Leaf area estimation for *Psychotria carthagenensis* and *Psychotria hoffmannseggiana* as a function of linear leaf dimensions

João Everthon da Silva Ribeiro¹*, Ester dos Santos Coêlho², Francisco Romário Andrade Figueiredo¹, Walter Esfrain Pereira¹ and Manoel Bandeira de Albuquerque¹

¹Programa de Pós-Graduação em Agronomia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Rod. PB-079, Km 12, 58397-000, Areia, Paraíba, Brazil. ²Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Paraíba, Brazil. *Author for correspondence. E-mail: j.everthon@hotmail.com

ABSTRACT. Determining leaf area is important for studies involving plant growth and development. The aim of the present study was to obtain models for estimating leaf area of *Psychotria carthagenensis* and *Psychotria hoffmannseggiana* using linear measurements of leaf blades (length and width). Two hundred leaf blades of each species were collected in Parque Estadual Mata do Pau-Ferro in the municipality of Areia, Paraíba, Northeast Brazil. The equations evaluated for producing potential models included the following: linear, quadratic, potential and exponential. The criteria used to determine the best model(s) were as follows: high coefficient of determination (R^2), low root-mean-square error (RMSE), low Akaike information criterion (AIC), high Willmott concordance index (d) and a BIAS ratio close to zero. All evaluated models satisfactorily estimated leaf area for the two species, but the equation $\hat{y} = 0.6373 \times LW^{0.9804}$ was the most appropriate for *P. carthagenensis*, while $\hat{y} = 0.6235 \times LW^{0.9712}$ was the most appropriate for *P. hoffmannseggiana*.

Keywords: biometry; non-destructive method; modeling; Rubiaceae.

Introduction

Psychotria carthagenensis Jacq. is a shrub measuring 2–3 m in height. It is widely distributed in the Neotropical Region, occurring from Costa Rica to Argentina. In Brazil the species occurs from the state of Pará in the north to the state of Rio Grande do Sul in the south, and is found in a variety of habitats at elevations ranging from sea level to 600 m (Vitarelli & Santos, 2009; Taylor & Zappi, 2015). The species is highly significant for the conservation of available ecological resources because it serves as a source of food for fauna throughout the year, which disperse seeds (Blendinger et al., 2015).

Psychotria hoffmannseggiana [(Willd. ex Schult.) Müll.Arg.] is a subshrub measuring 30–60 cm in height. It is distributed throughout Central America and from Cuba to Paraguay (Delprete, 2010); it occurs in all regions of Brazil (Taylor & Zappi, 2015). The species is found in the Amazon, Cerrado, and Atlantic Forest biomes in habitats at elevations from 100 to 1500 m (Margalho, Rocha, & Secco, 2009). In the Northeast Region of the country it occurs in Atlantic Forest physiognomies including moist forests and restingas. The species has great importance in the region as a food source for fauna, mainly birds, which disperse seeds, and for the conservation and management of disturbed sites, such as moist forests (Schupp, 1993).

Due to the importance of these species, ecophysiological studies related to growth, development, reproduction, and propagation are needed. Leaf area is the most important parameter for determining plant growth (Benincasa, 1988), since leaves perform several functions for plants, including the interception and absorption of light for photosynthesis, and gas exchange and transpiration (Taiz, Zeiger, Møller, & Murphy, 2017). Taiz et al. (2017) described leaf area as one of the most difficult parameters to measure because it requires expensive equipment and/or destructive techniques.

Several methods exist for measuring leaf area, including those that are destructive, non-destructive, direct, or indirect (Marshall, 1968). Direct methods may or may not be destructive, while all indirect methods are non-...
destructive. Destructive methods are generally considered simple and accurate, but by their nature they destroy leaves in the process and require more time and labor (Schmildt, Hueso, & Cuevas, 2014).

