Nighttime light intensity and child health outcomes in Bangladesh

Mohammad Rafiqul Islam1 · Masud Alam1 · Munshi Naser Ibne Afzal1 · Sakila Alam2

Received: 30 September 2022 / Accepted: 17 August 2023 / Published online: 26 August 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
This paper explores the effect of urbanization on child health outcomes in Bangladesh. We use nighttime light intensity as a measure of urbanization and find that the higher intensity of nighttime light, the higher the degree of urbanization, which positively affects child health outcomes. We apply a novel methodology that combines the non-parametric and panel regression approach with the Gradient Boosting Machine that originates from machine learning algorithms. Our estimates suggest that one standard deviation increase in nighttime light intensity is associated with a 1.52 rise in Z-score of weight for age. The maximum increase of weight for height and height for age score range from 5.35 to 7.18 units. We perform several robustness tests, including a wide-ranging set of controls in generalized additive models, and find robust positive relationship holds. Our findings make several contributions: first, we rationalize our empirical findings in a utility and hybrid production function showing that urbanization’s marginal effect on children’s nutritional outcomes is strictly positive. Second, the relationship is nonlinear and U-shaped, where low and higher light intensity leads to poorer child health outcomes, with increases being observed to be positive at all times and along the trend line. Finally, our findings are closely linked to the effective policies in reducing children’s malnutrition in low- and middle-income countries. We suggest that policies favoring small towns are more effective in improving child health outcomes than expanding megacities.

Keywords Additive model · Bangladesh · Child nutritional outcomes · Gradient boosting machine · Urbanization · Nighttime light intensity

JEL Classification C51 · I15 · O18 · R11

* Masud Alam
masudalam-eco@sust.edu
1 Department of Economics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
2 Department of Geography and Environment, Eden Mohila College, University of Dhaka, Dhaka, Bangladesh
Introduction

It is well-documented that rapid expansion of urbanization in low- and middle-income countries can generate superior public health outcomes, such as improved water and sanitation, a secured standard of living, and greater access to essential and quality health services. Therefore, to the extent that we have standard measures for improved child health outcomes due to the rapid growth of urbanization, we would expect children born and residing in urban areas to have the advantages of superior health inputs and access to services and, therefore, to have better nutritional outcomes as compared to children in rural areas. In relation to the growth of urbanization, this study argues that space-based nighttime light intensity data can provide significant information for mapping urbanization, and therefore variations in intensities can distinguish rural and urban development in Bangladesh. We hypothesize that the higher intensity of nighttime light, the higher is the degree of urbanization, which positively affects three measures of child health outcomes: height-for-age (HAZ), weight-for-height (WHZ), and weight-for-age (WAZ).

Empirical studies examining the impact of urbanization on child health outcomes find that urban agglomeration leads to better child health outcomes in low- and middle-income countries. For example, Paciorek et al. (2013) find that urban children are the tallest in low and middle-income countries, while rural children in these countries are the smallest at the age of five. Srinivasan et al. (2013) also find that increasing urbanization rates are associated with a lower prevalence of child malnutrition. The interest in investigating the urban impact on child nutritional outcomes gains new momentum with the advent of satellite-based nighttime light intensity data. The advantage of this data as a marker of urbanization is that unlike survey data, in which urbanization is measured as a binary variable, satellite-based light intensity data is a continuous variable and can trace and measure the standard of living more accurately. This standard measurement of urbanization has become popular in research of recent times, particularly when it comes to assessing rural–urban differences as well as measuring maternal and child health outcomes (Amare et al. 2020; Christopher 2010; Ghosh et al. 2013; Ma et al. 2012; Mellander et al. 2015).

Nighttime light data shows a 93% accuracy in predicting urban clusters (Zhang and Seto 2013), as it captures the increasing intensity of light from rural to urban areas. Moreover, it is highly correlated with urban amenities, population size, built infrastructure, and economic activity (Ameye and Weerdt 2020; Henderson et al. 2012; Lu et al. 2008). The choice of nighttime light data in our study offers a distinct advantage, enabling us to differentiate between the divisional and subnational urban areas in Bangladesh and examine the variations in child health outcomes corresponding to different levels of light intensity.

Although a substantial volume of studies uses the nighttime light data as a proxy measure of urbanization in middle-income countries and African and other low-income countries, little attention has been devoted to child nutritional outcomes in
Bangladesh. Therefore, to fill this gap, this study attempts to examine the impact of urbanization on child health outcomes in Bangladesh. We choose Bangladesh as the focus of our study due to its unique demographic characteristics. In 2021, the urban population in Bangladesh accounted for 38.95 percent of the total population (World Bank 2023). The percentage of the population residing in urban areas in Bangladesh is anticipated to continue expanding, ultimately leading to the country’s urbanization. The projections indicate that by 2039, approximately 83 million will call urban areas their home (United Nations (UN) 2014), thereby transforming Bangladesh into an urban country. This rapid urbanization trend is particularly pronounced in Bangladesh, where the urban population experiences an annual growth rate exceeding 7%, surpassing the country’s annual population growth of 2.2% (UN-Habitat 2014).

This ongoing demographic transformation from a predominantly rural population to an emerging urban-based population has far-reaching implications across multiple facets of urban life. These implications encompass urban poverty, housing, health, education services access, and sustainability challenges. Although there has been progress at the national level, with a significant decrease of severely underweight children from 31.9% in 2013 to 22.6% in 2019, and a decline in severe stunting from 42% in 2013 to 28% in 2019 (UNICEF 2022), studies highlight the persistence of stark differences in child health indicators at the subnational small-town level (Dasgupta et al. 2021; Raheem et al. 2019). Furthermore, these disparities are evident within urban areas (Ahsan et al. 2017), emphasizing the need to address intra-urban disparities for various child health indicators. Our research is motivated by Sustainable Development Goal (SDG) 3 emphasizes, "To ensure healthy lives and promote well-being for all at all ages," and SDG-11, which targets to foster "Sustainable Cities and Communities" by 2030. Specifically, this paper examines one dimension of urbanization, namely child nutritional outcomes and child health, within the context of Bangladesh.

Naturally, the question is, why do nutritional outcomes with higher nighttime light intensities generate better child health outcomes in urban areas? We have developed an economic model to rationalize the positive relationship between urbanization and child nutritional outcomes. This model focuses on the most robust relationship that positively links higher nighttime light intensity to a better nutritional outcome for children residing in urban areas. We applied this argument to a utility and hybrid production function. Under the standard microeconomic assumptions related to the household’s utility and production function and several control variables, the interior solution of our hybrid model verifies the conjecture that the marginal effect of urbanization on children’s nutritional outcomes is strictly positive.

We quantify the measure of urbanization using the ‘Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band Nighttime Lights in 2015’ published by the International Food Policy Research Institute (IFPRI). Usually, investigators apply the satellite-based nighttime light image data as a daily frequency primarily collected by the Operational Linescan System (OLS) sensors of the Defense Meteorological Satellite Program (DMSP) of the United States Air Force. Our study used

1 Rahman et al. (2019) use night light intensity and related remote sensing spatial characteristics to classify 331 cities of Bangladesh.
the VIIRS dataset instead of DMSP’s data since popular DMSP nighttime light intensity data have a few limitations in measuring urbanization. First, the DMSP data are flawed by image concealing due to cloud coverage and encrypted data conversion (Gibson et al. 2019). Second, the DMSP data cannot also be used to predict economic performances beyond cities. In the empirical implementation, we merge ‘Nighttime Lights Annual Composite’ data from ‘VIIRS 2015’ with Bangladesh’s Demographic and Health Survey (DHS) by matching cluster information of rural and urban households.

The benchmark estimation of this study employs a methodology that combines both parametric and non-parametric approaches using the Gradient Boosting Machine (GBM), K-Nearest Neighbors (KNN), and Bootstrap Aggregating that originate from machine learning algorithms. Instead of ad hoc selection of control variables, we compare the analysis of variance (ANOVA), GBM, and KNN algorithms to address endogeneity issues with an automatic choice of the degree of polynomials from the additive models. Based on the benchmark estimates, we find that urbanization is a significant determinant of child nutritional outcomes, and that greater urbanization leads to a healthier child after controlling for several control variables. The pooled ordinary least squares (OLS) estimates show that one standard deviation (std. dev) increase of nighttime light intensity is associated with a 1.52 rise of Z-score of weight for age. The maximum increase of weight for height and height for age range from 5.35 to 7.18. An economic interpretation of the benchmark estimates is that the maximum semi-output elasticity value is 8.42 for weight for age when converting the values into percentage changes. In both pooled OLS and cluster fixed-effect models, we find the statistical significance of second-and fourth-degree polynomials that capture the nonlinear effects of urbanization on children’s nutritional outcomes.

In addition to the benchmark models, we also estimate the generalized additive models (GAM) to gain a further understanding of our benchmark estimates. Consistent with the benchmark estimates, the findings in the GAMs provide a robust positive relationship between nighttime light intensity and children’s nutritional outcome variables. The impact remains significant and robust for the three alternative nutritional indicators: stunted, wasted, and underweight. The probability of a child being stunted, wasted, and underweight decreases with the rise of nighttime light intensities across all regression models.

The findings of this study contribute to the ongoing debate on the effective policies in reducing children’s malnutrition in low- and middle-income countries. Given the empirical evidence on the effect of urbanization on reducing poverty (Christiaensen and Kanbur 2017; Dugoua et al. 2018; Elvidge et al. 2012; Gibson et al. 2017), our parametric and non-parametric estimates show that the effect of child nutritional outcomes due to a change in nighttime light intensities is likely to be larger and highly elastic than those related to other socioeconomic covariates. Suppose the policy objectives include reducing poverty and increased access to improved health services for vulnerable populations; in that case, our findings suggest that an increase in small towns with better urban amenities is more effective in improving child health outcomes than the policy towards expanding megacities.
Second, we apply a novel methodology that combines the non-parametric and panel regression approach with the Gradient Boosting Machine that originates from machine learning algorithms. Furthermore, we perform several robustness tests, including a wide-ranging set of socio-economic controls in generalized additive models, and find a robust positive relationship between nighttime light intensity and children’s health measures. Finally, this study is related to the literature concerning the proxy measure of urbanization and its application for examining child health nutritional outcomes in Bangladesh (Angeles et al. 2019; Smith et al. 2005; Srinivasan et al. 2013). However, previous studies are primarily based on ad hoc selection of socioeconomic covariates and a dichotomous measure of rural–urban clusters. We significantly depart by applying a machine learning algorithm that selects the model’s socioeconomic covariates.

