The Roles of α5-Containing nAChRs in the Brain

Ming Gao1*, Yakun Wang1 and Jie Wu1

1Divisions of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, USA

Abstract

Neuronal nicotinic acetylcholine receptors (nAChRs) are in the superfamily of the ligand-gated ion channels with an assembly of five subunits. Neuronal nAChRs can either be heteromeric, consisting of a combination of (α2-α6) and β subunits [β2-β4], or homomeric, which consists of only α subunits (α7-α10) [1]. Each nAChR subunit consists of an extracellular N-terminus, four transmembrane segments (designated M1-M4), a variable intracellular loop between M3 and M4, and an extracellular C-terminus [2]. All five subunits form the conducting channel pore serve as the ACh-binding site in the N-terminus [2,3]. When the activation by an agonist, nAChRs open the ion channels that desensitize and are potentiated by calcium ions [4].

4α5 Distribution and Function

α5 is an accessory subunit that cannot form functional receptors without joining with the other essential subunits, and they do not contribute to the formation of the ACh binding sites. However, α5 subunit can be incorporated in the pentamer as accessory subunits [13-15], which can have dramatic effects on the conductance and desensitization of the receptors [13,14,16,17]. The accessory subunits may also involve in forming binding sites for positive allosteric modulators [18,19]. Among the CNS, α5 subunit is associated with 37% of the nAChRs in hippocampus, 24% of the nAChRs in striatum, and 11–16% of the receptors in cerebral cortex, thalamus, superior colliculus, VTA and other regions [20, 21].

The mesocorticolimbic dopamine (DA) system has received the most attention for its role in reinforcing rewarding behaviors [22]. Therefore the expression of α5-containing nAChRs in this system is expected to play an important role in the regulation of drug addiction. The α4α5β2 subtype is present at high density in the midbrain dopaminergic reward pathway [23-26]. α5 subunit significantly increases α4 subunit expression on the cell surface, strengthens baseline nAChRs currents and blunts the desensitization of nAChRs following nicotine exposure in the VTA. But α5 subunit does not alter the amount of ethanol potentiation in the VTA DA neurons. This suggests that α5 subunit is critical for controlling expression and function of a population of α4-containing nAChRs in VTA [26]. Furthermore, α4α5β2 nAChRs also involve in regulation of DA transmission in dorsal caudatoputamen (CPu) where it affects instrumental and habitual behaviors, but not in nucleus accumbens core (NAC), a region where generates pavlovian association [27]. Prefrontal cortex (PFC) is involved in higher order processes such as attention, impulse control, working memory, as well as drug addiction [28]. Exposure to nicotine can increase nAChRs expression, change GABAergic synaptic transmission, and decrease mGluR protein expression, thus causes altered synaptic function, and learning and attention behaviors [29-31]. α5 subunit is preferentially expressed by neurons in deep layers such as layer VI [32]. α5 subunits on layer VI pyramidal neurons are incorporated into the α4β2-containing nAChRs, and greatly enhance channel conductance [14] and inward currents [33]. Its presence also protects α4β2-nAChRs from complete desensitization [34,35]. In experiments, the presence of α5 subunit makes wild-type mice more sensitive to nicotine exposure, however, its loss results in attention deficiency [34]. Besides in the deep layers, α5 subunit is also expressed at a much lower levels by the GABAergic interneurons in the superficial layers [32], which only constitute a small number of cells modulated by

Keywords: nAChRs; Alpha 5 subunits; Nicotine; Alcohol

Introduction

Nicotine binds to nicotinic acetylcholine receptors (nAChRs), which are transmembrane proteins that form the pentameric ligand-gated ion channels with an assembly of five subunits. Neuronal nAChRs can either be heteromeric, consisting of a combination of (α2-α6) and β subunits [β2-β4], or homomeric, which consists of only α subunits (α7-α10) [1]. Each nAChR subunit consists of an extracellular N-terminus, four transmembrane segments (designated M1-M4), a variable intracellular loop between M3 and M4, and an extracellular C-terminus [2]. All five subunits form the conducting channel pore serve as the ACh-binding site in the N-terminus [2,3]. When the activation by an agonist, nAChRs open the ion channels that desensitize and are potentiated by calcium ions [4].

