Suicide by air embolism introduced by means of a bicycle pump

Introduction

Gas embolisms have a wide variety of etiologies. They are potentially life-threatening but rarely the cause of death. Fatal venous air embolisms can be caused by acute pathological alterations, diagnostic and surgical procedures [1–3]. Some cases of air entering the venous blood system subsequent to incorrectly applied medical measures or in connection with defective intravenous infusion systems have been described [4–8]. In medicolegal cases air embolisms can be found principally after blunt chest trauma and in connection with penetrating injuries, such as cuts and stab wounds especially to the head, neck and chest and even more rarely gunshot wounds.

Most of the cases observed, gas embolism was accidental. According to the literature [9], premeditated homicides through injection of air into the venous system are extremely rare, whereas a few cases of forced air injection in suicidal intention have been described. This article describes a case of suicide through air embolism induced by a bicycle pump.

Case history

Previous history

A 64-year-old man was found by his wife. He was lying motionless on his back, undressed in the bed in their flat. A commercially available bicycle pump with a volume of ca. 100 ml was found in his right hand. A cannula as used for the injection of insulin was attached to the valve of the pump (Fig. 1). There were no indications where the cannula came from. Macroscopically visible traces of blood were detected in the cannula and two puncture wounds were found on the back of the left hand (Fig. 2). The wife began resuscitation, which was continued by the emergency physician who had been summoned to the site, but without positive outcome.

With respect to pre-existing conditions, there was only mild arterial hypertension. Aside from that, the deceased had recently consulted an urologist. A concrete diagnosis was unknown. According to relatives, the deceased—who worked as a carpenter before his retirement—had not suffered from depression and had not spoken of suicide in the days prior to his death. No suicide note was found. The handedness of the deceased remained unknown to us as it was not mentioned in the police report. The police investigations led to the conclusion that the man had committed suicide.

Radiography

Prior to autopsy a thorax radiograph was taken in the anteroposterior (AP) view and assessed by the physicians who carried out the autopsy. The gas embolism which was discovered later during autopsy could not be reliably seen in the radiograph.

Results of autopsy

The autopsy was performed 22h after death. The body was in a fresh state and showed no signs of putrefaction besides a slight greenish discoloration of 2 cm in diameter in the right side of the lower abdomen. Body height: 177 cm, body weight: 68.9 kg, body mass index (BMI): 21.7 kg/m².

The external examination of the corpse revealed two small, fresh puncture wounds with minimal bleeding into the...
surrounding tissue located centrally on the back of the left hand. While preparing the back of the hand it was discovered that a superficial vein had been punctured several times. There were no other signs of external application of force.

The autopsy began with the opening of the chest cavity. After the sternum had been removed, the pericardium was opened and filled with water until the heart was submerged. The right ventricle was then punctured under water with the heart cannula of the aspirometer (Fig. 4), and in total ca. 50 ml of gas was obtained. Usage of the aspirometer followed the method described in Bajanowski et al. [10]. The foramen ovale was closed.

Other findings of acute pathological alterations were a slight swelling of the brain, a pronounced lung edema, erosive bleeding in the stomach lining and an low-grade aspiration of stomach contents into the peripheral bronchial tubes. Pre-existing pathological organ alterations were not found, there were neither pathological changes to the urinary organs, the sex organs, nor the rectum.

Toxicological analysis

In toxicological analysis portions of the stomach contents, femoral blood samples and urine were tested using immunochemistry, UV-spectrometry as well as HPLC. In the contents of the stomach and in the femoral blood only caffeine (3.5 mg/l) was found; a trace of bisoprolol was detected in the urine. The deceased was not under the influence of alcohol at the time of death.

Discussion

Gas embolism usually occurs through the blockage of a blood vessel by a gas aggregation. It can affect the arterial as well as the venous branch of circulation. Circulatory arrest as a result of gas embolism can be caused by a massive embolism in previously healthy persons or in cases of pre-existing cardiac or pulmonary insufficiency, by decompensation and several smaller embolisms. The right ventricle is adapted to low pressures and has only limited ability to react to an acute increase of resistance in pulmonary vessels. As widely known the Italian anatomist Morgagni postulated even in the late eighteenth century that an increasing afterload of the right ventricle threatens the circulatory system by a lower ejection fraction, as well as a certain amount of gas in the right ventricle [44]. In addition, humorally and/or reflexively elicited vasoconstriction plays an important role. Lung segments affected by embolic obstruction are still ventilated but the alveoli do not participate in gas exchange, resulting in an increased dead space. The functionally disturbed balance between ventilation and perfusion leads to dyspnea and arterial hypoxemia. This hypoxemia can be partially explained through the opening of additional arteriovenous anastomoses [2, 10–13].

