (271–
275).

The production of anti-citrullinated protein antibodies
(ACPA) has been firmly associated with RA development (276)
and there are convincing evidences that these specificities can
be locally produced in the RA synovium within the TLS (277,
278). Both anti-cyclic citrullinated peptide (CCP) antibodies
(279) and anti-CCP producing B cells (280) have been detected
in the synovial fluid of RA patients and antibodies against
different citrullinated RA candidate antigens (vimentin, type
II collagen, fibrinogen and α-enolase) appear to be enriched
in the joint compared to paired serum (281). Notably, the
presence of anti-CCP antibodies in the synovium has been also
reported in RA seronegative patients (279, 282), thus highlighting
the dissociation between the systemic and local autoimmune
response. In support of this notion, the presence of FcRL4+ ACPA
producing IgA-B has been reported in the synovium, but not in the blood of RA patients (283). This observation
provides an indication that inflammatory joints provide a specific
microenvironment able to shape and influence B cell immune
phenotype and output.

The ability of TLS to sustain the whole autoimmune process
in the absence of SLO is debated. However, cloning of the
local B cell repertoire isolated from inflamed organs bearing
TLS is highly suggestive of the presence of a functional and
SLO-independent process of affinity maturation. Terminally
differentiated CD20−CD38+ cells, rheumatoid factor (RF)
producing B cells have been detected in the inflamed joints
of RA patients (284). Moreover, clonal analysis has provided
evidence of an antigen-dependent process of SHM, selection and
isotype switching in TLS positive RA synovium, indicating that
a dominant antigen-specific local immune response shapes the
synovial plasma cell repertoire (170, 285–290). Similarly, in pSS,
the monoclonal expansion of B cells within the salivary glands has
been described. Expansion of B cell clones bearing Humk325, a
conserved V kappa gene usually associated with lymphomas, was
described previously in 1989 (291). Additional studies further
supported the notion that an antigen-driven germinal center-type
B cell response and somatic hypermutation occurs within the
salivary glands (37, 292, 293). The presence of clones that expand
and mature in the TLS does not prove that the autoimmune
process is initiated within the TLS, or that the presence of TLS
is causative of disease. However, a certain degree of antigen-
experience and affinity maturation of the B cell repertoire
undoubtedly occurs within TLS (33, 135, 153, 160, 294–296) and,
whilst the causal role of these structures in disease initiation
cannot be proved, TLS certainly display the ability to host and
perpetuate the autoimmune process. Production of Ig and RF
has been shown in other tissues, in addition to the synovium,
including rheumatoid pericardium (297), pleura (298), muscles
(299), and in the inducible bronchus-associated lymphoid tissue
(iBALT) in patients with pulmonary complications of RA (219). The presence of sputum autoantibodies in the absence of systemic seropositivity, and the increased autoantibody:total Ig ratio in the sputum (300) suggest that lymphoid tissue present in the bronchi of RA lungs can also act as sites of antibody development.

Independent IgG and IgM synthesis has been also described in pSS salivary glands (301) with later studies confirming the presence of RF+ clones in ~43% of patients with pSS (302) and with the ability of salivary gland infiltrating B cells to secrete antibodies specific for the Ro52/TRIM21, Ro60 and La autoantigens (36, 179, 217, 303). In vitro expression of recombinant antibodies derived from either newly emigrant/transitional mature naïve B cells from pSS patients and healthy individuals confirmed the presence of high frequencies of autoreactive antibodies in both populations. This suggests a general defective peripheral B cell tolerance in this condition (304).

Analysis of Ig levels in different compartments (blood, saliva) has further contributed to our understanding of the ability of TLS to independently produce antibodies. Increased levels of IgA, but not IgG- and IgM-RF, has been detected in the saliva of patients with pSS (305). A study on isotype distribution of anti-Ro/SS-A and anti-La/SS-B antibodies in the plasma and saliva of patients with pSS demonstrated a correlation between the focus score (the measured degree of salivary gland inflammation) and autoantibody titers in saliva or blood. This report establishes a pathogenic link between locally displayed autoantigens, presence of antigen specific B cells in the inflamed tissue and autoreactive Ig levels (306).

IMMUNOGLOBULINS AND GLYCOSYLATION: THE SWEETER THE BETTER?

It is becoming increasingly clear that antibody post-translational modifications, in particular glycosylation, can influence their function and pathogenicity. However, a relationship between the pathogenic microenvironment established in the TLS and the progressive acquisition of pathogenic post-translational modifications has not been demonstrated.

Glycosylation is the process by which glycans are attached to proteins, lipids and other molecules, thereby altering their structure and influencing their biological activity. Whilst IgG presents a single conserved N glycosylation site within the Fc region, other subclasses are more heavily glycosylated (307). IgG Fc glycosylation determines the binding of the globulins to their receptors, FcRs type I (FcγMaRs) and II (SIGN-R1, DC-SIGN, DCIR, CD22, and CD23), thereby influencing Ig downstream pro-inflammatory, anti-inflammatory or immunomodulatory effects (308, 309). In addition to conserved IgG Fc glycans, ~15–25% of serum IgG contain glycans within the Fab domain. Intriguingly, the attachment sites for N-glycans to the Fab portion is determined by the process of somatic hypermutation and, accordingly, Fab glycosylation could influence antibody binding, activity, half-life, formation of immunocomplexes and strength of BCR signaling [extensively reviewed in (310)].

The presence of altered glycosylation in RA was suggested in the 1970s, but it wasn’t until 1985 when two studies from Oxford and Japan demonstrated different galactosylation profiles between normal individuals and patients with RA or OA (311). Later, Oxford and colleagues reported the presence of reduced circulating B cell galactosyltransferase activity in RA (312), which was later confirmed in other studies (313–315). Other post-translational modifications have been described in RA. Several studies have demonstrated the presence of an altered overall glycosylation status within specific Ig subclasses (316) that can be detected before disease onset (317). This correlates with measures of disease activity (318, 319) and decreased sialylation of RF-IgG, but not in non-RF-IgG (318, 320, 321).

More recently, the degree of IgG glycosylation has been used to monitor treatment effectiveness (321) and, whilst no differences have been observed in the Fc glycosylation pattern between ACPA-IgG1 and total IgG1 in arthralgia patients, a decrease in galactose residues have been observed in patients with preclinical synovitis before the onset of RA; a change probably supported by the increasingly inflammatory microenvironment (322). The increased presence of agalactosylated IgG in the synovial fluid as compared to serum samples of RA has also been reported (323). Finally, Scherer et al. recently demonstrated the presence of autoreactive IgG in synovial fluid with decreased number of galactosylation and sialylation sites as compared to serum. This latter difference appeared to be specific for autoreactive specificities as no difference was observed in total IgG glycosylation (324).

Elevated levels of asialylated IgG have been detected in 60% of pSS patients and those appear to correlate with clinical manifestations, such as Raynaud's phenomenon and arthritis. A strong correlation with rheumatoid factor or IgA-containing immune complexes was reported (325). Based on IgG galactosylation, the pSS patients can be classified into two groups: one with comparable galactosylation status as in RA patients with the presence of RF, and the other similar to healthy individuals, and RF seronegative (326).

