Hass Avocado Composition and Potential Health Effects

MARK L. DREHER¹ and ADRIENNE J. DAVENPORT²

¹Nutrition Science Solutions, LLC, Wimberly, TX 78676, USA
²No affiliation

Hass avocados, the most common commercial avocado cultivars in the world, contain a variety of essential nutrients and important phytochemicals. Although the official avocado serving is one-fifth of a fruit (30 g), according to NHANES analysis the average consumption is one-half an avocado (68 g), which provides a nutrient and phytochemical dense food consisting of the following: dietary fiber (4.6 g), total sugar (0.2 g), potassium (345 mg), sodium (5.5 mg), magnesium (19.5 mg), vitamin A (43 μg), vitamin C (6.0 mg), vitamin E (1.3 mg), vitamin K₁ (14 μg), folate (60 mg), vitamin B-6 (0.2 mg), niacin (1.3 mg), pantothenic acid (1.0 mg), riboflavin (0.1 mg), choline (10 mg), lutein/zeaxanthin (185 μg), phytoesters (57 mg), and high-monounsaturated fatty acids (6.7 g) and 114 kcals or 1.7 kcal/g. The avocado oil consists of 71% monounsaturated fatty acids (MUFA), 13% polyunsaturated fatty acids (PUFA), and 16% saturated fatty acids (SFA), which helps to promote healthy blood lipid profiles and enhance the bioavailability of fat soluble vitamins and phytochemicals from the avocado or other fruits and vegetables, naturally low in fat, which are consumed with avocados. There are eight preliminary clinical studies showing that avocado consumption helps support cardiovascular health. Exploratory studies suggest that avocados may support weight management and healthy aging.

Keywords Fruit, monounsaturated fat, cardiovascular health, normal blood glucose, weight control, healthy aging

INTRODUCTION

The avocado (Persea americana) originated in Mexico, Central or South America, and was first cultivated in Mexico as early as 500 BC (Duester, 2000; Rainey et al., 1994; California Avocado Commission, 2011). The first English language mention of avocado was in 1696. In 1871, avocados were first introduced to the United States in Santa Barbara, California, with trees from Mexico. By the 1950s, there were over 25 avocado varieties commercially packed and shipped in California, with Fuerte accounting for about two-thirds of the production. As the large-scale expansion of the avocado industry occurred in the 1970s, the Hass avocado cultivar replaced Fuerte as the leading California variety and subsequently became the primary global variety. The Hass avocado contains about 136 g of pleasant, creamy, smooth texture edible fruit covered by a thick dark green, purplish black, and bumpy skin. The avocado seed and skin comprise about 33% of the total whole fruit weight (USDA, 2011). Avocados are a farm-to-market food; they require no processing, preservatives or taste enhancers. The avocado’s natural skin eliminates the need for packaging and offers some disease and insect resistance, which allows them to be grown in environmentally sustainable ways. This review provides the first comprehensive literature summary of the published nutrition and health research related to the avocado and its major components.

HASS AVOCADO COMPOSITION

Avocado consumers tend to consume significantly more of key shortfall nutrients—dietary fiber, vitamins K, and E, potassium, and magnesium—in their diet than non-avocado consumers (Fulgoni et al., 2010a). Although the U.S. Nutrition Labeling and Education Act (NLEA) defines the serving size of an avocado as one-fifth of a fruit, or 30 g (1 ounce), the National Health and Nutrition Examination Survey (NHANES) 2001–2006 finds that the average consumption is one-half an avocado (approximately 68 g) (Fulgoni et al., 2010a; 2010b). The nutrition and phytochemical composition of Hass avocados is summarized in Table 1. One-half an avocado is a nutrient and phytochemical dense food consisting of the following: dietary fiber (4.6 g), total sugar (0.2 g), potassium (345 mg), sodium...
Table 1 Hass avocados (Persea americana) composition of edible portion (USDA, 2011)

Nutrient/phytochemical	Value per 100 g	1 fruit, 136 g (NHANES eating occasion)	1/2 fruit, 68 g (NLEA serving)	1 serving, 30 g (NLEA serving)
Proximates				
Water (g)	72.3	98.4	49.2	21.7
Energy (kcal)	167	227	114	50.0
Energy (kcal) (insoluble fiber adjusted)	148	201	101	44.0
Protein (g)	1.96	2.67	1.34	0.59
Total lipid (fat) (g)	15.4	21.0	10.5	4.62
Ash, g	1.66	2.26	1.13	0.50
Carbohydrate, by difference (g)	8.64	11.8	5.90	2.59
Fiber, total dietary (g)	6.80	9.20	4.60	2.00
Sugars, total (g)	0.30	0.41	0.21	0.09
Starch (g)	0.11	0.15	0.08	0.03
Minerals				
Calcium (mg)	13.0	18.0	9.0	4.0
Iron (mg)	0.61	0.83	0.42	0.18
Magnesium (mg)	29.0	39.0	19.5	9.0
Phosphorus (mg)	54.0	73.0	36.5	16.0
Potassium (mg)	507	690	345	152
Sodium (mg)	8.0	11.0	5.5	2.0
Zinc (mg)	0.68	0.92	0.46	0.20
Copper (mg)	0.17	0.23	0.12	0.05
Manganese (mg)	0.15	0.20	0.10	0.05
Selenium (ug)	0.40	0.50	0.25	0.10
Vitamins and Phytochemicals				
Vitamin C (mg)	8.80	12.0	6.0	2.60
Thiamin (mg)	0.08	0.10	0.05	0.02
Riboflavin (mg)	0.14	0.19	0.09	0.04
Niacin (mg)	1.91	2.60	1.30	0.57
Pantothenic acid (mg)	1.46	2.00	1.00	0.44
Vitamin B-6 (mg)	0.29	0.39	0.19	0.09
Folate, food (µg)	89.0	121	60.5	27.0
Choline, total (mg)	14.2	19.3	9.65	4.30
Betaine (mg)	0.7	1.0	0.5	0.2
Vitamin B-12 (µg)	0.0	0.0	0.0	0.0
Vitamin A (µg RAE)	7.0	10.0	5.0	2.0
Carotene, beta (µg)	63.0	86.0	43.0	19.0
Carotene, alpha (µg)	24.0	33.0	16.5	7.0
Cryptoxanthin, beta (µg)	27.0	37.0	18.5	8.0
Lutein + zeaxanthin (µg)	271	369	185	81.0
Vitamin E (alpha-tocopherol),mg	1.97	2.68	1.34	0.59
Tocopherol, beta (mg)	0.04	0.05	0.03	0.01
Tocopherol, gamma (mg)	0.32	0.44	0.22	0.10
Tocopherol, delta (mg)	0.02	0.03	0.02	0.01
Vitamin K₃ (phyllquinone) (µg)	21.0	28.6	14.3	6.30
Lipids				
Fatty acids, total saturated (g)	2.13	2.90	1.45	0.64
16:0 (g)	2.08	2.82	1.41	0.62
Fatty acids, total monounsaturated (g)	9.80	13.3	6.65	2.94
18:1 (g)	9.07	12.3	6.15	2.71
Fatty acids, total polyunsaturated (g)	1.82	2.47	1.24	0.55
18:2 (g)	1.67	2.28	1.14	0.50
18:3 (g)	0.13	0.17	0.09	0.04
Cholesterol (mg)	0.0	0.0	0.0	0.0
Stigmastanol (mg)	2.0	3.0	1.5	1.0
Campesterol (mg)	5.0	7.0	3.5	2.0
Beta-sitosterol (mg)	76.0	103	51.5	23.0

(5.5 mg), magnesium (19.5 mg), vitamin A (5.0 μg RAE), vitamin C (6.0 mg), vitamin E (1.3 mg), vitamin K₃ (14 μg), folate (60 mg), vitamin B-6 (0.2 mg), niacin (1.3 mg), pantothenic acid (1.0 mg), riboflavin (0.1 mg), choline (10 mg), lutein/zeaxanthin (185 μg), cryptoxanthin (18.5 μg), phytosterols (57 mg), and high-monounsaturated fatty acids (6.7 g) and 114 kcas or 1.7 kcal/g (after adjusting for insoluble dietary fiber), which may support a wide range of potential health effects (USDA, 2011;
THE ROLE OF AVOCADO IN CARDIOVASCULAR HEALTH

Avocado Clinical Studies

There are eight preliminary avocado cardiovascular clinical trials summarized in Table 3 (Grant, 1960; Colquhoun et al., 1992; Alvizouri-Munoz et al., 1992; Lerman-Garber et al., 1994; Carranza et al., 1995; Lopez-Ledesma et al., 1996; Carranza-Madrigal et al., 1997; Pieterse et al., 2005).

