\section{Introduction}

Recently Hu, Lin and Wu constructed H^m-conforming finite elements of degree k on simplices in \mathbb{R}^n with $k \geq 2^n(m - 1) + 1$ and $m, n \geq 1$ in a unified way \cite{29}, which generalizes the finite elements in two dimensions in \cite{14, 37, 8} and the finite elements in three dimensions in \cite{38, 46, 47}. The simplical lattice is used in \cite{24} to show the geometric decomposition of smooth finite elements. The work \cite{29} is theoretically important, and is a significant progress in the field of construction of H^m-conforming elements in \mathbb{R}^n. Since polynomial shape functions are infinitely differentiable, the $2^{n-1}(m - 1)$th order derivatives of shape functions at vertices are included in the degrees of freedom (DoFs), which results in the very high polynomial degree $k \geq 2^n(m - 1) + 1$ for H^m-conforming finite elements. In \cite{45}, Xu devised H^m-conforming piecewise polynomials based on the artificial neural network with $k \geq m$ and then developed a finite neuron method, whose practical value is also limited since solving the underlying non-linear and non-convex optimization problem is challenging. We refer to \cite{30} for H^m-conforming finite elements on macro-hypercubes and \cite{27} for H^2-conforming finite elements on macro-simplices in arbitrary dimension.

Alternatively, in \cite{23, 34} we devised H^m-nonconforming virtual elements of any degree k on any shape of polytope K in \mathbb{R}^n with $k \geq m$ in a universal way by employing a generalized Green’s identity. When K is a simplex, $1 \leq m \leq n$ and
$k = m$, the virtual elements in [23] are exactly the nonconforming finite elements in [41, 40]. And when K is a simplex, $m = n + 1$ and $k = m$, the DoFs of the virtual elements in [34] are same as those of the nonconforming finite elements in [44]. We refer to [43, 31, 32] for more H^m-nonconforming finite elements and [48, 49, 6] for more H^m-nonconforming virtual elements.

We shall construct H^m-conforming virtual elements of any degree k of polynomials on a very general polytope $K \subset \mathbb{R}^n$ in arbitrary dimension n and any derivative order m with $k \geq m$ and $m, n \geq 1$ in this paper. The H^1-conforming virtual elements were initially developed in [11, 12] in two and three dimensions. The H^m-conforming virtual elements of degree k for $k \geq m$ and $m \geq 1$ in two dimensions have been designed in a series of works [13, 7, 5, 21]. In three dimensions, the H^2-conforming virtual elements for $k \geq 2$ were devised in [9]. When K is a tetrahedron in three dimensions, by using the Argyris element [8, 17] and Hermite element [26] on faces, H^2-conforming virtual elements for $k \geq 5$ were advanced in [25]. A different approach is adopted in [19] to construct H^2-conforming virtual elements on tetrahedrons. We intend to extend these works to arbitrary spacial dimension n, any order m of Sobolev spaces and any polynomial degree $k \geq m$.

We construct H^m-conforming virtual elements $(K, \mathcal{N}_k^m(K), V^m_k(K))$ by gluing conforming virtual elements on faces recursively. The virtual element space is defined as

$$V^m_k(K) := \{ v \in H^m(K) : (-\Delta)^m v \in \mathbb{P}_k(K), (v - \Pi^K v, q)_K = 0 \ \forall \ q \in \mathbb{P}^1_{k-2m}(K), \left(\nabla^j v\right)|_{S_K} \in H^j(S^K_\alpha; S_n(j)) \text{ for } j = 0, 1, \cdots, m-1, \left.\frac{\partial^{\alpha} v}{\partial v_{F}^{\alpha}}\right|_{F} \in V^{m-|\alpha|}_k(F) \ \forall \ F \in F^*(K), \quad r = 1, \cdots, n-1, \alpha \in A_r, \text{ and } |\alpha| \leq m-1\}$$

with $V^{m-|\alpha|}_k(e) := \mathbb{P}_{\max(k-|\alpha|, 2(m-|\alpha|)-1)}(e)$ for each one-dimensional edge $e \in F^{n-1}(K)$, where the local H^m-projection operator $\Pi^K K$ is introduced to ensure the L^2-orthogonal projection $Q^K K v$ is computable using only the DoFs in $\mathcal{N}^m_k(K)$ for any virtual function $v \in V^m_k(K)$ following the idea in [4]. When $n \geq 2$, $\mathbb{P}_k(K) \subseteq V^m_k(K)$ but $\mathbb{P}_{k+1}(K) \not\subseteq V^m_k(K)$. The DoFs in $\mathcal{N}^m_k(K)$ are motivated by $\frac{\partial^{\alpha} v}{\partial v_{F}^{\alpha}} \in V^{m-|\alpha|}_k(F)$ in the definition of $V^m_k(K)$. With the help of the concepts of data spaces and Whitney arrays [36], the dimension of $V^m_k(K)$ is exactly counted by using the inverse trace theorem of $H^m(K)$ and the well-posedness of the mth harmonic equation with Dirichlet boundary conditions.

For the lowest degree case $k = m$, the set of DoFs $\mathcal{N}^m_m(K)$ is very simple, only involving function values and derivatives up to order $m-1$ at the vertices of polytope K, i.e.

$$h^j_K \nabla^j v(\delta) \quad \forall \ \delta \in F^m(K), \quad j = 0, 1, \cdots, m-1.$$

Here the scaling h^j_K is used so that all the DoFs share the same order of magnitude. These DoFs are even simpler than those of non-conforming virtual elements in [23, 34]. If furthermore $K \subset \mathbb{R}^n$ is a simplex, $\dim V^m_k(K) = (n+1) \dim \mathbb{P}_{m-1}(K)$, which is much smaller than the dimension $\dim \mathbb{P}_{2^{m}(m-1)+1}(K)$ of the lowest degree H^m-conforming finite element in [29]. And there are no super-smooth DoFs included.
in \(N^m_k(K) \), i.e., all the orders of the derivatives involved in the DoFs are less than \(m \). This is one of the attractive features of virtual elements.

Another contribution of this paper is establishing the inverse inequality and norm equivalences for the \(H^m \)-conforming virtual elements \((K, N^m_k(K), V^m_k(K)) \) under the assumption that the polytope \(K \) is star-shaped and all the diameters of all faces of \(K \) are equivalent to the diameter of \(K \). The inverse inequality for \(V^m_k(K) \) is derived from the multiplicative trace inequality, the inverse trace theorem, the inverse inequality for polynomials and the mathematical induction. Employing the inverse inequality, the trace inequality and the Poincaré-Friedrichs inequality, we arrive at several norm equivalences on virtual element spaces \(V^m_k(K) \) and \(\ker(Q^m_k) \cap V^m_k(K) \), where \(\ker(T) \cap V^m_k(K) := \{ v \in V^m_k(K) : Tv = 0 \} \) with operator \(T = Q^m_k \) or \(\Pi^m_k \). Especially we acquire the classical \(L^2 \) norm equivalence as finite elements

\[
\|v\|_{0,K}^2 \simeq \|Q^m_k v\|_{0,K}^2 + \sum_{\delta \in F^2(K)} h_n^{n+2i} \|\nabla^i v(\delta)\|^2 + \sum_{r=1}^{n-1} \sum_{F \in \mathcal{F}^r(K)} \sum_{\alpha \in A_r, |\alpha| \leq m-1} h_F^{r+2|\alpha|} \|Q^m_{k-2m+|\alpha|} \frac{\partial^{|\alpha|} v}{\partial v_F^{|\alpha|}}\|_{0,F}^2 \quad \forall \ v \in V^m_k(K),
\]

in which all terms in the right hand side completely coincide with all the DoFs in \(N^m_k(K) \). This extends the stability analysis of virtual elements in [15, 10, 22, 18, 33].

The constructed conforming virtual elements are then applied to discretize a polyharmonic equation with a lower order term. To analyze the conforming virtual element method, we construct a quasi-interpolation operator and derive the interpolation error estimate with the help of the norm equivalence on \(V^m_k(K) \). Finally the optimal error estimates are presented for the conforming virtual element method. This paper is motivated by the theoretical purposes. We also present numerical results for a fourth-order elliptic problem and a sixth-order elliptic problem in two dimensions.

The rest of this paper is organized as follows. Some notations and mesh conditions are shown in Section 2. In Section 3 \(H^m \)-conforming virtual elements are constructed. The inverse equality and several norm equivalences are proved in Section 4. In Section 5 the \(H^m \)-conforming virtual elements are applied to discretize a polyharmonic equation with a lower order term. And numerical results are provided in Section 6.

2. Preliminaries

2.1. Notation.

In this paper we will adopt the same notations as in [23, 34]. For any non-negative integer \(r \) and \(1 \leq \ell \leq n \), notation \(\mathbb{T}_\ell(r) := \mathbb{R}^{\ell} \otimes \cdots \otimes \mathbb{R}^{\ell} \) stands for the set of \(r \)-tensor spaces over \(\mathbb{R}^{\ell} \). Introduce the symmetric \(r \)-tensor space

\[
\mathbb{S}_\ell(r) := \{ \tau = (\tau_{i_1i_2\cdots i_r}) \in \mathbb{T}_\ell(r) : \tau_{i_{\sigma(1)}i_{\sigma(2)}\cdots i_{\sigma(r)}} = \tau_{i_1i_2\cdots i_r} \text{ for any } \sigma \in \mathfrak{S}_r \},
\]

where \(\mathfrak{S}_r \) is the set of all permutations of \((1, 2, \cdots, r) \). For tensor \(\tau \in \mathbb{T}_\ell(r) \), the symmetric part of \(\tau \) is a symmetric tensor in \(\mathbb{S}_\ell(r) \) defined by

\[
(\text{sym } \tau)_{i_1i_2\cdots i_r} := \frac{1}{r!} \sum_{\sigma \in \mathfrak{S}_r} \tau_{i_{\sigma(1)}i_{\sigma(2)}\cdots i_{\sigma(r)}} \quad \text{for } 1 \leq i_1, i_2, \cdots, i_r \leq \ell.
\]
Given r-tensors $\tau, \varsigma \in T_\ell(r)$, define the scalar product $\tau : \varsigma \in \mathbb{R}$ by

$$\tau : \varsigma := \sum_{i_1=1}^\ell \cdots \sum_{i_r=1}^\ell \tau_{i_1,\ldots,i_r}s_{i_1,\ldots,i_r}.$$

Denote by \mathbb{N} the set of all non-negative integers. For an n-dimensional multi-index $\alpha = (\alpha_1, \cdots, \alpha_n)$ with $\alpha_i \in \mathbb{N}$, define $|\alpha| := \sum_{i=1}^n \alpha_i$ and $\alpha! = \alpha_1! \cdots \alpha_n!$. For $0 \leq j \leq n$, let A_j be the set consisting of all multi-indexes α with $\sum_{i=j+1}^n \alpha_i = 0$, i.e., non-zero index only exists for $1 \leq i \leq j$.

Let $\Omega \subset \mathbb{R}^n$ ($n \geq 1$) be a bounded polytope with positive integer n. Given a bounded domain $G \subset \mathbb{R}^n$ and a non-negative integer k, let $H^k(G; \mathbb{X})$ be the usual Sobolev space of functions over G taking values in the tensor space \mathbb{X} for $\mathbb{X} = T_\ell(r), S_\ell(r)$, whose norm and semi-norm are denoted by $\| \cdot \|_{k,G}$ and $| \cdot |_{k,G}$ respectively. Set $H^k(\Gamma) := H^k(G; \Gamma(0))$. Define $H^0_0(G)$ as the closure of $C_0^\infty(G)$ with respect to the norm $\| \cdot \|_{0,G}$. Let $(\cdot, \cdot)_G$ be the standard inner product on $L^2(G; \mathbb{X})$. If G is Ω, we abbreviate $\| \cdot \|_{k,G}, | \cdot |_{k,G}$ and $(\cdot, \cdot)_G$ by $\| \cdot \|_k, | \cdot |_k$ and (\cdot, \cdot), respectively. Denote by h_G the diameter of G. Let $\mathbb{P}_k(G)$ be the set of all polynomials over G with the total degree no more than k, whose tensorial version space is denoted by $\mathbb{P}_k(G; \mathbb{X})$. Let $\mathbb{P}_k(G) := \{0\}$ if $k < 0$. Let Q_k^0 be the L^2-orthogonal projection onto $\mathbb{P}_k(G; \mathbb{X})$. For a function v, $Q_k^0 v$ is understood as $v|_G$ when G is a point, whether k is non-negative or negative. For non-negative integers k and m, let $\mathbb{P}_k^{m-2m}(G) \subset \mathbb{P}_k(G)$ be the orthogonal complement space of $\mathbb{P}_k(m-2m)(G)$ of $\mathbb{P}_k(G)$ with respect to the inner product $(\cdot, \cdot)_G$. Denote by $\# S$ the number of elements in a finite set S.

Let $\{T_h\}$ be a family of partitions of Ω into nonoverlapping simple polytopal elements with $h := \max_{K \in T} h_K$. Let F^r_h be the set of all $(n-r)$-dimensional faces of the partition T_h for $r = 1, 2, \cdots, n$. For simplicity, let $F^r_h := T_h$. Moreover, we set for each $K \in T_h$

$$F^s(K) := \{F \in F^r_h : F \subset K\}.$$

The superscript r in F^r_h represents the co-dimension of an $(n-r)$-dimensional face F. Similarly, we define

$$F^s(F) := \{e \in F^{r+s}_h : e \subset F\}.$$

Here s is the co-dimension relative to the face F. For any $F \in F^r_h$ with $r = 0, 1, \cdots, n-2$, let the $(n-r-s)$-dimensional skeleton S^s_F be the union of all faces in $F^s(F)$ for $s = 1, \cdots, n-r-1$.

For any $F \in F^r_h$ with $1 \leq r \leq n-1$, let $\nu_{F,1}, \cdots, \nu_{F,r}$ be its mutually perpendicular unit normal vectors, and $t_{F,1}, \cdots, t_{F,n-r}$ be its mutually perpendicular unit tangential vectors. We abbreviate $\nu_{F,1}$ as ν_F when $r = 1$, and $t_{F,1}$ as t_F when $r = n-1$. We refer to Fig. 1 for an example of normal vectors and tangential vectors. Define the surface gradient on F as

$$\nabla_F v := \nabla v - \sum_{i=1}^r \frac{\partial v}{\partial \nu_{F,i}} \nu_{F,i} = \sum_{i=1}^{n-r} \frac{\partial v}{\partial t_{F,i}} t_{F,i},$$

namely the projection of ∇v to the face F, which is independent of the choice of the normal vectors. And denote by div_F the corresponding surface divergence. For any $\delta \in F^0_h$ and $i = 1, \cdots, n$, let $\nu_{\delta,i} := e_i = (0, \cdots, 0, 1, 0, \cdots, 0)^T$ be the n-tuple
with all entries equal to 0, except the \(i \)th, which is 1. For any \(F \in \mathcal{F}_h \), \(\alpha \in A_r \) and \(\beta \in A_{n-r} \) with \(r = 1, \ldots, n \), set
\[
\nu^\alpha_F := \nu^\alpha_{F,1} \otimes \cdots \otimes \nu^\alpha_{F,r}, \quad t^\beta_F := t^\beta_{F,1} \otimes \cdots \otimes t^\beta_{F,r},
\]

where \(\nu^\alpha_{F,i} := \nu_{F,i} \otimes \cdots \otimes \nu_{F,i} \) and \(t^\beta_{F,i} := t_{F,i} \otimes \cdots \otimes t_{F,i} \). For any \(e \in \mathcal{F}^s(F) \) with \(1 \leq s < n - r \), let \(\nu_{F,e,1}, \ldots, \nu_{F,e,s} \) be its mutually perpendicular unit normal vectors parallel to \(F \), and abbreviate \(\nu_{F,e} \) as \(\nu_{F,e,1} \). For any \(\delta \in \mathcal{F}^n(K) \), and any function \(v \) defined on \(K \), we will rewrite \(v(x_{\delta}) \) as \(v(\delta) \) for simplicity, where \(x_{\delta} \) is the position of the point \(\delta \).

2.2. Mesh conditions

We impose the following conditions on the mesh \(\mathcal{T}_h \).

(A1) Each element \(K \in \mathcal{T}_h \) and each face \(F \in \mathcal{F}_h \) for \(1 \leq r \leq n - 1 \) is star-shaped with a uniformly bounded chunkiness parameter. For a domain \(D \), the chunkiness parameter \(\gamma_D := h_D/\rho_D \), where \(\rho_D \) is the radius of the largest ball contained in \(D \).

(A2) There exists a real number \(\eta > 0 \) such that for each \(K \in \mathcal{T}_h \), \(h_K \leq \eta h_F \) for all \(F \in \mathcal{F}^r(K) \) with \(r = 1, \ldots, n - 1 \).

