Tele-Neuro-Ophthalmology: Vision for 20/20 and Beyond

Melissa Ko¹, MD; Neil A. Busis², MD

¹ Departments of Neurology, Ophthalmology, and Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA

² Department of Neurology, NYU Langone Health, New York, NY, USA

Running title: Telehealth and Neuro-ophthalmology

Corresponding author:

Dr. Melissa Ko

IU Health Neurosciences Center

355 W. 16th Street, Indianapolis, IN 46202

e-mail address: melko@iu.edu

(w) 317-948-5450

(f) 317-963-7357

Conflict of Interest:

Melissa Ko: none.

Neil A. Busis: receives honoraria for speaking at American Academy of Neurology courses and for serving as Alternate CPT Advisor for American Academy of Neurology

No funding was received for this work.

Keywords: COVID-19, Telemedicine, Telehealth, Neuro-ophthalmology, pandemic, tele-neuro-ophthalmology
Abstract

Background: Telehealth provides health care to a patient from a provider at a distant location. Prior to the COVID-19 pandemic adoption of telehealth modalities was increasing slowly but steadily. During the public health emergency rapid widespread telehealth implementation has been encouraged to promote patient and provider safety and preserve access to health care.

Evidence acquisition: Evidence was acquired from English language Internet-searches of medical and business literature and following breaking news on the COVID-19 pandemic and responses from health care stakeholders including policy makers, payers, physicians and health care organizations, and patients. We also had extensive discussions with colleagues who are developing telehealth techniques relevant to neuro-ophthalmology.

Results: Regulatory, legal, reimbursement and cultural barriers impeded the widespread adoption of telehealth prior to the COVID-19 pandemic. With the increased use of telehealth in response to the public health emergency, we are rapidly accumulating experience and an evidence base identifying opportunities and challenges related to the widespread adoption of tele-neuro-ophthalmology. One of the major challenges is the current inability to adequately perform funduscopy remotely.

Conclusions: Telehealth is an increasingly recognized means of healthcare delivery. Tele-neuro-ophthalmology adoption is necessary for the sake of our patients, the survival of our subspecialty, and the education of our trainees and students. Telehealth does not supplant but supplements and complements in-person neuro-ophthalmologic care. Innovations in digital optical fundus photography, mobile vision testing applications, artificial intelligence and principles of channel management will facilitate further adoption of tele-neuro-ophthalmology and bring the specialty to the leading edge of healthcare delivery.
Introduction to Telehealth

Telehealth is the use of technologies for long-distance clinical care, health-related education, public health and health administration (1,2). Telemedicine is the subset of telehealth that delivers remote patient care via two-way live interactive communication between patient and provider using telecommunications technology (3). Real-time patient and provider interactions are synchronous encounters. Data transmitted to a provider for later review is asynchronous, or “store and forward.” Remote data monitoring includes synchronous or asynchronous care for inpatients or outpatients. Interprofessional electronic consultations enable physicians to consult with remote specialists.

During the global COVID-19 pandemic, telehealth use grew rapidly to reduce face-to-face interactions. This review addresses telehealth in neuro-ophthalmology, including current challenges and opportunities. Although we highlight activities in the United States, the basic principles have global relevance. Ongoing dialog with international colleagues will help develop standards for best practice.

The State of Teleneurology Before the Pandemic

The first telephone call in 1876 was a telehealth encounter. Alexander Graham Bell requested assistance after spilling sulfuric acid on his clothes by saying, "Mr. Watson, come here, I want you." (4). Telehealth evolved with technologic advances. By the 1920s, scientists envisioned medical care by radio and video connections. Remote physiological monitoring developed alongside manned space programs (5). Before powerful mobile computing devices and broadband wireless network connectivity were widely available, telehealth services were provided at health care facilities via dedicated telemedicine carts staffed by telepresenters.

Recently, telehealth migrated away from hospitals and clinics towards homes and personal devices (6,7).

Pre-COVID, the value proposition for telehealth was improving access to care. Telemedicine can overcome geographical, physical, and biological barriers to health care (6,7,8). Telehealth
adoption was slowly increasing (9,10). In neurology the primary use of telehealth has been acute stroke evaluation (6). In ophthalmology, uses include screening for diabetic retinopathy and retinopathy of prematurity (11,12).

Impediments to widespread implementation included technological, political, regulatory, reimbursement, clinical, and social barriers (7,8). A major hurdle was cultural. Telehealth has not been considered the true practice of medicine by many health care stakeholders (12). In 2016 the American Medical Association asked physicians what attracted them to digital health (13). Respondents thought telehealth improves work efficiency, increases patient safety, improves diagnostic ability, helps reduce stress and burn-out, improves the patient-physician relationship, and increases patient adherence and convenience. Their main concerns were the evidence base regarding effectiveness, reimbursement, medical liability, and integration into existing practices.

