Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, there have been a few variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), one of which is the Omicron variant (B.1.1.529). The Omicron variant is the most mutated SARS-CoV-2 variant, and its high transmissibility and immune evasion ability have raised global concerns. Owing to its enhanced transmissibility, Omicron has rapidly replaced Delta as the dominant variant in several regions. However, recent studies have shown that the Omicron variant exhibits reduced pathogenicity due to altered cell tropism. In addition, Omicron exhibits significant resistance to the neutralizing activity of vaccines, convalescent serum, and most antibody therapies. In the present review, recent advances in the molecular and clinical characteristics of the infectivity, pathogenicity, and immune evasion of Omicron variant was summarized, and potential therapeutic applications in response to Omicron infection were discussed. Furthermore, we highlighted potential response to future waves and strategies to end the pandemic.
COVID-19 pandemic, there is an urgent need for in-depth studies and a comprehensive understanding of Omicron. Recently, several achievements have been made in understanding the Omicron variant. In this review, we summarized the recent progress in research on the characteristics of the Omicron variant, including its enhanced infectivity and transmissibility, reduced pathogenicity, and immune evasion ability. In addition, we discussed the effectiveness of existing vaccines, neutralizing antibodies, and antiviral drugs and highlighted possible response strategies to Omicron and future variants.

**INFECTIVITY AND TRANSMISSIBILITY**

SARS-CoV-2 utilizes the S protein to bind to the main receptor ACE2 on the host-cell surface and enters the host cell through membrane fusion with the help of furin and type II transmembrane serine protease (TMPRSS2) or cathepsin L, which is a crucial process of infection. The Omicron variant shares a similar process of infection but is more contagious than previous variants. The findings of preliminary studies on the infectivity and transmissibility of Omicron are discussed below.

Binding to host receptor ACE2

ACE2 is a major receptor of SARS-CoV-2. The binding affinity of ACE2 for the S proteins of Omicron is one of the main factors determining viral infectivity. To date, the results on the binding affinity of the Omicron variant to ACE2 are slightly different, possibly owing to differences in experimental materials or methods. Moreover, the aggregation state of the protein has a significant impact on measurement results. Several studies have shown that the binding affinity of Omicron RBD to ACE2 is approximately 1.5–2.8 times that of the wild-type (WT). In contrast, some studies have suggested that the binding ability of Omicron RBD to ACE2 is comparable to that of WT. Compared with the previously prevalent Delta variant, Omicron RBD exhibits a similar or weaker binding ability to ACE2. Based on the above studies, it can be inferred that the binding ability of Omicron RBD to ACE2 is much weaker than that of Alpha variant, with only one mutation, N501Y, in the RBD. Based on the above studies, it can be inferred that the binding ability of Omicron RBD to ACE2 is roughly between that of WT and Delta RBD. S477N, T478K, Q493R, Q496S, and Q498R have been reported to potentiate the interaction between Omicron and ACE2 by establishing new hydrogen bonds or salt bridges with the corresponding sites of ACE2 in addition to N501Y. However, K417N and E484A can cause a significant loss of polar interactions between Omicron and ACE2, offsetting some of the enhanced interactions forged by other mutations.

Overall, mutations in the Omicron RBD did not affect its receptor recognition and binding to ACE2, and the Omicron RBD can efficiently bind to human ACE2 for host-cell entry. Notably, the
Omicron S protein can bind to human ACE2 or ACE2 orthologs of different animal species to enter the target cells. These findings indicate the zoonotic potential of the Omicron variant, which could contribute to the development of highly infectious variants.

Host-cell entry
The entry of SARS-CoV-2 into the host cells after binding to host receptors is mediated by the S protein. The S protein is composed of S1 and S2 subunits. The S1 subunit contains the RBD, which binds to ACE2, whereas the S2 subunit contains the transmembrane portion of the S protein, which is responsible for anchoring the S protein to the membrane and mediating fusion of the viral membrane with the cell membrane. Finally, a pore is formed in the membrane and the viral genome is released into the cell. In the plasma membrane entry route, virus first binds to ACE2, then binds to TMPRSS2 and is cleaved at the S proteins. Next, the S protein anchors to the cell membrane and mediates fusion of the viral membrane with the cell membrane. Finally, a pore is formed in the membrane and the viral genome is released into the cell. In the endosomal entry route, a virus first binds to ACE2 and the virus-ACE2 complex is internalized via endocytosis into the endosomes, where S protein is cleaved by Cathepsin L. Then the viral and endosomal membranes are fused together to form a pore and release the viral genome.

Transmissibility
The high transmissibility of the Omicron variant is a major cause of global concern. Since the advent of Omicron, it has rapidly replaced Delta as the dominant strain worldwide. In the US, Delta accounted for 99% of new cases on December 4, 2021; however, Omicron accounted for more than 95% by January 8, 2022. Since the advent of Omicron, it has rapidly replaced Delta as the dominant strain worldwide. In the US, Delta accounted for 99% of new cases on December 4, 2021; however, Omicron accounted for more than 95% by January 8, 2022. The basic reproduction number (R0) of the Delta variant was between 3.2 and 8.36 The transmissibility of the Omicron variant is ~3.2 times that of Delta, and the doubling time is approximately three days.37,38 Generally, BA.2 is ~1.4 times more transmissible than BA.1,19,40 with a transmission rate of ~13.4% among household contacts, whereas that of BA.1 was 10.3%.41 (Fig. 1c).

