Cis-encoded non-coding antisense RNAs in streptococci and other low GC Gram (+) bacterial pathogens

Kyu Hong Cho*1 and Jeong-Ho Kim2

1 Department of Biology, Indiana State University, Terre Haute, IN, USA, 2 Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, Washington, DC, USA

Due to recent advances of bioinformatics and high throughput sequencing technology, discovery of regulatory non-coding RNAs in bacteria has been increased to a great extent. Based on this bandwagon, many studies searching for trans-acting small non-coding RNAs in streptococci have been performed intensively, especially in the important human pathogen, group A and B streptococci. However, studies for cis-encoded non-coding antisense RNAs in streptococci have been scarce. A recent study shows antisense RNAs are involved in virulence gene regulation in group B streptococcus, S. agalactiae. This suggests antisense RNAs could have important roles in the pathogenesis of streptococcal pathogens. In this review, we describe recent discoveries of chromosomal cis-encoded antisense RNAs in streptococcal pathogens and other low GC Gram (+) bacteria to provide a guide for future studies.

Keywords: non-coding RNAs, regulatory RNAs, antisense RNAs, streptococci, Gram (+) pathogens

Introduction

Non-coding regulatory RNAs exist in all three kingdoms and confer another layer of regulation mechanism for gene expression. Generally, the regulation by non-coding RNAs occurs at a post-transcriptional level, so their regulation would be fast and effective. Bacteria produce three general groups of non-coding regulatory RNAs: (i) cis-acting 5' element non-coding RNAs, (ii) trans-acting small non-coding RNAs, and (iii) cis-encoded antisense RNAs. A cis-acting 5' non-coding RNA is usually attached to the 5' side of an mRNA whose expression is regulated by the non-coding RNA. A structural change of the non-coding RNA occurs by binding to small metabolites (riboswitches), or by change of temperature (thermoregulators) or pH (pH sensors). The structural change influences transcription or translation of the downstream gene or genes in an operon. Trans-acting small non-coding RNAs are usually encoded in intergenic regions on the chromosome and control translation or degradation of their target mRNAs. Generally, each trans-acting non-coding RNA has multiple target mRNAs and binds near the ribosomal binding site of the target mRNAs. A cis-acting antisense RNA (antisense RNA) is expressed as a complementary sequence of an mRNA that becomes the sole target RNA.

Previously, these non-coding RNAs had been discovered by computational predictions coupled with expression studies, microarrays, sequencing of small sized cDNA libraries, and high throughput sequencing approaches. Due to recent technological advances of tiling microarray, RNA deep sequencing, and bioinformatics, the search for non-coding regulatory RNAs on a genome-wide scale has been actively performed. As a result, the functions and
regulatory mechanisms of discovered non-coding regulatory RNAs are widely studied. However, because of technical difficulties to distinguish the source of expressed RNAs between the two DNA strands, the search for antisense RNAs using high-throughput methods has been retarded, compared to the search for trans-acting small RNAs. This makes antisense RNAs the least studied non-coding RNAs in streptococci to date. Currently no systematic search for antisense RNAs has been done in S. pyogenes, and only one search has been performed in S. agalactiae.

Considerable antisense transcription has been discovered in both eukaryotes and prokaryotes. The number of cis-encoded antisense RNAs in bacteria was once considered much smaller than that of eukaryotes due to the compact organization of protein-coding genes in the chromosome. However, recent studies indicate bacteria also produce a number of cis-encoded antisense RNAs. Bacterial cis-encoded antisense RNAs were discovered several decades ago, and most antisense RNAs were expressed from mobile genetic elements such as plasmids, phages, and transposons (Brantl, 2007). Since antisense RNAs expressed from bacterial chromosomes had not been discovered, it was thought that antisense RNAs were not generally used to control chromosomal gene expression in bacteria. However, during recent decades, many RNAs antisense to chromosomal genes have been discovered in bacteria. The other kingdom of prokaryotic microorganisms, archaea, also express cis-encoded antisense transcripts. An archaeal organism, Sulfolobus solfataricus P2, expresses about 310 non-coding RNAs and among these non-coding RNAs, almost 60% (185 non-coding RNAs) are cis-encoded antisense RNAs (Wurtzel et al., 2010). Although many antisense RNAs have been discovered in prokaryotes recently, their functions and regulation mechanisms are largely not studied.

Most cis-encoded antisense RNAs are complementary to a small portion of an open reading frame (ORF) and often the complementary portion includes the ribosome-binding site (RBS), in the middle of a gene, or of an intergenic region. (C) Excludons containing genes at its 5′ or 3′ side.

