A molecular survey of vector-borne pathogens in red foxes (*Vulpes vulpes*) from Bosnia and Herzegovina

Adnan Hodžić¹, Amer Alić², Hans-Peter Fuehrer¹, Josef Harl¹, Walpurga Wille-Piazzai¹ and Georg Gerhard Duscher¹

Abstract

Background: Red foxes (*Vulpes vulpes*) have recently been recognized as potential reservoirs of several vector-borne pathogens and a source of infection for domestic dogs and humans, mostly due to their close vicinity to urban areas and frequent exposure to different arthropod vectors. The aim of this study was to investigate the presence and distribution of *Babesia* spp., *Hepatozoon canis*, *Anaplasma* spp., *Bartonella* spp., *Candidatus Neoehrlichia mikurensis*, *Ehrlichia canis*, *Rickettsia* spp. and blood filaroid nematodes in free-ranging red foxes from Bosnia and Herzegovina.

Methods: Spleen samples from a total of 119 red foxes, shot during the hunting season between October 2013 and April 2014 throughout Bosnia and Herzegovina, were examined for the presence of blood vector-borne pathogens by conventional PCRs and sequencing.

Results: In the present study, three species of apicomplexan parasites were molecularly identified in 73 red foxes from the entire sample area, with an overall prevalence of 60.8%. The DNA of *B. canis*, *B. cf. microti* and *H. canis* was found in 1 (0.8%), 38 (31.9%) and 46 (38.6%) spleen samples, respectively. In 11 samples (9.2%) co-infections with *B. cf. microti* and *H. canis* were detected and one fox harboured all three parasites (0.8%). There were no statistically significant differences between geographical region, sex or age of the host in the infection prevalence of *B. cf. microti*, although females (52.9%; 18/34) were significantly more infected with *H. canis* than males (32.9%; 28/85). The presence of vector-borne bacteria and filaroid nematodes was not detected in our study.

Conclusion: This is the first report of *B. canis*, *B. cf. microti* and *H. canis* parasites in foxes from Bosnia and Herzegovina and the data presented here provide a first insight into the distribution of these pathogens among the red fox population. Moreover, the relatively high prevalence of *B. cf. microti* and *H. canis* reinforces the assumption that this wild canid species might be a possible reservoir and source of infection for domestic dogs.

Keywords: *Babesia cf. microti*, *Hepatozoon canis*, *Babesia canis*, Red fox, *Vulpes vulpes*, Bosnia and Herzegovina, PCR

Background

Vector-borne diseases (VBDs) are caused by many protozoan, helminthic, bacterial and viral pathogens, which are transmitted to animals and humans by blood-sucking arthropods, such as ticks, mosquitoes, fleas and phlebotomine sand flies [1]. The majority of VBDs are classified as emerging infectious diseases and anthropogenic changes, such as global warming, deforestation, globalization and pollution, may have an impact on their prevalence and distribution [1,2]. However, despite intensive clinical and epidemiological research in the recent past, especially in domestic dogs and cats, the information on the occurrence and prevalence of vector-borne pathogens in wild canids is still scarce [3-7]. Red foxes (*Vulpes vulpes*) are the most abundant wild canid species in Europe [8] and recently they have been recognized as a potential reservoir for blood vector-borne pathogens, such as *Babesia* spp. [6,9], *Hepatozoon canis* [4,10,11], *Anaplasma phagocytophilum* [12-15], *Bartonella* spp. [16,17], *Ehrlichia canis* [18] and filaroid nematodes [19-21]. They represent an excellent sentinel species and a possible source of several VBDs to domestic animals and humans, mostly due to their close proximity to human habitation and the frequent exposure to different arthropod vectors.
proximity to urban or agricultural areas and frequent exposure to different arthropod vectors [2,6,15,22,23].

Tick-borne parasitic hematozoa of the genus Babesia (order Piroplasmida) infect erythrocytes of a wide range of domestic and wild animals [6,9,24]. In the past, it was assumed that only B. canis and B. gibsoni can cause diseases in dogs [9]. However, a piroplasm closely related to zoonotic B. microti (denominated as B. cf. microti, B. microti-like, B. annae or Theileria annae) was detected from dogs with clinical signs of hemolytic anemia, azotemia and renal failure [25-28]. Recently, B. cf. microti parasites were also molecularly confirmed in red foxes from Austria [29], Croatia [3], Germany [9], Italy [7], Poland [4], Portugal [6] and Spain [30]. Furthermore, B. canis and B. gibsoni were described in foxes based on morphological characteristics [24], and the first molecular report of B. canis was described in a single fox from Portugal [6].

