Effectiveness of message framing to improve oral health behaviors and dental plaque among pregnant women

Masoumeh Divdar
AHVAZ

Marzieh Araban (araban62@gmail.com)
Ahvaz Jondishapour University of Medical Sciences Faculty of Public Health

https://orcid.org/0000-0001-9920-0261

Akbar Babaei Heidarabadi
Ahvaz

Bahman Cheraghian
Ahvaz Jundishapur

Research article

Keywords: Oral Health, Pregnancy, Message Framing, Dental Plaque

Posted Date: June 20th, 2019

DOI: https://doi.org/10.21203/rs.2.10417/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background Oral health is taken into account as an important factor in determining individuals’ quality of life. In this respect, pregnancy can have its own significant effects on oral health. Therefore, health messages can play an important role in motivating people to improve their health-related behaviors. Accordingly, the purpose of the present study was to investigate the impact of message framing on oral health-related behaviors as well as dental plaque among pregnant women. Methods This quasi-experimental study was conducted on a total number of 108 pregnant women in the city of Izeh, Iran in 2017. To this end, the participants were randomly divided into three groups; gain-framed, loss-framed and control group. The research instrument included a demographic characteristics questionnaire along with the constructs of knowledge, attitude, behavioral intention, self-efficacy, performance, and dental plaque index derived from previous studies. Moreover, gain- and loss-framed messages were sent to the intervention groups via cell phones but the control group did not receive any messages in this regard. The participants’ dental plaque was also examined within two steps by a dentist. The significance level of the tests was considered by p<0.05. Results The results revealed that the mean scores of knowledge, attitude, behavioral intention, and self-efficacy had significantly increased in the gain- and loss-framed intervention groups (p<0.001) as compared to control group; but no significant difference was observed in the control group (knowledge, p=0.135; attitude, p= 0.166; behavioral intention, p=0.2; self-efficacy, p=0.37). The rising trend in the mean score of the behaviors in the intervention groups was significantly higher than that in the control group (p<0.001). The percentage of dental plaque in the gain- and loss-framed intervention groups also showed a significant decrease compared with that in the control group (p<0.001). Conclusion The results revealed message framing could improve knowledge, attitude, behavioral intention, self-efficacy, and dental plaque among pregnant women. Also, the gain-framed oral health messages could more improve the study variables, although such a difference was not significant.

Background

The World Health Organization (WHO) introduces oral health as a necessity for general health throughout life [1]. Moreover, oral health is considered as an important factor in determining individuals’ quality of life in various physical, mental, and socioeconomic aspects [1, 2]. With regard to increased communications as well as various social situations among people in today’s society, the inevitability of adherence to oral health is felt much more than ever before [3]. The burden of oral diseases has also grown by 20% from 1990 to 2010 globally [4]. In this respect, the results of nation-wide studies have similarly indicated that oral health in Iran's society is at a moderate level, according to the WHO report in 2000 [2]. Many adults around the world are also at the risk of dental caries and periodontal diseases [5, 6], caused by the activity of bacteria in dental plaque [7]. To improve oral health status in adults, prevention programs need to be performed before birth [8]. Physiological changes in the mouth occurring during pregnancy have been similarly confirmed [9]. It should be noted that pregnancy is a very important event in a woman’s life which has high potential to affect her and her child’s health status [10]. Hormonal changes and nutritional conditions can also make pregnant women susceptible to gum diseases and dental caries [1, 11, 12]. Early morning nausea and vomiting, too much consumption of sugar and other foodstuff, as well as less use of toothbrush and floss can ultimately lead to the formation of microbial plaque and dental caries [13]. Periodontal diseases are also associated with antenatal complications and childbirth such as early birth, low birth weight, limited intrauterine growth, or small embryos for its gestational age [11, 12, 14, 17]. It should be further noted that pregnant women can suffer from dental caries by 2.9 times than non-pregnant ones [18]. Despite the fact that the risk of oral diseases during pregnancy is high, pregnant women use less dental care and ignore oral hygiene than the general population. Based on surveys conducted around the world, it has been estimated that 58-65% of pregnant women are not committed to oral care [1, 19, 21]. In this regard, the results of the study by Bayat et al. on pregnant women in the city of Hamadan, Iran, showed that 68% of such individuals were brushing their teeth once a day, and only 11.8% of them were doing so after each mealtime [13].
In an investigation by Moawed et al., pregnant women reported several common factors hindering their access to oral care including lack of information about oral health, insufficient time, and fear of dental treatments; indicating that these individuals were in need of much more information on oral care [22]. Therefore, oral health education can be taken into account as one of the most important and critical factors in preventing plaque formation as well as occurrence of dental diseases [23]. However, the effectiveness of a health education program depends largely on the use of an appropriate educational theory [24]. Prospect Theory in this field is known as one of the decision-making theories under conditions of uncertainty. Accordingly, individuals break away from risks in conditions with a wide range of gains, but when they are exposed to conditions with a wide range of losses, they seek for risks to some degree [25, 29]. According to this theory, completely similar information about decisions under uncertain conditions can be framed and presented in one of two ways: potential gains and potential losses [26, 29]. The message framing approach used to deliver health promotion messages based on the Prospect Theory was developed by Kahneman and Tversky in 1979 [30]. Salvey and Rutmann have also put forth two hypotheses for message framing. The first hypothesis is that loss-framed messages are more effective for individuals influenced by a disease when the purpose is to diagnose it and the second hypothesis is that gain-framed messages are endowed with more effectiveness for those who are involved in a behavior with definite consequences in occasions when the purpose is to prevent a disease [27]. The findings of a study conducted in the United States also revealed that a large percentage of adults (92%) owned a cell phone allowing the distribution of information through text messages and it could be also used to send messages related to health threats [31]. Therefore, the issue of effectiveness of health-related message framing on individuals in society regarding more favorable attitudes makes the intention to adopt such health-related behaviors a necessity and it is of utmost importance to examine such differences [20]. Following decades of research in message framing, there is still no clear answer on whether or not emphasis on positive or negative results will be effective in a convincing message [32].

