Reliability and comparability of human brain structural covariance networks

Jona Carmon, Jil Heege, Joe H. Nenec, Thomas W. Owen, Gordon Pipa, Marcus Kaiser, Peter N. Taylor, Yujiang Wang

ABSTRACT

Structural covariance analysis is a widely used structural MRI analysis method which characterises the co-relations of morphology between brain regions over a group of subjects. To our knowledge, little has been investigated in terms of the comparability of results between different data sets of healthy human subjects, as well as the reliability of results over the same subjects in different scan sessions, image resolutions, or FreeSurfer versions.

In terms of comparability, our results show substantial differences in the structural covariance matrix between data sets of age- and sex-matched healthy human adults. These differences persist after univariate site correction, they are exacerbated by low sample sizes, and they are most pronounced when using average cortical thickness as a morphological measure. Downstream graph theoretic analyses further show statistically significant differences.

In terms of reliability, substantial differences were also found when comparing repeated scan sessions of the same subjects, image resolutions, and even FreeSurfer versions of the same image. We could further estimate the relative measurement error and showed that it is largest when using cortical thickness as a morphological measure. Using simulated data, we argue that cortical thickness is least reliable because of larger relative measurement errors.

Practically, we make the following recommendations: (1) combining subjects across sites into one group should be avoided, particularly if sites differ in image resolutions, subject demographics, or pre-processing steps; (2) surface area and volume should be preferred as morphological measures over cortical thickness; (3) a large number of subjects (n ≥ 30 for the Desikan-Killiany parcellation) should be used to estimate structural covariance; (4) measurement error should be assessed where repeated measurements are available; (5) if combining sites is critical, univariate (per ROI) site-correction is insufficient, but error covariance (between ROIs) should be explicitly measured and modelled.

1. Introduction

Different brain regions have distinct morphologies, and these morphological differences co-vary between brain regions within the human population (Mechelli et al., 2005). This covariance has been related to functional connectivity, genetics, and alteration in disease (Alexander-Bloch et al., 2013), although the biological interpretation of this covariance remains under discussion. In the field of structural covariance analysis, the covariance between brain regions is analysed.

Typically, structural covariance is computed from structural (T1 weighted) Magnetic Resonance Imaging (MRI) data, from which cortical morphology measures (e.g. cortical thickness, surface area, and volume) are inferred using software tools such as FreeSurfer (Dale et al., 1999). The cortical morphology measures are computed for every brain region of a chosen brain atlas (Fig. 1(A)) and every subject of the selected data set (Fig. 1(B)). These estimates can be captured in a matrix of subjects as rows and brain areas as columns (Fig. 1(C)). From this matrix the correlation between every pair of brain region is computed, (Fig. 1(D)), and stored as a structural covariance matrix which captures the correlations between all pairs of brain regions (Fig. 1(E)).

Neuroimaging research increasingly analyses structural covariance. It is, for example, applied to compare brain networks between healthy subjects and different clinical conditions including Schizophrenia (Moberget et al., 2018; Bassett et al., 2008; Mitelman et al., 2005; Bhojraj et al., 2010; Spreng et al., 2019), Alzheimer’s disease (Hafkemeijer et al., 2016; Li et al., 2019; Yao et al., 2019; Desikan et al., 2010), Autism (Bethlehem et al., 2017; McAlonan et al., 2004) or Epilepsy (Bernhardt et al., 2011). For such clinical studies, the wide availability and high

* Corresponding author. Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK.
E-mail address: yujiang.wang@ncl.ac.uk (Y. Wang).

https://doi.org/10.1016/j.neuroimage.2020.117104
Received 28 November 2019; Received in revised form 1 May 2020; Accepted 25 June 2020
Available online 2 July 2020
1053-8119/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
quality of T1 weighted MRI scans is advantageous compared to other modalities. Many studies using structural covariance analyses also combine data sets from multiple sites (Bethlehem et al., 2017; Moberget et al., 2018; Hafkemeijer et al., 2016; Li et al., 2019; Desikan et al., 2010). With the increasing availability of public data sets, more structural covariance analysis of pooled data sets are to be expected.

Many previous studies have examined the reliability of quantitative measures of cortical morphology (Dickerson et al., 2008; Iscan et al., 2015; Gronenschild et al., 2012; Han et al., 2006). In our study we refer to ‘reliability’ as the quantitative consistency of different measurements of the same subjects. Furthermore, we will use the term ‘comparability’ to describe how consistent measurements are between data sets of different subjects with comparable demographics (e.g. same age and sex). Dickerson et al. investigated the reliability of computationally inferred cortical measures for scan sessions, scanner systems and field strength (Dickerson et al., 2008). They conclude that the tested automated measures of cortical thickness are highly reliable within scanner systems and across manufactures and field strength (Dickerson et al., 2008). Iscan et al. investigated the comparability and reliability of FreeSurfer estimates within and between sites and found that the comparability of average cortical thickness is more sensitive to site differences than volume or surface area (Iscan et al., 2015). Gronenschild et al. investigated the reliability of FreeSurfer estimates between different FreeSurfer versions. They found that the FreeSurfer version can have a strong effect on the estimates of the cortical morphology measures. The differences they found were on average 1.3–64% for volume and 1.1–7.7% for average cortical thickness (Gronenschild et al., 2012). However, despite a number of studies on reliability and comparability of the raw cortical morphology measures, little has been investigated on the reliability and comparability of structural covariance. The comparability aspect is of especially high relevance for studies that combine multisite data for their analysis.

To investigate comparability in this study, we compared the structural covariance for data sets of healthy human subjects with comparable demographics. For our analysis of reliability, we compared the structural covariance of the same subjects between rescan sessions, and for the same scans, the reliability of different FreeSurfer versions. Additional investigations of reliability and comparability with a range of other datasets are presented in the supplementary materials. Finally, we investigated if, and why, different cortical morphology measures are differentially comparable and reliable for structural covariance analyses.

