Identification of selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade [version 2; referees: 4 approved]

Amanda J. Watson, Gemma V. Hopkins, Samantha Hitchin, Habiba Begum, Stuart Jones, Allan Jordan, Sarah Holt, H. Nikki March, Rebecca Newton, Helen Small, Alex Stowell, Ian D. Waddell, Bohdan Waszkowycz, Donald J. Ogilvie

Cancer Research UK Manchester Institute, Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK

Abstract

RET (REarranged during Transfection) is a receptor tyrosine kinase, which plays pivotal roles in regulating cell survival, differentiation, proliferation, migration and chemotaxis. Activation of RET is a mechanism of oncogenesis in medullary thyroid carcinomas where both germline and sporadic activating somatic mutations are prevalent.

At present, there are no known specific RET inhibitors in clinical development, although many potent inhibitors of RET have been opportunistically identified through selectivity profiling of compounds initially designed to target other tyrosine kinases. Vandetanib and cabozantinib, both multi-kinase inhibitors with RET activity, are approved for use in medullary thyroid carcinoma, but additional pharmacological activities, most notably inhibition of vascular endothelial growth factor - VEGFR2 (KDR), lead to dose-limiting toxicity. The recent identification of RET fusions present in ~1% of lung adenocarcinoma patients has renewed interest in the identification and development of more selective RET inhibitors lacking the toxicities associated with the current treatments.

In an earlier publication [Newton et al, 2016; 1] we reported the discovery of a series of 2-substituted phenol quinazolines as potent and selective RET kinase inhibitors. Here we describe the development of the robust screening cascade which allowed the identification and advancement of this chemical series. Furthermore we have profiled a panel of RET-active clinical compounds both to validate the cascade and to confirm that none display a RET-selective target profile.
Corresponding author: Amanda J. Watson (mandy.watson@cruk.manchester.ac.uk)

How to cite this article: Watson AJ, Hopkins GV, Hitchin S et al. Identification of selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade [version 2; referees: 4 approved]
F1000Research 2016, 5:1005 (doi: 10.12688/f1000research.8724.2)

Copyright: © 2016 Watson AJ et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: This work was supported by 6th Element Capital’s Pioneer fund and by Cancer Research UK (Grant C480/A11411 and C309/A8274).

Competing interests: There are no competing financial interests to declare.

First published: 26 May 2016, 5:1005 (doi: 10.12688/f1000research.8724.1)
Introduction

RET is a receptor tyrosine kinase (TK) expressed primarily on derived neural crest and urogenital cells during embryonic development. It is required for maturation of several cell lineages of the peripheral nervous system, kidney morphogenesis and spermatogenesis. The glial derived neurotrophic factor (GDNF) family of ligands bind RET in association with one of four glycosyl phosphatidylinositol (GPI) anchored GDNF family α-receptors (GFRα3), triggering RET dimerization, followed by auto-phosphorylation of specific tyrosine residues within the C-terminal chain and trans-phosphorylation of intracellular signalling cascades. These downstream signalling networks play a key role in regulating cell survival, differentiation, proliferation, migration and chemotaxis.

Activating mutations in RET (e.g. C634W and M918T) have been identified in familial and sporadic forms of medullary thyroid carcinomas (MTC) and are associated with aggressive disease progression. More recently, several groups independently identified RET rearrangements in 1–2% of lung adenocarcinoma (LAD) cases. The RET fusion genes discovered in these studies include CCDC6-RET (already known as RET/PTC1 in papillary thyroid carcinoma) as well as a novel fusion with KIF5B (kinesin family member 5B), encoding a coiled coil domain, generated by pericentric inversion in chromosome 10. The coiled-coil domains present in the fusion partner promote overexpression and ligand-independent dimerization leading to constitutive activation of RET. These studies also demonstrated that the resulting fusion proteins are oncogenic, and that their inhibition has therapeutic potential. Importantly, these RET fusions are mutually exclusive with other known drivers in LAD (e.g. KRAS, epidermal growth factor receptor (EGFR), EML4-anaplastic lymphoma kinase (ALK)), further supporting a role for RET as a unique driver of malignancy in these tumors. RET-positive patients represent a well-defined population with specific features: all are adenocarcinomas, and patients tend to be non-smokers and to be younger than the median age for lung cancer patients.

