Eight new luminous $z \geq 6$ quasars selected via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 Observations

S. L. Reed1,2, R. G. McMahon1,2, P. Martini4,5, M. Banerji1,2, M. Auger1, P.C. Hewett1, S. E. Koposov1, S. L. J. Gibbons1, E. Gonzalez-Solares1, F. Ostrovski1,2, S. S. Tie4,5, F. B. Abdalla3,6, S. Allam7, A. Benoit-Lévy7,8,9, E. Bertin8,9, D. Brooks3, E. Buckley-Geer7, D. L. Burke10,11, A. Carnero Rosell12,13, M. Carrasco Kind14,15, J. Carretero16,17, L. N. da Costa12,13, D. L. DePoy18, S. Desai19, H. T. Diehl7, P. Doel3, A. E. Evrard20,21, D. A. Finley7, B. Flaugher7, P. Fosalba22, J. Frieman7,23, J. García-Bellido, E. Gaztanaga22, D. A. Goldstein24,25, D. Gruen26,11, R. A. Gruendl27,28, G. Gutierrez7, D. J. James29,30, K. Kuehn31, N. Kuropatkin7, O. Lahav3, M. Lima32,12, M. A. G. Maia12,13, J. L. Marshall18, P. Melchior33, C. J. Miller20,21, R. Miquel34,17, B. Nord7, R. Ogando12,13, A. A. Plazas35, A. K. Romer36, E. Sanchez37, V. Scarpine7, M. Schubnell21, I. Sevilla-Noarbe37, R. C. Smith30, F. Sobreira12,38, E. Suchyta39, M. E. C. Swanson28, G. Tarle21, D. L. Tucker7, A. R. Walker30, W. Wester7

Affiliations at end of paper.

1 INTRODUCTION

Quasars are some of the most luminous sources in the high redshift universe and can be used as direct probes of very early times when the first generations of galaxies and quasars were forming. Their
spectra can be used to shine light on the properties of the intergalactic medium (IGM) as well as giving direct measurements of the neutral hydrogen fraction at the end of reionisation through the study of Lyα forest absorption (Bolton & Haehnelt 2007; Fan et al. 2006). Absorption lines in the spectra of high redshift quasars allows the properties of gas and metals to be studied on cosmological scales.

The results from the Cosmic Microwave Background (CMB) measurements given in Planck Collaboration et al. (2015) suggest that the beginning of reionisation was at $z \sim 8$. At lower redshifts (2.0 < z < 6.0) studies (Becker et al. 2007; Fan et al. 2006; Gunn & Peterson 1965) show that the IGM is highly ionised ($n_{\text{HI}}/n_{\text{H}} \lesssim 10^{-4}$) and therefore that reionisation was complete by $z \sim 6$. The discovery of more quasars above a redshift of $z = 6$ will allow the change in hydrogen ionisation at $z > 6$ to be studied in more detail and along different lines of sight.

There have been many surveys for high redshift quasars and these have lead to the discovery of ~ 60 ($z > 6$) quasars (e.g. Bahados et al. 2016; Carnall et al. 2015; Fan et al. 2006; Jiang et al. 2009, 2016; Mortlock et al. 2012; Venemans et al. 2015, 2013; Willott et al. 2010). Most of these searches have used purely optical photometry from large surveys such as the Sloan Digital Sky Survey (SDSS) or the Canada France Hawaii Telescope Legacy Survey (CFHTLS) which have a reddest photometric waveband of z. The deeper and redder photometry extending to the Y photometric waveband provided by the Dark Energy Survey (DES) (The Dark Energy Survey Collaboration 2005) combined with the additional IR data from complementary surveys such as the VISTA Hemisphere Survey (VHS) (McMahon et al. 2013) and the Wide-field Infrared Survey Explorer (WISE) means that samples can be cleanly selected without the need for deep photometric follow-up such as in Reed et al. (2015). Infrared data are a powerful discriminant between high redshift quasars and their main astrophysical contaminants of ultra cool stars. (Banerji et al. 2015; Wright et al. 2010).

The red sensitive Dark Energy Camera (DECam) CCD detectors, coupled with the long wavelength sensitivity of the DES z and Y filters, allows the detection of Ly-α to higher redshift than was possible with less red sensitive optical surveys such as SDSS increases the redshift range that can be covered to $z \sim 7$. In this paper we present the results of our search for high-redshift quasars in the first year of DES data. DES magnitudes, near infrared (NIR) VISTA magnitudes and WISE magnitudes are quoted on the AB system. The conversions from Vega to AB that have been used for the VISTA data are: $J_{\text{AB}} = J_{\text{Vega}} + 0.937$ and $K_{\text{AB}} = K_{\text{Vega}} + 1.839$, these are taken from the Cambridge Astronomical Survey Unit’s website.

1 The conversions used for the ALLWISE data are $W1_{\text{AB}} = W1_{\text{Vega}} + 2.699$ and $W2_{\text{AB}} = W2_{\text{Vega}} + 3.339$ which are given in Jarrett et al. (2011) and in the ALLWISE explanatory supplement.

2 When required, a flat cosmology with $\Omega_{\text{m}} = 0.3$ and $\Omega_{\text{k}} = 70.0$ km/s/Mpc was used. The code used in this analysis makes use of the astropy python package (Astropy Collaboration et al. 2013).

2 PHOTOMETRIC IMAGING DATA

2.1 Dark Energy Survey Data

We here use the Year One First Annual (Y1A1) internal collaboration release of the Dark Energy Survey (DES) data (Diehl et al. (2014), Drlica-Wagner et al. (In preparation)). These data cover ~ 1840 deg2 of the southern celestial hemisphere to a median 10σ point source (MAG_PSF) depth in AB magnitudes of 23.28, 23.6, 23.1, 22.3 and 20.8. in the g, r, i, z and Y bands respectively. Catalogue source detection uses the SExtractor (Bertin & Arnouts 1996) image detection software in double image mode using the χ^2 detection image (Szalay et al. 1999) constructed from the combination of the r, i and z band images, as the detection image.

The point source depths are calculated from area weighted median aperture (MAG_APER,4) magnitude limits taken from the DES Mangle (Swanson et al. 2008) products at 10σ in a 2” diameter aperture values of 24.2, 23.9, 23.3, 22.5 and 21.2. See Figure 1 for the z band magnitude limit versus cumulative area. To convert these aperture depths to point source deths, the median differences between the 2” aperture magnitude and the PSF magnitude for point sources were used across the survey. The offsets (MAG_APER – MAG_PSF) are g: -0.4, r: -0.3, i: -0.2, z: -0.2, Y: -0.4 with the differences due to the differences in the average point spread function widths induced by seeing for each waveband.

