Inhibitory effect of ubiquitin-proteasome pathway on proliferation of esophageal carcinoma cells

Wei-Guo Zhang, Jie-Ping Yu, Qing-Ming Wu, Qiang Tong, Sheng-Bao Li, Xiao-Hu Wang, Guo-Jian Xie

METHODS: Esophageal carcinoma cell strain EC9706 was treated with MG-132 to inhibit its UPP specificity. Cell growth suppression was evaluated with 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. DNA synthesis was evaluated by 3H-thymidine (3H-TdR) incorporation. Morphologic changes of cells were observed under microscope. Activity of telomerase was examined by telomeric repeat amplification protocol (TRAP) of PCR-ELISA. Cell cycle and apoptosis were detected by flow cytometry (FCM). DNA fragment analysis was used to confirm the presence of apoptosis. Expression of p27kip1 was detected by immunocytochemical technique.

RESULTS: After exposed to MG-132, the growth and value of 3H-TdR incorporation of EC9706 cells were obviously inhibited. Cells became round, small and exfoliative under microscope. Contrast to cytoplasm staining in control group, the positive signals of p27kip1 and 3,3-diaminobenaidine (DAB) kit were purchased from Sigma Co. Ltd (USA). 3H-thymidine (3H-TdR) was provided by Beijing Atomic Power Research Institute. Telomeric repeat amplification protocol (TRAP) ELISA telomerase detection kit was obtained from intergen Company (USA). Monoclonal mouse antibody of p27kip1, ultra sensitive S-P kit, and 3,3-diaminobenaidine (DAB) kit were purchased from Fuzhou Maixin Biotechnology Co. Ltd. RPMI 1640 medium was obtained from GibcoBRL Company (USA). Low melting-temperature agarose was purchased from Promega Company (USA). DNA-PREP™ LPR and DNA-PREP™ stain were obtained from America Beckman Coulter Company.

CONCLUSION: MG-132 can obviously inhibit proliferation of EC9706 cells and induce apoptosis. The mechanisms include upregulation of p27kip1 expression, G1 arrest and depression of telomerase activity. The results indicate that inhibiting UPP is a novel strategy for esophageal carcinoma therapy.

Zhang WG, Yu JP, Wu QM, Tong Q, Li SB, Wang XH, Xie GJ. Inhibitory effect of ubiquitin-proteasome pathway on proliferation of esophageal carcinoma cells. World J Gastroenterol 2004; 10 (19): 2779-2784

http://www.wjgnet.com/1007-9327/10/2779.asp
of samples was measured three times for each group with three
wells at a wavelength of 550 nm with the enzyme linked
immunosorobant assay meter (PR 2100, SANOFI company,
France). The inhibitory rate (IR) was calculated according to
the formula: IR = [1-(absorbance of MG-132 group-absorbance of
background group)/(absorbance of control group-absorbance of
background group)]×100%.

Incorporation test of ^3^H-TdR

As described above, experimental group and control group
were cultured for 3 h with 100 mL/L FCS RPMI 1640, and then
for 12 h with FCS-free RPMI 1640. MG-132 and 1 μCi ^3^H-TdR
were added to each group, which was rinsed with PBS after 24,
48, 72 and 96 h and fixed with methyl alcohol and absolute ethyl
alcohol for 10 min each. Finally, 200 μL of 0.1 mol/L NaOH was
added, then 200 μL of each was taken after blowing, and mixed
in 5 mL scintillation liquid for overnight. On the following day,
the count per minute (CPM) of ^3^H was tested three times for
each group with three wells.

Morphologic changes of cells

Morphologic changes of EC9706 cells were observed under
microscope 24, 48, 72 and 96 h after treated with MG-132 (5 μmol/L).