The site of a telehealth encounter is defined as the patient’s location at the time of service. There are negligible technological barriers to providing telehealth services across state lines. However, states have the ultimate licensing authority regarding who can practice medicine within their borders, with great variability in regulations regarding practicing telehealth across state lines. A provider's medical liability insurance must explicitly include interstate telehealth. Coverage parity laws require payers to cover telehealth services if they cover comparable in-person services. Payment parity laws determine whether payments for telehealth and in-person services are the same. Before the public health emergency, not all states had coverage parity laws, and even fewer had payment parity laws.

Despite these barriers, physicians and patients were attracted to telehealth. In 2019, 17.6% (61-70-year-old) to 28.4% (31-40-year-old) physicians, 52% of women and 49% of men, expressed interest (14). In a 2019 survey 66% of consumers stated they were willing to use telemedicine services, citing convenience, faster service, cost savings and better access to professionals (15). Pre-pandemic, global telehealth trends indicated a projected growth from
USD $38.5 billion in 2018 to USD $130.5 billion by 2025 and in the US, the telehealth market had an anticipated value of $36.2 billion by 2020, doubling its value from $14.3 billion in 2014 (16,17).

Changes in Telehealth Since the Pandemic

The COVID-19 pandemic dramatically changed the practice of telehealth. Mandates for social distancing transitioned US health care providers towards non-face-to-face patient care (18-25). Telehealth adoption has been encouraged by sweeping regulatory changes from the Centers for Medicare and Medicaid Services (3) and private insurers which lower barriers to telehealth adoption and establish reimbursement parity for virtual and in-person visits (26). Within the first week of the new CMS rules, telehealth use increased by 400% (27). Telehealth services comprised only 1% of all claims prior to the pandemic, and increased to 25% in the US within the first two weeks after the new CMS policies (27).

Many academic and private practice groups converted most in-person outpatient visits into telehealth encounters (28,29). JD Health, one of China’s telehealth platforms, reported monthly consultations grew tenfold since the outbreak to 2 million people/month (30). U.S. consumers are now accepting telehealth at increasing rates as demonstrated in a survey from mid-March 2020, the week that CMS loosened telehealth restrictions. 19% of respondents had used telehealth, and two-thirds of respondents indicated that the pandemic increased their willingness to try it (31).

Regulatory Concerns

Despite CMS’s guidance to streamline interstate telehealth, there remains great variability in state laws regarding out-of-state providers performing telehealth encounters within their borders. Medical liability insurance policies regarding interstate telehealth and coverage and payment parity laws remain variable. Early in the pandemic, rules and regulations changed so rapidly it was difficult for practices to comply with the latest information.

Billing/Reimbursement
Currently, to preserve patient access to healthcare regardless of economic and health status, telephone visits, remote audio and video visits, and in-person visits are reimbursed at the same rate by Medicare and some other payers. Payment policies still vary, however. Procedures and certain detailed physical examinations must be done in-person due to the inability to provide these types of services virtually. Reimbursement parity for virtual and in-person visits aligns payment policies with patient access needs and practice/provider economic viability.

Technologic Advances

Some countries used instant messaging to release newly developed applications for virtual healthcare services including public messaging about behavioral modification, epidemiological tracing and access to virtual healthcare providers (32). Virtual check-ins were deployed including chatbots powered by artificial intelligence (AI).

Security/Patient Privacy Concerns

CMS waived patient privacy rules during the pandemic to encourage telehealth delivery via a wide variety of existing technologies. Telehealth applications need not be HIPAA-compliant for now, greatly expanding the types of software that can be used for virtual visits (23).

Issues of Disparities in Access and Cultural Acceptance

The digital divide impedes access to telehealth services. It has narrowed with 96% of U.S. adults possessing a cell phone and 81% having a smartphone (33). Greater disparity and variability exist regarding home broadband access. In the U.S., nearly 80% white adults have home broadband, compared to 66% Black and 61% Hispanic adults. Home broadband access is more limited in older adults, rural residents and those of lower socioeconomic levels (34). There are still some patients and providers who do not wish to participate in virtual visits despite the advantages. The ubiquity of telehealth during the global pandemic and its high visibility in the public sphere is changing this perception (35).

Workflow Challenges
Workflows for optimal health care delivery must be established for telehealth service (24,25). Telehealth providers, local providers and patients need to understand their respective responsibilities including how patients are referred, visits scheduled, providers notified, orders entered, and follow-up arranged.

