Separation of gliadins from wheat flour by capillary gel electrophoresis: optimal conditions

Radoslav Grujić¹, Vesna Gojković Cvjetković²*, Željka Marjanović-Balaban³

¹ State High School of Medical Science, Prijedor, Bosnia and Herzegovina
² University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
³ University of Banja Luka, Banja Luka, Bosnia and Herzegovina

* e-mail: vesna.gojkovic@yahoo.com

Received August 04, 2020; Accepted in revised form August 27, 2020; Published September 21, 2020

Abstract:
Introduction. Gliadin proteins are one of the gluten fractions. They are soluble in alcoholic solution and divided into four groups (α + β, γ, ω1.2, and ω5-gliadins). In this paper gliadins were extracted from wheat flour, and optimal conditions for their separation were determined.

Study objects and methods. The separation was performed by capillary gel electrophoresis on Agilent apparatus, CE 7100 (a capillary with an inner diameter of 50 µm, a total length of 33 cm, and an effective length of 23.50 cm). In order to determine the optimal conditions, different solvent concentrations (50, 60, and 70% ethanol), capillary temperatures (20, 25, 30, 35, and 40°C), and electrode voltages (−14.5, −16.5, −17.5 and −18.5 kV) were applied. Migration time and relative concentration of each protein molecules within gliadin fractions in the electrophoregram were analysed using Agilent ChemStation Software.

Results and discussion. The optimal conditions for gliadin separation were: solvent 70% (v/v) ethanol, capillary temperature of 25°C, and electrode voltage of −16.5 kV. Under these conditions, the total proteins were identified as Xav = 23.50, including α + β gliadin fraction (Xav = 7.50 and relative concentration RC = 28.29%), γ-gliadins (Xav = 5.00, RC = 26.66%), ω1.2-gliadins (Xav = 4.33, RC = 14.93%), and ω5-gliadins (Xav = 6.67, RC = 30.98%).

Conclusion. The results of the research can be of fundamental importance in the study of gluten proteins and the influence of technological procedures on their change and the possibility of reducing the allergic effect of gluten during processing.

Keywords: Proteins, wheat, extraction, ethanol, electrophoresis, gluten

INTRODUCTION

Gliadin proteins represent one of the gluten fractions. Most gliadin proteins are present as monomers. They affect the viscosity and extensibility of wheat flour [1, 2]. Gliadins are divided into four groups, namely α, β, γ, and ω-gliadins. This division is based on mobility at low pH, i.e. in acidic conditions of A-PAGE electrophoresis medium (acid polyacrylamide gel electrophoresis). Based on research that was later conducted on amino acid sequences, α and β gliadins were classified in the same group (α/β) [3–5].

Modern methods, such as two-dimensional electrophoresis and high-pressure liquid chromatography with reversed phase, allow the separation of gliadin fractions into more than a hundred components. Based on the analysis of amino acid sequences (complete and partial), amino acid composition and molecular weight, gliadins are divided into: ω5, ω1.2, α + β and γ [3, 6–8]. ω-gliadins are characterized by a high content of glutamine, proline and phenylalanine. These amino acids together make up about 80% of the total ω gliadin composition. ω5-gliadins have a higher molecular weight (≥ 50 000 Da) than ω1.2 (≤ 40 000 Da). Most ω gliadins

Copyright © 2020, Grujić et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.
lack cysteine, so there is no possibility of disulfide binding. These proteins consist of repetitive sequences that are rich in glutamine and proline [3, 9, 10].

Molecular weights of α + β and γ-gliadins overlap (≤ 28 000–35 000 Da). The content of glutamine and proline is much lower compared to ω-gliadin. They differ in tyrosine content. Each of the two types has an N- and a C-terminal region [3, 11]. The N-terminal region (40–50% of total proteins) consists of repeating amino acid sequences that are rich in glutamine, proline, phenylalanine, and tyrosine. The repeating sequences of α + β gliadin are dodecapeptides. They are repeated five times. A typical unit of γ-gliadin is repeated up to 16 times. They are interspersed with additional remains [12, 13]. Within the C-terminal region α + β and γ-gliadins are homologous. The sequences are not repeating. They contain less glutamine and proline than the N-terminal region and have a more common composition. α + β and γ gliadins contain six or eight cysteine residues. These residues are located in the C-terminal region. They form intramolecular disulfide bonds [14, 15]. Although the content of total gliadin proteins depends on the type of wheat and growth conditions (soil, climate, fertilization), α + β and γ-gliadins are the highest components. Ω-gliadins are the highest components. Ω-gliadins contain six or eight cysteine residues. These residues are located in the C-terminal region. They form intramolecular disulfide bonds [14, 15]. Although the content of total gliadin proteins depends on the type of wheat and growth conditions (soil, climate, fertilization), α + β and γ-gliadins are the highest components.

