Роля на мигриращите птици за разпространението на зоонозни патогени

Христо Найденски
Институт по микробиология „Стефан Ангелов” при БАН

1. Феноменът миграция и значението му за екологията и разпространението на патогенните микроорганизми
2. Миграцията и бактериално-гостоприемниковите взаимоотношения
3. Източно-Европейски миграционен път
3.1. България и свързаните с нея миграционни пътища
4. Мигриращите птици и механизми на носителство
5. Стратегии за пренос на патогени
6. Влияние на биотични и абиотични фактори върху ефективността на разпространение на патогените
7. Патогенни микроорганизми разпространявани с мигриращи птици
7.1. Ентеропатогенни бактерии
7.2. Кърлежово преносими инфекции
7.3. Грам-положителни коки
7.4. Неспорообразуващи Грам-положителни пръчки
7.5. Спорообразуващи Грам-положителни пръчки
7.6. Други патогени
8. Заключение
9. Литература

Резюме

Птичата мобилност и миграцията са важни епизоотични фактори за разпространението на редица зоонозни инфекции. Техните причинители могат да се предават между видовете по местообитанията за размножаване, презимување или временен престой. Истиинското значение на миграцията на птиците за географското разпространение на редица бактериални и вирусни
агенти все още не е добре установено и продължава да бъде обект на интензивни интердисциплинарни проучвания. Прелетните птици могат да служат като преносители на микробни патогени по три основни механизма: 1) като биологични носители; 2) като механични преносители, например чрез техните екскременти (клоакална смес от фекалии и урина); и 3) като гостоприемници и “превозвачи”, транспортирайки заразени кръвосмучещи ектопаразити на дълги разстояния. При кърлежово преносимите инфекции е известно, че ларвите или имагото могат да останат прикрепени към тялото на птицата в продължение на няколко дни и след това да се отделят и попаднат в нова географска област по време на тяхната миграция. При инфекциите, пренасяни чрез храната и водата, заразените мигриращи птици отделят причинителя, което води до контаминация на почвата и околната среда. Представени и обсъдени са множество литературни данни за вида на прелетните птици, сезонност, географски региони на появяване и европейски маршрути на миграция, с акцент върху мигриращите птици като гостоприемници и носители на най-честите зоонозни бактериални (кампилобактериоза, салмонелоза, лаймска борелиоза и др.) и вирусни (инфлуенца по птиците, парамиксовируси, и др.) заболявания. По-доброто разбиране на феномена на птичата миграцията и потенциалната роля на птиците за географското разпространение на инфекционни заболявания, ще спомогне за тяхното предсказване, а може би и за предотвратяване на бъдещи огнища на инфекции сред други птици, селскостопански и диви животни и хора.

Разширените познания за това любопитно явление биха могли да изяснят и сложните взаимоотношения, които съществуват между нововъзникващите инфекционни заболявания при хора и животни, включително и за значението на мигриращите птици за възникване и пренасяне на лекарствено резистентни бактериални видове.
1. Феноменът миграция и значението му за екологията и разпространението на патогенните микроорганизми

Мигриращите птици както и хората споделят капацитета за бързо предвижване на големи разстояния. Птичата мобилност и миграцията са не само забележителни биологични явления, но също и важни ключови епидемичните и епизоотичните фактори. Установено е, че мигриращите видове, включително и свободно живеещите птици, имат потенциала да разпространяват различни патогенни микроорганизми. Този потенциал и способност за транспортиране и разпространение на патогенните микроорганизми от мигриращите птици е от актуално значение днес и е предмет на повишено внимание и бдителност от широк кръг специалисти – ветеринари, медици, орнитолози, еколози и др. Този интерес бе провокиран и стимулиран от появлата и разпространението на безпрецедентната епидемия от западнонилска треска в Северна Америка през 1999 г., когато за първи път бе доказано разпространението на западнонилския вирус (West Nile Virus, WNV) от свободно живеещи птици и тяхната значителна роля в епидемичния процес. Особено чувствителен на заболяването вид се е оказала американската врана (Corvus brachyrhynchos), като изследванията сочат, че от 40 заразени птици едва една от тях оцелява (McLean et al., 2001). Голяма част от видовете птици развиват виремия, която продължава в рамките на 1 до 8 дни като при повечето видове птици тя е 6-7 дни. Птиците не успяват да изградят антитела, чрез които да противодействат на вируса, бързо се изтощават и умират - обикновено в рамките на 24 часа.

По време на миграционните придвижвания птиците носят разнообразни микроорганизми, като някои от тях са патогенни за хората, домашните и диви животни. В САЩ, Националният институт по алергии и инфекциозни заболявания (NIAMD) е потвърдил над 30 нововъзникващи инфекциозни заболявания, за които се смята, че представляват значителен риск за човешкото здраве през 21-ви век. Техните причинители могат да се предават между отделните птици в местнообитанията за размножаване, зимуване, смяна на оперението или междинно кацане, където са концентрирани голям брой или
разнообразно множество птици от различни видове. Струпването на такова разнообразие от мигриращи птици на т.н. миграционни спирки улеснява хоризонталното предаване на болестотворни агенти поради наблюдаваните чести индивидуални вътрешно- и междувидови контакти. В същото време прелетните птици осигуряват и механизми за създаване на нови ендемични очнища на болестта на големи разстояния от мястото, където е придобита инфекцията.