Virtual visits and in-person visits are not mutually exclusive. Telehealth visits can triage patients, determining which patients need in-person visits, procedures or tests (36). If the patient is faced with the alternative of telehealth versus no care, focusing on actionable information obtainable within the confines of a virtual encounter still serves the patient.

Aspects Specific to Neuro-Ophthalmology

Workforce

A 2019 NANOS US membership survey found there are 1.63 million people per 1.0 clinical full time equivalent (CFTE) neuro-ophthalmologist, with only 386 individuals in active practice (187 CFTE) in the nation, concentrated in metropolitan areas (37). Pre-COVID, the median wait time for a new patient appointment was 6 weeks and over 20% of survey respondents reported over 3 months wait times (37). With projections indicating an additional 180 physicians (working 0.5 CFTE) are required to meet the metric of one neuro-ophthalmologist for every 1.2 million individuals, there is a sizable workforce shortage with low numbers of trainees entering the field coupled with physician retirements (37,38,39).

Pre-outbreak, fewer than 15% of U.S. physicians identified telemedicine as part of their skillset (14) and fewer than 4% of NANOS members utilized video tele-neuro-ophthalmology (40). A survey of pre- and peri-COVID-19 telemedicine utilization in neuro-ophthalmology found that an additional 64% of neuro-ophthalmologists adopted video telehealth visits. Respondents cited benefits including ensuring continuity of care, improving patient access to care and patient convenience (41). Respondents also increased adoption of asynchronous telehealth models including remote interpretation of tests, second opinion record review and interprofessional consultations. Peri-COVID, telehealth has been an important alternative not only for the
underserved, but also for the elderly, immunocompromised, mobility-restricted and visually-impaired patients. The main barriers to implementation cited by telehealth adopters and non-adopters include concerns about data/physical exam quality, reimbursement, medical liability and sufficient infrastructure support for implementation (41).

Challenges and Opportunities of the Tele-Neuro-Ophthalmic Examination

Obtaining a high-quality neuro-ophthalmology examination is critical to telehealth adoption. Presently, validated mobile applications for components of the neuro-ophthalmic examination are available for visual acuity (PEEK Acuity, Vision@home) (42,43), color vision (EyeHandbook) (44) and visual fields (45). Mobile applications can measure torsion (46) and are in development for measuring esotropia (EyePhoneDevices.com) and heterophorias (L. Sun and J. Odell, personal communication, April 4, 2020).

Funduscopy is the major barrier to a complete tele-neuro-ophthalmology evaluation. A solution would require development of a portable non-mydriatic fundus camera of diagnostic quality easily accessible to patients, with ability to perform mass screenings, that is adopted by providers (47). Non-clinical personnel must be easily trained to perform remote funduscopy. This should be readily scalable to be done by anyone successfully and quickly.

The three phases of the Fundus Photography vs. Ophthalmoscopy Trial Outcomes in the Emergency Department (FOTO-ED) study demonstrated the feasibility of nonmydriatic ocular fundus photography in the emergency department (ED) and its utility in improving diagnosis and patient disposition compared to direct ophthalmoscopy (48,49,50). The FOTO-ED study modeled the elements needed for successful tele-neuro-ophthalmology adoption:

1. The ease of capturing quality non-mydriatic fundus photography by non-physicians who were trained within minutes
2. Performed when needed for medical decision making at the patient’s location
3. Leading to the correct diagnosis
4. Non-inferior to ophthalmoscopy.
Modern table-top cameras, particularly with the development of nonmydriatic fundus photography, capture high quality images with a 45-degree field of view without pharmacological dilation and with remote interpretation by eye specialists, have been advantageous in settings where neuro-ophthalmologists or ophthalmologists are unavailable. Limitations of table-top cameras include lack of portability, cost, technical training requirements, and office-based set-up. Patients must also sit upright. Commercially available portable systems for digital ocular fundus photography include hand-held ophthalmic cameras and smartphone-based ophthalmic cameras. Limitations of hand-held ophthalmic cameras include the time and technical expertise required to obtain high quality images (51,52). Image capture on smartphone-based ophthalmic cameras can be challenging due to the high-intensity built-in flash, which constricts pupils requiring pharmacologic dilation or utilization of applications to adjust intensity and exposure time (47). When easy to use, portable, affordable digital ocular fundus photography is widely available, the rapid interpretation of those images by ophthalmologists/neuro-ophthalmologists potentially assisted by artificial intelligence/deep learning will reduce a major barrier to a complete tele-neuro-ophthalmologic examination (53).