Throughout this paper, we also use \(\approx \) to mean that \(\leq C \cdots \), where \(C \) is a generic positive constant independent of mesh size \(h \), but may depend on the chunkiness parameter of the polytope, constant \(\eta \), the degree of polynomials \(k \), the order of differentiation \(m \), and the dimension of space \(n \), which may take different values at different appearances. And \(A \approx B \) means \(A \approx B \) and \(B \approx A \). Hereafter, we always assume \(k \geq m \).
We conclude (7) by applying the multinomial theorem to (8).

\[\Box\]

Proof.

(1) \[\parallel v \parallel^2_{0, \partial D} \lesssim h D^{-1} \parallel v \parallel_{0, D} (\parallel v \parallel_{0, D} + h D \parallel v \parallel_{1, D}) \quad \forall v \in H^1(D).\]

This implies the trace inequality (cf. [18, (2.18)])

(2) \[\parallel v \parallel_{0, \partial D}^2 \lesssim h D^{-1} \parallel v \parallel_{0, D}^2 + h D \parallel v \parallel_{1, D}^2 \quad \forall v \in H^1(D).\]

When \(D\) is a set of a finite number of points, the notation \(\parallel v \parallel_{0, D}\) means \(\parallel v \parallel_{L^\infty(D)}\).

We also have the Poincaré-Friedrichs inequality [18, (2.15)]

(3) \[\parallel v \parallel_{0, D} \lesssim h D \parallel v \parallel_{1, D} \quad \forall v \in H^1_0(D),\]

and the inverse inequality for polynomials [34, Lemma 10]

(4) \[\parallel q \parallel_{0, D} \lesssim h D^{-1} \parallel q \parallel_{i-i, D} \quad \forall q \in P_i(D)\]

for any non-negative integers \(\ell\) and \(i\). As a result of (4), the Bramble-Hilbert lemma [16, Lemma 4.3.8] and (2), it holds the estimate of the \(L^2\)-orthogonal projection

(5) \[h D^2 \parallel v - Q^D v \parallel_{i, D} + h D \parallel v - Q^D v \parallel_{0, \partial D} \lesssim h D^2 \parallel v \parallel_{j, D} \quad \forall v \in H^j(D)\]

for \(0 \leq i \leq j \leq k + 1\) with \(i, j, k\) being non-negative integers. The hidden constants in (1)-(5) depend on the chunkiness parameter \(\eta\) and the spatial dimension \(n\).

3. \(H^m\)-Conforming Virtual Elements

We will construct \(H^m\)-conforming virtual elements \((K, \mathcal{N}_k^m(K), V_k^m(K))\) for any integers \(m, n \geq 1, k \geq m\) and \(n\)-dimensional polytope \(K \subset \mathbb{R}^n\) by gluing conforming virtual elements on faces recursively.

We first list a Green’s identity for later uses.

Lemma 3.1. For any \(v \in H^m(K)\) and \(q \in H^2m(K)\),

(6) \[\nabla^m v, \nabla^m q)_K = (v, (-\Delta)^m q)_K + \sum_{i=0}^{m-1} (\nabla^i v, \nabla^i(-\Delta)^{m-i-1} \partial_v q)_{\partial K},\]

where \(\partial_v q|_F := \frac{\partial q}{\partial n_F}\) for each face \(F \in F^1(K)\).

Proof. For \(i = 0, 1, \cdots, m - 1\), applying the integration by parts, it follows

\[(\nabla^{i+1} v, \nabla^{i+1}(\Delta)^{m-i-1} q)_K = (\nabla^{i+1} v, \nabla^i(-\Delta)^{m-i} q)_K + (\nabla^{i+1} v, \nabla^i(-\Delta)^{m-i-1} \partial_v q)_{\partial K}.

Thus (6) holds from the sum of the last identity from \(i = 0\) to \(m - 1\). \(\square\)

Lemma 3.2. Let \(F \in F^r(K)\) with \(1 \leq r \leq n - 1\), and integer \(j > 0\). It holds for any smooth function \(v\) that

(7) \[\nabla^j v = \sum_{0 \leq |\alpha| + |\beta| = j} \frac{j!}{\alpha! \beta!} \text{sym}(\nu_F^\alpha \otimes t_F^\beta) \frac{\partial^j v}{\partial t_F^\alpha \partial \nu_F^\beta}.

Proof. Recalling that \(\nabla^j v\) is a symmetric \(j\)-tensor, apparently it follows

(8) \[\nabla^j v = \text{sym}(\nabla^j v) = \text{sym} \left(\sum_{i=1}^r \nu_{F,i} \frac{\partial}{\partial \nu_{F,i}} + \sum_{i=1}^{n-r} t_{F,i} \frac{\partial}{\partial t_{F,i}} \right)^j v.

We conclude (7) by applying the multinomial theorem to (8). \(\square\)
3.1. H^m-conforming virtual elements in one dimension. We start from one dimension, i.e. $n = 1$. Now the polytope K is an interval. The DoFs $\mathcal{N}^m(K)$ are chosen as

\[
(9) \quad h^j_k v^{(j)}(\delta) \quad \forall \delta \in \mathcal{F}^1(K), \quad j = 0, 1, \ldots, m - 1,
\]

\[
(10) \quad \frac{1}{|K|} (v, q)_K \quad \forall \ q \in \mathbb{P}_{k-2m}(K),
\]

where $v^{(j)}$ is the jth order derivative of v. And take the space of shape functions

\[
V^m_k(K) := \{ v \in H^m(K) : v^{(2m)} \in \mathbb{P}_{k-2m}(K) \}.
\]

Clearly we have

\[
V^m_k(K) = \begin{cases} \mathbb{P}_k(K), & k \geq 2m - 1, \\ \mathbb{P}_{2m-1}(K), & k < 2m - 1. \end{cases}
\]

Hence the H^m-conforming virtual element of degree k in one dimension is exactly the C^{m-1}-continuous finite element, whose shape functions are polynomials of degree $\max\{k, 2m-1\}$. And the H^m-conforming virtual elements $(K, \mathcal{N}^m_k(K), V^m_k(K))$ coincide with the nonconforming ones in [34, Remark 1].

3.2. H^m-conforming virtual elements in two dimensions. Then we consider the construction of the H^m-conforming virtual elements in two dimensions, i.e. $n = 2$, where the polytope K is a polygon. The H^m-conforming virtual elements $(K, \mathcal{N}^m_k(K), V^m_k(K))$ in two dimensions have been designed in [13, 7, 5, 21]. Here we review them to motivate the construction of H^m-conforming virtual elements in higher dimensions.

The space of shape functions in the virtual elements is defined through local partial differential equations [11, 7]. To ensure the L^2 projection $Q^k \delta v$ is computable for any virtual element function v by using the DoFs, following the idea in [4] we first define a preliminary virtual element space with the help of the conforming virtual elements in one dimension

\[
\tilde{V}^m_k(K) := \{ v \in H^m(K) : (-\Delta)^m v \in \mathbb{P}_k(K),
\]

\[
\frac{\partial^j v}{\partial n_e} \in V^{m-j}_k(e) \quad \forall e \in \mathcal{F}^1(K), \ j = 0, 1, \ldots, m - 1 \}.
\]

Clearly $\mathbb{P}_k(K) \subseteq \tilde{V}^m_k(K)$. On the other hand, $\frac{\partial^{m-1} v}{\partial n_e} \in V^1_{k-(m-1)}(e) = \mathbb{P}_{k-m+1}(e)$, thus $\mathbb{P}_{k+1}(K) \nsubseteq \tilde{V}^m_k(K)$.

Lemma 3.3. For any $v \in \tilde{V}^m_k(K)$, $\nabla^j v$ is continuous on ∂K, and $(\nabla^j v)|_{\partial K} \in H^1(\partial K; S_2(j))$ for $j = 0, 1, \ldots, m - 1$.

Proof. On each edge $e \in \mathcal{F}^1(K)$, it holds from (7) that

\[
(11) \quad \nabla^j v = \sum_{\ell=0}^{j} \frac{j!}{\ell!(j-\ell)!} \text{sym}(t^\ell_e \otimes \nu^j_e) \frac{\partial}{\partial \ell_e} \left(\frac{\partial^{j-\ell} v}{\partial \nu^j_e} \right).
\]

By the definition of $\tilde{V}^m_k(K)$, $\frac{\partial^{j-\ell} v}{\partial \nu^j_e} \in V^{m-j+\ell}_k(e) = \mathbb{P}_{\max(k-j+\ell,2m-1-2j+2\ell)}(e)$ is a polynomial. Hence it follows from (11) that $\nabla^j v|_e \in \mathbb{P}_{\max(k-j,2m-1-j)}(e, S_2(j))$ is a tensor with components being polynomials. Finally we acquire from the fact
Notice that (17) \(\Pi_K \) is well-posed, and it holds that the projection \(\Pi_K \) for any \(v \in H^m(K) \) that \(\nabla^j v \) is continuous on \(\partial K \) for \(j = 0, 1, \cdots, m - 1 \) (cf. comments after Theorem 1.5.2.3 in [28]), which also means \((\nabla^j v)|_{\partial K} \in H^1(\partial K; \mathbb{S}_2(j)) \). \(\square \)

In the definition of \(\tilde{V}_k^m(K) \), let \(\Pi_K \) be the DoFs (12)-(13) for any \(v \in \tilde{V}_k^m(K) \). Then we get from the Green’s identity (6) that the projection \(\Pi_K \) in two dimensions should cover the following ones

\[
\frac{h_e^j}{|e|} \left(\frac{\partial^j v}{\partial \nu^j e} \right) (\delta) \quad \forall \, \delta \in F^1(e), \, i = 0, 1, \cdots, m - j - 1, \\
\frac{1}{|e|} \left(\frac{\partial^j v}{\partial \nu^j e} \right) (q) \quad \forall \, q \in \mathbb{P}_{k-2(m-j)}(e).
\]

Noting that \(\nabla^j v \) is continuous on \(\partial K \) for \(j = 0, 1, \cdots, m - 1 \), we propose the following DoFs \(N^m_k(K) \) for the \(H^m \)-conforming virtual elements in two dimensions

\[
(12) \quad h_K^j \nabla^j v(\delta) \quad \forall \, \delta \in F^2(K), \, j = 0, 1, \cdots, m - 1, \\
(13) \quad \frac{1}{|e|} \left(\frac{\partial^j v}{\partial \nu^j e} \right) (q) \quad \forall \, q \in \mathbb{P}_{k-2m+j}(e), \, e \in F^1(K), \, j = 0, 1, \cdots, m - 1, \\
(14) \quad \frac{1}{|K|} (v, q)_K \quad \forall \, q \in \mathbb{P}_{k-2m}(K).
\]

To define the space of shape functions \(V_k^m(K) \), we also need a local \(H^m \) projection operator \(\Pi^K \) : \(H^m(K) \to \mathbb{P}_k(K) \): given \(v \in H^m(K) \), let \(\Pi^K v \in \mathbb{P}_k(K) \) be the solution of the problem

\[
(15) \quad (\nabla^m \Pi^K v, \nabla^m q)_K = (\nabla^m v, \nabla^m q)_K \quad \forall \, q \in \mathbb{P}_k(K), \\
(16) \quad \sum_{\delta \in F^j(K)} (\nabla^j \Pi^K v)(\delta) = \sum_{\delta \in F^j(K)} (\nabla^j v)(\delta), \quad j = 0, 1, \cdots, m - 1.
\]

The number of equations in (16) is

\[
\sum_{j=0}^{m-1} (j + 1) = \frac{1}{2} m(m + 1) = \dim \mathbb{P}_{m-1}(K).
\]

Applying the argument in [23, Section 3.3 and Lemma 3.5], the local problem (15)-(16) is well-posed, and it holds

\[
(17) \quad \Pi^K q = q \quad \forall \, q \in \mathbb{P}_k(K).
\]

Notice that \(\nabla^j v|_e \in \mathbb{P}_{\max(k-j,2m-1-j)}(e, \mathbb{S}_2(j)) \) is a tensor with polynomial components for each \(e \in F^1(K) \) and \(j = 0, 1, \cdots, m - 1 \), which is computable using the DoFs (12)-(13) for any \(v \in \tilde{V}_k^m(K) \). Then we get from the Green’s identity (6) that the projection \(\Pi^K v \) is computable using only the DoFs (12)-(14) for any \(v \in \tilde{V}_k^m(K) \).

Following the ideas in [4, 23], define the space of shape functions

\[
V_k^m(K) := \{ v \in \tilde{V}_k^m(K) : (v - \Pi_K v, q)_K = 0 \quad \forall \, q \in \mathbb{P}_{k-2m}(K) \}.
\]

Due to (17), it holds \(\mathbb{P}_k(K) \subseteq V_k^m(K) \) and \(\mathbb{P}_{k+1}(K) \not\subseteq V_k^m(K) \). Therefore we arrive at the \(H^m \)-conforming virtual elements \((K, N^m_k(K), V_k^m(K)) \) in two dimensions. The uni-solvence of \((K, N^m_k(K), V_k^m(K)) \) will be covered in the arbitrary dimension in Subsections 3.5 and 3.6.
For any \(v \in V^m_k(K) \), since \((v - \Pi^K v, q - Q^K_{k-2m} q)_K = 0 \) for each \(q \in \mathbb{P}_k(K) \), we have
\[
(Q^K_k - Q^K_{k-2m})(v - \Pi^K v) = Q^K_k (I - Q^K_{k-2m})(v - \Pi^K v) = 0.
\]
This yields
\[
Q^K_k v = \Pi^K v + Q^K_{k-2m} v - Q^K_{k-2m} \Pi^K v.
\]
Hence \(Q^K_k v \) is computable using only the DoFs (12)-(14) for any \(v \in V^m_k(K) \). This combined with the integration by parts implies that \(Q^K_{k+j} (\nabla^j v) \) is computable using only the DoFs (12)-(14) for any \(v \in V^m_k(K) \) and \(j = 1, \ldots, m \).

3.3. \(H^m \)-conforming virtual elements in three dimensions. Next we construct the \(H^m \)-conforming virtual elements for \(k \geq m \) and \(m \geq 1 \) in three dimensions. Several \(H^2 \)-conforming virtual elements in three dimensions are devised in [9, 25, 19].

Let polyhedron \(K \subset \mathbb{R}^3 \). Similarly as the two dimensions, we first define a preliminary virtual element space
\[
\tilde{V}^m_k(K) := \{ v \in H^m(K) : (-\Delta)^m v \in \mathbb{P}_k(K), \quad (\nabla^j v)|_{S^*_K} \in H^1(S^*_K; S_3(j)) \text{ for } j = 0, 1, \ldots, m - 1 \text{ and } r = 1, 2, \quad \frac{\partial^r v}{\partial v_F} \in V^{m-r}_{k-j}(F) \text{ for } F \in \mathcal{F}^1(K), j = 0, 1, \ldots, m - 1, \quad \frac{\partial^2 v}{\partial v_{e,1} \partial v_{e,2}} \in V^{m-j}_k(e) \text{ for } e \in \mathcal{F}^2(K), 0 \leq i \leq j, j = 0, 1, \ldots, m - 1 \}.
\]

The requirement \((\nabla^j v)|_{S^*_K} \in H^1(S^*_K; S_3(j)) \) in the definition of \(\tilde{V}^m_k(K) \) is motivated by Lemma 3.3. Since \(\mathbb{P}_{k-j}(F) \subset V^{m-j}_{k-j}(F) \) and \(\mathbb{P}_{k-j}(e) \subset V^{m-j}_{k-j}(e) \), we have \(\mathbb{P}_k(K) \subset \tilde{V}^m_k(K) \). Take \(v \in \tilde{V}^m_k(K) \). By the definition of \(\tilde{V}^m_k(K) \), \(\frac{\partial^2 v}{\partial v_{e,1} \partial v_{e,2}} \in V^{m-j}_k(e) = \mathbb{P}_{\max(k-j,2m-1-2j+2i)}(e) \) is a polynomial for each edge \(e \in \mathcal{F}^2(K) \). It follows from (7) that \(\nabla^j v|_e \in \mathbb{P}_{\max(k-j,2m-1-j)}(e, S_3(j)) \) is a tensor with components being polynomials. By \((\nabla^j v)|_{S^*_K} \in H^1(S^*_K; S_3(j)) \), \(\nabla^j v \) is continuous on the one-dimensional skeleton \(S^*_K \). For \(F \in \mathcal{F}^1(K) \) and \(e \in \mathcal{F}^2(K) \), applying (7), we have \(\nabla^j v|_F \in H^{m-j}(F; S_3(j)) \) and \(\nabla^j v|_e \in H^{m-j}(e; S_3(j)) \).

