It’s a Thin Line Between Love and Hate: Using the Echo in Modeling Dynamics of Racist Online Communities

Eyal Arviv, Simo Hanouna, Oren Tsур
Software and Information Systems Engineering
Ben Gurion University of the Negev
{eyalar,hanouns}@post.bgu.ac.il, orentsur@bgu.ac.il

Abstract
The (((echo))) symbol – triple parenthesis surrounding a name, made it to mainstream social networks in early 2016, with the intensification of the U.S. Presidential race. It was used by members of the alt-right, white supremacists and internet trolls to tag people of Jewish heritage – a modern incarnation of the infamous yellow badge (Judenstern) used in Nazi-Germany. Tracking this trending meme, its meaning, and its function has proved elusive for its semantic ambiguity (e.g., a symbol for a virtual hug).

In this paper we report on the construction of an appropriate dataset allowing the reconstruction of networks of racist communities and the way they are embedded in the broader community. We combine natural language processing and structural network analysis to study communities promoting hate. In order to overcome dog-whistling and linguistic ambiguity, we propose a multi-modal neural architecture based on a BERT transformer and a BiLSTM network on the tweet level, while also taking into account the users ego-network and meta features. Our multi-modal neural architecture outperforms a set of strong baselines. We further show how the use of language and network structure in tandem allows the detection of the leaders of the hate communities. We further study the “intersectionality” of hate and show that the antisemitic echo correlates with hate speech that targets other minority and protected groups. Finally, we analyze the role IRA trolls assumed in this network as part of the Russian interference campaign. Our findings allow a better understanding of recent manifestations of racism and the dynamics that facilitate it.

1 Introduction
Hate speech proliferates in social media (Waseem and Hovy 2016; Laub 2019). While harassment may be targeted at any individual, hate speech typically references groups and targets individuals for their group identity. Women, people of color, the LGBT community, Muslims, immigrants, and Jews are among the most targeted groups. Recent studies report on a surge in Islamophobia (Sunar 2017; Akbarzadeh 2016; Osman 2017), Antisemitism (ADL 2020; Zannettou et al. 2020), xenophobia (Iwama 2018; Entorf and Lange 2019) and hate toward other groups (Levin and Reitzel 2018; Dodd and Marsh 2017; Edwards and Rushin 2018; Perry et al. 2020).

Online hate speech is not merely an online inconvenience. It directly manifests itself in “real life” through shooting, bombing, stabbing, beating, and vandalizing. These violence incidents are often linked directly to online activity (Hankes and Amend 2019; Munn 2019; Malevich and Robertso 2019; Thomas 2019). A recent U.N. report on the Freedom of Religious and Belief, transmitted by the Secretary General amidst the global rise in antisemitism, asserts that “antisemitism, if left unchecked by Governments, poses risks not only to Jews, but also to members of other minority communities. Antisemitism is toxic to democracy” (Shaheed 2019).

Like misery, racial hate likes company. Hate is not expressed and promoted by random individuals – rather, it is the product of communities, often embedded in larger communities. Therefore, in order to better understand the social mechanisms involved in the promotion of online hate, we need to understand how these communities are structurally organized and how they use specific, often elusive, language to promote their cause.

In this paper we combine structural analysis of Twitter networks with textual analysis (NLP) to identify hate communities that are embedded in broader communities. Using the echo, an elusive antisemitic meme, as a starting point, we demonstrate how networks promoting hate can be recovered, which in turn enables us to identify key features that contribute to the promotion of hate.

Specifically, we address the following questions:

• **Disambiguation** – can we properly identify hate speech and disambiguate the uses of nuanced language and memes that are used both legitimately and in a dog-whistling manner?
• **Text and social structure** – can we leverage the network structure in order to achieve detection of hate-mongers?
• **Intersectionality of hate** – how is the antisemitic echo meme related to other forms of hate speech and other minority groups?
• **Linguistic variation** – can the evolution of the echo meme be interpreted according to linguistic theory?
The two former questions are addressed algorithmically in both unsupervised and minimally supervised way, as we propose a multi-modal neural architecture based on a BERT Transformer and a BiLSTM for the utterance (tweet) level that feeds into another classifier that also models the user ego-network and metadata. The two latter questions, are addressed qualitatively.

2 Background and Related Work

The Echo The triple parentheses, or triple brackets, also known as (((echo))), is an antisemitic symbol that is used to highlight the names of individuals of a Jewish background (e.g., Jeffery Goldberg, Editor-in-Chief of The Atlantic), organizations owned by Jewish people (e.g., Ben & Jerry’s), or organizations accused of promoting “Jewish globalist values” (e.g., the International Monetary Fund). Originally an audial meme used at the podcast The Daily Show, the meme was popularized in a textual form in the white-supremacy blog The Right Stuff. The echo slowly drifted from fringe websites to mainstream social platforms like Twitter, reaching a wider audience and expanding its user base. Typical examples of an antisemitic use of the echo are presented in rows 1–4 in Table 1. Tweets 1, 2 were posted by regular users, referring to an individual (#1), and promoting an antisemitic trope about Jewish domination (#2). The 3rd tweet, promoting a similar antisemitic trope, was posted by a high profile organization – the official @WikiLeaks account, after the organization was criticised for alleged ties to the Russian Intelligence. The tweet was removed within hours, not before being retweeted and shared hundreds of times.

