Environmental or occupational exposure to arsenic is associated with a greatly increased risk of skin, urinary bladder, and respiratory tract cancers in arseniasis-endemic areas throughout the world. Arsenic shares many properties of tumor promoters by affecting specific cell signal transduction pathways responsible for cellular growth. In the current studies, we demonstrate that arsenic activates EGFR and ERK in a human uroepithelial cell line. The EGFR phosphorylation by arsenic is ligand-independent and does not involve the major autophosphorylation site Tyr1173. c-Src activity is also induced by arsenic and is a prerequisite for the EGFR and ERK activation. Consistent with these in vitro observations, exposure of mice to arsenic in drinking water, which has been found previously to be associated with AP-1 activation and epithelial proliferation, induces EGFR and ERK activation in the urinary bladder. This response is also accompanied with an increase in c-Src levels interacting with EGFR. These findings represent a potential pathway for mediating arsenic-induced phenotypic changes in the uroepithelium.

Epidemiological studies have established a strong association between exposure to arsenic (through contaminated drinking water) and an increased incidence of skin or urinary bladder cancer in arseniasis-endemic areas of the world including Taiwan, Mexico, and Chile (1–3). In the last few years, a tendency of increased incidences of urinary bladder transitional cell carcinomas in the United States has been reported (4). Epidemiological studies are underway to investigate whether this phenomenon might be associated with the arsenic levels in drinking water (5).

Arsenic is not a classical carcinogen, and adequate scientific data on the mode of arsenic action, which has yet to be established, will help determine the safe exposure levels. Subsequently, the mechanisms of arsenic carcinogenesis have been under intense investigation, and increasing evidence suggests that arsenic shares many properties of tumor promoters by affecting specific cell signal transduction pathways involved in cell proliferation (reviewed in Ref. 6). Accordingly, arsenic has been demonstrated to activate members of the MAP kinase family, transcription factors such as AP-1, and immediate early genes, including c-fos, c-jun, and c-myc, whose products help regulate the expression of transforming oncogenes and growth factors (7–10).

The activation of certain physical or chemical stimuli, which are considered cellular stressors, such as arsenic, sulfhydryl reagents, UV radiation, or oxidants, has been shown to activate EGF receptors as a prerequisite for MAPK activation (11). EGF stimulates tyrosine phosphorylation of its receptor by homodimerization of EGFR and activation of receptor tyrosine kinases (12). The stressor-induced tyrosine phosphorylation of EGFR might be caused by the activation of receptor tyrosine kinases (as a result of direct effects on the receptor and its kinases or dephosphorylations events through inactivation of protein tyrosine phosphatases) or alternatively, by non-receptor tyrosine kinases including c-Src. Because phosphotyrosine phosphatases have highly conserved sulfhydryl groups in their catalytic site, they are potential targets for oxidation by UV or sulfhydryl reagents (11). Arsenite has been shown to activate c-Jun N-terminal kinase (JNK) through sulfhydryl-dependent inactivation of JNK phosphatase (8). The role of non-receptor tyrosine kinase c-Src in arsenic-induced EGFR-MAPK activation has not been investigated. c-Src can bind physically to EGFR and induce tyrosine phosphorylation (13). Parallel activation of c-Src and EGFR has been identified in many human cancers (14).

The objectives of this study were to evaluate whether arsenic induces EGFR and ERK phosphorylation in human uroepithelium, a specific target of arsenic carcinogenicity, and to determine whether this involves c-Src activation. We (15) previously found that in vitro or in vivo arsenic exposure induced persistent AP-1 nuclear translocation and increased expression of genes associated with cell cycle regulation and uroepithelial cell proliferation. As we report here, similar conditions of arsenic exposure induced EGFR and ERK phosphorylation, and this response was dependent on c-Src activation.

EXPERIMENTAL PROCEDURES

Materials—All chemicals including sodium m-arsenate (referred to as arsenic) were from Sigma with the exception of PP-1 (4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), which was from Alexis Inc. (San Diego, CA), and recombinant human EGF, which was from ICN Pharmaceuticals Inc. (Costa Mesa, CA).

