New Cytotoxic Constituents from the Red Sea Soft Coral *Nepthea* sp.

Mohamed-Elamir F. Hegazya*, Amira M. Gamal-Eldeenb, Tarik A. Mohameda, Montaser A. Alhammadyc, Abuzeid A. Hassaniend, Mohamed A. Shreadahe, Ibrahim I. Abdelgawadd, Eman M. Elkadye, and Paul W. Paréf

aPhytochemistry Department and Center of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth st. (former El Tahrir st.) Dokki, Giza, Egypt, P. O. 12622; bCancer Biology Lab, Center of Excellence for Advanced Sciences, and Biochemistry Department, National Research Centre, 33 El Bohouth st. (former El Tahrir st.) Dokki, Giza, Egypt, P. O. 12622; cNational Institute of Oceanography and Fisheries, Red Sea Branch, Hurghada 84511, Egypt; dDepartment of Chemistry, Faculty of Science, Suez University, Egypt; eNational Institute of Oceanography & Fisheries, Alexandria, Egypt; fDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409 USA.

Abstract: *Nepthea* species are rich in sesquiterpenoids and steroids. The methylene chloride/methanol (1:1) extract of *Nepthea* sp. resulted in the isolation of a new steroid (1), as well as previously reported metabolites (2-9). Structures were elucidated by employing extensive NMR and HR-ESI-MS analyses. The total extract, fractions and isolated compounds showed differential cytotoxicity against breast cancer cells MCF-7 cell lines.

Keywords: *Nepthea* sp., Terpenes, Cytotoxicity, Breast cancer cells MCF-7
List of Supplemental Material

- Table S1. 1H (600 MHz) and 13C (150 MHz) NMR Data for 1 and 2 (page 3).
- Table S2.
- Full assignment S1. Assignment of known compounds (2-9) (1H (600 MHz) and 13C (150 MHz) NMR) (page 4-6).
- Figure S1. Selected 1H-1H COSY (□) and HMBC (→) correlations of 1, 2 (page 7).
- Figure S2. 1HNMR Spectrum of Compound 1 (page 8).
- Figure S3. 13C NMR Spectrum of Compound 1 (page 9).
- Figure S4. 1HNMR Spectrum of Compound 2 (page 10).
- Figure S5. 13C NMR Spectrum of Compound 2 (page 11).
- Figure S6. 1H-NMR Spectrum of Compound 3 (page 12).
- Figure S7. 13C NMR Spectrum of Compound 3 (page 13).
- Figure S8. 1H-NMR Spectrum of Compound 4 (page 14).
- Figure S9. 13C NMR Spectrum of Compound 4 (page 15).
- Figure S10. 1H-NMR Spectrum of Compound 5 (page 16).
- Figure S11. 13C NMR Spectrum of Compound 5 (page 17).
- Figure S12. 1H-NMR Spectrum of Compound 6 (page 18).
- Figure S13. 13C NMR Spectrum of Compound 6 (page 19).
- Figure S14. 1H-NMR Spectrum of Compound 7 (page 20).
- Figure S15. 13C NMR Spectrum of Compound 7 (page 21).
- Figure S16. X-ray spectrum of Compound 7 (page 22).
- Figure S17. 1H-NMR Spectrum of Compound 8 (page 23).
- Figure S18. 13C NMR Spectrum of Compound 8 (page 24).
- Figure S19. 1H-NMR Spectrum of Compound 9 (page 25).
- Figure S20. 13C NMR Spectrum of Compound 9 (page 26).
Table S1. 1H (600 MHz) and 13C (150 MHz) NMR Data for 1 and 2.