Cis-Encoded Antisense RNAs in Streptococci and Other Low GC Gram (+) Bacteria

S. agalactiae (Group B Streptococcus, GBS), which is an opportunistic pathogen and causative agent of bacterial sepsis, pneumonia, and meningitis in newborns, employs antisense RNAs to control virulence factors (Pichon et al., 2012). In the study of Pichon et al. they used an in silico method to find small non-coding RNAs and predicted the existence of 63 antisense RNAs (Table 1). They validated the existence of these antisense RNAs by verifying three of them through northern blotting (Table 2). The three RNAs, which have the sizes of 123 bps, 239 bps, and 243 bps, are fully or partially antisense to coding sequences (CDSs) involved in the pathogenicity of S. agalactiae. When they overexpressed two of these antisense RNAs using a multi-copy plasmid, one reduced the expression of the adjacent target gene but the other increased the expression of its target gene. This shows that antisense RNAs can carry out both negative and positive regulation.

On the other hand, the discovery of antisense RNAs in another important streptococcal pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) has not been reported. Many studies have been done to search for trans-acting small non-coding RNAs, but no systematic study has been done so far to search for antisense RNAs. Long antisense RNAs complementary to an entire gene or an operon. (C) Excludons containing genes at its 5′ or 3′ side.
Table 1 | High throughput searches for chromosomal cis-encoded antisense RNAs in low GC Gram-positive bacteria.

Bacterium	Total number of antisense RNAs discovered or predicted	Search method [references]
Bacillus subtilis	143	High density tiling microarray covering both strands (Rasmussen et al., 2009) Differential RNA-seq (Irnov et al., 2010)
Listeria monocytogenes	10	Tiling microarray covering both strands (Toledo-Arana et al., 2009)
Staphylococcus aureus	113	Sequencing cDNA libraries and northern blotting (Abu-Qatouseh et al., 2010) Illuminar RNA-seq with orientation protocol (Beaume et al., 2010)
Streptococcus agalactiae	63	In silico prediction (Pichon et al., 2012)

Antisense RNAs. Thus, it is not known if antisense RNAs in this pathogen have an important role in controlling gene expression and/or virulence.

An RNA-based toxin-antitoxin system was discovered on the chromosome of *Streptococcus mutans*, an oral streptococcal pathogen (Table 2) (Koyanagi and Levesque, 2013). This is an unusual case because most toxin-antitoxin systems in bacteria are encoded in plasmids. The *S. mutans* antitoxin is an antisense RNA (srSm) converging toward the end of the gene of Fst-like toxin (Fst-Sm), so the expression of the antitoxin antisense RNA inhibits the production of Fst-like toxin.

High throughput searches for non-coding regulatory RNAs in *Bacillus subtilis* have been performed to gain more knowledge on the regulation of gene expression by non-coding RNAs in this low GC Gram (+) model organism (Rasmussen et al., 2009; Irnov et al., 2010). In these searches, Rasmussen et al. discovered 127 antisense RNAs through a high density tiling array (Rasmussen et al., 2009), and then Irnov et al. discovered 16 novel antisense RNAs using a differential RNA-seq analysis (Table 1) (Irnov et al., 2010). The results from these studies reveal that target genes of antisense RNAs are involved in stress response, sporulation, and expression of SigA, the principal sigma factor during vegetative growth (Table 2). Therefore, antisense RNAs in *B. subtilis* appear to influence a variety of important regulations to adapt diverse environmental conditions.

Staphylococcus aureus is a remarkable opportunistic pathogen causing a broad spectrum of diseases like *S. pyogenes*, which range from superficial skin diseases to fatal systemic infections including sepsis, pneumonia, and bone infections. Since the emergence and spread of drug-resistant and community-acquired strains, *S. aureus* infections have drawn great attention. The most intensively studied non-coding RNA in *S. aureus* is RNAIII that is a regulatory RNA controlling many virulence factors as the effector of the *agr* quorum sensing system. Even though RNAIII controls translation and degradation of target mRNAs with an antisense mechanism, its action is *trans*, not *cis*, thus RNAIII is not discussed here because of the narrow scope of this review (for a review on RNAIII, see Novick and Geisinger, 2008).

Previously, several studies have been performed to discover non-coding regulatory RNAs in *S. aureus* through computational methods, sequencing of small sized cDNAs, and high throughput strand-specific RNA sequencing technology (Table 1) (Pichon and Felden, 2005; Geissmann et al., 2009; Abu-Qatouseh et al., 2010; Beaume et al., 2010; Bohn et al., 2010). From these studies, about 100 cis-encoded antisense RNAs have been discovered, some of which were experimentally detected by northern blotting. Rapid Amplification of cDNA Ends (RACE) mapping, or reverse transcriptase quantitative PCR (RT-qPCR) (Table 2). Many of these antisense RNAs are expressed from pathogenicity islands and mobile elements such as plasmids and transposons. Interestingly, existence of some antisense RNAs was unique in a strain, suggesting that gene regulation by *cis*-encoded antisense RNA could be strain specific. Long antisense RNAs are also present in *S. aureus*. The antisense RNA complementary to the gene encoding a secretory antigen (SA0620) is bigger than 1 kb (Beaume et al., 2010).

