Outbreaks of Varicella Zoster in a Military Nursing Institute: Infection Control in Hospital and Institutional Environments

Inam Danish Khan,1,7 Anupam Chattoraj,2 Ravi Nimonkar,3 KS Rajmohan,1 Rajiv Mohan Gupta,4 Sourav Sen,5 Anuradha Makkar,1 Mercy Anthony,6 Shazia Khan,7 Arun Kumar Dwivedi,1 and Muhammad Shaikhoo Mustafa8

1Army College of Medical Sciences and Base Hospital, Delhi Cantt 110010 India
2Command Hospital (EC), Kolkata 700027, India
3O/C Station Health Organization, Kolkata 700027
4Army Hospital (R & R), New Delhi 110010, India
5Armed Forces Medical College, Pune 411040 India
6College of Nursing, Command Hospital (EC), Kolkata 700027, India
7INHS Kalyani, Vishakhapatnam 530047, India
8O/C Station Health Organization, Chennai, India

*Corresponding author: Dr Inam Danish Khan, MBBS, MD, DNB, Associate Professor (Clinical Microbiology and Infectious Diseases), Army College of Medical Sciences and Base Hospital, Delhi Cantt 110010, India. Tel: +91-8076324060, Fax: +91-1125693490, E-mail: titan_afmc@yahoo.com

Received 2017 October 13; Revised 2018 March 12; Accepted 2018 March 13.

Abstract

Background: Varicella zoster (VZ) is a highly contagious exanthematous disease. The Indian VZ clade 5 has a high outbreak potential with attack rates of 90%, which thwarts all the infection control endeavors in hospital and institutional environments. Four VZ outbreaks occurring over four different years were investigated with military nursing students in a tertiary-care hospital in order to delineate infection control protocols.

Methods: VZ outbreaks were investigated by hospital infection control committee utilizing standard definitions and protocols after establishing epidemiological linkage. A total of 114 nursing students were evaluated through a questionnaire developed to assess clinicodemographic, exposure, confinement and vaccination parameters. Outbreak control measures included isolation of patients; quarantined close-contacts and suspects; acyclovir treatment; immunization of susceptible candidates against VZ.

Results: There were four different outbreaks comprising a total of 23 patients including five breakthrough patients with cumulative attack rate of 39%. Most patients had mild VZ. Most common sources were friends. Also, 25 students had no exposure to VZ or VZ vaccine, and were identified to be susceptible candidates and accordingly, were vaccinated.

Conclusions: Outbreaks of VZ may have variable epidemiological dynamics and may not be controlled with standard infection-control programs. There is a need to augment existing capabilities for optimizing outbreak management in institutional settings.

Keywords: Outbreak, Varicella Zoster, Infection Control, Vaccination, Quarantine

1. Background

Varicella zoster (VZ) is a highly contagious systemic disease caused by varicella zoster virus (VZV) (Human herpes virus type 3) with humans as the only reservoir. VZ causes a self-limiting exanthematous disease in children followed by lifelong immunity. VZ causes a severe disease in adolescents, adults, neonates, infants, and critically ill and immunocompromised patients leading to bacterial superinfections such as pneumonia, bronchitis, encephalitis, meningitis, and musculoskeletal infections in approximately 20% of the cases. Deep-seated infections are associated with thrombocytopenia, bacteremia, persistent fever, intensive care, hospitalization, and mortality in 0.01% - 5.4% of hospitalized cases. Life threatening infections such as necrotizing fasciitis, pyomyositis and sepsis are known. Reported mortality is 1 in 60,000 patients totaling 7,000 deaths globally. Latency associated with VZV can result in herpes zoster, herpes ophthalmicus, zoster sine herpete, and post-herpetic neuralgia in 10% - 20% of the patients (1-3).

