Peer Teaching in der Pädiatrie - Evaluation eines studentischen Tutoriats im Blockpraktikum Kinderheilkunde

Zusammenfassung

Hintergrund: Peer Teaching wird in der medizinischen Lehre erfolgreich als Unterrichtsinstrument eingesetzt. In der Klinik für Kinderheilkunde und Jugendmedizin und der Klinik für Kinderkardiologie der Universität zu Köln wurde in der ersten Hälfte des Sommersemesters 2008 ein Pilotprojekt durchgeführt, bei dem studentische Tutoren geschult wurden, um im Blockpraktikum (BP) Kinderheilkunde praktische Unterrichtsinhalte zu vermitteln. Ziel der vorliegenden Studie im WS 08/09 war es zu prüfen, ob das neue tutoren-gestützte Konzept im Vergleich zu einem konventionellen BP zu einer höheren Zufriedenheit bei den Studierenden und zu einer besseren Selbsteinschätzung der von ihnen erlernten praktischen Fertigkeiten führt.

Methodik: In einem einwöchigen Training wurden Studierende, die das BP Kinderheilkunde erfolgreich absolviert hatten, durch Assistenz- und Oberärzte der Kinderklinik zu Tutoren ausgebildet. Inhalt des Trainings waren pädiatrische Untersuchungstechniken, Kurzseminare über Didaktik und der Umgang mit Kindern, Eltern, Ärzten und Pflegepersonal. Untersucht wurden 109 Studierende im WS 2008/9, die das neu konzipierte BP mit studentischen Tutoren absolvierten. Als Kontrollgruppe dienten 45 Studierende, des Sommersemesters 2008, die ein ärztlich geleitetes BP auf den Stationen der Kinderklinik absolviert hatten. Anschließend wurden mittels eines Evaluations- Fragebogens die Zufriedenheit der Studierenden mit der Lehrveranstaltung bewertet und die Selbsteinschätzung der von ihnen erlernten praktischen Fertigkeiten dokumentiert.

Ergebnisse: Der Praxisbezug des BP, die gewonnene Sicherheit im Umgang mit Kindern, und die Betreuung durch die Assistenz- und Oberärzte der Klinik wurden in dem BP mit studentischen Tutoren signifikant besser beurteilt als in dem rein ärztlich geleiteten BP. Als sehr gut wurde der Einsatz der studentischen Tutoren bewertet. Die Selbsteinschätzung der erlernten Untersuchungstechniken war im BP mit Tutoren signifikant besser als im konventionellen Kurs. Für die erfolgreiche Durchführung eines studentischen Tutoriats sind eine gute Schulung der Tutoren und eine kontinuierliche Supervision durch die Ärzte der Klinik notwendig.

Schlussfolgerung: Die Vermittlung praktischer Lerninhalte durch studentische Tutoren verbesserte die Evaluation und die Selbsteinschätzung der Studierenden. Dieses Konzept kann als Modell eines erfolgreichen klinischen BP auch für andere klinische Disziplinen empfohlen werden.

Schlüsselwörter: Pädiatrie, praktische Fertigkeiten, Lehre, Tutoriat, Studentische Evaluation, studentische Selbsteinschätzung

Einleitung

Unter dem Begriff „Tutoriat“ bzw. „Peer teaching“ wird in der deutschsprachigen bzw. der anglo-amerikanischen Literatur eine Lehrform bezeichnet, in der Schüler, Studierende und Doktoranden, sogenannte „Tutoren“ oder „Peers“ Lehrveranstaltungen durchführen. In der höheren schulischen Ausbildung wurde „Peer Teaching“ von Topping & Ehly [26] als „development of knowledge and skill through active help and support among status equals or matched companions“ definiert. Zahlreiche Studien dokumentieren die Vorteile des von Tutoren durchgeführten Unterrichts sowohl in Schulen als auch in der universitären Lehre [4], [6]. In Deutschland wurden erste Erfahrungen...
gen 1951 mit dem Einsatz von Tutoren in der Lehre an der Freien Universität Berlin gemacht [9]. Seit circa 30 Jahren werden Tutoren auch in der medizinischen Lehre erfolgreich eingesetzt, beispielsweise in der Anatomie der Vorklinik. Im Medizinstudium sind es meist Studierende gleichen oder höheren Fachsemesters. Zahlreiche Untersuchungen belegen den positiven Einfluss des tutoriengestützten Unterrichts auf die akademischen Leistungen der Studierenden im Medizinstudium [19], [21], [25], [27], [28], [29]. Durch die ungezwungene Lernatmosphäre können Lehrinhalte oft besser vermittelt und praktische Fertigkeiten besser erlernt und geübt werden. Auch die Tutoren profitieren durch die Lehrtätigkeit. Ihre Kommunikations- und Lehrfähigkeiten verbessern sich [2], sie erreichen bessere Examenergebnisse am Ende des Studiums [31] und sie sind in ihrer beruflichen Laufbahn erfolgreicher [16].

Im Fach Kinderheilkunde stellt die Vermittlung praktischer Fertigkeiten eine besondere Herausforderung dar [23]. Im Medizinstudium wurden studenstliche Tutoren in der Pädiatrie im problemorientierten Unterricht [20] und ärztliche Tutoren im Kerncurriculum Pädiatrie [13] erfolgreich eingesetzt. Edwards et al [3] berichteten über den erfolgreichen Einsatz von ärztlichen Tutoren in der pädiatrischen Facharztausbildung in evidenzbasiertem Medizin. Die Universitäts-Kinderklinik Tübingen hat seit einigen Jahren das Konzept eines studentischen Tutors im Blockpraktikum Kinderheilkunde eingeführt. Eingehendere Auswertungen wurden dazu bisher nicht mitgeteilt. In den Kliniken für Allgemeine Kinderheilkunde und Kinderkardiologie der Universität Köln zeigte sich nach Erstellung eines verbindlichen Lernzielkatalogs [22] nach dem Vorbild des „Swiss Catalogue of Learning Objectives for Undergraduate Medical Training“ [24], dass die definierten praktischen Lernziele in keiner der curricularen Veranstaltungen adäquat vermittelt wurden [12]. Dies bestätigten auch die Ergebnisse der seit 2006 eingeführten OSCE-Prüfungen. Um diese Defizite zu beseitigen wurde in der ersten Hälfte des Sommersemesters 2008 ein an das Konzept der Universitäts-Kinderklinik Tübingen angelehntes Pilotprojekt durchgeführt, bei dem studentische Tutoren geschult wurden und im Blockpraktikum (BP) Kinderheilkunde die praktische Unterrichtsinhalte vermittelten. In der Folge untersucht die vorliegende Arbeit im WS 08/09 im Sinne einer Machbarkeitsstudie, ob dieses neue, tutoriengestützte Konzept im Vergleich zum konventionellen Kurs zu einer höheren Zufriedenheit bei Studierenden und Lehrenden führt.

Methoden

Untersuchungskollektive

45 Studierende des 5. klinischen Semesters absolvierten in der zweiten Hälfte des Sommersemesters 2008 das konventionelle, einwöchige, rein ärztlich geleitete BP Kinderheilkunde auf den Stationen der Kinderklinik. Die Studierenden nahmen in Kleingruppen an der Stationsvisite und an Untersuchungen teil und erhielten je nach zeitlicher Verfügbarkeit der Stationsärzte und Oberärzte die Gelegenheit selbst unter ärztlicher Aufsicht Kinder zu untersuchen und mit den Ärzten Fallbesprechungen durchzuführen. Am Ende jeder BP-Woche erfolgten Feedback-Gespräche mit den Stationsärzten und den Studierenden über den aktuellen Verlauf des Praktikums und die erreichten Lernziele.

