Meromorphic Functions Sharing a Nonzero Value with their Derivatives

Xiao-Min Li*, Rahman Ullah and Da-Xiong Piao
School of Mathematical Sciences, Ocean University Of China, Qingdao, Shandong 266100, P. R. China
e-mail: lixiaomin@ouc.edu.cn, rahman_yzi@yahoo.com and davidpiao@aliyun.com

Hong-Xun Yi
Department of Mathematics, Shandong University, Jinan, Shandong 251000, P. R. China
e-mail: hxyi@sdu.edu.cn

Abstract. Let f be a transcendental meromorphic function of finite order in the plane such that $f^{(m)}$ has finitely many zeros for some positive integer $m \geq 2$. Suppose that $f^{(k)}$ and f share a CM, where $k \geq 1$ is a positive integer, $a \neq 0$ is a finite complex value. Then f is an entire function such that $f^{(k)} - a = c(f - a)$, where $c \neq 0$ is a nonzero constant. The results in this paper are concerning a conjecture of Brück [5]. An example is provided to show that the results in this paper, in a sense, are the best possible.

1. Introduction and Main Results

In this paper, by meromorphic functions we will always mean meromorphic functions in the complex plane. We adopt the standard notations in Nevanlinna theory of meromorphic functions as explained in [12, 16, 33, 34]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a nonconstant meromorphic function h, we denote by $T(r; h)$ the Nevanlinna characteristic of h and by $S(r; h)$ any

* Corresponding Author.
Received July 30, 2014; accepted November 19, 2014
2010 Mathematics Subject Classification: 30D35, 30D30.
Key words and phrases: Meromorphic functions, Order of growth, Shared values, Uniqueness theorems.
This work is supported by the NSFC (Grant No. 11171184), the NSFC (Grant No. 11461042), the NSF of Shandong Province, China (Grant No. ZR2014AM011) and the NSF of Shandong Province, China (Grant No. ZR2013AM026).
quantity satisfying $S(r, h) = o\{T(r, h)\}$, as $r \to \infty$ and $r \not\in E$.

Let f and g be two nonconstant meromorphic functions, and let a be a finite value. We say that f and g share the value a CM, provided that $f - a$ and $g - a$ have the same zeros and each common zero of $f - a$ and $g - a$ has the same multiplicity related to f and g. Similarly, we say that f and g share a IM, provided that $f - a$ and $g - a$ have the same zeros, and each common zero of $f - a$ and $g - a$ is counted only once. In this paper, we also need the following definition:

Definition 1.1. ([16],[34]) For a nonconstant entire function f, the order $\rho(f)$ and the hyper-order $\rho_2(f)$ are defined as

$$
\rho(f) = \lim_{r \to \infty} \frac{\log T(r, f)}{\log r} = \lim_{r \to \infty} \frac{\log \log M(r, f)}{\log r}
$$

and

$$
\rho_2(f) = \lim_{r \to \infty} \frac{\log \log T(r, f)}{\log r} = \lim_{r \to \infty} \frac{\log \log \log M(r, f)}{\log r}
$$

respectively, where and in what follows, $M(r, f) = \max_{|z|=r} |f(z)|$.

In 1977, Rubel-Yang [28] proved that if an entire function f shares two distinct finite complex numbers CM with its derivative f', then $f = f'$. What is the relation between f and f', if an entire function f shares one finite complex number a CM with its derivative f'? In 1996, Brück [5] made a conjecture that if f is a nonconstant entire function satisfying $\rho_2(f) < \infty$, where $\rho_2(f)$ is not a positive integer, and if f and f' share one finite complex number a CM, then $f - a = c(f' - a)$ for some constant $c \neq 0$. For the case that $a = 0$, the above conjecture had been proved by Brück [5]. Brück [5] also proved the above conjecture is true, provided that $a \neq 0$ and $N(r, \frac{1}{f'}) = S(r, f)$, where f is an entire function. Later on, Gundersen-Yang [11], Chen-Shon [8] proved that the above conjecture is true, provided that $\rho(f) < \infty$ and $\rho_2(f) < 1/2$ respectively, where f is an entire function. In 2005, Al-Khaladi [1] showed that the conjecture remains true for a nonconstant meromorphic function f such that $N(r, \frac{1}{f'}) = S(r, f)$. In this direction, some other research works have been obtained, see, e.g., Al-Khaladi [2, 3], Banerjee-Bhattacharjee [4], Chang-Zhu[6], Chang-Fang[7], Heittokangas-Korhonen-Laine-Rieppo-Zhang[13], Lahiri-Sarkar [15], Li-Gao [19, 20], Li-Yi [21-26], Wang [29], Wang-Laine [30], Wang-Li [31], Xiao-Li [32], Zhang [35], Zhang-Yang [36-37]. But the conjecture remains open by now.

