rac-4-Carbamoylpiperidinium

* cis-2-carboxycyclohexane-1-carboxylate*

Graham Smith and Urs D. Wermuth

Acta Cryst. (2012). *E68*, o660

This open-access article is distributed under the terms of the Creative Commons Attribution Licence
http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr’s highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The journal publishes over 4000 structures per year. The average publication time is less than one month.

Crystallography Journals Online is available from journals.iucr.org
In the title racemic salt, \(\text{C}_8\text{H}_{13}\text{N}_2\text{O}^+\cdot\text{C}_8\text{H}_{11}\text{O}_4^- \), formed from the reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with isonpecotamide, the cations are linked into duplex chain substructures through both centrosymmetric cyclic head-to-head ‘amide motif’ hydrogen-bonding associations [graph set \(R_2(8) \)] and ‘side-by-side’ \(R_2(14) \) associations. The anions are incorporated into the chains through cyclic \(R_3(10) \) interactions involving amide and piperidinium N—H⋯O
{\text{carboxyl}} hydrogen bonds which, together with inter-anion carboxylic acid O—H⋯O
{\text{carboxyl}} hydrogen bonds, give a two-dimensional layered structure extending along \(\alpha \).

Related literature

For examples of structures of 1:1 Lewis base salts of cis-cyclohexane-1,2-dicarboxylic acid, see: Smith & Wermuth (2011a,b). For examples of isonpecotamide proton-transfer salts, see: Smith & Wermuth (2010). For graph-set analysis, see: Etter et al. (1990). For hydrogen-bonding motifs, see: Allen et al. (1998).

Table 1

Hydrogen-bond geometry (Å, °)
\(D—H⋯A \)

N1A—H11A⋯O41i
N1A—H12A⋯O11
N41A—H41A⋯O14ii
N41A—H42A⋯O12iv
O22—H22⋯O12vii

Symmetry codes:
(i) \(x, −y + 1, −z \);
(ii) \(−x, −y, −z \);
(iii) \(x, y − 1, z \);
(iv) \(x, −y + 1, z + 1 \).

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The authors acknowledge financial support from the Australian Research Council, and the Science and Engineering Faculty and the University Library, Queensland University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2139).

References

Allen, F. H., Raison, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 345.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o614–o618.

Smith, G. & Wermuth, U. D. (2011a). Acta Cryst. E67, o1900.

Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, o2794.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.
rac-4-Carbamoypiperidinium cis-2-carboxycyclohexane-1-carboxylate

Graham Smith and Urs D. Wermuth

Comment
cis-Cyclohexane-1,2-dicarboxylic anhydride (cis-CHDC anhydride) forms racemic 1:1 salts with some Lewis bases and the structures of a few of these have been reported, e.g. with 2-aminopyridine (Smith & Wermuth, 2011a) and 4-amino-pyridine (Smith & Wermuth, 2011b). The 1:1 stoichiometric reaction of cis-CHDC anhydride with piperidine-4-carboxamide (isonipecotamide) also gave a racemic salt, the title compound, C₆H₁₂N₂O⁺C₈H₁₁O₄⁻ and the structure is reported here.

In this compound (Fig. 1) the cis-configuration of the anion is found as expected, with the cations linked into duplex ribbon substructures through both centrosymmetric cyclic head-to-head hydrogen-bonding associations [the ‘amide’ motif (Allen et al., 1998)] [graph set R₂⁺(8) (Etter et al., 1990)] and ‘side-by-side’ R₂⁺(14) associations (Table 1, Fig. 2). Both of these associations have been found in the structures of Lewis base salts of isonipecotamide (Smith & Wermuth, 2010). In the present structure, the monoanions are incorporated into the ribbons through cyclic R³⁺(10) amide and piperidinium N—H···Ocarboxyl associations and together with inter-anion carboxylic acid O—H···Ocarboxyl hydrogen bonds down c (Fig. 3), give a two-dimensional layered structure extending along (011).

