Intrahepatic splenosis: a world review

Weh Shien Toh¹, Kai Siang Chan¹,², Cristine Szu Lyn Ding³, Cher Heng Tan⁴, Vishal G. Shelat²

¹MOH Holdings, Singapore
²Department of General Surgery, Tan Tock Seng Hospital, Singapore
³Department of Pathology, Tan Tock Seng Hospital, Singapore
⁴Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore

Abstract

Splenosis is defined as the autotransplantation of viable splenic tissue throughout various anatomic compartments. Intrahepatic splenosis (IHS) is rare and diagnosis is often challenging. This study aims to provide a comprehensive review on IHS. A literature review was performed on PubMed database. Fifty-six articles with 59 reported cases were included. The majority of the patients were male (n = 49, 83.1%). Median age was 51 years. Risk factors for hepatocellular carcinoma (HCC) included hepatitis B (n = 8, 13.6%) and cirrhosis (n = 12, 20.3%). The majority of the patients were asymptomatic (62.7%) and did not have risk factors for HCC (55.9%). We report a diagnostic triad for IHS: 1) previous history of abdominal trauma or splenectomy, 2) absence of risk factors for liver malignancy and 3) typical imaging features. Non-invasive diagnostic tests such as technetium-99m-tagged heat-damaged red blood cell scintigraphy are useful in diagnosis. Malignancy should be ruled out in the presence of risk factors for HCC.

Key words: intrahepatic splenosis, hepatocellular carcinoma, splenectomy, liver tumour, liver mass.

Address for correspondence:
Dr. Kai Siang Chan, Department of General Surgery, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, e-mail: kchan023@e.ntu.edu.sg

Introduction

Splenosis was first described by Albrecht in 1896 and subsequently named by Buchbinder and Lipkoff in 1939 [1]. Splenosis is defined as the autotransplantation of viable splenic tissue throughout various anatomic compartments of the body. Previous splenectomy, abdominal trauma or splenic rupture predisposes to splenosis [2]. Intra-abdominal splenosis involving the serosal surface of the small or large bowel, parietal peritoneum and mesentery is relatively common [3]. However, intrahepatic splenosis (IHS) is rare, with many authors quoting fewer than 50 cases published to date [4-6]. Diagnosis of IHS is often challenging as patients are often asymptomatic or present with non-specific abdominal pain, and radiological imaging findings may resemble other hepatic lesions, particularly hepatocellular carcinoma (HCC), adenoma and focal nodular hyperplasia (FNH). With the increase in abdominal imaging for patients with vague abdominal symptoms and better quality of imaging technology, incidental liver lesions are common. Once a liver lesion is detected, a clinician is faced with a challenge to diagnose the lesion with certainty with the primary goal of ruling out a malignancy. IHS is a benign condition and does not warrant surveillance or intervention unless the patient is severely symptomatic. Definitive diagnosis of IHS is possible with percutaneous needle biopsy, intra-operative frozen section or post-operative histopathological analysis or technetium-99m-tagged (Tc-99m) heat-damaged red blood cell scintigraphy. However, patients undergoing additional diagnostic tests may bear unnecessary costs and morbidity. This is compounded by anxiety associated with the waiting interval or knowledge of false negative reports. Hence it is important to understand this pathological condition and its clinical features. To date, there are two literature reviews on IHS which summarize reported cases [4, 7]. However, these reviews do not include the clinical presentation, presence of risk factors...
for malignancy, laboratory investigations and imaging characteristics. This study aims to provide a comprehensive overview on IHS.

Material and methods

A literature review was performed on PubMed database for the keywords "intrahepatic splenosis" OR "hepatic splenosis" from the period of 1939 to 2019. The last search was performed on 18 January 2020. The search yielded 81 articles: 11 articles were not in English, 6 articles were not case reports or series, 5 articles included isolated extrahepatic splenosis, 1 article was on splenosis in animals, 1 article included an incidental finding of splenosis on autopsy, and the full text was not available for 1 article. The remaining 56 articles were included in the analyses, with a total of 59 reported cases (Table 1) [4-59]. Year of study, age, sex, reason for splenectomy, time from splenectomy to presentation, presence of risk factors for HCC, clinical presentation, laboratory investigation results, imaging features, initial differential diagnoses and method of confirming diagnosis were extracted from the articles.

Figure 1 is a graphical representation of the trend of reporting of cases of IHS, which shows an increasing trend in reporting.

Results

Fifty-nine patients with IHS are reported with male predominance (n = 49, 83.1%) and a median age of 51 years (range 21-73 years). The majority of the patients had a prior history of splenectomy (n = 57, 95.0%). Two patients did not have any history of abdominal trauma or splenectomy. The median time from splenectomy to diagnosis of splenosis was 21 years (range 1.5-47 years). Reported risk factors for HCC were as follows: 1) hepatitis B (n = 8, 13.6%), 2) hepatitis C (n = 12, 20.3%), 3) heavy alcohol use (n = 2, 3.4%), 4) fatty liver (n = 3, 5.1%) and 5) cirrhosis (n = 12, 20.3%). 33 (55.9%) patients did not have any of the abovementioned risk factors for HCC. The majority of the patients were asymptomatic (n = 37, 62.7%). 19 patients (32.2%) presented with abdominal pain and/or discomfort and 3 patients (5.1%) had atypical presentations: 1 patient had flu-like symptoms, loss of weight and loss of appetite and 2 patients had chronic lower back pain.

Many of the reported cases do not include the essential laboratory investigations such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and α-fetoprotein (AFP). Of those cases which included these investigations, 12 out of 36 patients (33.3%) had transaminitis, and 6 out of 34 patients (17.6%) had raised AFP. The majority of the reported cases were isolated IHS; 4 (6.8%) of the cases included both intrahepatic and extrahepatic splenosis. The specific imaging features and patterns of enhancement can be found in the appendix (Table 2).

HCC was considered the initial diagnosis in 29 patients (49.2%). IHS was considered as the primary diagnosis in 9 patients (15.3%). There were several reported modalities for confirmatory diagnoses: open liver resection (n = 21, 35.6%), laparoscopic liver resection (n = 2, 3.4%), explorative laparotomy (n = 7, 18.9%), explorative laparoscopy (n = 3, 5.1%), percutaneous needle biopsy (n = 15, 25.4%), and Tc-99m denucleated RBC scintigraphy (n = 10, 16.9%). One patient (1.7%) only had the contrasted CT scan resembling splenic enhancement and was diagnosed with IHS based on the clinical history of splenectomy and absence of risk factors for HCC [56].

Discussion

Splenosis is an acquired condition and is defined as the autotransplantation of splenic tissue following abdominal or splenic trauma or splenectomy, displacing fragmented splenic tissues which may subsequently regrow at implanted sites by acquiring a vascular supply. It has been suggested that local hypoxia induced by hepatic diseases and/or aging may induce splenic erythropoiesis of previously seeded tissues [60]. This is in contrast to an accessory spleen, which is a congenital condition due to the failure of embryological fusion of the splenic primordium and arises from the left side of the dorsal mesogastrium [2, 38].