Members of hate communities often use specific language and symbols to convey their affiliation and promote their agenda. Unique, vague and ambiguous patterns of language may arise from community culture and are often used as a dog-whistling practice used in order to avoid detection and suspension of Twitter accounts. While used as a hate symbol by some users, the echo has multiple senses, e.g., “broadcasting”, “emphasis” or a “virtual hug” (see Table 1). In Section 6.4 we discuss special lingo and ambiguous terms.

The recent rise in online hate speech attracts significant body of research. Broadly speaking, this body of research can be broken down into two main categories, focusing on two different perspectives: (i) the algorithmic detection of hate-speech, and (ii) social analysis of the use (and users) of hate speech. In the remainder of this section we provide brief survey of relevant work.

Hate, Trolls and Online Culture The alt-right, short for “the alternative right” is a term referring to a collection of organizations and individuals sharing extreme right-wing ideology that ranges from classic far-right ideology to open white-nationality and white-supremacy. While traditional Internet trolls are not promoting a specific ideology, alt-right trolls, rooted in Internet culture, seek to promote an extreme political agenda (Hawley 2017). The similarity between gamer-gate trolls and the online activity of members of the alt-right is explored in (Bezio 2018).

Hate speech is especially habitual in Gab and some forums on 4chan and Reddit (Hine et al. 2017; Nagle 2017; Zannettou et al. 2018). These platforms support a community structure in an almost explicit way, and users adopt specific language to signal their affiliation and further enhance community bonds (Tutters and Hagen 2019; Zannettou et al. 2020). On Twitter, on the other hand, communities are formed implicitly, as individuals follow or engage with other (like-minded) individuals, thus the habit of signaling affiliation through the use of specific language and memes is of increased significance. However, since Twitter is more tightly moderated than 4chan, Reddit or Gab, the use of language tend to be more nuanced.

Detection of Hate Speech The use of code words, ambiguity and dog-whistling pose significant challenges to text-based detection of hate-speech (Davidson et al. 2017; Ribeiro et al. 2017). The detection of implicit forms of hate speech is addressed by (Gao, Kuppersmith, and Huang 2017), and (Magu, Joshi, and Luo 2017) detects the use of hate code words (e.g., google, skype, bing and skittle for Black, Jews, Chinese, and Muslims, respectively).

The use of demographic features such as gender and location in the detection of hate speech is explored by (Waseem and Hovy 2016), and user meta features, e.g., account age, posts per day, number of followers/friends, are used by (Ribeiro et al. 2017).

Computational methods for the detection of hate speech and abusive language range from the classic machine learning approaches such as SVM and logistic regression (Davidson et al. 2017; Waseem and Hovy 2016; Nobata et al. 2016; Magu, Joshi, and Luo 2017), to neural architectures such as RNNs and CNNs (Gambäck and Sikdar 2017; Zhang, Robinson, and Tepper 2016; Del Vigna et al. 2017; Park and Fung 2017), and BERT transformers (Mozafari, Farahbaksh, and Crespi 2019; Samghabaki et al. 2020). For comparative surveys of taxonomies of hate speech and abusive language, available datasets, and models see (Salminen et al. 2018), (Chen, McKeever, and Delany 2019), and (Wullach, Adler, and Minkov 2020).

The diffusion of hate in Twitter and Gab is modeled by (Ribeiro et al. 2017) and (Mathew et al. 2019), respectively. These works are close to our work as they address the user level, taking into account user meta features and network structure. However, the user meta features and network features are fixed and the textual analysis is basic. In contrast, we are concerned with the classification task rather than explicitly modeling the diffusion process. We put emphasis on

1While some social platform, e.g., Reddit, 4chan and Gab (Zannettou et al. 2018; Lima et al. 2018) have limited or no moderation, platforms like Twitter officially prohibit hate speech.
1. **Base Corpus** We have obtained access to a random sample of 10% of all public tweets posted in May and June 2016 – the peak use of the echo.

2. **Raw Echo Corpus** Searching the base corpus, we extracted all tweets containing the echo symbol, resulting in 803,539 tweets posted by 418,624 users. Filtering out non-English Tweets and users who used the echo less than three times we were left with ~7K users.

3. **Echo Corpus** We used Twitter API to obtain the most recent tweets (up to 3.2K) of each of the users remaining in the English list. This process resulted in ~18M tweets posted by 7,073 users. We note that some of the accounts we found using echo were already suspended or deleted at the time of collection, thus their tweets were not retrievable.

To the best of our knowledge, this is the first time this dataset is being analyzed computationally and on large scale.

3.2 Data Annotation

We sampled a thousand users from the dataset, inspected their use of the echo, and manually assigned each user one of three labels: HM (Hate Monger), R (Response) for users discussing the hate symbol, and N (Neutral) for users using the symbol in non-hate contexts. Examples of tweets from each category are presented in Table 1 and descriptive statistics of the users of the different categories are presented under GOLD USERS in Table 2.

