Influence of nitrate supplementation on \textit{in-vitro} methane emission, milk production, ruminal fermentation, and microbial methanotrophs in dairy cows fed at two forage levels

DOI: 10.2478/aoas-2021-0087

Majid Sharifi1, Akbar Taghizadeh1*, Ali Hosseinkhani1, Valiollah Palangi2, Muhlis Macit3 Abdelfattah Z. M. Salem3*, Mona M.M.Y. Elghndour3, Soheila Abachi4

1Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2Department of Animal Science, Agricultural Faculty, Ataturk University, 25240, Erzurum, Turkey
3Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, State of Mexico, Mexico
4Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada

*Corresponding author: asalem70@yahoo.com; salem@uaemex.mx; a_tagizadeh@tabrizu.ac.ir

Received date: 11 January 2021
Accepted date: 19 October 2021

To cite this article: (2021). Sharifi M., Taghizadeh A., Hosseinkhani A., Palangi V., Macit M. Salem A.Z.M., Elghndour M.M.M.Y., Abachi S. (2021). Influence of nitrate supplementation on \textit{in-vitro} methane emission, milk production, ruminal fermentation, and microbial methanotrophs in dairy cows fed at two forage levels, Annals of Animal Science, DOI: 10.2478/aoas-2021-0087

This is unedited PDF of peer-reviewed and accepted manuscript. Copyediting, typesetting, and review of the manuscript may affect the content, so this provisional version can differ from the final version.
Influence of nitrate supplementation on *in-vitro* methane emission, milk production, ruminal fermentation, and microbial methanotrophs in dairy cows fed at two forage levels

Majid Sharifi¹, Akbar Taghizadeh¹*, Ali Hosseinkhani¹, Valiollah Palangi², Muhlis Macit²
Abdelfattah Z. M. Salem³*, Mona M.M.Y. Elghndour³, Soheila Abachi⁴

¹Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
²Department of Animal Science, Agricultural Faculty, Ataturk University, 25240, Erzurum, Turkey
³Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, State of Mexico, Mexico
⁴Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada

Corresponding authors: asalem70@yahoo.com; salem@uaemex.mx;
a_tagizadeh@tabrizu.ac.ir

Majid Sharifi: https://orcid.org/0000-0002-1546-7864
Akbar Taghizadeh: https://orcid.org/0000-0002-9120-1662
Ali Hosseinkhani: https://orcid.org/0000-0001-5553-8404
Valiollah Palangi: https://orcid.org/0000-0001-6470-2608
Muhlis Macit: https://orcid.org/0000-0002-5055-1156
Abdelfattah Z. M. Salem: http://orcid.org/0000-0001-7418-4170
Soheila Abachi: http://orcid.org/0000-0002-9807-3632

Short title: Nitrate supplementation and ruminal microbiota in dairy cows
Abstract

Modifying the chemical composition of a diet can be a good strategy for reducing methane emission in the rumen. However, this strategy can have adverse effects on the ruminal microbial flora. The aim of our study was to reduce methane without disturbing ruminal function by stimulating the growth and propagation of methanotrophs. In this study, we randomly divided twenty multiparous Holstein dairy cows into 4 groups in a 2×2 factorial design with two forage levels (40% and 60%) and two nitrate supplementation levels (3.5% and zero). We examined the effect of experimental diets on cow performance, ruminal fermentation, blood metabolites and changes of ruminal microbial flora throughout the experimental period (45-day). Additionally, *in vitro* methane emission was evaluated. Animals fed diet with 60% forage had greater dry matter intake (DMI) and milk fat content, but lower lactose and milk urea content compared with those fed 40% forage diet. Moreover, nitrate supplementation had no significant effect on DMI and milk yield. Furthermore, the interactions showed that nitrate reduces DMI and milk fat independently of forage levels. Our findings showed that nitrate can increase ammonia concentration, pH, nitrite, and acetate while reducing the total volatile fatty acids concentration, propionate, and butyrate in the rumen. With increasing nitrate, methane emission was considerably decreased possibly due to the stimulated growth of *Fibrobacteria*, *Proteobacteria*, type II Methanotrophs, and *Methanoperedense nitroreducens*, especially with high forage level. Overall, nitrate supplementation could potentially increase methane oxidizing microorganisms without adversely affecting cattle performance.

Key words: dairy cows, forage, methanotrophs, microbiota, milk yield, nitrate, ruminal fermentation
Imperfect fermentation of feedstuff in the rumen, with methane as an end product, results in a loss of up to 12 percent of feed’s gross energy (Sharifi and Khadem, 2012). Moreover, approximately 81% of greenhouse gas emitted by livestock industry is associated with ruminal methane production (Hristov et al., 2013). Nonetheless, few methane emission mitigation strategies are commonly practiced; (1) decreasing the population of ruminal methanogens, (2) abatement of H$_2$ production, and (3) providing alternative H$_2$ sink (Johnson and Johnson, 1995; Feldewert et al., 2020). Despite the negative association of methanogen microorganisms with energy retention in livestock (Yang et al., 2016), their presence (e.g., such as archaea dominant group in methanogen by ≤3.3% of total microorganism) plays an important ecological role in the rumen (Danielsson et al., 2017). Generally, methanogens maintain a low partial pressure of hydrogen, promoting the inhibition of NADH oxidoreductase. A disruption in NADH oxidation and subsequent reduction in NAD$^+$ concentrations have been shown to
inhibit microbial fermentation (Hegarty and Gerdes, 1999). Conversely, the reduction in methane production could reduce energy lost through methanogenesis (Latham et al., 2016; Chen et al., 2019; Sharifi et al., 2021). Various studies have investigated the potential of unsaturated fatty acids, nitrate, sulphate, and fumarate as electron acceptors for the methane production reduction in livestock (Zeitz et al., 2013; Latham et al., 2016; Li et al., 2018). From a thermodynamic perspective, nitrate has shown to be more effectual among the others (Veneman et al., 2015). On the one hand, converting nitrate to ammonia, is energetically more favorable than converting carbon dioxide to methane (Sharifi et al., 2021). On the other hand, due to the presence of other electron acceptors in the rumen, utilization of nitrate is facing to performance limitation (Hulshof et al., 2012; Clough et al., 2020). Lee et al. (2017) reported that utilization of encapsulated nitrate not only could reduce methane emission but could also reduce meta-hemoglobin (met-Hb) levels in comparison with the control group in the beef cow. However, Hulshof et al. (2012), Veneman et al. (2015) and Zhao et al. (2015) found that nitrate alters the ruminal bacterial flora based on duration of adaptation and nitrate intake. Few studies have reported that nitrate could inhibit the in vitro growth of F. succinogenes (Hulshof et al., 2012; Zhao et al., 2015). The mechanism of action of nitrate is not completely understood yet. It is noteworthy that the flora of rumen is highly affected by pH and chemical composition of feed (Sharifi and Khadem, 2012; Sharifi et al., 2016 b). Therefore, changing forage to concentrate ratio of the diet can alter pH and available nitrogen thus affecting the ruminal flora (Sharifi et al., 2019 a; Chen et al., 2020).

