APPROXIMATING L^2 INVARIANTS OF AMENABLE COVERING SPACES: A COMBINATORIAL APPROACH.

JOZEF DODZIUK AND VARGHESE MATHAI

Abstract. In this paper, we prove that the L^2 Betti numbers of an amenable covering space can be approximated by the average Betti numbers of a regular exhaustion, proving a conjecture in [DM]. We also prove that an arbitrary amenable covering space of a finite simplicial complex is of determinant class.

INTRODUCTION

Let Y be a connected simplicial complex. Suppose that π acts freely and simplicially on Y so that $X = Y/\pi$ is a finite simplicial complex. Let F a finite subcomplex of Y, which is a fundamental domain for the action of π on Y.

We assume that π is amenable. The Følner criterion for amenability of π enables one to get, cf. [Ad], a regular exhaustion $\{Y_m\}_{m=1}^{\infty}$, that is a sequence of finite subcomplexes of Y such that

1. Y_m consists of N_m translates $g.F$ of F for $g \in \pi$.

2. $Y = \bigcup_{m=1}^{\infty} Y_m$.

3. If $\hat{N}_{m,\delta}$ denotes the number of translates of F which have distance (with respect to the word metric in π) less than or equal to δ from a translate of F having a non-empty intersection with the topological boundary ∂Y_m of Y_m (we identify here $g.F$ with g) then, for every $\delta > 0$,

$$\lim_{m \to \infty} \frac{\hat{N}_{m,\delta}}{N_m} = 0.$$

One of our main results is

Theorem 0.1 (Amenable Approximation Theorem). Let Y be a connected simplicial complex. Suppose that π is amenable and that π acts freely and simplicially on Y so that $X = Y/\pi$ is a finite simplicial complex. Let $\{Y_m\}_{m=1}^{\infty}$ be a regular exhaustion of Y. Then

$$\lim_{m \to \infty} \frac{b^j(Y_m)}{N_m} = b^j_{(2)}(Y : \pi) \quad \text{for all} \quad j \geq 0.$$

$$\lim_{m \to \infty} \frac{b^j(Y_m, \partial Y_m)}{N_m} = b^j_{(2)}(Y : \pi) \quad \text{for all} \quad j \geq 0.$$

Date: SEPTEMBER 1996.

1991 Mathematics Subject Classification. Primary: 58G11, 58G18 and 58G25.

Key words and phrases. L^2 Betti numbers, approximation theorems, amenable groups.
Here $b_j(Y_m)$ denotes the j^{th} Betti number of Y_m, $b^j(Y_m, \partial Y_m)$ denotes the j^{th} Betti number of Y_m relative its boundary ∂Y_m, and $b^j_{(2)}(Y : \pi)$ denotes the jth L^2 Betti number of Y. (See the next section for the definition of the L^2 Betti numbers of a manifold)

Remarks. This theorem proves the main conjecture in the introduction of an earlier paper [DM]. The combinatorial techniques of this paper contrasts with the heat kernel approach used in [DM]. Under the assumption $\dim H_k(Y) < \infty$, a special case of the Amenable Approximation Theorem above is obtained by combining proofs of Eckmann [Ec] and Cheeger-Gromov [CG]. The assumption $\dim H_k(Y) < \infty$ is very restrictive and essentially says that Y is a fiber bundle over a $B\pi$ with fiber a space with finite fundamental group. Cheeger-Gromov use this to show that the Euler characteristic of a finite $B\pi$, where π contains an infinite amenable normal subgroup, is zero. Eckmann proved the same result in the special case when π itself is an infinite amenable group.

There is a standing conjecture that any normal covering space of a finite simplicial complex is of determinant class (cf. section 4 for the definition of determinant class and for a more detailed discussion of what follows). Let M be a smooth compact manifold, and X triangulation of M. Let \tilde{M} be any normal covering space of M, and Y be the triangulation of \tilde{M} which projects down to X. Then on \tilde{M}, there are two notions of determinant class, one analytic and the other combinatorial. Using results of Efremov [E], Gromov and Shubin [GS], one observes as in [BFKM] that the combinatorial and analytic notions of determinant class coincide. It was proved in [BFKM] using estimates of Lück [Lu] that any *residually finite* normal covering space of a finite simplicial complex is of determinant class, which gave evidence supporting the conjecture. Our interest in this conjecture stems from work on L^2 torsion [CFM], [BFKM]. The L^2 torsion is a well defined element in the determinant line of the reduced L^2 cohomology, whenever the covering space is of determinant class. Our next main theorem says that any *amenable* normal covering space of a finite simplicial complex is of determinant class, which gives further evidence supporting the conjecture.

Theorem 0.2 (Determinant Class Theorem). Let Y be a connected simplicial complex. Suppose that π is amenable and that π acts freely and simplicially on Y so that $X = Y/\pi$ is a finite simplicial complex. Then Y is of determinant class.

The paper is organized as follows. In the first section, some preliminaries on L^2 cohomology and amenable groups are presented. In section 2, the main abstract approximation theorem is proved. We essentially use the combinatorial analogue of the principle of not feeling the boundary (cf. [DM]) in Lemma 2.3 and a finite dimensional result in [Lu], to prove this theorem. Section 3 contains the proof of the Amenable Approximation Theorem and some related approximation theorems. In section 4, we prove that an arbitrary *amenable* normal covering space of a finite simplicial complex is of determinant class.

The second author warmly thanks Shmuel Weinberger for some useful discussions. This paper has been inspired by Lück’s work [Lu] on residually finite groups.

