Supplementary Material and Methods

Construction of *L. rhamnosus* ATCC 53103 Δ*luxS*

To delete *luxS*, we applied the vancomycin-based counterselection system (pVPL3002) as described by Zhang et al. [1]. First, we cloned the upstream and downstream flanks of *luxS* in pVPL3002 by Ligase Cycling Reaction (LCR)[2]. The plasmid backbone of pVPL3002 was amplified with oVPL187-188, and oligonucleotide pairs oVPL3228-3229 and oVPL3230-3231 were used to amplify the up- and downstream flanks of *luxS*, respectively. The three amplicons were fused using bridging oligonucleotides oVPL3232, 3233, and 3234. The resulting plasmid construct was named pVPL31157. We transformed 3 μg pVPL31157 in *L. rhamnosus* ATCC 53103 as described in Zhang et al. We used oligonucleotide pairs oVPL49-3235-3236 and oVPL97-3235-3236 to identify upstream and downstream integration of pVPL31157, respectively. Upon confirmation of single-crossover homologous recombination (SCO), cells were cultured in MRS for 20 generations in the absence of antibiotics and plated on MRS agar containing 1,000 μg/mL vancomycin. This selects for cells that have undergone a second homologous recombination event. By using PCR (oligonucleotides oVPL3235-3236) we screened for deletion of *luxS*. Efficiency of the deletion was subsequently verified by Sanger sequencing. The resultant *luxS* mutant strain was named VPL4310. The strains, plasmids, and oligonucleotides used for *luxS* mutant construction are detailed in Table 1 and 2.
Supplementary Table S1. Bacterial strains and plasmids used in this study

Genus and Species	Straina	Descriptionb	Sourcec
Escherichia coli	EC1000	In trans RepA provider, Kan$^{\text{R}}$ (cloning host)	[3]
Escherichia coli	VPL3002	EC1000 harboring pVPL3002, Em$^{\text{R}}$	[1]
Escherichia coli	VPL31157	EC1000 harboring pVPL31157, Em$^{\text{R}}$	This study
Lactobacillus rhamnosus	ATCC 53103	Wild-type	ATCC
Lactobacillus rhamnosus	VPL4310	ATCC 53103 ΔluxS	This study

Plasmids	Genotype	Description	Source
pVPL3002	pORI19::ddlA F258Y$_{r_{euteri}}$, Em$^{\text{R}}$	Suicide shuttle vector with vancomycin counter-selection marker	[1]
pVPL31157	pVPL3002::luxS deletion cassette, Em$^{\text{R}}$	Deletion cassette targets luxS in ATCC 53103	This study

a: VPLxxxx: Van Pijkeren Laboratory strain collection identification number; b: Kan$^\text{R}$: kanamycin resistance; Em$^\text{R}$: erythromycin resistance; pVPLxxxx: Van Pijkeren Lab plasmid collection identification number; c: ATCC: American Type Culture Collection
Supplementary Table S2. Oligonucleotides used in this study

Oligonucleotides[#]	Sequence (5’-3’)	Description[‡]
oVPL49	acaatttcacaggaacagc	Oligo paired with oVPL97 used for screening pVPL3002 constructs
oVPL97	cccccattaagtgccagtgc	Oligo paired with oVPL49 used for screening pVPL3002 constructs
oVPL187	taccgagctgtaatcaaggg	Rev, internal oligo for pVPL3002 backbone amplification
oVPL188	atctctagagtagctgagc	Fwd, internal oligo for pVPL3002 backbone amplification
oVPL3228	ttagctgatgtagtgcaaggc	Fwd, paired with oVPL3229 used for luxS gene deletion cassette (u/s)
oVPL3229	taagcgccttaactgcaggtg	Rev, paired with oVPL3228 used for luxS gene deletion cassette (u/s)
oVPL3230	attaccggcagggtgtctataatc	Fwd, paired with oVPL3231 used for luxS gene deletion cassette (d/s)
oVPL3231	gttcgttttagctgctgtc	Rev, paired with oVPL3230 used for luxS gene deletion cassette (d/s)
oVPL3232	aaacgacggccagtggaacctagctgattagtctgatgtagtgcaaggcgcaagcataacctgggca	Bridging oligonucleotides used for LCR
oVPL3233	gtagataccactgcagtaagggccttaattaccggcagtgtcatactgacga	Bridging oligonucleotides used for LCR
oVPL3234	cgattggaaacagcagggataacaagaaacacactetccttagtagctgacagcagcagtattaatcggcaagc	Bridging oligonucleotides used for LCR
oVPL3235	ggctttactggcacttgcagcaggcatgtaatcggcagcagcagtattaatcggcaagc	Bridging oligonucleotides used for LCR
oVPL3236	gttgagcagctggctgtaaatcggcagcagcagtattaatcggcaagc	Bridging oligonucleotides used for LCR

[#]: oVPLxxxx: Van Pijkeren Laboratory oligonucleotide identification number; [‡]: fwd: forward; rev: reverse; u/s: upstream; d/s: downstream; LCR: ligation cycling reaction
Supplementary data