Hepatozoon canis (order Eucoccidioida) is an apicomplexan protozoan parasite infecting domestic dogs and wild canids worldwide [10,31]. The main vector of H. canis is the brown dog tick, Rhipicephalus sanguineus, and the pathogen occurrence is mostly related to the geographical distribution of the tick host [32]. Transmission to the vertebrate host typically takes place by ingestion of a tick containing mature oocysts [33], although vertical transmission of the parasite from female foxes to the progeny might also occur [34]. The infection in dogs is often subclinical, but it could be manifested as a severe life-threatening disease with fever, cachexia, lethargy and anemia [35]. In foxes, H. canis is highly prevalent and it has been recorded in Austria [29], Croatia [3], Germany [36], Hungary [31], Poland [4], Portugal [10], Romania [11], Slovakia [37] and Spain [38].

In recent years, the interest of the scientific community in vector-borne bacteria from the genera Anaplasma, Bartonella, Ehrlichia, Rickettsia and the recently described cluster ‘Candidatus Neoehrlichia’ is growing worldwide since they were recognized as important human and animal pathogens. Thus A. phagocytophilum, A. ovis, A. bovis, B. rochalimae and E. canis were molecularly identified in foxes from many European countries [12,13,15-17,23,39]. Moreover, ‘Candidatus N. mikurensis’ and Rickettsia spp. were found in humans, domestic and wild animals, and arthropods collected from foxes [13,23,40-42], but they have never been molecularly confirmed in that wild canid species itself.

Canine dirofilariosis, caused by Dirofilaria immitis and D. repens, was diagnosed in Bosnia and Herzegovina for the first time in 2009, with the prevalence of 3.1% and 1.9% in dogs, respectively [43]. These nematodes infect mainly dogs, but also wild carnivores, cats and humans [20]. Several studies have shown that foxes represent an important wild reservoir for filaroid nematodes (e.g., Dirofilaria, Acanthocheilonema) and in fact they support the circulation and transmission of microfilariae to companion animals and humans [20,21,44].

To the best of our knowledge, there is no information on vector-borne pathogens in the red fox population from Bosnia and Herzegovina. Therefore, the aim of this study was to investigate the presence and distribution of Babesia spp., Hepatozoon canis, Anaplasm spp., Bartonella spp., ‘Candidatus N. mikurensis’, Ehrlichia canis, Rickettsia spp. and blood filaroid nematodes in free-ranging red foxes from Bosnia and Herzegovina.

Methods
Collection of samples
The present study was conducted in Bosnia and Herzegovina, which covers 51,209 km² and is located in the western part of the Balkan Peninsula (43° 52’ N, 18° 25’ E). A total of 119 red foxes (85 males, 34 females; 7 juveniles <1 yr., 112 adults >1 yr.) from 29 municipalities of six different regions were shot during the hunting season between October 2013 and April 2014. All animals were immediately delivered to the Department of Pathology at the Veterinary Faculty in Sarajevo and stored at 4°C for no more than 72 h. Data on sex, age and area of origin was recorded for each individual animal. During necropsy, small pieces of spleen tissue were collected, stored at −20°C and sent to the Institute of Parasitology at the University of Veterinary Medicine in Vienna, Austria for further analysis. Additionally, hearts, pulmonary arteries and lungs were dissected and examined visually for the presence of D. immitis.

DNA extraction, PCR amplification and sequencing
Total DNA was extracted from up to 20 mg of spleen tissue using the High Pure PCR Template Preparation Kit (Roche Diagnostics, Germany) according to the manufacturer’s instructions. The PCR primers (Table 1) and amplification conditions for molecular detection of Babesia spp., Anaplasm spp., Bartonella spp., ‘Candidatus N. mikurensis’, E. canis and Rickettsia spp. have been published elsewhere [45-48]. PCR products were separated by electrophoresis in 2% agarose gels stained with Midori Green Advance DNA stain (Nippon Genetics Europe, Germany). All positive samples were purified and directly sequenced by a commercial company (LG Genomics, Germany). Obtained sequences were edited using the software BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html) and compared for similarity to sequences available in GenBank (http://www.ncbi.nlm.nih.gov/BLAST).