Im WS 2008/9 wurde ein neues Lehrmodell für das BP Kinderheilkunde eingeführt. Die Demonstration und praktische Übung von pädiatrischen Untersuchungstechniken (z. B. Racheninspektion, Otoskopie, Abdomen-Untersuchung) sowie die Lehre einzelner ärztlich konzipierter Unterrichtssmodule (z. B. Urindiagnostik, Infusionstherapie, Inhalationstherapie) wurden in den Aufgabenbereich von studentischen Tutoren überführt. Dafür wurden in der Universitäts-Kinderklinik Köln vor Beginn des WS 2008/9 acht Tutoren in einem einwöchigen Tutoriattraining durch Assistenz- und Oberärzte der Klinik ausgebildet. Es handelte sich um Studierende, die das BP im vorhergehenden Semester erfolgreich absolviert hatten. Neben der theoretischen Ausbildung in der Kinderheilkunde und dem Training der Untersuchungstechniken wurden Lehrinhalte wie der Umgang mit Studierenden, Ärzten und Pflegepersonal und die Motivation von Patienten und ihren Eltern vermittelt (siehe Tabelle 1). Die Konzeption dieses Trainings erfolgte durch die Erstautorin. Das einwochige praktische und theoretische Tutoriattraining erfolgte durch Oberärzte und erfahrene Fachärzte der Kinderklinik sowie durch die Erstautorin.

Tabelle 1: Inhalte des einwöchigen Trainings der studentischen Tutoren für das Blockpraktikum Kinderheilkunde

Untersuchungstechniken	Lehrende
Allgemein-pädiatrische Untersuchung	Oberärzte
Neuro-pädiatrische Untersuchung	Oberärzte
Seminare	
Urindiagnostik	Facharzt
Management bronchopulmonale Obstruktion/ Inhalationstechnik	Facharzt
Flüchtigkeitshauptide Infusionstherapie	Facharzt
Anamnese, Befunddokumentation, Epikrise	Facharzt
Pädiatrische Radiologie	Oberarzt
Ärztliche Gesprächsführung	Psychologe
Motivation Eltern, Kinder, Stationsteam	Oberarzt
Praktischer Ablauf des Tutors auf den Stationen	Tutor/in des vorherigen Semesters
erfolgten wie im konventionellen BP Fallbesprechungen mit den Stationsärzten. Am Ende der BP-Woche erfolgten die gleichen Feedbackgespräche wie im konventionellen Kurs. In beiden Lehrveranstaltungen fanden nachmittags oberärztlich geleitete Seminare mit Falldemonstrationen statt. Der Inhalt und Ablauf der beiden Lehrveranstaltungen ist in Tabelle 2 synoptisch dargestellt.

Tabelle 2: Organisationsablauf des Blockpraktikums Kinderheilkunde vor und nach der Einführung eines studentischen Tutors

Blockpraktikum Kinderheilkunde mit rein ärztlicher Leitung	Blockpraktikum Kinderheilkunde mit studentischem Tutor
Tag 1.	Tag 1
Anamnese und Untersuchungstechnik beim Säugling und Kleinkind	Anamnese und Untersuchungstechnik beim Säugling und Kleinkind
Tag 2-5	9:00-12:30 Uhr
Praktikum auf pädiatrischen Stationen in Kleingruppen (Stations- / Oberärzte)	Patienten-Untersuchung in Kleingruppen, Kurzseminare (studentische Tuteurs)
	11:30-12:30 Uhr
	Klinische Fallbesprechung (Stationsärzte / Oberärzte)
Tag 1-5	14:00-16:00 Uhr
Differentialdiagnose-Seminar mit Fallvorfertellungen (Oberärzte)	Differentialdiagnose-Seminar mit Fallvorfertellungen (Oberärzte)

Evaluationsfragebogen

Am Ende des BP evaluierten die Studierenden das BP und schätzten ihre im Praktikum erworbenen praktischen Fertigkeiten mittels Fragebogen ein. Als Vorlage diente der Fragebogen der Universitäts-Kinderklinik Tübingen, der dort mit der Einführung des Tutors konzipiert und validiert wurde. Das Ausfüllen der Fragebögen war freiwillig und nicht mit der Scheinvergabe für das BP gekoppelt. Im SS 08 konnten von den 45 Studierenden 39 Fragebögen (Rücklaufquote 87%), von den 109 Studierenden des WS 08/09 85 Fragebögen (Rücklaufquote 78%) ausgewertet werden.

Der Evaluationsteil des Fragebogens enthielt fünf Fragen zum Praxisbezug des BP, zum Vergleich mit den Blockpraktika anderer klinischer Fächer, zur gewonnen Sicherheit im Umgang mit Kindern sowie zur Betreuung durch die Stationsärzte und die Oberärzte (SS 08 und WS 08/09). Die Fragen konnten anhand einer fünfstufigen Notenskala mit Noten zwischen sehr gut (1) und mangelhaft (5) beantwortet werden. Der Selbsteinschätzungs-Teil des Fragebogens enthielt drei Fragen zur Beherrschung allgemeiner ärztlicher Fertigkeiten in der Kinderheilkunde (Anamneseerhebung, Befunddokumentation, Epikrise) und acht Fragen zur Beherrschung wichtiger pädiatrischer Untersuchungstechniken und diagnostischer Maßnahmen. Am Ende des einwöchigen BP Kinderheilkundenerfolgten im konventionellen BP Fallbesprechungen mit den Stationsärzten. Am Ende der BP-Woche erfolgten die gleichen Feedbackgespräche wie im konventionellen Kurs. In beiden Lehrveranstaltungen fanden nachmittags oberärztlich geleitete Seminare mit Falldemonstrationen statt. Der Inhalt und Ablauf der beiden Lehrveranstaltungen ist in Tabelle 2 synoptisch dargestellt.

Statistische Auswertung

Die statistische Auswertung des Evaluationsteils erfolgte mit einem t-Test unter der Annahme unabhängiger Stichproben mit einer Irrtumswahrscheinlichkeit von $p<0,05$ (SPSS 15 (SPSS Inc. Chicago, IL)). Folgende Hypothesen liegen bei den t-Tests zugrunde:

- H0: Der Mittelwert der Benotung im SS 08 der Studierenden (konventionelles Konzept) unterscheidet sich nicht von der Benotung im WS 08/09 (Tutor-gestütztes Konzept), d.h. die Mittelwertsdifferenz ist Null.
- H1: Der Mittelwert der Benotung im SS 08 der Studierenden (konventionelles Konzept) unterscheidet sich von der Benotung im WS 08/09 (Tutor-gestütztes Konzept), d.h. die Mittelwertsdifferenz ist ungleich Null.

Die Auswertung des Selbsteinschätzungs-Teils erfolgte anhand eines deskriptiven Vergleichs der genannten Häufigkeit positiver Selbsteinschätzungen der Studierenden.

Ergebnisse

Die Mittelwerte (MW) und Standardabweichungen (SD) der Evaluationen sind in Abbildung 1 dargestellt. Für die Frage „Wie bewerten Sie den Praxisbezug der Blockpraktiken?“ lag der Mittelwert im SS 08 bei 3,29 (SD 1,239) und im WS 2008/9 bei 1,93 (SD 0,686). Den Praxisbezug des konventionellen BP Kinderheilkunde beurteilten 32,4% der Studierenden im SS 08 als „gut“ oder „sehr gut“, im neuen Konzept lag diese Rate bei 82,4% ($p<0,001$). Für die Frage „Wie bewerten Sie das BP Kinderheilkunde im Vergleich zu den BP anderer klinischer Fächer?“ lag der MW im SS 08 bei 2,87 (SD 1,119) und im WS 2008/9 bei 1,81 (SD 0,866). Im Vergleich zu anderen klinischen Blockpraktika wurde das BP Kinderheilkunde im WS 08/09 deutlich häufiger (83,5%) als im SS 08 (36,8) mit „gut“ oder „sehr gut“ bewertet ($p<0,001$). Für die Frage „Wie bewerten Sie das BP im Hinblick auf Ihre Sicherheit im Umgang mit Kindern?“ lagen der MW im SS 2008 bei 3,34 (SD 1,341) und im WS 2008/09 bei 2,27 (SD 0,762). Die Beurteilungen des BP in Bezug auf die Sicherheit der Studierenden im Umgang mit Kindern zeigten also ebenfalls eine deutliche Zunahme guter und sehr guter Bewertungen von 64,7% im neuen Konzept gegenüber 31,6% im konventionellen BP ($p<0,001$). Die Bewertungen der Betreuung Studierender durch Stationsärzte und Oberärzte wiesen ebenfalls deutliche Unterschiede zwischen den beiden Konzepten auf. Für die Frage „Wie war die Betreuung durch die Stationsärzte im BP?“ war der MW im SS 2008 mit 3,16 (SD 1,093)
Abbildung 1: Mittelwerte und Standardabweichungen der studentischen Evaluationen des Blockpraktikums Kinderheilkunde (BPK) vor und nach Einführung eines studentischen Tutoriats.

