Accepted Manuscript

Geochemistry: Exploration, Environment, Analysis

An improved method for assessing the degree of geochemical similarity (DOGS2) between samples from multi-element geochemical datasets

Patrice de Caritat & Alan Mann

DOI: https://doi.org/10.1144/geochem2018-021

Received 16 March 2018
Revised 19 May 2018
Accepted 4 June 2018

© 2018 Commonwealth of Australia (Geoscience Australia). This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/). Published by The Geological Society of London for GSL and AAG. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics

To cite this article, please follow the guidance at http://www.geolsoc.org.uk/onlinefirst#cit_journal

Manuscript version: Accepted Manuscript

This is a PDF of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting and correction before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Although reasonable efforts have been made to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record once published for full citation and copyright details, as permissions may be required.
An improved method for assessing the degree of geochemical similarity (DOGS2) between samples from multi-element geochemical datasets

P. de CARITAT1,2,* & A. MANN3

1Geoscience Australia, GPO Box 378, Canberra, Australian Capital Territory, 2601, Australia
2Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
3Geochemical Consultant, PO Box 778, South Fremantle, Western Australia, 6162, Australia

*Corresponding author: Patrice de Caritat; phone: +612 6249 9378; email: Patrice.deCaritat@ga.gov.au
ORCID: 0000-0002-4185-9124

Running Title: Degree of Geochemical Similarity

ABSTRACT: The multi-element aqua regia National Geochemical Survey of Australia (NGSA) database is used to demonstrate an improved method for quantifying the degree of geochemical similarity (DOGS2) between soil samples. The improvements introduced here address issues relating to compositional data (closure, relative scale). After removing the elements with excessive censored (below detection) values, the rank-based Spearman correlation coefficient (r_s) between samples is calculated for the remaining 51 elements. Each element is given equal weight through the rank-based correlation. The r_s values for pairs of samples of known similar origin (e.g. granitoid-derived) are significantly positive, whereas they are significantly negative for pairs of samples of known dissimilar origin (e.g. granitoid-versus greenstone-derived). Maps of r_s for all samples in the database against various reference samples are used to obtain correlation maps for lithological derivations. Likewise, the distribution of soils having a geochemical fingerprint similar to established mineralised provinces can be mapped, providing a simple, first order mineral prospectivity tool. Sensitivity of results to the removal of up to a dozen elements from the correlation indicates the method to be extremely robust. The new method is compliant with contemporary compositional data analysis principles and is applicable to various digestion methods.

KEYWORDS: Geochemical signature, ranking, Spearman correlation, aqua regia digestion, National Geochemical Survey of Australia, compositional data analysis
Multi-element databases, often containing in excess of 50 elements, are a common product of modern soil geochemistry programs, primarily due to the quality and quantity of data produced by modern instrumentation, in particular inductively coupled plasma-mass spectrometry (ICP-MS). Presentation of informative statistical analysis derived from such datasets can be challenging and is commonly limited to one or two elements of interest, either because they are sought-after commodities or pathfinders in an exploration program or are potential contaminants in an environmental impact assessment. The alternative approach is to consider a geochemical composition as a multi-dimensional ‘whole’ and treat the data in a multivariate way. Correlation analysis can thus be used to define elements with common geochemical behaviour. Recently, principal component analysis (PCA) has been used to objectively ‘discover’ suites of elements with common characteristics (e.g. Caritat & Grunsky 2013; Zhang et al. 2014a), which can then guide follow-up interpretation. Grunsky (2010) provided a comprehensive discussion of multivariate data analysis techniques, including PCA and cluster analysis methods. The systematic and objective examination of databases for pattern recognition or inference of lithology and geology commonly requires advanced statistical and/or coding skills. The widely varying concentrations of elements in a multi-element compositional database and their interdependencies present special problems for statistics-based methods of analysis (Aitchison 1986).

Determining quantitatively how geological samples are similar or not based on major, trace element or isotopic geochemistry has applications in many fields. These include: sediment provenance, archaeology, agriculture, environmental investigations, geological mapping, digital soil mapping, resource evaluation, geochemical exploration, and forensic geochemistry (e.g. McBratney et al. 2003; Welte & Eynatten 2004; Keegan et al. 2008; Feng et al. 2011; Bowen & Caven 2013; Frei & Frei 2013; Reid et al. 2013; Zhang et al. 2014b; Mann et al. 2015, 2016; Blake et al. 2016; Sylvester et al. 2017).

Mann et al. (2016) used the multi-element Mobile Metal Ion® (MMI - Mann et al. 1998; Mann 2010) dataset from the National Geochemical Survey of Australia (Caritat & Cooper 2011a) to develop the concept of degree of geochemical similarity (DOGS). This straightforward concept was introduced to statistically assess the similarity of two rock, sediment or soil samples to one another, using all the statistically significant elements, i.e. those with all or most results reported above the detection limit, in the database. By choosing a single reference sample and calculating the Pearson correlation coefficients of all the other samples relative to it, Mann et al. (2016) plotted maps making use of the exploratory data analysis symbology (Tukey 1977). However, those elements with concentrations far removed from the mean (e.g. MMI Ca and MMI Au) and thus likely to be outliers are systematically heavily weighted in this parametric statistical method. This can lead to unrealistically high Pearson correlation coefficients. In order to overcome this problem, we use rank-based Spearman rather than concentration-based Pearson correlation coefficients in the current paper to obtain geochemical information about sample pairs and produce maps of this improved degree of geochemical similarity (dubbed DOGS2 to distinguish it from the earlier method). Also, we use data from the NGSA aqua regia (AR) digestion database, rather than from the MMI database as Mann et al. (2016) did, to test if the method applies to stronger digestion data. Scheib’s (2013) review of the NGSA AR data in relation to Western Australia included some statistical correlation based on ranking of log-transformed data.

Aqua regia (HCl:HNO₃ 3:1 molar mixture) digestion of samples is commonly used in exploration and environmental geochemistry programs. For instance, AR digestion of soil and sediment samples has been recommended in geochemical exploration for mineral deposits (Church et al. 1987; Rubeska et al. 1987; Heberlein 2010). In Europe the legislation requires soils, sediments and sludges to be analysed after AR digestion, e.g. for

Multi-element databases, often containing in excess of 50 elements, are a common product of modern soil geochemistry programs, primarily due to the quality and quantity of data produced by modern instrumentation, in particular inductively coupled plasma-mass spectrometry (ICP-MS). Presentation of informative statistical analysis derived from such datasets can be challenging and is commonly limited to one or two elements of interest, either because they are sought-after commodities or pathfinders in an exploration program or are potential contaminants in an environmental impact assessment. The alternative approach is to consider a geochemical composition as a multi-dimensional ‘whole’ and treat the data in a multivariate way. Correlation analysis can thus be used to define elements with common geochemical behaviour. Recently, principal component analysis (PCA) has been used to objectively ‘discover’ suites of elements with common characteristics (e.g. Caritat & Grunsky 2013; Zhang et al. 2014a), which can then guide follow-up interpretation. Grunsky (2010) provided a comprehensive discussion of multivariate data analysis techniques, including PCA and cluster analysis methods. The systematic and objective examination of databases for pattern recognition or inference of lithology and geology commonly requires advanced statistical and/or coding skills. The widely varying concentrations of elements in a multi-element compositional database and their interdependencies present special problems for statistics-based methods of analysis (Aitchison 1986).

Determining quantitatively how geological samples are similar or not based on major, trace element or isotopic geochemistry has applications in many fields. These include: sediment provenance, archaeology, agriculture, environmental investigations, geological mapping, digital soil mapping, resource evaluation, geochemical exploration, and forensic geochemistry (e.g. McBratney et al. 2003; Welte & Eynatten 2004; Keegan et al. 2008; Feng et al. 2011; Bowen & Caven 2013; Frei & Frei 2013; Reid et al. 2013; Zhang et al. 2014b; Mann et al. 2015, 2016; Blake et al. 2016; Sylvester et al. 2017).

Mann et al. (2016) used the multi-element Mobile Metal Ion® (MMI - Mann et al. 1998; Mann 2010) dataset from the National Geochemical Survey of Australia (Caritat & Cooper 2011a) to develop the concept of degree of geochemical similarity (DOGS). This straightforward concept was introduced to statistically assess the similarity of two rock, sediment or soil samples to one another, using all the statistically significant elements, i.e. those with all or most results reported above the detection limit, in the database. By choosing a single reference sample and calculating the Pearson correlation coefficients of all the other samples relative to it, Mann et al. (2016) plotted maps making use of the exploratory data analysis symbology (Tukey 1977). However, those elements with concentrations far removed from the mean (e.g. MMI Ca and MMI Au) and thus likely to be outliers are systematically heavily weighted in this parametric statistical method. This can lead to unrealistically high Pearson correlation coefficients. In order to overcome this problem, we use rank-based Spearman rather than concentration-based Pearson correlation coefficients in the current paper to obtain geochemical information about sample pairs and produce maps of this improved degree of geochemical similarity (dubbed DOGS2 to distinguish it from the earlier method). Also, we use data from the NGSA aqua regia (AR) digestion database, rather than from the MMI database as Mann et al. (2016) did, to test if the method applies to stronger digestion data. Scheib’s (2013) review of the NGSA AR data in relation to Western Australia included some statistical correlation based on ranking of log-transformed data.

Aqua regia (HCl:HNO₃ 3:1 molar mixture) digestion of samples is commonly used in exploration and environmental geochemistry programs. For instance, AR digestion of soil and sediment samples has been recommended in geochemical exploration for mineral deposits (Church et al. 1987; Rubeska et al. 1987; Heberlein 2010). In Europe the legislation requires soils, sediments and sludges to be analysed after AR digestion, e.g. for

Multi-element databases, often containing in excess of 50 elements, are a common product of modern soil geochemistry programs, primarily due to the quality and quantity of data produced by modern instrumentation, in particular inductively coupled plasma-mass spectrometry (ICP-MS). Presentation of informative statistical analysis derived from such datasets can be challenging and is commonly limited to one or two elements of interest, either because they are sought-after commodities or pathfinders in an exploration program or are potential contaminants in an environmental impact assessment. The alternative approach is to consider a geochemical composition as a multi-dimensional ‘whole’ and treat the data in a multivariate way. Correlation analysis can thus be used to define elements with common geochemical behaviour. Recently, principal component analysis (PCA) has been used to objectively ‘discover’ suites of elements with common characteristics (e.g. Caritat & Grunsky 2013; Zhang et al. 2014a), which can then guide follow-up interpretation. Grunsky (2010) provided a comprehensive discussion of multivariate data analysis techniques, including PCA and cluster analysis methods. The systematic and objective examination of databases for pattern recognition or inference of lithology and geology commonly requires advanced statistical and/or coding skills. The widely varying concentrations of elements in a multi-element compositional database and their interdependencies present special problems for statistics-based methods of analysis (Aitchison 1986).