Fig. 1. Schematic illustration of structural covariance analysis. (A) Choice of brain atlas and computation of cortical measures. (B) Multiple subjects in one data set. (C) Construction of matrix with brain region and subjects. Typically at this point one corrects for the subjects age and sex. (D) Computation of correlation between brain regions. (E) The matrix of all correlations is termed the structural covariance.
2. Methods

2.1. Data selection and pre-processing

To determine the comparability and reliability of structural covariances we analysed two data sets in the main text and additional dataset in the supplementary materials. The two datasets used in the main results are: The Human Connectome Project (HCP), which can be found under https://db.humanconnectome.org/ (Van Essen et al., 2012), and the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data is available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/ (Shafto et al., 2014; Taylor et al., 2017). The MRI scanners of both data sets have 3T field strength. HCP uses a customized Siemens Skyra scanner with 0.7 mm isotropic voxel size located at Washington University, St. Louis, MO, USA. Cam-CAN uses a Siemens TIM Trio System with 1 mm isotropic voxel size located at the Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK.

We focus on three main comparisons of structural covariance in the main text: comparing sites, FreeSurfer versions, and scan/rescan effects. The supplementary materials provide additional comparisons in terms of other factors or datasets.

For the site comparison, we intentionally selected settings that differ slightly between the two sites to be compared: (different image resolution and FreeSurfer version) to simulate a realistic scenario that a multi-site study may encounter. To this end, we selected 100 unrelated subjects from the HCP data set and used the preprocessed FreeSurfer folders provided by HCP (using a modified version of FreeSurfer 5.3) (Glasser et al., 2013). The original image resolution for HCP is 0.7 mm isotropic. The structural MRI images of Cam-CAN were pre-processed with FreeSurfer versions 6.0 using the ‘recon-all’ script for segmentation, surface reconstruction and parcellation. The original image resolution for Cam-CAN is 1 mm isotropic. We retained 644 subjects that successfully completed recon-all without errors. We removed one subject from the HCP data as an outlier (subject ID: 414229). To reduce confounding effects of age and sex, the subjects were age-and-sex matched: we selected 3T from the HCP data set and used the preprocessed FreeSurfer folders provided by HCP (using a modified version of FreeSurfer 5.3) (Glasser et al., 2013). The original image resolution for HCP is 0.7 mm isotropic. The structural MRI images of Cam-CAN were pre-processed with FreeSurfer versions 6.0 using the ‘recon-all’ script for segmentation, surface reconstruction and parcellation. The original image resolution for Cam-CAN is 1 mm isotropic. We retained 644 subjects that successfully completed recon-all without errors. We removed one subject from the HCP data as an outlier (subject ID: 414229). To reduce confounding effects of age and sex, the subjects were age-and-sex matched: we selected 43 males and 43 females in the age range of 22–34 from both data sets (age 28.26 ± 3.53 in Cam-CAN and 28.7 ± 3.49 in HCP). In one part of our analysis (Fig. 4), we also investigated if reducing some of the image resolution and pre-processing differences would render sites more comparable in terms of their structural covariance. To this end, we also created a downsampled HCP version (to 1 mm isotropic using interpolation in FreeSurfer mri_convert), which we processed using FreeSurfer 5.3. We further also processed the Cam-CAN data using FreeSurfer 5.3. Finally, we provide additional site comparisons in Supplementary Materials S16 and S17.

For the analysis of reliability of structural covariances between different FreeSurfer versions, we used the above-mentioned Cam-CAN dataset pre-processed in FreeSurfer version 5.3 and 6.0. We selected the same 86 subjects as before.

To compare structural covariance between scan/rescan sessions, we used the HCP scan and rescan data set. The data set comprises 45 subjects who were scanned at two different scanning sessions typically no more than two years apart. Again, we used the preprocessed FreeSurfer folders provided by HCP. The Supplementary Materials S14 includes an additional comparison of scan sessions in another dataset with a shorter inter-scan interval, which also agrees and further supports our main findings. Table 1 provides an overview of all the subject numbers and demographics used in our main analysis.

To compute the structural covariance matrix, we used the Desikan Killiany parcellation (Desikan et al., 2006) in FreeSurfer throughout, if not otherwise stated. The Desikan Killiany parcellation comprises 34 brain regions in each hemisphere, and is commonly chosen in structural covariance analysis. In one subsequent analysis (Fig. 6), to provide a simplified illustration, we also correlated the left and right hemisphere across subjects to obtain a single correlation coefficient (instead of a correlation matrix). To this end, we obtained the average cortical thickness estimates of the left and the right hemisphere directly from FreeSurfer. For volume and surface area, we summed the ROIs of the Desikan Killiany atlas to compute the estimates for the left and the right hemisphere.

Finally, Supplementary Text S15 provides additional comparisons of structural covariance derived from different image resolutions.

2.2. Data analysis and visualisation

2.2.1. Statistical analysis

We standardised each measure across all subjects, if not explicitly stated otherwise, which normalizes the mean of each region of interest (ROI) to 0 and the standard deviation of each ROI to 1. This step has no effect on the calculation of correlations, but permits later investigation of the relative error variance (relative to the variance of 1 of the measurement). To compute differences in correlations, we Fisher-transformed the correlation values first.

2.2.2. Covariance ellipse for visualisation purposes

To visualise some correlations/covariances of our study, we display them as an ellipse. The ellipse represents the region that contains 95% of all samples that can be drawn from the underlying covarying Gaussian distribution. We calculated the 95% confidence interval with the Chi-squared distribution. The alignment of the error ellipse is computed upon the eigenvalues of the covariance matrix of the respective ROIs. The eigenvector with the largest eigenvalue determines the direction of the major ellipsoid axis. Since eigenvectors are orthogonal, the minor axis of the ellipsoid corresponds to the direction of the smaller eigenvector. Our code was inspired by Matlab source code provided by (Spruyt; How to draw a covariance, 2019). To compute ellipsoids for the estimated error structure and estimated underlying correlation, we use our estimated variance and covariance (see section 2.2.5).