The use of non-destructive methods has been gaining importance for studies of plant populations because they allow quick and accurate successive leaf area measurements of the same individual (Bosco, Bergamaschi, Cardoso, Paula, & Casamali, 2012). The development of regression models allows leaf area to be estimated from linear dimensions of the foliar limb (length and width), and thus represents a simple non-destructive method for obtaining this parameter in the most diverse field conditions (Pompelli et al., 2012). In this context, regression models (non-destructive method) used to estimate leaf area are developed based on direct measurements of true leaf area using digitalized images of the collected leaves (destructive method). Several researchers have used such models to estimate leaf area for forest species \[Merremia\ aegyptia\] (L.) Urb. (Assis, Linhares, Souza, Pereira, & Almeida, 2015) and \[Juglans regia\] L. (Keramatlou, Sharifani, Sabouri, Alizadeh, & Kamkar, 2015) and agricultural species \[Litchi chinensis\] Sonn. (Oliveira, Costa, Schmildt, & Vitória, 2017) and \[Annona cherimola\] Miller (Schmildt, Hueso, Pinillos, Stellfeldt, & Cuevas, 2017).

The aim of the present study was to obtain models that satisfactorily estimate leaf area of \[Psychotria carthagenensis\] and \[Psychotria hoffmannseggiana\] using linear dimensions of the foliar limb.

Material and methods

The study was conducted in Parque Estadual Mata do Pau-Ferro (6°58′12″ S and 35°42′15″ W) located in the municipality of Areia, in the microregion of Brejo Paraibano and mesoregion of Agreste Paraibano (Paraíba, Brazil) (Figure 1). The climate of the area is classified as Aw according to Peel, Finlayson, and McMahon (2007), which is tropical wet and dry with autumn-winter rains, and an average annual temperature of 22°C (Ribeiro, Barbosa, Lopes, Pereira, & Albuquerque, 2018a). Elevations of the area range between 400 and 600 m.

![Figure 1. Geographic location of Parque Estadual Mata do Pau-Ferro in the municipality of Areia, state of Paraíba, Brazil.](image)

We collected 400 healthy leaves (i.e., not damaged by external factors, such as diseases and pests, sensu Schmildt et al., 2014) of different shapes and sizes: 200 leaves of \[P. carthagenensis\] and 200 leaves of \[P. hoffmannseggiana\]. The leaves were packed in plastic bags and sent to the Laboratory of Plant Ecology (Universidade Federal da Paraíba, Campus II) to measure their maximum length (L) and maximum width (W) (Figure 2), using a graduated ruler. The leaves were then scanned using a flatbed scanner with an established scale to determine their 'true' leaf area (LA) using ImageJ® software (U.S. National Institutes of...
Health, USA) with increased contrast to better delimit the area to be measured (Ribeiro, Barbosa, & Albuquerque, 2018b).

The following equations were evaluated for as models for estimating leaf area as a function of the linear dimensions (length and width) of a leaf: linear ($\hat{y} = a + bx$), quadratic ($\hat{y} = a + bx + cx^2$), potential ($\hat{y} = ax^b$), and exponential ($\hat{y} = ab^x$). The dependent variable (\hat{y}) estimates leaf area as a function of the independent variable(s) (x), which were length (L), width (W), and/or their product (length x width).

The criteria used to determine the model(s) that best estimates leaf area of *P. carthagenensis* and *P. hoffmannseggiana* as a function of the linear dimensions of the leaf limb (L, W and / or L x W) were: coefficient of determination (R^2), root-mean-square error (RMSE), Akaike information criterion (AIC), Willmott concordance index (d) and the BIAS ratio. The best models were considered those with highest R^2 and d, lower values of RMSE and AIC, and a BIAS ratio close to zero. All statistical analyses were performed using R® v.3.4.3 (R Core Team, 2017).

Results and discussion

The leaf blades of *P. carthagenensis* had a mean length (L) of 14.52 cm (range 5.81 – 28.16 cm) a mean width (W) of 5.24 cm (1.79 – 10.32 cm), and a mean leaf area (LA) of 48.25 cm² (6.54 – 153.26 cm²) (Table 1). The leaf blades of *P. hoffmannseggiana* had a mean length of 5.93 cm (1.03 – 8.74 cm), a mean width of 2.05 cm (0.42 – 3.32 cm), and a mean leaf area of 7.43 cm² (0.27 – 15.54 cm²) (Table 1).