There is ample amount of data about ruminal methane production; however, information about methane consumption in the rumen is scarce. Methanotrophs can oxidize methane and use it as carbon and energy source in anaerobic conditions with relatively high methane pressures (Parmar et al., 2015). Methanotrophic bacteria, based on carbon assimilation pathway and the intracellular membranes arrangement, are classified into two types (Sharifi and
Khadem, 2012; Bhattarai et al., 2019). Type I and II methanotrophs belong to g- and a-subclass of Proteobacteria, respectively (Kumar et al., 2016). A study showed that about 20% of the net global methane flux is oxidized before entering atmosphere (Finn et al., 2012). Research is rather focused on type II anaerobic methanotrophs since type I methanotrophs are incompetent to survive and grow in anaerobic conditions of the rumen. Studies have shown that type II methanotrophs (e.g., Methylomirabilis oxyfera and Methanoperedens nitroreducens) can reduce nitrate to nitrite in anaerobic environments that would subsequently be converted to nitrogen (Cui et al., 2015). M. nitroreducens and M. oxyfera are found in methane-rich anaerobic environment such as freshwater sludge, and wastewater (Stultiens et al., 2020). Since the anaerobic methane oxidation in the rumen can be expected (Kajikawa et al., 2003), the rumen microorganisms are compatible with nitrate supplementation (Zhou et al., 2012), and nitrate supplementation can be used to increase the anaerobic methanotrophic population to reduce methane generation. However, to the knowledge of authors the topic has not yet been studied.

As there is a greater potential of nitrate toxicity with diets containing less rapid fermentable energy, we tested nitrate supplementation at different levels of forage on (1) methanotrophs and microbial population in rumen fluid, (2) methane emission parameters through gas technique, and (3) performance of dairy cows.

Material and methods

Animals, diets, and experimental design

The study was carried out at the SEPID DAM farm in Tehran Province, Iran. The experiments were performed in accordance with the ethical standards approved by Tabriz University (Sharifi et al., 2016 b). Twenty Holstein cows, with an initial body weight of 550±22.5 kg and 122±10 days in milk, were transferred from free stall to individual-stall for
adaptation (15 days). Then the cows were kept in individual-stall for 30 days to run the experimental period. The study was carried out as a 2×2 factorial design with four treatments (n=20) as follows: 1) Forage 40% (F40, with no nitrate supplementation), 2) Forage 40% with 3.5% nitrate (F40N); 3) Forage 60% (F60, with no nitrate supplementation); and 4) Forage 60% with 3.5% nitrate (F60N). The source and chemical structure of the nitrate used included 5Ca(NO$_3$)$_2$·NH$_4$NO$_3$·10H$_2$O; 75% NO$_3$ in DM. The forage was a mixture of alfalfa hay and maize silage by 1 to 1 ratio (on dry matter basis). All cows were fed a total mixed ration *ad libitum* (TMR; Table 1) and orts were allowed at 10% of daily feed supply.

Data collection and samples analysis

Forage and feedstuff were evaluated for dry matter, crude protein, crude fibre, ether extract, ash and neutral detergent fibre according to the procedure of association of official analytical chemists method (AOAC, 2005). Measurements of daily dry matter intake (DMI) and milk yield (MY) were recorded from start to the end of study. Additionally, content of fat, protein and lactose of milk, and milk urea nitrogen (MUN) were analyzed every 3 days by infrared spectroscopy (MilkoScanTM, Foss Electric, Hillerød, Denmark). Furthermore, we estimated the feed efficiency (FE) by dividing MY and fat and protein corrected milk (FPCM: equation 1) by daily DMI using the following equation:

Equation 1: $FPCM \ (kg) = [(0.337 + 0.116 \times fat \ (%) + 0.06 \times protein \ (%) \times MY \ (kg/d)]$

For haemoglobin (Hb) and MUN measurements, blood samples (20 ml) were collected from the tail vein into EDTA coated tubes of cows at 3-day intervals (1.8 g/l of blood). The MUN was determined according to a previously described colorimetric phenol-hypochlorite method (Naderi et al., 2016). The Hb and meta-Hb determinations were carried out by optical spectrophotometric method of Abhilash (2019).
Rumen fluid samples were taken (200 ml) from each cow 3-hour after morning feedings at 3-day intervals, using a Geishausser oral probe (Keefe and Ogilvie, 1997; Khadem et al., 2009). For volatile fatty acid (VFA) determinations of the rumen fluid, the samples were thawed at 25°C and centrifuged at 6000g for 10 min. The individual VFA was determined by gas liquid chromatography (model no. CP-9002, Delft, the Netherlands) as outlined by Filipek and Dvořák (2009). Ammonia was measured by a previously described colorimetric phenol-hypochlorite method (Cho et al., 2018). For estimation of nitrate and nitrite, fermented medium (2 ml) was mixed with 2 ml of 75 mM ZnSO₄ and 2.5 ml of 55 mM NaOH. After 15 min, samples were centrifuged at 2500g for 10 min at 4°C. Supernatant, free from any solid particles, was recovered and analysed for nitrate and nitrite content using the cadmium-reduction procedure of MacDonald et al. (2017).

Total gas production and methane production

Gas production was measured using the method of Rymer et al. (2005). Twenty millilitres of strained rumen fluid and McDougall's buffer solution mixture were added to each bottle under continuous CO₂ flow (1:2 ratio of rumen fluid to McDougall’s buffer). The rumen fluid was obtained 3-hour after morning feeding from the rumen of animals from each group and filtered through 4 layers of cheesecloth. All serum bottles were heated to 39°C and subsequently flushed with O₂-free CO₂ prior to the addition of inoculums. Gas production was recorded at 2, 4, 6, 8, 12, 16, 24, 36, 48, 72 and 96 h using a water displacement apparatus. The gas volume was calculated using the following equation.

Equation 2: \(V = \frac{(V_t - V_b) \times 100}{W} \)

Where \(V \) is the net volume of gas produced per gram of DM of diet sample, \(V_t \) is the total gas produced in sample bottles (ml), \(V_b \) is the average total gas produced in blank bottles (ml), and \(W \) is the weight of sample on DM basis (g).
The gas production profiles were fitted with equation 3 of Kamalak et al. (2005) using the NLIN procedure of SAS (SAS Institute, Inc., Cary, North Carolina, USA).

\[y = a + b(1 - e^{-ct}) \]

Equation 3: Where \(y \) is the volume of gas produced at time (t) (ml/g DM), \(a \) is the gas produced from immediately soluble fraction (ml), \(b \) is the gas production from the insoluble fraction (ml), \(c \) is the gas production rate constant, \((a+b)\) is the potential gas production (ml), and \(t \) is the incubation time (h).

For methane estimation, 100 µl of gas from the serum bottles was injected into gas-liquid chromatography as described by Agarwal et al. (2008). A mixture of H\(_2\), methane, and CO\(_2\) (100, 201, and 101 ml/l, respectively) was used as the standard.

Molecular identification and quantitation of the rumen microbial population

The quantitative Polymerase Chain Reaction (qPCR) technique was applied for the quantitative analysis of the ruminal microbes. Microbial cells were kept in 2 ml RNAlater reagent (Qiagen, Germany). In the process of separating, 200 µl of lysozyme solution (10 mg/ml), was added to the collected microbes, and incubated for 5 minutes at 5°C for lysing the cell wall. Next, DNA was elicited by a QIAamp DNA Stool Mini Kit (Qiagen, Germany). The DNA condensation was evaluated by applying the NanoDrop 2000 spectrophotometer (NanoDrop Technologies, USA) at the absorbance of 280 nm and elicited DNA quality was determined with 1% agarose gel elctrophoresis (100 v, 40 min). The DNA specimen were kept at –20°C until further analysis.

To measure the population of microorganisms in samples from the SYBR, green-based absolute real-time qPCR was used. To provide the qPCR DNA standard, a general PCR was carried out by applying the particular bacteria primer (Patra and Yu, 2014). Then, the PCR products were cloned into PCR2.1-TOPO TA cloning vector (Invitrogen, CA, USA) and
transformed into chemically competent *Escherichia coli* TOP10 cells. The best positive clone was cultured, and then the plasmid recombined DNA in the cultured clone was elicited by TIANprep Mini Plasmid Kit (Tiangen, China) and applied as the qPCR DNA standard. The standard DNA condensation was diluted to 30 ng/μl, and then series of dilutions were used to create a calibration curve. The diluted DNA standard copy number was estimated according to the equation described by Yu et al. (2005) via the recombined DNA average molecular weight and the mass concentration. The population size of bacteria in each sample with 30 ng genomic DNA were obtained using calibration curve and its Ct value. To calculate the number of bacteria in one millilitre of ruminal fluid, initial volume of elicited DNA was multiplied by its dilutions.