Information on the quantity of gas in a fatal gas embolism varies in the literature. Most frequently, quantities of 70–130 ml are given to be fatal [10, 12, 13]. Some authors cite quantities of 10 ml and 70 ml gas as being fatal [14, 15], others described a rapidly injected gas volume of 100–300 ml or 3–5 ml/kg body weight as a fatal volume [16]. Acute amounts of 0.5–2 ml/kg body weight are attributed to cause inter alia myocardial and cerebral ischemia, hypotension and pulmonary hypertension [2]. Because no pathological alterations of the organs or evidence for an intoxication were found, the 50 ml of gas in the right ventricle was considered to be the cause of death.

Gas embolisms are more frequently described in connection to medical procedures like the use of rapid infusion systems, invasive vascular procedures and neurosurgical procedures [17] as with, for example, cuts or stab wounds [18, 19], gunshot wounds to the head [20, 21] or open craniocerebral injuries [22–24]; however, gas embolism is not inevitable in these cases [25, 26]. Furthermore, gas embolism can occur in connection
Suicide by air embolism introduced by means of a bicycle pump

Abstract

A 64-year-old man was found dead in bed in his flat. In his right hand he held a bicycle pump to which a small-gauge cannula was attached and two fresh puncture wounds were found on his left hand. During the autopsy an air embolism of ca. 50 ml air was detected in the right ventricle of the heart by means of an aspirometer. The air embolism could not be reliably detected in a thorax radiograph taken prior to autopsy. Blood in the right ventricle was foamy. Pathological changes to organs were not found. Aside from the puncture wounds, there were no signs of externally applied mechanical force. The results of the toxicological analyses were negative.

Keywords

Bicycle pump · Gas embolism · Air embolism · Suicide · Aspirometer

Suizid durch Luftembolie unter Verwendung einer Luftpumpe

Zusammenfassung

Ein 64 Jahre alt gewordener Mann wurde tot im Bett liegend in seiner Wohnung aufgefunden. In seiner rechten Hand hielt er eine Fahrradluftpumpe, auf der eine kleine Injektionsnadel befestigt war. An der linken Hand des Mannes konnten zwei frische Punktionsmale festgestellt werden. Unter der Obduktion wurden mit Hilfe eines Aspirometers etwa 50 ml Luft im rechten Ventrikel detektiert. Die Luftembolie wurde in der vorausgegangenen Röntgenuntersuchung des Thorax nicht sicher festgestellt.

Schlüsselwörter

Luftpumpe · Gasembolie · Luftembolie · Suizid · Aspirometer

In one suicide case a man blew air through a system of tubes and a cannula into a vein in one arm [39], in another case an oral air insufflation is assumed in a patient in hospital after suicidal cutting of the veins of the wrist [40]. Another case describes a fatal air embolism of a man after cutting his varicose saphenous vein in apparently suicidal intention [41]. Moreover, one case is presented in which a man committed suicide by compressing a 2000 mL plastic bottle containing air linked to a system of tubes and a venous cannula with his body weight [42]. With respect to forensic cases, bicycle pumps in connection with air embolisms have usually been used in cases of illegal abortion [43]. To our knowledge, our case is the first in which a bicycle pump has been used to commit suicide by intentionally inflicted air embolism. The two puncture wounds on the back of the left hand were suitable as an entry point for air into the circulatory system.

The homemade system, an insulin cannula set into the valve of the bicycle pump, is capable of insufflating air into the venous system. The insulin cannula was slightly curved, maybe for an easier insertion of the needle. Apparently, the man had placed the bicycle pump on the back of the hand at a right angle, punctured the vein, and then pressed the plunger down. By reconstructing the case this procedure was possible if the man had pulled up the plunger before inserting the cannula into the vein. The existence of two puncture wounds indicated that he was not successful at the first attempt.
Corresponding address
Victoria Fischer
Institute of Legal Medicine, Faculty of Medicine, University of Cologne Melatengürtel 60/62, 50823 Cologne, Germany victoria.fischer@uk-koeln.de

Funding. Open Access funding provided by Projekt DEAL.

