Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Use of mouthwashes against COVID-19 in dentistry

A. Vergara-Buenaventura *, C. Castro-Ruiz

Department of Periodontology, School of Dentistry, Universidad Cientifica del Sur, Lima, Peru

Accepted 10 August 2020
Available online 15 August 2020

Abstract

The proximity to the patient during dental care, high generation of aerosols, and the identification of SARS-CoV-2 in saliva have suggested the oral cavity as a potential reservoir for COVID-19 transmission. Mouthwashes are widely-used solutions due to their ability to reduce the number of microorganisms in the oral cavity. Although there is still no clinical evidence that they can prevent the transmission of SARS-CoV-2, preoperative antimicrobial mouth rinses with chlorhexidine gluconate (CHX), cetylpyridinium chloride (CPC), povidone-iodine (PVP-I), and hydrogen peroxide (H₂O₂) have been recommended to reduce the number of microorganisms in aerosols and drops during oral procedures. This paper therefore aims to provide a comprehensive review of the current recommendations on the use of mouthwashes against the COVID-19 pandemic and to analyse the advantages and disadvantages of most conventional antiseptic mouthwashes used in dentistry.

© 2020 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

Keywords: Coronavirus; COVID-19; Dentistry; Mouthwashes; Oral health

Introduction

Antiseptic mouthwashes have been widely used as a standard measure before routine dental treatment, especially preoperatively. They have an essential role in reducing the number of microorganisms in the oral cavity. Recent publications have suggested that rinsing the oral cavity may control and reduce the risk of transmission of SARS-CoV-2. However, specific evidence for the safety and efficacy of the use of antiseptic mouthwashes in COVID-19 positive patients is lacking and unclear, so this paper aims to provide a comprehensive review of the current recommendations on the use of mouthwashes against the COVID-19 pandemic and to analyse the advantages and disadvantages of most conventional antiseptic mouthwashes used in dentistry.

Pathogenesis of coronavirus disease 2019

Coronaviruses are a group of enveloped RNA viruses that present a typical structure with the "spike protein" in its membrane envelope. The interaction between this protein and angiotensin-converting enzyme 2 (ACE2) receptors is responsible for the entry of the virus into cells. The distribution of ACE2 receptors in different parts of the body may indicate possible routes of infection. The membrane bound to ACE2 is found in different tissue cells, including mucosal tissues, gingiva, non-keratinising squamous epithelium, and epithelial cells of the tongue and salivary glands. A high SARS-CoV-2 viral load has also been detected in saliva, and it its presence has even been suggested in periodontal pockets. These findings agree with previous investigations that have suggested that virus transmission can be closely connected with saliva interactions making oral tissues a possible reservoir from which SARS-CoV-2 transmission may occur during coughing, sneezing, talking, and even during dental care.
Oral antiseptics used against viral infections

Mouthwashes are widely used solutions for rinsing the mouth, especially before oral surgery, due to their ability to reduce the number of microorganisms in the oral cavity and colony-forming units in dental aerosols. Although there is still no clinical evidence that the use of mouthwashes could prevent SARS-CoV-2 transmission, the American Dental Association (ADA) and the Center for Disease Control and Prevention (CDC) have recommended the use of pre-procedural mouthwashes before oral procedures.

Chlorhexidine (CHX)

CHX is a broad-spectrum antiseptic that acts against Gram-positive and Gram-negative bacteria, aerobes, facultative anaerobes, and fungi by increasing the permeability of the bacterial cell wall, causing its lysis. It is used in dentistry to reduce dental plaque and treat periodontal disease. Evidence indicates an in vitro effect against lipid-enveloped viruses such as influenza A, parainfluenza, herpes virus 1, cytomegalovirus, and hepatitis B. Although COVID-19 is an enveloped virus, 0.12% CHX gluconate was suggested to have little or no effect against coronaviruses when compared with other mouthwashes. However, Yoon et al. found SARS-CoV-2 suppression for two hours after using 15 ml 0.12% CHX once, suggesting that its use would be beneficial for the control of COVID-19 transmission.

