Prevalence of Osteoporosis Among Iranian Postmenopausal Women: A Systematic Review and Meta-analysis

Tayebeh Eghbali1, Kamel Abdi2, Mahboubeh Nazari3, Esmaeil Mohammadnejad4 and Reza Ghanei Gheshlagh5

1Faculty of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran. 2Nursing Department, Faculty of Medicine, Kornar University of Science and Technology, Sulaymaniyah City, Kurdistan Region, Iraq. 3Student Research Committee, Department of Medical And Surgical Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 4Department of Nursing, Faculty of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran. 5Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.

ABSTRACT

OBJECTIVES: Osteoporosis is the most common metabolic bone disease. It is considered the silent epidemic, with high prevalence after menopause, in the current time. Different studies conducted in Iran have reported different prevalence. The present systematic review and meta-analysis aims to estimate the overall prevalence of osteoporosis in Iranian postmenopausal women.

METHODS: The national scientific databases Scientific Information Database and Magiran and the international scientific databases PubMed, Web of Science, and Scopus were searched for related articles without any time limitation. The keywords osteopenia, osteoporosis, post menopause, OP, bone mineral density, and Iran along with their combinations were used in the search. The inconsistency in the data was examined using I² test. The data were analyzed using the meta-analysis method and the random-effects model in Stata software, version 14.

RESULTS: The analysis of 26 articles with a sample size of 6735 showed that the prevalence of osteoporosis and osteopenia in Iranian postmenopausal women is, respectively, 33.70% (95% CI [confidence interval]: 22.68-44.73) and 47.60% (95% CI: 32.88-62.32). The pooled prevalence of osteoporosis in the spine and in the femur bone was 31.99% and 15.93%, respectively. Also, the prevalence of osteopenia in the spine and in the femur bone was 22.48% and 39.88%, respectively.

CONCLUSION: Osteoporosis and osteopenia are highly prevalent in Iranian postmenopausal women to the extent that one-third of women suffer from osteoporosis and nearly half of them suffer from osteopenia. It seems essential to teach a healthy lifestyle to these women to reduce the prevalence of these issues.

KEYWORDS: Osteoporosis, menopause, Iran, systematic review

Introduction

Osteoporosis is the most common bone metabolic disease and the fourth major enemy of humans after cancer, cardiovascular disease, and stroke, which increases with age.1-3 Osteoporosis is characterized by low bone mass and destruction of bone tissue structure, leading to increased bone fragility and susceptibility to fractured bones.3 Osteoporosis is one of the major health problems in any country because of its association with fractures.4 T-score and Z-score indices are used to quantify bone density. The World Health Organization (WHO) defines osteoporosis as a bone mineral density that lies 2.5 SDs or more below the mean maximum bone mineral density.5 T-score indicates changes in the standard deviation of a person’s bone density relative to the maximum bone mineral density in healthy and young individuals, and Z-score also shows changes in standard deviation of a person’s bone density relative to people of similar age, sex, and race.6 Accordingly, osteoporosis is defined as a T-score <-2.5 and osteopenia as -2.5 < T-score <-1.³ Age, sex, race, genetics, low calcium intake, and activity have an effect on bone mass.³ Menopause is one of the most important causes of osteoporosis. Postmenopausal women lose 3% to 5% of their bone mass annually. These women lose part of their bone mass and are exposed to osteoporosis for up to 7 years after menopause.³ The reason for bone loss after menopause is the reduction in estrogen production by the ovaries.³ Menopausal osteoporosis is important because women spend one-third of their lives under conditions of reduced bone mass and increased risk of fractures, and the rate of bone loss in the first few years of menopause is high.10 Bone loss in postmenopausal women occurs in

DECLARATION OF CONFLICTING INTERESTS: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Reza Ghanei Gheshlagh, Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 6618634683, Iran. Email: Rezaghan30@gmail.com