The remainder of the paper is structured as follows: we provide an overview of the theoretical model and hypothesis development in the next section. It then moves on to describe data sources, nutritional outcome measurements, provides summary statistics, and non-parametric analysis. Next, we discuss feature selection, polynomial choices, and presents benchmark regression results. Following this, a generalized additive model is utilized in the regression analysis in the subsequent section. Policy implications derived from the findings are examined, and the paper concludes in the final section.

Theoretical foundations

Household’s utility and production function

We offer a theoretical framework that provides support to the empirical relationship between the proxy measure of urbanization and child health outcomes. A complete theoretical model focusing on examining the impact of urbanization on three measures of child health would be beyond the scope of our study. Thus, we, instead, follow a simplified version of households’ utility and health production function approach of Behrman and Deolalikar (1988), Grossman (1972), and Omiat and Shively (2020). We assume that households maximize their utility by choosing the consumption of child health \(CH \) and the amount of consumption of the composite commodity\(^2\) \(Z \).

\[
\max_{CH, Z} \quad U = f(CH, Z) \quad \text{with} \quad P^{CH} CH + P^Z Z = I; \quad U'_{CH} \gg 0; \quad U'_{Z} > 0.
\]

here, \(P \) is the price, and \(I \) is the household’s income.

\(^2\) Household maximizes utility conditioning on the consumption of health outputs, and other observable characteristics such as schooling, parental characteristics, family background are also suggested in Strauss and Thomas (1998). For rural Bangladesh, Khan (1984) developed a model that links households’ assets and health status.
Let the production of child health follow a standard production function that includes only two purchased inputs, urbanization \((UR)\) and all other inputs \((M)\).

\[
Q^{CH} = F(UR, M).
\]

We assume households pay the price \(P^{UR}\) for urban facilities (e.g., the bill they pay for nightlight amenities) and \(P^M\) for all other purchased inputs that positively provide for parental and household facilities, such as education, access to TV, and newspapers. Under the assumption of convex technologies, smooth production function, and the input budget set at \(P^{UR} UR + P^M M = W\), the standard input demand function for these two inputs are as follows:

\[
UR = UR(P^{UR}, P^M, P^Z, B) \\
M = M(P^{UR}, P^M, P^Z, B).
\]

Here, we represent the total budget constraint of households in the following way: \(B = P^{UR} UR + P^M M + P^Z Z\). We can form a hybrid production function \(^4\) by substituting input demand function for \(M\) as follows:

\[
Q^{CH} = F(UR, M(p^MR, P^M, P^Z, B)).
\]

The exact identification and estimation, \(Q^{CH}\), depends on the functional form of \(M\). Let us assume that the functional forms are known, then households observe all the necessary information exogenously, and a rich data set provides a sufficient number of variations in the \(UR\) variable across the units and over time. Moreover, assume that the dataset includes control variables related to the child, parental, and household characteristics. Under the condition of interior solution and that the second-order derivatives are satisfied, the estimated effect of \(UR\) on child health measures \(Q^{CH}\) can be represented as follows:

\[
\left. \frac{dQ^{CH}}{dUR} \right|_{\text{controls}} = \left. \frac{dF}{dUR} \right|_{\text{controls}} + \left. \frac{dF}{dM} \right|_{\text{controls}} \left. \frac{dM}{dUR} \right|_{\text{controls}}.
\]

Consistent with the fundamental objective, we hypothesize that the marginal effect of \(UR\) on child health outcomes \(\left. \frac{dF}{dUR} \right|_{\text{controls}} > 0\). In the subsequent empirical analysis, we examine this conjecture and show whether the empirical approach can consistently estimate a robust positive relationship between urbanization and child health outcomes.

\(^3\) Rosenzweig (1986) uses all other inputs such as schooling and medical services as an aggregate input in households' human capital production function.

\(^4\) For optimally chosen observed inputs, Liu et al. (2009) and Rosenzweig and Schultz (1983) applied a hybrid production function to estimate the marginal effect of an input.
Testable hypotheses

The foundation of our analysis relies on an economic theory, wherein urbanization is considered an input in a hybrid production function developed in the preceding section. This production function links child nutritional outcomes and the household’s utility function through various urban channels. For example, Stifel and Minten (2017) demonstrate that urbanization strengthens public institutions, redesigns public infrastructure and economic structure, facilitates technology, and improves market access. These factors collectively enhance the availability of food varieties and improve access to public health facilities. Compared to the rural market structure that is often characterized by information asymmetry and inefficiency, urban channels mitigate supply-chain and transaction costs through advancements in communication technologies and improved information symmetry. Reduced transportation and transaction costs directly impact urban households’ access to market baskets at lower costs, potentially positively influencing the nutritional status of children (Ruel et al. 2017).

Drawing upon the theoretical conjecture and empirical findings of Stifel and Minten (2017) and Ruel et al. (2017), we propose our first and second hypotheses, linking nighttime light and urbanization with child nutritional outcomes:

\[H1: \text{The effect of child nutritional outcomes due to urbanization will likely be strictly positive.} \]

\[H2: \text{The probability of a child being stunted, wasted, and underweight decreases with higher nighttime light intensities.} \]

However, recent literature suggests that this relationship exhibits nonlinearity, and its magnitude varies significantly across different stages of urbanization. For instance, Amare et al. (2020), Christiaensen and Kanbur (2017), and Gibson et al. (2017) provide evidence of a flat-U-shaped relationship, indicating a significant influence of urbanization on child nutritional outcomes at early stages, while a relatively weaker relationship is observed in more advanced stages of urbanization. Consequently, we formulate our third hypothesis to explore the degree and pattern governing the relationship dynamics across stages of urbanization:

\[H3: \text{The positive association between urbanization and child health exhibits a nonlinear pattern characterized by a U-shaped, where extremely low and high light intensities are linked with poorer child health outcomes, with positive effects observed at all points along the upward trend line.} \]

In this study, we employ non-parametric, parametric, and machine learning approaches to investigate the proposed hypotheses that aim to explore the relationship between child nutritional outcomes and urbanization. Our analysis primarily focuses on cross-sectional variation, allowing us to thoroughly examine the dynamics and factors influencing this association.
Data and measurement of nutritional outcomes

Sources of data

The dataset consists of six child nutritional and health outcome variables, 14 child, parental, and household attributes, as well as nighttime light intensity as a measure of urbanization. The primary source of child health outcomes and parental and household attributes are two Bangladesh Demographic and Health Surveys (BDHS 2014), the demographic and health surveys of the years 2011 and 2014. The BDHS is a comprehensive and widely used survey dataset that collects nationally representative data pertaining to a specific population, family planning, and maternal and child health, including geo-referenced information.

The satellite-based nighttime light intensity data comes from Advancing Research on Nutrition and Agriculture (AReNA)\(^5\) project of the International Food Policy Research Institute (IFPRI 2020). The dataset published by the IFPRI is a compilation of nighttime light data from the ‘Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band Nighttime Lights’ and ‘2015 VIIRS Nighttime Lights Annual Composite’ with the BDHS survey information. In addition, a wide variety of geo-referenced variables on agricultural production, agroecology, climate, demography, and infrastructure are also available in AReNA’s dataset that includes Bangladesh information from 2004 to the present date. The nighttime light intensity measurement unit is a digital number ranging from 0 (no light) to 63 (the highest light intensity).

We clean and merge the dataset for the BDHS of 2011 and 2014 by employing various steps. First, we utilize the advantage of 600 primary sampling units (PSUs), also referred to as 600 rural and urban clusters in the BDHS survey, as well as the information on the latitude and longitude of each cluster to match the nearest cluster’s location. We calculate the distance matrix in kilometers using latitude and longitude and define the nearest cluster located within a circular area of 1.5 km. Second, we construct an approximate cluster-level panel dataset using cluster location. Third, we filter out the sampling units if the clusters or nearest clusters do not contain the three child nutritional variables and necessary household information. Finally, we merge AReNA and BDHS datasets using clusters as identifiers. The final dataset consists of 8734 household observations across seven divisions of Bangladesh. The highest proportion of the household (20.23%) is from the Chittagong division, followed by Dhaka (17%), Sylhet (13.20%), Khulna, and Barisal (12.73%), Rangpur (12.32%), and Rajshahi (11.76%). Figure 1 shows spatial disparities of the mean values of nighttime intensity and the maximum value location from each division in the pooled sample.

\(^5\) The database is referred to as AReNA’s DHS-GIS Database, and more details are available at https://www.ifpri.org/publication/arenas-dhs-gis-database.
Measurement of nutritional outcomes

The nutritional status of children’s three health indices used in this study is similar to the measurement unit suggested and used by the World Health Organization (WHO) for quantifying child growth. A vast amount of recent literature, including Amare et al. (2020), Choudhury et al. (2019), Firestone et al. (2011), Ruel et al. (2013, 2017), Smith et al. (2005), and Van de Poel et al. (2007), use average values of these three indices, height for age, weight for height, and weight for age, to measure whether a child is stunted, wasted, and underweight, respectively.

Summary analysis

The descriptive statistics are presented in Table 1. The mean value of light intensity for Bangladesh in the pooled sample is found to be 1.62, with a maximum of 29.94 and a minimum of 0.00023. The density function, shown in Fig. 2a–c, suggests an approximately normal distribution of nighttime light intensity but not an exact fit to a standard normal estimation. The skewness and kurtosis appear to be suggestive of accommodating the multi-modality of our regression analysis that is often necessary for sparse data (Parzen 1962; Silverman 1998).