1. Preliminaries

Let π be a finitely generated discrete group and $\mathcal{U}(\pi)$ be the von Neumann algebra generated by the action of π on $\ell^2(\pi)$ via the left regular representation. It is the weak (or
strong) closure of the complex group algebra of \(\pi \), \(\mathbb{C}(\pi) \) acting on \(\ell^2(\pi) \) by left translation. The left regular representation is then a unitary representation \(\rho : \pi \to U(\pi) \). Let \(\text{Tr}_{U(\pi)} \) be the faithful normal trace on \(U(\pi) \) defined by the inner product \(\text{Tr}_{U(\pi)}(A) \equiv (A\delta_\sigma, \delta_\tau) \) for \(A \in U(\pi) \) and where \(\delta_\sigma \in \ell^2(\pi) \) is given by \(\delta_\sigma(e) = 1 \) and \(\delta_\sigma(g) = 0 \) for \(g \in \pi \) and \(g \neq e \).

Let \(Y \) be a simplicial complex, and \(|Y|_j \) denote the set of all \(p \)-simplices in \(Y \). Regarding the orientation of simplices, we use the following convention. For each \(p \)-simplex \(\sigma \in |Y|_j \), we identify \(\sigma \) with any other \(p \)-simplex which is obtained by an even permutation of the vertices in \(\sigma \), whereas we identify \(-\sigma \) with any other \(p \)-simplex which is obtained by an odd permutation of the vertices in \(\sigma \). Suppose that \(\pi \) acts freely and simplicially on \(Y \) so that \(X = Y/\pi \) is a finite simplicial complex. Let \(F \) a finite subcomplex of \(Y \), which is a fundamental domain for the action of \(\pi \) on \(Y \). Consider the Hilbert space of square summable cochains on \(Y \),

\[
C^j_{(2)}(Y) = \left\{ f \in C^j(Y) : \sum_{\sigma \text{ a } j\text{-simplex}} |f(\sigma)|^2 < \infty \right\}
\]

Since \(\pi \) acts freely on \(Y \), we see that there is an isomorphism of Hilbert \(\ell^2(\pi) \) modules,

\[
C^j_{(2)}(Y) \cong C^j(X) \otimes \ell^2(\pi)
\]

Here \(\pi \) acts trivially on \(C^j(X) \) and via the left regular representation on \(\ell^2(\pi) \). Let

\[
d_j : C^j_{(2)}(Y) \to C^{j+1}_{(2)}(Y)
\]

denote the coboundary operator. It is clearly a bounded linear operator. Then the (reduced) \(L^2 \) cohomology groups of \(Y \) are defined to be

\[
H^j_{(2)}(Y) = \frac{\ker(d_j)}{\operatorname{im}(d_{j-1})}.
\]

Let \(d_j^* \) denote the Hilbert space adjoint of \(d_j \). One defines the combinatorial Laplacian \(\Delta_j : C^j_{(2)}(Y) \to C^j_{(2)}(Y) \) as \(\Delta_j = d_{j-1}(d_{j-1})^* + (d_j)^* d_j \).

By the Hodge decomposition theorem in this context, there is an isomorphism of Hilbert \(\ell^2(\pi) \) modules,

\[
H^j_{(2)}(Y) \cong \ker(\Delta_j).
\]

Let \(P_j : C^j_{(2)}(Y) \to \ker\Delta_j \) denote the orthogonal projection to the kernel of the Laplacian. Then the \(L^2 \) Betti numbers \(b^j_{(2)}(Y : \pi) \) are defined as

\[
b^j_{(2)}(Y : \pi) = \text{Tr}_{U(\pi)}(P_j).
\]

In addition, let \(\Delta_j^{(m)} \) denote the Laplacian on the finite dimensional cochain space \(C^j(Y_m) \) or \(C^j(Y_m, \partial Y_m) \). We do use the same notation for the two Laplacians since all proofs work equally well for either case. Let \(D_j^{(\sigma, \tau)} = (\Delta_j\delta_\sigma, \delta_\tau) \) denote the matrix coefficients of the Laplacian \(\Delta_j \) and \(D_j^{(m)}(\sigma, \tau) = (\Delta_j^{(m)}\delta_\sigma, \delta_\tau) \) denote the matrix coefficients of the Laplacian \(\Delta_j^{(m)} \). Let \(d(\sigma, \tau) \) denote the distance between \(\sigma \) and \(\tau \) in the natural simplicial metric on \(Y \), and \(d_m(\sigma, \tau) \) denote the distance between \(\sigma \) and \(\tau \) in the natural simplicial metric on \(Y_m \). This distance (cf. [Elek]) is defined as follows. Simplexes \(\sigma \) and
there exists either a simplex of dimension \(j \) contained in both \(\sigma \) and \(\tau \) or a simplex of dimension \(j + 1 \) containing both \(\sigma \) and \(\tau \). The distance between \(\sigma \) and \(\tau \) is equal to \(k \) if there exists a finite sequence \(\sigma = \sigma_0, \sigma_1, \ldots, \sigma_k = \tau, \quad d(\sigma_i, \sigma_{i+1}) = 1 \) for \(i = 0, \ldots, k-1 \), and \(k \) is the minimal length of such a sequence.

Then one has the following, which is an easy generalization of Lemma 2.5 in [Elek] and follows immediately from the definition of combinatorial Laplacians and finiteness of the complex \(X = Y/\pi \).

Lemma 1.1. \(D_j(\sigma, \tau) = 0 \) whenever \(d(\sigma, \tau) > 1 \) and \(D_j^{(m)}(\sigma, \tau) = 0 \) whenever \(d_m(\sigma, \tau) > 1 \). There is also a positive constant \(C \) independent of \(\sigma, \tau \) such that \(D_j(\sigma, \tau) \leq C \) and \(D_j^{(m)}(\sigma, \tau) \leq C \).

