Relativistic Spin Operator and Lorentz Transformation of the Spin State of a Massive Dirac Particle

Taeseung Choi

Division of General Education, Seoul Women's University, Seoul 139-774, and
School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012, Korea

We have shown that the covariant relativistic spin operator is equivalent to the spin operator commuting with the free Dirac Hamiltonian. This implies that the covariant relativistic spin operator is a good quantum observable. The covariant relativistic spin operator has a pure quantum contribution that does not exist in the classical covariant spin operator. Based on this equivalence, reduced spin states can be clearly defined. We have shown that depending on the relative motion of an observer, the change in the entropy of a reduced spin density matrix sweeps through the whole range.

PACS numbers: 03.67.-a, 03.30.+p

Keywords: Quantum information, Lorentz transformation

*Electronic address: tschoi@swu.ac.kr; Fax: +82-2-970-5907
I. INTRODUCTION

The spin of a massive Dirac particle is $1/2$, so it can be used as a qubit under the condition that a detector is ideal in the sense that it does not respond to the momentum of the particle. The statistical prediction of measurements for a spin is provided by the reduced spin density matrix, which can be obtained by partial tracing over momentum degrees of freedom. The interesting fact is that the purity of the spin, which is described by the Von Neumann entropy of the reduced spin density matrix, changes under the Lorentz transformation [1]. This would be expected because the spin of a massive Dirac particle rotates depending on the momentum of the particle under the general Lorentz transformation as Wigner has noted [2]. By the Wigner rotation, the entanglement of spin and momentum degrees of freedom can be changed in general.

The seminal work by Peres et al. [1], which noticed the relativistic depurification of the spin by using two-component spinors, has not been fully appreciated. There were arguments whether the reduced spin density matrix in Ref. 1 is a proper one [3]. This is partly because the physical spin observable was not noted in that paper [1]. The change of the spin entropy can be described by the reduced spin density matrix which does not require the explicit form of a spin observable. For the measurement of the spin entropy, however, the physical spin observables must be specified. Because of the lack of knowledge about the relativistic spin, most later works, which have developed the new field known as the relativistic quantum information [4–17], have been done by using spins different from the one implicitly given in the paper [1].

Gingrich and Adami have used the 4-dimensional Dirac eigen-spinors, which are the spin part of the solution for the covariant Dirac equation, because the eigen-spinors show manifest Lorentz covariance [15]. The Dirac eigen-spinor in a laboratory frame, where a particle is moving, has momentum-dependent components, so partial tracing over the momentum was criticized [7]. The momentum dependence in the components of the Dirac eigen-spinors can be eliminated in the special representation given by Foldy and Wouthysen [18]. We call this the Foldy-Wouthysen (FW) representation. Therefore, in the FW representation, the meaning of partial tracing over the momentum is clear so that the reduced spin density matrix can be well defined. The two spin density matrices for the same positive energy particle, one in the FW representation and the other in the covariant Dirac representation,
give the same entropy. In this sense the results given by Peres et. al [1] and Gingrich and Adami [15] can be justified. Recently it was noticed, however, that the reduced spin density matrix was meaningless because the spin of the relativistic particle could not be measured independently of its momentum [16]. This conclusion is erroneous because the classical spin operator, not the full quantum spin operator, had been considered [19].

In the FW representation, there is a mean spin operator that commutes with the free Dirac Hamiltonian so that it is a good quantum observable. We call this spin operator the FW mean spin operator. Gürsey and Ryder [20] have shown that the covariant relativistic spin operator for positive energy states, which is obtained by using the Lorentz transformation in the spinor representation, is the same as a FW mean spin operator for positive energy states. The equivalence for negative energy states, however, is not clear because the forms of two operators are different. In this paper, we will show explicitly the equivalence between the covariant relativistic spin operator and the FW mean spin operator for the whole of spinor space. The difference of the covariant relativistic spin operator from the classical covariant spin operator will also be discussed. This will clarify the long-standing controversy regarding what are the proper spin operator and the reduced spin entropy in the laboratory frame. We will also study the change of the relativistic spin entropy in the FW representation in which the tracing over the momentum has a clear meaning. The results show that the pure spin state can become a completely-mixed spin state and vice versa. In Sections II and III we review the covariant relativistic spin operator and the FW mean spin for clarity and self-containedness. In Section IV we will show the equivalence of the two spin operators. In Section V we will discuss the change of reduced spin density matrices under Lorentz transformation. In Section VI we will summarize our results.

II. COVARIANT RELATIVISTIC SPIN

The spin operator in the laboratory frame can be obtained from the spin operator in the particle rest frame by using the Lorentz transformation. This spin operator is a good candidate for a relativistic spin operator, and we call this spin operator the covariant relativistic spin operator. We will review the procedure to obtain the covariant relativistic spin in a fully covariant way and discuss its difference from the classical covariant spin used to define the covariant spin magnetic dipole moment. For completeness, we also
review another approach \[21\] to obtain the covariant relativistic spin operator by using Pauli-Lubanski vector.

