CATEGORY \mathcal{O} FOR THE LIE ALGEBRA OF VECTOR FIELDS ON THE LINE

GENQIANG LIU AND MINGJIE LI

Abstract. Let \mathcal{W} be the Lie algebra of vector fields on the line. Via computing extensions between all simple modules in the category \mathcal{O}, we give the block decomposition of \mathcal{O}, and show that the representation type of each block of \mathcal{O} is wild using the Ext-quiver. Each block of \mathcal{O} has infinite simple objects. This result is very different from that of \mathcal{O} for complex semisimple Lie algebras. To find a connection between \mathcal{O} and the Whittaker category Ω_α, we give an exact functor from \mathcal{O} to Ω_α, which maps simple modules in \mathcal{O} to simple modules in Ω_α or zero. We also construct new simple \mathcal{W}-modules from Weyl modules and modules over the Borel subalgebra \mathfrak{b} of \mathcal{W}.

Keywords: Category \mathcal{O}, block, Ext-quiver, wild, Whittaker module.

Math. Subj. Class. 2020: 17B10, 17B30, 17B80

1. INTRODUCTION

The category \mathcal{O} for complex semisimple Lie algebras was introduced by Joseph Bernstein, Israel Gelfand and Sergei Gelfand in the early 1970s, see [2], and it includes all highest weight modules. This category is very important in the representation theory. For more details on category \mathcal{O}, one can see the monograph [12].

The category \mathcal{O} can be defined for any Lie algebra with a triangular decomposition, see the book [14]. For a Lie algebra \mathfrak{g} with a triangular decomposition $\mathfrak{g} = \mathfrak{g}^- \oplus \mathfrak{h} \oplus \mathfrak{g}^+$, there always exists an anti-involution σ of \mathfrak{g} such that $\sigma(\mathfrak{g}^+) = \mathfrak{g}^-$ and $\sigma|_{\mathfrak{h}} = \text{id}_{\mathfrak{h}}$. For example, the finite dimensional simple Lie algebras, the Virasoro algebra, the affine Kac-Moody algebras, the Heisenberg Lie algebras are all Lie algebras with triangular decompositions, see [14]. For the Kac-Moody algebras and the Virasoro algebra, categories \mathcal{O} were studied in [8, 4] and references therein. For these algebras, the Hom-spaces between Verma modules determine the block decomposition of the category \mathcal{O} to a great extent.

For the Lie algebra $\mathcal{W} = \mathcal{W}^- \oplus \mathfrak{h} \oplus \mathcal{W}^+$ of vector fields on the line, \mathcal{W}^- is one dimensional, \mathcal{W}^+ is infinite dimensional. So \mathcal{W} is not a Lie algebra with a triangular decomposition in the sense of [14]. Although we can also define the category \mathcal{O} for \mathcal{W} similar as that of complex semisimple Lie algebras, however several properties for \mathcal{O} in [14] dose not hold for \mathcal{W}. For example, the embeddings

Date: August 9, 2022.
between Verma modules has little impact on the block decomposition of O. Our initial motivation of the present paper was to explore the differences between the category O of \mathfrak{W} and the categories O of semi-simple Lie algebras. In this paper, through giving extensions between all simple modules in O, we obtain the block decomposition of the category O for \mathfrak{W}, and study the representation type of each block of O. We also detect the relations between O and the Whittaker category for \mathfrak{W}, and construct simple \mathfrak{W}-modules from modules over the Weyl algebra and modules over the Borel subalgebra b of \mathfrak{W}.

The paper is organized as follows. In Section 2, we introduce the category O and the Whittaker category Ω_a for the Lie algebra \mathfrak{W}, and recall some results on Ω_a from $[21]$ in case $a \neq 0$. In Section 3, we first study the Verma modules and recall extensions on the \mathfrak{W}-modules F_{λ} of Feigin and Fuchs defined in $[9]$. Then using these extensions and the duality between F_{λ} and the Verma module $\Delta(\lambda)$, we can give all nontrivial extensions between Verma modules in O. Consequently, we obtain $\text{Ext}^1_O(M,N)$ for all simple modules $M,N \in O$, see Theorem 3.11. It should be mentioned that extensions between simple modules for the finite dimensional Witt algebra $W(1,1)$ over an algebraically closed field of characteristic $p > 3$ were determined in $[3]$. Furthermore we give the block decomposition $O = \bigoplus_{\lambda \in \mathbb{C}} O[\lambda]$, and show that each block $O[\lambda]$ is wild by studying a sub-quiver of its Ext-quiver, see Theorem 3.14. In subsection 3.5, we construct a functor Γ_a from O to Ω_a, where we identify Ω_a with the category Ω'_a of finite dimensional H'_a-modules. The algebra H'_a is a subalgebra of $U(b)$ which is isomorphic to the endomorphism algebra H_a of the universal Whittaker \mathfrak{W}-module Q_a defined in subsection 2.3. When $a \neq 0$, we show that Γ_a is an exact functor, and Γ_a maps simple modules in O to simple modules in Ω_a or zero. Therefore the functor Γ_a gives a connection between O and the Whittaker category Ω_a. At the end of Section 3, we also conjecture that some non-integral block $O[\lambda]$ may be equivalent to some subcategory of Ω_a. In Section 4, we construct new simple tensor \mathfrak{W}-modules $T(P,V)$ from modules P over the Weyl algebra and b-modules V. The isomorphism criterion for $T(P,V)$ is also given.

2. Preliminaries

In this paper, we denote by \mathbb{Z}, $\mathbb{Z}_{>0}$, $\mathbb{Z}_{\geq 0}$ and \mathbb{C} the sets of integers, positive integers, nonnegative integers and complex numbers, respectively. All vector spaces and Lie algebras are over \mathbb{C}. For a Lie algebra \mathfrak{g} we denote by $U(\mathfrak{g})$ its universal enveloping algebra. We write \otimes for $\otimes_{\mathbb{C}}$.

2.1. Witt algebra. Let $A = \mathbb{C}[x]$ be the polynomial algebra and \mathfrak{W} the derivation Lie algebra of A, i.e., $\mathfrak{W} = \text{Der}_{\mathbb{C}}A$. The Lie algebra \mathfrak{W} is called the Lie algebra of vector fields on the line, or the Witt algebra of rank one. Denote $\partial = \frac{\partial}{\partial x}$ and $d_i = x^{i+1}\partial$, for any $i \in \mathbb{Z}_{\geq -1}$. Then $\{d_i \mid i \in \mathbb{Z}_{\geq -1}\}$ is a basis of \mathfrak{W}.
We can write the Lie bracket in \mathfrak{W} as follows:

$$[d_i, d_j] = (j - i)d_{i+j}, \quad \text{for all } i, j \in \mathbb{Z}_{\geq -1}.$$

Note that the subspace $\mathfrak{h} = \mathbb{C}d_0$ is a Cartan subalgebra of \mathfrak{W}, i.e., a maximal abelian subalgebra that is diagonalizable on \mathfrak{W} with respect to the adjoint action. Let $\mathfrak{W}^+ = \text{span}\{d_i \mid i \in \mathbb{Z}_{>0}\}$ and $\mathfrak{W}^- = \mathbb{C}d_{-1}$. Then $\mathfrak{W} = \mathfrak{W}^- \oplus \mathfrak{h} \oplus \mathfrak{W}^+$ is a decomposition of \mathfrak{W}, and the Lie subalgebra $\mathfrak{b} := \mathfrak{h} \oplus \mathfrak{W}^+$ is called a Borel subalgebra of \mathfrak{W}.

One can see that $\Phi = \{\varepsilon_{-1}, \varepsilon_1, \varepsilon_2, \ldots\}$ is the root system of \mathfrak{W}, where $\varepsilon_i \in \mathfrak{h}^*$ such that $\varepsilon_i(d_0) = i$, $i \in \mathbb{Z}_{\geq -1}$. The subalgebra $\mathbb{C}d_{-1} \oplus \mathbb{C}d_0 \oplus \mathbb{C}d_1 \cong \mathfrak{sl}_2$, and $z = -d_1d_{-1} + d_0^2 - d_0$ is its Casimir element.

