Withaferin A Alone and in Combination with Cisplatin Suppresses Growth and Metastasis of Ovarian Cancer by Targeting Putative Cancer Stem Cells

Sham S. Kakar1,2*, Mariusz Z. Ratajczak2,3, Karen S. Powell4, Mana Moghadamfalahi5, Donald M. Miller2,3, Surinder K. Batra6, Sanjay K. Singh1,2

1 Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, United States of America, 2 James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America, 3 Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America, 4 Research Resources Center, University of Louisville, Louisville, Kentucky, United States of America, 5 Department of Pathology, University of Louisville, Louisville, Kentucky, United States of America, 6 Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America

Abstract

Currently, the treatment for ovarian cancer entails cytoreductive surgery followed by chemotherapy, mainly, carboplatin combined with paclitaxel. Although this regimen is initially effective in a high percentage of cases, unfortunately within few months of initial treatment, tumor relapse occurs because of platinum-resistance. This is attributed to chemo-resistance of cancer stem cells (CSCs). Herein we show for the first time that withaferin A (WFA), a bioactive compound isolated from the plant Withania somnifera, when used alone or in combination with cisplatin (CIS) targets putative CSCs. Treatment of nude mice bearing orthotopic ovarian tumors generated by injecting human ovarian epithelial cancer cell line (A2780) with WFA and cisplatin (WFA) alone or in combination resulted in a 70 to 80% reduction in tumor growth and complete inhibition of metastasis to other organs compared to untreated controls. Histochemical and Western blot analysis of the tumors revealed that inclusion of WFA (2 mg/kg) resulted in a highly significant elimination of cells expressing CSC markers - CD44, CD24, CD34, CD117 and Oct4 and downregulation of Notch1, Hes1 and Hey1 genes. In contrast treatment of mice with CIS alone (6 mg/kg) had opposite effect on those cells. Increase in cells expressing CSC markers and Notch1 signaling pathway in tumors exposed to CIS may explain recurrence of cancer in patients treated with carboplatin and paclitaxel. Since, WFA alone or in combination with CIS eliminates putative CSCs, we conclude that WFA in combination with CIS may present more efficacious therapy for ovarian cancer.

Introduction

Epithelial ovarian cancer (EOC) remains the leading cause of death in women among gynecologic cancers and is the 5th highest cause of cancer-related deaths in women in the United States [1,2]. The majority of ovarian cancers are diagnosed at an advanced stage due to the mainly non-specific symptoms. Currently, the treatment for ovarian cancer entails cytoreductive surgery followed by chemotherapy, employing mainly platinum/taxane combination [3]. Although this regimen is initially effective in a high percentage of cases (70 to 80%), unfortunately 70% of women develop recurrent cancer within few months of initial treatment as a result of platinum-resistance [4,5]. In addition, cisplatin (CIS) is associated with multiple severe side effects such as nausea, vomiting, myelosuppression, hepatotoxicity, neurotoxicity, nephrotoxicity and ototoxicity [4,6–9]. Therefore, need for new treatment options that target cancer cells and in particular putative cancer stem cells is mandatory either at first-line setting or even more at the first- and second-line management of recurrent ovarian cancer.

In our previous studies [10], we showed for a first time that withaferin A (WFA), a bioactive compound isolated from the plant Withania somnifera, when used alone or in combination with CIS had a time- and dose-dependent synergistic effect on inhibition of cell proliferation and induction of cell death, thus reducing required dosage of cisplatin. We also showed that while WFA achieves its antitumor effect through generation of ROS leading to DNA damage, CIS achieves its effects through direct binding to DNA causing the formation of DNA adducts. Combination treatment also resulted in a significant enhancement of reactive oxygen species (ROS) production and DNA damage.

