Malarial pancreatitis: Case report and systematic review of the literature

Inderpaul Singh Sehgal, Ritesh Agarwal, Digambar Behera, Sahajal Dhooria

Malaria can cause a wide spectrum of clinical manifestations ranging from uncomplicated febrile illness to multiorgan failure. Pancreatitis is a rare complication of malaria with only a few reported cases. Herein, we describe a case of acute pancreatitis with multiorgan failure due to Plasmodium falciparum managed successfully with antimalarials and conservative treatment. We also perform a systematic review of literature for reports of acute pancreatitis due to Plasmodium infection.

Keywords: Abdominal pain, acute respiratory distress syndrome, malaria, multiorgan dysfunction, pancreatitis

Abstract

Malaria is one of the most important protozoan parasitic infection of humans and remains endemic in India. It is responsible for 1.8% of cumulative deaths before the age of 70 years.[1] It is one of the common causes of acute febrile illness in endemic areas and can cause single or multiorgan dysfunction including acute renal failure, acute respiratory distress syndrome (ARDS), jaundice, myocarditis, hemolytic anemia, coma, and others.[2,3] Acute pancreatitis is a rare manifestation of malaria with only a few cases reported in literature. Herein, we report a case of acute pancreatitis and multiorgan dysfunction caused by Plasmodium falciparum. We also perform a systematic review of literature on acute pancreatitis caused by malaria.

Case Report

A 40-year-old man presented with acute onset high-grade fever, jaundice, and abdominal pain of 10 days duration. He did not have any vomiting, passage of clay-colored stools, or any alteration in his bowel habit. Three days before the presentation, the patient had also developed breathlessness, drowsiness, and decreased urine output. There was no cough, chest pain, or hemoptysis. There was no history of any seizures, sensory or motor complaints. The patient did not have any comorbidities or addictions. On examination, the pulse rate was 124 per min, respiratory rate 40 per min, blood pressure 100/60 mmHg, and temperature 101°F. Glasgow coma score was 10. Pallor and icterus were present. Auscultation of the chest revealed bilateral basal crackles. The abdomen was distended with epigastric tenderness and hepatosplenomegaly.

Investigations revealed anemia, thrombocytopenia, and neutrophilic leukocytosis with deranged renal and liver functions [Table 1]. Peripheral blood examination showed...
trophozoites of *P. falciparum* (parasite index 1.5%) and rapid diagnostic test (QDx Malaria Pv/Pf malaria card test, Piramal Healthcare Limited, India) for *P. falciparum* was positive. Hypoxemia (PaO₂/FiO₂ ratio = 69) was present with bilateral alveolar opacities on chest radiograph suggesting ARDS [Figure 1]. Bacterial cultures of blood and endotracheal aspirate were sterile throughout the hospital stay. Serum amylase was 391 U/L and lipase was 753 U/L [Table 1]. Contrast enhanced computed tomography (CT) scan of the abdomen revealed evidence of pancreatitis with a modified CT score of 10 [Figure 2] and bedside index of severity in acute pancreatitis (BISAP) score of 4. There were no gallstones on ultrasound or CT of the abdomen.

The patient was diagnosed as severe falciparum malaria with acute pancreatitis. He was electively intubated and mechanically ventilated. He was kept nil per oral and a nasogastric tube was placed. Intravenous artesunate (120 mg every 12 h for 3 days followed by 120 mg every 24 h) and oral doxycycline (200 mg/day in two divided doses) were administered. Despite treatment, there was progressive abdominal distension with the development of abdominal compartment syndrome (indicated by a high abdominal pressure of 28 cm of saline, hypotension, and worsening renal failure). Intravenous normal saline, vasopressors (noradrenaline and vasopressin), and intravenous meropenem were started. An abdominal drain was placed to decrease the intraabdominal pressure, and intermittent hemodialysis was performed.

Abdominal pressure decreased, fever abated, and hypotension resolved on the 5th day. Renal function improved and dialysis was stopped after six sessions. The patient was subsequently discharged after 4 weeks of hospitalization and continued to do well on follow-up.