In the study by Beaume et al., 10 cis-encoded antisense RNAs out of total discovered 35 were expressed in pathogenicity islands or in the chromosome *mec* cassette, which is a mobile genetic element conferring methicillin resistance (Beaume et al., 2010). This indicates that antisense RNAs could play a key role in *S. aureus* infections. These antisense RNAs are particularly abundant in genes involved in cell wall and cell envelope biogenesis and in replication, recombination, and repair. Interestingly, two of these antisense RNAs are complementary to the small non-coding RNAs, SprA1, and AprG. These two antisense RNA-small non-coding RNA pairs are predicted to form type I toxin-antitoxin modules. The study of *S. aureus* small colony variants identified 78 antisense RNA candidates (Abu-Qatouseh et al., 2010). Some antisense RNAs in *S. aureus* are involved in the differential expression of genes in the same operon. An example is antisense RNAs complementary to a part of each *capF* and *capM* transcript of the same capsular polysaccharide synthesis operon (cap operon) (Abu-Qatouseh et al., 2010; Beaume et al., 2010). Even though they are expressed as one mRNA, the two genes are differentially translated by the antisense RNAs.

Listeria monocytogenes is a Gram (+) pathogenic bacterium causing food-borne infection, listeriosis, which can lead to meningitis in newborns. This pathogen has a well-defined virulence mechanism to inhibit phagolysosome formation and proliferate inside host cells, so has been extensively used as a model organism for the study of pathogen-host interaction (Hamon et al., 2006). Previously, the Cossart group examined the transcription profile of this pathogen using tiling microarrays that covered both strands of the chromosome, and discovered many non-coding RNAs including 10 cis-encoded antisense RNAs (Table 1). Three of them were already classified as small RNAs and seven were newly discovered (Toledo-Arana et al., 2009). Most cis-encoded antisense RNAs cover a small portion of an open reading frame (ORF), but three antisense RNAs are large enough to cover more than one ORF. Interestingly, all of these
Bacterium	Name of antisense RNA	Gene (protein) antisense to	Size (bases)	Discovered method*	Validation method	References
Bacillus subtilis	ncr2706	ywqA	47	RNA-seq		Irnov et al., 2010
	ncr1430	bgIP	70			
	ncr1687	wpzA	24			
	ncr1265	yutK	218			
	ncr2153	comER	101			
	ncr1186	radB	17			
	ncr1006	yoeA	219			
	ncr1799	mutS	25			
	ncr2058	yazJ	110			
	ncr2160	sda	259			
	ncr1351	mbl	227			
	ncr1585	yddR	61			
	ncr2885	yyaQ	106			
	ncr1546	mtd	50			
	ncr507	yffD	30			
	ncr2410	yfoA	249			
Bacillus subtilis	shd1	yaaC	681	Tiling microarray		Rasmussen et al., 2009
	shd2	dck	681			
	shd3	yabD yabE	813			
	shd4	yabE	1121			
	shd5	coaX hsiO yacD	2816			
	shd6	lysS	681			
	shd7	ybaIC	1187			
	shd8	ybbbB	461			
	shd9	ybfG ybfH	3233			
	shd10	nagBB	1077			
	shd11	ycbR	263			
	shd12	yceJ	1319			
	shd13	nasE nasD	813			
	shd14	yckC yckD bgIC	2675			
	shd15	tpcC	1759			
	shd16	hxiB hxiA	1452			
	shd17	hxiR	417			
	shd18	ycxD	461			
	shd19	yczM yczN	439			
	shd20	kpr lpc	836			
	shd21	ydbM	791			
	shd22	ydbO	527			
	shd23	rdoA rabRA	1099			
	shd24	ydcO	241			
	shd25	vmiR	637			
	shd26	ydfF	285			
	shd27	ydzW ydzW ydzW ydzW ydzW	527			
	shd28	ydeE	373			
	shd29	yebD yebE yebG	1077			
	shd30	yeaA	351			
	shd31	yeeD yezA	791			
	shd32	yeeK	263			
	shd33	lplD yefF	1583			
	shd34	yfmG	461			

