ON A RESULT OF MIYANISHI-MASUDA

HUBERT FLENNER AND MIKHAIL ZAIDENBERG

1. Introduction

Let X be a smooth affine surface over \mathbb{C} with an affine ruling (an \mathbb{A}^1-fibration) $\rho : X \to \mathbb{A}^1_\mathbb{C}$. Assume that ρ is surjective, has a unique degenerate fiber, and this fiber is irreducible. In [3] such a surface X is called affine pseudo-plane. It is of class ML_1 if ρ is essentially unique, that is for any other affine ruling $\rho' : X \to \mathbb{A}^1_\mathbb{C}$, the general fibers of ρ and ρ' are the same. In [3] the following classification result is obtained.

Theorem 1.1. (Miyanishi-Masuda) Suppose that X is an affine pseudo-plane of class ML_1. If X admits an effective \mathbb{C}^*-action then the following hold.

(i) This \mathbb{C}^*-action is necessarily hyperbolic.

(ii) The universal covering $\tilde{f} : \tilde{X} \to X$ is a cyclic covering of degree d, where d is the multiplicity of the unique degenerate fiber of ρ.

(iii) \tilde{X} is an affine hypersurface in $\mathbb{A}^3_\mathbb{C} = \text{Spec} \mathbb{C}[x, y, z]$ with equation $x^m y = z^d - 1$ for some $m > 1$.

(iv) The Galois group $\mathbb{Z}_d = \langle \zeta \rangle$ of the covering $\tilde{f} : \tilde{X} \to X$, where $\zeta = \zeta_d$ is a primitive d-th root of unity, acts on \tilde{X} via $\zeta \cdot (x, y, z) = (\zeta x, \zeta^{-m} y, \zeta^e z)$, where $\gcd(e, d) = 1$.

(v) The \mathbb{C}^*-action $\lambda \cdot (x, y, z) := (\lambda x, \lambda^{-m} y, \lambda^e z)$ ($\lambda \in \mathbb{C}^*$) on \tilde{X} descends to the given \mathbb{C}^*-action on X, up to replacing λ by λ^{-1}.

Let us add some remarks. An affine ruling on X induces an affine ruling $\tilde{\rho} : \tilde{X} \to \mathbb{A}^1_\mathbb{C}$ with a unique degenerate fiber consisting of d disjoint components isomorphic to $\mathbb{A}^1_\mathbb{C}$. In case $m > 1$ there is an essentially unique such affine ruling on \tilde{X}, defined by the restriction $x|\tilde{X}$. However, for $m = 1$, $y|\tilde{X}$ gives a second independent affine ruling, which also descends to $X = \tilde{X}/\mathbb{Z}_d$. Thus in this case X cannot be a ML_1 surface.

If we want the \mathbb{Z}_d-action on \tilde{X} to be free, the exponents e and d above must be coprime. Indeed, otherwise $\zeta^b = 1$ for some b with $0 < b < d$, and we would have $\zeta^b (0, 0, z) = (0, 0, z)$ for every d-th root of unity z.

On the other hand, for every triple (d, e, m) with $d \geq 1, m \geq 2$ and $\gcd(e, d) = 1$, (iii)-(v) determine a smooth affine pseudo-plane X of class ML_1 with an effective \mathbb{C}^*-action. Thus Theorem 1.1 provides indeed a complete classification of these surfaces.

Here we give an alternative proof of Theorem 1.1 based on the results in [1, 2].

2. The proof

Under the assumptions of Theorem 1.1 $X \not\cong \mathbb{A}^2_\mathbb{C}$, since otherwise X would admit another affine ruling $\rho' : X \to \mathbb{A}^1_\mathbb{C}$ with general fibers different from those of ρ, which contradicts the condition ML_1.

This research was done during a visit of the first author at the Institut Fourier of the University of Grenoble. He thanks this institution for its hospitality and support.

2000 Mathematics Subject Classification: 13A02, 13F15, 14R05, 14L30.

Key words: affine pseudo-plane, \mathbb{C}^*-action, \mathbb{C}_+-action, affine surface.
A smooth affine surface X with an elliptic \mathbb{C}^*-action is always isomorphic to \mathbb{A}^2_k, so this case is impossible. If X is smooth and the \mathbb{C}^*-action on X is parabolic then according to Proposition 3.8(b) in [1], $X = \text{Spec } A_0[D]$ for an integral divisor D on a smooth affine curve $C = \text{Spec } A_0$. The existence of an affine ruling ρ on X with the base \mathbb{A}^2_k implies that $C \cong \mathbb{A}^1_{\mathbb{C}}$. Hence D is a principal divisor. By Theorem 3.2(b) in [1], we have again $X \cong \mathbb{A}^2_{\mathbb{C}} = \text{Spec } A_0[0]$ with $A_0 = \mathbb{C}[t]$, which is impossible.