More recently, studies on Fab glycosylation and disease have been performed. Corsiero and colleagues reported the relationship between increased molecular weight of anti-NET antibodies and the presence of N-glycans onto the Fab domain of autoreactive clones in RA, suggesting that the process of SHM occurring in the synovium is responsible for the acquisition of N glycosylation sites (286). Acquisition of N-glycosylation sites and subsequent enrichment in Fab-glycans in the variable domain of ACPA-IgG has been further confirmed (327, 328). On a similar note, it has been reported that there is a selective increase in Fab-N glycosylation sites in ACPA specific clones. However, the presence of those glycans didn't appear to significantly alter the antigen binding of the APCA. Accordingly, in silico analysis suggested that the added glycans were not located on the antibody binding sites (329). Moreover, an increased frequency of N-glycans in the Fab ACPA domain, but in association with altered antibody affinity, has been also reported (330). Interestingly, this enrichment was more prominent on ACPA isolated from synovial fluid compared with peripheral blood (264), providing evidence that the local microenvironment
influences the immunoglobulin glycosylation pattern. Hamza et al. recently reported the high prevalence of acquired IgG N-glycosylation sites in pSS suggesting a hypothesis that in pSS, the selection pressures that shape the antibody repertoire in the parotid glands results from an antigen-independent mechanism and is driven by interactions between glycosylated B cell receptors and lectins within the microenvironment (328). In summary, the glycan composition can have different associations with the disease, depending on the site of glycosylation. Decreased and increased glycosylation for the Fc and Fab portion, respectively, have been associated with RA and SS.

A relationship between post-translational modifications and antibody pathogenicity has been proposed. Leader et al. reported the presence of agalactosylated IgG in synovial immunocomplexes, suggesting a pathogenic role for agalactosylated IgG (331). However, the relationship between glycosylation and RF activity is debated (318, 332). The presence of N-linked glycosylation sites within the Fc portion of target IgG has been also shown to markedly reduce RF binding in vitro (333) whilst the ability of rheumatoid factors to selectively bind hypogalactosylated IgG has been suggested (334). In mice, desialylated but not sialylated immune complexes appear to enhance osteoclastogenesis in vitro (335). Accordingly, artificial sialylation of anti-type II collagen antibodies, including ACPAs, but not other IgG can suppress the development of collagen-induced arthritis (CIA) (320, 336).

A potential pathogenic role of IgG glycosylation in pSS pathogenesis, to our knowledge, has not been addressed yet. A recent study pointed out that the Fc-mucin binding is enhanced when antibodies are agalactosylated, offering a mechanistic concept for increased binding on mucosal surfaces of the inflammatory agalcosylated antibodies and potential antibody pathogenicity (337).

Agalactosylated IgG levels were not found to be correlated in twin pairs indicating a low influence from genetic factors for IgG glycosylation (338). However, four loci contained genes for glycosyltransferases (ST6GAL1, B4GALT1, FTUT8, and MGAT3) have been highlighted in genome-wide association studies for loci associated with IgG N-glycosylation (339). There is evidence to support the notion that the microenvironment can influence Fc IgG glycosylation. A recent study illustrates the ability of CpG, IFN-gamma and IL-21 to increase Fc-linked galactosylation and reduce bisecting N-acetylgalcosamine levels (340). Stimulation of a mouse B cell lymphoma line with IL-4 and IL-5, but not LPS, has been shown to significantly decrease the terminal glycosylation of secreted IgA (341) and IgM (342), but substantially increase the terminal glycosylation of MHC Class-I (342), suggesting that the glycosylation machinery works in a protein-specific manner.

A mechanistic link between inflammation and post-translational modification has been recently established by G. Schett’s group in a manuscript illustrating the ability of IL-21 and IL-22 to regulate the expression of α2,6-sialyltransferase-1 in newly differentiating plasma cells, thus controlling the glycosylation profile of secreted IgG (320). Interestingly, both T cell-independent B cell activation (343) and tolerance induction with T cell-dependent protein antigens (344) results in the production of sialylated IgG. However, T cell independent vaccination seems to result in a stronger induction of sialylated antigen specific antibodies (345).

IgG glycosylation can also be controlled at an extracellular level. IgG sialylation has been reported in the bloodstream, through secreted ST6Gal1 (326). S-glycosyltransferases have also been shown to alter the IgG molecule at sites of inflammation with local platelets serving as nucleotide-sugar donors (346). Other reports link the process of altered glycosylation to a post-secretory degradative process involving oxygen free radicals (347). All together these reports suggest the possibility that the site of antibody synthesis can profoundly affect the post-translational profile of the immunoglobulins.

Due to technological limitations, the extent of the disease-related glycan alterations and the role of these modifications in disease pathophysiology has not been thoroughly addressed. A novel microfluidic-based method to identify trace sulphated IgG N-glycans as biomarkers for rheumatoid arthritis has been recently described (348) and high-throughput methods for analysing IgG glycosylation have also been introduced (349). These tools have been only used in selected populations and their application on a larger scale could, in the future, unveil differences and patterns not yet captured.

To our knowledge, there has been no attempt to use these stratification tools in the context of TLS associated pathologies. The differential profile of glycosylation observed in Ig isolated, respectively from serum and synovial compartments suggest the fascinating hypothesis that SLO and TLS differentially regulate these post-translational modifications (323, 324, 350). However, the possibility that Ig derived from SLO and TLS present substantially different “sugary fingerprints” and that those patterns correlate with a certain degree of tissue involvement and disease progression has still to be proven.

TLS AND LYMPHOMAGENESIS

If the concept of an association between progressive post-translational modifications of the Ig repertoire and continuous antigen exposure within a highly inflammatory environment is true, we should be able to detect progressive accumulation of Ig in patients undergoing malignant transformation through the course of autoimmunity. The occurrence of non-Hodgkin’s lymphoma (NHL) is pathogenically linked to TLS and represents the most serious complication of pSS, but not RA (351).

B cell VH and VL gene analysis for pSS patients with lymphoma revealed several point mutations in the germline genes and intra-clonal sequence heterogeneity, in line with an ongoing somatic hypermutation process sustaining lymphoma growth (352, 353). It is believed that the emergence of monoclonal RF B cells within the polyclonal infiltrate of the salivary gland TLS represents a key developmental step in lymphomagenesis. Chromosomal abnormalities and mutation eventually converge in these B clones that present a proliferative advantage, ultimately converting them into malignant clones. Indeed, there is a strong bias for RF specific B cells in the salivary gland MALT-type lymphoma (354–356), whilst alternative
analysis of the B cell repertoire in micro dissected labial salivary glands could not convincingly demonstrate predominance of RF reactivity in the infiltrating clones (357). The relationship between GC formation and lymphomagenesis has been recently challenged and further studies will be required to clarify the pathogenic link between TLS persistence and emergency of malignant clones (161, 182, 358, 359).

The high incidence of acquired N-glycosylation sites found in follicular lymphoma (360) would be suggestive of a similar phenomenon in pSS associated MALT lymphoma; however, contrary to these expectations, patients with MALT lymphoma present low frequency of N-glycosylation sites (161, 182, 358, 359, 361). Longitudinal analysis of the glycosylation and sialylation profile in patients with TLS undergoing lymphoma transformations are needed to address these questions.

FUTURE PROSPECTIVE AND CONCLUSIONS

In conclusion, TLS formation can be easily considered as a hallmark of tissue autoimmunity. In the past few years a large body of work has been generated aimed at dissecting key aspects of TLS biology, however, many areas have to be further addressed. The inter-dependency between SLOs and TLS has to be better dissected in order to understand whether these immune hubs are functional, both in the early phases as tolerance is broken and, later, during disease progression. The signals regulating migration pathways and differentiation of immune cells within the TLS should also be investigated in vivo with the prospective to target these pathways therapeutically. A better knowledge around the signals involved in TLS establishment and maturation, but in particular, the mechanisms regulating GC formation and regulation should be acquired. Moreover, a specific effort should be made to dissect the functional role of TLS GCs in the development of lymphoma. Finally, key questions should be answered around the cross-talk between the TLS and their surrounding environment, dissecting the permissive factors for TLS formation and persistence in the tissue.

