Control of operating modes of an electroadsorption apparatus with a fixed layer of adsorbent

N A Merentsov1, A V Persidskiy2, M V Topilin3 and A B Golovanchikov4

1Volgograd State Technical University, Volgograd 400005, Russia
2JSC Federal Scientific and Production Centre «Titan - Barricady», Volgograd 400071, Russia
3Branch of LUKOIL-Engineering VolgogradNIPImorneft, Volgograd 400078, Russia

1E-mail: steeple@mail.ru

Abstract. This paper provides a new scheme and algorithm of automated control of modes of operation of electroadsorption mass transfer apparatuses are presented on the example of a continuously operating electroadsorber with a fixed adsorbent layer. The required values of technological parameters and ranges of their regulation were obtained during the calibration of technological parameters at the stage of commissioning of the electric adsorption mass transfer equipment, also in an automated mode. A detailed description and algorithm of the stages of calibration of technological parameters of electroadsorption apparatuses with a fixed adsorbent layer are given in the second part of this work (Calibration of technological parameters of an electroadsorption apparatus with a fixed layer of adsorbent). The principle of automated control consists in self-adaptation of the mass exchange system to optimal productiveness, due to the imposition of adjustable electric fields of a given intensity on the adsorption processes and recognition of the most effective hydromechanical modes flow about of the surfaces of the adsorbent granules with a continuous gas phase flow using the turbulization index, that is, assessing the contribution of the inertial component of the structure filtration flow of a continuous gas phase flow through the adsorbent layer. A self-adaptive automated control system for electroadsorption processes will allow achieving the highest levels of gas emissions purification, with optimal energy costs for mass transfer processes, and will provide an opportunity to smooth out technological, large-scale and other factors inherent in specific mass transfer processes and apparatus designs. The most important feature of the developed self-adaptive control system is multi-functionality and a wide range of variation of operating modes from energy-saving optimal modes to emergency capture modes in cases of emergency emissions and unexpected bursts of concentrations of harmful captured substances from the continuous gas phase flow.

1. Introduction

Filtration flows are used in many industrial technological processes and products of various branches of mechanical engineering, in technologies and equipment of the chemical industry and related industries [1-41]. Filtration is used in water treatment processes and in environmental technologies [42-62]. Filtration processes are an integral part of hydrology and oil and gas production technologies. The efficiency of such heat and mass transfer processes as absorption, extraction, rectification, evaporative cooling of industrial recycled water, etc. directly depends on the quality of implementation of two-phase
filtration flows in packing contact devices [63-87]. Filtration flows are also implemented in a wide range of environmental mass transfer equipment, in such processes as adsorption, ion exchange, desorption, etc. [88-117]. The intensity of mass exchange processes in environmental mass exchange equipment and the quality of gas emissions and liquid discharges cleaning directly depends on the quality of filtration flows through the layers of sorbents and ionites, the structure of filtration flows in the micropore space, and the intensity flow about of sorbent granules by filtration flows under the conditions of the developed filtration flows through the layers of sorbents (ionites) and combined impact of physical effects [118, 119], which significantly intensify the diffusion processes, it is possible to achieve stabilized high rates of the degrees of capture of harmful substances from the flows of continuous phases and to have tools for controlling the modes of operation of mass-exchange sorption apparatuses in wide ranges.

At the stage of commissioning, programs and algorithms for calibration of technological parameters of an electroadsorption apparatuses with a fixed adsorbent layer are implemented. Calibration of process parameters allows to obtain all the necessary information about mass transfer system and the adjustment ranges of hydrodynamics, mass transfer apparatuses and electric-field parameters, lower and upper limits of variation of parameters. Thus, we obtain the necessary information for implementing a program for controlling the operating modes of an electroadsorption apparatus with a fixed adsorbent layer, a detailed description of which will be presented in this paper. The program for controlling the modes of operation of electric adsorption mass exchange apparatuses allows for the purification of gas emissions both in energy and resource-saving modes, and in the modes of total trapping of harmful substances in conditions of unforeseen surges in concentrations in streams of continuous gas phases.

2. Methods and materials

Figure 1 shows the control scheme of the mass transfer electroadsorption apparatus. The scheme consists of sensors for the concentration of the extracted substance in the flow of a continuous gas phase $ConS$ and $ConS_0$ installed in the outlet and inlet pipes of the mass-exchange sorption apparatus, sensors of the gas flow rate FSS, gas pressure sensors $PS1$ and $PS2$, installed respectively in the upper and lower pipes of the electroadsorption mass-exchange apparatus, the VS voltage sensor on the electrode grids of the mass transfer apparatus and the current sensor $CurS$ in the apparatus power supply circuit. The continuous gas phase flow to be cleaned is injected into the mass transfer apparatus using the Fan air blower with an electric drive M. The rate of the air blower is controlled by the FC frequency converter. The voltage to the electrodes of the mass transfer apparatus is supplied from the power supply G through a current-limiting resistor R_{cl}, which serves to prevent overcurrent of the power source when charging the mass transfer apparatus's own electrical capacity. The PLC programmable logic controller performs a program for controlling the mass transfer electroadsorption apparatus, receiving information from sensors and generating control signals for the frequency converter FC and the power supply G. To ensure the discharge of the mass transfer apparatus's own capacity, if necessary, reduce the voltage on its electrodes, the discharge circuit serves. It works as follows: the comparator compares the voltage U_1 supplied from the source G with the voltage at the electrodes of the mass transfer apparatus U_2. As the source voltage increases the diode VD opens and the voltages U_1 and U_2 become equal. When the voltage of the source G decreases, the voltage at the electrodes of the mass transfer apparatus turns out to be higher, VD closes, and the comparator issues a command to turn on the contactor KM. In this case, the own capacity of the mass-exchange electroadsorption apparatus begins to discharge through a discharge resistor R_{dc} limiting the discharge current. The discharge will continue until the voltages U_1 and U_2 are equal and the comparator turns off the KM.
To determine the values of parameters required for the operation of the mass transfer apparatus control system, use the calibration procedure described in detail in the previous part of this work (Calibration of technological parameters of an electroadsorption apparatus with a fixed layer of adsorbent). This procedure is performed during commissioning and can be repeated if the results of the control system of the electroadsorption apparatus become unsatisfactory.