The average light intensity increased by about 7.29% from 2011 to 2014 in all survey locations. On average, 81.2% of households reside in clusters with a
nighttime light intensity of 1.62 and less than 1.62 as compared to 0.055% of households residing in clusters with a nighttime light intensity greater than 25. Between 2011 and 2014, the average values of height for weight, weight for height, and weight for age of children increased by 8.26%, 5.73%, and 0.616%, respectively. The average value of a child who is stunted, wasted, and underweight is 0.34, 0.132, and 0.30 in the pooled sample, respectively. On average, 34% and 30% of the children in Bangladesh are found to be stunted and underweight for the years 2011 and 2014. This percentage of malnutrition in the survey

Table 1 Summary statistics

Variable	Pooled sample	2014	2011	
	Mean St. dev.	Min Max	Mean	Mean
Panel A: Nighttime light as a measure of urbanization				
Log of nighttime light	−1.09 1.787	−8.37 3.9	−0.874	−0.964
Nighttime light	1.62 3.54	0.00023 29.94	1.912	1.782
N	8734	4346	4388	
Panel B: Child nutritional outcome variables				
Height for age Z score	−1.6 1.37	−6.0 5.84	−1.388	−1.513
Weight for height Z score	−0.91 1.17	−5.0 4.71	−0.822	−0.872
Weight for age Z score	−1.54 1.13	−5.83 4.74	−1.351	−1.460
Child is stunted (binary)	0.34 0.47	0.00 1	0.314	0.359
Child id wasted (binary)	0.132 0.34	0.00 1	0.139	0.149
Child is underweight (binary)	0.30 0.45	1	0.281	0.313
N	8734	4346	4388	
Panel C: Child, parental, and household attributes				
Years of school (mother)	3.215 1.522	0.000 8.00	3.231	3.237
Years of school (father)	3.490 1.566	0.000 8.00	3.516	3.481
Age of mother at first childbirth	18.140 3.285	11 46	18.48	18.353
Birth order of child for mother	2.298 1.515	1 14	1.964	2.059
Mother’s BMI	2120.879 373.003 1220.0 4549.0	2208.4	2139.3	
Age of child (month)	2.029 1.416	0.000 4.00	1.955	2.038
Child gender (binary)	0.515 0.500	0 1	0.513	0.516
Poorest quantile wealth index (binary)	0.221 0.415	0 1	0.134	0.110
Poorer quantile wealth index (binary)	0.193 0.395	0 1	0.163	0.162
Middle quantile wealth index (binary)	0.191 0.393	0 1	0.209	0.206
Richest quantile wealth index (binary)	0.195 0.397	0 1	0.260	0.286
Richest quantile wealth index (binary)	0.200 0.400	0 1	0.234	0.236
Household owns TV (binary)	0.409 0.492	0.00 1.00	0.520	0.523
Household has electricity (binary)	0.602 0.490	0.00 1.00	0.698	0.711
N	8734	4346	4388	

The final dataset comprises $N=8734$ household observations from seven divisions of Bangladesh, with 4346 observations from 2014 and 4388 observations from 2011. In the pooled sample, the mean value of light intensity is 1.62, ranging from a minimum of 0.00023 to a maximum of 29.94. The average light intensity experienced an increase of approximately 7.29% between 2011 and 2014.
indicates potential widespread health and nutritional risk in the children population under the age of five in Bangladesh.

Non-parametric analysis

We apply a Nadaraya–Watson estimator (Nadaraya 1964; Watson 1964) and standard local polynomial nonparametric regressions to determine whether urbanization shares a linear or nonlinear relationship with the nutritional outcome variables. In order to assess the relationship, we generate nonparametric plots of means and confidence intervals for each outcome variable as a continuous smoothed function of the log of nighttime light intensity (Fig. 3a–f). For the pooled sample, the

Fig. 2 Kernel density estimation of Nighttime Light Intensity in Bangladesh in 2011 and 2014. a–c Indicates an approximate normal distribution of nighttime light intensity. However, it does not precisely align with a standard normal estimation. The skewness and kurtosis values in the top-left side of three figures suggest the presence of multiple modes, which should be accounted for in our regression analysis
Fig. 3 Non-parametric polynomial estimator. The Z-scores of nutritional outcome variables on the top panel’s y-axis. The probabilities of a child being stunted, wasted, and underweight is presented on the y-axis of the bottom panel. The plots (a–d) exhibit a nonlinear and U-shaped relationship, where both low and high values of Nighttime Light Intensity correspond to poorer child health outcomes. Increases in Nighttime Light Intensity are consistently associated with positive changes in child health outcomes throughout the observed range.
relationship is nonlinear and U-shaped across the plots (Fig. 3a–d), where low and higher values lead to poorer child health outcomes, with increases being observed to be positive at all times. The height for age scores rises sharply by an std. dev of nearly 0.032 on average for clusters residing within the lower quantile of nighttime light intensity, followed by a little drop, and then a gradual rise until the light intensity is around 1.78. In Fig. 3c, the regions with a higher degree of urbanization are positively associated with children’s weight for age scores within the whole range of log of nighttime light intensity, which is between −3 and 1.9. The relationship between urbanization and child weight for height scores is slightly flattering for children residing in clusters that experience nighttime light intensity at a lower-medium range, from −3.3 to −2. The relationship is significantly positive and non-linear for the clusters where the log of nighttime light intensity is greater than −2. Consistent with the findings of Amare et al. (2020), the graphs in the top panel indicate that the nighttime light intensity significantly improves children’s nutritional outcomes at the lower range and after an intermediate range. The relationship is flattering for a small lower-medium range.

Once we consider the probability of a child being stunted, wasted, and underweight displayed in the bottom panel of Fig. 3, the likelihood of stunting among children declines (in Fig. 3d) at the lower and upper ranges. For wasted and underweight measures, Fig. 3e,f also imply a non-linear and negative relationship across various ranges of urbanization. However, a weak relationship is observed for stunting and underweight in the lower-medium range from −4 to −3.5. Overall, non-parametric relationships in the lower-medium range indicate that the early stages have a relatively weaker influence on the child’s nutritional outcomes. Conversely, the higher levels of urbanization are strongly and significantly related to better child nutritional outcomes.

Parametric regression: feature selection

The non-parametric regression analysis in the previous section shows a strong positive relationship between urbanization and child nutritional outcomes. This section investigates whether this positive and significant relationship remains unchanged when regression models are controlled for child and parental characteristics. Following Smith et al. (2005), many recent studies use children, parental, and household attributes such as education, nutritional status, childbirth order, age, access to household amenities, sanitary toilet facilities, pure water supply, caring practices, and family planning for children, and economic status variables to investigate the nutritional status.

However, many socioeconomic, child, and parental characteristics and demographic factors appear statistically insignificant (Keino et al. 2014; Li et al. 2020) in examining the prevalence and determinants of nutritional status. While adding more control variables provides a better understanding of the key variables of interest to the model, ad hoc selection of too many control variables also overfits the model.

6 For example, Abdulahi et al. (2017), Akombi et al. (2017), Amare et al. (2020), and Black et al. (2013).
Three popular machine learning approaches are applied to overcome this variable selection dilemma. The machine learning algorithm compares model performance using expected test errors from the models and selects the model’s control variables accordingly.

We evaluated the 14 features of the child, family, and household features from panel c of Table 1 and up to fourth-degree polynomial of the nighttime light variable using the gradient boosting machine algorithm. Figure 4a–c show the importance of covariates for three competing models, along with the proportional significance of key predictors. While the gradient boosting machine suggests a two-degree polynomial of the nighttime light intensity variable. The bagging and K-nearest neighbor algorithm recommend including up to fourth-degree polynomials. Across all figures, the child’s age and the mother’s age at the time of birth consistently emerge as the two most influential predictors. Additionally, the education level of both the father and mother, household wealth, and access to electricity are significant control variables included in the analysis.
polynomial of the nighttime light intensity variable, bagging and the K-nearest neighbor algorithm suggest the inclusion of a maximum of fourth-degree polynomials for the model. In each model, the child’s age and the mother’s age at the time of the child’s birth are the two most important predictors, and the father and mother’s education, wealth, and access to electricity are the other significant control variables. The feature importance metric provides the fundamental basis for selecting control variables for our subsequent regression analysis, such as pooled OLS and cluster fixed-effect models and the generalized additive models.

Parametric regression: choice of polynomials

Due to a strong and significant non-linear pattern in the non-parametric regression analysis, we must decide on the polynomial degree to be used for our key predictor in performing parametric polynomial regression. While the machine learning algorithm delivers the best-performing predictive model, the choice of polynomials, and the selection of controls are purely statistical and related to the set of prior covariates that we feed to the model (Durrleman and Simon 1989; Zhang et al. 2019). Therefore, the validity of the significance of covariates is also sensitive to the selection of our predefined set and requires careful implementation of non-linear modeling of covariates (Ding et al. 2018). We first apply ANOVA to check the significance of nighttime light intensity up to a fifth-degree polynomial term to address this issue. Based on the ANOVA in Table 2, either a cubic or a quadratic polynomial of nighttime intensity provides a reasonable fit for the data. However, models incorporating lower- or higher-order terms are not justified based on the F-values, Pr(> F).

	Res.Df	RSS	Df	Sum of Sq	F	Pr(> F)
Nightlight	8732	15,346				
Nightlight square	8731	15,336	1	10,1809	5.8021	0.01603**
Nightlight cubic	8730	15,330	1	6,2709	3.5738	0.05873*
Nightlight quartic	8729	15,318	1	11,2995	6.4396	0.01118**
Nightlight quintic	8728	15,315	1	3,4405	1.9608	0.16147

Res.DF residual degrees of freedom, RSS residual sum of squares, Df the difference between unconstrained model degrees of freedom and constrained model degrees of freedom, Sum of Sq the difference in RSS, F F-values, Pr(> F) the p-value point out the level of significance. The analysis of variance (ANOVA) indicates that a cubic or quadratic polynomial of nighttime intensity provides a reasonable fit for the data. However, models incorporating lower- or higher-order terms are not justified based on the F-values, Pr(> F).
Fig. 5 Automatic smoothing choice in the additive model. The degree of smoothing, indicated on the vertical axis, suggests that a choice closer to four degrees of freedom provides an appropriate fit for the model.

