REFINEMENTS OF LOWER BOUNDS FOR POLYGAMMA FUNCTIONS

BAI-NI GUO AND FENG QI

Abstract. In the paper, some lower bounds for polygamma functions are refined. Moreover, several open problems are posed.

1. Introduction and main results

It is well-known that the classical Euler gamma function

\[\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} \, dt \]

for \(x > 0 \), the psi function \(\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} \), and the polygamma functions \(\psi^{(i)}(x) \) for \(i \in \mathbb{N} \) are a series of important special functions and have many extensive applications in many branches such as statistics, probability, number theory, theory of 0-1 matrices, graph theory, combinatorics, physics, engineering, and other mathematical sciences.

We begin by summarizing several results which motivated this paper.

In [6, Corollary 2], the inequality

\[\psi'(x) e^{\psi(x)} < 1 \]

for \(x > 0 \) was deduced. We observe that the inequality [2] can be rearranged as

\[\psi'(x) < e^{-\psi(x)}. \]

In [4, Lemma 1.2], the inequality [2] was recovered.

In [1, Theorem 4.8], by the aid of the inequality

\[[\psi'(x)]^2 + \psi''(x) > 0 \]

for \(x > 0 \) or, say,

\[\sqrt{\frac{|\psi''(x)|}{(2-1)!}} < \psi'(x), \]

Received by the editors December 13, 2009 and, in revised form, March 2, 2011 and August 4, 2011.

2010 Mathematics Subject Classification. Primary 33B15; Secondary 26D07.

Key words and phrases. Refinement, lower bound, polygamma function, inequality, mean, open problem.

The second author was partially supported by the China Scholarship Council and the Science Foundation of Tianjin Polytechnic University.

©2012 American Mathematical Society
Reverts to public domain 28 years from publication

1007
the inequality (2) was generalized to

\[(n-1)! \exp(-n\psi(x+1)) < |\psi^{(n)}(x)| < (n-1)! \exp(-n\psi(x))\]

for \(x > 0\) and \(n \in \mathbb{N}\), which can be restated as

\[e^{-\psi(x+1)} < \sqrt[2]{\frac{|\psi^{(n)}(x)|}{(n-1)!}} < e^{-\psi(x)}\]

for \(x > 0\) and \(n \in \mathbb{N}\).

In [3, Theorem 2.1], the left-hand-side inequality in (6) was refined to

\[(n-1)! \exp\left(-n\psi\left(x + \frac{1}{2}\right)\right) < |\psi^{(n)}(x)| < (n-1)! \exp(-n\psi(x)),\]

which can be reformulated as

\[e^{-\psi(x+1/2)} < \sqrt[2]{\frac{|\psi^{(n)}(x)|}{(n-1)!}} < e^{-\psi(x)}\]

for \(x > 0\) and \(n \in \mathbb{N}\).

Furthermore, the function \(\psi^{(n)}(x)\) was alternatively bounded in [3, Theorem 2.2] by

\[(n-1)! \left[\frac{\psi^{(k)}(x + 1/2)}{(-1)^{k-1}(k-1)!} \right]^{n/k} < |\psi^{(n)}(x)| < (n-1)! \left[\frac{\psi^{(k)}(x)}{(-1)^{k-1}(k-1)!} \right]^{n/k},\]

which can be rewritten as

\[k \sqrt[2]{\frac{|\psi^{(k)}(x + 1/2)|}{(k-1)!}} < \sqrt[2]{\frac{|\psi^{(n)}(x)|}{(n-1)!}} < k \sqrt[2]{\frac{|\psi^{(k)}(x)|}{(k-1)!}}\]

for \(x > 0\) and \(1 \leq k \leq n-1\).

For more information on this topic, please refer to the expository and survey article [15] and plenty of closely related references therein.

The main aim of this paper is to further refine the left-hand-side inequalities in (8) and (10) or their variants (9) and (11).

Our main results are stated in the following theorem.