Deutlich schlechter als im WS 2008/09 (MW 2,64, SD 1,066). Im konventionellen BP beurteilten nur 32,4% der Studierenden die Betreuung durch die Assistentärzte als „gut“ oder „sehr gut“, im WS 08/09 waren es dagegen 47% der Studierenden (p<0,05). Noch deutlicher war dieser Effekt in den Beurteilungen der oberärztlichen Betreuung erkennbar. Für die Frage „Wie war die Betreuung durch die Oberärzte?“ waren die Bewertungen im SS 2008 (MW 3,89, SD 0,979) deutlich schlechter als im WS 2008/9 (MW 2,94, SD 1,17). Durch das studentische Tutoriat stieg die Häufigkeit guter und sehr guter Bewertungen der oberärztlichen Betreuung von 36,1% im konventionellen Kurs des SS 2008 auf 70,9% im BP mit studentischen Tutoren des WS 2008/09 (p<0,001). Die Frage „Wie war die Betreuung durch die Tutoren?“ konnte nur im WS 08/09 nach Einführung des neuen Konzeptes evaluiert werden, da im konventionellen BP des SS 08 keine Tutoren eingesetzt wurden. Der Mittelwert der Evaluationen lag bei 1,77 (SD 1,068). 52,4% der Studierenden bewerteten die Tutorenbetreuung als sehr gut, 31% als gut und 8,33% als befriedigend. Die Noten ausreichend und mangelhaft wurden nicht vergeben.

Die Ergebnisse des Selbsteinschätzungsbugens sind in Abbildung 2 und 3 dargestellt. Eine deutlich größere Häufigkeit positiver Selbsteinschätzungen der Studierenden war für die ärzlichen Fertigkeiten „Erstellung einer Epikrise“ und „Befunddokumentation“ am Ende des tutoriengestützten BP im Vergleich zu dem konventionellen BP erkennbar. Der Praxisbezug, die Qualität der Betreuung sowie die Selbsteinschätzung der Sicherheit im Umgang mit Kindern wurden von den Studierenden im BP mit studentischen Tutoren signifikant besser beurteilt als im konventionellen BP und in der vorliegenden Studie evaluiert. Untersuchungen von Graham et al [7] für das Fach Rheumatologie zeigten, dass praktische Untersuchungstechniken von entsprechend ausgebildeten Studierenden genauso gut wie von Ärzten unterrichtet werden können. Der Praxisbezug, die Qualität der Betreuung sowie die Selbsteinschätzung der Sicherheit im Umgang mit Kindern waren in den Studierenden im BP mit studentischen Tutoren signifikant besser beurteilt als im konventionellen BP (siehe Abbildung 1). Das ist sicher in erster Linie durch die Änderung des Lehrkonzepts für das BP bedingt. Im Vergleich mit den BP anderer klinischer Fächer schnitt das BP Kinderheilkunde nach der Einführung des Peer Teaching-Modells ebenfalls signifikant besser ab als vorher (siehe Abbildung 1). Es ist anzunehmen, dass der positive Einfluss der aktiven und geschützten Lernatmosphäre unter Gleichaltrigen bzw. Personen des gleichen Status ein wichtiger Grund für die gute Beurtei-
Abbildung 2: Häufigkeit positiver Selbsteinschätzungen (in %) der erlernten ärztlichen Fertigkeiten pädiatrische Anamneseerhebung, Befunddokumentation und Erstellung einer Epikrise durch Studierende am Ende des BP Kinderheilkunde im konventionellen Kurs und im BP mit neuem Konzept mit studentischen Tutoren.

Abbildung 3: Häufigkeit positiver Selbsteinschätzungen (in %) von erlernten pädiatrischen Untersuchungstechniken am Ende des BP Kinderheilkunde im konventionellen Kurs und im neu konzipierten BP mit studentischen Tutoren.

lung des Peer Teaching war. Dieses Modell unterstützte das Selbstvertrauen der Studierenden und förderte das Verständnis der vermittelten Lerninhalte [3], [5], [10]. Der gefundene positive Einfluss des Peer Teaching auf die Selbsteinschätzung klinischer Kompetenzen konnte auch in einigen anderen Studien festgestellt werden [7], [30]. Andere Arbeitsgruppen [11] konnten dagegen keinen sicheren positiven Effekt des Peer Teaching auf die Selbsteinschätzung klinischer Kompetenzen von Studierenden nachweisen. Welchen Einfluss das Peer Teaching auf die Prüfungsergebnisse hat, wird in der Literatur unterschiedlich beurteilt [1], [8]. Selbsteinschätzungs-Fragebögen werden als Messinstrument für den Erfolg einer Lehrveranstaltung in der Literatur kritisch gesehen [17]. Eine Fremdeinschätzung der Studierenden z. B. durch eine standardisierte klinische Prüfung durch Oberärzte der Kinderklinik wäre eine gute Möglichkeit der Objektivierung der Daten des Fragebogens gewesen. In der vorliegenden Arbeit konnten auf Grund curricularer Vorgaben keine Abschlussprüfungen am Ende des BP durchgeführt werden. Erst am Ende des auf das BP folgenden Semesters werden praktische Fertigkeiten im Fach Kinderheilkunde im Rahmen eines Compound-OSCE der klinischen Hauptfächer mit drei pädiatrischen OSCE-Stationen überprüft. Im Rahmen dieser Studie war es nicht möglich, auf diese Prüfungsergebnisse zu warten. Zudem ist die „Power“ einen Unterschied zu finden bei drei Stationen gering, und es sind
über diesen langen Zeitraum bis zur Prüfung externe Einflüsse, wie Kontamination und Reifung der Studierenden, nicht auszuschließen. Aufgrund des direkten Kontakts im Nachmittagsteil des BP gewannen die unterrichtenden Ärzte allerdings den Eindruck, dass mit dem Tutorienmodell praktische Lehrinhalte deutlich besser und nachhaltiger als in der bisherigen Lehrveranstaltung vermittelt werden konnten. Um diese Befunde zu objektivieren wären künftig weitere Studien, z.B. mit Einsatz anderer Prüfungsverfahren wie einem Mini CEX [15] sinnvoll. In einer Untersuchung von Heckmann et al [8] konnten im Fach Neurologie zudem keine Unterschiede in den OSCE-Prüfungsergebnissen von Studierenden nach konventionellem und nach peer-assisted Skills-Training im BP festgestellt werden.

