Quantum correlations in a cluster-like system

Yi-Xin Chen,† Sheng-Wen Li,† and Zhi Yin‡

Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
College of Science, Ningbo University of Technology, Ningbo 315000, China

We discuss a cluster-like 1D system with triplet interaction. We study the topological properties of this system. We find that the degeneracy depends on the topology of the system, and well protected against external local perturbations. All these facts show that the system is topologically ordered. We also find a string order parameter to characterize the quantum phase transition. Besides, we investigate two-site correlations including entanglement, quantum discord and mutual information. We study the different divergency behaviour of the correlations. The quantum correlation decays exponentially in both topological and magnetic phases, and diverges in reversed power law at the critical point. And we find that in TQPT systems, the global difference of topology induced by dimension can be reflected in local quantum correlations.

PACS numbers: 03.67.Mn, 64.70.Tg

I. INTRODUCTION

Nowadays, quantum correlation has been attracting much attention since it plays a crucial role in quantum computation and quantum information. Entanglement, as an important quantum resource, takes responsibility for most quantum information tasks such as quantum teleportation and computation [1]. But entanglement is fragile in open systems. Environment induced decoherence destroys entanglement correlation in a short time, which makes quantum task difficult for implementation.

However, recent research shows that entanglement may not be the only worker carrying on quantum tasks. The quantum correlation without entanglement may also take effect in some scenes, e.g., the quantum computation with mixed states plus one pure qubit (DQC1) [2–4].

Quantum discord is developed for the measure of “quantunness” of a pairwise correlation [5]. It makes it clear that entanglement is one kind of nonclassical correlation but not all. The quantum discord of some separable states is also nonzero. It may be used as a powerful tool to study quantum correlations.

Lots of work has been devoted to the study of correlations in different processes, like decoherence and quantum phase transition [6–13]. The entanglement of formation [14] does not behave smoothly like the correlation functions, and shows sudden death and rebirth in some scenarios [15], which attracts more and more researchers. The quantum discord is pointed out to signal the quantum phase transition like fidelity [16], while our previous work also find that in topological quantum phase transition (TQPT) the local correlations are classical and the quantum correlation hides in the global system [5].

The topological order is a new kind of order beyond the conventional symmetry-breaking theory. In topological order system, the degeneracy of the ground space depends on the topology of the system configuration, and the degenerate ground space is well protected against local perturbation. Such properties can be used for fault-tolerant computation [17–19]. Another talent idea is the measurement-based computation, in which a cluster state is prepared and measured as the computation process [20]. There are deep relationship between these two methods of computation.

In this paper, we study the pairwise correlations in a 1D cluster-like system with triplet interaction, which can be implemented in optical lattice [21]. We discuss the properties of the topological order in the system, like the boundary dependent degeneracy and topological protection. We find the string order parameter (SOP) by the method of duality map [22, 23] to characterize TQPT.

Furthermore, the system can be decomposed as two independent chains of odd and even sites respectively, namely, the spin on site \(i \) is independent of spin on site \(i + (2n + 1) \) where \(n \) is integer, and we call this “bridge correlated”.

The divergency of quantum discord with the distance of two site is studied. We find that it behaves in the similar way as the correlation functions, i.e., it decays exponentially in both topological and magnetic phase areas and diverges in reversed power law at the critical points.

Moreover, the study of the quantum discord and entanglement shows that the local quantum correlation of two sites is suppressed in topological phase area. This is different from the study in 2D TQPT [9], in which local quantum correlations vanish completely. And that means in TQPT systems the global difference of the topology caused by dimension can be reflected in the local quantum correlations.

The paper is organized as follows. In Sec. II, we show the basic model of this cluster-like system, we discuss the topological properties like the degeneracy of the ground space and the topological protection. In Sec. III, we study the quantum correlation of this model. We investigate quantum discord, correlation length and mutual information. Finally, we draw summary in Sec. V.
Figure 1: Configuration of the system in optical lattice implementation. Tunneling between the nearest three sites (black points) in a triangle gives rise to the triplet interaction term.

