SiaABCD – A threonine phosphorylation pathway that controls biofilm formation in

Pseudomonas aeruginosa

Wee-Han Poh‡, Jianqing Lin§, Brendan Colley¶, Nicolai Müller¶, Boon Chong Goh¶, David Schleheck¶, Andreas Marquardt¶, Yang Liang‡, Staffan Kjelleberg‡, Julien Lescar§, Scott A. Rice§, and Janosch Klebensberger†

* These authors contributed equally to the work

† Correspondence: janosch.klebensberger@itb.uni-stuttgart.de, rscott@ntu.edu.sg, julien@ntu.edu.sg

1University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany
2Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
3Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia (‡present address: Bio Molecular Systems, Sydney, Australia)
4Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, D-78464 Konstanz, Germany
5The School of Biological Sciences, Nanyang Technological University, Singapore
6the ithree Institute, The University of Technology Sydney, Sydney Australia
7NTU Institute of Structural Biology, Nanyang Technological University, Singapore
8Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore

Running title: The SiaABCD partner switch controls biofilm formation

Keywords: Signalling, Cell aggregation, Biofilms, PP2C, Protein kinase, SiaA, SiaB, SiaC, SiaD, c-di-GMP, *Pseudomonas aeruginosa*, Protein Phosphorylation, threonine phosphorylation pathway, protein-protein interactions, crystal structures, biofilm interference
Abstract

The looming antibiotic crisis and the critical role of biofilms in chronic infections call for novel and tailor-made anti-infective strategies. We previously characterised the PP2C-like phosphatase SiaA and the di-guanylate cyclase SiaD control the formation of macroscopic, suspended biofilms of *P. aeruginosa* cells in response to surfactant stress. We now demonstrate that this regulation is also important for cellular aggregation in response to carbon availability and provide compelling evidence that the SiaABCD pathway functions through a partner switch mechanism. Our study reveals that SiaA and SiaB represent a threonine-specific protein phosphatase/kinase switch regulating cellular aggregation by balancing the phosphorylation status of SiaC. From these data, we hypothesize that fine-tuning cellular aggregation through SiaABCD constitutes a general strategy used by *P. aeruginosa* to adapt to various environmental conditions and that this pathway represents a novel and promising target for the development of anti-infective drugs against this aggressive opportunistic pathogen.
Introduction

Biofilms are ubiquitous, multicellular structures embedded in a self-made matrix, that can occur attached to a solid surface, floating at the gas-liquid interface as a pellicle and can be freely suspended in the liquid phase as aggregates or flocs1–3. The ability to form and disperse from biofilms is a ubiquitous feature of microorganisms and is achieved by differential regulation and production of extracellular polymeric substances (EPS) such as polysaccharides, eDNA and proteinaceous surface adhesins4–6.

Matrix embedded aggregated cells embedded in biofilms are well known for their increased robustness under stressful environmental conditions compared to their single-cell, planktonic counterparts, which largely explains the evolutionary success of the biofilm lifestyle7–11. It is thus not surprising, that biofilm formation can be triggered as an adaptive response to oxidative and nitrosative stress12,13 and to the presence of toxic compounds such as antibiotics14,15, surfactants16,17 or primary fermentation products18,19. As a consequence, biofilms enable bacteria to survive in health-care settings despite the use of stringent hygiene regimes20–22 and to establish chronic infections despite the host immune system and therapeutic interventions23–28. Chronic infections are particularly problematic, as they are almost impossible to eradicate with conventional therapies29–32.

The regulation of biofilm development and virulence traits is complex and can include multiple, highly interconnected, signal transduction pathways33,6,34–37. In addition to quorum sensing (QS)38,39, nucleotide-based second messengers and changes in protein phosphorylation represent key mechanisms for the regulation of these physiological changes40–43. Protein phosphorylation is most often mediated by two-component systems (TCSs) or chemosensory signalling pathways44–46. TCSs are typically composed of a sensor kinase and a cognate response regulator that elicits a specific response upon its phosphorylation. Most sensor kinases in bacteria belong to the family of histidine kinases, transferring a phosphoryl group from a conserved histidine of its transmitter domain to a specific aspartate residue in the receiver domain of the corresponding response regulator. This type of aspartate phosphorylation is labile and, thus,
specific phosphatases are usually not required to inactivate the response over time. In contrast, phosphorylation of a serine or threonine residue are much more stable and, thus, require the additional presence of a phosphatase to facilitate reversible regulation\(^{47,48}\).

Pseudomonas aeruginosa, an opportunistic human pathogen of critical concern, is often highly resistant to antimicrobial therapies. It is an ubiquitous organism that can thrive in multiple environmental niches and genetic evidence indicates that infections usually arise from environmental sources\(^{49–52}\). Various regulatory pathways affect its biofilm formation and virulence traits, many of which are based on protein phosphorylation including, but not limited to, the GacS/GacA system, the threonine phosphorylation pathway (TPP) and the Wsp, Yfie or HptB pathways\(^{24,53–58}\). While *P. aeruginosa* does not generally infect healthy humans, it is a serious threat in hospital environments, particularly for individuals with large burn wounds or chronic diseases such as obstructive pulmonary disease (COPD) and the genetic disorder cystic fibrosis (CF)\(^{29,59–63}\). In addition to surface attached biofilms, suspended biofilms of *P. aeruginosa* (i.e. cellular aggregates) have been characterised first for growth under laboratory conditions\(^{28,64}\). Notably, such cellular aggregates are also regularly found in chronic infections in vivo\(^{26,27,65–67}\). Moreover, suspended biofilms greatly influence the development, structure and function of their surface-attached counterparts and have thus been suggested to play an important role in niche colonisation and the chronic manifestation of infections\(^{68,69}\).

We previously demonstrated that SiaA and the di-guanylate cyclase (DGC) SiaD regulate the formation of large, macroscopic, DNA-containing suspended biofilms in response to the toxic surfactant sodium dodecyl sulfate (SDS) in a c-di-GMP-dependent manner\(^{16,70–72}\). We now report that all genes encoded in the *siaABCD* operon are also involved regulation of the cellular aggregation in response to carbon availability including the previously described formation of suspended biofilms during growth on glucose\(^{64}\). We demonstrate that the phosphorylation status of the SiaC protein at position threonine 68 (T68) is crucial for this regulation and that SiaC is a substrate for the threonine-specific protein
phosphatase SiaA and its kinase counterpart SiaB. We further report crystal structures of the protein-
phosphatase family-2C (PP2C) domain of SiaA and of the SiaC protein providing insights into their catalytic
mechanism and interaction. Our results strongly suggest that the SiaABCD pathway functions through a
partner switch mechanism, in which SiaC controls cellular aggregation by regulating SiaD activity, most
likely through direct protein-protein interaction. It further highlights the importance of this pathway in
the adaptation of *P. aeruginosa* to variable environmental conditions. We hypothesise that the regulation
of biofilm formation through SiaABCD plays an important role in the colonisation of new niches/habitats
and supports the persistence of cells under unfavourable conditions.
Results

SiaABCD is involved in biofilm formation during growth on SDS and glucose

Cells of *P. aeruginosa* preferentially grow as suspended biofilms in minimal medium with glucose (aggregates up to 400 µm in size) or SDS (macroscopic aggregates in the mm range)\(^{16,64}\). To investigate whether all genes of the *siaABCD* operon\(^7\) are involved in biofilm formation under these conditions, we tested growth of individual mutant strains in microtiter plates (Figure 1AB).

As shown previously, growth on SDS led to the formation of macroscopic aggregates in the parental strain but not in the Δ*siaA* and Δ*siaD* mutants\(^7\). Likewise, no macroscopic aggregates were observed in cultures of Δ*siaC*, whereas Δ*siaB* showed increased aggregation. The aggregation was inversely correlated with the optical density (OD\(_{600}\)) of the surrounding medium: the OD\(_{600}\) in cultures of strains Δ*siaA*, Δ*siaC* and Δ*siaD* was higher (darker colour in normalised pictures; Figure 1B) than that of the parental strain and the Δ*siaB* mutant. No macroscopic aggregates were found during growth with glucose for all strains. However, the OD\(_{600}\) of the culture medium followed a similar pattern as for those grown on SDS. We therefore quantified the attached biofilms in glucose cultures (Figure 1C). The parental strain formed significantly more biofilm (2.3 - 2.8 fold) compared to Δ*siaA*, Δ*siaC* and Δ*siaD* mutants after 15 h. In contrast, inactivation of *siaB* strongly increased biofilm formation by 16.2 fold. Overall, these results revealed that attached biofilm formation during growth on glucose follows the same pattern as the formation of suspended aggregation observed for cultures grown on SDS.
SiaABCD regulates the ratio of freely suspended cells and cells residing in cellular aggregates

Scanning electron microscopy (SEM) (Figure 2) confirmed individual single cells as well as densely packed, multicellular aggregates (white arrows) in cultures of the parental strain, even at lower magnification (1,300×; left panel of pictures); imaging at higher magnification (10,000×; right panels) showed that the multicellular aggregates of different sizes are arranged as three-dimensional structures that projected...
above the substratum. These multicellular aggregates were observed also for the ΔsiaA, ΔsiaC and ΔsiaD mutants at lower magnification (1,300×), but their abundance was noticeably lower than for the parental strain. Higher magnification (10,000×) showed that these areas were less structured in those mutant strains compared to the parental strain. However, the ΔsiaB mutant formed much larger, much more densely packed aggregates than the parental strain. Light diffraction analysis (LDA) can be used to determine the size distribution of aggregates in liquid cultures and a corresponding analysis in our present study demonstrated that cultures of the parental strain were dominated by 10 – 200 µM particles (≥ 77% of the total bio-volume of all particles). Particles < 10 µm, which include the single cells, represented only a minor fraction (≤ 4%) and particles >200 µm were present in both biological replicates (7% – 28%). In line with SEM results, the distribution of particles in cultures of the ΔsiaA, ΔsiaC and ΔsiaD mutants were strongly shifted towards smaller sizes. We consistently observed a substantial decrease in the number of particles >200 µm and a concomitant increase in the bio-volume of particles <10 µm for ΔsiaA (≥ 8.4 fold), ΔsiaC (≥ 15 fold) and ΔsiaD (≥ 10.8 fold). In contrast, cultures of ΔsiaB were dominated by particles >200 µm (≥ 77%) and almost no particles < 10 µm were detected (≥ 1%).
Figure 2: Scanning electron microscopy (SEM) and laser diffraction analysis (LDA) demonstrated the different aggregation phenotypes of *P. aeruginosa* wildtype and mutant strains during growth with glucose. Triplicate cultures of strains were grown with 22 mM glucose in 50 mL cultures shaking at 200 rpm at 30°C. After 5.5 h incubation, the replicate samples were pooled and used for SEM. The white arrows (left panel) highlight representative regions showing aggregated cells, which were then examined at higher magnification (right panel). The samples were also analyzed using a particle size analyzer (SALD 3101, Shimadzu; see Material and Methods) in the range 0.5 - 3000 µm diameter. The data obtained from two independent replicates (A and B) is presented as percentages of the total bio-volume of particles distributed over three different size ranges (single cells, microscopic aggregates and macroscopic aggregates) relative to the total bio-volume of all particles detected. The data are the mean value of triplicate measurements with the corresponding technical error (see Supplementary for details).
SiaABCD regulates biofilm formation as a response to carbon availability