Accordingly, the purpose of this study was to investigate the effectiveness of message framing on oral health-related behaviors and also its impact on dental plaque index among pregnant women.

Methods

This study was a quasi-experimental intervention carried out in Physiologic Birth and Counseling Center the city of Izeh, located in the southwest of Iran, From November 2017 to February 2018.

Participants

The study population included pregnant women referring to the Center in Izeh to attend maternity antenatal training classes. The women were selected using non-probability convenience sampling method. Then, they were divided into three groups; gain-framed intervention group, loss-framed intervention group, and control group using block randomization technique via 6 blocks. Allocating subjects to the study groups (intervention and control) was done using six blocks. This was done with WinPepi11.0 software. This software generates random groups. In each block, 3 subjects were from the control group and 3 subjects were from the intervention group, which was arranged randomly. Finally, 16 blocks were used. The steps of using the software listed were as follows: Aetcetera, Randomization (Random allocation)Balanced Randomization, Successive blocks. To determine the sample, the formula for comparing the means was used in which \(\alpha=0.01\) and \(\beta=0.1\) and \(x_1=0.07\), \(x_2=0.09\), \(s_1=0.123\), \(s_2=0.147\), based on the results of similar previous studies [6].

The sample size was considered to be three groups of 36, and a total number of 108 individuals were estimated.

Inclusion criteria
The inclusion criteria in this study were being able to read and write, access to cell phones, willingness to participate in the study, not having high risk pregnancy as diagnosed by their midwives, not having an underlying disease (cardiovascular disease, autoimmune disease, cancer, diabetes, etc.), gestational age of 16 to 28 weeks, as well as age ranges between 18 and 35 years.

Measures

Demographic data sheet

The first part of the questionnaire included demographic characteristics as well as previous pregnancy history which was comprised of 14 items (maternal age, husband's age, duration of marriage, gestational age, maternal occupation, husband's occupation, coverage of healthcare insurance services, maternal level of education, husband's level of education, previous pregnancy history, maternal ethnicity, monthly household income, family size, and place of residence).

Questionnaire

The second part of the questionnaire consisted of the constructs of knowledge about general health and oral health and hygiene during pregnancy, attitude, behavioral intention, self-efficacy, and performance in mothers concerning oral health. The construct of knowledge with 14 items had been developed about the prevention of oral problems (additional file 1) and was scored as follows; a correct answer was rated 1 and an incorrect answer was assigned with 0. The construct of attitude consisted of 10 items, the behavioral intention contains 6 items, and self-efficacy was comprised of 9 items that had been desigend based on a 5-point Likert-type scale. In terms of scoring, positive items were rated 1, 2, 3, 4, and 5 for totally disagree, disagree, neutral, agree, and totally agree; respectively. This scoring was also done in reverse for negative items which had been used in the construct of attitude. The final part of the questionnaire contained 14 items relating to women's performance in terms of oral care which were given a score of 1 based on correct and incorrect answers. Items about how to brush and floss the teeth were further completed through direct observation of pregnant women's performance on a mouth and teeth model (examining cases such as correct movement angle or angular 45° of the toothbrush for different parts of the tooth, use of vibrating movements on gum lines, horizontal movement in the occlusal surface, vertical movement of the brush on the anterior and internal surface of the tooth, break-off of suitable floss size, correct winding of the floss around fingers, correct movement of the floss between the teeth and gum line, etc.). Other functions performed by such pregnant women were also recorded in the form of self-reports.