Determining quantitatively how geological samples are similar or not based on major, trace element or isotopic geochemistry has applications in many fields. These include: sediment provenance, archaeology, agriculture, environmental investigations, geological mapping, digital soil mapping, resource evaluation, geochemical exploration, and forensic geochemistry (e.g. McBratney et al. 2003; Welte & Eynatten 2004; Keegan et al. 2008; Feng et al. 2011; Bowen & Caven 2013; Frei & Frei 2013; Reid et al. 2013; Zhang et al. 2014b; Mann et al. 2015, 2016; Blake et al. 2016; Sylvester et al. 2017).

Mann et al. (2016) used the multi-element Mobile Metal Ion® (MMI - Mann et al. 1998; Mann 2010) dataset from the National Geochemical Survey of Australia (Caritat & Cooper 2011a) to develop the concept of degree of geochemical similarity (DOGS). This straightforward concept was introduced to statistically assess the similarity of two rock, sediment or soil samples to one another, using all the statistically significant elements, i.e. those with all or most results reported above the detection limit, in the database. By choosing a single reference sample and calculating the Pearson correlation coefficients of all the other samples relative to it, Mann et al. (2016) plotted maps making use of the exploratory data analysis symbology (Tukey 1977). However, those elements with concentrations far removed from the mean (e.g. MMI Ca and MMI Au) and thus likely to be outliers are systematically heavily weighted in this parametric statistical method. This can lead to unrealistically high Pearson correlation coefficients. In order to overcome this problem, we use rank-based Spearman rather than concentration-based Pearson correlation coefficients in the current paper to obtain geochemical information about sample pairs and produce maps of this improved degree of geochemical similarity (dubbed DOGS2 to distinguish it from the earlier method). Also, we use data from the NGSA aqua regia (AR) digestion database, rather than from the MMI database as Mann et al. (2016) did, to test if the method applies to stronger digestion data. Scheib’s (2013) review of the NGSA AR data in relation to Western Australia included some statistical correlation based on ranking of log-transformed data.

Aqua regia (HCl:HNO₃ 3:1 molar mixture) digestion of samples is commonly used in exploration and environmental geochemistry programs. For instance, AR digestion of soil and sediment samples has been recommended in geochemical exploration for mineral deposits (Church et al. 1987; Rubeska et al. 1987; Heberlein 2010). In Europe the legislation requires soils, sediments and sludges to be analysed after AR digestion, e.g. for
environmental impact assessment or remediation (REACH 2008). This digestion method is also recommended by the United States Environmental Protection Agency and the International Standards Organization for trace element analysis of soils (e.g. see Tighe et al. 2004; Gaudino et al. 2007; USEPA 2015; ISO, 2016). Aqua regia dissolves most sulfates, sulfides, oxides and carbonates, but only partially attacks silicates, which are common rock-forming and therefore soil-forming minerals (Gaudino et al. 2007). Thus, AR is not a total digestion method and should instead be considered a strong partial digestion method (Taraškevičius et al. 2013). It has been argued that this is a useful characteristic of the digestion, especially for trace metals and metalloids, as it avoids unnecessary ‘dilution’ by silicate matrix elements (Kisser 2005).

METHODS

Sample Collection and Preparation
In the National Geochemical Survey of Australia (NGSA) project (www.gsa.gov.au/ngsa), the lowest point of each catchment, as determined by digital elevation and hydrological modelling, was the target site for sample collection, whether it was near the catchment boundary or, in the case of an internally draining catchment, toward its centre (Lech et al. 2007). The NGSA samples are similar to floodplain sediments where alluvial processes dominate, but can also be strongly influenced by aeolian processes in many parts of arid and semi-arid Australia (e.g. Gawler Region; see Caritat et al. 2008). At each target site a surface (0-10 cm deep) ‘Top Outlet Sediment’ or TOS, and a deeper (on average ~60-80 cm deep) ‘Bottom Outlet Sediment’ or BOS sample were collected. To the extent that these sediments are biologically active (e.g. presence of roots) and pedogenised (e.g. presence of soil horizons), they can also be referred to as soils (e.g. Caritat et al. 2011).

All samples were prepared in a central laboratory (Geoscience Australia, Canberra). The samples were oven dried at 40 °C, homogenised and riffle split into an archive sample for future investigations and an analytical sample for immediate analysis. The latter was further riffle split into a bulk subsample, a dry sieved <2-mm (US 10-mesh) grain-size fraction subsample and a dry sieved <75-μm (~US 200-mesh) grain-size fraction subsample (Caritat et al. 2009). Each of these subsamples was further split into aliquots of specific mass/volume as per analytical requirements.

Sample Analysis and Quality Control/Quality Assessment
The analytical program for the NGSA project was extensive (Caritat et al. 2010; Caritat & Cooper 2016), with the relevant analysis for the present study being the determination of AR-soluble concentrations of 60 elements (Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Tb, Te, Th, Tl, Tm, U, V, W, Y, Yb, Zn, Zr) using ICP-MS in an external commercial laboratory (Actlabs, Perth). For Au determination, a 25.00 ± 1.00 g aliquot of the sample, and for multi-element analysis (all elements above excluding Au), a 0.50 ± 0.02 g aliquot of the sample were digested in a hot AR solution to leach the acid-soluble components. Once the sample had cooled to room temperature, the solution was diluted, capped and homogenised. The sample was then allowed to settle in the dark before being diluted further with 18 MΩ/cm water. All details are given in Caritat et al. (2010).

Quality control measures of the NGSA included:

- a field sampling manual (Lech et al. 2007) describing in detail all standard operating procedures to ensure homogenous field practices;
the use of the same field equipment and consumables provided centrally to all field parties to avoid random contamination due to variable quality of tools and storage bags;

- the use of gloves during sample collection to minimise contamination;

- the double labelling of all samples to minimise sample mix-up;

- the collection of composite samples at each site to address the natural heterogeneity of soil and sediment, such as the ‘nugget’ effect (e.g. Ingamells 1981);

- the collection of field duplicates at 10% of the sites to assess sample collection, preparation and analysis uncertainty;

- the randomisation of sample numbers including the field duplicates to avoid spurious spatial anomalies due to instrument drift or memory effects;

- the insertion of blind laboratory duplicates to assess sample preparation and analysis uncertainty; and

- the insertion of blind internal project standards, exchanged project standards (e.g. Reimann et al. 2012), and certified reference materials (CRMs) at regular intervals in samples submitted to the laboratory to assess accuracy and instrument drift.

Quality assessment results are detailed in Caritat & Cooper (2011b). In summary: elements with >50% censored values (i.e. below the lower limit of detection, LLD) were B, Ge, Hf, Lu, Re, Ta, and W; those with >50% relative standard deviation (RSD) on laboratory duplicates were B (note: numerous censored values), Na, Re (note: numerous censored values), and Se; those with >20% negative or positive bias (i.e. <80% or >120% of the certified values of the CRMs) were Mn; and those with >70% RSD on field duplicates were Ag, Au, Cd, Re (note: numerous censored values), and Te.

Data Analysis

All the NGSA data and metadata are open access and free to download from the project website (www.ga.gov.au/ngsa). Here we focus on the fine fraction (<75 μm) of the NGSA TOS samples digested by AR and analysed by ICP-MS, a subset of the NGSA database that hitherto has been little studied. Elemental values below the LLD were replaced in the final database with values set to half LLD. Nine elements (B, Ge, Hf, In, Lu, Re, Ta, Tm, W) with >40% of values <LLD were removed from the database, leaving a 51 element suite for this study (Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hg, Ho, K, La, Li, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Tb, Te, Th, Ti, U, V, Y, Yb, Zn, Zr). Note that of these, only three elements (Hg, Nb, Te) have between 20% and 40% of values <LLD; all the others have <20% of values <LLD. Haslauer et al. (2017; their Fig. 1) have shown that this imputation method (replacing <LLD values by half LLD) does not bias outcomes when up to 40% of results are <LLD. Whilst two elements, Al and Sr, had reported upper limits of detection (ULDs), no sample exceeded the ULD for Al and only 12 samples returned values above the ULD for Sr (1000 mg/kg or ppm); these were assigned a value of twice ULD. Compositional data issues such as closure and relative scale (Aitchison 1986) were addressed in the method presented here by using rank (non-parametric) statistics. Rank transformation delivers data that are not summing up to a fixed value (regardless of whether all components have been analysed or not), are not expressed in relative units (dimensionless), and are not subject to distortion by outliers and therefore are not skewed. Mainstream spreadsheet calculation software Microsoft Office/Excel (products.office.com) and open access geographical information system software QGIS (www.qgis.com) were used for data, spatial and graphical analysis.
Spearman DOGS2 method

A Spearman rank-based correlation is obtained by calculating a standard Pearson correlation on ranks, rather than on raw concentration values. Accordingly, the Spearman DOGS2 method proposed here consisted of six steps:

1. Remove elements with more than 40% of values <LLD and, for the remaining elements, replace censored values by half LLD.
2. Rank each element using the `RANK.AVG` function in Excel:

 \[\text{Eqn 1} \]

 \[
 = \text{RANK.AVG}(\text{Sample } i, \text{Range}(1:N), 1),
 \]

 where N, the number of samples, is 1055, \(i \) ranges from 1 to N, and the final 1 is a flag indicating that the ranking is to be performed in ascending order (increasing from low to high concentrations).
3. Select a suitable reference sample.
4. Calculate the Spearman correlation coefficient \(r_s \) versus the reference sample for all elements (here 51) using the `CORREL` function of Excel on the ranked values.
5. Plot selected pairs of samples on an XY scatter diagram for pairwise comparison (thus 51 points).
6. Map the \(r_s \) values using 10 Jenks natural breaks (see below) classification in QGIS, with the topmost class representing the samples most similar to the reference sample.

The Spearman coefficient is applied here because it circumvents issues inherent to compositional data, the ranks of concentrations being no longer subject to the closure effect or in proportional units. Additionally, ranked data have a similar standardised range for each element, removing the heavily weighted influence of elements with concentrations far removed from the mean concentration (e.g. Au and Ca). This range is typically from 1 to 1055 in the present dataset although, because the `RANK.AVG` function assigns an average rank between the previous and the next rank when ties (samples with the same concentration) occur, this can vary somewhat. Thus, if the ordered lowest concentrations for an element are, say, 1, 1.2, 1.2, 2.7 mg/kg, the corresponding ranks will be 1, 2.5, 2.5, 4. For the present dataset with 51 variables, an \(r_s \) of 0.4 is significant at \(p < 0.002 \) and an \(r_s \) of 0.5 is significant at \(p < 0.0001 \).

