New SUSYQM coherent states for Pöschl–Teller potentials: a detailed mathematical analysis

H Bergeron\(^1\), P Siegl\(^2,3,4\) and A Youssef\(^5\)

\(^1\) Université Paris-Sud, ISMO, UMR 8214 du CNRS, Bât. 351 F-91405 Orsay, France
\(^2\) Laboratoire APC, Université Paris Diderot Paris 7, Case 7020, F-75205 Paris, France
\(^3\) Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehova 7, 11519 Prague, Czech Republic
\(^4\) Nuclear Physics Institute ASCR, 25068 Rež, Czech Republic
\(^5\) Institut für Mathematik und Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany

E-mail: herve.bergeron@u-psud.fr, siegl@ujf.cas.cz and youssef@mathematik.hu-berlin.de

Received 30 October 2011, in final form 5 February 2012
Published 30 May 2012
Online at stacks.iop.org/JPhysA/45/244028

Abstract
In a recent short note (Bergeron \textit{et al} 2010 Europhys. Lett. 92 60003), we have presented the good properties of a new family of semi-classical states for Pöschl–Teller potentials. These states are built from a supersymmetric quantum mechanics (SUSYQM) approach and the parameters of these ‘coherent’ states are points in the classical phase space. In this paper, we develop all the mathematical aspects that have been left out of the previous paper (proof of the resolution of unity, detailed calculations of the quantized version of classical observables and mathematical study of the resulting operators: problems of domains, self-adjointness or self-adjoint extensions). Some additional questions such as asymptotic behavior are also studied. Moreover, the framework is extended to a larger class of Pöschl–Teller potentials.

This article is part of a special issue of 	extit{Journal of Physics A: Mathematical and Theoretical} devoted to ‘Coherent states: mathematical and physical aspects’.

PACS number: 03.65.–w

1. Introduction

Infinite wells are often modeled by Pöschl–Teller (also known as trigonometric Rosen–Morse) confining potentials [1, 2] used, e.g., in quantum optics [3, 4]. The infinite square well is a limit case of this family. The question is to find a family of normalized states: (a) phase-space labeled, (b1) yielding a resolution of the identity, (b2) the latter holding with respect to the usual uniform measure on the phase space, (c) allowing a reasonable classical-quantum correspondence (‘CS’ quantization) and (d) exhibiting semi-classical phase-space properties with respect to Pöschl–Teller Hamiltonian time evolution. We refer to these states as coherent states (CS) as they share many striking properties with Schrödinger’s original semi-classical states.
Most of the CS encountered in the literature are built through a group-theoretical or algebraic approach. Regarding Pöschl–Teller potentials, they belong to the class of shape invariant potentials [5] that have been intensively studied either specifically within the framework of supersymmetric quantum mechanics (SUSYQM) [6] or using a pure algebraic approach [7, 8]. Then various semi-classical states adapted to supersymmetric systems in general [8–10] or to Pöschl–Teller potentials in particular have been proposed in previous works (see [11–16] and references therein).

Whereas most of them verify (b1) and (d), they do not really ‘live’ on the genuine classical phase space of the system. Hence, a classical-quantum correspondence (property (c)) often lacks unambiguous interpretation. Moreover, the correspondence between classical and quantum momenta for a particle moving on an interval requires a thorough analysis; as a matter of fact, there exists a well-known ambiguity in the definition of the quantum momentum operator [17, 13].

In a recent note [18], we have presented a construction of CS for Pöschl–Teller potentials based on a general approach given by one of us in [19], and we have displayed their remarkable qualities as classical–quantum ‘conveyers’. These states fulfill conditions (a), (b1), (b2), (c) and (d). Property (b2) is specially unexpected because nonlinear CS verify in general a resolution of unity with respect to some positive weight function. The validity of (b2) means that our CS do not favor any part of the classical phase space, even if this phase space is a strip (Pöschl–Teller potential case), that is, a manifold with boundaries, topologically very different from the whole plane of the usual (harmonic) CS.

In this paper, we examine in detail the mathematical aspects of properties (a), (b1), (b2) and (c) as well as some additional questions. In particular, we pay more attention to the ‘quantization procedure’ (c), analyzing in detail all the mathematical subtleties due to the unbounded character of most operators (domains, closure, possibly unique (or not) self-adjoint extensions). Furthermore, due to their applications in quantum dots and quantum wells, only symmetric repulsive Pöschl–Teller potentials have been considered in our paper [18]. But in fact our formalism remains valid for a larger class of Pöschl–Teller potentials that is considered in the following.

2. The Pöschl–Teller Hamiltonian and SUSYQM formalism

2.1. The Pöschl–Teller Hamiltonian

We consider the quantum problem of a particle trapped on the interval \([0, L]\). The Hilbert space is \(\mathcal{H} = L^2([0, L], dx)\) and the Hamiltonian is the following Sturm–Liouville operator \(H_{\nu,\beta}\) (self-adjoint when defined on a suitable dense domain \(\mathcal{D}_{H_{\nu,\beta}}\) of \(\mathcal{H}\) that will be specified in the next section):

\[
H_{\nu,\beta} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V_{\nu,\beta}(x).
\]

(1)

\(V_{\nu,\beta}\) is the Pöschl–Teller potential:

\[
V_{\nu,\beta}(x) = \frac{E_0 \nu (\nu + 1)}{\sin^2 \frac{\pi x}{L}} - 2E_0 \beta \cot \frac{\pi x}{L},
\]

(2)

where \(E_0\) is some energy scale, while \(\nu\) and \(\beta\) are some dimensionless parameters. We restrict our study to the repulsive behavior at the end points \(x = 0\) and \(x = L\). This assumption allows us to choose \(E_0 \geq 0\) and \(\nu \geq 0\). Moreover, since the symmetry \(x \mapsto L - x\) corresponds to the parameter change \(\beta \mapsto -\beta\), we can freely choose \(\beta \geq 0\).

Now, since the potential strengths are overdetermined by specifying \(E_0\), \(\nu\) and \(\beta\), we can freely choose the energy scale \(E_0\) as the zero point energy of the infinite well, namely
\[\mathcal{E}_0 = \frac{\hbar^2 \pi^2}{(2mL)^2}. \] Then \(\nu \) and \(\beta \) remain the unique free parameters of the problem. In the following, \(\nu \) and \(\beta \) are always assumed to be positive except if a contrary assumption is specified.

The case \(\beta = 0 \) corresponds to the symmetric repulsive potentials investigated in [18], while the case \(\beta \neq 0 \) leads to the Coulomb potential in the limit \(L \to \infty \) (if we choose \(\beta = \frac{Ze^2 mL}{(4\pi^2 \epsilon_0 \hbar^2)} \)).

2.2. Functional point of view and self-adjointness

The Pöschl–Teller Hamiltonian (1) is an ordinary differential Sturm–Liouville operator, singular at end points. The functional properties depend on the value of \(\nu \), as follows from the analysis of Gesztesy et al [20]. In particular, \(\nu = 1/2 \) is the critical value, while one would naïvely expect \(\nu = 0 \), i.e. the infinite square well, to play the role.