WFA has been part of Indian traditional medicine for centuries. It is available in US over-the-counter as a dietary...
supplement and is known to treat various disorders due to its anti-inflammatory [11,12], anti-bacterial [13], and cardio protective properties [14]. In recent years, WFA has been suggested as a potential anti-cancer compound shown to prevent tumor growth, angiogenesis, and metastasis [15,16] in various types of cancer [17–26]. Mechanisms by which WFA attains its anticancer activity include inactivation of Akt and NF-

angiogenesis, and metastasis [15,16] in various types of cancer potential anti-cancer compound shown to prevent tumor growth, inflammatory [11,12], anti-bacterial [13], and cardio protective supplement and is known to treat various disorders due to its anti-

maintenance of CSCs (33).

have been reported to play a crucial role in self-renewal and Notch1 and its downstream signaling genes (Hes1 and Hey1) that growth but targets cells expressing CSC markers as well as inhibits or in combination with CIS if employed to treat mice bearing [33].

inhibiting their self-renewal will lead to reduction of cancer growth [33]. Accordingly, CSCs within tumor mass undergo self-renewal and give rise to heterogeneous cancer lineages that comprise tumor tissue. CSCs purified accordingly to some surface markers are able to form tumors when injected into nude mice [36,43,44]. Since, ovarian cancer is very heterogeneous; different cell surface markers have been reported for putative ovarian CSCs. Most commonly reported include CD24, CD34, CD44, CD133, CD117, ALDH1, Oct4, MyD88 and EpCAM [45–53]. Since, CSCs are considered to be major players responsible for developing drug resistance and hence leading to cancer recurrence [32,53], targeting CSCs and inhibiting their self-renewal will lead to reduction of cancer growth [33].

In our current study, we show for the first time that WFA alone or in combination with CIS if employed to treat mice bearing human orthotopic ovarian tumors not only suppresses tumor growth but targets cells expressing CSC markers as well as inhibits Notch1 and its downstream signaling genes (Hes1 and Hey1) that have been reported to play a crucial role in self-renewal and maintenance of CSCs (33).

Material and Methods

Cell line and cell culture

Ovarian epithelial cancer cell line A2780 was initially obtained from Denise Connolly (Fox Chase Cancer Center) and was maintained in RPMI 1640 medium containing insulin and supplemented with penicillin/streptomycin (100 IU/ml and 100 μg/ml) and 10% fetal bovine serum (FCS) (Hyclone, Atlanta, GA) as described previously [10].

Cell migration Boyden chamber assays

Cell migration in vitro was assayed by determining the ability of cells to migrate through a synthetic basement membrane. The procedure used was as described previously [34]. Briefly, polycarbonate filters (8 μM) were placed in modified Boyden chamber. A2780 cells in log phase were trypsinized and plated in 6 wells plates. After 24 h of plating, cells were treated with WFA and CIS both alone and in combination as described previously [10]. After 24 h of treatment, cells were trypsinized and suspended in serum free medium. A total of 2×10^5 cells were transferred to the top chamber. The medium containing 5% FBS was added to the lower chamber. The cells were incubated at 37°C for 24 h and allowed to migrate through the membrane. Non-migrated cells were removed with a clean cotton swab. Migrated cells on other side of the membrane were stained with crystal violet and counted in three different fields under Olympus microscope. The experiments were repeated for three times. The values represented are the mean ± SEM of three independent experiments.

Generation of orthotopic ovarian tumors in nude mice and treatment with WFA and CIS both alone and in combination

Orthotopic ovarian tumors were generated by injecting ovarian cancer cell line A2780 directly into ovary as described by Nunez Cruz et al. [55]. Briefly, A2780 (1×10^6) cells were directly injected into left ovary of 5 to 6 weeks old nu/nu female mice (Jackson Laboratory) under aseptic conditions and under light anesthesia. After 10 days of post-cell injection, mice were treated with 1) vehicle control (10% DMSO and 90% glyceryl trioctanoate), 2) WFA 2 mg/kg, 3) CIS 6 mg/kg, and 4) WFA 2 mg/kg plus CIS 6 mg/kg. Five animals randomly were included in each group. CIS in saline was injected i.p. once a week, whereas WFA was injected i.p. every other day. After 4 weeks of treatment, animals were sacrificed; tumor and other tissues such as un-injected ovary, lung, kidney, liver, adrenal and heart were collected from each mouse. Tumors were weighted at the time of collection. The tumors and other tissues were divided into two parts, one part was snap frozen, and second part was fixed in 10% buffered formalin. The animals’ experiments were approved by the University of Louisville, Institutional Animal Care and Use Committee (IACUC) (protocol # 12063).