The control program is a cycle that runs all the time while the mass transfer apparatus is in operation. The main principle of the program is to implement the mode of operation of the electroadsorption mass transfer apparatus, which provides a balance between energy saving and efficiency, with the required high rates of gas emissions cleaning.

In figures 2 and 3 shows the algorithm of the control program. After starting the mass transfer electroadsorption apparatus, the operator enters the maximum allowable concentration of the extracted substance in the output stream of the continuous gas phase. This parameter is necessary for monitoring the quality of the mass transfer apparatus operation. Then the program issues a control command to stop the Fan air blower, and then enters the waiting cycle, which checks that the gas flow through the mass transfer apparatus does not occur.
Figure 2. Algorithm of the program for controlling the operating modes of an electroadsorption mass transfer apparatus with a fixed adsorbent layer.
Figure 3. Algorithm of the program for controlling the operating modes of an electrodosorption mass transfer apparatus with a fixed adsorbent layer.
Then the program enters the cycle of determining the ion wind voltage. The program receives the current value in the mass transfer apparatus circuit from the CurS sensor, and if it is less than the value of the ion wind current determined during calibration, the program checks whether the voltage applied to the mass transfer apparatus has reached the maximum. If it is reached, the program assigns the maximum allowable voltage for a mass transfer apparatus with a sorbent to the ion wind voltage variable U_{iw}. If the maximum voltage has not been reached, the program issues a command to the power supply to increase the voltage by 1 step, and then the cycle repeats. If the current in the mass transfer apparatus circuit exceeds the value of the ion wind current, taking into account the sensor error, the program assigns the U_{iw} variable the value of the actual voltage on the mass transfer apparatus obtained from the VS sensor.

Then the program issues a command to the frequency converter to set the air blower power frequency to 10% of the maximum, after which, using a waiting cycle, it waits until the gas flow rate through the mass transfer apparatus stops increasing. Then the program receives the pressure from the $PS1$ and $PS2$ sensors in the upper and lower pipes of the apparatus, respectively, and then calculates the porosity coefficient, which is included in the turbulence index formula.

Then the program starts to determine the turbulence index of the device. This method allows us to track the formation of the dynamics of the turbulent flow of a continuous gas phase and determine the appearance of the inertial component of the filtration flow structure. Since for environs with low porosity and relatively high hydraulic resistance at a low gas flow rate, the main flow resistance is created by the viscous component, which has a linear dependence on the flow rate, the appearance of a nonlinear increase in the pressure difference dP/H, minus the resistance of the adsorber gratings, can be judged on the formation of the dynamics of turbulent flow in the interstitial space of the adsorbent layer.

Turbulization index is an experimentally determined index that reflects the contribution of the inertial component of the filtration flow structure minus the viscous component, which must be objectively taken into account in conditions of filtration flows through layers of relatively low-permeable porous environs for such processes as ion exchange, adsorption, filtration drying, etc. In this case, the modified equation proposed by the authors is used, which provides a smooth transition from a linear viscous section of the filtration curve to a transient nonlinear one without breaking the velocity and pressure fields:

$$\frac{\Delta P}{H} = \alpha \mu \nu_f + \left(\frac{\nu_f - \nu_{kr}}{B} \right)^m,$$

where m is the exponent called the index of turbulence (for the layers of sorbents and ionites), B is the coefficient determined by the structure of the porous environ, α is coefficients reflecting the effect of the structure of the porous layer on the resistance to filtration flow, by the forces of viscous friction, μ is the dynamic viscosity of the continuous phase, ν_f is the filtration rate of the continuous phase through the sorbent layer, ν_{kr} is critical filtration rate limiting the linear section of the filtration curve, $\Delta P/H$ is specific flow friction of the sorbent layer.

As the filtration rate increases through the adsorbent layer, the component of hydraulic resistance, due to the action of inertia forces and increasing due to the development of turbulence in the interstitial space at a more intensive rate than the viscous friction forces, reaches a value sufficient to detect its presence in the total hydraulic resistance using the pressure measurement tools used. From this point on, the experimentally obtained dependence $\Delta P/H=f(\nu_f)$ becomes nonlinear, gradually deviating in the direction of increasing the total hydraulic resistance. The filtration rate at which the appearance of nonlinear filtration is detected is the critical value of the ν_{kr}, which determines the upper limit of the possible application of Darcy's law within the limits of the pressure measurement error allowed by the experimental technique and the accuracy of the graphical approximation of the experimental data. The algorithm presented in this paper makes it possible to automatically recognize the value of the critical rate of the ν_{kr} and to perform fine control of the filtration modes of flow through the layers of adsorbents in the inertial turbulent sector, up to the beginning of the fluidization mode and further.
Further, the control program of the electroadsorption mass transfer apparatus implements control of hydrodynamics through the adsorbent layer in the optimal range of turbulence indexes corresponding to the desired hydrodynamic modes from energy-saving modes to modes corresponding to the most intensive flow about of the surfaces of adsorbent granules and the maximum available dynamics of the turbulent flow of a continuous gas phase in the interstitial space when the filtration flow through the adsorbent layer is realized.

