On Quasitriviality and Integrability of a Class of Scalar Evolutionary PDEs

Si-Qi Liu Youjin Zhang
Department of Mathematical Sciences, Tsinghua University Beijing 100084, P.R. China
Email: lsq99@mails.tsinghua.edu.cn, youjin@mail.tsinghua.edu.cn

Abstract
For certain class of perturbations of the equation \(u_t = f(u)u_x \), we prove the existence of change of coordinates, called quasi-Miura transformations, that reduce these perturbed equations to the unperturbed ones. As an application, we propose a criterion for the integrability of these equations.

1 Introduction
The notion of quasitriviality for certain class of evolutionary PDEs was introduced in [8]. Let us first explain this notation by looking at the example of the Kortweg-de Vries (KdV) equation

\[
\begin{align*}
 u_t &= uu_x + \frac{\varepsilon^2}{12}u_{xxx}, \\
 v &= u + \frac{\varepsilon^2}{24} \partial_x^2 \left[- \log u_x + \frac{\varepsilon^2}{240} \left(5 \frac{u^{(4)}}{u_x^2} - 9 \frac{u_{xx} u_{xxx}}{u_x^3} + 4 \frac{u_{xx}^2}{u_x^4} \right) + O(\varepsilon^4) \right].
\end{align*}
\]

such that in the new dependent variable the KdV equation is formally reduced to the dispersionless equation

\[
v_t = vv_x.
\]

This property of the KdV equation was first observed in [1] (see also [8]). It corresponds to the genus expansion formula for the free energy of the 2d topological gravity [5, 10, 14], and is one of the important links between topological field theory and integrable hierarchies [7, 8, 10, 15, 21]. In [8, 9] it was proved that such a property of quasitriviality is also shared by a wide class of bihamiltonian integrable hierarchies, and plays an important role in the study of the problem of classification of bihamiltonian integrable hierarchies. In a very recent paper...
Dubrovin showed that at the approximation up to ε^4 any perturbation of the equation (1.3) which possesses a Hamiltonian structure is quasitrivial.

In the present paper we consider, without the assumption of Hamiltonian structures, the property of quasitriviality for a class of scalar generalized evolutionary PDEs of the form

$$u_t = f(u)u_x + \varepsilon(f_1(u)u_{xx} + f_2(u)u_x^2) + \varepsilon^2(f_3(u)u_{xxx} + f_4(u)u_xu_{xx} + f_5(u)u_x^3) + \cdots, \quad f'(u) \neq 0. \quad (1.5)$$

Here the r.h.s. of the equation is a power series of the parameter ε, the coefficients of ε^k are graded homogeneous polynomials of degree $k+1$ of the variables u_x, u_{xx}, \ldots with $\deg \partial^k_x u = k$, and the coefficients of these polynomials are assumed to be smooth functions of u. Note that when the power series of ε is a polynomial, (1.5) becomes a usual evolutionary PDE.

We are going to prove the quasitriviality of the equation (1.5) according to the following definition of [8]:

Definition 1.1 The generalized evolutionary PDE (1.5) is called quasitrivial if there exists a quasi-Miura transformation of the form

$$u = v + \sum_{k \geq 1} \varepsilon^k F_k(v, v_x, \ldots, \partial_{\mathbb{N}^k} v) \quad (1.6)$$

that formally reduces it to the equation

$$v_t = f(v)v_x. \quad (1.7)$$

Here $F_k, k \geq 1$ are smooth functions and m_k are some positive integers.

We call a quasi-Miura transformation of the form (1.6) that transforms the equation (1.5) to its leading term equation (1.7) the reducing transformation of (1.5). The transformation (1.6) has an inverse which has a same form. Note that in the original definition of quasitriviality given in [8, 9], the coefficients F_k of the quasi-Miura transformation are required to be rational in the variables u_x, u_{xx}, \ldots, here we slightly generalize this notion, see Sec. 4 for the explicit description of the quasi-Miura transformations that we will encounter in this paper.

The main motivation of this work originates from our attempt to generalize the classification scheme given in [8] for a class of bihamiltonian evolutionary PDEs, we expect that the requirement of bihamiltonian property can be replaced by a weaker restriction. The first step along this line is to find a more general class of evolutionary PDEs that possess the quasitriviality property, since this property of the equations plays an important role in the classification scheme [8, 9, 16]. Another motivation of our study comes from the application of the reducing transformation to the perturbative study of solutions of the equation (1.5), see for example [6] in which such reducing transformations are used to study the critical behavior of solutions of the perturbed equations.

A direct consequence of the quasitriviality property is the existence of infinitely many flows of the form

$$u_s = h(u)u_x + \sum_{k \geq 2} \varepsilon^{k-1} W_k(u, u_x, \ldots, \partial_{\mathbb{N}^k} u) \quad (1.8)$$

that commute with the flow (1.5), here $h(u)$ is an arbitrary smooth function. By imposing the conditions of polynomial dependence of the functions W_k on the variables $u_x, \ldots, \partial_{\mathbb{N}^k} u$, we propose a criterion for the formal integrability of the equation (1.5).
The plan of the paper is as follows: In Sec. 2 and Sec. 3 we introduce some basic notations including our Definition 3.9 of formal integrability for the equations of the form (1.5), and prove an important property of the formally integrable equations in Theorem 3.10. In Sec. 4 we prove the quasitriviality of the equations of the form (1.5), the main results are summarized in Theorem 4.3-4.5. In Sec. 5 we describe a criterion of formal integrability, and illustrate it by some examples. Finally, in the conclusion we discuss the generalization of the quasitriviality property to systems of evolutionary PDEs.

2 Miura type transformations

We first introduce some notations that will be used in this paper, see [8] for more detailed expositions for such notations. Let \(u(x) \) be a smooth function of a real variable \(x \) and denote \(u_0 = u(x), \, u_s = \partial_x^s u(x), \, s \geq 1 \). We define the ring \(R \) of differential polynomials of \(u(x) \) as

\[
R = C^\infty(u_0)[u_1, u_2, \ldots]. \tag{2.1}
\]

It is a graded ring with \(\deg u_i = i, \, i \geq 1, \deg h(u_0) = 0 \) for any smooth function \(h \). We denote by \(\mathcal{A} \) the ring of formal power series of an indeterminate \(\varepsilon \) of the form

\[
f = \sum_{i \geq 0} f_i(u_0, \ldots, u_i) \varepsilon^i \tag{2.2}
\]

where \(f_i \in R \) are homogeneous differential polynomials of degree \(i \).

The derivations of \(\mathcal{A} \) form a Lie algebra

\[
\mathfrak{g} = \{ \hat{X} = \sum_{s \geq 0} X_s \frac{\partial}{\partial u_s} | X_s \in \mathcal{A} \} \tag{2.3}
\]

with Lie bracket

\[
[\sum_{s \geq 0} X_s \frac{\partial}{\partial u_s}, \sum_{s \geq 0} Y_s \frac{\partial}{\partial u_s}] = \sum_{s \geq 0} Z_s \frac{\partial}{\partial u_s}, \text{ where } Z_s = \sum_{s \geq 0} \left(X_t \frac{\partial Y_s}{\partial u_t} - Y_t \frac{\partial X_s}{\partial u_t} \right). \tag{2.4}
\]

We regard the ring \(\mathcal{A} \) as the coordinate ring of an infinite dimensional manifold, and the Lie algebra \(\mathfrak{g} \) as the Lie algebra of vector fields of this manifold.

