Characterization of the bacterial microbiota in different gut and oral compartments of splendid japalure (*Japalura sensu lato*)

Zhige Tian¹, Hongli Pu¹, Dongdong Cai³, Guangmei Luo¹, Lili Zhao⁴, Ke Li¹, Jie Zou¹, Xiang Zhao¹, Min Yu¹, Yayong Wu¹, Tiankuo Yang²*, Peng Guo¹* and Xiaoliang Hu¹*

Abstract

Background: Gut and oral microbes form complex communities and play key roles in co-evolution with their hosts. However, little is understood about the bacterial community in lizards.

Results: In this study, we investigated the gut and oral bacterial communities in *Japalura sensu lato* from Sichuan Province, China, using 16S rRNA gene sequencing. Results showed that Bacteroidota (36.5%) and Firmicutes (32.8%) were the main phyla in the gut, while Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota were the dominant phyla in the oral cavity. 16S rRNA sequencing analysis of fecal samples showed that: (1) Bacteroidota was the most abundant in *Japalura sensu lato*, which was different from the bacterial community of insectivorous animals; (2) Bacteroidota, Firmicutes, Actinobacteriota, Fusobacteriota, and Cyanobacteria were the most abundant phylum in *Japalura sensu lato*. (3) Proteobacteria was the dominant phylum in *Japalura sensu lato* and other domestic insectivorous lizards (*Shinisaurus crocodilurus*, *Phrynocephalus vlangali*, and *Takydromus septentrionalis*); (4) Comparing with the bacterial community of *Shinisaurus crocodilurus*, *Phrynocephalus vlangali*, *Takydromus septentrionalis*, *Liolemus parvus*, *L. ruibali*, and *Phymaturus williamsi*, Desulfovibrio was uniquely present in the gut of *Japalura sensu lato*. 16S rRNA sequencing of oral samples showed that Chloroflexi and Deinococcota phyla were enriched in the oral cavity, which may have a significant influence on living in extreme environments.

Conclusions: Thus, based on 16S rRNA sequencing analysis of the community composition of the gut and oral microbiomes, this study firstly represents a foundation for understanding the gut and oral microbial ecology of *Japalura sensu lato*, and constitutes a detail account of the diversity of the microbiota inhabiting the gut and oral cavity of *Japalura sensu lato*. Further researches will continue to reveal how gut and oral microbial communities may be impacting the ecology and evolution of lizards.

Keywords: *Japalura sensu lato*, Microbiota, 16S rRNA sequencing analysis, Diversity, Ecology

Background

Reptiles are an ancient group containing more than 10,000 species. Over 60% of reptiles belong to the clade Sauria, also known as lizards [1], and exhibit marked diversity in body size, shape, behavior, and life-history strategies [2, 3]. The varied ecological, physiological, and behavioral characteristics of lizards can influence the ecology of their gut and oral microbial communities [4]. However, few investigations have been conducted on the...
microbial communities of reptiles [5]. The Chinese tree
dragon (*Japalura sensu lato*) is primarily distributed in
the Yangtze River Basin in southwestern China, including
the Yunnan, Sichuan, Chongqing, and Hubei provinces
[6]. These lizards often appear on the edge of forests
among shrubs and gravel. They are good at climbing,
strongly arboreal, highly active, exclusively insectivorous,
and usually kept as pets [7].

Vertebrates and invertebrates maintain a complex
relationship with their gastrointestinal and oral micro-
bial communities [8, 9]. Gut microbes can affect host
behavior [10, 11], immunity [12], nutrition [13] and
reproductive isolation [14], ecology, and evolution. To
date, the gut microbial communities of nine species of
lizards have been reported, including *Liolaemus parvus,*
Liolaemus ruibali, *Phymaturus williamsi* [15], *Anolis
sagrei* [16], *Takydromus septentrionalis* [17], *Crocodile
Lizards* [18], land and marine iguanas [19], *Phrynoceph-
alus vlangalii* [20], *Diploderma vela* [21]. However, two
important issues still need to be elucidated: (1) eco-
lology of gut bacterial diversity and (2) how diet, altitude,
physiology, and genetics determine microbial popula-
tion structure [22–24].

Normal oral flora is comprised of various microor-
organisms, which can be protective and provide an essen-
tial barrier through interactions with the host immune
system [25]. In addition, oral cavity microbes have co-
evolved with their hosts and adapted to diverse condi-
tions for colonization resistance [26]. However, little
is understood about the oral bacterial community in
lizards.

