Threshold Between Short and Long-range Potentials for Non-local Schrödinger Operators

Atsuhide Ishida¹ · Kazuyuki Wada²

Received: 25 May 2020 / Accepted: 13 August 2020 / Published online: 25 August 2020 © Springer Nature B.V. 2020

Abstract
We develop scattering theory for non-local Schrödinger operators defined by functions of the Laplacian that include its fractional power \((-\Delta)^\rho\) with \(0 < \rho \leq 1\). In particular, our function belongs to a wider class than the set of Bernstein functions. By showing the existence and non-existence of the wave operators, we clarify the threshold between the short and long-range decay conditions for perturbational potentials.

Keywords Bernstein function · Scattering theory · Wave operators

Mathematics Subject Classification (2010) 47B25 · 81Q10 · 81U05

1 Introduction
We consider the set of functions
\[
\tilde{\mathcal{B}} = \left\{ \Psi \in C^1(0, \infty) \mid \Psi(\sigma) \geq 0, \frac{d\Psi}{d\sigma}(\sigma) \geq 0, \sigma \in (0, \infty) \right\}.
\]
(1.1)

For \(\Psi \in \tilde{\mathcal{B}}\), the free Hamiltonian we consider in this paper is given by
\[
H_0^\Psi = \Psi(-\Delta) = \Psi\left(|D|^2\right),
\]
(1.2)
a self-adjoint operator acting on $L^2(\mathbb{R}^n)$, where $D = -i (\partial_{x_1}, \ldots, \partial_{x_n})$. Let V be a real-valued function satisfying suitable conditions. We call operator $H_0^\Psi + V$ a non-local Schrödinger operator.

An element of the following central set of functions

$$B = \left\{ \Phi \in C^\infty (0, \infty) \mid \Phi (\sigma) \geq 0, (-1)^k \frac{d^k \Phi}{d\sigma^k} (\sigma) \leq 0, \sigma \in (0, \infty), k \in \mathbb{N} \right\}$$

(1.3)

is called a Bernstein function. Clearly, the relation

$$B \subsetneq \tilde{B}$$

(1.4)

holds. Therefore, we treat much more general operators than those defined as Bernstein functions.

Consider $\Phi \in B$ that satisfy $\lim_{\sigma \to +0} \Phi (\sigma) = 0$. One important property of Φ is that the semigroup generated by $\Phi \left((|D|^2) + V \right)$ is expressible via a stochastic process

$$\left(e^{-t\Phi(|D|^2)+V} f \right) (x) = \mathbb{E}_x \left[e^{-\int_0^t V(BT(s))ds} f \left(B_T(t) \right) \right]$$

(1.5)

where $\{B_t \}_{t \geq 0}$ is the n-dimensional Brownian motion starting at $x \in \mathbb{R}^n$ and T is the subordinator associated with Φ. The above expression is often called Feynman-Kac formula or path integral representation.

The Feynman–Kac formula enables us to analyze $\Phi \left((|D|^2) + V \right)$ in terms of stochastic calculus. In particular, it is useful to investigate some properties of the eigenfunctions of $\Phi \left((|D|^2) + V \right)$. In this direction, there already exist several results [3, 4, 11]. Comprehensive results related to the Feynman–Kac formula are summarized in [15].

With regard to quantum scattering theory for non-local Schrödinger operators, there are only a few results. For instance, [2] considered a function $\Phi \in \hat{B}$, where

$$\hat{B} = \left\{ \Phi \in C^\infty (0, \infty) \mid \frac{d\Phi}{d\sigma} (\sigma) \geq 0, \sigma \in (0, \infty), \lim_{\sigma \to \infty} \Phi (\sigma) = \infty \right\}.$$

(1.6)

Giere [2] discusses the asymptotic completeness of the wave operators under a short-range perturbation V by investigating the semigroup differences and proves the absence of the singular continuous spectrum of $\Phi \left((|D|^2) + V \right)$. Of note, instances of fractional powers are specific examples of functions of the Laplacian. Kitada [13, 14] first constructed long-range scattering theory for $\left(-\Delta \right)^{\rho}$ with $1/2 \leq \rho \leq 1$. Recently, inverse scattering problems involving the short-range potentials were investigated in [7] for exponents ρ satisfying $1/2 < \rho \leq 1$.

