Recent advances in cytokines: Therapeutic implications for inflammatory bowel diseases

Guillaume Bouguen, Jean-Baptiste Chevaux, Laurent Peyrin-Biroulet

Abstract

Inflammatory bowel diseases (IBDs) are complex and chronic disabling conditions resulting from a dysregulated dialogue between intestinal microbiota and components of both the innate and adaptive immune systems. Cytokines are essential mediators between activated immune and non-immune cells, including epithelial and mesenchymal cells. They are immunomodulatory peptides released by numerous cells and these have significant effects on immune function leading to the differentiation and survival of T cells. The physiology of IBD is becoming a very attractive field of research for development of new therapeutic agents. These include cytokines involved in intestinal immune inflammation. This review will focus on mechanisms of action of cytokines involved in IBD and new therapeutic opportunities for these diseases.

INTRODUCTION

Ulcerative colitis (UC) and Crohn’s disease (CD) are immune-mediated disorders of the intestine[1]. Accumulating data suggests that inflammatory bowel disease (IBD) results from an inappropriate inflammatory response to intestinal microbes in a genetically susceptible host[2]. Emerging evidence suggests that disease development implicates a dysregulated dialogue between the intestinal flora and components of both the innate and adaptive immune systems[3-4].

Active IBD is defined as an infiltration of the lamina propria by innate immune cells [neutrophils, macrophages, dendritic and natural killer (NK) T cells] and adaptive immune cells (B and T cells). Increased numbers and activation of these cells in the intestinal mucosa enhance local levels of tumor necrosis factor-α (TNF-α) and several proinflammatory interleukins (IL)[5]. Cytokines are essential mediators of the interaction between activated immune cells and non-immune cells, including epithelial and mesenchymal cells[6-7].

Recent advances in the study of key cytokines during major forms of IBD promise the development of more effective mechanism-based therapies[8]. Given that many of these involve regulation of dynamic biological processes, it is likely that the most effective agents will fall within the broad rubric of biologic therapy.
The prototypic example of the ability of a biologic agent to effectively change the therapeutic landscape is provided by anti-TNF-α, first demonstrated through clinical validation of the prototypic agent infliximab[8]. The advent of anti-TNF-α agents has changed the way of treating IBD refractory to standard medications[3,9].

Advances in the understanding of IBD pathophysiology have become a very active area for the development of novel therapeutic agents. New targets for biologies include cytokines involved in intestinal immune inflammation that have led to new therapeutic opportunities[10,11]. Although IBD etiology is unknown, some molecules which are involved in the physiopathology have been identified and can be targeted by biological therapies[12]. This review will focus on cytokines involved in the dysregulated inflammatory response in IBD and targeted by biological therapies.

CYTOKINE NETWORK AND IMMUNITY

Cytokines (from Greek cyto: cell; kinos: movement) are substances that are secreted by specific cells of the immune system and carry signals locally between cells, with extensive use in cellular communication. The term “cytokine” encompasses a large and diverse family of polypeptide regulators that are produced widely throughout the body by cells of diverse embryological origin. Basically, the term “cytokine” has been used to refer to the immunomodulating agent. Interferon was the first cytokine to be described in 1957[13]. The clinical efficacy of targeting TNF-α indicates that cytokines are potential therapeutic targets in IBD[6].

Cytokines have profound effects on immune functions[16]. Beyond the classical T helper Th1/Th2 paradigm indicating predominant Th1-mediated responses dominated by the production of interferon-γ (IFN-γ) in CD and an exaggerated Th2-like inflammation in UC characterized by an increased production of IL-13[14], there has been a surge of information with regard to the role of innate immunity in IBD pathogenesis. Thus new data on adaptive immunity are emerging, indicating that: (1) the mucosal Th1 and Th2 responses of CD and UC may be actually secondary to defects of the innate immune response; (2) the dysfunction of regulatory T cells may be contributing to mucosal immune abnormalities; and (3) the newly described Th17 cells are also prominently involved in the gut inflammatory response in both forms of IBD[5,15].

The differentiation and survival of T cells depend on the relative amount of key regulatory cytokines produced mainly by macrophages and dendritic cells[12]. In the presence of IL-12 and IFN-γ, naïve CD4+ T cells adopt a Th1 phenotype which then activate macrophages that release IL-1, IL-6 and TNF-α. Thus this creates a positive feedback loop[15,16]. In the presence of IL-4, naïve CD4 T cells adopt a Th2 phenotype[17,18]. The Th17 development is triggered by both IL-6, IL-21, IL-23 and transforming growth factor-β (TGF-β), leading to secretion of the IL-17 cytokine family and IL-22[19]. Although the function of Th17 cells is not clearly known, there is probably an important part of this T cell population which expresses IL-23 receptors. This has been recently demonstrated as an IBD susceptibility gene in genome-wide association studies.

In contrast, TGF-β and IL-10 modulate differentiation of naïve T cells to T regulatory cell subgroups leading to high amounts of IL-10 and TGF-β, and are able to suppress bystander T cell activation. This could be defective in IBD[17-20]. There is a complex network between these different cell populations in the case of inflammation as, for example, in the negative crossregulation of the differentiation of Th17 cells by Th2 cells (IL-4, IL-27) and Th1 cells (IFN-γ) (Figure 1)[21].