Inspired by \(\frac{\partial^2 v}{\partial v_{e,1} \partial v_{e,2}} \in V^{m-j}_k(e), \frac{\partial v}{\partial n}|_F, \in V^{m-j}_{k-j}(F) \), the DoFs (9)-(10) and the DoFs (12)-(14), we propose the following DoFs \(\mathcal{N}^m_k(K) \) for the \(H^m \)-conforming virtual elements in three dimensions
\[
(18) \quad h^j_K \nabla^j v(\delta) \quad \forall \ \delta \in \mathcal{F}^3(K), \ j = 0, 1, \ldots, m - 1,
\]
\[
(19) \quad h^j_K \left| \frac{\partial v}{\partial v_{e,1} \partial v_{e,2}} \right|_e \quad \forall \ q \in \mathbb{P}_{k-2m+j}(e), e \in \mathcal{F}^2(K), \ 0 \leq i \leq j, j = 0, 1, \ldots, m - 1,
\]
\[
(20) \quad \frac{h^j_K}{|F|} \frac{\partial v}{\partial n}|_F \quad \forall \ q \in \mathbb{P}_{k-2m+j}(F), F \in \mathcal{F}^1(K), \ j = 0, 1, \ldots, m - 1,
\]
\[
(21) \quad \frac{1}{|K|} (v, q)_K \quad \forall \ q \in \mathbb{P}_{k-2m}(K).
\]
To define the space of shape functions \(V^m_k(K) \), we introduce a local \(H^m \)-projector \(\Pi^K_k : H^m(K) \to \mathbb{P}_k(K) \): given \(v \in H^m(K) \), let \(\Pi^K_k v \in \mathbb{P}_k(K) \) be the solution of the problem
\[
(22) \quad (\nabla^m \Pi^K_k v, \nabla^m q)_K = (\nabla^m v, \nabla^m q)_K \quad \forall \ q \in \mathbb{P}_k(K),
\]
\[
(23) \quad \sum_{\delta \in \mathcal{F}^3(K)} (\nabla^j \Pi^K_k v)(\delta) = \sum_{\delta \in \mathcal{F}^3(K)} (\nabla^j v)(\delta), \quad j = 0, 1, \cdots, m - 1.
\]
The number of equations in \((23) \) is
\[
\sum_{j=0}^{m-1} C_{j+2}^2 = C_{m+2}^3 = \dim \mathbb{P}_{m-1}(K).
\]
The problem \((22)-(23) \) is well-posed, and it holds the identity
\[
(24) \quad \Pi^K_k q = q \quad \forall \ q \in \mathbb{P}_k(K).
\]
For \(v \in \tilde{V}_k^m(K) \), \(\nabla^j v|_e \) on edge \(e \in \mathcal{F}^2(K) \) is clearly computable by using the DoFs \((18)-(19) \) for \(j = 0, 1, \cdots, m - 1 \), since \(\nabla^j v|_e \) is a tensor-valued polynomial. By \((7) \), \(Q^m_j(\nabla^j v) \) is computable by using the DoFs \((18)-(20) \) for \(F \in \mathcal{F}^1(K) \) and \(j = 0, 1, \cdots, m - 1 \). Therefore it follows from \((6) \) that the projection \(\Pi^K_k v \) is computable using only the DoFs \((18)-(21) \) for any \(v \in \tilde{V}_k^m(K) \).

Define the space of shape functions
\[
V^m_k(K) := \{ v \in \tilde{V}_k^m(K) : (v - \Pi^K_k v, q)_K = 0 \quad \forall \ q \in \mathbb{P}_{k-2m}(K) \}.
\]
Due to \((24) \), it holds \(\mathbb{P}_k(K) \subseteq V^m_k(K) \). We finish the construction of the \(H^m \)-conforming virtual elements \((K, \mathcal{N}^m_k(K), V^m_k(K)) \) in three dimensions.

3.4. \(H^m \)-conforming virtual elements in arbitrary dimension.

Now we construct the \(H^m \)-conforming virtual elements for \(k \geq m \) and \(m \geq 1 \) in arbitrary dimension recursively.

Let polytope \(K \subset \mathbb{R}^n \) with \(n \geq 2 \). Assume \(H^\ell \)-conforming virtual elements \((F, \mathcal{N}^\ell_k(F), V^\ell_k(F)) \) for \(\ell = 1, \cdots, m \) and \(k_\ell \geq \ell \) have been constructed for each \(F \in \mathcal{F}^\ell(K) \) with \(r = 1, \cdots, n - 1 \). The DoFs \(\mathcal{N}^\ell_k(F) \) are given by
\[
(25) \quad h^j_{\ell} \nabla^j v(\delta) \quad \forall \ \delta \in \mathcal{F}^{n-r}(F), j = 0, 1, \cdots, \ell - 1,
\]
\[
(26) \quad \frac{h^j_{\ell}}{|e|} \left(\frac{\partial^{\alpha|v|}}{\partial v^\alpha_{F,e}} q \right) \quad \forall \ q \in \mathbb{P}_{k_{\ell}-2|\alpha|}(e), e \in \mathcal{F}^s(F), s = 1, \cdots, n - r - 1,
\]
\[
\alpha \in A_s \text{, and } |\alpha| \leq \ell - 1,
\]
\[
(27) \quad \frac{1}{|F|} (v, q)_{F} \quad \forall \ q \in \mathbb{P}_{k_{\ell}-2r}(F).
\]
And assume
\begin{itemize}
 \item [(i)] \(\mathbb{P}_{k_\ell}(F) \subseteq V^\ell_{k_\ell}(F) \subset H^\ell(F) \);
 \item [(ii)] for any \(v \in V^\ell_{k_\ell}(F) \), we have \((\nabla^j v)|_e \in H^1(S^1_e; S_{n-r}(j)) \) and \((\nabla^j v)|_e \in H^{\ell-j}(e; S_{n-r}(j)) \) for \(e \in \mathcal{F}^\ell(F), j = 0, 1, \cdots, \ell - 1 \) and \(s = 1, \cdots, n - r - 1 \);
 \item [(iii)] for any \(v \in V^\ell_{k_\ell}(F) \), \(\frac{\partial^{\beta|v|}}{\partial v^\beta_{F,e}} q \in V^\ell_{k_{\ell}-|\beta|}(e) \) for each \(e \in \mathcal{F}^s(F), \beta \in A_s, |\beta| \leq \ell - 1 \) and \(s = 1, \cdots, n - r - 1 \);
 \item [(iv)] \(Q^j_{k_\ell}(\nabla^j v) \) is computable using only the DoFs \((25)-(27) \) for any \(v \in V^\ell_{k_\ell}(F) \) and \(j = 0, 1, \cdots, \ell \).
\end{itemize}
The assumption (ii) is inspired by Lemma 3.3.

First define a preliminary virtual element space

\[V_k^m(K) := \{ v \in H^m(K) : (-\Delta)^m v \in \mathbb{P}_k(K), \quad (\nabla^j v)|_{S_K^r} \in H^1(S_K^r; S_n(j)) \text{ for } j = 0, 1, \ldots, m-1, \quad \frac{\partial^{|\alpha|} v}{\partial \nu_F^\alpha} |_{F} \in V_{k-|\alpha|}^{m-|\alpha|} (F) \quad \forall F \in \mathcal{F}^r(K), \quad r = 1, \ldots, n-1, \alpha \in A_r, \text{ and } |\alpha| \leq m-1 \}. \]

By the assumption (i), we have \(\mathbb{P}_k(K) \subseteq \tilde{V}_k^m(K) \). Take \(v \in \tilde{V}_k^m(K) \). Applying the same argument as in Lemma 3.3, \(\nabla^j v|_e \in \mathbb{P}_{\max\{k-j,2m_1-j\}}(e,S_n(j)) \) for each edge \(e \in \mathcal{F}^{n-1}(K) \) and \(j = 0, 1, \ldots, m-1 \), then it follows from \((\nabla^j v)|_{S_k^{n-1}} \in H^1(S_k^{n-1}; S_n(j)) \) that \(\nabla^j v \) is continuous on the one-dimensional skeleton \(S_K^{n-1} \). For any \(F \in \mathcal{F}^r(K) \) with \(1 \leq r \leq n-1 \), we get from the definition of \(\tilde{V}_k^m(K) \) and (7) that \(\nabla^j v|_{F} \in H^{m-j}(F; S_n(j)) \).

Inspired by \(\frac{\partial^{|\alpha|} v}{\partial \nu_F^\alpha} |_{F} \in V_{k-|\alpha|}^{m-|\alpha|} (F) \) and the DoFs (25)-(27), we propose the following degrees of freedom (DoFs) \(N_k^m(K) \) for the \(H^m \)-conforming virtual elements in arbitrary dimension

\begin{align}
(28) \quad & h_K^{|\alpha|} \nabla^j v(\delta) \quad \forall \delta \in \mathcal{F}^n(K), \quad j = 0, 1, \ldots, m-1, \\
(29) \quad & \frac{h_K^{|\alpha|}}{|F|} \left(\frac{\partial^{|\alpha|} v}{\partial \nu_F^\alpha}, q \right)_{F} \quad \forall q \in \mathbb{P}_{k-2m+|\alpha|}(F), \quad F \in \mathcal{F}^r(K), \quad r = 1, \ldots, n-1, \\
& \quad \alpha \in A_r, \text{ and } |\alpha| \leq m-1, \\
(30) \quad & \frac{1}{|K|} (v, q)_K \quad \forall q \in \mathbb{P}_{k-2m}(K).
\end{align}

To define the space of shape functions \(V_k^m(K) \), we introduce a local \(H^m \)-projector \(\Pi_k^F : H^m(K) \to \mathbb{P}_k(K) \): given \(v \in H^m(K) \), let \(\Pi_k^F v \in \mathbb{P}_k(K) \) be the solution of the problem

\begin{align}
(31) \quad & (\nabla^m \Pi_k^F v, \nabla^m q)_K = (\nabla^m v, \nabla^m q)_K \quad \forall q \in \mathbb{P}_k(K), \\
(32) \quad & \sum_{\delta \in \mathcal{F}^n(K)} (\nabla^j \Pi_k^F v)(\delta) = \sum_{\delta \in \mathcal{F}^n(K)} (\nabla^j v)(\delta), \quad j = 0, 1, \ldots, m-1.
\end{align}

The number of equations in (32) is

\[\sum_{j=0}^{m-1} C_{n+1}^{n} = C_{n+m-1}^{n} = \dim \mathbb{P}_{m-1}(K). \]

We refer to [23, Section 3.3 and Lemma 3.5] for the well-posedness of (31)-(32), and the identity

\[\Pi_k^F q = q \quad \forall q \in \mathbb{P}_k(K). \]

By the assumption (iv) of conforming virtual elements on faces, \(Q_k^{F_{k-|\alpha|}}(\nabla^j \frac{\partial^{|\alpha|}}{\partial \nu_F^\alpha} v) \) is computable by using the DoFs (28)-(29) for any \(v \in \tilde{V}_k^m(K), \ F \in \mathcal{F}^r(K), \ \alpha \in A_r, \ |\alpha| \leq m-1, \ r = 1, \ldots, n-1, \text{ and } \ell = 0, \ldots, m - |\alpha|. \) This together with (7) implies \(Q_k^{F_{k-|\alpha|}}(\nabla^j v) \) is computable by using the DoFs (28)-(29) for any \(v \in \tilde{V}_k^m(K) \).
Following the ideas in [4, 23], define the space of shape functions

\[V^m_k(K) := \{ v \in \mathring{V}^m_k(K) : (v - \Pi^K v, q)_K = 0 \quad \forall \ q \in \mathbb{P}^1_{k-2m}(K) \} \]

Due to (33), it holds \(\mathbb{P}_k(K) \subseteq V^m_k(K) \). Finally we finish the construction of the \(H^m \)-conforming virtual elements \((K, \mathcal{N}^m_k(K), V^m_k(K))\) in arbitrary dimension.

3.5. Data spaces and trace

From now on in this section we will show that the DoFs (28)-(30) are uni-solvent for the local virtual element space \(V^m_k(K) \). The main difficulty is to count the dimension of \(V^m_k(K) \). To this end, we introduce data spaces

\[
\mathcal{D}(\partial K) := \prod_{\delta \in \mathcal{F}^n(K)} \prod_{j=0}^{m-1} \mathcal{S}_n(j) \times \prod_{r=1}^{n-1} \prod_{F \in \mathcal{F}^r(K)} \mathbb{P}_{k-2m+|\alpha|}(F),
\]

\[
\mathcal{D}(K) := \mathcal{D}(\partial K) \times \mathbb{P}_{k-2m}(K), \quad \tilde{\mathcal{D}}(K) := \mathcal{D}(\partial K) \times \mathbb{P}_k(K).
\]

Clearly we have \(\dim \mathcal{D}(K) = \# \mathcal{N}^m_k(K) \). For simplicity, let notation \((d^\delta_{n,j}, d^r_{F,\alpha}) \in \mathcal{D}(\partial K)\) mean

- \(d^\delta_{n,j} \in \mathcal{S}_n(j)\) for each \(\delta \in \mathcal{F}^n(K)\) and \(j = 0, 1, \ldots, m - 1\);
- \(d^r_{F,\alpha} \in \mathbb{P}_{k-2m+|\alpha|}(F)\) for each \(F \in \mathcal{F}^r(K)\) with \(r = 1, \ldots, n - 1\), \(\alpha \in \mathcal{A}_r\), and \(|\alpha| \leq m - 1\).

Notation \((d^\delta_{n,j}, d^r_{F,\alpha}, d_0) \in \mathcal{D}(K)\) means \((d^\delta_{n,j}, d^r_{F,\alpha}) \in \mathcal{D}(\partial K)\) and \(d_0 \in \mathbb{P}_{k-2m}(K)\), and notation \((d^\delta_{n,j}, d^r_{F,\alpha}, d_0) \in \tilde{\mathcal{D}}(K)\) is understood similarly. We will show that both the mapping \(\mathcal{D}_K : V^m_k(K) \rightarrow \mathcal{D}(K)\) given by

\[
\mathcal{D}_K v := \left(\nabla^j v(\delta), Q^r_{k-2m+|\alpha|}(F), \frac{\partial |\alpha| v}{\partial \nu^r_F}, (-\Delta)^m v \right) \in \mathcal{D}(K) \quad \text{with} \quad v \in V^m_k(K),
\]

and the mapping \(\tilde{\mathcal{D}}_K : V^m_k(K) \rightarrow \tilde{\mathcal{D}}(K)\) given by

\[
\tilde{\mathcal{D}}_K v := \left(\nabla^j v(\delta), Q^r_{k-2m+|\alpha|}(F), \frac{\partial |\alpha| v}{\partial \nu^r_F}, (-\Delta)^m v \right) \in \tilde{\mathcal{D}}(K) \quad \text{with} \quad v \in V^m_k(K),
\]

are bijective. The idea of introducing data spaces can be found in [25], and similar idea, i.e. degrees of freedom tuple, is advanced in [5].

For a function \(v \in H^m(K)\), the trace \(\text{Tr} \ v := \left(v|_{\partial K}, \left. \frac{\partial v}{\partial \nu^r_F} \right|_{\partial K}, \cdots, \left. \frac{\partial^{m-1} v}{\partial \nu^r_F} \right|_{\partial K} \right) \in H^{m-1/2}(\mathcal{F}^1(K)) \times \cdots \times H^{1/2}(\mathcal{F}^1(K))\), where

\[H^s(\mathcal{F}^1(K)) := \{ v \in L^2(\partial K) : v|_F \in H^s(F) \quad \forall \ F \in \mathcal{F}^1(K) \} \quad \text{for} \ s > 0. \]

The trace space \(\text{Tr} H^m(K) \neq H^{m-1/2}(\mathcal{F}^1(K)) \times \cdots \times H^{1/2}(\mathcal{F}^1(K))\), since there exist some compatibility conditions among the components of \(\text{Tr} v\) [35]. To present the characterization of the trace space \(\text{Tr} H^m(K)\) in [2, 3, 36], we first define the space of Whitney arrays

\[\mathcal{W}(\partial K) := \{ g_\alpha : \alpha \in \mathcal{A}_n, |\alpha| \leq m - 1 : g_\alpha \in H^1(\partial K) \quad \forall \ \alpha \in \mathcal{A}_n \ \text{with} \ |\alpha| \leq m - 2, \]

\[g_\alpha \in H^{1/2}(\partial K) \quad \forall \ \alpha \in \mathcal{A}_n \ \text{with} \ |\alpha| = m - 1, \]

and the compatibility conditions (34) for \(g_\alpha\) are satisfied}.
where the compatibility conditions are

\[(\nu_F)_j \partial g_\alpha - (\nu_F)_j \partial g_\alpha - (\nu_F)_j g_\alpha + \epsilon_i - (\nu_F)_i g_\alpha + \epsilon_i \text{ on each } F \in \mathcal{F}^1(K)\]

for each \(\alpha \in A_n, |\alpha| \leq m - 2\) and \(1 \leq i \neq j \leq n\), \((\nu_F)_i = e_i\), \(\nu_F\) and \(\partial_i g_\alpha = e_i \cdot \nabla g_\alpha\).

