Complete cDNA and Protein Sequence of a Pregnenolone 16α-Carbonitrile-induced Cytochrome P-450

A REPRESENTATIVE OF A NEW GENE FAMILY*

(Received for publication, November 29, 1984)

Frank J. Gonzalez‡, Daniel W. Nebert‡, James P. Hardwick†, and Charles B. Kasper‡

From the ‡Laboratory of Developmental Pharmacology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20205, the ‡Argonne National Laboratories, Division of Biological and Medical Research, Argonne, Illinois 60439, and the †McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706

A full-length cDNA complementary to rat liver mRNA coding for pregnenolone 16α-carbonitrile-induced cytochrome P-450 (P-450PCN) was isolated and completely sequenced. P-450PCN mRNA is 2038 nucleotides in length and has a continuous reading frame (82–1596) that encodes a protein of 504 amino acids (M₀ = 57,917). The amino-terminal sequence of 18 residues of the purified P-450PCN protein agrees with the open reading frame of the cDNA sequence.

The P-450PCN mRNA nucleotide and amino acid sequences clearly establish that this cytochrome is a member of a separate P-450 family different from the phenobarbital-induced (e.g. P-450e) and 3-methylcholanthrene-induced (e.g. P-450c) P-450 gene families. P-450PCN shares 38 and 37% nucleotide similarity and 33 and 33% amino acid similarity with P-450c and P-450e, respectively. P-450PCN, P-450e, and P-450c exhibit greater homology in the C-terminal half than in the N-terminal half of the proteins. Included in this region is the cysteiny1 fragment (surrounding residue 443 in P-450PCN), which appears to be the most conserved among all fragments of other P-450 proteins. Of interest, the N-terminal region of P-450PCN does not contain the cysteine residue previously thought to contribute the thiolate ligand to the heme iron in P-450 proteins; these data establish more firmly the cysteine residue located in the carboxyl-terminal region as serving this function. These sequence studies further support the conclusion derived from chromosomal localization studies and Southern blot analyses that P-450PCN represents a member of a distinct third family of P-450 genes, which diverged from a common ancestor more than 200 million years ago.

Cytochromes P-450 represent an unknown number of NADPH-dependent CO-inhibitory heme-containing enzymes involved in the metabolism of endogenous compounds, such as steroids and fatty acids, and numerous foreign chemicals, such as drugs and chemical carcinogens (1–5). Although several hundred chemicals are known to induce one or more P-450-mediated enzyme activities (1, 4), the number of classes of inducers is not known. Prototypes of the first two major classes of P-450 inducers are 3-methylcholanthrene (6) and phenobarbital (7, 8). TCDD was subsequently shown to be far more potent than 3-methylcholanthrene as an inducer of P-450 (9) and as a ligand for the Ah receptor which mediates the induction response for this class of inducers (10–12). The cDNA nucleotide and deduced amino acid sequences have now been reported for several members of the phenobarbital-inducible (13, 14) and TCDD-inducible (15–18) P-450 gene families, and it is clear that these two families diverged more than 200 million years ago.

A distinct third class of P-450 inducers is the steroids, and PCN is a prototype for this class (19). Glucocorticoids such as dexamethasone, as well as PCN, have been shown to regulate de novo protein synthesis of one or more forms of P-450 (20, 21). Although only one PCN-induced P-450 protein has been purified and characterized to date (22), Southern blot hybridization reveals that at least 50 kilobases of genomic DNA hybridizes with a PCN-inducible P-450 cDNA clone, suggesting the presence of multiple genes (23, 24). Evidence via Northern blot hybridization (23) and direct annealing of the P-450PCN cDNA against a cDNA clone homologous to phenobarbital-induced P-450b (24) suggest that the PCN-inducible cytochromes P-450 are products of a gene family distinct from either the phenobarbital- or TCDD-inducible P-450 gene families. Furthermore, chromosomal localization studies have demonstrated that the P-450PCN and the phenobarbital-inducible P-450 gene families map to mouse chromosomes 6 and 7, respectively (24, 25), and the TCDD-inducible P-450 gene family maps to mouse chromosome 9 (26).

In this paper the full-length cDNA nucleotide and deduced amino acid sequences of PCN-inducible P-450PCN are reported and compared with those of the phenobarbital-inducible and TCDD-inducible P-450 gene families.