A. Lorentz Covariant Approach

Let us consider the following covariant Dirac equation for a free massive Dirac particle in coordinate space:

\[
(i\gamma^\mu \partial_\mu - m)\psi(p) = 0,
\]

where

\[
\gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix} \text{ for } i = 1, 2, 3,
\]

and \(\sigma_i\) are the usual Pauli matrices. \(\gamma^\mu\) are Dirac matrices. We use the sign convention \(\eta_{\mu\nu} = \text{diag}(+, - , - , -)\) for the metric and the natural units \(c = \hbar = 1\). The summation conventions are also used. The Greek index \(\mu\) runs \(0, 1, 2, 3\) and the Latin index \(i\) runs \(1, 2, 3\). The covariant Dirac equation has two positive energy solutions, \(u(p, s) e^{-ip_\mu x^\mu}\), and two negative energy solutions, \(v(p, s) e^{ip_\mu x^\mu}\), where \(s = \pm 1\). \(e^{-ip_\mu x^\mu}\) is the coordinate representation of the momentum eigenstate. \(u(p, s)\) and \(v(p, s)\) are the spin parts of the Dirac solutions and are called the positive energy spinor and the negative energy spinor, respectively. As is well known, negative energy solutions can be interpreted as antiparticles with opposite charges from and the same momenta as those of the particles even when their momentum eigenvalue is \(-p_\mu = -(p_0, -\mathbf{p})\) \[22\]. In this paper, we will use the term negative energy spinor because its use is convenient for a one-particle state.

Using the Lorentz covariance of the Dirac equation in Eq. (1), one can obtain the solutions for a moving particle from the solutions in the particle rest frame by using the Lorentz transformation. The momentum of particle \(p_\mu\) is determined from the momentum of the rest particle \(k_\mu = (m, 0, 0, 0)\) such as \(p_\mu = (L_{\mathbf{p}})_\mu^\nu k_\nu\) by using the standard Lorentz boost \(L_{\mathbf{p}}\). Then, the spinors \(u(p, s)\) and \(v(p, s)\) for moving particles can be obtained by the spinors \(u(k, s)\) and \(v(k, s)\) for the rest particle multiplying by \(S(L_{\mathbf{p}})\), respectively. That is, \(u(p, s) = S(L_{\mathbf{p}})u(k, s)\) and \(v(p, s) = S(L_{\mathbf{p}})v(k, s)\). The \(S(L_{\mathbf{p}})\) is the Lorentz transformation.
in the spinor representation corresponding to L_p:

$$S(L_p) = \begin{pmatrix} \cosh \frac{\xi}{2} & \sigma \cdot \hat{p} \sinh \frac{\xi}{2} \\ \sigma \cdot \hat{p} \sinh \frac{\xi}{2} & \cosh \frac{\xi}{2} \end{pmatrix} = \frac{E + m - \gamma^0 \gamma^j p_i}{\sqrt{2m(E + m)}},$$ \(3\)

where ξ is the rapidity of the particle and $\hat{p} = \frac{p}{\sqrt{p^2}}$. In the particle rest frame, the meaning of the spin index s is clear because the spin operator in the particle rest frame is

$$\frac{\Sigma}{2} = \frac{1}{2} \begin{pmatrix} \sigma & 0 \\ 0 & -\sigma \end{pmatrix},$$ \(4\)

where Σ and σ are the three-dimensional vectors $(\Sigma_x, \Sigma_y, \Sigma_z)$ and $(\sigma_x, \sigma_y, \sigma_z)$, respectively. The spinors $u(k, \pm)$ and $v(k, \pm)$ are eigen-spinors of the 4-dimensional Pauli spin matrix Σ_z with eigenvalue ± 1.

Note that the spinors $u(p, s)$ and $v(p, s)$ for moving particles have the same spin index s as the rest spinors $u(k, s)$ and $v(k, s)$. This is reasonable because Wigner rotation by a single standard Lorentz transformation becomes trivial \[2\]. However, the spin operator in the laboratory frame is not clear. The spin operator $\frac{\Sigma}{2}$ in Eq. \(4\) is $-W_i/2m$ in the particle rest frame, and W_i is the space part of the Pauli-Lubanski vector

$$W_{\mu} = -\frac{1}{2} \epsilon_{\mu\nu\lambda\delta} J^{\nu\lambda} P^\delta,$$ \(5\)

where $J^{\nu\lambda}$ and P^δ are the angular momentum and the momentum operators, respectively. $\epsilon_{\mu\nu\lambda\delta}$ is a Levi-Civita symbol. The W_i in the laboratory frame, however, does not satisfy the required spin commutation relations $[W_i, W_j] = -i \epsilon_{ijk} W_k/m$ although $W_{\mu} W^\mu = -m^2 S(S + 1)$ is the second Casimir invariant of the inhomogeneous Lorentz group (Poincaré group) and S is the spin of the particle \[22\].

The proper way to obtain the relativistic spin operator in a fully covariant way is to define the following spin tensor for the particle rest frame:

$$\Sigma_{0}^{\mu\nu} = \frac{i}{2} [\gamma^\mu, \gamma^\nu].$$ \(6\)

In the standard representation, the 3-dimensional spin vector defined by $\Sigma_i = \epsilon_{ijk} \Sigma_0^{jk}/2$ becomes the 4×4 Pauli spin Σ_i, where ϵ_{ijk} is a Levi-Civita symbol. The spin operator for a moving frame can naturally be defined, by using the Lorentz transformation, from the spin tensor for the particle rest frame as

$$\Sigma_R^{\mu\nu} = S(L_p) \Sigma_0^{\mu\nu} S^{-1}(L_p),$$ \(7\)
where $S^{-1}(L_p)$ is the inverse Lorentz transformation of $S(L_p)$. Then the spin operator becomes

$$\left(\Sigma_R\right)_i = \frac{\epsilon_{ijk} \Sigma_{jk}}{2} + \frac{\epsilon_{ijk} p_j (\Sigma \times p)_k}{2m(E + m)} + \frac{\gamma_5}{2m} (\Sigma \times p)_i,$$