Table 3 Approximate significance of smooth of nightlight intensity

s(poly(Nightlight))	Edf	Ref.df	F	p-value
4.848	5.946	12.97	<0.000***	

s smooth, poly polynomials, edf appropriate number of the degrees of freedom for models (amount of smoothing chosen automatically), Ref.df a modified computation of the degrees of freedom. The application of an appropriate transformation for nighttime light in the additive model reveals a non-linear relationship with nutritional outcomes. The model automatically selects the appropriate number of smoothing terms, and the significance of the fourth degree of smoothing is indicated by the corresponding p-value in the table.

* $p<0.1$; ** $p<0.05$; *** $p<0.01$

outcomes. Furthermore, the degree of smoothing label on the vertical axis of Fig. 5 shows closer to four-degree freedom for the smooth, which is also an appropriate choice for the model fit as suggested by the ANOVA. The summary output in Table 3 provides the significance of the fourth degree of smooths in the plot.

Benchmark regression: pooled OLS

Considering the hybrid production function in Sect. 3 and the longitudinal regression of Amare et al. (2020), we estimate the following baseline regression model:

$$CH_{ict} = \sum_{n=1}^{4} \beta_n (\ln_{nighttime_light_{ct}})^n + \gamma_1 YR_{ict} + \gamma_2 X_{ict} + \gamma_3 Cluster_c + \epsilon_{ict},$$
Dependent variables	Pooled OLS	Cluster FE				
	HAZ (1)	WHZ (2)	WAZ (3)	HAZ (4)	WHZ (5)	WAZ (6)
(Nightlight)1	5.358***	6.103***	7.182***	6.152***	6.727***	8.242***
	(1.442)	(1.313)	(1.224)	(2.113)	(1.937)	(1.793)
(Nightlight)2	2.017	2.455**	2.939***	4.777**	1.162	3.639**
	(1.294)	(1.179)	(1.099)	(2.016)	(1.848)	(1.710)
(Nightlight)3	− 2.001	0.742	− 0.752	− 0.227	− 0.116	− 0.066
	(1.296)	(1.181)	(1.100)	(1.898)	(1.740)	(1.610)
(Nightlight)4	− 2.555**	− 2.532**	− 3.353***	− 0.972	− 2.969*	− 2.688*
	(1.295)	(1.180)	(1.099)	(1.892)	(1.735)	(1.606)
Survey year dummy (2014 = 1)	0.105***	0.038	0.090***	0.091***	0.052**	0.091***
	(0.028)	(0.025)	(0.024)	(0.029)	(0.027)	(0.025)
Mother’s education	0.020**	− 0.006	0.006	0.021**	− 0.005	0.008
	(0.009)	(0.008)	(0.008)	(0.010)	(0.009)	(0.008)
Age of mother at first birth	0.049***	0.016***	0.040***	0.043***	0.016***	0.037***
	(0.004)	(0.004)	(0.004)	(0.005)	(0.004)	(0.004)
Age of child	− 0.146***	− 0.109***	− 0.155***	− 0.145***	− 0.107***	− 0.152***
	(0.010)	(0.009)	(0.008)	(0.010)	(0.009)	(0.009)
Wealth dummy (poorest wealth = 1)	− 0.075*	− 0.095***	− 0.113***	− 0.063	− 0.084**	− 0.096***
	(0.040)	(0.037)	(0.034)	(0.042)	(0.039)	(0.036)
Electricity dummy (have access = 1)	0.249***	0.157***	0.260***	0.274***	0.148***	0.270***
	(0.035)	(0.032)	(0.030)	(0.040)	(0.036)	(0.034)
Observations	8734	8734	8734	8734	8734	8734
Table 4 (continued)

Dependent variables	Pooled OLS			Cluster FE		
	HAZ	WHZ	WAZ	HAZ	WHZ	WAZ
	(1)	(2)	(3)	(4)	(5)	(6)
R²	0.064	0.034	0.088	0.054	0.028	0.075
Adjusted R²	0.063	0.033	0.087	-0.016	-0.045	0.005
F statistic	59.527***	30.959***	84.546***	46.795***	23.005***	65.454***

This table shows that there is a stronger positive association observed in children’s weight for age (columns 3 and 6) compared to height for age and weight for height. For instance, in the cluster fixed-effects model, the Z score of weight for a child’s age is 1.515 units higher than the Z scores for weight for height and height for age. Similarly, the estimated coefficient from the pooled OLS regressions indicates that a one standard deviation increase in nighttime light intensity results in a 1.182-unit higher response in weight for age compared to the other two Z scores.

*p < 0.1; **p < 0.05; ***p < 0.01
here, CH_{ict} is the nutritional outcome for a child i from the cluster c and the survey round t. Our variable of interest is $\ln_{nighttime_light}_{ict}$, the natural logarithmic values of nighttime light at cluster level for periods 2007 and 2011. YR_{ic} is the year dummies when the child was surveyed. X_{ic} represents a vector of characteristics related to the child, parental, and household attributes that affect child health. $Cluster$ represents a set of about 600 enumeration areas (EA) that may capture time-invariant differences in child health among children living in different survey clusters. $Cluster$ dummies implement enumeration area level fixed effects.

Table 4 reports the pooled OLS and the cluster fixed-effects estimates for child health Z-scores. Both pooled OLS and cluster fixed-effect regression models control for the child, parental, and household characteristics. Cluster fixed-effects models are estimated using cluster-level dummy variables. For the three measures of child health status, urbanization is a significant determinant at levels across all the regression models. In addition, significant non-linearities are observed between urbanization and nutritional status when adding higher-order polynomials of the dependent variable in the specifications.

A stronger positive association is observed in children’s weight for age (columns 3 and 6) than height for age and weight for height in Table 4. For example, in the cluster fixed-effects model, the Z score of weight for a child’s age is 1.515 more than a child’s weight for height and height for age. Similarly, the pooled OLS regressions’ estimated coefficient suggests that a one std. dev increase in nighttime light intensity shows that the response of weight for age is 1.182 units higher than the two other Z scores. The most robust response of weight for age is expected because it measures the overall effect on a child’s health. Therefore, consistent with the conjecture, we show that nighttime light intensity, which we characterize as the measure of urbanization, has a strong and statistically significant influence on a child’s nutritional outcomes. The estimated coefficient of second-and fourth-degree polynomials validates the non-linear effects of urbanization and the marginal effect of UR on child health outcomes, $\frac{dF}{dUR|_{controls}} > 0$. However, the estimated coefficients of third-degree polynomials are not significant at a confidence level of 95%. The findings broadly support those in previous literature (Amare et al. 2020; Christiaensen et al. 2013; Smith et al. 2005), which also show weaker association in a higher stage of urbanization and strong influence at the early stage of urbanization.

Following Baltagi and Liu (2008) and Millo and Piras (2012), we perform a Lagrange Multiplier (LM) test\(^7\) to verify that our regression results do not suffer from spatially autocorrelated errors, and therefore, estimators are unbiased and consistent. Under the null hypothesis, no spatial lag dependence in the model’s residuals, and the specification satisfies the usual assumptions related to fixed effects panel model. We find that the null hypothesis of no spatial lag dependence is not rejected ($LM = 5.7034$, $df = 3$, $p = 0.127$). The test provides evidence of the absence of spatial autocorrelation in the fixed effects panel data specification.

\(^7\) We also perform the Wooldridge test for autocorrelation in panel data. The null hypothesis of No first-order autocorrelation is not rejected at $F(1, 10) = 1.67459$ with p-value = $P(F(1, 10) > 1.67459) = 0.224732$.

Table 4 reports the pooled OLS and the cluster fixed-effects estimates for child health Z-scores. Both pooled OLS and cluster fixed-effect regression models control for the child, parental, and household characteristics. Cluster fixed-effects models are estimated using cluster-level dummy variables. For the three measures of child health status, urbanization is a significant determinant at levels across all the regression models. In addition, significant non-linearities are observed between urbanization and nutritional status when adding higher-order polynomials of the dependent variable in the specifications.

A stronger positive association is observed in children’s weight for age (columns 3 and 6) than height for age and weight for height in Table 4. For example, in the cluster fixed-effects model, the Z score of weight for a child’s age is 1.515 more than a child’s weight for height and height for age. Similarly, the pooled OLS regressions’ estimated coefficient suggests that a one std. dev increase in nighttime light intensity shows that the response of weight for age is 1.182 units higher than the two other Z scores. The most robust response of weight for age is expected because it measures the overall effect on a child’s health. Therefore, consistent with the conjecture, we show that nighttime light intensity, which we characterize as the measure of urbanization, has a strong and statistically significant influence on a child’s nutritional outcomes. The estimated coefficient of second-and fourth-degree polynomials validates the non-linear effects of urbanization and the marginal effect of UR on child health outcomes, $\frac{dF}{dUR|_{controls}} > 0$. However, the estimated coefficients of third-degree polynomials are not significant at a confidence level of 95%. The findings broadly support those in previous literature (Amare et al. 2020; Christiaensen et al. 2013; Smith et al. 2005), which also show weaker association in a higher stage of urbanization and strong influence at the early stage of urbanization.

Following Baltagi and Liu (2008) and Millo and Piras (2012), we perform a Lagrange Multiplier (LM) test\(^7\) to verify that our regression results do not suffer from spatially autocorrelated errors, and therefore, estimators are unbiased and consistent. Under the null hypothesis, no spatial lag dependence in the model’s residuals, and the specification satisfies the usual assumptions related to fixed effects panel model. We find that the null hypothesis of no spatial lag dependence is not rejected ($LM = 5.7034$, $df = 3$, $p = 0.127$). The test provides evidence of the absence of spatial autocorrelation in the fixed effects panel data specification.

\(^7\) We also perform the Wooldridge test for autocorrelation in panel data. The null hypothesis of No first-order autocorrelation is not rejected at $F(1, 10) = 1.67459$ with p-value = $P(F(1, 10) > 1.67459) = 0.224732$.

