Nuclear magnetic moments in covariant density functional theory

Jian Li 1,2

1College of Physics, Jilin University, Changchun 130012, China and
2Department of Physics, Western Michigan University, Kalamazoo, MI 49008, USA

J. Meng3,4,5

3State Key Laboratory of Nuclear Physics and Technology,
School of Physics, Peking University, Beijing 100871, China
4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan and
5Department of Physics, University of Stellenbosch, Stellenbosch, South Africa

Nuclear magnetic moment is an important physical observable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been proved to be successful in describing the nuclear ground-states and excited states properties. However, a long-standing problem is its failure to predict magnetic moments. This article reviews the recent progress in the description of the nuclear magnetic moments within the covariant density functional theory. In particular, the magnetic moments of spherical odd-A nuclei with doubly closed shell core plus or minus one nucleon and deformed odd-A nuclei.

PACS numbers: 21.10.Ky, 21.30.Fe, 21.60.Jz

Keywords: nuclear magnetic moment; covariant density functional theory; meson exchange current; configuration mixing

Contents

I. Introduction

II. Relativistic approach for magnetic moment
 A. Covariant density functional theory
 B. Magnetic moment operator
 C. One-pion exchange current
 D. First-order corrections
 E. Second-order corrections

III. Magnetic moment problem in relativistic theory

IV. Magnetic moments for nuclei with LS closed shell core ± 1 nucleon

V. Magnetic moments for nuclei with jj closed shell core plus or minus one nucleon

VI. Magnetic moments of deformed odd-A nuclei

VII. Summary

Acknowledgments

References

I. INTRODUCTION

The longstanding frontiers in nuclear physics include the exploration of fundamental symmetry and the understanding the properties of atomic nucleus. The pseudospin symmetry $^{[1-4]}$ and magnetic moments $^{[5-8]}$ are definitely these fascinating examples. Here in this paper we will concentrate on the description of the magnetic moments in the relativistic approach. In particular, the magnetic moment for nuclei with LS and jj closed shell plus or minus one nucleon $^{[9-13]}$ will be reviewed.

The magnetic moment is one of the important fundamental properties of the nucleus. It serves as a useful tool for the stringent test of nuclear models, and has attracted the attentions of many nuclear physicists since the early days $^{[6, 7, 14-19]}$. The theoretical description of the nuclear magnetic moments is a long-standing problem. Although many successful nuclear structure models have been developed in the past decades, the application of these models for nuclear magnetic moments is still not satisfactory.

Since the establishment of the independent particle shell model in 1949 by Mayer and Jensen to explain the magic numbers $Z=2, 8, 20, 28, 50$, and 82 as well as $N=2, 8, 20, 28, 50, 82$, and 126, the magnetic moment for an odd-A nucleus has been interpreted as the contribution from the unpaired valence nucleon,

$$
\mu = \langle (nl) jm | g_L l_z + g_s s_z | (nl) jm \rangle_{m=j}
$$

where $j = l \pm 1/2$ is the total angular momentum of the

$$
\mu = \begin{cases}
g_l l + \frac{1}{2} g_s, & j = l + 1/2 \\
\frac{j}{j+1} [g_l (l+1) - \frac{1}{2} g_s], & j = l - 1/2,
\end{cases}
$$

*Electronic address: mengj@pku.edu.cn
valence nucleon, and \(g_L = 1(0) \) and \(g_s = 5.59(-3.83) \) are respectively the orbital and spin \(g \)-factors of the proton (neutron). The magnetic moment in above equation as a function of spin \(j \) will result in the so-called Schmidt lines \([20]\).

![Diagram](image)

FIG. 1: Experimental magnetic moments of odd-neutron (upper) and odd-proton (lower) nuclei in the neighbourhood of \(^{16}\)O, \(^{40}\)Ca and \(^{208}\)Pb, in comparison with the corresponding Schmidt values.

It was observed in the early 1950s \([21, 22]\) that almost all nuclear magnetic moments are sandwiched between the two Schmidt lines. As shown in Fig. 1 some of them are close to the Schmidt lines, like \(^{17}\)F or \(^{15}\)N, and some deviate very much, like \(^{209}\)Bi or \(^{207}\)Tl. Therefore, a lot of efforts had been made to explain the deviations of the nuclear magnetic moments from the Schmidt values.

In 1954, Arima and Horie \([5]\) pointed out the difference between the following two groups of nuclei. For the first group, the cores are \(LS \)-closed (\(^{16}\)O and \(^{40}\)Ca), i.e., the spin-orbit partners \(j = l \pm \frac{1}{2} \) of the core are completely occupied. Therefore they are not expected to be excited by an external field with \(M1 \) character strongly. For the second group, the cores are \(jj \)-closed (like \(^{208}\)Pb), i.e., one of the spin-orbit partners is open, and an \(M1 \) external field can strongly excite the core nucleons to the empty spin-orbit partner. This \(M1 \) giant resonance state of the core can be momentarily excited by the interaction with the valence nucleon. This is the idea of first-order configuration mixing, which is also called the Arima-Horie effect \([19]\). It explains not only the difference between these two groups of nuclei, but also the deviations of magnetic moments from the Schmidt lines for many nuclei \([6, 23, 24]\).

In the 1960s, it became clear that the first-order effect is not enough to explain the large deviations from the Schmidt values in some nuclei, e.g., \(^{209}\)Bi. The pion exchange current is found to be very important to understand nuclear magnetic moments, as was first pointed out by Miyazawa in 1951 \([25]\) and by Villars in 1952 \([26]\). The correction changes the gyromagnetic ratio of the orbital angular momentum of a nucleon in the nucleus \([27]\) and improves the agreement between theoretical and observed values \([28]\). Nowadays, the importance of meson exchange currents is a well-established fact.

As mentioned earlier, the first-order configuration mixing does not contribute in nuclei with an \(LS \) closed core \(\pm 1 \) nucleon. However, magnetic moments of light nuclei with a valence nucleon or hole outside an \(LS \) doubly closed shell have shown appreciable deviations from their single-particle values, including the isoscalar and isovector magnetic moments. The earliest attempts to understand these deviations were carried out in Refs. \([29, 31]\) by taking into account the second-order configuration mixing as well as the effect of the meson exchange currents. However, only very small second-order corrections were obtained. Shimizu, Ichimura and Arima \([5]\) recalculated this effect and paid attention to second-order contributions from intermediate states with higher excitation energies due to the short-range nature of the tensor force. They found that the second-order correction, which is also called the tensor correlation, is obviously needed to explain these deviations. Their results are also in agreement with the later results by Towner and Khanna \([32]\).

Considerable efforts have been made to explain the deviations of the nuclear magnetic moments from the Schmidt values, which can be contributed from the meson exchange current (MEC, i.e., the exchange of the charged mesons) and configuration mixing (CM, or core polarization, i.e., the correlation not included in the mean field approximation) \([5, 13, 18, 33]\). Recently, by considering the configuration mixing and meson exchange current corrections, the newly measured magnetic moment of \(^{133}\)Sb \([34]\), \(^{67}\)Ni and \(^{69}\)Cu \([35]\), and \(^{49}\)Sc \([36]\) have been well reproduced.