Ein weiteres Ergebnis dieser Untersuchung war die Tatsache, dass die Qualität der Betreuung durch die Stationsärzte beim Einsatz studentischer Tutoren von den Studierenden besser als im konventionellen BP beurteilt wurde. Dies erscheint paradox, da studentische Tutoren einen bestimmten Teil der Lehrtätigkeit übernehmen. Aber gerade die Verlagerung bestimmter repetitiver Unterrichtsinhalte auf eine studentische Lehrebene hatte den positiven Effekt, dass die Ärzte mehr Zeit für ihre Routinearbeit hatten. Dadurch wurden sie besser motiviert, sich in der studentischen Lehre zu engagieren. Es kam also insgesamt nicht zu einer völligen Verlagerung der Lehrtätigkeit von der ärztlichen auf die studentische Ebene. Dies hatten einige Studierende befürchtet. Es kann vermutet werden, dass die bessere Nutzung der ärztlichen Ressourcen und Kompetenzen sich positiv auf die Motivation und den Einsatz der Ärzte und damit auf die Qualität der Lehre ausgewirkt hat. Es sind weitere Studien notwendig, um die Gründe der Motivationssteigerung bei den Assistenzärzten im Rahmen ihrer Lehrtätigkeit zu untersuchen. Es zeigte sich nämlich, dass unabdingbare Voraussetzung für ein erfolgreiches Tutoriat war, dass Ärzte während der Lehrveranstaltung für Rückfragen zur Verfügung standen und die Vermittlung komplexer klinischer Sachverhalte grundsätzlich nur durch Ärzte erfolgte [30]. Dies war im vorliegenden Konzept gegeben. Auch auf der Oberärztlichen Ebene schien das studentische Tutoriat zu einer besseren Motivation und einem größeren Einsatz in der Lehre zu führen. Dieser Effekt war aber nicht so deutlich wie auf Assistentenebene erkennbar. Auch die Tutoren selbst profitierten von ihrer Lehrtätigkeit nachhaltig. Diesen positiven Effekt konnten wir bei den wöchentlich stattfindenden Feedback-Gesprächen feststellen. Strukturiertes Feedback beeinflusst die Qualität der Tutoren positiv [13]. Die Lehrtätigkeit verpflichtet sie [2], sich intensiv mit dem Lehrstoff auseinanderzusetzen und ihn zu beherrschen. Dadurch erreichen sie eine ganz andere Tiefe des Wissens und des Verständnisses für das Fach. Auch ihre praktischen Erfahrungen im unterrichteten Fach wurden nach unseren Beobachtungen größer. Wong et al [31] und Ocel et al [16] konnten nachweisen, dass „Peer Teacher“ nach intensivem Vorbereitungstraining bessere Examenergebnisse (USMLE1, USMLE2, GPA) erreichten als diejenigen ohne Erfahrungen mit Lehrtätigkeit im Studium. Dies zeigt, dass Peer Teaching die lehrenden Studierenden nicht „ausnutzt“, sondern einem messbaren positiven Einfluss auf deren akademische Leistungen hat. Auch die Persönlichkeitsentwicklung und die Einstellung zum eigenen Lernen veränderten sich im Rahmen dieser Lehrtätigkeit positiv. Diese günstigen Effekte des Peer Teaching sind in anderen Disziplinen schon seit langen bekannt [2], [4], [6], [26] und werden von psychologischer Seite bestätigt [14].

Unbedingte Voraussetzung für ein erfolgreiches studentisches Tutoriat ist ein gründliches Training der Tutoren vor Beginn ihrer Tätigkeit (siehe Tabelle 1). Die Wichtigkeit einer ausreichenden Ausbildung und Supervision für das Gelingen des studentischen Tutoriats betonten Weyrich et al [30]. Darüber hinaus war eine gute Organisation innerhalb der Klinik notwendig. Die für die Lehrveranstaltung verantwortlichen Ärzte mussten kontinuierlich ansprechbar sein, über entsprechende Führungs- und Entscheidungskompetenzen innerhalb der Klinik verfügen und einzelne Aufgaben delegieren können [29]. Damit entlastet dieses Modell die Ärzte, stellt sie aber nicht von der Lehre frei.

Eine Schwäche des gewählten methodischen Ansatzes ist die Tatsache, dass es sich um eine Machbarkeitsstudie mit einem historischen Kontrollgruppen-Design handelt. Dies war durch den großen Erfolg des Pilotprojekts und seine Popularität unter den Studierenden begründet. Der modifizierte Kurs galt als einziges klinisches BP mit sehr guter praktischer Lehrqualität. Nicht zuletzt auch durch die positive Resonanz bei den Ärzten der Kinderklinik wäre es praktisch unmöglich gewesen, Studierende ohne entsprechenden Protest in den konventionellen Kurs einzuteilen. Dies führte zu dem Entschluss, auf ein randomisiertes Forschungsdesign zu verzichten und stattdessen schon mit Beginn des WS 08/09 ein reguläres studentisches Tutoriat einzuführen. Als beste verfügbare Kontrollgruppe dienten die Studierenden der zweiten Hälfte des SS 08, in der das BP noch konventionell allein ärztlich geleitet worden war.

Es ist nicht auszuschließen, dass die Evaluationsergebnisse auch durch den Bias eines Hawthorne-Effekts beeinflusst wurden [18]. Im klinischen Teil des Medizinstudiums besteht weiterhin, auch nach Einführung des Modellstudienangs ein Mangel an Lehrveranstaltungen mit konkretem Praxisbezug. Dieser von Studierenden seit langem kritisierte Mangel wurde in der Kinderklinik durch das studentische Tutoriat im WS 2008/09 behoben, während er in den meisten anderen klinischen Fächern weiterhin besteht. Diese Diskrepanz in der Qualität des klinisch-praktischen Unterrichts könnte die Evaluation des Blockpraktikums durch die Studierenden im Sinne einer zu positiven Bewertung beeinflusst haben. Weitere Confounder könnten die hohe Motivation der Ärzte und Studierenden während der Aufbauphase des Tutoriats, die Verbesserung des Kommunikationsklimas innerhalb der Klinik durch die Einführung des Tutoriats...
und die generelle Beliebtheit des Fachs Kinderheilkunde sein.

Schlussfolgerungen

Das intensive Training praktischer Lerninhalte der Kinderheilkunde in einer positiven Lernatmosphäre durch Einsatz studentischer Tutoren verbesserte die Evaluationsergebnisse des Blockpraktikums Kinderheilkunde durch die Studierenden und die Selbststeinschätzung der von ihnen erlernten klinisch-praktischen Fertigkeiten. Unbeeindigte Voraussetzung für die erfolgreiche Durchführung dieses innovativen Lehrkonzepts waren ein professionelles Training der studentischen Tutoren und eine kontinuierliche Supervision durch die Ärzte der Klinik. Das Konzept eines BP mit studentischem Tutor unter ärztlicher Supervision kann als erfolgreiches Modell für andere klinische Disziplinen empfohlen werden. Aus dem vorliegenden Ergebnis ergeben sich weitere Fragestellungen. Ein Ziel zukünftiger Untersuchungen sollte die Beantwortung der Frage sein, in welcher Form die studentischen Tutoren selbst von ihrer Tätigkeit für ihr Studium profitieren. Ebenso sollten die Auswirkungen des Einsatzes von studentischen Tutoren in der klinischen Lehre auf die Motivation und das Engagement der Ärzte in der Lehre und auf die Kommunikation der Mitarbeiter auf den Stationen und innerhalb der Klinik untersucht werden.

Danksagung

Wir danken Herrn OA Dr. Hans Martin Bosse, Kinderklinik der Ruprecht-Karls-Universität Heidelberg für seine Unterstützung beim Aufbau eines Lernzielkatalogs für das Fach Kinderheilkunde. Wir danken Herrn OA Dr Andreas Busch, Universitäts-Kinderklinik Tübingen, für seine Unterstützung beim Aufbau des studentischen Tutoriates an unserer Klinik. Wir danken Herrn Prof. Dr. Stefan Herzig für seine Beratung und Hilfsbereitschaft bei der Konzeption und der Durchführung der vorliegenden Studie. Wir danken den Mitarbeitern des Studiendekanates der Medizinischen Fakultät der Universität zu Köln und Frau cand. med. Tamara Kern für die Unterstützung bei der Datenauswertung der Studie.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte in Zusammenhang mit diesem Artikel haben.

Literatur

1. Breckwoldt J, Trepтов D, Weimann, J. Targeted Peer Teaching of first aid does not result in better long term retention of skills. GMS Z Med Ausbild. 2007;24(1):Doc18. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2007-24/zma000312.shtml

2. Buckley S, Zamora J. Effects of participation in a cross year peer tutoring programme in clinical examination skills on volunteer tutor’s skills and attitudes towards teachers and teaching. BMC Med Educ. 2007;7:20. DOI: 10.1186/1472-6920-7-20

3. Edwards KS, Woolf PK, Hetzler T. Pediatric residents as learners and teachers of evidence-based medicine. Acad Med. 2002;77(7):748. DOI: 10.1097/00001888-200207000-00037

4. Falchikow N. Learning together. Peer tutoring in higher education. London, New York: Routledge/Palmer. 2001.

5. Glynn LG, Mac Farlane A, Kelly M, Cantillon P, Murphy AW. Helping each other to learn- A process evaluation of peer assisted learning, BMC Med Educ. 2006;6:18. DOI: 10.1186/1472-6920-6-18

6. Goldschmib M, Goldschmib ML. Higher Education. Peer teaching in higher education. High Educ. 1976;5:9-33.

7. Graham K, Burke JM, Field M. Undergraduate Rheumatology: can peer assisted learning by medical students deliver equivalent training to that provided by specialist staff? Rheumatology. 2008;47(5):652-655. DOI: 10.1093/rheumatology/ken048

8. Heckmann JG, Dütsch M, Rauch C, Weiß M, Schwab S. Effects of a peer assisted training during the neurology clerkship: a randomized controlled study. Eur J Neurol. 2008;15(12):1365-1370. DOI: 10.1111/j.1468-1331.2008.02317.x

9. Huber L. Ziele und Aufgaben von Tutoren. Hochschuldidaktische Stichworte. Hamburg: 1972.

10. Hudson N, Tonkin AL. Clinical skills education: outcomes of relationships between junior medical students, senior peers and simulated patients. Med Educ. 2008;42(9):901-908. DOI: 10.1111/j.1365-2923.2008.03107.x

11. ickendei C, Andreesen S, Hoffmann K, Jünger J. Cross year peer tutoring on internal medicine wards: effects on self – assessed clinical competencies. A group control design study. Med Teach. 2009;31(2):e32-35. DOI: 10.1080/01421590802464452

12. Kern DE, Thomas PA, Howard DMH, Bass EBB. Curriculum Development for Medical Education. A Six-Step Approach. Baltimore, London: The Johns Hopkins University Press; 1998.