Afterwards, the microorganism’s relative proportions to the total bacteria were calculated by quantitative competitive PCR. The relative proportion values were estimated by applying the $2^{-\Delta\Delta Ct}$ as explained by Chini et al. (2007). The PCR reaction mixture was composed of 10 μl of SYBR Premix Ex Taq (Takara Biotechnology Co., China), 0.4 μM of each primer and 30 ng of the elicited bacterial genomic DNA. The qPCR assay for each sample was carried out in triplicate. The primers applied for recognizing the microbes are listed in Table 2.

Statistical analyses

The ANOVA for averages of DMI, MY, FPCM, percentage of milk fat and protein, and FE, as well as MUN concentration were analysed according to a completely randomized design with the repeated measures using PROC MIXED procedure of SAS (Institute, 2018). The model included the fixed effects of nitrate supplementation, forage levels, days, and their interaction. The cow within treatments was used as a random effect. The covariance structure that yielded the smaller Akaike’s information criterion was used as described by Cavanaugh and Neath (2019). All parameters of fermentation parameters in the rumen, blood metabolites and the population of microorganisms were analyzed by analysis of variance (ANOVA) based on a 2×2
factorial model that accounted for the main effects of nitrate supplementation and forage level in a complete randomized design. Differences among diets were considered significant at P<0.05. The gas production data and its parameters were analysed by analysis of variance using the general linear model for a randomized complete block design. All in vitro measurements were conducted in triplicates for each treatment.

Results

Intake and milk production

Our findings showed that increasing forage to concentrate ratio from 40% to 60% could augment DMI while reducing FPCM (P<0.05). Nevertheless, nitrate supplementation (i.e., F40N and F60N) had no effect on DMI, MY and FPCM. Moreover, interaction effects indicated that the use of nitrate supplementation could reduce DMI with 60% forage level. Likewise, the changes in feed efficiency during the trial period was negatively correlated to DMI fluctuation (P<0.01). Same trend was observed for MY (P<0.05). Furthermore, despite the reduction in milk fat percentage with nitrate supplementation (i.e., F40N and F60N), increasing levels of forage (i.e., F60N) reduced (P<0.05) the negative impact of nitrate supplementation. However, increasing the level of forage plus dietary nitrate supplementation significantly reduced (P<0.05) MUN. Therefore, the interaction effects between nitrate addition and the forage level indicated that the level of forage strongly influences milk quality and quantity (Table 3).

Blood metabolites and rumen parameters

Per our results, daily intake of nitrate supplementation and forage level increased plasma concentration of BUN (P<0.01) but did not affect the plasma Hb concentrations. Nonetheless, meta-Hb concentration at 3 h post feeding was affected by nitrate supplementation (Table 4). Although, ruminal pH (measured at 3 h after feeding) was different (P<0.01) among groups,
feeding nitrate and higher forage level increased (P<0.01) rumen NH$_3$-N and pH. Ruminal total VFA concentration (P<0.05) and propionate (P<0.01) along with butyrate (P<0.05) were decreased by adding nitrate to the diets, and these differences were more noticeable with high forage level. Concentration of iso-butyrate and valerate were affected neither by dietary nitrate supplementation nor by forage level. Nitrate supplementation increased (P<0.001) concentrations of nitrate (103.2 µM) and nitrite (94.56 µM) in the rumen, whereas no forage level effect was found for these parameters (Table 4). Nevertheless, unlike forage level nitrate supplementation could significantly increase the ratio of Acetate:Propionate (P<0.05).

In vitro fermentation, total gas, and methane emission

According to the results, nitrate inclusion was only effective on the VFA concentration at the forage level of 60% (from the beginning to 36 hours of incubation) (P<0.01). Furthermore, the nitrate supplement and high forage significantly decreased total gas production (P<0.01). Nitrate supplementation also resulted in lower (P<0.05) methane production during 96 h of incubation. Rate of gas reduction and methane production were more intense by nitrate inclusion at 60% forage level. On the one hand, forage level seemed to be inversely correlated with gas production potential (a+b) as well as b parameter, while nitrate inclusion did not affect the same factors. On the other hand, neither forage level nor nitrate supplementation were effective on gas production rate (c). Nevertheless, increasing forage level and nitrate inclusion had a more negative effect on a+b and b parameters (Table 5).

Microbial community identification and quantitation

Our findings showed that all the identified and characterized ruminal microorganisms were affected (P<0.05) by nitrate supplementation and forage level except for *M. ruminantium* and *M. Gottschalkii*. Rumen bacterial 16S gene and protozoa 18S copies number (log$_{10}$ copies
per g DM) decreased with nitrate supplementation (F40N and F60N) versus control groups at both forage levels. Based on the analysis of ruminal bacteria community, nitrate supplementation numerically decreased *Prevotella* genus in the *Bacteroidetes* phylum (P<0.01), and *Firmicutes* (P<0.05). In contrary, nitrate addition increased *Fibrobacteria*, *Ruminococcus* genus in the *Firmicutes* phylum, *Proteobacteria* (P<0.01) and type II Methanotroph in the *Proteobacteria* phylum (P<0.05). However, high forage level plus nitrate reduced the population of all bacteria except for *Prevotella* and type II Methanotroph (Table 6). Archaeal 16S gene copy number (Log_{10} copies) tended to decrease (P=0.08) with nitrate supplementation compared with the control group. Nitrate supplementation at high forage level significantly decreased the *Prevotella* population compared with nitrate-free treatment. Percentages of archaea (*Methanobrevibacter ruminantium* and *gottschalkii*) were not affected by nitrate supplementation and forage levels. Furthermore, *Methanoperedense nitroreducens* increased (P<0.01) by the nitrate supplementation and high forage. Protozoa 18S copy number (log_{10} copies per g DM) ciliate protozoa was decreased (P<0.05) by nitrate supplementation in the mixed rumen sample. The effect of nitrate addition on the reduction of protozoa and ciliate protozoa populations were exacerbated at high forage level (Table 6).

Discussion

The impact of nitrate supplementation on DMI and livestock performance has shown to vary from one to another experiment. Olijhoek et al. (2016) and Sharifi et al. (2019 b) demonstrated that DMI was not affected by nitrate supplementation. In disagreement, Hulshof et al. (2012) and Klop et al. (2016) showed that nitrate supplementation could reduce DMI. These differences between the reports could be associated with the feeding strategy (*i.e.*, free nitrate or encapsulated, a single dose or as part of the total mixed ration, and restricted or *ad libitum* feeding). Furthermore, results of FPCM and MUN in the presence of nitrate were in
agreement with the reports of Veneman et al. (2015) and Guyader et al. (2016). Van Zijderveld et al. (2011) and Olijhoek et al. (2016) showed that while nitrate addition could reduce milk fat percentage, its effects were insignificant on cow’s performance and feed efficiency. The reduction in milk fat could be due to higher MY since FPCMs were rather comparable.

It is noteworthy that utilization of nitrate in ruminant nutrition could pose adverse effects on animal and human health. One of the indicators of health in livestock is the met-Hb level upon nitrate consumption. In spite of a 2.5% increase in met-Hb levels, its amounts in the blood of dairy cows were lower than the values to show clinical signs of meta-hemoglobinemia (Van Zijderveld et al., 2011; Klop et al., 2016). Basically, for the development of subclinical meth-hemoglobinemia, the level of met-Hb is reported to be between 25 and 30% (Duthie et al., 2018).