The combination of various nAChR subunits determines the distinct pharmacological function and kinetic properties of each specific nAChR subtype [1]. nAChRs are identified throughout the central (CNS) and peripheral nervous systems (PNS), as well as at skeletal neuromuscular junctions. Nicotinic receptors containing α4 and α2 subunits (denoted as α4β2nAChRs) are the predominant subtypes in the CNS, and account for most of the high affinity nicotine binding sites [5]. Animal studies show that this type of nAChRs plays critical roles in nicotine reward, dependence and withdrawal [6-8]. However, different from the α4β2nAChRs, the homeric α7 nAChRs have a lower affinity to nicotine and can rapidly recover from desensitization, thus appear mainly to be involved in the later stages of nicotine dependence [9]. Studies of the involvement of α5 nAChR subunit in nicotine dependence have only recently emerged [9,10]. Furthermore, the α5-containing nAChRs have been shown to be crucially important in the regulation of the medial habenula of the aversion and intakes of nicotine [11,12]. This review will summarize the function and the properties of α5 nAChRs in the brain, and graduate our understanding for neurobiology of nicotine and ethanol addiction.

*Corresponding author: Ming Gao, Division of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013-4496, USA. Tel: (602) 406-3029; E-mail: Ming.Gao001@DignityHealth.org

Received January 06, 2014; Accepted January 25, 2014; Published February 5, 2014

Citation: Gao M, Wang Y, Wu J (2014) The Roles of α5-Containing nAChRs in the Brain. Biochem Pharmacol 3: 129. doi:10.4172/2167-0501.1000129

Copyright: © 2014 Gao M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
β2-containing nAChRs [29].

The medial habenular-interpeduncular pathway (MHb-IPN) is involved in regulation of negative reward or the absence of anticipated positive reward [36-38], nicotine withdrawal [39], nicotine self-administration [40], and aversion to nicotine [11]. α5 sub-unit is expressed at high levels in the MHb-IPN pathway, which co-assemble with α3β4- [39,41], or α3β4 [41-43], or α3β4 containing nAChRs [44]. Recent reports have provided solid evidence that support the critical roles of MHb-IPN α5 assembly in nicotine abuse and dependence [45,46].

α5 subunit is also highly expressed in the periphery, where it co-assembles with α3 α6 β4 subunits to form functional receptors in the autonomic ganglion cells [47,48]. In the α3 β4 α5 combination, the α5 (Asn398) variant can involve in the regulation of autonomic responses, such as control of cardiac rate, blood pressure, and perfusion, which can affect nicotine intakes in humans. In addition, α5, α4, and β5 subunits are expressed in a number of non-neural cells, including bronchial and epithelial cells and lung cancer cell lines, where, the activation of nicotinic receptors plays a role in tumor initiation and growth [49,50].

α5 Associated Disorders

Alcohol use disorders

Alcohol use disorders (AUDs) are a world-wide problem with few effective treatments. In the United States, about 18 million people have AUDs, classified as either alcohol dependence or alcohol abuse. There remains a need for improved treatment methods and treatment options to help individuals with AUDs. Alcohol has been shown to interact with nAChRs in the brain [51-53], therefore, nAChRs can serve as a therapeutic target for the treatment of AUDs [54]. Evidence suggests that as many as 80% of alcoholics are also smokers. The high incidence of smoking and alcoholism co-abuse indicates that nAChRs play important roles in alcohol consumption and relapse-like behavior [55]. Furthermore, there is evidence showing that genetic factors are predictors of both long-term alcohol and tobacco consumptions [56]. Overall, this correlation provides a potential opportunity in which it makes nAChR as an attractive target for the treatment of both AUDs and nicotine dependence [54].