VZ clade 5 based in India has a high outbreak potential, which thwarts infection control endeavors in hospital and institutional environments. VZ in nursing staff can...
spread to healthcare professionals (HCP) and susceptible patients through close contact, aerosol transmission, and conjunctiva as portals of entry. Since the attack rate is 65% - 87% in household settings, it is likely to reach 90% in hospitals and institutions. Outbreaks in critical areas of hospitals such as solid-organ and hematopoietic stem-cell transplant centers, oncology, burns, adult and neonatal intensive care units are difficult to control (4-7). The current study aimed at investigating repeated VZ outbreaks occurring over four years amongst military nursing students in a tertiary-care hospital in order to delineate infection control protocols.

2. Methods

All outbreaks of VZ involving military nursing students, healthcare staff, patients, and visitors were under surveillance of the hospital infection control committee after approval and written informed consent was obtained from the participants. VZ outbreaks were established on the criteria of > 5 patients related in time and place occurring within one incubation period of 10 - 21 days after the occurrence of VZ in the patient. However, > 5 patients in nursing institute was considered as the outbreak. Diagnosis in fresh patients was based on clinical definitions of an illness with acute onset of diffuse (generalized), maculopapular and vesicular rashes without other apparent manifestation. A patient concordant with clinical definition, but not laboratory confirmed or epidemiologically linked to a confirmed case was deemed a probable patient. Susceptible patients meeting clinical definitions were confirmed after establishment of epidemiological links during outbreak investigation without the requirement of laboratory confirmation of VZ as per extant guidelines by the centre for disease control (CDC), USA. Diagnosis of breakthrough patients was modified to accommodate VZ of shorter duration, few, and atypical lesions occurring after 42 days of vaccination (8, 9). Recovery from VZ infection was considered after an afebrile period of 48 hours and scabbing of VZ rashes. A total of 114 nursing students were evaluated through a guided questionnaire about clinicodemographic, exposure, confinement, and vaccination parameters. Source tracing was attempted. Outbreak control measures included isolation and confinement in hospital wards and hostels till crusting of lesions in fresh patients, and until no new lesion appeared in the patients. All close contacts and susceptible cases were quarantined in hostels. All confirmed patients were administered with 800 mg acyclovir five times a day along with symptomatic treatment. Presumptive evidence of immunity against VZ was collected from history of VZ or vaccination. Surveillance was continued through two full incubation periods comprising 42 days after the disease onset in last identified patient to ensure end of outbreaks (5).

3. Results

The military nursing institute had 114 female nurses aged 18 - 24 years spread over four academic years residing in shared rooms with a capacity of one to four students. The students also had close-contact during dining, library, classroom, hospital-training, and recreational activities. Their mean ± standard deviation (SD) age was 20.7 ± 1.42 years [95% confidence interval (CI): 20.6 - 20.8], with 77 students in the age range of 20 - 22 years.

There were four different outbreaks comprising ≥ 5 VZ patients each presenting in less than 42-day intervals, involving nursing students, healthcare staff, patients, and visitors. There were six, five, seven, and five patients in 2012, 2013 (two patients with breakthrough VZ), 2015, and 2016 (three patients with breakthrough VZ) respectively, comprising a total of 23 patients with the mean age of 20.52 ± 1.12 years (95% CI: 20.42 - 20.62). One patient encountered VZ in 2012 and 2013 in two consecutive outbreaks. Most patients had mild VZ with limited centripetally-distributed lesions. The five patients with breakthrough varicella had similar presentations compared with fresh patients; 12/23 (52.2%) were confined to hostel rooms due to unavailability of female isolation beds during outbreaks. No patients had progressive VZ with development of new lesions beyond seven days. Hospitalized patients were most commonly identified as first the patients during outbreaks. There were no herpes zoster or mortality related to VZ. The clinicodemographic and outbreak characteristics are tabulated in Table 1.