Theorem 1. For \(n = 1, 2\), the inequality

\[\sqrt[2]{\frac{|\psi^{(n)}(x)|}{(n-1)!}} > e^{-\psi(1/\ln(1+1/x))}\]

holds on \((0, \infty)\). For \(n \in \mathbb{N}\) and \(1 \leq k \leq n-1\), the inequality

\[\sqrt[2]{\frac{|\psi^{(n)}(x)|}{(n-1)!}} > k \sqrt[2]{\frac{|\psi^{(k)}(1/\ln(1+1/x))|}{(k-1)!}}\]

is valid on \((0, \infty)\).
2. Lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 1 ([7, 10, 12, 21]). For $k \in \mathbb{N}$, the inequalities

\begin{align*}
\ln x - \frac{1}{x} < \psi(x) < \ln x - \frac{1}{2x} \\
and\\
\frac{(k-1)!}{x^k} + \frac{k!}{2x^k+1} < (-1)^{k+1} \psi^{(k)}(x) < \frac{(k-1)!}{x^k} + \frac{k!}{x^k+1}
\end{align*}

are valid on $(0, \infty)$.

Lemma 2. The inequality

\begin{equation}
\psi'(t) < e^{1/t} - 1
\end{equation}

holds on $(0, \infty)$.

Proof. For the sake of convenience, denote $e^{1/t} - \psi'(t)$ by $h(x)$. It is clear that

\begin{equation}
\lim_{t \to \infty} h(t) = 1.
\end{equation}

A direct calculation reveals that

\begin{align*}
h(t+1) - h(t) &= e^{1/(t+1)} - e^{1/t} + \psi'(t) - \psi'(t+1) \\
&= e^{1/(t+1)} - e^{1/t} + \frac{1}{t^2}
\end{align*}

and

\begin{align*}
e^{1/t} - e^{1/(t+1)} &= \int_0^1 \frac{1}{(t+u)^2} e^{1/(t+u)} \, du \\
&> \int_0^1 \frac{1}{(t+u)^2} \left[1 + \frac{1}{t+u} + \frac{1}{2(t+u)^2} \right] \, du \\
&> \frac{6t(t+1)^3 + 1}{6t^2(t+1)^3} \\
&> \frac{1}{t^2}
\end{align*}

for $t \in (0, \infty)$. Hence, by the limit (17) and mathematical induction, we have

\begin{equation}
h(t) > h(t+1) > h(t+2) > \cdots > h(t+k) > \lim_{k \to \infty} h(t+k) = 1,
\end{equation}

which is equivalent to the inequality (16). \Box

3. Proof of Theorem 1

Now we turn our attention to proving Theorem 1. Letting $\frac{1}{\ln(1+1/x)} = t$ in (12) and rearranging yield

\begin{equation}
e^{n\psi(t)} \left| \psi^{(n)} \left(\frac{1}{e^{1/t} - 1} \right) \right| > (n-1)!
\end{equation}

for $t \in (0, \infty)$.
Utilizing the left-hand-side inequalities in (11) and (13) gives
\[e^{n\psi(t)} \left[n \left(1 - \frac{1}{e^{1/t} - 1} \right) \right] > e^{n(\ln t - 1/t)} \left[(n - 1)! \left(e^{1/t} - 1 \right)^n + \frac{n!}{2} \left(e^{1/t} - 1 \right)^{n+1} \right] \]
\[= (n - 1)! \left(e^{1/t} - 1 \right)^n \left[\frac{n}{2} (e^{1/t} - 1) + 1 \right] \]
\[= (n - 1)! \left(e^{u - 1} \right)^n \left[\frac{n}{2} (e^{u - 1} - 1) + 1 \right], \]
where \(u = \frac{1}{t} > 0 \). So, in order to prove (19), it is sufficient to show
\[\frac{(e^u - 1)^n}{u^n e^{nu}} \left[\frac{n}{2} (e^u - 1) + 1 \right] \geq 1, \quad u > 0, \]
that is,
\[(e^u - 1)^n [n(e^u - 1) + 2] \geq 2u^n e^{nu}, \quad u > 0. \]
Let
\[f_n(u) = (e^u - 1)^n [n(e^u - 1) + 2] - 2u^n e^{nu} \]
on \((0, \infty)\). A straightforward differentiation gives
\[f_1'(u) = 2e^u (e^u - 1 - u) > 0, \]
\[f_2'(u) = 2e^u \left[3e^{2u} - 2e^u (u^2 + u + 2) + 1 \right], \]
\[\left[\frac{f_2'(u)}{2e^u} \right]' = 2e^u (3e^u - u^2 - 3u - 3) > 0. \]
Hence, the derivative \(f_2'(u) \) is also positive on \((0, \infty)\). Since \(f_n(0) = 0 \) and the functions \(f_1(u) \) and \(f_2(u) \) are strictly increasing on \((0, \infty)\), it is readily obtained that the functions \(f_1(u) \) and \(f_2(u) \) are strictly positive on \((0, \infty)\). This shows that inequalities (20) and (21) are valid on \((0, \infty)\) for \(n = 1, 2 \). As a result, the inequality (12) is valid on \((0, \infty)\) for \(n = 1, 2 \).

