A Review of Phenotypic and Genotypic Methods for Detection of Drug Resistance in Mycobacterium tuberculosis

Shadi Parsa¹, Saman Soleimanpour²*, Mohammad Derakhshan⁷, Leila Babaie Nik³, Raha Mir⁴, Nafiseh Izadi¹

1. Microbiology and Virology Department, Faculty Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2. Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
3. Tuberculosis Reference Laboratory- Northeast Iran, Mashhad University of Medical Sciences, Mashhad, Iran

ABSTRACT

Tuberculosis is one of the most dangerous infectious diseases in the world and causes nearly two million deaths each year, especially in developing countries. Meanwhile, multidrug resistance tuberculosis (MDR-TB) is due to the resistance of Mycobacterium tuberculosis (Mtbt) strains to two effective first-line drugs, isoniazid and rifampin, which is increasing worldwide. MDR-TB strains are mainly caused by inadequate treatment of TB patients. The emergence and spread of these strains is an obstacle to the control and management of tuberculosis as well as a threat to the World Health Organization’s goal of eliminating the disease by 2050. Proper management of MDR-TB relies on early recognition of the disease. Recently, phenotypic and genotypic diagnostic methods have been developed to rapidly identify MDR strains in tuberculosis patients. Some of them are also economically suitable to use in developing countries. Proper treatment of patients with drug-resistant TB requires the rapid detection of resistant strains and appropriate drug administration. Regular monitoring of patients’ side effects of medications as well as enhancing the quality of bacterial tests is essential to identify resistant strains. Therefore, in this review, we will describe the available phenotypic and genotypic tests for drug-resistant tuberculosis detection and discuss their advantages and limitations.

Keywords: Mycobacterium tuberculosis, Drug resistance, MDR-TB, Drug susceptibility test

Introduction

Tuberculosis has been one of the deadliest infectious diseases in the world and remains a public health threat (1). In 2018, the World Health Organization reported more than 10 million (between 9 and 11.1 million) new cases of tuberculosis (2). The emergence of multidrug-resistant Mycobacterium strains is increasing due to various factors such as AIDS epidemic, irregular use of anti-TB drugs, increased use of injectable drugs and migration from endemic areas (3). Multidrug Resistance Tuberculosis (MDR-TB) is defined as resistance to two effective first-line drugs for the treatment of tuberculosis, isoniazid and rifampin (4). MDR-TB strains with extensive drug resistance (XDR-TB) are described as resistance to all oral fluoroquinolones and at least one second-line injectable aminoglycoside (amikacin, caprooymycin and kanamycin) (5).

In 2018, the World Health Organization estimates that %3.4 of new cases and %18 of previously treated MDR-TB cases, as well as %8.5 of MDR-TB cases associated with XDR-TB (2). In order to prevent the spread and spread of MDR-TB and XDR-TB strains and
the emergence of new strains, simple, rapid and accurate diagnostic methods are needed to identify drug resistance among patients with tuberculosis. Unlike many bacteria where antibiotic resistance occurs due to motile genetic elements such as plasmids, transposons and integrons, mycobacteria have a chromosomal drug resistance and are often caused by mutations associated with a limited region of the genome. This resistance can be transmitted to subsequent generations of bacteria and disrupt TB control and treatment programs (6, 7). In the following, the mechanisms of action and resistance of isoniazid and rifampin drugs as well as the advantages and limitations of TB drug sensitivity diagnostic tools and methods are presented to evaluate and evaluate the advantages and disadvantages of each of these methods.

Conventional phenotypic methods on solid medium

The most commonly used egg-based culture media is the Levenstein-Johnson (LJ) medium.

Proportional method

In this method, growth rate of Mtb on the control medium without antibiotic is compared to the growth on the drug-containing medium to determine susceptibility or resistance. The number of colonies counted in the control tube indicates the number of live bacilli in the total number of microbes cultured and the number of colonies in the antibiotic-containing tube indicates the number of resistant bacilli in the same number of microbes. The ratio of the first number to the second number is called the critical ratio or percentage of resistance, indicating that the strain is resistant or sensitive. For different drugs the criterion of resistance (critical ratio) varies. For example, the percent resistance for both isoniazid and rifampin is 1% (26, 27).

Absolute Concentration Method

In the absolute concentration method, a standard amount of bacteria is inoculated in a solid medium such as LJ containing different concentrations of the antibiotic. The lowest drug concentration that inhibits bacterial growth (less than 20 colonies in 4 hours) is defined as resistance criteria. (28).

Resistance Ratio Method

This method is similar to the absolute concentration method and is the ratio of the drug MIC for the tested strain to the MIC for the standard H37RV strain performed under the same conditions (29).

Conventional Phenotypic Methods in Liquid Medium

Using liquid media instead of solid media reduces the cultivation time from 8-12 weeks to 3-7 weeks. These environments can also be stored for longer periods at room temperature (30).

BACTEC 460 TB SYSTEM Radiometric Method

The culture medium used in the radiometric method is 7H12 (12A) medium. Mtb metabolize palmitic acid containing radioactive carbon in this medium and release CO₂-labeled gas in the upper part of the culture medium (31). This gas is collected and measured by a semi-automatic device called the BACTEC 460 TB SYSTEM. Determining the amount of radioactive carbon in CO₂, the growth rate of Mtb is accurately determined. This growth rate is called the GI index, which indicates a positive mycobacterial culture if it is 10 or more (32).

Mycobacterial Growth Indicator Tube (MGIT) Method

This method uses modified Middlebrook 7H9 with a fluorescent extinguishing oxygen sensor mounted at the end of the tube. In addition to the compounds in the 7H9 environment, it contains a mixture of antimicrobial agents such as PANTA (polymyxin, amphotericin, nalidixic acid, trimethoprim and azlocillin) to prevent the growth of gram-positive and gram-negative bacteria. The consumption of oxygen in the fluorescence medium and the detection of this light in the presence of UV lamps is a reason for the growth of Mtb in the tube (34).

Versa TREK Method

This method uses modified Middlebrook 7H9 with a mixture of antimicrobial agents such as PVNA (polymyxin, vancomycin, nalidixic acid, and azlocillin). This method is capable of simultaneously identifying mycobacterial growth and drug sensitivity to first-line drugs by measuring changes in oxygen consumption (35-36).

Modern Phenotypic Methods

These methods include mycobacteriophage expressing luciferase, colorimetric methods, and nitrate reduction test.

Genotypic Methods for the detection of MDR-TB resistant strains

Molecular methods are capable of detecting genes that are effective in generating drug resistance and resistance-related mutations in Mtb target genes. Using these methods, the results are obtained within 1 to 2 days and can be directly applied to smear positive sputum isolates and other clinical specimens.

Amplification Refractory Mutation System (ARMS)

ARMS-PCR is a simple and rapid method for identifying point mutations, restriction fragment length polymorphisms (RFLPs) or small deletions during DNA fragment sequencing (46). This method is
also called allele-specific PCR or PCR amplification of specific alleles (PASA).

