Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents

Seyed Esmaeil Khoshnam,1 William Winlow,2,3 Yaghoob Farbood,1 Hadi Fathi Moghaddam,1 Maryam Farzaneh4
1Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2Dipartimento di Biologia, Università degli Studi di Napoli, Napoli, Italia
3Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, UK
4Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

Introduction

Stoke

Stoke is one of the leading causes of death and physical disability worldwide. The consequences of stroke injuries are profound and persistent, causing in considerable burden to both the individual patient and society. Current treatments for ischemic stroke injuries have proved inadequate, partly owing to an incomplete understanding of the cellular and molecular changes that occur following ischemic stroke. MicroRNAs (miRNA) are endogenously expressed RNA molecules that function to inhibit mRNA translation and have key roles in the pathophysiological processes contributing to ischemic stroke injuries. Potential therapeutic areas to compensate these pathogenic processes include promoting angiogenesis, neurogenesis and neuroprotection. Several miRNAs, and their target genes, are recognized to be involved in these recoveries and repair mechanisms. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique importance in ischemic stroke therapeutics. In this Review, we focus on the role of miRNAs as potential diagnostic and prognostic biomarkers, as well as promising therapeutic agents in cerebral ischemic stroke.

Keywords Ischemia; Stroke; MicroRNAs

Ischemic stroke is responsible for 80% of all strokes, while hemorrhagic stroke accounts for 15% and the other 5% are due to unknown etiology.5 In the present review we will discuss the pathogenic mechanisms related to ischemic stroke such as excitotoxicity, oxidative stress, inflammation and apoptosis, and how microRNAs may play a role in these pathogenic process. We will also investigate miRNAs that involved in the post-stroke recovery and repair pathways.

Pathophysiology of cerebral ischemia

Cerebral ischemia, which leads to brain dysfunction, results from cerebral artery occlusion that decreases cerebral blood flow, and its symptoms last for 24 hours or more.6 During isch-
emic stroke, neurons are deprived of oxygen and energy, so that their normal metabolic substrates stop functioning in seconds and display signs of structural injury after only 2 minutes.7 Immediately after ischemia, cellular energy-dependent processes fail and neurons are unable to sustain their normal transmembrane ionic gradient, resulting in an imbalance between ions and water thus leading to apoptosis and necrotic cell death.8,9

During ischemia the brain tissues are not affected equally owing to differential lessening of blood supply to the different zones. Hence, ischemic injury involves the ischemic core and the penumbra region.10 Severe ischemia occurs in the ischemic core, where neuronal damage is irreversible due to necrotic cell death while the surrounding penumbra constitutes cells that are metabolically active and potentially salvageable. Therefore, the penumbral zone has the potential for recovery and is the target for therapeutic agents.11,12 Nevertheless, cerebral ischemia triggers several pathogenic processes (excitotoxicity, oxidative stress, inflammation and apoptosis) in the penumbra zone that leads to neuronal cell death (Figure 1). These processes are considered to be the central mechanisms underlying neuron death in ischemic stroke.13-15

MicroRNAs

miRNAs are small, non-protein-coding RNAs, which include ~20–24 nucleotides that are highly conserved through evolution. They are post-transcriptional regulators that targeting the 3′-untranslated regions (3′-UTRs) of target mRNAs, which lead

Figure 1. Critical events in the ischemic cascade. Following ischaemia, the deprivation of oxygen and glucose to the brain lead to loss of ATP (energy loss) and ion pump failure. The loss of ion concentration gradients causes cytotoxic oedema and releasing of excitatory amino acids (EAAs). Following reduced glucose availability cell aerobic metabolism switches to anaerobic, resulting in metabolic acidosis. All of these events lead to cell death, or necrosis. Ischaemia also causes the upregulation and activation of many immediate early genes and stress signals, which lead to inflammatory responses, cell apoptosis and, subsequently, activation of matrix metalloproteinases (MMPs) as a damaging protease which can lead to the brain oedema and haemorrhage. Following ischaemia, AKT kinase activation and upregulation of trophic factors set the stage for recovery and repair mechanisms which including neurogenesis, synaptogenesis and angiogenesis. AKT, protein kinase B; MAPK, mitogen-activated protein kinase; ROS/RNS, reactive oxygen species/reactive nitrogen species; ATP, adenosine triphosphate; EAA, excitatory amino acids; CytC, cytochrome c; FAS, the cell-surface Fas receptor; PKC, protein kinase C; BBB, blood brain barrier.
to the inhibition of translation or degradation of the respective mRNA.16 miRNAs have been implicated in the regulation of a variety of cellular processes and diseases such as neuronal development, differentiation, synaptic plasticity, proliferation, metabolism, apoptosis, neurodegenerative diseases and tumorigenesis.17-22 miRNAs are initially transcribed from genomic DNA, and RNA polymerase II is responsible for transcription of primary miRNA (pri-miRNA).23 Pri-miRNAs can be thousands of base pairs in length and consist of at least one hairpin loop, which is recognized and cleaved by the endonuclease Drosha, and which generates a precursor miRNA (pre-miRNA), with the help of DGC8, a double stranded RNA-binding protein.24,25 The pre-miRNA is transported from the nucleus into the cytoplasm through the function of exportin-5. In the cytoplasm, the pre-miRNA undergoes cleavage by endoribonuclease Dicer to form a duplex of the mature miRNA strand, which is generally biologically active.26-28

It is known that biological functions of miRNAs are extremely dependent on the cellular context and the precise link between miRNAs and stroke consequences should be discussed only within a specific cellular context. The studies showed that miRNAs have participated as key mediators in the molecular processes underlying cerebral ischemia and related diseases.29-32 Therefore, in the present study, we review all available relevant articles regarding miRNAs and ischemic stroke in order to explain the complex link between miRNA and ischemic stroke. The information about the stroke–miRNA system may be used for therapeutic and diagnostic methods in stroke treatment.

MicroRNAs intervention in ischemic stroke progression

In the past few decades, the clinical methods such as computed tomography scans and magnetic resonance imaging have facilitated diagnosis and prognosis of stroke. However, the diagnostic and prognostic powers are limited in availability and higher cost.33,34 Additional diagnostic tools including interleukin-6 (IL-6), matrix metalloproteinase 9 (MMP-9) and C-reactive protein (CRP), which their specificity and ability to distinguish between acute stroke and its related risk factors is unclear.25 Given the limited recommended therapeutic window for thrombolysis, new biomarkers are necessary for advancing diagnosis of stroke. Therefore, recent studies have suggested promising mRNA based biomarkers, which they could distinguish transient ischemic attack from control samples.35 Hence, several studies have reported the uses of miRNAs as circulating biomarkers for diagnosis or prognosis of stroke (Table 1).

Several pathogenic processes are involved in ischemic stroke progression which include excitotoxicity, oxidative stress, inflammation and apoptosis.37 The miRNAs discussed below regulate genes in these pathogenic processes by downregulating the gene expression (Figure 2, Table 2).

Post-ischemic excitotoxicity

Ischemic stroke damages brain tissue primarily through excitotoxicity, a term used to describe cell death induced by synaptic high levels of glutamate, which is a major excitatory neurotransmitter in the central nervous system (CNS).38 Several types of glutamate receptors have been identified in the CNS, and the three main types of these receptors are: \(\alpha\)-Ami-no-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptors, N-Methyl-D-aspartate (NMDA) receptors and metabotropic glutamate receptors (mGlur).39-41 Excess glutamate over-activates NMDA and AMPA receptors on postsynaptic cells which facilitate influx of calcium ions into neurons.37,42

Under basal synaptic transmission, activation of the synaptic NMDA receptors (predominantly NR2A-containing) stimulates the signaling components of the neuronal survival signaling complex (NSC) that promoting neuronal survival.43,44 However, under pathological conditions such as stroke, elevating of the extracellular glutamate concentration causing excitotoxic activation of extrasynaptic NMDA receptors (predominantly NR2B-containing). The NR2B activation increased Ca2+ influx and promotes active death-associated protein kinase (aDAPK) to bind with NR2B.43-45 aDAPK recruitment promotes activating the neuronal death-signaling complex (NDC), that in turn suppress synaptic NSC activity43 and mediate neuronal death. It is demonstrated that inhibition of aDAPK binding to the NR2B

Table 1. Overview of circulating miRNAs and their relationship with stroke

miRNAs type	Expression of miRNA following stroke	Ref.
miR-363, miR-487b	+	249
miR-210	–	218
miR-124	+	250,251
miR-122, miR-148a, let-7i, miR-19a, miR-320d, miR-4429	–	249
miR-30a, miR-126	–	252
miR-125b-2, miR-27a, miR-422a, miR-488, miR-627	+	253
miR-290	+	29
hsa-miR-106b-5P, hsa-miR-4306	+	254
hsa-miR-320e, hsa-miR-320d	–	254
miR-124, miR-9, miR-219	–	136
miR-10a, miR-182, miR-200b, miR-298	+	32

Ref., reference; +, increase; –, decrease.
Figure 2. MicroRNAs involved in detrimental (purple boxes) and protective pathways (blue boxes) are activated by ischemic stroke. Cerebral ischemia, while activating detrimental pathways, also triggers some organized responses that counteract tissue injury. Post-ischemic oxidative stress triggers an oxidant and antioxidant responses via different factors which are inhibited by microRNAs. Oxidative agents that are inhibited by microRNAs, including reactive oxygen/nitrogen species (ROS/RNS), cyclooxygenase 2 (COX2), hydrogen peroxide (H$_2$O$_2$), malondialdehyde (MDA) and methane dicarboxylic aldehyde (MEDA). The antioxidant response which is inhibited by microRNAs containing transcription factor Nrf2 and superoxide dismutase (SOD). Following ischemia, inflammation is increased by production of matrix metalloproteinases (MMP-9) to infiltrate the BBB, and activation of pro-inflammatory genes such as interleukin-1 (IL-1α and IL-1β), IL-6, tumor necrosis factor α (TNF-α) and nuclear factor-κB, (NF-κB), as well as an activation of innate immune responses (microglia cells) and toll-like receptors (TLR4). Inflammation is mitigated by production of anti-inflammatory cytokines like such as IL-10. microRNAs could affect post-ischemic inflammatory and anti-inflammatory factors. Excitotoxicity associated with glutamate receptor activation can be counterbalance via glutamate transporter (GLT1) and NMMA (containing subunit NR2A), while glutamate receptors GluR2 and NMMA (containing subunit NR2B) exacerbate excitotoxic injuries. microRNAs inhibit those factors that contribute in the excitotoxicity. The detrimental effects of post-ischemic apoptosis are antagonized by activation and expression of antiapoptotic factors such as; Bcl-2, Bcl2L11, Bcl-w, Mcl-1 and the heat shock proteins family (HSPA12B). Hence, deleterious effects of apoptosis are induced by expression of caspase 3, activation of cell surface death receptors (Fas) and its ligand (FasL), and activation of p53, inhibitory member of the apoptosis-stimulating proteins of the p53 family (iASPP). There are some microRNAs which modulate the detrimental effects of post-ischemic apoptosis. SOCS1, suppressor of cytokine signaling 1; MyD88, myeloid differentiation primary response gene 88; iNOS, inducible nitric oxide synthase; Nrf2, nuclear factor erythroid-2 related factor 2; PUMA, p53 upregulated modulator of apoptosis; GLT-1, glutamate transporter-1; GluR2, glutamate receptor-2; FAP-1, Fas associated protein-tyrosine phosphatase 1.
reduces activation of NDC and prevent the excitotoxic neuronal injury induced by ischemic stroke.45,46 So, the NR2B subunit is a major hub for NDC formation.45,47,48

