Effect of solid-state fermentation and ultrasonication processes on antimicrobial and antioxidant properties of algae extracts

Ernesta Tolpeznikaite1, Vytaute Starkute1,2, Egle Zokaityte1,2, Modestas Ruzauskas3,4, Renata Pilkaityte5, Pranas Viskelis6, Dalia Urbanoviciene6, Romas Ruibys7, João M. Rocha8,9 and Elena Bartkiene1,2*

1Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania, 2Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania, 3Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania, 4Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania, 5Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania, 6Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania, 7Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania, 8Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal, 9Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Algal biomass (AB) is prospective source of valuable compounds, however, Baltic Sea macroalgae have some challenges, because of their high microbial and chemical contamination. These problems can be solved, by using appropriate technologies for AG pre-treatment. The aim of this study was to evaluate the influence of two pre-treatments, solid-state fermentation with the Lactiplantibacillus plantarum LUHS135 and ultrasonication, on the antioxidant and antimicrobial characteristics of macro- (Cladophora rupestris, Cladophora glomerata, Fucellaria lumbricalis, Ulva intestinalis) and Spirulina (Arthrospira platensis) extracts. Also, combinations of extracts and LUHS135 were developed and their characteristics were evaluated. The total phenolic compound content was determined from the calibration curve and expressed in mg of gallic acid equivalents; antioxidant activity was measured by a Trolox equivalent antioxidant capacity assay using the DPPH• (1,1-diphenyl-2-picrylhydrazyl), ABTS•+ 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (Ferric Reducing Ability of Plasma) discoloration methods. Antimicrobial activity was measured by using agar well diffusion assay and in a liquid medium. The highest DPPH• and ABTS•+ was shown by C.rupestris and F.lumbricalis extract × LUHS135 combinations, the highest
Introduction

Algal biomass can be converted into a wide range of functional products (1). Despite, that they are a valuable source of functional compounds, our previous studies showed that the application of Baltic Sea macroalgae have some challenges because of their high microbial and chemical contamination (2). However, algae safety parameters could be improved by applying ethanolic extraction, which is a suitable technology for pathogen decontamination and reduces the toxic metal concentration in algae extracts (3). In addition to improvements in algae products’ safety parameters, it would be very beneficial to increase extraction efficiency. Therefore, in this study, two methods for algae pre-treatment were tested before extraction: (I) solid-state fermentation (SSF) with a selected lactic acid bacteria (LAB) strain and (II) ultrasonication. We hypothesized that algae biomass pre-treatment before extraction can lead to better properties of the extracts (higher antioxidant activity and total phenolic compound (TPC) content, as well as stronger antimicrobial properties against a broader spectrum of pathogenic and opportunistic strains). In addition, to increase the antimicrobial and antioxidant activity of the prepared extracts, combinations of algae extracts and a pure *Lactiplantibacillus plantarum* LUHS135 strain were developed. Our previous studies showed that the above-mentioned strain inhibits various pathogenic and opportunistic microorganisms and is suitable for fermentation of various substrates (4–7). The importance of algae biomass pre-treatment before extraction can be explained by algae cell composition, which is protected by complex cell walls (8, 9). It has been reported that the crucial step in obtaining bioactive compounds from micro- and macroalgal biomass is to achieve efficient cell disruption (10). Some algae pre-treatment technologies are described in the literature, and the most effective mechanical and biological techniques were mentioned (11, 12). Despite the fact that physical pre-treatment was found to be a cost-intensive process, ultrasonication was recommended as the most promising method for cell disintegration (9, 13, 14). Ultrasound breaks the cell structure and improves material transfer by enhancing the extraction from microalgae (9, 15–17). Also, biological pre-treatment with fungi, bacteria and/or their enzymes can be used to degrade lignin and hemicelluloses of algae cells (12, 18). There are numerous studies on algae pre-treatment using biological tools (19–21). In addition to the breakdown of lignin, biological pre-treatment generates other valuable compounds such as phenolic acids, benzoic acid, syringaldehyde, etc. (22). Other major advantages of biological pre-treatment are low energy consumption, simple operating conditions and equipment, no requirement for recycling the chemicals after pre-treatment, etc. (23–25). Solid state fermentation (SSF) process is based on the microorganisms grown on solid or semi-solid substrates or supports, and is more effective than the liquid phase submerged fermentation (26). We hypothesized that algae biomass SSF can lead to the deeper algae cells breakdown, which will lead to better properties of the extracts.

The aim of this study was to evaluate the influence of two pre-treatments, solid-state fermentation (SSF) with the *Lactiplantibacillus plantarum* LUHS135 strain and ultrasonication (for 45 min at 35 kHz), on the antioxidant and antimicrobial characteristics of macroalgae (*Cladophora rupestris*, *Cladophora glomerata*, *Furcellaria lumbricalis* and *Ulva intestinalis*) and microalgae [Spirulina (*Arthrospira platensis*)] extracts. In addition, combinations of algae extracts and the pure LUHS135 strain were developed and their antioxidant and antimicrobial characteristics were evaluated.

Materials and methods

Algae samples and lactic acid bacteria strain used in experiments

Samples of macroalgae (*Furcellaria lumbricalis*, *Ulva intestinalis*, *Cladophora rupestris* and *Cladophora glomerata*) were collected in May–June of 2021 on the Lithuanian coast. *Ulva intestinalis* and *C. glomerata* samples were taken from stones near the surface, while *F. lumbricalis* and *C. rupestris* samples were taken after a storm along the shore. The collected samples were cleaned three times in distilled water to remove sand and macroscopic invertebrates. Microalgae Spirulina (*Arthrospira platensis*) was purchased from the University of Texas Biological Labs (Austin, Texas, United States),...
multiplied according to instructions given by producer and used in experiments.

Before the experiments, all algal samples were lyophilized using a freeze-dryer FD8512S (ilShin®, Europe, Ede, The Netherlands) and ground into a powder (particle size < 0.2 mm) using a knife mill GM200 (Retsch, Düsseldorf, Germany). Freeze-dried samples were maintained at room temperature in a dark place until they were used.

The Lactiplantibacillus plantarum LUHS135 strain (LUHS135) was obtained from the Lithuanian University of Health Sciences collection (Kaunas, Lithuania). The characteristics of the LAB strain used, including the inhibition of strains of pathogenic and opportunistic bacteria, and fungi are described by Bartkiene et al. (4). In addition, our previous studies showed that feed with LUHS135 had a positive influence in vivo on piglets’ health parameters (27–29). The above-mentioned LAB strains were stored at −20°C in a Microbank system (Pro-Lab Diagnostics, United Kingdom) and propagated in de Man–Rogosa–Sharpe (MRS) broth (CM 0359, Oxoid Ltd, Hampshire, United Kingdom) and propagated in de Man–Rogosa–Sharpe (MRS) broth (CM 0359, Oxoid Ltd, Hampshire, United Kingdom) at 30 ± 2°C for 48 h, and a pure LUHS135 strain was used (LUHS135 strain/algae extract; 50/50, by volume). The principal scheme of the experiment is given in Figure 1. Three groups of samples were prepared: (I) extracts and extracts × LUHS135 combinations prepared from non-pre-treated algae, (II) extracts and extracts × LUHS135 combinations prepared from ultrasonicated algae and (III) extracts and extracts × LUHS135 combinations prepared from fermented algae. In every group pure extract as well as extract combinations with the LUHS strain were tested (ClaR = Cladophora rupestris; ClaG = Cladophora glomerata; Ul = Ulva intestinalis; Furc = Furcellaria lumbricalis; Sp = Spirulina (Arthrospira platensis); non = extracts prepared from non-pre-treated algae; ultr = extracts prepared from ultrasonicated algae; ferm = extracts prepared from fermented algae; LUHS135 = extract × LUHS135 strain combination). There were 30 samples total: Group (I): ClaRnon, ClaRnonLUHS135, ClaGnon, ClaGnonLUHS135, Furcnon, FurcnonLUHS135, Ulnon, Ul nonLUHS135, Spnon and SpnonLUHS135; Group (II): ClaRultr, ClaRultrLUHS135, ClaGultr, ClaGUltrLUHS135, Furcultr, FurcultrLUHS135, Ulultr, UlultrLUHS135, Spultr and SpultrLUHS135 and Group (III): ClaRferm, ClaRfermLUHS135, ClaGferm, ClaGfermLUHS135, Furcferm, FurcfermLUHS135, Ulferm, UlfermLUHS135, Spferm and SpfermLUHS135.

