Camelid single-domain antibodies: historical perspective and future outlook
Arbabi-Ghahrouri, Mehdi

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.

For the publisher’s version, please access the DOI link below.

Publisher’s version / Version de l’éditeur:
https://doi.org/10.3389/fimmu.2017.01589
Frontiers in Immunology, 2017-11-20

NRC Publications Record / Notice d’Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=e01626cc-59b9-436b-9d95-8396354ba2ae
https://publications-cnrc.canada.ca/fra/voir/objet/?id=e01626cc-59b9-436b-9d95-8396354ba2ae

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook

Mehdi Arbabi-Ghahroudi

Tremendous effort has been expended over the past two and a half decades to understand many aspects of camelid heavy chain antibodies, from their biology, evolution, and immunogenetics to their potential applications in various fields of research and medicine. In this article, I present a historical perspective on the development of camelid single-domain antibodies (sdAbs or V_{H}Hs, also widely known as nanobodies) since their discovery and discuss the advantages and disadvantages of these unique molecules in various areas of research, industry, and medicine. Commercialization of camelid sdAbs exploded in 2001 with a flurry of patents issued to the Vrije Universiteit Brussel (VUB) and later taken on by the Vlaams Interuniversitair Instituut voor Biotechnologie (VIB) and, after 2002, the VIB-founded spin-off company, Ablynx. While entrepreneurial spirit has certainly catalyzed the exploration of nanobodies as marketable products, IP restrictions may be partially responsible for the relatively long time span between the discovery of these biomolecules and their entry into the pharmaceutical market. It is now anticipated that the first V_{H}H-based antibody drug, Caplacizumab, a bivalent anti-vWF antibody for treating rare blood clotting disorders, may be approved and commercialized in 2018 or shortly thereafter. This elusive first approval, along with the expiry of key patents, may substantially alter the scientific and biomedical landscape surrounding camelid sdAbs and pave the way for their emergence as mainstream biotherapeutics.

Keywords: camelid single-domain antibody, heavy chain antibody, V_{H}H, nanobody, antibody engineering, therapeutic antibody

INTRODUCTION

The canonical view of antibodies as molecules composed of two heavy chains and two light chains was forever changed one day in 1989 following analysis of total and fractionated immunoglobulin G (IgG) molecules in the serum of a dromedary camel in the laboratory of Professor Raymond Hamers at the Vrije Universiteit Brussel (VUB). The serendipitous discovery of antibodies lacking a light chain [heavy chain-only antibodies (HCAbs)] occurred as part of a student-run project aimed at developing a serodiagnostic test for trypanosome infection in camels and water buffalos. The preliminary data showed that besides conventional IgG1 (MW ~150 kDa), two other immunoglobulin fractions (thereafter called IgG2 and IgG3; MW ~90 kDa) were present which contributed up to 75% of all serum IgGs (1–3). Comparative studies on the sera of new world camelids (Lama glama and Lama pacos) subsequently confirmed the presence of HCAbs, albeit at concentrations between

OPEN ACCESS

Edited by:
Marc H. V. Van Regenmortel, Centre national de la recherche scientifique (CNRS), France

Reviewed by:
Serge Muyldermans, Vrije Universiteit Brussel, Belgium
Etienne Weiss, Ecole Supérieure de Biotechnologie de Strasbourg, France

*Correspondence:
Mehdi Arbabi-Ghahroudi
mehdi.arbabighahroudi@nrc-cnrc.gc.ca

This is NRC publication number: 53362.

Specialty section:
This article was submitted to Vaccines and Molecular Therapeutics, a section of the journal Frontiers in Immunology

Received: 29 September 2017
Accepted: 03 November 2017
Published: 20 November 2017

Citation:
Arbabi-Ghahroudi M (2017) Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Front. Immunol. 8:1589. doi: 10.3389/immu.2017.01589
30 and 50% (1, 4–8). Following these exciting findings, it became essential to analyze the antigen-binding properties of these IgG fractions since the presence of truncated forms of heavy chain antibodies with no light chains, classically described as “heavy chain disease,” had been reported in human patients (9, 10). No functional activity was reported for the pathogenic heavy chain antibodies in these patients, as these proteins were shown to bear extensive internal deletions in the variable (VH) and the first constant region (CH1) domains. By contrast, antibodies from camels exposed to *Trypanosoma evansi* demonstrated strong binding activity in the IgG2 and IgG3 heavy chain-only fractions as shown by radio-immunoprecipitation and blotting experiments (1).