Also, binding of glutamate to mGluR caused release of the intracellular calcium store.27,39 These events result in accumulation of intracellular calcium which changes the osmolarity of the cell and activation some of endogenous enzymes such as proteases, lipases and endonucleases. These enzymes degrade important cellular macromolecules such as structural proteins, membrane lipids and DNA.27,39,49

MicroRNAs and ischemic excitotoxicity

Following ischemic injury, overexpression of miR-107 leads to suppression of glutamate transporter-1 (GLT-1) expression and elevated glutamate accumulation, which determine the degree of excitotoxicity.50 Post–ischemic downregulation of GLT-1 is closely associated with accumulation of glutamate, suggesting that glutamate accumulation and neuronal excitotoxicity can be controlled via GLT-1 expression.51 After transient forebrain ischemia, increasing miR-29a protects astrocytes and then indirectly neurons. miR-29a leads to decreasing PUMA (p53 upregulated modulator of apoptosis) levels and thereby preserves astrocyte GLT-1 leading to attenuation of oxidative stress and survival of neurons.52

Overexpression of miR-223 attenuates NMDA-induced calcium influx in hippocampal neurons and protects the ischemic brain from excitotoxic neuronal cell death through suppression the levels of the glutamate receptor-2 (GluR2) and NMDA subunit NR2B.53 It has been reported that the NR2A is a target for miR-125b and this miRNA negatively regulates NR2A expression.54 It has been approved that activation of NR2B-containing NMDA receptors leading to excitotoxicity and apoptosis. While, activation of the NR2A-containing NMDA receptors exerts a neuroprotective effects and promotes neuronal survival against excitotoxic-mediated neuronal damage.44 Synaptic plasticity that is profoundly influenced by the NMDA receptor subunit is altered.44 This is a devastating effect because, after stroke damage plasticity can promote adult brain recovery.55-58

Post–ischemic oxidative stress

Oxidative stress results from increased reactive oxygen/nitrogen species (ROS/RNS) and/or decrease of the anti-oxidative stress defense systems of the body.59 Several mechanisms caused formation of free radicals and ROS during ischemia,60 including high stimulation of NMDA glutamate receptors due to excitotoxicity,61 Ca2+ overload, mitochondrial dysfunction,62-64 neuronal nitric oxide synthase (nNOS) activation,65 and migration of inflammatory cells such as neutrophils and leukocytes that can generate superoxide anions.66 Oxidative stress has been involved in a variety of diseases, including cancer, atherosclerosis, neurodegenerative diseases, and stroke.67 Oxidative damage is a fundamental mechanism of brain damage and neuronal cell death during ischemic stroke. The brain is very susceptible to oxidative stress due to its highly oxygenated environment, with high levels of peroxidizable lipids, low levels of antioxidants and a high iron content.68

The activity of antioxidant and detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase and Glutathione-S-transferase (GST), has been studied in stroke patients, and these enzymes maintain redox homeostasis and influence the inflammatory response.69,70 SOD enzymes (manganese SOD [MnSOD] and extracellular SOD) help brain recovery following ischemic reperfusion injuries.71,72 The genes that encode these antioxidant enzymes bear an antioxidant response element (ARE) within their promoters. The transcriptional activation of ARE is mainly regulated by nuclear factor erythroid-2 related factor 2 (Nrf2).73 It has been determined that Nrf2 has a neuroprotective activity against stroke injuries, such as oxidative glutamate excitotoxicity, hydrogen peroxide (H2O2) exposure, and Ca2+ overload situations.74 Moreover, Nrf2 expression is upregulated at the gene and protein levels in ischemic brains especially in the ischemic penumbra zone; these findings indicate that Nrf2 activation is valuable and might subsequently contribute to cell protection and survival.75

MicroRNAs and ischemic oxidative stress

MicroRNAs have been observed to be involved in the posttranscriptional regulation of Nrf2 levels. It is discovered that 85 miRNAs can bind to cytoplasmic Nrf2 mRNA to affect its translation.76 Studies demonstrated that miR-424 reduced malondialdehyde (MDA) levels, ROS and abrogated H2O2–induced injury in neurons which resulted in the neuroprotection against ischemic oxidative damages.77 Evaluation the role of miR-93 in cerebral ischemia injuries indicate that miR-93 directly binds to the predicted 3’–UTR target sites of the Nrf2 genes, and then attenuate the expression of Nrf2 and heme oxygenase-1 (HO-1).78 The Nrf2/HO-1 pathway is an important cellular defense mechanism against oxidative stress induced following ischemia/reperfusion.79 Also, it is revealed that increasing of Nrf2 levels causes upregulation of SOD enzymes.80,81 Recent studies showed that vagus nerve stimulation (VNS) initiated after ischemic stroke in rats which improved the neurological outcomes, reduced ischemic lesion volume, and inhibited inflammatory cytokines.82 It is known that miR-210 is involved in the VNS-regulated oxidative stress responses follow-
Table 2. Specific target genes of miRNAs involved in ischemic stroke pathogenesis

miRNA	Main target genes	Function of miRNA	Ref.
miR-107	GLT-1	Glutamate accumulation	50
miR-29a	PUMA	Preserves astrocyte GLT-1	52
miR-223	GluR2	Attenuates NMDA-induced calcium influx	53
miR-223	NR2B*	Attenuates NMDA-induced calcium influx	53
miR-125b	NR2A*	Excitotoxic neuronal damage	54
miR-424	MDA	Prevents oxidative damages	77
miR-93	Nrf2	Upregulation of SOD enzymes	78, 80
miR-106b-5p	MDA and MnSOD	Protection against oxidative damages	84
miR-145	SOD	Increasing oxidative damages	31
miR-101	COX2	ROS production	54
miR-146a	COX-2	ROS production	88
miR-let-7c-5p	Caspase 3	Neuroprotection against inflammation	117
miR-181c	TLR4	NF-κB activation	126
miR-181c	NF-κB	Expression of pro-inflammatory genes	126
miR-155	SOCS1, MyD88	Upregulation of TLR4	127
miR-181c	TNF-α	Decreasing neuronal apoptosis	131
miR-let-7c	iNOS, TNF-α and IL-6	Decreasing inflammation	132
miR-181a	IL1-α	Anti-inflammatory effect	133
miR-146a	IL-1β and IL-6	Anti-inflammatory effect	88
miR-491-5p	Mcl-1	Decreasing neuronal apoptosis	84
miR-25	FasL	Apoptosis inhibition	153
miR-29	FAP-1	Induction of Fas receptors	154
miR-21	FasL	Apoptosis inhibition	155
miR-99a and miR-let-7c-5p	Caspase-3	Preventing neural apoptosis	117, 158
miR-9	Bcl2L11*	Decreasing neuronal apoptosis	159
miR-106b-5p	Mcl-1*	Decreasing neuronal apoptosis	84
miR-497	Bcl-2* and Bcl-w*	Increasing neuronal cell death	152
miR-181a	Bcl-2*	Astrocyte dysfunction	163
miRNA-384-5p and miRNA-494	Bcl-2*	Increasing neuronal cell death	164
miR-134	Bcl-2*	Alleviates ischemic injury	165
miR-134	HSPA12B	Increasing neuronal apoptosis	166
miR-124	iASPP	Promotes neuronal apoptosis	170
Anti-miR-103-1	NCX1	Cellular calcium and sodium homeostasis	189
miR-181a antagomir	NF-κB	Decreasing brain ischemia injury	190
miR-145 antagomir	SOD2	Inhibition of oxidative stress	31
miR-Let7f antagomir	IGF-1	Neuroprotection	202
miR-134 antagomir	BDNF	Neurogenesis	165
miR-21	Wnt and TGF-β	NPC regulation	212
miR-34a	Notch, Wnt, Hedgehog and TGF-β	NPC regulation	212
miR-124	Sox9	Promoting neural differentiation	213
miR-124a	JAG1/Notch	Neurogenesis inhibition	214
miR-210	VEGF	Promoting angiogenesis	204

(Continued to the next page)
Table 2. Continued

miRNA	Main target genes	Function of miRNA	Ref.
miR-15a	FGF2	Suppress post-stroke angiogenesis	227
miR-16, -20a and -20b	VEGF	Anti-angiogenic agent	229
miR-130a	GAX and HOXA5	Promoting angiogenesis	232
miR-221 and miR-222	KIT and e-NOS	Decreasing tube formation	235

Ref., reference; GLT-1, glutamate transporter-1; PUMA, p53 upregulated modulator of apoptosis; GluR2, glutamate receptor 2; NMD, N-Methyl-D-aspartate; MDA, malondialdehyde; Nr2, nuclear factor erythroid-2 related factor 2; SOD, superoxide dismutase; MnSOD, manganese SOD; COX2, cyclooxygenase 2; ROS, reactive oxygen species; TLR, Toll-like receptor; SOCS1, suppressor of cytokine signaling 1; MyD88, myeloid differentiation primary response gene 88; TNF, tumor necrosis factor; IL, interleukin; MMP-9, metalloproteinases 9; Fast, Fas ligand; FAP-1, Fas associated protein-tyrosine phosphatase 1; HSPA12B, heat shock protein 12B; iASPP, inhibitory member of the apoptosis-stimulating proteins of p53 family; NCX1, sodium–calcium exchanger-1; IGF-1, insulin-like growth factor 1; BDNF, brain-derived neurotrophic factor; TGF-β, transforming growth factor-β; NPC, neuronal stem cells; Sox9, Sry-Box 9; VEGF, vascular endothelial growth factor; FGFR, fibroblast growth factor 2; GAX, Growth arrest-specific homeobox; HOXA5, homeobox A5; KIT, kit ligand; e-NOS, endothelial NOS.

