Original Research Article

Invitro Evaluation of Bioagents/ Consortia on Turmeric Rhizome Rot caused by *P. aphanidermatum*

D.S. Kadam*, K.T. Apet, R.R. Jadhav and N.B. Kakde

Department of Plant Pathology, VNMKV, Parbhani, India

*Corresponding author

Abstract

Turmeric (*Curcuma longa* L.) is one of the most important spice crop cultivated in India. Assessment of *in vitro* bioefficacy of bioagents alone /consortia in turmeric against *P. aphanidermatum* revealed that, maximum per cent germination was recorded in treatment consortium of T1 to T14 (98.0%), whereas minimum per cent germination was recorded 36.0% (control). The average mortality recorded with all the treatments and it was maximum in untreated control (74.0) followed by *Beauveria bassiana* (52.0) and *Aspergillus niger* (42.0). Minimum per cent average mortality was observed 3.0% (consortium 4) followed by 4.0% (Carbendazim @ 0.1 %) and 6.0% (consortium 3). The reduction in average mortalities (pre and post) was highest in consortium 4 (96.06) followed by Carbendazim @ 0.1% (94.49) and consortium of 3 (92.11). Whereas lowest per cent reduction in post emergence seedling mortality was recorded by *Beauveria bassiana* (29.17) followed by *Aspergillus niger* (40.37) and *Nomuraea rileyi* (44.85).

Keywords

Rhizome rot, *P. aphanidermatum*, PESM, PERR, Bioagents, Consortia

Article Info

Accepted: 17 October 2019
Available Online: 10 November 2019

Introduction

Turmeric (*Curcuma longa* L.) is one of the most important spice crop cultivated in India. It is a rhizomes herbaceous perennial plant of the family Zingiberaceae. It has versatile uses in flavoring, dye making, drug preparation, cosmetics and medicine. Turmeric is officially entered in the Ayurvedic Pharmacopoeia of India, Pharmacopoeia of the People's Republic of China and in Japanese standards of herbal medicines. It also known as ‘haridra’ yellow colored wood in Sanskrit, is a part of Indian delicacies, health care as well as rites and rituals since time immemorial. Management of the disease using fungicides has led to the development of resistant strains of pathogens. Hence this study was carried out for the ecofriendly management of rhizome rot of turmeric using antagonistic biocontrol agents. Various cultivars / varieties of turmeric are devoid of
field resistance or tolerance against rhizome rot and majority of them are more or less prone to *Pythium aphanidermatum*. Though, some of the fungicides have been recommended to manage the disease, but present day farmer perception and environmental hazards are compelling to search for alternative eco-friendly disease management strategies. In the recent days of organic concept, organically grown turmeric has gained lot of demand in both domestic and international market.

Materials and Methods

For studying the effect of different bioagents and its consortium on turmeric different experiments were planned during 2017-18 at the farm AICRP (Irrigation Water Management), VNMKV, Parbhani.

Bioprming of turmeric rhizomes was carried out by the soaking of seed rhizomes in bioagent/consortial solution as per treatment before 24 hrs of planting to evaluate its individual effect on germination, pre emergence rhizome rot incidence, post emergence seedling mortality and its effects on other plant growth parameters. Bioagents was used 250ml/10 litre of water of a 2×10^7 CFUs for fungal bioagents and 2×10^8 for bacterial bioagents. A total of three drenching and spraying of all the treatments was undertaken at an interval of 45 days, starting first drenching at 30 DAS of the crop. One treatment was maintained as untreated control, and one standard fungicidal control (Carbendazim @ 0.1 % WP).

