Effect of Mulching Material on Growth, Yield and Quality of Watermelon (Citrullus Lanatus Thunb) Cv. Kiran

Parmar H. N., N. D. Polara*, R. R. Viradiya

Department of Horticulture, College of Agriculture, Junagadh Agricultural University, Junagadh–362 001 (Gujarat)

*Corresponding Author: ndpolara@jau.in

Copyright © 2013 Horizon Research Publishing All rights reserved.

Abstract The field experiment conducted on watermelon (Citrullus lanatus Thunb) cv. Kiran at Fruit Research Station, “Lalbaugh”, Department of Horticulture, College of Agriculture, J.A.U., Junagadh during summer season of 2010 to study the effect of different mulching material on growth, yield and quality of water melon cv. Kiran. All the plant growth, yield and quality characters were superior with silver on black polyethylene mulch while, plants without mulch (control) resulted poor growth and yield. With economic point of view, silver on black mulch resulted in the highest net return and found to be more economical with highest cost:benefit ratio.

Keywords Mulching, Plastic Mulch, Watermelon

1. Introduction

Watermelon (Citrullus lanatus Thunb.) is one of the important cucurbits vegetable crops grown extensively in India and in tropical and sub tropical countries of the world. It is a major river-bed crop of Uttar Pradesh, Rajasthan, Gujarat, Maharashtra and Andhra Pradesh. It is a popular dessert vegetable with year round availability. Cucurbits share about 5.6 per cent of the total vegetables production of India. Mulching in general is a beneficial practice for crop production. Mulch conserves soil moisture, retained heat as well as it suppresses weed growth (Ahmad et al., 2007, Sharfuddin and Syedique, 1985). The greatest benefit from plastic mulch is that the soil temperature in the planting bed is raised, promoting faster crop development and earlier harvest. Black plastic mulch can give a harvest earlier by some 7-14 days, while clear plastic may advance the harvest date by 21 days. Soil water loss is reduced under plastic mulch. As a result, a more uniform soil moisture is maintained and irrigation frequency can be reduced. The growth of plants on mulch can be twice that of plants in unmulched soil. Because larger plants will require more water, mulching is not a substitute for irrigation. Black and white on black mulches will reduce light penetration to the soil. Weeds cannot generally survive under such mulch. Excess water runs off the impervious mulch. Fertilizer beneath the mulch is not lost by leaching, so that fertilizers are optimally used and not wasted. The soil under plastic mulch remains loose, friable and well-aerated. Roots have access to adequate oxygen, and microbial activity is enhanced. Cultivation is eliminated, except in the area between the mulched strips. Use of reflective mulches to delay onset of aphid vectored viruses in summer squash has been well documented in the research literature. (Black 1980, Lancaster et al. 1987, Conway et al. 1989 and Lamont et al. 1990). Therefore, considering the importance of different mulching in various vegetable crops, the present investigation was carried out to study the effect of different mulching material on growth, yield and quality of watermelon.

2. Materials and Methods

The field experiment was conducted on water melon cv. Kiran at Fruit Research Station, “Lalbaugh”, Department of Horticulture, College of Agriculture, Junagadh Agricultural University, Junagadh during summer 2010. The experiment was laid out in Randomized Block Design with three replications. There were total eight treatment of mulching materials viz., control (T1), wheat straw (T2), silver on black polyethylene mulch (T3), yellow on black polyethylene mulch (T5), red on black polyethylene mulch (T5), black on white polyethylene mulch (T7) and dry leaves mulch (T8). Mulching applied up to 50 cm both the side from the stem of watermelon. Temperatures and moisture content will be carried out at 10 cm and 15 cm depth. The thickness of all polyethylene much was 30 micron while dry leaves and wheat straw much was applied at 6 inch thick. Single seed of cv. Kiran” was dibbled at each hill on 23rd March 2010 at 2 m x 1 m spacing. The fertilizers were applied at the rate of 100:50:50 NPK kg/ha. Full dose of P2O5 and K2O was applied as basal dose and nitrogen was given in two equal split as basal and top dressing at 30 DAS. The farmyard manure @ 20 tonnes per hectare was mixed in soil uniformly to all the treatments. The observations on growth, flowering, yield and quality parameters were recorded and subjected to statistical analysis of variance technique as described by Panse and Sukhatme (1985).
Table 1. Effect of different mulching material on growth and yield of watermelon cv. Kiran