At present, there are no known specific RET inhibitors in clinical development, although many potent inhibitors of RET have been opportunistically identified through selectivity profiling of compounds initially designed to target other TKs. The small molecule inhibitors vandetanib and cabozantinib are perhaps the best examples of such compounds. Although both have been approved for the treatment of advanced metastatic MTC, RET inhibition is a secondary pharmacology of these drugs, which were initially developed as inhibitors of other TKs. Both agents target KDR, whilst vandetanib has additional activity versus EGFR and cabozantinib versus MET. These compounds are now under investigation for the treatment of RET fusion positive LAD. A preliminary report of a phase II trial of cabozantinib confirmed partial responses in two of three RET-positive patients; the third patient presented with prolonged stable disease. The activity of vandetanib in RET fusion positive patients has been demonstrated in two case reports. However significant toxicity (e.g. rash, diarrhoea, hypertension) resulting from inhibition of other kinases, particularly KDR, has led to dose reductions in clinical trials and is likely to compromise the use of both these agents in clinical settings. Thus, there is a clear need for selective RET inhibitors which do not display the toxicities associated with the current treatments and enable more potent and sustained inhibition of RET signalling. These agents may offer greater clinical benefit for patients with RET mutant cancers and widen the scope for the clinical use of RET inhibitors.
involving inhibition of HSP90 (heat shock protein 90kDa). HSP90 is a molecular chaperone that plays a central role in regulating the correct folding, stability and function of numerous proteins. Inhibition of HSP90 activity results in aggregation or proteasomal degradation of these proteins. RET, along with other driver kinases such as EGFR and ALK is a HSP90 client protein and as such requires HSP90 for protein stability and function. Thus, targeting the chaperone function of HSP90 offers an alternative to direct kinase inhibition for therapeutic intervention in RET driven cancer. Clinical evaluation of this approach is currently being assessed as part of a larger study in stage IV LAD patients with driver molecular alterations other than EGFR mutations.

In an earlier publication we reported the discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity; here we describe development of the robust screening cascade which allowed us to achieve that goal and additionally profile existing clinical compounds with RET activity in order to assess them against our compound target profile.

Materials and methods

Material

Clinical compounds were purchased from SelleckChem, Paterson Drug Discovery (PDD) compounds were synthesised in-house by methods described in an earlier publication. All compounds were dissolved in 20mM in dimethyl sulfoxide (DMSO, Sigma) and stored at -20°C or in a desiccator at room temperature.

Biochemical kinase assays

RET and KDR kinase activities were measured according to methods previously described using the HTRF kinEASE kit (CisBio). For measurement of mutant RET (M918T; Carma Bioscience), the following modifications were made: 50pM RET (M918T), 9µM ATP and 1µM substrate. For the slow binding studies, the standard kinase assay procedure was used but with varying time of compound pre-incubation with RET prior to the addition of ATP. Reversibility of binding was determined by measuring the recovery of enzymatic activity after a rapid and large dilution of the enzyme-inhibitor complex. RET enzyme was incubated at 100 fold the concentration normally required for the standard screening assay, with a concentration of inhibitor equivalent to 10 fold the IC50. After 15 minutes of incubation, this mixture was diluted 100 fold in the reaction buffer containing the enzyme substrates to start the reaction. This diluted the enzyme to the standard assay concentration and the compound from 10 fold to 0.1 fold of the IC50 concentration. Theoretically, following this 100-fold dilution of the pre-incubation mixture, 91% enzyme activity will be recovered for a fully reversible inhibitor. However, taking into account assay variability, compounds showing >75% enzymatic activity recovery compared to the no inhibitor positive control were classed as fully reversible, those with <75% but where recovery of some activity was clearly detected were classed as slowly reversible (i.e. would eventually reach >75% recovery of activity). To test whether compounds were ATP competitive, assays were performed under standard conditions with 9µM ATP (Km), and then repeated at 450µM ATP (50x Km). By increasing the amount of ATP in the reaction by 50 fold, the IC50 value should increase for competitive compounds, theoretically by a ratio of 25. For non-competitive compounds the ratio should be 0.5.

Cell culture

MZ-CRC-1 (gift from Alexander Knuth, University of Zurich) LC-2/ad (RIKEN) and HEK293 (ATCC) cells were cultured in advanced DMEM/F12 media (Invitrogen), supplemented with 5% fetal bovine serum (FBS, Invitrogen) and 2mM Glutamax (Invitrogen) and incubated at 37°C in 5% CO2/air. The BaF3 cell lines, expressing KIF5B-RET (gift from Pasi Janne) and KDR (Advanced Cellular Dynamics, San Diego) were maintained in RPMI-1640 (Invitrogen) media containing 10% Hyclone FBS (Scientific Laboratory Supplies) with the addition of 1µg/mL puromycin (Sigma) for the KDR cell line. Non-modified BaF3 cells (WT; DSMZ, Germany) were maintained in RPMI-1640 media (Invitrogen) containing 10% FBS (Invitrogen) and supplemented with 10 ng/mL recombinant mouse IL-3 (R&D systems).