По време на непостоянни и променливи прелитания дори обитаващи определен ареал птичии видове (например, и такива известни като „номадски видове“ птици) понякога се придвижват в диаметър от 50 до 100 км и могат да пренасят жизнеспособни патогени до по-отдалечени места. Асимптоматичните, но заразени прелетни птици също имат важно значение за разпространението на инфекционни заболявания, тъй като те действат като резервоар на инфекцията. В други случаи обаче, източникът на инфекция идва от заразени ендемични местни животни и птици. В хода на миграцията птиците носят по телата си кръвосмучещи кърлежи, като например видовете Hyalomma marginatus, Ixodes ricinus, Haemaphysalis punctata и т.н., които са установени като вектори на патогени агенти. В други случаи обаче, източникът на инфекция идва от заразени ендемични местни животни и птици. В хода на миграцията птиците носят по телата си кръвосмучещи кърлежи, като например видовете Hyalomma marginatus, Ixodes ricinus, Haemaphysalis punctata и т.н., които са установени като вектори на патогени агенти. В случай на латентни инфекции, някои от тези патогени се транспортират и директно от птици. Според наличните експериментални данни повече от 3% от мигриращите птици (дроздове, чинки, мухоловки) се заразяват с иксодиди кърлежи. Прелетните птици се смятат за един от механизъмите, отговорни за широкото географско разпространение на редица клинично важни бактериални зоонози и може да играят значителна роля в екологията и разпространението на техните причинители - Campylobacter jejuni, Salmonella enterica, Yersinia enterocolitica, Yersinia pseudotuberculosis, токсигени Escherichia coli, Chlamyphila psittaci, Borrelia burgdorferi sensu lato, Listeria monocytogenes, Pasteurella multocida, Clostridium botulinum, Mycobacterium avium, Candida spp. и др. (Foti et al., 2011; Kapperud and Rosef, 1983; Millan et al. 2004; Nielsen et al., 2004; Schwarzova et al., 2006; Tizard, 2004; Waldenstrom et al., 2002). Широкото разпространение на патогенните бактерии и вируси в мигриращи птици е описано в множество епидемиологични и епизоотологични изследвания,
фокусирани върху огнища на инфекция, най-често съпроводени с висока смъртност сред птиците. Всички тези изследвания обаче, предоставят оскъдна информация за здравите птици като носители на инфекциозни агенти и възможната връзка на тези агенти с инфекциозната патология при хора и животни (Benskin et al., 2009).

2. Миграцията и бактериално-гостоприемниковите взаимоотношения

Инфекциозните заболявания разпространени сред гръбначните, могат да имат пагубен ефект и върху човешката популяция. По време на съвместната си еволюция, повечето животни са развили ефективен имунен отговор към инфекции с патогени и паразити и затова те могат да оцелеят при периодични взривове на заболявания. Някои инфекциозни агенти обаче, проявяват по-висока вирулентност в сравнение с други, в зависимост от честотата и интензивността на взаимодействието микро-гостоприемник, генетичните и фенотипни особености на патогена и гостоприемника, факторите на околната среда и др. (Daszak et al., 2000). Макар и обичайно явление, миграцията е голям стрес за птиците и резистентността им към инфекциозни заболявания може да бъде намалена. Успоредно с това, степента на екскреция на микробните агенти или продължителността и силата на настъпилите виремия/бактериемия във вече заразени мигриращи птици може да се увеличи. Например при беловеждия дрозд (Turdus iliacus), миграционния стрес провокира остра инфекция с Borrelia burgdorferi. Географската изолация понякога може да предотврати излагането на животинските популации на патогени и паразити, правейки тези популяции обаче силно чувствителни на постъпили отвън патогени микроорганизми и паразити. Последните проучвания върху два вида птици – пъстрия бойник (Philomachus pugnas) и малкия брегобегач (Calidrix minuta), които мигрират от Африка към крайните северните ширини, са показали, че тези врабчоподобни видове може да бъдат силно заразени с маларийни плазмодии в своите африкански местообитания. Въпреки това, нито един от тези видове не бяха доказани като заразени по време на прелитане през Холандия или гнездене в Арктика (Mendes et al., 2005). Авторите представят 3 възможни обяснения за това явление: 1) само здрави птици започват миграцията си. Това се подкрепя от
едно скорошно проучване, което стимулира миграционен полет в аеродинамичен тунел с голям брегобегач (*Calidris canutus*); птиците с по-ниско ниво на имунитет отказват да летят (Hasselquist et al., 2007.); 2) заразени птици, които започват полета си, имат по-малък шанс за оцеляване и не прелитат дълги разстояния, което се дължи на инфекцията и настъпващото заболяване. Интересно е обаче, че опитите в аеродинамичен тунел не установяват промени в нивата на имунитета на този вид птици при полет на дълги разстояния. 3) имунната система може да е подтискала инфекцията преди птиците да достигнат северните ширини. Това изглежда приемливо, доколкото имунната система не е изтощена и отслабена от дългия полет, както винаги се е предполагало (Hasselquist et al., 2007). В заключение, в постоянна и стабилна среда с регулярни бактериално-гостоприемници взаимодействия не може да се очакват случаи на епизоотии сред птиците. Въпреки това, промяна в равновесието между патогена и гостоприемника, поява на нови и вирулентни вида или компетентни вектори може да доведе до епизоотичен процес сред прелетните птици.

3. Източно-Европейски миграционен път

Това е един от най-големите и много важни миграционни пътища в Европа, който започва на север от Бяло море и Балтийско море. Той пресича териториите на обширни географски области, включвайки и южния бряг на Балтийско море и Финския залив. През територията на северозападната част на Русия, Финландия и Швеция има активни естествени огнища на редица инфекции като например *B. burgdorferi* s.l., *Francisella tularensis, Anaplasma phagocytophilum, Ehrlichia muris, Coxiella burnetii*, вируса на кърлежовия енцефалит. Иксодидните кърлежи от видовете *Ixodes ricinus* и *Ixodes persulcatus* са най-важните вектори на горепосочените инфекции, както и на някои други бактериални и вирусни инфекции. В редица обособени области от тези територии и двата вида кърлежи са заразени в значителна степен с различни патогени – например доказана е заразеност на кърлежите до 37% с *B. burgdorferi* s.l.

Следвайки южна посока, много видове птици мигрират или към Западна Европа (включително Франция) или към Източна Европа, поемайки, т.н.
Източно-Европейски миграционен път. Всяка година милиони птици използват и двата основни пътя за достигане на местата си за зимуване и размножаване.

На кръстопътя между Европа, Азия и Африка, България е част от Източно-Европейския миграционен път, използван от хиляди птици, гнездящи в Източна Европа, Скандинавия и Русия. Общата оценка на миграционните потоци на прелитащите птици в България показва до 734 000 екземпляра през пролетта и до 922 000 птици през есента (Michev et al., 2012). Територията на България заема важна биогеографска позиция на Балканския полуостров, Европа и Западна Палеарктика. Тя играе важна роля за миграцията на прелетните птици от източните части на Европа до зимуващите райони в Африка. Стратегическото зоогеографско значение на територията на България за птиците мигриращи между няколко континента (Европа, Азия и Африка) е от жизнено важно значение за тях.

