Yields and elliptic flow of $d(\bar{d})$ and $^3He(^3He)$ in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Haidong Liu‡ (for the STAR Collaboration)
Department of Modern Physics, University of Science & Technology of China, Hefei, 230026, P. R. China
E-mail: hdliu@mail.ustc.edu.cn

Abstract. We present the transverse momentum spectra at mid-rapidity for d, \bar{d} ($1 < p_T < 4$ GeV/c) and 3He, $\bar{^3He}$ ($2 < p_T < 6$ GeV/c) measured by the STAR experiment at RHIC and extract the coalescence parameters B_2 and B_3 (respectively). We also present the v_2 measurement for $d(\bar{d})$ and $^3He(\bar{^3He})$. We find that the $d(\bar{d})$ and $p(\bar{p})$ v_2 follows the atomic mass number A scaling within errors and a negative v_2 has been observed for \bar{d} at low p_T.

1. Introduction

In relativistic heavy ion collisions, light nuclei and their particles can be formed from created nucleons and anti-nucleons or stopped nucleons [1]. Since the binding energy is small, this formation process can only happen at the late stage of the evolution when interactions between nucleons and other particles are weak. This process is called final-state coalescence [2] [3]. Therefore, the production of light nuclei provides a tool to measure freeze-out properties, such as particle density [4], correlation volume and collective motion. Invariant nucleus yield can be related [2] to the primordial yields of nucleons by Equation (1):

$$E_A \frac{d^3N_A}{d^3p_A} = B_A(E_p \frac{d^3N_p}{d^3p_p})^Z (E_n \frac{d^3N_n}{d^3p_n})^{A-Z} \approx B_A(E_p \frac{d^3N_p}{d^3p_p})^A$$

where B_A is the coalescence parameter. $E \frac{d^3N}{d^3p}$ is the invariant yield of nucleons or nuclei. A and Z are the atomic mass number and atomic number, respectively. p_A and p_p are the momenta of nucleus and proton where $p_A = A \cdot p_p$. B_A is related to the freeze-out correlation volume [2]: $B_A \propto V^{1-A}$.

2. Experiment and analysis

The data presented here are obtained from the Time Projection Chamber (TPC) and the Time-Of-Flight (TOF) detectors in the STAR experiment [5] at RHIC in the year

‡ Supported by National Natural Science Foundation of China (10475074 10620120286)
Yields and elliptic flow of $d(d)$ and $^3He(^3He)$ in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Figure 1. (a) TPC dE/dx as a function of rigidity. Lines are expected values for $d(d)$ and $^3He(^3He)$ predicted by the Bichsel function. (b) Z distribution of 3He (solid line) and 3He (dashed line). (c) $n\sigma_d$ distribution of d at $0.7 < p_T < 1.0$ GeV/c with a Gaussian fit including an exponential background. (d) $m^2(m^2 = (p/\beta/\gamma)^2)$ distribution for d from TOF after TPC dE/dx selections at $2.5 < p_T < 3.0$ GeV/c, with a Gaussian fit including a linear background.

2004. A data sample of 25 million (16 million for TOF) central triggered events and 24 million (15 million for TOF) minimum-bias triggered events is used for this analysis. Figure 1 presents the particle identification techniques and methods. Figure 1 (a) shows the ionization energy loss (dE/dx) of charged tracks as a function of rigidity ($\text{rigidity} = |\text{momentum/charge}|$) measured by the TPC at $-1 < \eta < 1$. Figure 1 (b) shows Z ($Z = \log(dEdx|_{\text{measure}}/dEdx|_{\text{predict}})$) distribution for 3He and 3He signals. After tight track quality selections, the $^3He(^3He)$ signals are essentially background free. We use counting method to derive the yields. Figure 1 (c) shows $n\sigma_d$ (extracted from dE/dx) distribution for d at $0.7 < p_T < 1.0$ GeV/c. The signal was fit with a Gaussian function and an exponential background. Figure 1 (d) shows m^2 distribution for d at $2.5 < p_T < 3.0$ GeV/c measured by TOF after the dE/dx selections. The signal was fit with a Gaussian function and a linear background. The acceptance and tracking efficiencies were studied by Mont Carlo GEANT simulations [6]. The results presented are corrected for these effects. Elliptic flow parameter v_2 was calculated by the event plane method.