Telomerase assay

The cells (10^5^-10^6^) treated with MG-132 (5 μmol/L) for 24, 48, 72
and 96 h were collected, respectively. After addition of 300 μL
telomerase assay lysis buffer (1×CHAPS), the cells were lysed
on ice. The lysate was incubated on ice for 30 min and then
centrifuged at 13,000 g for 25 min at 4 °C. The supernatant (2 μL)
was added to reaction solution containing 10 μL of TRAP
buffer, 2 units of Taq polymerase and 48 μL of DH2Oqs. PCR
was carried out through 33 amplification cycles, each cycle
consisting of denaturation at 94 °C for 30 s, primer annealing at
55 °C for 30 s, and extension at 72 °C for 30 s. The amplified
product was added to block/dilution buffer (250 μL), and
incubated at 37 °C for 30 min, and 5 μL of TRAP reactant was
then added and mixed. After incubated at 37 °C for 60 min, 100 μL
working solution of anti-DNP Ab was added and incubated for
30 min, then 100 μL of 3,3′,5,5′-tetramethylbenzidine (TMB)
substrate solution and 100 μL of stop reagent were added. The
absorbance value in each well was read at the wave lengths of
450 nm and 690 nm on an enzyme linked immunosorobant assay
meter. Telomerase activity was considered positive when the
absorbance value of a sample was at least 0.8 units. When
those were lower than 0.2 units, they were regarded as negative.

Flow cytometry detection

After cell cycle was synchronic, the cells of experiment group
were treated with MG-132 (5 μmol/L) for 48 h and 96 h. The
collected cells were added with DNA-PREP™LPR and DNA-
PREP™stain, respectively, after they were washed with PBS
and centrifuged. Cell cycle and apoptosis were detected by
flow cytometry (Epics XL, Beckman Coulter Company, USA)
and SYSTEM II™ software was used to dispose the data.

DNA ladder demonstration

As described above, the cells (7×10^5^/sample, both attached and
detached cells) were lysed with hypotonic lysis buffer (10 mmol/L edetic acid, 5 g/L Triton X-100, Tris-HCl (pH 7.4) for
15 min on ice and precipitated with 25 g/L polyethylene glycol
and 1 mol/L NaCI for 15 min at 4 °C. After centrifugation at
16,000 g for 10 min at room temperature, the supernatant was
treated with proteinase K (0.3 g/L) at 37 °C for 1 h and precipitated
with isopropanol. After centrifugation, each pellet was dissolved in
10 μL of Tris-EDTA (pH 7.6) and electrophoresed on a 17 g/L
agarose gel containing ethidium bromide. DNA ladder pattern
was identified under ultraviolet light.

Immunocytochemical staining

EC9706 cells cultured with MG-132 (5 μmol/L) for 48 h were
fixed with dimethyl ketone at 4 °C. The cells carrying the detected
antigen were stained following SP immunocytochemical staining
method using anti-p27kip1 as primary antibody. PBS was
substituted for primary antibody as negative control.

Statistics

The data were expressed as mean±SD. The difference between
each group was analyzed by t-test. P<0.05 was considered
statistically significant.

RESULTS

Inhibitory effect of MG-132 on EC9706 cell growth

The growth of EC9706 cells treated with 0.5-20 μmol/L of
MG-132 was significantly inhibited compared with that of
control group. While the cells exposed to MG-132 for 24 h
did MG-132 show significant effect. When the dose of MG-132
exceeded 5 μmol/L, only slight increases in IR of the cells were
observed (Figure 1).

Table 1 Evaluation of DNA synthesis by ^3^H-TdR incorporation (mean±SD)

Group	24 h	48 h	72 h	96 h
Control MG-132 (μmol/L)	4 295.52±136.32	5 236.17±221.36	5 642.92±105.41	5 863.43±206.58
0.5	3 764.68±97.37	2 879.83±86.25	1 918.73±76.49	1 759.29±89.23
1.0	3 526.14±101.42	2 643.29±79.38	1 547.25±68.94	1 366.18±52.49
2.5	3 402.34±93.44	2 567.76±68.21	1 260.37±51.27	910.25±45.37
5.0	3 324.78±65.43	2 411.56±69.34	840.79±41.17	517.83±41.26
10.0	3 301.29±59.28	2 360.40±49.28	820.56±39.76	498.71±40.14
15.0	3 294.12±67.33	2 324.25±47.30	810.17±45.61	485.26±37.56
20.0	3 280.54±62.46	2 320.60±46.83	804.63±51.34	476.90±38.41

*P<0.05, *P<0.01 vs control.