Thus the \mathbb{C}^*-action on $X = \text{Spec } A$ is necessarily hyperbolic. Accordingly we can write

$$A = A_0[D_+, D_-]$$

with a pair of \mathbb{Q}-divisors D_{\pm} on a smooth affine curve $C = \text{Spec } A_0$ satisfying $D_+ + D_- \leq 0$, see Theorem 4.3 in [1]. The remainder of the proof is based on Lemmas 2.1 and 2.2 below.

Lemma 2.1. Under the assumptions of Theorem 1.1, $A \cong A_0[D_+, D_-]$, where $A_0 = \mathbb{C}[t]$ and

$$D_+ = -\frac{e'}{d} [0], \quad D_- = \frac{e'}{d} [0] - \frac{1}{m} [1].$$

Proof of Lemma 2.1. By Lemmas 1.6 and 2.1 in [2], X admits an affine ruling over an affine base if and only if it admits a non-trivial \mathbb{C}^*-action defined by a non-zero homogeneous locally nilpotent derivation $\partial \in \text{Der}(A)$. Moreover, $A_0 = \mathbb{C}[t]$ in [1]; and, up to an automorphism $\lambda \mapsto \lambda^{-1}$ of \mathbb{C}^* (thus switching $(D_+, D_-) \leftrightarrow (D_-, D_+)$) we may assume that $e = \deg \partial \geq 0$. By Lemma 3.5 and Corollary 3.27 in [2], $e = 0$ implies that $X \cong \mathbb{A}^1_{\mathbb{C}} \times \mathbb{C}^*$, so the induced affine ruling $X \to \mathbb{C}^*$ is essentially unique and has the base \mathbb{C}^*, which contradicts our assumption. Thus $e > 0$.

According to Corollary 3.23 in [2], the latter implies that the fractional part $\{D_+\} = D - [D]$ is zero or is supported on one point, and we can choose this point to be $0 \in \mathbb{A}^1_{\mathbb{C}}$. Such a surface $X = \text{Spec } A$ is of class ML$_1$ if and only if the fractional part $\{D_-\}$ is supported on at least 2 points, see [2, Theorem 4.5].

Replacing (D_+, D_-) by the equivalent pair $(\{D_+\}, D_- + [D_+])$ (see Theorem 4.3(b) in [1]) we may suppose that $D_+ = \{D_+\} = -e'/d[0]$, where $\gcd(e', d) = 1$ and $d > 0$.

For any affine pseudo-plane X, the Picard group PicX is a torsion group [3, Ch. 3, 2.4.4]. On the other hand, for a \mathbb{C}^*-surface X as above, $\text{rk}_\mathbb{Q} (\text{Pic}X \otimes \mathbb{Q}) \geq l - 1$, where l is the number of points $b_j \in \mathbb{A}^1_{\mathbb{C}}$ such that $(D_+ + D_-)(b_j) < 0$, see Corollary 24.24 in [2]. Hence $l \leq 1$ and so, $\exists p \in \mathbb{A}^1_{\mathbb{C}} : (D_+ + D_-)(q) = 0 \forall q \neq p$.

Since $D_+ (q) = 0 \forall q \neq 0$ we have $D_-(q) = 0 \forall q \neq 0, p$. It follows that $\text{supp}(D_-) = \text{supp}(\{D_-\}) = \{0, p\}$ with $p \neq 0$. After an automorphism of $\mathbb{A}^1_{\mathbb{C}}$ we may assume that $p = 1$. Thus finally

$$D_\pm (0) = \mp e'/d, \quad D_+(1) = 0, \quad D_-(1) = a/m \not\in \mathbb{Z} \quad \text{and} \quad D_\pm (q) = 0 \forall q \neq 0, 1,$$

where $\gcd(a, m) = 1$ and $m > 0$. The smoothness of X forces $a = -1$, see Theorem 4.15 in [1]. This proves Lemma 2.1.

Next we use the following description [2, Corollary 3.30], where for a \mathbb{Q}-divisor D, $d(D)$ denotes the minimal positive integer d such that dD is integral.

