RÖVID ÚTMUTATÓ EGÉSZSÉGÜGYI SZAKEMBEREK SZÁMÁRA
A MESTERSÉGES INTELLIGENCIA KORÁBAN

A SHORT GUIDE FOR MEDICAL PROFESSIONALS
IN THE ERA OF ARTIFICIAL INTELLIGENCE

Meskó Bertalan¹, Görög Márton²

¹PhD, a The Medical Futurist Institute vezetője, Budapest, Semmelweis Egyetem, Budapest
berci@medicalfuturist.com
²kutató, The Medical Futurist Institute, Budapest

ÖSSZEFOGLALÁS

A mesterséges intelligencia (AI) már a közeljövőben jelentős hatással lesz az orvostudomány gyakorlatára és az egészségügyi ellátásra. Noha orvosi felhasználásra csak egy maroknyi gyakorlati példa létezik elegendő bizonyítékkal, a területre irányult figyelem példa nélküli.

Olyan rendkívüli mennyiségű cikk, konferencijelentés, tanulmány és félrevezető médiáhir látott napvilágot, hogy hasznos lehet a megértésükhöz egy rövid és áttekinthető útmutató, amelyre bármilyen egészségügyi szakember hivatkozhat.

Kritikus fontosságú, hogy az orvosok megértsék a technológia alapjait, hogy átlátva a híreken, értékelné tudják az Al-alapú vizsgálatokat és a klinikai validálást, valamint megismerjék és tudomásul vegyék az AI korlátait és lehetőségeit. Ennek a tanulmánynak célja, hogy rövid, áttekinthető és emészthető összefoglalóként szolgáljon az AI korában.

Orvosi példákkal írjuk le a mesterséges intelligencia egyszerű definícióját és szintjeit, módosztéit, valamint a különböző módszertanok közötti különbségeket, lehetőséges előnyeikkel, veszélyeikkel és kihívásaikkal. Mindezek mellett megkísérlnünk jövőképet nyújtani a mesterséges intelligencia hétköznapi orvosi gyakorlatban való felhasználásáról.

ABSTRACT

Artificial intelligence (AI) is expected to significantly influence the practice of medicine and the delivery of healthcare in the near future. While there are only a handful of practical examples for its medical use with enough evidence, hype around the topic is unprecedented.

There are so many papers, conference talks, misleading news headlines and study interpretations that a short and visual guide any medical professional can refer back to in their professional life might be useful.

It is critical for physicians to understand the basics of the technology so they can see beyond the hype, evaluate AI-based studies and clinical validation as well as acknowledge the limitations and opportunities AI has. This paper aims to serve as a short, visual and digestible repository of information and details every physician might need to know in the age of AI.

We describe the simple definition of AI, its levels, methods, the differences between the methods with medical examples, the potential benefits, dangers, challenges of AI, as well as we attempt to provide a futuristic vision about using it in an everyday medical practice.
A mesterséges intelligencia (artificial intelligence – AI) már a közeljövőben jelentősen befolyásolhatja az orvostudomány gyakorlatát és az egészségügyi ellátást. Bár csak maroknyi gyakorlati példa létezik orvosi felhasználására elektő bizonyítékkal, példáitlan a területre irányuló figyelem (Topol, 2019). A témával kapcsolatos publikációk listája akadémiai cikkek, egészségpolitikai jelentések, szakmai társaságok nyilatkozatai, valamint újságcikkek formájában egyre növekszik. Összefoglaltuk, hogyan növekedett a Pubmed.comon megtalálható AI témajú publikációk száma az elmúlt évtizedben, és mely szakterület adta a legtöbb tanulmányt (1. ábra).

1. ábra. Orvosi AI-tanulmányok 2010 és 2020 között, és az orvosi szakterületek szerint

Bal: A Pubmed.com webhelyen található tanulmányok száma, amelyek a „gépi tanulás” vagy a „mély tanulás” keresési kifejezést használják, évválasztással a részletes keresésben.

Jobb: Ugyanezt a keresési módszert használva, majd a szakterület beállításával, időkeret meghatározása nélkül. A körökben szereplő szám határozza meg, hogy hány tanulmányt találtunk.

Magyar Tudomány 181(2020)10
Az elmúlt évtizedben a mesterséges intelligenciát széles körben alkalmazták különféle iparágakban; ilyen a szállítmányozás, a szórakoztatás vagy az informatika. Alkalmazták övezető járművek irányításában, tözsdei kereskedésben, közösségimédia-platformokhoz, internetes böngészőkben és keresőmotorokban. Valószínű, hogy e cikk olvasói ma már legalább egy órán keresztül használták többféle, AI-alapú szolgáltatást – mint például a Google Maps, a Waze, a Facebook, a LinkedIn vagy a Google kereső. Az orvostudományban, a gyógyszertervezésben és az egészségügyi ellátásban készülőben áll az áttörés, mégis, a bizonyítékoknak elég meggyőzőnek kell lenniük ahhoz, hogy az orvosi közösség és a szélesebb körben vett publikum elfogadja és befogadja a technológiait (Matheny et al., 2020).

A trendek azt mutatják, hogy a technológia még mindig a kezdeti szakaszában van. Minden évben az azt megelőzőnél több tanulmány lát napvilágot. Olyan sok cikk, konferencia, újságcikk és tanulmány jött létre, hogy szükség van egy rövid és áttekinthető útmutatóra, amelyre minden egészségügyi szakember hivatkozhat a munkájában.

Nem kétséges, hogy az AI csak akkor kap igazán hasznos szerepet az egészségügyben, és csak akkor válik majd széleskörűen is elfogadottá, ha az egészségügyi szakemberek tájékozottak, és maguk is támogató vezetőké válnak e folyamatban (Faes et al., 2020).

Ennek érdekében kritikus, hogy az egészségügyi szakemberek megértsék a technológia alapjait. Hogy a kihígított fogalmakon átlátva értékeljék az AI-alapú tanulmányokat és a klinikai validálást, mindeközben lássák és ismerjék az AI határait és lehetőségeit. Ezen tanulmány célja, hogy rövid, áttekinthető és emészthető összefoglalója legyen mindazon információknak és részleteknnek, amelyeket minden orvosnak tudnia kell az AI korában.