Then the program sets the initial value of the variable PerF (percent of frequency), which determines the frequency of the Fan air blower supply voltage as a percentage of the maximum, equal to 20. After that, the main work cycle begins. The program issues a command to the frequency converter to set the fan power frequency to 20% of the maximum and enters the waiting cycle, which provides waiting for the end of the increase in the gas flow rate through the mass transfer apparatus. After that, the program calculates the lower and upper limit values of the actual turbulence coefficient, taking into account the sensor errors, and then compares them with the optimal mopt value (the passport value for the sorbent, entered during calibration). If the optimal value is less than the upper limit of the range of actual values, the program adds 10 to the variable PerF, then at the beginning of the next iteration of the cycle, the frequency of the voltage that feeds the air blower will increase by 10%. If the optimal value is not less than the lower limit of the interval, the program will reduce the speed of the air blower by 10%. If the optimal value is in the interval, the program proceeds to the next steps without doing anything.

At the next stage of the cycle, the program controls the voltage that is applied to the electrodes of the mass transfer apparatus. To do this, the program receives Con and Con0 values from the concentration sensors of the extracted substance at the output and input of the apparatus, and then compares them with the maximum permissible concentration set by the operator. If the initial concentration of extracted substances at the entrance to the mass transfer apparatus Con0 does not exceed the permissible CONmax, or the concentration at the exit from the apparatus Con is zero, the voltage is not applied to the electrodes (the lower limit of energy saving is implemented). If Con0 exceeds the permissible concentration by no more than 25%, or Con is no more than 0,25 of the maximum concentration, the voltage U_{iw} is applied, at which the "ion wind" current was detected. If the concentration at the input to the mass transfer apparatus Con0 exceeds the permissible concentration by 50% or the Con concentration at the output is greater than 0,5 CONmax, the applied voltage is determined by the formula:

$$U_{ps} = U_{iw} + 0,5(U_{max} - U_{iw}),$$

where U_{max} – maximum voltage that can be applied to a mass transfer apparatus with a sorbent. If the Con0 concentration exceeds the permissible concentration by 75% or Con becomes more than 0,75 CONmax, respectively, the voltage applied to the mass transfer device will be equal to

$$U_{ps} = U_{iw} + 0,75(U_{max} - U_{iw}).$$

If the concentration of extracted substances at the Con0 inlet exceeds the permissible concentration by more than 75% or Con exceeds 0,75 CONmax, the maximum voltage is applied to the mass transfer apparatus.

In this paper, the control program includes arbitrary values of excess concentrations of captured substances in the continuous gas phase flow and an algorithm for adaptive flexible control of mass transfer system parameters. The operator control program can include any required technological parameters and limits of concentrations of captured substances, based on the properties (requirements) of a specific technological process and mass transfer sorption apparatus, properties of captured substances and their maximum permissible concentrations, etc.

Then the program checks if there is a threat of exceeding the concentration of the extracted substances in the outgoing stream of the continuous gas phase over the maximum allowable. If the Con concentration becomes equal or exceeds the value of 0,95 CONmax, the program issues a warning "The apparatus does not provide a stable capture mode or the sorbent needs to be replaced". The main cycle repeats during the entire operation time of the electroadsorption mass transfer apparatus.
3. Conclusions
In the third part of this work (Control of operating modes of an electroadsorption apparatus with a fixed layer of adsorbent), a program and algorithm for controlling the modes of operation of electroadsorption mass transfer apparatuses with a fixed adsorbent layer are presented, which allow mass transfer sorption systems to be self-adaptive and flexible by optimizing the hydrodynamics of the filtration flow of a continuous gas phase through the sorbent layer and a wide range of control parameters of the electric field that intensifies mass transfer processes and increases the capacity of sorbents, extending the time of protective action and reducing the diffusion resistance of sorbents. At the same time, all the necessary parameters of the mass transfer system, ranges of parameter variation, optimal control ranges necessary for the implementation of the control program are recognized automatically at the stage of commissioning of mass transfer sorption equipment using the program and algorithm for calibration of technological parameters, a detailed description of which is given in the previous part of this work (Calibration of technological parameters of an electroadsorption apparatus with a fixed layer of adsorbent).

All operations of the program for controlling the operating modes of an electroadsorption apparatus with a fixed adsorbent layer proceed with a constant current analysis of the concentrations of extracted components at the inlet and outlet of the mass-exchange electroadsorption apparatus. In cases of emergency emissions, the apparatus can automatically switch from energy-saving to emergency modes for capturing components extracted from gas flows, due to the increase in inertial components of the filtration flow structure and electric field strength parameters to the upper limit of regulation, which intensify mass transfer processes, increase the capacity of sorbents and ionize the flow of a continuous gas phase.

The developed system for controlling the modes of operation of electroadsorption mass transfer apparatuses, in combination with the developed new designs of mass transfer electro sorption apparatuses (Designs of electroadsorption mass transfer apparatuses), allows us to create self-adaptive systems for purifying gases emissions with the ability to operate effectively in significantly wider ranges of gas flow rates and concentrations of extracted harmful components, which makes the developed systems not only highly efficient, but also universal.