Table 1: Echo tweets and their type. HM: hate-mongering; R: response to HM. N: Neutral (not hate); User names and real names were replaced by @USR and NAME, respectively. A tweet containing expressive lengthening can be seen in the fourth example of this table.

LABEL	TWEET	
1	HM	Don’t Trigger Mr Trump (((Rosengerg))) it might cause him to fire up the ovens #OvenWorthy
2	HM	RT @USR: Andrew Breitbart was murdered by (((Globalists))). #PizzaGate
3	HM	Trybalist symbol for establishment climbers? Most of our critiques have (((brackets around their names))) & have black-rim glasses. Bizarre.
4	HM	That’s because Trump doesn’t hate white Gentiles like (((((((((THEY)))))))))) do.
5	R	ADL adds (((echo))) symbol to hate list
6	R	People are putting (((echoes))) around their names on Twitter – here’s why
7	R	@USR alright wise one... What does ((())) around someone’s name?
8	N	We’re (((LIVE))) on the radio near you --> its #LightOnLive with <NAME>, from now till 6am on #Live919FM
9	N	@USR THIS WOMAN NEEDS A BIG HUG (((HUG)))
10	N	can u get any cooler than that (((nope))))

The echo is found in tweets written in multiple languages, particularly in East-Asian languages of which the user based is known for heavy use of ascii art and kaomoji (McCulloch 2019).

The data was collected in December 2016, amidst reports on the trending ‘echo’.

"Twitter Search API ignores special characters, thus querying for the echo was not feasible."
3.3 Network Statistics

Hate does not propagate in a void. Reconstructing the network of echo users enables us to identify structures, roles and interfaces that facilitate the propagation of hate-speech. Assuming that different types of engagement reflect different types of relations, we consider three different network semantics: mention-based, reply-based and retweet-based. In order to reduce noise we consider an edge only if its weight is higher than some threshold $\delta \geq 3$. The mention-based network presented in Figure 1 contains 3977 singletons (not presented in the figure), 2226 connected components (269 weak, 1993 strong), and a total of 3,092 nodes and 12,622 edges. Figures 2a and 2b present only the nodes annotated as part of the gold standard, each node is colored by its label. The tendency of hate users to form tight communities is evident by the dominant cluster of red nodes that form the largest connected component (LCC). A detailed comparison between network statistics of the full network and the LCC can be found in Table 3 (top two rows).

4 Unsupervised Detection of Racist Users

While the analysis of the properties of the social network may shed light on the emergence of racist communities, some patterns may be missed due to data sparsity and the constraints imposed on data collection. We therefore opt for unsupervised content-based methods in order to discover disconnected individuals and clusters of like-minded racists.

Table 2: Account statistics derived from the annotated data (left) and predicted classes (right). Standard deviation is marked with ±. Average days accounts are active, tweets per day, friends and followers are based on available account meta data. Average replies, retweets, URLs and hashtags ratios are based on tweets in the Echo corpus.

Label	HM	R	N	R+N	PREDICTED
Total #Users	170	55	775	830	1136
Total #Tweets	339K	141K	2M	2.15M	2.26M
Avg. #Days Active	999±783	1910±973	1558±853	1582±866	1080±894
Avg. Tweets/day	11±19	7±9	19±37	18±36	15±31
Avg. #Friends	674±1445	741±1103	972±2136	957±2084	783±1527
Avg. #Followers	1022±2619	1067±2070	1941±5991	1884±5817	3848±60925
Avg. %Replies	37±24	27±21	27±23	27±23	41±26
Avg. %Retweets	34±24	26±24	24±22	24±22	31±25
Avg. %URL	73±21	58±28	57±26	57±26	74±21
Avg. %Hashtags	16±14	22±23	20±23	20±23	18±16

Experimental Setting

In order to achieve an abstract representation of topics and semantics we represented the text in two ways: word embeddings (Bojanowski et al. 2017) and topic models (Wallach, Mimno, and McCallum 2009). All tweets by a user were concatenated to one long text and users were represented in three different ways: (i) an average of their embeddings (EMBD), (ii) their single most salient topic (TM), and (iii) the full topic distribution vector for each user (TM). Clustering is done with the classic k-mean algorithm, assuming two settings: (i) three clusters, corresponding to the HM, R and N classes and, (ii) two clusters, collapsing the R and N classes to a single class of −HM.

Clustering Results

The Rand Index (Rand 1971) is used to evaluate cluster quality against the gold standard set. All methods and settings achieved decent clustering results (see Table 4). Best results were obtained using the full distribution of topics ($k = 30$). Figure 2c presents the user cluster assignments (color) in the full network (singletons removed). Both the Rand Index (RI) results and the graphic visualization suggest a strong correlation between the network structure and the language used. These results are in line with previous studies of hate-speech in other platforms such as Gab and 4chan (Ribeiro et al. 2017 Zannettou et al. 2020).