Extensive variation in the dimensions of the leaf blades of *P. carthagenensis* and *P. hoffmannseggiana*, resulted in lower values for the coefficient of variation for length and width, and greater variability in their product (LxW) and leaf area (Table 1). This abundant variability of the data is of fundamental importance for the construction of statistical models that estimate leaf area because it will favor models that can be used for small, medium, and large leaves (Cargnelutti Filho, Toebe, Burin, Fick, & Casarotto, 2012).

Previous studies have also found greater variability for the product between the length and width (LxW) of leaves than in the values of length and width themselves (Cargnelutti Filho, Toebe, Alves, Burin, & Kleinpaun, 2015a; Cargnelutti Filho, Toebe, Alves, & Burin, 2015b; Schmildt, Negrís, Cesana Junior, Schmildt, & Alexandre, 2016a).

Table 2 shows the results of the evaluation of the regression models relating length (L), width (W), and their product (LxW) to leaf area (LA). All models satisfactory estimated leaf area for *P. carthagenensis* and *P.
hoffmannseggiana, with coefficients of determination (R²) being above 0.8874, which indicates that 88.74% of the observed variation in leaf area of the species is explained by the proposed model using linear dimensions of the leaf blade.

Table 1. Minimum, maximum, and mean values and coefficient of variation (CV) of length (L), width (W), length x width (LxW) and leaf area (LA) for 200 leaf blades of Psychotria carthagenensis and for 200 leaf blades of Psychotria hoffmannseggiana.

Species	Minimum	Maximum	Mean	C.V. (%)
Psychotria carthagenensis	L (cm)	W (cm)	LxW (cm²)	LA (cm²)
	5.81	13.08	10.90	5.40
Psychotria hoffmannseggiana	L (cm)	W (cm)	LxW (cm²)	LA (cm²)
	1.03	0.42	0.43	0.27

Table 2. Models used to estimate leaf area (cm²) of Psychotria carthagenensis and Psychotria hoffmannseggiana using linear measurements of length (L), width (W), and their product (LxW). Criteria for selecting the best model are also provided: coefficient of determination (R²), Akaike information criterion (AIC), root-mean-square error (RMSE), Willmott concordance index (d), and BIAS ratio.

Species	x¹ Equation	R²	AIC	RMSE	d	BIAS	Model
Psychotria carthagenensis	Linear	0.9138	1415.83	8.2124	0.9769	0.0487	\(y = -43.4465 + 6.3122 \times L \)
	W	0.9497	1308.03	6.2723	0.9869	0.0488	\(y = -37.1041 + 16.2755 \times W \)
	LxW	0.9949	848.39	1.9879	0.9887	-0.0058	\(y = 0.9281 + 0.5715 \times LW \)
	Quadratic	0.9459	1324.52	6.0506	0.9859	0.0124	\(y = -0.2551 + 0.00006 \times L + 0.2067 \times L^2 \)
	W	0.9713	1197.85	4.7384	0.9926	0.0374	\(y = -6.1207 + 4.0952 \times W + 1.0853 \times W^2 \)
	LxW	0.9850	847.09	1.9762	0.9884	-0.0080	\(y = 0.1769 + 0.5641 \times LW - 0.0001 \times LW^2 \)
	L	0.9459	1322.48	6.5031	0.9878	0.0124	\(y = 0.2102 \times L^{1.9850} \)
	W	0.9712	1196.28	4.7435	0.9926	0.0374	\(y = 2.1148 \times W^{1.6913} \)
	LxW	0.9950	846.05	1.9715	0.9875	-0.0030	\(y = 0.6373 \times LW^{0.9804} \)
	Quadratic	0.9317	480.88	0.7892	0.9809	0.0058	\(y = 0.4724 - 0.1197 \times L + 0.2064 \times L^2 \)
	W	0.9378	462.30	0.7534	0.9831	0.0355	\(y = -0.7465 + 1.8467 \times W + 0.9730 \times W^2 \)
	LxW	0.9925	840.35	0.7260	0.9812	-0.0057	\(y = 0.0823 + 0.5815 \times LW - 0.0006 \times LW^2 \)
	L	0.9314	480.30	0.7920	0.9812	0.0135	\(y = 0.2102 \times L^{1.9721} \)
	W	0.9375	460.35	0.7540	0.9835	-0.0059	\(y = 0.1148 \times W^{0.9695} \)
	LxW	0.9925	356.50	0.6212	0.9812	0.0010	\(y = 0.6235 \times LW^{0.9712} \)
	Quadratic	0.9276	492.70	0.8170	0.9801	-0.0287	\(y = 0.1074 \times L^{1.3722} \)
	W	0.9128	553.44	0.9045	0.9748	-0.0519	\(y = 1.5026 \times W^{2.1091} \)
	LxW	0.9128	516.62	0.9045	0.9748	-0.0519	\(y = 3.0808 \times W^{1.066} \)