Creative Commons: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
2 phases. The initial short phase lasts 3 to 5 years and trabecular bone loss occurs rapidly (menopause-related bone loss), and in the long-term phase, men and women gradually lose their cortical and trabecular bones for over 10 to 20 years (age-related bone loss).11,12 Fracture, disability, and chronic pain are the most common clinical consequences of osteoporosis.13 Pelvic, vertebral, and distal radius fractures are the most common osteoporotic fractures. These fractures not only cause morbidity but also increase the chances of mortality, with mortality following hip fracture in the first year being 20%.14 Also the disability-adjusted life year caused by osteoporosis in Iran was 36,026 years.15 Various studies that have investigated the prevalence of osteoporosis in postmenopausal women in Iran have reported different results, and there is no general estimation.16-18 This systematic review and meta-analysis study was conducted to estimate the overall prevalence of osteoporosis and osteopenia in Iranian postmenopausal women.

Study Quality Assessment
The methodological quality of the articles was evaluated based on 10 items selected from the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist (title and abstract, goals and hypotheses, setting, inclusion and exclusion criteria, sample size, statistical methods, descriptive data, interpretation of findings, research limitations, and funding).20

Statistical Analysis
Analyses were performed with Stata version 14 software. The prevalence of osteoporosis and osteopenia in postmenopausal women was calculated as the proportion of women with these problems to all postmenopausal women. Also, the standard error of the prevalence of osteoporosis and osteopenia for each study was calculated using binomial distribution formula. The heterogeneity between the studies was investigated by Cochran Q test with a significant level less than .1 and P statistic.21 P value for χ^2-based Q test less than .05 and I^2 index above 50% showed heterogeneity between studies, so we used an effect of meta-analysis to estimate the Der Simonian and Laird pooled effect. Point estimation of the prevalence of osteoporosis and osteopenia was estimated by a forest plot with 95% confidence interval (95% CI). The Begg test was used to evaluate publication bias.22 Meta-analysis was also applied to identify the potential source of heterogeneity factors among selected studies. Sensitivity analysis was also used to investigate the effect of excluding each study on the cumulative prevalence of osteoporosis and osteopenia.

Results
Database searching led to the retrieval of 114 articles. At the screening and eligibility stages, 83 (due to nonrelevance) and 5 articles (due to not reporting prevalence) were excluded from the analysis. Finally, 26 articles were included in the analysis. The search and screening process of articles is presented in Figure 1. Because national databases were not sensitive to Boolean operators, the word search was performed in a single word, so more articles were found. Twenty-six articles examined the prevalence of osteoporosis in 6735 postmenopausal women. The sample size in the selected articles varied from 75 to 706 individuals. More details are reported in Table 1.

The pooled prevalence of osteoporosis in Iranian postmenopausal women was 33.70% (95% CI: 22.68–44.73) (Figure 2). The pooled prevalence of osteopenia was 47.60% (95% CI: 32.62–62.32).

The pooled prevalence of osteoporosis in the lumbar spine and femur was 31.99% (95% CI: 26.29–37.70) and 15.93% (95% CI: 9.89–21.96), respectively. Also, the prevalence of osteopenia in the lumbar spine and femur was 48.22% (95% CI: 44.52–51.92) and 39.88 (95% CI: 31.72–48.04), respectively. The results of the meta-regression showed that there was only a relationship between femur osteoporosis and sample size...
Eghbali et al

(\(P = .006\)). In other words, with the increase in sample size, the prevalence of femur osteoporosis has increased (Figure 3). There was no relationship between the prevalence of osteoporosis and osteopenia with year of publication and age of samples (Table 2). Also, publication bias was not significant for estimating the prevalence of osteoporosis and osteopenia. The results of sensitivity analysis showed that no study alone had an effect on the prevalence of osteoporosis and osteopenia.

Discussion

This systematic review and meta-analysis study was conducted to estimate the prevalence of osteoporosis among Iranian postmenopausal women. The prevalence of osteoporosis and osteopenia in Iranian postmenopausal women was 33.70% and 47.60%, respectively, and the prevalence of osteoporosis in the lumbar spine and femur neck was 31.99% and 15.93%, respectively. The results of a study on postmenopausal women referring to Kurdistan Densitometry Center showed that the overall prevalence of osteoporosis and osteopenia was 34.4% and 69.8%, respectively. Only 14.8% of the subjects had normal bone density. The results of a study in Kuwait also showed that the prevalence of spine and femur osteoporosis in postmenopausal women was 35.4% and 42.8%, respectively, which is approximately similar to the present study. Consistent with the results of the present study, the findings of the study by Cipriani et al showed that the prevalence of osteoporosis in the spine and femur of Italian postmenopausal women was 28.4% and 16.2%, respectively, and the overall prevalence of osteopenia was 56%.