Let \(D_j^k(\sigma, \tau) = \langle \Delta_j^k \delta_\sigma, \delta_\tau \rangle \) denote the matrix coefficient of the \(k \)-th power of the Laplacian, \(\Delta_j^k \), and \(D_j^{(m)k}(\sigma, \tau) = \left(\Delta_j^{(m)} \right)^k \delta_\sigma, \delta_\tau \rangle \) denote the matrix coefficient of the \(k \)-th power of the Laplacian, \(\Delta_j^{(m)k} \). Then

\[
D_j^k(\sigma, \tau) = \sum_{\sigma_1, \ldots, \sigma_k-1 \in |Y|_j} D_j(\sigma, \sigma_1) \ldots D_j(\sigma_{k-1}, \tau)
\]
and
\[
D_j^{(m)k}(\sigma, \tau) = \sum_{\sigma_1, \ldots, \sigma_k-1 \in |Y_m|_j} D_j^{(m)}(\sigma, \sigma_1) \ldots D_j^{(m)}(\sigma_{k-1}, \tau).
\]

Then the following lemma follows easily from Lemma 1.1.

Lemma 1.2. Let \(k \) be a positive integer. Then \(D_j^k(\sigma, \tau) = 0 \) whenever \(d(\sigma, \tau) > 1 \) and \(D_j^{(m)k}(\sigma, \tau) = 0 \) whenever \(d_m(\sigma, \tau) > 1 \). There is also a positive constant \(C \) independent of \(\sigma, \tau \) such that \(D_j^k(\sigma, \tau) \leq C^k \) and \(D_j^{(m)k}(\sigma, \tau) \leq C^k \).

Since \(\pi \) commutes with the Laplacian \(\Delta_j^k \), it follows that

\[
D_j^k(\gamma\sigma, \gamma\tau) = D_j^k(\sigma, \tau)
\]
for all \(\gamma \in \pi \) and for all \(\sigma, \tau \in |Y|_j \). The von Neumann trace of \(\Delta_j^k \) is by definition

\[
\text{Tr}_{\hat{U}(\pi)}(\Delta_j^k) = \sum_{\sigma \in |X|_j} D_j^k(\sigma, \sigma),
\]
where \(\hat{\sigma} \) denotes an arbitrarily chosen lift of \(\sigma \) to \(Y \). The trace is well-defined in view of (1.1).

1.1. **Amenable groups.** Let \(d_1 \) be the word metric on \(\pi \). Recall the following characterization of amenability due to Følner, see also [AC].

Definition 1.3. A discrete group \(\pi \) is said to be amenable if there is a sequence of finite subsets \(\{A_k\}_{k=1}^\infty \) such that for any fixed \(\delta > 0 \)

\[
\lim_{k \to \infty} \frac{\#\{\delta_\pi A_k\}}{\#\{A_k\}} = 0
\]
where $\partial_\delta \Lambda_k = \{ \gamma \in \pi : d_1(\gamma, \Lambda_k) < \delta \text{ and } d_1(\gamma, \pi - \Lambda_k) < \delta \}$ is a δ-neighborhood of the boundary of Λ_k. Such a sequence $\{\Lambda_k\}_{k=1}^\infty$ is called a regular sequence in π. If in addition $\Lambda_k \subset \Lambda_{k+1}$ for all $k \geq 1$ and $\bigcup_{k=1}^\infty \Lambda_k = \pi$, then the sequence $\{\Lambda_k\}_{k=1}^\infty$ is called a regular exhaustion in π.

Examples of amenable groups are:
(1) Finite groups;
(2) Abelian groups;
(3) nilpotent groups and solvable groups;
(4) groups of subexponential growth;
(5) subgroups, quotient groups and extensions of amenable groups;
(6) the union of an increasing family of amenable groups.

Free groups and fundamental groups of closed negatively curved manifolds are not amenable.

Let π be a finitely generated amenable discrete group, and $\{\Lambda_m\}_{m=1}^\infty$ a regular exhaustion in π. Then it defines a regular exhaustion $\{Y_m\}_{m=1}^\infty$ of Y.

Let $\{\lambda_j(\lambda) : \lambda \in [0, \infty)\}$ denote the right continuous family of spectral projections of the Laplacian Δ_j. Since Δ_j is π-equivariant, so are $\lambda_j(\lambda) = \chi_{[0,\lambda]}(\Delta_j)$, for $\lambda \in [0, \infty)$. Let $F : [0, \infty) \to [0, \infty)$ denote the spectral density function,

$$F(\lambda) = \text{Tr}_{U(\pi)}(\lambda_j(\lambda)).$$

Observe that the j-th L^2 Betti number of Y is also given by

$$b^j_{(2)}(Y : \pi) = F(0).$$

We have the spectral density function for every dimension j but we do not indicate explicitly this dependence. All our arguments are performed with a fixed value of j.

Let $E_m(\lambda)$ denote the number of eigenvalues μ of $\Delta_j^{(m)}$ satisfying $\mu \leq \lambda$ and which are counted with multiplicity. We may sometimes omit the subscript j on $\Delta_j^{(m)}$ and Δ_j to simplify the notation.

We next make the following definitions,

$$F_m(\lambda) = \frac{E_m(\lambda)}{N_m}$$

$$\overline{F}(\lambda) = \limsup_{m \to \infty} F_m(\lambda)$$

$$\underline{E}(\lambda) = \liminf_{m \to \infty} F_m(\lambda)$$

$$\overline{F}^+(\lambda) = \lim_{\delta \to +0} \overline{F}(\lambda + \delta)$$

$$\underline{E}^+(\lambda) = \lim_{\delta \to +0} \underline{F}(\lambda + \delta).$$

2. Main Technical Theorem

Our main technical result is
Theorem 2.1. Let π be countable, amenable group. In the notation of section 1, one has

1. $F(\lambda) = F^+(\lambda) = F^+(\lambda)$.
2. F and F_π are right continuous at zero and we have the equalities

 $F(0) = F^+(0) = F(0) = F^+(0)$

 $$= \lim_{m \to \infty} F_m(0) = \lim_{m \to \infty} \# \left\{ E_m(0) \right\} / N_m.$$

3. Suppose that $0 < \lambda < 1$. Then there is a constant $K > 1$ such that

 $$F(\lambda) - F(0) \leq -a \log \frac{K^2}{\log \lambda}.$$

To prove this Theorem, we will first prove a number of preliminary lemmas.