Cell Cultures—UROtsa, an SV40 immortalized human urothelium...
cell line, was obtained from Dr. G. Petzoldt, (University College, London). The cell line does not acquire the characteristics of transformed cells, including growth in soft agar or development of tumors in nude mice (16). The cells were grown at 37 °C/5% CO₂ in RPMI 1640 culture media supplemented with 10% fetal bovine serum and 2 mM l-glutamine (Invitrogen), referred to as complete media. Mouse epithelial cells B82 and B82 permanently transfected with human EGFR were a gift from Dr. Gordon N. Gill, University of California, and these cells were maintained as described previously (12).

Immunoprecipitation and Western Blot Analysis—All cell treatments performed at 37 °C in serum-free medium. After treatment, monolayers were washed with ice-cold phosphate-buffered saline and lysed in RIPA buffer (phosphate-buffered saline, 1% Nonidet P-40, 0.5% sodium deoxycholate, 100 μM NaVO₄, 1 mM NaF, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, 10 μg/ml leupeptin) for immunoprecipitation under non-denaturing conditions or RIPA/SDS buffer (RIPA buffer containing 0.1% SDS) for immunoprecipitation under denaturing conditions. Cell lysates were disrupted by repeated aspiration through a 21G needle and clarified by centrifugation. Immunoprecipitates were prepared from 1-ml aliquots of lysate by incubating with the appropriate primary antibody plus 20 μl of protein G plus agarose (Oncogene Research Products, Cambridge, MA) for 2 h or overnight at 4 °C under slight agitation. Immune complexes were washed 4 times with ice-cold RIPA buffer, denatured in Laemmli sample buffer, and resolved by SDS-PAGE. EGFR was precipitated using monoclonal anti-EGFR antibody (clone LA1, Upstate Biotechnology; Lake Placid, NY) or in some experiments, using monoclonal anti-phospho-EGF receptor (Tyr1173, Upstate Biotechnology). Tyrosine phosphorylation or the presence of co-precipitated proteins was detected by immunoblotting. Phosphotyrosine was detected using a 1:1000 dilution of horseradish peroxidase-conjugated anti-phosphotyrosine monoclonal antibody (PY20, Amersham Biosciences, Inc.). Total EGFR was detected using a 1:5000 dilution of a specific rabbit IgG antibody (Oncogene). Phosphorylated ERK and pp38 or total ERK and p38 were detected by Western blot analysis of cell lysates using specific rabbit polyclonal antibodies (Cell Signaling Technology, Beverly, MA) at a 1:1000 dilution. c-Src was detected using a 1:400 dilution of a specific rabbit IgG antibody (Santa Cruz Biotechnology, Santa Cruz, CA). The detection antibodies were either peroxidase-linked anti-mouse or anti-rabbit IgG (Amersham Biosciences, Inc.) used at a 1:10,000 dilution. Immune complexes were visualized on nitrocellulose by enzyme-linked enhanced chemiluminescence (ECL, Amersham Biosciences, Inc.) and quantified by scanning laser densitometry.

Transient Transfection—UROtsa cells (0.5 × 10⁶) were seeded into 100-mm tissue culture dishes and incubated in culture media for 24 h. A mixture containing 4 μg of transfection-grade eukaryotic expression vector or Src cDNA mutated vector (Upstate Biotechnology), 20 μg of Plus® reagent, and 30 μl of LipofectAMINE® reagents (Invitrogen) was gently added to each culture and incubated at 37 °C at 5% CO₂ for 3 h. The DNA-containing medium was replaced with fresh RPMI culture medium containing 10% fetal bovine serum, and the cells were cultured for an additional 48 h. Transfected monolayers were serum-starved in RPMI without serum for 16–20 h prior to stimulation. The transfection efficiency was measured by Western blot of c-Src expression.

In Vitro Src Kinase Assay—Src activity in UROtsa cells was measured according to the protocol of Feder and Bishop (17) following serum starvation for 48 h and treatment with 50 μM arsenic or 10 ng/ml recombinant human EGFR. c-Src was immunoprecipitated from cell lysates using anti-c-Src-specific antibodies (clone GD-1; Upstate Biotechnology). Enolase phosphorylation was detected by SDS-PAGE gel electrophoresis. Src activity was also measured using a specific Src substrate peptide included in a commercial kit (Upstate Biotechnology) according to the manufacturer’s instructions.