Introduce the differential operator \(\partial_x \in \mathfrak{g} \) by

\[
\partial_x = \sum_{s \geq 0} u_{s+1} \frac{\partial}{\partial u_s}. \tag{2.5}
\]

An element \(\hat{X} \in \mathfrak{g} \) is called an evolutionary vector field if \([\hat{X}, \partial_x] = 0 \), which implies

\[
\hat{X} = \sum_{s \geq 0} \left(\partial_x^s X \right) \frac{\partial}{\partial u_s} \text{ for certain } X \in \mathcal{A}. \tag{2.6}
\]

The function \(X \) is called the component of the evolutionary vector field \(\hat{X} \). Denote

\[
\mathcal{E} = \{ \text{the vector space of evolutionary vector fields} \}. \tag{2.7}
\]

Then we readily have the following proposition:
Proposition 2.1 The vector space \mathcal{E} is a Lie subalgebra of \mathfrak{g} with the center $\{a \partial_x | a \in \mathbb{R}\}$, and its Lie bracket can be expressed as

$$[\hat{\mathcal{X}}, \hat{\mathcal{Y}}] = \hat{Z}, \text{ where } Z = \hat{X}(Y) - \hat{Y}(X), \quad \forall \hat{X}, \hat{Y} \in \mathcal{E}. \quad (2.8)$$

Since the map $X \mapsto \hat{X}$ is a bijection between \mathcal{A} and \mathcal{E}, we can pullback the Lie bracket of \mathcal{E} to \mathcal{A}. Then we obtain a Lie bracket on \mathcal{A}

$$[X, Y] = \hat{X}(Y) - \hat{Y}(X) = \sum_{s \geq 0} \left((\partial_s^X X) \frac{\partial Y}{\partial u_s} - (\partial_s^Y Y) \frac{\partial X}{\partial u_s} \right). \quad (2.9)$$

Henceforth, we will also call an element X of \mathcal{A} a vector field.

The subalgebra B of the Lie algebra $(\mathcal{A}, [\cdot, \cdot])$ defined by

$$B = \{ X = \sum_{i \geq 1} f_i(u_0, \ldots, u_i) \varepsilon^i \in \mathcal{A} | \deg f_i = i \} \quad (2.10)$$

corresponds to the class of evolutionary PDEs that we study in this paper. Namely, if we express X in the form

$$X = \varepsilon f(u) u_x + \varepsilon^2 (f_1(u) u_{xx} + f_2(u) u_x^2) + \varepsilon^3 (f_3(u) u_{xxx} + f_4(u) u_x u_{xx} + f_5(u) u_x^3) + \cdots, \quad (2.11)$$

and assume that it satisfies the condition $f'(u) \neq 0$, then

$$u_t = \varepsilon^{-1} X \quad (2.12)$$

is just the equation (1.5). A vector field $X \in B$ that satisfies the above condition will be called generic. We call $\varepsilon f(u) u_x$ the leading term of the vector field X, and the equation (1.7) the leading term equation of (2.12).

In the next section, we will consider the normal forms of the generalized evolutionary PDEs of the form (1.5) under the Miura type transformations.

Definition 2.2 (8) A Miura type transformation is a transformation on the ring \mathcal{A} which has the form

$$u \mapsto \tilde{u} = X_0(u) + \varepsilon X_1(u) u_1 + \varepsilon^2 (X_2(u) u_2 + X_3(u) u_1^2) + \cdots, \quad \frac{\partial X_0(u)}{\partial u} \neq 0. \quad (2.13)$$

A Miura type transformation is an automorphism of the ring \mathcal{A}, and it induces an automorphism of the Lie algebra B. It is easy to see that all such transformations form a group which is called the Miura group [8]. It is the direct product of two subgroups. The first subgroup is the diffeomorphism group of \mathbb{R}

$$u \mapsto \tilde{u} = f(u), \quad \frac{\partial f}{\partial u} \neq 0. \quad (2.14)$$

The second subgroup is formed by the Miura type transformation with $X_0(u) = u$. One can prove that any Miura type transformation with $X_0(u) = u$ can be expressed as

$$g : u \mapsto \tilde{u} = \hat{u} = u + \hat{Y}(u) + \frac{1}{2} \hat{Y}(\hat{Y}(u)) + \frac{1}{6} \hat{Y}(\hat{Y}(\hat{Y}(u))) + \cdots \quad (2.15)$$
where $Y = \varepsilon Y_1(u)u_1 + \varepsilon^2 (Y_2(u)u_2 + Y_3(u)u_2^2) + \cdots \in \mathcal{B}$. The automorphism of \mathcal{B} induced by this Miura type transformation g is given by

$$X \mapsto g(X) = e^{-\text{ad}_Y}X = X - [Y,X] + \frac{1}{2}[Y,[Y,X]] - \frac{1}{6}[Y,[Y,[Y,X]]] + \cdots.$$ \hfill (2.16)

Here the vector field $g(X)$ is obtained by first expressing the vector field X in the new coordinate \tilde{u}, then redenote \tilde{u} by u. We call the transformations of these two subgroups the Miura type transformations of the first and second kind respectively.

3 Formal symmetries and integrability

In this section, we first give the definition of formal symmetries for a generalized evolutionary PDE of the form (1.5) (or equivalently, (2.12) for a generic vector field $X \in \mathcal{B}$), then we study their properties and based on which we introduce the notion of formal integrability. We show that the formal integrability of a equation of the form (1.5) is equivalent to the existence of a unique reduced form of the equation under Miura type transformations.

Definition 3.1 Given a generic vector field $X \in \mathcal{B}$ of the form (2.11), a formal symmetry of the equation (1.5) is a flow of the form

$$\varepsilon \partial_s u = Y, \quad Y \in \mathcal{B}$$

(3.1)

which commutes with (1.5). We will also call Y a formal symmetry of the vector field X.

This definition is adopted from the usual definition of generalized infinitesimal symmetries of an evolutionary PDE. It differs from the usual one at the following two points. Firstly, even when (1.5) is a usual evolutionary PDE whose right hand side is truncated, i.e. a polynomial of the finite number of variables u_1, \ldots, u_m for certain positive integer m, its formal symmetries are not necessarily truncated. While in the usual definition an infinitesimal symmetry depend only on finite number of the variables $u_i, \ i \geq 1$. Secondly, the right hand side of a formal symmetry (3.1) is required to have the same form (2.11) as of the vector field X (except the condition $f'(u) \neq 0$). These features of the formal symmetries will play a crucial role in our discussion of formal integrability of the equations of the form (1.5).

Before the exposition of properties of the formal symmetries, let us first do some preparations. Let \mathcal{P} be the set of all ordered sequences of integers $\lambda = (\lambda_1, \lambda_2, \ldots)$ with the properties

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \geq 0, \quad |\lambda| = \sum_{i \geq 1} \lambda_i < \infty.$$ \hfill (3.2)

We call $|\lambda|$ the degree of λ, and denote by \mathcal{P}^d the subset of degree d elements of \mathcal{P}. Each $\lambda \in \mathcal{P}$ corresponds to a unique monomial

$$u_\lambda = \prod_{i \geq 1} u_{\lambda_i} \in \mathcal{R}.$$ \hfill (3.3)

Given two elements $\lambda, \mu \in \mathcal{P}^d$, we say $\lambda > \mu$ (resp. $\lambda < \mu$) if the first non-zero entry of the sequence $(\lambda_1 - \mu_1, \lambda_2 - \mu_2, \lambda_3 - \mu_3, \ldots)$ is greater (resp. less) than 0. By using this ordering
of \mathcal{R}^d, we can define in a natural way the highest order term of a homogeneous differential polynomial $X \in \mathcal{R}$ of degree d. For example, the highest order term of

$$X = X_1(u)u_4u_1 + X_2(u)u_3u_2 + X_3(u)u_2u_1$$

(3.4)
is $X_1(u)u_4u_1$, and we denote the sum of all other terms in X by $l.o.t.$

Lemma 3.2 Let $X \in \mathcal{R}$ be homogeneous of degree d of the form

$$X = f(u) \prod_{k=1}^{m} (u_k)^{\alpha_k} + l.o.t.,$$

(3.5)

then we have

$$[u_0u_1, X] = \left(\sum_{k=2}^{m} \alpha_k + d - 1 \right) f(u)u_1 \prod_{k=1}^{m} (u_k)^{\alpha_k} + l.o.t.$$ (3.6)

Proof. After the substitution of (3.5) into (2.9), we can prove the lemma by a straightforward computation. \[\Box\]

Lemma 3.3 Assume $X \in \mathcal{R}$ be given as in the above lemma. Then $[u_0u_1, X] = 0$ if and only if $d = 1$, i.e. X has the form $X = f(u)u_1$.

Proof. Let X have the form (3.5) and satisfies $[u_0u_1, X] = 0$, then From Lemma 3.2, we obtain $\alpha_1 = 1, \alpha_2 = \cdots = \alpha_m = 0$, so $X = f(u)u_1$. Conversely, it is obvious that the identity $[u_0u_1, X] = 0$ holds true for any vector field X of the form $f(u)u_1$. The lemma is proved. \[\Box\]

Lemma 3.4 For a homogeneous differential polynomial $Y \in \mathcal{R}$ of degree $d > 2$, if the highest order term of Y has a factor u_1, then we can find a homogeneous differential polynomial $X \in \mathcal{R}$ of degree $d - 1$ such that $[u_0u_1, X]$ has the same highest order term as that of Y.