*Glutamate NMDA receptor subunits.

1Anti-apoptotic Bcl-2 family.

...ing cerebral ischemia through decreasing methane dicarboxylic aldehyde levels and increasing SOD and GSH levels. In addition, ischemic stroke caused to the down-regulation of SOD and GSH activity and the up-regulation of methane dicarboxylic aldehyde. It has been determined that acute ischemic stroke caused a significant increase of miR-106b-5p. Therefore, miR-106b-5p antisense oligonucleotides (antagomirs) could have a protective effect against post-ischemic oxidative damages via reducing MDA content and restoration of MnSOD activity. miR-145 expression suppressed protein levels of SOD2 after ischemic stroke. miR-23a-3p levels increased transiently following ischemia and reperfusion in mice which reduced the ischemia reperfusion and oxidative stress injuries, mechanistically through increasing the expression of MnSOD, and reducing RNS production such as NO and 3-NT levels.

During cerebral ischemia, cyclooxygenase 2 (COX2) can produce ROS. COX2 is a qualified target of miR-101. In the normal situation COX2 is little expressed while studies showed that cerebral ischemia readily induced COX2 expression in neuronal cells. The miR-101 profile in cerebral ischemia is found to be down-regulated. Also, miR-146a has been found to suppress expression of COX-2 in neurological disorders. Thus, miRNAs can be considered as a valuable therapeutic agents to antagonize oxidative stress in ischemic stroke.

Post-ischemic inflammation

Inflammation is an essential step and a secondary injury mechanism in the pathophysiology of cerebrovascular diseases, particularly ischemic stroke. Recent studies demonstrate that post-ischemic neuro-inflammation is an important determining factor for ischemic consequences and its long-term prognoses. In ischemic brain injury, inflammatory responses are triggered as a result of damaged tissue, necrotic cells, debris and ROS. These triggering elements cause microglial activation and release of inflammatory cytokines. Microglia are the resident innate immune macrophages of the CNS, and they are highly activated after brain insult. Activated microglia and their inflammatory factors, such as tumor necrosis factor α (TNF-α) contribute to the progression of neurodegenerative disorders.

Cytokine release leads to post-ischemic inflammation and aggravates primary brain damage. They include, IL-1α, IL-6, plasma high sensitivity CRP (hs-CRP) and TNF-α, as well as other potential cytotoxic molecules including NO, ROS, and prostanoids. Microglial suppression can reduce post-ischemic injuries, so this illustrates an attractive therapeutic strategy for ischemic stroke. In addition to cytokines that are expressed in the resident brain cells, there are a peripherally derived cytokines that produce and secrete from T-lymphocytes, mononuclear phagocytes, NK cells and polymorpho-nuclear leukocytes which are involved in ischemic inflammation.

In ischemic brain injury, the expression of a number of pro-inflammatory genes is induced by ROS formation. These genes include nuclear factor-κB (NF-κB), interferon regulator factor 1, hypoxia inducible factor 1 (HIF 1) and STAT3. Consequently, these factors upregulate cytokines and expression of adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1), P-selectin and E-selectin. These Cellular adhesion molecules (CAMs) facilitate leukocyte adhesion to the microvascular endothelium in the cerebral ischemic area. NF-κB is a heteromeric transcription factor involved in the activation of pro-inflammatory genes, such as TNF-α, ICAM-1, COX-2, iNOS and IL-6. CAMs are upregulated in the first days of isch-
emic stroke and are responsible for the migration of the leu-

During ischemia, neutrophils that are recruited to the isch-

emic tissue produced the MMPs to infiltrate the blood brain

barrier (BBB). Two main group of MMPs are including MMP-9

and MMP-2, and they are responsible for disruption of BBB

and hemorrhagic transformation following ischemic stroke.112,113

MicroRNAs and ischemic inflammation

It has been clarified that a number of miRNAs target several
genomes that are involved in post-ischemic inflammation.114,115

Studies showed that miR-424 has a protective effect against
ischemic cerebral injuries by mechanisms that inhibit microglia
activation.116 Also, miR-let-7c-5p have a protective effect
against cerebral ischemia neuro-inflammation via inhibition of
microglial activation and translational repression of caspase
3.117 Overexpression of miR-124 could promote quiescence of
microglia and deactivation of macrophages via the C/EBP-α-

PU.1 pathway. miR-124 expression in the microglia was less-

dened during the neurological disease.118

Ischemic inflammatory process may be the resulted of activ-
ation of Toll-like receptors (TLRs). TLRs are a family of recep-
tors that are expressed by microglia and astrocytes.119-121 TLRs

can activate NF-κB which induces the expression of pro-in-
flammatory genes, cytokines and adhesion molecules.122 Thir-
ten TLRs have been identified, and TLR4 signaling contributes
to post-ischemic inflammatory injuries.123,124 In response to hy-
poxia, TLR4 expression is upregulated in the surface of microg-
lia cells.125 It is determined that miR-181c negatively regulates
TLR4 expression through its 3'-UTR. Furthermore, miR-181c
suppresses NF-κB activation and its pro-inflammatory prod-
ucts including TNF-α, IL-1β, and iNOS.126 In ischemic cerebral
tissue, miR-155 induces the expression of TNF-α and IL-1β via
upregulation of TLR4 and downregulates the expression of in-
flammatory mediators such as suppressor of cytokine signaling
1 (SOCS1) and the myeloid differentiation primary response
gene 88 (MyD88).127 In the microglia, macrophages and mono-
cytes, expression of the miR-155 was upregulated in response
to the pro-inflammatory stimuli such as IFN-γ and TNF-α.128-130

It has been shown that miR-181c can directly regulate post-
transcriptional production of TNF-α in the microglia. There-
fore, miR-181c decreased release of TNF-α from the micro-
glial cells and decreased neuronal apoptosis.131 Also, recent
studies suggest that miR-let-7c decreases the expression of
macrophages inflammatory genes including iNOS, TNF-α and
IL-6.132 miR-181a has an anti-inflammatory effect via direct
downregulation of IL1-α in monocytes and macrophage cell
lines.133 miR-146a has been found to suppressed expression of

IL-1β and IL-6 which are pro-inflammatory cytokines. This
finding indicates an important role of miR-146a in an inflam-
mation associated with neurological disorders.134 During cere-
bral ischemia, miR-146 is down-regulated.135 anti-inflammatory
cytokines such as IL-10 post transcriptionally regulated by
miR-106a.136 Moreover, in the microglia and macrophages miR-
106a and miR-124 leading to increasing in IL-10 and TGF-β
respectively.137,138,139 Other findings indicate that serum miR-
124, miR-9 and miR-219 were decreased in acute ischemic
stroke thus the neuro inflammatory response and neuronal cell
dehis was facilitated.136 miR-491-5p was indicated to decrease
the levels of MMP-9 expression and inhibit cellular invasion.137
So, correlations between serum levels of miR-124, miR-9, miR-
219, hs-CRP, MMPs and infarct volume in the acute phase of
stroke were determined.136,138,139

Post-ischemic cell death

Apoptosis, necrosis and necroptosis are three types of cell
death involved in ischemic stroke pathogenesis. Apoptosis is
programmed cell death and it is well known to be activated
during development, physiological cellular turnover, and in
pathological conditions such as stroke.140-142 The apoptotic re-
sponse is activated either by extrinsic or intrinsic stimuli; the
intrinsic stimuli triggered through the mitochondrial signaling
pathway; the extrinsic stimuli activated via cell surface death
receptors, including TNF-α, Fas (CD95/APO1) and TNF related
apoptosis inducing ligand (TRAIL) receptors.143,144 The extrinsic
pathway is activated by ligand-receptor interactions via the
external signal. Ligands such as TNF-α and Fas ligand (FasL)
bind to TNF-receptor and Fas receptor (FasR) respectively
which initiates formation of death inducing signaling complex
and caspase-3 activation.145 Both pathways are interface at the
point of caspase-3 activation which results to the mitochond-
rial membrane permeabilization, chromatin condensation,
DNA fragmentation, and eventually cell death.146

Cerebral ischemia caused cytotoxic accumulation of intra-
cellular Ca2+ through the stimulation of NMDA and AMPA glu-

tamate receptors. Increased intracellular calcium activates cal-
pains resulting in the cleavage of Bcl-2 interacting domain to
truncated Bid (tBid).147 At the mitochondrial membrane, tBid
forms heterodimers by interaction with pro-apoptotic proteins
such as Bad-Box and opens the mitochondrial transition pores
which promote releasing of mitochondrial cytochrome c (Cyt c)
or apoptosis inducing factor (AIF).148 The released Cyt c in the
presence of adenosine triphosphate (ATP)/deoxy ATP binds to
the apoptotic protease activating factor 1 and procaspase-9 to
form an apotosome which activates caspase-9 and subse-
sequently caspase-3. Activated caspase-3 cleaves nDNA repair
enzymes, which leads to nDNA damage and apoptotic cell death. Furthermore, AIF is translocated to the nucleus and initiates large-scale (50 kb) DNA fragmentation and cell death in a caspase-independent manner. After focal ischemic stroke caspase activation is present in the penumbra zone, an ischemic high risk area, and hence inhibition of caspase can protect against focal ischemia injuries.