II. TOPOLOGICAL PROPERTIES OF CLUSTER-LIKE SYSTEM

In this section, we introduce the 1D cluster-like system originally proposed for quantum computation in optical lattice [21]. We calculate the basic property of low-energy spectrum. In 1D world, there are not too many kinds of different topology that we are interested in, except for the open string and the closed loop, which correspond to open and periodic boundary conditions respectively. We show that the degeneracy of the ground space is different in these two cases. Besides, the degeneracy is immune to local perturbation. These are the typical characters of topological order. And we find the SOP to characterize the quantum phase transition.

A. The model of cluster-like system

Here, we describe the model we discussed. The Hamiltonian of the system is described as follows,

\[H = -J \sum_i (\sigma^+_{i-1} \sigma^+_{i} \sigma^-_{i+1} + B \sigma^+_{i}) \equiv -J \sum_i (S_i + B \sigma^+_{i}), \]

(1)

where \(J > 0 \), \(\sigma^\pm \) is the Pauli matrix acting on the \(i \)-th site and \(S_i = \sigma^+_{i} \sigma^-_{i+1} \).

The model is originally proposed in Ref. [21] for quantum computation. It can be implemented in optical lattice. Atoms are arranged in a triangle lattice as shown in Fig. 1. Tunneling happens in the nearest three sites, which gives rise to the triplet interaction term. The one body term can be adjusted by Zeeman effect and appropriate laser field.

When \(B = 0 \), the ground space is the common eigenspace of \(S_i \)'s that satisfies \(S_i \vert \text{g.s.} \rangle = \vert \text{g.s.} \rangle \), which is a typically cluster-like space [24]. Cluster states are a kind of graph states, which play an essential role in measurement-based quantum computation [20].

Here we analyze the low energy spectrum of the system Eq. (1) in the stabilizer scheme [13, 22]. All \(S_i \)'s commute with each other, so we can treat the ground space of the system as the protected space of a set of independent stabilizer generators \(\{ S_i \} \).

In the stabilizer scheme, we have \(N \) qubits and \(K \) independent stabilizer generators which are the products of Pauli operator \(\sigma^\pm \)'s. The stabilizer generators commute with each other, and the common eigenspace of the stabilizers satisfying \(S_i \vert \Phi \rangle = \vert \Phi \rangle \) is called the protected space, whose dimension is just \(2^{N-K} \), i.e., the stabilizers encode \(N - K \) logical qubits in the protected space.

Assume we have \(N \) sites in the system Eq. (1), when \(B = 0 \), it is easy to see that the number of \(S_i \)'s is \(N \) under periodic boundary condition, and \(N - 2 \) under the open boundary condition. The dimensions of the protected space of \(\{ S_i \} \) are \(2^0 = 1 \) and \(2^2 = 4 \) respectively. That is to say, the ground space of the system Eq. (1) is undegenerated under the loop boundary condition, and 4-fold degenerated when it is opened, with the absent of external field term.

Another important property of the system is that all the local correlation functions, except those composed of products of several \(S_i \)'s, are zero. As an example, for \(\tilde{\sigma} = \sigma^x_i \sigma^x_j \), we can always find certain \(S_k \) which anti-commutes with \(\tilde{\sigma} \), so that \(\langle \tilde{\sigma} \rangle = \langle \tilde{\sigma} S_k \rangle = -\langle S_k \tilde{\sigma} \rangle = -\langle \tilde{\sigma} \rangle = 0 \). And the system possesses \(Z_2 \)-symmetry, i.e., \([H, \prod \sigma^j_i] = 0 \). These are important properties as we will see below.

When \(B \neq 0 \), by means of Jordan-Wigner transformation

\[\begin{align*}
\sigma^x_i &= (c^\dagger_i + c_i) \prod_{j<i}(1 - 2c^\dagger_j c_j), \\
\sigma^z_i &= 2c_i c_i - 1,
\end{align*} \]

(2)

we can transform the system Eq. (1) into a fermion chain,

\[-H/J = \sum_i (c_{i-1} - c_i^\dagger)(c_{i+1} + c_{i+1}) + B(2c_i^\dagger c_i - 1). \]

(3)

We can see that the system can be regarded as two independent chains containing odd and even sites respectively.

