Overdetermined boundary value problems for the ∞-Laplacian

G. Buttazzo & B. Kawohl
March 4, 2010

Abstract: We consider overdetermined boundary value problems for the ∞-Laplacian in a domain Ω of R^n and discuss what kind of implications on the geometry of Ω the existence of a solution may have. The classical ∞-Laplacian, the normalized or game-theoretic ∞-Laplacian and the limit of the p-Laplacian as p → ∞ are considered and provide different answers, even if we restrict our domains to those that have only web-functions as solutions.

Mathematics Subject Classification (2000). 35R35, 49R05, 35J25

Keywords. overdetermined bvp, degenerate elliptic equation, web-function, cut locus, ridge set, viscosity solution

1 Motivation

Suppose that Ω ⊂ R^n is connected and bounded, with boundary at least of class C^1, and that u ∈ C^1(Ω) is a positive solution of the overdetermined boundary value problem

\[- \Delta_p u_p := - \text{div} (|\nabla u_p|^{p-2} \nabla u_p) = 1 \quad \text{in } \Omega, \quad (1.1)\]
\[u_p = 0 \quad \text{on } \partial \Omega, \quad (1.2)\]
\[- \frac{\partial u_p}{\partial \nu} = a \quad \text{on } \partial \Omega, \quad (1.3)\]

where p ∈ (1, ∞) and a is a positive constant. Does this have consequences on the geometry of Ω? This question was answered in 1971 for p = 2 by Serrin [17] and Weinberger [18], and for general p in 1987 by Garofalo and Lewis [6]. See also Farina and Kawohl [5] for related results. In both cases the domain Ω must be a ball of fixed radius related to a. This result leads us to the question: what happens if the p-Laplacian is replaced by the infinity Laplacian?
The answer depends on how we define the ∞-Laplacian and the notion of solution. In case of equation (1.1) and $p = 2$ Serrin and Weinberger had classical $C^2(\Omega)$ solutions in mind, while for general $p \in (1, \infty)$ the solutions were weak in the sense that

$$\int_{\Omega} |\nabla u_p|^{p-2} \nabla u_p \nabla v \, dx = \int_{\Omega} v \, dx \quad \text{for every } v \in W^{1,p}_0(\Omega).$$

2 The classical ∞-Laplacian

The classical ∞-Laplacian operator is usually defined as $\Delta_\infty u := \langle D^2 u Du, Du \rangle$, with Du denoting the gradient and $D^2 u$ the Hessian matrix of u. For functions in C^2 the second directional derivative in direction ν is given by $\langle D^2 u \nu, \nu \rangle$. If ν denotes the direction $-Du/|Du|$ of steepest descent of u, the equation $-\Delta_\infty u = 1$ can be rewritten as

$$-u_{\nu\nu} |u_\nu|^2 = 1,$$

and if Ω should happen to be a ball of radius R centered at zero, $u(x)$ is necessarily a radial function. In fact, then

$$u(r) = \frac{3^{1/3}}{4} (R^{4/3} - r^{4/3}) \quad \text{and} \quad u_r(R) = -(3R)^{1/3}$$

imply that R must be equal to $a^{4/3}$ to match both boundary conditions. Notice that this function is exactly of class $C^{1,1/4}$, which is the conjectured optimal regularity for ∞-harmonic functions v, that is for functions satisfying $\Delta_\infty v = 0$.

Therefore we cannot expect classical solutions. Since the equation is not in divergence form, we cannot expect a notion of weak solution either. Instead we define a viscosity solution u of the equation

$$F(Du, D^2 u) := -\langle D^2 u Du, Du \rangle - 1 = 0$$

as a continuous function which is both a viscosity sub- and viscosity supersolution. A viscosity subsolution has the property that $F(D\varphi, D^2 \varphi)(x) \leq 0$ whenever φ is a C^2-function such that $\varphi - u$ has a local minimum at x. A viscosity supersolution has the property that $F(D\psi, D^2 \psi)(x) \geq 0$ whenever ψ is a C^2-function such that $\psi - u$ has a local maximum at x, see for instance [2]. In our autonomous case we may also assume that φ touches u from above at x if we check the definition of subsolutions, and that ψ touches from below at x if we check supersolutions.