Lemma 2.2. There exists a positive number K such that the operator norms of Δ_j and of $\Delta_j(m)$ for all $m = 1, 2, \ldots$ are smaller than K^2.

Proof. The proof is similar to that in [Lu], Lemma 2.5 and uses Lemma 1.1 together with uniform local finiteness of Y. More precisely we use the fact that the number of j-simplexes in Y at distance at most one from a j-simplex σ can be bounded independently of σ, say $\# \left\{ \tau \in |Y|_j : d(\tau, \sigma) \leq 1 \right\} \leq b$. A fortiori the same is true (with the same constant a) for Y_m for all m. We now estimate the ℓ^2 norm of Δ_κ for a cochain $\kappa = \sum_{\sigma} a_{\sigma} \sigma$ (having identified a simplex σ with the dual cochain). Now

$$\Delta_\kappa = \sum_{\sigma} \left(\sum_{\tau} D(\sigma, \tau) a_{\tau} \right) \sigma$$

so that

$$\sum_{\sigma} \left(\sum_{\tau} D(\sigma, \tau) a_{\tau} \right)^2 \leq \sum_{\sigma} \left(\sum_{d(\sigma, \tau) \leq 1} D(\sigma, \tau)^2 \right) \left(\sum_{d(\sigma, \tau) \leq 1} a_{\tau}^2 \right) \leq C^2 b \sum_{\sigma} \sum_{d(\sigma, \tau) \leq 1} a_{\tau}^2,$$

where we have used Lemma 1.1 and Cauchy-Schwartz inequality. In the last sum above, for every simplex σ, a_{σ}^2 appears at most b times. This proves that $\|\Delta_\kappa\|^2 \leq C^2 b \|\kappa\|^2$. Identical estimate holds (with the same proof) for $\Delta_j(m)$ which yields the lemma if we set $K = \sqrt{Cb}$.

Observe that Δ_j can be regarded as a matrix with entries in $Z[\pi]$, since by definition, the coboundary operator d_j is a matrix with entries in $Z[\pi]$, and so is its adjoint d_j^* as it is equal to the simplicial boundary operator. There is a natural trace for matrices with entries in $Z[\pi]$, viz.

$$\text{Tr}_{Z[\pi]}(A) = \sum_{i} \text{Tr}_{U[\pi]}(A_{i,i}).$$

Lemma 2.3. Let π be an amenable group and let $p(\lambda) = \sum_{r=0}^{d} a_r \lambda^r$ be a polynomial. Then,

$$\text{Tr}_{Z[\pi]}(p(\Delta_j)) = \lim_{m \to \infty} \frac{1}{N_m} \text{Tr}_C \left(p \left(\Delta_j(m) \right) \right).$$
Proof. First observe that if $\sigma \in |Y_m|_j$ is such that $d(\sigma, \partial Y_m) > k$, then Lemma 1.2 implies that

$$D_j^k(\sigma, \sigma) = \left\langle \Delta_j^k \delta_\sigma, \delta_\sigma \right\rangle = \left\langle \Delta_j^{(m)k} \delta_\sigma, \delta_\sigma \right\rangle = D_j^{(m)k}(\sigma, \sigma).$$

By (1.1) and (1.2)

$$\left| \text{Tr}_{\mathbb{Z}[\pi]}(p(\Delta_j)) - \frac{1}{N_m} \sum_{\sigma \in |Y_m|_j} \langle p(\Delta_j)\sigma, \sigma \rangle \right| \leq \frac{1}{N_m} \sum_{r=0}^{d} |a_r| \sum_{\sigma \in |Y_m|_j} \left(D^r(\sigma, \sigma) + D^{(m)\cdot}(\sigma, \sigma) \right).$$

Therefore we see that

$$\left| \text{Tr}_{\mathbb{Z}[\pi]}(p(\Delta_j)) - \frac{1}{N_m} \text{Tr}_\mathbb{C}(p(\Delta_j^{(m)})) \right| \leq 2 \frac{N_{m,d}}{N_m} \sum_{r=0}^{d} |a_r| C^r.$$

Using Lemma 1.2, we see that there is a positive constant C such that

$$\left| \text{Tr}_{\mathbb{Z}[\pi]}(p(\Delta_j)) - \frac{1}{N_m} \text{Tr}_\mathbb{C}(p(\Delta_j^{(m)})) \right| \leq 2 \frac{N_{m,d}}{N_m} \sum_{r=0}^{d} |a_r| C^r.$$

The proof of the lemma is completed by taking the limit as $m \to \infty$. \hfill \Box

We next recall the following abstract lemmata of Lück [Lu].

Lemma 2.4. Let $p_n(\mu)$ be a sequence of polynomials such that for the characteristic function of the interval $[0, \lambda], \chi_{[0, \lambda]}(\mu)$, and an appropriate real number L,

$$\lim_{n \to \infty} p_n(\mu) = \chi_{[0, \lambda]}(\mu) \quad \text{and} \quad |p_n(\mu)| \leq L$$

holds for each $\mu \in [0, ||\Delta_j||^2]$. Then

$$\lim_{n \to \infty} \text{Tr}_{\mathbb{Z}[\pi]}(p_n(\Delta_j)) = F(\lambda).$$

Lemma 2.5. Let $G : V \to W$ be a linear map of finite dimensional Hilbert spaces V and W. Let $p(t) = \det(t - G^*G)$ be the characteristic polynomial of G^*G. Then $p(t)$ can be written as $p(t) = t^k q(t)$ where $q(t)$ is a polynomial with $q(0) \neq 0$. Let K be a real number, $K \geq \max\{|\|G\||\}$ and $C > 0$ be a positive constant with $|q(0)| \geq C > 0$. Let $E(\lambda)$ be the number of eigenvalues μ of G^*G, counted with multiplicity, satisfying $\mu \leq \lambda$. Then for $0 < \lambda < 1$, the following estimate is satisfied.