DNA-Sequencing Method

DNA sequencing is the most widely used genotypic method for detecting drug resistance, especially first-line TB drugs in Mtb. Sequencing is the most accurate and reliable method for mutation detection and is used as the gold standard method (49).

PCR-Single Stranded Conformation Polymorphism Analysis (SSCP)

PCR-SSCP is a simple and rapid method that can be used to determine the presence or absence of a mutation in a specific region of DNA based on the pattern of DNA migration in the gel. As a rapid screening tool, it has high accuracy in the detection of drug resistance, especially in MDR-TB cases (51).

PCR-restriction Fragment Length Polymorphism

The PCR-RFLP method is a simple, rapid, and inexpensive method used to detect changes in one or more codons found in drug resistant and mutation sequences (53).

Determination of Antibiotic Susceptibility by Real Time PCR

The Real Time PCR method is very similar to the conventional PCR method. Similar to PCR, a sequence is amplified using specific primers. But Real Time PCR differs from conventional PCR in quantitative amplification of sequences. In Real Time PCR, the amplification of the product is detected by using the fluorescent marker in the reaction. These fluorescent markers are designed to produce light by binding to DNA if they replicate. The Real Time PCR method is divided into two categories: (1) the use of nonspecific fluorescent markers using DNA-bound dyes such as SYBR® Green or Eva green (2) the use of dedicated fluorescent markers using probes Target genes.

High Resolution Melt-HRM Real Time PCR

This method first amplifies the resistance-related genes by Real Time PCR and then the PCR product is heated in the presence of specific DNA fluorescent dyes such as SYBR-Green and Eva-Green. Colours are specific for double stranded DNA. At the beginning of the rise in temperature, the signal is high because at low temperatures most DNAs are double stranded. As the temperature continues to rise, DNA begins to separate and single-strand and thus loses colour. (62) In the HRM method, differences between different genotypes are determined by differences in the melting curve. That is, even a single change in gene sequence (mutation) can affect Tm and cause the fragment’s melting curve to change.

Determination of Antibiotic Susceptibility by Line Probe Assay (LiPA)

Line probe assay (DNA probe assay) is a method based on DNA Strip Test, which involves DNA extraction, amplification of a gene associated with resistance, and subsequent hybridization of PCR products labelled with oligonucleotide probes fixed on the strip. These oligonucleotides are highly sensitive and do not bind to complementary DNA if they contain even one different nucleotide.

INNO-LiPA Rif. TB (Innogenetics)

This method searches for rifampin resistance mutations in the rpoB gene. Since rifampicin resistance is an indicator for the detection of MDR-TB, positive results of this method detect about 90% of MDR-TB samples (68).

Xpret MTB/RIF (cephied) Method

The Xpret MTB/RIF method is able to simultaneously detect Mtb complex and its resistance to rifampin antibiotics directly from sputum collected within two hours. It should be noted that a high proportion of rifampin-resistant strains are associated with concomitant resistance to isoniazid (approximately 95%) and individual resistance to rifampin accounts for only about 5% of the resistant strains. Therefore, rifampicin resistance can be used as a high-accuracy MDR-TB index.

Discussion

Among the phenotypic methods available, the proportional method of drug resistance testing has a high sensitivity and specificity compared to other methods. But the only problem with the relative method is the relatively long time required to report the results (26, 27). Therefore, the use of molecular methods is very helpful in reaching a faster report. Among the molecular methods available, the GeneXpret MTB/RIF method is able to simultaneously identify the Mtb complex and its resistance to rifampin antibiotics directly from sputum collected within two hours. The accuracy, sensitivity, and specificity of this method are acceptable. The only drawback to using this method is the dependence on special cartridges that are necessarily imported from abroad (76-74). Therefore, it is recommended to launch another suitable molecular method with appropriate accuracy such as drug resistance evaluation using TaqMan Real Time PCR.

Acknowledgment

Noun

Conflict of Interest

Authors declared no conflict of interests.
چکیده

بسیار سل کی یک از علل اصلی ابتلا به سل مقاوم به درمان (MDR-TB) و افزایش مقاومت بیماران به شدت در حال توصیف می‌شود. در این مقاله به مقاومت مایکوباکتریوم گفته می‌شود که عامل اصلی این مشکل بیماران سلیکانه در شرایط و بهبود درمان موارد شناسایی سریع و دقیق مقاومت دارویی می‌باشد. در این مقاله به موارد اصلی این مشکل بیماران سلیکانه در شرایط بهبود و بهبود درمان موارد شناسایی سریع و دقیق مقاومت دارویی می‌باشد.

مقدمه

بسیار سل کی یک از علل اصلی ابتلا به سل مقاوم به درمان (MDR-TB) و افزایش مقاومت بیماران به شدت در حال توصیف می‌شود. در این مقاله به مقاومت مایکوباکتریوم گفته می‌شود که عامل اصلی این مشکل بیماران سلیکانه در شرایط و بهبود درمان موارد شناسایی سریع و دقیق مقاومت دارویی می‌باشد.

مراجع

1. گروه میکروب‌شناسی و ویروس‌شناسی، دانشگاه علوم پزشکی مشهد، مشهد، ایران.
2. مرکز مقاومت‌های میکروبی، یوگهیدکه بومی، دانشگاه علوم پزشکی مشهد، مشهد، ایران.
3. آزمایشگاه فرآیند سل شامل شرکت دانشگاه علوم پزشکی مشهد، مشهد، ایران.
شادی پارسا و مهکان | مروری بر روش‌های فنوتیپی و زنوتیپی تشخیص مقاومت‌های دارویی

113

در ترکیب با موتوسایون در زن مشاهده می‌شود (۱۲، ۱۴). سایر موتوسایون‌های مرتبط با مقاومت به ایزونیازید شامل موتوسایون در ناحیه تنظیمی و رنگ‌های kasaA و ndh و ahpc می‌باشند (۱۵، ۱۶).

ریفامپین: مکانیسم عملکرد و مقاومت

ریفامپین یک انتریکوتیک به طیف اثر گسترده است و افرادی که درآید از درمان سلامت گرفته و در زنجیره‌ای ایزونیازید و دیگر داروهای ضد سل به شمار می‌آید. ریفامپین به وسیله روش انتقال روش‌های تشخیص مقاومت دارویی در داروسنجی اندازه‌گیری می‌شود.

ایزونیازید: مکانیسم عملکرد و مقاومت

ایزونیازید یا هیدرازید نیکوتینیک اسید (isonicotinic acid hydrazide) یک عامل صنعتی با صنایع ضدبیماری‌های موتوسایون غیر از موتوسایون عامل شیمیایی مشابه مایکوباکتریوم تیبرکولوزیس است (۸). ایزونیازید به صورت بیشتر در دیواره‌ای فعال از ناحیه تنظیمی متوقف گردیده است. این آنزیم در طول زمان کارکرد مایکوباکتریوم تیبرکولوزیس شود. بیش از ۸۱ درصد موارد مقاومت به ایزونیازید ناشی از جهش ژن katG یا در کلونهای مقاومت به ایزونیازید و اکسیژن غیرفعال تبدیل می‌شود.