Formalin fixed tumor and tissues were processed and embedded in paraffin using standard protocols as described previously [56]. Five μM thick sections of the embedded tumors and tissues were prepared and stained with Hematoxylin and Eosin (H&E). Sections in triplicates were examined under microscope and photographed. Histopathological analysis of sections was performed by a trained pathologist Dr. Mana Moghadamfalahi.

Immunohistochemistry

Formalin fixed paraffin embedded tissues were deparaffinized in xylene and rehydrated in a decreasing graded series of ethanol as described previously [56]. Sections were heated at 95°C in 10 mM sodium citrate (pH 6.0) for 20 min, cooled to room temperature and then rinsed in PBS. Sections were incubated with 0.3% hydrogen peroxide in methanol for 10 min at room temperature to quench endogenous peroxidase followed by two rinses in PBS (5 min each), and were blocked with normal goat serum using reagents from ABC kit from Vector Laboratories for 60 min at room temperature following the instructions from the supplier. The blocking solution was removed by draining and sections were incubated with specific antibody with appropriate dilution according to instructions from the suppliers at 4°C for overnight in a humidified chamber. The antibodies for CD24 (cat # SAB14202713), CD44 (cat # SAB1405590), CD117 (cat # SAB4300489) and Oct4 (cat # P0873) were obtained from Sigma-Aldrich, and antibody for CD34 (cat # sc-19587) was obtained from Santa Cruz Biotechnology. After rinsing the sections three...
times (5 min each) with PBS, sections were incubated with biotinylated anti-rabbit (for polyclonal antibodies) or anti-mouse (for monoclonal antibodies) from the ABC kits (Vector Laboratories) at room temperature for 45 min followed by incubation with streptavidin. After three rinses (5 min each) with PBS, sections were incubated with 3,3′-diaminobenzidine (DAB, Sigma) to develop color. The sections were examined under Nikon Elipse E400 microscope and photographed.

Protein isolation and western blot analysis
A2780 cells were plated into 6 well plates. After 24 h of plating, cells were treated with WFA and CIS both alone and in combination as described previously [10]. After 48 h of treatment, cells were lysed in chilled lysis buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.1% NP-40, 1 mM Na3VO4, and 1 mM NaF] supplemented with Complete Mini Protease Inhibitor tablet (Roche Molecular Biochemicals, Indianapolis, IN). To prepare extract from normal and tumor tissues, tissues were suspended in lysis buffer and homogenized on ice using Polytron homogenizer followed by centrifugation at 10,000 rpm for 5 min. The supernatants were collected and protein concentration in each sample was determined using Bradford method (BioRad Laboratories) according to supplier’s instructions. Forty μg of protein from each sample was fractionated on SDS-polyacrylamide gels and transferred to nitrocellulose membranes as described previously [56]. Blocking of nonspecific proteins was performed by incubation of the membranes with 5% nonfat dry milk in Tris buffered saline Tween-20 (TBST) for 1 h at room temperature. The membranes were incubated with specific antibody with appropriate dilution as suggested by the suppliers. Antibody for Hes1 (cat # sc-165996) was obtained from Santa Cruz Biotechnology. The membranes were washed three times (5 min each) with TBST, followed by incubation with horseradish peroxidase conjugated secondary antibody (1:5,000 dilution) in TBST. The membranes were rinsed three times (5 min each) with TBST and the immuno-reactive bands were visualized by enhanced chemiluminescence. Membranes were stripped off for 10 min with methanol containing 3% H2O2 and probed with β-actin antibody in order to serve as an internal control.

Statistical analysis
Statistical comparison of data was carried out by the student’s t test (for single comparison). Probability of p < 0.05 determined from the two-sided test was considered significant. The statistical analysis was carried out by using SPSS 10.0 software.