$$\frac{\{E(\lambda)\} - \{E(0)\}}{\dim_{\mathbb{C}} V} \leq -\frac{\log C}{\dim_{\mathbb{C}} V(-\log \lambda)} + \frac{\log K^2}{-\log \lambda}. $$

Proof of theorem 2.1. Fix $\lambda \geq 0$ and define for $n \geq 1$ a continuous function $f_n : \mathbb{R} \to \mathbb{R}$ by

$$f_n(\mu) = \begin{cases}
1 + \frac{1}{n} & \text{if } \mu \leq \lambda \\
1 + \frac{1}{n} - n(\mu - \lambda) & \text{if } \lambda \leq \mu \leq \lambda + \frac{1}{n} \\
\frac{1}{n} & \text{if } \lambda + \frac{1}{n} \leq \mu
\end{cases}$$
Then clearly $\chi_{[0,\lambda]}(\mu) < f_{n+1}(\mu) < f_n(\mu)$ and $f_n(\mu) \to \chi_{[0,\lambda]}(\mu)$ as $n \to \infty$ for all $\mu \in [0,\infty)$. For each n, choose a polynomial p_n such that $\chi_{[0,\lambda]}(\mu) < p_n(\mu) < f_n(\mu)$ holds for all $\mu \in [0, K^2]$. We can always find such a polynomial by a sufficiently close approximation of f_{n+1}. Hence

$$\chi_{[0,\lambda]}(\mu) < p_n(\mu) < 2$$

and

$$\lim_{n \to \infty} p_n(\mu) = \chi_{[0,\lambda]}(\mu)$$

for all $\mu \in [0, K^2]$. Recall that $E_m(\lambda)$ denotes the number of eigenvalues μ of $\Delta_j^{(m)}$ satisfying $\mu \leq \lambda$ and counted with multiplicity. Note that $||\Delta_j^{(m)}|| \leq K^2$ by Lemma 2.2.

$$\frac{1}{N_m} \text{Tr}_C(p_n(\Delta_j^{(m)})) = \frac{1}{N_m} \sum_{\mu \in [0,K^2]} p_n(\mu)$$

$$= \frac{E_m(\lambda)}{N_m} + \frac{1}{N_m} \left\{ \sum_{\mu \in [0,\lambda]} (p_n(\mu) - 1) + \sum_{\mu \in (\lambda, \lambda + 1/n]} p_n(\mu) \right\}$$

Hence, we see that

$$(2.1) \quad F_m(\lambda) = \frac{E_m(\lambda)}{N_m} \leq \frac{1}{N_m} \text{Tr}_C(p_n(\Delta_j^{(m)})).$$

In addition,

$$\frac{1}{N_m} \text{Tr}_C(p_n(\Delta_j^{(m)})) \leq \frac{E_m(\lambda)}{N_m} + \frac{1}{N_m} \sup\{p_n(\mu) - 1 : \mu \in [0,\lambda]\} E_m(\lambda)$$

$$+ \frac{1}{N_m} \sup\{p_n(\mu) : \mu \in [\lambda, \lambda + 1/n]\} (E_m(\lambda + 1/n) - E_m(\lambda))$$

$$+ \frac{1}{N_m} \sup\{p_n(\mu) : \mu \in [\lambda + 1/n, K^2]\} (E_m(K^2) - E_m(\lambda + 1/n))$$

$$\leq \frac{E_m(\lambda)}{N_m} + \frac{E_m(\lambda)}{nN_m} + \frac{(1 + 1/n)(E_m(\lambda + 1/n) - E_m(\lambda))}{N_m} + \frac{(E_m(K^2) - E_m(\lambda + 1/n))}{nN_m}$$

$$\leq \frac{E_m(\lambda + 1/n)}{N_m} + \frac{1}{n} \frac{E_m(K^2)}{N_m}$$

$$\leq F_m(\lambda + 1/n) + \frac{a}{n}$$
since \(E_m(K^2) = \dim C^j(Y_m) \leq aN_m \) for a positive constant \(a \) independent of \(m \). It follows that

\[
\frac{1}{N_m} \text{Tr}_C(p_n(\Delta_j^{(m)})) \leq F_m(\lambda + 1/n) + \frac{a}{n}. \tag{2.2}
\]

Taking the limit inferior in (2.2) and the limit superior in (2.1), as \(m \to \infty \), we get that

\[
\mathcal{T}(\lambda) \leq \text{Tr}_{\mathbb{Z}[\pi]}(p_n(\Delta_j)) \leq F(\lambda + 1/n) + \frac{a}{n}. \tag{2.3}
\]

Taking the limit as \(n \to \infty \) in (2.3) and using Theorem 2.4, we see that

\[
\mathcal{F}(\lambda) \leq \mathcal{F}(\lambda) \leq \mathcal{F}(\lambda + \varepsilon). \tag{2.4}
\]

For all \(\varepsilon > 0 \) we have

\[
F(\lambda) \leq \mathcal{F}^+(\lambda) \leq F(\lambda + \varepsilon) \leq \mathcal{F}(\lambda + \varepsilon) \leq F(\lambda + \varepsilon).
\]

Since \(F \) is right continuous, we see that

\[
F(\lambda) = \mathcal{F}^+(\lambda) = \mathcal{F}^+(\lambda)
\]

proving the first part of theorem 2.1.