Biofilm formation is a dynamic process that varies according to the time point of sampling and the carbon source used. Thus, we monitored the impact of the SiaABCD pathway during biofilm development and on growth with various carbon sources (Figure 3, Figure S1). In these experiments, the parental strain always exhibited the same growth pattern, irrespective of the carbon source used: i) a steady increase in biofilm formation while the carbon source was in excess; ii) a decrease in biofilm formation upon exhaustion of the carbon source; and iii) an increase in optical density in the culture supernatant that lagged behind biofilm formation, but continued to increase even after the cells experienced carbon starvation.

The ΔsiaA (Figure 3), ΔsiaC (Figure S1) and ΔsiaD (Figure S1) mutants showed a similar growth pattern, however, with a strong decrease in biofilm formation and mild increase in the maximal OD₆₀₀ at the end of the experiment. In contrast, the ΔsiaB mutant predominantly grew as a biofilm with generally lower planktonic growth compared to all other strains. Biofilms of ΔsiaB dispersed upon glucose and succinate limitation, but not when grown on ethanol or 2,3-butanediol. However, it is important to note that cultures of the parental strain, ΔsiaB and ΔsiaC growing on 2,3-butanediol were still not carbon-limited by the end of the experiment (< 0.6 mM). In contrast, carbon depletion and dispersal was observed for all other strains and conditions.
Figure 3: Quantification of formation of attached biofilms and of growth in suspension by the *P. aeruginosa* strains, as followed in liquid cultures grown with 22 mM glucose, 20 mM succinate, 40 mM ethanol or 20 mM 2,3-butanediol. Individual 24 well microtiter plates were used to quantify attached biofilms by crystal violet (CV) staining (grey bars) as well as the growth in the supernatant as OD$_{600}$ (black dots); substrate concentrations were also determined (open circles). For crystal violet (CV) staining, the error bars represent the standard deviation of four biological replicates. The data of OD$_{600}$ and substrate concentration represent the mean value from the same quadruplicates but quantified from pooled (1:1:1:1 [v/v/v/v]) samples using a photometer, the G0 assay kit and specific HPLC methods, respectively (see Methods section for details). Cultures were incubated at 30°C and 200 rpm shaking.
Figure 4: Biochemical characterization of the purified phosphatase activity of the C-terminal part (SiaA-PP2C; amino acids 386-663) of the SiaA protein (Genbank: NP_248862) with p-nitrophenyl phosphate (pNPP) as substrate. Phosphatase activity was measured as increase in absorbance at 405 nm. Absorbance readings were converted to μM production formation using a generated standard curve for the determination of specific activities. The buffer used contained 150 mM NaCl, 20 mM Tris-HCl pH 7.5 and incubations were performed at 37°C. For enzyme kinetics, a higher buffering capacity of 100 mM Tris-HCl pH 7.5 was used. (A) Representation of the SiaA protein using the SMART online tool (http://smart.embl-heidelberg.de/). The amino-acid range of the predicted PP2C_SIG and HAMP domains as well as of the SiaA-PP2C fragment are indicated. (B) Specific activities of SiaA-PP2C in the presence of various metal ions (20 mM) were measured using 10 mM pNPP. Data are shown as the mean value (black bars) of duplicate measurements (white dots). (C) Michaelis-Menten plots showing the specific activities of the purified SiaA-PP2C with various concentrations of pNPP and Mn^{2+}. (D) The maximum velocities (V_{max}), substrate affinities (K_m), and turnover number (k_{cat}) were derived from the data in (C) by nonlinear regression to a Michaelis-Menten model and are presented as best-fit values.
SiaA shows Mn$^{2+}$-dependent phosphatase activity with pNPP

The SiaA protein is predicted to be a PP2C-like protein phosphatase (PPM-type) (http://www.pseudomonas.com/feature/show/?id=103077&view=functions). A distinctive feature of these phosphatases is their dependency on Mn$^{2+}$ or Mg$^{2+}$ ions as cofactors and serine and/or threonine residues in their target protein (http://www.ebi.ac.uk/interpro/entry/IPR001932). To characterize the activity of the SiaA protein, we purified the C-terminal part of SiaA (amino acids 386-663; SiaA-PP2C; Genbank: NP_248862) including the putative PP2C-like phosphatase domain (amino acids 453-662) from the parental strain using *Escherichia coli* as a heterologous host by metal-affinity chromatography ([Figure 4A; Figure S2](#)). The activity of the purified SiaA-PP2C was tested for its metal dependency using p-nitrophenyl phosphate (pNPP). SiaA-PP2C showed strong phosphatase activity in the presence of 20 mM of Mn$^{2+}$ (1.658 ± 0.3766 kU mg$^{-1}$), lower activity in the presence of 20 mM Co$^{2+}$ (0.6747 ± 0.2932 kU mg$^{-1}$) and no detectable activity with similar amounts of Mg$^{2+}$, Ca$^{2+}$ or Zn$^{2+}$ ([Figure 4B](#)). Subsequently, kinetic parameters for SiaA-PP2C at various Mn$^{2+}$ concentrations were derived from nonlinear regression to a Michaelis–Menten model ([Figure 4C, Table 4E](#)). From experiments with 20 mM Mn$^{2+}$, a maximum velocity (V_{max}) of ~2.5 ± 1.01 kU mg$^{-1}$, a substrate affinity (K_M) of ~6.254 ± 1.01 mM and a turnover number (k_{cat}) of ~8.389 ± 0.5142 min$^{-1}$ were calculated.

SiaA is a Ser/Thr phosphatase that uses phosphorylated threonine residue 68 of SiaC as substrate

SiaC contains a phosphorylation site at threonine residue 68 (T68). To confirm this phosphorylation site and to test whether it represents a substrate for the phosphatase domain SiaA-PP2C and the predicted kinase SiaB (see section below), His6-tagged SiaC variants were purified from *E. coli* and ΔsiaA cell lysates ([Figure S2](#)) and analysed by shotgun peptide-mass spectrometry (PMS). For the SiaC variant purified from *E. coli*, the T68-containing peptide (peptide [LLYLN*T*SSIK]) was identified predominantly by fragment-masses derived of precursor ions of the parental, non-phosphorylated peptide and only at > 1000 fold lower intensity (1.4 × 1011 vs. 4.0 × 1014 peak area) by precursor ions of its phosphorylated analogue; hence, these preparations contained almost exclusively non-phosphorylated protein.
For the purified *P. aeruginosa* SiaC (SiaC^P) variant however, the corresponding phosphorylated peptide was found at a higher abundance than the non-phosphorylated peptide (7.8 x 10⁶ vs. 3.2 x 10⁶ peak area). Hence, these preparations contained relevant amounts of phosphorylated SiaC^P (71.27% of total peak area). The SiaC^P preparations was tested as substrates for SiaA-PP2C and incubation, the protein samples were separated by SDS-PAGE and the protein band representing the SiaC protein were excised and analysed by PMS (Figure 5A; Tables 3). Incubation with SiaA-PP2C resulted in > 10 fold increase in the phosphorylated peptide (LLYLNTSSIK) compared to the control incubation without SiaA-PP2C added. Hence, the PMS data obtained from these enzyme assays provide direct evidence that the phosphorylated threonine at position 68 of SiaC is a target for SiaA phosphatase activity.

SiaB is a protein kinase that uses dephosphorylated SiaC as a substrate

Protein sequence analysis of SiaB (Figure 5B) suggested that SiaB is a protein kinase. To test whether SiaC is a target for SiaB activity, we purified a His₆-tagged allele of SiaB from *E. coli* by metal-affinity chromatography (Figure S2) and performed ATP consumption assays (ADP-Glo™ Kinase Assay; Promega) with SiaC as the substrate (Figure 5C). Incubation of SiaB (0.5 µM) alone or with SiaC^P (5 µM) did not consume ATP, whereas incubations of SiaB with SiaC (5 µM) consumed 4.45 µM ATP.

To confirm that SiaB was specific towards position T68 of the SiaC protein, we performed the kinase assay in the absence or presence of ATP and subsequently analysed the SiaC protein by PMS (Figure 5A; Tables S3). For SiaC incubations with SiaB in the absence of ATP, the non-phosphorylated peptide was > 1000 fold more abundant than the corresponding phosphorylated peptide (2.9 x 10⁹ vs. 1.3 x 10⁶ peak area). Following incubation of SiaC with SiaB in the presence of ATP, the abundance of the phosphorylated peptide increased (1.5 x 10⁹ peak area) and the non-phosphorylated peptide decreased dramatically (2.7 x 10⁸ peak area), demonstrating that T68 of SiaC constitutes a target for SiaB kinase activity.
Notably, reactions in which SiaB and SiaC or SiaCP were incubated together with SiaA-PP2C (0.5 µM), the consumption of ATP was increased (6.42 µM and 6.57 µM in the presence of 10 µM ATP and to 12.01 µM ATP consumption of SiaB kinase activity measured by the ADP-Glo™ assay kit. Assays were performed in the presence of 10 µM or 25 µM (orange bars) ATP. (D) Phosphate released via SiaA phosphatase activity as measured by the malachite green assay. All reactions were carried out with 0.5 µM SiaA or B with 5 µM SiaC in buffer containing 20 mM MgCl\textsubscript{2} or MnCl\textsubscript{2} (green bar), and 10 or 25 µM ATP (orange bars). Data represent results from at least two independent replicates and error bars represent standard deviation of the mean. Results below the detection limit are indicated (n.d.).