In order to detect apicomplexan parasites of the genera Babesia and Hepatozoon, the primer pair BTH-1 F and BTH-1R [45] was used. In those cases where the electropherograms showed superimposed signals, indicating mixed infections with different apicomplexan parasites, additional PCR reactions were performed with the
specific primer pairs. The nested primers GF2 and GR2 [45] were used to detect *Babesia* spp., whereas new primers were designed for screening of *Hepatozoon* spp.: H14Hepa18SFW (5′- GAA ATA ACA ATA CAA GGC AGT TAA AAT CAA ACT AA) and H14Hepa18SRv (5A′- GTG CTG AAG GAG TCG TTT ATA AAG A) –3′).

For PCR screening of spleens on the blood filaroid nematodes (e.g. *Dirofilaria, Acanthocheilonema*) another primer set, H14FilaCOIFw (5′- GCC TAT TTT GAT TGG TGG TT′T TGG –3′) and H14FilaCOIRv (5′- AGC AAT CAT AGT AGC ACT AA –3′), was designed and used to amplify a 724 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene (Table 1). The PCR mixture for the newly designed primer pairs was as follows: 1 μl of extracted DNA was added to 24 μl of reaction mixture containing 5 μl of 5X Green Reaction Buffer (7.5 mM MgCl2; pH 8.5), 0.5 μl of dNTPs (10 mM), 0.125 μl of Taq polymerase (5 u/μl), 2 μl of each primer (10 pmol/μl), and made up to a final volume of 25 μl with PCR grade water. Amplifications were conducted in a Mastercycler Pro (Eppendorf, Germany) under the following conditions: 95°C for 2 min followed by 35 cycles of 95°C for 60 s, 58°C (H14Hepa18S)/53°C (H14FilaCOI) for 60 s, 72°C for 60 s. Final extension was performed at 72°C for 5 min then held at 15°C.

Table 1 Primers used for the amplification of DNA of *Babesia* spp., *Hepatozoon* spp., *Anaplasma* spp., *Bartonella* spp., *Candidatus Neoehrlichia mikurensis*, *Ehrlichia canis*, *Rickettsia* spp. and filaroid nematodes

Specificity	Genetic marker	Sequences of primers (5′-3′)	Length of amplicons (bp)	Reference
Apicomplexa	18S rRNA	BTH-1 F: CCT GAG AAA CCG CTA CCA CAT CT	561	[45]
		BTH-1R: TGG CGA CCA TAC TCC CCC CA		
Babesia spp.		Nested PCR:		
Thelema spp.		GF2: GTC TTG TAA TTG GAA TGA TGG		
		GR2: CCA AAG ACT TTG ATT TCT CTC		
Hepatozoon canis	18S rRNA	H14Hepa18SFW: GAA ATA ACA ATA CAA GGC AGT TAA AAT GCT	620	present study
		H14Hepa18SRv: GTG CTG AAG GAG TCG TTT ATA AAG A		
Anaplasmataceae	16S rRNA	EHR16SD: GGT ACC YAC AGA AGA AGT CC	345	[46]
		EHR16SR: TAG CAC TCA TCG TTT ACA GC		
Bartonella spp.	16S-23S rRNA	bartg_for: GAT GAT GAT CCC AAG CCT TC	134 - 315	modified [47]
		B1623_rev: AAC CAA CTG AGC TAC AAG CC		
Rickettsia spp.	23S/5S rRNA	ITS-F: GAT AGG TCG GGT GTG GAA G	342 - 533	[48]
		ITS-R: TCG GGA TGG GAT CGT GTG		
Filaroid nematodes	COI	H14FilaCOIFw: GCC TAT TTT GAT TGG TGG TT′T TGG	724	present study
		H14FilaCOIRv: AGC AAT CAT AGT AGC ACT AA		

