Common Fixed Point problem for Classes of Nonlinear Maps in Hilbert Space

Z H Maibed
Department of Mathematics, College of Education for Pure Science Ibn Al-Haithem University of Baghdad
mrs_ zena.hussein@yahoo.com

Abstract. in this article, we present a definition of k-generalized map independent of non-expansive map and give infinite families of non-expansive and k-generalized maps new iterative algorithms. Such algorithms are also studied in the Hilbert spaces as the potential to exist for asymptotic common fixed point.

1. Introduction
We still presume That's the whole \(\mathcal{H} \) be a (R-H-S) real Hilbert space \(C \subseteq \mathcal{H} \). Fixed point Theory(FPT) takes a great deal of literature, because it provides useful tools to solve a variety of design problems in different fields. In recent years, the researchers used various iterative algorithms to estimate fixed and specific points of contractive form\[1\-5, 9, 10, 12\-22\]. Nonetheless, once the presence of a (FP) of some maps is known then it is not a simple task to consider a fixedpoint value, which is why we use algorithms to compute them. By the time a lot of iterative algorithms have been created and all of them can not be guarded. Recall that single-valued \(f: C \rightarrow C \) is non-expansive, if it is contraction with \(k = 1 \). Also, every multi-valued map \(B \) is said to be monotone if: \(\langle z_1 - z_2, w_1 - w_1 \rangle \geq 0 \) \(\forall z_1 \in D(B), \forall w_1 \in B(z_1) \). And it is said to be maximal-monotone(max monotone) if \(\forall (z, h) \in \mathcal{H} \times \mathcal{H} , \langle z - w, h - k \rangle \geq 0 \) and \(\forall (w, k) \in \text{gph}(B) \) then we get, \(h \in B(z) \). Consider a single-valued non-expansive map as follows: \(J_{\tau_n} = (I + \tau_n A^{-1})(x) \), which is called resolvent map where \(\langle \tau_n \rangle \) be a seq in \(R^+ \).

1.1 Lemma [7] Let \(< \alpha_n > \) and \(< \beta_n > \) are seqs of in \(R^+ \) such that \(\alpha_{n+1} \leq \alpha_n + \beta_n \), for each \(n \geq 1 \). If \(\sum_{n=0}^{\infty} \alpha_n \) converge then \(\lim_{n \rightarrow \infty} \alpha_n \) exists.

1.2 Definition: [4]
Let \(T: C \rightarrow C \) a map. Then, every \(p \in C \) is called asymptotic, fixed point(AFP) of \(T \), if \(\exists \langle x_n \rangle \) is seq in \(C \) such that \(x_n \rightarrow p \) and \(\|x_n - T(x_n)\| \rightarrow 0 \).

1.3 Lemma: [5]
If C be a convex closed nonempty subset of $(R-H-S)$ and T is non-expansive multi-valued map such that $\text{Fix}(T) \neq \emptyset$. Then T is demi-closed, i.e., $x_n \to p$ and $\lim_{n \to \infty} d(x_n, T(x_n)) = 0$. Then $p \in T(p)$.

1.4 Lemma: [6]

If \mathcal{H} be a $(H-S)$, C be a convex nonempty closed subset of \mathcal{H} if (x_n) is a seq in \mathcal{H} and $\|x_{n+1} - x\| \leq \|x_n - x\|$ for all $n \in N, x \in C$. Then $(P_C(x_n)) \to q; q \in C$.

In this article, we analyze the convergence of a new algorithm for k-generalization to an ACFP.

2. Main Results

We are now implementing the definition of k-generalized map as follows:

2.1 Definition: A map f is called k-generalized map if for each seq (z_n) in $[0,1]$ converges to 0 there exists a in \mathbb{Z}^+:

$$||f(x) - f(w)||^2 \leq (1 - k_n)||x - w||^2 + k|\langle (x - f_x)f_x, (w - f_w)f_w \rangle|,$$

for all $k > 0$ and $x, w \in C$.

The concept of k-generalized map is independent of concepts contraction and non-expansive map. As shown by the examples:

2.2 Example: Consider the map $f: (0, \infty) \to (0, \infty)$ s.t $f(x) = 2x$.

the map f is not contraction and not non-expansive but it is k-generalized map.

2.3 Example: Consider the map $f: \mathcal{H} \to \mathcal{H}$ s.t $f(x) = x$.

The map f is not k-generalized map but it is a contraction and non-expansive at the same time.