2.2.3. Network measures

We computed several common network measures on the structural covariance matrix. As a first step, we thresholded (and binarised) the structural covariance matrix. We performed thresholding as a percentage of the network density. I.e. a threshold of 0.1 (10%) indicates that the top 10% of strongest edges (in absolute value) are retained. We computed different brain network measures with the brain connectivity toolbox (Rubinov and Sporns, 2010). We investigate node strength (or node degree for the binarised matrices), characteristic path and clustering coefficient. These network measures are typically used in downstream analysis of structural covariance. In the Supplementary Materials S1 we additionally include the global efficiency, eigenvector centrality, assortativity and k-core centrality.

Table 1	Overview table of subjects used for different comparisons in the main text. We provide the age range as mean ± standard deviation to indicate how closely subject groups have been matched between HCP and CamCAN. For the HCP scan and rescan data we used the entire data set provided.		
Data set name	Number of subjects	Number of females	Age range
Site comparison:			
Cam-CAN	86	43	28.26 ± 3.53
HCP	86	43	28.7 ± 3.49
FreeSurfer version comparison:			
Cam-CAN FreeSurfer	86	43	28.26 ± 3.53
HCP FreeSurfer	86	43	28.26 ± 5.3
Scan session comparison:			
HCP Scan	45	31	range: 22-35
HCP Rescan	45	31	range: 22-35
2.2.4. **Permutation test**

To compare the structural covariance matrices and network measures between data sets for statistical significant differences, we apply a permutation test (Fig. 2). E.g. to compute the difference of the two matrices, we calculated the L_1 distance (sum of the absolute differences). To obtain the reference distribution, we then computed the L_1 distance of 1000 randomly mixed data splits. The p-value of the actual difference is estimated from this distribution. Such permutation tests are common in studies that are e.g. comparing a patient vs. a control group. Here, we demonstrate the effect of such a test on our comparisons of, for example, two healthy subject data sets. We do not use the concept of statistical significance in further downstream analyses (e.g. for the selection of specific ROIs).

2.2.5. **Estimation of error structure and underlying correlation**

To analyse reliability of repeated measurements of the same subjects, we estimated an error covariance structure of the data. Such repeated measurements were for example scan vs. rescan of the same subject, or applying FreeSurfer 5.3 vs. 6.0 in the same subject and scan. Here we explain how we estimated the error and the underlying correlation for applying FreeSurfer 5.3

To compare the structural covariance matrices and network measures that are e.g. comparing a patient vs. a control group. Here, we demonstrate the effect of such a test on our comparisons of, for example, two healthy subject data sets. We do not use the concept of statistical significance in further downstream analyses (e.g. for the selection of specific ROIs).

Note that this measurement as well as random errors of other processing steps). Note that this measurement as well as random errors of other processing steps). Note that this measurement as well as random errors of other processing steps). Note that this measurement as well as random errors of other processing steps). Note that this measurement as well as random errors of other processing steps). Note that this measurement as well as random errors of other processing steps).

To analyse reliability of repeated measurements of the same subjects, we estimated an error covariance structure of the data. Such repeated measurements were for example scan vs. rescan of the same subject, or applying FreeSurfer 5.3 vs. 6.0 in the same subject and scan. Here we explain how we estimated the error and the underlying correlation for applying FreeSurfer 5.3

To compare the structural covariance matrices and network measures that are e.g. comparing a patient vs. a control group. Here, we demonstrate the effect of such a test on our comparisons of, for example, two healthy subject data sets. We do not use the concept of statistical significance in further downstream analyses (e.g. for the selection of specific ROIs).

2.2.5.1. Calculation of the variances. With the following quantities which can be directly calculated from the empirically measured data:

\[
\alpha = \text{Var}(X + E_1) - (X + E_2) = \text{Var}[E_1] + \text{Var}[E_2]
\]

\[
\beta = \text{Var}[X + E_1] = \text{Var}[X] + \text{Var}[E_1]
\]

\[
\gamma = \text{Var}[X + E_2] = \text{Var}[X] + \text{Var}[E_2]
\]

we then get

\[
\text{Var}[E_1] = \frac{\alpha + \beta - \gamma}{2}
\]

\[
\text{Var}[E_2] = \frac{\alpha - \beta + \gamma}{2}
\]

\[
\text{Var}[X] = \frac{-\alpha + \beta + \gamma}{2}
\]

Analogously to that we can compute $\text{Var}[Y]$, $\text{Var}[D_1]$, and $\text{Var}[D_2]$.

2.2.5.2. Calculation of the covariances. Similarly the following covariances can be directly calculated from the empirical data:

\[
\delta = \text{Cov}(X + E_1, Y + D_1) = \text{Cov}[X, Y] + \text{Cov}[E_1, D_1]
\]

\[
\epsilon = \text{Cov}[X + E_2, Y + D_1] = \text{Cov}[X, Y] + \text{Cov}[E_2, D_1]
\]

\[
\zeta = \text{Cov}[(X + E_1) - (X + E_2), (Y + D_1) - (Y + D_2)]
\]

\[
= \text{Cov}[E_1 - E_2, D_1 - D_2] = \text{Cov}[E_1, D_1] + \text{Cov}[E_2, D_2]
\]

we get

\[
\text{Cov}[E_1, D_1] = \frac{\delta - \epsilon + \zeta}{2}
\]

\[
\text{Cov}[E_2, D_2] = \frac{-\delta + \epsilon + \zeta}{2}
\]

\[
\text{Cov}[X, Y] = \frac{\delta + \epsilon - \zeta}{2}
\]

Therefore, for a given cortical morphology measure, say cortical thickness, we can infer its error variance and covariance, and hence we can visualise the error structure with an ellipse (see section 2.2.2). We show this in Fig. 6(B) and (C) in the middle column. From Var(X), Var(Y), and Cov(X,Y) we can then estimate the ‘true’ underlying correlation in the absence of error. This is displayed in the right column in Fig. 6(B) and (C).

We will also use the term ‘attenuation’, by which we refer to the difference between the measured correlations and the estimated true measurements are independent of each other.