روش‌های فنوتیپی و زنوتیپی تشخیص مقاومت به داروی سل

تشخیص مقاومت‌های دارویی در تکنیک توشیت روش‌های فنوتیپی (Conventional phenotyping method) می‌باشد که داروی سل را نشان می‌دهد. در هر دو روش، روش‌های فنوتیپی به وسیله روش‌های زنوتیپی (Conventional phenotyping method) می‌باشد. در طی این روش‌های فنوتیپی، میزان و تکرار مقاومت به داروی سل در شناسایی مقاومت‌ها و نیازمندی داروهای ضد سل استفاده می‌شود.

۸/۵ درصد موارد همراه با XDR-TB همراه با MDR-TB همراه با افزایش مقاومت‌های سل. در این سال، ۹۵ درصد موارد مقاومت به ایزونیازید ناشی از دیگر بسیاری از مقاومت‌های دیگر موارد موتوسایون متوقف گردیده است. در این روش، مایکوباکتریوم تیبرکولوزیس به وسیله روش‌های التهابی آنتی‌بیوتیک محاسبه می‌شود.

۸ درصد مواد کلینیکی مقاوم به ایزونیازید است و این روش‌های مقاومت‌ها در بسیاری از وسایل اسیدهای جریانی این روش استفاده می‌شود.
اکثر این روش‌ها پرزحمت و وقت گیر بودند. در سالهای اخیر، روش‌های فنوتیپی جدید و زنونی برای تشخیص مقاومت‌های دارویی پیشنهاد شدند. در روش‌های فنوتیپی تشخیص سویه‌های جنسی و سویه‌های مقاوم بر اساس ارزیابی میزان مقاومت می‌باشد.

جدول 1: مقایسه روش‌های فنوتیپی تعیین حساسیت آنتی‌بیوتیک در ارزیابی مقاومت مایکوبکتیوبکتریوم تورگلوزیس

روش‌های فنوتیپی مرسوم	مختلط جامد (محیط لون اشتاین-جانسون با میکروسیستم پیلر 11) 7H10/11	بی‌روی‌پوشش	نسبت مقاومت	غلظت مطلق
زمان بر حسب زمان	24-48 ساعت از زمان جمع‌آوری نمونه	BACTEC 460 TB System	BACTEC MGIT 960 TB System	VersaTREK
میکروسیستم (رادیومتریک)	7-3 هفته از زمان جمع‌آوری نمونه	(غیررادیومتریک) اتوماتیک VersaTREK		

روش‌های فنوتیپی سریع

روش‌های فنوتیپی سریع	میکروسیستم (روش مکرر)	هزینه کمتر و قابل تکرار است. اما وقت پرزحمت زیادی دارد.
بسیار میکروسیستم‌های سریع	کم‌هزینه	پس از یک هفته از زمان جمع‌آوری نمونه سمتی بالا از MTB 90 درصد احتمال ناشی‌سازی
حساسیت 83-100 درصد	اختصاصیت 100-92 درصد	یک‌ماج امکان

روش‌های فنوتیپی مرسوم بر روی مختلط جامد

راک‌ترین میکروب‌های کشت مورد استفاده برای تخم‌مرغ میکروسیستم کشت عالی اشغال جونسن-IUAT و ATC است. استفاده از جمله میکروب‌های مقاوم به آنتی‌بیوتیک‌های مختلف به‌دست آمده است. می‌توان به میکروب‌های میکروسایزر 7H10 و 7H11 اشاره کرد (25).
روش نسبی (Proportional)

روش نسبی معمول ترین روش مورد استفاده در سرتاسر سر جهان است. اساس این روش تقسیم می‌شود. به‌طور کلی، روش نسبی می‌تواند برای تیم‌های خاصی از این شناخته شده باشد. این روش، ۱۷ تا ۴۲ درصد نسبی از کل تعداد ابزارهای مختلف را در نظر می‌گیرد. در این روش، تیم‌های مختلف، با توجه به نسبی‌های مختلف، از این روش بهره می‌برند.

سلیقه‌هایی از میان‌های مختلف، از کمیته‌های مختلف، به‌طور کلی به روش نسبی می‌پردازند. این روش، به‌طور کلی، بر اساس قاعده‌های مختلفی است. از این طریق، شرایط مختلف در تیم‌های مختلف، به‌طور کلی، به‌طور کلی به روش نسبی می‌پردازند.

در زیر، برخی از شرایط مختلفی که به‌طور کلی به روش نسبی می‌پردازند، ذکر شده است.

1. روش نسبی معمول ترین روش مورد استفاده در سرتاپ سر جهان است. اساس این روش تیپیک حالت‌های متغیر از سوپرسیون تیپشیده از باکتری و بیشتر از حالت باکتریک است. در این روش، حالت سوسیتش در محیط حالت‌ها باکتریکی با محیط شناسی توانایی استفاده از میزان مقاومات و تعداد سایر باکتری‌ها موجود در تولید کننده آنتی‌باکتریک باکتریکی نشان داده می‌شود.

2. روش های فنوتیپی مرسوم در محیط ماشین

استفاده از محیط‌های میمونه به جای نسبی به جامد سبک کشیده می‌شود. همچنین، در این محیط، نسبت سایر نمازها توانایی نسبی از فنوتیپی‌ها در محیط بیوتیکی ابداع شده است. در این روش، میزان تلفات بیشترین عامل خطا در این متغیر قرار می‌گیرد.

BACTEC 460 TB SYSTEM

روش رادیومتریک

محیط کشت مورد استفاده در روش رادیومتری می‌باشد. میزان رشد باکتری‌ها با استفاده از نسبی‌ها و فاکتورهای مختلفی در محیط کشت کشت می‌شود. در این روش، تیم‌های مختلف، به‌طور کلی به روش نسبی می‌پردازند.

BACTEC 460 TB

روش رادیومتریک

محیط کشت مورد استفاده در روش رادیومتری می‌باشد. میزان رشد باکتری‌ها با استفاده از نسبی‌ها و فاکتورهای مختلفی در محیط کشت کشت می‌شود. در این روش، تیم‌های مختلف، به‌طور کلی به روش نسبی می‌پردازند.
روش لوله انداکاتور رشد مایکوباکتریال

همانطور که در بالا اشاره شد، اموروزه سیستم‌های اتوماتیک (لوله Mycobacteria Growth Indicator Tube (MGIT) اندیکاتور رشد مایکوباکتریال) جایگزین سیستم‌های نیمه‌آتوماتیک BACTEC 460 TB SYSTEM در این روش از لوله‌های واحد می‌باشد تا کمک به همراهی سیستم‌های خاصی یا هدایت مایکوبکتریوم‌های مقاوم به درمان انجام دهند. این می‌تواند به گونه‌ای عمل کند که سیستم‌های دیگری مانند PANTA مایکوبکتریوم‌های مقاوم قابل شناسایی و در نتیجه تشخیص مقاومت به‌صورت خوبی اجرا شده است. سیستم‌های دیگری از مهم‌ترین مزایای این سیستم‌های عمومی انجام آن هم به همراه عدم استفاده از مواد رادیواکتیو است.