13. Murdoch Eaton DG, Levene MI. Student feedback: Influencing the quality of teaching in a paediatric Module. Eur J Pediatr. 2008;168(4):449-456.

14. Nestel D, Kidd J. Peer assisted learning in patient centered interviewing. The impact on student tutors. Med Teach. 2005;27(6):521-526.

15. Norcini JJ, Blank LL, Arnold, GK, Kimmberl HR. The Mini CEX (Clinical evaluation exercise): A preliminary investigation. Ann Intern Med. 1995;123(10):795-799.

16. Ocel JJ, Palmer BA, Wittich CM, Carmichael SW, Pawlina W. Outcomes of the gross and developmental anatomy teaching assistance experience. Clin Anat. 2003;16(6):526-530. DOI: 10.1002/ca.10193

17. Papinzak T, Young L, Groves M, Haynes M. An analysis of peer, self, and tutor assessment in problem-based learning tutorials. Med Teach. 2008;30(5):391-395. DOI: 10.1111/j.1365-2923.2008.03107.x

18. Parsons HM. What happened at Hawthorne?: New evidence suggests the Hawthorne effect resulted from operant reinforcement contingencies. Science. 1974;183(4128):922-932. DOI: 10.1126/science.183.4128.922

19. Pasquinelli LM, Greenberg LW. A review of medical school programs that train medical students as teachers (MED-SATS). Teach Learn Med. 2008;20(1):73-81.
20. Renko M, Uhari M, Soini H, Tensing M. Peer consultation as a method for promoting problem-based learning during a paediatrics course. Med Teach. 2002;24(4):408-411. DOI: 10.1080/01421590220145789

21. Ross MT, Cameron HS. Peer assisted learning: a planning and implementation framework. AMEE Guide no.30. Med Teach. 2007;29(6):527-546. DOI: 10.1080/01421590701665886

22. Schauseil-Zipf U. Lernziel-Katalog der Universitäts-Kinderklinik Köln. Köln: Universitätsklinik Köln; 2008. Zugänglich unter/available from: http://cms.uk-koeln.de/live/kinderklinik/content/e32/e99/e126/LernzielkatalogKinderheilkunde.pdf

23. Schnabel K, Müller S. Vermittlung praktischer Fertigkeiten in der Pädiatrie. Monatsschr Kinderheilkd. 2008;156:446-451. DOI: 10.1007/s00112-008-1725-8

24. SMFK. Swiss Catalogue of Learning Objectives for Undergraduate Medical Training. Bern: SMFK; 2001. Zugänglich unter/available from: http://www.IAWF.unibe.ch

25. Ten Cate O, Durning S. Dimensions and psychology of peer teaching in medical education. Med Teach. 2007;29(6):546-552. DOI: 10.1080/01421590701583816

26. Topping KJ, Ehly S (eds). Peer- assisted learning. Mahwah NJ: Lawrence Erlbaum; 1998.

27. Topping KJ. The effectiveness of peer teaching in further and higher education: A typology and review of the literature. High Educ. 1996;32:321-345. DOI: 10.1007/BF00138870

28. Trevino FM, Elland DC jr. Evaluation of basic science, peer tutorial programme for first and second year medical students. J Med Educ. 1980;55(11):952-953.

29. Wadoody A, Crosby JR. Twelve tips for peer-assisted learning: a classic concept revisited. Med Teach. 2002;24(3):241-244. DOI: 10.1080/01421590220134060

30. Weyrich P, Schrauth M, Kraus B, Habermehl D, Netzhammer N, Zipfel S, Jüenger, J, Riessen R, Nickendel C. Undergraduate technical skills training guided by student tutors-analysis of tutors' attitudes tutees' acceptance and learning process in an innovative teaching model. BMC Med Educ. 2008;8:18. DOI: 10.1186/1472-6920-8-18

31. Wong JG, Waldrep TD, Smith TG. Formal Peer teaching in medical school improves academic performance: The MUSC supplemental instructor program. Teach Learn Meth. 2007;19(3):216-220.
Peer Teaching in Paediatrics - Medical Students as Learners and Teachers on a Paediatric Course

Abstract

Background: Peer assisted learning is known as an effective educational strategy in medical teaching. We established a peer assisted teaching program by student tutors with a focus on clinical competencies for students during their practical training on paediatric wards. It was the purpose of this study to investigate the effects of a clinical skills training by tutors, residents and consultants on students evaluations of the teaching quality and the effects of a peer teaching program on self assessed clinical competencies by the students.

Methods: Medical student peers in their 6th year were trained by an intensive instruction program for teaching clinical skills by paediatric consultants, doctors and psychologists. 109 students in their 5th year (study group) participated in a peer assisted teaching program for training clinical skills in paediatrics. The skills training by student peer teachers were supervised by paediatric doctors. 45 students (control group) participated in a conventional paediatric skills training by paediatric doctors and consultants. Students from both groups, which were consecutively investigated, completed a questionnaire with an evaluation of the satisfaction with their practical training and a self assessment of their practical competencies.

Results: The paediatric skills training with student peer teachers received significantly better ratings than the conventional skills training by paediatric doctors concerning both the quality of the practical training and the support by the teaching medical staff. Self assessed learning success in practical skills was higher rated in the peer teaching program than in the conventional training.

Conclusions: The peer assisted teaching program of paediatric skills training was rated higher by the students regarding their satisfaction with the teaching quality and their self assessment of the acquired skills. Clinical skills training by student peer teachers have to be supervised by paediatric doctors. Paediatric doctors seem to be more motivated for their own teaching tasks if they are assisted by student peer teachers. More research is needed to investigate the influence of peer teaching on the motivation of paediatric doctors to teach medical students und the academic performance of the student peers.

Keywords: Peer assisted learning, clinical skills training in paediatrics, student evaluation, student self assessment

Introduction

Both in German and English literature the term “tutorial” or “peer teaching” is used to describe a form of teaching where students or PhD students, so-called “tutors” or “peers” hold classes. In higher education, Topping & Ehly [26] described peer teaching as the “development of knowledge and skill through active help and support among status equals or matched companions”. Numerous studies document the advantages of teaching conducted by tutors, both at school and university level [4], [6]. In Germany the use of tutors was first introduced in 1951 at the Freie Universität Berlin [9]. For some 30 years tutors have also been used successfully in medical education, for example in anatomy during the pre-clinical phase. In medical studies, these are usually students of the same or more advanced years. Numerous studies demonstrate the positive effects of tutor-supported teaching on the academic achievements of medical undergraduate students [19], [21], [25], [27], [28], [29]. Through the relaxed learning environment, teaching content can often be taught more easily and practical skills are learnt and practised better. The tutors also benefit through their teaching activity. Their communication and teaching skills
improve [2], they achieve better exam results at the end of their studies [31] and they are more successful in their careers [16].

