Title
The Post-periapsis Evolution of Galactic Center Source G1: The Second Case of a Resolved Tidal Interaction with a Supermassive Black Hole

Permalink
https://escholarship.org/uc/item/9479s1h8

Journal
ASTROPHYSICAL JOURNAL, 847(1)

ISSN
0004-637X

Authors
Witzel, G
Sitarski, BN
Ghez, AM
et al.

Publication Date
2017-09-20

DOI
10.3847/1538-4357/aa80ea

Peer reviewed
THE POST-PERIAPSE EVOLUTION OF GALACTIC CENTER SOURCE G1: THE SECOND CASE OF A RESOLVED TIDAL INTERACTION WITH A SUPERMASSIVE BLACK HOLE

G. Witze1, B. N. Sitarski1, A. M. Ghez1, M. R. Morris1, A. Hees1, T. Do1, J. R. Lu2, S. Naoz1, A. Boehle1, G. Martinez3, S. Chappell3, R. Schödel3, L. Meyer1, S. Yelda1, E. E. Becklin1, K. Matthews5

ABSTRACT

We present new Adaptive Optics (AO) imaging and spectroscopic measurements of Galactic Center source G1 from W. M. Keck Observatory. Our goal is to understand its nature and relationship to G2, which is the first example of a spatially-resolved object interacting with the supermassive black hole (SMBH). Both objects have been monitored with AO for the past decade (2003 - 2014) and are comparatively close to the black hole ($a_{\min} \sim 200-300$ AU) on very eccentric orbits ($e_{G1} \sim 0.99$; $e_{G2} \sim 0.96$). While G2 has been tracked before and during periapse passage ($T_0 \sim 2014.2$), G1 has been followed since soon after emerging from periapse ($T_0 \sim 2001.3$). Our observations of G1 double the previously reported observational time baseline, which improves its orbital parameter determinations. G1’s orbital trajectory appears to be in the same plane as that of G2, but with a significantly different argument of periapse ($\Delta \omega = 21 \pm 4$ degrees). This suggests that G1 is an independent object and not part of a gas stream containing G2 as has been proposed. Furthermore, we show for the first time that: (1) G1 is extended in the epochs closest to periapse along the direction of orbital motion and (2) G1 becomes significantly smaller over time, (450 AU in 2004 to less than 170 AU in 2009). Based on these observations, G1 appears to be the second example of an object tidally interacting with a SMBH. G1’s existence 14 years after periapse, along with its compactness in epochs further from the time of periapse, suggest that this source is stellar in nature.

Subject headings: Galaxy: center—infrared: stars—techniques: high angular resolution—techniques: spectroscopic—techniques: Adaptive Optics

1. INTRODUCTION

As the capabilities of high-resolution imaging facilities have advanced, the center of our Galaxy has become a unique laboratory for studying the nearest supermassive black hole (SMBH; Ghez et al. 1998 2008 Gillessen et al. 2009) and has revealed many unexpected results. This includes the presence of young stars where none were expected (e.g., Levin & Beloborodov 2003 Genzel et al. 2003, Pauvard et al. 2006) Bartko et al. 2009 Lu et al. 2009 Yelda et al. 2014), a lack of old stars where many were predicted (e.g., Buchholz et al. 2009 Do et al. 2009a), and very faint, but highly variable, infrared emission believed to be associated with the black hole’s accretion flow.

The most recent Galactic Center discovery from high-resolution infrared observations that has attracted considerable attention is the very red infrared source G2, which recently went through closest approach to the supermassive black hole, Sgr A*; it was projected to tidally disrupt, shock and to possibly contribute to an enhanced accretion episode onto the black hole (Gillessen et al. 2012 Burkert et al. 2012 Schartmann et al. 2012 Pfuhl et al. 2015). Observations of G2 after periapse passage have challenged the gas cloud hypothesis. First, it survived as a compact source in the continuum imaging measurements at 3.8 μm (Witzel et al. 2014) and possibly as a compact source in the gas (Br-γ, spectroscopic measurements; Valencia-S. et al. 2015). This has favored the alternative hypothesis that there is a central stellar source embedded in G2. There are several variants of the stellar hypothesis, including: a disrupted protoplanetary disk (Murray-Clay & Loeb 2012); a disrupted disk around an old star (Miranda-Escude 2012); a mass-loss envelope from a young T Tauri star (Scoville & Burkert 2013); a Wolf-Rayet star (Eckart et al. 2013); spherically symmetric winds from an embedded object (Ballone et al. 2013); a binary merger product (Hui et al. 2013 Witzel et al. 2014 Prodan et al. 2015); and an embedded pre-main sequence star (Valencia-S. et al. 2015).

More recently, another object – G1 – has been recognized to bear a close relationship to G2. G1 was originally hypothesized to be a 3 Earth-mass gas cloud, and as it went through closest approach to the supermassive black hole, Sgr A*, it was projected to tidally disrupt, shock and to possibly contribute to an enhanced accretion episode onto the black hole (Ghez et al. 2004 2005). In addition, Pfuhl et al. (2015) noted that G1 has observational properties similar to those of G2, including Br-γ emission as well as a very red color. Also, G1 passed through periapse ~ 13 years ago (Pfuhl et al. 2015 Sitarski et al. 2014), and therefore high-resolution observations only exist post-periapse passage while we...
have observations of G2 prior to, through, and post-periapse passage. The observations in Pfuhl et al. (2015) also suggest that G1 moves on a Keplerian orbit with orbital characteristics similar to G2 (Sitarski et al. 2014). These similar orbits and observational characteristics led Pfuhl et al. (2015) to hypothesize that G2 and G1 are part of a gas streamer on the same trajectory.

In this paper, we explore the evolution of G1’s observed properties and orbital motion over the last decade, the longest time baseline reported thus far for this object. We investigate the evolution of G1 with time and position from Sgr A∗ to characterize its tidal interactions. With our longer time baseline, we test the theory that G1 and G2 are part of the same gas streamer.

This paper is organized as follows: Section 2 describes our data sets and data reduction techniques; Section 3 details our astrometric and photometric calibration, and our orbital fitting procedure; Section 4 presents our results; and Section 5 discusses our findings in the context of G2 and evidence that these are self-gravitating objects. One scenario that we consider is the binary merger hypothesis. Section 6 summarizes our conclusions.

2. DATA SETS

Near-infrared, high-angular-resolution images and spectra of the Galactic Center region containing G1 have been obtained as part of the long-term program at the W. M. Keck Observatory (WMKO), carried out by our group, to study the Galactic Center black hole and its environs. In this paper, the primary data sets are WMKO images that have been acquired through the L′ (λ0 = 3.8 μm) broadband filter over a thirteen-year period with NIRCam, the facility near-infrared camera (PI: K. Matthews) fed by the Keck II laser guide star adaptive optics system (LGSAO; Wizinowich et al. 2006) van Dam et al. (2006). Ten of the twelve epochs have been previously reported by us and are part of our group’s archive of fully calibrated data sets (Ghez et al. 2004, 2005a, Hornstein et al. 2007; Phifer et al. 2013; Witzel et al. 2014). Two additional epochs of observation, 2013 August and 2016 May, are reported here for the first time. The pixel scale for these data sets is 9.950 mas/pixel (Yelda et al. 2010), which corresponds to an oversampling factor of ∼9 for typical point spread function. Tab. 1 summarizes all the L′ imaging data sets for this study.

The new L′ data sets were observed and calibrated using the same techniques described in the papers reporting our other L′ data sets (Stolte et al. 2010; Phifer et al. 2013; Witzel et al. 2014). This followed standard techniques with the exception of the treatment of the sky exposures, which were taken for each field rotator mirror position within the same range as the science data in steps of ∼2 degrees. For each L′ science exposure in epochs after 2004, the corresponding sky exposure was subtracted in order to accurately subtract the thermal emission from dust on the mirror optics (e.g., Stolte et al. 2010). Once the data were fully calibrated, selected frames were combined into an average map (main map). The individual frames were selected based on the image quality as measured by the full-width at half-maximum of the PSF (FWHM ≤1.25 × FWHMmin, where FWHMmin is the minimum measured FWHM of all the data) and were weighted by the Strehl ratio of each image. We additionally created three independent images (sub-maps) from three interleaved subsets of frames to determine astrometric and photometric uncertainties for the images.

