Grimmett, Geoffrey; Li, Zhongyang
Self-avoiding walks and amenability. (English) Zbl 1376.05068
Electron. J. Comb. 24, No. 4, Research Paper P4.38, 24 p. (2017).

Summary: The connective constant $\mu(G)$ of an infinite transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work.

Various properties of connective constants depend on the existence of so-called ‘unimodular graph height functions’, namely: (i) whether $\mu(G)$ is a local function on certain graphs derived from G, (ii) the equality of $\mu(G)$ and the asymptotic growth rate of bridges, and (iii) whether there exists a terminating algorithm for approximating $\mu(G)$ to a given degree of accuracy.

In the context of amenable groups, it is proved that the Cayley graphs of infinite, finitely generated, elementary amenable (and, more generally, virtually indicable) groups support unimodular graph height functions, which are in addition harmonic. In contrast, the Cayley graph of the Grigorchuk group, which is amenable but not elementary amenable, does not have a graph height function.

In the context of non-amenable, transitive graphs, a lower bound is presented for the connective constant in terms of the spectral bottom of the graph. This is a strengthening of an earlier result of the same authors. Secondly, using a percolation inequality of A. Benjamini et al. [Probab. Theory Relat. Fields 149, No. 1–2, 261–269 (2011; Zbl 1230.60099)], it is explained that the connective constant of a non-amenable, transitive graph with large girth is close to that of a regular tree. Examples are given of non-amenable groups without graph height functions, of which one is the Higman group.

The emphasis of the work is upon the structure of Cayley graphs, rather than upon the algebraic properties of the underlying groups. New methods are needed since a Cayley graph generally possesses automorphisms beyond those arising through the action of the group.

MSC:
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C30 Enumeration in graph theory
20F65 Geometric group theory
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

Keywords:
self-avoiding walk; connective constant; Cayley graph; amenable group; elementary amenable group; indicable group; Grigorchuk group; Higman group; Baumslag-Solitar group; graph height function; group height function; harmonic function; unimodularity; spectral radius; spectral bottom

Full Text: arXiv Link

References:
[1] M. Ab´ert, Y. Glasner, and B. Vir´ag, The measurable Kesten theorem, Ann. Probab. 44 (2016), 1601-1646. · Zbl 1339.05365
[2] L. Babai, Automorphism groups, isomorphism, reconstruction, Handbook of Combinatorics, vol. II, Elsevier, Amsterdam, 1995, pp. 1447-1540. · Zbl 0846.05042
[3] R. Bauerschmidt, H. Duminil-Copin, J. Goodman, and G. Slade, Lectures on selfavoiding walks, Probability and Statistical Physics in Two and More Dimensions (D. Ellwood, C. M. Newman, V. Sidoravicius, and W. Werner, eds.), Clay Mathematics Institute Proceedings, vol. 15, CMI/AMS publication, 2012, pp. 395-476. · Zbl 1317.60125
[4] I. Benjamini, Euclidean vs graph metric, Erd˝os Centennial (L. Lov´asz, I. Ruzsa, and V. T. S´os, eds.), Springer Verlag, Berlin, 2013, pp. 35-57. · Zbl 1293.05199
[5] I. Benjamini, A. Nachmias, and Y. Peres, Is the critical percolation probability local?, Probab. Th. Rel. Fields 149 (2011), 261-269. · Zbl 1230.60099
[6] S. R. Broadbent and J. M. Hammersley, Percolation processes. I. Crystals and mazes, Proc. Cambridge Philos. Soc. 53 (1957), 629-641. · Zbl 0091.13901

[7] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. · Zbl 0078.29402

[8] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), 787-794. · Zbl 0512.39001

[9] H. Duminil-Copin and S. Smirnov, The connective constant of the honeycomb lattice/ p equals2 + 2, Ann. Math. 175 (2012), 1653-1665. · Zbl 1253.82012

[10] P. Flory, Principles of Polymer Chemistry, Cornell University Press, 1953.

[11] R. I. Grigorchuk, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen. 14 (1980), 53-54. · Zbl 0595.20029

[12] Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 939-985.