The rapid spread of the Omicron variant is mainly due to its immune evasion ability, which is responsible for the infection of vaccinated and previously infected individuals. In addition, changes in cell entry and cellular tropism in the Omicron variant may also facilitate rapid transmission.7,28,31,43 Moreover, the Omicron variant has been shown to cause more asymptomatic infections than the other variants, which may contribute to the silent spread of the virus.45,46 Furthermore, the binding affinity of Omicron RBD to ACE2 contributes to transmission, but is not a major factor. However, whether Omicron infection can lead to higher viral loads remains controversial.45,46

PATHOGENICITY
The disease severity of the Omicron variant has sparked extensive discussion and has profoundly affected public policies. Growing evidence has shown that Omicron-infected patients exhibit milder symptoms than those infected by the earlier variants. Moreover, the Omicron variant is more likely to infect the upper respiratory tract and less able to cause lung infection. However, the observed...
reduction in pathogenicity is now amplified by enhanced immunity. Research from the UK shows that three doses of vaccination caused over 50% reduction in the odds of hospitalization with Omicron compared to those who were not immunized.\textsuperscript{47} Previous infection can also provide similar protection.\textsuperscript{48} The proportion of breakthrough infections caused by Omicron is much higher than that of previous variants, which would reduce the severity we observed. Therefore, the Omicron is still risky for unvaccinated individuals, especially the aged. The treatment of Omicron should be taken seriously.

Clinical symptoms
Analysis of the ZOE COVID study showed that the most common symptoms of Omicron infection were runny nose, headache, fatigue (mild or severe), sneezing, and sore throat.\textsuperscript{49,50} Generally, there are few differences between the symptom profiles of Omicron and Delta, with a lower occurrence of the classic symptoms of fever, cough, or loss of sense of smell or taste in Omicron-infected patients.\textsuperscript{49,50} There have been few cases of convulsions in children, but the cases were too few to conclude that they were the consequences of the infection.\textsuperscript{51} Furthermore, laboratory studies showed that the mutations in the Omicron variant altered the tropism of the virus. The Omicron variant exhibited a lower replication rate in lung and gut cell lines,\textsuperscript{52} but replicated faster in primary cultures of human nasal epithelial cells.\textsuperscript{53} Consistently, Omicron has been shown to replicate rapidly in human airway organoids and ex vivo explant cultures of human bronchus, but less efficiently in human alveolar organoids and ex vivo explant cultures of the human lung.\textsuperscript{31,43} These results revealed that Omicron tended to infect the upper respiratory tract, but not the lungs, which may contribute to enhanced transmissibility and better prognosis. Most studies attributed this to the inefficient TMPRSS2 usage of the Omicron variant.\textsuperscript{27,28,31,43} However, enhanced infection in the upper respiratory tract was not proven in rodent models, indicating that this point needed more evidence.\textsuperscript{2,52,53}

Severity
A few real-world studies have indicated that the Omicron variant may be milder than earlier variants. A study of early cases in the Gauteng province of South Africa showed that the hospitalization rate during the fourth wave (Omicron-dominated) was ~4.9%, which was markedly below the rate in waves dominated by Beta or Delta variant, and the probability of severe illness was reduced by 73% in the Omicron-dominated wave.\textsuperscript{54} Outcomes in the Western Cape province of South Africa were similar, and the risk of severe hospitalization or death was reduced by ~25%.\textsuperscript{55,56} Moreover, patients infected by the Omicron variant and identified by the S gene target failure (SGTF) had significantly lower odds of hospitalization and severe disease than those by Delta.\textsuperscript{57} Several analyses of patients in the UK showed that the risk of hospitalization with Omicron was approximately one-third of that with Delta.\textsuperscript{58,59} with similar observations reported in France and Norway.\textsuperscript{60,61} In the United States, the percentage of hospitalization, intensive care unit (ICU) admission, receipt of invasive mechanical ventilation (IMV), and in-hospital death were lower during the Omicron pandemic than during the Delta pandemic, and the mean length of hospital stay was considerably shorter.\textsuperscript{62,63} Moreover, a high rate of asymptomatic carriage has been observed since the discovery of the Omicron variant,\textsuperscript{64} which may suggest milder symptoms of the variant.

Additionally, preliminary laboratory data confirmed the lower pathogenicity of the Omicron variant compared with the earlier variants. The formation of multinuclear syncytia is a significant pathological step in COVID-19 infection, reflective of cell-cell fusion events during viral infection.\textsuperscript{64–66} In vitro assays have shown that the Omicron variant poorly induced multinuclear syncytia in multiple cell lines\textsuperscript{27,52} compared with previous variants.\textsuperscript{67} Moreover, higher cell viability was observed in Omicron variant-infected cells compared with those infected with previous variants,\textsuperscript{32} which was consistent with findings in vivo. Infection with the Omicron variant caused limited bodyweight loss, lower viral load in the upper and lower respiratory tracts, and limited lung pathological damage and mortality rates compared with earlier variants in both hamsters or human ACE2 (hACE2) transgenic mice.\textsuperscript{32,52,53} In addition, the Omicron variant was less effective in antagonizing cellular interferon signaling compared with the Delta variant. Moreover, the activation of the NF-κB pathway is less efficient in response to the Omicron variant,\textsuperscript{68} implying that Omicron may induce slighter inflammatory responses.\textsuperscript{34}

The evidence above further confirms that the Omicron variant is less severe than previous variants. However, it is possible that the pathogenicity of the Omicron variant may be underestimated because of rising levels of herd immunity via previous infections and vaccinations.\textsuperscript{69–71} Notably, the proportion of young patients was higher among those infected with Omicron,\textsuperscript{57,72} which may result in reduced pathogenicity. In addition, the impact of Omicron is not attenuated by reduced pathogenicity, the healthcare system is still under enormous pressure because of the high transmissibility of the Omicron variant.\textsuperscript{54,73}