In Vivo Studies—Female C57BL/6 mice were obtained from Charles River Breeding Laboratories, Portage, MI. All animals were housed at NIOSH National Institutes of Health facilities in compliance with AAALAC-approved guidelines for the humane treatment of laboratory animals. Animals were maintained on a 12-h light/dark cycle and were provided chow and water ad libitum. Groups of 8-week-old mice were provided 50 μg/ml arsenic as sodium arsenite (Sigma) in their drinking water for 8 weeks and sacrificed by CO₂ asphyxia. The urinary bladders were collected under aseptic conditions. The tissue samples were homogenized in RIPA buffer.

Statistical Analysis—All experiments were replicated, and representative findings are shown. Statistical significance was determined by one-way analysis of variance.

RESULTS

Arsenic Induces EGFR and ERK Activation in UROtsa Cells—To determine whether arsenic activates EGFR in urothelium, UROtsa cells, a human immortalized, nontransformed urothelial cell line, were treated with 50 μM of arsenic, a concentration known to activate AP-1 (15). Arsenic treatment induced EGFR phosphorylation in UROtsa cells as measured by immunoblotting with anti-phosphoepitope antibody of immunoprecipitated EGFR (Fig. 1A). EGFR phosphorylation by arsenic occurred within 15 min with a peak response at 45 min. Ligand-induced autophosphorylation of EGFR causes the recruitment of adaptor proteins, such as Shc and GRB2, to the cytoplasmic domain of the EGFR. As shown on Fig. 1B, the
treatment of UROtsa cells with either arsenic or EGF resulted in the association of Shc and GRB2 with EGFR, and consistent with the time course of EGFR phosphorylation, the complexes were minimally increased within 15 min and markedly increased within 45 min after arsenic treatment. In parallel with EGFR phosphorylation, EGF and arsenic stimulated ERK phosphorylation in UROtsa cells to similar levels (Fig. 1C). However, in contrast to EGF, arsenic-induced ERK activation was higher after 45 min as compared with 15 min (Fig. 1D). Arsenic induced EGFR and ERK activation in a dose-dependent manner (Fig. 1E). Thus, arsenic appears to increase the phosphorylation of EGFR, which is associated with the recruitment of adaptor proteins including GRB2 and Shc and activation of ERK kinase in UROtsa cells.

Arsenic-induced EGFR Phosphorylation Is Independent of Autocrine EGF, Is Sensitive to N-Acetyl-cysteine (NAC), and Does Not Involve the Major Autophosphorylation Site, Tyr1173—Because arsenic has been shown to induce growth factors from the EGF family (18), it was necessary to determine whether arsenic-induced EGFR phosphorylation is associated with increased EGF levels. Preincubation of UROtsa cells with neutralizing antibodies to EGF did not affect arsenic-induced EGFR phosphorylation, whereas it completely prevented the phosphorylation induced by EGF (Fig. 2A). Arsenic is a sulfhydryl-binding metalloid, and many of its effects are altered by glutathione depletion or by the addition of NAC (19). Pretreatment of UROtsa cells with NAC almost completely eliminated arsenic-induced EGFR phosphorylation but had no effect on EGF-induced responses (Fig. 2B), suggesting that the sulfhydryl binding properties of arsenic contribute to EGFR stimulation. In ligand-stimulated EGFR autophosphorylation, Tyr1173 is one of the specific major autophosphorylation sites (20). To determine whether arsenic phosphorylates Tyr1173, UROtsa cell lysates were immunoprecipitated with antibody specific for Tyr1173 and immunoblotted with anti-phosphotyrosine antibody (Fig. 2C). In contrast to EGF treatment, tyrosine phosphorylation of the EGFR by arsenic did not include Tyr1173. Therefore, these data demonstrate that arsenic and EGF activate EGFR through distinct mechanisms.