MicroRNAs and ischemic apoptosis

Several studies showed that expression and function of specific miRNAs could regulate post-ischemic neural death by altering the expression of the target genes. miR-25 could modulate cerebral ischemia/reperfusion damage by downregulation of the Fas/FasL Pathway and apoptosis inhibition. miR-29 was found to repress expression of Fas associated protein-tyrosine phosphatase 1 which is the inducer of the FasRs. miR-29 was demonstrated to be up-regulated during cerebral ischemia in rat models. Some evidence showed that miR-21 can target Fas-ligand and protect neurons from apoptosis during ischemia. Fas/FasL belong to the TNF receptor/ligand superfamily of co-stimulatory molecules and play an essential role in the induction of apoptosis.

miR155 regulates various functions of cells and its knockdown could modulate apoptosis via regulating caspase-3 gene expression. Other findings indicate that miR-99a suppressed both pro-caspase-3 and activated caspase-3 expression as well as preventing neural apoptosis following cerebral ischemic stroke. miR-let-7c-5p has been reported to repress caspase 3 that led to protective effects against cerebral ischemia. miR-9 expression could specifically regulate Bcl2L11 translation which led to decreasing cell apoptosis, also miR-9 is able to restore the neurological scores and behavioral abnormalities. However, in the ischemic brain, miR-9 expression was downregulated and reversing its level could rescue the abnormalities and cell apoptosis. In response to different stimuli, Bcl2L11 is produced and can induce apoptosis by inactivating anti-apoptotic Bcl2 proteins and activating BAX-BAK1. Bcl-2 and Bcl-xl proteins are a key regulators in lessening post-ischemic apoptotic and cell death. Following acute ischemic stroke, miR-106b-5p increased significantly and directly target the Mcl-1 protein which is a member of Bcl-2 family and a key regulator of apoptosis after DNA damage. So, miR-497 increased ischemic neuronal cell death by negatively regulating anti-apoptotic proteins, such as Bcl-2 and Bcl-w. Several reports demonstrated that miR-181a levels, decreased Bcl-2 proteins and increased evidence of astrocyte dysfunction. Expression profiles of microRNAs following cerebral ischemia suggest that differentially expressed miRNA-384-5p and miRNA-494 caused Bcl-2 to significantly decreased. Moreover, Downregulation of miR-134 alleviates ischemic injury through enhancing the Bcl-2 expression in neurons following oxygen glucose deprivation. It is reported that miR-134 plays a critical role in the post-ischemic apoptosis and cell death through negatively modulating HSPA12B protein expression in a posttranscriptional manner. HSPA12B is a member of the HSP70 family, and overexpression of this protein decreased apoptosis in the ischemic brain tissue. Furthermore, it has been demonstrated that downregulation of the miR-125b expression caused increasing p53 expression which acts as apoptosis mediator by the intrinsic pathway. In ischemic rats, miR-125b is down-regulated following reperfusion. Also, miR-124 can downregulate the inhibitory member of the apoptosis-stimulating proteins of p53 family (iASP), and promotes neuronal apoptosis after cerebral ischemia. Therefore, suppression of miR-124 could be a novel mechanism for non-transcriptional regulation of neuronal apoptosis in focal cerebral ischemia. ASPP family consists of 3 members: ASPP1, ASPP2, and iASP, because they bind to the proteins such as Bcl-2 and RetAp65 as key players in controlling apoptosis. As mentioned in the previous paragraphs, VNS improved the neurological outcomes and reduced ischemic lesion volume after cerebral ischemia in rats. Therefore, VNS experts neuroprotective effects against ischemic injuries potentially through anti-apoptotic activity of miR-210 which is mediated by hypoxia-inducible factor and Akt-dependent pathways. Following brain ischemia the up-regulation of miR-323 promoted apoptosis and suppressed survival, whereas the inhibition of miR-323 could be a good agent for the prevention and therapy of cerebral ischemic injury. Consequently, these microRNAs maybe involved in neuronal apoptosis during stroke.

MicroRNAs as possible therapeutic agents

The underlying pathophysiology of stroke is highly complicated, consisting of numerous pathological processes such as excitotoxicity, oxidative stress, inflammation and apoptosis. Currently, effective treatment for ischemic stroke is limited to recombinant tissue plasminogen activator (tPA). tPA is the only appropriate thrombolytic agent available for acute ischemic stroke treatment. However, tPA is limited by its narrow therapeutic window, which can only be given up to 6 hours after onset of stroke, therefore, making it suitable to only a minority (less than 10%) of stroke patients. Also, beside its beneficial thrombolytic role, tPA has deleterious effects includ-
ing intracranial hemorrhage, and neurotoxicity. In addition, studies showed that inhibition of tPA with plasminogen activator inhibitor-1 or neuroserpin have neuroprotective effects against ischemic brain damage. Other alternative treatments include the use of other anti-thrombotic agents, mechanical thrombectomy and anti-platelet agents such as aspirin. As noted, there are many limitations of thrombolytic treatment for stroke. Therefore, there is continuing research for novel therapeutic agents. miRNAs have remarkable potential as they are endogenous molecules that are capable of controlling the expression of potentially deleterious genes. Furthermore, miRNAs can regulate the genes that contribute in the neuroprotection, neurogenesis and angiogenesis which leading to enhancing recovery and repair mechanisms in ischemic stroke patients (Figure 3, Table 2).

MicroRNAs and neuroprotection

Neuroprotective strategies that limit secondary tissue loss and/or improve functional outcomes have been identified to help clinicians in decreasing stroke mortality rates and improving the quality of patient’s life. Glutamate antagonists are the most studied neuroprotective agents. Glutamate is a major excitatory neurotransmitter in the CNS and is released excessively during ischemia. miRNAs seem to offer some potential to attenuate excitotoxicity and miR-125b and miR-223 have been demonstrated to target NMDA receptor subunits including NR2A and NR2B, respectively, and negatively regulate their expression. Hence, increasing the expression of this miRNAs represents a potential therapeutic application through decreasing the effects of excitotoxicity, which needs to be further investigated.

Calcium influx during ischemic stroke triggered intracellular destructive enzymes, which leads to brain tissue damage. Interestingly, the sodium-calcium exchanger-1 (NCX1) gene expression is influenced by cerebral ischemia, which is a plasma membrane transporter that regulates cellular calcium and sodium homeostasis in the brain. NCX activation ameliorates the consequences of ischemic brain damage. So, it has been showed that anti-miR-103-1 exerts a strong neuroprotective effect against ischemic damage through NCX1 activation and offers the opportunity to develop a new therapeutic strategy for ischemic stroke.

Neuroprotection could also be achieved by targeting the inflammatory mediators that contribute to brain injury following ischemic stroke. miR-181a has deleterious effects on ischemic stroke, and using miR-181a antagonist caused neuroprotective effects, reduced NF-kB activation and improved neurological deficits in mice. Furthermore, the ability to decrease brain ischemia injury (both focal and forebrain ischemia) makes miR-181a antagonist a therapeutic agent. It has been shown that suppression of TLR4, which is mediated by miR-181c, could be neuroprotective in hypoxic injuries, so this offers a potential therapeutic agent for isch-

![Figure 3. Overview of processes involved in ischemic stroke and high potential therapeutic microRNAs. Cerebral ischemia includes several injurious mechanisms (excitotoxicity, oxidative stress, inflammation and apoptosis) to confer neuronal injury. Potential therapeutic areas to compensate for these pathogenic process include promoting angiogenesis, neurogenesis and neuroprotective recovery and repair mechanisms.](https://doi.org/10.5853/jos.2016.01368)
emic stroke associated with microglial activation. Studies showed that miR-424 overexpression has a neuroprotective effect on cerebral ischemia injury through mechanisms relating to the preventing of microglia activation. In the microglia and macrophages miR-106a and miR-124 leading to increasing in IL-10 and TGF-β respectively. In turn, IL-10 and TGF-β inhibit expression of adhesion molecules in endothelial cells and production of pro-inflammatory cytokines. Therefore, TGF-β and IL-10 are neuroprotective factors against neuro-inflammation.

As mentioned in the other sections, during ischemic stroke, there is increased production of reactive oxygen free radicals due to glutamate excitotoxicity. Accordingly, the free radical scavengers potentially have neuroprotective roles. Preclinical studies in animal models that using those agents presented effectiveness in reducing neurological injuries. miR-497 increased ischemic neuronal cell death with negatively regulating anti-apoptotic proteins, such as Bcl-2 and Bcl-w. Antagonism of miR-497 leading to decreasing in the infarct volume due to ischemia in mice. Some studies have shown that increasing Nrf2 activity is highly neuroprotective against ischemic consequences. It has been shown that miR-145 antagonist increased protein levels of SOD2 after ischemic stroke. It is determined that miR-106b-5p antagonist can protect against cerebral ischemia/reperfusion (I/R) injury by inhibition of apoptosis and oxidative stress. Other studies indicate that miR-99a and miR-let-7c-5p have neuroprotective effects through inhibition of pro-caspase-3 and caspase-3 expressions as well as preventing apoptosis following cerebral ischemic stroke. Sequestration of this miRNA could therefore serve as a potential defense against post-stroke pathogenic processes in neuroprotection therapy.

MicroRNAs and neurogenesis

Neurotrophic factors are small polypeptide molecules, which are involved in cell proliferation, migration, differentiation and development of the nervous system. In the adult CNS, neurotrophic factors have important roles in the survival and maintenance of neuronal cells by activating cell survival genes and inhibition of suicide genes. For this reason, deprivation of these factors in the ischemic penumbra zone can trigger neuronal apoptosis and lead to cell death. In preclinical studies, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor, glial-derived neurotrophic factor, vascular endothelial growth factor (VEGF), and insulin-like growth factor 1 (IGF-1) have all been shown to decrease infarct size in animal models. Ischemic activated microglia can release a variety of cytoprotective substances by producing neurotrophic molecules such as IGF-1, BDNF, and several other growth factors.

It has been shown that miR-Let7f antagonist targets the IGF-1 signaling for translation activation which could alternatively promote IGF-1-like neuroprotection in the ischemic stroke models. Downregulation of miR-134 alleviates ischemic injury through enhancing of BDNF and Bcl-2 expression in neurons following oxygen glucose deprivation. Therefore, miR-134 antagonist providing a potential therapeutic agent for cerebral ischemic injury. miR-107 and miR-30-5p are reported as BDNF regulators and investigations into the precise mechanism of both these miRNAs in BDNF regulation can be a potential therapeutic agent in neuroprotection. Overexpression of miR-210 can induce neurogenesis in the adult mouse brain, which is associated with VEGF upregulation. VEGF is an important neurogenic factor with therapeutic potential in ischemic stroke.