Under the periodic boundary condition, the system possesses translational invariance. So it can be diagonalized in Fourier representation,

\[-H/J = \sum_k e^{-2i\theta_k}(a_{-k}^\dagger a_{-k})(a_{-k} + a_{-k}^\dagger) + B(2a_{-k}^\dagger a_{-k}^\dagger - 1), \]

(4)

where \(c_n = \sum_k e^{i\gamma_k}a_k/\sqrt{N} \). By using Bogoliubov transformation, we get the diagonalized Hamiltonian,

\[H/J = \sum_k \epsilon_k(2\gamma_k^\dagger \gamma_k - 1), \]

(5)

where \(\epsilon_k = (1 + B^2 - 2B \cos 2k)^{1/2} \), \(a_k = \cos \theta k \gamma_k + i \sin \theta k \gamma_k^\dagger \) and \(\tan 2\theta_k = \sin 2k/(B - \cos 2k) \).

When the string is opened, it is difficult to get the low energy spectrum and we will discuss the degeneracy of the ground space by perturbation method in the following part.

B. Topologically protected degeneracy

When the string is opened, the ground space is 4-fold degenerated when \(B = 0 \), as mentioned above. Actually
each independent chain contributes two states. In this part, we show that this degeneracy is protected against external local perturbations. More exactly speaking, the energy splitting caused by perturbation tends to zero in the thermodynamical limit.

As the string is opened, Fourier transformation does not take effect. We calculate the splitting of the ground state energy. Assume the external field is absent at the time \(t \to -\infty \), and adiabatically switched on. That is to say, we construct a new Hamiltonian with time-dependent external field \(\lambda(t) = e^{-i|\eta|t} \), where \(\eta \) is infinitely small. At \(t = 0 \), the system comes back to Eq. 11. That is,

\[
H(t) = H_0 + \lambda(t)H'.
\]

Since \(\lambda(t) \) is switched on adiabatically, the system evolves from the cluster-like ground state \(|\Phi_0\rangle \) at \(t \to -\infty \) to an eigenstate \(|G\rangle \) of Eq. 11 at \(t = 0 \), which should be one of the splitted ground states [26, 27]. The average energy of the state \(|G\rangle \) is,

\[
\langle G|H(t = 0)|G\rangle = \langle \Phi_0|U^\dagger(0, -\infty)(H_0 + H')U(0, -\infty)|\Phi_0\rangle.
\]

\[
U(0, -\infty) = \text{exp} \left[-i \int_{-\infty}^{0} dt' H'^\dagger(t') dt \right] \quad \text{is the time-ordered evolution operator, expanded as}
\]

\[
U(0, -\infty) = 1 + (-i) \int_{-\infty}^{0} dt H'^\dagger(t)
\]

\[
+ (-i)^2 \int_{-\infty}^{0} dt_1 \int_{-\infty}^{t_1} dt_2 H'^\dagger(t_1) H'^\dagger(t_2) + \ldots,
\]

where the perturbation term in interaction picture is

\[
H'^\dagger(t) = (t_0) e^{iH_0t} H' e^{-iH_0t} = \lambda(t) \sum e^{-iJt(S_{-1} + S_{i+1})} \sigma_{i}^z e^{iJt(S_{-1} + S_{i+1})},
\]

ignoring the boundary terms without loss of generality. As \(e^{-iJtS_i} = \cos Jt - i \sin Jt S_i \), we can see that the inner product in Eq. 11 is composed of sum of multi-point correlation functions, which all vanish until the Nth order according to what we see in the last part. In the Nth term, global terms like \(\prod \sigma_{i}^z \) appear and take effect. We can interpret it as a virtual particle running along the whole string. Therefore, the energy splitting of the ground space is \(\sim \exp(-1/L) \), where \(L \) is the length scale of the system. In thermodynamical limit, \(L \to \infty \), the degeneracy is perfectly protected like the case in toric code [17].

As we see, degeneracy emerges when the loop is opened. Besides, the degeneracy is immune against local perturbation when it is not too strong. These properties show that the system is a topologically ordered system. We can see that there is a close relationship between cluster-like system and topological order. Here we regard both the topology related degeneracy and topological protection as the essential character of topological order.

C. String order parameter

Topological order is an unconventional phase that cannot be described by the symmetry-breaking of local order parameters [28]. When \(|B| \to \infty \), the system leaves the topological order and goes to a magnetized phase through quantum phase transition. We can find some global string order parameter to characterize the phase transition. Below, we show how to find the SOP by duality transformation [22, 23].