(Continued)
TABLE 2 | Continued

Bacterium	Name of antisense RNA	Gene (protein) antisense to	Size (bases)	Discovered method*	Validation method	References
shd35	yfhK, yfhL, yfhM	1583				
shd36	ygaB	417				
shd37	ygaJ	636				
shd38	ygaK	967				
shd39	rhaC	197				
shd40	yhtA	1495				
shd41	yisI	483				
shd42	yisL	593				
shd43	yisO	769				
shd44	yisZ	703				
shd45	yjcC	329				
shd46	yjaZ	857				
shd47	yjbB	1209				
shd48	yjbE	835				
shd49	yjcK, yjcL	1915				
shd50	ykuT	923				
shd51	ylaK	307				
shd52	ctaA	681				
shd53	ylaB	659				
shd54	ymfU	373				
shd55	yncF	593				
shd56	yneE	615				
shd57	cotM, sspP, sspO	879				
shd58	yogA	615				
shd59	yoaE, yoaF	1252				
shd60	yoaZ, yoaY	637				
shd61	yonT	417				
shd62	blyA, bhaA, bhaB	1517				
shd63	yokD	549				
shd64	dinF	1187				
shd65	yppC	373				
shd66	ponA	351				
shd67	birA	197				
shd68	ypaK	483				
shd69	ygiF	901				
shd70	ygiD	373				
shd71	ygiB, ygiA	1504				
shd72	ygiG	696				
shd73	ygiH	725				
shd74	ygiP	241				
shd75	ygiB	637				
shd76	ygiE	1451				
shd77	sigA	967				
shd78	ctkA	241				
shd79	comEC	527				
shd80	yqdB	219				
shd81	ncr58/bsrH	549				
shd82	yrf	483				
shd83	leuA, livC	1693				
shd84	ytoI	725				
shd85	ytrP	637				

(Continued)
TABLE 2 | Continued

Bacterium	Name of antisense RNA	Gene (protein) antisense to	Size (bases)	Discovered method*	Validation method	References
shd86	yfpP		461			
shd87	yfD		769			
shd88	ythA ythB ytzL		1715			
shd89	yugH		1055			
shd90	yufK		659			
shd91	mreE mreF mreG		901			
shd92	yueB		1847			
shd93	yunB		769			
shd94	yutK		681			
shd95	yuzB		593			
shd96	yutH		527			
shd97	yuvQ yuvR		1033			
shd98	yuzK yuzZ metN		1099			
shd99	yusW		615			
shd100	cssS		769			
shd101	nhaK		571			
shd102	opuBD opuBC opuBB		1957			
shd103	yvaV		373			
shd104	sdpI sdpR		842			
shd105	araE		879			
shd106	yvtfU		286			
shd107	cwiO		396			
shd108	yvaA prfB		1209			
shd109	comFC comFB comFA yviA		3516			
shd110	tuaH		373			
shd111	tuaA		329			
shd112	ggaA		1319			
shd113	spo0F		593			
shd114	narK		481			
shd115	ywflM ywfl cysL		2903			
shd116	pta		505			
shd117	bacF		593			
shd118	yxiH		681			
shd119	cimH yxiJ yxjE		2661			
shd120	yxiA		725			
shd121	yxiA		637			
shd122	yxxF		1055			
shd123	yxeA yxdM yxlL		2309			
shd124	yybT yybS		1429			
shd125	yxbI		615			
shd126	yxaM		461			
shd127	jag		549			

Listeria monocytogenes

Bacterium	Name of antisense RNA	Gene (protein) antisense to	Size (bases)	Discovered method*	Validation method	References
SRP	SRP	Partially antisense to lmo2711	332	Tiling microarray		Toledo-Arana et al., 2009
rli23	lmo0172 (Transposase)		97			
rli25	lmo0330 (Transposase)		102			
rli29	Antisense to the 3'UTR of lmo0471		193			
rli30	lmo0506		115			
rli35	lmo0828 (Transposase)		102			
rli45	Antisense to rli46 (small non-coding RNA)		77			
TABLE 2 | Continued