The results of the study by Jang et al of 362 postmenopausal women over 45 years old in Chuncheon (South Korea) showed that the prevalence of osteoporosis in women 45 to 64 years old was 30.6%, in women 65 to 74 years old was...
Table 1. Characteristics of the selected articles.

FIRST AUTHOR	YEAR	SAMPLE SIZE	PLACE	LUMBAR OSTEOPOROSIS	LUMBAR OSTEOPENIA	FEMUR OSTEOPOROSIS	FEMUR OSTEOPENIA	TOTAL OSTEOPOROSIS	TOTAL OSTEOPENIA	MEAN AGE (YEAR)
Hosseinpour	2016	300	Fasa	26.2	—	19.8	—	7.9	—	74.9
Eftekhari-Sadat	2016	99	Tabriz	36.4	49.5	38.4	24.2	—	—	57
Aghajanpoor	2016	200	Isfahan	39	44	4.9	47.5	—	—	66.9
Aghajanpoor	2016	400	Isfahan	40	43.3	4.5	27.3	—	—	65.2
Shariati Bafghi	2014	151	Tehran	30.5	—	15.9	—	—	—	61.2
Etemadrezaei	2014	250	Mashhad	17	44	8	40	—	—	52.9
Mohammadbeig	2013	275	Shiraz	—	—	—	—	—	70.2	58.2
Nobakht Motlaghi	2013	430	Fasa	16.8	55.8	31	46.8	34.1	—	56.4
Hassanzadeh	2012	275	Shiraz	—	—	—	—	70.2	—	58.5
Maryam	2012	80	Sari	27.5	—	17.5	—	48.8	30	66.6
Maryam	2012	80	Sari	46.3	—	27.5	—	—	—	68.8
Mehrdad Aghaei Sedigh	2012	98	Gorgan	46.9	—	17.3	—	13.3	—	57.8
Maddah	2011	706	Guilan	—	—	—	—	15.7	—	62.5
Motaghi	2011	341	Isfahan	—	—	—	—	20.8	39.6	59.7
Ahmadzadeh	2010	210	Tehran	—	—	—	—	20.3	41.7	57.3
Khojastehpour	2009	114	Shiraz	—	—	—	—	15.7	—	62.5
Eghbali	2009	406	Bushehr	32	7.4	29.6	3.9	—	—	59.1
Bayat	2008	200	Tehran	25.5	51	7	47.5	26	52.5	57.2
Shokrollahi	2008	75	Shiraz	—	—	—	—	77.3	—	49
Mojibian	2006	502	Yazd	20.5	52	43	43	—	—	60.5
Derakhshan	2006	305	Sanandaj	17	56.1	30.8	47.9	34.4	69.8	57.7
Salimzadeh	2005	268	Karaj	—	—	—	—	40.7	—	59.4
Salimzadeh	2005	268	Karaj	—	—	—	—	33.2	—	59.4
Mosalanezhad	2004	250	Shiraz	—	—	—	—	60.6	—	60.6
Sedaghat	2003	180	Tehran	—	—	—	—	28.8	—	52.7
Dabaghmanesh	2002	272	—	31.1	—	13.6	—	—	—	—
52.5%, and in women older than 75 years was 68.7%, which is consistent with the prevalence reported in our study. Various studies have shown that the prevalence of osteoporosis in Arab countries is lower than in Iran. For example, the prevalence of osteoporosis in Saudi Arabia was also 30.5%, Lebanon 11%, Bahrain 27.1%, and Qatar 12.3%. The results of the study by Tian et al. showed that the prevalence of osteoporosis in postmenopausal women in Gansu province was 9.65% and 27.09%, respectively. The results of a US population over 50 showed that the prevalence of osteoporosis was 10.3%. Osteoporosis is associated with age, duration of menopause, weight, calcium-containing food intake, physical activity, and having a history of previous fractures. The reason for the difference in the prevalence of menopause in previous studies may be due to differences in demographic and clinical characteristics of the studied samples. The results of another study showed that the prevalence of osteoporosis was higher in women without physical activity than in other women. The development of good living habits, avoidance of alcohol and tobacco, physical activity, and consumption of calcium-containing and vitamin D–containing foods have been suggested for the management of osteoporosis.

