Longitudinal Polarization in $K_L \rightarrow \mu^+\mu^-$ in MSSM with large $\tan\beta$

S. Rai Choudhury ¹ Naveen Gaur ² Abhinav Gupta ³

Department of Physics & Astrophysics
University of Delhi
Delhi - 110 007, India

Abstract

A complete experiment on decay $K_L \rightarrow l^+l^-$ will not only consist of measurement of the decay rates but also lepton polarization etc. These additional observations will yield tests of CP invariance in these decays. In K_L and K_S decays, the e mode is slower than the μ mode by roughly $(m_e/m_\mu)^2$ [4]. As well discussed in literature [5] the Standard Model contribution to the lepton polarization is of order $2 \times \sim 10^{-3}$. We show that in MSSM with large $\tan\beta$ and light higgs masses ($\sim 2 M_W$), the longitudinal lepton polarization in $K_L \rightarrow \mu^+\mu^-$ can be enhanced to a higher value, of about 10^{-2}.

The Flavor Changing Neutral Current (FCNC) decays of the K-meson are forbidden in the lowest order in the standard Electroweak theory but can occur through loop diagrams in higher order. In

¹ E-mail : src@ducos.ernet.in
² E-mail : naveen@physics.du.ac.in, pgaur@ndf.vsnl.net.in
³ E-mail : abh@ducos.ernet.in

Preprint submitted to Physics Letters B 6 February 2018
effect these processes thus are a deeper probe into the underlying field theory. The amplitude for such processes can be divided into a Short-Distance (SD) part where the quarks involved interact over a range $\sim M_W^{-2}$ and a Long Distance (LD) part which may be thought of as proceeding via low lying intermediate states and particularly through resonances. Theoretically reasonable techniques have been developed for estimating the SD - part through Operator Product Expansion (OPE) [1] and this is quite successful in analyzing decays like $b \to s\gamma$ or $b \to s \ell^+\ell^-$ in regions of phase space where no resonances are involved [2,3]. For K-meson decays, resonances are nearby and the LD part is important. Unfortunately the LD-part is quite model dependent and thus theoretical results are relatively more uncertain compared to the ones for B-decay.

![Figure 1: The 2γ intermediate state contribution to the LD part of $K_L \to \mu^+\mu^-$](image)

The decay of K_L into $\mu^+\mu^-$, a FCNC process, is a somewhat special one amongst all rare decays. Amongst the intermediate states which contribute to the LD-part, the two photon state (Fig -1) stands as the most important one [4]. The absorptive part of the amplitude, which can be computed from the known decay rate $K_L \to 2\gamma$ and the QED amplitude $\gamma\gamma \to \mu^+\mu^-$, by itself leads to a decay rate almost equal to experimental decay rate of $K_L \to \mu^+\mu^-$ [5]. The short-distance contributions are real [6] and since the rate of $K_L \to \mu^+\mu^-$ depend on the sum squares of the absorptive and the real parts, the SD parts become somewhat insignificant for $K_L \to \mu^+\mu^-$decay rate.

A second experimentally accessible quantity in $K_L \to \mu^+\mu^-$decay is the longitudinal polarization of
the leptons P_L. The state K_L is a Superposition of the CP-eigenstates K_1^0 and K_2^0.

$$K_L = (1 + |\varepsilon|^2)^{1/2} \left(K_2^0 + \varepsilon K_1^0 \right)$$ \hspace{1cm} (1)

where we have followed the Wu-Yang phase convention and ε is the CP-violating $K_1^0 - K_2^0$ mixing parameter given by:

$$\varepsilon \simeq (2 \times 10^{-3}) \exp(i\pi/4)$$ \hspace{1cm} (2)

It has been known for a long time \cite{7} that P_L would be zero unless P and CP are both violated in the decay. For the K_L-decay, a finite P_L thus can arise (i) directly from CP-violating decay of K_2^0 and (ii) from CP-conserving the decay of $K_1^0 \rightarrow \mu^+\mu^-$, because of the presence of εK_1^0 component of K_L.