The major dilemma in the diagnosis of IHS is the need for exclusion of malignancy such as HCC or liver metastases. Radiological findings for IHS mimic the hallmarks of HCC; hyperenhancement in the arterial phase with delayed washout in the portal venous phase and low signal intensity in the hepatobiliary phase [61]. In the presence of risk factors such as hepatitis B, hepatitis C, heavy alcohol use and/or cirrhosis, pri-
Table 1. Summary of 59 reported cases of intrahepatic splenosis from 1939 to 2019

No.	Year	First author	Age/ Sex	Reason for splenectomy	Time * (years)	Risk factor for HCC	Clinical presentation	Laboratory investigations#	No. of lesions	Location	Size (cm)	Initial diagnosis	Confirmatory diagnosis
1	1993	Yoshimitsu [8]	51/F	Banti syndrome	23	Cirrhosis	Asymptomatic	ALP elevated	1	S3	2.5	HCC	Surgery (liver resection)
2	1997	Gruen [9]	38/F	Trauma	20	Fatty liver	Asymptomatic	ALT, AST, ALP, bilirubin elevated	1	S3, S4	3.9	HCC/FNH	Surgery (liver resection)
3	1998	D’Angelica [10]	38/F	Trauma	20	Alcohol	Asymptomatic	ALT, AST, ALP, GGT, bilirubin elevated	1	S3, S4	2.5	Adenoma/FNH	Surgery (liver resection)
4	1999	Foroudi [11]	59/F	NM	47	Nil	Upper abdominal pain and back pain	Normal	Multiple	Right lobe	NM	Liver metastasis	Tc-99m DRBC
5	2000	De Vuysere [12]	50/M	Trauma	34	Nil	Epigastric pain	Normal	Multiple	S2	6	Hepatic splenosis	Surgery (biopsy)
6	2002	Gamulin [13]	49/M	Trauma	37	Nil	Asymptomatic	Normal	1	Left lobe	6.6 × 4.2	B-cell lymphoma	Surgery (explorative laparotomy)
7	2002	Lee [14]	43/M	Trauma	20	HBV Cirrhosis	Asymptomatic	Normal, except for INR	1	S6	3.5	HCC	Surgery (liver resection)
8	2002	Pekkafali [15]	21/M	Trauma	15	Nil	Epigastric pain	Normal	1	Left lobe	3.4 × 2.3	Hepatic splenosis	Tc-99m DRBC
9	2003	Kim [16]	43/M	Trauma	21	HBV Cirrhosis	Asymptomatic	Normal	1	S6	3	HCC	Surgery (liver resection)
10	2004	Di Costanzo [17]	58/M	Trauma	46	HBV Cirrhosis	Abdominal pain	AFP elevated	1	S2	4.8	HCC	Needle biopsy, Tc-99m DRBC
11	2006	Foroudi [11]	48/F	Trauma	41	HCV Cirrhosis	Asymptomatic	ALT, AST and AFP elevated	1	S3	3.1	HCC	US-guided biopsy
12	2004	Kondo [18]	55/M	Trauma	31	HCV	Asymptomatic	NM	1	S7	3.5	HCC/FN/Haemangioma	US-guided percutaneous biopsy
13	2006	Ferraioli [19]	40/M	Trauma	28	HCV	Asymptomatic	Normal	1	S7	6 × 3.1	HCC	US-guided biopsy
14	2008	Choi [20]	32/M	Trauma	26	HBV carrier	Asymptomatic	AST elevated	Multiple	S4a, S6	1.0-3.0	HCC	Surgery (explorative laparotomy)
15	2008	Grande [21]	41/M	Trauma	35	Nil	Asymptomatic	Normal	Multiple	S7	0.5-4.5	HCC	Surgery (liver resection)
16	2008	Imbriaco [22]	39/M	Trauma	24	Nil	Abdominal pain	NM	Multiple	Left and right lobes, pancreatic tail, adjacent to upper pole of left and right kidneys	3.0	Neoplasm	Surgery (explorative laparotomy)
No.	Year	First author	Age/ Sex	Reason for splenectomy	Timea (years)	Risk factor for HCC	Clinical presentation	Laboratory investigations#	No. of lesions	Location	Size (cm)	Initial diagnosis	Confirmatory diagnosis
-----	------	--------------	----------	------------------------	---------------	---------------------	----------------------	-------------------------	---------------	----------	-----------	----------------	----------------------
17	2008	Lu [23]	59/M	Trauma	5	NM	Asymptomatic	Normal	Multiple	S7, left lobe	1.2-2.2	Hepatic splenosis	Tc-99m DRBC
18	2008	Nakajima [24]	41/M	Trauma	21	Nil	Incidental finding	Normal	1	S6	NM	Hepatic splenosis	US-guided biopsy
19	2008	Yeh [25]	64/M	Trauma	8	HCV	Asymptomatic	ALT, AST elevated	1	S6	2.5	HCC	Surgery (liver resection)
20	2009	Hilal [26]	60/M	Trauma	46	Cirrhosis	Flu-like symptoms,	LFT deranged, AFP elevated	Multiple	S7	2 x 2.5	4.5	HCC
21	2009	Kashgari [27]	52/M	Trauma	30	HCV Cirrhosis	Asymptomatic	ALT, AST elevated	1	S7	2.1 x 1.5	HCC	US-guided biopsy
22	2009	Menth [28]	43/M	Trauma	25	Cirrhosis	Asymptomatic	ALT, AST elevated	Multiple	S2	0.4-3.6	HCC	Tc-99m DRBC
23	2009	Yu [29]	54/M	Trauma	20	Nil	Asymptomatic	Normal	1	S2	4	Uncertain	Surgery (liver resection)
24	2010	Mescoli [30]	68/F	No splenectomy	NA	Cirrhosis	Abdominal pain	NM	Multiple	S3, S5, S7	6.2-11	FNH/ haemangiomata	Percutaneous biopsy
25	2010	Tsitouridis [31]	63/M	Trauma	20	Nil	RUQ pain	NM	1	Left lobe	3	Liver metastasis	Surgery (explorative laparotomy)
26	2010	Inchingolo [34]	53/M	Trauma	33	NASH	Asymptomatic	GGT elevated	1	S3	3.5	HCC/adenoma	Surgery (laparoscopic resection)
27	2013	Kruczyk [35]	39/F	Trauma	14	Nil	Abdominal pain	Normal	1	S2	3.2 x 2.0	Adenoma	Tc-99m DRBC
Table 1. Cont.