Let us define the operator \(\mathbf{H}_{\nu,\beta} \) with the action given by the formal differential expression

\[\tau \psi = -\frac{\hbar^2}{2m} \psi'' + V_{\nu,\beta}(x) \psi \]

and with the domain \(C^\infty_0(0, L) \), i.e. smooth functions with a compact support. Using the standard approach and terminology [21], the Pöschl–Teller potential \(V_{\nu,\beta} \) is in the limit point case at both ends \(x = 0 \) and \(x = L \), if \(\nu \geq 1/2 \), and in the limit circle case at both ends if \(0 \leq \nu < 1/2 \). It follows that \(\mathbf{H}_{\nu,\beta} \) is essentially self-adjoint in the former case. The closure is denoted as \(\mathbf{H}_{\nu,\beta} \) and its domain coincides with the maximal one, i.e. \(\mathcal{D}_{\mathbf{H}_{\nu,\beta}} = \{ \psi \in AC^2(0, L) \mid \tau \psi \in \mathcal{H} \} \), where \(AC^2(0, L) \) denotes the absolutely continuous functions with absolutely continuous derivatives. It is possible to check that the function from this domain automatically satisfies Dirichlet boundary conditions. In the latter range of \(\nu \), the deficiency indices of \(\mathbf{H}_{\nu,\beta} \) are \((2, 2) \) and therefore more self-adjoint extensions exist; see [20] for the detailed analysis. In this paper, we select the extension described by Dirichlet boundary conditions, i.e. \(\mathcal{D}_{\mathbf{H}_{\nu,\beta}} = \{ \psi \in AC^2(0, L) \mid \psi(0) = \psi(L) = 0, \tau \psi \in \mathcal{H} \} \). For further use, we define the dense domain, being the common core for \(\mathbf{H}_{\nu,\beta} \),

\[\mathcal{D}_H = \{ \psi \in AC^2(0, L) \mid \psi \in \mathcal{D}_{\mathbf{H}_{\nu,\beta}} \}, \tag{3} \]

where \(AC(0, L) = \{ \psi \in ac(0, L) \mid \psi' \in \mathcal{H} \} \) and \(AC^2(0, L) \) is introduced analogously.

2.3. Eigenvalues and eigenfunctions

The eigenvalue problem is explicitly solvable; the eigenvalues \(E_n^{(\nu,\beta)} \) and corresponding eigenfunctions \(\phi_n^{(\nu,\beta)} \) read

\[E_n^{(\nu,\beta)} = \mathcal{E}_0 \left(n + \nu + 1 \right)^2 - \frac{\beta^2}{(n + \nu + 1)^2} \] \tag{4}

\[\phi_n^{(\nu,\beta)}(x) = K_n^{(\nu,\beta)} \sin^{\nu + \theta + 1} \left(\frac{\pi x}{L} \right) \exp \left(\frac{\beta \pi x}{L(n + \nu + 1)} \right) \tilde{p}_n^{(\nu,\beta)} \left(\frac{i \cot \frac{\pi x}{L}}{n + \nu + 1} \right), \tag{5} \]

where \(n \in \mathbb{N}_0 \), \(\alpha_n = -(\nu + n + 1 - i\theta)(n + n + 1)^{-1} \), \(K_n^{(\nu,\beta)} \) is a normalization constant and the \(\tilde{p}_n^{(\nu,\beta)} \) are the Jacobi polynomials. An expression using only real polynomials can be found in [22]. The ground state \(\phi_0^{(\nu,\beta)} \) simplifies to

\[\phi_0^{(\nu,\beta)}(x) = K_0^{(\nu,\beta)} \sin^{\nu + 1} \left(\frac{\pi x}{L} \right) \exp \left(\frac{\beta \pi x}{L(n + 1)} \right) \] \tag{6}

and the eigenfunctions \(\phi_n^{(\nu,0)} \) for \(\beta = 0 \) can also be expressed in terms of Gegenbauer polynomials \(C_n^{\nu+1} \) as

\[\phi_n^{(\nu,0)}(x) = Z_{n,\nu} \sin^{\nu + 1} \left(\frac{\pi x}{L} \right) C_n^{\nu+1} \left(\cos \left(\frac{\pi x}{L} \right) \right), \] \tag{7}
where \(Z_{n_\nu}\) is a normalization constant. Finally, the eigenfunctions for the infinite well \((\nu = \beta = 0)\) read

\[
\phi_{n(0)}(x) = \sqrt{\frac{2}{L}} \sin \left(\frac{(n+1)\pi x}{L}\right).
\] (8)

2.4. SUSYQM and shape invariance of Pöschl–Teller Hamiltonians

We use a standard SUSY approach, leading to a simple Darboux factorization of the Hamiltonian (for more details about SUSY and factorization problems, see [23, 24]). The superpotential \(W_{\nu,\beta}(x)\) can be found as

\[
W_{\nu,\beta}(x) = -\frac{\hbar}{2} \frac{d^2}{dx^2} \] (9)

We define the operators \(A_{\nu,\beta}\) and \(A^\dagger_{\nu,\beta}\) as the differential operators

\[
A_{\nu,\beta} = W_{\nu,\beta}(x) + \frac{\hbar}{2} \frac{d}{dx} \] \(A^\dagger_{\nu,\beta} = W_{\nu,\beta}(x) - \frac{\hbar}{2} \frac{d}{dx}
\] (10)

acting in the domains

\[
D_{A_{\nu,\beta}} = \{ \psi \in AC(0, L) \mid A_{\nu,\beta}\psi \in \mathcal{H} \} \] \(D_{A^\dagger_{\nu,\beta}} = \{ \psi \in AC(0, L) \mid A^\dagger_{\nu,\beta}\psi \in \mathcal{H} \}.
\] (11)

It can be verified that \(A^\dagger_{\nu,\beta}\) is indeed the adjoint of \(A_{\nu,\beta}\) and that functions from domains (11) satisfy Dirichlet boundary conditions. Besides the domains \(D_{A_{\nu,\beta}}\) and \(D_{A^\dagger_{\nu,\beta}}\), we consider their common restriction

\[
D_A = \{ \psi \in AC(0, L) \mid W_{\nu,\beta}\psi \in \mathcal{H} \}.
\] (12)

It can be verified that \(A_{\nu,\beta} \upharpoonright D_A = A_{\nu,\beta}\) and \(A^\dagger_{\nu,\beta} \upharpoonright D_A = A^\dagger_{\nu,\beta}\) and moreover, it seems that the domain \(D_A\) is a suitable choice in the CS quantization procedure, see section 4.

\(A_{\nu,\beta}\) and \(A^\dagger_{\nu,\beta}\) are not ladder operators. As shown in (16), these operators connect the eigenvectors of the supersymmetric partner Hamiltonians \(H^{(S)}_{\nu,\beta}\) and \(H_{\nu,\beta}\) defined below. Only in the case of the harmonic potential, do the corresponding differential operators \(A\) and \(A^\dagger\) lead to usual lowering and raising operators.

Nevertheless, while not being a ladder operator, \(A_{\nu,\beta}\) allows us to build a family of ‘coherent states’ (following our CS definition at the beginning of the introduction) that possess very interesting properties [18, 19].