We first recall the following result due to Gundersen and Yang:

Theorem A. ([11,Theorem 1]) Let f be a nonconstant entire function of finite order, and let $a \neq 0$ be a finite complex number. If f and f' share a CM, then $f' - a = c(f - a)$ for some nonzero constant c.

Wang [29] obtained the following result to improve Theorem A:

Theorem B. ([29,Theorem 1]) Let f be a nonconstant entire function of finite order, let P be a polynomial with degree $p \geq 1$, and let k be a positive integer. If $f - P$ and $f^{(k)} - P$ share 0 CM, then $f^{(k)} - P = c(f - P)$ for some nonzero constant c.
One may ask, what can be said about the relationship between a meromorphic function \(f \) and \(f^{(k)} \), if \(f \) and \(f^{(k)} \) share a CM, where \(f \) is a nonconstant meromorphic function of finite order, \(k \geq 1 \) is a positive integer and \(a \neq 0 \) is constant? In this direction, we will prove the following result:

Theorem 1.1. Let \(f \) be a transcendental meromorphic function of finite order such that \(f^{(m)} \) has finitely many zeros for some \(m \geq 2 \), and let \(a \neq 0 \) be a finite complex value. If \(f \) and \(f^{(k)} \) share a CM, then \(f \) is a transcendental entire function such that \(f^{(k)} - a = c(f - a) \) for some nonzero constant \(c \).

If we remove the assumption “\(f \) is of finite order” in Theorem 1.1, then we have the following result by Lemma 2.2 in Section 2 of this paper:

Theorem 1.2. Let \(f \) be a transcendental meromorphic function such that \(f^{(m)} \) and \(f^{(n)} \) have finitely many zeros for some two distinct nonnegative integers \(m \) and \(n \) satisfying \(0 \leq m \leq n - 2 \), and let \(a \neq 0 \) be a finite complex value. If \(f \) and \(f^{(k)} \) share a CM, where \(k \geq 1 \) is a positive integer, then \(f \) is a transcendental entire function such that \(f^{(k)} - a = c(f - a) \) for some complex constant \(c \neq 0 \).

The following example shows that the assumption “\(f \) is of finite order” in Theorem 1.1 is necessary:

Example 1.1.([11]) Let

\[
f(z) = \frac{2e^z + z + 1}{e^z + 1}.
\]

Then \(\rho(f) = 1 \) and

\[
f(z) - 1 = \frac{e^z + z}{e^z + 1}, \quad f'(z) - 1 = -\frac{e^z(e^z + z)}{(e^z + 1)^2},
\]

and

\[
f''(z) = \frac{[(z - 3)e^z - (z + 1)]e^z}{(e^z + 1)^3}.
\]

Therefore, \(f \) and \(f' \) share 1 CM such that

\[
\frac{f'(z) - 1}{f(z) - 1} = -\frac{e^z}{e^z + 1},
\]

\[
N\left(r, \frac{1}{f''}\right) = 2N\left(r, \frac{1}{e^z + 1}\right) + O(\log r) = 2T(r, e^z) + O(\log r),
\]

which implies that \(f'' \) has infinitely many zeros in the complex plane, and that the conclusion of Theorem 1.1 is invalid.

In 1995, Yi-Yang[34] posed the following question.