Leírjuk az AI egyszerű definícióját, szintjeit, módszereit, a módszerek közötti különbségeket orvosi példákkal, valamint a benne rejlő lehetőségeket, veszélyeket és kihívásokat. Mindez mellett megkísérelünk egy olyan jövőképet bemutatni, amelyben az AI a mindennapos orvosi gyakorlat része.

DEFINÍCIÓ ÉS AZ AI SZINTJEI

Az AI interdisciplináris terület többek között a számítástechnika, a pszichológia, a nyelvészet és a filozófia határán. Legegyszerűbb definíciója szerint az AI egy gép által megnyilvánuló intelligencia. Más megfogalmazás szerint, „gépek, amelyek az emberek számára az emberi elmével társult kognitív funkciókat, például a tanulást és a problémamegoldást utánozzák”.

Nick Bostrom, az Oxfordi Egyetem filozófusa az AI fejlődésének három fő szintjét határozta meg Superintelligence című könyvében (2. ábra).
Szűk mesterséges intelligencia (ANI): Az ANI fejlett mintázatfelismerési képességekkel rendelkezik hatalmas adatkészletekben, ami tökéletessé teszi szöveges, hang- vagy képalapú osztályozási és csoportosítási problémák megoldására. Olyan algoritmus, amely kitűnően működik egyetlen szűken meghatározott feladatnál. Sakkozni úgy tud, mint még soha senki, ám az IQ-ja nulla.

2. ábra. Az AI szintjei

Az AI három szintje a Nick Bostrom Superintelligence c. könyvében megjelenő meghatározás szerint. A zöld pont az ideális forgatókönyv szerinti elméleti küszöböt jelzi.

Általános mesterséges intelligencia (AGI): Az AGI egy nap képes lesz elérni egy ember kognitív képességeit. Humánszintű AI, amely vitatkozik, érvel, emlékezik, és feladatokat old meg éppúgy, mint bármelyikünk.

Mesterséges szuperintelligencia (ASI): Elméletben az emberiség egyesített kognitív képességeit is elérheti vagy akár ennél többet is. Az emberiség, értelemszerűen nem lenne képes befogadni tudását és érteni okfejtését. Több nemzetközi szervezet dolgozik azon, hogy ez a szint soha ne legyen elérhető.

HOGYAN MŰKÖDIK AZ AI?

Az AI egy úgynevezett gépi tanulási módszertannal működik. Az egészségügyben lévő kihívások és feladatok komplexitása miatt a tradicionális algoritmusok irása ezek megoldására már nem volt elegendő, így új módszerre volt szükség.
A gépi tanulás lehetővé teszi a számítógépek számára, hogy kifejezetten programozás nélkül tanuljanak. Ha az algoritmust elegyődő, jó minőséggű adattal látják el, a gépi tanulás lehetővé teszi számukra, hogy stratégiákat készítsenek az adott feladat kiváló megoldására.

Ha például olyan programot szeretnél írni, amely képes felismerni macskákat képeken, a legjobb, ha a gépi tanuláshoz fordulok. Amint megpróbálom létrehozni a programot alkotó szabályokat, megértjük, miért. Hogyan lehet felismerni egy macskát egy fotón? Olyan jellemezőket kidolgozva, amelyekről úgy gondolom, hogy segítségükkel a macskák könnyen azonosíthatóak, mint például, hogy egy macskának két füle, két szeme, négy lába van, és szörös, akkor olyan helyzetbe kerülök, ahol meg kell határoznom ezeket a kifejezéseket. Mi is a fül egy olyan program számára, amely csak képpontokat, pixelket és azok színét „látja” a képen?

Ennélfogva a leghatékonyabb módszer egy gépi tanulási algoritmus betanítása a macskás képek felismerésére, ha feltöltünk hozzá macskás képeket, lehetőség szerint emberek által kézzel jelölve, hogy biztosan macska legyen a képen. Mi-nél több ehhez hasonló kép feltöltése történik meg az algoritmusba, annál jobban fogja felismerni a macskát egy-egy képen. Nem fogja megérteni, mi is a macska, de egyre növekvő bizonyossággal és könyörétegen hatékonyággal fogja felismerni.

Mindegy, milyen feladatot akarunk megoldani, az egyszerűbb gépi tanulási algoritmusokat datokkal látjuk el, és folyamatosan alakítjuk az alapján, hogy hogyan emészt egy mezőt annak érdekében, hogy egyre jobb legyen a feladat megoldásában. Bonyolultabb algoritmusok, például neurális hálózatok és mély tanulás (deep learning) esetén lehetséges, hogy az algoritmus emberi beavatkozás nélkül elkezdje saját szabályainak és stratégiáinak az létézését. Innentől kezdve még a fejlesztők is nehezen érthetik meg, hogy van le következtetést, vagy hogyan alkot stratégiát, amelyet azért használ, hogy egy feladatot kiválóan oldhasson meg.

Amikor orvosi döntések meghozatalához használt technológiákról beszélünk, meg szeretnénk érteni a gép működési elvét vagy legalább a mögötte lévő fizikai/biológiai magyarázatokat. Fejlett AI-alapú algoritmusok esetén úgy tűnik, hogy csak az elméleti alapokat fognak tudni megérteni.

VALÓS PÉLDÁK A GÉPI TANULÁS ALTÍPUSAIRA

A gépi tanulásnak megannyi különböző altípusa és kombinált módszere van, de mi csak a három legfontosabb altípust és egy haladó területet, a mély tanulást mutatjuk be (3. ábra).

A felügyelt tanulás (supervised learning) akkor hasznos, amikor az algoritmus által megtanulandó feladat pontosan meghatározható a már meglévő adatok alapján. Végük a következő példát. Két betegcsoport kórtörténetével rendelkezünk,
3. ábra. Vizuális útmutató a gépi és a mély tanulás altípusaihoz

A felügyelt tanulás során a tanár (féjlesztő) tudja, mit akar tanítani a gyermekeknek (AI), meghatározza az elvárt választ, és a gyermekek megtanulja, hogyan oldja meg kiválóan a feladatát.