Dispersion diagrams between length (L) (cm), width (W) (cm), their product (LxW) (cm²) and leaf area (LA) (cm²) for P. carthagenensis and P. hoffmannseggiana indicate patterns that fit linear and non-linear models (Figure 3A and B), thus corroborating the results of Cargnelutti Filho et al. (2012) (Raphanus sativus L.) and Cargnelutti Filho et al. (2015a; 2015b) (Brassica napus L. and Cajanus cajan L.).

The models that used the product of length and width were better at estimating leaf area than those that used the two measurements separately (Hinnah et al., 2014). Similar results have been reported for other forest species, such as Amburana Cearenses A. C. Smith, Caesalpinia ferrea Mart. and Caesalpinia pyramidalis Tul. (Silva, Queiroz, & Neto, 2013), Combretum leprosum Mart. (Candido, Coelho, Maia, Cunha, & Silva, 2013), Acrocomia aculeata Jacq. (Mota, Leite, & Cano, 2014), Merremia aegyptia (L.) Urban (Assis, Linhares, Souza, Pereira, &
Almeida, 2015), and for cultivated species, such as *Ananas comosus* L. (Merrill) (Francisco, Diotto, Folegatti, Silva, & Piedade, 2014), *Vigna unguiculata* (L.) (Oliveira et al., 2015), *Mangifera indica* L. (Silva, Cabanex, Mendonça, Pereira, & Amaral, 2015), *Prunus persica* (L.) (Sachet, Penso, Pertille, Guerrezii, & Citadin, 2015), *Smallanthus sonchifolius* (Poepp.) H. Rob. (Erlacher, Oliveira, Fialho, Silva, & Carvalho, 2016), *Macadamia integrifolia* Maiden & Betch (Schmildt et al., 2016b) and *Litchi chinensis* Sonn. (Oliveira et al., 2017).

![Figure 3. Frequency histogram (diagonally) and scatter plots between length (L), width (W), the product between length and width (LxW) and the true leaf area (LA) of 200 leaf blades of (A) *Psychotria carthagenensis* and 200 leaf blades of (B) *Psychotria hoffmannseggiana.*](image-url)
For both studied species, a potential model that used the product of length and width (LxW) had the highest R^2 (0.9950 and 0.9925) and d (0.99875 and 0.99812), lower values for RMSE (1.9715 and 0.2612) and AIC (846.05 and 36.58), and a BIAS ratio closer to zero (-0.00305 and 0.00104) (Table 2). Thus, based on the criteria used, the model $\hat{y} = 0.6373 \times LW^{0.9804}$ is the best for estimating leaf area of *P. carthagenensis*, while the model $\hat{y} = 0.6235 \times LW^{0.9712}$ is best for estimating the leaf area of *P. hoffmannseggiana*. These models presented the best adjustments, coinciding with studies in other species (Schmildt et al., 2016a; Tartaglia et al., 2016; Leite, Lucena, Sá Júnior, & Cruz, 2017; Schmildt et al., 2017).