Question 1.1.([34, p.398]) Let \(f \) be a nonconstant meromorphic function, and let \(a \) be a finite nonzero complex constant. If \(f \), \(f^{(n)} \) and \(f^{(m)} \) share the value \(a \) CM, where \(n \) and \(m \) (\(n < m \)) are distinct positive integers not all even or odd, then can we get the result \(f = f^{(n)} \)?
Gundersen-Yang [11] proved the following result to deal with Question 1.1:

Theorem C. ([11, Theorem 2]) Let \(f \) be a nonconstant entire function of finite order, let \(a \neq 0 \) be a complex number, and let \(k \) be a positive integer. If \(a \) is shared by \(f \), \(f^{(k)} \) and \(f^{(k+1)} \) IM, and shared by \(f^{(k)} \) and \(f^{(k+1)} \) CM, then \(f = f' \).

From Theorem 1.1 and Theorem C we can get the following result:

Theorem 1.3. Let \(f \) be a transcendental meromorphic function of finite order such that \(f^{(m)} \) has finitely many zeros, for some \(m \geq 2 \); and let \(a \neq 0 \) be a finite complex value. Suppose that 0 is shared by \(f - a \), \(f^{(k)} - a \) and \(f^{(k+1)} - a \) IM, and shared by \(f^{(k)} - a \) and \(f^{(k+1)} - a \) CM, where \(k \geq 1 \) is a positive integer. Then, \(f \) is a transcendental entire function such that \(f = f' \).

2. Preliminaries

In order to prove our theorems in the present paper, we need the following preliminary results:

Lemma 2.1. ([17, Theorem 1.2]) Suppose that \(f \) is meromorphic of finite order in the plane, and that \(f^{(m)} \) has finitely many zeros, for some \(m \geq 2 \). Then \(f \) has finitely many poles.

Lemma 2.2. ([18]) Suppose that \(m \geq 0 \) and \(k \geq 2 \); and that \(f \) is meromorphic in the plane such that \(f^{(m)} \) and \(f^{(m+k)} \) each have finitely many zeros. Then \(f^{(m+1)} / f^{(m)} \) is a rational function. In particular, \(f \) has finite order and finitely many poles.

Lemma 2.3. ([16, Corollary 2.3.4]) Let \(f \) be a transcendental meromorphic function and \(k \geq 1 \) be an integer. Then \(m(r; f^{(k)}) = O(\log(rT(r,f))) \); outside of a possible exceptional set \(E \) of finite linear measure, and if \(f \) is of finite order of growth, then \(m(r; f^{(k)}) = O(\log r) \).

Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be an entire function. Next we define by \(\mu(r) = \max\{|a_n| r^n : n = 0, 1, 2, \cdots\} \) the maximum term of \(f \), and define by \(\nu(r,f) = \max\{m : \mu(r) = |a_m| r^m\} \) the central index of \(f \) (c.f.[14, p. 33-35]).

Lemma 2.4. ([Wiman-Valiron,[14, p.187-199]) Let \(g \) be a transcendental entire function, and let \(0 < \delta < 1/4 \). Then there exists a set \(E \subset R^+ \) of finite logarithmic measure, i.e., \(\int_E dt/t < +\infty \), such that for all \(z \) with \(|z| = r \not\in E \) and

\[|g(z)| > M(r,g) \nu(r,g)^{-\frac{1}{4}+\delta}, \]

one has

\[g^{(m)}(z) = \left(\frac{\nu(r,g)}{z} \right)^m \{1 + o(1)\} g(z), \]

where \(m \geq 0 \) is an integer.
Lemma 2.5. ([27, Corollary 1]) Let \(f(z) \) be an entire function of finite order and let \(\{w_n\} \) be an unbounded sequence. Assume that \(\bigcup_{n=1}^{\infty} \{z : f(z) = w_n\} \) has only \(k < \infty \) distinct limiting directions, then \(f(z) \) is a polynomial of degree at most \(k \).