2.4 Theorem: Let A_1, A_2, \ldots, A_m be max monotone multivalued maps, C convex closed nonempty in \mathcal{H}, (f_n) is a seq of non-expansive maps and (T_n) is bounded seq of k-generalized maps on C. Let $(a_n), (b_n)$ be seqs in $(0,1]$ converges to 0, such that $a_n + b_n = 1$ and $\sum_{i=1}^{m} y_{n,i} = 1$. Define the iterative algorithm (x_n) as follows:

$$y_n = b_n x_n + (1 - b_n) \sum_{i=1}^{m} y_{n,i} J_{T_n}^{i} x_n$$

$$x_{n+1} = a_n [b_n T_n x_n + (1 - b_n)f_n y_n] + (1 - a_n)f_n x_n$$

If $(\cap_{n=1}^{\infty} \text{Fix}(J_{T_n}^{i})) \cap (\cap_{n=1}^{\infty} \text{Fix}(T_n)) \cap (\cap_{n=1}^{\infty} \text{Fix}(f_n)) \neq \emptyset$. Then (x_n) has converges weakly to an ACFP of T_n, for each $n \in N$. Moreover $(P_C(x_n)) \to q; q \in C$.

Proof:

Let, $p \in (\cap_{n=1}^{\infty} \text{Fix}(J_{T_n}^{i})) \cap (\cap_{n=1}^{\infty} \text{Fix}(T_n)) \cap (\cap_{n=1}^{\infty} \text{Fix}(f_n))$
\[\|y_n - p\|^2 = \left\| \sum_{i=1}^{m} y_{n,i} f_{r_{n,i}} (x_n - p) \right\|^2 \]
\[\leq b_n \|x_n - p\|^2 + (1 - b_n) \sum_{i=1}^{m} y_{n,i} \|x_n - p\|^2 \leq b_n \|x_n - p\| + (1 - b_n)\]
\[\|x_n - p\|^2 = \|x_n - p\|^2\]

Now, for each seq \(\langle k_n \rangle\) in \([0,1]\) converges to 0, \(\exists, k\) lies in \(R^+\) s.t

\[\|x_n - p\|^2 \to \|x_n - p\|^2\]

By lemma (1.1), we get \(\lim_{n \to \infty} \|x_n - p\|\) exists and hence \(\langle f_n \rangle\) are also bounded. So by lemma (1.4) we get \(\langle P_C(x_n) \rangle\) converges strongly to the point in \(C\).

\[\|x_n - T_n x_n\| \leq \left\| \frac{b_n}{1 - a_n}(f_n)_n y_n + (1 - b_n) \right\| \frac{f_n}{1 - a_n} x_n - p \right\|^2\]
\[\leq a_n b_n \|T_n x_n - p\|^2 + (1 - b_n) \|f_n y_n - p\|^2 \leq a_n \left\| \frac{b_n}{1 - a_n}(f_n) y_n - p \right\| \|f_n x_n - p\|^2\]
\[\leq a_n b_n \|x_n - p\|^2 + (1 - b_n) \|f_n y_n - p\|^2\]
\[\leq a_n \frac{b_n}{1 - a_n} \|x_n - p\|^2 + (1 - b_n) \|x_n - p\|^2\]
\[\leq a_n \frac{b_n}{1 - a_n} \|x_n - p\|^2 + (1 - b_n) \|x_n - p\|^2\]
\[\leq a_n \|x_n - p\|^2 + (1 - b_n) \|x_n - p\|^2 = \|x_n - p\|^2\]

By lemma (1.1), we get \(\lim_{n \to \infty} \|x_n - p\|\) exists and hence \(\langle f_n \rangle\) are also bounded. So by lemma (1.4) we get \(\langle P_C(x_n) \rangle\) converges strongly to the point in \(C\).

\[\|x_n - T_n x_n\| \leq a_n \frac{b_n}{1 - a_n} \|T_n x_n - x_n - 1\| + (1 - b_n) \|f_n y_n - T_n x_n\|\]
\[\leq a_n \frac{b_n}{1 - a_n} \|T_n x_n - x_n\| + (1 - b_n) \|f_n y_n - T_n x_n\|\]

Since \(\langle f_n \rangle\) and \(\langle T_n \rangle\) are also bounded and \(a_n, b_n\) are seqs in \((0,1]\) converges to 0. As \(n \to \infty\), we get \(\|x_n - T_n x_n\| \to 0\).

