Combined deficiency of vitamin K-dependent coagulation factors and extensive hemorrhage

Vahid Niazi, Shahrzad Soori, Kamran Atarodi, Mohammad Hosein Esmaili, Peyman Beigi, Akbar Dorgalaleh

ABSTRACT

Abstract is not required for Editorial
Combined deficiency of vitamin K-dependent coagulation factors and extensive hemorrhage

Vahid Niazi, Shahrzad Soori, Kamran Atarodi, Mohammad Hosein Esmaili, Peyman Beigi, Akbar Dorgalaleh

Factor (F) II, FVII, FIX, and FX are known as vitamin K-dependent coagulation factors, as γ-carboxylation of the glutamine (Glu) residues is a critical step for their coagulant activities [1–3]. Gamma-carboxylation of the Glu residues which is mediated by γ-glutamyl carboxylase (GGCX) and reduced vitamin K (KH2) as its cofactor, is necessary for binding of calcium ions which then allows binding to phospholipid membranes. Another enzyme playing an important role in this cycle is called vitamin K epoxide reductase (VKOR). The VKOR catalyzes reconversion of vitamin K epoxide (KO), which is produced during the last reaction, to KH2 [2, 4]. Some natural anticoagulants including protein C, protein S, and protein Z also require Glu residues to be modified into γ-carboxyglutamate (Gla) residues and therefore there are low levels of protein C and protein S in the deficiencies of GGCX or VKOR. The deficiency of vitamin K-dependent coagulation factors can be an inherited or acquired disorder. In inherited form of disease, the disorder is usually manifest in infancy period, although it may also remain latent for a short time. Clinical manifestations are depending on the level of reduced coagulation factors [2, 5–7]. Acquired vitamin K-dependent coagulation factors are more common than congenital deficiency of these factors and only a few congenital form of disorders were reported up to now. Acquired deficiency can results in different conditions including liver disease and malabsorption [8, 9]. In the present study, we reported a woman with acquired vitamin K-dependent coagulation factors with extensive menorrhagia. We described a 43-year-old female with simultaneous decrease in vitamin K-dependent coagulation factors. She was born from an Iranian mother and a Russian father. Three years later, patient was referred with extensive menorrhagia and was hospitalized for management of her severe bleeding as well as diagnosis of disorder. In routine coagulation tests, prothrombin time (PT, normal range: 11.7–14.2 s) and activated partial thromboplastin time (APTT, normal range: 29–40 s) that was performed by STA compact automated coagulometer (Stago, Paris, France) both were prolonged while bleeding time (BT) (Ivy method) and platelet count (Sysmex kx21 hematology analyzer) were normal. In the mixing study, PT and APTT were corrected that indicating factor deficiency rather than inhibitor formation against deficient coagulation factors. Factor activity for all coagulation factors were performed (STA, compact automatic coagulometer, Diagnostica, Stago, Paris, France) both were prolonged while bleeding time (BT) (Ivy method) and platelet count (Sysmex kx21 hematology analyzer) were normal. In the mixing study, PT and APTT were corrected that indicating factor deficiency rather than inhibitor formation against deficient coagulation factors. Factor activity for all coagulation factors were performed (STA, compact automatic coagulometer, Diagnostica, Stago) except on factor XIII (FXIII) that was screened by clot solubility test as described by Dorgalaleh et al. [7]. Vitamin K-dependent coagulation factors level were abnormal (Table 1).

Subsequently, patient’s liver statues was evaluated by liver sonography (Mountain View, CA, USA) and liver function tests (LFTs) and cholesterol and triglyceride also were (auto analyzer, Hitachi 7250 special; Hitachi, Tokyo, Japan) but any abnormality was not observed except in a marked hypertriglyceridemia. The patient does not suffer from gastrointestinal disorder. The patient does not experience warfarin therapy in her life. Since patient suffered from severe bleeding, high dose (15 mg daily) of oral and parenteral vitamin K was administrated and vitamin K-dependent coagulation factors were rechecked but any changed was not observed and patient’s bleeding was not stopped. Subsequently, the patient was received prothrombin complex concentrates (PCCs) that stopped patient’s bleeding.
VKCFD we performed routine and factor activity for her not any problem that can attribute to acquired form of for this thrombophilic mutation. Since the patient has protein C resistance test that showed patient was positive was investigated for the factor 5 Leiden by activated administrated. Due to occurrence of hematoma patient clotting factors were reduced and assays were performed again and vitamin K-dependent following to their abnormality, coagulation factor was referred with extensive face hematoma. Routine coagulation tests were rechecked and following to their abnormality, coagulation factor assays were performed again and vitamin K-dependent clotting factors were reduced and FEIBA successfully was administered. Due to occurrence of hematoma patient was investigated for the factor 5 Leiden by activated protein C resistance test that showed patient was positive for this thrombophilic mutation. Since the patient has not any problem that can attribute to acquired form of VKCFD we performed routine and factor activity for her father that was available. Her father had normal results of PT and APTT but vitamin K-dependent clotting factors were in lower limit of normal range.

