Short genome report

Complete genome sequence of lytic bacteriophage RG-2014 that infects the multidrug resistant bacterium *Delftia tsuruhatensis* ARB-1

Ananda Shankar Bhattacharjee1,4, Amir Mohaghegh Motlagh1,5, Eddie B. Gilcrease2, Md Imdadul Islam1, Sherwood R. Casjens2,3 and Ramesh Goel1*

Abstract

A lytic bacteriophage RG-2014 infecting a biofilm forming multidrug resistant bacterium *Delftia tsuruhatensis* strain ARB-1 as its host was isolated from a full-scale municipal wastewater treatment plant. Lytic phage RG-2014 was isolated for developing phage based therapeutic approaches against *Delftia tsuruhatensis* strain ARB-1. The strain ARB-1 belongs to the *Comamonadaceae* family of the *Betaproteobacteria* class. RG-2014 was characterized for its type, burst size, latent and eclipse time periods of 150 ± 9 PFU/cell, 10-min, <5-min, respectively. The phage was found to be a dsDNA virus belonging to the *Podoviridae* family. It has an isometric icosahedrally shaped capsid with a diameter of 85 nm. The complete genome of the isolated phage was sequenced and determined to be 73.8 kbp in length with a G + C content of 59.9%. Significant similarities in gene homology and order were observed between *Delftia* phage RG-2014 and the *E. coli* phage N4 indicating that it is a member of the N4-like phage group.

Keywords: Bacteriophage, *Delftia tsuruhatensis*, Multidrug resistant, Biofouling, Biofilm, Genome, *Podoviridae*

Introduction

The occurrence and spread of antibiotic resistant bacteria in the environment are regarded as environmental challenges of highest concern in the twenty-first century. ARB bacteria are becoming common, and the Centers for Disease Control and Prevention in the United States estimates more than 23,000 patients die annually due to ARB infections in the US alone [1]. With diminishing opportunities to discover new drugs to combat ARB infections, there is an urgent need to develop alternative therapeutic methods. Phage therapy has been regarded as an alternative to the need of synthesizing new antibiotics [2].

The *Delftia* genus resides in the *Comamonadaceae* family of the *Betaproteobacteria* class and is a Gram negative, short rod-shaped bacterium. *Delftia* species are widely distributed in the environment and have significant biodegradation capability [3, 4]. A recently described species, closely related to *Delftia acidovorans*, *Delftia tsuruhatensis*, has been reported to cause biofouling of bioreactor membranes [5], reverse osmosis membrane filters [6] and heating systems [7]. In addition, *D. tsuruhatensis* has been reported to be the causative agent of catheter-related nosocomial human infections [8, 9]. Previously, we isolated a multi-drug resistant *D. tsuruhatensis* strain ARB-1 from a municipal wastewater treatment plant along with the lytic bacteriophage. We demonstrated phage based therapy to combat biofouling caused by *D. tsuruhatensis* strain ARB-1 with the newly isolated lytic phage as the therapeutic agent [10].

Here, we report the complete genome sequence of the lytic phage specific to *D. tsuruhatensis* ARB-1 that we named RG-2014 (it does not infect *Delftia* Cs1–4 or *Delftia acidovorans* SPH-1 (our unpublished results) [10]. The RG-2014 sequence is annotated and analyzed in order to explore its potential application as an anti-biofilm bio-agent. The host of RG-2014 is multi-drug
resistant, using it as a control agent can be an especially appropriate application. The present study is not part of a larger genomic survey.

Organism information
Classification and features
The lytic bacteriophage RG-2014 belongs to the Podoviridae family in the order Caudovirales. It is a double-stranded DNA virus that forms 1-2 mm diameter clear plaques when infecting the multidrug resistant bacterium *Delftia tsuruhatensis* strain ARB-1.

A sample of sludge was obtained from a local wastewater treatment plant, the Central Valley Water Reclamation Facility in Salt Lake City UT, USA. A lytic phage infecting *D. tsuruhatensis* ARB-1 was isolated from this sample following a previously described protocol [11, 12]. To remove bacteria and debris the sample was sequentially filtered through 0.45 and 0.2 μm filter membranes [10]. The resulting phage-containing liquid was spotted (without further concentration) on an R2A agar (0.5 g/L protease peptone, 0.5 g/L yeast extract, 0.3 g/L K$_2$HPO$_4$, 0.05 g/L MgSO$_4$·7H$_2$O, pH 7) plate containing a lawn of *D. tsuruhatensis* ARB-1 [10]. Following incubation of the plates at 37 °C overnight, a clear plaque was picked, followed by the isolation of a second well-separated single plaque on a fresh *D. tsuruhatensis* ARB-1 lawn.

As shown in Fig. 1(a) the head of phage RG-2014 virion has a diameter of 85 nm and displays a hexagonal outline implying that it likely possesses icosahedral symmetry. It can also be seen from this transmission electron micrograph, that the virion has a very short tail, indicating that it is a member of the Podoviridae class of viruses. Figure 1(b) shows a micrograph with RG-2014 phage particles attached to a *D. tsuruhatensis* bacterial cell pili; it is not known if such pili may serve as receptor for this phage. Table 1 gives the classification and general features of RG-2014 phage. The genome of the phage is linear double-stranded DNA (dsDNA) that is about 70 kb in length as measured by its mobility during pulsed-field gel electrophoresis (Fig. 1(c)).