Discussion

The case highlights that acute pancreatitis can occasionally complicate the course of falciparum malaria. We made a diagnosis of malaria-associated pancreatitis as the patient did not consume alcohol; there were no gallstones on abdominal imaging, no history of consumption of any drug known to cause pancreatitis and normal serum calcium with only mildly raised serum triglycerides. Although the exact mechanism of pancreatitis is unclear,

Table 1: Clinical characteristics at baseline and discharge

Parameter	Baseline	At discharge
Hemoglobin (g/dL)	8.0	12.8
Total leukocyte count (cells/mm³)	12,100	8000
Platelet count (×10⁹/mm³)	17	330
Blood urea (mg/dL)	290	54
Serum creatinine (mg/dL)	8.6	1.1
Serum albumin (g/dL)	2.2	3.5
Serum bilirubin (mg/dL)	30.0	2.3
Alanine transaminase (U/L)	23	22
Aspartate transaminase (U/L)	72	45
Alkaline phosphatase (U/L)	71	60
Serum calcium (mg/dL)	9.0	8.9
Serum LDH (U/L)	250	167
Serum triglycerides (mg/dL)	398	180
Serum amylase (U/L)	391	63
Serum lipase (U/L)	753	15
Serum procalcitonin (μg/L)	54.5	0.2
PaO₂/FiO₂ ratio	68.8	300.0
HCO₃⁻ mmol/L	14.0	25.0
Blood culture	Sterile	Sterile
Tracheal aspirate culture	Sterile	Sterile
Intraabdominal pressure (cm of saline)	28.0	8.0
IgM (ELISA) Leptospira	Negative	
IgM (ELISA) for dengue virus	Negative	
PCR for *O. tsutsugamushi*	Negative	

ELISA: Enzyme-linked immunosorbent assay; FiO₂: Fractional inspired oxygen; LDH: Lactate dehydrogenase; PaO₂: Arterial partial pressure of oxygen; PCR: Polymerase chain reaction; S: Serum; U: Units; *O. tsutsugamushi*: Orientia tsutsugamushi

Figure 1: Chest radiograph showing bilateral infiltrates consistent with acute respiratory distress syndrome

Figure 2: Contrast enhanced computed tomography of the abdomen showing pancreatic necrosis
the possible reason can be obstruction of capillaries due to parasite-laden erythrocytes causing ischemic damage to pancreatic parenchyma or massive hemolysis associated with malaria.[4,6]

Pancreatitis as a complication of malaria is a rare entity with the first case reported in 1907.[7] A systematic review of the PubMed and EmBase databases using the search string (“malaria” or “falciparum” or “vivax” or “malariae” or “ovale”) and “pancreatitis” yielded 18 reports (22 cases) on pancreatitis caused by malaria [Table 2].[4,6,8-24] The most common species responsible was *P. falciparum* (17/22), which was also the causative species in the index case. Abdominal pain was reported in all cases while icterus was seen in 12 cases. Abdominal pain in malaria can be due to