Optical coherence tomography (OCT) via telehealth faces similar challenges. While portable OCTs have been commercially available for over a decade, limitations include high cost, large size, and extensive technical training. OCT integration into tele-neuro-ophthalmology requires development of affordable, easy to use, lightweight optical engines with fast acquisition speeds. Such devices are under development (54).

Educational Mission

ACGME program requirements for neurology and ophthalmology training programs state “at each training program there must be sufficient faculty members with competence to instruct and supervise residents at that location and that faculty members must have subspecialty expertise” including neuro-ophthalmology (55,56). Pre-COVID, neuro-ophthalmology workforce shortages required some U.S. training programs to secure outside neuro-ophthalmology faculty.
Projections suggest this arrangement may increase in the future. In one example, a faculty member travels over 200 miles per month to train residents lacking an on-site neuro-ophthalmologist. This physician provides remote synchronous (through telecommunications) and asynchronous teaching (via their online neuro-ophthalmology curriculum) that has also been utilized by global learners. (K. Golnik, personal communication, April 2, 2020). Additional tele-educational opportunities include the Neuro-ophthalmology Virtual Education Library (NOVEL) and the Eccles Health Sciences Library at the University of Utah with more than 14,000 users and 77,000-page views from 144 countries (N. Lombardo, personal communication, April 24, 2020). NOVEL and NANOS developed the Illustrated Curriculum with content for basic, intermediate and advanced learners to support residencies and fellowships, fill curriculum gaps and increase the availability of neuro-ophthalmology resources (57).

A comprehensive telemedicine neurology residency curriculum is implemented at the University of Rochester (58). This consists of a multifaceted, longitudinal educational program for neurology residents including observational outpatient teleneurology experiences in various subspecialties, completion of a web-based didactic curriculum (highlighting technical, clinical, and medicolegal aspects of teleneurology) and direct observation and evaluation during mock teleneurology visits using both standardized and actual patients (C. Tomcik, personal communication, April 29, 2020).

During the COVID-19 pandemic, many academic neuro-ophthalmologists rapidly implemented remote trainee education. The resident or fellow sees a telehealth patient, leaves the virtual examination room to present to the attending who is located elsewhere, then learner and attending virtually evaluate the patient together. Given workforce shortages, synchronous and asynchronous tele-neuro-ophthalmology curricula will benefit from continued development and expansion to introduce medical students to the subspecialty and then recruit, train and retain residents.

Future Considerations
Post-COVID, the role of telehealth is unclear. Questions include: Will coverage and payment parity continue? What is the right way to provide care for a particular patient: in-person, or via synchronous or asynchronous telehealth services? These and many other questions will be determined by policymakers, regulators, providers, patients and payers. Stakeholders need to strike a balance between ensuring access to care, the quality of care and supporting physical practices. Careful consideration of multiple interacting factors includes the evidence base, work processes, reimbursement, state parity laws, licensure and credentialing, infrastructure and the digital divide, and patient and provider acceptance. Evidence of telehealth's clinical utility should rapidly grow due to the growing number of patients receiving virtual care. Although coverage and payment parity may well continue after the public health emergency, it is unlikely that relaxation of HIPAA policies will outlast the pandemic (21,22).

The next steps for advancing adoption of tele-neuro-ophthalmology include research demonstrating tele-neuro-ophthalmology as non-inferior to an in-person evaluation, further validation of vision applications, and development of affordable, portable, easy to use quality digital ocular fundus imaging methods. These are all in progress (59).

Channel management will be useful for developing a long-range plan for telehealth. This is a strategy in which a business segments its channels to best meet its customer's needs. Consider modern banking. Traditional customers enter the bank to make deposits and withdrawals and interact with the teller. Others bypass that process and enter the bank drive-through or ATM. Customers who wish to stay home simply bank on-line. New channels are not replicas of the traditional banking experience and multiple channels are available to reach every possible consumer. Most of these alternative channels were groundbreaking just a few years ago, but are now commonplace. Channel management techniques can be applied to neuro-ophthalmology (60). Existing channels include traditional in-office visits, synchronous audio/video visits and asynchronous communication with patients via the electronic health record. Another channel is direct-to-consumer digital health. The growing US $700 billion digital
health industry includes fitness trackers, wearable heart and sleep monitors, home genetic tests and neurostimulation devices which are sold directly to consumers (61). Should neuro-ophthalmology develop consumer-facing applications or devices for visual testing? Software is already available that enables consumers to have their refraction measured using their personal computer. A prescription is generated, and glasses can be ordered without an in-person eye provider visit (personal communication, L. Sun, May 22, 2020). Benefits of such products must be weighed against potential harm when traditional safeguards, regulatory and ethical oversight, and clinical studies are bypassed. Some have suggested the digital health product market should guide consumers through labelling with health facts, not claims, similar to the role of the Food and Drug Administration (FDA) in overseeing food safety and labeling (61).