Systems for automatic calibration of technological parameters and self-adaptive flexible regulation of operating modes of electroadsorption mass transfer apparatuses with fixed layers of adsorbents have been developed. These systems are based on recognition of optimal hydrodynamic conditions for mass transfer processes that accompany active flow about of adsorbent surfaces by a continuous gas phase filtration flow, as well as optimization of electric field strength parameters taking into account the "ion wind", which leads to a significant intensification of mass transfer processes, increases the degree of capture of components extracted from gas (especially in conditions of ultra-low concentrations), reduces the intra-diffusion resistance of adsorbents, increases the capacity of sorbents, extends the time of the protective action of adsorbents in energy-saving conditions during the operation of electroadsorption apparatuses.

Systems and algorithms of automatic calibration and control of operation modes electro sorption mass transfer apparatuses with fixed layer of adsorbents in conjunction with the registration tools structures flows by continuous and dispersed phases [120] will ensure the highest performance and degrees of purification of gas emissions for different designs of mass transfer sorption apparatuses with the features of a specific mass transfer process. The developed systems and the intensifying effects on which they are based are especially relevant in conditions of capturing ultra-low concentrations of harmful substances extracted from gases, which is often found in environmental processes and is a very acute problem.

A self-adaptive flexible control system for operating modes of electroadsorption apparatuses with fixed layers of adsorbents allows achieving the highest available indicators of gas emission purification levels, with optimal energy costs for mass transfer processes and the ability to smooth out technological, large-scale and other factors inherent in specific mass transfer processes and apparatuses designs. It should be noted the ability of the developed control system for the modes of electroadsorption mass...
transfer apparatuses to quickly and self-adaptively respond to emergency emissions and sudden unexpected spikes in the concentrations of extracted harmful substances in the streams of continuous gas phases to be cleaned.

Acknowledgements
This work was supported by a grant from the President of the Russian Federation (MK-1287.2020.8) «Modelling of control processes in mass transfer environmental and petroleum processing equipment».

References
[1] Pokusaev B G, Tairov E A, Khan P V and Khramtsov D P 2018 Numerical and analytical approaches to modeling critical two-phase flow with granular layer Journal of Engineering Thermophysics 27(1) 20-9
[2] Khramtsov D P, Vyazmin A V, Pokusaev B G, Karlov S P and Nekrasov D A 2016 Numerical simulation of slug flow mass transfer in the pipe with granular layer Chemical Engineering Transactions 52 1033-8
[3] Merentsov N, Balashov A, Golovanchikov A and Topilin M 2020 The determination of hydraulic resistance during laminar filtration through layers of sorbents and ion-exchange granules in environmental mass exchange equipment EES Web of Conferences 193 02002
[4] Soloveva O 2021 Study of aerosol motion in granular and foam filters with equal porosity of the structure Advances in Intelligent Systems and Computing 1259 638-49
[5] Solovev S, Soloveva O, Khusainov R and Lamberov A 2021 Numerical investigation of the catalyst granule shapes influence on dehydrogenation reaction Advances in Intelligent Systems and Computing 1259 383-90
[6] Soloveva O, Solovev S, Khusainov R and Yafizov R 2021 Mathematical modelling of heat transfer in open cell foam of different porosities Advances in Intelligent Systems and Computing 1259 371-82
[7] Soloveva O V, Solovev S A and Khusainov R R 2019 Evaluation of the efficiency of prefilter models using numerical simulation Journal of Physics: Conference Series 1399(2) 022059
[8] Solovev S A, Soloveva O V, Gilmurahmanov B S and Lamberov A A 2019 Numerical investigation of the ethylbenzene dehydrogenation reaction in a fixed bed reactor with catalyst granules of various sizes Journal of Physics: Conference Series 1399(5) 055022
[9] Solovev S A, Antipin A V, Soloveva O V and Khusainov R R 2019 Determination of effective diameter of solid particles for the eulerian-eulerian modelling approach of fluidized bed Journal of Physics: Conference Series 1210(1) 012133
[10] Soloveva O V, Solovev S A, Khusainov R R, Shubina A S and Antipin A V 2019 Numerical simulation of gas flow in porous structures of various geometries Journal of Physics: Conference Series 1210(1) 012134
[11] Solovev S A, Soloveva O V and Antipin A V 2019 Investigation of the influence of fine particles on the discrete phase density in the numerical modelling of a fluidized bed Journal of Physics: Conference Series 1158(4) 042022
[12] Soloveva O V, Solovev S A, Khusainov R R and Shubina A S 2019 Investigation of the effect of material's cell size with the fixed porosity on the efficiency of aerosol particle deposition Journal of Physics: Conference Series 1158(4) 042023
[13] Soloveva O V, Solovev S A, Egorova S R, Lamberov A A, Antipin A V and Shamsutdinov E V 2018 CFD modeling a fluidized bed large scale reactor with various internal elements near the heated particles feeder Chemical Engineering Research and Design 138 212-28
[14] Solovev S A, Soloveva O V and Popkova O S 2018 Numerical simulation of the motion of aerosol particles in open cell foam materials Russian Journal of Physical Chemistry A 92(3) 603-6
[15] Akhmadiyev F G, Bekbulatov I G, Farakhov M I and Isyanov C K 2016 Mathematical modeling of filtering process of two-phase suspensions in tubular filters under nonisothermal conditions Theoretical Foundations of Chemical Engineering 50(1) 41-51
[16] Merentsov N A, Balashov V A, Bokhan S A, Nefed'eva E E, Tezikov D A and Groshev V V 2019 Modeling and calculation of flow filter IOP Conference Series: Earth and Environmental Science 224 012041

[17] Sokovnin O M and Zagoskin S N 2004 Kinetics of sorption of particles on granular filter Theoretical Foundations of Chemical Engineering 38(4) 399-403