Totally, 32 (28.1%) students had VZ before joining the institute from 1995 to 2009 including one VZ occurring in the neonatal period; 33/114 (28.94%) were immunized, 16/33 (48.5%) by single-dose and 17/33 (51.5%) by double-dose vaccine. After single-dose immunization, two students encountered VZ once, and one student twice; 25 students had no exposure to VZ or VZ vaccine and were identified as susceptible candidates and offered double-dose and/or booster-dose VZ vaccine to control the infection.

4. Discussion

The current outbreak investigation for VZ occurring amongst military nursing students over four years was conducted to reach prevention and control initiatives in the healthcare environment. Occurrence of VZ outbreaks in young females in four consecutive years reveals the heterogeneous pattern of childhood exposures and protec-
Table 1. Clinicodemographic and Outbreak Characteristics in Varicella Zoster Outbreaks in 2012, 2013, 2015, and 2016

Clinicodemographic Characteristics (n = 23)	Frequency, %	Age	SD	95% CI
Mean age, y	20.5	1.12	20.4 - 20.6	
Fresh patients	19	82.6	67.1 - 98.1	
Breakthrough VZ	5	21.7	4.8 - 38.5	
Lesions < 50 (mild VZ)	15	65.2	45.7 - 84.7	
Lesions 51 - 250 (moderate VZ)	3	13	-	-
Lesions > 250 (severe VZ)	5	21.7	4.8 - 38.5	
Average number of lesions	252.57	-	238.1 - 267	
Pruritus	4	17.4	1.9 - 32.9	
Fever	11	47.8	27.4 - 68.2	
Weakness	6	26.1	8.1 - 44.2	
Upper respiratory infection	1	4.3	-	-
Hospitalizations	10	43.5	23.2 - 63.8	
Confined to hostel	12	52.2	31.8 - 72.6	
Mean period of hospitalization (d)	8.9	-	8.12 - 9.68	
Post-exposure immunoprophylaxis	1	4.3	-	-
Post-exposure chemoprophylaxis/chemotherapy	14	60.9	41 - 80.8	
Duration of acyclovir therapy, d	6.1	4.39	5.14 - 7	

Outbreak Characteristics (n = 23)

Mean incubation period, d	9.05	1.1	8.3 - 9.8
Pooled attack rate (23/59)	39%	-	26.5 - 51.4
Mean VZ cases	1.92	1.1	1.5 - 2.4

tive titters. Close contact through accommodation, academic, and recreational activities facilitated transmission. The epidemic curve revealed rapid secondary attack occurring within a short period despite isolation and quarantine measures. There were 25 susceptible contacts within the cohort of 114 students. Breakthrough VZ was unpredictable.

Outbreaks of VZ are emerging in the middle and low income countries due to inadequate immunization coverage, primary failure to seroconvert after exposure to VZ or vaccine, failure to mount immune response despite seroconversion, or secondary failure due to waning immunity (2-6, 10). Outbreaks in hospitals and institutions can continue for long periods of six months due to huge footfall of patients/contacts/students/participants with VZ. Healthcare personnel (HCP) and other employees contracting VZ lead to sickness absenteeism attributable to VZ, which may range from seven to twenty days, even if the period of hospitalization is less. Outbreaks are reported in nurses more commonly than other HCP as they form the first contact with patients, attendants, and visitors and consequently may transmit VZ to more people (2, 5, 6). Though outbreak prevention measure through pre-emptive vaccination was adopted after four outbreaks in the institute, it was a step forward in a developing country due to prohibitive costs of VZ vaccine.

Isolated case-patients of VZ need to be investigated in hospital and institutional settings before the onset of possible outbreak. Diagnosis is clinical in most case-patients as VZ IgM is not reliable. Molecular tests are resource intensive, unsuitable for outbreaks and hence not recommended. IgM is suggestive of primary infection although it does not exclude re-infection or reactivation of latent VZV. Four-fold rising VZ IgG is specific, but not sensitive to VZ infection due to high titters in pre-exposed and vaccinated persons. Whole-cell IgG is not sensitive. Purified glycoprotein IgG, fluorescent antibody to membrane antigen (FAMA) IgG, and IgG avidity are not widely available commercially. Target amplification and genotyping are used to differentiate wild-type and Oka vaccine-strain VZV, in vaccine adverse-events (1, 2, 4).