Gluadin extraction. We analyzed gliadins in wheat flour samples (ash content: max 0.55%, moisture max: 15%, acidity: max 3, protein content 9.8 g/100 g) purchased on the market of the Republic of Srpska, Bosnia and Herzegovina by capillary gel electrophoresis.

Extraction of gliadin proteins was performed according to a modified Osborne method, as described by Lookhart and Bean [21]. After the albumins and globulins were removed (extraction was performed 3 times with 8 mL of deionized water each, it was obtained in laboratory conditions, on the apparatus Siemens water Technologies W3T199551, Siemens Ultra Clear, at a conductivity of 0.055 mS/cm and at a temperature of 20°C and 3 times with 8 mL of 2% solution of NaCl, NaCl, Lach-Ner, Czech Republic, high purity, ≥ 99.00%) gliadin was extracted with 8 mL of ethanol of different concentrations (50, 60 and 70% v/v, refined REAHEM, 96% v/v ethyl alcohol, Srbo Bran, quality corresponds to the quality property for ethyl alcohol, contains a minimum of 96% v/v ethanol). Samples were homogenized on a vortex (Advanced Vortex Mixer ZX3, 3000 rpm) for 30 min. The samples were then centrifuged in a centrifuge (Rotina 380 R, Hettich Zentrifugen) for 5 min at 1000 rpm. The resulting supernatant was poured into a normal 25 mL vessel, and after the third extraction the normal vessel was made up to final volume with ethanol of various concentrations (50, 60 and 70% v/v). The precipitate was then washed with deionized water.

Samples preparation for analysis at GCE. Prior to analysis samples were diluted with sample buffer (SDS-MW sample buffer, PA 800 plus, Beckman Coulter, USA), so that the total volume was 95 µL and the concentration was 1 mg/mL. Then 2 µL of internal standard (10 kDa, PA 800 plus, Beckman Coulter, United States) and 5 µL of 2-mercaptoethanol (high purity, 99.00%, Sigma-Aldrich Chemie GmbH, Germany) were added. The samples were then heated on a thermo-shaker (Thermo-Shaker, TS-100, Biosan) at 100°C for 3 min. After cooling to room temperature for 5 min, the samples were ready for analysis by capillary gel electrophoresis (Agilent, CE 7100).

Preparation SDS-MW standard for analysis by capillary gel electrophoresis. Prior to the preparation standard, based on the recommendation of the kit manufacturer, the standard was taken to room temperature for 15 min after removal from the refrigerator. It was then carefully stirred on a vortex (Advanced Vortex Mixer ZX3, 3000 rpm) for a few seconds. After that, 10 µL of standard (SDS-MW standard, PA 800 plus, Beckman Coulter, United States) was pipetted into the vial. Then 85 µL of buffer (SDS-MW sample buffer, PA 800 plus, Beckman Coulter, USA) and 2 µL of internal standard (10 kDa, PA 800 plus, Beckman Coulter, USA) were added. Then 5 µL of 2-mercaptoethanol (Sigma-Aldrich Chemie GmbH, Germany, high purity, 99.00%) was added. Then, it was heated on a thermo-shaker (Thermo-Shaker, TS-100, Biosan), at a temperature of 100°C for 3 min. After heating, the standard vial was cooled to room temperature over 5 min. Prepared in this way, the standard was ready for analysis.

Gluadin proteins separation by capillary gel electrophoresis. Separation of gliadin proteins by capillary gel electrophoresis was performed on an Agilent apparatus, CE 7100, with a capillary inner
diameter of 50 µm, a total length of 33 cm, and an
effective length of 23.50 cm. The SDS-MW analysis kit,
PA 800 plus (2015 Beckman Coulter, USA) was used
for separation. SDS gel buffer (0.2% SDS, pH = 8) was
used to fill the capillary. The kit contains the following
chemicals: SDS-MW gel buffer (0.2% SDS, pH = 8),
SDS-MW sample buffer (100 mM Tris-HCl, pH = 9,
1% SDS), internal standard (10 kDa), external standard
(10 to 225 kDa), acid wash solution (0.1N HCl), base
wash solution (0.1N NaOH), as well as two capillaries
57 cm long, 50 µm ID. According to the manufacturer’s
instructions, the kit is stored at room temperature after
opening, except for the internal and external standards,
which are stored at a temperature of 2–6°C. Preparation
of the capillary electrophoresis (CE) instrument was
done according recommendations Agilent Technolo-
gies [22–24].