Under these situations, our aim in this paper is to develop scattering theory for non-local Schrödinger operators defined by functions belonging to the wider set \tilde{B} with some additional assumptions. We first prove the existence of the wave operators in which the potential function V has a short-range decay. Giere [2] also proved these existence for $\Phi \in \hat{B}$ by way of semigroups $e^{-it\Phi(|D|^2)}$ and $e^{-it\Phi(|D|^2)+V}$. However, our proof of the existence of the wave operators is simple and intuitive, and is obtained directly from the propagation estimate for the time-evolution of $e^{-itH_0^\Psi}$. We next clarify the threshold between the short and long-range decay exponents by
providing a concrete example of the potential functions for which the wave operators do not exist.

For quantum scattering theory, it is important to distinguish the threshold between the short and long-range conditions. Historically, [1] considered the non-existence of the standard wave operators for the Coulomb interaction by showing that the weak limits of the pair of propagators were equal to zero (see also [17]). Ishida [6, 8] applied this method to the fractional Laplacian and massive relativistic operator. From a different perspective, [16] invented an original approach to prove the non-existence of the wave operators for the Stark Hamiltonian. This approach was applied to various quantum systems (repulsive Hamiltonian [5], time-dependent harmonic oscillator [9, 10] and 1D quantum walk [18]). Our approach in this paper follows [16].

First of all, we provide the basic properties associated with the spectrum of \(H_0^\Psi \). The absolute continuity of \(\Phi (|D|^2) \) for \(\Phi \in \mathcal{H} \) was mentioned in [2] (Remark 2.2). We also state several other properties of \(H_0^\Psi = \Psi (|D|^2) \) for \(\Psi \in \mathcal{H} \) in the following proposition.

Proposition 1.1 Assume that \(\Psi \in \mathcal{H} \).

1. The spectrum of \(H_0^\Psi \) coincides with

 \[
 \left[\lim_{\sigma \to +0} \Psi(\sigma), \lim_{\sigma \to \infty} \Psi(\sigma) \right]
 \]

 if \(\lim_{\sigma \to \infty} \Psi(\sigma) < \infty \),

 \[
 \left[\lim_{\sigma \to +0} \Psi(\sigma), \infty \right)
 \]

 if \(\lim_{\sigma \to \infty} \Psi(\sigma) = \infty \).

2. If the set

 \[
 A = \left\{ \sigma \in (0, \infty) \mid \frac{d \Psi}{d \sigma}(\sigma) = 0 \right\}
 \]

 is at most discrete, the pure point spectrum of \(H_0^\Psi \) is empty. If there exists a proper interval \(I \subset A \), for \(\sigma \in I \) fixed, \(\Psi(\sigma) \) is an eigenvalue of \(H_0^\Psi \) with infinite multiplicity.

3. If the set \(A \) is at most discrete, \(H_0^\Psi \) is absolutely continuous.

Proof 1. By the usual Fourier transform on \(L^2(\mathbb{R}^n) \), we represent

\[
H_0^\Psi = \mathcal{F}^* \Psi (|\xi|^2) \mathcal{F}.
\]

Therefore, its spectrum is given by the closure of the range of \(\Psi (|\xi|^2) \). Because \(\Psi \) is continuous and monotonically increasing, the spectrum of \(H_0^\Psi \) coincides with (1.7) or (1.8).

2. If \(A \) is a discrete set, then because \(\Psi \) is continuous and monotonic, for \(\lambda \geq \lim_{\sigma \to +0} \Psi(\sigma) \), there is only one \(\sigma_\lambda \in (0, \infty) \) such that \(\Psi(\sigma_\lambda) = \lambda \) and the
n-dimensional Lebesgue measure of
\[
\left\{ \xi \in \mathbb{R}^n \mid |\xi|^2 = \sigma \right\}
\]
(1.11)
is zero. Therefore, if we assume that there exists $u \in L^2(\mathbb{R}^n)$ such that
\[
\left(\Psi \left(|\xi|^2 \right) - \lambda \right) u(\xi) = 0,
\]
(1.12)
then $u = 0$ holds. This implies that the pure point spectrum of H_0^Ψ is empty. Alternatively, if $I \subset A$ is a proper interval, for $\sigma \in I$, the Lebesgue measure of
\[
\left\{ \xi \in \mathbb{R}^n \mid \Psi \left(|\xi|^2 \right) = \Psi(\sigma) \right\}
\]
(1.13)
is positive. In this case, $0 \neq u \in L^2(\mathbb{R}^n)$, which has support in (1.13), satisfies
\[
\left(\Psi \left(|\xi|^2 \right) - \Psi(\sigma) \right) u(\xi) = 0.
\]
(1.14)
This implies that $\Psi(\sigma)$ is an eigenvalue of H_0^Ψ and u is the corresponding eigenfunction. In particular, (1.13) has infinite disjoint subsets for which the Lebesgue measures are positive. This also implies that $\Psi(\sigma)$ has infinite multiplicity.