Application of DOGS2 to key NGSA Catchment sites

The average size of the NGSA catchments is ~5200 km\(^2\), an area that in most cases will include more than one lithology. In order to demonstrate the capabilities of the DOGS2 methodology, NGSA catchments likely to be representative of different but dominant underlying geochemical characteristics ultimately derived from bedrock have been chosen as reference sites; in each case the TOS sample represents the integrated geochemistry of the catchment. The aim of comparisons in this case is to exemplify and validate the outcomes of DOGS2 catchment comparisons, not to delineate specific lithologies; the latter is an aim which would be more accurately realised using residual soils over known and identified geological sites as reference samples. Reference catchment sites were chosen after consulting 1:250,000 scale geology maps, the Australian mineral deposits and occurrences databases OZMIN and MINLOC (Sexton 2011), and, the element concentration values within the NGSA AR database. The result is that we have identified a small number of ‘acid felsic’, ‘sediment’ and ‘mafic/ultramafic’ dominated catchments as well as some hosting ‘typical’ gold, copper, and iron deposits and occurrences with which we illustrate the scope and potential of the DOGS2 technique. Their locations are shown on Figure 1.
Selecting which DOGS2 results to highlight

The results of DOGS2 analysis can be spatially mapped in various ways (1) using Exploratory Data Analysis classifications (Mann et al. 2016), (2) by applying an arbitrary r cut-off value, e.g. 0.5, to highlight higher values deemed ‘closely related’, or (3) by identifying the highest class of samples using ‘statistical breaks’ within the range of r_s values; this highest class denotes closest relationship to the reference sample. In the present case r_s values obtained by the Spearman correlation approach described above are classified into 10 classes using Jenks natural breaks optimisation (Jenks 1967), related to Fisher’s discriminant analysis, as the classification method. The method iteratively uses different breaks in the dataset to determine which set of breaks has the smallest in-class variance. This visualisation provides an effective method for interrogating the database for samples with closest affinity (say, top one or two Jenks classes) to the chosen reference sample. Maps are plotted here using QGIS software in Lambert conformal projection.

RESULTS

Results from the AR analysis of the NGSA TOS fine fraction samples are summarised in Table 1 for 51 elements. Basic concentration and rank statistics are given and clearly illustrate that all elements regardless of their general abundance in these samples (ranging from <0.0001 mg/kg for Au to 400,000 mg/kg for Ca) play an equal role once rank values are used (all within 1-1055 range). Using these ranks for subsequent data analysis circumvents compositional data limitations of closure and relative scale. The compositions of sample pairs are independent and thus correlation analysis and linear regression are statistically valid techniques.

Application of DOGS2 to catchments of known provenance

The XY scatter plots of the rankings of any two samples provide a useful insight into the Spearman correlation and the geochemistry. Sample #2007191559 is a sample from a sub-catchment of the main Swan-Avon drainage system near Beverley on the western side of the Yilgarn Craton (see Fig. 1). The 1:250,000 scale geological sheet for Corrigin (Muhling & Thom 1985a) indicates that the main rock types for this catchment are adamellite, gneiss and migmatite (i.e. acid felsics) with minor (<5%) greenstone enclaves. The rankings in Figure 2 compare this sample with sample #2007190602 from near Merredin, also from the Swan-Avon system, some 140 km to the northeast; the 1:250,000 geological sheet for Kellerberrin (Muhling & Thom 1985b) indicates that the main rock types for this catchment are adamellite (Kellerberrin batholith), adamellite with xenoliths of gneiss (i.e. acid felsics), and again with less than 5% greenstone enclaves.

Despite there being some elements with different rankings in the two samples (e.g. Ho, Yb, Zn, Cd) a high positive Spearman correlation coefficient ($r_s = 0.75$) confirms that these samples are geochemically very similar. Moreover, the linear regression on the ranks has a slope close to unity (0.88) and a small intercept (84.9). It is concluded that this geochemical fingerprint is diagnostic of ‘acid felsic’ geochemistry.

The ranking diagram for the TOS from the Beverley acid felsic catchment versus the TOS selected from a mafic/ultramafic dominated catchment 100 km east of Kalgoorlie, is very different (Fig. 3); the 1:250,000 geological sheet for Kurnalpi (Williams & Doepel 1971) suggests that the main rock units for the latter (#2007190484) are mainly from the Mulgabbie (basic) and to a lesser extent Gindalbie and Gundockerta (turbidites, clastics, acid volcanics) Formations.
In this case the Spearman coefficient of correlation is negative ($r_s = -0.55$). The linear regression on the ranks has a negative slope (-0.81) and a large intercept (986). This is driven by elements such as the REEs, U and Th, which are elevated in the granitoid-derived soil and depleted in the greenstone-derived soil, and elements such as Au, Co, Cu, V, Se, Sr and Ca, which have the opposite behaviour.

The ranking diagram between two soil samples from two predominantly mafic/ultramafic catchments is shown in Figure 4. In this case the Kalgoorlie greenstone (#2007190484) sample is compared to one further south in the Yilgarn Craton (#2007190142) – from a catchment near lake Cowan 100 km east of Widgiemooltha. The Widgiemooltha 1:250,000 geological sheet (Griffen & Hickman 1988) indicates that the main rock types in this catchment are metamorphosed Archaean mafic and ultramafic rocks with minor amounts of mafic/ultramafic material from Proterozoic dykes. The Erayinia granitoid complex is marginal to the northeast.

The high positive Spearman correlation coefficient ($r_s = 0.66$) between these two samples together with the positive slope (0.72) and low intercept (160) of the linear regression suggest a high degree of geochemical similarity. This is evident on the distribution of elemental values on the XY scatter plot (Fig. 4) where elements such as Cr (labelled), Ni, V, Sr, Se, Sc (unlabelled) in the top right of the diagram are all ranked relatively highly in both samples. The REEs (within the ellipse in Fig. 4) are ranked relatively low in both of these samples. It appears that the Spearman correlation coefficient of sample pairs has the potential to provide a meaningful measure of the degree of geochemical similarity between them.

Selection and use of reference samples
The selection of reference samples and the lithological and geochemical characteristics used to select them are shown in Table 2; their locations are shown in Figure 1.

Selection of the first four references sample in Table 2 is facilitated by the fact that in general catchments in the Yilgarn Craton are granite-dominated towards the west, and greenstone-dominated towards the east, although it is likely that all catchments comprise multiple/mixed lithologies. Column 4 of this table shows the concentrations of elements Ca, Ce, Fe and Ni, which represent diagnostic characteristics. The various lithologies as identified here appear to be represented by elevated concentrations of various elements in the NGSA samples: acid felsics (Ce), mafics/ultramafics (Ni), marine carbonates (Ca), and banded iron formation (Fe). The concentrations of Cu in catchment samples #2007190065 and #2007191289, which will be investigated in some detail below, are both elevated and similar. Likewise values for Au in the Coolgardie and Ballarat catchment samples are similar and higher than in other reference samples and were used in the selection of these catchments as reference samples representative of catchments dominant in gold prospective lithologies (‘auriferous geology’).

As with selection of the reference catchments, ‘identified samples’ (those highlighted in red or orange on the accompanying maps) with closest affinity to the reference samples identified by the DOGS2 process are subject to the same constraints imposed by the NGSA sampling method (e.g. low sampling density, large catchments and ensuing likely mixed lithological input, variable distance of sample site to bedrock outcrop/subcrop, weathering history, etc.). Only a selected number of ‘identified samples’ with closest affinity to the
reference sample (as determined by the Jenks breaks, see Methods section) are plotted in each case for clarity.

From each reference sample a Spearman correlation coefficient for very other sample in the NGSA database can be obtained. The correlation coefficients can be plotted as a single independent variable located on a map by the sample coordinates (for further detail please refer to the Methods section).

Degree of geochemical similarity map versus Beverley acid felsic catchment

The map with Beverley acid felsic catchment as the reference is shown in Figure 5. This map highlights the top Jenks class many of which are located in the Yilgarn Craton; Cassidy et al. (2013) discuss some of the reasons why more of the Yilgarn Craton catchments are not in this top class. In addition, samples within the same class are located immediately southeast of the Yilgarn Craton in the Proterozoic Albany-Fraser geological region and to the northwest of the Craton where rivers draining the northern part of the Yilgarn Craton reach the Indian Ocean. The quartz monzonites and adamellites of the Albany-Fraser geological region are thought to be reworked Archean granitic material (www.ga.gov.au/provexplorer/province). The high DOGS2 of a soil sample here supports this contention in at least one catchment. Other samples with a similar high degree of similarity ($r_s > 0.58$) occur along northern Australian coastlines and are related to acid felsics within catchments on Cape York Peninsula and in Arnhem Land. A group of top Jenks class samples are shown in central Australia, and one is also evident in western Victoria in the vicinity of the Grampian Mountains (Victoria Valley granites), and another in southern South Australia near a granite quarry.

Degree of geochemical similarity map versus Kalgoorlie mafic/ultramafic

Figure 6 shows the map obtained when the Kalgoorlie mafic/ultramafic dominated catchment is chosen as the reference sample for DOGS2 analysis. Proximal samples with DOGS2 in the top Jenks class with respect to that reference sample are limited to the eastern goldfields portion of the Yilgarn Craton. Only in this part of the Yilgarn Craton are catchments dominated by mafic/ultramafic lithology. Three top Jenks class samples with high r_s relative to the Kalgoorlie mafic/ultramafic catchment sample also occur within the western Eucla geological region near the boundary to the Albany-Fraser Belt. Recent Au discoveries in this belt, such as the 6 million ounce Tropicana deposit (Doyle et al. 2013), occur in felsic granulite thought to be the reworked margin of the Craton. A few catchments with a high degree of similarity ($r_s > 0.52$) to the Kalgoorlie mafic/ultramafic dominated catchment also occur in the Pilbara geological region. This similarity is probably based on geochemistry resulting from a combination of predominantly mafic/ultramafic bedrock lithology and regolith generated in arid to semi-arid terrain. Two catchments also with high similarity to Kalgoorlie greenstone catchment occur in near coastal environments, on the Exmouth Gulf in Western Australia and on the Nullarbor Coast in South Australia; these are more likely to be marine carbonates (dolomites?) than locally derived greenstone, although the possibility of transport of mafic/ultramafic material from the Pilbara and Yilgarn Cratons cannot be excluded. Looking at the map of Australia highlighted with the highest Jenks class as shown in Figure 6, it would appear that catchments with highest similarity to the Kalgoorlie mafic/ultramafic dominated catchment are proximal to known mafic/ultramafic outcrop/subcrop (Yilgarn, Pilbara, northeastern New South Wales, central eastern Queensland, Tasmania, and Victoria).
Degree of geochemical similarity map versus Nullarbor limestone

Both the NGSA MMI Ca map of Mann et al. (2012) and the modelling of Wilford et al. (2015), among other evidence, indicate that carbonate terrain is common in the arid and semi-arid areas of Australia. However, when a carbonate soil sample from the Nullarbor Plain (#2007190159) is chosen as the reference, and the other NGSA AR samples correlated with it, the distribution of the most highly correlated samples is more limited (Fig. 7). There is however more than one type of carbonate (high Ca) terrain in Australia and it is likely that multi-element geochemistry distinguishes them. All except four of the samples with the highest DOGS2 relative to the Nullarbor Plain reference (Fig. 7) are within the Eucla geological region (Blake & Kilgour 1998). The Nullarbor Plain in the Eucla geological region may be the most extensive Miocene carbonate deposit described to date (O’Connell et al. 2012). The four other samples are either just outside the eastern boundary of the Eucla region (just inside the Gawler geological region), or in the St Vincent and Pirie basins within the Adelaide geological region, and the Murray Basin to the east of the Eucla region. The first of these probably represents a mechanically transported geochemical signature. The three others are in basins of more recent (Cenozoic) marine sediments that have progressively been overlain in part by fluvial-lacustrine sediments (www.minerals.dmitre.sa.gov.au). Thus, it appears that sample #2007190159 is a specific reference for marine limestone. For much of the remainder of inland Australia soil samples have a (much) lower degree of similarity to Nullarbor limestone sediments. Clearly a large number of secondary or regolith-derived calcrites in Australia are distinct from these primary marine sediments when multi-element geochemistry is considered.