The acquired knowledge on the role of non-haematopoietic stromal cells in TLS biology has been critically important in explaining why these structures are resistant to classical immune cell therapy. In the future, potential combined therapy could be utilized to interfere with the microenvironment alongside targeting immune cells in TLS associated disease that is non-responsive to classical immunosuppression.

AUTHOR CONTRIBUTIONS

EP and FB defined the content of the manuscript, contributed to literature search and manuscript writing. SN, DG and SC contributed to literature search and manuscript writing. CS contributed to manuscript writing. EP and FB created graphical illustrations. All authors approved the final version of the manuscript.

FUNDING

FB is supported by ARUK.

REFERENCES

1. Pitzalis C, Jones GW, Bombardieri M, Jones SA. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol. (2014) 14:447–62. doi: 10.1038/nri3700
2. Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff, et al. Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol. (2018) 200:432–42. doi: 10.4049/jimmunol.1701269
3. Teillaud JL, Dieu-Nosjean MC. Tertiary lymphoid structures: an antitumor school for adaptive immune cells and an antibody factory to fight cancer? Front Immunol. (2017) 8:830. doi: 10.3389/fimmu.2017.00830
4. Jing F, Choi EY. Potential of Cells and Cytokines/Chemokines to Regulate Tertiary Lymphoid Structures in Human Diseases. Immune Netw. (2016) 16:271–80. doi: 10.4110/in.2016.16.5.271
5. Alsughayyir I, Pettigrew GJ, Motallebzadeh R. Spoiling for a fight: b lymphocytes as initiator and effector populations within tertiary lymphoid organs in autoimmunity and transplantation. Front Immunol. (2017) 8:1639. doi: 10.3389/fimmu.2017.01639
6. Sautes-Fridman C, Lawand M, Giraldo NA, Kaplan H, Germain C, Fridman WH, et al. Tertiary lymphoid structures in cancer: prognostic value, regulation, and manipulation for therapeutic intervention. Front Immunol. (2016) 7:407. doi: 10.3389/fimmu.2016.00407
7. Germain C, Gnatic S, Dieu-Nosjean MC. Tertiary lymphoid structure-associated b cells are key players in anti-tumor immunity. Front Immunol. (2015) 6:67. doi: 10.3389/fimmu.2015.00067
8. Mitsdoerffer M, Peters A. Tertiary lymphoid organs in central nervous system autoimmunity. Front Immunol. (2016) 7:451. doi: 10.3389/fimmu.2016.00451
9. Jones GW, Hill DG, Jones SA. Understanding immune cells in tertiary lymphoid organ development: it is all starting to come together. Front Immunol. (2016) 7:401. doi: 10.3389/fimmu.2016.00401
10. Buettner M, Lochner M. Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon. Front Immunol. (2016) 7:342. doi: 10.3389/fimmu.2016.00342
11. Neyt K, Perros F, GeurtvansKessel CH, Hammad H, Lambrechts BN. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. (2012) 33:297–305. doi: 10.1016/j.it.2012.04.006
12. Voswinkel J, Assmann G, Held G, Pitann S, Gross WL, Holl-Ulrich K, et al. Single cell analysis of B lymphocytes from Wegener's granulomatosis: B cell receptors display affinity maturation within the granulomatous lesions. Clin Exp Immunol. (2008) 154:339–45. doi: 10.1111/j.1365-2249.2008.03775.x
13. Voswinkel J, Mueller A, Kraemer JA, Lamprecht P, Herlyn K, Holl-Ulrich K, et al. B lymphocyte maturation in Wegener's granulomatosis: a comparative analysis of VH genes from endonasal lesions. Ann Rheum Dis. (2006) 65:859–64. doi: 10.1136/ard.2005.044909
14. Armengol MP, Cardoso-Schmidt CB, Fernandez M, Ferrer X, Pujol-Borrell R, Juan M. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J Immunol. (2003) 170:6320–8. doi: 10.4049/jimmunol.170.12.6320
15. Armengol MP, Juan M, Lucas-Martin A, Fernandez-Figuera MR, Jaraquemada D, Gallart T, et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene
Tertiary Lymphoid Structures and Autoantibodies

25. Dang AK, Tesfagiorgis Y, Jain RW, Craig HC, Kerfoot SM. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain (2011) 134:2755–71. doi: 10.1093/brain/awr182

22. Pikor NB, Astarita JL, Summers-Deluca L, Galicia G, Qu J, Ward LA, et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain (2011) 134:534–41. doi:10.1093/brain/awq350

20. Furtado GC, Marinkovic T, Martin AP, Garin A, Hoch B, Hubner W, et al. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc Natl Acad Sci USA. (2007) 104:5026–31. doi:10.1073/pnas.0606697104

19. Lovato L, Willis SN, Rodig SJ, Caron T, Almendinger SE, Howell OW, et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc Natl Acad Sci USA. (2015) 112:11024–9. doi:10.1073/pnas.1503315112

18. Martin AP, Coronel EC, Sano G, Chen SC, Vassileva G, Canasto-Chibuque R. Use of toll-like receptor agonists to induce ectopic lymphoid structures in mice. J Immunol. (2004) 173:4791–8. doi:10.4049/jimmunol.173.8.4791

17. Martin AP, Coronel EC, Sano G, Chen SC, Vassileva G, Canasto-Chibuque R. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain (2011) 134:534–41. doi:10.1093/brain/awq350

16. Furtado GC, Marinkovic T, Martin AP, Garin A, Hoch B, Hubner W, et al. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc Natl Acad Sci USA. (2007) 104:5026–31. doi:10.1073/pnas.0606697104

148:11–23. doi: 10.1016/j.jneuroim.2003.10.056

14. Lovato L, Willis SN, Rodig SJ, Caron T, Almendinger SE, Howell OW, et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain (2011) 134:2755–71. doi: 10.1093/brain/awr182

13. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

12. Barone F, Nayar S, Campos J, Cloake T, Withers DR, Toellner KM, et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc Natl Acad Sci USA. (2015) 112:11024–9. doi:10.1073/pnas.1503315112

11. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

10. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

9. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

8. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

7. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

6. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

5. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

4. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

3. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

2. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352

1. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. (2013) 72:1539–68. doi: 10.1136/annrheumdis-2012-202352
50. de Chaisemartin L, Goc J, Damotte P, Valdiron P, Magdeleinat P, Alifano M, et al. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res. (2011) 71:6391–9. doi: 10.1158/0008-5472.CAN-11-0952
51. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Paillet Y, et al. Long survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. (2008) 26:4410–7. doi: 10.1200/JCO.2007.15.0284
52. Kroeger DR, Milne K, Nelson BH. Tumor-infiltrating plasma cells are major gateways for tumor-infiltrating lymphocytes. Oncoimmunology (2012) 1:39–29. doi: 10.4161/20994606.2012.610492
53. Martinet L, Le Guélec S, Filleron T, Lamant M, Meyer N, Roauchal P, et al. High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes. Oncoimmunology (2012) 1:39–29. doi: 10.4161/20994606.2012.610492
54. Hiraoka N, Ino Y, Yamazaki-Itoh R, Kanai Y, Kosuge T, Shimada K. Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br J Cancer (2015) 112:1782–90. doi: 10.1038/bjc.2015.145
55. Garcia-Hernandez ML, Uribe-Uribe NO, Espinoza-Gonzalez R, Kast WM, Khader SA, Rangel-Moreno J. A unique cellular and molecular microenvironment is present in tertiary lymphoid organs of patients with spontaneous prostate cancer regression. Front Immunol. (2017) 8:563.
56. Houtkamp MA, de Boer OJ, van der Loos CM, van der Wal J. Tissue-infiltrating plasma cells are superior prognosis in ovarian cancer. Clin Cancer Res. (2016) 22:3005–13. doi: 10.1158/1078-0432.CCR-15-2762
57. Ramshaw AL, Parums DV. Immunohistochemical characterization of inflammatory cells associated with advanced atherosclerosis. Histopathology (1990) 17:543–52. doi: 10.1111/j.1365-2559.1990.tb00794.x
58. Hu D, Mohanta SK, Yin C, Peng L, Ma Z, Srikakulapu P, et al. Artery tertiary microenvironment is present in tertiary lymphoid organs of patients with intratumoral lymphoid structures. J Pathol (2010) 222:695–705. doi: 10.1002/path.2767.3.0.CO;2-N
59. Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, Beer M, et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells. J Exp Med. (2011) 208:125–34. doi: 10.1084/jem.20100052
60. Kawamura T, Kanai T, Dohi T, Uraushihara K, Totsuka T, Iyama R, et al. Ectopic CD40 ligand expression on B cells triggers intestinal inflammation. J Immunol. (2004) 172:6388–97. doi: 10.4049/jimmunol.172.10.6388
61. Spahn TW, Herbst H, Renneck PD, Lugering N, Maasen C, Kraft M, et al. Induction of colitis in mice deficient of Peyer’s patches and mesenteric lymph nodes is associated with increased disease severity and formation of colonic lymphoid patches. Am J Pathol (2002) 161:2273–82. doi: 10.1016/S0002-9440(10)64503-8
62. Grant AJ, Goddard S, Ahmed-Choudhury J, Reynolds G, Jackson DG, Briskin M, et al. Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am J Pathol (2002) 160:1445–55. doi: 10.1016/S0002-9440(10)62570-9
63. Ghosh S, Steere AC, Stollar BD, Huber BT. In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J Immunol (2005) 174:2860–9. doi: 10.4049/jimmunol.174.5.2860
64. Racanelli V, Sansonno D, Piccoli C, D’Amore FP, Tucci FA, Dammacco F. Molecular characterization of B cell clonal expansions in the liver of chronically hepatitis C virus-infected patients. J Immunol. (2001) 167:162–9. doi: 10.4049/jimmunol.167.1.121
65. Murakami J, Shizuku Y, Kashii Y, Kato T, Minemura M, Okada K, et al. Functional B-cell response in intrahepatic lymphoid follicles in chronically hepatitis C virus-infected patients. Hepatology (1999) 30:143–50. doi: 10.1002/hep.510300107
66. Mazzucchelli L, Blaser A, Kappeler A, Scharli P, Laissue JA, Baggioli M, et al. BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation. J Mol Med. (Berl.) (2010) 88:1169–80. doi: 10.1007/s00109-010-0658-6
100. Carragher DM, Rangel-Moreno J, Fallert Junecko BA, Mehra S, et al. CXCR5(+/-) T helper cells mediate protective immunity against tuberculosis. *J Clin Invest.* (2015) 125:712–26. doi: 10.1172/JCI65728

101. Jones GW, Jones SA. Ectopic lymphoid follicles: inducible centres for the generation of antigen-specific immune responses within tissues. *ImmunoL*(2016)147:141–51. doi: 10.1111/immm.12554

102. Picker LJ, Butcher EC. Physiological and molecular mechanisms of lymphocyte homing. *Ann Rev Immunol.* (1992) 10:561–91. doi: 10.1146/annurev.immunol.031799.062350

103. Golub R, Cumanano A. Embryonic hematopoiesis. *Blood Cells Mol Dis.* (2013) 41:22–31. doi: 10.1016/j.bcmd.2013.08.004

104. Manzo A, Bugatti S, Caporali R, Prevo R, Jackson DG, Uguccioni M, et al. CCL21 expression pattern of human secondary lymphoid organ stroma is conserved in inflammatory lesions with lymphoid neogenesis. *Am J Pathol.* (2007)171:1549–62. doi: 10.22037/ajpath.2007.061275

105. Nayar S, Campos J, Chung MM, Navarro-Nunez L, Chachlani M, Steinhil N, et al. Bimodal expansion of the lymphatic vessels is regulated by the sequential expression of β-7 and lymphotaxin alpha/beta2 in newly formed tertiary lymphoid structures. *J Immunol.* (2016) 197:1957–67. doi: 10.4049/jimmunol.1500666

106. Dutreix CA, Clement M, Morvan M, Schakel K, Castier Y, Alasc JM, et al. Deciphering the stromal and hematopoietic cell network of the adventitia from non-aneurysmal and aneurysmal human aorta. *PLoS ONE* (2014)9:e89983. doi: 10.1371/journal.pone.0089983

107. Cupovic J, Onder L, Gil-Cruz C, Weiler E, Caviezel-Firner S, Perez-Shibayama C, et al. Central Nervous System Stromal Cells Control Local CD8(+) T Cell Responses During Virus-Induced Neuroinflammation. *Immunity* (2016)44:622–33. doi: 10.1016/j.immuni.2015.12.022

108. Manzo A, Paletti S, Carulli M, Blasi DC, Barone F, Yanni G, et al. Systematic microanatomical analysis of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren's syndrome. *Arthritis Rheum.* (2015)52:1773–84. doi: 10.1002/art.23162

109. Dutertre CA, Clement M, Morvan M, Schakel K, Castier Y, Alsac JM, et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. *J Am Soc Nephrol.* (2004)15:603–12. doi: 10.1097/01.ASN.000013136.52371.2E

110. Sato M, Hirayama S, Matsuda Y, Wagnet D, Hwang DM, Guan Z, et al. Stromal activation and formation of lymphoid-like stroma in chronic lung allograft dysfunction. *Transplantation* (2011)91:1398–405. doi: 10.1097/TP.0b013e3182b1b27a

111. Thaunat O, Nagaoka H, Muramatsu M, Yamamura N, Kinoshita K, Honjo T. Activation-B cell epitopes of the lymphatic vessels are regulated by follicular dendritic cells. *Proc Natl Acad Sci USA.* (2011)108:5560–5. doi: 10.1073/pnas.1101148108

112. Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, et al. CXCR5(+) T helper cells mediate protective immunity against tuberculosis. *J Clin Invest*.(2014)124:953–9. doi: 10.1172/JCI71611

113. Janeway Jr CA, Bottomly K. Signals and signs for lymphocyte responses. *Annu Rev Immunol.*(1999)246, 87–92; discussion 93. doi: 10.1146/annurev.iy.12.040194.001001

114. Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, et al. Germinal center centroblasts transition to a centrocyte phenotype in the early phases of T-dependent antibody responses. *Crit Rev Immunol.* (2010)30:395–402. doi: 10.1016/j.tvb.2010.07.003

115. Wolniak KL, Shinall SM, Waldschmidt TJ. The germinal center response. *Curr Top Microbiol Immunol.* (2000)406:309–14. doi: 10.1038/35018581

116. Ansel KM, Gardner DL, Nayar S, Steinthal N, Buckley CD, Luther SA. Stromal fibroblasts in lymphoid tissue structures: a novel target in chronic inflammation. *Front Immunol.* (2016)7:477. doi: 10.3389/fimmu.2016.00477

117. Barone F, Buckley CD, Barone F, Nayar S, Benezech C, Caamano J. Stromal cells in chronic inflammation and tertiary lymphoid organ formation. *Annu Rev Immunol.* (2015)33:715–45. doi: 10.1146/annurev-immunol-031714-120252