Results

In the present study, three species of apicomplexan parasites, *B. canis*, *B. microti* and *H. canis*, were identified in 73 red foxes by using molecular methods, with an overall prevalence of 60.8%. All infected foxes were in a good body condition and came from 23 municipalities of all six surveyed regions. The highest prevalence was detected in the region of North West Bosnia (Figure 1, Table 2). DNA of *B. canis*, *B. microti* and *H. canis* was detected in 1 (0.8%; 95% confidence interval [CI]: 0.8–2.4%), 38 (31.9%; 95% CI: 23–40%) and 46 (38.6%; 95% CI: 30–48%) spleen samples, respectively. The geographical distribution of these pathogens overlap in many sampled areas (Figure 1) and co-infections with *B. microti* and *H. canis* were confirmed in 11 animals (9.2%), while a single fox harboured all three pathogens (0.8%). There were no statistically significant differences in the prevalence of *B. microti* infections between geographical regions, sex or age of the host. However, females (52.9%; 18/34) were significantly more...
infected with *H. canis* (*p* = 0.044) than males (32.9%; 28/85) (Table 3). Also, there was no statistically significant differences between the age and sex groups (*p* = 0.085).

A total of 90 PCR-positive samples were sequenced. Of these, 38 samples showed 99–100% similarity to 18S sequences attributed to *Theileria annae* [GenBank accession no. HM212628.1] found in foxes from Croatia [3] and *Babesia* sp. ‘Spanish dog’ [GenBank accession no. AY457974.1] isolated from dogs in Spain [27]. A sequence of one sample showed 100% identity with sequences of *B. canis canis* [GenBank accession no. FJ209024.1] reported from dogs in Croatia [49].

PCR performed with the Apicomplexa-specific 18S primers BTH-1 F and BTH-1R detected *H. canis* in 41 (89.1%) out of a total of 46 positive samples confirmed by *Hepatozoon*-specific PCR and sequencing. Moreover, five PCR products were positive on gel, but the occurrence of pathogens could not be confirmed by sequencing and all were noted as false positive.

Out of 46 18S sequences of *H. canis*, 38 were 100% identical to a sequence from a Spanish fox [GenBank accession no. AY150067.2] [38], while all others showed up to 99% similarity to sequences from foxes and dogs from all over the world (East Asia, India, Europe, North...
African and South America). All sequences are deposited in GenBank and are available under accession numbers KP216410–KP216494. The presence of *Anaplasma* spp., *Bartonella* spp., *Candidatus N. mikurensis*, *E. canis*, *Rickettsia* spp. and blood filaroid nematodes was not detected in our samples.

Discussion

This study for the first time reports the occurrence of *B. canis*, *B. cf. microti* and *H. canis* parasites in red foxes from Bosnia and Herzegovina. The piroplasm *B. cf. microti* was molecularly confirmed in 38/119 (31.9%) animals from all six surveyed regions, with the highest prevalence (66.6%) detected in Herzegovina. The observed prevalence of infection was higher than that previously found in Croatia (5%; [3]), Italy (0.98%; [7]), Poland (0.7%; [4]) and Spain (14%; [30]). Higher prevalence was reported in foxes from Austria (50%; [29]), Germany (46.4%; [9]) and Portugal (69.2%; [6]). Differences between prevalence levels reported among studies may occur due to different tissues sampled or assay used, but also due to geographical distributions of the tick vectors [6]. *Ixodes hexagonus* was suspected to be the main vector responsible for transmission of *B. cf. microti* [50], but recently it was molecularly detected in *I. ricinus*, *I. canisuga* and *R. sanguineus* as well [9,51]. However, the vector competence of these tick species is not confirmed yet and the presence of the piroplasm DNA in the ticks may represent blood engorged from an infected animal host [6,9]. The fact that infected foxes were discovered in all studied areas, and that the occurrence of *I. hexagonus* was observed only in the western part of Bosnia [52], supports the hypothesis about the existence of another vector species other than *I. hexagonus*. Moreover, *B. canis* was detected in one fox (0.8%) originating from North Bosnia. This finding was completely unexpected, since *B. canis* has been molecularly confirmed only in a single fox from Portugal so far [6], suggesting that foxes are not suitable hosts for these canine blood parasites; they were probably transmitted accidentally by ticks which fed on infected dogs.

