The Algebraic Connectivity of a Graph and its Complement

B. Afsharia, S. Akbarib *, M.J. Moghaddamzadehb, B. Moharc †‡

aSchool of Computer Science, Institute for Research in Fundamental Sciences, bDepartment of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, cDepartment of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6

Abstract

For a graph G, let $\lambda_2(G)$ denote its second smallest Laplacian eigenvalue. It was conjectured that $\lambda_2(G) + \lambda_2(\overline{G}) \geq 1$, where \overline{G} is the complement of G. In this paper, it is shown that $\max\{\lambda_2(G), \lambda_2(\overline{G})\} \geq \frac{2}{5}$.

AMS Classification: 05C50
Keywords: Laplacian eigenvalues of graphs, Laplacian spread

1 Introduction

All graphs considered in this paper are simple (no loops and no multiple edges). If G is a graph and $v \in V(G)$, we denote by $N_G(v)$ the set of vertices adjacent to v. We denote the complementary graph of G by \overline{G}.

The adjacency matrix $A(G)$ of G is the matrix whose (u,v)-entry is equal to 1 if $uv \in E(G)$ and 0 otherwise. If $D(G)$ denotes the diagonal matrix of vertex degrees, then the Laplacian of the graph G is defined as $L(G) = D(G) - A(G)$. We denote the Laplacian eigenvalues of G by

$$0 = \lambda_1(G) \leq \lambda_2(G) \leq \cdots \leq \lambda_n(G).$$

The second smallest eigenvalue $\lambda_2(G)$ is also called the algebraic connectivity of G and is an important indicator related to various properties of the graph. It is well-known that

*The research of the second author was partly funded by Iran National Science Foundation (INSF) under the contract No. 96004167.
†B.M. was supported in part by the NSERC Discovery Grant R611450 (Canada), by the Canada Research Chairs program, and by the Research Project J1-8130 of ARRS (Slovenia).
\textsuperscript‡On leave from IMFM & FMF, Department of Mathematics, University of Ljubljana.
the eigenvalues of the complementary graph \(L(G) \) are

\[
0 = \lambda_1(G) \leq n - \lambda_n(G) \leq n - \lambda_{n-1}(G) \leq \ldots \leq n - \lambda_2(G).
\]

The Laplacian spread of a graph \(G \) is defined to be \(\lambda_n(G) - \lambda_2(G) \). Clearly, \(\lambda_n(G) - \lambda_2(G) \leq n \). It was conjectured [10,11] that this quantity is at most \(n - 1 \).

Conjecture 1. For any graph \(G \) of order \(n \geq 2 \), the following holds:

\[
\lambda_n(G) - \lambda_2(G) \leq n - 1,
\]

or equivalently \(\lambda_2(G) + \lambda_2(G) \geq 1 \), with equality if and only if \(G \) or \(\overline{G} \) is isomorphic to the join of an isolated vertex and a disconnected graph of order \(n - 1 \).

This conjecture holds for trees [5], unicyclic graphs [1], bicyclic graphs [4,6,8], tricyclic graphs [3], cactus graphs [7], quasi-tree graphs [9], graphs with diameter not equal to 3 [11], bipartite and \(K_3 \)-free graphs [2].

In this paper, we provide a positive constant lower bound for \(\lambda_2(G) + \lambda_2(G) \) by proving the following.

Theorem 2. Let \(G \) be a graph of order \(n \geq 2 \). Then

\[
\max \{ \lambda_2(G), \lambda_2(G) \} \geq \frac{2}{5}.
\]

2 Routings

If \(P \) is a path in a graph \(G \), we denote its length by \(\|P\| \). Let \(\mathcal{P} \) be a set of paths in \(G \). For any edge \(e \in G \), let \(w_\mathcal{P}(e) \) be the sum of the lengths of all paths in \(\mathcal{P} \) which contain \(e \). We say \(\mathcal{P} \) has weighted congestion \(w \), where \(w = \max_{e \in E(G)} w_\mathcal{P}(e) \). We denote the weighted congestion of \(\mathcal{P} \) by \(w(\mathcal{P}) \).

A set \(\mathcal{P} \) of paths in \(G \) is called a routing if for any distinct vertices \(x, y \in V(G) \), there is exactly one path \(P_{xy} \in \mathcal{P} \) with endpoints \(x \) and \(y \). In particular, this means that \(P_{xy} = P_{yx} \).

Theorem 3. Let \(G \) be a graph of order \(n \). If \(G \) has a routing \(\mathcal{P} \) of weighted congestion at most \(w \), then \(\lambda_2(G) \geq \frac{n}{w} \).