For \(v \in H^m(K)\), clearly we have the array \(\{\partial^\alpha v|_{\partial K}\}_{\alpha \in A_n, |\alpha| \leq m-1} \in WA(\partial K)\), where \(\partial^\alpha v := e^\alpha : \nabla |\alpha| v\) with \(e^\alpha := e_1^{\alpha_1} \otimes \cdots \otimes e_n^{\alpha_n}\). And in this case, expressions in both sides of (34) are two representations of some tangential derivative of the trace of \(\partial^\alpha v\). Moreover, such a trace mapping is onto, which is listed in the following lemma.

Lemma 3.4 (Theorem 5 in [2], Theorem 4 in [3] and Theorem R(m) in [36]). Let \(K \in \mathbb{R}^n\) be a polytope. For each Whitney array \(\{g_\alpha\}_{\alpha \in A_n, |\alpha| \leq m-1} \in WA(\partial K)\), there exists a function \(v \in H^m(K)\) such that

\[\partial^\alpha v|_{\partial K} = g_\alpha \quad \forall \alpha \in A_n, |\alpha| \leq m - 1.\]

Moreover, there exists a linear and bounded operator from \(WA(\partial K)\) to \(H^m(K)\).

In the next two lemmas, we will construct a Whitney array for each data in \(\mathcal{D}(\partial K)\).

Lemma 3.5. Given data \((d^\delta_j, d^F_j) \in \mathcal{D}(\partial K)\), there exist \(g^\delta_j \in S_n(j)\) and \(g^F_j \in H^{m-j}(F; S_n(j))\) for any \(\delta \in \mathcal{F}^n(K), F \in \mathcal{F}^r(K)\), \(r = 1, \cdots, n-1\), and \(j = 0, 1, \cdots, m-1\) such that

(i) \(g^\delta_j = d^\delta_j\) for each \(\delta \in \mathcal{F}^n(K)\) and \(j = 0, 1, \cdots, m-1\);

(ii) \(g^F_j|_F : \nu^F_F \in V^{m-|\alpha|}(F)\) and \(Q_k^{F-2m+|\alpha|}(g^F_j|_F : \nu^F_F) = d^F_F\) for each \(F \in \mathcal{F}^r(K), \alpha \in A_r, |\alpha| \leq m - 1, r = 1, \cdots, n - 1, j = 0, 1, \cdots, m-1, (35)\)

\[g^F_j = \sum_{\alpha \in A_r, |\beta| = m-r} \alpha! |\beta|! \frac{j}{\alpha! \beta!} \left| \frac{\partial^{\beta}}{\partial \nu^F_F} \right| \left(g^F_j|_F : \nu^F_F \right); \]

(iv) \(g^F_j|_e = g^F_j|_e\) for each \(F \in \mathcal{F}^r(K), e \in \mathcal{F}^s(F), r = 1, \cdots, n - 1, s = 1, \cdots, n - r, j = 0, 1, \cdots, m-1.\)

Remark 1. We will see in the proof of Lemma 3.7 that \(g^F_j = \nabla^j v^b|_F\) for some \(v^b \in H^m(K)\). In the colusems of Lemma 3.5, \(g^F_j|_F : \nu^F_F \in V^{m-|\alpha|}(F)\) is motivated by \((\nabla |\alpha| v^b)|_F : \nu^F_F = \frac{\partial^{\alpha+a+b}}{\partial \nu^F_F}|_F \in V^{m-|\alpha|}(F)\) in the definition of \(V^m_{k-|\alpha|}(K)\), \(Q_{k-2m+|\alpha|}(g^F_j|_F : \nu^F_F) = d^F_F\) is motivated by the DoFs (29), and equation (35) is motivated by (7). It follows from (35) that

\[g^F_j : \text{sym}(\nu^F_F \otimes t^F_F) = \frac{\partial^{\beta}}{\partial \nu^F_F \partial t^F_F} (g^F_j|_F : \nu^F_F).\]

Proof of Lemma 3.5. First take \(g^\delta_j = d^\delta_j\) for each \(\delta \in \mathcal{F}^n(K)\) and \(j = 0, 1, \cdots, m-1\). For each \(e \in \mathcal{F}^{n-1}(K), \alpha \in A_{n-1}\) and \(|\alpha| \leq m - 1\), take \(v^e = \nu^e \in V^{m-|\alpha|}(e)\) satisfying

\[\left\{ \begin{array}{l}
(\nabla |\alpha| v^e)|_e : \text{sym}(\nu^e \otimes t^e_F) = (\nabla |\alpha| v^e)|_e : \text{sym}(\nu^e \otimes t^e_F) \quad \forall \delta \in \mathcal{F}^1(e), j = 0, 1, \cdots, m - |\alpha| - 1, \\
Q_k^{F-2m+|\alpha|+(e)} v^e = d^e |_{n-1} \end{array} \right.\]
For $j = 0, 1, \cdots, m - 1$, inspired by (7), let

$$
\gamma_{n-1}^{e,j} = \sum_{\alpha \in A_{n-1}, |\alpha| \leq j} \frac{j!}{\alpha!(j-|\alpha|)!} \text{sym}(\nu_e^\alpha \otimes t_e^{-|\alpha|})(\partial_{e}^{j-|\alpha|} \gamma_{n-1}^{e,\alpha}).
$$

Then we have for any $\delta \in F^1(e)$ that

$$
\gamma_{n-1}^{e,j}(\delta) = \sum_{\alpha \in A_{n-1}, |\alpha| \leq j} \frac{j!}{\alpha!(j-|\alpha|)!} \text{sym}(\nu_e^\alpha \otimes t_e^{-|\alpha|})(\partial_{e}^{j-|\alpha|} \gamma_{n-1}^{e,\alpha} : \text{sym}(\nu_e^\alpha \otimes t_e^{-|\alpha|}))(\delta) = \gamma_{n-1}^{e,j}.
$$

And it follows

$$
\gamma_{n-1}^{e,|\alpha|} : \nu_e^\alpha = \sum_{\beta \in A_{n-1}, |\beta| \leq |\alpha|} \frac{|\alpha|!}{\beta!(|\alpha| - |\beta|)!} \text{sym}(\nu_e^\beta \otimes t_e^{-|\alpha|-|\beta|})(\partial_{e}^{|\alpha|-|\beta|} \gamma_{n-1}^{e,\beta} : \nu_e^\alpha).
$$

In turn we have

$$
Q_{k-2m+\alpha}^{e,|\alpha|} (\gamma_{n-1}^{e,|\alpha|} : \nu_e^\alpha) = \delta_{n-1}^{e,\alpha},
$$

$$
g_{n-1}^{e,j} = \sum_{\alpha \in A_{n-1}, |\alpha| \leq j} \frac{j!}{\alpha!(j-|\alpha|)!} \text{sym}(\nu_e^\alpha \otimes t_e^{-|\alpha|})(\partial_{e}^{j-|\alpha|} \gamma_{n-1}^{e,\alpha} : \nu_e^\alpha).
$$

Assume we have found $g_{s,j}^{e} \in H^{m-j}(e; S_n(j))$ for any $e \in F^s(K)$, $s = r + 1, \cdots, n - 1$, and $j = 0, 1, \cdots, m - 1$ for $1 \leq r \leq n - 2$ satisfying

1. $g_{s,j}^{e,|\alpha|} : \nu_e^\alpha \in V_{k-|\alpha|}^{m-|\alpha|}(e)$ and $Q_{k-2m+\alpha}^{e,|\alpha|} (g_{s,j}^{e,|\alpha|} : \nu_e^\alpha) = d_{s+1}^{e,\alpha}$ for each $e \in F^s(K)$, $\alpha \in A_s$, $|\alpha| \leq m - 1$, $s = r + 1, \cdots, n - 1$;
2. for each $e \in F^s(K)$, $s = r + 1, \cdots, n - 1$ and $j = 0, 1, \cdots, m - 1$,

$$
g_{s,j}^{e,j} = \sum_{\alpha \in A_{s}, \beta \in A_{n-s}} \frac{j!}{\alpha!(j-|\alpha|)!} \text{sym}(\nu_e^\beta \otimes t_e^{-|\alpha|})(\partial_{e}^{j-|\alpha|} (g_{s+1}^{e,|\alpha|} : \nu_e^\alpha));
$$

$$
\gamma_{s,j}^{e,j} \mid_{e'} = g_{s',j}^{e,j} \quad \text{for each } e' \in F^s(K), e' \in F^{s'}(e), s = r + 1, \cdots, n - 1, s' = 1, \cdots, n - s.
$$

Now consider the construction of $g_{r}^{e,j}$ for each $F \in F^r(K)$ and $j = 1, \cdots, m - 1$. To this end, for any $\alpha \in A_r$ and $|\alpha| \leq m - 1$, by (25)-(27) let $v_{r}^{e,\alpha} \in V_{k-|\alpha|}^{m-|\alpha|}(F)$ be determined by

$$
\left\{ \begin{array}{ll}
\left(\frac{\partial_{F}^{\beta}}{\partial v_{r}^{\alpha}} \right)(\delta) = \gamma_{n-1}^{e,|\beta|+|\alpha|} : \text{sym}(\nu_F^\alpha \otimes \nu_F^\beta) & \forall \delta \in F^{n-r}(F), \beta \in A_{n-r}, \\
Q_{k-2m+\alpha+|\beta|}^{e,|\alpha|} (\frac{\partial_{F}^{\beta}}{\partial v_{r}^{\alpha}}) \mid_{e} - g_{r+s}^{e,|\alpha|+|\beta|} : \text{sym}(\nu_F^\alpha \otimes \nu_F^\beta) = 0 & \forall e \in F^s(F), \\
Q_{k-2m+\alpha+|\beta|}^{F} \mid_{e} = d_{r}^{e,\alpha} & \text{in } F,
\end{array} \right.
$$

where $s = 1, \cdots, n - r - 1, \beta \in A_s, |\beta| \leq m - |\alpha| - 1,
Noting that \(\frac{\partial^{\beta}[F,e]}{\partial \nu^{\beta}_{F,e}} : \text{sym}(\nu^\beta_F \otimes \nu^\beta_{F,e}) \in V^{m-|\alpha|-|\beta|}_{k-|\alpha|-|\beta|}(e) \) for each \(e \in \mathcal{F}^s(F) \), and they share the same values of the DoFs, it follows

\[
\frac{\partial^{\beta}[F,e]}{\partial \nu^{\beta}_{F,e}} = g_{r+s}^{\epsilon,|\beta|+|\alpha|} : \text{sym}(\nu^\beta_F \otimes \nu^\beta_{F,e}) \quad \forall \ e \in \mathcal{F}^s(F).
\]

For \(j = 0, 1, \cdots, m - 1 \), let

\[
g_{r}^{F,j} = \sum_{\alpha \in A_r, \beta \in A_{n-r}} \frac{j!}{\alpha!\beta!} \text{sym}(\nu^\alpha_F \otimes \nu^\beta_{F,e} \otimes t^\gamma_e) \left(\frac{\partial^{\beta}[F,e]}{\partial \nu^{\beta}_{F,e}} \right).
\]

Then

\[
g_{r}^{F,j} : \nu^\alpha_F = \nu^\alpha_F \in V^{m-|\alpha|}_{k-|\alpha|}(F),
\]

which yields

\[
Q^F_{k-2m+|\alpha|}(g_{r}^{F,|\alpha|} : \nu^\alpha_F) = d_{r}^{F,\alpha},
\]

\[
g_{r}^{F,j} = \sum_{\alpha \in A_r, \beta \in A_{n-r}} \frac{j!}{\alpha!\beta!} \text{sym}(\nu^\alpha_F \otimes \nu^\beta_{F,e} \otimes t^\gamma_e) \left(\frac{\partial^{\beta}[F,e]}{\partial \nu^{\beta}_{F,e}} \right) (g_{r+s}^{\epsilon,|\beta|+|\alpha|})
\]

For each \(e \in \mathcal{F}^s(F) \) with \(s = 1, \cdots, n - r \), it follows from (36) that

\[
g_{r+s}^{F,j} |_e = \sum_{\alpha \in A_r, \beta \in A_{n-r}, \gamma \in A_{n-r-s}} \frac{j!}{\alpha!\beta!\gamma!} \text{sym}(\nu^\alpha_F \otimes \nu^\beta_{F,e} \otimes t^\gamma_e) \left(\frac{\partial^{\beta}[F,e]}{\partial \nu^{\beta}_{F,e}} \right) (g_{r+s}^{\epsilon,|\beta|+|\alpha|})
\]

Finally we finish the proof by the mathematical induction.

\[\square\]

Lemma 3.6. Given data \((d^s_{\alpha}, \varphi^F_{r,\alpha}) \in \mathcal{D}(\partial K) \), let \(g_{1}^{F,j} \in H^{m-1}(\mathcal{F}; S_n(j)) \) for any \(F \in \mathcal{F}^1(K) \) and \(j = 0, 1, \cdots, m - 1 \) be defined in Lemma 3.5. For each \(\alpha \in A_n, |\alpha| \leq m - 1 \), define \(g_{\alpha} | F = g_{1}^{F,|\alpha|} : \varphi^F_{1,\alpha} \) \(\forall F \in \mathcal{F}^1(K) \). Then \(\{ g_{\alpha} |_{A_n, |\alpha| \leq m - 1} \in WA(\partial K) \).

Proof. By (ii) and (iv) in Lemma 3.5, we have \(g_{\alpha} | F \in H^{m-|\alpha|}(F) \) and \(g_{\alpha} \in H^{1}(\partial K) \) for each \(F \in \mathcal{F}^1(K) \), and \(\alpha \in A_n, |\alpha| \leq m - 1 \).

Next we check the compatibility conditions in (34). Noting that

\[
\partial_i g_{\alpha} = (\nu_F) \frac{\partial g_{\alpha}}{\partial \nu_F} + \sum_{\ell=1}^{n-1} (t_{F,\ell}) i \frac{\partial g_{\alpha}}{\partial t_{F,\ell}}, \quad \partial_j g_{\alpha} = (\nu_F) j \frac{\partial g_{\alpha}}{\partial \nu_F} + \sum_{\ell=1}^{n-1} (t_{F,\ell}) j \frac{\partial g_{\alpha}}{\partial t_{F,\ell}},
\]

we get

\[
(\nu_F) i \partial_i g_{\alpha} = (\nu_F) j \partial_j g_{\alpha} = \sum_{\ell=1}^{n-1} ((\nu_F) i(t_{F,\ell}) - (\nu_F) j(t_{F,\ell})) \frac{\partial g_{\alpha}}{\partial t_{F,\ell}}.
\]
On the other side, it follows from (37) that
\[
g_1^{F,|\alpha|+1} = \sum_{\beta \in \mathcal{A}_{n-1} \atop \beta \leq |\alpha|} \frac{(|\alpha| + 1)!}{(|\alpha| + 1 - |\beta|)!|\beta|!} \text{sym} (\nu^{[|\alpha|+1-|\beta|]}) t_F^\beta \frac{\partial |\beta| F,^{[|\alpha|+1-|\beta|]} t_F}{\partial t_F},
\]
\[
g_1^{F,|\alpha|} = \sum_{\beta \in \mathcal{A}_{n-1} \atop \beta \leq |\alpha|} \frac{|\alpha|!}{(|\alpha| - |\beta|)!|\beta|!} \text{sym} (\nu^{[|\alpha|-|\beta|]}) t_F^\beta \frac{\partial |\beta| F,^{[|\alpha|-|\beta|]} t_F}{\partial t_F}.
\]
Hence for \(\ell = 1, \cdots, n - 1 \), we get
\[
g_1^{F,|\alpha|+1} : (e_\alpha \otimes t_{F,\ell})
= \sum_{\beta \in \mathcal{A}_{n-1} \atop \beta \leq |\alpha|} \frac{(|\alpha| + 1)!}{(|\alpha| - |\beta|)!|\beta|!} \text{sym} (\nu^{[|\alpha|-|\beta|]}) t_F^\beta \frac{\partial |\beta| F,^{[|\alpha|-|\beta|]} t_F}{\partial t_F} : (e_\alpha \otimes t_{F,\ell})
= \sum_{\beta \in \mathcal{A}_{n-1} \atop \beta \leq |\alpha|} \frac{(|\alpha| + 1)!}{(|\alpha| - |\beta|)!|\beta|!} \frac{\beta}{|\beta|!} \text{sym} (\nu^{[|\alpha|-|\beta|]}) t_F^\beta \frac{\partial |\beta| F,^{[|\alpha|-|\beta|]} t_F}{\partial t_F} : (e_\alpha \otimes t_{F,\ell})
= \sum_{\beta \in \mathcal{A}_{n-1} \atop \beta \leq |\alpha|} \frac{|\alpha|!}{(|\alpha| - |\beta|)!|\beta|!} \frac{\beta}{|\beta|!} \text{sym} (\nu^{[|\alpha|-|\beta|]}) t_F^\beta \frac{\partial |\beta| F,^{[|\alpha|-|\beta|]} t_F}{\partial t_F} : (e_\alpha \otimes t_{F,\ell})
= \frac{\partial (g_1^{F,|\alpha|+1} : e_\alpha)}{\partial t_{F,\ell}} = \frac{\partial g_\alpha}{\partial t_{F,\ell}}.
\]
By \(e_i = (\nu_F)_i \nu_F + \sum_{\ell=1}^{n-1} (t_{F,\ell})_i t_{F,\ell} \), we get
\[
g_\alpha + e_i = g_1^{F,|\alpha|+1} : (e_\alpha \otimes e_i)
= (\nu_F) g_1^{F,|\alpha|+1} : (e_\alpha \otimes \nu_F) + \sum_{\ell=1}^{n-1} (t_{F,\ell})_i g_1^{F,|\alpha|+1} : (e_\alpha \otimes t_{F,\ell}).
\]
Thus it holds
\[
(\nu_F)_j g_\alpha + e_i - (\nu_F)_i g_\alpha + e_j = \sum_{\ell=1}^{n-1} ((\nu_F)_j (t_{F,\ell})_i - (\nu_F)_i (t_{F,\ell})_j) g_1^{F,|\alpha|+1} : (e_\alpha \otimes t_{F,\ell})
= \sum_{\ell=1}^{n-1} ((\nu_F)_j (t_{F,\ell})_i - (\nu_F)_i (t_{F,\ell})_j) \frac{\partial g_\alpha}{\partial t_{F,\ell}}.
\]
Therefore we conclude the compatibility conditions in (34) from (38). □

3.6. Uni-solvence of virtual elements. With previous preparations, we will prove the uni-solvence of the \(H^m \)-conforming virtual elements \((K, N^m_k(K), V^m_k(K))\) in arbitrary dimension in this subsection.