In two subsequent reports, phage-display technology and high-resolution crystallography were utilized to (a) build a phage-display library from the lymphocytes of immunized camels and isolate monomeric antigen-specific VH domains in the absence of the constant regions (11) and (b) solve crystal structures of an unliganded VH domain (12) and a VH:H:lysozyme complex, reported simultaneously by the VUB team and a Dutch–French research group (13). The term VH was originally introduced by the VUB team in 1994 to indicate a VH domain derived from camelid heavy chain antibodies. The feasibility of isolating stable and soluble VH domains with nanomolar affinities against lysozyme and tetanus toxoid showed very early on the promise of these molecules as high-affinity binding moieties. Crystallography studies revealed additional salient features of an anti-lysozyme VH domain, including deep penetration of its long third complementarity-determining region (CDR3) into the active site of the enzyme; this feature had rarely been seen with conventional antibodies and required a fundamental deviation from known human canonical CDR1 structure (13). Further evidence of the unique antigen recognition behavior of VH domains (including enzyme inhibition) was published over the next several years (11, 14, 15), suggesting that VHs might probe different sets of epitopes on proteins compared with conventional antibodies. Key proof of concept for producing bivalent/bispecific VH modalities via genetic fusion (using camelid short and long hinge sequences) of anti-lysozyme and/or anti-tetanus toxin VHs was also established very early on (14).

**Molecular Ontogeny of Camelid HCAbs**

Molecular biology techniques were subsequently applied to decipher the DNA sequences of HCAbs. The sequencing results showed that nature had designed HCAbs as an additional arm of the immune systems of camelid ungulates over the course of their evolutionary history. The consensus of these studies suggested camelid HCAbs possessed: (a) no CH1 domain, and therefore, a direct connection of the rearranged VH exon to the hinge region; (b) one of two types of long (IgG2) and short (IgG3) hinge isotypes; (c) specific conserved amino acid substitutions in framework region 2 (FR2), mainly at VH positions that make contact with the VL in classical antibodies, including Kabat positions 37, 44, 45, and 47; and (d) potentially different CDR3 amino acid composition and a broader length distribution for CDR3 compared to the heavy chains of conventional antibodies (1, 16, 17).

Later genomic studies shed light on the origin of HCAbs in dromedary camels and alpacas. It is now established that HCAbs are produced from the same igh locus as conventional antibodies but with distinct sets of genes for the generation of HCAbs. It is estimated that alpaca and dromedary genomes contain ~17 and ~40 VH genes, respectively, with an identical organization of the genes that produce conventional antibodies (18, 19). The CH1 exon is present in the genomic DNA of HCAbs but a point mutation (G to A) at the 5’ end of the CH1-hinge intron disrupts the consensus splicing site (GT) and causes omission of this region during splicing (3, 18, 20–22). A complete picture of camelid germline V gene repertoires of heavy and light chains and the classification of VH and igh genes is still missing. Published genomic and cDNA data have so far shown that camelid VH genes are highly homologous to the human VH3 family of clan III with the exception of several key amino acid substitutions in FR2, namely, Val37 → Phe/Tyr, Gly44 → Glu, Leu45 → Arg, and Trp47 → Gly (Kabat numbering), and are encoded by a distinct subset of germline V genes. Preliminary investigations of published llama igh sequences classified them into four subfamilies by sequence similarity, and many of the earliest-described VH features such as long CDR3s, additional disulfide bridges, and particular canonical structures of CDR1–3 were shown to be subfamily specific (17, 23). Subsequent studies in alpaca identified at least three V gene subgroups of the alpaca igh locus: IGHV1, IGHV2, and IGHV3 which are equivalent to the human IGHV families within clan I (VH families 2, 4, 6), II (VH families 1, 5, 7), and III (VH family 3), respectively, based on sequence homology. The alpaca VH genes clustered into six subsets by sequence similarity, but all are homologous to human IGHV3 genes (18). Furthermore, recent investigations have demonstrated the presence of genes belonging to IGHV families 1, 3, and 4 (human clan I and III) in llama and alpaca, and in addition, uncovered new camelid V genes highly homologous to the human IGHV5 and IGHV7 families (human clan II); however, no genes similar to human families 2 or 6 (within human clan I) were found (24). Interestingly, a novel promiscuous class of V genes in camels was identified that is closely related to the human VH4 family (clan I). These VH4 homologs contribute largely to the classical antibody repertoire and lack the hallmark solubilizing VH residues in FR2. Nevertheless, antigen-specific VH4-family fragments with VH-like stability and solubility were isolated from an immune llama library (25). In the absence of a complete set of camelid germline VH and igh genes, most immunogenetic studies have relied on comparisons with human germline genes.