Under the periodic boundary condition, we make such duality transformation below to represent the system by another self-consistent Pauli algebra \(\{\mu_{i}^{x}\} \),

\[
\begin{align*}
\sigma_{i}^{x} &= \mu_{i+1}^{x}, \\
\sigma_{i}^{z} &= \prod_{j \leq i} \mu_{j}^{z}.
\end{align*}
\]

The system turns to be an XY-model,

\[
-H/J = \sum_{i} \mu_{i}^{y} \mu_{i+1}^{y} + B \mu_{i}^{x} \mu_{i+1}^{x}.
\]

Further, let \(\mu_{i}^{x} = \mu_{i}^{x}_{+} \mu_{i+1}^{x} \mu_{i+1}^{x} + B \mu_{i}^{x} \mu_{i+1}^{x} \mu_{i+1}^{x} \), the system can be mapped to Ising model in an external field,

\[
-H/J = \sum_{i} -\tau_{i}^{+} \tau_{i+1}^{+} + B \tau_{i}^{x} \tau_{i+1}^{x} .
\]

We can also see that the system is actually composed of two independent chains. Combining the two transformation together, we can see actually it is

\[
\begin{align*}
\sigma_{i}^{x} &= \tau_{i}^{+} \tau_{i+1}^{+}, \\
\sigma_{i}^{z} &= \tau_{i}^{-} \tau_{i+1}^{-}.
\end{align*}
\]

The three nearest sites in a triangle (see Fig. 1) make up a new site in the dual lattice. The regular triangles and the inverted ones construct two independent Ising chains respectively. \(\tau_{i}^{+} \) can be seen as the observable that measure the “vortex” of the \(i \)th triangle site, clockwised or counter-clockwised.

Lots of work has been devoted to discussing the quantum phase transition of Ising model. There is a long-range order in the dual system [29]. When \(|B| \geq 1 \), we have

\[
\lim_{j \to \infty} \langle \sigma_{0}^{x} \sigma_{2j}^{x} \rangle = \langle \sigma_{2j}^{x} \rangle^2 \sim \left[1 - 1/B^2 \right]^\frac{1}{2},
\]

while vanishes when \(|B| < 1 \). \(\sigma_{2j}^{x} \) can be regarded as the order parameter characterizing the phase transition at \(B = \pm 1 \). In the original spin representation, we can get the hidden SOP as

\[
\Delta_{\text{even(odd)}} = \prod_{j} \sigma_{2j+1}^{x} (1).\]

Note that we are treating two independent Ising chains.

When the loop is opened, some boundary terms appears, whose effect can be neglected in the thermodynamical limit. The physics does not change.
Here we emphasize that the existence of SOP is not the sufficient condition of topological order. As we see, we can also get SOP in the XY-model Eq. (11), i.e.,
\[\pi_0^2 \pi_2^2 = \prod_{i=0}^{2^{j-1}} \mu_i^2, \]
by the duality map, which is a conventional symmetry-breaking system studied so much. However, duality mapping is a useful tool to help us find the nonlocal order in topological order system.

III. PAIRWISE CORRELATIONS

In this section, we study the pairwise correlations in our cluster-like system, like the quantum discord and the entanglement of formation (EoF). Quantum discord is used as a measure for the “quantumness” of a pairwise state. Something interesting are found. We find that the quantum correlations are greatly suppressed in the topological order area compared with the magnetic polarized phase. The quantum discord decays exponentially as the distance of the two spins increases when \(|B| \neq 1 \), and diverges in reverse power law at critical points, in the behaviour exactly like the two-point correlation function. Only the EoF of the spins next-nearest is nontrivial, while that of spins further from each other vanishes.

