Heavy-quark form factors in the large β_0 limit

Andrey G. Grozin1,2,3,4,a

1 Budker Institute of Nuclear Physics, Novosibirsk, Russia
2 Institut für Theoretische Teilchenphysik, Karlsruher Institut für Technologie, Karlsruhe, Germany
3 THEP, Institut für Physik, Universität Mainz, Mainz, Germany
4 Novosibirsk State University, Novosibirsk, Russia

Received: 27 April 2017 / Accepted: 23 June 2017 / Published online: 7 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract

Heavy-quark form factors are calculated at $\beta_0\alpha_s \sim 1$ to all orders in α_s at the first order in $1/\beta_0$. Using the inversion relation generalized to vertex functions, we reduce the massive on-shell Feynman integral to the HQET one. This HQET vertex integral can be expressed via a F_1 function; the nth term of its ε expansion is explicitly known. We confirm existing results for $nL^{-1}e\alpha_L^2$ terms in the form factors (up to $L = 3$), and we present results for higher L.

1 Introduction

Quark form factors are building blocks for various production cross sections and decay widths in QCD. Massive quark form factors are known up to two loops [1]; recently they have been calculated at three loops in the large N_c limit [2].

We shall consider heavy-quark form factors in the large β_0 limit, where $\beta_0\alpha_s \sim 1$, and $1/\beta_0$ is an expansion parameter (see the reviews [3–5]). A bare form factor can be written as

$$F = 1 + \sum_{L=1}^{\infty} \sum_{n=0}^{L-1} a_{L,n} \beta_0^2 n \left(\frac{k_0^2}{(4\pi)^d/2} \right)^L.$$ \hspace{1cm} (1)

Keeping terms with the highest degree of β_0 in each order of perturbation theory, we get

$$F = 1 + \frac{1}{\beta_0} \frac{\beta_0^2}{(4\pi)^d/2} + O \left(\frac{1}{\beta_0^2} \right).$$ \hspace{1cm} (2)

The leading coefficients $a_{L,L-1}$ can easily be obtained from nL^{-1} terms (Fig. 1). We shall consider only the first $1/\beta_0$ order.1

1 In some cases it is possible to obtain results for $1/\beta_0^2$ corrections; see, e.g. [6–8].

2 Heavy-quark bilinear currents

We consider the QCD currents

$$J_0 = \tilde{Q}_0 \Gamma Q_0 = Z(\alpha_s(n_f)\mu)J(\mu), \quad \Gamma = \gamma^{\mu_1} \ldots \gamma^{\mu_n},$$ \hspace{1cm} (3)

where Q_0 is a bare heavy-quark field. The antisymmetrized product of $n \gamma$ matrices has the property

$$\gamma^\mu \gamma^\nu = \eta(d-2n)\Gamma, \quad \eta = (-1)^n.$$ \hspace{1cm} (4)

All results for form factors of this current will explicitly depend on n and η.

In situations when the initial heavy-quark momentum p_1 and the final one p_2 can be written as $p_{1,2} = m v_{1,2} + k_{1,2}$ (m is the on-shell mass, $v_{1,2}^2 = 1$) with small residual momenta $k_{1,2} \ll m$, these currents can be expanded in HQET ones [9, 10]:

$$J(\mu) = \sum_{j=0}^{2} H_j(\mu, \mu') \tilde{J}_j(\mu'),$$

$$+ \frac{1}{2m} \sum_i G_i(\mu, \mu') \tilde{O}_i(\mu') + O \left(\frac{1}{m^2} \right),$$ \hspace{1cm} (5)

where the leading HQET currents are

$$\tilde{J}_{0,2} = \tilde{h}_{v_{1,2}} \Gamma_i h_{v_{1,2}} = \tilde{Z}(\alpha_s(n_f)\mu)\tilde{J}_i(\mu), \quad \Gamma_i = \Gamma, \quad \tilde{k}_{1}\Gamma + \tilde{k}_{2}, \quad k_{1}\Gamma k_{2},$$ \hspace{1cm} (6)

and the \tilde{O}_i are local and bilocal dimension-4 HQET operators with appropriate quantum numbers. Here $h_{v_{1,2}}$ are two (unrelated) bare fields describing HQET quarks with the velocities $v_{1,2}$ having small (variable) residual momenta; the HQET Lagrangian explicitly contains $v_{1,2}$. These reference velocities can be changed by arbitrary small vectors of order k_i/m (reparametrization invariance). The HQET...
The coefficients \(H_i \) in (5) can be obtained by matching the on-shell matrix elements \((k_{1,2} = 0) \) in QCD and HQET:

\[
\langle Q(p_2 = m v_2)|J_0|Q(p_1 = m v_1) \rangle = \sum_{i=0}^{2} F_i \bar{u}_2 \Gamma_i u_1, \\
\langle Q(k_2 = 0)|J_0|Q(k_1 = 0) \rangle = \tilde{F}_i \bar{u}_2 \Gamma_i u_1, \quad \tilde{F}_i = 1,
\]

where \(u_{1,2} \) are the Dirac spinors of the initial and final quark and the final one (all loop corrections to \(\tilde{F}_i \) vanish because they contain no scale). Therefore the bare matching coefficients (in the relation similar to (5) but for the bare currents) are \(H_i^0 = F_i / \tilde{F}_i = F_i \). The renormalized matching coefficients are

\[
H_i(\mu, \mu') = H_i^0 \frac{\tilde{Z}(\alpha_{\text{fin}}^{(n)}(\mu'))}{Z(\alpha_{\text{fin}}^{(n)}(\mu))} = \frac{F_i}{\tilde{F}_i} \frac{\tilde{Z}}{Z}.
\]

UV divergences cancel in the ratio \(F_i / Z \) as well as in the ratio \(\tilde{F}_i / \tilde{Z} \). Both \(F_i \) and \(\tilde{F}_i \) contain IR divergences which cancel in the ratio \(F_i / \tilde{F}_i \) because HQET is constructed to reproduce the IR behaviour of QCD (\(\tilde{F}_i \) have no loop corrections because their UV and IR divergences cancel each other).

The dependence of \(H_i(\mu, \mu') \) on \(\mu \) and \(\mu' \) is determined by the RG equations. Their solution can be written as

\[
H_i(\mu, \mu') = \hat{H}_i \left(\frac{\alpha_{\text{fin}}^{(n)}(\mu)}{\alpha_{\text{fin}}^{(n)}(\mu_0)} \right)^{\gamma_0/3(\beta_0^{(n)})} \left(\frac{\alpha_{\text{fin}}^{(n)}(\mu)}{\alpha_{\text{fin}}^{(n)}(\mu_0)} \right)^{-\gamma_0/3(\beta_0^{(n)})} K_{\gamma_0}^{(n)}(\alpha_s^{(n)}(\mu)) K_{\gamma_0}^{(n)}(\alpha_s^{(n)}(\mu'))
\]

where for any anomalous dimension \(\gamma(\alpha_s) = \gamma_0 \alpha_s / (4\pi) + \gamma_1 (\alpha_s / (4\pi))^2 + \cdots \) we define

\[
K_{\gamma(\alpha)} = \exp \left[\int_0^{\alpha_s} \frac{\gamma(\alpha_s)}{\alpha_s} \left(\frac{\gamma(\alpha_s)}{2\beta_0} - \frac{\gamma_0}{2\beta_0} \right) \right] = 1 + \frac{\gamma_0}{\beta_0} \left(\frac{\gamma_1}{\gamma_0} - \frac{\beta_1}{\beta_0} \right) \frac{\alpha_s}{4\pi} + \cdots
\]

Matrices elements of the currents with \(n = 0, 1 \) can be written via smaller numbers of form factors:

\[
\langle Q(m v_2)|J|Q(m v_1) \rangle = F_S^2 \bar{u}_2 u_1, \\
F_S^2 = F_0 + 2F_1 + (2w - 1)F_2,
\]

where \(F_i \) with \(n = 0, \eta = 1 \) are used, and

\[
\langle Q(m v_2)|J_{\mu}|Q(m v_1) \rangle = F_{1}^V + F_{2}^V \bar{u}_2 \gamma_{\mu} u_1 - F_{1}^V \bar{u}_2 u_1, \\
F_{1}^V = F_0 + 2F_1 - 2(w - 3)F_2, \\
F_{2}^V = -4(F_1 + F_2),
\]

where \(F_i \) with \(n = 1, \eta = -1 \) are used.