Definition 2.1. A \mathfrak{W}-module M is called a weight module if d_0 acts diagonally on M, i.e.,

$$M = \bigoplus_{\lambda \in \mathbb{C}} M_{\lambda},$$

where $M_{\lambda} := \{v \in M \mid d_0v = \lambda v\}$. For a weight module M, denote

$$\text{Supp}(M) := \{\lambda \in \mathbb{C} \mid M_{\lambda} \neq 0\}.$$

If M is a simple weight \mathfrak{W}-module, then $\text{Supp}(M) \subset \lambda + \mathbb{Z}$ for some $\lambda \in \mathbb{C}$. For a $\lambda \in \text{Supp}(M)$, a nonzero vector $v \in M_{\lambda}$ is called a maximal vector if $\mathfrak{W}^+v = 0$. A weight module is called a highest weight module if it is generated by a maximal weight vector.

We use $U(\mathfrak{W})\text{-Mod}$ to denote the category of all left $U(\mathfrak{W})$-modules.

2.2. **Category \mathcal{O}**. Next we introduce the category \mathcal{O} for \mathfrak{W}.

Definition 2.2. The category \mathcal{O} for \mathfrak{W} is a full subcategory of $U(\mathfrak{W})\text{-Mod}$ whose objects are \mathfrak{W}-modules M satisfying the following axioms:

(a) M is a finitely generated $U(\mathfrak{W})$-module;
(b) M is a weight module;
(c) M is locally \mathfrak{W}^+-finite: for each $v \in M$, the subspace $U(\mathfrak{W}^+)v$ is finite dimensional.

Let M be a module in \mathcal{O}. By (a) and (c) in Definition 2.2, we can assume that M is generated by a finite dimensional $U(\mathfrak{W}^+)$-module N. By induction on the dimension of N, we can show that M has the following property.

Lemma 2.3. Any module M in \mathcal{O} has a finite filtration of submodules as follows:

$$0 = M_0 \subset M_1 \subset \cdots \subset M_m = M,$$

where each factor M_j/M_{j-1} for $1 \leq j \leq m$ is a highest weight module.

So highest weight modules are basic constituents of \mathcal{O}.
2.3. **Whittaker category** Ω_a. We also introduce a Whittaker category Ω_a for \mathfrak{m} which can be related to \mathcal{O}.

Definition 2.4. [21] For each $a \in \mathbb{C}$, the Whittaker category Ω_a for \mathfrak{m} is a full subcategory of $U(\mathfrak{m})$-Mod whose objects are \mathfrak{m}-modules M satisfying the following axioms:

(a) $d_{-1} - a$ acts locally nilpotently on M;
(b) the subspace $\text{wh}_a(M) = \{ v \in M \mid d_{-1}v = av \}$ is finite dimensional.

A module in Ω_a is called a Whittaker module. An element in $\text{wh}_a(M)$ is called a Whittaker vector. The category Ω_a was studied in [21].

Example 2.1. For any $b \in \mathbb{C}$, the space $A_{a,b} = \mathbb{C}[x]$ is a Whittaker \mathfrak{m}-module under the action:

$$d_ix^n = (n + b(i + 1))x^{n+i} + ax^{n+i+1}, \quad i \in \mathbb{Z}_{\geq -1}, n \in \mathbb{Z}_{\geq 0}. $$

We can see that $\text{wh}_a(A_{a,b}) = \mathbb{C}$. By Theorem 3.5 in [13], when $a \neq 0$, $A_{a,b}$ is a simple \mathfrak{m}-module for any $b \in \mathbb{C}$.

Let $N_a = \mathbb{C}1_a$ be the one dimensional $\mathbb{C}[d_{-1}]$-module such that $d_{-1}1_a = a1_a$. Let $Q_a = U(\mathfrak{m}) \otimes_{\mathbb{C}[d_{-1}]} N_a$ the induced \mathfrak{m}-module, and

$$H_a = \text{End}_\mathfrak{m}(Q_a)^{\text{op}}. $$

Then Q_a is both a left $U(\mathfrak{m})$-module and a right H_a-module. Let H_a-mod be the category of finite dimensional H_a-modules.

Theorem 2.5. [21] Suppose that $a \neq 0$. Then

(a) The functors $M \mapsto \text{wh}_a(M)$ and $V \mapsto Q_a \otimes_{H_a} V$ are inverse equivalence between Ω_a and H_a-mod .
(b) Any simple module in Ω_a is isomorphic to $A_{a,b}$ for some $b \in \mathbb{C}$.

Therefore any finite dimensional simple nonzero H_a-module is one dimensional.

3. **Block decomposition of \mathcal{O}**

In this section, we study extensions between Verma modules and simple modules in \mathcal{O}. Using the Ext-quiver, we show that each block of \mathcal{O} has wild representation type. We also construct an exact functor Γ_a from \mathcal{O} to the Whittaker category Ω_a.

3.1. **The Verma modules.** For a $\lambda \in \mathbb{C}$, denote by \mathbb{C}_λ the one-dimensional \mathfrak{b}-module with the generator v_λ and the action given by

$$\mathfrak{m}^+ v_\lambda = 0, \quad d_0v_\lambda = \lambda v_\lambda.$$
The Verma module over \mathfrak{m} is defined as follows:
\[
\Delta(\lambda) := \text{Ind}_{\mathfrak{m}}^W C_\lambda \cong U(\mathfrak{m}) \otimes U(b) C_\lambda.
\]

The module $\Delta(\lambda)$ has the unique simple quotient module $L(\lambda)$. By Lemma 2.3, the modules $L(\lambda)$ for $\lambda \in \mathbb{C}$ provide a complete set of irreducible modules in category O.

Lemma 3.1. (1) $zv = \lambda(\lambda + 1)v$ for all $v \in \Delta(\lambda)$.
(2) The module $\Delta(\lambda)$ is simple if and only if $\lambda \neq 0$. So $\Delta(\lambda) = L(\lambda)$ for $\lambda \neq 0$.
(3) The module $\Delta(0)$ is a uniserial module whose structure can be described by the following exact sequence:
\[
(3.1) \quad 0 \to \Delta(-1) \overset{\partial}{\to} \Delta(0) \overset{\partial}{\to} L(0) \to 0.
\]

Proof. (1) The proof follows from $[z, d_{-1}] = 0$, $\Delta(\lambda) = \mathbb{C}[d_{-1}]v_\lambda$ and $zv_\lambda = \lambda(\lambda + 1)v_\lambda$.

(2) For any $i \in \mathbb{Z}_{\geq 0}$, denote $v_{\lambda - i} := d_{-1}^i \cdot v_\lambda$. We can deduce that $d_0 \cdot v_{\lambda - i} = (\lambda - i)v_{\lambda - i}$. Since $\Delta(\lambda)$ is generated by v_λ, $\Delta(\lambda)$ is reducible if and only if there is an $i \in \mathbb{Z}_{>0}$ such that $d_1 v_{\lambda - i} = d_2 v_{\lambda - i} = 0$.

We can compute
\[
d_1 \cdot v_{\lambda - i} = d_1 \cdot d_{-1}^i \cdot v_\lambda = ([d_1, d_{-1}^i] + d_{-1}^i d_1) \cdot v_\lambda = \sum_{t=0}^{i-1} d_{-1}^i [d_1, d_{-1}] d_{-1}^{t-1} \cdot v_\lambda
\]
\[
= -2 \sum_{t=0}^{i-1} d_{-1}^i d_0 d_{-1}^{t-1} \cdot v_\lambda = -2 \sum_{t=0}^{i-1} (\lambda - i + t + 1)v_{\lambda - i + 1}
\]
\[
= i(i - 1 - 2\lambda)v_{\lambda - i + 1}.
\]

Similarly,
\[
d_2 \cdot v_{\lambda - i} = i(i - 1)(3\lambda - i + 2)v_{\lambda - i + 2}.
\]

Consider $d_1 \cdot v_{\lambda - i} = 0$ and $d_2 \cdot v_{\lambda - i} = 0$, $i \in \mathbb{Z}_{>0}$, we have the equations
\[
\begin{cases}
i(i - 1 - 2\lambda) = 0, \\
i(i - 1)(3\lambda - i + 2) = 0.
\end{cases}
\]

The solution of this equation is $\lambda = 0, i = 1$. Moreover when $\lambda = 0$, the submodule generated by v_{-1} is a proper submodule which is isomorphic to $\Delta(-1)$. Thus $\Delta(\lambda)$ is simple if and only if $\lambda \neq 0$.

