Charmed-Meson Decay Constants in Three-Flavor Lattice QCD

C. Aubin, C. Bernard, C. DeTar, M. Di Pierro, E. D. Freeland, Steven Gottlieb, U. M. Heller, J. E. Hetrick, A. X. El-Khadra, A. S. Kronfeld, L. Levkova, P. B. Mackenzie, D. Menscher, F. Maresca, M. Nobes, M. Okamoto, D. Renner, J. Simone, R. Sugar, D. Toussaint, and H. D. Trottier (Fermilab Lattice, MILC, and HPQCD Collaborations)

1Physics Department, Columbia University, New York, New York, USA
2Department of Physics, Washington University, St. Louis, Missouri, USA
3Physics Department, University of Utah, Salt Lake City, Utah, USA
4School of Computer Science, Telecommunications and Information Systems, DePaul University, Chicago, Illinois, USA
5Liberal Arts Department, The School of the Art Institute of Chicago, Chicago, Illinois, USA
6Department of Physics, Indiana University, Bloomington, Indiana, USA
7American Physical Society, Ridge, New York, USA
8Physics Department, University of the Pacific, Stockton, California, USA
9Physics Department, University of Illinois, Urbana, Illinois, USA
10Fermi National Accelerator Laboratory, Batavia, Illinois, USA
11Laboratory of Elementary-Particle Physics, Cornell University, Ithaca, New York, USA
12Department of Physics, University of Arizona, Tucson, Arizona, USA
13Department of Physics, University of California, Santa Barbara, California, USA
14Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada

(Dated: September 8, 2005)

We present the first lattice QCD calculation with realistic sea quark content of the D^+-meson decay constant f_{D^+}. We use the MILC Collaboration’s publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain $f_{D^+} = 201 \pm 3 \pm 17$ MeV, where the errors are statistical and a combination of systematic errors. We also obtain $f_{D_s} = 249 \pm 3 \pm 16$ MeV for the D_s meson.

PACS numbers: 13.20.Fc, 12.38.Gc

Flavor physics currently plays a central role in elementary particle physics. To aid the experimental search for physics beyond the standard model, several hadronic matrix elements must be calculated nonperturbatively from quantum chromodynamics (QCD). One of the most important of these is the decay constant of the B meson f_B. Any framework for calculating f_B should, therefore, be subjected to stringent tests, and such a test is a key aim of this Letter.

The most promising method for these nonperturbative calculations is numerical lattice QCD. For many years the results suffered from an unrealistic treatment of the effects of sea quarks. In the last few years, however, this obstacle seems to have been removed: with three flavors of sea quarks lattice QCD now agrees with experiment for a wide variety of hadronic quantities. This validation of lattice QCD has been realized, so far, only for so-called “gold-plated” quantities: masses and matrix elements of the simplest hadronic states. Note, however, that many of the hadronic matrix elements relevant to flavor physics are in this class, including f_B.

The challenges in computing f_B are essentially the same for the D^+-meson decay constant f_{D^+}. Experiments have observed the leptonic decay $D^+ \rightarrow l^+\nu_l$, but not $B^+ \rightarrow l^+\nu_l$. One can, thus, determine $|V_{cd}|f_{D^+}$, where V_{cd} is an element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Taking $|V_{cd}|$ from elsewhere, one gets f_{D^+}. In 2004 the CLEO-c Collaboration measured f_{D^+} with a 20% error, and a more precise measurement is expected soon.

This Letter reports the first lattice-QCD calculation of f_{D^+} with three flavors of sea quarks. We find

$$f_{D^+} = 201 \pm 3 \pm 17 \text{ MeV},$$

(1)

where the uncertainties are statistical, and a sequence of systematic effects, discussed below. We also obtain the decay constant of the D_s meson,

$$f_{D_s} = 249 \pm 3 \pm 16 \text{ MeV}.$$

The second result is more precise than a recent lattice-QCD calculation with the same sea quark content but non-relativistic heavy quarks, which found $f_{D_s} = 290 \pm 20 \pm 41$ MeV. These results are more reliable than older calculations because we now incorporate (three) sea quarks and, for f_{D^+}, also because the light valence quark masses are smaller than before.