In paediatrics the teaching of practical skills poses a particular challenge [23]. In medical undergraduate studies student tutors were successfully used in problem-oriented teaching of paediatrics [20] and graduate tutors in the core paediatrics curriculum [13]. Edwards et al [3] report on the successful use of graduate tutors in paediatric post-graduate specialisation in evidence-based medicine. The paediatrics clinic of the University of Tübingen introduced the concept of student tutoring in the paediatrics block work placement some years ago. More detailed analyses of this project have not been released to date.

The clinics for General Paediatrics and Child Cardiology at the University of Cologne showed, following the production of a compulsory learning goal catalogue [22] following the model of the “Swiss Catalogue of Learning Objectives for Undergraduate Medical Training” [24], that none of the defined practical learning goals were adequately taught in any of the curricular activities [12]. This is confirmed by the results of the OSCE examinations introduced in 2006.

To tackle these deficits, a pilot project based on a concept of the University Paediatrics Clinic Tübingen was introduced during the first half of the 2008 summer semester, in which student tutors were trained who then proceeded to teach the practical learning content in the block work placement (BWP) in paediatrics. Following on from this pilot, this feasibility study looks at the 2008/09 winter semester to determine if this new, tutorial-supported concept achieves higher student and teacher satisfaction compared to the conventional course.

Methods

Research Collective

45 students in their 5th clinical semester took the conventional, week-long paediatrics BWP taught only by medical doctors during the second half of the 2008 summer semester on wards of the children’s hospital. In small groups, the students participated in the ward rounds and examinations and had, depending on the availability of ward doctors and senior physicians, the opportunity to examine children themselves under supervision and to discuss case files with the physicians. At the end of each BWP week feedback sessions were held with the ward physicians and the students about the current progress of the placement and the learning goals achieved.

A new teaching model was introduced in the 2008/09 winter semester for the BWP in paediatrics, which shifted demonstrations and practical exercises of paediatric examination techniques (such as throat inspections, oto-scopy, abdominal examinations) and the teaching of individual teaching modules developed by physicians (such as urine diagnostics, infusion treatment, inhalation treatment) into the area of responsibility of student tutors. For this purpose, eight tutors were trained for a week by a team of assistants and senior physicians of the clinic prior to the start of the 2008/09 winter semester at the University Paediatrics Hospital Cologne. These were students who had successfully passed the BWP during the previous semester. Apart from theoretical training in paediatrics and examination techniques, learning content such as dealing with students, doctors and medical staff and motivating patients and their parents were taught (see Table 1). The training course was designed by the primary author. The week-long practical and theoretical tutor training was carried out by the senior physicians and experienced specialised doctors at the children’s hospital and the primary author.

Table 1: Contents of the week-long trainings of student tutors for the block work placement in paediatrics

Examination techniques	Taught by
General paediatric examination	Senior physicians
Neonatopediatric Examination	Senior physicians
Seminars	
Urine diagnostics	Specialist
Management of bronchopulmonary obstructions/inhalation technique	Specialist
Fluid balance/infusion treatment	Specialist
Anamnesis, documenting findings, discharge summary	Specialist
Paediatric radiology	Senior physician
Doctor-patient communication	Psychologist
Motivating parents, children, ward team	Senior physician
Practical running of tutorials on wards	Tutor from the previous semester

109 students in their 5th clinical semester took the newly designed week-long BWP taught by student tutors in the 2008/09 winter semester. The practical skills specified in the learning goal catalogue for paediatrics were taught in the form of short seminars on child examination techniques and through practical instructions by the bedside on patient examination. In addition, as is the case in the conventional BWP, cases were discussed with the ward physicians. At the end of the BWP week, the same feedback sessions took place as on the conventional course. In both teaching events seminars with case demonstrations were taught by senior physicians during the afternoon. The content and progression of both teaching events is summarised in Table 2.
Table 2: Schedule of the block work placement in paediatrics before and after the introduction of student tutoring

Block work placement in paediatrics led by medical staff only	Block work placement in paediatrics with student tutoring
Summer semester 08 (45 students)	Winter semester 08/09 (109 students)
Day 1	Day 1
Anamnesis and examination techniques with sickling babies and infants	Anamnesis and examination techniques with sickling babies and infants
Day 2-5	Day 2-5
09.00-12.30 h Practical training on paediatric wards in small groups (ward/senior physicians)	09.00-11.30 h Patient examinations in small groups, short seminars (student tutors)
11.30-12.30 h Clinical case discussions (ward/senior physicians)	
Day 1-5	Day 1-5
14.00-16.00 h Differential diagnosis seminar with case presentations (senior physicians)	14.00-16.00 h Differential diagnosis seminar with case presentations (senior physicians)

Evaluation Questionnaire

At the end of BWP, the students evaluated the BWP and assessed the practical skills they acquired via a questionnaire. The model for the questionnaire was the University Children’s Hospital Tübingen questionnaire, which had been developed and validated there as a result of the introduction of tutoring. Filling out the questionnaire was voluntary and not linked to the award certificate for the BWP. Of the 45 students in the 08 summer semester, 39 questionnaires were returned (response rate 87%) and of the 109 students in the 09 winter semester 85 questionnaires were returned (response rate 78%) and could thus be evaluated.

The evaluation part of the questionnaire contained five questions about the practical relevance of the BWP, on the comparison with the block work placements of other clinical disciplines, on gained confidence in dealing with children and the supervision by the ward and senior physicians (08 summer semester and 08/09 winter semester). The questions could be answered using a five point scale with grades from very good (1) to poor (5).

The self-assessment part of the questionnaire contained three questions on the command of general medical skills in paediatrics (establishing medical history, documenting findings, discharge summaries) and eight questions on the command of important paediatric examination techniques and diagnostic measures. At the end of the week-long BWP in paediatrics, the students documented in the questionnaire whether they had completed and acquired the training modules and medical skills in the course of the placement during the 08 summer semester and the 08/09 winter semester. It was possible to distinguish between successfully completed and learned and not successfully completed and learned.

Statistical Evaluation

The statistical analysis of the evaluation part was performed using a t-test, assuming independent samples with an error probability of $p < 0.05$ (SPSS 15 (SPSS Inc., Chicago, IL)).

The following hypotheses form the basis of the t-tests:

- H0: The mean grade in the 08 summer semester of the students (conventional approach) is no different from the grades in the 08/09 winter semester (tutor-based approach), i.e. the mean difference is zero.
- H1: The average grade in the 08 summer semester of the students (conventional approach) is different from the grades in the 08/09 winter semester (tutor-based approach), i.e. the mean difference is unequal to zero.

The evaluation of the self-assessment part was based on a descriptive comparison of the stated frequency of positive self-assessment by students.

Results

The mean values (MV) and standard deviations (SD) of the evaluations are shown in Figure 1. For the question “How do you rate the practical relevance of the block placement?” the average was 3.29 (SD 1.239) for the 08 summer semester and 1.93 (SD 0.686) for the 08/09 winter semester. The practical relevance of the conventional BWP in paediatrics was judged as “good” or “very good” by 32.4% of students in the 08 summer semester; for the new model, this rate was 82.4% ($p < 0.001$). For the question “How do you rate the BWP in paediatrics compared to the placements in other clinical subjects?” the MV for the 08 summer semester was 2.87 (SD 1.119) and 1.81 (SD 0.866) for the 08/09 winter semester. In comparison to other clinical block work placements the BWP in paediatrics was rated “good” or “very good” considerably more often (83.5%) in the 08/09 winter semester than in the 08 summer semester (36.8%) ($p < 0.001$). For the question “How do you rate the BWP in terms of your confidence in dealing with children?” the MV were 3.34 (SD 1.341) in the 08 summer semester and 2.27 (SD 0.762) in the 08/09 winter semester. The evaluation of the BWP in relation to the confidence of the students in dealing with children also showed a significant increase of good and very good ratings of 64.7% in the new concept compared to 31.6% in the conventional BWP ($p < 0.001$).

The opinions of student supervision by ward and senior physicians also showed significant differences between the two concepts. For the question “How was the support from ward physician in the BWP?” with 3.16 (SD 1.093) the mean value for the 08 summer semester was significantly worse than for the 08/09 winter semester (MV 2.64, SD 1.066). In the conventional BWP only 32.4% of students rated the supervision by the assistant doctors as “good” or “very good” while in the 08/09 winter semester 47% of students ($p < 0.05$) rated it as such. This
effect was even more clearly visible in the assessment supervision by the senior physicians. For the question “How was the supervision by the senior physicians?” the 08 summer semester ratings (MV 3.89, SD .979) were significantly worse than for the 08/09 winter semester (MV 2.94, SD 1.17). Through student tutoring, the frequency of good and very good ratings for the supervision by the senior physicians rose from 36.1% in the conventional course for the 08 summer semester to 70.9% in the BWP with student tutors from the 08/09 winter semester (p <0.001).