In this study, *H. canis* was the most frequently detected parasite, with a prevalence of 38.6% (46/119). Infected foxes were present in almost all sampled regions, except in the region of Herzegovina. This finding is intriguing because *R. sanguineus* is present in Herzegovina [52] and very small sample size obtained from this area (n = 6) may be the reason for the absence of *H. canis*. However, *H. canis* Regional distribution is presented in Table 2.

Table 2 The prevalence and geographical distribution of *B. canis*, *Babesia cf. microti*, and *Hepatozoon canis* infected foxes in Bosnia and Herzegovina

Region	No. of examined foxes	*Babesia canis*			*Babesia cf. microti*			*Hepatozoon canis*			Total infection*
East Bosnia (EB)	32	0 0.0	13	40.6	10	31.2	23	71.8			
Central Bosnia (CB)	53	0 0.0	12	22.6	23	43.4	35	66.0			
North Bosnia (NB)	9	1 11.1	2	22.2	3	33.3	6	66.6			
Herzegovina (HER)	6	0 0.0	4	66.6	0	0.0	4	66.6			
North East Bosnia (NEB)	15	0 0.0	6	40.0	7	46.6	13	86.6			
North West Bosnia (NWB)	4	0 0.0	1	25.0	3	75.0	4	100			
Total	119	1 0.8	38	31.9	46	38.3	85	70.8			

*Refers to total number of infections, not total number of infected animals.

data missing in the table.

Table 3 Number of foxes infected with *Babesia canis*, *Babesia cf. microti* and *Hepatozoon canis* in Bosnia and Herzegovina categorized by sex and age

Region	*Babesia canis*			*Babesia cf. microti*			*Hepatozoon canis*					
East Bosnia (EB)	-	-	-	6	7	13	5	5	10	-		
Central Bosnia (CB)	-	-	-	8	4	10	14	9	22	1		
North Bosnia (NB)	1	1	-	2	2	-	2	1	3	-		
Herzegovina (HER)	-	-	-	4	-	2	-	-	-	-		
North East Bosnia (NEB)	-	-	-	6	-	6	6	1	7	-		
North West Bosnia (NWB)	-	-	-	1	-	1	2	2	3	-		
Positive/Total sampled	1/85	0/34	1/112	0/7	27/85	11/34	34/112	4/7	28/85	18*/34	45/112	1/7

* (p < 0.05).
H. canis was also observed in areas lacking R. sanguineus [29,37,53]. Among studies using DNA from spleen or blood samples for PCRs, the prevalence of infections with H. canis in red foxes ranged from 8% in Hungary to 75.6% in Portugal [3,4,10,11,29-31,36,37]. The fact that there was no significant difference in the prevalence between the age groups of the host in our study might indicate that foxes were infected at a young age by vertical intrauterine transmission or by vectors as already suggested [10]. Since we had only 7 juveniles in our dataset, we cannot clearly confirm or reject the hypothesis of intrauterine transmission. But even though the age and sex groups were not statistically different, the samples represent not confounding data. Interestingly, the infection rate of females was significantly higher, which suggests that females have an important role in the maintaining and spreading of infection. It has been suggested that there is a difference in parasite burden between males and females and between parasitic taxa due to differences such as hormone level or innate immune response [54,55]. However, for H. canis the differences of the parasite load between females and males has not been explained, yet.

In dogs, infections with B. cf. microti and H. canis usually cause disorders that affect spleen, lymph nodes, bone marrow and kidneys, resulting in anemia, azotemia, fever, lethargy, cachexia or even death [25-28,35]. During necropsies it was noticed that all examined foxes, except for seven with sarcoptic mange (5.8%), were in a good body condition. This might indicate a low pathogenicity of these pathogens in this wild canid species, as already suggested [9]. All sequences obtained from red foxes in this study had a high homology to the ones previously reported from different canid species and different locations, which indicates a wide circulation of these pathogens without obvious geographical and host-related division patterns [31].

Although several studies suggest that red foxes can serve as reservoir hosts for various vector-borne bacteria [12-18], their presence could not be confirmed in this study. Regarding filaroid nematodes, D. immitis and D. repens were reported in dogs from Bosnia and Herzegovina [43], confirming that this area is suitable for the transmission of these parasites, but they also were not detected in foxes by PCR or necropsy. Since the present data does not allow the occurrence of bacteria and filaroid nematodes in foxes from Bosnia and Herzegovina to be completely excluded, monitoring and further analysis are necessary to elucidate the potential role of red foxes in their epidemiology.