(3) By (2), the submodule \(N\) generated by \(v_{-1}\) of \(\Delta(0)\) is simple and \(\Delta(0)/N \cong L(0)\). So \(N\) is the unique nontrivial submodule of \(\Delta(0)\). Hence \(\Delta(0)\) is a uniserial module. \(\square\)

Remark 3.2. If we denote \(e_{\lambda-i} := (-1)^i d_{-1}^{-i} \cdot v_{\lambda},\) for any \(i \in \mathbb{Z}_{\geq 0}\), then \(\{e_{\lambda-i} : i \in \mathbb{Z}_{\geq 0}\}\) is also a basis of \(\Delta(\lambda)\) such that the action of \(\mathfrak{m}\) on \(\Delta(\lambda)\) is defined as follows:

\[
d_k e_{\lambda-i} = ((k+1)\lambda + k - i)e_{\lambda-i+k}, \quad \forall k \in \mathbb{Z}_{\geq -1},
\]

where \(e_{\lambda-i+k} = 0\) when \(k - i > 0\).

Corollary 3.3. Any module \(M\) in \(\mathcal{O}\) has finite composition length.

Proof. By lemma 2.3, \(M\) has a filtration

\[
0 = M_0 \subset M_1 \subset \cdots \subset M_m = M,
\]

such that each factor \(M_j/M_{j-1}\) for \(1 \leq j \leq m\) is a highest weight module. By Lemma 3.1, every Verma module has finite composition length, so does any highest weight module. Consequently the composition length of \(M\) is finite. \(\square\)

Remark 3.4. In \([7]\), the authors defined another category \(\mathcal{O}'\) for \(\mathfrak{m}\). Any module \(M\) in \(\mathcal{O}'\) is locally finite over \(\mathbb{C}d_{-1} \oplus \mathbb{C}d_0\) rather than \(\mathfrak{m}^+\). Similar as \(\Delta(\lambda)\), define the \(\mathfrak{m}\)-module:

\[
\Delta'(\lambda) := U(\mathfrak{m}) \otimes_{U(\mathbb{C}d_{-1} \oplus \mathbb{C}d_0)} \mathbb{C}'_{\lambda},
\]

where \(\mathbb{C}'_{\lambda} = \mathbb{C}v'_{\lambda}\) is the \(U(\mathbb{C}d_{-1} \oplus \mathbb{C}d_0)\)-module defined by \(d_{-1}v'_{\lambda} = 0, d_0v'_{\lambda} = \lambda v'_{\lambda}\). Since any simple weight module over \(\mathfrak{m}\) has one dimensional weight spaces, see \([19]\), \(\Delta'(\lambda)\) does not have finite composition length. So \(\mathcal{O}'\) does not satisfy Corollary 3.3.

3.2. Extension between Verma modules.

Recall that for \(\mathfrak{m}\)-modules \(M, N \in \mathcal{O}\), the first cohomology space \(\text{Ext}^1_{U(\mathfrak{m})}(M, N)\) classifies the short exact sequences:

\[
0 \to N \xrightarrow{\alpha} K \xrightarrow{\beta} M \to 0,
\]

also called the extension of \(N\) by \(M\). Generally \(K\) may not lie in \(\mathcal{O}\). We are only interested in that \(K \in \mathcal{O}\), i.e., \(K\) needs to be a weight module. Note that \(\mathcal{O}\) is closed under weight module extensions. So \(\text{Ext}^1_{\mathcal{O}}(M, N) \subset \text{Ext}^1_{U(\mathfrak{m})}(M, N)\). In this subsection, we will give all extensions between Verma modules in \(\mathcal{O}\).

Lemma 3.5. Let \(\lambda, \mu \in \mathbb{C}\).

1. If \(\lambda - \mu \in \mathbb{Z}_{\geq 0}\) and \(M\) is a highest weight module with the highest weight \(\mu\), then \(\text{Ext}^1_{\mathcal{O}}(\Delta(\lambda), M) = 0\);
2. \(\text{Ext}^1_{\mathcal{O}}(\Delta(\lambda), \Delta(\lambda)) = 0\).
3. Proposition 3.6. \[\text{Supp}(N) = \text{Supp}(M) \cup \text{Supp}() \]

Proof. (1) Suppose that $0 \rightarrow M \xrightarrow{\alpha} N \xrightarrow{\beta} \Delta(\lambda) \rightarrow 0$ is a short exact sequence in O, where N is a weight module. As $\lambda - \mu \in \mathbb{Z}_{\geq 0}$, $\text{Supp}(N) = \text{Supp}(M) \cup \text{Supp}()$, so λ is a maximum weight in N. Recall that $\Delta(\lambda)$ is generated by the highest weight vector v_λ. Since β is surjective, there exists weight vector $0 \neq v \in N_\lambda$, such that $\beta(v) = v_\lambda$. Moreover, v must be a maximal vector. Otherwise, there exists $d_i \in \mathfrak{W}^+, 0 \neq d_i \cdot v \in N_{\lambda+i}$ such that $\lambda + i \in \text{Supp}(N)$, which contradicts to the maximality of λ. The map such that $v_\lambda \mapsto v$ can be extended to a $U(\mathfrak{W})$-module homomorphism $\beta': \Delta(\lambda) \rightarrow N$, and $\beta\beta' = 1_{\Delta(\lambda)}$. So the exact sequence (3.3) is split and hence $\text{Ext}_0^1(\Delta(\lambda), M) = 0$.

(2) is an immediate corollary of (1). \square

Let us recall the \mathfrak{W}-modules F_λ of Feigin and Fuchs defined in [9], with $\lambda \in \mathbb{C}$. The module F_λ has a basis $\{f_j \mid j \in \mathbb{Z}_{\geq 0}\}$ with the \mathfrak{W}-action defined by

$$d_i f_j = (j - (i + 1)\lambda)f_{i+j},$$

where $i \in \mathbb{Z}_{\geq 0}, j \in \mathbb{Z}_{\geq 0}$. These modules are shown to be restricted dualities of Verma modules. For a weight \mathfrak{W}-module $V = \oplus_\lambda V_\lambda$, the restricted duality \mathfrak{W}-module $V^* = \oplus_\lambda \text{Hom}_\mathbb{C}(V_\lambda, \mathbb{C})$ is defined by the natural action:

$$(d_i \phi)(v) = \phi(-d_i v),$$

for all $i \in \mathbb{Z}_{\geq 0}, \phi \in V^*, v \in V$. By the universal property of $\Delta(\lambda)$, one can check that $F_\lambda^* \cong \Delta(\lambda)$. Feigin and Fuchs gave the classification of the extensions of F_μ by the modules F_λ.

Proposition 3.6. [9] Suppose that $\lambda, \mu \in \mathbb{C}$. Then

$$\text{Ext}_0^1(U(\mathfrak{w}), F_\lambda, F_\mu) = \begin{cases} \mathbb{C}, & \text{if } \lambda - \mu = 0, 2, 3, 4; \\ \mathbb{C} \oplus \mathbb{C}, & \text{if } (\lambda, \mu) = (0, -1); \\ \mathbb{C}, & \text{if } (\lambda, \mu) = (0, -5) \text{ or } (4, -1); \\ \mathbb{C}, & \text{if } (\lambda, \mu) = \left(\frac{3+\sqrt{19}}{2}, \frac{-7+\sqrt{19}}{2}\right); \\ 0, & \text{otherwise.} \end{cases}$$

Moreover all nontrivial extensions of F_μ by F_λ were listed in the table 1 on page 207 of [9]. We give these extensions in a slightly different form as follows.

