Measurement of B_c^+ production in proton-proton collisions at $\sqrt{s} = 8$ TeV

The LHCb collaboration

Abstract

Production of B_c^+ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of 2.0 fb$^{-1}$ recorded by the LHCb experiment. The ratio of production cross-sections times branching fractions between the $B_c^+ \to J/\psi \pi^+$ and $B_c^+ \to J/\psi K^+$ decays is measured as a function of transverse momentum and rapidity in the regions $0 < p_T < 20$ GeV/c and $2.0 < y < 4.5$. The ratio integrated within this kinematic range is measured to be $(0.683 \pm 0.018 \pm 0.009)\%$, where the first uncertainty is statistical and the second systematic.

Submitted to Phys. Rev. Lett.

© CERN on behalf of the LHCb collaboration, licence [CC-BY-4.0](http://creativecommons.org/licenses/by/4.0/)

†Authors are listed at the end of this Letter.
In the Standard Model, the B_c mesons are the only states formed by two heavy quarks of different flavor, the \bar{b} and the c quarks. The production of B_c mesons in hadron collisions implies the simultaneous production of $b\bar{b}$ and $c\bar{c}$ pairs, therefore it is rarer than that of other b mesons. The production of $b\bar{b}$ and $c\bar{c}$ quarkonium states in hadron collisions has been studied for two decades, however, significant puzzles remain \cite{1}. The relative role of competing production mechanisms \cite{2 –5} is poorly understood and theory is unable to predict all experimentally observed features \cite{6 –11}. The study of B_c production offers a promising way of shedding light over these discrepancies and gaining an insight on the underlying physics. In proton-proton (pp) collisions at the Large Hadron Collider (LHC), B_c mesons are expected to be mainly produced through the gluon-gluon fusion process $gg \rightarrow B_c + b + \bar{c}$. The production cross-sections of the B_c mesons have been calculated in the fragmentation approach \cite{12, 13} and in the complete order-α_s^4 approach \cite{14–21}, where α_s is the strong-interaction coupling. In the latter approach, the total production cross-section of the B_c ground state, B_c^+, at a center-of-mass energy of 8 TeV, integrated over the whole phase space and including contributions from intermediate excited states, is predicted to be about 0.2\% \cite{22, 23} of the inclusive $b\bar{b}$ cross-section \cite{24}.

Previously only the average ratios of B_c^+ to B^+ or B^0 cross-sections in specific kinematic regions had been measured \cite{25 –27}. The production cross-sections of b-hadrons show different transverse momentum dependencies \cite{28 –31}. A precise measurement of B_c^+ production as a function of transverse momentum and rapidity will provide useful information on the largely unknown production mechanism of the B_c^+ meson and other bound states of heavy quarks.

In this Letter we report on the first measurement of the double differential ratio of inclusive production cross-sections multiplied by branching fractions,

$$R(p_T, y) \equiv \frac{d\sigma_{B_c^+}(p_T, y) B(B_c^+ \rightarrow J/\psi \pi^+)}{d\sigma_{B^+}(p_T, y) B(B^+ \rightarrow J/\psi K^+)},$$

where transverse momentum p_T and rapidity y refer to the b meson. The cross-section includes contributions from excited states. We use a sample of pp collision data at 8 TeV, corresponding to an integrated luminosity of 2.0fb^{-1} recorded by the LHCb experiment. The B_c^+ and B^+ mesons are reconstructed in the exclusive decays $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ respectively, with $J/\psi \rightarrow \mu^+ \mu^-$. The inclusion of charge conjugate modes is implied throughout this Letter.