Cell POM (proof of mechanism) assay

The RET proof of mechanism assay (POM) assay measures the compound effect on the target. Active forms of RET and KDR are phosphorylated and thus compound inhibitory activity may be measured directly by quantifying levels of the phosphoproteins, pRET and pKDR, remaining after cell treatment. MZ-CRC-1 cells harbour the M918T mutation and thus express constitutively high levels of pRET and although pKDR is barely detectable it is possible to increase expression with ligand stimulation thus allowing measurement of RET and KDR inactivation within the same cell lysate. MZ-CRC-1 cells were seeded into 96-well plates at 100,000 cells per well in 100µL culture medium. After 24 hours, medium was replaced with 100µl of serum-free medium and cells were incubated overnight. Compounds were dispensed into the appropriate wells using an acoustic liquid handling platform (LABCYTE). Cells were incubated with compound for 2h, followed by vascular endothelial growth factor (human VEGF 165, R&D Systems) ligand stimulation (50ng/ml for 5 minutes at 37°C). VEGF treatment does not affect levels of pRET (data not shown). Cells were washed with 100µL ice-cold PBS and 30µL lysis buffer (Cell Signalling Technology) added. Plates were incubated at 4°C for 1 hour, resulting lysates were transferred to another 96-well plate and protein concentration determined using the Millipore Direct Dye reactive protein assay (Invitrogen) containing 10% FBS (Invitrogen) and supplemented with 10 ng/mL recombinant mouse IL-3 (R&D systems).

Compound effects on pRET levels in LC-2/ad cells were measured as described above except that 30,000 cells per well were plated and the ligand stimulation step was omitted; KDR protein is not detectable in this cell line and therefore it is not possible to determine compound effects on levels of pKDR.

Cell POP (proof of principle) assay

The RET proof of principle (POP) assay measures compound effects on cell proliferation in a disease relevant model. For routine screening we compared anti-proliferative effects of the compounds in the disease model, MZ-CRC-1 (RET (M918T)) versus a control, non-RET expressing cell line, HEK293. This allows us to demonstrate translation of mechanistic effects.
measured in the POM assay into RET-specific phenotypic effects in cells. MZ-CRC-1 and HEK293 (control, no RET expression) cells were seeded into 384 plates at 4000 and 1000 cells per well respectively in 30µL culture medium and confluence monitored at 4 hourly intervals using the IncuCyte ZOOM live cell imaging platform (Essen). After 48 hours, compounds were dispensed as described above and cells incubated until confluence of control cells reached 80–90%. Compound IC_{50}s were calculated based on cell confluence at this time point normalised to control values. Non-specific toxicity margin was calculated by dividing IC_{50} value obtained for the HEK293 control cells by that for the MZ-CRC-1 cells.

The POP assay has also been used to measure compound effects in other disease relevant cell lines, for example, LC-2/ad, an LAD cell line harbouring the CCDC6-RET fusion. LC-2/ad cells were seeded into 96 well plates at 4000 cells per well in 100µL serum free culture medium and incubated at 37°C in 5% CO₂. After 48 hours compounds were diluted to 2x final concentration and added to appropriate wells in 100µL serum-free culture medium. Once control cells had reached 80–90% confluence, protein content was measured using the sulfurphodamine B (SRB) assay. Compound IC_{50}s were based on protein content (proportional to cell number) normalised to control values.

BaF3 POM assay
This assay was performed as described previously. Selectivity values were calculated as described above.

Western blotting analysis
Following compound treatment (1µM, 24 hours), MZ-CRC-1 cell lysates (50 µg) were subjected to polyacrylamide gel electrophoresis (PAGE) and semi-dry transfer to nitrocellulose membrane using the Bio-Rad Trans-Blot Turbo system and Trans-Blot Turbo transfer packs. Membranes were blocked overnight at 4°C in phosphate-buffered saline containing 0.1% Tween (PBST; Sigma) and 5% non-fat dried milk powder (marvel). Primary and secondary antibody incubations were performed at room temperature in PBST/0.5% marvel with 3× PBST washes post incubation. pRET (Santa Cruz #SC-20252-R) and total RET (Santa Cruz #sc-167) antibodies were used at 1:500 dilutions; GAPDH (Cell Signaling Technology #7074) antibodies were used at 1:1000. Proteins were visualized by chemiluminescent detection of peroxidase activity using SuperSignal reagent (Pierce), and images were captured using the Syngene imager and GeneSys software.

Results and discussion
Our aim was to develop and validate a robust screening cascade to support the identification and development of potent and selective RET inhibitors using vandetanib as the starting point and to assess these attributes in clinical compounds reported to have RET activity. All compounds were initially assayed biochemically for activity versus RET and KDR enzyme. Once potency and selectivity had been confirmed, and structure activity relationships (SAR) demonstrated, for a number of compounds within the anilinoquinazoline series, we performed further biochemical studies to investigate the mechanism of RET inhibition using selected compounds including our starting point, vandetanib (Figure 1). Some inhibitors bind to, or dissociate from the target enzyme slowly, leading to time dependent inhibition. Failure to identify this can lead to an underestimation of biochemical potency and misleading SAR. To investigate this, compounds were assayed under standard conditions but pre-incubated with RET for between 0 and 60 minutes prior to addition of ATP. Pre-incubation did not significantly affect IC_{50} values indicating that the anilinoquinazolines are not slow binders and that a 15 minutes pre-incubation, as used in our standard assay, is sufficient to allow the reaction to reach equilibrium (Figure 1A). Although diverse in primary amino acid sequence, the human kinases share a great degree of similarity in their 3D structures, especially in their catalytically active kinase domain where the ATP-binding pocket is located. Kinase inhibitors can be grouped into two classes, based on binding mode: irreversible and reversible. The former tend to bind covalently with a reactive nucleophilic cysteine residue proximal to the ATP-binding site, resulting in the blockage of the ATP site and irreversible inhibition. Reversible inhibitors can be further classified into four main types, competitive, non-competitive, uncompetitive and mixed inhibition.