PROINFLAMMATORY CYTOKINES

TNF family: TNF-α and TNF-like factor 1A

Mechanisms of action: TNF-α is a major mediator of inflammation in the gut[22-31]. It is synthesized by several cells including intestinal epithelial cells but predominantly by cells of the monocyte line and T lymphocytes[14]. TNF-α is a homotrimeric protein that mediates its diverse biologic effects through 2 distinct receptors known as TNF-α receptor type I expressed on all nucleated cells and TNF-α receptor type II restricted to cells of hematopoietic lineage[21,22,24]. Through the activation of nuclear factor-κB (NF-κB), TNF-α induces the expression of various genes such as urokinase plasminogen activator, cyclooxygenase II (COX II) and vascular endothelial growth factor (VEGF)[20]. By this method, TNF-α has multiple biological effects such as increasing leukocyte recruitment (induction of leukocyte adhesion molecules)[24-28], modulation of nitric oxide (NO) production (increasing the vascular permeability)[28,30], induction of secretion of proinflammatory cytokines[21], and the proliferation and differentiation of immune cells[20,31]. TNF5F15 encodes TNF-like factor 1A (TL1A), which is a TNF-like molecule that mediates co-stimulation of Th1 and Th17 cells. It is required for optimal differentiation of

![Figure 1 Overview of T cell differentiation and interleukin pathways](www.wjgnet.com)
Th17 cells. Variants in the TNFSF15 gene contribute to overall CD susceptibility and an increased production of TLR1A has been observed in CD. Interestingly, in mice, colitis was prevented and attenuated by an anti-TLR1A antibody.

Results of clinical trials (Table 1): Three anti-TNF agents, namely infliximab, adalimumab and certolizumab pegol have been approved by the US Food and Drug Administration for the treatment of luminal CD. In Europe, certolizumab has not yet received approval for IBD. Infliximab has also been approved for fistulizing CD and UC. In luminal CD, infliximab was effective in inducing clinical remission in 33% of patients compared with only 4% of a placebo group at week 4 \((P = 0.005) \), and in maintaining clinical remission (45% in the infliximab group vs 21% in the placebo group, \(P < 0.005 \)). Adalimumab was also significantly more effective than placebo in inducing clinical remission (36% vs 12%, \(P < 0.001 \)) and more effective than placebo in maintaining clinical remission at week 56 (36% vs 16%). Infliximab and adalimumab have also been shown to be more effective than placebo in maintaining steroid-free remission at 1 year. Regarding certolizumab pegol, results from large randomized, placebo-controlled trials are more controversial, with no improvement at week 6 and different long-term response rates between trials. In fistulizing CD, 55% of the patients who received 5 mg/kg infliximab had complete fistula closure, as compared with only 13% of the patients assigned to placebo \((P = 0.001) \). In UC, 2 large randomized, placebo-controlled studies, namely the ACT 1 and ACT 2 trials, evaluated the efficacy of infliximab for induction and maintenance therapy in UC. In both trials, at week 8, nearly two-thirds of the patients in the group receiving 5 mg of infliximab had had a clinical response, as compared with one-third of patients in the placebo group \((P < 0.001) \).

Regarding the safety of anti-TNF agents, the Crohn’s Therapy, Resource, Evaluation, and Assessment Tool registry, including 3179 CD patients who received infliximab, demonstrated that this agent was not an independent predictive factor of serious infections. In a meta-analysis of 21 placebo-controlled trials enrolling 5356 individuals, anti-TNF therapy did not increase the risk of death, malignancy or serious infection when compared to control arms. However, a longer duration of follow-up and a larger number of patients are required to better assess the safety profile of anti-TNF agents in CD.

Mechanisms of action of anti-TNF-α agents remain poorly known. Neutralization of TNF-α in the inflamed mucosa is unlikely to be a sufficient explanation. Antibody-dependent cytotoxicity also induces apoptosis or lysis of TNF-α-producing cells. This mechanism involves the Fe portion of antibodies that increases the pro-apoptotic factor caspase-3.

IL-12, p40/IL-23, p40

Mechanisms of action (Figure 2): IL-12 is a key cytokine that drives the inflammatory response mediated by Th1 cells. As such, it underlies both normal host responses to a variety of intracellular bacterial, fungal and protozoan pathogens, and abnormal inflammatory responses linked to many autoimmune diseases, such as CD. Indeed CD is characterized by increased production of IL-12 by antigen-presenting cells in intestinal tissue. IL-23, secreted by antigen-presenting cells, is also a central cytokine involved in the differentiation and function of Th17 cells. The IL-23-Th17 interaction mediates microbial defenses and intestinal inflammation. Individual properties of IL-23 are also underscored by identification of the gene encoding the receptor for this cytokine as modifying host susceptibility. These 2 most potent Th1- and Th17-activating cytokines, IL-12 and IL-23 are both composed of a p40 subunit and therefore, a p40 antibody may have therapeutic potential in inhibiting both Th1-activating IL-12 and Th17-activating IL-23.