**IMMUNE EVASION**

The most serious concern about the Omicron variant is its high immune evasion ability. The Omicron variant can escape the immune response established by vaccination or previous infection by other variants, which may result in high transmissibility.\textsuperscript{11,16,71,74–76} Data from the UK showed that BA.2 and BA.1 have similar immune evasion abilities.\textsuperscript{41,80,81} Moreover, a recent study showed that BA.2 can re-infect BA.1 convalescent patients, despite the small number of such cases identified.\textsuperscript{80}

There are several mutations in the RBD region and N-terminal domain (NTD) of the Omicron variant, which are the main targets of neutralization.\textsuperscript{82,83} Unprecedented complexity in mutation patterns can alter antigenicity, invalidating the existing immunity.\textsuperscript{84} The cryo-electron microscopy (cryo-EM) structure helps to reveal the basis of immune evasion by Omicron. Omicron S-trimer exclusively formed one conformational state with one “up” RBD and two “down” RBDs, while a single-up conformation and all-down conformation were depicted in previous variants.\textsuperscript{11,87} Steric clashes, altered interactions at antibody-binding surfaces, and local changes in the spike structure were induced by mutations that interfered with antibody recognition.\textsuperscript{86,87}

**Vaccines**
Since the outbreak of the COVID-19 pandemic, some vaccines have been developed to end the pandemic; however, these vaccines have been less effective against the Omicron variant. Available evidence shows that the major vaccines in use around the world are significantly less effective against Omicron. The neutralization activity against Omicron was below the lower limit of quantitation in over 80% of serum samples from individuals who received two doses of inactivated vaccines: CoronaVac and BBIBP-CorV.\textsuperscript{88–92} Moreover, Ad26.COV2.S, ChAdOx1-S, and Sputnik V, representative of vectored vaccines, failed to trigger effective neutralizing activity against the Omicron variant. Omicron RNA vaccines, such as BNT162b2 and mRNA-1273, which were proven to be the most effective against the WT strain, were completely ineffective against the Omicron variant in over 50% of individuals.\textsuperscript{92,93,95–100} In serum samples from individuals who had received two doses of BNT162b2 or mRNA-1273, there was a considerable decrease in the titers of neutralizing antibodies against the Omicron variant compared with the WT.\textsuperscript{91,94,96–98,103–106} Although each study differed due to differences in samples and testing methods, the findings showed that there was a considerable decrease in the
neutralizing potency of two doses of RNA vaccines against Omicron. An observational study in the United States showed that the estimated effectiveness of two doses of RNA vaccines against Omicron was only ~30% 1 month after the second dose, with no effectiveness three months after the second dose for BNT162b2 and 6 months after the second dose for mRNA-1273.107 Data on other vaccines against Omicron variants have not been disclosed (Fig.3a).

The cellular immune response is a major determinant of the clinical outcome of SARS-CoV-2.108 Multiple mutations in the spike protein of the Omicron variant contribute to escape from antibody neutralization, but components of the cellular immune response, such as T cells, can still target Omicron and provide protection from severe outcomes. Studies have shown that cellular immunity induced by vaccination or previous infection is highly conserved in the SARS-CoV-2 Omicron Spike.109-114 The median relative frequencies of SARS-CoV-2 spike-specific CD4\(^+\) T cells and CD8\(^+\) T cells that cross-recognize Omicron are ~70–90% in previously infected or vaccinated individuals,110-113 although there is still more than 50% reduction in 20% of individuals.114 In addition, booster vaccination enhances T-cell responses to Omicron spike.109,114 In vaccines, a median of 11 and 10 spike epitopes were recognized by CD4\(^+\) and CD8\(^+\) T cells in T-cell epitope repertoire analysis, respectively, with over 80% preservation for Omicron at the epitope level, which retained binding to HLA-111,114 (Fig. 3b).

Although routine doses of vaccination are rarely effective in neutralizing the Omicron variant, substantial evidence has shown

**Fig. 3** Vaccine-induced immunity against SARS-CoV-2 Omicron. a SARS-CoV-2 Omicron escapes vaccine immunity. The major vaccine candidates targeting SARS-CoV-2 induce antibodies after vaccination that can neutralize SARS-CoV-2 WT but are less effective against Omicron. b T-cell immune responses induced by SARS-CoV-2 infection or vaccination are effective against Omicron infection. c Booster vaccination or Heterologous booster vaccination can induce increased antibodies, which can provide adequate neutralization against Omicron.
that booster vaccination can induce neutralizing immunity against Omicron more effectively.\textsuperscript{16,77,113} Post-booster vaccinations have shown a dozen-fold increase in neutralization titers for Omicron, indicating a significant reduction against the Omicron variant compared to the WT strain.\textsuperscript{88,93,96,99–101,116} Moreover, administering three doses of BNT162b2 and mRNA-1273 vaccines increased effectiveness against Omicron to ~65% and 72%, respectively, compared with unvaccinated mice.\textsuperscript{107} Interestingly, heterologous booster vaccination has the potential to induce adequate neutralizing efficacy,\textsuperscript{88,92,117,118} which is important for augmenting the protection provided by some vaccines with insufficient neutralizing antibodies. For instance, heterologous booster vaccination with aerosolized Ad5-ncov, a representative of adenovirus-vectorized vaccines, generated greater neutralizing antibody responses against the Omicron variant than that generated by homologous booster vaccination with CoronaVac,\textsuperscript{119} which provided an effective alternative in response to the Omicron. However, there is no evidence yet that heterologous vaccination is superior to homologous vaccination,\textsuperscript{120} and the protective efficacy obtained could be related to the type of vaccine. Therefore, further research on the mechanism and safety of heterologous vaccination is necessary, which could help solve the problem of vaccine shortage (Fig. 3c).