Experimental
The title compound was synthesized by heating together under reflux for 15 min, 1 mmol quantities of cyclohexane-1,2-dicarboxylic anhydride and piperidine-4-carboxamide (isonipecotamide) in 50 ml of methanol. After volume reduction to 30 ml, the hot-filtered solution was allowed evaporate to dryness at room temperature, giving a white amorphous powder. Minor colourless crystal plates were obtained in the residual viscous residue after evaporation of a solution of the compound in 80% propane-2-ol–water.

Refinement
H atoms potentially involved in hydrogen-bonding associations were located in a difference Fourier analysis and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C—H = 0.97–0.98 Å] with Uiso(H) = 1.2Ueq(C), using a riding-model approximation.

Computing details
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).
Figure 1
Molecular conformation of the cation and anion in the title compound, with the inter-ion hydrogen bond shown as a dashed line. Displacement ellipsoids are drawn at the 40% probability level.

Figure 2
The hydrogen-bonded ribbon substructure in the title salt showing the isonipicotamide cation $R_{2}^{2}(8)$ and $R_{2}^{2}(14)$ cyclic associations and the $R_{3}^{4}(10)$ incorporation of the monoanion. For symmetry codes, see Table 1.
A view of the two-dimensional hydrogen-bonded layered structure looking down the \(b \) axial direction, showing the inter-ribbon carboxylic acid···carboxyl hydrogen-bonding extensions down \(c \).

rac-4-Carbamoylpiperidinium cis-2-carboxycyclohexane-1-carboxylate

Crystal data

\[
\begin{align*}
C_5H_{13}N_2O^+ \cdot C_8H_{11}O_4^- & \\
M_r & = 300.35 \\
\text{Monoclinic, } P2_1/c & \\
\text{Hall symbol: } -P 2yb & \\
a & = 19.0097 \text{ (14) Å} & \\
b & = 9.0667 \text{ (7) Å} & \\
c & = 9.1999 \text{ (8) Å} & \\
\beta & = 92.022 \text{ (7)°} & \\
V & = 1584.7 \text{ (2) Å} & \\
Z & = 4 \\

F(000) & = 644 \\
D_x & = 1.255 \text{ Mg m}^{-3} & \\
\lambda & = 0.71073 \text{ Å} & \\
\text{Cell parameters from 3793 reflections} & \\
\theta & = 3.2–28.9° & \\
\mu & = 0.10 \text{ mm}^{-1} & \\
T & = 200 \text{ K} & \\
\text{Plate, colourless} & \\
\text{0.40 × 0.35 × 0.10 mm} & \\
\end{align*}
\]

Data collection

Oxford Gemini-S CCD area-detector diffractometer

Radiation source: Enhance (Mo) X-ray source

Graphite monochromator

Detector resolution: 16.077 pixels mm\(^{-1}\)

\(\omega \) scans

Absorption correction: multi-scans

(CrysAlis PRO; Oxford Diffraction, 2010)

\(T_{\text{min}} = 0.86, T_{\text{max}} = 0.98 \)

Refinement

Refinement on \(F^2 \)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.075 \)

\(wR(F^2) = 0.182 \)

\(S = 1.06 \)

3100 reflections

210 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

\[
w = 1/\left[\sigma^2(F_o^2) + (0.0845P)^2 + 0.9949P\right]
\]

where \(P = (F_o^2 + 2F_c^2)/3 \)

\(\Delta \sigma_{\text{max}} = 0.002 \)

\(\Delta \rho_{\text{max}} = 0.43 \text{ e Å}^{-3} \)