Acquired VKCFD is a relatively common condition can results in severe hemorrhage. Acquired VKCFD may be observed in neonatal period as a temporal event [8, 9]. This diathesis is more common in patients with chronic liver disease but malnutrition, malabsorption and medications are other causes [8–10]. In this case, patient liver and gastric status was normal while most of vitamin K-dependent coagulation factors severely were reduced. The patient was not received any medication at the time of bleeding or recent past. In patient’s serum sample, chylomicronemia was obvious and when triglyceride was measured, it was very high. Several studies were reported that variations in serum lipids including cholesterol and triglyceride could significantly affect vitamin K-dependent coagulation factors [9]. In the study of Maccallum et al., it was observed that protein C and protein S had significant variations in healthy individuals by increased level of cholesterol and triglyceride [8]. Similar finding were observed for other coagulation factors of this group. It was recommended that in vitamin K-dependent coagulation factors measurement, lipid profile of patient should take in consideration [10, 11]. Contraceptive pill or hormone replacement therapy are other factors can significantly affect these factors but our patient was not under this circumcision [8]. Serum vitamin K transport also can significantly alert by serum lipids mostly triglycerides [11]. All of these factors can affect vitamin K-dependent coagulation factors activation and therefore reduce their activity in blood stream [9, 11]. In the current patient, high serum lipids, the only factor that we found that can affect patient’s coagulation factors and causes severe bleeding and hospitalization. This case emphasis this fact that high serum lipids not only affect in vitro measurement of vitamin K-dependent coagulation factors but also can cause severe life-threatening bleeds.

Keywords: Acquired VKCFD, Coagulation, bleeding, Serum lipids, Vitamin K

Table 1: Results of coagulation and biochemistry tests of patient and her father

Test	Patient	Father	Normal range
Prothrombin time (sec)	70	13	11.7–14.2
APTT (sec)	>120	38	29–40
BT (IVY) (Min)	3	2–7	
Fibrinogen (mg/dL)	300	200–400	
Factor II (%)	3	85	70–120
Factor V (%)	120	70–120	
Factor VII (%)	8	83	55–170
Factor VIII (%)	180	-	60–150
Factor IX (%)	11	-	60–150
Factor X (%)	1	85	70–120
Factor XI (%)	100	-	50–110
Factor XII (%)	100	-	50–120
Protein C (%)	43	-	70–130
Protein S (%)	35	-	50–123
ALT (IU/L)	11	-	5–40
AST (IU/L)	9	-	5–40
ALP (IU/L)	230	-	64–306
Triglyceridemia (mg/dL)	1200	-	150–199
Cholesterol (mg/dL)	420	-	<200
Bill-T (mg/dL)	0.5	-	Up to 1.4
Bill-D (mg/dL)	0.1	-	Up to 0.5

APTT: Activated partial thromboplastin time, BT: Bleeding time, ALT: Alanine aminotransferase, AST: Aspartate aminotransferase, ALP: Alkaline phosphatase

Due to economic sanctions, PCC limitedly was available in Iran and FEIBA (Factor Eight Inhibitor Bypassing Activity, Vapor Heated; Baxter, Vienna, Austria) was administrated in a dose of 50 U/kg as an alternative. Although, therapeutic response was not similar to PCC but severity of bleeding was reduced. The patient had six sons and three brothers without any history of abnormal bleeding.

Although patient’s bleeding was managed by PCC and FEIBA but she was hospitalized due to extensive hemorrhage several times and PCC and FEIBA again were used for management of bleeding. At last time, the patient was referred with extensive hemorrhage and spontaneous face hematoma. Routine coagulation tests were rechecked and following to their abnormality, coagulation factor assays were performed again and vitamin K-dependent clotting factors were reduced and FEIBA successfully was administrated. Due to occurrence of hematoma patient was investigated for the factor 5 Leiden by activated protein C resistance test that showed patient was positive for this thrombophilic mutation. Since the patient has not any problem that can attribute to acquired form of VKCFD we performed routine and factor activity for her father that was available. Her father had normal results of PT and APTT but vitamin K-dependent clotting factors were in lower limit of normal range.

