An Ensemble of Neural Networks for Non-Linear Segmentation of Overlapped Cursive Script

Amjad Rehman

1College of Computer and Information Systems Al Yamamah University Riyadh 11512 Saudi Arabia

Abstract

Precise character segmentation is the only solution towards higher Optical Character Recognition (OCR) accuracy. In cursive script, overlapped characters are serious issue in the process of character segmentations as characters are deprived from their discriminative parts using conventional linear segmentation strategy. Hence, non-linear segmentation is an utmost need to avoid loss of characters parts and to enhance character/script recognition accuracy. This paper presents an improved approach for non-linear segmentation of the overlapped characters in handwritten roman script. The proposed technique is composed of a sequence of heuristic rules based on geometrical features of characters to locate possible non-linear character boundaries in a cursive script word. However, to enhance efficiency, heuristic approach is integrated with trained ensemble neural network validation strategy for verification of character boundaries. Accordingly, correct boundaries are retained and incorrect are removed based on ensemble neural networks vote. Finally, based on verified valid segmentation points, characters are segmented non-linearly. For fair comparison CEDAR benchmark database is experimented. The experimental results are much better than conventional linear character segmentation techniques reported in the state of art. Ensemble neural network play vital role to enhance character segmentation accuracy as compared to individual neural networks.

Keywords: Non-linear character segmentation; ensemble neural networks; Analytical approach; CEDAR database.

1. Introduction and background

The segmentation and recognition of cursive handwritten words has been an area of great interest from last few decades [1-10]. Despite of successes achieved in individual character recognition, the recognition of offline unconstrained cursive script is still fresh and yields poor accuracy results [11-15]. It is mainly due to the bottleneck problem inaccurate character segmentation of cursive script words into separated characters. Segmentation problem persists nearly as long as recognition problem. Higher segmentation accuracy causes good recognition rates [16-20]. Therefore, the segmentation is an essential component in any practical handwritten recognition system. The high accuracy in character segmentation is still of worth importance in script classification process [21-27]. Hence, enhanced and fast character segmentation techniques are still in demand. To avoid segmentation problem word level/holistic approaches are suggested [28-33]. While these approaches do avoid the difficulty of character segmentation issue, however, are suitable for the limited lexicon environments such as postal code searching, postal address, bank checks amount and so forth.

In the literature, most of character segmentation strategies concentrate on human writing to derive common rules [34-40]. Sometimes the derived rules are satisfactory, but most of the
time they do not produce accurate results. Since human writing is not constant art rather it depends on various factors such as speed of writing, mood of the writer, sex difference and environment. On the other hand, researchers have employed various intelligent techniques to enhance segmentation accuracy of cursive handwritten words [41-46]. Above all, following identification of character boundaries, all approaches reported in the state of art perform linear/vertical segmentation. It has two major drawbacks, first characters lose their discriminator parts, second; it reduces classification accuracy due to the character’s deprived parts [47-50].

In this paper, an enhanced cursive script non-linear segmentation scheme based on set of heuristic rules is proposed in order to determine letter boundaries and to avoid their discriminative parts removal. However, due to inherited features of cursive script over-segmentation is caused for few characters. To avoid over segmentation an ensemble neural model is integrated with this approach. Heuristically identified segmentation points are fed to the trained ANN for identification of correct/incorrect character boundaries. Prior to this, ANN is ensemble neural model with significant number of correct and incorrect letter boundaries. Finally, non-linear character segmentation is performed to segment characters for their further classification.

The rest of paper is composed of three main sections. Section 2, presents the segmentation methodology, section 3 presents training and testing of neural network to identify invalid character segmentation emerged from heuristics segmentation and based on valid segmentation points non-linear segmentation is performed. Last section 4 concludes the research.