Compliance with ethical guidelines

Conflict of interest. J. Falk, V. Fischer, T. Riepert and M.A. Rothschild declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case. The studies were performed in accordance with the guidelines of the central ethics committee and the German Medical Association.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ishii N, Cannack I, Matsuoka S (2020) Air embolism caused by mesenteric ischemia. Intern Med 59(5):749–751
2. Mirkii MA, Lele AV, Fitzsimmons L, Young TJ (2007) Diagnosis and treatment of vascular air embolism. Anesthesiology 106(1):164–177
3. Petekkaya S, Celbiş O, Oner BS, Turan Ö, Yener Z (2019) A rare case of fatal venous and cerebral air embolism. Ulus Travma Acil Cerrahi Derg 25(3):311–315
4. Laskey AL, Dyer C, Tobias JD (2002) Venous air embolism during home infusion therapy. Pediatrics 109(1):E15
5. Munisick RA (1972) Air embolism and maternal death from therapeutic abortion. Obstet Gynecol 39(5):686–690
6. Porea TJ, Margolin JF, Chintagumpala MM (2001) Radiological case of the month: pulmonary air embolus with home antibiotic infusion. Arch Pediatr Adolesc Med 155(8):963–964
7. Nowak RG (1990) Tödliche Luftembolie nach fehlerhaft durchgeführtem venösem Aderlass. Beitr Gerichtl Med 48:135–139
8. Sovell MW, Lovelady CL, Brodgon BG, Wecht CH (2007) Infant death due to air embolism from peripheral venous injection. J Forensic Sci 52(1):183–188
9. Yanowitch P, Rosenthal R (1994) A suicide attempt by blowing air into a heparin lock. Hosp Community Psychiatry 45(4):382–383
10. Bajanowski T, West A, Brinkmann B (1998) Proof of fatal air embolism. Int J Legal Med 111(4):208–211
11. Eder M, Gedigk G (1984) Lehrbuch der Allgemeinen Pathologie und der Pathologischen Anatomie, 31st edn. Springer, Berlin, Heidelberg
12. Mueller B (2014) Gerichtliche Medizin: Teil 2: Tod und Sterben. Leichenuntersuchung, Säuglings-, Kindertodesursachen, Verkehrsmedizin. Teil 2: Toxikologie, Sexualpathologie, Forensische Gynäkologie. Vaterschaft, 2nd edn. Springer, Berlin
13. Brinkmann M, Madea B (eds) (2004) Handbuch gerichtliche Medizin. Springer, Berlin
14. Szabó M, Englert G (1971) Selbstmordsversuch durch intravasale Luftinjektion. Z Rechtsmed 68:38–40
15. Ploch W (1960) Mordversuch und Mord durch Einspritzung von Luft, Benzín und Insulin. Dtzs Z Gesamte Gerichtl Med 49:665
16. Brull SJ, Priellipp RC (2017) Vascular air embolism: a silent hazard to patient safety. J Crit Care 42:255–263
17. Vinan-Vega MN, Rahman MR, Thompson J, Ruppert MD, Patel JI, Issaia M, Mousa A, Payne JD (2019) Air embolism following peripheral intravascular access. Proc (Bayl Univ Med Cent) 32:433–434
18. Byard RW (2011) “The break enter and die” syndrome may involve significant injury to major neck vessels. J Forensic Sci 56(1):252–254
19. Kitaulette I, Pollanen MS (2009) Electrical injury of the neck and cardiac air embolism: a novel mechanism of death. Forensic Sci Med Pathol 5:32–35
20. RothschildMDA, MaxeinerH (1994) Unusual findings in a case of suicide with a gas weapon. Int J Legal Med 106(5):274–276
21. Schyma C, Schyma P (1996) Schußins Auge. Arch Kriminalistik 197:155–164
22. Rabl W (1992) Unusual death of a farmer. Am J Forensic Med Pathol 13(3):238–240
23. Voigt P, Bach AG, Surov A (2017) Coronary air embolism in a trauma patient. Clin Res Cardiol 106(1):933–934
24. MessmerJK (1984) Massive headtrauma as a cause of intravascular air. J Forensic Sci 29(2):418–424