For this study, we also draw upon two other types of imaging data sets. The first are two Ms (λ0 = 4.67 μm) observations obtained on 2005 July 16 (previously published by Hornstein et al. 2007) and another obtained on 2016 May 21. These were added to enhance our photometric characterization of G1. Second, we used all of our group’s K′ data sets, which cover the central 10′ × 10′ of our Galaxy, and that have been obtained to track the orbital motions of stars at the Galactic Center (Ghez et al. 1998, 2000, 2003, 2005a, 2008; Lu et al. 2009; Yelda et al. 2010; Meyer et al. 2012; Yelda et al. 2014; Boehle et al. 2016). In addition to the previously published K′ data sets, two new data sets, obtained on 2013 July 20 and 2016 May 21, are included in this work. The first data set was taken in an identical way to all previous K′ astrometric maps (e.g., Yelda et al. 2014), consists of 193 frames of data, and its final combined image has a point spread function with a FWHM of 58.5 mas and a Strehl ratio of 0.36. The second was taken similarly to our L′ observations, in which we stared at a fixed position in the central field to minimize overheads. This map consists of 21 frames of data, and its final combined image has a PSF with a FWHM of 68 mas and a Strehl ratio of 0.26. The K′ data are used for both the photometric and astrometric characterization of G1.

Additionally, we utilize a spectroscopic data set obtained at W. M. Keck Observatory with OSIRIS (Larkin et al. 2006). This data set, which was originally published in Ghez et al. (2008), consists of 28 frames taken 2006 June 18 and 30 and 2006 July 01 through the narrowband Kn3 filter (λ0 = 2.166 μm) with the 35 mas pixel scale. These observations have a spatial resolution at Br-γ of 67 mas and a spectral resolution of ∼3600. These OSIRIS data constitute some of our deepest Kn3 observations prior to 2014 with a total integration time of ∼7 hours, and while at that time G1 was near Sgr A*, it was sufficiently separated (r = 0.114 ± 0.009 arcseconds) for the position of Sgr A* and G1 to be disentangled.

3. ANALYSIS

3.1. Imaging Analysis

Our imaging analysis is divided into two parts: (i) astrometric analysis using the PSF fitting tool StarFinder and (ii) photometric and size calculations using a PSF convolved with a 2D elliptical Gaussian. Both measurements are described in detail below.

3.1.1. Astrometry

G1 is visually identified in every L′ and Ms image (see Fig. 1). Its astrometric properties in every image were obtained using the PSF fitting program StarFinder (Diolaiti et al. 2000) in a manner similar to what has been outlined in previous works (Yelda et al. 2014 and references therein). We initially ran StarFinder using a correlation threshold of 0.8 and 0.6 in the main image and sub-images, respectively, to identify candidate sources in our images. This resulted in G1 detections in 2004, 2005, 2006, 2008, 2010, 2013, and 2016.
UT Date	Decimal Date	$t_{\text{int}} \times$ coadds	Frames Taken	Frames Used	Array Size	Dithered FOV	PSF FWHM (mas)	Strehl	L'_{lim}^a (mag)	δ_s (mas)	Original Publicationb
2002 May 31	2002.413	0.50 \times 40	53	25	10" \times 10"	11''6 \times 10''5	100	0.26	12.0	2.2	0
2003 Jun 10	2003.440	0.50 \times 40	12	6	10" \times 10"	12''8 \times 10''2	85	0.41	13.3	1.4	0
2004 Jul 26	2004.567	0.25 \times 120	11	11	10" \times 10"	10''7 \times 9''8	80	0.42	14.4	0.4	1
2005 Jul 30 & 31	2005.580	0.50 \times 60	62	56	10" \times 10"	10''3 \times 9''5	81	0.36	14.4	0.3	1
2006 May 21	2006.385	0.50 \times 60	19	19	10" \times 10"	11''4 \times 10''3	82	0.38	14.4	0.4	2
2009 Jul 22	2009.556	0.50 \times 60	4	4	10" \times 10"	13''1 \times 12''3	85	0.38	13.2	0.1	3
2012 Jul 20-23	2012.551	0.50 \times 30	1316	1321	2''64 \times 2''64c	2''7 \times 2''6	92	0.51	15.3	0.2	3
2013 Aug 13	2013.616	0.50 \times 60	249	245	2''64 \times 2''64c	2''7 \times 2''6	90	0.54	15.2	0.1	4
2014 Mar 20	2014.216	0.50 \times 60	21	21	10" \times 10"	10''3 \times 9''3	91	0.51	14.4	0.4	5
2014 May 11	2014.359	0.50 \times 60	9	9	10" \times 10"	10''1 \times 9''3	90	0.53	13.2	0.4	5
2014 Jul 2	2014.503	0.50 \times 60	20	20	10" \times 10"	10''2 \times 9''3	91	0.34	14.1	0.4	5
2014 Aug 4	2014.590	0.50 \times 60	28	28	10" \times 10"	10''2 \times 9''4	92	0.50	13.7	0.4	5
2016 May 21	2016.376	0.50 \times 60	25	25	10" \times 10"	10''6 \times 9''3	85	0.38	13.8	0.4	4

a This is defined as the 95% quantile of the distribution of magnitudes of detected stars with StarFinder.

b References: (0) Ghez et al. 2004; (1) Ghez et al. 2005a; (2) Hornstein et al. 2007; (3) Phifer et al. 2013; (4) This work; (5) Witzel et al. 2014.

c For our smaller field of view data (L' in 20012 July and 2013 August and Ms), a PSF support size of 1" \times 1" is used instead of our standard 2" \times 2" support size in order to avoid edge effects. Comparisons to the larger field of view showed that this had no significant effect on the astrometry and photometry of G1.
Fig. 1.— Two-color images made by combining NIRC2 images at K′ (2.2 μm, in blue) and L′ (3.8 μm, in red). The images have been aligned using the coordinates of S0-2 from our respective StarFinder runs for each filter during each epoch; the 2014 data are from our March 2014 observation. The position of Sgr A* is denoted by the white "×", and the position of G1 is denoted by a yellow arrow. The 2005 panel shows a three-color image that includes our 2005 Ms data as well (2.2 μm in blue; 3.8 μm in green; 4.7 μm in red). G1 and G2 are distinctly red sources. Other red sources exist within the inner 0.5 arcseconds of Sgr A* as well and will be explored by Sitarski et al. (in preparation). It is apparent that Sgr A* varies considerably. For contour plots of G1, see Fig. 4.
2006, 2012, and 2013 in the L’ data. In 2003, 2009 and all 2014 L’ epochs and in both the Ms data sets, a different approach was necessary to capture G1 due to poorer data quality, although G1 can be visually identified (Fig. 1). We therefore altered the search criterion to seek a point source within a three-pixel box centered at the point of the highest flux count, at the approximate position of G1 using a modified version of StarFinder that searches for additional sources at a lower correlation (Boehle et al. 2016). We do not use the 2016 L’ data for astrometry as we use the orbital model from 2003 - 2014 to predict the position of G1 in the 2016 data (see our photometric analysis described in Section 3.1.2). With this modified procedure, G1 was detected in all epochs.

While G1 is extended in the early epochs (Section 4.2), we still use the StarFinder astrometry that reliably determines G1’s centroid, as the residuals in each epoch look symmetric. Two-dimensional Gaussian fits convolved with a point spread function to G1 yielded peak positions consistent with the positions extracted from StarFinder.