2. Proposed Non-linear Segmentation Approach

a. Preprocessing

Pre-processing is mandatory step in all image processing applications. It remove unnecessary detail and smooth line further processing, additionally, it speed up processing as few signals are to be processed. In this research noise removal and thinning operations are performed on scrip images. Initially, the input gray image is first converted to binary image by employing Otsu algorithm; slant corrected and is converted to skeleton format [51-53]. Accordingly, the selected images are preprocessed as exhibited in Figure 1(a).

b. Over-segmentation

The process of over-segmentation is acquired to mark all possible character boundaries. However, unwanted/incorrect segmentations are also emerged as byproduct. In this research, the preprocessed images are over-segmented heuristically at distance d to mark all possible valid character boundaries as exhibited in Figure 1(b). Where, d = w/n & w is the width of an image and n is determined heuristically.

c. Loop determination

Loops/semi loops are always part of characters. Hence, to avoid loop segmentation, an enhanced criterion is proposed, accordingly, for each vertical line, crossing of foreground pixels are counted. If count is more than 1 then it is assumed it is crossing loop/semi loop therefore, vertical segmentation is termed as invalid and removed from images immediately as shown in Figure 1(c).

d. Character width

Character width is another heuristic criterion to estimate character boundaries. Accordingly, if consecutive vertical lines are at standard width ‘w’, first and last vertical segmentation
lines are included and in between are excluded as presented in Figure 1 (d).

e. Character boundaries

Character width w is also adopted as true segmentation criteria. Accordingly, if vertical segment lines are at distance less than character standard width w, set their center as letter boundaries, as exhibited in Figure 1(e).

![Figure 1](image)

Fig. 1 Step wise results illustration of heuristic approach

Heuristic segmentation approach performed well in most cases as shown in figure 2(a). However, in case of few characters such as ‘w’, ‘u’, ‘m’, ‘n’ and ‘v’, over-segmentation occurred and heuristic rules are failed to find correct character boundaries in cursive script figure 2(b). Hence, to enhance segmentation accuracy, the results of heuristic segmentation are fed to a trained individual and ensemble neural networks in order to identify invalid segmentation detail in next section. Nonetheless, over-segmentation is least and emerged for few characters only, hence it caused classifier less burdened and fast.

![Figure 2](image)

Fig. 2. Character segmentation using heuristics only (a) Successful (b) Failure results

2.1 Ensemble of Neural Networks
Neural networks are particularly suitable for the non-linear problems where traditional techniques are failed [54,55]. However, using neural networks a relationship could be drawn between inputs and outputs; hence these features are particularly suitable to assist in the character segmentation process. Literature is evident that ensemble of neural networks improve accuracy as compared to the individual network [56-60]. Accordingly, logic behind the ensemble of neural networks is to train few neural networks separately and finally their decisions are averaged to have a better decision. The output of ensemble network is a mean value of the output of all individual networks and output of ensemble network is normally better than individuals [61,63].

Saba et al., [64-66] emphasize that classification using single neural model results into low accuracy as compared to ensemble models. Accordingly, current research ensemble MLP and RBF for accurate classification of segmentation points into valid and invalid achieved from heuristic segmentation. MLP and RBF are special types of Artificial Neural Network (ANN) composed of interconnected "neurons" which exchange messages among each other from inputs to outputs using single hidden layer. MLP and RBF are the standard learning algorithm from the same class of ANN use feed forward strategy from input to output neurons. However, the activation functions in each category operate differently. The both types have their own pros and cons; hence, from outcome of each model, weighted average is calculated to come out with better results and to cover limitations of each category for precise classification results [67,68]. Actually, both MLP and RBF needs training to solve a problem, in this phase networks establish a relation between inputs and outputs in conjunction with learning parameters. The networks map the relationship between the inputs and outputs, and then modify its internal functions to determine the best relationship. Accordingly, two networks (MLP and RBF) are trained and tested to evaluate best possible network structure, input neurons, output neurons and number of hidden layer(s). The structure of proposed ensemble model is exhibited in Figure 3.
Initially, for training purpose all segmentation points are manually categorized into accurate and inaccurate segmentation points and are stored in one file that is used by individual networks and ensemble neural model. In fact, there are no standard criteria to calculate number of neurons in hidden layer, it is calculated based on trial and error based experiments by keeping MSE under observation. However, for the number of neurons in input and output layers depends on the strategy in the application. Initial weights in neural networks training are set at random that are altered based on decreased MSE. However, ensemble model calculates weighted average of these independent networks output to enhance the generalization ability. For training and testing ANN tool box available in MATLAB 7.0 is employed.