Sr. No.	Treatments	No. of branches per vine	No. of node	M:F (sex) ratio	Fruit length (cm)	Fruit girth (cm)	No. of fruits/ vine	Fruit wt. (kg)	Fruit yield (t ha⁻¹)
T₁	Control (no mulch)	7.40	42.78	5.97	28.03	14.59	2.17	2.80	22.59
T₂	Wheat straw	11.07	44.33	5.43	30.01	15.32	2.24	2.83	25.37
T₃	Silver on black	14.90	59.58	4.57	37.45	17.62	3.23	3.61	35.37
T₄	Yellow on black	11.00	49.07	5.31	32.90	16.19	2.45	3.04	26.30
T₅	Red on black	13.43	52.34	4.63	33.13	16.57	2.73	3.35	30.37
T₆	Black on white	13.65	57.86	4.93	35.35	17.68	2.97	3.56	33.52
T₇	White on black	12.83	49.16	5.20	31.12	15.08	2.46	3.05	29.26
T₈	Dry leaves mulch	10.67	45.62	5.07	30.14	15.07	2.30	2.97	25.56

	S.Em.±	0.599	2.369	0.297	1.390	0.770	0.121	0.132	1.229
	C.D. at 5 %	1.82	7.19	NS	4.22	NS	0.37	0.40	3.73
	C.V. %	8.74	8.19	10.01	7.46	8.33	8.18	7.23	7.46

Table 2. Effect of different mulching material on fruit quality number of watermelon cv. Kiran

Sr. No.	Treatments	Fruit pulp wt. (g)	Rag wt. (g)	No. of seed/fruit	TSS (%)	Acidity (%)	Reducing sugar (%)	Non reducing sugar (%)	Total sugar (%)	Av. soil temp.	Moisture (%)
T₁	Control (no mulch)	1983.33	860.00	516.00	10.07	0.44	1.27	2.90	4.17	33.7	47.5
T₂	Wheat straw	2101.33	843.33	524.67	10.20	0.41	1.53	3.20	4.73	31.6	46.3
T₃	Silver on black	2418.67	815.33	578.33	10.43	0.37	1.80	3.67	5.47	30.9	48.1
T₄	Yellow on black	2115.00	818.00	523.67	10.27	0.40	1.60	3.50	5.10	32.2	45.0
T₅	Red on black	2185.00	853.33	546.67	10.18	0.41	1.63	3.56	5.19	31.6	46.0
T₆	Black on white	2308.67	816.33	564.33	10.24	0.36	1.76	3.61	5.37	31.7	46.8
T₇	White on black	2148.67	844.67	536.33	10.24	0.38	1.59	3.19	4.78	32.2	47.2
T₈	Dry leaves mulch	2065.33	834.00	517.67	10.24	0.40	1.57	3.31	4.88	32.1	44.7

	S.Em.±	75.339	23.66	0.378	0.017	0.099	0.158	0.257	-	-	-
	C.D. at 5 %	228.54	NS	NS	NS	0.05	0.30	0.48	0.78	-	-
	C.V. %	6.03	11.06	7.61	6.40	7.22	10.77	8.16	8.93	-	-

NS= non significant
3. Results and Discussion

3.1. Effect on Growth and Yield

The results revealed that different types of mulching materials significantly influenced the growth parameters of watermelon viz., number of branches per vine, main vine length and number of nodes per vine over control. Among different mulching treatments, treatment T3 (Silver on black plastic mulch) resulted higher number of branches per vine, increased main vine length and number of nodes per vine. However control recorded the minimum growth. The increase in growth parameters was attributed to sufficient soil moisture near root zone and minimized the evaporation loss due to mulching. The extended retention of moisture and availability of moisture also leading to higher uptake of nutrient for proper growth and development of plants, resulted higher growth of plant, as compared to control. The changes in soil temperature below PE mulch could be attributed to different manners of heating and heat transfer to soil and also to heat accumulation during day and loss during night. Similar findings have also been obtained by Dean ban et al. (2004), Ansary and Roy (2005) in watermelon, Al-Majali and Kasrawi (1995) in muskmelon, Hallidri (2001) in cucumber, Alemayehu-Ambaye and Joseph (2002) in melon, Sharma and Agrawal Narendra (2004) in tomato, Angrej-Ali and Gaur (2007) in strawberry, Aruna et al. (2007) in tomato. The results revealed that different types of mulching material on fruit length of watermelon was significantly increased than control. Maximum fruit length was observed in treatment silver on black plastic mulch, whereas the minimum fruit length of watermelon was noted in control. The highest fruit length under silver on black mulch was due to congenial soil moisture results higher uptake of nutrition for better growth of fruit, the reduction in evaporation losses of soil moisture caused by mulches covered the soil surface in row of watermelon. The above results were in consonance with those of Johnson et al. (2000), Ansary and Roy (2005) in watermelon, Sharma and Agrawal Narendra (2004) in tomato, Suresh and Ashok Kumar (2006) in pointed gourd. Silver on black polyethylene mulch was found to have significantly better effect on acidity per cent in fruit of watermelon than control. Among all treatments of mulching, maximum fruit pulp weight was recorded in treatment silver on black mulch but it was unable to exert a significant influence on rag weight and number of seeds per fruit than control. Among all treatments of mulching, maximum fruit pulp weight was recorded in treatment silver on black mulch. An increase in fruit pulp weight in mulched plants may further attributed to the reason that plants remain physiologically more active to build up sufficient food stock for the developing fruits. The above results were in agreement with those of Suresh and Ashok Kumar (2006) in pointed gourd, Angrej-Ali and Gaur (2007) in strawberry, Aruna et al. (2007) in tomato, Aruna and Roy (2005) in watermelon. It was found that application of mulching material had produced a significant effect on acidity per cent in fruit of watermelon than control. Among all the treatments of mulching significantly minimum acidity were observed in treatment silver on black mulch over control. The present finding was in accordance with Sharma and Agrawal Narendra (2004) and Aruna (2007) in tomato. The total soluble solids (%), reducing sugars (%), total sugar (%) and non reducing sugar (%) were significantly increased than the control. Among all treatments of mulching, maximum TSS, reducing sugars, total sugar and non-reducing sugar of watermelon fruit were observed in treatment silver on black mulch. While, the minimum sugar content of watermelon fruit was observed in control treatment. The present findings were in close confirmation with Ansary and Roy (2005) in watermelon, Sharma and Agrawal Narendra (2004) and Aruna et al. (2007) in tomato.