[13] Solved and unsolved problems around one group, Infinite Groups: Geometric, Combinatorial and Dynamic Aspects, Progress in Mathematics, vol. 248, Springer Verlag, Berlin, 2005, pp. 117-218.

[14] G. R. Grimmett, Percolation, 2nd ed., Springer Verlag, Berlin.

[15] G. R. Grimmett, A. E. Holroyd, and Y. Peres, Extendable self-avoiding walks, Ann. de l’Inst. Henri Poincar’e D 1 (2014), 61-75. · Zbl 1285.05163

[16] G. R. Grimmett and Z. Li, Locality of connective constants, (2014), http://arxiv.org/abs/1412.0150. · Zbl 1397.05076

[17] Strict inequalities for connective constants of regular graphs, SIAM J. Disc. Math. 28 (2014), 1306-1333. · Zbl 1302.60005

[18] Bounds on connective constants of regular graphs, Combinatorica 35 (2015), 279-294, the electronic journal of combinatorics 24(4) (2017), · Zbl 0091.13901

[19] Connective constants and height functions of Cayley graphs, Trans. Amer. Math. Soc. 369 (2017), 5961-5980. · Zbl 1362.05059

[20] Self-avoiding walks and connective constants, (2017), http://arxiv.org/abs/1704.05884.

[21] G. R. Grimmett and D. J. A. Welsh, Probability, an Introduction, 2nd ed., Oxford University Press, Oxford, 2014. · Zbl 1397.05065

[22] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73. · Zbl 0512.39001

[23] J. M. Hammersley and W. Morton, Poor man’s Monte Carlo, J. Roy. Statist. Soc. B 16 (1954), 23-38. · Zbl 0051.13801

[24] J. M. Hammersley and D. J. A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice, Quart. J. Math. Oxford 13 (1962), 108-110. · Zbl 0123.00304

[25] P. de la Harpe, Topics in Geometric Group Theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1992. · Zbl 1095.20025

[26] I. N. Herstein, Topics in Algebra, 2nd ed., Xerox Corporation, Lexington, Mass., 1975. · Zbl 0123.00304

[27] G. Higman, A finitely generated infinite simple group, J. London Math. Soc. 26 (1951), 61-64. · Zbl 0042.02201

[28] J. A. Hillman, The Algebraic Characterization of Geometric 4-Manifolds, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1994. · Zbl 0812.57001

[29] Four-Manifolds, Geometries and Knots, Geometry and Topology Monographs, vol. 5, Mathematical Sciences Publishers, Berkeley CA, 2002, http://arxiv.org/abs/math/0212142.

[30] K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. Math. 178 (2013), 775-787. · Zbl 1284.05250

[31] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146-156. · Zbl 0084.01901

[32] Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354. · Zbl 0091.13901

[33] J. R. Lee and Y. Peres, Harmonic maps on amenable groups and a diffusive lower bound for random walks, Ann. Probab. 41 (2013), 3392-3419. · Zbl 1284.05050

[34] R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge University Press, Cambridge, 2016, http://mypage.iu.edu/~rdlyons/.

[35] I. G. Lysenok, A set of defining relations for the Grigorchuk group, Mat. Zametki 38 (1985), 503-516, 634, (transl., Math. Notes 38 (1985), 784-792). · Zbl 0595.20029

[36] N. Madras and G. Slade, Self-Avoiding Walks, Birkhäuser, Boston, 1993. · Zbl 0959.20030

[37] S. Martineau and V. Tassion, Locality of percolation for abelian Cayley graphs, Ann. Probab. 45 (2017), 1247-1277. · Zbl 1388.60165

[38] J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. 13 (1929), 73–116. · Zbl 55.0151.01

[39] W. J. C. Orr, Statistical treatment of polymer solutions at infinite dilution, Trans. Faraday Soc. 43 (1947), 12-27.

[40] I. Pak and T. Smirnova-Nagnibeda, On non-uniqueness of percolation on nonamenable Cayley graphs, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 495-500. · Zbl 0947.43003

[41] N. Seifter, On the girth of infinite graphs, Discrete Math. 118 (1993), 279-287. · Zbl 0791.05061

[42] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge University Press, Cambridge, 2000. the electronic
