Scaling of the irreducible $\text{SO}(3)$-invariants of velocity correlations in turbulence

Siegfried Grossmann, Detlef Lohse, and Achim Reh
Fachbereich Physik der Universität Marburg, Renthof 6, D-35032 Marburg (November 21, 1998)

The scaling behavior of the $\text{SO}(3)$ irreducible amplitudes $d_n^l(r)$ of velocity structure tensors (see L’vov, Podivilov, and Procaccia, Phys. Rev. Lett. (1997)) is numerically examined for Navier-Stokes turbulence. Here, l characterizes the irreducible representation by the index of the corresponding Legendre polynomial, and n denotes the tensorial rank, i.e., the order of the moment. For moments of different order n but with the same representation index l extended self similarity (ESS) towards large scales is found. Intermittency seems to increase with l. We estimate that a crossover behavior between different inertial subrange scaling regimes in the longitudinal and transversal structure functions will hardly be detectable for achievable Reynolds numbers.

The most fundamental objects to analyze the structure of turbulent velocity fields $u(x,t)$ are the tensorial moments of the velocity differences $v_i(r,x,t) = u_i(x+r,t) - u_i(x,t)$, averaged over time t or/and position x, considered as functions of scale r,

$$D_{i_1,i_2,...,i_n}(r) = \langle v_{i_1} v_{i_2} ... v_{i_n} \rangle$$

If the eddy size $r = |r|$ is in the inertial subrange (ISR), i.e., $\eta \ll r \ll L$, algebraical scaling of the moments is expected. Here, η is the inner (Kolmogorov) scale and L the external length scale [3]. If the turbulent flow field can be considered as statistically isotropic (or close to), one better uses rotational invariants instead of the tensorial components, in order to cope with the multitude of scaling exponents. The most commonly used invariants are the structure functions of the longitudinal velocity component $v_L = u \cdot r^0$ and the transversal velocity $v_T = u - v_L r^0$; here, r^0 denotes the unit vector in r direction. We denote these structure functions as

$$D_n^L(r) = \langle |v_L(r; x, t)|^n \rangle \propto r^{c_n^L},$$

$$D_n^T(r) = \langle |v_T(r; x, t)|^n \rangle \propto r^{c_n^T};$$

both are assumed to scale in the ISR with the corresponding exponents c_n^L and c_n^T. A third convenient structure function is the n-th order moment of the modulus of the eddy velocity difference $v(r; x, t)$ which again is assumed to scale

$$D_n^M(r) = \langle |v(r; x, t)|^n \rangle \propto r^{c_n^M}.$$

Traditionally, it was believed that all three scaling exponents are the same, $\zeta_n = c_n^M = c_n^L = c_n^T$. But recent advances in experimental technology and computational power and technique raised increasing doubts if this is true for general moments of order n, as it is for the most often considered 2nd order structure function, $n = 2$, where the condition of incompressibility enforces $D_2^L \propto D_2^T \propto D_2^M \propto r^{\zeta_2}$. For general n, it was found in several experiments and simulations that the degree of intermittency (i.e., the deviations of the scaling exponents from the classical value $\zeta_n = n/3$) is considerably larger in the transversal moments compared to the longitudinal ones; for a summary of the results see table 1 of ref. 6.

In a recent paper, L’vov, Podivilov, and Procaccia suggested that it were not the longitudinal and the transversal structure functions which obey clean algebraic scaling, but the amplitudes of the moment tensor eq. (1) decomposed into the irreducible representations of the rotation group $\text{SO}(3)$,

$$d_n^l(r) \propto \langle (v^2(r; x,t))^n/2 P_l(v^0 \cdot r^0) \rangle \propto r^{\zeta_n^l}.$$

(5)

The representation label l runs through $0 \leq l \leq n$ with the same parity as n, if statistical reflection symmetry of the turbulent flow field is guaranteed δ: P_l is the Legendre polynomial. The amplitude of the unity representation, $d_n^0(r)$, is already part of the conventional set of structure function, since $d_n^0(r) \propto D_n^M(r)$.