The consensus of immunogenetic studies of camelid HCAbs is that repertoire diversification of these molecules may involve (a) a large number of unique VH gene segments recombining with DH and JH minigenes, possibly with additional non-templated nucleotide insertions leading to longer CDR3 loops; (b) somatic hypermutation, potentially of extended CDR1 regions compared with conventional antibodies; (c) acquisition of non-canonical cysteine residues in the CDRs and FR2; and
FIGURE 1 | Chronological timeline of major scientific developments in the field of antibody engineering since the discovery of monoclonal antibodies (mAbs) in 1975 leading to the regulatory approval of mAbs, antigen-binding fragments (Fabs) and scFvs as therapeutics. Developments for mAbs are shown in orange and developments of V_Hs-heavy chain-only antibodies (HCAbs) in green. Regulatory approval of the first V_H-based antibody drug is expected in 2018.
Now in the third phase of development (2014–present), publications continue to grow and more V₃Hs have entered into clinical trials or advanced closer to the market. The main patent claims on camelid antibody fragments expired in the summer of 2014 in Europe and in the summer of 2017 in America. Ablynx has expanded its collaborations with large biophama players, such as Merck, Boehringer Ingelheim, Sanofi, and so on, with more than 20 preclinical and clinical programs. It is expected that the first V₃H-based drug (Caplacizumab; bivalent anti-vWF nanobody for treating rare blood clotting disorders) will reach the market sometime in 2018 (www.ablynx.com). Meanwhile, IP limitations on the composition of matter of V₃Hs are diminishing and more biotechnology companies (39) are showing interest in commercialization of these domain antibodies as therapeutics, diagnostics, and research reagents (Figure 1).

**CAMELID sdAbs: PROS, CONS, AND APPLICATIONS**

Immunization of Camelidae against targets of interest leads to the in vivo maturation of HCAb and conventional antibody repertoires. Construction of phage-display libraries is performed by cloning of amplified V₃H repertoires with minimal modification, thus presenting an authentic picture of in vivo-matured heavy chain repertoire diversity. By contrast, in both scFv libraries (requiring the artificial joining of VH and VL domains by a synthetic linker) and antigen-binding fragment (Fab) libraries derived from conventional antibody repertoires, natural VH–VL pairings are usually lost. The potential for direct cloning of V₃H repertoires from immunized camelds, the smaller library sizes required to capture the immune V₃H repertoire, the stability of the libraries, the feasibility of displaying V₃Hs on a phage or alternative display formats, and the ease of sub-cloning and expression of antigen-specific V₃Hs are among the major technical advantages of the camelid V₃H platform over conventional antibody platforms.

Key characteristics of V₃Hs include their high affinity and specificity (equivalent to conventional antibodies), high thermostability, good solubility and strictly monomeric behavior, small size (2.5 nm in diameter and about 4 nm in length; ~15 kDa), relatively low production cost, ease of genetic engineering, format flexibility or modularity, low immunogenicity, and a higher penetration rate into tissues (3, 41–44). The short half-life of V₃Hs in blood circulation is well suited to certain applications such as tumor imaging or delivery of toxin or radioisotopes to diseased tissues where rapid clearance is required. However, the pharmacokinetic behavior of V₃Hs can also be improved by extending their half-lives using different formatting options, including PEGylation or fusion to serum albumin or an antisem albumin moiety (43, 45, 46). The immunogenicity of V₃H domains can also be minimized by humanization (47–49). As with all antibodies of non-human species origin (and even fully human antibodies), immunogenicity and toxicity must be investigated empirically for humanized V₃Hs. A complete picture of the immunogenicity of non-humanized and humanized cameld V₃Hs is lacking due to insufficient data, but anti-drug immune responses may have been a major reason for the clinical failure of a humanized tetravalent Nanobody®targeting the DR5 receptor (50). As of 2016, V₃Hs have been isolated against more than 120 therapeutically important targets relevant to oncology, in vivo imaging, hematology, infectious diseases, neurological, and inflammatory disorders, with some in advanced stages of clinical trials (39).

