Bronkopulmoner displazi tanılı ikizde mezenkimal kök hücre tedavisi ve akciğer ultrasonografisi ile tedavi izlemi

The clinical and radiological course of bronchopulmonary dysplasia in twins treated with mesenchymal stem cells and followed up using lung ultrasonography

Öz
Bronkopulmoner displazi düşük doğum ağırlıklı bebeklerde erken yeniden doğan döneminde mekanik ventilasyonun etkisi ve oksijen toksitesi gibi nedenlerle ortaya çıkan kronik bir akciğer hastalığıdır. Bu hastalar da ventilasyon desteği ve oksijen ihtiyacı uzun süre devam etmektedir. Bronkopulmoner displazi gelişimi engellemek için antenatal steroid kullanımı, baro/volutraumu azaltacak ventilasyon teknikleri, postnatal steroid ve A vitamini kullanım gibi stratejiler vardır. Son yıllarda, bronkopulmoner displazi gelişimindeki patofizyolojik mekanizmaların durdurulması ve veya azaltılması amaçlı tercih edilebilecek yöntemlerden bir tanesi de mezenkimal kök hücre kullanımıdır. Bu yazida, gebelik haftası 26 olan 750 g kız ve 930 g erkek doğum ağırlığına sahip ikizlere, bronkopulmoner displazi tanısıyla venen mezenkimal kök hücre tedavi ve sonuçları sunulmuştur. Bu hastalar klinik bulgular, akciğer grafisi ve akciğer ultrasonografisi bulguları değerlendirilmiştir.

Anahtar sözcükler: Akciğer ultrasonografisi, bronkopulmoner displazi, mezenkimal kök hücre

Abstract
Bronchopulmonary dysplasia is a chronic lung disease that develops in low-birth-weight infants as a result of mechanical ventilation and oxygen toxicity in the early neonatal period. In these patients, mechanical ventilation and oxygen support are needed for a long time. We already use antenatal steroid, ventilation techniques with minimal baro/volutrauma, postnatal steroid, and vitamin A to prevent the development of bronchopulmonary dysplasia. Mesenchymal stem cell treatment is another way to reduce or stop the pathophysiological pathways in the development of bronchopulmonary dysplasia. Herein, we present mesenchymal stem cell treatment and its outcomes in twins who were born with a gestational age of 26 weeks and diagnosed as having bronchopulmonary dysplasia (the female twin was born with a birth weight of 750 g and the male twin was born with a birth weight of 930 g). These patients were followed up with clinical findings, chest radiography, and lung ultrasonography.

Keywords: Bronchopulmonary dysplasia, lung ultrasonography, mesenchymal stem cells

Cite this article as: Öktem A, Çelik HT, Yiğit Ş, Yurdakök M. The clinical and radiological course of bronchopulmonary dysplasia in twins treated with mesenchymal stem cells and followed up using lung ultrasonography. Turk Pediatri Ars 2020; 55(4): 425–9.
BPD tanımlanmıştır. Klasik BPD tanımda, 30–37 gebelik haftasında doğmuş bebeklerin respiratuur distres sendromu (RDS) nedeniyle yüksek basınç ve oksijen kullanılarak ventile edilmeleri sonucunda BPD gelişimi görülmektedir. Antenatal steroid tedavisi, surfaktan uygulamaları ve daha ilmlili ventilasyon tekniklerinin geliştirilmesiyle çok küçük gebelik yaşılarındaki (24–28 gebelik haftası) prematürelerde gelişen ‘Yeni BPD’ kavramı ortaya çıkmıştır. Bu yazida, bebeklerin başlangıçta RDS’lerinin olmadığı ya da haif olduğu, ancak bir süre sonra akciğer işlevlerinde bozulma ve oksijen gereksiniminde artış ortaya çıktığı görülmektedir. Bu tabloya sepsis ya da patent duktus arteriyozus (PDA) eşlik edebilir (2). Bronkopulmoner displazi tedavisinde kullanılan çeşitli tedavi protokollerinin yanı sıra son yıllarda, akciğer enflamasyonunu azaltmak ve pulmoner hipertansiyonu düştürmek için, mezkenimal kök hücre (MKH) tedavisi kullanılmaktadır (3). Bu yazida hastanemizde BPD tanısı ile izlenen iki vakaya uygulanan MKH tedavisi kullanılmaktadır (3). Bu yazıda, bebeklerin başlangıçta RDS’lerinin olmadığı ya da haif olduğu, ancak bir süre sonra akciğer işlevlerinde bozulma ve oksijen gereksiniminde artış ortaya çıktığı görülmektedir. Bu tabloya sepsis ya da patent duktus arteriyozus (PDA) eşlik edebilir (2). Bronkopulmoner displazi tedavisinde kullanılan çeşitli tedavi protokollerinin yanı sıra son yıllarda, akciğer enflamasyonunu azaltmak ve pulmoner hipertansiyonu düştürmek için, mezkenimal kök hücre (MKH) tedavisi kullanılmaktadır (3). Bu yazida hastanemizde BPD tanısı ile izlenen iki vakaya uygulanan MKH tedavisi, sonuçları ve akciğer ultrasonografi ile izlemelere sunulmuştur.