(1) The unique non-split extension $E(F_\lambda, F_\lambda)$ of F_λ by itself has a basis $\{f_j, f'_j \mid j \in \mathbb{Z}_{\geq 0}\}$ such that

$$d_i f_j = (j - (i + 1)\lambda)f_{i+j},$$

$$d_i f'_j = (j - (i + 1)\lambda)f'_{i+j} + (i + 1)f_{i+j}.$$
There are two non-split extensions: $E(F_0, F_{-1}), E'(F_0, F_{-1})$ of F_{-1} by F_0. The module $E(F_0, F_{-1})$ has a basis $\{f_j, f'_j \mid j \in \mathbb{Z}_{\geq 0}\}$ such that

$$d_i f_j = (j + i + 1)f_{i+j},
\quad d_i f'_j = j f'_{i+j} + (i + 1) f_{i+j-1}.$$

The module $E'(F_0, F_{-1})$ has a basis $\{f_j, f'_j \mid j \in \mathbb{Z}_{\geq 0}\}$ such that

$$d_i f_j = (j + i + 1)f_{i+j},
\quad d_i f'_j = j f'_{i+j} + (i + 1) f_{i+j-1}.$$

The unique non-split extension $E(F_\lambda, F_{\lambda-2})$ of $F_{\lambda-2}$ by F_λ has a basis $\{f_j, f'_j \mid j \in \mathbb{Z}_{\geq 0}\}$ such that

$$d_i f_j = (j - (i + 1)(\lambda - 2))f_{i+j},
\quad d_i f'_j = (j - (i + 1)\lambda) f'_{i+j} + ((i + 1)i(i - 1) + 2(i + 1)ij)f_{i+j-2}.$$

The unique non-split extension $E(F_\lambda, F_{\lambda-3})$ of $F_{\lambda-3}$ by F_λ has a basis $\{f_j, f'_j \mid j \in \mathbb{Z}_{\geq 0}\}$ such that

$$d_i f_j = (j - (i + 1)(\lambda - 3))f_{i+j},
\quad d_i f'_j = (j - (i + 1)\lambda) f'_{i+j} + ((i + 1)i(i - 1)j + (i + 1)ij(j - 1))f_{i+j-3}.$$

The unique non-split extension $E(F_\lambda, F_{\lambda-4})$ of $F_{\lambda-4}$ by F_λ has a basis $\{f_j, f'_j \mid j \in \mathbb{Z}_{\geq 0}\}$ such that

$$d_i f_j = (j - (i + 1)(\lambda - 4))f_{i+j},
\quad d_i f'_j = (j - (i + 1)\lambda) f'_{i+j} + \left(\frac{(i + 1)!}{(i - 4)!}\lambda + \frac{(i + 1)j}{(i - 3)!}\right)
- 6(i + 1)i(i - 1)j(j - 1) - 4(i + 1)ij(j - 1)(j - 2))f_{i+j-4}.$$

The unique non-split extension $E(F_0, F_{-5})$ of F_{-5} by F_0 has a basis $\{f_j, f'_j \mid j \in \mathbb{Z}_{\geq 0}\}$ such that

$$d_i f_j = (j + 5(i + 1))f_{i+j},
\quad d_i f'_j = j f'_{i+j} + \left(2\frac{(i + 1)!j}{(i - 4)!} - 5\frac{(i + 1)!j(j - 1)}{(i - 3)!}\right)
+ 10(i + 1)i(i - 1)j(j - 1)(j - 2) + 5(i + 1)ij(j - 1)(j - 2)(j - 3))f_{i+j-5}.$$

The unique non-split extension $E(F_4, F_{-1})$ of F_{-1} by F_4 has a basis $\{f_j, f'_j \mid j \in \mathbb{Z}_{\geq 0}\}$ such that

$$d_i f_j = (j + i + 1)f_{i+j},
\quad d_i f'_j = (j - 4(i + 1))f'_{i+j} + \left(12\frac{(i + 1)!}{(i - 5)!} + 22\frac{(i + 1)!j}{(i - 4)!} + 5\frac{(i + 1)!j(j - 1)}{(i - 3)!}\right)
- 10(i + 1)i(i - 1)j(j - 1)(j - 2) - 5(i + 1)ij(j - 1)(j - 2)(j - 3))f_{i+j-5}.$$
Lemma 3.8. If $(\lambda, \mu) = (\frac{5+\sqrt{19}}{2}, -\frac{7+\sqrt{19}}{2})$, the unique non-split extension $E(F_\lambda, F_\mu)$ of F_μ by F_λ has a basis $\{f_j, f_j' \mid j \in \mathbb{Z}_{\geq 0}\}$ such that

$$d_i f_j = (j - (i + 1) \mu) f_{i+j},$$

$$d_i f_j' = (j - (i + 1) \lambda) f'_{i+j} + \left(\frac{(i + 1)!((22 \pm 5\sqrt{19})}{(i-6)!4} - \frac{(i + 1)!j(31 \pm 7\sqrt{19})}{(i-5)!2}
ight)
- \frac{(i + 1)!j(j-1)(25 \pm 7\sqrt{19})}{(i-3)!} - \frac{(i + 1)!j(j-1)(j-2)5}{(i-3)!}
+ 5(i+1)(i-1)(j-1)(j-2)(j-3) + \frac{j!2(i+1)j}{(j-5)!} f_{i+j-6}.$$

In the above formulas, $f_j = f_j' = 0$ if $j < 0$. By the isomorphism $F_\lambda^* \cong \Delta(\lambda)$, we obtain all nontrivial extensions between Verma modules.

Proposition 3.7. Suppose that $\lambda, \mu \in \mathbb{C}$. Then

$$\text{Ext}^1_\mathcal{O}(\Delta(\mu), \Delta(\lambda)) = \begin{cases}
\mathbb{C}, & \text{if } \lambda - \mu = 2, 3, 4; \\
\mathbb{C}, & \text{if } (\lambda, \mu) = (0, -1), (0, -5) \text{ or } (4, -1); \\
\mathbb{C}, & \text{if } (\lambda, \mu) = (\frac{5\pm\sqrt{19}}{2}, -\frac{7\pm\sqrt{19}}{2}); \\
0, & \text{otherwise.}
\end{cases}$$

Proof. By $\dim \text{Ext}^1_\mathcal{O}(\Delta(\mu), \Delta(\lambda)) \leq \dim \text{Ext}^1_{U(\mathfrak{g})}(\Delta(\mu), \Delta(\lambda))$ and $F_\lambda^* \cong \Delta(\lambda)$, we have

$$\dim \text{Ext}^1_\mathcal{O}(\Delta(\mu), \Delta(\lambda)) \leq \begin{cases}
1, & \text{if } \lambda - \mu = 0, 2, 3, 4; \\
2, & \text{if } (\lambda, \mu) = (0, -1); \\
1, & \text{if } (\lambda, \mu) = (0, -5) \text{ or } (4, -1); \\
1, & \text{if } (\lambda, \mu) = (\frac{5\pm\sqrt{19}}{2}, -\frac{7\pm\sqrt{19}}{2}).
\end{cases}$$

If $E(F_\lambda, F_\lambda)$ is a weight module, then there are nonzero $a_j \in \mathbb{C}$ such that

$$d_0(f_j' + a_j f_j) = (j - \lambda)(f_j' + a_j f_j)$$

for almost all j. However on the other side, $d_0(f_j' + a_j f_j) = (j - \lambda)f_j' + f_j + a_j(j - \lambda)f_j$, which is a contradiction. So $E(F_\lambda, F_\lambda)$ is not a weight module, and hence $\text{Ext}^1_\mathcal{O}(\Delta(\lambda), \Delta(\lambda)) = 0$. In fact, by (2) in Lemma 3.5, we can also see that $\text{Ext}^1_\mathcal{O}(\Delta(\lambda), \Delta(\lambda)) = 0$.

Similarly $E(F_0, F_{-1})$ is not a weight module. By the action of d_0 on f_j', we can see that $E'(F_0, F_{-1})$, $E(F_\lambda, F_{\lambda-2})$, $E(F_\lambda, F_{\lambda-3})$, $E(F_\lambda, F_{\lambda-4})$, $E(F_0, F_{-5})$, $E(F_4, F_{-1})$, and $E(F_{\frac{5+\sqrt{19}}{2}}, F_{\frac{7+\sqrt{19}}{2}})$ are weight modules. So these modules are also no-split extensions between Verma modules in \mathcal{O}. Then we can complete the proof.

3.3. Extensions between simple modules. In this subsection, we compute $\text{Ext}^1_\mathcal{O}(M, N)$ for all simple modules $M, N \in \mathcal{O}$.

Lemma 3.8. If $\lambda - \mu \notin \mathbb{Z}$, then $\text{Ext}^1_\mathcal{O}(L(\lambda), L(\mu)) = 0$.
Proof. If $M \in \mathcal{O}$ such that $L(\mu) \subset M$ and $M/L(\mu) \cong L(\lambda)$, then $\text{Supp}(M) = \text{Supp}(L(\mu)) \cup \text{Supp}(L(\lambda))$. Since $\lambda - \mu \not\in \mathbb{Z}$, $\text{Supp}(L(\mu)) \cap \text{Supp}(L(\lambda)) = \emptyset$. So $M \cong L(\mu) \oplus L(\lambda)$.