Felügyelet nélküli tanulás során a tanár nem befolyásolja, hogy an tanul a gyermekek, hanem megfigyeli a feladat megoldása során használt következtetéseit.

A megerősítéses tanulás során a tanár tudja, mit akar tanítani a gyermekeknek, de nem határozza meg lépésről lépésre, hogyan kell azt a gyermeknek megtanulnia. Ehelyett a tanár csak a feladat elvégzése után ad visszajelzést, és arra kéri a gyermeket, hogy az általa jutalmazott eredmények felhasználásával találja meg saját stratégiáját.

A mély tanulás során meglehetősen bonyolult adatkészleteket lehet elemzni a képektől és a videóktól egyfajta emberi érvelésig. Többrétegű, és utánozhatja az agy ideghálóinak működését.

Magyar Tudomány 181(2020)10
ezek az A és a B csoport. Az egyik adagban van családi kórtörténet, laboratóriumi markerek és más, a diagnózisban felhasznált részletek. A másik adagban ugyanazok az adatok vannak, de a diagnózis nélkül. Szeretnénk felépíteni egy olyan modellt, amely megtanulja a helyes diagnózis hozzárendelését a B csoportba tartozó betegekhez az asszociációk és címkék alapján, amelyeket az algoritmus az A csoportban megtanult. Ez olyan, mint tanárral tanulni, mert pontosan tudjuk, mit kell az algoritmusnak megtanulnia. Ez messze a leggyakrabban használt képzési mód.

A felügyelet nélküli tanulás (unsupervised learning) a tanár nélküli tanulás módszere. Van egy betegcsoportunk különböző adathalmazokkal, de nem ismerjük egyéni diagnózisaikat. Építünk egy modellt, majd megpróbáljuk csoportosítani a pácienseket hasonló tulajdonságaiak, mint például a tünetek, laboratóriumi markereik, koruk és nemük alapján. Ez felvethet új asszociációkat, amelyeket még nem vizsgáltunk. Másik példa: szintén hasznos lehet szövetminták csoportosításakor hasonló genezisszisős értékek alapján; vagy új gyógyszer–gyógyszer kölcsönhatások megtalálásában. Összefoglalva, kidolgozunk bizonyos szabályokat, hagyjuk, hogy az algoritmus önmagában tanuljon, és az eredmény alapján nem módosítjuk az algoritmust, hanem megfigyeljük, milyen következtetésekre jutott. A vásárlók vásárlási szokásait ilyen algoritmusokkal szokták elemezni.

A megerősítéses tanulás (reinforcement learning) lehetővé teszi az algoritmust, hogy megtanulja, hogyan kell a feladatot önálló döntéses módon végezni anélkül, hogy elő lenne írva, hogyan kell csinálni. A modell csak néhány alapvető szabály ismeretével kezd meg a feladat elvégzését, és miután a feladatot sikeresen vagy sikertelenül elvégezte, a tanár arra ösztönzi, hogy a továbbiakban a növekedés megakadályozza, hogy a feladatot végrehajtsa újra. Ily módon a program felépítheti saját tapasztalatait, mivel egyre több feladatot végez. Mindez hasonlít a kutyák kiképzéséhez. Amikor a kutya egy feladatot hajt végre vagy próbál végrehajtani, csak akkor adunk neki jutalomfálatot, ha jól teljesített.

A legismertebb példa erre a módszert an az, ahogyan az AlphaZero képes volt megtanulni, hogy a világ legjobb játékosa bármely készsereplős játékban úgy, hogy több millió játszmát játszott órák alatt saját maga ellen. Először csak a játék alapvető szabályait ismeri, és a felajánlottak őket erősítik az algoritmust, amikor megnyerte a mérkőzést, hogy a következő játék közben prioritássá tegye ezt a stratégiát (Sadler–Regan, 2019).

Egy példa szerint a szerzők ezt a módszert alkalmazták a klinikai vizsgálatban a gyógyszeradagolás meghatározására, ahol az algoritmus megtanulta a megfelelő adagolási rendet a daganat átmérőjének csökkentésére a kemo- és sugárterápián átesett betegekben (Moding et al., 2013). A legnagyobb kihívás a megerősítő tanulás egészségügyi ellátásban történő alkalmazásában, hogy nem lehetséges nagyszámú variációt végigvinni, mivel a betegek élete forog kockán.
GÉPI TANULÁS KONTRA MÉLY TANULÁS

A gépi tanulás különböző módszerek összessége, melyek többségét már a jelenlegi AI-forradalmat megelőző évtizedekben is alkalmazták. A legtöbb áttörést manapság a mesterséges neurális hálózatokkal érik el, de számos más modell is létezik, és mindegyiknek megvannak a maga előnyei.

A mély tanulás (deep learning) a gépi tanulás részhalmaza, és bár hasonló módon működik, képességei rendkívül eltérőek. A mély tanulás a mesterséges neurális hálózatok réteges szerkezetét használja, amelyet az emberi agy ideg-hálója ihletett. A neurális hálózat belső struktúrája és rétegeinek száma aktív kutatás területe, de ökőlszabályként elmondhatjuk, hogy minél több réteggel rendelkezik egy hálózat, annál összetettebb feladatokat tud elérni – ugyanakkor több adatot és hosszabb tanulási időt igényel. A mély tanulási modellek képesek képeket, hangokat és más sokdimenziós adatformákat jó eredménnyel feldolgozni, míg más gépi tanulási modellek jobban teljesíthetnek táblázatba rendezett adatokkal.