3. If the one-dimensional Lebesgue measure of the Borel set B is equal to zero, the n-dimensional Lebesgue measure of
\[
\left\{ \xi \in \mathbb{R}^n \mid \Psi \left(|\xi|^2 \right) \in B \right\}
\]
(1.15)
is also zero because A is discrete. Therefore,
\[
\int_{\Psi \left(|\xi|^2 \right) \in B} |(\mathcal{F} u)(\xi)|^2 d\xi = 0
\]
(1.16)
holds for $u \in L^2(\mathbb{R}^n)$. This shows the absolute continuity of H_0^Ψ.

Remark 1.2 Statements 1 and 2 in Proposition 1.1 can be replaced by the following. If the Lebesgue measure of A is zero, the pure point spectrum of H_0^Ψ is empty and H_0^Ψ is absolutely continuous. If the Lebesgue measure of A is positive, H_0^Ψ has an eigenvalue with infinite multiplicity. These proofs are demonstrated in a similar manner to that above.

Assumption 1.3 Let $\Psi_\pm \in \mathring{\mathcal{B}}$ be fixed and suppose $\Psi'_\pm = d\Psi_\pm/d\sigma > 0$. In addition, we assume that $\Psi'_\pm(\sigma^2)\sigma$ increases monotonically and $\Psi'_\pm(\sigma^2)\sigma$ decreases monotonically, for $\sigma \in (0, \infty)$.

Remark 1.4 Under this assumption, $H_0^{\Psi_\pm}$ do not have any eigenvalues and are absolutely continuous because $\Psi'_\pm > 0$.

The monotonicity in Assumption 1.3 is not extraordinary and it is not difficult to remove this assumption (see Remark 2.2 immediately following Proposition 2.1). For
example, $\Psi_+(\sigma) = \sqrt{\sigma}$ is allowed although $\Psi'_+(\sigma^2)\sigma$ is always equal to 1/2. In this case, as is well known,

$$\Psi_+\left(|D|^2\right) = \sqrt{-\Delta}$$ \hspace{1cm} (1.17)

is the massless relativistic Schrödinger operator. More generally, Assumption 1.3 admits fractional Schrödinger operators $\Psi_+\left(|D|^2\right) = (-\Delta)^\rho$ with $1/2 \leq \rho \leq 1$ and $\Psi_-\left(|D|^2\right) = (-\Delta)^\rho$ with $0 < \rho < 1/2$. We assume that $\Psi'_+(\sigma^2)\sigma$ is monotonic when keeping in mind fractional exponents.

From the classical mechanics aspect, $\nabla_\xi \Psi_+\left(|\xi|^2\right)$ means the velocity of the free particle. Therefore, in the monotonically increasing case, high-energy is expressed by $|\nabla_\xi \Psi_+\left(|\xi|^2\right)| = 2\Psi_+'\left(|\xi|^2\right)|\xi| \to \infty$ as $|\xi| \to \infty$, whereas in monotonically decreasing case, high-energy becomes $2\Psi_-\left(|\xi|^2\right)|\xi| \to \infty$ as $|\xi| \to 0$. This reverse trend in the momentum space is interesting and is described by the difference of two inequalities (2.1) and (2.2) in Proposition 2.1.