Figure 1 MTT assay of EC9706 cells after exposed to MG-132.
Morphologic changes of cells
EC9706 cells became round, small and exfoliative after exposed to MG-132 under microscope (Figure 2).

Inhibition of telomerase activity
After treated with MG-132 (5 µmol/L) for 24, 48, 72 and 96 h, respectively, EC9706 cells showed a gradual decrease in values of A compared with the control group (P<0.01). Furthermore, telomerase activity was negative (Table 2).

Table 2 Effect of MG-132 on telomerase activity of EC9706 cells (mean±SD)

Groups	24 h	48 h	72 h	96 h
Control	1.871±0.061	2.234±0.092	2.907±0.113	3.025±0.120
MG-132	0.154±0.008	0.085±0.006	0.072±0.004	0.067±0.003

\(^{b} P<0.01 \) vs control group.

Inhibition of DNA synthesis
The values of \(^{3}H\)-TdR incorporation of MG-132 group were decreased compared with the control group (Table 1).

Changes of cell cycle and apoptosis
The percentage of cells at \(G_{0}/G_{1}\) phase was increased and that
at G2/M and S was decreased ($P<0.01$). The rate of apoptotic cells treated with 5 µmol/L of MG-132 for 48 and 96 h was 31.7% and 66.4%, respectively (Table 3, Figure 3).

Table 3 Effect of MG-132 on cell cycle of EC9706 cells (mean±SD, %)

Groups	48 h	96 h				
	G_0/G_1	S	G_2/M	G_0/G_1	S	G_2/M
Control	40.4±3.9	46.5±4.3	13.1±1.0	44.6±4.1	40.9±2.3	14.5±1.4
MG-132	67.5±5.1	29.3±2.8	3.2±0.2	73.1±5.2	24.6±2.1	2.3±0.1

$^bP<0.01$ vs control group.

DNA ladder

Agarose electrophoresis showed marked ladders in MG-132 group, while the ladder was not detected in control group. Furthermore, DNA fragmentation was more apparent at 96 h (Figure 4).

Discussion

Proteolytic degradation by ubiquitin-proteasome system involves ATP-dependent covalent attachment of a macromolecular chain of ubiquitin (Ub) molecules to the target protein, followed by degradation through the multicatalytic 26S proteasome. The conjugation of Ub, a highly conserved 8.6 kDa protein, to its target protein is mediated by the serial actions of three enzymes. E1, the Ub-activating enzyme, activates Ub in an ATP-dependent manner. E2, the Ub-conjugating enzyme, catalyzes the attachment of Ub to the substrate protein. E3, the Ub-ligase, serves as a scaffold between E2 and the substrate and provides recognition specificity of the substrate. A protein tagged with a polyubiquitin chain is recognized and degraded by the 26S proteasome complex. This complex is composed of a 19S regulatory subcomplex and two 20S catalytic subcomplexes. UPP is extensively involved in physiological and biochemical processes. Some experiments showed that the low expression of some anti-oncogene including p53, p27kip1 in tumor cells was associated with the increasing activity of ubiquitin proteasome which leads to degradation of expression products of anti-oncogene, and have proved that deubiquitination of p53 is an important pathway for p53 stabilization11,12. Moreover, the degradation accommodation of some transcription factors was regulated by UPP, such as NF-kB, c-fos, c-jun, c-mos, c-myc and MATa13-17. So UPP is closely associated with the occurrence and development of malignant tumor.

Ubiquitin proteasome inhibitors include peptide aldehyde, borofax peptide and 3, 4-dichloro isocoumarin. MG-132, also known as carboxbenzoxyl-L-leucyl-L-leucyl-L-leucinal, a reversible, effective and specific peptide aldehyde inhibitor of ubiquitin-proteasome, could block UPP through inhibiting ubiquitin-mediated proteolysis by binding to and inactivating 20S and 26S proteasomes18-22.