The LHCb detector \cite{32} is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The combined tracking system provides a momentum measurement with a relative uncertainty that varies from 0.4\% at low momentum, p, to 0.6\% at 100 GeV/c. The minimum distance of a track to a primary vertex, the impact parameter (IP), is measured with a resolution of $(15 + 29/p_T) \mu$m, where p_T is in GeV/c. Different types of charged
hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

The trigger consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, in which all charged particles with $p_T > 300$ MeV/c are reconstructed. Events are first required to pass the hardware trigger, which requires one or two muons with high p_T. In the subsequent software trigger, the event is required to have one muon with high p_T and large IP with respect to all primary pp interaction vertices (PVs), or a pair of oppositely charged muons with an invariant mass consistent with the known J/ψ meson mass. Finally, the tracks of two or more of the final state particles are required to form a vertex that is significantly displaced from the PVs. A multivariate algorithm is also used to identify secondary vertices consistent with the decay of a b meson.

The b-meson candidate selection is performed in two steps, a preselection and a final selection on the output of a multivariate classifier based on a boosted decision tree algorithm (BDT). Simulated B_c^+ and B^+ decays are used to optimize the b-meson candidate selection. Production of B^+ mesons is simulated using PYTHIA 6.4 with an LHCb specific configuration. The generator Bcvegpy is used to simulate B_c^+ meson production. Decays of B_c^+, B^+ and J/ψ mesons are described by EVTGEN and photon radiation is simulated using the PHOTOS package. The decay products are traced through the detector by the GEANT4 package. Following Ref., the B_c^+ meson lifetime is set to $\tau_{B_c^+} = 0.509$ ps. The selection requirements are the same for $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ candidates.

In the preselection, J/ψ candidates are formed from pairs of oppositely charged particles with p_T larger than 0.55 GeV/c, with a good quality of the track fit and identified as muons. The two muons are required to originate from a common vertex. The J/ψ candidates with invariant mass between 3.04 GeV/c^2 and 3.14 GeV/c^2 are combined with a charged particle that has $p_T > 1.0$ GeV/c, a good quality of the track fit and is separated from any PV. The pion mass hypothesis is assigned to the track for the selection of the B_c^+ candidate and the kaon hypothesis for that of the B^+ candidate. The J/ψ candidate and the hadron (π or K) are required to originate from a common vertex. To improve the b-meson mass resolution, the mass of the muon pair is constrained to the known J/ψ meson mass in this vertex fit. The b-meson candidates are required to have a decay time larger than 0.2 ps, and to point toward the primary vertex.

In the final selection, the BDT is trained using a simulated B_c^+ signal sample and background events populating the data mass sideband $6376 < M_{J/\psi \pi^+} < 6600$ MeV/c^2. The following variables are used as input to the BDT: χ^2_{IP} of all particles; p_T of muons, J/ψ and π^+; and the b-meson decay length, decay time, and the vertex fit χ^2 of a fit to the decay tree. The quantity χ^2_{IP} is defined as the difference in χ^2 of a given primary vertex reconstructed with and without the considered particle. The selection value on the BDT output is chosen to maximize the signal significance $N_S/\sqrt{N_S + N_B}$, where N_S and
N_B are the expected numbers of signal and background events, respectively. The same BDT requirements are used for the B^+ meson.

The B_c^+ and B^+ candidates are subdivided into 10 bins of p_T and 3 bins of y. Bin sizes are chosen to contain approximately the same number of signal candidates, except for the highest p_T bin. The differential production ratio R is measured as

$$R(p_T, y) = \frac{N_{B_c^+}(p_T, y) \epsilon_B(p_T, y)}{N_{B^+}(p_T, y) \epsilon_B(p_T, y)},$$

where $N_B(p_T, y)$ is the number of reconstructed signal decays and $\epsilon_B(p_T, y)$ is the total efficiency in a given (p_T, y) bin, including geometrical acceptance, reconstruction, selection and trigger effects.