Overall, routine doses of vaccination can rarely provide adequate protection against the Omicron variant; therefore, homologous or heterologous booster vaccinations are necessary, which also highlights the significance of the supply and equitable distribution of vaccines. In addition, the plasma of convalescent individuals can hardly neutralize the Omicron variant, although cross-neutralization has been observed against earlier variants.\textsuperscript{77,91,95,115} However, infection plus vaccination can induce high-quality antibodies with superior neutralization capacity.\textsuperscript{91,94,95,99,103,116,121–123} Given a large number of infected individuals, this group of people may only require a routine vaccination dose to obtain effective protection against Omicron.

Therapeutic-neutralizing antibodies

In this section, we summarized the effect of neutralizing antibodies from vaccines and previous infections against the Omicron variant. The neutralizing ability of therapeutic-neutralizing antibodies against Omicron is weak. Most therapeutic-neutralizing antibodies with EUA approval or at advanced clinical development stages have failed to neutralize the Omicron variant (Table 1).\textsuperscript{124–126} Neutralizing antibodies can be divided into two groups. The first group contains the vast majority of neutralizing antibodies, including LY-CoV555 (marketed as bamlanivimab), LY-CoV016 (marketed as etesevimab), REGN10987 (marketed as imdevimab), REGN10933 (marketed as casirivimab), COV2-2196 (marketed as tixagevimab), COV2-2130 (marketed as cagilavimab) and CT-P59 (marketed as regdanvimab), which block binding of Spike protein to the receptor ACE2.\textsuperscript{121} Most of these antibodies lost their neutralizing ability against Omicron due to the destruction of the antigenic epitope.\textsuperscript{16,77,79,104,124,126} K417N, E484A, Q493R, and N501Y are the main sites responsible for the evasion.\textsuperscript{11} The combination of COV2-2196 and COV2-2130 exhibits neutralizing activity against Omicron; however, its neutralization ability against Omicron is lower compared with that against the WT.\textsuperscript{16,115,124–126} Due to the N440K and G446S mutations,\textsuperscript{127} the neutralization ability against Omicron is extremely weak. Most therapeutic-neutralizing antibodies from vaccines and previous infections against the Omicron variant. In this section, we summarized the effect of neutralizing antibodies.

In this section, we summarized the effect of neutralizing antibodies from vaccines and previous infections against the Omicron variant. The neutralizing ability of therapeutic-neutralizing antibodies against Omicron is weak. Most therapeutic-neutralizing antibodies with EUA approval or at advanced clinical development stages have failed to neutralize the Omicron variant (Table 1).\textsuperscript{124–126} Neutralizing antibodies can be divided into two groups. The first group contains the vast majority of neutralizing antibodies, including LY-CoV555 (marketed as bamlanivimab), LY-CoV016 (marketed as etesevimab), REGN10987 (marketed as imdevimab), REGN10933 (marketed as casirivimab), COV2-2196 (marketed as tixagevimab), COV2-2130 (marketed as cagilavimab) and CT-P59 (marketed as regdanvimab), which block binding of Spike protein to the receptor ACE2.\textsuperscript{121} Most of these antibodies lost their neutralizing ability against Omicron due to the destruction of the antigenic epitope.\textsuperscript{16,77,79,104,124,126} K417N, E484A, Q493R, and N501Y are the main sites responsible for the evasion.\textsuperscript{11} The combination of COV2-2196 and COV2-2130 exhibits neutralizing activity against Omicron; however, its neutralization ability against Omicron is lower compared with that against the WT.\textsuperscript{16,115,124–126} Due to the N440K and G446S mutations,\textsuperscript{127} the neutralization ability against Omicron is extremely weak. Most therapeutic-neutralizing antibodies from vaccines and previous infections against the Omicron variant.

In this section, we summarized the effect of neutralizing antibodies from vaccines and previous infections against the Omicron variant. The neutralizing ability of therapeutic-neutralizing antibodies against Omicron is weak. Most therapeutic-neutralizing antibodies with EUA approval or at advanced clinical development stages have failed to neutralize the Omicron variant (Table 1).\textsuperscript{124–126} Neutralizing antibodies can be divided into two groups. The first group contains the vast majority of neutralizing antibodies, including LY-CoV555 (marketed as bamlanivimab), LY-CoV016 (marketed as etesevimab), REGN10987 (marketed as imdevimab), REGN10933 (marketed as casirivimab), COV2-2196 (marketed as tixagevimab), COV2-2130 (marketed as cagilavimab) and CT-P59 (marketed as regdanvimab), which block binding of Spike protein to the receptor ACE2.\textsuperscript{121} Most of these antibodies lost their neutralizing ability against Omicron due to the destruction of the antigenic epitope.\textsuperscript{16,77,79,104,124,126} K417N, E484A, Q493R, and N501Y are the main sites responsible for the evasion.\textsuperscript{11} The combination of COV2-2196 and COV2-2130 exhibits neutralizing activity against Omicron; however, its neutralization ability against Omicron is lower compared with that against the WT.\textsuperscript{16,115,124–126} Due to the N440K and G446S mutations,\textsuperscript{127} the neutralization ability against Omicron is extremely weak. Most therapeutic-neutralizing antibodies from vaccines and previous infections against the Omicron variant. In this section, we summarized the effect of neutralizing antibodies from vaccines and previous infections against the Omicron variant. The neutralizing ability of therapeutic-neutralizing antibodies against Omicron is weak. Most therapeutic-neutralizing antibodies with EUA approval or at advanced clinical development stages have failed to neutralize the Omicron variant (Table 1).\textsuperscript{124–126} Neutralizing antibodies can be divided into two groups. The first group contains the vast majority of neutralizing antibodies, including LY-CoV555 (marketed as bamlanivimab), LY-CoV016 (marketed as etesevimab), REGN10987 (marketed as imdevimab), REGN10933 (marketed as casirivimab), COV2-2196 (marketed as tixagevimab), COV2-2130 (marketed as cagilavimab) and CT-P59 (marketed as regdanvimab), which block binding of Spike protein to the receptor ACE2.\textsuperscript{121} Most of these antibodies lost their neutralizing ability against Omicron due to the destruction of the antigenic epitope.\textsuperscript{16,77,79,104,124,126} K417N, E484A, Q493R, and N501Y are the main sites responsible for the evasion.\textsuperscript{11} The combination of COV2-2196 and COV2-2130 exhibits neutralizing activity against Omicron; however, its neutralization ability against Omicron is lower compared with that against the WT.\textsuperscript{16,115,124–126} Due to the N440K and G446S mutations,\textsuperscript{127} the neutralization ability against Omicron is extremely weak. Most therapeutic-neutralizing antibodies from vaccines and previous infections against the Omicron variant.