Conclusion
The relatively high prevalence and widespread distribution of B. cf. microti and H. canis among the red fox population of Bosnia and Herzegovina support the existence of a sylvatic cycle and reinforce the assumption that foxes might be a possible reservoir and vector of infection to dogs and other canids. Moreover, data presented in this study should improve awareness among veterinarians and alert them to include infections caused by these two pathogens in the differential diagnosis of canine babesiosis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AH and GGD conceived and designed the study; AH performed PCRs and drafted the manuscript; AA collected the samples; HPF performed sequence analyses; JH designed the primers and performed sequence analyses; WWP provided assistance in the lab and performed PCRs; GGD performed the statistical analysis and revised the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgments
The authors would like to thank Samir Bogunić (Department of Pathology, Veterinary Faculty in Sarajevo) for his technical support and assistance in sample collection, as well as all hunting societies that participated in this study. The work of Adnan Hodžić, Hans-Peter Fuehrer and Georg C. Duscher was conducted under the frame of EurNegVec COST Action TD1303.

Author details
1Institute of Parasitology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria. 2Department of Pathology, Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.

Received: 10 December 2014 Accepted: 26 January 2015
Published online: 08 February 2015

References
1. 6. Otranto D, Dantas-Torres F. Canine and feline vector-borne diseases in Italy: current situation and perspectives. Parasit Vectors. 2010;3:2.
2. 7. Aguirre AA. Wild canids as sentinel of ecological health: a conservation medicine perspective. Parasit Vectors. 2009;2 Suppl 1:57.
3. 8. Deždek D, Voja L, Kurković S, Lipej Z, Mihaljević Z, Cvetnić Z, et al. Molecular detection of Theilenia annae and Hepatozoon canis in foxes (Vulpes vulpes) in Croatia. Vet Parasitol. 2010;172:933–6.
4. 9. Karbowiak G, Majlathová V, Hapunik J, Petko B, Wita I. Apicomplexan parasites of red foxes (Vulpes vulpes) in northeastern Poland. Acta Parasitol. 2010;55:210–4.
5. 10. Hamel D, Silaghi C, Lesca D, Pfister K. Epidemiological aspects on vector-borne infections in stray and pet dogs from Romania and Hungary with focus on Babesia spp. Parasitol Res. 2012;110:1537–45.
6. 11. Cardoso L, Cortes HCE, Reis A, Rodrigues P, Simões M, Lopes AP, et al. Prevalence of Babesia microti-like infection in red foxes (Vulpes vulpes) from Portugal. Vet Parasitol. 2013;196:90–5.
7. 12. Zanet S, Trisciuoglio A, Bottero E, de Mera IGF, Gortazar C, Carpignano MG, et al. Piroplasmosis in wildlife: Babesia and Theilenia affecting free-ranging ungulates and carnivores in the Italian Alps. Parasit Vectors. 2014;7:90.
8. 13. Sabrino R, Dubey JP, Pabón M, Linares N, Kwok OC, Millán J, et al. Neosporanum coniurn antibodies in wild carnivores from Spain. Vet Parasitol. 2008;155:190–7.
9. 14. Njan NA, Meyer-Kayser E, Hoffmann L, Herb I, Fensterer V, Pfister K, et al. A molecular survey of Babesia spp. and Theilenia spp. in red foxes (Vulpes vulpes) and their ticks from Thueringia, Germany. Ticks Tick Borne Dis. 2014;5:386–91.
10. 15. Cardoso L, Cortes HCE, Eyal O, Reis A, Lopes AP, Vila-Viçosa MJ, et al. Molecular and histopathological detection of Hepatozoon canis in red foxes (Vulpes vulpes) from Portugal. Parasit Vectors. 2014;7:113.
11. 16. Ilié M, Imre M, Imre K, Hotea I, Morariu S, Sorescu D, et al. Occurrence of Hepatozoon spp. in red foxes (Vulpes vulpes) in Romania. Parasit Vectors. 2014;7 Suppl 1:O33.
12. 17. Karbowiak G, Majlathová V, Hapunik J, Petko B. Anaplasma phagocytophilum infection of red foxes (Vulpes vulpes). Ann Agric Environ Med. 2009;16:71–2.
13. 18. Beck R, Ćučić Curik V, Ivana R, Nikica S, Anja V. Identification of “Candidatus Neoehrlichia mikurensis” and Anaplasma species in wildlife from Croatia. Parasit Vectors. 2014;7 Suppl 1:O28.
14. Jahfari S, Coipan EC, Fonville M, van Leeuwen AD, Hengdeveld P, Heylen D, et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors. 2017;10:365.

