The Farnesyl Group of H-Ras Facilitates the Activation of a Soluble Upstream Activator of Mitogen-activated Protein Kinase*

Paul McGeady‡, Shinya Kuroda§, Kazuya Shimizu§, Yoshimi Takaï§, and Michael H. Gelb¶

From the 1Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195 and the 2Department of Molecular Biology and Biochemistry, Osaka University Medical School, Osaka 565, Japan

To study the function of the farnesyl modification of Ras, the farnesyl group and a variety of its structural analogs, which lack one or more double bonds and/or the methyl groups, were enzymatically incorporated into recombinant H-Ras in vitro. These proteins were used in a cell- and membrane-free, Ras-dependent mitogen-activated protein kinase (MAP kinase) activation system derived from Xenopus laevis eggs to examine the contribution of the farnesyl group toward the activation of the kinase. Whereas non-farnesylated H-Ras is unable to activate MAP kinase, farnesylation of H-Ras alone, in the absence of further processing, is sufficient to cause the activation of MAP kinase in this system. All of the analogs of the farnesyl group, when incorporated into H-Ras, support the activation of the kinase to variable extents. These results suggest a direct but fairly nonspecific interaction of the farnesyl moiety of H-Ras with a soluble upstream activator of MAP kinase.

The Ras GTP-binding proteins play a pivotal role in a variety of signal transduction and differentiation processes (1, 2). Ras is also involved in the generation of a number of human cancers, and several oncogenic point mutations of Ras are known (3, 4). Ras is activated by the conversion of the GDP-bound inactive form to the GTP-bound active form in response to various extracellular signals (5). A variety of extracellular signals can activate mitogen-activated protein kinase (MAP kinase) (also known as extracellular signal-regulated kinase (ERK)) through both Ras-dependent and Ras-independent mechanisms (6). A Ras-dependent pathway linking the epidermal growth factor receptor to MAP kinase, through the protein kinase Raf, has been elucidated (7, 8). A Ras-dependent, Raf-independent MAP kinase activation system has also been identified (9, 10).

Ras proteins are part of the group of proteins that are post-translationally prenylated (11). In the case of Ras, this modification involves the attachment of the farnesyl group to the protein through a thioether linkage to a cysteine located four residues from the carboxyl terminus, followed by removal of the three carboxyl-terminal amino acids and methylation of the newly exposed α-carboxyl group of the farnesyl cysteine residue (12). Additionally, H-Ras and N-Ras, but not K-Ras, undergo palmitylation at one or more upstream cysteine residues (13). Although necessary for the normal and oncogenic functions of many proteins, including Ras (14), the specific properties imparted by these post-translational modifications have, to a large extent, remained unclear. Prenylation of proteins has been implicated in membrane binding (13, 15) and in protein-protein recognition (16, 17). Furthermore, the relative contribution of each of the processing steps is unknown.

Previously we developed a cell-free assay system, derived from Xenopus laevis eggs, to identify a direct target molecule for Ras. In this system, Ras promotes the activation of MAP kinase through MAP kinase/ERK kinase (MEK). Using this system, we have identified a Ras-dependent MEK kinase termed REKS (Ras-dependent ERK Kinase Stimulator) (18). Subsequently, we have highly purified this protein and have determined that it is distinct from c-Raf-1, Mos, and mSte11, all of which are known to both phosphorylate and activate MEK (19). Furthermore, c-Raf-1 partially purified by Mono-S chromatography from X. laevis eggs did not cause activation of MAP kinase either in the presence or the absence of Ras under these assay conditions (20). We have previously shown that a fully processed K-Ras (i.e. farnesylated, proteolysed, and methylated) is far more active than unmodified K-Ras in the REKS-dependent activation of MAP kinase (19, 21). Similar results for the Ras-dependent activation of yeast adenylate cyclase have been reported (22, 23). In the earlier reports, we could not exclude the possibility that the unmodified Ras was denatured, nor was it possible to examine the individual processing steps of Ras (see above) to determine which of these steps provides the critical modification.