Once completed DES will cover 5000 deg2 in five optical bands with images taken using the Dark Energy Camera (DECam) (Flaugher et al. 2015) which is mounted on the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). The data are then reduced using the DES data management process (Desai et al. 2012; Mohr et al. 2012). DECam is particularly suited to high redshift survey work due to its large field of view and red sensitivity. The data contained in the Y1A1 release were taken between 2013 August 15th and 2014 February 9th. The Y1A1 release is shallower than the final survey depth and consists of 3707 coadded tiles covering two contiguous regions one overlapping the Stripe 82 area imaged by the SDSS and one overlapping with the area covered by the South Pole Telescope (SPT). The tiles are coadd images made up of between 1 and 5 exposures in each of the 5 wavebands with an average coverage of 3.5 exposures making up each tile.

A magnitude limit of $z_{\text{PSF}} < 21.0$ was used in this work; this corresponds to an area of 1835 deg2. Figure 1 shows the cumulative area against depth for the dataset in 2” diameter aperture, PSF and auto magnitudes for stellar objects where we define stellar objects based on Reed et al. (2015). Whilst auto magnitudes are intended to give the most precise estimate of total magnitudes for galaxies they can also be used for stellar objects. The SExtractor implementation of the routine is based on Kron (1980). We do not use auto magnitudes in the analysis here and they are included here for comparison with other work noting the small offset for point sources between auto magnitudes and PSF magnitudes which may indicate a systematic over estimate in the auto fluxes. The z band limit used here is shown as the vertical line and is well above the 10σ limit. As we only used the area of DES currently covered with VHS (~84%) this reduced the total area available to 1533 deg2.

In this paper DES magnitudes quoted are point spread function (PSF) magnitudes derived from PSF fluxes calculated using PSFs for each coadd tile measured as part of the DES reduction using PSFex (Bertin 2011). When other magnitude or flux measurements (e.g. aperture) are used this is explicitly stated. All magnitudes are given in the AB system. Aperture magnitudes and fluxes from DES are given for a 2” diameter aperture with an aperture correction applied based on the point spread function to compensate for missing.
flux outside the aperture unless otherwise stated. Corrected aperture fluxes were used in the model fitting calculations and the fluxes given in the paper are aperture corrected fluxes unless otherwise stated. Aperture flux measurement were used as they best represent the flux when the object was near or below the detection limit of the data.

2.2 VISTA Hemisphere Survey Data

The VISTA Hemisphere Survey (VHS) (McMahon et al. 2013) aims to carry out a near infra red (NIR) survey of \(\sim 18,000 \) degrees\(^2\) of the southern hemisphere to a depth 30 times fainter than the Two Micron All Sky Survey (2MASS) in two wavebands J and K. The survey uses the 4m VISTA telescope at ESO’s Cerro Paranal Observatory in Chile. In the Southern Galactic Cap \(\sim 5000 \) degrees\(^2\), which will overlap the DES area, is being imaged more deeply (J\(_{AB} = 21.2\), K\(_{AB} = 20.4\); 5\(\sigma\) point source depths) with partial coverage in H. This gives data in three bands (J, H and K\(_s\)) in the near infrared at \(\sim 1\)-\(\lambda\)m. H band data is not being taken over the full DES and some of the area used in this project does not have H band imaging. The VHS data used in this work were taken between 2009 November 4\(^{th}\) and 2014 February 1\(^{st}\).

The VIRCAM camera (Dalton et al. 2006) used for VHS imaging has a sparse array of 16 individual 2k x 2k MCT detectors covering a region of 0.595 square degrees. In order to cover the full 1.5 square degree field of view of the camera six exposures are required. These exposures are then combined into one co-added tile as part of the pipeline processing. The data is processed with the VISTA Data Flow System at CASU (Emerson et al. 2004; Irwin et al. 2004; Lewis et al. 2010) and the science products are available from the ESO Science Archive Facility and the VISTA Science Archive (Cross et al. 2012; Hambly et al. 2004).

2.3 Wide Infrared Survey Explorer Data

Longer wavelength data at 3.4, 4.6, 12 and 22\(\mu\)m (known as W1, W2, W3 and W4 respectively) were used from the all-sky Wide Infrared Survey Explorer (WISE) (Wright et al. 2010). The WISE satellite uses a 40cm telescope with a camera containing four 1024 x 1024 arrays with a median pixel size of 2.757" and a field of view of 47 x 47 arcminutes. The telescope scanned the sky and took multiple images giving coadd 5\(\sigma\) point source depths of W1\(_{AB} = 19.3\), W2\(_{AB} = 18.9\), W3\(_{AB} = 16.5\) and W4\(_{AB} = 14.6\). In W1, W2 and W3 these coadd images had a full width at half maximum of 6.1" and in W4 6.4". Once the cryogenic fuel was exhausted in 2010 the telescope continued to survey the sky in the two shortest bands as part of the post-cryogenic NEOWISE mission phase. The two datasets were combined into the 2013 WISE AllWISE Data Release. The AllWISE coadd images are 4095 x 4095 pixels at 1.375 arcsec per pixel.

3 QUASAR CANDIDATE SELECTION

Following on from the selection method presented in Reed et al. (2015) (hereafter R15) we have developed a selection method that uses all the photometric data (from WISE, VHS and DES) available for the objects. The selection method incorporated the first eight steps outlined in section 3 of R15 and is summarised in Table 1. Then the candidate list was matched to the VHS catalogue data to give J and K band magnitudes for the objects and was a fast
way to remove artefacts such as cosmic rays that were present in only one of the surveys. Matching to VHS and keeping only objects with $Y_{AB} - J_{AB} < 1.0$ left 960 candidates from the original 4,195 that satisfied the first stages of selection. The cuts used are shown in Figure 2 and 3. The $z - Y$ and $Y - J$ cuts were chosen to be the reddest cuts that excluded all known dwarf stars used in this analysis.

3.1 WISE List Driven Aperture Photometry

As the W1 - W2 colour is a discriminant between quasars and cool stars, list driven aperture photometry code was run on the unWISE images (Lang 2014). We use these unblurred coadds from the WISE Atlas images. The unWISE coadd images are 2048 × 2048 pixels at the nominal native pixel scale, 2.75 per arcsec pixel, rather than the 4095 × 4095 images at 1.375 per pixel chosen in the AllWISE Release. The blurred AllWISE images are better suited for source detection but the unblurred unWISE coadds used here have better resolution, and are therefore more appropriate for forced, list-driven photometry at known positions on the sky. (Lang 2014). Forced photometry was done using imcore list from version 1.0.26 of the CASUTOOLS software package (Irwin 1985) \(^3\). The code was run for all objects in the VHS catalogue where the VHS sources were used as inputs as they are closer in wavelength than the DES sources so were more likely to have a corresponding WISE source. The approach of using the J band positions will also allow us to use these same catalogues as we push our search to higher redshift where we expect quasar candidates to be detected in the shorter (riz) wavelength DES bands at all. An aperture radius of 2.5 pixels (∼6.9”) was used for the list driven photometry on the WISE images. This was chosen to match the aperture size used for the published WISE catalogues. While a smaller aperture size would help to ensure that the flux came only from the specified object it would also miss more of the WISE flux that is outside the aperture due to the point spread function of WISE. A larger aperture can also include flux from neighbouring objects. An alternative approach would be to estimate the WISE fluxes using PSF based weighting.