The first exploratory avocado clinical study demonstrated that the consumption of 0.5–1.5 avocados per day may help to maintain normal serum total cholesterol in men (Grant, 1960). Half the subjects experienced a 9–43% reduction in serum total cholesterol and the other subjects (either diabetic or very hypercholesterolemic) experienced a neutral effect, but none of the subjects showed increased total cholesterol. Also, the subjects did not gain weight when the avocados were added to their habitual diet.

In the 1990s, a number of avocado clinical trials consistently showed positive effects on blood lipids in a wide variety of diets in studies on healthy, hypercholesterolemic, and type 2 diabetes subjects (Colquhoun et al., 1992; Alvizouri-Munoz et al., 1992; Lerman-Garber et al., 1994; Carranza et al., 1995; Lopez-Ledesma et al., 1996; Carranza-Madrigal et al., 1997). In hypercholesterolemic subjects, avocado enriched diets improved blood lipid profiles by lowering LDL-cholesterol and triglycerides and increasing HDL-cholesterol compared to high carbohydrate diets or other diets without avocado. In normolipidemic subjects, avocado enriched diets improved lipid profiles by lowering LDL-cholesterol without raising triglycerides or lowering HDL-cholesterol. These studies suggest that avocado enriched diets have a positive effect on blood lipids compared to low-fat, high carbohydrate diets or the typical American diet. However, since all these trials were of a small number of subjects (13–37 subjects) and limited duration (1–4 weeks), larger and longer term trials are needed to confirm avocado blood lipid lowering and beyond cholesterol health effects.

In a randomized crossover study of 12 women with type 2 diabetes, a monounsaturated fat diet rich in avocado was...
Table 3 Avocado cardiovascular health clinical overview

Conclusions	Methods	Results	References
Daily addition of California avocados to the habitual diet showed a	- Open label study for 4 weeks ($n = 16$)	- 1/2 subjects had significantly lowered total cholesterol (TC) by 9–43%	Grant, 1960
beneficial effect on total cholesterol (TC) and body weight control	- Normal/hypercholesterolemic male patients in Veteran’s Administration Hospital	- 1/2 subjects had unchanged TC	
(Preliminary, uncontrolled study)	- 27–72 yrs old	- No subjects had increased TC	
	- 0.5–1.5 California avocados per day in addition to habitual diet	- 3/4 of subjects lost weight or remained weight stable despite an increase intake of calories and fat	
		- Generally the subjects had a more regular bowel movement pattern	
An avocado enriched diet (AE) was more effective than the AHA III diet	- Randomized, crossover study for 3 weeks ($n = 15$)	- Both diets decreased total cholesterol (TC) compared to baseline	Colquhoun et al., 1992
in promoting heart healthy lipid profiles in women	- Females w/ baseline total cholesterol (4–8 mm/L)	- Avocado diets were more effective in decreasing TC 8.2% vs. 4.9%	
(Limited number of subjects and short duration)	- 37–58 years old	- LDL-C decreased ($p < 0.05$) on AE but not AHA III diet	
	- 66.8 ± 0.8 kg body weight	- HDL-C did not change on AE but decreased by 13.9% on the AHA III ($p < 0.01$)	
	Two diets:		
	(1) High MUFA primarily avocado diet (AE) or		
	(2) High in complex carbohydrates low-fat diet (AHA III)		
Avocado enriched diets can help avoid potential adverse effects of low-fat	- Randomized, crossover study for 2 weeks ($n = 16$)	- Both RMF and LSF diets had similar reductions in total cholesterol (TC) and LDL-C	Alvizouri-Munoz et al., 1992
diets on HDL-C and triglycerides	- Healthy subjects baseline total cholesterol (4.2 ± 0.68 mm/L; mean age 26 yrs; mean BMI 22.9)	- Both FME and LSF diets had significantly lower TC, LDL-C and HDL-C ($p < 0.05$)	
(Well designed study but limited number of subjects and short duration)	- Four diets:	- RMF and FME diets lowered triglycerides (TG) and the LSF diet had significantly increased TG levels ($p < 0.05$)	
	(1) Control, typical diet		
	(2) MUFA fat diets with avocado (75% from Hass Avocados) (RMF)		
	(3) Habitual diet plus same level of Hass avocados as (2) (FME)		
	(4) Low-saturated diet (LSF)		
Partial replacement of avocados for other dietary fats in patients with	- Randomized, crossover study for 4 weeks ($n = 12$)	- Both HMUFA and High-CHO diets had a minor hypo-cholesterolemic effect with no changes in HDL-C	Lerman-Garber et al., 1994
type 2 diabetes favorably affected serum lipid profile and maintained	- Women with type 2 diabetes; mean 56 ± 8 years; BMI 28 ± 4	- HMUFA diet was associated with a greater decrease in triglycerides (20 vs. 7% for High-CHO)	
adequate glycemic control	- Three diets:	- Glycemic control was similar for both HMUFA and High CHO diets	
(Well designed study but limited number of subjects)	(1) Control, American Diabetes Diet plan; 30% kcal from fat (ADA)		
	(2) High MUFA diet with 1 avocado (Hass) and 4 teaspoons of olive oil; 40% kcal from fat (HMUFA)		
	(3) High in complex carbohydrates 20% Kcal from fat (High-CHO)		
Diets rich in avocados appear to help manage hyper-cholesterolemia	- Randomized crossover for study 4 weeks with a controlled diet ($n = 16$)	The Avocado diet had significantly lowered total cholesterol, LDL-C levels, and increased HDL-C with a mild decrease in triglycerides compared the low-saturated fat diet plan	Carranza et al., 1995
(Well designed study but limited number of subjects and level of avocados	- Hyper-cholesterolemic subjects with phenotype II and IV dyslipidemias		
consumption very high)	- Two diets:		
	(1) Avocado rich diet (75% fat from avocado)		
	(2) Low-saturated fat diet		
Avocado-enriched diets had significantly improved lipoprotein and/or	- Randomized, controlled study for 7 days ($n = 67$)	Subjects with normal cholesterol had a 16% decrease in serum total cholesterol following avocado diets vs. an increase in total cholesterol with the control ($p < 0.001$)	Lopez-Ledesma et al., 1996
triglyceride profiles in normal and hyper-cholesterolemic subjects	(1) Healthy normo-lipidemic subjects (<200 mg/dL)	Subjects with elevated cholesterol had significant decrease ($p < 0.001$) total serum cholesterol (17%), LDL-C (22%), triglycerides (22%), and a slight increase in HDL-C	
(Complex clinical design and very short duration)	(2) Mild hyper-cholesterolemia and type 2 diabetic patients (201–400 mg/dL)		
	- Enriched avocado diet vs. isocaloric non-avocado diets. 300 g Hass Avocado substituted for other lipid sources (both diets contained about 50% kcal from fat)	No changes with the non-avocado habitual diet	
		(Continued on next page)	
Table 3 Avocado cardiovascular health clinical overview (Continued)