Other potential channels include the use of artificial intelligence applications such as chatbots. Already deployed by the retail and service industries, chatbots have entered the healthcare sector addressing some straightforward patient questions (e.g. medication refills, appointment scheduling and reminders, basic symptom triage). A virtual or in-person appointment can be scheduled if the concern was not sufficiently resolved by the chatbot (62,63). Although this may be easiest to implement in primary care where clear algorithms for routine health concerns exist, there are examples of AI triaging patients through specialist-created queries (64). In one of the author’s organizations, patients requesting an appointment will soon use an automated system where patient responses to queries direct them to self-schedule with the correct provider. What will the role of AI be in neuro-ophthalmologic referrals? Privacy, ethical, and safety issues are on-going concerns as the healthcare industry increases adoption of AI and will require appropriate regulations, policies and payments to enable proper implementation.

Telehealth is an increasingly recognized and utilized method of healthcare delivery. Telehealth does not supplant but supplements and complements in-person neuro-ophthalmic care. We need to determine how it can best serve our patients. It does not treat the patient any more than an ophthalmoscope treats vision loss. Diagnosis and treatment remain the domain of
clinicians. Our goal is to craft telehealth’s integration into high quality individualized neuro-ophthalmologic patient care. Tele-neuro-ophthalmology adoption is necessary for the sake of our patients, the survival of our subspecialty, and the education of our trainees and students. Innovations in digital optical fundus photography, mobile vision testing applications, artificial intelligence and principles of channel management will facilitate further adoption of tele-neuro-ophthalmology and bring the specialty to the leading edge of healthcare delivery.

Acknowledgements

The authors thank Karl Golnik, Nancy Lombardo, Mark Moster, Jeffrey Odell, Linus Sun, Colleen Tomcik for their insight and knowledge.
References:

1. What is telehealth? How is telehealth different from telemedicine?
 https://www.healthit.gov/faq/what-telehealth-how-telehealth-different-telemedicine
 Accessed May 27, 2020.

2. Dorsey ER, Topol EJ. State of Telehealth. N Engl J Med. 2016; 375(2):154-61.

3. Centers for Medicare and Medicaid Services. Medicare Telehealth Frequently Asked Questions (FAQs). Available at: https://edit.cms.gov/files/document/medicare-telehealth-frequently-asked-questions-faqs-31720.pdf Accessed May 27, 2020.

4. Aronson SH. The Lancet on the telephone 1876-1975. Med Hist. 1977 Jan;21(1):69-87.

5. Nesbitt TS. The Evolution of Telehealth: Where Have We Been and Where Are We Going? in Institute of Medicine. 2012. The Role of Telehealth in an Evolving Health Care Environment: Workshop Summary. Washington, DC: The National Academies Press. https://doi.org/10.17226/13466.

6. Wechsler LR. Advantages and limitations of teleneurology. JAMA Neurol. 2015 Mar;72(3):349-354. doi: 10.1001/jamaneurol.2014.3844.

7. Dorsey ER, Glidden AM, Holloway MR, Birbeck GL, Schwamm LH. Teleneurology and mobile technologies: the future of neurological care. Nat Rev Neurol. 2018;14(5):285-297.

8. Hatcher-Martin JM, Adams JL, Anderson ER, Bove R, Burrus TM, Chehrenama M, Dolan O'Brien M, Eliashiv DS, Erten-Lyons D, Giesser BS, Moo LR, Narayanaswami P, Rossi MA, Soni M, Tariq N, Tsao JW, Vargas BB, Vota SA, Wessels SR, Planalp H, Govindarajan R. Telemedicine in neurology: Telemedicine Work Group of the American Academy of Neurology update. Neurology. 2020 Jan 7;94(1):30-38.

9. Barnett ML, Ray KN, Souza J, Mehrotra A. Trends in Telemedicine Use in a Large Commercially Insured Population, 2005-2017. JAMA. 2018;320(20):2147-2149.
10. Duffy S, Lee TH. In-Person Health Care as Option B. N Engl J Med. 2018;378(2):104-106.

11. Gupta A, Caverano J, Sun JK, Silva PS. Evidence for telemedicine for diabetic retinal disease. Semin Ophthalmol. 2017; 32:22-28.