3.2 Photometric SED modelling, redshifts and stellar classification

To prioritise the candidates a photometric redshift fit was carried out using a series of model spectral energy distributions (SEDs). Four quasar models (Maddox et al. 2012) based on the spectral templates in Maddox & Hewett (2006), with different levels of intrinsic reddening ($E(B-V) = 0.0, 0.025, 0.05, 0.10$) were used in 0.1 redshift increments between 4.0 and 8.0 for the model fitting. The model is a parametric model where the continuum consists of two power laws (with slopes -0.42 and -0.17) that are joined at 5530 Å. Longward of one micron the flux is dominated by a single temperature black body with $T = 1236$K. On top of this is an empirical quasar emission line spectrum. Shortward of the restframe Lyman-limit (912 Å) is removed. Thus at all redshifts shortward of the restframe Lyman-limit (912Å) is removed. The Lyα forest absorption which is redshift dependent. All the flux shortward of the restrframe Lyman-limit (912Å) is removed. Thus at all redshifts above $z = 5$; there should be zero flux in the DES g band which has <1% of peak transmission at $\lambda > 5530$Å. The flux from the model was integrated over all the DES and VHS wavebands as well as the WISE W1 and W2 bands. As the DES aperture fluxes do not include aperture corrections by default and SExtractor (Bertin & Arnouts 1996) does not return negative fluxes for PSF fluxes, aperture corrections were calculated to account for any flux that fell outside the aperture. It was necessary to have good measurements of the flux for very faint/undetected objects as all of our candidates are not present in the bluest DES bands. The aperture corrections were calculated using the median of the $\frac{PSF_{flux}}{Aperture_{flux}}$ for stellar objects. They were calculated for each individual DES image tile and applied separately for each tile. The objects were also compared to the derived brown dwarf colours from Skrzypek et al. (2015). As these colours were given in the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) and SDSS pass bands, colour terms (these are given in A) were calculated between the surveys using the overlap between DES, UKIDSS, VHS and SDSS in Stripe

\(^3\) http://casu.ast.cam.ac.uk/surveys-projects/software-release

Table 1. Summary of the steps in the high-redshift quasar selection process. The individual parts of step one are detailed fully in R15 and are not differentiated here.

Step	Description	Number Removed	Number Remaining
1	Number of objects in database Steps 1-8b from R15†	139,142,161	139,142,161
2	$z_{PSF} \leq 21.0$ and $\sigma_{r} < 0.1$	139,135,538	4,195
3	$Y_{PSF} \leq 23.0$	943	4,195
4	Y - J > 1.0	2,335	960
5	Remove Chip Edges in z Band	498	462
6	Remove Bad Image Areas	105	393
7	Remove Objects Bright in r	246	147

† A magnitude limit of $z = 21$ was used rather than 21.5 in R15 and no point source separation.
The colours were then converted onto the AB system using the offsets given in Hewett et al. (2006). Table 2 shows the ten objects followed up in this work and Table 3 shows the ten objects ranked most highly to be brown dwarfs. Figures A1 and A2 show the results of the model fitting for the highest ranked quasar candidate and a probable low mass star with spectral type M7.

The reduced χ^2 (χ^2_{reduced}) values were derived using the formula below:

$$\chi^2_{\text{reduced}} = \sum_{n=1}^{N} \left(\frac{\text{data}_n - f_n(\text{model})}{\sigma(\text{data})_n} \right)^2 / (N - 1)$$

where for each model, we sum over $n = 1...N$ wavebands with N-1 degrees of freedom.

When the photometric fitting method was first run it was found that objects with unreliable non-gaussian errors in their photometry, due for example to CCD chip edges and saturated objects, were contaminating the candidate list. These objects were then removed using image based techniques. To remove objects with photometry effected by chip edges the pixel values in a 30" box around the object were analyzed and if more than a third of had the same value the object was rejected; this also removes areas which have been masked with zeros in the image (such as saturated areas and bleed trails). It was found that a large number of the candidates appeared to have no measured flux in the g, r, or i bands but there were also no other objects present with a region with radius of 30" around the location of the candidate in the image. It was found that these patches of image had very different noise properties compared to other parts of the image. To remove these the median and the median absolute deviation (MAD) of the pixel values in a 30" box around the object were calculated and objects with a MAD < 0.7 were removed. This pixel MAD threshold was derived empirically from studying a large number of images. The distribution of MAD values of boxes taken from across a range of images was found to be bimodal with a dip at ~ 0.7. The bright r band objects were removed as detailed in R15. These pixel level filtering steps are done after catalogue level selection as the image based techniques are more computationally intensive than the catalogue ones so it is more efficient to run them on the reduced candidate list rather than to create a completely clean list from the beginning. Furthermore, if the images are not available colocated to computational resources, network transfers can be prohibitive. Table 1 lists the numbers of candidates removed by each selection stage.

The photometric fitting was then run again on the 147 remaining candidates. Candidates were first ranked based only on their quasar reduced χ^2 values with the smallest reduced χ^2 sources having the highest ranking. Following this ranking, we visually inspected the candidates in ranked order to remove artefacts and junk sources, and also compared the quasar reduced χ^2 values to those obtained from a brown dwarf fit to the photometry. The likelihood of being a brown dwarf was calculated from the polynomial fits in Skrzypek et al. (2015). Objects where the reduced χ^2 to be a brown dwarf was comparable to or higher than that to be a quasar were removed.

We found that the reduced χ^2 values for the best fitting quasar and low mass star models often exceeded 3 and hence were ruled out at $> 99\%$. At face value this is indicative that neither model fitted the data. This could be interpreted to mean that the photometric measurements had systematic errors or the range of SED models being considered was not representative of the underlying true distribution. We took a pragmatic approach and added a systematic photometric uncertainty to the statistical uncertainty in each waveband. Percentage errors in flux of 10%, 10%, 10%, 20%, 5%, 5%, 5%, 5%, 20% and 20% in g, r, i, z, Y, J, H, Ks, W1 and W2 respectively were added in quadrature to the statistical uncertainties as show in Equation 2

$$\chi^2_{\text{reduced}} = \sum_{n=1}^{N} \left(\frac{\text{data}_n - f_n(\text{model})}{\sigma(\text{data} + \text{model})_n} \right)^2 / (N - 1)$$

The resultant χ^2 values for the 10 highest ranked most probable quasars are shown in Table 2. The 10 objects with highest low mass star SED probability are listed in Table 3 and have a range of best fit spectral types from M5 to L3.