Letting \(\frac{1}{\ln(1+1/x)} = t \) in (13) leads to
\[(22) \quad \sqrt[n]{\frac{\psi^{(n)}(1/(e^{1/t} - 1))}{(n - 1)!}} > \sqrt[k]{\frac{\psi^{(k)}(t)}{(k - 1)!}} \]
for \(t > 0 \), where \(n \in \mathbb{N} \) and \(1 \leq k \leq n - 1 \). In [3, Lemma 1.2], the inequality
\[(23) \quad (-1)^n \psi^{(n+1)}(x) < \frac{n}{\sqrt[n]{(n - 1)!}} \left[(-1)^{n-1} \psi^{(n)}(x) \right]^{1+1/n} \]
for \(x > 0 \) and \(n \in \mathbb{N} \) was turned out, which can be restated more significantly as
\[(24) \quad \sqrt[n+1]{\frac{\psi^{(n+1)}(x)}{n!}} < \sqrt[n]{\frac{\psi^{(n)}(x)}{(n - 1)!}}, \]
an equivalence of the right-hand-side inequalities in (10) and (11). Therefore, it is sufficient to show
\[(25) \quad \lim_{n \to \infty} \sqrt[n]{\frac{\psi^{(n)}(1/(e^{1/t} - 1))}{(n - 1)!}} \geq \psi'(t) \]
for \(t > 0 \).
Making use of the double inequality (15), it is easy to acquire that
\[
(e^{1/t} - 1)^k \sqrt{\frac{k}{2} (e^{1/t} - 1)} + 1 < \sqrt[k]{\frac{\psi(k)(1/(e^{1/t} - 1))}{(k - 1)!}} < (e^{1/t} - 1)^k \sqrt{k(e^{1/t} - 1)} + 1
\]
for \(t \in (0, \infty) \) and \(k \in \mathbb{N} \). Hence,
\[
\lim_{k \to \infty} \sqrt[k]{\frac{\psi(k)(1/(e^{1/t} - 1))}{(k - 1)!}} = e^{1/t} - 1.
\]
By virtue of inequality (16), inequality (25) follows, so inequality (13) is proved.

4. Remarks

In this section, we would like to supply several remarks on Theorem 1.

Remark 1. Since
\[
x < \frac{1}{\ln(1 + 1/x)} < x + \frac{1}{2},
\]
the psi function \(\psi(x) \) is strictly increasing, and \(|\psi^{(n)}(x)| \) for \(n \in \mathbb{N} \) are strictly decreasing on \((0, \infty)\). Then the left-hand-side inequalities in (8) and (9) for \(n = 1, 2 \) and the left-hand-side inequalities in (10) and (11) are respectively refined, say nothing of the left-hand-side inequality in (6) for \(n = 1, 2 \).

Remark 2. The inequality (12) would be invalid if \(n \) were big enough. In other words, the inequality (12) is not valid for all \(n \in \mathbb{N} \). Otherwise, the inequality
\[
\lim_{n \to \infty} \sqrt[n]{\frac{\psi^{(n)}(x)}{(n - 1)!}} = \frac{1}{x} \geq e^{-\psi(1/\ln(1+1/x))}
\]
would be valid on \((0, \infty)\). However, the reversed inequality of (28) holds on \((0, \infty)\).
(Why? See Remark 4 below.) This situation motivates us to pose an open problem: What is the largest positive integer \(n \) such that inequality (12) holds on \((0, \infty)\)?