Vera TREK

روش GMIG

یکی دیگر از روش‌های اتوماتیک برای پایه‌ای محیط دارویی است. در این روش از لوله‌های واحد می‌باشد Vera TREK می‌باشد که به همراه مایکوباکتریوم‌های مقاوم به درمان در این روش به‌صورت گروهی در نمونه‌های مختلفی از مواد ضدپیچکی مانند (پلی‌میکسین‌ها، آمفوتیروفیس، نالیدیکسکس، ایستاده و غیره) تست و ترکیبات می‌باشد که به‌صورت محیطی مایکوباکتریوم‌های مقاوم به درمان در لوله‌های واحد می‌باشد. این روش بر اساس فاژ و برای تشخیص سریع ماکروباکتریوم‌های مقاوم به درمان استفاده می‌گردد.

روش‌های فنوتیپی نوین

روش ماکروباکتریوم با سایر لوله‌های فاز

این روش بر اساس فاز و برای شناسایی سریع ماکروباکتریوم‌ها و حساسیت درمانی آن‌ها هست. در این روش از فاز گازشناخت (مثل (phAE142 (پلی‌میکسین‌ها، آمفوتیروفیس، نالیدیکسکس، ایستاده و غیره) تست و ترکیبات می‌باشد که به‌صورت محیطی مایکوباکتریوم‌های مقاوم به درمان در لوله‌های واحد می‌باشد. این روش بر اساس فاژ و برای تشخیص سریع ماکروباکتریوم‌های مقاوم به درمان استفاده می‌گردد.
ماراها

روش‌ها	زمان انجام	مراها
سرعت و دقت با مقرن به صرفه	48-6 ساعت	Amplification refractory mutation system (ARMS)
سرعت با مقرر به صرفه	24 ساعت	Line probe assay
DNA	Pyrosequencing	
اراث دقت با مقرن به صرفه	48-6 ساعت	RT-PCR
اراث دقت با مقرن به صرفه	DNA-Sequencing	
و اراث دقت با مقرن به صرفه	Xpre MTB/RIF (cephid)	
2 ساعت	High Resolution Melt	

جدول ۱: مقایسه روش‌های زنده قرار دادن حساسیت انتی-بیوتیک در ارزیابی مقاومت‌های مایکواکتیویوم توریگوروزیرس

说我

از جمله این روش‌ها می‌توان به موارد زیر اشاره کرد:

ماکروکافیوم نوریکورزیرس دارد. با استفاده از این روش نتایج مؤثر مدت 1 ایل ۲ روز به‌دست آمده و به‌طور مستقیم روی اثرهای خلط اسیر مثبت و سایر نمونه‌های کلینیکی قابل انجام است (جدول ۲).

Amplification refractory mutation system (ARMS)

یک روش ساده و سریع برای شناسایی M. tuberculosis قابل انجام است (جدول ۲). این روش باید استفاده باعث نتایج مثبت شود. معمولاً، amplification of specific alleles (PASA) این روش در حالت کاربردی است. که در آن DNA توسط PCR است چک که دارد. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پراکنش ایده‌آل تکثیر می‌شود. معمولاً، ARMS-PCR در روایت‌های مثبت کاربردی است. این روش به پر
مجله میکروبیشناسی پزشکی ایران
سال ۱۴ شماره ۲
فوریه - اردیبهشت ۱۳۹۹

نادرست می‌گردد. افزایش تعداد سیکل‌های غیر ضروری منجر به نتایج مثبت کاذب می‌شود. مهم‌ترین مزیت روش ARMS که مرحله تک‌مرحله‌ای تشخیصی با هم ترکیب می‌شود، به این ترتیب که وجود محصول تک‌پر نشان‌دهنده آن لازم است، که باعث می‌شود در تصویب و در مورد مثبت منجر به هزینه زیاد و وقت زیاد بتواند باعث شود. از این رو، با توجه به کارایی روش ARMS، بدین مسیر می‌تواند از تصویب مثبته منجر به هزینه زیاد و وقت زیاد بتواند باعث شود.

۲. روش بررسی توالی زنی (DNA-Sequencing)

تعیین توالی DNA گسترده‌ترین روش زننیتی برای تشخیص مقاومت دارو به ویژه در افراد خاص از مایکوباکتریوم. این روش با استفاده از تکنیک PCR-RFLP و کاهش‌کننده و نیز تغییرات مزیت، مقاومت دارمون است، و در مرحله بعدی از PCR و در حین الکتروفورز، محصول دچار اکثریت زنی می‌گردد. در این روش بررسی نشان‌دهنده جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوباکتریوم تولید می‌شود. این روش می‌تواند از کمکی خاص باشد تا در شناسایی جهش‌های با کارایی مایکوب
شادی پارسا و همکاران | مروری بر روش‌های فنوتیپی و زوتیپی تشخیص مقاومت‌های دارویی...

سایر روش‌های تعیین زوتیپ نظیر توالی‌پایی و typo Typing روش‌های فنوتیپی و موارد اختصاصی

تولید، در نتیجه برای پیش‌بینی تعیین زوتیپ در مقیاس بالا مناسب است. همچنین این روش با استفاده از داده‌های تحقیق

در مدت زمان کوتاه تعیین زوتیپ کن. روش روشن‌سازه در Real Time PCR اثر و در هر آزمایشگاه که مجاز به دستگاه

TaqMan روش‌هایی است که می‌توانند به‌طور بالین

FRET Hybridization Probes، TaqMan® Probes، Beacons و Scorpion® Primers

بیشترین کاربرد را در بررسی مقایسه‌های دارویی Probes. (64) روش Real Time PCR در نمونه‌ای خلقت امسیت مثبت از طریق شناسایی نمونه‌ها در

زن‌های یکی از ابزارهای اصلی برای تعیین مقاومت‌های دارویی

کمیکلس مایکروآنتریو تی‌اشلوتو گروهه و به‌طور رایگی برای

تشخیص بیماری سل استفاده می‌شود. (59) مریم استفاده از روش DNA افزایش سطح مثبت (15) روز 2 تا 2/5 ردیابی

از کاهش احتمال انتقال و سه‌گانه با این روش تی‌اشلوتو به نتیجه‌گیری مبنایی بر

جسوم‌های گرانخواهی و در صورت وجود rpoB (ژن) در سریت‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند تعداد زیادی نمونه را

باید به است. (64)

TaqMan SNP (پروپاژنتیک) (Innogenetics) display شناسایی جهش‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند به

مشخص جریان دارویی نظیر

مانند از میان انباشته سه‌گانه (Line probe assay) در نمونه‌های مثبت شناسایی می‌شود. (64)