Lemma 2.6. ([9, Lemma 2] or [10, Lemma 4]) If \(f \) is a transcendental entire function of hyper order \(\rho_2(f) \), then

\[
\rho_2(f) = \limsup_{r \to \infty} \frac{\log \log \nu(r, f)}{\log r}.
\]

3. Proof of Theorems

Proof of Theorem 1.1. First of all, by the assumption \(\rho(f) < \infty \) and the assumption that \(f^{(m)} \) has finitely many zeros for some \(m \geq 2 \) we have from Lemma 2.1 that \(f \) has finite many poles in the complex plane. We consider the following two cases:

Case 1. Suppose that \(f \) is not an entire function. Then, from the assumption that \(f - a \) and \(f^{(k)} - a \) share 0 CM we have

\[
f^{(k)} - a = h,
\]

where

\[
h = \frac{e^{\alpha_1}}{(z - \omega_1)^k(z - \omega_2)^k \cdots (z - \omega_{n-1})^k(z - \omega_n)^k}.
\]

Here \(\alpha_1 \) is an entire function. From (3.1) and (3.2) we have

\[
e^{\alpha_1} = (z - \omega_1)^k(z - \omega_2)^k \cdots (z - \omega_{n-1})^k(z - \omega_n)^k \cdot \frac{f^{(k)} - a}{f - a}.
\]

From (3.3), Lemma 2.3 and the assumption \(\rho(f) < \infty \) we deduce

\[
\rho(e^{\alpha_1}) \leq 2T(r, f) + O(\log r),
\]

as \(r \to \infty \). From (3.4) and Definition 1.1 we have \(\rho(e^{\alpha_1}) \leq \rho(f) < \infty \), which implies that \(\alpha_1 \) is a polynomial. From (3.2) we have

\[
\rho(e^{\alpha_1}) = \rho(h).
\]

Now we let

\[
F = P_0 f,
\]

where \(P_0 \) is a nonconstant polynomial such that \(P_0 \) and \(1/f \) share 0 CM. Then, \(F \) is a transcendental entire function. By calculation we get from (3.6) that
(3.7) \[
\frac{f^{(k)} - a}{f - a} = \sum_{j=0}^{k} \binom{k}{j} \frac{R_0^j}{R_0} \frac{f^{(k-j)}}{F} - \frac{aP_0}{F} \left(1 - \frac{aP_0}{F}\right)^{-1},
\]
where and in what follows,

(3.8) \[R_0 = \frac{1}{P_0}.
\]
By calculating we get from (3.8) and the definition of \(P_0\) that

(3.9) \[R_0' R_0 = m_1 z - \omega_1 + m_2 z - \omega_2 + \cdots + m_n z - \omega_n,
\]
where \(m_1, m_2, \ldots, m_n\) are negative integers. By induction we get from (3.9) that

(3.10) \[\frac{R_0^{(j)}}{R_0} = \frac{\{(-1)^{j-1}(j-1)! \sum_{i=1}^{n} m_i\}(1 + o(1))}{z^j},
\]
as \(|z| \to \infty\), where \(j\) is a positive integer satisfying \(1 \leq j \leq k\). Noting that \(F\) is a transcendental entire function, we know from the proposition of the central index (c.f.[14, p.33-35]) we can see that

(3.11) \[\nu(r, F) \to +\infty.
\]
Let

(3.12) \[M(r, F) = |F(z_r)|,
\]
where \(z_r = re^{i\theta(r)}\), \(\theta(r) \in [0, 2\pi)\) is some nonnegative real number. From (3.12) and Lemma 2.4 we know that there exists a subset \(E_j \subset (1, \infty)\) of finite logarithmic measure, i.e., \(\int_{E_j} \frac{dt}{t} < \infty\), such that for the points \(z_r = re^{i\theta(r)}, \theta(r) \in [0, 2\pi)\), as \(|z_r| = r \not\in E_j\) and \(M(r, F) = |F(z_r)|\), we have