Lemma 2.2. We let $A = \mathbb{C}[t][D_+, D_-]$, where $D_+ + D_- \leq 0$, $d(D_+) = d$, $d(D_-) = k$. We assume that $D_+ = -\frac{e'}{d}[0]$ and $D_-(0) = -\frac{1}{k}$, and we let $\partial \in \text{Der}(A)$ be a homogeneous locally nilpotent derivation with $e = \deg \partial > 0$. Then there exists a
unitary polynomial $Q \in \mathbb{C}[t]$ with $Q(0) \neq 0$ and $\text{div}(t^i Q(t)) = -kD_-$ such that, if $A' = A_{k,P}$ is the normalization of $A_{k,P}$, then

$$B_{k,P} = \mathbb{C}[u,v,s]/\left(u^k v - P(s)\right), \quad \text{where} \quad P(s) = Q(s^d)s^{ke'+dl},$$

then the group $\mathbb{Z}_d = \langle \zeta \rangle$ acts on $B_{k,P}$ and also on A' via

$$\zeta(u,v,s) = (\zeta^{e'}u, v, \zeta s),$$

so that $A \cong A'^{\mathbb{Z}_d}$. Furthermore, $ee' \equiv 1 \mod d$ and $\partial \equiv cu \frac{\partial}{\partial s}$ for some constant $c \in \mathbb{C}^*$. With this result we can complete the proof of Theorem 1.1 as follows. We may assume that $A = A_0[D_+, D_-]$ with $A_0 = \mathbb{C}[t]$ and (D_+, D_-) as in Lemma 2.1. With $k := \text{lcm}(d, m)$ let us write $k = mm' = dd'$ and $l = -e'd'$, so that

$$D_+ = -e'd'[0] = \frac{l}{k}[0], \quad D_- = \frac{e'}{d'}[0] - \frac{1}{m}[1] = -\frac{l}{k}[0] - \frac{m'}{k}[1].$$

Thus Lemma 2.2 can be applied in our setting with $Q = (t - 1)^{m'}$. By this lemma, $A = A'^{\mathbb{Z}_d}$, where A' is the normalization of

$$B = \mathbb{C}[u,v,s]/\left(u^k v - (s^d - 1)^{m'}\right),$$

with the action of \mathbb{Z}_d as in [3] and with the \mathbb{C}^*-action $\lambda(u,v,s) = (\lambda u, \lambda^{-k} v, s)$.

The element $w = \frac{s^d - 1}{u_m} \in \text{Frac}(B)$ satisfies $w^{m'} = v$ and so is integral over B, hence

$$A' \cong \mathbb{C}[u,w,s]/(u^m w - (s^d - 1)).$$

Because of [3] we have $\zeta w = \zeta^{-me'}w$. Thus after applying an automorphism $\zeta \mapsto \zeta^{e'}$ of \mathbb{Z}_d, both the \mathbb{Z}_d-action and the \mathbb{C}^*-action on $\tilde{X} = \text{Spec} A' \subseteq \mathbb{A}^3_\mathbb{C} = \text{Spec} \mathbb{C}[u,w,s] \cong \text{Spec} \mathbb{C}[x,y,z]$ have the claimed form

$$\zeta(u,w,s) = (\zeta u, \zeta^{-m}w, \zeta^{e'} s) \quad \text{respectively}, \quad \lambda(u,w,s) = (\lambda u, \lambda^{-m} w, s).$$

This proves the theorem. □

REFERENCES

[1] H. Flenner, M. Zaidenberg: Normal affine surfaces with \mathbb{C}^*-actions. Osaka J. Math. 40, 2003, 981–1009.
[2] H. Flenner, M. Zaidenberg: Locally nilpotent derivations on affine surfaces with a \mathbb{C}^*-action. Prépublication de l’Institut Fourier de Mathématiques, 638, Grenoble 2004; math.AG/0403215; to appear in Osaka J. Math.
[3] K. Masuda, M. Miyanishi: Affine Pseudo-planes with torus actions. Preprint, 2005.
[4] M. Miyanishi: Open algebraic surfaces. CRM Monograph Series, 12. Amer. Math. Soc., Providence, RI, 2001.

Fakultät für Mathematik, Ruhr Universität Bochum, Geb. NA 2/72, Universitätsstrasse 150, 44780 Bochum, Germany
E-mail address: Hubert.Flenner@rub.de

Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin d’Hères cédex, France
E-mail address: zaidenbe@ujf-grenoble.fr