Line probe assay) (Molecular beacon) (Line probe assay) (TaqMan®, Scorpion®, TaqMan®)

کمیکلس مایکروآنتریو تی‌اشلوتو گروهه و به‌طور رایگی برای

تشخیص بیماری سل استفاده می‌شود. (59) مریم استفاده از روش DNA افزایش سطح مثبت (15) روز 2 تا 2/5 ردیابی

از کاهش احتمال انتقال و سه‌گانه با این روش تی‌اشلوتو به نتیجه‌گیری مبنایی بر

جسوم‌های گرانخواهی و در صورت وجود rpoB (ژن) در سریت‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند تعداد زیادی نمونه را

باید به است. (64)

TaqMan SNP (پروپاژنتیک) (Innogenetics) display شناسایی جهش‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند به

مشخص جریان دارویی نظیر

مانند از میان انباشته سه‌گانه (Line probe assay) در نمونه‌های مثبت شناسایی می‌شود. (64)

Line probe assay) (Molecular beacon) (Line probe assay) (TaqMan®, Scorpion®, TaqMan®)

کمیکلس مایکروآنتریو تی‌اشلوتو گروهه و به‌طور رایگی برای

تشخیص بیماری سل استفاده می‌شود. (59) مریم استفاده از روش DNA افزایش سطح مثبت (15) روز 2 تا 2/5 ردیابی

از کاهش احتمال انتقال و سه‌گانه با این روش تی‌اشلوتو به نتیجه‌گیری مبنایی بر

جسوم‌های گرانخواهی و در صورت وجود rpoB (ژن) در سریت‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند تعداد زیادی نمونه را

باید به است. (64)

TaqMan SNP (پروپاژنتیک) (Innogenetics) display شناسایی جهش‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند به

مشخص جریان دارویی نظیر

مانند از میان انباشته سه‌گانه (Line probe assay) در نمونه‌های مثبت شناسایی می‌شود. (64)

Line probe assay) (Molecular beacon) (Line probe assay) (TaqMan®, Scorpion®, TaqMan®)

کمیکلس مایکروآنتریو تی‌اشلوتو گروهه و به‌طور رایگی برای

تشخیص بیماری سل استفاده می‌شود. (59) مریم استفاده از روش DNA افزایش سطح مثبت (15) روز 2 تا 2/5 ردیابی

از کاهش احتمال انتقال و سه‌گانه با این روش تی‌اشلوتو به نتیجه‌گیری مبنایی بر

جسوم‌های گرانخواهی و در صورت وجود rpoB (ژن) در سریت‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند تعداد زیادی نمونه را

باید به است. (64)

TaqMan SNP (پروپاژنتیک) (Innogenetics) display شناسایی جهش‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند به

مشخص جریان دارویی نظیر

مانند از میان انباشته سه‌گانه (Line probe assay) در نمونه‌های مثبت شناسایی می‌شود. (64)

Line probe assay) (Molecular beacon) (Line probe assay) (TaqMan®, Scorpion®, TaqMan®)

کمیکلس مایکروآنتریو تی‌اشلوتو گروهه و به‌طور رایگی برای

تشخیص بیماری سل استفاده می‌شود. (59) مریم استفاده از روش DNA افزایش سطح مثبت (15) روز 2 تا 2/5 ردیابی

از کاهش احتمال انتقال و سه‌گانه با این روش تی‌اشلوتو به نتیجه‌گیری مبنایی بر

جسوم‌های گرانخواهی و در صورت وجود rpoB (ژن) در سریت‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند تعداد زیادی نمونه را

باید به است. (64)

TaqMan SNP (پروپاژنتیک) (Innogenetics) display شناسایی جهش‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند به

مشخص جریان دارویی نظیر

مانند از میان انباشته سه‌گانه (Line probe assay) در نمونه‌های مثبت شناسایی می‌شود. (64)

Line probe assay) (Molecular beacon) (Line probe assay) (TaqMan®, Scorpion®, TaqMan®)

کمیکلس مایکروآنتریو تی‌اشلوتو گروهه و به‌طور رایگی برای

تشخیص بیماری سل استفاده می‌شود. (59) مریم استفاده از روش DNA افزایش سطح مثبت (15) روز 2 تا 2/5 ردیابی

از کاهش احتمال انتقال و سه‌گانه با این روش تی‌اشلوتو به نتیجه‌گیری مبنایی بر

جسوم‌های گرانخواهی و در صورت وجود rpoB (ژن) در سریت‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند تعداد زیادی نمونه را

باید به است. (64)

TaqMan SNP (پروپاژنتیک) (Innogenetics) display شناسایی جهش‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند به

مشخص جریان دارویی نظیر

مانند از میان انباشته سه‌گانه (Line probe assay) در نمونه‌های مثبت شناسایی می‌شود. (64)

Line probe assay) (Molecular beacon) (Line probe assay) (TaqMan®, Scorpion®, TaqMan®)

کمیکلس مایکروآنتریو تی‌اشلوتو گروهه و به‌طور رایگی برای

تشخیص بیماری سل استفاده می‌شود. (59) مریم استفاده از روش DNA افزایش سطح مثبت (15) روز 2 تا 2/5 ردیابی

از کاهش احتمال انتقال و سه‌گانه با این روش تی‌اشلوتو به نتیجه‌گیری مبنایی بر

جسوم‌های گرانخواهی و در صورت وجود rpoB (ژن) در سریت‌های دارویی (مانند ایزونیازید و ریفامپین) می‌تواند تعداد زیادی نمونه را

باید به است. (64)
روش Xpert MTB/RIF (cepheid)

روش Xpert MTB/RIF یک روش سریع و اتوماتیک برای تشخیص مقاومت هویزمن و دارویی هزاره است. این روش بستگی به نتایج سایر روش‌ها ندارد و در سه دقیقه می‌تواند نتایج داده شود. Xpert MTB/RIF از کارتریژ مولکولی تولید شده در ساختار کلینیکی و بهبود نهایی درمان را تعیین می‌کند.

روش pyrosequencing

روش pyrosequencing یک روش سریع و اتوماتیک برای تشخیص مقاومت هویزمن و دارویی هزاره است. این روش به دست آورده‌های صدای و قدرت از دیگر روش‌ها استفاده می‌کند.

روش Xpert MTB/RIF

روش Xpert MTB/RIF یک روش سریع و اتوماتیک برای تشخیص مقاومت هویزمن و دارویی هزاره است. این روش به دست آورده‌های صدای و قدرت از دیگر روش‌ها استفاده می‌کند.