The data revealed little dispersion in relation to the adjustment curve, indicating that the models mentioned above satisfactorily estimate the true leaf area of *P. carthagenensis* and *P. hoffmannseggiana* (Figure 4A and B). The models for estimating the leaf area of *P. carthagenensis* ($\hat{y} = 0.6373 \times LW^{0.9804}$) and *P. hoffmannseggiana* ($\hat{y} = 0.6235 \times LW^{0.9712}$) were satisfactorily close at estimating true leaf area, with coefficients of determination of 0.9950 and 0.9925 (Figure 5A and B). The models identified by the present study may contribute to ecological studies that involve the growth, development, and propagation of these two species, since leaf area is a fundamental parameter for research in these areas.

Figure 4. Variation in true leaf area of (A) *Psychotria carthagenensis* and (B) *Psychotria hoffmannseggiana*, as a function of the product of leaf blade length and width (LxW) using the models that were found to best estimate leaf area.

Figure 5. Variation of true leaf area and leaf area estimated by the models proposed for (A) *P. carthagenensis* $\hat{y} = 0.6373 \times LW^{0.9804}$ and (B) *P. hoffmannseggiana* $\hat{y} = 0.6235 \times LW^{0.9712}$.

Conclusion

Leaf area of *P. carthagenensis* and *P. hoffmannseggiana* can be satisfactorily estimated by a non-destructive method that uses linear measurements of leaf blades.
The models found, which incorporate the product of length and width (LxW) sufficiently estimated leaf area for *P. carthagenensis* and *P. hoffmannseggiana*.

The most suitable model for estimating leaf area of *P. carthagenensis* was \(^\hat{y} = 0.6373 \times L^0.9804\), while that for *P. hoffmannseggiana* was \(^\hat{y} = 0.6235 \times L^0.9712\).

Acknowledgements

This study was financed in party by the *Coordenação de Aperfeiçoamento de Pessoal de Nível Superior* (CAPES), Brazil, Finance Code 001.

References

Assis, J. P., Linhares, P. C. F., Souza, R. P., Pereira, M. F. S., & Almeida, A. M. B. (2015). Estimação da área foliar da ‘jitirana’ (*Merremia aegyptia* (L.) Urban), através de modelos de regressão para Mossoró - RN. *Revista Verde de Agroecologia e Desenvolvimento Sustentável*, 10(4), 75-81. doi: 10.18378/rvads.v10i4.5872

Benincasa, M. M. P. (1988). *Análise de crescimento de plantas: noções básicas*. Jaboticabal, SP: FUNEP.

Blendinger, P. G., Giannini, N. P., Zampini, I. C., Ordonez, R., Torres, S., Sayago, J., ... Isla, M. I. (2015). Nutrients in fruits as determinants of resource tracking by birds. *Ibis*, 157(3), 480-495. doi: 10.1111/ibi.12274

Bosco, L. C., Bergamaschi, H., Cardoso, L. S., Paula, V. A., & Casamali, B. (2012). Seleção de modelos de regressão para estimar a área foliar de macieiras ‘Roayal Gala’ e ‘Fuji Suprema’ sob tela antigranizo e em céu aberto. *Revista Brasileira de Fruticultura*, 34(2), 504-514. doi: 10.1590/S0100-29452012000200024

Candido, W. S., Coelho, M. F. B., Maia, S. S. S., Cunha, C. S. M., & Silva, R. C. P. (2013). Modelo para estimar a área foliar de *Combretum leprosum* Mart. *Acta Agronômica*, 62(1), 37-41. doi: 10.15446/acag

Cargnelutti Filho, A., Toebe, M., Burin, C., Fick, A. L., & Casarotto, G. (2012). Estimativa da área foliar de nabo forrageiro em função de dimensões foliares. *Bragantia*, 71(1), 47-51. doi: 10.1590/S0006-87052012000100008

Cargnelutti Filho, A., Toebe, M., Alves, B. M., Burin, C., & Kleinpaul, J. A. (2015a). Estimação da área foliar de canola por dimensões foliares. *Bragantia*, 74(2), 159-148. doi: 10.1590/1678-4499.00388

Cargnelutti Filho, A., Toebe, M., Alves, B. M., & Burin, C. (2015b). Estimativa da área foliar de feijão guandu por dimensões foliares. *Ciência Rural*, 45(1), 1-8. doi: 10.1590/0103-8478cr20140551

Delprete, P. G. (2010). *Rubiacées – Parte 2: Gêneros I-R*. In J. A. Rizzo (Ed.), *Flora dos estados de Goiás e Tocantins* (p. 581-1097). Goiânia, GO: Universidade Federal de Goiás.