Results
WFA/CIS combination inhibits cell migration in vitro
Various steps are involved in tumor progression and metastasis including detachment of tumor cells from the primary tumor site, transmigration into lymph- or blood vessels, attachment to endothelium at distant sites of metastasis followed by seeding into new location and subsequent expansion. To examine the effect of WFA and CIS on A2780 cell migration, we treated the A2780 cells with WFA and CIS both alone and in combination for 48 h. As shown in Fig. 1, by employing Boyden chambers we noticed that the treatment of cells with WFA or CIS alone inhibited cell migration in a dose-dependent manner as compared to untreated control cells. While treatment of cells with 20 μM CIS inhibited cell migration, addition of WFA (0.5 μM or 1.5 μM) to CIS resulted in enhanced inhibition of cell migration, suggesting that
combination as detailed in Materials and Methods section. After 4 weeks of treatment, animals were sacrificed. We noticed that the control mock-treated animals developed highly vascularized and large tumors (Fig. 2). At the same time 4 out of 5 WFA (2 mg/kg) alone-treated animals developed tumors that were significantly smaller in size. Similarly, 3 out of 5 animals treated with CIS (6 mg/kg) developed tumors that were significantly smaller in size as compared to mock-treated controls. Moreover, treatment of animals with WFA (2 mg/kg) in combination with CIS (6 mg/kg) resulted in 70 to 80% reduction in tumor weight compared to untreated control animals (Fig. 2) and out of 5 mice, only three mice developed tumors. No significant differences in tumor weight were observed in mice treated with WFA and CIS alone or in combination (Fig 2).

H&E histo-pathological analysis of un-injected opposite ovaries, livers, and lungs showed metastasis to livers and ovaries in mock-treated animals only. Metastatic cells comprised ~10% of cells in those organs (Fig. 3). In contrast no metastases were observed in WFA and CIS treated groups. These results suggest that combination of low dose of WFA (2 mg/kg) with suboptimal dose of CIS (6 mg/kg) is highly effective in suppressing tumor growth and metastasis of orthotopic ovarian tumors in nude mice. This indicates that it would be possible to reduce therapeutic dose of CIS when combined with WFA in humans to ameliorate side effects associated with high dosage of CIS.

WFA alone or in combination with CIS eliminates putative cancer stem cells in orthotopic ovarian tumors

Chemo-resistance and recurrence of ovarian cancer is a major problem and cause of death. In recent years, a concept of CSCs in solid cancers including ovarian cancers has been proposed [57,58]. CSCs have been reported to be responsible for chemo-resistance, tumor growth and recurrence of cancer after treatment. Putative CSCs have been reported as cancer initiating cells capable to develop tumors when injected into nude mice [57]. To test if WFA when used alone or in combination with CIS targets CSCs, we performed immunohistochemical analysis of the tumors collected from the mock-treated animals and animals treated with WFA and CIS both alone and in combination using the antibodies for markers expressed by putative CSCs including CD44, CD24, CD34, CD117 and Oct4 [56]. As shown in Figs. 4–6, we observed ~10–20% of cells positive for CD44, CD24, CD34, CD117 and Oct4 in tumors collected from untreated animals. However, treatment of animals with WFA (2 mg/kg) resulted in a highly significant reduction in number of those cells. In contrast, treatment of animals with CIS alone at a dose of 6 mg/kg resulted in significant increase in CD44, CD24, CD34, CD117 and Oct4 positive cells (60%) (Figs. 4–6). More importantly, treatment of animals with WFA in combination with CIS (6 mg/kg) significantly reduced number of cells expressing CSC markers.

Figure 2. Effect of WFA and CIS treatment on tumor growth. A: 1×10^6 A2780 cells were injected into female mouse ovary. After 10 days of post-injection, mice were treated with WFA and CIS both alone or in combination for four weeks. Mice were sacrificed; tumors were excised out, photographed and weighted. Tumors shown are representative from each group. B: Tumors weight was plotted from each group. Horizontal line represents median weight of each group. Treated group showed significantly lower weight than untreated mice. Results are mean (red line) and ± SD (vertical bar). * Represents significant compared to control at p≤0.05.

doi:10.1371/journal.pone.0107596.g002
WFA alone or in combination with CIS down regulates the expression of CSC-related markers