Analysis of algae color characteristics and pH

The color coordinates of the algae extracts and their combinations with the LUHS135 strain were evaluated using a CIE L*a*b* system (CromaMeter CR-400, Konica Minolta, Marunouchi, Tokyo, Japan) (3). The pH of samples was evaluated with an “inoLab pH Level 3” pH meter (Hanna Instruments, Weilheim, Germany).

Extracts and extract × lactiplantibacillus plantarum LUHS135 strain combinations preparation

Five grams of the lyophilized algal samples (non-pretreated, fermented and ultrasonicated, for a total of 15 samples) were extracted with 100 mL of ethanol/water (70:30 v/v) (30) by incubation at room temperature (22 ± 2°C) overnight with stirring (Vibramax 100, Heidelberg, Nuremberg, Germany). Then, extracts were centrifuged at 3,500 rpm for 10 min at 4°C and filtered through Whatman No. 4 filter paper. Ethanol was removed by rotary evaporation in the extract. The concentrate and the supernatant of the extract were lyophilized and weighted.

For the preparation of extract × LUHS135 strain combinations, it was propagated in MRS broth (CM 0359, Oxoid Ltd, Hampshire, United Kingdom) at 30 ± 2°C for 48 h, and a pure LUHS135 strain was used (LUHS135 strain/algae extract; 50/50, by volume). The principal scheme of the experiment is given in Figure 1. Three groups of samples were prepared: (I) extracts and extracts × LUHS135 combinations prepared from non-pre-treated algae, (II) extracts and extracts × LUHS135 combinations prepared from ultrasonicated algae and (III) extracts and extracts × LUHS135 combinations prepared from fermented algae. In every group pure extract as well as extract combinations with the LUHS strain were tested (ClaR = Cladophora rupestris; ClaG = Cladophora glomerata; Ul = Ulva intestinalis; Furc = Furcellaria lumbricalis; Sp = Spirulina (Arthrospira platensis); non = extracts prepared from non-pre-treated algae; ultr = extracts prepared from ultrasonicated algae; ferm = extracts prepared from fermented algae; LUHS135 = extract × LUHS135 strain combination). There were 30 samples total: Group (I): ClaRnon, ClaRnonLUHS135, ClaGnon, ClaGnonLUHS135, Furcnon, FurcnonLUHS135, Ulnon, Ul nonLUHS135, Spnon and SpnonLUHS135; Group (II): ClaRultr, ClaRultrLUHS135, ClaGultr, ClaGUltrLUHS135, Furcultr, FurcultrLUHS135, Ulultr, UlultrLUHS135, Spultr and SpultrLUHS135 and Group (III): ClaRferm, ClaRfermLUHS135, ClaGferm, ClaGfermLUHS135, Furcferm, FurcfermLUHS135, Ulferm, UlfermLUHS135, Spferm and SpfermLUHS135.
Determination of the total phenolic compound content

The total phenolic compound (TPC) content in the extracts was determined according to the Folin–Ciocalteu method (31) with slight modifications (32). Samples (1.0 mL) were introduced into test cuvettes followed by 5.0 mL 10% (1/10, v/v) of Folin–Ciocalteu’s reagent by diluting a stock solution with ultra-pure distilled water and 4.0 mL of Na$_2$CO$_3$ (7.5%). The system was then placed at ambient temperature for 1 h. The absorbance was measured at 765 nm using a Genesys-10 UV/VIS spectrophotometer (Thermo Spectronic, Rochester, NY, United States). The concentration of TPC was determined from the calibration curve and expressed in mg of gallic acid equivalents (GAE) in ml of extracts.

Determination of the antioxidant capacity of algae extracts

The antioxidant activity of algae extracts was measured by DPPH•*, ABTS•+ and FRAP discoloration methods. Calculation of all antioxidant assays was carried out using Trolox calibration curves and expressed as µmol of the Trolox equivalent (TE) per one gram of ml of extract (µmol TE/ml).

DPPH• activity

The DPPH• (2,2-diphenyl-1-picrylhydrazyl hydrate free radical) scavenging capacity of the algal extracts was determined by the method of Brand-Williams et al. (33) with slight modifications (34). Twenty microliters of extract were allowed to react with 2 mL of DPPH• ethanolic solution (2 mL, 6 × 10$^{-5}$ M) by mixing in a cuvette with a 1 cm path length for 30 min in the dark. The decrease in absorbance was measured at 515 nm using a Genesys-10 UV/VIS spectrophotometer (Thermo Spectronic, Rochester, NY, United States).

ABTS•+ activity

The radical scavenging activity of extracts was also measured by ABTS•+ (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical cation assay (35) as described by Urbonaviciene et al. (32). ABTS•+ solution (2 mM) was prepared by dissolving 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt in 50 mL of phosphate-buffered saline (PBS) obtained by dissolving 8.18 g NaCl, 0.27 g KH$_2$PO$_4$, 1.42 g Na$_2$HPO$_4$ and 0.15 g KCl in 1 L of pure water. The pH of the prepared solution was adjusted to 7.4 using NaOH. Then the K$_2$S$_2$O$_8$ solution (70 mM) was prepared in pure water. Briefly, 2 mL of ABTS•+ radical solution was mixed with 20 µL extract also in a 1 cm path length cuvette. The reaction mixture was kept at ambient temperature in the dark for 30 min, and the absorbance was read at 734 nm using a Genesys-10 UV/Vis spectrophotometer (Thermo Spectronic, Rochester, NY, United States).
United States). Trolox was used as a standard. A duplicate determination was made from each extract.

FRAP activity

The ferric reducing antioxidant power (FRAP) assay was carried out by the method of Benzie and Strain (37) with some modifications (38). For the FRAP assay, 0.3 M of sodium acetate buffer (pH 3.6) was prepared by dissolving 3.1 g of sodium acetate and 16 mL of acetic acid in 1,000 mL of distilled water; a 10 mM TPTZ solution was prepared by dissolving 0.031 g of TPTZ in 10 mL of 40 mM HCl; and a 20 mM ferric solution was prepared by dissolving 0.054 g of FeCl₃·6H₂O in 10 mL of distilled water. Working FRAP reagent was prepared by freshly mixing acetate buffer, TPTZ and ferric solutions at a ratio of 10:1:1. Two milliliters of freshly prepared FRAP working solution and 20 µL of extract were mixed and incubated for 30 min at ambient temperature. The change in absorbance due to the reduction of the ferric-tripryridyliiazine (Fe III-TPTZ) complex by the antioxidants present in the samples was measured at 593 nm using a Genesys-10 UV/VIS spectrophotometer.

Evaluation of the antimicrobial activity of algal extract samples

The algal extracts as well as algal extract × LUHS135 strain combination antimicrobial properties were evaluated by testing their abilities to inhibit the following pathogenic and opportunistic strains: Salmonella enterica, Bacillus cereus, Enterococcus faecium, Staphylococcus aureus, Escherichia coli, Streptococcus mutans and Enterococcus faecalis. Antimicrobial properties of the samples were evaluated by using the agar well diffusion method and in a liquid medium.

For the agar well diffusion assay, suspensions of 0.5 McFarland standard of each pathogenic bacterial strain were inoculated onto the surface of cooled Mueller–Hinton agar (Oxoid, Basingstoke, UK) using sterile cotton swabs. Wells 6 mm in diameter were punched in the agar and filled with 50 µL of the algal extract. The antimicrobial activities against the tested bacteria were established by measuring the inhibition zone diameters (mm). The experiments were repeated three times, and the average diameter of the inhibition zones in mm was calculated.

To evaluate the antimicrobial activity of the algal extracts and algal extracts × LUHS135 combinations in liquid medium, the algal samples were diluted 1:3 (v/v) with physiological solution. Then we added 10 µL of the pathogenic and opportunistic bacterial strains, cultured in a selective medium, to the different concentrations of samples (500 and 2,000 µL) and incubated them at 35°C for 24 h. After incubation, the viable pathogenic and opportunistic bacterial strains in algal extract and/or in algal extracts × LUHS135 combination were controlled by plating them on selective medium. The results were interpreted as (−) if the pathogens did not grow on the selective medium and (+) if the pathogens grew on the selective medium. Experiments were performed in triplicate.