![Fig. 2. Schematic illustration of the permutation test on the example of L1 distance between the structural covariance matrices. We computed the L1 distance (red marker) from the structural covariance matrices of the respective data sets. We repeated this process 1000 times with randomly mixed data splits to gain a distribution which serves as reference. With this distribution we can compute the p-value of the actual data split.](image-url)
correlation. Usually the latter is larger than the former, hence the term attenuation of correlation.

2.2.6. Simulating the effect of measurement error

For our simulation in Fig. 7(A), we artificially generated data to demonstrate the effect of measurement error. We computed two sets of 1000 random data points sampled from a bivariate normal distribution with zero mean and unit variance. These data vectors represent the ground truth morphological data of two ROIs. We can generate them with any pre-defined correlation of the ROIs, which we use as the true underlying correlation.

We then added a random normal error vector (zero mean, and ν...
standard deviation, where ν represents the relative error/noise magnitude to the measurement) to each of the ROIs to simulate noisy measurements of the morphological data. The correlation between these simulated measurements corresponds to the measured correlations in the real data. We repeated this process 10000 times to compute the variability of the simulated measured correlations.

As a measure of ‘unreliability’ we computed the standard deviation over the 10000 simulated measured correlations, where a high standard deviation (high ‘unreliability’) indicates low reliability. Further, we computed the difference between the true correlation and the mean correlation over the 10000 simulation runs as the attenuation.

We simulated two example levels of true correlation (0.7 and 0.4) with each two different example levels of relative noise (25% and 50%) in Fig. 7.

2.3. Data availability statement

Analysis code and data of all morphological measures (selected subjects of HCP, HCP scan and rescan, selected subjects of Cam-CAN pre-processed in all FreeSurfer versions) are available at Github (https://github.com/cmp-lab/2019Carmon-ReliabilityComparabilityStructuralCovariance).

3. Results

3.1. Differences in structural covariance of cortical thickness between different sites, scan-rescan, and different FreeSurfer versions

We first focus on structural covariance of cortical thickness, which is a widely used morphology measure. To investigate the comparability of structural covariance we compared two data sets of healthy human subjects (HCP and Cam-CAN data restricted to the same number of males and females within a narrow age range of 22–34 year old). We standardised the data for each site in each ROI before comparison (effectively applying a site correction to each ROI).

In Fig. 3(A) we see that after site-correction the thickness of two example ROIs are comparable (same mean and variance) between HCP and Cam-CAN. However, the correlation between the ROIs remains significantly different between the sites ($p = 0.003$ permutation test). We demonstrate with this example that, as mathematically expected, site correction of the univariate measures does not correct for differences in correlation.

In Fig. 3(B) we show the raw structural covariance (i.e. correlation matrix) of each dataset. We also show the absolute differences between the HCP and Cam-CAN correlation matrices. Mean differences for each ROI are also visualised as a heatmap on the brain. In the Supplementary Material S16 and S17, we show additional site comparisons using other datasets, demonstrating differences in the structural covariance matrix that are in a similar range as shown here.

To investigate the reliability of scan sessions on the same subjects, we used the HCP scan-rescan data. Similar to Fig. 3(B), we show the raw structural covariance matrices and their differences between the sessions in Fig. 3(C). Generally, a weaker difference is seen compared to the site comparison. In the Supplementary Material S14, we additionally show results for another scan-rescan dataset, where the range of differences in the structural covariance matrix is slightly higher.

Finally, we show the effect of using different FreeSurfer versions of the same subjects in Fig. 3(D). The results show again that there are substantial differences in correlation. Albeit, they are overall less pronounced than in the site comparison.

In summary, we detected (significant) differences of structural covariance between two demographically comparable data sets of healthy human subjects. These differences are prominent despite site correction. Similarly, the structural covariance across scan sessions and FreeSurfer versions (Fig. 3(C) and (D)) also show differences, which are less pronounced in effect than between sites.

3.2. Significant differences in structural covariance of cortical thickness between sites

In Fig. 3(B) we showed that the structural covariance (correlation matrix) shows substantial differences between two sites. Here, we investigate if these differences also imply significant differences for graph-theoretic network measures under a permutation test (Fig. 2).

From the thresholded (and binarised) correlation matrices we computed the L_1 distance, node strength/degree, characteristic path and clustering coefficient. Fig. 4(A-D) shows the p-values of the comparison between sites for different thresholds (ranging from 2.5% to 35%). Significant differences ($p < 0.05$) are seen in all network measures in both the thresholded and binarised cases for a range of thresholds. In Supplementary Materials S1 we also compare additional network measures.

In the site comparison so far, we used two sites that differ slightly in a range of factor. Other than using different subjects (of comparable demographics), the image resolution, and FreeSurfer version used for processing the two different sites also differed. To investigate the influence of these factors on producing significant network differences between sites, we systematically varied these factors in different combinations (Fig. 4(E)). For example we can make the site comparison with different image resolutions, FreeSurfer versions, and using different subject demographics (young vs. old in this case) – this is depicted in the first row of Fig. 4(E). We can also make the site comparison with the same image resolution, and comparable subject demographics, but only with different FreeSurfer versions (shown in the 5th row of Fig. 4(E)). Finally, the site comparison can also be made using the same resolution, the same FreeSurfer version, and the same subject demographics (last row of Fig. 4(E)).

We also show the corresponding p-values across different thresholds for each of these scenarios, using L_1 distance as a network measure.

Fig. 4(E) shows that the more factors differ between the site comparisons, generally, the more we tend to observe significant ($p < 0.05$) differences in L_1 distance. The difference in imaging resolution between sites appears to be best correlated with significant differences in L_1 distance. However, we note that the FreeSurfer version used for the HCP 0.7 mm isotropic resolution is a modified version of FreeSurfer version 5.3. Therefore the pure effect of imaging resolution when compared to 1 mm isotropic Cam-CAN (FreeSurfer version 5.3) cannot be ascertained.

Our Supplementary Materials S15 offers further analyses on the effect of image resolution, demonstrating that decreasing image resolution leads to further differences in the structural covariance matrix. Supplementary Materials S16 and S17 show additional site comparisons with other sites/datasets, using a wider age-range of subjects and different FreeSurfer versions. These analyses show that substantial differences are also seen between other sites, and some significant differences are observed in these datasets particularly in the clustering coefficient. For simplicity and consistency with previous figures, we will continue to use the setting in the second row of Fig. 4(E) for our subsequent analyses of site comparisons.