The prevalence of osteoporosis and osteopenia did not change significantly over time (between 2003 and 2017), indicating that health programs for postmenopausal women have not had a significant effect on the overall prevalence of this problem. It seems that the reason for this finding can be attributed to economic and social problems of Iranian society that affect the lifestyle, nutrition, and even the follow-up of the comorbidities of these patients.

One limitation of this study was inadequate information on selected studies. Providing new and comprehensive information is the strength of this study. Hemmati et al. have previously systematically reviewed the prevalence of osteoporosis in

![Figure 2. Prevalence of overall osteoporosis and its 95% confidence interval in Iranian postmenopausal women based on random-effects model.](image)

![Figure 3. Meta-regression analysis of the relationship between the prevalence of femur osteoporosis with sample size.](image)
postmenopausal women, but clear mistakes in study selection and data extraction had diverted the true prevalence of osteoporosis in this group of women. As health care decisions are based on the findings of such research, using the wrong results can lead to incorrect decisions. One-third of postmenopausal women in Iran have osteoporosis and nearly half of them have osteopenia, so teaching healthy lifestyle to these women to reduce the prevalence of these problems seems necessary.

Acknowledgements
The authors appreciate all the researchers whose articles were used in the present research.

Author Contributions
TE was involved in study design, RGG and KA were involved in data collection, KA and EM were involved in grammar editing and final revision, and SD and RGG were involved in statistical analysis.

ORCID iD
Reza Ghanei Gheslagh https://orcid.org/0000-0002-7414-8134

Table 2. Results of univariate meta-regression for the prevalence of lumbar spine and femur osteoporosis.

DEPENDENT	NO. OF STUDIES	COEFFICIENT	SE	T VALUE	P VALUE
Lumbar spine Age	13	0.51	0.47	1.08	0.303
Year	13	1.43	0.72	1.98	0.073
Sample size	13	0.08	0.08	0.99	0.345
Femur Age	13	-0.02	0.51	-0.05	0.963
Year	13	-0.59	0.85	-0.69	0.505
Sample size	13	0.27	0.08	3.41	0.006