In our study, esophageal cancer cell line EC9706 was exposed to MG-132 to observe whether UPP could be inhibited. We found that the proliferation of cells was obviously inhibited in a dose- and time-dependent manner. The results also revealed some anti-tumor mechanisms of MG-132. First, MG-132 could up-regulate the expression of p27kip1. p27kip1 was recently found23 as a anti-oncogene with function of negative regulation in tumor cells, inducing cell differentiation and apoptosis, enhancing cell’s adherence and regulating the resistance to medicines for noumenal tumors. p27kip1 protein is a cyclin dependent kinase inhibitor (CDKI) that could block G1/S transition of cell cycle by inhibiting the action of cyclin E-CDK2 complex and cyclin D-CDK4 complex24-26. p27kip1 expression decreases in esophageal cancer and it may correlate with the histologic differentiation. Reduction of p27kip1 has been considered to be an independent prognostic indicator of esophageal cancer27-30. The nuclear localization signal of p27kip1 contains a protein kinase B (PKB/Akt) consensus site at threonine 157, and phosphorylation of p27kip1 by PKB/Akt has been found to impair its nuclear import31,32, which is a key procedure to play its functional role33. We found that p27kip1 protein localized in cytoplasm of EC9706 cells showed low expression, but that localized both in cytoplasm and nuclei (>200).

Expression of p27kip1

In the control group, the cytoplasm was stained in brownish yellow and the nuclei were stained in blue. In the experiment group, both the cytoplasm and nuclei were stained in brownish yellow, indicating that the expression of p27kip1 in EC9706 cells was increased after treated with MG-132 (Figure 5).
and nuclei of EC9706 cells showed high expression after treated with MG-132. Our previous studies demonstrated that the growth of EC9706 cells and tumors implanted in nude mice was obviously inhibited, apoptosis was induced and cell cycle was arrested in G1 phase by up-regulating p27kip1. Second, MG-132 could depress telomerase activity. The activation of telomerase was closely associated with cyclin. It has been reported that inhibition of UPP could not only increase the expression of p27kip1, but also increase the expression of p53[135]. Moreover p27kip1 and p21 regulated by p53 could inhibit cyclin and result in decreased telomerase activity[16,37]. Third, MG-132 could cause G1 arrest, which may be involved in changes of cell cycle regulatory factors such as p27kip1. Fan et al.[30] obtained the same results as ours. But Ling et al.[39] tended to consider ubiquitin-proteasome inhibitors to cause G1 arrest. The difference may be involved in the different types of cells. The last, MG-132 could induce apoptosis, which may be closely associated with the functions mentioned above.

In conclusion, MG-132 can obviously inhibit proliferation of EC9706 cells and induce apoptosis. The mechanisms include upregulation of p27kip1 expression, G1 arrest and depression of telomerase activity. The results indicate that inhibiting UPP is a novel strategy for esophageal carcinoma therapy.