EXPERIMENTAL PROCEDURES

Total polysomal mRNA was isolated from 150-g male rats that had been administered PCN 24 h prior to killing (22). Double-stranded cDNA was produced and ligated into λgt11 (27) by use of EcoRI linkers (28). Plaque hybridization (29) was then carried out with pP450PCN-10 to isolate phage containing P-450PCN cDNA inserts. pP450PCN-10 contains a 3′ portion of about 1600 bp of its corresponding 2300-nucleotide mRNA (23). Digestion of several purified

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address: Building 37, Room 3E-24, Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205.

1 The abbreviations used are: TCDD, 2,3,7,8-tetachlorodibenzo-p-dioxin; PCN, pregnenolone 16α-carbonitrile; P-450PCN, that form of cytochrome P-450 inducible by PCN and the cDNA of which has been sequenced in this report; bp, base pairs.
phage DNA preparations with EcoRI revealed the presence of a few isolates with approximately 2100-bp inserts consisting of separate 500- and 1600-bp fragments. These fragments were cloned into pBR322, amplified, and subsequently isolated. M13 shotgun libraries of the two fragments were prepared by use of the sonication method (30). Briefly described, the separate inserts were circularized by ligation and sonicated by four 10-s bursts of 50 watts each with a Branson Sonifier. The resultant fragments were electrophoresed on a 1% agarose gel; DNA sizes between 400 and 600 bp were collected by excision and electroelution. DNA was made blunt-ended with T4 DNA polymerase and ligated into M13 mp11 replicative form that had been linearized with SmaI. Transformation was carried out with *Escherichia coli* JM103, and plaques with inserts were confirmed by amplifying individual phage in liquid culture, spotting the phage supernatant on nitrocellulose filters, and annealing with ^32P-labeled nick-translated P-450PCN cDNA inserts. Sequencing was carried out by the dideoxy chain terminator method (31) with the use of the 17-bp primer from P-L Biochemicals. Each nucleotide was read on an automated Edman degradation and the cDNA encoding the first 20 amino acids (Table II). For unknown reasons, the first and fifth cycles did not yield clearly identifiable phenylthiohydantoin derivatives. Comparison of the amino acid composition of P-450PCN, P-450c, and P-450e (Table II) shows several striking differences, giving further evidence that these three proteins are derived from distinct gene families. For example, P-450c and P-450e histidines are almost twice as abundant as P-450PCN histidine; P-450PCN and P-450c tryptophans are at least five times as common as P-450e tryptophan.

The P-450PCN protein contains 504 residues and has a calculated molecular weight of 57,917. This value is most 6 kDa higher than the estimated molecular mass of 52,000 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (22). This type of variation has also been noted for the molecular masses derived from cDNA sequences of rat P-450d (15), mouse P-450 (17), mouse P-450 (18), and rat P-450e (13), in which cases the deviations were in the range of 3 to 5 kDa.

Comparison of the hydrophy indices for P-450PCN, P-450c, and P-450e reveal many dissimilarities (Fig. 2). This is not unexpected, however, since these three proteins represent products of three different gene families. Conversely, hydrophy index patterns for proteins which the same gene family (e.g. P-450c and P-450e; P-450d and rabbit form 2) tend to be quite similar (18). Two similarities are noted, however, between the three proteins in Fig. 2. The first is a stretch of 15 to 25 hydrophobic amino acids present at the amino terminus of each of the three proteins; this region may serve as a common functional domain for all of the P-450 proteins, or it may simply function as a membrane-binding signal during translation (38). The second point of similarity is the large segment of hydrophilic amino acids (residues ~400 to ~440) appearing just before the conserved C-terminal cysteiny1 peptide (Fig 2, bar 3) in all three proteins. This segment may serve some function related to the enzyme active-site, or it may be required for proper recognition of the oxidoreductase.

Comparison of P-450PCN Nucleotide and Protein Sequences with Other P-450 cDNA and Protein Sequences—The nucleotide and amino acid sequences of P-450PCN were compared with those of other P-450 cDNAs and proteins published to date (13–18, 39–42). The data are summarized in Table III. Basically, the P-450PCN cDNA nucleotide sequence has diverged more than 60% from the other P-450 cDNAs, whereas the P-450PCN amino acid sequence has diverged 67% or more from the other P-450 proteins.

