Brownian Intersections, Cover Times and Thick Points via Trees

Yuval Peres*

Abstract

There is a close connection between intersections of Brownian motion paths and percolation on trees. Recently, ideas from probability on trees were an important component of the multifractal analysis of Brownian occupation measure, in joint work with A. Dembo, J. Rosen and O. Zeitouni. As a consequence, we proved two conjectures about simple random walk in two dimensions: The first, due to Erdős and Taylor (1960), involves the number of visits to the most visited lattice site in the first n steps of the walk. The second, due to Aldous (1989), concerns the number of steps it takes a simple random walk to cover all points of the n by n lattice torus. The goal of the lecture is to relate how methods from probability on trees can be applied to random walks and Brownian motion in Euclidean space.

2000 Mathematics Subject Classification: 60J15.

Keywords and Phrases: Random walk, Cover time, Thick point, Lattice, Brownian motion, Percolation, Tree.

1. Introduction

In [18], the author showed that long-range intersection probabilities for random walks, Brownian motion paths and Wiener sausages in Euclidean space, can be estimated up to constant factors by survival probabilities of percolation processes on trees.

More recently, several long-standing problems involving cover times and "thick points" for random walks in two dimensions were solved in joint works [9, 10] of A. Dembo, J. Rosen, O. Zeitouni and the author. These solutions were motivated by powerful analogies with corresponding problems on trees, but these analogies were not discussed explicitly in the research papers cited. The goal of the present note is to describe the tree problems and solutions, that correspond to the problems studied in [9, 10].

*Departments of Statistics & Mathematics, University of California, Berkeley CA, USA. E-mail: peres@stat.berkeley.edu
The cover time for a random walk on a finite graph is the number of steps it takes the random walk to visit all vertices. The cover time has been studied intensively by probabilists, combinatorialists, statistical physicists and computer scientists, with a variety of motivations; see, e.g., [7, 16, 2, 8, 17]. The problem of determining the expected cover time T_n for the n by n lattice torus \mathbb{Z}^2_n, was posed by Wilf [22] and Aldous [1]. In [9] we proved the following conjecture of Aldous [1].

Theorem 1 If T_n denotes the time it takes for the simple random walk in \mathbb{Z}^2_n to completely cover \mathbb{Z}^2_n, then

$$\lim_{n \to \infty} \frac{T_n}{(n \log n)^2} = \frac{4}{\pi}$$ in probability. \hspace{1cm} (1.1)

The first step toward proving Theorem 1 was to find a sufficiently robust proof for the asymptotics of the cover time of finite b-ary trees. These asymptotics were originally determined by Aldous in [4], but his elegant recursive method was quite sensitive and did not adapt to the approximate tree structure that can be found in Euclidean space. Cover times on trees are discussed in the next section.

Turning to a different but related topic, Erdős and Taylor (1960) posed a problem about simple random walks in \mathbb{Z}^2: How many times does the walk revisit the most frequently visited site in the first n steps?

Theorem 2 (10) Denote by $T_n(x)$ the number of visits of planar simple random walk to $x \in \mathbb{Z}^2$ by time n, and let $T^*_n = \max_{x \in \mathbb{Z}^2} T_n(x)$. Then

$$\lim_{n \to \infty} \frac{T^*_n}{(\log n)^2} = \frac{1}{\pi}$$ a.s.

(1.2)

This was conjectured by Erdős and Taylor [11, (3.11)]. After D. Aldous heard one of us describing this result, he pointed us to his cover time conjecture, and this eventually led to Theorem 1. Although the proofs of that theorem and of Theorem 2 differ in important technical points, they follow the same basic pattern:

(i) Formulate a suitable tree-analog and find a “robust” proof.
(ii) Establish a Brownian version using excursion counts.
(iii) Deduce the lattice result via strong approximation a-la [12].

2. Cover times for trees

Let Γ_k denote the balanced b-ary tree of height k, which has $n_k = (b^{k+1} - 1)/(b - 1)$ vertices, and $n_k - 1$ edges.

Theorem 3 (Aldous [1]) Denote by C_k the time it takes for simple random walk in Γ_k, started at the root, to cover Γ_k. Then

$$\lim_{k \to \infty} \frac{E C_k}{n_k k^2} = 2 \log(b).$$

(2.1)
Remark The expected hitting time from one vertex to another is bounded by the
commute time, which equals the effective resistance times twice the number of edges
(see, e.g., [5]). Therefore the expected hitting time between two vertices in \(\Gamma_k \) is at
most \(4kn_k \). From a general result in [3], it follows that also
\[
\lim_{k \to \infty} \frac{C_k}{n_kk^2} = 2 \log(b) \quad \text{in probability.} \tag{2.2}
\]