Statistical analysis

Extract preparation of algal samples was performed in duplicate, while all analytical experiments were carried out in triplicate. The calculated mean values, using the statistical package SPSS for Windows (Ver.15.0, SPSS, Chicago, IL, United States), were compared using Duncan’s multiple range test with significance defined at p ≤ 0.05. A linear Pearson’s correlation was used to quantify the strength of the relationship between the variables. The results were recognized as statistically significant at p ≤ 0.05.

Results and Discussion

Selection of algae fermentation duration before extract preparation according to changes in their pH

The changes in pH values during algae fermentation are shown in Figure 2. In comparison to the non-fermented samples, a pH higher than 7.0 was established for Cladophora rupestris, Ulva intestinalis and Spirulina samples (7.35, 7.98 and 7.72, respectively). Non-fermented Cladophora glomerata and Furcellaria lumbricalis samples had average pH values of 5.95 and 6.74, respectively. The most intensive fermentation and reductions of pH values was found from 0–12 h and from 12–24 h of fermentation. From 0–12 h and from 12–24 h of fermentation the pH values of Cladophora rupestris, Cladophora glomerata, Ulva intestinalis, Furcellaria lumbricalis and Spirulina samples reduced by an average of 1.36 and 1.12, 1.17 and 1.13, 1.26 and 1.27 and 1.28 and 1.19 times, respectively.

Although fermentation during the period from 24–36 h was not as intensive as fermentation in previous studies, after 36 h of fermentation significantly lower pH values for all of the tested algae samples were found when compared with samples fermented for 24 h. However, after 48 h of fermentation significant differences between the algae pH values were not found, and after 72 h of fermentation some of the algae sample pH values started to increase. Univariate analyses of variance showed that the variety of algae is a significant factor in sample pH (p = 0.017). However, the duration of fermentation and interaction with analyzed factors did not significantly affect the pH of the samples. According to these
results, a fermentation duration of 36 h for extract preparation was selected.

Literature on algae fermentation is scarce; however, our previous studies showed that fermentation of the LUHS135 strain (duration of fermentation 12 h) significantly reduced the pH of *C. rupestris*. However, the pH of other tested algae samples (*U. intestinalis* and *F. lumbricalis*) remained unchanged (2). One of the main goals of the fermentation process is to drop the pH, and on average, the recommended pH for fermented food is 4.6. A decrease in pH is an indicator of an effective process; however, changes to the fermentable substrate can be caused by many factors, i.e., the technological microorganism’s (used for fermentation) characteristics, nutrient source in fermentable media, duration of fermentation, humidity of the substrate, etc. It has been reported that the moisture content of the substrate has a significant influence on pH and, in most cases, lower pH values and higher total titratable acidity were obtained for peas in solid state fermentation conditions (38). The practice of LAB-based food, as well as feed fermentations, happened accidentally in the beginning, but soon spread due to its many benefits including nutrition, safety and flavor (38, 39). Overall, during the fermentation process many compounds are obtained as secondary metabolites of technological microorganisms (40, 41). Also, bound phenolic compounds are bio-converted from their conjugated forms to their free forms, and this is explained by their breakdown, activities of the fermentable substrate enzymes, as well as activity of technological microorganisms (42). Finally, this study showed that yeast extract is a suitable supplement for increasing algae samples fermentation effectiveness.

Color coordinates and pH of algae extracts and algae extracts × LUHS135 combinations

Color coordinates (*L*[*] = lightness; *a*[*] = redness; *-a*[*] = greenness; *b*[*] = yellowness; *-b*[*] = blueness) and pH of the algae extracts and algae extracts × LUHS135 combinations are shown in Table 1. When comparing all three groups of extracts (non-pre-treated, ultrasonicated and fermented before extraction), the lowest *L*[*] coordinates were from ClaG_{non}, ClaR_{ultr} and ClaR_{fermLUHS135} samples (42.5, 41.3 and 49.5 NBS, respectively). The most intensive greenness (*-a*[*]) was from Ul_{non}, Ul_{ultr} and Ul_{ferm} samples (-14.7, -13.7 and -6.86 NBS, respectively). The lowest yellowness (*b*[*]) was from ClaG_{non}, Sp_{ultr} and ClaG_{ferm} samples (24.8, 23.7 and 23.1 NBS, respectively).

When comparing all of the samples, all of the analyzed factors as well as their interactions had significant effects on all color coordinates; however, algae species, pre-treatment used before extract preparation, extract × LUHS135 combination interaction, algae species × pre-treatment interaction and the algae species × LUHS135 combination interaction did not have significant effects on pH of samples (Table 1). In contrast, the pre-treatment × LUHS135 combination interaction, as well as the algae species × pre-treatment × LUHS135 combination interaction, showed a significant influence on sample acidity (*p* = 0.031 and *p* = 0.004, respectively). Also, a weak, negative correlation between the sample pH and *a*[*] coordinate was found (*r* = -0.289, *p* = 0.006) (Table 2). In all cases, the addition
TABLE 1 Color coordinates (L*, lightness; a*, redness; b*, greenness; b’, yellowness; b–, blueness) and pH of the algae extracts and algae extracts × LUHS135 combinations.

Extracts and extracts × LUHS135 combinations	Color coordinates, NBS	pH	Multivariate analysis of variance			
	L*	a*	b*	Factor	Dependent variable	p
Extracts and extracts × LUHS135 combinations prepared from non-pre-treated algae						
CladR_non	64.6 ± 0.32a	−13.8 ± 0.11b	47.5 ± 0.36c	Algae species	L*	0.0001
CladG_nonLUHS135	61.1 ± 0.26a	−1.40 ± 0.15b	44.6 ± 0.33c	a*	0.0001	
Clad_non	42.5 ± 0.10a	−1.75 ± 0.19b	24.8 ± 0.18c	b*	0.0001	
CladG_nonLUHS135	50.6 ± 0.12a	2.61 ± 0.105b	34.8 ± 0.39c	pH	0.712	
Furc_non	79.2 ± 0.34a	−3.57 ± 0.022b	32.2 ± 0.16b	Pretreatment used before extracts preparation	a*	0.0001
Furc_nonLUHS135	60.5 ± 0.25a	10.4 ± 0.24b	47.8 ± 0.25b	b*	0.0001	
Uul_non	52.4 ± 0.32a	−14.7 ± 0.16b	41.3 ± 0.37b	pH	0.052	
Uul_nonLUHS135	62.9 ± 0.13a	−2.27 ± 0.031b	45.8 ± 0.33b	Extract × LUHS135	L*	0.0001
Sp_non	59.9 ± 0.32a	−3.40 ± 0.114b	49.1 ± 0.31b	combination interaction	a*	0.0001
Sp_nonLUHS135	64.6 ± 0.10a	4.04 ± 0.015b	44.9 ± 0.12b	b*	0.0001	
Extracts and extracts × LUHS135 combinations prepared from ultrasonicated algae						
CladR	41.3 ± 0.31a	−1.55 ± 0.064b	24.4 ± 0.21b	Algae species × L*	0.0001	
CladR_nonLUHS135	45.0 ± 0.24b	3.42 ± 0.121b	29.2 ± 0.10b	pre-treatment interaction	a*	0.0001
CladG	50.8 ± 0.37b	−7.16 ± 0.092b	33.5 ± 0.34b	b*	0.0001	
CladG_nonLUHS135	59.8 ± 0.36b	−0.65 ± 0.021b	40.0 ± 0.32b	pH	0.058	
Furc	71.8 ± 0.44a	2.23 ± 0.105b	52.6 ± 0.35b	Algae species × LUHS135	L*	0.0001
Furc_nonLUHS135	65.1 ± 0.26a	4.43 ± 0.113b	45.7 ± 0.22b	combination interaction	a*	0.0001
Uul	55.4 ± 0.37a	−13.7 ± 0.24b	45.7 ± 0.34b	b*	0.0001	
Uul_nonLUHS135	57.1 ± 0.10a	−1.26 ± 0.031b	47.1 ± 0.12b	pH	0.362	
Sp	79.9 ± 0.41a	−5.49 ± 0.154b	23.7 ± 0.24b	Pre-treatment × LUHS135	L*	0.0001
Sp_nonLUHS135	65.3 ± 0.31a	5.17 ± 0.072b	44.6 ± 0.25b	combination interaction	a*	0.0001
Extracts and extracts × LUHS135 combinations prepared from fermented algae						
CladR	54.7 ± 0.25b	−4.55 ± 0.094b	33.5 ± 0.34b	Algae species	pH	0.031
CladG_nonLUHS135	49.5 ± 0.37b	3.33 ± 0.046b	34.5 ± 0.22b	4.02 ± 0.084b	a*	0.0001
CladG	63.2 ± 0.22b	1.95 ± 0.164b	23.1 ± 0.40b	pre-treatment × LUHS135	b*	0.0001
CladG_nonLUHS135	62.4 ± 0.24b	7.75 ± 0.140b	45.8 ± 0.41b	pH	0.004	
Furc	65.6 ± 0.27b	4.67 ± 0.025b	43.8 ± 0.44b	combination interaction	b*	0.0001
Furc_nonLUHS135	64.0 ± 0.38b	8.31 ± 0.165b	48.0 ± 0.31b	pH	0.004	
Uul	76.8 ± 0.25b	−6.86 ± 0.111b	31.6 ± 0.22b	4.95 ± 0.081b	a*	0.0001
Uul_nonLUHS135	56.8 ± 0.42b	6.50 ± 0.202b	41.7 ± 0.14b	b*	0.0001	
Sp	83.1 ± 0.14b	−1.67 ± 0.174b	31.5 ± 0.15b	5.20 ± 0.107b	L*	0.0001
Sp_nonLUHS135	71.7 ± 0.21b	3.08 ± 0.037b	43.2 ± 0.38b	b*	0.0001	

