INVESTIGATION OF THE MECHANICAL PROPERTIES OF ABS-BASED 3D PRINTED SCAFFOLDS BY USING THE SOFTWARE SOLIDWORKS 2020

Abstract: 3D printing techniques are becoming state-of-the-art techniques in the field of engineering research, enabling for the rapid and low-cost creation of prototypes and components using computer-aided design (CAD). In addition, interest to 3D printed scaffolds is also increasing in using these techniques in a clinical setting to create anatomically 3D printed models from medical imaging for research, training, and teaching. We discuss the benefits of common features of 3D printing and 3D printed scaffolds for patient education, healthcare professional education, interventional planning, and implant creation in this article. We also try to explain how to learn mechanical properties of 3D printed Acrylonitrile Butadiene Styrene (ABS)-based scaffolds during the printing and post printing and how to prepare them for 3D printing by using software Solidworks 2020. We preferred use ABS-based scaffold as example. We hope this knowledge will be of use to researchers, teachers and students with little or no previous experience in 3D printing scaffolds processing who have identified a potential application for 3D printing in a medical context, or those with a more general interest in the techniques.

Key words: 3D bioprinting, 3D printed scaffolds, ABS based material, Scaffolds, printable biomaterials, biodegradable materials, mechanical properties, stress and strain, Young module.

Language: English

Citation: Umarova, G. A., Juraev, D. D., Batirov, B. B., Rustamova, G. A., & Tursunboyev, M. A. (2021). Investigation of the mechanical properties of ABS-based 3D printed scaffolds by using the software solidworks 2020. ISJ Theoretical & Applied Science, 12 (104), 701-707.
Introduction

Currently there are shortage in bone implants three of the most important characteristics of living tissues: 1) the ability to self-regeneration; 2) the ability to maintain a blood supply; and 3) the ability to modify their structure and properties in response to environmental factors such as mechanical load. As we know, the tissue engineering is a multi-disciplinary field that includes cell and molecular biology, materials science, chemical and mechanical engineering, chemistry and physics. In turn, mechanical and thermal feature of them is considered one of the most priority property. For instance mechanical load, stress and strength, bending coefficient, Young module, breaking point and liner extension coefficient from heat. To achieve the required functionality, the scaffolds must be: 1) biocompatible, maintain and facilitate cell functionality, and match the growth of cells and tissues; 2) have sufficient mechanical strength to support structural integrity.

Resorbable materials are those that dissolve when they come into touch with body fluids and can then be secreted through the kidneys. Polymers that breakdown through chain scission, such as polyglycolic (PGA) and polyactic acids (PLLA), and their co-polymers, are the most prevalent biomedical resorbable materials, and are commonly used as sutures. There are some bioceramics that they are also resorbable in vivo, for instance calcium phosphates.

Bioactive materials

Bioactive materials cause the body to respond biologically, such as tissue bonding. This days known two classes of bioactive materials: osteoconductive and osteoproducive. Osteoconductive materials bond to hard tissue (bone) and stimulate bone growth along the surface of the bioactive material, e.g. synthetic hydroxyapatite and tri-calcium phosphate ceramics. Bioactive glasses, for example, which can connect to soft tissue such as gingival (gum) and cartilage, are osteoproducive materials that induce the formation of new bone on the material away from the bone/implant interface. The mechanism of bone bonding to bioactive materials is thought to be due to the formation of a hydroxyapatite layer (HA) on the surface of the materials after immersion in body fluid. This layer is similar to the apatite layer in bone and therefore a strong bond can form. The layer forms quickest on osteoproducive materials.

1.1 Classes of potential scaffold materials.

When materials are implanted, they have a biological response from the body. Many are poisonous to the body, whereas others are biocompatible (not toxic). Biocompatible materials are divided into three categories: bioinert, resorbable, and bioactive.

ABS or Acrylonitrile butadiene styrene is a common thermoplastic polymer typically used for injection molding applications. This engineering plastic is popular due to its low production cost and the ease with which the material is machined by plastic manufacturers.