No.	Year	First author	Age/ Sex	Reason for splenectomy	Time* (years)	Risk factor for HCC	Clinical presentation	Laboratory investigations*	No. of lesions	Location	Size (cm)	Initial diagnosis	Confirmatory diagnosis
33	2013	Leong [36]	56/M	Trauma	NM	Nil	Chronic epigastric pain	NM	1	S3	3.7 × 4.6 × 3.1	Carcinoid neuroendocrine tumour	Surgery (liver resection)
34	2014	Kandil [37]	45/F	Haemolytic anaemia	20	HCV	Chronic abdominal pain	Normal	1	Left lobe	5 × 4	HCC	Surgery (explorative laparotomy)
35	2014	Sato [38]	58/M	No splenectomy	NA	HCV Cirrhosis	Asymptomatic	ALT, AST, AFP elevated	1	Right lobe	3.9 × 3	HCC	Surgery (liver resection)
36	2014	Tinoco Gonzalez [39]	60/M	Trauma	NM	HCV	Asymptomatic	NM	1	S3	4.8	HCC/ Adenoma	Surgery (liver resection)
37	2015	Grambow [40]	53/M	Trauma	9	Alcohol Cirrhosis	Incidental finding due to refractory ascites secondary to decompensated cirrhosis	Normal	1	S3, S4b	3.5	HCC	Surgery (laparotomy)
38	2015	Li [41]	67/F	Trauma	5	HCV Cirrhosis	Asymptomatic	LFT deranged, AFP elevated	1	Left lobe	4.2 × 3.0	HCC	Surgery (explorative laparotomy)
39	2015	Liu [6]	33/M	Trauma	30	Nil	Asymptomatic	Normal	Multiple	S3	2.8	Nil	Tc-99m DRBC
40	2015	Tamm [42]	43/M	Trauma	7	Idiopathic thrombocytopenic purpura	Asymptomatic, persistent low platelets	NM	1	S2/S3	7.0 × 3.0	Nil	Surgery (liver resection)
41	2015	Toktas [43]	40/F	Trauma	12	Nil	Asymptomatic	Bilirubin elevated	1	S2	3.5 × 2.0	HCC	Surgery (explorative laparotomy)
42	2015	Wu [44]	33/M	Trauma	37	Nil	Asymptomatic	Normal	2	S6, S7	2.27 × 3.04 and 1.15 × 1.21	Nil	Surgery (liver resection)
43	2016	Fung [45]	55/M	Trauma	Nil	Asymptomatic	Normal	2 Left and right lobes	2	S2/S6/S7	2.6	Liver metastases	Surgery (explorative laparoscopy)
44	2016	Chen [46]	51/M	Trauma	Nil	Asymptomatic	Normal	2 Left and right lobes	2.1: 3.3 × 2.6	HCC	US-guided biopsy		
45	2016	Jeeb [47]	22/M	Trauma	18	Nil	Asymptomatic	Multiple	S2, S6, S7	2.6	Liver metastases	Surgery (explorative laparoscopy)	
46	2017	Keck [48]	66/M	NM	Nil	Chronic HCV	Asymptomatic	Normal	Multiple	S7, S8	5.3	Nil	Needle biopsy
47	2017	Somsap [49]	51/M	Thalassemia	20	Nil	Abdominal pain	ALT, AST, bilirubin elevated	1	Left lobe	3.9 × 3.6	HCC	Surgery (liver resection)
48	2017	Wang [5]	54/M	Trauma	23	Chronic HBV	RUQ pain	Normal	1	Right lobe	3.9 × 3.6	HCC	Surgery (liver resection)
No.	Year	First author	Age/ Sex	Reason for splenectomy	Time* (years)	Risk factor for HCC	Clinical presentation	Laboratory investigations*	No. of lesions	Location	Size (cm)	Initial diagnosis	Confirmatory diagnosis
-----	------	---------------	----------	-------------------------	---------------	---------------------	----------------------	--------------------------	----------------	-----------	-----------	----------------	----------------------
49	2017	Wang [50]	42/M	Trauma	16	HBV, HCV, fatty liver	Chronic low back pain	Normal	1	S4	2.3 x 1.8	HCC	Surgery (liver resection)
50	2018	Aramoana [51]	58/M	Trauma	37	RUQ pain	Normal	1	S6	4.6 x 3.4	HCC	Surgery (liver resection)	
51	2018	Budak [52]	46/M	Trauma	30	Nil	NM	NM	2	S6, S7	3.6	HCC/hepatic splenosis	Tc-99m DRBC
52	2018	Guzman [53]	43/M	Trauma	16	Nil	Acute RUQ pain	ALT, AST elevated	1	S2	2.5	Adenoma	Percutaneous needle biopsy
53	2018	Smolen [54]	35/M	Trauma	12	Nil	Chronic abdominal pain	Normal	Multiple	Left and right lobes, lumbar spine	4.3	Adenoma/FNH	Tc-99m DRBC
54	2018	Teles [55]	73/M	NM	NM	Nil	Low back pain	CEA elevated	Multiple	Left and right lobes, lumbar spine	4.9	Primary or secondary neoplasia	Surgery (open liver resection)
55	2018	Varghese [56]	50/M	Trauma	40	Nil	Asymptomatic	NM	1	Right lobe, multiple extrhepatic nodules	3.0	Nil	Contrast CT scan resembling splenic enhancement and clinical judgement
56	2018	Vergara [57]	69/M	Trauma	NM	RUQ pain, dyspnoea, lower limb oedema	Normal	Multiple	S6, near falciform ligament, left para-vesical space	6.5 x 4.6	Nil	Needle biopsy	
57	2018	Xuan [58]	54/M	Trauma	5	Nil	Asymptomatic	Normal	1	S4	4.5 x 3.3	HCC	Surgery (liver resection)
58	2019	Guedes [59]	68/M	Trauma	44	Nil	Chronic epigastric and right hypochondrium pain	Normal	1	S6	3.0	HCC/Adenoma	Surgery (laparoscopic liver resection)
59	2019	Luo [4]	41/M	Trauma	21	Nil	Asymptomatic	1	Right lobe, NM	HCC	Surgery (exploratory laparoscopy)		

*AFP – α-fetoprotein, ALP – alkaline phosphatase, ALT – aspartate aminotransferase, AST – asparagine aminotransferase, CT – computed tomography, F – female, FNA – fine needle aspiration, FNH – focal nodular hyperplasia, GGT – γ-glutamyltransferase, HCC – hepatocellular carcinoma, INR – international normalized ratio, LFT – liver function test, M – male, NA – not applicable, NM – not mentioned, RUQ – right upper quadrant, S1-S7 – segments 1 to 7 of the liver, Tc-99m DRBC – technetium-99m tagged heat-damaged red blood cell scan, US – ultrasound

*Time (years) refers to the interval after splenectomy to discovery of intrahepatic splenosis