Validity and reliability

In order to determine the scientific validity of the method, content validity and face validity were employed. Therefore, the opinions of 10 professors in this field were elicited. After summarizing expert opinions, content validity ratio and content validity index were calculated. Using the cut-off point in Lawshe's table, comparisons showed that the obtained number was greater than that specified in the table (0.99) [33]. After summarizing expert opinions, content validity ratio and content validity index were calculated. The content validity index was found to be perfect (CVI= 1). To measure its face validity, the questionnaire was submitted to 10 pregnant women with conditions similar to those of the target group to have their impression of the importance of the questionnaire items via a 5-point Likert-type scale including absolutely important, important, moderately important, slightly improtant, and absolutely not important. The face validity of the questionnaire was approved (impact score 4.5).

The reliability of the questionnaire was also confirmed. The scientific reliability of this research instrument was determined by the researcher using test-retest method. To this end; in a pilot study, the questionnaire was given to 10
pregnant women meeting the inclusion criteria within a 14-day interval and it was recompleted by them after two weeks. The Pearson correlation coefficients for the constructs of attitude, behavioral intention, self-efficacy, and performance were by 0.89, 0.89, 0.91, 1; respectively. For the knowledge alpha Cronbach’s was used to assess internal consistency, the result found to be satisfactory, 0.80.

Blinding

The validity of the messages was approved through a message validity checklist. In order to ensure no information bias, the study design was selected as a double-blind type in such a way that the participants were kept unaware of the type of the received messages (gain- and loss-framed ones), and also the assessor of the dental plaque (the dentist) was kept uninformed of the allocation of the given individuals into the groups.

Intervention

Two cell phone numbers were taken from pregnant women for the delivery of messages and follow-up. Thereafter, a positive message was sent to the gain-framed intervention group each day, a negative message was sent to the loss-framed one, and no messages were sent to the control group. The desired intervention was composed of 30 identical messages in terms of concept, but different considering the frame which was associated with advantages and disadvantages of not using toothbrushes, dental flosses, and mouthwashes; developed by examining and referring to texts and using message design principles[35]. Then, the given intervention was sent in the form of SMS as a message per day to the individuals in gain- and loss-framed intervention groups, but the control group did not receive any messages. For example, the gain-framed intervention group received the message of “If you oss every day, you will have a beautiful smile” while the following message was sent to the loss-framed intervention group; “If you do not oss every day, you may be embarrassed with your smile” [36]. Validity and reliability of messages was confirmed using validity checklist of messages[27], The pregnant women were also asked to ensure researchers of receiving the messages through replying by a blank message sent to them. If the researcher did not receive a message from pregnant women after 3 days [37], they would call them or sent them educational messages through other cell phone numbers. Eight weeks after sending the messages, the post-test questionnaire was completed by the three study groups in person.

Oral health examinations

The examination of the pregnant women’s teeth was also fulfilled by a dentist and according to the required standards and then the percentage of dental plaque was measured using a dental plaque index (i.e: NPI) [21, 34]. The given index was a valid tool which had been utilized by different researchers. The measurements were performed using disclosing tablets along with plaque measurement chart. In order to calculate the accuracy of the measurement through the dental plaque index by the dentist, the dental plaque was measured shortly after the main measurement for 10 participants in the study. Internal consistency was also performed and approved using Cronbach’s alpha coefficient (0.9).

Data analysis

Results were analyzed in SPSS 23.0 using dependent t-test and Chi-square analysis. The Kolmogorov Smirnov test was employed to determine the normality of data distribution. Analysis of variance (ANOVA) or its non-parametric equivalent was also utilized to compare quantitative values between the three groups. The relationship between qualitative variables was similarly measured through test. To compare attitude, behavioral intention, self-efficacy, and performance of the two intervention groups, the analysis of covariance (ANCOVA) was used considering the initial values. The significance level was considered at 0.05.
Ethics

All participants were informed about the study and confidentiality protocols. Informed consent was obtained from participants. The Ethics Committee of Ahvaz Jundishapur University of Medical Sciences confirmed the morality and ethics of that study (IR.REFERENCE.REC.1396.554).

Results

The mean age of the participants in this study was 27.4±4.37 years with a minimum age of 18 and a maximum age of 35. The homogeneity of the groups in terms the demographic characteristics affecting the study results including maternal age, gestational age, maternal occupation, maternal level of education, previous pregnancy history, maternal ethnicity, monthly household income, place of residence, and coverage of healthcare insurance were illustrated in Tables 1 and 2.