Bacterium	Name of antisense RNA	Gene (protein) antisense to	Size (bases)	Discovered method*	Validation method	References
Staphylococcus aureus	Sau-13	SA2421	110; 140; 210	cDNA library	Northern blot	Abu-Qatouseh et al., 2010
	Sau-31	SA2021	210			
	Sau-50	hu (DNA-binding protein II)	210			
	Sau-53	argC	200			
	Sau-59	SA0931	130			
	Sau-66	SA0671	210			
Staphylococcus aureus	Teg5as	SA0024	330	RNA-seq		Beaume et al., 2010
	Teg6as	SA0025	405			
	Teg7as	SA0027 and SA0026	36			
	Teg8as	SA0022 and SA0028	84			
	Teg10as	SA0044	42			
	Teg14as	SA0062	143			
	Teg15as	SA0097 and SA0098	72			
	Teg16as	SA0101 and SA0100	81			
	Teg17as	capM	108			
	Teg18as	SA0306	864			
	Teg19as	SA0412 and SA0413	2475			
	Teg20as	SA0620	1008			
	Teg21as	SA1825	63			
	Teg22as	SA1830	63			
	Teg23as	nrgA	36			
	Teg25as	SA2200	117			
	Teg26as	SA2218	63			
	Teg27as	SA2224	90			
	Teg28as	SA2440	36			
	Teg36as	ssaA	448			
	Teg37as	SA0970	108			
	Teg38as	SA0351	50			
	Teg10aspl	SAP031	36			
	Teg39as	SA0031	210			
	Teg40as	SA0751	299			
	Teg41as	SAS024	141			
Streptococcus agalactiae	SQ18	gbs003? (Surface exposed protein)	123	In Silico prediction	Northern blot	Pichon et al., 2012
	SQ407	lbm (Laminin binding protein)	239			
	SQ485	gbs1558/1559 (putative ABC transporter)	242			
Streptococcus mutans	isrSm	Fst-5m (Fst-like toxin)	70	PSI-BLAST and TBLAST	Northern blot	Koyanagi and Levesque, 2013

*Putative antisense RNAs predicted by in silico or cDNA library sequencing without any validation are not listed in this table.
long antisense RNAs are expressed with a shorter antisense RNA. Both shorter and longer antisense RNAs are expressed at the same start site but they have different termination sites. The importance of these two different size antisense transcripts has not been determined yet.

Regulation Mechanisms by Cis-Encoded Antisense RNAs

Antisense RNAs can control gene expression by binding to their cognate sense RNAs. The binding occurs at the 5' end, 3' end, or in the middle of mRNAs depending on the location they are expressed (Figure 1A). Also, long antisense RNAs can overlap an entire mRNA encoding a protein or proteins (Figure 1B). The different binding locations confer different control mechanisms. Based on their binding locations on sense RNAs, antisense RNAs may act in three ways: (i) transcription terminators in the mechanism of transcription attenuation or transcription interference, (ii) potential inhibitors of translation initiation, or (iii) modulators of mRNA degradation. Antisense RNAs influence gene expression at the transcriptional or post-transcriptional level. Transcription interference and transcription attenuation occur at the transcriptional levels, and translation inhibition and mRNA degradation occur at post-transcriptional levels. The degree of control by antisense RNAs can be achieved by their differential expression level at different conditions. The expression ratio between a sense RNA and the antisense RNA will influence the expression of the sense gene.

In transcription interference, two promoters of an antisense RNA and its target sense RNA present very close in cis-position and their transcriptions occur in the convergent direction, and then the transcription rate from one promoter becomes suppressed by the other promoter (Callen et al., 2004). In this case, the transcription of the weaker promoter seems suppressed more. Another regulation mechanism at the transcriptional level by antisense RNAs is transcription attenuation. In transcription attenuation, an antisense RNA binds to the region in front of the Shine-Dalgano sequence of the target mRNA, and this binding induces the formation of transcription terminator structure. Hence, when the antisense RNA binds near or at the 5' end of the cognate sense RNA, the transcription of the sense RNA is terminated (Brantl, 2002; Stork et al., 2007). In this regulation, if an antisense RNA binds an intergenic region in a polycistronic mRNA, then it can create differential gene expression between the genes located upstream and downstream of the intergenic region, and the upstream gene is more expressed than the downstream gene (Stork et al., 2007).

A common post-transcriptional level regulation by antisense RNAs is modulating translation resulting in translation inhibition or activation. In translation inhibition, antisense RNAs bind directly to the Shine-Dalgano sequence (SD sequence) of mRNAs, and inhibit ribosome-binding (Greenfield et al., 2001; Hernandez et al., 2006; Kawano et al., 2007). This inhibition of translation might increase or decrease the degradation of mRNAs by ribonuclease. In translation activation, an antisense RNA bind near the SD sequence whose access by ribosomes are blocked by a preformed stem and loop structure, then the binding of the antisense RNA frees the SD sequence (Asano et al., 1998).

As mentioned, mRNA degradation can be influenced by a bound antisense RNA. The pairs of antisense RNA–target mRNA can be substrates of RNase III, which is a double strand specific endoribonuclease. RNase III is conserved in all the three kingdoms. A previous study of *S. aureus* showed that the deletion of RNase III increased the amount of antisense transcripts, indicating that target mRNAs bound by antisense RNAs are degraded by RNase III in vivo (Lasa et al., 2011). Deep sequencing analysis in the same study showed that RNase III generates 22 nt long RNA fragments with 2 nucleotide 3' overhang from the pairs of sense-antisense transcripts. Surprisingly, 75% of mRNAs are processed by RNase III, implying that antisense regulation occurs more extensively than previously thought. Studies on other bacteria also indicate that antisense transcription occurs extensively throughout the chromosome (For a review, see Georg and Hess, 2011).