To confirm our immuno-histochemical analysis of CD44, CD24, CD34, CD117 and Oct4 positive cells in orthotopic tumors, we performed Western blot analysis of the tumor extracts using specific antibody for markers detected by immuno-histochemical staining. As shown in Fig. 7, expression of CD24, CD34, CD44, and Oct4 antigens was significantly down-regulated in tumors collected from animals treated with WFA alone as compared to tumors from mock-treated animals. In contrast a significant increase in expression of CD24, CD34, CD44 and Oct4 was observed in tumor extracts from animals treated with CIS (6 mg/kg) as compared to mock-treated mice or mice treated with WFA (2 mg/kg) alone. Interestingly, treatment of animals with WFA (2 mg/kg) in combination with CIS (6 mg/kg) resulted in a significant elimination of cells expressing CD44, CD24, CD34 and Oct4 antigens.

Increase in number of cells expressing markers of putative CSCs in tumors collected from animals treated with CIS or its derivative such as carboplatin in combination with paclitaxel that are commonly used in chemotherapy. In contrast elimination of cells expressing CSC markers in tumors on treatment with WFA alone or in combination with CIS (6 mg/kg) demonstrates that WFA is highly effective in eliminating cells expressing CSC markers.

WFA alone or in combination with CIS inhibits Notch 1 and its downstream signaling genes (Hes1 and Hey1)

Self-renewal, drug resistance and differentiation are key characteristics of CSCs. Sonic Hedgehog (Shh), Notch1, Twist1, Snail and Wnt1 signaling transduction pathways play major roles in the self-renewal of these cells [33,59–68]. WFA has been reported to inhibit Notch-1 and downstream signaling genes (Hes1 and Hey1) [33,68]. Notch 1 signaling pathway is associated with regulation of cell fate at several distinct developmental stages and has been implicated in cancer initiation and progression [63,69,70]. In our present study as shown in Fig. 8, we noticed highly significant inhibition of expression of Notch 1 and its downstream signaling genes Hes1 and Hey1 in tumors collected from mice treated with WFA (2 mg/kg) as compared to tumors from control mock-treated animals. In contrast, animals treated with CIS (6 mg/kg) showed a highly significant increase in levels of Notch1, Hes1 and Hey1 genes. What is important, tumors collected from mice treated with WFA (2 mg/kg) in combination with CIS (6 mg/kg) showed significant decreased levels of Notch1 as well as Hes1 and Hey1 proteins (Fig. 8), suggesting downregulation of Notch1 signaling by WFA alone or in combination with CIS leading to elimination of putative CSCs.

Figure 3. Effect of WFA and CIS both alone and in combination on tumor metastasis. Mice were treated with WFA and CIS as indicated in Figure 2. Tumors and other tissues sections were stained with H&E and examined by a trained pathologist. Metastasis (shown by arrows) was observed in un-injected ovaries and livers and represent approximate 10% of the cells. doi:10.1371/journal.pone.0107596.g003

Figure 4. Immunohistochemical analysis of CD44 and CD34 positive cells in tumors collected from mock treated mice (control) and mice treated with WFA and CIS both alone and in combination. The data shown is representative of two independent experiments. W = WFA. Values shown in parenthesis are mg/kg. doi:10.1371/journal.pone.0107596.g004
Discussion

The most common first line chemotheraphy used for ovarian cancer after cytoreductive surgery is carboplatin in combination with paclitaxel. Initial response rate to this combination is very high (70 to 80%), however within 6 to 20 months after initial treatment tumor relapse and patients become resistance to CIS [71]. Resistance to CIS has been associated with number of mechanisms such as increase in glutathione and metallothionein levels, decrease in drug uptake, increase in DNA repair mechanisms (due to enhanced expression of excision repair genes) and tolerance of the formation of platinum-DNA adducts [72]. Change in status of p53 has also been reported to play important role in sensitivity of CIS [73,74].