Supplementary Table S3. Primer sequences for RT-qPCR

Primers	5'-3'	Sequence
β-actin	Forward	GTGCCCATCTATGAGGTACGCT
	Reverse	GTCACGGACAATTTCCTCTTTCGGG
TLR1	Forward	TAAACCTTCGGCACAACCCGA
	Reverse	AGATCCAGCAGCGGTATGAA
TLR2	Forward	AAACCTGCTGTCGTATGACGCTT
	Reverse	ACACAGGGAACACAGAGCT
TLR3	Forward	TTTCTGGCTTCGGGACCT
	Reverse	ACTTTGTGATGCCCATGCT
TLR4b	Forward	TACCACTTGGGTGCTCTGAG
	Reverse	AATGTTGATCCGTACGCT
TLR5b	Forward	AGAGACGGCGCGGTATGAG
	Reverse	GAAGCTGGCTGGATTTTCTGT
TNF-α	Forward	GTGCAATCCGCTCAATCTGCACG
	Reverse	AATGGAAGGCACGGCGAGG
IL-1β	Forward	GGCACTGCTGTCGCTGACG
	Reverse	GGGGCAACACAGGCGAGG
IL-6	Forward	ATGAGCGGATCTGAGGG
	Reverse	GCAGCGGTCTGAAGGT
NF-κB	Forward	TTTCCGAGGAGAGATGGAGAG
	Reverse	CTGTTCAAGTGAGCGAG
IκBα	Forward	TTTCGGAGGAGAGATGGAGAG
	Reverse	CTGTTCAAGTGAGCGAG
MyD88	Forward	GAGGATGGTGTTGATCCT
	Reverse	CGACAGGAGATTAGCAGCTG italic
STAT	Forward	ATCGACCTTGGAGACGACT
	Reverse	CCCATCGGCTTGGGAGCTG italic
JNK	Forward	GGAATAGAATGATGTTGICTGGATGATG
	Reverse	TGGTTCTGGGAGGCTCGTCTGAG
p38	Forward	CCTGAAGATCATGCTCAACCTG
	Reverse	GCTAGGACATCTGCTTTATTAGAGA

References

1. Zhang, S., et al., *D-Ala-D-Ala ligase as a broad host-range counterselection marker in vancomycin-resistant lactic acid bacteria*. Journal of bacteriology, 2018: p. JB. 00607-17.

2. Kok, S.d., et al., *Rapid and reliable DNA assembly via ligase cycling reaction*. ACS synthetic biology, 2014. 3(2): p. 97-106.

3. Leenhouts, K., et al., *Construction of a food-grade multiple-copy integration system for Lactococcus lactis*. Applied Microbiology and Biotechnology, 1998. 49(4): p. 417-423.
Supplementary Figure S1. Expression of TLRs of germ-free (GF), conventionally raised (CR), and LGG-colonized zebrafish larvae, n=6. GF, WT and ΔluxS, zebrafish larvae in germ-free were exposed to none or to wild-type or ΔluxS LGG at a concentration of 10^8 cfu/mL for 24 h on 5 dpf, respectively. TLR, toll-like receptor, p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***)

Supplementary Figure S2. The deletion base of the luxS gene.

WT.txt	ACTTAAAGCCCGCTTAACTGCCGTATTACCCACCGAARATTGCCGGGATGGAATTTCAATTGAATTACGGCT
luxS.txt	ACTTAAAGCCCGCTTAACTGCCGTATTACCCACCGAARATTGCCGGGATGGAATTTCAATTGAATTACGGCT
Consensus	AGTAAAGCGGGCAACGAACCGTCCGATATGCGCACACTGGGCATATATATGTCGGC

WT.txt	TGTTTCAACGCAACACCGGCGATGATCATCAGCGGCGGTGCAACAATTCGACTGCTTGTGGCGGTATTTTA
luxS.txt	TGTTTCAACGCAACACCGGCGATGATCATCAGCGGCGGTGCAACAATTCGACTGCTTGTGGCGGTATTTTA
Consensus	ACCGTTCAACGCAACACCGGCGATGATCATCAGCGGCGGTGCAACAATTCGACTGCTTGTGGCGGTATTTTA

WT.txt	GCAGTGGATGGCTGATTGGCGGTGCTTGGCGGTATGATCAGCAGCTGCTGCGATGGAATTTCAATTGAATTACGGCT
luxS.txt	GCAGTGGATGGCTGATTGGCGGTGCTTGGCGGTATGATCAGCAGCTGCTGCGATGGAATTTCAATTGAATTACGGCT
Consensus	AGTAAAGCGGGCAACGAACCGTCCGATATGCGCACACTGGGCATATATATGTCGGC

WT.txt	AGCTGGGAAGGGCAACCGTCCGATATGCGCACACTGGGCATATATATGTCGGC
luxS.txt	AGCTGGGAAGGGCAACCGTCCGATATGCGCACACTGGGCATATATATGTCGGC
Consensus	AGTAAAGCGGGCAACGAACCGTCCGATATGCGCACACTGGGCATATATATGTCGGC

WT.txt	ATTTCCGAGACGGCACAGTTTGACGCAATCAGGACAGATCAACAAAAATAGCACACAGCAATTT
luxS.txt	ATTTCCGAGACGGCACAGTTTGACGCAATCAGGACAGATCAACAAAAATAGCACACAGCAATTT
Consensus	ATTTCCGAGACGGCACAGTTTGACGCAATCAGGACAGATCAACAAAAATAGCACACAGCAATTT