MLP, RBF and ensemble model are trained to come out with vote of confidence for valid and invalid character segmentation points to assists the segmentation process. Accordingly, several experiments are performed using different weights, number of epochs, momentum & learning rate. There are different procedures to train individual networks and to combine their output as well. However, training is stopped when both networks have identical configuration although their initial conditions were different. For the ensemble model, simple average of individual networks is calculated. Some neural networks training/testing results are exhibited in Appendix A

2.2 Neural Validation

In this step all segmentation points received from heuristic segmentation process are validated using trained neural network prepared in the previous step. These segmentation points are fed to the individual neural networks and ensemble model as well to classify all segmentation points into correct and incorrect based on confidence vote. It is observed that ensemble model exhibited better performance as compared to individual networks due to their limited generalization ability. Fig 4 exhibits the process of identification of invalid segmentation points that were voted negative using ensemble model.
Fig 4. Invalid segmentation points are extracted using neural vote

2.3 Non-linear Segmentation Path Detection

Following, invalid segmentation point’s identification using ensemble neural model and their removal, the next step is character segmentation without segmenting their discriminatory parts. Nonetheless, in the previous step, true character boundaries are identified. However, rather to perform simple vertical segmentation, nonlinear segmentation path is traced. Accordingly, first core-zone in each script word is detected [7] and valid segmentation points are traced up and down to the image boundaries such that it couldn’t cut the characters body. Accordingly, segmentation path is traced according to the specified criteria. Few results are presented in Figure 5.

Fig 5: (a) Non-linear segmentation (b) segmentation path

3. Analysis and Discussion

3.1 Handwriting database

All experiments are conducted on training and test sets available in the CEDAR benchmark database [8]. Accordingly, some cursive script samples for characters segmentation, training and testing of the ensemble neural model are exhibited in fig 6.

Fig. 6. Cursive Script word samples of CEDAR benchmark database
3.2 Experimental results

Various distinctive factual measurements accessible are utilized to assess the degree to which the qualities that have been anticipated are of good and sensible quality. Root mean square error (RMSE) is required frequently, to measure or assess the effectiveness of the neural ensemble model. The best neural structure is one that has less error and acceptable learning time. RMSE returns true values to be utilized as a standardized frame to compare the performance of the model on the expected and attained output. Finally, RMSE and R correlation coefficient between actual and target data, SI denotes scatter index.

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - x_i)^2}
\]

\[
R = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}}
\]

\[
SI = \frac{RMSE}{\bar{x}}
\]

where \(x_i\) represents attained values at the \(i\)th time step, \(y_i\) is the attained values, \(N\) for counter increment, \(\bar{x}\) and \(\bar{y}\) represents actual and attained values.

Two sets of experiments are performed on datasets taken from CEDAR benchmark Datasets. The average recognition rates are calculated by adding all the recognition rates for each word using three step processes; (heuristic segmentation, an ensemble of neural networks assistance and non-linear segmentation strategy) and dividing the calculated sum by the number of words; Table 1 shows experimental results.

Number of Words	Segmentation Points	Avg. Seg. Rate of Training set (%)	Avg. Seg. Testing Rate on Testing set (%)
100	780	98.30	94.26
317	1829	100	97.98

3.3 Results Analysis and Discussion

Literature exhibits that researchers have employed various approaches for handwritten script segmentation into individual characters. Verma and Gader [69] achieved 91% segmentation accuracy with neural network feature based approach. The experiments are conducted on CEDAR samples without mentioning words number. In another study, conducted by Blumenstein and Verma [70] attained 78.85% segmentation accuracy with neuro-feature based approach on CEDAR samples. In the same line of action, Verma [71] noted 84.87% precision for segmentation of 300 words taken from CEDAR with neural assistance. In the same line, Cheng et al [72] utilized neural network for assistance and attained 95.27% segmentation rate from 317 CEDAR words. Cheng and Blumenstein [73] utilizing neuro-enhanced features based approach and claimed 84.19% character segmentation rate for 317
CEDAR words. However, all reported character segmentation techniques perform linear segmentation. Whilst, proposed approach produced 96.87% accuracy rate for CEDAR test set. In further work a much larger database shall be used for training the neural network. Segmentation results available in the literature since 2000 are presented in Table 2.