Let us see that the explicit radial function $c - k r^{4/3}$, with $k = 3^{4/3}/4$ is a viscosity solution of $F(Du, D^2 u) = 0$ at $x = 0$. If φ is a smooth function touching u from above, then $\nabla \varphi(0) = 0$, so $\varphi_\nu = 0$ and $F(D\varphi, D^2 \varphi) = -1$, which is less or equal to zero, as required for subsolutions. For supersolutions
the set of test functions ψ that touch u from below in the origin is empty, so that the condition for a supersolution is trivially satisfied. Effects like this happen quite often when viscosity solutions are not smooth. Checking the property of sub- or supersolution is somehow easier in points where the solutions loose smoothness.

Now suppose that Ω is not necessarily a ball, but a more general smooth domain.

Remark 2.1 From every point x_0 on $\partial \Omega$ we can follow the line of steepest ascent, parametrized as $x(t)$ by solving the initial value problem

$$x(0) = x_0, \quad \frac{dx_i}{dt} = u_{x_i} \text{ for small but positive } t.$$ (2.2)

A simple calculation shows, assuming that u is locally of class C^2,

$$\frac{d}{dt} \left(\left| \frac{dx}{dt} \right|^2 \right) = 2u_{x_i} u_{x_i x_j} u_{x_j} = -2,$$ (2.3)

so that upon integration from 0 to t

$$\left| \frac{dx}{dt} \right|^2 = |\nabla u(x(t))|^2 = a^2 - 2t.$$ (2.4)

Note that this works until t reaches $a^2/2$, at which time $\nabla u = 0$. Subsequently we get the estimate

$$|x(t) - x_0| = \left| \int_0^t x_i(s) \, ds \right| \leq \frac{1}{3} \left(a^3 - (a^2 - 2t)^{3/2} \right) \leq \frac{a^3}{3}. \quad (2.5)$$

This shows that our trajectories can never reach a distance greater than $a^3/3$ from the boundary of Ω and that any critical point of u that can be approached this way has at most distance $a^3/3$ from $\partial \Omega$.

Notice that the radial solution on a ball is a web-function in the sense of [3], i.e. a function, whose value depends only on the distance to $\partial \Omega$. From now on we assume that a solution of (2.1) (1.2) (1.3) happens to be a webfunction for a general domain as well. This may be justified via the Cauchy-Kowalewski Theorem or by using the remark above, but we could not give a precise proof. Under this assumption we can interpret equation (2.1) as an ordinary differential equation for a function $u(d)$ that depends only on the distance $d = d(x, \partial \Omega)$ to the boundary, with initial condition (1.2) and (1.3) at $d = 0$. Then we arrive after the first integration at

$$u_s'(d) - a^3 = -3d \text{ or } -u_\nu = (a^3 - 3d)^{1/3} \text{ and after a second integration at}$$

$$u(d) = \int_0^d (a^3 - 3t)^{1/3} \, dt = \frac{1}{4} \left[a^4 - (a^3 - 3d)^{4/3} \right].$$
Clearly the integrations are only justifiable for sufficiently small d and as long as d is locally of class $C^{1,1}$. When $d = a^3/3$, the gradient of u vanishes and we have reached the peak on our way uphill from the boundary. This shows that Ω has an inradius of exactly $a^3/3$. Incidentally, the points in

$$M(\Omega) := \{ y \in \Omega \mid d(y, \partial \Omega) = \max_{x \in \Omega} d(x, \partial \Omega) \}$$

belong to the ridge of Ω or cut locus of $\partial \Omega$, which is defined as follows. Let G be the largest open subset of Ω such that every point x in G has a unique closest point on $\partial \Omega$. Then we call

