Laminopathies present a wide range of diseased phenotypes

Mutations affecting the EMD gene that encodes the inner nuclear membrane-associated protein emerin cause the X-linked form of Emery-Dreifuss muscular dystrophy (EDMD1). An indistinguishable disease phenotype (EDMD2) is caused by mutations in the LMNA gene encoding lamin A/C. The finding that the altered expression of two different proteins located at the nuclear envelope causes a similar diseased phenotype affecting the contractile tissues suggested the existence of a common pathogenic mechanism. Mutations in LMNA cause several tissue-specific diseases: the autosomal dominant form of EDMD, the autosomal recessive form of EDMD, the limb-girdle muscular dystrophy type 1B (LGMD 1B), the dilated cardiomyopathy and conduction-system disease (CMD-CD), the Dunningan-type familial partial lipodystrophy (FPLD2), and the Charcot-Marie Tooth disease type 2 (CMT 2B1). Each disease selectively strikes one or more specific tissues, including skeletal and cardiac muscle, tendons, adipose tissue, and peripheral neurons.

A further group of laminopathies has been then identified, characterized by a systemic involvement of almost all the tissues, which undergo premature senescence. The progeric laminopathies include the Hutchinson-Gilford progeria syndrome (HGPS),9,10 atypical progeroid syndrome,11 mandibulofacial dysplasia (MADA),12 and restrictive dermopathy (RD).13

Typical nuclear abnormalities consisting of altered nuclear envelope/lamina structure and focal loss of heterochromatin are observed in fibroblasts, myoblasts and muscle tissue from EDMD1 patients.14,15 Characteristic non-uniform distribution of both lamin A/C and emerin have been reported in skin fibroblasts from EDMD2 patients.16,17 Ultrastructural alterations include nuclear lamina thickening, nuclear pore clustering,16 as well as focal absence of heterochromatin and loss of contact between heterochromatin and the nuclear lamina.16,18 No accumulation of abnormal prelamin A has been found in either biopsies or cultured cells from EDMD2 patients.19 Fibroblasts from FPLD2 patients present characteristic nuclear alterations, due to the accumulation of abnormal amounts of prelamin A.20 The dysmorphic FPLD2 nuclei present intranuclear prelamin A aggregates, an enlarged and irregular nuclear profile, and a reduced amount of peripheral heterochromatin.22

In dermal fibroblasts from HGPS, a-WS and MADA patients, typical nuclear alterations have been observed, mainly consisting in local or total loss of peripheral heterochromatin, associated with blebs and invaginations of the nuclear lamina.22,23 In HGPS cells, the worsening of chromatin alterations have been reported to increase with the age of the patient, as well as with the increasing amount of prelamin A.23,24,25 The cellular phenotype of RD, determined by accumulation of farnesylated prelamin A, causes severe nuclear envelope and chromatin abnormalities.27

Pathogenic mechanisms

The impressive variety of disease phenotypes of laminopathies rises the question of how mutation of a gene expressed in nearly every differentiated cell could give rise to many tissue-restricted pathologies. Besides their role in maintaining, in association with B-type lamins, the mechanical stability of the nuclear envelope (NE) throughout the phases of the cell cycle, A-type lamins and associated NE proteins represent scaffolds for molecular interaction with elements that regulate DNA synthesis and repair, higher-order chromatin organization, nuclear positioning, gene transcription, and cell differentiation.24,25 Many of these functions involve lamin A interplay with signal transduction pathways, transcription factors and chromatin-associated proteins. On this basis, different pathogenic mechanisms of laminopathies have been proposed which include: nuclear envelope defects affecting nuclear stiffness,26,27 nuclear envelope defects as determinants of altered nuclear-cytoplasmic

[page 284] [European Journal of Histochemistry 2012; 56:e45]
Interplay of pre-mRNA splicing and cleavage is impaired in muscular laminopathies. It has been recently reported, by means of wild-type lamin A and to defective lamin phosphorylation,42 altered pRB-mediated activation of cellular differentiation,59 excess accumulation of phosphorylated Smad2 and Smad3 in nuclei,51 It is also conceivable that, as it has been reported in sarcopenia and myotonic dystrophy,46 pre-mRNA splicing and cleavage is impaired in muscular laminopathies.