Assumption 1.5 Let $V^S \in L^\infty(\mathbb{R}^n)$. There exist positive constant C and exponents $\gamma_S > 1$ such that

$$|V^S(x)| \leq C \langle x \rangle^{-\gamma_S},$$ \hspace{1cm} (1.18)

where $\langle x \rangle = \sqrt{1 + |x|^2}$. For $0 \neq \kappa \in \mathbb{R}$ and $0 < \gamma_L \leq 1$, we also define $V^L \in L^\infty(\mathbb{R}^n)$ by

$$V^L(x) = \kappa \langle x \rangle^{-\gamma_L}.$$ \hspace{1cm} (1.19)

Throughout this paper, $\phi \in L^2(\mathbb{R}^n)$ satisfies $\mathcal{F}\phi \in C^\infty_0(\mathbb{R}^n \setminus \{0\})$. In particular, for $R > \epsilon > 0$ fixed, we assume that

$$\text{supp } \mathcal{F}\phi \subset \{\xi \in \mathbb{R}^n \mid \epsilon \leq |\xi| \leq R\}.$$ \hspace{1cm} (1.20)

$F(\cdots)$ denotes the characteristic function of the set $\{\cdots\}$. Moreover, we write the full Hamiltonians in the form

$$H^{\Psi}_S = H^0_{\Psi^\pm} + V^S, \quad H^{\Psi}_L = H^0_{\Psi^\pm} + V^L.$$ \hspace{1cm} (1.21)

Theorem 1.6 The wave operators

$$\text{s-lim}_{t \to \infty} e^{itH^{\Psi}_S} e^{-itH^0_{\Psi^\pm}}, \quad \text{s-lim}_{t \to -\infty} e^{itH^{\Psi}_S} e^{-itH^0_{\Psi^\pm}}$$ \hspace{1cm} (1.22)

exist. However,

$$\text{s-lim}_{t \to \infty} e^{itH^{\Psi}_L} e^{-itH^0_{\Psi^\pm}}, \quad \text{s-lim}_{t \to -\infty} e^{itH^{\Psi}_L} e^{-itH^0_{\Psi^\pm}}$$ \hspace{1cm} (1.23)

do not exist. This means that the threshold between short and long-range depends on whether the decay exponent of the potential function is less than -1, or greater than or equal to -1

To prove Theorem 1.6, several Propositions and Lemmas are needed. In the following, we only consider the limit $t \to \infty$ because the other case is proved similarly.
2 Existence of Wave Operators

In this section, we prove the existence of the wave operators. Although the following propagation estimates for free evolution $\mathrm{e}^{-it\mathcal{H}_0^\Psi}$ are simple, these estimates also work well in the next section.

Proposition 2.1 Let $t > 0$ and $N \in \mathbb{N}$. There exist positive constants $C_{\pm,N,\varepsilon,R}$ such that

$$\left\| F \left(\left| x \right| \leqslant \Psi'_+(\varepsilon^2)\varepsilon \right) \mathrm{e}^{-it\mathcal{H}_0^\Psi} \phi \right\|_{L^2(\mathbb{R}^n)} \leqslant C_{+,N,\varepsilon,R} t^{-N} \left\| \langle x \rangle^N \phi \right\|_{L^2(\mathbb{R}^n)} \quad (2.1)$$

and

$$\left\| F \left(\left| x \right| \leqslant \Psi'_-(R^2)R \right) \mathrm{e}^{-it\mathcal{H}_0^\Psi} \phi \right\|_{L^2(\mathbb{R}^n)} \leqslant C_{-,N,\varepsilon,R} t^{-N} \left\| \langle x \rangle^N \phi \right\|_{L^2(\mathbb{R}^n)} \quad (2.2)$$

hold.

Proof There exists a function $f \in C_0^\infty(\mathbb{R}^n \setminus \{0\})$ with supp $f \subset \{\varepsilon \leqslant |\xi| \leqslant R\}$ such that $\phi = f(D)\phi$. We then find

$$F \left(\left| x \right| \leqslant \Psi'_+(\varepsilon^2)\varepsilon \right) \mathrm{e}^{-it\mathcal{H}_0^\Psi} \phi = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \mathrm{e}^{i(x \cdot \xi - t\Psi'_+(|\xi|^2))} F \left(\left| x \right| \leqslant \Psi'_+(\varepsilon^2)\varepsilon \right) f(\xi) \hat{\phi}(\xi) d\xi. \quad (2.3)$$

