Second Generation (F₂) Hybrid Cultivars for Jalapeño Production

Paul W. Bosland
Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, NM 88003

Abstract. Chile pepper (Capsicum spp.) hybrids are normally produced by hand-emasculating the female parent and then pollinating the emasculated flower by hand. Increased yield has occurred with F₁ hybrid seed, but the seed is considered too expensive by growers to be direct-seeded, a common production practice in the southwestern U.S. chile pepper industry. In ornamental flowers, when F₂ hybrid seed is available, it is cheaper than F₁ hybrid seed. If F₂ hybrid chile pepper cultivars can yield as well as the F₁ hybrid parent, then a less-costly alternative would be available to growers. A series of field trials with jalapeños was conducted to test F₂ hybrid cultivars to their F₁ progeny for yield and fruit quality. The results indicated that in some instances the F₂ progeny can yield as well as the F₁ hybrid parent. Therefore, F₂ hybrid cultivars can be used in a commercial production system. However, if a male-sterility system is used to produce the F₂ hybrid cultivar, the F₂ progeny will have significantly lower yield than the F₁ hybrid parent, as was the case in one accession in this trial. Nevertheless, F₂ hybrid cultivars are an additional way to supply high yielding hybrid cultivars to growers.

The introduction of F₁ hybrid cultivars has dramatically influenced crop production (Coors and Pandy, 1999). Heterosis or hybrid vigor produced by F₁ hybrid cultivars can significantly increase yield and crop uniformity for maturity and quality. In addition, F₂ hybrid cultivars allow the plant breeder to quickly combine dominantly inherited disease and pest resistance in a single generation. However, the cost of producing F₂ hybrid cultivars in some crops can restrict their use because the seed is too expensive. The high-priced seed of F₂ hybrid cultivars limits their use for some direct-seeded vegetable crops. For example, in chile peppers (Capsicum annuum L.) only 2% of the United States acreage is planted to F₁ hybrid cultivars (Janick, 1998).

The second-generation hybrid (F₂ hybrid cultivar) has not received as much attention as a means of providing cost-effective hybrid vegetable cultivars. This may be attributed to the fact that F₂ hybrid cultivars have a reputation of lower yield and unacceptable uniformity of fruit quality. Nevertheless, the cost of F₂ hybrid cultivar seed should be considerably less than that of an F₁ hybrid cultivar, because it can be produced by open-pollination without the precaution against selling or sibbing that is required for producing F₁ hybrid cultivar seed. Several ornamental flower cultivars are sold as F₂ hybrids rather than F₁ hybrids to reduce seed cost. For example, ‘Speckles Mixed’ geranium (Pelargonium × hortorum L.H. Bailey), ‘Padparadja’ and ‘Jolly Joker’ pansy (Viola wittrockiana Gams.), ‘Fuscedina’ Fuchsia hybrid hort. ex Sieb and Voss, and ‘Kariba Mixed’ portulaca (Portulaca grandiflora Hook.), are all sold as F₂ hybrid cultivars (Thompson and Morgan, 2004). The retail seed cost of these F₂ hybrid cultivars are about less than one-half the price of a comparative F₁ hybrid cultivar.

In vegetable crops, few F₂ hybrid cultivars are sold. There are reports that F₂ hybrid cultivar vegetable populations can yield as much or nearly as well as the F₁ hybrid population for some crops. Curtis (1941) observed that the F₂ generation of a Cucurbita pepo L. hybridization did not differ from the F₁ generation in early or total fruit yields. Both the F₁ and F₂ populations were significantly earlier than either parent. He proposed that F₂ generation seed could be used for commercial planting. In addition, Schuster et al. (1974) reported the hybrid vigor of C. pepo hybridizations diminished only slightly in the F₂ generation, but decreased significantly in the next generation (F₃). They suggested that F₂ hybrid seed produced by hand pollination could be multiplied by open pollination to produce F₃ hybrid seed for commercial sale.