REFERENCES

1. Zhang WG, Wu QM, Wang XH, Xie GJ, Yu JP. Relationship between expression of survivin gene and biological characteristics in human esophageal carcinoma. *J Chinese Physicin* 2003; 5: 1378-1380
2. Wu QM, Li SB, Wang Q, Wang DH, Li XB, Liu CZ. The expression of COX-2 in esophageal carcinoma and its relation to clinicopathological characteristics. *Shijie Huaren Xiaohua Zazhi* 2001; 9: 11-14
3. Li SB, Wu QM, Wang Q, Wang XH, Xie GJ. Effects of adenosine-6-methylated human COX-2 antisense RNA on synthesis of DNA and proteins in esophageal carcinoma cell line. *Shijie Huaren Xiaohua Zazhi* 2003; 11: 517-521
4. King RW, Deshaies RJ, Peters JM, Kirschner MW. How proteolysis drives the cell cycle. *Science* 1996; 274: 1652-1659
5. Fuchs SY. The role of ubiquitin-proteasome pathway in oncogenic signaling. *Cancer Biol Ther* 2002; 1: 337-341
6. Wu QM, Yu JP, Tong Q, Wang XH, Xie GJ. Inhibition of adenosine-6-methylated p27kip1 gene on growth of esophageal carcinoma cell strain. *World J Gastroenterol* 2003; 9: 2404-2408
7. Hellmann H, Estelle M. Plant development: regulation by protein degradation. *Science* 2002; 297: 793-797
8. Whitehouse AS, Tisdale MJ. Increased expression of the ubiquitin-proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-kappaB. *Br J Cancer* 2003; 89: 1116-1122
9. *von der Lehr N, Johannson S, Larsson LG. Implication of the ubiquitin/proteasome system in Myc-regulated transcription. Cell Cycle* 2003; 2: 403-407
10. *Yun J, Lee WH. Degradation of transcription repressor ZBRK1 through the ubiquitin-proteasome pathway relieves repression of Gadd45a upon DNA damage. Mol Cell Biol* 2003; 23: 7305-7314
11. *Lim MS, Adamson A, Lin Z, Perez-Ordonez B, Jordan RC, Tripp S, Perkins SL, Elenitoba-Johnson KS. Expression of Skp2, a p27kip1 ubiquitin ligase, in malignant lymphoma: correlation with p27kip1 and proliferation index. Blood* 2002; 100: 2950-2956
12. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W. Deubiquitination of p53 by USAP is an important pathway for p53 stabilization. *Nature* 2002; 416: 648-653
13. McDade TP, Perugini RA, Vittimberga FJ Jr, Callery MP. Ubiquitin-proteasome inhibition enhances apoptosis of human pancreatic cancer cells. *Surgery* 1999; 126: 371-377
14. Salvat C, Aquaviva C, Jariel-Encontre I, Ferrara P, Pariat M, Steff AM, Carillo S, Pichaczek M. Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo? *Mol Biol Rep* 1999; 26: 45-51
15. *Lafarga M, Berciano MT, Pena E, Mayo I, Castano JG, Bohmann D, Rodrigues JP, Tavarez JP, Carmo-Fonseca M. Clastosomes: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. *Mol Biol Cell* 2002; 13: 2771-2782
16. *Gregory MA, Hano SR. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol* 2000; 20: 2423-2435
17. *von der Lehr N, Johannson S, Wu S, Bahram F, Castell A, Coteknaya C, Hyldbring P, Weidung I, Nakayama K, Nakayama KI, Soderberg O, Kerppola TK, Larson LG. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell* 2003; 11: 1189-1200
18. *Mailhes JB, Hilliard C, Lowery M, London SN. MG-132, an inhibitor of proteasomes and calpains, induced inhibition of oocyte maturation and apoptosis in mouse oocytes. Cell Chro- mosome* 2002; 1: 2
19. *Steinhibl ML, Turner RS, Gault JR. The protease inhibitor, MG132, blocks maturation of the amyloid precursor protein Swedish mutant preventing cleavage by beta-Secretase. *J Biol Chem* 2001; 276: 4467-4484
20. *Bonuccelli G, Sotgia F, Schubert W, Park DS, Frank PG, Woodman SE, Insabato L, Cammer M, Minetti C, Lisanti MP. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. *Am J Pathol* 2003; 163: 1663-1675
21. *Shibata T, Imaizumi T, Tamo W, Matsumiya T, Kumagai M, Cui XF, Yoshida H, Takaya S, Fukuda I, Satoh K. Proteasome inhibitor MG-132 enhances the expression of interleukin-6 in human umbilical vein endothelial cells: Involvement of MAP/ERK kinase. *J Immunol Cell Biol* 2002; 80: 226-230
22. *Baneree J, Liebsch A. Potential of the proteasomal inhibitor MG-132 as an anticancer agent, alone and in combination. *Anticancer Res* 2001; 21: 3941-3947
23. *Polvak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A. p27kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. *Genes Dev* 1994; 8: 9-22
24. *Manne U, Jhala NC, Jones J, Weiss HL, Chatla C, Meleth S, Suarez-Cuevaro C, Grizzle WE. Prognostic significance of p27kip1-1 expression in colorectal adenocarcinomas is associated with tumor stage. *Clin Cancer Res* 2004; 10: 1743-1752
25. *Center DM, Cruikshank WW, Zhang Y. Nuclear pro-IL-16 regulation of T cell proliferation: p27kip1-dependent G0/G1 arrest mediated by inhibition of Skp2 transcription. *J Immunol* 2004; 172: 1654-1660
26. *Wang G, Reisdorph R, Clark RE Jr, Miskimins R, Lindahl R, Miskimins WK. Cyclin dependent kinase inhibitor p27kip1 is upregulated by hypoxia via an ARNT dependent pathway. *J Cell Biochem* 2003; 90: 548-560
27. *Yasunaga M, Tabira Y, Nakano K, Iida S, Ichimaru N, Nagamoto N, Sakaguchi T. Accelerated growth signals and low tumor-infiltrating lymphocyte levels predict poor outcome in T4 esophageal squamous cell carcinoma. *Ann Thorac Surg* 2003; 70: 1634-1640
28. *Shamma A, Doki Y, Tsujinaka T, Shiozaki H, Inoue M, Yano M, Kawanishi K, Munden M. Loss of p27kip1 expression pre- dicts poor prognosis in patients with esophageal squamous cell carcinoma. *Oncology* 2000; 58: 152-158
29. *Shibata H, Matsubara O, Wakiyama H, Tanaka S. The role of cyclin-dependent kinase inhibitor p27kip1 in squamous cell carcinoma of the esophagus. *Pathol Res Pract* 2001; 197: 157-164
30. *Taniere P, Martel-Planche G, Saurin JC, Lombard-Bohas C, Bonuccelli G, Jariel-Encontre I, Ferrara P, Pariat M, Abita P, Tavani A. TP53 mutations, amplification of p53 and expression of cell cycle proteins in squamous cell carcinoma of the esophagus from a low incidence area in Western Europe. *Br J Cancer* 2001; 85: 721-726
31 Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. *Nat Med* 2002; 8: 1153-1160