Figure 5: (A) Summary of shotgun peptide-mass spectrometry (PMS) results from analysis of phosphorylated SiaCP and non-phosphorylated SiaC after incubation with the phosphatase domain of SiaA (SiaA-PP2C) and the predicted SiaC-kinase SiaB, respectively. The relative abundances of the SiaC peptides containing the phosphorylation site (threonine [T68] in peptide [LLYLN\textsubscript{T}SSIK]) as identified by their parental (and by their fragment) masses without or with mass-shift from T68-phosphorylation, are indicated as peak area and number of peptide spectrum matches (PSMs). All incubations were performed in suitable buffer conditions for 2 h at 30°C and then separated by SDS-PAGE for PMS (see Supplementary file for details). (B) Homology model (C-score = -2.36, estimated TM-score = 0.44 ± 0.14 and estimated root-mean-square-mean (RMSD) = 10.4 ± 4.6 Å) of SiaB (PA0171) predicted using I-Tasser (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) shown as cartoon with 80% transparent surface using the Pymol software (version 2.1.1). The predicted catalytic glutamic acid residue at position 61 of the putative protein kinase is highlighted (red sticks). (C) ATP consumption of SiaB kinase activity measured by the ADP-Glo™ assay kit. Assays were performed in the presence of 10 µM or 25 µM (orange bars) ATP. (D) Phosphate released via SiaA phosphatase activity as measured by the malachite green assay. All reactions were carried out with 0.5 µM SiaA or B with 5 µM SiaC in buffer containing 20 mM MgCl\textsubscript{2} or MnCl\textsubscript{2} (green bar), and 10 or 25 µM ATP (orange bars). Data represent results from at least two independent replicates and error bars represent standard deviation of the mean. Results below the detection limit are indicated (n.d.).
and 12.39 µM in the presence of 25 µM of ATP, respectively) when observed after the reactions (Figure 5C). These experiments demonstrated that SiaA-PP2C was functional in the presence of Mg²⁺ and that SiaA-PP2C and SiaB were both enzymatically active on their respective substrates (SiaC⁰ and SiaC, respectively), catalysing a cycle of SiaC phosphorylation and de-phosphorylation. Activity of SiaA with Mg²⁺ ions was not observed with the artificial substrate pNPP (Figure 4A). To test whether the metal-dependency of SiaA-PP2C is different using SiaC⁰ as substrate compared to pNPP, we quantified activities using a Malachite-Green phosphate assay (Figure 5D). In reactions containing SiaA-PP2C and SiaC⁰, the concentration of phosphate quantified in the presence of Mg²⁺ (4.74 µM) was slightly higher than that determined in the presence of Mn²⁺ (4.52 µM), and both were strongly correlated with the amount of SiaC⁰ (5 µM) added. In samples containing SiaA-PP2C, SiaB, and SiaC or SiaC⁰ in the presence of Mg²⁺ ions and 25 µM ATP, much higher phosphate concentrations were detected (13.44 µM and 16.76 µM, respectively), which in addition did not correlate with the amount of SiaC added. Thus, these experiments revealed that SiaA can utilise both Mg²⁺ and Mn²⁺ ions as metal cofactors.

Crystal structure of the PP2C domain of SiaA reveals a homodimer

The structure of the PP2C domain of SiaA (SiaA-PP2C) in the presence of Mg²⁺ ions at the active site was determined. Native crystals of SiaA-PP2C were obtained in conditions Morpheus A11 (Molecular Dimensions), with space group of P2₁2₁2₁ that diffracted to a resolution of 2.1 Å. Phases were obtained using single-wavelength anomalous dispersion (SAD) with a single SeMet derivative crystal. Statistics of the data collection, structure determination and refinement are displayed in Table S4.

The SiaA-PP2C domain is arranged as a tight dimer in the crystal asymmetric unit. The electron density map of SiaA-PP2C allowed unambiguous tracing of residues 407 to 663 for monomer A and 409 to 663 for monomer B. However, no clear electron density was present for residues 521-528 and 578-581 of chain A and residues 522-527 and 577-579 of chain B, indicating a high degree of flexibility in these solvent-
exposed loops regions. The SiaA-PP2C monomer adopts the canonical α--β--β--α fold first described for the human PP2C74 and subsequently found in several other phosphatases75,76 (Figure 6A).
Figure 6: The SiaA-PP2C structure. (A) “Rainbow” representation of the SiaA-PP2C monomer. The N-terminus of SiaA-PP2C is coloured in blue and the C-terminus in red, with secondary structures labelled. The three Mg$^{2+}$ ions identified at the active site are represented as green spheres. (B) The SiaA-PP2C dimer. Monomer A is in purple and B in blue. (C) Surface representation of the SiaA-PP2C dimer using the same colour code, highlighting the extensive interface stabilizing the dimer. (D) Surface electrostatic potential of SiaA-PP2C homodimer in the same orientation as in panel C. (E) Close-up view of the active site of the PP2C-like phosphatase domain of SiaA-PP2C with conserved acidic residues in the active site shown as sticks and labelled. An electron density map with Fourier coefficients $2F_o-F_c$ is overlaid at a level of 1σ above the mean. The Mg$^{2+}$ ions are shown as green spheres and the oxygen atoms of the coordinating water molecules are displayed as red spheres. M1 and M2 are both coordinated by oxygen atoms from three residues and three water molecules in an octahedral manner. Distances between the metal ions and the coordinating atoms are indicated. (F) Overlay of SiaA_PP2C monomer B (blue) and the phosphatase domain of Rv1364C (yellow). Mg$^{2+}$ ions M1 and M2 of SiaA-PP2C shown as green spheres overlap with Mn$^{2+}$ ions of Rv1643C (yellow spheres). The α1 and α2 helices of SiaA-PP2C are not displayed for clarity. (inset) Magnified view of the active site. Metal coordinating residues of SiaA-PP2C are labelled. (G) Residues of the hydrophobic pocket shown as sticks. (H) Superposition of SiaA monomer B (blue) and human PPM1A (light pink; PDB code 6B67-A). The Flap sub-domain of human PPM1A (absent in SiaA-PP2C) is circled.
The core structure of the SiaA-PP2C monomer is a β-sandwich composed of two antiparallel β-sheets each comprising five β-strands. The active site is at the apex of the β sheet structure (Figure 6B). This core structure is flanked on the N-terminal side by helices α1-α4 and on the C-terminal end by helices α5-α7, forming a four-layered αββα structure. The two monomers interact extensively with each other through residues projecting from helices α1, α2 and α3, forming a compact homodimer that buries a total solvent accessible area of 1392 Å² (Figure 6B and C), which is consistent with the observation of a dimer by size exclusion chromatography (data not shown). The homodimer presents two concave surfaces that are likely to accommodate the incoming substrates (Figure 6D).

An automated search using the Dali server (ekhidna2.biocenter.helsinki.fi/dali) of 3D structures similar to SiaA-PP2C returned PP2C-type phosphatase as top hits (Rv1364C with a Z score of 23.6 and a RMSD of 2.2 Å for 210 superimposed α-carbon atoms). Despite a very low overall amino-acid sequence identity (17%), these structures share a conserved fold and several strictly conserved active site residues with SiaA-PP2C: D457, D474, G477, D600, G601 and D653 (Figure 6E and S3). A structural comparison of the active site of SiaA-PP2C with the active site of the phosphatase domain of Rv1364C (PDB code: 3KE6) from Mycobacterium tuberculosis is shown in Figure 6F. The two Mg²⁺ ions labelled as M1 and M2 directly involved in the catalytic mechanism are coordinated by oxygen atoms from three evolutionary conserved aspartate residues and occupy equivalent positions in SiaA-PP2C compared to the two Mn²⁺ ions found in the Rv1364C active site. Metal-coordinating residues are all conserved except C475 of SiaA-PP2C, which interacts with metal ion M2 through its carbonyl oxygen (Figure 6E and F). However, compared to Rv1364C, which only has two bound metal ions, a third Mg²⁺ ion (M3) was found in SiaA-PP2C coordinated by D600 and with an incomplete octahedral coordination shell. D604 and D534 assist in stabilization of M3 through formation of hydrogen bond with M3-coordinating water molecules. Given the structural similarity with PP2C74, an SN2 mechanism is the most plausible whereby the water molecule bridging M1 and M2 (Figure 6E) performs a nucleophilic attack of the phosphorus atom from the phosphate bound to
the threonine target residue. However, M3 could also play a direct role in the catalytic activity, as was recently proposed for the human PPM1A protein, a negative regulator of cellular stress response pathways77,78. We note that near the entrance of the active site, a hydrophobic pocket lined with residues I554, V564, L603, F619 and A620 constitutes an attractive site for the design of inhibitors (Figure 6D and G). Another distinct feature of SiaA-PP2C is a flexible loop located between β7 and β8, whereas a Flap subdomain, which has been reported to aid in substrate specificity, is present at the equivalent position in human PPM1A and many other PP2C-type phosphatases78 (Figure 6H).

Crystal structure of SiaC reveals similarity with anti-sigma factor antagonists

Native crystals of SiaC were grown (C6 conditions of the JCSG+ kit from Molecular Dimensions: 0.1 M Phosphate/citrate, pH 4.2, 40% (v/v) PEG 300), with space group I222 and diffracted to a maximum resolution of 1.7 Å. The structure was determined by SAD using SeMet derivative crystals obtained in conditions A9 from Morpheus (Molecular Dimension) (Table S4). Clear electron density maps allowed complete tracing except for residues 101-103, which are located in the flexible loop between the α3 helix and β5 strands. The SiaC protein comprises six β-strands arranged in a mixed parallel/antiparallel fashion and three α-helices (Figure 7A). A hydrophobic pocket next to T68 is formed by residues L61 and L63 projecting from β4, W95 from β5, I71 and M74 from α2, L107 and F111 from α3 while L66 belongs to the β4-β5 loop (Figure 7B and C).