In the past decades, the covariant density functional theory (CDFT), taking Lorentz symmetry into account in a self-consistent way, has received wide attention due to its successful description of a large number of nuclear phenomena in stable as well as exotic nuclei \([37, 42]\). It includes naturally the nucleonic spin degree of freedom and automatically results in the nuclear spin-orbit potential with the empirical strength in a covariant way. It can reproduce well the isotopic shifts in the Pb re-
II. RELATIVISTIC APPROACH FOR MAGNETIC MOMENT

A. Covariant density functional theory

The covariant density functional theory is constructed with either the finite-range meson-exchange interaction or the contact interaction in the point-coupling representation between nucleons. For the former, the nucleus is described as a system of Dirac nucleons that interact with each other via the exchange of mesons. For the latter, the meson exchange in each channel (scalar-Cisoscalar, vector-Cisoscalar, scalar-Cisovector, and vector-Cisovector) is replaced by the corresponding local four-point (contact) interaction between nucleons.

Following the point-coupling representation in Ref. [62], the basic building blocks of CDFT with point-couplings are the vertices,

\[
(\bar{\psi}O\Gamma\psi), \quad O \in \{1, \bar{\tau}\}, \quad \Gamma \in \{1, \gamma_{\mu}, \gamma_{5}, \gamma_{\mu}\gamma_{5}, \sigma_{\mu\nu}\},
\]

where \(\psi\) is the Dirac spinor field, \(\bar{\tau}\) is the isospin Pauli matrix, and \(\Gamma\) generally denotes the \(4 \times 4\) Dirac matrices. There are 10 such building blocks characterized by their transformation properties in isospin and in Minkowski space [62]. Arrows are adopted to indicate vectors in isospin space and bold type for the space vectors. Greek indices \(\mu\) and \(\nu\) run over the Minkowski indices 0, 1, 2, and 3.

A general effective Lagrangian can be written as a power series in \(\bar{\psi}O\Gamma\psi\) and their derivatives [62],

\[
\mathcal{L} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - e\frac{1 - \tau_{3}}{2}\bar{\psi}\gamma_{\mu}\psi A_{\mu} - \frac{1}{2}\alpha_{S}(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi)
\]

\[
- \frac{1}{2}\alpha_{TV}(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi) - \frac{1}{2}\beta_{S}(\bar{\psi}\psi)^{3} - \frac{1}{4}\gamma_{S}(\bar{\psi}\psi)^{4} - \frac{1}{4}\gamma_{V}(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi)^{2}
\]

\[
- \frac{1}{2}\delta_{S}\partial_{\nu}(\bar{\psi}\psi)\partial^{\nu}(\bar{\psi}\psi) - \frac{1}{2}\delta_{V}\partial_{\nu}(\bar{\psi}\gamma_{\mu}\psi)\partial^{\nu}(\bar{\psi}\gamma^{\mu}\psi)
\]

\[
- \frac{1}{2}\delta_{TV}\partial_{\nu}(\bar{\psi}\gamma_{\mu}\psi)\partial^{\nu}(\bar{\psi}\gamma^{\mu}\psi).
\]

There are coupling constants, \(\alpha_{S}, \alpha_{V}, \alpha_{TV}, \beta_{S}, \gamma_{S}, \gamma_{V}, \delta_{S}, \delta_{V}\), and \(\delta_{TV}\). The subscripts \(S, V,\) and \(T\) respectively indicate the symmetries of the couplings, i.e., scalar, vector, and isovector.

With the mean field approximation and the no-sea approximation, the nuclear energy density functional is expressed as,

\[
E_{\text{DF}}[\bar{\rho}] = \int d^{3}r \mathcal{E}(r),
\]

with the energy density

\[
\mathcal{E} = \mathcal{E}_{\text{kin}}(r) + \mathcal{E}_{\text{int}}(r) + \mathcal{E}_{\text{em}}(r),
\]
which is composed of a kinetic part
\[
E_{\text{kin}}(r) = \sum_{k=1}^{A} \psi_k^\dagger(r) (\alpha \cdot p + \beta m_N - m_N) \psi_k(r),
\]
where the sum over \(k \) runs over the occupied orbits in the Fermi sea (no-sea approximation); an interaction part
\[
E_{\text{int}}(r) = \frac{\alpha_s}{2} \rho_S^2 + \frac{\beta_s}{3} \rho_S^3 + \frac{\gamma_s}{4} \rho_S^4 + \frac{\delta_s}{2} \rho_S \rho^2_S \\
+ \frac{\alpha_v}{2} j^\mu_S \rho^\mu_S + \frac{\gamma_v}{4} (j^\mu_S j^\mu_S)^2 + \frac{\delta_v}{2} j^\mu_S \Delta j^\mu_S \\
+ \frac{\alpha_T V}{2} \vec{j}_T \cdot (\vec{j}_T) + \frac{\delta_T V}{2} \vec{j}_T \cdot \Delta (\vec{j}_T)_\mu,
\]
with the local densities and currents
\[
\rho_S(r) = \sum_{k=1}^{A} \bar{\psi}_k(r) \psi_k(r),
\]
\[
j^\mu_S(r) = \sum_{k=1}^{A} \bar{\psi}_k(r) \gamma^\mu \psi_k(r),
\]
\[
\vec{j}_T(r) = \sum_{k=1}^{A} \bar{\psi}_k(r) \gamma^\mu \vec{\tau} \psi_k(r),
\]
and an electromagnetic part
\[
E_{\text{em}}(r) = \frac{1}{4} F_{\mu \nu} F^{\mu \nu} - F^{0 \mu} \partial_\mu A_\mu + e A_\mu j^\mu_\rho.
\]

Minimizing the energy density functional Eq. (3) with respect to \(\bar{\psi}_k \), the Dirac equation for the single nucleons is obtained,
\[
[-i\alpha \cdot \nabla + \beta \gamma \nu V^\nu + \beta (m + S)] \psi_k(r) = \varepsilon_k \psi_k(r).
\]
The single-particle effective Hamiltonian contains local scalar \(S(r) \) and vector \(V^\mu(r) \) potentials,
\[
S(r) = \Sigma_S, \quad V^\mu(r) = \Sigma^\mu + \vec{\tau} \cdot \vec{\Sigma}^\mu_T, \quad (10)
\]
where the self-energies are given in terms of various densities,
\[
\Sigma_S = \alpha_s \rho_S + \beta_s \rho_S^2 + \gamma_s \rho_S^3 + \delta_s \rho_S, \quad (11a)
\]
\[
\Sigma^\mu = \alpha_v j^\mu_S + \gamma_v (j^\mu_S)^2 + \delta_v \Delta j^\mu_S + e A^\mu, \quad (11b)
\]
\[
\vec{\Sigma}^\mu_T = \alpha_T V j^\mu_S + \delta_T V \Delta j^\mu_S. \quad (11c)
\]

For the ground state of an even-even nucleus one has time-reversal symmetry and the space-like part of the currents \(j^\mu(r) \) in Eq. (11) as well as the vector potential or the time-odd fields \(V(r) \) in Eq. (11) vanish. However, in odd-\(A \) nuclei, the odd nucleon breaks the time-reversal symmetry, and time-odd fields give rise to a nuclear magnetic potential, which is very important for the description of magnetic moments \([57, 58]\).