32 Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D, Vinci F, Chiappetta G, Tschilis P, Bellacosa A, Fusco A, Santoro M. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27kip1 by PKB/Akt-mediated phosphorylation in breast cancer. *Nat Med* 2002; 8: 1136-1144

33 Singh SP, Lipman J, Goldman H, Ellis FH Jr, Aizenman L, Cangi MG, Signoretti S, Chiaur DS, Pagano M, Loda M. Loss or altered subcellular localization of p27 in Barrett’s associated adenocarcinoma. *Cancer Res* 1998; 58: 1730-1735

34 Zhang WG, Wu QM, Tong Q, Yu JP. Inhibitory effect of p27kip1 mediated by adenovirus on model of esophageal carcinoma in nude mice. *Shijie Huaren Xiaohua Zazhi* 2003; 11: 512-516

35 Fan XM, Wong BC, Wang WP, Zhou XM, Cho CH, Yuen ST, Leung SY, Lin MC, Kung HF, Lam SK. Inhibition of proteasome function induced apoptosis in gastric cancer. *Int J Cancer* 2001; 93: 481-488

36 Liu XJ, Wu QM, Tong Q, Zhang WG, Liu CZ, Yu JP. The effect of p27kip1 cDNA on the telomerase activity and cell cycle of SGC7901 cells. *Shiyong Aizheng Zazhi* 2003; 18: 253-256

37 Harada K, Kurisu K, Sadatomo T, Tahara H, Tahara E, Ide T, Tahara E. Growth inhibition of human glioma cells by transfection-induced P21 and its effects on telomerase activity. *J Neurooncol* 2000; 47: 39-46

38 Fan XM, Wong BC, Wang WP, Zhou XM, Cho CH, Yuen ST, Leung SY, Lin MC, Kung HF, Lam SK. Inhibition of proteasome function induced apoptosis in gastric cancer. *Int J Cancer* 2001; 93: 481-488

39 Ling YH, Liebes L, Ng B, Buckley M, Elliott PJ, Adams J, Jiang JD, Muggia FM, Perez-Soler R. PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. *Mol Cancer Ther* 2002; 1: 841-849