The point sources identified in each epoch are matched across all epochs and transformed to a common coordinate system in which Sgr A* is at rest (see Phifer et al. 2013, Yelda et al. 2010, 2014, for the application of our distortion solution to L’-band data see Appendix A). Specifically, each L’ list of stellar positions (short: star list) is aligned to the K’ star list that is nearest in time with translation, rotation, and affine first-order transformation that is independent in x and y. The transformed G1 position is added to the K’ star list and the K’ star lists from 1995 to 2014 are aligned as described in our earlier works (e.g., Ghez et al. 2008, Yelda et al. 2014) using measurements of infrared astrometric secondary standards taken through 2012 (Yelda et al. 2010, 2014 Boehle et al. 2016). Tab. 2 lists the astrometry for G1 in each epoch prior to 2016.

3.1.2. Photometry and Size Measurement

Magnitudes of all point sources at K’ were calculated using PSF fitting with StarFinder procedure (see previous section). We chose IRS 16C, IRS 16NW, and IRS 16CC as our photometric calibrators, which is part of our standard K’ calibration procedure (e.g., Yelda et al. 2014).

As G1 seems extended in 2004, 2005, and 2006 at L’ and in the 2005 Ms data, we tested several photometric methods to obtain reliable photometry. To confirm whether the individual methods yielded reliable results during the epochs when G1 was visibly extended, we planted a 2D elliptical Gaussian model for the 2004 size (a Gaussian with a FWHM of ~58 mas convolved with the PSF) in our data in three distinct regions: a high-background region, a low-background region, and near the position of G1. We planted sources with different brightnesses (magL’ = 10-16) to determine whether we could recover its magnitude and physical extent.

We tested three different photometric procedures: (1) StarFinder with a PSF support array of 2.0 arcseconds (200 pixels), following our standard K’ analysis; (2) StarFinder with a PSF support array of 0.9 arcseconds (90 pixels) to make the PSF more robust against background artifacts at larger distances from the core; (3) a two dimensional fit with an intrinsic extended elliptical Gaussian source convolved with an empirical PSF model. The planting simulations returned significantly decreased fluxes with respect to their original planted magnitude in the case of StarFinder PSF fitting with both PSF sizes [(1) and (2)]. However, (3) reliably recovered the fluxes and observed extent of the planted sources to within 20% at the faintest magnitude tested (magL’ = 16).

We applied method (3) to every single L’ and Ms epoch (prior to 2016) using the IDL procedure mpfit2dfun. To prepare the images for model fitting, we first subtracted all L’-detected StarFinder sources. We then used the aligned L’ and K’ StarFinder star lists to find the position of K’-only detected sources and used the forced StarFinder algorithm from Boehle et al. (2016) to find the fluxes of these sources at L’. We subtracted these sources as well as the StarFinder generated backgrounds from the original image. In our 2D elliptical Gaussian model, we allowed the position angle to vary and allowed for the FWHM to range between 0.3 and 10.0 pixels. If the FWHM of G1 fell below 0.3 pixels (~3 mas) in an epoch, then a PSF without a Gaussian component was used instead. Our photometry is reported in Tab. 2. A comparison of the astrometry between the three methods yielded identical positions of G1 within 1σ errors.

To photometrically calibrate our L’ and Ms data, we used S0-2, S0-12, S1-20, and S1-1 and their L’ magnitudes from Schödel et al. (2010). These sources were chosen because they are all in the field of view for every epoch, including our subarrayed epochs (see Tab. 1). Similarly to Schödel et al. (2011), the Ms data were calibrated using the same magnitudes as L’ because the relative colors of the calibrators are close to 0. The overall zero-point error from the Schödel et al. (2010) magnitudes is 0.15 magnitudes at L’ and is not taken into account in Tab. 2 or Fig. 2 because they affect all photometric measurements in the same way.

No K’ counterpart was detected for G1 and star-planting simulations were performed to determine an upper magnitude limit. We used the L’ position of G1 in the 2013 August image, where G1 is an isolated point source (see Fig. 1) and transformed that into the 2013 July K’ coordinate system. The star-planting simulations were carried out using our modified version of StarFinder (Phifer et al. 2013, Boehle et al. 2016). There is a K’ source near G1 in 2013, S0-37, but it contributes at most 0.3 mJy to the overall L’ flux of G1 (assuming the dereddening law outlined in Schödel et al. (2010) and that S0-37 has the same colors as S0-2). All photometry in each bandpass is reported in Tab. 2.

The recovered sizes of G1 from our model show that G1 is extended between 2004 and 2006, but is consistent with a point source from 2009 through 2014 (see Tab. 2). The magnitudes and sizes of G1 as a function of time are shown in Fig. 2 and Fig. 3 respectively, while Fig. 4 shows the elongation of G1 in the direction of orbital motion in 2004. The major axis angle of the 2D elliptical Gaussian is consistent with a tangential line to the orbit in 2004 and 2005 (10.4 ± 4.0 degrees [tangent to orbit = 12.3±2.8] and 27.4±4.8 degrees [tangent to orbit = 21.0±2.4] west of north, respectively; see Fig. 1). In order to be able to infer the blackbody properties of G1 in a later epoch when the source is compact, we utilize L’ and Ms data from 2016. As G1 is in a confused region in this epoch, we adopt a different methodology to re-
Fig. 2.—Left: L' photometry on each of our four calibration sources. The solid line denotes the reported magnitude from Schodel et al. (2011). Right: L' photometry of G1 as a function of time. The magnitude of the source has decreased significantly, and varies directly with the size of the source presented in Fig. 3.

Fig. 3.—Size of G1 as a function of time since periapse passage ($T_0 \sim 2001.3$) in both the semi-major axis and semi-minor axis directions. In the epochs when G1 is resolved, we can get an actual measurement of the semi-major axis of the source; the last four epochs are upper limits on G1's size obtained by first subtracting out the closest neighboring sources in that epoch (S0-2 and Sgr A*), and then comparing the 2-dimensional Gaussian profile of G1 to the point spread function. The light blue bar denotes the FWHM of the 1D marginalized probability distribution function for the periapse passage time.
Fig. 4.— *Upper Left:* G1 in 2004 after subtracting all L' StarFinder-detected point sources. The angle of the semi-major axis is denoted by the yellow line. The blue arrow shows a line in the direction of the tangent to the direction of orbital motion in 2004. *Upper Right:* Image of 2-D Gaussian fit to the data found using *mpfit2dpeak*. *Lower Left:* PSF model from 2004 as extracted from *StarFinder*. This panel, the upper left, and the upper right panel are all normalized so their peaks are on the same color table and scale; all panels are also on the same physical scale. *Lower Right:* Slice along the semi-major axis for our data (black line), the 2-D Gaussian fit (blue line), and the PSF (green line). It is evident that the 2-D Gaussian fit is an acceptable model for the L' extension and it is much larger than the PSF.

Date	∆RA (arcsec)	∆Dec (arcsec)	K' (mag)	L' (mag)	Ms (mag)	L' Semi-Major Axis Intrinsic Size (AU)	PA of Gaussian 2D fit (deg)
2003.44	-0.077±0.009	-0.059±0.009	13.60±0.54			460±30	10.4±4.0
2004.57	-0.077±0.009	-0.068±0.008	13.51±0.23			270±30	27.4±2.4
2005.58	-0.069±0.007	-0.860±0.006	13.64±0.05	12.71±0.30		120±50	16.0±9.8
2006.39	-0.065±0.006	-1.03±0.006	13.87±0.12			160±50	<170
2009.56	-0.035±0.006	-0.131±0.10	14.38±0.66			<170	<180
2012.56	-0.029±0.006	-1.62±0.007	15.21±0.12			<160	<180
2013.55	-0.012±0.006	-1.69±0.006	15.22±0.19			<180	<180
2014.22	0.002±0.006	-0.183±0.009	15.51±0.15			<170	<180
2014.36	0.003±0.006	-0.196±0.006	15.27±0.21			<180	<180
2015.50	0.003±0.006	-0.193±0.007	15.53±0.23			<180	<180
2014.59	0.006±0.006	-0.185±0.007	15.32±0.19			<180	<180
2016.38	0.017±0.004b	-0.202±0.004b	>18.8c			15.50±0.36c	14.81±0.23c

* ∆RA and ∆Dec are given in a reference frame in which the location of the black hole is not at the origin (see Tab. 3).

b These positions come from our orbital solution derived from our L' data taken from 2003 through 2014. See Section 3.3 for more information on our orbital fit.

c The photometry in 2016 was derived using deconvolved images rather than *StarFinder*, as done in previous epochs. See Section 3.1.2 for more information.
cover its K’ upper limit and L’ and Ms flux densities. The StarFinder-generated backgrounds are subtracted from each main map and we subtract all StarFinder identified point sources in the vicinity of our predicted position for G1. We then use the StarFinder-generated PSF to do an iterative Lucy-Richardson deconvolution (with 10,000 iterations). Aperture photometry is then performed after beam restoring at the predicted position of G1 based on its derived orbit from the 2003 - 2014 data. The photometry of the 2016 L’ data matches well with the 2014 epochs.