The question “How was the supervision by the tutors?” could only be asked after the introduction of the new concept in the 08/09 winter semester as no tutors were used in the conventional BWP of the 08 summer semester. The evaluation mean was 1.77 (SD 1.068). 52.4% of students rated the tutor support as very good, 31% as good and 8.33% as satisfactory. The grades “sufficient” and “bad” were not awarded.

The results of the self-assessment questionnaire are shown in Figure 2 and 3. A significantly greater frequency of positive self-evaluation of the students was apparent for the medical skills “Writing a discharge summary” and “documenting findings” at the end of the tutor-based BWP compared to the conventional BWP in paediatrics. The increase in positive self-assessments of the skill “Establishing a paediatric anamnesis” from about 80% to 90% was, in the comparison between the 08 summer semester and 08/09 winter semester courses, relatively low because this topic is taught in detail both in the conventional BWP and the BWP with the student tutoring (see Figure 2). Students judged the practical skills they acquired in paediatric examination techniques and diagnostic or therapeutic measures significantly higher in the newly designed student tutoring BWP (see Figure 3) than the BWP purely led by doctors. For throat inspection and otoscopy examination techniques, there was an increase in positive self-evaluation from about 40% to about 80% and for the therapeutic measure “inhalation technique in bronchopulmonary obstruction” from about 10% to about 90% through the teaching of practical skills by student tutors.

Discussion

The conventional BWP in paediatrics at the University of Cologne was also rated as good by the students. This is presumably in part due to the attractiveness of the specialisation. Discussions with students and personal observations showed, however, that a purely medically-led BWP leads to good factual knowledge but too little practical skills. The main reason for this is the lack of time of the medical personnel. Since the practical skills were in the learning target catalogue for paediatrics in Cologne [22], these also had to be taught in the new BWP design. For this, a peer-teaching model was implemented and evaluated in this study. Studies by Graham et al [7] for the subject of rheumatology showed that practical examination techniques can be taught by trained students just as well as by doctors.

The practical relevance, quality of supervision as well as the self-assessment of the students’ confidence in dealing with children was judged to be significantly better in the BWP with student tutors than the conventional BWP (see Figure 1). This is almost certainly primarily caused by the change in the teaching method for the BWP. Compared with the BWPs of other clinical subjects, the BWP in paediatrics performed significantly better after the introduction of the peer-teaching model (see Figure 1). Self-assessment of students also substantially improved in terms of mastery of the practical learning content of the BWP (see Figure 2 and 3). It is likely that the positive influence of active and protected learning environment amongst peers or people of the same status is an important reason for the positive assessment of peer teaching. This model supported the self-confidence of students and promoted the understanding of learning content taught [3], [5], [10].

This positive impact of peer teaching on the self-assessment of clinical competencies was also found by some other studies [7], [30]. Other working groups [11] on the other hand could not prove a positive effect of peer teaching on the self-assessment of students’ clinical competencies. The impact of peer teaching on exam results is evaluated differently in the literature [1], [8].
Self-assessment questionnaires as a measure of the success of a course is viewed critically in the literature [17]. An external assessment of the students, for example using a standardised clinical examination by the senior physicians of the children’s hospital would have been a good way to objectify the questionnaire data. This study could not conduct a final examination at the end of the BWPs due to curricular requirements. Practical skills in paediatrics are only tested at the end of the semester after the BWP as part of a compound OSCE which tests clinical core subjects in three paediatric OSCE stations. It was not possible for this study to wait for these exam results. Moreover, the “power” to find a difference in only three stations is low and after such a long period before examinations, external influences such as contamination and maturation of students cannot be excluded. As a result of the direct contact in the afternoon part of the BWP, the teaching physicians, however, gained the impression that using the tutor model, practical learning content could be taught significantly better and with more lasting effect than was previously possible. To objectify these findings, more studies would be needed in the future, for example using different testing methods such as a mini-CEX [15]. In a study by Heckmann et al [8], in neurology no differences in the OSCE exam results of students taught in the conventional model and those from peer-assisted skills training during the BWP could be found. Another result of this study was the fact that the quality of the supervision by the ward physicians was judged to be better when using student tutors than in the conventional BWP. This seems paradoxical, since student tutors took on a certain amount of the teaching. But it was this shift of certain repetitive content to student tutors which led to the positive effect of doctors having more time for their routine work. Thus they were better motivated to get involved in student teaching. Overall, a complete shift of teaching from physicians to students tutors did not occur, which had been feared by some...
students. It can be assumed that the better use of medical staff resources and skills had a positive effect on the motivation and the engagement of doctors and thus the quality of teaching. Further studies are needed to investigate the reasons for this motivation increase amongst assistant physicians in their teaching duties. It appeared that an essential prerequisite for a successful tutoring was the availability of physicians during the course for additional questions that the teaching of complex clinical content was carried out only by physicians [30]. This was the case in the present concept. At the level of senior physicians too, student tutoring seemed to lead to better motivation and engagement in teaching. This effect, however, was not as clear as at the level of the assistant physicians. The tutors themselves benefited considerably from their teaching. We were able to detect this positive effect during the weekly feedback sessions. Structured feedback affected the quality of the tutors positively [13]. The teaching activities requires them [2] to deal intensively with the material and master it. They can thus reach a much deeper level of understanding and knowledge of the subject. We could also observe an increase of their practical experience in the taught subjects. Wong et al [31] and Ocsei et al [16] demonstrated that “peer teachers”, after intensive preparatory training, achieve better exam results (USMLE1, USMLE2, GPA) than those without teaching experience during their undergraduate studies.

This shows that peer teaching does not “exploit” student tutors but that it has a measurable positive influence on their academic achievements. Personality development and attitude to their own learning also changed positively through teaching. These benefits of peer teaching have been long known in other disciplines [2], [4], [6], [26] and are confirmed by psychological research [14].

An essential prerequisite for successful student tutoring is thorough tutor training before they start teaching (see Table 1). The importance of adequate training and supervision for the success of student tutoring is stressed by Weyrich et al [30]. In addition, good organisation within the hospital was also necessary. The physicians responsible for the course had to be continuously reachable, needed the necessary leadership and decision-making authority within the department and had to be able to delegate tasks [29]. In this way this model relieves the doctors but does not free them from teaching.

A weakness in the chosen methodological approach is the fact that it is a feasibility study with a historical control group design. This was justified through the great success of the pilot project and its popularity among students. The modified course was seen as the only clinical BWP with very good practical teaching quality. Not least of all due to the positive response by the physicians at the children’s hospital it would have been virtually impossible to stream students into the conventional course without protest. This led to the decision to forego a randomised research design and to introduce regular student tutoring at the start of the 08/09 winter semester already. The best available control group consisted of students in the second half of the 08 summer semester when the BWP was still conventionally managed by medical staff only. It is possible that the evaluation results were also influenced by the bias of a Hawthorne effect [18]. The clinical part of undergraduate medical studies continues to suffer from a lack of teaching with concrete practical, even after the introduction of the pilot program. This gap, long criticised by students, was addressed in the children’s hospital by the introduction of student tutoring the 08/09 winter semester, while it persists in most other clinical subjects. This discrepancy in the quality of practical clinical teaching may have influenced the students to positively evaluate the block work placement. Other confounding factors could be the motivation of doctors and students during the construction phase of tutoring, the improvement of the communicative climate within the hospital through the introduction of tutoring and the general popularity of the subject of paediatrics.

Conclusions

The intensive training of practical learning content in paediatrics in a positive learning environment through the use of student tutors improved the evaluation results of the block work placement in paediatrics by the students and the self-assessment of their acquired practical clinical skills. An essential prerequisite for successfully conducting this innovative teaching approach was professional training of the student tutors and continuous supervision by the doctors of the clinic. The concept of a BWP with student tutoring under medical supervision can be recommended as a successful model for other clinical disciplines. The present results give rise to further questions. One goal of future research should be answering the question of how the tutors themselves benefit from their work for their studies. Similarly, the impact of the use of student tutors in clinical teaching on motivation and engagement of doctors in teaching and communication amongst employees on the wards stations and within the clinic should be examined.