In each p_T and y bin, the number of signal decays is determined by performing an extended maximum likelihood fit to the unbinned invariant mass distribution of B_c^+ candidates reconstructed in $6150 < M_{J/\psi K^+} < 6550$ MeV/c^2 and B^+ candidates in 5150 < $M_{J/\psi K^+}$ < 5550 MeV/c^2. For both $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ decays, the fit includes components for signal, combinatorial background, and Cabibbo-suppressed backgrounds $B_c^+ \rightarrow J/\psi K^+$ and $B^+ \rightarrow J/\psi \pi^+$. Other sources of backgrounds, such as $B_c^+ \rightarrow J/\psi \mu^+\nu_\mu$, are negligible. The $B_c^+ \rightarrow J/\psi \pi^+$ signal is described by a double-sided Crystal Ball (DSCB) function, which is an empirical function with a Gaussian core and power-law tails on both sides. The $B^+ \rightarrow J/\psi K^+$ signal is described by the sum of two DSCB functions, to account for different mass resolutions in different kinematic regions. The tail parameters are determined from simulation. The combinatorial background is described by an exponential function. The shapes of the Cabibbo-suppressed backgrounds are determined from simulation. The ratios of the yield of the Cabibbo-suppressed background to that of the signal are fixed to the central value of $\mathcal{B}(B_c^+ \rightarrow J/\psi K^+)/\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+) = (6.9 \pm 2.0)\%$ for B_c^+ candidates [47], and $\mathcal{B}(B^+ \rightarrow J/\psi \pi^+)/\mathcal{B}(B^+ \rightarrow J/\psi K^+) = (3.83 \pm 0.13)\%$ for B^+ candidates [48], respectively.

As an example, Fig. 1 shows the B_c^+ and B^+ mass distributions together with the fit results for the bin $2.0 < p_T < 3.0$ GeV/c and $2.0 < y < 2.9$. The mass resolution is approximately 11 MeV/c^2 for B_c^+ signals and 8.7 MeV/c^2 for B^+ signals. Summing over all bins, a total signal yield of 3.1×10^3 B_c^+ candidates and 7.1×10^5 B^+ candidates is obtained. In each (p_T, y) bin the total efficiency is determined from simulation and ranges from 2.4% to 23.2% for B_c^+ candidates and from 3.6% to 33.5% for B^+ candidates.

The systematic uncertainties associated with the signal shape in each bin (0.1% - 2.6%) are estimated by comparing the ratios between input signal yields and fit results in simulation. The uncertainties from the combinatorial background shape (0.1% - 4.4%) are determined by varying the fit function. The input value for the ratio of branching fractions $\mathcal{B}(B_c^+ \rightarrow J/\psi K^+)/\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)$ is varied within its uncertainty and the resulting difference (0.1% - 0.9%) is taken as systematic uncertainty. The systematic uncertainty associated with the relative trigger efficiency is estimated to be 1%. Other effects, such as the (p_T, y) binning scheme, the shapes of the Cabibbo-suppressed backgrounds, the B_c^+ lifetime uncertainty and the uncertainty of tracking efficiency, are negligible.
Figure 1: Invariant mass distribution of (left) $B_c^+ \rightarrow J/\psi \pi^+$ and (right) $B^+ \rightarrow J/\psi K^+$ candidates with $2.0 < p_T < 3.0 \text{ GeV}/c$ and $2.0 < y < 2.9$. The results of the fit described in the text are superimposed.

Figure 2: Distributions of (left) p_T and (right) y of the B_c^+ signal after event selection. The points with error bars are background-subtracted data, and the solid histogram is the simulation based on the complete order-α_s^4 calculation, implemented in the B_c^{+} generator BCVEGPY \cite{bcvegpym}. The uncertainties are statistical.

Figure 2 shows that simulation provides a good description of p_T and y distributions of B_c^+ mesons in data. The values of $R(p_T,y)$ in the range $0 < p_T < 20 \text{ GeV}/c$ and $2.0 < y < 4.5$ are shown in Table 1 and Fig. 3. Figure 4 shows the ratio $R(p_T)$ integrated over y in the region $2.0 < y < 4.5$ and $R(y)$ integrated over p_T in the region $0 < p_T < 20 \text{ GeV}/c$. The ratios are found to vary as a function of p_T and y.