When $|\xi| \geqslant \varepsilon$ and $|x|/t \leqslant \Psi'_+(\varepsilon^2)\varepsilon$ hold, we see that

$$\left| \nabla_\xi \left(x \cdot \xi - t\Psi'_+(|\xi|^2) \right) \right| \geqslant 2t \Psi'_+(|\xi|^2) |\xi| - |x| \geqslant t\Psi'_+(\varepsilon^2)\varepsilon \quad (2.4)$$

because $\Psi'_+(\sigma^2)\sigma$ is monotonically increasing for $\sigma > 0$. Using this inequality and the relation

$$-i \frac{\nabla_\xi \left(x \cdot \xi - t\Psi'_+(|\xi|^2) \right) \cdot \nabla_\xi e^{i(x \cdot \xi - t\Psi'_+(|\xi|^2))}}{\left| \nabla_\xi \left(x \cdot \xi - t\Psi'_+(|\xi|^2) \right) \right|^2} = e^{i(x \cdot \xi - t\Psi'_+(|\xi|^2))}, \quad (2.5)$$

equation (2.1) follows from the standard integration by parts method (see Kitada [12] for example). As for (2.2), when $|\xi| \leqslant R$ and $|x|/t \leqslant \Psi'_-(R^2)R$ hold, we see that

$$\left| \nabla_\xi \left(x \cdot \xi - t\Psi'_-(|\xi|^2) \right) \right| \geqslant t\Psi'_-(R^2)R. \quad (2.6)$$

We therefore also obtain (2.2). \qed

Remark 2.2 If we do not assume the monotonicity of $\Psi'_+(\sigma^2)\sigma$, the estimates (2.1) and (2.2) are replaced by

$$\left\| F \left(\left| x \right| \leqslant \inf_{\varepsilon \leqslant \sigma \leqslant R} \Psi'(\sigma^2)\sigma \right) \mathrm{e}^{-it\mathcal{H}_0^\Psi} \phi \right\|_{L^2(\mathbb{R}^n)} \leqslant C_{N,\varepsilon,R} t^{-N} \left\| \langle x \rangle^N \phi \right\|_{L^2(\mathbb{R}^n)}, \quad (2.7)$$

\[\square \] Springer
for \(\Psi \in \mathcal{B} \) which satisfies \(\Psi' > 0 \). The following proofs also proceed without monotonicity.

Proposition 2.1 yields the existence of the wave operators immediately.

Proof of the existence of the wave operators Let us first consider the existence of

\[
\text{s-lim}_{t \to \infty} e^{itH_+} e^{-itH_0^+}.
\]

The derivative at \(t \) of \(e^{itH_+} e^{-itH_0^+} \phi \) is

\[
\frac{d}{dt} e^{itH_+} e^{-itH_0^+} \phi = i e^{itH_+} V e^{-itH_0^+} \phi
\]

\[
= i e^{itH_+} F \left(\left| \frac{x}{t} \right| > \Psi' + (\epsilon^2) \epsilon \right) V e^{-itH_0^+} \phi
\]

\[
+ i e^{itH_+} F \left(\left| \frac{x}{t} \right| \leq \Psi' + (\epsilon^2) \epsilon \right) V e^{-itH_0^+} \phi.
\]

We abbreviate the \(L^2 \)-norm \(\| \cdot \|_{L^2(\mathbb{R}^n)} \) to \(\| \cdot \| \) for simplicity and estimate

\[
\left\| \frac{d}{dt} e^{itH_+} e^{-itH_0^+} \phi \right\| \leq C \left(t \Psi' + (\epsilon^2) \epsilon \right) \| \phi \| + \| V \|_{L^\infty(\mathbb{R}^n)} C_N, \epsilon, R t^{-N} \left\| \langle x \rangle \right\|_N \phi,
\]

where we have used the decay assumption (1.18) and Proposition 2.1. With \(\gamma_S > 1 \), we can choose \(N \in \mathbb{N} \) as \(N \geq 2 \). Then (2.10) implies the existence of (2.8) by the Cook–Kuroda method and a density argument. The existence of

\[
\text{s-lim}_{t \to \infty} e^{itH_+} e^{-itH_0^+}.
\]

is proved by simply replacing \(\Psi' + (\epsilon^2) \epsilon \) with \(\Psi' + (R^2) R \) inside the characteristic functions of (2.9).

\[\square\]

3 Non-existence of Wave Operators

This section is devoted to proving the non-existence of the wave operators when the potential function \(V^L \) satisfies (1.19).