CladR, Cladophora rupestris; CladG, Cladophora glomerata; UL, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-treated algae; ult, extracts prepared from ultrasonicated algae; ferm, extracts prepared from fermented algae; LUHS135, extracts × LUHS135-strain combination; L*, lightness; a*, redness; b*, greenness; b’, yellowness; b–, blueness; NB, National Bureau of Standards units; data are represented as means (n = 3 replicates of analysis) ± SE. a–l indicate the same analytical parameters in different algae species groups. Means with different letters are significantly different (p ≤ 0.05).

The color changes can be explained by the fact that during fermentation, the substrate is acidified, and organic acids have an influence on oxidation processes which can lead to color changes (38). In many cases, colored compounds of the LUHS135 multiplied strain reduces the algae extracts × LUHS135 combinations until an average pH of 3.96; however, the highest pH was for Sp_non, Sp_ult and Furc_ ferm samples (8.69, 7.67 and 5.59, respectively).
The total phenolic compounds (TPC) content of the algae extracts and the influence of two pre-treatments, solid-state fermentation with the Lactiplantibacillus plantarum LUHS135 and ultrasonication is given in Table 3. In comparison, the TPC content multivariate analysis of variance showed that algae species \((p \leq 0.0001)\), algae × pre-treatment before extraction interaction \((p \leq 0.0001)\) and algae species × LUHS135 combination interaction \((p \leq 0.003)\) had significant effects on TPC content in samples. The lowest TPC content in the non-pre-treated samples group was found in Cla\textsubscript{non}, Ul\textsubscript{non} and Sp\textsubscript{non} samples (on average 1.18 mg GAE/mL), and the highest was found in Cla\textsubscript{ferm}, Ul\textsubscript{ferm} and Fur\textsubscript{ferm}LUHS135 samples (on average 13.28 mg GAE/mL). In comparison, extracts and extracts × LUHS135 combinations prepared from ultrasonicated algae, the lowest TPC content was found in Sp\textsubscript{ultr} samples (0.51 mg GAE/mL), and the highest TPC content was in Cla\textsubscript{ultr}LUHS135, Cla\textsubscript{ultr}LUHS135 and Fur\textsubscript{ultr}LUHS135 samples (on average 12.23 mg GAE/mL). Similar tendencies were established in the fermented samples group, and the lowest TPC content was found in Sp\textsubscript{ferm} samples (2.77 mg GAE/mL) while the highest was in Cla\textsubscript{ferm}LUHS135 and Fur\textsubscript{ferm}LUHS135 samples (on average 12.76 mg GAE/mL).

The antioxidant properties of two pre-treatments, solid-state fermentation with the Lactiplantibacillus plantarum LUHS135 and ultrasonication, on of macro- (Cladophora rupestris, Cladophora glomerata, Furcellaria lumbricalis, Ulva intestinalis) and Spirulina (Arthrospira platensis) extracts were estimated and compared by DPPH\(^*\), ABTS\(^{+*}\), and FRAP methods. In a comparison of the 2,2-diphenyl-1-picrylhydrazyl (DPPH\(^*\)) radical scavenging activity of all three groups of samples (non-pre-treated, ultrasonicated and fermented), multivariate analysis of variance showed that all of the analyzed factors and their interactions had significant effect on the DPPH\(^*\) radical scavenging activity of the samples (factors: algae species and pre-treatment before extraction (fermentation and/or ultrasonication), LUHS135 combination, algae species × LUHS135 combination interaction, algae extract × pre-treatment before extraction interaction, pre-treatment before extraction × LUHS135 combination interaction and the algae species × LUHS135 combination × pre-treatment before extraction interaction, \(p \leq 0.0001\)). In comparison to the non-pre-treated (before extraction) samples group, the lowest DPPH\(^*\) radical scavenging activity was found in Cla\textsubscript{non}, Ul\textsubscript{non} and Sp\textsubscript{non} samples (on average, 0.188 \(\mu\)mol TE/mL), and the highest DPPH\(^*\) radical scavenging activity was shown in Cla\textsubscript{ferm}LUHS135 and Fur\textsubscript{ferm}LUHS135 samples (on average 1.86 \(\mu\)mol TE/mL). In extracts and extracts × LUHS135 combinations prepared from ultrasonicated algae, the lowest DPPH\(^*\) radical scavenging activity was found in Sp\textsubscript{ultr} (0.078 \(\mu\)mol TE/mL); however, Cla\textsubscript{ultr}LUHS135, Cla\textsubscript{ultr}LUHS135 and Fur\textsubscript{ultr}LUHS135 samples showed an average of 14.4 times higher DPPH\(^*\) radical scavenging activity. Similar to the ultrasonicated group samples, in fermented samples we found

Table 2: Correlations between the color coordinates \(L^*\), \(a^*\), \(b^*\), and \(pH\) of the algae extracts and algae extracts × LUHS135 combinations.

Parameters	Pearson correlation (r) and significance (p)
L*	r 1 0.157 0.452** 0.135
a*	r −0.157 1 0.001 0.205
b*	r 0.452** 0.093 1
pH	r 0.140 0.546 0.006

*Correlation (r) is significant (p) at the 0.01 level (2-tailed).

lead to higher antioxidant properties of the product and/or extract; however, specific antioxidant properties are related to specific phenolic compound profile composition (3). However, oxidation of diffused phenolic compounds can also occur (43). In addition to fermentation, ultrasonication could cause color changes in compounds. Ultrasonic waves cause rapid compressions and expansions and destroy substrate cells, and the phenomenon of cavitation is responsible for a reduction of the diffusion boundary layer (44–48). It has been reported that ultrasonication increases extraction efficiency (49, 50). However, other published studies showed that the use of ultrasound as a pre-treatment for carrots contributed to significant changes in their color (51). From this point of view, it is very important to evaluate the changes of the antioxidant properties of the treated samples because reductions in colored compounds could lead to lower antioxidant activity. For this reason, during the second stage of the experiment, antioxidant activities and total phenolic compound content were analyzed.
Table 3: Antioxidant activities and total phenolic compound content of algae extracts and algae extracts x LUHS135 combinations.