Remark 3. Rewriting (12) and (12) for \(n = 1 \) leads to
\[
e^{-\psi(L(x,x+1))} < \psi'(x) < e^{-\psi(L(x,x))}
\]
for \(x > 0 \), where
\[
L(a,b) = \begin{cases}
\frac{b - a}{\ln b - \ln a}, & a \neq b, \\
\frac{1}{a}, & a = b
\end{cases}
\]
stands for the logarithmic mean for positive numbers \(a \) and \(b \). Since the logarithmic mean \(L(a,b) \) is strictly increasing with respect to both \(a > 0 \) and \(b > 0 \) and the psi function \(\psi(x) \) is also strictly increasing on \((0, \infty)\), inequalities (6), (8), (9), (12), and (29) stimulate us to naturally ask the following question: What are the best scalars \(p(n) \geq 0 \) and \(q(n) > 0 \) such that the inequality
\[
e^{-\psi(L(x,x+q(n)))} < \sqrt[n]{\frac{\psi^{(n)}(x)}{(n - 1)!}} < e^{-\psi(L(x,x+p(n)))}
\]
is valid on \((0, \infty)\)?
Similarly, inequalities (10), (11), and (13) motivate us to pose the following open problem: What are the best constants $p(n, k) \geq 0$ and $0 < q(n, k) \leq 1$ such that the inequality

$$
\sqrt[k]{\frac{\psi^{(k)}(L(x, x + q(n, k)))}{(k-1)!}} < \sqrt[n]{\frac{\psi^{(n)}(x)}{(n-1)!}} < \sqrt[k]{\frac{\psi^{(k)}(L(x, x + p(n, k)))}{(k-1)!}}
$$

holds on $(0, \infty)$ for $1 \leq k \leq n - 1$.

Remark 4. Letting $\frac{1}{\ln(1+1/x)} = t$ in the reversed version of the inequality (28) and taking the logarithm yield

$$
\psi(t) + \ln(e^{1/t} - 1) < 0
$$
on $(0, \infty)$, an inequality established in [3, Theorem 2.8] and [4, Theorem 2]. The increasing monotonicity of the function in the left-hand-side of the inequality (33) was presented in [2, 11, 17] respectively. The strict concavity and some other generalizations of the function in the inequality (33) was discussed in [11] recently.

Remark 5. The case $n = 2$ and $k = 1$ in (13) is

$$
\psi''(x) + \left[\psi'(1/\ln(1+1/x))\right]^2 < 0
$$
on $(0, \infty)$. This refines the inequality

$$
\psi''(x) + \left[\psi\left(x + \frac{1}{2}\right)\right]^2 < 0
$$
on $(0, \infty)$, the special case $n = 2$ and $k = 1$ of the inequality (10). The inequality (35) was also refined and generalized in [19] in another direction.

The inequality (34), a special case with $n = 1$ of the inequality (23), has been generalized to the complete monotonicity and many other cases. For more information, please refer to [8, 13, 18, 19] and closely related references therein.

Remark 6. The generalized logarithmic mean $L(p; a, b)$ of order $p \in \mathbb{R}$ for positive numbers a and b with $a \neq b$ is defined in [5, p. 385] by

$$
L(p; a, b) = \begin{cases}
\left[\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \right]^{1/p}, & p \neq -1, 0; \\
\frac{b-a}{\ln b - \ln a}, & p = -1; \\
\frac{1}{e} \left(\frac{b}{a} \right)^{1/(b-a)}, & p = 0.
\end{cases}
$$

It is known from [22, 23] that $L(p; a, b)$ is strictly increasing with respect to $p \in \mathbb{R}$. See also [9, 16] and closely related references therein. Furthermore, we can pose the following more general open problem: What are the best scalars $\lambda(n)$, $\mu(n)$, $p(n)$ and $q(n)$ such that the inequality

$$
e^{-\psi(L(\lambda(n);x,x+q(n))))} < \sqrt[n]{\frac{\psi^{(n)}(x)}{(n-1)!}} < e^{-\psi(L(\mu(n);x,x+p(n))))}
$$
is valid on $(0, \infty)$? What are the best constants $\lambda(n,k), \mu(n,k), p(n,k)$ and $q(n,k)$ such that the inequality

\[
\sqrt[k]{\frac{\psi(k)(L(\lambda(n,k);x,x+q(n,k)))}{(k-1)!}} < \sqrt[n]{\frac{\psi(n)(x)}{(n-1)!}} < \sqrt[k]{\frac{\psi(k)(L(\mu(n,k);x,x+p(n,k)))}{(k-1)!}}
\]

(38)

holds on $(0, \infty)$ for $1 \leq k \leq n-1$?