Table 2. Character segmentation accuracy rates on CEDAR

Author	Segmentation method	Rate (%)	Segmentation Type	Comments
Verma and Gader [69]	Feature based + Neural Network	91	Linear	Number of words for training / testing not mentioned
Blumenstein and Verma [70]	Feature based + Neural Network	78.8	Linear	Number of words for training / testing not mentioned
Verma [71]	Feature based + Neural Network	84.87	Linear	CEDAR test set
Cheng et al [72]	Feature based + Neural Network	95.27	Linear	CEDAR test set
Cheng and Blumenstein [73]	Enhanced feature based + Neural Network	84.19	Linear	CEDAR test set
Khan and Mohamad [40]	Geometric features + Neural Network	91.21	Linear	CEDAR test set
Proposed approach	Heuristic + Ensemble of Neural Networks	97.53	Non-Linear	CEDAR test set

4. Conclusion

This paper has presented a heuristic character segmentation approach, a neural networks based ensemble model to assist character segmentation process and finally a non-linear segmentation strategy to enhance accuracy. However, in the first phase as a result of heuristic segmentation, few characters are over-segmented and heuristics are failed to come out with correct letter boundaries. In order to overcome this difficulty, a neural ensemble model is trained and integrated with the proposed approach. The ensemble neural model performance was better than individual neural networks and characters over-segmentation is significantly less hence, neural ensemble model was quite fast, that is an unusual observation. Non-linear segmentation strategy is also one of the main reasons behind the high character segmentation
accuracy up to 97.53%; that is promising as compared to results reported in state of art. Finally, this paper has described solution to over-segmentation and to avoid linear segmentation successfully; while the problem of miss-segmentation for touched characters will be consider in future research.

References

[1] Rehman, A. and Saba, T. (2014). Evaluation of artificial intelligent techniques to secure information in enterprises, Artificial Intelligence Review, vol. 42(4), pp. 1029-1044, doi: 10.1007/s10462-012-9372-9.

[2] Rehman, A. and Saba, T. (2014). Features extraction for soccer video semantic analysis: current achievements and remaining issues Artificial Intelligence Review, vol. 41(3), pp: 451-461, doi: 10.1007/s10462-012-9319-1.

[3] Saba, T. and Rehman, A. (2012). Machine learning and script recognition, Lambert Academic publisher, pp:37-43.

[4] Saba, T., Rehman, A. Sulong, G. (2010). An intelligent approach to image denoising. Journal of Theoretical and Applied Information Technology, vol. 17 (2), 32-36.

[5] Rehman, A. and Saba, T. Performance Analysis of Segmentation Approach for Cursive Handwritten Word Recognition on Benchmark Database (2011). Digital Signal Processing, vol. 21(3), pp. 486-490.

[6] Rehman, A. and Saba. T. (2012) Off-line cursive script recognition: current advances, comparisons and remaining problems, Artificial Intelligence Review, vol. 37 (4), 261-288, doi: 10.1007/s10462-011-9229-7

[7] Rehman, A. Mohamad, D. Sulong, G. and Saba, T. Simple and Effective Techniques for Core Zone Detection and Slant Correction in Script Recognition. The IEEE International Conference on Signal and Image Processing Applications, 2009, 15-20.

[8] Saba, T., Rehman, A. Elarbi-Boudihir, M. (2014). Methods and Strategies On Off-Line Cursive Touched Characters Segmentation: A Directional Review, Artificial Intelligence Review, vol. 42 (4), pp. 1047-1066. doi:10.1007/s10462-011-9271-5

[9] Saba, T. Rehman, A. Altameem, A. Uddin, M. (2014)Annotated comparisons of proposed preprocessing techniques for script recognition, Neural Computing and Applications, vol. 25(6), pp. 1337-1347 , doi:10.1007/s00521-014-1618-9

[10] Saba, T. Rehman, A. Al-Dhelaand, A. and Al-Rodhaand, M. (2014) Evaluation of current documents image denoising techniques: a comparative study, Vol. 28(9), pp. 879-887, doi: 10.1080/08839514.2014.954344.