Lemma 3.7. The mapping \(\tilde{D}_K : \tilde{V}^m_k(K) \to \tilde{D}(K) \) is onto. Consequently
\[
\dim \tilde{V}^m_k(K) \geq \dim \tilde{D}(K).
\]
Proof. Take any data \((d_n^j, d_F^\alpha, d_0) \in \tilde{D}(K)\). Due to \((d_n^j, d_F^\alpha) \in D(\partial K)\), let \(\{g_\alpha\}_{\alpha \in A_n, |\alpha| \leq m-1} \in WA(\partial K)\) be defined in Lemma 3.6. By Lemma 3.4, there exists \(v^b \in H^m(K)\) such that
\[
\partial^\alpha v^b|_{\partial K} = g_\alpha \quad \forall \alpha \in A_n, |\alpha| \leq m - 1.
\]
Then
\[
\partial^\alpha v^b|_F = g_1^F|\alpha| : e^\alpha \quad \forall F \in F^1(K), \alpha \in A_n, |\alpha| \leq m - 1,
\]
which implies
\[
\nabla^j v^b|_F = g_1^F : e^\alpha \quad \forall F \in F^1(K), j = 1, \ldots, m - 1.
\]
And we get from (iv) in Lemma 3.5 that
\[
\nabla^j v^b|_F = g_r^F : e^\alpha \quad \forall F \in F^r(K), r = 1, \ldots, n, j = 1, \ldots, m - 1.
\]
On the other side, there exists unique \(v^0 \in H^m_0(K)\) determined by
\[
(-\Delta)^m v^0 = d_0 - (-\Delta)^m v^b.
\]
Take \(v = v^0 + v^b \in H^m(K)\). We have \((-\Delta)^m v = d_0 \in \mathbb{P}_k(K)\), and
\[
(39) \quad \nabla^j v|_F = \nabla^j v^b|_F = g_r^F : e^\alpha \quad \forall F \in F^r(K), r = 1, \ldots, n, j = 1, \ldots, m - 1.
\]
It follows from the last identity and (iv) in Lemma 3.5 that \((\nabla^j v)|_{S^r_K} \in H^1(S^r_K; \mathbb{S}_n(j))\) for \(r = 1, \ldots, n, j = 0, \ldots, m - 1\). And thanks to (ii) in Lemma 3.5,
\[
(40) \quad \frac{\partial^{|\alpha|} v^b}{\partial \nu^F} _| F = \frac{\partial^{|\alpha|} v}{\partial \nu^F} _| F = g_r^F : e^\alpha \quad \forall F \in F^r(K), r = 1, \ldots, n - 1, \alpha \in A_r, \text{ and } |\alpha| \leq m - 1.
\]
for any \(F \in F^r(K), r = 1, \ldots, n - 1, \alpha \in A_r, \text{ and } |\alpha| \leq m - 1\). Thus \(v \in \tilde{V}^m_k(K)\). And it follows from (39)-(40), (i) and (ii) in Lemma 3.5 that \(\tilde{D}_K v = (d_n^j, d_F^\alpha, d_0)\).

\[\square\]

Lemma 3.8. The following DoFs \(\tilde{N}^m_k(K)\)
\[
h^j \nabla^j v(\delta) \quad \forall \delta \in \mathcal{F}^n(K), j = 0, 1, \ldots, m - 1,
\]
\[
\frac{h^{|\alpha|}}{|F|} \left(\frac{\partial^{|\alpha|} v}{\partial \nu^F} _| F, q \right) _| F \quad \forall q \in \mathbb{P}_{k-2m+|\alpha|}(F), F \in F^r(K), r = 1, \ldots, n - 1,
\]
\[
\alpha \in A_r, \text{ and } |\alpha| \leq m - 1
\]
are uni-solvent for the local virtual element space \(\tilde{V}^m_k(K)\). Consequently the mapping \(\tilde{D}_K : \tilde{V}^m_k(K) \to \tilde{D}(K)\) is bijective.

Proof. Due to Lemma 3.7, we have \(\dim \tilde{V}^m_k(K) \geq \#\tilde{N}^m_k(K)\). Assume \(v \in \tilde{V}^m_k(K)\) and all the DoFs in \(\tilde{N}^m_k(K)\) vanish. By the recursive definition of \(\tilde{V}^m_k(K)\), it follows from the vanishing DoFs on the boundary in \(\tilde{N}^m_k(K)\) that \(v \in H^m_0(K)\). Employing the integration by parts, we get from \((\nabla^m v)|_{\partial K} \in \mathbb{P}_k(K)\) that
\[
\|\nabla^m v\|^2_{0,K} = \langle \nabla^m v, \nabla^m v \rangle_K = \langle v, (-\Delta)^m v \rangle_K = 0.
\]
Thus \(v = 0\). \(\square\)
Lemma 3.9. The DoFs (28)-(30), i.e. $\mathcal{N}^m_k(K)$, are uni-solvent for the local virtual element space $V^m_k(K)$. Consequently the mapping $\mathcal{D}_K : V^m_k(K) \to \mathcal{D}(K)$ is bijective.

Proof. By the definition of $\dim V^m_k(K)$, it holds $\dim V^m_k(K) \geq \# \mathcal{N}^m_k(K)$. Assume $v \in V^m_k(K)$ and the DoFs (28)-(30) vanish. Notice that $\Pi^K v = 0$. Hence

$$ (v, q)_K = 0 \quad \forall \ q \in \mathbb{P}_k(K), $$

which together with Lemma 3.8 yields $v = 0$. \square

As the two dimensional case, it holds

$$ Q^K v = \Pi^K v + Q^K_{k-2m} v - Q^K_{k-2m} \Pi^K v \quad \forall \ v \in V^m_k(K). \quad (41) $$

Hence $Q^K v$ is computable using only the DoFs (28)-(30) for any $v \in V^m_k(K)$. And then $Q^K (\nabla^j v)$ is computable using only the DoFs (28)-(30) for any $v \in V^m_k(K)$ and $j = 1, \ldots, m$. As a result of (41), we have

$$ Q^K v = Q^K_{k-2m} v \quad \forall \ v \in \ker(\Pi^K) \cap V^m_k(K), \quad (42) $$

where $\ker(\Pi^K) \cap V^m_k(K) := \{ v \in V^m_k(K) : \Pi^K v = 0 \}$.

The H^2-conforming virtual elements in three dimensions have been constructed in [9].

Remark 2. For the lowest degree case $k = m$, the DoFs (29)-(30) disappear, and $\mathcal{N}^m_k(K)$ will reduce to

$$ h^K_0 \nabla^j v(\delta) \quad \forall \ \delta \in \mathcal{F}^n(K), \ j = 0, 1, \ldots, m - 1. $$

Remark 3. When $k = m$ and $K \subset \mathbb{R}^n$ is a simplex,

$$ \dim V^m_k(K) = (n + 1) \dim \mathbb{P}_{m-1}(K). $$

As a comparison, the dimension of the lowest degree H^m-conforming finite element in [29] is $\dim \mathbb{P}_{2^n(m-1)+1}(K)$, which is much larger than $\dim V^m_k(K)$.

4. Inverse inequality and norm equivalences

We will derive the inverse inequality and several norm equivalences of the virtual elements $(K, \mathcal{N}^m_k(K), V^m_k(K))$ by the mathematical induction in this section, which are vitally important in the error analysis of virtual element methods. Henceforth, we always assume mesh conditions (A1) and (A2) hold, and polytope $K \in \mathcal{T}_h$.

4.1. Inverse inequality. We first employ the multiplicative trace inequality, the inverse trace theorem and the inverse inequality for polynomials to prove the inverse inequality for $V^m_k(K)$ through the mathematical induction.

Lemma 4.1. Let $F \in \mathcal{F}^r(K)$ with $r = 0, 1, \ldots, n - 1$, $\ell = 2, \ldots, m$ and integer $k_\ell \geq \ell$. Let $v \in V^r_k(F)$ and positive integer $j \leq \ell - 1$. If $|v|_{j+1,F} \lesssim h^{-1}_F |v|_{j,F}$, then

$$ |v|_{j,F} \lesssim h^{-1}_F |v|_{j-1,F}. $$
Thus we end the proof by applying the Young’s inequality to the last inequality.

□

(43)

Let

Proof.

(44)

Then we have for any positive integer \(\ell \leq m \) and integer \(k_\ell \geq \ell \) that

Thus we end the proof by applying the Young’s inequality to the last inequality.

Lemma 4.2. Let \(F \in \mathcal{F}^r(K) \) with \(r = 0, 1, \cdots, n - 2 \). Assume on each \(e \in \mathcal{F}^1(F) \), it holds for any positive integer \(\ell \leq m \) and integer \(k_\ell \geq \ell \) that

Then we have for any positive integer \(\ell \leq m \) and integer \(k_\ell \geq \ell \) that

Proof. Let \(v^b \in H^\ell(F) \) be the solution of the polyharmonic equation with nonhomogeneous Dirichlet boundary condition

By (7) we have \(\nabla^j v^b |_{\partial F} = \nabla^j v |_{\partial F} \) for \(j = 0, 1, \cdots, \ell - 1 \). It is easy to check that

On the other side, due to Lemma 3.4 and the Lipschitz isomorphism [18], there exists \(\phi \in H^\ell(F) \) such that

and

Hence

By the space interpolation theory [1, 16],

|\(v^b |_{\ell, F} \| \lesssim \| \nabla^{\ell - 1} v |_{1/2, \partial F} \).
By (7) and (43) with $w = \frac{\partial^j v}{\partial x_j^j} \in V_{k-l}^j(e)$,

$$|\nabla F^{-1} v|^2_{1,\partial F} = \sum_{e \in F^1(F)} \left| \sum_{\alpha \in A_{n-r-1} \in \mathbb{N}} \alpha! \text{sym}(v^j_{F,e} \otimes t^n_{F,e}) \frac{\partial^{j-1} v}{\partial x_i \partial x_j^j} \right|^2_{1,e} \leq h^{-2} \sum_{e \in F^1(F)} \left| \sum_{\alpha \in A_{n-r-1} \in \mathbb{N}} \alpha! \text{sym}(v^j_{F,e} \otimes t^n_{F,e}) \frac{\partial^{j-1} v}{\partial x_i \partial x_j^j} \right|^2_{1,e} \leq h^{-2} \|\nabla F^{-1} v\|^2_{0,\partial F}.$$

Thus

$$|v|^2_{\ell,F} \lesssim h^{-1/2} \|\nabla F^{-1} v\|_{0,\partial F}. \hspace{1cm} (45)$$

Applying the multiplicative trace inequality (1), we get

$$|v|^2_{\ell,F} \lesssim h^{-1} |v|^2_{\ell-1,F} (|v|^2_{\ell-1,F} + h^{-1} |v|^2_{\ell,F}) \leq h^{-1} |v|^2_{\ell-1,F} + h^{-1} |v|^2_{\ell,F}. \hspace{1cm} (46)$$

Notice that $v - \nu \in H^1_0(F)$. It follows from the inverse inequality for polynomials (4), the fact $(-\Delta F)^{j} v = 0$ and the Poincaré-Friedrichs inequality (3) that

$$|v|_{\ell,F} \lesssim |v|^2_{\ell,F} = \langle \nabla F(v - \nu^j), \nabla F^\ell(v - \nu^j) \rangle_F = (-\Delta F)^{j} (v - \nu^j, v - \nu^j)_F \leq \|(-\Delta F)^{j} v\|_{0,F} \|v - \nu^j\|_{0,F} \leq h^{-1} \|(-\Delta F)^{j-1} v\|_{\ell-1,F} \|v - \nu^j\|_{0,F} \leq h^{-1} \|v\|_{\ell,F} \leq h^{-1} \|v - \nu^j\|_{\ell,F},$$

which means $|v|_{\ell,F} \lesssim h^{-1} |v|_{\ell,F}$. Together with (46), we obtain

$$|v|_{\ell,F} \leq |v|_{\ell,F} + |v - \nu^j|_{\ell,F} \lesssim h^{-1} |v|_{\ell-1,F} + h^{-1} |v|^2_{\ell-1,F}.$$

Thus

$$|v|_{\ell,F} \lesssim h^{-1} |v|_{\ell-1,F}. \hspace{1cm} \square$$

Finally we achieve (44) from Lemma 4.1.

Lemma 4.3 (Inverse inequality). For each $F \in F^r(K)$ with $r = 0, 1, \cdots, n - 1$, it holds the inverse inequality

$$|v|_{i,F} \lesssim h^{-j} |v|_{i,F} \quad \forall \, v \in V^m_{k_i}(K), \, 0 \leq i < j \leq m. \hspace{1cm} (48)$$

Proof. On each $e \in F^{n-1}(K)$, since $V^j_k(e) = \mathbb{P}_{\max(k_l,2\ell-1)}(e)$ for any positive integer $\ell \leq m$ and integer $k_l \geq \ell$, applying the inverse inequality for polynomials (4),

$$|w|_{i,e} \lesssim h^{-j} |w|_{i,e} \quad \forall \, w \in V^j_k(e), \, 0 \leq i < j \leq \ell.$$

Thus (48) follows from Lemma 4.2 by applying the mathematical induction. \hspace{1cm} \square
4.2. Norm equivalences. Next we show several norm equivalences on the finite dimensional spaces $V^m_k(K)$, $\ker(Q^K_k) \cap V^m_k(K)$ and $\ker(\Pi^k) \cap V^m_k(K)$, where $\ker(Q^k_K) \cap V^m_k(K) := \{ v \in V^m_k(K) : Q^k_K v = 0 \}$.