In our experiment, NH$_3$-N concentration in the rumen increased with nitrate addition (i.e., F40N and F60N) (Table 4). The diets in this study were iso-nitrogenous, thus a significant difference in the ruminal NH$_3$-N among groups could be due to the conversion of nitrate to ammonia which can through competition in hydrogen uptake relative to CO$_2$ ultimately reducing methane emission (Welte et al., 2016). In addition to ammonium, changing the VFA profile can indicate changes in rumen fermentation and microbial activity. Similar to our results, an increase in acetate and a decrease in propionate by the nitrate supplementation have been previously reported by Hulshof et al. (2012), Veneman et al. (2015), Zhao et al. (2015) and Sharifi et al. (2021). Nonetheless, increasing the acetate and reducing the propionate may only illustrate the increase in accumulated hydrogen, not the change in methane production. Reduction of propionate may hinder the full incorporation of accumulated hydrogen into propionogenesis (Ungerfeld, 2015; Florentino et al., 2019). The collected hydrogen must preferably be addressed to alternative receptors with nutritional value such as propiogenesis (Olijhoek et al., 2016). The total ruminal VFA reduction, in the present study, was in agreement
with the findings of Guyader et al. (2016), while others exhibited its insignificant effect on the same parameter (Hulshof et al., 2012; Veneman et al., 2015; Olijhoek et al., 2016). In contrast, Zhao et al. (2015) reported greater total ruminal VFA for nitrate fed cows. Ruminal VFA profile is an indicator of microbial activity (Sharifi and Khadem, 2012; Sharifi et al., 2016 a), thus its reduction by nitrate addition can be due to the effect of supplement on the activity of certain microbial species. Interestingly, nitrate supplementation increased *Fibrobacter* population contributing to augmented acetate production and acetate to propionate ratio (Veneman et al., 2015). On the one hand, higher ruminal pH in the presence of nitrate can make more appropriate environment for *Fibrobacter* activity. On the other hand, the activity of *Prevotella* (a genus known to produce propionate) (Sharifi and Khadem, 2012) is greatly reduced by nitrate supplementation. Correspondingly, the reduction of propionate as well as propiogenesis can be associated with a reduction in the population of *Prevotella*.

The results of gas technique showed that increasing the level of forage reduces the methane and gas production. While further studies illustrated that greater amount of rapidly fermentable carbohydrates per unit of feed essentially reduces the methane production (Maccarana et al., 2016). Nitrate inclusion along with an increase in forage level, intensified the reduction of gas volume and methane emission, presumably due to successful competition for H₂ uptake by nitrate- and nitrite-reducing microbes. Reducing methane emission by nitrate inclusion agrees with the reports of Lin et al. (2011), Sakthivel et al. (2012), Liu et al. (2017) and Sharifi et al. (2019 b). It is of note that similar *in-vitro* experimental setting with different substrates was used in those studies. The reduction of kinetic parameters in the present study, especially gas production by the soluble and insoluble portions of the diet with nitrate supplementation, was in agreement with those reported by Guo et al. (2009), Lin et al. (2011), Wang et al. (2016) and Sharifi et al. (2019 b). Although, nitrate reduces gas volume and methane emission, yet, in accordance with the reports of Lin et al. (2011) and Liu et al. (2017), its effects
were insignificant on VFA. Our findings do not agree with those demonstrated by Guo et al. (2009) and Wang et al. (2016) reporting the modulatory effects of methane mitigation agents on VFA profile.

Our results, in concurrence with the reports of Tapio et al. (2017) and Danielsson et al. (2017), showed that the population of general bacteria and protozoa, unlike the archaeal population, decreases with a rising forage level. Likewise, our results, similar to those reported by Veneman et al. (2015) and Zhao et al. (2015), showed that not only nitrate supplementation significantly could alter ruminal microbial flora, but it could also increase the ruminal population of *Fibrobacteria* and *Proteobacteria* (microorganisms known to reduce methane emission via absorbing hydrogen by participating in fumarate reductase activity). Contrarily, our observations illustrated that nitrate supplementation has a negative effect on the population of *Ruminococcus*, which can be due to the low period of habitability (Popova et al., 2019). Observations of Granja-Salcedo et al. (2019) pointed out that the lack of uniformity in the effects of nitrates on cellulolytic bacteria is associated with a short period of habitability. Furthermore, nitrate supplementation and changes in forage level had no effect on *Methanobrevibacter* (from archaeal group) which was positively associated with methane production (Veneman et al., 2015). Despite the high toxicity of nitrate on archaeal and related genus (Danielsson et al., 2017; Granja-Salcedo et al., 2019), its low dose may be safe or less toxic. It is noteworthy that species of archaea respond differently to nitrate addition (based on dose, form, etc.) and changes in H_2 concentration (Kittelmann et al., 2014).

Methane is the principle stable carbon compound in anaerobic environments that can enter the atmosphere without being oxidized by methanotrophs (Parmar et al., 2015; Annika et al., 2017). Nitrate supplementation increased the type II Methanotrophs abundance and *Methanoperedense nitroreducens* in high forage diets, leading to methane production reduction in the rumen. However, the relative abundance of *Methanoperedense nitroreducens* was low.
Nitrate plus high level of forage improved the \textit{Methanoperedense nitroreducens} population yet high forage diet (with no nitrate) seemed to be more potent than the combination. Mitsumori et al. (2002) stated that Proteobacteria and type I Methanotrophs were detectable in cattle rumen, but type II methanotrophs were not detected in this study. In agreement with the current study, Finn et al. (2012) and Parmar et al. (2015) reported the presence of type II Methanotrophs in the rumen. Additionally, Finn et al. (2012) reported that the number of \textit{Methylocystis} cells (subgroup of type II methanotrophs) of whole rumen contents across the four animals was 4.38×10^4 cells/ml. In contrary, Liu et al. (2017) could not detect anaerobic Methanotrophic archaea in the fresh ruminal fluid and the ruminal fluid culture.

\textbf{Conclusion}

Increasing forage level did not affect blood metabolites but increased DMI, milk fat content, ruminal ammonia, and acetate, and decreased milk urea, lactose, total VFA. Nitrate supplementation suppressed total VFA, propionate and butyrate, and increased acetate concentration, and acetate to propionate ratio. Additionally, nitrate supplementation decreased rumen population of protozoa, archaea, and general bacteria except for \textit{Fibrobacteres}, \textit{Protobacteria} and Methanotrophs. Increasing the level of forage has exacerbated the effects of nitrate on dairy cows’ performance and ruminal microbial population. Gas volume and its kinetics parameters, as well as methane emission were affected by nitrate addition. Methane emission reduction seemed to be positively associated with increased Methanotrophs. However, it was determined that increasing the population of type II Methanotroph was more effective than \textit{Methanoperedense nitroreducens} on nitrate supplementation. Increasing forage level stimulated the growth and propagation of type II Methanotrophs. Therefore, this study demonstrated that methane emission could be decreased without drastic effects on the ruminal microbial population, dry matter intake and or lactational performance of the animal. Overall,
according to our results use of 3.5% nitrate supplementation with 60% forage compared with 40% forage not only reduced methane emissions without severe effects on ruminal microbial population, but also did not have a significant negative effect on the performance of dairy cows.

Implications

This study showed that nitrate has the potential to improve rumen fermentation and microbial population in dairy cows, along with reduced methane emissions. Changing the proportions of the ruminal microbial population without altering livestock performance is one of the important factors that should be considered in reducing methane emission. These results suggest that methane production could feasibly be reduced by nitrate without its undesirable effects on ruminal microbial population and livestock performance.

Conflicts and interest

The authors do not have any conflicts of interest to declare.