[11] Saba, T. Rehman, A. Sulong, G. (2011) Cursive script segmentation with neural confidence, International Journal of Innovative Computing and Information Control (IJICIC), vol. 7(7), pp. 1-10.

[12] Rehman, A. and Saba. T. (2011). Document skew estimation and correction: analysis of techniques, common problems and possible solutions, Applied Artificial Intelligence, vol. 25(9), pp. 769-787. doi:10.1080/08839514.2011.607009.

[13] Saba,T., Rehman, A., Al-Dhelaan, A., Al-Rodhaan, M. (2014) Evaluation of current documents image denoising techniques: a comparative study, Applied Artificial Intelligence, vol.28 (9), pp. 879-887, doi. 10.1080/08839514.2014.954344.

[14] Neamah, K. Mohamad, D. Saba, T. Rehman, A. (2014). Discriminative features mining for offline handwritten signature verification, 3D Research vol. 5(3), doi: 10.1007/s13319-013-0002-3

[15] Saba, T., Rehman, A. Al-Zahrani, S. (2013) Character Segmentation in Overlapped Script using Benchmark Database, pp. 140-143, ISBN: 978-1-61804-233-0

[16] Harouni, M. Rahim, MSM, Al-Rodhaan, M. Saba, T. Rehman, A. (2014). Online Persian/Arabic script classification without contextual information, The Imaging Science Journal, vol. 62 (8), 437-448, doi. 10.1179/1743131X14Y.0000000083.

[17] Nodehi, A. Sulong, G. Al-Rodhaan, M. Al-Dhelaan, A., Rehman, A. Saba, T. (2014) Intelligent fuzzy approach for fast fractal image compression, EURASIP Journal on Advances in Signal Processing, doi. 10.1186/1687-6180-2014-112.

[18] Harouni, M., Rahim, MSM., Al-Rodhaan,M., Saba, T., Rehman, A., Al-Dhelaan, A. (2014) Online Persian/Arabic script classification without contextual information, The Imaging Science Journal, vol. 62(8), pp. 437-448, doi. 10.1179/1743131X14Y.0000000083
[19] Saba, T., Almazyad, A.S., Rehman, A. (2015) Language independent rule based classification of printed & handwritten text, IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1-4, doi: 10.1109/EAIS.2015.7368806

[20] Chaudhry, H., Rahim, MSM, Saba, T., Rehman, A. (2018) Crowd region detection in outdoor scenes using color spaces International Journal of Modeling, Simulation, and Scientific Computing, vol. 9(2), 1-15

[21] Saba T, Al-Zahrani S, Rehman A. (2012) Expert system for offline clinical guidelines and treatment Life Sci Journal, vol.9(4), pp. 2639-2658.

[22] Alkawaz, M.H., Sulong, G., Saba, T. Rehman, A (2016). Detection of copy-move image forgery based on discrete cosine transform, Neural Computing and Application. doi:10.1007/s00521-016-2663-3

[23] Fadhil, MS. Alkawaz, MH., Rehman, A., Saba, T. (2016) Writers identification based on multiple windows features mining, 3D Research, vol. 7 (1), pp. 1-6, doi.10.1007/s13319-016-0087-6

[24] Jadooki, S. Mohamad,D., Saba, T., Almazyad, A.S. Rehman, A. (2016) Fused features mining for depth-based hand gesture recognition to classify blind human communication, Neural Computing and Applications, pp. 1-10, doi. 10.1007/s00521-016-2244-5

[25] Rehman, A. and Saba, T. (2014). Neural network for document image preprocessing, Artificial Intelligence Review, vol. 42 (2), pp. 253-273, doi: 10.1007/s10462-012-9337-z.

[26] Katuka, J.I., Mohamad, D., Saba, T. et al., (2014) An Analysis of Object Appearance Information and Context Based Classification, 3D Res (2014) 5: 24. doi.org/10.1007/s13319-014-0024-5.