Because of charge conservation in nuclei, only the third component of isovector potential \(\vec{\Sigma}^\mu_T \), contributes. The coulomb field \(A_0(r) \) is determined by Poisson’s equation and the magnetic part \(A(r) \) of the electromagnetic potential is neglected in the calculation.

The relativistic residual interaction is given by the second derivative of the energy density functional \(F(\vec{\rho}) \) with respect to the density matrix,
\[
V_{\alpha \beta \alpha' \beta'} = \frac{\delta^2 F(\vec{\rho})}{\delta \hat{\rho}_{\alpha \beta} \delta \hat{\rho}_{\alpha' \beta'}}. \quad (12)
\]

More details can be found in Refs. \([13, 64, 65]\).

Although, because of the parity conservation, the pion meson does not contribute to the ground state in the mean field approximation at Hartree level, it plays an important role in spin-isospin excitations and is usually included in relativistic RPA and quasi-RPA calculations of these modes \([66, 67]\). The widely used pion-nucleon vertex reads, in its pseudovector coupling form,
\[
L_{\pi N} = -\frac{f_\pi}{m_\pi} \bar{\psi} \gamma^\mu \gamma^5 \vec{\tau} \psi \cdot \partial_\mu \vec{\pi}, \quad (13)
\]
where \(\vec{\pi}(r) \) is the pion field, \(f_\pi \) is the pion-nucleon coupling constant and \(m_\pi \) the pion mass.

B. Magnetic moment operator

The effective electromagnetic current operator used to describe the nuclear magnetic moment is \([11, 58, 61]\),
\[
j^\mu(x) = Q \bar{\psi}(x) \gamma^\mu \psi(x) + \frac{\kappa}{2M} \partial^\nu \bar{\psi}(x) \sigma^{\mu \nu} \psi(x), \quad (14)
\]
where the nucleon charge \(Q \equiv \frac{e}{2}(1 - \tau_3) \), the antisymmetric tensor \(\sigma^{\mu \nu} = \frac{i}{2} [\gamma^\mu, \gamma^\nu] \), and \(\kappa \) the free anomalous gyromagnetic ratio of the nucleon with \(\kappa_p = 1.793 \) and \(\kappa_n = -1.913 \).

In Eq. (14), the first term gives the Dirac current and second term is the so-called anomalous current. The nuclear dipole magnetic moment in units of the nuclear magneton \(\mu_N = e\hbar/2Mc \), is given by \([12]\)
\[
\mu = \frac{1}{2\mu_N} \int d^3r \times \langle gs | \vec{j}(r) | gs \rangle \quad (15a)
\]
\[
= \int dr [\frac{Me^2}{\hbar c} Q \psi^\dagger(r) \vec{r} \times \alpha \psi(r) + \kappa \psi^\dagger(r) \beta \Sigma \psi(r)], \quad (15b)
\]
where \(\vec{j}(r) \) is the operator of space-like components of the effective electromagnetic current in Eq. (14). The first term in above equation gives the Dirac magnetic moment, and the second term gives the anomalous magnetic moment.
Therefore, the nuclear magnetic moment operator in the relativistic theory, in units of the nuclear magneton, is given by

\[\hat{\mu} = \frac{M c^2}{\hbar c} Q r \times \alpha + \kappa \beta \Sigma. \]

(16)

C. One-pion exchange current

Although there is no explicit pion meson in CDFT at Hartree level, it is possible to study the meson exchange current corrections due to the virtual pion exchange between two nucleons. According to Ref. [60], the meson exchange current corrections are given by the two Feynman diagrams in Fig. 2.

\[\mu_{\text{MEC}} = \frac{1}{2} \int d\mathbf{r} \mathbf{r} \times \left[\langle \text{g.s.} | j_{\text{seagull}}(\mathbf{r}) + j_{\text{in-flight}}(\mathbf{r}) | \text{g.s.} \rangle \right], \]

(17)

with the corresponding one-pion exchange currents

\[j_{\text{seagull}}(\mathbf{r}) = -\frac{8ef^2 M}{\pi^2} \int d\mathbf{x} \bar{\psi}_p(\mathbf{x}) \gamma_5 \psi_n(\mathbf{x}) D_\pi(\mathbf{x}, \mathbf{r}) \bar{\psi}_n(\mathbf{x}) M^* M \gamma_5 \psi_p(\mathbf{x}), \]

(18a)

\[j_{\text{in-flight}}(\mathbf{r}) = -\frac{16ief^2 M^2}{\pi^2} \int d\mathbf{x} d\mathbf{y} \bar{\psi}_p(\mathbf{x}) M^* \gamma_5 \psi_n(\mathbf{x}) D_\pi(\mathbf{x}, \mathbf{r}) \nabla_\mathbf{r} \bar{\psi}_n(\mathbf{y}) \frac{M^* M \gamma_5 \psi_p(\mathbf{y})}{M}, \]

(18b)

The pion propagator in \(r \) space has the form,

\[D_\pi(\mathbf{x}, \mathbf{r}) = \frac{1}{4\pi} \frac{e^{-m_\pi |\mathbf{x} - \mathbf{r}|}}{|\mathbf{x} - \mathbf{r}|}. \]

(19)

D. First-order corrections

The residual interaction, neglected in the mean field approximation, leads to configuration mixing, i.e., the coupling between the valence nucleon and particle-hole states in the core. It is also called core polarization. The configuration mixing corrections to the magnetic moment are treated approximately by the perturbation theory.

According to the perturbation theory, the first-order correction to the magnetic moments is given by

\[\delta \mu_{1\text{st}} = \langle n | \hat{\mu} \frac{\hat{Q}}{E_n - H_0} \hat{V} | n \rangle + \langle n | \hat{V} \frac{\hat{Q}}{E_n - H_0} \hat{\mu} | n \rangle, \]

(20)

As given in Ref. [9], the one-pion exchange current contributions to magnetic moments read,

\[\mu_{\text{MEC}} = \frac{1}{2} \int d\mathbf{r} \mathbf{r} \times \left[\langle \text{g.s.} | j_{\text{seagull}}(\mathbf{r}) + j_{\text{in-flight}}(\mathbf{r}) | \text{g.s.} \rangle \right], \]

(17)
FIG. 3: Diagrams of first-order configuration mixing corrections to the magnetic moment. The external line represents the valence nucleon, and the intermediate particle-hole pair represents an excited state of the core.

\[\delta \mu_{1st} = \sum_{j_p, j_h, J} \frac{2 \langle j_h \| \hat{\mu} \| j_p \rangle}{\Delta E_j} (-1)^{j + J + 1} \sqrt{\frac{j + 1}{J + 1}} \left\{ \frac{j_h}{j} \right\} (2J + 1) \langle jj_p; JM | V | jj_h; JM \rangle, \]

in which \(j \) denotes the valence nucleon state, \(j_p \) and \(j_h \) are respectively for particle and hole states, and \(\Delta E = \varepsilon_{j_p} - \varepsilon_{j_h} \) is the excitation energy of the one-particle-one-hole (1p-1h) excitation.

