Enhanced Stability of MAPbI$_3$ Perovskite Solar Cells using Poly(p-chloro-xylylene) Encapsulation

Hyojung Kim1, Jiyong Lee1, Bora Kim1, Hye Ryung Byun1, Sung Hyuk Kim1, Hye Min Oh1, Seunghyun Baik3,4* & Mun Seok Jeong1,3*

We demonstrated an effective poly(p-chloro-xylylene) (Parylene-C) encapsulation method for MAPbI$_3$ solar cells. By structural and optical analysis, we confirmed that Parylene-C efficiently slowed the decomposition reaction in MAPbI$_3$. From a water permeability test with different encapsulating materials, we found that Parylene-C-coated MAPbI$_3$ perovskite was successfully passivated from reaction with water, owing to the hydrophobic behavior of Parylene-C. As a result, the Parylene-C-coated MAPbI$_3$ solar cells showed better device stability than uncoated cells, virtually maintaining the initial power conversion efficiency value ($15.5 \pm 0.3\%$) for 196 h.

Hybrid organo-lead halide perovskites have received significant attention for use as absorber materials in solar cells, because of their high absorption coefficient1, tunable band gap2,3, high carrier mobility4, and simple solution-processing synthesis method5,6. Since Kojima et al. reported methylammonium lead iodide (CH$_3$NH$_3$PbI$_3$)-based perovskite solar cells (PSCs) in 20097, various synthesis methods and device architectures have been studied$^{8-11}$, and the highest power conversion efficiency (PCE), 24.2%, was recently achieved using a double-layered halide structure12,13. However, the inherent instability of CH$_3$NH$_3$PbI$_3$ remains a major concern in perovskite research$^{14-16}$. For example, Conings et al. reported a significant structural change with a 75% drop in the PCE due to degraded CH$_3$NH$_3$PbI$_3$ in ambient conditions17, and Leijtens et al. also observed a 50% decay of the initial performance of unpassivated PSCs within 5 h18. Several attempts have been made to improve the stability of PSCs by modifying the crystal structure19 or replacing the hole-transporting layer (HTL) with carbon nano-tube–polymer composites20. More recently, Cheacharoen et al. reported that ethylene vinyl acetate encapsulation retained 90% of the initial device performance after 200 temperature cycles between -40°C and 85°C21. However, despite the use of complex chemical compositions22 or various passivation layers21,23,24, ~10–20% drops in PCE were still observed, and the current research interests have focused more on the thermal stability of perovskite. Therefore, to overcome the remaining concerns, it is necessary to find an alternative encapsulating material.

In this work, we suggest an effective poly(p-chloro-xylylene) (Parylene-C) encapsulation method for CH$_3$NH$_3$PbI$_3$ (MAPbI$_3$) solar cells. The passivation was verified by monitoring the time-dependent optical properties of a MAPbI$_3$ perovskite film, including the UV–Vis absorption and photoluminescence (PL) spectra. As a result, Parylene-C successfully passivated a MAPbI$_3$ perovskite film from reaction with water, owing to its hydrophobic behavior. The photovoltaic performance of Parylene-C-coated PSCs was investigated at various air-exposure times, and the Parylene-C-coated PSCs showed improved stability, maintaining almost the initial PCE values ($15.5 \pm 0.3\%$) for 196 h.

Results and Discussion

The device configuration of the Parylene-C-coated MAPbI$_3$ solar cell is shown in Fig. 1a. MAPbI$_3$ perovskite was fabricated using the two-step spin-casting method25, with the TiO$_2$ and Spiro-OMeTAD used for the electron and hole transporting materials, respectively. The 100-nm-thick gold electrodes and Parylene-C polymer were sequentially deposited on the top of the MAPbI$_3$ solar cells, and the active solar cell area was 0.15 cm2 (see Supplementary Information for details). The chemical structure of Parylene-C - phenyl rings, with one chlorine and two methylene groups, is shown at the top of Fig. 1a. We confirmed the chemical structure of Parylene-C via Fourier transform infrared (FTIR) spectroscopy (Fig. S1). Parylene-C showed the absorption peaks at 1045 cm$^{-1}$.

1. Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea. 2. Department of Physics, Sogang University, Seoul, 04107, Republic of Korea. 3. Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea. 4. School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea. *email: sbaik@me.skku.ac.kr; mjeong@skku.edu
and 1492 cm\(^{-1}\), corresponding to the vibration energy of chlorine and phenyl groups, respectively\(^{26}\). The two C-H stretching modes related to methyl groups were also observed at 2857 cm\(^{-1}\) and 2927 cm\(^{-1}\)\(^{27}\). Figure 1b shows a cross-sectional scanning electron microscopy (SEM) image of the Parylene-C-coated MAPbI\(_3\) solar cell, and we confirmed that the thickness of the Parylene-C coating was about 700 nm. The rough surface of the Parylene-C layer was generated by the focused ion beam milling process (Fig. S2). Generally, Parylene-C shows a low surface roughness value of 4.1 ± 0.4 nm because of using a vapor-deposition technique\(^{28}\).

First, we measured the time-dependent absorption of bare and Parylene-C-coated MAPbI\(_3\) in order to trace the decomposition reaction in ambient conditions; we also took photographs simultaneously (Fig. S3). The perovskite films were exposed to a room temperature (26.1 °C ± 2 °C) environment with 40–50% relative humidity for 196 h. As shown in Fig. 2a, we observed that the bare MAPbI\(_3\) changed from dark brown to yellow, and the absorption peak at 762 nm gradually decreased. We also found that a new absorption peak at 510 nm became dominant, as the entire film of bare MAPbI\(_3\) became yellow (dashed circle in Fig. 2a). In contrast, the Parylene-C-coated MAPbI\(_3\) film exhibited no color changes, and the absorption also remained unchanged after 196 h in air (Fig. 2b).

To understand these absorption changes, X-ray diffraction (XRD) analysis of the samples exposed to air for 26 d was performed (Fig. 2c). The predominant XRD peaks observed in the as-prepared bare MAPbI\(_3\) (black, top) significantly decreased in the aged bare MAPbI\(_3\) (blue, middle) and a new peak appeared at 12.64°. According to a previous report, this peak corresponds to the (001) diffraction of PbI\(_2\), which is a well-known by-product of the degradation of MAPbI\(_3\) perovskite\(^{29}\). We confirmed that the absorption change below 550 nm (2.25 eV) in Fig. 2a was due to the formation of PbI\(_2\) because the band gap energy of PbI\(_2\) is about 2.30 eV. In contrast, the diffraction patterns of the Parylene-C-coated MAPbI\(_3\) film were almost identical to those of the as-prepared MAPbI\(_3\), even after 26 d (red, bottom). This result indicates that the Parylene-C passivation layer effectively slowed the decomposition reaction in the MAPbI\(_3\) perovskite.

We further confirmed the passivation effect of Parylene-C using time-dependent PL as a function of air-exposure time. In Fig. 3a, the PL intensity of the bare MAPbI\(_3\) decreased dramatically over time, and the PL peak position was slightly blue-shifted (black dashed line). According to a previous report, the blue-shifted PL peak of aged MAPbI\(_3\) was related to PbI\(_2\) formation\(^{17}\), and we observed an increased PL intensity at 510 nm from the aged MAPbI\(_3\), (Fig. S4), which is consistent with the band gap of PbI\(_2\). In contrast, Parylene-C-coated MAPbI\(_3\) maintained its initial PL intensity and peak position for 196 h (Fig. 3b), showing the effective passivation effect of Parylene-C on MAPbI\(_3\).

Time-resolved photoluminescence (TRPL) measurements were conducted simultaneously on both bare and Parylene-C-coated MAPbI\(_3\), in Fig. 3c,d. The integrated PL intensity of the bare MAPbI\(_3\) was zero after 120 h; thus, we compared the TRPL spectra taken for 120 h (excluding data taken after 196 h). As shown in Fig. 3c, the PL decay curves of the bare MAPbI\(_3\) decreased gradually with increasing exposure time, whereas those of the Parylene-C-coated MAPbI\(_3\) remained unchanged for 120 h (Fig. 3d). We calculated the average lifetime from two decay components fitted to a bi-exponential function and plotted the changes as a function of air-exposure time (Fig. S5). The carrier lifetime in the bare MAPbI\(_3\) decreased remarkably from the initial value of 8.67 ns to 0.99 ns because of the decomposition reaction. In contrast, Parylene-C-coated MAPbI\(_3\) initially exhibited a longer carrier lifetime than the bare film, i.e., 9.19 ns, maintained for 120 h.