Caveats to VZ transmission and infection control ex-
VZ vaccine is contraindicated in patients who are critically ill, pregnant, with cancer of bone marrow or lymphatic system, on chemotherapy, or on transfusions in the past five months. The live-attenuated VZ vaccine in immunocompromised patients can be ineffective or deleterious, with reports of vaccine-related VZ in patients with T-cell defects. VZ vaccine can be given to HIV+ patients with good CD4 counts, X-linked agammaglobulinemia, common variable immunodeficiency, IgA, IgG subclass and complement deficiency, phagocytic and neutrophil disorders, and acute lymphocytic leukemia in remission. VZ vaccine also protects against oral and genital herpes infections. Risk of herpes zoster from Oka/Merck vaccine strain of VZ is significantly less than that of the wild VZ. A higher dose of VZ vaccine is available to protect against herpes zoster, if administered within 96 hours of exposure. VZIG in exposed pregnant females without evidence of immunity is protective for mother rather than fetus. VZIG is recommended for neonates whose mothers get VZ peripartum, even if mother has received VZIG. VZIG is not recommended for full-term healthy infants exposed postnatally, even if there is no maternal history of VZ.

VZ epidemiology in post-vaccine era consists of increasing age of infections due to primary immunization of younger population and decline in herpes zoster in immunized ones (1). Large VZ outbreaks in hospitals, daycare, schools, institutes, military, and cruise ships worldwide comprising single-dose immunized subjects are called for enhanced disease surveillance and control through acyclovir chemoprophylaxis or immunoprophylaxis amongst susceptible persons (5, 6, 8, 9, 17-21). Mathematical modeling based predictions also show the outbreak potential of both natural and breakthrough patients with single-dose vaccine, compared with sharp decrease in the incidence with double-dose vaccine (1). Double-dose vaccine, recom-
mended since 2006, decreased the intensity, number (50 skin vesicles compared with 200 - 400), size, and duration of outbreaks with effects 3.3-fold lower than that of double-dose vaccine. Nevertheless, breakthrough VZ may occur after infection by a wild-type virus in 7.2% - 15% single-dose vaccinees over a 10-year follow-up period, or few years after occurrence of VZ, or even after double-dose immunization, although the disease is subdued in intensity, duration, and presentation (2, 17).

Concurrent outbreaks of VZ, measles, and rubella are reported, which may confuse the clinical presentation requiring laboratory confirmation on VZV antigen through direct fluorescent antibody, anti-VZV IgM capture assay, four-fold rise in anti-VZV IgG, viral isolation, and molecular methods. Virus isolation and molecular methods can differentiate between wild-type and vaccine strains of VZV (12). Ongoing surveillance is required even with the best vaccination programs due to variations in vaccine coverage, efficiency, and waning immunity. Concurrent outbreaks can be an indicator of MMRV vaccine coverage and efficiency in target populations in future (8).

Institutional settings have a close-knit fraternity getting medical attention in designated hospitals, staying together in designated areas and children studying in specific schools. Electronic notification may be instituted in addition to paper-based notification under Group ‘C’ (7, 22, 23). The surveillance can be extended to evaluate susceptible candidates for VZ vaccine. A strategy for surveillance and vaccination is hereby proposed for independent institutional set ups in Table 2. Post-vaccination serosurveillance of anti-VZ antibodies can be done by simple latex agglutination, which can detect antibodies up to 11 years and is more sensitive than the enzyme-linked immunoabsorbent assay (ELISA). The community should also be exposed to health education programs in schools and community centers during high-attendance events such as parents-teacher meetings, ladies meeting, and cultural programs (24, 25). Monitoring can be done electronically through Delphi techniques and creation of text-based communication systems for clientele feedback, early reporting and passive surveillance (2, 26, 27). Mandatory double-dose VZ vaccination for healthcare staff on induction, and immunocompromised population along with their susceptible household contacts go a long way towards infection and outbreak control, ensuring the safety of providers and patients against VZ. Static modeling and surveillance systems can be employed to evaluate targeted vaccination programs as well as unimmunized population. VZ and herpes zoster are eradicable if the vaccine is universally accessible and acceptable (28).

