Direct Photon Measurements at PHENIX

Wenqing Fan for the PHENIX Collaboration
Photons are a unique probe for QGP

- “Color blind” (do not experience strong interaction), provide a direct fingerprint of its creation point
- All thermal mediums emit radiation in the form of photons or low mass lepton pairs

Why photons?

- 80-90% of the photons are decay photons!
- Direct photon = Inclusive photon - decay photon
Early vs late emissions?

- Large yield & large v_2
 - Large yield: emissions from the early stage when temperature is high
 - Large v_2: emissions from the late stage when the collective flow is sufficiently built up

Challenging for current theoretical models to describe large yield and v_2 simultaneously!
New insights — direct photon in different systems

- A wealth of datasets available for direct photon analysis in PHENIX
 - 16 years of operation, 9 collision species, 9 collision energies

System	p+p	p+Au	d+Au	3He+Au	Cu+Cu	Cu+Au	Au+Au		
$\sqrt{s_{NN}}$ [GeV]	200	200	200	200	200	200	200	62.4	39

12/08/2020
Wenqing Fan — Zimanyi School 2020
New insights — direct photon in different systems

- A wealth of datasets available for direct photon analysis in PHENIX
 - 16 years of operation, 9 collision species, 9 collision energies

System	p+p	p+Au	d+Au	He+Au	Cu+Cu	Cu+Au	Au+Au	
$\sqrt{s_{NN}}$ [GeV]	200	200	200	200	200	200	62.4	39

- 3 different methods to measure photons
 - calorimeter method
 - EMCal
 - Tracking
 - eID

PHENIX Detector

- West
- Beam View
- East

12/08/2020

Wenqing Fan — Zimanyi School 2020
New insights — direct photon in different systems

- A wealth of datasets available for direct photon analysis in PHENIX
 - 16 years of operation, 9 collision species, 9 collision energies

System	p+p	p+Au	d+Au	³He+Au	Cu+Cu	Cu+Au	Au+Au		
$\sqrt{s_{NN}}$ [GeV]	200	200	200	200	200	200	200	62.4	39

- 3 different methods to measure photons
 - calorimeter method
 - γ
 - virtual γ method
 - $\gamma^* \rightarrow e^+ + e^-$
 - external conversion method
 - $\gamma \rightarrow e^+ + e^-$

PHENIX Detector

12/08/2020
Wenqing Fan — Zimanyi School 2020
Integrated low p_T direct photon yield — universal scaling

- Integrate the low p_T direct photons and use $dN_{ch}/d\eta$ to compare data from different beam energies, collisions species, and collision centralities

Universal scaling behavior in all A+A systems

$$dN_\gamma/dy = A \times (dN_{ch}/d\eta)^\alpha$$

Source of photons must be similar

PRL 123, 022301 (2019)
Integrated low p_T direct photon yield — universal scaling

- Integrate the low p_T direct photons and use $dN_{ch}/d\eta$ to compare data from different beam energies, collisions species, and collision centralities.

Universal scaling behavior in all A+A systems

$dN_\gamma/dy = A \times (dN_{ch}/d\eta)^\alpha$

Source of photons must be similar

$N_{coll} \times pQCD$ and $N_{coll} \times p+p$ follow same scaling at 0.1 of yield

More central collision, higher beam energy, heavier nuclei A.
Integrated low p_T direct photon yield — universal scaling

- Integrate the low p_T direct photons and use $dN_{\text{ch}}/d\eta$ to compare data from different beam energies, collisions species, and collision centralities.

Universal scaling behavior in all A+A systems

$$dN_\gamma/dy = A \times (dN_{\text{ch}}/d\eta)^\alpha$$

Source of photons must be similar

$N_{\text{coll}} \times p\text{QCD}$ and $N_{\text{coll}} \times p+p$ follow same scaling at 0.1 of yield

Onset of low p_T radiation excess at $dN_{\text{ch}}/d\eta \sim 10$?

PRL 123, 022301 (2019)

more central collision
higher beam energy
heavier nuclei A
Direct photon puzzle

- Experimental observations
 - Large yield of low p_T direct photons
 - Large anisotropic emission
 - Universal scaling with $\alpha \sim 5/4$
- Challenging to explain by thermal source

What is the main source for low p_T direct photons?
Towards precision measurement with the “golden dataset”

- Theoretically
 - Modification in thermal photon emission?
 - Modification in prompt photon emission?
 - Other sources of photons? (pre-equilibrium? hadronization? B field)

- Experimentally (to confirm and to study in more detail)
 - Experimental data needs more statistics
 - 2014 Au+Au dataset
 - More conversions at the PHENIX silicon vertex detector (VTX) \((X/X_0 \sim 14\%)\)
External conversion method