Altered DNA repair due to oxidative stress

Oxidative stress refers to a cell state where the production of reactive oxygen species (ROS), mainly produced by mitochondria and NADPH oxidases, is higher than its removal. In response to oxidative stress, the gene expression is modulated in order to activate various redox-transcription factors, such as Rb, p53, NF-κB and FoxO;52 however, whilst oxidants in the cytoplasm are able to activate this redox signalling, oxidative stress in the nucleus blocks this process.53

Recent evidence points to a relationship between lamin mutation and altered ROS metabolism.54 Accumulation of farnesylated prelamin A in progeric laminopathies induces excessive ROS and reduces the level of antioxidant enzymes.55,56 Apart from a direct damaging effect to coding sequences, ROS can affect the lamin structure, thus promoting cellular senescence and susceptibility to ROS.55 Downstream effects of ROS include persistent DNA damage,56 and telomere shortening.57 Mechanisms that have been suggested to be involved into the pathogenesis of laminopathies. ROS accumulate at a higher rate in HGPS fibroblasts, as well as in normally aged fibroblasts;58 this may contribute to increased levels of DNA damage and may trigger senescence in HGPS cells.59 Moreover, oxidative stress appears involved in the pathogenesis of FPLD, whose fibroblasts undergo p16-dependent senescent arrest.53 Impaired DNA repair, and genomic instability also characterize MEFs of Zmpste24-null mice, as well as bone marrow cells and HGPS or RD fibroblasts undergoing premature senescence.60 Fibroblasts from HGPS and MADA patients show increased amounts of basal phosphorylated histone variant H2AX (γH2AX), a marker of DNA damage sites.61 Gamma-H2AX colocalizes with XPA foci, an essential factor of nucleotide excision repair (NER) and not with double-strand breaks (DBSs), suggesting that the damage in HGPS cells may be different from that accrued by other genotoxic agents.62 Furthermore, fibroblasts from HGPS patients show a marked delay in the recruitment of p53 binding protein 1 (53BP1) to sites of DNA repair.61 A dysfunctional lamina may influence ROS in several ways, because the lamina serves a docking site for transcription factors and chromatin-associated proteins.53 In HGPS fibroblasts and in ZMPSTE24−/− MEFs the recruitment of the repair factor p53-binding protein (53BP1) to sites of DNA damage is impaired, as well as the presence of fragmented DNA after irradiation.63 Expression of HGPS mutant lamin A in HeLa cells increases the levels of phosphorylated histone H2AX (γH2AX), a hallmark of double strand breaks, and this is correlated with defects in DNA repair.56 Other DNA damage signalling pathways, including ATM and ATR kinases as well as Rad50 and Rad51, are affected in HGPS and RD fibroblasts.53 These findings suggest that defects in the DNA repair machinery are due to expression of abnormal levels of farnesylated prelamin A in progeric laminopathies. DNA damage-initiated genomic instability as well as p53-mediated cell senescence and apoptosis in response to DNA damage may contribute to aging.64 In a recent study, it has been demonstrated that whilst the DNA damage induced by etoposide could be repaired in progeroid fibroblasts, many of double strand breaks (DSB) induced by ROS are unreparable. Moreover, because the treatment with a ROS scavenger can reduce the amount of DSB, it has been suggested that the accumulation of un-repairable DNA damages could be mainly due to the ROS-generating environment present in progeroid fibroblasts.65 As far as the mechanism leading to DBS in laminopathic cells is concerned, it has been hypothesized that, in normal condition, the nuclear lamina could represent a nuclear shield against ROS, being a preferential docking site for ROS defusing enzymes, such as
Molecular targets for a pharmacological treatment of laminopathies

Farnesylated lamin A exerts a dominant effect on the pathophysiology of HGPS and MAD; thus, farnesyl transferase inhibitors (FTIs) can block prelamin A processing and reduce the percentage of cells with misshapen nuclei and recover nuclear transcription activity.