A one step growth curve was performed with the phage RG-2014 following previously described protocols [10]. The burst size, latent and eclipse period were found to be 150 ± 9 PFU/cell, 10-min, and <5-min, respectively, at 37 °C [10].

The complete genome sequence of the phage RG-2014 was determined. The analysis of the genome clearly shows that it is a member of the N4-like phage group (see below). Grose and Casjens [11] showed that the major capsid proteins (MCPs) of virulent tailed phages parallel the evolution of the nucleotide sequence of the whole phage genome. Phylogeny of the MCPs of selected N4-like phages and other tailed phages shows that the phage RG-2014’s major capsid protein (identified by its similarity that of *E. coli* phage N4, accession no. EF056009) falls robustly within the N4-like phage group (Fig. 2).

Genome sequencing information
Genome project history
Phage RG-2014 was isolated in February of 2011, with *D. tsuruhatensis* strain ARB-1 as its host, The genome sequencing and analysis of phage RG-2014 was completed in December of 2016. It is the first genome sequence reported for a lytic phage infecting *D. tsuruhatensis*. The purified phage DNA was sequenced with a MiSeq Bench-top DNA sequencer (Illumina, CA) in the High-throughput Genomic Core Facility at the University of Utah. A summary of the phage RG-2014 genome sequencing information is presented below and in the Table 2.

Growth conditions and genomic DNA preparation
Phage RG-2014 virions were purified from infected *D. tsuruhatensis* strain ARB-1 lysates. Briefly, 0.5 L of cells were grown to 1 × 108 cells per mL in R2A medium at 37 °C with shaking at 150 RPM [10]. The culture was then infected with five RG-2014 phages per cell, followed by incubation for 12 h. After clear cell lysis was observed leading to a cleared culture (the cells lysed), cell debris was removed by centrifugation for 30 mins at 5500×g. Phage virions were then pelleted by centrifugation overnight (>12 h) at 8890×g at 4 °C, and the pellet was re-
suspended in SM buffer with Gelatin (5.8 g/L NaCl, 2.0 g/L MgSO$_4$·7H$_2$O, 50 mL/L of 1 M Tris-HCl pH 7.5 and 5.0 mL/L of a 5% solution of gelatin). Purified phage virions were obtained by CsCl step gradient centrifugation as described by Earnshaw et al. [12]. The purified phages were stored in SM buffer with gelatin until further use.

The purified RG-2014 virion preparation was used for phage DNA extraction according to the protocol described by Casjens and Gilcrease [13]. Briefly, 400 μL of the CsCl purified phage particles was mixed with 75 μL of lysis buffer (5 μL of 20% SDS, 50 μL 1 M Tris–Cl, 20 μL 0.5 M EDTA, pH = 8) and incubated at 65 °C for 15 min. 50 μL of 5 M potassium acetate was added to the sample and incubated on ice for 1 h. The sample was then centrifuged at 8000×g for 15 min at 4 °C, and the supernatant was carefully transferred into a new 1.5 mL micro-centrifuge tube. After adding 0.9 mL of absolute ethanol to the supernatant and inverting several times, the DNA precipitate was collected by winding it onto the tip of a sterile Pasteur pipette. The DNA precipitate was transferred into a new micro-centrifuge tube, washed with 70% ethanol by inverting a few times, and subsequently pelleted by centrifugation in a microfuge. The DNA pellet was allowed to dry at room temperature for 10–20 min and resuspended in 100 μL of TE buffer (10 mM Tris–Cl pH 7.5 and 1 mM EDTA pH 8.0). About 0.1 μg of the phage DNA was mixed with 5 μL of loading dye and separated by 1% agarose pulsed-field gel electrophoresis (PFGE), with a 1–25-s pulse ramp, a voltage of 6.0 V/cm with an angle of 120° for 24 h at a constant temperature of 14 °C on a CHEF DR III system (Bio-Rad, USA). After completion of electrophoresis the gel was stained with ethidium bromide (Molecular

Table 1 Classification and general features of Delftia tsuruhatensis ARB-1 bacteriophage RG-2014

MIGS ID	Property	Term	Evidence code
	Classification	Domain Viruses	TAS [40]
		Kingdom Viruses	TAS [40]
		Phylum: unassigned	TAS [40]
		Class: dsDNA viruses, no RNA phase	TAS [40]
		Order: Caudovirales	TAS [40]
		Family: Podovirida	TAS [40]
		Genus: N4likevirus	TAS [40]
		Species: unassigned	
		(Type) strain: RG-2014 (KM879221.2)	
	Gram Stain	Not applicable	TAS [40]
	Virion Shape	Icosahedral	IDA
	Motility	non-motile	IDA
	Sporulation	Not reported	IDA
	Temperature	20–38 °C	IDA
	Optimum	37 °C	IDA
	pH Range; Optimum	6.5–7.6	IDA
	Carbon Source	Host cell	IDA
MIGS-6	Habitat	Wastewater	IDA
MIGS-6.3	Salinity	Not reported	
MIGS-22	Oxygen	Facultative aerobic	
MIGS-15	Biotic relationship	Obligate intracellular parasite of D. tsuruhatensis ARB-1	IDA
MIGS-14	Pathogenicity	Infective phage of D. tsuruhatensis ARB-1	IDA
MIGS-4	Geographic Location	Central Valley Water Reclamation Facility, UT, USA	IDA
MIGS-5	Sample Collection Time	02/01/2011, 11:00 AM	IDA
MIGS-4.1	Latitude	40.7056	IDA
MIGS-4.2	Longitude	111.913953	IDA
MIGS-4.3	Depth	Surface	IDA
MIGS-4.4	Altitude	0 m	IDA

Evidence codes: IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature)
Probes, USA) and visualized under CHEM DOC gel documentation system (Bio-Rad, USA).