Another RNase shown to be involved in degradation of sense-antisense RNA pairs is RNase E, an endoribonuclease degrading 5' monophosphorylated mRNAs. RNase E degrades *mtgC* mRNA in *Salmonella enterica* with an unknown mechanism when the sense RNA is bound by the antisense RNA, AmgR (Lee and Groisman, 2010). RNase E is a member of the RNA degradosome in Gram (−) bacteria, a multicomponent complex that also includes an RNA helicase, RhlB, a glycolytic enzyme, enolase, and the exoribonuclease polynucleotide phosphorylase (PNPase) (Carpousis, 2007). The main function of the RNA degradosome is known to control mRNA turnover. Most Gram (−) bacteria including streptococci, bacilli, and staphylococci do not possess an RNase E homolog. However, these bacteria possess the RNA degradosome. The Gram (+) RNA degradosome contains similar kinds of components but more members, compared to the Gram (−) counterpart: four ribonucleases, RNase Y, RNase J1, J2, and PNPase; an RNA helicase, CshA; two glycolytic enzymes, phosphofructokinase (PfkA) and enolase (Lehnik-Habrink et al., 2012). RNase E is a membrane bound protein providing the major structural scaffold interacting with other components in the Gram (−) degradosome. The structure of Gram (+) RNA degradosome has not been resolved, but protein interaction studies revealed that the endoribonuclease RNase Y, a membrane anchored protein, interacts with most other components in the degradosome, so RNase Y might be the functional homolog of RNase E (Kang et al., 2010). No study has been done yet if RNase Y is also involved in the degradation of some sense-antisense RNA pairs in Gram (+) bacteria.

In Gram (−) bacteria, most small non-coding regulatory RNAs work with the RNA chaperone protein Hfq. Generally, the presence of the Hfq protein increases the stability of small non-coding RNAs and facilitates the interaction to their target mRNAs (Gottesman and Storz, 2011). However, the role of Hfq does not seem critical in Gram (+) bacteria. The role of Hfq is dispensable in *S. aureus* (Bohn et al., 2007). There have not been many studies of Hfq in terms of *cis*-encoded antisense RNAs so far, but previous studies show that some antisense RNAs interact with Hfq (Sittka et al., 2008; Lorenz et al., 2010), and Hfq is
required for the function of a cis-encoded antisense RNA (Ross et al., 2010). Streptococci and lactobacilli do not possess any Hfq homologs, and it has not been studied if some other protein or proteins replace the role of Hfq in trans-acting small RNA- or cis-acting antisense RNA-mediated regulation. It has been suggested that the role of Hfq might be dispensable in low GC Gram (+) bacteria because non-coding RNAs in these bacteria are longer than higher GC Gram (−) bacteria to compensate for the low GC content of the pairings (Jousselin et al., 2009).

One advantage of regulation by antisense RNAs is to confer an additional layer of gene regulation like other non-coding regulatory RNAs. In concert with protein regulators, antisense RNAs can provide more precise regulation or regulation responding to different signals. Compared to trans-acting small non-coding RNAs, the regulation by antisense RNAs are generally more specific. Usually trans-acting non-coding small RNAs have multiple target mRNAs with imperfect base-pairs, but antisense RNAs usually have just one target mRNA with the complete complementary sequence. Even though we cannot completely rule out the possibility that some antisense RNAs have several targets with partial base matches by acting in trans, multiple targets of an antisense RNA have not been discovered yet. Another advantage of regulation by cis-encoded antisense RNAs is regulation speed. Like other non-coding regulatory RNAs, most antisense RNAs act at the post-transcriptional level, so the result of the action by antisense RNAs would be faster than protein transcriptional regulators.

Perspectives

Compared to small non-coding trans-acting RNAs, bacterial cis-encoded antisense RNAs had not been studied in the genome-wide scale because of technical difficulties. However, due to the recent development of strand specific RNA sequencing and tiling microarrays covering both strands, cis-encoded antisense RNAs have been subjected under the genome-wide search in many bacteria. Already hundreds of bacterial antisense RNAs have been discovered and changed the concept of regulation by antisense RNAs. So far few streptococcal antisense RNAs have been discovered, but further genome-wide search would definitely find a number of antisense RNAs in this group of bacteria and promote studies to investigate the function and molecular mechanism of regulation by antisense RNAs.

Acknowledgments

This study was supported in part by American Heart Association Grant 11SDG7440083 and National Institutes of Health Grant R15GM101603-01 to KH.