3.1. България и свързаните с нея миграционни пътища

През България преминават два от най-големите европейски прелетни маршрута (Curry-Lindahl, 1984) – Via Pontica (по протежение на Черноморското крайбрежие) и Via Aristotelis (по долината на река Струма в Западна България)(Фигура 1). Via Pontica е част от Източно-Европейския миграционен път и се използва от птиците, които гнездят в Източна Европа, Скандинавия и Русия, както и части от Западна и Северна Азия. Регионът Via Aristotelis включва водосборите на реките Искър, Струма и Места; достига Сърбия и Македония на запад, и 24-ия меридиан (който пресича град Велинград) на изток. Регионът на Via Pontica включва най-източните части на страната; западната му граница следва линията Русе - Айтос (Карнобат) - Малко Търново, а източната му част следва основно брега на Черно море. Българското Черноморско крайбрежие и особено неговата южна част е "стесняващото се място", което събира голям брой мигриращи птици. Всяка есен повече от 90 000 грабливи птици, 30 000 пеликани, 24 000 щъркели, както и хиляди водолюбиви и блатни птици и милиони врабчоподобни могат да бъдат регистрирани като мигриращи към техните райони на зимуване (Michev et al., 1999). Един трети регион - Via Balcanica включва територията между двата други региона на миграция.
Западната му граница е 24-ия меридиан, а на изток достига до западната граница на Via Pontica.

Количествените данни за поява на патогенни микроорганизми в мигриращи видове птици, преминаващи от североизточна Европа към България са оскудни и остава да бъдат натрупани със системни изследвания върху поява и разпространението, както на най-често регистрираните ентеропатогенни бактерии от родовете *Campylobacter*, *Salmonella*, *Yersinia*, *Listeria*, видовете *E. coli*, *Staphylococcus aureus*, *Francisella tularensis*, така и на кърлежополовите патогени *Coxiella burnetii*, *Borrelia burgdorferi* s.l. при дивите птици, които мигрират по протежение на територията на България в опит да се предостави повече информация за тяхната роля в разпространението и съхранението на тези инфекциозни агенти в природата.

Фигура 1. Схема на основните миграционни пътища на птиците прелитащи над България (по Sakalian, 1993)

4. Мигриращите птици и механизми на носителство

Миграцията е изключително труден процес и ако птиците са контаминирани и/или заразени те може да разпространяват патогените на по-
къси или по-дълги дестинации (Dhama et al., 2008). Патогенните бактерии като Coxiella burnetii, Borrelia burgdorferi s.l., Francisella tularensis, Campylobacter jejuni, C. coli, Yersinia pseudotuberculosis и Y. enterocolitica са или от епидемиологическо значение, или са опасни за много животински видове, като някои от тях може да предизвикат и случайни инфекции при домашните животни и птици, или други свободно живеещи животни.

Прелетните птици биха могли да участват в преноса на микробни патогени по три основни механизма: 1) като биологични носители. В този случай птиците служат като биологични носители когато даден патоген се размножава в тялото на птицата и предизвиква различни по вид и характер на протичане инфекции. Тези инфекции могат да бъдат остри (орнитоза, микоплазмен конъюктивит, инфлуенца, птича холера, еризипел), хронични (птича туберкулоза), латентни или асимптоматични (Лаймска борелиоза, кампилобактериоза, колибактериоза, салмонелоза, йерсиниоза, листериоза, кандидоза). Заразената птица често отделя инфекциозния агент, понякога за по-продължителен период (напр. орнитоза, птича холера). При някои видове птици (напр. чайки) отделителството на патогена е по-интензивно и клиничните признаки са по-очевидни при по-млади птици, отколкото при възрастните (салмонелоза, криптоспоридиоза). 2) като механични носители. Птиците действат като механични носители, когато патогенът не се размножава в или върху птицата. Тя може да бъде външен носител, когато агентът се намира на повърхността на тялото на птицата (напр., гъбични спори може да оцелеят в продължение на най-малко 12 дни когато са отложени по перата на мигриращи ластовици). В случай на вътрешно носителство, инфекциозният агент преминава през храносмилателния тракт и се екскретира жизнеспособен в околната среда (напр. при хранителни и водни инфекции - C. jejuni, C. coli, Y. pseudotuberculosis, Y. enterocolitica и вероятно F. tularensis). Спекулира се, че вирусът причинител на болестта шап (FMDV) може да се пренася механично върху свободно живеещи птици. 3) като гостоприемници и носители на заразени кръвосмучещи ектопаразити(хематофаги). В този случай, птиците са гостоприемници за много ектопаразити, които могат да служат като вектори на заболявания. Най-важните
са незрелите иксодидни и аргазидни кърлежи, които могат да бъдат транспортирани посредством своите гостоприемници от едно местообитание на друго, дори и на отделни континенти. Кърлежово преносимите патогени (Rickettsia spp., A. phagocytophilum, B. burdorferi s.l.) може да се разпространяват по този начин. Географското разпространение на F. tularensis може да се обясни също така чрез пренос на инфекциозни кърлежи от родовете Ixodes, Haemaphysalis или Dermacentor, паразитиращи върху мигриращи птици. Изненадващо, бълхи също могат да се транспортират на дълги разстояния от миграращите птици.

5. Стратегии за пренос на патогени

Типът на пренос на патогенните агенти от прелетните птици зависи от пътищата за предаване на инфекцията. При вируси, бактерии и протозои, пренасяни и предаващи се чрез насекоми, продължителността и концентрацията на инфекциозния агент в кръвта на мигриращите птици е от решаващо значение за инфекцията на компетентните вектори – насекоми при тяхното хранене по време на престоя на птиците. При кърлежово преносимите вируси, бактерии и протозои, инфекциозните кърлежови ларви или какавиди трябва да останат прикрепени за тялото няколко дни и след това да „паднат” по време на миграция в нова географска област. При предаваните чрез вода инфекции, агентът се отделя от заразените мигриращи птици чрез фецеса, носните изтекения и белодробни ексудати, което води до заразяване на водата. По този механизъм се разпространяват инфекции с Campylobacter, Salmonella, Escherichia, Yersinia, Clostridium, Candida spp., Vibrio cholerae, P. multocida, Enterococcus faecalis. Също така, носните изтекления и пръски от мигриращи грабливи птици или врани понякога са заразени с M. avium. Друга възможност за инфекция е консумацията на заразени трупове на птици, които може да служат като източник на инфекция от хранителни патогени за местните грабливи птици, чистачи и месоядни бозайници (например, WNV, Clostridium spp., M. avium). Инфекции чрез вдишване могат да бъдат причинени от генериране на замърсени аерозоли от водолюбиви птичи стада при тяхното приземяване или отделяне от водата при излитане (напр. NDV или хламидиоза). При контактните инфекции, излъчването
на агента от кожата, перата или от външни лезии (напр. WNV енцефалит, микоплазмен конюнктивит) е друга стратегия за пренос на патогените. Сезонността е още един важен фактор, който влияе върху ефективния пренос на патогени от прелетните птици. Например, пренасяните чрез комари заболявания в Холарктическата зона бележат пик в края на лятото и началото на есента (т.е. сезонът на максимална гъстота на популяцията на много видове комари). В същото време, водолюбиви птици мигрират и се събират около водоеми и блатисти райони, които влизат в близък контакт с компетентни орнитофилни вектори – комарите предимно от рода *Culex*. При някои видове комари обаче (напр. от род *Aedes*), пикът на популяцията е през пролетта, когато се извършва и пролетната миграция на птиците.