Results of clinical trials (Figure 2 and Table 2): IL-12 and IL-23 are targeted by one humanized IL-12/23 antibody, ABT-874. It has shown promising results in a phase II dose-ranging study comprising 79 patients with CD. Seven weeks of uninterrupted treatment with 3 mg/kg ABT-874 resulted in higher response rates than placebo (75% vs 25%, \(P = 0.03 \)). Another dose-ranging study comparing efficacy, safety and pharmacokinetic of intravenous infusions of ABT-874 at placebo in subjects with active CD is ongoing. A double-blind, placebo-controlled, parallel-group, crossover study, assessing ustekinumab in 104 patients with CD has been completed. The clinical response to ustekinumab was significantly greater than the group given placebo at weeks 4 and 6 (52%-54% vs 22%-39%, \(P < 0.05 \)) but not at week 8 (49% vs 40%, \(P = 0.34 \)). Interestingly, the effect was most prominent in patients treated previously with infliximab at weeks 4, 6 and 8 (59% in the ustekinumab group vs 25%-26% in the placebo group, \(P < 0.05 \)). A phase 2, randomized,

Table 1 Clinical efficacy and marketing approval for anti-tumor necrosis factor-α agents

Drug name	Efficacy (% of induction of remission/% sustained remission)	Approved (FDA/Europe)				
	Luminal CD	Fistulizing CD	UC	Luminal CD	Fistulizing CD	UC
Infliximab (Remicade®)	33/45	55/36	38.8/23.1	Yes/Yes	Yes/Yes	Yes/Yes
Adalimumab (Humira®)	36/36	No RCT	No RCT	Yes/Yes	No/No	No/No
Certolizumab (Cimzia®)	35/48	No RCT	No RCT	Yes/No	No/No	No/No

CD: Crohn’s disease; UC: Ulcerative colitis; FDA: US food and drug administration; RCT: Randomized controlled trial.

Mechanisms of action of anti-TNF-α agents remain poorly known. Neutralization of TNF-α in the inflamed mucosa is unlikely to be a sufficient explanation. Antibody-dependent cytotoxicity also induces apoptosis or lysis of TNF-α-producing cells. This mechanism involves the Fe portion of antibodies that increases the pro-apoptotic factor caspase-3.
double-blinded, placebo-controlled study has evaluated the efficacy of apilimod mesylate, an oral IL-12 and IL-23 inhibitor in treating 220 patients with moderate-to-severe CD. The enrollment was closed early because it did not demonstrate efficacy over placebo.

IL-6

Mechanisms of action: IL-6 is produced by various cells such as T cells, B cells, monocytes, fibroblasts, osteoblasts, keratinocytes, endothelial cells, mesangial cells and some tumor cells. This cytokine specifically binds to the IL-6 receptor (IL-6R) or a soluble IL-6R, forming the IL-6/IL-6R complex that binds to gp130 and activates intracellular pathways including JAK/STAT signaling, tyrosine phosphatase SHP2 and NF-κB. Many cells express gp130, hence IL-6 is a pleiotropic multi-functional cytokine acting as both a proinflammatory and an antiinflammatory cytokine. It is involved in terminal differentiation of B cells, differentiation and activation of T cells, induction of a hepatic acute-phase response, hematopoiesis and fever. Thus activated IL-6 plays a major role in its own amplification and then in the chronic phase of inflammation helped by mononuclear cell accumulation at the site of injury, through continuous monocyte chemoattractant protein-1 secretion, angioproliferation and ant apoptotic functions of T cells. Plasma soluble IL-6R is increased in patient with CD and IL-6 plasma concentrations increase in active CD.

Results of clinical trials (Table 2): Tocilizumab binds to both the membrane-bound and the soluble forms of human IL-6R with high affinity and specificity. Tocilizumab has shown promising results in a small phase I / II study (n = 36) that met its primary endpoint. At 12 wk, the response rate was higher in patients given an 8 mg/kg infusion of tocilizumab every 2 wk than in those given placebo (80% vs 31%, P = 0.019) and is accompanied by a decrease in C-reactive protein concentration. However, only 2 of 10 patients went into remission, compared with none of 13 in the placebo group (P = 0.092), without significant improvement in mucosal healing. Improvement in disease activity in a patient with UC associated with Takayasu arteritis has been reported after treatment with tocilizumab. A placebo-controlled phase I study on the safety and biological effects of c326, an inhibitor of IL-6, in CD is ongoing.
IFN-γ
Mechanisms of action: Type II IFN, also called IFN-γ, is a proinflammatory cytokine secreted by Th1-cells. IFN-γ drives expression of major histocompatibility complex class II on antigen-presenting cells, modulates lipopolysaccharide responsiveness in intestinal epithelial cells, and increases chemokine secretion. It also activates macrophages, Th1 lymphocytes in a positive feedback loop, NK cells and endothelial cells. Concentrations of IFN-γ are increased both in UC and CD.

Results of clinical trials (Table 2): Fontolizumab has been assessed in 3 phase I/II dose-ranging studies enrolling a total of 374 patients with moderate to severe CD. Fontolizumab at doses of up to 4 mg/kg improved endoscopic lesions and decreased concentrations of C-reactive protein, but no study met its primary endpoint, which was defined as induction of clinical response at 1 mo; thus the development of fontolizumab for CD has been stopped.

IL-2 family
Mechanisms of action: IL-2 is produced mainly by activated T cells. In addition to promoting T cell proliferation and activation, IL-2 increases cytokine production and modifies the functional properties of B cells, NK cells, and macrophages. Thus, it improves the activated macrophage microbicidal and cytotoxic activities and promotes secretion of hydrogen peroxide, TNF-α and IL-6. IL-2 signals through a heterodimeric αγ trimeric αβγ high-affinity receptor complex. Studies have proved a role for IL-2 in IBD pathogenesis, for example the calcineurin inhibitor cyclosporin, which inhibits IL-2 production, is effective in the treatment of severely active UC. IL-21, an IL-2 cytokine family member expressed by activated CD4+ T cells and NK T cells, is a key regulator in production of Th17 cells. It also increases the proliferation of Th1 cells, CD4+ and CD8+ lymphocytes and regulates the profile of cytokines secreted by these cells. Indeed, IL-21-deficient mice are protected from experimental colitis, possibly through the failure to generate the Th17 response. Furthermore, blockade of endogenous IL-21, with an antagonistic IL-21R/Fc, ameliorated dextran sulphate sodium colitis in mice. No studies have been performed in humans as yet.