15. Härtwig V, von Loevenich FD, Schulze C, Straubinger RK, Daugbjerg A, Dyachenko V. Detection of Anaplasma phagocytophilum in red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) from Brandenburg, Germany. Tick and Tick borne Dis. 2014;5:277–80.

16. Henn JB, Cherel BB, Boulouis HJ, Kasten RW, Murray WJ, Bar-Gal GK, et al. Bartonella rochalimae in raccoons, coyotes, and red foxes. Emerg Infect Dis. 2009;15:1984–7.

17. Gemigrakotta X, Gil H, García-Esteban C, Anda P, Juste RA, Baral M. Presence of Bartonella species in wild carnivores of northern Spain. Appl Environ Microbiol. 2012;78:885–8.

18. Pusterla N, Deplaes P, Braun U, Lutz H. Serological evidence of infection with Ehrlichia spp. in red foxes (Vulpes vulpes) in Switzerland. J Clin Microbiol. 1999;37:168–70.

19. Gortazar G, Villafuerte R, Lucientes J, Fernández de Loco D. Habitat related differences in helminth parasites of red foxes in Ebro valley. Vet Parasitol. 1998;80:75–81.

20. Magi M, Caldeirin P, Gabrielli S, Dell’Omodame M, Macchioni F, Prati MC, et al. Vulpes vulpes: a possible wild reservoir for zoonotic filariae. Vector Borne Zoonotic Dis. 2008;8:249–52.

21. Toini Z, Szell Z, Sproch A, Sereid E, Sefter T. Dirofilaria immitis: An emerging parasite in dogs, red foxes and golden jackals in Hungary. Vet Parasitol. 2014;203:339–42.

22. Hodžić A, Latrofa MS, Annoscia G, Alić A. Babesia microti-like infected dogs. Vet Parasitol. 2000;89:241–48.

23. Torina A, Blanda V, Antoci F, Scimeca S, D’Agostino R, Scarano E, et al. A Molecular survey of Anaplasmata spp., Rickettsia spp., Ehrlichia canis and Babesia microti in foxes and fleas from Sicily. Transbound Emerg Dis. 2013;60 Suppl 2:25–30.

24. Penzhorn BL. Babesiosis of wild carnivores and ungulates. Vet Parasitol. 2006;138:11–21.

25. Zahler M, Rinder H, Schein E, Gothe R. Detection of a new pathogenic Babesia microti-like species in dogs. Vet Parasitol. 2000;89:241–8.

26. Camacho AT, Pallas E, Gestal JJ, Guitián FJ, Olmeda AS, Goethert HH, et al. Infection of dogs in north-west Spain with Babesia microti-like agent. Vet Rec. 2001;149:552–5.

27. Camacho AT, Guitian EJ, Pallas E, Gestal JJ, Olmeda AS, Goethert HH, et al. Anemia and mortality among Babesia microti-like infected dogs. J Vet Intern Med. 2004;18:141–6.

28. Camacho AT, Guitian EJ, Pallas E, Gestal JJ, Olmeda AS, Goethert HH, et al. Serum protein response and renal failure in canine Babesia annae infection. Vet Res. 2005;36:73–22.

29. Duscher G, Fuehrer HP, Kübber-Heiss A. Fox on the run – molecular surveillance of fox blood and tissue for the occurrence of tick-borne pathogens in Austria. Parasite Vectors. 2014;7:521.

30. Ginevres C, Casado N, Criado-Fornelio A, de Miguel FA, Dominguez-Peralta G. A molecular survey of Proplasmid and Babesia isolated from domestic and wild animals in Burgos (northern Spain). Vet Parasitol. 2009;162:147–50.