12. Guzik AK, Switzer JA. Teleneurology is neurology. Neurology. 2020;94(1):16-17.

13. American Medical Association. Digital Health Study—Physicians’ motivations and requirements for adopting digital clinical tools. Available at: https://www.ama-assn.org/sites/ama-assn.org/files/corp/media-browser/specialty%20group/washington/ama-digital-health-report923.pdf Accessed May 27, 2020.

14. 2019 Telemedicine and Locus Tenens Opportunities Study: Measuring Physician Interest in Emerging Employment Areas. Doximity. July 2019. Available at: https://s3.amazonaws.com/s3.doximity.com/press/2019TelemedicineAndLocumTenensOpportunitiesStudy.pdf Accessed May 27, 2020.

15. American Well. Telehealth Index: 2019 Consumer Survey. Available at: https://static.americanwell.com/app/uploads/2019/07/American-Well-Telehealth-Index-2019-Consumer-Survey-eBook2.pdf Accessed May 27, 2020.

16. Calandra, R. Telehealth Business: Boom Times, but Profits May Wait. Managed Care. April 9, 2017. Available at: https://www.managedcaremag.com/archives/2017/4/telehealth-business-boom-times-profits-may-wait Accessed May 27, 2020.

17. Transparency Market Research Available at: https://www.transparencymarketresearch.com/pressrelease/telemedicine-market.htm Accessed May 27, 2020.
18. Centers for Disease Control and Prevention. Public Health Recommendations for Community-Related Exposure. Available at: https://www.cdc.gov/coronavirus/2019-ncov/php/public-health-recommendations.html. Accessed May 27, 2020.

19. American Telemedicine Association Available at: https://www.americantelemed.org Accessed May 27, 2020.

20. Center for Connected Health Policy Available at: https://www.cchpca.org Accessed May 27, 2020.

21. Cutler DM, Nikpay S, Huckman RS. The Business of Medicine in the Era of COVID-19. JAMA. 2020 May 1. doi: 10.1001/jama.2020.7242.

22. Shachar C, Engel J, Elwyn G. Implications for Telehealth in a Postpandemic Future: Regulatory and Privacy Issues. JAMA. 2020 May 18. doi: 10.1001/jama.2020.7943. Online ahead of print.

23. Cohen BH, Busis NA, Ciccarelli L. Coding in the World of COVID-19: Non–Face-to-Face Evaluation and Management Care. Continuum: Lifelong Learning in Neurology. (in-press 2020). Epub 2020 Mar 27. https://cdn-links.lww.com/permalink/cont/a/cont_2020_03_26_coding_2020-19_sdc3.pdf.

24. Klein BC, Busis NA. COVID-19 is catalyzing the adoption of teleneurology. Neurology 2020. pii: 10.1212/WNL.0000000000009494. doi: 10.1212/WNL.0000000000009494. [Epub ahead of print]

25. Grossman SN, Han SC, Balcer LJ, Kurzweil A, Weinberg H, Galetta SL, Busis NA. Rapid implementation of virtual neurology in response to the COVID-19 pandemic. Neurology 2020 May 1. pii: 10.1212/WNL.0000000000009677. doi: 10.1212/WNL.0000000000009677. [Epub ahead of print]

26. Telehealth.HHS.GOV. Available at: https://telehealth.hhs.gov/providers/billing-and-reimbursement/ Accessed May 27, 2020.
27. IQVIA Institute for Human Data Science. Shifts in Healthcare Demand, Delivery and Care During the COVID-19 Era: Tracking the Impact in the United States. Available at https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/shifts-in-healthcare-demand-delivery-and-care-during-the-covid-19-era/iqvia-institute-reportcovid-19-impact-on-us-healthcare4292020.pdf?_ =1588447430676 Accessed May 27, 2020.

28. Gavidia, M. Telehealth During COVID-19: How Hospitals, Healthcare Providers are Optimizing Virtual Care. AJMC. March 13, 2020. [American Journal of Managed Care In Focus Blog] Available at: https://www.ajmc.com/focus-of-the-week/telehealth-during-covid19-how-hospitals-healthcare-providers-are-optimizing-virtual-care Accessed May 27, 2020.

29. Mann DM, Chen J, Chunara R, Testa PA, Nov O. COVID-19 transforms health care through telemedicine: evidence from the field. J Am Med Inform Assoc. 2020; Apr 23. pii: ocaa072. doi: 10.1093/jamia/ocaa072. [Epub ahead of print]

30. The smartphone will see you now. [The Economist website]. March 5, 2020. Available at: https://www.economist.com/business/2020/03/05/millions-of-chinese-cooped-up-and-anxious-turn-to-online-doctors Accessed March 27, 2020.