3.2. Spectroscopic Analysis

The radial velocity for G1 was obtained using a similar approach to that developed by Phifer et al. (2013) for G2: A spectrum of G1 was extracted from our 2006 OSIRIS data at a location that was determined by transforming the high quality 2005 L’ star list to the OSIRIS coordinate system using a second-order polynomial transformation. The spectrum was extracted using an aperture radius of 1 pixel (corresponding to 35 mas) and applying a local sky subtraction in an area clear of known contaminating stars (e.g., Do et al. 2013). The extracted spectrum was calibrated using the standard techniques (Do et al. 2009b), and the peak in the resulting spectrum was fit with a Gaussian model to derive an observed radial velocity and its full-width at half-maximum. The resulting heliocentric radial velocity was corrected by 3.64 km sec$^{-1}$ to correspond to an LSR velocity of -1568 ± 60 km sec$^{-1}$ on the date of the observation (see Tab. 3). The FWHM of the spectral line is 185 ± 41 km sec$^{-1}$. The spectrum and the corresponding point source in the line emission map are shown in Fig. [a].

We compute the Br-γ line luminosity similarly to Phifer et al. (2013) by comparing S0-2’s flux density to G1’s flux density. We estimate S0-2’s dereddened flux density to be 14.1 ± 0.2 mJy (assuming the extinction prescription outlined in Schödel et al. 2010) and the flux density from Ghez et al. (2008) and compute an expected luminosity of S0-2 over the 2.15 - 2.159 µm bandpass to be 0.16L\odot. We then integrate over the same bandpass on its derived orbit from the 2003 - 2014 data. The astrometry of the 2016 L’ data matches well with the 2014 epochs.

3.3. The Orbital Determination of G1

To derive the orbital properties of G1, we jointly fit for the Keplerian orbital parameters of S0-2, S0-38, and G1 (period, epoch of periapse passage, eccentricity, position angle of the ascending node, argument of periapse, and inclination for each source) and the black hole parameters (the two-dimensional position, the three-dimensional velocity, and the mass of and distance to Sgr A*; see Tab. 4). S0-2 and S0-38 have complete orbital phase coverage and drive the black hole parameter fit. We use the same astrometry and radial velocities of S0-2 and S0-38 as reported in Boehle et al. (2016). Jointly fitting the three sources enables us to find an orbital solution for G1 and for the black hole parameters. G1 alone does not have enough kinematic information to independently fit for the black hole parameters due to the lack of orbital phase coverage. We impose uniform, flat priors on each of the orbital parameters for G1 as follows: [0, 360] degrees for the argument of periapse (ω); [0, 180] degrees for the position angle of the ascending node (Ω); [0, 180] degrees for the inclination; [0, 1] for the eccentricity; [0, 6000] years for the period; and [1990, 2010] for the time of periapse passage. The G1 astrometry consists of 11 data points (see Section 3.1), including our newest astrometric measurements. For this orbital fit, we also used the three radial velocity measurements reported in Phifer et al. (2015) and our new measurement (Section 3.2, Tab. 4).

In this study, we include three sources of hypothetical systematics uncertainties: (i) source confusion, (ii) the presence of outliers and (iii) uncertainty arising in the construction of the absolute reference frame.

Source confusion is a significant source of systematic error in our orbital fits and the formal uncertainties are therefore underestimated. In order to account for this, we fit a second-order polynomial to our astrometric data points and add a single additive value in quadrature to the formal errors until the final reduced chi-squared of the second-order fit (that includes position, velocity, and acceleration) is equal to 1.0. The resulting additive value is 5.5 mas which is roughly comparable to the formal uncertainties.

In order to assess the impact of hypothetical outliers, we use a Jackknife resampling method where we fit for G1’s orbital parameters by dropping one epoch of observations at a time. This analysis, presented in Appendix B, shows results that are consistent with the ones reported in Tab. 4 and we conclude that no outlier impacts significantly our results.

Following the procedure described in the Appendix of Boehle et al. (2016), the systematic uncertainties due to the construction of the absolute reference frame have been assessed by using a Jackknife resampling method. In this Jackknife analysis, one of the seven masers used to construct the reference frame is dropped at a time.

Boehle et al. (2016) showed that this systematic uncertainty is important for the SMBH position and velocity relative to the origin of the constructed reference frame, but is negligible for all the other fitted parameters such as the SMBH mass and distance R$_0$ and the orbital parameters. We conclude that systematic effects arising
from the construction of our absolute reference frame do not impact significantly the posterior probability distribution for stellar orbital parameters.

4. RESULTS

Our analysis of both photometric and spectroscopic information and our Keplerian orbital fit have led to three key results: G1 follows a highly eccentric Keplerian orbit that differs from G2’s orbit; shortly after periapse, G1’s L’ emission is extended along the direction of orbital motion; and G1’s L’ emission is much larger than the tidal radius of even a 100M☉ source shortly after periapse, indicating that this emission comes from material that is not gravitationally bound to G1.

4.1. Keplerian Orbital Fit Results

The orbit of G1 is consistent with Keplerian motion (see Figures 7 and 5). Based on our precise astrometry and radial velocity points, G1 lies on a highly eccentric orbit \(e = 0.99 \pm 0.01 \) and has recently passed through periapse \(T_0 = 2001.3 \pm 0.4 \). The three orbital angles (position angle of the ascending node \(\Omega = 87.1^\circ \pm 4.9^\circ \), argument of periapse \(\omega = 117.3^\circ \pm 2.8^\circ \), and inclination \(i = 109.0^\circ \pm 0.8^\circ \)) are well-constrained, but the orbital period is very poorly constrained due to lack of orbital phase coverage. The 1D and 2D joint posterior distribution function are shown in Figures 9 and 10. The best-fit orbit is shown in Fig. 8 and the peak of the 1-dimensional marginalized probability distribution functions along with the maximum likelihood best fit are presented in Table 5. We only fit bound, closed orbits; G1 could be on a hyperbolic orbit since the eccentricity distribution is artificially truncated. The period restriction of \(P < 6000 \) years also constrains our orbital fits.

Fig. 7 shows our orbital plots, our extracted G1 astrometry and radial velocity measurements. Fig. 8 presents our projection of the orbit onto the sky and compares it to the orbital solution from Pfuhl et al. (2015) while assuming the black hole parameters from Gillessen et al. (2009). The left of Fig. 8 shows clearly that our optimal G1 solution is significantly different from the previously published solution from Pfuhl et al. (2015). As a consequence, the best-fit G1 orbit is no longer in agreement with G2’s optimal solution (right panel of Fig. 8). G2’s orbit is thoroughly discussed in Gillessen et al. (2012, 2013) and Meyer et al. (2013). This can be understood because our data covers almost twice the time baseline presented in Pfuhl et al. (2015).