Now, since \(\langle x_n \rangle\) is bounded then there exists subseq \(\langle x_{nk} \rangle\) of \(x_n\) such that \(x_{nk} \to z\) and \(\|x_n - T_n x_n\| \to 0\). Then we get,

\(z\) is an ACFP of \(T_n\), for each \(n \in N\).

Then the iterative algorithm \(\langle x_n \rangle\) has converges weakly to an ACFP of \(T_n\), for each \(n \in N\). ■

2.5 Definition: Let \(\langle T_n \rangle\) be a seq of maps. Then, we say that \(\langle T_n \rangle\) has property \(F\) if \(\langle T_n \rangle\) satisfy the condition, \(\|T_n - z\|^2 \leq \|T_n\|^2\), for each \(z \in (\cap_{n=1}^{\infty} \text{Fix}(T_n))\).

In the following theorem we study the convergence strongly of the new iteration process:
\[y_n = \hat{b}_n \left[\frac{a_n x_n + (1 - a_n)}{\sum_{i=1}^{m} y_{n,i} f_{r_{n,i}} x_n} \right] + (1 - \hat{b}_n) g_n x_n \]

\[x_{n+1} = a_n [a_n T_n x_n + b_n f_n x_n + c_n g_n x_n] \\
+ \hat{b}_n [a_n b_n (T_n x_n - f_n x_n) + b_n (f_n x_n - f_n T_n x_n) + c_n a_n (f_n T_n x_n - T_n x_n) + d_n g_n y_n] \] (2.1)

where, \(\langle a_n \rangle \), \(\langle b_n \rangle \), \(\langle c_n \rangle \), \(\langle d_n \rangle \), and \(\langle a_n \rangle \) are sequences in \([0, 1]\) such that \(\langle a_n \rangle \), \(\langle b_n \rangle \) converges to 0, \(a_n \geq b_n \). Such that

1. \(a_n + b_n + c_n = 1 \), \(\sum_{i=1}^{m} y_{n,i} \) and \(d_n = a_n b_n + b_n c_n + c_n a_n = 1 \)

2. \(T_n \) has property \(\mathcal{F} \).

2.6 Theorem: Let \(A_2, A_2, \ldots , A_m \) be max monotone multi-valued maps and \(\emptyset \neq C \) closed convex in \(X \), \(\langle T_n \rangle \) is bounded, seqs. of \(k \) - generalized maps on \(C \) and \(\langle f_n \rangle \), \(\langle g_n \rangle \) are seqs of non-expansive map on \(C \). If the iteration process defined as (2.1) and \(\left(Fix(f_{r_{n,i}}) \right) \cap \left(\bigcap_{n=1}^{\infty} Fix(T_n) \right) \cap \left(\bigcap_{n=1}^{\infty} Fix(f_n) \right) \cap \left(\bigcap_{n=1}^{\infty} Fix(g_n) \right) \neq \emptyset \). Then \(\langle x_n \rangle \) has converges weakly to an ACFP of \(T_n \), for each \(n \in N \). Moreover \(\langle P_C(x_n) \rangle \to q; q \in C \).

Proof: Let \(p \in \left(Fix(f_{r_{n,i}}) \right) \cap \left(\bigcap_{n=1}^{\infty} Fix(T_n) \right) \cap \left(\bigcap_{n=1}^{\infty} Fix(f_n) \right) \cap \left(\bigcap_{n=1}^{\infty} Fix(g_n) \right) \)

\[\| y_n - p \|^2 \leq \frac{\hat{b}_n \left[a_n (x_n - p) + (1 - a_n) \right]}{\sum_{i=1}^{m} y_{n,i} f_{r_{n,i}} x_n - p} + (1 - \hat{b}_n) g_n x_n - p \]

\[\leq \hat{b}_n \left[a_n (x_n - p) + (1 - a_n) \right] \left(\sum_{i=1}^{m} y_{n,i} f_{r_{n,i}} x_n - p \right) + (1 - \hat{b}_n) \| g_n x_n - p \|^2 \]

\[\leq b_n \| x_n - p \|^2 + (1 - a_n) \| x_n - p \|^2 + (1 - \hat{b}_n) \| x_n - p \|^2 \]

\[\| y_n - p \|^2 = \hat{b}_n \| x_n - p \|^2 + (1 - \hat{b}_n) \| x_n - p \|^2 \]

\[= \| x_n - p \|^2 \]

Hence, \(\| y_n - p \|^2 \leq \| x_n - p \|^2 \)