(8)

which is the same as the covariant relativistic spin operator in Ref. 20. The $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$ is a 4×4 matrix with off-diagonal terms. Notice that the eigenvalue equations of the covariant relativistic spin operator in the laboratory frame are

$$\left(\Sigma_R\right)_z u(p, \pm) = \pm u(p, \pm),$$

(9)

$$\left(\Sigma_R\right)_z v(p, \pm) = \pm v(p, \pm).$$

These confirm that the spin eigenvalues in the laboratory frame are the same as the spin eigenvalues in the particle rest frame. An arbitrary positive energy spin state $\psi(k) = au(k, +) + bu(k, -)$ in the particle rest frame becomes the spin state $\psi(p) = S(L_p)\psi(k, s) = au(p, +) + bu(p, -)$ in the moving frame. Then, the expectation value of the spin in the particle rest frame $\bar{\psi}(k) \Sigma \psi(k)$ is equal to the expectation value of the spin in the moving frame $\bar{\psi}(p) \Sigma_R \psi(p)$, where $\bar{\psi}(p) = \psi(p)\gamma_0$ and the relativistic invariant normalizations

$$\bar{u}(p, s)u(p, s') = -\bar{v}(p, s)v(p, s') = \delta_{ss'}, \quad \bar{u}(p, s)v(p, s') = 0$$

(10)

are used. This implies that the measurements of the spin along the same axes by two observers, one in the particle rest frame and the other in the laboratory frame, will give the same spin expectation value.

It is interesting to compare the covariant relativistic spin operator in Eq. (8) with the classical covariant spin in classical electrodynamics. The classical covariant spin can be defined as $S = \gamma_v \hat{\mu}/\alpha$ by using the classical covariant magnetic dipole moment

$$\hat{\mu} = \alpha \left[\frac{\sigma}{2} - \frac{p(v \cdot \sigma)}{2(E + m)} \right],$$

(11)

where α is the gyromagnetic ratio. The Lorentz factor γ_v is $1/\sqrt{1 - v^2}$ and $p = m\gamma_v v$. Notice that the classical covariant spin S can also be derived by using the spin tensor $S_{\mu\nu} = -\epsilon_{\mu\nu\lambda\delta} P^\lambda W^\delta$. One can see the main difference between the covariant relativistic spin operator Σ_R and the classical spin operator S is the γ_5 proportional term. That is, without the γ_5 proportional term, the covariant relativistic spin operator Σ_R becomes $S I$, where I is the 4×4 identity matrix. Therefore, the γ_5 proportional term is a
purely quantum-mechanical term that is manifest in the 4-dimensional spinor representation.

B. Construction by Using Commutators of Pauli-Lubanski Vectors

The Dirac particles satisfy the inhomogeneous Lorentz group (Poincaré group) symmetry. There are two Casimir operators in the Poincaré group, the first Casimir invariant $P^\mu P_\mu$ and the second Casimir invariant $W^\mu W_\mu$. Thus, it was expected that the covariant relativistic spin operator could be constructed directly by using the Pauli-Lubanski vector. The covariant relativistic spin operator, however, cannot be obtained by using simple linear combinations of the components of the Pauli-Lubanski vector. The only candidate for the component of the angular momentum vector that is a linear function of W_μ was shown to be \[\frac{1}{M} \left(W_i - \frac{P_i W^0}{m + E} \right). \] \[(12) \]

In fact the above equation is the spin operator Σ_i in the particle rest frame which is written in the laboratory frame by using W_μ.

Ryder has given the correct way to construct the spin operator, different from the usual Pauli spin operator Σ_i, by using the Pauli-Lubanski vector \[21\]. First, the following two antisymmetric tensor operators are defined by using the commutators of the Pauli-Lubanski vectors:

\[W^{\mu \nu} = \frac{1}{m^2} [W^\mu, W^\nu], \quad \tilde{W}^{\mu \nu} = \frac{1}{2} \epsilon^{\mu \nu \rho \delta} W_{\rho \delta}. \]

\[(13) \]

Then, the two tensor operators,

\[X^{\mu \nu} = -i \left(W^{\mu \nu} + i\tilde{W}^{\mu \nu} \right), \quad Y^{\mu \nu} = -i \left(W^{\mu \nu} - i\tilde{W}^{\mu \nu} \right), \]

\[(14) \]

satisfy the commutation relations for the angular momentum. Therefore, these two tensor operators can be represented by 2×2 matrices which cannot be irreducible representations under the parity. The 4-dimensional irreducible spin tensor including parity can be constructed as

\[(\Sigma_R)_{\mu \nu} = \frac{1}{2} (1 - \gamma_5) X_{\mu \nu} + \frac{1}{2} (1 - \gamma_5) Y_{\mu \nu}. \]

\[(15) \]

Then, the spatial component defined by $(\Sigma_R)_i = \frac{1}{2} \epsilon_{ijk} (\Sigma_R)_{jk}$ becomes the same as the covariant relativistic spin operator in Eq. (8).
III. CANONICAL APPROACH

In this section, we will review the canonical approach given by Foldy and Wouthuysen [18]. The covariant relativistic spin operator was obtained in the last section; however, it is not clear whether the covariant relativistic spin operator is a good quantum observable in the sense that good quantum observables must commute with the Hamiltonian of a particle. In the canonical approach, the following free Dirac Hamiltonian is used to describe a massive Dirac particle in the laboratory frame:

\[\mathcal{H}_D(\mathcal{P}) = \gamma^0 m - \gamma^i P_i. \]

(16)

The \(P_i \) is a momentum operator such that the eigenvalues for a positive energy state and a negative energy state are \(\pm p_i \), respectively. In the particle rest frame, the covariant relativistic spin operator and the free Dirac Hamiltonian commute with each other. In the laboratory frame, however, the covariant relativistic spin operator \(\Sigma_R \) does not commute with the free Dirac Hamiltonian in Eq. (16) because the Dirac Hamiltonian in the laboratory frame cannot be obtained simply, by using the Lorentz transformation, from the Dirac Hamiltonian in the particle rest frame as a covariant relativistic spin operator.