$$\mathcal{R}(\Omega) := \Omega \setminus G$$

the ridge $\mathcal{R}(\Omega)$. In G, the distance $d(x, \partial \Omega)$ to the boundary is at least of class C^1, and also smooth, i.e., of class C^2 or $C^{k,\alpha}$ with $k \geq 2$ and $\alpha \in (0, 1)$ provided $\partial \Omega$ is of the same class, see [4, 11]. It is remarkable that even for a convex plane domain the ridge can have positive measure, see pages 10 and 11 in [14]. Simple examples such as an ellipse or a rectangle show that in general $M(\Omega)$ is a genuine subset of the ridge, but there are many domains with the property $M(\Omega) = \mathcal{R}(\Omega)$.

Examples of such domains are for instance a stadium domain (convex hull of two balls of same radius and different center), an annulus, or plane domains which are generated as follows. Let γ be a compact $C^{1,1}$ curve with curvature not exceeding K in modulus and $\Omega = U_b(\gamma) = \{ x \in \mathbb{R}^2 \mid d(x, \gamma) < b \}$ with $b < 1/K$. Then $M(\Omega) = \mathcal{R}(\Omega)$, see Figure 1.

![Figure 1: A domain satisfying $M(\Omega) = \mathcal{R}(\Omega)$](image)

Theorem 2.2 Suppose that $\partial \Omega$ is of class C^2. Then a webfunction $u \in C^1(\Omega)$ is a viscosity solution of [2.1] [1.2] [1.3] if and only if $M(\Omega) = \mathcal{R}(\Omega)$ and every $x \in \partial \Omega$ has distance $a^3/3$ to $\mathcal{R}(\Omega)$.
Proof. In fact, if $M(\Omega) = R(\Omega)$, then the function
\[
u(x) = \frac{1}{4} \left[a^4 - \left(a^3 - 3d(x, \partial \Omega) \right)^{4/3} \right]
\]
is well defined and differentiable everywhere in Ω. Moreover, according to [4], it is of class $C^2(\Omega \setminus R(\Omega))$ and solves (2.1) in $\Omega \setminus R(\Omega)$ in the classical (and a fortiori in the viscosity) sense. Finally on $M(\Omega) = R(\Omega)$ we can argue as in the radial case to see that u is a viscosity solution there as well. This shows that the geometric constraint $M(\Omega) = R(\Omega)$ is sufficient for the existence of solutions to (2.1) (1.2) (1.3).

To prove necessity, suppose that $M(\Omega)$ is a genuine subset of $R(\Omega)$, so that there exists a $z \in R(\Omega) \setminus M(\Omega)$. But then $d(z, \partial \Omega) < a^3/3$ and $d(z, \partial \Omega)$ has a kink in the sense that some directional derivative of d, and subsequently of u, is discontinuous at z. This is incompatible with being a viscosity solution, because one can then find an admissible test function $\varphi \in C^2(\Omega)$ for which $F(D\varphi, D^2\varphi)$ fails to satisfy the proper inequality. To be precise, suppose that Ω is essentially a rectangle (with rounded corners to make it smooth) or an ellipse. Then z lies on a line segment and $d(x, \partial \Omega)$ is concave near z and has one-sided nonzero derivatives in direction η orthogonal to the ridge in z. But then one can choose a C^2 function φ, touching u from above in z such that $\nabla \varphi(z) \neq 0$ points in direction η and $\varphi_{\eta\eta}(z) < -K$, where K is an arbitrarily large number. Therefore $F(D\varphi, D^2\varphi)(z) > 0$, which contradicts the requirement for subsolutions. There is a similar reasoning using supersolutions, if Ω is essentially L-shaped and u is convex and nondifferentiable on parts of its ridge. \hfill \Box