Recent human genetic studies show that single nucleotide polymorphisms (SNPs) implication in the CHRNA5 gene, which encodes for α5 nAChR subunit, has strongly association with higher risk of developing alcohol dependence [56,57]. The genome-wide association (GWA) study also has shown that the CHRNA5/A3/B4 gene cluster, coding for α5, α3, and β4 nAChR subunits, respectively, not only implicates in alcohol dependence, but also multiple substances of abuse [58]. Without any change in acute alcohol response such as preference for a sweet or bitter solution, the TgCHRNA5/A3/ B4 mice overexpress the human nicotinic CHRNA5/A3/B4 gene cluster have shown a reduced interest of alcohol intakes [59]. While α5 gene deletion enhances acute behaviors, such as alcohol-induced hypothermia, hypnosis recovery time, and the anxiolytic-like response in mice. α5 gene deletion results in decreased alcohol conditioned place preference test (CPP) score, but has no effect on alcohol consumption in drinking behavior tested under normal conditions. However, under the conditions of stress, by multiple daily injections of either saline or nicotine, Drinking-in-the-Dark intake actually reduces in α5 null mutant mice [60]. α5 KO mice show slower recovery from alcohol-induced sleep, as measured by loss of righting reflex. Additionally, the α5 KO mice show enhanced impairment to alcohol-induced ataxia [61]. These results suggest that the absence of α5 subunits leads to an increase in alcohol-induced sedation and slower recovery, the over expression of α5 leads to a reduction in sedation and a quicker recovery from alcohol-induced sleep, and hence higher tolerance. Moreover, recent studies have shown that varenicline, a smoking cessation aid, efficiently reduces alcohol intake in humans [62].

Nicotine aversion and withdrawal: MHb-IPN pathway

Habenula is a diencephalic structure located on dorsomedial surface of caudal thalamus that is divided into MHb and two divisions of lateral nucleus (LHb). Habenula receives massive afferents from mPFC, NAc, olfactory bulb, septum, and striatum via stria medullaris thalami, and sends projections to IPN, VTA, SNC, medial raphe complex, locus coeruleus, and periaqueductal gray [63-69]. Whereas MHb receives inputs primarily from the limbic system, and sends outputs mainly to IPN; LHb receives inputs primarily from basal ganglia and sends outputs mainly to dopaminergic and serotonergic neurons [70,71]. MHb is involved in the regulation of fear, anxiety, depression and stress by processing aversive and negative sensory inputs.

MHb contains some of the highest densities of nAChRs, especially α5, α3, and β4 subunits [39]. Approximately 20% of functional nAChRs in rat MHb neurons project to IPN contain α5 subunit [41]. α5-containing nAChRs in MHb and IPN have recently been implicated in nicotine self-administration and reward. Allelic variation in the α5/α3/ β4 nAChR subunit gene cluster increases the risk of tobacco addiction [71]. In experiments, the α5 nAChR KO mice show an increase in nicotine intakes, and intravenously self-administer a lot more nicotine than their wild-type littermates [12]. This phenomenon is restored by re-expressing α5 subunit in MHb in the α5 KO mice, and repeated by α5 knockdown in rat’s MHb [12]. The α5 nAChR KO mice are less sensitive to the acute behavioral effects of nicotine, but maintain the expression of CPP at higher doses of nicotine that are aversive in wild-type littermates [72]. This effect is independent from α3β4-nAChR subunit [12,72]. Nicotine-induced activation of MHb-IPN pathway results in a negative motivational signal that serves to limit further nicotine intake. Hence, disruption of α5 nAChR signaling diminishes the stimulatory effects of nicotine on MHb-IPN activity, and thereby permits greater quantities of consumption for nicotine, and facilitates brain reward activity, which may help explain the increased tobacco addiction vulnerability associated with CHRNA5 risk alleles [45,73].

In humans, cessation of tobacco intake precipitates both somatic and affective symptoms of withdrawal, which may include symptoms like severe craving for nicotine, irritability, anxiety and so on. In experiments, mice null for α5 nAChRs subunits abolish nicotine withdrawal somatic signs when withdrawal precipitated by injecting nicotine antagonist mecamylamine [74]. Moreover, direct infusion of mecamylamine into the IPN, but not to the VTA, of nicotine-dependent wild-type mice precipitates the expression of somatic withdrawal signs [74]. This suggests that α5 nAChRs in the MHb-IPN pathway regulate the expression of somatic signs of nicotine withdrawal.