31. Siwicki, B. Survey: Americans’ Perceptions of Telehealth in the COVID-19 era. Healthcare IT News. [Healthcare IT News website] Available at: https://www.healthcareitnews.com/news/survey-americans-perceptions-telehealth-covid-19-era Accessed May 27, 2020.

32. Webster P. Virtual healthcare in the era of COVID-19. Lancet. 2020; 395(10231): 1180-1181.

33. Pew Research Center. Mobile Fact Sheet [Pew Research Center Internet & Technology web site]. Available at: https://www.pewresearch.org/internet/fact-sheet/mobile/ Accessed May 27, 2020.
34. Pew Research Center. Internet/Broadband Fact Sheet. [Pew Research Center Internet & Technology web site]. Available at: https://www.pewresearch.org/internet/fact-sheet/internet-broadband/ Accessed May 27, 2020.

35. Brody JE. (2020, May 11). A Pandemic Benefit: The Expansion of Telemedicine. The New York Times. May 11, 2020. Available at: https://www.nytimes.com/2020/05/11/well/live/coronavirus-telemedicine-telehealth.html Accessed May 27, 2020.

36. Hollander JE and Sites FD. The Transition for Reimaging to Recreating Health Care is Now. NEJM Catalyst. 2020. Available at: https://catalyst.nejm.org/doi/full/10.1056/CAT.20.0093 Accessed May 27, 2020.

37. DeBusk A, Subramanian PS, Bryan MS, Moster ML, Calvert PC, Frohman L. Mismatch in Supply and Demand for Neuro-ophthalmic Care. J Neuroophthalmol. 2020; in press.

38. Frohman LP. Neuro-ophthalmology: Transitioning From Old to New Models of Health Care Delivery J Neuroophthalmol. 2017; 37(2): 206-209.

39. Frohman LP. The human resource crisis in neuro-ophthalmology. J Neuroophthalmol. 2008; 28(3): 231-4.

40. Ko MW, Lai K, Zimmer-Galler I, Gold D, Moss H. Telemedicine and Neuro-ophthalmology: 20/20 in 2024. North American Neuro-ophthalmology Society 46th Annual Meeting; March 9, 2020; Omni Amelia Island Plantation Resort, Amelia Island, FL.
 https://novel.utah.edu/collection/NAM/program/20200309_nanos_telemedicine_1/year/2020/ North American Virtual Education Library; 2020. p. 259-284.

41. Moss HE, Lai KE, Ko MW. Survey of Telehealth Adoption by Neuro-ophthalmologists During the COVID-19 Pandemic: Benefits, Barriers and Utility J Neuroophthalmol 2020; (in press).
42. Bastawrous A, Rono HK, Livingstone IA, Weiss HA, Jordan S, Kuper H, Burton MJ. Development and Validation of a Smartphone-Based Visual Acuity Test (Peek Acuity) for Clinical Practice and Community-Based Fieldwork. JAMA Ophthalmol. 2015; 133(8): 930-937.

43. Han X, Scheetz J, Keel S, Liao C, Liu C, Jiang Y, Muller A, Meng W, He M. Development and Validation of a Smartphone-Based Visual Acuity Test (Vision at Home). Transl Vis Sci Technol. 2019; 8(4): 27.

44. Zhao L, Stinnett SS, and Prakalapakorn SG. Visual Acuity Assessment and Vision Screening Using Novel Smartphone Application. J Pediatr. 2019; 213: 203-210 e 201.

45. Prea SM, Kong YXG, Mehta A, et al. Six-month longitudinal comparison of a portable tablet perimeter with the Humphrey Field Analyzer. Am J Ophthalmol. 2018; 190:9-16.

46. Lee M, Koller M, Anna Schweigert, Merrill K, May L, Ishmaiel N, Lor Mai, McClelland C, Lee S. Measuring Torsion with a Mobile App Compared to Double Maddox Rod [abstract]. In: North American Neuro-Ophthalmology Society 46th Annual Meeting Syllabus; 2020 March 6-12; Amelia Island, FL. Minneapolis (MN): page 302.

47. Panwar N, Huang P, Lee J, et al. Fundus photography in the 21st Century-A Review of Recent Technological Advances and their Implications for Worldwide Healthcare. Telemedicine and e-Health 2016; 22(3): 198-208.

48. Bruce BB, Bidot S, Hage R, Clough LC, Fajoles-Vasseneix C, Melomed M, Keadey MT, Wright DW, Newman NJ, Bioussé V. Fundus photography vs. Ophthalmoscopy Outcomes in the Emergency Department (FOTO-ED) Phase III: Web-based, In-service training of Emergency Providers. Neuroophthalmology. 2018; 42(5): 269-274.