Figure 1: Mentions network of echo users. Layout: force-directed. Minimum edge weight: 3.
Graph	#Nodes	#Edges	Density	Diameter	#Triangles	Max #triangles	#Strong CC	#Weak CC
Full	3092	12622	0.0013	20	24261	1988	1993	269
LCC	553	5215	0.0171	19	11114	1352	n/a	n/a
HM	730	5783	0.0109	11	11188	1728	387	34
R+N	2362	5018	0.0009	24	8918	669	1710	362

Table 3: Network (without singletons) features computed on the full mention network of echo users, and on its largest connected component (LCC), HM, and R+N subnetworks. We report on the following features for each network: Number of nodes, number of edges, density (computed without loops), diameter (within connected components), number of triangles, maximum number of triangles for a single node, and number of strongly and weakly connected components. Minimum edge weight: 3.

(a) Gold labels (no singletons)
(b) Gold labels (with singletons)
(c) Predicted labels (no singletons, R+N)

Figure 2: Mention based networks of echo users. Nodes colored by label – HM in red, R in green, and N in blue. Figures 2a and 2b contain only the annotated subset of nodes. Figure 2c is the same network presented in Figure 1, the R and N classes are collapsed.

Table 4: Rand Index of clusters vs. Gold Standard set. Clusters are computed based on user’s textual embeddings (EMBD), most salient topic representation (TM^S), and full topic distribution (TM^F). RI computed for two (RI^2) and three (RI^3) class/cluster settings. Embedding dimension: 300. K: 30.

MODEL	RI^2	RI^3
EMBD	0.687	0.687
TM^S	0.801	0.672
TM^F	0.811	0.743

5 Multi-Modal Neural Architecture

Given that hate speech does not propagate in a void (see the previous section and related work), we propose a multi-modal neural architecture that takes into account the text of a user, as well as the texts of other users in her ego network. The main motivation for this approach is that multiple weak signals from user u’s “neighborhood” can be used to fine-tune the signal produced by user u herself. This approach is common in sociology and demographic polling (Johnston 1974; Latané 1981; Sampson 1988) and we expect that it will be especially beneficial in the cases in which obscure, vague or ambiguous language is used.

Post-Level Module (PLM) The basic unit for classification is a single post (tweet). We fine tune a BERT transformer (Devlin et al. 2018) on the annotated dataset. Fine tuning is done after adding a bi-directional-LSTM with global max pooling, a dense, and a dropout layers. The architecture of the post level module is illustrated in the orange box in the center of Figure 3.

User Network Module The post level module is used to process three distinct streams of tweets: (i) tweets of the user we wish to classify (user u), (ii) tweets of the users following u, and (iii) tweets of the users u is following. The full architecture is illustrated in Figure 3. In this work, a user u that mentioned u ≥ δ = 3 times is considered to be a follower of u, however, directed relations can be defined by other engagement patterns. The outputs of each of the three streams are processed slightly differently. While the results of the PLM of the user in question (u) are concatenated, the PLM results of each of her followers and followees are averaged on the user level (separately), thus each follower or followee contributes a single value to the final vector. All the PLM outputs are concatenated to a single vector that is composed of the all PLM predictions for tweets of u (blue vector), a concatenation of all averaged scores for each of the followers and followees (yellow and green vectors, respectively). This vector is further concatenated with a vector of
Figure 3: Multi-Modal neural architecture. The neural model process texts in different streams and treatments based on the structure of the social network.

network features (red vector) of user u, e.g., in-degree, out-degree, betweenness, number of triangles u is part of etc. The concatenated vector is fed to any classification model. We experimented with a three-layer FFNN, Gradient Boosted Machine (GBM) algorithms, and Logistic Regression.

MODEL	Precision	Recall	F1	AUC
U	0.692	0.607	0.613	0.925
$U+F_U$	0.659	0.607	0.633	0.935
$U+U+U_U$+U_U+N	0.873	0.666	0.755	0.959
$U+U_U$	0.822	0.725	0.77	0.958
$U+U+U_U$+U_U+N	0.898	0.686	0.777	0.955
$U+U_U+U_U+N$	**0.923**	0.705	**0.8**	0.959

Table 5: Ablation results achieved by the multi-modal neural network. U: tweets of a single user u; U_U: tweets of users followed by u; F_U: tweets of the followers of u; N: u’s network features.

6 Analysis and Discussion

The result reported in Sections 4 and 5 demonstrate the strong connection between the network topology and the language used in different subcommunities. Moreover, using a multi-modal neural architecture we demonstrated that processing texts, while taking the network structure into account improves results significantly, especially in the case of vague or ambiguous language. In the remainder of this paper we further discuss various aspects related to the use of language, the network structure and the activity of hate groups.

6.1 Network Structure and Predicted Labels

Clustering results were reported in Section 4. While node colors in Figure 2c are decided by cluster assignment, similar results are obtained when node colors are decided by the multi-modal neural architecture (Section 5). Most singletons are neutral users, in line with the trend presented in Figure 2b. Hate-mongers, on the other hand, make the bulk of the large component and more likely be part of a connected component. This tendency is striking as hate-mongers tend to have significantly less friends and followers (see Table 2). The discrepancy between their connectedness in the echo-induced network and their global degree suggests that the echo is more infectious as a hate-symbol/meme than in its other senses (a hug, broadcasting, etc.) – highlighting the communal aspect in the adoption of hate. This is in line with previous work reporting that radical content travels faster and further in the network (Mathew et al. 2019). These observations also provide a different angle on the notion of the ‘lone wolf’ discussed in (Ribeiro et al. 2017) – on the one hand, hate mongers are highly active and organized, while on the other hand, their in and out degrees are significantly smaller than those of mainstream users. It is interesting to see that some responders and neutral users are also at the core of the large components. We manually examined some
of them, observing that responders often attract response from the hate-mongers. A typical exchange is presented in Figure 4.