[27] Muhsin; Z.F. Rehman, A.; Altameem, A.; Saba, A.; Uddin, M. (2014). Improved quadtree image segmentation approach to region information. the imaging science journal, vol. 62(1), pp. 56-62, doi. http://dx.doi.org/10.1179/174313113X13Y.000000063.

[28] Younus, Z.S. Mohamad, D. Saba, T. Alkawaz,M.H. Rehman, A. Al-Rodhaan,M. Al-Dhelaan, A. (2015) Content-based image retrieval using PSO and k-means clustering algorithm, Arabian Journal of Geosciences, vol. 8(8), pp. 6211-6224, doi. 10.1007/s12517-014-1584-7

[29] Elarbi-Boudihr, M. Rehman, A. (2011) Video motion perception using optimized Gabor filter, International journal of physical sciences, vol.6(12),pp. 2799-2806.

[30] Lung, J.W.J., Salam, M.S.H, Rehman, A., Rahim, M.S.M., Saba, T. (2014) Fuzzy phoneme classification using multi-speaker vocal tract length normalization, IETE Technical Review, vol. 31 (2), pp. 128-136, doi. 10.1080/02564602.2014.892669

[31] Meethongjan,K. Dzulkiifi,M. Rehman,A. Altameem,A. Saba, T. (2013) An intelligent fused approach for face recognition, Journal of Intelligent Systems vol.22(2), pp. 197-212, DOI: https://doi.org/10.1515/jisys-2013-0010

[32] Rehman, A. Kurniawan, F. Saba, T. (2011) An automatic approach for line detection and removal without smash-up characters, The Imaging Science Journal, vol. 59(3), pp. 177-182, doi. 10.1179/136821910X12863758415649

[33] Ahmad, A.M Sulong, G., Rehman, A., Alkawaz,M.H., Saba, T. (2014) Data Hiding Based on Improved Exploiting Modification Direction Method and Huffman Coding, Journal of Intelligent Systems, vol. 23 (4), pp. 451-459, doi. 10.1515/jisys-2014-0007

[34] Nodehi, A. Sulong, G. Al-Rodhaan, M. Al-Dhelaan, A., Rehman, A. Saba, T. (2014) Intelligent fuzzy approach for fast fractal image compression, EURASIP Journal on Advances in Signal Processing, doi. 10.1186/1687-6180-2014-112.

[35] Harouni, M. Rahim,M.S.M., Al-Rodhaan,M., Saba, T., Rehman, A., Al-Dhelaan, A. (2014) Online Persian/Arabic script classification without contextual information, The Imaging Science Journal, vol. 62(8), pp. 437-448, doi. 10.1179/174313114X14.Y.000000083

[36] Saba,T., Rehman, A., Al-Dhelaan, A., Al-Rodhaan, M. (2014) Evaluation of current documents image denoising techniques: a comparative study , Applied Artificial Intelligence, vol.28 (9), pp. 879-887, doi. 10.1080/08839514.2014.954344

[37] Al-Ameen, Z. Sulong, G. Rehman, A., Al-Dhelaan, A., Saba, T. Al-Rodhaan, M. (2015) An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization, EURASIP Journal on Advances in Signal Processing, vol. 32, doi:10.1186/s13634-015-0214-1

[38] Rehman, A., Alqatahni,S., Altameem, A., Saba, T. (2014) Virtual machine security challenges: case studies, International Journal of Machine Learning and Cybernetics, vol.5(5), pp.729-742

[39] Rehman, A. and Saba, T. (2013) An intelligent model for visual scene analysis and compression, International Arab Journal of Information Technology, vol.10(13), pp. 126-136
[40] Khan, A.R. and Mohammad, Z. (2008). A Simple Segmentation Approach for Unconstrained Cursive Handwritten Words in Conjunction with the Neural Network. International Journal of Image Processing, vol.2(3), pp. 29-35

[41] Saba, T. (2018) Fuzzy ARTMAP Approach for Arabic Writer Identification using Novel Features Fusion, Journal of Computer Science, vol. 14(2), pp.210-220, doi: 10.3844/jcssp.2018.210.220