A. Entanglement, mutual information and quantum discord

Entanglement, as the most important quantum resource, has been discussed lots and there are many different kinds of measures. One of the most sophisticated is the entanglement of formation (EoF) \(^{[30]}\). Entanglement of formation is an entanglement measure defined for bipartite quantum states as

\[E(\rho) \equiv \min_{\{p_i, |\psi_i\rangle\}} \left[\sum_i p_i S^E(|\psi_i\rangle) \right], \]

where \(\rho \) is the density matrix of the bipartite states and \(\{p_i, |\psi_i\rangle\} \) satisfies the condition that \(\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i| \). |\psi_i\rangle is a bipartite pure state and \(S^E(\cdot) \) gives the von Neumann entropy of the reduced density matrix of |\psi_i\rangle. For pure states case, this quantity reduces to the entropy of entanglement. For two-qubit system, fortunately, EoF can be express with concurrence \(^{[14]}\),

\[E(\rho) = -f(C) \log f(C) - (1 - f(C)) \log(1 - f(C)), \]

where \(f(C) = (1 + \sqrt{1 - C^2})/2 \). The concurrence \(C = \max[0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4] \) and \(\lambda_i \) are the square roots of the eigenvalues of the matrix \(\rho(\sigma^y \otimes \sigma^y) \rho^* (\sigma^y \otimes \sigma^y) \).

Mutual information \(^{[23]}\) quantifies the amount of common information shared by two subsystems. The classical mutual information is

\[I(A : B) = H(A) + H(B) - H(AB) = H(A) - H(A|B), \]

where \(H(\cdot) \) is the Shannon information and \(H(A|B) \) is the conditional information, which means the average information of \(A \) we gain when knowing the result of \(B \). A natural generalized quantum version is by change the Shannon information to von Neumann entropy,

\[I(\rho^{AB}) = S(\rho^A) + S(\rho^B) - S(\rho^{AB}). \]

Another generalization follows by giving the quantum measurement version of conditional entropy. The conditional entropy implies a measurement on \(B \) to get the information about \(A \). So we impose projective measurement \(\{\hat{\Pi}_i^B\} \) on \(B \) and collect the information,

\[J(\rho^{AB} : \{\hat{\Pi}_i^B\}) = S(\rho^A) - \sum_i p_i S(\rho_i^{AB} \hat{\Pi}_i^B / p_i), \]

where \(p_i = \text{Tr}\left[\hat{\Pi}_i^B \rho^{AB} \hat{\Pi}_i^B \right]. \)

Quantum discord is defined as the minima of the difference of \(I \) and \(J \),

\[D(\rho^{AB}) = \min I(\rho^{AB}) - J(\rho^{AB} : \{\hat{\Pi}_i^B\}). \]

Due to its power in mixed state quantum computation \(^{[2]}\), it has been discussed a lot recently.

Quantum discord can be used a measurement for the “quantumness” of the bipartite correlation. It clears that entanglement is not the only “quantum” state. For example, for a separable state \(\rho = |00\rangle\langle 00| / 2 + |+\rangle\langle +| / 2, \) where \(|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}, \) the quantum discord is not zero, which means \(\rho \) contains nonclassical correlation.

B. Pairwise state

To study the correlations in the system, we should first get the state of two spins, i.e., their reduced density matrix. The pairwise density matrix can be decomposed by a set of basis \(\{\frac{1}{4}(\sigma^\mu_i \sigma^\nu_j)\} \), where \(\mu \) and \(\nu \) takes 0, ..., 3 and \(\sigma_0^0 = 1 \). It can be easily checked that \(\{\frac{1}{4}(\sigma^\mu_i \sigma^\nu_j)\} \) is orthonormal under the Hilbert-Schmidt inner product \(\langle A|B \rangle_{\text{HS}} \equiv \text{Tr}(A^\dagger B) \) \(^{[9, 23, 31]}\). The reduced density matrix of two spins can be written as

\[\rho_{ij} = \frac{1}{4} \sum_{\mu} \sum_{\nu} \langle \sigma^\mu_i \sigma^\nu_j \rangle \sigma^\mu_i \sigma^\nu_j, \]

where \(\langle \sigma^\mu_i \sigma^\nu_j \rangle = \text{Tr}(\rho \sigma^\mu_i \sigma^\nu_j) = \text{Tr}(\rho_{ij} \sigma^\mu_i \sigma^\nu_j) \) is the Hilbert-Schmidt inner product of \(\rho_{ij} \) and \(\sigma^\mu_i \sigma^\nu_j \).