Erlacher, W. A., Oliveira, F. L., Fialho, G. S., Silva, D. M. N., & Carvalho, A. H. O. (2016). Models for estimating yacon leaf area. *Horticultura Brasileira*, 34(3), 422-427. doi: 10.1590/S0102-05362016003019

Francisco, J. P., Diotto, A. V., Folegatti, M. V., Silva, L. D. B., & Piedade, S. M. S. (2014). Estimativa da área foliar de abacaxizeiro cv. Vitória por meio de relações alométricas. *Revista Brasileira de Fruticultura*, 36(2), 285-293. doi: 10.1590/0100-29452014113

Hinnah, F. D., Heldwein, A. B., Maldaner, I. C., Loose, L. H., Lucas, D. D. P., & Bortoluzzi, M. P. (2014). Estimation of eggplant leaf area from leaf dimensions. *Bragantia*, 73(5), 213-218. doi: 10.1590/1678-4499.00083

Keramatlou, I., Sharifani, M., Sabouri, H., Alizadeh, M., & Kamkar, B. (2015). A simple linear model for leaf area estimation in Persian walnut (*Juglans regia* L.). *Scientia Horticulturae*, 184(1), 36-39. doi: 10.1016/j.scienta.2014.12.017

Leite, M. L. M. V., Lucena, L. R. R., Sá Júnior, E. H., & Cruz, M. G. (2017). Estimativa da área foliar em *Urochloa mosambicensis* por dimensões lineares. *Revista Agropecuária Técnica*, 38(1), 9-16. doi: 10.25066/agrotec.v38i1.32041

Margalho, L. F., Rocha, A. E. S., & Secco, R. S. (2009). Rubiacées Juss. da restinge da APA de Algodoeiro/Maiandeu, Maracanã, Pará, Brasil. *Boletim do Museu Paraense Emílio Goeldi*, 4(3), 503-339.

Marshall, J. K. (1968). Methods of leaf area measurement of large and small leaf samples. *Photosynthetic*, 2(1), 41-47.

Mota, C. S., Leite, H. G., & Cano, M. A. O. (2014). Equações para estimar área foliar de folíolos de *Acrocomia aculeata*. *Pesquisa Florestal Brasileira*, 34(79), 217-224. doi: 10.4336/2014.pfb.34.79.684
Oliveira, P. S., Silva, W., Costa, A. A. M., Schmildt, E. R., & Vitória, E. L. (2017). Leaf area estimation in litchi by means of allometric relationships. *Revista Brasileira de Fruticultura*, 39(Spe), e-403. doi: 10.1590/0100-29452017405

Oliveira, R. L. L., Moreira, A. R., Costa, A. V. A., Souza, L. C., Lima, L. G. S., & Silva, R. T. L. (2015). Modelos de determinação não destrutiva de área foliar de feijão caupi *Vigna unguiculata* (L.). *Global Science and Technology*, 8(2), 17–27. doi: 10.14688/1984-3801/gst.v8n2p17-27

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. *Hydrology and Earth System Sciences*, 11(1), 1633-1644. doi: 10.5194/hess-11-1635-2007

Pompelli, M. F., Antunes, W. C., Ferreira, D. T. R. G., Cavalcante, P. G. S., Wanderley-Filho, H. C. L., & Endres, L. (2012). Allometric models for non-destructive leaf area estimation of *Jatropha curcas*. *Biomass and Bioenergy*, 36(1), 77-85. doi: 10.1016/j.biombioe.2011.10.010

R Core Team. (2017). *R: a language and environment for statistical computing*. Viena, AU: R Foundation for Statistical Computing.