The mean and standard deviation of the variables were similar at the beginning of the study and no significant difference was observed in all groups. Moreover, the normality of the groups was measured using Kolmogrov-Smirnov test and, if necessary, ANOVA and Chi-square test with a significant level of p<0.05 were used. The mean score of the constructs of knowledge, attitude, behavioral intention, self-efficacy, and performance in the intervention and control groups were presented in Table 3.

In this study, the mean difference of knowledge before and after intervention in the gain-framed intervention group, loss-framed intervention group, and control group were reported by 6.06, 5.72, and 0.38; respectively. There was also a statistically significant difference in the mean score of knowledge in the intervention groups compared with that of the control group (p<0.001). Despite the fact that the ascending trend in the mean score of knowledge in the gain-framed intervention group was higher than that of the loss-framed one, it was not statistically significant.

Based on the results of ANOVA, the mean score of attitude in pregnant women regarding oral-dental care before the educational intervention in the intervention and control groups did not show a significant difference. However, following intervention, the mean scores of attitude in individuals in the gain- and loss-framed intervention groups were respectively by 44.4 and 42.44, which were significantly higher than that of the control group (p<0.001). Although this increase was higher in the gain-framed intervention group than the loss-framed one, it was not statistically significant (p=0.83).

Furthermore, the findings of this study showed that the mean score of behavioral intention and self-efficacy in the intervention groups had significantly augmented after the intervention compared with that of the control group (p<0.001), but there was no significant difference between the two intervention groups. The results also revealed that the maximum decrease in dental plaque index was related to pregnant women in the gain-framed intervention group; however, no significant difference was observed (p=0.87). On the other hand, there was a significant difference between the mean scores of dental plaque in the intervention groups and the control group (p<0.001). Based on the results of ANOVA, the amounts of decline in the dental plaque index in individuals in the gain-framed intervention group, the loss-framed intervention group, and the control group were by 16.47%, 15.07%, and 2.16%; respectively.

In this study, the mean score of maternal performance concerning oral care before the educational intervention in both gain- and loss-framed intervention groups implied no significant difference. However, a significant increase was observed in the mean scores of the gain- and loss-framed groups after intervention compared with that of the control group (p<0.001) while no statistically significant difference was reported between the intervention groups (p=0.87).
Discussion

The purpose of the present study was to investigate the effect of an education program based on message framing on oral health-related behaviors among pregnant women in the city of Izeh, Iran. To control the intervening variables, to ensure that the study groups were homogeneous in terms of demographic characteristics, and also to verify the accuracy of the findings in this study.

The results of this study suggested that framed messages could further improve the mean score of knowledge in both intervention groups compared with that of the control group. Comparing the mean score of knowledge of oral health and hygiene showed that gain-framed messages were more effective than loss-framed ones although no statistically significant difference was observed in this respect. Considering the control group, the mean score of knowledge increased at the end of the study but it was not reported significant.

In this regard, the findings of the study by Ghajari et al. showed that education based on message framing could improve students’ knowledge in both gain- and loss-framed intervention groups compared with the control group [38]. The results of the study by Fatahi et al. in the city of Yazd, Iran, in 2001, also demonstrated that sending educational messages via cell phones could significantly enhance knowledge in diabetic patients.

Besides, the findings of the present study showed that the mean score of attitude in both intervention groups had increased compared with that of the control group. However, there was no statistically significant difference between the gain- and loss-framed intervention groups. Considering the control group, the mean score of attitude also increased at the end of the study, but it was not significant.

A significant rising trend was reported in the mean score of behavioral intention in both intervention groups compared with that of the control group. Comparing the mean score of behavioral intention in terms of oral health, it seemed that gain-framed messages were more effective than loss-framed ones, while no statistically significant difference was observed between gain- and loss-framed intervention groups in this regard.

The results of the study by Pakpour et al. suggested that students who had received loss-framed messages were endowed with stronger tendency towards using toothbrush and floss compared with those who had received gain-framed messages [29]. This difference might be due to the discrepancy in the target groups. On the other hand, in the study by Pakpour et al., the impact of cultural conditions on the outcomes were highlighted, which could be regarded as an important component. Moreover, the results of the study by Uskul et al. revealed that British white participants who had stronger intentions had been convinced by gain-framed messages, while participants in East Asia, who were endowed with preventive intentions, had been encouraged by loss-framed messages [29, 39].

Considering the mean score of self-efficacy, a significant increase was observed in both loss- and gain-framed intervention groups compared with the control one. Comparing the improved mean score of self-efficacy in terms of oral health, it seemed that gain-framed messages were more effective than loss-framed ones, while no statistically significant difference was reported between both intervention groups in this regard.