Figure 4: A hate-monger responds to Jefferey Goldberg, Editor-in-Chief of The Atlantic, explaining the meaning of the echo. Note the Nazi salute used as the profile picture of the HM, and the user name – a reference to the antisemitic conspiracy trope of the Protocols of the Elders of Zion.

6.2 Hate Leaders

Using network centrality measures, we can find leaders and promoters of racism and hate. Using the three network semantics (reply, mention and retweet) and seven centrality measures (in/out/total degree, betweenness, eigenvector, closeness and page-rank) we rank users by the number of times they appear in the top generalized centrality. These findings suggest that we managed to accurately reconstruct the network of hate mongers, in spite of the limitations and constraints imposed by Twitter API and other access issues.

Table 6: Accounts with the highest generalized centrality. The not check mark (×) in the suspended column refers to accounts that are temporarily suspended (at the time of the query) as it violated the Twitter Media Policy.

User name	Suspended	Predicted	Manual Label
ThaRightStuff	✓	HM	✓
ramzpaul	×	HM	✓
PaulTown	✓	HM	✓
Third_Position	✓	HM	✓
DrDavidDuke	×	HM	✓
SeventhSonTRS	✓	HM	✓
TrumpHat	✓	HM	✓
TheeCurrentYear	✓	HM	✓

Table 6 all of the users presented are predicted as HM. Moreover, as a proxy, we queried Twitter for their account, finding that all of them were suspended – an indication for high profile malicious, often racist, activity. We note that no N or R users were found to have high generalized centrality rank.

The absence of other known leaders of the alt-right, e.g., Mike Cernovich and Richard Spencer, is somewhat surprising. We attribute it to the constraints imposed in the curation of the raw echo corpus (see Section 3). These users may have not used the echo (in the 10% sample) during the two month span the base corpus was curated. However, their centrality to the network is evident by the large number of times they are mentioned or being retweeted by the nodes flagged as hate-mongers, compared to the minimal trace they leave in the users of the R and N groups. Spencer, for example, is mentioned 5565 times, retweeted 1716 times, and replied to 1611 times by the HM group. These numbers are comparable to the mention/retweet/reply counts of the users with the top generalized centrality. These findings suggest that we observe variations in the orthography and the semantics of the echo symbol. These variations are typically the result of the canonization of a word or a term within a certain speaker community, hence providing another perspective on adaptation of linguistic forms by a wider community.

6.3 Linguistic Variations: Orthography and Semantics

We observe variations in the orthography and the semantics of the echo symbol. These variations are typically the result of the canonization of a word or a term within a certain speaker community, hence providing another perspective on adaptation of linguistic forms by a wider community.

Abstraction and Semantic Drift Starting as an abstract symbol, the echo was used to mark concrete named entities – people of Jewish heritage. It further evolved to mark abstract entities such as (bankers)) and (globalists)), echoing ancient antisemitic tropes. The use of the echo to mark abstract concepts such as (narrative)) or suggestive pronouns like (they)) and (who) reflects another stage in the semantic evolution of the symbol. Finally, anecdotal evidence demonstrate that the antisemitic symbol is being repurposed to target other minority groups, e.g., (illegal mexicans)), (Tuters and Hagen 2019).

Expressive Lengthening Expressive lengthening, common in online informal writing, is the habit of adding characters to words in order to enhance the message or the sentiment conveyed in it. Typical examples are ‘aaaaaaaargh’, ‘lollll’, and ‘sweeeeet!!!!’ (McCulloch 2019). We observe expressive lengthening of the echo as hate-mongers try to underscore their hate, e.g., (((bankers)))) and (((jooollllllllll)))).

Footnote 7 A derogatory term for Jews, used for its (expressively-lengthened) homophony.
6.4 The Intersectionality of Hate

When used as a hate-symbol, the echo is mostly used in an antisemitic context (see previous subsection for exceptions). Although one would expect a dataset constructed around the echo to contain mostly antisemitic hate speech, we do observe the “intersectionality of hate” which allows us to explore the attitude of hate groups toward other minorities and protected groups.

Looking at the words and hashtags used most frequently by each of the groups, we observe a general racial pattern, going well beyond the antisemitic use of the echo. Users flagged as hate-mongers by our algorithm, are twenty times more likely to use the term Zionist as a general slur; talk about whiteness and white genocide; use derogatory terms like kike, cuck, and skittles referring to Arabs. In addition, these users are more likely to refer to Arabs, Muslims and immigrants in more explicit derogatory ways. For example, Muslims are addressed as muzzies and the hashtag #rapefugues is used to depict refugees as rapists.