*Laboratory investigations refer to basic liver function test and tumour marker (AFP). Hepatitis B and C serology is not included.
No.	Year	Author	CT findings	MRI findings	Angiography
1	1993	Yoshimitsu [8]	Non-contrast: homogenous low attenuation mass	T1-W: homogeneously low intensity	Mass supplied by the left hepatic artery
			Contrast: enhanced from the periphery in the early phase, low attenuation in the delayed phase	T2-W: not obtained	No definite neovascularity
2	1997	Gruen [9]	Contrast: high-attenuation mass	NA	
3	1998	D'Angelica [10]	Contrast: high-density mass	NA	
4	1999	Foroudi [11]	Contrast: multiple foci of enhancing soft tissue densities	NA	
5	2000	De Vysere [12]	Non-contrast: slightly hypodense	Pre-contrast T1-W: hypointense	NA
			Contrast: homogeneously hyperdense in the arterial phase, isodense in the portal venous phase, and slightly hypodense in the late phase	Pre-contrast T2-W: hypointense	
				Post-contrast [small iron oxide particles (SPIO-Endorem): remained slightly hyperintense relative to the hypointense liver	
6	2002	Gamulin [13]	Contrast: heterogeneous enhancement	NA	
7	2002	Lee [14]	Contrast: early contrast enhancement and washout on delayed phase	NA	Tumour stained in segment 6 through the inferior phrenic artery
					No feeding vessel from hepatic or superior mesenteric artery
8	2002	Pekkafalli [15]	Non-contrast: slightly hypodense with prominent hypodense rim around the lesion	Pre-contrast T1-W: homogeneously hypointense with hypointense rim	NA
			Contrast: hyperdense in the arterial phase, isodense in the portal venous phase and hypodense in the equilibrium phase	Pre-contrast T2-W: isointense to liver with thin hypointense rim	
				Post-contrast: hyperintense to liver	
9	2003	Kim [16]	Contrast: homogeneously well enhanced in the arterial phase and isodense in the equilibrium phase	NA	Mass supplied by inferior phrenic artery
10	2004	Di Costanzo [17]	Contrast: arterial hypervascularization and rapid “washout” of the contrast medium on portal venous phase	NA	
11			Contrast: early enhancement on the arterial phase and complete “washout” of the lesion on portal venous phase	NA	
12	2004	Kondo [18]	Contrast: low-density tumour in arterial phase, with vessels penetrating inside the tumour. Nearly homogeneous enhancement in portal venous phase	T1-W: low signal intensity	Hypervascular tumour supplied by the right hepatic artery
				T2-W: high signal intensity	
No.	Year	Author	CT findings	MRI findings	Angiography
-----	------	--------------	------------------------------	--	---------------------------------------
13	2006	Ferraioli	NA	Contrast material-enhanced	
T1-W: liver tumour and accessory spleen were hypointense					
T2-W: liver tumour and accessory spleen were hyperintense	NA				
14	2008	Choi	Contrast:		
Lesion in segment IVa: slight enhancement during both the arterial and portal phase					
Lesion in segment VI: slight enhancement only in the portal phase	Contrast: enhancement during arterial phase and slightly hyperintense signal in the liver parenchyma during portal phase	Subtle tumour staining in segment IVa and no tumour staining in segment VI			
15	2008	Grande	Non-contrast: slightly hypodense compared to the liver		
Contrast: hyperdense in the arterial phase and isodense in the portal phase	NA	NA			
16	2008	Imbriaco	Non-contrast: hypodense	Pre-contrast T1-W: hypointense	
Pre-contrast T2-W: isodense					
Post-contrast: nonhomogeneous enhancement during the arterial phase, hypointensity during the portal and equilibrium phases	Pre-contrast T1-W: homogeneously hyperintense				
Pre-contrast T2-W: slightly hyperintense					
Post-contrast: enhancement in arterial phase, isointense in portal phase					
17	2008	Lu	Non-contrast: two hypodense nodules		
Contrast: homogeneous enhancement in the arterial phase, hypodense compared with the surrounding parenchyma during the portal and equilibrium phases	Pre-contrast T1-W: hypointense mass				
Pre-contrast T2-W: isointense in portal venous phase, and slightly hypodense in the equilibrium phase	Tumour stain with blood supply via perirenal vessel				
18	2008	Nakajima	Non-contrast: hypodense mass		
Contrast: strong enhancement at the early phase and pooling enhancement at the late phase	T1-W: hypointense mass				
T2-W: hypointense mass	Tumour stain with blood supply via perirenal vessel				
19	2008	Yeh	Non-contrast: isodense		
Contrast: persistent homogeneous enhancement in the arterial phase and portal venous phases	Pre-contrast T2-W: intermediate to high signal				
Plain phase: iso-signal in the plain phase					
Post-contrast: heterogeneous enhancement in the arterial phase and persistent homogeneous enhancement in the portal venous phase	Tumour stain with blood supply via perirenal vessel				
20	2009	Kashgari	NA	Pre-contrast T1-W: mildly hypointense	
Pre-contrast T2-W: homogeneously hyperintense					
Contrast (gadopentetate dimeglumine): heterogeneous early arterial enhancement, isointense in portal venous and equilibrium phase	Pre-contrast T1-W: homogeneously hyperintense				
Pre-contrast T2-W: slightly hyperintense					
Contrast (SPIO): T2-W: lacks iron uptake					
Regular branches of hepatic artery					
No pathologic vessels or parenchymal foci of hypervascularity	NA				
21	2009	Hilal	Contrast: hypervascular nodule with increased enhancement in the venous phase	Contrast (gadolinium): hypervascular nodule in arterial and portal venous phase	NA
22	2009	Menth	NA	Contrast (Gd-DTPA): marked enhancement in early arterial phase	
Contrast (SPIO): T2-W: lacks iron uptake	Regular branches of hepatic artery				
No pathologic vessels or parenchymal foci of hypervascularity					
23	2009	Yu	Contrast: strong and slightly inhomogeneous enhancement in the arterial phase, diminished enhancement in the portal venous phase	T1-W: hypointense	
T2-W: slightly hyperintense	NA				
No.	Year	Author	CT findings	MRI findings	Angiography
-----	------	--------	-------------	--------------	-------------
24	2010	Mescoli	Contrast: hyper-enhancement in arterial and portal phases. The largest nodule showed a hypodense central (necrotic) area.	NA	NA
25	2010	Tsitouridis	Contrast: hypervascular nodule	NA	NA
26	2010	Tsitouridis	Non-contrast: slightly hypodense. Contrast: increased enhancement during arterial phase with hypodense rim surrounding lesion. Lesion is isodense during portal phase.	Pre-contrast T2-HASTE: intermediate-to-high signal intensity. Post-contrast T2-HASTE: homogeneous enhancement with imaging characteristics of an extrahepatic-intraperitoneal lesion.	NA