Extracts and extract x LUHS135 combinations prepared from non-pre-treated algae	DPPH*, μmol TE/mL	ABTS**, μmol TE/mL	FRAP, μmol TE/mL	TPC, mg GAE/mL
ClaRnon	0.180±0.017a	0.704±0.032a	0.077±0.006b	1.30±0.095a
ClaRfermentLUHS135	1.87±0.141a	4.60±0.092c	2.19±0.210b	12.8±0.032f
ClaGnon	0.245±0.028b	2.70±0.071d	0.360±0.034c	5.50±0.158b
ClaGfermentLUHS135	0.676±0.046b	4.44±0.110b	0.728±0.063c	11.7±0.140c
Furcum	1.52±0.104c	3.68±0.101a	0.869±0.047b	9.76±0.086e
FurcfermentLUHS135	1.84±0.093d	4.65±0.152d	2.37±0.235b	13.77±0.160e
Ulnon	0.197±0.013a	2.20±0.076b	0.063±0.005a	1.15±0.073a
UlfermentLUHS135	0.834±0.079f	4.26±0.095f	1.21±0.114f	11.27±0.079d
Spnon	0.187±0.017a	2.44±0.084e	0.051±0.004f	1.10±0.081d
SpfermentLUHS135	0.661±0.056c	4.41±0.141a	0.603±0.037d	10.83±0.011d

Extracts and extracts x LUHS135 combinations prepared from ultrasonicated algae

Extracts and extract x LUHS135 combinations prepared from fermented algae	DPPH*, μmol TE/mL	ABTS**, μmol TE/mL	FRAP, μmol TE/mL	TPC, mg GAE/mL
ClaRferment	0.288±0.037b	2.37±0.110d	1.14±0.072f	6.38±0.284a
ClaRfermentLUHS135	1.09±0.093b	4.45±0.312a	0.932±0.064e	12.26±0.546b
ClaGferment	0.259±0.035a	1.55±0.091c	0.117±0.009f	5.06±0.216f
ClaGfermentLUHS135	1.02±0.104c	4.52±0.234f	0.540±0.047c	12.19±0.631f
Furcferment	0.794±0.078d	2.27±0.155d	1.03±0.084c	6.13±0.272c
FurcfermentLUHS135	1.26±0.086d	4.67±0.191f	1.68±0.086f	12.23±0.495f
Ulferment	0.403±0.039c	1.33±0.084a	0.058±0.006e	1.85±0.115f
UlfermentLUHS135	0.762±0.066d	4.26±0.255f	1.23±0.121d	11.16±0.558e
Spferment	0.078±0.010a	0.223±0.027a	0.031±0.013b	0.51±0.045c
SpfermentLUHS135	0.877±0.049d	3.91±0.214b	1.34±0.114d	11.11±0.533e

Cl, Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-treated algae; ferment, extracts prepared from fermented algae; LUHS135, extract × LUHS135 strain combination; DPPH*, 1,1-diphenyl-2-picrylhydrazyl; ABTS**, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); FRAP, Ferric Reducing Ability of Plasma; TPC, total phenolic compounds content; GAE, gallic acid equivalents TE. Table values, data are represented as means (n = 3 replicates of analysis) ± SE. a–h indicate the same analytical parameters for different algae species groups, and means with different letters are significantly different (p ≤ 0.05).

The lowest DPPH* radical scavenging activity in Spferment samples (0.140 μmol TE/mL) and the highest in ClaRfermentLUHS135 and FurcfermentLUHS135 samples (on average 1.54 μmol TE/mL). Also, DPPH* radical scavenging activity showed a weak positive correlation with samples’ a* coordinates (r = 0.231, p = 0.028). The -a* and -b* coordinates are related to chlorophyll’s (-a and -b) greenish lipid-soluble pigments and causes the typical coloration of green algae (52, 53). However, carotenoids with a higher number of conjugated double bonds show red color and possess antioxidant properties (54). Other colored algae compounds with antioxidant properties are astaxanthin (52, 55–59) and canthaxanthin (β,β-carotene-4,4'-dione), which belongs to xanthophylls, and is widely used as a feed additive as an antioxidant (60–64).
TABLE 4 Antimicrobial activity of the algae extracts and algae extracts × LUHS135 combinations evaluated using the agar well–diffusion method.

Extracts and extract × LUHS135 combination	Pathogenic and opportunistic bacteria strain						
	Salmonella enterica	*Bacillus cereus*	*Enterococcus faecium*	*Staphylococcus aureus*	*Escherichia coli*	*Streptococcus mutans*	*Enterococcus faecalis*
	Diameter of the Inhibition zone, mm						
ClaRnon	nd	16.1 ± 1.3a	15.3 ± 0.2b	nd	nd	nd	nd
ClaGrLUHS135	nd	12.5 ± 2b	11.5 ± 0.2b	12.4 ± 0.4c	nd	nd	nd
ClaGnon	nd	15.2 ± 0.6d	Nd	Nd	nd	nd	nd
ClaGruLUHS135	nd	16.0 ± 0.3d	8.0 ± 0.1a	11.5 ± 0.3b	nd	nd	nd
FurCnon	nd	13.4 ± 0.5c	nd	nd	nd	nd	nd
FurCruLUHS135	nd	11.2 ± 0.1a	nd	12.3 ± 0.1c	nd	nd	nd
Ulnon	nd	12.5 ± 0.3b	nd	Nd	nd	nd	nd
UlferLUHS135	nd	16.1 ± 0.2d	nd	8.0 ± 0.2a	nd	nd	nd
Spnon	nd	12.4 ± 0.2b	nd	Nd	nd	nd	nd
SpferLUHS135	nd	16.4 ± 0.3d	nd	Nd	nd	nd	nd
Extracts and extracts × LUHS135 combinations prepared from ultrasonicated algae							
ClaRul	nd	18.2 ± 0.5b	nd	Nd	nd	nd	nd
ClaGrulLUHS135	nd	16.4 ± 0.2a	nd	14 ± 0.5b	nd	nd	nd
ClaGul	nd						
ClaGruLUHS135	nd	nd	12.6 ± 0.4	8.0 ± 0.1a	nd	nd	nd
FurCul	nd						
FurCrulLUHS135	nd	nd	nd	Nd	nd	8.0 ± 0.2a	nd
Ulul	nd						
UlferLUHS135	nd	nd	nd	Nd	nd	12 ± 0.3b	nd
Spul	nd						
SpferLUHS135	nd	18.1 ± 0.5b	nd	14.6 ± 0.6b	nd	Nd	nd
Extracts and extracts × LUHS135 combinations prepared from fermented algae							
ClaRferm	nd	16.3 ± 0.6c	nd	Nd	nd	Nd	nd
ClaGrfermLUHS135	nd	Nd	nd	15.4 ± 0.3c	nd	Nd	nd
ClaGferm	nd						
ClaGfermLUHS135	nd	14.2 ± 0.2b	nd	12.1 ± 0.1a	nd	Nd	nd
FurCferm	nd	13.4 ± 0.4a	nd	13.3 ± 0.2b	nd	Nd	nd
FurCfermLUHS135	nd	13.1 ± 0.1a	nd	nd	nd	Nd	nd
Ulferm	nd						
UlfermLUHS135	nd						
Spferm	nd						
SpfermLUHS135	nd						

ClaR, Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; FurC, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-treated algae; ultr, extracts prepared from ultrasonicated algae; ferm, extracts prepared from fermented algae; LUHS135, extract × LUHS135 strain combination; nd, not determined; data are represented as means (n = 3 replicates of analysis) ± SE. a–d indicate the same analytical parameters in different algae species group, and means with different letters are significantly different (p ≤ 0.05).

Their interactions had significant effects on sample ABTS•⁺ (algae species p ≤ 0.0001, pre-treatment before extraction p ≤ 0.0001, LUHS135 combination p ≤ 0.0001, algae species × LUHS135 combination interaction p = 0.015, algae extract × pre-treatment before extraction interaction p ≤ 0.0001, pre-treatment before extraction × LUHS135 combination interaction p ≤ 0.0001, algae species × LUHS135 combination × pre-treatment before extraction interaction p ≤ 0.0001). In comparison, in the non-pre-treated before extraction sample group, the lowest ABTS•⁺ was in ClaRnon samples (0.704 μmol TE/mL) and the highest was in ClaRnonLUHS135 and FurCnonLUHS135 samples (on average 4.63 μmol TE/mL).
The highest ABTS$^{•+}$ in the ultrasonicated group was from ClαR$_{ultrLUHS135}$, ClαG$_{ultrLUHS135}$ and Furc$_{ultrLUHS135}$ samples (on average 4.55 µmol TE/mL) and the lowest was from Sp$_{ultr}$ samples (0.223 µmol TE/mL). Similar tendencies were found in the fermented samples group: the lowest ABTS$^{•+}$ was from Sp$_{ferm}$ samples (1.29 µmol TE/mL) and the highest was from ClαR$_{fermLUHS135}$ and Furc$_{fermLUHS135}$ (on average 5.20 µmol TE/mL). ABTS$^{•+}$ showed a weak, positive correlation with samples’ a^* coordinates ($r = 0.303, p = 0.004$).