3 The normalized or game-theoretic ∞-Laplacian

Recently the following operator has received considerable attention (see for instance [13, 16, 9, 12, 13, 20]) in the PDE community
\[
\Delta_N^\infty u = \langle D^2u Du, Du \rangle |Du|^{-2}.
\]
Here $u(x)$ denotes the (unique) running costs in a differential game called “tug of war”, see [20]. Let us therefore study the differential equation
\[
- u_{\nu\nu} = 1 \quad \text{in } \Omega
\]
under boundary conditions (1.2) and (1.3). A simple integration shows that certainly for a ball of radius $R = a$ this overdetermined problem has the explicit solution $u(r) = (a^2 - r^2)/2$, provided we can live with the ambiguity that ν is not properly defined at the origin. Fortunately the notion of viscosity solution allows us to do so. A viscosity solution u of
\[
G(Du, D^2u)(x) := - \frac{\langle D^2u Du, Du \rangle}{|Du|^2} (x) - 1 = 0 \quad \text{in } \Omega
\]
is a viscosity subsolution of $G_* (Du, D^2 u) = 0$ and a viscosity supersolution of $G^* (Du, D^2 u) = 0$. Here G_* and G^* are the upper and lower semicontinuous envelopes of G, see Remark 6.3 in [2]. Thus $u \in C(\Omega)$ is a viscosity subsolution of (3.1) or (3.2), if for every $x \in \Omega$ and every smooth test function φ, that touches u from above (only) in x, the following relations hold:

$$
\begin{cases}
G(\nabla \varphi(x), D^2 \varphi(x)) \leq 0 & \text{when } \nabla \varphi(x) \neq 0, \\
-\Lambda(D^2 \varphi(x)) - 1 \leq 0 & \text{when } \nabla \varphi(x) = 0.
\end{cases}
$$

(3.3)

In a similar fashion viscosity supersolutions $u \in C(\Omega)$ of (3.1) are characterized by the fact that

$$
\begin{cases}
G(\nabla \psi(x), D^2 \psi(x)) \geq 0 & \text{when } \nabla \psi(x) \neq 0, \\
-\lambda(D^2 \psi(x)) - 1 \geq 0 & \text{when } \nabla \psi(x) = 0.
\end{cases}
$$

(3.4)

for every smooth test function ψ that touches u from below (only) in x. Here $\Lambda(X)$ and $\lambda(X)$ denote the maximal and minimal (nonnegative) eigenvalue of the symmetric matrix X.

For a more general Ω, if we interpret (3.1) again as an ODE and (1.2) and (1.3) as initial data on $\partial \Omega$, then an integration like in the previous section along lines of steepest ascent of u leads to the local representation

$$
u(x) = \frac{d(x, \partial \Omega)}{2} \left(2a - d(x, \partial \Omega) \right) \text{ in } \Omega \setminus R(\Omega).$$

Theorem 3.1 Suppose that $\partial \Omega$ is of class C^2. Then a webfunction $u \in C^1(\Omega)$ is a viscosity solution of (3.1) (1.2) (1.3) if and only if $M(\Omega) = R(\Omega)$ and every $x \in \partial \Omega$ has distance a to $R(\Omega)$.

The proof parallels the one of Theorem 2.2 and is left to the reader.

Remark 3.2 Notice that annuli provide examples of domains (other than balls) for which a smooth solution of this problem (but not of Serrin’s and Weinberger’s original problem) exists.

4 The limit of u_p

It is well-known, that p-harmonic functions or viscosity solutions of $\Delta_p u = 0$ converge to the viscosity solution of $\Delta_\infty u = 0$ as $p \to \infty$. Therefore one is inclined to believe that solutions u_p of the inhomogeneous equation (1.1) should converge to those of (2.1). This is not the case, and in the present section we investigate this limit. For Ω a ball in \mathbb{R}^n the solutions of (1.1), (1.2) were explicitly calculated and shown to converge uniformly to $d(x, \partial \Omega)$ in [10]. Let us demonstrate that this behaviour happens for any connected domain, even for a nonsmooth one. First one has to note that u_p on Ω can
be estimated in L^q for any $q \in [0, \infty]$ by the corresponding solution U_p on a ball Ω^* of same volume as Ω, so that the u_p are uniformly bounded in $L^\infty(\Omega)$ as $p \to \infty$. Furthermore u_p minimizes the functional

$$J_p(v) = \int_\Omega \left[\frac{1}{p} |\nabla v(x)|^p - v(x) \right] dx \quad \text{on } W^{1,p}_0(\Omega).$$