4 SPECTROSCOPIC OBSERVATIONS

Spectroscopic observations were obtained between 2015 October and November using the European Southern Observatory’s (ESO) 3.6m New Technology Telescope (NTT) and the 8.1m Gemini-South Telescope. The confirmed quasars from these spectroscopic follow up runs are listed in Table 2. A summary of the observations, including the exposure times and grism/grating used, is given in Table 4 and a summary of the objects’ properties is given in Table 5. Figure 6 shows the spectra of the objects presented here along with the spectrum of the object detailed in R15 as it was rediscovered in this sample. Four of the objects were observed with the NTT at ESO’s La Silla observatory over three nights from the 2015 October 7th to the 9th. The spectra were taken with the ESO Faint Object Spectrograph and Camera 2 (EFOSC2) (Buzzoni et al. 1984) and reduced using a custom set of python routines. Calibration data were taken during the afternoon preceding the observations or taken as part of the PESSTO project (Smartt et al. 2015). A 1.5" width slit was used and the data was binned 2x2 on data readout. Due to the incompletion of the weather due to partial cloud coverage and the smaller mirror aperture the NTT data are of modest quality compared to the Gemini observations of the rest of the sample. Four of the objects were observed with the Gemini Multi-Object Spectrograph (GMOS) (Hook et al. 2004) at the Gemini South Telescope as part of the 2015B queue observations using a 0.75" mask and reduced with a custom python reduction code. All the reduced spectra are shown in Figure 6. A pipeline was written to reduce the two dimensional spectra from both telescopes. The object was located on the CCD and a gaussian was fitted to a well behaved area of the spectrum. Standard star observations were used to study the change of position of the spectrum in the spatial direction with wavelength. This was found to vary little with time and a general formula for the trace was derived. This could not be done from the quasar spectrum as it only covered a small wavelength range at the reddest end of the detector. To be sure that we were seeing no flux due to the intrinsic properties of the object rather than because we were extracting the wrong part of the two dimensional spectrum this trace was positioned using the small area of spectrum we have. The derived gaussian profile was then used to weight the spectrum extracted along the line of the trace. Once the spectrum had been extracted the response function of the instrument was calculated using the standard star observations and the spectrum corrected. The different spectrum were then stacked together and the result was calibrated using the multi band photometry. Wavelength calibration was applied using arc lamp observations taken in the day prior to the observations.
Figure 4. An example of the model fitting results for the highest ranked quasar in the sample. The top panel shows the best fitting quasar model in red and the data with associated uncertainties in black. The filled areas show the filters for DES, VHS and WISE. The blue line shows the model quasar spectra used. The second panel down shows the residuals from the fit divided by the uncertainties on each point. The bottom two panels show the same thing for the best fitting cool star model. Along the bottom of the Figure are 20" cutouts in each band with the AB magnitude in that band beneath.

Table 2. Parameters from the fitting process for the confirmed quasars.

Name	Rank	χ^2_{red} of Best Quasar Model	Best Redshift	Spectroscopic Redshift	χ^2_{red} of Best Brown Dwarf Model	Best Type	χ_{BD}	
VDES0410-4414_987	9	3.15	0.100	6.1	6.25	38.87	M7	0.081
VDES0420-4453	6	2.54	0.000	6.0	6.07	19.44	M6	0.131
VDES0545-4448†	2	1.55	0.000	6.0	6.10	18.81	M6	0.082
VDESJ2250-5015*	4	1.78	0.050	6.0	6.00	12.20	M8	0.146
VDESJ2315-0023*	7	2.67	0.000	6.0	6.12	30.92	M5	0.086

† This object was found in R15.
* This object is SDSS J231546.57+002358.1 found in Jiang et al. (2008).
Eight new $z \geq 6$ quasars

Figure 5. An example of the fitting results for the highest ranked brown dwarf in the sample. The colours and lines are the same as in Figure A1.

Table 3. Parameters from the fitting process for the ten objects ranked highest to be brown dwarfs. Only objects with photometry in all the available bands were included here.

Name	χ^2_{red} of Best Quasar Model	Best E(B-V)	Best Redshift	χ^2_{red} of Best Brown Dwarf Model	Best Type	$\frac{\delta_E}{\delta_{BD}}$
VDESJ0419-5033	18.55	0.000	6.0	1.05	L0	17.67
VDESJ0440-5258	11.48	0.000	6.0	1.43	L0	8.03
VDESJ0516-5433	9.25	0.050	6.0	1.38	L3	4.53
VDESJ0524-5710	19.37	0.000	5.9	0.82	M7	23.62
VDESJ0541-5959	11.15	0.000	5.9	0.80	M7	13.94
VDESJ2138-5853	18.69	0.000	5.9	1.36	M7	13.75
VDESJ2224-4639	12.36	0.025	6.0	1.31	L1	9.44
VDESJ2300-4432	13.88	0.000	6.0	1.06	M9	13.10
VDESJ2307-0044	24.54	0.000	6.0	1.07	L0	22.93
VDESJ2321-5655	6.66	0.000	5.2	1.10	M5	6.05

4.1 Redshift Determination

Redshifts were calculated by fitting a quasar model to the spectroscopic data. The section of the spectra blueward of Lyα was modelled using an exponential to account for the rapid decay to zero flux. A Gaussian centred at 1025.7 Å was used to approximate the Lyβ emission feature seen in some of the spectra. Lyα emission was modelled using half a Gaussian which matched onto the exponential at 1215.67 Å. Redward of Lyα the Nv, OI and SiIV+OIV lines were added using Gaussians centered at 1240.1, 1304.46 and 1397.8 Å respectively (Tytler & Fan 1992). The section longward of 1215.67 Å then had a power law and a constant offset added to model the continuum emission.