The ferric reducing antioxidant power (FRAP), which shows the ability of an antioxidant in reducing Fe(III) into Fe(II), demonstrated that all of the analyzed factors and their interactions had significant effects on the FRAP of the samples ($p \leq 0.0001$). In comparison to the group that was not pre-treated before extraction, the lowest FRAP was established in
Ul\textsubscript{non} and Sp\textsubscript{non} samples (on average 0.057 \(\mu\text{mol TE/mL}\) and the highest FRAP was found in Cla\textsubscript{non}LUHS135 and Ferm\textsubscript{non}LUHS135 samples (on average 2.28 \(\mu\text{mol TE/mL}\)). In comparison to the ultrasonicated sample group, the lowest FRAP was found in Sp\textsubscript{ult} samples (0.031 \(\mu\text{mol TE/mL}\) and the highest in Ferm\textsubscript{ult}LUHS135 samples (1.68 \(\mu\text{mol TE/mL}\)). In the fermented samples group, the lowest FRAP was in Sp\textsubscript{ferm} samples (0.054 \(\mu\text{mol TE/mL}\) and the highest was in Cla\textsubscript{ferm}LUHS135 (1.82 \(\mu\text{mol TE/mL}\)). FRAP showed a moderate negative correlation with the b+ coordinates of samples (\(r = 0.509, p = 0.0001\)). Phycobilin pigments are found in cyanobacteria and in the chloroplasts of red algae (52, 65). Lutein has a strong antioxidant effect (66). The main colored compounds in microalgae are fucoxanthin, lutein and \(\beta\)-carotene, and they also are described as good antioxidants (58, 59, 67–69). Zeaxanthin is a xanthophyll family carotenoid (70) and possesses antioxidant properties as well (71–75).

In essence, the radical scavenging activities of DPPH• and ABTS++ are based on the ability of antioxidants to donate a hydrogen atom or an electron to stabilize radicals by converting them to the non-radical species (76, 77). Our results reflected the ability of all prepared ethanolic extracts to donate a hydroxyl atom or electron to both radicals. In general, algal extracts rich in natural polyphenolics can function as antioxidants (76, 78).

In this study, several methods based on different principles were used to determine the \textit{in vitro} antioxidant activity of algae extracts. Other studies have reported that the FRAP method should be used in combination with other methods because it cannot measure all antioxidants of complex compounds (79, 80). Antioxidant properties of food and/or feed are desirable characteristics because antioxidants reduce oxidation processes (81). Also, it has been reported that both scavenging and antioxidant activities are related to TPC content (82). We found that TPC content in samples showed a moderate positive correlation with samples’ a• coordinates (\(r = 0.592, p = 0.0001\)), a negative weak correlation with samples’ pH (\(r = −0.294, p = 0.005\)) and a moderate positive correlation with samples’ ABTS++ (\(r = 0.300, p = 0.004\)) and FRAP (\(r = 0.247, p = 0.019\)). However, a correlation between the DPPH• and TPC content was not found. It was previously reported that in ethanolic extracts the correlation between TPC content and total antioxidant capacity is high, but the correlation with FRAP assay is minimal, and the correlation between the total antioxidant capacity and TPC content is positive and very significant in ethanolic extracts, whereas it is negative in methanolic ones (83). However, in the free form, phenolic compounds have a better bio-accessibility because of released free aglycones and increased antioxidative activity (84, 85), and fermentation could decrease free phenolic compound content in samples because they may bind with other molecules present in the fermentable matrix, i.e., might be hydrolysed and/or be degraded by microbial enzymes (42, 84). According to Li et al. (86), LAB fermentation has a significant impact on the phenolic profile, as well as on antioxidant activity, because during the process, various phenolic acids could be excreted to the fermentable matrix (86). It was reported that 	extit{Furcellaria} extracts, in comparison with 	extit{Cladophora} and \textit{Ulva} sp., had the highest antioxidant activity of all the macroalgae alcoholic extracts tested (87). It has also been shown that the ethanolic extract of green and red seaweeds exhibit a high scavenging activity and a higher DPPH• of brown and green seaweeds in comparison with red (83, 88–90). The lower correlation between FRAP values and TPC content in extracts shows that the phenolic compounds are not involved in the antioxidant activity through this pathway, but there might be some effects involving other active compounds (83). The current study showed that the combinations of extracts and LUHS135 could improve antioxidant properties of the substrate.

Antimicrobial characteristics of the algal extracts

Antimicrobial activity of the algae extracts and algae extracts \(\times\) LUHS135 combinations were evaluated using the agar well–diffusion method. The results are shown in Table 4 and Figure 3. In a comparison of all three groups (non-pre-treated, ultrasonicated and fermented), the highest number of samples (of all tested samples) that showed antimicrobial properties against at least one pathogen was found in the non-pre-treated samples group. All of the tested samples in this group showed inhibition properties against \textit{Bacillus cereus} (the highest diameter of inhibition zones (DIZ), on average 16.0 mm, was found by Cla\textsubscript{non}, Cla\textsubscript{non}LUHS135, Ul\textsubscript{non}LUHS135 and Sp\textsubscript{non}LUHS135 samples). Also, 3 out of 10 samples of this group showed inhibition properties against \textit{Enterococcus faecium} (Cla\textsubscript{non}, Cla\textsubscript{non}LUHS135 and Cla\textsubscript{non}LUHS135, with DIZ of 15.3, 11.5 and 8.0 mm, respectively) and 4 out of 10 samples of this group showed inhibition properties against \textit{Staphylococcus aureus} (Cla\textsubscript{non}LUHS135, Cla\textsubscript{non}LUHS135–Fur\textsubscript{non}LUHS135 and Ul\textsubscript{non}LUHS135 with DIZ of 12.4, 11.5, 12.3 and 8.0 mm, respectively). Despite the fact that the highest number of samples of (all tested samples) showed antimicrobial properties against at least one pathogen in the non-pre-treated samples group, a broader spectrum of pathogen inhibition was found in the ultrasonicated sample group (inhibition properties against \textit{Bacillus cereus} showed in Cla\textsubscript{ult}, Cla\textsubscript{ult}LUHS135 and Sp\textsubscript{ult}LUHS135 samples, inhibition properties against \textit{Enterococcus faecium} showed in Cla\textsubscript{ult}LUHS135, inhibition properties against \textit{Staphylococcus aureus} showed in Cla\textsubscript{ult}LUHS135, Cla\textsubscript{ult}LUHS135 and Sp\textsubscript{ult}LUHS135 and inhibition properties against \textit{Streptococcus mutans} showed in Fur\textsubscript{ult}LUHS135 and Ul\textsubscript{ult}LUHS135 samples). In the comparison of extract samples prepared from fermented algae, Cla\textsubscript{ferm}, Cla\textsubscript{ferm}LUHS135 and Fur\textsubscript{ferm}LUHS135 showed inhibition properties against one out of seven tested pathogens.
Table 5: Antimicrobial activity of the algae extracts and algae extracts × LUHS135 combinations evaluated in liquid medium by testing concentration of algae extract and/or algae extract × LUHS135 combination at a concentration of 500 µL and pathogen concentration at 10 µL.

Extracts and extract × LUHS135 combination

Pathogenic and opportunistic bacteria strains

	Salmonella enterica	Bacillus cereus	Enterococcus faecium	Staphylococcus aureus	Escherichia coli	Streptococcus mutans	Enterococcus faecalis
Inhibition zone, mm							

Extracts and extracts × LUHS135 combinations prepared from non-pre-treated algae

Concentration of algae extract 500 µL, concentration of pathogen 10 µL.