The XY scatter plot of the rankings for the Nullarbor marine limestone sample and a regolith calcite from the Gascoyne River catchment located in the northwest of the Yilgarn Craton (see Fig. 1) in Western Australia is shown in Figure 8. With an $r_s < 0.01$ the marine and regolith carbonate samples are distinguished (i.e. shown to have close to no similarity whatsoever) by this technique. Calcium is ranked slightly more highly than Mg in the marine limestone (ranks of 1000 versus 947). While both samples have similar high rankings of Fe (~800), the ranking for Mg (1054) is higher than that for Ca (925.5) in the regolith calcite. Thus, pedogenic carbonates have lower Ca/Mg ratios (ranks of 925.5/1054) and Ca/Sr (925.5/1041) ratios than marine carbonates (ranks of 1000/947 and 1000/922.5, respectively). The calcite sample also has significantly higher ranks for U, V, Mo, Co, As, and Au (all >850) than its marine counterpart (all <460). Valley calcrites are known hosts for the U mineral carnotite ($K_2(UO_2)\cdot V_2O_8\cdot 3H_2O$) with the U being derived from the weathering of granite (Mann & Deutscher 1978). Regolith carbonates, or pedogenic calcrites, are also known to be effective sampling media for exploration for gold deposits, with their Au content being the most effective vector to mineralisation (Reith et al. 2011; Lintern 2015). Conversely, relative to the calcite, the marine limestone is clearly more enriched in REEs (ranks >450 versus <270) and especially chalcophile elements Pb, Cd, Sn, and Tl (ranks >840 versus <350). It should be noted that whilst REEs are more highly ranked in marine limestone than the pedogenic carbonate the rankings are moderate in comparison to those from acid felsic catchments, and maybe indicate that the pedogenic carbonate is associated with mafic/ultramafic source rocks very low in REEs.
Degree of geochemical similarity map versus Mt Isa/Cloncurry mineralisation

A catchment sample site some 150 km to the north of Mt Isa and Cloncurry on the Leichardt River provides a suitable reference site for the mineralised Mt Isa/Cloncurry district. This is a well-known and historic Pb-Zn and Cu mining area (Pirajno 2010). There are also many other major and minor ore deposits and mineral occurrences in the region, including Cu-Pb-Zn (Mt Isa), Cu-Au (Ernest Henry), U, Ag-Pb-Zn (Cannington), and Au (Tick Hill). The NGSA reference sample (#2007190065) contains 50.3 mg/kg Cu (rank 1024.5). The sample site is at the confluence of Gunpowder Creek and the Leichardt River, which is prone to episodic flooding; the sample probably represents a composite geochemical fingerprint for geology hosting a number of deposit types and styles, but because of the Gunpowder Creek’s proximity, it is likely to be predominantly that of clastic-dominated siliciclastic-carbonate sediment hosted massive sulfide deposit type for which Mt Isa is a classic example. The rs map for all NGSA AR samples against this sample is shown in Figure 9.

The correlation map (Fig. 9) shows a number of samples in different areas of Australia with a high geochemical affinity (top two Jenks classes, or rs >0.39) relative to the Mt Isa/Cloncurry catchment reference sample. Some of these areas host known historic or operating Cu mines (e.g. Mt Cuthbert and Mt Gordon in Queensland; Myrtle and Redbank in the Northern Territory; Cadia and Cobar in New South Wales).

In Western Australia, 27 samples with a DOGS2 in the top two Jenks classes relative to the Mt Isa reference occur in catchments stretching from the Albany-Fraser geological region (1) in the southeast, through the Yilgarn (13), to the Capricorn (6), Pilbara (2) and northernmost Pinjarra (5) geological regions to the northwest. Some of these anomalies, again, host known (current or historic) Cu mines or prospects in their catchment areas (e.g. Sherlock Bay, Ashburton Copper). The five anomalies in the Pinjarra geological region are likely due to transported sediment and their geochemical signatures from the Capricorn and/or Pilbara geological regions. The sample in the Albany-Fraser region, which contains 45 mg/kg AR Cu (rank 1006), is, however, likely to be reflecting a real mineral potential for Cu deposits, as there are known prospects (Mammoth, Fraser Range Target, Simons Hill, Alpha) within the sample’s catchment.

Other well-known Cu districts, however, do not show up within the two highest rs classes on the map of correlation to the Mt Isa/Cloncurry catchment sample, despite the fact that NGSA samples have elevated Cu values in these regions. Examples include the Gawler and Curnamona geological regions (South Australia and western New South Wales), which are known to host IOCG deposits, e.g. Olympic Dam, Prominent Hill and Carapateena (Pirajno, 2010). This is not too surprising as these deposits are buried by more than 200 m of unrelated cover.

A second Cu reference sample was chosen from the Curnamona region. Sample #2007191289 with 36.8 mg/kg Cu (rank 962) and 1.1 µg/kg (ppb) Au (rank 673) was taken from the drainage entering the north of Lake Frome, near the South Australia-New South Wales border. Samples that fall in the two upper Jenks classes after calculation of Spearman correlation relative to the Curnamona reference #2007191289 are shown on Figure 9 with red and orange squares. They form a relatively coherent grouping in South Australia, which extends across the Gawler and Curnamona regions into western New South Wales and the southeast of the Northern Territory; it coincides with much of the area shown on Figure 9 with known Cu mineralisation likely to be of the IOCG type. One ‘outlier’ is from the southern Thomson region of New South Wales, an area which was studied by MMI as a pilot project to the NGSA (Mann et al. 2009) and also the subject of a PCA study of the MMI.
NGSA data (Caritat et al. 2017), whilst two samples further north in the Eromanga region of central Queensland are probably ‘false positives’. There is one sample from the Cu mineralised Mt Isa/Cloncurry district of this type, and two samples from the coastal Pilbara of Western Australia which overlap samples of the Mt Isa type; the latter are from outlet sediments of the Sherlock and De Grey Rivers, catchments which host VMS style Cu-Zn-Pb deposits.

The element ranking diagram for sample #2007190065 (Mt Isa type) versus #2007191289 (Curnamona type) (not shown) indicates that Se, Mo, Bi, Mn, Gd and Co have appreciably higher rankings in the former, whilst Na, Te, Sn, Sr, Al and Ca have higher rankings in the latter reference.

Degree of geochemical similarity versus Roy Hill banded iron formation (BIF)
The Pilbara of Western Australia is well known for the economic iron deposits hosted by banded iron formation (BIF) (Blake & Meakins 1993). Figure 10 shows the distribution of catchment samples in the NGSA program when referenced to a catchment sample #2007190917, located on the Fortescue River near the Roy Hill iron mine.

Samples with \(r_s > 0.56 \) relative to the Roy Hill reference sample also occur further downstream on the Fortescue River, where the Bight, Murrays Hill, Fig Tree and Fingers iron mines are found, and around Newman some 100 km to the south, close to Mt Newman iron ore mine. The series of samples with top class DOGS2 relative to the Roy Hill reference that stretches southeast from the Pilbara to the Yilgarn regions have several iron ore mines/deposits in their catchments or close proximity (e.g. Hardey, Rocklea, Robinson Range, Beyonder, Wiluna West Iron and Goongarrie South Iron). Of the two anomalous samples in South Australia, one is close to the Iron Knob/Monarch Fe mine) and the easternmost one is in a catchment 70 km east of Burra where the Razorback Iron Project is currently being evaluated for magnetite potential (https://www.magnetitemines.com/razorback-iron-project).

The sample in the Jenks upper class relative to the Roy Hill reference in the Northern Territory lies in the Proterozoic belt which extends south from Tennant Creek.

Degree of geochemical similarity map versus Coolgardie and Ballarat (gold) references
Catchment outlet sample #2007190717 is located 12 km east of Coolgardie near a small salt lake, Brown Lake. The sample contains 43.7 µg/kg Au after AR digestion (i.e. 437 times LLD or rank 1050) in the <75-µm soil fraction. The dot map shows a number of catchment outlet samples in the auriferous Eastern Goldfields of Western Australia within top DOGS2 class \((r_s > 0.53) \) relative to sample #2007190717 (Fig. 11). On the Yilgarn Craton these extend from east of Widgiemooltha in the south to Wiluna in the north. Further north of this, another sample, #2007190167 is on the Gascoyne River just to the north of the Yilgarn Craton margin and west of the Marymia gold mining district which includes the Marymia and Plutonic mines. Even further north are a number of samples with \(r_s > 0.53 \) relative to #200707171 in the Pilbara Craton; not all of these, including some on the Fortescue River, are in the vicinity of known gold mining areas. These warrant follow-up sampling, as they were also observed as anomalous in a previous publication (Mann et al. 2013). In South Australia several samples within the top DOGS2 class relative to #2007190717 occur in the auriferous Gawler Craton, and further east another anomalous sample occurs 20 km to the north-northwest of Tamworth in New South Wales. It is of note that many Victorian, New South Wales and Queensland auriferous locations do not have catchment outlet samples which relate closely to the Coolgardie reference.
The red squares in Figure 11 show NGSA samples with top Jenks class similarity to another type of gold deposit, for which the NGSA sample #2007190042 near Ballarat, in Victoria, was chosen to be the reference. This sample contains 18.4 µg/kg Au after AR digestion (rank 1039) in the <75-µm soil fraction. The Jenks upper class cohort versus this reference produces samples in most areas in the eastern states shown as auriferous, up to and including the Palmer River goldfield on the Cape York Peninsula. The ranking diagram for the Coolgardie reference (#2007190717) versus Ballarat reference (#2007190042) shows that the Coolgardie reference has very high rankings for many elements such as Cd, Cu, Zn, Te, Sc, Ga, Al relative to the Ballarat reference, which in turn has higher rankings for elements such as Nb, Ce, Nd, Sm, Gd, Pb and Hg. It is clear that these reference samples pick out a different set of NGSA samples, showing that not only is the high Au content important but the complete geochemical fingerprint allows targeting of very specific conditions, such as comparing Archaean greenstone versus Eastern Australian (younger sediment-related) style Au mineralisation. This approach, which considers significant Au value and other associated elements, could be important for outlining areas prospective for Au in covered terrain.