The Inhibitor of Src Activity, PP-1, Inhibits Arsenic-induced EGFR and ERK Phosphorylation—c-Src, a member of the Src non-receptor kinase family, has been implicated in an alternate pathway for EGFR and ERK activation (13). To establish whether Src phosphotyrosine activity is involved in arsenic-induced activation of the EGFR, UROtsa cells were treated with PP-1, a selective Src kinase inhibitor (21). Arsenic-induced EGFR phosphorylation was completely abrogated by PP-1, whereas the response to EGF stimulation was not affected (Fig. 3A). Additional experiments were also performed to analyze the phosphorylation of ERK upon Src kinase inhibition. PP-1 dose-dependently inhibited arsenic-induced ERK phosphorylation in UROtsa cells, showing 70% suppression at the highest concentration of PP-1 tested (Fig. 3B). At similar concentrations, PP-1 had only a slight effect on EGF-induced ERK phosphorylation. PP-1 alone had no effect on ERK activation. These results suggested that a PP-1 sensitive kinase, such as Src, is a possible upstream mediator of arsenic-induced EGFR and ERK phosphorylation.

The Role of c-Src in Arsenic-induced EGFR as Well as ERK Phosphorylation Was Confirmed by c-Src Kinase Inhibition through Dominant-Negative Src (K297R) Transfection—The dominant-negative c-Src construct transfection allows for the expression of mutated c-Src kinase, which appears without phosphotyrosine activity in the presence of the normal binding activity of the adaptor proteins (22). Consistent with the effect of PP-1, the transfection of the dominant-negative c-Src inhibited arsenic-induced EGFR phosphorylation and ERK activation when compared with cells transfected with the empty vector (Fig. 4, A and B). The effect of the dominant-negative c-Src transfection was specific for ERK since at the same conditions, arsenic-induced p38 phosphorylation was not affected (Fig. 4C).

Arsenic Induces c-Src Activity in UROtsa Cells—Further, we examined the ability of arsenic to stimulate c-Src kinase activity. c-Src protein was immunoprecipitated from the lysates of UROtsa cells treated with arsenic or EGF using a specific antibody, and c-Src kinase activity was measured using in vitro phosphorylation assays. c-Src kinase activity, measured as endo-phosphorylation, was markedly elevated at 10 and 15 min following treatment with arsenic or EGF (Fig. 5A). The ability of arsenic to activate Src was confirmed by measuring the phosphorylation of Src-specific substrate peptide (Fig. 5B). Arsenic increased c-Src activity more than 2-fold in 10 min before
Fig. 3. Effect of PP-1, an Src inhibitor, on arsenic-induced EGF receptor and ERK phosphorylation. The serum-starved UROtsa cells were pretreated with PP-1 (5 μM) for 30 min and treated for 45 min with arsenic (50 μM) or EGF (10 ng/ml) (A). The bands were quantified by ImageQuaNT analysis of the scanned autoradiographs and presented as fold increase after normalization to the total EGF receptor. The values represent the means ± S.E. for three separate experiments; *, p < 0.05 versus the control. The serum-starved UROtsa cells were pretreated with PP-1 at the indicated concentrations and exposed to arsenic (50 μM) or EGF (10 ng/ml) for 45 min (B). Total lysates were immunoblotted with antibodies for phosphorylated ERK (pERK) or total ERK. The values represent the means ± S.E. for three separate experiments; *, p < 0.05 versus the control.

Arsenic exposure is associated with urinary bladder epithelium hyperplasia and a concomitant increased AP-1 activation (15). Additionally, cDNA microarray analysis of the arsenic-exposed human uroepithelial cell line, UROtsa, identified induced genes whose products are involved in cell cycle regula-
arsenic to phosphorylate EGFR and activate ERK was slightly but consistently delayed when compared with the endogenous ligand. Thirdly, inhibition of Src by PP-1 or transfection with a dominant-negative c-Src construct prevented arsenic-induced but not EGF-induced EGFR or ERK phosphorylation in the uroepithelial cell line.