(3.13) \[\frac{F^{(j)}(z_r)}{F(z_r)} = \left(\frac{\nu(r, F)}{z_r}\right)^j \{1 + o(1)\}.
\]
From (3.7), (3.10)-(3.13) we get

\[
\frac{f^{(k)}(z_r) - a}{f(z_r) - a} = \left. \frac{\sum_{j=0}^{k} \binom{k}{j} \frac{R_0^j}{R_0} \frac{f^{(k-j)}}{F} - \frac{aP_0}{F}}{1 - \frac{aP_0}{F}} \right|_{z=z_r}
\]
\[= \left\{\nu(r, F)\right\}^k \{1 + o(1)\} + N_0 \sum_{j=1}^{k-1} \binom{k}{j} \sum_{j=1}^{k-1} (-1)^{j-1}(j-1)! \{\nu(r, F)\}^{j-1} \{1 + o(1)\}
\]
\[= \frac{\{\nu(r, F)\}^k \{1 + o(1)\}}{z_r^k}
\]
\begin{align}
(3.14) \quad \left(\frac{\nu(r, F)}{z_r} \right)^k \{1 + o(1)\},
\end{align}

as \(r \not\in \bigcup_{j=1}^k E_j \) and \(r \to \infty \), where \(N_n = \sum_{i=1}^n m_i \).

Next we prove that \(\alpha_1 \), and so \(e^{\alpha_1} \) is a nonzero constant. Indeed, suppose that \(\alpha_1 \) is a nonconstant polynomial. Then

\begin{align}
(3.15) \quad \alpha_1(z) = p_l z^l + p_{l-1} z^{l-1} + \cdots + p_1 z + p_0,
\end{align}

where \(p_l, p_{l-1}, \cdots, p_1, p_0 \) are complex numbers and \(p_l = \gamma_l e^{i\theta_l} \neq 0, \gamma_l > 0 \). Given a positive number \(\varepsilon \), we set

\begin{align}
(3.16) \quad T_\varepsilon = \bigcup_{j=0}^{l-1} \{ z : |\arg z - \theta_j| < \varepsilon \},
\end{align}

where

\begin{align}
(3.17) \quad \theta_j = \left(\frac{2j}{l} + \frac{1}{2} \right) \pi - \frac{\theta_l}{l}, \quad 0 \leq j \leq l - 1.
\end{align}

Next we let \(w_j = f(z_{r_j}), \quad j = 1, 2, \cdots \). Then \(\{w_j\} \) is an unbounded sequence. We discuss the following two subcases:

Subcase 1.1. Suppose that \(T \) are the only \(l \) distinct limiting directions of \(\bigcup_{j=1}^{\infty} \{ z : F(z) = w_j \} \). First of all, from (3.6) we have \(\rho(F) = \rho(f) < \infty \). This together with Lemma 2.5 implies that \(F \) is a nonconstant polynomial. Combining this with (3.6), we can see that \(f \) is a rational function, which contradicts the assumption of Theorem 1.1.

Subcase 1.2. Suppose that there exists some sufficiently small positive number \(\varepsilon_0 \) and there exist some infinite subsequence of the points \(z_{r_j} \), say itself such that

\begin{align}
(3.18) \quad \{ z_{r_j} \} \subset C \setminus T_{\varepsilon_0}.
\end{align}

Noting that \(\cos(\theta_l + l\theta_j) = 0 \) for \(0 \leq j \leq l - 1 \), we can deduce from (3.12)-(3.18) that there exists a positive number \(\delta_1(l, \varepsilon_0) \in (0, \gamma_l) \) that depends only upon \(l \) and \(\varepsilon_0 \) such that

\begin{align}
(3.19) \quad |\text{Re} \alpha_1(z_{r_j})| \geq \delta_1(l, \varepsilon_0)r_j^l \quad \text{or} \quad |\text{Re} \alpha_1(z_{r_k})| \leq -\delta_1(l, \varepsilon_0)r_j^l,
\end{align}

as \(z_{r_j} \in C \setminus T_{\varepsilon_0}, \quad r_j \not\in E \) and \(r_j \to \infty \). Noting that \(|z_{r_j}| = r_j \), we have from (3.15), (3.17) and (3.19) that
\[
\begin{align*}
\delta_1(l, z_0) & \\
& \leq |\log |e^{\alpha_1(z_0)}|| \\
& \leq \log \left| (z_{r_j} - \omega_1)^k (z_{r_j} - \omega_2)^k \cdots (z_{r_j} - \omega_n)^k \right| \frac{\nu(r_j, F)^{n}}{z_{r_j}^k} + o(1) \\
& \leq k \log \nu(r_j, F) + kn \log r,
\end{align*}
\]

as \(z_{r_j} \in C \setminus T_{z_0} \), \(r_j \not\in E \) and \(r_j \to \infty \). From (3.15), (3.20) and Lemma 2.6 we have

\[
\rho(e^{\alpha_1}) = l \leq \limsup_{r \to \infty} \frac{\log \log \nu(r, f)}{\log r} = \rho_2(f).
\]