Genome sequencing and assembly

Approximately 8 million paired-end reads with an average length of 300 bp were generated using a MiSeq Bench-top DNA sequencer (Illumina, CA). The reads were interleaved and trimmed based on a Phred score of 28 and a minimum post-trimming average length of 290 bp on the CLC Genomics Workbench 7.0.4 (CLC Bio, Denmark). The trimmed reads were de novo assembled on the CLC Genomics Workbench 7.0.4 with the following criteria: word size, 20 bp; automatic bubble size, 50 bp; minimum contig length, 200 bp as described in Bhattacharjee et al. [10].

The termini of the virion chromosome were determined by dideoxynucleotide Sanger sequencing [14] using the virion DNA as a template using the following primers which direct sequencing runs off the two ends as follows; right end, 5′-TGCTTCATGATCTTCAGTG-3′ and left end, 5′-GAAGGCATCAGCATGTTCAG-3′.

Genome annotation

Glimmer [15] was used to identify the open reading frames and GeneMarkS [16] for predicting genes. The predicted genes were used to search the NCBI non-
redundant database, the conserved domain database, the Cluster of Orthologous Groups database and the InterPro database and were annotated using Blast2GO 2.5.0 [17]. Automated annotation performed by Blast2GO 2.5.0 was manually curated by individually analyzing each predicted gene using BLAST against NCBI nr database with minimum e-value cut off of 10^{-3} [18]. ARA-GORN [19] and tRNAScanSE [20] were used for detection of transfer RNA genes. The complete annotated genome sequence is available in Genbank under the accession number KM879221.

Genome properties

The lytic phage RG-2014’s complete genome size was found to be 73,882 bps that includes 450 bp direct terminal repeats (we note that, when it has been examined, the genomes of other N4-like phages invariably have several hundred bp terminal repeats) with a G + C content of 59.9%. The annotation includes 88 putative protein coding ORFs and no tRNAs (Table 3). Predicted proteins were classified in COG functional categories [21, 22] using the WebMGA web server for metagenome analysis [23]. The number of predicted genes and the relative percentage of phage genes associated with the 25 general functional COG categories are described in Table 4. Twenty-eight (31.8%) of the 88 genes in the RG-2014 phage genome were assigned a putative function based on significant sequence similarity to genes of known functionality in the NCBI database. Twenty-one (23.8%) genes encode putative proteins that were assigned to the conserved hypothetical protein category.

Additionally, 40 predicted genes (44.3%) had no similarity to genes in the current database, and their products were classified as hypothetical proteins (Table 5). Annotation using the CDD on the NCBI server was also performed and is presented in Table 6.

Insights from the genome sequence

The phylogenetic tree of MCPs in Fig. 2 indicates that phage RG-2014 is most closely related to the group of phages typified by *Escherichia coli* phage N4 (NC_008720) [13, 24–28]. In addition their hosts, *E. coli* K-12 and *D. tsuruhatensis* strain ARB-1 belong to the same phylum *Proteobacteria*. Table 1 summarizes the classification and general features of the phage RG-2014. BLAST searches using the *Delftia* phage RG-2014 genome as a probe was undertaken to confirm this notion. Genome comparisons with *E. coli* phage N4 (NC_008720) were performed, and significant similarities in gene homology and order were observed between phages RG-2014 and N4 (Table 5 and Fig. 3). The phage RG-2014 genome shows mosaicism that is typical of tailed phages, with (for example) some regions displaying close relatedness to phage N4 (Fig. 3). Mosaic patterns in bacteriophage genomes is a well-known phenomenon wherein regions of high similarity are interspersed with less related or unrelated regions. These mosaic patterns in bacteriophage genomes corroborate the theory that horizontal gene transfer plays a significant role in phage evolution [29–31].

E. coli phage N4 does not depend upon its host’s RNA polymerase to transcribe its early and middle genes. But encodes its own set of two RNAPs. These are encoded

by three genes, one for the early RNAP and the two subunits of the middle gene transcribing RNAP [28, 32]. The host’s RNAP transcribes the N4 late genes. A striking and unique feature of this type of phage is that a unique single-subunit vRNAP is carried in the virion. vRNAP is encoded by N4 gene 50 and is injected into the host cell with the DNA where it transcribes the phage’s early genes. The RNAPII that transcribes the middle genes 24, 68, 69, 71 and 78, 83 and 85 encode virion structural proteins except the head decoration protein (N4 gene 17). A single MCP gene (RG-2014 gene 24) encodes all of the known structural genes and lysis proteins except the head decoration protein (N4 gene 17). The MCP gene homologous genes (the MCP gene was used in that study) in closely related host genomes of the same bacterial family is strong evidence that a phage is virulent; however, the phage RG-2014 genome lacks transfer RNA genes, suggesting that the phage is highly adapted to its host D. tsuruhatensis ARB-1, with regard to codon usage, allowing it to translate its genes efficiently without the need of synthesizing its own tRNAs [24]. To support our finding average codon usage bias was calculated for the phage RG-2014 and D. tsuruhatensis CM13 (NZ_CP017420), a close representative of the host D. tsuruhatensis ARB-1. The average codon usage bias calculation was performed using CodonO web server (http://sysbio.cvm.msstate.edu/CodonO/) [35]. D. tsuruhatensis CM13 (NZ_CP017420) and phage RG-2014 had similar average codon usage bias of 0.440141 and 0.406048, respectively, suggested the phage was adapted to its host.