Lemma 4.4. Let $F \in \mathcal{F}^r(K)$ with $r = 0, 1, \ldots, n - 1$. It holds for any positive integer $\ell \leq m$, integer $k_{\ell} \geq \ell$ and non-negative integer $j \leq \ell - 1$ that

\[
|v|_{j,F} \simeq h_F|v|_{j+1,F} + h_F^{(n-r)/2} \sum_{\delta \in \mathcal{F}^{n-r}(F)} |(\nabla^j_F v)(\delta)| \quad \forall \, v \in V^j_k(F).
\]

Proof. Thanks to the trace inequality (2) and the inverse inequality (48), it is sufficient to prove

\[
|v|_{j,F} \lesssim h_F|v|_{j+1,F} + h_F^{(n-r)/2} \sum_{\delta \in \mathcal{F}^{n-r}(F)} |(\nabla^j_F v)(\delta)| \quad \forall \, v \in V^j_k(F).
\]

Noting that $\nabla^j_F(Q^j_F v)$ is constant,

\[
|Q^j_F v|_{j,F} \equiv \|\nabla^j_F(Q^j_F v)\|_{0,F} \simeq h_F^{(n-r)/2} |\nabla^j_F(Q^j_F v)|
\]

\[
\leq h_F^{(n-r)/2} \left| \nabla^j_F(Q^j_F v) - \frac{1}{\#\mathcal{F}^{n-r}(F)} \sum_{\delta \in \mathcal{F}^{n-r}(F)} (\nabla^j_F v)(\delta) \right|
\]

\[
+ \frac{1}{\#\mathcal{F}^{n-r}(F)} h_F^{(n-r)/2} \sum_{\delta \in \mathcal{F}^{n-r}(F)} |(\nabla^j_F v)(\delta)|
\]

\[
\lesssim h_F^{(n-r)/2} \sum_{\delta \in \mathcal{F}^{n-r}(F)} |(\nabla^j_F(Q^j_F v) - (\nabla^j_F v))(\delta)|
\]

\[
+ h_F^{(n-r)/2} \left| \sum_{\delta \in \mathcal{F}^{n-r}(F)} (\nabla^j_F v)(\delta) \right|.
\]

Applying the trace inequality (2) and the inverse inequality (48) recursively,

\[
h_F^{(n-r)/2} \sum_{\delta \in \mathcal{F}^{n-r}(F)} |(\nabla^j_F(Q^j_F v) - v)(\delta)|
\]

\[
\lesssim h_F^{(n-r-1)/2} \sum_{e \in \mathcal{F}^{n-r-1}(F)} (\|\nabla^j_F(Q^j_F v - v)\|_{0,e} + h_e |\nabla^j_F(Q^j_F v - v)|_{1,e})
\]

\[
\lesssim h_F^{(n-r-1)/2} \sum_{e \in \mathcal{F}^{n-r-1}(F)} \|\nabla^j_F(Q^j_F v - v)\|_{0,e}
\]

\[
\lesssim \cdots \lesssim h_F^{1/2} \sum_{e \in \mathcal{F}^1(F)} \|\nabla^j_F(Q^j_F v - v)\|_{0,e} \lesssim |Q^j_F v - \nabla^j_F v|_{j,F}.
\]

Then we get from the last two inequalities that

\[
|v|_{j,F} \leq |v - Q^j_F v|_{j,F} + |Q^j_F v|_{j,F} \lesssim |v - Q^j_F v|_{j,F} + h_F^{(n-r)/2} \left| \sum_{\delta \in \mathcal{F}^{n-r}(F)} (\nabla^j_F v)(\delta) \right|,
\]

which together with (5) gives (50).
Lemma 4.5. Let \(F \in \mathcal{F}^r(K) \) with \(r = 0, 1, \cdots, n-2 \). Assume on each \(e \in \mathcal{F}^1(F) \), it holds for any positive integer \(\ell \leq m \) and integer \(k_\ell \geq \ell \) that

\[
\|w\|_{0,e}^2 \lesssim \|Q_{k_\ell-2\ell}w\|_{0,e}^2 + \sum_{\delta \in \mathcal{F}^{n-r-1}(e)} \sum_{i=0}^{\ell-1} h_e^{n-r-1+2i} |\nabla^i w(\delta)|^2
\]

(51)

\[
+ \sum_{s=1}^{n-r-2} \sum_{e' \in \mathcal{F}^r(e)} \sum_{\alpha \in A_s, |\alpha| \leq \ell-1} h_e^{s+2|\alpha|} \left\| Q_{k_\ell-2\ell+|\alpha|}^e \frac{\partial^{|\alpha|} w}{\partial \nu_{e',e'}^{\alpha}} \right\|_{0,e'}^2 \forall w \in V_{k_\ell}(e).
\]

Then we have for any positive integer \(\ell \leq m \), integer \(k_\ell \geq \ell \), non-negative integer \(j \leq \ell \) and \(v \in V_{k_\ell}(F) \) that

\[
h_F^{2j} |\Pi_{k_\ell}^F v|_{j,F}^2 \lesssim \|Q_{k_\ell-2\ell}v\|_{0,F}^2 + \sum_{\delta \in \mathcal{F}^{n-r}(F)} \sum_{i=0}^{\ell-1} h_F^{n-r+2i} |\nabla^i v(\delta)|^2
\]

(52)

\[
+ \sum_{s=1}^{n-r-1} \sum_{e' \in \mathcal{F}^s(F)} \sum_{\alpha \in A_s, |\alpha| \leq \ell-1} h_F^{s+2|\alpha|} \left\| Q_{k_\ell-2\ell+|\alpha|}^{e'} \frac{\partial^{|\alpha|} v}{\partial \nu_{e',e'}^{\alpha}} \right\|_{0,e'}^2.
\]

Proof. Due to (49), it is sufficient to prove (52) with \(j = \ell \). It follows from (6) and the inverse inequality for polynomials (4) that

\[
|\Pi_{k_\ell}^F v|_{\ell,F}^2 = (\nabla_F v, \nabla_F^\ell \Pi_{k_\ell}^F v)_F
\]

\[
= (v, (-\Delta_F)^\ell \Pi_{k_\ell}^F v)_F + \sum_{i=0}^{\ell-1} \sum_{e \in \mathcal{F}^1(F)} (\nabla_F v, \nabla_F^i (-\Delta_F)^{\ell-i-1} \frac{\partial \Pi_{k_\ell}^F v}{\partial \nu_{e,F}})_e
\]

\[
= (Q_{k_\ell-2\ell}v, (-\Delta_F)^\ell \Pi_{k_\ell}^F v)_F + \sum_{i=0}^{\ell-1} \sum_{e \in \mathcal{F}^1(F)} (\nabla_F v, \nabla_F^i (-\Delta_F)^{\ell-i-1} \frac{\partial \Pi_{k_\ell}^F v}{\partial \nu_{e,F}})_e
\]

\[
\lesssim \|Q_{k_\ell-2\ell}v\|_{0,F} \|\Pi_{k_\ell}^F v\|_{2\ell,F} + \sum_{i=0}^{\ell-1} \sum_{e \in \mathcal{F}^1(F)} \|\nabla_F v\|_{0,e} \|\nabla_F^{2\ell-i-1} \Pi_{k_\ell}^F v\|_{0,e}
\]

\[
\lesssim h_F^{-\ell} \|Q_{k_\ell-2\ell}v\|_{0,F} \|\Pi_{k_\ell}^F v\|_{\ell,F} + \sum_{i=0}^{\ell-1} \sum_{e \in \mathcal{F}^1(F)} h_F^{-\ell+i+1/2} \|\nabla_F v\|_{0,e} \|\Pi_{k_\ell}^F v\|_{\ell,F}.
\]

Hence we have

(53)

\[
h_F^{2j} |\Pi_{k_\ell}^F v|_{j,F}^2 \lesssim \|Q_{k_\ell-2\ell}v\|_{0,F}^2 + \sum_{i=0}^{\ell-1} \sum_{e \in \mathcal{F}^1(F)} h_F^{2i+1} \|\nabla_F v\|_{0,e}^2.
\]

For \(i = 0, \cdots, \ell-1 \) and each \(e \in \mathcal{F}^1(F) \), it follows from (7) and the inverse inequality (48) that

\[
h_F^{2i+1} \|\nabla_F v\|_{0,e}^2 = \|\nabla_F v\|_{0,e}^2 \left\| \sum_{\alpha \in A_{n-r-1}, |\alpha| + j = i} \frac{\tilde{d}}{j! \tilde{\alpha}!} \text{sym}(\nu_{e,F}^j \otimes \nu_{e,F}^j) \frac{\partial^j v}{\partial \nu_{e,e}^j} \right\|_{0,e}^2
\]

\[
\lesssim \sum_{\alpha \in A_{n-r-1}, |\alpha| + j = i} h_F^{2i+1} \left\| \frac{\partial^j v}{\partial \nu_{e,e}^j} \right\|_{0,e}^2 \lesssim \sum_{j=0}^{\ell} h_F^{2j+1} \left\| \frac{\partial^j v}{\partial \nu_{e,e}^j} \right\|_{0,e}^2.
\]
Noting that $\frac{\partial w}{\partial v_{F,e}}|_e \in V_{k_{\ell-1}}(e)$, we get from (51) with $w = \frac{\partial v}{\partial v_{F,e}}|_e$ that

\[h_F^{2j + 1} \| \nabla_F v \|^2_{0,e} \lesssim \sum_{j=0}^{\ell-1} h_e^{2j+1} \left\| Q_{k_{\ell-2}+j} \frac{\partial^j v}{\partial v_{F,e}^j} \right\|^2_{0,e}. \]

(54)

Similarly as (54), by $\frac{\partial^j v}{\partial v_{F,e}^j}|_e \in V_{k_{\ell-1}}(e)$, we get from (51) with $w = \frac{\partial w}{\partial v_{F,e}}|_e$ that

\[h_F^{2j + 1} \| \nabla_F v \|^2_{0,e} \lesssim \sum_{j=0}^{\ell-1} h_e^{2j+1} \left\| Q_{k_{\ell-2}+j} \frac{\partial^j v}{\partial v_{F,e}^j} \right\|^2_{0,e}. \]

(55)

Thus (52) with $j = \ell$ follows from (53).

Lemma 4.6. Let $F \in \mathcal{F}^r(K)$ with $r = 0, 1, \cdots, n-2$. Assume (51) holds on each $e \in \mathcal{F}^1(F)$ for any positive integer $\ell \leq m$, integer $k_{\ell} \geq \ell$. Then we have for any positive integer $\ell \leq m$, integer $k_{\ell} \geq \ell$, $j \leq \ell$ and $v \in V_k^F(F)$ that

\[h_F^{2j} \| v \|^2_{0,F} \lesssim \left\| Q_{k_{\ell-2}+j} \frac{\partial^j v}{\partial v_{F,e}^j} \right\|^2_{0,e} \]

(56)

Proof. Let $v^0 \in H^\ell(F)$ be defined as in Lemma 4.2. By (45) and (7), we have

\[|v^0|_{0,F} \lesssim h_F^{-1/2} \| \nabla_F v \|_{0,F} \lesssim h_F^{-1/2} \sum_{e \in \mathcal{F}^1(F)} \sum_{e' \in \mathcal{F}^1(F)} \sum_{|\alpha| = j} \left\| \frac{\partial^j v}{\partial v_{F,e}^j} \right\|_{0,e}, \]

which together with the inverse inequality (48) yields

\[h_F^{2j} \| v^0 \|^2_{0,F} \lesssim \sum_{e \in \mathcal{F}^1(F)} \sum_{j=0}^{\ell-1} h_e^{2j+1} \left\| \frac{\partial^j v}{\partial v_{F,e}^j} \right\|^2_{0,e}. \]

(56)
Notice that $\nabla_F^j v^b_{j,F} = \nabla_F^j v_{j,F}$ for $i = 0, 1, \ldots, \ell - 1$. For $j = 1, \ldots, \ell - 1$,

$$
|v^b_{j,F} = (\nabla_F^j v^b, \nabla_F^j v^b)_F = (\nabla_F^j v^b, \nabla_F^j v^b - Q_0^F \nabla_F^j v^b)_F
= -(\Delta_F \nabla_F^{j-1} v^b, \nabla_F^{j-1} v^b - Q_0^F \nabla_F^{j-1} v^b)_F
+ \sum_{e \in F^{(1)}(F)} \left(\frac{\partial}{\partial v_{F,e}} \nabla_F^{j-1} v^b, \nabla_F^{j-1} v^b - Q_0^F \nabla_F^{j-1} v^b)_e \right)
\lesssim |v^b_{j+1,F} \nabla_F^{j-1} v^b - Q_0^F \nabla_F^{j-1} v^b|_{0,F}
+ \sum_{e \in F^{(1)}(F)} |\nabla_F^j v^b|_{0,e} \nabla_F^{j-1} v^b - Q_0^F \nabla_F^{j-1} v^b|_{0,e}.
$$

It follows from the last inequality and (5) that

$$h_F^j |v^b_{j,F} \lesssim h_F^{j+1} |v^b_{j+1,F} + h_F^{j+1/2} \nabla_F^j v^b|_{0,F} \quad \text{for } j = 1, \ldots, \ell - 1.$$

Hence we achieve from the last inequality, (51) and (56) that

$$
(57) \quad h_F^{2j} |v^b_{j,F}|^2 \lesssim \sum_{s=1}^{n-r} \sum_{e' \in F^{(s)}(F)} \sum_{\alpha \in A_{s-r}^{(s)}} h_F^{s+2j+2|\alpha|} \left\| Q_e^e |v^b_{e,0}|^2 \right\|^2_{0,e'}
$$

for $j = 1, \ldots, \ell$. Take some $\delta \in F^{n-r}(F)$. Applying the trace inequality (2) recursively, (5) and the inverse inequality (48),

$$
|(v^b - Q_0^F v^b)(\delta)|^2 \lesssim \sum_{e \in F^{n-r-1}(F)} h_e^{-1} |v^b - Q_0^F v^b|^2_{0,e} + \sum_{e \in F^{n-r-1}(F)} h_e |v^b|^2_{1,e}
\lesssim \cdots \lesssim h_F^{r-n} |v^b - Q_0^F v^b|^2_{0,F} + \sum_{s=0}^{n-r-1} \sum_{e \in F^{(s)}(F)} h_e^{r-n+s+2} |v^b|^2_{1,e}
\lesssim h_F^{r-n+2} |v^b|^2_{1,F} + \sum_{s=1}^{n-r-1} \sum_{e \in F^{(s)}(F)} h_e^{r-n+s} |v|^2_{0,e}.
$$

This implies

$$
|Q_0^F v^b|^2 = |(Q_0^F v^b)(\delta)|^2 \lesssim |v^b(\delta)|^2 + |(v^b - Q_0^F v^b)(\delta)|^2
\lesssim |v(\delta)|^2 + h_F^{r-n+2} |v|^2_{1,F} + \sum_{s=1}^{n-r-1} \sum_{e \in F^{(s)}(F)} h_e^{r-n+s} |v|^2_{0,e},
$$

which together with (5), the trace inequality (2) and the inverse inequality (48) means

$$
|v^b|^2_{0,F} \lesssim |v^b - Q_0^F v^b|^2_{0,F} + |Q_0^F v^b|^2_{0,F} \lesssim h_F^{2} |v^b|^2_{1,F} + h_F^{n-r} |Q_0^F v^b|^2
\lesssim h_F^{n-r} |v(\delta)|^2 + h_F^{r} |v|^2_{1,F} + \sum_{s=1}^{n-r-1} \sum_{e \in F^{(s)}(F)} h_e^{n} |v|^2_{0,e}
\lesssim h_F^{n-r} |v(\delta)|^2 + h_F^{r} |v|^2_{1,F} + \sum_{e \in F^{(s)}(F)} h_e |v|^2_{0,e}.
$$
Then we drive from (57) and (51) that
\[
\|v^b\|_0,F \lesssim \sum_{s=1}^{n-r} \sum_{e \in \mathcal{E}^s(F)} \sum_{\alpha \in \mathcal{A}_r} h_\mathcal{E}^{s+2|\alpha|} \left\| Q_{k-2\ell+|\alpha|}^{F} \frac{\partial |\alpha| v}{\partial \nu_F} \right\|^2_{0,F}.
\]

On the other side, it follows from (47), the inverse inequality for polynomials (4) and the fact \((-\Delta_F)^{\ell} v^b = 0\) that
\[
|v - v^b|^2_{j,F} = ((-\Delta_F)^{\ell}(v - v^b), v - v^b)_F = (-\Delta_F)^{\ell}(v - v^b), Q_{k_i}^F(v - v^b)_F
\]
\[
\leq \|(-\Delta_F)^{\ell}(v - v^b)\|_{0,F} \|Q_{k_i}^F(v - v^b)\|_{0,F}
\]
\[
\lesssim h_\mathcal{E}^{-\ell} \|(-\Delta_F)^{\ell}(v - v^b)\|_{-\ell,F} \|Q_{k_i}^F(v)_0,F + \|v^b\|_{0,F}
\]
\[
\lesssim h_\mathcal{E}^{-\ell} \|v - v^b|_{\ell,F} \|Q_{k_i}^F(v)|_{0,F} + \|v^b\|_{0,F},
\]
which yields
\[
h_\mathcal{E}^{2\ell} \|v - v^b|^2_{j,F} \lesssim \|Q_{k_i}^F(v)|_{0,F} + \|v^b\|^2_{0,F}.
\]

Combined with the fact \(v - v^b \in H_0^1(F)\) and the Poincaré-Friedrichs inequality (3), we get
\[
h_\mathcal{E}^{2\ell} \|v^b|^2_{j,F} \lesssim h_\mathcal{E}^{2\ell} \|v - v^b|_{j,F} + h_\mathcal{E}^{2\ell} \|v^b|_{j,F} \lesssim \|Q_{k_i}^F(v)|_{0,F} + \|v^b\|^2_{0,F} + h_\mathcal{E}^{2\ell} \|v^b|_{j,F}
\]
for \(j = 0, \cdots, \ell\). By (41), \(Q_{k_i}^F v = Q_{k_i}^F\delta - 2\delta v + (I - Q_{k_i}^{k_i - 2\ell}) \Pi_{k_i}^F v, \) hence
\[
h_\mathcal{E}^{2\ell} \|v^b|_{j,F} \lesssim \|Q_{k_i}^F\delta - 2\delta v\|^2_{0,F} + \|\Pi_{k_i}^F v\|^2_{0,F} + \|v^b\|^2_{0,F} + h_\mathcal{E}^{2\ell} \|v^b|_{j,F}.
\]
Finally we conclude (55) from the last inequality, (52), (58) and (57).

\begin{lemma}
\textbf{Norm equivalence of virtual element spaces.} For any \(v \in V_k^m(K)\) and \(j = 0, \cdots, m\), we have
\[
h_\mathcal{E}^{2j} \|v|_{j,K}^2 \lesssim \|Q_{k-2m}^K v\|^2_{0,K} + \sum_{\delta \in \mathcal{F}^n(K)} \sum_{i=0}^{m-1} h_\mathcal{E}^{n+2i} \|\nabla v(\delta)\|_{i,K}^2
\]
\[
+ \sum_{r=1}^{n-1} \sum_{F \in \mathcal{F}^r(K)} \sum_{\alpha \in \mathcal{A}_r} \sum_{|\alpha| \leq m-1} h_\mathcal{E}^{r+2|\alpha|} \left\| Q_{k-2m+|\alpha|}^F \frac{\partial |\alpha| v}{\partial \nu_F} \right\|^2_{0,F},
\]
and
\[
\|v\|^2_{0,K} \lesssim \|Q_{k-2m}^K v\|^2_{0,K} + \sum_{\delta \in \mathcal{F}^n(K)} \sum_{i=0}^{m-1} h_\mathcal{E}^{n+2i} \|\nabla v(\delta)\|_{i,K}^2
\]
\[
+ \sum_{r=1}^{n-1} \sum_{F \in \mathcal{F}^r(K)} \sum_{\alpha \in \mathcal{A}_r} \sum_{|\alpha| \leq m-1} h_\mathcal{E}^{r+2|\alpha|} \left\| Q_{k-2m+|\alpha|}^F \frac{\partial |\alpha| v}{\partial \nu_F} \right\|^2_{0,F}.
\]
\end{lemma}

\textbf{Proof.} Clearly the inequality (59) holds for \(n = 1\) since \(V_k^m(K) = P_{\max(k,2m-1)}(K)\). Then we obtain (59) for general \(n\) from Lemma 4.6 and the mathematical induction.