Statistical data processing. Statistical data
processing was performed in IBM SPSS, Statistics 26.
Descriptive statistical analysis calculated the average
value, standard deviation and 95% confidence interval
of the average value. Variance analysis of different
groups was used to evaluate the effect of solvent
concentrations, capillary temperature and electrode
voltage on the number of detected proteins and the
relative concentration of each gliadin proteins.

RESULTS AND DISCUSSION
In order to determine molecular weights unknown
proteins, a calibration curve was obtained using 7
proteins in SDS-MW size standard.

Electrophoregram, the migration time, and the
calibration curve of MW standard proteins of known molecular
weight (10, 20, 35, 50, 100, 150 and 225 kDa)
are presented in Fig. 1, Table 1, and Fig. 2, respectively.
The proteins were separated by capillary gel
electrophoresis (CE, Agilent, CE 7100, internal capillary
diameter 50 µm, total capillary length 33 cm, effective
capillary length 23.50 cm, capillary temperature 25°C,
voltage –16.5 kV (reverse mode), duration of analysis
30 min, and absorbance measured at 220 nm).

The ratio of molecular weights (log MW) and
migration time (t) of proteins is represented by the
equation $y = 0.08168x - 0.00098$, where y represents
logMW and x represents the migration time of pro-
teins (t). R^2 shows the correlation coefficient (0.9847).

A calibration curve was used to estimate the
molecular weight of unknown proteins. The coefficient
of correlation shows a high dependence of the logarithm
of the molecular weight of the protein and the migration
time of the protein.

The number of proteins in each gliadin fraction and
their relative concentration were obtained based on the
total number of identified proteins and the total relative
concentration.

Table 2 shows descriptive indicators of total proteins
and the number of gliadin proteins after extraction with
different concentrations of ethanol.

Descriptive analysis showed that the highest number of proteins (23.50) was obtained after extraction with
70% ethanol, by the method of Lookhart and Bean. The
lowest number of proteins was obtained by extraction
with 50% ethanol (18.67). One-factor analysis of the
variance of different groups showed that there was
a statistically significant difference in the number of

Molecular weight (MW), kDa	log MW	t, min
10	1.00	13.36 ± 0.21
20	1.30	15.77 ± 0.18
35	1.54	18.13 ± 0.26
50	1.70	20.15 ± 0.29
100	2.00	24.25 ± 0.10
150	2.18	26.78 ± 0.36
225	2.35	29.41 ± 0.15

Table 1 Migration time of proteins with known molecular
weight separated by capillary gel electrophoresis
proteins, $F(2.15) = 23.70$, Sig. = 0.000. The highest number of within $\alpha + \beta$ gliadin fractions was obtained after extraction with 60% ethanol (7.67). The lowest number of those proteins was obtained after extraction with 50% ethanol (6.00). A statistically significant difference was found in the number of proteins, $F(2.15) = 8.58$, Sig. = 0.003.

Extraction with 50 and 60% ethanol produced the highest and the lowest number of proteins within the γ-gliadins (5.33 and 4.67, respectively). There was no statistically significant difference in the number of proteins, $F(2.15) = 1.15$, Sig. = 0.342. The highest amount of $\omega1.2$-gliadins was obtained after extraction with 60% ethanol (5.17), while the lowest after extraction with 50 and 70% ethanol (4.33). One-factor variance analysis showed no statistically significant difference, $F(2.15) = 2.19$, Sig. = 0.146. The highest number of $\omega5$-gliadins was obtained after extraction with 70% ethanol (6.67). The lowest amount was observed after extraction with 50% ethanol (3.83). A statistically significant difference in the number of proteins was found, $F(2.15) = 6.77$, Sig. = 0.008.