Our data (Figure 1B) indicates that the anilinoquinazolines under investigation here fall into the reversible, ATP competitive category which is not surprising since it has been demonstrated previously that vandetanib, a related compound and our starting point, exhibits this mode of binding.
Compounds meeting defined criteria for potency and selectivity in the biochemical assay were then assessed in a cellular POM assay. Initially we developed an ELISA-based POM assay, measuring changes in levels of (active) phosphorylated RET (M918T) and KDR, within the same MTC cell line (MZ-CRC-1).

However, it soon became apparent that compared to KDR there was a poor correlation between RET biochemical and cell-based IC₅₀ measurements (Figures 2A & B). In addition, the drop off in potency from the biochemical to cellular assay was generally much greater for RET than KDR, in effect compressing the selectivity margins, often from >100-fold in the biochemical assay to parity (or worse) in the cellular assay. Compound permeability was not believed to be the cause of the disparity as the magnitude of the drop off was not the same for both RET and KDR, despite measurement of both proteins in the same cell lysate. A previous report had indicated that a single mutation within the kinase domain of RET could alter compound inhibitory activity. In order to address the possibility that some of the discrepancy could be due to our measurement of WT protein activity biochemically but mutant RET (M918T) protein in the MZ-CRC-1 cells, we compared the biochemical activity of selected compounds versus both RET (WT) and RET (M918T) protein. The compound IC₅₀ data for the two proteins correlate well (Figure 2C) and therefore indicate that the mutation does not significantly affect biochemical activity for this class of compound. In order to follow this up in the cellular context we extended our repertoire of assays to enable robust measurement of RET activity in TT cells harboring a C634W mutation, a CCDC6-RET fusion and a KIF5B-RET fusion respectively. We assessed relative RET potencies for a number of tool compounds (including vandetanib and cabozantinib) across these cell lines and found that activity in the cellular assay was selected for POP assay screening.

Although at this stage we were confident that we could drive our internal chemistry effort based on the cellular data, it was clear that performance in the biochemical assay was not always a good predictor of RET cellular activity and therefore should not be used as a pre-screen for this chemical series. To address this issue we developed and validated a higher throughput POM assay allowing parallel assessment of all compounds in both cellular and biochemical assays. This BaF3 proliferation assay platform, employing cell lines dependent upon RET or KDR for survival alongside WT IL-3 dependent control cells, is robust with 4x higher throughput than the original MZ-CRC-1 POM ELISA. More importantly the proliferation IC₅₀ for both RET (Figure 3C) and KDR in the BaF3 models correlate well with those generated using the respective phosphorylation endpoint assays thus maintaining the selectivity values previously observed (Figure 3D). Accordingly, we introduced this as the routine POM screening assay with the option to further evaluate compound effects on phosphoprotein levels using the ELISA POM if necessary.

Chemical optimisation of the series ultimately led to the identification of a number of potent and selective RET inhibitors (e.g. PDD16860 and PDD16964; Table 1). Clinical RET compounds currently under investigation in LAD were also profiled using the screening cascade (Table 1). With the possible exception of measuring the same endpoint in HEK293, a human embryonic kidney line which does not express RET. Compounds exhibiting RET potency (<500nM) and selectivity (>10x) in the POM assay were selected for POP assay screening. Our data show that there is a good correlation between the POM and POP IC₅₀ values measured in the MZ-CRC-1 (Figure 3A) cells and other RET models (e.g. LC-2/ad, Supplementary Figure 2) indicating that the RET inhibitory activity that we observe in our POM assay translates into anti-proliferative effects in our MTC and LAD disease models. In addition, we have assayed a selection of representative compounds for anti-proliferative effects in LC-2/ad and as for the POM assay, data correlate well with that obtained in MZ-CRC-1 (Figure 3B). Therefore, we are confident that activities observed in our routine MZ-CRC-1 POM and POP screens are predictive for the other cell line models.

![Figure 2](image-url)

Figure 2. Correlation of IC₅₀ data: A) RET enzyme vs RET cellular POM B) KDR enzyme vs KDR cellular POM C) RET enzyme WT vs RET (M918T). All data points represent the geometric mean of at least two independent measurements.
Figure 3. Correlation of cellular data: A) POM vs POP IC₅₀ data in MZ-CRC-1 B) POP vs POP IC₅₀ data in MZ-CRC-1 and LC-2/ad C) POM vs POM IC₅₀ data in MZ-CRC-1 and KIF5B-RET (BaF3) D) POM vs POM selectivity data in MZ-CRC-1 and KIF5B-RET (BaF3). All data points represent the geometric mean of at least two independent measurements.