Amino acid sequences of the so-called N-terminal and C-terminal cysteinyl fragments were also compared for nine P-450 proteins (13–18, 39–42). It can be seen (Fig. 3) that P-450PCN represents a member of a distinct P-450 gene family, although all eight eukaryotic proteins exhibit some relatedness to one another, as well as to the prokaryotic P-450 *cym* (42). One striking finding in the P-450PCN sequence is the absence of cysteine in the so-called "N-terminal conserved

Fig. 1. Complete cDNA and amino acid sequence of cytochrome P-450PCN. Black boxes denote the initiation codon, the cysteine codon in the C-terminal conserved cysteinyl fragment, the termination codon, and the putative poly(A) addition signal, respectively. Regions corresponding to the N-terminal cysteinyl fragment, the 30 nucleotide conserved region (38), and the C-terminal conserved cysteinyl fragment are underlined.
The data for rat P-450c (16) and rat P-450e (13) are extracted from the references cited.

TABLE 1

Codon	Per cent each codon is used, with regard to each residue
UUU Phe	67 34 28 35
UUC	33 66 72 65
UUA Leu	7 5 6 6
UUG	17 10 13 12
CUU	17 7 14 12
CUC	20 20 37 19
CUA	6 5 3 9
CUG	33 53 27 41
AUU Ile	44 30 43 33
AUC	37 55 50 55
AUA	19 17 7 13
AUG Met	(100) (100) (100) (100)
GUU Val	8 18 0 18
GUC	28 29 27 28
GUA	14 3 5 11
GUG	50 50 68 43
UCU Ser	22 22 19 19
UCC	22 15 22 28
UCA	26 18 13 12
UCG	0 0 3 5
AGU	4 18 19 13
AGC	26 26 13 23
CUC Pro	31 31 16 28
CCC	29 31 35 33
CCA	37 34 48 29
CCG	3 3 10 10
ACU Thr	17 19 14 23
ACC	37 32 45 47
ACA	40 45 54 21
AGG	7 3 7 10
CCG Ala	50 28 44 32
GCC	33 60 40 41
GCA	11 8 16 18
GCG	6 4 0 8
UAU Tyr	65 47 29 39
UAC	35 53 71 61
CAU His	67 31 41 33
CAC	33 69 59 67
CAA Gin	33 13 24 28
CAG	67 88 76 72
AUA Asn	56 56 33 38
AAC	44 44 67 62
AAA Lys	53 29 39 36
AAG	47 71 61 65
GAC Asp	77 31 44 40
GCA	23 69 56 60
GAG Glu	52 19 35 41
GUG	48 81 65 59
UGU Cys	33 50 50 38
UGC	67 50 50 62
UGG Trp	(100) (100) (100) (100)
CGU Arg	5 11 10 14
CGC	14 11 26 24
CGA	5 11 13 10
CCG	14 25 19 16
AGA	43 21 13 18
AGG	19 21 19 17
GGU Gly	18 15 16 28
GGC	18 41 34 37
GGA	39 28 28 22
GGG	25 24 22 16
UAA Term	0 0 0 0
UAG	0 (100) 0 0
UGA	(100) 0 (100) (100)

*Out of 505 residues for the P-450PCN protein, 36 were UUU and 24 (67%) were encoded by UUU. The remaining calculations were made similarly.

From the cumulative statistics of 80 rat entries and 20,600 codons from 31 coding regions, 741 were Phe and 260 (35%) were encoded by UUU. The remaining calculations were made similarly.

TABLE 2

Residue	Number of amino acid residues deduced from cDNA sequence*		
P-450PCN	P-450c	P-450e	
Cysteine	6	8	6
Alanine	18	25	25
Arginine	21	28	31
Asparagine	18	18	12
Aspartic acid	26	29	26
Glutamine	15	24	17
Glutamic acid	31	26	31
Glycine	28	34	32
Histidine	9	16	17
Isoleucine	27	30	30
Leucine	54	59	63
Lysine	43	28	23
Methionine	22	9	12
Phenylalanine	36	35	39
Proline	35	25	31
Serine	27	29	31
Threonine	30	31	29
Tryptophan	5	7	1
Tyrosine	17	15	14
Valine	36	34	22
Total	564	524	491

Molecular weight of unmodified chain: 57,917 59,411 55,919

*The P-450c (16) and P-450e (13) data are taken from the references cited.