Now, by (2.1), then we have
\[\|x_{n+1} - p\|^2 \leq \alpha_n\|\alpha_n T_n x_n + b_n f_n x_n + c_n g_n x_n - p\|^2 + b_n \|a_n b_n (T_n x_n - f_n x_n) + b_n c_n (f_n x_n - T_n x_n) + c_n a_n (f_n T_n x_n - T_n x_n) + d_n g_n y_n - p\|^2\]

\[\|x_{n+1} - p\|^2 \leq \alpha_n a_n \|T_n x_n - p\|^2 + \alpha_n b_n \|f_n x_n - p\|^2 + \alpha_n c_n \|g_n x_n - p\|^2 + \alpha_n a_n \|f_n T_n x_n - T_n x_n\|^2 + \alpha_n b_n \|T_n x_n - f_n x_n\|^2 + \alpha_n a_n \|f_n T_n x_n - T_n x_n\|^2 + \alpha_n b_n \|f_n x_n - f_n T_n x_n - p\|^2 + b_n c_n \|f_n x_n - T_n x_n - p\|^2 + b_n c_n \|f_n T_n x_n - T_n x_n - p\|^2\]

\[\leq \alpha_n a_n \|T_n x_n - p\|^2 + \alpha_n b_n \|f_n x_n - p\|^2 + \alpha_n c_n \|g_n x_n - p\|^2 + \alpha_n a_n \|f_n T_n x_n - T_n x_n\|^2 - \alpha_n a_n b_n \|T_n x_n - f_n x_n\|^2 - \alpha_n a_n c_n \|f_n T_n x_n - T_n x_n\|^2 + \alpha_n a_n b_n \|T_n x_n - f_n T_n x_n\|^2 + \alpha_n b_n c_n \|f_n x_n - f_n T_n x_n - p\|^2 + b_n c_n \|f_n x_n - T_n x_n - p\|^2\]

\[\|x_{n+1} - p\|^2 \leq \alpha_n a_n \|T_n x_n - p\|^2 + \alpha_n b_n \|f_n x_n - p\|^2 + \alpha_n c_n \|g_n x_n - p\|^2 + \alpha_n a_n \|f_n T_n x_n - T_n x_n\|^2 - \alpha_n a_n b_n \|T_n x_n - f_n x_n\|^2 - \alpha_n a_n c_n \|f_n T_n x_n - T_n x_n\|^2 + \alpha_n a_n b_n \|T_n x_n - f_n T_n x_n\|^2 + \alpha_n b_n c_n \|f_n x_n - f_n T_n x_n - p\|^2 + b_n c_n \|f_n x_n - T_n x_n - p\|^2\]

By lemma (1.1), we get \(\lim_{n \to \infty} \|x_n - p\|\) exists . Hence, \(\langle x_n \rangle\) is bounded seq , so that \(\langle g_n \rangle\), and \(\langle f_n \rangle\) are also bounded seqs

So, by lemma (1.4) we deduce \(\langle P_C(x_n) \rangle\) converges strongly to the point in \(C\).

\[\|x_n - T_n x_n\| = \|a_n' \|a_n' - T_n - x_n_{n-1} + b_n' f_n x_n - f_n x_n - c_n' g_n x_n - c_n' g_n x_n\|\]

Since \(\alpha_n' \to 0\) and \(\langle T_n \rangle, \langle f_n \rangle\) and \(\langle g_n \rangle\) are bounded , then we get

\[\|x_n - T_n x_n\| \to 0 \text{ as } n \to \infty\]

Now, since \(\langle x_n \rangle\) is bounded seq then there exists subseq \(\langle x_{nk} \rangle\) of \(\langle x_n \rangle\) such that \(x_{nk} \to z\) and since \(\|x_n - T_n x_n\| \to 0\) , then we get,

\(z\) is ACFP of \(T_n\), for all \(n \in N\).