The following tweet, posted by an HM account provides an illuminating example for the “intersectionality” of hate: Poland refuses #rapefugues and is now on the verge of civil war. (((Who))) could be behind this? #WhiteGenocide. Notice the dual strand of hate in this tweet: labeling Muslim refugees arriving in Europe as rapists, and the abstract use of the echo to hint that the influx of the “rapefugues” is a Jewish conspiracy to destabilize western countries as part of a war on the “white race”.

Comparing the popular hashtags among the HM and N groups we find that the HM group is trending with #pizzagate, #minorityPrivilege, #WhiteGenocide, #altright, #tcot, #AmericaFirst, #GamerGate, #FeelTheBern, #MAGA #Brexit and #rapefugues, while the N echo users tend to use the hashtags #job, #sex, #LIVE, #broadcasting, #party and #NowPlaying, all associated with other meanings of the echo symbol – a visual resemblance of an engulfing hug or a radio tower.

It is interesting to note that the R users seem to exhibit a stronger interest in politics, compared to their N counterparts. The most frequently used hashtags of the R group are: #localbuzz, #Facebook, #SocialMedia, #antisemitism, #DemDebate, #VPDebate, #Israel, #LonelyConservative, and #NeverTrump, as well as #MAGA and #Trump2016. We attribute this tendency to an inherent selection bias – the responders are those who care more about political agenda and therefore try to have a better grasp of its extreme fringes. These findings also support the split of the non hate-mongers users to two different clusters with unique features instead of a single large cluster that combines both groups.

We wish to stress that while the HM users of the echo tend to enthusiastically support a separatist right-wing agenda, not all conservative users or supporters of Trump or of the Brexit are hate-mongers. We also wish to point out that the perceived nicety of the R+N users, demonstrated by the heavy use of positive words is somewhat misleading. This may be a side-effect caused by the manner in which the corpus was constructed, since the meanings and the contexts in which the echo symbol is used are polarized. While the vast majority of the tweets in the corpus do not contain the echo at all, all users in the data did use this unique symbol, often as a very strong sentiment/stance marker.

6.5 Links to Russian Trolls

Recent studies suggest that foreign activity on social media was strategically used in an attempt to further radicalize groups that already have an inclination to extremism (Jamieson 2018; Addawood et al. 2019). We conclude this paper with a brief examination of foreign involvement with alt-right communities.

The Internet Research Agency (IRA) is a Russian troll-farm linked to the Russian intelligence, according to a declassified report by the United States Office of the Director of National Intelligence (2017), and the Special Counsel report on the Investigation into Russian Interference (Mueller 2019). A list of 3,814 account handles, linked to the IRA was identified and released by Twitter. In the ten-week period preceding the 2016 election these accounts posted 175,993 Tweets, approximately 8.4% of which were election-related (Twitter 2018). None of the IRA trolls used the echo in the %10 sample of two months covered in the base corpus. However, we find their impressions in the network. Analysis of the data reveals that hate-mongers (HM) are eight to nine times more likely to mention or retweet an IRA user than their R+N counterparts. Looking only at users that actively engage with IRA accounts, a hate-monger engages with an IRA account in a higher rate, see Table 7 for more details. While a detailed analysis of these efforts are beyond the scope of this paper, our computational results support the qualitative analysis of foreign meddling in local politics (Jamieson 2018).

7 Conclusion

Antisemitism is only one manifestation of racism. Using a large and unique corpus constructed around an ambiguous antisemitic meme, we showed how networks of hate-mongers can be reconstructed. Analyzing content and the network structure in tandem provides significant insights on the promotion of hate, beyond antisemitism, the central figures dominating the network, the engagement between hate-mongers and other users and the utilization of this network for international political warfare. Future work includes a temporal analysis of the formation of the network as well as a finer analysis of the types of hate promoted by the network.

3Ethnic slur for Jews.
3A weak and submissive person. Similar to the classic ‘pussy’. Often used to describe minorities and “intellectuals”.
10Originally a small fruit-flavoured candy, repurposed as a derogatory term.
11A religious slur referring to Muslims.
12A reference to the “Top Conservatives On Twitter”.

Table 7: Engagement of echo users with IRA accounts.
#Users mentioning/retweeting IRA: the number of echo users mentioning/retweeting an IRA user. #Unique IRA mentioned/retweeted: the number of unique IRA accounts mentioned by echo users. #Total IRA mentions/retweets: the number of mentions/retweets of IRA users by echo users.

Label	GOLD USRS	ALL USRS
#Users	HM R+N	HM R+N
#Users mentioning IRA	88 67	623 379
#User retweeting IRA	81 53	529 312
#Unique IRA mentioned	24 25	63 76
#Unique IRA retweeted	19 20	45 46
#Total IRA mentions	196 102	1375 595
#Total IRA retweets	167 79	1088 479

References

[Addawood et al. 2019] Addawood, A.; Badawy, A.; Lerman, K.; and Ferrara, E. 2019. Linguistic cues to deception: Identifying political trolls on social media. In Proceedings of the International AAAI Conference on Web and Social Media, volume 13, 15–25.

[ADL 2020] ADL. 2020. Antisemitic incidents hit all-time high in 2019.

[Akbarzadeh 2016] Akbarzadeh, S. 2016. The muslim question in australia: Islamophobia and muslim alienation. Journal of Muslim Minority Affairs 36(3):323–333.