These results test the methods of Ref. because they are predictions. The input parameters have been fixed previously, and, once comparably precise experimental measurements become available, one can see how Eqs. and fare. Indeed, this work is part of a program to calculate matrix elements for leptonic and semileptonic decays, neutral-meson mixing, and quarkonium. So far, these lattice QCD calculations agree with experiment for the normalization of...
TABLE I: Notation for quark masses used in this Letter.

m	Description	Remain
m_c	Charmed quark	
m_s	Physical strange quark	
m_u	Physical up quark	
m_d	Physical down quark	
m_h	Simulation’s heavier sea quark	
m_l	Simulation’s lighter sea quark	
m_s	Simulation’s light valence quark	

D-meson semileptonic form factors $^{[12]}$ have predicted correctly the form-factor shape $^{[12]}$, as well as the mass of the B_c meson $^{[14]}$. In this set of calculations we use ensembles of unquenched lattice gauge fields generated by the MILC Collaboration $^{[4]}$, with lattice spacing $a = 0.175, 0.121, 0.086$ fm. The key feature of these ensembles is that they incorporate three flavors of sea quarks, one whose mass is close to that of the strange quark, and two with masses $0.175, 0.121, 0.086$ fm. The key feature of these ensembles is that they incorporate three flavors of sea quarks, one whose mass is close to that of the strange quark, and two with masses $0.175, 0.121, 0.086$ fm there are, respectively, 4, 5, and 2 ensembles $^{[4]}$, with various sea quark masses $^{[8]}$. The key feature of these ensembles is that they incorporate three flavors of sea quarks, one whose mass is close to that of the strange quark, and two with masses $0.175, 0.121, 0.086$ fm there are, respectively, 4, 5, and 2 ensembles $^{[4]}$. The larger simulation mass, m_h, is close to the physical strange quark mass m_s. The light pair’s mass m_l is not as small as those of the up and down quark in Nature, but the range $0.1m_s < m_l < 0.8m_s$ suffices to control the extrapolation in quark mass with chiral perturbation theory (χPT). For carrying out the chiral extrapolation, it is useful to allow the valence mass m_q to vary separately from the sea mass $^{[21]}$. At $a = 0.175, 0.121, 0.086$ fm we have, respectively, 6, 12, and 8 or 5 values of the valence mass, in the range $0.1m_s < m_q < m_s$. For carrying out the chiral extrapolation, it is useful to allow the valence mass m_q to vary separately from the sea mass $^{[21]}$. At $a = 0.175, 0.121, 0.086$ fm we have, respectively, 6, 12, and 8 or 5 values of the valence mass, in the range $0.1m_s < m_q < m_s$. A drawback of staggered fermions is that they come in four species, called tastes. The steps taken to eliminate three extra tastes per flavor are not (yet) proven, although there are several signs that they are valid. Calculations of f_{D^+} and f_{D_s} are sensitive to these steps: if Eqs. $^{[10]}$ and $^{[1]}$ agree with precise measurements, it should be more plausible that the techniques used to reduce four tastes to one are correct. For the charmed quark we use the Fermilab action for heavy quarks $^{[22]}$. Discretization effects are entangled with the heavy-quark expansion, so we use heavy-quark effective theory (HQET) as a theory of cutoff effects $^{[22]}$. This provides good control, as discussed in Ref. $^{[24]}$, and the framework has been tested with the (successful) prediction of the B_c meson mass $^{[2]}$. Nevertheless, heavy-quark discretization effects are the largest source of systematic error in f_{D^+}, and the second-largest in f_{D_s}. For the charmed quark we use the Fermilab action for heavy quarks $^{[22]}$. Discretization effects are entangled with the heavy-quark expansion, so we use heavy-quark effective theory (HQET) as a theory of cutoff effects $^{[22]}$. This provides good control, as discussed in Ref. $^{[24]}$, and the framework has been tested with the (successful) prediction of the B_c meson mass $^{[2]}$. Nevertheless, heavy-quark discretization effects are the largest source of systematic error in f_{D^+}, and the second-largest in f_{D_s}. The decay constant f_{D_s} for a D_s meson with light valence quark q and momentum p_{μ}, is defined by