REFERENCES
1. Aghajani MSA, Karimifar M, Zamani A, Salehi M, Motaghi P. Comparison of the prevalence of osteopenia and osteoporosis in diabetic postmenopausal women with nondiabetic women. J Isfahan Med Sch. 2016;32:1-12.
2. Eftekhar-Sadat B, Ghavami M, Toopchizadeh V, Ghahrechi Akbari M. Wrist bone mineral density utility in diagnosing hip osteoporosis in postmenopausal women. J Adv Endocrinol Metab. 2016;7:207-211.
3. Eastell R, O'Neill TW, Hofbauer LC, et al. Postmenopausal osteoporosis. Nat Rev Dis Primers. 2016;2:16069.
4. Abbasi M. Evaluate the clinical effectiveness in the prevention and treatment of osteoporosis drug zoledronic acid compared with conventional drugs postmenopausal women. J Isfahan Med Sch. 2015;32:214-2123.
5. WHO study group. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. Technical report series 843. Geneva, Switzerland: WHO; 1994.
6. Ahmadzadeh A, Rajaei A, Rezaian S, Tijari F, Emam MM, Moslenizadeh M. Comparative evaluation of the OST and SCORE for prediction of osteoporosis in postmenopausal women. Pajohesh Doj. 2010;15:165-170.
7. Etmedareizai F, Shariati Sarabi J, Hatefzad M, Soltanifar A, Rahmani S. Frequency of osteoporosis and osteopenia in post-menopausal women in Mashhad City, between 1389-1390. Med J Mashhad Univ Med Sci. 2014;56:369-375.
8. Gallagher JC, Tellah SH. Prevention and treatment of postmenopausal osteoporosis. J Ster Bischoff Mol Biol. 2014;142:155-170.
9. Shepherd AJ. An overview of osteoporosis. Alters Ther Health Med. 2004;10:26.
10. Holroyd C, Cooper C, Dennison E. Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008;22:671-685.
11. Manolagas SC, O’Brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol. 2013;9:499-712.
12. Clow JA, Rigby BL, Kholia S. The role of the immune system in the pathophysiology of osteoporosis. Immuno Rev. 2005;208:207-227.
13. MacLean C, Newberry S, Maglione M, et al. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med. 2008;148:197-213.
14. Gourlay ML, Brown SA. Clinical considerations in premenopausal osteoporosis. Arch Intern Med. 2004;164:603-614.
15. Abolhassani F, Mohammad M, Soltani A. Burden of osteoporosis in Iran. Iran J Publ Health. 2004;33:18-28.
16. Motaghi P, Payyani S, Movlia HK. Evaluation of osteoporosis risk assessment instrument (ORAI) in Iranian postmenopausal women. Sci Med J. 2011;5:563-569.
17. Keramat A, Parvazian B, Larijani B, et al. The assessment of osteoporosis risk factors in Iranian women compared with Indian women. BMC Musculoskelet Disord. 2008;9:28.
18. Bayat NHAZ, Alilishi GH, Ebadi A, Hosseini M, Lalae A. Frequency of osteoporosis and osteopenia in postmenopausal military women's. J Military Health Sci Res. 2008;6:25-30.
19. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264-269.
20. Farrugia M, Kirsch A. Application of the strengthening the reporting of observational studies in epidemiology (STROBE) statement to publications on endoscopic treatment for vesicoureteral reflux. J Pediatr Urol. 2015;32:214-2123.
21. Ades A, Lu G, Higgins J. The interpretation of random-effects meta-analysis in decision models. Med Dec Mak. 2005;25:646-654.
22. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088-1101.
23. Hosseinipour S, Sobhani N, Rakhsh M, Hosseinipour S, Moussavian G. The relationship between abo blood group and osteoporosis among postmenopausal women of Fasa in 2015. J Fasa Univ Med Sci. 2016;6:1-8.
24. Shariati Baghi S, Karamati M, Najafi R, Rashidkhani B. Dietary phytochemical index and osteoporosis risk in postmenopausal Iranian women. Nutrition Food Sci Res. 2014;1:233-236.
25. Mohammadbeigi A, Hassanzadeh J, Mohammad saleh N, Nasimi B, Ranjbar Omranii G. Impacts of osteoporosis on quality of life in elderly women. Clin Dis J. 2013;11:13-17.
26. Nobakht Motaqhi BKJA, Hularnia A, Kaveh M, Hajizadeh E, Bahaei Heydabadi A, et al. Prevalence of osteoporosis and its related factors in women referred to Fasa’s densitometry center. J I lam Univ Med Sci. 2013;21:150-158.
27. Hassanzadeh J, Nasimi B, Ranjbar OG, Moradi NM, Mohammadbeigi A. Evaluating the quality of life of osteoporotic postmenopausal women. Iran J Endocrinol Metab. 2012;14:234-240.
28. Maryam M, Zahra K, Adeleh B, Fatemeh T, Jafar F, Rohollah A. Osteoporosis and osteoporotic fractures in postmenopausal women with type 2 diabetes compared with non-diabetic cases. Iran J Diab Obes. 2012;4:68-73.
29. Mehrdad Aghaei Sedighi S, Pour NB, Khani SH, Jamshir M, Agh A, et al. Prevalence and risk factors of osteoporosis in postmenopausal women with rheumatoid arthritis: a brief report. Tehran Univ Med J. 2012;70:447-451.
30. Maddah M, Sharami S, Bedarshidi A, et al. Prevalence of osteoporosis in postmenopausal women with rheumatoid arthritis. J Dentist Tehran Univ Med Sch. 2011;11:845.
31. Khojastehpour L, Shahidi S, Barghan S, Aflaki E. Efficacy of panoramic mandibular index and osteoporosis risk in postmenopausal Iranian women. J Dentist Tehran Univ Med Sch. 2011;11:845.
32. Eghbali SS, Nabipour I, Dehghani Z. Prevalence of osteoporosis in women older than 50 years old in Bushehr port. Iran South Med J. 2009;11:463-469.

Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders
33. Shokrollahi P, Rivaz M, Robatjazi M. Prevalence of risk factors of osteoporosis in post-menopausal women in Shiraz, southern Iran. *Iran Red Crescent Med J.* 2008;10:190.

34. Mojibian MOM, Beiki BO, Kouchak YL. Osteoporosis in postmenopausal women. *Iran J Surg.* 2006;14:1-8.

35. Derakhshan SSR, Roshadmanesh N. Prevalence of osteoporosis, osteopenia and their related factors in post-menopausal women referring to Kurdistan densitometry center. *Sci J Kurdistan Univ Med Sci.* 2006;11:59-67.

36. Salimzadeh A, Forough B, Olia B, Sharghi S, Alinhiri G, Ghasemzadeh A. The cut-off point of dual energy X-ray and laser (DXL) of calcaneus osteoporosis diagnosis in postmenopausal women. *Iran J Radiat Res.* 2005;3:69-72.

37. Mosalanezhad L, Shahsavari S, Nazarinia M. Relationship between simple osteoporosis risk estimation and bone marrow density measurement. *Med J Hormozgan Univ.* 2004;7:179-186.

38. Sedaghat MHZ, Soltani A, Hosseinzadeh Arzah Rahimi E, Larijani Mohammad Bagher A. How is the agreement of DXA and QUS of phalanx in defining osteoporosis in healthy postmenopausal women. *Zahedan J Res Med Sci.* 2003;5:101-105.

39. Dabaghmanesh M, Pazhouhi M, Akrami S, Adibi H, Hamidi Z. The agreement between QUS and DXA in the diagnosis of osteoporosis. *Iran South Med J.* 2002;5:50-55.

40. Al-Shoumer KA, Nair V. Prevalence of low bone mass in postmenopausal Kuwaiti women residents in the largest province of Kuwait. *Arch Osteoporos.* 2012;7:147-153.

41. Cipriani C, Pepe J, Berndtso F, et al. The epidemiology of osteoporosis in Italian postmenopausal women according to the National Bone Health Alliance (NBHA) diagnostic criteria: a multicenter cohort study. *J Endocrinol Invest.* 2018;41:431-438.

42. Jang SN, Choi YH, Choi MG, et al. Prevalence and associated factors of osteoporosis among postmenopausal women in Chuncheon: Hallym Aging Study (HAS). *J Prev Med Public Health.* 2006;39:389-396.

43. El-Desouki MI. Osteoporosis in postmenopausal Saudi women using dual x-ray bone densitometry. *Saud Med J.* 2003;24:953-956.

44. Maalouf G, Gannage-Yared MH, Ezredine J, et al. Middle East and North Africa consensus on osteoporosis. *J Musculoskelet Neuronal Interact.* 2007;7:131-143.

45. Alawy S. Edentulism as a predictor of osteoporosis among postmenopausal Bahraini women. *J Clin Dentimet.* 2009;12:389.

46. Hammoudeh M, Al-Khayarin M, Zirie M, Bener A. Bone density measured by dual energy X-ray absorptiometry in Qatari women. *Maturitas.* 2005;52:319-327.

47. Tian L, Yang R, Wei L, et al. Prevalence of osteoporosis and related lifestyle and metabolic factors of postmenopausal women and elderly men: a cross-sectional study in Gansu province, Northwestern of China. *Medicine.* 2017;96:e8294.

48. Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. *J Bone Miner Res.* 2014;29:2520-2526.

49. Hemmati F, Sarokhani D, Sayehmiri K, Motadayen M. Prevalence of osteoporosis in postmenopausal women in Iran: a systematic review and meta-analysis. *Iran J Obstet Gynecol Infertil.* 2018;21:90-102.