The results of the study by Merdasi et al. indicated that message framing could enhance self-efficacy of breastfeeding in nulliparous women in gain- and loss-framed intervention groups, although no statistically significant difference was reported between these intervention groups [27]. While the mean score of performance in gain- and loss-framed groups showed a significant increase compared with that of the control group, there was no statistically significant difference between both intervention groups.
It should be noted that oral health-related behaviors such as brushing the teeth and flossing them have been recognized as two-state behaviors (i.e. behaviors targeting early diagnosis or behaviors targeting dental caries) [29]. Moreover, individuals’ motives could play a role in regulating numerous behaviors, so considering such motives could be effective in determining how oral health-related messages to various people could be designed. Based on the Theory of Motivation, individuals who were approach-oriented could change their behaviors through a gain-framed oral health message and those who were avoidance-oriented could adhere to loss-framed ones [40]. Therefore, various outcomes are expected in different studies adopting preventive or diagnostic approaches and also employing target groups with diverse motivational approaches.

The study by Gallagher et al. revealed that gain-framed messages had much more capacity than loss-framed ones to encourage preventive health-related behaviors particularly to prevent skin cancer, to quit smoking, and to perform physical activities [41] which was consistent with the results of the present study, although they were not significant. Furthermore, Schneider et al. reiterated that loss-framed messages had more impacts on acceptance and completion of mammography [42].

Distance learning can be effective because of the elimination of spatial and temporal constraints, and consequently establishment of an effective relationship with patients [27, 43]. In this respect, the study by Gharaati et al. emphasized these results. The findings of this study also demonstrated a significant increase in the mean scores of knowledge, attitude, and self-care behaviors in the intervention group following the fulfillment of the intervention, but no significant difference was observed in the control group [43]. The results of the study by Haghani et al. similarly indicated the effectiveness of message-based education method in providing antenatal education [44]. Naderi et al. also concluded that use of cell phones could have a significant impact on students’ metacognitive self-regulation as well as their attitudes towards cell phone-assisted learning [45].

Considering the decline in dental plaque, the examination of the study data showed that gain-framed messages were more effective than loss-framed ones. However, such a difference was not statistically significant between the two intervention groups. The percentage of dental plaque in the intervention group (gain-framed and loss-framed) and also the control group had also decreased. Moreover, there was a significant difference between the intervention groups compared with the control one. As a whole, reduced dental plaque in this study confirmed the improvement of pregnant women's performance.

As well, Lafzi et al. reported that a significant decrease had occurred in the dental plaque index from 72% to 38% in the intervention group following two-month education which was in line with the findings of the present study. In the study by Shamsi et al., the mean difference of dental plaque index in the intervention and the control groups were significantly different. Moreover, the results of this study showed that the mean score of the intervention group had significantly increased compared with that of the control group following educational intervention. This rising trend in pregnant women's performance consequently led to improved oral health and better dental plaque indices in individuals in the intervention group [21]. Considering no statistically significant difference between two types of framed messages in the educational intervention, other reasons except the same effectiveness of these two types of frames could be highlighted. So; the messages could be more effective if their presentation was sequential and consequently the findings would be different. On the other hand, the inappropriate time of intervention could be taken into account as one of the factors shaping the effectiveness of the delivered messages. Moreover, the non-significance of the expected results could be because of no deep, accurate, and effective attention to health-related messages.

In most cases, there was much more increase in the outcomes of the study including the mean score of knowledge, behavioral intention, and self-efficacy associated with oral health after sending messages to the gain-framed group compared with that of loss-framed and control groups. Furthermore, the percentage of dental plaque in the gain-framed
group was much more than that of loss-framed and control groups although the results were not statistically significant. These findings were in agreement with the results of related investigations [20]. Thus, it was concluded that development of theory-based oral health programs could be effective and also efficient in terms of providing education to pregnant women in this domain.

Limitations

One of the limitations of the present study was that the findings could not be generalized to the entire community of pregnant women, given the further visits by such individuals residing in urban areas compared with those with limited visits in rural ones due to long distance and other problems.

Conclusion

The results of the present study showed that framed health education messages could enhance knowledge, attitude, behavioral intention, self-efficacy, and performance among pregnant women and also reduce dental plaque in the intervention groups. However, no significant difference was observed in terms of the effectiveness of the loss- or gain-framed messages in the constructs associated with oral health in pregnant women.

List Of Abbreviations

Navy Plaque Index, short message system (SMS)

Declarations

Ethics approval and consent to participate

All participants were informed about the study and confidentiality protocols. Informed consent was obtained from participants; this study was obtained from an earlier research (SDH-9614). The Ethics Committee of Ahvaz Jundishapur University of Medical Sciences confirmed the morality and ethics of that study (IR.REFERENCE.REC.1396.554).

Consent for publication

Not applicable.