118. Bannard O, Horton RM, Allen CD, An J, Nagasawa T, Cyster JG. Finding the right niche: B-cell migration in secondary lymphoid organs after rituximab therapy. *J Immunol.* (2010)185:717–28. doi: 10.4049/jimmunol.0903589

119. Pereira JP, Kelly LM, Cyster JG. Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. *Int Immunol.* (2010)22:413–9. doi: 10.1093/intimm/dxq047

120. Wolniak KL, Shinall SM, Waldschmidt TJ. The germinal center response. *Crit Rev Immunol.* (2004)24:39–65. doi: 10.1615/CritRevImmunol.v24.i1.20

121. Bannard O, Horton RM, Allen CD, An J, Nagasawa T, Cyster JG. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. *Immunity* (2013)39:912–24. doi: 10.1016/j.immuni.2013.08.038

122. Nagaoka K, Muramatsu N, Kinoshita K, Honjo T. Activation-induced deaminase. (AID)-mediated hypermutation in the immunoglobulin S region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. *J Exp Med.* (2002)195:529–34. doi: 10.1084/jem.20012144

123. Nagaoka K, Muramatsu N, Kinoshita K, Honjo T. Activation-induced deaminase. (AID)-mediated hypermutation in the immunoglobulin S region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. *J Exp Med.* (2002)195:529–34. doi: 10.1084/jem.20012144
124. Haberman AM, Shlomchik MJ. Reassessing the function of immune-complex retention by follicular dendritic cells. Nat Rev Immunol. (2003) 3:757. doi: 10.1038/nri1178

125. Wang X, Cho B, Suzuki K, Xu Y, Green JA, An J, et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med. (2015) 209:529–510. doi: 10.1084/jem.20111449

126. Allen CD, Cyster JG. Follicular dendritic cell networks of primary follicles and germinal centers: Phenotype and function. Semin Immunol. (2008) 20:14–25. doi: 10.1016/j.smim.2007.12.001

127. Zhang Y, Garcia-Banaz L, Toellner KM. Regulation of germinal center B-cell differentiation. Immunol Rev. (2016) 270, 8–19. doi: 10.1111/imr.12396

128. Vinuesa CG, Cyster JG. How T cells earn the follicular rite of passage. Immunity (2011) 35:671–80. doi: 10.1016/j.immuni.2011.11.001

129. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular Helper T Cells. Annu Rev Immunol. (2016) 34:335–68. doi: 10.1146/annurev-immunol-041015-055605

130. Berek C, Berger A, Apel M. Maturation of the immune response in germinal centers. Trends Immunol. (2016) 37:535–48. doi: 10.1016/j.it.2016.06.015

131. Berek C, Berger A, Apel M. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. J Immunol. (2015) 195:4781–91. doi: 10.4049/jimmunol.1501191

132. Roozendaal R, Mebius RE. Stromal cell-immune cell interactions. Front Immunol. (2016) 7:481. doi: 10.3389/fimmu.2016.00481

133. Ishikawa K, Shiroguchi K, Shiroguchi K, Ito A, Kometani K, Takeda K, et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity (2012) 37:535–48. doi: 10.1016/j.immuni.2012.06.015

134. Hughes CE, Benson RA, Bedaj M, Maffia P. Antigen-presenting cells and antigen presentation in tertiary lymphoid organs. Front Immunol. (2016) 7:481. doi: 10.3389/fimmu.2016.00481

135. Denton AE, Linterman MA. Stromal networking: cellular connections in the germinal centre. Curr Opin Immunol. (2017) 45:103–11. doi: 10.1016/j.coimm.2017.03.001

136. Yang Y, Wang X, Xu Y, Sailer AW, et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity (2012) 37:535–48. doi: 10.1016/j.immuni.2012.06.015

137. Yi T, Wang X, Kelly LM, An J, Sailer AW, et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity (2012) 37:535–48. doi: 10.1016/j.immuni.2012.06.015

138. Kranich J, Krautler NJ. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Front Immunol. (2016) 7:225. doi: 10.3389/fimmu.2016.00225

139. Denton AE, Linterman MA. Stromal networking: cellular connections in the germinal centre. Curr Opin Immunol. (2017) 45:103–11. doi: 10.1016/j.coimm.2017.03.001

140. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Cressel M, et al. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. J Immunol. (2015) 195:4781–91. doi: 10.4049/jimmunol.1501191

141. Rozendaal R, Mebius RE. Stromal cell-immune cell interactions. Annu Rev Immunol. (2011) 29:23–43. doi: 10.1146/annurev-immunol-031210-101357

142. Cyster JG, Ansel KM, Reif K, Ekland EH, Hyman PL, Tang HL, et al. Follicular stromal cells and lymphocyte homing to follicles. Immune Rev. (2000) 176:181–93. doi: 10.1080/1600065X.2000.11782746

143. Krautler NJ, Kracht M, et al. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Front Immunol. (2016) 7:225. doi: 10.3389/fimmu.2016.00225

144. Roozendaal R, Mebius RE. Stromal cell-immune cell interactions. Ann N Y Acad Sci. (2003) 987:140–9. doi: 10.1111/j.1749-6632.2003.tb06042.x

145. Krautler NJ, Kracht M, et al. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Front Immunol. (2016) 7:225. doi: 10.3389/fimmu.2016.00225

146. Krautler NJ, Kracht M, et al. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Front Immunol. (2016) 7:225. doi: 10.3389/fimmu.2016.00225

147. Kroon M, Bannard O, Ludewig B, Nagasawa T, Cyster JG. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. J Immunol. (2015) 195:4781–91. doi: 10.4049/jimmunol.1501191

148. Kranich J, Krautler NJ. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Front Immunol. (2016) 7:225. doi: 10.3389/fimmu.2016.00225

149. Kroon M, Bannard O, Ludewig B, Nagasawa T, Cyster JG. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. J Immunol. (2015) 195:4781–91. doi: 10.4049/jimmunol.1501191

150. Kroon M, Bannard O, Ludewig B, Nagasawa T, Cyster JG. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. J Immunol. (2015) 195:4781–91. doi: 10.4049/jimmunol.1501191

151. Kroon M, Bannard O, Ludewig B, Nagasawa T, Cyster JG. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. J Immunol. (2015) 195:4781–91. doi: 10.4049/jimmunol.1501191
166. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. (2018) 4:18001. doi: 10.1038/s41572-018-0120-1

167. Ropes MW, Bennett GA, Cobb S, Jacos R, Jessar RA. Proposed diagnostic criteria for rheumatoid arthritis. Ann Rheum Dis. (1957) 16:118–25. doi: 10.1136/ard.16.2.118

168. Munthe E, Natvig JB. Immunglobulin classes, subclasses and complexes of IgG rheumatoid factor in rheumatoid plasma cells. Clin Exp Immunol. (1972) 2:55–70.

169. Steere AC, Duray PH, Butcher EC. Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Comparison with rheumatoid synovium and tonsillar lymphoid tissue. Arthritis Rheum. (1988) 31:487–95. doi: 10.1002/art.1780310405

170. Schroder AE, Greiner A, Seyfert C, Berek C. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA. (1996) 93:221–5. doi: 10.1073/pnas.93.1.221

171. Canete JD, Santiago B, Cantaert T, Sanmarti R, Palacin A, Celis R, et al. Ectopic lymphoid neogenesis in psoriatic arthritis. Ann Rheum Dis. (2007) 66:720–6. doi: 10.1136/ard.2006.062042

172. Voswinkel J, Weisgerber K, Pfreundschuh M, Gause A. B lymphocyte involvement in ankylosing spondylitis: the heavy chain variable segment gene repertoire of B lymphocytes from germinal center-like foci in the synovial membrane indicates antigen selection. Arthritis Res. (2003) 1:389–95. doi: 10.1186/ar6297

173. Krenn V, Hensel F, Kim HJ, Souto Carneiro MM, Starostik P, Ristow G, et al. Molecular IgV(H) analysis demonstrates highly somatic mutated B cells in synovialitis of osteoarthritis: a degenerative disease is associated with a specific, not locally generated immune response. Lab Invest. (1999) 79:1377–84.