The invariant amplitude for the decay $K_1^0 (i = 1, 2)$ into $\mu^+(p_+)\mu^-(p_-)$ can be written as \cite{8}:

$$\mathcal{M}_i = \bar{u}(p_-) [a_i \gamma_5 + ib_i] v(p_+)$$ \hspace{1cm} (3)

where a_2, b_1 are CP-conserving and a_1, b_2 violate CP-invariance. The amplitude for K_L^0 decay into $\mu^+\mu^-$ is then given by an expression similar to the above one with a_i, b_i replaced by a_L, b_L:

$$a_L = a_2 + \varepsilon a_1 \hspace{1cm} b_L = b_2 + \varepsilon b_1$$ \hspace{1cm} (4)

The longitudinal polarization P_L can be expressed in terms of a_2, b_2 as upto $O(\varepsilon)$

$$P_L = \frac{m_K r^2 Im(a_2^* b_2 + a_2^* \varepsilon b_1)}{4\pi \Gamma}$$ \hspace{1cm} (5)

where $r = (1 - 4m_\mu^2/m_K^2)^{1/2}$, and Γ is the total decay width:

$$\Gamma = \frac{m_K r}{8\pi} (|a_L|^2 + r^2 |b_L|^2)$$ \hspace{1cm} (6)
In the Standard Model (SM) the direct contribution proportional to $Im(a_2^s b_2)$ in eqn.(5), is small. The leading contribution comes from the induce $\bar{s}d - \text{Higgs}(H)$ vertex. This could potentially be large if the Higgs mass m_H is close to m_K but in view of the current limits $m_H > 77.5 GeV$ [10] the direct contribution to P_L would be smaller than 10^{-4} [9]. The indirect contribution to P_L represented by the term $Im(a_2^s e b_1)$ numerator of eqn.(5), has been investigated in detail by Herczeg [5] assuming a_2 to be dominantly imaginary. A more complete treatment without this assumption has been given by Ecker and Pich [11]. They obtain a value $|P_L| \simeq 2 \times 10^{-3}$ but observe that in view of the uncertainties of chiral perturbation theory employed for the estimate, experimental value of $|P_L| > 5 \times 10^{-3}$ would be evidence for new physics beyond SM.

The purpose of this note is to reexamine the direct contribution to P_L in the context of the minimal supersymmetric extension of the standard model (MSSM) [12]. Compared to SM, the parameter space of MSSM is much bigger and the number of neutral Higgs jumps from one in SM to three, two of which are CP - even and one CP - odd.

The immediate consequence of the minimum SUSY extension of the standard model in respect of $\Delta S = 1$ neutral current operators have been examined by Cho et.al. and Bertolini et.al.[13,14]. The basic structure of the effective Hamiltonian for $\Delta S = 1$ obviously remains unchanged since the superpartner particles are all heavy and as with other heavy particles do not make their appearance in the low-dimensional operators responsible for low energy $\Delta S = 1$ processes. The effect of superpartner particles are felt through their modifying the values of the various Wilson co-efficients in the effective Hamiltonian:

$$\mathcal{H}_{eff} = \frac{\alpha G_F}{\sqrt{2} \pi} \lambda \left[C_8^{eff} (\bar{s} \gamma^\mu P_L d)(\bar{l} \gamma^\mu l) + C_{10} (\bar{s} \gamma^\mu P_L d)(\bar{l} \gamma^\mu \gamma_5 l) + 2 \frac{C_7 m_b}{p^2} (\bar{s} \not p \gamma^\mu P_R d)(\bar{l} \gamma^\mu \gamma_5 l) \right]$$

with p being the sum of the lepton momenta. The structure in eqn. (7) is obtained by taking account of box and Z^0-penguin diagrams together with their superpartner counterparts. Using the constraints
of the MSSM parameter space forced by experimentally observed $b \to s\gamma$ decay [15], the changes in
the Wilson co-efficients from their SM values have been found to be mild. In any case the Hamiltonian
eqn.(7) results in a CP - invariant $K_L \to \mu^+\mu^-$ amplitude and thus does not contribute to P_L. However,
if the parameter $\tan\beta$ in MSSM is large, of the order of 25 or more, the contribution of neutral higgs
bosons (NHBs) exchange amplitude (which is not included in the effective hamiltonian eqn. (7)) can
become significant. The purpose of this note is to investigate this aspect.