TABLE 4

Orbital Parameter	Peak Fit
X-Position of Sgr A* (\(x_0 \), mas)	2.1^\circ ±0.5^\circ ±1.90
Y-Position of Sgr A* (\(y_0 \), mas)	-4.4^\circ ±0.4^\circ ±1.23
\(\Delta \)RA Velocity of Sgr A* \(\hat{V}_x \) (mas/yr)	-0.12^\circ ±0.01^\circ ±0.13
\(\Delta \)Dec Velocity of Sgr A* \(\hat{V}_y \) (mas/yr)	0.68^\circ ±0.05^\circ ±0.22
Radial Velocity of Sgr A* \(\hat{V} \) (km/sec)	-20.4^\circ ±6.3^\circ ±4.28
Distance to Sgr A* \(R_0 \) (kpc)	7.87^\circ ±0.11
Mass of Sgr A* \(M_\odot \)	3.99^\circ ±0.07

S0-2 Parameters:

Time of closest approach \(T_0 \) (years)	2003.346^\circ ±0.003
Eccentricity (\(e \))	0.892^\circ ±0.002
Period \(P \) (years)	15.93^\circ ±0.02
Angle to periapse \(\omega \) (degrees)	66.8^\circ ±0.5
Inclination \(i \) (degrees)	134.3^\circ ±0.3
Position angle of the ascending node \(\Omega \) (degrees)	228.0^\circ ±0.4

S0-38 Parameters:

Time of closest approach \(T_0 \) (years)	2003.191^\circ ±0.008
Eccentricity (\(e \))	0.811^\circ ±0.003
Period \(P \) (years)	19.2^\circ ±0.1
Angle to periapse \(\omega \) (degrees)	13^\circ ±0.2
Inclination \(i \) (degrees)	169±2
Position angle of the ascending node \(\Omega \) (degrees)	94^\circ ±14

* The peak and corresponding 1σ errors are from the marginalized one-dimensional distributions for the respective parameters. The first error term corresponds to the error determined by the orbital fit itself, while the second error term on the black hole parameters refers to uncertainty in the reference frame and was determined by Boeche et al. (2019).
Fig. 6.— Top: Source-subtracted images centered on G1 that are 0.4 arcseconds on a side. Each image is photometrically normalized to a constant flux. Bottom: Point spread functions corresponding to the epochs in the top row. The contours show intensity levels on the same levels as those in the top row. G1 is extended in 2004 - 2006, whereas G1 is compact after 2009.

Fig. 7.— G1’s kinematic measurements and best fit orbital motion models. Our 11 astrometric and 1 radial velocity measurements are shown as filled points. The three RV measurements from Pfuhl et al. (2015) are plotted as unfilled points. The 1σ uncertainty envelopes are shown as broken lines.

TABLE 5

Parameter	Best Fit, G1	Peak, G1b	Best Fit, G2c	Peak, G2c	G1 Fit
Time of closest approach (T₀, years)	2001.0	2001.3±0.4	2014.1	2014.2±0.03	2001.6±0.1
Eccentricity (e)	0.981	0.992±0.062	0.962	0.964±0.056	0.860±0.050
Periapse Distance (Aₘₐₓ, AU)	277	298±24	193	201±13	417±239
Argument of periapse (ω, degrees)	118	117±3	95	96±2	109±8
Inclination (i, degrees)	109	109±1	112	113±2	108±2
Position angle of the ascending node (Ω, degrees)	89	88±5	83	82±2	69±5

a The parameters of Sgr A* are extracted as described above.
b The errors reported here are the 1σ errors taken from the marginalized one-dimensional distributions for the respective parameters.
c G2 parameters are from performing an orbital fit on our available astrometric and spectroscopic points (those outlined in Meyer et al. 2013) in the same fashion described in Section 3.3. The clockwise disk parameters are i=130±15 deg and Ω=96±15 deg, where 15 deg reflects the half-width at half-maximum from the peak density of the clockwise disk as reported in Yelda et al. 2014.
Fig. 8.— Left: Comparison of G1’s orbital solution between this work and Pfuhl et al. (2015). Our Keplerian orbital fit is shown in red, while the orbital fit and data from Pfuhl et al. (2015) are shown in blue. The black lines connect the observed point to the same point in time on the model orbit. There is an astrometric bias in 2009 and 2010 from confusion or a background dust emission feature that may skew the astrometry in those epochs. We do not use the astrometry from Pfuhl et al. (2015) due to differing reference frames. Right: Orbits of G1 and G2 (as described by Table 5) projected into their common average orbital plane ($\Omega_{G1} = +2.5$ deg; $\Omega_{G2} = -2.5$ deg; $i_{G1} = -2$ deg; $i_{G2} = 2$ deg; $\omega_{G1} = 117$ deg; $\omega_{G2} = 96$ deg). It is evident that despite having similar orbital planes, the orbital trajectories are different. The solid (dotted) lines show times when we have (have not) observed G1 and G2.
4.2. Size Variation

In the epochs closest to periapse, G1 is extended along the direction of orbital motion (the semi-major axis). Fig. 4 shows the intrinsic extent of G1 corrected for the size of the PSF along both the semi-major and semi-minor axes. The source shape is approximately elliptic and the semi-major axis of an elliptical 2D Gaussian fit is aligned with the direction of linear motion (Fig. 4). However, in the more recent epochs, G1 becomes more compact. Additionally, there is significant brightness variation of G1 at L’ post-periapse passage, which corresponds to its size evolution: when G1 is at its largest size, it is also brightest; when G1 is compact, it is ∼2 magnitudes dimmer. The arrows in Fig. 6 show the intrinsic (PSF-size corrected) upper limits on the source size along the semi-major and semi-minor axes, which is on average ∼170 AU along the semi-major axis assuming $R_d = 8$ kpc.

Fig. 9 shows images of G1 with all neighboring point sources identified by StarFinder subtracted. The contours illustrate the size development of G1. The full-width at half-maximum of the semi-major axis of G1 is as high as 463 ± 16 AU in 2004.567 after correcting for the
Assuming zero-point fluxes for L'_β and remain at a constant magnitude from 2012 through 2014, the brightness develops with size, as epochs when G_1 is extended are dimmer. The brightness between the epochs when G_1 is extended (2004 and 2005) and when it is point-like. The brightness is consistent with other examples of infrared excess at periapse. It has observable parameters that seem to be consistent with other examples of infrared excess sources at the Galactic Center, the most prominent of which is G_2. Many of its orbital and observable properties are comparable with those of G_2: its cold temperature ($426 \text{ K if } \beta = 0$, or $568 \text{ K if } \beta = 2$ in 2005; $684 \pm 75 \text{ K if } \beta = 0$ in 2016), its highly eccentric orbit ($e = 0.99^{+0.001}_{-0.001}$), and the orientation of the orbital plane (see Table 5). There is a measurable size change post-periapse, and the L' flux density also changes dramatically after periapse. In the following, we discuss the similarities and differences between G_1 and G_2.

4.3. Photometry and Temperature of G_1

There is a large photometric difference (~2 magnitudes) between the epochs when G_1 is identified (2004, 2005, and 2006) and when it is point-like. The brightness develops with size, as epochs when G_1 is extended are brightest, and epochs when G_1 is point-like are dimmer and remain at a constant magnitude from 2012 through 2016.

G_1 is identified at L' and M_s ($L' = 13.65$ in 2005; $M_s = 12.71$ in 2005), but not at K' ($K' > 18.8$ in 2013). Assuming zero-point fluxes for L' from Tokunaga (2000) and the extinction law outlined in Schödel et al. (2010), we infer a de-reddened L' flux of $2.7 \pm 0.5 \text{ mJy}$ in 2005.