27	2011	Kang	Contrast: hypodense with peripheral enhancement in both arterial and portal phases.	Pre-contrast T2-HASTE: intermediate-to-high signal. Post-contrast T2-HASTE: delayed peripheral enhancement. Coronal plane: imaging characteristics of an extrahepatic lesion mimicking peritoneal implantation.	NA
28	2011	Kang	No parenchymal abnormality in liver.	T1-W: low signal intensity. T2-W: slightly high signal intensity. Slightly high signal intensity on the SPIO-enhanced T2-W: high signal intensity.	NA
29	2012	Li	Non-contrast: isodense masses mirroring residual spleen. Contrast: enhancement in both hepatic mass and residual spleen.	Pre-contrast T1-W: hypointense. Pre-contrast T2-W: hyperintense.	NA
30	2012	Liu	Non-contrast: homogeneous soft tissue mass with surrounding low-density aureole. Contrast: slightly lower density than the liver especially in arterial phase.	NA	NA
31	2013	Inchingolo	Contrast: marked enhancement in arterial phase, remained hypodense in portal venous phase.	Post-contrast (gadolinium): increased arterIALIZATION after gadolinium injection with some loss of signal in the in-phase, indicating hemosiderin accumulation in the tissue. DWI: restricted diffusion within the lesion.	NA
32	2013	Krawczyk	NI	Pre-contrast T2-W: hyperintense lesion in liver, with additional lesions dorsal to stomach that looks typical for regenerate spleen tissue. Post-contrast T1-W: homogeneous enhancement.	NA
33	2013	Leong	Hypervascular lesion	Non-cystic irregular lesion with features suggestive of neuroendocrine tumour.	NA
34	2014	Kandil	Contrast: enhancement in arterial phase.	NA	NA
35	2014	Sato	Contrast: slightly inhomogeneous enhancement in arterial phase, with diminished enhancement in the equilibrium phase.	Pre-contrast T2-W: hyperintense. Post-contrast (Gd-EOB): hypointense compared to surrounding liver parenchyma.	NA
No.	Year	Author	CT findings	MRI findings	Angiography
-----	------	-------------	-------------	---	--
36	2014	Tinoco [39]	NA	Hypervascular lesion	NA
				Contrast: homogeneous enhancement in arterial phase, with	
				lavage in the portal phase and equilibrium	
37	2015	Grambow [40]	Contrast: hypervascular mass with enhancement typical for HCC	NA	
				Pre-contrast T1-W: slightly hyperintense	
				Pre-contrast T2-W: slightly hyperintense	
				Post-contrast T2-W: hypointense during arterial phase and	
				hypointense during the portal phase	
38	2015	Li [41]	Contrast: strong homogeneous enhancement in arterial phase and	NA	
			hypodense during portal phase		
				Pre-contrast T1-W: hypointense	
				Pre-contrast T2-W: mildly hyperintense	
				Post-contrast: no brisk arterial enhancement was present after	
				contrast administration. Presence of homogeneous enhancement at	
				1 minute, with central washout and a residual rim of peripheral	
				enhancement at 5 minutes	
39	2015	Liu [6]	NI	T2-W: intermediate-to-high signal intensity	NA
40	2015	Tamm [42]	Non-contrast: slightly hypodense	Na	
			Contrast: hypodense during arterial phase and hypodense during		
			portal venous phase		
41	2015	Toktas [43]	Isodense with spleen	NA	
42	2015	Wu [44]	Non-contrast: homogeneous hypodense mass	T1-W: low signal intensity	
				T2-W: high signal intensity	NA
43	2016	Fung [45]	Contract: early arterial enhancement with	Pre-contrast T1-W: hypointense	
			contract washout in delayed phase	Pre-contrast T2-W: hyperintense	
				Post-contrast T2-W: enhancement in arterial phase followed by	
				washout in delayed phase	
44	2016	Chen [46]	Contrast: marked enhancement at arterial phase and delayed phase	Pre-contrast T1-W: low signal intensity	
				Post-contrast T1-W: lower enhancement after contrast	
				administration	
45	2016	Jeeb [47]	Contrast: hypodense lesions in portal phase	Post-contrast T1-W: hypointense in both arterial and late phase	
				Post-contrast T2-W: hypointense during arterial phase,	
				hypointense in late phase	NA
46	2017	Keck [48]	NA	Arterial enhancement with washout	NA
47	2017	Somsap [49]	NA	Pre-contrast T1-W: hypointense	NA
				Post-contrast T1-W: heterogeneous enhancement during arterial phase,	
				more homogeneous in portal and delayed phase	
48	2017	Wang [5]	Non-contrast: hypodense	Pre-contrast T1-W: slightly hypointense	
			Contrast: strong homogeneous enhancement in arterial phase and	Pre-contrast T2-W and DWI: high signal intensity	
			hypodense during portal phase	Post-contrast T2-W: uneven enhancement with decreased signal during	
				the delayed phase	NA
No.	Year	Author	CT findings	MRI findings	Angiography
-----	------	-----------------	--	---	-------------
49	2017	Wang [50]	Contrast: marked homogeneous enhancement in arterial and portal venous phase	Pre-contrast T1-W: hypointense	NA
			with diminished enhancement in the equilibrium phase	Pre-contrast T2-W: hyperintense	
			Post-contrast: moderate homogeneous enhancement with marked	delayed ring enhancement mimicking a pseudocapsule similar to	
			delayed enhancement	hepatocellular carcinoma (HCC) in equilibrium phase	
50	2018	Aramoana	Contrast: enhancement in arterial phase	Post-contrast T2-W: peak enhancement at 60 s and washout	NA
		[51]		at 10 min	
51	2018	Budak [52]	NA	T2-HASTE: hyperintense	NA
			Post-contrast T1-W: hepatic lesion showed marked enhancement	in arterial phase. Multiple nodule formations in peritoneal cavity	
			similarly showed similar contrast uptake pattern		
52	2018	Guzman [53]	NI	NI	NA
53	2018	Smolen [54]	Non-contrast: multiple isodense lesions	NA	NA
			Contrast: hyperenhancement in arterial phase, isodense to		
			hypoenhancement in portal and delayed phase	Carcinoma could not be ruled out	
54	2018	Teles [55]	NI	NI	NA
55	2018	Varghese [56]	Contrast: heterogeneous “arciform” enhancement in arterial phase,	NA	NA
			with continued homogeneous enhancement in delayed phase with slow		
			washout		
56	2018	Vergara [57]	Contrast: mild enhancement in arterial phase	Pre-contrast T1-W: low signal intensity	NA
				Pre-contrast T2-W: slightly hyperintense	
				Post-contrast T1-W: lower enhancement compared surrounding	
				liver parenchyma	
57	2018	Xuan [58]	Non-contrast: slightly hypodense	Pre-contrast T1-W and T2-W: slightly hypointense	NA
			Contrast: inhomogeneous enhancement during arterial phase and	DWI: slightly hyperintense	
			diminished enhancement during the portal and equilibrium phase	Post-contrast: strongly heterogeneous and hypointense during the arterial	
				phase and relatively hypointense during the portal	
58	2019	Guedes [59]	NA	Pre-contrast T1-W: hypointense	NA
				Pre-contrast T2-W: hyperintense	
59	2019	Luo [4]	Non-contrast: multiple hypodense lesions	Post-contrast: increased vascularity and washed out during late	NA
			Contrast: enhancement during arterial phase with hypodense rim	venous phase	
			surrounding lesion. Lesions washed out in portal venous phase		