To expand our understanding of gut and oral microbial
diversity in *Japalura sensu lato,* we firstly explored the
composition of bacterial communities in the gut and oral
cavity using 16 S rRNA sequencing analysis.

Methods

Description of samples

The Second Tibetan Plateau Scientific Expedition and
Research program included a focus on gut and oral cavity
bacterial diversity in reptiles. As such, in the July of 2020
(average temperature 28°C, average humidity 63%), Ten of
Japalura sensu lato lizards (six females, four males) were
30–33 cm in length and collected from Quebrada in the
Laojun Mountains of Sichuan, China, about 110 km from
Yibin city (28°84’71’’N; 104°25’30’’E, ~ 600 m above sea
level). The lizards, according to the captured time, were
collected opportunistically in areas where lizards were
captured (<10 m from point of capture) and pretreated
with ethanol-sterilized scissors, placed in RNase-free
tubes, and transported on dry ice to LE Biotech Co., Ltd.
(Shanghai, China).

DNA extraction and PCR amplification

The procedures of DNA extraction and PCR amplifica-
tion were described as previous [27, 28]. Briefly, Micro-
bial DNA was extracted from the fecal and oral samples
using the EZNA® Stool DNA Kit (Omega Bio-tek, Nor-
cross, GA, USA) according to the manufacturer's pro-
tocols. The V4-V5 region of the bacterial 16S ribosomal
RNA (rRNA) gene was amplified by PCR using prim-
ers 515F 5’-barcode-GTG CCA GCMGCC GCG G-3' and
926R 5’-CCGTCAATTCMTTTRAGTTT-3’; where the
barcode is an eight-base sequence unique to each sample
[29, 30]. PCR was performed in triplicate in a 20-µL mix-
ture containing 4 µL of 5 × FastPfu Buffer, 2 µL of 2.5
mM dNTPs, 0.8 µL of each primer (5 µM), 0.4 µL of Fast-
Pfu Polymerase, and 10 ng of template DNA. Amplicons
were extracted from 2% agarose gels and purified using
a AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, USA) according to the manufacturer’s
instructions.

Library Construction and sequencing

As previous described [31], the purified PCR products
were quantified by Qubit®3.0 (Life Invitrogen) and every
24 amplicons with different barcodes were mixed equally.
The pooled DNA product was used to construct an Illu-
mina paired-end library following the Illumina genomic
DNA library preparation procedure. The amplicon
library was paired-end sequenced (2 × 250) on an Illu-
mina MiSeq platform (Shanghai BIOZERON Co., Ltd.,
China) according to standard protocols.

Processing of sequencing data

Raw fastq files were first demultiplexed using in-house
Perl scripts according to the barcode sequence informa-
tion for each sample with the following criteria: (i) The
250-bp reads were truncated at any site receiving an aver-
age quality score < 20 over a 10-bp sliding window, with
truncated reads shorter than 50 bp discarded; (ii) exact barcode matching, two nucleotide mismatches in primer matching, and reads containing ambiguous characters were removed; (iii) only sequences with an overlap longer than 10 bp were assembled according to their overlap sequence [31]. Reads that could not be assembled were discarded.

Statistical analysis

Alpha-diversity (Chao1, Shannon, Simpson, coverage indices) was analyzed using Mothur (v1.35.1) [32] following the protocols of Schloss [33]. The Shannon index and the Chao1 index using normalized OTU table. Principal coordinate analysis (PCoA) based on Bray-Curtis distance metrics was performed in R v3.4.4 to explore the differences in community structures [34]. Comparison across groups were conducted using the adonis function in R on the distance matrices with 999 permutations [35]. Other statistical analyses were performed using SPSS v13.0. Operational taxonomic units (OTUs) were clustered with a 97% similarity cutoff using UPARSE v7.1 (http://drive5.com/uparse/) and chimeric sequences were identified and removed using UCHIME (v4.2.40). The phylogenetic affiliation of each 16S rRNA gene sequence was analyzed using RDP Classifier (http://rdp.cme.msu.edu/) against the SILVA (SSU132) 16S rRNA database with a confidence threshold of 70% [36]. Redundancy analysis (RDA) was employed to explore the relationship between environmental factors and bacterial communities. Community composition was analyzed at the domain, phylum, class, order, family, and genus levels. For identification of biomarkers for highly dimensional colonic bacteria, LEfSe (linear discriminant analysis effect size) analysis was performed [37]. Kruskal-Wallis sum-rank test was used to examine changes and dissimilarities among classes, followed by local-density approximation (LDA) analysis to determine the size effect of each distinctively abundant taxa [38]. Venn diagrams were drawn using the “Draw Venn Diagram” online tool (http://bioinformatics.psb.ugent.be/webtools/Venn) to analyze overlapping and unique OTUs during the treatment processes.