For the norm equivalence (60), due to (59) with \(j = 0\), it is sufficient to prove
\[
\|Q_{k-2m}^K v\|^2_{0,K} + \sum_{\delta \in \mathcal{F}^n(K)} \sum_{i=0}^{m-1} h_\mathcal{E}^{n+2i} \|\nabla v(\delta)\|_{i,K}^2
\]
\[
+ \sum_{r=1}^{n-1} \sum_{F \in \mathcal{F}^r(K)} \sum_{\alpha \in \mathcal{A}_r} \sum_{|\alpha| \leq m-1} h_\mathcal{E}^{r+2|\alpha|} \left\| Q_{k-2m+|\alpha|}^F \frac{\partial |\alpha| v}{\partial \nu_F} \right\|^2_{0,F} \lesssim \|v\|^2_{0,K}.
\]
Applying the trace inequality \((2)\) and the inverse inequality \((48)\) recursively,
\[
\sum_{\delta \in \mathcal{F}^n(K)} \sum_{i=0}^{m-1} h_K^{n+2i} |\nabla^i v(\delta)|^2 \lesssim \sum_{e \in \mathcal{F}^{n-1}(K)} \sum_{i=0}^{m-1} h_K^{n+2i} (h_e^{-1} \|\nabla^i v\|_{0,e}^2 + h_e |\nabla^i v|_{1,e}^2)
\lesssim \sum_{e \in \mathcal{F}^{n-1}(K)} \sum_{i=0}^{m-1} h_K^{n-1+2i} |\nabla^i v|_{0,e}^2
\lesssim \cdots \lesssim \sum_{F \in \mathcal{F}^1(K)} \sum_{i=0}^{m-1} h_K^{1+2i} |\nabla^i v|_{0,F}^2
\lesssim \sum_{i=0}^{m-1} h_K^{2i} |\nabla^i v|_{0,K}^2 \lesssim \|v\|_{0,K}^2.
\]

Similarly we have
\[
\sum_{r=1}^{n-1} \sum_{F \in \mathcal{F}^r(K)} \sum_{\alpha \in \mathcal{A}, |\alpha| \leq m-1} h_K^{r+2|\alpha|} \left| \partial^{2|\alpha|} v \right|_{0,F}^2 \lesssim \|v\|_{0,K}^2.
\]

Thus \((61)\) follows from the last two inequalities and \(\|Q_{k-2m}^K v\|_{0,K} \leq \|v\|_{0,K}.\)

Now we present the norm equivalences of the kernel space of the local \(L^2\)-projector \(Q_k^K\) and the local \(H^m\)-projector \(\Pi_k^K\), which only involve the boundary DoFs.

Lemma 4.8 (Norm equivalence of the kernel space of \(Q_k^K\)). For any \(v \in \ker(Q_k^K) \cap V_k^m(K)\) and \(j = 0, \cdots, m\), we have
\[
\tag{62}
\|Q_{k-2m}^K v\|_{0,K} \approx n \sum_{r=1}^{n} \sum_{F \in \mathcal{F}^r(K)} \sum_{\alpha \in \mathcal{A}, |\alpha| \leq m-1} h_K^{r+2|\alpha|} \left| \partial^{2|\alpha|} v \right|_{0,F}^2.
\]

Proof. Noting that \(Q_{k-2m}^K v = 0\), we achieve from \((60)\) that
\[
\|v\|_{0,K}^2 \approx n \sum_{r=1}^{n} \sum_{F \in \mathcal{F}^r(K)} \sum_{\alpha \in \mathcal{A}, |\alpha| \leq m-1} h_K^{r+2|\alpha|} \left| \partial^{2|\alpha|} v \right|_{0,F}^2.
\]

On the other side, we get from the inverse inequality \((48)\) and \((5)\) that
\[
h_K^{2j} |v|_{j,K} \approx \|v\|_{0,K} \quad \forall j = 0, \cdots, m.
\]
Therefore \((62)\) holds.

Noting that \(\sum_{\delta \in \mathcal{F}^n(K)} (\nabla^j v)(\delta) = 0\) for any \(v \in \ker(\Pi_k^K) \cap V_k^m(K)\) and \(j = 0, 1, \cdots, m\), it holds from \((49)\) that
\[
\tag{63}
h_K^{j} |v|_{j,K} \approx h_K^{j+1} |v|_{j+1,K} \quad \forall v \in \ker(\Pi_k^K) \cap V_k^m(K), j = 0, 1, \cdots, m - 1.
\]
Lemma 4.9 (Norm equivalence of the kernel space of Π^K_v). For any $v \in \ker(\Pi^K_v) \cap V^m_k(K)$ and $j = 0, \ldots, m$, we have

$$h^2_j |v|_{j,K}^2 \geq \sum_{r=1}^{n} \sum_{F \in \mathcal{F}(K)} \sum_{\alpha \in \mathcal{A}_r, |\alpha| \leq m-1} h^2_{k+2|\alpha|} \left\| Q_{k-2m+|\alpha|}^F \frac{\partial |\alpha| v}{\partial n^F} \right\|_{0,F}^2.$$

Proof. Due to (60) and (63), it is sufficient to prove

$$h^2_{0,m} |v|_{m,K}^2 \geq \sum_{r=1}^{n} \sum_{F \in \mathcal{F}(K)} \sum_{\alpha \in \mathcal{A}_r, |\alpha| \leq m-1} h^2_{k+2|\alpha|} \left\| Q_{k-2m+|\alpha|}^F \frac{\partial |\alpha| v}{\partial n^F} \right\|_{0,F}^2.$$

Let $v^b \in H^m(K)$ be defined as in Lemma 4.2 with $r = 0$, $\ell = m$ and $k_\ell = k$. By (57) and (58), we have

$$h^2_{0,m} |v^b|_{m,K}^2 \geq \sum_{r=1}^{n} \sum_{F \in \mathcal{F}(K)} \sum_{\alpha \in \mathcal{A}_r, |\alpha| \leq m-1} h^2_{k+2|\alpha|} \left\| Q_{k-2m+|\alpha|}^F \frac{\partial |\alpha| v}{\partial n^F} \right\|_{0,F}^2$$

for $j = 0, \ldots, m$. On the other hand, according to Lemma 4.8 in [34], there exists $p \in \mathbb{P}_k(K)$ satisfying

$$(-\Delta)^m p = Q^K_{k-2m}((-\Delta)^m v),$$

$$|p|_{m,K} \lesssim h^K_\ell \| Q^K_{k-2m}((-\Delta)^m v) \|_{0,K} \lesssim h^K_\ell \| (-\Delta)^m v \|_{0,K} \lesssim |v|_{m,K}.$$

Noting that $(\nabla^m p, \nabla^m v)_K = 0$, $v - v^b \in H^0_0(K)$ and $(-\Delta)^m v^b = 0$, $|v - v^b|_{m,K}^2 = (\nabla^m (v - v^b), \nabla^m (v - v^b))_K$

$$= (\nabla^m v - \nabla^m v^b, \nabla^m (v - v^b))_K = ((-\Delta)^m (v - v^b - p), (\nabla^m p, \nabla^m v^b))_K$$

$$= ((-\Delta)^m (v - v^b - p), (\nabla^m p, \nabla^m v^b))_K$$

For the first term in the right hand side of the last equation, it follows from (42) and (67) that

$$((-\Delta)^m (v - p), v)_K = ((-\Delta)^m (v - p), Q^K_{k-2m} v)_K = ((-\Delta)^m (v - p), Q^K_{k-2m} v)_K$$

$$= (Q^K_{k-2m}((-\Delta)^m (v - p)), v)_K = 0.$$

Then we acquire from the inverse inequality for polynomials (4) and (68) that

$$|v - v^b|_{m,K}^2 \lesssim \| (-\Delta)^m (v - v^b - p) \|_{0,K} \| v^b \|_{0,K} + |p|_{m,K} \| v^b \|_{m,K}$$

$$\lesssim h^K_\ell (|v - v^b|_{m,K} + |p|_{m,K}) \| v^b \|_{0,K} + |p|_{m,K} \| v^b \|_{m,K}$$

$$\lesssim h^K_\ell (|v - v^b|_{m,K} \| v^b \|_{0,K} + |v|_{m,K} \| v^b \|_{m,K}$$

$$\lesssim h^K_\ell (|v - v^b|_{m,K} \| v^b \|_{0,K} + |v|_{m,K} (h^{-m} v^b \| v^b \|_{0,K} + |v^b|_{m,K}),$$

which gives

$$|v - v^b|_{m,K}^2 \lesssim h^{-2m} \| v^b \|_{0,K}^2 + |v|_{m,K} (h^{-m} \| v^b \|_{0,K} + |v^b|_{m,K}).$$

Hence

$$h^2_{2m} |v|_{m,K}^2 \lesssim h^2_{2m} |v^b|_{0,K}^2 + h^2_{2m} |v^b|_{m,K}^2$$

$$\lesssim h^2_{2m} |v|_{m,K}^2 (\| v^b \|_{0,K} + h^{-m} |v^b|_{m,K}) + |v^b|_{0,K}^2 + h^2_{2m} |v^b|_{m,K}^2.$$
which means
\[h^{2m}_K |v|^2_{m,K} \lesssim \|v\|_{0,K}^2 + h^{2m}_K |\partial^\beta v|^2_{m,K}. \]

Therefore (65) holds from (66).

5. Conforming Virtual Element Method for a Polyharmonic Equation

In this section we will adopt the constructed conforming virtual elements to discretize the following polyharmonic equation with a lower order term: find \(u \in H^m_0(\Omega) \) such that
\[
(\nabla^m u, \nabla^m v) + c(u, v) = (f, v) \quad \forall \ v \in H^m_0(\Omega),
\]
where \(f \in L^2(\Omega) \) and constant \(c \geq 0 \).

5.1. Conforming virtual element method. Let the global virtual element space

\[
V_h := \{ v_h \in H^m_0(\Omega) : v_h|_K \in V^m_K(K) \text{ for each } K \in T_h \}.
\]

To define the discrete bilinear form, we first introduce the stabilization term
\[
S_K(w, v) := \sum_{r=1}^n \sum_{F \in F(r)(K)} \sum_{a \in A_r} h^{r+2|\alpha| - 2m}_K \left(Q^{E-2m+|\alpha|} K \frac{\partial^{\alpha} w}{\partial \nu_F}, Q^{E-2m+|\alpha|} K \frac{\partial^{\alpha} v}{\partial \nu_F} \right)_F
\]
for any \(w, v \in V^m_K(K) \). When \(k = m \), the stabilization term will reduce to
\[
S_K(w, v) = \sum_{\delta \in F^n(K)} \sum_{j=0}^{m-1} h^{n+2j-2m}_K (\nabla^j w)(\delta) : (\nabla^j v)(\delta).
\]

By (64), we acquire the norm equivalence of the stabilization term
\[
S_K(v - \Pi^K_K v, v - \Pi^K_K v) \approx |v - \Pi^K_K v|^2_{m,K} \quad \forall \ v \in V^m_K(K).
\]

Next define the linear form \(a_h(\cdot, \cdot) : V_h \times V_h \to \mathbb{R} \) as
\[
a_h(w_h, v_h) := \sum_{K \in T_h} a_{h,K}(w_h, v_h),
\]
where
\[
a_{h,K}(w_h, v_h) := (\nabla^m \Pi^K_K w_h, \nabla^m \Pi^K_K v_h)_K + S_K(w_h - \Pi^K_K w_h, v_h - \Pi^K_K v_h) + c(Q_h^m w_h, Q_h^m v_h).
\]

Clearly we obtain from (33) and (31) that
\[
a_{h,K}(v, q) = (\nabla^m v, \nabla^m q)_K + c(v, q)_K \quad \forall \ v \in V^m_K(K), q \in P_k(K).
\]

Lemma 5.1. We have
\[
a_{h,K}(w, v) \lesssim (|w|_{m,K} + \|w\|_{0,K})(|v|_{m,K} + \|v\|_{0,K}) \quad \forall \ w, v \in V^m_K(K),
\]
\[
a_{h}(v_h, v_h) \approx |v_h|^2_{m,K} \quad \forall \ v_h \in V_h.
\]

Proof. Let \(v \in V^m_K(K) \). By (70), we get
\[
a_{h,K}(v, v) \approx |v|^2_{m,K} + c|Q^K_K v|_{0,K}^2,
\]
which implies (72), and (73) by the Poincaré inequality. \(\square \)
With previous preparations, we propose the following conforming virtual element method for the polyharmonic equation (69): find $u_h \in V_h$ such that
\begin{equation}
 a_h(u_h, v_h) = \langle f, v_h \rangle \quad \forall \ v_h \in V_h,
\end{equation}
where $\langle f, v_h \rangle := \sum_{K \in \mathcal{T}_h} (f, Q^K v_h)_K$. Due to (73), the virtual element method (74) is well-posed.

5.2. Interpolation error estimate. To derive the error estimate of the virtual element method (74), we define an interpolation operator $I_h : H_0^m(\Omega) \rightarrow V_h$ based on the DoFs (28)-(30): for any $v \in H_0^m(\Omega)$, $I_h v \in V_h$ is determined by
\begin{equation}
 Q^K_{k-2m}(I_h v) = Q^K_{k-2m} v,
\end{equation}
\begin{equation}
 Q^F_{k-2m+|\alpha|} \frac{\partial^{(|\alpha|)}}{\partial v^\alpha_F} = \frac{1}{|F|} \sum_{K \in F} Q^K_{k-2m+|\alpha|} \frac{\partial^{(|\alpha|)}}{\partial v^\alpha_F} \quad \forall \ n \in \mathbb{R}, \ |\alpha| \leq m - 1,
\end{equation}
for each $K \in \mathcal{T}_h$, interior $F \in \mathcal{F}_h$, $r = 1, \cdots, n$, $\alpha \in A_r$, and $|\alpha| \leq m - 1$, where \mathcal{T}_F is the set of all n-dimensional polytopes in \mathcal{T}_h sharing face F.