According to Table 2, an increasing ethanol concentration increased total proteins, increased and then slightly decreased $\alpha + \beta$ gliadin fraction, decreased and then increased γ-gliadins, increased and then decreased $\omega1.2$-gliadins, and increased $\omega5$ gliadin fractions.

Table 3 shows descriptive indicators of the total relative concentration and the relative concentration of gliadin proteins after extraction with different concentrations of ethanol.

Descriptive analysis showed the highest relative protein concentration of $\alpha + \beta$ gliadin fractions after extraction with 50% ethanol (31.25%) and the lowest concentration after extraction with 60% ethanol (17.69%). One-factor variance analysis revealed a statistically significant difference in the relative protein concentration, $F(2.15) = 174.13$, Sig. = 0.000.

Table 2 shows descriptive indicators of total proteins and gliadin proteins separated by fractions (Agilent, CE 7100, capillary inside diameter 50 µm, total capillary length 33 cm, effective capillary length 23.50 cm, capillary temperature 25°C, voltage –16.5 kV (reverse mode), duration 30 min, absorbance measured at 220 nm).

Ethanol, % (v/v)	N	Xav	SD	Std. error	95% confidence interval of average	Min	Max		
					Lower bound				
Total number of proteins	50	6	18.67	1.21	0.49	17.40	19.94	17	20
	60	6	23.00	1.67	0.68	21.24	24.76	21	25
	70	6	23.50	1.05	0.43	22.40	24.60	22	25
$\alpha + \beta$ gliadins	50	6	6.00	0.63	0.26	5.34	6.66	5	7
	60	6	7.67	0.82	0.33	6.81	8.52	7	9
	70	6	7.50	0.84	0.34	6.62	8.38	6	8
γ gliadins	50	6	5.33	0.82	0.33	4.48	6.19	4	6
	60	6	4.67	0.82	0.33	3.81	5.52	4	6
	70	6	5.00	0.63	0.26	4.34	5.66	4	6
$\omega1.2$ gliadins	50	6	4.33	0.82	0.33	3.48	5.19	3	5
	60	6	5.17	0.75	0.31	4.38	5.96	4	6
	70	6	4.33	0.82	0.33	3.48	5.19	3	5
$\omega5$ gliadins	50	6	3.83	0.98	0.40	2.80	4.87	3	5
	60	6	5.50	1.22	0.50	4.21	6.79	3	6
	70	6	6.67	0.52	0.21	5.12	7.22	5	7

ANOVA (TP) $F(2.15) = 23.70$, Sig. = 0.000, eta square = 84.78/111.61 = 0.76
ANOVA ($\alpha + \beta$) $F(2.15) = 8.58$, Sig. = 0.003, eta square = 10.11/18.94 = 0.53
ANOVA (γ) $F(2.15) = 1.15$, Sig. = 0.342 > 0.05
ANOVA ($\omega1.2$) $F(2.15) = 2.19$, Sig. = 0.146 > 0.05
ANOVA ($\omega5$) $F(2.15) = 6.77$, Sig. = 0.008, eta square = 12.33/26.00 = 0.47
difference in relative concentration was found, F(2.15) = 111.01, Sig. = 0.000. The relative concentration of ω1.2-gliadins was the highest after extraction with 70% ethanol (14.93%) and the lowest after extraction with 60% ethanol (4.82%). The one-factor analysis of variance showed a statistically significant difference in the relative concentration, F(2.15) = 472.47, Sig. = 0.000.

As for γ-gliadin fractions, they were found in the highest concentration after extraction with 60% ethanol (47.45%) and the lowest after extraction with 70% ethanol (30.98%). There was a statistically significant difference in the relative concentration, F(2.15) = 104.83, Sig. = 0.000.

Based on the obtained results (Table 3), an increasing ethanol concentration decreased and then increased the relative concentration of α + β, γ- and ω1.2-gliadins and increased and then decreased that of ω5-gliadins.

Table 4 shows descriptive indicators of the total number of proteins and number of gliadin proteins separated by fractions after extraction with 70% (v/v) ethanol and separated at a capillary temperature of 20, 25, 30, 35 and 40°C.