Jalapeño chile pepper is an important crop in the southwestern United States and Mexico. In 2002 in New Mexico, jalapeños were worth $3 million at farm-gate alone and with processing, more than $20 million (NMDA, 2002). The current F₁ hybrid cultivars of jalapeño available to the growers are uniform and high yielding, but relatively expensive as compared to commercially available open-pollinated cultivars of jalapeño. Presently, popular F₁ hybrid cultivars of jalapeño are priced at 25 times the cost of open-pollinated jalapeño cultivar seed (personal observation). This is due in part to the hand labor costs in producing F₁ hybrid cultivars. Manual emasculation and hand-pollination of flowers adds considerable costs to producing F₁ hybrid cultivars of jalapeño.

Most jalapeño growers in the southwestern U.S. direct-seed the crop, therefore, the cost of F₁ hybrid cultivar seed has been prohibitive. Consequently, jalapeño production in the southwestern United States could benefit from having inexpensive F₂ hybrid cultivar seed available that produces acceptable fruit quality and yield.

To test the feasibility of using F₂ hybrid cultivars to produce an acceptable jalapeño crop, four commercially available F₁ hybrid cultivars of jalapeños were self-pollinated to produce F₂ progeny. The original F₁ hybrid cultivar was then compared to its F₂ progeny for yield, and plant and fruit characteristics.

Materials and Methods

Seed of the F₁ hybrid jalapeño cultivars ‘Grande’, ‘Mita’, ‘Perfecto’, and ‘Tula’ were acquired from a commercial seed source. The F₂ hybrid cultivars were grown under insect-proof net cages to produce the F₂ generation seed (Bosland, 1993). The comparison experiments were conducted for 2 years at the Leyendecker Plant Science Research Center (LPSRC), 2.5 km south of Las Cruces, N.M., and at the Fabian Garcia Science Center (FGSC), Las Cruces. The soil type at the LPSRC is a Brazito sandy loam (mixed thermic typic torripsamment) and a Glendale clay-loam (fine-silty, mixed (calcareous), thermic typic torripsamment) at the FGSC.

The original F₁ hybrid cultivar seed along with its F₂ progeny were planted in a randomized complete block design with five replications. Each replication had 36 plants. A single line of plants was spaced 25 cm apart within the row and 1 m between rows. The plants were grown using standard cultural practices for growing jalapeños in southern New Mexico (Bosland et al., 1994). Plots were furrow irrigated throughout the season to maintain optimal plant growth.

For the first year, the data collected included plant height, plant width, single fruit weight, fruit length, fruit width, wall thickness, pungency, and marketable yield (Tables 1 and 2). Two days before the first harvest, six randomly chosen plants in each replication were measured for plant height and plant width. The experiment was harvested three times throughout the season. From the middle of each replication, 10 randomly chosen plants were harvested and the fruit bulked. After harvesting, the fruit were sorted with any fruit deemed unacceptable for the market, i.e., red, diseased, deformed, small, etc., being discarded and only the marketable yield recorded. A random subsample of 10 fruit from each replication was taken from the first harvest and the fruit quality traits measured and recorded (Tables 1 and 2). In the second year, the plots were harvested in a similar manner with the exception that only marketable yield data were collected (Tables 1 and 2). As in the first year, the plots were harvested three times throughout the season. The data of the yield and fruit characteristics of the F₂ hybrid cultivars and the F₁ hybrid populations were compared using Student’s t test with probability set at 5%.

Results

In both years, at the two research sites (LPSRC and FGSC), the growing seasons were favorable for the production of jalapeños. The marketable yields at LPSRC and FGSC differed between the years. Overall, the yields
at the FGSC were reduced in the second year as compared to the first year. No obvious factors can be accounted for the reduction in yields. Of course, cultivar by year interactions are common in cultivar trials, and most of the time the exact factors causing the significant change in yields cannot be deduced.