In this section, we summarized the effect of neutralizing antibodies from vaccines and previous infections against the Omicron variant. The neutralizing ability of therapeutic-neutralizing antibodies against Omicron is weak. Most therapeutic-neutralizing antibodies with EUA approval or at advanced clinical development stages have failed to neutralize the Omicron variant (Table 1).\textsuperscript{124–126} Neutralizing antibodies can be divided into two groups. The first group contains the vast majority of neutralizing antibodies, including LY-CoV555 (marketed as bamlanivimab), LY-CoV016 (marketed as etesevimab), REGN10987 (marketed as imdevimab), REGN10933 (marketed as casirivimab), COV2-2196 (marketed as tixagevimab), COV2-2130 (marketed as cagilavimab) and CT-P59 (marketed as regdanvimab), which block binding of Spike protein to the receptor ACE2.\textsuperscript{121} Most of these antibodies lost their neutralizing ability against Omicron due to the destruction of the antigenic epitope.\textsuperscript{16,77,79,104,124,126} K417N, E484A, Q493R, and N501Y are the main sites responsible for the evasion.\textsuperscript{11} The combination of COV2-2196 and COV2-2130 exhibits neutralizing activity against Omicron; however, its neutralization ability against Omicron is lower compared with that against the WT.\textsuperscript{16,115,124–126} Due to the N440K and G446S mutations,\textsuperscript{127} the neutralization ability against Omicron is extremely weak. Most therapeutic-neutralizing antibodies from vaccines and previous infections against the Omicron variant.
### Table 1. Neutralizing antibodies against SARS-CoV-2 Omicron variant

| Stages | Antibody name | Company | Neutralizing effect compared to SARS-CoV-2 WT | Mutations affecting neutralizing efficiency | Refs. |
|--------|---------------|---------|-----------------------------------------------|--------------------------------------------|-------|
| EUA (combined with etesevimab) | LY-CoV555 (bamlanivimab) | Lilly | Completely lost its activity | E484A, Q493R | 75 |
| EUA (combined with bamlanivimab) | LY-CoV016 (etesevimab) | Lilly | Completely lost its activity | S371L, K417N, Q493R; S371F, D405N | 75,128 |
| EUA | LY-CoV1404 (bebtelovimab) | Lilly | Almost identical | — | 128,130 |
| EUA (combined with casirivimab) | REGN10937 (imdevimab) | Regeneron Pharmaceuticals | Completely lost its activity | S371L, N440K, G446S; S371F | 75,115,128 |
| EUA (combined with imdevimab) | REGN10933 (casirivimab) | Regeneron Pharmaceuticals | Completely lost its activity | S371L, K417N, S477N, E484A, Q493R; S371F | 75,115,128 |
| EUA (combined with tixagevimab) | COV2-2196 (tixagevimab) | AstraZeneca | Hundreds of times reduced | E484A, Q493R; S371F | 16,128 |
| EUA (combined with cilgavimab) | COV2-2130 (cilgavimab) | AstraZeneca | Hundreds of times reduced in BA.1, but remained largely active in BA.2 | R346K; G446S | 16,128 |
| EUA | VIR-7831/S309 (sotrovimab) | GSK & Vir Biotechnology | 2–3-fold reduced in BA.1, but dozens of times reduced in BA.2 | G339D, S371L; S371F | 75,127,128 |
| Stage II | CT-P59 (regdanvimab) | Celltrion | Completely lost its activity | K417N, G446S, E484A, Q493R | 16,127 |
| Stage II | Brii-196 (amubarvimab) | Brii Biosciences | Hundreds of times reduced | S371L, Q493R, S371F | 75,128 |
| Stage III | Brii-198 (romlusevimab) | Brii Biosciences | Maintains activity in BA.1, but is inhibited by R346K | R346K; S371F | 75,128 |
| Stage III | ADG20 (adintrevimab) | Adagio Therapeutics, Inc. | 20–200-folds reduced in BA.1, but almost lost activity in BA.2 | S371L; S371F | 75,77,115,128 |
| Stage I | DXP-604 | SINGLOMICS | About thirty times reduced | — | 76 |
| Preclinical | S2X259 | Humabs Biomed SA-Swiss Biotech | About ten times reduced in BA.1, and hundred times reduced in BA.2 | S371L; S371F | 75,128 |
| Preclinical | S2K146 | Vir Biotechnology | Basically retained activity | K417N, T478K, E484A, Q496S | 16 |
| Preclinical | S2H97 | Vir Biotechnology | Basically retained activity | — | 16 |
IFN responses, especially in patients with severe disease, which might contribute to the limited antiviral response. Therefore, targeting antiviral responses could be important in managing SARS-CoV-2. A recent study showed that the N protein of SARS-COV-2 inhibits the activity of MAVS, a key component of antiviral innate immunity, by undergoing liquid-liquid phase separation (LLPS) with RNA, thereby suppressing the antiviral immune response. Interestingly, the 246–365 domain of the N protein, which retains the phase-separation ability, is hardly mutated in the currently reported SARS-CoV-2 variants, including Omicron. Thus, targeting the SARS2-N protein LLPS could be a promising therapeutic approach against infection WT and variants of SARS-CoV-2. These potential treatments may help curb ongoing pandemics as well as any future outbreaks (Fig. 4).