\(\Delta \rho_{\text{min}} = -0.20 \text{ e Å}^{-3} \)
supplementary materials

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	y	z	U_{is}/U_{eq}
O11	0.21833 (13)	0.8455 (3)	0.0243 (3)	0.0522 (9)
O12	0.23582 (11)	1.0432 (3)	−0.1098 (2)	0.0415 (8)
O21	0.25201 (12)	1.1290 (3)	0.2369 (3)	0.0487 (9)
O22	0.31747 (13)	1.3299 (3)	0.2117 (3)	0.0485 (9)
C1	0.33119 (16)	0.9592 (3)	0.0442 (4)	0.0362 (10)
C2	0.35236 (15)	1.1183 (4)	0.0836 (4)	0.0337 (10)
C3	0.42799 (19)	1.1251 (5)	0.1462 (5)	0.0634 (16)
C4	0.4392 (2)	1.0232 (6)	0.2741 (6)	0.086 (2)
C5	0.4211 (2)	0.8668 (6)	0.2325 (6)	0.085 (2)
C6	0.3456 (2)	0.8519 (4)	0.1711 (5)	0.0586 (14)
C11	0.25621 (15)	0.9481 (3)	−0.0177 (3)	0.0306 (9)
C21	0.30223 (16)	1.1903 (4)	0.1864 (3)	0.0337 (10)
O41A	−0.00706 (10)	0.2052 (2)	−0.0339 (2)	0.0298 (7)
N1A	0.13089 (14)	0.6330 (3)	−0.0339 (3)	0.0293 (8)
N41A	0.08655 (16)	0.0589 (3)	−0.0669 (3)	0.0286 (8)
C2A	0.11125 (16)	0.5811 (3)	−0.1821 (3)	0.0290 (9)
C3A	0.06735 (15)	0.4418 (3)	−0.1727 (3)	0.0257 (9)
C4A	0.10386 (14)	0.3218 (3)	−0.0845 (3)	0.0251 (8)
C5A	0.12773 (16)	0.3800 (3)	0.0645 (3)	0.0292 (9)
C6A	0.17115 (17)	0.5201 (3)	0.0524 (3)	0.0325 (10)
C41A	0.05649 (14)	0.1901 (3)	−0.0612 (3)	0.0236 (8)
H1	0.36180	0.92850	−0.03370	0.0430*
H2	0.35070	1.17570	−0.00670	0.0400*
H22	0.288 (3)	1.369 (5)	0.281 (5)	0.082 (15)*
H31	0.46020	1.09850	0.07100	0.0760*
H32	0.43860	1.22540	0.17640	0.0760*
H41	0.41000	1.05460	0.35270	0.1030*
H42	0.48800	1.02810	0.30850	0.1030*
H51	0.42710	0.80410	0.31750	0.1020*
H52	0.45340	0.83290	0.16040	0.1020*
H61	0.31300	0.87170	0.24740	0.0700*
H62	0.33780	0.75160	0.13760	0.0700*
H4A	0.14530	0.28900	−0.13600	0.0300*
H11A	0.0869 (17)	0.663 (3)	0.007 (3)	0.027 (8)*
H12A	0.161 (2)	0.722 (4)	−0.035 (4)	0.061 (11)*
H21A	0.15340	0.56100	−0.23520	0.0350*
H22A	0.08450	0.65690	−0.23390	0.0350*
H31A	0.02300	0.46550	−0.12910	0.0310*
H32A 0.05690 0.40530 −0.27020 0.0310*
H41A 0.0623 (18) −0.017 (4) −0.045 (3) 0.037 (10)*
H42A 0.1263 (17) 0.054 (3) −0.082 (3) 0.017 (8)*
H51A 0.08680 0.40010 0.12130 0.0350*
H52A 0.15560 0.30510 0.11510 0.0350*
H61A 0.18260 0.55830 0.14880 0.0390*
H62A 0.21480 0.49810 0.00550 0.0390*

Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
O11	0.0398 (14)	0.0352 (14)	0.0811 (19)	−0.0182 (11)	−0.0039 (13)	0.0027 (13)
O12	0.0305 (12)	0.0545 (16)	0.0393 (13)	−0.0007 (11)	−0.0015 (10)	0.0068 (11)
O21	0.0385 (14)	0.0496 (15)	0.0590 (16)	−0.0112 (11)	0.0170 (12)	−0.0067 (12)
O22	0.0473 (15)	0.0479 (16)	0.0512 (15)	−0.0127 (12)	0.0156 (12)	−0.0159 (12)
C1	0.0240 (16)	0.0363 (19)	0.0483 (19)	0.0031 (14)	0.0016 (14)	−0.0011 (15)
C2	0.0211 (15)	0.0402 (19)	0.0398 (18)	−0.0042 (13)	0.0006 (13)	−0.0027 (14)
C3	0.028 (2)	0.074 (3)	0.088 (3)	−0.0069 (19)	−0.001 (2)	−0.025 (2)
C4	0.043 (3)	0.111 (5)	0.102 (4)	0.009 (3)	−0.035 (3)	−0.007 (3)
C5	0.053 (3)	0.097 (4)	0.103 (4)	0.028 (3)	−0.022 (3)	0.026 (3)
C6	0.046 (2)	0.047 (2)	0.082 (3)	0.0090 (18)	−0.008 (2)	0.020 (2)
C11	0.0273 (16)	0.0242 (16)	0.0403 (17)	−0.0002 (13)	−0.0005 (13)	−0.0073 (14)
C21	0.0277 (17)	0.0436 (19)	0.0294 (16)	−0.0014 (15)	−0.0036 (13)	−0.0003 (14)
O41A	0.0228 (11)	0.0265 (11)	0.0401 (12)	−0.0011 (9)	0.0010 (9)	0.0013 (9)
N1A	0.0274 (15)	0.0253 (14)	0.0351 (14)	0.0002 (12)	−0.0004 (11)	−0.0009 (11)
N41A	0.0188 (14)	0.0291 (15)	0.0381 (15)	−0.0049 (12)	0.0026 (11)	0.0020 (11)
C2A	0.0288 (16)	0.0317 (16)	0.0264 (15)	0.0014 (13)	−0.0010 (12)	0.0075 (13)
C3A	0.0257 (15)	0.0310 (16)	0.0200 (14)	−0.0011 (13)	−0.0046 (11)	0.0013 (12)
C4A	0.0217 (14)	0.0258 (15)	0.0278 (15)	0.0000 (12)	−0.0006 (12)	0.0001 (12)
C5A	0.0326 (17)	0.0284 (16)	0.0259 (15)	0.0002 (13)	−0.0092 (12)	0.0037 (12)
C6A	0.0378 (18)	0.0270 (16)	0.0318 (16)	−0.0027 (14)	−0.0123 (13)	0.0051 (13)
C41A	0.0240 (15)	0.0253 (15)	0.0211 (14)	−0.0014 (12)	−0.0063 (11)	0.0014 (12)

Geometric parameters (Å, °)

		C3—H31	0.9700													
O11—C11	1.246 (4)	1.260 (4)	1.211 (4)	1.317 (4)	0.93 (5)	1.250 (3)	1.490 (4)	1.478 (4)	1.322 (4)	0.99 (4)	0.97 (3)	0.86 (3)	0.77 (3)	1.538 (5)	1.537 (5)	0.9700

Acta Cryst. (2012). E68, o660 sup-5

electronic reprint
Bond	Distance (Å)	Bond Angle (°)	Value
C1—C11	1.520 (4)		0.9700
C2—C3	1.531 (5)		0.9700
C2—C21	1.514 (5)		0.9800
C3—C4	1.505 (7)		0.9700
C4—C5	1.506 (8)		0.9700
C5—C6	1.530 (6)		0.9700
C1—H1	0.9800		
C2—H2	0.9800		
C21—O22—H22	111 (3)		109.00
C2A—N1A—C6A	112.4 (2)		112.7 (2)
C6A—N1A—H11A	114.9 (16)		109.00
C11A—N1A—H12A	106 (3)		109.00
C6A—N1A—H12A	106 (2)		109.00
C2A—N1A—H12A	112 (2)		109.00
C6A—N1A—H11A	104.7 (17)		109.00
H41A—N41A—H42A	122 (3)		109.00
C41A—N41A—H42A	119 (2)		109.00
C2A—C3—C4	112.5 (3)		112.7 (2)
C2—C6—C5	112.1 (3)		112.3 (2)
C1—C11—C21	112.6 (2)		110.5 (2)
C3—C4—C5	112.7 (3)		107.8 (2)
C1—C2—C3	110.6 (3)		111.6 (2)
C1—C11—C21	111.2 (3)		110.1 (2)
C2—C3—C4	112.0 (3)		121.7 (2)
C3—C4—C5	110.8 (4)		116.3 (2)
C4—C5—C6	112.3 (4)		121.9 (3)
C1—C6—C5	111.4 (3)		110.00
O11—C11—O12	123.5 (3)		110.00
O11—C11—C1	118.6 (3)		110.00
O12—C11—C1	118.0 (3)		110.00
O21—C21—C2	124.3 (3)		108.00
O22—C21—C2	112.7 (3)		109.00
O21—C21—O22	123.0 (3)		109.00
C6—C1—H1	106.00		109.00
C2—C1—H1	106.00		109.00
C11—C1—H1	106.00		109.00
C3—C2—H2	107.00		109.00
C1—C2—H2	107.00		109.00
C21—C2—H2	107.00		109.00
C4—C3—H31	109.00		109.00
C2—C3—H31	109.00		109.00
H31—C3—H32	108.00		109.00
C4—C3—H32	109.00		109.00
C2—C3—H32	109.00		109.00
C5—C4—H42	110.00		110.00
C3—C4—H42	110.00		110.00

