Exact closed-form solution for the electrostatic interaction of two equal-sized charged conducting spheres

Shubho Banerjee and Mason Levy
Physics Department, Rhodes College, Memphis TN 38112, USA
E-mail: banerjees@rhodes.edu

Abstract. We provide an exact closed-form solution for the electrostatic interaction of two equal-sized conducting spheres. We calculate the capacitance coefficients for the spheres in terms of the q-analogue of the digamma function. In the near limit, when the two spheres are about to touch, the closed-form exact solutions allow for much faster numerical calculations than the well-known infinite series solutions. By analyzing the exact solution in the near limit, we provide Taylor series expressions for the capacitance coefficients in terms of the surface-to-surface separation of the two spheres.

1. Introduction
The two sphere electrostatic interaction was originally analyzed by Kirchoff, Lord Kelvin, Poisson, Maxwell, and Russell [1, 2, 3] and continues to generate interest in the electrostatics community even today [4, 5, 6]. Here, we study the special case of equal-sized spheres.

The setup of the two equal sphere problem is shown in figure 1. Two equal conducting spheres A and B of radii a and b (equal to a) respectively are separated by distance s between their centers. Sphere A is held at potential V_a and sphere B at potential V_b. The capacitance coefficients C_{aa}, C_{ab}, C_{ba}, and C_{bb} of the two spheres are defined through the relations

$$Q_a = C_{aa} V_a + C_{ab} V_b,$$
$$Q_b = C_{ba} V_a + C_{bb} V_b,$$

where Q_a and Q_b are the net charges on the two spheres. The coefficients $C_{ab} = C_{ba}$ are always equal. For the special case of equal-sized spheres we have $C_{aa} = C_{bb}$.

The solution for the capacitance coefficients of the two spheres can be calculated using the method of images [7, 8]. By summing up the images charges inside each sphere and substituting $a/s = \frac{1}{2} \text{sech} \alpha$ the capacitance coefficients defined above can be written as [8]

$$c_{aa} = \frac{C_{aa}}{4\pi \epsilon a} = \sinh \alpha \sum_{n=0}^{\infty} \text{csch} (2n+1) \alpha,$$
$$c_{ab} = \frac{C_{ab}}{4\pi \epsilon a} = - \sinh \alpha \sum_{n=1}^{\infty} \text{csch} 2n \alpha.$$

The series in equation (2) were numerically analyzed by Pisler and Adhikari [9].
Figure 1. Two equal-sized conducting spheres are at center-to-center distance \(s \) from each other. Sphere \(A \) is maintained at voltage \(V_a \) and sphere \(B \) at voltage \(V_b \). The image charges \(Q_1, Q_2, Q_3, Q_4, \ldots \) shown are for the special case when \(B \) is grounded. The odd numbered images appear inside \(A \) and the even numbered images appear inside \(B \).

2. Capacitance coefficients in closed form
Using the substitution \(e^{-\alpha} = x \) in equation (2) and noting that \(\sinh n\alpha = (e^{n\alpha} - e^{-n\alpha})/2 \), the series can be rewritten as

\[
c_{aa} = \left(1 - \frac{x^2}{x}\right) \sum_{n=0}^{\infty} \frac{x^{2n+1}}{1 - x^{2n+2}}, \tag{3}
\]

\[
c_{ab} = -\left(1 - \frac{x^2}{x}\right) \sum_{n=1}^{\infty} \frac{x^{2n}}{1 - x^{4n}}, \tag{4}
\]

where the variable

\[
x = \frac{s - \sqrt{s^2 - 4a^2}}{2a}. \tag{5}
\]

In the limit of large separation between the sphere and the plane i.e. \(s \to \infty \), \(x \) approaches 0, and in the limit of small separation between the sphere and the plane i.e. \(s \to 2a \), we have \(x \to 1 \). Writing the capacitance coefficients as a series in \(x \) allows us to reexpress equations (3, 4) as

\[
c_{aa} = \left(1 - \frac{x^2}{x}\right) \left[\sum_{n=1}^{\infty} \frac{x^n}{1 - x^n} - 2 \sum_{n=1}^{\infty} \frac{x^{2n}}{1 - x^{2n}} + \sum_{n=1}^{\infty} \frac{x^{4n}}{1 - x^{4n}} \right], \tag{6}
\]

\[
c_{ab} = -\left(1 - \frac{x^2}{x}\right) \left[\sum_{n=1}^{\infty} \frac{x^{2n}}{1 - x^{2n}} - \sum_{n=1}^{\infty} \frac{x^{4n}}{1 - x^{4n}} \right]. \tag{7}
\]

Noting that the expressions within the braces above are linear combinations of Lambert series in \(x, x^2, \) and \(x^4 \) \[10\], we can write the capacitance coefficients as

\[
c_{aa} = \left(1 - \frac{x^2}{x}\right) \left[L(x) - 2L(x^2) + L(x^4) \right], \tag{8}
\]