For the second and fourth order structure tensors the amplitudes $d_2^l(r)$ and $d_4^l(r)$ are linear combinations of the longitudinal, transversal, and modulus structure functions. We follow L’vov et al.’s definitions δ $a_0 = d_2^0$, $a_2 = d_2^2$, $a_4 = d_4^0$, $c_2 = d_4^2$, $c_4 = d_4^4$ obtaining

$$\begin{pmatrix} a_0 \\ a_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{6} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} D_2^M \\ D_2^L \end{pmatrix},$$

$$\begin{pmatrix} c_0 \\ c_2 \\ c_4 \end{pmatrix} = \begin{pmatrix} \frac{1}{6} & \frac{3}{10} & 0 \\ \frac{2}{5} & \frac{2}{25} & -\frac{3}{25} \\ \frac{2}{25} & \frac{2}{25} & \frac{1}{25} \end{pmatrix} \begin{pmatrix} D_4^M \\ D_4^L \\ D_4^T \end{pmatrix}. $$

(7)

On the rhs also other ways of representing the n-rank velocity correlation tensor can alternately be given, using e.g. D_2^L in (2) or mixed transversal/longitudinal moments in (6) as done in eq. (13.81) of ref. 7 or in ref. 8 which uses $D_{11} = D_2^L$, $D_{22} = D_2^T/2$, $D_{1111} = \langle v_1^4 \rangle = D_4^L$, $D_{1122} = \langle v_1^2 v_2^2 \rangle$, and $D_{2222} = \langle v_2^4 \rangle = 3D_{2233} = 3D_4^T/8$, where the 1-axis has been put in the longitudinal direction parallel to r. For these structure functions we obtain
\[
\begin{pmatrix}
 c_0 \\
 c_2 \\
 c_4 \\
\end{pmatrix} =
\begin{pmatrix}
 \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0 \\
 -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0 \\
 \frac{8}{\sqrt{3}} & \frac{8}{\sqrt{2}} & 0 \\
\end{pmatrix}
\begin{pmatrix}
 D_{1111} \\
 D_{1122} \\
 D_{2222} \\
\end{pmatrix}.
\]

The point of L'vov et al. is that the invariants \(a_1, c_4\) on the lhs of eqs. (3), (4), and (5) are distinguished because the \(d^4_i(r)\) are the amplitudes of the structure tensor for its decomposition into the components of the irreducible representations of the rotational symmetry group SO(3).

In this paper we present the scaling properties of the fourth order moments \(d^4_i(r)\) from a full numerical simulation of the Navier-Stokes equation on a \(96^3\) grid with periodic boundary conditions. The numerical turbulence is forced on the largest scales, the averaging time is about 120 large eddy turnovers, and the Taylor-Reynolds number is \(Re_\lambda = 110\). The isotropy of the flow has carefully been checked; for details of the simulation refer to ref. 8.

FIG. 1. Fourth order structure functions \(c_0, 2, 4 \,(r)\) as functions of \(r\). As tested for smaller Reynolds numbers and longer averaging times, the wiggle in \(c_4 \,(r)\) at large \(r\) is not statistically safe. It seems that very long averaging times are necessary for moments with large \(l\) to converge at large scales. The inset shows \(c_{0, 2, 4}(r)\) (top to bottom) as they follow from the Batchelor parametrization (8) and eqs. (2) of ref. 8. The different magnitudes and the distinct transitional behavior of the different irreducible representations can be recognized. Note that the local slope of \(\lg c_i \,(r)\) vs \(\lg r\) around the transition is not monotonous. – By assumption the ISR scaling exponents are the same.