Proof. When $d \geq 2$, we always have $\left(\sum_{k=2}^{m} \alpha_k + d - 1 \right) \neq 0$. So the lemma immediately follows From Lemma 3.2. \[\Box\]

Theorem 3.5 Let $Y \in \mathcal{R}$ be a symmetry of a generic vector field $X \in \mathcal{R}$ and $Y \neq au_x$, $a \in \mathcal{R}$. Then Y is also generic and is determined by its leading terms.

Proof. We only need to prove that symmetries are determined by their leading terms. Let $Y, Z \in \mathcal{R}$ be two symmetries of the generic vector field $X \in \mathcal{R}$ and have the same leading terms. Then From the identity

$$[X, Y - Z] = [X, Y] - [X, Z] = 0$$

(3.7)
it follows that $W = Y - Z$ is also a symmetry of X. Since Y, Z have the same leading terms, the vector field W has the following expression

$$W = \sum_{d \geq 2} \epsilon^d W_d(u_1, \ldots, u_d).$$

(3.8)

Denote

$$X = \sum_{d \geq 1} \epsilon^d X_d(u, \ldots, u_d)$$

(3.9)
Then from (3.7) we know that the vector field \(\varepsilon^2 W_2 \) is a symmetry of the vector field \(\varepsilon X_1(u, u_1) \).

According to Lemma 3.3, symmetries of \(\varepsilon X_1(u, u_1) \) must be of degree 1, so we have \(W_2 = 0 \). Similarly, we can prove that all the \(W_m \) vanish and consequently, \(Y = Z \). The theorem is proved. □

Corollary 3.6 Let \(X \in \mathcal{B} \) be generic, \(Y_1, Y_2 \) are two symmetries of \(X \), then \([Y_1, Y_2] = 0 \).

Proof. By using the Jacobi identity we know that \([Y_1, Y_2] \) is also a symmetry of \(X \). But the leading terms of \([Y_1, Y_2] \) vanish, so From Theorem 3.5 it follows that \([Y_1, Y_2] = 0 \). □

Remark 3.7 Let us denote \(X \sim Y \) if \([X, Y] = 0 \), then the above corollary shows that \(\sim \) is an equivalence relation on the set of generic vector fields of \(\mathcal{B} \).

Theorem 3.8 For any generic \(X \in \mathcal{B} \), there exists a Miura type transformation \(g \) such that

\[
g(X) = \varepsilon uu_1 + \varepsilon^2 \left(f_{(2)}u_2 + f_{(1,1)}u_1^2 \right) + \sum_{d \geq 2} \varepsilon^d \left(\sum_{\lambda \in P_d^1} f_{\lambda}(u)u_\lambda \right),
\]

where \(P_d^1 \) is the set of partitions of degree \(d \) whose nonzero entries are greater than 1.

Proof. Let \(\varepsilon f(u)u_1 \) be the leading term of the vector field \(X \). We can use a Miura type transformation of the first kind \(\tilde{u} = f(u) \) to transform \(X \) to the following form

\[
g(X) = \varepsilon uu_1 + \sum_{d \geq 2} \varepsilon^d \left(\sum_{\lambda \in P_d^1} f_{\lambda}(u)u_\lambda \right).
\]

Then by using Lemma 3.4, we can find a series of Miura type transformations of the second kind to eliminate the terms with factor \(u_1 \) step by step (except for the terms of degree 2). The theorem is proved. □ The expression (3.10) is called a reduced form of the vector field \(X \). Note that such a reduced form may not be unique.

Definition 3.9 A generalized evolutionary PDE of the form (1.5) that corresponds to a generic vector field \(X \in \mathcal{B} \) of the form (2.11) is called formally integrable, if any vector field of the form \(Y = \varepsilon h(u)u_1 \in \mathcal{B} \) can be extended to a symmetry

\[
\tilde{Y} = \varepsilon h(u)u_1 + \sum_{k \geq 2} \varepsilon^k Y_k \in \mathcal{B}.
\]

of this equation.

By definition, a formally integrable equation of the form (1.5) must have infinitely many formal symmetries. Thus this definition is an adaption of the commonly used one of integrability from the point of view of symmetries in soliton theory, see for example [11, 12, 17, 18, 19, 20] and references therein, to the present class of generalized evolutionary PDEs. In [11, 12], it was conjectured by Fokas that the existence of a single time independent non-Lie point symmetry implies the existence of infinitely many for a scalar evolutionary PDE. We will reformulate this conjecture for our class of equations and their formal symmetries in Sec. 5. One of the important contributions of the approach of Mikhailov, Shabat and their collaborators...
is the formulation of certain necessary conditions of the existence of a higher order symmetry for a system of evolutionary PDEs. These conditions are expressed in terms of the so-called canonical conservation laws, they yield an effective algorithm of testing the existence of a higher order symmetry for certain class of evolutionary PDEs of lower order. In [19], Sanders and Wang gave a symbolic algorithm of checking the existence of symmetries for certain class of scalar evolutionary PDE, such equations depend polynomially on the dependent variable and its \(x \)-derivatives, and satisfy certain homogeneity conditions. We will give in Sec. 5 an alternative way of checking the formal integrability of the generalized evolutionary PDEs, our approach is base on the quasitriviality of such equations which will be proved in the next section.

The following theorem relates the uniqueness of the reduced form of a vector field to the integrability of the corresponding PDE.

Theorem 3.10 A generic vector field \(X \in \mathcal{B} \) of the form (2.11) has a unique reduced form if and only if the corresponding equation (1.5) is formally integrable.

Proof. Without the loss of generality, we assume that \(X \) is already in a reduced form that is given by the right hand side of (3.10).

Let us first suppose that the reduced form of \(X \) is unique. Given a vector field

\[
\varepsilon Y_1 = \varepsilon h(u) u_1 \in \mathcal{B}.
\]

Consider the following vector field

\[
g_1(X) := e^{ad_{\varepsilon Y_1}} X = \varepsilon u_0 u_1 + \varepsilon^2 (f_{[2]} u_2 + f_{(1,1)} u_1^2) + \cdots, \tag{3.13}
\]

where \(g_1 \) corresponds to the Miura type transformation

\[
g_1 : u \mapsto e^{-\varepsilon Y_1} u. \tag{3.14}
\]

From the proof of Theorem 3.8 we know that there exists a Miura transformation

\[
g_2 : u \mapsto e^{\varepsilon Z} u, \quad Z = \varepsilon Z_2 + \varepsilon^3 Z_3 + \cdots \in \mathcal{B} \tag{3.15}
\]

which transforms \(g_1(X) \) to a reduced form. It follows From our assumption on the uniqueness of reduced form for the vector field \(X \) that

\[
X = e^{-ad_{\varepsilon Z}} g_1(X).
\]

On the other hand, \(e^{-ad_{\varepsilon Z}} e^{ad_{\varepsilon Y_1}} \) can be rewritten as \(e^{ad_{Y}} \) with a vector field \(Y \) of the form

\[
Y = \varepsilon Y_1 + \varepsilon^2 Y_2 + \cdots \in \mathcal{B}.
\]

From the equality \(X = e^{ad_{Y}} \) it then follows that the vector field \(X \) has a symmetry \(Y \) with the leading term \(\varepsilon Y_1 \). Thus by our definition the equation \(\varepsilon u_t = X \) is integrable.