[Bezio 2018] Bezio, K. M. 2018. Ctrl-alt-del: Gamergate as a precursor to the rise of the alt-right. Leadership 14(5):556–566.

[Bojanowski et al. 2017] Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics 5:135–146.

[Chen, McKeever, and Delany 2019] Chen, H.; McKeever, S.; and Delany, S. J. 2019. The use of deep learning distributed representations in the identification of abusive text. In Proceedings of the International AAAI Conference on Web and Social Media, volume 13, 125–133.

[Davidson et al. 2017] Davidson, T.; Warmsley, D.; Macy, M.; and Weber, I. 2017. Automated hate speech detection and the problem of offensive language. In Eleventh International aaai conference on web and social media.

[Devlin et al. 2017] Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[Dodd and Marsh 2017] Dodd, V., and Marsh, S. 2017. Anti-muslim hate crimes increase fivefold since london bridge attacks. The Guardian 7.

[Edwards and Rushin 2018] Edwards, G. S., and Rushin, S. 2018. The effect of president trump’s election on hate crimes. Available at SSRN 3102652.

[Entorf and Lange 2019] Entorf, H., and Lange, M. 2019. Refugees welcome? understanding the regional heterogeneity of anti-foreigner hate crimes in germany. Understanding the Regional Heterogeneity of Anti-foreigner Hate Crimes in Germany (January 30, 2019). ZEW-Centre for European Economic Research Discussion Paper (19-005).

[Gambäck and Sikdar 2017] Gambäck, B., and Sikdar, U. K. 2017. Using convolutional neural networks to classify hate-speech. In Proceedings of the first workshop on abusive language online, 85–90.

[Gao, Kuppersmith, and Huang 2017] Gao, L.; Kuppersmith, A.; and Huang, R. 2017. Recognizing explicit and implicit hate speech using a weakly supervised two-path bootstrapping approach. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 774–782. Taipei, Taiwan: Asian Federation of Natural Language Processing.

[Grover and Mark 2019] Grover, T., and Mark, G. 2019. Detecting potential warning behaviors of ideological radicalization in an alt-right subreddit. In Proceedings of the International AAAI Conference on Web and Social Media, volume 13, 193–204.

[Hankes and Amend 2019] Hankes, K., and Amend, A. 2019. Aspi explains: 8chan.

[Hawley 2017] Hawley, G. 2017. Making sense of the alt-right. Columbia University Press.

[Hine et al. 2017] Hine, G. E.; Onaolapo, J.; De Cristofaro, E.; Kourtellis, N.; Leontiadis, I.; Samaras, R.; Stringhini, G.; and Blackburn, J. 2017. Kek, cucks, and god emperor trump: A measurement study of 4chan’s politically incorrect forum and its effects on the web. In Eleventh International AAAI Conference on Web and Social Media.

[Iwama 2018] Iwama, J. A. 2018. Understanding hate crimes against immigrants: Considerations for future research. Sociology compass 12(3):e12565.

[Jamieson 2018] Jamieson, K. H. 2018. Cyberwar: How Russian Hackers and Trolls Helped Elect a President What We Don’t, Can’t, and Do Know. Oxford University Press.

[Johnston 1974] Johnston, R. J. 1974. Local effects in voting at a local election. Annals of the Association of American Geographers 64(3):418–429.

[Latané 1981] Latané, B. 1981. The psychology of social impact. American psychologist 36(4):343.

[Laub 2019] Laub, Z. 2019. Hate speech on social media: Global comparisons.

[Levin and Reitzel 2018] Levin, B., and Reitzel, J. D. 2018. Report to the nation: hate crimes rise in us cities and counties in time of division and foreign interference.

[Lima et al. 2018] Lima, L.; Reis, J. C.; Melo, P.; Murai, F.; Araujo, L.; Vikatos, P.; and Benevenuto, F. 2018. Inside
the right-leaning echo chambers: Characterizing gab, an unmoderated social system. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 515–522. IEEE.

[Magu, Joshi, and Luo 2017] Magu, R.; Joshi, K.; and Luo, J. 2017. Detecting the hate code on social media. In Eleventh International AAAI Conference on Web and Social Media.

[Malevich and Roberto 2019] Malevich, S., and Roberto, T. 2019. Violence begetting violence: An examination of extremist content on deep web social networks.

[Mathew et al. 2019] Mathew, B.; Dutt, R.; Goyal, P.; and Mukherjee, A. 2019. Spread of hate speech in online social media. In Proceedings of the 10th ACM conference on web science, 173–182.

[McCulloch 2019] McCulloch, G. 2019. Because Internet: Understanding the new rules of language. Riverhead Books.

[Mozafari, Farahbakhsh, and Crespi 2019] Mozafari, M.; Farahbakhsh, R.; and Crespi, N. 2019. A bert-based transfer learning approach for hate speech detection in online social media. In International Conference on Complex Networks and Their Applications, 928–940. Springer.

[Mueller 2019] Mueller, R. S. 2019. Report on the investigation into Russian interference in the 2016 presidential election. US Dept. of Justice. Washington, DC.