In recent years, several investigators have reported a presence of small population of CSCs in tumor tissues to be responsible for induction of chemo-resistance and recurrence of cancer [75–77]. The convincing evidence for the role of CSCs in ovarian cancer was provided by Bapat et al. [45] who showed the presence of CSCs at single cell level in the ascites of an ovarian cancer patient, that could sequentially propagate tumor over several generations. Consistent with this, many other investigators reported the presence of CSCs in ovarian cancer cell lines, patients’ ovarian tumors and tumor associated-ascites [57,76,77]. As a follow up of these observations CSCs have been isolated based on the presence of some extracellular markers. Most common makers used for ovarian CSCs include CD44, CD24, CD34, CD117 and CD133. CSCs also express ALDH1, Oct4, Myd88 and EpCAM [47,51,57,60,78,79]. An increase in number of CSCs in ovarian tumors correlates with a poor prognosis, including shorter overall and disease free survival [80–82]. Development of chemo-resistance of ovarian cancer could be explained by enrichment for CSCs [77,83–85]. In a recent study, Abubaker et al. [53] demonstrated using two ovarian cancer cell lines (epithelial OVCA433 and mesenchymal HEY) enrichment for a population of cells with high expression of CSC markers at the protein as well as mRNA levels after treatment with CIS, paclitaxel and the combination of both. In addition, these investigators showed
increase in tumorigenic properties of ovarian cancer cells in response to chemotherapy drugs. In the present study, we show somehow in agreement with those studies [53] that the number of CSCs increases in animals bearing orthotopic ovarian tumors treated with CIS at 6 mg/kg. This increase in CSCs population in ovarian tumors of mice with CIS may explain the development of chemo-resistance and reoccurrence of ovarian cancer in patients treated with CIS or its derivative carboplatin employed in combination with paclitaxel.

Increase in number of CSCs in tumors inoculated in nude mice followed by CIS treatment is result of amplification of CSCs present in human cancer cell line A2780. On other hand growing tumor will attract host-derived normal stem cells that will provide stroma and vasculature for expanding tumor tissue. These cells could provide trophic signals for CSCs, and this is currently investigated in our laboratories.

In the past years a great deal of efforts has been devoted to develop drugs that can kill cancer cells as well as CSCs in order to reduce chemo-resistance and recurrence of cancer after treatment. WFA as reported exhibits an inhibitory effect against several different types of cancer cells. However, its effect on CSCs has not been explored so far. In our previous study [10], we demonstrated that WFA when used alone or in combination with CIS inhibits cell proliferation and induce cell death of both CIS-sensitive (A2780 and CaOV3) as well as CIS-resistant (A2780/CP70) cell lines. In our present follow-up study we show that WFA (2 mg/kg) when used alone or in combination with CIS to treat mice bearing orthotopic ovarian tumor reduced tumor growth by 70 to 80% as compared to tumors from mock-treated animals. In contrast, animals treated with CIS (6 mg/kg) alone showed a significant increase in levels of Notch1, Hes1 and Hey1 genes which is consistent with the increase in number of CSCs, suggesting an important role of Notch1 transduction pathway in amplification of those cells. More importantly, treatment of animals with WFA (2 mg/kg) + CIS (6 mg/kg) prevented increase of Notch1, Hes1 and Hey1 expression, suggests that such combined therapy ameliorates unwanted effect of CIS treatment alone and unwanted expansion of CSCs. Thus, treatment of patients that have become resistance to CIS and have developed recurrence cancer could be benefited by WFA treatment alone or in combination with CIS.

Conclusions

The silent observation from this study is that treatment of mice bearing human ovarian tumors with CIS results in an unwanted expansion of cells that express CSC markers, what may lead to CIS resistance and recurrence of ovarian tumor. In contrast, WFA if employed alone or in combination with CIS ameliorates this unwanted effect. The data obtained from our study suggest that WFA alone or in combination with CIS may serve as a safer and more efficacious therapy for both first line and second line options for ovarian cancer.

Acknowledgments

We thank Renu Kakar for expert technical assistance.