CT – computed tomography, DWI – diffusion-weighted imaging, Gd-OTA – gadolinium-diethyltriaminopentaacetic acid, Gd-EOB – gadoxetic acid, HCC – hepatocellular carcinoma, MRI – magnetic resonance imaging, PDI – proton density image, SPIO – superparamagnetic iron oxide, T1-W – T1-weighted, T2-W – T2-weighted

NA – not applicable, NI – no information on enhancement pattern
mary liver malignancy such as HCC should always be excluded. Our study shows that the majority of the patients present with incidental liver lesions and do not have risk factors for HCC. In this group of patients, IHS should be considered and non-invasive or minimally invasive methods of confirmatory diagnosis should be explored. A non-invasive method to confirm the diagnosis of splenosis is the use of Tc-99m heat-damaged RBC scintigraphy [9]. This involves in vitro labelling of the patient’s RBC with Tc-99m, heating the RBC at 49°C for 20 minutes, and subsequently injecting the patient with the Tc-99m labelled heat-damaged RBC and imaging with planar and single-photon emission computed tomography (SPECT) 30 minutes later [62]. Splenic tissues will phagocytose the heat-damaged RBCs, enabling radioisotope uptake of Tc-99m labelled RBCs. This is a specific and relatively sensitive method of diagnosis of splenosis as compared to the use of sulfur colloid, as the spleen takes up more than 90% of heat-damaged RBC as compared to 10% of sulfur colloid [42, 63]. However, improper preparation of heat-damaged RBCs such as overheating or underheating may result in false negatives [64]. In addition, scintigraphy has poor anatomic localization, which warrants the need to correlate the lesions with higher definition scans such as magnetic resonance imaging (MRI). Our study shows that Tc-99m labelled heat-damaged RBC is not widely used to diagnose IHS. This could be due to its limited availability or cost. Another clue suggestive for IHS is the absence or decreased number of Howell-Jolly bodies seen in peripheral blood smears, which would be normally seen in patients with asplenia [65].

In addition, though radiological findings for splenosis may mimic other hepatic lesions, Tsitouridis et al. described the characteristic imaging of IHS on CT and MRI imaging: hypodense lesion on non-contrast CT. Following contrast administration, the lesion is hyperdense in the arterial phase, isodense in the portal venous phase and hypodense in the delayed phase [31]. MRI findings include homogeneous hypointensity and hyperintensity prior to contrast administration on T1-weighted and T2-weighted images respectively, with a characteristic hypointense rim surrounding the lesion on T1-weighted imaging [31]. In addition, demonstration of classic heterogenous or arciform enhancement in the arterial phase with homogeneous enhancement in the delayed phase is classic for splenic enhancement and may suggest HJS [56]. Based on available data, the diagnosis of IHS can be made based on the ‘triad’ of 1) history of splenectomy or abdominal trauma, 2) absence of risk factors for liver malignancy and 3) typical imaging pattern on contrast enhanced imaging. Considering this ‘triad’ as a diagnostic hallmark of IHS, sensitivity of this triad in all the 59 reported cases was: 96.6% (n = 57/59) for one or more features, 52.5% (n = 31/59) for two or more features and 5.1% (n = 3/59) for all three features. Undoubtedly, the presence of all three cardinal features is rare, but is likely able to confirm the diagnosis of IHS without the need for surgical resection. We were unable to analyse the specificity of this triad as all the cases reported are diagnosed to be IHS.

Other imaging modalities such as the use of contrast-enhanced ultrasound can exclude HCC. On contrast-enhanced ultrasound, HCC appears as homogeneous and hyperechoic compared with the surrounding liver tissue after contrast administration, with a rapid washout and becoming a hypoechoic lesion in the portal and sinusoidal phases [19]. Superparamagnetic iron oxide (SPIO) administration in MRI scans can aid in tissue characterization. SPIO is taken up by the reticuloendothelial cells of the liver and spleen and has been shown to improve the detection rate of benign hepatocellular tumours [66]. IHS will demonstrate hypointensity on T2-weighted MRI due to phagocytosis of iron particles by splenic reticuloendothelial cells. Abdominal imaging does have its limitations and may not provide a definite diagnosis. Absolute diagnosis as with any malignant lesion is possible by sampling the tissue. Percutaneous image-guided needle biopsy can establish a definite diagnosis by demonstrating normal splenic tissue with red pulp and white pulp, lymphocyte B cells and CD3-positive lymphocyte T cells [27]. The use of fine needle aspiration cytology has been previously reported to avoid unnecessary surgery [67]. However, results may be inconclusive, and patients may have to bear additional costs of further diagnostic tests.

Surgical resection should be reserved for patients with inconclusive imaging scans or biopsy findings, abdominal symptoms not attributed to any other pathology, those in whom malignancy cannot be ruled out with certainty, or those with presence of risk factors for HCC. Explorative laparoscopy with intraoperative frozen section could be considered to reduce morbidity following liver resection [7, 26]. Should patients be diagnosed with IHS using non-invasive or minimally invasive methods, surgery can be avoided if patients are asymptomatic [57]. It has been reported that the average interval from trauma and abdominal splenosis is 10 years (range from 5 months to 32 years) [68, 69]. This is in contrast to our review, which demonstrated a median time of 21 years (range 1.5-47 years) from splenectomy to diagnosis of splenosis. Nevertheless, splenosis should still be considered.
in patients with a history of splenectomy regardless of the time from splenectomy. There have been two reported cases of IHS without any history of abdominal trauma or splenectomy: a 68-year-old woman presenting with recurrent abdominal pain [30]; and an asymptomatic 58-year-old man presenting with work-up for transaminitis [38]. There is no explanation for this phenomenon, but these occurrences are rare and IHS should only be a diagnosis of exclusion in the absence of prior history of abdominal trauma or splenectomy.

In conclusion, this review summarizes the available body of evidence for IHS. We also report a diagnostic triad: 1) history of splenectomy or abdominal trauma, 2) absence of risk factors for liver malignancy and 3) typical imaging features on contrast-enhanced imaging. In the presence of risk factors for HCC, malignancy should be ruled out. Non-invasive diagnostic tests such as Tc-99m heat-damaged RBC scintigraphy are useful in diagnosis. Surgery is reserved for patients with (1) abdominal pain or other symptoms which cannot be attributed to pathology or (2) inability to rule out malignancy. Clinicians should be aware of this rare pathology and all cases should be reported to enhance the knowledge and understanding of this disease.