In summary, we show that the substantial differences in the structural covariance matrix between HCP and CamCAN sites translate into significant differences of network measures under a permutation test. However, by carefully matching the sites in different factors (here: image resolution, FreeSurfer version, and demographics) the differences are no longer statistically significant in our comparison.

3.3. Average cortical thickness shows larger differences in structural covariance than surface area and volume

Average cortical thickness, surface area, and volume are three of the most popular measures to analyse structural covariance. Thus far we only investigated cortical thickness derived networks. Next, we investigated if the structural covariance of other morphological measures are more comparable and reliable.

Fig. 5 shows the estimated distribution density of average differences in each ROI in their structural covariance matrix using different measures of cortical morphology. The different panels display the differences...
between site, scan/rescan, and FreeSurfer versions, respectively. In all panels, the differences are most pronounced for average cortical thickness, where more ROIs display larger differences compared to the other cortical morphology measures. We can also note, as in Fig. 3, that generally the differences between sites are larger than the differences between scan sessions and FreeSurfer versions. In the Supplementary Materials S13 we also include corresponding brain surface plots (as in Fig. 3) for all morphological measures.

In summary, the choice of the morphological measure also affects the comparability and reliability of the structural covariance. In our study average cortical thickness is associated with larger differences than surface area and volume when comparing sites, scan/rescan, and FreeSurfer versions.

3.4. Lowest correlations, largest estimated error and strongest estimated attenuation in average cortical thickness

To investigate the source of differences in correlation we used a single correlation as an initial starting point: namely the correlation between the left and right hemispheres. On the level of a single correlation we can visualise important aspects, and show why cortical thickness shows the prominent differences we found in Fig. 5 as opposed to surface area and volume.

Fig. 6(A) shows the scatter plot of the left vs. right hemisphere. Each dot corresponds to a subject in one of the data sets. Each row depicts one morphological measure and each column one data pair comparison (HCP/Cam-CAN, scan/rescan, and FreeSurfer version 5.3/6.0). As to be expected from Fig. 5 we see that the difference between the data sets are largest in the correlations of average cortical thickness. We also observe that the correlations of average cortical thickness are lowest in each data set. This finding also extends to the correlations of ROIs of the Desikan Killiany atlas (see Supplementary Materials S2).

For the scan/rescan data and the FreeSurfer 5.3/6.0 datasets it is possible to estimate 1) the measurement error and 2) the underlying correlation. The rationale behind this estimation is to utilise the “repeated measurements” from the same subject, either in scan/rescan, or in two different FreeSurfer versions. From these repeated measurements we analytically estimated the variance and covariance of the
measurement error as well as the underlying “true” correlation (Fig. 6(B) and (C)) - see section 2.2.5. We observe that the estimated error is largest for average cortical thickness and smallest for surface area. Fig. 6(B) and (C) also shows that all measured correlations were attenuated by the error structure, such that the estimated underlying correlation is always larger than the empirically measured correlation. We also remark that the error introduced by the FreeSurfer versions is comparable in magnitude to that of scan/rescan. Note that the error estimated here is relative to unit variance of the measurement (see Methods section 2.2.1), such that all the panels in Fig. 6 can be directly compared to each other.

The findings of Fig. 6(B) and (C) also extend to most ROI pairs of the Desikan Killiany atlas (see Supplementary Materials S3).

In summary, we observed that average cortical thickness is least correlated, the measurement error of average cortical thickness is largest, and the correlations of average cortical thickness are most attenuated.

3.5. A larger error leads to greater levels of attenuation and unreliability

We demonstrated so far that thickness is less reliable than volume and surface area, and we estimated a larger error structure and a stronger attenuation of correlations for thickness. Here, we relate these observations to each other using the full Desikan-Killiany ROI correlation matrices.

In Fig. 7(A) we investigated the effect of error on reliability and attenuation for simulated data. Using simulated data with predefined true correlation levels (0.7 and 0.4), we added relative error of two different magnitudes (25% and 50% error). We repeated the simulation 10,000 times to compute the variation of the measured correlations. A smaller variation between the different simulations suggests greater reliability, and here we define the variance/difference between simulations as a measure of ‘unreliability’. In Supplementary Materials S8 we show that, in our simulations, the true correlations and the strength of the added error are well-captured by our estimations.

In the simulations, we note two key observations. First, stronger errors increase unreliability and proportionally increase the attenuation, regardless of the strength of the true correlation. Second, for the same error magnitude, high correlations are more attenuated than low correlations. The correlation strength minimally affects the effect of error on unreliability. In empirical data, and if our estimates of error are correct, we would thus expect to see error variance and covariance to be associated with the attenuation and the level of unreliability. In turn, we expect an association between unreliability and attenuation to arise. This is indeed observed in Fig. 7(B)–(D), where we used all entries of the Desikan-Killiany atlas matrix to demonstrate these associations.

Fig. 7(B) shows a very high association between the estimated error covariance of the HCP scan data and the level of unreliability (difference between the measured correlations of HCP scan and rescan). In absolute terms, correlations with a stronger absolute error covariance show more difference between scan/rescan. This agrees with our simulations, where a larger error magnitude leads to a higher level of unreliability. Note that unlike the estimated error covariance, the estimated error variance is the same between different measurements for standardised data (since $1 = \text{Var}[X] = \text{Var}[Y]$, α, β and γ of section 2.2.5 are the same for X and Y) and therefore does not contribute to the high unreliability. In simple words, the larger the estimated error covariance, the more the correlation coefficients differ between scan and rescan.