6. Влияние на биотични и абиотични фактори върху ефективността на разпространение на патогените

Ефективността на разпространение на патогенните микроорганизми зависи от голямо разнообразие от биотични и абиотични фактори, влияещи върху преживяемостта на инфекциозния причинител в определена екосистема, или неговото изчезване от дадено местообитание, неуспявайки да се адаптира в новата географска област. Степента на това географско разпространение зависи обаче от конкретни биотични фактори (например, възприемчиви реципиенти - местни гръбначни видове или безгръбначни вектори, устойчивостта на агента в околната среда и др.) и абиотични фактори (температура, влажност и др.), засягащи преживяемостта на агента в една нова среда. Промяната на климата или настъпили мутации в инфекциозните агенти (особено вирусните) биха могли да променят равновесието между микроорганизмите и гостоприемника, което потенциално би довело до възникване на епидемичен, респ. епизоотичен процес. Много от промените в околната среда, дължащи се на човешка дейност допринасят и за промени в характеристиките и профила на миграционните процеси (особено тези на дълги разстояния) и в екологията на зоонозните патогени. Туризмът все още не е фактор за разпространението на чревни патогени в Антарктика, но патогени от род *Salmonella* и *Campylobacter* се разпространяват там от диви животни и птици.
7. Патогенини микроорганизми разпространявани с мигриращи птици

Много видове микроорганизми, патогени за топлокръвните гръбначни животни, включително и хората са свързани със свободно живеещите миграращи птици. Редица научни изследвания са фокусирани върху разпространението на добре проучени видове чревни патогени, които най-вероятно оказват влияние върху здравето на хората и животните (Benskin et al., 2009). В допълнение, общата липса на търговски интерес, поради ниската стойност на свободно живеещите птици като цяло, както и трудностите свързани с получаването на оптимални по количество проби може да обясни подценяването на ролята, която дивите птици потенциално играят в епидемиологията на зоонозите и в хранителната верига.

7.1. Ентеропатогенни бактерии

Campylobacter jejuni и Campylobacter coli са най-често изолираните бактериални агенти от голямо разнообразие на диви птици (Hubalek, 2004; Waldenstrom et al., 2002). Разпространението на род Campylobacter при хора и домашни птици е добре проучено (Altekruse, 1998; Altekruse, 1999 г.), но малко се знае за разпространението на този вредител при дивите птици от различни географски райони, въпреки че, поради тяхната голяма мобилност, дивите и свободно живеещи птици могат да функционират като ефективни разпространители на болестта чрез фекално замърсяване на пасища, фураж, повърхностни води и др. (Kapperud и Rosef, 1983). От двата вида кампилобактерии, C. jejuni е по-често изолирана вид при голямо разнообразие от водни и сухоземни видове диви и миграращи птици. Той се изолира от мигриращи птици, множество видове чайки (семейство Laridae), речни рибарки (Sterna hirundo), гълби, косове, скорци, врабчета и др. Миграращите чайки са били замесени в разпространението на кампилобактерии сред домашни животни или хора чрез контаминирани фуражи или вода. Дивите и домашни птици са основните резервоари на бактериите от род Campylobacter сред гръбначните животни и имат важна роля в епидемиологията и епизоотологията на заболяването. Кампилобактериите колонизират червата на привидно здрави диви
птици и най-често се разглеждат като коменсали. Наблюдението, което се свързва с температурата на тялото на дивите птици (42 °C) определя и оптималната температура на растеж на патогенните термоустойчиви кампилобактерии (Abulreesh et al., 2007; Waldenstrom et al., 2002). Luechtefeld и сътр. (1980) установяват, че инфекцията с C. jejuni зависи от хранителните навици на птиците. Те открили най-ниските стойности на носителство в патици от сем. Anatidae и зеленокрилата патица от вида Anas carolinensis (Каролинско диво бърне), които се хранят почти изцяло с растителна маса. Обратно, при патицата клопач (Anas clypeata) е установено разпространението на C. jejuni в 66% от птиците, които прецеждат кал от дъното на езера и реки, за да извлекат мекотели и други живи организми за храна.

Редица представители от род Salmonella са чревни патогени при хора и животни, включително птици (Murray, 2000; Tizard, 2004; Millan et al., 2004). С най-голямо значение е Salmonella enterica, като множество серотипове (особено Typhimurium, Enteritidis, Derby, Panama) са били изолирани често от разнообразни видове свободно живеещи птици, включително мигранти (до голяма степен при чайки, но и патици, рибарки, както и някои врабчови). Има огромна литература по този въпрос. Преносът на салмонели, включително и на патогенния и полирезистентен вид S. typhimurium щам 104 (DT104), от здрави диви птици е широко събсъщаван, но честотата на разпространение е нiska и често само няколко процента от пробите са положителни (Fallacara et al., 2004; Hernandez et al., 2003; Kirk et al., 2002; Palmgren et al., 2006; Reche et al., 2003). Редица изследвания, проведени в Норвегия и Нова Зеландия са показали епидемиологична връзка между огнища на Salmonella инфекции сред диви врабчови видове птици и хора (Kapperud and Lassen, 1998; Alley et al., 2002). За разлика от тези автори обаче, по-нови изследвания на Hughes и сътр.(2008) не доказват, че щамове на S. typhimurium, изолирани от диви врабчови птици, участват в епидемиологията на тази инфекция при хората. Тревожен е и фактът, че мултирезистентни щамове на S. enterica Typhimurium са били открити и в мигриращите птици в Швеция.
Бактериите от вида *Escherichia coli* са част от нормалната микрофлора на чревния тракт на гръбначните животни. Въпреки това, вирулентни щамове понякога предизвикват смъртоносни инфекции. Продуциращи токсини щамове (VTEC) от различни патогенни био/серотипове и причиняващи ентерохеморагична инфекция при хората (Hunter, 2003), са изолирани многократно от здрави или заболели мигриращи птици (Abulreesh et al., 2007; Foster et al., 2006; Nielsen et al., 2004; Wallace et al., 1997). Проучвания върху честотата на носителство на такива щамове в чревния тракт на диви птици показват, че птиците са резервоар, като сред изследваните диви видове птици, VTEC O157 е изолиран от чайки и гъски (Wallace и сътр., 1997; Smith et al., 1998). Един от най-опасните ентеропатогенни щамове *E. coli*, е цитотоксин продуциращия ентерохеморагичен серотип O157:H7, който предизвиква колибактериоза и се изолира както от здрави, така и от заболели диви птици, включително мигранти като сивата чапла (*Ardea cinerea*), канадската гъска (*Branta canadensis*), тундровия или малкия поен лебед (*Cygnus columbianus*), тънкоклюната кайра (*Uria aalge*) и гривяка (*Columba palumbus*). Те могат да станат носители и на щамове *E. coli*, които са резистентни към антибиотици и могат да бъдат отговорни за разпространението на R плазмиди върху обширни местообитания.