The Pöschl–Teller Hamiltonian \(H_{\nu,\beta}\) can be factorized with the help of \(A_{\nu,\beta}\) and \(A^\dagger_{\nu,\beta}\) as

\[
H_{\nu,\beta} = \frac{1}{2m} A^\dagger_{\nu,\beta} A_{\nu,\beta} + E^{(\nu,\beta)}_0
\] (13)

where this equality holds in the operator sense as well. The supersymmetric partner \(H^{(S)}_{\nu,\beta}\) of \(H_{\nu,\beta}\) is defined as

\[
H^{(S)}_{\nu,\beta} = \frac{1}{2m} A_{\nu,\beta} A^\dagger_{\nu,\beta} + E^{(\nu,\beta)}_0
\] (14)

and by simple manipulations, we find

\[
H^{(S)}_{\nu,\beta} = H_{\nu+1,\beta}.
\] (15)
This relation specifies that Pöschl–Teller Hamiltonians are shape invariant. From the general features of supersymmetric partner Hamiltonians, if we call \(\tilde{E}_n^{(v,\beta)} \) the eigenvalues of \(\mathbf{H}^{(S)}_{v,\beta} \) and \(|\tilde{\phi}_n^{(v,\beta)}\rangle \) the corresponding eigenstates, we have

\[
\tilde{E}_n^{(v,\beta)} = E_{n+1}^{(v,\beta)} \quad \text{and} \quad |\tilde{\phi}_n^{(v,\beta)}\rangle = \frac{1}{\sqrt{2m(E_{n+1}^{(v,\beta)} - E_0^{(v,\beta)})}} \mathbf{A}_{v,\beta} |\phi_n^{(v,\beta)}\rangle \quad \text{for} \quad n \geq 0.
\]

(16)

If we introduce the positive sequence \(f_n^{(v,\beta)} = (E_n^{(v,\beta)} - E_0^{(v,\beta)})^{-1} \), then \(\mathbf{A}_{v,\beta} \) and \(\mathbf{A}_{v,\beta}^\dagger \) can be decomposed as

\[
\begin{align*}
\mathbf{A}_{v,\beta} &= \sqrt{2mE_{0}^{(v,\beta)}} \sum_{n=0}^{\infty} \sqrt{f_n^{(v,\beta)}} |\phi_n^{(v,\beta)}\rangle \langle \phi_{n+1}^{(v,\beta)}| \\
\mathbf{A}_{v,\beta}^\dagger &= \sqrt{2mE_{0}^{(v,\beta)}} \sum_{n=0}^{\infty} \sqrt{f_n^{(v,\beta)}} |\phi_{n+1}^{(v,\beta)}\rangle \langle \phi_n^{(v,\beta)}|
\end{align*}
\]

(17)

Furthermore, since \(\mathbf{H}^{(S)}_{v,\beta} = \mathbf{H}^{(v+1,\beta)}_{v,\beta} \), we have \(\tilde{E}_n^{(v,\beta)} = E_{n}^{(v+1,\beta)} \) and \(\langle \tilde{\phi}_n^{(v,\beta)} | \phi_n^{(v+1,\beta)} \rangle \) and we deduce easily the recurrence relation

\[
E_n^{(v,\beta)} = E_{n-1}^{(v+1,\beta)} = \ldots = E_0^{(v+n,\beta)}.
\]

(18)

Using the latter, we can simplify expressions (17) to

\[
\begin{align*}
\mathbf{A}_{v,\beta} &= \sqrt{2mE_{0}^{(v,\beta)}} \sum_{n=0}^{\infty} \sqrt{f_n^{(v,\beta)}} |\phi_n^{(v,\beta)}\rangle \langle \phi_{n+1}^{(v,\beta)}| \\
\mathbf{A}_{v,\beta}^\dagger &= \sqrt{2mE_{0}^{(v,\beta)}} \sum_{n=0}^{\infty} \sqrt{f_n^{(v,\beta)}} |\phi_{n+1}^{(v,\beta)}\rangle \langle \phi_n^{(v,\beta)}|
\end{align*}
\]

(19)

and obtain a rule how to construct the eigenstates \(|\phi_{n+1}^{(v,\beta)}\rangle \) from the ground state:

\[
|\phi_{n+1}^{(v,\beta)}\rangle = \left(\frac{1}{\sqrt{2mE_{0}^{(v,\beta)}}} \right)^{n+1} \frac{1}{f_0^{(v,\beta)} f_1^{(v+1,\beta)} \ldots f_{n}^{(v+n,\beta)}} \mathbf{A}_{v,\beta} \mathbf{A}_{v+1,\beta}^\dagger \ldots \mathbf{A}_{v+n,\beta}^\dagger |\phi_0^{(v+n,\beta)}\rangle.
\]

(20)

3. The CS and their properties

3.1. The CS

We define the CS \(|\xi_z^{(v,\beta)}\rangle \), \(z \in \mathbb{C} \), as the eigenstate of \(\mathbf{A}_{v,\beta} \) associated with the eigenvalue \(z \).

Up to a normalization factor, we obtain

\[
\xi_z^{(v,\beta)}(x) = \sin^{v+1} \frac{\pi x}{L} \exp \left(\frac{\beta \pi x}{\hbar} \frac{\beta \pi x}{L(v+1)} \right) \quad \text{for} \quad x \in [0, L].
\]

(21)

The set \(\mathcal{K} = \{(q, p) | q \in [0, L], \ p \in \mathbb{R}\} \) corresponds to the classical phase space of the Pöschl–Teller problem. Inspired by the structure of the operator \(\mathbf{A}_{v,\beta} \) that reads (when restricted to \(\mathcal{D}_A \)) \(\mathbf{A}_{v,\beta} = W_{v,\beta} (Q) + iP_s \), where we introduced the operators \(Q : \psi(x) \to x\psi(x) \) and \(P_s : \psi \to -i\hbar \psi'(x) \) (defined on \(\mathcal{D}_A \)), we change the variable \(z = W_{v,\beta} (q) + ip \to |\xi_z^{(v,\beta)}\rangle \) with \(0 < q < L \) and \(p \in \mathbb{R} \). Developing the exponential part of the state, we find that the \(\beta \) dependence disappears \(|\xi_z^{(v,\beta)}\rangle = |\xi_z^{(v,0)}\rangle \). Hence, we have received the following family of normalized CS \(\xi_n^{(v,\beta)} \), independent of \(\beta \),

\[
|\xi_n^{(v,\beta)}\rangle = N_v(q) |\xi_n^{(v,0)}\rangle.
\]

(22)
where the normalization constant $N_v(q)$ reads
\[
\frac{1}{N_v^2(q)} = \int_0^L |\hat{q}(\omega_{v,0}) + ip(x)|^2 dx = \int_0^L \sin^{2v+2} \left(\frac{\pi x}{L} \right) e^{i2W_{v,0}(q)x/h} dx.
\] (23)

Appendix A contains the proof of the relation
\[
\forall x \in \mathbb{C}, \quad \forall \nu > -3/2, \quad \int_0^1 \sin^{2v+2}(\pi x) e^{iz} dx = \frac{\Gamma(2\nu+3)}{4^{\nu+1}\Gamma(2\nu+3)}
\] (24)
and in the following we use the notation
\[
\forall x \in \mathbb{C}, \quad \forall \nu > -3/2, \quad F_v(z) = \int_0^1 \sin^{2v+2}(\pi x) e^{iz} dx.
\] (25)