Table 4 reports the pooled OLS and the cluster fixed-effects estimates for child health Z-scores. Both pooled OLS and cluster fixed-effect regression models control for the child, parental, and household characteristics. Cluster fixed-effects models are estimated using cluster-level dummy variables. For the three measures of child health status, urbanization is a significant determinant at levels across all the regression models. In addition, significant non-linearities are observed between urbanization and nutritional status when adding higher-order polynomials of the dependent variable in the specifications.

A stronger positive association is observed in children’s weight for age (columns 3 and 6) than height for age and weight for height in Table 4. For example, in the cluster fixed-effects model, the Z score of weight for a child’s age is 1.515 more than a child’s weight for height and height for age. Similarly, the pooled OLS regressions’ estimated coefficient suggests that a one std. dev increase in nighttime light intensity shows that the response of weight for age is 1.182 units higher than the two other Z scores. The most robust response of weight for age is expected because it measures the overall effect on a child’s health. Therefore, consistent with the conjecture, we show that nighttime light intensity, which we characterize as the measure of urbanization, has a strong and statistically significant influence on a child’s nutritional outcomes. The estimated coefficient of second-and fourth-degree polynomials validates the non-linear effects of urbanization and the marginal effect of UR on child health outcomes, $\frac{dF}{dUR|_{controls}} > 0$. However, the estimated coefficients of third-degree polynomials are not significant at a confidence level of 95%. The findings broadly support those in previous literature (Amare et al. 2020; Christiaensen et al. 2013; Smith et al. 2005), which also show weaker association in a higher stage of urbanization and strong influence at the early stage of urbanization.

Following Baltagi and Liu (2008) and Millo and Piras (2012), we perform a Lagrange Multiplier (LM) test\(^7\) to verify that our regression results do not suffer from spatially autocorrelated errors, and therefore, estimators are unbiased and consistent. Under the null hypothesis, no spatial lag dependence in the model’s residuals, and the specification satisfies the usual assumptions related to fixed effects panel model. We find that the null hypothesis of no spatial lag dependence is not rejected ($LM = 5.7034$, $df = 3$, $p = 0.127$). The test provides evidence of the absence of spatial autocorrelation in the fixed effects panel data specification.

\(^7\) We also perform the Wooldridge test for autocorrelation in panel data. The null hypothesis of No first-order autocorrelation is not rejected at $F(1, 10) = 1.67459$ with p-value = $P(F(1, 10) > 1.67459) = 0.224732$.

There are no tables or figures in this section, as it is a continuation of the text discussing the influence of urbanization on child health outcomes. The text emphasizes the strong and significant influence of nighttime light intensity, characterized as a measure of urbanization, on child health outcomes. The non-linear effects of urbanization are validated using second- and fourth-degree polynomials. The test results support the absence of spatial autocorrelation in the fixed effects panel data specification.

The next section will likely discuss the implications of these findings and how the results contribute to the understanding of the relationship between urbanization and child health outcomes.
We now provide an economic understanding of regression coefficients by calculating the percentage change of our empirical results presented in Table 4. A common economic interpretation for the computed value is elasticity. Interpreted as a semi-output elasticity\(^8\) in the hybrid production model, the benchmark estimates in the fixed-effects model generate an elasticity value of 8.42 for weight for age and the values of 6.72 and 6.15 for weight for height and height for age, respectively. Similarly, for the pooled OLS estimates, a one percent increase in nighttime light intensity increases the Z score of child health outcomes by a maximum of 7.18 units.

Looking at the findings in Table 5, pooled OLS and cluster fixed-effects models show the binary measure of a child’s nutritional status in terms of stunting, wasting, and underweight. The estimated coefficients in columns (1) through (6) indicate that the child’s nutritional status improves with an increase in nighttime light intensity. The average marginal effect of a child being underweight decreases by 1.78 units due to a one std. dev increase in light intensity after controlling for child, mother, and household characteristics.

To provide the robustness of the relationship, we run a similar regression for the survey years 2011 and 2014. Tables 6 and 7 report the findings from the OLS and the cluster fixed-effects models. Overall, the estimated coefficients for children’s nutritional outcome variables show strong positive and non-linear relationships between urbanization and child health outcomes. Consistent with the previous findings, our findings show that among the three child’s health measures, the association with urbanization is the most substantial for weight for age. Moreover, the magnitude of estimated coefficients varies significantly across the degree of urbanization when the models control for a set of child and parental characteristics.

Robustness analysis: generalized additive model

The advantage of non-parametric models is that the model fit avoids the need for parametric assumptions. However, fitting a non-parametric regression is impractical and often difficult when the response variable requires more than two or three control variables in the model or when there is a need for a large sample size. Similarly, a limitation of the parametric approach is that the model considers only the polynomial terms of nighttime light intensity at once. So, the functional form and estimated coefficients may not provide the best predictive accuracy, especially when the polynomials of nighttime light intensity also require smoothing other variables simultaneously.

A good compromise between a linear parametric and non-parametric regression is the use of the generalized additive models (GAMs) to overcome some of the

\(^8\) From \(CH_{ict} = \sum_{n=1}^{4} \beta_n (\ln_{nighttime_light})^n + \gamma Controls + \epsilon\), we calculate elasticity by taking the unit change in \(CH_{ict}\) resulting from a percentage change in nighttime light intensity. Using simple calculus differential of the estimated equation provides: \(d(CH_{ict}) = \beta \ast d(nightime_light)/nightime_light\). Divide both sides by 100 to get percentage, and therefore \((\beta/100)\) is the change in \(CH_{ict}\) measured in units from a one percent increase in nighttime light intensity.
Dependent variables	Pooled OLS	Cluster FE				
	Stunted (1)	Wasted (2)	Underweight (3)	Stunted (4)	Wasted (5)	Underweight (6)
Nightlight1	−1.012**	−0.679*	−1.785***	−1.292*	−0.847	−1.759**
	(0.513)	(0.389)	(0.495)	(0.755)	(0.577)	(0.732)
Nightlight2	0.298	0.072	−0.382	−0.359	−0.222	−0.887
	(0.464)	(0.352)	(0.448)	(0.723)	(0.552)	(0.701)
Nightlight3	0.519	−0.070	0.179	−0.190	0.062	−0.477
	(0.465)	(0.352)	(0.449)	(0.680)	(0.520)	(0.660)
Nightlight4	0.274	0.270	0.816*	0.049	0.558	0.472
	(0.464)	(0.352)	(0.448)	(0.679)	(0.519)	(0.658)
Survey year dummy (2014 = 1)	−0.044****	−0.010	−0.030***	−0.038****	−0.009	−0.026***
	(0.010)	(0.008)	(0.010)	(0.010)	(0.008)	(0.010)
Mother’s education	−0.012***	0.003	−0.001	−0.012***	0.003	−0.003
	(0.003)	(0.002)	(0.003)	(0.003)	(0.003)	(0.003)
Age of mother at first birth	−0.013***	−0.0004	−0.009***	−0.012***	−0.001	−0.009***
	(0.002)	(0.001)	(0.001)	(0.002)	(0.001)	(0.002)
Age of child	0.030***	0.004	0.041***	0.029***	0.004	0.040***
	(0.004)	(0.003)	(0.003)	(0.004)	(0.003)	(0.003)
Wealth dummy (poorest wealth = 1)	0.135***	0.006	0.104***	0.135***	0.005	0.104***
	(0.018)	(0.013)	(0.017)	(0.019)	(0.014)	(0.018)
Electricity dummy (have access = 1)	−0.043***	−0.030***	−0.063***	−0.047***	−0.023***	−0.065***
	(0.014)	(0.010)	(0.013)	(0.015)	(0.012)	(0.015)
Observations	8734	8734	8734	8734	8734	8734
Table 5 (continued)

Dependent variables	Pooled OLS	Cluster FE				
	Stunted	Wasted	Underweight	Stunted	Wasted	Underweight
	(1)	(2)	(3)	(4)	(5)	(6)
R²	0.043	0.004	0.045	0.036	0.002	0.038
Adjusted R²	0.041	0.002	0.044	−0.036	−0.072	−0.034
F statistic	38.762***	3.185***	41.475***	30.609***	1.930**	32.056***

The estimated coefficients in columns (1) through (6) offer evidence supporting the improvement of the child’s nutritional status, as measured by the indicators of being stunted, wasted, and underweight, with increasing nighttime light intensity. Specifically, the average marginal effect indicates that there is a decrease of 1.78 units in the likelihood of a child being underweight and a decrease of −1.292 units in the likelihood of a child being stunted for each one standard deviation increase in light intensity. These effects are observed after considering various child, mother, and household characteristics.

*p < 0.1; **p < 0.05; ***p < 0.01
The GAMs are an extension of generalized linear models to the family of additive models, where non-linear effects of continuous variables can be modeled more flexibly by linking smooth functions and the expected value.