Experimental design

Design	R.B.D.
Variety	Selum
Replications	Two

Plot size : 7.5 x 7.5 m²
Spacing : 45 x 15 cm²
Treatments : 20

Details of treatment

| T₁ : Trichoderma viride |
| T₂ : Trichoderma harzianum |
| T₃ : Verticillium lecanii |
| T₄ : *P. fluoerescens* |
| T₅ : Beauveria bassiana |
| T₆ : *Metarhizium anisopliae* |
| T₇ : Bacillus subtilis |
| T₈ : Aspergillus niger |
| T₉ : Nomuraea rileyi |
| T₁₀ : Paecilomyces lilacinus |
| T₁₁ : *G. glucani* |
| T₁₂ : Azospirillumbrasilese |
| T₁₃ : *Pseudomonas striata* |
| T₁₄ : *Ppfm* |
| T₁₅ : Consortium 1 |
| T₁₆ : Consortium 2 |
| T₁₇ : Consortium 3 |
| T₁₈ : Consortium 4 |
| T₁₉ : Control (Carbendazim @ 0.1 % WP) |
| T₂₀ : Control (Untreated) |
Observations on rhizome germination and pre-emergence rhizome rot (PERR) were recorded at 20 days after sowing and that of post-emergence seedling mortality (PESM) at 30 days after sowing.

The per cent of rhizome germination, pre-emergence rhizome rot (PERR) and post-emergence seedling mortality (PESM) was calculated by following formulae:

Germination (%)
\[
\text{No. of rhizomes germinated} = \frac{x 100}{\text{Total no. of rhizomes sown}}
\]

PERR (%)
\[
\text{No. of rhizomes ungerminated} = \frac{x 100}{\text{Total no. of rhizomes sown}}
\]

PESM (%)
\[
\text{No. Seedling died} = \frac{x 100}{\text{Total no. of seedlings}}
\]

Results and Discussion

A total 20 treatments, comprising fourteen different bioagents alone, four in combinations (consortia), one standard check and absolute check were evaluated in turmeric (Cv. Selum) under controlled conditions in screen house. The results obtained on per cent germination, PERR and PESM presented in the Table 1.

Effect on rhizome germination

Results (Table 1) revealed that all treatment recorded improved significant rhizome germination, over untreated control in vitro. Maximum per cent germination was recorded in treatment consortium 4 (98.0) followed by consortium 3 and Carbendazim @ 0.1% (96.0) and consortium 2 (92.0). Whereas minimum per cent germination was recorded 36.0 (control) followed by 52.0 (Beauveria bassiana) and 60.0 (Aspergillus niger). Rest of treatments recorded per cent germination 64.0 (Nomuraea rileyi) to 88.0 (Trichoderma viride and consortium 1. Results indicated the treatment consortium 3 and Carbendazim @ 0.1% found at par with consortium 4.

Effect on pre and post emergence mortalities

Results (Table 1) revealed that treatment significantly influenced both pre emergence rhizome rot (PERR) and post emergence seedling mortality (PESM), caused by P. aphanidermatum in turmeric Cv. Selum.

Maximum per cent pre emergence rhizome rot was recorded in treatment of untreated control (64.0) followed by Beauveria bassiana (48.0) and Aspergillus niger (40.0) Minimum pre emergence rhizome rot per cent was observed 2.0 (consortium 4) followed by 4.0 (consortium 3 and Carbendazim @ 0.1%) and 8.0 (consortium 2). Rest of treatments recorded 12.0 (Trichoderma viride and consortium 1) to 36.0 (Nomuraea rileyi) per cent pre emergence rhizome rot incidence.

Results indicated the treatment consortium 1 and Carbendazim @ 0.1% found at par with consortium 4.

Similar trend with increased post emergence seedling mortality (PESM) also observed and it was maximum in untreated control (84.0) followed by Beauveria bassiana (56.0) and Pink pigmented facultative methyllobacterium (48.0).
Table 1: Bioefficacy of different bioagents alone/ consortia on rhizome rot incidence of turmeric (Pot culture)