Next we apply theorem 2.5 to \(\Delta_j^{(m)} \). Let \(p_m(t) \) denote the characteristic polynomial of \(\Delta_j^{(m)} \) and \(p_m(t) = t^{m}q_m(t) \) where \(q_m(0) \neq 0 \). The matrix describing \(\Delta_j^{(m)} \) has integer entries. Hence \(p_m \) is a polynomial with integer coefficients and \(|q_m(0)| \geq 1 \). By Lemma 2.2 and Theorem 2.5 there are constants \(K \) and \(C = 1 \) independent of \(m \), such that

\[
\frac{F_m(\lambda) - F_m(0)}{a} \leq \frac{\log K^2}{-\log \lambda}.
\]

That is,

\[
F_m(\lambda) \leq F_m(0) - \frac{a \log K^2}{\log \lambda}. \tag{2.4}
\]

Taking limit inferior in (2.4) as \(m \to \infty \) yields

\[
\mathcal{F}(\lambda) \leq F(0) - \frac{a \log K^2}{\log \lambda}.
\]

Passing to the limit as \(\lambda \to +0 \), we get that

\[
\mathcal{F}(0) = \mathcal{F}^+(0) \quad \text{and} \quad \mathcal{F}(0) = \mathcal{F}^+(0).
\]

We have seen already that \(\mathcal{F}^+(0) = F(0) = \mathcal{F}(0) \), which proves part ii) of Theorem 2.1. Since \(-\frac{a \log K^2}{\log \lambda} \) is right continuous in \(\lambda \),

\[
\mathcal{F}^+(\lambda) \leq F(0) - \frac{a \log K^2}{\log \lambda}.
\]

Hence part iii) of Theorem 2.1 is also proved. \(\square \)

We will need the following lemma in the proof of Theorem 0.2 in the last section. We follow the proof of Lemma 3.3.1 in [Lu].
Lemma 2.6.
\[\int_{0+}^{K^2} \left\{ \frac{F(\lambda) - F(0)}{\lambda} \right\} d\lambda \leq \liminf_{m \to \infty} \int_{0+}^{K^2} \left\{ \frac{F_m(\lambda) - F_m(0)}{\lambda} \right\} d\lambda \]

Proof. By Theorem 2.1, and the monotone convergence theorem, one has
\[\int_{0+}^{K^2} \left\{ \frac{F(\lambda) - F(0)}{\lambda} \right\} d\lambda = \int_{0+}^{K^2} \left\{ \frac{F(\lambda) - F(0)}{\lambda} \right\} d\lambda \]
\[= \int_{0+}^{K^2} \liminf_{m \to \infty} \left\{ \frac{F_m(\lambda) - F_m(0)}{\lambda} \right\} d\lambda \]
\[= \int_{0+}^{K^2} \lim_{m \to \infty} \left(\inf_{n \geq m} \left\{ \frac{F_n(\lambda) - F_n(0)}{\lambda} \right\} \right) d\lambda \]
\[= \lim_{m \to \infty} \int_{0+}^{K^2} \inf_{n \geq m} \left\{ \frac{F_n(\lambda) - F_n(0)}{\lambda} \right\} d\lambda \]
\[\leq \liminf_{m \to \infty} \int_{0+}^{K^2} \left\{ \frac{F_m(\lambda) - F_m(0)}{\lambda} \right\} d\lambda. \]

3. PROOFS OF THE MAIN THEOREMS

In this section, we will prove the Amenable Approximation Theorem (Theorem 0.1) of the introduction. We will also prove some related spectral results.

Proof of Theorem 0.1 (Amenable Approximation Theorem). Observe that
\[\frac{b^j(Y_m)}{N_m} = \frac{\dim_{C} \left(\ker(\Delta_{j})^{(m)} \right)}{N_m} = F_m(0). \]

Also observe that
\[\frac{b^j_{(2)}(Y : \pi)}{N_m} = \dim_{\pi} \left(\ker(\Delta_{j}) \right) = F(0). \]

Therefore Theorem 0.1 follows from Theorem 2.1 after taking the limit as \(m \to \infty \).

Suppose that \(M \) is a compact Riemannian manifold and \(\Omega^j_{(2)}(\widetilde{M}) \) denote the Hilbert space of square integrable \(j \)-forms on a normal covering space \(\widetilde{M} \), with transformation group \(\pi \). The Laplacian \(\Delta_{j} : \Omega^j_{(2)}(\widetilde{M}) \to \Omega^j_{(2)}(\widetilde{M}) \) is essentially self-adjoint and has a spectral decomposition \(\{ P_j(\lambda) : \lambda \in [0, \infty) \} \) where each \(P_j(\lambda) \) has finite von Neumann trace. The associated von Neumann spectral density function, \(\widetilde{F}(\lambda) \) is defined as
\[\widetilde{F} : [0, \infty) \to [0, \infty), \quad \widetilde{F}(\lambda) = \text{Tr}_{\pi}(P_j(\lambda)). \]
Note that $\tilde{F}(0) = b_j^2(\tilde{M} : \pi)$ and that the spectrum of $\tilde{\Delta}_j$ has a gap at zero if and only if there is a $\lambda > 0$ such that

$$\tilde{F}(\lambda) = \tilde{F}(0).$$

Suppose that π is an amenable group. Fix a triangulation X on M. Then the normal cover \tilde{M} has an induced triangulation Y. Let Y_m denote be a subcomplex of Y such that $\{Y_m\}_{m=1}^\infty$ is a regular exhaustion of Y. Let $\Delta_j^{(m)} : C^j(Y_m, \mathbb{C}) \to C^j(Y_m, \mathbb{C})$ denote the combinatorial Laplacian, and let $E_j^{(m)}(\lambda)$ denote the number of eigenvalues μ of $\Delta_j^{(m)}$ which are less than or equal to λ. Under the hypotheses above we prove the following.