An automated search of structures similar to SiaC identified the anti-sigma factor antagonist SpollAA from *Mycobacterium paratuberculosis* (PDB accession code: 4QTP; Figure 7D) as the top hit with a Z score of 9.0, an amino-acid sequence identity of 10% and a RSMD of 2.8 Å over the α-carbon atoms of 117 residues. Despite sharing very low sequence identity, a closer examination of both structures reveals a conserved overall topology with several unique features, especially at β3, β4 strands and α3 helix that are longer in SpollAA compared to SiaC. These variations are probably related to differences in the ability to establish...
protein-protein interactions. Nonetheless, their target phosphorylation sites, T68 for SiaC and S58 for SpolIAA, are both located at the N-terminus of helix α2.

To compare the phosphorylated and non-phosphorylated form SiaC, a molecular model was built by adding a phosphate group to T68 (Figure 7E). After energy minimization, no major structural difference was observed between the SiaC structure and the predicted SiaCP structure, except that the N-terminal half of α3 shifts slightly away from the hydrophobic pocket defined above (by distances of 1.2 Å for L107 and 1.7 Å for F111). To gain insights into the protein-protein interactions between SiaB and SiaC, we used a homology model of SiaB based on the anti-sigma factor SpoIIAB of Bacillus stearothermophilus (PDB accession code: 1L0OA), representing the closest structural homologue with a TM-score of 0.672, RMSD of 2.18 Å, IDEN of 0.130 and Cov of 0.761 (Figure 5B). To predict the complex of SiaB and SiaC, the SiaB model and SiaC structure were superimposed to the complex of SpoIIAA and SpoIIAB of B. stearothermophilus (PDB 1THN), followed by manual adjustment to eliminate clashes and energy minimization. This bioinformatics approach resulted in a probable complex of SiaB/SiaC, in which two molecules of SiaB form a dimer, where each SiaB monomer binds to one SiaC molecule. In this model, residue T68 of SiaC lies next to the putative catalytic base E61 of SiaB (Figure 7E). This residue was found to form a hydrogen bond with the substrate hydroxyl group in functionally similar protein kinases, lending support to the proposed model.

Isothermal titration calorimetry (ITC) revealed a dissociation constant (K_d) of 59.4 nM between SiaB and SiaC (Figure 7G and H). The binding of the two proteins was driven by both a decrease in enthalpy and increase in entropy. The stoichiometry of 0.5 suggested that only one SiaC molecule binds to a dimer of SiaB. Binding of SiaC to the second SiaB molecule of the dimer was not observed, even when an excess of SiaC was injected (Figure S4). In contrast, a 2SiaB:2SiaC complex was suggested by size exclusion chromatography (SEC) when SiaB and SiaC were mixed in equal molar ratio and incubated at room temperature for 1 h (Figure 7H). Even though the stoichiometry could not be fully resolved, SEC profile of
SiaB/SiaC mixture with the addition of 10 mM ATP and 20 mM MgCl₂ clearly demonstrated dissociation of the SiaB/SiaC complex, most likely as a result of kinase activity of SiaB.

Figure 7: (A) “Rainbow” representation of SiaC. The phosphorylation site T68 is shown as sticks. (B) Hydrophobic pocket of SiaC next to T68. (C) Surface electrostatic potential of SiaC with the hydrophobic pocket labelled. The structure is displayed in the same orientation as in panel B. (D) “Rainbow” representation of SpolIAA (PDB code: 4QTP). The phosphorylation site S58 is shown as sticks. (E) Alignment of energy-minimized SiaC with energy-minimized SiaC\(^\text{P}\) with RMSD of 0.5 Å. The SiaC\(^\text{P}\) structure was derived from SiaC by substitution of T68 with pT68 (see Supplementary for detailed information). L107 and F111 are further away from the hydrophobic pocket in SiaC\(^\text{P}\) than they are in SiaC. (F) Model of SiaB/SiaC complex generated by superimposition of the SiaB model (red and yellow) and SiaC (cyan) to SpolAA/SpolAB complex (PDB code: 1THN) and subsequent manual adjustment and energy minimization to eliminate clashes. E61 of SiaB and T68 of SiaC are shown as sticks. (G and H) Isothermal titration calorimetry result after injecting 270 µM SiaC to a solution containing 64 µM SiaB. Heat release of binding was measured by differential power (DP). A strong binding was observed with a \(K_d\) of 59.4 nM. (H) Size exclusion chromatography profiles derived by UV-Absorption for SiaB/SiaC mixtures (1:1 molar ratio) in the presence (orange line) or absence (blue line) of 10 mM ATP and 20 mM MgCl₂. The SDS-PAGE analysis of the proteins causing the peaks in the size exclusion chromatography are shown above the profiles.
Molecular Docking and MD simulation of SiaCp with the phosphatase domain of SiaA

As SiaA-PP2C targets SiaCp, a transient binding of these two proteins is likely to occur. To study the interaction between SiaA and SiaC during the dephosphorylation reaction, we performed a MD simulation on SiaA binding to SiaC and SiaCp. The SiaA-SiaC complex was predicted by molecular docking of SiaA-PP2C dimer and SiaCp-SiaC using ZDOCK, followed by 60 ns of MD simulation (Figure 8A and B). These experiments demonstrated that the phosphorylated pT68 is required for productive binding to the catalytic site of SiaA-PP2C, where it remains efficiently bound via the catalytic Mg2+ ion M3 and the bridging water molecules surrounding it (Figure 8C-E). This result is consistent with the experimental observation that only pT68 in SiaCp constitutes the substrate for SiaA-PP2C activity. In contrast, the non-phosphorylated T68 dissociated from the catalytic site in less than 15 ns of simulation, suggesting that SiaC will quickly dissociate from SiaA upon dephosphorylation.

Based on the simulated model, several key interactions that could contribute to substrate specificity of SiaA-PP2C were identified. First, R652 stabilizes the positively charged phosphate group of pT68 through the formation of a salt bridge (Figure 8F). In addition, the flexible loop between α5 and α6 of SiaA inserts in a shallow pocket located between α2, α3, β4, β5 and β6 of SiaCp and establishes hydrophobic contacts with L61, L66, I71, M74, M75, L78, W95, L107 and F111 through F612 (Figure 8G). Notably, the salt bridge identified between R618 and E609 of SiaA is likely to restrain the orientation of the flexible loop between α5 and α6, which could favour interaction with SiaCp. The non-aggregative mutant ΔsiaA was recently found to harbor deletion of two amino acids in the phosphatase domain of SiaA (G611F612; SiaA-PP2C*)70.

To gain a deeper insight into the underlying mechanism for the loss of function in SiaA-PP2C*, we generated a homology model using SWISS-MODEL (https://swissmodel.expasy.org/) with the SiaA-PP2C crystal structure as template (GMQE =0.98, QMEAN = -0.54). Notably, the deleted amino acids G611F612 map to the flexible loop between α5 and α6, and F612 is the essential residue for interaction with the hydrophobic pocket of SiaCp (Figure 8H1-I2). Thus, it is possible that by being unable to form this
hydrophobic contact, SiaA-PP2C* cannot accommodate its substrate and is therefore unable to dephosphorylate SiaCp.

Figure 8: Binding of SiaA-PP2C to phosphorylated SiaC. (A) The simulated system using ZDOCK contains a SiaA-PP2C dimer (blue/purple ribbon) with SiaC (cyan ribbon) or SiaCp (orange ribbon) docked to each SiaA-PP2C monomer. (B) Distance between Cα of T68/pT68 and Mg$^{2+}$ ion (M3). Phosphorylated T68 of both SiaCp (black and grey solid lines) remains coordinated with the Mg$^{2+}$ ion (green sphere). Unphosphorylated T68 (black and grey dashed lines) dissociates from the Mg$^{2+}$ ion in less than 15 ns. The positions of T68 and Mg$^{2+}$ ions before (C) and after the simulation (D) are displayed in the same color code as in panel A. (E) The pT68 of SiaCp is interacting with the bridging water molecules for the entire 60 ns of simulation. (F-G) Cartoon representations of specific parts of the SiaA-PP2C/SiaCp complex after 60 ns of simulation. SiaCp is coloured in orange; SiaA-PP2C dimer is coloured in purple and blue (F) Interaction of pT68 with R652 and M3. R652 might be important for stabilisation of the complex through the formation of a salt bridge. pT68 remains in close proximity with M3 (2.1 Å). (G) F612 interacts with the hydrophobic pocket of SiaCp. Salt bridge formation between R618 and E609 in SiaA-PP2C might restrain the orientation of the flexible loop between α5 and α6 to accommodate its interaction with the hydrophobic pocket of SiaCp. Cartoon representation of SiaA-PP2C (H1) and a homology model of the mutant allele SiaA-PP2C* (I1) from the ΔsiaA mutant, in which G611 and F612 at the flexible loop between α5 and α6 are deleted (black arrows). Stick representation of the flexible loop of SiaA-PP2C (H2) and SiaA-PP2C* (I2).
Discussion

The need to develop novel strategies to control bacterial infections is well documented and is driven by the steadily increasing threat of antimicrobial resistance and the lack of new antibiotic targets, which has become one of the biggest challenges for public health systems with immense financial burdens82,83. Attached or suspended biofilms contribute to the severity of this problem as they are often observed during infections, are responsible for increased phenotypic heterogeneity due to the establishment of chemical microenvironments, display inherent tolerance to biocides and are better protected against the host immune system including phagocytes or neutrophils16,25–28,62,65–68,84. It has been demonstrated that disruption of the biofilm life-cycle can either lead to natural clearance of the biofilm from the host by the immune function, or that biofilm inhibitors can be combined with antimicrobials for better killing of the pathogen39,85,86. As such, biofilm-related signal interference has significant, yet mostly unrealized, potential to be exploited as a novel anti-infective strategy87–90.