Acta Cryst. (2012). E68, o660 sup-6
C5—C4—H41 110.00 C5A—C6A—H62A 110.00
C3—C4—H41 109.00 H61A—C6A—H62A 108.00
C6—C5—H51 109.00

C2A—N1A—C6A—C5A −58.9 (3) C3—C2—C21—O22 59.5 (4)
C6A—N1A—C2A—C3A 58.5 (3) C1—C2—C21—O21 2.3 (5)
C11—C1—C2—C3 179.7 (3) C2—C3—C4—C5 57.2 (5)
C11—C1—C2—C21 55.0 (4) C3—C4—C5—C6 −56.7 (5)
C6—C1—C2—C21 −73.1 (3) C4—C5—C6—C1 53.8 (5)
C11—C1—C6—C5 −179.3 (3) N1A—C2A—C3A—C4A −55.6 (3)
C6A—N1A—C2A—C3A 58.5 (3) C2A—C3A—C4A—C5A 53.0 (3)
C21—C2—C3—C4 43.4 (4) C2A—C3A—C4A—C41A 173.4 (2)
C21—C2—C1—C11 −9.1 (4) C41A—C4A—C5A—C6A −175.6 (2)
C6—C1—C11—O11 171.3 (3) C3A—C4A—C41A—O41A −40.5 (4)
C6—C1—C11—O12 51.7 (4) C3A—C4A—C41A—N41A 141.6 (3)
C2—C1—C11—O11 −137.0 (3) C5A—C4A—C41A—O41A 81.5 (3)
C2—C1—C11—O12 −54.8 (5) C5A—C4A—C41A—N41A −96.5 (3)
C6—C1—C6—C5 51.7 (4) C3A—C4A—C5A—C6A −52.5 (3)
C1—C2—C21—O22 −175.4 (3) C4A—C5A—C6A—N1A 55.2 (3)
C3—C2—C21—O21 −122.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1A—H11A···O41Aα	0.97 (3)	1.95 (3)	2.861 (3)	155 (2)
N1A—H12A···O11	0.99 (4)	1.64 (4)	2.588 (4)	158 (3)
N41A—H41A···O41Aβ	0.86 (3)	2.14 (4)	2.996 (3)	174 (2)
N41A—H42A···O12β	0.77 (3)	2.11 (3)	2.882 (4)	177 (3)
O22—H22···O12ν	0.93 (5)	1.64 (5)	2.571 (3)	173 (4)
C44A—H44A···O21ου	0.98	2.49	3.340 (4)	145
C24A—H24A···O21υ	0.97	2.57	3.389 (4)	143
C24A—H22A···O41Aυ	0.97	2.59	3.413 (3)	143
C3—H32···O22	0.97	2.52	2.884 (5)	102
C64A—H61A···O12ω	0.97	2.58	3.351 (3)	137

Symmetry codes: (i) x, −y+1, −z; (ii) −x, −y, −z; (iii) x, y−1, z; (iv) x, −y+5/2, z+1/2; (v) x, −y+3/2, z−1/2; (vi) −x, y+1/2, −z−1/2; (vii) x, −y+3/2, z+1/2.