After a simple change of variable, relation (24) yields that the normalization constant $N_v(q)$ can be expressed as
\[
N_v(q) = \frac{1}{\sqrt{F_v(2W_{v,0}(q)/L\hbar)\sqrt{L}}} = \frac{2^{\nu+1}|\Gamma(2\nu+1+i\lambda_q)|}{\sqrt{L}\sqrt{\Gamma(2\nu+3)}} e^{-\frac{\pi}{2}(\nu+1)\lambda_q},
\] (26)
where $\lambda_q = -\cot \frac{\sqrt{\nu}}{\sqrt{\pi}}$. The scalar product of two CS verifies
\[
\langle \eta_{q,p}^{(\nu)} \vert \eta_{q',p'}^{(\nu')} \rangle = L N_v(q) N_v(q') F_{v,v'} \left(\frac{L}{\hbar} \alpha \right)
\] (27)
with $\alpha = W_{v,0}(q) + W_{v,0}(q') + i(p' - p)$.

3.2. The resolution of unity

The CS yield the following resolution of unity in a weak sense:
\[
\forall \nu \geq 0, \quad \int_\mathbb{R} \frac{dq}{2\pi \hbar} \frac{dp}{2\pi \hbar} \vert \eta_{q,p}^{(\nu)} \rangle \langle \eta_{q,p}^{(\nu)} \vert = I.
\] (28)

The proof is essentially based on the properties of the Fourier transformation. In addition, we need the following integral calculated in appendix B:
\[
\forall x \in]0, 1[, \forall \nu > -1, \quad \frac{4^\nu}{\pi^2} \int_\mathbb{R} \frac{\Gamma(\nu + 1 + i\sqrt{\pi})^2}{\Gamma(2\nu + 2)} e^{-u^2/2} du = \frac{1}{\sin^{2\nu+2}(\pi x)}
\] (29)

3.2.1. The proof
Let $\psi \in \mathcal{H}$; the scalar product $\langle \eta_{q,p}^{(\nu)} \vert \psi \rangle$ reads, by definition, as
\[
\langle \eta_{q,p}^{(\nu)} \vert \psi \rangle = N_v(q) \int_0^L \sin^{2\nu+2} \left(\frac{\pi x}{L} \right) e^{-i\pi x} e^{-i\psi} dx.
\] (30)

Let us define the function $f_q \in L^2(\mathbb{R}, dx)$ as
\[
f_q(x) = \frac{\pi}{\sqrt{2\pi \hbar}} e^{-\frac{i\pi x}{\hbar}} \psi(x);
\] (31)
then $\langle \eta_{q,p}^{(\nu)} \vert \psi \rangle = N_v(q) \hat{f}_q(p/h)$, where \hat{f}_q stands for the Fourier transform of f_q. Since f_q is at the same time a L^1 and L^2 function, the Plancherel–Parseval theorem yields
\[
\int_{\mathbb{R}} \frac{dp}{2\pi \hbar} \vert \langle \eta_{q,p}^{(\nu)} \vert \psi \rangle \vert^2 = N_v(q)^2 \int_0^L |f_q(x)|^2 dx.
\] (32)

Moreover, since we are manipulating with positive functions, the Fubini theorem can be used as well and
\[
\int_\mathbb{R} \frac{dq}{2\pi \hbar} \frac{dp}{2\pi \hbar} \vert \langle \eta_{q,p}^{(\nu)} \vert \psi \rangle \vert^2 = \int_0^L dx \int_0^L dq N_v(q)^2 |f_q(x)|^2.
\] (33)
Finally, using the expression for \(f_q(x) \) and the already mentioned integral relation, we obtain
\[
\int_{\mathcal{K}} \frac{dq dp}{2\pi \hbar}|\langle n_{q,p}^{[v]} | \psi \rangle|^2 = \int_0^L dx |\psi(x)|^2.
\]
(34)

The resolution of identity follows from the polarization identity.

3.2.2. Remark. The CS \(n_{q,p}^{[v]} \) have been defined for \(v \geq 0 \). But in fact \(n_{q,p}^{[v]} \in \mathcal{H} \) even for \(v \geq -3/2 \). Furthermore, relation (29) holds for \(v > -1 \); consequently, the resolution of unity can be extended from \(v \geq 0 \) to \(v > -1 \). This remark can be useful to extend some special formulae of quantized quantities studied in the following sections.

3.3. Quantum frames and reproducing kernels in the phase space

The resolution of unity shown above proves that the kernels \(\mathcal{K}_{\nu} \) are, in fact, reproducing kernels in \(L^2(\mathbb{K}, (2\pi \hbar)^{-1} dq dp) \), which are similar to the well-known Fock–Bargmann–Segal reproducing kernel obtained with the usual harmonic CS. Then the kernel \(\mathcal{K}_{\nu} \) defines an orthogonal projector \(\Pi_\nu \) acting on \(L^2(\mathbb{K}, (2\pi \hbar)^{-1} dq dp) \). Let us call \(\mathcal{H}_\nu = \text{Ran}(\Pi_\nu) \) the Hilbert subspace of \(L^2(\mathbb{K}, (2\pi \hbar)^{-1} dq dp) \) associated with \(\Pi_\nu \). Each family of functions \(\{\psi_{n,\beta}^{[\nu]}(q,p) = \langle n_{q,p}^{[\nu]} | \psi_{n,\beta}^{[\nu]} \rangle \} \) is an orthonormal basis of \(\mathcal{H}_\nu \) and defines a quantum frame in \(L^2(\mathbb{K}, (2\pi \hbar)^{-1} dq dp) \). According to the general scheme [25–27], a Klauder–Berezin–Toeplitz quantization procedure is developed in the following section.

4. Klauder–Berezin–Toeplitz quantization and some operator expressions

4.1. Preliminaries

Taking into account the resolution of unity (28), we quantize the classical observables \(f(q,p) \) defined on the phase space \(\mathcal{K} \) by the correspondence
\[
f(q,p) \mapsto F = \int_{\mathcal{K}} dq dp \frac{1}{2\pi \hbar} f(q,p) |\langle n_{q,p}^{[v]} | \psi \rangle|^2.
\]
(35)

where this integral is understood in the weak sense. This means that the integral defines in fact a sesquilinear form (eventually only densely defined)
\[
B_f(\psi_1, \psi_2) = \int_{\mathcal{K}} dq dp \frac{1}{2\pi \hbar} f(q,p) \langle \psi_1 | n_{q,p}^{[v]} | \psi_2 \rangle.
\]
(36)

The definition of an operator \(F \) from this expression is another question and the procedure depends on the bounded or unbounded character of the function \(f \).