Table 1. Clinical competitor and selected compound profiling data. The desired profile values indicate our target values for selectivity and toxicity margin. All values represent the geometric mean of at least four independent measurements. Figures are highlighted depending upon whether they easily (green); clearly do not (red) or almost (orange) meet the target criteria. PDD16860 and PDD16964 are examples of QZ compounds developed by screening through the cascade.

Desired Profile	Vandetanib	Cabozantinib	Sorafenib	Sunitinib	Ponatinib	Lenvatinib	Alectinib	Ganetespib	PDD16860	PDD16964	
RET Enzyme IC₅₀	0.05	0.65	0.13	0.03	0.023	0.024	0.18	3ND	0.0015	0.004	
Selectivity vs. KDR	>100x	3.6x	0.02x	1.0x	0.03x	2.0x	0.05x	483x	2ND	250x	282x
RET Cell IC₅₀	0.29	0.24	0.093	0.26	0.0039	0.12	0.26	1ND	0.12	0.26	
Selectivity vs. KDR	>10x	1.6x	0.07x	0.11x	0.93x	0.2x	0.2x	1ND	0.36	23x	21x
Toxicity Margin	>>10x	35x	54x	13x	28x	127x	141x	1ND	0.7x	19x	42x

alectinib, which it was not possible to dose at the highest concentrations due to solubility issues, none of the kinase inhibitors tested met our criteria for selectivity versus KDR (i.e. >10x). Several reports in the literature^{1,2}, which we have subsequently confirmed in-house (data not shown), demonstrate that alectinib is a much better cellular inhibitor of ALK (IC₅₀ in H2228 cells = 10nM) than RET (IC₅₀ in MZ-CRC-1 cells = 80nM). Given this, along with its limited solubility and required dosing of 300–600mg bid for clinical efficacy in ALK driven LAD, therapeutic inhibition of RET is unlikely at clinically relevant doses. Although not a direct inhibitor of RET activity, we have also profiled ganetespib, a HSP90 inhibitor. Ganetespib did reduce levels of active RET, through protein degradation (Supplementary Figure 3) but was not RET-selective and exhibited more toxicity (toxicity margin = 0.7x) in the control non-RET driven HEK293 cells compared to the MTC RET-driven model, MZ-CRC-1. This indicates that the pleiotropic effects of HSP90 inhibition on numerous client proteins (including KDR) is likely to elicit non-specific toxicity at therapeutically active doses. Other aspects of the screening cascade (Figure 4) are already in place and as discussed in an earlier publication¹, selected compounds have been assessed in in vitro DMPK assays as part of the chemical optimisation. Furthermore, in vivo models and
capabilities (Figure 4) have been established and validated (data not shown) and several tool compounds are currently undergoing assessment in PK/PD and efficacy studies. To date, our robust screening workflows have proved very successful in identifying potent, selective tool compounds and will continue to support our active pursuit of clinical candidates suitable for evaluation in RET fusion positive LAD patients.

Conclusions
We have established a robust screening cascade to enable the identification and development of a clinical candidate compound demonstrating potent and selective RET activity. Furthermore, we have profiled clinical compounds currently under investigation for treatment of LAD confirming that they do not meet our target profile. We are continuing our efforts to develop a clinical candidate and will report on further progress in a future publication.

Data availability
F1000Research: Dataset 1. Datasets: selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade, 10.5256/f1000research.8724.d122280

Author contributions
AJW, GH, SH, HB, SH, HNM designed and conducted the biological experiments, AJW, HS and AS conceptualized the experiments, SJ, RN and BW were responsible for chemical design and synthesis and AJ, IW and DO provided strategic direction. AJW prepared the manuscript. All authors were involved in the revision of the draft manuscript and have agreed to the final content.

Competing interests
There are no competing financial interests to declare.

Grant information
This work was supported by 6th Element Capital’s Pioneer fund and by Cancer Research UK (Grant C480/A11411 and C309/A8274).

Acknowledgements
We are grateful to Pasi Janne for the kind gift of the BaF3 KIF5B-RET cell line and the other members of the Cancer Research UK Manchester Institute Drug Discovery Unit for valuable advice and support.
Supplementary material

Supplementary Figure 1. Comparison of POM IC\textsubscript{50} data across RET cell models. All data points represent the geometric mean of at least two independent measurements. IC\textsubscript{50} data for MZ-CRC-1, LC-2/ad, TT and KIF5B-RET (BaF3) cells.

Supplementary Figure 2. Correlation of POM and POP IC\textsubscript{50} data generated in the LC-2/ad cell line. All data points represent the geometric mean of at least two independent measurements.
Supplementary Figure 3. Degradation of RET protein following treatment with ganetespib. Western blot showing effects of compound treatment (1µM, 24 hours) on pRET, total RET and GAPDH levels in MZ-CRC-1 cells.