Thanks

We would like to thank Dr Hans Martin Bosse, Children’s Hospital, Ruprecht-Karls University of Heidelberg for his support in designing a learning target catalogue for paediatrics. We would like to thank Dr Andreas Busch, University Children’s Hospital Tübingen for his support in introducing student tutoring at our clinic. We would like to thank Prof Stefan Herzig for his advice and willingness to help in the design and implementation of the present study. We would like to thank the staff of the Dean of Studies’ Office of the Medical Faculty of the University of Cologne and Tamara Kern, an undergraduate student, for her assistance with the data analysis for the study.
Competing interests
The authors declare that they have no competing interests.

References
1. Breckwoldt J, Tretow D, Weimann, J. Targeted Peer Teaching of first aid does not result in better long-term retention of skills. GMS Z Med Ausbild. 2007;24(1):Doc18. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2007-24/zma000312.shtml
2. Buckley S, Zamora J. Effects of participation in a cross year peer tutoring programme in clinical examination skills on volunteer tutor’s skills and attitudes towards teachers and teaching. BMC Med Educ. 2007;7:20. DOI: 10.1186/1472-6920-7-20
3. Edwards KS, Woof PK, Hetzler T. Pediatric residents as learners and teachers of evidence-based medicine. Acad Med. 2002;77(7):748. DOI: 10.1097/00001888-200207000-00037
4. Falchikow N. Learning together. Peer tutoring in higher education. London, New York: RoutledgePalmer; 2001.
5. Glynn LG, Mac Farlane A, Kelly M, Cantillon P, Murphy AW. Helping each other to learn- A process evaluation of peer assisted learning. BMC Med Educ. 2006;6:18. DOI: 10.1186/1472-6920-6-18
6. Goldschmid B, Goldschmid ML. Higher Education. Peer teaching in higher education. High Educ. 1976;5:9-33.
7. Graham K, Burke JM, Field M. Undergraduate Rheumatology: can peer assisted learning by medical students deliver equivalent training to that provided by specialist staff? Rheumatology. 2008;47(5):652-655. DOI: 10.1093/rheumatology/ken048
8. Heckmann JG, Dütsch M, Rauch C, Weih M, Schwab S. Effects of a peer assisted training during the neurology clerkship: a randomized controlled study. Eur J Neurol. 2008;15(12):1365-1370. DOI: 10.1111/j.1468-1331.2008.02317.x
9. Huber L. Ziele und Aufgaben von Tutoren. Hochschuldidaktische Stichworte. Hamburg; 1972.
10. Hudson N, Tonkin AL. Clinical skills education: outcomes of relationships between junior medical students, senior peers and simulated patients. Med Educ. 2008;42(9):901-908. DOI: 10.1111/j.1365-2923.2008.03107.x
11. Ickendel C, Andreessen S, Hoffmann K, Jünger J. Cross year peer tutoring on internal medicine wards: effects on self – assessed clinical competencies. A group control design study. Med Teach. 2009;31(2):e32-35. DOI: 10.1080/01421590802464452
12. Kern DE, Thomas PA, Howard DMH, Bass EBB. Curriculum Development for Medical Education. A Six-Step Approach. Baltimore, London: The Johns Hopkins University Press; 1998.
13. Murdoch Eaton DG, Levene MI. Student feedback: Influencing the quality of teaching in a paediatric Module. Eur J Pediatr. 2008;168(4):e449-456.
14. Nestel D, Kidd J. Peer assisted learning in patient centered interviewing. The impact on student tutors. Med Teach. 2005;27(6):521-526.
15. Norcini JJ, Blank LL, Arnold, GK, Kimball HR. The Mini CEX (Clinical evaluation exercise): A preliminary investigation. Ann Intern Med. 1995;123(10):795-799.
16. Ocel JJ, Palmer BA, Wittich CM, Carmichael SW, Pawlina W. Outcomes of the gross and developmental anatomy teaching assistance experience. Clin Anat. 2003;16(6):526-530. DOI: 10.1002/ca.10193
17. Papinzak T, Young L, Groves M, Haynes M. An analysis of peer, self, and tutor assessment in problem-based learning tutorials. Med Teach. 2007;29(5):e122-132. DOI: 10.1080/01421590701294323
18. Parsons HM. What happened at Hawthorne?: New evidence suggests the Hawthorne effect resulted from operant reinforcement contingencies. Science. 1974;183(4128):922-932. DOI: 10.1126/science.183.4128.922
19. Pasquinelli LM, Greenberg LW. A review of medical school programs that train medical students as teachers (MED-SATS). Teach Learn Med. 2008;20(1):73-81.
20. Renko M, Uhari M, Soini H, Tensing M. Peer consultation as a method for promoting problem-based learning during a paediatrics course. Med Teach. 2002;24(4):408-411. DOI: 10.1080/0142159020145789
21. Ross MT, Cameron HS. Peer assisted learning: a planning and implementation framework. AMEE Guide no.30. Med Teach. 2007;29(6):527-546. DOI: 10.1080/01421590701665886
22. Schauseil-Zipf U. Lernziel-Katalog der Universitäts-Kinderklinik Köln. Köln: Universitätsklinik Köln: 2008. Zugänglich unter/available from: http://cms.uk-koeln.de/live/kinderklinik/content/e32/e99/e125/Lernzielkatalogkinderheilkunde.pdf
23. Schnabel K, Müller S. Vermittlung praktischer Fertigkeiten in der Pädiatrie. Monatsschr Kinderheilkd. 2008;156:446-451. DOI: 10.1007/s00112-008-1725-8
24. SMFK. Swiss Catalogue of Learning Objectives for Undergraduate Medical Training. Bern: SMFK; 2001. Zugänglich unter/available from: http://www.IAWF.unibe.ch
25. Ten Cate O, Burning S. Dimensions and psychology of peer teaching in medical education. Med Teach. 2007;29(6):546-552. DOI: 10.1080/01421590701583816
26. Topping KJ, Ehy S (eds). Peer- assisted learning. Mahwah NJ: Lawrence Erlbaum; 1998.
27. Topping KJ. The effectiveness of peer teaching in further and higher education: A typology and review of the literature. High Educ. 1996;32:321-345. DOI: 10.1007/BF00138870
28. Trevino FM, Eliland DC Jr. Evaluation of basic science, peer tutorial programme for first and second year medical students. J Med Educ. 1980;55(11):952-953.
29. Wadoody A, Crosby JR. Twelve tips for peer-assisted learning: a classic concept revisited. Med Teach. 2002;24(3):241-244. DOI: 10.1080/0142159020134060
30. Weyrich P, Schrauth M, Kraus B, Habermehl D, Netzhammer N, Zipfel S, Jünger, J, Riessen C, Nickendei C. Undergraduate technical skills training guided by student tutors-analysis of tutors’ attitudes tutors’ acceptance and learning process in an innovative teaching model. BMC Med Educ. 2008;8:18. DOI: 10.1186/1472-6920-8-18
31. Wong JG, Waldrep TD, Smith TG. Formal Peer teaching in medical education. Med Teach. 2009;31(2):e32-35. DOI: 10.1111/j.1460-1884.2008.02631.x
32. Yewichich P, Schrauth M, Kraus B, Habermehl D, Netzhammer N, Zipfel S, Jünger, J, Riessen C, Nickendei C. Undergraduate technical skills training guided by student tutors-analysis of tutors’ attitudes tutors’ acceptance and learning process in an innovative teaching model. BMC Med Educ. 2008;8:18. DOI: 10.1186/1472-6920-8-18

Corresponding author:
PD Dr. Ulrike Schauseil-Zipf
Universität zu Köln, Klinik und Poliklinik für Kinderheilkunde, Kerpener Straße 62, D-50937 Köln, Deutschland
ulrike.schauseil-zipf@uk-koeln.de

GMS Zeitschrift für Medizinische Ausbildung 2010, Vol. 27(5), ISSN 1860-3572