Conclusions	Methods	Results	References
Vegetarian diets with avocados promote healthier lipoprotein profiles compared to low-fat and vegetarian diets without avocados (Preliminary study with limited number of subjects)	- Randomized, prospective, transversal and comparative 4 week study and controlled diet \((n = 13)\)	The avocado diet significantly reduced LDL-C, whereas high carbohydrate and non-avocado diets did not change LDL-C	Carranza-Madrigal et al., 1997
Vegetarian diets with avocados promote healthier lipoprotein profiles compared to low-fat and vegetarian diets without avocados (Preliminary study with limited number of subjects)	- Dyslipidemic subjects with high blood pressure		
Vegetarian diets with avocados promote healthier lipoprotein profiles compared to low-fat and vegetarian diets without avocados (Preliminary study with limited number of subjects)	- Three vegetarian diets: \(\begin{align*} & (1) \ 70\% \ carbohydrate, \ 10\% \ protein \ and \ 20\% \ lipids \\ & (2) \ 60\% \ carbohydrates, \ 10\% \ protein \ and \ 30\% \ lipids \\ & (3) \ Diet \ 2 \ w/o \ avocado \end{align*}\)		
The consumption of as much as 1 1/2 avocados within an energy-restricted diet does not compromise weight loss or lipoproteins or vascular function (Well designed study)	- Randomized, controlled, parallel study, free-living \((n = 61)\)	- There was no difference in body weight, BMI, and body fat when avocados were substituted for mixed fats in an energy restricted diet	Pieterse et al., 2005
The consumption of as much as 1 1/2 avocados within an energy-restricted diet does not compromise weight loss or lipoproteins or vascular function (Well designed study)	- Male \((n = 13)\) and female \((n = 48)\) adults with a age 40.8 \(\pm\) 8.9 years; BMI 32 \(\pm\) 3.9	- There was also no difference in serum lipids (total cholesterol, LDL-C, HDL-C, and triglycerides), fibrinogen, blood pressure, or blood flow when avocados were substituted for mixed fats in an energy-restricted diet	
The consumption of as much as 1 1/2 avocados within an energy-restricted diet does not compromise weight loss or lipoproteins or vascular function (Well designed study)	- Energy restricted diet for 6 weeks at the rate of 30% kcal from fat		
The consumption of as much as 1 1/2 avocados within an energy-restricted diet does not compromise weight loss or lipoproteins or vascular function (Well designed study)	- 200 g avocado/day (30.6 g fat) substituted for 30 g of mixed fat (e.g., margarine and vegetable oil) compared to a control diet without avocado		

Compared with a low-fat complex-carbohydrate-rich diet for effects on blood lipids (Lerman-Garber et al., 1994). After 4 weeks, the avocado rich diet resulted in significantly lowered plasma triglycerides and both diets maintained similar blood lipids and glycemic controls. Additionally, a preclinical study found that avocados can modify the HDL-C structure by increasing paraoxonase 1 activity (PON-1), which can enhance lipophilic antioxidant capacity and help convert oxidized LDL-C back to its nonoxidized form (Mendez and Hernandez, 2007).

Avocado Components Related to Cardiovascular Health

The following section is an assessment of avocado’s many nutrients and phytochemicals (Table 1) with potential cardiovascular health benefits. Avocados have a similar composition profile to that of tree nuts, which have a heart health claim, with less than half the calories (USDA, 2011) (Table 2).

Fatty Acids

Avocados can fit into a heart healthy dietary pattern such as the DASH diet plan (USDA and HHS, 2010a; Jakobsen et al., 2009; de Souza et al., 2008; Appel et al., 2005). Avocados contain a monounsaturated fatty acids (MUFA)-rich fruit oil with 71% MUFA, 13% polyunsaturated fatty acids (PUFA), and 16% saturated fatty acids (SFA). As the avocado fruit ripens, the saturated fat decreases and the monounsaturated oleic acid increases (Lu et al., 2009; Slater et al., 1975; Moreno et al., 1980). The use of avocado dips and spreads as an alternative to more traditional hard, SFA rich spreads or dips can assist in lowering dietary SFA intake (Avocado Central, 2012).

Carbohydrates

Dietary Fiber

Avocado fruit carbohydrates are composed of about 80% dietary fiber, consisting of 70% insoluble and 30% soluble fiber (Marlett and Cheung, 1997). Avocados contain 2.0 g and 4.6 g of dietary fiber per 30 g and one-half fruit, respectively (USDA, 2011). Thus, moderate avocado consumption can help to achieve the adequate intake of 14 g dietary fiber per 1000 kcal as about one-third this fiber level can be met by consuming one-half an avocado.

Sugars

Compared to other fruits, avocados contain very little sugar (USDA, 2011). One-half an avocado contains only about 0.2 g sugar (e.g., sucrose, glucose, and fructose). The primary sugar found in avocados is a unique seven-carbon sugar called D-mannoheptulose and its reduced form, perseitol, contributes about 2.0 g per one-half fruit but this is not accounted for as sugar in compositional database as it does not behave nutritionally as conventional sugar and is more of a unique phytochemical to avocados (Meyer and Terry, 2008; Shaw et al., 1980). Preliminary D-mannoheptulose research suggests that it may support blood glucose control and weight management (Roth, 2009). The glycemic index and load of an avocado is expected to be about zero.

Minerals

Potassium

Clinical evidence suggests that adequate potassium intake may promote blood pressure control in adults (USDA and HHS,
2010b). The mean intake of potassium by adults in the United States was approximately 3200 mg per day in men and 2400 mg per day in women, which is lower than the 4700 mg per day recommended intake (USDA and HHS, 2010b; IOM, 2005). Avocados contain about 152 mg and 345 mg of potassium per 30 g and one-half fruit, respectively. Also, avocados are naturally very low in sodium with just 2 mg and 5.5 mg sodium per 30 g and one-half fruit, respectively (USDA, 2011). The health claim for blood pressure pressure identifies foods containing 350 mg potassium and less than 140 mg of sodium per serving as potentially appropriate for this claim (FDA, 2000).

Magnesium

Magnesium acts as a cofactor for many cellular enzymes required in energy metabolism, and it may help support normal vascular tone and insulin sensitivity (IOM, 1997). Preliminary preclinical and clinical research suggests that low magnesium may play a role in cardiac ischemia (IOM, 1997). In the Health Professionals Follow-up Study, the results suggested that the intake of magnesium had a modest inverse association with risk of coronary heart disease in men (Al-Delaimy et al., 2004). Magnesium was shown to inhibit fat absorption to improve post-prandial hyperlipidemia in healthy subjects (Kishimoto et al., 2009). Avocados contain about 9 and 20 mg magnesium per 30 g and one-half fruit, respectively (USDA, 2011).