Orvosi példát véve, építsünk egy modellt, amely a pácienseket kórtörténetük-ben szereplő diagnózisuk alapján tudja csoportosítani. Ha a kórlap tartalmazza az 1-es típusú cukorbetegség kifejezést, a gépi tanulási modell megtanulja, hogy az összes ilyen beteget az 1. típusú cukorbetegség csoportba fogja helyezni. De a mély tanulási algoritmus idővel képes megtanulni emberi hozzájárulás nélkül, hogy azokat a betegeket, akiknek orvosi nyilvántartása csak a T1D-t említi, ugyanabba a csoportba kell sorolni. Más gépi tanulási algoritmusok programozóinak maguknak kell hozzáadniuk ezeket az alternatívákat.

Egy másik példa szintén élénken szemléltetheti a mély tanulás erejét és a benne rejlő potenciált. Szeretnénk felépíteni egy olyan modellt, amely felkapcsolja a lámpát, amikor a „fényt” szót kiáltjuk. A mély tanulási modell idővel felismeri, hogy a „nem látok” vagy a „sötét van” mondatokra szintén fel kell kapcsolnia a lámpát.

HOGYAN ÉRTÉKELHETŐEK AZ AI-RÓL SZÓLÓ HÍREK ÉS TANULMÁNYOK?

Alig telik el nap anélkül, hogy ígéretes kutatási dokumentációkat és tanulmányokat ne készítenének arról, hogyan lehet alkalmazni a gépi és a mély tanulást az orvosi problémákra. Azonban, bár az AI használatának csak az említése is képes bármely piacon javítani egy cég kilátásait, a túlzó lelkesedés és a túlzó marketing az algoritmusok képességeiről mindennapos jelenség. Azonban vannak olyan módszerek, amelyek segítenek az AI-ről szóló tanulmányok és hírek értékelésében.

Az olyan nyilvánvaló jellemzők mellett, mint például a cikket megjelentető szaklap minősége, a legfontosabb tényező az adat forrása. Számít, honnan szár-
mazik az adat, ezért érdemes ellenőrizni a tanulmány „Methods/Módszerek” szegmensében, ahol a szerzők leírják, hogyan, hol és milyen adatokat kaptak. Egyetlen algoritmust sem lehet fejleszteni nagy mennyiségű, változatos, minőségi adatok nélkül.

Ráadásul az adathalmaz mérete is számít: minél több kép, szöveg vagy bármely más forrásadattal dolgozott a kutató, annál precízebb lehet az algoritmus. Nagy mennyiségű adathoz elengedhetetlen az orvosokkal és egészségügyi intézményekkel való együttműködés. Ezek híján előfordulhat, hogy a kutatócsoport trükközik az adathalmazzal, hogy az nagyobbnak tűnjön (például a képek elforgatásával duplázzák az adatbázis méretét).

Az algoritmus publikált teljesítményét (például pontosságot és sebességet) össze kell hasonlítani a már létező megoldásokkal és emberi képességekkel. Valós klinikai körülmények között még a legmodernebb technikai megoldás is nyújt hat annyival rosszabb teljesítményt a szakembereknél, hogy egyáltalán nem hoz hasznat. Az ilyen technológiák szempontjából döntő fontosságú annak értékelése, hogy könnyen alkalmazhatóak-e a klinikai protokollokban, és hogy az eredmények egyértelműek-e az egészségügyi személyzet számára. Egy tanulmány szerint még a publikációk is el szokták túloznii az algoritmus képességeit, amikor azt orvosok képességeihez hasonlítják, ami lassítja a technológia elfogadásának folyamatát, és felesleges akadályokat képez.

Szintén kulcsfontosságú, hogy vajon a kutatás valós klinikai problémával foglalkozik-e. Egy algoritmus kiválóan működhet egy előre kiválasztott adatbáziszon, de tesztelni kell valós klinikai adatokon is.

A DeepMind cég egy publikált tanulmányában azt állította, hogy modellje előre tudja jelezni, hogy egy betegnél akut veseelégtelenség alakulhat ki „orvosilag kezelhető ablakon belül”, akár 48 órával az esemény előtt. Bár az algoritmus ezt valóban megtett, klinikailag nem lehet validálni anélkül, hogy orvosi körülmények között ne tesztelnék.

Mindezekben félül, amikor az intelligens algoritmusokkal kapcsolatos legfrissebb híreket nézzük át, vigyázzunk arra, hogy alaposan felmérjük az adott AI-hoz kapcsolódó cikk minőségét. A „mesterséges intelligencia” kifejezés maga is lehet megtévesztő, mivel a kifejezés túlzásba vitt használata miatt értelmezése kiszélesedett, felhígult. Az első figyelmeztető jelzés lehet, ha egy bejelentés vagy hír az AI-ról szól a pontos módszertan leírása nélkül. A cégek vagy kutatócsoportokat jeleznie kell a gépi vagy mély tanulás által�é delését, és részletesen értelmeznie kell a metódust, amellyel az AI-t létre kívánnál hozni.

Ide vonatkozó példa, hogy a Google által támogatott algoritmus az ellátás fejlesztését célozta meg Thaiföldön. Itt a vizsgálatokhoz az ápolónők fotózták be a páciensek retináját a szűrők alkalmával, és a fotót küldték tovább a valahol más hol rendelő szakorvosnak – a feldolgozás akár tíz héttel is eltarthatott. A Google Health által kifejlesztett eljárás képes volt 90 százalékos biztonsággal felismerni

Magyar Tudomány 181(2020)10
a diabéteszes retinopátia jeleit egy szemvizsgálatból kevesebb mint tíz perc alatt. Amikor a Google ezt a rendszert átültette a gyakorlatba, életszerű kérdések merültek fel. Esetenként az internetes összeköttetés megszakadása miatt állt le a rendszer, mivel minden képet a felhőbe kellett feltölteni. Ha a szkennelés minősége nem ért el egy bizonyos határt, az algoritmus egyszerűen nem adott eredményt (a mély tanulási algoritmust nagy felbontású képekkel kell táplálni a jobb eredmény érdekében). Ezek mellett az ápolónőknek azzal kellett időt töltenük, hogy átszerkesszék azokat a képeket, amelyeket az algoritmus úgy döntött, hogy nem elemez. A fejlesztőknek kellett a helyszínre utazniuk, hogy segítsenek megoldani ezeket a problémákat (Heaven, 2020).