This model was tested using the spectroscopic data from Fan et al. (2006). While the spectroscopic data presented here do not cover the full range of lines input into the model some of the test
Figure 6. Reduced spectra of all the objects in this sample as well as the quasar discovered in R15 (DESJ0454-4448); presented in redshift order. The vertical lines show the positions of Lyα and Lyβ. The bottom plot gives an example error spectra taken from one of the quasars (DESJ0410-4414) and has the DES filters over plotted.
Eight new $z \geq 6$ quasars

Table 4. Details of the spectroscopic observations

Name	Telescope	Instrument	Exposure Time (Seconds)	Date	Filter	Grating/Grism
VDESJ0143-5545	NTT	EFOSC2	1200 + 1200 = 2400	09/11/2015	OG530	Gr#16
VDESJ0224-4711	NTT	EFOSC2	1800 + 1800 = 3600	07/11/2015	OG530	Gr#16
VDESJ0323-4701	GEMINI-SOUTH	GMOS-S	600 + 600 + 600 + 600 = 2400	22/11/2015	RG610	Gr#16
VDESJ0330-4025	GEMINI-SOUTH	GMOS-S	600 + 600 + 600 + 600 = 2400	22/11/2015	RG610	Gr#16
VDESJ0408-5632	NTT	EFOSC2	1200 + 1200 = 2400	08/11/2015	OG530	Gr#16
VDESJ0410-4414	GEMINI-SOUTH	GMOS-S	600 + 600 + 600 + 600 = 2400	11/09/2015	RG610	Gr#16
VDESJ0420-4453	GEMINI-SOUTH	GMOS-S	600 + 600 + 600 + 600 = 2400	04/09/2015	RG610	Gr#16
VDESJ2250-5015	NTT	EFOSC2	1800 + 1800 = 3600	07/11/2015	OG530	Gr#16

Figure 7. An model fit for the highest redshift quasar in this sample. The dashed lines show the centres of the lines used in the model. The data shown in black is the unsmoothed spectrum and the grey shaded area shows the uncertainty at each wavelength. The dark blue line is the best fitting model and the light blue lines show 100 example model fits found during the fitting iterations. The reduced χ^2 from the fit and the calculated redshift are given in the inset panel.

Figure 8. A comparison of the differences in redshifts between the fitting method used here and the results from Fan et al. (2006) and Carilli et al. (2010). The dashed line indicates the zero line.

data covered the full range. This model was then fitted to the data using a χ^2 minimisation to give the best estimate of the redshift. An example of the redshift fitting process is shown in Figure 7.

The method was tested on the SDSS sample from Fan et al. (2006); there it was found to recover the redshifts presented with a median difference of -0.01 with $\sigma_{\text{MAD}} = 0.01$. The σ_{MAD} (median absolute deviation (MAD)) is used as a robust estimator of the gaussian standard deviation where $\sigma_{\text{MAD}} = 1.4826 \times \text{MAD}$. σ_{MAD} was used to give an estimate of the systematic uncertainty in the redshifts of 0.01 which is far larger the statistical uncertainties from the fitting. As the data quality varies across the sample the uncertainties are going to be underestimated for the nosiest data. The calculated redshifts and the redshifts from Fan et al. (2006) were also compared with the redshifts presented in Carilli et al. (2010); as shown in Figure 8. The median difference between our calculated redshifts and the redshifts from Carilli et al. (2010) was found to be 0.0 with $\sigma_{\text{MAD}} = 0.01$ while the median difference between the redshifts from Carilli et al. (2010) and Fan et al. (2006) was -0.02 with $\sigma_{\text{MAD}} = 0.01$.
Table 5. Properties of the quasars in this sample. Upper limits are given for the magnitude in a $2''$ aperture. All magnitudes are given in AB.

Name	Ranking	DES Tilename	RA	DEC	g	r	i	z	Y	J	Ks	W1	W2
VDESJ0143-5545	9	DES0145-5540	25.79265	-55.75297	> 24.22	> 23.83	24.03	20.50	21.11	20.61	20.09	19.39	19.00
VDESJ0224-4711	3	DES0222-4706	36.11057	-47.19149	> 23.47	> 23.35	24.02	20.20	19.89	19.75	18.99	18.75	18.64
VDESJ0323-4701	10	DES0325-4706	50.91808	-47.02226	> 24.40	> 24.10	24.30	20.78	20.74	20.88	20.51	20.31	20.51
VDESJ0330-4025	5	DES0329-4040	52.61632	-40.42121	24.98	> 23.80	23.76	20.66	20.34	20.56	19.99	19.55	19.58
VDESJ0408-5632	8	DES0407-5622	62.08012	-56.54134	> 24.04	24.89	22.48	20.13	19.91	19.70	19.70	20.30	19.74
VDESJ0410-4414	1	DES0409-4414	62.51345	-44.24464	> 24.01	25.31	> 23.04	20.65	20.61	20.68	20.22	20.00	20.79
VDESJ0420-4453	6	DES0421-4457	65.04727	-44.88993	> 24.27	24.98	22.71	20.32	20.46	20.57	20.04	19.73	20.12
VDESJ0454-4448†	2	DES0453-4457	73.50744	-44.80864	> 24.46	> 24.09	22.64	20.24	20.36	20.24	20.11	19.62	19.70
VDESJ2250-5015	4	DES2250-4957	342.50837	-50.26171	> 23.60	> 23.68	22.63	20.11	19.98	19.18	19.00	18.71	19.04
VDESJ2315-0023*	7	DES2316-0041	348.94409	-0.39938	24.00	> 23.62	23.81	20.83	21.54	21.47	-	20.65	-

† This quasar was found in R15 and it is included here for completeness and to allow comparison between the different DES data releases and the different WISE reductions used.
* This is a known object (SDSS J231546.57-002358.1) discovered in Jiang et al. (2008)
The observed spectra of \(z > 6 \) quasars are characterised by intrinsic quasar continuum emission and emission lines longward of the Lyman-\(\alpha \) emission line in the quasar rest frame. Shortward of Lyman-\(\alpha \) in the quasar rest frame the spectrum the most distinctive feature is the deficit of continuum emission due to HI Lyman-\(\alpha \) and Lyman series absorption absorption by the cosmologically distributed intervening Lyman-\(\alpha \) forest. At \(z > 6 \) the optical depth from this neutral HI absorption is considerable and is often called the 'Gunn Peterson trough' where the neutral hydrogen fraction \(f_{\text{HI}} \) is \(f_{\text{HI}} \rightarrow 10^{-3} \). Closer to the quasar the UV radiation from the quasar ionizes HI and and the HI opacity is decreased. This highly ionized HII region in called a near zone and the size of this region is determined by the large scale structure or clumpiness of the HI, the average neutral fraction, the UV luminosity of the quasar and the age of the expanding UV radiation front emitted by the quasar. Observations of the distribution of near zone sizes and the evolution with redshift of this distribution is an important probe of the Universe in the epoch of reionization.