In order to infer a temperature for G_1 at a moment in time (2005) when G_1 is extended enough to be resolved, we expect it to be optically thin, and therefore use a modified blackbody:

$$I_\nu \propto Q_0 \left(\frac{\nu}{\nu_0} \right)^\beta B_\nu(T_{\text{dust}})$$

(1)

where ν_0 is the frequency at which the temperature is calculated, where Q_0/ν_0 is a constant, and where B_ν is the Planck function. We take the power-law index β to be 2, as in Lau et al. (2013) and consistent with extinction curves from Draine (2003). We separately do the same calculation assuming $\beta = 0$ (blackbody). The temperature is therefore calculated following the equation:

$$L' - M_s = -2.5 \log \left[\frac{(\nu L')^\beta}{(\nu M_s)^\beta} \frac{B_{L'}(T_{\text{dust}})}{B_{M_s}(T_{\text{dust}})} \right]$$

(2)

From our L' and M_s measurements, we are able to obtain a de-reddened color ($L' - M_s$ of 0.706. Fitting a modified blackbody following equation 2 with $\beta = 2$, the color temperature we obtain from our 2005 data is equal to $568 \pm 44 \text{ K}$; assuming a blackbody ($\beta = 0$), we obtain a 2005 temperature of $426 \pm 44 \text{ K}$ where our error bars are computed via a Monte Carlo simulation.

Using our L' and M_s photometric data in 2016 when G_1 is observed to be point-like and assuming that G_1 behaves as a blackbody in this epoch ($\beta=0$), we infer a blackbody temperature of $684 \pm 75 \text{ K}$ (where our error bars are again computed via a Monte Carlo simulation). Therefore, our inferred blackbody temperature has increased from 2005 to 2016.

5. DISCUSSION

G_1 is a cold, extended source that has tidally interacted with Sgr A* and survived at least 13 years past periapse. It has observable parameters that seem to be consistent with other examples of infrared excess.
G2-like sources that do not lie on their common orbital plane (Sitarski et al. 2015).

5.2. Evolution of G1’s Dust Envelope

Independently of whether G1 and G2 are related by a gas streamer, the physical natures of G1 and G2 are still not yet known. Recent results (e.g., Witzel et al. 2014, Valencia-S. et al. 2015, in contrast to Pfuhl et al. 2015) support the hypothesis that that G2 has a stellar component due to its periapse passage survival. This raises the question of whether there is similar evidence that G1 is stellar in nature.

In contrast to observation that G2 is unresolved at L′, for G1 we are able to measure its size in 2005 and we can therefore put constraints on the optical depth, τ, of the dust envelope at this point in time. Based on several parameters calculated in Section 4.3 ($T_{\beta} = 568$ K; $r_{G1,2005} = 137$ AU), we find that the optical depth of G1 is small in the epochs when it is resolved, and we can therefore conclude that the origin of the extended continuum emission is an optically thin medium in 2005. As calculated in Section 3.2, the ambient radiation field in the Galactic Center is strong enough (with Lyman-α alone) to externally heat this optically thin shell. The profile of G1 in the epochs where it is extended is well constrained by a PSF convolved with a 2D Gaussian (see Section 3.1.2) and shows no evidence of two components (as could be modeled by a PSF + a 2D Gaussian). This indicates that we do not see a central, optically-thick point source in 2005.

From 2009 onwards, G1 is unresolved at L′ and shows a significantly lower, roughly constant flux density of ~0.6 mJy. Blackbody modeling of G1’s L′ - Ms color yields a temperature of 684 K, implying a blackbody radius of ~1 AU and a luminosity of ~4.5 solar luminosities. This high luminosity and the fact that the object become more compact with time point to a substantially larger mass than 3 Earth masses. As indicated by the evolutionary tracks of main sequence stars, this mass can be of the order of a solar mass (Fig. 12). However, the large derived blackbody size for the unresolved G1 show that it is not a main sequence star nor is G1 luminous enough to be a Red Giant.

The material at the enormous radial distance from the center of G1 of $r \sim 230$ AU of the outer halo seen in the extended epochs certainly remains unbound from G1 for even much higher G1 masses than 1 M⊙; in fact, this holds true for a central mass that is two orders of magnitude higher due to the weak $M^{1/3}$ dependence of the tidal radius (Fig. 13 shows the tidal radius (black lines) of a 2M⊙ source (solid line) and a 100M⊙ source (dashed line; see Witzel et al. 2014 plotted with the measured HWHMs of G1). Therefore this material is stripped and its emission falls below the detection limit as its density decreases or grains are destroyed by X-rays and high-energy particles generated in the accretion flow (e.g., Lau et al. 2015 and references therein; Tielens et al. 1994). It is interesting to note that the minimal radius of material that remained bound throughout periapse for a G1 mass of 1 M⊙ and the periapse passage distance of ~300 AU is 1 AU (see Fig. 14 which plots the tidal radius as a function of time since periapse passage for G1 and G2). This corresponds nicely to the derived blackbody radius in 2016.

![Fig. 11.— Azimuthally-averaged radial profiles for G1 from 2009 through 2014. It is evident that the size of G1 becomes consistent with our StarFinder-extracted model of our point spread function.](image-url)
driapse passage time, the first epoch where we see a re-
tof the supermassive black hole from Table 5, Δ
where
of the object in the potential of the black hole according
v
that $G1$ was already large at periapse passage. From an
mous extent of
that the luminosity we infer for $G1$ is too small for a source we see
(Hurley et al. 2000). The vertical and horizontal lines show the
M
be the large source we infer for periapse passage.
years before its periapse passage in 2014. (Phifer et al.
years after periapse. The Br-γ emission. As
heating of its gas. Observationally, the latest Br-γ line
detection of $G1$ occurred in 2008, 7 years after periapse passage
we discuss below in Section 5.5, a possible physical expla-
nation for $G1$’s large size is that it could be an example of
a black-hole-driven binary merger product (Phifer et al.
2013; Witzel et al. 2014; Prodan et al. 2015).

Our suggested model for $G1$’s dust shell is as follows: $G1$ started tidally interacting with the SMBH with a
rather large size several years prior to periapse passage. The
tidal radius penetrated deep into the dust shell ($r \sim$
1 AU) and the outer part of the optically thick shell
became unbound from the source. This unbound shell
became optically thin and externally heated by the sur-
rounding radiation field in the Galactic Center, which is
what we observe starting in 2004. Over time, the tidally
stripped dust expanded away and fell below the detection
limit against the local background emission, and by 2009,
we see the optically thick surface of a massive, internally-
heated object as a point source that is 2 magnitudes
tainter than what is observed in 2004. Throughout all
ePOCHs, the source is also surrounded by an externally-
heated gas envelope that we observe as Br-γ emission. As
we discuss below in Section 5.5, a possible physical expla-
nation for $G1$’s large size is that it could be an example of
a black-hole-driven binary merger product (Phifer et al.
2013; Witzel et al. 2014; Prodan et al. 2015).

5.4. Comparison to $G2$: Gas Cloud or Star?

Several predictions have been made for the post-
periapse development of $G2$ in the case of a pure gas cloud. $G1$ and $G2$ have similar periapse passage
distances and blackbody sizes (as inferred in Section 4.3
for $G1$), and we expect them to tidally interact with the
black hole in a comparable manner. Thus, in the follow-
ing, we compare $G1$’s post-periapse observables to some
of these predictions for $G2$.

Various models for $G2$ predict that if it were a pure
gas cloud, it should undergo tidal shearing within 1 to 7
years after periapse. The Br-γ flux of $G2$ was predicted
to rapidly decrease over time (Anninos et al. 2012; Mor-
siony et al. 2015), both due to the break-up of $G2$ and the
heating of its gas. Observationally, the latest Br-γ line
detection of $G1$ occurred in 2008, 7 years after periapse passage
[Pfuhl et al. 2015]7 not showing any indication of a
strong decay or complete depletion. In fact, the post-
periapse luminosity of $G1$ is consistent with the pre-
periapse luminosity of $G2$ (see Section 3.2). We also note
that $G1$’s FWHM in 2006, 5 years after periapse passage,
was 185 km sec$^{-1}$, comparable to the line width of $G2$
five years before its periapse passage in 2014. (Phifer et al.
2013) This provides strong constraints on future hydro-
dynamic modeling of the post-periapse development of
these objects.