There are two known types of virion assembly gene arrangements in the N4-like phages. First, those like phage N4 that have a single contiguous gene cluster that encodes all of the known structural genes and lysis proteins except the head decoration protein (N4 gene 17). Second, typified by Pseudomonas phage LIT1 in which several tail genes are present inside the replication gene cluster [25, 36]. Phage RG-2014 carries a set of homologous genes, including the separate decoration protein gene (RG-2014 gene 24), that have the phage N4 type organization. By homology to those of N4 [36], RG-2014 genes 24, 68, 69, 71–78, 83 and 85 encode virion structural proteins.

Phage RG-2014 makes clear plaques and carries no genes that encode proteins (such as integrase or proteolysin) that might suggest a temperate lifestyle. In addition, we also recently showed that the database of bacterial genome sequences has grown to a point where relatives of essentially all known temperate phages can be found as prophages present in the reported genome sequences of their hosts [37]. Thus, absence of closely related homologous genes (the MCP gene was used in that study) in closely related host genomes of the same bacterial family is strong evidence that a phage is virulent; related prophages would be found to encode such a gene if the phage in question were temperate. In fact no genes that are closely related to MCP of the phage RG-2014 are present in the current bacterial sequence database. The closest MCP gene relatives in prophages are from the distantly related bacterial genera Mesorhizobium, Pantoea and Acinetobacter whose encoded homologous proteins are only 47–56% identical to the amino acid sequence of phage RG-2014 MCP. The latter gene matches are found (when the sequence contigs are

Code	Value	% age	Description
J	0	0	Translation
A	0	0	RNA processing and modification
K	2	2.27	Transcription
L	2	2.27	Replication, recombination and repair
B	0	0	Chromatin structure and dynamics
D	0	0	Cell cycle control, mitosis and meiosis
Y	0	0	Nuclear structure
V	0	0	Defense mechanisms
T	0	0	Signal transduction mechanisms
M	1	1.14	Cell wall/membrane biogenesis
N	1	1.14	Cell motility
Z	0	0	Cytoskeleton
W	0	0	Extracellular structures
U	0	0	Intracellular trafficking and secretion
O	0	0	Posttranslational modification, protein turnover, chaperones
C	0	0	Energy production and conversion
G	0	0	Carbohydrate transport and metabolism
E	0	0	Amino acid transport and metabolism
F	2	2.27	Nucleotide transport and metabolism
H	0	0	Coenzyme transport and metabolism
I	0	0	Lipid transport and metabolism
P	0	0	Inorganic ion transport and metabolism
Q	0	0	Secondary metabolites biosynthesis, transport and catabolism
R	2	2.27	General function prediction only
S	1	1.14	Function unknown
–	77	87.5	Not in COGs

The total is based on the total number of protein coding genes in the annotated genome
Gene	Strand	Number of codons	Predicted function	Organism with best match	N4 gene	Gene accession no.	% Id	E-value
1	+	101	Conserved hypothetical protein	Erwinia phage Ea9–2	–	AIU44254	32	0.002
2	+	139	Conserved hypothetical protein	Achromobacter phage JMdelta	2	AHX356518	36	2e-21
3	+	121	Hypothetical protein	–	–	–	–	–
4	+	122	Conserved hypothetical protein	Roseovarius sp. phage 1	14	CBW47037	57	3e-45
5	+	109	Hypothetical protein	–	–	–	–	–
6	+	115	Hypothetical protein	–	–	–	–	–
7	–	104	Hypothetical protein	–	–	–	–	–
8	+	105	Hypothetical protein	–	–	–	–	–
9	+	50	Hypothetical protein	–	–	–	–	–
10	+	69	Hypothetical protein	–	–	–	–	–
11	+	186	Conserved hypothetical protein	Pithovirus sibericum	–	YP_009001006	32	3e-22
12	+	285	Conserved hypothetical protein	Achromobacter sp.	–	CYTR01000018	38	2e-26
13	+	108	Conserved hypothetical protein	Escherichia phage pH1APEC8	3	YP_007348409	29	3e-04
14	+	137	Hypothetical protein	–	–	–	–	–
15	+	89	Hypothetical protein	–	–	–	–	–
16	+	44	Hypothetical protein	–	–	–	–	–
17	+	77	Hypothetical protein	–	–	–	–	–
18	+	142	Conserved hypothetical protein	Achromobacter phage øAxp-3	–	YP_009148381	55	3e-37
19	+	193	Hypothetical protein	–	–	–	–	–
20	+	76	Conserved hypothetical protein	Pseudomonas phage PPw-3*	–	YP_008873216	40	5e-09
21	+	217	Hypothetical protein	–	–	–	–	–
22	+	272	RNA polymerase I subunit	Erwinia vB EamP Rexella	15	ANU65251	54	1e-102
23	+	432	RNA polymerase II subunit	Erwinia phage Ea9–2	16	AAL71577	47	1e-135
24	+	181	Virion decoration protein	Achromobacter phage øAxp-3	17	YP_009208670	36	1e-10
25	+	157	Hypothetical protein	–	–	–	–	–
26	+	155	Hypothetical protein	–	–	–	–	–
27	+	122	Hypothetical protein	–	–	–	–	–
28	+	82	Hypothetical protein	–	–	–	–	–
29	+	80	Hypothetical protein	–	–	–	–	–
30	+	115	Hypothetical protein	–	–	–	–	–
31	+	242	Hypothetical protein	–	–	–	–	–
32	+	209	Hypothetical protein	–	–	–	–	–
Table 5 *Delftia* phage RG-2014 gene prediction (Continued)