The SiaA and/or SiaD proteins are essential for the formation of macroscopic aggregates during growth in the presence of the toxic surfactant SDS or the ROS-generating biocide tellurite in a c-di-GMP manner12,70,72. This active and energy requiring response may represent an adaptive survival strategy as the corresponding aggregates were found to protect cells of the same, as well as other, species in mono- and mixed culture experiments16,71,91. The present study expands the roles of SiaA and SiaD and reveals their importance in cellular aggregation in response to carbon availability and further demonstrate that the protein kinase SiaB and the anti-sigma factor antagonist-like SiaC protein, which are both part of the *siaABCD* operon70, are also involved this regulation.

The connection of the metabolic/energy status of a cell and the SiaABCD-dependent cellular aggregation is intriguing, as the lungs of CF patients, which are prone to chronic infection by *P. aeruginosa*, are characterized by the presence of increased concentrations of different carbon sources that *P. aeruginosa* can utilise for growth. These carbon sources include, but are not limited to, glucose92, short-chain fatty...
acids93,94, ethanol and 2,3 butanediol95–97. This is particularly important because ethanol and 2,3-butanediol have recently been reported to influence microbial colonisation of epithelial cells or the persistence of microbes during infection18,98,99. It is thus possible that the SiaABCD signalling pathway is not only involved in the regulation of cellular aggregation but also has an impact on virulence traits of \textit{P. aeruginosa}. This hypothesis is supported by several observations:

\textit{i)} A diverse set of regulatory systems involved in biofilm formation and/or virulence are interconnected with the SiaABCD pathway. These include the transcriptional regulators AmrZ and FleQ or the posttranscriptional regulatory systems RsmA/rsmY/rsmZ, RsmN and CRC72,100–104.

\textit{ii)} SiaD modulates the community structure and competitiveness of \textit{P. aeruginosa} cells within dual-species biofilms with cells of \textit{Staphylococcus aureus} and impacts pyoverdine and pyocyanine production12,71,105.

\textit{iii)} SiaD was identified as one of the DGCs capable of initiating the “Touch-Seed-and-Go” virulence program by activating the c-di-GMP receptor FimW106. This activation leads to the attachment of cells and the subsequent induction of virulence traits through asymmetric cell division, finally promoting efficient tissue colonization, localised host damage and fast dissemination of the infection.

Overall, this highlights that the SiaABCD pathway represents an attractive target for signal interference for therapeutic interventions. However, for the development of any signal interference drug, an in-depth knowledge about the underlying molecular mechanisms of the target pathways is a prerequisite. Here, we provide compelling evidence that the SiaABC proteins make use of a partner switch mechanism to balance cellular aggregation in response to carbon availability and propose that SiaD activity is the final target of this regulation. A partner switch system (PSS) typically involves a PP2C phosphatase (SiaA), an anti-sigma factor with kinase activity (SiaB) and anti-sigma factor antagonist representing the target for phosphorylation (SiaC). In line with such a mechanism, the phosphorylation status of the proposed anti-sigma factor antagonist SiaC is crucial for the switch to occur. While SiaC showed a strong binding to SiaB,
the binding affinity was significantly reduced after phosphorylation. Based on our bioinformatics approach, the dissociation upon SiaB activity shares a similar mechanism of action to that of SpoIIAA and SpoIIB, where phosphorylation of the anti-sigma factor antagonist SpoIIAA only results in small structural changes but leads to a rapid dissociation from the anti-sigma factor SpoIIB due to electrostatic and steric clashes. Although SiaABC resembles the SpoIIAA-AB-sigma and SpoIIE system, we propose that its role is likely not the sequestration of a sigma factor, but rather to regulate c-di-GMP biosynthesis of SiaD. Our proposal is based on recent studies that described partner switches that indeed regulate DGC activity. In P. aeruginosa, the HptB-HsbR-HsbA system was shown to promote DGC activity of HsbD following its interaction with the phosphorylatable anti-sigma factor antagonist HsbA, finally regulating biofilm formation and swimming motility. More recently, a PSS was shown to be involved in mixed-linkage β-glucan synthesis in S. meliloti through the induction of c-di-GMP levels. In this system, the Ser/Thr-specific phosphatase/kinase couple BgrU/BgrW controls the phosphorylation status of the BgrV protein and hence controls the activity of the DGC BgrR.

We were unable to purify the SiaD protein in a soluble form to directly test the proposed interaction of SiaD with SiaC and/or SiaC. However, based on the similarities described above, we propose a model in which both SiaA and SiaB balance the phosphorylation status of SiaC at position T68 that in turn directly influences the activity of SiaD. In this scenario, the activation of SiaA shifts the equilibrium of SiaC/SiaC towards the phosphorylated form through SiaB activity. This would stimulate biosynthesis of c-di-GMP by SiaD resulting in increased cellular aggregation, most likely through influencing the direct interaction of SiaD with either SiaC and/or SiaC. As a negative feedback response, SiaC has an increased binding affinity towards SiaA, which downregulates SiaD activity through the dephosphorylating of T68 and thereby inversely affecting protein interactions.

We identified the PP2C domain of SiaA and the putative anti-sigma factor antagonist SiaC as prime targets for the development of biofilm interference drugs. The PP2C-type phosphatase SiaA, while conserved in...
prokaryotes and eukaryotes, is structurally unique. A Flap sub-domain, suggested of being involved in substrate interaction and specificity, has been reported in human PPM1A and many other PP2C-type phosphatases. SiaA-PP2C lacks the Flap sub-domain and instead has a long loop between β7 and β8 that does not seem to interact with SiaC according to MD simulations. However, the flexible loop between α5 and α6 might aid in substrate specificity of SiaA by interacting with the hydrophobic pocket of SiaC near the phosphorylation site. Although further studies are needed to confirm this finding, the fact that the phosphatase domain of the mutant allele SiaA-PP2C has a deletion in G611F612, of which the latter residue seems to be crucial for the interaction with SiaC, is supportive of this hypothesis. Thus, the design of drugs targeting the flexible loop in SiaA, could be exploited to interfere with SiaA/SiaC interaction and hence, block downstream induction of biofilm formation through the inhibition of SiaC dephosphorylation. SiaC also represents an exciting target for interference, as it is structurally most similar to bacterial anti-sigma factor antagonists with little homology with human proteins. The hydrophobic pocket next to the phosphorylation site of SiaC is of particular interest, as it seems to be involved in the stability of the SiaA/SiaC interaction. In addition, a large patch of negatively charged surface is present at α2 and α3 near the hydrophobic pocket (Figure 7C), and could thus be useful for drug design as potential anchor points.

The high-resolution structures for of these target proteins will allow the de novo design of small molecule drugs or synthetic peptides. Using physiological mid-throughput assays based on biofilm formation, novel drugs can also be screened for their ability to penetrate cells, which is of essential importance to reach the proposed interference target sites. In this regard, it is interesting to note that the use of engineered phages as delivery vehicles for protein and/or peptide-based drugs represents a suitable and highly attractive approach to potentially overcome this obstacle. As an alternative to the de novo design approach, existing drug and small molecule libraries as well as synthetic peptide libraries could be screened for activity against these targets.
In summary, the presented work provides a deeper understanding of the SiaABCD mediated regulation by expanding the fundamental genetic and biochemical mechanisms that control cellular aggregation in response to carbon availability and it potentially paves the way for the development of novel biofilm-interference drugs and combinatorial therapies, which are desperately needed to combat the rising antibiotics crisis.
Materials and methods

Strains and growth conditions

Bacterial strains (Table S1) were maintained on Lysogeny Broth (LB) (Bertani 1951) solid medium (1.5% agar w/v) and routinely cultured in 10 mL LB medium in 50 mL Falcon tubes (Greiner Bio-one) or M9 medium (47.6 mM Na₂HPO₄, 22 mM KH₂PO₄, 8.6 mM NaCl, 18.6 mM NH₄Cl, 2 mM MgSO₄, 0.1 mM CaCl₂, 0.03 mM FeCl₂) with shaking at 200 rpm and incubation at 37°C or 30°C. Where indicated, antibiotics were added.

Scanning electron microscopy (SEM)

For SEM, overnight cultures of P. aeruginosa strains were prepared in 10 mL LB in 50 mL Falcon tubes and incubated for 16 h at 30°C with shaking at 200 rpm. Following incubation, cultures were harvested by centrifugation for 2 min at 16,060 × g at room temperature and washed twice in 1 mL of fresh M9 minimal medium. These cells were used to inoculate 50 mL of medium supplemented with 22.2 mM glucose with an OD₆₀₀ = 0.05 in a 250 mL Erlenmeyer flask and incubated for 5.5 h at 30°C with shaking at 200 rpm. Experiments were performed as three independent replicates, which were subsequently pooled together. Pooled samples were pipetted onto poly-L-lysine coated coverslips on the bottom of the wells of a 12 well plate, using enough culture to create a convex droplet without flooding past the edges of the coverslip. A detailed description of the method of SEM sample preparation is provided in the supplementary material file. Finally, samples were sputter coated with gold for 2.5 min at 40 mA (Emitech, K550X). Conductive samples were then analysed by SEM using a spot size of 3, voltage at 15 kV and a working distance of 10 mm (FEI Quanta 200 ESEM). Multiple fields of view were imaged randomly for each sample and representative images are shown.

Phenotypic characterisation in 12 well plates

For phenotypic characterisation of cultures during growth on 3.5 mM SDS and 22.2 mM glucose, cell culture treated, 12 well microtiter plates with 2 mL M9 medium were prepared and inoculated with
washed cells from an overnight culture grown in LB medium to an OD\textsubscript{600} = 0.01. Following incubation at 30\textdegree C with shaking at 200 rpm for 18 h the plates were imaged at 1200 dpi using an Umax Powerlook 1000 flatbed scanner with V4.71 software in a dark room. Images were normalised using Adobe Photoshop CS5 Software by using the ‘match colour’ image adjustment function, with all images normalised to the first image scanned using this experimental format. Experiments were performed as at least 6 independent replicates and representative images are shown.