Finally, we investigated the photovoltaic performance of Parylene-C-coated MAPbI\(_3\) solar cells in terms of the effect of Parylene-C encapsulation. The solar cell performance was measured under the AM 1.5 G illumination with a power density of 100 mW cm\(^{-2}\) (see Supplementary Information for details). In Fig. S6, the comparison of current density–voltage (J–V) curves before and after Parylene-C deposition revealed that the MAPbI\(_3\) PSC was not damaged during the vapor-deposition process. Figure 4 shows time-dependent photovoltaic characteristics for the bare, polymethyl methacrylate (PMMA)-coated, and Parylene-C-coated MAPbI\(_3\) PSCs. We selected PMMA for comparison, as it is the most commonly used polymer for PSC encapsulation. Interestingly,
the PMMA-coated PSCs showed a 30% drop from their initial efficiency (Fig. 4b) because chlorobenzene, a pre-dissolution of PMMA and Spiro-OMeTAD, can damage Spiro-OMeTAD during PMMA coating. This result indicates that the use of PMMA limits the selection of hole-transport materials in solar cells, although it is among the most widely used of various passivation polymers. On the contrary, Parylene-C can be used in combination with various hole-transport materials without affecting the initial device performance. In terms of device stability, the solar cell performance of the bare and PMMA-coated PSCs decreased dramatically after exposure to ambient conditions, and these cells were completely degraded within 196 h (Fig. 4a,b). In contrast, the PCE of the Parylene-C-coated PSC exhibited no notable change over a period of 196 h (Fig. 4c).

To explain how Parylene-C can efficiently retain the initial performance of MAPbI₃ PSC, we further performed FTIR spectroscopy. As shown in Fig. S7, two N–H stretching modes around 3150 cm⁻¹ were remarkably

Figure 2. Parylene-C passivation effect in ambient conditions. Time-series photographs and linear absorption spectra of (a) bare MAPbI₃ and (b) Parylene-C-coated MAPbI₃. (c) XRD spectra of as-prepared bare MAPbI₃ (black), aged bare MAPbI₃ (blue), and Parylene-C-coated MAPbI₃ (red) after 26 d.

Figure 3. Optical properties of MAPbI₃ with and without Parylene-C deposition. Time-dependent PL spectra of (a) bare and (b) Parylene-C-coated MAPbI₃. TRPL decay profiles of (c) bare and (d) Parylene-C-coated MAPbI₃ with the instrument response function (dashed gray line). (e) Integrated PL intensity as a function of air-exposure time for bare (black) and Parylene-C-coated MAPbI₃ (red) (inset: photographs of each sample after 196 h).
suppressed for aged MAPbI₃, and a new absorption peak appeared at 3466 cm⁻¹, corresponding to the vibration energy of hydroxyl groups (−OH). This finding agrees well with a previous report on hydrated compounds in aged MAPbI₃ resulting from adsorption of water vapor. Note that humid conditions are the main cause of degradation in MAPbI₃ perovskite, and therefore, to improve stability of the PSC, it is necessary to prevent water penetration. Fortunately, Parylene-C has been known to have low water permeability of 0.14 cm³ ·mil/(100 in² ·24 hr ·atm) at 23 °C, which correlated well with our contact angle data (the inset of Fig. 4c). The surface of PMMA showed a contact angle of 72°, which were in the hydrophilic range (<90°). In contrast, Parylene-C showed hydrophobic behavior, with a considerably higher contact angle of 121°.