Availability of data and materials

Upon request, we can offer onsite access to the data analyzed at Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Competing interests

Nothing to declare.
Funding

No financial support was received for this research.

Authors’ contributions

The authors’ responsibilities were as follows: MA were supervisor of the study. MA designed the study and questionnaire and also drafted the manuscript. BCH and MD conducted the study. A-BH helped study implementation. All authors contributed the design and data analysis and assisted in the preparation of the final version of the manuscript. All authors approved the final version of the manuscript.

Acknowledgements

This study was the result of a part of a Master’s thesis fulfilled by Ms. Masoumeh Divdar at Ahvaz Jundishapur University of Medical Sciences with the code no. SDH-9614. We, hereby, appreciate the Vice-Chancellor’s Office for Research for funding this project as well as authorities in community health centers in Izeh county and all pregnant women participating in this study.

References

1. Shahnazi H, Hosseintalaei M, Ghashghaei FE, Charkazi A, Yahyavi Y, Sharifirad G. Effect of Educational Intervention on Perceived Susceptibility Self-Efficacy and DMFT of Pregnant Women. Iranian Red Crescent Medical Journal. 2016;18(5).

2. Haerian Ardakani A, Morowatisharifabad M, Rezapour Y, Pourghayumi Ardakani A. Investigation of the Relationship of Oral Health Literacy and Oral hygiene Self-Efficacy with Self-Reported Oral and Dental Health in Students. Toloo-e-behdasht. 2015;13(5):125-40.

3. Peyman N, Ezzati-Rastgar K, Tehrani H. The Impact of Educational Intervention Based on PEN-3 Model on Oral Health Behavior in Elementary School Students. Iranian Journal of Health Education and Health Promotion. 2016;4(2):149-57.

4. Tsuboya T, Aida J, Kawachi I, Katase K, Osaka K. Early life-course socioeconomic position, adult work-related factors and oral health disparities: cross-sectional analysis of the J-SHINE study. BMJ open. 2014;4(10):e005701.

5. Masoe AV, Blinkhorn AS, Taylor J, Blinkhorn FA. Factors that influence the preventive care offered to adolescents accessing Public Oral Health services, nsW, Australia. Adolescent health, medicine and therapeutics. 2015;6:101.

6. Pakpour AH, Yekaninejad MS, Sniehotta FF, Updegraff JA, Dombrowski SU. The effectiveness of gain-versus loss-framed health messages in improving oral health in Iranian secondary schools: a cluster-randomized controlled trial. Annals of Behavioral Medicine. 2014;47(3):376-87.

7. Marsh P. Contemporary perspective on plaque control. British dental journal. 2012;212(12):601.

8. Allameh M, Khademi H, Eslami M. A cross-sectional survey on relationship between some biologic maternal characteristics and dental status of pregnant women in Isfahan, Iran, in 2012 . Journal of Oral Health and Oral Epidemiology. 2014;3(2):72-8.
9. Mills LW, Moses DT. Oral health during pregnancy. MCN: The American Journal of Maternal/Child Nursing. 2002;27(5):275-80.

10. Bird AL, Grant CC, Bandara DK, Mohal J, Atatoa-Carr PE, Wise MR, et al. Maternal health in pregnancy and associations with adverse birth outcomes: Evidence from Growing Up in New Zealand. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2017;57(1):16-24.

11. George A, Dahlen HG, Reath J, Ajwani S, Bhole S, Korda A, et al. What do antenatal care providers understand and do about oral health care during pregnancy: a cross-sectional survey in New South Wales, Australia. BMC Pregnancy and Childbirth. 2016;16(1):382.

12. Silveira ML, Whitcomb BW, Pekow P, Carbone ET, Chasan-Taber L. Anxiety, depression, and oral health among US pregnant women: 2010 Behavioral Risk Factor Surveillance System. Journal of public health dentistry. 2015.

13. Bayat F, Karimi-Shahanjarini A, Bashirian S, Faradmal J. Assessment of Dental Care and its Related Barriers in Pregnant Women of Hamadan City. Journal of Education and Community Health. 2016;3(1):20-7.

14. Maybodi FR, Haerian-Ardakani A, Vaziri F, Khabbazian A, Mohammadi-Asl S. CPITN changes during pregnancy and maternal demographic factors ‘impact on periodontal health. Iranian journal of reproductive medicine. 2015;13(2):107.

15. Rahman MM, Hassan MR, Islam MZ, Ahmad MS, Alam MM, Islam KM. Oral Health Status of Pregnant Women attended the Mothers and Children Welfare Center (MCWC) in Bangladesh. City Dental College Journal. 2013;10(2):1-4.