31. Farkas R, Solymosi N, Takács N, Hornyák A, Homok S, Nachum-Biala Y, et al. First molecular evidence of Hepatozoon canis infection in red foxes and golden jackals from Hungary. Parasite Vectors. 2014;7:303.

32. Baneth G. Perspectives on canine and feline heptozoonosis. Vet Parasitol. 2011;181:3–11.

33. Baneth G, Samish M, Shap V. Life cycle of Hepatozoon canis (Apicomplexa: Aedeleorina): in the tick Rhipicephalus sanguineus and domestic dog (Canis familiaris). J Parasitol. 2007;93:283–99.

34. Mursta T, Inoue M, Tateyama S, Taura Y, Nikama S. Vertical transmission of Hepatozoon canis in dogs. J Vet Med Sci. 1993;55:867–8.

35. Baneth G, Weigler B. Retrospective Case-control Study of Hepatozoonosis in Dogs in Israel. J Vet Intern Med. 1997;11:365–70.

36. Najm NA, Meyer-Kayser E, Hoffmann L, Pfister K, Slaghi C. Hepatozoon canis in German red foxes (Vulpes vulpes) and their ticks: molecular characterization and the phylogenetic relationship to other Hepatozoon spp. Parasit Vectors. 2011;4:137:297–85.

37. Majtáthová V, Humilková Z, Majláth I, Petko B. Hepatozoon canis infection in Slovakia: imported or autochthonous? Vector Borne Zoonotic Dis. 2007;7:199–202.

38. Criado-Fornelio AA, Rivas JL, Casado N, Farias NA, Soares MP, Muller G, et al. New molecular data on mammalian Hepatozoon species (Apicomplexa: Aedeleorina) from Brazil and Spain. J Parasitol. 2006;92:93–9.

39. Ebanv VV, Verin R, Fratini F, Poli A, Cerri D. Molecular survey of Anaplasma phagocytophilum and Ehrlichia canis in red foxes (Vulpes vulpes) from central Italy. J Wild Dis. 2011;47:699–703.

40. Márquez FJ, Millán J, Rodríguez-Liébana JJ, García-Egía I, Muniaín MA. Detection and identification of Bartonella spp. in fleas from carnivorous mammals in Andalusia, Spain. Med Vet Entomol. 2009;23:393–8.

41. Diniz PPVP, Schulz BS, Hartmann K, Breitschwerdt EB. ‘Candidateus Neoehrlichia mikurensis’ infection in a dog from Germany. J Clin Microbiol. 2011;49:2059–62.

42. Marle K, Davoust B, Soccolovschi C, Medianiková O, Roqueurol C, Beauchouren J, et al. Rickettsiae in arthropods collected from red foxes (Vulpes vulpes) in France. Comp Immunol Microbiol Infect Dis. 2012;35:59–62.

43. Oratevíc S, Tasić A, Gabrielli S, Trenkic Božinović M, Caninović G. Canine and human Dirofilaria infections: What is new in the Balkan Peninsula. In Proceedings of the IV European Dicrofilaria and Angiostrongylus Days. Budapest, Hungary, 2014.

44. Penevic A, Selaković S, Pavlović I, Ciricov I. First findings and prevalence of adult heartworms (Dirofilaria immitis) in wild carnivores from Serbia. Parasitol Res. 2014;113:281–5.

45. Zinti A, Finterty EJ, Murphy TM, de Waal T, Gray JS. Babesia of red deer (Cervus elaphus) in Ireland. Vet Res. 2011;42:7.

46. Brown GK, Martin AR, Roberts TK, Atken RJ. Detection of Ehrlichia platys in dogs in Australia. Aust Vet J. 2001;79:554–8.

47. Jensen WA, Fall MZ, Rooney J, Kordick DL, Breitschwerdt EB. Rapid Identification and Differentiation of Bartonella Species Using a Single-Step PCR Assay. J Clin Microbiol. 2000;38:7177–22.

48. Vitorino L, Ze-Zé L, Sousa A, Bacellar F, Teneiro R. RNA interference: Splicer and ancient mechanism for regulating and silencing gene transcription. Methods Mol Biol. 2011;75:23–38.