[18] Shiryaeva E V, Gutin Yu V and Aksenov A A 2008 Determination of filtration and dewatering parameters of sediments in industrial filters Chemical and Petroleum Engineering 44(11-12) 611-21

[19] Dyachenko E N and Dyachenko N N 2013 Numerical modeling of filtration of liquid through layer of bulk filter Theoretical Foundations of Chemical Engineering 47(3) 262-5

[20] Solovev S A, Soloveva O V, Antipin A V and Shamsutdinov E V 2018 Investigation of internal elements impaction on particles circulation in a fluidized bed reactor Journal of Physics: Conference Series 944(1) 012114

[21] Soloveva O V, Solovev S A, Khusainov R R, Popkova O S and Panenko D O 2018 Investigation of the influence of the open cell foam models geometry on hydrodynamic calculation Journal of Physics: Conference Series 944(1) 012113

[22] Soloveva O V, Solovev S A and Popkova O S 2018 Modeling of the three-dimensional structure of open cell foam and analysis of the model quality using the example of pressure drop calculation Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 160(4) 681-94

[23] Solovev S A, Soloveva O V, Antipin A V and Arzamasova A G 2017 Numerical investigation of the isoparaffins dehydrogenations in large fluidized bed reactor Astra Salvensis 2017 311-21

[24] Mardanov R F, Soloveva O V and Zaripov S K 2016 Flow past a porous cylinder in a rectangular periodic cell: Brinkman and Darcy models comparison IOP Conference Series: Materials Science and Engineering 158(1) 012065

[25] Soloveva O V and Solovev S A 2016 Investigation of the influence of heated catalyst feeding system on the intensity of temperature-dependent chemical reaction in the fluidized bed apparatus IOP Conference Series: Materials Science and Engineering 158(1) 012086

[26] Soloveva O V, Solovev S A, Yafizov R R and Khusainov R R 2019 Determination of the effective thickness of an open cell foam filter using numerical simulation IOP Conference Series: Materials Science and Engineering 560(1) 012045

[27] Solovev S A, Soloveva O V and Sheshukov E G 2019 Influence of internal grids on particle motion in the fluidized bed reactor IOP Conference Series: Materials Science and Engineering 560(1) 012092

[28] Solovev S A and Soloveva O V 2019 Mathematical modeling of isoparaffins dehydrogenation in fluidized bed reactor IOP Conference Series: Materials Science and Engineering 537(6) 062073

[29] Soloveva O V, Solovev S A, MisbakhoR Sh and Yafizov R R 2019 Investigation of the aerosol particle deposition formation due to the capture of the filter fiber IOP Conference Series: Earth and Environmental Science 288(1) 012120

[30] Soloveva O V, Khusainov R R, Sheshukov E G and Yafizov R R 2019 Investigation of the effect of porosity on the particle deposition efficiency in the model of an open cell foam filter IOP Conference Series: Materials Science and Engineering 618(1) 012094

[31] Soloveva O V, Solovev S A, Shamsutdinov E V and Sheshukov E G 2019 Investigation of the multi-layer open cell foam filter model using numerical simulation and experimental studies IOP Conference Series: Earth and Environmental Science 337(1) 012059

[32] Soloveva O V, Solovev S A and Yafizov R R 2020 Determination of the particle deposition efficiency value in a granular and open cell foam filter IOP Conference Series: Materials Science and Engineering 709(3) 033064

[33] Soloveva O V 2020 Comparison of granular and open cell foam filter models by numerical simulation IOP Conference Series: Earth and Environmental Science 421(6) 062038
[34] Khusainov R R, Solovev S A, Soloveva O V and Ilyasov I R 2020 Numerical simulation and experimental study of the acetylene hydrogenation reaction *IOP Conference Series: Materials Science and Engineering* **734**(1) 012205

[35] Soloveva O V, Khusainov R R and Yafizov R R 2020 CFD modeling of aerosol flow through a granular filter with porous granules *IOP Conference Series: Materials Science and Engineering* **734**(1) 012180

[36] Khusainov R R, Soloveva O V, Solovev S A and Akhmetvaleeva LV 2020 Analysis of pre-filter models using numerical simulation *IOP Conference Series: Materials Science and Engineering* **862**(6) 062103

[37] Dmitrieva O S, Nguyen V L, Yakimov N D and Sheshukov E G 2019 Evaluation of the efficiency of rectangular separators to collect the particles from the gas flows *IOP Conference Series: Earth and Environmental Science* **337**(1) 012057

[38] Zinurov V E, Popkova O S and Nguyen V L 2019 Separator design optimization for collecting the finely dispersed particles from the gas flows *E3S Web of Conferences* **126** 00043

[39] Dmitriev A V, Zinurov V E and Dmitrieva O S 2018 Influence of elements thickness of separation devices on the finely dispersed particles collection efficiency *MATEC Web of Conferences* **224** 02073

[40] Dmitriev A V, Zinurov V E and Dmitrieva O S 2018 Intensification of gas flow purification from finely dispersed particles by means of rectangular separator *IOP Conference Series: Materials Science and Engineering* **451**(1) 012211

[41] Dmitriev A V, Zinurov V E and Dmitrieva O S 2019 Collecting of finely dispersed particles by means of a separator with the arc-shaped elements *E3S Web of Conferences* **126** 00007

[42] Fomenko A and Sokolov L 2015 Sorption removal of oil products from waste water *Ecology and Industry of Russia* **19**(5) 8-12