Following cerebral ischemia, neuronal stem and precursor cells (NSC and NPC) can be activated and migrate to the injured areas. Hedgehog, Notch, Wnt and TGF-β signaling pathways are found to be responsible for proliferation, migration and differentiation of NSC and NPC to promote neuronal repair after ischemic stroke. miR-21 was found to be significantly upregulated following cerebral ischemia, and it could act as a NPC regulator by Wnt and TGF-β signaling pathways. Furthermore, miR-34a may negatively regulate the NPC proliferation by inhibiting Notch, Wnt, Hedgehog and TGF-β signaling pathways following brain ischemia. It has been reported that increased miR-124 concentrations could promote neural differentiation by post-transcriptionally downregulation of Sry-Box 9 (Sox9). It is demonstrated that Sox9 overexpression abolished neuronal differentiation, whereas Sox9 knockdown led to improved neuron formation. miR-124a was found to inhibit neurogenesis following stroke through targeting the JAG1/Notch signaling pathway. miR-124a in neural progenitor cells decreased JAG1 transcript and protein levels significantly, which causing to inactivation of Notch signals. Furthermore, this microRNA was reported to be constitutively expressed in the brain mature neurons. miR-9 has been revealed to limit migration and promote proliferation in human neuronal progenitor cells and its downregulation permits to neuronal migration. Therefore, pharmacological regulation of these miRNAs could be a potential agent in the post-ischemic neurogenesis.

MicroRNAs and angiogenesis

Angiogenesis is an important, beneficial event occurring in ischemic stroke. Angiogenesis delivers blood flow and metabolism to ischemic tissue and is positively correlated with the
survival rate of stroke patients. miRNAs that regulate the process of angiogenesis have been offered as a potential treatment strategy for ischemic stroke. Overexpression of miR-210 promotes focal angiogenesis in the adult mouse brain, which was associated with local increased VEGF levels. Also, miR-210 can trigger vascular endothelial cell migration and tube formation under hypoxia in vitro. Overexpression of miR-210 in patients with acute ischemic stroke show better clinical outcomes. Hence, miR-210 is specifically sensitive to hypoxic stimuli in almost all of cells, and its expression is enhanced by hypoxia-related transcription factors, such as HIF-1α. miR-92a regulates angiogenesis targeting several proangiogenic proteins, including the integrin subunit α5. Thus, miR-92a could be a therapeutic target in the setting of ischemic disease.

VEGF is an essential angiogenic factor with therapeutic potential in ischemic stroke. It has been demonstrated that miR-107 contributes to post-stroke angiogenesis by directly down regulation of Dicer-1 expression which is a gene that encodes an important enzyme in the miRNA processing. This leads to translational de-suppression of VEGF mRNA, thereby increasing expression of VEGF in vivo, resulting in post-stroke angiogenesis. miR-107 expression is regulated by HIF-1α, and has binding sites with HIF-1α. A novel finding indicates that overexpression of miR-15a in endothelial cells can suppress post-stroke angiogenesis via direct inhibition of endogenous endothelial fibroblast growth factor 2 and VEGF activities. Also, studies have shown that expression of the miR-15a is significantly increased in the cerebral vasculature at the penumbral zone following cerebral ischemia. Furthermore, miR-16, -20a and -20b have been found to target VEGF and act as an anti-angiogenic agent in cultured endothelial cells.

Growth arrest-specific homeobox (GAX) and homeobox A5 (HOXA5) are anti-angiogenic transcription factors and are involved in the inhibition of endothelial cell function. GAX is expressed in the endothelial cells and inhibits angiogenesis through down regulation of NF-kB signaling pathway. miR-130a has been found to down-regulate GAX and HOXA5 expression, consequently antagonizing the antiangiogenic activity of these factors. miR-221 and -222 were found to inhibit angiogenesis by interaction and down-regulation of kit ligand (KIT), and enriched of this microRNAs in the hippocampus of the mice indicates a possible role for them in stroke pathogenesis. In the same way, it was suggested that miR-221 and miR-222 decreases tube formation and migration by targeting both KIT and endothelial NOS. Therefore, pharmacological modulation of these miRNAs could be a promising therapeutic approach for angiogenesis after ischemic stroke.

Challenges for miRNA therapy

There is mounting evidence that miRNA-based therapies hold great promise. However, despite the exciting potential of miRNAs, critical hurdles remain to be overcome which often include delivery of miRNA-targeting agents. Other limitations including limited in vivo stability, limited tissue distribution, and untoward side effects. Although, either viral vectors and non-viral delivery systems such as liposomes could overcome these challenges, both liposomes and viral vectors may be toxic and/or immunogenic which would restrict their clinical application. Liposomes are utilized to deliver small interference RNAs (siRNA). However, synthetic systems such as liposomes have relatively lower yield compared to viral vectors.

After stroke, a high level of miRNAs leads to inhibition of the expressions of many genes. Therefore, inhibition of these miRNAs may be a therapeutic targets for ischemic stroke. There are several tools to decrease the level of miRNA such as antagonir (anti-sense oligonucleotide), which blocks miRNA silencing activity by complimentary binding to the mature miRNA, and this could be a useful approach to inhibition of miRNA function. Therefore, use of an antagonir may be another therapeutic option when upregulated miRNAs are pathogenic.

The advantage of antigomirs is that they can be delivered into cells directly without any vector assistant, because they are nuclease resistant. Therefore, antigomirs avoid the complication of using delivery vehicles. The drawbacks that limit antigenimir application as therapeutic reagents in humans are the need for high doses and their possible side-effects.

Antagonimirs could easily be delivered intravenously, but there is poor distribution in the brain due to the blood-brain barrier, which prevents most exogenous substances from entering the CNS. In recent years, intranasal delivery has been used to target the brain, and evidence shows that olfactory nerve pathways, trigeminal nerve pathways, vascular and lymphatic pathways are involved in intranasal delivery. Further studies have shown that intranasal delivery of antagonimir- miR-206 reached the brain and increased memory function in mice with Alzheimer's mice.

Furthermore, miRNAs have been introduced by mechanical methods such as high pressure injection and electroporation, but these methods cause too much damage to the tissues. Administration of miRNAs in the absence of a carrier presents limited tissue distribution, and they are taken up by the liver and kidney and rapidly excreted in urine. In addition, the lethal dosage, LD50, of specific miRNAs has yet to be recognized. Nevertheless, it is
probable that an increasing number of these molecules will progress and will eventually be developed to become approved treatment for ischemic stroke in the coming years.

Conclusions

In this review we have presented evidence that miRNA function is increasingly dysregulated following ischemic stroke, and altering of these molecules has profound effects on the downstream target genes which are involved in the post-ischemic process. A single miRNA exerts its cellular function by mostly inhibition and occasionally activation of numerous downstream mRNA targets. Several studies have attempted to correlate between changes in the expression of miRNAs and post-ischemic pathogenic processes such as excitotoxicity, inflammation, oxidative stress and apoptosis. These studies clarify the contribution of miRNAs in the post-ischemic pathophysiological process and help us to a better understanding of the processes involved in ischemic stroke pathology, where they could be a therapeutic agent. Also, there is accumulating evidence that several miRNAs and their target genes are involved in the retrieval and repair process which including the promotion of angiogenesis, neurogenesis and neuroprotection.

miRNA profiles provide evidence that their modulation could be beneficial for ischemic stroke diagnosis, as well as being potential therapeutic agents. Moreover, the ability of miRNAs to regulate numerous target genes clearly demonstrates their importance in ischemic stroke therapeutics. Finally, the understanding of delivery systems will be a key to bringing miRNA to the clinic as findings from animal models become better refined to allow translation into human therapeutic agents for the treatment of ischemic stroke.

Acknowledgments

This work was supported by Ahvaz Jundishapur University Grant. The authors declare no financial or commercial conflict of interest.