Lemma 3.9. (1) For all $\lambda \in \mathbb{C}$, $\dim \text{Ext}^1_{\mathcal{O}}(L(\lambda), L(\lambda)) = 0$.

(2) We have $\dim \text{Ext}^1_{\mathcal{O}}(L(0), L(-1)) = 1$. That is, if

$$0 \to \Delta(-1) \to M \to L(0) \to 0,$$

is a non-split exact sequence of \mathcal{M}-modules in \mathcal{O}, then $M \cong \Delta(0)$.

(3) $\dim \text{Ext}^1_{\mathcal{O}}(L(0), L(\lambda)) = 0$ for all $\lambda \in \mathbb{C} \setminus \{-1\}$.

Proof. (1) When $\lambda \neq 0$, thanks to (1) in Lemma 3.5 and $L(\lambda) = \Delta(\lambda)$, we obtain $\text{Ext}^1(L(\lambda), L(\lambda)) = 0$. It is enough to prove that $\text{Ext}^1_{\mathcal{O}}(L(0), L(0)) = 0$.

Consider the short exact sequence

$$0 \to \Delta(-1) \to \Delta(0) \to L(0) \to 0,$$

where $\Delta(-1)$ is the unique nonzero submodule of $\Delta(0)$. We can get a long exact sequence by using the functor $\text{Hom}_{\mathcal{O}}(-, L(0))$:

$$\cdots \to \text{Hom}_{\mathcal{O}}(\Delta(-1), L(0)) \to \text{Ext}^1_{\mathcal{O}}(L(0), L(0)) \to \text{Ext}^1_{\mathcal{O}}(\Delta(0), L(0)) \to \cdots.$$

According to (1) in Lemma 3.5, and the fact that $L(0)$ is not a composition factor of $\Delta(-1)$, we have $\text{Ext}^1_{\mathcal{O}}(\Delta(0), L(0)) = 0$, $\text{Hom}_{\mathcal{O}}(\Delta(-1), L(0)) = 0$, whence $\text{Ext}^1_{\mathcal{O}}(L(0), L(0)) = 0$. Thus $\text{Ext}^1_{\mathcal{O}}(L(\lambda), L(\lambda)) = 0$ for any $\lambda \in \mathbb{C}$.

(2) Consider the short exact sequence

$$0 \to \Delta(-1) \to \Delta(0) \to L(0) \to 0,$$

where $\Delta(-1)$ is the maximal submodule of codimension 1 of $\Delta(0)$. According to Lemma 3.5, we have $\text{Ext}^1_{\mathcal{O}}(\Delta(0), L(-1)) = 0$. Applying $\text{Hom}_{\mathcal{O}}(-, L(-1))$ to (3.5), from $\text{Hom}_{\mathcal{O}}(\Delta(0), L(-1)) = 0$, we can get

$$0 \to \text{Hom}_{\mathcal{O}}(\Delta(-1), L(-1)) \to \text{Ext}^1_{\mathcal{O}}(L(0), L(-1)) \to \text{Ext}^1_{\mathcal{O}}(\Delta(0), L(-1)) \to \cdots.$$

Thus $\text{Ext}^1_{\mathcal{O}}(L(0), L(-1)) \cong \text{Hom}_{\mathcal{O}}(\Delta(-1), L(-1)) \cong \mathbb{C}$.

(3) By (1) and (2), we can assume that $\lambda \neq 0, -1$. Let M be a non-split extension of $L(\lambda)$ by $L(0)$ in \mathcal{O}. We can suppose that $L(\lambda) \subset M$ and $M/L(\lambda) = L(0)$. Then $1 \leq \dim M_0 \leq 2$. There must exists $e_0' \in M_0 \setminus L(\lambda)_0$ such that $d_1e_0' = 0$. Thus $d_1d_-1e_0' = 0$. As $zd_-1e_0' = (\lambda + 1)d_-1e_0' = d_-1ze_0' = 0$ and $\lambda \neq 0, -1$, we deduce that $d_-1e_0' = 0$. Since M is indecomposable, d_2e_0' is a nonzero element in $L(\lambda)$. So $[d_-1, d_2]e_0' = 0$ implies that $d_-1d_2e_0' = 0$, contradicting with that d_-1 acts injectively on $L(\lambda)$.

\square
Next we use the relative Lie algebra cohomology to compute \(\dim \text{Ext}^1_\mathcal{O}(L(\lambda), L(0)) \).

For two weight \(\mathfrak{m} \)-modules \(M, N \),
\[
\text{Ext}^1_{\mathfrak{m}, \mathfrak{n}}(M, N) \cong H^1(\mathfrak{m}, \mathfrak{n}; \text{Hom}_\mathcal{O}(M, N))
\cong C^1(\mathfrak{m}, \mathfrak{n}; \text{Hom}_\mathcal{O}(M, N))/B^1(\mathfrak{m}, \mathfrak{n}; \text{Hom}_\mathcal{O}(M, N)),
\]
where the set of 1-cocycles \(C^1(\mathfrak{m}, \mathfrak{n}; \text{Hom}_\mathcal{O}(M, N)) \) is the subspace of all \(c \in \text{Hom}_\mathfrak{m}(\mathfrak{m}, \mathfrak{n}; \text{Hom}_\mathcal{O}(M, N)) \) such that
\[
(3.6) \quad c(\mathfrak{h}) = 0, \quad c([g_1, g_2]) = [g_1, c(g_2)] - [g_2, c(g_1)];
\]
for all \(g_1, g_2 \in \mathfrak{m} \), where \([g, \psi] \in \text{Hom}_\mathcal{O}(M, N) \) such that
\[
[g, \psi](v) = g\psi(v) - \psi(gv),
\]
for \(g \in \mathfrak{m} \), \(\psi \in \text{Hom}_\mathcal{O}(M, N), v \in M \). A 1-cocycle \(c \) is a coboundary if there is a \(\psi \in \text{Hom}_\mathfrak{m}(M, N) \) such that \(c(g) = [g, \psi] \) for any \(g \in \mathfrak{m} \).

Lemma 3.10. \(\dim \text{Ext}^1_\mathcal{O}(L(\lambda), L(0)) = \begin{cases} 1, & \text{if } \lambda = -1, -2; \\ 0, & \text{if } \lambda \neq -1, -2. \end{cases} \)

Proof. By (1) in Lemma 3.9, we can assume \(\lambda \neq 0 \). So \(L(\lambda) = \Delta(\lambda) = U(\mathfrak{m})v_\lambda = \mathbb{C}[d_{-1}]v_\lambda \). Suppose that \(L(0) = \mathbb{C}v_0 \).

According to (3.1.2) in [17], we have
\[
\text{Ext}^1_\mathcal{O}(L(\lambda), L(0)) \cong \text{Ext}^1_{(\mathfrak{m}, \mathfrak{n})}(\Delta(\lambda), L(0))
\cong \text{Ext}^1_{(\mathfrak{m}, \mathfrak{n})}(U(\mathfrak{m}) \otimes U(\mathfrak{n}) \mathbb{C}_\lambda, L(0))
\cong \text{Ext}^1_{(\mathfrak{h}, \mathfrak{n})}(\mathbb{C}_\lambda, L(0))
\cong H^1(\mathfrak{h}, \mathfrak{n}, \text{Hom}_\mathcal{O}(\mathbb{C}_\lambda, L(0))),
\]
where \(\mathbb{C}_\lambda = \mathbb{C}v_\lambda \) is the one dimensional \(\mathfrak{h} \)-module.

For \(\omega \in C^1(\mathfrak{h}, \mathfrak{n}; \text{Hom}_\mathcal{O}(\mathbb{C}_\lambda, L(0))), k, j \in \mathbb{Z}_{\geq 0}, \) we have
\[
(3.7) \quad (j - k)\omega(d_{k+j}) = [d_k, \omega(d_j)] - [d_j, \omega(d_k)].
\]

Taking \(k = 0 \), by \(\omega(d_0) = 0 \), we have \(j\omega(d_j) = [d_0, \omega(d_j)] \). After multiplying a suitable scalar, we can assume that \(\omega(d_j)(v_\lambda) = \delta_{\lambda+j,0}v_0 \). If \(\lambda \in \mathbb{Z}_{\leq -3} \), then \(\omega(d_1) = \omega(d_2) = 0 \), hence \(\omega = 0 \) and \(\dim \text{Ext}^1_\mathcal{O}(L(\lambda), L(0)) = 0 \). If \(\lambda = -2 \), then \(\omega(d_2)(v_{-2}) = v_0, \omega(d_j) = 0 \) for any \(j \neq 2 \). So from \(B^1(\mathfrak{h}, \mathfrak{n}; \text{Hom}_\mathcal{O}(\mathbb{C}_\lambda, L(0))) = 0 \), we have \(\dim \text{Ext}^1_\mathcal{O}(L(-2), L(0)) = 1 \). Similarly \(\dim \text{Ext}^1_\mathcal{O}(L(-1), L(0)) = 1 \).