[43] Sheldaisov-Meshcheryakov A A, Solmanov P S, Maximov N M, Mozhaev A V, Ishutenko D I, Nikul’shin P A and Pimerzin A A 2019 Influence of the pore structure of a catalyst for demetallization of petroleum feedstock on the process results *Russian Journal of Applied Chemistry* **92**(10) 1392-8

[44] Dremicheva E 2019 Use of agricultural waste for wastewater treatment of industrial enterprises *Ecology and Industry of Russia* **23**(4) 16-9

[45] Prolejchik A, Gaponenkov I and Fedorova O 2018 Extraction of heavy metal ions from inorganic wastewater *Ecology and Industry of Russia* **22**(3) 35-9

[46] Nikolaeva L A, Golubchikov M A and Minneyarova A R 2018 Research on the mechanism and kinetics of oil-product adsorption from industrial wastewater by a modified hydrophobic carbonate sludge *Chemical and Petroleum Engineering* **53**(11-12) 806-13

[47] Sokolov L 2013 Use of wastes of grinding industry for cleaning of chromium containing effluent waters *World Applied Sciences Journal* **22**(5) 690-6

[48] Merentsov N A, Bokhan S A, Lebedev V N, Persidskiy A V and Balashov V A 2018 System for centralised collection, recycling and removal of waste pickling and galvanic solutions and sludge *Materials Science Forum* **927** 183-9

[49] Alexandrov R, Feklistov D, Laguntsov N and Kurchatov I 2019 Mobile installation of water treatment in the aftermath of emergency situations *Ecology and Industry of Russia* **23**(1) 4-10

[50] Dremicheva E 2019 Use of Agricultural Waste for Wastewater Treatment of Industrial Enterprises *Ecology and Industry of Russia* **23**(4) 16-9

[51] Dremicheva E S and Laptev A G 2019 Modeling the process of sorption for the purification of waste water from petroleum products and heavy metals *Theoretical Foundations of Chemical Engineering* **53**(3) 355-63

[52] Dremicheva E S and Shamsutdinov E V 2018 Intensification of sedimentation treatment of wastewater from oil products *Water and Ecology* **1** 3-8

[53] Nikolaeva L A and Iskhakova R Y 2019 Integrated Wastewater Treatment for a GRES *Thermal Engineering* **66**(8) 587-92
[54] Nikolaeva L A and Iskhakova R Ya 2019 Adsorption of industrial wastewater from oil products with application of mathematical modeling IOP Conference Series: Earth and Environmental Science 288(1) 012017
[55] Nikolaeva L A and Khamzina D A 2019 Purification of water sources from oil contamination by hydrophobic carbonate sludge IOP Conference Series: Earth and Environmental Science 288(1) 012018
[56] Nikolaeva L A and Iskhakova R Y 2019 Mathematical modeling of wastewater treatment by adsorption of petroleum products Chemical and Petroleum Engineering 55(1-2) 68-75
[57] Nikolaeva L A and Minnevarova A R 2019 Adsorption treatment of reverse-osmosis concentrate from water-treatment units at thermal power stations Thermal Engineering 66(5) 372-6
[58] Nikolaeva L A, Golubchikov M A and Minnevarova A R 2018 Research on the mechanism and kinetics of oil-product adsorption from industrial wastewater by a modified hydrophobic carbonate sludge Chemical and Petroleum Engineering 53(11-12) 806-13
[59] Nikolaeva L A and Golubchikov M A 2012 Study of the sorption of oil products of power station wastewater modified with a TPP illuminator slurry Thermal Engineering 59(5) 404-7
[60] Nikolaeva L A and Nedzvetskaya R Ya 2012 Purification of effluent waters from industrial enterprises using a biosorption technology Thermal Engineering 59(3) 258-60
[61] Kutergin A and Nedobukh T 2020 The use of aluminosilicate sorbent for the purification of natural waters from heavy metals Ecology and Industry of Russia 24(3) 19-23
[62] Krivoshcheev P A, Komarova L F, Poletaeva M A, Lebedev I A and Lavrinenko S S 2004 Wastewater treatment with new activated charcoals to remove butano Russian Journal of Applied Chemistry 77(9) 1515-7
[63] Golovanchikov A and Merentsov N 2019 Modelling of absorption process in a column with diffused flow structure in liquid phase Advances in Intelligent Systems and Computing 983 635-44
[64] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2020 Automatic control of operating modes of packed apparatus for selective gas emissions cleaning Ecology and Industry of Russia 24(2) 10-6
[65] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2019 The use of industrial wastes from machine-building enterprises as packing materials for small-sized absorbers for gas emissions purification MATEC Web of Conferences 298 00031
[66] Dmitriev A, Madyshiev I and Dmitrieva O 2020 Experimental study of hydraulic and heat and mass transfer parameters of inclined-corrugated contact elements of cooling tower sprinkler Ecology and Industry of Russia 24(1) 4-8
[67] Merentsov N A, Balashov V A, Bunin D Y, Lebedev V N, Persidskiy A V and Topilin M V 2018 Method for experimental data processing in the sphere of hydrodynamics of packed heat and mass exchange apparatuses MATEC Web of Conferences 243 5
[68] Madyshiev I N, Khafizova A I and Dmitrieva O S 2019 The study of gas-liquid flow dynamics in the inclined-corrugated elements of cooling tower filler unit E3S Web of Conferences 126 00031
[69] Dmitriev A, Madyshiev I and Dmitrieva O 2018 Cleaning of industrial gases from aerosol particles in apparatus with jet-film interaction of phases Ecology and Industry of Russia 22(6) 10-4
[70] Golovanchikov A B, Balashov V A and Merentsov N A 2017 The filtration equation for packing material Chemical and Petroleum Engineering 53 10-3
[71] Merentsov N, Persidskiy A and Topilin M 2019 Description of the process and packing materials for pulse liquid extraction Materials Today: Proceedings 19(5) 1908-12
[72] Merentsov N, Persidskiy A and Lebedev V 2019 Automatic parameter adjustment system for packing materials and control of flow modes in mass exchange columns Materials Today: Proceedings 19(5) 1899-903
[73] Merentsov N, Persidskiy A, Lebedev V, Topilin M and Golovanchikov A 2019 Modelling and calculation of industrial absorber equipped with adjustable sectioned mass exchange packing
[74] Merentsov N A, Persidskiy A V, Topilin M V, Lebedev V N, Balashov V A and Golovanchikov A B 2019 Experimental plant for studying hydrodynamics and heat and mass exchange processes in packing contact devices Journal of Physics: Conference Series 1278 012024