One of the unique characteristics of V₃Hs is their ability to target antigenic epitopes at locations which are difficult to access by large molecules such as conventional monoclonal antibodies (mAbs). Examples include intracellular targets (51, 52) or epitopes concealed from mAbs in protein structures (53), G protein-coupled receptors (54, 55), and ion channels (3). V₃Hs are ideally suited for such applications due to their small size, target specificity, and long CDR3 loops, bypassing many drawbacks related to small-molecule synthetic drugs such as fine specificity and off-target toxicity (56). As “intrabodies,” V₃Hs are also ideally suited for cytokolic expression due to their ability to fold in the reducing intracellular environment. This feature likely reflects the single disulide linkage present in the V₃H domain, as compared to the multi-domain structure and multiple disulide linkages of conventional antibodies, and may not be completely general to all V₃Hs but appears to be quite common; intracellular expression of V₃Hs has been widely and productively exploited for in vivo cellular imaging (5, 57) as well as to inhibit the function of viral proteins (58, 59). There have been several excellent reviews covering V₃H applications in different areas of basic and applied research and a detailed description of each application is beyond the scope of this article (3, 39, 41, 43, 57, 60–65).

V₃Hs are also well suited in the generation of bi- and multispecific antibodies. In the field of antibody therapeutics, it is now widely accepted that monotherapy of cancer and other diseases may not result in effective outcomes, in particular due to the problem of acquired resistance (66, 67). Bispecific antibodies provide a possible solution in which they could bind simultaneously to a tumor-associated antigen and another activating molecule, e.g., CD3 on T cells, leading to tumor killing/lysis through lymphocyte recruitment, or alternatively, could target two or more tumor epitopes (bi-paratopic) or antigens simultaneously. Bispecific V₃Hs may be uniquely positioned for these applications given their simple design and small size relative to other antibody fragments, which may result in better solid tumor penetration rates, homogeneous production at high yield in microbial systems, and ease of fusion to a heterodimerization motif, therefore bypassing issues related to some linker peptides such as aggregation and immunogenicity (45, 66, 68, 69). Interestingly, all of the V₃H-based therapeutic candidates in clinical trials are composed of bivalent, trivalent, or higher valency formats (39). It has been shown that some V₃Hs, when properly selected, are able to transmigrate through human brain endothelial cell layers spontaneously and, possibly through a receptor-mediated process (70–72); bispecific molecules incorporating these V₃Hs can, thus, deliver attached cargo (e.g., therapeutics) into the brain in rodents (73).

Despite the many advantages of V₃Hs, there are several drawbacks to be considered as well. The fact that the antigen-binding
paratope of camelid HC Abs has been restricted to a single domain of about 110 amino acids will automatically put more weight on each and every residue in the V\textsubscript{H} domain. The extended CDR1, longer CDR3, invovlement of FR2 in antigen binding and shaping the CDR3 loop, the role of the “CDR4” (residues 76–80) loop in antigen binding, and extensive somatic hypermutation are some of the evolutionary mechanisms adapted to compensate repertoire diversity due to the lack of a VL domain (3). Therefore, there may be limitations on the extent of manipulation and engineering that can be tolerated by antigen-specific V\textsubscript{H} Abs. For example, complete humanization of camelid V\textsubscript{H} Abs involving the mutation of residues outside the antigen-binding loops often drastically compromises antigen-binding affinity, V\textsubscript{H} stability, and the expression yield (unpublished data). A survey of the literature clearly demonstrates that almost all V\textsubscript{H} Abs isolated to date have originated from direct camelid immunization, or from large naïve camelid libraries, although recently, successful isolation of V\textsubscript{H} Abs from synthetic or semi-synthetic libraries against a number of protein antigens has also been reported (74–77). All available pieces of evidence support the notion that the V\textsubscript{H} domain is a highly complex molecule and that each amino acid (depending on its position) may have direct and indirect effects on the molecule’s stability and structural integrity, as well as on antigen-binding affinity and specificity.