3.2. Effect on Quality

The data indicated that the effect of various treatments of mulching material on quality parameters viz., Total soluble solid, fruit pulp weight (g), acidity (%), reducing sugar, total sugar and non-reducing sugar was found significant in fruit of watermelon. It was found that all treatments of mulching material were significantly increased the fruit yield of watermelon. Among all mulching treatments, maximum fruit yield recorded in treatment silver on black polyethylene mulch. Yield of watermelon was higher in plants mulched with silver on black polyethylene, which was higher as compare to other mulch and no mulch. Plants under polyethylene mulch (silver on black) produced larger fruit and have higher fruit yield per vine because of better plant growth due to favourable hydro-thermal regime of soil and complete weed free environment. The above results were in consonance with those of Rudich et al. (1978), Battikh and Ghawi (1987), Bhella (1988), Qadir (1992), Al-Majali and Kasrawi (1995), Johnson et al. (2000), Dean ban et al. (2004), Ansary and Roy (2005), Cenobio et al. (2007) and Arancibia and Motzenbocker (2008) in watermelon, Siwek and Kunicki (1998), Ibarra–Jimenez et al. (2008), Hallidri (2001) in cucumber, Ibarra et al. (2001) in muskmelon.
Table 3. Effect of different mulching material on economics of watermelon cv. Kiran

Sr.No.	Treatments	Yield (t ha⁻¹)	Gross realization (Rs. ha⁻¹)	Total Expenditure (Rs. ha⁻¹)	Net realization (Rs. ha⁻¹)	CBR
T1	Control (no mulch)	22.59	225900	209770	16130	1:1.08
T2	Wheat straw	25.37	253700	210120	43580	1:1.21
T3	Silver on black	35.37	353700	214480	139220	1:1.65
T4	Yellow on black	26.30	263000	214480	48520	1:1.23
T5	Red on black	30.37	303700	214480	89220	1:1.42
T6	Black on white	33.52	335200	214480	120720	1:1.56
T7	White on black	29.26	292600	214480	78120	1:1.36
T8	Dry leaves mulch	25.56	255620	209790	45830	1:1.22

Price: Watermelon @ Rs.10 kg⁻¹, mulching material @ Rs. 3.5 m⁻²

It was observed from Table 3 that highest net return with maximum CBR was obtained with treatment silver on black mulch followed by treatments black on white mulch. The lowest net return with minimum CBR was obtained in control (no mulch). The net realization was increased due to different mulches as compared to control treatment. The treatment of silver on black mulch recorded higher fruit yield though higher net realization was recorded under this treatment silver on black mulch. These findings are in close agreement with the results of Singh et al. (2006) in cabbage, Suresh and Ashok Kumar (2006) in pointed guard and Balraj Singh et al. (2007) in bittergourd.

4. Conclusions

It is concluded that application of mulches over control is beneficial to farmers. Higher the CBR, needs to be adopted first by farmers based on availability of mulch material and other priority criteria.

REFERENCES

[1] Alemayehu Ambaye and Joseph, P. A. (2002). Influence of drip irrigation and mulching on soil moisture retention, water use efficiency, growth and yield of oriental pickling melon (Cucumis melo L. var. comonam makino). South Indian Hort., 50(4/6): 421-429.