Author (year)	Number of patients	Gender	Age (years)	Abdominal pain	Jaundice	Serum amylase (U/L)	Serum lipase (U/L)	Severity	Species	Parase index (%)	Organ failure	Treatment given	Final outcome	
Johnson et al. (1977)	1	Male	Yes	Yes	NA	NA	NA	P. falciparum	NA	Pleural effusion	ARDS	Quinine and tetracycline	Survived	
Druml et al. (1991)	1	Female	Yes	Yes	651	NA	NA	NA	NA	Renal failure, altered sensorium, DIC	No	Quinine and tetracycline	Survived	
Sarma and Kumar (1998)	1	Male	Yes	Yes	2132	NA	Severe	P. falciparum	1.5	Renal failure, ARDS	NA	Quinine and tetracycline	Survived	
Praetorius et al. (2011)	1	Female	Yes	No	NA	NA	Severe	P. falciparum	10	Renal failure, ARDS	NA	Quinine and tetracycline	Survived	
Desai et al. (2001)	2	Male (1), female (1)	Yes	Yes	535	133	1329	1037	Moderate	P. falciparum	(2/2)	Renal failure	NA	Survived
Seshadri et al. (2008)	1	Male	Yes	Yes	1712	5217	Severe	P. falciparum and P. vivax	45	Renal failure, subdural hematoma	NA	Survived		
Badhal et al. (2009)	1	Male	Yes	No	NA	NA	Severe	P. falciparum	1.9	Renal failure, DIC, hypotension, altered sensorium	No	Survived		
Kumar et al. (2010)	1	Male	Yes	Yes	472	2460	Moderate	P. falciparum	60	Quinine, ceftriaxone	Artesunate, Artesunate, Artesunate, doxycycline	Survived		
Thapa et al. (2010)	1	Male	Yes	Yes	1,456	4562	Moderate	P. falciparum	4.5	Renal failure	NA	Survived		
Mandal et al. (2011)	1	Male	Yes	Yes	783	2,225	Severe	P. falciparum	40	Renal failure, ARDS	NA	Survived		
Mohapatra and Gupta (2011)	3	Male (2), female (1)	Yes	Yes	1200.5	2200.5	608.6	960.8	Moderate	P. falciparum	(3/3)	Renal failure, (1/3), altered sensorium, DIC	No	Survived
Sharma et al. (2012)	1	Male	Yes	Yes	1234	NA	Severe	P. vivax	NA	Antibiotics	No	Quinine, ceftriaxone	Survived	
Atam et al. (2013)	1	Female	Yes	Yes	1230	800	Severe	P. vivax	NA	Artesunate, Artesunate, Artesunate, imipenem	NA	Survived		
Sharma and Kant (2013)	2	Male (1), female (1)	Yes	Yes	11,000	9000	400	2200.5	Moderate	P. falciparum	(2/2)	Renal failure, hypotension, DIC	No	Survived
Sundriyal et al. (2013)	1	Male	Yes	No	575	414	Moderate	P. vivax	NA	Artesunate, clindamycin	NA	Survived		
Ghosh et al. (2014)	1	Male	Yes	Yes	525	250	Moderate	P. falciparum	NA	Artesunate	No	Survived		
Singh et al. (2014)	1	Male	Yes	Yes	398.8	391.7	Severe	P. falciparum	1.5	ARDS, renal failure, hypotension, DIC	NA	Survived		

ARDS: Acute respiratory distress syndrome; DIC: Disseminated intravascular coagulation; NA: Not available; P. falciparum: Plasmodium falciparum; P. vivax: Plasmodium vivax
various causes such as acalculous cholecystitis, splenic infarction, splenic rupture, hepatitis, acute renal failure, and others. The review suggests that in patients with malaria presenting with abdominal pain, pancreatitis may also be considered as a possible etiology.

The diagnosis of malaria-associated pancreatitis is based upon clinical symptoms (abdominal pain, jaundice, abdominal tenderness, and guarding), laboratory investigations (elevated serum amylase and lipase are seen in 19/22 and 15/22 patients, respectively, in the systematic review), and radiology (ultrasound and contrast-enhanced CT abdomen) and is considered after the common causes of pancreatitis are excluded.

Pancreatitis in malaria might be associated with dysfunction of other vital organs such as renal failure (n = 9), ARDS (n = 3), hypotension (n = 2), which may be attributable to malaria per se or to the ensuing pancreatitis. The index case also had multiorgan dysfunction syndrome (hypotension, ARDS, renal failure, thrombocytopenia, and liver failure). Further, our patient also developed abdominal compartment syndrome (seen in 11% of cases of pancreatitis of any cause).[25]

The index case suffered from severe pancreatitis (BISAP score of 4) with a predicted mortality of >15%.[26] Yet, he responded well to management with intravenous artesunate and doxycycline consistent with the results of the systematic review in which most reported cases had moderate to severe pancreatitis and responded favorably to antimalarial therapy [Table 2]. Four out of 22 (18.2%) patients died. Of the four patients, one patient did not receive antimalarial therapy (identified postmortem) while in one case, antimalarial therapy was started in the 2nd week of illness. This highlights the importance of the early institution of antimalarial therapy which along with nonsurgical management is usually associated with a favorable outcome.

Conclusion

Malaria may rarely be complicated by pancreatitis. It is essential to suspect it clinically in patients with abdominal pain, to confirm it early, and to treat it appropriately to have a good outcome.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.