The second order moments all asymptotically scale the same because of incompressibility. Assuming classical scaling \(\zeta_2 = 2/3\) one obtains \(D_2^2 = 4D_T^2/3\) and \(a_0 = 11a_2 = D_T^2/3\). In figure 3 we give the fourth order structure functions \(c_{0, 2, 4}(r)\). As expected for this low \(Re_\lambda\), the scaling properties of these structure functions is very poor, because there is not yet a well developed ISR. There is analytical behavior \(\propto r^4\) in the viscous subrange (VSR) followed by a transition and leveling off in the inertial and stirring subrange around \(r \sim L\). What can be said, however, is that with increasing \(l\) (i) the magnitude of \(c_l \,(r)\) decreases and (ii) the degree of intermittency seems to increase, \(\zeta_l^2 < \zeta_2^2 < \zeta_4^2 < 4/3\). The reason for (i) is that \(c_0\) is a sum of positive definite structure functions, whereas \(c_2\) and the more \(c_4\) are differences thereof, similar to \(a_2 = (D_{22} - D_{11})/3\) which also is much smaller than \(a_0 = D_{11} + 2D_{22}\). The reason for (ii) presumably is that larger \(l\) in (8) means the probing of smaller scale structures which are traditionally associated with stronger intermittency.

Fortunately, the extended self similarity method (ESS, 11) allows for more quantitative statements. Here, we focus on the scaling of the fourth order structure functions vs second order ones. More specifically, to visualize the deviations from classical scaling we calculate compensated ESS plots \(D_i^2/(D_2^2)^2 vs D_i^2, i = L, T, M,\) and \(D_2^2/(D_2^2)^2 vs D_{12}^2\), \(l = 0, 2,\) see figure 2. For \(l = 0\) we find ESS scaling from \(r \sim 10\eta\) up to \(r \sim L\), resembling the ESS scaling for the longitudinal and transversal structure functions figure 2a which was extensively analyzed in [11]. For \(l = 2\) we find ESS towards large scales \(\eta \gg 50\eta\), but no ESS towards smaller scales \(r < 50\eta\). Instead, there is a bump in the curve \(c_2/a_2^2\) vs \(a_2\) for \(r \sim 36\eta\). We checked very carefully whether the bump would smooth for increasing averaging time. This is not the case. It also persists for different type of large scale forcing and smaller Reynolds number, but much larger averaging time.

At first sight, the bump was a surprise to us. However, we suggest that it can be understood as a transition phenomenon from the VSR to the ISR, similar to the one seen in figure 3 of ref. [11]. Hitherto, it was not observed in ESS plots of longitudinal and transversal structure functions as both are dominated by the rank zero contribution \(D_0^4\), which does show ESS.

For further support of this interpretation, we parametrize the \(D_i^2(r)\) within Batchelor’s parametrization (8),
\[
d_i^4(r) \propto D_i^M(r) \propto r^n \left[1 + \left(\frac{r}{r_c} \right)^2 \right]^{-\eta + \zeta_0/2},
\]
where \(n = 2, 4\), with the She-Leveque model (12) values \(\zeta_2 = 0.70, \zeta_4 = 1.28,\) and \(r_c = 10\eta\). Incompressibility gives \(D_2^2(r) = r^{-3} \int_0^r D_2^M(\rho) \rho^2 d\rho\) and via eq. (8) all other second order structure functions follow. For the fourth order moments, an analogous relation does not exist. However, within some closure approximations (8) (whose nature is controversial), all 4th order structure functions follow from \(D_4^2(r)\), cf. eq. (2) of ref. 8. We stress that those relations are not generally true and their consequence that all 4th order structure functions scale the same is in direct contradiction to our and others’ findings. However, for the demonstration of transitional effects, for which the different intermittency in the ISR does not matter, eqs. (2a) – (2c) of ref. 8 could be useful. Employing them we derive an ODE for \(D_{1111} = D_4^2\).
ESS plots are dominated by ISR scaling exponent ρ. The deviation of the ρ_i from zero characterizes the degree of intermittency of the corresponding moment. We find $\rho_L = -0.15$, $\rho_T = -0.30$ and $\rho_M = \rho_0 = -0.25$, $\rho_2 = -0.5$, again showing that the degree of intermittency is higher in the d_i^0 with larger l. The She-Leveque model value (with the original She-Leveque parameters adopted to the longitudinal structure function) \[12\] for ρ is $\rho = -0.16$.