The resulting integrated value of R in the region $0 < p_T < 20 \text{ GeV}/c$ and $2.0 < y < 4.5$ is measured to be

$$R = (0.683 \pm 0.018 \pm 0.009)\%,$$

where the first uncertainty is statistical and the second systematic. To enable comparison with the previous LHCb measurement \cite{lhcb}, R and its total uncertainty are also reported in
Table 1: $R(p_T, y)$ in units of 10^{-2} as a function of p_T and y. The first uncertainty is statistical and the second systematic.

p_T (GeV/c)	$2.0 < y < 2.9$	$2.9 < y < 3.3$	$3.3 < y < 4.5$	$2.0 < y < 4.5$
$0 < p_T < 2$	$0.67 \pm 0.10 \pm 0.01$	$0.73 \pm 0.10 \pm 0.01$	$0.35 \pm 0.06 \pm 0.01$	$0.54 \pm 0.05 \pm 0.01$
$2 < p_T < 3$	$0.70 \pm 0.09 \pm 0.02$	$0.72 \pm 0.09 \pm 0.02$	$0.50 \pm 0.06 \pm 0.01$	$0.62 \pm 0.05 \pm 0.01$
$3 < p_T < 4$	$0.62 \pm 0.08 \pm 0.01$	$0.58 \pm 0.08 \pm 0.01$	$0.57 \pm 0.07 \pm 0.02$	$0.59 \pm 0.05 \pm 0.01$
$4 < p_T < 5$	$0.83 \pm 0.08 \pm 0.02$	$0.60 \pm 0.07 \pm 0.01$	$0.81 \pm 0.08 \pm 0.02$	$0.79 \pm 0.05 \pm 0.01$
$5 < p_T < 6$	$0.90 \pm 0.09 \pm 0.02$	$0.78 \pm 0.09 \pm 0.01$	$0.76 \pm 0.09 \pm 0.02$	$0.83 \pm 0.06 \pm 0.01$
$6 < p_T < 7$	$0.84 \pm 0.09 \pm 0.01$	$0.99 \pm 0.11 \pm 0.02$	$0.64 \pm 0.08 \pm 0.01$	$0.79 \pm 0.06 \pm 0.01$
$7 < p_T < 8$	$0.95 \pm 0.10 \pm 0.01$	$0.74 \pm 0.11 \pm 0.01$	$0.65 \pm 0.09 \pm 0.01$	$0.82 \pm 0.06 \pm 0.01$
$8 < p_T < 10$	$0.80 \pm 0.08 \pm 0.01$	$0.57 \pm 0.08 \pm 0.01$	$0.80 \pm 0.09 \pm 0.02$	$0.77 \pm 0.05 \pm 0.01$
$10 < p_T < 14$	$0.70 \pm 0.06 \pm 0.01$	$0.75 \pm 0.09 \pm 0.01$	$0.60 \pm 0.08 \pm 0.01$	$0.68 \pm 0.05 \pm 0.01$
$14 < p_T < 20$	$0.74 \pm 0.09 \pm 0.01$	$0.68 \pm 0.15 \pm 0.03$	$0.55 \pm 0.13 \pm 0.02$	$0.68 \pm 0.07 \pm 0.01$
$0 < p_T < 20$	$0.76 \pm 0.03 \pm 0.01$	$0.70 \pm 0.03 \pm 0.01$	$0.58 \pm 0.03 \pm 0.01$	$0.68 \pm 0.02 \pm 0.01$

the range $4 < p_T < 20$ GeV/c and $2.5 < y < 4.5$ as $(0.698 \pm 0.023)\%$. The previous LHCb measurement of R at 7 TeV of Ref. [26] is updated using the recent measurement of the B_c^+ lifetime [45] to be $(0.61 \pm 0.12)\%$.