Anxiety and impulsive-like behaviors

Nicotine is known to play an important role in modulating behaviors in different types of animal model for anxiety [75], and different nAChR subtypes are likely to contribute to these effects. Female α5 KO mice show reduced anxiety-like behavior, and this could be related to progesterone effect on α5 subunit expression [76]. β4 KO, not β2 KO mice also manifestly reduce anxiety-related behaviors [76,77]. These data suggest that the stimulation of α5- and β4- containing nAChRs is...
important for the anxiogenic effects of nicotine.

Recent studies have revealed a direct relationship between impulsivity and vulnerability to develop the addiction-like behavior in rodents [78]. Studies on CHRNA3/CHRNA5/BR gene cluster show its association with nicotine dependence [79] and lung cancer [80,81], suggesting that these genes are involved in nicotine dependence vulnerability. Over-expression of the α2α5β4 nAChR combination/subtype exhibits less impulsive-like behavior than wild-type controls, and this behavioral phenotype is related to the numbers of copy of this transgene. Furthermore, this gene cluster over-expression also reduces spontaneous alternation behavior deficits in working memory [82]. The decreased impulsivity suggests the involvement of α3α5β4 nAChRs subtype in the personality trait directly relates to drug addiction vulnerability [82].

Conclusions

Both animal and human genetic studies show that α5 nAChR subunit, especially in MHB-IPN pathway, has been implicated in modulation of nicotine aversion that controls the quantities of drug consumed, and in the development of tobacco dependence. Moreover, α5 nAChRs are also involved in the alcohol use disorders, which provides new target to treat nicotine and alcohol co-dependence. In addition, α5 nAChR combination/subtype is also involved in the alcohol use disorders, which provides new target to treat nicotine and alcohol co-dependence. In the next step of research, development of new specific pharmacological ligands for α5 subunit will help to understand the underlying mechanisms of nicotine and/or alcohol addiction and withdrawal.

Acknowledgements

We thank Dharshaun Turnur for help to read and edit the manuscript.

References

1. Gott C, Clemerti F, Fornari A, Gaimarri A, Guiducci S, et al. (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78: 703-711.

2. Corring PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40: 431-458.

3. Elisele JL, Bertrand S, Galbi JL, Devillers-Thiery A, Changeux JP, et al. (1993) Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366: 479-483.

4. Vernino S, Amadore M, Luette CW, Patrick J, Dani JA (1992) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8: 127-134.

5. Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41: 31-37.

6. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, et al. (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391: 173-177.

7. Walters CL, Brown S, Changeux JP, Martin B, Damaj MI (2006) The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology (Berl) 184: 339-344.

8. Jackson KJ, Martin BR, Changeux JP, Damaj MI (2008) Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther 325: 302-312.

9. Stoker AK, Markou A (2013) Unraveling the neurobiology of nicotine dependence using genetically engineered mice. Curr Opin Neurobiol 23: 493-499.

10. Yang K, Buhman L, Khan GM, Nichols RA, Jin G, et al. (2011) Functional nicotinic acetylcholine receptors containing α6β2 subunits are on GABAergic neuronal boutons adherent to ventral tegmental area dopamine neurons. J Neurosci 31: 2537-2548.

11. Frahm S, Slimak MA, Ferrarese L, Santos-Torres J, Antolin-Fortes B, et al. (2011) Aversion to nicotine is regulated by the balanced activity of α4 and α5 nicotinic receptor subunits in the mediodorsal habenula. Neuron 70: 522-535.

12. Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471: 597-601.

13. Wang F, Gerzanich V, Wells GB, Anand R, Peng X, et al. (1996) Assembly of human neuronal nicotinic receptor α5α5β4 subunits with α3α3β2, and β4α4 subunits. J Biol Chem 271: 17656-17665.

14. Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, et al. (1996) Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380: 347-351.

15. Groot-Kormelink PJ, Luyten WH, Colquhoun D, Stivoli LG (1998) A reporter molecule approach shows incorporation of the "orphar" subunit beta3 into a functional nicotinic receptor. J Biol Chem 273: 15317-15320.