3. Results

Figure 2 shows the p_T spectra and the extracted coalescence parameters B_2 and B_3 for $d(d)$ and $^3He(^3He)$. Here the proton and anti-proton spectra are taken from Ref. 7. The $p(\bar{p})$ spectra have been corrected for feed-down from $\Lambda(\bar{\Lambda})$ and Σ^\pm weak decays [7]. B_2 for $d(d)$ is consistent with $\sqrt{B_3}$ for $^3He(^3He)$, which indicates that the correlation volumes for $d(d)$ and $^3He(^3He)$ are similar. Both B_2 and B_3 show strong centrality
Yields and elliptic flow of $d(d)$ and $^3He(^3He)$ in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Figure 2. Upper panel: p_T spectra of $d(d)$ (left panel) and $^3He(^3He)$ (right panel) for different centralities. Solid symbols and open symbols represent the positive charged particles and negative charged particles respectively. Lower panel: Coalescence parameters B_2 and $\sqrt{B_3}$ as a function of p_T/A for positive charged particles (left panel) and negative charged particles (right panel). Errors are statistical only.

dependence. In more central collisions, a smaller coalescence parameter indicates that the correlation volume at thermal freeze-out is larger and the probability of formation of light nuclei is less. Figure 3 (a) shows v_2 as a function of p_T for $d+d$, $^3He+^3He$ and \bar{d} in minimum-bias collisions. The results with both v_2 and p_T scaled by A are shown in Figure 3 (b). For comparison, the baryon v_2 [8] is also shown as the solid line. $d+d$ and baryon v_2 seems to follow the A scaling within errors, indicating that the $d+d$ are formed through the coalescence of $p(p)$ and $n(n)$ just before the thermal freeze-out. The scaled $^3He+^3He$ v_2 appears to deviate from the the baryon v_2. Further conclusions are limited by poor statistics, so clearly more data are needed. The \bar{d} v_2/A as a function of centrality fraction is shown in Figure 3 (c). The two panels represent results for two different regions of p_T. \bar{d} has a negative v_2 in central and mid-central collisions in the transverse momentum range of $0.2 < p_T < 0.7$ GeV/c. This negative v_2 is consistent with a large radial flow, as the blast-wave predictions show. At the same p_T/A where the \bar{d} is negative, the \bar{p} v_2 is consistent both with zero and with the d v_2, due to large uncertainties. Though the blast-wave model predicts the generic feature of negative v_2, quantitative agreement between data and model throughout the entire centrality and p_T range is lackings.

4. Summary

Taking advantage of the combining STAR TPC and TOF detectors capabilities, we have measured the $d(d)$ and $^3He(^3He)$ transverse momentum spectra and elliptic flow.
Yields and elliptic flow of $d(d)$ and $^3He(^3He)$ in $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV

Figure 3. (a) The elliptic flow parameter v_2 from minimum bias collisions as a function of p_T for $^3He + ^3He$ (triangles), $d + \bar{d}$ (filled circles) and \bar{d} (open circles); solid line represents the baryon v_2. (b) $d + \bar{d}$ and $^3He + ^3He$ v_2 as a function of p_T, both v_2 and p_T have been scaled by A. Errors are statistical only. (c) Low p_T $\bar{d}v_2/A$ (filled squared) as a function of centrality fraction $(0 - 10\%, 10 - 20\%, 20 - 40\%, 40 - 80\%$, respectively). Errors are statistical only. $\bar{p} v_2$ is also shown as open triangles. Blast-wave predictions are show as solids lines (\bar{d}) and dashed lines (\bar{p}).

The value of the coalescence parameters B_2 and $\sqrt{B_3}$, extracted from the spectral measurements, are found to be consistent. Systematic studies of B_2 and B_3 have shown decreasing trends as function of collision centrality, consistent with an increasing source size from peripheral to central collisions. Comparative analysis of the elliptic flow measurements show that $d(\bar{d})$ and $p(\bar{p}) v_2$ scales with atomic mass number A, which is expected natural consequence of final-state coalescence. The negative \bar{d} v_2 values observed at low p_T are consistent with a large radial flow in the soft sector.

References

[1] J.L. Nagel et al., Phys. Rev. C53 (1996) 367; A.Z. Mekjian, Phys. Rev. C17 (1978) 1051.
[2] S.T. Butler and C.A. Pearson, Phys. Rev. 129 (1963) 836.
[3] A. Schwarzschild and C. Zupancic, Phys. Rev. 129 (1963); H.H. Gutbrod et al., Phys. Rev. Lett. 37 (1976) 667.
[4] H. Liu and Z. Xu, nucl-ex/0610035.
[5] K.H. Ackerman et al., Nucl. Instr. Meth. A 499, 624 (2003).
[6] J. Adams et al., Phys. Rev. Lett. 91 (2003) 262302.
[7] B.I. Abelev et al., Phys. Rev. Lett. 97 (2006) 152301.
[8] X. Dong et al., Phys. Lett. B597 (2004) 328.
[9] J. Adams et al., Phys. Rev. C72 (2005) 014904.
[10] F. Retiere and M. Lisa, Phys. Rev. C70 (2004) 044907.