Foldy and Wouthuysen (FW) found the mean spin operator that commutes with the Dirac Hamiltonian for a moving particle by using the following canonical transformation [18]:

\[U(\mathcal{P}) = \frac{E + m - \gamma^i P_i}{\sqrt{2E(E + m)}}, \]

(17)

In the new representation, the Dirac Hamiltonian has a diagonal form such as \(\tilde{\mathcal{H}}_D(\mathcal{P}) = U(\mathcal{P}) \mathcal{H}_D(\mathcal{P}) U(\mathcal{P})^\dagger = \gamma^0 E_p \), where \(E_p \) represents the operator that gives eigenvalues \(\pm E = \pm \sqrt{p^2 + m} \). We call this new representation the FW representation. In the FW representation, a spinor transforms as

\[\tilde{\psi}^\pm(p) = \sqrt{\frac{m}{E}} U(\pm p) \psi^\pm(p), \]

(18)

where \(\psi^\pm(p) \) are the positive energy and the negative energy Dirac spinors in the standard representation such that \(\mathcal{P} \psi^\pm(p) = \pm p \psi^\pm(p) \). We use the `\~` symbol for objects in the FW representation. Here, the factor \(\sqrt{\frac{m}{E}} \) is required because of the different normalizations in the canonical representation and in the covariant representation. In the canonical representation,
\[\tilde{\psi}^\pm(p)^\dagger \tilde{\psi}^\pm(p) = 1 \] normalizations are used, but \[\psi^\pm(p)^\dagger \gamma^0 \psi^\pm(p) = \pm 1 \] normalizations are used in the covariant representation.

Notice that the Dirac Hamiltonian of the moving particle in the FW representation has the diagonal form \(\gamma^0 E_p \). Therefore, the \(4 \times 4 \) Pauli spin operator \(\Sigma \) commutes with the transformed Hamiltonian \(\tilde{\mathcal{H}}_D(\mathcal{P}) \); hence, the spin operator \(\Sigma \) becomes a good spin observable in the FW representation. The spin operator \(\tilde{\Sigma} \) for a moving particle in the FW representation, which is \(\Sigma \), has the following positive and negative energy eigen-spinors:

\[
\tilde{u}(p, +) = (1, 0, 0, 0)^T, \quad \tilde{u}(p, -) = (0, 1, 0, 0)^T, \\
\tilde{v}(p, +) = (0, 0, 1, 0)^T, \quad \tilde{v}(p, -) = (0, 0, 0, 1)^T,
\]

where the superscript \(T \) means the transpose of a vector.

The spin operator \(\tilde{\Sigma} \) in the FW representation is transformed to the FW mean spin operator \(\Sigma_{FW} \) in the standard representation as

\[
\frac{\Sigma_{FW}}{2} = \mathcal{U}(\mathcal{P}) \tilde{\Sigma} \mathcal{U}(\mathcal{P}) = \frac{\Sigma}{2} - \frac{i\gamma^0 (\Sigma \times \mathcal{P})}{2E} - \frac{\mathcal{P} \times (\Sigma \times \mathcal{P})}{2E(E + m)}.
\]

One can easily check that the FW spin operator \(\Sigma_{FW}/2 \) commutes with the Dirac Hamiltonian \(\mathcal{H}_D(\mathcal{P}) \) by direct calculation. This means the FW mean spin operator is a constant of motion and becomes a good quantum observable in the standard representation. As mentioned in Ref. 18, the spin operator \(\Sigma_{FW} \) is nonlocal because it depends on the momentum. In fact, the eigenvalue of the FW mean spin operator represents the average spin of a rapidly oscillating particle within its Compton wavelength. This is the meaning of the name 'FW mean spin operator.' The FW mean spin operator has been shown to be the spin operator in the non-relativistic Pauli Hamiltonian [18]. This implies that the expectation value measured by experiments in non-relativistic quantum mechanics is the expectation value of this spin operator.

IV. EQUIVALENCE BETWEEN RELATIVISTIC SPIN AND FW MEAN SPIN

The covariant relativistic spin has been shown by several authors to be equivalent to the Foldy-Wouthuysen spin for the positive energy states [20]. For the positive energy spinors, the spinor representation \(\mathcal{S}(L_p) \) of the standard Lorentz transformation \(L_p \) in Eq. (3) can be represented by the unitary operator \(\mathcal{U}(\mathcal{P}) \) in Eq. (17) with the normalization factor \(\sqrt{m/E} \),
so the equivalence of the two spin operators can be given at the operator level. The spinor representation of the Lorentz transformation acting on the entire spinor space, however, cannot be a unitary operator because the Lorentz group has no finite dimensional unitary representation. At this stage, therefore, it is unclear that the covariant relativistic spin operator is equivalent to the FW mean spin operator for negative energy states. In fact, the two spin operators, the covariant relativistic spin \(\Sigma_R \) in Eq. (8) and the FW mean spin \(\Sigma_{FW} \) in Eq. (20), are different. This raises a question as to which spin operator is the proper spin observable for a massive Dirac particle. We will show that they are equivalent in the sense that they give the same expectation values.