Now let us assume that the equation \(\varepsilon u_t = X \) is integrable. If \(X \) has another reduced form \(\tilde{X} \), then it must be related to \(X \) by a Miura type transformation

\[
\tilde{X} = e^{ad_Y} X, \quad Y = \varepsilon Y_1 + \varepsilon^2 Y_2 + \cdots \in \mathcal{B}. \tag{3.16}
\]
From the definition of integrability, we can find a symmetry Z of the vector field X that has the same leading term as the vector field Y, i.e.,

$$Z = e^{Y_1} + \sum_{k \geq 2} e^k Z_k \in \mathcal{B}.$$

(3.17)

So we can express \tilde{X} as

$$\tilde{X} = e^{ad_Y} e^{-ad_Z} X = e^{ad_w} X.$$

(3.18)

Here the vector field W has the form $W = e^2 W_2 + \cdots$. Since both X and \tilde{X} are expressed in reduced forms, by using Lemma 3.2 we know that $W = 0$. Thus $\tilde{X} = X$ and we proved the uniqueness of reduced form of the vector field X. The theorem is proved. □

4 Quasitriviality

We now proceed to consider the quasitriviality of a generalized evolutionary PDE of the form (1.5) corresponding to a generic vector field X of the form (2.11). Define a map From the set of infinite series to itself

$$R: (y_1,y_2,\ldots) \mapsto (z_1,z_2,\ldots)$$

(4.1)

in the following recursive way

$$z_1 = \frac{1}{y_1}, \quad z_n = \frac{1}{y_1} \sum_{k \geq 1} y_{k+1} \frac{\partial z_{n-1}}{\partial y_k}, \quad n \geq 2.$$

(4.2)

When y_k are given by the k-th order derivatives of a single variable smooth function A, then the above define z_k are just the k-th order derivatives of the inverse function of A. By using this observation it is easy to see that R is an involution, i.e. R^2 is the identity map.

Lemma 4.1 The equation $[uu_1, f(u,u_1,\ldots)] = 0$ for the unknown function f has the following general solution

$$f = \frac{1}{\phi_1} c(u, \phi_2, \phi_3,\ldots),$$

(4.3)

where c is an arbitrary smooth function and $(\phi_1, \phi_2,\ldots) = R(u_1,u_2,\ldots)$.

Proof. A solution of the equation $[uu_1, f(u,u_1,\ldots)] = 0$ corresponds to a flow $\frac{\partial u}{\partial s} = f$ that commutes with the flow $\frac{\partial u}{\partial t} = uu_1$. By performing a transformation

$$(x,t,s,u(x,t,s)) \mapsto (u,t,s,x(u,t,s)),$$

(4.4)

we can rewrite these two flows into the form

$$\frac{\partial x}{\partial s} = g(u,x_u,x_uu,\ldots), \quad \frac{\partial x}{\partial t} = -u$$

(4.5)

Here $g = -f(u, \frac{1}{x_u}, \frac{1}{x_u} \frac{\partial}{\partial x} \frac{1}{x_u},\ldots)$. The condition of commutativity of the flows is given by

$$\frac{\partial g}{\partial t} = 0.$$

Due to the fact that $\frac{\partial^{k+1} x}{\partial t \partial u^k} = \frac{\partial^k}{\partial u^k} \frac{\partial x}{\partial t} = -\frac{\partial^k u}{\partial u^k} = -\delta_{k,1}$, we know that the general solution of the above equation has the form $g = -c(u, x_{uu}, x_{uuu},\ldots)$ for certain smooth function c. So f must have the form $\frac{\partial^k}{\partial u^k} \frac{\partial x}{\partial t} = 0$, and the lemma is proved. □
Proposition 4.2 For any given smooth function \(F(u, u_1, \ldots) \), the equation \([uu_1, f] = F\) for the unknown function \(f = f(u, u_1, \ldots)\) has a particular solution
\[
f = -u_1 \left(\int_0^{\phi_1} \phi_1 F(u, \bar{u}_1, \bar{u}_2, \ldots) d\phi \right) \bigg|_{(\phi_1, \phi_2, \ldots) = R(u_1, u_2, \ldots)},
\]
where \((\bar{u}_1, \bar{u}_2, \ldots) = R(\phi_1, \phi_2, \ldots)\).

Proof. Assume that we have a solution of the form \(f = \frac{1}{\phi_1} c(u, \phi_1, \phi_2, \phi_3, \ldots) \). By using the above theorem we know that the function \(c \) must satisfy the following equation
\[
\frac{\partial c}{\partial \phi_1} = -\phi_1 F(u, u_1, u_2, \ldots) = -\phi_1 F(u, \frac{1}{\phi_1}, \frac{\phi_2}{\phi_1}, \ldots).
\]
Here in the second equality we used the substitution
\[
(u_1, u_2, \ldots) = R(\phi_1, \phi_2, \ldots) = \left(\frac{1}{\phi_1}, -\frac{\phi_2}{\phi_1}, \ldots \right).
\]
By integrating \((4.7)\) with respect to \(\phi_1 \) and making the substitution
\[
(\phi_1, \phi_2, \ldots) = R(u_1, u_2, \ldots)
\]
we finish the proof of the lemma. \(\square\)

Now we are ready to prove the existence of a reducing transformation for the generalized evolutionary PDEs.

Theorem 4.3 Given a generalized evolutionary PDE of the form
\[
\begin{align*}
 u_t &= uu_x + \varepsilon \left(f_1(u) u_2 + f_2(u) u_1^2 \right) + \sum_{k \geq 3} \varepsilon^{k-1} S_k, \\
 &\quad \text{with } S_k \in \mathcal{R} \text{ being homogeneous differential polynomials of degree } k,
\end{align*}
\]
with \(S_k \in \mathcal{R} \) being homogeneous differential polynomials of degree \(k \), we have
i) there exists a unique transformation of the form
\[
\begin{align*}
 u &\mapsto v = e^X u, \\
 X &= \sum_{k \geq 1} \varepsilon^k u_1^{-L_k} \sum_{m=0}^{M_k} Y_{k,m}(u, u_1, \ldots, u_{N_k}) \left(\log u_1 \right)^m
\end{align*}
\]
that reduces the equation \((4.9)\) to \(v_t = vv_x \). Here \(Y_{k,m} \in \mathcal{R} \) are homogeneous differential polynomials of degree \(L_k + k \), \(L_k, M_k, N_k \) are integers which only depend on \(k \).
ii) The transformation \((4.10), (4.11)\) also reduces any symmetry
\[
\begin{align*}
 u_s &= h(u) u_1 + \sum_{k \geq 2} \varepsilon^{k-1} Q_k, \\
 Q_k \in \mathcal{R}, \quad \text{deg } Q_k = k
\end{align*}
\]
of the equation \((4.9)\) to the form \(v_s = h(v)v_x \).
Remark 4.4. We conjecture that the integers L_k,M_k,N_k has the following expressions:

$$L_k = 3k - 2, \quad M_k = 2 \left[\frac{k - 1}{2} \right] + \delta_0 \left(\frac{1}{2} \right), \quad N_k = k + 1.$$

We hope that they can be proved by a careful analysis of the above procedure of the construction of the reducing transformation.

By using Theorem 4.3, we are readily led to the following corollary:

Theorem 4.5. Any generalized evolutionary PDE of the form (1.5) is quasitrivial.
Example 4.6 (KdV Equation) The KdV equation \((4.1)\) has the reducing transformation \((4.2)\).

Example 4.7 (Camassa-Holm Equation) Let us consider another important equation in soliton theory, the Camassa-Holm equation \([3, 4, 13]\)

\[
\begin{equation}
\frac{\partial u}{\partial t} - u \frac{\partial u}{\partial x} + 3 u \frac{\partial u}{\partial x} - 2 u_x u_{xx} - u u_{xxx} = 0.
\end{equation}
\]

(4.17)

Let us perform the rescaling \(t \mapsto -3 \varepsilon t, x \mapsto \varepsilon x\), then the above equation can be put into the following form:

\[
\begin{equation}
\varepsilon u_t = \left(1 - \varepsilon \frac{\partial^2}{\partial x^2}\right)^{-1} \left(\varepsilon u u_1 - \varepsilon^3 \left(\frac{2}{3} u_1 u_2 + \frac{1}{3} u u_3\right)\right)
\end{equation}
\]

(4.18)

It has the reducing transformation

\[
v \mapsto \gamma = v + \varepsilon^2 \left(\frac{7 v_2}{6} - \frac{v v_2^2}{3 v_1^2} + \frac{v v_3}{3 v_1}\right) + \varepsilon^4 \left(\frac{6 v_2^3}{5 v_1^2} - \frac{202 v v_2 v_3^2}{45 v_1^4}\right)
\]

\[
+ \frac{32 v^2 v_2^5}{9 v_1^6} - \frac{181 v_2 v_3}{90 v_1} + \frac{398 v v_2^2 v_3}{45 v_1^3} - \frac{70 v_2^3 v_3}{9 v_1^5} - \frac{191 v v_3^2}{90 v_1^2}
\]

\[
+ \frac{19 v^2 v_2 v_3^2}{6 v_1^4} + \frac{143 v_4}{72} + \frac{133 v v_2 v_4}{15 v_1^4} + \frac{34 v_2^2 v_2 v_4}{45 v_1^2} - \frac{73 v_2 v_3 v_4}{90 v_1^3}
\]

\[
+ \frac{13 v v_5}{18 v_1} - \frac{41 v v_2 v_5}{90 v_1^3} + \frac{v^2 v_6}{18 v_1^2} + \cdots.
\]

Both the KdV equation and the Camassa-Holm equation have semisimple bihamiltonian structures, their quasitriviality have been proved in \([3]\) and \([9]\). The following example of the Burgers equation does not possess hamiltonian structures.