**Olgu**

Yirmi doku yaşındaki anneden, gebelik haftası 26 olan 750 g kız ve 930 g erkek bebek doğdu. Gebelik komplikasyonu olarak erken membran rüptürü vardı. İkizler doğduktan sonra resüste edildi ve entübe edilerek reküre surftaktan tedavisi uygulandı. Erkek hasta dördüncü gününde CPAP’tan ayrılarak serbest bırakıldı. Oksijen ile izlenmeye başlandı, ancak kız bebek mekanik ağırlıkta yedinci gününde, BPD tanını ile izlenmeye başlandı. Postnatal yirmi sekizinci gününde erkek hasta CPAP’tan ayrılarak 1x10⁶/kg mezkenimal kök hücre intravenoz ve 2x10⁶/kg mezkenimal kök hücre intratrakeal olmak üzere hastalar verildi. Hastaların akciğer ultrasonografi ile izlenerek görünümü kaydedildi.

Her iki hastanın akciğer ultrasonografiinde tedavi önemi atelektazi, konsolidasyon, plevral çizgi anormallikleri, alveolar interstisyel sendrom (AIS), B çizgileri ve hava bronkogramları saptandi. Koc hücre tedavisinin on iki saat sonra tekaranlanенные akciğer ultrasonografinde önemli bir değişiklik saptanmadı (Şekil 1a, b). Tedaviden üç gün sonra kız hastaya yapılan akciğer ultrasonografinde akciğer konsolidasyonu, bölünmüş alanlarda ve atelektatik bölgelerde parsiyel rezolüsyon saptanırken, plevral çizgi anormalliklerinin devam ettiği görüldü. Erkek hastanın akciğer ultrasonografinde ise B çizgilerinin ve AIS’in kaybolduğu ancak plevral çizgi düzensizliği in devam ettiği görüldü.

Tedaviden dokuz gün sonra kız hastaya yapılan akciğer ultrasonografinde plevral çizgi düzensizliği in devam ettiği, hava bronkogramları içeren konsolidasyon alanları mevcut, normal akciğer doku sorununun B çizgileri görülmemektedir. (b) Kız hasta kök hücre tedavisinde, erkek hastanın akciğer ultrasonografinde akciğer parankiminde ve plevral çizgiye düşensizlikler görülmektedir. Yangın B çizgileri bulunmaksal birlikte, hava bronkogramları içeren konsolidasyon alanları mevcuttur. Normal akciğer dokusunda görülen A çizgileri görülmemektedir. (c) Kız hastanın akciğer ultrasonografinde 15 gün sonra (hastanın akciğer ultrasonografinde akciğer parankımı ve plevral çizgiye düşensizlikler devam etmektedir. Ancak B çizgilerinin sayısında azalma olmakla birlikte A çizgilerinin görünümü artmıştır. Ancak bu hastanın klinik bulguların ultrasonografik görüntülemeleri ile uyumlu olarak karar verilmesi mevcuttur. (d) Erkek hasta kök hücre tedavisinin 15 gün sonra (hastanın akciğer ultrasonografinde B çizgilerinin azalığı, lung sliding bulgusunun oluştuğu, A çizgilerinin görünümeye başladığı, görünüm alanında comet tail görünmesine karşın konsolidasyon alanlarının silindiği görülmüştür.)