References

1. Heron M. Deaths: leading causes for 2004. Natl Vital Stat Rep 2007;56:1-96.
2. Centers for Disease Control and Prevention (CDC). Prevalence of disabilities and associated health conditions among adults—United States, 1999. Morb Mortal Wkly Rep 2001;50:120-125.
3. World Health Organization. The World health report 2004: changing history. Geneva: World Health Organization, 2004.
4. Mukherjee D, Patil CG. Epidemiology and the global burden of stroke. World Neurosurg 2011;76(6 Suppl):S85-S90.
5. Beal CC. Gender and stroke symptoms: a review of the current literature. J Neurosci Nurs 2010;42:80-87.
6. Hatano S. Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ 1976;54:541-543.
7. Murphy TH, Li P, Betts K, Liu R. Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci 2008;28:1756-1772.
8. Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 2006;26:1055-1081.
9. Besancon E, Guo S, Lok J, Tymianski M, Lo EH. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 2008;29:268-275.
10. Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke 2006;37:1334-1339.
11. Baron JC. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis 1999;9:193-201.
12. Jung S, Gilgen M, Slotboom J, El-Koussy M, Zubler K, Kiefer C, et al. Factors that determine penumbral tissue loss in acute ischaemic stroke. Brain 2013;136(Pt 12):3554-3560.
13. Bretón RR, Rodríguez JCG. Excitotoxicity and oxidative stress in acute ischemic stroke. In: Rodríguez JCG ed. Acute Ischemic Stroke. Croatia/China: InTech, 2012.
14. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 2007;27:4253-4260.
15. Xu L, Emery JF, Ouyang YB, Voloboueva LA, Giffard RG. Astrocyte targeted overexpression of HSP72 or SOD2 reduces neuronal vulnerability to forebrain ischemia. Glia 2010;58:1042-1049.
16. Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol 2008;20:214-221.
17. Mocellin S, Pasquali S, Pliati P. Oncomirs: from tumor biology to molecularly targeted anticancer strategies. Mini Rev Med Chem 2009;9:70-80.
18. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature
19. Aumiller V, Förstemann K. Roles of microRNAs beyond development—metabolism and neural plasticity. *Biochim Biophys Acta* 2008;1779:692–696.
20. Bushati N, Cohen SM. MicroRNAs in neurodegeneration. *Curr Opin Cell Biol* 2008;18:292–296.
21. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell* 2004;116:281–297.
22. Bourassa MW, Ratan RR. The interplay between microRNAs and histone deacetylases in neurological diseases. *Neurochem Int* 2014;77:33–39.
23. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. *EMBO J* 2002;21:4663–4670.
24. Basu S, Suavet F, Doglio A, Bordonné R, Bertrand E. Human let-7 stem–loop precursor harbors features of miRNA3 cleavage products. *Nucleic Acids Res* 2003;31:6593–6597.
25. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha–Dicer, 1 complex in primary microRNA processing. *Genes Dev* 2004;18:3016–3027.
26. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858–862.
27. Huttváigner G, McLachlan J, Pasquinelli AE, Bälint E, Tuschi T, Zamore PD. A cellular function for the RNA–interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834–838.
28. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. Trbp recruits the Dicer complex to ago2 for microRNA processing and gene silencing. *Genome Biol* 2001;2:research0261.1–261.4...
29. Jeyaseelan K, Lim KY, Armugam A. Neuroprotectants in stroke, intracerebral hemorrhage, and kainate seizures. *J Cereb Blood Flow Metab* 2009;29:675–687.
30. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. *J Cereb Blood Flow Metab* 2010;30:92–101.
31. Cucchiara B, Nyquist P. Blood markers in tia: array of hope? *Neurology* 2011;77:1716–1717.
32. Xu J, Zhao J, Evan G, Xiao C, Cheng Y, Xiao J. Circulating microRNAs: novel biomarkers for cardiovascular diseases. *J Mol Med (Berl)* 2012;90:865–875.
33. Jickling GC, Sharp FR. Blood biomarkers of ischemic stroke. *Neurotherapeutics* 2011;8:349–360.
34. Zhan X, Jickling GC, Tian Y, Stamova B, Xu H, Ander B, et al. Transient ischemic attacks characterized by RNA profiles in blood. *Neurology* 2011;77:1718–1724.
35. Ly IV, Zavala JA, Donnan GA. Neuroprotection and thrombolysis: combination therapy in acute ischaemic stroke. *Exp Opin Pharmacother* 2006;7:1571–1581.
36. Krnjević K. Electrophysiology of cerebral ischemia. *Neuroparmacology* 2008;55:319–333.
37. Pizzio M, Fallacara C, Arrighi V, Memo M, Spano P. Attenuation of excitatory amino acid toxicity by metabolotropic glutamate receptor agonists and aniracetam in primary cultures of cerebellar granule cells. *J Neurochem* 1993;61:683–689.
38. Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP. A molecular determinant for submillisecond desensitization in glutamate receptors. *Science* 1994;266:1059–1062.
39. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakamishi S. Molecular cloning and characterization of the rat NMDA receptor. *Nature* 1991;354:31–37.
40. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. *Brain Res Rev* 2007;54:34–66.
41. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. *Nat Neurosci* 2002;5:405–414.
42. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. *J Neurosci* 2007;27:2846–2857.
43. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundararapandian MM, et al. Dapk1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. *Cell* 2010;140:222–234.
44. Martin HG, Wang YT. Blocking the deadly effects of the NMDA receptor in stroke. *Cell* 2010;140:174–176.
45. Zhong X, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. *Nat Med* 2010;16:1439–1443.
46. Lai TW, Shyu WC, Wang YT. Stroke intervention pathways: NMDA receptors and beyond. *Trends Mol Med* 2011;17:266–275.
47. Jeyaseelan K, Lim KY, Armugam A. Neuroprotectants in...
stroke therapy. Exp Opin Pharmacother 2008;9:887–900.
50. Yang ZB, Zhang Z, Li TB, Lou Z, Li SY, Yang H, et al. Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischemic stroke. Clin Sci (Lond) 2014;127:679–689.
51. Fang Q, Hu WW, Wang XF, Yang Y, Lou GD, Jin MM, et al. Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury. Neuropharmacology 2014;77:156–166.
52. OuYang YB, Xu L, Lu Y, Sun X, Yue S, Xiong XX, et al. Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia. Glia 2013;61:1784–1794.
53. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A 2012;109:18962–18967.
54. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batcherton MN, et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 2010;65:373–384.
55. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitation experience declines with time after focal ischemic brain injury. J Neurosci 2004;24:1245–1254.
56. Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci 2009;29:1719–1734.
57. Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci 2007;27:4101–4109.
58. Carmichael ST, Archibeque I, Luke L, Nolan T, Momi J, Li S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol 2005;193:291–311.
59. Beckman KB, Ames BN. Mitochondrial aging: open questions. Ann N Y Acad Sci 1998;854:118–127.
60. Guzik T, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003;54:469–487.
61. Cherubini A, Ruggiero C, Polidori MC, Mecocci P. Potential markers of oxidative stress in stroke. Free Radical Biol Med 2005;39:841–852.
62. Coyle JT, Puttifarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993;262:689–695.
63. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 2001;53:135–159.
64. Lafon-Cazal M, Pietri S, Culcas M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature 1993;364:535–537.
65. Piantadosi CA, Zhang J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 1996;27:327–331; discussion 332.
66. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurological disorders. N Engl J Med 1995;330:613–622.
67. Chan PH. Role of oxidants in ischemic brain damage. Stroke 1996;27:1124–1129.
68. Saeed SA, Shad KF, Saleem T, Javed F, Khan MU. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res 2007;182:1–10.
69. Gariballesi A, Hutchin TP, Sinclair AJ. Antioxidant capacity after acute ischaemic stroke. QJM 2002;95:685–690.
70. Spranger M, Krempien S, Schwab S, Donneberg S, Hacke W. Superoxide dismutase activity in serum of patients with acute cerebral ischemic injury. Correlation with clinical course and infarct size. Stroke 1997;28:2425–2428.
71. Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 2011;589:4125–4136.
72. Margail I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radical Biol Med 2005;39:429–443.
73. Zhang C, Shu L, Kong AN. MicroRNAs: new players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways. Curr Pharm Rep 2015;1:21–30.
74. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, et al. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 2008;1147:61–69.
75. Dang J, Brandenburg LO, Rosen C, Fragoulis A, Kipp M, Pufe T, et al. Nrf2 expression by neurons, astroglia, and microglia in the cerebral cortical penumbra of ischemic rats. J Mol Neurosci 2012;46:578–584.
76. Papp D, Lenti K, Módos D, Fazeokas D, Dúl Z, Türei D, et al. The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops. FEBS Lett 2012;586:1795–1802.
77. Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, et al. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke
78. Wang P, Liang X, Lu Y, Zhao X, Liang J. MicroRNA-93 down-regulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. *Neurochem Res* 2016;41:2627-2635.

79. Jiang S, Deng C, Lv J, Fan C, Hu W, Di S, et al. Nrf2 weaves an elaborate network of neuroprotection against stroke. *Mol Neurobiol* 2016;54:1440-1455.

80. Singh B, Bhat HK. Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen-induced breast cancer. *Carcinogenesis* 2012;33:2601-2610.

81. Stamova BS, Tian Y, Nordahl CW, Shen MD, Rogers S, Amaral DG, et al. Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders. *Mol Autism* 2013;4:30.

82. Mravec B. The role of the vagus nerve in stroke. *Auton Neurosci* 2010;158:8-12.

83. Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C. miR-210 mediates vagus nerve stimulation–induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. *J Neurochem* 2015;134:173-181.

84. Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, et al. An antagonist to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. *Mol Neurobiol* 2016 Mar 29 [Epub]. http://dx.doi.org/10.1007/s12035-016-9842-1.

85. Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia–reperfusion. *Brain Res* 2014;1592:65-72.

86. Tomimoto H, Akiguchi I, Wakita H, Lin JX, Budka H. Cyclooxygenase-2 is induced in microglia during chronic cerebral ischemia in humans. *Acta Neuropathol* 2000;99:26-30.

87. Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzerini G, et al. MiR–101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. *Exp Cell Res* 2009;315:1439-1447.

88. Iyer A, Zurolo E, Prabowo A, Fluitker K, Spriet WG, van Rijen PC, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. *PLoS One* 2012;7:e44789.

89. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. *Neuron* 2010;67:181-198.

90. Chamarro A, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease. *Stroke* 2006;37:291-293.

91. McColl B, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. *Neuroscience* 2009;158:1049-1061.

92. Pan J, Palmateer J, Schallert T, Hart M, Pandya A, Vandenbark AA, et al. Novel humanized recombinant T cell receptor ligands protect the female brain after experimental stroke. *Transl Stroke Res* 2014;5:577-585.

93. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post–ischemic brain damage: pathophysiology and role of inflammatory mediators. *FEBS J* 2009;276:13-26.

94. Kriz J. Inflammation in ischemic brain injury: timing is important. *Crit Rev Neuropathol* 2006;18:145-157.

95. Stanimirovic DB, Wong J, Shapiro A, Durkin JP. Increase in surface expression of ICAM-1, VCAM-1 and e-selectin in human cerebrovascular endothelial cells subjected to ischemia-like insults. *Acta Neurochir Suppl* 1997;70:12-16.

96. Becker K. Inflammation and acute stroke. *Curr Opin Neurol* 1998;11:45-49.

97. Hoehn BD, Palmer TD, Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. *Stroke* 2005;36:2718-2724.

98. Ekdahl CT, Claassen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. *Proc Natl Acad Sci U S A* 2003;100:13632-13637.

99. Griffin WS, Sheng JG, Gentleman SM, Graham DI, Mrak RE, Roberts GW. Microglial interleukin-1 alpha expression in human head injury: correlations with neuronal and neurotic beta-amyloid precursor protein expression. *Neurosci Lett* 1994;176:133-136.

100. Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. *Neurobiol Aging* 2005;26:349-354.

101. Eikelenboom P, Rozemuller AJ, Hoozemans JJ, Veerhuis R, van Gool WA. Neuroinflammation and Alzheimer disease: clinical and therapeutic implications. *Alzheimer Dis Assoc Dis* 2000;14 Suppl 1:S54-S61.

102. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. *J Leukoc Biol* 2010;87:779-789.

103. Morganti-Kossman M, Lenzlinger PM, Hans V, Stahel P, Csuka E, Ammann E, et al. Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. *Mol Psychiatry* 1997;2:133-136.

104. Luna JM, Moon YP, Liu KM, Spitalnik S, Paik MC, Cheung K, et al. High-sensitivity C-reactive protein and interleukin-6 dominant inflammation and ischemic stroke risk: the Northern Manhattan study. *Stroke* 2014;45:979-987.

105. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. *Br J Pharmacol* 2006;147 Suppl 1:S232-S240.
106. Pena-Philippides JC, Yang Y, Bragina O, Hagberg S, Nemoto E, Roitbak T. Effect of pulsed electromagnetic field (PEMF) on infarct size and inflammation after cerebral ischemia in mice. *Transl Stroke Res* 2014;5:491-500.

107. Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke. *Neurof Res* 2008;30:783-793.

108. Ferrarese C, Mascarucci P, Zoia C, Cavaretta R, Frigo M, Begni B, et al. Increased cytokine release from peripheral blood cells after acute stroke. *J Cereb Blood Flow Metab* 1999;19:1004-1009.