Results of clinical trials (Table 2): Two antibodies against the α-chain of the IL-2 receptor (CD25), namely daclizumab and basiliximab, have been studied to mimic the activity of cyclosporine. Despite promising response rates observed in an uncontrolled trial, a randomized, double-blind, placebo-controlled, dose-ranging trial failed to demonstrate an increased remission of clinical response both at high (2 mg/kg intravenously at weeks 0, 2, 4, and 6) and low doses (1 mg/kg intravenously at weeks 0 and 4) in 159 treated patients with daclizumab for active UC.

ANTIINFLAMMATORY CYTOKINES

IL-10
Mechanisms of action: IL-10 is secreted by a wide variety of cells and has pleiotropic effects on T cells, B cells, myeloid cells, and other cell types. IL-10 has suppressive antiinflammatory activity on T cells, macrophages, and dendritic cells (among other cells) in humans, as well as in animal models of inflammatory diseases. In particular, mice deficient in IL-10 or the IL-10 receptor undergo spontaneous development of intestinal inflammation, similar to human disease. Even though IL-10 effectively treats colitis in mouse models and suppresses inflammatory cytokine production in vitro in intestinal cells from IBD patients, unfortunately clinical trials using recombinant IL-10 to treat IBD in humans have been largely disappointing.

Results of clinical trials: A placebo-controlled study was conducted in 329 patients with moderate-to-severe CD and in 94 patients with UC and did not demonstrate any significant improvement in response and remission rates compared to placebo. Also, no evidence of prevention of endoscopic recurrence in CD by subcutaneous IL-10 injection was observed in a placebo-controlled trial of 65 CD patients. Animal studies showed that local administration of IL-10 to the colon via genetically engineered Lactococcus lactis bacteria administered orally allowed for the achievement of high colonic mucosal concentrations of IL-10, potentially resulting in increased efficacy.

IL-11
Mechanisms of action: IL-11 is a pleiotropic cytokine from mesenchymal cell origin. It exhibits potent antiinflammatory activity on macrophages and T cells by inhibiting the secretion of pro-inflammatory cytokines and has shown beneficial effects on intestinal mucosa in several animal IBD models. However one study suggested that the expression of the IL-11 receptor α-chain in the mucosa was restricted to epithelial cells, and although reducing apoptosis, it had no antiinflammatory effects on these cells.

Results of clinical trials: In a placebo-controlled study in 76 active CD patients, subcutaneously administered recombinant human IL-11 was shown to be safe and well tolerated. In a second placebo-controlled study in 148 patients comparing 2 doses of subcutaneously administered recombinant human IL-11, it was significantly superior in inducing remission after 6 wk when compared to placebo. In contrast, a recent trial showed significant inferiority of recombinant human IL-11 when compared to prednisolone in inducing remission in active CD and in obtaining a clinical response.

Type I IFNs
Mechanisms of action: Type I IFNs consist of 14 α
isomers and β, ε, η, and κ isoforms. Immunoregulatory therapy with type I IFNs such as IFN-α or IFN-β can inhibit production of TNF-α and IFN-γ, antagonize the IFN-γ signaling pathway and increase production of the antiinflammatory cytokine IL-10. It has also been shown to be immunoregulated by enhanced regulatory T lymphocyte and NK cell activity.

Results of clinical trials: Several type I IFNs have been studied in UC. A phase 2 placebo-controlled, dose-ranging trial, studied IFN-β1a in 194 patients with moderately active UC. Clinical outcomes, including the proportion of patients achieving endoscopically confirmed remission, were not statistically significantly superior in the IFN-β1a treatment groups over placebo. A randomized, placebo-controlled trial of pegylated IFN-α in 60 patients with active UC did not show any efficacy in clinical response and response rate despite a significant decrease in levels of C reactive protein.

WHERE DO WE GO FROM HERE?

In 2010, infliximab represents the pinnacle of the therapeutic pyramid of IBD treatment. However, this anti-TNF agent has several limitations. First, despite its widespread use in IBD, 20% of patients still require surgery. Second, about 10% of patients are primary non-responders to infliximab and only one-third of IBD patients are in clinical remission at 1 year. Third, the annual risk of loss of response is 13% per patient-year. Finally, infliximab treatment optimization with combination therapy can be considered, but this must be weighed against the increased risk of serious infections and perhaps lymphoma. These data underscore the urgent need to develop new drug classes.

Humanized IL-12/23 antibodies seem the most promising therapy for the future: (1) IL-23 is an essential mediator for the differentiation and amplification of the proinflammatory Th17 pathway; (2) its role is underscored by the increased host susceptibility for IBD in cases of polymorphism of the gene encoding the receptor for this cytokine; and (3) the effective results observed in a recent randomized, controlled trial, particularly in cases of infliximab withdrawal. Phase III trials are ongoing in IBD patients.