Lemma 3.1 For \(t \geq 1 \), there exist positive constants \(c_{\pm,1} \) and \(c_{\pm,2} \) such that

\[
\frac{1}{\kappa} \left(V^L e^{-itH_0^+} \phi, e^{-itH_0^+} \phi \right)_{L^2(\mathbb{R}^n)} \geq c_{\pm,1} t^{-\gamma} \| \phi \|_{L^2(\mathbb{R}^n)}^2 - c_{\pm,2} t^{-2-\gamma} \| x \phi \|_{L^2(\mathbb{R}^n)}^2,
\]

where \(\cdot, \cdot \)_{L^2(\mathbb{R}^n)} \) denotes the scalar product on \(L^2(\mathbb{R}^n) \).
Proof By a straightforward computation, we see that the Heisenberg representation of the position x is
\[
e^{itH_0^\pm_0} x e^{-itH_0^\pm_0} = x + 2t \Psi'(|D|^2) D. \tag{3.2}
\]
Therefore, its time evolution for the monotonically increasing case is estimated to be
\[
\|x e^{-itH_0^\pm_0} \phi\|^2 = \left\| \left(x + 2t \Psi' \left(|D|^2 \right) D \right) f(D) \phi \right\|^2
\leq 2 \|x \phi\|^2 + 8nt^2 \Psi'(R^2)^2 R^2 \|\phi\|^2. \tag{3.3}
\]
Take $\Gamma_+ \in \mathbb{R}$ such that
\[
\Gamma_+ \geq \max \left\{ 4\sqrt{n} \Psi'(R^2) R, 1 \right\}, \tag{3.4}
\]
then the estimate of $e^{-itH_0^\pm_0} \phi$ outside a sphere of radius $\Gamma_+ t$ is
\[
\int_{|x|>\Gamma_+ t} \left| \left(e^{-itH_0^\pm_0} \phi \right)(x) \right|^2 dx \leq \int_{|x|>\Gamma_+ t} \frac{|x|^2}{\Gamma_+^2 t^2} \left| \left(e^{-itH_0^\pm_0} \phi \right)(x) \right|^2 dx
\leq \frac{1}{\Gamma_+^2 t^2} \left\| x e^{-itH_0^\pm_0} \phi \right\|^2 \leq \frac{1}{\Gamma_+^2 t^2} \left\{ 2 \|x \phi\|^2 + 8nt^2 \Psi'(R^2)^2 R^2 \|\phi\|^2 \right\}
\leq \frac{2}{\Gamma_+^2 t^2} \|x \phi\|^2 + \frac{1}{2} \|\phi\|^2. \tag{3.5}
\]
We write $(\cdot, \cdot)_{L^2(\mathbb{R}^n)} = (\cdot, \cdot)$ and compute
\[
\frac{1}{\kappa} \left(V^L e^{-itH_0^\pm_0} \phi, e^{-itH_0^\pm_0} \phi \right) \geq \frac{1}{\kappa} \int_{|x|>\Gamma_+ t} (x)^{-\gamma_1} \left| \left(e^{-itH_0^\pm_0} \phi \right)(x) \right|^2 dx
\geq \int_{|x|>\Gamma_+ t} (x)^{-\gamma_1} \left| \left(e^{-itH_0^\pm_0} \phi \right)(x) \right|^2 dx
\geq (\Gamma_+ t)^{-\gamma_1} \int_{|x|>\Gamma_+ t} \left| \left(e^{-itH_0^\pm_0} \phi \right)(x) \right|^2 dx
= (\Gamma_+ t)^{-\gamma_1} \|\phi\|^2 - (\Gamma_+ t)^{-\gamma_1} \int_{|x|>\Gamma_+ t} \left| \left(e^{-itH_0^\pm_0} \phi \right)(x) \right|^2 dx. \tag{3.6}
\]
Using the inequality (3.5), we have
\[
\frac{1}{\kappa} \left(V^L e^{-itH_0^\pm_0} \phi, e^{-itH_0^\pm_0} \phi \right) \geq \frac{1}{2} (\Gamma_+ t)^{-\gamma_1} \|\phi\|^2 - (\Gamma_+ t)^{-\gamma_1} \times \frac{2}{\Gamma_+^2 t^2} \|x \phi\|^2
\geq c_+ t^{-\gamma_1} \|\phi\|^2 - c_+ t^{-2-\gamma_1} \|x \phi\|^2. \tag{3.7}
\]
For the last inequality in (3.7), we set $c_{+,1}$ and $c_{+,2}$ using
\[
\frac{1}{2} (\Gamma_+ t)^{-\gamma_n} \geq \frac{1}{2} \left(1 + \Gamma_+ t \right)^{-\gamma_n} \geq \frac{1}{2} \left(2 \Gamma_+ \right)^{-\gamma_n} t^{-\gamma_n} = c_{+,1} t^{-\gamma_n}.
\]
\[
2 \frac{(\Gamma_+ t)^{-\gamma_n}}{\Gamma_+^2 t^2} \leq 2 \frac{(\Gamma_+ t)^{-\gamma_n}}{\Gamma_+^2 t^2} = 2 \Gamma_+^{-2} t^{-2} - \gamma_n = c_{+,2} t^{-2} - \gamma_n.
\] (3.8)