$$
(0|A_\mu|D_s) = i f_{D_s} p_{\mu},
$$

where $A_\mu = \bar{q} \gamma_\mu \gamma_5 c$ is an electroweak axial vector current. The combination $\phi_q = f_{D_s} \sqrt{m_{D_s}}$ emerges directly from the lattice Monte Carlo calculations. As usual in lattice gauge theory, we compute two-point correlation functions $C_2(t) = \langle \bar{O}_{D_s}^\dagger(t) O_{D_s}(0) \rangle$, $C_A(t) = \langle A_i(t) O_{D_s}(0) \rangle$, where O_{D_s} is an operator with the quantum numbers of the charmed pseudoscalar meson, and A_i is the (lattice) axial vector current. The operators are built from the heavy-quark and staggered-quark fields as in Ref. $^{[27]}$. We extract the D_q mass and the amplitudes $\langle D|O_{D_q}|0 \rangle$ and $\langle 0|A_4|D \rangle$ from fits to the known t dependence. Statistical errors are determined with the bootstrap method, which allows us to keep track of correlations. The lattice axial vector current must be multiplied by a renormalization factor $Z_{A_4}^{\rho}$ $^{[20]}$. We write $Z_{A_4}^{\rho} = \rho_{A_4}^{\rho} (Z_{Vqq}^{\rho} Z_{Vq}^{\rho})^{1/2}$, because the flavor-conserving renormalization factors Z_{Vqq}^{ρ} and Z_{Vq}^{ρ} are easy to compute nonperturbatively. The remaining factor $\rho_{A_4}^{\rho}$ should be close to unity because the radiative corrections mostly cancel $^{[25]}$. A one-loop calculation gives $\rho_{A_4}^{\rho} = 1.052, 1.044$, and 1.032 at $a = 0.175, 0.121, 0.086$ fm. We estimate the uncertainty of higher-order corrections to be $2 \alpha_s (\rho_{A_4}^{\rho} - 1) \approx 1.3%; \alpha_s$ is the strong coupling. The heart of our analysis is the chiral extrapolation, from the simulated to the physical quark masses. It is necessary, and non-trivial, because the cloud of “pions” surrounding the simulated D_q mesons is not the same as for real pions. With staggered quarks the (squared) pseudoscalar meson masses are

$$
M_{ab,\xi}^2 = (m_a + m_b)\mu + a^2 \Delta_\xi,
$$

where m_a and m_b are quark masses, μ is a parameter of χPT, and the representation of the meson under the taste symmetry group is labeled by $\xi = P, A, T, V, I$ $^{[30]}$. A symmetry as $m_a, m_b \to 0$ ensures that $\Delta_\nu = 0$. The “pion” cloud in the simulation includes all these pseudoscalars. According to next-to-leading order χPT the decay constant takes the form

$$
\phi_q = \Phi \left[1 + \Delta f_q (m_q, m_l, m_h) + p_q (m_q, m_l, m_h) \right],
$$

where Φ is a quark-mass-independent parameter. Δf_q arises from loop processes involving light pseudoscalar mesons, and p_q is an analytic function. To obtain them one must take into account the flavor-taste symmetry of the simulation $^{[30]}$ and the inequality (in general) of the valence and sea quark masses $^{[21]}$. One finds $^{[31]}$

$$
\Delta f_q = \frac{1 + 3g^2}{2(4\pi f_\pi)^2} \left[h_q + h_q^I + a^2 \left(\delta_q^I h_q^I + \delta_q^V h_q^V \right) \right],
$$
where $f_\pi \approx 131$ MeV is the pion decay constant, g is the $D^-D^\pi-\pi$ coupling [32], and δ_q, δ'_q, parametrize effects that arise only at non-zero lattice spacing [33]. The terms h_q, h'_q, h_q^Λ, and h_q^ν are functions of the pseudoscalar meson masses. The last two, h_q^Λ and h_q^ν, are too cumbersome to write out here. It is instructive to show the other two, h_q and h'_q, when $m_q = m_l$ or m_h:

$$h_q = \frac{1}{m} \sum \xi n_\xi [2I(M^2_{q\ell,\xi}) + I(M^2_{qh,\xi})],$$

$$h'_q = -\frac{3}{2}I(M^2_{hll,\xi}) + \frac{3}{2}I(M^2_{hlh,\xi}),$$

$$h^\Lambda_q = -I(M^2_{hhh,l,\xi}) + \frac{2}{3}I(M^2_{hhh,h,\xi}),$$

where $I(M^2) = M^2 \ln M^2 / \Lambda^2$ (with Λ the chiral scale), and $M^2_{hll,\xi} = (M^2_{hlh,\xi} + 2M^2_{hhh,l})/3$. The term h'_q receives contributions only from taste-singlet mesons (representation I). The term h_q receives contributions from all representations, with multiplicity $n_\xi = 1, 4, 6, 4, 1$ for $\xi = P, A, T, V, I$, respectively. The analytic function is

$$p_q = (2m_l + m_h) f_1(\Lambda_A) + m_q f_2(\Lambda_S) + O(a^2),$$

where f_1 and f_2 are quark-mass-independent parameters. They are essentially couplings of the chiral Lagrangian, and their Λ_A dependence must cancel that of Δf_q. This specifies $O(a^2)$ terms proportional to f_1 and f_2, which can be removed after our fit. We estimate the remaining $O(a^2)$ effects of light quarks to be small: around 4% at $a = 0.121$ fm and 1.4% at $a = 0.086$ fm.

The salient feature of the chiral extrapolation of ϕ_q is that Δf_q contains a “chiral log” $I(2m_q \mu) \sim m_q \ln m_q$, which has a characteristic curvature as $m_q \to 0$. Equations (11)–(13) show that the chiral log is diluted by discretization effects, because $a^2 \Delta \phi_q \neq 0$ for $\xi \neq P$.

We can now discuss how we carry out the chiral extrapolation. Recall that we compute ϕ_q for many combinations of the valence and light sea quark masses. At each lattice spacing, we fit all results for ϕ_q to the mass dependence prescribed by Eqs. (11)–(13). Of the twelve parameters, eight—μ, the four non-zero $\Delta\xi$, f_2, δ_A, and δ'_{ν}—appear in the chiral PT for light pseudoscalar mesons. We constrain them with prior distributions whose central value and width are taken from the PT analysis of pseudoscalar meson masses and decay constants on the same ensembles of lattice gauge fields [33]. The rest—Φ, g^2, f_1, and f_2—appear only for charmed mesons. We constrain g^2 to its experimentally measured value, within its measured uncertainty [33]. Thus, only three parameters—Φ, f_1, and f_2—are determined solely by the ϕ_q fit. To obtain physical results we reconstitute the fit setting the light sea quark mass $m_l \to (m_a + m_d)/2$, and $\Delta \xi = \delta_{A,V} = 0$.

For $\phi_{d/s}$ we set the light valence mass $m_q \to m_d (m_s)$.

To isolate the uncertainties of the chiral extrapolation from other sources of uncertainty, we consider the ratio $R_{q/s} = \phi_q / \phi_s$. Figure 1 shows $R_{q/s}$ at $a = 0.121$ fm as a function of m_q/m_s, projected onto $m_q = m_l$. The gray (red) curve is the result of the full fit of ϕ_q to the separate sea- and valence-mass dependence. The black curve, and the extrapolated value at $m_q/m_s = 0.05$, results from setting $\Delta \xi = \delta'_{A,V} = 0$ when reconstituting the fit. At the other lattice spacings we obtain similar results.

The precision after the chiral extrapolation is, however, a bit illusory. We tried several variations in the fit procedure: fitting the ratio directly; adding terms quadratic in the quark masses to Eq. (10); variations in the widths of the prior constraints of the parameters. When these possibilities are taken into account, the extrapolated value of $R_{d/s}$ varies by 5%, which we take as a systematic uncertainty. This variation could be reduced with higher statistics at the lightest sea quark masses.

The lattice spacing dependence of $\phi_s = f_{D_s} \sqrt{m_{D_s}}$ is shown in Fig. 2. The (blue) circles are the main results. In a preliminary report of this work [3] the $O(a^2)$ terms in ϕ_s were not removed. The (red) squares illustrate the effect of omitting this step. As one can see, the effect is small at $a = 0.086$ fm, but it is the main reason why the results in Eqs. (11) and (12) are smaller than in Ref. [3].