Yersinia enterocolitica и *Yersinia pseudotuberculosis* са патогени за хората и животните, и причинители на заболявания от хранителен произход. Те се разпространяват главно по фекално-орален механизъм, и инфекцията с тях може да причини смъртност при дивите птици (EFSA and ECDC, 2013; Hubbert, 1972; Niskanen et al., 2003). Щамове от патогенни био/серотипове *Yersinia* са били изолирани от много мигриращи видове птици в Европа (Норвегия, Швеция, Франция, България и т.н.), Япония и САЩ (Abulreesh et al., 2007; Hubalek, 2004; Nikolova et al., 2001; Niskanen et al., 2003; Niskanen et al., 2003a). *Y. enterocolitica* е изолирана от фекални проби от чайки и рибарки в Норвегия, патици и сиви скорци (*Sturnus cineraceus*) в Япония, както и от много мигриращи видове в САЩ и Швеция където са били открити и сезонни вариации в разпространението на този патоген – по-значително през студените месеци на
годината. *Y. pseudotuberculosis* може да причини смъртност при дивите птици, особено при сурови зимни условия. Бактерията се изолира от мигранти като бялата стърчиопашка (*Motacilla alba*), черноликата овесарка (*Emberiza spodocephala*), индийската петнстоклънна патица (*Anas poecilorhyncha*), фиша или свирачката (*Anas penelope*) и т.н., както и от морски и крайбрежни птици в Япония; обикновения скорец (*Sturnus vulgaris*) във Франция; и много други мигриращи видове в Швеция. В Япония най-често изолираните серотипове на *Y. pseudotuberculosis* от диви птици са 1b и 4b, които са и най-често описваните серотипове, причинители на псевдотуберкулозата (йерсиниоза) при хора.

7.2. Кърлежово преносими инфекции

Прелетните птици могат да разпространяват патогенните микроорганизми и като носители на заразени ектопаразити и по такъв начин да играят ключова роля в циркулацията и разпространението на кърлежово преносимите патогени от родовете *Borrelia* и *Coxiella* (Hubalek, 2004). Предвид обстоятелството, че ларвите и нимфите на кърлежите се хранят и развиват паразитирайки върху гризачи и птици, миграцията на птиците осигурява определен механизъм за създаване на нови ендемични огнища на Лаймска болест на големи разстояния от мястото на съществуване на инфекцията до нововъзникващи огнища на инфекция (Ogden et al., 2008; Schwarzova et al., 2006). Геномнитите и фенотипно дивергентни видове *Borrelia burgdorferi* s.l. (*B. burgdorferi* sensu stricto, *B. garinii*, *B. valaisiana*, но не *B. afzelii*) (причинители на Лаймската болест) са били откривани често в кърлежи от род *Ixodes*, паразитиращи върху птици, включително и мигриращи видове, които са доказани като резервоари на борелии (Hubalek, 2004). Много изследвания са доказали *Borrelia*-положителни кърлежи, отделени от мигриращи птици, например в САЩ (Weisbrod, 1989), (Nicolis, 1996), Канада (Scott, 2001) и Япония (Ishiguro et al., 2000).

Coxiella burnetii е причинител на Q-треската, който е изолиран от много видове диви птици, включително мигриращите *Hirundo rustica*, *P. phoenicurus* и *M. alba* в Чехия. Птиците са важна връзка в поддържането на Q-треска в естествени и антропогенчни (опосредствани от човешка дейност) огнища. Експериментално е доказано, че птиците могат да поддържат жизнеспособни
коксии в бъбреците си в продължение на няколко седмици след заразяване, докато са серонегативни (Hubalek, 2004).

Rickettsia sibirica е причинител на Сибирския кърлежов тиф (известен още и като Северноазиатска кърлежова треска). Той е изолиран от кърлежи от вида *Haemaphysalis concinna* събрани от птици в Далечния изток. Ролята на мигриращите птици в епизоотологията на тази кърлежово преносима рикетсиоза е много по-незначителна в сравнение с тази на бозайниците, но установяването на нови огнища на болестта се дава до голяма степен на птици, пренасящи заразени иксодидни кърлежи.

7.3. Грам-положителни коки

Staphylococcus aureus е изолиран от екскрементите на чайки, врани и други мигриращи птици. Стафилококовата инфекция може да доведе до различни болестни състояния, включително гнойни инфекции на кожата с образуване на абсцес, септични състояния и др. Най-често, Стафилококите могат да се намерят в чревния тракт и горните дихателни пътища. Въпреки че различни представители на род *Staphylococcus* са описани като причинители на заболявания при диви животни, в повечето случаи те се дължат на *S. aureus*. Един проучване върху испанския царски орел (*Aquila adalberti*) разкрива стафилококова инфекция при хора, които са изучавали и са били в контакт с техните гнезда и яйца за целите на опазване на дивата природа (Ferrer, 1995). Освен това, *S. aureus* е основната причина за заболявания при животните, включително и причинявайки инфекции при домашни птици, особено на пуйки. Най-често се засягат скелета и сухожилията (остеомиелит, артрит и тендовагинит), а понякога настъпва септицемия, която са причина за големи икономически загуби (Brittingham et al., 1988).