References

1. Newton R, Bowler KA, Burns EM, et al.: The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity. Eur J Med Chem. 2016; 112: 20–32. PubMed Abstract | Publisher Full Text | Free Full Text
2. Arighi E, Borrello MG, Sariola H: RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 2005; 16(4–6): 441–467. PubMed Abstract | Publisher Full Text
3. Santoro M, Carlomagno F, Romei C, et al.: Drug insight: Small-molecule inhibitors of protein kinases in the treatment of thyroid cancer. Nat Clin Pract Endocrinol Metab. 2008; 2(11): 51–58. PubMed Abstract | Publisher Full Text
4. Santoro M, Carlonmagno F, Melillo RM, et al.: Dysfunction of the RET receptor in human cancer. Cell Mol Life Sci. 2006; 63(23): 2954–2964. PubMed Abstract | Publisher Full Text
5. Santoro M, Carlonmagno F: Drug insight: Small-molecule inhibitors of protein kinases in the treatment of thyroid cancer. Nat Clin Pract Endocrinol Metab. 2008; 2(11): 42–50. PubMed Abstract | Publisher Full Text
6. Elisei R, Cosci B, Romei C, et al.: Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012; 18(3): 378–381. PubMed Abstract | Publisher Full Text
7. Ju YS, Lee WC, Shin JY, et al.: A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012; 22(3): 436–45. PubMed Abstract | Publisher Full Text | Free Full Text
8. Kohn T, Ichikawa H, Totoki Y, et al.: KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012; 18(3): 375–377. PubMed Abstract | Publisher Full Text | Free Full Text
9. Takeuchi K, Soda M, Togashi Y, et al.: RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012; 18(3): 378–381. PubMed Abstract | Publisher Full Text | Free Full Text
10. Lipson D, Capellitti M, Yelenosky R, et al.: Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012; 18(3): 382–384. PubMed Abstract | Publisher Full Text | Free Full Text
11. Drilon A, Wang L, Hasanovic A, et al.: Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 2013; 3(6): 630–635. PubMed Abstract | Publisher Full Text | Free Full Text
12. Wells SA Jr, Robinson BG, Gagel RF, et al.: Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012; 30(2): 134–141. PubMed Abstract | Publisher Full Text | Free Full Text
13. Elisei R, Schlumberger MJ, Müller SP, et al.: Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013; 31(29): 3639–3646. PubMed Abstract | Publisher Full Text | Free Full Text
14. https://clinicaltrials.gov/ (accessed February 2016).
15. Gautschi O, Zander T, Keller FA, et al.: A patient with lung adenocarcinoma and RET fusion treated with vandetanib. J Thorac Oncol. 2013; 8(5): e43–e44. PubMed Abstract | Publisher Full Text
16. Sugawara M, Ly T, Herschman HM: Medullary thyroid cancer—current treatment strategy, novel therapies and perspectives for the future. Horm Cancer. 2012; 3(5–6): 218–226. PubMed Abstract | Publisher Full Text
17. Mulligan LM: RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014; 14(3): 173–186. PubMed Abstract | Publisher Full Text
18. Song M: Progress in Discovery of KIF5B-RET Kinase Inhibitors for the Treatment of Non-Small-Cell Lung Cancer. J Med Chem. 2016; 58(9): 3672–3691. PubMed Abstract | Publisher Full Text
19. Schlumberger M, Jarzab B, Cabanillas ME, et al.: Identification of new KIF5B-RET kinase inhibitors for the treatment of thyroid cancer. Biochemistry. 2015; 23(1): 7119–23. PubMed Abstract | Publisher Full Text
20. De Falco V, Buonocore P, Mutu M, et al.: Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. J Clin Endocrinol Metab. 2013; 98(3): E811–E819. PubMed Abstract | Publisher Full Text
21. Kodama T, Tsukaguchi T, Satoh Y, et al.: Alectinib shows potent antifumor activity against RET-rearranged non-small cell lung cancer. Mol Cancer Ther. 2014; 13(12): 2910–2918. PubMed Abstract | Publisher Full Text
22. Alfano L, Guida T, Provitera L, et al.: A Phase II Trial of the Multitargeted Tyrosine Kinase Inhibitor Lenvatinib (E7080) in Advanced Medullary Thyroid Cancer. Clin Cancer Res. 2016; 22(11): 44–53. PubMed Abstract | Publisher Full Text
23. Taiapale M, Jaroz DF, Lindquist S: HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol. 2010; 11(7): 515–528. PubMed Abstract | Publisher Full Text
24. Vichai V, Kitikara K: Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006; 1(3): 1112–1116. PubMed Abstract | Publisher Full Text
25. Rudolph J, Xiao Y, Pardi A, et al.: Slow inhibition and conformation selective properties of extracellular signal-regulated kinase 1 and 2 inhibitors. Biochemistry. 2015; 54(1): 22–31. PubMed Abstract | Publisher Full Text | Free Full Text
26. Wu P, Nielsen TE, Clausen MH: FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015; 36(7): 422–439. PubMed Abstract | Publisher Full Text
27. Knowles PP, Murray-Rust J, Kjaer S, et al.: Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem. 2006; 281(44): 33577–33587. PubMed Abstract | Publisher Full Text
28. Verbeek HH, Alves MM, de Groot JW, et al.: The effects of four different tyrosine