Összegzésként, a Radiology orvosi szaklap útmutatot javasolt az AI-val kapcsolatos kutatások értékeléséhez szerzőknek, bírálóknak és olvasóknak (Bluemke et al., 2020). Más orvosi szervezetek és szaklapok szerkesztői stábjai ezt szintén átvettek és alkalmazhajtják. Egy ellenőrző listát is javasolnak, melyet minden AI-kutatást jegyző szerzőnek ki kell töltenie.

PÉLDÁK AZ AI HASZNÁRÓL AZ EGÉSZSÉGÜGYI ELLÁTÁSBAN

Lényegében a nagy gyakorisággal ismétlődő és a számszerűsíthető adatok elemzését magában foglaló feladatok profitálhatnak a leginkább az AI alkalmazásából. Bemutatunk néhány példát, amelyek képet adnak a lehetőségek széles skálájáról.

Személyes és online konzultációk javítása: A Babylon Health cége egy olyan alkalmazást fejlesztett, amely AI-vezérelt javaslatokat tesz személyes orvosi kórtörténet és általános orvosi tudás alapján. A felhasználók megadják betegségüket tüneteit az alkalmazásnak, amely beszédfelismerés segítségével rögzíti ezeket, majd összeveti a betegség-adataibázissal. A páciens kórtörténete és más körülményeit alapján javasol a rendszer további teendőket.

Egészségügyi segítségnyújtás és gyógyszeres kezelés: Molly, az orvosi start-up, Sense.ly által fejlesztett kedves mosolyú és kellemes hangú virtuális ápolónő, segíti az embereket állapotuk és kezelésük ellenőrzésében. Az interfész gépi tanulást alkalmazva támogatja a krónikus betegeket két orvosi vizsgálat között. Krónikus betegségekre célzott nyújtja nyugdíj személyre szabott megfigyelést és utógondozást. Hasonló megközelítést alkalmazott az Amerikai Nemzeti Egészségvédelmi Intézet által is támogatott Ai.Cure alkalmazás, amely az okostelefonok kameráját és AI-t használva elemzi, hogy betartják-e a páciensek a számukra előírt kezelést. Ez súlyos egészségügyi állapotban lévők vagy klinikai orvosi vizsgálatok résztvevői számára lehet hasznos.

AI-vezérelt ultrahang: 2020-ban az FDA, az Egyesült Államok Élelmiszer- és Gyógyszerbiztonsági Hivatala engedélyezte a Caption Health cég szoftverét,
amely lehetővé teszi az egészségügyi szakemberek számára, hogy speciális kép-
zés nélkül szívultrahang vizsgálatot végezzenek. A szoftver az AI-t használja a
valós idejű támogatáshoz és diagnosztikai minőségű felvételek készítéséhez. Or-
vosi másodpilótaként működik az ultrahangos felvételek készítése közben, igyek-
szik elérni egy szakértő szonográfus útmutatását a kép optimalizálásához, és au-
tomaticus visszajelzést ad a diagnosztikai képminőségről.

Orvosi nyilvántartások adatbányászata: Az orvosi kartonok gyűjtése, tárolá-
sa, normalizálása és nyomon követése nyilvánvaló lépés az AI szempontjából. A
Google DeepMind például együttműködik a brit Moorfields Eye Hospital NHS
Foundation Trusttal, hogy a retínaszkenek elemzésével támogassák a szemészeti
kezeléseket. A képeket a DeepMind algoritmusai elemzik, amelyek részletes
diagnózist és úgynevezett „sürgősségi pontszámot” adnak – mintegy 30 másod-
percen belül. A rendszer prototípusa képes kimutatni a diabéteszes retinopátiát,
glaukómát és az életkorral összefüggő makuladegenerációt.

Precizios orvoslás: A Deep Genomics célja a mintázatok felismerése mutá-
ciókat és betegséghez fűződő kapcsolatokat keresve a genetikai információkat és
az orvosi nyilvántartásokat hatalmas adatrendszerében. Az Oncompa ss Medicine
AI-alapú algoritmusokat használ, hogy a betegek dagana
tos mintáibain talált ge-
ettikai mutációkat össze lehessen hangolni a folyamatban lévő klinikai vizsgál-
latokkal az egész világon. Így a páciensek a rákos szöveteik fajtajára jellemző,
precizén célzott kezelést kaphatnak.

Kezelési tervek létrehozása: Az IBM Watson onkológusok számára hozott
létre egy olyan programot, amelynek célja, hogy az orvosok számára bizonyi-
tékokon alapuló kezelési opciókat biztosítszon. A Watson for Oncology képes a
strukturált és nem strukturált adatok jelentését és összefüggéseit elemzni a kli-
nikai jegyzetekben és jelentésekben. Ezek kritikus fontossággal bírnak a kezelési
út kiválasztásában. Ezután a beteg kórlapjából származó tulajdonságok klinikai
szakértellemmel, külső kutatásokkal és adatokkal való kombinálásával a program
potenciális kezelési terveket javasol a beteg számára.

Gyógyszerkészítés: Gyógyszerek létrehozása klinikai kísérletekkel néha több
mint egy évtizedet vesz igénybe, és költségei akár több milliárd dollárra is rúg-
hatnak. Ennek a folyamatnak a felgyorsítása felbecsülhetetlen hatással bírna a ma
orvoslására és arra, hogyan ér el az innováció a mindennapok gyógyászatába. Az
Atomwise szuperszámítógépeket alkalmaz, amelyek a terápiákat a molekuláris
struktúrák adatbázisából eredeztetik. Létrehoztak egy virtuális kutatást is biz-
tonságos, létező gyógyszerekre, amelyek alkalmazásak lehetnek az Ebola-vírus ke-
zelésére. A cég AI technológiája által meg tudtak határozni két olyan gyógyszert,
amelyek együtt jelentősen le tudják csökkenteni az Ebola fertőzőképességet. Ez
az elemzés, amely átlagosan egyébként hónapokat vagy akár éveket vett volna
igénybe, napok alatt lezajlott.
HOGYAN LEHET AZ AI TECHNOLÓGIA
A MINDENNAPI ORVOSLÁS RÉSZE?