In Fig. 7(C), left column, we can see the negative associations between the estimated attenuation and the estimated error covariance. More negative covariances correspond to a larger decrease in the measured correlation compared to the estimated actual correlation, and vice versa. For the error
variance, a larger error variance corresponds to a larger decrease in the measured correlation compared to the estimated actual correlation. In summary, more attenuated correlations are associated with stronger absolute error (co)variance, in agreement with our simulation. Most correlations are positively attenuated (corrected correlation / measured correlation > 0). In Fig. 7(D) we excluded the small proportion of correlations that show a negative attenuation. The plot associates more attenuated correlations with a stronger absolute unreliability (higher absolute differences between the measured correlations of scan/rescan). In other words, more attenuated correlations tend to be less reliable (bigger difference between scan and rescan), which is further supported by Supplementary Materials S4. This also agrees with our observation in the simulated data that reliability is proportional to attenuation.

In summary, we showed on simulated data that a stronger error causes a stronger attenuation of the correlation and increases unreliability proportionally. The empirical data supported this finding. We can thus link the two observations of attenuation and unreliability: more strongly attenuated correlations tend to be less reliable.

4. Discussion

To our knowledge, this is the first study to investigate the comparability (different subjects) and reliability (same subjects) of structural covariance analysis. We showed that site differences in structural covariance are naturally not accounted for with site correction of the univariate brain morphology measures. Common down-stream analyses
Fig. 7. A larger error leads to greater levels of attenuation and unreliability. (A) Simulated data with two different levels of correlation and error. The legend on the right provides the key to interpreting the schematic illustration of the effect of error on simulated correlations. (B)–(D) uses the HCP scan data (hence blue data points). Each data point is a ROI-pair from the structural covariance matrix. (B) shows the estimated error covariance scattered against the measured correlations of HCP scan minus measured correlations of HCP rescan (which we term Unreliability). (C) shows the estimated covariance error (left column) and estimated variance error (right column) scattered against the estimated 'corrected' correlation minus the measured correlation of HCP scan, i.e. the estimated attenuation. (D) displays the estimated attenuation scattered against the absolute unreliability. The equivalent plots for the HCP rescan data, CamCAN FreeSurfer5.3 and CamCAN FreeSurfer6.0 are shown in Supplementary Materials S5-7.
of different network measures also show significant differences between sites. In terms of reliability, scan vs. rescans and the same images processed by different FreeSurfer versions also show differences in their structural covariance, albeit less pronounced in magnitude compared to site-comparisons. Interestingly, we also found that the magnitude of the differences vary between morphological measures. In our analysis, the structural covariance of cortical thickness is least reliable and comparable. We further showed that the estimated relative error is largest in thickness, where the estimated attenuation of the correlation is also the strongest. Finally, by using simulated data in combination with empirical observations, we argue that measurement errors attenuate correlations and cause a low reliability, which is particularly pronounced in cortical thickness.

In addition to FreeSurfer version and scan session, difference in image resolution also drive differences in structural covariance. To reduce the complexity of the paper, we presented those investigations in Supplementary Materials S15. We show that the differences in structural covariance increase dramatically as image resolution is lowered, particularly in cortical thickness. In agreement with this observation, we could also see in Fig. 4(B) that differences in image resolution is associated with significant differences between sites. This is further investigated by additional site comparisons in Supplemental Materials S16 and S17.

Commonly the structural covariance is computed with Pearson’s correlation coefficient, to which also our main results are restricted to. An alternative correlation coefficient is the Spearman’s rank correlation, known to be less prone to outliers. However, we do not find major changes to our results using Spearman’s correlation (see Supplementary Materials S11). An important question to address is if there are other correlation types which are less prone to errors in covariance structure. For example, Geerligs et al. show in their study that multivariate distance correlation is more reliable than Pearson’s correlation under certain circumstances (Geerligs et al. 2016). Structural covariance is also measured in other ways e.g. partial least squares regression (Spreng et al. Anticevic). Future studies should investigate the comparability and reliability of different measures of structural covariance.

In this context of covariance estimation, it is also important to acknowledge the importance of sample size. The estimation of covariance is inherently noisy, especially with low sample sizes. We investigated the comparability aspect in that regard in Supplementary Materials S18. We found that the differences in the structural covariance matrices between distinct subsets of the CamCAN data do not decrease substantially beyond 60–80 subjects (Fig. S18). However, for less than ~30 subjects the differences increase rapidly. Similar behaviour -increasing differences with decreasing sample size- was observed in our scan-rescan data in terms of reliability (Supplementary Materials S19). We therefore recommend using as large a sample size as possible, ideally n >= 30 for the Desikan-Killiany parcellation. Although some existing studies use relatively large sample sizes, many of those are pooled data sets across different scanners and sites, which may not be comparable in terms of their structural covariance. Large and homogenous datasets from a single site are still rare. This essentially means that estimators of covariance that perform well with low sample sizes are needed. Future studies could investigate the effect of e.g. shrinkage estimators (Rahim et al., 2019) on the reliability and comparability of structural covariance.

One way of improving reliability may be achieved by estimating the true underlying correlation from repeated measurements. Our approach could be used for such a purpose, and in artificial data we could show that the estimated covariance are close to the true underlying covariance (see Supplementary Materials S9). However, we had to make several assumptions to arrive at the estimated corrected correlation. Future work should investigate the validity of these assumptions further in specific contexts such as scan and rescans. Especially where there are several repeated measurements, the true correlation can be estimated with other frameworks (e.g. (Bebeta et al., 2009)). Importantly, if the error covariance structure is derived once, then it can be applied to correct structural covariance matrices, even across scanners and sites.

Theoretically, all that is required is that a group of subjects are scanned on both scanners/sites to infer the error covariance structure. Once inferred, the correction could be applied to any future subject groups to make them comparable across sites.

Additionally, reliability could also be improved by the choice of ROIs. Previous research showed that different ROIs are differently reliable in their univariate cortical morphology measures (Han et al., 2006). This may also extend to their covariance structure. There are many potential criteria in restricting ROIs which could improve reliability and comparability. One criterion is to select ROIs by their size. Indeed, we could find a small effect of the ROI volume, where smaller ROIs tended to have lower p-values under a permutation test (see Supplementary Materials S10). ROIs could also be selected by their spatial proximity (e.g. movement artifacts would cause covarying errors between ROIs). Relatedly, voxel-based analyses of structural covariance (e.g. (Mechelli et al., 2005)) is a popular alternative approach to the ROI-based approach presented here. We expect measurement error to still affect the reliability and comparability of voxel-based structural covariance. However, it is unclear if some processing steps (such as spatial warping and smoothing) used in voxel-based approaches exacerbate or alleviate the covarying measurement errors. A future study comparing the two approaches in terms of their reliability and comparability will be required.