Bioinert materials

We can not say all material is completely inert on implantation, but the only response to the implantation of bioinert materials is encapsulation of the implant by fibrous tissue (scar tissue). Samples of bioinert materials are medical grade alumina, zirconia, stainless steels and high-density polyethylene that are used in the total hip replacements. We can not say all material is completely inert on implantation, but the only response to the implantation of bioinert materials is encapsulation of the implant by fibrous tissue (scar tissue). Samples of bioinert materials are medical grade alumina, zirconia, stainless steels and high-density polyethylene that are used in the total hip replacements.

Resorbable materials

Resorbable materials are those that dissolve when they come into touch with body fluids and can then be secreted through the kidneys. Polymers that breakdown through chain scission, such as polyglycolic (PGA) and polyactic acids (PLLA), and their co-polymers, are the most prevalent biomedical resorbable materials, and are commonly used as sutures. There are some bioceramics that they are also resorbable in vivo, for instance calcium phosphates.
The polymers that can be used for supercritical fluid gassing must have an high amorphous fraction. Polymer granules are plasticised due to the use of a gas, such as nitrogen or carbon dioxide, at high pressures. The dissolution of the gas into the polymer matrix results in a reduction of the viscosity, which allows the processing of the amorphous bioresorbable polyesters in a temperature range of 30–40 °C. However, on average, only 10–30% of the pores are interconnected.

2. Materials and methods (Experimental section)

2.1. Materials.

Drying treatment: Drying treatment before processing is necessary. The humidity should be less than 0.04%, and the recommended drying condition is 90–110°C, 2–4 hours. Melting temperature: 230–300 °C. Mold temperature: 50–100°C. Injection pressure: depends on the plastic part. Injection speed: as high as possible.

ABS is widely used as a material for 3D printing, as it is a strong and cheap thermoplastic. For 3D Printing purposes, ABS is extruded into Filament so it can be fed through the 3D printer. When being used in a 3D printer, ABS is often melted in a 3D printer at temperatures close to 240°C (463°F), as it very quickly melts it. ABS is only used in FF/FDM 3D printers, as resin 3D printers can not melt plastic.

2.2. Fabrication and design of the ABS scaffolds.

All 3D printed patterns and constructs were designed through Solidworks 2020 software. The information sets were at that point spared as stereolithography (STL) records and continued by utilizing Simplify 3D computer program to create a set of G-code for 3D printing. ABS filament through a heated extrusion head 175 μm diameter at 225 -C was preferred as filler for prototype. A close collection distance (0.5– 2 mm) enables the controllable deposition of melted ABS filament on a 110°C collection surface affixed to the stage with X-Y-Z linear motion. Respective modulation of X, Y and Z motion generated various patterns of ABS filament in a layer-by-layer manner. Two ABS scaffolds were designed and printed Anycubic 3D Printer. For the porous cylinder scaffolds, the scaffolds were produced directly from the printer. After that, the compacted rolling scaffold was fixed into a temperature-tunable holder, which was preheated to about 65 °C to soften the printed filaments and enhance the adhesion between different layers.
2.3. ABS scaffold characterization.

Acrylonitrile butadiene styrene (ABS) (chemical formula \((\text{C}_8\text{H}_8\text{N})\)) is a common thermoplastic polymer. Its glass transition temperature is approximately 220 °F (104 °C). ABS is amorphous and therefore has no true melting point.

ABS is a terpolymer made by polymerizing **styrene** and **acrylonitrile** in the presence of **polybutadiene**. The proportions can vary from 15% to 35% acrylonitrile, 5% to 30% butadiene and 40% to 60% styrene. The result is a long chain of polybutadiene crisscrossed with shorter chains of poly(styrene-co-acrylonitrile). The **nitrile** groups from neighboring chains, being polar, attract each other and bind the chains together, making ABS stronger than pure **polystyrene**. The acrylonitrile also contributes chemical resistance, fatigue resistance, hardness, and rigidity, while increasing the **heat deflection temperature**. The styrene gives the plastic a shiny, impervious surface, as well as hardness, rigidity, and improved processing ease. The polybutadiene, a rubbery substance, provides toughness and ductility at low temperatures, at the cost of heat resistance and rigidity. For the majority of applications, ABS can be used between -20 and 80 °C (-4 and 176 °F), as its mechanical properties vary with temperature. The properties are created by using **rubber toughening**, where fine particles of elastomer are distributed throughout the rigid matrix.