Then the iteration process \(\langle x_n \rangle\) has converges weakly to an ACFP of \(T_n\), for all \(n \in N\). ■

In the following theorem we give a new iterative algorithms and we study the convergence for this algorithms to an asymptotic common fixed point.
2.7 Theorem: If \(\langle f_n \rangle \) be a seq of non-expansive maps on \(C \) and \(\langle T_n \rangle \) be a bounded sequence of \(k \)-generalized maps on \(C \). Define the algorithm \(\langle x_n \rangle \) as follows:

\[
y_n = a_n f_n x_n + (1 - a_n) (b_n^* T_n x_n + (1 - b_n) f_n T_n x_n)
\]

\[
x_{n+1} = b_n \left[a_n \sum_{i=1}^{m} y_{n,i} f_{n,i} x_n + (1 - a_n) f_n x_n \right] + (1 - b_n) g_n f_n y_n
\]

where \((a_n), (b_n), (a_n), (b_n) \) are seqs in \([0,1]\) such that \(a_n + b_n \leq 1 \). If \(\bigcap_{n=1}^{\infty} \text{Fix}(f_{n,i}) \cap \bigcap_{n=1}^{\infty} \text{Fix}(T_n) \cap \bigcap_{n=1}^{\infty} \text{Fix}(f_n) \neq \emptyset \). Then the iterative algorithms \(\langle x_n \rangle \) has converges weakly to an ACFP of \(T_n \), for all \(n \in \mathbb{N} \).

Proof: Let \(p \in \left(\text{Fix}(P_c) \right) \cap \left(\bigcap_{n=1}^{\infty} \text{Fix}(T_n) \right) \cap \left(\bigcap_{n=1}^{\infty} \text{Fix}(f_n) \right) \)

Since \(y_n = a_n f_n x_n + (1 - a_n) (b_n^* T_n x_n + (1 - b_n) f_n T_n x_n) \) then we have,

\[
\|y_n - p\|^2 \leq a_n \|T_n x_n - p\|^2 + (1 - a_n) \left[b_n \|T_n x_n - p\|^2 + (1 - b_n) \right]
\]

\[
\|y_n - p\|^2 \leq a_n \|x_n - p\|^2 + (1 - a_n) \left[b_n \|T_n x_n - p\|^2 + (1 - b_n) \right]
\]

\[
\leq a_n \|x_n - p\|^2 + (1 - a_n) \left[b_n \|T_n x_n - p\|^2 + (1 - b_n) \right]
\]

\[
= a_n \|x_n - p\|^2 + (1 - a_n) \|T_n x_n - p\|^2 \text{for each } \langle z_n \rangle \text{ in } [0,1] \text{ converges to } 0 \exists k \text{ lies in } R^+ \text{s.t}
\]

\[
\|y_n - p\|^2 \leq a_n \|x_n - p\|^2 + (1 - a_n) \left((1 - k_n) \|x_n - p\|^2 + k \right) (\|x_n - f_{n,i} x_n\| (p - f_n) f_n)
\]

\[
\|y_n - p\|^2 \leq a_n \|x_n - p\|^2 + (1 - a_n) \|x_n - p\|^2 = \|x_n - p\|^2
\]

\[
\|x_{n+1} - p\|^2 \leq b_n \left[a_n \sum_{i=1}^{m} y_{n,i} f_{n,i} x_n - p \right] + (1 - a_n) \|f_n x_n - p\|^2 + (1 - b_n) \|g_n f_n y_n - p\|^2
\]

\[
\|x_{n+1} - p\|^2 \leq b_n \left[a_n \sum_{i=1}^{m} y_{n,i} \|x_n - p\|^2 + (1 - a_n) \|x_n - p\|^2 \right] + (1 - b_n) \|f_n y_n - p\|^2
\]

\[
\leq b_n \|a_n\| \|x_n - p\|^2 + (1 - a_n) \|x_n - p\|^2 + (1 - b_n) \|y_n - p\|^2
\]

\[
\leq b_n \|x_n - p\|^2 + (1 - b_n) \|x_n - p\|^2 = \|x_n - p\|^2
\]

By lemma (1.1), we get \(\lim_{n \to \infty} \|x_n - p\| \) exists

Hence, the algorithm \(\langle x_n \rangle \) is bounded seq. So \(\langle f_n \rangle \) and \(\langle g_n \rangle \) also bounded sequences. So, by lemma (1.4) we deduce \(\langle P_c(x_n) \rangle \) converges strongly to the point in \(C \). Now,
As we get \(\|x_n - T_n x_n\| \rightarrow 0 \), Since \(\langle x_n \rangle \) bounded seq then there exist \(\langle x_{nk} \rangle \) subseq of \(\langle x_n \rangle \) such that \(x_{nk} \rightarrow z \). Since \(\|x_n - T_n x_n\| \rightarrow 0 \), Then we get,

\[z \] is an asymptotic-common fixed of \(T_n \), for each \(n \in N \). And hence,

the algorithm \(\langle x_n \rangle \) converges weakly to an asymptotic-common fixed point of \(T_n \), for each \(n \in N \).