Previously, studies reported distinctions between the structural covariance of different cortical measures (Sanabria-Diaz et al., 2010; Yang et al., 2016). Yang et al. found statistically significant differences between the structural covariance of cortical thickness, volume and surface area (Yang et al., 2016). Although that observation was not made in the context of reliability and comparability, it agrees with our observation that there are some inherent differences between thickness and surface area covariances. It is alarming that in our study the structural covariance of average cortical thickness is the least reliable and comparable of the cortical morphology measures, as it is the most commonly used measure for structural covariance. It is known that cortical thickness has a lower level of biological variance compared to surface area and volume (also see Supplementary Materials S12). In relative terms, the same magnitude of error would thus have a stronger effect. In agreement, we indeed show a higher relative error for cortical thickness compared to surface area, or volume.

The results of our study are of particular interest for the comparison of different clinical conditions, as some studies combine sites to increase their sample size. In our investigation we could see significant differences between sites, even when using comparable healthy subjects with similar demographics. Thus, ideally for the comparison of clinical conditions we recommend performing the analysis for each site separately, and only test for agreement across sites. Advanced hierarchical modelling may help in estimating a more reliable and comparable covariance structure across sites in future work. This might be of particular interest for ongoing studies, especially if thickness has been used as cortical measure.

From a biological perspective, the argument for analysing structural covariance is that a strong covariance indicates co-regulation, or co-development (Mechelli et al., 2005). It is however unclear if simply obtaining the covariance of a cortical measure across several ROIs is indeed the best way to capture and analyse such hypothesised co-development, or co-regulation patterns. For example, if there is no biological co-relation between two ROIs, then all that will be measured in experiments is the error and correlation in the errors. The study of covariance is a way of dimensionality reduction, and a more robust method of dimensionality reduction inherently utilizing reliability (see e.g. Sotiras et al. (2017)) may be better suited for a reliable and comparable data-driven approach.

Alternatively, hypothesis-driven approaches can be taken, where a specific covariance between specific morphological variables and/or ROIs is predicted by theory. If the theory is correct, the data should support the theory in a comparable and reliable manner. One example of such a predicted covariance structure is the recently-described ‘universal scaling law of cortical folding’ (Wang et al., 2016, 2019; Mota and
Herculano-Houzel, 2015). According to this law, brain surface area, cortical thickness, and exposed surface area are linked by a strong covariance structure, which has been confirmed across species (Mota and Herculano-Houzel, 2015), within human populations (Wang et al., 2016), and even between different ROIs of the same brain (Wang et al., 2019). Importantly, the scaling law has shown to be comparable across sites and reliable within the same data set. Future work could take a combined data-driven and hypothesis-driven approach to discover true covariance structures in brain morphology that are reliable and comparable.

In summary, our analyses show that the question of comparability and reliability is crucial in the study and interpretation of structural covariance. Reliable or comparable univariate measures of ROIs do not imply reliable and comparable correlations between them. Practically, we make the following recommendations (1) combining subjects across sites into one group for structural covariance analysis should be avoided, particularly if sites differ in image resolutions, subject demographics, or preprocessing steps; (2) surface area and volume should be preferred as morphological measures of structural covariance over cortical thickness; (3) an analysis of required sample size should be performed, usually the larger the sample size, the better the correlation estimate. We recommend to use \(n \geq 30 \) subjects per group for the Desikan-Killiany parcelation; (4) measurement error should be assessed where repeated measurements (e.g. from scan-rescan) are available; (5) if combining sites is absolutely required, univariate (per ROI) site-correction is insufficient, but error covariance (between ROIs) should be explicitly modelled. Future work should establish a pipeline of reliable and comparable structural covariance analysis based on robust data-driven dimensionality reduction and hypothesis-driven discovery of existing covariance structures.

Author contributions

J.C. and Y.W. conceived the idea, developed the methods, wrote the code, and performed the analysis. J.C. contributed ideas on statistical analyses. J.H.N. helped with FreeSurfer processing of the data. J.C. and Y.W. drafted the manuscript and produced all figures. All authors participated in critically reviewing and revising the manuscript.

Acknowledgement

Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; U15MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. Another part of the data for this project was provided by the Cambridge Centre for Ageing and Neuroscience (CamCAN). CamCAN funding was provided by the UK Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1), together with support from the UK Medical Research Council and University of Cambridge, UK.

We thank members of the CNNP lab (www.cnnp-lab.com) for discussions on the analysis and manuscript. P.N.T. and Y.W. gratefully acknowledge funding from Welcome Trust (208940/Z/17/Z and 210109/Z/18/Z). J.H.N. was supported by the Reece Foundation. M.K. was supported by Wellcome Trust (102037), Engineering and Physical Sciences Research Council (NS/A000261/1, EP/N031962/1), Medical Research Council (MR/T004347/1), and the Guangci Professorship Program of Ruijin Hospital (Shanghai Jiao Tong Univ.). The authors declare no conflict of interest. The funders played no role in the design of the study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2020.117104.

References

Alexander-Bloch, A., Giedd, J.N., Bullmore, E., 2013. Imaging structural co-variation between human brain regions. Nat. Rev. Neurosci. 14 (5), 322.

Bassett, D.S., Bullmore, E., Verchinski, B.A., Mattay, V.S., Weinberger, D.R., Meyer-Lindenberg, A., 2008. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28 (37), 9239–9248.

Behrens, T.E., Berg, Z., Jbabdi, S., Rushworth, M.F., Woolrich, M.W., 2007. Bayesian correction for attenuation of correlation in multi-trial spike count data. J. Neurophysiol. 101 (4), 2186–2193.