Example 4.8 (Burgers Equation) The Burgers equation

\[
\frac{\partial u}{\partial t} = u u_x + \varepsilon u_{xx}
\]

(4.19)

has the reducing transformation

\[
v \mapsto \gamma = v + \varepsilon \frac{v_2}{v_1} + \varepsilon^2 \left(\frac{2 v_3}{v_1^4} - \frac{7 v_2 v_3}{3 v_1^3} + \frac{v_4}{2 v_1^2}\right) + \varepsilon^3 \left(\frac{24 v_5}{v_1}\right)
\]

\[
- \frac{46 v^3 v_3 v_1}{v_1^6} + \frac{16 v_3 v_2^2}{3 v_1^5} + \frac{10 v_3 v_4}{3 v_1^4} + \frac{11 v_2 v_5}{6 v_1^4} + \frac{v_6}{6 v_1^3}
\]

\[
+ \varepsilon^4 \left(\frac{568 v_2^{10}}{v_1^{10}} - \frac{4544 v_2^5 v_3 v_5}{3 v_1^9} - \frac{1086 v_2^3 v_3^2}{v_1^7} - \frac{179 v_2 v_3^3}{v_1^7} + \frac{1154 v_2^4 v_4}{3 v_1^8}
\]

\[
- \frac{380 v_2^2 v_3 v_4}{v_1^7} - \frac{221 v^3 v_2 v_4}{6 v_1^6} - \frac{26 v_2 v_4^2}{v_1^6} - \frac{70 v_2 v_3 v_5}{v_1^7} + \frac{731 v_2 v_3 v_5}{18 v_1^6}
\]

\[
- \frac{101 v v_5}{30 v_1^5} + \frac{83 v_2^2 v_6}{9 v_1^6} - \frac{13 v_3 v_6}{6 v_1^5} - \frac{5 v_2 v_7}{6 v_1^5} + \frac{v_8}{24 v_1^4}\right) + \cdots.
\]
Example 4.9 Our last example is a class of equations parameterized by a smooth function f

\[u_t = \varepsilon u_1 f(u + \varepsilon u_1) = \sum_{n \geq 0} \varepsilon^{n+1} \frac{f^{(n)}(u)}{n!} u_1^{n+1}. \]

(4.20)

It’s easy to verify that $\partial_t f$ and $\partial_x g$ commute for arbitrary smooth functions f and g. The reducing transformation of this equation has an explicit form

\[v \mapsto u = e^{\varepsilon \hat{X}}(v) = v + \varepsilon \hat{X}(v) + \frac{\varepsilon^2}{2} \hat{X}(\hat{X}(v)) + \frac{\varepsilon^3}{6} \hat{X}(\hat{X}(\hat{X}(v))) + \cdots, \]

(4.21)

where $X = v_1 \log(v_1)$. This equation is quite different from those of the above three examples, because its reducing transformation contains $\log(v_1)$, while that of the KdV, the Camassa-Holm and the Burgers equation are rational in jet variables v_1, v_2, \ldots.

5 Testing of integrability

Given a generalized evolutionary PDE of the form (1.5), let

\[g : u \mapsto v \]

be the quasi-Miura transformation (1.6) that reduces it to the form (1.7). For any smooth function $h(v)$, the equation (1.7) has a symmetry

\[v_s = h(v)v_x. \]

(5.1)

Rewrite this flow in the u coordinates by using the quasi-Miura transformation g^{-1}, we have

\[\varepsilon u_s = \varepsilon h(u)u_x + \sum_{k \geq 2} \varepsilon^k W_k(u, u_1, \ldots, u_k), \]

(5.2)

where in general W_k are not polynomials of the variables u_1, u_2, \ldots.

In order to compute these W_k in a more direct way, we first perform a change of the dependent variable

\[u \mapsto f(u) \]

(5.3)

to transform the equation (1.5) into the form

\[\varepsilon u_t = \hat{X}, \quad \hat{X} = \varepsilon uu_x + \sum_{k \geq 2} \varepsilon^k \hat{X}_k(u, \ldots, u_k). \]

(5.4)

Consider the equation $[\hat{X}, Y] = 0$ for the unknown vector field

\[Y = \varepsilon h \circ f^{-1}(u)u_x + \sum_{k \geq 2} \varepsilon^k Y_k(u, \ldots, u_k). \]

By using Proposition 4.2 we can solve this equation recursively to obtain Y. Under certain homogeneity condition that is similar to the one given in Theorem 4.3, the solution Y is unique. By performing the transformation $u \mapsto f^{-1}(u)$ the vector field Y is transformed to the form

\[\varepsilon h(u)u_x + \sum_{k \geq 2} \varepsilon^k \hat{Y}_k(u, \ldots, u_k). \]
Then we have $W_k = \tilde{Y}_k$.

Although the above flow (5.2) commutes with the flow given by the equation (1.5), in general it does not meet the requirement of being a formal symmetry of (1.5) according to our Definition 3.1. This is because in general the right hand side of the equation (5.2) does not belong to B, i.e., the functions $W_k(u,u_1,\ldots,u_{m_k})$ are not polynomials of the variables u_1,u_2,\ldots,u_{m_k}.

Now let us come back to our Definition 3.9 of formal integrability for a generalized evolutional PDE of the form (1.5). By using the second result of Theorem 4.3 and the quasitriviality of the equation (1.5), we know that if a vector field $\varepsilon h(u)u_x$ can be extended to a formal symmetry of the equation (1.5), then this formal symmetry must coincide with (5.2). Thus we have the following:

Criterion of formal integrability. A generalized evolutional PDE of the form (1.5) is formally integrable iff for any smooth function $h(u)$, the functions W_k that appear in the right hand side of (5.2) are homogeneous differential polynomials of u_1,u_2,\ldots,u_k of degree k.

Let us consider the formal integrability of the four equations considered in the last section. The formal integrability of the equation given in the fourth example is trivial, because we can write down all its symmetries explicitly. For the other three equations, we have the following proposition:

Proposition 5.1 The KdV equation (1.1), the Camassa-Holm equation (4.17) and the Burgers equation (4.19) are formally integrable.

Proof. According to Proposition 4.2 and the above construction, we know that the flow (5.2) for the KdV equation must take the following form

$$u_x = h(u)u_x + \sum_{k \geq 1} \varepsilon^{2k} \frac{1}{u_x^{2k}} \sum_{\lambda \in \mathcal{P}^{m_k+2k+1}} C_{k,\lambda} h^{(D_{k,\lambda})}(u)u_{\lambda},$$

(5.5)

where m_k are integers, $C_{k,\lambda}$ are rational numbers and $D_{k,\lambda}$ are positive integers. To prove the theorem, we only need to show that for each monomial

$$u^{-m_k} C_{k,\lambda} h^{(D_{k,\lambda})}(u)u_{\lambda},$$

(5.6)

that appears in the above expression, either $C_{k,\lambda} = 0$ or it can be reduced to the form

$$C_{k,\lambda} h^{(D_{k,\lambda})}(u)u_{\lambda'}, \quad \lambda' \in \mathcal{P}.$$

To this end, let us take $h(u) = u^{D_{k,\lambda}}$. From the classical theory of the KdV equation, we know that the flow (5.5) belongs to the KdV hierarchy and so its right hand side is a truncated differential polynomial. So the monomial (5.6) has the required property and we proved the the formal integrability of the KdV equation.

In a similar way, we can prove the formal integrability of the Camassa-Holm equation and Burgers equation. The only technical point we should note is that the analogue of (5.5) for the Camassa-Holm equation need to be slightly modified. We omit the details here. The proposition is proved.