Near zones sizes were calculated using the method described in R15 which follows Fan et al. (2006) where the edge of the near zone is taken to be the point where the ratio between the continuum flux and the spectra first falls below 0.1 blueward of the Ly\(\alpha \) peak. The spectral resolution and signal to noise of our four NTT spectra are too low to measure near zones sizes. Measured near zone sizes \((R_{\text{NZ}}) \) measurements from the four Gemini spectra and from R15 are presented in Table 6. The near zone size of a quasar in a cosmologically expanding medium will depend on the intrinsic UV flux of the quasar below the Lyman-\(\alpha \) transition at 1216\,Å. Following Carilli et al. (2010) we normalise the measured near zone sizes \((R_{\text{NZ}}) \) to a constant UV absolute magnitude \(M_{1450} = -27 \) with the equation below.

\[
R_{\text{NZ,corrected}} = R_{\text{NZ}} \times 10^{0.4(27.0 + M_{1450})/3}
\]

5 QUASAR IONIZATION NEAR ZONES

The blue solid line is the analytic solution from Keating et al. (2015) for the evolution of the normalised near zone sizes with redshift where the quasar has constant luminosity and the neutral fraction is not evolving with redshift. The decrease in size with increasing redshift is solely due to the increase in mean HI density as the Universe gets smaller in size at earlier redshifts. The dashed blue lines show the 15th and 85th percentiles about the median \((\sim \pm 1\sigma)\) derived from simulations (Keating et al. (2015)). The black dashed and black dot dashed lines show linear fits by Carilli et al. (2010) and Venemans et al. (2015) respectively.

The four new zones that we measure at \(6.1 < z < 6.3 \) span a large range from 3 to 9 Mpc. Two, VDES J0330-4025 and VDES J0323-4701, have relatively small corrected near zone sizes of \(\sim 3 \) Mpc which could indicate that these two quasars are younger than the average quasar at this epoch and have relatively small lifetime \((10^6 - 10^7 \text{ years})\) and the ionized HII regions have not reached their maximum size due to the time taken for the ionizing radiation fronts to expand into the surrounding HI region. Alternatively if one ignores the effects of quasar lifetime to fully account for the small near zone sizes the objects would need to be situated in regions of the Universe which are a factor of \(\sim 10 \) above average HI density. Similar effects has been reported by Bolton et al. (2011) for the \(z = 7.085 \) quasar ULAS J1120+0641. The discovery of two \(z \sim 6.2 \) quasars with such small near zones indicates that care needs to be taken in interpreting small near zones as evidence for an increase in the neutral fraction. To further address this more observational data is essential.

6 PROPERTIES OF INDIVIDUAL OBJECTS

Here we give more details on some specific objects from our sample. A summary of the derived properties of the quasars presented here is given in Table 6. A comparison of these to known quasars is shown in Figures 10 and 11.
Table 6. Derived properties of the quasars in this sample. The near zone sizes for VDESJ0454-4448 are taken from R15. Near zone sizes are not given for all objects as the data quality was not good enough.

Name	Redshift	M_1450	R_{NZ}	R_{NZ,corrected}
VDESJ0143-5545	6.25 ± 0.01	-25.65 ± 0.12		
VDESJ0224-4711	6.50 ± 0.01	-29.63 ± 0.05		
VDESJ0323-4701	6.25 ± 0.01	-26.02 ± 0.07	2.1 ± 0.5 Mpc	2.8 ± 0.2 Mpc
VDESJ0330-4025	6.25 ± 0.01	-26.42 ± 0.06	2.1 ± 0.5 Mpc	2.5 ± 0.2 Mpc
VDESJ0408-5632	6.03 ± 0.01	-26.51 ± 0.05		
VDESJ0410-4414	6.21 ± 0.01	-26.14 ± 0.09	6.9 ± 0.5 Mpc	9.0 ± 0.5 Mpc
VDESJ0420-4453	6.07 ± 0.01	-26.25 ± 0.06	4.3 ± 0.6 Mpc	5.3 ± 0.2 Mpc
VDESJ0454-4448†	6.10 ± 0.01	-26.36 ± 0.05	4.1 ± 1.1 Mpc	4.8 ± 1.3 Mpc
VDESJ2250-5015	6.00 ± 0.01	-26.80 ± 0.04		

† This object was found in R15.

Figure 11. The apparent AB magnitude of these quasars in the J band is shown against their redshifts compared with known quasars.

6.1 VDESJ0143-5545 (z = 6.23)

J0143−5545 was followed up with the NTT and found to have a very strong emission feature at ~8820Å suggestive of a quasar with z ~ 6.3. This object was well fit by the model with the highest level of reddening, E(B-V) = 0.100, at z = 6.1. This object has a very blue z - Y of -0.61 due to the presence of the very strong Lyα emission line in the z filter. When the reddening fit was repeated without using the blended WISE data the object was best fit by a model with E(B-V) = 0.025 suggesting that the W1 and W2 fluxes are affected by a nearby source.

6.2 VDESJ0224-4711 (z = 6.50)

This candidate was ranked as the third most likely object to be a quasar in the candidate list with a very good fit to a reddened quasar model (E(B-V) = 0.05) at z ~ 6.4. It is quite bright with z = 20.0 and has a very red i - z colour of 3.82. Follow up of this object with the NTT showed a strong emission feature starting at ~9100Å giving a redshift of 6.50. The reddening fit was recalculated with the redshift fixed at the observed spectroscopic redshift of 6.50. At the spectroscopic redshift the photometry was best fit by a reddened model with E(B-V) = 0.05. This object appears to have a very extended near zone but the modest quality of the spectral data means that this measurement has very large uncertainties. VDESJ0224−4711 has J_{AB} = 19.75 is the second most luminous quasar known with z ≥ 6.5 and is 0.2 mag fainter than the most luminous quasar know with z > 6.5; PSO J0226+0302 with z = 6.53 and J_{AB} = 19.51 Venemans et al. (2015).

6.3 VDESJ0323-4701 (z = 6.25)

VDESJ0323−4701 was the lowest ranked candidate followed up. Spectroscopic observations with GMOS revealed a quasar at z ~ 6.25. This object was very red with i - z = 3.52 and was best fit by a non reddened quasar model with a slightly lower redshift of 6.10 than the spectroscopic one. The measured corrected near zone size of 2.8 proper Mpc which could indicate above average IGM density of a young age for this quasar.

6.4 VDESJ0330-4025 (z = 6.25)

The measured corrected near zone size of 2.5 proper Mpc which could indicate above average IGM density of a young age for this quasar. VDESJ0330-4025 lies within 10 deg on the sky of the other quasar with a small near zone; VDESJ0323-4701 which also has a redshift of 2.5 so they could lie in a correlated region of the Universe with above average IGM over density.

6.5 VDESJ0454-4448 (z = 6.10)

VDESJ0454−4448 was the first object identified from DES and was the subject of R15; details of the spectroscopic observations are included therein. It is included here as it was covered again by the year one release from the DES and was the second highest ranked candidate in the independent data analysis in this paper. The redshift was recalculated for this object as part of this analysis and was found to be 6.10 ± 0.01 which is consistent with the value given in R15 of 6.09 ± 0.03.