4.1. Conclusions
The management of patients and susceptible cases by isolation, confinement, quarantine, chemoprophylaxis, and immunoprophylaxis represents immediate and long-term response measures against VZ outbreaks. Outbreaks of VZ may have variable epidemiological dynamics and may not be controlled with standard infection control programs. Institutions with a close-knit fraternity need to augment the existing capabilities through pre-emptive double-dose and/or booster-dose VZ vaccination to optimize the outbreak management and control.

Acknowledgments
The authors would like to acknowledge the contributions of patient-front, health-administrative and infection-control leadership towards the successful management of outbreaks.

Footnotes
Conflict of Interest: The authors declared no conflict of interest.
Funding/Support: There was no financial support for the study.

References
1. European Centre for Disease Prevention and Control. Varicella vaccination in the European Union. Stockholm: ECDC; 2015. Available from: http://ecdc.europa.eu/en/publications/Publications/Varicella-Guidance-2015.pdf.
2. Bharti VK, Budhathoki L, Kumar M, Singh G, Nath A, Nair GV. Use of immunization as strategy for outbreak control of varicella zoster in an institutional setting. Med J Armed Forces India. 2014;70(3):220-4. doi: 10.1016/j.mjafi.2014.03.006. [PubMed: 25378773]. [PubMed Central: PMC421892].
3. Khan ID, Sahni AK. Bacterial infections and emerging resistance in renal transplant recipients. Bangladesh J Med Sci. 2015;14(1):14.
4. CDC. Prevention of Varicella: Recommendations of the Advisory Committee on Immunization Practices (ACIP), MMWR; 2007. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5604a1.htm.
5. Sarit S, Shruti S, Deepinder C, Chhina RS. Chicken pox outbreak in the Intensive Care Unit of a tertiary care hospital: Lessons learnt the hard way. Indian J Crit Care Med. 2015;19(5):272-3. doi: 10.4103/0972-5532.171539. [PubMed: 26816447]. [PubMed Central: PMC471205].
6. Kumar A, Moulik NR, Verma N. Successful prevention of varicella outbreak in an overcrowded paediatric oncology ward using oral acyclovir prophylaxis. J Trop Pediatr. 2015;61(2):151. doi: 10.1093/tropej/fmv008. [PubMed: 25797060].
7. Khan ID, Sahni AK, Sen S, Gupta RM, Basu A. Outbreak of Prototheca wickerhamii algaemia and sepsis in a tertiary care chemotherapy oncology unit. Med J Armed Forces India. 2017. doi: 10.1016/j.mjafi.2017.07.012.

J Arch Mil Med. 2018; 6(2):e62800.
8. Gupta SN, Gupta N, Gupta S. Concurrent multiple outbreaks of varicella, rubeola, german measles in unvaccinated children of co-educational mount carmel senior secondary school, thakurdwara palampur of northern himachal, India. *Family Med Prim Care*. 2015;4(1):117-23. doi: 10.4103/2449-4863.152227. [PubMed: 25810001]. [PubMed Central: PMC4366988].

9. Fu J, Wang J, Jiang C, Shi R, Ma T. Outbreak of varicella in a highly vaccinated preschool population. *Int J Infect Dis*. 2015;37:14-8. doi: 10.1016/j.ijid.2015.06.002. [PubMed: 26072038].