Disclosure

The authors declare no conflict of interest.

References

1. Buchbinder J, Lipkoff C. Splenosis: multiple peritoneal splenic implants following abdominal injury: a report of a case and review of the literature. Surgery 1939; 6: 927-934.
2. Freemont RD, Rice TW. Splenosis: a review. South Med J 2007; 100: 589-594.
3. Ksiadzyna D, Pena A. Abdominal splenosis. Revista Española de Enfermedades Digestivas. 2011; 103: 421-426.
4. Luo X, Zeng J, Wang Y, et al. Hepatic splenosis: Rare yet important – A case report and literature review. J Int Med Res 2019; 47: 1793-1801.
5. Wang W-C, Li X-F, Yan Z-L, et al. Intrahepatic splenosis mimics hepatocellular carcinoma in a patient with chronic hepatitis B: a case report and literature review. Medicine 2017; 96: e8680.
6. Liu C, Liu J, Wang F. Intrahepatic splenosis mimicking liver cancer: report of a case and review of literature. Int J Clin Exp Pathol 2015; 8: 1031-1035.
7. Liu K, Liang Y, Liang X, et al. Laparoscopic resection of isolated hepatic splenosis mimicking liver tumors: case report with a literature review. Surg Laparosc Endosc Percutan Tech 2012; 22: e307-311.
8. Yoshimitsu K, Aibe H, Nobe T, et al. Intrahepatic splenosis mimicking a liver tumor. Abdom Imaging 1993; 18: 156-158.
9. Gruen DR, Gollub M. Intrahepatic splenosis mimicking hepatic adenoma. AJR Am J Roentgenol 1997; 168: 725-726.
10. D’Angelica M, Fong Y, Blumgart LH. Isolated hepatic splenosis: first reported case. HPB Surgery 1998; 11: 39-42.
11. Foroudi F, Ahern V, Peduto A. Splenosis mimicking metastases from breast carcinoma. Clin Oncol 1999; 11: 190-192.
12. De Vuyserse S, Van Steenbergen W, Aerts R, et al. Intrahepatic splenosis: imaging features. Abdom Imaging 2000; 25: 187-189.
13. Gamulin A, Oberholzer J, Rubbia-Brandt L, et al. An unusual, presumably hepatic mass. Lancet 2002; 360: 2066.
14. Lee JB, Ryu KW, Song TJ, et al. Hepatic splenosis diagnosed as hepatocellular carcinoma: a case of a focus. Surg Today 2002; 32: 180-182.
15. Pekkafah Z, Karsli FA, Silt E, et al. Intrahepatic splenosis: a case report. Eur Radiol 2002; 12 Suppl 3: S62-65.
16. Kim KA, Park CM, Kim CH, et al. An interesting hepatic mass: splenosis mimicking a hepatocellular carcinoma (2003: 9b). Eur Radiol 2003; 13: 2713-2715.
17. Di Costanzo GG, Picciotto FP, Marsilia GM, et al. Hepatic splenosis misinterpreted as hepatocellular carcinoma in cirrhotic patients referred for liver transplantation: report of two cases. Liver Transpl 2004; 10: 706-709.
18. Kondo M, Okazaki H, Takai K, et al. Intrahepatic splenosis in a patient with chronic hepatitis C. J Gastroenterol 2004; 39: 1013-1015.
19. Ferraioli G, Di Sarno A, Coppola C, et al. Contrast-enhanced low mechanical-index ultrasound in hepatic splenosis. J Ultrasound Med 2006; 25: 133-136.
20. Choi GH, Ju MK, Kim JY, et al. Hepatic splenosis preoperatively diagnosed as hepatocellular carcinoma in a patient with chronic hepatitis B: a case report. J Korean Med Sci 2008; 23: 336-341.
21. Grande M, Lapecorella M, Ianora AAS, et al. Intrahepatic and widely distributed intraabdominal splenosis: multidetector CT, US and scintigraphic findings. Intern Emerg Med 2008; 3: 265-267.
22. Imbriaco M, Camera L, Manziunia A, et al. A case of multiple intra-abdominal splenosis with computed tomography and magnetic resonance imaging correlative findings. World J Gastroenterol 2008; 14: 1453-1455.
23. Lu HC, Su CW, Lu CL, et al. Hepatic splenosis diagnosed by spleen scintigraphy. Am J Gastroenterol 2008; 103: 1842-1844.
24. Nakajima T, Fujiwara A, Yamaguchi M, et al. Intrahepatic splenosis with severe iron deposition presenting with atypical magnetic resonance images. Intern Med 2008; 47: 743-746.
25. Yeh ML, Wang LY, Huang CL, et al. Abdominal splenosis mimicking hepatic tumor: a case report. Kaohsiung J Med Sci 2008; 24: 602-606.
26. Hilal MA, Harb A, Zeidan B, et al. Hepatic splenosis mimicking HCC in a patient with hepatitis C liver cirrhosis and mildly raised alphafeto protein; the important role of explorative laparoscopy. World J Surg Oncol 2009; 7: 1.
27. Kashgari AA, Al-Mana HM, Al-Kadhi YA. Intrahepatic splenosis mimicking hepatocellular carcinoma in a cirrhotic liver. Saudi Med J 2009; 30: 429-432.
28. Menth M, Herrmann K, Haug A, et al. Intrahepatic splenosis as an unexpected cause of a focal liver lesion in a patient with hepatitis C and liver cirrhosis: a case report. Cases J 2009; 2: 8335.
29. Yu H, Xia L, Li T, et al. Intrahepatic splenosis mimicking hepaticoma. BMJ Case Rep 2009; 2009.
30. Mescoli C, Castoro C, Sergio A, et al. Hepatic spleen nodules (HSN). Scand J Gastroenterol 2010; 45: 628-632.
31. Tsitouridis I, Michaelides M, Sotiriadis C, et al. CT and MRI of hepatocellular cancer: report of a case and review of literature. Surg Radiol Anat 2010; 32: 307-311.
32. Kang KC, Cho GS, Chung GA, et al. Intrahepatic splenosis mimicking liver metastasis in a patient with gastric cancer. J Gastric Cancer 2011; 11: 64-68.
33. Li H, Snow-Lisy D, Klein EA. Hepatic splenosis diagnosed after inappropriate metastatic evaluation in patient with low-risk prostate cancer. Urology 2012; 79: e73-74.

34. Inchingolo R, Peddu P, Karani J. Hepatic splenosis presenting as arteriualised liver in a patient with NASH. Eur Rev Med Pharmacol Sci 2013; 17: 2853-2856.