Enterococcus faecalis. Ванкомицин-резистентни ентерококи са били изолирани от фекална проба на мигрираща на север речна чайка (*Larus ridibundus*) в южна Швеция през март 1998, а няколко други щама са изолирани от чайки в субантарктическия птичен остров през 1996.

7.4. Неспорообразуващи Грам-положителни пръчки
Listeria monocytogenes е ентеропатоген, който може да преживява и да се размножава в околната среда извън гостоприемниковите организми, което улеснява контакта и разпространението му от други вектори, включително диви и прелетни птици. Те са резервоар и носители на тези бактерии и могат да ги пренасят и разпространяват на дълги разстояния (Benskin et al., 2009; Hubalek, 2004). Висок процент на носителство (15%) на L. monocytogenes е доказан при чайки, хранещи се от канални води в Шотландия. Бактерията е била изолирана и от посевни врани (Corvus frugilegus) във Франция. Други прелетни птици като малкия сокол или чучулигар (Falco columbarius), обикновения скорец (Sturnus vulgaris), горската бъбрица (Anthus trivialis) и други, също са установени като носители и по този начин играят роля за разпространението на листерите.

Erysipelothrix rhusiopathiae, причинителят на еризипела (червенка) по свинете е бил изолиран от черновратя гмурец (Podiceps nigricollis), и в спорадични случаи в диви, въпреки водни птици, включително и мигриращи видове, като патици (напр. голям нирец от сем. Патицови), белия щъркел (Ciconia ciconia), гъски, чайки, представители на сем. Жеравови и др.

7.5. Спорообразуващи Грам-положителни пръчки

Clostridium botulinum: птиците разпространяват спори на C. botulinum до околни или по-далечни водни резервоари, където те могат да генерират и да причинят птичия ботулизъм, което е основно заболяване на дивите водоплаващи птици.

Clostridium perfringens: изолиран е от мъртви пеликани и морски птици с некротизиращ ентерит във Флорида (САЩ) при диви птици (водоплаващи, крайбрежни, грабливи птици), червеногръдия дрозд (Turdus migratorius), както и в Германия от мъртви сиви чапли (Ardea cinerea), мъртви чайки и тънкоклюната кайра (Uria aalge).

7.6. Други патогени
Pasteurella multocida е важен патоген, причинител на холерата при птиците - силно заразно заболяване, което може да доведе до значителна смъртност при дивите водоплаващи птици.

Francisella tularensis е етиологичния агент на туларемията - септицемично и понякога фатално заболяване на хора и животни (зооноза), което напоследък се появява и в нови не-ендемични райони (Ellis и др., 2002). Заразяват се множество видове диви животни, включително и птици (Mörner, 1992). В България инфекциите предизвикани от *F. tularensis* са се увеличили от началото на века, обхващайки и нови региони от страната, където са наблюдавани малки огнища (Mladenov et al., 2006). *F. tularensis* е един от най-инфекционните видове бактерии, разработван и като агент за биотероризъм. По отношение на своята вирулентност са познати четири подвида: силно вирулентния *F. tularensis* подвид *tularensis* (Type A), умерено вирулентния *F. tularensis* подвид *holarctica* (Type B) и *F. tularensis* подвид *mediasiatica* и ниско вирулентния *F. tularensis* подвид *novicida*. Известно е, че <10 организми от *F. tularensis* подвид *tularensis* могат да причинят тежко заболяване при хора и животни. Мигриращите птици могат да играят роля в разпространението на туларемията чрез заразени, прикрепени към тялото иксодидни кърлежи (Hubalek, 2004), но преки доказателства за този начин на предаване все още липсват.

Бруцелозата е една от основните бактериални зоонози със световно значение. Бактериите, причиняващи заболяването у различни бозайници, включително човек, едър рогат добитък, овце, кози, свине, гризачи и морски бозайници, принадлежат към род *Brucella* и са Грам-отрицателни вътрешноклетъчни патогени. Епидемиологичната връзка между бруцелозата в дивата природа и бруцелозата в отделни сектори на животновъдството и хората е широко приznата (Cutler et al., 2005; Godfroid et al., 2013). Обширно проучване в САЩ върху общо 435 диви птици и бозайници от общо 23 вида не доказва носителство на бруцели, което изключва дивите и прелетни птици като възможен резервоар и преносител на инфекцията.

Chlamydophila psittaci е причинител на орнитозата (хламидиоза, пситакоза) при повече от 30 вида птици, включително мигриращите видове
водолюбиви птици, чайки, рибарки, дъждосвирци, гълби, врабчоподобни и др. Дивите патици, чайки, чапли, представители на семейство Трупиалови и други видове птици, представляват важен резервоар на орнитозата и могат да предават инфекцията чрез директен контакт или чрез инфекциозен аерозол на други гръбначни и дори в нови местообитания. Някои щамове хламидии, които обикновено не са патогенни за диви птици, може да бъдат силно вирулентни за домашни птици и хора.

Mycoplasma gallisepticum е причинител на микоплазмена конъюнктивит при врабчоподобните видове Carpodacus mexicanus, Carduelis tristis и др. Той е разпространен наскоро и в западните райони на САЩ. Вероятно това е нова вълна от разпространението на болестта от едно място на друго, с участнието по-скоро на немигриращи, отколкото на мигриращи видове птици, подобно на латералното разпространение в посока запад на WNV в Северна Америка. Независимо от това, Mycoplasma gallisepticum бе изолиран също от мигранта на къси разстояния тънкоклюната кайра (Jria aalge) в Германия. Mycoplasma synoviae е била изолирана от млада мъртва птица трипръста чайка (Rissa tridactyla) в Бретан, Франция, а Mycoplasma clocalce от мигриращите видове качулата потапница (Aythya fuligula) и полска чучулига (Alauda arvensis) във Великобритания и Франция.

Vibrio cholerae (причинител на холерата) е изолиран от свободно живеещи водолюбиви птици в Кolorado и Юта (САЩ). В 198 (17 %) от фекалните проби на 1 131 водолюбиви птици са доказани и двата серотипа – O1 и non-O1 (Ogg et al., 1989).

Mycobacterium avium е патогенен за много диви видове птици и причинява туберкулозата - една от най-разпространените инфекции сред дивите птици. Този патоген може да се пренася от някои мигриращи птици, като грабливи птици, гривяка (Columba palumbus), или посевната врана (Corvus frugilegus).