Gene	Strand	Number of codons	Predicted function	Organism with best match	N4 gene\(^a\)	Gene accession no.	% Id\(^b\)	E-value\(^b\)
33	+	359	Conserved hypothetical protein	*Erwinia* phage Ea9–2	24	AH60096	46	7e-104
34	+	127	Conserved hypothetical protein	*Achromobacter* phage øAxp-3	–	YP009208682	41	7e-11
35	+	92	Hypothetical protein	–	–	–	–	–
36	+	405	Conserved hypothetical protein	*Escherichia* phage N4	25	ABK54394	39	1e-86
37	+	170	dCTP deaminase	*Escherichia* phage Bp4	26	AHN83412	51	4e-53
38	+	78	Hypothetical protein	–	–	–	–	–
39	+	124	Hypothetical protein	–	–	–	–	–
40	+	140	Hypothetical protein	–	–	–	–	–
41	+	169	Hypothetical protein	–	–	–	–	–
42	+	121	Hypothetical protein	–	–	–	–	–
43	+	103	Hypothetical protein	–	–	–	–	–
44	+	73	Hypothetical protein	–	–	–	–	–
45	+	317	Thymidylate synthase	*Salmonella* phage SEGD1\(^c\)	–	KU726251	48	2e-101
46	+	104	Conserved hypothetical protein	*Escherichia* phage N4	35	YP_950513	59	1e-36
47	+	135	Conserved hypothetical protein	*Paenibacillus* phage PG1\(^c\)	–	YP_008129928	66	5E-54
48	+	197	Nucleotide pyrophospho-hydrolase	*Pseudomonas* phage PaMx74\(^c\)	–	YP_009199508	33	3e-13
49	+	436	DNA helicase	*Achromobacter* phage Wdelta	37	AHC56567	48	4e-137
50	+	172	Conserved hypothetical protein	*Achromobacter* phage WMalphi	38	YP_00904756	34	2e-27
51	+	884	DNA polymerase	*Escherichia* phage N4	39	ABK54408	60	0.0
52	+	127	Hypothetical protein	–	–	–	–	–
53	+	286	Conserved Hypothetical protein	*Nitricola* phage 1 M3–16	–	YP 009037286	47	1e-12
54	+	327	Conserved hypothetical protein	*Escherichia* phage G7C	41	AEL79653	45	7e-97
55	+	724	DNA primase	*Achromobacter* phage øAxp-3	42	ALA4517	62	0.0
56	+	249	Conserved hypothetical protein	*Escherichia* phage N4	43	ABK54413	57	3e-100
57	+	253	Single-stranded DNA-binding protein	*Erwinia* phage S6	44	AEJ81593	38	5e-37
58	+	372	Conserved hypothetical protein	*Salmonella* phage FSL_SP-076	–	YP_008240188	43\(^d\)	4e-24
59	+	61	Hypothetical protein	–	–	–	–	–
60	+	65	Hypothetical protein	–	–	–	–	–
61	+	235	Hypothetical protein	–	–	–	–	–
62	+	102	Hypothetical protein	–	–	–	–	–
63	+	59	Hypothetical protein	–	–	–	–	–
64	+	98	Conserved Hypothetical protein	*Bacillus* phage SP-10	–	YP 007003301	40	3e-10
Gene	Strand	Number of codons	Predicted function	Organism with best match	N4 gene	Gene accession no.	% Id	E-value
------	--------	------------------	---	---------------------------	---------	-------------------	------	---------
65	+	288	Possible transcriptional regulator	Burkholderia phage AH2*	AY69538	38	5e-44	
66	+	110	Hypothetical protein	–	–	–	–	–
67	+	172	Hypothetical protein	Deflita phage øW-14³	–	YP_003359016	39e	1e-10
68	–	3413	Virion RNA polymerase	Achromobacter phage øAxp-3	50	ALA45523	42	0.0
69	–	712	Lysozyme-like domain virion structural protein	Escherichia phage ECBP1	51	AFR52010	25	5e-18
70	–	135	Conserved hypothetical protein	Achromobacter phage øMdelta	–	AHC56583	75	2e-38
71	–	921	Conserved hypothetical protein	Achromobacter phage øAxp-3	53	ALA45526	36	1e-168
72	–	300	Virion structural protein	Escherichia phage N4	54	AAO24827	50	2e-101
73	–	265	Conserved hypothetical protein	Achromobacter phage øAxp-3	55	ALA45528	38	3e-47
74	–	411	Major capsid protein	Achromobacter phage øAxp-3	56	ALA45529	66	0.0
75	–	281	Conserved hypothetical protein	Escherichia phage IME11	57	AFV25908	38d	7e-42
76	–	116	Hypothetical protein	Erwinia phage S6	58	YP_007005822	71e	0.006
77	–	138	Conserved Hypothetical protein	Roseovarius sp. 217 phage 1	–	CBW47064	28	0.002
78	–	766	Portal protein	Erwinia phage Frozen	59	AN65209	59	0.0
79	–	170	Lysis / possible Rz-like spanin	Achromobacter phage øAlpha	60	AHC94031	40	4e-21
80	–	201	Lysis / N-acetylmuramidase	Escherichia phage G7C	61	AEL79672	52	7e-71
81	–	108	Conserved hypothetical protein	Escherichia phage N4	63	ABR54424	34	1e-17
82	–	416	Conserved hypothetical protein	Achromobacter phage øAxp-3	64	ALA45537	64	0.0
83	–	1388	Tail sheath and receptor binding virion protein	Achromobacter phage øAxp-3	65	ALA45538	51	0.0
84	–	140	Hypothetical protein	–	–	–	–	–
85	–	234	Possible virion appendage protein	Erwinia phage Ea9–2	66	AH#60147	44d	2e-67
86	–	536	Large terminase subunit	Escherichia phage ECBP1	68	AFR52033	61	0.0
87	–	228	Conserved hypothetical protein	Escherichia phage N4	69	ABR54430	46	2e-61
88	–	340	Conserved hypothetical protein	Achromobacter phage øAxp-3	49	ALA45543	34	1e-17