10. Khan ID, Dogra PM, Rampal SK, Khan S, Konar J, Palit A, et al. Polymicrobial infections in a teenage Renal Transplant Recipient. *J Basic Clin Med*. 2015;4(1).

11. Depledge DP, Gray ER, Kundu S, Cooyar S, Poulsen A, Aaby P, et al. Evolution of cocirculating varicella-zoster virus genotypes during a chickenpox outbreak in Guinea-Bissau. *J Virol*. 2014;88(24):13936-46. doi: 10.1128/JVI.02374-14. [PubMed: 25275223]. [PubMed Central: PMC4249314].

12. California Department of Public Health. *Varicella Investigation Quick sheet*. 2016. Available from: https://www.cdph.ca.gov/programs/imunize/Documents/CDPHVaricellaQuicksheet.pdf.

13. Jindal AK, Pandya K, Khan ID. Antimicrobial resistance: A public health challenge. *Med J Armed Forces India*. 2015;71(2):178-81. doi: 10.1016/j.mjaifi.2014.04.001. [PubMed: 25859082]. [PubMed Central: PMC4388962].

14. Marin M, Marri M, Kambhampati A, Jeram SM, Seward JF. Global Varicella Vaccine Effectiveness: A Meta-analysis. *Pediatrics*. 2016;137(3): e20153741. doi: 10.1542/peds.2015-3741. [PubMed: 26908671].

15. Liu J, Kochin BF, Tekie Y, Galvani AP. Epidemiological game-theory dynamics of chickenpox vaccination in the USA and Israel. *J Soc Interface*. 2012;9(56):68-76. doi: 10.1098/rsif.2011.0001. [PubMed: 21632611]. [PubMed Central: PMC3223620].

16. Davis MM, Patel MS, Gebremariam A. Decline in varicella-related hospitalizations and expenditures for children and adults after introduction of varicella vaccine in the United States. *Pediatrics*. 2004;114(3):786-92. doi: 10.1542/peds.2004-0012. [PubMed: 15142855].

17. Gould PL, Leung J, Scott C, Schmid DS, Deng H, Lopez A, et al. An outbreak of varicella in elementary school children with two-dose varicella vaccine recipients-Arkansas, 2006. *Pediatr Infect Dis J*. 2009;28(6):678-81. doi: 10.1097/INF.0b013e31819c1041. [PubMed: 19591254].

18. Daskalaki I, Thermitus R, Perella D, Viner K, Spells N, Mohanty S, et al. Varicella outbreak in a daycare: challenges and opportunities for preventing varicella outbreaks in this setting. *Pediatr Infect Dis J*. 2014;33(4):420-2. doi: 10.1097/INF.0000000000000127. [PubMed: 24136372]. [PubMed Central: PMC3742226].

19. Cowan JB, Davis TS. Varicella outbreak among Afghan National Civil Order Police recruits-Herat Regional Military Training Center, Herat, Afghanistan, 2010. *Mil Med*. 2012;177(8):924-7. [PubMed: 22934770].

20. Zimmerman L, Fajardo M, Seward J, Ludwig S, Johnson J, Wharton M. Varicella susceptibility and validity of history among U.S. Coast Guard recruits: an outbreak-based study. *Mil Med*. 2001;166(5):404-7. [PubMed: 12775778].

21. Cramer EH, Slater DD, Guerreiro A, Robbins D, Ganzon A. Management and control of varicella on cruise ships: a collaborative approach to promoting public health. *J Travel Med*. 2012;19(4):226-32. doi: 10.1111/j.1708-8305.2012.00621.x. [PubMed: 22776383].

22. Khan ID, Basu A, Kiran S, Trivedi S, Pandit P, Chattoraj A. Device-Associated Healthcare-Associated Infections (DA-HAI) and the caveat of multiresistance in a multidisciplinary intensive care unit. *Med J Armed Forces India*. 2017;73(3):222-31. doi: 10.1016/j.mjaifi.2016.10.008. [PubMed: 28790779]. [PubMed Central: PMC5531250].