Az AI sikere és helye az orvoslásban és a gyógyításban nagyban függ attól, képes lesz-e áttörni a bizonyítékokon alapuló orvoslás, az irányelvek hiánya és az orvosi vonakodás falait. Nincs okunk azt hinni, hogy használata általánosan elfogadottá válik, anélkül hogy elérné a korábban használt orvostechnológiák színvonalát és követelményeit.

Ugyanakkor, ahogy nő az igény a betegekben, döntéshozókban, egészségügyi szakemberekben és a kórházakban egyaránt arra, hogy az AI a mindennapi orvoslás része legyen, a fejlesztőktől a gyakorlatig vezető út le kell, hogy rövidüljön. Jelenlegi távolságára jellemző példa a Kardia vagy korábbi nevén AliveCor.

Az első, az FDA által elfogadott, egyszoros EKG-ként is működő okos telefon tokjukat 2012-ben készítették. Két klinikai vizsgálatot végeztek a hardware és az alkalmazás tesztelésére, hogy összehasonlításuk a hagyományos 12-csatornás EKG-val. Később a dizájn fejlesztésével egy hitelkártya méretű eszköz hoztak létre, majd 2019-ben egy még annál is kisebbet. Az eredeti eszköz működéséhez két újbejyet kellett 30 másodpercig a szenzorra helyezni az EKG leolvasásához. Az adatokat ezután elküldték a felhőbe, ahol az orvosok hozzáférhettek azokhoz. 2015-ben a cég megkapta az FDA-engedélyt algoritmusalapú leolvasások emberi segítség nélküli elemzésére bizonyos szívritmusproblémák meghatározása céljából.

2017 végére már mély tanulási hálózatokat alkalmaztak, és az FDA orvosi eszközvédelméhez engedélyezte a KardiaBand EKG-olvasót az Apple Watch okosóra kiegészítőjeként. Egy tanulmány megállapította, hogy a KardiaBand 93 százalékos érzékenységgel és 94 százalékos specifikitással képes megkülönböztetni a pit-fibrilláción és a normális szívritust. Az érzékenység 99 százalékosra nőtt, amikor orvos is értékelte az adatokat (Himmelreich et al., 2019).

Az Alivecor termékei 2020-ra közel negyven klinikai vizsgálaton estek át, melyeket szakmai folyóiratokban publikáltak. Mindezen eredmények ellenére az eszköz használata még mindig nem bevett gyakorlat. Ahogyan a más cégek által létrehozott AI-alapú orvosi technológiák is hasonló úton mennek végig, ez egy hosszú adaptációs időszakot vetít előre.

Az AI csak akkor éri majd el a mindennapi orvoslás szintjét, ha az orvosi szerverzetek egyértelmű előírásokat fogalmaznak meg bevezetésükre; ha a döntéshozók ezeket előnyben részesítő jogszabályokat fogadnak el; illetve ha az orvosi közösség az AI-ra nem veszélyforrásként tekint, hanem úgy, mintha ez lenne a 21. század sztetoszkópja.
Bár ma is vannak példák az ANI-ra, vannak olyan fontos kérdések, amelyekkel az AI fejlesztőinek és az orvosi közösségnek szembe kell nézniük, és meg kell birkózniuk, mielőtt az AI érvényesülhet az orvostudományban.

Magyarázhatóság: Az orvosok hajlamosak azokra az adatokra támaszkodva meghozni döntéseiket, amelyeket olyan technológiával nyertek ki, melyeket vagy értékelt és legalább annyira, hogy megbízzanak benne. Az AI esetében lehet, hogy ez elméletileg sem lehetséges. Mivel több millió megtanult paraméter (a hálózaton belüli kapcsolatok súlya) határozza meg a mély neurális hálózatok kimeneteit, ezek döntési folyamatait gyors áttekintéssel megérteni lehetetlen. Még ha vizualizáljuk is a hálózat különböző részeinek érzékenységét, és bőngészünk több ezer zajos kép között, akkor sem fogunk látni könnyen megértető szabályokat. A miértre nem ad egyszerű választ az algoritmus. Ennélfogva az úgynevezett „magyarázható AI”, amely segíthet betekintést nyújtani az AI működésébe, létfontosságú ahhoz, hogy a felé irányuló bizalom megnőjön.

Adatminőség és mennyiség: Az AI adatokból táplálkozik. Minél több és jobb minőségű adathoz fér hozzá, annál jobban képes a feladatokat teljesíteni. Fejlelt algoritmoknak annotált (például röntgenfelvételen kézzel bejelölő egy tüdőgyulladást) adatokra van szükségük annak biztosítása érdekében, hogy képesek legyenek megtanulni feladataikat. Az adatannotálók egészségügyi szakemberek, akik felvállalják ezt az időrabló, igen monoton munkát mindazon csillagok nélkül, amelyek egyébként az AI körüli munkákat jellemzik. Ahogyan az algoritmusok a hatalmas mennyiségű releváns adaton keresztül tökéletesednek, az annotálást később lelkes munkája nélkül egyszerűen lehetetlen lenne fejleszteni őket, így az AI nem tudna kiemelkedő eszközzé válni, és nem lehetne hasznos egészségügyi környezetben. Az adatannotáló orvosok az egészségügyi AI forrásdalmának el nem ismert hősei (Meskó–Radó, 2019a).

Adatvédelmi problémák: Az orvosi AI hozzáférést igényel az orvosi nyilvántartásokhoz, az egészségügyi szenzorok adatokhoz, az orvosi algoritmusokhoz, az alkalmazásokhoz és bármilyen információforráshoz, amelyből tanulni tud. Az adatok egészségügyi intézményektől vagy egyénektől származhatnak. Még ha az intézmények anonimizálják azokat az adatokat, több alkalommal bebizonyosodott, hogy az egyéni profilok visszakereshetők.