In summary, we present the first measurement of the B_c^+ double differential production cross-section ratio with respect to that of the B^+ meson. The measurement is performed in three bins of rapidity and ten bins of p_T in pp collisions at $\sqrt{s} = 8$ TeV on a data sample collected with the LHCb detector. The relative production rates of B_c^+ and B^+ mesons are found to depend on their transverse momentum and rapidity.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia). Individual groups or members have received support from EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR (Russia), XuntaGal...
and GENCAT (Spain), Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom). We would like to thank Matteo Cacciari, Chao-Hsi Chang, Xing-Gang Wu, and Rui-Lin Zhu for useful discussions.
Figure 3: Ratio $R(p_T, y)$ as a function of p_T in the regions (top left) $2.0 < y < 2.9$, (top right) $2.9 < y < 3.3$, and (bottom left) $3.3 < y < 4.5$. The error bars on the data show the statistical and systematic uncertainties added in quadrature.

Figure 4: Ratio (left) $R(p_T)$ as a function of p_T integrated over y in the region $2.0 < y < 4.5$ and (right) $R(y)$ as a function of y integrated over p_T in the region $0 < p_T < 20 \text{ GeV/c}$. The error bars on the data show the statistical and systematic uncertainties added in quadrature.
References

[1] N. Brambilla et al., \textit{Heavy quarkonium: progress, puzzles, and opportunities}, Eur. Phys. J. \textbf{C71} (2011) 1534, \texttt{arXiv:1010.5827}.

[2] C.-H. Chang, \textit{Hadronic production of J/ψ associated with a gluon}, Nucl. Phys. \textbf{B172} (1980) 425.

[3] R. Baier and R. Ruckl, \textit{Hadronic collisions: A quarkonium factory}, Z. Phys. \textbf{C19} (1983) 251.

[4] G. T. Bodwin, E. Braaten, and G. P. Lepage, \textit{Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium}, Phys. Rev. \textbf{D51} (1995) 1125, \texttt{arXiv:hep-ph/9407339}, erratum ibid. \textbf{D55} (1997) 5853.

[5] P. L. Cho and A. K. Leibovich, \textit{Color octet quarkonia production}, Phys. Rev. \textbf{D53} (1996) 150, \texttt{arXiv:hep-ph/9505329}; P. L. Cho and A. K. Leibovich, \textit{Color octet quarkonia production. II}, Phys. Rev. \textbf{D53} (1996) 6203, \texttt{arXiv:hep-ph/9511315}.

[6] CDF collaboration, F. Abe et al., \textit{J/ψ and ψ(2S) production in pp collisions at √s = 1.8 TeV}, Phys. Rev. Lett. \textbf{79} (1997) 572; CDF collaboration, F. Abe et al., \textit{Production of J/ψ mesons from χc meson decays in pp collisions at √s = 1.8 TeV}, Phys. Rev. Lett. \textbf{79} (1997) 578.

[7] CDF collaboration, A. Abulencia et al., \textit{Polarization of J/ψ and ψ(2S) mesons produced in pp collisions at √s = 1.96 TeV}, Phys. Rev. Lett. \textbf{99} (2007) 132001, \texttt{arXiv:0704.0638}.

[8] ALICE collaboration, B. Abelev et al., \textit{J/ψ polarization in pp collisions at √s = 7 TeV}, Phys. Rev. Lett. \textbf{108} (2012) 082001, \texttt{arXiv:1111.1630}.

[9] CMS collaboration, S. Chatrchyan et al., \textit{Measurement of the Υ(1S), Υ(2S) and Υ(3S) polarizations in pp collisions at √s = 7 TeV}, Phys. Rev. Lett. \textbf{110} (2013) 081802, \texttt{arXiv:1209.2922}.

[10] LHCb collaboration, R. Aaij et al., \textit{Measurement of J/ψ polarization in pp collisions at √s = 7 TeV}, Eur. Phys. J. \textbf{C73} (2013) 2631, \texttt{arXiv:1307.6379}.

[11] LHCb collaboration, R. Aaij et al., \textit{Measurement of ψ(2S) polarisation in pp collisions at √s = 7 TeV}, Eur. Phys. J. \textbf{C74} (2014) 2872, \texttt{arXiv:1403.1339}.