The equivalence of the two spin operators can be obtained by using the relations between the actions of the Lorentz transformation \(\mathcal{S}(L_p) \) and the unitary transformation \(\mathcal{U}(P) \) on positive and negative energy spinors. The unitary operator \(\mathcal{U}(P) \) has the momentum operator \(P \), which gives different eigenvalues for positive energy and negative energy spinors. Thus, it is convenient to use the projection operators \(\Pi = \left(m + \gamma^\mu p_\mu \right) / 2 \) such that

\[
\Pi u(p,s) = \frac{m + \gamma^\mu p_\mu}{2m} u(p,s) = u(p,s),
\]

\[
\Pi v(p,s) = \frac{m - \gamma^\mu p_\mu}{2m} v(p,s) = v(p,s).
\]

One can define \(\Pi_+ = (m + \gamma^\mu p_\mu) / 2 \) and \(\Pi_- = (m - \gamma^\mu p_\mu) / 2 \), which satisfy \(\Pi_+^2 = \Pi_+, \) \(\Pi_-^2 = \Pi_- \) and \(\Pi_- \Pi_+ = \Pi_+ \Pi_- = 0 \). That is, \(\Pi_+ \) and \(\Pi_- \) project out positive and negative energy spinors, respectively. Then, the following relations hold:

\[
\mathcal{U}(p)\Pi_+ = \sqrt{\frac{E_m}{m}} \mathcal{S}^{-1}(L_p)\Pi_+, \quad \mathcal{U}(-p)\Pi_- = \sqrt{\frac{E_m}{m}} \mathcal{S}^{-1}(L_p)\Pi_-,
\]

\[
\Pi_+^\dagger \mathcal{U}^\dagger(p) = \sqrt{\frac{E_m}{m} \Pi_+^\dagger} \gamma^0 \mathcal{S}(L_p), \quad \Pi_-^\dagger \mathcal{U}^\dagger(-p) = -\sqrt{\frac{E_m}{m} \Pi_-^\dagger} \gamma^0 \mathcal{S}(L_p).
\]

Using these relations, we obtain the equivalences

\[
\frac{m}{E} \bar{u}^\dagger(p,s) \Sigma \bar{u}(p,s) = \frac{m}{E} u^\dagger(p,s) \Sigma_{FW} u(p,s) = \bar{u}(p,s) \Sigma_R u(p,s)
\]

and

\[
\frac{m}{E} \bar{v}^\dagger(p,s) \Sigma \bar{v}(p,s) = \frac{m}{E} v^\dagger(p,s) \Sigma_{FW} v(p,s) = -\bar{v}(p,s) \Sigma_R v(p,s)
\]

because \(\Pi_+ \bar{u}(p,s) = \bar{u}(p,s) \) and \(\Pi_- \bar{v}(p,s) = \bar{v}(p,s) \). The \(- \) sign and \(m/E \) are due to the relativistic invariant normalization in Eq. (10).
Equations (24) and (25) guarantee that the expectation values of the FW mean spin operator and the covariant relativistic spin operator are the same for the general spinor $\psi(p)$, which is a linear combination of the positive and the negative eigen-spinors. In this sense, the two spin operators are equivalent. As a result, the covariant relativistic spin operator can be considered as a good quantum observable because it is equivalent to the FW mean spin operator that commutes with the free Dirac Hamiltonian.

V. REDUCED SPIN DENSITY OPERATOR

For the study of a reduced spin density operator, the momentum representation of the covariant Dirac equation is convenient. The solutions of the covariant Dirac equation in the momentum representation can be represented as $|p\rangle \otimes u(p,s)$ for positive energy solutions and $|-p\rangle \otimes v(p,s)$ for negative energy solutions. $|p\rangle$ is the momentum eigenstate; i.e., $P_\mu |p\rangle = p_\mu |p\rangle$. The spin expectation value of a spinor in the laboratory frame has been shown to be the same as the spin expectation value of the spinor in the particle rest frame. This implies that a reduced spin density matrix can be clearly defined by a partial tracing over momentum degrees of freedom. To make this point more transparent, we will study the reduced spin density matrices in the FW representation because the spin and the momentum degrees of freedoms are decoupled in the FW representation as are those in the particle’s rest frame. In the FW representation, the meaning of the partial trace over the momentum is clear.

We consider the following state in the FW representation:

$$\tilde{\psi} = \int d^3p \tilde{\psi}(p) \otimes |p\rangle = \int d^3p \sum_\delta [a_\delta(p)\tilde{u}(p,\delta) + b_\delta(p)\tilde{v}(p,\delta)] \otimes |p\rangle.$$ \hspace{1cm} (26)

The normalization $\tilde{\psi}^\dagger\tilde{\psi}=1$ requires $\int d^3p \sum_\delta [a_\delta(p)a_\delta^*(p)+b_\delta(p)b_\delta^*(p)]=1$. For the density matrix $\tilde{\rho} = \tilde{\psi}\tilde{\psi}^\dagger$, the reduced spin density matrix is well defined by a partial trace over momentum as

$$\tilde{\rho}_s = \text{Tr}_p \tilde{\rho} = \int d^3p \tilde{\psi}^\dagger(p)\tilde{\psi}(p)$$

$$= \int d^3p \sum_{\lambda,\lambda'} [a_\lambda(p)a_{\lambda'}^*(p)\tilde{u}(p,\lambda)\tilde{u}^\dagger(p,\lambda') + a_\lambda(p)b_{\lambda'}^*(p)\tilde{u}(p,\lambda)\tilde{v}^\dagger(p,\lambda')$$

$$+ b_\lambda(p)a_{\lambda'}^*(p)\tilde{v}(p,\lambda)\tilde{u}^\dagger(p,\lambda') + b_\lambda(p)b_{\lambda'}^*(p)\tilde{v}(p,\lambda)\tilde{v}^\dagger(p,\lambda')] .$$
The reduced spin density matrix becomes the same as the non-relativistic spin density matrix for a positive energy particle.