We can summarize the results on extensions of simple modules as follows:

Theorem 3.11. Suppose that \(\lambda, \mu \in \mathbb{C} \). Then
\[
\text{Ext}^1_\mathcal{O}(L(\mu), L(\lambda)) = \begin{cases}
\mathbb{C}, & \text{if } \lambda - \mu = 2, 3, 4, \lambda \mu \neq 0; \\
\mathbb{C}, & \text{if } (\lambda, \mu) = (0, -1), (0, -2), (-1, 0) \text{ or } (4, -1); \\
\mathbb{C}, & \text{if } (\lambda, \mu) = \left(\frac{5 \pm \sqrt{13}}{2}, \frac{7 \pm \sqrt{13}}{2}\right); \\
0, & \text{otherwise.}
\end{cases}
\]
It should be mentioned that extensions between simple modules for the finite dimensional Witt algebra $W(1, 1)$ over an algebraically closed field of characteristic $p > 3$ were determined in [3].

3.4. Block decomposition of \mathcal{O}. We first recall the notion of blocks of an abelian category \mathcal{C}. We assume that any object of \mathcal{C} has finite composition length. We introduce an equivalence relation on the set of isomorphism classes of simple objects of \mathcal{C} as follows: two simple objects V, V' are equivalent if there exists a sequence $V = V_1, V_2, \ldots, V_r = V'$ of simple objects satisfying $\text{Ext}^1_{\mathcal{C}}(V_i, V_{i+1}) \neq 0$ or $\text{Ext}^1_{\mathcal{C}}(V_{i+1}, V_i) \neq 0$ for all i. Then for each equivalence class χ, we denote by \mathcal{C}_χ the full subcategory of \mathcal{C} consisting of objects whose all composition factors belong to χ. Each \mathcal{C}_χ is called a block of \mathcal{C} and

\begin{equation}
\mathcal{C} = \bigoplus_{\chi} \mathcal{C}_\chi.
\end{equation}

Moreover, each \mathcal{C}_χ cannot be decomposed into a direct sum of two nontrivial abelian full subcategories. The decomposition in (3.8) is called the block decomposition of the category \mathcal{C}.

For any $\lambda \in \mathbb{Z}$, let $\mathcal{O}_{[\lambda]}$ be the full subcategory of \mathcal{O} consisting of modules M such that $\text{Supp}M \subset \lambda + \mathbb{Z}$.

Proposition 3.12. We have the block decomposition $\mathcal{O} = \bigoplus_{\lambda \in \mathbb{C}/\mathbb{Z}} \mathcal{O}_{[\lambda]}$, each $\mathcal{O}_{[\lambda]}$ is indecomposable. The set $\{L(\lambda + n) \mid n \in \mathbb{Z}\}$ is the set of all simple modules in $\mathcal{O}_{[\lambda]}$.

Proof. This result follows from Theorem 3.11. □

Let $\mathbb{C}\langle x_1, x_2 \rangle$ be the free associative algebra over \mathbb{C} in two variables x_1, x_2. Recall that an abelian category \mathcal{C} is wild if there exists an exact functor from the category of finite dimensional representations of the algebra $\mathbb{C}\langle x_1, x_2 \rangle$ to \mathcal{C} which preserves indecomposability and takes non-isomorphic modules to non-isomorphic ones, see Definition 2 in [18]. The following Lemma is useful for the study of representations of infinite dimensional algebras. For its proof, one can see Proposition 2.1 in [11]

Lemma 3.13. Let \mathcal{C} be an abelian category. If the Ext-quiver of \mathcal{C} contains a finite subquiver Q whose underlying unoriented graph is neither a Dynkin nor an affine diagram such that two arrows in Q can not be concatenated, then \mathcal{C} is wild.

Theorem 3.14. For any $\lambda \in \mathbb{C}$, the block $\mathcal{O}_{[\lambda]}$ is wild.
Proof. By Theorem 3.11, the Ext-quiver of every block $O_{[\lambda]}$ contains the following subquiver:

$$
\begin{array}{c}
L(\mu) \\
\downarrow \\
L(\mu - 3) \\
\downarrow \\
L(\mu - 4) \longrightarrow L(\mu - 2) \\
\downarrow \\
L(\mu - 1),
\end{array}
$$

where $\mu \in \lambda + \mathbb{Z}$ such that $\mu(\mu - 1)(\mu - 2)(\mu - 3)(\mu - 4) \neq 0$. This subquiver is neither a Dynkin nor an affine diagram. So the block $O_{[\lambda]}$ is wild by Lemma 3.13.

Remark 3.15. We can compare the category O of \mathfrak{W} with the category $O_{\mathfrak{sl}_2}$ of \mathfrak{sl}_2. Each non-regular block of $O_{\mathfrak{sl}_2}$ is semi-simple. Every regular block of $O_{\mathfrak{sl}_2}$ is equivalent to the category of finite dimensional representations over \mathbb{C} of the following quiver

$$
\begin{array}{c}
\bullet \\
\Gamma \\
\bullet
\end{array}
$$

$ab = 0.$

So every block of $O_{\mathfrak{sl}_2}$ is not wild. It should be mentioned that representation types of all blocks of O for complex simple Lie algebras were independently obtained in [6] and [10].

3.5. Relation between O and Ω_a. In this subsection, we always assume a is a nonzero complex number. Let

$$H'_a = \{ u \in U(\mathfrak{b}) \mid u(d_{-1} - a) \subset (d_{-1} - a)U(\mathfrak{W}) \}$$

which is a subalgebra of $U(\mathfrak{b})$.

Lemma 3.16. The algebra H'_a is isomorphic to the algebra H_a defined in (2.1).

Proof. For any $u \in H'_a$, we define a $\psi_u \in H_a = \text{End}_{\mathfrak{W}}(Q_a)^{\text{op}}$ such that $\psi_u(1_a) = u1_a$. Then one can check that the linear map

$$\psi : H'_a \rightarrow H_a, u \mapsto \psi_u,$$

is an algebra isomorphism.

In view of Lemma 3.16, by Theorem 2.5, any finite dimensional nonzero simple H'_a is one dimensional.

We define a functor Γ_a (called the Whittaker coinvariants functor) from O to the category of finite dimensional H'_a-modules. For any module $M \in O_{[\lambda]}$, let

$$\Gamma_a(M) = M/(d_{-1} - a)M.$$

Clearly $\Gamma_a(M)$ is an H'_a-module. The following result is immediate.
Lemma 3.17. \(\dim \Gamma_a(L(\lambda)) = \begin{cases} 1, & \text{if } \lambda \neq 0, \\ 0, & \text{if } \lambda = 0. \end{cases} \)

So \(\Gamma_a \) maps simple modules in \(\mathcal{O} \) to simple \(H_a' \)-modules or zero. This property is similar as the functor defined by Backelin, see [1]. Let \(\Omega'_a \) be the category of finite dimensional \(H_a' \)-modules. By Theorem 2.5 and Lemma 3.16, \(\Omega'_a \) is equivalent to the Whittaker category \(\Omega_a \).

Theorem 3.18. The functor \(\Gamma_a : \mathcal{O} \to \Omega'_a \) is exact.

Proof. Suppose that

\[
0 \to N \xrightarrow{\alpha} M \xrightarrow{\beta} L \to 0,
\]

is an exact sequence in \(\mathcal{O} \). We will show that

\[
0 \to \Gamma_a(N) \xrightarrow{\Gamma_a(\alpha)} \Gamma_a(M) \xrightarrow{\Gamma_a(\beta)} \Gamma_a(L) \to 0,
\]

is exact.

From the surjectivity of \(\beta \) and \(\Gamma_a(\beta)\Gamma_a(\alpha) = 0 \), we see that \(\Gamma_a(\beta) \) is surjective and \(\text{Im} \Gamma_a(\alpha) \subset \text{Ker} \Gamma_a(\beta) \). We need to show that \(\Gamma_a(\alpha) \) is injective and \(\text{Ker} \Gamma_a(\beta) \subset \text{Im} \Gamma_a(\alpha) \).