Signaling pathway required to maintain normal stem cell function have been reported to be perturbed in cells expressing high levels of unprocessed prelamin A. In particular, expression of progerin activates downstream effectors of the Notch signalling pathway and alters the differentiation potential of stem cells. Alterations of signalling pathways involved in regulation of stem cells, such as Wnt, have been reported in Zmpste24 null mice. FTI treatment of HGPS cells did not result in a reduction in DNA double strand breaks and damage checkpoint signalling, suggesting that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes due to accumulation of progerin. Ideally, the therapy of progeroid syndromes needs to achieve both restoration of nuclear morphology and transcriptional ability, as well as improvement of DNA damage repair mechanisms. Amino-bisphosphonates (N-BPs), that are used to prevent osteoporosis and the risk of pathological fractures in bone malignancies, act as inhibitors of farnesyl-phosphophate synthase, thus reducing the synthesis of both geranylgeranyl and farnesyl groups. Their use, in combination with statins, reduces nuclear defects and partly rescues the disease phenotype in Zmpste24 null mice. Pharmacological inhibitors of ERK1/2, whose hyperactivation has been related to the pathogenesis of DCM in EDMD, have been found to block the development of cardiomyopathy in Lmna^{−/−} mice, before the appearance of clinical symptoms. We have recently reported that activation of the MTOR-dependent autophagic pathway using rapamycin can counteract progerin accumulation in HGPS cells, leading to the rescue of the chromatin phenotype of senescent cells. The availability of a drug capable of triggering degradation of farnesylated prelamin A paves the way to the treatment of other laminopathies featuring accumulation of farnesylated prelamin forms different from progerin. The treatment of progeroid fibroblasts with the ROS scavenger N-acetyl cysteine (NAC) has been demonstrated to reduce the levels of un-repairable DSB and to improve their growth rate in culture. Because the ROS-generating environment is the primary cause of the accumulation of unrepairable DNA damage, the use of ROS scavengers in conjunction with FTIs might improve quality of life for progeric laminopathic patients.

The recent demonstration that pargyline, an MAO inhibitor, is able to reduce ROS accumulation and exerts a beneficial effect on the dystrophic phenotype in mice models of collagen VI and Duchenne myopathies, adds evidence of the pivotal role of mitochondrial dysfunction in different muscular dystrophies and suggest a therapeutic potential for MAO inhibitors also in laminopathies. Determining the molecular mechanisms by which the loss of A-lamins impacts on the different pathways regulating chromatin rearrangements, and DNA repair in the presence of increased ROS production, will be fundamental not only for understanding the pathogenic mechanisms but also for the development of further therapeutic strategies to treat these diseases.
12. Novelli G, Muchir A, Sangiulio F, Hebling-Leclerc A, D’Apice MR, Massart C, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA encoding lamin A/C. Am J Hum Genet 2002;71:426-31.

13. Navarro CI, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Genevieve D, et al. Lamin A and ZMPSTE24 (FACE-1) defects cause lamin disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet 2004;13:2493-2503.

14. Ognibene A, Sabatelli P, Petrini S, Squarzoni S, Riccio M, Santi S, et al. Nuclear changes in a case of X-linked Emery-Dreifuss muscular dystrophy. Muscle Nerve 1999;22:864-9.

15. Maraldi NM, Lattanzi G, Sabatelli P, Ognibene A, Squarzoni S. Functional domains of the nucleus: implications for Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2002;12:815-23.

16. Sabatelli P, Lattanzi G, Ognibene A, Columbaro M, Capanni C, Menoli L, et al. Nuclear alterations in autosomal-dominant Emery-Dreifuss muscular dystrophy. Muscle Nerve 2001;24:826-9.

17. Maraldi NM, Lattanzi G, Capanni C, Columbaro M, Mattioli E, Sabatelli P, et al. Laminopathies: a chromatin affair. Adv Enzym Regul 2006;46:33-49.