Proof of theorem Denote by \(C_k^+ \) the time it takes the walk to cover and return
to the root, and by \(R_k \) the number of returns to the root until time \(C_k^+ \). By
the remark preceding the proof, \(\mathbb{E}C_k^+ \to \mathbb{E}C_k \leq 4kn_k \), so to prove the theorem it suffices
to establish that
\[
\lim_{k \to \infty} \frac{\mathbb{E}C_k^+}{n_kk^2} = 2 \log(b). \tag{2.3}
\]
The expected time to return to the root is the reciprocal of the root's stationary
probability \(b/(2n_k - 2) \), so by Wald's lemma
\[
\mathbb{E}(C_k^+) = \frac{2n_k - 2}{b} \mathbb{E}(R_k). \tag{2.4}
\]
Thus the theorem reduces to showing
\[
\lim_{k \to \infty} \frac{\mathbb{E}R_k}{k^2} = b \log(b). \tag{2.5}
\]

We start by reproducing the straightforward proof of the upper bound. Denote
by \(R_v \) the number of returns to the root of \(\Gamma_k \) until the first visit to \(v \), and observe
that \(R_k \) is the maximum of \(R_v \) over all leaves \(v \) at level \(k \). At each visit to the root,
the chance to hit a specific leaf \(v \) before returning to the root is \(1/bk \), whence
\[
\mathbb{P}[R_v > rbk^2] \leq (1 - \frac{1}{bk})^{rbk^2} \leq e^{-rk}. \tag{2.6}
\]
Summing over all leaves, we infer that
\[
\mathbb{P}[R_k > rbk^2] \leq \min\{1, bke^{-rk}\}. \tag{2.6}
\]
Integrating over \(r > 0 \),
\[
\mathbb{E}[R_k] \leq bk^2(\log b + 1/k). \tag{2.7}
\]
This yields the upper bound in (2.3). To prove a lower bound, Aldous [4] uses
a delicate recursion, and an embedded branching process argument. Here we will
give the shortest argument we know, which only involves an embedded branching
process. Given \(\lambda < \log b \), our next goal is to show that
\[
\mathbb{P}[R_k > \lambda bk^2] \to 1 \quad \text{as } k \to \infty. \tag{2.8}
\]
Let \(T_\lambda \) be the number of steps until the root is visited \(\lambda bk^2 \) times.

Fix \(r \in (\lambda, \log b) \), and choose \(\ell \) large, depending on \(r \). Let \(v \) be a vertex at
level \(k - (j + 1)\ell \) of \(\Gamma_k \), and suppose that \(w \) is a descendant of \(v \) at level \(k - j\ell \).
Observe that the expected number of visits to v by time T_λ is $\lambda(b+1)k^2$, and the expected number of excursions between v and w by time T_λ is $\lambda k^2/\ell$.

Say that w is “special” if the number of excursions from v to w by time T_λ is at most $r\ell j^2$. Note that vertices close to the root (i.e., at level $k-j\ell$ where $r\ell^2 j^2 > \lambda k^2$) are special with high probability, because $r > \lambda$. If $k > (j+2)\ell$, then every visit to v is equally likely to start an excursion to w as to the ancestor of v at distance ℓ from v. Thus, if v is special then w is special with probability at least $P[X < r\ell j^2]$, where X has binomial law with parameters $r\ell(j^2 + (j+1)^2)$ and $1/2$. By the central limit theorem, as j grows, $P[X < r\ell j^2] \to P[Z > (2r\ell)^{1/2}]$, where Z is standard normal. Since $r < \log b$, we find that $P(Z > (2r\ell)^{1/2}) > b^{-\ell}$, if ℓ is large enough. Therefore, special vertices considered at jumps of 2ℓ levels (to ensure the required independence) dominate a supercritical branching process; the survival probability tends to 1 as $k \to \infty$, because vertices near the root are almost guaranteed to be special. This establishes (2.8). It follows that $E(R_k) > \lambda b k^2$ for large k, and since $\lambda < \log b$ is arbitrary, this completes the proof of (2.5) and the theorem.

Remark The argument above is quite robust: it readily extends to family trees of Galton watson trees with mean offspring $b > 1$. With a little more work, using the notion of quasi-Bernoulli percolation (see [13] or [19]), it can be extended to the first k levels of any tree Γ that has growth and branching number both equal to $b > 1$. The most robust argument, the truncated second moment method used in [9], is too technical to include here.

3. From trees to Euclidean space

The following “dictionary” was offered in [18] to illustrate the reduction of certain intersection problems from Euclidean space to trees:

Problem in Euclidean space	Corresponding problem on trees
How many (independent) Brownian paths in \mathbb{R}^d can intersect?	Which branching processes can have an infinite line of descent?
What is the probability that several random walk paths, started at random in a cube of side-length 2^k, will intersect?	What is the probability that a branching process survives for at least k generations?
Which sets in \mathbb{R}^3 contain double points of Brownian motion?	Which trees percolate at a fixed threshold p?
What is the Hausdorff dimension of the intersection of a fixed set in \mathbb{R}^d with one or two Brownian paths?	What is the dimension of a percolation cluster on a general tree?

The Brownian analogs of Theorems 1 and 2, respectively, are given below. Throughout, denote by $D(x, \epsilon)$ the disk of radius ϵ centered at x.