Acknowledgements

This research was made possible by the grant number 788 from University of Tabriz. The statements made herein are the sole responsibility of the authors. We sincerely acknowledge and thank the Valfajr Agricultural Research Center for its financial and technical support. We also thank Marzie Safdari for her assistance in data collection.

References

Abhilash K.P.P. (2019). Methemoglobinemia: When to suspect and how to treat. Curr. Med. Iss., 17: 125.
Agarwal N., Kamra D., Chatterjee P., Kumar R., Chaudhary L. (2008). In vitro methanogenesis, microbial profile and fermentation of green forages with buffalo rumen liquor as influenced by 2-bromoethanesulphonic acid. Asian-Australas. J. Anim. Sci., 21: 818–823.

Annika V., Jetten M.S.M., Ettwig K.F., Lüke C. (2017). McrA primers for the detection and quantification of the anaerobic archaean methanotroph ‘Candidatus Methanoperedens nitroreducens’. Appl. Microbiol. Biotechnol., 101: 11.

AOAC (2005). Official method of analysis. 18 ed., Arlington, VA, US.

Bhattarai S., Cassarini C., Lens P. (2019). Physiology and distribution of archaean methanotrophs that couple anaerobic oxidation of methane with sulfate reduction. Microbiol. Mol. Biol. Rev., 83.

Cavanaugh J.E., Neath A.A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11: e1460.

Chen D., Tang Q., Huawei S., Aziz ur Rahman M., Wu D., Wan F., Shen W. (2020). Ruminal fermentation parameters and microbial community at phylum level differently influenced by forage types in bulls. Int. J. Agric. Biol., 24: 1025–1032.

Chen H., Luo J., Liu S., Yuan Z., Guo J. (2019). Microbial methane conversion to short-chain fatty acids using various electron acceptors in membrane biofilm reactors. Environ. Sci. Technol., 53: 12846–12855.

Chini V., Foka A., Dimitracopoulos G., Spiliopoulou I. (2007). Absolute and relative real-time PCR in the quantification of tst gene expression among methicillin-resistant Staphylococcus aureus: evaluation by two mathematical models. Lett. Appl. Microbiol., 45: 479–484.

Cho Y.B., Jeong S.H., Chun H., Kim Y.S. (2018). Selective colorimetric detection of dissolved ammonia in water via modified Berthelot’s reaction on porous paper. Sens. Actuat. B: Chem., 256: 167–175.

Clough T.J., Cardenas L.M., Friedl J., Wolf B. (2020). Nitrous oxide emissions from ruminant urine: science and mitigation for intensively managed perennial pastures. Curr. Opin. Environ. Sust., 47: 21–27.

Cui M., Ma A., Qi H., Zhuang X., Zhuang G. (2015). Anaerobic oxidation of methane: an “active” microbial process. Microbiol. Open, 4: 1–11.

Danielsson R., Dicksved J., Sun L., Gonda H., Müller B., Schnürer A., Bertilsson J. (2017). Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol., 8: 226.
Duthie C.-A., Troy S., Hyslop J., Ross D., Roehe R., Rooke J. (2018). The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle. Animal, 12: 280–287.

Feldewert C., Lang K., Brune A. (2020). The hydrogen threshold of obligately methyl-reducing methanogens. FEMS Microbiol. Lett., 367: fnaa137.

Filipek J., Dvořák R. (2009). Determination of the volatile fatty acid content in the rumen liquid: comparison of gas chromatography and capillary isotachophoresis. Acta Vet. Brno, 78: 627–633.

Finn D., Ouwerkerk D., Klieve A. (2012). Methanotrophs from natural ecosystems as biocontrol agents for ruminant methane emissions. Final report in University of Queensland. Project code: B.CCH.1013.

Granja-Salcedo Y.T., Fernandes R.M., Araujo R.C., Kishi L.T., Berchielli T.T., Resende F.D., Berndt A., Siqueira G.R. (2019). Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Front. Microbiol., 10: 614.

Guo W.S., Schaefer D.M., Guo X.X., Ren L.P., Meng Q.X. (2009). Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian-Australas. J. Anim. Sci., 22: 542–549.

Guyader J., Doreau M., Morgavi D., Gérard C., Loncke C., Martin C. (2016). Long-term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk. Animal, 10: 1173–1181.

Hegarty R., Gerdes R. (1999). Hydrogen production and transfer in the rumen. Rec. Adv. Anim. Nutr. Australia, 12: 37–44.

Hulshof R., Berndt A., Gerrits W., Dijkstra J., Van Zijderveld S., Newbold J., Perdok H. (2012). Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J. Anim. Sci., 90: 2317–2323.

SAS (2018). SAS 9.4 Macro Language: Reference. SAS institute.

Johnson K.A., Johnson D.E. (1995). Methane emissions from cattle. J. Anim. Sci., 73: 2483–2492.

Kajikawa H., Valdes C., Hillman K., Wallace R., Newbold C.J. (2003). Methane oxidation and its coupled electron-sink reactions in ruminal fluid. Lett. Appl. Microbiol., 36: 354–357.

Kamalak A., Canbolat O., Gurbuz Y., Ozay O. (2005). Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech J. Anim. Sci., 50: 8.
Keefe G.P., Ogilvie T.H. (1997). Comparison of oro-rumenal probe and rumenocentesis for prediction of rumen pH in dairy cattle. Proc. Annual Conference. American Association of Bovine Practitioners, pp. 168–169.

Khadem A.A., Sharifi M., Afzalzadeh A., Rezaeian M. (2009). Effects of diets containing alfalfa hay or barley flour mixed alfalfa silage on feeding behavior, productivity, rumen fermentation and blood metabolites in lactating cows. Anim. Sci. J., 80: 403–410.

Kittelmann S., Pinares-Patino C.S., Seedorf H., Kirk M.R., Ganesh S., McEwan J.C., Janssen P.H. (2014). Two different bacterial community types are linked with the low-methane emission trait in sheep. PloS One, 9:e103171.

Klop G., Hatew B., Bannink A., Dijkstra J. (2016). Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows. J. Dairy Sci., 99: 1161–1172.

Kumar M., Tomar R.S., Lade H., Paul D. (2016). Methylotrophic bacteria in sustainable agriculture. World J. Microbiol. Biotechnol., 32: 1–9.

Latham E.A., Anderson R.C., Pinchak W.E., Nisbet D.J. (2016). Insights on alterations to the rumen ecosystem by nitrate and nitrocompounds. Front. Microbiol., 7: 228.

Lee C., Araujo R., Koenig K., Beauchemin K. (2017). Effects of encapsulated nitrate on growth performance, nitrate toxicity, and enteric methane emissions in beef steers: backgrounding phase. J. Anim. Sci., 95: 3700–3711.

Li Z., Liu N., Cao Y., Jin C., Li F., Cai C., Yao J. (2018). Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. J. Anim. Sci. Biotechnol., 9: 1–9.

Lin M., Schaefer D., Guo W., Ren L., Meng Q. (2011). Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas. J. Anim. Sci., 24: 471–478.

Liu L., Xu X., Cao Y., Cai C., Cui H., Yao J. (2017). Nitrate decreases methane production also by increasing methane oxidation through stimulating NC10 population in ruminal culture. Amb. Express, 7: 1–7.

Maccarana L., Cattani M., Tagliapietra F., Bailoni L., Schiavon S. (2016). Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J. Anim. Sci. Biotechnol., 7: 54–61.

MacDonald G., Levison J., Parker B. (2017). On methods for in-well nitrate monitoring using optical sensors. Ground Water Monit. Remed., 37: 60–70.
Mitsumori M., Ajisaka N., Tajima K., Kajikawa H., Kurihara M. (2002). Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol., 35: 251–256.

Naderi N., Ghorbani G., Sadeghi-Sefidmazgi A., Nasrollahi S., Beauchemin K. (2016). Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production. J. Dairy Sci., 99: 8847–8857.