Recent advances in the pathophysiology of IBD have led to the identification of additional cytokine pathways representing potential therapeutic targets. Numerous other cytokines are currently under investigation: IL-27, produced mainly by dendritic cells, acting in the differentiation of both Th1 and Th2 cells; IL-32, produced by NK cell-activated lymphocytes and epithelial cells, providing a proinflammatory amplification pathway in the innate immune responses to bacterial infection; IL-31, preferentially produced by T cells skewed towards a Th2 phenotype, playing a role in the acute phase of inflammation by maintaining proliferation of B and T cells. Further studies are needed to fully explore their different roles in human IBD, and their biological significance, to eventually determine the therapeutic implications (Figure 3).

To overcome anti-TNF therapy failure in IBD, one way would be to develop more targeted therapy. A humanized TNF receptor-1 specific antagonistic antibody for selective inhibition of TNF action has shown interest. Another way would be to use cytokine therapy in association with other anti-cytokine agents. The efficacy of TNF-α antagonist agents alone reflects probably the pleiotropic effects of TNF-α. An effective treatment strategy for patients might therefore involve the blockade of multiple cytokines in order to intervene in several pathways.

Animal studies in rheumatoid arthritis showed that anti-CD4 therapy acts synergistically with anti-TNF-α in improving established collagen-induced arthritis. In IBD, a safety study suggested several positive trends in improving efficacy when natalizumab was added to infliximab treatment. Further investigations are necessary to better evaluate the cost-effectiveness and long-term safety profile of these associations.
CONCLUSION
Despite recent advances in the pathophysiology of IBD, leading to the identification and understanding of several cytokine pathways, anti-TNF-α agents still represent the pinnacle of the therapeutic pyramid of IBD treatment. The humanized IL-12/23 antibodies appear to be the most promising therapy. Future directions could include the development of more targeted therapy or therapeutic blockade of multiple cytokines in order to intervene in several pathways.

REFERENCES
1 Monteleone G, Caprioli F. Why are molecular mechanisms of immune activation important in IBD? Inflamm Bowel Dis 2008; 14 Suppl 2: S106-S107
2 Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med 2009; 361: 2066-2078
3 Peyrin-Biroulet L, Desreumaux P, Sandborn WJ, Colombel JF. Crohn’s disease: beyond antagonists of tumour necrosis factor. Lancet 2008; 372: 67-81
4 Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448: 427-434
5 Bamias G, Nyce MR, De La Rue SA, Cominelli F. New concepts in the pathophysiology of inflammatory bowel disease. Ann Intern Med 2005; 143: 895-904
6 Andoh A, Yagi Y, Shioya M, Nishida A, Tsujikawa T, Fujiyama Y. Mucosal cytokine network in inflammatory bowel disease. World J Gastroenterol 2008; 14: 5154-5161
7 Fantini MC, Monteleone G, Macdonald TT. New players in the cytokine orchestra of inflammatory bowel disease. Inflamm Bowel Dis 2007; 13: 1419-1423
8 Podolsky DK. Beyond tumor necrosis factor: next-generation biologic therapy for inflammatory bowel disease. Dig Dis 2009; 27: 366-369
9 Peyrin-Biroulet L, Deltenre P, de Suray N, Branche J, Sandborn WJ, Colombel JF. Efficacy and safety of tumor necrosis factor antagonists in Crohn’s disease: meta-analysis of placebo-controlled trials. Clin Gastroenterol Hepatol 2008; 6: 644-653
10 Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet 2007; 369: 1627-1640
11 Korzenik JR, Podolsky DK. Evolving knowledge and therapy of inflammatory bowel disease. Nat Rev Drug Discov 2006; 5: 197-209
12 Rutgeerts P, Vermeire S, Van Assche G. Biological therapies for inflammatory bowel diseases. Gastroenterology 2009; 136: 1182-1197
13 Isaacs A, Lindemann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957; 147: 258-267
14 Armstrong AM, Gardiner KR, Kirk SJ, Halliday ML, Rowlands BJ. Tumour necrosis factor and inflammatory bowel disease. Br J Surg 1997; 84: 1051-1058
15 Scalfarotti F, Fiocchi C. Inflammatory bowel disease: progress and current concepts of etiopathogenesis. J Dig Dis 2007; 8: 171-178
16 Targan SR, Karp LC. Defects in mucosal immunity leading to ulcerative colitis. Immunol Rev 2005; 206: 296-305
17 Hvas Cl, Kelsen J, Aghjolt J, Høllsberg P, Tvede M, Møller JK, Dahlpeup JF. Crohn’s disease intestinal CD4+ T cells have impaired interleukin-10 production which is not restored by probiotic bacteria. Scand J Gastroenterol 2007; 42: 592-601
18 Saruta M, Yu QT, Fleshner PR, Mantel PY, Schmidt-Weber CB, Banham AH, Papadakis KA. Characterization of FOXP3+CD4+ regulatory T cells in Crohn’s disease. Clin Immunol 2007; 125: 281-290
19 Shih DQ, Targan SR. Insights into IBD Pathogenesis. Curr Gastroenterol Rep 2009; 11: 473-480
20 Zhou L, Ivanov II, Spolski R, Min R, Shendevor K, Egawa T, Levy DE, Leonard WJ, Littman DR. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8: 967-974
21 Brand S. Crohn’s disease. Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 2009; 58: 1152-1167
22 Braegger CP, Nicholls S, Murch SH, Stephens S, MacDonald TT. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 1992; 339: 89-91
23 Breese EJ, Michie CA, Nicholls SW, Murch SH, Williams CB, Domizio P, Walker-Smith JA, Macdonald TT. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology 1994; 106: 1455-1466
24 Esposito E, Cuzzocrea S. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr Med Chem 2009; 16: 3152-3167
25 Murch SH, Braegger CP, Walker-Smith JA, Macdonald TT. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut 1993; 34: 1705-1709
26 Paul AT, Gohil VM, Bhutani KK. Modulating TNF-alpha signalling with natural products. Drug Disc Today 2006; 11: 725-732
27 Pober JS, Lapierre LA, Stolpen AH, Brock TA, Springer TA, Fiers W, Bevilacqua MP, Mendrick DL, Gimbrone MA Jr. Activation of cultured human endothelial cells by recombinant lymphotixin: comparison with tumor necrosis factor and interleukin 1 species. J Immunol 1987; 138: 3319-3324
28 Slowik MR, De Luca LG, Fiers W, Pober JS. Tumor necrosis factor activates human endothelial cells through the p55 tumor necrosis factor receptor but the p75 receptor contributes to activation at low tumor necrosis factor concentration. Am J Pathol 1993; 143: 1724-1730
29 Estrada C, Gómez C, Martin C, Moncada S, González C. Nitric oxide mediates tumor necrosis factor-alpha cytotoxicity in endothelial cells. Biochem Biophys Res Commun 1992; 186: 475-482
30 Yoshizumi M, Perrell MA, Burnett JC Jr, Lee ME. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993; 73: 205-209
31 Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347: 417-429
32 Pappu BP, Borodovsky A, Zheng TS, Yang X, Wu P, Dong X, Weng S, Browning B, Scott ML, Ma L, Su L, Tian Q, Schmidt-Weber P, Flavell RA, Dong C, Burky LC. TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med 2008; 205: 1049-1062
33 Trehelling M, Berzuini C, Massey D, Bredin F, Price C, Dawson C, Bingham SA, Parkes M. Contribution of TNFSF15 gene variants to Crohn’s disease susceptibility confirmed in UK population. Inflamm Bowel Dis 2008; 14: 733-737
34 Yamazaki K, McGovern D, Ragoussis J, Paolicci M, Butler H, Jewell D, Cardon L, Takazoe M, Tanaka T, Ichimori T, Saito S, Sekine A, Iida A, Takahashi A, Tsunoda T, Lathrop M, Nakamura Y. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet 2005; 14: 3499-3506
35 Bamias G, Martin C 3rd, Marini M, Hoang S, Mishina M, Ross WG, Sachedina MA, Frield CM, Mize J, Blackston SJ, Pizarro TT, Wei P, Cominelli F. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol 2003; 171: 4868-4874
36 Takedatsu H, Michelsen KS, Wei B, Landers CJ, Thomas LS, Dhall D, Braun J, Targan SR. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 2008; 135: 552-567
The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol 2007; 19: 372-376

Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barnard MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhardt AH, Targan SR, Xavier RJ, Liobiliule C, Sandor C, Lathrop M, Belaiche J, Dewitt O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossuin A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Cardon LR, Anderson CA, Drummond H, Nimmro D, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghorii J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Manfield J, Jewell D, Saisjagi J, Mathew CG, Parkes M, Georges M, Daly MJ. Genome-wide association studies more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40: 955-962

Duerer RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhardt AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barnard MM, Rotter JI, Nicolae DL, Cho JH. A genome-wide association study identifies IL-23R as an inflammatory bowel disease gene. Science 2006; 314: 1461-1463

Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, Johanss J, Blank M, Rutgeerts P. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology 2008; 135: 1130-1141

Sands BE, Jacobson EW, Sylwestrowicz T, Younes Z, Dryden G, Fedorak R, Greenblom S. Randomized, double-blind, placebo-controlled trial of the oral interleukin-12/23 inhibitor apilimod mesylate for treatment of active Crohn's disease. Inflamm Bowel Dis 2010; 16: 1209-1218

Kishimoto T. The biology of interleukin-6. Blood 1989; 74: 1-10

Fonseca JE, Santos MJ, Canhão H, Choy E. Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun Rev 2009; 8: 538-542

Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol 1993; 54: 1-78

Veldhuis GJ, Willemsen PH, Stelijer DT, van der Graaf WT, Groen HJ, Limburg PC, Mulder NH, de Vries EG. Toxicity and efficacy of escalating dosages of recombinant human interleukin-6 after chemotherapy in patients with breast cancer or non-small-cell lung cancer. J Clin Oncol 1995; 13: 2587-2590

Atreya R, Muller J, Finotto S, Stubbberg J, Jostock T, Wurtz S, Schütz M, Bartsch B, Holtmann M, Becker C, Strand D, Czaja J, Schlaak JF, Lehr HA, Autschbach F, Schürmann G, Nishimoto N, Yoshizaki K, Ito H, Kishimoto T, Galle PR, Rose-John S, Neurath MF. Blockade of interleukin-6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med 2003; 9: 583-588

Nancey S, Hamzaoui N, Moussata D, Graber I, Bievre J, Flouire B. Serum interleukin-6, soluble interleukin-6 receptor and Crohn's disease: pathophysiological implications. Dig Dis Sci 2008; 53: 242-247

Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Ando A, Matsumoto T, Yamamura T, Azuma J, Nishimoto N, Yoshizaki K, Shimoyama T, Kishimoto T. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in patients with active Crohn's disease. J Clin Invest 2009; 119: 1625-1632

Bouguen G et al. Therapeutic implications of cytokines in IBD

37 Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF, Rutgeerts P, A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's disease: the CLASSIC-I trial. Gastroenterology 2006; 130: 323-333; quiz 591