Page 10 of 17
kinase inhibitors on medullary and papillary thyroid cancer cells. J Clin Endocrinol Metab. 2011; 96(6): E991–5.
PubMed Abstract | Publisher Full Text

29. Carlomagno F, Salvatore D, Santoro M, et al.: Point mutation of the RET proto-oncogene in the TT human medullary thyroid carcinoma cell line. Biochem Biophys Res Commun. 1995; 207(3): 1022–1028.
PubMed Abstract | Publisher Full Text

30. Matsubara D, Kanai Y, Ishikawa S, et al.: Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J Thorac Oncol. 2012; 7(12): 1872–1876.
PubMed Abstract | Publisher Full Text

31. Suzuki M, Makinoshima H, Matsumoto S, et al.: Identification of a lung adenocarcinoma cell line with CCDC6-RET fusion gene and the effect of RET inhibitors in vitro and in vivo. Cancer Sci. 2013; 104(7): 896–903.
PubMed Abstract | Publisher Full Text

32. Sakamoto H, Tsukaguchi T, Hiroshima S, et al.: CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011; 19(5): 679–690.
PubMed Abstract | Publisher Full Text

33. Watson AJ, Hopkins GV, Hitchin S, et al.: Dataset 1 in: identification of selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade. F1000Research. 2016.
Data Source
Open Peer Review

Patrick A. Eyers
Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK

This well-controlled study from Watson and colleagues manages to avoid many of the cliches used in reporting kinase inhibitor studies ('potent and selective', 'highly specific'), and will be useful for those in the field interested in on and off-targets of clinical, probe and intermediate compounds, especially with relevance to RET, which is fast becoming an interesting drug target.

The introduction is very clear, up-to-date with clinical and preclinical information, and leads into the new study efficiently.

Minor points:

- One sentence mentioning or placing in context the M918T (P+1 loop) and V804M (gatekeeper) cancer-associated RET mutants would be useful for readers, since one is employed here.

- Is Km[ATP] the same for M918T RET, given that it autophosphorylates much more efficiently in vitro (Plaza-Menacho et al., Mol Cell 53:738?). Is Km literature, or measured in-house?

- EGFR = Epithelial Growth Factor Receptor, not endothelial.

- What is the evidence that RET inhibition by bandetanib and cabozantinib is actually 'secondary pharmacology' in terms of in vivo efficacy? This statement might be tempered.

- Cell POM: The POM assumes that the conversion of RET to pRET and KDR to pKDR in cells occurs inter/intramolecularly autophosphorylation (ie by the same protein kinase). Is this known, or surmised (reference would be useful).

- Please add a citation for the MZ-CRC-1 cell line

- Please add a citation, or Figure, demonstrating that HEK-293 cells do not express RET, since this is important for its use as control. What else is different between HEK-293 and MZ-CRC-1 though? Is this known?

- Table 1

Challenging to distinguish between red and orange, how about another colour?
Which cell line is this data from?

- Supplementary Figure 2.

Although ganetespib (HSP90i) destabilising effects provides a clear positive control, cabozantinib or sorafenib (sub micromolar RET inhibitors) also destabilise RET (and abolish autophosphorylation). But is this also true for the most potent \textit{in vitro} inhibitors Ponatinib, Lenvatinib, PD16860/16964, since definition of the IC\textsubscript{50} value must require measurement of the measured RET total vs. pRET ratio? Elimination of RET, in addition to inhibition of activity might be a nice dual-approach here, and might influence selection of candidates?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

\textbf{Competing Interests:} No competing interests were disclosed.

\begin{tabular}{|l|}
\hline
\textbf{Author Response 15 Jul 2016} \\
\textbf{Mandy Watson,} Cancer Research-UK Manchester Institute, UK \\
Dear Patrick \\
Thank you very much for reviewing this article. We appreciate your comments and suggested corrections and will address these in due course. \\
Regards \\
Mandy Watson \\
\textbf{Competing Interests:} No competing interests \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline
\textbf{Referee Report 11 July 2016} \\
doi:10.5256/f1000research.9386.r14492 \\
\textbf{Kevin Hudson} \\
Oncology iMed, AstraZeneca Pharmaceuticals, Macclesfield, UK \\
I have read this article and I support indexation. Given my past experience in kinase drug discovery I believe I have an appropriate level of expertise to comment on the article. The article is scientifically sound and is written with sufficient detail and clarity to allow others to reproduce the work.