Olijhoek D., Hellwing A.L.F., Brask M., Weisbjerg M., Højberg O., Larsen M., Dijkstra J., Erlandsen E., Lund P. (2016). Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci., 99: 6191–6205.

Parmar N.R., Nirmal Kumar J.I., Joshi C.G. (2015). Exploring diet-dependent shifts in methanogen and methanotroph diversity in the rumen of Mehsani buffalo by a metagenomics approach. Front. Life Sci., 8: 371–378.

Patra A.K., Yu Z. (2014). Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Biore. Technol., 155: 129–135.

Popova M., Guyader J., Silberberg M., Seradj A.R., Saro C., Bernard A., Gérard C., Martin C., Morgavi D.P. (2019). Changes in the rumen microbiota of cows in response to dietary supplementation with nitrate, linseed, and saponin alone or in combination. Appl. Environ. Microbiol., 85.

Rymer C., Huntington J., Williams B., Givens D. (2005). In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol., 123: 9–30.

Sakthivel P.C., Kamra D.N., Agarwal N., Chaudhary L.C. (2012). Effect of sodium nitrate and nitrate reducing bacteria on in vitro methane production and fermentation with buffalo rumen liquor. Asian-Australas. J. Anim. Sci., 25: 812.

Sharifi M., Hosseinkhani A., Sofizade M., Mosavi J. (2016 a). Effects of fat supplementation and chop length on milk composition and ruminal fermentation of cows fed diets containing Alfalfa silage. Ir. J. Appl. Anim. Sci., 6: 293–301.

Sharifi M., Khadem A., Heins B., Pahlavan R., Mosavi J., Safdari M. (2019 a). Effect of forage feeding level on body weight, body condition score, milk production, and milk urea nitrogen of holstein cows on an organic diet. Ir. J. Appl. Anim. Sci., 9: 617–624.
Sharifi M., Khadem A.A. (2012). Dynamic fermentation in ruminants animal products to biogas. Vol. 1. Danesh Negar Press.

Sharifi M., Taghizadeh A., Hosseinkhani A. (2016 b). The introduction for the livestock and poultry industry in Iran. 1 ed. Agricultural Education and Extension Publications, Tehran, Iran.

Sharifi M., Taghizadeh A., Hosseinkhani A., Mohammadzadeh H., Palangi V., Macit M., Salem A.Z., Abachi S. (2021). Nitrate supplementation at two forage levels in dairy cows feeding: milk production and composition, fatty acid profiles, blood metabolites, ruminal fermentation, and hydrogen sink. Ann. Anim. Sci., https://doi.org/10.2478/aoas-2021-0044

Sharifi M., Taghizadeh A., Khadem A., Hosseinkhani A., Mohammadzadeh H. (2019 b). Effects of nitrate supplementation and forage level on gas production, nitrogen balance and dry-matter degradation in sheep. Anim. Prod. Sci., 59: 515–523.

Stultiens K., van Kessel M.A., Frank J., Fischer P., Pelzer C., van Alen T.A., Kartal B., den Camp H.J.O., Jetten M.S. (2020). Diversity, enrichment, and genomic potential of anaerobic methane-and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant. Appl. Microbiol. Biotechnol., 104: 7201–7212.

Tapio I., Snelling T.J., Strozzi F., Wallace R.J. (2017). The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol., 8: 1–11.

Van Zijderveld S., Gerrits W., Dijkstra J., Newbold J., Hulshof R., Perdok H. (2011). Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci., 94: 4028–4038.

Veneman J.B., Muetzel S., Hart K.J., Faulkner C.L., Moorby J.M., Perdok H.B., Newbold C.J. (2015). Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows? PloS One, 10:e0140282.

Wang M., Wang R., Yang S., Deng J.P., Tang S.X., Tan Z.L. (2016). Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique. Anim. Sci. J., 87: 224–232.

Welte C.U., Rasigraf O., Vaksmaa A., Versantvoort W., Arshad A., Op den Camp H.J., Jetten M.S., Lüke C., Reimann J. (2016). Nitrate-and nitrite-dependent anaerobic oxidation of methane. Environ. Microbiol. Rep., 8: 941–955.

Yang C., Rooke J.A., Cabeza I., Wallace R.J. (2016). Nitrate and inhibition of ruminal methanogenesis: microbial ecology, obstacles, and opportunities for lowering methane emissions from ruminant livestock. Front. Microbiol., 7: 132.
Yu Z., Michel F.C., Hansen G., Wittum T., Morrison M. (2005). Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl. Environ. Microbiol., 71: 6926–6933.

Zeitz J., Bucher S., Zhou X., Meile L., Kreuzer M., Soliva C. (2013). Inhibitory effects of saturated fatty acids on methane production by methanogenic Archaea. J. Anim. Feed Sci., 22: 44–49.

Zhao L., Meng Q., Ren L., Liu W., Zhang X., Huo Y., Zhou Z. (2015). Effects of nitrate addition on rumen fermentation, bacterial biodiversity and abundance. Asian-Australas. J. Anim. Sci., 28: 1433–1441.

Zhou Z., Yu Z., Meng Q. (2012). Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Biores. Technol., 103: 173–179.

Ingredient (g/kg of DM)	Treatment 1	Treatment 2	Treatment 3	Treatment 4
Alfalfa hay	200	200	300	300
Maize silage	200	200	300	300
Barley grain	120	120	81	81
Corn grain	120	120	59	59
Soybean meal	67	67	55	54
Meat and bone meal	16	17	10	10
Sugar (beet pulp)	69	69	30	30
Wheat bran	99	99	59	59
Molasses (beet sugar)	35	35	34	34
Fat supplementation	20	20	20	20
Chemical Composition (g/kg of DM)	5	5	4	4
--	-------	-------	-------	-------
Di-calcium phosphate	10	1	10	1
Limestone	2	2	3	3
Urea	25	0	25	0
Calcinit\(^2\)	0	35	0	35
Mineral-Vitamin mix\(^3\)	7	5	5	5
Sodium bicarbonate	5	5	5	5

1. F40: forage 40% without nitrate supplementation, F40N: forage 40% with nitrate supplementation, F60: forage 60% without nitrate supplementation and F60N: forage 60% with nitrate supplementation.
2. Nitrate source with molecular formula: \(5\text{Ca(NO}_3\text{)}_2\cdot\text{NH}_4\text{NO}_3\cdot10\text{H}_2\text{O}\); 75\% NO\(_3\) in DM.
3. Mineral composition (mg/kg): Ca: 195 000; P: 90 000; Mg: 20 000; Na: 55 000; Cu: 280; Zn: 3 000; Mn: 2 000; I: 100; Co: 100; Se: 1. Vitamin composition (IU/kg): vitamin A: 600 000; vitamin D3: 120 000 and vitamin E: 1 300.
4. TDN (%) = tdNFC + tdCP + (tdFA \times 2.25) + tdNDF - 7.
5. NFC = 100 - (Fat\% + NDF\% + CP\% + Ash\%).
6. NEL (Mcal/kg DM) = 0.0245 \times TDN(\%) - 0.12.
Table 2. PCR primer sets used in the experiment