Again from the assumption \(\rho(f) < \infty \) and Definition 1.1 we have \(\rho_2(f) = 0 \). Combining this with (3.15) and (3.21), we have \(l = \deg(\alpha_1) = 0 \), and so \(\alpha_1 \) is a constant. Therefore, from (3.1) and (3.2) we have

\[
\frac{f^{(k)} - a}{f - a} = \frac{c}{(z - \omega_1)^k (z - \omega_2)^k \cdots (z - \omega_n)^k (z - \omega_n)^k},
\]

where \(c = e^{\alpha_1} \). From (3.17) and (3.22) we have

\[
\nu(r, F) \leq \frac{2 \pi k}{|z_r - \omega_1|^k (z_r - \omega_2)^k \cdots (z_r - \omega_n)^k (z_r - \omega_n)^k},
\]

as \(|z_r| = r \not\in \bigcup_{j=1}^k E_j \) and \(r \to \infty \). By letting \(|z_r| = r \to \infty \) and \(|z_r| = r \not\in \bigcup_{j=1}^k E_j \) on two sides of (3.24), we have

\[
\nu(r, F) \leq 3,
\]

as \(|z_r| = r \not\in \bigcup_{j=1}^k E_j \) and \(r \to \infty \). This contradicts (3.11).

Case 2. Suppose that \(f \) is an entire function. Then,

\[
\frac{f^{(k)} - a}{f - a} = e^{\alpha_2},
\]

where \(\alpha_2 \) is an entire function. From (3.25) we can see that \(f \) is a transcendental entire function. From (3.25) and Lemma 2.3 we have

\[
T(r, e^{\alpha_2}) \leq 2T(r, f) + O(\log r),
\]
as \(r \to \infty \). From (3.26) and Definition 1.1 we deduce \(\rho(e^{\alpha_2}) \leq \rho(f) < \infty \), and so \(\alpha_2 \) is a polynomial. If \(\alpha_2 \) is a constant, then the conclusion of Theorem 1.1 is valid. Next we suppose that \(\alpha_2 \) is nonconstant polynomial. Then, in the same manner as in the proof of (3.21) we have \(\rho(e^{\alpha_2}) \leq \rho_2(f) = 0 \), which implies that \(\alpha_2 \) is a constant, this is impossible. This completes the proof of Theorem 1.1.

Acknowledgements. The authors wish to express their thanks to the referee for his/her valuable suggestions and comments.

References

[1] A. Al-Khaladi, On meromorphic functions that share one value with their derivative, Analysis, 25(2005), 131-140.
[2] A. Al-Khaladi, On meromorphic functions that share one small function with their \(k \)th derivative, Results. Math., 57(2010), 313-318.
[3] A. Al-Khaladi, Meromorphic functions that share one finite value CM or IM with their \(k \)-th derivative, Results. Math., 63(2013), 95-105.
[4] A. Banerjee and P. Bhattacharjee, Uniqueness of meromorphic functions sharing one value with their derivatives, Mathematical Communications, 13(2008), 277-288.
[5] R. Brück, On entire functions which share one value CM with their first derivative, Results in Math., 30(1996), 21-24.
[6] J. M. Chang and Y. Z. Zhu, Entire functions that share a small function with their derivatives, J. Math. Anal. Appl., 351(2009), 491-496.
[7] J. M. Chang and M. L. Fang, Entire functions that share a small function with their derivatives, Complex Variables Theory Appl., 49(2004), 871-895.
[8] Z. X. Chen and K. H. Shon, On conjecture of R. Brück concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math., 8(2004), 235-244.
[9] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equation, Kodai Math J., 22(1999), 273-285.
[10] Z. X. Chen, The growth of solutions of \(f'' + e^{-z}f' + Q(z)f = 0 \), Science in China (A), 31(2001), 775-784.
[11] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl., 223(1998), 88-95.
[12] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[13] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. Zhang, Value sharing results for shifts of meromorphic functions and sufficient conditions for periodicity, J. Math. Anal. Appl., 355(2009), 352-363.
[14] G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel-Boston, 1985.
[15] I. Lahiri and A. Sarkar, *Uniqueness of a meromorphic function and its derivative*, J. Inequal. Pure and Appl. Math., 5(2004), Issue 1, Art. 20.