6.6 VDESJ2250−5015 (z = 6.00)

This object was ranked fourth by the selection code with a good fit to a model with E(B-V) = 0.05 and a predicted redshift of 6.0. Follow up spectroscopy with the NTT gives a redshift of 6.00. This source was the brightest in our sample with z = 20.11. VDESJ2250-5015 has a fairly red i - z colour of 2.52 and has a very red Y - J colour of 0.80. The reddening fit was repeated with the redshift fixed at the calculated one and without using the WISE data as the close proximity of another source might be influencing this. This
resulted in a model with more reddening (E(B-V) = 0.1) being chosen as the best fit. The red Y-J colour of this object is probably due to the reddening.

6.7 VDESJ2315-0023 (z = 6.12)

The seventh most likely ranked candidate was a known quasar (SDSS J231546.57-002358.1) from the SDSS survey for quasars in stripe 82 (Jiang et al. 2008). Their spectroscopic follow up found it to have z = 6.117 which is slightly higher than our photometric estimate of 6.0.

7 ANALYSIS OF SELECTION METHOD

There are seven previously known quasars with z \geq 5.80 in the area covered by the data used in this study. Two are recovered by the selection criterion, VDES0454-4448 (z = 6.10) from R15 and SDSSJ2315+0023 from Jiang et al. 2008 as discussed in section 6. SDSS J000552.34-3000655.8 (z = 5.85) discovered in Fan et al. (2004) is bluer than our i_{DES} - z_{DES} selection and is not selected.

This colour is indicative of being at a lower redshift than this selection method probes. The three quasars in Jiang et al. (2009) and the radio selected z = 5.95 quasar (SDSS J222843.54+011032.2) Zeimann et al. (2011) that overlap the area have $z_{\text{DES}} > 21.0$ and therefore are fainter than our selection limit.

The automatic ranking of candidates in the candidate list allows visual inspection to be prioritised. This will be particularly useful once the full DES area is available for study as there will be a large number (~500) of candidate objects. This also means that looser colour cuts can be used to narrow down the data slightly allowing more unusual objects to be discovered. One such object is VDESJ2250-5015 whose red colour in Y-J would have caused it to be rejected by previous searches (Bañados et al. 2016; Venemans et al. 2015). The Y and J band photometry of VDESJ2250-5015 is reliable and suggests that the very red colour is real and due to intrinsic properties of the object.

The SED model fitting selection method presented here also allows the expansion of the candidate list without increasing the need for visual inspection as objects can be double checked in the ranked order. This is because most of the types of junk that contaminate the list are classified as very unlikely to be quasars. Our future aim is to be able to run the selection criteria over the entire input list without any need for colour cuts and using the reduced χ^2 fits as discriminators. At the moment the colour selection is required to narrow down the list enough to make the image based steps run more rapidly. Improvements in the analysis code will allow this to be done for a larger number of images more rapidly. The catalogue based steps and the fitting steps are both fast enough ($\sim 10^4$ sources from ~ 1500 deg2 sources in less than 24hr on a single 4Ghz core) that they will be easily expanded to the larger ~ 5000 deg2 DES dataset when it is released.

In this version of the selection code objects with a high probability of being a brown dwarf are not rejected automatically but removed on an object by object basis when image cutouts of the object are checked. An improvement to the method would be to have automatic removal of these objects, as this will be more important for larger candidate lists generated either by relaxing the colour cuts or by a larger input dataset. The confirmed quasars compared to the rest of the sample are shown in terms of reduced χ^2 to be either a star or a quasar in Figure 13. It can be seen that the selected objects are well separated from the rest of the sample. Due to the inclement weather we did not have time to follow up any objects further down the ranking so do not know if the dashed lines should be relaxed to select a complete sample. The candidates in the bottom right region are junk as confirmed by visual inspection.

In Section 3.2 our implemented SED fitting included an arbitrary systematic flux uncertainty. Now we have a spectroscopically confirmed sample we analyze the residuals from the best fit models. In Figure 12 we show the ratio of the observed flux to the best fitting model flux for each quasar, the sample median and the σ_{MAD}. These show that the best fit models agree within the uncertainties.

The scatter in the ratios as described by the σ_{MAD} is shown in Figure 12. The values for these ratios in the bands that are unaffected by the Lyα forest are similar to the values assumed in the fitting as described in Section 3.2. In r and i the large scatter is from stochastic scatter in Lyman-α forest and photometric statistical errors. In a future paper with a larger sample of confirmed quasars we will investigate the scatter in terms of the model. There is some evidence for excess flux in the W1 band which is probably due to the large aperture used resulting in flux from neighbouring objects. Since quasars are redder in W1 - W2 than the foreground galaxy and stellar populations, the W2 band is less effected.

The code is written to allow different models to be easily inserted and tested meaning that as additional models become available we can also compare to these. This will allow us to search for a wider variety of quasar types. For example we hope to include models with a wider range of extinctions and at a finer sampling in extinction and redshift. Different treatments of the Lyα forest and different properties of the IGM can also be incorporated.

8 SUMMARY AND CONCLUSIONS

We have presented the photometric selection, statistical classification and spectroscopic confirmation of eight new high redshift 6.0 < z < 6.5 quasars with $z_{\text{LAB}} < 21.0$, selected without any morphological star-galaxy classification from ~ 1500 deg2 using SED model fitting to photometric data from the Dark Energy Survey (g, r, i, z, Y), the VISTA Hemisphere Survey (J, H, K) and the Wide-Field Infrared Survey Explorer (W1, W2). Starting from
Lyman-α developed based on the onset of the Lyman-alpha forest and a fit to the Lyman-α emission line using a semi-Gaussian and an exponential. The technique is validated on a sample of quasar that also have CO and MgII emission line redshifts from Carilli et al. (2010) and VO and J0226+0302 with z = 6.2 quasars with such small near zones indicates that care needs to be taken in interpreting small near zones as evidence for an increase in the neutral fraction. To further address this more observational data is essential.

We also present a robust parametric redshift estimating technique based on the onset of the Lyman-alpha forest that gives comparable accuracy MgII and CO based redshift estimators.

9 ACKNOWLEDGEMENTS

SLR and RGM would like to thank Laura Keating for an interesting and educational discussion on near zones. RGM, SLR, MB, MA, PH, SEK, SLJG and EGS acknowledge the support of UK Science and Technology Facilities Council (STFC). Support for RGM by ERC Advanced Grant 320596 'The Emergence of Structure During the Epoch of Reionization’ is gratefully acknowledged. MB acknowledges funding from STFC via an Ernest Rutherford Fellowship.

Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of UK, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo á Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Laboratories, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenössische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, the Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitäts and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Laboratory, Stanford University, the University of Sussex, and Texas A&M University.