Because of the \(Z_2 \)-symmetry of the system mentioned before, most terms in Eq. \(^{[21]}\) can be elminated except that of \(1_{ij}, \sigma^\mu_i \sigma^\nu_j, \sigma^\mu_j \otimes 1_j \) and \(1_i \otimes \sigma^\nu_j \). So we just need to calculate the expectation value of \(\langle \sigma^\mu_i \sigma^\nu_{i+R} \rangle \) and \(\langle \sigma^z \rangle \). Since the system can be treated as two independent fermion chain like Eq. \(^{[3]}\), it can be seen that \(\langle \sigma^\mu_i \sigma^\nu_{i+R} \rangle \) is zero when \(R \) is odd.
From the Jordan-Wigner transformation Eq. (2), we can get \(\langle \sigma^z \rangle \) and \(\langle \sigma^x_0 \sigma^y_R \rangle \) directly (we take \(i = 0 \) without loss of generality).

\[
\langle \sigma^z \rangle = \langle (c_0 - c_1^0)(c_0 + c_1^0) \rangle = \langle A_0 B_0 \rangle,
\]
\[
\langle \sigma^x_0 \sigma^y_R \rangle = \langle (c_0 - c_1^0)(c_0 + c_1^0)(c_R - c_R^\dagger)(c_R + c_R^\dagger) \rangle = \langle A_0 B_0 A_R B_R \rangle,
\]
\[
\langle \sigma^x_0 \sigma^y_R \rangle = \langle (c_0 - c_1^0)(c_1 + c_1^0)(c_1 - c_1^0)(c_2 + c_2^0) \cdots (c_{R-1} - c_{R-1}^\dagger)(c_R + c_R^\dagger) \rangle = \langle A_0 B_1 A_1 B_2 \cdots A_{R-1} B_{R-1} B_R \rangle,
\]
\[
\langle \sigma^y_0 \sigma^y_R \rangle = (-1)^{R-1} \langle B_0 A_1 B_1 A_2 \cdots B_{R-1} A_R \rangle,
\]

where \(A_i = c_i - c_i^\dagger \) and \(B_i = c_i + c_i^\dagger \). We can check that \(\langle A_0 A_i \rangle = \langle B_0 B_i \rangle = 0 \) when \(i \neq 0 \), and the complicated expression in the brackets above can be handled with the help of Wick theorem [10, 32]. Let \(G_{j-i} = \langle A_i B_j \rangle \), we have

\[
\langle \sigma^z \rangle = G_0,
\]
\[
\langle \sigma^x_0 \sigma^y_R \rangle = G_0^2 - G_R G_{-R},
\]
\[
\langle \sigma^x_0 \sigma^y_R \rangle = \begin{vmatrix}
G_{-1} & G_{-2} & \cdots & G_{-R} \\
G_0 & G_{-1} & \cdots & G_{-(R-1)} \\
\vdots & \vdots & \ddots & \vdots \\
G_{R-2} & G_{R-3} & \cdots & G_{-1}
\end{vmatrix},
\]
\[
\langle \sigma^y_0 \sigma^y_R \rangle = \begin{vmatrix}
G_1 & G_0 & \cdots & G_{-(R-2)} \\
G_2 & G_1 & \cdots & G_{-(R-3)} \\
\vdots & \vdots & \ddots & \vdots \\
G_R & G_{R-1} & \cdots & G_1
\end{vmatrix}.
\]

And we have

\[
G_R = \langle A_0 B_R \rangle = \langle (c_0 - c_1^0)(c_R + c_R^\dagger) \rangle = \frac{1}{N} \sum_{p,q=-N/2}^{N/2} e^{2\pi i R e^{i(\theta_p + \theta_q)}} \langle (\gamma_p^1 - \gamma_p^-)(\gamma_{q}^1 + \gamma_{q}^-) \rangle.
\]

Now we can get the expressions of correlation functions above back into Eq. (21) and we have the reduced density matrix of any two spins in the system. Below, we will discuss the pairwise correlations in the system.

C. Local correlations in quantum phase transition

Now we discuss the correlations in the system. First, we calculate the EoF of two local spins. As we know, the nearest two spins are irrelevant. We give the EoF of the next-nearest spins shown in Fig. 2. In fact, numerical results show that the EoF of the two spins, whose distance is further than 2, is zero.