TABLE 3

Comparison of P-450PCN nucleotide and amino acid sequences with other P-450 cDNA and amino acid sequences
Per cent similarity
Nucleotide
Rat P-450e
P-450c
P-450d
P-450ccc
Mouse
P-450
Rabbit form 2

*Insufficient homology for alignment with PRTALN-type programs (33).

cysteinyl fragment," postulated (41) to be the donor of the thiolate ligand to the heme in the enzyme active-site. In the case of P-450PCN, isoleucine (using the codon ATT) replaces cysteine. An identical amino acid substitution appears to have occurred in P-450ccc, the only other P-450 protein reported to date lacking a cysteine in its N-terminal conserved cysteynyl fragment (39); however, the isoleucine codon in this case was ATC.

Two alignments are shown for P-450c, P-450, P-450d, and P-450 (Fig. 3, top). Of interest, the N-terminal fragment centered around Cys-160 or Cys-158 has considerably less homology with the other P-450 proteins than an N-terminal fragment centered around Tyr-172 or His-170 having no cysteine.

In contrast, the P-450PCN C-terminal cysteinyl fragment (Fig. 3, bottom) exhibits considerably more homology with the
FIG. 2. Comparison of the hydropathy index for the P-450PCN, P-450c, and P-450e proteins. A sliding window of six amino acids was used (36); positive values represent hydrophobic domains. Open circles denote locations of cysteine residues. Solid bars numbered 1 and 3 represent the N-terminal and C-terminal "cysteinyl fragments," respectively (17, 18, 37); solid bar numbered 2 denotes the highly conserved region described by Ozols and co-workers (35).

FIG. 3. Comparison of the amino acid sequence from two "cysteinyl fragments" of P-450PCN with those of eight other P-450 proteins. Amino acid residues that are found in the corresponding position in at least five of the peptide sequences are boxed. The N-terminal fragment is shown at the top, the C-terminal fragment at the bottom. Two regions in the proteins of the TCDD-inducible P-450 gene family can be aligned in the N-terminal fragment, corresponding to Cys-160 and Tyr-172, respectively, of rat P-450c.

Reference	Position relative to cysteine:																					
P-450CAM	-6	-4	-2	0	+2	+4	+6	+8	+10	+12												
Bovine P-450cc	37	F	G	H	G	S	H	L	C	L	G	S	L	A	R	R	E	I	I	Y		
Rabbit form 2	39	F	G	W	G	V	R	Q	C	V	G	R	R	I	A	E	L	E	M	T	L	F
Rat P-450e	13	F	S	L	G	K	R	I	C	L	G	E	G	I	A	R	T	E	L	F	L	F
Rat P-450PCN	15	F	S	T	G	K	R	I	C	L	G	E	G	I	A	R	N	E	L	F	L	F
Rat P-450c	16	F	G	N	G	P	R	N	C	I	G	M	F	A	L	M	N	M	K	L	A	
Rat P-450	18	F	G	L	G	K	R	K	C	I	G	E	I	P	A	K	W	E	V	F	L	F
Mouse P1-450	17	F	G	L	G	K	R	K	C	I	G	E	I	P	A	K	W	E	V	F	L	F

Position relative to cysteine:
corresponding fragment from the other eight entries. Particularly noteworthy is the presence of phenylalanine, glycine, glycine, arginine, glycine, alanine, glutamine, leucine, and phenylalanine in positions -7, -6, -4, -2, +6, +9, +12 and +13, respectively, relative to cysteine. In this C-terminal fragment P-450PCN appears to be about equally similar to members of the TCDD-inducible and phenobarbital-inducible P-450 gene families. The data in Fig. 3, therefore, lend further support to the hypothesis (17, 18, 37) that the C-terminal conserved cysteinyl fragment is important in the enzyme active-site.

Global nucleotide and amino acid alignment programs between P-450PCN and members of the phenobarbital- and TCDD-inducible P-450 gene families appeared to show more homology in the C-terminal half of the protein. This finding is particularly well illustrated by the dot matrix analysis in Fig. 4. Homology across the C-terminal region of the P-450 proteins suggests that this portion of the molecule may play a more important role than the N-terminal half of the molecule in some common P-450 function or property, such as heme binding or interaction with NADPH-cytochrome P-450 oxidoreductase or cytochrome b₅. Segments of homology in the N-terminal half of the proteins can be seen in Fig. 4, however, especially when P-450PCN is compared with P-450c.

DISCUSSION

The complete cDNA and deduced amino acid sequences of PCN-inducible P-450PCN have been determined. Although the P-450PCN amino acid sequence has diverged at least 67% from every other P-450 sequence reported to date, it has still retained certain features in common with all other members of the P-450 superfamily. These include (i) the hydrophobic N-terminal region (except in the case of the mitochondrial P-450ssc in which post-translational processing occurs (39)) and (ii) the conserved C-terminal cysteinyl fragment containing Cys-443.