Another limitation of V\textsubscript{H} Abs is their low propensity to bind small molecules, likely due to their dominant convex surface topology as compared to the flat or concave topologies found on conventional antibody fragments (e.g., scFv, Fab). In a number of llama immunization trials, we and others have been able to generate strong conventional immune responses, but rather weak HCAb responses, against several haptens and carbohydrate antigens (unpublished data). However, repeated immunization of camelds with small molecules conjugated or fused to larger proteins has led to the successful isolation of V\textsubscript{H} Abs against caffeine (78), red dye (79), and linear peptides (80, 81) with affinities ranging from micromolar to low nanomolar. The biophysicochemical properties of V\textsubscript{H} Abs suggest that they would be well suited to many immunodiagnostic platforms for detecting small molecules and environmental chemicals; however, isolation of high-affinity V\textsubscript{H} Abs suitable for such applications seems to be a difficult task, although not impossible (3, 64, 65, 78, 82, 83). Immunization of large animals and heterogeneity in immune responses among individual outbred animals is another consideration which is important when alternative immunization techniques such as DNA immunization are applied. DNA immunization has had limited success in camelid and other large animals and reproducibility is often a major issue to be tackled (84–87). To overcome this limitation, transgenic mice bearing either a rearranged dromedary γ2a chain or hybrid llama/human antibody loci have been generated that produce a form of dromedary or human heavy chain antibodies (88–90).

**CAMELID sdAbs VERSUS mAbs**

The first therapeutic mAb, Orthoclone OKT3, a murine IgG2a for the prevention of kidney transplant rejection, hit the market little more than a decade after the discovery of hybridoma technology in 1975 (91–94). Currently, mAbs constitute about half of marketed biological products and, as of January 2017, 68 mAbs have been approved by the Food and Drug Administration (FDA) in the USA and/or by the European Medicine Agency (EMA) in Europe. The projected global sales of mAbs will be close to $100 billion in 2017 (44, 95). The lack of restrictive IP on the original technology is considered by many as a driving force that allowed researchers to develop effective research tools and diagnostic mAb-based reagents without limitation. The introduction of antibody fragments, such as Fab and scFv (the “second generation” of antibodies), combined with the power of phage-display technology in the late 1990s, opened new horizons in the world of antibodies and empowered researchers with the ability to clone the entire immunoglobulin repertoire of mammalian immune B cells and to isolate specific antibody fragments virtually against any target (96–98). This technology led to the development of the first FDA-approved fully human mAb, Humira, which was obtained from a phage-displayed human antibody library 12 years after the initial paper by McCafferty and co-workers on the construction of phage-displayed human antibody libraries (99–101). Further developments in antibody engineering have so far resulted in three FDA-approved therapeutic Fabs (95).

Overwhelming evidence in the literature suggests that camelid V\textsubscript{H} Abs, as the so-called “third generation” of antibodies, have many added features that supersede those of conventional mAbs and antibody fragments (Fab and scFv). Although V\textsubscript{H} Abs have already been commercialized for non-medical applications (63, 102), the research and medical communities eagerly await the first V\textsubscript{H} based therapeutic to gain approval. If we consider the 9- to 13-year time span between the discovery of the key technology enabling conventional mAbs (hybridoma technology) and the FDA-approval of a mAb or an antibody fragment, a longer time has been required for the development of the first V\textsubscript{H} based therapeutic. It is unclear if technical challenges, regulatory hurdles, or the need to define a unique niche/indication for V\textsubscript{H} Abs, have been involved in the prolonged delay of the first V\textsubscript{H} based therapeutic. It is obvious that issues related to downstream processing, stability, immunogenicity, toxicity, safety, and potency of a V\textsubscript{H} based therapeutic product will be doubly scrutinized by FDA and EMA since it would represent the first product of its kind to enter the market. The fact that the first potential Ablynx product is an engineered bivalent anti-vWF nanobody and is produced in a microbial system may have raised additional red flags for the approving regulatory bodies.

**CONCLUDING REMARKS**

Over a quarter century has passed since the first observation by Hamers and colleagues of camelid HC Abs. This finding was a significant milestone in the field of antibody engineering and opened many new opportunities and applications. It was also instrumental in reviving the concept of sdAbs, which had been originally suggested by Ward et al. a few years earlier. The unique and extraordinary features of HC Abs and their antigen-binding
domains (V_{H}H_{s}) have with no doubt attracted many researchers and commercial entities to the field of antibody engineering. V_{H}H_{s} are now closer than ever to approval as pharmaceutical drugs to fight a wide range of diseases, including cancer, inflammation, hematology, and respiratory diseases, with five V_{H}H_{s}-based drugs in various stages of clinical development. V_{H}H_{s} have also been shown to be effective as therapeutics against infectious disease, particularly in viral therapy, as well as robust reagents in the field of diagnostic and imaging applications. While the commercial applications of V_{H}H_{s} have been slowed by IP limitations, it is probable that demand, as well as extensive research on these antibody domains, will ultimately supersede these limitations and bring many more of these molecules into use as biopharmaceutical reagents within the next decade.