Biofilm quantification using crystal violet staining in 24 well plates

A microtitre based crystal violet (CV) staining assay was used to quantify biofilm formation during growth with various media. Cell culture treated and non-treated 24 well microtiter plates with 800 µL M9 medium were prepared and inoculated with washed cells from an overnight culture grown in LB medium to an OD\textsubscript{600} = 0.01. M9 medium was supplemented with 22.2 mM glucose, 20 mM succinate, 40 mM ethanol or 20 mM 2,3-butanediol and incubated at 30\textdegree C with shaking at 200 rpm. Following incubation, liquid cultures were removed, pooled and used for quantification of the carbon source and optical density measurements. The wells of the microtitre plates were then stained with 900 µL CV solution (0.1% [w/v] stock in water) for 10 min without shaking. After incubation, the liquid was discarded and the wells of the microtitre plates were washed with 1 mL Tris-HCl (10 mM; pH 7) containing 0.9 % NaCl (w/v) for 10 min, once without and once with shaking at 200 rpm. Subsequently, the plates were air dried and the remaining CV was solubilised by incubation with 1 mL of pure ethanol for 10 min with shaking at 200 rpm. Quantification of CV was quantified at 595 nm in a microtiter plate reader.

Particle size experiments

Strains were inoculated in 20 mL LB medium (244620, BD Difco) in a 100 mL Erlenmeyer flask and incubated at 30\textdegree C with 200 rpm shaking. Overnight cultures were subsequently aliquoted to 50 mL falcon tubes and centrifuged at 9500 × g for 5 min. The supernatant was discarded and the pellet was resuspended in 10 mL of M9 medium containing 22 mM glucose. The washing step was repeated once
with the pellet resuspended in 2 - 5 mL of M9 medium. Finally, the cell suspensions were passed five times through a 25 gauge syringe needle to disrupt cell aggregates. The optical density of the suspension was adjusted to OD$_{600} = 2$ and 1 mL was added to 20 mL of M9 medium supplemented with glucose in an 100 mL Erlenmeyer flask at a final OD$_{600} = 0.1$. The cultures were subsequently incubated at 30°C with shaking at 200 rpm. Samples were collected at 3 and 6 h for OD$_{600}$ measurement and quantification of glucose concentration. After 6 h of incubation, when glucose was not yet exhausted from the medium, the cultures were analysed with a particle size analyser (SALD 3101, Shimadzu) using a pump speed of 4.0, and the accompanying software was used for analysis of the data (WingSALDII version 3.0.0). Particle sizes of between 0.5 – 3000 µM were selected for analysis. Calculations were based on water as the dispersing agent with a refractive index of 1.70-020i. Data are presented as the cumulative percentage of the biovolume of the particles within a given size range (0.5 – 10 uM, 10 – 200 uM, 200 – 3000 uM) compared to all particle in the sample. Two biological replicates were analysed and from each sample, the particle size distribution was quantified with three subsequent measurements. Data are presented as the mean value of technical triplicates from a single experiment with the error representing the technical variation.

Enzymatic assays

For enzymatic activity measurements the purified SiaA-PP2C protein fragment of *P. aeruginosa* PAO1 was used. The phosphatase activity of SiaA-PP2C was accessed using either para-nitrophenyl phosphate (pNPP) or the purified SiaC$^\circ$ protein as the target substrate. For assays with pNPP as the substrate, phosphatase activity was determined via the production of a colorimetric p-nitrophenolate product that absorbs strongly at 405 nm. Four times working solutions of the protein (4×: 200 µg/mL; 1×: 50 µg/mL [~1.49 µM]) were made in water and mixed with equal volume of pNPP phosphatase assay buffer (1×: 20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0 – 20 mM MnCl$_2$). For Michaelis-Menten kinetics studies, a higher concentration of 100 mM Tris-HCl [pH 7.5] buffer was used to provide a higher buffering capacity at high pNPP concentrations. Fifty µL of the mixture was then added to each well in 96 well plates, following
which pNPP was added to a final concentration of 0 – 20 mM to make up a final volume of 100 μL per well. Phosphatase activity over time was detected via the measurement of the absorbance at 405 nm using a microtitre plate reader at 37°C (Tecan Infinite M200 Pro). To calculate concentrations, p-nitrophenol (Sigma, #1048) was dissolved in phosphatase assay buffer and 100 μL of 0 – 390 μM samples were used to generate a calibration curve of p-nitrophenolate concentrations against absorbance in a 96-well plate. Enzyme kinetics were determined using the initial rates of reaction of p-nitrophenolate formation from 0 – 10 min (μM min⁻¹) against pNPP substrate concentration and curve fitting with Graphpad Prism V8.00 using the parameter [Et] = 1.49 μM. Specific activities (kU mg⁻¹) were obtained by division with 0.005 mg of SiaA used per reaction well.

Malachite green phosphate assays and ADP-Glo™ assays

Phosphatase and kinase activities of SiaA and/or SiaB on SiaC and/or SiaC⁺ were determined using the Malachite green phosphate assay kit (Sigma Aldrich) and ADP-Glo™ assay kit (Promega) respectively. 0.5 μM of SiaA and/or SiaB was incubated with 0 – 5 μM of SiaC or SiaC⁺ in the reaction buffer (20 mM Tris-HCL [pH 7.5], 150 mM NaCl with addition of 0 – 25 mM ATP and 0 – 20 mM MnCl₂ and/or 0 – 20 mM MgCl₂) for 1 h at 37°C. Subsequently, the reactions were stopped and the amount of phosphate released in phosphatase reactions or ATP consumed in kinase reactions was determined in accordance to the commercial kit protocols. Briefly, for Malachite green assays, 20 μL of the kit working solution was added to 80 μL of the sample to stop the reaction. The mixture was then incubated at room temperature for 30 min for the generation of a green complex formed between Malachite Green, molybdate and free orthophosphate. Measurements were taken at 620 nm using a microplate reader. Readings were then converted to phosphate measurements using a standard curve. For ADP-Glo™ assays, 20 uL of the ADP-Glo™ reagent was added to 20 uL of the sample to stop the reaction and deplete remaining ATP. If enzyme reactions were carried out in the absence of Mg²⁺, MgCl₂ was supplemented to the mixture to a final concentration of 20 mM. The mixture was incubated at room temperature for 40 min. A second kinase
detection reagent was added to the mixture to convert ADP consumed to ATP and for conversion of the ATP signal to luminescence signals and further incubated for 45 min. Luminescence was measured using a microplate reader and converted to ATP consumed in kinase reaction using a standard curve generated. At least two independent replicates with technical duplicates were carried out for each enzymatic reaction.

MS fingerprinting analysis of SiaC phosphorylation state

For assays with SiaC\(^\circ\) as substrate, phosphatase activity was determined using the protein that was initially produced and purified from strain \(\Delta s\alpha A\) (see supplementary material file for detailed information). To elucidate the phosphorylation site in the SiaC protein, 20 µg of purified SiaC\(^\circ\) was incubated in the absence or presence of 20 µg of purified SiaA for 1 h at 37°C in a final volume of 40 µL assay solution (20 mM HEPES [pH 7.5], 300 mM NaCl, 0.02 % β-mercaptoethanol, 0.1 mg mL\(^{-1}\) BSA, 5 % glycerol, 5 mM Mn\(^{2+}\), 1 mM EDTA). After 2 h of incubation at 30°C, 20 µL were used for the separation of the two proteins using a 15 % SDS-PAGE gel. The SiaC protein band (17 kDa) was excised from the SDS-PAGE gel, and the gel sample was submitted to shotgun peptide mass spectrometry (PMS) analysis, to identify SiaC and its phosphorylation state at threonine residue 68 (T68)\(^73\). Therefore, the relative abundance of signals in the PF-MS fragmentation-mass spectra for the specific peptide containing the phosphorylation site T68 (i.e., peptide LLYLN\(^T\)SSIK) in a non-phosphorylated state (parental fragmentation-mass spectrum for peptide LLYLN\(^T\)SSIK) and for mass-shifts indicating its phosphorylation (peptide LLYLN\(^T\)SSIK with monoisotopic mass-change, +79.96633 Da; average mass-change +79.9799 Da), was determined (see Supplementary for more details).

Analytics of supernatants

For glucose quantification, the liquid cultures were filtered through a 0.22 µM PES filter (PN 4612, Pall) and quantified using the GO assay kit (GAGO20, Sigma Aldrich). Briefly, one volume of sample or standard solution (20 µL) was mixed with two volumes of assay reagent (40 µL) in a 96 well plate and incubated
Statistically at 37°C for 30 min. Subsequently, the reaction was stopped by the addition of 12 N H$_2$SO$_4$ (40 µL) to the reaction mixture. Glucose concentrations were quantified at 540 nm using a microplate reader (Infinite 200 pro, Tecan). Zero – 80 µg mL$^{-1}$ glucose standard solutions were used for the calibration curve.

Concentrations of succinate, ethanol and 2,3-butanediol were quantified by a HPLC method using an Aminex HPX-87H 300 x 7.8 mm ion-exchange column (BioRad, Munich, Germany) heated to 60°C. The eluent was 5 mM H$_2$SO$_4$, which was delivered to the column by a LC-10ATvp pump (Shimadzu, Munich, Germany) at a flow rate of 0.6 mL min$^{-1}$. The eluent was continuously degassed with a DGU-20A3R degassing unit (Shimadzu, Munich, Germany). Samples were injected using 10 µL with a 234 autosampler (Gilson, Limburg-Offheim, Germany). Resolved compounds were analysed with a refractive index detector (RID-10A, Shimadzu, Munich, Germany) and the data processed using the Shimadzu Lab solutions software version 5.81. Concentrations were finally calculated from calibration curves of the corresponding metabolite of interest.

Statistical analysis

Data ($n \geq 3$) were analysed using a two-sided students t-tests ($\alpha = 0.05$) with p-values < 0.05 interpreted as being significantly different.

Additional methods and procedures

Detailed methods for construction of the siaB and siaC mutant strains, the construction of plasmids, and the production and purification, crystallization and/or shotgun peptide mass spectrometry, as well as the procedure for the generation of homology models, molecular docking experiments, and procedures for MD simulations are described within the supplementary material file.

Funding

The work of Janosch Klebensberger, Wee Han Poh, Julien Lescar, Jianqing Lin, Scott A. Rice was partially supported by a joint mobility grant funded by the Federal Ministry of Education and Research in Germany.
(FKZ: 01DP17004) and the Ministry of Trade and Industry in Singapore (SGP-PROG3-023. 2017). We acknowledge financial support from the Singapore Centre for Environmental Life Sciences Engineering, whose research is supported by the National Research Foundation Singapore, Ministry of Education, Nanyang Technological University and National University of Singapore, under its Research Centre of Excellence Programme as well as funding from the Ministry of Education (tier 1, grant RG154/14).