\[
c_{ab} = -\left(1 - \frac{x^2}{x}\right) \left[L(x^2) - L(x^4) \right]. \tag{9}
\]
The Lambert series \(L(x) \) can be expressed in closed form as
\[
L(x) \equiv \sum_{n=1}^{\infty} \frac{x^n}{1-x^n} = \psi_x(1) + \ln(1-x) / \ln x,
\]
where \(\psi_x(1) \) is the q-digamma function [11], \(\psi_q(z) \), evaluated at \(q = x \) and \(z = 1 \). For any \(0 < q < 1 \) and \(z > 0 \) the q-digamma function can be written as [12]
\[
\psi_q(z) = -\ln(1-q) + \ln q \sum_{n=0}^{\infty} \frac{q^{n+z}}{1-q^n},
\]
(11)
Using equation (10) the capacitance coefficients for the two sphere system can be expressed as
\[
c_{aa} = \left(\frac{1-x^2}{x} \right) \frac{4\psi_x(1) - 4\psi_x^2(1) + \psi_x^4(1) - 4 \tanh^{-1} x + 2 \tanh^{-1} x^2}{4 \ln x},
\]
(13)
\[
c_{ab} = -\left(\frac{1-x^2}{x} \right) \frac{2\psi_x^2(1) - \psi_x^4(1) - 2 \tanh^{-1} x^2}{4 \ln x}.
\]
(14)
These new closed-form results exactly reproduce the numerical calculations of the infinite series solutions in equation (2) by Pisler and Adhikari (see Table I in reference [9]).

3. Capacitance coefficients in the near limit
When the separation between the spheres is relatively small it is convenient to express their surface-to-surface separation in dimensionless form as
\[
\xi \equiv s - 2a = \frac{(1-x)^2}{2x}.
\]
(15)
As the spheres are about to touch we have \(\xi \to 0 \) and \(x \to 1 \). Each term in the series in equations (6, 7) series diverges making the analysis in this limit difficult. Having the capacitances in closed form allows us to expand them in terms of \(\xi \) with \(\theta = \frac{1}{8} \ln \frac{8e^{2\gamma}}{\xi} \) to obtain
\[
c_{aa} = \theta + \frac{\xi}{3} \left(\theta + \frac{1}{24} \right) - \frac{\xi^2}{45} \left(\theta + \frac{21}{160} \right) + \frac{\xi^3}{189} \left(\theta - \frac{1171}{2520} \right) - \frac{23\xi^4}{14175} \left(\theta + \frac{1402133}{1854720} \right) + \frac{263\xi^5}{467775} \left(\theta - \frac{909776807}{233291520} \right) + \ldots,
\]
(16)
and with \(\phi = \frac{1}{8} \ln \frac{8e^{2\gamma}}{\phi} \) to obtain
\[
c_{ab} = -\phi - \frac{\xi}{3} \left(\phi + \frac{7}{24} \right) + \frac{\xi^2}{45} \left(\phi - \frac{149}{160} \right) - \frac{\xi^3}{189} \left(\phi - \frac{541}{2520} \right) + \frac{23\xi^4}{14175} \left(\phi - \frac{2619157}{1854720} \right) - \frac{263\xi^5}{467775} \left(\phi + \frac{762619303}{233291520} \right) + \ldots,
\]
(17)
where \(\gamma = 0.577216 \ldots \) is the Euler’s constant. The expansions in equations (16) and (17) indicate a logarithmic divergence of the capacitance coefficients and agree with Russell’s results [3].
Along with the closed-form expressions in equations (13) and (14), the series expansions in equations (16) and (17) are the main results presented in this paper. The logarithmic dependence of capacitance in the near regime is well known but expansions are available to only to order ξ^2 [3, 4]. Having the the capacitances in closed form allows us to expand the capacitance to higher orders through the analysis of the q-digamma function.

In figure 2 the capacitances in equations (13) and (14) are plotted against the relative sphere separation. Also plotted with dashed lines are the series expansions in equations (16) and (17) terminated at order ξ^5. At $\xi = 1$ (i.e. $s = 4a$), the terminated series for c_{aa} and c_{ab} are accurate to within 0.31% and 1.25% respectively.

![Figure 2](image_url)

Figure 2. The capacitance coefficients c_{aa} and c_{ab} in equations (13, 14) are plotted against the relative separation between spheres. Also plotted with dashed lines are $\tilde{c}_{aa}(\xi^5)$ and $\tilde{c}_{ab}(\xi^5)$, the series expressions for capacitances in equations (16, 17) terminated at the ξ^5 term.

Acknowledgement

We thank Dr. Charles Robertson and Van Vleet Chair Support at Rhodes College for funding provided for this project.

References

[1] Thompson W 1872 *Reprint of Papers on Electrostatics and Magnetism* (London: Mcmillan) pp 86-97
[2] Maxwell J C 1954 *A Treatise on Electricity and Magnetism* 3rd ed vol 1 (New York: Dover) pp 273-276
[3] Russell A May 1927 *J. I. Electr. Eng.* 65 517 (and references therein)
[4] Lekner J 2011 *J. Electrostat.* 69 11-14
[5] Lekner J 2012 *Proc. R. Soc. London A* 468 2829
[6] Murovec T and Brosseau C 2014 *Appl. Phys. Lett.* 105 054101
[7] Pugh E M and Pugh E W 1960 *Principles of Electricity and Magnetism* (Reading: Adelson-Wesley) pp 106-108
[8] Smythe W R 1968 *Static and Dynamic Electricity* 3rd ed (New York: McGraw-Hill) pp 128-132
[9] Pisler E and Adhikari T 1970 *Phys. Scr.* 2 81-83
[10] Borwein J M and Borwein P B 1987 *Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity* (New York: Wiley) pp 91-101
[11] Krattenthaler C, Srivastava H M 1996 *Comput. Math. Appl.* 32 73-91
[12] Mansour M and Shabani A S 2009 *J. Inequal. Appl.* 10(1) Art. 12