Table 6 Pooled OLS and cluster effects model as a reference or baseline model (year 2011)

Dependent variable	OLS			Cluster FE		
	HAZ (1)	WHZ (2)	WAZ (3)	HAZ (4)	WHZ (5)	WAZ (6)
(Nightlight)¹	3.860***	4.108***	5.043***	4.168***	4.434***	5.480***
	(1.444)	(1.314)	(1.221)	(1.583)	(1.522)	(1.386)
(Nightlight)²	2.116	2.398**	3.107***	2.078	2.527*	3.123**
	(1.323)	(1.203)	(1.119)	(1.458)	(1.407)	(1.280)
(Nightlight)³	−3.276**	0.289	−1.666	−3.324**	0.173	−1.753
	(1.321)	(1.201)	(1.117)	(1.439)	(1.379)	(1.257)
(Nightlight)⁴	1.173	−1.336	−0.412	1.142	−1.459	−0.479
	(1.325)	(1.205)	(1.120)	(1.441)	(1.381)	(1.259)
Mother’s education	0.023*	0.001	0.014	0.024*	0.003	0.016
	(0.013)	(0.012)	(0.011)	(0.013)	(0.012)	(0.011)
Age of mother at first birth	0.051***	0.016***	0.041***	0.048***	0.017***	0.040***
	(0.006)	(0.006)	(0.005)	(0.006)	(0.006)	(0.005)
Age of child	−0.128***	−0.121***	−0.152***	−0.129***	−0.119***	−0.151***
	(0.014)	(0.013)	(0.012)	(0.014)	(0.013)	(0.012)
Wealth dummy (poorest wealth = 1)	−0.110*	−0.078	−0.113**	−0.097*	−0.072	−0.099**
	(0.059)	(0.053)	(0.050)	(0.059)	(0.054)	(0.050)
Electricity dummy (have access = 1)	0.270***	0.148***	0.271***	0.270***	0.135***	0.265***
	(0.050)	(0.046)	(0.043)	(0.052)	(0.048)	(0.044)
Constant	−2.428***	−1.021***	−2.130***	−2.382***	−1.030***	−2.102***
	(0.126)	(0.115)	(0.107)	(0.128)	(0.117)	(0.108)
Observations	4388	4388	4388	4388	4388	4388
R²	0.060	0.035	0.086	0.056	0.033	0.082
Adjusted R²	0.058	0.033	0.085	0.055	0.031	0.080
F statistic (df = 9; 4378)	31.092***	17.745***	46.010***	258.007***	144.666***	376.500***

In 2011, the estimated coefficients of children’s nutritional outcome variables reveal significant positive and non-linear associations between urbanization and child health outcomes. Among the three measures of child health, the relationship with urbanization is particularly pronounced for weight for age, with coefficients of 5.043 and 5.480, respectively. Furthermore, the magnitude of these estimated coefficients varies significantly across different levels of urbanization when the models account for a set of child and parental characteristics.

*p < 0.1; **p < 0.05; ***p < 0.01

limitations mentioned above. The GAMs are an extension of generalized linear models to the family of additive models, where non-linear effects of continuous variables can be modeled more flexibly by linking smooth functions and the expected value.

⁹ A few recent noteworthy applications of GAMs in children’s health and nutritional outcomes are in Bacha (2020), Dong et al. (2019), Hebestreit et al. (2017), and Hunter and Prüss-Ustün (2016).
of a response variable \(y \in \{\text{HAZ, WHZ, WAZ, stunted, wasted, underweight}\} \) and the \(p \) vector of continuous and categorical covariates \(x_1, x_2 \ldots x_p \), then the effect of the covariates on the response variable can be expressed through the following linear predictor:

\[
\text{predictor} = \beta_0 + \sum_{i=1}^{p} \beta_i x_i
\]

Table 7 OLS and cluster fixed effects model as a reference or baseline model (survey year 2014)

Dependent variables	OLS	Cluster FE				
	(1)	(2)	(3)	(4)	(5)	(6)
HAZ	3.766***	4.518***	5.158***	3.731**	4.542***	5.240***
	(1.441)	(1.316)	(1.229)	(1.680)	(1.358)	(1.410)
WHZ	0.755	1.303	1.231	1.334	1.296	1.521
	(1.267)	(1.157)	(1.081)	(1.550)	(1.207)	(1.294)
WAZ	−0.762	0.294	−0.455	−1.023	0.287	−0.622
	(1.270)	(1.160)	(1.084)	(1.537)	(1.207)	(1.284)
(Nightlight)\(^*\)	−2.676**	−2.133*	−3.046***	−2.664*	−2.122*	−3.043***
	(1.265)	(1.156)	(1.080)	(1.487)	(1.194)	(1.246)
Mother’s education	0.016	−0.013	−0.002	0.014	−0.014	−0.003
	(0.013)	(0.012)	(0.011)	(0.013)	(0.012)	(0.011)
Age of mother at first birth	0.048***	0.017***	0.039***	0.046***	0.016***	0.037***
	(0.006)	(0.005)	(0.005)	(0.006)	(0.005)	(0.005)
Age of child	−0.166***	−0.097***	−0.158***	−0.166***	−0.097***	−0.158***
	(0.014)	(0.013)	(0.012)	(0.014)	(0.013)	(0.012)
Wealth dummy (poorest wealth = 1)	−0.040	−0.112**	−0.112**	−0.036	−0.112**	−0.107**
	(0.055)	(0.050)	(0.047)	(0.055)	(0.051)	(0.047)
Electricity dummy (have access = 1)	0.227***	0.164***	0.248***	0.240***	0.164***	0.255***
	(0.049)	(0.045)	(0.042)	(0.052)	(0.045)	(0.044)
Constant	−2.162***	−0.991***	−1.916***	−2.111***	−0.984***	−1.872***
	(0.120)	(0.110)	(0.102)	(0.122)	(0.110)	(0.104)
Observations	4346	4346	4346	4346	4346	4346
R\(^2\)	0.067	0.033	0.087	0.066	0.032	0.085
Adjusted R\(^2\)	0.065	0.031	0.085	0.064	0.030	0.083
F statistic (df = 9; 4336)	34.324***	16.572***	45.979***	285.762***	144.948***	378.575***

In 2014, the estimated coefficients of children’s nutritional outcome variables revealed significant positive and non-linear associations between urbanization and child health outcomes. Weight for age emerges as the measure with the most pronounced relationship with urbanization, as indicated by coefficients of 5.158 and 5.240, respectively. Moreover, the magnitude of these estimated coefficients varies considerably across different levels of urbanization when the models consider a range of child and parental characteristics, such as age of mother at first birth, access to electricity, and age of child.

\(*p < 0.1; **p < 0.05; ***p < 0.01*
Here, the conditional mean response in our linear model is $E_y = \mu$. Let a link function $g(.)$ specify the connection between the mean response μ and the vector of covariates through $g(\mu) = \eta = x\beta$, where $\text{VAR}(y) \propto V(\mu)$, and $V(\mu) = \mu(1 - \mu)/n$ for a sample size of n. Following Hastie (2017) and Wood (2017), we write our GAM in the following manner:

$$\eta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p = x^T \beta.$$

Table 8 Generalized additive model (pooled)

	Dependent variables		
	WAZ	WHZ	HAZ
(Nightlight)3	9.049***	7.091***	7.348***
	(1.220)	(1.299)	(1.437)
(Nightlight)2	3.968***	2.896**	3.246**
	(1.105)	(1.177)	(1.302)
(Nightlight)3	-0.355	0.882	-1.479
	(1.107)	(1.179)	(1.304)
(Nightlight)4	-3.291***	-2.495**	-2.496*
	(1.108)	(1.181)	(1.306)
Mother’s education	0.017**	-0.001	0.033***
	(0.008)	(0.008)	(0.009)
Age of child	-0.157***	-0.110***	-0.149***
	(0.008)	(0.009)	(0.010)
Electricity dummy	0.320***	0.192***	0.306***
(have access = 1)	(0.029)	(0.031)	(0.034)
Constant	-1.374***	-0.758***	-1.477***
	(0.038)	(0.040)	(0.045)
Observations	8734	8734	8734
Adjusted R2	0.072	0.030	0.047
Log Likelihood	-13,268.580	-13,823.420	-14,698.920
UBRE	1.222	1.387	1.695

The output of the generalized additive model regression confirms a positive and significant association between nighttime light intensity and children’s Z-scores for nutritional outcome variables. Among these variables, weight for age exhibits the strongest relationship with urbanization, as indicated by a coefficient of 9.094, followed by 7.348 for height for age. The inclusion of first- and second-order polynomials aligns with the theoretical analysis and supports the economic interpretation of the results.

*p < 0.1; **p < 0.05; ***p < 0.01

10 An obvious choice of the link function is $\eta = \mu$ for the family of Gaussian model, but an alternative selection of $S'y=\{g\}^{-1}(\{x\}^T\beta)+\upsilon$ is also suggested in the theoretical literature (Agresti 2015; Fox 2015; Nelder and Wedderburn 1972).
Here, \(S_j(x_j) \), \(j = 1, 2, \ldots, k \) is the additive components that permit a simultaneous smoothing transformation without any parametric assumption; for the design matrix \(Z \), the random part \(Z\phi \) is not modeled additively. The matrix \(Z \) includes both continuous and categorical variables, such as child and parental characteristics.

We follow Hastie and Tibshirani (1990) and utilize functional facilities from the popular R-package GAM (Hastie and Hastie 2020) and Mixed GAM Computation.
Vehicle (MGCV) (Wood 2012). We fit the model using both non-parametric spline smoothers and the parametric polynomial regression, where we allow an automatic selection of the degree of smoothing for nighttime light intensity. The regression outputs are qualitatively similar in both parametric and non-parametric regressions. Therefore, we report parametric regression output in Tables 8 and 9.

Consistent with the baseline OLS regression, generalized additive model regression output in Table 8 shows that the nighttime light intensity is positively and significantly related to children’s Z-score of nutritional outcome variables. The significant impact also remains the same for three other nutritional indicators: the decreasing probability of a child being stunted, wasted, and underweight. The higher-order polynomial coefficients of nighttime light intensity presented in Tables 8 and 9 show a significant non-linear relationship with nutritional outcomes. While the first- and second-order polynomials are economically consistent with the theoretical analysis in Sect. 2, the third-order and a few fourth-degree polynomials are not statistically significant in both tables. Noticeably, estimated negative coefficients of the fourth-degree polynomial are not consistent with the empirical literature, which shows the positive effect of urban expansion on the reduction of poverty (Christiaensen and Kanbur 2017; Gibson et al. 2017) and improvement of child well-being (Amare et al. 2020; Smith et al. 2005). In addition, the machine learning methods are likely to be overfitting the data. We prefer to leave this inconsistency to the lack of theoretical guidance in selecting a set of appropriate controls in the models and need to be improved in future research.

Finally, we perform several diagnostic tests to validate our results. We estimate the percentage of dispersion predicted from the GAMs, both with and without the smoothed component of nighttime light intensity, in order to determine the explanatory power of the fitted models. This power is measured as the additional percentage of deviance explained from the fitted models. This additional dispersion is the percentage difference of deviance explained between the model with smoothed nighttime light intensity and the unexplained dispersion of the model with no smooth nighttime light intensity variables. The transformation of the nighttime light intensity variable is strongly significant across all three nutritional outcome variables, and the model fit is relatively superior with the suggested degree of smoothness than the baseline OLS models. For height for age, weight for age, and weight for height, the additional deviance explained by the models with the smooth component are 0.05%, 0.04%, and 0.18%, respectively.