18. Maraldi NM, Lattanzi G, Squarzoni S, Sabatelli P, Marmiroli S, Ognibene A, Manzoli FA. At the nucleus of the problem: nuclear proteins and disease. Adv Enzym Regul 2003;43:411-43.

19. Maraldi NM, Lattanzi G, Capanni C, Columbaro M, Menoli L, Mattioli E, et al. Nuclear envelope proteins and chromatin arrangement: a pathogenic mechanism for laminopathies. Eur J Histochem 2006;50:1-8.

20. Capanni C, Cenni V, Mattioli E, Sabatelli P, Ognibene A, Columbaro M, et al. Failure of lamin A/C to functionally assemble in R482L mutated familial partial lipodystrophy fibroblasts: altered intermolecular interaction with lamin A and implications for gene transcription. Exp Cell Res 2003;291:352-62.

21. Caron M, Auclair M, Donadille B, Berezial V, Guerci B, Laville M, et al. Human lipoproteins linked to mutations in A-type and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ 2007;14:1759-67.

22. Capanni C, Mattioli E, Columbaro M, Lucarelli E, Parnaik VK, Novelli G, et al. Altered prelamin A processing is a common mechanism leading to lipodystrophy. Hum Mol Genet 2005;14:1489-502.

23. Columbaro M, Capanni C, Mattioli E, Novelli G, Parnaik VK, Squarzoni S, et al. Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment. Cell Mol Life Sci 2005;62:2669-78.

24. Fieschi I, Gallotta L, Lattanzi G, D’Apice MR, Capanni C, Nardone AM, et al. Alterations of the nuclear envelope and chromatin organization in mandibuloacral dysplasia, a rare form of laminopathy. Physiol Genomics 2005;23:150-8.

25. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2004;101:8963-8.

26. Shumaker DK, Dechaj T, Kohlmayer A, Adam SA, Bozovsky MR, Erdos MR, et al. Nuclear alterations in autosomal-dominant Emery-Dreifuss muscular dystrophy. Muscle Nerve 2011;44:302-9.

27. Columbaro M, Mattioli E, Schena E, Capanni C, Cenni V, Levy N, et al. Prelamin A processing and functional effects in restrictive dermopathy. Cell Cycle 2010;9:4766-8.

28. Maraldi NM, Squarzoni S, Sabatelli P, Capanni C, Mattioli E, Ognibene A, et al. Laminopathies: involvement of structural nuclear proteins in the pathogenesis of a novel disease. J Cell Physiol 2005;203:319-27.

29. Maraldi NM, Mazzotti G, Rana R, Antonucci A, Di Primio R, Guidotti L. The nuclear envelope, human genetic diseases and ageing. Eur J Histochem 2007;51(Suppl.1):117-24.

30. Lammerding J, Schulze PC, Kozlov S, Stewart CI, Lee RT. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol 2006;170:781-91.

31. Maraldi NM, Lattanzi G. Involvement of prelamin A in laminopathies. Crit Rev Eukaryot Gene Expr 2007;17:317-34.

32. Cenni V, Sabatelli P, Mattioli E, Marmiroli S, Capanni C, Ognibene A, et al. Lamin A N-terminal phosphorylation is associated with myoblast activation: impairment in Emery-Dreifuss muscular dystrophy. J Med Genet 2005;42:214-20.

33. Cenni V, Bertacchini J, Beretti F, Lattanzi G, Bavello A, Riccio M, et al. Lamin A Ser404 is a nuclear target of Akt phosphorylation in C2C12 cells. J Proteome Res 2008;7:4727-35.

34. Malatesta M, Perdona F, Muller S, Zanconaro C, Pellicciari C. Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing. Eur J Histoch 2005;9:33-42.

35. Malatesta M, Giagacomo M, Renna LV, Cardani R, Meola G, Pellicciari C. Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. Eur J Histoch 2011;55:24-26.

36. Malatesta M, Meola G. Structural and functional alterations of the cell nucleus in skeletal muscle wasting: the evidence in situ. Eur J Histoch 2010;54:4-44.