How to cite this article

Niazi V, Soori S, Atarodi K, Esmaili MH, Beigi P, Dorgalaleh A. Combined deficiency of vitamin K-dependent coagulation factors and extensive hemorrhage. Int J Case Rep Images 2018;9(1):1–4.

Article ID: Z01201801ED10013VN

doi: 10.5348/ijcri-201801-ED-10013
REFERENCES

1. Zhang B, Ginsburg D. Familial multiple coagulation factor deficiencies: New biologic insight from rare genetic bleeding disorders. J Thromb Haemost 2004 Sep;2(9):1564–72.

2. Nichols WC, Seligsohn U, Zivelin A, et al. Linkage of combined factors V and VIII deficiency to chromosome 18q by homozygosity mapping. J Clin Invest 1997 Feb 15;99(4):596–601.

3. Dorgalaleh A, Alavi SE, Tabibian S, et al. Diagnosis, clinical manifestations and management of rare bleeding disorders in Iran. Hematology 2017 May;22(4):224–30.

4. Naderi M, Tabibian S, Hosseini MS, et al. Congenital combined deficiency of coagulation factors: A study of seven patients. Blood Coagul Fibrinolysis 2015 Jan;26(1):50–62.

5. Seligsohn U, Zivelin A, Zwang E. Combined factor V and factor VIII deficiency among non-Ashkenazi Jews. N Engl J Med 1982 Nov 4;307(19):1191–5.

6. Dorgalaleh A, Naderi M, Shamsizadeh M. Morbidity and mortality in a large number of Iranian patients with severe congenital factor XIII deficiency. Ann Hematol 2016 Feb;95(3):451–5.

7. Dorgalaleh A, Tabibian S, Hosseini S, Shamsizadeh M. Guidelines for laboratory diagnosis of factor XIII deficiency. Blood Coagul Fibrinolysis 2016 Jun;27(4):361–4.

8. MacCallum PK, Cooper JA, Martin J, Howarth DJ, Meade TW, Miller GJ. Associations of protein C and protein S with serum lipid concentrations. Br J Haematol 1998 Jul;102(2):609–15.

9. Kamali F, Edwards C, Wood P, Wynne HA, Kesteven P. Temporal variations in plasma vitamin K and lipid concentrations and clotting factor activity in humans. Am J Hematol 2001 Nov;68(3):159–63.

10. Card DJ, Gorska R, Cutler J, Harrington DJ. Vitamin K metabolism: Current knowledge and future research. Mol Nutr Food Res 2014 Aug;58(8):1590–600.

11. Hoffman CJ, Lawson WE, Miller RH, Hultin MB. Correlation of vitamin K-dependent clotting factors with cholesterol and triglycerides in healthy young adults. Arterioscler Thromb 1994 Nov;14(11):1737–40.

Author Contributions
Vahid Niazi – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Shahrzad Soori – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Kamran Atarodi – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Mohammad Hosein Esmaili – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Peyman Beigi – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Akbar Dorgalaleh – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor of Submission
The corresponding author is the guarantor of submission.

Source of Support
None

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2018 Vahid Niazi et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.
Access full text article on other devices

Access PDF of article on other devices
About Edorium Journals
Edorium Journals is a publisher of international, high-quality, open access, scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

Why should you publish with Edorium Journals?
In less than 10 words: “We give you what no one does”.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial review
All manuscripts submitted to Edorium Journals undergo pre-processing review followed by multiple rounds of stringent editorial reviews.

Peer review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early view version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates about status of your manuscripts.

Our Commitment

Six weeks
We give you our commitment that you will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this commitment by even one day, we will give you a 75% Discount Voucher for your next manuscript.

Four weeks
We give you our commitment that after we receive your page proofs, your manuscript will be published in the journal within 14 days (2 weeks). If we fail to honor this commitment by even one day, we will give you a 75% Discount Voucher for your next manuscript.

Favored author program
One email is all it takes to become our favored author. You will not only get 15% off on all manuscript but also get information and insights about scholarly publishing.

Institutional membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in publication fees.

Our presence
We have high quality, attractive and easy to read publication format. Our websites are very user friendly and enable you to use the services easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services. Please visit: www.edoriumjournals.com

We welcome you to interact with us, share with us, join us and of course publish with us.