Author Contributions

Conceived and designed the experiments: SSK. Performed the experiments: SSK SKS KSP. Analyzed the data: SSK. Wrote the paper: SSK. Contributed reagents/material/planning of experiments: SKB. Edited the manuscript: MZR. Provided input in planning the experiments: DMM. Histopathological analysis of tumors and normal tissues MM. WFA and Cisplatin Target Ovarian Cancer Stem Cells

Figure 8. Western blot analysis of Notch1, Hes1 and Hey 1 proteins from tumors collected from mock treated mice and mice treated with WFA and CIS both alone and in combination. Beta-actin was used as an internal control. The data shown is representative of two independent experiments. Con = control, W = WFA. Values shown in parenthesis are mg/kg.

doi:10.1371/journal.pone.0107596.g008

References

1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 63: 11–30.
2. Hunn J, Rodriguez GC (2012) Ovarian cancer: etiology, risk factors, and epidemiology. Clin Obstet Gynecol 55: 3–24.
3. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Ovarian Cancer. Version 1.2013. Available: HTTP://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf
4. Piccart MJ, Bertelsen K, Stuart G, Cassidy J, Mangioni C, et al. (2003) Long-term follow-up confirms a survival advantage of the paclitaxel-cisplatin regimen over the cyclophosphamide-cisplatin combination in advanced ovarian cancer. Int J Gynecol Cancer 13 Suppl 2: 144–148.
5. Matsuoka K, Lin YG, Roman LD, Sood AK (2010) Overcoming platinum resistance in ovarian carcinoma. Expert Opin Investig Drugs 19: 1339–1354.
28. Mayola E, Gallerne C, Esposti DD, Martel C, Pervaiz S, et al. (2011) Withaferin A inhibits tumor necrosis factor-alpha-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Cancer Sci 102: 1679–1687.

27. Oh JH, Kwon TK (2009) Withaferin A, a steroidal saponin from Withania somnifera, induces mitotic catastrophe and oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human cervical cancer cells. Carcinogenesis 30: 710–718.

26. Oh JH, Lee TJ, Yi JH, Park JW, Kwon TK (2011) Endoplasmic reticulum stress mediates withaferin A induced apoptosis in human renal carcinoma cells. Toxicol In Vitro 25: 692–698.

25. Shah N, Kataria H, Kaul SC, Ishii T, Kaur G, et al. (2009) Effect of the steroidal lactone from Withania somnifera, induces mitotic catastrophe and oxygen species and down-regulation of Bcl-2. Apoptosis 16: 1014–1027.

24. Samadi AK, Tong X, Mukerji R, Zhang H, Timmermann BN, et al. (2010) Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and downregulation of c-FLIP. Free Radic Biol Med 46: 1690–1698.

23. Hahn ER, Moura MB, Kelley EE, Van Houten B, Shiva S, et al. (2011) Withaferin A-activated apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One 6: e23354.

22. Choi MJ, Park EJ, Min KJ, Park JW, Kwon TK (2011) Endoplasmic reticulum stress mediates withaferin A induced apoptosis in human head and neck squamous cell carcinoma. J Nat Prod 73: 1476–1481.

21. Fugger A (1973) Inhibition of immunologically induced inflammation by the plant steroid withaferin A. Arzneimittelforschung 23: 932–935.

20. Kakar SS, Jala VR, Fong MY (2012) Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochem Biophys Res Commun 423: 819–825.

19. Fong MY, Jin S, Rane M, Singh RK, Gupta R, et al. (2012) Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One 7: e34554.

18. Stan SD, Erzurum SS, Singh SV (2008) Ayurvedic medicine constituent withaferin a sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated modulation of solid tumor stem cells in disease etiology and susceptibility to therapeutic interventions. J Cell Physiol 217: 526–532.

17. Srinivasan S, Ranga RS, Burikhanov R, Han SS, Chendil D (2007) Par-4-mediated apoptosis inhibition and reduced cell proliferation by the dietary compound withaferin A in prostate cancer cells. Cancer Res 67: 19–38.

16. Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, et al. (2011) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7: 113–122.

15. Stan SD, Hahn ER, Warin R, Singh SV (2008) Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells. Cancer Res 68: 7661–7669.

14. Mayoja E, Gallerne C, Esposti DD, Martel C, Pervaiz S, et al. (2011) Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis 16: 1014–27.

13. Scartezzini P, Speroni E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71: 23–43.

12. Rasool M, Varalakshmi P (2006) Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study. Vascul Pharmacol 44: 406–410.

11. Fugner A (1973) Inhibition of immunologically induced inflammation by the plant steroid withaferin A. Arzneimittelforschung 23: 932–935.