37. Maraldi NM, Lattanzi G. Linkage of lamin A to fidelity of gene transcription. Crit Rev
54. Sieprath T, Darwiche R, De Vos WH. Lamins of the nuclear envelope invoke temporal changes in mitochondrial function. EMBO J 2008;27:3997-4007.
55. Palma E, Tiepolo T, Angelin A, Sabatelli P, Zamparelli A, et al. Cyclosporin A corrects mitochondrial dysfunction and prevents muscle apoptosis in patients with statins and aminobisphosphonates treatment. J Cell Physiol 2010;224:668-75.
56. Varen S, Niel F, Lacene E, et al. Nuclear shield: a three-dimensional in vitro model of nuclear lamina. J Cell Biol 2008;180:175-85.
57. Penard J, Vehling-Hendicks M. The role of free radicals in the pathophysiology of muscle dystrophy. J Appl Physiol 2007;102:1677-86.
58. Palma E, Tiepolo T, Angelin A, Sabatelli P, Maraldi NM, Basso E, et al. Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Hum Mol Genet 2009;18:241-7.
59. Maraldi T, Prata C, Caliceti C, Vieceli Dalla Sega F, Zambonin L, Feronti D, Hakim G. VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis. Int J Oncology 2010;36:1581-9.
60. Maraldi T, Riccio M, Zambonin L, Vinceti M, De Pol A, Hakim G. Low levels of selenium compounds are selectively toxic for a human neuron cell line through ROS/RNS increase and apoptotic process activation. Neurotoxicology 2011;32:180-7.
61. Bianchi P, Kunduzova O, Masini E, Cambienti B, Raimondi L, et al. Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and post-ischemic myocardial injury. Circulation 2005;112:3297-305.
62. Menazza S, Blauw B, Tiepolo T, Toniole L, Braghetta P, Spolaore B, et al. Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy. Hum Mol Genet 2010;19:4207-15.
63. Flynn MW, Glover MW. Incomplete process of mutation lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet 2005;14:2959-69.
64. Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 2008;10:452-9.
65. Escaja J, Varela I, Flores I, Ugaalde AP, Cadinanos J, Pendas AM, et al. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 2008;181:27-35.
66. Varela I, Pereira S, Ugaalde AP, Navarro C, Suarez MF, Cau et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 2008;14:767-72.
67. Muchir A, Pavlidis P, Bonne G, Hayashi YK, Worman HJ. Activation of MAPK in hearts of Emd null mice: similarities between mouse models of X-linked and autosomal dominant Emery-Dreifus muscular dystrophy. Hum Mol Genet 2007;16:1834-95.
68. Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ. Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet 2009;18:241-7.
69. Zambonin L, Fiorentini D, Hakim G. Low levels of selenium compounds are selectively toxic for a human neuron cell line through ROS/RNS increase and apoptotic process activation. Neurotoxicology 2011;32:180-7.
70. Bianchi P, Kunduzova O, Masini E, Cambienti B, Raimondi L, et al. Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and post-ischemic myocardial injury. Circulation 2005;112:3297-305.
71. Menazza S, Blauw B, Tiepolo T, Toniole L, Braghetta P, Spolaore B, et al. Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy. Hum Mol Genet 2010;19:4207-15.
72. Flynn MW, Glover MW. Incomplete process of mutation lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet 2005;14:2959-69.
73. Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 2008;10:452-9.
74. Escaja J, Varela I, Flores I, Ugaalde AP, Cadinanos J, Pendas AM, et al. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 2008;181:27-35.
75. Varela I, Pereira S, Ugaalde AP, Navarro C, Suarez M, Cau et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 2008;14:767-72.
76. Muchir A, Pavlidis P, Bonne G, Hayashi YK, Worman HJ. Activation of MAPK in hearts of Emd null mice: similarities between mouse models of X-linked and autosomal dominant Emery-Dreifus muscular dystrophy. Hum Mol Genet 2007;16:1834-95.
77. Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ. Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet 2009;18:241-7.