Results

Description of the sequencing data

We obtained 1,532,476 raw reads from MiSeq analysis of 26 samples, ranging from 30,470 to 175,731 reads per sample. After read-quality filtering, a total of 1,242,144 quality-filtered reads were obtained, ranging from 29,761 to 59,009 reads per sample, with an average length of 403.58–423.71 bp. A total of 6,156 OTUs were extracted, ranging from 28,982 to 55,646 reads per sample. To compare diversity indices, alpha-diversity (Chao1, Shannon, Simpson, coverage indices), which considers both richness and diversity, was analyzed. The mean coverages of the fecal, oral, and environment groups were 0.997447, 0.9975551, and 0.992444833, respectively (Table 1), indicating that sequencing depth was sufficient to capture the true state of the microorganisms in the samples. The Chao1 estimators were significantly different between the fecal and environment groups (P < 0.01) and between the oral and environment groups (P < 0.01) but were not statistically different between the fecal and oral groups (Table 1), indicating that OTU richness in the fecal and oral groups was lower than that in the environment groups. The Shannon and Simpson indices were shown that oral groups had a lower community diversity than the fecal and environment groups (Table 1). Rarefaction curves are commonly used to describe the diversity in samples within a group. Here, all curves asymptotically approached a plateau, suggesting that they accurately reflected the microbial community and that the results were sufficient to estimate microbial diversity (Fig. 1A).

Table 1 The diversity indices used in this study

Samples(n)	Diversity index					
	Reads	OTU	Chao1	Shannon	Coverage	simpson
Feces(10)	45,996.3	667.7	769.7**	4.335	0.997447	0.04371*
Oral cavity(10)	42,724.9	532.5	625.4**	3.672*	0.9975551	0.10561*
Control(6)	46,300.8333	1,509	1,770.1666	5.0183334	0.992444833	0.047766667

*indicates the values with significant differences between the Fecal group and Control group, and Oral cavity and Control group (P < 0.05);
**indicates the values with significant differences between the Fecal group and Control group, and Oral cavity and Control group (P < 0.01);
* indicates the values with significant differences between the Fecal group and Oral cavity group (P < 0.05);
diversity of all groups. Analysis showed that there was a significant effect of *Japalura sensu lato* on fecal, oral and environment samples (adonis: feces and oral cavity group, $R^2 = 0.17$, $P < 0.01$; feces and environment group, $R^2 = 0.20$, $P < 0.01$; oral cavity and environment group, $R^2 = 0.19$, $P < 0.01$) (Fig. 2).

Gut microbial diversity and community composition

The 10 most abundant phyla, families, and genera in the fecal samples are shown in Fig. 3 and Table S1. *Bacteroidota* (36.5%) was the most dominant phylum in the fecal samples, followed by *Firmicutes* (32.8%), *Proteobacteria* (19.1%), *Actinobacteriota* (3.8%), *Fusobacteriota* (1.8%), *Verrucomicrobiota* (1.3%), and *Desulfobacterota* (1.0%), with *Deinococcota* (0.9%), *Acidobacteriota* (0.8%), and *Cyanobacteria* (0.6%) showing relative abundances of < 1.0%.

At the family level, *Lachnospiraceae* (17.0%) and *Bacteroidaceae* (15.8%) were the most dominant in the gut, followed by *Chitinophagaceae* (8.0%), *Tannerellaceae* (5.3%), *Rhizobiaceae* (4.3%), *Marinililaceae* (4.1%), *Clostridiaceae* (3.9%), and *Rhodanobacteraceae* (3.2%).

At the genus level, *Bacteroides* (15.8%) was the most dominant, followed by *Vibrionimonas* (7.05), *28−4* (5.7%), *Parabacteroides* (4.4%), *Clostridium sensu stricto* (3.9%), *Lachnospiraceae NK4A136 group* (3.6%), and *Rhodanobacter* (3.1%) (Fig. 3).