Unlike $G2$’s flux density staying constant before and
during periapse (Witzel et al. 2014), $G1$’s $L’$ flux sig-
nificantly decreased post-periapse (Fig. 2). The size of

7 In epochs later than 2008, the Br-γ line is extremely difficult
to extract due to lack of sufficient data quality.
G1 at L’ shows a similar development over time from a clearly resolved, optically thin source two years before periapse to an unresolved, compact source five years post-periapse passage. Our calculation in the previous section indicates that G1 went through periapse passage with a radius > 21 AU. These findings are indicative of G1’s dust envelope interacting more strongly with Sgr A* than that of G2 due to its smaller mass and larger size. While they have similar tidal radii close to periapse passage, G1 interacts with the SMBH for a longer period of time than G2.

Several studies (e.g., Schartmann et al. 2012, Anninos et al. 2012, Gillessen et al. 2012, 2013a, Morsony et al. 2015) find that if G1 or G2 were a gas cloud, there should be a significant increase in the steady-state X-ray flux several months before and after periapse passage due to shocks. The Chandra X-ray Observatory was launched in 1999, and the earliest observations of Sgr A* were conducted in late 1999 and 2000. Baganoff et al. (2001) and Ponti et al. (2015) show no indication of an increase in the steady-state X-ray flux in the time around G1’s periapse passage (2001.3 ± 0.4; Fig. 3 in Ponti et al. 2015), although they raise the possibility that there was an increase in the rate of bright flares.

The size evolution of G1 in L’, along with the distinct Keplerian orbits described in Section 5.1, the intact Br-γ emission after 7 years, the survival of G1 at L’, and the lack of an increased X-ray flux, all provide evidence that G1 has a massive (~1 M⊙) central (stellar) component surrounded by an envelope of gas and dust, similar to our hypothesis for G2 (Witzel et al. 2014). Even if the mass of G1 is smaller than 1 M⊙, it is still ~ 10^5 times larger than the masses suggested for a gas cloud (Gillessen et al. 2012, Pfuhl et al. 2015).

5.5. Comparison to Observed Merged Binary Systems

G1 shares some observed characteristics with known merged binaries. Our inferred dust temperature of 426-568 K is within the ranges reported for other observed binary mergers, including V1309 Sco (Nicholls et al. 2013) and BLG-360 (Tylenda et al. 2013). Also, the large size and luminosity inferred for G1 are similar to BLG-360. We do suggest that G1 and G2, if they are indeed binary mergers, crossed their individual Roche limits sometime between 1 × 10^4 - 1 × 10^6 years after the last star formation episode (Stephan et al. 2016). The high eccentricity of G1 and G2 in their respective orbits around Sgr A* is what we would expect from binary systems that have been affected by the Kozai mechanism (Kozai 1962, Li 1995, 2012, Pfuhl et al. 2015).

That is, we do not assume that these mergers stem from random stellar collisions, but rather that the binaries merge as a result of secular interactions similar to what is described by Prodan et al. (2015) and Stephan et al. (2016). The end result of the eccentric Kozai mechanism yielding a merger product has been discussed in detail in the literature (see the review by Nakano 2016). Merged binary systems are most likely to merge on highly eccentric orbits (Naoz & Fabrycky 2014, Stephan et al. 2016).

Merger binary systems undergo many physical changes as the merger occurs. For example, there is usually an optical outburst immediately following the physical merging of the stars, along with an evolution of spectral type (e.g., Tylenda et al. 2011, Nicholls et al. 2013). The very few examples that have been published thus far have been inferred to be merged binaries because of optical periodicity and the binary system before the outburst, and the absence of any periodicity from the system following the outburst (e.g., Tylenda et al. 2011).

The high infrared flux density of G1 (2.7 μm at L’) shortly after periapse passage (2005) is consistent with the high fluxes from other binary merger products after the merger has taken place. As the majority of stars in the field and in dense stellar clusters like the nuclear star cluster exist as multiple-component systems (e.g., Prodan et al. 2015, Sana & Evans 2011, Duchêne & Kraus 2013), it is not unreasonable that many of these could merge in the Galactic Center and form extended envelopes of gas and dust.

While the binary merger hypothesis provides many similarities to the observed characteristics of G1, several things remain unclear. The timescale over which such mergers occur is not yet known (but is under study by Stephan et al. 2016): the length of the dusty phase depends on the mass of the progenitors and the relaxation timescale. For instance, V1309 Sco was originally discovered in September 2008 as a “red nova” (Nakano et al. 2008, Rudy et al. 2008a; Tylenda et al. 2011) that had an evolving spectral type from F to M. Nicholls et al. (2013) showed that V1309 Sco was undetected in the near-infrared regime prior to its outburst; ~23 months afterward, there was a clear near- and mid-infrared excess. They further model the infrared excess as a dust envelope surrounding V1309 Sco that formed after the merging. Two years after merging, a near-infrared excess was still present (Nicholls et al. 2013). This implies that the duration of the dusty phase for G1 was at least 13 years so that our observation window is shorter...
than the duration of the dust phase. However, if G1 and G2 are more massive sources, winds and radiation stemming from the star could affect the dust envelope lifetime. Several other hypotheses exist that could describe the observables of G1, such as edge-on, protoplanetary disks around young, low-mass stars (Murray-Clay & Loeb 2012), disks around older stars (Miralda-Escude 2012), or some other tidal disruption phenomenon involving a stellar object.

Nonetheless, the probability of finding two merger products on similar orbits is not negligible. The argument is twofold: The first considers the probability to find mergers that take place now, and the other the orbital parameters of such mergers: (1) Stephan et al. (2016) calculated the percentage of expected mergers to be rather high at about 10% of all binary star systems within the first few million years after the latest star formation event. (2) While the two orbits have similar eccentricities, Stephan et al. (2016) has shown that there is reason to believe that it is more probable to encounter merger products at high eccentricities which is consistent with the underlying physics of the eccentric Kozai-Lidov mechanism (Naoz 2016). It is additionally likely to discover G-like objects on high eccentricities within our observational constraints, given that they closely approach the black hole and are fast-moving objects. Furthermore, the similarity of the orbital orientations could be explained with a common origin, for example in the clockwise disk. In summary, the binary merger scenario appears to be a plausible interpretation of our observations.

6. CONCLUSIONS

G1 has several observable properties similar to those of the mysterious G2 object—it is a cold source in the Galactic Center that has hydrogen recombination emission (at Br-γ) and has recently passed very close to Sgr A*. Our orbital fits indicate that G1 and G2 lie on similar orbital planes, but have different arguments of periapse, indicating that these objects are not part of the same gas streamer. In contrast to G2, G1 was originally well-resolved at L′ (3.8 µm). This additional information strongly supports the idea that there is a central, stellar object embedded in a gas- and dust-filled envelope.

We hypothesize that G1 may be a binary merger product due to the similarities to observed merger systems (see Section 5.2); notably, it has a large inferred size, and high infrared luminosity. This would be a natural explanation for many unsolved questions regarding other populations in the Galactic Center, including the young stars in the S-star cluster, which may have resulted from the mergers of binaries interacting with Sgr A*, followed by relaxation back to the main sequence. G1 and G2 are also not the only objects with these observed properties in the Galactic Center, as at least 4 others exist close in proximity to Sgr A* (Sitarski et al. 2014). Further stud-
ies of these additional sources will indicate whether all these sources have common characteristics such as Br-γ emission, and whether they share a common origin or a common production mechanism.

Support for this work was provided by NSF grants AST-0909218 and AST-1412615, the Levine-Leichtman Family Foundation, the Preston Family Graduate Fellowship (held by B. N. S. and A. B.), and the UCLA Graduate Division Dissertation Year Fellowship (held by B. N. S.). The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The authors wish to recognize that the summit of Mauna Kea has always held a very significant cultural role for the indigenous Hawaiian community. We are most fortunate to have the opportunity to observe from this mountain. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. B. N. S. also thanks James Larkin for his engaging discussions about the nature of G1 and G2, Alexander Stephan for his comments, and Ann-Marie Madigan for her thoughts on G1. We thank Arezu Dehghanfar for help with preparing the manuscript. We thank the anonymous referee for providing invaluable comments.