39 Colombel JF, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R, Schreiber S, Byczkowski D, Li J, Kent JD, Pollack PF, Adalimumab for maintenance of clinical response and remission in patients with Crohn's disease: the CHARM trial. Gastroenterology 2007; 132: 52-65

40 Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Rachmilowiz D, Wolf DC, Olson A, Bao W, Rutgeerts P, Maintenance infliximab for Crohn's disease: the ACCENT I randomized trial. Lancet 2002; 359: 1541-1549

44 Rutgeerts P, Sandborn WJ, Feagan BG, Reichins W, Olson A, Johanss J, Travers S, Rachmilowiz D, Hanauer SB, Lichtenstein GR, de Villiers W, Present D, Sands BE, Colombel JF, Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 2005; 353: 2462-2476

48 Lichtenstein GR, Feagan BG, Cohen RD, Salzberg BA, Diamond RH, Chen DM, Pritchard ML, Sandborn WJ, Serious infections and mortality in association with therapies for Crohn's disease: TREAT registry. Clin Gastroenterol Hepatol 2006; 4: 621-630

52 Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton KD, Wahl SM, Schoeb TR, Weaver CT, Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441: 231-234
with interferons in inflammatory bowel disease. Gut 2006; 55: 1071-1073.

67 Suzuki M, Hisamatsu T, Podolsky DK. Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect Immun 2003; 71: 3503-3511.

68 Hommes DW, Mikhaljova TL, Stoivos V, Stimac D, Vucelic B, Lonovics J, Zákocviov M, D’Haens G, Van Asche G, Ba S, Lee S, Pearce T. Fontolizumab, a humanized anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut 2006; 55: 1131-1137.

69 Reinsch W, de Villiers W, Bene L, Simon L, Rácz I, Katz S, Altorjay I, Faigan B, Riff D, Bernstein CN, Hommes D, Rutgeerts P, Cortet A, Gasparri M, Cheng M, Pearce T, Sandes BE. Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflam Bowel Dis 2010; 16: 233-242.

70 Reinsch W, Hommes DW, Van Assche G, Colombel JF, Gendre JP, Oldenburg B, Teml A, Geboes K, Ding H, Zhang L, Tang M, Cheng M, van Deventer SJ, Rutgeerts P, Pearce T. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizu

71 Gordon J, MacLean LD. A lymphocyte-stimulating factor produced in vitro. Nature 1965; 208: 795-796.

72 Chavez AR, Buchser W, Basse PH, Liang X, Appleman LJ, Maranchie JK, Zeh H, de Vera ME, Lotze MT. Pharmacologic administration of interleukin-2. Ann N Y Acad Sci 2009; 1182: 14-27.

73 Lichtiger S, Present DH, Kornbluth A, Gelernt I, Bauer J, Galler G, Michelassi F, Hanauer S. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med 1994; 330: 1841-1845.

74 Strengell M, Sareneva T, Foster D, Julkunanen I, Matikainen S. IL-21 up-regulates the expression of genes associated with innate immunity and Th1 response. J Immunol 2002; 169: 3600-3605.

75 Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, Stolfi C, Cardolini I, Dottori M, Boirivant M, Pallone F, MacDonald TT, Monteleone G. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 2008; 134: 1038-1048.

76 Creed TJ, Norman MR, Probert CS, Harvey RF, Shaw ES, Smithson J, Anderson J, Moorghen M, Gupta J, Shepherd NA, Dayan CM, Hearing SD. Basiliximab (anti-CD25) in combination with steroids may be an effective new treatment for steroid-resistant ulcerative colitis. Aliment Pharmacol Ther 2003; 18: 65-75.

77 Creed TJ, Probert CS, Norman MN, Moorghen M, Shepherd NA, Hearing SD, Dayan CM. Basiliximab for the treatment of steroid-resistant ulcerative colitis: further experience in moderate and severe disease. Aliment Pharmacol Ther 2006; 23: 1435-1442.

78 Van Asche G, Dalle I, Noman M, Aarden I, Swijnen I, Asnong K, Maes B, Ceuppens J, Geboes K, Rutgeerts P. A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol 2003; 98: 369-376.

79 Van Asche G, Sandborn WJ, Feagin BG, Salzberg BA, Silvers D, Monroe PS, Pandak WM, Anderson FH, Valentine JF, Wild GE, Geenen DJ, Sprague R, Targan SR, Rutgeerts P, Vexler Y, Young D, Shames RS. Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut 2006; 55: 1568-1574.

80 Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 695-732.

81 Kühn R, Löhler J, Remnick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263-274.

82 Spencer SD, Di Marco F, Hooley J, Pitts-Meek S, Bauer M, Ryan AM, Sordat B, Gibbs VC, Aleguet M. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med 1998; 187: 571-578.

83 Schreiber S, Heimg T, Thiele HC, Raedler A. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 1995; 108: 1434-1444.

84 Kelsall B. Interleukin-10 in inflammatory bowel disease. N Engl J Med 2009; 361: 2091-2093.

85 Schreiber S, Fedorak RN, Wild G, Gangel A, Targan S, Jacyna M, Wright JP, Kilian A, Cohard M, Lebeaut A, Tremaine WJ, the Ulcerative Colitis IL-10 Cooperative Study Group. Safety and tolerance of rHuIL-10 treatment in patients with mild/moderate active ulcerative colitis. Gastroenterology 1998; 114: A1080-A1081.