- Double ratio tagging method (\(R_\gamma > 1\) indicating direct photon signal)

\[
R_\gamma = \frac{\gamma^{incl}}{\gamma^{hadron}} = \frac{\gamma^{incl}}{\gamma^{\pi^0}} = \frac{\langle \epsilon_f \rangle \left(\frac{N^{incl}_\gamma}{N^{\pi^0}_\gamma} \right)_{\text{Data}}}{\left(\frac{\gamma^{hadron}}{\gamma^{\pi^0}} \right)_{\text{Sim}}}
\]

Reduce systematics!
External conversion method

- Double ratio tagging method ($R_\gamma > 1$ indicating direct photon signal)

$$R_\gamma = \frac{\gamma^{incl}}{\gamma^{hadron}} = \frac{\gamma^{incl}}{\gamma^{\pi^0}} = \frac{\langle \epsilon f \rangle \left(\frac{N^{incl}_\gamma}{N^{\pi^0}_\gamma} \right)_{Data}}{\left(\frac{\gamma^{hadron}}{\gamma^{\pi^0}} \right)_{Sim}}$$

Raw counts

- N^{incl}/N^{tag} from real data: # of conversion photons/# of conversion photons tagged as coming from π^0

Conversions from π^0 tagged

Conversions from inclusive photons

Reduce systematics!
External conversion method

- Double ratio tagging method ($R_\gamma > 1$ indicating direct photon signal)

\[
R_\gamma = \frac{\gamma^{incl}}{\gamma^{hadron}} = \frac{\gamma^{incl}}{\gamma^{\pi^0}} = \frac{\langle \epsilon f \rangle \left(\frac{N^{incl}_\gamma}{N^{\pi^0}_\gamma} \right)_{Data}}{\left(\frac{\gamma^{hadron}}{\gamma^{\pi^0}} \right)_{Sim}}
\]

Raw counts

- N^{incl}/N^{tag} from real data: # of conversion photons/# of conversion photons tagged as coming from π^0

Correct for detector effects

- Conditional acceptance and efficiency: the acceptance for the second photon in the EMCal from π^0 decay given that we already reconstructed the first photon from a conversion pair

Correct for other background sources

- Cocktail ratio (other sources of decay photons)
External conversion method

- Double ratio tagging method ($R_\gamma > 1$ indicating direct photon signal)

\[
R_\gamma = \frac{N^{incl}}{N^{hadron}} = \frac{\gamma^{incl}}{\gamma^{hadron}} = \frac{\gamma^{incl}}{\gamma^{\pi^0}} = \left(\frac{N^{incl}}{N^{\gamma}}\right)_{Data} \left(\frac{N^{\gamma}}{N^{\pi^0}}\right)_{Sim}
\]

Raw counts

- N^{incl}/N^{tag} from real data: # of conversion photons/# of conversion photons tagged as coming from π^0

Correct for detector effects

- Conditional acceptance and efficiency: the acceptance for the second photon in the EMCal from π^0 decay given that we already reconstructed the first photon from a conversion pair

Correct for other background sources

- Cocktail ratio (other sources of decay photons)

Conversions from direct photons

- Conversions from hadronic decay photons

Conversions from inclusive photons

Reduce systematics!
Direct photon results in Au + Au collisions at 200 GeV

A new measurement with improved statistical precision
Direct photon results in Au + Au collisions at 200 GeV

A new measurement with improved statistical precision

Consistent with previous published results using conversion method, virtual γ method, calorimeter method

Full overlap with the published low p_T and high p_T measurements
Direct photon results in Au + Au collisions at 200 GeV

\[\gamma_{\text{direct}} = (R\gamma - 1)\gamma_{\text{hadron}} \]

At high \(p_T \), Au+Au data consistent with \(N_{\text{coll}} \) scaled \(p+p \) → the dominant photon source is hard scattering
Direct photon results in Au + Au collisions at 200 GeV

At high p_T, Au+Au data consistent with N_{coll} scaled p+p → the dominant photon source is hard scattering

At low p_T, Au+Au data shows a clear enhancement w.r.t. N_{coll} scaled p+p below 3GeV
New Au+Au result consistent with the observed scaling behavior in A+A systems
New Au+Au result consistent with the observed scaling behavior in A+A systems

More peripheral Au+Au measurements can fill in the “transition region”
New Au+Au result consistent with the observed scaling behavior in A+A systems

More peripheral Au+Au measurements can fill in the “transition region”

More PHENIX data varying system size and geometry to be finalized/analyzed

Summary and Outlook

- New Au+Au result consistent with the observed scaling behavior in A+A systems
- More peripheral Au+Au measurements can fill in the “transition region”
- More PHENIX data varying system size and geometry to be finalized/analyzed
THANKS!