[12] E. Braaten, K. Cheung, and T. C. Yuan, \textit{Perturbative QCD fragmentation functions for B_c and B_{c*} production}, Phys. Rev. \textbf{D48} (1993) R5049 (R), \texttt{arXiv:hep-ph/9305206}.

[13] K. Cheung, \textit{B_c meson production at the Tevatron revisited}, Phys. Lett. \textbf{B472} (2000) 408, \texttt{arXiv:hep-ph/9908405}.
[14] C.-H. Chang and Y.-Q. Chen, Hadronic production of the B_c meson at TeV energies, Phys. Rev. D48 (1993) 4086.

[15] C.-H. Chang, Y.-Q. Chen, G.-P. Han, and H.-T. Jiang, On hadronic production of the B_c meson, Phys. Lett. B364 (1995) 78, arXiv:hep-ph/9408242.

[16] C.-H. Chang, Y.-Q. Chen, and R. J. Oakes, Comparative study of the hadronic production of B_c mesons, Phys. Rev. D54 (1996) 4344, arXiv:hep-ph/9602411.

[17] C.-H. Chang, C.-F. Qiao, J.-X. Wang, and X.-G. Wu, Color-octet contributions to P-wave B_c meson hadroproduction, Phys. Rev. D71 (2005) 074012, arXiv:hep-ph/0502155.

[18] K. Kolodziej, A. Leike, and R. Ruckl, Production of B_c mesons in hadronic collisions, Phys. Lett. B355 (1995) 337, arXiv:hep-ph/9505298.

[19] A. V. Berezhnoy, A. K. Likhoded, and M. V. Shevlyagin, Hadronic production of B_c mesons, Phys. Atom. Nucl. 58 (1995) 672, arXiv:hep-ph/9408284.

[20] A. V. Berezhnoy, V. V. Kiselev, and A. K. Likhoded, Photonic production of S- and P-wave B_c states and doubly heavy baryons, Z. Phys. A356 (1996) 89.

[21] S. P. Baranov, Pair production of $B_c^{(*)}$ mesons in pp and $\gamma\gamma$ collisions, Phys. Rev. D55 (1997) 2756.

[22] C.-H. Chang and X.-G. Wu, Uncertainties in estimating B_c hadronic production and comparisons of the production at TEVATRON and LHC, Eur. Phys. J. C38 (2004) 267, arXiv:hep-ph/0309121.

[23] Y.-N. Gao et al., Experimental prospects of the B_c studies of the LHCb experiment, Chin. Phys. Lett. 27 (2010) 061302.

[24] LHCb collaboration, R. Aaij et al., Measurement of J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C71 (2011) 1645, arXiv:1103.0423.

[25] CDF collaboration, F. Abe et al., Observation of the B_c meson in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. Lett. 81 (1998) 2432, arXiv:hep-ex/9805034; CDF collaboration, F. Abe et al., Observation of B_c mesons in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. D58 (1998) 112004, arXiv:hep-ex/9804014.

[26] LHCb collaboration, R. Aaij et al., Measurements of $B_s^+\rightarrow J/\psi\pi^+$ production and mass with the $B_c^+ \rightarrow J/\psi\pi^+$ decay, Phys. Rev. Lett. 109 (2012) 232001, arXiv:1209.5634.

[27] LHCb collaboration, R. Aaij et al., Observation of the decay $B_c^+ \rightarrow B_s^0\pi^+$, Phys. Rev. Lett. 111 (2013) 181801, arXiv:1308.4544.
[28] CDF collaboration, T. Aaltonen et al., First measurement of the ratio of branching fractions $B(Λ_{b}^{0} \rightarrow Λ^{+}_c \mu^{-} \bar{\nu}_{\mu})/B(Λ_{b}^{0} \rightarrow Λ^{+}_c \pi^{-})$, Phys. Rev. D79 (2009) 032001, arXiv:0810.3213.