Ribeiro, J. E. S., Barbosa, A. J. S., Lopes, S. F., Pereira, W. E., & Albuquerque, M. B. (2018a). Seasonal variation in gas exchange by plants of *Erythroxylum simonis* Plowman. *Acta Botanica Brasilica*, 32(2), 287-296. doi: 10.1590/0102-35062017ab0240

Ribeiro, J. E. S., Barbosa, A. J. S., & Albuquerque, M. B. (2018b). Leaf area estimate of *Erythroxylum simonis* Plowman by linear dimensions. *Floresta e Ambiente*, 25(2), e20170108. doi: 10.1590/2179-8087.010817

Sachet, M. R., Penso, G. A., Pertille, R. H., Guerrezi, M. T., & Citadin, I. (2015). Estimativa da área foliar de pessegueiro por método não-destrutivo. *Ciência Rural*, 45(12), 2161-2163. doi: 10.1590/0103-8478cr20140185

Schmildt, E. R., Hueso, J. I., & Cuevas, J. (2014). Allometric models for determining leaf area of vine ‘Sugraone’. *Ciência e Técnica Vitivinícola*, 29(10), 61-81.

Schmildt, E. R., Negris, F. S., Cesana Junior, E., Schmildt, O., & Alexandre, R. S. (2016a). Equações para estimar área foliar de maracujá-amarelo. *Nucleus*, 15(1), 97-104. doi: 10.3758/1982.2278.1461

Schmildt, E. R., Oliari, L. S., Schmildt, O., Alexandre, R. S., Brumatti, J. A., & Viana, D. G. (2016b). Determinação da área foliar de macadâmia a partir de dimensões lineares do limbo foliar. *Revista AgroAmbiente*, 10(3), 209-216. doi: 10.18227/1982-8470ragro.v10i3.3332

Schmildt, E. R., Hueso, J. J., Pinillos, V., Stellfeldt, A., & Cuevas, J. (2017). Allometric models for determining leaf area of ‘Fino de Jete’ cherimoya grown in greenhouse and in the open field. *Fruits*, 72(1), 24-30. doi: 10.17660/th2017/72.1.2

Schupp, E. W. (1993). Quantity, quality and the effectiveness of seed dispersal by animals. *Vegetatio*, 107, 15-29. doi: 10.1007/BF00052209

Silva, G. H., Queiroz, J. E., & Neto, A. G. S. (2013). Avaliação da área foliar de três espécies florestais ocorrentes no semiárido paraibano (*Amburana cearenses, Caesalpinia ferrea, Caesalpinia pyramidalis*). *Revista de Biologia e Farmácia*, 9(5), 1-11.

Silva, S. F., Cabanez, P. A., Mendonça, R. F., Pereira, L. R., & Amaral, J. A. T. (2015). Modelos alométricos para estimativa da área foliar de mangueira pelo método não destrutivo. *Revista AgroAmbiente*, 9(1), 86-90. doi: 10.18227/1982-8470ragro.v9i1.2134

Taiz, L., Zeiger, E., Möller, I. M., & Murphy, A. (2017). *Fisiologia e desenvolvimento vegetal*. Porto Alegre, RS: Artmed.

Tartaglia, F. L., Righi, E. Z., Rocha, L., Loose, L. H., Maldaner, I. C., & Heldwein, A. B. (2016). Non-destructive models for leaf area determination in canola. *Revista Brasileira de Engenharia Agrícola e Ambiental*, 20(6), 551-556. doi: 10.1590/1807-1929/agriambi.v20n6p551-556

Taylor, C. M., & Zappi, D. G. (2015). *Psychotria in lista de espécies da flora do brasil*. Jardim Botânico do Rio de Janeiro. Retrieved from: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB14167.

Vitarelli, N. C., & Santos, M. (2009). Anatomia de estípulas e coléteres de *Psychotria carthagenensis* Jacq. (Rubiaceae). *Acta Botanica Brasilica*, 23(4), 923-928. doi: 10.1590/S0102-3306200900400002.