DISCUSSION
It is fundamental to this method that Spearman correlation coefficients differ appreciably in soils derived from different lithologies. For this to occur the concentrations subsequent to AR digestion and ICP-MS analysis of many if not most elements have to vary sufficiently between samples. It is also important that in digestions of similar soils, the ranking of elements digested remains similar. In Table 3 the rankings of some key elements in soils from catchments with different dominant lithologies are presented. Whilst the similarity of individual element rankings from catchments with similar lithologies (top six rows) evidently is conducive to the high DOGS2 between respective pairs, it is instructive to also examine the geochemical makeup of samples representing mineralised areas (bottom five rows).

Felsic igneous bedrock, represented by the granite-derived soil samples in Table 3, have their rankings dominated by REEs Ce, La and Yb, followed by Al, K, Mg and Ag; Ba, Fe and Cu have the lowest ranks. Mafic lithologies (greenstone-derived samples) have their rankings dominated by Ca, Ni, Mg, Fe, Cu and Au; Ag, Ce and Yb have the lowest ranks. Carbonate-derived soils have different geochemical signatures depending on their origin: marine limestone has high ranks for Ca, K, Mg and Al, with low Au, La and Ce; regolith carbonate has high ranks for Mg, Ni, Cu and Ca, with low La, Ce and Yb. The change in relative ranking order between Ca and Mg between marine (Ca>Mg) and pedogenic (Mg>Ca) carbonates noted here is in accord with the findings of Wolff et al. (2017), indicating that practical geochemical indicators derived from raw geochemical concentrations can be preserved when converting to rank statistics. The differences highlighted in Table 3 allow for a practical differentiation of marine versus pedogenic carbonates: the latter will likely have higher Mg, Ni, Cu and Au and lower Yb, La, Ce and Ag rankings (and concentrations) than their marine counterparts. Thus elevated Mg/REE, Ni/REE, Mg/Ca, Cu/Ag or Au/Ag rank ratios in carbonate-derived soils will tend to indicate a pedogenic (calcrete) origin.

The Mt Isa type Cu mineralisation style is indicated by a geochemical fingerprint with elevated Cu, Fe, La and Ce ranks, and depressed Al, Ca and Mg ranks. The Curnamona style of Cu mineralisation, while still having an elevated Cu rank, also has high rankings for Ca, K and Fe, and low ranks for Yb and Ag. Banded Iron Formation mineralisation typical of the Pilbara region is diagnosed by soils with raised Cu, Fe, Ni and Ag ranks accompanied by low Ce, Au, Ca and La ranks. It appears that soils from auriferous regions in general have high
Au and Ni ranks, and intermediate to low Ba, Ca and Yb. ‘Archean Yilgarn’ style Au mineralisation differs from ‘Paleozoic Eastern Australian’ style Au mineralisation by its higher Cu, Al, Ca and K ranks and its lower La, Ce, Au and Ag ranks.

Sensitivity analysis shows that this outcome is relatively independent of values of Au and Cu in the samples; in column 3 of Table 4 the rs values for a number of reference samples, including the Coolgardie (#2007190717) and Ballarat samples (#2007190042) with Au and Cu removed from the Spearman rs calculation are compared to those in column 2 where all 51 elements are included. The changes in all cases are minimal – commodity elements Au and Cu have only a minor effect on the Spearman calculation. This extends to elements such as Mg and Ni, which it might be thought have an important effect on comparison of catchments with greenstone lithology (#2007190484 vs #2007190142) and Ca and Fe, the major elements in many aqua regia digests. The sensitivity analysis suggests the method is extremely robust and relies on the contribution from a large number of elements to generate similarities (or differences).

It is only when the 12 rare earth elements (lanthanides) are removed, in addition to Au, Cu, Mg, Ni, Ca and Fe that some reference comparisons (column 6 of Table 4) show differences in rs of >0.1 compared to the values in column 2. The Spearman rs, shown in red in Table 4 between a predominantly granitoid catchment (#2007191559) and a greenstone dominated one (#2007190484) decreases i.e. the samples appear more similar with removal of the REEs indicating their importance in distinguishing acid felsic from mafic/ultramafic lithologies. Removal of the REEs however decreases the high rs between granitoid samples #2007191559 and #2007190602 illustrating that elements other than the REEs are also involved in the differences between these two granitoid dominated catchments. Similar conclusions can be drawn in the case of the marine carbonate and pedogenic calcrete comparison (#2007190159 vs #2007190881) and the overall geology of the two Cu prospective catchments (#2007190065 vs #2007191289).

Comparison of the outcomes from this study with those from the previous DOGS (Mann et al. 2016) study is difficult to do in detail because (a) the analytical technique is different (AR versus MMI), (b) the DOGS2 technique in this study utilises Spearman correlation (ranking) of analytical data rather than a Pearson correlation of log-transformed data, and (c) the method of assessment of ‘upper class’ uses Jenks breaks rather than upper two percentiles. Notwithstanding this, the outcomes share similarities; many of the identified (‘upper class’) samples from the present study are within the same geological regions that contained the upper two percentiles of MMI samples (Mann et al. 2016). One important difference however is that the Spearman r (rs) values are in all cases lower than the equivalent Pearson r values; this is almost certainly due to the ranking procedure. In some cases the Spearman ranking coefficient is negative (e.g. granite versus greenstone). This increased spread of correlation coefficient values is an advantage in sample comparisons, making the technique more sensitive.

We tested the results of a clr transformation compared to our DOGS2 rank-based method. The two approaches give similar results, with mostly the same NGSA samples being identified as the most similar to a reference sample (e.g. #2007191559, Fig. 5), and the resulting maps are consequently also highly correlated. The rank-based approach however appears to be much more discriminating, giving a range of Spearman correlation coefficients (rs) for the NGSA dataset of -0.8 to +0.9, whereas the correlations of all samples against the same reference sample based on clr-transformed data only varies from +0.73 to +0.98. In other words, catchments with a lithology that is opposite (e.g. mafic) to the reference sample
(e.g. felsic) have a clear (and expected) negative r_s in the DOGS2 method, yet are still shown to have a high positive correlation coefficient with the clr method (0.73, significant at $p < 0.01$ for this dataset). The resulting maps show very much the same regions being highlighted as similar to the reference, but the contrast is much better with DOGS2.

Alternative and perhaps more conventional methods of measuring ‘closeness’ of geochemical data are through the Euclidean or Aitchison distances (with distance decreasing as similarity increases). Preliminary comparison with the DOGS2 method suggests that for most reference samples tested the results are generally compatible and yield similar spatial patterns on maps; in a few cases, however, results appear poorly correlated between DOGS2 and the inverse of distance. Whilst it is not known which method is necessarily correct and further investigation is required to understand implications, the DOGS2 method provides a simple, robust and tested (herein and in Mann et al. 2016) method of quantifying geochemical similarity in large datasets.

CONCLUSIONS

Aqua regia (AR) data from the National Geochemical Survey of Australia (NGSA) database have been used to assess the degree of geochemical similarity (DOGS2) of catchments based on catchment outlet soil samples and Spearman (rank-based) correlation coefficients (r_s); reference samples from catchments with a dominant geochemistry have been used to produce correlation-based maps that show the distribution of the DOGS2 of all catchments in the NGSA AR dataset relative to each reference sample. Reference catchment sites dominant in acid felsic, mafic/ultramafic and carbonate (both marine and calcrete) lithologies on the one hand, and banded iron formation, copper and gold mineralisation on the other hand, have been chosen to demonstrate the method and to provide diagnostic geochemical information. It is interesting that in each case some of the samples identified to have highest similarities to the reference are located other than proximal to the reference, i.e. Australia-wide, in other geological provinces.

Based on the NGSA AR sample set, proposed criteria for a meaningfully high DOGS2 between pairs of samples are: $r_s > 0.4$ (significant at $p < 0.002$), linear regression slopes > 0.7 and intercepts < 200. Sample pairs that show no particular relationship to one another may have $r_s \sim 0$, linear regression slopes ~ 0 and variable intercepts. Strongly antithetic relationships, such as felsic- versus mafic-derived soils, will have negative r_s, negative linear regression slope values and variable intercepts.

Utilisation of all significant (not overly censored) elements in the analysed multi-element suite ensures that the method is objective by taking the full compositional fingerprint into account. This comparative multi-element method provides information for geochemical interpretation complementary to that provided by single element interrogation of databases. Preliminary applications are suggested to be: differentiation of soils derived from various source lithologies, diagnostic distinction of a marine versus terrestrial origin of carbonate in soil, and a first order mineral prospectivity tool. The approach presented here is an improvement on a previous development of DOGS, which ensures the analysis is appropriate for compositional data. The new method of determining the degree of geochemical similarity, DOGS2, could find wide application in the fields of sediment provenance, archaeology, agriculture, environmental investigations, geological mapping, digital soil mapping, resource evaluation, geochemical exploration, and forensic geochemistry.

ACKNOWLEDGEMENTS

The NGSA project was part of the Australian Government’s Onshore Energy Security Program 2006–2011, from which funding support is gratefully acknowledged. NGSA was led...
and managed by Geoscience Australia and carried out in collaboration with the geological surveys of every State and the Northern Territory under National Geoscience Agreements. The authors acknowledge and thank all landowners for granting access to the sampling sites and all those who took part in sample collection. The sample preparation and analysis team at Geoscience Australia and analytical staff at Actlab’s Perth laboratories are all thanked for their contributions. Constructive reviews of earlier versions of this manuscript were provided by Andrew McPherson and David Champion (Geoscience Australia), for which we are thankful. We are grateful also to Graeme Bonham-Carter for taking the time to scrutinise the DOGS2 method and provide feedback on how it compares to the measure of “distance” between compositional vectors. Paul Morris and an anonymous journal reviewer are thanked for their helpful advice and comments on the original manuscript. PdC publishes with permission from the Chief Executive Officer, Geoscience Australia.

REFERENCES

AITCHISON, J. 1986. The Statistical Analysis of Compositional Data. Chapman & Hall. Reprinted in 2003 with additional material by The Blackburn Press.