We tested the water permeability of these encapsulating materials (Video S1). We prepared Spiro-OMeTAD- and PMMA-coated MAPbI₃ as well as bare and Parylene-C-coated MAPbI₃ perovskite films. The bare and Spiro-OMeTAD-coated MAPbI₃ perovskite films turned yellow on exposure to water drops, revealing that the hole transporting material could not protect against reaction with water. Although the PMMA-coated MAPbI₃ initially remained unchanged, the decomposition reaction occurred within 6 min. Yoo et al. reported that a part of PMMA molecular chain is hydrophilic; thus, water molecules can hydrolyze the ester groups in PMMA and break down the PMMA structure. This is consistent with our results, indicating that PMMA is unable to protect perovskite from water damage. Unlike the other tested materials, Parylene-C effectively passivated the perovskite film against water droplet exposure for 30 min. These results indicate that Parylene-C was able to slow down the degradation of PSC because it could effectively passivate MAPbI₃ PSC from reaction with water.

For further analysis, we compared the photovoltaic parameters of the as-prepared (0 h) and aged (after 196 h) PSCs with different encapsulating layers. In Fig. 4, the bare and PMMA-coated PSCs showed remarkable decreases in J_sc and PCE values after 196 h. Interestingly, the Voc values hardly changed after 196 h for both the bare and PMMA-coated solar cells (Fig. 4d). Conings et al. reported similar small decreases of Voc, from aged MAPbI₃ PSCs, and revealed that J_sc was influenced more by degradation because perovskite degradation increased resistance and recombination near the interface between the perovskite and carrier transporting layers. On the basis, we considered that the huge decrease of J_sc in our data was also attributable to perovskite layer degradation. Lastly, the Parylene-C-coated PSC showed no noticeable change to any of the parameters; therefore, we confirmed that Parylene-C could effectively encapsulate the MAPbI₃ solar cells for 196 h.

Conclusions

We demonstrated successful encapsulation of MAPbI₃ solar cells by Parylene-C deposition. By structural and optical analyses, we systemically investigated the origin of the decomposition reaction in MAPbI₃ and confirmed that Parylene-C can efficiently slow down the decomposition reaction in the MAPbI₃ films. In particular, Parylene-C can efficiently isolate MAPbI₃ perovskite from reaction with water, owing to its hydrophobic character, and as a result, the Parylene-C-coated MAPbI₃ solar cells maintained almost the initial PCE values (15.5 ± 0.3%) for 196 h. On the basis of this work, we believe that the (p-xylylene) type polymers have shown the potential to improve the lifetime of organo-lead halide perovskite in future photovoltaic applications.

Received: 25 September 2018; Accepted: 8 October 2019; Published online: 29 October 2019
References