In particular

$$J_p(u_p(x)) \leq J_p(d(x, \partial \Omega)) = \frac{1}{p} |\Omega| - \int_\Omega d(x, \partial \Omega) dx,$$

the right hand of which is negative for sufficiently large p. Thus

$$\int_\Omega |\nabla u_p|^p dx \leq p \int_\Omega u_p dx,$$

or for $p > q$ and q large enough

$$\int_\Omega |\nabla u_p|^q dx \leq \left(\int_\Omega |\nabla u_p|^p dx \right)^{q/p} |\Omega|^{1-q/p} \leq \left(p \int_\Omega u_p dx \right)^{q/p} |\Omega|^{1-q/p}.$$

But this implies $||\nabla u_p||_q \leq p^{1/p} |u_p|^{1/p} |\Omega|^{1/q}$, so that the family $\{u_p\}_{p \to \infty}$ is uniformly bounded in every $W^{1,q}(\Omega)$ and converges uniformly to some limit u_∞ with Lipschitz constant 1.

Therefore $|\nabla u_\infty| \leq 1$ a.e. in Ω, and this implies not only that $u_\infty(x) \leq d(x, \partial \Omega)$ in Ω, but it (almost) proves the first half of our following result.

Theorem 4.1 The limit u_∞ is a viscosity solution of the eikonal equation $|Du(x)| - 1 = 0$ in Ω under the Dirichlet boundary condition $u = 0$ on $\partial \Omega$.

Remark 4.2 Since this Hamilton-Jacobi equation has a unique viscosity solution, see e.g. [2], we obtain $u_\infty := d(x, \partial \Omega)$ as a Lipschitz solution for a highly overdetermined boundary value problem. It satisfies not only $|Du| - 1 = 0$ in Ω but also $-\Delta u_\infty = 0$ in $\Omega \setminus R(\Omega)$, and not only $u = 0$ on $\partial \Omega$ but also $-\frac{\partial u}{\partial \nu} = 1$ on differentiable parts of $\partial \Omega$.

Remark 4.3 Notice that the statement $M(\Omega) = R(\Omega)$ is conspicuously missing in Theorem 4.1. Under the additional assumption $M(\Omega) = R(\Omega)$, however, the function u_∞ is moreover (up to multiplication by a constant) the unique eigenfunction for the ∞–Laplacian operator, i.e. it satisfies in addition

$$\min \{-\langle D^2 u_\infty(x) Du_\infty(x), Du_\infty(x) \rangle, -|Du(x)| + \Lambda_\infty u(x)\} = 0 \quad \text{in } \Omega$$

in the viscosity sense, see [7, 19]. Here Λ_∞ is the inverse of the inradius of Ω. Without this assumption, as demonstrated in [8] there is nonuniqueness of this eigenfunction.
Proof of Theorem 4.1. Let us first realize that $|Du_\infty| \leq 1$ a.e. in Ω implies $|Du_\infty| - 1 \leq 0$ in the viscosity sense. Otherwise there would be a function $\varphi \in C^2$ touching u from above in some x_0 such that $|Du(x_0)| \geq 1 + \gamma$, with $\gamma > 0$, and $|Du(x)| \geq 1 + \gamma/2$ in a neighbourhood $B_\varepsilon(x_0)$. But then $u(x_0) - u(x) \geq \varphi(x_0) - \varphi(x) \geq (1 + \gamma/2)|x_0 - x|$ for a suitable $x \in B_\varepsilon(x_0)$. This contradicts the fact that u_∞ has Lipschitz constant 1.