REFERENCES

1. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. *Nature* (1993) 363:446–8. doi:10.1038/363446a
2. Wernery U. Camelid immunoglobulins and their importance for the newborn – a review. *J Vet Med B Infect Dis Vet Public Health* (2001) 48:561–8. doi:10.1111/j.1439-0450.2001.00478.x
3. Muyldermans S. Nanobodies: natural single-domain antibodies. *Ann Rev Biochem* (2013) 82:775–97. doi:10.1146/annurev-biochem-060311-092449
4. van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, Verrips T, et al. Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of *Lama glama*. *J Immunol Methods* (2000) 240:185–95. doi:10.1006/smmi.2000.1885
5. Rothbauer U, Zolghadri K, Tillib S, Nowak D, Schermelh G, Lahl A, et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. *Nat Methods* (2006) 3:887–9. doi:10.1038/nmeth953
6. Mass DR, Sepulveda J, Pernthaner A, Shoemaker CB. Alpaca (*Lama pacos*) as a convenient source of recombinant camelid heavy chain antibodies (V_{H}H_{s}). *J Immunol Methods* (2007) 324:13–25. doi:10.1016/j.jim.2007.04.008
7. De Simone EA, Saccodossi N, Ferrari A, Leoni J. Development of ELISAs for the measurement of IgM and IgG subclasses in sera from llamas (*Lama glama*) and assessment of the humoral immune response against different antigens. *Vet Immunol Immunopathol* (2008) 126:64–73. doi:10.1016/j.vetimm.2008.06.015
8. Blanc MR, Anouassi A, Ahmed Abed M, Tsikis G, Labas V, et al. A one-step exclusion-binding procedure for the purification of functional heavy-chain and mammalian-type gamma-globulins from camelid sera. *Biotechn Appl Biochem* (2009) 54:207–12. doi:10.1042/BA20090208
9. Franklin EC, Lowenstein J, Bigelow B, Meltzer M. Heavy chain disease – a new disorder of serum gamma-globulins: report of the first case. *Am J Med* (1964) 37:332–50. doi:10.1016/0002-9343(64)90191-3
10. Alexander A, Steinmetz M, Barritault D, Frangione B, Franklin EC, Hood L, et al. gamma heavy chain disease in man: cDNA sequence supports partial gene deletion model. *Proc Natl Acad Sci U S A* (1982) 79:3260–4. doi:10.1073/pnas.79.10.3260
11. Arbabi-Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. *FEBS Lett* (1997) 414:521–6. doi:10.1016/S0014-5793(97)01626-4
12. Spinelli S, Frenken L, Bourgeois D, de Ron L, Bos W, Verrips T, et al. The crystal structure of a llama heavy chain variable domain. *Nat Struct Biol* (1996) 3:752–7. doi:10.1038/nsb0996-752
13. Desmyter A, Transue TR, Ghahroudi MA, Thi MH, Poortmans F, Hamers R, et al. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. *Nat Struct Biol* (1996) 3:803–11. doi:10.1038/nsb0996-803
14. Arbabi-Ghahroudi M. Generation and Characterization of Phage-Displayed Camel Single-Domain Antibodies [Ph.D. Dissertation]. Brussels (Belgium): Vrije Universiteit Brussel (VUB) (1996).
15. Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, De Genst E, et al. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. *EMBO J* (1998) 17:3512–20. doi:10.1093/emboj/17.13.3512
16. Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. *Protein Eng* (1994) 7:1129–35. doi:10.1093/protein/7.9.1129
17. Vu KB, Ghahroudi MA, Wyns L, Muyldermans S. Comparison of llama VH sequences from conventional and heavy chain antibodies. *Mol Immunol* (1997) 34:1121–31. doi:10.1016/S0161-5890(97)00146-6
18. Achour I, Cavelier P, Tichit M, Bouchier C, Lafaye P, Rougeon F. Tetrameric and homodimeric camel IgGs originate from the same IgH locus. *J Immunol* (2008) 181:2001–9. doi:10.4049/jimmunol.181.3.2001
19. Nguyen VK, Hamers R, Wyns L, Muyldermans S. Camel heavy-chain antibodies: diverse germline V_{H}H and specific mechanisms enlarge the antigen-binding repertoire. *EMBO J* (2000) 19:921–30. doi:10.1093/emboj/19.5.921
20. Nguyen VK, Muyldermans S, Hamers R. The specific variable domain of camel heavy-chain antibodies is encoded in the germline. *J Mol Biol* (1998) 275:413–8. doi:10.1006/jmbi.1997.1477
21. De Genst E, Saerens D, Muyldermans S, Conrath K. Antibody repertoire development in camelids. *Dev Comp Immunol* (2006) 30:187–98, doi:10.1016/j.dci.2005.06.010
22. Conrath KE, Wernery U, Muyldermans S, Nguyen VK. Emergence and evolution of functional heavy-chain antibodies in Camelidae. *Dev Comp Immunol* (2003) 27:87–103. doi:10.1016/S0145-305X(03)00071-X
23. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LG, de Geus B. Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. *Mol Immunol* (2000) 37:579–90. doi:10.1016/S0161-5890(00)00068-1
24. Klarenbeek A, El Mazouari K, Desmyter A, Blanchetot C, Hulbarg A, de Jonge N, et al. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. *Mabs* (2015) 7:693–706. doi:10.1080/19420862.2015.1046648
25. Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S. A novel promiscuous class of camelid single-chain antibody contributes to the antigen-binding repertoire. *J Immunol* (2010) 184:5696–704. doi:10.4049/jimmunol.0903722
26. Muyldermans S. Single domain camel antibodies: current status. *J Biotechnol* (2001) 90:277–302.
27. Nguyen VK, Su C, Muyldermans S, van der Loo W. Heavy-chain antibodies in Camelidae; a case of evolutionary innovation. *Immunogenetics* (2002) 54:39–47, doi:10.1007/s00251-002-0433-0
28. Daley LP, Gagliardo LF, Duffy MS, Smith MC, Appleton JA. Application of monoclonal antibodies in functional and comparative investigations.