Theorem 4 ([9]) *For Brownian motion $w_T(\cdot)$ in the two-dimensional torus \mathbb{T}^2,*
consider the hitting time of a disk,
\[T(x, \epsilon) = \inf\{t > 0 \mid X_t \in D(x, \epsilon)\}, \]
and the \(\epsilon \)-covering time,
\[C_\epsilon = \sup_{x \in \mathbb{T}^2} T(x, \epsilon) \]
which is the amount of time needed for the Wiener sausage of radius \(\epsilon \) to completely cover \(\mathbb{T}^2 \). Then
\[\lim_{\epsilon \to 0} \frac{C_\epsilon}{(\log \epsilon)^2} = \frac{2}{\pi} \quad \text{a.s.} \quad (3.1) \]

Theorem 5 ([10]) Denote by \(\mu_w \) the occupation measure for a planar Brownian motion \(w(\cdot) \) run for unit time. Then
\[\lim_{\epsilon \to 0} \sup_{x \in \mathbb{R}^2} \frac{\mu_w(D(x, \epsilon))}{\epsilon^2 \left(\log \frac{1}{\epsilon}\right)^2} = 2, \quad \text{a.s.} \quad (3.2) \]
(This was conjectured by Perkins and Taylor [20].)

The basic approach used to prove these results, which goes back to Ray, [21], is to control occupation times using excursions between concentric discs. The approximate tree structure that is (implicitly) used arises by considering discs of the same radius \(r \) around different centers and varying \(r \); for fixed centers \(x, y \), and “most” radii \(r \) (on a logarithmic scale) the discs \(D(x, r) \) and \(D(y, r) \) are either well-separated (if \(r << |x - y| \)) or almost coincide (if \(r >> |x - y| \)).

References

[1] D. Aldous, *Probability approximations via the Poisson clumping heuristic*, Applied Mathematical Sciences **77**, Springer-Verlag, New York, 1989.
[2] D. Aldous, *An introduction to covering problems for random walks on graphs*, J. Theoret. Probab. 2 (1989), 87–89.
[3] D. Aldous, Threshold limits for cover times, *J. Theoret. Probab.* 4 (1991), 197–211.
[4] D. Aldous, Random walk covering of some special trees, *J. Math. Anal. Appl.*—157 (1991), 271–283.
[5] D. Aldous and J. Fill, *Reversible Markov Chains and Random Walks on Graphs*, monograph in preparation, draft available at http://oz.Berkeley.EDU/users/aldous/book.html
[6] N. Alon and J. Spencer, *The Probabilistic Method*, Second Edition, Wiley, 2000.
[7] A. Broder, *Universal sequences and graph cover times. A short survey*. Sequences (Naples/Positano, 1988), 109–122, Springer, New York, 1990.
[8] M. J. A. M. Brummelhuis and H. J. Hilhorst, *Covering of a finite lattice by a random walk*. Phys. A 176 (1991), no. 3, 387–408.
[9] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni, *Cover Times for Brownian Motion and Random Walks in two dimensions*, submitted.
[10] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni, *Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk*, Acta Math. 186 (2001), 239–270.

[11] P. Erdős and S. J. Taylor, Some problems concerning the structure of random walk paths, *Acta Sci. Hung.*, 11 (1960), 137–162.

[12] J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV’s, and the sample DF. I, *Zeits. Wahr. verw. Gebiete*, 32 (1975), 111–131.

[13] R. Lyons, Random walks and percolation on trees, *Annals Probab.* 18 (1990), 931–958.

[14] R. Lyons and R. Pemantle, Random walks in a random environment and first-passage percolation on trees, *Ann. Probab.* 20 (1992), 125–136.

[15] P. Matthews, Covering problems for Brownian motion on spheres, *Ann. Probab.* 16 (1988), 189–199.

[16] M. Mihail and C. H. Papadimitriou, On the random walk method for protocol testing, *Computer aided verification* (Stanford, CA), 132–141, Lecture Notes in Comput. Sci. 818, Springer, Berlin, 1994.

[17] A. M. Nemirovsky, M. D. Coutinho-Filho, Lattice covering time in D dimensions: theory and mean field approximation, *Current problems in statistical mechanics* (Washington, DC, 1991). *Phys. A* 177 (1991), 233–240.

[18] Y. Peres, Intersection-equivalence of Brownian paths and certain branching processes, *Commun. Math. Phys.* 177 (1996), 417–434.

[19] Y. Peres, Probability on trees; an introductory climb, Lectures on probability theory and statistics (Saint-Flour, 1997), 193–280, *Lecture Notes in Math.* 1717, Springer, Berlin, (1999).

[20] E. A. Perkins and S. J. Taylor, Uniform measure results for the image of subsets under Brownian motion, *Probab. Theory Related Fields* 76 (1987), 257–289.

[21] D. Ray, Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion, *Trans. Amer. Math. Soc.* 106 (1963), 436–444.

[22] H. S. Wilf, The editor’s corner: the white screen problem, *Amer. Math. Monthly* 96 (1989), 704–707.