For \(n + (d_{-1} - a)N \in \text{Ker} \Gamma_a(\alpha) \), there exists some \(m \in M \) such that \(\alpha(n) = (d_{-1} - a)m \). Then \((d_{-1} - a)\beta(m) = \beta \alpha(n) = 0 \). Since \(a \neq 0 \) and \(L \) is a weight module, \(d_{-1} - a \) acts injectively on \(L \). Thus \(\beta(m) = 0 \) and there is an \(n_1 \in N \) such that \(m = \alpha(n_1) \). Consequently, \(\alpha(n) = (d_{-1} - a)\alpha(n_1) \). Then the injectivity of \(\alpha \) implies that \(n = (d_{-1} - a)n_1 \), i.e., \(n \in (d_{-1} - a)N \). So \(\Gamma_a(\alpha) \) is injective.

For \(m + (d_{-1} - a)M \in \text{Ker} \Gamma_a(\beta) \), we have that \(\beta(m) = (d_{-1} - a)m \) for some \(l \in L \). As \(\beta \) is surjective, \(\beta(m) = (d_{-1} - a)\beta(m') \) for some \(m' \in M \), i.e., \(m - (d_{-1} - a)m' \in \text{Ker} \beta = \text{Im} \alpha \). So \(m - (d_{-1} - a)m' = \alpha(n) \) for some \(n \in N \), hence \(\text{Ker} \Gamma_a(\beta) \subset \text{Im} \Gamma_a(\alpha) \). Therefore \(\Gamma_a : \mathcal{O} \to \Omega'_a \) is exact.

If we identify \(\Omega'_a \) with \(\Omega_a \), then \(\Gamma_a \) is actually an exact functor from \(\mathcal{O} \) to the Whittaker category \(\Omega_a \). By Lemma 3.17 and the exactness of \(\Gamma_a \), we obtain the following property of \(\Gamma_a \).

Corollary 3.19. If \(\lambda \notin \mathbb{Z} \), then for any \(M \in \mathcal{O}_{[\lambda]} \), \(\dim \Gamma_a(M) \) is equal to the composition length of \(M \).

Denote the restriction of \(\Gamma_a \) to \(\mathcal{O}_{[\lambda]} \) by \(\Gamma_a^{[\lambda]} \), and by \(\Omega'_{a,[\lambda]} \) the subcategory of \(\Omega'_a \) consisting of the \(H_a' \)-modules isomorphic to \(\Gamma_a^{[\lambda]}(M) \) for \(M \in \mathcal{O}_{[\lambda]} \). Finally we give a conjecture on \(\mathcal{O}_{[\lambda]} \).

Conjecture 3.1. There is a \(\lambda \notin \mathbb{Z} \) such that \(\mathcal{O}_{[\lambda]} \) is equivalent to \(\Omega'_{a,[\lambda]} \).
4. Tensor \(\mathfrak{W} \)-modules from \(\mathfrak{b} \)-modules and Weyl modules

Let \(\mathfrak{D} \) be the Weyl algebra of rank one, that is, \(\mathfrak{D} \) is the associative algebra over \(\mathbb{C} \) generated by \(x, \partial \) subject to the relation \([\partial, x] = 1 \). In this section, we construct simple \(\mathfrak{W} \)-modules from \(\mathfrak{D} \)-modules and \(\mathfrak{b} \)-modules.

4.1. Tensor module \(T(P, V) \). The following interesting algebra homomorphism was given in [20] and [5] independently, which plays an important role in the classification of simple weight modules for \(\mathfrak{W}_n \), see [20, 16].

Lemma 4.1. There is an algebra monomorphism \(\phi \) from \(\mathfrak{U}(\mathfrak{W}) \) to \(\mathfrak{D} \otimes \mathfrak{U}(\mathfrak{b}) \) such that

\[
\begin{align*}
 d_{-1} &\mapsto \partial \otimes 1, \\
 d_m &\mapsto x^{m+1} \partial \otimes 1 + \sum_{r=0}^{m} \binom{m+1}{r+1} x^{m-r} \otimes d_r, \quad m \in \mathbb{Z}_{\geq 0}.
\end{align*}
\]

By Lemma 4.1, for any \(\mathfrak{D} \)-module \(P \), any \(\mathfrak{b} \)-module \(V \), the tensor product \(P \otimes V \) can be made to be a \(\mathfrak{W} \)-module denoted by \(T(P, V) \).

Remark 4.2. Let \(S = \mathbb{C}[x^{\pm 1}] / \mathbb{C}[x] \) which is a simple \(\mathfrak{D} \)-module. Then we have a functor \(T(S, -) \) from the category \(\mathfrak{b} \)-mod of finite dimensional \(\mathfrak{b} \)-modules to the category \(\mathcal{O} \). We originally intended to use the functor \(T(S, -) \) to study \(\mathcal{O} \). However, in view of extensions between simple modules in \(\mathcal{O} \), \(T(S, V) \) may be decomposable for some indecomposable \(\mathfrak{b} \)-module \(V \). Nevertheless, we can use the bifunctor \(T(-, -) \) to construct simple \(\mathfrak{W} \)-modules.

In the following theorem, we will give the simplicity of \(T(P, V) \) under some natural conditions.

Theorem 4.3. Suppose that \(P \) is a simple \(\mathfrak{D} \)-module, and \(V \) is a simple \(\mathfrak{b} \)-module such that there is an \(l \in \mathbb{Z}_{>0} \) satisfying

1. \(d_l \) acts injectively on \(V \);
2. \(d_i V = 0 \) for any \(i > l \),

then \(T(P, V) \) is a simple \(\mathfrak{W} \)-module.

Proof. Let \(N \) be a nonzero submodule of \(T(P, V) \). Suppose that \(u = \sum_{n=0}^{q} p_n \otimes v_n \) is a nonzero element in \(N \), where \(p_0, \ldots, p_q \) are linearly independent.

Claim 1. For any \(X \in \mathfrak{D} \), we have that \(\sum_{n=0}^{q} X p_n \otimes d_l^2 v_n \in N \).
For any k with $k \geq 2l$ and any m with $-1 \leq m \leq 2l + 1$, we can compute that
\[
d_{k-m}d_m(p \otimes v) = d_{k-m}(d_mp \otimes v + \sum_{r=0}^{m} \binom{m+1}{r+1} x^{m-r} p \otimes d_r v)
\]
\[
= (d_{k-m}d_mp) \otimes v + \sum_{r=0}^{m} \binom{m+1}{r+1} (d_{k-m}x^{m-r}p) \otimes d_r v
\]
\[
+ \sum_{s=0}^{k-m} \binom{k-m+1}{s+1} x^{k-m-s}d_mp \otimes d_sv
\]
\[
+ \sum_{s=0}^{k-m} \sum_{r=0}^{m} \binom{k-m+1}{s+1} \binom{m+1}{r+1} x^{k-r-s}p \otimes d_sd_r v
\]
\[
= m^{2l+2}x^k x^{-2l} p \otimes \frac{d_i^2 v}{((l+1)!)^2} + g(m),
\]
where $g(m)$ is the term with degree of m smaller than $2l + 2$. Consider the coefficient of m^{2l+2} in $d_{k-m}d_mu$. By letting $m = -1, 0, 1, \ldots, 2l + 1$, using the Vandermonde matrix, we deduce that $\sum_{n=0}^{q} x^i p_n \otimes d_i^2 v_n \in N$, for all $i \in \mathbb{Z}_{\geq 0}$. From the action of d_{-1} on N, we see that $\sum_{n=0}^{q} \partial^i x^j p_n \otimes d_i^2 v_n \in N$ for all $i, j \in \mathbb{Z}_{\geq 0}$. So $\sum_{n=0}^{q} Xp_n \otimes d_i^2 v_n \in N$ for any $X \in \mathfrak{D}$. Then Claim 1 follows.

Claim 2. $P \otimes d_i^2 v_n \subset N$, for any $0 \leq n \leq q$.

Since P is a simple \mathfrak{D}-module, by the Jacobson density theorem, for any $p \in P$, there is a X_n such that
\[
X_n p_i = \delta_{n,i} p, \quad i = 0, \ldots, q.
\]
By Claim 1, we obtain that $P \otimes d_i^2 v_n \subset N$, for any $0 \leq n \leq q$. Claim 2 follows.