EGF stimulates an intrinsic receptor tyrosine kinase activity, which results in tyrosine autophosphorylation of the receptor including the Tyr1173 site (20). The phosphorylation of EGFR through inhibition of tyrosine phosphatase inhibitors, such as sodium orthovanadate, also reflects the activation of the intrinsic tyrosine kinase (27). The involvement of receptor tyrosine kinases by arsenic in UROtsa cells is not likely since the Tyr1173 site was not phosphorylated. Additionally, cellular non-receptor kinases, such as c-Src or JAK2, have been demonstrated to phosphorylate EGFR (11). For example, c-Src has been implicated in oxidative stress or lysophosphatidic acid-induced EGFR tyrosine phosphorylation (28). c-Src can physically associate with EGFR, resulting in two unique tyrosine phosphorylations of the receptor (Tyr1173, Tyr1101), which are distinct from the autophosphorylation sites (13, 29). The results of the present study indicate that c-Src activity is necessary for arsenic-induced EGFR and ERK activation and that these pathways occur in mouse urinary bladder after arsenic exposure. Alternatively, arsenic can stimulate ERK activation through Src, at least in the B82 cells, in the absence of EGFR. It has been demonstrated that Src can activate the ERK pathway by phosphorylating molecules, such as Shc or FAK, creating binding sites for Grb2 (13, 23). Taken together, and as summarized in Fig. 8, these data suggest an important role for c-Src in the arsenic-induced signaling of ERK activation and related gene expression. In addition to ERK activation, c-Src can be responsible for the tyrosine phosphorylation of numerous actin-binding proteins, such as cortactin, and can impact the cortical actin assembly (30). The c-Src-dependent mechanisms of cytoskeleton reorganization also might contribute to arsenic-induced pathophysiological processes.

Several lines of evidence have demonstrated that c-Src is associated with the inner cell membrane, particularly in the
Arsenic and c-Src-EGF Receptor-ERK Pathway

vicinity of growth factor or integrin clusters (31). c-Src activation involves phosphorylation and dephosphorylation events that can be triggered by diverse stimulants, including growth factors, integrins, or conformational changes from disulfide bond interactions, which result in the aggregation of c-Src molecules (31). Recently, the latter paradigm has been shown to occur by nitric oxide (32). Arsenic may persuade some of these mechanisms via its reactivity to vicinal sulfhydryl groups. Macromolecules, such as EGFR, integrins, c-Src, or protein phosphatases, contain high numbers of vicinal sulfhydryls and are capable of reacting with arsenic. Alternatively, inorganic arsenic may accumulate in the extracellular matrix bound to keratin or other sulphydryl-containing molecules in skin or urinary bladder tissue, resulting in cellular integrin rearrangements and c-Src activation. In this respect, we recently demonstrated that inorganic arsenic accumulates in the bladder epithelium following oral exposure (15, 33). Although it is likely that arsenic and other environmental stressors can act like classical tumor promoters and growth factors, identification of unique events in the signal cascades may help provide targets for specific therapeutic or prevention interventions in chemical carcinogenesis.