Hydrogen peroxide (H$_2$O$_2$)

H$_2$O$_2$ has been used in dentistry alone or combined with salts since the start of the century. As a mouthwash, it is an odourless, clear, and colourless liquid. Lack of an adverse soft tissue effect was found in many studies of 1%–1.5% H$_2$O$_2$ used as a daily rinse over two years’ follow-up. An in vitro study found that 3% H$_2$O$_2$ effectively inactivated adenovirus types 3 and 6, adeno-associated virus type 4, rhinoviruses 1A, 1B, and type 7, myxoviruses, influenza A and B, respiratory syncytial virus, strain long, and coronavirus strain 229E within 1–30 minutes, discovering that coronaviruses and influenza viruses were the most sensitive. Since SARS-CoV2 is vulnerable to oxidation, pre-procedural mouthrinses containing oxidative agents such as 1% H$_2$O$_2$ have been suggested to reduce the salivary viral load.

Cetylpyridinium chloride (CPC)

CPC is a quaternary ammonium compound that is safe for use in humans. CPC 0.05% has been used to reduce dental plaque and gingivitis as an alternative in patients who develop mucosal irritation and stains related to CHX. The antiviral effect of CPC has been demonstrated in influenza patients, significantly reducing the duration and severity of cough and sore throat. Hypotheses about a possible action over SARS-CoV-2 are based on its lysosomotropic mechanism of action and its ability to destroy viral capsids. These findings indicate that CPC could be effective against other enveloped viruses such as coronaviruses.

Iodopovidone

Povidone-iodine (PVP-I) is a water-soluble iodine complex that has been widely used as a pre-surgical skin antiseptic and as a mouthwash. It is typically used in a 1% concentration for mucositis, prophylaxis of oropharyngeal infections, and prevention of ventilator-associated pneumonia. Its antimicrobial action occurs after free iodine dissociates from polyvinylpyrrolidone, then iodine rapidly penetrates microbes to disrupt proteins and oxidises nucleic acid structures causing microbial death. Previously studies have shown that PVP-I has higher virucidal activity than other commonly used antiseptic agents, including CHX and benzalkonium chloride. It is safe, reporting a prevalence of 0.4% allergy cases. PVP-I mouthwash, when used to prevent tooth or tongue discoloration or taste disturbances and, unlike alcohol-based products, can be used when using electrocautery. Its effectiveness has been well demonstrated through many in vitro studies against multiple viruses, including SARS-CoV, MERS-CoV, and influenza virus A (H1N1). Recent investigations have proposed that 0.23% PVP-I mouthwash for at least 15 seconds before procedures may reduce salivary viral load, indicating its use in COVID-19-positive patients.

Suggested recommendations

Gently gargle for 30 seconds in the oral cavity and 30 seconds in the back of the throat with: 1.5% or 3% H$_2$O$_2$ 15 ml; PVP-I, 0.2%, 0.4%, or 0.5% 9 ml; 0.12% CHX 15 ml; or 0.05% CPC 15 ml.

Conclusions

Within the limitations of this brief review and despite little clinical evidence, we suggest the use of pre-procedural mouthwashes in dental practice to reduce SARS-CoV-2 viral load from previous dental procedures and to reduce the cross-infection risk while treating patients during the pandemic. Clinical studies, including control subjects and in large scale, are required to evaluate the efficacy of antiseptic mouthwashes on SARS-CoV-2. Research is urgently needed to determine its potential for use against this new virus.

Conflict of interest

We have no conflicts of interest.
Ethics statement/confirmation of patients’ permission
Not applicable.

Funding
This research received no external funding.

References
1. Kosutic D, Uglesic V, Perkovic D, et al. Preoperative antisepsics in clean/contaminated maxillofacial and oral surgery: prospective randomized study. Int J Oral Maxillofac Surg 2009;38:160–5.