Vitamins

Antioxidant Vitamins

Avocados are one of the few foods that contain significant levels of both vitamins C and E. Vitamin C plays an important role in recycling vitamin E to maintain circulatory antioxidant protection such as potentially slowing the rate of LDL-cholesterol oxidation. Evidence suggests that vitamin C may contribute to vascular health and arterial plaque stabilization (IOM, 2000). According to a recent review article, vitamin C might have greater CVD protective effects on specific populations such as smokers, obese, and overweight people; people with elevated cholesterol, hypertension, and type 2 diabetes; and people over 55 years of age (Honarbakhsh and Schachter, 2009). Avocado fruit contains 2.6 mg and 6.0 mg vitamin C per 30 g and one-half fruit, respectively (USDA, 2011). Avocados contain 0.59 mg and 1.34 mg vitamin E (α-tocopherol) per 30 g and one-half avocado, respectively (USDA, 2011). One randomized clinical study suggested that a combination of vitamin C and E may slow atherosclerotic progression in hypercholesterolemic persons (Salonen et al., 2003).

Vitamin K₁ (phylloquinone)

Vitamin K₁ functions as a coenzyme during synthesis of the biologically active form of a number of proteins involved in blood coagulation and bone metabolism (IOM, 2001). Phylloquinone (K₁) from plant-based foods is considered to be the primary source of vitamin K in the human diet. Vitamin K₁ in its reduced form is a cofactor for the enzymes that facilitate activity for coagulation (McCann and Ames, 2009). The amount of vitamin K₁ found in avocados is 6.3 μg and 14.3 μg per 30 g and one-half fruit, respectively (USDA, 2011). Some people on anticoagulant medications are concerned about vitamin K intake; however, the avocado level of vitamin K₁ per ounce is 150 times lower than the 1000 μg of K₁ expected to potentially interfere with the anticoagulant effect of drugs such as warfarin (Coumadin) (Crowther et al., 1998; Dismore et al., 2003).

B-vitamins

Deficiencies in B-vitamins such as folate and B-6 may increase homocysteine levels, which could reduce vascular endothelial health and increase CVD risk (IOM, 1998; Antoniades et al., 2009). Avocados contain 27 μg folate and 0.09 mg vitamin B-6 per 30 g and 61 μg folate, respectively, and 0.20 mg vitamin B-6 per one-half fruit (USDA, 2011).

Phytochemicals

Carotenoids

The primary avocado carotenoids are a subclass known as xanthophylls, oxygen-containing fat-soluble antioxidants (Voutilainen et al., 2006) (USDA, 2011) (Table 1). Xanthophylls, such as lutein, are more polar than carotenes (the other carotenoid subclasses including β-carotene), so they have a much lower propensity for pro-oxidant activity (McNulty et al., 2008). Avocados have the highest lipophilic total antioxidant capacity among fruits and vegetables (Wu et al., 2004). In a relatively healthy population, the DASH diet pattern clinical study reported reduced oxidative stress (blood ORAC and urinary isoprostanes) compared to a typical American diet (Miller et al., 2005), which appears primarily due to the DASH diet providing significantly more serum carotenoids, especially the xanthophyll carotenoids lutein, β-cryptoxanthin, and zeaxanthin, as a result of increased fruit and vegetable consumption. Xanthophylls appear to reduce circulating oxidized LDL-C, a preliminary biomarker for the initiation and progression of vascular damage (Hozawa et al., 2007). The Los Angeles Atherosclerosis Study, a prospective study, findings suggest that higher levels of plasma xanthophylls were inversely related to the progression of carotid intima-media thickness, which may be protective against early atherosclerosis (Dwyer et al., 2001, 2004). Although this research is encouraging, more clinical studies are needed to understand the cardiovascular health benefits associated with avocado carotenoids.

The consumption of avocados can be an important dietary source of xanthophyll carotenoids (Lu et al., 2005; 2009). Hass avocado carotenoid levels tend to significantly increase as the harvest season progresses from January to September (Lu et al.,
respectively, and cryptoxanthin at 44 μg per 30 g and one half fruit, respectively, and zeaxanthin at 44 μg per 30 g and one-half fruit, respectively (USDA, 2011). However, a more comprehensive analysis of avocados including xanthophylls has found much higher levels ranging from 350–500 μg per 30 g to 800–1100 μg per one-half fruit at time of harvest (Lu et al., 2009). The color of avocado flesh varies from dark green just under the skin to pale green in the middle section of the flesh to yellow near the seed (Lu et al., 2009). The total carotenoid concentrations were found to be greatest in the dark green flesh close to peel (Lu et al., 2005).

The intestinal absorption of carotenoids depends on the presence of dietary fat to solubilize and release carotenoids for transfer into the gastrointestinal fat micelle and then the circulatory system (Reboul et al., 2007; Ashton et al., 2006). Avocado fruit has a unique unsaturated oil and water matrix naturally designed to enhance carotenoid absorption. For salads, a significant source of carotenoids, reduced fat or fat free salad dressings are common in the marketplace and these dressings have been shown to significantly reduce carotenoid absorption compared to full fat dressings (Brown et al., 2004). Similar clinical research has demonstrated that adding avocado to salad without dressing, or with reduced fat/fat free dressing and serving avocados with salsa increases carotenoid bioavailability by 2–5 times (Unlu et al., 2005).

Phenolics

Preliminary evidence suggests beneficial effects of fruit phenolics on reducing CVD risk by reducing oxidative and inflammatory stress, enhancing blood flow and arterial endothelial health, and inhibiting platelet aggregation to help maintain vascular health (Chong et al., 2010; Arts and Hollman, 2005; Ghosh and Scheepens, 2009; Victor et al., 2009). Avocados contain a moderate level of phenolic compounds contributing 60 mg and 140 mg gallic acid equivalents (GAE) per 30 g and one-half fruit, respectively. The avocado also has a total antioxidant capacity of 600 μmol Trolox Equivalent (TE) per 30 g or 1350 μmol TE per one-half fruit (Wu et al., 2004; 2007). This places avocados in the mid-range of fruit phenolic levels. Avocados have the highest fruit lipophilic antioxidant capacity, which may be one factor in helping to reduce serum lipid peroxidation and promoting vascular health (Wu et al., 2007).

Phytosterols

Avocados are the richest known fruit source of phytosterols (Duester, 2001) with about 26 mg and 57 mg per 30 g and one half fruit, respectively (USDA, 2011). Other fruits contain substantially less phytosterols at about 3 mg per serving (Duester, 2001). Although the avocado’s phytosterol content is lower than that of fortified foods and dietary supplements, its unique emulsified fat matrix and natural phytosterol glycosides may help promote stronger intestinal cholesterol blocking activity than fortified foods and supplements (Lin et al., 2009). A recent economic valuation in Canada of the potential health benefits from foods with phytosterols suggests that they may play a role in enhancing cardiovascular health and reducing associated health costs (Gyles et al., 2010).

WEIGHT MANAGEMENT

The availability and consumption of healthy foods, including vegetables and fruits, is associated with lower weight (Bes-Rastrollo et al., 2008) and body mass index (BMI) (de Oliveira et al., 2008). Over the last several decades, there has been the general perception that consuming foods rich in fat can lead to weight gain, and low-fat diets would more effectively promote weight control and reduce chronic disease risk (Walker and O’Dea, 2001). However, a key large, randomized, long-term clinical trial found that a moderate fat diet can be an effective part of a weight loss plan and the reduction of chronic disease risk (Sacks et al., 2009). “Strong and consistent evidence indicates that dietary patterns that are relatively low in energy density improve weight loss and weight maintenance among adults” (USDA and HHS, 2010c). Three randomized controlled weight loss trials found that lowering food-based energy density by increasing fruit and/or vegetable intake is associated with significant weight loss (de Oliveira et al., 2008; Saquib et al., 2008; Ello-Martin et al., 2007). The energy density of an entire dietary pattern is estimated by dividing the total amount of calories by the total weight of food consumed; low, medium, and high energy density diets contain 1.3 kcal, 1.7 kcal, and 2.1 kcal per g, respectively (Savage et al., 2008). Avocados have both a medium energy density of 1.7 kcal/g and a viscous water, dietary fiber and fruit oil matrix that appears to enhance satiety (Wien et al., 2011). This is consistent with research by Bes-Rastrollo et al. (2008), which suggests that avocados support weight control similar to other fruits.