[42] Soleimanizadeh, S., Mohamad, D., Saba, T., Rehman, A. (2015) Recognition of partially occluded objects based on the three different color spaces (RGB, YCbCr, HSV) 3D Research, Vol. 6 (3), 1-10, doi. 10.1007/s13319-015-0052-9

[43] Haji, M.S. Alkawaz, M.H. Rehman, A. Saba, T. (2019) Content-based image retrieval: a deep look at features prospectus, International Journal of Computational Vision and Robotics 9 (1), 14-38.

[44] Ebrahim, A.Y., Kolivand, H., Rehman, A., Rahim, M.S.M. and Saba, T. (2018) ‘Features selection for offline handwritten signature verification: state of the art’, Int. J. Computational Vision and Robotics, vol. 8(6), pp.606–622.

[45] Saba, T (2016) Pixel Intensity Based Cumulative Features for Moving Object Tracking (MOT) in Darkness, 3D Research 7 (10), 1-6, doi.org/10.1007/s13319-016-0089-4.

[46] Sharif, U., Mehmood, Z., Mahmood, T., Javid, M.A. Rehman, A. Saba, T. (2018) Scene analysis and search using local features and support vector machine for effective content-based image retrieval, Artificial Intelligence Review, pp. 1-25

[47] H Kolivand, A El Rhalibi, MS Sunar, T Saba (2018) ReVitAge: Realistic virtual heritage taking shadows and sky illumination into account, Journal of Cultural Heritage, vo. 32, pp. 166-175.

[48] Mehmood, Z., Abbas, F., Mehmood, T. et al. Content-Based Image Retrieval Based on Visual Words Fusion Versus Features Fusion of Local and Global Features, Arab J Sci Eng (2018). https://doi.org/10.1007/s13369-018-3062-0

[49] Jabeen, S., Mehmood, Z., Mahmood, T., Saba, T., Rehman, A., Mahmood, M.T. (2018) An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model, PloS one 13 (4), e0194526

[50] Mahmood, T., Mehmood, Z., Shah, M., Saba, T. (2018) A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform, Journal of Visual Communication and Image Representation, Vol.53, 202-214, https://doi.org/10.1016/j.jvcir.2018.03.015

[51] Youssaf, M. Mehmood, Z. Habib, H.A. et al., “A Novel Technique Based on Visual Words Fusion Analysis of Sparse Features for Effective Content-Based Image Retrieval,” Mathematical Problems in Engineering, vol. 2018, Article ID 2134395, 13 pages, 2018. doi:10.1155/2018/2134395

[52] Sharif, M. Khan, M.A Akram, T. Javed, M.Y. et al., (2017) A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection, EURASIP Journal on Image and Video Processing 2017 (1), 89

[53] Mehmood, Z., Abbas, F., Mehmood, T. et al. Arab J Sci Eng (2018). Content-Based Image Retrieval Based on Visual Words Fusion Versus Features Fusion of Local and Global Features, Arabian Journal of Scinece and Engineering, pp. 1-20. https://doi.org/10.1007/s13369-018-3062-0

[54] Haron, H. Rehman, A., Wulandhari, L.A., Saba, T. (2011) Improved vertex chain code based mapping algorithm for curve length estimation, Journal of Computer Science vol. 7(5), pp. 736-743.

[55] Haron, H. Rehman, A. Adi, DIS, Lim, S.P. and Saba, T.(2012). Parameterization method on B-Spline curve. Mathematical problems in engineering, vol. 2012, doi:10.1155/2012/640472.

[56] Joudaki, S. Mohamad, D., Saba, T. Rehman, A. Al-Rodhaan, M. Al-Dhelaan, A. (2014) Vision-based sign language classification: a directional Review, IETE Technical Review, Vol.31 (5), 383-391, doi. 10.1080/02564602.2014.961576

[57] Saba, T. Rehman, A. Sulong, G. (2010). Non-linear segmentation of touched roman characters based on genetic algorithm, International Journal of Computer Science and Engineering, vol.2(6),pp. 2167-2172.