2. Dominik M, Shuleva S, Silvestros S, et al. A prospective observational study on perioperative use of antibiotic implants in implant surgery. Adv Clin Exp Med 2020;29:355–63.

3. Marui VC, Souto MLS, Rovai ES, et al. Efficacy of preoperative mouthrinses in the reduction of microorganisms in aerosol: a systematic review. J Am Dent Assoc 2019;150:1015–26, e1.

4. Peng X, Xu X, Li Y, et al. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 2020;12:9.

5. Ather A, Patel R, Ruparel NB, et al. Coronavirus disease 19 (COVID-19): implications for clinical dental care. J Endod 2020;46:584–95.

6. Yoon JG, Yoon J, Song JY, et al. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J Korean Med Sci 2020;35:e195.

7. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016;3:237–61.

8. Chen Y, Guo Y, Pan Y, et al. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020;525(Feburary):135–40.

9. Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020;12:8.

10. Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020;94:e0127–20.

11. Hamming I, Timens W, Bullhuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631–7.

12. Li Y, Ren B, PengX, et al. Saliva is a non-negligible factor in the spread of COVID-19. Mol Oral Microbiol 2020;35:141–5.

13. Badran Z, Gaudin A, Strollov X, et al. Periodontal pockets: a potential reservoir for SARS-CoV-2? Med Hypoth 2020;143:109907.

14. Siqueira WL, Mofta EB, Mussi MC, et al. Zika virus infection spread through saliva – a truth or myth? Braz Oral Res 2016;30; S1806-8324(2016)00100801.

15. Anschau V, Sanjuán R. Fibrinogen gamma chain promotes aggregation of vesicular stomatitis in saliva. Viruses 2020;12:282.

16. Baghizadeh Fini M. Oral saliva and COVID-19. Oral Oncol 2020;108:104821.

17. American Dental Association. ADA interim guidance for minimizing risk of COVID-19 transmission; 2020. Available from URL: https://www.kavo.com/en-us/resource-center/ada-interim-guidance-minimizing-risk-covid-19-transmission [last accessed 13.08.20].

18. Centers for Disease Control and Prevention. Interim infection prevention and control guidance for dental settings during the COVID-19 response. Available from URL: https://www.cdc.gov/coronavirus/2019-ncov/hcp/dental-settings.html [last accessed 13.08.20].

19. Milstone AM, Passaretti CL, Perl TM. Chlorhexidine: expanding the armamentarium for infection control and prevention. Clin Infect Dis 2008;46:274–81.

20. Vitkov L, Herrmann A, Krautgartner WD, et al. Chlorhexidine-induced ultrastructural alterations in oral biofilm. Microsc Res Tech 2005;68:85–9.

21. Da Costa LFNP, Amaral CDSF, Barbirato DDS, et al. Chlorhexidine mouthwash as an adjunct to mechanical therapy in chronic periodontitis: a meta-analysis. J Am Dent Assoc 2017;148:308–18.

22. Bernstein D, Schiff G, Echler G, et al. In vitro virucidal effectiveness of a 0.12%-chlorhexidine gluconate mouthrinse. J Dent Res 1990;69:874–6.

23. Fehr AR, Perlman S. Coronavirus: an overview of their replication and pathogenesis. Methods Mol Biol 2015;1282:1–23.

24. Kampf G, Todt D, Pfaender S, et al. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020;104:246–51.

25. Marshall MV, Cancro LP, Fischman SL. Hydrogen peroxide: a review of its use in dentistry. J Periodontol 1995;66:786–96.

26. Walsh LJ. Safety issues relating to the use of hydrogen peroxide in dentistry. Aust Dent J 2000;45:257–89.

27. Rosling BG, Slots J, Webber RL, et al. Microbiological and clinical effects of topical subgingival antimicrobial treatment on human periodontal disease. J Clin Periodontol 1983;10:487–514.

28. Gusberti FA, Sampathkumar P, Siegrist BE, et al. Microbiological and clinical effects of chlorhexidine digluconate and hydrogen peroxide mouthrinses on developing plaque and gingivitis. J Clin Periodontol 1988;15:60–7.