Theorem 3.1 (Gap criterion). The spectrum of $\tilde{\Delta}_j$ has a gap at zero if and only if there is a $\lambda > 0$ such that

$$\lim_{m \to \infty} \frac{E_j^{(m)}(\lambda) - E_j^{(m)}(0)}{N_m} = 0.$$

Proof. Let $\Delta_j : C^j_{(2)}(Y) \to C^j_{(2)}(Y)$ denote the combinatorial Laplacian acting on L^2 j-cochains on Y. Then by $[GS], [E]$, the von Neumann spectral density function F of the combinatorial Laplacian Δ_j and the von Neumann spectral density function \tilde{F} of the analytic Laplacian $\tilde{\Delta}_j$ are dilatationally equivalent, that is, there are constants $C > 0$ and $\varepsilon > 0$ independent of λ, such that for all $\lambda \in (0, \varepsilon)$,

$$F(C^{-1}\lambda) \leq \tilde{F}(\lambda) \leq F(C\lambda).$$

(3.1)

Observe that $\frac{E_j^{(m)}(\lambda)}{N_m} = F_m(\lambda)$. Therefore the theorem also follows from Theorem 2.1. \square

There is a standing conjecture that the Novikov-Shubin invariants of a closed manifold are positive (see $[E], [ES]$ and $[GS]$ for its definition). The next theorem gives evidence supporting this conjecture, at least in the case of amenable fundamental groups.

Theorem 3.2 (Spectral density estimate). There are constants $C > 0$ and $\varepsilon > 0$ independent of λ, such that for all $\lambda \in (0, \varepsilon)$

$$\tilde{F}(\lambda) - \tilde{F}(0) \leq \frac{C}{-\log(\lambda)}.$$

Proof. This follows from Theorem 2.1 and Theorem 3.1 since $\tilde{\Delta}_j$ has a gap at zero if and only if $\tilde{F}_j(\lambda) = \tilde{F}_j(0)$ for some $\lambda > 0$. \square

4. On the determinant class conjecture

There is a standing conjecture that any normal covering space of a finite simplicial complex is of determinant class. Our interest in this conjecture stems from our work on L^2 torsion $[CFM], [BFKM]$. The L^2 torsion is a well defined element in the determinant line of the reduced L^2 cohomology, whenever the covering space is of determinant class. In this section, we use the results of section 2 to prove that any amenable normal covering space of a finite simplicial complex is of determinant class.
Recall that a covering space Y of a finite simplicial complex X is said to be of determinant class if, for $0 \leq j \leq n$,
\[-\infty < \int_{0^+}^1 \log \lambda dF(\lambda),\]
where $F(\lambda)$ denotes the von Neumann spectral density function of the combinatorial Laplacian Δ_j as in Section 2.

Suppose that M is a compact Riemannian manifold and $\Omega^j_{(2)}(\tilde{M})$ denote the Hilbert space of square integrable j-forms on a normal covering space \tilde{M}, with transformation group π. The Laplacian $\tilde{\Delta}_j : \Omega^j_{(2)}(\tilde{M}) \to \Omega^j_{(2)}(\tilde{M})$ is essentially self-adjoint and the associated von Neumann spectral density function, $\tilde{F}(\lambda)$ is defined as in section 3. Note that $\tilde{F}(0) = b^j_{(2)}(\tilde{M} : \pi)$ Then \tilde{M} is said to be of analytic-determinant class, if, for $0 \leq j \leq n$,
\[-\infty < \int_{0^+}^1 \log \lambda d\tilde{F}(\lambda),\]
where $\tilde{F}(\lambda)$ denotes the von Neumann spectral density function of the analytic Laplacian $\tilde{\Delta}_j$ as above. By results of Gromov and Shubin [GS], the condition that \tilde{M} is of analytic-determinant class is independent of the choice of Riemannian metric on M.

Fix a triangulation X on M. Then the normal cover \tilde{M} has an induced triangulation Y. Then \tilde{M} is said to be of combinatorial-determinant class if Y is of determinant class. Using results of Efremov [E], and [GS] one sees that the condition that \tilde{M} is of combinatorial-determinant class is independent of the choice of triangulation on M.

Using again results of [E] and [GS], one observes as in [BFKM] that the combinatorial and analytic notions of determinant class coincide, that is \tilde{M} is of combinatorial-determinant class if and only if \tilde{M} is of analytic-determinant class. The appendix of [BFK] contains a proof that every residually finite covering of a compact manifold is of determinant class. Their proof is based on Lück’s approximation of von Neumann spectral density functions [Lu]. Since an analogous approximation holds in our setting (cf. Section 2), we can apply the argument of [BFK] to prove Theorem 0.2.

Proof of Theorem 0.2 (Determinant Class Theorem). Recall that the normalized spectral density functions

$$F_m(\lambda) = \frac{1}{N_m} E_j^{(m)}(\lambda)$$

are right continuous. Observe that $F_m(\lambda)$ are step functions and denote by $\det' \Delta_j^{(m)}$ the modified determinant of $\Delta_j^{(m)}$, i.e. the product of all nonzero eigenvalues of $\Delta_j^{(m)}$. Let $a_{m,j}$ be the smallest nonzero eigenvalue and $b_{m,j}$ the largest eigenvalue of $\Delta_j^{(m)}$. Then, for any a and b, such that $0 < a < a_{m,j}$ and $b > b_{m,j}$,

$$\frac{1}{N_m} \log \det' \Delta_j^{(m)} = \int_a^b \log \lambda dF_m(\lambda). \quad (4.1)$$
Integration by parts transforms the Stieltjes integral \(\int_a^b \log \lambda dF_m(\lambda) \) as follows.

\[
\int_a^b \log \lambda dF_m(\lambda) = (\log b)(F_m(b) - F_m(0)) - \int_a^b \frac{F_m(\lambda) - F_m(0)}{\lambda} d\lambda.
\]

As before, \(F(\lambda) \) denotes the spectral density function of the operator \(\Delta_j \) for a fixed \(j \). Recall that \(F(\lambda) \) is continuous to the right in \(\lambda \). Denote by \(\det' \pi \Delta_j \) the modified Fuglede-Kadison determinant (cf. [FK]) of \(\Delta_j \), that is, the Fuglede-Kadison determinant of \(\Delta_j \) restricted to the orthogonal complement of its kernel. It is given by the following Lebesgue-Stieltjes integral,

\[
\log \det' \pi \Delta_j = \int_{0^+}^{K^2} \log \lambda dF(\lambda)
\]

with \(K \) as in Lemma 2.2, i.e. \(|\Delta_j|| < K^2\), where \(|\Delta_j|| \) is the operator norm of \(\Delta_j \).