The following two examples illustrate a procedure to identify the formally integrable equations among those which possess certain particular forms.
Example 5.2 Consider the formally integrable equations among those of the form
\[u_t = uu_x + \varepsilon (f_1(u)u_{xx} + f_2(u)u_x^2), \quad f_1(u) \neq 0. \]
(5.7)

By using the criterion of formal integrability we easily obtain
\[f_1(u) = au + b, \quad f_2(u) = -\frac{1}{2}a, \]
(5.8)

where \(a, b \) are arbitrary constants. When \(a = 0, b = 1 \) the above equation is just the well known Burgers equation (4.19). If \(a \neq 0 \), we may assume without loss of generality that \(a = 1 \). The Galilean transformation \(x \mapsto x - bt, t \mapsto t, u \mapsto u - b \) converts (5.7) to the form
\[u_t = uu_x + \varepsilon \left(u_{xx} - \frac{1}{2}u_x^2\right) \]
(5.9)

Let \(u = w^2 \), the equation (5.9) becomes
\[w_t = w^2 (w_x + \varepsilon w_{xx}) \]
(5.10)

This equation is also linearizable under the change of the independent variables and is called C-integrable, see [2] and the equation (3.37) there.

The equation (5.10) admits a recursion operator
\[R = \varepsilon w \partial_x + w + w^2 (w_x + \varepsilon w_{xx}) \partial_x^{-1} \frac{1}{w^2}. \]
(5.11)

One can prove that \(R \) is a hereditary strong symmetry [3]. So we obtain a hierarchy of symmetries of the equation (5.10) which can be expressed as
\[w_0 = -w_x, \quad w_1 = 0, \quad w_{2+k} = R^k \left(w^2 (w_x + \varepsilon w_{xx})\right) = (k+1)w^{k+2}w_x + \cdots \]
(5.12)

To see that all the right hand sides of these symmetries are differential polynomials of the variables \(w_x, w_{xx}, \ldots \), we introduce a generating function
\[F = \sum_{k=0}^{\infty} \frac{w_{k+2}}{\lambda^{k+2}} = \frac{w_{2+2}}{\lambda^2} + \frac{w_{3+2}}{\lambda^3} + \cdots. \]

It satisfies the following equation
\[RF = \lambda \left(F - \frac{w_{2+2}}{\lambda^2}\right). \]
(5.13)

Let \(w_h = w^2 \partial_x h_k, \ H = \sum_{k \geq 2} \frac{h_k}{\lambda^k}, \) the equation (5.13) becomes a linear ODE of \(H \), its solution is
\[H = \frac{1}{w} \sum_{k=0}^{\infty} \varepsilon^k (A \partial_x)^k \left(A \frac{w + \varepsilon w_x}{\lambda}\right), \quad \text{where} \ A = \sum_{l=1}^{\infty} \frac{w^l}{\lambda^l}. \]

This implies that all the right hand sides of the flows given in (5.12) are homogeneous differential polynomials. By using a similar argument as given in the proof of Proposition 5.1 one can prove that the equation (5.10) is integrable.
The integrable hierarchy (5.12) has the conversation law
\[
\left(-\frac{1}{w} \right)_k = \partial_x h_k. \tag{5.14}
\]
It defines a reciprocal transformation
\[
dy = \frac{1}{w} dx - \sum_{k \geq 2} h_k dt_k \tag{5.15}
\]
which transform the whole hierarchy to the Burgers hierarchy (up to a rescaling). For more details on the reciprocal transformation, please refer to the next example.

In the above example, the conditions (5.8) can in fact be derived by requiring the existence of a function \(h(u)\) with \(h''(u) \neq 0\) such that the resulting functions \(W_k\) are differential polynomials. Similar situation also occurs in other examples that we computed, such as the one which will be presented below. Based on these examples, we reformulate the conjecture of Fokas [11, 12] on the existence of infinitely many symmetries of a scalar evolutionary PDE for the class of equation considered in this paper as follows:

Conjecture 5.3 A generalized evolutionary PDE of the form (1.5) is formally integrable iff there exists a smooth function \(h(u)\) satisfying
\[
h'' - \frac{h'}{f'} f'' \neq 0, \tag{5.16}
\]
such that the flow (5.2) that is obtained from the equation (5.1) by the reducing transformation of (1.5) gives a symmetry of (1.5), i.e., the functions \(W_k\) are homogeneous differential polynomials of degree \(k\).

Example 5.4 Consider the equation of the form
\[
u_t = uu_x + \epsilon^2 \left(g_1(u)u_{xxx} + g_2(u)u_x u_{xx} + g_3(u)u_x^3 \right), \quad g_1(u) \neq 0. \tag{5.17}
\]

Lemma 5.5 If the equation (5.17) is formally integrable, then the functions \(g_1, g_2, g_3\) must satisfy the equations
\[
9g_1'g_2'' - 6g_1g_2'g_1'' - 9g_1'g_1'g_2' - 18g_1g_2'g_1' + 12g_2^2g_1' + 4g_3^3 = 0, \tag{5.18}
\]
\[
12g_1'g_1'' - 8g_1g_1'g_1'' - 12g_1g_2g_1'' - 3g_1g_2'g_1' + 4g_3^3 + 6g_2g_1^2 + 2g_2^2g_1' = 0 \tag{5.19}
\]
and the relation
\[
g_3 = \frac{1}{72g_1} \left(6g_2^2 - 30g_2g_1' - 4g_1'^2 + 27g_1g_2' + 12g_1g_1'' \right). \tag{5.20}
\]

16
Proof. By using the criterion of integrability, we easily arrive at the result of the lemma. From the polynomiality property of the first few W_k. The lemma is proved.

Lemma 5.6 If the conditions (5.19), (5.20) hold true and $g_1(u)$ is not a constant, then there exists a reciprocal transformation
\[dy = f(u)dx + \rho(u, u_x, u_{xx})dt, \quad ds = dt, \] (5.21)
such that u satisfies an equation of the following form:
\[u_s = \tilde{f}(u)u_y + \epsilon^2 \left(u_{yyy} + \tilde{g}_2(u)u_{yy}u_y + \tilde{g}_3(u)u_y^3 \right). \] (5.22)

Proof. To define the reciprocal transformation (5.21), $f(u)$ must be the density of a conversation law, i.e. there exists a function $\rho(u, u_x, u_{xx})$ such that
\[(f(u))_t = (\rho(u, u_x, u_{xx}))_x. \]

By using the equation (5.17), it’s easy to see that $f(u)$ must satisfy the following equation:
\[g_1 f''' + 2 g_1' f'' + g_1'' f' - g_2 f'' - g_2' f' + 2 g_3 f' = 0, \] (5.23)
and the flux ρ is given by
\[\rho = u f - F + \epsilon^2 \left(g_1 f' u_{xx} + \frac{1}{2} (g_2 f' - g_1 f'' - g_1' f') u_y^2 \right), \] (5.24)
where $F(u) = \int f(u)du$.

Suppose we have a function $f(u)$ satisfying (5.23) and a function ρ given by (5.24), then the reciprocal transformation (5.21) is well-defined and it converts the equation (5.17) to the following one
\[u_s = F(u)u_y + \epsilon^2 \left(g_1(u) f(u)^3 u_{yyy} + \tilde{g}_2(u) u_{yy} u_y + \tilde{g}_3(u) u_y^3 \right). \] (5.25)

To complete the proof, we only need to show that $f = g_1^1$ is a solution of the equation (5.23). In fact, after the substitutions of $f = g_1^1$ and (5.20) into the equation (5.23), we obtain an equation which is equivalent to (5.19). The lemma is proved.