The comparative data in this report also allows an estimate as to when the P-450PCN gene separated from the other P-450 gene families that have been sequenced to date. The unit evolutionary period is the time, in millions of years, required for 1% divergence in the amino acid sequence of a species-related protein (43). This rate of divergence becomes increasingly nonlinear as one goes further back in time (43, 44). Fossil data and other protein sequence data indicate that the rabbit-rodent split occurred about 60 million years ago (43, 44) and the rat-mouse split occurred about 17 million years ago (45). Based on phenobarbital-inducible rabbit and rat P-450 amino acid sequence (46) and mouse and rat P-450 amino acid sequence data (18), the P-450 unit evolutionary period has been estimated as 2.1 (46) and 2.4 (18), respectively. Since the P-450PCN protein has diverged at least 67% from any other P-450 protein reported to date, it can be concluded that the steroid-inducible P-450 gene family has separated from the phenobarbital- and TCDD-inducible P-450 gene families much more than 200 million years ago.

All P-450 families so far characterized have been found on different chromosomes. The phenobarbital-inducible P-450 genes have been linked to the C₀h locus near the proximal end of mouse chromosome 7 (25), whereas the TCDD-inducible P-450 gene family has been localized to mouse chromosome 9 (26). The gene encoding the P-450 responsible for C-21 hydroxylation of steroids maps very close to the H-2 locus on mouse chromosome 17 (47). The PCN-inducible P-450 gene family has recently been assigned to mouse chromosome 6 (24), the same chromosome to which NADPH-cytochrome P-450 oxidoreductase maps (24). It, therefore, appears that these above-mentioned P-450 gene families have diverged from one other such a long time ago that the members of the superfamily no longer are localized to one chromosomal region. The same conclusion can be drawn for the globin and immunoglobulin gene superfamilies.

Although only a single PCN-inducible P-450 cDNA has been cloned and sequenced, Southern blot analysis (23, 24) suggests the presence of multiple P-450PCN-related genes. This question awaits further structural analysis of other PCN-inducible P-450 cDNA and genomic clones. Finally, it should be noted that the precise relationship of the P-450PCN reported in the present study to the cytochrome described by Elshourby and Guzelian (22) remains to be established.

Acknowledgments—We thank Dr. Shioko Kimura for her help with the nucleotide-sequencing computer alignment. The technical assistance of Hugh A. Privette, Patricia McQuiddy, and John Sheehan is appreciated. We are grateful to Ingrid E. Jordan for expert secretarial assistance.

REFERENCES

1. Conney, A. H. (1967) *Pharmacol. Rev.* 19, 317-366
2. Lu, A. Y. H., and West, S. B. (1980) *Pharmacol. Rev.* 31, 277-295
3. Mannering, G. J. (1981) in *Concepts in Drug Metabolism* (Jenner, F., and Testa, B., eds) pp. 53-165, Marcel Dekker, Inc., New York
4. Nebert, D. W., Eisen, H. J., Negishi, M., Lang, M. A., Hjelmeland, L. M., and Okey, A. B. (1981) *Annu. Rev. Pharmacol. Toxicol.*
PCN-induced P-450 cDNA and Protein