4.1.1. \(f \) is bounded. As long as the function \(f(q,p) \) is bounded on \(\mathcal{K} \), \(B_f \) is also bounded as a sesquilinear form. Then the Riesz lemma shows that there exists a unique bounded operator \(F \) on \(\mathcal{H} \) such that
\[
B_f(\psi_1, \psi_2) = \langle \psi_1 | F \psi_2 \rangle.
\]
(37)

This gives a precise meaning to the integral notation for \(F \). Moreover, the mapping \(f \mapsto F \) is continuous, when both spaces are equipped with ‘natural’ norms, because, using the Cauchy–Schwarz inequality, we have \(||F|| \leq ||f||_\infty \).
4.1.2. f is unbounded. The situation is more complex. We can first define the operator F on some subspace $D(F)$ as

$$F\psi(x) = \int_K \frac{dq dp}{2\pi \hbar} f(p,q) [n^{[q]}_{q,p}|\psi \rangle |n^{[q]}_{q,p}\rangle (x).$$

(38)

The domain $D(F)$ is obtained by imposing the existence of the integral (the integrand must be an $L^1(K)$-function) and we add the constraint $F\psi \in \mathcal{H}$. The obtained domain $D(F)$ is a (possibly dense) subspace of \mathcal{H}. Moreover,

$$\forall \psi_1, \psi_2 \in D(F), \langle \psi_1 | F \psi_2 \rangle = \int_K \frac{dq dp}{2\pi \hbar} f(q,p) \langle \psi_1 | n^{[q]}_{q,p} | n^{[q]}_{q,p} \rangle \langle n^{[q]}_{q,p} | \psi_2 \rangle.$$

(39)

In the case of real functions f, we obtain the symmetric operators F; thus, the problem lies in the existence of self-adjoint extensions (and possible uniqueness).

If the function f is positive (or semi-bounded), the Friedrichs extension solves the problem [21]: there exists a unique self-adjoint operator associated with the form (in sense of the first representation theorem) such that the domain of the self-adjoint extension is contained in the domain of the quadratic form [21].

If the function f is completely unbounded, the problem of self-adjoint extensions is more subtle. In the following, we will encounter this situation more than once; in particular, we will recover the already mentioned critical value $v = 1/2$ for $H_{\nu,\beta}$.

To summarize the discussion above, the integral expression (35) involving unbounded real functions does not automatically provide self-adjoint operators. In general, we have only (densely defined) symmetric sesquilinear forms. Consequently, in the following, we study the correspondence $f \mapsto B_f(.,.)$ defined in (36).

4.2. Some operator expressions

The aim of this section is to show how the definition of the CS as the eigenstates of $A_{\nu,\beta}$ allows us to obtain closed formulae for the quantized version of a family of classical functions. Furthermore, we want to investigate the self-adjointness of the resulting operators (when possible).

4.2.1. $A_{\nu,\beta}$, $A^{\dagger}_{\nu,\beta}$ and related operators. First of all let us define the bounded self-adjoint operator Q acting on \mathcal{H} as $(Q\psi)(x) = x\psi(x)$ and three possible candidates $P_{\nu,\beta}^\pm$ for the ‘momentum operator’, all acting as $\psi \mapsto -i\hbar \phi'$ on their respective domains $D(P_{\nu,\beta}^-) = \{ \psi \in AC(0,L) | \psi(0) = \psi(L) = 0 \}$, $D(P_0) = \{ \psi \in AC(0,L) | \psi(0) = \psi(L) \}$ and $D(P_{\nu,\beta}^+) = \{ \psi \in AC(0,L) \}$. $P_{\nu,\beta}^+$ is closed (but not symmetric) and $P_{\nu,\beta}^- = P_{\nu,\beta}^+ - P_{\nu,\beta}^-$ is closed symmetric (but not self-adjoint), while P_0 is self-adjoint [17, 28]. All of them possess a common symmetric restriction P_0 on the domain D_A defined in (12). When restricted to D_A, the operators $A_{\nu,\beta}$, $A^{\dagger}_{\nu,\beta}$, Q and P_0 verify $A_{\nu,\beta} = W_{\nu,\beta}(Q) + iP_0$ and $A^{\dagger}_{\nu,\beta} = W_{\nu,\beta}(Q) - iP_0$.

Now let us pick some $\phi, \psi \in D_A$. Calculating the scalar product $\langle \psi | A^{\dagger}_{\nu,\beta} \phi \rangle$ using the resolution of unity (28) and taking into account the eigen property of our CS, we obtain

$$\langle \psi | A^{\dagger}_{\nu,\beta} \phi \rangle = B_{W(\nu)}(\phi, \psi) = \int_K \frac{dq dp}{2\pi \hbar} (W_{\nu,\beta}(q) - i\hbar) \langle \psi | n^{[q]}_{q,p} | n^{[q]}_{q,p} \rangle \langle n^{[q]}_{q,p} | \phi \rangle.$$

(40)

Since $\langle \psi | A^{\dagger}_{\nu,\beta} \phi \rangle = (A^{\dagger}_{\nu,\beta} \phi | \psi \rangle = (\phi | A_{\nu,\beta} \psi \rangle$, we also deduce

$$\langle \phi | A_{\nu,\beta} \psi \rangle = B_{W(\nu) + i\hbar}(\phi, \psi) = \int_K \frac{dq dp}{2\pi \hbar} (W_{\nu,\beta}(q) + i\hbar) \langle \phi | n^{[q]}_{q,p} | n^{[q]}_{q,p} \rangle \langle n^{[q]}_{q,p} | \psi \rangle.$$

(41)
By exchanging the roles of ϕ and ψ, adding or subtracting the previous equations and taking into account the expression for $W_{\nu,\beta}$, we obtain the following expressions for all $\phi, \psi \in \mathcal{D}_A$:

$$
\langle \phi \mid W_{\nu,\beta}(q) \rangle = B_{\cot(\pi Q L^{-1})}(\phi, \psi) \tag{42}
$$

$$
\langle \phi \mid P_{\alpha} \psi \rangle = B_{\alpha}(\phi, \psi). \tag{43}
$$

While (42) indicates that there is a ‘natural’ self-adjoint operator associated with $B_{\cot(\pi Q L^{-1})}(\ldots)$, it follows from the previous discussion that equation (43) yields a different closed extension of P_{α} (the P_{α}, symmetric, but not all self-adjoint) that is compatible with $B_{\alpha}(\ldots)$. Indeed the operator $\cot(\pi Q L^{-1})$ is essentially self-adjoint on \mathcal{D}_A, i.e. it possesses a unique self-adjoint extension, while P_{α} is not essentially self-adjoint on \mathcal{D}_A and therefore different closed extensions (self-adjoint or not) exist. This means that \mathcal{D}_A is ‘too small’ to specify the particular self-adjoint operator. These examples illustrate the difficulties with searching for the self-adjoint operator if f is completely unbounded. Recent results [29] yielding the representation theorem even for indefinite forms may bring possible ways out at least in some cases.

Conclusion: the qualitative lesson of these examples is the central role played by the (or ‘natural’) definition domain of the quadratic form B_f in the case of the completely unbounded real function f. Either the symmetric operator corresponding to B_f is essentially self-adjoint on that domain and then there exists a natural self-adjoint extension and the problem is solved, or the operator is not essentially self-adjoint and we are addressing the problem of the selection of the physically relevant self-adjoint extension (if it exists).