Several preliminary clinical studies suggest that avocados can support weight control. The first trial studied the effect of including one and a half avocados (200 g) in a weight loss diet plan. In this study, sixty-one healthy free-living, overweight, and obese subjects were randomly assigned into either a group consuming 200 g/d of avocados (30.6 g fat) substituted for 30 g of mixed fats, such as margarine and oil, or a control group excluding avocados for 6 weeks (Pieterse et al., 2005). Both groups lost similar levels of weight, body mass index (BMI), and percentage of body fat (p < 0.001) to confirm that avocados can fit into a weight loss diet plan. A randomized single blinded, crossover postprandial study of 26 healthy overweight adults suggested that one-half an avocado consumed at lunch significantly reduced self-reported hunger and desire to eat, and increased satiation as compared to the control meal (p < 0.002) (Wien et al., 2011). Additionally, several exploratory trials suggest that MUFA rich diets help protect against abdominal fat
HEALTHY AGING

DNA Damage Protection

Several clinical studies suggest that xanthophylls, similar to those found in avocados, may have antioxidant and DNA protective effects with possible healthy aging protective effects. One study was conducted involving 82 male airline pilots and frequent air travelers who are exposed to high levels of cosmic ionizing radiation known to damage DNA, potentially accelerating the aging process (Yong et al., 2009). There was a significant and inverse association between intake of vitamin C, beta-carotene, beta-cryptoxanthin, and lutein-zeaxanthin from fruits and vegetables and the frequency of chromosome translocation, a biomarker of cumulative DNA damage \((p < 0.05) \). In another trial, lipid peroxidation (8-epiprostaglandin F2a) was correlated inversely with plasma xanthophyll levels (Haegel et al., 2000). In other studies, inverse correlations were found between lutein and oxidative DNA damage as measured by the comet assay, and in contrast to beta-carotene (Hughes et al., 2009; Thomson et al., 2007). NHANES analysis suggests that xanthophylls intake decreases with aging (Johnson et al., 2010).

Osteoarthritis

Osteoarthritis (OA) is characterized by progressive deterioration of joint cartilage and function with associated impairment, and this affects most people as they age or become overweight or obese (Dinubile, 2010; Helmick et al., 2008). This joint deterioration may be triggered by oxidative and inflammation stress, which can cause an imbalance in biosynthesis and degradation of the joint extracellular matrix leading to loss of function (Dinubile, 2010; Gabay et al., 2008; Jacques et al., 2006; Goldring and Berenbaum, 2004; van der Kraan and van den Berg, 2000; Lotz et al., 1995). A cross-sectional study reported that fruits and vegetables rich in lutein and zeaxanthin (the primary carotenoids in avocados) are associated with decreased risk of cartilage defects (early indicator of OA) (Wang et al., 2007).

Avocado and soy unsaponifiables (ASU) is a mixture of fat soluble extracts in a ratio of about 1:1 (avocado):2 (soy). The major components of ASU are considered anti-inflammatory compounds with both antioxidant and analgesic activities (Dinubile, 2010; Lippiello et al., 2008; Au et al., 2007; Henrotin et al., 2006; Berenbaum, 2004; Ernst, 2003; Blotman et al., 1997). In vitro studies found that pretreatment of chondrocytes with ASU blocked the activation of COX-2 transcripts and secretion of prostaglandin E2 (PGE2) to baseline levels after activation with lipopolysaccharide (LPS). Further study revealed that ASU can also block tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and iNOS expression to levels similar to those in nonactivated control cultures. Additional laboratory studies suggest that ASU may facilitate repair of OA cartilage through its effect on osteoblasts (Dinubile, 2010).

Clinical support for ASU in the management of hip and knee OA comes from four randomized controlled trials (Lequesne et al., 2002; Appelboom et al., 2001; Maheu et al., 1998; Blotman et al., 1997) and one meta-analysis (Christensen et al., 2008). All studies used 300 mg per day. The clinical trials were generally positive with three providing OA support and one study showing no joint cartilage improvement compared to placebo.

Eye Health

Lutein and zeaxanthin are selectively taken up into the macula of the eye (the portion of the eye where light is focused on the lens) (Caepentier et al., 2009). Relative intakes of lutein and zeaxanthin decrease with age and the levels are lower in females than males (Johnson et al., 2010). Mexican Americans have the highest intake of lutein and zeaxanthin than any other ethnicity and they are among the highest consumers of avocados in the United States. Observational studies show that low dietary intake and plasma concentration of lutein may increase age-related eye dysfunction ((Ma et al., 2009; Parekh et al., 2009; Chong et al., 2009; Moeller et al., 2008; Cho et al., 2008; Wang et al., 2007). Research from the Women’s Health Initiative Observation Study found that MUFA rich diets were protective of age-related eye dysfunction (Chong et al., 2009; Moeller et al., 2008). Avocados may contribute to eye health since they contain a combination of MUFA and lutein/zeaxanthin and help improve carotenoid absorption from other fruits and vegetables (Unlu et al., 2005). Avocados contain 185 \(\mu \)g of lutein/zeaxanthin per one-half fruit, which is expected to be more highly bioavailable than most other fruit and vegetable sources.

Skin Health

Skin often shows the first visible indication of aging. Topical application or consumption of some fruits and vegetables or their extracts such as avocado has been recommended for skin health (Roberts et al., 2009; Morganti et al., 2002, 2004). The facial skin is frequently subjected to ongoing oxidative and inflammatory damage by exposure to ultraviolet (UV) and visible radiation and carotenoids may be able to combat this damage. A clinical study found that the concentration of carotenoids in the skin is directly related to the level of fruit and vegetable intake (Rerksupaphol and Rerksupaphol, 2006). Avocado’s highly bioavailable lutein and zeaxanthin may help to protect the skin from damage from both UV and visible radiation (Roberts et al., 2009). Several small studies suggest that topical or oral lutein can provide photo-protective activity (Puizina, 2008; Palombo et al., 2007; Morganti et al., 2002).
A cross-sectional study examined the relationship between skin anti-aging and diet choices in 716 Japanese women (Nagata et al., 2010). After controlling for covariates including age, smoking status, BMI, and lifetime sun exposure, the results showed that higher intakes of total dietary fat were significantly associated with more skin elasticity. A higher intake of green and yellow vegetables was significantly associated with fewer wrinkles (Nagata et al., 2010). Several preclinical studies suggest that avocado components may protect skin health by enhancing wound healing activity and reducing UV damage (Nayak et al., 2008; Rosenblat et al., 2011).

Cancer

Avocados contain a number of bioactive phytochemicals including carotenoids, terpenoids, D-mannohexitol, persenone A and B, phenols, and glutathione that have been reported to have anti-carcinogenic properties (Ding et al., 2009; Jones et al., 1992; Ames, 1983). The concentrations of some of these phytochemicals in the avocado may be potentially efficacious (Jones et al., 1992). Currently, direct avocado anti-cancer activity is very preliminary with all data based on in vitro studies on human cancer cell lines.