3 Inversion relations

On-shell massive self-energy integrals with one massive and any number of massless ones in some cases can be expressed via similar off-shell HQET integrals. Suppose all massless lines can be drawn at one side of the massive one and the resulting graph is planar (e.g., the diagram in Fig. 2a). Lines of such a diagram subdivide the plane into a number of polygonal cells (plus the exterior); with each cell we can associate a loop momentum (flowing counterclockwise). Then outer massless edges of the diagram correspond to the denominators \(-k_i^2 - i0 \); inner massless edges to \(-(k_i - k_j)^2 - i0 \); and massive edges to \(m^2 - (k_i + m v)^2 - i0 \) (Table 1). The corresponding HQET diagram (Fig. 2b) has HQET denominators \(-2k_i \cdot v - 2w - i0 \) instead of massive ones. First we perform a Wick rotation of all loop momenta \(k_{i0} \rightarrow ik_{i0} \) (in the \(v \) rest frame). Then, in Euclidean momentum space, we invert each loop momentum [11]:

\[
k_i \rightarrow \frac{k_i}{k_i^2}.
\]
Table 1: Inversion relations

	Minkowski	Euclidean	Inversion
Outer massless	$-k_i^2 - i0$	k_i^2	$\frac{1}{k_i^2}$
Inner massless	$(k_i - k_j)^2 - i0$	$(k_i - k_j)^2$	$(k_i - k_j)^2$
Massive	$-k_i^2 - 2mv_1 \cdot k_i - i0$	$k_i^2 - 2imk_i0$	$m \frac{-2\omega - 2ik_i0}{k_i^2}$
HQET	$-2\omega - 2k_i \cdot v - i0$	$-2\omega - 2ik_i0$	$m \frac{-2\omega - 2ik_i0}{k_i^2}$
Measure	$d^d k_i$	$id^d k$	$\frac{d^d k_i}{(k_i^2)^d}$

Fig. 3: Examples of on-shell massive diagrams which cannot be transformed to off-shell HQET ones by inversion relations.

Inversion transforms massive denominators to HQET ones (and vice versa) if we identify

$$-2\omega = m^{-1},$$ \hspace{1cm} (15)

see Table 1. As a result, a massive on-shell diagram (Fig. 2a) becomes $m^{-\sum n_i}$ (the sum runs over all massive line segments, n_i are their indices, i.e. the powers of the denominators) times the off-shell HQET diagram (Fig. 2b) with $\omega = -(2m)^{-1}$ (15). The indices of all inner massless edges, as well as of all massive edges (which become HQET ones), remain intact (see Table 1). From the same table it is clear that the index of an outer massless edge becomes $d - \sum n_i$, where the sum runs over all edges of the cell to which this outer edge belongs (they can be all massless, or one of them can be massive). If there is a cell k_i bounded only by inner massless edges, and maybe one massive one, then the denominator $(k_i^2)^d - \sum n_i$ will appear (Fig. 3). This denominator does not correspond to any line, and hence the resulting integral is not a Feynman integral at all; in this case, the discussed relation becomes rather useless (though formally correct). The inversion relations (11) were used, e.g., in (12–14).

The inversion relations can be generalized to similar vertex integrals; the masses of the initial particle and the final one may differ. At one loop (Fig. 4), the integrals

$$M(n_1, n_2, n; \theta; m_1, m_2) = \int \frac{d^dk}{i\pi^{d/2}}$$

$$\times \frac{1}{[-k^2 - 2m_1v_1 \cdot k - i0]^n_1[-k^2 - 2m_2v_2 \cdot k - i0]^n_2(-k^2 - i0)^n},$$

$$I(n_1, n_2, n; \theta; \omega_1, \omega_2) = \int \frac{d^dk}{i\pi^{d/2}}$$

$$\times \frac{1}{\Gamma(-d + n_1 + 2n)} \Gamma(d/2 - n) \Gamma(n_1) \Gamma(n),$$

$$\times \frac{1}{[\frac{n_1 + n_2}{2}, \frac{n_1 + n_2 + 1}{2}] \frac{1 - \cosh \theta}{2}},$$

$$I(n_1, n, n; \theta; \omega, \omega) = \frac{(-2\omega)^d n_1 - 2n}{\Gamma(-d + n_1 + 2n)} I(n_1 + n_2, n).$$

are related by

$$M(n_1, n_2, n; \theta; m_1, m_2) = m_1^{-n_1} m_2^{-n_2}$$

$$\times I(n_1, n_2, d - n_1 - n_2 - n; \theta; -(2m_1)^{-1}, -(2m_2)^{-1}).$$

(17)

(18)