4.2.2. The Hamiltonians and related operators.

Always using the properties of $A_{\nu,\beta}$ and $A_{\nu,\beta}^\dagger$, we obtain for all $\phi, \psi \in \mathcal{D}_H$,

$$
\langle \phi \mid A_{\nu,\beta}^\dagger A_{\nu,\beta} \psi \rangle = \int_{\mathcal{K}} \frac{dq dp}{2\pi \hbar} (W_{\nu,\beta}^2(q) + p^2) \langle \phi \mid \eta_{q,p}^{[\nu]} \rangle \langle \eta_{q,p}^{[\nu]} \mid \psi \rangle. \tag{44}
$$

This leads to the following expression for $H_{\nu,\beta}^{(S)} = H_{\nu,\beta}^{+1,\beta}$:

$$
\langle \phi \mid H_{\nu,\beta}^{(+1,\beta)} \psi \rangle = \int_{\mathcal{K}} \frac{dq dp}{2\pi \hbar} \left\{ \frac{p^2}{2m} + \frac{\varepsilon_0(v + 1)^2}{\sin^2 \frac{\pi q}{L}} - 2 \varepsilon_0 \cot \frac{\pi q}{L} \right\} \langle \phi \mid \eta_{q,p}^{[\nu]} \rangle \langle \eta_{q,p}^{[\nu]} \mid \psi \rangle. \tag{45}
$$

for $\phi, \psi \in \mathcal{D}_H$. As the classical function involved in this integral is bounded from below, we know (Friedrichs extension) that the closure of the quadratic form is associated with the self-adjoint operator, namely the Pöschl–Teller Hamiltonian $H_{\nu,\beta}^{+1,\beta}$. Nevertheless, we remark that this derivation has been done with the implicit constraint $\nu \geq 0$; therefore, the previous formula does not give access to Hamiltonians with $\nu < 1$. Another formula, valid for all positive values of ν, is obtained at the end of this section, see (52).

Now, using the domain \mathcal{D}_H, we apply the procedure of the previous section to $A_{\nu,0}^2$ and $A_{\nu,0}^{12}$. It gives for all $\phi, \psi \in \mathcal{D}_H$

$$
\langle \phi \mid A_{\nu,0}^2 \psi \rangle = \int_{\mathcal{K}} \frac{dq dp}{2\pi \hbar} (W_{\nu,0}(q) + ip)^2 \langle \phi \mid \eta_{q,p}^{[\nu]} \rangle \langle \eta_{q,p}^{[\nu]} \mid \psi \rangle \tag{46}
$$

$$
\langle \phi \mid A_{\nu,0}^{12} \psi \rangle = \int_{\mathcal{K}} \frac{dq dp}{2\pi \hbar} (W_{\nu,0}(q) - ip)^2 \langle \phi \mid \eta_{q,p}^{[\nu]} \rangle \langle \eta_{q,p}^{[\nu]} \mid \psi \rangle. \tag{47}
$$

Adding the two previous equations and by subsequent algebraic manipulating, we obtain for all $\phi, \psi \in \mathcal{D}_H$

$$
\langle \phi \mid \left(\frac{1}{2m} p^2 + \frac{\varepsilon_0(v + 1)^2}{\sin^2 \frac{2\pi q}{L}} \right) \psi \rangle = \int_{\mathcal{K}} \frac{dq dp}{2\pi \hbar} \left\{ \frac{p^2}{2m} - \frac{\varepsilon_0(v + 1)^2}{\sin^2 \frac{2\pi q}{L}} \right\} \langle \phi \mid \eta_{q,p}^{[\nu]} \rangle \langle \eta_{q,p}^{[\nu]} \mid \psi \rangle. \tag{48}
$$
Once more the classical function involved in this quadratic form is not bounded from below and the associated differential operator is in the limit circle case at both ends (\(\nu \geq 0 \)); thus, different closed self-adjoint extensions exist. Moreover, the corresponding symmetric operator is not essentially self-adjoint on \(D_H \) and the situation is the same as for \(P_\nu \) (i.e. no ‘natural’ answer).

Subtracting (45) (with \(\beta = 0 \)) and (48), we obtain
\[
\forall \phi, \psi \in D_H, \quad \langle \phi \mid \frac{1}{\sin^2 \frac{\pi}{L} Q} \psi \rangle = \frac{2v + 2}{2v + 3} \int_\mathcal{K} \frac{dq \, dp}{2\pi \hbar} \frac{1}{\sin^2 \frac{\pi q}{L}} \langle \phi \mid \eta_{q,p}^{[\nu]} | \eta_{q,p}^{[\nu]} \rangle \psi,
\]
(49)
i.e. a positive quadratic form above defining a self-adjoint operator via Friedrichs extension. From (45) (with \(\beta = 0 \)) and (49), we deduce
\[
\forall \phi, \psi \in D_H, \quad \langle \phi \mid \frac{1}{2m} P_\phi^2 \psi \rangle = \int_\mathcal{K} \frac{dq \, dp}{2\pi \hbar} \left[\frac{p^2}{2m} - \frac{(v + 1)^2 - \mathcal{E}_0}{2v + 3} \frac{\mathcal{E}_0}{\sin^2 \frac{\pi q}{L}} - \frac{2\mathcal{E}_0 \beta \cot \frac{\pi q}{L}}{L} \right] \langle \phi \mid \eta_{q,p}^{[\nu]} | \eta_{q,p}^{[\nu]} \rangle \psi.
\]
(50)

The classical function involved in the integral is again completely unbounded and the associated differential operator is in the limit circle case at both ends, i.e. not essentially self-adjoint. However, \(P_\phi \) defines a positive form on \(D_H \) that provides eventually the Friedrichs extension.

Now, from (49) and (50) we obtain the general classical expression associated with a given Pöschl–Teller Hamiltonian for all (positive) values of \(\nu \) and \(\beta \) on the domain \(D_H \),
\[
\langle \phi \mid H_{\nu,\beta} \psi \rangle = \int_\mathcal{K} \frac{dq \, dp}{2\pi \hbar} \left[\frac{p^2}{2m} + \frac{2v - 1}{2v + 3} \frac{\mathcal{E}_0 (v + 1)^2}{\sin^2 \frac{\pi q}{L}} - 2\mathcal{E}_0 \beta \cot \frac{\pi q}{L} \right] \langle \phi \mid \eta_{q,p}^{[\nu]} | \eta_{q,p}^{[\nu]} \rangle \psi.
\]
(51)

When \(\nu \geq 1/2 \), the function in the integral is bounded from below; then we know that the associated self-adjoint operator is unique: this means that Dirichlet boundary conditions are automatically imposed and we recover the result of Gesztesy et al [20]. In contrast, when \(\nu < 1/2 \), the function into the integral is completely unbounded and the operator is in the limit circle at both ends (different self-adjoint versions of this differential operator exist).