[75] Golovanchikov A B, Merentsov N A, Topilin M V and Persidskiy A V 2019 Dynamic packing for heat and mass exchange processes IOP Conference Series: Earth and Environmental Science 288 012089

[76] Merentsov N, Persidskiy A, Topilin M and Golovanchikov A 2019 Sectional automatic adjustment of catalyst layers in gas and liquid phase reactors MATEC Web of Conferences 298 00030

[77] Merentsov N A, Persidskiy A V, Groshev V V, Kozlovtsiev V A and Golovanchikov A B 2019 Self-organization of processes in gas and liquid-phase catalytic reactors Journal of Physics: Conference Series 1399 044041

[78] Golovanchikov A B, Merentsov N A and Balashov V A 2013 Modeling and analysis of a mechanical-draft cooling tower with wire packing and drip irrigation Chemical and Petroleum Engineering 48 595-601

[79] Merentsov N A, Persidskiy A V and Lebedev V N 2020 Use of wastes from metalworking machining for packings in contact heat-and-mass exchange devices Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019), Lecture Notes in Mechanical Engineering II 1443-54

[80] Merentsov N, Persidskiy A, Lebedev V, Prokhorenko N and Golovanchikov A 2019 Heat and mass exchange packing for desinfection of circulation water in electric field Advances in Intelligent Systems and Computing 983 547-59

[81] Merentsov N, Golovanchikov A, Lebedev V and Gendler A 2020 Modelling and calculation of a small-size evaporation cooling apparatus for industrial recirculated water with a heat-and-mass exchange packing based on wastes from metal-working machinery E3S Web of Conferences 193 02003

[82] Merentsov N A, Lebedev V N, Persidskiy A V and Golovanchikov A B 2020 Automatic control system for operation modes and calibration of technological parameters of evaporation cooling apparatuses Journal of Physics: Conference Series 1515 022004

[83] Merentsov N A, Lebedev V N, Persidskiy A V and Balashov V A 2019 Cascade bowl-type heat and mass exchange packing with dripping irrigation mode IOP Conference Series: Earth and Environmental Science 288 012106

[84] Merentsov N A, Lebedev V N, Golovanchikov A B, Balashov V A and Nefed'Eva E E 2018 Experimental assessment of heat and mass transfer of modular nozzles of cooling towers IOP Conference Series: Earth and Environmental Science 115 012017

[85] Persidskiy A V, Merentsov N A, Lebedev V N and Golovanchikov A B 2019 Heat and mass exchange packing with adjustable parameters for absorption and evaporation cooling IOP Conference Series: Earth and Environmental Science 288 012110

[86] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2020 Elastically deformable packing materials based on the waste of metalworking machines and hydrodynamic adjustment of contact blocks in mass-exchange apparatuses Materials Today: Proceedings https://doi.org/10.1016/j.matpr.2020.08.144

[87] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2020 Calibration of technological parameters of adjustable elastically deformable blocks of packed materials in mass exchange apparatuses Materials Today: Proceedings https://doi.org/10.1016/j.matpr.2020.08.147

[88] Golovanchikov A and Merentsov N 2019 Ion exchange in continuous apparatus with diffused flow structure in liquid Advances in Intelligent Systems and Computing 983 645-652

[89] Golovanchikov A B, Merentsov N A and Topilin M V 2019 Modeling of adsorption process in continuous counter current column having diffused flow structure in gaseous phase Journal of Physics: Conference Series 1278 012023
[90] Prolejchik A, Gaponenkov I and Fedorova O 2018 Extraction of heavy metal ions from inorganic wastewater Ecological Engineering of Russia 22(3) 35-9

[91] Fomenko A I and Sokolov L I 2019 Study of sorption properties of bog ores for extraction of manganese and iron ions from ground water Russian Journal of Applied Chemistry 92(2) 288-94

[92] Rachkova N G and Shukhumova I I 2010 Sorption of uranium, radium, and thorium by analcym-containing rock and sorbents based on plant tissue Russian Journal of Applied Chemistry 83(4) 620-4

[93] Zaporozhskikh T A, Tret'yakova Ya K, Grabe'nkykh V A, Russavskaya N V, Vshivistsev V Yu, Levanova E P, Sukhomaizova E N, Korabel I V and Korchevin N A 2008 Granulated sulfur-containing sorbents for recovery of heavy metal ions from aqueous solutions Russian Journal of Applied Chemistry 81(5) 886-8

[94] Fomenko A I and Sokolov L I 2019 Sorption properties of fly ash microspheres of thermal power plants Ecological Engineering of Russia 23(1) 50-4

[95] Smirnov V G, Dyrdin V V, Manakov A Y, Fedorova N I, Shikina N V and Ismagilov Z R 2019 Physicochemical and Sorption Properties of Natural Coal Samples with Various Degrees of Metamorphism Russian Journal of Applied Chemistry 92(10) 1410-21