174. Campos J, Hillen MR, Barone F. Salivary Gland Pathology in infiltrating the minor salivary glands in patients with Sjogren’s syndrome. Nat Rev Dis Primers. (2014) 195. doi: 10.1038/nrdp.2018.1

175. Alitalo K. The lymphatic vasculature in disease. Nat Med. (2011) 17:1371–80. doi: 10.1038/nm.2545

176. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature (2005) 438:946–53. doi: 10.1038/nature04480

177. Hamrah P, Chen L, Zhang Q, Dana MR. Novel expression of VEGFR-3 mediated by NF-kappaB and Prox1. Blood. (2010) 115:418–29. doi: 10.1182/blood-2008-12-196680

178. Mounzer RH, Svendsen OS, Baluk P, Bergman CM, Padera TP, Wiig H, et al. Lymphangiogenesis in bronchus-associated lymphoid tissue. J Exp Med. (2007) 204:223–34. doi: 10.1084/jem.20061424

179. Alitalo K, Tammela T. The lymphatic vasculature in disease. Nat Med. (2011) 17:1371–80. doi: 10.1038/nm.2545

180. Mounzer RH, Svendsen OS, Baluk P, Bergman CM, Padera TP, Wiig H, et al. Lymphangiogenesis in bronchus-associated lymphoid tissue. J Exp Med. (2007) 204:233–34. doi: 10.1084/jem.20061424

181. Kocks JR, Davalos-Misslitz AC, Hintzen G, Ohl L, Forster R. Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue. J Exp Med. (2007) 204:233–34. doi: 10.1084/jem.20061424

182. Alitalo K. The lymphatic vasculature in disease. Nat Med. (2011) 17:1371–80. doi: 10.1038/nm.2545

183. Curfiesen C, Chen L, Borges LP, Jackson D, Rao J, Radziejewski C, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. (2004) 113:1040–50. doi: 10.1172/JCI20465

184. Hall S, Dujardin HC, Bakoczen V, Heike H, Danzer H, Willenzo S, et al. Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. J Exp Med. (2009) 206:2593–601. doi: 10.1084/jem.20091472

185. Macrìchie N, Grassia G, Sabir SR, Malauno M, Welsh P, Sattar N, et al. Plasmacytoid dendritic cells play a key role in promoting atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. (2012) 32:2569–79. doi: 10.1161/ATVBAHA.112.251314

186. Pipi et al. Tertiary Lymphoid Structures and Autoantibodies

187. Drayton DL, Liao S, Mounzer RH, Rudde NH. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol. (2006) 7:344–53. doi: 10.1038/nri1330

188. Neely HR, Flajnik MF. Emergence and evolution of secondary lymphoid organs. Annu Rev Cell Dev Biol. (2016) 32:693–711. doi: 10.1146/annurev-cellbio-111311-125306

189. Kocks JR, Davalos-Misslitz AC, Hintzen G, Ohl L, Forster R. Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue. J Exp Med. (2007) 204:223–34. doi: 10.1084/jem.20061424

190. Alitalo K. The lymphatic vasculature in disease. Nat Med. (2011) 17:1371–80. doi: 10.1038/nm.2545

191. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature (2005) 438:946–53. doi: 10.1038/nature04480

192. Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, et al. Inflammation induces lymphangiogenesis through up-regulation of VEGF-R-3 mediated by NF-kappaB and Prox1. Blood. (2010) 115:418–29. doi: 10.1182/blood-2008-12-196680

193. Mounzer RH, Svendsen OS, Baluk P, Bergman CM, Padera TP, Wiig H, et al. Lymphangiogenesis in bronchus-associated lymphoid tissue. J Exp Med. (2007) 204:223–34. doi: 10.1084/jem.20061424

194. Curfiesen C, Chen L, Borges LP, Jackson D, Rao J, Radziejewski C, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. (2004) 113:1040–50. doi: 10.1172/JCI20465

195. Hamrah P, Chen L, Zhang Q, Dana MR. Novel expression of vascular endothelial growth factor receptor. (VEGFR-3) and VEGF-C on corneal dendritic cells. Am J Pathol. (2003) 163:57–68. doi: 10.1016/S0002-9440(10)63630-9

196. Thaunat O, Kerjaschki D, Nicoletti A. Is defective lymphatic drainage a trigger for lymphoid neogenesis? Trends Immunol. (2006) 27:441–5. doi: 10.1016/j.it.2006.08.003

197. Burman A, Haworth O, Hardie DL, Amft EN, Siwert C, Jackson DG, et al. A chemokine-dependent stromal induction mechanism for aberrant lymphocyte accumulation and compromised lymphatic return in rheumatoid arthritis. J Immunol. (2005) 174:1695–700. doi: 10.4049/jimmunol.174.3.1693

198. von der Weid PY, Relah S, Ferraz JG. Role of the lymphatic system in the pathogenesis of Crohn’s disease. Curr Opin Gastroenterol. (2011) 27:335–41. doi: 10.1097/MOG.0b013e3283476ef8
Kaijya K, Detmar M. An important role of lymphatic vessels in the control of UVB-induced edema formation and inflammation. J Invest Dermatol. (2006) 126:919–21. doi: 10.1097/sjd.jid.00005700126

Wilkinson LS, Edwards JC. Demonstration of lymphatics in human synovial tissue. Rheumatol Int. (1991) 11:151–5. doi: 10.1007/BF00332553

Bouta EM, Wood RW, Brown EB, Rahimi H, Ritchlin CT, Schwarz EM. In vivo quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice. J Physiol. (2014) 592:1213–23. doi: 10.1113/jphysiol.2013.266700

Polzer K, Baeten D, Soleiman A, Distler J, Gerlag DM, Tak PP, Barcellos KS, Nonogaki S, Enokihara MM, Teixeira MS, Andrade LE, Kang YM, Zhang X, Wagner UG, Yang H, Beckenbaugh RD, Kurtin Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Wang J, et al. Interleukin-27 inhibits ectopic lymphoid-structure development in early inflammatory arthritis. J Exp Med. (2015) 212:1793–802. doi: 10.1084/jem.20132307

Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J, et al. Recruitment and activation of naive T cells in the islets by lymphotixin beta receptor-dependent tertiary lymphoid structure. Immunity. (2006) 25:499–509. doi: 10.1016/j.immuni.2006.06.016

Clement M, Guedj K, Andreae F, Morvan M, Bey L, Khallou-Laschet J, et al. Control of the T follicular helper-germinal-center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation (2015) 131:560–70. doi: 10.1161/CIRCULATIONAHA.114.010988

Schmitt N, Bentebibel SE, Ueno H. Phenotype and functions of memory Tfh cells in human blood. Trends Immunol. (2014) 35:436–42. doi: 10.1016/j.it.2014.06.002

Rao DA, Gurish MF, Marshall JL, Slowkowski K, Fonseca CY, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in autoimmune arthritis. Nature. (2012) 542:110–4. doi: 10.1038/nature20810

Jin L, Yu D, Li X, Yu N, Li X, Wang Y, et al. CD4+ CXCR5+ follicular helper T cells in salivary gland promote B cells maturation in patients with primary Sjogren’s syndrome. Int J Clin Exp Pathol. (2017) 10:1978–96.