**CONCLUSIONS AND PERSPECTIVES**

The Omicron variant has attracted worldwide attention since its emergence owing to the high number of mutations, which increased its transmissibility and immune evasion capability. Although the binding ability of Omicron to ACE2 is still controversial, it has enhanced transmissibility, making it the dominant species in several regions within a short period of time. Omicron spikes inefficiently utilize TMPRSS2 to enter cells, but mainly rely on the endocytic pathway, which leads to a decrease in replication in the lung parenchyma and an enhanced ability to infect the upper respiratory tract, making the virus less pathogenic. Routine vaccination or a previous infection cannot provide effective protection against Omicron, and booster vaccination is required. Additionally, only a few neutralizing antibodies are active against Omicron, whereas most antiviral drugs in development are effective against it.

In the wake of the Omicron variant, it was believed that the effect would be minimal due to herd immunity established by vaccination and infection, and the development of specific drugs. Moreover, the discovery of the Omicron variant indicates that the attempt to end the COVID-19 pandemic might be hindered by the tendency of the virus to mutate. The major research focus should be the development of vaccines and drugs against possible variants of the virus.

Since the outbreak of the Omicron variant, several studies have been performed to improve our understanding of the mechanism and characteristics of the variant. Currently, vaccines, social distancing, and specific drugs are still effective means of resisting Omicron. Homologous or heterologous boosters and new vaccines against Omicron, and possibly new variants, have been proposed to improve protection in response to vaccine failure. However, early animal experiments have shown that Omicron-targeted vaccines were not more effective than booster jabs of already developed vaccines against the variant, although they all generated broad antibody responses to all variants, including Omicron. In naive mice immunized with Omicron-matched vaccines, high levels of potent antibodies against Omicron were produced, but their ability to inhibit previous variants was limited.

Although it is believed that the omicron variant may likely not be the last mutant, it is expected that its effect will decrease with increasing immunity among the populace due to vaccines and infections. A previous study indicated that Omicron infection
of vaccinated individuals, but not unvaccinated individuals, increases neutralizing activity against the Delta variant, indicating that the occurrence of previous variants is likely to reduce. Although no novel mutant has been discovered, the general trend is that the virus is becoming less severe, mainly because of enhanced immunity.

Furthermore, to effectively combat the Omicron variant and the pandemic in general, it is important to emphasize equal distribution of vaccines, especially in underdeveloped and developing regions. Presently, the three-injection vaccine can provide effective protection against Omicron, although there will be a percentage of breakthrough infections with milder symptoms. Some countries have approved the implementation of the fourth-injection vaccines. Recent research shows that the protection provided by the third dose of vaccines wanes over time, while the antibody levels can be restored by a fourth dose. Therefore, it is beneficial to administer a fourth dose of the vaccine to certain groups such as the elderly and immunocompromised individuals. Nevertheless, it is more crucial to complete the three doses of vaccination in a larger population than the fourth dose in healthy individuals, although we may need more boosters to maintain antibody levels in the long run. Furthermore, social distancing restrictions should not be lifted prematurely, as this can lead to unpredictable consequences.

ACKNOWLEDGEMENTS

We would like to apologize to those researchers whose related work we were not able to cite in this review. This work was supported by a special program from the Ministry of Science and Technology of China (2021YFA1101000), the Chinese National Natural Science Funds (31925013 and 120A03093 to L.Z.; 31871405, 32125016 and 82041009 to F.Z.), Zhejiang Provincial Natural Science Foundation of China under Grant (LY21H060001 to L.Z.) and the Medical and the Medical and Health Research Project of Zhejiang Province (2020RC115 to L.Z.), and the Key Project of University Natural Science Foundation of Zhejiang Province (LJ21H060003), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Medical and Health Research Project of Zhejiang Province (2020RC155 to L.Z.).

