Using pipes from various materials for sewage network: theoretical analysis

D I Tarakanov
Samara State Technical University, 194, Molodogvardeyskaya st., Samara, 443001, Russian Federation
E-mail: fispos@samgtu.ru

Abstract. The paper presents the analysis of data on Russian settlements sewage networks as of 2014-2018, published in the public domain. All the settlements are divided into six groups depending on the population size. For each group, the distribution of sewage networks depending on the material of the pipes is established. In this country, the most widespread pipes are ceramic and cast-iron pipes, which have been widely used in the last 100 years. Asbestos-cement, reinforced concrete and steel pipes were used much less frequently. Active construction of sewage networks from plastic pipes began only in the last 20 years, so their share in the total volume does not exceed 6%. The authors believe that there will be a significant increase in the number of plastic pipes in the total length of sewage networks in the next few years.

1. Introduction
In the design and construction of sewage networks, the choice of pipe material is of great importance. It has a great effect on pipe capacity, depth of laying and durability of underground constructions which have a direct impact on trouble-free and uninterrupted functioning of the sewage system in general. It means that capital and operating costs for ensuring sanitary and hygienic conditions in a settlement depend on the correct choice of pipe material.

The following requirements are taken into account when the pipe material is being chosen:

– good long-term hydraulic performance;
– high corrosion and chemical resistance as well as abrasion resistance;
– low overgrowth capacity with different types of deposits;
– resistance to external loads;
– long-term tightness of connections;
– ease of installation;
– low cost.

With these requirements taking into account, ceramic, asbestos-cement, reinforced concrete, cast iron, steel, plastic pipes, as well as brick and pre-cast concrete pipes were used for external sewage networks construction at different stages the building industry development.

2. Materials and research
Paper 1 [1] gives information on Samara municipal wastewater sewage network as of 2011. This paper summarizes the information on sewage networks of 60 Russian settlements located in 30 administrative regions of the country (see Table 1) as of 2014-2018.
Table 1. Settlements statistics

Inhabitants in the settlement	Number of settlements	Name of the administrative district
less than 5000 people	12	Republic of Kalmykia, Komi Republic, Republic of Tatarstan, Kamchatka Region, Krasnodar Territory, Krasnoyarsk Region
from 5 000 to 10 000 people	6	Khabarovsk Territory, Astrakhan Region, Vladimir Region, Ivanovo Region, Irkutsk Region
from 10 000 to 50 000 people	22	Kaliningrad Region, Kaluga Region, Kemerovo Region, Kirov Region, Kostroma Region, Leningrad Region, Moscow Region, Murmansk Region, Nizhny Novgorod Region, Novosibirsk Region
from 50 000 to 100 000 people	5	Smolensk Region, Tambov Region, Tver Region, Chelyabinsk Region, Yaroslavl Region
from 100 000 to 500 000 people	8	Samara Region, Sverdlovsk Region, Smolensk Region, Tambov Region, Tver Region, Chelyabinsk Region, Yaroslavl Region
over 500 000 people	7	

3. Data analysis

Table 2 presents data on the average length of sewage networks and distribution of pipes made of different materials used.

The analysis of data presented in Table 2 shows that small settlements (up to 10 thousand inhabitants) are characterized by greater irregularity of application of pipes from different materials. There might be sewage networks made of only one type of pipe material (ceramic, cast iron, steel or plastic). This is due to the fact that sewage networks in such settlements were built throughout all the territory for a relatively short period of time and, in the future, these networks were not subjected to any expansion or reconstruction. At the same time, pipes with the best technical and economic indicators for the given locality were used for these networks construction. In larger settlements, there are pipes made from all materials. E.g., brick collectors which are more than 100 years old are still used at present in the cities of Samara and Yaroslavl.

The analysis revealed that ceramic pipes, which are used for sewage networks from the first half of the XX century, are still most widespread in Russia. In general, the share of ceramic pipes is 21.2-46.0% for cities with different numbers of inhabitants. Cast-iron pipes, which also were actively used in the last century, amount to 15.5-54.0%. Later, asbestos cement (5.4-14.5%) and reinforced concrete pipes (0.0-12.5%) came into use. Reinforced concrete pipes are more frequently used in large cities.
Table 2. Distribution of pipelines by material used