The integrals $I(17)$ have been investigated in [15]. Here we need only the integrals $M(16)$ with $m_1 = m_2$; they reduce to the integrals $I(17)$ with $\omega_1 = \omega_2$, which are especially simple [15]:

$$I(n_1, n_2, n; \theta; \omega, \omega) = \frac{(-2\omega)^d n_1 - 2n}{\Gamma(-d + n_1 + 2n)} I(n_1 + n_2, n).$$

$$\times \frac{d}{d \theta} F_2 \left(\frac{n_1 + n_2}{2}, \frac{n_1 + n_2 + 1}{2} \frac{1 - \cosh \theta}{2} \right),$$

where

$$I(n_1, n) = \frac{\Gamma(-d + n_1 + 2n) \Gamma(d/2 - n)}{\Gamma(n_1) \Gamma(n)}$$

(19)

(20)
is the one-loop HQET self-energy integral. We only need integer \(n_{1,2} \); in this case all \(I \) reduce by IBP to 2 master integrals [15]: \(I(1, 0, n) \) (trivial) and \(I(1, 1, n) \) (given by (19)).

Inversion relations can be generalized to diagrams with more external legs. For example, the one-loop massive box diagram with two on-shell legs and the corresponding off-shell HQET one (Fig. 5)

\[
M(n_1, n_2, n_3, n_4; \theta; m_1, m_2; q^2, q \cdot v_1, q \cdot v_2) = \int \frac{d^d k}{i \pi^{d/2}} \\
\times \frac{1}{(-k^2 - 2m_1 v_1 \cdot k)^{n_1}(-k^2 - 2m_2 v_2 \cdot k)^{n_2}(-k^2)^{n_4}},
\]

where

\[
I(n_1, n_2, n_3, n_4; \theta; w_1, w_2; q^2, q \cdot v_1, q \cdot v_2) = \int \frac{d^d k}{i \pi^{d/2}} \\
\times \frac{1}{(-2k \cdot v_1 - 2w_1)^{n_1}(-2k \cdot v_2 - 2w_2)^{n_2}(-k^2)^{n_4}},
\]

are related by

\[
M(n_1, n_2, n_3, n_4; \theta; m_1, m_2; q^2, q \cdot v_1, q \cdot v_2) = m_1^{-n_1} m_2^{-n_2} (-q^2)^{n_3} I(n_1, n_2, n_3, \theta; \\
d - n_1 - n_2 - n_3 - n_4; \theta; \\
-(2m_1)^{-1}, -(2m_2)^{-1}, 1/q^2, \\
q \cdot v_1 / (-q^2), q \cdot v_2 / (-q^2)).
\]

\[\text{Fig. 5} \quad \text{Box diagrams}\]

At this leading large \(\beta_0 \) order, the coupling constant renormalization is simple:

\[
\beta_0 \frac{g_0^2}{(4\pi)^{d/2}} e^{-\gamma_E} = b Z_a(b) \mu^{2\varepsilon},
\]

\[
b = \beta_0 \frac{\alpha_s(\mu)}{4\pi}, \quad Z_a = \frac{1}{1 + b/\varepsilon}.
\]

The bare QCD matrix elements can be written in the form [6,16]

\[
F_I = \delta_{I0} + \frac{1}{\beta_0} \sum_{L=1}^{\infty} \frac{f_I(\varepsilon, L\varepsilon)}{L} \Pi(-m^2)^L + O \left(\frac{1}{\beta_0^2} \right).
\]

It is convenient to write the functions \(f_I(\varepsilon, u) \) in the form usual for on-shell massive QCD problems (see [5])

\[
f_I(\varepsilon, u) = C_F \frac{\varepsilon^{\nu\varepsilon}}{\Gamma(3 - u - \varepsilon)} N_I(\varepsilon, u).
\]

We calculate the vertex function (Fig. 1) and multiply it by \(Z_Q^\omega \) with the 1/\(\beta_0 \) accuracy (see [5]). Reducing on-shell massive QCD integrals to off-shell HQET ones by the inversion relation (18) and then to the master integrals by IBP [15], we obtain

\[
N_0(\varepsilon, u) = \left[-\eta u \frac{n - 2 + \varepsilon}{w - 1} - 2(w + 1)u(n - 2)^2 \\
- u(\eta u + 4(w + 1)\varepsilon)(n - 2) \\
+ 2(2u - 2)(w + (w + 1)u) \\
- (6w + 2u + \eta u^2)\varepsilon \\
+ 2(w - (w + 1)u)\varepsilon^2 \right] F \\
+ \eta u \frac{n - 2 + \varepsilon}{w - 1} + 2(n - 2)^2 + 4\varepsilon(n - 2) \\
- 6(1 - u^2) + 2(1 - u)(5 + 2u)\varepsilon \\
- 2(1 - 2u)\varepsilon^2,
\]