16. Gerzanich V, Wang F, Kuryatov A, Lindstrom J (1998) alpha 5-Subunit alters desensitization, pharmacology, Car++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J Pharmacol Exp Ther 286: 311-320.

17. Broadbent S, Groot-Kormelink PJ, Krashia PA, Harkness PC, Millar NS, et al. (2006) Incorporation of the beta3 subunit has a dominant-negative effect on the function of recombinant central-type neuronal nicotinic receptors. Mol Pharmacol 70: 1390-1397.

18. Tammillaki A, Herder P, Li P, Esch C, Laughlin JR, et al. (2012) Impact of human D398N single nucleotide polymorphism on intracellular calcium response mediated by alpha3beta2alpha5 nicotinic acetylcholine receptors. Neuropharmacology 63: 1002-1111.

19. Kuryatov A, Berretti W, Lindstrom J (2011) Acetylcholine receptor (ACHR) α5 subunit variant associated with risk for nicotine dependence and lung cancer reduces (α4β2)2α5 AChR function. Mol Pharmacol 79: 119-125.

20. Mao D, Perry DC, Yasuda RP, Wolfe BB, Kellar KJ (2008) The α4β2α5α5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo. J Neurochem 104: 446-456.

21. Wada E, McKinnon D, Heinemann S, Patrick J, Swanson LW (1990) The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (alpha 5) in the rat central nervous system. Brain Res 526: 45-53.

22. De Biasi M, Dani JA (2011) Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci 34: 105-130.

23. Larsson A, Jerhag E, Svensson L, Soderpalm B, Engel JA (2004) Is an alpha-conotoxin MII-sensitive mechanism involved in the neurochemical, stimulatory, and rewarding effects of ethanol? Alcohol 34: 239-250.

24. Gaimarri A, Moretti M, Riganli L, Zanardi A, Clemerti F, et al. (2007) Regulation of neuronal nicotinic receptor traffic and expression. Brain Res Rev 55: 134--143.

25. Grady SR, Salminen O, Laverty DC, Whiteaker P, McIntosh JM, et al. (2007) The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem Pharmacol 74: 1235-1245.

26. Chatterjee S, Santos N, Holgate J, Haass-Koffler CL, Hopf FW, et al. (2013) The α5 subunit regulates the expression and function of α4*-containing neuronal nicotinic acetylcholine receptors in the ventral-tegmental area. PLoS One 8: e63300.

27. Exley R, McIntosh JM, Marks MJ, Maskos U, Cragg SJ (2012) Striatal α5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum. J Neurosci 32: 2352-2356.

28. Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1: 59-65.

29. Poorthuis RB, Bloem B, Verhoog MB, Mansvelder HD (2013) Layer-specific interference with cholinergic signaling in the prefrontal cortex by smoking concentrations of nicotine. J Neurosci 33: 4843-4853.