BLAKE, D., KILGOUR, B. 1998. Geological Regions of Australia 1:5,000,000 scale. Geoscience Australia. Available at: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_ao5f7892-b237-7506-e044-0014ff4d4f6/Gregional+Regions+of+Australia%2C+1%3A5+000+000+scale

BLAKE, S., HENRY, T., MURRAY, J., FLOOD, R., MULLER, M.R., JONES, A.G., RATH, V. 2016. Compositional multivariate statistical analysis of thermal groundwater provenance: a hydrogeochemical case study from Ireland. Applied Geochemistry, 75, 171-188. doi: 10.1016/j.apgeochem.2016.05.008.

BLAKE, T.S., MEAKINS, A.L., (Eds) 1993. Archaean and Early Proterozoic Geology of the Pilbara Region, Western Australia. Precambrian Research, 60, 1-359.

BOWEN, A.M., CAVEN, E.A. 2013. Forensic provenance investigations of soil and sediment samples. In: PIRRIE, D., RUFFELL, A., DAWSON, L.A. (eds), Environmental and Criminal Geoforensics. Geological Society, London, Special Publications, 384, 9-25. doi: 10.1144/SP384.4.

CARITAT, P. de, COOPER, M. 2011a. National Geochemical Survey of Australia: The Geochemical Atlas of Australia. Geoscience Australia Record, 2011/20 (2 Volumes), 557 pp. Available at: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_71973

CARITAT, P. de, COOPER, M. 2011b. National Geochemical Survey of Australia: Data Quality Assessment. Geoscience Australia Record, 2011/21 (2 Volumes), 478 pp. Available at: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_71971

CARITAT, P. de, COOPER, M. 2016. A continental-scale geochemical atlas for resource exploration and environmental management: the National Geochemical Survey of Australia. Geochemistry: Exploration, Environment, Analysis, 16, 3-13. doi: 10.1144/geochrom2014-322.

CARITAT, P. de, GRUNSKY, E.C. 2013. Defining element associations and inferring geological processes from total element concentrations in Australian catchment outlet sediments: multivariate analysis of continental-scale geochemical data. Applied Geochemistry, 33, 104-126. doi: 10.1016/j.apgeochem.2013.02.005.

CARITAT, P. de, COOPER, M., WILFORD, J. 2011. The pH of Australian soils: field results from a national survey. Soil Research, 49, 173-182. doi: 10.1071/SR10121.
CARITAT, P. de, COOPER, M., LECH, M., McPHERSON, A., THUN, C. 2009. National Geochemical Survey of Australia: Sample Preparation Manual. Geoscience Australia Record 2009/08, 28 p. Available at: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_68657

CARITAT, P. de, COOPER, M., PAPPAS, W., THUN, C., WEBBER, E. 2010. National Geochemical Survey of Australia: Analytical Methods Manual. Geoscience Australia Record 2010/15, 22 p. Available at: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_70369

CARITAT, P. de, LECH, M.E., McPHERSON, A. 2008. Geochemical mapping “down under”: selected results from pilot projects and strategy outline for the National Geochemical Survey of Australia. Geochemistry: Exploration, Environment, Analysis, 8, 301-312. doi: 10.1144/1467-7873/08-178.

CARITAT, P. de, MAIN, P., GRUNSKY, E., MANN, A. 2017. Recognition of geochemical footprints of mineral systems in the regolith at regional to continental scales. Australian Journal of Earth Sciences, published online. doi: 10.1080/08120099.2017.1259184.

CASSIDY, K.F., CHAMPION, D.C., KRAPEZ, B., BARLEY, M.E., BROWN, S.J.A., BLEWITT, R.S., GROENWALD, B.B., TYLER, I.M. 2006. A revised geological framework for the Yilgarn Craton, Western Australia. Western Australian Geological Survey Record, 2006/8. Available at https://dmpbookshop.eruditetechnologies.com.au

CHURCH, S.E., MOSIER, E.L., MOTOOKA, J.M. 1987. Mineralogical basis for the interpretation of multi-element (ICP-AES), oxalic acid, and aqua regia partial digestions of stream sediments for reconnaissance exploration geochemistry. Journal of Geochemical Exploration, 29, 207-233. doi: 10.1016/0375-6742(87)90078-1.

DOYLE, M., SAVAGE, J., BLENKINSOP, T.G., CRAWFORD, A., McNAUGHTON, N. 2013. Tropicana – Unravelling the complexity of a +6 million ounce gold deposit hosted in granulite facies metamorphic rocks. In: World Gold 2013. Australian Institute of Mining and Metallurgy, Brisbane, 87-93.

FENG, J.-L., HU, Z.-G., JU, J.-T., ZHU, L.-P. 2011. Variations in trace element (including rare earth element) concentrations with grain sizes in loess and their implications for tracing the provenance of eolian deposits. Quaternary International, 236, 116-126. doi: 10.1016/j.quaint.2010.04.024.

FREI, R., FREI, K.M. 2013. The geographic distribution of Sr isotopes from surface waters and soil extracts over the island of Bornholm (Denmark) - A base for provenance studies in archeology and agriculture. Applied Geochemistry, 38, 147-160. doi: 10.1016/j.apgeochem.2013.09.007.

GAUDINO, S., GALAS, C., BELL, M., BARBIZZI, S., ZORZI, P. de, JAČIMOVIĆ, R., JERAN, Z., PATI, A., SANSONE, U. 2007. The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results. Accreditation and Quality Assurance, 12, 84-93. doi: 10.1007/s00769-006-0238-1.

GRESHAM, J.J., LOFTUS-HILLS, G.D. 1981. The geology of the Kambalda nickel field, Western Australia. Economic Geology, 76, 1373-1416. doi: 10.2113/gsecongeo.76.6.1373.

GRIFFIN, T.J., HICKMAN, A.H. 1988. Widgiemooltha 1:250,000 geological sheet, Western Australia. Geological Survey of Western Australia.

GRUNSKY, E. 2010. The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis, 10, 27-74. doi: 10.1144/1467-7873/09-210.
HASLAUER, C.P., MEYER, J.R., BÁRDOSSY, A., PARKER, B.L. 2017. Estimating a representative value and proportion of true zeros for censored analytical data with applications to contaminated site assessment. Environmental Science & Technology, 51, 7502-7510. doi: 10.1021/acs.est.6b05385.

HEBERLEIN, D.R. 2010. An Assessment of Soil Geochemical Methods for Detecting Copper-Gold Porphyry Mineralization through Quaternary Glaciofluvial Sediments at the WBX-MBX and 66 Zones, Mt Milligan, North-Central British Columbia. Geoscience British Columbia Report, 2010-08, 68 p.

INGAMELLS, C.O. 1981. Evaluation of skewed exploration data – the nugget effect. Geochimica et Cosmochimica Acta, 45, 1209-1216. doi: 10.1016/0016-7037(81)90144-7.

ISO (International Organization for Standardization) 2016. Soil Quality — Extraction of Trace Elements Soluble in Aqua Regia. International Standard ISO 11466:1995 (reviewed and confirmed in 2016), 6 p.

JENKS, G.F. 1967. The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186-190.

KEEGAN, E., RICHTER, S., KELLY, I., WONG, H., GADD, P.; KUEHN, H., ALONSO-MUNOZ, A. 2008. The provenance of Australian uranium ore concentrates by elemental and isotopic analysis. Applied Geochemistry, 23, 765-777. doi: 10.1016/j.apgeochem.2007.12.004.

KISSE, M.I. 2005. Digestion of Solid Matrices, Part 1: Digestion with Aqua Regia - Report of Evaluation Study. Horizontal 18, Report, 38 p. Available at: https://www.ecn.nl/docs/society/horizontal/Digestion_report_Aqua_regia.pdf

LECH, M.E., CARITAT, P. de, McPHERSON, A.A. 2007. National Geochemical Survey of Australia: Field Manual. Geoscience Australia Record, 2007/08, 53 p. Available at: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_65234

LINTERN, M.J. 2015. The association of gold with calcrete. Ore Geology Reviews, 66, 132-199. doi: 10.1016/j.oregeorev.2014.10.029.

MANN, A., DEUTSCHER, R. 1978. Genesis principles for the precipitation of carnotite in calcrete drainages in Western Australia. Economic Geology, 73, 1724-1737. doi: 10.2113/gsecongeo.73.8.1724.

MANN, A. 2010. Strong versus weak digestions: ligand-based soil extraction geochemistry. Geochemistry: Exploration, Environment, Analysis, 10, 17-26. doi: 10.1144/1467-7873/09-216.

MANN, A., CARITAT, P. de, GREENFIELD, J. 2009. Geochemistry of catchment outlet sediments: evaluation of Mobile Metal Ion Analyses from the Thomson Region, New South Wales, Australia. Proceedings of the 24th International Applied Geochemistry Symposium, Fredericton, New Brunswick, Canada, Volume II, 759-762.

MANN, A., CARITAT, P. de, PRINCE, P. 2012. Bioavailability of nutrients in Australia from Mobile Metal Ion analysis of catchment outlet samples: continental scale patterns and processes. Geochemistry: Exploration, Environment, Analysis, 12, 277-292. doi: 10.1144/geochem2011-090.

MANN, A., CARITAT, P. de, SYLVESTER, G. 2016. Degree of Geochemical Similarity (DOGS): a simple statistical method to quantify and map affinity between samples from multi-element geochemical data sets. Australian Journal of Earth Science, 63, 111-122. doi: 10.1080/08120099.2016.1130744.
MANN, A., DAVIDSON, A., CARITAT, P. de 2013. High resolution soil geochemistry for gold exploration at the continental, regional and prospect scale. In: World Gold 2013, Australian Institute of Mining and Metallurgy, Brisbane, 167-174.

MANN, A., REIMANN, C., CARITAT, P. de, TURNER, N., BURKE, M., GEMAS PROJECT TEAM 2015. Mobile Metal Ion analysis of European agricultural soils: bioavailability, weathering, geogenic patterns and anthropogenic anomalies. Geochemistry: Exploration, Environment, Analysis, 15, 99-112. doi: 10.1144/geochem2014-279.

MANN, A.W., BIRRELL, R., MANN, A.T., HUMPHREYS, D., PERDRIX J. 1998. Application of the Mobile Metal Ion technique to routine geochemical exploration. Journal of Geochemical Exploration, 61, 87-102. doi: 10.1016/S0375-6742(97)00037-X.

McBRATNEY, A.B., MENDONÇA SANTOS, M.L., MINASNY, B. 2003. On digital soil mapping. Geoderma, 117, 3-52. doi: 10.1016/S0016-7061(03)00223-4.

MUHLING, P.C., THOM, R. 1985a. Corrigin 1:250,000 geological sheet, Western Australia. Geological Survey of Western Australia.

MUHLING, P.C., THOM, R. 1985b. Kellerberrin 1:250,000 geological sheet, Western Australia. Geological Survey of Western Australia.