We conclude this section by this last example that proves that CS quantization can specify boundary conditions in certain circumstances. We deduce from equations (45) and (49) and the argument of positivity that the following quadratic form specifies the unique self-adjoint operator (for all \(\nu \geq 0 \)) via Friedrichs extension:
\[
\forall \phi, \psi \in D_H, \quad \int_\mathcal{K} \frac{dq \, dp}{2\pi \hbar} \left(\frac{p^2}{2m} + \frac{\mathcal{E}_0 (v + 1)^2}{\sin^2 \frac{\pi q}{L}} - \frac{2\mathcal{E}_0 \beta \cot \frac{\pi q}{L}}{L} \right) \langle \phi \mid \eta_{q,p}^{[\nu]} | \eta_{q,p}^{[\nu]} \rangle \psi = \langle \phi \mid \frac{1}{2m} P_\phi^2 + \frac{\nu + 1}{2} \frac{\mathcal{E}_0}{\sin^2 \frac{\pi q}{L}} \psi \rangle.
\]
(52)

We know that the corresponding differential operator is in the limit point case at both ends only if \((v + 1)/2 \geq 3/4 \), i.e. \(\nu \geq 1/2 \). In the range \(0 \leq \nu < 1/2 \), this operator is in fact in the limit circle case and different possible self-adjoint extensions exist; nonetheless, identity (52) implies that the CS quantization allows us to choose between these possible self-adjoint extensions the ‘natural’ one: namely the one corresponding to Dirichlet boundary conditions.

4.3. Some lowering symbols

Because the CS are the eigenstates of \(A_{\nu,\beta} \), we deduce
\[
\begin{align*}
\left\{ | \eta_{q,p}^{[\nu]} \rangle \mid A_{\nu,\beta} | \eta_{q,p}^{[\nu]} \rangle \right\} &= W_{\nu,\beta}(q) + ip \\
\left\{ | \eta_{q,p}^{[\nu]} \rangle \mid H_{\nu,\beta} | \eta_{q,p}^{[\nu]} \rangle \right\} &= \frac{p^2}{2m} + \frac{\mathcal{E}_0 (v + 1)^2}{\sin^2 \frac{\pi q}{L}} - 2\mathcal{E}_0 \beta \cot \frac{\pi q}{L}.
\end{align*}
\]
(53)
First we can rewrite

\[
\langle \eta_{q,p}^{[v]} | \frac{1}{\sin^2 \frac{\pi x}{L}} Q \eta_{q,p}^{[v]} \rangle = \frac{2v + 2}{2v + 1} \frac{1}{\sin^2 \frac{\pi q}{L}}.
\]

Finally using (53) and (54), we obtain

\[
\langle \eta_{q,p}^{[v]} | \frac{1}{2m} \mathbf{p}_*^2 \eta_{q,p}^{[v]} \rangle = \frac{p^2}{2m} + \frac{1}{2v + 1} \frac{E_0 (v + 1)^2}{\sin^2 \frac{\pi q}{L}}.
\]

5. Asymptotic behavior—harmonic oscillator limit

In this section, we assume \(\beta = 0 \). We want to study the limit \(L \to \infty \), but in a symmetric way, so we introduce a translated version of our Hilbert space \(\mathcal{H}_T = L^2([-L/2, L/2], dx) \): the transformation of all previous formulae is straightforward. The Hilbert space limit is that of the particle on the full line. First we note that

\[
W_v(x) = -\frac{\hbar \pi}{L} (v + 1) \cot \left(\frac{\pi}{L} (x + L/2) \right) = \frac{\hbar \pi}{L} (v + 1) \tan \left(\frac{\pi x}{L} \right) \approx \frac{(v + 1) \hbar \pi^2 x}{L^2}.
\]

Since the linear behavior of the superpotential corresponds to the case of the harmonic potential, we can guess that there exists an intermediate domain of \(L \)-values where we can find some features of the harmonic Hamiltonian.

Our CS \(\eta_{q,p}^{[v]} \) are defined as

\[
\eta_{q,p}^{[v]}(x) = N_v(q) \sin^{v+1} \left(\frac{\pi}{L} (x + L/2) \right) \exp \left(\frac{W_v(q) + ipx}{\hbar} \right). \tag{57}
\]

with

\[
N_v(q) = \frac{2^{v+1} |\Gamma(v + 2 + i(v + 1) \tan \frac{\pi}{L} q)|}{\sqrt{L} \sqrt{\Gamma(2v + 3)}}. \tag{58}
\]

First we can rewrite \(\eta_{q,p}^{[v]}(x) \) as

\[
\eta_{q,p}^{[v]}(x) = N_v(q) \exp \left((v + 1) \ln \sin \left(\frac{\pi}{L} (x + L/2) \right) + \frac{W_v(q) + ipx}{\hbar} \right). \tag{59}
\]

and then

\[
\eta_{q,p}^{[v]}(x) = N_v(q) \exp \left((v + 1) \ln \cos \left(\frac{\pi x}{L} \right) + \frac{W_v(q) + ipx}{\hbar} \right). \tag{60}
\]

We deduce the behavior for large values of \(L \),

\[
\eta_{q,p}^{[v]}(x) \approx L^{-\infty} N_v(q) \exp \left(-\frac{(v + 1) \pi^2 q^2}{2L^2} + \frac{(v + 1) \pi^2 q x}{L^2} + \frac{ipx}{\hbar} \right).
\]

with

\[
N_v(q) \approx \frac{2^{v+1} \Gamma(v + 2)}{\sqrt{L} \sqrt{\Gamma(2v + 3)}}. \tag{62}
\]

Then our CS degenerate into harmonic CS, while the complete asymptotic behavior corresponds to a plane wave

\[
\eta_{q,p}^{[v]}(x) \approx L^{-\infty} \frac{2^{v+1} \Gamma(v + 2)}{\sqrt{L} \sqrt{\Gamma(2v + 3)}} e^{ipx/\hbar}. \tag{63}
\]
6. Conclusion

We analyzed the mathematical features of our coherent states (CS), in particular the CS quantization of some unbounded real functions, studying the existence and uniqueness of (possible) self-adjoint operators associated with these functions. We exhibited some interesting, generally expected, qualitative properties (not restricted to these specific examples).

- When the classical real function involved in the quadratic form is semi-bounded, a unique self-adjoint operator is associated with the form via Friedrichs extension. This means that CS quantization is (sometimes) able to select a unique self-adjoint operator in situations where many possible self-adjoint extensions exist (in this sense, the CS quantization includes implicitly the boundary conditions).
- When the classical function involved in the quadratic form is completely unbounded, the situation is more difficult due to the lack of representation theorems. We can consider the corresponding symmetric operator, but
 - either that operator is essentially self-adjoint on the domain and the unique self-adjoint extension is available,
 - or that operator is not essentially self-adjoint and finding a ‘natural’ self-adjoint operator corresponding to that form is generally a well-known problem where additional physical information is needed for selecting a particular self-adjoint extension. Nonetheless, the CS quantization allows in some cases selecting the ‘natural’ extension, see comments below (52).

These results also illustrate the strong limitations of formal manipulations only based on the Dirac formalism (when unbounded functions are involved).

Finally, we showed that our CS degenerate into usual harmonic CS in the limit \(L \rightarrow \infty \), constituting a continuous transition between the framework of a particle trapped on an interval and that of a free particle on the full real line.

Acknowledgments

We acknowledge Professor J P Gazeau for fruitful and numerous discussions. PS appreciates the support of the Czech Ministry of Education, Youth and Sports within the project LC06002, the GACR grant no P203/11/0701 and the Grant Agency of the Czech Technical University in Prague, grant no SGS OHK4-010/10.