The PT expressions for ϕ_q assume that the D_q meson is static. Since its mass is around 1900 MeV and the pseudoscalars are a few hundred MeV, this is a good starting point. Some corrections to this approximation can be absorbed into the fit parameters, with no real change in the analysis. A more interesting change arises in the one-loop self-energy diagrams, for which the function $I(M^2)$ is modified, and depends on $m_{D*} - m_D$ as well as M. By replacing our standard extrapolation by one using the modified function, we estimate the associated
error to be 1.5% or less. Finite-volume effects also modify $I(M^2)$: based on our experience with f_π and f_K \cite{23,24} and on continuum χPT \cite{23}, we estimate a further error of 1.5% or less.

Although χPT is able to remove (most of) the light-quark discretization errors, heavy-quark discretization effects remain. We estimate this uncertainty using HQET as a theory of cutoff effects \cite{23,24}. To arrive at a numerical estimate, one must choose a typical scale Λ for the soft interactions; we choose $\Lambda \approx 500$–700 MeV. We then estimate a discretization uncertainty of 2.7–4.2% at $a = 0.086$ fm. Similarly, the results at $a = 0.121$ fm are expected to lie within 1–2% of those at $a = 0.086$ fm.

Because we cannot disentangle heavy- and light-quark discretization effects, to quote final results we average the results at $a = 0.086$ and 0.121 fm. We then find

$$R_{d/s} = 0.786(04)(05)(04)(42)$$

$$\phi_s = 0.349(05)(10)(15)(14) \text{ GeV}^{3/2},$$

which are the principal results of this work. The uncertainties (in parentheses) are, respectively, from statistics, input parameters a and m_s, heavy-quark discretization effects, and chiral extrapolation. A full error budget is in Table \ref{tab:1} all uncertainties are reducible in future work. The results for f_{D^+} and f_{D_s} in Eqs. \ref{eq:1} and \ref{eq:2} are obtained via $f_{D_s} = \phi_s/\sqrt{m_{D_s}}$, $f_{D^+} = R_{d/s}\phi_s/\sqrt{m_{D^+}}$, by inserting the physical meson masses.

Present experimental measurements, $f_{D^+} = 202 \pm 41 \pm 17 \text{ MeV}$ \cite{22} and $f_{D_s} = 267 \pm 33 \text{ MeV}$ \cite{23}, are not yet precise enough to put our results in Eqs. \ref{eq:1} and \ref{eq:2} to a stringent test. The anticipated measurements of f_{D^*} and f_{D_s} from CLEO-c are therefore of great interest. If validated, our calculation of f_{D^+} has important implications for flavor physics. For B physics it is crucial to compute the decay constant f_B. To do so, we must simply change the heavy quark mass. In fact, heavy-quark discretization effects, with the Fermilab method, are expected to be smaller, about half as big.

We thank the U.S. National Science Foundation, the Office of Science of the U.S. Department of Energy, Fermilab, and Indiana University for support, particularly for the computing needed for the project. Fermilab is operated by Universities Research Association Inc., under contract with the U.S. Department of Energy.

Note added: After this Letter was submitted, the CLEO-c Collaboration announced a new measurement, $f_{D^+} = 223 \pm 16^{+5}_{-6}$ MeV \cite{23}.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{source} & \textbf{$R_{d/s}$} & \textbf{ϕ_s} & \textbf{ϕ_L} \\
\hline
statistics & 0.5 & 1.4 & 1.5 \\
input parameters a and m_c & 0.6 & 2.8 & 2.9 \\
higher-order $\rho\alpha^2$ & 0 & 1.3 & 1.3 \\
heavy-quark discretization & 0.5 & 4.2 & 4.2 \\
light-quark discretization and χPT fits & 5.0 & 3.9 & 6.3 \\
static χPT & 1.4 & 0.5 & 1.5 \\
finite volume & 1.4 & 0.5 & 1.5 \\
\hline
\textbf{total systematic} & 5.4 & 6.5 & 8.5 \\
\hline
\end{tabular}
\caption{Error budget (in per cent) for $R_{d/s}$, ϕ_s, ϕ_L.}
\end{table}