The dominant NHB exchange contributions to the effective Hamiltonian for the process $K_L \to \mu^+\mu^-$ are
shown in Figure 2. The effective Hamiltonian from NHB has the structure [18,19]:

$$H_{eff}^{NHB} = \frac{\alpha G_F}{2\sqrt{2}\pi} \lambda \left[C_{Q_1} \bar{s}(1 + \gamma_5)d \bar{l}l + C_{Q_2} \bar{s}(1 + \gamma_5)d \bar{l}\gamma_5l + h.c. \right]$$

(8)

C_{Q_1}, C_{Q_2} are Wilson co-efficients at scale μ, which for our case will be $\sim 1GeV$. The C_{Q_1} term above
contributes a CP - violating piece to the invariant amplitude for $K_L \to \mu^+\mu^-:

$$M^{NHB} = \frac{\alpha G_F}{2\sqrt{2}\pi} \frac{C_{Q_1}}{\sqrt{2}} 2 (i \text{ Im} \lambda) \langle 0 \mid \bar{s}\gamma_5d \mid K_0 \rangle \bar{u}(p_-)v(p_+)$$

(9)

where p_+, p_- are the momentum of l^+ and l^- respectively. We write the invariant amplitude following
the convention of Herczeg [5]:

$$M = a_2 \bar{u}(p_-)\gamma_5v(p_+) + ib_2 \bar{u}(p_-)v(p_+)$$

(10)

where the phases of K_2 has been chosen such that a_2 and b_2 are real except for unitary phases. In (10) we have taken the K_L amplitude to be the same as the CP - odd K_2, since we are interested in
the contribution to P_L arising out of the direct part. With this convention for the K_L amplitude, we
can relate the matrix element of $\bar{s}\gamma_5d$ between vacuum and K^0 via the kaon-decay constant (f_K) as
follows:

$$\langle 0 \mid \bar{s}\gamma_5d \mid K_0 \rangle = \frac{f_K m_k^2}{(m_s + m_d)c}$$

(11)
where the suffix c indicates that the masses are current quark masses. The NHB contributions to b_2 is:

$$b_{2}^{NHB} = \frac{\alpha G_F}{2\pi} C_{Q_1}(\mu) \left(Im\lambda\right) \frac{f_k m_K^2}{(m_s + m_d)c}$$

(12)
The amplitude a_2 is almost totally saturated by the $\gamma\gamma$ intermediate state where contribution has been estimated by Herczeg [5]:

$$Im(a_2^{\gamma\gamma}) \approx 2 \times 10^{-12}$$

(13)
We shall use this value as the total Ima_2. We now then have all the ingredients for estimating the NHB exchange graphs contribution to the direct parts of the contribution to P_L:

$$P_L = \frac{2r Im(b_2a_2^*)}{|a_2|^2 + (1 - \frac{4m_c^2}{m_k^2}) |b_2|^2}$$

(14)
For numerical estimation, we use the value of $Im\lambda$ in terms of Wolfenstein parameterization:

$$Im\lambda = A^2 \lambda^5 \eta$$

(15)
Using the input parameters as given in Appendix we get:

$$P_L^{dir} = 0.4 C_{Q_1}$$

(16)
The numerical value expected thus is directly proportional to the unknown Wilson co-efficient $C_{Q_1}(\mu)$ at scale ~ 1 GeV. For this corresponding co-efficient in $b \rightarrow s$ transition, this co-efficient has been calculated in terms of MSSM parameters by Dai et.al [18]. This was done in standard way, by calculating the penguin terms perturbatively at scale $\sim M_W$ and then using Renormalization Group equations (RGE) to evolve down to much lower scales. The RGE evolution involves no operator mixing and so this is a multiplicative correction in coming down from M_W to m_b. For us, the RGE is identical & so
the only difference will be in the perturbative estimate of $C_{Q_1}(M_W)$. The mass of the quark enters the calculation of this since the Higgs coupling to quarks is directly proportional to the quark mass. Thus the $C_{Q_1}(\mu)$ for the $s \to d$ transition will effectively be a factor (m_s/m_b) down from its value for the $b \to s$ transition. From a purely field theoretical point of view, the masses above would be the masses in the SM - langrangian, namely the 'current' quark masses, where values for the light quark are determined through low-energy chiral symmetry breaking analysis (Cheng & Li [17] Section 5.5). We will use the masses and Wolfenstein parameters of CKM as given in appendix.

The value of C_{Q_1} depends crucially on MSSM parameters. As is well known, MSSM has an undesirably long list of parameters. Most phenomenological analysis in MSSM use unification model in which SUSY is softly broken (at around Planck scale) leading to the 'SUGRA' version of MSSM. Such models are completely specified by a common gaugino mass term, a scalar mass term, trilinear coupling (all specified at Planck scale) together with the higgs sector parameter and $\tan\beta$ in addition to SM parameters. Several authors [21] have analyzed this parameter space and the constraints imposed therein by SM - parameters as well as by the now known $b \to s\gamma$ data as given by CLEO [15]. We in particular, work inside the parameter space as analyzed e.g. by Goto et.al [20] where strict universality of the soft SUSY breaking mass holds separately for squarks and scalars. With such relaxed universality, working within allowed parameter space region consistent with all low energy SM - parameters and $b \to s\gamma$, it is possible [19] to have regions of parameter space where $\tan\beta$ is large but the NHBs are relatively light ($\approx 2M_W$). Such allowed values of MSSM parameters have a wide range wherein the C_{Q_1} for $b \to s$ transition is of the order $O(1)$; the value of C_{Q_1} for $s \to d$ transition would be down by a factor $m_s/m_b \approx 0.025$. Fig. (3) shows typical values of the co-efficient C_{Q_1}, for $s \to d$ transition relevant to $K_L \to \mu^+\mu^-$ decay. For value of the CP-odd higgs mass (m_A) large (say greater than 200 GeV), C_{Q_1} indeed is too small . However, for somewhat lower values of m_A, with $\tan\beta > 25$ (which is within the acceptable range of parameters), C_{Q_1} can be sufficiently large for the NHB - exchange contribution to P_L (16) to overwhelm the SM-estimate. Thus for a typically low value of $m_A = 150 GeV$, we get from eqn.(16) values of $P_L^{dir} = 0.7 \times 10^{-2}, 1.2 \times 10^{-2}, 1.8 \times 10^{-2}$ respectively for $\tan\beta = 25, 30, 35$.

7
In summary, the predictions of MSSM for P_L are as follows. If the parameter $\tan\beta$ is small then MSSM does not change the SM value, which as stated before is dominated by the indirect contribution and estimated at $|P_L| \simeq 2 \times 10^{-3}$ by Ecker and Pich. For large $\tan\beta$ and masses of Higgs bosons exceeding 250 GeV, once again MSSM does not change SM predictions. However if $\tan\beta$ is large (~ 25 or more) and the Higgs masses are in the range of upto $2M_W$, the NHB-exchange contributions to P_L start becoming significant. A typical value for $\tan\beta = 30$ and $m_A = 150$GeV gives $P_L = 1.2 \times 10^{-2}$. When one is able to narrow down the acceptable parameter space of MSSM, experimental measurement of P_L would thus provide a very useful confirmatory test.

Acknowledgements

One of the authors AG is thankful to CSIR for providing financial support.

Appendix

Input parameters

Wolfenstein parameters [16] : $A \simeq 0.8$; $\lambda = 0.22$; $\eta = 0.34$

Current quark masses [17] : $m_d = 7$ MeV ; $m_s = 130$ MeV

$m_{\mu} = 105$ MeV , $G_F = 1.16 \times 10^{-5}$ GeV$^{-2}$, $\alpha_s(m_Z) = 0.119$, $m_b \approx 5$ GeV

References

[1] For a review see G.Buchalla, A. Buras and M.Lautenbacher *Rev. of Mod. Phys.* 68,1125 (1996).