Appendix A. Norm formula

Taking \(p = \nu + 2 + \frac{a}{2\pi} \), \(q = \nu + 2 - \frac{a}{2\pi} \) in the integral relation ([30] p 375)

\[
\int_0^{\pi/2} dx \cos^{p+q-2} x \cos(p-q)x = \frac{\pi}{2^{p+q-1}(p+q-1)B(p, q)}, \quad p + q > 1, \tag{A.1}
\]

and changing the variable, we obtain

\[
\forall \nu > -3/2, \quad \int_0^{1/2} dx \cos^{2\nu+2} \pi x \cosh ax = \frac{2^{-(2\nu+3)}}{(2\nu + 3)B(\nu + 2 + \frac{i}{2\pi}, \nu + 2 - \frac{i}{2\pi})}. \tag{A.2}
\]
Then by parity,
\[
\int_{-1/2}^{1/2} dx \cos^{2v+2}(\pi x) e^{2\pi i x} = \frac{2^{-(2v+2)}}{(2v + 3)B(v + 2 + i \frac{a}{2\pi}, v + 2 - i \frac{a}{2\pi})}.
\]
(A.3)
and
\[
\int_0^1 dx \cos^{2v+2}(\pi x - \pi/2) e^{2\pi i x} = \frac{2^{-(2v+2)} e^{\pi i/2}}{(2v + 3)B(v + 2 + i \frac{a}{2\pi}, v + 2 - i \frac{a}{2\pi})}.
\]
(A.4)
Developing the B(p, q) function in terms of \(\Gamma\) functions, we finally obtain
\[
\forall \alpha \in \mathbb{C}, \quad \forall \nu > -3/2, \quad \int_0^1 \sin^{2v+2}(\pi x) e^{2\pi i x} dx = \frac{\Gamma(2v + 3) e^{\pi i/2}}{4^{v+1} \Gamma(v + 2 + i \frac{a}{2\pi}) \Gamma(v + 2 - i \frac{a}{2\pi})}.
\]
(A.5)

Appendix B. Integral for the resolution of unity

We start from a well-known Fourier transform ([30] p 520)
\[
\forall k \in \mathbb{R}, \quad \forall \nu > -1, \quad \int_\mathbb{R} \frac{e^{-i k x}}{\cosh^{2v+2}(x)} \frac{dx}{2\pi} = \frac{4^v \Gamma(v + 1 - i \frac{a}{2\pi}) \Gamma(v + 1 + i \frac{a}{2\pi})}{\pi \Gamma(2v + 2)}.
\]
(B.1)
Using the inverse Fourier transform, we find
\[
\forall x \in \mathbb{R}, \quad \forall \nu > -1, \quad \int_\mathbb{R} \frac{4^v \Gamma(v + 1 - i \frac{a}{2\pi}) \Gamma(v + 1 + i \frac{a}{2\pi})}{\pi \Gamma(2v + 2)} e^{i k x} dk = \frac{1}{\cosh^{2v+2} x}.
\]
(B.2)
Due to the uniqueness of the analytical extension, we can extend the previous equality for \(x \in \mathbb{C}\) with the constraint \(-\pi/2 < \Im(x) < \pi/2\). Taking \(u = i x\) as a new variable, we obtain
\[
\forall u \in \mathbb{C}, \quad |\Re(u)| < \pi/2, \quad \forall \nu > -1, \quad \int_\mathbb{R} \frac{4^v \Gamma(v + 1 - i \frac{a}{2\pi}) \Gamma(v + 1 + i \frac{a}{2\pi})}{\pi \Gamma(2v + 2)} e^{i u x} du = \frac{1}{\cos^{2v+2} u}.
\]
(B.3)
By a change of variable, we finally have
\[
\forall x, \quad 0 < x < 1, \quad \forall \nu > -1, \quad \int_\mathbb{R} \frac{4^v \Gamma(v + 1 - i \frac{a}{2\pi}) \Gamma(v + 1 + i \frac{a}{2\pi})}{\pi \Gamma(2v + 2)} e^{-k x/2} e^{i k x} dk = \frac{1}{\sin^{2v+2} \pi x}.
\]
(B.4)

References

[1] Pöschl G and Teller E 1933 Z. Phys. 83 143
[2] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[3] Yildirim H and Tomak M 2005 Phys. Rev. B 72 115340
[4] Wang G, Guo Q, Wu L and Yang X 2003 Phys. Rev. B 75 205337
[5] Gendenshtein L 1983 JETP Lett. 38 356 (available at http://www.jetpletters.ac.ru/ps/1822/article_27857.shtml)
[6] Cooper F, Khare A and Sukhatme U 2002 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)
[7] Balantekin A B 1998 Phys. Rev. A 57 4188
[8] Fukui T and Aizawa N 1993 Phys. Lett. A 180 308
[9] Fatyga B W, Kostelecký V A, Nieto M M and Truax D R 1991 Phys. Rev. D 43 1403
[10] Shreecharan T, Panigrahi P K and Banerji J 2004 Phys. Rev. A 69 012102
[11] Crawford M G A and Vrscay E R 1998 Phys. Rev. A 57 106
[12] Alexio A and Balantekin A B 2007 J. Phys. A: Math. Theor. 40 3463
[13] Antoine J P, Gazeau J P, Monceau P, Klauder J R and Penson K A 2001 J. Math. Phys. 42 2349
[14] El Kinani A H and Daoud M 2001 Phys. Lett. A 283 291
[15] Fernandez D J, Hussin V and Rosas-Ortiz O 2007 J. Phys. A: Math. Theor. 40 6491
[16] Cruz y Cruz S, Kuru S and Negro J 2008 Phys. Lett. A 372 1391
[17] Reed M and Simon B 1972 Methods of Modern Mathematical Physics: I. Functional Analysis (New York: Academic)
[18] Bergeron H, Gazeau J P, Siegl P and Yousef A 2010 Europhys. Lett. 92 60003
[19] Bergeron H and Valance A 1995 J. Math. Phys. 36 1572
[20] Gesztesy F and Kirsch W 1985 J. Rein. Ang. Math. 362 28
[21] Reed M and Simon B 1975 Methods of Modern Mathematical Physics: II. Fourier Analysis, Self-Adjointness (New York: Academic)
[22] Compean C B and Kirchbach M 2006 J. Phys. A: Math. Gen. 39 547
[23] Mielnik B and Rosas-Ortiz O 2004 J. Phys. A: Math. Gen. 37 10007
[24] Andrianov A A and Cannata F 2004 J. Phys. A: Math. Gen. 37 10297
[25] Klauder J R and Skagerstam B S 1985 Coherent States, Applications in Physics and Mathematical Physics (Singapore: World Scientific)
[26] Ali S T and Englert M 2005 Rev. Math. Phys. 17 391
[27] Gazeau J P 2009 Coherent States in Quantum Physics (New York: Wiley-VCH)
[28] Bonneau G, Faraut J and Valent G 2000 Am. J. Phys. 69 322
[29] Grubsic I, Kestrykin V, Makarov K A and Veselic K 2010 arXiv:1003.1908
[30] Gradshteyn I S and Ryzhik I M 1980 Tables of Integrals, Series, and Products (New York: Academic)