*E. coli phage N4 is the best characterized and therefore the prototypical member of this phage group

% identity and e-value determined by BLASTp at NCBI web site; unless otherwise noted, values are listed if the patch of similarity includes ≥60% of the protein

All phages in this column are in the N4-like group except AH2, øW-14, SEG01, PG1, PaMx74 and PPww-3

Sequence similarity only in N-terminal region

Sequence similarity only in C-terminal region
Gene	Evidence	E value	Bit Score	Accession
4	cl10259 superfamily	2.22E-55	167.72	Cl10259
12	MTB superfamily	0.004977	36.9774	Cl15385
15	MDR superfamily	0.003731	33.0936	Cl16912
22	Pha00452	1.96E-05	44.2438	Pha00452
23	RNA_pol superfamily	4.77E-09	56.9554	Cl20211
24	Big_2	0.00242	34.2896	Pfam02368
24	Big_2 superfamily	3.49E-07	39.6828	Cl02708
24	Cog5492	3.72E-09	53.2664	Cog5492
33	Aaa	6.72E-05	41.3627	Cd00009
33	ABC_atpase superfamily	6.72E-05	41.3627	Cl21455
36	Wwfa superfamily	1.20E-20	85.5169	Cl00057
36	DUF2201_N superfamily	9.26E-31	117.611	Cl16157
37	Trimeric_dutpase superfamily	3.53E-13	60.5857	Cd07557
37	Trimeric_dutpase superfamily	2.62E-23	89.0534	Cl00493
45	TS_Pyrimidine.hmase	5.70E-91	268.76	Cd00351
45	TS_Pyrimidine.hmase superfamily	5.17E-13	387.525	Cl19097
48	NTP-ppase superfamily	0.002418	35.1816	Cl16941
49	ABC_atpase superfamily	2.77E-17	78.3824	Cl21455
49	Uvrd_C_2 superfamily	8.48E-08	47.1547	Pfam13538
49	Uvrd_C_2 superfamily	8.48E-08	47.1547	Cl22491
49	Aaa_30	2.77E-17	78.3824	Pfam13604
49	Cog1112	9.34E-05	43.4113	Cog1112
51	DNA_pol_A superfamily	1.80E-26	110.198	Cl02626
51	DNAq_like_exo superfamily	0.0005505	40.4172	Cl10012
55	Prict_1 superfamily	1.28E-07	47.6526	Pfam08708
55	Prict_1 superfamily	1.28E-07	47.6526	Cl07362
56	ABC_atpase superfamily	0.0005674	38.4072	Cl21455
63	Prk14085 superfamily	0.0005556	34.1837	Prk14085
64	DUF2829 superfamily	1.18E-16	66.5176	Pfam11195
64	DUF2829 superfamily	1.18E-16	66.5176	Cl12744
65	Parbc	0.0004658	37.3039	Pfam02195
65	Parbc superfamily	0.0003729	37.2839	Cl02129
66	DUF1178	0.0021343	34.0766	Pfam06676
67	Extradiol_Dioxygenase_3B_like superfamily	0.0057676	34.7714	Cl00599
69	LT_ewl	1.36E-18	80.5286	Cd00254
69	Lysozyme_like superfamily	1.36E-18	80.5286	Cl00222
70	Polyadenylate-binding_protein_3	0.0067594	34.0122	Tigr01628
72	DUF3584	0.0060894	36.9821	Pfam12128
74	Hypothetical_protein	5.26E-76	237.638	Tigr04387
74	P22_coatprotein superfamily	5.26E-76	237.638	Cl22542
78	Cog4913	0.001198	41.1603	Cog4913
79	Prk09039	0.000734	37.6381	Prk09039
80	Glyco_hydro_108 superfamily	9.31E-23	86.0288	Cl09583
80	PG_binding_3 superfamily	0.0001066	38.2277	Cl09627
Table 6 *Delftia* phage RG 2014 annotation using conserved domain database* (Continued)

Gene	Evidence	E value	Bit Score	Accession
86	COG5362 superfamily	3.02E-08	51.3532	Cl02216
88	Phage_gp49_66	2.28E-21	85.3759	Pfam13876
88	Phage_gp49_66 superfamily	2.28E-21	85.3759	Cl10351

Evidence of gene functions provided by blast analysis using conserved domain database (e-value ≤ 10^-5)

Fig. 3 Whole genome comparison of *Delftia* phage RG-2014 (KM872991.2) phage to *E. coli* phage N4 (NC_008720). The Figure was generated with Easyfig [38]. Genomes were aligned using Easyfig [38]. The functions of genes in phage N4 are shown above and predicted functions of RG-2014 genes are indicated below the maps.
sufficiently large for such a determination) to be present in rather distantly related prophages that have other similarities to the N4-like phages including a prophage encoded vRNAP, suggesting that there are currently undescribed temperate phages that are very distantly related to the N4-like phage group (our unpublished observation). Nonetheless, among the 143 currently available genomes from the Comamonadaceae bacterial family (including eight Delftia genomes) the best-encoded protein matches have only 22% identity to the phage RG-2014 MCP. We conclude that phage RG-2014 is virulent.