[2] For a review see the article by A.Ali in B-decays (revised 2nd edition , World Scientific (Ed. S.Stone) 1994.

[3] A.Buras and M.Munz *Phys.Rev.* D52, 156 (1995).

[4] L.M.Sehgal *Nuovo Cimento*45,785 (1963) ; *Phys. Rev.*183,1511(1969).
[5] P.Herczeg *Phys.Rev*. D27, 1512 (1982) ; C.Q.Geng and J.Ng *Phys.Rev*. D41, 2351 (1990) ; G.Belanger and C.Q.Geng *Phys.Rev*. D43, 140 (1991) ; P.Ko *Phys.Rev*. D45, 174 (1992).

[6] G.Buchalla, A.J.Buras *Nucl.Phys*. B 412, 106 (1994).

[7] L.M.Sehgal *Phys. Rev*. 181, 2151 (1969).

[8] D.Chang and R.N.Mohapatra *Phys.Rev*. D30, 2005 (1984) ; J.Ellis, M.K. Gaillard and D.V.Nanopoulos *Nucl.Phys*. B 106, 292 (1976) ; R.S.Willey and H.L.Yu *Phys.Rev*. D26, 3086 (1982) ; B.Grzadkowski and P.Krawczyk *Z.Phys*. C 18, 43 (1983).

[9] F.J.Botella and C.S.Lim *Phys.Rev*. D56, 1651 (1986).

[10] Particle Data Group, *The European Physical Journal* C3 (1998) 1.

[11] G.Ecker and A.Pich *Nucl.Phys*. B 366, 189 (1991).

[12] For a review of the structure of MSSM see “The Higgs Hunters Guide” : J.Gunion, H.Haber, G.Kane & S.Dawson. Addison-Wesley Publishing Co.(1996).

[13] P.Cho, D. Wyler and M. Misiak *Phys.Rev*. D54, 3329 (1996).

[14] S. Bertolini et.al. *Nucl.Phys*. B 353, 591 (1991).

[15] CLEO Collaboration, M.S.Alam et.al. *Phys.Rev.Lett*. 74, 2885 (1995) ; CLEO Collaboration R.Ammar et.al, ibid. 71, 674 (1993).

[16] F. Kruger and L.M.Sehgal *Phys.Rev*. D55, 2799 (1997).

[17] “Gauge theories of Elementary particle Physics” T.P.Cheng and L.F.Li; Clareden Press, Oxford (1988).

[18] C-S.Huang, W.Liao and Q-S.Yan *Phys.Rev*. D59, 011701 (1999) ; Y-B.Dai et.al. *Phys. Lett*. B 390, 257 (1997) ; C-S.Huang and Qi-Shu Yan *Phys. Lett*. B 442, 209 (1998).

[19] S.Rai Choudhury and Naveen Gaur *Phys. Lett*. B 451, 86 (1999) ; S.Rai Choudhury, Naveen Gaur and Abhinav Gupta *Phys.Rev*. D 60, 115004 (1999).

[20] T.Goto, Y. Okada and Y. Shimizu Phys. Rev D 58, 094006 (1998).
[21] J.L.Lopez, D.V.Nanopoulos, Xu Wang and A.Zichichi Phys.Rev. D 51, 147 (1995); J.L.Lopez, D.V.Nanopoulos and A.Zichichi Phys. Rev. D 49, 343 (1994).
Figure 2: The dominant contributions at scale M_W, of NHB exchange contribution to the effective Hamiltonian for $K_L \to \mu^+ \mu^-$.
Figure 3: Typical values of C_{Q_1} for $s \to d$ transition at GeV scale. Values of C_{Q_1} have been plotted with pseudoscalar higgs mass (m_A). The other MSSM parameters are $m = M = 150 \text{ GeV}$, $A = -0.5$.

12