109. Han HS, Yenari MA. Cellular targets of brain inflammation in stroke. *Curr Opin Investig Drugs* 2003;4:522-529.

110. Baeuerle PA, Henkel T. Function and activation of NF-kappa b in the immune system. *Annu Rev Immunol* 1994;12:141-179.

111. Zhang R, Chopp M, Zhang Z, Jiang N, Powers C. The expression of P- and E-selectins in three models of middle cerebral artery occlusion. *Brain Res* 1998;785:207-214.

112. Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. *J Neuropath Exp Neurol* 2003;62:127-136.

113. Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. *Neurobiol Dis* 2010;38:376-385.

114. Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. *J Cereb Blood Flow Metab* 2010;30:1564-1576.

115. Tan JR, Koo YX, Kaur P, Liu F, Armugam A, Wong PH, et al. microRNAs in stroke pathogenesis. *Curr Mol Med* 2011;11:76-92.

116. Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, et al. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. *Stroke* 2013;44:1706-1713.

117. Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, et al. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. *Brain Behav Immun* 2015;49:75-85.

118. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-PU.1 pathway. *Nat Med* 2011;17:64-70.

119. Weinstein JR, Koerner IP, Möller T. Microglia in ischemic brain injury. *Future Neurof* 2010;5:227-246.

120. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. *Nat Immun* 2010;11:373-384.

121. Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. *J Biol Chem* 2004;279:12542-12550.

122. Akira S. TLR signaling. In: From Innate Immunity to Immunological Memory. Berlin, Heideleberg: Springer, 2006;1-16.

123. Brea D, Blanco M, Ramos-Cabrer P, Moldes O, Arias S, Pérez-Mato M, et al. Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values. *J Cereb Blood Flow Metab* 2011;31:1424-1431.

124. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. *Circulation* 2007;115:1599-1608.

125. Yao L, Kan EM, Lu J, Hao A, Dheen ST, Kaur C, et al. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. *J Neuroinflammation* 2013;10:23.

126. Zhang L, Li YJ, Wu XY, Hong Z, Wei WS. MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. *J Neurochem* 2015;132:713-723.

127. Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C. Acetylbrannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. *Mol Med* 2015;21:197-209.

128. Cardoso AL, Guedes JR, Pereira de Almeida L, Pedroso de Lima MC. miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. *Immunology* 2012;135:73-88.

129. Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease. *J Biol Chem* 2011;286:1436-1444.

130. Wang P, Hou J, Lin L, Wang C, Liu X, Li D, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. *J Immunol* 2010;185:6226-6233.

131. Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. *J Neuroinflammation* 2012;9:211.

132. Banerjee S, Xie N, Cui H, Tan Z, Yang S, Icyuz M, et al. MicroRNA let-7c regulates macrophage polarization. *J Immunol* 2013;190:6542-6549.

133. Xie W, Li M, Xu N, Lv Q, Huang N, He J, et al. MiR-181a regulates inflammation responses in monocytes and macro-
phases. *PLoS One* 2013;8:e58639.

134. Sharma A, Kumar M, Aich J, Hariharan M, Brahmachari SK, Agrawal A, et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. *Proc Natl Acad Sci U S A* 2009;106:5761–5766.

135. Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. *Glia* 2013;61:91–103.

136. Liu Y, Zhang J, Han R, Liu H, Sun D, Liu X. Downregulation of serum brain specific microRNA is associated with inflammation and infarct volume in acute ischemic stroke. *J Clin Neurosci* 2015;22:291–295.

137. Yan W, Zhang W, Sun L, Liu Y, You G, Wang Y, et al. Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. *Brain Res* 2011;1411:108–115.

138. Jones S, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SM, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-α and MMP13. *Osteoarthritis Cartilage* 2009;17:464–472.

139. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. *Proc Natl Acad Sci U S A* 2009;106:5282–5287.

140. Vandenabeele P, Galluzzi L, Berghe TV, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. *Nat Rev Mol Cell Biol* 2010;11:700–714.

141. Wei L, Ying DJ, Cui L, Langsdorf J, Yu SP. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortical ischemia in rats. *Brain Res* 2004;1022:54–61.

142. Ünal-Çevik I, Kılıç M, Can A, Gürsoy-Özdemir Y, Dalkara T. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. *Stroke* 2004;35:2189–2194.

143. Adams JM. Ways of dying: multiple pathways to apoptosis. *Genes Dev* 2003;17:2481–2495.

144. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. *Physiol Rev* 2007;87:99–163.

145. Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA. Fas (cd95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. *J Cereb Blood Flow Metab* 2001;21:1411–1421.

146. Green DR. Apoptotic pathways: ten minutes to death. *Cell* 2005;121:671–674.

147. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. *Biochim Biophys Acta* 2013;1833:3448–3459.

148. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pelliceria M, et al. Apoptosis-inducing factor triggered by poly (ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. *J Neurosci* 2005;25:10262–10272.

149. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. *Stroke* 2009;40:e331–e339.

150. Li H, Colbourne F, Sun P, Zhao Z, Buchan AM, Iadecola C. Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. *Stroke* 2000;31:176–182.

151. Peng Z, Li J, Li Y, Yang X, Feng S, Han S, et al. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein 85 and ubiquitin carboxy-terminal hydrolase isozyme L1. *J Neurosci Res* 2013;91:1349–1362.

152. Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. *Neurobiol Dis* 2010;38:17–26.

153. Zhang JF, Shi LL, Zhang L, Zhao ZH, Liang F, Xu X, et al. MicroRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through Fas/FasL pathway. *J Mol Neurosci* 2016;58:507–516.

154. Schickel R, Park SM, Murmann AE, Peter ME. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. *Mol Cell* 2010;38:908–915.

155. Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, et al. MicroRNA-21 protects neurons from ischemic death. *FEBS J* 2010;277:4299–4307.

156. Seko Y, Kayagaki N, Seino K, Yagita H, Okumura K, Nagai R. Role of Fas/FasL pathway in the activation of infiltrating cells in murine acute myocarditis caused by Coxsackievirus B3. *J Am Coll Cardiol* 2002;39:1399–1403.

157. Liu Y, Pan Q, Zhao Y, He C, Bi K, Chen Y, et al. MicroRNA-155 regulates ROS production, no generation, apoptosis and multiple functions of human brain microvesSEL endothelial cells under physiological and pathological conditions. *J Cell Biochem* 2015;116:2870–2881.

158. Tao Z, Zhao H, Wang R, Liu P, Yan F, Zhang C, et al. Neuroprotective effect of microRNA-99a against focal cerebral ischemia–reperfusion injury in mice. *J Neurol Sci* 2015;355:113–119.

159. Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in murine acute myocardial infarction. *PLoS One* 2015;106:5761–5766.

160. Luo S, Rubinsztein DC. BCL2l11/BIM: a novel molecular link...
MicroRNAs and Ischemic Stroke

between autophagy and apoptosis. *Autophagy* 2013;9:104-105.

161. Sionov RV, Vlahopoulos SA, Granot Z. Regulation of BIM in health and disease. *Oncotarget* 2015;6:23058-23134.

162. Wiessner C, Allegrini PR, Rupalla K, Sauer D, Oltersdorf T, McGregor AL, et al. Neuron-specific transgene expression of Bcl-XL but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice. *Neurosci Lett* 1999;268:119-122.

163. Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. *J Cereb Blood Flow Metab* 2013;33:1976-1982.

164. Zhai F, Zhang X, Guan Y, Yang X, Li Y, Song G, et al. Expression profiles of microRNAs after focal cerebral ischemia/reperfusion injury in rats. *Neural Regen Res* 2012;7:917-923.

165. Huang W, Liu X, Cao J, Meng F, Li M, Chen B, et al. Mir-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. *J Mol Neurosci* 2015;55:821-829.

166. Chi W, Meng F, Li Y, Li P, Wang G, Cheng H, et al. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. *Brain Res* 2014;1592:22-33.

167. Kang L, Zhang G, Yan Y, Ke K, Wu X, Gao Y, et al. The role of HSPA12B in regulating neuronal apoptosis. *Neurochem Res* 2013;38:311-320.

168. Ma Y, Lu C, Li C, Li R, Zhang Y, Ma H, et al. Overexpression of HSPA12B protects against cerebral ischemia/reperfusion injury via a PI3K/Akt-dependent mechanism. *Biochim Biophys Acta* 2013;1832:57-66.

169. Lim KY, Chua JH, Tan JR, Swaminathan P, Sepramaniam S, Armugam A, et al. MicroRNAs in cerebral ischemia. *Transl Stroke Res* 2010;1:287-303.

170. Liu X, Li F, Zhao S, Luo Y, Kang J, Zhao H, et al. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. *Stroke* 2013;44:1973-1980.

171. Sullivan A, Lu X. ASPP: a new family of oncogenes and tumour suppressor genes. *Br J Cancer* 2007;96:196-200.

172. Yang L, Xiong Y, Hu XF, Du YH. MicroRNA-323 regulates ischemia/reperfusion injury-induced neuronal cell death by targeting BRIL. *Int J Clin Exp Path* 2015;8:10725-10733.

173. Seto SW, Chang D, Jenkins A, Bensoussan A, Kiat H. Angiogenesis in ischemic stroke and angiogenic effects of Chinese herbal medicine. *J Clin Med* 2016;5:56.

174. Fonarow GC, Zhao X, Smith EE, Saver JL, Reeves MJ, Bhatt DL, et al. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. *JAMA* 2014;311:1632-1640.

175. Del Zoppo GJ, Saver JL, Jauch EC, Adams HP; American Heart Association Stroke Council. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. *Stroke* 2009;40:2945-2948.

176. IST-3 collaborative group, Sanderson P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, et al. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. *Lancet* 2012;379:2352-2363.

177. Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM. The neurotoxicity of tissue plasminogen activator? *J Cereb Blood Flow Metab* 2004;24:945-963.

178. Fan M, Xu H, Wang L, Luo H, Zhu X, Cai P, et al. Tissue plasminogen activator neurotoxicity is neutralized by recombinant ADAMTS 13. *Sci Rep* 2016;6:25971.

179. Armstead WM, Nassar T, Akkawi S, Smith DH, Chen XH, Cines DB, et al. Neutralizing the neurotoxic effects of exogenous and endogenous tPA. *Nat Neurosci* 2006;9:1150-1155.

180. Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, et al. Neurserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. *Blood* 2000;96:569-576.

181. Shi ZS, Loh Y, Walker G, Duckwiler GR; MERCI and Multi-MERCI Investigators. Clinical outcomes in middle cerebral artery trunk occlusions versus secondary division occlusions after mechanical thrombectomy: pooled analysis of the mechanical embolus removal in cerebral ischemia (MERCI) and multi MERCI trials. *Stroke* 2010;41:953-960.

182. Onwuekwe I, Ezeeza-Adikaike B. Ischemic stroke and neuroprotection. *Ann Med Health Sci Res* 2012;2:186-190.

183. Guyot L, Diaz FG, O’regan MH, McLeod S, Park H, Phillis JW. Real-time measurement of glutamate release from the ischemic penumbra of the rat cerebral cortex using a focal middle cerebral artery trunk occlusion model. *Neurosci Lett* 2000;294:37-40.

184. Ohta K, Graf R, Rosner G, Heiss WD. Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats. *Stroke* 2001;32:535-543.

185. Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. *Pharmacol Rev* 2004;56:633-654.
186. Boscia F, Gala R, Pignataro G, De Bartolomeis A, Cicala M, Ambesi-Impiombato A, et al. Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, perin- farct area, and intact brain regions. *J Cereb Blood Flow Metab* 2006;26:502-517.

187. Tortiglione A, Pignataro G, Minale M, Secondo A, Scorzillo A, De Renzo GF, et al. Na+exchanger in Na+ efflux-Ca2+ influx mode of operation exerts a neuroprotective role in cellular models of in vitro anoxia and in vivo cerebral ischemia. *Ann N Y Acad Sci* 2002;976:408-412.

188. Molinaro P, Cantile M, Cuomo O, Secondo A, Pannaccione A, Ambrosino P, et al. Neuroruffina-1, a novel compound that increases Na+/Ca2+ exchanger activity, effectively protects against stroke damage. *Mol Pharmacol* 2013;83:142-156.

189. Vinciguerra A, Formisano L, Cerullo P, Guida N, Cuomo O, Esposito A, et al. MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits. *Mol Ther* 2014;22:1829-1838.

190. Xu LJ, Ouyang YB, Xiong X, Stary CM, Giffard RG. Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. *Exp Neurol* 2015;264:1-7.

191. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. *Immunology* 2006;117:433-442.

192. ladecola C, Anrather J. The immunology of stroke: from mechanisms to translation. *Nat Med* 2011;17:796-808.

193. Buisson A, Nicole O, Docagne F, Sartelet H, Mackenzie ET, Vivien D. Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor β1. *FASEB J* 1998;12:1683-1691.

194. Grilli M, Barbieri I, Basudeh H, Brusa R, Casati C, Lozza G, et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. *Eur J Neurosci* 2000;12:2265-2272.

195. ladecola C, Anrather J. Stroke research at a crossroad: asking the brain for directions. *Nat Neurosci* 2011;14:1363-1368.

196. Cheng Y, SunAY. Oxidative mechanisms involved in kainate-induced cytotoxicity in cortical neurons. *Neurochem Res* 1994;19:1557-1564.

197. Lachpak PA, Chapman DF, Zivin JA. Pharmacological effects of the spin trap agents N-t-butyl-phenyl nitroline (PBN) and 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) in a rabbit thromboembolic stroke model: combination studies with the thrombolytic tissue plasminogen activator. *Stroke* 2001;32:147-153.

198. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, et al. The Nrf2–ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. *Ann NY Acad Sci* 2008;1147:61-69.

199. Jessell T, Sanes J. The generation and survival of nerve cells. In: Kandel E, Schwartz JH. Principles of Neural Sciences. New York: McGraw-Hill, 2000;1041-1062.

200. Cheng YD, Al-Khoury L, Zivin JA. Neuroprotection for ischemic stroke: two decades of success and failure. *NeuroRx* 2004;1:36-45.

201. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. *Neuroscience* 2009;158:1021-1029.

202. Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antago- mir to microRNA Let7f promotes neuroprotection in an isch- emic stroke model. *PLoS One* 2012;7:e32662.

203. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S. A set of differentially expressed miRNAs, including mir-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. *Hum Mol Genet* 2008;17:3030-3042.

204. Zeng L, He X, Wang Y, Tang Y, Zheng C, Cai H, et al. MicroR-NA-210 overexpression induces angiogenesis and neurogen- esis in the normal adult mouse brain. *Gene Ther* 2014;21:37-43.

205. Wang YQ, Cui HR, Yang SZ, Sun HP, Qiu MH, Feng XY, et al. VEGF enhance cortical newborn neurons and their neurite development in adult rat brain after cerebral ischemia. *Neu- rochem Int* 2009;55:629-636.

206. Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. *J Cereb Blood Flow Metab* 2004;24:441-448.

207. Shruster A, Ben-Zur T, Melamed E, Offen D. Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury. *PLoS One* 2012;7:e40843.

208. Bambakidis NC, Petrulis M, Kui X, Rothstein B, Karampelas I, Kuang Y, et al. Improvement of neurological recovery and sup- port of neural progenitor proliferation. *Stroke* 2009;40:3618-3626.

209. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. *Nature* 2006;442:823-826.
Khoshnam, et al. MicroRNAs and Ischemic Stroke

211. Pang L, Ye W, Che XM, Roessler BJ, Betz AL, Yang GY. Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-β1 expression. Stroke 2001;32:544-552.

212. Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PT, et al. MicroRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One 2013;8:e66393.

213. Cheng LC, Pastrana E, Tavazoie M, Doetsch FI. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009;12:399-408.

214. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, et al. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One 2011;6:e23461.

215. Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY, et al. MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 2010;6:323-335.

216. Arenillas JF, Sobrino T, Castillo J, Dávalos A. The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiomyol Clin 2007;9:205-212.

217. Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun 2009;386:549-553.

218. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral isch- emia. Front Biosci (Elite Ed) 2011;3:1265-1272.

219. Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F. microRNA: emerging therapeutic targets in acute ischemic dis-eases. Pharmacol Ther 2010;125:92-104.

220. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al. A microRNA signature of hypoxia. Mol Cell Biol 2007;27:1859-1867.

221. Crosby ME, Devlin CM, Glazer PM, Calin GA, Ivan M. Emerging roles of microRNAs in the molecular responses to hypoxia. Curr Pharm Des 2009;15:3861-3866.

222. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009;324:1710-1713.

223. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 2003;111:1843-1851.

224. Shen F, Fan Y, Su H, Zhu Y, Chen Y, Liu W, et al. Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Ther 2008;15:30-39.

225. Li Y, Mao L, Gao Y, Baral S, Zhou Y, Hu B. MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci Rep 2015;5:13316.

226. Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, Xiao H, et al. Hypoxia-responsive miRNAs target argonaute-1 to promote angiogenesis. J Clin Invest 2013;123:1057-1067.

227. Yin KJ, Olsen K, Hamblin M, Zhang J, Schwendeman SP, Chen YE. Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia. J Biol Chem 2012;287:27055-27064.

228. Yin KJ, Hamblin M, Chen YE. Angiogenesis-regulating microRNAs and ischemic stroke. Curr Vasc Pharmacol 2015;13:352-365.

229. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, et al. Mira-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006;1:e116.

230. Chen Y, Leal AD, Patel S, Gorski DH. The homeobox gene GAX activates p21/WAF1/CIP1 expression in vascular endothelial cells through direct interaction with upstream AT-rich sequences. J Biol Chem 2007;282:507-517.

231. Patel S, Leal AD, Gorski DH. The homeobox gene GAX inhibits angiogenesis through inhibition of nuclear factor-κB-dependent endothelial cell gene expression. Cancer Res 2005;65:1414-1424.

232. Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 2008;111:1217-1226.

233. Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, et al. MicroRNA expression in the adult mouse central nervous system. RNA 2008;14:432-444.

234. Fellì N, Fontana L, Pelosi E, Bottà R, Bonci D, Facchiano F, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modula-tion. Proc Natl Acad Sci U S A 2005;102:18081-18086.

235. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 2007;100:1164-1173.

236. Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 2014;13:622-638.

237. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA de-livery. J Control Release 2013;172:962-974.

238. Li Y, Liu Y, Wang Z, Hou H, Lin Y, Jiang Y. MicroRNA: not far from clinical application in ischemic stroke. ISRN Stroke 2013;2013:1-7.

239. Zhang H, Stryk MB, Sun T. Approaches to manipulating microRNAs in neurogenesis. Front Neurosci 2013;6:196.
240. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschi T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. *Nature* 2005;438:685-689.

241. Morrisey EE. The magic and mystery of miR-21. *J Clin Invest* 2010;120:3817-3819.

242. Patrick DM, Montgomery RL, Qi X, Obad S, Kaupinnen S, Hill JA, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. *J Clin Invest* 2010;120:3912-3916.

243. Jiang Y, Wei N, Lu T, Zhu J, Xu G, Liu X. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. *Neuroscience* 2011;172:398-405.

244. Jiang Y, Zhu J, Xu G, Liu X. Intranasal delivery of stem cells to the brain. *Expert Opin Drug Deliv* 2011;8:623-632.

245. Liu X. Clinical trials of intranasal delivery for treating neurological disorders—a critical review. *Expert Opin Drug Deliv* 2011;8:1681-1690.

246. Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, et al. MiR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. *Ann Neural* 2012;72:269-277.

247. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. *Nat Genet* 2002;32:107-108.

248. Kishida T, Asada H, Gojo S, Ohashi S, Shin-Ya M, Yasutomi K, et al. Sequence-specific gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA. *J Gene Med* 2004;6:105-110.

249. Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D. MicroRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. *PLoS One* 2014;9:e99283.

250. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury. *Clin Chem* 2009;55:1977-1983.

251. Weng H, Shen C, Hirokawa G, Ji X, Takahashi R, Shimada K, et al. Plasma mir-124 as a biomarker for cerebral infarction. *Biomed Res* 2011;32:135-141.

252. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, et al. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. *BMC Neurol* 2013;13:178.

253. epramaniam S, Tan JR, Tan KS, DeSilva DA, Tavintharan S, Woon FP, et al. Circulating microRNAs as biomarkers of acute stroke. *Int J Mol Sci* 2014;15:1418-1432.

254. Wang W, Sun G, Zhang L, Shi L, Zeng Y. Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans. *J Stroke Cerebrovasc Dis* 2014;23:2607-2613.