35. Krawczyk M, Schneider G, Farmakis G, et al. Splenosis mimicking hepatic adenoma. J Clin Exp Hepatol 2013; 3: 351-352.

36. Leong CW, Menon T, Rao S. Post-traumatic intrahepatic splenosis mimicking a neuroendocrine tumour. BMJ Case Rep 2013; 2012bcr2012007885.

37. Kandil TS, Kandil TS, El Sorogy M, et al. Intrahepatic splenosis presenting as hepatocellular carcinoma in the left lateral section of the liver: A case report. Int J Surg Case Rep 2014; 5: 877-878.

38. Sato N, Abe T, Suzuki N, et al. Intrahepatic splenosis in a chronic hepatitis C patient with no history of splenic trauma mimicking hepatocellular carcinoma. Am J Case Rep 2014; 15: 416-420.

39. Tinoco Gonzalez J, Suarez Artacho G, Ramallo Solis IM, et al. Intrahepatic splenosis as a differential diagnosis in focal liver lesions. Cir Esp 2014; 92: 690-691.

40. Grambow E, Weinrich M, Zimpfer A, et al. Ectopic spleen tissue – an underestimated differential diagnosis of a hypervasculised liver tumour. Viszeralmedizin 2015; 31: 445-447.

41. Li T, Yang XY, Tang ZY. Intrahepatic and intraportal splenosis mimicking hepatocellular carcinoma with abdominal wall metastasis in a patient with hepatitis C cirrhotic liver. Surgery 2015; 157: 954-956.

42. Tamm A, Decker M, Hoskinson M, et al. Heat-damaged RBC scan: a case of intrahepatic splenosis. Clin Nucl Med 2015; 40: 453-454.

43. Toktaş O, Yavuz A, Iliklerden Ü, et al. Intrahepatic splenosis after splenectomy performed for idiopathic thrombocytopenic purpura. Ulus Cerrahi Derg 2015; 31: 247-249.

44. Wu C, Zhang B, Chen L, et al. Solitary perihepatic splenosis mimicking liver lesion: a case report and literature review. Medicine 2015; 94: e586.

45. Fung A, Chok K, Lo A, et al. Hepatobiliary and pancreatic: hepatic splenosis: a rare differential of a liver mass in an HBV endemic area. J Gastroenterol Hepatol 2016; 31: 1238.

46. Chen H, Wang X, Heng PA, et al. Automated mitosis detection with deep regression networks. 2016 IEEE 13th International Symposium on Biomedical Imaging. IEEE International Symposium on Biomedical Imaging 2016; 1204-1207.

47. Jereb S, Trotovsek B, Skrbinc B. Hepatic splenosis mimicking liver metastases in a patient with history of childhood immature teratoma. Radiol Oncol 2016; 50: 212-217.

48. Keck C, Shetty A, Mischen B, et al. Hepatic splenosis masquerading as hepatocellular carcinoma in a chronic hepatitis C patient. Am J Gastroenterol 2017; 112: 1493.

49. Somsap K, Chamadol N, Titapun A, et al. MR imaging findings of a patient with isolated intrahepatic splenosis mistaken for hepatocellular carcinoma. BJR Case Rep 2017; 3: 20170242.

50. Wang MY, Li B, Chen D, et al. Spleen implanting in the fatty liver mimicking hepatocarcinoma in a patient with hepatitis B&C: A case report and literature review. Medicine 2017; 96: e7217.

51. Aramoana J, Wylie N, Koea JB. Hepatic splenosis. ANZ J Surg 2018; 88: E359-360.

52. Budak E, Oral A, Yazici B, et al. Splenosis of the liver capsule. Clin Nucl Med 2018; 43: e460-e462.

53. Guzman Rojas P, Parikh J, Mahne A, et al. Where is my spleen? – a case of splenosis diagnosed years later after splenectomy. Cureus 2018; 10: e2618.

54. Smolen B, Khoury J, Baruch Y, et al. Non-invasive evaluation of a liver mass in a patient post splenectomy. Scott Med J 2019; 64: 35-39.

55. Teles GNS, Monteiro PEZ, Raphe R. Intrahepatic splenosis mimicking hepatic neoplasia. Int J Surg Case Rep 2018; 44: 47-50.

56. Varghese J, Bergson J, Vaipen O. Intrahepatic splenosis: incidental liver lesion after splenectomy. J Comput Assist Tomogr 2018; 42: 730-731.

57. Vergara D, Ginoioli F, Moscatt S, et al. Multiple intra-hepatic and abdominal splenosis: an easy call if you know about it. Acta Radiol Open 2018; 7: 205846118772324.

58. Xuan Z, Chen J, Song P, et al. Management of intrahepatic splenosissa case report and review of the literature. World J Surg Oncol 2018; 16: 119.

59. Guedes TP, Fernandes B, Pedroto I. Hepatobiliary and pancreatic: symptomatic hepatic splenosis. J Gastroenterol Hepatol 2019; 34: 2061.

60. Kwook CM, Chen YT, Lin HT, et al. Portal vein entrance of splenic erythrocytic progenitor cells and local hypoxia of liver, two events cause intrahepatic splenosis. Med Hypotheses 2006; 67: 1330-1332.

61. Park YS, Lee CH, Kim JW, et al. Differentiation of hepatocellular carcinoma from its various mimickers in liver magnetic resonance imaging: What are the tips when using hepatocyte-specific agents? World J Gastroenterol 2016; 22: 284-299.

62. MacDonald A, Burrell S. Infrequently performed studies in nuclear medicine: part 1. J Nucl Med Technol 2008; 36: 132-143.

63. Hagan I, Hopkins R, Lyburn I. Superior demonstration of splenosis by heat-denatured Tc-99m red blood cell scintigraphy compared with Tc-99m sulfur colloid scintigraphy. Clin Nucl Med 2006; 31: 463-466.

64. Jolepalem P, Balon HR. Application of heat-damaged Tc-99m RBCs in a patient with suspected hepatic metastasis. Radiol Case Rep 2013; 3: 787.

65. Schenkein D, Ahmed E. Case 29-1995: a 65-year-old man with mediastinal Hodgkin’s disease and a pelvic mass. N Engl J Med 1995; 333: 784-791.

66. Grandin C, Van BB, Robert A, et al. Benign hepatocellular tumors: MRI after superparamagnetic iron oxide administration. J Comput Assist Tomogr 1995; 19: 412-418.

67. Galloro P, Marsiliga G, Nappi O. Hepatic splenosis diagnosed by fine-needle cytology. Pathologica. 2003; 95: 57-59.

68. Fleming CR, Dickson ER, Harrison Jr EG. Splenosis: autotransplantation of splenic tissue. Am J Med 1976; 61: 414-419.

69. Berman AJ, Zalaszyki MP, Okon SA, et al. Distinguishing splenosis from renal masses using ferumoxide-enhanced magnetic resonance imaging. Urology 2003; 62: 748.