روش Xpert MTB/RIF

روش Xpert MTB/RIF یک روش سریع و اتوماتیک برای تشخیص مقاومت هویزمن و دارویی هزاره است. این روش به دست آورده‌های صدای و قدرت از دیگر روش‌ها استفاده می‌کند.
است (27, 28). بنابراین استفاده از روش‌های مولکولی در سری‌بندی سریع‌تری نتیجه‌گیری بیشتری می‌تواند کمک کند. استفاده از روش‌های مولکولی، مخصوصاً TaqMan Real Time PCR سیاست‌گذاری‌ی از نظر همکارانی که در انجام این پژوهش ما را پشتیبان می‌کنند، سیاست‌گذاری‌ی تعارض در منافع
در انجام مطالعه حاضر، نویسندگان هیچ‌گونه تضاد منافعی نداشتند.

Referance

1. Seung KJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harbor perspectives in medicine. 2015;5(9):a017863. [DOI:10.1101/cshperspect.a017863] [PMID] [PMCID]

2. (WHO) WHO. Global tuberculosis report 2019. WHO. 2019.

3. Pfyffer GE, Vincent V. Mycobacterium tuberculosis Complex, Mycobacterium leprae, and Other Slow-Growing Mycobacteria. Topley & Wilson's Microbiology and Microbial Infections2010. [DOI:10.1002/9780470688618.taw0046]

4. Seung KJ, Keshavjee S, Rich ML. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harbor perspectives in medicine. 2015;5(9):a017863-a. [DOI:10.1101/cshperspect.a017863] [PMID] [PMCID]

5. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet (London, England). 2010;375(9728):1830-43. [DOI:10.1016/S0140-6736(10)60410-2]

6. Zainuddin ZF, Dale JW. Does Mycobacterium tuberculosis have plasmids? Tubercle. 1990;71(1):43-9. [DOI:10.1016/0041-3879(90)90060-L]

7. Nagai Y, Iwade Y, Hayakawa E, Nakano M, Sakai T, Mitarai S, et al. High resolution melting curve assay for rapid detection of drug-resistant Mycobacterium tuberculosis. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy. 2013;19(6):1116-25. [DOI:10.1007/s10156-013-0636-3] [PMID]

8. Vilchez C, Jacobs WR, Jr. The mechanism of isoniazid killing: clarity through the scope of genetics. Annual review of microbiology. 2007;61:35-50. [DOI:10.1146/annurev.micro.61.111606.122346] [PMID]

9. Caminero JA, Sotgiu G, Zumla A, Migliori GB. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. The Lancet Infectious diseases. 2010;10(9):621-9. [DOI:10.1016/S1473-3099(10)70139-0]

10. Zhang Y, Heym B, Allen B, Young D, Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992;358(6387):591-3. [DOI:10.1038/358591a0] [PMID]
11. Seifert M, Catanzaro D, Catanzaro A, Rodwell TC. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PloS one. 2015;10(3):e0119628-e. [DOI:10.1371/journal.pone.0119628] [PMID] [PMCID]

12. Ando H, Kondo Y, Suetake T, Toyota E, Kato S, Mori T, et al. Identification of katG mutations associated with high-level isoniazid resistance in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy. 2010;54(5):1793-9. [DOI:10.1128/AAC.01691-09] [PMID] [PMCID]

13. Hazbon MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy. 2006;50(8):2640-9. [DOI:10.1128/AAC.01122-06] [PMID] [PMCID]

14. Timmins GS, Deretic V. Mechanisms of action of isoniazid. Microbiological, 2006;62(5):1220-7. [DOI:10.1111/j.1365-2958.2006.05467.x] [PMID]

15. Cardoso RF, Cardoso MA, Leite CQ, Sato DN, Mamizuka EM, Hirata RD, et al. Characterization of ndh gene of isoniazid resistant and susceptible Mycobacterium tuberculosis isolates from Brazil. Memorias do Instituto Oswaldo Cruz. 2007;102(1):59-61. [DOI:10.1590/S0074-02762007000100009] [PMID]

16. Rindi L, Bianchi L, Tortoli E, Lari N, Bonanni D, Garzelli C. Mutations responsible for Mycobacterium tuberculosis isoniazid resistance in Italy. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease. 2005;9(1):94-7.

17. Snell J, Arora K. Mechanism of action of antimicrobial and antitumor agents: Springer Science & Business Media; 2012.

18. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104(6):901-12. [DOI:10.1016/S0092-8674(01)00286-0] [PMID]

19. Telenti A, Imboden P, Marchesi F, Matter L, Schopfer K, Bodmer T, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. The Lancet. 1993;341(8846):647-51. [DOI:10.1016/0140-6736(93)90417-F] [PMID]

20. Brandis G, Wrande M, Liljas L, Hughes D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Molecular microbiology. 2012;85(1):142-51. [DOI:10.1111/j.1365-2958.2012.08099.x] [PMID]

21. Laurenzo D, Mousa SA. Mechanisms of drug resistance in Mycobacterium tuberculosis and current status of rapid molecular diagnostic testing. Acta tropica. 2011;119(1):5-10. [DOI:10.1016/j.actatropica.2011.04.008] [PMID]

22. Ohno H, Koga H, Kuroita T, Tomono K, Ogawa K, Yanagihara K, et al. Rapid prediction of rifampin susceptibility of Mycobacterium tuberculosis. American journal of respiratory and critical care medicine. 1997;155(6):2057-63. [DOI:10.1164/ajrccm.155.6.1996115] [PMID]

23. Johnson R, Streicher EM, Louw GE, Warren RM, van Helden PD, Victor TC. Drug resistance in Mycobacterium tuberculosis. Current issues in molecular biology. 2006;8(2):97-111.

24. Chaves F, Alonso-Sanz M, Rebollo M, Tercero J, Jimenez M, Noriega A. rpoB mutations as an epidemiologic marker in rifampin-resistant Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Disease. 2000;4(8):765-70.

25. CNTC. Drug-resistant tuberculosis: a survival guide for clinicians. 2nd edition. 2008. p. 1-266.

26. Beckers B, Lang H, Schimke D, Lammers A. Evaluation of a bioluminescence assay for rapid antimicrobial susceptibility testing of mycobacteria. European journal of clinical microbiology, 1985;4(6):556-61 [DOI:10.1007/BF02013394] [PMID]

27. Amini S, Hoffner S, Allabay Torkaman MR, Hamzehloog N, Nasiri MJ, Salehi M, Sami Kashkooli G, Shahrazi MS, Mohsenpoor M, Soleimanpour S, Mir R. Direct drug susceptibility testing of Mycobacterium tuberculosis using the proportional method: A multicenter study. J Glob Antimicrob Resist. 2019;17:242-244. [DOI:10.1016/j.jgar.2018.12.022] [PMID]

28. Gupta A, Anupurba S. Direct drug susceptibility testing of Mycobacterium tuberculosis against primary anti-TB drugs in northern India. Journal of infection in developing countries. 2010;4:695-703. [DOI:10.3855/jidc.1079] [PMID]

29. Canetti G, Froman S, Grosset Ja, Hauduroy P, Langerova M, Mahler H, et al. Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bulletin of the World Health Organization. 1963;29(5):565.