16. Zohaib S, Zafar MS, Khan HA, Khurshid Z, Niazi F, Naseem M. Oral health challenges in pregnant women: Recommendations for dental care professionals. 2015.

17. Silk H, Douglass AB, Douglass JM, Silk L. Oral health during pregnancy. American family physician. 2008;77(8).

18. Hosein Kazemi H, Zeinal Zadeh M, Farsam F, Khafri S, Matloubi N. Pregnant women’s self-report of oral health condition and its relation with oral clinical status. Iranian Journal of Obstetrics, Gynecology and Infertility. 2016;18(186):16-9.

19. Tsakos G, Blair YI, Yusuf H, Wright W, Watt RG, Macpherson LM. Developing a new self-reported scale of oral health outcomes for 5-year-old children (SOHO-5). Health and quality of life outcomes. 2012;10(1):1.

20. Ramezankhani A , Ghafari M, Naeimavi N , S. K, Ali montazeri. Effectiveness of Message Framing on Oral Health-related Behaviors. Payesh. 2016;6: 707-16.

21. Shamsi M, Hidarnia A, Niknami S, karimi M. Effects of Educational Programs on DMFT Plaque Index and Performance of Pregnant Women. J Mazand Univ Med Sci. 2013;23(100):62-72.

22. Moawed S, Hawsawi A, AlAhmed SS, Al-Atawi N, Awadien AaZ. Knowledge and oral health care practices among Saudi pregnant women. Life Sci J. 2014;11(5):32-41.

23. Hoeft KS, Rios SM, Guzman EP, Barker JC. Using community participation to assess acceptability of “Contra Caries”, a theory-based, promotora-led oral health education program for rural Latino parents: a mixed methods study. BMC oral health. 2015;15(1):1.

24. Karimy T, Saffari M, Sanaeinasab H, Khalagi K, M H-A. f Theory on Based Intervention Educational of Impact Patients of Change Lifestyle on Behavior Planned Infarction Myocardial with. Iranian Journal of Health Education &
Promotion 2016 3 (4):370-80.

25. Lai HS, Szeto GP, Chan CC. Injured workers’ perception of loss and gain in the return to work process. Risk management and healthcare policy. 2017;10:7.

26. Mays D, Hawkins KB, Bredfeldt C, Wolf H, Tercyak KP. The effects of framed messages for engaging adolescents with online smoking prevention interventions. Translational Behavioral Medicine. 2017:1-8.

27. Merdasi F, Araban M, Saki MA. The Effect of Message-Framing on Breastfeeding Self-Efficacy Among Nulliparous Women in Shushtar, Iran. Electronic Physician. 2017;9(1):3554.

28. Updegraff JA, Brick C, Emanuel AS, Mintzer RE, Sherman DK. Message framing for health: Moderation by perceived susceptibility and motivational orientation in a diverse sample of Americans. Health Psychology. 2015;34(1):20.

29. Pakpour Haji Agha A, Nourozi S, Yekaninejad MS, Mansouri A, S. C. Effect of message framing on improving oral health behaviors in students in Qazvin, Iran. Isfahan Dent. 2013; 8(6): 512-21.

30. Quon AK. Exposure to gain-and loss-framed message picture books and its effect on preschoolers’ acceptance of an unfamiliar or disliked vegetable: D’Youville College; 2014.

31. Prokhorov AV, Machado TC, Calabro KS, Vanderwater EA, Vidrine DJ, Pasch KP, et al. Developing mobile phone text messages for tobacco risk communication among college students: a mixed methods study. BMC Public Health. 2017;17(1):137.

32. Cesario J, Corker KS, Jelinek S. A self-regulatory framework for message framing. Journal of Experimental Social Psychology. 2013;49(2):238-49.

33. Hajizadeh E, Asghari M. Methods and statistical analysis by looking at the research method in biotechnology and health sciences. 2011.

34. MICHAEL G. NEWMAN D, FACD. Newman and Carranza’s Clinical Periodontology. 2015:86.

35. DehdariT , Shojaei Zadeh D ZF, Rakhshani F. Communication and message design in health: tavangharan; 2013. 172 p.

36. Zahra M, Javad S, tahere E. The Effect of Framing Health Messages on Unreal Optimism, Practical Intention and Memory: The Role of Tactile / Contractive Behavioral Systems. 2017;17(5 # g00291):From page 563 to page 75.

37. Z B, Zamani Alavijeh F , Nouhjah S , Shakerinejad Gh , Payami SP Comparing gain- and loss-framed message texting (SMS) on foot self-care behaviors among women with type 2 diabetes. Payesh. 2016;6:695.

38. Ghajari H , Shakerinejad Gh , Hosseini SA , MH HZ. A study of the impact of message framing on calcium-rich foods intake in high school girls: a perspective of regulatory focus theory. Journal of the Iranian Institute for Health Sciences Research Payesh. 2016(2):163-71.