8. Заключение
Броят на патогенните агенти, свързани с мигриращите птици е може би по-голям отколкото в момента са известните видове микроорганизми, и поради
това е необходимо да продължават изследванията в тази посока. Като цяло, милиарди птици прелитат между континентите два пъти годишно при това само за няколко седмици (Berthold, 2001). Птичата миграция често е зрелища и ефектна, но мигриращите видове приотяват зоонозни патогени, които са от значение за здравето на хората и животните. Освен това, птичата миграция се очаква да засили глобалното разпространение на патогени, включително резистентни на антибиотици шамове, както и да благоприятства междувидовото разпространение на патогените. Тези предположения са реалистични и се случват в природата. Птиците са чувствителни на много бактериални и вирусни заболявания, общи за хората и домашните животни, като самите те могат да заболяват, или са носители (понякога привидно здрави) и гостоприемници на заразени вектори (Abulreesh et al., 2007; Benskin et al., 2009; Hubalek, 2004). Тези обстоятелства налагат да се преглежда редовно популацията от мигриращи птици, така че своевременно да се прилагат необходимите мерки преди да се развие инфекциозен процес с епидемични/епизоотични размери. Екологията и еволюцията на инфекциозните заболявания са нововъзникващи области на изследвания. Ето защо специално са необходими проучвания на динамиката на патогените в мигриращите видове и как те реагират на глобалните промени на климата за да се предсказват и предотвратяват бъдещи заболявания сред хората, дивите и домашни животни.

9. Литература

1. Abulreesh, H.H., R. Goulder, and G.W. Scott. 2007. Wild birds and human pathogens in the context of ringing and migration. Ringing & Migration, 23, 193-200.
2. Alley, M.R., S.G. Fenwick, G.F. Mackereth, M.J. Leyland, L.E. Rogers, M. Haycock et al. 2002. An epidemic of salmonellosis caused by Salmonella typhimurium DT160 in wild birds and humans in New Zealand. New Zealand Vet. J., 50, 170-176.
3. Altekruse, S.F., D.L. Swerdlow, and N.J. Stern. 1998. Microbial foodborne pathogens. Campylobacter jejuni. Vet. Clin. N. Am. Food Anim. Pract., 14, 31-40.
4. Altekruse, S.F., N.J. Stern, P.I. Fields, and D.L. Swerdlow. 1999. Campylobacter jejuni - an emerging foodborne pathogen. Emerg. Infect. Dis., 5, 28-35.
5. Benskin, C.M., K. Wilson, K. Jones, and I.R. Hartley. 2009. Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol. Rev. Camb. Philos. Soc., 84, 349-373.

6. Berthold, P. 2001. Bird Migration: A General Survey Oxford University Press, New York.

7. Brittingham, MC, S.A. Temple, and R.M. Duncan. 1988. A survey of the prevalence of selected bacteria in wild birds. J. Wildlife Dis., 24, 299-307.

8. Curry-Lindahl, K. 1984. Birds over land and sea. A global overview of bird migration. Albert Bonniers Press, Stockholm. (in Russian)

9. Cutler, S.J., A.M. Whatmore, and N.J. Commander. 2005. Brucellosis - new aspects of an old disease. J. Appl. Microbiol., 98, 1270-1281.

10. Daszak, P., A.A. Cunningham, A.D. Hyatt. 2000. Emerging infectious disease of wildlife – threats to biodiversity and human health. Science, 287, 443-449.

11. Dhama, M., M. Mahendran, and S. Tomar. 2008. Pathogens transmitted by migratory birds: threat perceptions to poultry health and production. Int. J. Poultry Sci., 7, 516-525.

12. EFSA and ECDC, 2013. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA Journal, 11, 3129.

13. Ellis, J., P.C. Oyston, M. Green, and R.W. Titball. 2002. Tularemia. Clin. Microbiol. Rev., 15, 631-646.

14. Fallacara, D.M., C.M. Monahan, T.Y. Morishita, C.A. Bremer, and R.F. Wack. 2004. Survey of parasites and bacterial pathogens from free-living waterfowl in zoological settings. Avian Dis., 48, 759-767.

15. Ferrer M. 1995. Human-associated staphylococcal infection in Spanish imperial eagles. J. Wildlife Dis., 31, 534-536.

16. Foster, G., J. Evans, H.I. Knight, A.W. Smith, G.J Gunn, L.J. Allison et al. 2006. Analysis of feces samples collected from a wild-bird garden feeding station in Scotland for the presence of verocytotoxin-producing Escherichia coli O157. Appl. Environ. Microbiol., 72, 2265-2267.

17. Foti, M., D. Rinaldo, A. Guercio, C. Giacopello, A. Aleo, F. De Leo, et al. 2011. Pathogenic microorganisms carried by migratory birds passing through the territory of the island of Ustica, Sicily (Italy). Avian Pathol., 40, 405-409.

18. Godfroid, J., B. Garin-Bastuji, C. Saegerman, and J.M. Blasco. 2013. Brucellosis in terrestrial wildlife. Rev. Sci. Tech., 32, 27-42.

19. Hasselquist, D., A. Lindstrom, S. Jenni-Eiermann, A. Coolhaas, T. Piersma. 2007. Long flights do not influence immune responses of a long-distance migrant bird: a wind-tunnel experiment. J. Exp. Biol., 210, 1123-1131.

20. Hernandez, J., J. Bonnedahl, J. Waldenström, H. Palmgren, and B. Olsen. 2003. Salmonella in birds migrating through Sweden. Emerg. Infect. Dis., 9, 753-755.

21. Hubalek, Z. 2004. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildlife Dis., 40, 639-659.

22. Hubbert, W.T. 1972. Yersiniosis in mammals and birds in the United States: case reports and review. Am. J. Trop. Med. Hyg., 21, 458-463.

23. Hughes, L.A., S. Shopland, P. Wigley, H. Bradon, A.H. Leatherbarrow, N.J. Williams et al. 2008. Characterisation of Salmonella enterica serotype
Typhimurium isolates from wild birds in northern England from 2005 - 2006. BMC Vet. Res., 4, 4.

24. Hunter, P.R. 2003. Drinking water and diarrhoeal disease due to Escherichia coli. J. Water Health, 1, 65-72.

25. Ishiguro, F., T. Masuawa, and T. Fukui. 2000. Prevalence of Lyme disease Borrelia spp. in ticks from migratory birds on the Japanese mainland. Appl. Environ. Microbiol., 66, 982-986.

26. Kapperud, G. and J. Lassen. 1998. Epidemiology of Salmonella typhimurium O-12 infection in Norway. Evidence of transmission from an avian wildlife reservoir. Am. J. Epidemiol., 147, 774-782.