Integrating by parts, one obtains

\[
\log \det' \pi (\Delta_j) = \log K^2(F(K^2) - F(0)) + \lim_{\epsilon \to 0^+} \left\{ (\log \epsilon)(F(\epsilon) - F(0)) - \int_{\epsilon}^{K^2} \frac{F(\lambda) - F(0)}{\lambda} d\lambda \right\}.
\]

Using the fact that \(\liminf_{\epsilon \to 0^+} (\log \epsilon)(F(\epsilon) - F(0)) \geq 0 \) (in fact, this limit exists and is zero) and \(\frac{F(\lambda) - F(0)}{\lambda} \geq 0 \) for \(\lambda > 0 \), one sees that

\[
\log \det' \pi (\Delta_j) \geq \log K^2(F(K^2) - F(0)) - \int_{0^+}^{K^2} \frac{F(\lambda) - F(0)}{\lambda} d\lambda.
\]

We now complete the proof of Theorem 0.2. The main ingredient is the estimate of \(\log \det' \pi (\Delta_j) \) in terms of \(\log \det' \Delta_j^{(m)} \) combined with the fact that \(\log \det' \Delta_j^{(m)} \geq 0 \) as the determinant \(\det' \Delta_j^{(m)} \) is a positive integer. By Lemma 2.2, there exists a positive number \(K, 1 \leq K < \infty \), such that, for \(m \geq 1 \),

\[
||\Delta_j^{(m)}|| \leq K^2 \quad \text{and} \quad ||\Delta_j|| \leq K^2.
\]

By Lemma 2.6,

\[
\int_{0^+}^{K^2} \frac{F(\lambda) - F(0)}{\lambda} d\lambda \leq \liminf_{m \to \infty} \int_{0^+}^{K^2} \frac{F_m(\lambda) - F_m(0)}{\lambda} d\lambda.
\]

Combining (4.1) and (4.2) with the inequalities \(\log \det' \Delta_j^{(m)} \geq 0 \), we obtain

\[
\int_{0^+}^{K^2} \frac{F_m(\lambda) - F_m(0)}{\lambda} d\lambda \leq (\log K^2)(F_m(K^2) - F_m(0)).
\]

From (4.4), (4.5) and (4.6), we conclude that

\[
\log \det' \pi \Delta_j \geq (\log K^2)(F(K^2) - F(0)) - \liminf m \to \infty \log K^2(F_m(K^2) - F_m(0)).
\]

Now Theorem 2.1 yields

\[
F(\lambda) = \lim_{\epsilon \to 0^+} \liminf_{m \to \infty} F_m(\lambda + \epsilon)
\]
and

\[F(0) = \lim_{m \to \infty} F_m(0). \]

The last two equalities combined with (4.7) imply that \(\log \det' \Delta_j \geq 0 \). Since this is true for all \(j = 0, 1, \ldots, \dim Y \), \(Y \) is of determinant class. \qed

References

[Ad] T. Adachi A note on the Følner condition of amenability Nagoya Math. J. 131 (1993) 67-74
[At] M.F. Atiyah, Elliptic operators, discrete groups and Von Neumann algebras, Asterisque, no. 32-33 (1976) 43-72.
[BFK] D. Burghelea, L. Friedlander, T. Kappeler, Torsion for manifolds with boundary and gluing formulas, IHES preprint, January 1966.
[BFKM] D. Burghelea, L. Friedlander, T. Kappeler and P. McDonald Analytic and Reidemeister torsion for representations in finite type Hilbert modules to appear in GAFA.
[CFM] A.L. Carey, M. Farber and V.Mathai Determinant Lines, von Neumann algebras and \(L^2 \) torsion to appear in Crelle Journal.
[CG] J. Cheeger and M. Gromov, \(L^2 \) cohomology and group cohomology, Topology 25 (1986) 189-215.
[Co] J. Cohen, Von Neumann dimension and the homology of covering spaces, Quart. J. Math. Oxford 30 (1979) 133-142.
[Di] J. Dixmier, Von Neumann algebras, North Holland Amsterdam 27 (1981).
[DM] J. Dodziuk and V. Mathai, Approximating \(L^2 \) invariants of amenable covering spaces: A heat kernel approach., preprint (1996)
[Ec] B. Eckmann, Amenable groups and Euler characteristic, Comment. Math. Helv. 67 (1992) 383-393.
[E] A.V. Efremov, Cell decompositions and the Novikov-Shubin invariants Russ. Math. Surv. 46 (1991) 219-220.
[ES] D.V. Efremov and M.A. Shubin, Spectrum distribution function and variational principle for automorphic operators on hyperbolic space, Ecole Polytechnique Palaiseau, Centre de Matheamathiques, (1989)
[Elek] G. Elek, Combinatorial heat kernels and index theorems, J. Func. Anal. 129 (1995) 64-79.
[FK] B.Fuglede and R.V.Kadison Determinant theory in finite factors Annals of Math 55 (1952) 520-530
[GS] M. Gromov and M.A. Shubin, Von Neumann spectra near zero, Geom. Anal. and Func. Anal., 1 No. 4 (1991) 375-404.
[Lu] W. Lück Approximating \(L^2 \) invariants by their finite dimensional analogues Geom. and Func. Analysis 4 (1994) 455-481.

Department of Mathematics, CUNY, NYC, USA
E-mail address: jzdqc@cunyvm.cuny.edu

Department of Mathematics, University of Adelaide, Adelaide 5005, Australia
E-mail address: vmathai@maths.adelaide.edu.au