The analysis presented here is based on observations obtained as part of the VISTA Hemisphere Survey, ESO Progamme, 179-A-2010 (PI: McMahon). The analysis presented here is based on observations obtained as part of ESO Progamme, 096.A-0411 (PI: McMahon) and GEMINI programme GS-2015B-Q-14 (PI: Martini).

This analysis makes use of the cosmosis.py algorithm based off Pieter van Dokkum’s L.A. Cosmic algorithm detailed in van Dokkum (2001).

This paper has gone through internal review by the DES collaboration.

Figure 13. The known quasars were used to derive cuts to automatically select quasar candidates. These cuts are shown as the red dotted lines. The points circled in black are DES quasars and the object circled in green is a known SDSS quasar. It can be seen that these cuts separate the known quasars well from the rest of the sample. Due to inclement weather the object between the locus of points and the delimited box has not been followed up.
Mortlock D. J., Patel M., Warren S. J., Hewett P. C., Venemans B. P., McMahon R. G., Simpson C., 2012, MNRAS, 419, 390
Mortlock D. J., Warren S. J., Venemans B. P., Patel M., Hewett P. C., McMahon R. G., Simpson C., Theuns T., González-Solares E. A., Adamson A., Dye S., Hamblly N. C., Hirst P., Irwin M. J., Kuiper E., Lawrence A., Röttinger H. J. A., 2011, Nature, 474, 616
Planck Collaboration Ade P. A. R., Aghanim N., Arnaud M., Ashdown M., Aumont J., Baccigalupi C., Banday A. J., Barreiro R. B., Bartlett J. G., et al., 2015, ArXiv e-prints, 1502.01589
Reed S. L., McMahon R. G., Banerji M., Becker G. D., González-Solareses E., Martini P., Ostrovski F., Rauch M., 2015, MNRAS, 454, 3952
Skrzypek N., Warren S. J., Faherty J. K., Modesirk D. J., Burgess A. J., Hewett P. C., 2015, A&A, 574, A78
Smartt S. J., Valenti S., Fraser M., Inserra C., Young D. Y., Sullivan M., Postarella A., Benetti S., 2015, A&A, 579, A40
Swanson M. E. C., Teegmark M., Hamilton A. J. S., Hill J. C., 2008, MNRAS, 387, 1391
Szalay A. S., Connolly A. J., Szokoly G. P., 1999, AJ, 117, 68 The Dark Energy Survey Collaboration 2005, ArXiv Astrophysics e-prints, 0510346
Tytler D., Fan X.-M., 1992, ApJS, 79, 1
van Dokkum P. G., 2001, PASP, 113, 1420
Venemans B. P., Bañados E., Decarli R., Farina E. P., Walter F., Chambersers K. C., Fan X., Rix H.-W., Schlafly E., McMahon R. G., Simcoe R., Stern D., Burgett W. S., Draper P. W., Flewelling H., Hodapp K. W., Kaiser N., Magnier E. A., 2015, ApJ, 801, L11
Venemans B. P., Findlay J. R., Sutherland W. J., De Rosa G., McMahon R. G., Simcoe R., González-Solares E. A., et al., 2013, ApJ, 779, 24
Venemans B. P., Verdoes Kleijn G. A., Mweezae J., Valentinj E. A., Bañados E., Decarli R., de Jong J. T. A., Findlay J. R., Kuijken K. H., Barbera F. L., McFarland J. P., McMahon R. G., Napolitano N., Sikkema S. G., Sutherland W. J., 2015, MNRAS, 453, 2259
Willott C. J., Delorme P., Reylé C., Albert L., Bergeron J., Crampion D., Delfosse X., Forveille T., Hutchings J. B., McLure R. J., Omont A., Schade D., 2010, The Astronomical Journal, 139, 906
Wright E. L., Eisenhardt P. R. M., Mainzer A. K., Ressler M. E., Cutri R. M., Jarrett T., Kirkpatrick J. D., Padgett D., et al., 2010, ApJ, 140, 1868
Zeimann G. R., White R. L., Becker R. H., Hodge J. A., Stanford S. A., Richards G. T., 2011, ApJ, 736, 57

AFFILIATIONS

1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
2 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
3 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
4 Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA
5 Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA
6 Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
7 Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
8 CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
9 Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
10 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
11 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
12 Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
13 Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
14 Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801, USA
15 National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
16 Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Facultat de Ciències, Torre C5 par-2, 08193 Bellaterra, Barcelona, Spain
17 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193
18 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
19 Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
20 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
21 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
22 Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Facultat de Ciències, Torre C5 par-2, 08193 Bellaterra, Barcelona, Spain
23 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
24 Department of Astronomy, University of California, Berkeley, 501 Campbell Hall, Berkeley, CA 94720, USA
25 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
26 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
27 Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801, USA
28 National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
29 Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195, USA
30 Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
31 Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
32 Departamento de Física Matemática, Instituto de Física de São Paulo, CP 66318, CEP
33 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
34 Institución Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
35 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
36 Department of Physics and Astronomy, Pevenske Building, University of Sussex, Brighton, BN1 9QH, UK
37 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
38 Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, SP, Brazil, 09210-580
APPENDIX A: COLOUR TERMS

The colour terms used in this analysis are included here for completeness.

\begin{align*}
 H_{\text{VHS}} - H_{\text{UKIDSS}} &= -0.01(i - z)_{\text{SDSS}} + 0.02 \\
 i_{\text{DES}} - i_{\text{SDSS}} &= -0.30(i - z)_{\text{SDSS}} + 0.02 \\
 J_{\text{VHS}} - J_{\text{UKIDSS}} &= -0.01(i - z)_{\text{SDSS}} - 0.02 \\
 K_{\text{VHS}} - K_{\text{UKIDSS}} &= 0.04(i - z)_{\text{SDSS}} - 0.07 \\
 Y_{\text{DES}} - Y_{\text{UKIDSS}} &= 0.09(i - z)_{\text{SDSS}} - 0.08 \\
 z_{\text{DES}} - z_{\text{SDSS}} &= -0.07(i - z)_{\text{SDSS}} - 0.01
\end{align*}

Figures A2 and A1 show the fits for the full range of models used in this work for the highest ranked quasar and the highest ranked brown dwarf.
Figure A1. An example of the fitting results for the highest ranked quasar in the sample. The four different reddening models and the brown dwarf fit are shown in the left column of plots and the right column shows the reduced χ^2 fits for the range of redshifts/models considered. The brown dwarf model is clearly different to any of the quasar models. Note the different scales on the χ^2 plots.
Figure A2. An example of the fitting results for a probably brown dwarf found in the sample. The four different reddening models and the brown dwarf fit are shown in the left column of plots and the right column shows the reduced χ^2 fits for the range of redshifts/models considered. It can be seen that the brown dwarf model is closer to the data than any of the quasar models. Note the different scales on the χ^2 plots.