Discussion and policy recommendations

The empirical findings provide significant insights into the complex relationship between child nutritional outcomes and night light intensities, extending beyond the specific context of child health and urbanization in Bangladesh. In both the pooled ordinary least squares (OLS) and cluster fixed-effect models, we observe statistically significant relationships represented by second and fourth-degree polynomials, capturing the nonlinear impact of urbanization on children’s nutritional outcomes. These nonlinear effects contribute to the ongoing debate surrounding effective
policies addressing child malnutrition, poverty reduction, and enhancing access to improved healthcare services for vulnerable populations in low-income countries. Also, the analysis reveals a distinct U-shape association between urbanization and child health outcomes across various regression specifications, highlighting highly elastic relations during the early stages of urbanization. In contrast, the response of child health outcomes becomes flat in the middle stage and less elastic in the advanced stages.

The variation in this relationship suggests that fostering the growth of small towns in low-income countries may improve child nutritional outcomes more effectively than expanding large cities. By utilizing night light data as a proxy for rural–urban distinctions, Amare et al. (2020), Ameye and Weerdt (2020), and Gibson et al. (2017) employ a comparable methodology to assess rural–urban disparities and their impact on poverty reduction in African nations. Their findings indicate that expanding small towns has a greater efficacy in mitigating national poverty levels than larger cities. Similarly, findings from our study also highlight the demand for sub-national level intervention considering the geospatial dynamics and characteristics of towns in improving child nutritional outcomes, emphasizing their potential as critical drivers of economic development, poverty alleviation, and welfare improvement in South Asian and African contexts.

Furthermore, our analysis reveals that the impact of nighttime light intensities on child nutritional outcomes surpasses that of other socioeconomic factors, indicating a more extensive and highly elastic response in the lower segment of night light intensities. Specifically, our fixed-effects estimates yield elasticity values 8.42 for weight-for-age, 6.72 for weight-for-height, and 6.15 for height-for-age. From a policy perspective, these estimates indicate that careful attention should be given to the transition stage from rural nonfarm to semi-urban economy and small municipalities. This is because the allocation of public investments across infrastructure, education, and health sectors may not efficiently prioritize the nutrition-promoting sectors during the transition stage. A positive correlation between improved child health and urban expansion may offer limited guidance to policymakers that can undermine the potential benefits of this transition. The findings of this study suggest that directing public funds towards “nutrition-sensitive” factors during the transitional phase of the semi-urban economy can shape the urbanization pattern and transmission channels. These channels enable a larger segment of the population to reap the advantages of early-stage urbanization, such as enhanced access to healthcare services. Consequently, this early-stage urbanization pattern proves more effective in achieving optimal child health outcomes compared to other socioeconomic factors associated with urbanization in Bangladesh and potentially in other low-income Asian countries.

Finally, the estimated coefficients for fourth-degree polynomials related to the highest levels of urbanization reveal two distinct implications. The impact of urbanization on HAZ, WHZ, and WAZ either becomes insignificant or plateaus, while for other specifications, it leads to a deterioration in these outcomes. We attribute these findings to the challenges faced in delivering health services in megacities, where significant inequalities in economic, education, and health factors prevail among the urban poor. The inequality in accessing government healthcare services is evident.
from Angeles et al. (2019) and Banks et al. (2011), which highlight the substantial gaps in child health service coverage provided by the public sector in two megacities in Bangladesh.

Taking into account the ongoing urbanization trends in Bangladesh and the projections provided by the United Nations (UN), it is anticipated that the urban population will experience a 51% increase over a 15-year period, growing from 55 million individuals in 2015 to 83 million by 2030 (United Nations (UN) 2014). Our estimates highlight the significance of targeted interventions in improving health outcomes and optimal budgeting, specifically for the urban poor residing in megacities of low-income countries. Such interventions are essential for narrowing the intra-urban and regional gaps in health and promoting health equity. From a macroeconomic policy standpoint, these interventions reflect the long-term inverse relationship between child malnutrition rates and gross national product (GNP) per capita observed across different countries.

Conclusion

This paper combines parametric and non-parametric regression models with the help of machine learning algorithms to study the impact of urbanization on child health in Bangladesh. We use nighttime light intensity data as a proxy measure of urbanization. We find that the effect of urbanization is positive and robust across various measures of child health. The magnitude of the response is non-linear and that the estimated coefficients are significant for all the standard measures of child nutritional outcomes. Machine learning algorithms related to child health outcomes’ responses to child and parental features suggest that parental education, child age, birth order, access to electricity, and wealth are significant determinants of this relationship. For children with parents who have had higher schooling years, a higher share of wealth, and more access to electricity, the nighttime light intensity variable seems to have a strong positive effect on their health status.

We develop a hybrid production function for an economic interpretation of the conjecture that nighttime light intensity is a powerful determinant of the development of a child’s health. The results show that a one percent increase in nighttime light intensity significantly increases the Z score of child health outcomes by a maximum of 8.42 units. This positive relationship appears remarkably robust across parametric and non-parametric models and when the child and parental characteristics are considered as the control variables. A hybrid version of the health production function and household utility function provides theoretical and economic support to our empirical findings.

The results highlight the greater impact of the expansion of towns, investments in public infrastructure, and technology on the improvement of child nutritional outcomes than the expansion of megacities. We would be interested in exploring how urban features, country heterogeneities, and their nonlinear relationship can be incorporated into a theoretical model in future work. Moreover, it would also be interesting to examine, in detail, the association between the degree of urbanization
and country characteristics and the role of country-specific factors in influencing the development of the health of children in low- and middle-income countries.

Author contributions MRI: study conception and design, data collection and curation, regression model, refining of the manuscript. MA: designing regression and theoretical models, machine learning algorithms, code writing, model estimation, and manuscript drafting. MNİA: literature review, drafting, and refining of the manuscript. SA: data analysis, spatial visualization, and literature review.

Funding No funding was received for conducting this study.

Data availability Data and the replication codes (in R language) will be available on the corresponding author’s Github page (https://github.com/masud-alam) upon the acceptance to the journal and online appearance of the final version of the paper.

Declarations

Conflict of interest There are no potential financial or non-financial conflicts of interest related to this study. We declare that we have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

References

Abdulahi A, Shab-Bidar S, Rezaei S, Djafarian K (2017) Nutritional status of under five children in Ethiopia: a systematic review and meta-analysis. Ethiop J Health Sci 27(2):175–188. https://doi.org/10.4314/ejhs.v27i2.10

Agresti A (2015) Foundations of linear and generalized linear models. Wiley, New York

Ahsan KZ, Arifeen SE, Al-Mamun MA, Khan SH, Chakraborty N (2017) Effects of individual, household and community characteristics on child nutritional status in the slums of urban Bangladesh. Arch Public Health 75(1):1–13. https://doi.org/10.1186/s13690-017-0176-x

Akombi BJ, Agbo KE, Merom D, Renzaho AM, Hall JJ (2017) Child malnutrition in sub-Saharan Africa: a meta-analysis of demographic and health surveys (2006–2016). PLoS One 12(5):e0177338. https://doi.org/10.1371/journal.pone.0177338

Amare M, Arndt C, Abay KA, Benson T (2020) Urbanization and child nutritional outcomes. World Bank Econ Rev 34(1):63–74. https://doi.org/10.1093/wber/lhy015

Ameye H, De Weerdt J (2020) Child health across the rural–urban spectrum. World Dev 130:104950. https://doi.org/10.1016/j.worlddev.2020.104950

Ameyes G, Ahsan KZ, Streatfield PK, El Arifeen S, Jamil K (2019) Reducing inequity in urban health: have the intra-urban differentials in reproductive health service utilization and child nutritional outcome narrowed in Bangladesh? J Urban Health 96(2):193–207. https://doi.org/10.1007/s11524-018-0307-x

Bacha RH (2020) Identifying prognosticators covariates of child nutritional status in ethiopia: a Bayesian generalized additive modelling approach. Biom Biostat Int J 9(1):28–42. https://doi.org/10.15406/bbij.2020.09.00297

Balitagi BH, Liu L (2008) Testing for random effects and spatial lag dependence in panel data models. Stat Probab Lett 78(18):3304–3306. https://doi.org/10.1016/j.spl.2008.06.014

Bangladesh Demographic and Health Surveys. (n.d). Bangladesh DHS, 2014—Final Report (English). https://dhsprogram.com/publications/publication-fr311-dhs-final-reports.cfm. Accessed 16 Feb 2021

Banks N, Roy M, Hulme D (2011) Neglecting the urban poor in Bangladesh: research, policy and action in the context of climate change. Environ Urban 23(2):487–502. https://doi.org/10.1177/0956247811417794

Behrman JR, Deolalikar AB (1988) Health and nutrition. Handb Dev Econ 1:631–711

Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Maternal and Child Nutrition Study Group (2013) Maternal and child undernutrition and overweight in low-income and
middle-income countries. Lancet 382(9890):427–451. https://doi.org/10.1016/S0140-6736(13)60937-X

Choudhury S, Headey DD, Masters WA (2019) First foods: diet quality among infants aged 6–23 months in 42 countries. Food Policy 88:101762. https://doi.org/10.1016/j.foodpol.2019.101762

Christiaensen L, Kanbur R (2017) Secondary towns and poverty reduction: refocusing the urbanization agenda. Annu Rev Resour Econ 9:405–419

Christiaensen L, De Weerdt J, Todo Y (2013) Urbanization and poverty reduction: the role of rural diversification and secondary towns 1. Agric Econ 44(4–5):435–447. https://doi.org/10.1111/agec.12028

Christopher NH (2010) Population detection profiles of DMSP-OLS night-time imagery by regions of the world. Proc Asia-Pac Adv Netw 30:190–206

Dasgupta S, Roy S, Wheeler D (2021) Explaining regional variations in mother-child health: additional identified determinants in India and Bangladesh. Health Policy Open 2:100038. https://doi.org/10.1016/j.hopen.2021.100038