Number of inhabitants	Average length of sewage network, km	Distribution of pipelines by material used, %		
		material	average value	value variation
less than 5000 people	3.66	asbestos cement	8.4	0.0 – 61.4
		reinforced	0.0	not used
		concrete	21.2	0.0 – 100
		ceramics	0.0	not used
		brick	5.0	0.0 – 20.6
		plastic	11.4	0.0 – 100
		steel	54.0	0.0 – 100
		cast iron	0.0	not used
		asbestos cement	5.4	0.0 – 18.9
		reinforced	0.0	not used
		concrete	46.0	0.0 – 100
		ceramics	0.0	not used
		brick	27.0	0.0 – 100
		plastic	2.5	0.0 – 9.6
		steel	19.0	0.0 – 43.5
from 5 000 to 10 000 people	13.81	cast iron	0.0	not used
		asbestos cement	13.3	0.0 – 36.8
		reinforced	7.9	0.0 – 36.8
		concrete	30.7	0.0 – 77.5
		ceramics	0.0	not used
		brick	3.7	0.0 – 44.7
		plastic	12.5	0.0 – 76.6
		steel	31.9	9.4 – 85.8
from 10 000 to 50 000 people	40.78	cast iron	0.0	not used
		asbestos cement	8.4	2.0 – 13.2
		reinforced	11.8	4.3 – 17.5
		concrete	46.0	32.8 – 56.3
		ceramics	0.0	not used
		brick	1.8	0.9 – 3.9
		plastic	16.5	1.8 – 31.5
		steel	15.5	3.4 – 44.8
from 50 000 to 100 000 people	133.79	cast iron	0.0	not used
		asbestos cement	14.5	0.0 – 64.5
		reinforced	11.9	3.3 – 18.0
		concrete	42.4	0.8 – 69.7
		ceramics	0.0	not used
		brick	5.2	0.0 – 14.9
		plastic	2.8	0.0 – 7.0
		steel	23.2	2.0 – 45.4
from 100 000 to 500 000 people	297.66	cast iron	0.0	not used
		asbestos cement	11.7	1.7 – 24.2
		reinforced	12.5	0.0 – 30.0
		concrete	40.9	10.8 – 66.4
		ceramics	0.4	0.0 – 1.9
		brick	5.3	3.5 – 8.8
		plastic	5.1	0.0 – 16.8
		steel	24.1	14.1 – 41.3
over 500 000 people	1058.27	cast iron	0.0	not used

This is due to the fact that the range of reinforced concrete pipes in the period when they came into use started with a diameter of 400mm.
Steel pipes due to their low corrosion resistance were used only with appropriate justification, but their number is comparable to asbestos-cement and reinforced concrete pipes and ranges between 2.5% and 16.5%. There are also settlements where the share of steel pipes in the total length of their sewage networks exceeds 50%. E.g. in the urban-type settlement of Kamskiye Polyany (Tatarstan) this figure goes up to 55.8% (with steel sections length of 25.27 km), in the town of Zima (Irkutsk region) it is 76.6% (31.58 km), and in the settlement of Glebychevo (Leningrad region) it is 100% (5.0 km).

4. Discussion
All of the pipes mentioned above are characterised with both advantages and drawbacks, limiting their scope. These drawbacks are:

– for ceramic pipes: the length of standard elements is small, which increases the labour intensity for their installation;
– for cast iron pipes (from gray cast iron): fragility and, as a consequence, high metal content (they are thick-walled and heavy);
– for asbestos cement pipes: both fragility and low resistance to abrasion, which leads to the lowest lifetime of all the pipes;
– for reinforced concrete pipes: susceptibility to corrosion, high weight, assortment begins with large diameters.

Since the 80s of the last century, plastic pipes became popular, but in Russia they began to be used only in the last 20 years, so their share in the total volume does not exceed 6.0%. The exception here is the urban-type settlement of Aksubaev (Tatarstan), where the sewage network was built completely from polyethylene pipes with a total length of 18.38 km (in the period from 2000 to 2014). These sewage network characteristics affected the average values of the sample of settlements with the number of inhabitants from 5 to 10 thousand people.

5. Conclusions
Currently, plastic pipes offer the best potential for the construction of sewage networks [2-8], as their main drawback is a slightly higher cost compared to other pipes, as well as increased requirements for their trench base construction and the material used for backfilling (lack of large inclusions). In all other respects, they exceed previously used materials by far. Pipes made of high-strength cast iron with spherical graphite are not used for sewage networks construction because of their high cost.

As the service life of most sewage networks exceeds the normative values (asbestos cement pipes – 30 years, reinforced concrete and cast iron pipes – 40 years, ceramic pipes – 50 years), in the near future we should expect a significant increase in the share of plastic pipes in the total length of sewage networks.

References
[1] Shuvalov M V and Sopyryaev M N 2011 Water delivery and sanitary engineering 9-2 55-59
[2] Romeyko V S, Bukhin V E, Dobromyslov A Y et al 2001 Plastic pipes and modern technologies for pipelines construction and repair. Resource materials. Design of plastic pipelines (Moscow: Publishing house VNIIMP)
[3] Kutrin A V 2017 The use of plastic pipes in water supply and sewerage systems of Irkutsk Water delivery and sanitary engineering 11 72-75
[4] Ostavnov A A, Primin O G, Khrenov K E, Orlov V A and Kharkin V A 2012 On the question of choosing PE pipes for outdoor networks Plumbing, Heating, Air Conditioning 8(128) 18-23
[5] Strelkov A, Shuvalov M and Komarov D 2019 Method of gravity-flowing sewage network drainage as a way to increase its durability and maintainability IOP conference series: Earth and Environmental Science 022251
[6] Strelkov A, Shuvalov M and Gridneva M 2017 Surface wastewater in Samara and its impact on water basins as water supply sources IOP Conference Series: Earth and Environmental Science 012040
[7] Nemova A A and Mirkin E N 2017 Analysis of the drainage system ware in the cities of the Volga region according to open geoinformation systems *Geoinformation technologies in agriculture, nature management and environmental protection* pp 80-82

[8] Makrotina L V 2017 Water disposal systems and their state in the Irkutsk region and prospects for their development in accordance with state programs *News of Higher Educational Institutions Investment Construction Land Estate* 7 1(20) 69-76