Item	Sequence 5′→3′	References
General bacteria	F: CCTACGGGAGGCAGCAG	Zhao et al. (2015)
	R: ATTACCAGGGGCTGCTGG	
Bacteroidetes	F: GGARCATGTGGTGGTTAAATCGAGTGG	Guo et al. (2008)
	R: AGCTGACGACAACCATGCAG	
Prevotella	F: ACTGCAGCGGAACCTGTCAGA	Fernando et al. (2010)
	R: ACCTTACGGTGGCGATCCTC	
Firmicutes	F: GGAGYATGTGGTTAAATCGAGGCA	Guo et al. (2008)
	R: AGCTGACGACAACCATGCAC	
Ruminococcus	F: ATGCCGTAAAGGAAGC	Christopherson et al. (2014)
	R: CACACCTATCGCCTGATA	
Fibrobacteria	F: GGTATGGGATGGAGCTTG	Fernando et al. (2010)
	R: GCCTGCCCCCTGAACATATC	
Protobacteria	F: GAGTTTTGATCMTGGCTCAG	Mitsumori et al. (2002)
	R: CAKAAAGGGAGGTGATCC	
Type II Methanotroph	F: AGAGTTTGATCCTGGCTCAG	F: Edwards et al. (2008)
	R: CATCTCTGRCASAYCATCGCCGG	R: Wise et al. (1999)
General archaea	F: GCTCAAGTAACACGTGG	F: Wright and Pimm (2003)
	R: GTGCTCCCCGCGCCATCTT	R: Watanabe et al. (2007)
Methanobrevibacter ruminantium	F: GGGGCTAATACCGGATAGGATT	Danielsson et al. (2017)
	R: CGACCTCAAGTTCAACGATCAC	
Methanobrevibacter gottschalkii	F: TCCGTAGCCGGTTTAATAAGTCT	Danielsson et al. (2017)
	R: TGCCTCTTATTTATCTAGGCGG	
Methanoperedense nitroreducens	F: GCAGCAATACCAAGAAAGAGG	Vaksmaa et al. (2017)
	R: TGCCTCTTTGTTGGAGGTACATGGA	
General protozoa	F: GCTTTCGWTGGTAGGTGTAT	Sylvester et al. (2004)
	R: ACTTGCCTCYAATCGTWCT	
Ciliate protozoa	F: CAYGTCTAAAGTATAAATAACTAC	Kittelmann et al. (2015)
	R: CTCTAGGTGATWGGRTTTAC	

1F: Forward and R: Reverse.
Table 3. Effect of nitrate (N) and forage level (F) on milk yield and feed efficiency in mid-lactation dairy Holstein cows

Item	Treatments¹	±SE²	P-values					
	F40	F40N	F60	F60N	N	F	NxF	
DMI (Dry matter intake: kg/d)	19.6b	19.4b	21.1a	20.8a	0.45	0.15	0.04	0.07
Milk yield (kg/d)	23.3b	24.1a	22.7c	23.2bc	0.25	0.08	0.06	0.05
FPCM³ (kg/day)	22.0	22.4	21.8	21.7	0.34	0.19	0.06	0.08
Milk fat (%)	3.53ba	3.41c	3.60a	3.50b	0.04	0.04	0.02	0.03
Milk protein (%)	3.27	3.22	3.21	3.17	0.08	0.23	0.06	0.21
Lactose (%)	4.58a	4.52ab	4.45bc	4.36c	0.04	0.65	0.04	0.05
Milk urea nitrogen (mg/dl)	15.60b	16.00a	14.57d	15.03c	0.11	0.03	0.04	0.04
Feed efficiency								
Milk/DMI	1.19a	1.24a	1.08b	1.11b	0.04	0.31	0.009	0.04
FPCM/DMI	1.12a	1.15a	1.03b	1.04b	0.03	0.27	0.008	0.05

¹F40; forage 40% without nitrate supplementation, F40N; forage 40% with nitrate supplementation, F60; forage 60% without nitrate supplementation and F60N; forage 60% with nitrate supplementation.

²SE: Standard error.

³FPCM (fat and protein corrected milk)=[(0.337+0.116×fat(%) +0.060× protein(%))× milk yield (kg/d)].

a,b,c letters are used to indicate statistical significance (P<0.05) among different experimental diets.
Item	Treatments¹	±SE²	P-values					
	F40	F40N	F60	F60N	N	F	N×F	
Blood metabolite								
Blood urea nitrogen (mmol/l)	6.40c	6.53b	6.63b	6.74a	0.05	0.007	0.02	0.009
Hemoglobin (Hb) (g/l)	98.46	98.72	100.2	99.94	1.08	0.54	0.47	0.52
met-Hemoglobin (% of Hb)	1.28a	2.40a	1.43b	2.42a	0.09	0.001	0.07	0.006
Rumen parameters								
pH	6.17c	6.33ab	6.28bc	6.44a	0.06	0.005	0.03	0.009
Ammonia (mmol/l)	0.785d	0.852c	0.885b	0.957a	0.05	0.004	0.009	0.007
Nitrate (µM)	5.60b	103.05a	5.67b	103.58a	0.85	0.008	0.12	0.001
Nitrite (µM)	4.39b	94.38a	4.46b	94.73a	0.55	0.007	0.34	0.009
Total VFA³ (mmol/l)	115.4a	114.3b	113.8bc	112.9c	0.30	0.04	0.03	0.04
Individual VFA (% of total VFA)								
Acetate	72.17d	74.13b	73.32c	75.28a	0.13	0.005	0.006	0.005
Propionate	17.05a	15.19c	16.19b	14.99c	0.19	0.007	0.008	0.007
Butyrate	7.26a	7.17ab	6.97b	6.01c	0.11	0.09	0.04	0.03
Iso-butyrate	0.75	0.72	0.69	0.67	0.22	0.34	0.41	0.08
Valerate	1.00	0.97	1.04	1.01	0.13	0.54	0.28	0.07
Iso-valerate	0.61	0.63	0.62	0.64	0.14	0.67	0.45	0.59
Acetate:propionate ratio	4.23c	4.88a	4.53b	4.96a	0.19	0.04	0.06	0.04

¹F40: forage 40% without nitrate supplementation, F40N: forage 40% with nitrate supplementation, F60: forage 60% without nitrate supplementation and F60N: forage 60% with nitrate supplementation.
²SE: Standard error.
³Total VFA: Total volatile fatty acids.