Remark 7. Finally, an alternative proof of the inequality (12) for $n = 1$ is provided as follows. Letting $1 \ln(1+x)/x = t$ in (12) results in

\[
\sqrt[n]{\frac{\psi(n)(1/(e^{1/t} - 1))}{(n-1)!}} > e^{-\psi(t)}
\]

(39)

for $t > 0$ and $n \in \mathbb{N}$. By the inequality

\[
1 + \frac{\alpha x}{1 + (1-\alpha)x} \leq (1+x)^\alpha \leq 1 + \alpha x
\]

(40)

for $x > -1$ and $0 \leq \alpha \leq 1$ (see [14] p. 128 and [24] p. 533) we have

\[
\sqrt[k]{\frac{k}{2}(e^{1/t} - 1) + 1} \geq 1 + \frac{e^{1/t} - 1}{2 + (k-1)(e^{1/t} - 1)}, \quad t > 0.
\]

(41)

Combining this with the left-hand-side inequality in (26) reveals that it suffices to show

\[
1 + \frac{e^{1/t} - 1}{2 + (k-1)(e^{1/t} - 1)} > \frac{e^{-\psi(t)}}{e^{1/t} - 1}, \quad t > 0,
\]

(42)

that is,

\[
k < \frac{1}{e^{-\psi(t)}/(e^{1/t} - 1) - 1} - \frac{2}{e^{1/t} - 1} + 1, \quad t > 0.
\]

(43)

By the left-hand-side inequality in (14), it follows that

\[
\frac{1}{e^{-\psi(t)}/(e^{1/t} - 1) - 1} - \frac{2}{e^{1/t} - 1} > \frac{1}{e^{-\ln(t-1)/t}/(e^{1/t} - 1) - 1} - \frac{2}{e^{1/t} - 1} = \frac{1}{e^{1/t}/t(e^{1/t} - 1) - 1} - \frac{2}{e^{1/t} - 1} = \frac{e^{2u} - 2e^u - 1}{(e^u - 1)(ue^u - e^u + 1)} > 0
\]

and

\[
\lim_{u \to \infty} \frac{e^{2u} - 2e^u - 1}{(e^u - 1)(ue^u - e^u + 1)} = 0,
\]

where $u = \frac{1}{t}$. Hence, we obtain that $k \leq 1$. The inequality (12) for $n = 1$ is proved.

Remark 8. This is a revised version of the preprint [20].
ACKNOWLEDGEMENT

The authors appreciate the anonymous referee’s helpful and valuable comments on this paper.