30. Rusch-Gerdes S, Domehi C, Nardi G, Gismondo MR, Welscher HM, Pfyffer G. Multicenter evaluation of the mycobacteria growth indicator tube for testing susceptibility of Mycobacterium tuberculosis to first-line drugs. J Clin Microbiol. 1999;37(1):45-8. [DOI:10.1128/JCM.37.1.45-48.1999] [PMID] [PMCID]

31. Roberts G, Goodman N, Heifets L, Larsh H, Lindner T, McClatchy J, et al. Evaluation of the BACTEC radiometric method for recovery of mycobacteria and drug susceptibility testing of Mycobacterium tuberculosis from acid-fast smear-positive specimens. Journal of clinical microbiology. 1983;18(3):689-96. [DOI:10.1128/JCM.18.3.689-696.1983] [PMID] [PMCID]

32. Anargyros P, Astill DS, Lim IS. Comparison of improved BACTEC and Lowenstein-Jensen media for culture of mycobacteria from clinical specimens. Journal of clinical microbiology. 1990;28(6):1288-91. [DOI:10.1128/JCM.28.6.1288-1291.1990] [PMID] [PMCID]

33. Ahmad S, Mokaddas E. Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Respiratory medicine. 2009;103(12):1777-90. [DOI:10.1016/j.rmed.2009.07.010] [PMID]
34. Tortoli E, Cichero P, Piersimoni C, Simonetti MT, Gesu G, Nista D. Use of BACTEC MGIT 960 for recovery of mycobacteria from clinical specimens: multicenter study. Journal of clinical microbiology. 1999;37(11):3578-82. [DOI:10.1128/JCM.37.11.3578-3582.1999] [PMID] [PMCID]

35. Gravet A, Souillard N, Habermacher J, Moser A, Lohmann C, Schmitt F, et al. Culture and susceptibility testing of mycobacteria with VersaTREK. Pathologie-biologie. 2011;59:32-8. [DOI:10.1016/j.patbio.2010.08.003] [PMID]

36. Gravet A, Souillard N, Habermacher J, Moser A, Lohmann C, Schmitt F, et al. [Culture and susceptibility testing of mycobacteria with VersaTREK]. Pathol Biol (Paris). 2011;59(1):32-8. [DOI:10.1016/j.patbio.2010.08.003] [PMID]

37. Wilson SM, Al-Suwaidi Z, McNerney R, Porter J, Drobniewski F. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nature medicine. 1997;3(4):465-8. [DOI:10.1038/nm0497-465] [PMID]

38. Banaee N, Bobadilla-Del Valle M, Bardarov S, Jr., Riska PF, Small PM, Ponce-De-Leon A, et al. Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J Clin Microbiol. 2001;39(11):3883-8. [DOI:10.1128/JCM.39.11.3883-3888.2001] [PMID] [PMCID]

39. Kalokhe AS, Lee JC, Ray SM, Anderson AM, Nguyen MLT, Wang YF, et al. Multidrug-resistant tuberculosis drug susceptibility and molecular diagnostic testing. The American journal of the medical sciences. 2013;345(2):143-8. [DOI:10.1097/MAJ.0b013e31825d32c6] [PMID] [PMCID]

40. Boum Y, 2nd, Orikiriza P, Rojas-Ponce G, Riera-Montes M, Atwine D, Nansumba M, et al. Use of colorimetric culture methods for detection of Mycobacterium tuberculosis complex isolates from sputum samples in resource-limited settings. Journal of clinical microbiology. 2013;51(7):2273-9. [DOI:10.1128/JCM.00749-13] [PMID] [PMCID]

41. Raut U, Narang P, Mendiattta DK, Narang R, Deotale V. Evaluation of rapid MTT tube method for detection of drug susceptibility of Mycobacterium tuberculosis to rifampicin and isoniazid. Indian journal of medical microbiology. 2008;26(3):222-7. [DOI:10.4103/0255-0857.39586] [PMID]

42. Kohli A, Bashir G, Fatima A, Jan A, Wani N-u-d, Ahmad J. Rapid drug-susceptibility testing of Mycobacterium tuberculosis clinical isolates to first-line antitubercular drugs by nitrate reductase assay: A comparison with proportion method. International Journal of Mycobacteriology. 2016;5(4):469-74. [DOI:10.1016/j.ijmyco.2016.06.006] [PMID]

43. Angelby KA, Klintz L, Hoffner SE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol. 2002;40(2):553-5. [DOI:10.1128/JCM.40.2.553-555.2002] [PMID] [PMCID]

44. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. The Journal of antimicrobial chemotherapy. 2005;55(4):500-5. [DOI:10.1093/jac/dki023] [PMID]

45. Martin A, Montoro E, Lemus D, Simboli N, Morcillo N, Velasco M, et al. Multicenter evaluation of the nitrate reductase assay for drug resistance detection of Mycobacterium tuberculosis. Journal of microbiological methods. 2005;63(2):145-50. [DOI:10.1016/j.mimet.2005.03.004] [PMID]

46. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic acids research. 1989;17(7):2503-16. [DOI:10.1093/nar/17.7.2503] [PMID] [PMCID]

47. Ugozzioli L, Wallace RB. Allele-specific polymerase chain reaction. Methods. 1991;2(1):42-8. [DOI:10.1016/S1046-8727(05)80124-0] [PMID]

48. Little S. Amplification-refractory mutation system (ARMS) analysis of point mutations. Current protocols in human genetics. 2001;Chapter 9:Unit 9.8.

49. Sisay T, Berhane N, Verma D. Molecular Biology Drug Resistance Mechanisms and Molecular Diagnosis Methods for Tuberculosis. Molecular Biology: Open Access. 2019;8(8):230.

50. Ho PL, Yann WC, Leung CC, Yew WW, Mok TY, Chan KS, et al. Molecular tests for rapid detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis. Hong Kong medical journal = Xianggang yi xue za zhi. 2015;21 Suppl 4:4-7.

51. Xu H-B, Jiang R-H, Sha W, Li L, Xiao H-P. PCR-Single Strand Conformational Polymorphism Method for Rapid Detection of Rifampin-Resistant Mycobacterium tuberculosis: Systematic Review and Meta-Analysis. Journal of Clinical Microbiology. 2010;48(10):3635-40. [DOI:10.1128/JCM.00960-10] [PMID] [PMCID]

52. Kim BJ, Kim SY, Park BH, Lyu MA, Park IK, Bai GH, et al. Mutations in the rpoB gene of Mycobacterium tuberculosis that interfere with PCR-single-strand conformation polymorphism analysis for rifampin susceptibility testing. Journal of clinical microbiology. 1997;35(2):492-4. [DOI:10.1128/JCM.35.2.492-494.1997] [PMID] [PMCID]