1. Green, M. A., Ilo-Baillie, A. & Snaith, H. J. The Emergence of Perovskite Solar Cells. Nat. Photon. 8(7), 506–514 (2014).
2. Sutton, R. J. et al. Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Adv. Energy Mater. 6(8), 1502458 (2016).
3. Eperon, G. E. et al. Formamidinium Lead Trihalide: a Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells. Energy Environ. Sci. 7(3), 982–988 (2014).
4. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater. 26(10), 1584–1589 (2014).
5. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Structured Organometal Halide Perovskites. Science 338(6107), 643–647 (2012).
6. Nie, W. et al. High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science 347(6221), 522–525 (2015).
7. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
8. Burschka, J. et al. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 499(7458), 316–319 (2013).
9. Zhou, H. et al. Interface Engineering of Highly Efficient Perovskite Solar Cells. Science 345(6196), 542–546 (2014).
10. Sutherland, B. R. et al. Perovskite Thin Films via Atomic Layer Deposition. Adv. Mater. 27(1), 53–58 (2015).
11. Chen, C.-W. et al. Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Adv. Mater. 26(38), 6647–6652 (2014).
12. NREL. Best Research-Cell Efficiencies. National Renewable Energy Laboratory. https://www.nrel.gov/pv/assets/images/thumb-best-research-cell-efficiencies-190416.png (2019).
13. Jung, E. H. et al. Efficient, Stable and Scalable Perovskite Solar Cells using Poly(3-hexylthiophene). Nature 567(7749), 511–515 (2019).
14. Han, Y. et al. Degradation Observations of Encapsulated Planar CH3NH3PbI3 Perovskite Solar Cells at High Temperatures and Humidity. J. Mater. Chem. A 3(15), 8139–8147 (2015).
15. Niu, G. et al. Study on the Stability of CH3NH3PbI3 Films and the Effect of Post-Modification by Aluminum Oxide in All-Solid-State Hybrid Solar Cells. J. Mater. Chem. A 2(5), 705–710 (2014).
16. Noel, N. K. et al. Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic-Inorganic Lead Halide Perovskites. ACS Nano 8(10), 9815–9821 (2014).
17. Conings, B. et al. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Adv. Energy Mater. 5(15), 1500477 (2015).
18. Leijtens, T. et al. Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-Superstructured Organometal Tri-halide Perovskite Solar Cells. Nat. Commun. 4, 2885 (2013).
19. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 13(4), 1764–1769 (2013).
20. Habibrezaei, S. N. et al. Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Lett. 14(10), 5561–5568 (2014).
21. Checchareon, R. et al. Design and Understanding of Encapsulated Perovskite Solar Cells to Withstand Temperature Cycling. Energy Environ. Sci. 11(1), 144–150 (2018).
22. Niu, G., Li, W., Li, J., Liang, X. & Wang, L. Enhancement of Thermal Stability for Perovskite Solar Cells through Cesium Doping. RSC Adv. 7(28), 17473–17479 (2017).
23. Rizzo, A. et al. Effects of Thermal Stress on Hybrid Perovskite Solar Cells with Different Encapsulation Techniques. IEEE International Reliability Physics Symposium (IRPS), 2–6 (2017).
24. Park, D. Y., Byun, H. R., Kim, H., Kim, B. & Jeong, M. S. Enhanced Stability of Perovskite Solar Cells using Organosilane-treated Double Polymer Passivation Layers. J. Korean Phys. Soc. 73(11), 1787–1793 (2018).
25. Lee, J., Menamparambath, M. M., Hwang, J.-Y. & Baik, S. Hierarchically Structured Hole Transport Layers of Spiro-OMeTAD and Multilayered Carbon Nanotubes for Perovskite Solar Cells. Chem. Sus. Chem. 8(14), 2358–2362 (2015).
26. Callahan, R. A. A., Paden, K. G., Raupp, G. B. & Beaudoin, S. P. Downstream Oxygen Etching Characteristics of Polymers from the Parylene Family. J. Vac. Sci. Technol. B 21(4), 1496–1500 (2003).
27. Kim, H. T., Koo, T. & Park, C. Parylene-C Thin Films Deposited on Polymer Substrates Using a Modified Chemical Vapor Condensation Method. Korean J. Chem. Eng. 27(3), 748–751 (2010).
28. Jean, J., Wang, A. & Bulović, V. In Situ Vapor-Deposited Parylene Substrates for Ultra-Thin, Lightweight Organic Solar Cells. Org. Electron. 31, 120–126 (2016).
29. Wang, C. et al. Degradation of Co-Evaporated Perovskite Thin Film in Air. Chem. Phys. Lett. 649, 151–155 (2016).
30. Yoo, J. S. et al. Dual Function of a High-Contrast Hydrophobic-Hydrophilic Coating for Enhanced Stability of Perovskite Solar Cells in Extremely Humid Environments. Nano Res. 10(11), 3885–3895 (2017).
31. Yang, J. et al. Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using In Situ Techniques. ACS Nano 9(2), 1955–1963 (2015).
32. Kim, H. et al. Polymer Passivation Effect on Methylammonium Lead Halide Perovskite Photodetectors. J. Korean Phys. Soc. 73(11), 1675–1678 (2018).
33. Nuraje, N., Khan, W. S., Li, Y., Ceylan, M. & Asmatulu, R. Superhydrophobic Electrospun Nanofibers. J. Mater. Chem. A 1(6), 2919–2946 (2013).

Acknowledgements

This work was supported by IBS-R011-D1, the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (NRF-2019R1A2B5B02070657 and NRF-2019R1A2C1086262), and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A3A11936024).

Author contributions

H.K. conceived the concept described herein. J.L. fabricated the MAPbI3 solar cells. H.K. carried out the experiments with help from B.K., H.R.B. and S.H.K. H.K., J.L., H.M.O., S.B. and M.S.J. contributed to data analysis and manuscript preparation.

Competing interests

The authors declare no competing interests.