27. Kapperud, G. and O. Rosef. 1983. Avian wildlife reservoir of Campylobacter fetus subsp. jejuni, Yersinia spp., and Salmonella spp. in Norway. Appl. Environ. Microbiol., 45, 375-380.

28. Kirk, J.H., C.A. Holmberg, and J.S. Jeffrey. 2002. Prevalence of Salmonella spp. in selected birds captured on California dairies. J. Am.Vet. Med. Assoc., 220, 359-362.

29. Luechtefeld, N.A., M.J. Blaser, L.B. Reller, and W.L. Wang. 1980. Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl. J. Clin. Microbiol., 12: 406-408.

30. McLean, R.G., S.R. Ubico, D.E. Docherty, W.R. Hansen, et al. 2001. West Nile Virus transmission and ecology in birds. In: DJ White and DL Morse, Eds., West Nile Virus: Detection, surveillance, and control. Annals NY Acad. Sci. 951, 54-57. Albany, NY.

31. Mendes, L., T. Piersma, M. Lecoq, B. Spaans, E. Ricklefs. 2005. Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos, 109, 396-404.

32. Michev, T., L. Proirov, M. Dimitrov., K. Nyagolov. 1999. The birds at Atanasovsko Lake: status and checklist. Bourgas Wetlands Publication Series No1 – 43. Bulgarian-Swiss Biodiversity Conservation Programme, Bourgas.

33. Michev, T., L. Proirov, N. Karaivanov, and B. Michev. 2012. Migration of soaring birds over Bulgaria. Acta Zool. Bulg., 64, 33-41.

34. Millan, J., G. Aduriz, B. Moreno, R. A. Juste, and M. Barral. 2004. Salmonella isolates from wild birds and mammals in the Basque Country (Spain). Rev. Sci. Tech. 23, 905–911.

35. Mladenov, K., K. Marinov, K. Mekushinov, V. Ivanova, and E. Tsvetkova. 2006. Comparative study of a newly isolated tularemia strain. Proceedings 11 Balkan Military Medical Congress, Athens, 126.

36. Mörner, T. 1992. The ecology of tularaemia. Rev. Sci. Tech., 11, 1123-1130.

37. Murray, C.J. 2000. Environmental aspects of Salmonella, p. 265-283, in: C. Wray and A. Wray, Eds.), Salmonella in domestic animals, CAB International, Wallingford, UK.

38. Nielsen, E.M., M.N. Skov, J.J. Madsen, J. Lodal, J.B. Jespersen, and D.L. Baggesen. 2004. Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Appl. Environ. Microbiol., 70, 6944-6947.

39. Nicolis, T.H. 1996. Lyme disease spirochetes in ticks collected from birds in midwestern United States. J. Med. Entomol., 33, 379-384.
40. Nikolova, S., Y. Tzvetkov, H. Najdenski, and A. Vesselinova. 2001. Isolation of pathogenic yersiniae from wild animals in Bulgaria. J. Vet. Med. B Infect. Dis. Vet. Public Health, 48, 203-209.
41. Niskanen, T., Fredriksson-Ahomaa, M., and Korkeala, H. 2003a. Occurrence of Yersinia pseudotuberculosis in iceberg lettuce and environment. Adv. Exp. Med. Biol., 529, 383-385.
42. Niskanen, T., J. Waldenström, M. Fredriksson-Ahomaa, B. Olsen, and H. Korkeala. 2003. virF-positive Yersinia pseudotuberculosis and Yersinia enterocolitica found in migratory birds in Sweden. Appl. Environ. Microbiol., 69, 4670-4675.
43. Ogden, N.H., L.R. Lindsay, K. Hanincova, I.K. Barker, М. Bigras-Poulin, D.F. Charron, et al. 2008. Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl. Environ. Microbiol., 74, 1780-1790.
44. Ogg, J.E., R.A. Ryder, and H.L. Smith. 1989. Isolation of Vibrio cholera from aquatic birds in Colorado and Utah. Appl. Environ. Microbiol., 55, 95-99.
45. Palmgren, H., A. Aspán, T. Broman, K. Bengtsson, L. Blomquist, S. Bergström, et al. 2006. Salmonella in Black-headed gulls (Larus ridibundus); prevalence, genotypes and influence on Salmonella epidemiology. Epidemiol. Infect., 134, 635-644.
46. Reche, M.P., P.A. Jiménez, F. Alvarez, J.E. Garcia de los Rios, A.M. Rojas, and P. de Pedro. 2003. Incidence of salmonellae in captive and wild free-living raptorial birds in central Spain. J. Vet. Med. B Infect. Dis. Vet. Public Health, 50, 42-44.
47. Schwarzova, K., T. Betakova, J. Nemeth, and A. Mizakova. 2006. Detection of Borrelia burgdorferi sensu lato and Chlamydia psittaci in throat and cloacal swabs from birds migrating through Slovakia. Folia Microbiol, (Praha), 51, 653-658.
48. Scott, J.D., S.N. Banerjee, L.A. Durden, S.K. Byrne, M. Banerjee, R.B. Mann, M.G. Morshed. 2001. Birds disperse ixodid (Acari: Ixodidae) and Borrelia burgdorferi-infected ticks in Canada. J. Med. Entomol., 38, 493-500.
49. Smith, H. R., B. Rowe, G. K. Adak, and W. J. Reilly. 1998. Shiga toxin (verocytotoxin-producing) Escherichia coli in the United Kingdom, p 49–58. In J. B. Kaper and A. D. O’Brien (ed.), Escherichia coli O157:H7 and other Shiga toxin-producing Escherichia coli strains. ASM Press, Washington, D.C.
50. Tizard, I. 2004. Salmonellosis in wild birds. Seminars in Avian and Exotic Pet Medicine, 13, 50-66.
51. Waldenstrom, J., T. Broman, I. Carlsson, D. Hasselquist, R.R. Achterberg, J.A. Wagenaar et al. 2002. Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl. Environ. Microbiol., 68, 5911-5917.
52. Wallace, J.S., T. Cheasty, and K. Jones. 1997. Isolation of vero cytotoxin-producing Escherichia coli O157 from wild birds. J. Appl. Microbiol., 82, 399-404.
53. Weisbrod A.R. 1989. Lyme disease and migrating birds in the Saint Croix River Valley. Appl. Environ. Microbiol., 55, 8, 1921-1924.