39. Uskul AK, Sherman DK, Fitzgibbon J. The cultural congruency effect: Culture, regulatory focus, and the effectiveness of gain-vs. loss-framed health messages. Journal of Experimental Social Psychology. 2009;45(3):535-41.

40. Sherman DK, Updegraff JA, Mann T. Improving oral health behavior: A social psychological approach. The Journal of the American Dental Association. 2008;139(10):1382-7.
41. Gallagher KM, Updegraff JA. Health message framing effects on attitudes, intentions, and behavior: a meta-analytic review. Annals of behavioral medicine. 2012;43(1):101-16.

42. Schneider TR, Salovey P, Apanovitch AM, Pizarro J, McCarthy D, Zullo J, et al. The effects of message framing and ethnic targeting on mammography use among low-income women. Health Psychology. 2001;20(4):256.

43. Gharaati F, Aghamolaei T, Hassani I, MohamadiR, MohsseniSh. The effect of educational intervention using mobile phone on self-care behaviors in patients with thalassemia major. Journal of Preventive Medicine. 2016;3(2):63-72.

44. Haghani F, Shahidi Sh, Manouchehri F, Kalantari B, Ghasemi G. The Effect of Distance Learning via SMS on Knowledge & Satisfaction of Pregnant Women. Iranian Journal of Medical Education. 2016:43-52.

45. Naderi F AM, Zare Bidaki M, Akbari Bourang M. The Effect of Mobile Learning on Metacognitive Self-regulation and Attitudes of Students of Allied Health Sciences. Iranian Journal of Medical Education. 2014;13(12):1001-10.

Tables

Table 1 - Comparison of mean and standard deviation of quantitative demographic variables

Variable	Gain-framed Mean	Std. Deviation	Loss-framed Mean	Std. Deviation	Control Mean	Std. Deviation	p-value*
Maternal age	26.75	4.77	27.69	4.4	27.77	3.94	0.545
Gestational age	22.97	3.71	22.38	3.36	24.33	3.93	0.076

*Derived from t test

Table 2 - Comparison of frequency of qualitative demographic variables
Variable	Gain-framed Percentage	Loss-framed Percentage	Control Percentage	p-value*
Maternal occupation				
Employed	5.6	13.9	5.6	0.5
Housewife	94.4	86.1	94.4	
Maternal level of education				
Primary school	8.3	5.6	0	0.463
Middle school	13.9	8.3	16.7	
High school	44.4	41.7	33.3	
University degree	33.3	44.4	50	
Previous pregnancy history				
Yes	30.6	38.9	55.6	0.091
No	69.4	61.1	44.4	
Ethnicity				
Lur	91.7	94.4	97.2	0.692
Arab	5.6	0	0	
Persian	2.8	5.6	2.8	
Household income				
Poor	8.3	25	13.9	0.369
Moderate	38.9	17.8	38.9	
Good	52.8	47.2	47.2	
Place of residence				
Urban	88.9	97.2	97.2	0.362
Rural	11.1	2.8	2.8	
Coverage of healthcare insurance				
Yes	86.1	80.6	80.6	0.775
No	13.9	19.4	19.4	

* Derived from chi-square

Table 3 - Comparison of constructs and dental plaque in three groups at baseline and follow-up
Variables							
	Gain-framed	Gain-framed	Loss-framed	Loss-framed	Control	Control	
	Mean±Sd	Mean±Sd	Mean±Sd	Mean±Sd	Mean±Sd	Mean±Sd	
	before intervention	after intervention	before intervention	after intervention	before intervention	after intervention	
Knowledge	5.69±11.65	11.97±1.33	6.22±1.57	11.94±1.1	5.7±1.71	6.08±1.79	p<0.001
Attitude	39.42±4.71	44.42±3.26	39.85±4.92	44.4±3.62	5.55±37.94	38.82±4.21	p<0.001
Behavioral intention	24.37±2.61	27.28±2.05	24.51±2.74	26.77±2.34	24.05±2.94	23.67±2.71	p<0.001
Self-efficacy	34.48±3.84	38.91±3.23	34.37±4.2	38.34±3.42	34.29±5.24	33.79±5.15	p<0.001
Performance	6.02±2.56	11±1.98	5.51±2.06	10.25±1.48	5.94±2.24	7.55±2.21	p<0.001
Dental plaque	36.18±14.9	19.71±9.71	38.69±15.1	23.67±10.7	39.03±12.9	36.78±11.7	p<0.001

· Derived from ANCOVA

Figures
Figure 1

Flow diagram of the participants

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Questionnaire.Divdaroc.doc