Pathogen	ClaR_non	ClaR_nonLUHS135	ClaG_non	ClaG_nonLUHS135	Furc_non	Furc_nonLUHS135	Ul_non	Ul_nonLUHS135	Sp_non	Sp_nonLUHS135
ClaR	+	+	+	+	+	+	+	+	+	+
ClaR × LUHS135	+	+	+	+	+	+	+	+	+	+
ClaG	+	+	+	+	+	+	+	+	+	+
ClaG × LUHS135	+	+	+	+	+	+	+	+	+	+
Furc	+	+	+	+	+	+	+	+	+	+
Furc × LUHS135	+	+	+	+	+	+	+	+	+	+
Ul	+	+	+	+	+	+	+	+	+	+
Ul × LUHS135	+	+	+	+	+	+	+	+	+	+
Sp	+	-	+	+	+	+	+	-	+	+
Sp × LUHS135	+	+	+	+	+	+	+	+	+	+

Extracts and extracts × LUHS135 combinations prepared from ultrasonicated algae

Concentration of algae extract 500 µL, concentration of pathogen 10 µL.

Pathogen	ClaR_ultr	ClaR_ultrLUHS135	ClaG_ultr	ClaG_ultrLUHS135	Furc_ultr	Furc_ultrLUHS135	Ul_ultr	Ul_ultrLUHS135	Sp_ultr	Sp_ultrLUHS135
ClaR	+	+	+	+	+	+	+	+	+	+
ClaR × LUHS135	+	+	+	+	+	+	+	+	+	+
ClaG	+	+	+	+	+	+	+	+	+	+
ClaG × LUHS135	+	+	+	+	+	+	+	+	+	+
Furc	+	+	+	+	+	+	+	+	+	+
Furc × LUHS135	+	+	+	+	+	+	+	+	+	+
Ul	+	+	+	+	+	+	+	+	+	+
Ul × LUHS135	+	+	+	+	+	+	+	+	+	+
Sp	+	-	+	+	+	+	+	-	+	+
Sp × LUHS135	+	+	+	+	+	+	+	+	+	+

Extracts and extracts × LUHS135 combinations prepared from fermented algae

Concentration of algae extract 500 µL, concentration of pathogen 10 µL.

Pathogen	ClaR_ferm	ClaR_fermLUHS135	ClaG_ferm	ClaG_fermLUHS135	Furc_ferm	Furc_fermLUHS135	Ul_ferm	Ul_fermLUHS135	Sp_ferm	Sp_fermLUHS135
ClaR	+	+	-	-	+	+	+	+	+	+
ClaR × LUHS135	+	+	+	+	+	+	+	+	+	+
ClaG	+	+	+	+	+	+	+	+	+	+
ClaG × LUHS135	+	+	+	+	+	+	+	+	+	+
Furc	+	+	+	+	+	+	+	+	+	+
Furc × LUHS135	+	+	+	+	+	+	+	+	+	+
Ul	+	+	+	+	+	+	+	+	+	+
Ul × LUHS135	+	+	+	+	+	+	+	+	+	+
Sp	+	+	+	+	+	+	+	-	+	+
Sp × LUHS135	+	+	+	+	+	+	+	+	+	+

Pathogen control

Interpretation of results: negative (-) means the pathogens did not grow on the selective culture medium; positive (+) means the pathogens grew on the selective culture medium; ClaR, Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-treated algae; ultr, extracts prepared from ultrasonicated algae; ferm, extracts prepared from fermented algae; LUHS135, extract × LUHS135 strain combination.
TABLE 6 Antimicrobial activity of the algae extracts and algae extracts × LUHS135 combinations evaluated in liquid medium by testing the concentration of algae extract and/or algae extract × LUHS135 combination at a concentration of 2,000 µL and pathogen concentration at 10 µL.

Extracts and extract × LUHS135 combination	Pathogenic and opportunistic bacteria strains
	Salmonella enterica
	Bacillus cereus
	Enterococcus faecium
	Staphylococcus aureus
	Escherichia coli
	Streptococcus mutans
	Enterococcus faecalis
Inhibition zone, mm	

Extracts and extracts × LUHS135 combinations prepared from non-pre-treated algae

Concentration of algae extract 2,000 µL, concentration of pathogen 10 µL.

Pathogen	ClaRnon	ClaRnonLUHS135	ClaGnon	ClaGnonLUHS135	FurCnon	FurCnonLUHS135	Ulnon	UlnonLUHS135	Spnon	SpnonLUHS135
	+	+	-	+	+	+	+	-	+	+
	+	+	+	-	+	+	+	-	+	+
	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+
	+	+	-	+	+	+	+	+	+	+

Extracts and extracts × LUHS135 combinations prepared from fermented algae

Concentration of algae extract 2,000 µL, concentration of pathogen 10 µL.

Pathogen	ClaRferm	ClaRfermLUHS135	ClaGferm	ClaGfermLUHS135	FurCferm	FurCfermLUHS135	Ulferm	UlfermLUHS135	Spferm	SpfermLUHS135
	+	+	-	-	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+
	+	+	-	+	+	+	+	+	+	+

Pathogen control

| Pathogen | + | + | + | + | + | + |

Interpretation of results: negative (-) means the pathogens did not grow on the selective culture medium; positive (+) means the pathogens grew on the selective culture medium; ClaR, Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-treated algae; ultr, extracts prepared from ultrasonicated algae; ferm, extracts prepared from fermented algae; LUHS135, extract × LUHS135 strain combination.
Combinations concentrations to 2000 µL and algae extracts were used for opportunistic pathogenic strain inhibition, become very important. Streptococcus mutans can cause dental decay (107, 108), and some S. mutans proteins contribute to the pathogenesis of S. mutans by promoting adherence to dental plaque (107, 109–112). Also, Sirbu et al. (113) reported that TPC in algae extracts is related with their antibacterial activity. In this study we established that there are moderate correlations between ABTS**+ and E. faecalis DIZ and between the TPC content in extracts and S. aureus DIZ (r = 0.388, p = 0.0001; r = 0.340, p = 0.001, respectively). However, further research is needed to evaluate which compounds are responsible for the inhibition of these pathogens.

Conclusions

This study confirmed, that the species of algae is a significant factor on samples pH (p = 0.017) and 2% of yeast extract leads to more effective fermentation of algal biomass, as after 36 h of SSE, significant lower algae pH values were obtained. The highest DPPH*, ABTS**+, and FRAP antioxidant properties were shown by non-pretreated Cladophora rupestris and Furcellaria lumbricalis extract combinations with LUHS135, in comparison with extracts without LUHS135. A moderate positive correlation of TPC with samples ABTS**+ (r = 0.300, p = 0.004) and FRAP (r = 0.247, p = 0.019) was established, however, between samples DPPH* and TPC content correlations were not found. Despite, that in the non-pretreated samples group the highest number of samples showed antimicrobial properties at least against one pathogen, a broader spectrum of pathogens inhibition showed ultrasonicated samples group (inhibited 4 out of 7 tested pathogens). Finally, despite, that the extract combinations with LUHS135 strain showed prospective results, further research is needed to evaluate, which compounds are responsible for antioxidant properties of the extracts, as well as pathogens inhibition.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.
Author contributions

Conceptualization: EB, PV, and MR. Methodology: EB, PV, DU, and MR. Software, validation, writing—original draft, and preparation: ET and EB. Formal analysis: VS, EZ, DU, and RR. Investigation: EB, ET, and MR. Resources, supervision, and project administration: EB. Data curation: ET. Writing—review and editing: EB, PV, MR, RP, and JR. Visualization: ET, VS, and EZ. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

The authors gratefully acknowledge the LSMU Science Foundation, support No. 12001120101/01030202. Also, this work is based upon the work from COST Action 18101 SOURDOMICS — Sourdough biotechnology network toward novel, healthier and sustainable food and bioprocesses (https://sourdomics.com/; https://www.cost.eu/actions/CA18101/, accessed in 2022-07-15), where the author JR is the Chair and Grant Holder Scientific Representative, and the author EB is the Vice-Chair, and is supported by COST (European Cooperation in Science and Technology) (https://www.cost.eu/, accessed in 2022-07-15). COST is a funding agency for research and innovation networks. Regarding to the author JR this work was also financially supported by LA/P/0045/2020 (ALICE) and UIDB/00511/2020 - UIDP/00511/2020 (LEPABE) funded by national funds through FCT/MCTES (PIDDAC).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Oginii O, Wahlen B, Wendl L, Walton M, Dempster T, Gerken H. Effects of inoculation with lactic acid bacteria on the preservation of nanochloropsis gaditana biomass in wet anaerobic storage and its impact on biomass quality. *Fermentation*. (2022) 8:159. doi: 10.3906/fermentation/8040159