ANOVA (α + β) F(2.15) = 174.13, Sig. = 0.000, eta square = 609.67/635.93 = 0.96
ANOVA (γ) F(2.15) = 111.01, Sig. = 0.000, eta square = 301.93/322.33 = 0.94
ANOVA (ω1.2) F(2.15) = 472.47, Sig. = 0.000, eta square = 394.02/400.27 = 0.98
ANOVA (ω5) F(2.15) = 104.83, Sig. = 0.000, eta square = 851.07/911.96 = 0.93

According to the results obtained, it can be seen that with increasing capillary temperature, total proteins increased, then decreased and increased slightly again. α + β gliadin fractions decreased, then increased and decreased slightly again. As for γ-, ω1.2- and ω5-gliadins, their fractions increased, then decreased and increased slightly again.

Table 5 shows descriptive indicators of the total relative concentration of proteins and relative concentration of gliadin proteins separated by fractions after extraction with 70% (v/v) ethanol and separated at different capillary temperatures.

According to the data, the highest relative concentration of α + β gliadin fractions was obtained after extraction with 70% ethanol and a capillary temperature of 40°C (47.55%). The lowest concentration was observed at 35°C (27.22%). One-factor variance analysis revealed a statistically significant difference

	Ethanol, % (v/v)	N	RC, %	SD	Std. error	95% confidence interval of average	Min	Max
Total relative								
concentration								
50	6	100.00	0.00	0.00	100.00	100.00	100	100
60	6	100.00	0.00	0.00	100.00	100.00	100	100
70	6	100.00	0.00	0.00	100.00	100.00	100	100
α + β gliadins								
50	6	31.25	1.30	0.53	29.89	32.61	29.07	32.87
60	6	17.69	1.27	0.52	16.36	19.03	16.11	19.61
70	6	28.29	1.40	0.57	26.82	29.76	26.06	30.09
γ gliadins								
50	6	27.72	1.15	0.47	26.51	28.92	26.50	29.57
60	6	18.55	0.97	0.40	17.53	19.57	17.21	19.99
70	6	26.66	1.35	0.55	25.25	28.08	24.75	28.13
ω1.2 gliadins								
50	6	5.21	0.34	0.14	4.85	5.56	4.84	5.66
60	6	4.82	0.21	0.09	4.59	5.04	4.58	5.08
70	6	14.93	1.04	0.43	13.84	16.03	13.03	15.95
ω5 gliadins								
50	6	36.16	0.70	0.29	35.42	36.90	34.97	37.01
60	6	47.45	1.37	0.56	46.01	48.89	45.81	49.39
70	6	30.98	3.13	1.28	27.70	34.27	29.55	37.36
in the relative concentration, $F(4.25) = 193.61$, Sig. = 0.000. The relative concentration of γ-gliadins was the highest at 20°C (43.88%) and the lowest at 30°C (24.48%). A statistically significant difference in the relative concentration of different groups was $F(4.25) = 210.31$, Sig. = 0.000. A capillary temperature of 35°C led to the highest relative concentration within the $\omega_{1.2}$-group (27.21%), while 30°C provided the lowest (14.03%). There was a statistically significant difference in the relative concentration, $F(4.25) = 165.39$, Sig. = 0.000. The highest relative concentration of ω_{5}-gliadins was obtained after extraction with 70% ethanol and at a capillary temperature of 25°C (30.98%) and the lowest at 20°C (5.42%). The effect of capillary temperature on relative protein concentration within ω_{5} gliadin fraction was examined by one-factor analysis of variance. A statistically significant difference in the relative concentration within the fraction was found, $F(4.25) = 195.85$, Sig. = 0.000.

Based on the obtained results (Table 5), it can be seen that with increasing capillary temperature, the relative concentration of $\alpha + \beta$ gliadins decreased, then increased, decreased, and increased again. Within γ-gliadins, the relative concentration decreased, then increased, and decreased again. The relative concentration of $\omega_{1.2}$-gliadins increased, then decreased, increased again and finally decreased. Within the ω_{5} gliadin fractions, the relative concentration increased and then decreased.

Table 6 shows descriptive indicators of total proteins and the number of gliadin fractions (70% ethanol, Agilent, CE 7100, capillary inside diameter 50 µm, total capillary length 33 cm, effective capillary length 23.50 cm, voltage −16.5 kV (reverse mode), duration 30 min, absorbance measured at 220 nm).