We checked the possibility of scaling behavior if amplitudes corresponding to different irreducible subspaces are mixed: We do not find ESS if we plot structure functions $d_i^0/(d_i^2)^2$ vs d_0^0 with different $l \neq l'$.

It will not have escaped the reader’s attention that the simultaneous assumption of pure scaling behavior of both the $D_{4}^{L,T,M}$ as well as the $c_{l}^{0,1,2}$ is self contradictory if the exponents with different l are different. We follow L’vov et al.’s argument that the d_i^0 are the more fundamental structure functions and (employing eq. (7) and incompressibility) write the ratios $D_{4}^{L,T}/(D_2^{L-T})^2$ as a sum of ratios of the D_i^0,

\[
\frac{D_{4}^{L}}{(D_2^{L})^2} \propto \frac{c_0}{a_0} + 2\sqrt{\frac{5}{7}} \left(\frac{c_2}{a_0}\right) + \sqrt{\frac{8}{7}} \left(\frac{c_4}{a_0}\right),
\]

(13)

\[
\frac{D_{4}^{T}}{(D_2^{T})^2} \propto \frac{c_0}{a_0} - \sqrt{\frac{5}{7}} \left(\frac{c_2}{a_0}\right) + \frac{3}{4} \sqrt{\frac{2}{7}} \left(\frac{c_4}{a_0}\right).
\]

(14)

From our numerics (see fig. 3) the first term is found to be the leading order term. It represents the scaling of the modulus structure functions eq. (6). In the first (and larger) correction term the approximation $a_0 \approx 11a_2$ (resulting from $\zeta_2 \approx 2/3$ and incompressibility) can be made, leaving only ratios whose scaling we can determine from the ESS-plots figure 2b; (the c_4-term hardly contributes for large r). With that approximation the qualitative features of figure 2a can be understood from eqs. (13) and (14): As $c_2(r) < 0$ the c_2/a_0^2 correction term to the leading c_0/a_0^2 term is negative [positive] for $D_{4}^{L}/(D_2^{L})^2$ [$D_{4}^{T}/(D_2^{T})^2$], leading to a less steep [steeper] “apparent” slope for the ESS exponents $\rho_L = -0.15$ [$\rho_T = -0.30$] of the longitudinal [transversal] structure function compared to the leading contribution with $\rho_0 = \rho_M = -0.25$. Even that the correction to $\rho_0 = -0.25$ is twice as big for the longitudinal structure function than for the transversal one can be seen from eqs. (13) and (14).

Finally, we would like to estimate for what Reynolds number two distinct scaling regimes (in r) may be observable in D_{4}^{L-T}. Therefore, we plug in the scaling laws
and obtain with the numerical values at \(r = L, c_0/a_0^2 \approx 6 \) and \(c_2/a_0^2 \approx -100, \)

\[
\frac{c_i}{a_i^2} = \left(\frac{r}{L} \right)^{\zeta_{2,i}} ; \quad i = 0, 2 \tag{15}
\]

and

\[
\zeta_{2,0}^{\rho,L} \propto \frac{D_i^L}{(D_i^T)^2} \propto r^{\zeta_{2,0}} \left(1 - \alpha \left(\frac{r}{L} \right)^{\zeta_{2,0} + \rho} + \text{corr.} \right) ,
\]

\[
\zeta_{2,0}^{\rho,T} \propto \frac{D_i^T}{(D_i^T)^2} \propto r^{\zeta_{2,0}} \left(1 + \frac{1}{2} \alpha \left(\frac{r}{L} \right)^{\zeta_{2,0} + \rho} + \text{corr.} \right) .
\tag{16}
\]