Jogi kérdések és felelősség: Mi történik akkor, ha egy algoritmus eltéveszt egy diagnózist, az orvos elfogadja, és a paciensek szenved a következményektől? Mi van, ha az autónóm sebészeti robot múltét közben kárt tesz egy betegben? Folyamatos viták tárgya, hogy a jövőben ki tehető majd felelőssé, ha az önállóan működő AI és robotok ártanak a betegeknek. A jelen konszenzus szerint a szakember felelősségre vonható, ha az eszközt olyan helyzetben használta, amely nem tartozik a jöváhagyott szabályozás hatálya alá; ha azt helytelenül használja; ha

Magyar Tudomány 181(2020)10
annak ellenére használja, hogy jelentős szakmai kételemek merültek fel az eszközt támogató bizonyítékok érvényességében; vagy ha tudomással bír arról, hogy az eszköz készítője eltussolja a rá vonatkozó negatívumokat. Minden más esetben a felelősség a készítőkre és a mögöttük álló társaságokra hárul.

Bizalom: Hosszú időre lesz szükségünk, mire megbízunk egy önvezető autóban: látnunk kell, hogy reagál az általunk ismert helyzetekben, vagy, hogy vészszínhelyzet esetén hasonló döntéseket hoz-e, mint mi hoznánk. Következésképpen még több időbe telik nemcsak a betegek, hanem az orvosok számára is, hogy bizzanak az AI-ban az orvosi diagnózisokkal, az orvosi döntéshozatal támogatásaival vagy új gyógyszerek tervezésével kapcsolatban. Ezt figyelembe kell venni, amikor a technológia egészségügyi környezetben való használatáról döntünk.

Előítéletes AI: Egy tanulmány szerint az IBM és a Microsoft arcfelismerő rendszerei 11–19 százalékkal megbízhatóbbak voltak világosabb bőrszínű egyének felismerésekor. Kifejezetten rossz hatékonyasággal működtek színes bőrű nők felismerésénél. Egy másik példában, amikor az AI-t az amerikai bűnügyi rendszeren belül a visszaesők arányának megbecsülésére használták, azt találták, hogy a rendszer szerint a színes bőrű emberek aránytalanul nagyobb valószínűsséggel fognak a jövőben bűncselekményeket elkövetni, függetlenül attól, hogy milyen súlyú volt a bűncselekmény, amelyet eredetileg elkövettek. Ez nemcsak faji előítélet, de az AI algoritmusok gyakran diszkriminálnának a nőket, kisebbségeket, más kultúrákat vagy ideológiákat. Az Amazon HR-részlegében például meg kellett szüntetni a vállalat által kifejlesztett AI alkalmazást, amelylyel a legjobb álláskeresőket szűrték, mivel kiderült, hogy az algoritmus a férfiakat részesíti előnyben. Ahogyan az algoritmusok a beljük táplált adatok alapján tanulnak, az AI-fejlesztőknek tisztában kell lenniük az algoritmusokban megjelenő torzításokkal, és összeállításukkal aktívan harcolniuk kell az előítéletek ellen (Chen et al., 2019).

Páciensvezérelt tervezés: Orvosi célokra szolgáló algoritmusok kidolgozásakor a betegeket kell bevonni a legmagasabb szintű döntéshozatalba, annak érdekében, hogy igényeiket kielégítsék, és hogy a kérdéseiket és ajánlásaikat beépítsék a technológiába. Ennek fontosságára példa az egyik startup fejlesztése, amely algoritmus kanadai betegek telefonhívásainban képes fémismerni az Alzheimer-kór jeleit. A francia akcentussal rendelkező betegek esetében azonban az algoritmus eltérő eredményeket mutatott. Ha a betegek már a fejlesztés korai szakaszában be lennének vonva, az ilyen kérdések elkerülhetőek lennének. Mivel a fenti példák mindegyikének megoldására már zajlanak erősítések, továbbra is nyitott kérdés, hogy vajon azok az algoritmusok, amelyek az orvosi gyakorlat általános részévé válnak, képesek lesznek-e mindegyikre megoldást találni.
AZ AI JÖVŐBENI SZEREPE AZ ORVOSLÁSBAN ÉS AZ EGÉSZSÉGÜGYBEN

Minden orvosi célra szánt AI-alapú technológiának szabályozottnak, hatékonynak és bizonyítékokkal alátámasztottnak kell lennie. Az FDA példaértékű egy olyan szabályozási környezet kialakításában, amely nemcsak üdvözlő az ilyen újításokat, hanem segít azokat biztonságossá tenni a nyilvánosság számára is. Az FDA 2019-ben elindította a digitális egészségügyi részlegét, és így kezelt új szabályozási szabványokat kidolgozni az AI-alapú technológiákra.

A szervezet felismerte, hogy az AI korában több algoritmus válik majd elérhetővé mint orvosi eszköz, ahogyan a hangsúly a hardverről a szoftver felé tolódik. Ahogyan az engedélyezésre váró algoritmusok száma exonenciális nő, a szabályozó testületek jelenlegi forrásai nem lesznek elegendőek az egyes iterációk és frissítések értékeléséhez. Felmerült egy új szabályozási keretrendszer tervezése. Ez potenciálisan olyan rendeletekhez vezethet, amelyek lehetővé teszik a szabályozók számára a vállalatok ellenőrzését, miközben a cégek algoritmusokat és frissítéseket hozhatnak létre anélkül, hogy mindegyiket külön ellenőrizni kellene (FDA, 2019). Ez egy megvalósítható módja az AI-alapú technológiák biztonságos elterjedésének. Kutatócsoportunk szintén megkísérelt egy folyamatosan frissített, FDA által jóváhagyott adatbázist létrehozni az AI-alapú orvosi technológiákról.