Column temperature, °C	N	Xav	SD	Std. error	95% confidence interval of average	Min	Max
Total number of proteins							
20	6	20.83	1.47	0.60	19.29 - 22.38	19	23
25	6	23.50	1.05	0.43	22.40 - 24.60	22	25
30	6	21.67	1.75	0.71	19.83 - 23.50	19	23
35	6	18.83	1.47	0.60	17.29 - 20.38	16	20
40	6	19.33	1.03	0.42	18.25 - 20.42	18	21
$\alpha + \beta$ gliadins							
20	6	10.00	1.09	0.45	8.85 - 11.15	8	11
25	6	7.50	0.84	0.34	6.62 - 8.38	6	8
30	6	8.50	0.84	0.34	7.62 - 9.38	7	9
35	6	8.83	0.75	0.31	8.04 - 9.62	8	10
40	6	8.67	0.82	0.33	7.81 - 9.52	8	10
γ gliadins							
20	6	4.00	0.00	0.00	4.00 - 4.00	4	4
25	6	5.00	0.63	0.26	4.34 - 5.66	4	6
30	6	4.50	0.55	0.22	3.93 - 5.07	3	5
35	6	3.50	0.55	0.22	2.93 - 4.07	3	4
40	6	3.67	0.52	0.21	3.12 - 4.21	3	4
$\omega_{1,2}$ gliadins							
20	6	2.67	0.52	0.21	2.12 - 3.21	2	3
25	6	4.33	0.82	0.33	3.48 - 5.19	3	5
30	6	3.17	0.41	0.17	2.74 - 3.60	3	4
35	6	2.67	0.52	0.21	2.12 - 3.21	2	3
40	6	3.17	0.41	0.17	2.74 - 3.60	3	4
ω_{5} gliadins							
20	6	4.50	0.84	0.34	3.62 - 5.38	4	6
25	6	6.67	0.52	0.21	5.12 - 7.22	5	7
30	6	4.83	1.17	0.48	3.61 - 6.06	3	6
35	6	3.50	0.55	0.22	2.93 - 4.07	3	4
40	6	4.33	0.82	0.33	3.48 - 5.19	3	5

ANOVA (TP) $F(4.25) = 11.02$, Sig. = 0.000, eta square = 84.33/132.17 = 0.64
ANOVA ($\alpha + \beta$) $F(4.25) = 6.24$, Sig. = 0.001, eta square = 19.13/38.30 = 0.50
ANOVA (γ) $F(4.25) = 9.01$, Sig. = 0.000, eta square = 9.13/15.47 = 0.59
ANOVA ($\omega_{1,2}$) $F(4.25) = 9.08$, Sig. = 0.000, eta square = 11.13/18.80 = 0.59
ANOVA (ω_{5}) $F(4.25) = 5.63$, Sig. = 0.002, eta square = 14.87/31.37 = 0.47

The highest number of proteins was obtained after extraction with 70% ethanol, according to the method by Lookhart and Bean and electrophoretic separation at a voltage of −16.5 kV (23.50). The lowest number of proteins was obtained at −14.5 kV (14.83). It was found that there is a statistically significant difference in the number of proteins, $F(3.20) = 46.16$, Sig. = 0.000. The highest and the lowest amounts of proteins within
Table 5 Descriptive indicators of the total relative concentration of proteins and relative concentration of gliadin fractions (solvent 70% ethanol, Agilent, CE 7100, capillary inside diameter 50 µm, total capillary length 33 cm, effective capillary length 23.50 cm, voltage –16.5 kV (reverse mode), duration 30 min, absorbance measured at 220 nm)