The selection rule \(\Delta \ell = 0 \) of the non-relativistic magnetic moment operator allows only particles and holes as spin-orbit partners, i.e., \(j_p = \ell - \frac{1}{2} \) and \(j_h = \ell + \frac{1}{2} \). All other diagrams vanish. Therefore the first-order configuration mixing does not provide any contribution in nuclei with an LS closed core \(\pm 1 \) nucleon, because there are no spin-orbit partners on both sides of the Fermi surface and the magnetic moment operator cannot couple to magnetic resonances [5].

E. Second-order corrections

As shown in Refs. [5, 8, 10], the second-order correction to the magnetic moments is given by

\[\delta \mu_{2nd} = \langle n| \hat{V} \frac{\hat{Q}}{E_n - H_0} \hat{\mu} \frac{\hat{Q}}{E_n - H_0} \hat{V} | n \rangle
- \langle n| \hat{\mu} | n \rangle \langle n| \hat{V} \frac{\hat{Q}}{(E_n - H_0)^2} \hat{V} | n \rangle, \]

where the second term comes from the renormalization of nuclear wave function.

The second-order corrections include one-particle-one-hole (1p-1h) and two-particle-two-hole (2p-2h) contributions. As shown in Fig. 4, the second-order correction to the magnetic moment for a nucleus with a doubly closed shell core plus one nucleon can be divided into three terms [5], the contributions of two-particle-one-hole (2p-1h) configurations, three-particle-two-hole (3p-2h) configurations, and the wave function renormalization respectively.

As shown in Fig. 5, for a nucleus with a doubly closed core plus one particle, the corresponding second-order corrections to the magnetic moment include,

- \(N(2p-1h) \) and \(N(3p-2h) \): from the wave function renormalization.
- \(S(2p-1h) \) and \(C(3p-2h) \): the external field operator acting on the hole line.
- \(C(2p-1h) \) and \(S(3p-2h) \): the external field operator acting on the particle line,

and the second-order correction in this case,

\[\delta \mu_{2nd} = N(2p-1h) + S(2p-1h) + C(2p-1h)
+ N(3p-2h) + S(3p-2h) + C(3p-2h). \]
with the nucleon effective (scalar) mass \(M^* = M + S \approx 0.6M \).

Therefore the Dirac magnetic moment,

\[
\mu_D = \frac{1}{2\mu_N} \int dr \, r \times j_D(r) = Q \int dr \frac{M}{M^*} \bar{\psi} [L + \Sigma] \psi,
\]

is enhanced.

It was pointed out that the valence-nucleon approximation is wrong in the relativistic calculation \[62\]. In reality, the current entering the magnetic moment operator is not just the single particle current of the single valence nucleon. The valence nucleon will polarize the surrounding medium and lead to a polarization current induced by the isoscalar current-current interaction. The effective current is therefore reduced. This so-called “back-flow” effect has been treated in the literature in different ways.

The induced current has been calculated in infinite nuclear matter by a Ward identity \[70\] or in the framework of Landau-Migdal theory \[54\] and the results have been applied in a local density approximation to finite nuclei. This has been improved by calculating the polarization current in linear response theory in finite spherical systems summing up the loop-diagrams \[55, 56, 71\].

The most direct method, however, is to treat the finite odd-\(A\) system in a fully self-consistent way \[11, 57, 59\]. The valence nucleon sits in a certain sub-shell with the magnetic quantum number \(m \). This leads to a small axially symmetric deformation and an azimuthal current \(j_\varphi \) around the symmetry axis, which induces in the core a nuclear magnetic field, i.e., the time-odd fields, and the corresponding polarization currents. This can be taken into account in a fully self-consistent way by solving the deformed Dirac equations in CDFT with nuclear magnetic fields breaking time-reversal symmetry. For odd-\(A\) nuclei in the direct vicinity of an \(LS \) closed core, all these methods lead to a strong reduction of the effective current such that the enhancement due to the small effective Dirac mass is nearly canceled. Finally, the resulting isoscalar magnetic moments are in excellent with the Schmidt values of the conventional non-relativistic single particle model.

In Fig. 6 the azimuthal current \(j_\varphi(z, r_\perp) \) for the nucleus \(^{15}\text{N}\) is shown after self-consistently considering the polarization current in deformed CDFT with time-odd fields \[57\]. It is purely azimuthal. The dashed lines are obtained without polarization, i.e., removing from the self-consistently determined \(^{16}\text{O}\) core only one proton in the \(1p_{1/2} \) shell. While the full lines are obtained from a self-consistent solution for the odd system including the spatial part of the \(\omega \) field (Nuclear Magnetism). The external hole induced a current in the core, which enhances the total current by nearly a factor three.

Table II shows isoscalar magnetic moments for the odd mass nuclei with the mass numbers \(A = 15, 17, 39, \) and 41. Experimental values are compared with the non-relativistic Schmidt values, with those of the spherical
CDFT where only the doubly magic core is determined self-consistently (Sph.CDFT), and values and with fully self-consistent calculations in the odd-mass system including time odd fields (Def.CDFT). It is observed that the anomalous part of the isoscalar magnetic moments is extremely small in all cases. Because of the negative contributions of the polarization currents in the core to the Dirac moment for both neutron nuclei and proton nuclei, excellent agreement is found between the Schmidt values and the deformed CDFT results.

It can therefore be concluded, that it is not the mean field approximation which produces such poor results for the isoscalar magnetic moments in relativistic theories. If the time reversal symmetry violation in the wave function of the odd mass nuclei and the corresponding polarization currents are taken into account fully self-consistently, the relativistic theory is able to describe the Schmidt values properly.

IV. MAGNETIC MOMENTS FOR NUCLEI WITH LS CLOSED SHELL CORE ± 1 NUCLEON

The magnetic moments for nuclei with LS closed shell core ± 1 nucleon are of particular importance, because there are no spin-orbit partners on both sides of the fermi surface and therefore all first-order configuration mixing corrections vanish. In Refs. \cite{9, 10, 12}, the contributions from one-pion exchange current (MEC) and then the second-order corrections (2nd) are presented. Here, the isoscalar and isovector magnetic moments of light odd-mass nuclei near the LS closed shells with $A = 15$, 17, 39 and 41 will be discussed.

TABLE II: The one-pion exchange current corrections to the isovector magnetic moments obtained from CDFT calculations using PK1 and PC-F1 effective interaction, in comparison with the QHD-II \cite{60} and non-relativistic results \cite{27, 28, 32, 72}. Reproduced from Refs. \cite{9, 10}.

A	Non-relativistic	Relativistic
	PK1 \cite{9}	PC-F1 \cite{10}
15	0.127	0.111
17	0.084	0.092
39	0.204	0.184
41	0.195	0.184

The one-pion exchange current corrections to the isovector magnetic moments obtained from CDFT calculations using PK1 \cite{73} and PC-F1 \cite{63} effective interactions are compared in Table III with QHD-II calculations \cite{60} and non-relativistic calculations \cite{27, 28, 32, 72}.

It is pointed out early \cite{27, 74} that the one-pion exchange currents give mainly an enhancement (reduction) of the orbital g factor for proton (neutron), which always give a positive contribution to the isovector magnetic moments. This is consistent with the relativistic calculations. It is shown that the obtained corrections to the isovector magnetic moments in relativistic theories are in reasonable agreement with other calculations. As noted in Ref. \cite{60}, the differences between the various calculations are most likely due to relative small changes in the balance of contributions from seagull and in-flight diagrams rather than any fundamental differences in the models used. It is also confirmed by other relativistic effective interaction, and almost the same results are obtained.