For the community composition of fecal and environment samples, seven kinds of bacteria, including *Proteobacteria, Actinobacteriota, Bacteroidota, Acidobacteriota, Cyanobacteria, Firmicutes* and *Verrucomicrobiota*, were shared in the top 10 dominant phyla.

Oral cavity microbial diversity and community composition

Bacterial composition in the oral cavity at the phylum level is shown in Fig. 3 and Table S1. Results showed that *Proteobacteria* (47.0%) was the dominant phylum, followed by *Bacteroidota* (18.9%), *Firmicutes* (15.4%), *Actinobacteriota* (6.9%), and *Deinococcota* (6.1%), with *Myxococcota* (0.9%), *Acidobacteriota* (0.8%), *Gemmatimonadota* (0.8%), *Chloroflexi* (0.8%), and unclassified (0.5%) showing relative abundances of < 1.0%.

At the family level, *Chitinophagaceae* (12.9%) was the most dominant, followed by *Burkholderiaceae* (10.0%), *Rhizobiaceae* (6.7%), *Moraxellaceae* (6.2%), *Trueperaceae* (6.1%), *Bacillaceae* (5.2%), *Rhodanobacteraceae* (4.9%), *Staphylococcaceae* (3.8%), *Xanthobacteraceae* (3.3%), and *Caulobacteraceae* (3.0%).

At the genus level, *Vibrionimonas* (11.2%) was the most dominant, followed by *Ralstonia* (9.9%), *Truepera* (6.1%),
Enhydrobacter (4.9%), Rhodanobacter (4.3%), Bacillus (4.1%), Mesorhizobium (3.9%), and Staphylococcus (3.8%) (Fig. 3).

For the community composition of fecal and oral samples, six types of bacteria, including Bacteroidota, Firmicutes, Proteobacteria, Actinobacteriota, Deinococota and Acidobacteriota, were shared in the top 10 dominant phyla.

Comparison of differentially enriched taxa among groups

Using LEfSe analysis, we selected species showing differences among groups. The results included a LDA
distribution histogram, an evolutionary branch diagram (phylogenetic distribution), and an abundance comparison diagram of biomarkers showing statistical differences (LDA score > 2) between groups (Fig. 4). In total, 37 and 18 types of bacteria were enriched in the gut and oral cavity, respectively. *Pseudomonadales* (Gammaproteobacteria), *Acidobacteriota*, and *Limonibacter* were enriched in the fecal group and played key roles in the microbial community. *Burkholderiales*, *Burkholderiaceae*, *Staphylococcaceae*, *Staphylococcales*, *Bacillales*, *Bacillaceae*, *Bacillus*, *Janibacter* and *Intrasporangiaceae* were enriched in the oral cavity.

Discussion

According to the diversity and abundance of gut and oral microbiota, many factors, including host species, sex, region, and season, are related to the ecology and behavior of the hosts [15]. A few studies have been performed to examine the differences in gut microbial compositions and abundances in lizards, which suggested that lizards and their microbiota coevolve together [18, 39, 40]. *Japalura sensu lato* is unique to China, whether the gut and oral microbiota is associated with the host habitats and ecology was needed to be determined.

In the present study, *Bacteroidetes* (36.5%) and *Firmicutes* (32.8%) were the dominant phyla found in fecal samples, accounting for 69.3% of sequences, similar to the gut community composition reported in lizard species [19, 20]. Nonetheless, insectivores (*Japalura sensu lato*) (36.5%) and omnivores (*L. parvus* and *L. ruibali*) (35–39%) exhibited higher abundances of *Bacteroidetes* than herbivore (*P. williamsi*) (11–15%) [15]. Although *Bacteroidetes* are abundant in many mammalian gut communities, they show lower abundance in insectivorous mammals such as hedgehogs and house shrews (*Suncus murinus*) [41, 42]. The function of *Bacteroidetes* is to degrade ingested plant-derived material and ferment carbohydrates and short-chain fatty acids [5]. Further research is needed to investigate the role of *Bacteroidetes* in the insectivorous habit of *Japalura sensu lato*.