References

Abu-Qatouseh, L. F., Chinni, S. V., Seggewiss, J., Proctor, R. A., Brosius, J., Rozhdestvensky, T. S., et al. (2010). Identification of differentially expressed small non-protein-coding RNAs in *Staphylococcus aureus* displaying both the normal and the small-colony variant phenotype. *J. Mol. Med.* 88, 565–575. doi: 10.1007/s00109-010-0597-2

Asano, K., Niimi, T., Yokoyama, S., and Mizobuchi, K. (1998). Structural basis for binding of the plasmid ColIb-P9 antisense Inc RNA to its target RNA with the 5′-UUGCCG-3′ motif in the loop sequence. *J. Biol. Chem.* 273, 11826–11838. doi: 10.1074/jbc.273.19.11826

Beaume, M., Hernandez, D., Farinelli, L., Deluen, C., Linder, P., Gaspin, C., et al. (2010). Cartography of methicillin-resistant *S. aureus* transcripts: detection, orientation and temporal expression during growth phase and stress conditions. *PLoS ONE* 5:e10723. doi: 10.1371/journal.pone.0010725

Bohn, C., Rigoulay, C., and Boulouc, P. (2007). No detectable effect of RNA-binding protein Hfq absence in *Staphylococcus aureus*. *BMC Microbiol.* 7:10. doi: 10.1186/1471-2180-7-10

Bohn, C., Rigoulay, C., Chabellskaya, S., Sharma, C. M., Marchais, A., Skorski, P., et al. (2010). Experimental discovery of small RNAs in *Staphylococcus aureus* reveals a riboregulator of central metabolism. *Nucleic Acids Res.* 38, 6620–6636. doi: 10.1093/nar/gkq462

Brantl, S. (2002). Antisense-RNA regulation and RNA interference. *Biochim. Biophys. Acta* 1575, 15–25. doi: 10.1016/S0005-2728(02)00280-4

Brantl, S. (2007). Regulatory mechanisms employed by cis-encoded anti-sense RNAs. *Carr. Opin. Microbiol.* 10, 102–109. doi: 10.1016/j.mib.2007.03.012

Callen, B. P., Shearwin, K. E., and Egan, J. B. (2004). Transcriptional interference between convergent promoters caused by elongation over the promoter. *Mol. Cell* 14, 647–656. doi: 10.1016/j.molcel.2004.05.010

Carpousis, A. J. (2007). The RNA degradosome of *Escherichia coli*: an mRNA-degrading machine assembled on RNase E. *Annu. Rev. Microbiol.* 61, 71–87. doi: 10.1146/annurev.micro.61.080706.093440

Geissmann, T., Chevalier, C., Cros, M. J., Boisset, S., Fechter, P., Noirot, C., et al. (2009). A search for small noncoding RNAs in *Staphylococcus aureus* reveals a conserved sequence motif for regulation. *Nucleic Acids Res.* 37, 7239–7257. doi: 10.1093/nar/gkp668

Georg, J., and Hess, W. R. (2011). cis-antisense RNA, another level of gene regulation in bacteria. *Microbiol. Mol. Biol. Rev.* 75, 286–300. doi: 10.1128/MMBR.00330-12

Gottesman, S., and Storz, G. (2011). Bacterial small RNA regulators: versatile roles and rapidly evolving variations. *Cold Spring Harb. Perspect. Biol.* 3:a003798. doi: 10.1101/cshperspect.a003798

Greenfield, T. J., Franch, T., Gerdes, K., and Weaver, K. E. (2001). Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI. *RNA Mol. Biol.* 42, 527–537. doi: 10.1046/j.1365-2958.2001.02663.x

Hamon, M., Bierne, H., and Cossart, P. (2006). *Listeria monocytogenes*: a multifaceted model. *Nat. Rev. Microbiol.* 4, 423–434. doi: 10.1038/nrmicro1413

Hernandez, J. A., Muro-Pastor, A. M., Flores, E., Bes, M. T., Peleato, M. L., and Fillat, M. F. (2006). Identification of a furA cis antisense RNA in the cyanobacterium *Anabaena* sp. *PCC* 7120. *J. Mol. Biol.* 355, 325–334. doi: 10.1016/j.jmb.2005.10.079

Irnov, I., Sharma, C. M., Vogel, J., and Winkler, W. C. (2010). Identification of regulatory RNAs in *Bacillus subtilis*. *Nucleic Acids Res.* 38, 6637–6651. doi: 10.1093/nar/gkq454

Jousselin, A., Metzinger, L., and Felden, B. (2009). On the facultative requirement of the bacterial RNA chaperone, Hfq. *Trends Microbiol.* 17, 399–405. doi: 10.1016/j.tim.2009.06.003