\[
N_1(\varepsilon, u) = u \left[-\eta u \frac{n - 2 + \varepsilon}{w - 1} - \eta u(n - 2) - 2 + u + \varepsilon \\
- \eta u \varepsilon \right] F - \eta u \frac{n - 2 + \varepsilon}{w - 1}
\]

\[
N_2(\varepsilon, u) = \eta u \frac{n - 2 + \varepsilon}{w - 1} \times [1 - (1 + (w - 1)u) F],
\]

\[
\text{(same function appears also in the one-loop self-energy integral with arbitrary masses } m_{1,2} \text{ and arbitrary } p^2, \text{ where}
\]

\[
\sum
\]
below (8.93) should read

\[\gamma \]

Our results satisfy this requirement (9); we have [6]

\[\tilde{H}_1 = \delta_{i0} + \frac{1}{\beta_0} \int_0^\infty du \ e^{-u/b} S_i(u) + O \left(\frac{1}{\beta_0} \right). \]

(37)

where the Borel images of the perturbative series for \(\tilde{H}_i \) are

\[S_i(u) = \frac{1}{u} \left[\left(e^{5/3} \frac{\tilde{H}_i^2}{m^2} \right)^u f_i(0, u) - f_i(0, 0) \right]. \]

(38)

The integral (37) is not well defined because of poles at the integration contour. The leading renormalon ambiguities are given by the residues at \(u = 1/2 \) [21] (see also [5]). It is easy to calculate these residues because \(F \) (30) at \(u = 1/2 \) is just \(2/(w+1) \):

\[\Delta H_0 = \left(\frac{4}{w+1} - 3 \right) \frac{\Delta \bar{\Lambda}}{2m}, \]

\[\Delta H_1 = \frac{1}{w+1} \frac{\Delta \bar{\Lambda}}{2m}, \]

(39)

where

\[\Delta \bar{\Lambda} = -2 \frac{C_F}{\beta_0} e^{5/6} \Lambda_{\text{MSS}}. \]

(40)

As demonstrated in [21], matrix elements of the QCD currents between ground-state mesons (pseudoscalar or vector) are unambiguous: the IR renormalon ambiguities of the leading matching coefficients \(H_i \) are compensated by the UV renormalon ambiguities in the matrix elements of the \(1/m \) suppressed HQET operators \(\bar{O}_i \) in (5) (see also [5]).

The hypergeometric function \(F \) (30) has been expanded in \(u \) to all orders [17], the coefficients are expressed via Nielsen polylogarithms \(S_{nm}(x) \). The result [17] is written for the case of an Euclidean angle\(^2\); its analytical continuation to Minkowski angles is

\[F = \frac{1}{\sinh \vartheta (2 \cosh(\vartheta/2))^{2u}} \left[\frac{\sinh(\vartheta u)}{u} \right] \]

\[-e^{-\vartheta u} \sum_{n=1}^\infty u^n \sum_{m=1}^n (-2)^{n-m} S_{m,n-m+1}(-e^{\vartheta}) \]

\[+ e^{\vartheta u} \sum_{n=1}^\infty u^n \sum_{m=1}^n (-2)^{n-m} S_{m,n-m+1}(-e^{-\vartheta}). \]

(41)

It is possible to re-express this expansion in terms of Nielsen polylogarithms of just one argument, see [23], but then the symmetry \(\vartheta \rightarrow -\vartheta \) will not be explicit.

\(^2\) There are a few typos in Sect. 8.8 of [5]. The unnumbered formula below (8.93) should read

\[R_0 = \cosh(Lu), \quad R_1 = \frac{\sinh(1-2a)L/2}{\sinh(L/2)}. \]

In the second formula in (8.95), the coefficient of \(R_0 \) should contain an extra factor 3. In both formulae in (8.96), their right-hand sides should be \(1 + \alpha_s \) correction.