The relativistic effects on the reduced spin density matrix of a moving particle is represented by the transformation of the reduced spin density matrix under a general Lorentz transformation. The transformation of the reduced spin density matrix is given by the transformation matrix of the spinor under the Lorentz transformation. We have obtained the transformation matrix for the positive energy spinors in a previous work [17]. In this section, the complete transformation matrix for the whole of spinor space is obtained. The complete transformation matrix in the FW representation will be shown to be equivalent to the complete transformation matrix in the covariant representation.

Let us assume that the two observers O and O' are related by an arbitrary Lorentz transformation Λ. Lorentz transformations do not change the sign of the energy for a free particle, so we must deal with the positive and the negative energy states separately. The transformation matrix $T^{(\Lambda, p)}$ in the covariant representation and the transformation matrix $\tilde{T}^{(\Lambda, p)}$ in the FW representation for the positive energy spinors have the following relations:

$$S(\Lambda)u(p, \lambda) = S(\Lambda)S(L_p)u(k, \lambda) = \sum_{\lambda'} T^{(\Lambda, p)}_{\lambda\lambda'} S(L_{\Lambda p})u(k, \lambda')$$

$$= \sqrt{\frac{E}{m}} S(\Lambda) \mathcal{U}(\mathcal{P}) \tilde{u}(p, \lambda) = \sqrt{\frac{E}{m}} \sum_{\lambda'} \tilde{T}^{(\Lambda, p)}_{\lambda'\lambda} \mathcal{U}(\mathcal{P}) \tilde{u}(\Lambda p, \lambda'),$$

where Λp is the space part of the four momentum $(\Lambda p)_\mu = \Lambda_{\mu'} p_{\mu'}$. This equation shows that the transformation matrix $T^{(\Lambda, p)}_{\lambda'\lambda} = u(k, \lambda') S^{-1}(L_{\Lambda p}) S(\Lambda) S(L_p) u(k, \lambda)$ in the covariant representation is equivalent to the transformation matrix $\tilde{T}^{(\Lambda, p)}_{\lambda'\lambda} = \tilde{u}(\Lambda p, \lambda') S(\Lambda) \mathcal{U}(\mathcal{P}) \tilde{u}(p, \lambda)$ in the FW representation because the forms of $u(k, \lambda)$ and $\tilde{u}(p, \lambda)$ are the same. The transformation matrices for the negative energy spinor is obtained in a similar manner. As a result, the complete transformation matrix can effectively be written in the following block diagonal form:

$$\tilde{T}^{\Lambda, p} = \begin{pmatrix} A & B & 0 & 0 \\ -B^* & A & 0 & 0 \\ 0 & 0 & A & B \\ 0 & 0 & -B^* & A \end{pmatrix},$$

where $|A|^2 + |B|^2 = 1$ and $A^* B - AB = 0$. This transformation matrix shows that the irreducible representation for the Lorentz transformation Λ is the 2×2 unitary matrix.
\[
\begin{pmatrix}
A & B \\
-B^* & A
\end{pmatrix}.
\] This two-dimensional matrix corresponds to the two-dimensional unitary representation of the Wigner rotation. This means the FW representation and the covariant representation are two equivalent representations for Wigner’s little group.

Now, we will consider the change in the reduced spin density matrix \(\tilde{\rho}_s \) under the Lorentz transformation \(S(\Lambda) \). The transformation of the spinor \(\tilde{\psi}(p) \) is obtained as
\[
\tilde{\psi}(\Lambda p) = U(\mathcal{P}) S(\Lambda) U^\dagger(\mathcal{P}) \tilde{\psi}(p) = \sum_{\lambda', \lambda} \tilde{T}_{\lambda \lambda'}^{\Lambda \mathcal{P}} (a_\lambda(p) \tilde{u}(\Lambda p, \lambda') + b_\lambda(p) \tilde{v}(\Lambda p, \lambda')).
\]
(30)

The reduced spin density matrix for the observer \(O' \), defined by
\[
\tilde{\rho}'_s = \int d^3 p \tilde{\psi}(\Lambda p) \tilde{\psi}(\Lambda p),
\]
(31)
shows the dependence of the rotation of the spin not only on the Lorentz transformation \(\Lambda \) but also on the momentum of the particle. This momentum-dependent rotation changes the entanglement between the spin and the momentum degrees of freedom. As a result, the spin entropy, which describes the mixedness of the reduced spin density matrix, changes.