Actinobacteria, *Firmicutes*, *Actinobacteriota*, * Fusobacteriota*, and *Cyanobacteria* were enriched in *Japalura sensu lato*, *Shinisaurus crocodilurus*, *Phyronocephalus vlangali*, *Takydromus septentrionalis*, *Liolaemus parvus*, *L. ruibali*, and *Phymaturus williamsi*. *Proteobacteria* was commonly present in the domestic insectivorous lizards (i.e., *Japalura sensu lato*, *Shinisaurus crocodilurus*, *Phyronocephalus vlangali*, and *Takydromus septentrionalis*), but absent from the omnivores (*L. parvus* and *L. ruibali*) and herbivores (*P. williamsi*) [15, 17, 18, 20]. *Proteobacteria* can enhance cellulose activity, degrade various aromatic compounds, and promote nutrient absorption in hosts [43]. We found that *Desulfobacterota* was the seventh most abundant phylum in the gut of *Japalura sensu lato* but was absent in the six other lizard species mentioned above. Furthermore, *Desulfobacterota* may be important for sulfate-reducing and fermentative [44, 45]. Based on the above results, we found that gut microbiota abundance and composition were affected by various factors, including geographical region, domestication, diet, and genotype of hosts.

Firmicutes, *Actinobacteria*, *Proteobacteria*, and *Bacteroidetes* are the most common phyla found in oropharyngeal samples from various species (e.g., humans, murines, felines, canines, chimpanzees, and hawks) [46–50]. Very few studies have investigated the bacterial composition of the oral cavity in lizards, with research limited to the isolation of bacterial clones from oral and saliva samples using aerobic and anaerobic cultures [51–53] and reports of *Staphylococcus aureus* and *Serratia marcescens* infections in humans following lizard bites [54, 55]. In the current study, we investigated the oral bacterial community in *Japalura sensu lato*. Results showed that *Proteobacteria*, *Bacteroidota*, *Firmicutes*, and *Actinobacteriota* were the dominant phyla in the oral cavity, suggesting similar oropharyngeal bacterial composition as the above hosts. *Chloroflexi* contains anaerobic chemoorganoheterotrophic bacteria with fermentative metabolism in digestive systems [56] and is a dominant phylum in anaerobic wastewater [57]. Thus, *Chloroflexi* was the ninth most abundant phylum in *Japalura sensu lato*, which may contribute to its anaerobic fermentation. The genus *Truepera*, which belongs to the phylum *Deinococcota*, can grow in alkaline, saline, and high temperature environments and is also present in cultivated olives [58, 59]. Our results showed that *Truepera* was a dominant phylum, family, and genus in the oral cavity of *Japalura sensu lato*, which may have high impact on the lizard’s ability to live in extreme environments and regulate the lizard’s body temperature, such as found in southern China with very hot and humid summers. There is another possibility that it is associated with diet, which can shape the microbial community [22].

This study had three main limitations. Firstly, we determined the sex of the lizards, but did not identify their age, which can affect bacterial community composition. Secondly, the samples were collected from one location (Laojun Mountains) and the sample size was small. Thirdly, we did not investigate the influence of season. Thus, our findings should be confirmed using a larger sample size and more collection locations.

Conclusions

We investigated the composition of the gut and oral bacterial community in an insectivorous lizard species (*Japalura sensu lato*). Our results indicated that
Fig. 4 LEfSe (linear discriminant analysis effect size) analysis of microbiota composition of fecal, oral, and environment samples (LDA > 2).

a) Histogram of LDA scores for differentially abundant features in feces group, oral cavity group, and environment group. LEfSe scores were interpreted as degree of consistent difference in relative abundance of microbial communities in fecal, oral, and environment (soil and plant) samples.
b) Taxonomic representation of statistical and biological differences between feces group, oral cavity group and environment group. Differences are represented by colored circles. Color represents classification level and size is proportional to taxon abundance, representing phylum, class, order, and family.
Proteobacteria was commonly present in domestic insectivorous lizards. Desulfobacterota was uniquely present in the gut of *Japalura sensu lato* but was absent in the above six lizard species. Proteobacteria, Bacteroidota, Firmicutes, and Actinobacterota were the dominant phyla in the oral cavity. Furthermore, our study provides new insight into the complex bacterial community and ecology of *Japalura sensu lato* and offers a basic database for further investigations.

Abbreviations

L. parvus: *Liolaemus parvus*, L. ruibali: *Liolaemus ruibali*, ORF: Open reading frame.

Supplementary information

The online version contains supplementary material available at https://doi.org/10.1186/s12917-022-03300-w.

Additional file 1.

Acknowledgements

We are grateful to WYY for his participation in the collection of samples.

Authors’ contributions

TZG, YTK, HXL and GP conceived the project and GP, TZG, CDD, ZLL and HXL performed the experiments and data analysis. WYY, LK and YM performed sample collection. All authors read and approved the final manuscript.