Proof. Let \(f : V(G) \to \mathbb{R} \) be an eigenvector of \(L(G) \) corresponding to the eigenvalue \(\lambda_2(G) \). Then \(f \) is orthogonal to the all-one vector \(\mathbf{1} \), since \(\mathbf{1} \) is an eigenvector corresponding to \(\lambda_1(G) \). This means that \(\sum_{x \in V(G)} f(x) = 0 \).
Note that we have
\[\|f\|^2 = \frac{1}{n} \sum_{\{x,y\} \subseteq V(G)} (f(x) - f(y))^2, \]
(1)
because
\[2 \sum_{\{x,y\} \subseteq V(G)} (f(x) - f(y))^2 = \sum_{x,y \in V(G)} (f(x) - f(y))^2 \]
\[= \sum_{x,y \in V(G)} (f(x)^2 + f(y)^2 - 2f(x)f(y)) \]
\[= 2n \sum_{x \in V(G)} f(x)^2 - 2 \left(\sum_{x \in V(G)} f(x) \right)^2 \]
\[= 2n \|f\|^2. \]

For any distinct vertices \(x, y \in V(G) \), let \(P_{xy} \in \mathcal{P} \) be the path in \(\mathcal{P} \) with end points \(x \) and \(y \). We may assume that \(\|f\| = 1 \). Then,
\[\lambda_2(G) = \sum_{xy \in E(G)} (f(x) - f(y))^2 \]
\[= \frac{n \sum_{xy \in E(G)} (f(x) - f(y))^2}{\sum_{\{x,y\} \subseteq V(G)} (f(x) - f(y))^2} \]
(by (1))
\[\geq \frac{n \sum_{xy \in E(G)} (f(x) - f(y))^2}{\|P_{xy}\| \sum_{uv \in P_{xy}} (f(u) - f(v))^2} \]
(by Cauchy-Schwarz inequality)
\[\geq \frac{n \sum_{xy \in E(G)} (f(x) - f(y))^2}{\sum_{uv \in E(G)} w_P(uv)(f(u) - f(v))^2} \]
\[\geq \frac{n}{w}. \]

The proof is complete. \(\square \)

3 Main Result

Now, we prove the main result of this paper.

Theorem 4. Let \(G \) be a graph of order \(n \geq 2 \). At least one of \(G \) or \(\overline{G} \) has a routing of weighted congestion at most \(5n/2 \).

Proof. The proof is by induction on \(n \). If \(G \) has diameter at most 2, we select for each pair \(\{x, y\} \) a path of length 1 or 2 joining \(x \) and \(y \). For any edge \(e = xy \in E(G) \), the
paths through e are the edge xy, some paths from x to $V(G) \setminus (N_G(x) \cup \{x\})$ and some paths from y to $N_G(x) \setminus \{y\}$. Thus the weighted congestion of e is at most $1 + 2(n - 1 - |N_G(x)|) + 2(|N_G(x)| - 1) = 2n - 3$. Thus, this routing has weighted congestion at most $2n - 3$. Hence, we may assume from now on that neither G nor \overline{G} has diameter less than 3. This implies that both, G and \overline{G} have diameter exactly 3 and that $n \geq 4$.

Let u, v be vertices whose distance in \overline{G} is 3, and let u', v' have distance 3 in G. Then $uv \in E(G), u'v' \in E(\overline{G})$ and $N_G(u) \cup N_G(v) = N_{\overline{G}}(u') \cup N_{\overline{G}}(v') = V(G)$. This implies in particular that in G, every vertex is at distance at most 2 from u. Thus $u \notin \{u', v'\}$. By symmetry, we conclude that $\{u, v\} \cap \{u', v'\} = \emptyset$. Let

$X := N_G(u) \setminus (N_G(v) \cup \{v\})$, $Y := N_G(v) \setminus (N_G(u) \cup \{u\})$, $Z := N_G(u) \cap N_G(v)$,

$X' := N_{\overline{G}}(u') \setminus (N_{\overline{G}}(v') \cup \{v'\})$, $Y' := N_{\overline{G}}(v') \setminus (N_{\overline{G}}(u') \cup \{u'\})$, $Z' := N_{\overline{G}}(u') \cap N_{\overline{G}}(v')$.

Without loss of generality assume that $|X| \leq |Y|$ and $|X'| \leq |Y'|$.

Since u' and v' are at distance 3 in G, we have

$$|\{u', v'\} \cap X| = |\{u', v'\} \cap Y| = 1. \tag{2}$$

We may thus assume that $u' \in X$ and $v' \in Y$. Similarly, we may assume that $u \in X'$ and $v \in Y'$.

Let $H = G - \{v, v'\}$. By induction, at least one of H or \overline{H} has a routing of weighted congestion at most $5(n - 2)/2$.