Table IV presents the isoscalar magnetic moments and corresponding pion exchange current corrections obtained from non-relativistic results \cite{5, 17}, previous relativistic result \cite{60}, and CDFT calculations using PC-F1 as well as the Schmidt values and corresponding data. As discussed in Ref. \cite{9}, the CDFT results are in good agreement with data, and in some case better than the QHD \cite{60} and non-relativistic calculations \cite{5, 17}.
Moreover, same as in Ref. [60], the MEC corrections to isoscalar moments in CDFT calculations are negligible. For the mirror nuclei with double-closed shell plus or minus one nucleon, the MEC corrections to isoscalar moments reflect the violation of isospin symmetry in wave functions. With the small MEC corrections to isoscalar moments here, it is easy to understand the excellent description of the isoscalar magnetic moments in deformed CDFT with space-like components of vector meson in Refs. [59, 57].

In Table IV the corresponding results for isovector magnetic moments are presented. As discussed in Ref. [10], the pion exchange current gives a significant positive correction to isovector magnetic moments, which is consistent with the calculations in Ref. [60]. Compared with the case for the isoscalar magnetic moments, however, the relativistic isovector magnetic moments calculated with pion exchange current corrections deviate much more from data than the calculation without pion exchange current corrections. This phenomenon is also found in CDFT calculations with other effective interactions. It can be understood as follows.

In CDFT the magnetic moments are enhanced due to the small effective nucleon mass by the scalar field, which is cancelled by the space-like components of vector field (vertex correction or the consideration of space-like component of ω meson [57]) for the isoscalar parts, but not for the isovector parts [33]. As shown in Table IV the CDFT values without pion are always larger than the Schmidt values, which reflects the $1/M^2$ enhancement of the orbital isovector g-factor. Then the pion gives additional enhancements, which leads to deviate too much from the isovector magnetic moment in the end. Therefore, the CDFT with only one-pion exchange current correction enhances the isovector magnetic moments further and does not improve the corresponding description for the concerned nuclei.

From Sch.+MEC+2nd (column 6 and 7) in Table IV, it is shown that the second-order configuration mixing effects included in the non-relativistic calculations have canceled the enhancement effect of MEC and the net effect of them gives the right sign for the correction to the Schmidt isovector magnetic moments. It is expected that the second-order corrections may improve the description of isovector magnetic moments in CDFT.

In Ref. [10], the second-order corrections to magnetic moments in 17O, 17F, 41Ca, 41Sc, 15O, 15N, 39Ca, and 39K are also calculated in CDFT with the PC-F1 [63].

In Table V the second-order corrections to the magnetic moments in CDFT are compared with previous non-relativistic results [8, 29, 31, 75].

Table V shows that the relativistic second-order corrections are of the same order and have the same sign as the non-relativistic results, with the exception of 15O and 39Ca. According to formulas for second-order corrections, the differences between the relativistic and the non-relativistic results are mainly ascribed to the magnetic moment operator and to the residual interactions.

For a further comparison, the contributions from different kinds of excitation modes (2p-1h, 3p-2h, etc.) both for relativistic and non-relativistic calculations are tabulated in Table VII $\mu^{(0)}$ and $\mu^{(1)}$ represent the isoscalar and isovector magnetic moments, respectively. As discussed in Ref. [10], 2p-1h and 2h-1p excitation modes give the main contribution in the non-relativistic results, while 3p-2h and 3h-2p excitation modes give the main contribution to the relativistic results.

In Figures 7 and 8 the relativistic results with considering MEC and second-order corrections are compared with data. The results for CDFT represent the calculations with the time odd fields in Ref. [10]. In Fig. 7 it is shown clearly that the mean-field calculations have already provided an excellent description of the isoscalar magnetic moments. As discussed in Ref. [10], the effects of MEC on isoscalar magnetic moments are negligible. The effects of 2nd have also only a very small influence on the isoscalar magnetic moments of nuclei with $A = 17$ and $A = 41$, but they lead to relatively large corrections for nuclei with $A = 15$ and $A = 39$. Such 2nd corrections enhance the discrepancy between the calculated values and the data. It should be pointed out that the operator $\hat{V}Q/(E_n - H_0)$ in eq. (29) does not commute with the magnetic moment operator $\hat{\mu}$ in eq. (10) and that this gives rise to non-zero corrections for the isoscalar magnetic moment from 2nd.

In Fig. 8 it is shown that the mean-field calculations produce values that are larger than the data for the particle states with $A = 17$ and $A = 41$, and approximately equal to the data for the hole states $A = 15$ and $A = 39$. Therefore the positive contribution from the one-pion exchange currents worsen the description of isovector magnetic moments. Here the second-order corrections gives a
A produced with the net effect between the second-order and the isovector magnetic moments are relatively well reproduced. As discussed in Ref. [10], from calculations with other effective interactions one comes to the same conclusions. As discussed in Ref. [10], from calculations in Refs. [5, 17], and finally improves the agreement with data, especially for \(A = 17 \) and \(A = 41 \). From calculations with other effective interactions one comes to the same conclusions. As discussed in Ref. [10], the isovector magnetic moments are relatively well reproduced with the net effect between the second-order and the one-pion exchange current corrections, especially for \(A = 17 \) and \(A = 41 \). On the whole, both the isoscalar and isovector magnetic moments of \(LS \) closed shell nuclei plus or minus one nucleon have been well explained by the CDFT with MEC and CM. The polarization effect from time odd fields, the one-pion exchange current and the configuration mixing corrections are important and work together to improve the description of the magnetic moments.

V. MAGNETIC MOMENTS FOR NUCLEI WITH \(jj \) CLOSED SHELL CORE PLUS OR MINUS ONE NUCLEON

In Ref. [61], magnetic moments for nuclei with \(jj \) closed shell core near \(^{208}\)Pb have been studied in CDFT including the contribution from the core. The corresponding results show an improvement in comparison

\[
\begin{array}{cccccccc}
\text{Orbit} & \text{Mode} & \delta \langle \mu^{(c)} \rangle & \delta \langle \mu^{(s)} \rangle & \delta \langle \mu^{(c)} \rangle & \delta \langle \mu^{(s)} \rangle \\
1p_{1/2} & 2p-1h & 0.004 & 0.018 & -0.007 & -0.028 \\
 & 3h-2p & 0.005 & 0.012 & -0.006 & -0.021 \\
1d_{5/2} & 2p-1h & 0.001 & 0.013 & -0.004 & -0.009 \\
 & 3h-2p & 0.006 & 0.014 & -0.009 & -0.013 \\
1f_{7/2} & 2p-1h & 0.001 & 0.016 & -0.007 & -0.014 \\
 & 3h-2p & 0.001 & 0.014 & -0.009 & -0.013 \\
\end{array}
\]

TABLE VI: Contributions from different excitation modes in the relativistic calculations, in comparison with the previous non-relativistic calculations [8]. Reproduced from Ref. [11].
calculations, only two particle-hole excitations can contribute to the first-order magnetic moment correction of 209Bi, i.e., the $\pi(1h_{9/2}1h_{11/2})$ and $\nu(1i_{13/2}1i_{15/2})$ excitations, and all other particle-hole excitations give a small and negligible contribution to its expectation value in first-order perturbation theory.