The N4-like phage group is clearly well separated from the other known tailed bacteriophages [11, 28], but the taxonomic status of different phages within the group remains less understood. Unlike some other tailed phage types, the N4-like phages include members that infect a wide range of bacterial hosts in the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria classes [25, 28]. Fig. 4 shows a dotplot of a diverse sample of N4-like phage genomes that illuminates several aspects of the phages in this group (no diagonal lines are present when comparison is with other tailed phage types, data not shown). First, phage RG-2014 is not particularly closely related to any of the other currently known N4-like phages; its closest, but nonetheless rather distant, relatives are Achromobacter phages JWDelta, JWAlpha and øAxp-1. We note that these four phages infect members of the Betaproteobacteria. A second conclusion that can be drawn from fig. 4 is that genome similarity within this group of phages generally parallels the relatedness of their hosts. The various subtypes of the N4-like phage group (separated by thick red lines in the figure) are usually restricted to single genus; the one current exception to this rule is the relatively close relationship between Vibrionaceae phage VPB47 and...
Pseudoalteromonadaceae phage pYD6-A. It thus appears that recent “jumping” of these phages between taxonomically distant hosts is not common. On the other hand, more than one N4-like phage subtype can infect a given host genus; for example, *Escherichia* and *Erwinia* N4-like phages are clearly present as two subtypes (e.g. the *Escherichia* N4/EcP1 and *Erwinia* Ea9–2/S6 pairs). More distant host relationships are complex. Very weak diagonal similarity lines are present when the *Escherichia* (phage N4 subtype), *Erwinia* and *Achromobacter* N4-like phages are compared. These could tentatively correspond to members of the proposed *Enquattrirviridae* subfamily [28].

Conclusions

The *D. tsuruhatensis* infecting phage RG-2014 belongs to the *Podoviridae* viral family. The phage RG-2014 genome sequence shows significant synteny and sequence similarity to *E. coli* bacteriophage N4 and other members of the N4-like group of tailed phages; this clearly demonstrates phage RG-2014’s membership in this group. Our analysis confirms that phages in the virulent N4-like group are widely present in the wild. The members of the N4-like group infect bacterial hosts in several classes within the *Proteobacteria* phylum. Their virulent nature, widespread distribution and efficient infection suggest that members of this group will be useful in many bacterial control situations.

Abbreviations

ARB: Antibiotic Resistant Bacteria; COG: Cluster of Orthologous Groups; ORF: Open reading frame; RNAP: RNA polymerase

Acknowledgements

This research was conducted under the CAREER funding mechanism of NSF. This project was awarded to Dr. Ramesh Goel. Mr. Eddie B. Gilcrease was supported under a NIH funded project with Dr. Sherwood Casjens as the principal investigator. Any opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the agency; therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Funding

This research was partially supported by National Science Foundation (NSF) Grant 1,055,786 and 58,501,574 to RG and NIH grant GM114817 to SRC. The views and opinions expressed in this manuscript are those of authors and do not necessarily relate to the funding agency.

Authors’ contributions

ASG design the study, performed the experiments, analyzed data, and wrote the manuscript. AMW helped with the experiments and writing of the manuscript. EBG helped with the PCR assays for finishing up the genome. SRC participated in the experiments, helped in analyzing the data, and writing the manuscript. MII reviewed the manuscripts and provided valuable comments. RG helped in designing the study, coordinated the project and assisted in drafting the manuscript. All authors have read and approved the final manuscript.

Competing interests

The authors declare that they have no financial and non-financial competing interests.