Now let us perform a Miura type transformation of the first kind
\[u \mapsto \tilde{u} = \tilde{f}(u) \]
on the equation (5.22), we obtain a equation of the following form
\[\tilde{u}_s = \tilde{u} \tilde{u}_y + \epsilon^2 \left(\tilde{u}_{yyy} + \tilde{g}_2(\tilde{u}) \tilde{u}_y \tilde{u}_y + \tilde{g}_3(\tilde{u}) \tilde{u}_y^3 \right). \] (5.26)

Since the above reciprocal and Miura type transformations keep the formal integrability property, the functions $\tilde{g}_1, \tilde{g}_2, \tilde{g}_3$ also satisfy the conditions (5.18)-(5.20), i.e.
\[\tilde{g}_2'' - 2 \tilde{g}_2 \tilde{g}_2' + \frac{4}{9} \tilde{g}_3^2 = 0, \] (5.27)
\[\tilde{g}_3 = \frac{1}{24} (2 \tilde{g}_2^2 + 9 \tilde{g}_2^4). \] (5.28)
Lemma 5.7 Suppose the functions $\bar{g}_2(\bar{u}), \bar{g}_3(\bar{u})$ satisfy the conditions (5.27), (5.28), then there exists a Miura type transformation

$$u \mapsto \bar{u} = \bar{u} + \varepsilon f_0(\bar{u}) \bar{u}_y + \varepsilon^2 \left(f_1(\bar{u}) \bar{u}_{yy} + f_2(\bar{u}) \bar{u}^2_y\right)$$ (5.29)

which transforms the equation (5.26) into the KdV equation

$$\bar{u}_s = \bar{u} \bar{u}_y + \varepsilon^2 \bar{u}_{yyy}.$$ (5.26)

Proof. The ODE (5.27) has the following general solution

$$\bar{g}_2(\bar{u}) = -\frac{3f'(\bar{u})}{2f(\bar{u})}, \quad f(\bar{u}) = a_0 + a_1 \bar{u} + a_2 \bar{u}^2,$$

where a_0, a_1, a_2 are arbitrary constants. Let’s take

$$f_0 = \frac{\sqrt{2}}{\sqrt[3]{\sqrt{4a_0 d_2 - a_1^2}}}, \quad f_1 = \frac{3\sqrt{a_2}}{2\sqrt{f}}, \quad f_2 = f'_1 - \frac{1}{6} f_1.$$

The lemma is proved after a direct verification. □

The above three Lemmas show that the equation (5.17) is formally integrable if the functions g_1, g_2, g_3 satisfy (5.18)-(5.20), and modulo reciprocal and Miura type transformations there is only one formally integrable equation, namely, the KdV equation. So our formal integrability in fact leads to integrable equations in the common sense.

To see some concrete formally integrable equations of the form (5.17) that are in different guises of the KdV equation, let us further impose the additional conditions on the functions g_1, g_2, g_3 by requiring that the right hand side of (5.17) is graded homogeneous with respect to the following grading

$$\deg u = 1, \quad \deg \partial^m_s u = 1 - m, \quad \deg \varepsilon = 1 + \delta,$$ (5.30)

where δ is certain constant. Since $g_1(u) \neq 0$, we can take

$$g_1(u) = u^{1-2\delta}, \quad g_2(u) = \alpha u^{-2\delta}, \quad \alpha \text{ is constant.}$$ (5.31)

Then the equations (5.18), (5.19) have the following solutions (α, δ):

$$(0, \frac{1}{2}), \quad \left(-\frac{3}{2}, \frac{1}{2}\right), \quad (-3, \frac{1}{2}), \quad (-2,0), \quad (-1,0), \quad (0, -\frac{1}{4}), \quad (-\frac{3}{4}, -\frac{1}{4}), \quad (0, -\frac{1}{2}), \quad (-6,2).$$
They correspond to the following equations:

\[
\begin{align*}
(0, \frac{1}{2}) & : \quad u_t = uu_x + \varepsilon^2 u_{xxx}, \quad (5.32) \\
(-\frac{3}{2}, \frac{1}{2}) & : \quad w_t = w^2 w_x + \varepsilon^2 w_{xxx}, \quad w^2 = u, \quad (5.33) \\
(-3, \frac{1}{2}) & : \quad u_t = uu_x + \varepsilon^2 \left(u_{xxx} - \frac{3}{u} uu_x + \frac{15}{8u^2} u_x^3 \right), \quad (5.34) \\
(-2, 0) & : \quad w_t = w^3 w_x + \varepsilon^2 w^3 w_{xxx}, \quad w^3 = u, \quad (5.35) \\
(-1, 0) & : \quad w_t = w^3 w_x + \varepsilon^2 \left(3w^2 w_x w_{xx} + w^3 w_{xxx} \right), \quad w^3 = u, \quad (5.36) \\
(0, -\frac{1}{4}) & : \quad w_t = w^2 w_x + \varepsilon^2 \left(3w^2 w_x w_{xx} + w^3 w_{xxx} \right), \quad w^2 = u, \quad (5.37) \\
(-\frac{3}{4}, -\frac{1}{4}) & : \quad w_t = w^2 w_x + \varepsilon^2 \left(\frac{3}{2} w^2 w_x w_{xx} + w^3 w_{xxx} \right), \quad w^2 = u, \quad (5.38) \\
(0, -\frac{1}{2}) & : \quad u_t = uu_x + \varepsilon^2 \left(u^2 u_{xxx} + \frac{1}{9} u_x^3 \right), \quad (5.39) \\
(-6, 2) & : \quad w_t = \frac{w_x}{w} + \varepsilon^2 w^3 w_{xxx}, \quad \frac{1}{w} = u. \quad (5.40)
\end{align*}
\]

The first two equations (5.32) and (5.33) are the KdV and mKdV equation respectively. The third one (5.34) is equivalent to the KdV equation (5.32) by the following Miura type transformation

\[
u \mapsto \tilde{u} = u + \varepsilon^2 \left(\frac{3}{2} uu_x - \frac{15}{8u^2} u_x^3 \right), \quad (5.41)
\]

where \(u \) satisfies (5.34) and \(\tilde{u} \) satisfies (5.32).

The equations (5.32)-(5.34) have the following pairs of conserved quantities respectively:

\[
\int u dx, \quad \int u^2 dx; \quad \int w dx, \quad \int w^2 dx; \quad \int \sqrt{u} dx, \quad \int \frac{1}{\sqrt{u}} dx.
\]

By using these conserved quantities we can define six reciprocal transformations, they relate the remaining six equations (5.35)-(5.40) to the first three equations (5.32)-(5.34). Let us consider in detail the reciprocal transformation that is defined by the second conserved quantity \(\int u^2(x,t) dx \) of the equation (5.32). The conservation law is given by

\[
(u^2)_t = \rho_x, \quad \text{where} \quad \rho = \frac{2}{3} u^3 + \varepsilon^2 \left(2 uu_{xx} - u_x^2 \right). \quad (5.42)
\]

Thus we can define the following reciprocal transformation:

\[
dy = u^2 dx + \rho dt, \quad ds = dt, \quad (5.43)
\]

its inverse is given by

\[
dx = \frac{1}{u^2} dy - \left(\frac{2}{3} u + \varepsilon^2 \left(\frac{2 uu_{xx}}{u} - \frac{u_x^2}{u^2} \right) \right) ds, \quad dt = ds. \quad (5.44)
\]

From the definition (5.43) we obtain \(\partial_x = u^2 \partial_x \), so

\[
u_x = u^2 u_x, \quad uu_{xx} = u^2 \left(u^2 u_{xy} + 2 uu_y^2 \right). \quad (5.45)
\]
Now the reciprocal transformation (5.44) can be rewrite as
\[dx = \frac{1}{u_t} dy - \left(\frac{2}{3} u + \varepsilon^2 (2 u^3 u_{yy} + 3 u^2 u_y^2) \right) ds, \quad dt = ds. \] (5.46)

So in terms of the new independent variables \(y, s \), the function \(u \) satisfies the following equation:
\[u_s = \frac{u^3}{3} u_y + \varepsilon^2 \left(u^6 u_{yyy} + 6 u^5 u_y u_{yy} + 3 u^4 u_y^3 \right). \] (5.47)

By performing the rescaling \(s \mapsto \tilde{s} = s/3, \varepsilon \mapsto \tilde{\varepsilon} = \sqrt{3} \varepsilon \) and the Miura transformation of first kind \(u \mapsto \tilde{u} = u^3 \), the above equation is transformed to
\[\tilde{u}_{\tilde{s}} = \tilde{u} \tilde{u}_y + \tilde{\varepsilon}^2 \left(\tilde{u}^2 \tilde{u}_{yy} + \frac{1}{9} \tilde{u}_y^3 \right), \] (5.48)

which coincides with the equation (5.39).

For the other cases, we only point out the following facts:

1. The equation (5.32) is transformed to the equation (5.37) by the reciprocal transformation defined by the conserved quantity \(\int u \, dx \).