**Şekil 1.**

(a) Erkek hasta kök hücre tedavisinden önce (hastanın akciğer ultrasonografinde belirgin B çizgileri mevcut, plevral çizgi düzenli değil, hava bronkogramı içeren konsolidasyon alanları mevcut, normal akciğer dokusunda görülen A çizgileri görülmemektedir. (b) Kız hasta kök hücre tedavisinden önce (hastanın akciğer ultrasonografinde akciğer parankımı ve plevral çizgi düzensizlikler görülmektedir. Yangın B çizgileri bulunmaksal birlikte, hava bronkogramı içeren konsolidasyon alanları mevcuttur. Normal akciğer dokusunda görülen A çizgileri görülmemektedir. (c) Kız hastanın akciğer ultrasonografinde 15 gün sonra (hastanın akciğer ultrasonografinde akciğer parankımı ve plevral çizgiye düşensizlikler devam etmektedir. Ancak B çizgilerinin sayısında azalma olmakla birlikte A çizgilerinin görünümü artmıştır. Ancak bu hastanın klinik bulguların ultrasonografik görüntülemeleri ile uyumlu olarak karar verilmesi mevcuttur. (d) Erkek hasta kök hücre tedavisinden 15 gün sonra (hastanın akciğer ultrasonografinde B çizgilerinin azalığı, lung sliding bulgusunun oluştuğu, A çizgilerinin görünümeye başladığı, görünüm alanında comet tail görünmesine karşın konsolidasyon alanlarının silindiği görülmüştür.)
ultrasonografi kontrolü yapıldı. Kız hastada AIS alanları yerini tamamen B çizgilerinin aldığı, A çizgilerinin daha belirgin hale geldiği ve akciğer konsolidasyon alanları içinde hava bronkogramının bulunduğunu görüldü (Şekil 1c). Ancak hasta tedavinin 18. gününde sepsis nedeniyle eksiitus oldu. Erkek hastanın akciğer ultrasonografisi normal akciğer bulguları ile uyumluydı (Şekil 1d) ve oksijen gereksinimi azalarak, sadece beslenme süresince serbest oksijen almaktaydı. Sonrasında hastada oksijen desteği taburcu edildi. Hasta bulgu ve sonucunun bilimsel amaçlı yayımlanması amacıyla hastanın anne ve babasından yazılı onam alınmıştır. Mezenkimal kök hücre tedavileri kapsamında kullanılacak mezenkimal kök hücreler Acıbadem Labmed Sağlık Hizmetleri Hücresi Laboratuvarı'dan temin edilmiştir.

Mezenkimal hücrenin elde edilme yöntemi

Kord kanından, mekanik ve enzimatik işlemler yapılarak kültüre edilen hücreler yapılan mikroskobik gözlemlerde flask tabanının %70 kapladığı görüldüğünde hücreler birinci pasaj işlemine alınmaktadır. 3000–5000 hücre/cm² eklerek ilgili medyum ile kültüre edilerek inkübatörde kaldırılır. Beş gün sonra flask tabanının %70 kapladığı görüldüğünde sonlandırma işlemine alınır ve işlem sonunda elde edilen MKH hücreler, izotonik solüsyon ile dilüe edilerek kalite kontrol örnekleri verilmektedir. (Hücre sayısı, Canlılık, Flow Stometri, LAL, Mikoplazma, Mikrobiyolojik kalite kontrol)

Tartışma

Bronkopulmoner displazi özellikle çok düşük doğum ağırlıklı yenidoğanların önemli bir solunum sistemi patolojisidir. Bu yüzden solarun hastalar da hem küçük gebelik haftası hem de çok düşük doğum ağırlığından gelen risk etmenleri sahiptir. Hastalar doymadan sonra resüsitasyon yapılan ve erken dönemde mekanik ventilasyon gereksinimleri olduğu için, Bronkopulmoner displazi gelişiminde prematüre, travma ve oksijen toksisitesi en önemli etmeler olmakla birlikte antenatal ve/veya postnatal enfeksiyonlar, PDA, nutrisyonel problemler, etiopatogeneze rol almaktadır (2). Hastaların annesine doğundan önce 12 saat ara ile iki kez betametazon uygulanmıştır. Antenatal steroid kullanmanın RDS gelişimini azalttığı belirtilse de, antenodal olarak erken akciğer matürasyonunu sağlayarak RDS’yi önleme, fakat anormal yapılı bir akciğer ortaya çıktığı için BPD gelişiminde rol almaktadır (2). Bronkopulmoner displazi tanısı altında hastanın klinik durumunun yani sıra akciğer grafileri ile değerlendirilmesi önemlidir. Akciğer grafisinde; AIS, B çizgileri, kistik yapılar, değişik derecelerde fibrotik değişiklikler gibi bulgular görülebilir (2, 4).