\(^3\) M. Yu. Kalmykov has informed me that there is a typo: the power of \(\cos \vartheta \) in (2.7) should be \(1 + 2\vartheta \). This typo has been corrected in [22].
Acknowledgements I am grateful to M. Steinhauser for useful comments and hospitality in Karlsruhe, where the major part of this work was done; to J. M. Henn for useful discussions and hospitality in Mainz; and to M. Yu. Kalmykov for bringing Ref. [17] to my attention and discussions related to it.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

Appendix A: Anticommuting γs and ’t Hooft–Veltman γs

For flavour-nonsinglet currents one may use the anticommuting γs without encountering contradictions; they are related to the currents with the ’t Hooft–Veltman γs by a finite renormalization [24–26]:

\[\tilde{q} \gamma^A \Gamma_n \tau q)_\mu = Z_{2-n}(\alpha^{(r)}(\mu))(\tilde{q} \gamma^V \Gamma_n \tau q)_\mu, \] (A.1)

where τ is a flavour matrix with Tr τ = 0. The currents with \(\gamma^A_n \) have anomalous dimensions \(\gamma_n \), because they can be obtained from the case of massless quarks; \(\gamma^V \) is just \(\Gamma_{4-n} \) with reshuffled components. Equating the derivatives in \(d \log \mu \) we obtain

\[Z_{2-n}(\alpha_s) = K_{\gamma_n-\gamma_{4-n}}(\alpha_s), \] (A.2)

where the anomalous dimensions \(\gamma_n \) and \(\gamma_{4-n} \) differ starting from two loops. In particular, \(Z_0(\alpha_s) = 1 \). In HQET currents with \(\gamma^A \) and with \(\gamma^V \) have the same anomalous dimension \(\gamma \), and the finite renormalization factor similar to (A.2) is 1. In the large \(\beta_0 \) limit (see (35))

\[Z_{n}(\alpha_s) = \exp \left[-\frac{8n}{\beta_0} \right] \times \left[\frac{1}{\beta_0} \right] \]

At the leading 1/\(\beta_0 \) order we may use these formulae for flavour singlet currents, too. The matrix \(\gamma^A \) has the same property (4) but with \(\eta = -(1)^n \). From our results (27)–(29) we see that, indeed,

\[\tilde{H}_{\gamma^A} \Gamma_n = \tilde{H}_{\gamma^V} \Gamma_n = \tilde{H}_{\Gamma_{4-n}}. \] (A.4)

Matrix elements of the currents with \(\gamma^A \) and \(n = 0, 1 \) can be written via smaller numbers of form factors:

\[\langle Q(m v_2) | J | Q(m v_1) \rangle = F^P \tilde{u}_2 \gamma^A \tilde{u}_1, \]

where \(F_i \) with \(n = 0, \eta = -1 \) are used, and

\[\langle Q(m v_2) | J^\mu | Q(m v_1) \rangle = F^A_1 \tilde{u}_2 \gamma^A \gamma^A \gamma^\mu_1 \]

\[F^A_2 = F_0 + 2F_1 + (2w - 1)F_2, \] (A.5)

\[F^A_3 = 4(F_1 - F_2), \]

where \(F_i \) with \(n = 1, \eta = 1 \) are used.

The divergence of the axial current is

\[i \partial_\mu (\bar{Q}_0 \gamma^A \gamma^\mu Q_0) = 2m_0 \bar{Q}_0 \gamma^A \gamma^\mu Q_0, \]

where the bare mass \(m_0 = Z_{m} \). Taking the matrix element of this equation we obtain

\[F^A_1 + \frac{w - 1}{2} F^A_2 = Z_{m} F^P. \] (A.6)

The on-shell mass renormalization constant \(Z_{m} \) at the first 1/\(\beta_0 \) order is given by the formula similar to (27), (28) with \(N_{m}(\varepsilon, u) = -2(3 - 2\varepsilon)(1 - u) \); see, e.g., [5]. And indeed, from (29), (A.5)–(A.6) we obtain

\[N_{1}^A + \frac{w - 1}{2} N_{2}^A = N^P + N_{m}. \] (A.9)

5 Appendix B: Expansion of the hypergeometric function \(F \)

We can also find several terms of this expansion using the Mathematica package HypExp [27,28] (which uses HPL [29,30]). This results in

\[F = \frac{1}{\sinh \vartheta} \left[\vartheta - H_{--}(\tau)u - (H_{--}(\tau) - 2H_{++}(\tau))l \right] \]

\[- \frac{2}{3} H_{++}(\tau)l^2 \] (B.10)
where
\[\tau = \tanh \frac{\vartheta}{2}, \quad l = \frac{1}{2} H_{-}(\tau) = \log \cosh \frac{\vartheta}{2}, \]
and \(H_{+}(\tau) = \vartheta, \)
and \(H_{-}(\tau) \) are harmonic polylogarithms (see \([29–31]\)). Only one new polylogarithm appears at each order.