Lemma 5.2. Let $s \geq m$. It holds
\begin{equation}
 \sum_{j=0}^m h^j |I_h v|_j \lesssim h^m|{v}|_m \quad \forall \ \v \in H^s(\Omega) \cap H_0^m(\Omega).
\end{equation}

Proof. Since $Q^K_{k-2m}(Q^K v - I_h v) = Q^K_{k-2m} v - Q^K_{k-2m}(I_h v) = 0$, it follows from (59) and the definition of $I_h v$ that
\begin{equation}
 \sum_{K \in \mathcal{T}_h} |Q^K v - I_h v|_{j,K}^2 \lesssim \sum_{K \in \mathcal{T}_h} \sum_{r=1}^m \sum_{F \in \mathcal{F}^r(K)} \sum_{\alpha \in A_r, |\alpha| \leq m - 1} h^{r+2|\alpha|-2j} \left\| Q^F_{k-2m+|\alpha|} \frac{\partial^{(|\alpha|)}}{\partial v^\alpha_F} \right\|_{0,F}^2 \lesssim \sum_{K \in \mathcal{T}_h} \sum_{r=1}^m \sum_{F \in \mathcal{F}^r(K)} \sum_{\alpha \in A_r, |\alpha| \leq m - 1} \sum_{K' \in \mathcal{T}_F} h^{r+2|\alpha|-2j} \left\| \frac{\partial^{(|\alpha|)}}{\partial v^\alpha_F} - \frac{\partial^{(|\alpha|)}}{\partial v^\alpha_{K'}} \right\|_{0,F}^2 \lesssim \sum_{K \in \mathcal{T}_h} \sum_{r=1}^m \sum_{F \in \mathcal{F}^r(K)} \sum_{i=0}^{m-1} \sum_{K' \in \mathcal{T}_F} h^{r+2i-2j} \left\| \nabla^i (Q^K v) - \nabla^i (Q^K_{K'}) \right\|_{0,F}^2.
\end{equation}

By the inverse inequality for polynomials (4), the similar argument as in [39, Lemma 3.3] and [20, Lemma 2.1], and the trace inequality (2),
\begin{equation}
 \sum_{K \in \mathcal{T}_h} |Q^K v - I_h v|_{j,K}^2 \lesssim \sum_{K \in \mathcal{T}_h} \sum_{r=1}^m \sum_{F \in \mathcal{F}^r(K)} \sum_{i=0}^{m-1} h^{r+2i-2j} \left\| \nabla^i (Q^K v) - \nabla^i (Q^K_{K'}) \right\|_{0,F}^2 \lesssim \sum_{K \in \mathcal{T}_h} \sum_{r=1}^{m-1} h^{r+2i-2j} \left\| \nabla^i v - \nabla^i (Q^K v) \right\|_{0,\partial K}^2 \lesssim \sum_{K \in \mathcal{T}_h} \sum_{i=0}^{m-1} h^{2i-2j} \left(|v - Q^K v|_{i,K}^2 + h^2 |v - Q^K v|_{i+1,K}^2 \right).
\end{equation}
Hence
\[
\sum_{K \in T_h} |Q^K v - I_h v|_{j, K}^2 \lesssim \sum_{K \in T_h} \sum_{i=0}^m h_K^{2i-2j} |v - Q^K v|_{i, K}^2.
\]

Then we achieve from the triangle inequality that
\[
|v - I_h v|_{j}^2 \lesssim \sum_{K \in T_h} \sum_{i=0}^m h_K^{2i-2j} |v - Q^K v|_{i, K}^2.
\]

Thus (75) holds from (5). \(\square\)

5.3. **Error estimate.** With the interpolation error estimate (75), we can present the a priori error estimate of the conforming virtual element method (74). Define a global operator \(\Pi_h : V_h \to L^2(\Omega)\) by \((\Pi_h v_h)|_K := \Pi^K(v_h)|_K\) for each \(K \in T_h\). For an element-wise smooth function \(v\), let the usual squared broken semi-norm
\[
|v|^2_{m, h} := \sum_{K \in T_h} |v|^2_{m, K}.
\]

Theorem 5.3. Let \(u \in H^s(\Omega) \cap H_0^m(\Omega)\) with \(s \geq m\) be the solution of the polyharmonic equation (69), and \(u_h \in V_h\) be the solution of the conforming virtual element method (74). Assume the mesh \(T_h\) satisfies conditions (A1) and (A2). Assume \(f \in H^m(T_h)\). Then we have
\[
|u - u_h|_{m} \lesssim h^{m(s,k+1) - m}|u|_{\min\{s,k+1\}} + \text{osc}_h(f),
\]
\[
|u - \Pi_h u_h|_{m, h} \lesssim h^{m(s,k+1) - m}|u|_{\min\{s,k+1\}} + \text{osc}_h(f),
\]
where \(\text{osc}_h^2(f) := \sum_{K \in T_h} h_K^{2m} \|f - Q^K f\|_{0,K}^2\).

Proof. Let \(v_h = I_h u - u_h \in H_0^m(\Omega)\) for simplicity. Thanks to (71) and (72),
\[
a_h(K, I_h u, v_h) - (\nabla^m u, \nabla^m v_h)_K - c(u, v_h)_K
= a_h(K, I_h u - Q^K u, v_h) - (\nabla^m (u - Q^K u), \nabla^m v_h)_K - c(u - Q^K u, v_h)_K
\lesssim (|I_h u - Q^K u|_{m,K} + |I_h u - Q^K u|_{0,K})(|v_h|_{m,K} + |v_h|_{0,K})
+ (|u - Q^K u|_{m,K} + |u - Q^K u|_{0,K})(|v_h|_{m,K} + |v_h|_{0,K})
\lesssim (|u - I_h u|_{m,K} + |u - I_h u|_{0,K})(|v_h|_{m,K} + |v_h|_{0,K})
+ (|u - Q^K u|_{m,K} + |u - Q^K u|_{0,K})(|v_h|_{m,K} + |v_h|_{0,K}).
\]

By (5), it holds
\[
(f, v_h) - (f, v_h) = \sum_{K \in T_h} (f, v_h - Q^K v_h)_K = \sum_{K \in T_h} (f - Q^K f, v_h - Q^K v_h)_K
\lesssim \sum_{K \in T_h} h_K^{m} \|f - Q^K f\|_{0,K} |v_h|_{m,K} \lesssim \text{osc}_h(f) |v_h|_{m}.
\]

Combining the last two inequalities, we get from (69), (75), (5) and the Poincaré inequality that
\[
a_h(I_h u, v_h) - (f, v_h) = a_h(I_h u, v_h) - (\nabla^m u, \nabla^m v_h) - c(u, v_h) + (f, v_h) - (f, v_h)
\lesssim (h^{m(s,k+1) - m}|u|_{\min\{s,k+1\}} + \text{osc}_h(f)) |v_h|_{m}.
\]
Then we acquire from (73) and (74) that
\[
\|v_h\|_m^2 \approx a_h(I_h u - u_h, v_h) = a_h(I_h u, v_h) - \langle f, v_h \rangle \lesssim (h^{\min\{s,k+1\}} - m|u|_{\min\{s,k+1\}} + \text{osc}_h(f))|v_h|_m.
\]

As a result,
\[
|I_h u - u_h|_m \lesssim h^{\min\{s,k+1\}} - m|u|_{\min\{s,k+1\}} + \text{osc}_h(f).
\]

Therefore (76) holds from the last inequality and (75).

Next we prove (77). By (33), on each \(K \in \mathcal{T}_h\) we have
\[
u - \Pi^K u_h = u - u_h + \Pi^K (Q^K u - u_h) - (Q^K u - u_h).
\]

Then it follows from (63) and the triangle inequality that
\[
|u - \Pi_h u_h|_m \lesssim |u - u_h|_m + \sum_{K \in \mathcal{T}_h} |\Pi^K (Q^K u - u_h) - (Q^K u - u_h)|_m,K \lesssim |u - u_h|_m + \sum_{K \in \mathcal{T}_h} |u - Q^K u|_m,K.
\]

Finally we arrive at (77) from (76) and (5). \(\Box\)

Under the assumption that the partition \(\mathcal{T}_h\) is quasi-uniform and \(h\) is sufficiently small, we can show that the condition number of the resulting coefficient matrix of the conforming virtual element method (74) is \(O(h^{2m})\), whose order is only related to the order of the differential operator. See also Section 3.4 in [9].

6. Numerical results

In this section, we provide two examples to numerically verify the convergence of the \(H^m\)-conforming virtual element method (74) with \(c = 1\). Let \(\Omega = (0,1) \times (0,1)\). And the rectangular domain \(\Omega\) is partitioned by the convex polygonal mesh \(\mathcal{T}_0\) and non-convex polygonal mesh \(\mathcal{T}_1\) respectively, shown in Figure 2. The numerical examples are implemented by using the FEALPy package [42].

![Convex polygon mesh \(\mathcal{T}_0\)(left) and non-convex polygon mesh \(\mathcal{T}_1\)(right).](image)

Example 6.1. Consider polyharmonic equation (69) with \(m = 2\). Take the exact solution \(u = \sin^2(\pi x)\sin^2(\pi y)\), and the right-hand side \(f\) is computed from polyharmonic equation (69).
Choose $k = 2, 3, 4, 5$ for the virtual element method (74). The numerical results are listed in Figure 3. We can see that $|u - \Pi_h u_h|_{2,h} = O(h^{k-1})$, which coincides with Theorem 5.3.

![Figure 3](image1.png)

Figure 3. Error $|u - \Pi_h u_h|_{2,h}$ of Example 6.1 with $m = 2$ on convex polygon mesh T_0 (left) and non-convex polygon mesh T_1 (right) with $k = 2, 3, 4, 5$.

Example 6.2. Consider polyharmonic equation (69) with $m = 3$. Take the exact solution $u = \sin^3(\pi x)\sin^3(\pi y)$, and the right-hand side f is computed from polyharmonic equation (69).

In this example we set $k = 3, 4, 5, 6$, and present numerical results in Figure 4. We observe from Figure 4 that $|u - \Pi_h u_h|_{3,h} = O(h^{k-2})$, which again agrees with Theorem 5.3.

![Figure 4](image2.png)

Figure 4. Error $|u - \Pi_h u_h|_{3,h}$ of Example 6.2 with $m = 3$ on convex polygon mesh T_0 (left) and non-convex polygon mesh T_1 (right) with $k = 3, 4, 5, 6$.

Acknowledgements

The author would like to thank Prof. Long Chen in University of California, Irvine for the insightful discussion.

References

[1] R. A. Adams and J. J. F. Fournier. *Sobolev spaces*. Elsevier/Academic Press, Amsterdam, second edition, 2003. 19

[2] M. S. Agranovich. To the theory of Dirichlet and Neumann problems for linear strongly elliptic systems with Lipschitz domains. *Funct. Anal. Appl.*, 41(4):247–263, 2007. 12, 13
CONFORMING VIRTUAL ELEMENTS IN ARBITRARY DIMENSION

[3] M. S. Agranovich. Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary. *Russ. J. Math. Phys.*, 15(2):146–155, 2008. 12, 13

[4] B. Ahmad, A. Alsaeidi, F. Brezzi, L. D. Marini, and A. Russo. Equivalent projectors for virtual element methods. *Comput. Math. Appl.*, 66(3):376–391, 2013. 2, 7, 8, 12

[5] P. F. Antonietti, G. Manzini, S. Scacchi, and M. Verani. A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations. *Math. Models Methods Appl. Sci.*, 31(14):2825–2853, 2021. 2, 7, 12

[6] P. F. Antonietti, G. Manzini, and M. Verani. The fully nonconforming virtual element method for biharmonic problems. *Math. Models Methods Appl. Sci.*, 28(2):387–407, 2018. 2

[7] P. F. Antonietti, G. Manzini, and M. Verani. The conforming virtual element method for polyharmonic problems. *Comput. Math. Appl.*, 79(7):2021–2034, 2020. 2, 7

[8] J. Argyris, I. Fried, and D. Scharpf. The TUBA family of plate elements for the matrix displacement method. *The Aeronautical Journal of the Royal Aeronautical Society*, 72:701–709, 1968. 1, 2

[9] L. Beirão da Veiga, F. Dassi, and A. Russo. A \(C^1 \) virtual element method on polyhedral meshes. *Comput. Math. Appl.*, 79(7):1936–1955, 2020. 2, 9, 18, 31

[10] L. Beirão da Veiga, C. Lovadina, and A. Russo. Stability analysis for the virtual element method. *Math. Models Methods Appl. Sci.*, 27(13):2557–2594, 2017. 3

[11] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles of virtual element methods. *Math. Models Methods Appl. Sci.*, 23(1):199–214, 2013. 2, 7

[12] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitchhiker’s guide to the virtual element method. *Math. Models Methods Appl. Sci.*, 24(8):1541–1573, 2014. 2

[13] L. Beirão da Veiga and G. Manzini. A virtual element method with arbitrary regularity. *IMA J. Numer. Anal.*, 34(2):759–781, 2014. 2, 7

[14] J. H. Bramble and M. Zlámal. Triangular elements in the finite element method. *The Aeronautical Journal of the Royal Aeronautical Society*, 72:701–709, 1968. 1

[15] S. C. Brenner, Q. Guan, and L.-Y. Sung. Some estimates for virtual element methods. *Comput. Math. Appl.*, 175(4):553–574, 2017. 3

[16] S. C. Brenner and L. R. Scott. *The mathematical theory of finite element methods*. Springer, New York, third edition, 2008. 6, 19

[17] S. C. Brenner and L.-Y. Sung. \(C^0 \) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. *J. Sci. Comput.*, 22/23:83–118, 2005. 2

[18] S. C. Brenner and L.-Y. Sung. Virtual element methods on meshes with small edges or faces. *Math. Models Methods Appl. Sci.*, 28(7):1291–1336, 2018. 3, 6, 19

[19] S. C. Brenner and L.-Y. Sung. Virtual enriching operators. *Calcolo*, 56(4):Paper No. 44, 25, 2019. 2, 9

[20] S. C. Brenner, K. Wang, and J. Zhao. Poincaré-Friedrichs inequalities for piecewise \(H^2 \) functions. *Numer. Funct. Anal. Optim.*, 25(5-6):463–478, 2004. 29

[21] F. Brezzi and L. D. Marini. Virtual element methods for plate bending problems. *Comput. Methods Appl. Mech. Engrg.*, 253:455–462, 2013. 2, 7

[22] L. Chen and J. Huang. Some error analysis on virtual element methods. *Calcolo*, 55(1):55–57, 2018. 3

[23] L. Chen and X. Huang. Nonconforming virtual element method for 2nth order partial differential equations in \(\mathbb{R}^n \). *Math. Comp.*, 89(324):1711–1744, 2020. 1, 2, 3, 8, 11, 12

[24] L. Chen and X. Huang. Geometric decompositions of the simplex lattice and smooth finite elements in arbitrary dimension. *arXiv preprint arXiv:2111.10712*, 2021. 1

[25] L. Chen and X. Huang. *Discrete Hessian complexes in three dimensions*. SEMA SIMAI Springer Series. Springer International Publishing, 2022.

[26] P. G. Ciarlet. *The finite element method for elliptic problems*. North-Holland Publishing Co., Amsterdam, 1978. 2

[27] G. Fu, J. Guzmán, and M. Neilan. Exact smooth piecewise polynomial sequences on Alfeld splits. *Math. Comp.*, 89(323):1059–1091, 2020. 1

[28] P. Grisvard. *Elliptic problems in nonsmooth domains*. Pitman (Advanced Publishing Program), Boston, MA, 1985. 6, 8

[29] J. Hu, T. Lin, and Q. Wu. A construction of \(C^\infty \) conforming finite element spaces in any dimension. *arXiv preprint arXiv:2103.14924*, 2021. 1, 2, 18
[30] J. Hu and S. Zhang. The minimal conforming H^k finite element spaces on R^n rectangular grids. *Math. Comp.*, 84(292):563–579, 2015.

[31] J. Hu and S. Zhang. A canonical construction of H^m-nonconforming triangular finite elements. *Ann. of Appl. Math.*, 33(3):266–288, 2017.

[32] J. Hu and S. Zhang. A cubic H^k-nonconforming finite element. *Commun. Appl. Math. Comput.*, 1(1):81–100, 2019.

[33] J. Huang and Y. Yu. A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations. *J. Comput. Appl. Math.*, 386:113229, 20, 2021.

[34] X. Huang. Nonconforming virtual element method for 2mth order partial differential equations in R^n with $m > n$. *Calcolo*, 57(4):Paper No. 42, 38, 2020.

[35] P. D. Lamberti and L. Provenzano. On trace theorems for Sobolev spaces. *Matematiche (Catania)*, 75(1):137–165, 2020.

[36] G. Verchota. The Dirichlet problem for the polyharmonic equation in Lipschitz domains. *Indiana Univ. Math. J.*, 39(3):671–702, 1990.

[37] A. Ženíšek. Interpolation polynomials on the triangle. *Numer. Math.*, 15:283–296, 1970.

[38] A. Ženíšek. Tetrahedral finite C^m-elements. *Acta Univ. Carolinae—Math. et Phys.*, 15(1-2):189–193, 1974.

[39] M. Wang. On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. *SIAM J. Numer. Anal.*, 39(2):363–384, 2001.

[40] M. Wang and J. Xu. The Morley element for fourth order elliptic equations in any dimensions. *Numer. Math.*, 103(1):155–169, 2006.

[41] S. Wu and J. Xu. Interior penalty nonconforming finite element methods for 2mth order PDEs in R^n. arXiv preprint arXiv:1710.07678, 2017.

[42] J. Xu. Finite neuron method and convergence analysis. *Commun. Comput. Phys.*, 28(5):1707–1745, 2020.