Ezen technológiák csak akkor lehetnek hasznosak, ha sikeresen beépülnek az egészségügyi gyakorlatba. Az Amerikai Orvosi Szövetség (American Medical Association, AMA) fontosnak tartja az AI-t, foglalkozott vele, és a ’kibővített intelligencia’ megnevezés használatát szorgalmazta, valamint jelentéseivel és orvoknak szóló irányelveivel vállalta a véleményformáló szerepét (AMA, é. n.). AI-irányelvükben kijelentik, hogy „az amerikai orvostudomány vezetőjeként az AMA-nak egyedülálló lehetősége annak biztosítása, hogy az AI az orvoslában a betegek, az orvosok és az egészségügyi szakma hasznára legyen”.

Hogy az AI-n alapuló technológiák megfelelően a bizonyítékokon alapuló orvoslás szabványainak, megannyi orvosi szaklap szerkesztőbizottságának és tekintélyes orvosi szervezeteknek, mint a WHO vagy a CDC ajánlásokat kell kiadniuk az orvosi közösség számára (Howard, 2019; World Health Organization, é. n.).

Az adapáció egyik potenciális akadálya lehet az orvosok általános félelme, hogy az AI fölöslegessé teheti őket. Míg a nagymértékben repetitív és adatalapú szakmákat, vagyis inkább ezen szakmák egyes feladatait valószínűleg befolyásolja az automatizálás, az orvoslás magja továbbra is az emberről, empátia és az együttérző gondoskodás lesz. Ezek olyan tulajdonságok, amelyeket szinte lehetetlen programozási nyelven leképezni.

Mégis, általános ökölszabályként feltételezhető, hogy az AI-t használó orvosok leváltják majd azokat, akik nem használják az új technológiákat. Ilyen mélyreha-
tő szereppel bír majd az AI az orvoslás jövőjében. A 21. század elején nem arról kell vitáznii, hogy az AI elveszi az emberi érintést vagy az orvoslás művészetét, hanem arról, mit kell tennünk ahhoz, hogy javítsa mindkettőt.

Amikor egy algoritmus megerősítéses tanulást használva, tehát az emberi kognitív korlátok által nem akadályozva előáll egy olyan gyógymóddal, amelyet soha nem találhattunk volna fel biológiai, orvostudományi és más ismereteinkkel, az orvoslás valódi művésze annak megismerése és megértése lesz, hogy hogyan csinálta (Meskó–Radó, 2019b).

Mindezekkel az alapvető ismeretekkel az AI definíciójáról, szintjeiről, mód-szereiről, kihívásairól és lehetőségeiről megróbáltunk áttekintést adni arról, hogy tehetjük az orvosi szakmát kreatívbábbá, több időt töltve a betegekkel, mint valaha.

A szerzők köszönettel tartoznak Kuszkó Juditnak a fordításban nyújtott munká- jáért.

IRODALOM

AMA – The American Medical Association: Artificial Intelligence in Medicine. (é. n.) https://www.ama-assn.org/amaone/augmented-intelligence-ai
Bluemke, D. A. – Moy, L. – Bredella, M. A. et al. (2020): Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers from the Radiology Editorial Board. Radiology, 294, 3, DOI: 10.1148/radiol.2019192515, https://pubs.rsna.org/doi/10.1148/radiol.2019192515
Chen, I. Y. – Szolovits, Peter – Ghassemi, Marzyeh (2019): Can AI Help Reduce Disparities in General Medical and Mental Health Care? AMA Journal of Ethics, 21, 2, E, 167–179. DOI: 10.1001/amajethics.2019.167, https://journalofethics.ama-assn.org/article/can-ai-help-reduce-disparities-general-medical-and-mental-health-care/2019-02
Faes, L. – Liu, X. – Wagner, S.K. et al. (2020): A Clinician’s Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies. Translational Vision Science and Technology, 9, 7, DOI: 10.1167/tvst.9.2.7, https://tvst.arvojournals.org/article.aspx?article-id=2761237
FDA (2019): Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD). Discussion Paper and Request for Feedback. https://www.regulations.gov/document?D=FDA-2019-N-1185-0001
Heaven, W. D. (2020): Google’s Medical AI Was Super Accurate in a Lab. Real Life Was a Different Story. MIT Technological Review, https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retina-disease/
Himmelreich, J. C. L. – Evert, P. M.– Karregat, W. A. M. et al. (2019): Diagnostic Accuracy of a Smartphone-Operated, Single-Lead Electrocardiography Device for Detection of Rhythm and Conduction Abnormalities in Primary Care. Annals of Family Medicine, 17, 5, 403–411. DOI: 10.1370/afm.2438, https://www.annfammed.org/content/17/5/403
Howard, J. (2019): Artificial Intelligence: Implications for the Future of Work CDC. https://blogs.cdc.gov/niosh-science-blog/2019/08/26/ai/
Matheny, M. E. – Whicher, D. – Israni, S. T. (2020): Artificial Intelligence in Health Care: A Report from the National Academy of Medicine. *JAMA*, 323, 6, 509–510. DOI: 10.1001/jama.2019.21579

Meskó B. – Radó N. (2019a): Data Annotators: The Unsung Heroes of Artificial Intelligence Development. *The Medical Futurist*, https://medicalfuturist.com/data-annotation/

Meskó B. – Radó N. (2019b): The Real Era of the Art of Medicine Begins with Artificial Intelligence. *The Medical Futurist*, https://medicalfuturist.com/artificial-intelligence-and-the-art-of-medicine/

Moding, E. J. – Kastan, M. B. – Kirsch, David G. (2013): Strategies for Optimizing the Response of Cancer and Normal Tissues to Radiation. *Nature Reviews Drug Discovery*, 12, 526–542. DOI: 10.1038/nrd4003, https://www.nature.com/articles/nrd4003

Sadler, M. – Regan, N. (2019): *Game Changer: AlphaZero’s Groundbreaking Chess Strategies and the Promise of AI*. [Alkmaar]: New in Chess

Topol, E. J. (2019): High-Performance Medicine: The Convergence of Human and Artificial Intelligence. *Nature Medicine*, 25, 44–56. DOI: 10.1038/s41591-018-0300-7

World Health Organization (é. n.): *Big Data and Artificial Intelligence*. https://www.who.int/ethics/topics/big-data-artificial-intelligence/en/