AUTHOR CONTRIBUTIONS

MA-G conceived and wrote the manuscript.

ACKNOWLEDGMENTS

The author gratefully acknowledges Greg Hussack, Roger MacKenzie, Kevin Henry, and Krinum Kemmerich for reading and providing comments on the text.

FUNDING

This work was supported by funding from the National Research Council Canada.
of heavy-chain immunoglobulins in new world camelds. Clin Diagn Lab Immunol (2005) 12:380–6.

29. Flajnik MF, DeChabot N, Miydlersmans S. A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biol (2011) 9:e1001120. doi:10.1371/journal.pbiol.1001120

30. Ward ES, Gussow D, Grifiths AD, Jones PT, Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature (1989) 341:544–6. doi:10.1038/341544a0

31. Spinelli S, Desmyter A, Frenken L, Verrips T, Tegoni M, Camillius C. Domain swapping of a llama V∗H domain builds a crystal-wide beta-sheet structure. FEBS Lett (2004) 564:35–40. doi:10.1016/S0014-5793(04)00304-7

32. Decanniere K, Desmyter A, Lauwereys M, Gahroudi MA, Miydlersmans S, Wny L. A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure (1999) 7:361–70. doi:10.1016/S0969-2126(99)80049-5

33. Verrips T, Tegoni M, Camillius C, Dwight SK, Grifiths AD, Desmyter A, et al. Humanization of a camelid single-domain antibody. J Biol Chem (2002) 277:23645–50. doi:10.1074/jbc.M202327200

34. Desmyter A, Decanniere K, Miydlersmans S, Wny L. Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody. J Biol Chem (2001) 276:26285–90. doi:10.1074/jbc.M102107200

35. Perez JM, Renisso JG, Prompers J, van Platerink C, Camillius C, Darbon H, et al. Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry (2001) 40:74–83. doi:10.1021/bi000908b

36. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Decanniere K, Desmyter A, Lauwereys M, Ghahroudi MA, Muyldermans S, Nanobodies and their potential applications. Clin Diagn Lab Immunol (2013) 8:1013–26. doi:10.1128/clinml.00390-12

37. Casas-Diez-Ghashabeh G, Devoogdt N, de Pauw P, Vincke C, Miydlersmans S, Nanobodies and their potential applications. Nanomedicine (Lond) (2013) 8:1013–26. doi:10.2217/nnm.13.838

38. Eyer L, Hruska K. Single-domain antibody fragments derived from heavy-chain antibodies: a review. Vet Med (2012) 9:439–513.

39. Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Protein Sci (2003) 12:251–6. doi:10.1110/ps.34602

40. D’Huyverte M, Aerts A, Xavier C, Vaneycck I, Devoogdt N, Gji M, et al. Development of Δ112-12-1012 nanobodies for radioimmunotherapy of HER2-positive breast cancer: evaluation of different bifunctional chelators. Contrast Media Mol Imaging (2012) 7:254–64. doi:10.1002/cmmi.491

41. Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, et al. Unexpected hepatotoxicity in a phase I study of TASA266, a novel tetravalent agonistic Nanobody targeting the DR5 receptor. Cancer Chemother Pharmacol (2015) 75:887–95. doi:10.1007/s00280-015-2712-0

42. Staus DP, Wingler LM, Strachan RT, Rasmussen SG, Pardon E, Ahn S, et al. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies. Mol Pharmacol (2014) 85:472–81. doi:10.1124/mol.113.88516

43. Stijlemans R, Konrath C, Cortez-Retamozo V, Van Xong H, Wyns L, Senter P, et al. Efficient targeting of conserved cyrptic epitopes of infectious agents by single domain antibodies: African trypanosomes as paradigm. J Biol Chem (2004) 279:1256–61. doi:10.1074/jbc.M303741200

44. Nagy AE, Dobbelaere TK, Dierckx RA, Rauws EA, De Clerck LA, De Baets H, et al. Potent and efficacious inhibition of CXCXR2 signaling by bipartate nanobodies combining two distinct modes of action. Mol Pharmacol (2015) 87:251–62. doi:10.1124/mol.114.094821

45. Manglik A, Kohibka BK, Steyert J. Nanobodies to study G protein-coupled receptor structure and function. Annu Rev Pharmacol Toxicol (2017) 57:19–37. doi:10.1146/annurev-pharm-tox-010614-114651

46. Baker M. Upping the ante on antibodies. Nat Biotechnol (2005) 23:1065–72. doi:10.1038/nbt0905-1065

47. Beghein E, Gettemans J. Nanobody technology: a versatile toolkit for microscopic imaging, protein-protein interaction analysis, and protein function exploration. Front Immunol (2017) 8:771. doi:10.3389/fimmu.2017.00771

48. Rossey I, Gilman MS, Kabecse S, Sedenk Y, Wrapp D, Kaneiko M, et al. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun (2017) 8:14158. doi:10.1038/ncomms14158

49. Darling TL, Sherwood LJ, Hayhurst A. Intracellular crosslinking of filoviral nucleoproteins with Xintrabodies restrict viral packaging. Front Immunol (2017) 8:1197. doi:10.3389/fimmu.2017.01197

50. H"olliger P, Hodgson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol (2005) 23:1126–36. doi:10.1038/nbt1142

51. Vanlandschoot P, Stortelers C, Beirnaert E, Ibanez LI, Schepens B, Depla E, et al. Enhanced tumor-targeting selectivity by modulating bispecific antibody technology with single-domain camelid nanobodies. TIBS (2014) 43:1231–36. doi:10.1016/j.tibs.2013.12.007

52. De Meyer T, Miydlersmans L, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol (2014) 32:623–70. doi:10.1016/j.tibtech.2014.03.001

53. Helma J, Cardoso MC, Miydlersmans S, Leonhardt H. Nanobodies and recombinant binders in cell biology. J Cell Biol (2015) 209:633–44. doi:10.1083/jcb.201409074

54. Bever CS, Dong XJ, Vasylieva N, Barnych B, Cui Y, Xu ZL, et al. V3-H anti-bodies: emerging reagents for the analysis of environmental chemicals. Anal Bioanal Chem (2016) 408:9895–9002. doi:10.1007/s00216-016-9585-x

55. Li J, Zhu Z. Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin (2010) 31:1198–207. doi:10.1038/aps.2010.120

56. Mazor Y, Sachsenmeier KE, Yang C, Hansen A, Filderman J, Mulgrew K, et al. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep (2017) 7:40098. doi:10.1038/srep40098

57. H"olliger P, Winter G. Engineering bispecific antibodies. Curr Opin Biotechnol (2013) 24:446–9. doi:10.1016/j.coi.2013.07.007

58. Rozan C, Cornillon A, Petiard C, Chartier M, Behar G, Boix C, et al. Single-domain antibody-based and linker-free bispecific antibodies targeting FcγRIII induce potent antitumor activity without recruiting regulatory T cells. Mol Cancer Ther (2013) 12:1481–91. doi:10.1158/1535-7163.MCT-12-1012