23. Khan ID, Sahni AK, Bharadwaj R, Lall M, Jindal AK, Sashindran VK. Emerging organisms in a tertiary healthcare set up. *Med J Armed Forces India*. 2014;70(2):120-8. doi: 10.1016/j.mjaifi.2013.09.005. [PubMed: 24843099]. [PubMed Central: PMC407990].

24. Khan ID, Khan S, Ali Khan M, Mustafa MS, Kidwai MS, Khan SA, et al. Indian Medical Mission at Hajj-2016: Mass-Gathering Medicine Perspectives, Challenges, and Opportunities in a Mission Posture. *Int J Travel Med Glob Health*. 2017;5(3):94-101. doi: 10.15171/ijtmgh.2017.20.

25. Khan ID, Asima B, Khan SA. Operations Throughtput as a Determinant of Golden-Hour in Mass-Gathering Medicine. *Int J Med Res*. 2017;1(1). doi: 10.1663/ijmr.2413-6077.2017.1.7804.

26. Khan ID, Khan SA, Asima B, Hussaini SB, Zakiuddin M, Faisal FA. Morbidity and mortality amongst Indian Hajj pilgrims: A 3-year experience of Indian Hajj medical mission in mass-gathering medicine. *J Infect Public Health*. 2018;11(2):165-70. doi: 10.1016/j.jiph.2017.06.004. [PubMed: 28668659].

27. Khan ID, Gupta N, Rangan NM, Singh R, Sharma AK, Khurana A, et al. Evaluation of pre and post analytical variables in clinical microbiology services in multidisciplinary icu of a medical college and tertiary care hospital. *J Basic Clin Med*. 2016;5(1).

28. Dehal N, Krishan K, Kanchan T, Singh J. Public-funded immunisation: key to varicella control in India. *Lancet*. 2013;381(9866):2369-90. doi: 10.1016/S0140-6736(13)60902-3. [PubMed: 26700521].
Table 2. Model Varicella Zoster Surveillance and Control Algorithm for Institutional Settings

S. No.	Event/Susceptible Population	Pre-Exposure Surveillance and Control	Vaccination	Organizational Responsibility	Post-Exposure Surveillance and Control	Immuno/Chemoprophylaxis	Organizational Responsibility
		Pre-Induction screening					
1.	Hospital outbreaks	Disease or vaccination history	Double/booster dose	Sponsored mandatory vaccination	Disease or vaccination history	Double/booster VZ vaccine	Sponsored mandatory immunocomp rhoprophylaxis/treatment
		Serology test for anti-VZ antibodies					
2.	Outbreaks in residential pockets including military camps	-	-	-	-	-	-
		Outbreak investigation	Double-dose to all high risk susceptible cases	Notification	Oral acyclovir/valacyclovir	Sponsored mandatory immunocomp rhoprophylaxis/treatment	
3.	Institutional outbreaks (military/academic/religious/cultural institutes)	-	-	-	-	-	-
		Outbreak investigation	Double-dose to all high risk susceptible cases	Notification	Oral acyclovir/acyclovir	Sponsored mandatory chemoprophylaxis/treatment	