As shown in Table VII, the non-relativistic calculations give remarkable first-order corrections ($0.43 \mu_N \sim 0.80 \mu_N$), while the corresponding corrections given by relativistic calculations using the PC-PK1 effective interaction are very small ($-0.03 \mu_N$) and can be neglected. Only after the residual interaction provided by the pion is included, PC-PK1 gives significant corrections ($0.59 \mu_N$) that are consistent with non-relativistic results.

The first-order configuration mixing corrections to the magnetic moments of 207Pb, 209Pb, 207Tl and 209Bi obtained from relativistic calculations using the PC-PK1 interaction are shown in Fig. 9 and compared with non-relativistic results obtained from Ref. [82], in order to further confirm the effects of the residual interaction provided by pion. It is easy to see that without the residual interaction provided by pion, the relativistic calculations give negligible first-order corrections to the magnetic moments of all four nuclei. If the residual interaction provided by pion is included, relativistic calculations are in reasonable agreement with non-relativistic results for all present nuclei.

As seen in Eq. (21) for the correction to the magnetic moment, the excitation energy, and the interactions can all lead to differences between relativistic and non-relativistic results. It is well known that the effective mass is relatively small in self-consistent calculations based on density functional theory, which leads to an increased gap at the Fermi surface in the single particle spectrum and to larger ph-energies. Taking into account the energy dependence of the self energy in the frame-
work of couplings to low-lying collective surface modes, considerably larger effective masses and smaller energy gaps have been found in the literature \[84–87\], which are closer to the experimental values. As discussed in Ref. \[13\], the experimental single particle energies are used rather than the self-consistent CDFT single particle energies in the intermediate states for a relativistic estimation. Since the non-relativistic results are obtained with experimental energy splittings, it is found that by adopting experimental excitation energy, the relativistic calculations give almost the same first-order corrections as the results by adopting self-consistent CDFT single particle energies shown in Fig. 9. Although there is some difference between the matrix elements of the relativistic and the non-relativistic magnetic moment operator, the difference in the first-order corrections is subtle as shown in Fig. 9. Therefore, the difference between relativistic and non-relativistic results are mainly due to interactions. The residual interaction provided by pion plays an important role in the relativistic descriptions of nuclear magnetic moments and it has been included in the following calculations of second-order corrections.

Fig. 10 shows the final results for the magnetic moments of \(^{207}\text{Pb},^{209}\text{Pb},^{207}\text{Tl}\) and \(^{209}\text{Bi}\). They are obtained from CDFT with PC-PK1 and corresponding corrections are added: time-odd fields (labeled as odd), meson exchange currents (labeled as MEC), first- (labeled as 1st) and second-order (labeled as 2nd) configuration mixing. These relativistic results are compared with data (labeled as solid circle) and non-relativistic results from Ref. \[6\]. The magnetic moments obtained from spherical CDFT are labeled as CDFT. The differences between magnetic moments of CDFT with time-odd fields and magnetic moments of spherical CDFT represent the corrections due to time-odd fields. In the relativistic calculations, MEC only contains the one-pion exchange current correction, while the MEC in non-relativistic calculations includes the one-pion exchange current, the \(\Delta\) isobar current and the crossing term between MEC and first-order configuration mixing. For first- and second-order corrections in the relativistic calculation, the residual interaction provided by the pion is included.

As discussed in Ref. \[13\], the magnetic moments of all four nuclei in the relativistic calculations are considerably improved by including first-order corrections, MEC and second-order corrections, and they are now in agreement with non-relativistic results. The magnetic moment of \(^{207}\text{Pb}\) is excellently reproduced by relativistic calculations, while the corresponding deviation from data is 0.01 \(\mu_N\), and much better than the non-relativistic deviation 0.05 \(\mu_N\). For \(^{209}\text{Pb}\), the deviations from data are about 0.15 \(\mu_N\) and 0.2 \(\mu_N\) respectively for relativistic and non-relativistic results. For \(^{207}\text{Tl}\), both the non-relativistic description and the relativistic description are very good, as the corresponding two deviations from data are less than 0.1 \(\mu_N\). The magnetic moment of \(^{209}\text{Bi}\) is also well reproduced by relativistic and non-relativistic calculations, and the relative deviations from data for both calculations are less than 5\%. On the whole, the relative deviation of the present four nuclei in the relativistic calculation is 6.1\%, better than the corresponding non-relativistic results 13.2\%, as shown in Ref. \[13\].

It is obvious that the first-order, MEC and second-order corrections given by relativistic calculations have the same sign and order of magnitude as the corresponding corrections given by non-relativistic calculations. This further shows that the present relativistic calculations are reasonable, including the appropriate treatment of truncation in second-order corrections.

VI. MAGNETIC MOMENTS OF DEFORMED ODD-\(A\) NUCLEI

The odd-\(A\) nuclei with either \(LS\) and \(jj\) closed shell plus or minus one nucleon are usually spherical. Therefore the above discussion is mainly for the nucleus with spherical shape. In the nuclear chart, except those near the doubly closed shell, most nuclei are deformed. Here we will discuss the description of the magnetic moments for deformed odd-\(A\) nuclei in CDFT.

In particular, apart from the magnetic moments of stable nuclei \[88\], it is now even possible to measure the nuclear magnetic moments of many short-lived nuclei far from the stability line with high precision \[89\] with the development of the radioactive ion beam technique. For deformed odd-\(A\) nuclei, the valence nucleon approximation is invalid as there is a strong coupling between the core and the valence nucleon, which can not be treated in the perturbation theory. Finally, the total
magnetic moment consists of two parts, i.e., the intrinsic nucleonic motion and the collective rotational motion \(\beta_2 \). Thus, it is necessary to study the ground-state magnetic moment of deformed odd-\(A \) nuclei in deformed CDFT as a first step.

As discussed in Ref. [11], the nuclear magnetic moments of \(^{33}\)Mg has become a hot topic due to the following reasons: 1) it is a neutron-rich nucleus close to the so-called “island of inversion” [91] proposed as the unusual features for a group of neutron-rich nuclei in a region of the nuclear chart far from stability line; 2) different spins and configurations for the ground state of \(^{33}\)Mg are assigned in a series of experiments [92–95]. In order to remove the confusion, the spin and magnetic moment for the ground state in CDFT is compared with data (solid circle) and the corresponding non-relativistic results from Ref. [96]. In Fig. 11(a). As discussed in the Ref. [99], the configuration-fixed deformation constrained calculation gives a continuous and smooth curve for the energy surfaces as a function of \(\beta_2 \). The local minima in the energy surfaces for each configuration are represented by stars and labeled as ACG in ascending order of energy.

The energy surfaces for \(^{33}\)Mg as a function of the quadrupole deformation parameter \(\beta_2 \) calculated by adiabatic, shown as open circles, and configuration-fixed, shown as solid lines, deformation constrained CDFT approach with time-odd component using PK1 [73] are presented in Fig. 11(b). It is found that the magnetic moment is sensitive to the configuration, but not so much to \(\beta_2 \). The magnetic moment of the ground state in CDFT is \(-0.913 \mu_N\) which is in good agreement with the data \(\mu = -0.7456(5) \mu_N\) [98], compared with the shell-model results \(-0.675 \mu_N\) and \(-0.705 \mu_N\) [99] restricted to 2\(p_2\) configuration using two different interactions designed specifically for the island of inversion.