a,b,c,d letters are used to indicate statistical significance (P<0.05) among different experimental diets.
Item	Incubation time (h)	Treatments\(^1\)	±SE\(^2\)	N	F	N×F		
		F40	F40N	F60	F60N			
Total VFA\(^3\) (mmol/l)								
2	28.17\(^a\)	27.28\(^{ab}\)	25.98\(^b\)	25.20\(^b\)	0.79	0.27	0.008	0.04
4	34.90\(^a\)	33.33\(^{ab}\)	31.71\(^{bc}\)	30.72\(^c\)	0.85	0.31	0.006	0.03
6	38.44\(^a\)	36.71\(^{ab}\)	35.26\(^{bc}\)	33.19\(^{bc}\)	0.93	0.42	0.01	0.05
8	43.99\(^a\)	41.91\(^{ab}\)	40.77\(^{ab}\)	40.01\(^b\)	0.88	0.35	0.009	0.03
12	51.61\(^a\)	50.80\(^{ab}\)	50.36\(^{ab}\)	49.32\(^b\)	0.51	0.51	0.04	0.05
16	60.21\(^a\)	59.28\(^{ab}\)	59.04\(^{ab}\)	57.96\(^{b}\)	0.62	0.46	0.07	0.06
24	66.88\(^a\)	66.32\(^{ab}\)	65.61\(^{bc}\)	64.54\(^c\)	0.74	0.67	0.08	0.09
36	69.50\(^a\)	68.90\(^{ab}\)	68.30\(^{ab}\)	67.29\(^{b}\)	0.95	0.38	0.42	0.41
48	71.15\(^a\)	70.23	69.97	68.99	0.99	0.32	0.41	0.39
72	73.78\(^a\)	72.83	72.55	71.60	1.03	0.39	0.37	0.40
96	76.08\(^a\)	75.51	74.88	73.82	1.02	0.55	0.46	0.49
Total gas (ml)								
2	25.6\(^a\)	23.0\(^b\)	24.7\(^a\)	22.9\(^b\)	0.52	0.05	0.22	0.05
4	45.8\(^{a}\)	43.3\(^{b}\)	45.0\(^{a}\)	45.2\(^{a}\)	0.49	0.04	0.35	0.05
6	71.1\(^{a}\)	67.9\(^{c}\)	69.3\(^{b}\)	66.8\(^{d}\)	0.39	0.006	0.009	0.008
8	90.3\(^{a}\)	87.1\(^{b}\)	86.6\(^{b}\)	84.0\(^{c}\)	0.37	0.005	0.009	0.007
12	103.0\(^{a}\)	99.9\(^{b}\)	98.6\(^{c}\)	95.9\(^{d}\)	0.46	0.008	0.008	0.008
16	116.9\(^{a}\)	113.2\(^{b}\)	113.6\(^{b}\)	109.7\(^{c}\)	0.65	0.004	0.009	0.006
24	129.5\(^{a}\)	126.4\(^{b}\)	126.0\(^{b}\)	122.2\(^{c}\)	0.76	0.005	0.006	0.007
36	140.7\(^{a}\)	136.9\(^{b}\)	136.2\(^{b}\)	132.5\(^{c}\)	0.69	0.003	0.007	0.006
48	154.2\(^{a}\)	150.7\(^{b}\)	149.9\(^{b}\)	145.0\(^{c}\)	0.72	0.008	0.008	0.009
72	169.8\(^{a}\)	165.9\(^{b}\)	166.4\(^{c}\)	161.7\(^{d}\)	0.51	0.007	0.006	0.007
96	186.8\(^{a}\)	182.9\(^{c}\)	184.0\(^{b}\)	179.2\(^{d}\)	0.69	0.006	0.008	0.007
Methane (ml)								
2	3.6	3.1	3.4	3.2	0.18	0.07	0.24	0.09
4	6.8	5.9	6.4	6.0	0.32	0.08	0.35	0.09
6	11.4\(^{a}\)	10.6\(^{b}\)	11.0\(^{ab}\)	10.0\(^{c}\)	0.24	0.04	0.08	0.05
8	15.8\(^{a}\)	13.9\(^{cd}\)	14.7\(^{c}\)	13.5\(^{d}\)	0.37	0.03	0.07	0.04
12	19.7\(^{a}\)	17.3\(^{b}\)	17.5\(^{b}\)	16.1\(^{c}\)	0.54	0.007	0.009	0.008
16	22.8\(^{a}\)	20.5\(^{b}\)	21.1\(^{b}\)	19.2\(^{c}\)	0.39	0.005	0.03	0.008
24	25.9\(^{a}\)	23.2\(^{c}\)	24.0\(^{b}\)	22.8\(^{d}\)	0.26	0.007	0.05	0.009

\(^{1}\) Treatments: F40 = 0 h, F40N = 60 h, F60 = 0 h, F60N = 60 h

\(^{2}\) SE = standard error

\(^{3}\) Total volatile fatty acids
F40	F40N	F60	F60N					
36	29.0^a	26.5^c	28.1^b	25.6^d	0.39	0.004	0.02	0.007
48	33.1^a	31.7^b	31.3^b	29.8^c	0.57	0.005	0.006	0.006
72	37.3^a	35.8^b	35.5^b	33.9^c	0.45	0.007	0.009	0.008
96	44.5^a	41.2^c	43.3^b	40.3^d	0.48	0.008	0.04	0.009

Estimated parameters⁴

Parameter	Value	Value	Value	Value	Value			
a	17.91^b	16.51^b	19.51^a	19.08^a	0.56	0.19	0.005	0.008
b	153.65^a	152.35^a	149.87^b	145.68^c	0.75	0.003	0.004	0.004
c	0.061^a	0.061^a	0.057^b	0.056^c	0.003	0.46	0.41	0.43
(a+b)	171.56^a	168.85^b	169.37^b	164.76^c	0.42	0.009	0.007	0.008
RSD	10.83^a	10.71^b	10.77^b	10.59^c	0.11	0.33	0.37	0.36

¹F40: forage 40% without nitrate supplementation, F40N: forage 40% with nitrate supplementation, F60: forage 60% without nitrate supplementation and F60N: forage 60% with nitrate supplementation.

²SE: Standard error.

³Total VFA: Total volatile fatty acids.

⁴Estimated parameters: a, gas production (ml) from quickly soluble fraction, b, gas production (ml) from insoluble but fermentable fraction, c, gas production rate, (a+b), potential gas production and RSD, residual standard deviation.

^{a,b,c,d} letters are used to indicate statistical significance (P<0.05) among different experimental diets.
Table 6. Effect of nitrate (N) and forage levels (F) on microbial population in mid-lactation dairy Holstein cows

Item (per ml of rumen content)	Treatments\(^1\)	±SE\(^2\)	P-values					
	F40	F40N	F60	F60N	N	F	N×F	
General Bacteria, Log\(_{10}\) copies, 16S	11.05\(^a\)	10.63\(^b\)	10.45\(^b\)	10.13\(^c\)	0.15	0.04	0.05	0.04
Bacteroidetes, % of Bacteria	55.90\(^a\)	54.96\(^a\)	50.99\(^b\)	50.06\(^b\)	0.85	0.19	0.007	0.03
Prevotella, % of Bacteroidetes	26.4\(^a\)	23.8\(^b\)	21.1\(^c\)	18.3\(^d\)	0.67	0.006	0.005	0.005
Firmicutes, % of Bacteria	31.5\(^a\)	29.5\(^b\)	29.1\(^b\)	28.0\(^b\)	0.75	0.04	0.34	0.05
Ruminococcus, % of Firmicutes	1.64\(^b\)	0.95\(^c\)	2.28\(^a\)	1.44\(^b\)	0.16	0.003	0.005	0.005
Fibrobacteres, % of Bacteria	0.81\(^b\)	1.57\(^a\)	0.67\(^b\)	1.24\(^a\)	0.35	0.006	0.26	0.03
Protobacteria, % of Bacteria	3.02\(^b\)	5.27\(^a\)	1.33\(^d\)	2.44\(^c\)	0.24	0.008	0.009	0.007
Type II Methanotroph, % of Protobacteria	0.20\(^d\)	0.66\(^c\)	1.23\(^b\)	1.63\(^a\)	0.18	0.02	0.01	0.03
General Archaea, Log\(_{10}\) copies, 16S	7.20\(^c\)	7.10\(^c\)	7.76\(^a\)	7.38\(^b\)	0.08	0.08	0.008	0.009
Methanobrevibacter ruminantium, % of Archaea	34.08	33.84	33.53	33.35	0.15	0.45	0.56	0.49
Methanobrevibacter gottschalkii, % of Archaea	35.65	35.48	36.21	36.01	0.35	0.41	0.45	0.43
Methanoperedense nitroreducens, % of Archaea	0.000\(^c\)	0.005\(^b\)	0.002\(^b\)	0.036\(^a\)	0.01	0.008	0.01	0.009
General Protozoa, Log\(_{10}\) copies, 18S	7.11\(^a\)	6.99\(^b\)	6.89\(^c\)	6.83\(^c\)	0.04	0.06	0.04	0.05
Ciliate protozoa, % of total protozoa	73.02\(^a\)	70.09\(^b\)	69.24\(^b\)	67.54\(^c\)	0.44	0.006	0.005	0.005

\(^1\)F40: forage 40% without nitrate supplementation, F40N: forage 40% with nitrate supplementation, F60: forage 60% without nitrate supplementation and F60N: forage 60% with nitrate supplementation.

\(^2\)SE: Standard error.

Data were transformed (log) to obtain homogeneity of variance.

\(^{a,b,c,d}\) letters are used to indicate statistical significance (P<0.05) among different experimental diets.