49. Bruce BB, Lamirel C, Bioussé V, Ward A, Heilpern KL, Newman NJ, Wright DW. Feasibility of non-mydriatic ocular fundus photography in the emergency department: Phase I of the FOTO-ED study. Acd Emerg Med. 2011; 18: 928-933.
50. Bruce BB, Thulasi P, Fraser CL, Keadey MT, Ward A, Heilpern KL, Wright DW, Newman NJ, Biousse V. Diagnostic accuracy and use of non-mydriatic ocular fundus photography by emergency physicians: Phase II of the FOTO-ED study. Ann Emerg Med. 2013; 62: 28-33.

51. Rodenbeck SJ and Mackay DD. Examining the ocular fundus in neurology. Curr Opin Neurol 2019 Feb;32(1):105-110.

52. Biousse V, Bruce BB, Newman NJ. Ophthalmoscopy in the 21st century: The 2017 Houston Merritt Lecture. Neurology. 2018 Jan 23;90(4):167-175.

53. Milea D, Najjar RP, Zhubo J, Ting D, Vasseneix C, Xy Xinxing, Fard MA, Fonseca P, Vanikieti K, Lagrèze WA. La Morgia C, Cheung CY, Hamann S, Chiquet C, Sanda N, Yang H, Mejico LJ, Rougier M, ho R, Chau T, Singhal S, Gohier P, Clermont-Vignal C, Cheng C, Jonas JB, Yu-Wai-Man P, Fraser CL, Chen JJ, Ambika S, Miller NR, Liu Y, Newman NJ, Wong TY, Biousse V. for the BONSAI Group. Artificial Intelligence to Detect Papilledema from Ocular Fundus Photography. New Engl J Med. 2020; 382: 1687-1695.

54. Kim S, Crose M, Ekdridge WJ, et a. Design and implementation of a low-cost, portable OCT system. Biomedical Optics Express. 2018; 9(3) 1232-1243.

55. ACGME. Neurology Program Requirements. Available at: https://www.acgme.org/Portals/0/PFAssets/ProgramRequirements/180_Neurology_2019.pdf?ver=2019-06-18-132333-227 Accessed May 27, 2020.

56. ACGME. Ophthalmology Program Requirements. Available at: https://www.acgme.org/Portals/0/PFAssets/ProgramRequirements/240-Ophthalmology_2019.pdf?ver=2018-08-21-132343-853 Accessed May 27, 2020.

57. NANOS Illustrated Curriculum for Neuro-Ophthalmology. NOVEL. Available at: https://www.tetondata.com/resources/srOnline/Handouts/NANOS_Overview_Handout_S TAT!Ref.pdf
58. University of Rochester Neurology Residency Program. Teleneurology Overview.
 https://www.urmc.rochester.edu/education/graduate-medical-education/prospective-
 residents/neurology/curriculum/teleneurology-overview.aspx Accessed May 27, 2020.

59. Grossman SN, Calix R, Tow S, Odel JG, Sun LD, Balcer LJ, Galetta SL, Rucker JC.
 Neuro-ophthalmology in the Era of COVID-19: Future Implications of a Public Health
 Crisis. Am J Ophthalmol 2020; in press.

60. Desruisseaux M, Stamenova V. Bhatia RS. et al. Channel management in virtual care.
 npj Digital Medicine. 2020; 3:44. Available at:
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096521/pdf/41746_2020_Article_252.pdf
 Accessed May 27, 2020.

61. Cohen AB, Mathews SC, Dorsey ER, Bates DW, Safavi K. Direct-to-consumer digital
 health. The Lancet Digit Health. 2020; 2(4): E163-E165.

62. Furness D. The chatbot will see you now: AI may play doctor in the future of healthcare.
 Digitaltrends.com October 7, 2016. Available at: https://www.digitaltrends.com/cool-
 tech/artificial-intelligence-chatbots-are-revolutionizing-healthcare/ Accessed May 27,
 2020.

63. Arndt RZ. Healthcare providers are teaming with chatbots to assist patients. Modern
 Healthcare.com Available at:
 https://www.modernhealthcare.com/article/20181208/TRANSFORMATION01/18120997
 7/healthcare-providers-are-teaming-with-chatbots-to-assist-patients Accessed May 27,
 2020.

64. Hoonakker, P. L. T., Carayon, P. & Cartmill, R. S. The impact of secure messaging on
 workflow in primary care: results of a multiple-case, multiple-method study. Int J Med
 Inform. 2017; 100: 63-76.