25. Fracasso T, Karger B (2006) Two unusual stab injuries to the neck: homicide or self-infliction? Int J Legal Med 120:369–371
26. Driever F, Madea B (2003) Tiefgreifende Halsschmierverletzungen durch ein elektrisches Messer. Arch Kriminalistik 212:104–109
27. AustinLS, VanBeekC, WilliamsGR (2013) Venous air embolism: an under-recognized and potentially catastrophic complication in orthopaedic surgery. J Shoulder Elbow Surg 22(10):1449–1454
28. HolzerFH (1973) Abtreibung mit Fahrradpumpe an der Gellertstrasse und einiger anderer Selbstmorde eines Blinden. Beitr Gerichtl Med 30:178–196
29. Morgenag JB (1771) Von dem Sitze und den Ursachen der Krankheiten welche durch die Anatomie sei erforscht worden. Von den Krankheiten des Kopfes, vol 1. Richterliche Buchhandlung, Altenburg, pp 228–232
30. CollinsKA, Davis GJ, LantzPE (1994) An unusual case of maternal-fetal death due to vaginal insufflation of cocaine. Am J Forensic Med Pathol 15(4):335–339
31. Modelli ME, Rodrigues MS, Castro BZ, Corrêa RS (2013) Self-induced fatal air embolism: accidental auteroetic death or suicide? J Forensic Sci 58(1):261–263
32. Furuya H, Suzuki T, Okumura F, Kishi Y, Uefuji T (1983) Detection of air embolism by trans-esophageal echocardiography. Anesthesiology 58(2):124–129
33. Kauczor HU, Riepert T, Wolcke B, Lasczowski G, Mildnerberger P (1995) Fatal venous air embolism: proof and volumetry by helical CT. Eur J Radiol 21(2):155–157
34. Richter M (1905) Gerichtsärztliche Diagnostik und Technik. Hirzel, Leipzig.
35. Malikah H, Schmidt WK (1980) Über ein quantitatives und qualitatives Verfahren zum Nachweis der Luft- oder Gasembolie. Beitr Gerichtl Med 38:409–419
36. Benali L, Abriat F, Titrier K, Robinson P, Gromb S (2011) Establishment of the medico-legal cause of death in two atypical cases of gas embolism in hospital: Importance of the scene. J Forensic Leg Med 18(1):38–41
37. Laurent PE, Coulanges M, Desfeux J, Bartoli C, Coquart B, Vidal V, Gouirçon G (2013) Post-mortem computed tomography in a case of suicide by air embolism. Diagn Interv Imaging 94(4):460–462
38. Takahashi Y, Sano R, Yasuda A, Kuboya E, Takahashi K, Kudo R, Kominato Y, Takei H, Kobayashi S, Shimada T, Awaata S, Tokue H, Hirasawa S (2017) Postmortem computed tomography evaluation of fatal gas embolism due to connection of an intravenous cannula to an oxygen supply. Leg Med (Tokyo) 27:1–4
39. Schollmeyer W, Vogt A (1966) Selbstmord durch Einblasung von Luft in die Armevene. Int J Legal Med 58:238–239
40. Doostan DK, Steffenson SL, Snoey ER (2003) Cerebral and coronary air embolism: an intradepartmental suicide attempt. J Emerg Med 25(1):29–34
41. Johnson GA, Smith P, Robinson J, Collins SA, Johnson CP (2018) The importance of scene photography in routine coronial practice: results of an audit with an illustrative case of suspected suicidal fatal air embolism. Med Sci Law 58(3):176–182
42. Simon G, Rätz E, Mayer M, Heckmann V, Töth D, Kozma Z (2017) Suicide by intentional air embolism. Forensic Sci Int 62(3):800–803
43. Holzer FH (1973) Abtreibung mit Fahrradpumpe an der Gellertstrasse und einiger anderer Selbstmorde eines Blinden. Beitr Gerichtl Med 30:178–196
44. Morgagni JB (1771) Von dem Sitze und den Ursachen der Krankheiten welche durch die Anatomie sei erforscht worden. Von den Krankheiten des Kopfes, vol 1. Richterliche Buchhandlung, Altenburg, pp 228–232