Comprehensive Algorithm

S. No.	Event/Susceptible Population	Pre-Induction screening	Vaccination	Organizational Responsibility	Post-Exposure Surveillance and Control	Immuno/Chemoprophylaxis	Organizational Responsibility
1.	Healthcare professionals (personnel with positive disease history may be susceptible)	-	Double/booster dose	Sponsored mandatory vaccination	Disease or vaccination history	Double/booster dose VZ vaccine	Sponsored mandatory immunocomp rhoprophylaxis/treatment
		Serology test for anti-VZ antibodies					
2.	Immunocompromised patients (including HIV+ with CD4 count > 200/µL)	Serology test for anti-VZ antibodies	Double/booster dose	Sponsored mandatory vaccination	Institutionalized isolation	Oral acyclovir/valacyclovir	Sponsored mandatory chemoprophylaxis/treatment
3.	Susceptible household contacts of immunocompromised	Disease or vaccination history	Double/booster dose	Sponsored mandatory vaccination	Home isolation and confinement	Oral acyclovir/valacyclovir	Sponsored mandatory chemoprophylaxis/treatment
4.	Non-pregnant females of childbearing age	Serology test for anti-VZ antibodies	Double/booster dose	Parent education	Disease or vaccination history	Oral acyclovir/valacyclovir	Sponsored mandatory chemoprophylaxis/treatment
5.	Pregnant females	Disease or vaccination history	Double/booster dose on completion or termination of pregnancy	-	Institutionalized isolation	Varicella zoster immune globulin or zosterimmun globulin	Sponsored immunoprophylaxis
Number	Description						
--------	-------------						
6.	Neonates/infants						
7.	Patients/vaccines requiring hospitalization						
8.	Military/personnel/students in schools and colleges						
9.	Vaccinees with varicella-like rash						

6.	Neonates/infants
VZ vaccine + MMRV for increased coverage	
History of maternal vaccination during pregnancy	
Daily monitoring of fever, lesions, and systemic symptoms by ICN	
Sponsored mandatory chemoprophylaxis/treatment	
Daily screen of fever, lesions, and systemic symptoms by ICN	
Parent education	
Institutionalized isolation	
Oral acyclovir/valacyclovir	

7.	Patients/vaccines requiring hospitalization
History of maternal vaccination during pregnancy	
Double booster dose	
Parent and teacher education	
Home isolation and confinement	
Patient education	
Oral acyclovir/valacyclovir	
Sponsored mandatory chemoprophylaxis/treatment	

8.	Military/personnel/students in schools and colleges
History of maternal vaccination during pregnancy	
Double booster dose	
Parent and teacher education	
Vaccination kiosks in schools	
Daily monitoring of fever, lesions, and systemic symptoms by ICN	
Parent education	
Oral acyclovir/valacyclovir	
Sponsored mandatory chemoprophylaxis/treatment	

9.	Vaccinees with varicella-like rash
History of maternal vaccination during pregnancy	
No new lesions in 24 h	
Avoidance of contact till crusting/fading away of rashes	
Parent education	
Oral acyclovir/valacyclovir	
Sponsored mandatory chemoprophylaxis/treatment	

6.	Neonates/infants
VZ vaccine + MMRV for increased coverage	
History of maternal vaccination during pregnancy	
Daily monitoring of fever, lesions, and systemic symptoms by ICN	
Sponsored mandatory chemoprophylaxis/treatment	
Daily screen of fever, lesions, and systemic symptoms by ICN	
Parent education	
Institutionalized isolation	
Oral acyclovir/valacyclovir	

7.	Patients/vaccines requiring hospitalization
History of maternal vaccination during pregnancy	
Double booster dose	
Parent and teacher education	
Home isolation and confinement	
Patient education	
Oral acyclovir/valacyclovir	
Sponsored mandatory chemoprophylaxis/treatment	

8.	Military/personnel/students in schools and colleges
History of maternal vaccination during pregnancy	
Double booster dose	
Parent and teacher education	
Vaccination kiosks in schools	
Daily monitoring of fever, lesions, and systemic symptoms by ICN	
Parent education	
Oral acyclovir/valacyclovir	
Sponsored mandatory chemoprophylaxis/treatment	

9.	Vaccinees with varicella-like rash
History of maternal vaccination during pregnancy	
No new lesions in 24 h	
Avoidance of contact till crusting/fading away of rashes	
Parent education	
Oral acyclovir/valacyclovir	
Sponsored mandatory chemoprophylaxis/treatment	