References

[1] Lemoto, S. and Takahashi, W., 2009. "Approximating Common Fixed Points Of Nonexpansive Mapping and Nonsparing Mappings In Hilbert Space", Nonlinear Analysis,71,pp(2082-2089).

[2] Aoyama, K., kohsaka F. and Takahashi. W., 2011. "Proximal Point Methods for Monotone Operator in Banach Space", Taiwanese Journal of Math ,Vol.15 ,No.1, pp(259-281).

[3] Tan. K. K. and XU . H. K ., 1993. "Approximating Fixed Points Of Nonexpansive Mappings By The Ishikawa Iteration process" J. Math . Anal. Appl. 178, pp(301-308).

[4] Reich, S., 1996."A Weak Convergence,Theorems For The Alternative Method With Bregman Distance In Kartastos, AG (ed) theory and applications of nonlinear operators of Accretive and monotone type", Dekker New – York pp(313 – 318).

[5] Ruiz, D .A , Acendo, G. L. and Marquez, V.M., 2014. "Firmly Nonexpansie Mappings"J. Nonline Analysis,vol 15p(1).

[6] Takahashi, W. and Toyoda. M., 2003. "Weak Convergence Theorem For Non-expansive Mappings and Monotone Mappings", J. optim theory Appl. 118 p(417).

[7] Xu. H.K., 2002. "A nother Control Condition in an Iterative Method for Nonexpansive Mappings", bull ,austral. Math .soc .65 pp(109-113).

[8] Xu, H .K., 2002. "Iterative Algorithm for Nonlinear Operators "J. London.Math.Soc. pp(240-256).

[9] Moudafi. A., 2000. "Viscosity Approximation Method for Fixed Point Problems", Journal of Mathematical and Applications, 241pp(46-55).

[10] Xu, H.K., 2004. "Viscosity Approximation Methods for Nonexpansive Mapping", J.Math . Anal.Appl.298pp(279-291).

[11] Kamimura, S. and Takahashi W., 2000. "Approximating Solutions of Maximal Monotone Operators in Hilbert Spaces", J. Approx. Theory,106 pp(226–240).

[12] Mabeed, Z. H., 2011. "Strongly Convergence Theorems of Ishikawa Iteration Process With Errors in Banach Space" Journal of Qadisiyah Computer Science and Mathematics, 3pp(1-8).

[13] Maibed. Z. H., 2019. " New Algorithm Method for Solving the Variational Inequality Problem
in Hilbert Space", Global Journal of Mathematical Analysis, 7(2)15.

[14] Maibed, Z. H., 2019. "Generalized Tupled Common Fixed Point Theorems for Weakly Compatibile Mappings in Fuzze Metric Space", (IJCIET)10,pp(255-273).

[15] Maibed, Z. H., 2018. "Strong Convergence of Iteration Processes for Infinite Family of General Extended Mappings", IOP Conf. Series: Journal of Physics: Conf. Series 1003, 012042 doi:10.1088/1742-6596/1003/1/012042.

[16] Maibed, Z. H., 2013. "Some Convergence Theorems for the Fixed Point in Banach Spaces", Journal of university of Anbar for pure science 2 Vol.7.(2).

[17] Maibed, Z. H., 2011."Strongly Convergence Theorems of Ishikawa Iteration Process With Errors in Banach Space", Journal of Qadisiyah Computer Science and Mathematics, 3pp(1-8).

[18] Maibed, Z. H., 2018. "Some Generalized n-Tuplet Coincidence Point Theorems for Nonlinear Contraction Mappings", Journal of Engineering and Applied Sciences 13,pp(10375-10379).

[19] Maibed, Z. H., 2019. "Contractive Mappings Having Mixed Finite Monotone Property in Generalized Metric Spaces", Ibn Al-Haitham Jour. for Pure & Appl.Sci, Vol. 32p(1)

[20] Abed, S. S. and Maibed Z. H.,2019, "Proximal Schemes By Family of Szl –Widering Mappings", IOP Conf. Series: Journal of Physics: Conf. Series 1003 , 571 012006.

[21] Maibed, Z.M and Mechee, M. S,2020. "A Compression Study of Multistep Iterative Methods for Solving Ordinary Differential Equations", International Journal of Liability and Scientific Enquiry ·2 pp(1-8).

[22] Maibed Z. H. and Reyadh.D.A., 2019, "The Study of New Iterations Procedure for Expansion Mappings", Journal of AL-Qadisiyah for computer science and mathematics 11 No.1.