We get \(\alpha \approx 0.2, \zeta_{2}(\rho_2 - \rho_0) = 0.5 + 0.25 \approx -0.17. \) Note that for small enough \(r \) the second term in (17) may dominate the first one and for even smaller \(r \) the third term will contribute. [In eq. (18) the situation is more complicated as the second term has negative sign, but the lhs is positive definite.] Therefore, in principle \(D_i^L/(D_i^T)^2 \) shows several different scaling regimes. However, it will be very hard to detect these different regimes as the required span of the Reynolds number is too large. In eq. (17) the ratio \(L/r = (2/\alpha)^{1/0.17} \approx 10^6 \) for the second term to overtake the first one. We put \(r = \eta \) and estimate that this means \(Re \approx 10^6 \), which is hard to achieve in today’s experimental or numerical flows. What shall be detectable if L’vov et al.’s conjecture is right is that the apparent scaling exponents of the structure functions \(D_{n,i}^{L,T}(r) \) or ESS scaling exponents thereof are slightly \(Re \) dependent whereas the scaling exponents of the irreducible objects \(d_{n,i}^{r}(r) \) or their ESS exponents \(\text{(the exponents of plots of } D_{n,i}^{r}(r) \text{ vs } d_{n,i}^{r}(r) \text{)} \) might well be universal, i.e., Reynolds number independent. Measuring such exponents up to very large Reynolds numbers seems to be of prime importance for our further understanding of fully developed turbulence.

Acknowledgments: We thank I. Procaccia and K. R. Sreenivasan for very helpful exchange. Support for this work by the DFG under grant SFB185-D3 and by the German-Israel Foundation (GIF) is acknowledged, and also by the HLRZ Jülich supplying us with the necessary computer time.

[1] A. S. Monin and A. M. Yaglom, *Statistical Fluid Mechanics* (The MIT Press, Cambridge, Massachusetts, 1975); L. D. Landau and E. M. Lifshitz, *Fluid Mechanics* (Pergamon Press, Oxford, 1987); U. Frisch, *Turbulence* (Cambridge University Press, Cambridge, 1995).

[2] S. G. Saddoughi and S. V. Veeravalli, J. Fluid Mech. 268, 333 (1994).

[3] J. Herweijer and W. van de Water, in *Advances in Turbulence V*, edited by R. Benzi (Kluwer Academic Publishers, New York, 1995), p. 210; Phys. Scripta T67, 136 (1996).

[4] A. Louliz et al., J. Fluid Mech. 339, 287 (1997); R. Camussi, D. Barbagallo, G. Guj, and F. Stella, Phys. Fluids 8, 1181 (1996); R. Camussi and R. Benzi, Phys. Fluids 9, 257 (1997).

[5] B. Dhuva, Y. Tsuji, and K. R. Sreenivasan, Phys. Rev. E, submitted (1997).

[6] O. N. Boratav and R. B. Pelz, Phys. Fluids 9, 1400 (1997); S. Chen, K. R. Sreenivasan, M. Nelkin, and N. Cao, Phys. Rev. Lett., submitted (1997).

[7] S. Grossmann, D. Lohse, and A. Reeh, Phys. Fluids, submitted (1997).

[8] V. L’vov, E. Podivilov, and I. Procaccia, Phys. Rev. Lett., in press (1997).

[9] M. Ould-Rouis, R. A. Antonia, Y. Zhu, and F. Anselmet, Phys. Rev. Lett. 77, 2222 (1996).

[10] R. Benzi et al., Phys. Rev. E 48, R29 (1993); R. Benzi, S. Ciliberto, C. Baudet, and G. R. Chavarria, Physica D 80, 385 (1995); R. Benzi et al., Physica D 96, 162 (1996); G. Stolovitzky and K. R. Sreenivasan, Phys. Rev. E 48, R33 (1993); M. Briccoli, P. Santangelo, S. Succi, and R. Benzi, Phys. Rev. E 50, R1745 (1994); Ch. Meneveau, Phys. Rev. E 54, 3657 (1996).

[11] S. Grossmann, D. Lohse, and A. Reeh, Phys. Rev. E, in press (1997).

[12] Z. S. She and E. Leveque, Phys. Rev. Lett. 72, 336 (1994).