9585–9588
26. Tukey, R. H., Lalley, P. A., and Nebert, D. W. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 3163–3166
27. Young, R. A., and Davis, R. W. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 1194–1198
28. Maniatis, T., Fritsch, E. F., and Sambrook, J. (eds) (1982) Molecular Cloning: A Laboratory Manual, pp. 76–83, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
29. Benton, W. D., and Davis, R. W. (1977) Science 196, 180–182
30. Deininger, P. L. (1983) Anal. Biochem. 129, 216–223
31. Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 5463–5467
32. Staden, R. (1980) Nucleic Acids Res. 8, 3673–3694
33. Brutlag, D. J., Clayton, J., Friedland, P., and Kedes, L. H. (1982) Nucleic Acids Res. 10, 279–292
34. Orcott, B. C., George, D. C., Fredrickson, J. A., and Dayhoff, M. O. (1982) Nucleic Acids Res. 10, 157–174
35. Ozols, J., Heinemann, F. S., and Johnson, E. F. (1981) J. Biol. Chem. 256, 11405–11408
36. Kyte, J., and Doolittle, R. F. (1982) J. Mol. Biol. 157, 106–132
37. Gotoh, O., Tagashira, Y., Iizuka, T., and Fuji-Kuriyama, Y. (1983) J. Biochem. (Tokyo) 93, 807–817
38. Walter, P., Gilmore, R., and Blobel, G. (1984) Cell 38, 5–8
39. Morohashi, K., Fuji-Kuriyama, Y., Okada, Y., Sogawa, K., Hirose, T., Inayama, S., and Omura, T. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4647–4651
40. Heinemann, F. S., and Ozols, J. (1983) J. Biol. Chem. 258, 4195–4201
41. Tarr, G. E., Black, S. D., Fujita, V. S., and Coon, M. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 6552–6556
42. Haniu, M., Armes, L. G., Yasunobu, K. T., Shstry, B. A., and Gunsalus, I. C. (1982) J. Biol. Chem. 257, 12864–12871
43. Wilson, A. C., Carlson, S. S., and White, T. J. (1977) Annu. Rev. Biochem. 46, 573–639
44. Fitch, W. M., and Langley, C. H. (1976) Fed. Proc. 35, 2092–2097
45. Miyata, T., Hayashida, H., Kikuno, R., Hasegawa, M., Kobayashi, M., and Koike, K. (1982) J. Mol. Evol. 19, 29–35
46. Leighton, J. K., DeBrunner-Vossbrinck, B. A., and Kemper, B. (1984) Biochemistry 23, 204–210
47. White, P. C., Chaplin, D. D., Weis, J. H., Dupont, B., New, M. I., and Seidman, J. G. (1984) Nature 312, 465–467

21. 431–462
5. Waterman, M. R., and Estabrook, R. W. (1983) Mol. Cell. Biochem. 53/54, 267–278
6. Conney, A. H., Miller, E. C., and Miller, J. A. (1956) Cancer Res. 16, 465–459
7. Remmer, H. (1958) Naturwissenschaften 45, 189–190
8. Conney, A. H., and Burns, J. J. (1959) Nature 184, 363–364
9. Poland, A. P., Glover, E., Robinson, J. R., and Nebert, D. W. (1974) J. Biol. Chem. 249, 5599–5606
10. Poland, A., Glover, E., and Kende, A. S. (1976) J. Biol. Chem. 251, 4936–4946
11. Okey, A. B., Bondy, G. P., Mason, M. E., Kahl, G. F., Eisen, H. J., Guenther, T. M., and Nebert, D. W. (1979) J. Biol. Chem. 254, 11636–11648
12. Carlstedt-Duke, J. M. B. (1979) Cancer Res. 39, 3172–3176
13. Mizukami, Y., Sogawa, K., Suwa, Y., Muramatsu, M., and Fuji-Kuriyama, Y. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3988–3992
14. Kumar, A., Raphael, C., and Adesnik, M. (1983) J. Biol. Chem. 258, 11280–11284
15. Kawajiri, K., Gotoh, O., Sogawa, K., Tagashira, Y., Muramatsu, M., and Fuji-Kuriyama, Y. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1649–1653
16. Yabuaki, Y., Shimizu, M., Murakami, K., Nakamura, K., Oeda, K., and Ohkawa, H. (1984) Nucleic Acids Res. 12, 2929–2938
17. Kimura, S., Gonzalez, F. J., and Nebert, D. W. (1984) Nucleic Acids Res. 12, 2917–2928
18. Kimura, S., Gonzalez, F. J., and Nebert, D. W. (1984) J. Biol. Chem. 259, 10705–10713
19. Lu, A. Y. H., Somogyi, A., West, S., Kuntzman, R., and Conney, A. H. (1972) Arch. Biochem. Biophys. 152, 457–462
20. Schuetz, E. G., Wrighton, S. A., Barwick, J. L., and Guzelian, P. S. (1984) J. Biol. Chem. 259, 1999–2006
21. Schuetz, E. G., and Guzelian, P. S. (1984) J. Biol. Chem. 259, 2007–2012
22. Elshourbagy, N. A., and Guzelian P. S. (1980) J. Biol. Chem. 255, 1279–1285
23. Hardwick, J. P., Gonzalez, F. J., and Kasper, C. B. (1983) J. Biol. Chem. 258, 10182–10186
24. Simons, D. L., Lalley, P. A., and Kasper, C. B. (1985) J. Biol. Chem. 260, 515–521
25. Simons, D. L., and Kasper, C. B. (1983) J. Biol. Chem. 258, 3962
9.8.