Let us first assume that H has such a routing \mathcal{P}_H. Let \mathcal{A} be the set of following paths taken for every $z \in V(H)$:

$$P_{vz} = \begin{cases} vz & \text{if } z \in Y \cup Z \cup \{u\}, \\ vuz & \text{if } z \in X. \end{cases}$$

We have

$$w_{\mathcal{A}}(e) = \begin{cases} 1 & \text{if } e = vz \text{ and } z \in Y \cup Z, \\ 2|X| + 1 & \text{if } e = vu, \\ 2 & \text{if } e = uz \text{ and } z \in X, \\ 0 & \text{otherwise}. \end{cases}$$

Let \mathcal{B} be the following set of paths taken for each $z \in V(H) \cup \{v\}$:

$$P_{v'z} = \begin{cases} v'z & \text{if } z = v, \\ v'vz & \text{if } z \in Y \cup Z \cup \{u\}, \\ v'vuz & \text{if } z \in X. \end{cases}$$
We have

\[w_B(e) = \begin{cases}
2n - 3 + |X| & \text{if } e = v'v, \\
2 & \text{if } e = vz \text{ and } z \in (Y \cup Z) \setminus \{v'\}, \\
3|X| + 2 & \text{if } e = vu, \\
3 & \text{if } e = uz \text{ and } z \in X, \\
0 & \text{otherwise.}
\end{cases} \]

The set of paths \(\mathcal{P} = \mathcal{P}_H \cup \mathcal{A} \cup \mathcal{B} \) is a routing in \(G \) with weighted congestion at most \(5n/2 \) since \(|X| \leq \frac{n-2}{2} \) and \(w(\mathcal{P}_H) \leq 5(n-2)/2 \). Note that all we needed for this conclusion was that we had a routing in \(H \) and that \(v' \in Y \) (since we used the fact that \(|X| \leq |Y| \) to conclude that \(|X| \leq (n-2)/2 \)).

Suppose now that the requested routing exists in \(\overline{\Pi} \). Since \(v \in Y' \), the same proof as above shows that we can obtain a routing in \(\overline{G} \) with weighted congestion at most \(5n/2 \). This completes the proof.

Proof of Theorem 2 By Theorems 3 and 4, every graph \(G \) of order \(n \geq 2 \) satisfies:

\[\max \{ \lambda_2(G), \lambda_2(\overline{G}) \} \geq \frac{n}{5n/2} = \frac{2}{5} \]

which is what we were to prove.

At the end, we pose the following question:

Question. What is the supremum of all real numbers \(c \) such that for any graph \(G \) of order at least 2,

\[\max \{ \lambda_2(G), \lambda_2(\overline{G}) \} \geq c. \]

The path \(P_4 \) (which is self-complementary) has \(\lambda_2(P_4) = 2 - \sqrt{2} < 0.5858 \). This shows that the supremum will be smaller than 0.5858.

References

[1] Y.-H. Bao, Y.-Y. Tan, and Y.-Z. Fan, The Laplacian spread of unicyclic graphs, *Appl. Math. Lett.* **22** (2009), 1011–1015.

[2] X. Chen and K.C. Das, Some results on the Laplacian spread of a graph, *Linear Algebra Appl.* **505** (2016), 245–260.
[3] Y. Chen and L. Wang, The Laplacian spread of tricyclic graphs, *Electron. J. Combin.* **16** (2009), Research Paper 80, 18 pp.

[4] Y.Z. Fan, S.D. Li, and Y.Y. Tan, The Laplacian spread of bicyclic graphs, *J. Math. Res. Exposition* **30** (2010), 17–28.

[5] Y.-Z. Fan, J. Xu, Y. Wang, and D. Liang, The Laplacian spread of a tree, *Discrete Math. Theor. Comput. Sci.* **10** (2008), 79–86.

[6] P. Li, J.S. Shi, and R.L. Li, Laplacian spread of bicyclic graphs, (Chinese) *J. East China Norm. Univ. Natur. Sci. Ed.* (2010), 6–9.

[7] Y. Liu, The Laplacian spread of cactuses, *Discrete Math. Theor. Comput. Sci.* **12** (2010), 35–40.

[8] Y. Liu and L. Wang, The Laplacian spread of bicyclic graphs, *Advances in Mathematics (China)* **40** (2011), 759–764.

[9] Y. Xu and J. Meng, The Laplacian spread of quasi-tree graphs, *Linear Algebra Appl.* **435** (2011), 60–66.

[10] Z. You and B. Liu, The Laplacian spread of graphs, *Czechoslovak Math. J.* **62** (137) (2012), 155–168.

[11] M. Zhai, J. Shu, and Y. Hong, On the Laplacian spread of graphs, *Appl. Math. Lett.* **24** (2011), 2097–2101.