[Munn 2019] Munn, L. 2019. Alt-right pipeline: Individual journeys to extremism online.

[Nagle 2017] Nagle, A. 2017. Kill all normies: Online culture wars from 4chan and Tumblr to Trump and the alt-right. John Hunt Publishing.

[Nobata et al. 2016] Nobata, C.; Tetreault, J.; Thomas, A.; Mehdad, Y.; and Chang, Y. 2016. Abusive language detection in online user content. In Proceedings of the 25th international conference on world wide web, 145–153.

[of the Director of National Intelligence 2017] of the Director of National Intelligence, O. 2017. Assessing Russian activities and intentions in recent US elections. Unclassified Version.

[Osman 2017] Osman, M. N. B. M. 2017. Retraction: Understanding islamophobia in Asia: The cases of myanmar and malaysia. Islamophobia Studies Journal 4(1):17–36.

[Park and Fung 2017] Park, J. H., and Fung, P. 2017. One-step and two-step classification for abusive language detection on twitter. arXiv preprint arXiv:1706.01206.

[Perry et al. 2020] Perry, B.; Akca, D.; Karakus, F.; Bastug, M. F.; et al. 2020. Planting hate speech to harvest hatred: How does political hate speech fuel hate crimes in turkey? International Journal for Crime, Justice and Social Democracy 9(2).

[Phillips 2015] Phillips, W. 2015. This is why we can’t have nice things: Mapping the relationship between online trolling and mainstream culture. Mit Press.

[Rand 1971] Rand, W. M. 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association 66(336):846–850.

[Ribeiro et al. 2017] Ribeiro, M. H.; Calais, P. H.; Santos, Y. A.; Almeida, V. A.; and Meira Jr, W. 2017. “like sheep among wolves”: Characterizing hateful users on twitter. arXiv preprint arXiv:1801.00317.

[Salminen et al. 2018] Salminen, J.; Almerekhi, H.; Milenkovic, M.; Jung, S.-g.; An, J.; Kwak, H.; and Jansen, B. J. 2018. Anatomy of online hate: Developing a taxonomy and machine learning models for identifying and classifying hate in online news media. In ICWSM, 330–339.

[Salminen et al. 2020] Salminen, J.; Hopf, M.; Chowdhury, S. A.; Jung, S.-g.; Almerekhi, H.; and Jansen, B. J. 2020. Developing an online hate classifier for multiple social media platforms. Human-centric Computing and Information Sciences 10(1):1.

[Samghabadi et al. 2020] Samghabadi, N. S.; Patwa, P.; Srinivas, P.; Mukherjee, P.; Das, A.; and Solorio, T. 2020. Aggression and misogyny detection using bert: A multi-task approach. In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying, 126–131.

[Sampson 1988] Sampson, R. J. 1988. Local friendship ties and community attachment in mass society: A multilevel systemic model. American sociological review 766–779.

[Shaheed 2019] Shaheed, A. 2019. Elimination of all forms of religious intolerance. Technical Report A/74/358, The United Nations, Secretary General.

[Sunar 2017] Sunar, L. 2017. The long history of islam as a collective “other” of the west and the rise of islamophobia in the us after trump. Insight Turkey 19(3):35–52.

[Thomas 2019] Thomas, E. 2019. Aspi explains: 8chan.

[Tuters and Hagen 2019] Tuters, M., and Hagen, S. 2019. (((they))) rule: Memetic antagonism and nebulous othering on 4chan. New Media & Society 1461444819888746.

[Twitter 2018] Twitter. 2018. Update on twitter’s review of the 2016 us election. Twitter Public Policy Blog. Retrieved January 5:2020.

[Wallach, Mimno, and McCallum 2009] Wallach, H. M.; Mimno, D.; and McCallum, A. 2009. Rethinking lda: Why priors matter. In Proceedings of the 22Nd International Conference on Neural Information Processing Systems, NIPS’09, 1973–1981. USA: Curran Associates Inc.

[Waseem and Hovy 2016] Waseem, Z., and Hovy, D. 2016. Hateful symbols or hateful people? predictive features for hate speech detection on twitter. In Proceedings of the NAACL student research workshop, 88–93.

[Wullach, Adler, and Minkov 2020] Wullach, T.; Adler, A.; and Minkov, E. 2020. Towards hate speech detection at large via deep generative modeling. arXiv preprint arXiv:2005.06370.

[Zannettou et al. 2018] Zannettou, S.; Bradlyn, B.; De Cristofaro, E.; Kwak, H.; Sirivianos, M.; Stringini, G.; and Blackburn, J. 2018. What is gab: A bastion of free speech or an alt-right echo chamber. In Companion Proceedings of the The Web Conference 2018, 1007–1014. International World Wide Web Conferences Steering Committee.
[Zannettou et al. 2020] Zannettou, S.; Finkelstein, J.; Brad-lyn, B.; and Blackburn, J. 2020. A quantitative approach to understanding online antisemitism. In Proceedings of the International AAAI Conference on Web and Social Media, volume 14, 786–797.

[Zhang, Robinson, and Tepper 2016] Zhang, Z.; Robinson, D.; and Tepper, J. 2016. Hate speech detection using a convolution-lstm based deep neural network.