Bu hastalar, benzer akciğer grafisi bulguları bulunmaka birlikte (Şekil 2), literatürde yeni bir yaklaşımdır olarak yeni doygun yoğun bakım biriminde yatakıp akciğer ultrasonografisi ile izlenmektedir. Bronkopulmoner displazisi durumunda birçok hastalığın tanısında kullanılan bir yöntemdir. Akciğer ultrasonografisi kolay uygulanabilirliği, hasta başına yapılış süremini, radyasyon içermemesi ve ucuz bir teknik olması açısından avantajlıdır. Bronkopulmoner displazi tanısı alan hastaların akciğer ultrasonografisinde konsolidasyon alanları, pleural çizgi düzensizlikleri, hava bronkogramları, AIS, B çizgileri, kistik yapılar görülebilmektedir (4). Tedavi öncesi hastalara uygulanın akciğer USG’de aynı bulguları saptanması, yakın bir bakışta yüksek olasılıkta tedaviye girebilecek hastalar olarak değerlendirilmesi, hastada hızlı bir şekilde en iyi olası tanıları belirlemek için uygulanabilirlik sağlar. Bronkopulmoner displazi gelişimini önleme için yapılan uygulamaların en yeterlendiririni birleştirmek için, Akciğer USG’deki bulgulara dikkat edilmesi gerekmektedir.
salınan mediatörlerin BPD’deki akciğer hasarını gerile-terek, hemostazi sağlayabileceği; böylece akciğer hasan, fibrozisi ve pulmoner hipertansiyonu azaltabileceği gösterilmıştır (5). Bronkopulmoner displazi Aynı zamanda akci-ğer vasküleritesinin anormal dağılımı ve pulmoner hipertansiyona neden olan pulmoner küçük arterlerde azalma ile birleşin bir tablodur. Akciğer diğer darnaklarında azal-ma ve duvar kalmalığında artış olmakta, sonuç olarak ba-sınıç artışa sağ ventrikül hipertrofisine neden olmaktadır (6). Chang ve ark. (7) tarafından sunulan dokuz olgu-ride BPD gelişimini engellemek amaç, umbilikal kord ka-nından hazırlanmış MKH’ler intratrakeal olarak verilmüş ve BPD tablosunun daha hafif olduğu, hastaların entübe izlenme süresinde, nazal ventilasyon süresinde, postnatal steroid kullanımlarında anlamalı azalma olduğu görülü-tür. Kök hücreler parakrin etkileri ile alveolar epitel hücreleri ve mikrovasküler endotel hücrelerinde oksidatif stresen korumaktadır, bronkoalveolar kök hücreler stimüle edilmektedir. Bronkoalveolar kök hücreler ise akciğer onarımı desteklemektedir. Sonuç olarak hiperoksiye bağlı fibrozis, enfiamasyon, alveolar hasar ve pulmoner ödem gibi patolojik kök hücre tedavisi ile azalıabilecek, akciğer sağlıklı ve sağlıklı artılmaktadır (8). Mezenkimal kök hücre tarafından alınan keratinosit büyüme faktörü (KGF), hepatosit büyüme faktörü (HGF), vasküler endotel hücre büyüme faktörü (VEGF), anjiopoetin-1 (Ang-1) ve epidermal büyüme faktörü (EGF) gibi mediatörler parak-рин etkisi ile akciğer onarımı destek olur. Keratinosit büyüme faktörü için akciğer maturasyonunu artırılmaktadır. Prenatal deksametazon kullanımını, fetal akciğer fibroblastlarında KGF mRNA ekspresyonunu arttırdığı görülmüş ve böylece distal akciğer epitel volumenin maturasyonunu artırılmaktadır. Vasküler endotel hücre büyüme faktörü; VEGF-R1 (Vasküler endotel hücre büyüme faktörü – Reseptör 1) ve VEGF-R2 (Vasküler endotel hücre büyüme faktörü – Reseptör 2) olmak üzere endotel hücreler üzerinde bulu-nan iki tirozin kinaz reseptörü üzerinden etki etmektedir. Vasküler endotel büyüme faktörü reseptörleri; VE- GF-R1 vasküler gelişim için önemli olan endotel hü-creler arası sinyal yolunun regüle ederken, VEGF-R2 ise endotel hücre mitotenezini ve akciğer maturasyonu-na sağlaılmaktadır (9). Anjiopoetin-1 insan ven endotel hücrelerinde apopitozu azaltmaktadır. Böylece endotel hü-creler ve epitelyal hücrelerin protein geçişini denetleyen bariyer fonksiyonlarını koruyarak, enfiamasyon ve akciğer hasarı-nı azaltmaktadır. Epidermal büyüme faktörü ise bir başka önemli epitelyal büyüme faktörüdür ve akciğer gelişimini hızlandırır. Pulmoner hipoplasizsi olan fetus akciğerlerin-de EGF reseptör ekspresyonu azalmıştır (8). Yine Leeman ve ark. (10) akciğer progenitör hücre kültürlerinde mezen-ekimal kök hücre eklemiş ve kök hücrelerden salinan sito-kiner ile alveolar diferansiyasyonun arttığını göstermiştir. Bu durumda mezenkimal kök hücreler akciğer hasarının tedavisinde alveolar yenilenmeyi hızlandırabilir. Özellikle son yıllarda birçok hastalığın tedavisinde kullanılan mezenkimal kök hücreler bu mekanizmalar ile yeniden BPD hastalığında önem kazanmaktadır. Biz de bu olgu sunumu ile bronkopulmoner displazi tedavisinde mezen-ekimal kök hücre tedavisinin verilebileceğini ve yenido-ğında akciğer bulgularının ultrasonografı ile izlenibele-ceği vurgulayarak,吸烟. Ancak mezenkimal kök hücre tedavisinin etkinliği ve uzun dönem sonuçlarını içeren çok merkezli, kontrol grubu içeren prospektif çalışmalar yapılması gerekmektedir.