To show the reverse inequality, it is instructive to follow ideas in [7, 1] and to identify the limiting equation. Suppose that φ is a C^2-function such that $\varphi - u_\infty$ has a local minimum at $x_0 \in \Omega$. Then without loss of generality we may assume that $\varphi - u_\infty \geq \delta > 0$ on $\partial B_\varepsilon(x_0) \subset \Omega$. Moreover, for p large enough, $\varphi - u_p$ has a local minimum at some $x_p \in B_\varepsilon(x_0)$ and $x_p \to x_0$ as $p \to \infty$. Since u_p is a viscosity subsolution of \eqref{1.1} it follows

$$-|Du|^p - 2 \left(\text{tr}(D^2u) + (p - 2) \frac{D^2uDu, Du}{|Du|^2} \right) - 1 = 0 \quad \text{in } \Omega, \quad (4.1)$$

Now either $|D\varphi(x_0)| \leq 1$ or otherwise there exists a positive constant γ independent of p, such that $|D\varphi(x_0)| > 1 + \gamma$ for large p. Upon division of the last inequality by $(p - 2)|D\varphi(x)|^{p-4}$ one sees that in this case the first term on the left and the right hand side in

$$-\frac{1}{p-2} |D\varphi(x_0)|^2 \text{tr} D^2\varphi(x_0) - \langle D^2\varphi(x_0)D\varphi(x_0), D\varphi(x_0) \rangle \leq \frac{1}{p-2} |D\varphi(x_0)|^{4-p}$$

converge to zero as $p \to \infty$, so that $-\langle D^2\varphi(x_0)D\varphi(x_0), D\varphi(x_0) \rangle \leq 0$. This proves that u_∞ is a viscosity subsolution of

$$\min \{ |Du| - 1, -\langle D^2uDu, Du \rangle \} = 0 \quad \text{in } \Omega. \quad (4.2)$$

A similar reasoning holds for supersolutions. Since u_p is a viscosity supersolution of \eqref{1.1}, we have

$$-|D\psi(x_p)|^{p-2} \left(\text{tr}(D^2\psi(x_p)) + (p - 2) \frac{D^2\psi(x_p)D\psi(x_p), D\psi(x_p)}{|D\psi(x_p)|^2} \right) \geq 1$$

for testfunctions $\psi \in C^2$ such that $u - \psi$ has a local maximum at x_0 and $u_p - \psi$ has a local maximum at x_p. This time we can rule out that $D\psi(x_p) = 0$, otherwise the last inequality cannot hold. Arguing as before, the inequality

$$-\frac{1}{p-2} |D\psi(x_p)|^2 \text{tr} D^2\psi(x_p) - \langle D^2\psi(x_p)D\psi(x_p), D\psi(x_p) \rangle \geq \frac{1}{p-2} |D\psi(x_0)|^{4-p}$$

follows and leads to $|D\psi(x_0)| \geq 1$, because else the right hand side would explode for $p \to \infty$, as well as to $-\langle D^2\psi(x_0)D\psi(x_0), D\psi(x_0) \rangle \geq 0$. This
shows that \(u_\infty \) is also a viscosity supersolution of (4.2). In particular \(u_\infty \) satisfies \(|Du| \geq 1 \) in the viscosity sense, and this completes the proof of Theorem 4.1. \(\square \)

Acknowledgement: This paper was conceived in December 2008 during a GNAMPA-INDAM visit of B. Kawohl to Pisa. This research is also part of the ESF program “Global and geometrical aspects of nonlinear partial differential equations”. The authors are gratefully indebted to the referee for helpful questions that led to an improvement of the paper.

References

[1] Bhattacharya T., DiBenedetto E., Manfredi J.: *Limits as \(p \to \infty \) of \(\Delta_p u_p = f \) and related extremal problems.* Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1991), 15–68.