APPENDIX

K′-DERIVED DISTORTION SOLUTION ON L′ DATA

As stated in Section 2, we resample all data (K′, L′, and Ms) with the geometric optical distortion solution from Yelda et al. (2010). This distortion solution was derived with K′ data only, so we tested whether this distortion solution was inappropriately applied to the L′ and Ms data sets. We therefore took one of our epochs of data (we chose 2005.580) and transformed the L′ positions as detected by StarFinder (see Section 3.1.1) into the K′ coordinate system. We allowed for first-order translation, rotation, and pixel scale adjustments between the two frames that were independent in x and y. The results from this alignment are shown in the left panel of Fig. 15 where each arrow represents the difference in position for stars identified both at K′ and L′. As there is no noticeable rotation or structure indicated by arrows, we conclude that applying the distortion correction for L′ data is therefore adequate. The right panel of Fig. 15 shows a histogram of the difference between the K′ and L′-transformed coordinates in both x and y. The FWHMs of these histograms are less than the positional errors as found in Tab. 2.

JACKKNIFE-DERIVED ESTIMATES OF THE VARIANCE OF G1’S ORBITAL PARAMETERS AND THE BLACK HOLE PARAMETERS

To determine whether our errors for the orbit of G1 and the black hole parameters capture at least part of the systematic errors due to potential outliers, we used a jackknife resampling technique to determine the variance of each of G1’s orbital parameters while simultaneously fitting S0-2, S0-38, and G1. In each of our orbital fits, we dropped one epoch of observations and determined the jackknife variance over all orbital fits. Our recovered jackknife parameters are listed in Tab. 6. The values and associated error bars calculated from this jackknife analysis are consistent with what is reported in Tab. 4.

REFERENCES

Anninos, P., Fragile, P. C., Wilson, J., & Murray, S. D. 2012, ApJ, 759, 132

Baganoff, F. K., Bautz, M. W., Brandt, W. N., Chartas, G., Feigelson, E. D., Garmire, G. P., Maeda, Y., Morris, M., Ricker, G. R., Townsley, L. K., & Walter, F. 2001, Nature, 413, 45
TABLE 6
JACKKNIFE PARAMETERS

Parameter	Value
X-Position of Sgr A* (x0, mas)	2.2±0.3
Y-Position of Sgr A* (y0, mas)	-13±0.3
ΔRA Velocity of Sgr A* (Vx, mas/yr)	0.11±0.02
ΔDec Velocity of Sgr A* (Vy, mas/yr)	0.67±0.03
Radial Velocity of Sgr A* (Vr, km/sec)	-19.3±3.7
Distance to Sgr A* (R0, kpc)	7.85±0.06
Mass of Sgr A* (M, millions of M☉)	3.92±0.06

G1 Parameters:

Parameter	Value
Position angle of the ascending node (Ω, degrees)	86±6
Time of closest approach (T₀, years)	2001.3±0.2
Eccentricity (e)	0.993±0.002
Argument of periastron (i, degrees)	117±4
Inclination (i, degrees)	109±10
Position angle of the ascending node (Ω, degrees)	86±6

Ballone, A., Schartmann, M., Burkart, A., Gillessen, S., Genzel, R., Fritz, T. K., Eisenhauer, F., Pfuhl, O., & Ott, T. 2013, ApJ, 776, 13
Barth, H., Martins, F., Fritz, T. K., Genzel, R., Levin, Y., Peroth, H. B., Paumer, T., Nagayashi, S., Gerhard, O., Alexander, T., Dodds-Eden, K., Eisenhauer, F., Gillessen, S., Mascetti, L., Ott, T., Perrin, G., Pfuhl, O., Reid, M. J., Ronan, D., Sternberg, A., & Trippe, S. 2009, ApJ, 697, 1741
Becklin, E. E. 1991, in Infrared Astronomy, ed. A. Mampaso, Bartko, H., Martins, F., Fritz, T. K., Genzel, R., Levin, Y., Ballone, A., Schartmann, M., Alig, C., Genzel, R., Fritz, T. K., & Eisenhauer, F. 2012, ApJ, 750, 58
Clénet, Y., Ronan, D., Gendron, E., Lacombe, F., Lagrange, A.-M., Mouillet, D., Magnard, Y., Rousseau, G., Fusco, T., Montri, J., Genzel, R., Schödel, R., Ott, T., Eckart, A., Marco, O., & Tacconi-Garman, L. 2004, A&A, 417, L15
Clénet, Y., Ronan, D., Gratadour, D., Marco, O., Léna, P., Ageorges, N., & Gendron, E. 2005, A&A, 439, L9
Diodati, E., Bendinelli, O., Bonaccini, D., Close, L., Currie, D., & Parmeggiani, G. 2000, A&AS, 147, 335
Do, T., Ghez, A. M., Morris, M. R., Yelda, S., Meyer, L., Witzel, G., Longstaff, F. A., & Ghez, A. M. 2014, ApJ, 776, 78
Ghez, A. M., Salim, S., Weinberg, N. N., Lu, J. R., Do, T., Dunn, J. K., Matthews, R., Morris, R. M., Yelda, S., Becklin, E. E., Kremenek, T., Milosavljevic, M., & Naiman, J. 2008, ApJ, 689, 1044
Ghez, A. M., Wright, S. A., Matthews, K., Thompson, D., Le Mignant, D., Tanner, A., Horne, S., Morris, D. R., Baganoff, F. K., & Wu, Y.-W. 2013, ApJ, 763, 88
Gillessen, S., Genzel, R., Fritz, T. K., Eisenhauer, F., Pfuhl, O., Ott, T., Cuadra, J., Schartmann, M., & Burkart, A. 2013a, ApJ, 774, 44
Gillessen, S., Genzel, R., Fritz, T. K., Eisenhauer, F., Pfuhl, O., Ott, T., Cuadra, J., Schartmann, M., Ballone, A., & Burkart, A. 2013b, ApJ, 774, 44
Gillessen, S., Genzel, R., Fritz, T. K., Quataert, E., Alig, C., Burkart, A., Cuadra, J., Eisenhauer, F., Pfuhl, O., Dodds-Eden, K., Gammie, C. F., & Ott, T. 2012, Nature, 481, 51
Hornstein, S. D., Matthews, K., Ghez, A. M., Lu, J. R., Morris, M., Becklin, E. E., Rafelski, M., & Baganoff, F. K. 2007, ApJ, 667, 900
Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, MNRAS, 315, 543
Kozai, Y. 1962, AJ, 67, 591
Larkin, J., Barczys, M., Krabbe, A., Adkins, S., Aliaci, T., Amico, P., Brins, G., Campbell, R., Canfield, J., Gasaway, T., Honey, A., Iserlohe, C., Johnson, C., Kress, E., LaFreniere, D., Lyle, J., Magnone, K., Magnone, N., McElwain, M., Moon, J., Quirrenbach, A., Skulason, G., Song, I., Spencer, M., Weiss, J., & Wright, S. 2006, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6209, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
Lau, R. M., Herter, T. L., Morris, M. R., Li, Z., & Adams, J. D. 2015, Science, 348, 1463
Majidin, A.-M., McCourt, M., & O’Leary, R. 2016, ArXiv e-prints
McCourt, M. & Majidin, A.-M. 2016, MNRAS, 455, 2187
Meyer, L., Ghez, A. M., Schödel, F., Yelda, S., Boehler, A., Lu, J. R., Do, T., Morris, R. M., Becklin, E. E., & Matthews, K. 2013, Science, 338, 84
Meyer, L., Ghez, A. M., Witzel, G., Do, T., Pfifer, K., Sitarski, B. N., Morris, R. M., Boehler, A., Yelda, S., Lu, J. R., & Becklin, E. 2013, ArXiv e-prints
Meyer, L., Witzel, G., Longstaff, F. A., & Ghez, A. M. 2014, ApJ, 791, 24
Miralda-Escudé, J. 2012, ApJ, 756, 86
Morsony, B., Gracey, B., Workman, J., & Yoon, D. 2015, ArXiv e-prints