Teşekkür: Akciğer ultrasonografisi eğitimleri ve katkılarından dolayı Türk Neonatoloji Derneği’ne teşekkür ederiz.

Hasta Onamı: Hasta ailesinden yazılı onam alınmıştır.

Hakem Değerlendirmesi: Diş başımsız.

Yazar Katkıları: Fikir - Ş.Y., M.Y.; Tasarruf - Ş.Y., A.O.; De-netleme - Ş.Y., M.Y.; Kaynaklar - H.T.C., A.O.; Malzemeler - H.T.C., A.O.; Veri Toplanması ve/veya İşlmesi - H.T.C., A.O.; Analiz ve/veya Yorum - M.Y., Ş.Y.; Literatür Tarama- ri - H.T.C., A.O.; Yazılı Yazan - A.O.; Eleştiril İncelem- e - M.Y., Ş.Y.

Çıkar Çatışması: Yazarlar çıkar çatışması bildirmemişlerdir.

Mali Destek: Yazarlar bu çalışma için mali destek almamı-klarına beyan etmiştir.

Acknowledgement: We would like to thank the Turkish Neonatal Society for their lung ultrasonography training and contributions.

Informed Consent: Informed consent was obtained from the patients’ family.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - Ş.Y., M.Y.; Design - Ş.Y., A.O.; Supervision - Ş.Y., M.Y.; Funding - H.T.C., A.O.; Materials - H.T.C., A.O.; Data Collection and/or Processing - H.T.C., A.O.; Analysis and/or Interpretation - M.Y., Ş.Y.; Literature Review - H.T.C., A.O.; Writing - A.O.; Critical Review - M.Y., Ş.Y.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

References
1. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med.
1. Sarıcı SÜ. Department of Pediatrics, Gülhane Military Medical Academy, Ankara, Turkey. Bronchopulmonary dysplasia: new insights about the definition, pathogenesis, epidemiology and pathology. ÇSHD 2006; 49: 60–70.

2. Mohammadipoor A, Antebi B, Batchinsky AI, Cancio LC. Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respir Res 2018; 19: 218.

3. Liu J, Chen SW, Liu F, et al. BPD, Not BPD, or iatrogenic BPD: findings of lung ultrasound examinations. Medicine (Baltimore) 2014; 93: e133.

4. Pant S, Hilton H, Burczynski ME. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol 2012; 83: 1484–94.

5. O’Reilly M, Thébaud B. Animal models of bronchopulmonary dysplasia. The term rat models. Am J Physiol Lung Cell Mol Physiol 2014; 307: L948–58.

6. Chang YS, Ahn SY, Yoo HS, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase I dose-escalation clinical trial. J Pediatr 2014; 164: 966–72.e6.

7. Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74: 18–32.

8. Antunes MA, Laffey JG, Pelosi P, Rocco PR. Mesenchymal stem cell trials for pulmonary diseases. J Cell Biochem 2014; 115: 1023–32.

9. Leeman KT, Pessina P, Lee JH, Kim CF. Mesenchymal Stem Cells Increase Alveolar Differentiation in Lung Progenitor Organoid Cultures. Sci Rep 2019; 9: 6479.