Acknowledgements

The authors further declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Janosch Klebensberger would like to thank Prof. Bernhard Hauer for his continuous support. We also acknowledge beam time allocation at the SOLEIL synchrotron. The MD simulations for this article were performed on ASPIRE 1 of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

References

1. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002).
2. Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
3. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).
4. Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).
5. Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).
6. McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).
7. Ciofu, O., Tolker-Nielsen, T., Jensen, P. O., Wang, H. & Hoiby, N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv. Drug. Deliv. Rev. 85, 7–23 (2015).
8. Davey, M. E. & O’Toole G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).
9. Gilbert, P., Maira-Litran, T., McBain, A. J., Rickard, A. H. & Whyte, F. W. The physiology and collective
recalcitrance of microbial biofilm communities. *Adv. Microb. Physiol.* **46**, 203–256 (2002).

10. Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S. & Ciofu, O. Antibiotic resistance of bacterial biofilms. *Int. J. Antimicrob. Agents* **35**, 322–332 (2010).

11. Mah, T.-F. *et al.* A genetic basis for *Pseudomonas aeruginosa* biofilm antibiotic resistance. *Nature* **426**, 306–310 (2003).

12. Chua, S. L. *et al.* C-di-GMP regulates *Pseudomonas aeruginosa* stress response to tellurite during both planktonic and biofilm modes of growth. *Sci. Rep.* **5**, 10052 (2015).

13. Barraud, N. *et al.* Involvement of nitric oxide in biofilm dispersal of *Pseudomonas aeruginosa*. *J. Bacteriol.* **188**, 7344–7353 (2006).

14. Hoffman, L. R. *et al.* Aminoglycoside antibiotics induce bacterial biofilm formation. *Nature* **436**, 1171–1175 (2005).

15. Gotoh, H. *et al.* *Pseudomonas aeruginosa*, under DNA replication inhibition, tends to form biofilms via Arr. *Res. Microbiol.* **159**, 294–302 (2008).

16. Klebensberger, J., Rui, O., Fritz, E., Schink, B. & Philipp, B. Cell aggregation of *Pseudomonas aeruginosa* strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. *Arch. Microbiol.* **185**, 417–427 (2006).

17. Schleheck, D., Dong, W., Denger, K., Heinzele, E. & Cook, A. M. An α-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenylocarboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercarboxylates. *Appl. Environ. Microbiol.* **66**, 1911–1916 (2000).

18. Chen, A. I. *et al.* Candida albicans Ethanol Stimulates *Pseudomonas aeruginosa* WspR-Controlled Biofilm Formation as Part of a Cyclic Relationship Involving Phenazines. *PLoS Pathog.* **10**, e1004480 (2014).

19. Létoffé, S., Audrain, B., Bernier, S. P., Delepierre, M. & Ghigo, J.-M. Aerial Exposure to the Bacterial Volatile Compound Trimethylamine Modifies Antibiotic Resistance of Physically Separated Bacteria by Raising Culture Medium pH. *MBio* **5**, e00944–13 (2014).

20. Baghal Asghari, F., Nikaeen, M. & Mirhendi, H. Rapid monitoring of *Pseudomonas aeruginosa* in hospital water systems: a key priority in prevention of nosocomial infection. *FEMS Microbiol Lett* **343**, 77–81 (2013).

21. Kerr, K. G. & Snelling, A. M. *Pseudomonas aeruginosa*: a formidable and ever-present adversary. *J. Hosp. Infect.* **73**, 338–344 (2009).

22. Williams, M. M., Armbruster, C. R. & Arduino, M. J. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review. *Biofouling* **29**, 147–162 (2013).

23. Pawar, V. *et al.* In vivo efficacy of antimicrobials against biofilm-producing *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* **59**, 4974–4981 (2015).

24. Malone, J. G. *et al.* YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in *Pseudomonas aeruginosa*. *PLoS Pathog.* **6**, e1000804 (2010).

25. Pestrak, M. J. *et al.* *Pseudomonas aeruginosa* rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. *PLoS Pathog.* **14**, e1006842 (2018).

26. Bjarnsholt, T. *et al.* *Pseudomonas aeruginosa* biofilms in the respiratory tract of cystic fibrosis patients. *Pediatr. Pulmonol.* **44**, 547–558 (2009).
27. Staudinger, B. J. et al. Conditions associated with the cystic fibrosis defect promote chronic *Pseudomonas aeruginosa* infection. *Am. J. Respir. Crit. Care Med.* **189**, 812–824 (2014).

28. Alhede, M. et al. Phenotypes of non-attached *Pseudomonas aeruginosa* aggregates resemble surface attached biofilm. *PLoS One* **6**, e27943 (2011).

29. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. *Nat. Rev. Microbiol.* **2**, 95–108 (2004).

30. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. *Science* **284**, 1318–1322 (1999).

31. Parsek, M. R. & Singh, P. K. Bacterial biofilms: an emerging link to disease pathogenesis. *Annu. Rev. Microbiol.* **57**, 677–701 (2003).

32. Lebeaux, D., Ghigo, J. M. & Beloin, C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. *Microbiol. Mol. Biol. Rev.* **78**, 510–543 (2014).

33. Karatan, E. & Watnick, P. Signals, regulatory networks, and materials that build and break bacterial biofilms. *Microbiol. Mol. Biol. Rev.* **73**, 310–347 (2009).

34. Coggan, K. A. & Wolfgang, M. C. Global regulatory pathways and cross-talk control *Pseudomonas aeruginosa* environmental lifestyle and virulence phenotype. *Curr. Issues Mol. Biol.* **14**, 47–70 (2012).

35. Jimenez, P. N. et al. The multiple signaling systems regulating virulence in *Pseudomonas aeruginosa*. *Microbiol. Mol. Biol. Rev.* **76**, 46–65 (2011).

36. Moradali, M. F., Ghods, S. & Rehm, B. H. A. *Pseudomonas aeruginosa* Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. *Front. Cell. Infect. Microbiol.* **7**, 39 (2017).

37. Vakulskas, C. A., Potts, A. H., Babitzke, P., Ahmer, B. M. M. & Romeo, T. Regulation of bacterial virulence by Csr (Rsm) systems. *Microbiol. Mol. Biol. Rev.* **79**, 193–224 (2015).

38. Schuster, M., Sexton, D. J., Diggle, S. P. & Greenberg, E. P. Acyl-homoserine lactone quorum sensing: from evolution to application. *Annu. Rev. Microbiol.* **67**, 43–63 (2013).

39. Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. *Nat. Rev. Microbiol.* **14**, 576–588 (2016).

40. Pesavento, C. & Hengge, R. Bacterial nucleotide-based second messengers. *Curr. Opin. Microbiol.* **12**, 170–176 (2009).

41. Sajid, A., Arora, G., Singhal, A., Kalia, V. C. & Singh, Y. Protein Phosphatases of Pathogenic Bacteria: Role in Physiology and Virulence. *Annu. Rev. Microbiol.* **69**, 527–547 (2015).

42. Römling, U., Galperin, M. Y. & Gomelsky, M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. *Microbiol. Mol. Biol. Rev.* **77**, 1–52 (2013).

43. Kalia, D. et al. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. *Chem. Soc. Rev.* **42**, 305–341 (2013).

44. Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. *Annu. Rev. Biochem.* **69**, 183–215 (2000).

45. Porter, S. L., Wadhams, G. H. & Armitage, J. P. Signal processing in complex chemotaxis pathways. *Nat. Rev. Microbiol.* **9**, 153–165 (2011).

46. Jung, K., Fried, L., Behr, S. & Heermann, R. Histidine kinases and response regulators in networks.
47. Pereira, S. F. F., Goss, L. & Dworkin, J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. *Microbiol. Mol. Biol. Rev.* **75**, 192–212 (2011).

48. Dworkin, J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. *Curr. Opin. Microbiol.* **24**, 47–52 (2015).

49. Pirnay, J. P. *et al.* *Pseudomonas aeruginosa* displays an epidemic population structure. *Environ. Microbiol.* **4**, 898–911 (2002).

50. Pirnay, J. P. *et al.* *Pseudomonas aeruginosa* population structure revisited. *PLoS One* **4**, e7740 (2009).

51. Fazzeli, H. *et al.* *Pseudomonas aeruginosa* infections in patients, hospital means, and personnel’s specimens. *J. Res. Med. Sci.* **17**, 332–337 (2012).

52. Römling, U., Kader, A., Sriramulu, D. D., Simm, R. & Kronvall, G. Worldwide distribution of *Pseudomonas aeruginosa* clone C strains in the aquatic environment and cystic fibrosis patients. *Environ. Microbiol.* **7**, 1029–1038 (2005).

53. He, K. & Bauer, C. E. Chemosensory signaling systems that control bacterial survival. *Trends Microbiol.* **22**, 389–398 (2014).

54. Lapouge, K., Schubert, M., Allain, F. H. & Haas, D. Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. *Mol. Microbiol.* **67**, 241–253 (2008).

55. Mikkelsen, H., Sivaneson, M. & Filloux, A. Key two-component regulatory systems that control biofilm formation in *Pseudomonas aeruginosa*. *Env. Microbiol.* **13**, 1666–1681 (2011).

56. Motley, S. T. & Lory, S. Functional characterization of a serine/threonine protein kinase of *Pseudomonas aeruginosa*. *Infect. Immun.* **67**, 5386–5394 (1999).

57. Mougous, J. D. *et al.* A virulence locus of *Pseudomonas aeruginosa* encodes a protein secretion apparatus. *Science* **312**, 1526–1530 (2006).

58. Mougous, J. D., Gifford, C. A., Ramsdell, T. L. & Mekalanos, J. J. Threonine phosphorylation post-translationally regulates protein secretion in *Pseudomonas aeruginosa*. *Nat. Cell. Biol.* **9**, 797–803 (2007).

59. Church, D., Elsayed, S., Reid, O., Winston, B. & Lindsay, R. Burn wound infections. *Clin. Microbiol. Rev.* **19**, 403–434 (2006).