2. The equation (5.38) is transformed to the equations (5.36), (5.40) respectively by the reciprocal transformations defined by conserved quantities \(\int w \, dx \) and \(\int \sqrt{u} \, dx \).

3. The equation (5.34) is transformed to the equations (5.35), (5.40) respectively by the reciprocal transformations defined by conserved quantities \(\int \sqrt{u} \, dx \) and \(\int 1/\sqrt{u} \, dx \).

Note that the equation (5.36) and (5.37) are two cases of the S-integrable equation (3.55) given in [2].

The analysis of the above two examples shows that the formal integrability condition is rather rigid. Modulo the Miura type transformations and reciprocal transformations, the Burgers equation and the KdV equation are the only integrable equations among the two classes of equations of the form (5.47) and (5.17). The following conjecture generalize the results of the first example:

Conjecture 5.8 All the formally integrable equations written in the reduced form
\[u_t = u u_x + \varepsilon \left(f_2(u) u_x + f_{11}(u) u_{x}^2 \right) + \varepsilon^2 f_3(u) u_3 \\
+ \varepsilon^3 f_4(u) u_4 + f_{22}(u) u_{x}^2 + \cdots \] (5.49)

with \(f_2(u) \neq 0 \) are parameterized by the functions \(f_2(u) \) and \(f_{11}(u) \). In other words, the formal integrability condition for the equation (5.49) with \(f_2(u) \neq 0 \) uniquely determines all the coefficient functions \(f_3(u) \) with \(|\lambda| > 2 \) through the functions \(f_2(u) \) and \(f_{11}(u) \), for example
\[
\begin{align*}
f_3 &= \frac{4}{3} f_2 f_{11} + \frac{2}{3} f_2 f_2', \\
 f_4 &= \frac{5}{3} f_2^2 f_{11} + \frac{1}{3} f_2^2 f_2'' + 2 f_2 f_2 f_{11}' + \frac{1}{3} f_2 (f_2')^2 + \frac{5}{3} f_{11} f_2 f_2', \\
 f_{22} &= -\frac{10}{3} f_{11}' - f_{11} f_2 + \frac{1}{3} f_{11} (f_2')^2 - \frac{29}{3} f_2 f_{11} f_{11}' - \frac{10}{3} f_2 f_{11} f_2'' \\
&\quad - 4 f_2 f_2 f_{11}' - f_2 f_2 f_2'' - 3 f_2 f_2 f_2'' - 3 f_2 f_{11} f_{22}' - f_2 f_{11} f_{22}'', \cdots
\end{align*}
\]
Moreover, modulo certain reciprocal transformation a formal integrable equation of the above form is equivalent, under a Miura type transformation, to a formal symmetry of the Burgers equation (4.19).

The parameter space for the class of integrable equations of the form (5.49) with \(f_2(u) = 0 \) is unknown yet. It seems that there exist infinitely many function parameters in this space. We hope that the additional condition of possessing a hamiltonian structure will restrict this parameter space to a manageable one. We will consider this problem in subsequent publications.

6 Conclusion

We have proved the quasitriviality of a generalized evolutionary PDE of the form (1.5) and proposed a criterion for its integrability. Due to Proposition 4.2, the proof of Theorem 4.3 gives a constructive algorithm to obtain an explicit expression of the quasi-Miura transformation that reduces the equation (1.5) to its leading term equation (1.7). Also due to Proposition 4.2, the explicit expression of the flows of the form (5.2) that commute with (1.5) can be obtained in a direct way as explained in the beginning of Sec. 5, thus the algorithm of testing the formal integrability of an equation of the form (1.5) can be encoded into a simple computer program.

Now it is natural to ask the question whether the quasitriviality property can be generalized to systems of generalized evolutionary PDEs of the form

\[
u_i^t = \sum_{j=1}^{n} \lambda_{ij}(u)u_j^t + \sum_{k \geq 1} \varepsilon^k Q_k^i(u, u_1, \ldots, u^{(k+1)}), \quad i = 1, \ldots, n \geq 2, \tag{6.1}\]

where \(u = (u^1, \ldots, u^n) \), \(\lambda_{ij} \) are smooth functions of \(u \) and \(Q_k^i \) are homogeneous polynomials of \(\partial_x^m u^l \), \(l = 1, \ldots, n \), \(m = 1, \ldots, k+1 \) with degree \(k+1 \), here we define \(\deg \partial_x^m u^l = m \). It is proved in [2] that if the above system has a semisimple bihamiltonian structure then it is quasitrivial, i.e., there exists a quasi-Miura transformation of the form

\[
u_i^t \mapsto v_i^t = u_i^t + \sum_{k \geq 1} \varepsilon^k F_k^i(u, u_1, \ldots), \quad i = 1, \ldots, n \tag{6.2}\]

that reduces the above system to a system given by its leading terms

\[
v_i^t = \sum_{j=1}^{n} \lambda_{ij}(v)v_j^t. \tag{6.3}\]

We expect that the condition of possessing a semisimple bihamiltonian structure could be replaced by a much weaker one in order to ensure the quasitriviality of the systems of the above form.

The definition of formal integrability for equations of the form (1.5) can be directly generalized to systems of equations of the form (6.1), we plan to study the problem of its quasitriviality and integrability in subsequent publications.

Acknowledgments. The authors are grateful to Boris Dubrovin for encouragements and helpful discussions. The researches of Y.Z. were partially supported by the Chinese National Science Fund for Distinguished Young Scholars grant No.10025101 and the Special Funds of Chinese Major Basic Research Project “Nonlinear Sciences”.
References

[1] Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.Kh.: Approximate symmetries and formal linearization. PMTF 2 (1989) 40-49. (In Russian)

[2] Calogero, F.; Ji, X.: C-integrable nonlinear PDEs. II. J. Math. Phys. 32 (1991), 2703–2717.

[3] Camassa R.; Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (1993) 1661-1664.

[4] Camassa, R.; Holm, D.D.; Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31 (1994), 1-33.

[5] Dijkgraaf, R.; Witten, E.: Mean field theory, topological field theory, and multi-matrix models. Nucl. Phys. B 342 (1990), 486–522.

[6] Dubrovin, B.: On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour, [math-ph/0510032].

[7] Dubrovin, B.; Zhang, Y.: Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation. Commun. Math. Phys. 198 (1998), 311–361.

[8] Dubrovin, B.; Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov - Witten invariants, [math.DG/0108160].

[9] Dubrovin, B.; Liu, S.-Q.; Zhang, Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws, I: quasitriviality of bihamiltonian perturbations, [math.DG/0410027], to appear in Commun. Pure and Appl. Math.

[10] Eguchi, T.; Yamada, Y.; Yang, S.-K.: On the Genus Expansion in the Topological String Theory. Rev. Math. Phys. 7 (1995) 279.

[11] Fokas, A.S.: A symmetry approach to exactly solvable evolution equations. J. Math. Phys. 21 (1980), 1318–1325.

[12] Fokas, A.S.: Symmetries and integrability. Stud. Appl. Math. 77 (1987), 253–299.

[13] Fuchssteiner, B.; Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4 (1981) 47-66.

[14] Itzykson, C.; Zuber, J.-B.: Combinatorics of the modular group II: the Kontsevich integrals. Int. J. Mod. Phys. A7 (1992) 5661.

[15] Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Comm. Math. Phys. 147 (1992), 1-23.

[16] Liu, S.-Q.; Zhang, Y.: Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54 (2005), 427–453.

[17] Mikhailov, A.V.; Shabat, A.B.; Yamilov, R.I.: The Symmetry approach to the classification of non-linear equations. Complete Lists of integrable systems. Russian Math. Surveys 42:4 (1987), 1-63.
[18] Mikhailov, A.V.; Shabat, A.B.; Sokolov, V.V.: The symmetry approach to the classification of integrable equations. (Russian) Integrability and kinetic equations for solitons (Russian), 213–279, "Naukova Dumka", Kiev, 1990.

[19] Sanders, J.A.; Wang, J.P.: On the integrability of homogeneous scalar evolutionary equations. J. Diff. Eqs. 147 (1998), 410-434.

[20] Shabat, A.B.; Mikhailov, A.V.: Symmetries—test of integrability. Important developments in soliton theory, 355–374, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993.

[21] Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surv. in Diff. geom. 1 (1991), 243–310.