In order to compare the expansion coefficients in \((41)\) and in \((B.10)\), we need to transform them to harmonic polylogarithms of the same argument, which we choose as \(x = e^{-\vartheta}. \)

In \((41)\), we first rewrite \(S_{nm}(x^{-1}) \) via \(S_{nm}(x) \) using the formula from \([23]\); then we rewrite \(S_{nm}(x) \) via \(H_{-}(x) \) and then via \(H_{-}(x) \); we rewrite \(\log \cosh(\vartheta/2) \) \((B.11)\) via \(H_{-}(x) \); and finally we re-express products of harmonic polylogarithms via their linear combinations. In \((B.10)\) we rewrite harmonic polylogarithms with \(\pm \) indices \([30]\) via normal ones with indices \(0, \pm 1; \) substitute \(\tau = (1-x)/(1+x) \) and re-express via \(H_{-}(x) \); and finally convert products of harmonic polylogarithms to sums. All these steps are done in Mathematica using \(\text{HPL} \) \([29,30]\). We have checked that all the coefficients presented in \((B.10)\) agree with \((41)\).

Appendix C: Vector form factors

The vector form factors \(F_{1,2}^{V} \) \((13)\) can be written in the form \((27), (28)\); from \((29), (13)\) we obtain

\[
N_{1}^{V}(\epsilon, u) = 2[2w + u - 3u^2 - 3w\epsilon + 2wu\epsilon - (w - 3)u^2\epsilon + w\epsilon^2 - (w + 1)u^2\epsilon] F \\
-2[2 + u - 3u^2 - 3\epsilon + 2u\epsilon + 2u^2\epsilon + \epsilon^2 - 2u^2\epsilon],
\]
\[N_{2}^{V}(\epsilon, u) = 4(u + 1 - 2u\epsilon) F. \]

All loop corrections to \(F_{1}^{V} \) vanish at \(\vartheta = 0, \) and hence \(N_{1}^{V} = 0 \) at \(w = 1. \)

The form factor \(F_{1}^{V} = H_{1}^{V}/\tilde{Z}, \) where \(\tilde{Z} \) at the \(1/\beta_{0} \) order is determined by the anomalous dimension \((36)\), and \(H_{1}^{V} \) contains only non-negative powers of \(\epsilon. \) We choose \(\mu = \mu' = \mu_{0} = m. \) \(H_{1}^{V} \) at \(\epsilon = 0 \) is given by the coefficients \(f_{0} \) (which produce \(K_{-} \) \((10)\)) and \(f_{0} \) (which produce \(H_{1}^{V} \) \((37)\)); \(\epsilon^{n} \) terms \((n > 0)\) require all \(f_{nm}. \) Writing the expansion \((B.10)\) as \(F = f_{0} - f_{1}u - f_{2}u^{2}/2 - f_{3}u^{3}/3 - \cdots \) we obtain up to four loops

\[
H_{1}^{V} = 1 + C_{F} \frac{b}{\beta_{0}} \left\{ -2w f_{1} + (3w + 1) f_{0} - 4 \\
- \left(w f_{2} + (3w + 1) f_{1} - \left(\frac{\pi^{2}}{6} + 8 \right) w f_{0} + \frac{\pi^{2}}{6} + 8 \right) \epsilon \\
- \left(\frac{2}{3} w f_{3} + \frac{3w + 1}{2} f_{2} + \frac{\pi^{2}}{6} + 8 \right) w f_{1} + \left(\frac{2}{3} \zeta_{3} w - \frac{\pi^{2}}{4} w - \frac{\pi^{2}}{12} - 16w \right) f_{0} - \frac{2}{3} \zeta_{3} + \frac{\pi^{2}}{3} + 16 \right\} \epsilon^2 \\
- \left(\frac{w}{2} f_{4} + \left(w + \frac{1}{3} \right) f_{3} + \frac{\pi^{2}}{12} + 4 \right) w f_{2} \\
- \left(\frac{\pi^{4}}{80} w - \frac{3w - 2}{3} \zeta_{3} w + \frac{\pi^{2}}{12} - 16w \right) f_{1} \\
- \left(\frac{\pi^{4}}{80} w - \frac{3w - 2}{3} \zeta_{3} w + \frac{\pi^{2}}{12} - 16w \right) f_{0} \\
+ \frac{\pi^{4}}{80} - \frac{4}{3} \zeta_{3} w - \frac{2}{3} \pi^{2} + 32 \right\} \epsilon^3 + \cdots
\]
Using HPL [29, 30] we have successfully reproduced all $n_t^{L-1}a_s^L$ terms with $L = 1, 2, 3$ in $F_{1,2}^V$ from [2].