Kang, S. O., Caparon, M. G., and Cho, K. H. (2010). Virulence gene regulation by CrfA, a putative RNase: the CrfA-enzyme complex in *Streptococcus pyogenes* links nutritional stress, growth-phase control, and virulence gene expression. *Infect. Immun.* 78, 2754–2767. doi: 10.1128/IAI.01370-09

Kawano, M., Aravind, L., and Storz, G. (2007). An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. *Microbiol. Mol. Biol.* 64, 738–754. doi: 10.1111/j.1365-2958.2007.05688.x

Koyanagi, S., and Levesque, C. M. (2013). Characterization of a *Streptococcus mutans* intergenic region containing a small toxic peptide and its cis-encoded antisense small RNA antitoxin. *PLoS ONE* 8:e54291. doi: 10.1371/journal.pone.0054291
Cho and Kim

Antisense RNAs in Gram (+) pathogens

Lasa, I., Toledo-Arana, A., Dobin, A., Villanueva, M., de los Mozos, I. R., Vergara-Irigaray, M., et al. (2011). Genome-wide antisense transcription drives mRNA processing in bacteria. *Proc. Natl. Acad. Sci. U.S.A.* 108, 20172–20177. doi: 10.1073/pnas.1113521108

Lee, E. J., and Groisman, E. A. (2010). An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. *Mol. Microbiol.* 76, 1020–1033. doi: 10.1111/j.1365-2958.2010.07161.x

Lehnik-Habrink, M., Lewis, R. J., Mader, U., and Stulke, J. (2012). RNA degradation in *Bacillus subtilis*: an interplay of essential endo- and exoribonucleases. *Mol. Microbiol.* 84, 1005–1017. doi: 10.1111/j.1365-2958.2012.08072.x

Lorenz, C., Gesell, T., Zimmermann, B., Schoeberl, U., Bilusic, I., Rajkowitsch, L., et al. (2010). Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts. *Nucleic Acids Res.* 38, 3794–3808. doi: 10.1093/nar/gkq032

Novick, R. P., and Geisinger, E. (2008). Quorum sensing in staphylococci. *Annu. Rev. Genet.* 42, 541–564. doi: 10.1146/annurev.genet.42.110807.091640

Pichon, C., du Merle, L., Caliot, M. E., Trieu-Cuot, P., and Le Bouguenec, C. (2012). An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic *Escherichia coli* and *Streptococcus agalactiae* strains. *Nucleic Acids Res.* 40, 2846–2861. doi: 10.1093/nar/gkr1141

Pichon, C., and Felden, B. (2005). Small RNA genes expressed from *Staphylococcus aureus* genomic and pathogenicity islands with specific expression among pathogenic strains. *Proc. Natl. Acad. Sci. U.S.A.* 102, 14249–14254. doi: 10.1073/pnas.0503838102

Rasmussen, S., Nielsen, H. B., and Jarmer, H. (2009). The transcriptionally active regions in the genome of *Bacillus subtilis*. *Mol. Microbiol.* 73, 1043–1057. doi: 10.1111/j.1365-2958.2009.06830.x

Ross, J. A., Wardle, S. J., and Haniford, D. B. (2010). Tn10/IS10 transposition is downregulated at the level of transposase expression by the RNA-binding protein Hfq. *Mol. Microbiol.* 78, 607–621. doi: 10.1111/j.1365-2958.2010.07359.x

Sesto, N., Wurtzel, O., Archambaud, C., Sorek, R., and Cossart, P. (2013). The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. *Nat. Rev. Microbiol.* 11, 75–82. doi: 10.1038/nrmicro2934

Sittka, A., Lucchini, S., Papenfort, K., Sharma, C. M., Rolle, K., Binnewies, T. T., et al. (2008). Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. *PLoS Genet.* 4:e1000163. doi: 10.1371/journal.pgen.1000163

Stazic, D., Lindell, D., and Steglich, C. (2011). Antisense RNA protects mRNA from RNase E degradation by RNA-RNA duplex formation during phage infection. *Nucleic Acids Res.* 39, 4890–4899. doi: 10.1093/nar/gkr037

Stork, M., Di Lorenzo, M., Welch, T. J., and Croa, J. H. (2007). Transcription termination within the iron transport-biosynthesis operon of *Vibrio anguillarum* requires an antisense RNA. *J. Bacteriol.* 189, 3479–3488. doi: 10.1128/JB.00619-06

Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., et al. (2009). The *Listeria* transcriptional landscape from saprophytism to virulence. *Nature* 459, 950–956. doi: 10.1038/nature08080

Wurtzel, O., Sapra, R., Chen, F., Zhu, Y., Simmons, B. A. and Sorek, R. (2010). A single-base resolution map of an archaeal transcriptome. *Genome Res.* 20, 133–141. doi: 10.1101/gr.100396.109

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Cho and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.