O’CONNELL, L.G., JAMES, N.P., BONE, Y. 2012. The Miocene Nullarbor Limestone, southern Australia; deposition on a vast subtropical epeiric platform. Sedimentary Geology, 253-254, 1-16. doi: 10.1016/j.sedgeo.2011.12.002.

PIRAJNO, F. 2010. Hydrothermal Processes and Mineral Systems. Springer Science and Business Media B.V. Dordrecht, The Netherlands, 1250 p.

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) 2008. Guidance on information requirements and chemical safety assessment - Appendix R.7.13-2: Environmental risk assessment for metals and metal compounds. Guidance for the implementation of REACH, European Chemicals Agency (ECHA), 74 p. Available at: http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r7_13_2_en.pdf

REID, A., KEELING, J.L., BELOUSOVA, E.A. 2013. Hf isotopic investigation into the provenance of zircons in heavy mineral sands of the Eucla Basin. MESA Journal (Resources and Energy Group, Department of Manufacturing, Innovation, Trade, Resources and Energy, South Australia), 68, 17-24.

REIMANN C., FILZMOSER, P., GARRETT, R., DUTTER, R. 2008. Statistical Analysis Explained: Applied Environmental Statistics with R. J. Wiley & Sons, Chichester, 424 p.

REIMANN, C., CARITAT, P. de, GEMAS Project Team, NGSA Project Team 2012. New soil composition data for Europe and Australia: demonstrating comparability, identifying continental-scale processes and learning lessons for global geochemical mapping. Science of the Total Environment, 416, 239-252. doi: 10.1016/j.scitotenv.2011.11.019.

REITH, F., ETSCHMANN, B., DART, R.C., BREWE, D.L., VOGT, S., SCHMIDT MUMM, A., BRUGGER, J. 2011. Distribution and speciation of gold in biogenic and abiogenic calcium carbonates - Implications for the formation of gold anomalous calcrete. Geochimica et Cosmochimica Acta, 75, 1942-1956. doi: 10.1016/j.gca.2011.01.014.

RUBESKA, I., EBARVIA, B., MACALALAD, E., RAVIS, D., ROQUE, N. 1987. Multielement pre-concentration by solvent extraction compatible with an aqua regia digestion for geochemical exploration samples. Analyst, 112, 27-29. doi: 10.1039/AN9871200027.
SCHEIB, A.J. 2013. The National Geochemical Survey of Australia – Selected Interpretations for Western Australia. Geological Survey of Western Australia Record, 2013/4. Available at https://dmbookshop.eruditetechnologies.com.au

SEXTON, M. 2011. Australian Mineral Occurrences Collection. Geoscience Australia. Available at: https://ecat.ga.gov.au/geonet/srv/eng/search#b3dc063b-7f35-24b7-e044-00144fdd4fa6

SHAW, R.D., YEATES, A.N., Palfreyman, W.D., DOUTCH, H.F. 2000. Surface Geology of Australia 1:5 Million Scale Dataset. Geoscience Australia. Available at: https://ecat.ga.gov.au/geonet/srv/eng/search!a05f7892-b444-7506-e044-00144fdd4fa6

SYLVESTER, G.C., MANN, A.W., COOK, S.R., WILSON, C.A. 2017. MMI partial extraction geochemistry for the resolution of anthropogenic activities across the archaeological Roman town of Calleva Atrebatum. Geochemistry: Exploration, Environment, Analysis, published online. doi: 10.1144/geochem2017-009.

TARAŠKEVIČIUS, R., ZINKUTĖ, R., STAKĖNIENĖ, R., RADAVIČIUS, M. 2013. Case study of the relationship between aqua regia and real total contents of harmful trace elements in some European soils. Journal of Chemistry, Article ID 678140, 15 p. doi: 10.1155/2013/678140.

TIGHE, M., LOCKWOOD, P., WILSON, S., LISLE, L. 2004. Comparison of digestion methods for ICP-OES analysis of a wide range of analytes in heavy metal contaminated soil samples with specific reference to arsenic and antimony. Communications in Soil Science and Plant Analysis, 35, 1369-1385. doi: 10.1081/CSS-120037552.

TUKEY, J. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA, 506 pp.

USEPA (United States Environmental Protection Agency) 2015. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA publication SW-846, Third Edition, Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015). Washington, DC, USA. Available at: https://www.epa.gov/hw-sw846/sw-846-compendium

WELTE, G.J., EYNATTEN, H. von 2004. Quantitative provenance analysis of sediments: review and outlook. Sedimentary Geology, 171, 1-11. doi: 10.1016/j.sedgeo.2004.05.007.

WILFORD, J., CARITAT, P. de, BUI, E. 2015. Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors. Geoderma, 259-260, 81-92. doi: 10.1016/j.geoderma.2015.05.003.

WOLFF, K., TIDDY, C., GILES, D., HILL, S.M., GORDON, G. 2017. Distinguishing pedogenic carbonates from weathered marine carbonates on the Yorke Peninsula, South Australia: implications for mineral exploration. Journal of Geochemical Exploration, 181, 81-98. doi: 10.1016/j.gexplo.2017.06.019.

ZHANG, S., YANG, D., LI, F., CHEN, H., HUANG, B., ZOU, D., YANG, J. 2014a. Determination of regional soil geochemical baselines for trace metals with principal component regression: a case study in the Jianghan plain China. Applied Geochemistry, 48, 193-206. doi: 10.1016/j.apgeochem.2014.07.019.

ZHANG, Y., PE-PIPER, G., PIPER, D.J.W. 2014b. Sediment geochemistry as a provenance indicator: Unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism. Sedimentology, 61, 383-410. doi: 10.1111/sed.12066.

WILLIAMS, I.R., DOEPEL, J.J.G. 1971. Kurnalpi 1:250,000 geological sheet, Western Australia. Geological Survey of Western Australia.
Figure 1 Maps of Australia showing the location of the NGSA sample sites (dots) and (a) labelled geological regions of Australia (Blake & Kilgour 1998), and (b) lithological rock groups from the 1:5,000,000 scale Surface Geology of Australia dataset (Shaw et al. 2000) overlain by geological region outlines. The Australian States and Territories (ACT: Australian Capital Territory), and reference NGSA samples mentioned in the text are also shown in (a) and (b), respectively.
Figure 2 Comparison of ranked values for the Beverley sample (#2007191559) and the Merredin sample (#2007190602), NGSA AR dataset, both from acid felsic dominated catchments from the southwestern Yilgarn Craton, Western Australia.
Figure 3 Comparison of ranked values for the Beverley acid-felsic dominated catchment (#2007191559) and the Kalgoorlie mafic/ultramafic dominated catchment (#2007190484), NGSA AR dataset, both from the Yilgarn Craton, Western Australia.
Figure 4 Comparison of ranked values for the Kalgoorlie sample (#2007190484) and the Widgiemooltha sample (#2007190142), NGSA AR dataset. Both are samples from mafic/ultramafic dominated catchments in the eastern Yilgarn Craton, Western Australia.
Figure 5 (a) Dot map showing the distribution of the top Jenks class of the Spearman correlation coefficients ($r_s > 0.58$; red circles) of NGSA AR samples with respect to the acid felsic Beverley catchment reference sample (#2007191559; star symbol). Samples from all other classes are shown as grey circles. Distribution of outcropping felsic igneous rocks from the 1:5,000,000 scale Surface Geology of Australia dataset (Shaw et al. 2000) is shown in the background (pink polygons) as are outlines of geological regions of Australia (Blake & Kilgour 1998). (b) Histogram showing the distribution of r_s values relative to the Beverley sample together with the mean (μ), standard deviations (σ) and Jenks class boundaries. Locations discussed in text are shown.
Figure 6. (a) Dot map showing the distribution of the top Jenks class of the Spearman correlation coefficients ($r_s > 0.52$; red circles) of NGSA AR samples with respect to the mafic/ultramafic dominated Kalgoorlie reference catchment (#2007190484; star symbol). Samples from all other classes are shown as grey circles. Distribution of outcropping mafic to ultramafic igneous rocks from the 1:5,000,000 scale Surface Geology of Australia dataset (Shaw et al. 2000) is shown in the background (green polygons) as are outlines of geological regions of Australia (Blake & Kilgour 1998). (b) Histogram showing the distribution of r_s values relative to the Kalgoorlie sample together with the mean (μ), standard deviations (σ) and Jenks class boundaries. Locations discussed in text are shown.
Figure 7 (a) Dot map showing the distribution of the top Jenks class of the Spearman correlation coefficients ($r_s > 0.54$; red circles) of NGSA AR samples with respect to the marine limestone-derived Nullarbor reference sample (#2007190159; star symbol). Samples from all other classes are shown as grey circles. Location of the Eucla geological region is shown in the background (magenta polygon) as are outlines of the other geological regions of Australia (Blake & Kilgour 1998). (b) Histogram showing the distribution of r_s values relative to the Nullarbor sample together with the mean (μ), standard deviations (σ) and Jenks class boundaries.
Figure 8 Comparison of ranked values for the Nullarbor marine limestone-derived sample (#2007190159) and the Gascoyne River regolith calcrite-derived sample (#2007190881), NGSA AR dataset, from the Eucla geological region, South Australia, and Yilgarn Craton, Western Australia, respectively.
Figure 9 (a) Dot map showing the distribution of the top two Jenks classes of the Spearman coefficients ($r_s > 0.39$; red and orange circles) of NGSA AR samples with respect to the Mt Isa reference sample (#2007190065; star symbol), as well as the top two Jenks classes of the Spearman correlation coefficients ($r_s > 0.38$; red and orange squares) of NGSA AR samples with respect to the base metal mineralisation of the Curnamona region reference sample (#2007191289; star symbol). Samples from all other classes are shown as grey circles. All mineral occurrences with “Cu” as the first listed commodity (N = 9810) over Australia (Sexton, 2011) also shown (as cyan dots), as are the outlines of geological regions of Australia (Blake & Kilgour 1998). (b,c) Histograms showing the distribution of r_s values relative to the Mt Isa and Curnamona samples, respectively, together with the mean (μ), standard deviations (σ) and Jenks class boundaries. Locations discussed in text are shown.
Figure 10 (a) Dot map showing the distribution of the top Jenks class of the Spearman correlation coefficients ($r_s > 0.56$; red circles) of NGSA AR samples with respect to the Banded Iron Formation related Roy Hill reference sample (#2007190917; star symbol). Samples from all other classes are shown as grey circles. All mineral occurrences with ‘Fe’ or ‘FeOre’ as the first listed commodity (N = 2884) over Australia (Sexton, 2011) also shown (as dark grey dots), as are the outlines of geological regions of Australia (Blake & Kilgour 1998). (b) Histogram showing the distribution of r_s values relative to the Roy Hill sample together with the mean (μ), standard deviations (σ) and Jenks class boundaries. Locations discussed in text are shown.
Figure 11 (a) Dot map showing the distribution of the top Jenks class of the Spearman correlation coefficients ($r_s > 0.53$; red circles) of NGSA AR samples with respect to the Au mineralisation related Coolgardie reference sample (#2007190717; star symbol), as well as the top Jenks class of the Spearman correlation coefficients ($r_s > 0.48$; red squares) of NGSA AR samples with respect to the Au mineralisation related Ballarat reference sample (#2007190042; star symbol). Samples from all other classes are shown as grey circles. All mineral occurrences with “Au” as the first listed commodity (N = 51664) over Australia (Sexton, 2011) also shown (as yellow dots), as are the outlines of geological regions of Australia (Blake & Kilgour 1998). (b,c) Histograms showing the distribution of r_s values relative to the Coolgardie and Ballarat samples, respectively, together with the mean (μ), standard deviations (σ) and Jenks class boundaries. Locations discussed in text are shown.
Element	LLD (mg/kg)	N <LLD	% <LLD	Min (mg/kg)	Med (mg/kg)	Max (mg/kg)	Rank Min	Rank Med	Rank Max
Ag	0.002	148	14%	0.001	0.017	5.42	74.5	523	1055
Al	100	1	0%	50	15000	71600	1	525.5	1055
As	0.1	32	3%	0.05	2.2	44.5	16.5	535	1055
Au	0.0001	106	10%	0.00005	0.0008	0.269	53.5	543	1055
Ba	0.5	0	0%	0.5	89.8	619	1	528.5	1055
Be	0.1	22	2%	0.05	0.8	18.1	11.5	498.5	1055
Bi	0.02	10	1%	0.01	0.18	39.3	5.5	548	1055
Ca	100	15	1%	50	3400	400000	8	525	1055
Cd	0.01	110	10%	0.005	0.05	0.21	55.5	506	1055
Ce	0.01	0	0%	0.29	42.7	395	1	529	1055
Co	0.1	3	0%	0.05	8.6	60.1	2	530.5	1055
Cr	0.5	0	0%	0.9	29.1	915	1	527.5	1055
Cs	0.02	3	0%	0.01	1.18	7.31	2	529.5	1055
Cu	0.01	2	0%	0.005	16.5	170	1.5	526.5	1055
Dy	0.1	4	0%	0.05	2.4	11.1	2.5	539	1055
Er	0.1	16	2%	0.05	1.1	3.8	8.5	560.5	1055
Eu	0.1	21	2%	0.05	0.8	4.3	11	594	1055
Fe	100	0	0%	100	23300	175000	1	528	1055
Ga	0.02	2	0%	0.01	5.33	23.9	1.5	528.5	1055
Gd	0.1	3	0%	0.05	3.3	23.6	2	530.5	1055
Hg	0.01	241	23%	0.005	0.02	5.74	121	497	1055
Ho	0.1	36	3%	0.05	0.4	1.5	18.5	450.5	1055
K	100	6	1%	50	2400	21600	3.5	527.5	1055
La	0.5	3	0%	0.25	20.4	226	2	527.5	1055
Li	0.1	4	0%	0.05	9.1	88	2.5	529.5	1055
Mg	100	8	1%	50	2600	45000	4.5	528	1055
Mn	1	1	0%	0.5	390	3060	1	529	1055
Mo	0.01	31	3%	0.005	0.29	19.9	16	536.5	1055
Na	10	14	1%	5	210	32200	7.5	521	1055
Nb	0.1	207	20%	0.05	0.2	17.8	104	437	1055
Nd	0.02	0	0%	0.07	18.6	152	1	531	1055
Ni	0.1	5	0%	0.05	13.7	404	3	527	1055
Pb	0.01	0	0%	0.02	10.3	1520	1	523	1055
Element	Number	Mass%	LLD	Min	Med	Max	N		
---------	--------	-------	-----	-----	-----	-----	--------		
Pr	0.1	3	0%	0.05	4.8	45.3	2		
Rb	0.1	1	0%	0.05	19	109	1		
Sb	0.02	36	3%	0.01	0.15	37.1	18.5		
Sc	0.1	6	1%	0.05	5.5	27	3.5		
Se	0.01	16	2%	0.005	0.09	2.5	8.5		
Sm	0.1	4	0%	0.05	3.8	27.2	2.5		
Sn	0.05	6	1%	0.025	0.96	42.5	3.5		
Sr	0.5	4	0%	0.25	31.8	2000	2.5		
Tb	0.1	41	4%	0.05	0.4	2.1	21		
Te	0.02	376	36%	0.01	0.03	0.26	188.5		
Th	0.1	0	0%	0.1	5.7	94.1	2.5		
Tl	0.02	21	2%	0.01	0.12	0.46	11		
U	0.1	3	0%	0.05	0.8	42.6	2		
V	1	2	0%	0.5	47	184	1.5		
Y	0.01	0	0%	0.09	11.4	46.4	1		
Yb	0.1	20	2%	0.05	0.9	3.2	10.5		
Zn	0.1	11	1%	0.05	37	8910	6		
Zr	0.1	1	0%	0.05	4.7	56.4	1		