[29] LHCb collaboration, R. Aaij et al., Measurement of b hadron production fractions in 7 TeV pp collisions, Phys. Rev. D85 (2012) 032008, arXiv:1111.2357.

[30] LHCb collaboration, R. Aaij et al., Study of the kinematic dependences of $Λ_{b}^{0}$ production in pp collisions and a measurement of the $Λ_{b}^{0} \rightarrow Λ^{+}_c \pi^{-}$ branching fraction, JHEP 08 (2014) 143, arXiv:1405.6842.

[31] LHCb collaboration, R. Aaij et al., Study of beauty hadron decays into pairs of charm hadrons, Phys. Rev. Lett. 112 (2014) 202001, arXiv:1403.3606.

[32] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

[33] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.

[34] Particle Data Group, K. A. Olive et al., The review of particle physics, Chin. Phys. C 38 (2014) 090001.

[35] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, JINST 8 (2013) P02013, arXiv:1210.6861.

[36] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, USA, 1984.

[37] R. E. Schapire and Y. Freund, A decision-theoretic generalization of on-line learning and an application to boosting, Jour. Comp. and Syst. Sc. 55 (1997) 119.

[38] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.

[39] I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155.

[40] C.-H. Chang, J.-X. Wang, and X.-G. Wu, BCVEGPY2.0: An upgraded version of the generator BCVEGPY with the addition of hadroproduction of the P-wave B_c states, Comput. Phys. Commun. 174 (2006) 241, arXiv:hep-ph/0504017.

[41] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.

[42] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.
[43] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

[44] M. Clemencic et al., The LHCb simulation application, GAUSS: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[45] LHCb collaboration, R. Aaij et al., Measurement of the B_c^+ meson lifetime using $B_c^+ \rightarrow J/\psi \mu^+\nu_\mu X$ decays, Eur. Phys. J. C74 (2014) 2839, arXiv:1401.6932.

[46] W. D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth A552 (2005) 566, arXiv:physics/0503191.

[47] LHCb collaboration, R. Aaij et al., First observation of the decay $B_c^+ \rightarrow J/\psi K^+$, JHEP 09 (2013) 075, arXiv:1306.6723.

[48] LHCb collaboration, R. Aaij et al., Measurements of the branching fractions and CP asymmetries of $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ and $B^{\pm} \rightarrow \psi(2S)\pi^{\pm}$ decays, Phys. Rev. D85 (2012) 091105(R), arXiv:1203.3592.
LHCb collaboration
Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil

Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

Center for High Energy Physics, Tsinghua University, Beijing, China

LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil

LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France

Center for High Energy Physics, Tsinghua University, Beijing, China

Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France

Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

School of Physics, University College Dublin, Dublin, Ireland

Sezione INFN di Bari, Bari, Italy

Sezione INFN di Bologna, Bologna, Italy

Sezione INFN di Cagliari, Cagliari, Italy

Sezione INFN di Ferrara, Ferrara, Italy

Sezione INFN di Firenze, Firenze, Italy

Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy

Sezione INFN di Genova, Genova, Italy
b P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
c Università di Bari, Bari, Italy
d Università di Bologna, Bologna, Italy
e Università di Cagliari, Cagliari, Italy
f Università di Ferrara, Ferrara, Italy
g Università di Firenze, Firenze, Italy
h Università di Urbino, Urbino, Italy
i Università di Modena e Reggio Emilia, Modena, Italy
j Università di Genova, Genova, Italy
k Università di Milano Bicocca, Milano, Italy
l Università di Roma Tor Vergata, Roma, Italy
m Università di Roma La Sapienza, Roma, Italy
n Università della Basilicata, Potenza, Italy
o AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
p LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
q Hanoi University of Science, Hanoi, Viet Nam
r Università di Padova, Padova, Italy
s Università di Pisa, Pisa, Italy
t Scuola Normale Superiore, Pisa, Italy
u Università degli Studi di Milano, Milano, Italy
v Politecnico di Milano, Milano, Italy