2.3.2. Porosity measurement

The porosity of the scaffolds (n = 3) was measured by using the Archimedes’ principle in D.I. H$_2$O. The porosity was calculated according to the following equation:

Porosity = \((\frac{W_{\text{sat}} - W_{\text{dry}}}{W_{\text{sat}} - W_{\text{air}}})\) \times 100\%

Where \(W_{\text{sat}}\) stands for the weight of scaffold saturated with water, \(W_{\text{dry}}\) is the dry weight of the scaffold, and \(W_{\text{air}}\) represents the weight of the scaffold suspended in water.

2.4. Mechanical testing

The mechanical properties of ABS-based 3D printed scaffolds were simulated by using Solidworks 2020 software. The stress-strain data were converted from the load-displacement data and the compressive modulus was found out from the slope of the stress-strain curve.

3. Results and discussion

3.2. Mechanical properties of the 3D ABS scaffolds

The mechanical properties of 3D structures are an important feature when considering the final application of the scaffolds. As shown in Fig. 2, the compressive stress of porous cylinder scaffolds were found to be 4.47 *106 N/m2, 4.02*106 N/m2 respectively. More specifically, the cylinder scaffold had the maximum compressive stress increased by 29.61 % and 61.23 % when compared with porous cylinder. The highest compressive stress of the cylinder scaffold was due to its solid structure. When the load was applied parallel to the stacking direction, layers were strongly connected to each other to increase the mechanical strength. In contrast, the porosity in the scaffolds causes a reduction in mechanical properties because it impairs the structural integrity of the scaffold, which as a result will not be suitable for load bearing. Generally, the higher the percentage of porosity, the lower the mechanical strength will be. In addition, the displacement modulus was calculated from the slope of the linear portion of the Stress-Strain curve. Fig. 3 exhibits the data corresponding to the Young’s modulus for the porous cylinder. Like the compressive stress, cylinder scaffold shows the largest Young’s modulus of 0.35 ± 0.04 GPa, while porous spiral with the highest porosity shows the smallest Young’s modulus of 0.19 ± 0.02 GPa. In this figure datas were given by descending order. Although porous cylinder scaffold present lower compressive stress and Young’s modulus, it is still appropriate for the bone regeneration. This is because the typical compressive stress of cancellous bone ranges from 0.5–85 MPa and its Young’s modulus is in the range of 0.01 to 0.2 Gpa.

Impact Factor:

- ISRA (India) = 6.317
- ISI (Dubai, UAE) = 1.582
- GIF (Australia) = 0.564
- JIF = 1.500
- SIS (USA) = 0.912
- ICV (Poland) = 6.630
- PIIHI (Russia) = 3.939
- PIF (India) = 1.940
- ESJI (KZ) = 9.035
- IBI (India) = 4.260
- SJIF (Morocco) = 7.184
- OAJI (USA) = 0.350

Philadelphia, USA

704
Impact Factor:

Journal	Impact Factor
ISRA (India)	6.317
ISI (Dubai, UAE)	1.582
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIHI (Russia)	3.939
ESJI (KZ)	9.035
SJIF (Morocco)	7.184
ICV (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260
OAJI (USA)	0.350

Fig. 2. compressive stress

Fig. 3. Displacement
4. Conclusion.
In this article, we tried to learn mechanical properties of ABS-based scaffolds and design and fabricate the ABS porous cylinder scaffold (as a model) by using the 3D printing method and Solidworks 2020 software. A porous cylinder scaffolds have an average pore size approximately of 928 nm and all pores were interconnected. The pores were large enough to improve cell implantation, new blood vessel infiltration, and high oxygenation. The porous cylinder scaffold with low porosity (around 30%) could be fabricated directly from the printer. However, in order to prepare high porosity scaffold, we worked on combined the traditional biofabrication method with the novel 3D printing, because the current 3D printing method cannot obtain a high-quality and well-structured scaffold with high porosity. The literature review showed that, the compressive properties of porous scaffolds were found to be appropriate within the range of human cancellous bone.