The introduction section lays out a strong rationale for the efforts of this group to discover more selective RET inhibitors, indicating both the new emerging Oncology disease sector opportunities and the limited kinase selectivity of inhibitors currently in clinical use.
\hline
\end{tabular}
The results and discussion section clearly describes the screening cascade used to discover more selective RET inhibitors. The correlations illustrated between the different assays helps build confidence in the screening cascade. In addition, the screening cascade features different mutant forms (miss-sense, gene fusions) of RET in addition to WT, thereby indicating that compounds the authors discover from this cascade have potential application across a spectrum of tumours where RET is an oncogenic driver. The data derived from testing of clinical agents in their cascade reinforces both the rationale behind the work and helps validate the cascade.

The direction the cascade provides for producing more selective RET inhibitors is largely focused around minimizing activity against the KDR receptor tyrosine kinase. This makes sense given the chemical start point for this work was vandetanib, a proven KDR inhibitor. However, as chemical series evolve during a drug discovery project, there is the risk of introducing additional secondary pharmacology (inhibition of additional kinases beyond RET and KDR). The author’s use of a ‘Toxicity Margin’ calculation based around cell proliferation sensitivity of RET-null HEK293 cells provides a rapid and simple measure to track introduction of additional new pharmacology, although testing of frontrunner compounds in one of the widely available kinase panel screens may have been considered to fully appreciate the kinase selectivity of the project compounds.

Minor comments / corrections:

- EGFR is an abbreviation for Epidermal Growth Factor Receptor, not endothelial growth factor as stated.
- VEGF treatment, not VEGFR treatment as stated
- The text relating to Figure 1B could more clearly indicate this data came from pre-incubation and wash out experiments.
- Figure 2C may benefit from more clearly labeling them as enzyme assays, i.e. RET enzyme (M918T) vs RET enzyme (WT).
- Other pertinent comments proposing clarification of statistical measurements used in the figures, and in wording in paragraph 3 of the Introduction, have already been noted by other reviewer, Anderson J Ryan.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Author Response 15 Jul 2016

Mandy Watson, Cancer Research-UK Manchester Institute, UK

Dear Kevin,

Thank you very much for reviewing this article. We appreciate your comments and suggested corrections and will address these in due course.

Regards
The article describes the development and validation of the screening cascade for selective RET kinase inhibitors used to identify selective inhibitors described in Ref 1. The rationale for pursuing selective RET inhibitors is clearly explained, and the clinical limitations of current pan-kinase inhibitors that inhibit RET laid out.

The methods section has a well described rationale and is sufficiently detailed. The analysis of the data is sound and appropriate conclusions drawn. In particular, the method has accounted for the kinetics of binding, through time course experiments, and the possible impact of RET mutations in cell line studies.

The cascade developed adequately demonstrates selective cellular RET inhibition (POM). A good correlation is demonstrated between RET potency in vitro and growth inhibition in cell line models and this is taken as evidence of proof of mechanism.

References
1. Newton R, Bowler KA, Burns EM, Chapman PJ, Fairweather EE, Fritzl SJ, Goldberg KM, Hamilton NM, Holt SV, Hopkins GV, Jones SD, Jordan AM, Lyons AJ, Nikki March H, McDonald NQ, Maguire LA, Mould DP, Purkiss AG, Small HF, Stowell AI, Thomson GJ, Waddell ID, Waszkowycz B, Watson AJ, Ogilvie DJ: The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity. *Eur J Med Chem. 2016; 112*: 20-32 PubMed Abstract | Publisher Full Text

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Author Response 15 Jul 2016

Mandy Watson, Cancer Research-UK Manchester Institute, UK

Dear Ian

Thank you very much for reviewing this article.

Regards
This article presents a screening cascade for the identification of potent RET inhibitors with selectivity against VEGFR2 (KDR) that will be of general interest in the field. The background to the research is well described, and the methods sufficiently detailed to allow others to replicate the experimental procedures and the conclusions are balanced.

Points

- EGFR is wrongly defined as ‘endothelial growth factor’
- ...toxicity ...resulting from off-target kinases. Should be on-target inhibition of non-RET kinases?
- ...non-pharmacological toxicities.... Should be pharmacological toxicities associated with inhibition of non-RET targets?
- VEGF treatment does not affect levels of pRET
- Hek293 is more commonly HEK293
- ‘marvel’ is non-standard
- Figure 1. Error bars not defined, n=??. Should state this is RET enzyme assay
- Figures 2, 3, Suppl 2. Not stated what points represent [individual compounds??]
- Table 1. Confidence Interval values would be helpful as a surrogate of reproducibility, and support the claim of robustness, as reproducibility not specifically reported
- Table 1. Suggest including IC_{50} values for MZCRC1 cell proliferation above line for toxicity margin
- Figure 4. Not clear why some arrows in figure are there. Eg Arrow from in vivo PK to MZCRC1 POM/POP assay, or double-headed arrow from in vivo PK to in vitro DMPK
- Suppl Figure 1. No error bars (n=??)
I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Author Response 15 Jul 2016

Mandy Watson, Cancer Research-UK Manchester Institute, UK

Dear Anderson

Thank you very much for reviewing this article. We appreciate your comments and suggested corrections and will address these in due course.

Regards

Mandy Watson

Competing Interests: No competing interests