The form factor $F_2^V = H_2^V$ is finite at $\varepsilon = 0$ (this requirement explains why N_2^V (C.13) vanishes at $u = 0$). We obtain

$$F_2^V = C_F \frac{b}{\rho_0} \left\{ 2f_0 - 2(f_1 - 4f_0)\varepsilon - \left(f_2 + 8f_1 - \left(\frac{\pi^2}{6} + 16 \right) f_0 \right) \varepsilon^2 - \frac{2}{3} \left(f_3 + 6f_2 + \left(\frac{\pi^2}{4} + 24 \right) f_1 + \left(\xi_3 - \pi^2 - 48 \right) f_0 \right) \varepsilon^3 + \cdots \right\} - \left[2f_1 - \frac{25}{3} f_0 + 3 f_2 + \frac{74}{3} f_1 - \frac{1}{2} \left(3 \pi^2 + 961 \right) f_0 \right] (1 + \frac{1}{3} \left(14 f_3 + 86 f_2 + \left(\frac{19}{2} \pi^2 + \frac{1105}{3} \right) f_1 - \left(46 \xi_3 + 233 \pi^2 + 23545 \right) f_0 \right) \varepsilon^2 + \cdots \right\} - \left[2f_2 + \frac{50}{3} f_1 - \frac{1}{3} \left(4 \pi^2 + \frac{317}{3} \right) f_0 \right] (1 + \frac{149}{3} f_3 + \frac{1912}{9} f_1 - 44 \xi_3 + \frac{521}{18} \pi^2 + 18451 f_0) \varepsilon + \cdots \right\} - \left[4f_3 + 25 f_2 + \left(4 \pi^2 + \frac{317}{3} \right) f_1 - \left(24 \xi_3 + \frac{50}{3} \pi^2 + \frac{8609}{54} \right) f_0 \right] \varepsilon + \cdots \right\} \right\}. \quad (C.14)
21. M. Neubert, C.T. Sachrajda, Cancellation of renormalon ambiguities in the heavy quark effective theory. Nucl. Phys. B 438, 235 (1995). arXiv:hep-ph/9407394

22. A.I. Davydychev, M. Yu. Kalmykov, Massive Feynman diagrams and inverse binomial sums. Nucl. Phys. B 699, 3 (2004). arXiv:hep-th/0303162

23. A. Devoto, D.W. Duke, Table of integrals and formulae for Feynman diagram calculations. Riv. Nuovo Cim. 7N6, 1 (1984), formulas (2.1.7)–(2.1.9). http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog3/17/01/

24. S.A. Larin, J.A.M. Vermaseren, The α_s^3 corrections to the Bjorken sum rule for polarized electroproduction and to the Gross-Llewellyn Smith sum rule. Phys. Lett. B 259, 345 (1991)

25. S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, in Quarks-92, ed. by D.Yu. Grigoriev, V.A. Matveev, V.A. Rubakov, P.G. Tinyakov (World Scientific, Singapore, 1993), p. 291. arXiv:hep-ph/9302240

26. S.A. Larin, Phys. Lett. B 303, 113 (1993)

27. T. Huber, D. Maître, HypExp, a mathematica package for expanding hypergeometric functions around integer-valued parameters. Comput. Phys. Commun. 175, 122 (2006). arXiv:hep-ph/0507094

28. T. Huber, D. Maître, HypExp 2, expanding hypergeometric functions about half-integer parameters. Comput. Phys. Commun. 178, 755 (2008). arXiv:0708.2443 [hep-ph]

29. D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms. Comput. Phys. Commun. 174, 222 (2006). arXiv:hep-ph/0507152

30. D. Maître, Extension of HPL to complex arguments. Comput. Phys. Commun. 183, 846 (2012). arXiv:hep-ph/0703052

31. E. Remiddi, J.A.M. Vermaseren, Harmonic polylogarithms. Int. J. Mod. Phys. A 15, 725 (2000). arXiv:hep-ph/9905237