In contrast, for the monotonically decreasing case, we have
\[
\left\langle \frac{1}{\Gamma_1} + t \right\rangle - \gamma_n \leq \left\langle \frac{1}{\Gamma_1} + t \right\rangle - \gamma_n = c_{+,2} t^{-2} - \gamma_n.
\] (3.9)

Therefore,
\[
\| x e^{-itH_0^{\Psi_1} - \frac{t}{\Gamma_1}} \phi \|^{2} \leq 2 \| x \phi \|^{2} + 8nt^2 \Psi'_1(\epsilon^2)^2 \epsilon^2 \| \phi \|^2.
\] (3.10)

\[
\frac{1}{\kappa} \left(V^L e^{-itH_0^{\Psi_1}} \phi, e^{-itH_0^{\Psi_1}} \phi \right) \geq c_{-,1} t^{-\gamma_n} \| \phi \|^2 - c_{-,2} t^{-2} - \gamma_n \| x \phi \|^2.
\] (3.11)

holds for $\Gamma_1 \in \mathbb{R}$ which satisfies
\[
\Gamma_1 \geq \max \left\{ 4\sqrt{n} \Psi'_1(\epsilon^2) \epsilon, 1 \right\}.
\] (3.12)

Lemma 3.2 For $t > 0$ and $N \in \mathbb{N}$, there exist positive constants $c_{\pm,3}$ and $c_{\pm,4}$ such that
\[
\left\| V^L e^{-itH_0^{\Psi_1}} \phi \right\|_{L^2(\mathbb{R}^n)} \leq c_{\pm,3} t^{-\gamma_n} \| \phi \|_{L^2(\mathbb{R}^n)} + c_{\pm,4} t^{-N} \left\| \langle x \rangle^N \phi \right\|_{L^2(\mathbb{R}^n)}.
\] (3.13)

Proof This proof follows in almost the same way as the proof for the existence of the wave operators (see (2.10)). For the monotonically increasing case, (3.13) follows by setting $c_{+,3} = |\kappa| (\Psi'_1(\epsilon^2)^2 \epsilon)^{-\gamma_n}$ and $c_{+,4} = |\kappa| C_{+,N,\epsilon,R}$. For the monotonically decreasing case, (3.13) follows by $c_{-,3} = |\kappa| (\Psi'_1(R^2)^{R})^{-\gamma_n}$ and $c_{-,4} = |\kappa| C_{-,N,\epsilon,R}$. \hfill \qed

We have now gathered everything required to prove the non-existence of the wave operators.

Proof of the nonexistence of the wave operators We assume that
\[
\lim_{t \to \infty} e^{itH_L^{\Psi_1}} e^{-itH_0^{\Psi_1}}
\] (3.14)
exists and put
\[
\phi_\pm = \lim_{t \to \infty} e^{itH_L^{\Psi_1}} e^{-itH_0^{\Psi_1}} \phi \in L^2(\mathbb{R}^n).
\] (3.15)

There exist $T_\pm > 0$ such that
\[
\left\| e^{itH_L^{\Psi_1}} e^{-itH_0^{\Psi_1}} \phi - \phi_\pm \right\| \leq \frac{|\kappa| c_{\pm,1} \| \phi \|}{2c_{\pm,3}}.
\] (3.16)
for all $t \geq T$. We take t_1 and t_2 such that $t_2 \geq t_1 \geq \max\{T, 1\}$ and compute

$$\left| \left\{ e^{it_2 H_L} \phi, e^{-it_2 H_L} \phi \right\} \right| = \left| \int_{t_1}^{t_2} \frac{d}{dt} \left(e^{-it H_L} \phi, e^{-it H_L} \phi \right) dt \right| = \left| \int_{t_1}^{t_2} \left(V_L e^{-it H_L} \phi, e^{-it H_L} \phi \right) dt \right| + \left| \int_{t_1}^{t_2} \left(V_L e^{-it H_L} \phi, e^{-it H_L} \phi \right) dt \right|$$

$$\geq |\kappa| \int_{t_1}^{t_2} \left(V_L e^{-it H_L} \phi, e^{-it H_L} \phi \right) dt.$$