2. Štreintziute E, Ruzauskas M, Pilkaityte R, Bartkevics V, Zavistanaviciute P, Starkute V, et al. Influence of fermentation on the characteristics of Baltic sea macroalgae, including microbial profile and trace element content. *Food Control*. (2021) 129:108235. doi: 10.1016/j.foodcont.2021.108235

3. Štreintziute E, Bartkevics V, Ruzauskas M, Pilkaityte R, Viskelevs P, Urbanoviciene D, et al. Characterization of Macro- and microalgae extracts bioactive compounds and micro- and macroelements transition from algae to extract. *Foods*. (2021) 10:2226. doi: 10.3390/foods10092226

4. Bartkiene E, Lele V, Ruzauskas M, Domig KJ, Starkute V, Zavistanaviciute P, et al. Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. *Microorganisms*. (2020) 8:64. doi: 10.3906/microorganisms8010864

5. Bartkiene E, Lele V, Sakiene V, Zavistanaviciute P, Ruzauskas M, Bernatoniene I, et al. Improvement of the antimicrobial activity of lactic acid bacteria in combination with berries/fruits and dairy industry by products. *J Sci Food Agri.* (2019) 99:3992–4002. doi: 10.1002/jsfa.9625

6. Bartkiene E, Bartkevics V, Lele V, Pugajeva I, Zavistanaviciute P, Mickiene R, et al. Concept of mould spoilage prevention and acrylicamide reduction in wheat bread: application of lactic acid bacteria in combination with berries/fruits and dairy industry by-products. *J Food Microbiol.* (2019) 105:105–28. doi: 10.1016/j.rser.2019.01.048

7. Bartkiene E, Bartkevics V, Kraguleviciute V, Pugajeva I, Zadeike D, Juodeikiene G. Lactic acid bacteria combinations for wheat sourdough preparation and their influence on wheat bread quality and acrylamide formation. *J Food Sci.* (2017) 82:2371–8. doi: 10.1111/1750-3841.13859

8. Yap BH, Crawford SA, Dagastine RR, Scales PJ, Martin GJ. Nitrogen deprivation of microalga: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. *Int J Microbiol Biotechnol*. (2016) 43:1671–80. doi: 10.1007/s12025-016-1484-1

9. Rotkicza M, Zietelski M, Dudek M, et al. Effects of ultrasound and microwave pretreatment on lipid extraction of microalgae and methane production from the residual extracted biomass. *Bioenerg Res.* (2021) 14:752–60. doi: 10.1007/s12155-020-10202-y

10. Tavanandi HA, Chandrakala Devi AA, Raghavarao KSMS. Sustainable pretreatment methods for downstream processing of harvested microalgae. In: Gayen K, Bhowmick TK, Maiti SK (eds) Sustainable Downstream Processing of Microalgae for Industrial Application. 1st edn. Florida: Taylor & Francis Group. (2019). p. 1–28.

11. Montingelli ME, Tedesco S, Olabi AG. Biogas production from algal biomass: a review. *Renew Sust Energ Rev.* (2015) 43:961–72. doi: 10.1016/j.rser.2014.11.052

12. Terrell M, Thompson, Brent R, Young, Saed Baroutian. Advances in the pretreatment of brown macroalgae for biogas production. *Fuel Process Technol.* (2019) 195:106151. doi: 10.1016/j.fuproc.2019.106151

13. Borowitwa MA, Mohanimani NR. Sustainable biofuels from algae. *Mitig Adapt Strateg Glob Chang.* (2015) 18:13–25. doi: 10.1007/s11027-010-9271-9

14. Rodriguez C, Alasawd A, Benyoussin K, Olabi A. Pretreatment techniques used in biogas production from grass. *Renew Sust Energ Rev.* (2017) 68:1193–204. doi: 10.1016/j.rser.2016.02.022

15. Martinez-Guerra E, Gude VG, Mondala A, Holmes W, Hernandez R. Microwave and ultrasound enhanced extractive transesterification of algal lipids. *Appl Energy*. (2014) 129:354–63. doi: 10.1016/j.apenergy.2014.04.112

16. Ma YA, Cheng YM, Huang JW, Jen JF, Huang YS Yu CC. Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. *Bioresour Bioprocess Eng.* (2014) 7:1543–9. doi: 10.1007/s12049-014-1126-4

17. Adam F, Abert-Vian M, Peltier G, Chemet F. "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. *Bioresource Technol.* (2012) 114:457–65. doi: 10.1016/j.biortech.2012.02.096

18. Hossain M, Zabeed Suley Akter, Junhuay Yun, Guoyang Zhang, Faisal N, Awad, Xianghui Qi, JN Sahu Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. *Renew Sust Energ Rev.* (2010) 15:105–28. doi: 10.1016/j.rser.2009.01.048

19. da Silva Machado A, Ferraz A. Biological pretreatment of sugarcane bagasse with basidiozymes producing varied patterns of biodgradation. *Bioresource Technol.* (2017) 225:17–22. doi: 10.1016/j.biortech.2016.11.053
104. Elshouny WAE-F, El-Sheekh MM, Sabae SZ, Khalil MA, Badr HM. Antimicrobial activity of Spirulina platensis against aquatic bacterial isolates. *J Microbiol Biotechnol Food Sci.* (2021) 1203–8. doi.org/10.15414/jmbfs.2017.5.1203-1208

105. Mohammed ZA, Jawad HM, Reda NM. The effect of algal extract of spirulina platensis, cladophora glomerata on some positive and negative bacterial isolates of gram stain. *NeuroQuantology.* (2021) 19:67. doi: 10.14704/nq.2021.19.6.NQ21070

106. Freitas AR, Pereira AP, Novais C. Peixe L. Multidrug-resistant high-risk Enterococcus faecium clones: can we really define them? *Intern J Antimicrob Agents.* (2021) 57:106227. doi: 10.1016/j.ijantimicag.2020.106227

107. Elyassi M, Babaeekhou L, Ghane M. Streptococcus mutans and Streptococcus sobrius contributions in dental caries in Iranian and Afghan children: a report from serotype distribution and novel STs. *Arch Oral Biol.* (2022) 139:105431. doi: 10.1016/j.archoralbio.2022.105431

108. Krzyściak W, Jurczak A, Kościeniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. *Eur J Clin Microbiol Infect Dis.* (2014) 33:499–515. doi: 10.1007/s10096-013-1993-7

109. Sato Y, Okamoto K, Kagami A, Yamamoto Y, Igarashi T, Kizaki H. Streptococcus mutans strains harboring collagen-binding adhesin. *J Dent Res.* (2014) 83:534–9. doi: 10.1177/154405910408300705

110. Matsumoto-Nakano M. Role of Streptococcus mutans surface proteins for biofilm formation. *J Dent Sci Rev.* (2018) 54:22–9. doi: 10.1016/j.jdsr.2017.08.002

111. Babaei Hatkehlouei M, Tari H, Goudarzian AH, Hali H. Decayed, missing, and filled teeth (DMFT) index among first-grade elementary students in Mazandaran Province, Northern Iran. *Intern J Pediatr.* (2017) 5:5069–77. doi.org/10.22038/ijp.2017.22650.1891

112. Nakano K, Nomura R, Taniguchi N, Lapirattanakul J, Kojima A, Naka S, et al. Molecular characterization of Streptococcus mutans strains containing the cnm gene encoding a collagen-binding adhesin. *Arch Oral Biol.* (2010) 55:34–8. doi: 10.1016/j.archoralbio.2009.11.008

113. Sirbu R, Stanciu G, Tomescu A, Ionescu AM, Cadar E. Evaluation of antioxidant and antimicrobial activity in relation to total phenolic content of green algae from Black Sea. *Rev Chim.* (2019) 70:1197–203 doi: 10.37358/RC.19.4.7091