[58] Husain, N.A.Rahim, MSM Rahim., Khan, A.R., Al-Rodhaan, M., Al-Dhelaan, A., Saba, T. (2015) Iterative adaptive subdivision surface approach to reduce memory consumption in
rendering process (IteAS), Journal of Intelligent & Fuzzy Systems, vol. 28 (1), 337-344, doi. 10.3233/IFS-14130.

59 Basori, A.H., Alkawaz, M.H., Saba, T. Rehman, A. (2016) An overview of interactive wet cloth simulation in virtual reality and serious games, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, doi. 10.1080/21681163.2016.1178600.

60 Waheed, S.R., Alkawaz, M.H., Rehman, A., Almazyad,A.S., Saba, T. (2016). Multifocus watermarking approach based on discrete cosine transform, Microscopy Research and Technique, vol. 79 (5), pp. 431-437, doi. 10.1002/jemt.22646.

61 Kolivand, H. Sunar, M.S. Rehman, A. Almazyad, A.S. and Saba, T. (2017) Outdoor 3D Illumination in Real Time Environments: A Novel Approach Journal of Information Hiding and Multimedia Signal Processing, vol. 8(1), pp. 208-217.

62 Alsayyeh, M.A.M.Y, Mohamad, D. Saba, T. Rehman, A. and AlGhamdi, J.S. (2017) A Novel Fused Image Compression Technique Using DFT, DWT, and DCT, Journal of Information Hiding and Multimedia Signal Processing, vol.8(2), pp. 261-271.

63 Bashardoost, M., Rahim, M.S.M., Saba, T. Rehman, A. (2017) Replacement Attack: A New Zero Text Watermarking Attack, 3D Res, vol. 8(8), doi.10.1007/s13319-017-0118-y

64 Hussain, Z. Iqbal, S. Saba, T. Almazyad, A.S. Rehman, A. (2017) Design and development of dictionary-based stemmer for the Urdu language, Journal of Theoretical and Applied Information Technology, Vol.95(15) , pp. 3560-3569.

65 Saba, T., Rehman, A. and Sulong, G. (2011). Improved statistical features for cursive character recognition, International Journal of Innovative Computing, Information and Control (IJICIC), vol. 7(9), pp. 5211-5224

66 Saba, T. Rehman, A. AlGhamdi, J.S. (2017) Weather forecasting based on hybrid neural model, Applied Water Science, vol. 7(7), pp 3869–3874, doi:10.1007/s13201-017-0538-0

67 Saba, T., Almazyad, A.S. Rehman, A. (2016) Online versus offline Arabic script classification, Neural Computing and Applications,vol.27(7), pp 1797–1804, doi. 10.1007/s00521-015-2001-1.

68 Saba, T. (2012) Offline Cursive Touched Script Non-linear Segmentation, Universiti Teknologi Malaysia, Malaysia, PhD thesis, pp. 37-45.

69 Verma, B. Gader, P. Fusion of multiple handwritten word recognition techniques. Neural Networks for Signal Processing, Proceedings of the IEEE Signal Processing Society Workshop, 2, (2000), 926-934.

70 Blumenstein, M., Verma, B. Analysis of segmentation performance on the CEDAR benchmark database, Proceedings of Sixth International Conference on Document Analysis and Recognition (2001), 1142.

71 Verma, B. A contour character extraction approach in conjunction with a neural confidence fusion technique for the segmentation of handwriting recognition. Proceedings of the 9th International Conference on Neural Information Processing, 5,(2002), 18-22.

72 Cheng, C.K., Liu, X.Y., Blumenstein, M. and Muthukumarasamy, V. Enhancing neural confidence-based segmentation for cursive handwriting recognition. Proceeding of 5th International Conference on Simulated Evolution and Learning, (2004).

73 Cheng, C.K., Blumenstein, M. Improving the segmentation of cursive handwritten words using ligature detection and neural validation, Proceedings of the 4th Asia Pacific International Symposium on Information Technology, (2005), 56-59.
Appendix A (ANN Training/ Test Results on CEDAR database)