29. Mentel R, Shirrmaker R, Kevich A, et al. Virus inactivation by hydrogen peroxide. Vopr Virusol 1977:731–3 [in Russian].

30. Gerba CP. Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol 2015;81:464–9.

31. Mukherjee PK, Esper F, Buchheit K, et al. Randomized, double-blind, placebo-controlled clinical trial to assess the safety and effectiveness of a novel dual-action oral topical formulation against upper respiratory infections. BMC Infect Dis 2017;17:74.

32. Silva MF, dos Santos NB, Stewart B, et al. A clinical investigation of the efficacy of a commercial mouthrinse containing 0.05% cetlypyridinium chloride to control dental plaque and gingivitis. J Clin Dent 2009;20:55–61.

33. Feres M, Figueiredo LC, Faveri M, et al. The effectiveness of a pre-procedural mouthrinse containing cetlypyridinium chloride in reducing bacteria in the dental office. J Am Dent Assoc 2010;141:415–22.

34. Popkin DL, Zilka S, Dimano M, et al. Cetylpyridinium chloride (CPC) exhibits potent, rapid activity against influenza viruses in vitro and in vivo. Pathog Immun 2017;2:252–69.

35. Baker N, Williams AJ, Tropsha A, et al. Repurposing quaternary am monium compounds as potential treatments for COVID-19. Pharm Res 2020;37:104.

36. Parhar HS, Tasche K, Brody RM, et al. Topical preparations to reduce SARS-CoV-2 aerosolization in head and neck mucosal surgery. Head Neck 2020;42:1268–72.

37. Ader AW, Paul TL, Reinhardt W, et al. Effect of mouth rinsing with two polyvinylpyrrolidone-iodine mixtures on iodine absorption and thyroid function. J Clin Endocrinol Metab 1988;66:632–5.

38. Kirk-Bayle J, Sunkaranevi NS, Challacombe SJ. The use of povi done iodine nasal spray and mouthwash during the current COVID-19 pandemic may reduce cross infection and protect healthcare workers (May 4, 2020). Available from URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3563092 [last accessed 13.08.20].

39. Tsuda S, Soutome S, Hayashida S, et al. Topical povidone iodine inhibits bacterial growth in the oral cavity of patients on mechanical ventilation: a randomized controlled study. BMC Oral Health 2020;20:62.

40. Kariwa H, Fujii N, Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology 2006;212(Suppl. 1):119–23.

41. Lachapelle JM. Allergic contact dermatitis from povidone-iodine: a reevaluation study. Cont Dermat 2005;52:9–10.

42. Slots J. Selection of antimicrobial agents in periodontal therapy. J Periodontal Res 2002;37:389–98.

43. Shiraishi T, Nakagaya Y. Evaluation of the bactericidal activity of povidone-iodine and commercially available garge preparations. Dermatology 2002;204(Suppl. 1):37–41.
44. Eggers M, Kohurger-Jansen T, Eickmann M, et al. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. *Infect Dis Ther* 2018;7:249–59.

45. Mady LJ, Kubik MW, Baddour K, et al. Consideration of povidone-iodine as a public health intervention for COVID-19: utilization as “Personal Protective Equipment” for frontline providers exposed in high-risk head and neck and skull base oncology care. *Oral Oncol* 2020;105:104724.

46. Challacombe SJ, Kirk-Bayley J, Sunkaraneni VS, et al. Povidone iodine. *Br Dent J* 2020;228:656–7.

47. Caruso AA, Del Prete A, Lazzarino AI. Hydrogen peroxide and viral infections: a literature review with research hypothesis definition in relation to the current COVID-19 pandemic. *Med Hypoth* 2020;144:109910.

48. Bidra AS, Pelletier JS, Westover JB, et al. Rapid in-vitro inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using povidone-iodine oral antiseptic rinse. *J Prosthodont* 2020;29:529–33.