Ding C, Cao XJ, Naess P (2018) Applying gradient boosting decision trees to examine nonlinear effects of the built environment on driving distance in Oslo. Transp Res Part A Policy Pract 110:107–117. https://doi.org/10.1016/j.tra.2018.02.009

Dong Y, Jan C, Ma Y, Dong B, Zou Z, Yang Y, Patton GC (2019) Economic development and the nutritional status of Chinese school-aged children and adolescents from 1995 to 2014: an analysis of five successive national surveys. Lancet Diabetes Endocrinol 7(4):288–299. https://doi.org/10.1016/S2213-8587(19)30075-0

Dugoua E, Kennedy R, Urpelainen J (2018) Satellite data for the social sciences: measuring rural electrification with night-time lights. Int J Remote Sens 39(9):2690–2701. https://doi.org/10.1080/01431161.2017.1420936

Durrleman S, Simon R (1989) Flexible regression models with cubic splines. Stat Med 8(5):551–561

Elvidge CD, Baugh KE, Anderson SJ, Sutton PC, Ghosh T (2012) The Night Light Development Index (NLDI): a spatially explicit measure of human development from satellite data. Soc Geogr 7(1):23–35

Firestone R, Punpuing S, Peterson KE, Acevedo-Garcia D, Gortmaker SL (2011) Child overweight and undernutrition in Thailand: is there an urban effect? Soc Sci Med 72(9):1420–1428. https://doi.org/10.1016/j.socscimed.2011.03.003

Fox J (2015) Applied regression analysis and generalized linear models. Sage Publications

Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1, no 10. Springer Series in Statistics, New York

Ghosh T, Anderson SJ, Elvidge CD, Sutton PC (2013) Using nighttime satellite imagery as a proxy measure of human well-being. Sustainability 5(1):4988–5019. https://doi.org/10.3390/su5124988

Gibson J, Datt G, Murgai R, Ravallion M (2017) For India’s rural poor, growing towns matter more than growing cities. World Dev 98:413–429. https://doi.org/10.1016/j.worlddev.2017.05.014

Gibson J, Olivia S, Boe-Gibson G (2019) Which night lights data should we use in economics, and where? MPRA Paper, No 97582

Grossman M (1972) On the concept of health capital and the demand for health. J Polit Econ 80(2):223–255

Hastie TJ (2017) Generalized additive models. Routledge, New York, pp 249–307

Hastie T, Hastie MT (2020) Package ‘gam’. GAM Package CRAN. https://cran.r-project.org/web/packages/gam/index.html. Accessed 6 Feb 2021

Hastie TJ, Tibshirani RJ (1990) Generalized additive models, vol 43. CRC Press, Boca Raton

Hebestreit A, Intemann T, Siani A, De Henauw S, Eiben G, Kourides A, Pigeot I (2017) Dietary patterns of European children and their parents in association with family food environment: results from the I. Family study. Nutrients 9(2):126. https://doi.org/10.3390/nu9020126

Henderson JV, Storeygard A, Weil DN (2012) Measuring economic growth from outer space. Am Econ Rev 102(2):994–1028. https://doi.org/10.1257/aeq.102.2.994

Hunter PR, Prüss-Ustün A (2016) Have we substantially underestimated the impact of improved sanitation coverage on child health? A generalized additive model panel analysis of global data on child mortality and malnutrition. PLoS One 11(10):e0164571. https://doi.org/10.1371/journal.pone.0164571

International Food Policy Research Institute (IFPRI) (2020) AReNa’s DHS-GIS Database. Harvard Dataverse, V1. UNF:6:CCnbCvRUu7FlIAy2ut+whw==[fileUNF]. https://doi.org/10.7910/DVN/OQIPRW. Accessed 26 Mar 2021
Keino S, Plasqui G, Ettyang G, van den Borne B (2014) Determinants of stunting and overweight among young children and adolescents in sub-Saharan Africa. Food Nutr Bull 35(2):167–178. https://doi.org/10.1177/156482651403500203

Khan QM (1984) The impact of household endowment constraints on nutrition and health: a simultaneous equation test of human capital divestment. J Dev Econ 15(1–3):313–328. https://doi.org/10.1016/0304-3878(84)90021-X

Kneib T, Hothorn T, Tutz G (2009) Variable selection and model choice in geospatial additive regression models. Biometrics 65(2):626–634. https://doi.org/10.1111/j.1541-0420.2008.01122.x

Krantz DH, Suppes P, Luce RD (2006) Additive and polynomial representations, vol 1. Courier Corporation, Chelmsford

Li Z, Kim R, Vollmer S, Subramanian SV (2020) Factors associated with child stunting, wasting, and underweight in 35 low-and middle-income countries. JAMA Netw Open 3(4):e203386. https://doi.org/10.1001/jamanetworkopen.2020.3386

Liu H, Mroz T, Adair L (2009) Parental compensatory behaviors and early child health outcomes in Cebu, Philippines. J Dev Econ 90(2):209–230. https://doi.org/10.1016/j.jdeveco.2008.12.001

Lu D, Tian H, Zhou G, Ge H (2008) Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens Environ 112(9):3668–3679. https://doi.org/10.1016/j.rse.2008.05.009

Ma T, Zhou C, Pei T, Haynie S, Fan J (2012) Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China’s cities. Remote Sens Environ 124:99–107. https://doi.org/10.1016/j.rse.2012.04.018

Mellander C, Lobo J, Stolarick K, Matheson Z (2015) Night-time light data: a good proxy measure for economic activity? PLoS One 10(10):e0139779. https://doi.org/10.1371/journal.pone.0139779

Millo G, Piras G (2012) Splm: Spatial panel data models in R. J Stat Softw 47:1–38. https://doi.org/10.18637/jss.v047.i01

Nadaraya EA (1964) On estimating regression. Theory Probab Appl 9(1):141–142. https://doi.org/10.1137/1109020

Nelder JA, Wedderburn RW (1972) Generalized linear models. J R Stat Soc Ser A (gen) 135(3):370–384

Omiat G, Shively G (2020) Rainfall and child weight in Uganda. Econ Hum Biol 38:100877. https://doi.org/10.1016/j.ehb.2020.100877

Paciorek CJ, Stevens GA, Finucane MM, Ezzati M (2013) Children’s height and weight in rural and urban populations in low-income and middle-income countries: a systematic analysis of population-representative data. Lancet Glob Health. https://doi.org/10.1016/S2214-109X(13)70109-8

Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076. https://doi.org/10.1214/aoms/1177704472

Raheem E, Khan JR, Hossain MS (2019) Regional disparities in maternal and child health indicators: cluster analysis of districts in Bangladesh. PLoS One 14(2):e0210697. https://doi.org/10.1371/journal.pone.0210697

Rahman MS, Mohiuddin H, Kafy AA, Sheel PK, Di L (2019) Classification of cities in Bangladesh based on remote sensing derived spatial characteristics. J Urban Manag 8(2):206–224. https://doi.org/10.1016/j.jum.2018.12.001

Rosenzweig MR (1986) Program interventions, intrahousehold distribution and the welfare of individuals: modelling household behavior. World Dev 14(2):233–243. https://doi.org/10.1016/0305-750X(86)90055-0

Rosenzweig MR, Schultz TP (1983) Estimating a household production function: heterogeneity, the demand for household inputs, and their effects on birth weight. J Politi Econ 91(5):723–746

Ruel MT, Alderman H, Maternal and Child Nutrition Study Group (2013) Nutrition-sensitive interventions and programmes: how can they help to accelerate progress in improving maternal and child nutrition? Lancet 382(9891):536–551

Ruel MT, Garrett J, Yosef S, Olivier M (2017) Urbanization, food security and nutrition. In: Nutrition and health in a developing world, pp 705–735. https://doi.org/10.1007/978-3-319-43739-2_32

Silverman BW (1998) Density estimation for statistics and data analysis. Chapman and Hall/CRC, Boca Raton

Smith LC, Ruel MT, Ndiaye A (2005) Why is child malnutrition lower in urban than in rural areas? Evidence from 36 developing countries. World Dev 33(8):1285–1305. https://doi.org/10.1016/j.worlddev.2005.03.002
Srinivasan CS, Zanello G, Shankar B (2013) Rural-urban disparities in child nutrition in Bangladesh and Nepal. BMC Public Health 13(1):1–15. https://doi.org/10.1186/1471-2458-13-581
Stifel D, Minten B (2017) Market access, well-being, and nutrition: evidence from Ethiopia. World Dev 90:229–241. https://doi.org/10.1016/j.worlddev.2016.09.009
Stone CJ (1985) Additive regression and other nonparametric models. Ann Stat 13:689–705
Strauss J, Thomas D (1998) Health, nutrition, and economic development. J Econ Lit 36(2):766–817
UN–Habitat (n.d.) The United Nations Human Settlements Programme. https://unhabitat.org/bangladesh. Accessed 10 June 2023
UNICEF (2022) The situation of children in Bangladesh. UNICEF Bangladesh and General Economics Division (GED), Bangladesh Planning Commission.
United Nations (2014) World urbanization prospects: the 2014 revision. Department of Economic and Social Affairs, Population Division, New York
Van de Poel E, O’Donnell O, Van Doorslaer E (2007) Are urban children really healthier? Evidence from 47 developing countries. Soc Sci Med 65(10):1986–2003. https://doi.org/10.1016/j.socscimed.2007.06.032
Watson GS (1964) Smooth regression analysis. Sankhyā 26(4):359–372
Wood S (2012) mgcv: mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation
Wood SN (2017) Generalized additive models: an introduction with R. CRC Press, Boca Raton
World Bank (2023) World Bank staff estimates based on the United Nations Population Division’s World Urbanization Prospects: 2018 Revision. https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?locations=BD. Accessed 12 June 2023
Zhang Q, Seto KC (2013) Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sens 5(7):3476–3494. https://doi.org/10.3390/rs5073476
Zhang Z, Zhao Y, Canes A, Steinberg D, Lyashevska O (2019) Predictive analytics with gradient boosting in clinical medicine. Ann Transl Med 7:7. https://doi.org/10.21037/atm.2019.03.29

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.