[2] Crandall M., Ishii H., Lions P.-L.: *User’s guide to viscosity solutions of second order partial differential equations.* Bull. Amer. Math. Soc., 27 (1992), 1–67.

[3] Crasta, G., Fraga\’a, I., Gazzola, F.: *On the role of energy convexity in the web function approximation.* NoDEA Nonlinear Differential Equations Appl., 12 (2005), 931–109.

[4] Crasta G., Malusa A.: *The distance function from the boundary in a Minkowski space.* Trans. Amer. Math. Soc., 359 (2007), 5725–5759.

[5] Fabiana A., Kawohl B.: *Remarks on an overdetermined boundary value problem.* Calc. Var. Partial Differential Equations, 89 (2008), 351–357.

[6] Garofalo N., Lewis J.L.: *A symmetry result related to some overdetermined boundary value problems.* Amer. J. Math., 111 (1989), 9–33.

[7] Juutinen P.: *Minimization problems for Lipschitz functions via viscosity solutions.* Ann. Acad. Sci. Fenn. Math. Diss., 115 (1998).

[8] Juutinen P., Lindqvist P., Manfredi J.: *The \(\infty \)-eigenvalue problem.* Arch. Ration. Mech. Anal., 148 (1999), 89–105.

[9] Juutinen P., Kawohl B.: *On the evolution governed by the infinity Laplacian.* Math. Ann., 335 (2006), 819–851.

[10] Kawohl B.: *On a family of torsional creep problems.* J. Reine Angew. Math., 410 (1990), 1–22.

[11] Li Y.Y., Nirenberg L.: *Regularity of the distance function to the boundary.* Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 25–264.
[12] Lu G., Wang P.: *A PDE perspective of the normalized Infinity Laplacian*. Comm. Partial Differential Equations, **33** (2008), 1788–1817.

[13] Lu G., Wang P.: *A uniqueness theorem for degenerate elliptic equations*. Lecture Notes of Seminario Interdisciplinare di Matematica, Conference on Geometric Methods in PDE’s, On the Occasion of 65th Birthday of Ermanno Lanconelli (Bologna, May 27-30, 2008) Edited by Giovanna Citti, Annamaria Montanari, Andrea Pascucci, Sergio Polidoro, 207–222.

[14] Mantegazza C., Mennucci A.C.: *Hamilton-Jacobi equations and distance functions on Riemannian manifolds*. Appl. Math. Optim., **47** (2003), 1–25.

[15] Peres Y., Schramm O., Sheffield S., Wilson D.: *Tug-of-war and the infinity Laplacian*. J. Amer. Math. Soc., **22** (2009), 167–210.

[16] Peres, Y., Sheffield, S.: *Tug-of-war with noise: a game-theoretic view of the p-Laplacian*. Duke Math. J., **145** (2008), 91–120.

[17] Serrin J.: *A symmetry problem in potential theory*. Arch. Ration. Mech. Anal., **43** (1971), 304–318.

[18] Weinberger H.: *Remark on the preceding paper of Serrin*. Arch. Ration. Mech. Anal., **43** (1971), 319–320.

[19] Yu Y.: *Some properties of the ground states of the infinity Laplacian*. Indiana Univ. Math. J., **56** (2007), 947–964.

[20] Yu, Y.: *Uniqueness of values of Aronsson operators and running costs in “tug-of-war” games*. Ann. Inst. H. Poincaré Anal. Non Linéaire **26** (2009), 1299–1308.

Author’s addresses:

Giuseppe Buttazzo
Dipartimento di Matematica
Università di Pisa
Largo B. Pontecorvo, 5
1-56127 Pisa - ITALY
buttazzo@dm.unipi.it

Bernd Kawohl
Mathematisches Institut
Universität zu Köln
Albertus-Magnus-Platz
D-50923 Köln - GERMANY
kawohl@mi.uni-koeln.de