References

1. Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States, 2013. Atlanta: CDC; 2013. p. 10.
2. Motlagh AM, Bhattacharjee AS, Goel R. Biofilm control with natural and genetically-modified phages. World J Microb Biol. 2016;32:1–10. doi:10.1016/j.wjmb.2016-09-006.
3. Juárez-Jiménez B, Manzanera M, Rodelas B, Martínez-Toledo MV, González-López J, Crognalet S, Pesciaroli C, Fenice M. Metabolic characterization of a strain (BM90) of *Delphi* tsuruhatensis showing highly diversified capacity to degrade low molecular weight phenols. Biodegradation. 2010;19:475–89. doi:10.1007/s10532-009-9317-4.
4. Morel MA, Ubalde MC, Braña V, Castro-Sowinski S. *Delphi* sp. JD2: a potential Cr (+) reducing agent with plant growth-promoting activity. Arch Microbiol. 2011;198:45–9. doi:10.1007/s00203-010-0652-2.
5. Calderón K, Reboleiro-Rivas P, Rodríguez FA, Poyatos JM, González-López J, Rodelas B. Comparative analysis of the enzyme activities and the bacterial community structure based on the aeration source supplied to an MBR to treat urban wastewater. J Environ Manag. 2013;135:471–9. doi:10.1016/j.jenvman.2013.05.048.
6. Safarik J, Phipps DW. Microbial diversity in a three stage reverse osmosis system. In: Water Reuse & Desalination Research Conference; 2013.
7. Kjeldsen KJ, Kylander BV, Egli K, Frølund B, Nielsen PH, Ingversen K. Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system. FEMS Microbiol Ecol. 2007;61:384–97. doi:10.1111/j.1574-6941.2006.00255.x.
8. Preiser BW, Ullrich S, Speich R, Bloemberg GV, Hombach M. Human infection with *Delphi* tsuruhatensis isolated from a central venous catheter. J Med Microbiol. 2011;60:246–8. https://doi.org/10.1099/jmm.0.00238-0.
9. Tabak O, Mete B, Aydin S, Mandel NM, Onlu B, Ozarsa R, Tabak F. Porrelated *Delphi* tsuruhatensis bacteremia in a patient with breast cancer. New Microbiol. 2013;36:199–201.
10. Bhattacharjee AS, Choi J, Motlagh AM, Mulheiri ST, Goel R. Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic-resistant bacterial biofilms. Biotechnol Bioeng. 2015;116:44–54. doi:10.1002/bit.25574.
11. Grossi J, Casjens SR. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family *Enterobacteriaceae*. Virology. 2014;468:421–43.
12. Earnshaw W, Casjens S, Harrison SC. Assembly of the head of bacteriophage P22: x-ray diffraction from heads, proheads and related structures. J Mol Biol. 1976;104:387–410. doi:10.1016/0022-2836(76)90278-3.
13. Casjens SR, Gilcrease EB. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virophages. In bacteriophages 2009 (pp. 91-111). Humana Press.
14. Sanger F, Nicklen S, Coulson AR. DNA sequencing by the chain-termination method. Proc Natl Acad Sci U S A. 1977;74:5463–7.
15. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics. 2007;23:673–9.
16. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:607–18. doi:10.1093/nar/29.12.607.
17. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–7. doi:10.1093/bioinformatics/bti610.
18. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. doi:10.1093/bioinformatics/btp461.

19. Laslett D. Canback: BARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–6. doi:10.1093/nar/gkh152.

20. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snocan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:686–9. doi:10.1093/nar/gki366.

21. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6. doi:10.1093/nar/28.1.33.

22. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2014;43:261–9. doi:10.1093/nar/gku1223.

23. Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a Customizable Web Server for Fast Metagenomic Sequence Analysis. BMC Genomics. 2011;12:444. doi:10.1186/1471-2164-12-4.

24. Wittmann J, Dreiseikelmann B, Rohde M, Meier-Kolthoff JP, Bunk B, Rohde C. The complete genome sequence of EC1-UPM, a novel N4-like bacteriophage that infects marine roseobacters. Environ Microbiol. 2009;11:2055–64. doi:10.1111/j.1462-2920.2009.01927.x.

25. Ceyssens PJ, Brabban A, Rogge L, Lewis MS, Pickard D, Goulding D, Dougan A, Kropinski A, Kutter E, Lavigne R. Molecular and physiological analysis of three Pseudomonas aeruginosa phages belonging to the "N4-like viruses". Virology. 2010;15:26–30. doi:10.1016/j.virol.2010.06.011.

26. Zhao Y, Wang K, Jiao N, Chen F. Genome sequences of two novel phages infecting marine roseobacters. Environ Microbiol. 2009;11:2055–64. doi:10.1111/j.1462-2920.2009.01927.x.

27. Gan HW, Sieo CC, Tang SGH, Omar AR, Ho YY. The complete genome sequence of EC1-UPM, a novel N4-like bacteriophage that infects Escherichia coli O78: K80. Virol J. 2013;10:1. doi:10.1186/1743-422X-10-388.

28. Wittmann J, Klumpp J, Switt AIM, Yagubi A, Ackermann HW, Wiedmann M, Swircov A, Nasih JH, Kropinski AM. Taxonomic reassessment of N4-like viruses using comparative genomics and proteomics suggests a new subfamily- "Enquartavirinae". Arch Virol. 2015;160:3053–62. doi:10.1007/s00705-015-2609-6.

29. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc Natl Acad Sci U S A. 1999;96:2192–7.

30. Casjens S, Hatfull G, Hendrix R. Evolution of dsDNA tailed-bacteriophage genomes. Semin Virol. 1992;3:383–97.

31. Casjens S. Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol. 2005;8:451–8. doi:10.1016/j.mib.2005.06.014.

32. Kazmierczak KM, Rothman-Denes LB. Bacteriophage N4. The bacteriophages of tailed-bacteriophages. Virology. 2016;496:255–76. doi:10.1016/j.virol.2016.02.059.

33. Casjens S, Grose JH. Contributions of P2-and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology. 2016;496:255–76. doi:10.1016/j.virol.2016.02.059.

34. Sullivan MJ, Petty NK, Beaton SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10. doi:10.1093/bioinformatics/btr039.

35. Krumies J, Arnold R, Rattie T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics. 2007;23:1026–8. doi:10.1093/bioinformatics/btm039.

36. King AM, Lefkowitz E, Adams MJ, Carstens EB, editors. Virus taxonomy: ninth report of the international committee on taxonomy of viruses. San Diego: Elsevier; 2012.