[2] Al-Majali, M. A. and Kasrawi, M. A. (1995). Plastic mulch use and method of planting influences on rainfed muskmelon production. Pure and Applied Sci., 22(4): 1039-1054.

[3] Andino, J. R. and Motsenbocker, C. E. (1998). Coloured plastic mulches influence cucumber beetle populations, vine growth and yield of watermelon. Hort. Sci., 39(6):1246-1249.

[4] Angrej Ali and Gaur, G. S. (2007). Effect of mulching on growth, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Asian J. Hort., 2(1): 149-151.

[5] Ansary, S.H. and Roy, D. C. (2005). Effect of irrigation and mulching on growth, yield and quality of watermelon (Citrus lanatus Thunb.). Environment and Ecology, 23(Spl-1): 141-143.

[6] Arancibia, R. A. and Motsenbocker, C. E. (2008). Differential watermelon fruit size distribution in response to plastic mulch and spunbonded polyester rowcover. Hort.Tech., 18(1): 45-52.

[7] Aruna, P.; Sudagar, I.P.; Manivannan, M. I.; Rajangam, J and Natarajan, S. (2007). Effect of fertigation and mulching for yield and quality in tomato cv. PKM-1. Asian J. Hort., 2(2): 50-54.

[8] Balraj Singh; Mahesh Kumar and Mehto, S. P. (2007). Advancing bitter gourd crop by plastic mulching: a profitable and sustainable technology for peri-urban areas of Northern India. Acta Hort.,731: 199-201.

[9] Battikhi, A. M. and Ghawi, I. (1987). Muskemelon production under mulch and trickle irrigation in the Jordan valley. Hort. Sci., 22(4): 578-581.

[10] Bhella, H. S. (1988). Effect of trickle irrigation and black mulch on growth, yield and mineral composition of watermelon. Hort. Sci., 22(1):123-125.

[11] Cenobio Pedro, G.; Inzunza Ibarra, M. A.; Mendoza Moreno, S. F.; Sanchez Cohen, I.; and Roman Lopez, A. (2007). Response of watermelon to colored plastic mulches under drip irrigation. Terra., 24(4): 515-520.

[12] Dean Ban.; Zanic K.; Dumicic, G.; Culjak, T. G. and Ban S. G. (2004). The type of polythene mulch impacts vegetative growth, yield and aphid populations in watermelon production. J. Food, Agri. and Envi., 7 (3-4): 543-550.

[13] Hallidri, M. (2001). Comparison of the different mulching materials on the growth, yield and quality of cucumber (Cucumis sativus L.). Acta Hort., 559: 49-54.

[14] Hanna, H. Y. (2000). Black polyethylene mulch does not reduce yield of cucumbers double-cropped with tomatoes under heat stress. Hort. Sci., 35(2): 190-191.

[15] Ibarra Jimenez, L.; Zermeno Gonzalez, A.; Mungua Lopez, J.; Quezada Martin, M. A. R. and Rosa Ibarra, M. de La. (2008). Photosynthesis, soil temperature and yield of
cucumber as affected by colored plastic mulch. *Acta Agriculturae Scandinavica Section B, Plant Soil Science*, 58(4): 372-378.

[16] Ibarra, L.; Flores, J. and Diaz Perez J. C. (2001). Growth and response to plastic mulch and row covers. *Scientia Horticulturae*, 87(1/2): 139-145.

[17] Johnson J. M.; Hough Goldstein J. A. and Vangessel M. J. (2000). Effects of Straw Mulch on Pest Insects, Predators, and Weeds in Watermelons and Potatoes. *Environmental Entomology*, 33: 1632-1643.

[18] Rudich, J.; Elassar, G. and Shefi, Y. (1978). Optimal growth stages for the application of drip irrigation to muskmelon and watermelon. *J. Hort. Sci.*, 53(1): 11-15.

[19] Sharma, H. G. and Agrawal, Narendra (2004). Effect of different colour mulches on the growth and yield of tomato under drip irrigation. *Plant Archives*, 4(1): 93-99.

[20] Singh, V. P.; Singh, R. P.; Arora, S. K.; Godara, A. K.; Yadav, B. S. (2006). Effect of polyethylene mulch on growth and fruit yield of tomato. *Haryana J. Hort. Sci.*, 35(3/4): 323.

[21] Siwek, P and Kunicki,(1998). Ecological aspects of mulching with polyethylene film in early cucumber cultivation. *Roczniki Akademii Rolniczej-w-Poznaniu, Ogrodnictwo.*, 27: 277-283.

[22] Suresh, R. and Ashok Kumar (2006). Effect of drip irrigation and mulch on pointed gourd in calcareous soil of north Bihar. *Indian J. Soil Cons.*, 34(1): 83-8