60. Almagro, P. *et al.* *Pseudomonas aeruginosa* and mortality after hospital admission for chronic obstructive pulmonary disease. *Respiration* **84**, 36–43 (2012).

61. Govan, J. R. & Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid *Pseudomonas aeruginosa* and *Burkholderia cepacia*. *Microbiol. Rev.* **60**, 539–574 (1996).

62. Bjarnsholt, T. The role of bacterial biofilms in chronic infections. *APMIS Suppl.* 1–51 (2013).

63. Hauser, A. R., Jain, M., Bar-Meir, M. & McColley, S. A. Clinical significance of microbial infection and adaptation in cystic fibrosis. *Clin. Microbiol. Rev.* **24**, 29–70 (2011).

64. Schleheck, D. *et al.* *Pseudomonas aeruginosa* PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. *PLoS One* **4**, e5513 (2009).

65. Kirketerp-Moller, K. *et al.* Distribution, organization, and ecology of bacteria in chronic wounds. *J. Clin. Microbiol.* **46**, 2717–2722 (2008).
66. Schaber, J. A. et al. *Pseudomonas aeruginosa* forms biofilms in acute infection independent of cell-to-cell signaling. *Infect. Immun.* **75**, 3715–3721 (2007).

67. Worlitzsch, D. et al. Effects of reduced mucus oxygen concentration in airway *Pseudomonas* infections of cystic fibrosis patients. *J. Clin. Invest.* **109**, 317–325 (2002).

68. Kragh, K. N. et al. Role of Multicellular Aggregates in Biofilm Formation. *MBio* **7**, e00237 (2016).

69. Melaugh, G. et al. Shaping the Growth Behaviour of Biofilms Initiated from Bacterial Aggregates. *PLoS One* **11**, e0149683 (2015).

70. Klebensberger, J., Birkenmaier, A., Geffers, R., Kjelleberg, S. & Philipp, B. SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in *Pseudomonas aeruginosa*. *Environ. Microbiol.* **11**, 3073–3086 (2009).

71. Klebensberger, J., Lautenschlager, K., Bressler, D., Wingender, J. & Philipp, B. Detergent-induced cell aggregation in subpopulations of *Pseudomonas aeruginosa* as a preadaptive survival strategy. *Environ. Microbiol.* **9**, 2247–2259 (2007).

72. Colley, B. et al. SiaA/D Interconnects c-di-GMP and RsmA signaling to coordinate cellular aggregation of *Pseudomonas aeruginosa* in response to environmental conditions. *Front. Microbiol.* **7**, 179 (2016).

73. Ravichandran, A., Sugiyama, N., Tomita, M., Swarup, S. & Ishihama, Y. Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic *Pseudomonas* species. *Proteomics* **9**, 2764–2775 (2009).

74. Das, A. K., Helps, N. R., Cohen, P. T. & Barford, D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. *EMBO J.* **15**, 6798–809 (1996).

75. Levdiakov, V. M. et al. Structure of components of an intercellular channel complex in sporulating *Bacillus subtilis*. *Proc. Natl. Acad. Sci.* **109**, 5441–5445 (2012).

76. Bradshaw, N. et al. A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases. *Elife* **6**, e26111 (2017).

77. Tanoue, K. et al. Binding of a third metal ion by the human phosphatases PP2Cα and Wip1 is required for phosphatase activity. *Biochemistry* **52**, 5830–5843 (2013).

78. Debnath, S. et al. A trapped human PPM1A–phosphopeptide complex reveals structural features critical for regulation of PPM protein phosphatase activity. *J. Biol. Chem.* **293**, 7993–8008 (2018).

79. Masuda, S. et al. Crystal structures of the ADP and ATP bound forms of the *Bacillus* anti-σ factor SpoIIAB in complex with the anti-anti-σ SpoIIAA. *J. Mol. Biol.* **340**, 941–956 (2004).

80. Wang, Z. & Cole, P. A. in *Meth. Enzymol.* **548**, 1–21 (2014).

81. Lowe, E. D. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. *EMBO J.* **16**, 6646–6658 (1997).

82. O’Neill. Tackling drug-resistant infections globally: Final report and recommendations. *Rev. Antimicrob. Resit.* (2016). https://amr-review.org/.

83. Theuretzbacher, U. Global antimicrobial resistance in Gram-negative pathogens and clinical need. *Curr. Opin. Microbiol.* **39**, 106–112 (2017).

84. Secor, P. R., Michaels, L. A., Ratjen, A., Jennings, L. K. & Singh, P. K. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in *Pseudomonas aeruginosa*. *Proc. Natl. Acad. Sci.* **115**, 10780–10785 (2018).
85. Barraud, N., Kelso, M., Rice, S. & Kjelleberg, S. Nitric oxide: A key mediator of biofilm dispersal with applications in infectious diseases. *Curr. Pharm. Des.* **21**, 31–42 (2014).

86. Christensen, L. D. *et al.* Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against *Pseudomonas aeruginosa* in an intraperitoneal foreign-body infection mouse model. *J. Antimicrob. Chemother.* **67**, 1198–1206 (2012).

87. Römling, U. & Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. *J. Intern. Med.* **272**, 541–561 (2012).

88. Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. *Nat. Rev. Microbiol.* **15**, 740–755 (2017).

89. Kostakioti, M., Hadjifrangiskou, M. & Hultgren, S. J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. *Cold Spring Harb. Perspect. Med.* **3**, a010306 (2015).

90. Howlin, R. P. *et al.* Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic *Pseudomonas aeruginosa* infection in cystic fibrosis. *Mol. Ther.* **25**, 2104–2116 (2017).

91. Jagmann, N., Henke, S. F. & Philipp, B. Cells of *Escherichia coli* are protected against severe chemical stress by co-habiting cell aggregates formed by *Pseudomonas aeruginosa*. *Appl. Microbiol. Biotechnol.* **99**, 8285–8294 (2015).

92. Baker, E. H. *et al.* Hyperglycaemia and pulmonary infection. *Proc. Nutr. Soc.* **65**, 227–235 (2006).

93. Flynn, J. M., Niccum, D., Dunitz, J. M. & Hunter, R. C. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. *PLoS Pathog.* **12**, e1005846 (2016).

94. LaBauve, A. E. & Wargo, M. J. Detection of host-derived sphingosine by *Pseudomonas aeruginosa* is important for survival in the murine lung. *PLoS Pathog.* **10**, e1003889 (2014).

95. Barker, M. *et al.* Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. *Eur. Respir. J.* **27**, 929–936 (2006).

96. Liu, Q. *et al.* 2,3-Butanediol catabolism in *Pseudomonas aeruginosa* PAO1. *Environ. Microbiol.* **20**, 3927–3940 (2018).

97. Whiteson, K. L. *et al.* Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation. *ISME J.* **8**, 1247–1258 (2014).

98. Nguyen, M. *et al.* The fermentation product 2,3-butanediol alters *P. aeruginosa* clearance, cytokine response and the lung microbiome. *ISME J.* **10**, 2978–2983 (2016).

99. Venkataraman, A., Rosenbaum, M. A., Werner, J. J., Winans, S. C. & Angenent, L. T. Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by *Pseudomonas aeruginosa*. *ISME J.* **8**, 1210–1220 (2014).

100. Jones, C. J. *et al.* ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by *Pseudomonas aeruginosa*. *PLoS Pathog.* **10**, e1003984 (2014).

101. Baraquet, C. & Harwood, C. S. FleQ DNA binding consensus sequence revealed by studies of FleQ-dependent regulation of biofilm gene expression in *Pseudomonas aeruginosa*. *J. Bacteriol.* **198**, 178–186 (2015).

102. Romero, M. *et al.* Genome-wide mapping of the RNA targets of the *Pseudomonas aeruginosa* riboregulatory protein RsmN. *Nucleic Acids Res.* **46**, 6823–6840 (2018).

103. Corona, F., Reales-Calderón, J. A., Gil, C. & Martínez, J. L. The development of a new parameter for
tracking post-transcriptional regulation allows the detailed map of the *Pseudomonas aeruginosa* Crc regulon. *Sci. Rep.* **8**, 16793 (2018).

104. Brenic, A. & Lory, S. Determination of the regulon and identification of novel mRNA targets of *Pseudomonas aeruginosa* RsmA. *Mol. Microbiol.* **72**, 612–632 (2009).

105. Chew, S. C. *et al.* Matrix Polysaccharides and SiaD diguanylate cyclase alter community structure and competitiveness of *Pseudomonas aeruginosa* during dual-species biofilm development with *Staphylococcus aureus*. *MBio* **9**, e00585–18 (2018).

106. Laventie, B. J. *et al.* A Surface-induced asymmetric program promotes tissue colonization by *Pseudomonas aeruginosa*. *Cell Host Microbe* **25**, 140–152.e6 (2019).

107. Valentini, M., Laventie, B. J., Moscoso, J., Jenal, U. & Filloux, A. The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control *Pseudomonas aeruginosa* Biofilm and Motility. *PLoS Genet.* **12**, (2016).

108. Baena, I. *et al.* A partner-switching system controls activation of mixed-linkage β-glucan synthesis by c-di-GMP in *Sinorhizobium meliloti*. *Environ. Microbiol. In Press*, doi: 10.1111/1462–2920 (2019).

109. Ghosh, C., Sarkar, P., Issa, R. & Haldar, J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. *Trends Microbiol.* **27**, 323–338 (2019).

110. De Smet, J., Hendrix, H., Blasdel, B. G., Danis-Wlodarczyk, K. & Lavigne, R. Pseudomonas predators: Understanding and exploiting phage-host interactions. *Nat. Rev. Microbiol.* **15**, 517–530 (2017).

111. Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. & Lu, T. K. Genetically Engineered Phages: a Review of Advances over the Last Decade. *Microbiol. Mol. Biol. Rev.* **80**, 523–43 (2016).

112. Waters, E. M. *et al.* Phage therapy is highly effective against chronic lung infections with *Pseudomonas aeruginosa*. *Thorax* **72**, 666–667 (2017).

113. Lu, T. K. & Collins, J. J. Dispersing biofilms with engineered enzymatic bacteriophage. *Proc. Natl. Acad. Sci.* **104**, 11197–11202 (2007).