[16] I. Laine, *Nevanlinna Theory and Complex Differential Equations*, Walter de Gruyter, Berlin/New York, 1993.

[17] J. K. Langley, *The second derivative of a meromorphic function of finite order*, Bulletin London Math. Soc., 35(2003), 97-108.

[18] J. K. Langley, *Proof of a conjecture of Hayman concerning f and f″*, Bulletin London Math. Soc., 48(1993), 500-514.

[19] X. M. Li and C. C. Gao, *On a kth-order differential equation*, Ann. Polon. Math., 89(2006), 53-63.

[20] X. M. Li and C. C. Gao, *Entire functions sharing one polynomial with their derivatives*, Proc. Indian Acad. Sci. (Math. Sci.), 118(2008), 13-26.

[21] X. M. Li and H. X. Yi, *An entire function and its derivatives sharing a polynomial*, J. Math. Anal. Appl., 330(2007), 66-79.

[22] X. M. Li and H. X. Yi, *On uniqueness of an entire function and its derivatives*, Arch. Math., 89(2007), 216-225.

[23] X. M. Li and H. X. Yi, *Some results on the regular solutions of a linear differential equation*, Comput. Math. Appl., 56(2008), 2210-2221.

[24] X. M. Li and H. X. Yi, *Some further results on entire function sharing a polynomial with their linear differential polynomial*, Taiwanese J. Math., 12(2008), 2405-2425.

[25] X. M. Li and H. X. Yi, *On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial*, Czechoslovak Math. J., 59(2009), 1039-1058.

[26] X. M. Li and H. X. Yi, *Uniqueness of meromorphic functions sharing a meromorphic function of a smaller order with their derivatives*, Ann. Polon. Math., 98(2010), 207-219.

[27] J. Y. Qiao, *The value distribution of entire functions of finite order*, Kodai Math. J., 12(1989), 429-436.

[28] L. Rubel and C. C. Yang, *Values shared by an entire function and its derivative*, in “Complex Analysis, Kentucky 1976” (Proc.Conf.), Lecture Notes in Mathematics, Vol 599, pp. 101-103, Springer-Verlag, Berlin, 1977.

[29] J. P. Wang, *Entire functions that share a polynomial with one of their derivatives*, Kodai Math. J., 27(2004), 144-151.

[30] J. Wang and I. Laine, *Uniqueness of entire functions and their derivatives*, Comput. Methods and Function Theory, 8(2008), 327-338.

[31] J. Wang and X. M. Li, *The uniqueness of an entire function sharing a small entire function with its derivatives*, J. Math. Anal. Appl., 354(2009), 478-489.

[32] Y. H. Xiao and X. M. Li, *An entire function sharing one small entire function with its derivative*, Applied.Math.E-Notes, 8(2008), 238-245.

[33] L. Yang, *Value Distribution Theory*, Springer-Verlag, Berlin Heidelberg, 1993.

[34] C. C. Yang and H. X. Yi, *Uniqueness Theory of Meromorphic Functions*, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[35] Q. C. Zhang, *Meromorphic function that share one small function with its derivative*, J. Inequal. Pure and Appl. Math., 6(2005), Issue 4, Art. 116.

[36] J. L. Zhang and L. Z. Yang, *Some results related to a conjecture of R. Brück*, J. Inequal. Pure and Appl. Math., 8(2007), Issue 1, Art. 18.

[37] J. L. Zhang and L. Z. Yang, *Some results related to a conjecture of R. Brück concerning meromorphic functions sharing one small function with their derivatives*, Ann. Acad. Sci. Fenn. Math., 32(2007), 141-149.