By virtue of Lemmas 3.1 and 3.2, we conclude that

$$2\|\phi\|\|\phi\| \geq \frac{|\kappa| c_{1,1}}{2} \|\phi\|^2 \int_{t_1}^{t_2} t^{-\gamma_L} dt$$

$$-|\kappa| c_{2,1} \|x\| \|\phi\|^2 \int_{t_1}^{t_2} t^{-2-\gamma_L} dt - \frac{|\kappa| c_{4,1} c_{4,2}}{2c_{3,1}} \|\phi\| \|x\|^N \int_{t_1}^{t_2} t^{-N} dt$$

$$\rightarrow \infty$$

as t_2 goes to infinity because $\gamma_L \leq 1$, and we can choose $N \in \mathbb{N}$ as $N \geq 2$. This leads to a contradiction.

Acknowledgments The first author was partially supported by the Grant-in-Aid for Young Scientists (B) \#16K17633 and Scientific Research (C) \#20K03625 from JSPS.

References

1. Dollard, J.D.: Quantum-mechanical scattering theory for short-range and Coulomb interactions. Rocky Mountain J. Math. 1(1), 5–81 (1971)
2. Giere, E.: Asymptotic completeness for functions of the Laplacian perturbed by potentials and obstacles. Math. Nachr. 263/264, 133–153 (2004)
3. Hiroshima, F., Lörinczi, J.: Lieb-thirring bound for Schrödinger operators with Bernstein functions of the Laplacian. Commun. Stoch. Anal. 6(4), 589–602 (2012)
4. Hiroshima, F., Ichinose, T., Lörinczi, J.: Path integral representation for Schrödinger operators with Bernstein functions of the Laplacian. Rev. Math. Phys. 24(6), 1250013 (2012)
5. Ishida, A.: The borderline of the short-range condition for the repulsive Hamiltonian. J. Math. Anal. Appl. 438(1), 267–273 (2016)
6. Ishida, A.: Non-existence of standard wave operators for fractional Laplacian and slowly decaying potentials. East Asian J. Appl. Math. 9(2), 233–240 (2019)
7. Ishida, A.: Propagation property and application to inverse scattering for fractional powers of the negative Laplacian. East Asian J. Appl. Math. 10(1), 106–122 (2020)
8. Ishida, A.: Nonexistence result for wave operators in massive relativistic system. Latin America Mathematics series, Springer Nature Switzerland AG (in press)
9. Ishida, A., Kawamoto, M.: Existence and nonexistence of wave operators for time-decaying harmonic oscillators. Rep. Math. Phys. 85(3), 335–350 (2020)
10. Ishida, A., Kawamoto, M.: Critical scattering in a time-dependent harmonic oscillator. J. Math. Anal. Appl. (in press)
11. Kaleta, K., Lőrinczi, J.: Zero-energy bound state decay for non-local Schrödinger operators. Comm. Math. Phys. 374(3), 2151–2191 (2020)
12. Kitada, H.: Scattering theory for Schrödinger equations with time-dependent potentials of long-range type. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(2), 353–369 (1982)
13. Kitada, H.: Scattering theory for the fractional power of negative Laplacian. Jour. Abstr. Differ. Equ. Appl. 1(1), 1–26 (2010)
14. Kitada, H.: A remark on simple scattering theory. Commun. Math. Anal. 11(2), 123–138 (2011)
15. Lőrinczi, J., Hiroshima, F., Betz, V.: Feynman–Kac-Type Theorems and Gibbs Measures on Path Space. With Applications to Rigorous Quantum Field Theory De Gruyter Studies in Mathematics, 34. Walter de Gruyter & Co., Berlin (2011)
16. Ozawa, T.: Non-existence of wave operators for Stark effect Hamiltonians. Math. Z. 207(3), 335–339 (1991)
17. Reed, M., Simon, B.: Methods of Modern Mathematical Physics III, Scattering Theory. Academic Press, New York (1979)
18. Wada, K.: Absence of wave operators for one-dimensional quantum walks. Lett. Math. Phys. 109(11), 2571–2583 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.