Table 1. Summary statistics for the aqua regia digestion results for 51 elements from the National Geochemical Survey of Australia TOS (0-10 cm) fine fraction (<75 µm) samples. Also shown are the corresponding minimum (Min), median (Med), and maximum (Max) rank values. LLD = lower limit of detection. N = 1055 samples.
Table 2 Reference samples used herein with their location, dominant lithology and characteristic composition.

Reference sample	Location	Dominant lithology	Characteristic composition
#2007191559	Beverley, WA	Acid felsic (granite)	Ca = 700 mg/kg, Ce = 297 mg/kg, Fe = 10,900 mg/kg, Ni = 4.2 mg/kg
#2007190602	Merredin, WA	Acid felsic (granite)	Ca = 1100 mg/kg, Ce = 88 mg/kg, Fe = 7400 mg/kg, Ni = 7.6 mg/kg
#2007190484	Kalgoorlie, WA	Mafic/ultramafic	Ca = 75,200 mg/kg, Ce = 23 mg/kg, Fe = 52,900 mg/kg, Ni = 47 mg/kg
#2007190142	Widgiemooltha, WA	Mafic/ultramafic	Ca = 80,000 mg/kg, Ce = 38 mg/kg, Fe = 35,500 mg/kg, Ni = 42 mg/kg
#2007190159	Nullarbor, SA	Marine limestone	Ca = 72,5000 mg/kg, Ce = 41 mg/kg, Fe = 32,800 mg/kg, Ni = 20 mg/kg
#2007190881	Gascoyne, WA	Pedogenic calcrite	Ca = 12,400 mg/kg, Ce = 23 mg/kg, Fe = 35900 mg/kg, Ni = 253 mg/kg
#2007190065	Mt Isa, Qld	Proterozoic sediments	Ca = 2500 mg/kg, Ce = 56 mg/kg, Au = 1.1 µg/kg, Cu = 50 mg/kg
#2007191289	Lake Frome, SA	Proterozoic/Mesozoic sediments	Ca = 9500 mg/kg, Ce = 48 mg/kg, Au = 1.1 µg/kg, Cu = 37 mg/kg
#2007190917	Roy Hill, WA	Banded Iron Formation	Ca = 4900 mg/kg, Ce = 46 mg/kg, Fe = 78,200 mg/kg, Ni = 56 mg/kg
#2007190717	Coolgardie, WA	Mafic/ultramafic	Ca = 7900 mg/kg, Ce = 29 mg/kg, Au = 44 µg/kg, Cu = 60 mg/kg
#2007190042	Ballarat, Victoria	Ordovician sediments	Ca = 1400 mg/kg, Ce = 69 mg/kg, Au = 18 µg/kg, Cu = 8 mg/kg
Table 3 Rankings of selected elements after aqua regia digestion and ICP-MS analysis of fine fraction NGSA TOS samples from catchments with various dominant lithologies. Top six rows show specific lithologies; bottom five rows show specific mineralisation types.

Reference sample	Lithology	Ag	Al	Au	Ba	Ca	Ce	Cu	Fe	K	La	Mg	Ni	Yb
#2007191559	Granite	239.5	420.5	53.5	33	103	1054	127.5	123.5	250.5	1054	280.5	85	1042
#2007190602	Granite	216.5	228.5	222.5	74	170	990	121.5	59	382.5	995	161	216	574
#2007190484	Mafic/ultramafic	239.5	559	836	388.5	1003	118.5	907	992	764.5	224.5	699.5	1010	574
#2007190142	Mafic/ultramafic	328	846	987.5	941.5	1006	425	707.5	828	836.5	433.5	1024	987	148.5
#2007190159	Limestone	727	944	289	681	1000	495	870.5	778.5	989	449	947	732.5	776.5
#2007190881	Calcrete	488.5	713.5	888.5	686	925.5	113.5	958.5	834	773.5	111	1054	1054	148.5
#2007190065	Copper	696	312.5	673	663	387.5	781	1024.5	932	563.5	798	494	739	574
#2007191289	Copper	390	696.5	673	727	892	653	962	775	873	725	699.5	606.5	330.5
#2007190917	BIF	964	919	673	862.5	690	606.5	1047	1043	946	751.5	845	1029	921.5
#2007190717	Gold	615	1018	1050	713	854.5	227	1040	1029.5	199	1045	1055	684	
#2007190042	Gold	488.5	253.5	1039	272	221.5	900	148	374	303	876	346	584	223
Table 4 Changes in Spearman rs values for reference samples upon progressive removal of selected elements from the Spearman calculation (#2007191559 = Beverley granitoid, #2007190602 = Merredin granitoid, #2007190484 = Kalgoorlie greenstone, #2007190142 = Widgiemooltha greenstone, #2007190159 = Nullarbor marine limestone, #2007190881 = Gascoyne calcrete, #2007190065 = Mt Isa Cu, #2007191289 = Curnamona Cu, #2007190717 = Coolgardie Au, #2007190042 = Ballarat Au). Values of rs which are >0.1 greater than, or less than, the rs in column 2 are shown in red or blue, respectively.

Reference sample pairs	All 51 elements	Au and Cu removed	Au, Cu, Mg and Ni removed	Au, Cu, Mg, Ni, Fe and Ca removed	Au, Cu, Mg, Ni, Fe, Ca and 12 REEs removed
#2007191559 vs #2007190602	0.750	0.740	0.732	0.717	0.622
#2007191559 vs #2007190484	-0.547	-0.524	-0.502	-0.461	-0.242
#2007190484 vs #2007190142	0.658	0.649	0.631	0.594	0.571
#2007190159 vs #20071900881	0.007	0.025	-0.020	-0.073	-0.238
#2007190065 vs #2007191289	-0.027	-0.106	-0.104	-0.113	-0.200
#2007190717 vs #2007190042	-0.438	-0.503	-0.520	-0.513	-0.367