The reduced spin density matrix for the general state \(\tilde{\psi} \) in Eq. (26) is too complicated to study the essential feature of the spin density matrix under the general Lorentz transformation. Therefore, we will consider a simple example that shows the non-trivial effects under the Lorentz transformation. We consider the following two initial positive energy states in the FW representation:
\[
\tilde{\psi}_1 = \frac{1}{\sqrt{2\delta(0)}} (\tilde{u}(p, +) \otimes |p\rangle + \tilde{u}(p_\perp, +) \otimes |p_\perp\rangle),
\]
(32)
\[
\tilde{\psi}_2 = \frac{1}{\sqrt{2\delta(0)}} (\tilde{u}(p, +) \otimes |p\rangle + \tilde{u}(p_\perp, -) \otimes |p_\perp\rangle),
\]
(33)
where the four momentum \(p^\mu = (E, \mathbf{p}) \) and \(p_\perp^\mu = (E, \mathbf{p}_\perp) \). \(1/\sqrt{2\delta(0)} \) is included due to the normalization \(\tilde{\psi}_1^\dagger \tilde{\psi}_1 = \tilde{\psi}_2^\dagger \tilde{\psi}_2 = 1 \). The space parts of the momentum are written in spherical coordinate as \(\mathbf{p} = \{p \sin \theta \cos \phi, p \sin \theta \sin \phi, p \cos \theta\} \) and \(\mathbf{p}_\perp = \{E, p \cos \theta \cos \phi, p \cos \theta \sin \phi, -p \sin \theta\} \). \(\mathbf{p}_\perp \) is perpendicular to \(\mathbf{p} \) and corresponds to the replacement of \(\theta \) by \(\theta + \pi/2 \). \(\theta \) is the polar angle from the positive z-axis, and \(\phi \) is the azimuthal angle in the xy plane from the x-axis. The action of a rotation of an observer is trivial because the rotation does not change the entanglement between the momentum degrees of freedom and the spin degrees of freedom. Therefore, we consider the Lorentz
boost \(\Lambda \xi \) in the \(z \) direction with rapidity \(\xi \). This does not reduce the generality because the general momentum vector \(p^\mu \) is considered. The reduced spin density matrices can be described by \(2 \times 2 \) matrices because the positive energy spinors in the FW representation can be represented by two-component vectors. The reduced spin density matrices \(\tilde{\rho}_{1s} \) and \(\tilde{\rho}_{2s} \) are obtained by tracing over the momentum for the density matrices \(\tilde{\rho}_1 = \tilde{\psi}_1 \tilde{\psi}_1^\dagger \) and \(\tilde{\rho}_2 = \tilde{\psi}_2 \tilde{\psi}_2^\dagger \), respectively. The \(\tilde{\rho}_{1s} \) becomes the pure state \(\tilde{u}(p, +) \tilde{u}^\dagger(p, +) \), and the \(\tilde{\rho}_{2s} \) becomes the complete mixed state \([\tilde{u}(p, +) \tilde{u}^\dagger(p, +) + \tilde{u}(p_\perp, -) \tilde{u}^\dagger(p_\perp, -)]/2\). Note that the two-dimensional representations of the spinors \(\tilde{u}(p, \pm) \) in the FW representation are described by \(|\pm\rangle \), which are the eigenstates of the usual Pauli matrix \(\sigma_z \) with eigenvalues \(\pm 1 \) such that \(\sigma_z |\pm\rangle = \pm |\pm\rangle \).

The transformed spin density matrices become

\[
\tilde{\rho}'_{1s} = \frac{1}{2} \left(\begin{array}{cc} a_1^2 + a_2^2 & -(a_1 b_1 + a_2 b_2) e^{-i\phi} \\ -(a_1 b_1 + a_2 b_2) e^{i\phi} & b_1^2 + b_2^2 \end{array} \right)
\]

\[
\tilde{\rho}'_{2s} = \frac{1}{2} \left(\begin{array}{cc} a_1^2 + b_2^2 & (a_2 b_2 - a_1 b_1) e^{-i\phi} \\ (a_2 b_2 - a_1 b_1) e^{i\phi} & b_1^2 + a_2^2 \end{array} \right)
\]

The parameters \(a_1, a_2, b_1 \) and \(b_2 \) are

\[
a_1 = \sqrt{\frac{m + E}{m + E'}} \left[\cosh \frac{\xi}{2} + \frac{p \cos \theta}{m + E} \sinh \frac{\xi}{2} \right],
\]

\[
b_1 = \frac{p \sin \theta}{\sqrt{(m + E) (m + E')}} \sinh \frac{\xi}{2},
\]

\[
a_2 = \sqrt{\frac{m + E'}{m + E''}} \left[\cosh \frac{\xi}{2} + \frac{-p \sin \theta}{m + E'} \sinh \frac{\xi}{2} \right],
\]

\[
b_2 = \frac{p \cos \theta}{\sqrt{(m + E) (m + E'')}} \sinh \frac{\xi}{2},
\]

where \(E' = E \cosh \xi + p \cos \theta \sinh \xi \) and \(E'' = E \cosh \xi - p \sin \theta \sinh \xi \).

We will study the change in the purification of the spin by using the entropy of the spin density matrix. The entropy for the state \(\rho_s \) is defined as

\[
S = -\text{Tr} (\rho_s \ln \rho_s) = - \sum_j \lambda_j \ln \lambda_j,
\]
FIG. 1: (Color on-line) This figure shows the change of entropies for the spin density matrices $\tilde{\rho}'_{1s}$ (blue dashed line) and $\tilde{\rho}'_{2s}$ (red dot-dashed line) as functions of rapidity with $\sqrt{p^2} = 10$ and $m = 1$ for $\theta = 0.54\pi$. The brown real line represents $S = \ln 2$ corresponding to the completely mixed state.

FIG. 2: (Color on-line) This figure shows the behavior of the spin entropies as functions of the polar angle θ for $\tilde{\rho}'_{1s}$ (blue dashed line) and $\tilde{\rho}'_{2s}$ (red dot-dashed line) with $\sqrt{p^2} = 10$ and $m = 1$ for $\xi = 10$. The brown real line represents $S = \ln 2$ corresponding to the completely mixed state.

where λ_j is an eigenvalue of ρ_s. The spin density matrices transform nontrivially under a Lorentz transformation as shown in Eq. (34) and Eq. (35), so the spin entropies will also change nontrivially. The results are shown in Fig. 1 and Fig. 2. For explicit calculations, we have set the momentum $\sqrt{p^2} = 10$ and the rest mass $m = 1$. Fig 1 shows the dependence on the rapidity ξ for $\theta = 0.54\pi$. The magnitude of the observer’s velocity becomes $0.9999999959c$ for $\xi = 10$. The changes of spin entropies with increasing rapidity
in this figure show that the pure state can be changed to the completely mixed state and vice versa. Fig 2 shows the polar angle dependence of the spin entropies for the rapidity $\xi = 10$. The spin entropies in this figure show that depending on the polar angle, the Lorentz transformation changes the mixedness of the spin over the whole range.