	13C	1H	13C	1H
1	38.0	1.30 m, 1.70 m	37.7	0.95 m, 1.75 m
2	30.1	1.45 m, 1.67 m	30.2	1.55 m, 1.80 m
3	76.0	2.95 m	76.0	3.02 m
4	38.3	1.28 m	38.3	165 m
5	51.9	0.74 m	51.9	0.96 m
6	20.4	1.44 m	18.8	1.47 m, 1.60 m
7	37.5	1.20 m, 1.80 m	39.4	1.70 m
8	71.5	----	72.7	----
9	56.1	0.87 m	56.7	0.80 m
10	36.2	----	36.2	----
11	18.5	1.56 m	18.3	1.55 m, 1.65 m
12	38.6	1.24 m, 180 m	41.4	2.0 m
13	46.5	----	43.2	----
14	61.0	1.38 m	59.9	1.42 m
15	20.4	0.86 m, 1.54 m	20.0	0.85 m, 1.58 m
16	28.5	1.40 m, 1.750 m	27.8	1.32 m, 1.90 m
17	57.0	1.12 m	57.1	0.98 m
18	62.1	3.54 d (11.7), 3.66 d (11.7)	13.0	0.96 s
19	12.6	0.98 s	12.9	0.98 s
20	40.0	1.92 m	33.0	2.0 m
21	19.9	1.00 d (6.2)	18.8	0.84 d (6.5)
22	135.4	5.08 dd (15.1, 8.3)	44.9	2.45 m
23	132.1	5.18 dd (15.1, 8.3)	203.3	----
24	42.9	1.80 m	155.9	----
25	33.0	1.45 m	27.8	2.90 m
26	18.8	0.80 d (6.2)	21.2	1.00 d (6.5)
27	19.1	0.81 d (6.8)	21.3	1.10 d (6.5)
28	16.8	0.90 d (6.8)	120.9	5.71 s, 5.98 s
29	14.4	0.93 d (6.2)	14.6	0.92 d (6.5)
CH$_3$-acetate	----	----	----	----
C=O	----	----	----	----
acetate	----	----	----	----
Table S2: Calculated IC$_{50}$ Values of Nephthea extract, fractions and pure compounds with human breast cancer cell lines MCF-7

Sample	IC$_{50}$* (µg/ml)
N1	142.4 (0.773)
N2	154.3 (0.997)
N3	155.9 (0.962)
N3-4A	146.9 (0.772)
N3-8	339.2 (0.982)
N4	37.0 (0.814)
N4-10-2	85.5 (0.898)
N5	155.8 (0.896)
N6	201.7 (0.986)
N6-12	113.6 (0.883)
N6-18-4	151.9 (0.823)
N6-19	124.3 (0.996)
N6-22	238.5 (0.925)
N6-26	56.6 (0.895)
N6-30	84.3 (0.762)
N7	139.7 (0.941)

*IC$_{50}$ values shown with their corresponding goodness of the regression fit (r^2 value) given between parentheses.
Assignment of known compounds (2-9) (\(^1\)H (600 MHz) and \(^{13}\)C (150 MHz) NMR)

3.3.1 24-Methyl-cholesta-5,24(28)-diene-3β,7β,19-triol (3):
Amorphous powder, \(^1\)H-NMR [CD\(_2\)OD] \(\delta_H\) 5.54 (1H, s, H-6), 4.69, 4.63 (1H each, br s, H\(_2\)-28), 3.83, 3.57 (1H each, d, \(J = 11.6\) Hz, H-2-19), 3.61 (1H, d, \(J = 7.6\) Hz, H-7), 3.55 (1H, m, H-3), 102, 1.01 (6H, d, \(J = 7.0\) Hz, Me-26, 27), 0.93 (3H, d, \(J = 4.1\), Me-21), 0.74 (3H, s, Me-18). \(^{13}\)C-NMR [CD\(_2\)OD] \(\delta_C\) 156.4 (C-24), 138.8 (C-5), 129.7 (CH, C-6), 105.9 (CH\(_2\), C-28), 72.0 (CH, C-7), 70.7 (CH, C-3), 62.2 (CH\(_2\), C-19), 57.2 (C-14), 55.6 (CH, C-17), 49.0 (CH, C-9), 43.0 (C-13), 41.5 (CH, C-8), 41.1 (C-10), 41.1 (CH\(_2\), C-4), 40.1 (CH\(_2\), C-12), 35.7 (CH\(_2\), C-22), 34.8 (CH, C-20), 33.6 (CH, C-25), 33.1 (CH\(_2\), C-1), 31.3 (CH, C-2), 30.9 (CH\(_2\), C-23), 28.3 (CH\(_2\), C-16) 25.9 (CH\(_2\), C-15), 21.6 (CH\(_2\), C-11), 21.2 (CH\(_3\), C-27), 21.0 (CH\(_3\), C-26), 18.1 (CH\(_3\), C-21), 11.4 (CH\(_3\), C-18) (Bortolotto et al. 1976).