Funding

This work was supported by the Doctor Launch Project of Ybibn University (No. 2019QD09 and No. 2019QD10) and partly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20050201) and the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZXK05010105).

Availability of data and materials

All 16 S rRNA gene sequences obtained in this study have been deposited in the NCBI Sequence Read Archive under the BioProject accession number PRJNA771761: https://www.ncbi.nlm.nih.gov/sra/PRJNA771761.

Declarations

Ethics approval and consent to participate

Our experimental procedures complied with the current laws of China for the care and use of experimental animals and were approved by the Animal Ethics Procedures and Guidelines of Experiment Animals Committee affiliated to Yibin University, Yibin, China.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1^Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000 Yibin, People’s Republic of China. 2^Aviation Medical Appraisal Center, Civil Aviation Flight University of China, 618307 Guangan, China. 3^Sichuan Animal Disease Control Central, 610000 Chengdu, People’s Republic of China.

6^College of Veterinary Medicine, Jilin University, 130000 Changchun, People's Republic of China.

Received: 3 February 2022 Accepted: 16 May 2022

References

1. Utitz P, Holesk J. The Reptile Database. 2016.
2. Marki FZ, Jansson KA, Inrestedt M, Nguyen JM, Rahbek C, Fjeldså J. Supermatrix phylogeny and biogeography of the Australasian Meliphagidae radiation (Aves: Passeriformes). Mol Phylogenet Evol. 2017;107:516–29.
3. Woltering JM. From lizard to snake; behind the evolution of an extreme body plan. Curr Genomics. 2012;13(4):289–99.
4. Pianka ER, Vitt LJ. Lizards: windows to the evolution of diversity 2003.
5. Colston T, Jackson CR. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol. 2016;25(16):3776–800.
6. Huang W, Luo H, Luo S, Huang A, Ni Q, Yao Y, Xu H, Zeng B, Li Y, Wei Z, et al. The complete mitogenome of the splendid japalura *Japalura splendidida* (Squamata, Agamidae). Mitochondrial DNA Part B Resour. 2019;4(2):2641–2.
7. Wang Guang-li GZ-f, Yu Ping-jing, Zhao Er-mi. Behaviour of *Japalura splendidida* under Artificial Feeding Condition. Sichuan J Zool. 2007;4:834–836.985.
8. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Ebeling G, Fukami T, Gilbert SF, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110(9):3219–36.
9. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev. 2007;71(4):653–70.
10. Archie EA, Theis KR. Animal behaviour meets microbial ecology. Animal Behav. 2011;82(3):425–36.
11. Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. Microbiology, animal behavior and the microbiome. Science. 2012;338(6104):198–9.
12. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial interactions in the intestine. Science. 2001;291(5505):881–4.
13. Mackie RI. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integrative Comparative Biol. 2002;42(2):319–26.
14. Shropshire JD, Bordenstein SR. Specialization by Symbiosis: the Microbiome and Behavior. mBio. 2016;7(2):e01785.
15. Kohl KD, Brun A, Magallanes M, Brinkerhoff J, Laspiur A, Acosta JC, Cavedes-Vidal E, Bordenstein SR. Gut microbial ecology of lizards: insights into diversity in the wild, effects of captivity, variation across gut regions and transmission. Mol Ecol. 2017;26(4):1175–89.
16. Ren T, Kahl AF; Wu M, Cox RM. Does adaptive radiation of a host lineage promote ecological diversity of its bacterial communities? A test using gut microbiota of Anolis lizards. Mol Ecol. 2016;25(19):4793–804.
17. Zhou J, Zhao YT, Dai YY, Jiang Yi, Lin LH, Li H, Li P, Qu YF, Ji X. Cavity affects diversity, abundance, and functional pathways of gut microbiota in the northern grass lizard *Takydromus septentrionalis*. MicrobiologyOpen. 2020;9(9):e1095.
18. Jiang HY, Ma J, Li J, Zhang XY, Li LM, He N, Liu HY, Luo SY, Wu ZJ, Han RC, et al. Diet affects the Gut Microbiome of Crocodile Lizards. Front Microbiol. 2017;8:2073.
19. Hong PY, Wheeler E, Cunnick K, Mackie RI. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. ISME J. 2011;5(9):1461–70.
20. Zhang W, Li N, Tang X, Liu N, Zhao W. Changes in intestinal microbiota across an altitudinal gradient in the lizard *Phrynocephalus splendida*. Ecol Evol. 2018;8(9):4695–703.
21. Zhu W, Shi X, Qi Y, Wang X, Chang L, Zhao C, Zhu L, Jiang J. Commensal microbiota and host metabolic divergence are associated with the adaptation of Diploderma vela to spatially heterogeneous environments. Integrative Zool. 2022;17(3):346–65.
22. David LA, Maurice CF, Carmody RN, Gootenber HD, Button JE, Wolfe BE, Ling AV, Devlin AS, Varga Y, Fischbach MA, et al. Diet...
rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