[96] Fomenko A I and Sokolov L I 2017 Ash of incineration plants as industrial resource for extracting rare earth elements Ecology and Industry of Russia 21(12) 28-31

[97] Millar G J, Outram J G, Couperthwaite S J and Wing Leung C 2020 Methodology of isotherm generation: Multicomponent K⁺ and H⁺ ion exchange with strong acid cation resin Separation and Purification Technology 251 117360

[98] Collins F, Rozhkovskaya A, Outram J G and Millar G J 2020 A critical review of waste resources, synthesis, and applications for Zeolite LTA Microporous and Mesoporous Materials 291 109667

[99] Outram J G, Couperthwaite S J and Millar G J 2018 Comparison of powdered and PVC-bound todorokite media for heavy metal removal from acid mine drainage tailings Industrial and Engineering Chemistry Research 57(42) 14315-24

[100] Outram J G, Couperthwaite S J and Millar G J 2018 Enhanced removal of high Mn(II) and minor heavy metals from acid mine drainage using tunnelled manganese oxides Journal of Environmental Chemical Engineering 6(2) 3249-61

[101] Outram J G, Couperthwaite S J and Millar G J 2018 Investigation of manganese greensand activation by various oxidants Journal of Environmental Chemical Engineering 6(4) 4130-43

[102] Outram J G, Couperthwaite S J and Millar G J 2017 Ferrous poisoning of surface MnO₂ during manganese greensand operation Journal of Environmental Chemical Engineering 5(3) 3033-43

[103] Outram J G, Couperthwaite S J and Millar G J 2016 Comparative analysis of the physical, chemical and structural characteristics and performance of manganese greensands Journal of Water Process Engineering 13 16-26

[104] Millar G J, Miller G L, Couperthwaite S J, Dalzell S and Macfarlane D 2017 Determination of an engineering model for exchange kinetics of strong acid cation resin for the ion exchange of sodium chloride & sodium bicarbonate solutions Journal of Water Process Engineering 17 197-206

[105] Pepper R A, Couperthwaite S J and Millar G J 2018 A novel akaganeite sorbent synthesised from waste red mud: Application for treatment of arsenate in aqueous solutions Journal of Environmental Chemical Engineering 6(5) 6308-16

[106] Millar G J, Couperthwaite S J and Papworth S 2016 Ion exchange of sodium chloride and sodium bicarbonate solutions using strong acid cation resins in relation to coal seam water treatment Journal of Water Process Engineering 11 60-7

[107] Pember N, Millar G J, Couperthwaite S J, De Bruyn M and Nuttall K 2016 BDST modelling of sodium ion exchange column behaviour with strong acid cation resin in relation to coal seam
water treatment *Journal of Environmental Chemical Engineering* **4**(2) 2216-24

[108] Millar G J, Schot A, Couperthwaite S J, Shilling A, Nuttall K and De Bruyn M 2015 Equilibrium and column studies of iron exchange with strong acid cation resin *Journal of Environmental Chemical Engineering* **3**(1) 373-85

[109] Fomenko A I and Sokolov L I 2015 A study of sorption of phosphate ions from aqueous solutions by wood ash *Russian Journal of Applied Chemistry* **88**(4) 652-6

[110] Dremicheva E S 2017 Studying the sorption kinetics on peat ions of iron(III) and copper(II) from wastewater *Moscow University Chemistry Bulletin* **72**(4) 196-9

[111] Nikolaeva L A and Khaimova É G 2019 The use of energy industry waste as sorption material in the purification of reverse osmosis concentrate *Chemical and Petroleum Engineering* **55**(5-6) 427-32

[112] Nikolaeva L A, Zainullina É R and Al’-Okbi A K 2019 Adsorption drying of natural gas by carbonate sludge *chemical and Petroleum Engineering* **54**(11-12) 919-25

[113] Nikolaeva L A and Khusnutdinov A N 2018 A study of the absorption of nitrogen oxides from the boiler flue gases *Thermal Engineering* **65**(8) 575-9

[114] Nikolaeva L A and Khusnutdinov A N 2018 Purification of gas emissions of chemical industry enterprises by carbonaceous cutting *Ecology and Industry of Russia* **22**(8) 14-8

[115] Nikolaeva L A 2013 Research of sorption processes using chemical water purification sludge for nitrogen and sulfur oxides contained in smoke gases emitted from a thermal power station *Thermal Engineering* **60**(4) 244-247

[116] Smirnov V, Dyrin V, Kim T, Manakov A and Khoreshok A 2017 Experimental study of methane hydrates in coal *E3S Web of Conferences* **15** 01020

[117] Smirnov V G, Dyrin V V, Manakov A Y, Shikina N V and Ismagilov Z R 2019 Physicochemical and sorption properties of natural coal samples with various degrees of metamorphism *Russian Journal of Applied Chemistry* **92**(10) 1410-21

[118] Golovanchikov A B, Efremov M Yu and Dulkina N A 2011 *Intensification of mass transfer processes in an electric field* (Volgograd: Volgograd State Technical University Press) p 150

[119] Merentsov N A, Golovanchikov A B, Topilin M V, Persidskiy A V and Tezikov D A 2019 Mass transfer apparatus for a wide range of environmental processes *Journal of Physics: Conf. Series* **1399** 055028

[120] Golovanchikov A B, Zalipaeva O A and Merentsov N A 2018 *Modeling of sorption processes taking into account the flow structure* (Volgograd: Volgograd State Technical University Press) p 128