\begin{thebibliography}{99}
\bibitem{1} See, for example, the CKM Unitarity Triangle Workshop, http://ckm2005.ucsd.edu/.
\bibitem{2} V. Lubicz, Nucl. Phys. Proc. Suppl. 140, 48 (2005); M. Wingate, ibid. 140, 68 (2005).
\bibitem{3} C. T. H. Davies et al., Phys. Rev. Lett. 92, 022001 (2004).
\bibitem{4} G. Bonvicini et al., Phys. Rev. D 70, 112004 (2004).
\bibitem{5} For a preliminary report of this work, see J. N. Simone et al., Nucl. Phys. Proc. Suppl. 140, 443 (2005).
\bibitem{6} M. Wingate et al., Phys. Rev. Lett. 92, 162001 (2004).
\bibitem{7} For example, A. X. El-Khadra et al., Phys. Rev. D 58, 014506 (1998); C. Bernard et al., ibid. 66, 094501 (2002).
\bibitem{8} C. Aubin et al., Phys. Rev. D 70, 031504 (2004).
\bibitem{9} C. Aubin et al., Phys. Rev. D 70, 114501 (2004).
\bibitem{10} M. Di Pierro et al., Nucl. Phys. Proc. Suppl. 129, 328 (2004).
\bibitem{11} M. Di Pierro et al., Nucl. Phys. Proc. Suppl. 129, 340 (2004).
\bibitem{12} C. Aubin et al., Phys. Rev. Lett. 94, 011601 (2005).
\bibitem{13} M. Okamoto et al., Nucl. Phys. Proc. Suppl. 140, 461 (2005); C. Aubin et al., in preparation.
\bibitem{14} I. F. Allison et al., Phys. Rev. Lett. 94, 172001 (2005).
\bibitem{15} M. Ablikim et al., Phys. Lett. B 597, 39 (2004).
\bibitem{16} G. S. Huang et al., Phys. Rev. Lett. 94, 011802 (2005).
\bibitem{17} J. M. Link et al., Phys. Lett. B 607, 233 (2005).
\bibitem{18} D. Acosta et al., hep-ex/0505076
\bibitem{19} C. Bernard et al., Phys. Rev. D 64, 054506 (2001); C. Aubin et al., ibid. 70, 094505 (2004).
\bibitem{20} T. Blum et al., Phys. Rev. D 55, 1133 (1997); K. Orginos and D. Toussaint, ibid. 59, 014501 (1999); J. Lagie and D. Sinclair, ibid. 59, 014511 (1999); G. P. Lepage, ibid. 59, 074502 (1999); K. Orginos, D. Toussaint and R. L. Sugar, ibid. 60, 054503 (1999); C. Bernard et al., ibid. 61, 111502 (2000).
\bibitem{21} C. Bernard and M. Golterman, Phys. Rev. D 49, 486 (1994); S. R. Sharpe and N. Shoresh, ibid. 62, 094503 (2000).
\bibitem{22} A. X. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, Phys. Rev. D 55, 3933 (1997).
\bibitem{23} A. S. Kronfeld, Phys. Rev. D 62, 014505 (2000).
\bibitem{24} A. S. Kronfeld, Nucl. Phys. Proc. Suppl. 129, 46 (2004).
\bibitem{25} S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
\bibitem{26} M. Wingate et al., Phys. Rev. D 67, 054505 (2003)
\bibitem{27} A. X. El-Khadra et al., Phys. Rev. D 64, 014502 (2001).
\bibitem{28} J. Harada et al., Phys. Rev. D 65, 094513 (2002).
\bibitem{29} M. Nobes et al., private communication.
\bibitem{30} W. Lee and S. Sharpe, Phys. Rev. D 60, 114503 (1999); C. Bernard, ibid. 65, 054031 (2002); C. Aubin and C. Bernard, ibid. 68, 034014 (2003); 68, 074011 (2003).
\bibitem{31} C. Aubin and C. Bernard, Nucl. Phys. Proc. Suppl. 140, 491 (2005).
\bibitem{32} B. Grinstein et al., Nucl. Phys. B 380, 369 (1992); J. L. Goity, Phys. Rev. D 46, 3929 (1992).
\bibitem{33} A. Kronfeld and S. Ryan, Phys. Lett. B 543, 59 (2002).
\end{thebibliography}
[34] A. Anastassov et al., Phys. Rev. D 65, 032003 (2002).
[35] D. Arndt and C.-J. Lin, Phys. Rev. D 70, 014503 (2004).
[36] M. Artuso et al., hep-ex/0508057.