Cancer of the larynx, pharynx, and oral cavity are the primary area of avocado cancer investigation. Glutathione, a tripeptide composed of three amino acids (glutamic acid, cysteine, and glycine) functions as an antioxidant (Flagg et al., 1994). The National Cancer Institute found that avocado’s glutathione levels of 8.4 mg per 30 g or 19 mg per one-half fruit is several fold higher than that of other fruits (Flagg et al., 1994). Even though the body digests glutathione down to individual amino acids when foods are consumed, a large population-based case controlled study showed a significant correlation between increased glutathione intakes and decreased risk of oral and pharyngeal cancer (Castillo-Juarez et al., 2009). One clinical study found that plasma lutein and total xanthophylls but not individual carotenes or total carotenes reduced biomarkers of oxidative stress (urinary concentrations of both total F2-isoprostanes and 8-epi-prostaglandin) in patients with early-stage (in situ, stage I) cancer of the larynx, pharynx, or oral cavity (Hughes et al., 2009). Xanthophyll rich avocado extracts have been shown in preclinical studies to have anti-Helicobacter pylori activity for a potential effect on gastritis ulcers, which may be associated with gastric cancer risk (Castillo-Juarez et al., 2009).

Dietary carotenoids show potential breast cancer protective biological activities, including antioxidant activity, induction of apoptosis, and inhibition of mammary cell proliferation (Thomson et al., 2007). Studies examining the role of fruits and vegetables and carotenoid consumption in relation to breast cancer recurrence are limited and report mixed results (Thomson et al., 2007). In preclinical studies, total carotenoids and lutein appear to reduce oxidative stress, a potential trigger for breast cancer (Ding et al., 2007). In women previously treated for breast cancer, a significant inverse association was found between total plasma carotenoid concentrations and oxidative stress (Thomson et al., 2007), but more clinical research is needed to confirm this finding.

Mammographic density is one of the strongest predictors of breast cancer risk (Tamimi et al., 2009). The association between carotenoids and breast cancer risk as a function of mammographic density was conducted in a nested, case-control study consisting of 604 breast cancer cases and 626 controls with prospectively measured circulating carotenoid levels and mammographic density in the Nurses’ Health Study (Tamimi et al., 2009). Overall, circulating total carotenoids were inversely associated with breast cancer risk (p = 0.01). Among women in the highest tertile of mammographic density, elevated levels α-carotene, β-carotene, lycopene, and lutein/zeaxanthin in the blood were associated with a 40–50% reduction in breast cancer risk (p < 0.05). In contrast, there was no inverse association between carotenoids and breast cancer risk among women with low-mammographic density. These results suggest that plasma levels of carotenoids may play a role in reducing breast cancer risk, particularly among women with high mammographic density. There are no direct avocado breast cancer clinical studies.

Exploratory studies in prostate cancer cell lines suggest antiproliferative and antitumor effects of avocado lipid extracts (Lu et al., 2005). Lutein is one of the active components identified. There are currently no human studies to confirm this potential lutein and prostate cancer relationship.

CONCLUSIONS

In the context of a healthy diet, consumption of avocados can fit into a full range of healthy eating plans (e.g., DASH diet plan). According to NHANES data, the average avocado consumption is one-half fruit, which provides for a nutrient and phytochemical dense food consisting of significant levels of the following: dietary fiber, potassium, magnesium, vitamin A, vitamin C, vitamin E, vitamin K1, folate, vitamin B-6, niacin, pantothenic acid, riboflavin, choline, lutein/zeaxanthin, phytoesters, and MUFA rich oil at 1.7 kcal/g. This caloric density is medium-low because an avocado is about 80% by weight is water (72%) and dietary fiber (6.8%). Unlike the typical fruit, avocados contain a very low sugar content with only about 0.2 g sugar per one-half fruit. There are eight preliminary avocado cardiovascular health clinical studies that have consistently demonstrated positive heart healthy effects on blood lipids profiles. This is primarily because of avocado’s low SFA and high-unsaturated fatty acids (MUFA and PUFA) content, but its natural phytosterols and dietary fiber may play potential secondary cholesterol lowering roles. Avocados also have a diverse range of other nutrients and phytochemicals that may have beyond cholesterol vascular health benefits. In particular, avocado’s potassium and lutein may help promote normal blood pressure and help to control oxidative/inflammatory stress, respectfully. The consumption of avocados with salads or salsa increases the bioavailability of...
carotenoids multi-fold, which may add to the potential health benefits. More comprehensive avocado clinical research is underway to significantly expand the scientific understanding of avocados in cardiovascular health, weight management, blood glucose control and healthy living.

ACKNOWLEDGMENT

This review was supported by the HASS Avocado Board.

REFERENCES

ADA (American Dietetic Association). (2009). Position of the American Dietetic Association: Functional foods. J. Am. Diet. Assoc. 109:735–746.

Al-Delaimy, W. K., Rimm, E. B., Willett, W. C., Stampfer, M. J. and Hu, F. B. (2004). Magnesium intake and risk of coronary heart disease among men. J. Am. Coll. Nutr. 23(1):63–70.

Alvizouri-Munoz, M., Carranza-Madrigal, J., Herrera-Abarca, J. E., Chavez-Carbajal, F. and Amezcuia-Gastelum, J. L. (1992). Effects of avocado as a source of monounsaturated fatty acids on plasma lipid levels. Arch. Med. Res. 23:163–167.

Annes, B. (1983). Dietary carcinogens and anticarcinogens: Oxygen radicals and degenerative diseases. Science. 211:1256–1263.

Antoniades, C., Antonopoulos, A. S., Tousoulis, D., Marinou, K. and Stefanadis, C. (2009). Homocysteine and coronary atherosclerosis. From folate fortification to the recent clinical. Eur. Heart J. 30:6–15.

Appel, L. J., Sacks, F. M., Carey, V. J., Obarzanek, E., Swain, J. F., Miller, E. R., Conlin, P. R., Erlinger, B. A., Rosner, B. A., Rosner, B. A., Laranjo, N. M., Chatleston, J., McCarron, P. and Bishop, L. M. (2005). Effect of protein, monounsaturated fat and carbohydrate intake on blood pressure and serum lipids: Results of the Omni Heart randomized trial. JAMA. 294:2455–2464.

Appelboom, T., Schuermans, J., Verbruggen, G., Henrotin, Y. and Regnier, J. Y. (2001). Symptoms modifying effect of avocado/soybean unsaponifiables (ASU) in knee osteoarthritis. A double blind, prospective, placebo-controlled study. Scand. J. Rheumatol. 30(4):242–247.

Arts, I. C. W. and Hollman, P. C. H. (2005). Polypolins and disease risk in epidemiologic disease. Am. J. Clin. Nutr. 8:317S–25S.

Asheton, S. A. O., Wong, M., McGbie, T. K., Vather, R., Wang, Y., Requejo-Jackman, C., Ramankutty, P. and Woolf, A. B. (2006). Pigments in avocado tissue and oil. J. Agric. Food Chem. 54:10151–10158.

Au, R. Y., Al-Taib, T. K., Au, A. Y., Phan, P. V. and Frondoza, C. G. (2007). Avocado soybean unsaponifiables (ASU) suppress TNF-alpha, IL-1 beta, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages. Osteoarthr. Cartilage. 15(11):1249–1255.

Avocado Central. (2010). Hass Avocado Spread Comparison: Spread on bread. Available from http://www.avocadocentral.com/spreads/bread. Accessed November 29, 2012.

Berenson, F. (2004). Signaling transduction: Target in osteoarthritis. Curr. Opin. Rheumatol. 16(5):616–622.

Bers-Rastrollo, M., van Dam, R. M., Martinez-Gonzalez, M. A., Li, T. Y., Sampson, L. L. and Hu, F. B. (2008). Prospective study of dietary energy density and weight gain in women. Am. J. Clin. Nutr. 88(3):769–776.