Tr. No.	Treatment/ Dose	% Germination*	% Increase over Control	% Incidence*	Avg. Mortality	% Reduction over Control	Avg. Reduction
T₁	*Trichoderma viride*	88.00	59.09	12.00	12.00	12.00	81.25
		(69.73)	(50.24)	(20.27)	(20.27)	(20.27)	(64.34)
		84.00	57.14	16.00	20.00	18.00	75.00
		(66.42)	(49.10)	(23.58)	(26.57)	(25.10)	(60.00)
T₂	*Trichoderma harzianum*	68.00	47.06	32.00	36.00	34.00	50.00
		(55.55)	(43.31)	(34.45)	(36.87)	(35.67)	(45.00)
T₃	*Verticillium lecanii*	80.00	55.00	20.00	20.00	20.00	68.75
		(63.43)	(47.87)	(26.57)	(26.57)	(26.57)	(56.01)
T₄	*Pseudomonas fluorescens*	68.00	47.06	32.00	36.00	34.00	50.00
		(55.55)	(43.31)	(34.45)	(36.87)	(35.67)	(45.00)
T₅	*Beauveria bassiana*	80.00	55.00	20.00	20.00	20.00	68.75
		(63.43)	(47.87)	(26.57)	(26.57)	(26.57)	(56.01)
T₆	*Metarhizium anisopliae*	68.00	47.06	32.00	36.00	34.00	50.00
		(55.55)	(43.31)	(34.45)	(36.87)	(35.67)	(45.00)
T₇	*Bacillus subtilis*	68.00	47.06	32.00	36.00	34.00	50.00
		(55.55)	(43.31)	(34.45)	(36.87)	(35.67)	(45.00)
T₈	*Aspergillus niger*	68.00	47.06	32.00	36.00	34.00	50.00
		(55.55)	(43.31)	(34.45)	(36.87)	(35.67)	(45.00)
T₉	*Nomuraea rileyi*	68.00	47.06	32.00	36.00	34.00	50.00
		(55.55)	(43.31)	(34.45)	(36.87)	(35.67)	(45.00)
T₁₀	*Paecilomyces lilacinus*	80.00	55.00	20.00	20.00	20.00	68.75
		(63.43)	(47.87)	(26.57)	(26.57)	(26.57)	(56.01)
T₁₁	*Glucosaccharobacter glucazi*	80.00	55.00	20.00	20.00	20.00	68.75
		(63.43)	(47.87)	(26.57)	(26.57)	(26.57)	(56.01)
T₁₂	*Azospirillum brasilense*	80.00	55.00	20.00	20.00	20.00	68.75
		(63.43)	(47.87)	(26.57)	(26.57)	(26.57)	(56.01)
T₁₃	*Pseudomonas striata*	80.00	55.00	20.00	20.00	20.00	68.75
		(63.43)	(47.87)	(26.57)	(26.57)	(26.57)	(56.01)
T₁₄	*Pink pigmented*	80.00	55.00	20.00	20.00	20.00	68.75
		(63.43)	(47.87)	(26.57)	(26.57)	(26.57)	(56.01)
facultative methylobacterium | (55.55) | (43.31) | (34.45) | (43.85) | (39.23) | (45.00) | (40.90) | (42.95) |
--- | --- | --- | --- | --- | --- | --- | --- | --- |
T₁₅ | Consortium 1 | 88.00 (69.73) | 59.09 (50.24) | 12.00 (20.27) | 20.00 (26.57) | 16.00 (23.58) | 81.25 (64.34) | 76.19 (60.79) | 78.72 (62.53) |
T₁₆ | Consortium 2 | 92.00 (73.57) | 60.87 (51.28) | 8.00 (16.43) | 12.00 (20.27) | 10.00 (18.43) | 87.50 (69.30) | 85.71 (67.79) | 86.61 (68.54) |
T₁₇ | Consortium 3 | 96.00 (78.46) | 62.50 (52.24) | 4.00 (11.54) | 8.00 (16.43) | 6.00 (14.18) | 93.75 (75.52) | 90.48 (72.03) | 92.11 (73.69) |
T₁₈ | Consortium 4 | 98.00 (81.87) | 63.27 (52.70) | 2.00 (8.13) | 4.00 (11.54) | 3.00 (9.97) | 96.88 (79.83) | 95.24 (77.40) | 96.06 (78.55) |
T₁₉ | Carbendazim @ 0.1% | 96.00 (78.46) | 62.50 (52.24) | 4.00 (11.54) | 4.00 (11.54) | 4.00 (11.54) | 93.75 (75.52) | 95.24 (77.40) | 94.49 (76.42) |
T₂₀ | Control | 36.00 (36.87) | 0.00 (0.00) | 64.00 (53.13) | 84.00 (66.42) | 74.00 (59.34) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
SE_(m) | 1.30 | 1.06 | 1.49 | 1.49 | 1.31 | 1.30 | 1.58 | 1.60 |
CD (P=0.05) | 3.72 | 3.05 | 4.27 | 4.27 | 3.76 | 3.75 | 4.55 | 4.59 |

Mean of three replications, Avg.: Average, PERR: Pre emergence rhizome rot, PESM: Post Emergence Seedling Mortality. Figures in parentheses are angular transformed values
Minimum post emergence seedling mortality per cent was observed 4.0 (consortium 4 and Carbendazim @ 0.1%) followed by consortium 3 (8.0) and Trichoderma viride and consortium 2 (12.0). Rest of treatments recorded 20.0 (consortium 1 and Pseudomonas fluorescens) to 44.0 (Aspergillus niger and Nomuraea rileyi) post emergence seedling mortality.