3.3.2 7β-Acetoxy-24-methyl-cholesta-5,24(28)-diene-3β,19-diol (4):
Amorphous powder, \(^1\)H NMR (CD\(_3\)OD): \(\delta_H\) 5.39 (1H, br s, H-6), 4.91 (1H, d, \(J = 8.2\) Hz, H-7), 4.70, 4.63 (1H each, br s, H\(_2\)-28), 3.83, 3.58 (1H each, d, \(J = 11.6\) Hz, H-2-19), 3.45 (1H, m, H-3), 2.28, 2.17 (1H each, m, H-4), 1.96 (3H, s, OAc), 1.00 (3H, d, \(J = 6.5\) Hz, CH\(_3\)-26), 1.00 (3H, d, \(J = 6.5\) Hz, CH\(_3\)-27), 0.99(3H, d, \(J = 4.14\) Hz, CH\(_3\)-21), 0.75 (3H, s, CH\(_3\)-18). \(^{13}\)C NMR(CD\(_3\)OD): \(\delta_C\) 171.7 (C=O acetat), 156.4 (C-24), 141.6 (C-5), 124.4 (CH, C-6), 105.6 (CH\(_2\), C-28), 75.5 (CH, C-7), 70.6 (CH, C-3), 62.0 (CH\(_2\), C-19), 56.7 (CH, C-14), 55.5 (CH, C-17), 48.8 (CH, C-9), 43.0 (C-13), 41.4 (C-10), 41.2 (CH\(_2\), C-4), 40.0 (CH\(_2\), C-12), 37.6 (CH, C-8), 35.6 (CH\(_2\), C-22), 34.7 (CH, C-20), 33.6 (CH, C-25), 33.1 (CH\(_2\), C-1), 31.2 (CH\(_2\), C-2), 30.8 (CH\(_2\), C-23), 28.2 (CH\(_2\), C-16), 24.9 (CH\(_2\), C-15), 21.2 (CH\(_2\), C-11), 21.1 (CH\(_3\), C-27), 21.0 (CH\(_3\), C-26), 20.3 (CH\(_3\), CH\(_3\)-acetat), 18.0 (CH\(_3\), C-21), 11.2 (CH\(_3\), C-18) (Faheem et al. 2012).

3.3.3 24-Methyl-cholesta-5,24(28)-diene-3β-ol (5):
Amorphous powder, \(^1\)H NMR (CDCl\(_3\)) \(\delta_H\) 5.33 (1H, m, H-6), 4.69, 4.63 (1H each, s, H\(_2\)-28),
3.49 (1H, m, H-3), 1.01 (3H, d, J = 3.4 Hz, H-27), 1.00 (3H, br s, H-19), 1.00 (3H, d, J= 3.4 Hz, H-26), 0.93 (3H, d, J= 6.9, H-21), 0.66 (3H, br s, H-18). \(^{13}\)C NMR (CDCl\(_3\)) data: \(\delta_c\) 156.9 (C-24), 140.8 (C-5), 121.7 (CH, C-6), 106.0 (CH\(_2\), C-28), 71.8 (CH, C-3), 56.8 (CH, C-14), 56.1 (CH, C-17), 50.2 (CH, C-9), 42.4 (C-13), 42.4 (CH\(_2\), C-4), 39.8 (CH\(_2\), C-12), 37.3 (CH\(_2\), C-1), 36.6 (C-10), 35.8 (CH\(_2\), C-22), 34.8 (CH, C-20), 33.9 (CH, C-25), 32.0 (CH, C-8), 31.9 (CH\(_2\), C-7), 31.7 (CH\(_2\), C-2), 31.0 (CH\(_2\), C-23), 28.3 (CH\(_2\), C-16), 24.3 (CH\(_2\), C-15), 22.0 (CH\(_3\), C-26), 21.9 (CH\(_3\), C-27), 21.1 (CH\(_2\), C-11), 19.4 (CH\(_3\), C-19), 18.8 (CH\(_3\), C-21), 11.9 (CH\(_3\), C-18) (Ahmed et al. 2006).