We tried to identify the young modulus, stress and strain, displacement of ABS porous cylinder scaffold (as a model) under the mechanical loading. All data and results were analyzed. At the next part of the research we are going to work on thermal and mechanical properties of PLA based scaffolds.

Acknowledgements
We would like to express our deep gratitude to Professor Idris Kabalci and Professor Ziyodulla Yusupov, for their patient guidance, enthusiastic encouragement of this work. Our grateful thanks are also extended to Mr. Tafuuq Abdullah, who is master student of the department of Biomedical engineering of Karabuk university, Avzalbek Iminov who is staff of Yoshlar Texnoparki in Andijan, Uzbekistan for them help in finding materials, references and doing the data analysis.

Conflicts and interest
If you will face to any conflicts during the read this work you should know they are only my mistakes which come from my inexperience. I will be happy if you share about your interests on the topic by this contact, dilmurod.juraev.92@gmail.com

References:
1. Xiaqing Zhou, Gan Zhou, Radoslaw Junka, Ningxiao Chang, Aneela Anwar, Haoyu Wang, Xiaojun Yu (n.d.). Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration
2. (n.d.). Retrieved from https://en.wikipedia.org/wiki/Acrylonitrile_buta diene_styrene#3D_Printing

Philadelphia, USA 706
Impact Factor:

Country	Impact Factor
ISRA (India)	6.317
ISI (Dubai, UAE)	1.582
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
ICV (Poland)	6.630
PIHHI (Russia)	3.939
PIF (India)	1.940
ESJI (KZ)	9.035
IBI (India)	4.260
SJIF (Morocco)	7.184
OAJI (USA)	0.350

1. (n.d.). Retrieved from https://www.polycase.com/techtalk/materials/abs-plastic.html

3. (n.d.). Retrieved from https://plasticextrusiontech.net/resources/what-is-abs-material

4. (n.d.). Retrieved from https://www.polycase.com/techtalk/materials/abs-plastic.html

5. Burg, K.J., Porter, S., & Kellam, J.F. (2000). Biomaterial developments for bone tissue engineering, *Biomaterials*, 21 (23) (2000), 2347–2359.

6. Goldberg, V.M., & Stevenson, S. (n.d.). Natural history of autografts and allografts, *Clin. Clin. Orthop. Related Res.*, 225 (1987), 7–16.

7. Pelker, R.R., & Friedlaender, G.E. (n.d.). Biomechanical aspects of bone autografts and allografts, *Orthop. Clin. N. Am.*, 18 (2) (1987), 235–239.

8. Liu, X., & Ma, P.X. (2004). Polymeric scaffolds for bone tissue engineering. *Ann. Biomed. Eng.*, 32 (3), 477–486.

9. Bose, S., Roy, M., & Bandyopadhyay, A. (2012). Recent advances in bone tissue engineering scaffolds. *Trends Biotechnol.*, 30 (10), 546–554.

10. Rakovsky, A., Gotman, I., Rabkin, E., Gutmanas, E.Y. (n.d.). B-TCP–polylactide composite scaffolds with high strength and enhanced permeability prepared by a modified salt leaching method. *J. Mech. Behav. Biomed. Mater.*, 32 (2014), 89–98.

11. Kim, H.J., Park, I.K., Kim, J.H., Cho, C.S., & Kim, M.S. (2012). Gas foaming fabrication of porous biphasic calcium phosphate for bone regeneration. *Tissue Eng. Regen. Med.*, 9 (2), 63–68.

12. Thadavirul, N., Pavasant, P., & Supaphol, P. (2014). Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. *J. Biomed. Mater. Res. A*, 102 (10), 3379–3392.

13. Akbarzadeh, R., & Yousefi, A.-M. (2014). Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. *J. Biomed. Mater. Res. Part B Appl. Biomater.*, 102 (6), 1304–1315.