Results indicated that only treatment Carbendazim @ 0.1% found at par with consortium 4.

The average mortality recorded with all the treatments and it was maximum in untreated control (74.0) followed by Beauveria bassiana (52.0) and Aspergillus niger (42.0).

Minimum per cent average mortality was observed 3.0 (consortium 4) followed by 4.0 (Carbendazim @ 0.1%) and 6.0 (consortium 3). Rest of treatments recorded 10.0 (consortium 2) to 40.0 (Pink pigmented facultative methylobacterium) average mortality.

Results indicated that only treatment Carbendazim @ 0.1% found at par with consortium 4.

Reduction in mortality

The reduction in average mortalities (pre and post) was highest in consortium 4 (96.06) followed by Carbendazim @ 0.1% (94.49) and consortium 1 (92.11). Whereas lowest per cent reduction in post emergence seedling mortality was recorded by Beauveria bassiana (29.17) followed by Aspergillus niger (40.37) and Nomuraea rileyi (44.85). Rest of treatments recorded 46.43 (Ppfm) to 86.61 (consortium 2) per cent reduction in average mortality. Results indicated that only treatment Carbendazim @ 0.1% found at par with consortium 4.

References

Anandam, R. J., Rao, S. A. and Babu, V. K. 1996. Studies on rhizome rot of turmeric. Ind. Cocoa Areca Nut Spices J., 20: 17-20.

Anoop, K. and Suseela Bhai, R. 2014. Evaluation of antagonistic potential of indigenous Trichoderma isolates against Pythium aphanidermatum (edson) fitz. causing rhizome rot in turmeric (curcuma longa L.). Journal of Science, 4(2): 99-105.

Balakrishnan, P. 2005. Bio ecology of rhizome rot pathogen(s) of ginger and disease management, Technical Bulletin No. 8, Abstracts of M.Sc. and Ph. D Dissertations on spice crops, pp-71.

Bharathi, V. and Sudhakar, R. 2011. Management of rhizome rot of turmeric (Curcuma longa L.) through IDM. Ann. Pl. Protec. Sci., 19 (2): 400-402.

Bharathi, V., Sudhakar, R., Parimala, K. and Reddy, V. A. 2013. Evaluation of bioagents and biofertilizers for the management of seed and seedling diseases of Sesamum indicum (sesame). ESci J. Plant Pathol., 02(03): 179-186.

Bhat, M. N. and Shrivastava 2003. Evaluation of some fungicides and neem formulations against six soil borne pathogens and three Trichoderma spp. in vitro. Pl. Dis. Res., 18 (1): 56-59.

Dohroo, N. P. and Gupta, M. 2014. Effect of bioagents on management of rhizome diseases, plant growth parameters and nematode population in ginger. Agric. Sci. Digest., 34(1): 41-44.

Dohroo, N. P., Kansal, S. and Ahluwalia, N. 2015. Studies on eco-farmer friendly practices for management of soft rot of ginger (Zingiber officinale). Indian Phytopath., 68(1): 93-96.
Hanif, A., Lal, A. A. and Simon, S. 2015. Eco-friendly management of damping off (Pythium aphanidermatum) of chilli (Capsicum annum. L). International Journal of Agricultural Science and Research., 5(3): 1-6.

How to cite this article:

Kadam, D.S., K.T. Apet, R.R. Jadhav and Kakde, N.B. 2019. In vitro Evaluation of Bioagents/Consortia on Turmeric Rhizome Rot caused by P. aphanidermatum. Int.J.Curr.Microbiol.App.Sci. 8(11): 1916-1922, doi: https://doi.org/10.20546/ijcmas.2019.811.225