With most comparisons, the F_2 hybrid populations' plant and fruit characteristics were not different from their F_1 hybrid parent (Tables 1 and 2). For the characteristics, fruit width, fruit wall thickness, and pungency, none of the F_2 hybrid populations differed from their F_1 hybrid parent. At the LPSRC, the F_2 'Mitla' hybrid 'Grande' did not differ from its F_1 hybrid population for any of the eight characteristics examined. At the FGSC, 'Grande' and its progeny differed only in fruit length (0.92 cm) and in fruit weight (4.7 g), however, this did not affect the marketable yield.

When plant height and plant width were examined at both locations, only 'Tula' differed from its F_1 hybrid population. At the LPSRC, it was for plant height and at FGSC it was for both plant height and plant width. The F_2 hybrid population was taller than the F_1 hybrid cultivar parent, and was wider at the FGSC. However, these differences would be insignificant for production of the crop.

When the fruit characteristics are examined, the single fruit weight was the same for 'Grande' and 'Tula' and their F_2 hybrid populations, respectively, at the LPSRC. Only 'Perfecto' differed from its F_1 hybrid population at LPSRC. At the FGSC, 'Mitla', 'Perfecto', and 'Tula' had the same single fruit weight as their F_1 hybrid population, respectively, and was wider at the FGSC. However, 'Perfecto' had plant height and width differences that were the mean of six plants from each of the F_1 hybrid populations, respectively.

Table 2. Comparison of plant and fruit characteristics, and marketable yield among four commercial jalapeno first generation (F_1) hybrids and their second generation (F_2) progeny at the Leyendecker Plant Science Research Center, Las Cruces, N.M.

Plant	Hauteur (cm)	Largueur (cm)	Poids (g)	Longueur (cm)	Largeur (cm)	Thickn. (cm)	Pungency (SHU)	Productivité (kg·ha⁻¹)
Grande F_2	41.8	39.0	21.72	6.96	2.82	0.52	37,240	10,867
Grande F_1	40.4	39.1	20.34	6.64	2.78	0.52	37,675	10,673
Mitla F_2	35.0	36.8	19.96	6.62	2.74	0.58	51,755	40,461
Mitla F_1	37.0	36.4	16.94	6.00	2.56	0.54	41,845	7,355
Perfecto F_2	36.8	36.9	21.40	6.90	2.86	0.52	45,375	10,991
Perfecto F_1	38.5	37.8	16.50	6.20	2.68	0.50	61,320	9,107
Tula F_2	37.6*	35.4	23.72	7.18	3.08	0.46	73,379	12,671
Tula F_1	43.7*	34.5	21.14	6.80	2.98	0.52	72,096	10,930

Table 1. Comparison of plant and fruit characteristics, and marketable yield among four commercial jalapeno first generation (F_1) hybrids and their second generation (F_2) progeny at the Leyendecker Plant Science Research Center, Las Cruces, N.M.

Plant	Hauteur (cm)	Largueur (cm)	Poids (g)	Longueur (cm)	Largeur (cm)	Thickn. (cm)	Pungency (SHU)	Productivité (kg·ha⁻¹)
Grande F_2	35.1	36.8	21.88	6.80	2.70	0.49	81,925	10,507
Grande F_1	35.5	36.9	17.18	5.88	2.54	0.47	79,497	9,096
Mitla F_1	33.0	28.0	17.14	6.22	2.40	0.51	75,844	12,513
Mitla F_1	34.2	29.1	14.38	5.62	2.38	0.47	79,169	9,539
Perfecto F_2	35.0	28.1	19.58	6.46	2.58	0.50	56,655	11,399
Perfecto F_1	36.6	28.8	17.06	5.94	2.50	0.49	59,919	4,459
Tula F_2	35.0*	34.1	20.48	6.28	2.66	0.47	88,431	11,246
Tula F_1	40.6*	39.3	20.12	6.32	2.66	0.49	81,082	9,271

 Significant difference at P < 0.05 in value between the F_1 parent and the F_2 progeny using Student's t test.