53. Shimma K, Wu Y, Sugimoto N, Asakura M, Nishimura K, Yamasaki S. Comparison of a PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) Assay to Pulsed-Field Gel Electrophoresis To Determine the Effect of Repeated Subculture and Prolonged Storage on RFLP Patterns of Shiga Toxin-Producing Escherichia coli O157:H7. Journal of Clinical Microbiology. 2006;44(11):3963-8. [DOI:10.1128/JCM.00717-06] [PMID] [PMCID]
54. Victor TC, van Helden PD, Warren R. Prediction of drug resistance in M. tuberculosis: molecular mechanisms, tools, and applications. IUBMB life. 2002;53(4-5):231-7. [DOI:10.1080/1521654022642] [PMID]

55. Ahmad S, Mokaddes E, Jaber AA. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis strains by PCR-RFLP targeting embB codons 306 and 497 and inA codon 501 mutations. Molecular and cellular probes. 2004;18(5):299-306. [DOI:10.1016/j.mcp.2004.04.001] [PMID]

56. Shamputa IC, Rigouts, Portaels F. Molecular genetic methods for diagnosis and antibiotic resistance detection of mycobacteria from clinical specimens. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2004;112(11-12):728-52. [DOI:10.1111/j.1600-0463.2004.apm11211-1203.x] [PMID]

57. Ruiz M, Torres MJ, Llanos AC, Arroyo A, Palomares JC, Aznar J. Direct detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis in auramine-rodhamine-positive sputum specimens by real-time PCR. Journal of clinical microbiology. 2004;42(4):1585-9. [DOI:10.1128/JCM.42.4.1585-1589.2004] [PMCID]

58. Riahi F, Derakhshan M, Mosavat A, Soleimampour S, Rezaee SA. Evaluation of Point Mutation Detection in Mycobacterium tuberculosis with Isoniazid Resistance Using Real-Time PCR and TaqMan Probe Assay. Applied Biochemistry and Biotechnology. 2015; 175 (5): 2447-2455. [DOI:10.1007/s12010-014-1442-9] [PMID]

59. Watanabe Pinihata JM, Cergole-Novella MC, Moreira dos Santos Carmo A, Ruivo Ferro e Silva R, Ferrazoli L, Tavares Sacchi C, et al. Rapid detection of Mycobacterium tuberculosis complex by real-time PCR in sputum samples and its use in the routine diagnosis in a reference laboratory. Journal of medical microbiology. 2015;64(9):1040-5. [DOI:10.1099/jmm.0.000121] [PMID]

60. Parashar D, Chauhan DS, Sharma VD, Katoch VM. Applications of real-time PCR technology to mycobacterial research. The Indian journal of medical research. 2006;124(4):385-98. [PMID]

61. Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical biochemistry. 1997;245(2):154-60. [DOI:10.1006/abio.1996.9916] [PMID]

62. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by ampiclon melting analysis using LCGreen. Clinical chemistry. 2003;49(6 Pt 1):853-60. [DOI:10.1373/49.6.853] [PMID]

63. Landolt P, Stephan R, Scherrer S. Development of a new High Resolution Melting (HRM) assay for identification and differentiation of Mycobacterium tuberculosis complex samples. Scientific Reports. 2019;9(1):1850. [DOI:10.1038/s41598-018-38243-6] [PMID] [PMCID]

64. Alonso M, Navarro Y, Barletta F, Lirola MM, Gotuzzo E, Bouza E, et al. A novel method for the rapid and prospective identification of Beijing Mycobacterium tuberculosis strains by high-resolution melting analysis. Clinical Microbiology and Infection. 2011;17(3):349-57. [DOI:10.1111/j.1469-0691.2010.03234.x] [PMID]

65. Pietzka AT, Indra A, Stöger A, Zeininger J, Konrad M, Hasenberger P, et al. Rapid identification of multidrug-resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using high-resolution melting curve PCR analysis. Journal of antimicrobial chemotherapy. 2009;63(6):1121-7. [DOI:10.1093/jac/dkp124] [PMID]

66. Ong DCT, Yam W-C, Siu GKH, Lee ASG. Rapid detection of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis by high-resolution melting analysis. Journal of clinical microbiology. 2010;48(4):1047-54. [DOI:10.1128/JCM.02036-09] [PMID] [PMCID]

67. Traore H, van Deun A, Shamputa IC, Rigouts L, Portaels F. Direct detection of Mycobacterium tuberculosis complex DNA and rifampin resistance in clinical specimens from tuberculosis patients by line probe assay. Journal of clinical microbiology. 2006;44(12):4384-8. [DOI:10.1128/JCM.01332-06] [PMID] [PMCID]

68. Hillemann D, Rusch-Gerdes S, Richter E. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol. 2007;45(8):2635-40. [DOI:10.1128/JCM.00521-07] [PMID] [PMCID]

69. Giannoni F, Iona E, Sementilli F, Brunori L, Pardini M, Migliori GB, et al. Evaluation of a new line probe assay for rapid identification of gyrA mutations in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy. 2005;49(7):2928-33. [DOI:10.1128/AAC.49.7.2928-2933.2005] [PMID] [PMCID]

70. Marttila HJ, Mäkinen J, Marjamäki M, Soini H. Prospective evaluation of pyrosequencing for the rapid detection of isoniazid and rifampin resistance in clinical Mycobacterium tuberculosis isolates. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2009;28(1):33-8. [DOI:10.1007/s10096-008-0584-5] [PMID]

71. Jureen P, Engstrand L, Eriksson S, Alderborn A, Krabbe Hasenberger P, et al. Rapid detection of multidrug-resistant Mycobacterium tuberculosis by Pyrosequencing technology. J Clin Microbiol. 2006;44(6):1925-32. [DOI:10.1128/JCM.00521-07] [PMID] [PMCID]

72. Zhao JR, Bai YJ, Wang Y, Zhang QH, Luo M, Yan XJ. Direct detection of rifampin-resistant Mycobacterium tuberculosis by high-resolution melting analysis. J Clin Microbiol. 2006;44(6):1925-32. [DOI:10.1128/JCM.00521-07] [PMID] [PMCID]

73. Friedrich SO, von Groote-Bidlingmaier F, Diao AH. Xpert MTB/RIF Assay for Diagnosis of Pleural Tuberculosis. Journal of Clinical Microbiology. 2011;49(12):4341-2. [DOI:10.1128/JCM.05454-11] [PMID] [PMCID]
74. Ioannidis P, Papaventsis D, Karabela S, Nikolaou S, Panagi M, Raftopoulou E, et al. Cepheid GeneXpert MTB/RIF Assay for Mycobacterium tuberculosis Detection and Rifampin Resistance Identification in Patients with Substantial Clinical Indications of Tuberculosis and Smear-Negative Microscopy Results. Journal of Clinical Microbiology. 2011;49(8):3068-70. [DOI:10.1128/JCM.00718-11] [PMID] [PMCID]

75. Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet (London, England). 2011;377(9776):1495-505. [DOI:10.1016/S0140-6736(11)60438-8]

76. Noor KM, Shephard L, Bastian I. Molecular diagnostics for tuberculosis. Pathology. 2015;47(3):250-6. [DOI:10.1097/PAT.0000000000000232] [PMID]