AUTHOR CONTRIBUTIONS

Y.P. and X.L. conceived and drafted the manuscript. S.W., L.Z., and F.Z. provided valuable discussion and revised the manuscript. All authors have read and approved the article.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. Ledford, H. How severe are Omicron infections? Nature 600, 577–578 (2021).
2. Burki, T. K. Omicron variant and booster COVID-19 vaccines. Lancet Respir. Med. 10, e17 (2022).
3. Kupferschmidt, K. Where did ‘weird’ Omicron come from? Science 374, 1179 (2021).
4. Li, Q. et al. SARS-CoV-2 S01Y.V2 variants lack higher infectivity but do have immune escape. Cell 184, 2362–2371 (2021).
5. Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184, 2372–2383 (2021).
6. Cao, Y. et al. Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Res. 31, 732–741 (2021).
7. Greaney, A. J. et al. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe 29, 44–57 (2021).
8. Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).
9. Pulliam, J. R. C. et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science. https://doi.org/10.1126/science.abn9497 (2022).
10. Abdullah, F. Tshwane district omicron variant patient profile - early features. https://www.samrc.ac.za/news/tshwane-district-omicron-variant-patient-profile-early-features (2022).
11. Zhang, X. et al. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct. Target Ther. 6, 430 (2021).
12. Dong, Y. et al. Coronavirus in continuous flux: from SARS-CoV to SARS-CoV-2. Adv. Sci. 7, 2001474 (2020).
13. Ghebrial, M. et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ. Res. 126, 1456–1474 (2020).
14. Yin, W. et al. Structures of the Omicron Spike trimer with ACE2 and an anti-Omicron antibody. Science 375, 1048–1053 (2022).
15. Cui, Z. et al. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 185, 860–871 (2021).
16. Camerone, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigen shift. Nature 602, 664–670 (2021).
17. Mannar, D. et al. SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science 375, 760–764 (2022).
18. Wu, L. et al. SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. Signal Transduct. Target Ther. 7, 8 (2022).
19. Han, P. et al. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 185, 630–640 (2022).
20. Hoffmann, M. et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 185, 447–456 (2022).
21. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).
22. Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).
23. Bayati, A., Kumar, R., Francis, V. & McPherson, P. S. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 296, 100306 (2021).
24. Zhang, L. et al. Furin cleavage of the SARS-CoV-2 spike is modulated by O-glycosylation. Proc. Natl Acad. Sci. USA 118, e2109905118 (2021).
25. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).
26. Simmons, G. et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl Acad. Sci. USA 102, 11876–11881 (2005).
27. Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity. Nature 603, 706–714 (2022).
28. Peacock, T. P. et al. The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endothelial route of entry. Preprint at bioRxiv. https://doi.org/10.1101/2021.12.31.474653v1 (2022).
29. Willett, B. J. et al. The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism. Preprint at medRxiv. https://doi.org/10.1101/2022.01.03.21266111v2 (2022).
30. Zhao, H. et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg. Microbes Infect. 11, 277–283 (2022).
31. Hui, K. P. Y. et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature 603, 715–720 (2022).
32. Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603, 693–699 (2022).
33. Peacock, T. P. et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 6, 899–909 (2021).
34. Du, X. et al. Omicron adopts a different strategy from Delta and other variants to adapt to host. Signal Transduct. Target Ther. 7, 45 (2022).
35. Centers for Disease Control and Prevention. COVID data tracker: variant proportions. https://covid.cdc.gov/covid-data-tracker/variant-proportions (2022).
36. Liu, Y. & Rocklov, J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J. Travel Med. 28, taab124 (2021).
37. UK Health Security Agency. SARS-CoV-2 variants of concern and variants under investigation in England-Th echnical briefing 33. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1043807/technical-briefing-33.pdf (2022).
38. Long, B. et al. Clinical update on COVID-19 for the emergency clinician: presentation and evaluation. Am. J. Emerg. Med. 54, 46–57 (2022).
39. Yamashita, D. et al. Virological characteristics of SARS-CoV-2 BA.2 variant. Preprint at bioRxiv. https://doi.org/10.1101/2022.02.14.483335v1 (2022).
40. Lyngse, F. P. et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: evidence from Danish Households. Preprint at medRxiv. https://doi.org/10.1101/2021.01.28.22270044v1 (2022).
Davies, M. A. et al. Outcomes of laboratory-con
Ludvigsson, J. F. Convulsions in children with COVID-19 during the Omicron
Migueres, M. et al. In
Braga, L. et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-mediated syncytia formation. EMBO J. 40, e108944 (2021).

Bojkova, D. et al. Reduced interferon antagonism but similar drug sensitivity in Omicron variant compared to Delta-SARS-CoV-2 isolates. Cell Res. 32, 319–321 (2022).

Nealon, J. & Cowling, B. J. Omicron severity: milder but not mild. Lancet 399, 412–413 (2022).

Bhattacharyya, R. P. & Hanage, W. P. Challenges in inferring intrinsic severity of the SARS-CoV-2 Omicron variant. N. Engl. J. Med. 386, e14 (2022).

Ferguson, N. et al. Report 49: growth, population distribution and immune escape of Omicron in England. Imp. Coll. Lond. 93038, 1–10 (2021).

Maslo, C. et al. Characteristics and outcomes of hospitalized patients in South Africa during the COVID-19 Omicron wave compared with previous waves. J. Am. Med. Assoc. 327, 583–584 (2022).

Mahase, E. Covid-19: Hospital admission 50-70% less likely with omicron than with omicron, but transmission a major concern. BMJ 375, n3151 (2021).

Altarawneh, H. N. et al. Protection against the Omicron variant from previous SARS-CoV-2 infection. N. Engl. J. Med. 386, 1288–1290 (2022).

Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2021).

Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2021).

Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2021).

Kühlimann, C. et al. Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. Lancet 399, 625–626 (2022).

Dejnirattisai, W. et al. Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancet 399, 234–236 (2022).

Callaway, E. Why does the Omicron sub-variant spread faster than the original? Nature 602, 556–557 (2021).

Iuliano, A. D. et al. Trends in disease severity and health care utilization during the early Omicron variant period compared with previous SARS-CoV-2 high transmission periods—United States, December 2020-January 2022. MMWR Morb. Mortal. Wkly Rep. 71, 146–152 (2022).