In Fig. 12 in order to examine the evolution of the sin-
parity I
odd neutron in 3
state, while in Ref. [96], in a Nilsson-model picture, the
orbital with prolate deformation 0.3 < β2 < 0.5 is proposed to reproduce the spin and
parity Iπ = \frac{3}{2} -

VII. SUMMARY

In summary, the studies on nuclear magnetic moments in CDFT have been reviewed. By considering the time-odd fields, one-pion exchange current, first-order, and second-order corrections, the magnetic moments of odd-

FIG. 11: (a) The energy surfaces for 33Mg as a function of β2 by adiabatic (open circles) and configuration-fixed (solid lines) deformation constrained CDFT approach with time-odd component using PK1 parameter set. The minima in the energy surfaces for fixed configurations are represented as stars and respectively, labeled as A, B, C, D, E, F, and G. (b) Magnetic moments for the corresponding configurations in panel (a) as a function of β2. Reproduced from Ref. [11].

FIG. 12: Neutron single-particle energies for 33Mg as a function of β2 obtained by configuration-fixed deformation constrained calculation for the configuration of ground state A. Positive (negative) parity states are marked by solid (dashed) lines. Each pair of time reversal conjugate states splits up into two levels with the third component of total angular momentum Ω > 0 and Ω < 0 denoted by red and black lines respectively. The solid circle denotes that the corresponding orbitals are occupied in the ground state. Reproduced from Ref. [11].

A nuclei with LS and jj closed shell plus or minus one nucleon have been reproduced and this method should be extended to apply for more nuclei with a doubly closed shell plus or minus one nucleon such as 113Sb [34], 67Ni and 60Cu [35], and 49Sc [36]. In addition, the descriptions of the magnetic moments in deformed odd-A nuclei become possible. It should be noted that the descriptions of nuclear magnetic moments with other models such as shell model have not been discussed. The magnetic dipole moments of most atomic nuclei throughout the periodic table still remain unexplained and the underlying physics mechanism is not fully understood. We are looking forward to more contributions to this important subject in the future.

There are still many important open questions for the descriptions of nuclear magnetic moments in the CDFT. So far, the contributions of the Dirac sea have not been included in the configuration mixing calculations, because they are far from the configurations space under consideration. The crossing terms between MEC and configuration mixing as well as the influence of higher order diagrams in RPA type configuration mixing calculations are also neglected. An additional point not included so far is the coupling to the ∆ isobar current. Of course, it will be also interesting to study the influence of other successful covariant density functionals on the market, in particular those bases on relativistic Hartree-Fock theory, where the pion and the resulting tensor forces can be included in a self-consistent way.
Acknowledgments

This work is dedicated to Prof. Akito Arima on the occasion of his 88 birthday, i.e., rice anniversary in Chinese character. Prof. Akito Arima has made important contributions not only in nuclear physics but also in promoting nuclear physics research and collaboration worldwide. It is a great honor that we have the opportunity to collaborate with Prof. Akito Arima on pseudospin symmetry and magnetic moments. The successful collaborations have deepened our understanding of the related fields.

We would like to thank Akito Arima, Jinniu Hu, Haozhao Liang, Peter Ring, Jiuxian Wei, Jiangming Yao and Ying Zhang for discussions and collaborations. This work is partly supported by the National Key R&D Program of China (2018YFA0404400), Natural Science Foundation of China (Grants No. 11335002, No. 11621131001, and No. 11675063), and China Scholarship Council (No. 201706175122).

[1] A. Arima, M. Harvey, and K. Shimizu, Pseudo LS coupling and pseudo SU3 coupling schemes, Phys. Lett. B 30(8), 517 (1969).
[2] J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A. Arima, Pseudospin symmetry in relativistic mean field theory, Phys. Rev. C 58(2), R628 (1998).
[3] J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line, Phys. Rev. C 59(1), 154 (1999).
[4] H. Liang, J. Meng, and S.-G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei, Phys. Rep. 570, 1 (2015).
[5] A. Arima, K. Shimizu, W. Bentz, and H. Hyuga, Nuclear magnetic properties and gamow-teller transitions, Adv. Nucl. Phys. 18, 1 (1987).
[6] A. Arima and H. Horie, Configuration mixing and magnetic moments of nuclei, Prog. Theor. Phys. 11(4), 509 (1954).
[7] H. Horie and A. Arima, Configuration mixing and quadrupole moments of odd nuclei, Phys. Rev. 99(3), 778 (1955).
[8] K. Shimizu, M. Ichimura, and A. Arima, Magnetic moments and GT-type β-decay matrix elements in nuclei with a LS doubly closed shell plus or minus one nucleon, Nucl. Phys. A 226(2), 282 (1974).
[9] J. Li, J. M. Yao, J. Meng, and A. Arima, One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory, Prog. Theor. Phys. 125(6), 1185 (2011).
[10] J. Li, J. Meng, P. Ring, J. M. Yao, and A. Arima, Relativistic description of second-order correction to nuclear magnetic moments with point-coupling residual interaction, Sci. China Phys. Mech. Astron. 54(2), 204 (2011).
[11] J. Li, Y. Zhang, J. M. Yao, and J. Meng, Magnetic moments of 33Mg in the time-odd relativistic mean field approach, Sci. China Ser. G 52(10), 1586 (2009).
[12] J. Wei, J. Li, and J. Meng, Relativistic descriptions of nuclear magnetic moments, Prog. Theor. Phys. Supp. 196, 400 (2012).
[13] J. Li, J. X. Wei, J. N. Hu, P. Ring, and J. Meng, Relativistic description of magnetic moments in nuclei with doubly closed shells plus or minus one nucleon, Phys. Rev. C 88(6), 064307 (2013).
[14] R. J. Blin-Stoyle, Theories of nuclear moments, Rev. Mod. Phys. 28(1), 75 (1956).
[15] A. Arima, Nuclear magnetic moments and gamow-teller matrix elements configuration mixing vs mesonic effects, Prog. Part. Nucl. Phys. 1, 41 (1978).
[16] A. Arima, Nuclear magnetic properties and gamow-teller transitions, Prog. Part. Nucl. Phys. 11, 53 (1984).
[17] I. S. Towner, Quenching of spin matrix elements in nuclei, Phys. Rep. 155(5), 263 (1987).
[18] B. Castel and I. S. Towner, Modern theories of nuclear moments (Oxford University Press, USA, 1990).
[19] I. Talmi, 55 years of the shell model: a challenge to nuclear many-body theory, Int. J. Mod. Phys. E 14(06), 821 (2005).
[20] T. Schmidt, über die magnetischen Momente der Atomkerne, Z. Phys. 106(5-6), 358 (1937).
[21] R. J. Blin-Stoyle, The magnetic moments of spin 1/2 Nuclei, Proc. Phys. Soc. A 66(12), 1158 (1953).
[22] R. J. Blin-Stoyle and M. A. Perks, The deviations of nuclear magnetic moments from the schmidt lines, Proc. Phys. Soc. A 67(10), 885 (1954).
[23] A. Arima and H. Horie, Configuration mixing and magnetic moments of odd nuclei, Prog. Theor. Phys. 12(4), 623 (1954).
[24] H. Noya, A. Arima, and H. Horie, Nuclear moments and configuration mixing, Prog. Theor. Phys. Suppl. 8, 33 (1958).
[25] H. Miyazawa, Deviations of nuclear magnetic moments from the schmidt lines, Prog. Theor. Phys. 6(5), 801 (1951).
[26] F. Villars, Exchange current effects in the Deuteron, Phys. Rev. 86(4), 476 (1952).
[27] M. Chemtob, Two-body interaction currents and nuclear magnetic moments, Nucl. Phys. A 123(2), 449 (1969).
[28] H. Hyuga, A. Arima, and K. Shimizu, Exchange magnetic moments, Nucl. Phys. A 336(3), 363 (1980).
[29] M. Ichimura, The magnetic moments of nuclei with a closed shell plus or minus one nucleon, Nucl. Phys. 63(3), 401 (1965).
[30] H. Mavromatis, First and second order corrections to the magnetic moments of nuclei using realistic interactions, Nucl. Phys. 80(3), 545 (1966).
[31] H. Mavromatis, Magnetic moments of nuclei with closed $j - j$ shells plus or minus one nucleon, Nucl. Phys. A 104(1), 17 (1967).
[32] I. S. Towner and F. C. Khanna, Corrections to the single-particle M1 and gamow-teller matrix elements, Nucl. Phys. A 399(2), 334 (1983).
[33] A. Arima, A short history of nuclear magnetic moments and GT transitions, Sci. China Phys. Mech. Astron. 54(2), 188 (2011).
[34] N. J. Stone, D. Doran, M. Lindroos, J. Rikovska, M. Veskovic, G. White, D. A. Williams, B. Fogelberg, L. Jacobsson, I. S. Towner, et al., Magnetic moments of odd-A Sb isotopes to 135Sb: significant evidence for mesonic exchange current contributions and on core collective g factors, *Phys. Rev. Lett.* 78(5), 820 (1997).