EXPERIMENTAL PROCEDURES

Materials—Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate are from American Radiolabeled Chemicals. Geranyl pyrophosphate, (7S,8Z)-6,7-dihydroryfarnesol, and 6,7,10,11-tetrahydrolfranesol were gifts from R. B. Croteau (Washington State University), D. Cane (Brown University), and Hoffman La Roche (Basel), respectively. 10,11-Dihydroyfranesol and (Z)-3-methyl-2-dodecenol were synthesized by reducing the corresponding methyl esters with LiAlH4 (24). The alcohols were converted to the pyrophosphates (25), and the products were purified by TLC using 1-propranol-protected concentrated NH4OH/water (6:3:1). The pyrophosphate esters were eluted from the TLC plates using 10 ml tetrahydroammonium hydroxide containing approximately 0.5% concentrated ammonium hydroxide. The tetrahydroammonium hydroxide was removed by loading the sample on a Sep-Pak C18 cartridge (Waters) washing with water and eluting with MeOH containing approximately 1% concentrated ammonium hy-
The farnesyl group and its analogs. After washing with 100 ml of buffer A, the pool of active fractions was applied to a Mono-Q column (95% pure). The protein was diluted with an equal volume of column buffer (20 mM Tris-HCl, pH 7.4, 20 mM MgCl₂) on ice and filtered (Amicon, YM-10) and applied to an S-200 gel filtration column (1.6 × 95 cm, Pharmacia). After elution with buffer A, the pool of active fractions was applied to a Mono-Q column (10/10, Pharmacia), which was eluted with a gradient (80 ml, 0–0.4 M NaCl in buffer A). The fraction having the highest activity in the PFT assay and by GTP binding was used in subsequent experiments. SDS-polyacrylamide gel electrophoresis (28) indicated that the incorporation of the farnesyl group and its analogs into H-Ras was also quantitative (not shown). B, structures of the farnesyl group and its analogs.

RESULTS

It has been proposed that the role of the farnesyl group is primarily to bind proteins to membranes (13). In the Ras- and Raf-dependent system, the primary function of Ras appears to be the recruitment of Raf to the plasma membrane, where this kinase is somehow activated through phosphorylation by an unknown kinase. Raf, in turn, activates the protein kinase MEK, which subsequently activates MAP kinase (7, 8). Although Raf has been identified as one of the downstream targets of Ras, recent evidence indicates that other targets exist (9, 10, 38, 39). In fact, Zheng et al. (40) have presented evidence that the Raf pathway plays only a relatively minor role in the growth factor-induced activation of MEK and, subsequently, of MAP kinase. Hence, an important aspect of the present system is that it is membrane free. To confirm
A Soluble MAP Kinase System Activated by Farnesyl H-Ras

For the present studies, we used REKS that was partially purified from X. laevis eggs by ion exchange chromatography to a completely soluble form to study the role of the farnesyl group of Ras in promoting the activation of MAP kinase. We have been able to quantitatively farnesylate recombinant H-Ras produced in Escherichia coli by incubation with FPP and recombinant PFT (Fig. 1). The unmodified H-Ras was prepared in such a way as to produce an intact carboxy-terminal CVIS sequence, necessary for farnesylation. Lower than maximal incorporation of the farnesyl group into H-Ras is observed when using other procedures for isolating this protein, probably due to proteolytic damage at the carboxyl terminus.

Using Mono-Q purified REKS, the GTP$_S$-bound form of non-prenylated H-Ras, even at high concentrations, does not detectably activate MAP kinase (Fig. 2, B and C). In marked contrast, farnesylated but otherwise unprocessed GTP$_S$-H-Ras, produced by the in vitro farnesylation of recombinant H-Ras, is as active as fully processed H-Ras or K-Ras in activating MAP kinase. Fully processed K-Ras was used as a standard to compare the activity of the modified H-Ras proteins due to the difficulty in purifying and handling fully processed H-Ras. However, fully processed H-Ras supports activation of MAP kinase, through REKS, to roughly the same extent as fully processed K-Ras (Fig. 2A).

This result clearly shows that inactive unmodified H-Ras can be converted to a fully active form solely by farnesylation, and thus further processing (carboxy-terminal proteolysis and methylation and palmitoylation) are not required.

To determine if the precise structure of the farnesyl group is necessary for REKS-dependent activation of MAP kinase, a variety of farnesyl analogs (Fig. 1B) were also incorporated enzymatically into recombinant H-Ras (Fig. 2A). Using this method, the activity of these differently modified proteins toward the activation of MAP kinase in the cell-free system described above was examined (Fig. 2, B and C). H-Ras proteins containing the farnesyl analogs were able to support the activation of MAP kinase to variable extents. A significant dependence on the size of the prenyl group was observed (Fig. 2B); H-Ras bearing the longer 20-carbon geranylgeranyl group was the best activator, while H-Ras containing the shorter 10-carbon geranyl group was the least potent activator. With regard to the structurally modified farnesyl analogs, saturation of either of the more distal double bonds of geranylgeranyl transferase I in the absence of geranylgeranyl pyrophosphate also caused no activation. 100% MBP phosphorylation is the activation caused by 50 nM fully processed GTP$_S$-H-Ras and protein-phosphorylation is the activation caused by 50 nM fully processed GTP$_S$-K-Ras in this case, 100% = 43.3 pmol. C, activation of MAP kinase, as measured by the incorporation of 32P into MBP by the indicated concentrations of GTP$_S$-H-Ras containing prenyl chains of different length. □, fully processed K-Ras; ○, farnesylated H-Ras; ●, farnesylated H-Ras; ○, geranylgeranylated H-Ras; ●, geranylated H-Ras; ○, non-prenylated H-Ras, prepared by in vitro prenylation with all of the reaction components except FPP. Control prenylations with H-Ras in the absence of PFT or H-Ras (CVLL) and protein-phosphorylation is the activation caused by 50 nM fully processed GTP$_S$-K-Ras in this case, 100% = 43.3 pmol. The results shown are representative of three independent experiments. The error for each individual point is less than ±10%.
the farnesylation of the prenyl group with some soluble component or components of the system, is interacting at least in part through its prenyl group with some soluble component of the MAP kinase activation system.