10. Kakar SS, Jala VR, Fong MY (2012) Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochem Biophys Res Commun 423: 819–825.

9. Lieberthal W, Trisca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270: F780–798.

8. Kintzel PE (2001) Anticancer drug-induced kidney disorders. Drug Saf 24(1): 19–38.

7. Oh JH, Kwon TK (2009) Withaferin A inhibits tumor necrosis factor-alpha-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 69: 246–253.

6. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, et al. (2012) Molecular mechanisms of cell death: Common and divergent pathways. Mol Biol Med 46: 1639–1649.

5. Oh JH, Kwon TK (2009) Withaferin A inhibits tumor necrosis factor-alpha-induced apoptosis in human head and neck squamous cell carcinoma. J Nat Prod 73: 1476–1481.

4. Scartezzini P, Speroni E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71: 23–43.
64. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1-24.
65. Mimeault M, Batra SK (2012) Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. World J Clin Oncol 3: 32-42.
66. Wu KJ, Yang MH (2011) Epithelial-mesenchymal transition and cancer stemness: the Twist1-Bmi1 connection. Biosci Rep 31: 449-455.
67. Jain P, Ahdari SK (2011) Breast cancer stem cells: a new challenge for breast cancer treatment. Front Biosci 16: 1024-1032.
68. Suman S, Das TP, Damodaran C (2013) Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br J Cancer, 106: 2507-2506.
69. Shi W, Harris AL (2006) Notch signaling in breast cancer and tumor angiogenesis: cross-talk and therapeutic potentials. J Mammary Gland Biol Neoplasia 11: 41-52.
70. Gangopadhyay S, Nandy A, Hsu P, Mukhopadhyay A (2013) Breast cancer stem cells: a novel therapeutic target. Clin Breast Cancer 13: 7-15.
71. Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177: 1053-1064.
72. Christen RD, Isonishi S, Jones JA, Jekunen AP, Hom DK, et al. (1994) Signaling and drug sensitivity. Cancer Metastasis Rev 13: 175-189.
73. Brown R, Clugston C, Burns P, Edlin A, Vasey P, et al. (1993) Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines. Int J Cancer 55: 678-684.
74. Perego P, Giardina M, Righetti SC, Supino R, Caserini C, et al. (1996) Association between cisplatin resistance and mutation of the p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res 56: 556-62.
75. Hollier BG, Evans K, Mani SA (2009) The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 14: 29-43.
76. Ahmed N, Abubaker K, Findlay J, Quinn M (2010) Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets 10: 268-278.
77. Latifi A, Lusoo RB, Blandzic M, Nazareian S, Stemvers K, et al. (2012) Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS One 7: e40530.
78. Gao MQ, Choi YP, Kang S, Youm JH, Cho NH (2010) CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29: 2672-2680.
79. Landen CN Jr, Goodman B, Katre AA, Steg AD, Nick AM, et al. (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9: 3186-3199.
80. Guo X, Xiong L, Sun T, Peng R, Zou L, et al. (2012) Expression features of SOX9 associate with tumor progression and poor prognosis of hepatocellular carcinoma. Diagn Pathol 7: 44.
81. Surowiak P, Materna V, Maciejczyk A, Kaplenko I, Spaczyński M, et al. (2006) CD46 expression is indicative of shorter relapse-free survival for ovarian cancer patients. Anticancer Res 26: 4943-4948.
82. Oh DH, Kim SH, Jung S, Sung YK, Bang SY, et al. (2011) Precocious hyperperfusion plays an important role in memory impairment of patients with systemic lupus erythematosus. Lupus 20: 835-840.
83. Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, et al. (2012) Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res 10: 899-901.
84. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dimulescu DM, Connolly D, et al. (2006) Ovarian cancer side population defines cells with stem-cell like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A 103: 11154-11159.
85. Vathipadiekal V, Saxena D, Hauschka PV, Ozbun L, et al. (2012) Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer. PLoS One 7: e29079.
86. Kwon MJ, Shin YK (2013) Regulation of ovarian cancer stem cells or tumor-initiating cells. Int J Mol Sci 14: 6624-6648.