In Sec. II, we noted that the quantum phase transition can be characterized by SOP deduced from duality mapping, and the critical point lies at \(B = \pm 1 \). We can see that the EoF in “most” of the topological order area is zero and behaves like an order parameter, which is similar to the logarithmic negativity in previous work [21]. However, the EoF is born before reaching \(B = \pm 1 \), at the point around \(|B| \approx 0.9767 \). There is a tiny “gap” at the critical point, which results from the finite scale, and that would eliminate to a singular point in the thermodynamical limit.

We cannot treat EoF as an order parameter. However, it tells us that in the topological order area, local bipartite entanglement, as an important quantum correlation, is greatly suppressed. It invokes us to study the total quantum correlations in this area.

Second, we calculate the quantum discord of two spins with distance \(R \) in different magnetic field (Fig. 3), where \(R \) is even. Around the point \(B = 1 \), quantum discord has a tiny gap similar to that of EoF. These behaviours both root in the property of correlation functions and would eliminate to a singular point in the thermodynamical limit.

It was mentioned in Ref. [8] that in a 2D TQPT, local correlations are always classical and the quantum correlations hides in the whole lattice, which also happens in many other 2D TQPT systems. But things are different in 1D system (see Fig. 3).

In 2D topological order systems, there often exist many different conservative string operators whose paths are topologically equivalent, and we can always find one that anti-commutes with certain local observable. Therefore, most local correlation functions would be eliminated and the density matrix Eq. (21) become diagonalized.

However, in 1D systems, degrees of freedom are restricted. There are not so many topologically equivalent conservative string operators as in 2D. The 1D systems
do not possess such high symmetry as in 2D systems, and
many local correlation functions survive. The quantum
discord, which measures the quantumness of pairwise
correlations, only gives zero at the cluster state when \(B = 0 \).
Nevertheless, qualitatively speaking, we can see that the
quantum discord is still quite small in most of the topo-
logical order area compared with that in the area \(|B| > 1 \).
And we say that the local quantum correlation is greatly
suppressed in the topological phase area.

On the other hand, this means in TQPT systems the
global difference of topology induced by dimension is re-
flected in the local quantum correlations. The dimension
constrains the topology of the system, and also the types
of global conservative quantities. In systems with higher
dimension like Ref. \[9\], the external field term breaks
some global conservative operators, while the survival
ones are still capable to eliminate local quantum correla-
tions. However, in 1D systems like what we study in this
paper, there are not enough global conservative quanti-
ties left in the presence the magnetic field and the local
quantum correlations are just suppressed. The survival
of local quantum correlation reflects the global restriction
of the topology induced by dimension.

Besides, we are interested in the decay behaviour of
quantum discord along with the increase of the distance
of the two spins we study. Numerical results show that
the decay behaviours of the quantum discord and total
mutual information Eq. \[18\] are just similar to that of

two-point correlation functions, i.e., they decay exponen-
tially when \(|B| \neq 1 \) and with reversed power law at the
critical points. This is different from the sudden change
behaviour of EoF, although EoF and quantum discord
are defined in a similar way, namely, by finding the ex-
tremum. We show the exponential decay length of the
correlations with the magnetic field strength \(B \) in Fig. 4.

At the critical points \(B = \pm 1 \), the correlations diverge
as \(\sim R^{-\xi} \). We show them in Fig. 4(b). For quantum dis-
cord, \(\xi_D \approx 1.0576 \) and mutual information \(\xi_M \approx 1.0179 \),
and for the correlation function \(\langle \sigma_i \sigma_j \rangle \), \(\xi_{ZZ} \approx 2.0464 \).
We guess this may relate to the universal scaling factor.
When \(B = 0 \), the system is the cluster state. All local
quantum correlations vanish while quantum correlations
still hide in the chain globally.

IV. SUMMARY

We investigate a special model whose Hamiltonian con-
tains three-spin interactions. This model is composed of
a cluster and a magnetic term, and we discuss the topo-
logical properties of this system. The degeneracy of the
ground space differs in closed and open boundary condi-
tions, and the degeneracy is topologically protected. We
obtained the global SOP of this system by the method of
duality mapping to characterize the TQPT.

Further, we discuss quantum correlations of this sys-

Figure 3: The quantum discord is plotted versus \(B \) and \(R \) where \(B \) is the magnetic field strength parameter and \(R \) is the site’s number which correlates with site 0.