As shown in Fig. 3, the GDPβS-bound form of farnesylated H-Ras is weakly stimulatory but does inhibit the stimulation of MAP kinase by farnesylated GDPγS-H-Ras, giving 50% inhibition at approximately 30 nM. Non-farnesylated GDPγS-H-Ras neither activates MAP kinase nor inhibits the activation of MAP kinase by farnesylated GDPγS-H-Ras. This result also suggests that the farnesylation group is needed for the binding of H-Ras to some protein component of the MAP kinase activation system.

DISSCUSSION

Based on the current studies it is concluded that inactive bacterially produced H-Ras can be converted to an active form solely by farnesylation using FPP and recombinant PFT. Our results indicate that farnesylation of Ras is the critical modification needed for the Ras- and REKS-dependent activation of MAP kinase and that further processing (proteolysis, methylation, and palmitoylation) is not necessary for this aspect of Ras function. This is demonstrated by the results showing that the farnesylated but otherwise unprocessed H-Ras is comparable to fully processed K-Ras or H-Ras in its ability to stimulate MAP kinase in this system. This is further illustrated by the inability of non-farnesylated H-Ras to either stimulate the activity or to inhibit the activity caused by the farnesylated H-Ras. It appears that the dependence of REKS-mediated stimulation of MAP kinase by Ras on the farnesyl group arises from a fairly nonspecific hydrophobic interaction of the prenyl group with some soluble component of the system. The various analogs of the farnesyl group, when incorporated into H-Ras, cause only relatively small changes in the extent of activation.

We have recently purified a REKS activity from bovine brain cytosol. The bovine REKS was found to be a complex of three proteins, one of which was B-Raf (41). While the Xenopus REKS did not cross-react with anti-B-Raf antibody (18), we cannot rule out that Xenopus REKS is an isoform of Raf. Clearly, the interaction of this protein with Ras is different than that previously described for Raf (7, 8). Unlike the membrane binding function of Ras described previously, the effects of farnesylation in this system are not the result of membrane binding, as no membranes are present in the assay. Moreover, if the role of the farnesyl group in the H-Ras- and REKS-dependent activation of MAP kinase is only to bind H-Ras to membranes or other possible interfaces in this in vitro system, the level of maximal activation caused by all of the lipiddated H-Ras proteins should be the same; the results in Fig. 2 clearly show that this is not the case. Taken together, the data strongly suggest that there is a direct interaction of the farnesyl group of H-Ras with REKS, or with an as yet undetermined soluble component of the system, and that the activation of MAP kinase, in this system, is not dependent on the binding of Ras to membranes. Alternatively, prenylation may cause a structural change in Ras, which allows it to interact with its target protein. In any case, these experiments demonstrate a role for the prenyl group of Ras, which is distinct from that of a simple membrane anchor and is more similar to the prenyl protein interaction model described for heterotrimeric G proteins in which the prenyl group appears to play a crucial role in subunit interaction (16).