REFERENCES

1. Smith, A. H., Goycolea, M., Haque, R., and Biggs, M. L. (1998) Am. J. Epidemiol. 147, 660–669
2. Steinhaus, C., Moore, L., Hopenhayn-Rich, C., Biggs, M. L., and Smith, A. H. (2000) Cancer Invest. 18, 174–182
3. Chiu, H. Y., Chiu, S. T., Hsu, Y. H., Chou, Y. L., Tseng, C. H., Wei, M. L., and Chen, C. J. (2001) Am. J. Epidemiol. 153, 411–418
4. Negri, E., and LaVecchia, C. (2001) Environ. Health Perspect. 109, 7–14
5. Karagas, M. R., Tosteson, T. D., Blum, J. M., Morris, J. S., Baron, J. A., and Klaue, B. (1998) Environ. Health Perspect. 106, 1047–1050
6. Simeonova, P. P., and Luster, M. I. (2000) J. Environ. Pathol. Toxicol. Oncol. 19, 281–286
7. Liu, Y., Guyton, K. Z., Gorospe, M., Xu, Q., Lee, J. C., and Holbrook, N. J. (1996) Free Radic. Biol. Med. 21, 771–781
8. Cavigelli, M., Li, W. W., Lin, A., Su, B., Yoshioka, K., and Karin, M. (1996) EMBO J. 15, 6269–6279
9. Chen, W., Martindale, J. L., Holbrook, N. J., and Liu, Y. (1998) Mol. Cell. Biol. 18, 5178–5188
10. Burlison, P. G., Simeonova, P. P., Germaine, D. R., and Luster, M. I. (1996) Res. Commun. Mol. Pathol. Pharmacol. 93, 131–148
11. Carpenter, G. (1999) J. Cell Biol. 146, 697–702
12. Chen, W. S., Lazar, C. S., Poenie, M., Tsien, R. Y., Gill, G. N., and Rosenfeld, M. G. (1987) Nature 328, 820–823
13. Tice, D. A., Biscardi, J. S., Nickles, A. L., and Parsons, S. J. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1415–1420
14. Irby, R. B., and Yeatman, T. J. (2000) Oncogene, 19, 5636–5642
15. Simeonova, P. P., Wang, S., Tsimi, W., Kommunen, V., Matheson, J., Uiniye, N., Kayama, F., Harki, D., Ding, M., Vallyathan, V., and Luster, M. I. (2000) Cancer Res. 60, 3445–3453
16. Pednold, J. L., Leigh, I. M., Duffy, P. G., Sexton, C., and Masters, J. R. (1995) Urol. Res. 23, 377–380
17. Feder, D., and Bishopp, J. M. (1990) J. Biol. Chem. 265, 8205–8211
18. Germaine, D. R., Spalding, J., Yu, H. S., Chen, G. S., Simeonova, P. P., Humble, M. E., Brucoleri, A., Boorman, G. A., Foley, J. F., Yoshida, T., and Luster, M. I. (1998) Am. J. Pathol. 153, 1775–1785
19. Scott, N., Hatlelid, K. M., MacKenzie, N. E., and Carter, D. E. (1993) Chem. Res. Toxicol. 6, 102–106
20. Pawson, T. (1996) Nature 379, 573–580
21. Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S., Brissette, W. H., Weringer, E. J., Pollok, B. A., and Connelly, P. A. (1996) J. Biol. Chem. 271, 695–701
22. Barone, M. V., and Courtneidge, S. A. (1995) Nature 378, 509–512
23. Giancotti, F. G., and Ruoslahti, E. (1999) Science 285, 1028–1032
24. Huang, C., Ma, W. Y., Li, J., Goranson, A., and Dong, Z. (1999) J. Biol. Chem. 274, 14595–14601
25. Su, B., and Karin, M. (1996) Curr. Opin. Immunol. 8, 492–411
26. Thogersen, V. B., Jorgensen, P. E., Sorensen, B. B., Bross, P., Orntoft, T., Wolf, H., and Nexo, E. (1999) Scand. J. Clin. Lab. Invest. 59, 267–277
27. Luttrel, L. M., Delia Rocca, G. J., van Biesen, T., Luttrell, D. K., and Leffkowitz, R. J. (1997) J. Biol. Chem. 272, 4637–4644
28. Vacarese, N., Llorente-Mazenc, I., Auge, N., Suc, I., Frisach, M. F., Salvayre, R., and Negre-Salvayre, A. (1999) Circ. Res. 85, 892–899
29. Biscardi, J. S., Maa, M. C., Tice, D. A., Cox, M. E., Leu, T. H., and Parsons, S. J. (1999) J. Biol. Chem. 274, 8335–8343
30. Weed, S. A., and Parsons J. T. (2001) Oncogene 20, 6418–6434
31. Bjorge, J. D., Jakymiw, A., and Fujita, D. J. (2000) Oncogene 19, 5629–5635
32. Akhand, A. A., Pu, M., Senga, T., Kato, M., Suzuki, H., Miyata, T., Hamaguchi, M., and Nakashima, I. (1999) J. Biol. Chem. 274, 25821–25826
33. Simeonova, P. P., Wang, S., Kashon, M. L., Kommunen, C., Creecy, E., and Luster, M. I. (2001) Toxicol. Sci. 60, 279–284
c-Src-dependent Activation of the Epidermal Growth Factor Receptor and Mitogen-activated Protein Kinase Pathway by Arsenic: ROLE IN CARCINOGENESIS
Petia P. Simeonova, Shiyi Wang, Tracy Hulderman and Michael I. Luster

J. Biol. Chem. 2002, 277:2945-2950.
doi: 10.1074/jbc.M109136200 originally published online November 26, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M109136200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 33 references, 12 of which can be accessed free at http://www.jbc.org/content/277/4/2945.full.html#ref-list-1