Lewnard, J. A. et al. Clinical outcomes among patients infected with Omicron (B.1.1.529) SARS-CoV-2 variant in southern California. Preprint at medRxiv. https://doi.org/10.1101/2022.01.11.22269045v2 (2022).

McCallum, M. et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184, 2332–2347 (2021).

Zhang, L. et al. A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. Natl Sci. Rev. 8, nwu053 (2021).

Sun, C. et al. Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants. Signal Transduct. Target Ther. 7, 42 (2022).

Dejnirattisai, W. et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell 184, 2183–2200 (2021).

Kuhlmann, C. et al. Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. Lancet 399, 625–626 (2022).

Sun, C. et al. Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants. Signal Transduct. Target Ther. 7, 42 (2022).

Dejnirattisai, W. et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell 184, 2183–2200 (2021).

McCallum, M. et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184, 2332–2347 (2021).

Zhang, L. et al. A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. Natl Sci. Rev. 8, nwu053 (2021).

Sun, C. et al. Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants. Signal Transduct. Target Ther. 7, 42 (2022).

Dejnirattisai, W. et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell 184, 2183–2200 (2021).

Kuhlmann, C. et al. Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. Lancet 399, 625–626 (2022).

Sun, C. et al. Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants. Signal Transduct. Target Ther. 7, 42 (2022).

Dejnirattisai, W. et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell 184, 2183–2200 (2021).

Kuhlmann, C. et al. Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. Lancet 399, 625–626 (2022).

Sun, C. et al. Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants. Signal Transduct. Target Ther. 7, 42 (2022).

Dejnirattisai, W. et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell 184, 2183–2200 (2021).

Kuhlmann, C. et al. Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. Lancet 399, 625–626 (2022).

Sun, C. et al. Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants. Signal Transduct. Target Ther. 7, 42 (2022).

Dejnirattisai, W. et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell 184, 2183–2200 (2021).

Kuhlmann, C. et al. Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. Lancet 399, 625–626 (2022).

Sun, C. et al. Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants. Signal Transduct. Target Ther. 7, 42 (2022).
100. Nemet, I. et al. Third BNT162b2 vaccination neutralization of SARS-CoV-2 Omicron variant. *Nat. Med.* 28, 477–480 (2022).

101. Wu, M. et al. Three-dose vaccination elicits neutralizing antibodies against omicron. *Lancet* 399, 715–717 (2022).

102. Muik, A. et al. Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera. *Science* 375, 678–680 (2022).

103. Sievers, B. L. et al. Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. *Sci. Transl. Med.* 14, eabn7842 (2022).

104. Kotaki, R. et al. SARS-CoV-2 Omicron-neutralizing memory B-cells are elicited by two doses of BNT162b2 mRNA vaccine. *Sci. Immunol.* https://doi.org/10.1126/sciimmunol.abn5850 (2022).

105. Cele, S. et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. *Nature* 602, 654–656 (2021).

106. Wilhelm, A. et al. Reduced neutralization of SARS-CoV-2 Omicron variant by vaccine sera and monoclonal antibodies. Preprint at https://www.medrxiv.org/content/10.1101/2021.12.07.21267432v2 (2021).

107. Accorsi, E. K. et al. Association between 3 doses of mRNA COVID-19 Vaccine and reduced neutralization of SARS-CoV-2 Omicron variant. Preprint at bioRxiv https://doi.org/10.1101/2021.11.03.443248v1 (2021).

108. Moss, P. The T cell immune response against SARS-CoV-2. *Cell* 185, 101–104 (2022).

109. GeurtsvanKessel, C. H. et al. Divergent SARS-CoV-2 Omicron-reactive T- and B-cell responses in COVID-19 vaccine recipients. *Sci. Immunol.* 7, eabq2202 (2021).

110. Liu, J. et al. Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. *Nature* 603, 493–496 (2022).

111. Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. *Cell* 185, 847–859 (2022).

112. Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. *Nat. Med.* 28, 472–476 (2022).

113. Keeton, R. et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. *Nature* 603, 488–492 (2022).

114. Naranbhai, V. et al. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. *Cell* 185, 1041–1051 (2022).

115. Degnirattisai, W. et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. *Cell* 185, 467–484 (2022).

116. Wratil, P. R. et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. *Nat. Med.* 28, 496–503 (2022).

117. Kakuc, C. et al. Broad anti-SARS-CoV-2 antibody immunity induced by heterologous ChAdOx1/mRNA-1273 vaccination. *Science* 375, 1047–1047 (2022).

118. Costa Clemens, S. A. et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. *Lancet* 399, 521–529 (2022).

119. Zhang, Z. et al. Aerosolized Ad5-nCoV booster vaccination elicited potent immune response against the SARS-CoV-2 Omicron variant after inactivated COVID-19 vaccine priming. Preprint at medRxiv. https://doi.org/10.1101/2022.03.08.22217161v1 (2022).

120. Liu, X. et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. *Lancet* 398, 856–869 (2021).

121. Zhao, X. et al. Effects of a prolonged booster interval on neutralization of Omicron variant. *N. Engl. J. Med.* 386, 894–896 (2022).

122. Moncunill, G. et al. Determinants of early antibody responses to COVID-19 mRNA vaccines in a cohort of exposed and naive healthcare workers. *Ebiomedicine* 75, 103805 (2022).

123. Chatterjee, D. et al. SARS-CoV-2 Omicron Spike recognition by plasma from individuals receiving BNT162b2 mRNA vaccination with a 16-weeks interval between doses. *Cell Rep.* 38, 110429 (2022).

124. Vanblangaren, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. *Nat. Med.* 28, 490–495 (2022).

125. Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. *Nature* 584, 443–449 (2020).