86 Schreiber S, Fedorak RN, Nielsen OH, wild G, Williams CN, Nikolau S, Jacyna M, Lasmith BA, Gangal A, Rutgeerts P, Isaacs K, van Deventer SJ, Koningsberger JC, Cohard M, Lebeaut A, Hanauer SB. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 2000; 119: 1461-1472.

87 Colombel JF, Rutgeerts P, Malchow H, Jacyna M, Nielsen OH, Rask-Madsen J, van Deventer S, Ferguson A, Desreux P, Forbes A, Geboes K, Melani L, Cohard M, Interleukin 10 (Tenvil) in the prevention of postoperative recurrence of Crohn’s disease. Gut 2001; 49: 42-46.

88 Steidler L, Hans W, Scholte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut P. Treatment of murine colitis by monoclonal antibodies specific for the common alpha-chain and evidence of antiapoptotic effects in human colonic epithelial cells. J Biol Chem 2000; 275: 1352-1355.

89 Du X, Williams DA. Interleukin-11: review of molecular, cell biology, and clinical use. Blood 1997; 89: 3987-3908.

90 Herrlinger KR, Witthoef T, Raedler A, Bokemeyer B, Krummenerl T, Schulze JD, Boerner N, Kueppers B, Emmrich J, Mescheder A, Schwertschlag U, Schreiber S, Heimg T, Thiele HC, Raedler A. Interleukin-10 receptor alpha-chain and evidence of antiapoptotic effects in human colonic epithelial cells. J Clin Invest 1999; 103: 1071-1073.

91 Leng SX, Elias JA. Interleukin-11 inhibits macrophage interleukin-12 production. J Immunol 1997; 159: 2161-2168.

92 Trepicchio WL, Ozawa M, Walters IB, Kikuchi T, Gille-audeau P, Bliss JL, Schwertschlag U, Dorner AJ, Krueger JG. Interleukin-12 production.

93 Bouguen G et al. Therapeutic implications of cytokines in IBD.

94 Saad BS, Sninsky CA, Robinson M, Katz S, Singleton JW, Miner PB, Safdi MA, Galandiuk S, Hanauer SB, Varilek GW, Buchman AL, Rodgers VD, Salzberg B, Cai B, Loewy J, DeBruin MF, Rogge H, Shapiro M, Schwertschlag U, preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease. Gastroenterology 1999; 117: 58-64.
Bouguen G et al. Therapeutic implications of cytokines in IBD

95 Sands BE, Winston BD, Salzberg B, Safdi M, Barish C, Wruble L, Wilkins R, Shapiro M, Schwertschlag US. Randomized, controlled trial of recombinant human interleukin-11 in patients with active Crohn's disease. *Aliment Pharmacol Ther* 2002; 16: 399-406

96 Pena-Rossi C, Schreiber S, Golubovic G, Mertz-Nielsen A, Panes J, Rachmilewitz D, Shieh MJ, Simonenkov VI, Stanton D, Graffner H. Clinical trial: a multicentre, randomized, double-blind, placebo-controlled, dose-finding, phase II study of subcutaneous interferon-beta-1a in moderately active ulcerative colitis. *Aliment Pharmacol Ther* 2008; 28: 758-767

97 Tilg H, Vogelsang H, Ludwiczek O, Lochs H, Kaser A, Colombel JF, Ulmer H, Rutgeerts P, Krüger S, Cortot A, D’Haens G, Harrer M, Gasche C, Wrbka F, Kuhn I, Reinisch W. A randomised placebo controlled trial of pegylated interferon alpha in active ulcerative colitis. *Gut* 2003; 52: 1728-1733

98 Schnitzler F, Fidder H, Ferrante M, Noman M, Arijs I, Van Assche G, Hoffman I, Van Steen K, Vermeire S, Rutgeerts P. Long-term outcome of treatment with infliximab in 614 patients with Crohn’s disease: results from a single-centre cohort. *Gut* 2009; 58: 492-500

99 Gisbert JP, Panés J. Loss of response and requirement of infliximab dose intensification in Crohn’s disease: a review. *Am J Gastroenterol* 2009; 104: 760-767

100 Kontermann RE, Münkel S, Neumeyer J, Müller D, Branschädel M, Scheurich P, Pfizenmaier K. A humanized tumor necrosis factor receptor 1 (TNFR1)-specific antagonistic antibody for selective inhibition of tumor necrosis factor (TNF) action. *J Immunother* 2008; 31: 225-234

101 He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, Cancilla MT, Wang J, Lugovskoy AA, Yoburn JC, Fung AD, Farrington G, Eldredge JK, Day ES, Cruz LA, Cachero TG, Miller SK, Friedman JE, Choong IC, Cunningham BC. Small-molecule inhibition of TNF-alpha. *Science* 2005; 310: 1022-1025

102 Cominelli F. Cytokine-based therapies for Crohn’s disease--new paradigms. *N Engl J Med* 2004; 351: 2045-2048

103 Williams RO, Mason LJ, Feldmann M, Maini RN. Synergy between anti-CD4 and anti-tumor necrosis factor in the amelioration of established collagen-induced arthritis. *Proc Natl Acad Sci USA* 1994; 91: 2762-2766

104 Sands BE, Kozarek R, Spainhour J, Barish CF, Becker S, Goldberg L, Katz S, Goldblum R, Harrigan R, Hilton D, Hanauer SB. Safety and tolerability of concurrent natalizumab treatment for patients with Crohn’s disease not in remission while receiving infliximab. *Inflamm Bowel Dis* 2007; 13: 2-11

S- Editor Tian L L- Editor Cant MR E- Editor Lin YP