Blotman, F., Maheu, E., Wulwik, A., Caspard, H. and Lopez, A. (1997). Efﬁcacy and safety of avocado/soybean unsaponifiables in the treatment of symptomatic osteoarthritis of the knee and hip. A prospective, multicenter, three-month, randomized, double-blind, placebo-controlled trial. Rev. Rheum. Engl. Ed. 64(12):825–834.

Brown, M. J., Ferruzzi, M. G., Nguyen, M. L., Cooper, D. A., Schwartz, S. J. and White, W. S. (2004). Carotenoid bioavailability is higher from salads ingested with full-fat than with fat reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 80:396–403.

Caenpenter, S., Knaus, M. and Suh, M. (2009). Associations between lutein, zeaxanthin, and age-related macular degeneration: An overview. Crit. Rev. Food Sci. Nutr. 49:313–326.

California Avocado Commission. (2012). California Avocado history. Available from http://www.avocado.org/california-avocado-history/. Accessed November 29, 2012.

Carranza, J., Alvizouri, M., Alvarado, M. R., Chavez, F., Gomez, M. and Herrera, J. E. (1995). Effects of avocado on the level of blood lipids in patients with phenotype II and IV dyslipidemias. Arch. Inst. Cardiol. Mex. 65:342–8.

Carranza-Madrigal, J., Herrera-Abarca, J. E., Alvizouri-Munoz, M., Alvarado-Jimenez, M. D. R. and Chavez-Carbajal, F. (1997). Effects of a vegetarian diet vs. a vegetarian diet enriched with avocado in hyper-cholesterolemic patients. Arch. Med. Res. 28(4):537–41.

Castillo-Juarez, J., Gonzalez, V., Jaime-Aguilar, H., Martinez, G., Linares, E. and Romero, I. (2009). Anti-Helicobacater pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. J. Ethnopharmacol. 122(2):402–405.

Chang, H. Y., Hu, Y. W. and Yue, C. S. (2006). Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am. J. Clin. Nutr. 83:1289–1296.

Cho, J., Hankinson, S. E., Rosner, B., Willett, W. C. and Colditz, C. A. (2008). Prospective study of lutein/zeaxanthin intakes and risk of age-related macular degeneration. Am. J. Clin. Nutr. 87:1837–1843.

Chong, M. F. F., Macdonald, R. and Lovegrove, J. A. (2010). Fruit polyphenols and CVD risk: A review of human intervention studies. Br. J. Nutr. 104:528–539.

Chong, E. W. T., Robman, L. D., Simpson, J. A., Hodge, A. M., Aung, K. Z., Dolphin, T. K., English, D. R., Giles, G. G. and Gaymer, R. H. (2009). Fat consumption and its association with age-related macular degeneration. Arch. Ophthalmol. 127(5):674–680.

Christensen, R., Bartels, E. M., Astrup, A. and Bliddal, H. (2008). Symptomatic efficacy of avocado-soybean unsaponifiables (ASU) in osteoarthritides (OA) patients: A meta-analysis of randomized controlled trials. Osteoarthr. Cartilage. 16(4):399–408.

Colquhoun, D., Moores, D., Somerset, S. M. and Humphries, J. A. (1992). Comparison of the effects on lipoproteins and apolipoproteins of a diet high in monounsaturated fatty acids, enriched with avocado, and a high-carbohydrate diet. Am. J. Clin. Nutr. 56:671–677.

Crowther, M. A., Donovan, D. and Harrison, L. (1998). Low-dose oral vitamin K reliably reverses over anticoagulation due to warfarin. Thromb. Haemost. 79:1116–1118.

de Oliveira, M. C., Sichieri, R. and Venturim-Mozzer, R. (2008). A low-energy-dense diet adding fruit reduces weight and energy intake in women. Appetite. 51(2):291–295.

de Souza, R. J., Swain, J. F., Appel, L. J. and Sacks, F. M. (2008). Alternatives for macronutrient intake and chronic disease: A comparison of the OmniHeart diets with popular diets and with dietary recommendations. Am. J. Clin. Nutr. 88:1–11.

Ding, H., Han, C., Guo, D., Chin, Y. W., Ding, Y., Kinghorn, A. D. and D’Ambrosio, S. M. (2009). Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ROS-mediated mechanism. Nat. Cancers. 61:348–356.

Ding, H., Han, C., Guo, D., Chin, Y. W., Kinghorn, A. D. and D’Ambrosio, S. M. (2007). Chemopreventive characteristics of avocado fruit. Seminars in Cancer Biology. 17:386–394.

Dinuville, N. A. (2010). A potential role for avocado-and soybean-based nutritional supplementation in the management of osteoarthritis: A review. Phys. Sportsmen. 38(2):71–81.

Dismore, K. L., Haytowitz, D. B., Gehbhard, S. E., Peterson, J. W. and Booth, S. L. (2003). Vitamin K content of nuts and fruits in the US diet. J. Am. Diet. Assoc. 103(12):1650–1652.

Brown, M. J., Ferruzzi, M. G., Nguyen, M. L., Cooper, D. A., Schwartz, S. J. and White, W. S. (2004). Carotenoid bioavailability is higher from salads ingested with full-fat than with fat reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 80:396–403.

Caenpenter, S., Knaus, M. and Suh, M. (2009). Associations between lutein, zeaxanthin, and age-related macular degeneration: An overview. Crit. Rev. Food Sci. Nutr. 49:313–326.
Morganti, P., Rosen, F. and McCabe, G. (1995). Interleukin 1 beta suppresses transforming growth factor-induced inorganic pyrophosphate (PPi) production and expression of the PPI-generating enzyme PC-1 in human chondrocytes. Proc. Natl. Acad. Sci. 92(22):10364–10368.

Lu, Q.-Y., Arteaga, J. R., Zhang, Q., Huerta, S., Go, V. L., and Heber, D. (2005). Inhibition of prostate cancer cell growth by an avocado extract: Role of lipid-soluble bioactive substances. J. Nutr. Biochem. 16:23–30.

Lu, Q.-Y., Zhang, Y., Wang, Y., Lee, R.-P., Gao, K., Byrns, R. and Heber, D. (2009). California Hass Avocado: Profiling of carotenoids, tocopherols, fatty acids, and fat content during maturation and from different growing areas. J. Agric. Food Chem. 57:10408–10413.

Ma, L., Lin, X. M., Zou, Y. Z., Xu, X. R., Li, Y. and Xu, R. (2009). A 12-week lutein supplementation improves visual function in Chinese people with long-term computer display light exposure. Br. J. Nutr. 102:186–190.

Maheu, E., Maziz, B. and Valat, J. P. (1998). Symptomatic efficacy of avocado/soybean unsaponifiables in the treatment of osteoarthritis of the knee and hip: A prospective, randomized, double-blind, placebo-controlled, multicenter clinical trial with a six-month treatment period and a two-month followup demonstrating a persistent effect. Arthritis Rheum. 41(1):81–91.

Marlett, J. S. and Cheung, T.-F. (1997). Database and quick methods of assessing fat, fatty acids, and physical properties of avocado (Persea americana Mill.) oil. A preclinical study on rats. Skin Pharmacol. Physiol. 10(3):123–125.

Palombo, P., Fabrizi, G., Ruocco, V., Ruocco, E., Bluhr, J., Roberts, R. and Morganti, P. (2007). Skin Pharmacol. Physiol. 20(4):199–210.

Paniagua, J. A., de la Sacristana, A. G., Romero, I., Vidal-Puig, A., Latre, J. M., Sanchez, E., Perez-Matinez, P., Lopez-Miranda, J. and Perez-Junyent, F. (2007a). Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care. 30:1717–1723.