3.3.4. 4\(\alpha\),24\(\alpha\)-Dimethyl-5\(\alpha\)-cholest-22-en-3\(\beta\)-ol (6):
Amorphous powder, \(^1\)H NMR (CDCl\(_3\)), \(\delta_h\) 5.19 (1H, dd, J = 15.1, 7.6, H-23), 5.15 (1H, dd, J = 15.1, 7.6, H-22), 3.06 (1H, m, H-3), 0.98 (3H, d, J= 3.4 Hz, H-26), 0.93 (3H, d, J= 6.2, H-21), 0.91(3H, d, J = 7.6 Hz, H-27), 0.89 (3H, d, J = 6.8, H-28), 0.81 (3H, br s, H-19), 0.64 (3H, br s, H-18). \(^{13}\)C NMR (CDCl\(_3\)) data: \(\delta_c\) 135.9 (CH, C-22), 131.7 (CH, C-23), 76.7 (CH, C-3), 59.0 (CH, C-9), 57.0 (CH, C-17), 56.7 (CH, C-14), 51.0 (CH, C-5), 42.8 (CH, C-20), 42.4 (C-13), 40.0 (CH, C-4), 39.3 (CH\(_2\), C-12), 36.1 (C-10), 36.0 (CH\(_2\), C-1), 34.9 (CH, C-24), 33.1 (CH, C-25), 32.3 (CH\(_2\), C-7), 31.1 (CH, C-8), 31.1 (CH, C-2), 28.6 (CH\(_2\), C-16), 28.6 (CH\(_2\), C-11), 24.2 (CH\(_2\), C-15), 21.2 (CH\(_2\), C-6), 21.2 (CH\(_3\), C-26), 20.9 (CH\(_3\), C-27), 19.7 (CH\(_3\), C-19), 18.7 (CH\(_3\), C-21), 17.6 (CH\(_3\), C-28), 15.1 (CH\(_3\), C-29), 12.1 (CH\(_3\), C-18) (Kokke et al. 1981).

3.3.5. Alismoxide (7):
Colorless crystals, \(^1\)H NMR (CDCl\(_3\)), \(\delta_h\) 5.46 (1H, br s, H-6), 1.23, 1.17 (3H each, s, H-14,15), 0.97, 0.96 (3H each, d, J = 5.5 Hz, H-12, 13). \(^{13}\)C NMR (CDCl\(_3\)): \(\delta_c\) 149.6(C-7), 121.4 (CH, C-6), 80.3 (C-4), 75.3 (C-10), 50.8 (CH, C-5), 50.4 (CH, C-1), 42.7 (CH\(_2\), C-3), 40.5 (CH\(_2\), C-9), 37.5 (CH, C-11), 25.1 (CH\(_2\), C-8), 22.6 (CH\(_3\), 21.6 (CH\(_2\), C-2), C-15), 21.5 (CH\(_3\), C-13), 21.4 (CH\(_3\), C-12), 21.2 (CH\(_3\), C-14) (Jin et al., 2012).

