Monitoring the presence of genetically modified potato EH92-527-1 (BPS-25271-9) in commercial processed food

Maria Giovanna Tilocca,1 Gianfranca Serratrice,1 Maria Agostina Oggiano,1 Maria Rosa Mancuso,1 Ilaria Mascia,2 Edoardo Marongiu,1 Bruna Vodret1
1Dipartimento di Igiene degli Alimenti, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari; 2Dipartimento di Agraria, Università degli Studi di Sassari, Italy

Abstract

The Amflora (EH92-527-1) potato is a genetically modified (GM) potato in which only starch of the amylopectin form is produced. This has been achieved by intervening with the biosynthesis of starch in this variety of potato. The Amflora potato is solely grown for the purposes of enhancing its industrial application. Although the Amflora potato is not fit for human consumption, the presence of the potato itself or any of its derived products in the food chain cannot be excluded, it should be considerate adventitious or technically unavoidable and can be accepted in a proportion no higher than 0.9%. To achieve the goal of our work we analysed forty-five potato-derived products to evaluate transgenic potato presence by real time polymerase chain reaction, obtaining negative results. In order to verify the correct application of the law and to assure the quality for the consumer, it is necessary to continue GM monitoring to verify the adventitious presence itself in food.

Materials and Methods

Forty-five samples of potato-derived products from different markets were investigated (Table 1). DNA extraction from frozen and dried potato was carried out in accordance with CTAB method validated by European Union Reference Laboratory for GM food and feed. The DNA of each sample was examined to verify potato-DNA by Real Time PCR by amplification of UGPase gene (Savini et al., 2006, 2010). The potential presence of GM potato in food matrices was detected by PCR screening for the nos terminator (T-nos) DNA sequence of nopaline synthase from Agrobacterium tumefaciens, according to real-time PCR method for detection of T-nos (Perningeat et al., 2002).

Results

The amplification plot showed the presence of an 88bp fragment of the UGPase gene from Solanum tuberosum in all samples examined (Figure 1a). The PCR screening of nos terminator (T-nos) DNA sequence, of nopaline synthase from Agrobacterium tumefaciens, confirmed the total absence of Amflora potato in food matrices investigated, as showed in Figure 1b and Table 2.

Discussion and Conclusions

In order to verify the correct application of the law, it is required to constantly monitoring food matrices to safeguard the consumers. The European Regulations set the labelling requirements for all the GM organism-containing products (food and feed), with a tolerance threshold established at 0.9% for authorised GM organisms and at 0.5% for GM organisms under authorisation procedure (Regulation EC N.1829/2003; European Commission, 2003). Amflora is been marketed for industrial use but not authorised for human consumption, thus its presence can only be accepted with a tolerance threshold below 0.9%, as an adventitious presence. The method used for DNA-extraction of starch products from food...
matrices is particularly suitable to provide a very good performance as confirmed by UGPase endogenous gene amplification, for all sample analysed (Figure 1a and Table 2). An high-quality potato-DNA is essential in order to achieve the subsequently real time PCR assays to verify the potential presence of GM material. Results are able to confirm the total absence of Amflora for the samples analysed so far. It is necessary to continue GM monitoring so as to assure consumers about the absence of Amflora in both local and imported food products.

Table 1. Potato-derived products investigated and their country of origin.

Potato-derived products	Number of samples	Country of origin (manufactured or produced)
Raw potato	5	Italy
Potato flour	5	Italy/Germany
Mashed potato (frozen and dried)	5	Italy/Germany/France
Crisps	5	Italy/Germany
Frozen fries chips	5	Italy/Germany/Canada
Frozen raw potatoes	5	Italy/Germany/Canada
Bread-potato	5	Italy
Homemade potato-sweet	5	Italy
Homemade potato-pasta	5	Italy

Figure 1. Amplification plot of UDP-glucose pyrophosphorylase gene (a) and nos terminator DNA sequence (b) in all samples examined.
Table 2. Results obtained by real time polymerase chain reaction by amplification of *UDP-glucose pyrophosphorylase* gene and *nos* terminator DNA sequence in all samples investigated.

Potato-derived products	Number of investigated samples	*UGPase* number of positive samples	*nos* terminator (T-nos) DNA sequence
Raw potato	5	5	Absence
Potato flour	5	5	Absence
Mashed potato (frozen and dried)	5	5	Absence
Crisps	5	5	Absence
Frozen fries chips	5	5	Absence
Frozen raw potatoes	5	5	Absence
Bread-potato	5	5	Absence
Homemade potato-sweet	5	5	Absence
Homemade potato-pasta	5	5	Absence

UGPase, UDP-glucose pyrophosphorylase.

References

Abdallah N, 2010. Amflora great expectations for GM crops in Europe. GM Crops 1:109-12.

European Commission, 2003. Regulation of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed, 1829/2003/EC. In: Official Journal, L 268, 18/10/2003.

European Commission, 2010a. Commission Decision concerning the placing on the market, in accordance with Directive 2001/18/EC of the European Parliament and of the Council, of a potato product (Solanum tuberosum L. line EH92-527-1) genetically modified for enhanced content of the amylopectin component of starch, 2010/135/EU. In: Official Journal, L 53, 04/03/2010.

European Commission, 2010b. Commission Decision authorising the placing on the market of feed produced from the genetically modified potato EH92-527-1 (BPS-2571-9) and the adventitious or technologically unavoidable presence of the potato in food and other feed products under Regulation (EC) N. 1829/2003 of the European Parliament and of the Council, 2010/136/EU. In: Official Journal, L 53, 04/03/2010.

Permingeat HR, Reggiardo MI, Valleyos RH, 2002. Detection and quantification of transgenes in grains by multiplex and real-time PCR. J Agr Food Chem 50:4431-6.

Savini C, Foti N, Mazzara M, Charles Delobel C, Van Den Eede G, 2006. Event-specific method for the quantification of event EH92-527-1 potato using real-time PCR. Validation report and protocol-sampling and DNA extraction of potato. Method for DNA extraction from freeze and dried potato tubers. Joint Research-European Commission Biotechnology GMOs Unit ed., Varese, Italy. Available from: http://gmo-crl.jrc.ec.europa.eu/summaries/EH92-527-1-%20Validation%20Report.pdf

Savini C, Foti N, Mazzara M, Charles Delobel C, Van Den Eede G, 2010. Event-specific method for the quantification of event EH92-527-1 potato using real-time PCR. Validation report and protocol. PCR reactions set up and amplifications conditions. Joint Research-European Commission Biotechnology GMOs Unit ed., Varese, Italy. Available from: http://gmo-crl.jrc.ec.europa.eu/gmomethods/docs/QT-EVE-ST-001.pdf