Figure 4: (Color online) (a) The decay length of quantum correlations (quantum discord, mutual information, and the correlation function \(\langle \sigma_i \sigma_j \rangle \)) are plotted versus magnetic field strength \(B \). (b) The decay behaviour at \(B = 1 \). The correlations decay as \(\sim R^{-\xi} \). We all take \(R \) as even.
tem. We calculate the quantum discord, mutual information and entanglement in this system. The EoF of two local spins is “dead” in most of the topological order area. Together with the study of quantum discord, we believe the quantum correlation is greatly suppressed in the topological order area. This is different from previous work in 2D TQPT [9], where local quantum correlations all vanish. We believe that is because in 1D systems, there is not so rich topology or high symmetry as in 2D systems.

On the other hand, in topological order systems, the dimension of the configuration constrains the topology of global conservative quantities. This global difference of topology induced by dimension can be reflected in the local quantum correlations. For example, the local quantum correlations survive in 1D TQPT systems, while completely vanish in 2D, where there are more global conservative quantities left which root in the richer topology of 2D systems.

Besides, we study the divergency behaviour of the correlations. The quantum discord and mutual information diverge in reversed power law at the critical points and exponentially elsewhere. We believe more work can be done on the study of the universal scaling behaviour of the divergency.

Acknowledgments

The work is supported in part by the NSF of China Grant No. 10775116, No. 11075138, and 973-Program Grant No. 2005CB724508.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[2] E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998).
[3] A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 100, 050502 (2008).
[4] F. F. Fanchini, M. F. Cornelio, M. C. de Oliveira, and A. O. Caldeira, arXiv: 1006.2460 (2010).
[5] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).
[6] R. Dillenschneider, Phys. Rev. B 78, 224413 (2008).
[7] P. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, arXiv: 0911.1096 (2009).
[8] M. S. Sarandy, Phys. Rev. A 80, 022108 (2009).
[9] Y.-X. Chen and S.-W. Li, Phys. Rev. A 81, 032120 (2010).
[10] J. Maziero, H. C. Guzman, L. C. Céleri, M. S. Sarandy, and R. M. Serra, Phys. Rev. A 82, 012106 (2010).
[11] Y.-X. Chen and Z. Yin, Commun. Theor. Phys 54, 60 (2010).
[12] X.-M. Lu, Z.-J. Xi, Z. Sun, and X. Wang, arXiv:1004.5281 (2010).
[13] Z.-Y. Sun, L. Li, K.-L. Yao, G.-H. Du, J.-W. Liu, B. Luo, N. Li, and H.-N. Li, Phys. Rev. A 82, 032310 (2010).
[14] W. K. Wootters, Phys. Rev. Lett. 89, 2245 (1998).
[15] C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, Phys. Rev. Lett. 101, 080503 (2008).
[16] J. Ma, X. Wang, and S.-J. Gu, Phys. Rev. E 80, 021124 (2009).
[17] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
[18] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[19] Z. Yin, S.-W. Li, and Y.-X. Chen, Phys. Rev. A 81, 012327 (2010).
[20] H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001).
[21] A. Kay, D. K. K. Lee, J. K. Pachos, M. B. Plenio, M. E. Reuter, and E. Rico, arXiv: quant-ph/0407121 (2004).
[22] E. Fradkin and L. Susskind, Phys. Rev. D 17, 2637 (1978).
[23] X.-Y. Feng, G.-M. Zhang, and T. Xiang, Phys. Rev. Lett. 98, 087204 (2007).
[24] W. Son, L. Amico, S. Pascazio, R. Fazio, and V. Vedral, arXiv: 1001.2656 (2010).
[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).
[26] M. Gell-Mann and F. Low, Phys. Rev. 84, 251 (1951).
[27] C. Brouder, G. Panati, and G. Stolz, Phys. Rev. Lett. 103, 230401 (2009).
[28] X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, Oxford, 2004).
[29] P. Pfeuty, Ann. Phys. (N. Y.) 57, 79 (1970).
[30] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).
[31] X. Wang and K. Mølmer, Eur. Phys. J. D 18, 385 (2002).
[32] E. Barouch and B. M. McCoy, Phys. Rev. A 3, 786 (1971).