23. McKenney EA, Williamson L, Yoder AD, Rawls JF, Bilbo SD, Parker W. Alteration of the rat cecal microbiome during colonization with the helminth Hymenolepis diminuta. Gut Microbes. 2015;6(3):182–93.

24. Moeller AH, Li Y, Mpoudi Ngole E, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, Peeters M, Hahn BH, Ochman H. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci USA. 2014;111(46):16431–5.

25. Oh C, Lee K, Cheong Y, Lee SW, Park SY, Song CS, Choi IS, Lee JB. Comparison of the Oral Microbiomes of Canines and Their Owners. Using Next-Generation Sequencing. PloS one. 2015;10(7):e0131468.

26. He X, McLean JS, Guo L, Lux R, Shi W. The social structure of microbial community involved in colonization resistance. ISME J. 2014;8(3):564–74.

27. Yuan J, Wang Z, Wang B, Mei H, Zhai X, Zhuang Z, Chen M. Non-Specific Immunity Associated Gut Microbiome in Aristotethys nobilis under Different Rearing Strategies. Genes (Basel). 2021;12(6):916. https://doi.org/10.3390/genes12060916.

28. Song X, Wang H. Investigation of microbial contamination in a chicken slaughterhouse environment. J Food Sci. 2021;86(8):5398–610. https://doi.org/10.1111/1750-3841.15842.

29. Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol. 2013;79(9):5602–9.

30. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 2011;12:38.

31. Wu ZF, Zou K, Wu GN, Jin ZL, Xiang CJ, Xu S, Wang YH, Wu XY, Chen C, Xu Z et al. A comparison of tumor-associated and non-tumor-associated gastric microbiota in gastric cancer patients. Dig Dis Sci. 2021;66(5):1673–82. https://doi.org/10.1007/s10620-020-06415-y.

32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.

33. Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PloS one. 2011;6(10):e27310.

34. Hur R, Yuan J, Meng Y, Wang Z, Gu Z. Pathogenic Elizabethkingia miricola Infection in Cultured Black-Spotted Frogs, China. 2016. Emerg Infect Dis. 2017;23(12):2055–2059.

35. Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;18(1):117–43.

36. Amato RK, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013;7(7):1344–53.

37. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.

38. Ijaz MU, Ahmed Mi, Zou X, Hussain M, Zhang M, Zhao F, Xu X, Zhou G, Li C, Beef, Casein, and Soy Proteins Differentially Affect Lipid Metabolism, Triacylglycerides Accumulation and Gut Microbiota of High-Fat Diet-Fed C57BL/6J Mice. Front Microbiol. 2018;9:2200.

39. Zhang W, Li N, Tang X, Liu N, Zhao W. Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii. Ecol Evol. 2018;8(9):4695–703.

40. Zhou J, Zhao YT, Dai YY, Jiang YJ, Lin LH, Li H, Li F, Qu YF, Ji X. Captivity affects diversity, abundance, and functional pathways of gut microbiota in the northern grass lizard Takydromus septentrionalis. Microbiol Open. 2020;9(3):e10895.

41. Shinohara A, Nishida M, Kondo Y, Joganahara T, Nagura-Kato GA, Izawa M, Koshimoto C. Comparison of the gut microbiotas of laboratory and wild Asian house shrews (Suncus murinus) based on cloned 16S rRNA sequences. Experiment Anim. 2019;68(4):531–9.

42. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R et al. Evolution of mammalian gut microbiomes. Science. 2008;320(5883):1647–51.

43. Reid NM, Addison SL, MacDonald LJ, Lloyd-Jones G. Biodiversity of active and inactive bacteria in the gut flora of wood-feeding huu beetle larvae (Prionoplus reductrius). Appl Environ Microbiol. 2011;77(19):7000–7006.