REFERENCES

[1] H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), 181–221. MR2039096 (2005d:33003)
[2] H. Alzer, Sharp inequalities for the harmonic numbers, Expo. Math. 24 (2006), no. 4, 385–388. MR2315126 (2007m:11041)
[3] N. Batır, On some properties of digamma and polygamma functions, J. Math. Anal. Appl. 328 (2007), no. 1, 452–465. MR2285562 (2008c:33001)
[4] N. Batır, Some new inequalities for gamma and polygamma functions, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Art. 103; Available online at http://www.emis.de/journals/JIPAM/article577.html. MR2178284 (2006k:33001)
[5] P. S. Bullen, Handbook of Means and Their Inequalities, Mathematics and its Applications, Volume 560, Kluwer Academic Publishers, Dordrecht-Boston-London, 2003. MR2024343 (2005a:26001)
[6] N. Elezović, C. Giordano, and J. Pečarić, The best bounds in Gautschi’s inequality, Math. Inequal. Appl. 3 (2000), 239–252. MR1749300 (2001g:33001)
[7] B.-N. Guo, R.-J. Chen, and F. Qi, A class of completely monotonic functions involving the polygamma functions, J. Math. Anal. Approx. Theory 1 (2006), no. 2, 124–134. MR2331512 (2009e:33004)
[8] B.-N. Guo and F. Qi, A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications, J. Korean Math. Soc. 48 (2011), no. 3, 655–667; Available online at http://dx.doi.org/10.4134/JKMS.2011.48.3.655.
[9] B.-N. Guo and F. Qi, A simple proof of logarithmic convexity of extended mean values, Numer. Algorithms 52 (2009), 89–92; Available online at http://dx.doi.org/10.1007/s11075-008-9259-7. MR2533996 (2010h:33001)
[10] B.-N. Guo and F. Qi, An extension of an inequality for ratios of gamma functions, J. Approx. Theory 163 (2011), no. 9, 1208–1216; Available online at http://dx.doi.org/10.1016/j.jat.2011.04.003.
[11] B.-N. Guo and F. Qi, Some properties of the psi and polygamma functions, Hacet. J. Math. Stat. 39 (2010), no. 2, 219–231. MR2681248 (2011g:33001)
[12] B.-N. Guo and F. Qi, Two new proofs of the complete monotonicity of a function involving the psi function, Bull. Korean Math. Soc. 47 (2010), no. 1, 103–111; Available online at http://dx.doi.org/10.4134/bkms.2010.47.1.103. MR2604236 (2011c:33004)
[13] B.-N. Guo, F. Qi, and H. M. Srivastava, Some uniqueness results for the non-trivially complete monotonicity of a class of functions involving the polygamma and related functions, Integral Transforms Spec. Funct. 21 (2010), no. 11, 103–111; Available online at http://dx.doi.org/10.1080/10652461003748112. MR2739394 (2011c:33004)
[14] J.-C. Kuang, Chǎngyōng Bùdēngshī (Applied Inequalities), 3rd ed., Shànđōng Kēxué Jīshù Chùbān Shè (Shandong Science and Technology Press), Ji’ān City, Shandong Province, China, 2004 (Chinese). MR1305610 (95j:26001)
[15] F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pages; Available online at http://dx.doi.org/10.1155/2010/493058. MR2611044 (2011d:33004)
[16] F. Qi, P. Cerone, S. S. Dragomir, and H. M. Srivastava, Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values, Appl. Math. Comput. 208 (2009), no. 1, 129–133; Available online at http://dx.doi.org/10.1016/j.amc.2008.11.023. MR2490776 (2011b:26019)
[17] F. Qi and B.-N. Guo, A short proof of monotonicity of a function involving the psi and exponential functions, Available online at http://arxiv.org/abs/0902.2519.
[18] F. Qi and B.-N. Guo, Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications, Commun. Pure Appl. Anal. 8 (2009), no. 6, 1975–1989; Available online at http://dx.doi.org/10.3934/cpaa.2009.8.1975. MR2552160 (2010h:33002)
[19] F. Qi and B.-N. Guo, *Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic*, Adv. Appl. Math. **44** (2010), no. 1, 71–83; Available online at http://dx.doi.org/10.1016/j.aam.2009.03.003. MR2552656 (2010i:33007)

[20] F. Qi and B.-N. Guo, *Refinements of lower bounds for polygamma functions*, Available online at http://arxiv.org/abs/0903.1966.

[21] F. Qi, S. Guo, and B.-N. Guo, *Complete monotonicity of some functions involving polygamma functions*, J. Comput. Appl. Math. **233** (2010), no. 9, 2149–2160; Available online at http://dx.doi.org/10.1016/j.cam.2009.09.044. MR2577754 (2010j:33003)

[22] F. Qi and Q.-M. Luo, *A simple proof of monotonicity for extended mean values*, J. Math. Anal. Appl. **224** (1998), no. 2, 356–359. MR1637478

[23] F. Qi, S.-L. Xu, and L. Debnath, *A new proof of monotonicity for extended mean values*, Int. J. Math. Math. Sci. **22** (1999), no. 2, 417–421. MR1695308 (2000c:26019)

[24] E. M. E. Wermuth, *Some elementary properties of infinite products*, Amer. Math. Monthly **99** (1992), no. 6, 530–537. MR1166002 (93h:40001)

School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, People’s Republic of China

E-mail address: bai.ni.guo@gmail.com

School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, People’s Republic of China

E-mail address: qifeng618@gmail.com

URL: http://qifeng618.wordpress.com