Kang KY, Kim HO, Kwok SK, Ju JH, Park KS, Sun DI, et al. Impact of interleukin-21 in the pathogenesis of primary Sjogren’s syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands. Arthritis Res Ther. (2011) 13:R179. doi: 10.1186/ar3504

Voulgarellis M, Tzioufas AG. Pathogenetic mechanisms in the initiation and perpetuation of Sjogren’s syndrome. Nat Rev Rheumatol. (2010) 6:529–37. doi: 10.1038/nrrheum.2010.118

Christodoulou MI, Kapsogeorgou EK, Moutopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjogren’s syndrome. J Autoimmun. (2010) 34:400–7. doi: 10.1016/j.jaut.2009.10.004

Bohnhorst JO, Thoen JE, Natvig JB, Thompson KM. Significantly depressed percentage of CD27+ (memory) B cells among peripheral blood B cells in patients with primary Sjogren’s syndrome. Scand J Immunol. (2001) 54:421–7. doi: 10.1046/j.1365-3038.2001.00989.x

Bohnhorst JO, Bjorgan MB, Thoen JE, Jonsson R, Natvig JB, Thompson KM. Abnormal B cell differentiation in primary Sjogren’s syndrome results in a depressed percentage of circulating memory B cells and elevated levels of soluble CD27 that correlate with Serum IgG concentration. Clin Immunol. (2002) 103:79–88. doi: 10.1006/clim.2002.5199

Larsson A, Bredberg A, Henriksson G, Manthorpe R, Sallmyr A. Immunohistochemistry of the B-cell component in lower lip salivary glands of Sjogren’s syndrome and healthy subjects. Scand J Immunol. (2005) 61:98–107. doi: 10.1111/j.0300-9475.2005.01540.x

Hansen A, Odendahl M, Reiter K, Jacobi AM, Feist E, Scholez J, et al. Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum. (2002) 46:2160–71. doi: 10.1002/art.10445

William J, Euler C, Shlomchik MJ. Short-lived plasmablasts dominate the late humoral autoimmunity. Arthritis Rheum. (2010) 63:1283–92. doi: 10.1002/art.23815
of the interleukin-7 signaling pathway in tissues with lymphoid neogenesis. *Arthritis Rheum.* (2007) 56:2492–302. do: 10.1002/art.22748

260. Harada S, Yamamura M, Okamoto H, Morita Y, Kawashima M, Aita T, et al. Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from patients with rheumatoid arthritis. *Arthritis Rheum.* (1999) 42:1508–15. do: 10.1002/1529-0131(199907)42:7<1508:AID-ANR263.0.CO;2-L

261. Van Roon JA, Verweij MC, Wijk MW, Jacobs KM, Bijlsma JW, Lafeber FP. Increased intraarticular interleukin-7 in rheumatoid arthritis patients stimulates cell–contact–dependent activation of CD4+ T cells and macrophages. *Arthritis Rheumatol.* (2005) 52:1700–10. do: 10.1002/art.21045

262. Hikida M, Nakayama Y, Yamashita Y, Kumazawa Y, Nishikawa SI, Ohmori H. Expression of recombination activating genes in germinal center B cells: involvement of interleukin 7 (IL-7) and the IL-7 receptor. *J Exp Med.* (1998) 188:365–72. do: 10.1084/jem.188.2.365

263. Watanabe M, Ueno Y, Yajima T, Okamoto S, Hayashi T, Yamazaki M, et al. Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. *J Exp Med.* (1998) 187:389–402. do: 10.1084/jem.187.3.389

264. Uchira M, Matsuda H, Hikita I, Sakata T, Fujitara H, Nishimoto H. The development of dermatitis infiltrated by gamma delta T cells in IL-7 transgenic mice. *Int Immunol.* (1993) 5:1619–27. do: 10.1093/intimm/5.12.1619

265. Meier D, Bormann C, Chappaz S, Schmutz S, Otten LA, Ceredig R, et al. Ectopic lymphoid–organ development occurs through interleukin 7–mediated enhanced survival of lymphoid–tissue–inducer cells. *Immunity.* (2007) 26:643–54. do: 10.1016/j.immuni.2007.04.009

266. Hillen MR, Radstake TR, Hack CE, van Roon JA. Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease. *Rheumatology (Oxford).* (2005) 54:1771–9. do: 10.1093/rheumatology/kev241

267. Zaheen A, Boulineau B, Parsa H, Ramachandran S, Gommerman JL, Martin A. AID constrains germinal center size by rendering B cells susceptible to apoptosis. *Blood* (2009) 114:574–54. do: 10.1182/blood-2009-03-211763

268. Caena-T Schickel JN, Bannock JM, Ng YS, Massad C, Delmote FR, et al. Decreased somatic hypermutation induces an impaired peripheral B cell tolerance checkpoint. *J Clin Invest.* (2016) 126:4289–302. do: 10.1172/JCI84645

269. Mellors RC, Heimer R, Corcos J, Kornborg L. Cellular Origin of Rheumatoid Factor. *J Exp Med.* (1999) 110:875–86. do: 10.1084/jem.110.6.875

270. Smiley JD, Sachs C, Ziff M. In vitro synthesis of immunoglobulin by rheumatoid synovial membrane. *J Clin Invest.* (1968) 47:624–32. do: 10.1172/JCI105758

271. Randen I, Brown D, Thompson KM, Hughes-Jones N, Pascual V, Victor K, et al. Clonally related IgM rheumatoid factors undergo affinity maturation in the rheumatoid synovial tissue. *J Immunol.* (1992) 148:3296–301.

272. Thompson KM, Borretzen M, Randen I, Forre O, Natvig JB. V- gene repertoire and hypermutation of rheumatoid factors produced in rheumatoid synovial inflammation and immunized healthy donors. *Ann N Y Acad Sci.* (1995) 764:440–9. do: 10.1111/j.1749-6632.1995.tb5861.x

273. Koopman WJ, Schroenloher RE, Crago SS, Spalding DM, Mestecky J. IgA rheumatoid factor synthesis by dissociated synovial cells. Characterization and relationship to IgM rheumatoid factor synthesis. *Arthritis Rheum.* (1985) 28:1219–27. do: 10.1002/art.1780281105

274. Hakoda M, Ishimoto T, Hayashimoto S, Inoue K, Taniguchi A, Kamataki N, et al. Selective infiltration of B cells committed to the production of monoreactive rheumatoid factor in synovial tissue of patients with rheumatoid arthritis. *Clin Immunol Immunopathol.* (1993) 69:16–22. do: 10.1006/clim.1993.1144

275. Thompson KM, Randen I, Borretzen M, Forre O, Natvig JB. Variable region gene usage of human monoclonal rheumatoid factors derived from healthy donors following immunization. *Eur J Immunol.* (1994) 24:1771–8. do: 10.1002/eji.1802408080

276. van Venrooij WJ, van Beers JJ, Paskin GM. Anti-CCP antibodies: the past, the present and the future. *Nat Rev Rheumatol.* (2011) 7:391–8. do: 10.1038/nrrheum.2011.76
Tertiary Lymphoid Structures and Autoantibodies

277. Amara K, Steen J, Murray F, Morbach H, Fernandez-Rodriguez BM, Joshua V, et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med. (2013) 210:445–55. doi: 10.1084/jem.201 21486