3.3.6. 10-O-Methyl alismoxide(8):
Oil, \(^1\)H NMR (200 MHz, CDCl\(_3\)) \(\delta_h\) 5.45 (1H, br s, H-6), 3.16 (OCH\(_3\)); 1.18, 1.17 (3H each, s, Me-14, 15), 0.97, 0.96 (3H each, d, J = 4.08 Hz, Me-12, 13). \(^{13}\)C NMR (CDCl3): \(\delta_c\) 149.7 (C-7), 121.3 (CH, C-6), 80.3(C-10), 79.2 (C-4), 50.2 (CH, C-5), 48.8 (OCH3), 48.1 (CH, C-1), 40.6
(CH₂, C-9), 37.3 (CH₂, C-3), 35.6 (CH, C-11), 24.6 (CH₂, C-2), 22.5 (CH₃, C-15), 21.8 (CH₃, C-13), 21.7 (CH₂, C-8), 21.3 (CH₃, C-12), 18.0 (CH₃, C-14). (Jin et al. 2012).

3.3.7. Erythro-N-dodecanoyl-docosasphinga-(4E,8E)-dienine (9):

¹H NMR (600 MHz, CDCl₃): δ H 5.69 (1H, dd, J = 15.6, 7.6 Hz; H-5), 5.66 (1H, dd, J = 15.6, 7.6 Hz; H-8), 5.46 (1H, dd, J = 15.6, 7.6 Hz; H-9), 5.44 (1H, dt, J = 15.6, 7.6 Hz; H-4), 5.40 (1H, br s, NH), 4.02 (1H, t, J = 7.6 Hz; H-3), 3.82 (1H, m, H-2), 3.65 (2H, dd, J = 11.7, 6.9 Hz; 2H-1), 2.18 (2H, t, J = 10.3 Hz; H-2') 2.05 (2H, m; 2H-6), 2.05 (2H, m; 2H-7), 1.95 (2H, m, 2H-10), 1.57 (4H, m; 2H-3' and 2H-of other position), 1.26 (~(CH₂)ₙ), 0.87 (6H, t, Jvic = 6.84 Hz; Me-22 and Me-16'). ¹³C NMR (100 MHz, CDCl₃): δ C 174.0 (C-1'), 132.7 (CH, C-5), 130.7 (CH, C-8), 130.1 (CH, C-4), 129.3 (CH, C-9), 72.3 (CH, C-3), 60.9 (CH₂, C-1), 55.4 (CH, C-2), 36.0 (CH₂, C-2'), 32.3 (CH₂, C-19), 32.2 (CH₂, C-14), 32.0 (CH₂, C-10), 29.0–29.4 (all CH₂), 22.4 (CH₂, C-20), 22.3 (CH₂, C-15), 13.0 (2CH₃, C-16, C-21) (Bortolotto et al. 1976).
Figure S1. Selected 1H-1H COSY (—) and HMBC (→) correlations of 1, 2.
Figure S2. 1H-NMR Spectrum of Compound 1.
Figure S3. 13C NMR Spectrum of Compound 1.
Figure S4. 1H-NMR Spectrum of Compound 2.
Figure S5. 13C NMR Spectrum of Compound 2.
Figure S6. 1H-NMR Spectrum of Compound 3.
Figure S7. 13C NMR Spectrum of Compound 3.
Figure S8. 1H-NMR Spectrum of Compound 4.
Figure S9. 13C NMR Spectrum of Compound 4.
Figure S10. 1H-NMR Spectrum of Compound 5.
Figure S11. 13C NMR Spectrum of Compound 5.
Figure S12. 1H-NMR Spectrum of Compound 6.
Figure S13. 13C NMR Spectrum of Compound 6.
Figure S14. 1H-NMR Spectrum of Compound 7.
Figure S15. 13C NMR Spectrum of Compound 7.
Figure S16. X-ray spectrum of Compound 7.
Figure S17. 1H-NMR Spectrum of Compound 8.
Figure S18. 13C NMR Spectrum of Compound 8.
Figure S19. 1H-NMR Spectrum of Compound 9.
Figure S20. 13C NMR Spectrum of Compound 9.