30. Couto-Oliveira NA, Moreira M, Smoluch MT, Irth H, et al. (2012) Adolescent nicotine exposure transiently increases high-affinity nicotinic receptors and modulates inhibitory synaptic transmission in rat medial prefrontal cortex. FASEB J 26: 1810-1820.
53. Larsson A, Svensson L, Soderpalm B, Engel JA (2002) Role of different nicotinic acetylcholine receptors in mediating behavioral and neurological effects of ethanol in mice. Alcohol 28: 157-167.
54. Chatterjee S, Bartlett SE (2010) Neuronal nicotinic acetylcholine receptors as pharmacotherapeutic targets for the treatment of alcohol use disorders. CNS Neurol Drug Disc Targets 9: 60-76.
55. Falk DE, Yi HY, Hiller-Sturmhöfel S (2006) An epidemiologic analysis of co-occurring alcohol and tobacco use and disorders: findings from the National Epidemiologic Survey on Alcohol and Related Conditions. Alcohol Res Health 29: 162-171.
56. Schlaepfer IR, Hoft NR, Ehringer MA (2008) The genetic components of alcohol and nicotine co-addiction: from genes to behavior. Curr Drug Abuse Rev 1: 124-134.
57. Wang JC, Gruczka R, Cruchaga C, Hinrichs AL, Bertelsen S, et al. (2009) Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence. Mol Psychiatry 14: 501-510.
58. Lubke GH, Stephens SH, Lessem JM, Hewitt JK, Ehringer MA (2012) The CHRNA5A3/B4 gene cluster and tobacco, alcohol, cannabis, inhalants and other substance use initiation: replication and new findings using mixture analyses. Behav Genet 42: 636-646.
59. Gallego X, Ruiz-Medina J, Valverde O, Molas S, Robles N, et al. (2012) Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice. Alcohol 46: 205-215.
60. Dawson, Anton Jerome (2013) The role of nicotinic acetylcholine receptors in ethanol responsive behaviors and drinking. Dissertation.
61. Santos N, Chatterjee S, Henry A, Holgate J, Bartlett SE (2013) The ß5 neuronal nicotinic acetylcholine receptor subunit plays an important role in the sedative effects of ethanol but does not modulate consumption in mice. Alcohol Clin Exp Res 37: 655-662.
62. McKee SA, Harrison EL, O'Malley SS, Krishnan-Sarin S, Shi J, et al. (2009) Varenicline reduces alcohol self-administration in heavy-drinking smokers. Biol Psychiatry 66: 185-190.
63. Geisler S, Marinelli M, Degarmo B, Becker ML, Freeman AJ, et al. (2008) Prominent activation of brainstem and pallidal afferents of the ventral tegmental area by cocaine. Neuropsychopharmacology 33: 2688-2700.
64. Greatrex RM, Phillipson OT (1982) Demonstration of synaptic input from prefrontal cortex to the habenula in the rat. Brain Res 238: 192-197.
65. Herkenham M, Nauta WJ (1977) Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol 173: 123-146.
66. Herkenham M, Nauta WJ (1979) Efferent connections of the habenular nuclei in the rat. J Comp Neurol 187: 19-47.
67. Kim U, Chang SY (2005) Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus. J Comp Neurol 483: 236-250.
68. Scheibel AB (1997) The thalamus and neuropsychiatric illness. J Neuropsychiatry Clin Neurosci 9: 342-353.
69. Sutherland RJ (1982) The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 6: 1-13.
70. Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11: 503-513.
71. Lips EH, Gabrieuiev V, McKay JD, Chabrier A, Hung RJ, et al. (2010) Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. Int J Epidemiol 39: 563-577.
72. Jackson KJ, Marks MJ, Vann RE, Chen X, Gamage TF, et al. (2010) Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. J Pharmacol Exp Ther 334: 137-145.
73. Fowler CD, Tuesta L, Kenny PJ (2013) Role of a5 nicotinic acetylcholine receptors in the effects of acute and chronic nicotine treatment on brain reward function in mice. Psychopharmacology (Berl).
74. Salas R, Sturm R, Boulter J, De Biasi M (2009) Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J Neurosci 29: 3014-3018.
75. File SE, Cheeta S, Kenny PJ (2000) Neurobiological mechanisms by which nicotine mediates different types of anxiety. Eur J Pharmacol 393: 231-236.

76. Gangitano D, Salas R, Teng Y, Perez E, De Biasi M (2009) Progesterone modulation of alpha5 nACHR subunits influences anxiety-related behavior during estrus cycle. Genes Brain Behav 8: 398-406.

77. Salas R, Orr-Urtreger A, Broide DS, Beaudet A, Paylor R, et al. (2003) The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol Pharmacol 63: 1059-1066.

78. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320: 1352-1355.

79. Improgo MR, Scofield MD, Tapper AR, Gardner PD (2010) The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: dual role in nicotine addiction and lung cancer. Prog Neurobiol 92: 212-225.

80. Spitz MR, Amos CI, Dong Q, Lin J, Wu X (2008) The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst 100: 1552-1556.

81. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, et al. (2008) A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452: 633-637.

82. Viñals X, Molas S, Gallego X, Fernández-Montes RD, Robledo P, et al. (2012) Overexpression of α3/α5/β4 nicotinic receptor subunits modifies impulsive-like behavior. Drug Alcohol Depend 122: 247-252.