278. Masson-Bessiere C, Sebbag M, Durieux JJ, Nogueira L, Vincent C, Girbal-Neuhauser E, et al. In the rheumatoid pannus, anti-filaggrin autoantibodies are produced by local plasma cells and constitute a higher proportion of IgG than in synovial fluid and serum. Clin Exp Immunol. (2000) 119:54–2. doi: 10.1046/j.1365-2324.2000.01171.x

279. Caspi D, Anouk M, Golan I, Paran D, Kaufman J, Wigler I, et al. Synovial fluid levels of anti-cyclic citrullinated peptide antibodies and IgA rheumatoid factor in rheumatoid arthritis, psoriatic arthritis, and osteoarthritis. Arthritis Rheum. (2006) 55:53–6. doi: 10.1002/art.21691

280. Reparon-Schuijt C, van Esch WJ, van Kooten C, Schellekens GA, de Jong BA, van Venrooij WJ, et al. Secretion of anti-citrulline-containing peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheum. (2001) 44:41–7. doi: 10.1002/1529-0131(200101)44:1<41:AID-ANR6>3.0.CO;2-0

281. Snir O, Widhe M, Hermansson M, von Spee C, Lindberg J, Hensen S, et al. Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid arthritis patients. Arthritis Rheum. (2010) 62:44–52. doi: 10.1002/art.25036

282. Spadaro A, Riccieri V, Scrivo R, Alessandri C, Valesini G. Anti-cyclic citrullinated peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheum. (1997) 49:49–54. doi: 10.1002/1529-0131(199702)42:2<240::AID-ANR5>3.0.CO;2-I

283. Astorri E, Bombardieri M, Gabba S, Peakman M, Pozzilli P, Pitzalis C. Evolution of ectopic lymphoid neogenesis and in situ autoantibody production in autoimmune nonobese diabetic mice: cellular and molecular characterization of tertiary lymphoid structures in pancreatic islets. J Immunol. (2010) 185:3339–68. doi: 10.4049/jimmunol.1001836

284. Le Pottier L, Devauchelle F, Auriol C, Daridon C, Saraux A, Youinou P, et al. Ectopic germinal centers are rare in Sjögren’s syndrome saliva glands and do not exclude autoreactive B cells. J Immunol. (2009) 182:3540–7. doi: 10.4049/jimmunol.0803588

285. Spalding DM, Haber P, Schroenholer RE, Koopman WJ. Production of immunoglobulin and rheumatoid factor by lymphoid cells in the rheumatoid pericardium. Arthritis Rheum. (1985) 28:1071–4. doi: 10.1002/1780289097

286. Halse AK, Koopman WJ, Fallahi S, Oh SJ, Gay RE, Schroenholer RE. Rheumatoid myositis. Clinical and histologic features and possible pathogenesis. Arthritis Rheum. (1984) 27:737–43. doi: 10.1002/1780270703

287. Talal N, Asofsky R, Lightbody P. Immunoglobulin synthesis by salivary gland lymphocytes in Sjögren’s syndrome. J Clin Invest. (1970) 49:49–54. doi: 10.1172/JCI106221

288. Anderson LG, Cummings NA, Asofsky R, Hylton MB, Tarpley TM Jr, Tomasii TB Jr, et al. Salivary gland immunoglobulin and rheumatoid factor synthesis in Sjögren’s syndrome. Natural history and response to treatment Am J Med. (1997) 53:456–63. doi: 10.1016/0002-9345(97)90146-1

289. Halse A, Harley JB, Kronvall G, Jonsson B. Ro/SS-A-reactive B lymphocytes in salivary glands and peripheral blood of patients with Sjögren’s syndrome. Clin Exp Immunol. (1999) 115:203–7. doi: 10.1046/j.1365-2249.1999.00778.x

290. Glauey S, Sng J, Bannock JM, Gottenberg JE, Korganow AS, Cacoub P, et al. Antibody-secreting cell specificity in labial salivary glands reflects the clinical presentation and serology in patients with Sjögren’s syndrome. Arthritis Rheumatol. (2014) 66:3445–56. doi: 10.1002/art.38872

291. Halse A, Martinussen MC, Wahren-Herlenius M, Jonsson B. Iso type distribution of anti-Ro/SS-A and anti-La/SS-B antibodies in plasma and saliva of patients with Sjögren’s syndrome. Scand J Rheumatol. (2003) 32:224–2. doi: 10.1080/030097003001752

292. Mavrikakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, et al. Glycosylation leads the way in IVIG-mediated resolution of inflammation. Int Immunol. (2017) 29:499–509. doi: 10.1093/intimm/dxx053

293. Pipic A, Bournazos S, DeLillo DJ, Maamarjy I, Wang TT, Dahan R, et al. Type I, and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol. (2014) 15:707–16. doi: 10.1038/ni.2939
347. Griffiths HR, Lunec J. The effects of oxygen free radicals on the carbohydrate moiety of IgG. FEBS Lett. (1989) 245:95–9. doi: 10.1016/0014-5793(89)80199-1

348. Wang JR, Gao WN, Grimm R, Jiang S, Liang Y, Ye H, et al. A method to identify trace sulfated IgG N-glycans as biomarkers for rheumatoid arthritis. Nat Commun. (2017) 8:631. doi: 10.1038/s41467-017-00662-w

349. Trbojevic-Akmacic I, Vilaj M, Lauc G. High-throughput analysis of immunoglobulin G glycosylation. Expert Rev Proteomics. (2016) 13:523–34. doi: 10.1080/14789450.2016.1174584

350. Hafkenscheid L, Bondt A, Scherer HU, Huizinga TW, Toes RE, et al. Structural analysis of variable domain glycosylation of anti-citrullinated protein antibodies in rheumatoid arthritis reveals the presence of highly sialylated glycans. Mol Cell Proteomics. (2017) 16:278–87. doi: 10.1074/mcp.M116.062919

351. Royer B, Cazals-Hatem D, Sibilia J, Agbalika F, Cayuela JM, Soussi T, et al. Lymphomas in patients with Sjogren’s syndrome are marginal zone B-cell neoplasms, arise in diverse extranodal and nodal sites, and are not associated with viruses. Blood (1997) 90:766–75.

352. Lasota J, Miettinen MM. Coexistence of different B-cell clones in consecutive lesions of low-grade MALT lymphoma of the salivary gland in Sjogren’s disease. Mod Pathol. (1997) 10:872–8.

353. Bahler DW, Miklos JA, Swerdlow SH. Ongoing Ig gene hypermutation in salivary gland mucosa-associated lymphoid tissue-type lymphomas. Blood (1997) 89:3333–44.

354. Bende RJ, Aarts WM, Riedl RG, de Jong D, Pals ST, van Noesel CJ. Among B cell non-Hodgkin’s lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J Exp Med. (2005) 201:1229–41. doi: 10.1084/jem.2005068

355. Martin T, Weber JC, Levallois H, Labouret N, Koenig S, et al. Salivary gland lymphomas in patients with Sjogren’s syndrome may frequently develop from rheumatoid factor B cells. Arthritis Rheum. (2000) 43:908–16. doi: 10.1002/1529-0131(200004)43:4<908::AID-ANR24>3.0.CO;2-K

356. Bende RJ, Slot LM, Hoogeboom R, Wormhoudt TA, Adeoye AO, Guikema JE, et al. Stereotypic rheumatoid factor factors that are frequently expressed in mucosa-associated lymphoid tissue-type lymphomas are rare in the labial salivary glands of patients with Sjogren’s syndrome. Arthritis Rheumatol. (2015) 67:1074–83. doi: 10.1002/art.39002

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Pipi, Nayar, Gardner, Colafrancesco, Smith and Barone. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.