[35] J. Rikovska, T. Giles, N. J. Stone, K. van Esbroeck, G. White, A. Wörh, M. Veskovic, I. S. Towner, P. F. Mantica, J. I. Prisciandaro, et al., First On-Line Beta-NMR on Oriented Nuclei: Magnetic Dipole Moments of the $(\nu p_{1/2})^{-1} 1/2^+$ Ground State in 67Ni and $(\pi p_{3/2})^{+1} 3/2^+$ Ground State in 69Cu, *Phys. Rev. Lett.* 85(7), 1392 (2000).

[36] T. Ohtsubo, N. J. Stone, J. R. Stone, I. S. Towner, C. R. Bingham, C. Gaulard, U. Köster, S. Muto, J. Nikolov, K. Nishimura, et al., Magnetic dipole moment of the doubly-closed-shell plus one proton nucleus 49Sc, *Phys. Rev. Lett.* 109(3), 032504 (2012).

[37] P. Ring, Relativistic mean field theory in finite nuclei, *Prog. Part. Nucl. Phys.* 37, 193 (1996).

[38] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure, *Phys. Rep.* 409(3-4), 101 (2005).

[39] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Relativistic continuum Hartree Bogoliubov model. II. Nuclear spin and isospin excitations, *Phys. Rev. C* 73(1), 014319 (2006).

[40] C. De Conti, A. P. Galeão, and F. Krmpotić, Relativistic RPA for isobaric analogue and Gamow-Teller resonances in closed shell nuclei, *Phys. Lett. B* 699(3), 181 (2011).

[41] J. Daoutidis and P. Ring, Random-phase approximation based on relativistic point-coupling models, *Phys. Rev. C* 72(1), 014312 (2005).

[42] J. Meng, J. Peng, S.-Q. Zhang, and P.-W. Zhao, Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation, *Front. Phys.* 8(1), 55 (2013).

[43] L. D. Miller, Relativistic single-particle potentials for nuclei, *Ann. Phys.* 91(1), 40 (1975).

[44] B. D. Serot, Elastic electron-nucleus scattering in a relativistic theory of nuclear structure, *Phys. Lett. B* 107(4), 263 (1981).

[45] J. A. McNeil, R. D. Amado, C. J. Horowitz, M. Oka, J. R. Sheppard, and D. A. Sparrow, Resolution of the magnetic moment problem in relativistic theories, *Phys. Rev. C* 34(2), 746 (1986).

[46] S. Ichii, W. Bentz, A. Arima, and T. Suzuki, RPA type vertex corrections to isoscalar magnetic moments in the sigma-omega model, *Phys. Lett. B* 192(1-2), 11 (1987).

[47] J. R. Sheppard, E. Rost, C.-Y. Cheung, and J. A. McNeil, Magnetic response of closed shell ± 1 nuclei in Dirac-Hartree approximation, *Phys. Rev. C* 37(3), 1130 (1988).

[48] U. Hofmann and P. Ring, A new method to calculate magnetic moments in relativistic mean field theories, *Phys. Lett. B* 214(3), 307 (1988).

[49] R. J. Furnstahl and C. E. Price, Relativistic Hartree calculations of odd-A nuclei, *Phys. Rev. C* 40(3), 1398 (1989).

[50] J. M. Yao, H. Chen, and J. Meng, Time-odd triaxial relativistic mean field approach for nuclear magnetic moments, *Phys. Rev. C* 74(2), 024307 (2006).

[51] T. M. Morse, C. E. Price, and J. R. Shepard, Meson exchange current corrections to magnetic moments in quantum hadro-dynamics, *Phys. Lett. B* 251(2), 241 (1990).

[52] R. J. Furnstahl and S. Brian D., Nuclear currents in a relativistic mean-field theory, *Nucl. Phys. A* 468(3-4), 539 (1987).

[53] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, *Phys. Rev. C* 82(5), 054319 (2010).

[54] T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model, *Phys. Rev. C* 65(4), 044308 (2002).

[55] T. Nikšić, D. Vretenar, and P. Ring, Random-phase approximation based on relativistic point-coupling models, *Phys. Rev. C* 72(1), 014312 (2005).

[56] J. Daoutidis and P. Ring, Continuum random-phase approximation for relativistic point coupling models, *Phys. Rev. C* 80(2), 024309 (2009).

[57] C. De Conti, A. P. Galeão, and F. Krmpotić, Relativistic RPA for isobaric analogue and Gamow-Teller resonances in closed shell nuclei, *Phys. Lett. B* 444(2), 14 (1998).

[58] N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Quasiparticle random phase approximation based on the relativistic Hartree-Bogoliubov model. II. Nuclear spin and isospin excitations, *Phys. Rev. C* 69(5), 054303 (2004).

[59] H. Z. Liang, N. V. Gi, and J. Meng, Spin-Isospin resonances: a self-consistent covariant description, *Phys. Rev. Lett.* 101(12), 122502 (2008).

[60] B. D. Serot, Quantum hadrodynamics, *Rep. Prog. Phys.* 55(4), 1855 (1992).

[61] W. Bentz, A. Arima, H. Hyuga, K. Shimizu, and K. Yazaki, Ward identity in the many-body system and magnetic moments, *Nucl. Phys. A* 436(4), 593 (1985).