Because the transformation matrices $\mathcal{T}^{(\Lambda,p)}$ and $\tilde{\mathcal{T}}^{(\Lambda,p)}$ in the covariant representation and in the FW representation are equivalent, the behaviors of the reduced spin density matrix in the two representations are the same. The difference in the two representations are the normalizations. In the covariant representation, the density matrix for the observer O is defined as $\rho = \psi\psi^\dagger\gamma^0$ to guarantee the Lorentz invariance of the normalization. The trace over momentum is also represented by the Lorentz invariant measure $d^3p/2E$.

VI. SUMMARY

In summary, we have shown the equivalence between the covariant relativistic spin and the FW mean spin of a Dirac particle. Based on the equivalence, the covariant relativistic spin operator is clearly a good spin operator in the covariant representation. As a result, the spin index of the Dirac spinor can be understood to represent the spin eigenvalues of the moving particle. The covariant relativistic spin is shown to have a pure quantum contribution, which cannot be given by the classical spin. In the FW representation, the Dirac Hamiltonian for a moving particle assumes a diagonal form of the Hamiltonian in the particle rest frame. This fact makes dealing with the momentum and the spin degrees of freedom separately easy.

We have studied the relativistic effects on the spin state in the FW representation. The spin state can be defined by tracing over the momentum degrees of freedom for the complete density matrix. The trace over the momentum is obtained by integrating over the momentum, which was considered ambiguous in the Dirac spinor because of momentum-dependent components. This ambiguity can be cleared by considering the problem in the FW representation, which has been shown to be equivalent to the covariant representation. The spin entropy, which describes the purity of the spin, changes under the Lorentz transformation. The pure spin state can become a totally mixed spin state and vice versa under the Lorentz transformation. Therefore, the entropy of the spin is neither a Lorentz invariant nor covariant.
ACKNOWLEDGMENTS

The authors are grateful for helpful discussions with Prof. Jaewan Kim at Korea Institute for Advanced Study. This work was supported by a National Research Foundation of Korea grant funded by the Korean Government (2011-0005740).

[1] A. Peres, P. F. Scudo, and D. R. Terno, Phys. Rev. Lett. 88, 230402 (2002).
[2] E. Wigner, Ann. Math. 40, 149 (1939).
[3] M. Czachor, Phys. Rev. Lett. 94, 078901 (2005); A. Peres, P. F. Scudo, and D. R. Terno, Phys. Rev. Lett. 94, 078902 (2005).
[4] M. Czachor, Phys. Rev. A 55, 72 (1997); Phys. Rev. Lett. 94, 078901 (2005).
[5] P. M. Alsing and G. J. Milburn, Quant. Inf. Comput. 2, 487 (2002); Phys. Rev. Lett. 91, 180404 (2003).
[6] D. Ahn, H. J. Lee, Y. H. Moon, and S. W. Hwang, Phys. Rev. A 67, 012103 (2003).
[7] M. Czachor and M. Wilczewski, Phys. Rev. A 68, 010302(R) (2003).
[8] H. Terashima and M. Ueda, Quantum Inf. Comput. 3, 224 (2003).
[9] A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004), and references therein.
[10] D. Lee and C-Y. Ee, New J. Phys. 6, 67 (2004).
[11] W. T. Kim and E. J. Son, Phys. Rev. A 71, 014102 (2006).
[12] P. Caban and J. Rembieliński, Phys. Rev. A 72, 012103 (2005); ibid 74, 042103 (2006).
[13] P. Caban, A. Dziegielew ska, A. Karmazyn and M. Okrasa, Phys. Rev. A 81, 032112 (2010).
[14] N. Friis, R. A. Bertlmann, M. Huber and B. C. Hiesmayr, Phys. Rev. A 81, 042114 (2010).
[15] R. M. Gingrich and C. Adami, Phys. Rev. Lett. 89, 270402 (2002).
[16] P. L. Saldanha and V. Vedral, New J. Phys. 14, 023041 (2012); Phys. Rev. A 85, 062101 (2012).
[17] T. Choi, J. Hur and J. Kim, Phys. Rev. A 84, 012334 (2011).
[18] L. L. Foldy and S. A. Wouthey sen, Phys. Rev. 78, 29 (1950).
[19] Note that the classical magnetic dipole moment in Eq. (11) is the same as the magnetic dipole moment in Eq. (6) of Ref. 16.

17
[20] F. Gürsey, Phys. Lett. 14, 330 (1965); L. H. Ryder, J. Phys. A: Math. Gen. 31, 2465 (1998).

[21] L. H. Ryder, Gen. Rel. Grav. 31, 775 (1999).

[22] L. H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, U.K., 1996).

[23] P. Penfield and H. A. Haus Electrodynamics of Moving Media (MIT Press, Cambridge, MA, 1967).

[24] N. N. Bogolubov, A. A. Logunov, and I. T. Torov, Introduction to Axiomatic Quantum Field Theory (Benjamin, Reading, MA, 1975).

[25] A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dordrecht, 1995).