REFERENCES

1. Weismuller, L., and Wittinghofer, F. (1994) Cell. Signalling 6, 247–267
2. McCormick, F. (1994) Curr. Opin. Genet. & Dev. 4, 71–78
3. Pawson, T., and Hunter, T. (1994) Curr. Opin. Genet. & Dev. 4, 1–4
4. Moody, S. A., and Wolfman, A. (1994) Trends Genet. 10, 44–48
5. Takai, Y., Kaibuchi, K., Ikuchi, A., Sasaki, T., and Shirakata, H. (1993) Cell 76, 128–146
6. Ahn, N. G. (1993) Mol. Cell. Biochem. 127, 201–209
7. Robinson, S. J., Paterson, H. F., and Marshall, C. J. (1994) Nature 369, 411–414
8. Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M., and Hancock, J. F. (1994) Science 264, 1463–1467
9. Lange-Carter, C. A., Pieman, C. M., Gardner, A. M., Blumer, K. J., and Johnson, G. L. (1993) Science 260, 315–319
10. Lange-Carter, C. A., and Johnson, G. L. (1994) Science 265, 1458–1461
11. Glomsset, J., Gelb, M. H., and Farnsworth, C. C. (1990) Trends Biochem. Sci. 15, 139–142
12. Clarke, S. (1992) Annu. Rev. Biochem. 61, 355–386
13. Newman, C. M. H., and Magee, A. I. (1993) Biochim. Biophys. Acta 1155, 79–96
14. Gibbs, J. B., Oliff, A., and Kohl, N. E. (1994) Cell 77, 175–178
15. Yamane, H., Farnsworth, C. C., Xie, H., Evans, T., Gelb, M. H., Glomssett, J. A., Clarke, S., and Fung, B. K. K. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 286–290
16. Higgins, J. B., and Casey, P. J. (1994) J. Biol. Chem. 269, 9067–9073
17. Marshall, C. J. (1993) Science 259, 1865–1866
18. Itoh, T., Kaibuchi, K., Masuda, T., Shimizu, K., Matsuura, Y., Maeda, A., Shimizu, K., and Takai, Y. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 975–979
19. Kuroda, S., Shimizu, K., Yamamato, T., Matsuura, Y., Maeda, A., Shimizu, K., and Takai, Y. (1995) J. Biochem. 120, 2460–2465
20. Shimizu, K., Kuroda, S., Yamamato, T., Matsuura, Y., Maeda, A., Shimizu, K., and Takai, Y. (1993) J. Biol. Chem. 269, 22917–22920
21. Itoh, T., Kaibuchi, K., Masuda, T., Yamamato, T., Matsuura, Y., Maeda, A., Shimizu, K., and Takai, Y. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 975–979
22. Kuroda, S., Shimizu, K., Yamamato, T., Matsuura, Y., Maeda, A., Shimizu, K., and Takai, Y. (1993) J. Biol. Chem. 268, 3025–3028
23. Hormuth, K., Tatsuta, M., Iizuka, T., Irie, K., Matsumoto, K., and Takai, Y. (1992) J. Biol. Chem. 267, 4515–4520
24. Kuroda, Y., Suzuki, N., and Kadakia, T. (1993) Science 259, 683–686
25. Eldred, A., Buchedel, R., Kirsten, H., and Liao, J. (1995) Acta. Scand. B 29, 1015–1023
26. Corrinth, R. H., and Popjak, G. (1969) Methods Enzymol. 15, 359–390
27. Gross, M., Sweet, R. W., Sathe, V., Yokoyama, S., Fasano, O., Goldfarb, M., Wiegler, M., and Rosenberg, M. (1985) Methods Enzymol. 12, 680–685
28. Pompliano, D. L., Rands, E., Sabache, M. D., Moser, S. D., Anthony, N. J., and Gibb, J. B. (1992) Biochemistry 31, 3800–3807
29. Laemmli, U. K. (1970) Nature 227, 680–685
A Soluble MAP Kinase System Activated by Farnesyl H-Ras

30. Gerhart, J., Wu, M., and Kirschner, M. (1984) J. Cell Biol. 98, 1247-1255
31. Ferrell, J. E., Jr., Wu, M., Gerhart, J. C., and Martin, G. S. (1991) Mol. Cell. Biol. 11, 1965-1971
32. Shibuya, E. K., Boulton, T. G., Cobb, M. H., and Ruderman, J. V. (1992) EMBO J 11, 3963-3975
33. Smith, D. B., and Johnson, K. S. (1988) Gene (Amst.) 67, 31-40
34. Mizuno, T., Kaibuchi, K., Yamamoto, T., Kawanou, M., Sakoda, T., Fujioka, H., Matsuura, Y., and Takai, Y. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 6442-6446
35. Kawahara, F. K. (1968) Anal. Chem. 40, 2073-2075
36. Hanel, A. H., and Gelb, M. H. (1995) Biochemistry 34, 7807-7818
37. Diez, E., Chilton, F. H., Stroup, G., Mayer, R. J., Winkler, J. D., and Fonteh, A. N. (1994) Biochem. J. 301, 721-726
38. Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J. (1994) Nature 370, 527-532
39. Kodaki, T., Woscholski, R., Hallberg, B., Rodriguez-Viciana, P., Downward, J., and Parker, P. J. (1994) Curr. Biol. 4, 798-806
40. Zheng, C.-F., Ohmichi, M., Saltiel, A. R., and Guan, K.-L. (1994) Biochemistry 33, 5595-5599
41. Yamamori, B., Kuroda, S., Shimizu, K., Fukui, K., Ohtsuka, T., and Takai, Y. (1995) J. Biol. Chem. 270, 11723-11726