Paniagua, J. A., de la Sacristana, A. G., Sanchez, E., Romero, I., Vidal-Puig, A., Berral, F.J., Escribano, A., Moyano, M. J., Perez-Matinez, P., Lopez-Miranda, J. and Perez-Junyent, F. (2007b). A MUFa-rich diet improves postprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. J. Am. Coll. Nutr. 26(5):434–444.

Parekh, N., Voland, R. P., Moeller, S. M., Blodi, B. A., Ritenbaugh, C., Chappell, R. J., Wallace, R. B. and Mares, J. A. (2009). Association between dietary fat intake and age-related macular degeneration in the carotenoids in age-related disease study (CAREDS). Arch. Ophthalmol. 127(11):1483–1493.

Piezter, Z., Jerling, J. C. and Oosthuizen, W. (2005). Substitution of high monounsaturated fatty acids avocado for mixed dietary fats during an energy-restricted diet: Effects on weight loss, serum lipids, fibrinogen, and vascular function. Nutrition. 21:67–75.

Puizina, N. (2008). Skin aging. Acta Dermatoven AP A. 17:47–55.

Rainey, C., Alffleck, M., Bretschger, K. and Roslyn, A.-S. (1994). The California avocado: A new look. Nutr. Today. 29:23–27.

Reboul, E., Thap, S., Tourniaire, F., André, M., Juhe, C., Morange, S., Amiot, M. J., Laiour, D. and Borel, P. (2007). Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. Br. J. Nutr. 97:440–446.

Rerksuppaphol, S. and Rerksuppaphol, L. (2006). Effect of fruit and vegetable intake on skin carotenoid detected by non-invasive Raman spectroscopy. J. Med. Assoc. Thai. 89(8):1206–1212.

Roberts, R. L., Green, J. and Lewis, B. (2009). Lutein and zeaxanthin in eye and skin health. Clin. Dermatol. 27:195–201.

Rosenblat, G., Meretski, S., Segal, J., Tarschis, M., Schroeder, A., Zanin-Thorov, A., Lion, G., Ingber, A. and Hochberg, M. (2011). Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells. Arch. Dermatol. Res. 303:239–246.

Roth, G. (2009). Mannoheptulose glycolytic inhibitor and novel calorie restriction mimetic. Experimental Biology. Abstract # 553.1. New Orleans, LA.

Sacks, F. M., Bray, G. A., Carey, J. V., Smith, S. R., Ryan, D. H., Anton, S. D., McManus, K., Champagne, C. M., Bishop, L. M., Laranjo, S. D., Leboff, M. S., Rood, J. C., de Jonge, L., Greenway, F. L., Loria, C. M., Obaranek, E. and Williamson, D. A. (2009). Comparison of weight-loss diets with different compositions of fat, protein and carbohydrate. N. Engl. J. Med. 360(9):859–873.

Salonen, R. M., Nyyssonen, K., Kaikkonen, J., Porkkala-Saratabo, E., Voutilainen, S. and Rissanen, T. H. (2003). Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression. Circulation. 107:947–953.

Saqib, N., Natarajan, L., Rock, C. L., Flatt, S. W., Madlensky, L., Kealey, S. and Pierce, J. P. (2008). The impact of a long-term reduction in dietary energy density on body weight within a randomized diet trial. Nutr. Cancer. 60(1):31–38.

Savage, J. S., Marini, M. and Birch, L. L. (2008). Dietary energy density predicts women’s weight change over 6 y. Am. J. Clin. Nutr. 88(3):677–684.

Shaw, P., Wilson, III, C. W., and Knight, Jr., R. J. (1980). High-performance liquid chromatographic analysis of D-manno-heptulose, perseitol, glucitol, D-mannitol, and L-mannitol. Arch. Biochem. Biophys. 203:468–474.

Tamimi, R. A., Colditz, G. A. and Hankinson, S. E. (2009). Circulating carotenoids, mammographic density, and subsequent risk of breast cancer. Cancer Res. 69(24):9323–9329.

Tentolouris, N., Arapostathi, C., Perrea, D., Kyriaki, D., Revenas, C. and Katsilambros, N. (2008). Differential effects of two isoeugenolic meals rich in saturated or monounsaturated fat on endothelial function in subjects with type 2 diabetes. Diabetes Care. 31:2276–2278.
Thomson, C. A., Stendell-Hollis, N. R., Rock, C. L., Cussier, E. C., Flatt, S. W. and Pierce, J. P. (2007). Plasma and dietary carotenoids are associated with reduced oxidative stress in women previously treated for breast cancer. *Cancer Epidemiol. Biomarkers Prev.* 16(10):2008–2015.

Unlu, N., Bohn, T., Clinton, S. K. and Schwartz, S. J. (2005). Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. *J. Nutr.* 135:431–436.

USDA (U.S. Department of Agriculture). (2011). Avocado, almond, pistachio and walnut Composition. Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 24. U.S. Department of Agriculture. Washington, DC.

USDA and HHS. (2010a). Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans (Part B. Section 2: The Total Diet. B2:11). U.S. Department of Agriculture and U.S. Department of Health and Human Services. Washington, DC.

USDA and HHS. (2010b). Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans (Part D. Section 6: Sodium, Potassium, and Water Report. D6:6—25). U.S. Department of Agriculture and U.S. Department of Health and Human Services. Washington, DC.

USDA and HHS. (2010c). Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans (Part D. Section 1: Energy Balance Report. D1:53). U.S. Department of Agriculture and U.S. Department of Health and Human Services. Washington, DC.

van der Kraan, P. M. and van den Berg, W. B. (2000). Anabolic and destructive mediators in osteoarthritis. *Curr. Opin. Clin. Nutr. Metab. Care.* 3(3):205–211.

Victor, V. M., Rocha, M., Sola, E., Banuls, C., Garcia-Malpartida, K. and Hernandez-Mijeres, A. (2009). Oxidative stress, endothelial dysfunction and atherosclerosis. *Current Pharma. Design.* 15:2988–3002.

Voutilainen, S., Nurmi, T., Mursu, J. and Rissanen, T. H. (2006). Carotenoids and cardiovascular health. *Am. J. Clin. Nutr.* 83:1265–1271.

Walker, K. Z. and O’Dea, K. (2001). Is a low fat diet the optimal way to cut energy intake over the long term in overweight people? *Nutr. Metab. Cardiovasc. Dis.* 11:244–248.

Wang, W., Connor, S. L., Johnson, E. J., Klein, M. L., Hughes, S. and Connor, W. E. (2007). Effect of dietary lutein and zeaxanthin on plasma carotenoids and their transport in lipoproteins in age-related macular degeneration. *Am. J. Clin. Nutr.* 85:762–769.

Wien, M., Haddad, E. and Sabaté, J. (2011). Effect of incorporating avocado in meals on satiety in healthy overweight adults. 11th European Nutrition Conference of the Federation of the European Nutrition Societies. October, 27. Madrid, Spain.

Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B. and Prior, R. L. (2004). Lipophilic and hydrophilic antioxidant capacity of common foods in the U.S. *J. Agric. Food Chem.* 52:4026–4037.

Wu, X., Gu, L., Holden, J., Haytowitz, D. B., Gebhardt, S. E., Beecher, G. R. and Prior, R. L. (2007). Development of a database for total antioxidant capacity in foods: A preliminary study. *J. Food. Comp. Anal.* 17:407–422.

Yong, L. C., Petersen, M. R., Sigurdson, A. J., Sampson, L. A., Ward, E. M. and Sampson, L. A. (2009). High density antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots. *Am. J. Clin. Nutr.* 90:1402–1410.