Bernhardt, B.C., Chen, Z., He, Y., Evans, A.C., Bernasconi, N., 2011. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cerebr. Cortex 21 (9), 2147–2157.

Bethlehem, R.A., Romero-Garcia, R., Mak, E., Bullmore, E., Baron-Cohen, S., 2017. Structural covariance networks in children with autism or adhd. Cerebr. Cortex 27 (11), 4267–4276.

Bhojraj, T.S., Prasad, K.M., Eack, S.M., Francis, A.N., Montrose, K., Keshavan, M.S., 2010. Do inter-regional gray-matter volumetric correlations reflect altered functional connectivity in high-risk offspring of schizophrenia patients? Schizophr. Res. 118 (1–3), 62–68.

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9 (2), 179–194.

Desikan, R.S., Sˇegonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, R.T., et al., 2006. An automated labeling system for subdividing the human cerebral cortex on mri into gyral based regions of interest. Neuroimage 31 (3), 968–980.

Desikan, R.S., Sabuncu, M.R., Schmansky, N.J., Reuter, M., Cabral, H.J., Hess, C.P., Weiner, M.W., Biffl, A., Anderson, C.D., Rosand, J., et al., 2010. Selective disruption of the cerebral neocortex in Alzheimer’s disease. PloS One 5 (9), e12853.

Dickerson, B.C., Fenstermacher, E., Salat, D.H., Wolk, D.A., Maguire, R.P., Desikan, R.S., Villablanca, J., Quinn, B.T., et al., 2008. Detection of cortical thickness correlates of cognitive performance: reliability across mri scan sessions, scanners, and field strengths. Neuroimage 39 (1), 10–18.

Geerligs, L., Henson, R.N., et al., 2016. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation. Neuroimage 135, 16–31.

Glaser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coislon, T.S., Fischl, B., Anderson, J.L., Xu, J., Shabdi, S., Webster, M., Foloniemi, J.R., et al., 2013. The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124.

Gronenschild, E.H., Habets, P., Jacobs, H.I., Mengelers, R., Rozendaal, N., Van Os, J., Marcelis, M., 2012. The effects of freesurfer version, workstation type, and macintosh operating system version on anatomical volume and cortical thickness measurements. PloS One 7 (6), e38234.

Hafkemeijer, A., Möller, C., Dopper, E.G., Jiskoot, L.C., van den Berg-Huysmans, A.A., van Swieten, J.C., van der Flier, W.M., Vrenken, H., Pijnenburg, Y.A., Barkhof, F., et al., 2016. Differences in structural covariance brain networks between behavioral variant frontotemporal dementia and Alzheimer’s disease. Hum. Brain Mapp. 37 (3), 978–988.

Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, R., Czanner, S., Buss, E., Pedrao, J., Albert, M., Killiany, R., et al., 2006. Reliability of mri-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32 (1), 406–427.

How to draw a covariance error ellipse?: https://www.visuonummy.com/m/2014/04/draw-ellipse-representing-covariance-matrix.html#Source_Code, 2010-10-25.

Iscan, Z., Jin, T.B., Kendrick, A., Szelgin, B., Lu, H., Trivedi, M., Fava, M., McGrath, P.J., Weinman, M., Kurian, A., Elsworth, A., 2015. Test-retest reliability of freesurfer measurements within and between sites: effects of viability assessment. Hum. Brain Mapp. 36 (9), 3472–3485.

Liu, K., Luo, X., Zeng, Q., Huang, P., Shen, Z., Xu, X., Xu, J., Wang, C., Zhou, J., Zhang, M., et al., 2019. Gray matter structural covariance networks changes along the Alzheimer’s disease continuum. Neuroimage: Clinical 23, 101828.

Alonan-González, Y., Hernández-González, G., Valdés-Urrutia, L., Galán, L., Valdés-Sosa, P., 2010. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage 50 (4), 1497–1501.
Shafto, M.A., Tyler, L.K., Dixon, M., Taylor, J.R., Rowe, J.B., Casack, R., Calder, A.J., Marslen-Wilson, W.D., Duncan, J., Dalgleish, T., et al., 2014. The cambridge centre for ageing and neuroscience (cam-can) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurol. 14 (1), 204.

Sotiras, A., Toledo, J.B., Gur, R.E., Gur, R.C., Satterthwaite, T.D., Davatzikos, C., 2017. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. Proc. Natl. Acad. Sci. Unit. States Am. 114 (13), 3527-3532.

V. Spruyt, How to draw an error ellipse representing the covariance matrix, Comp. Vision Dummies 14.

Spreng, R.N., DuPre, E., Ji, J.L., Yang, G., Diehl, C., Murray, J.D., Pearlson, G.D., Anticevic, A., 2019 Dec. Structural covariance reveals alterations in control and salience network integrity in chronic schizophrenia. Cerebr. Cortex. 2019 Dec 17; 29 (12), 5269-5284.

Taylor, J.R., Williams, N., Casack, R., Auer, T., Shafto, M.A., Dixon, M., Tyler, L.K., Henson, R.N., et al., 2017. The cambridge centre for ageing and neuroscience (cam-can) data repository: structural and functional mri, meg, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage 144, 262–269.

Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S.W., et al., 2012. The human connectome project: a data acquisition perspective. Neuroimage 62 (4), 2222-2231.

Wang, Y., Necus, J., Kaiser, M., Mota, B., 2016. Universality in human cortical folding in health and disease. Proc. Natl. Acad. Sci. Unit. States Am. 113 (45), 12820-12825.

Wang, Y., Necus, J., Rodriguez, L.P., Taylor, P.N., Mota, B., 2019. Human cortical folding across regions within individual brains follows universal scaling law. Commun. Biol. 2 (1), 191.

Yang, J.-J., Kwon, H., Lee, J.-M., 2016. Complementary characteristics of correlation patterns in morphometric correlation networks of cortical thickness, surface area, and gray matter volume. Sci. Rep. 6, 26682.

Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T., Initiative, A.D.N., et al., 2010. Abnormal cortical networks in mild cognitive impairment and alzheimer’s disease. PLoS Comput. Biol. 6 (11), e1001006.