Claim 3. $N = T(P, V)$. Hence $T(P, V)$ is simple.

Let $V_1 = \{v \in V \mid P \otimes v \subset N\}$. By Claim 2 and that d_l acts injectively on V, $V_1 \neq 0$. For any $v \in V_1, p \in P$, taking $m = 0, 1, \ldots, l$ in
\[
d_m(p \otimes v) = d_mp \otimes v + \sum_{r=0}^{m} \binom{m+1}{r+1} x^{m-r} p \otimes d_r v,
\]
we can see that $p \otimes d_0 v, p \otimes d_1 v, \ldots, p \otimes d_l v \in N$. So V_1 is a nonzero \mathfrak{b}-submodule of V. The simplicity of V forces that $V_1 = V$. Then Claim 3 follows.

\[\square\]

4.2. Isomorphism criterion for $T(P, V)$. Next we give the following isomorphism criterion for $T(P, V)$.

Theorem 4.4. Suppose that P, P' are simple \mathfrak{D}-modules, V, V' are simple \mathfrak{b}-modules such that there are $l, s \in \mathbb{Z}_{\geq 0}$ satisfying d_l (resp. d_s) acts injectively on
\(V \) (resp. \(V' \)) and \(d_i V = 0 \) (resp. \(d_i V' = 0 \)) for any \(i > 1 \) (resp. \(i > s \)). Then \(T(P, V) \cong T(P', V') \) if and only if \(P \cong P', l = s \) and \(V \cong V' \).

Proof. The sufficiency is obvious. Now suppose that

\[
\psi : T(P, V) \to T(P', V')
\]

is an isomorphism of \(\mathfrak{W} \)-modules. Let \(p \otimes v \) be a nonzero element in \(T(P, V) \). Write

\[
\psi(p \otimes v) = \sum_{n=0}^{q} p'_n \otimes v'_n \in T(P', V'),
\]

where \(p'_0, \ldots, p'_q \) are linearly independent. Similar to the proof of Claim 1 of Theorem 4.3, comparing the the highest degree of \(m \) on both sides of

\[
\psi(d_{k-m}d_m(p \otimes v)) = d_{k-m}d_m \psi(p \otimes v),
\]

we have that \(l = s \) and

\[
\psi(Xp \otimes v) = \sum_{n=0}^{q} Xp_n \otimes d_l^2 v_n, \quad \forall X \in \mathfrak{D}.
\]

By the Jacobson density theorem, there exists \(Y \in \mathfrak{D} \) such that \(Yp_i = \delta_{i0} p_0 \). Then

\[
\psi(Yp \otimes v) = p_0 \otimes d_l^2 v_n.
\]

Replacing \(Yp \) by \(p, p_0 \) by \(p' \) and \(d_l^2 v_n \) by \(v' \), we have

\[
\psi(Xp \otimes v) = Xp' \otimes v', \quad \forall X \in \mathfrak{D}.
\]

Consequently \(\psi_1 : P \to P' \) satisfying \(\psi_1(Xp) = Xp' \) is a well-defined map. Since \(P, P' \) are simple \(\mathfrak{D} \)-modules,

\[
\text{Ann}_{\mathfrak{D}}(p) = \text{Ann}_{\mathfrak{D}}(p'), \quad \text{and} \quad P \cong \mathfrak{D}/\text{Ann}_{\mathfrak{D}}(p) \cong P'.
\]

Thus \(\psi_1 \) is a \(\mathfrak{D} \)-module isomorphism and

\[
\psi(p \otimes v) = \psi_1(p) \otimes v', \quad \forall p \in P.
\]

Then from \(\psi(d_m(p \otimes v)) = d_m \psi(p \otimes v) \), we obtain that

\[
\psi(p \otimes d_r v) = \psi_1(p) \otimes d_r v', \quad \forall p \in P, \quad r \in \mathbb{Z}_{\geq 0}.
\]

So

\[
\psi(p \otimes yv) = \psi_1(p) \otimes yv', \quad \forall p \in P, \forall y \in U(b).
\]

Therefore we have \(\text{Ann}_{U(b)}(v) = \text{Ann}_{U(b)}(v') \). The simplicity of \(V \) and \(V' \) implies that \(V \cong U(b)/\text{Ann}_{U(b)}(v) \cong V' \).
Remark 4.5. For each $r > 0$, denote the quotient algebra $b/(d_{r+i} : i > 0)$ by a_r. From Theorem 4.3, we know that, to obtain new simple \mathfrak{g}-modules $T(P, V)$, it is enough to construct infinite dimensional simple modules V over a_r for $r > 0$ such that the action of d_r on V is injective. Simple modules over a_1 and a_2 were classified in [15].

References

[1] E. Backelin, Representation of the category O in Whittaker categories, Int. Math. Res. Notices 4, (1997) 153-172.
[2] I. Bernshtein, I. Gelfand, S. Gelfand, A certain category of \mathfrak{g}-modules, Funkcional. Anal. i Prilozhen. 10 (1976), no. 2, 1-8.
[3] B. D. Boe, D. K. Nakano, E. Wiesner, Ext1-quivers for the Witt algebra $W(1,1)$, J. Algebra 322 (2009), no. 5, 1548-1564.
[4] B. D. Boe, D. K. Nakano, E. Wiesner, Category O for the Virasoro algebra: cohomology and Koszulity, Pac. J. Math. 234 (1) (2008) 1-21.
[5] Y. Billig, C. Ingalls, A. Nasr, $\mathcal{A}V^2$-modules of finite type on affine space, arxiv:2002.08388.
[6] T. Brüstle, S. König, V. Mazorchuk, The coinvariant algebra and representation types of blocks of category O, Bull. London Math. Soc. 33 (2001), 669-681.
[7] F. Duan, B. Shu, Y. Yao, The Category O for Lie algebras of vector fields (I): Tilting modules and character formulas, Publ. Res. Inst. Math. Sci. 56 (2020), no. 4, 743-760.
[8] P. Fiebig, The combinatorics of category O over symmetrizable Kac-Moody algebras, Transform. Groups 11 (1) (2006) 29-91.
[9] B. L. Feigin, D. B. Fuchs, Homology of lie algebras on vector fields on the line, Funct. Anal. Appl. 14(1980)201-212.
[10] V. Futorny, D. Nakano, R. D. Pollack, Representation type of the blocks of Category O, Q. J. Math. 52 (3) (2001) 285-305.
[11] J. Germoni, On the classification of admissible representations of the Virasoro algebra, Lett. Math. Phys. 55 (2001), 169-177.
[12] J. Humphreys, Representations of semisimple Lie algebras in the BGG category O, Graduate Studies in Mathematics, 94. American Mathematical Society, Providence, RI, 2008.
[13] G. Liu, R. Lu, K. Zhao, Irreducible Witt modules from Weyl modules and \mathfrak{gl}_n-modules, J. Algebra 511 (2018), 164-181.
[14] R. V. Moody and A. Pianzola, Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley Sons, New York, 1995.
[15] V. Mazorchuk, K. Zhao, Simple Virasoro modules which are locally finite over a positive part, Selecta Math. (N.S.), 20 (2014), no. 3, 839-854.
[16] D. Grantcharov, V. Serganova, Simple weight modules with finite weight multiplicities over the Lie algebra of polynomial vector fields, arxiv: 2102.09064.
[17] S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Birkhäuser, (2002).
[18] E. Makedonski, On wild and tame finite dimensional Lie Algebras, Functional Analysis and Its Applications 47 (2013), No. 4, pp. 271-283.
[19] O. Mathieu, Classification of Harish-Chandra modules over the Virasoro Lie algebra, Invent. Math. 107 (1992), no. 2, 225-234.

[20] Y. Xue, R. Lü, Classification of simple bounded weight modules of the Lie algebra of vector fields on \mathbb{C}^n, arxiv:2001.04204v1.

[21] Y. Zhao, G. Liu, Whittaker category for the Lie algebra of polynomial vector fields. J. Algebra 605 (2022), 74-88.

G.L.: School of Mathematics and Statistics, and Institute of Contemporary Mathematics, Henan University, Kaifeng 475004, China. Email: liugenqiang@henu.edu.cn

M.L.: School of Mathematics and Statistics, Henan University, Kaifeng 475004, China. Email: 13849167669@163.com