Discussion

The results demonstrate that F_2 hybrid cultivars of jalapeno have the potential for providing acceptable marketable yield for commercial production. The results further support that fruit quality characteristics important to the jalapeño processing industry can be met with F_2 hybrid jalapeño cultivars. In fact, the F_2 hybrid populations producing similar yield with acceptable fruit quality characteristics as the F_1 hybrid parent validates the use of F_2 hybrid cultivars of jalapeno for commercial production.

The results also indicate that plant height, plant width, single fruit weight, fruit length, fruit width, wall thickness, pungency, and marketable yield may or may not differ between the F_1 hybrid parent and their F_2 populations depending on year and location. This implies that multiple year and location studies are necessary before an F_1 hybrid cultivar of jalapeno could be released, just as would be expected of an F_2 hybrid cultivar.

Disease resistance could be another limitation to the use of the F_2 hybrid cultivars. If the F_1 hybrid cultivar is derived from an hybridization between a resistant parent and a susceptible parent, the F_2 hybrid cultivar would segregate for resistance. Depending on the inheritance of the disease resistance trait, 25% or more of the individuals would be susceptible and given a conducive environment for disease development, a significant yield loss could occur.

Hybrid seed production in chile peppers is labor intensive, particularly emasculation of flowers on the female parent. The use of male-sterility facilitates the production of F_1 hybrid cultivars. If emasculation is eliminated, the cost of seed production should also be reduced. In this study, the F_2 hybrid 'Perfecto' seems to be produced using a male-sterility system. Male sterility is a recessive trait allowing the F_1 hybrid cultivar to be fully fertile, while in...
the F₂ generation, and subsequent later generations, male-sterility manifests itself. The use of male sterility would limit the utility of F₁ hybrid cultivars. Theoretically, 25% of the plants would be male-sterile, and with a self-pollinating crop, pollen would be unavailable to pollinate flowers and allow for fruit set, thus contributing to a 25% reduction in yield. On the other hand, a satisfactory male-sterility system could help reduce the cost of F₁ hybrid seed. This would allow growers access to less expensive F₁ hybrid seed.

In conclusion, it is clear that F₂ hybrid cultivars can have an important role not only in hybrid flowers, but also in jalapeño production. Based on the results of this study, seed producers now have another seed class, in addition to F₁ hybrids, that will provide good yielding cultivars for growers. The F₂ hybrid cultivar seed of jalapeño could be exploited by seed companies as a hybrid that produces a uniform and high yielding crop, but at a lower seed cost to the grower.

Literature Cited

Bosland, P.W. 1993. An effective plant field-cage to increase the production of genetically pure chile (*Capsicum* spp.) seed. HortScience 28(10):1053.

Bosland, P.W., A.L. Bailey, and D.J. Cotter. 1994. Growing chiles in New Mexico. N.M. State Univ. (Las Cruces) Coop. Ext. Serv. Guide H-230.

Coors, J.G. and S. Pandey. 1999. The genetics and exploitation of heterosis in crops. Amer.Soc. Agron.–Crop Sci. Soc. Amer., Madison, Wis.

Curtis, L.C. 1941. Comparative earliness and productiveness of first and second generation summer squash (*Cucurbita pepo*) and the possibilities of using the second generation for commercial planting. Proc. Amer. Soc. Hort. Sci. 38:596–598.

Janick, J. 1998. Hybrids in horticultural crops, p. 45–56. In: K.R. Lamkey and J.E. Staub (eds.). Concepts and breeding of heterosis in crop plants. CSSA (Madison, Wis.) Spec. Pabl. 25.

Schuster, W., M.R. Haghdadi, and J. Michael. 1974. Inbreeding and heterosis in pumpkins (*Cucurbita pepo* L.) II. Bastardwuchsigkeit. Z. Pflanzenzüchtg. 73:233–248 (in German).

Thompson and Morgan. 2004. The seed catalogue 2003. Thompson and Morgan, Jackson, N.J.

New Mexico Department of Agriculture. 2002. 2002 New Mexico agricultural statistics; Chile, acreage, yield, and production by county. p. 61. N.M. Dept. Agr.