Column temperature, °C	N	RC, % SD Std. error 95% confidence interval of average Min Max Lower bound Upper bound	α + β gliadins	γ gliadins	ω1.2 gliadins	ω5 gliadins	
Total relative concentration	20	6	100.00 0.00 0.00 100.00 100.00 100 100				
25	6	100.00 0.00 0.00 100.00 100.00 100 100					
30	6	100.00 0.00 0.00 100.00 100.00 100 100					
35	6	100.00 0.00 0.00 100.00 100.00 100 100					
40	6	100.00 0.00 0.00 100.00 100.00 100 100					
α + β gliadins	20	6	36.38 1.11 0.45 35.21 37.55 34.90 37.88				
25	6	28.29 1.40 0.57 26.82 29.76 26.06 30.09					
30	6	33.86 1.29 0.52 32.51 35.21 32.27 35.38					
35	6	27.22 2.11 0.86 25.01 29.44 26.00 31.49					
40	6	47.55 0.99 0.41 46.50 48.60 46.01 48.99					
γ gliadins	20	6	43.88 1.14 0.47 42.68 45.08 42.39 45.37				
25	6	26.66 1.35 0.55 25.25 28.08 24.75 28.13					
30	6	24.88 1.59 0.65 23.82 27.05 23.07 27.39					
35	6	29.83 1.08 0.44 28.70 30.96 28.36 31.44					
40	6	47.38 0.99 0.41 46.50 48.60 46.01 48.99					
ω1.2 gliadins	20	6	14.75 0.89 0.36 13.81 15.69 13.28 15.87				
25	6	14.93 1.04 0.43 13.84 16.03 13.03 15.95					
30	6	14.03 1.34 0.55 12.62 15.44 12.07 15.71					
35	6	27.21 1.35 0.55 25.80 28.63 25.10 28.95					
40	6	14.46 0.58 0.24 13.85 15.07 13.71 15.13					
ω5 gliadins	20	6	5.42 0.34 0.14 5.06 5.77 5.02 5.90				
25	6	30.98 3.13 1.28 27.70 34.27 29.55 37.36					
30	6	27.28 2.04 0.83 25.14 29.42 24.69 29.61					
35	6	12.86 1.90 0.77 10.87 14.85 10.83 15.95					
40	6	10.67 1.07 0.44 9.55 11.80 9.20 12.22					

ANOVA (α + β) F(4.25) = 193.61, Sig. = 0.000, eta square = 1593.94/1645.39 = 0.97
ANOVA (γ) F(4.25) = 210.31, Sig. = 0.000, eta square = 1448.88/1491.94 = 0.97
ANOVA (ω1.2) F(4.25) = 165.39, Sig. = 0.000, eta square = 773.27/802.49 = 0.96
ANOVA (ω5) F(4.25) = 195.85, Sig. = 0.000, eta square = 2949.03/3043.13 = 0.97

We can see that with increasing voltage, total proteins increased, then decreased and increased slightly again. Within the α + β and γ gliadin fractions, the number of proteins increased and then decreased. Within the fraction of ω1.2- and ω5-gliadins, the amount of proteins increased, then decreased and increased slightly again.

Table 7 shows descriptive indicators of the total relative concentration of proteins and relative concentration of gliadin proteins separated by fractions after extraction with 70% (v/v) ethanol and separated by applying different electrode voltages (reverse mode).

Descriptive analysis showed that the highest relative concentration of α + β gliadins was obtained at a voltage of –17.5 kV (65.13%). The lowest concentration within this fraction was at –16.5 kV (28.29%). A statistically significant difference in the relative protein concentration was found, F(3.20) = 851.47, Sig. = 0.000. The highest and the lowest relative concentrations of γ-gliadins were obtained at –14.5 kV and at –18.5 kV (27.37 and 21.87%, respectively). A statistically significant difference in the relative protein concentration was found, F(3.20) = 20.47, Sig. = 0.000. A voltage of –14.5 kV...
Table 6 Descriptive indicators of total proteins and the number of gliadin fractions (solvent 70% ethanol, Agilent, CE 7100, capillary inside diameter 50 µm, total capillary length 33 cm, effective capillary length 23.50 cm, capillary temperature 25°C, duration 30 min, absorbance measured at 220 nm)

Voltage, kV	N	Xav	SD	Std. error	95% confidence interval of average	Min	Max		
					Lower bound				
Total number of proteins	–14.5	6	14.83	1.17	0.48	13.61	16.06	13	16
	–16.5	6	23.50	1.05	0.43	22.40	24.60	22	25
	–17.5	6	17.33	1.21	0.49	16.06	18.60	15	18
	–18.5	6	16.67	1.75	0.71	15.83	19.50	15	19
α + β gliadins	–14.5	6	5.17	0.75	0.31	4.38	5.96	4	6
	–16.5	6	7.50	0.84	0.34	6.62	8.38	6	8
	–17.5	6	8.17	1.17	0.48	6.94	9.39	6	9
	–18.5	6	7.17	0.75	0.31	6.38	7.96	6	8
γ gliadins	–14.5	6	2.50	0.55	0.22	1.93	3.07	2	3
	–16.5	6	5.00	0.63	0.26	4.34	5.66	4	6
	–17.5	6	3.00	0.63	0.26	2.34	3.66	2	4
	–18.5	6	3.00	0.00	0.00	3.00	3.00	3	3
ω1.2 gliadins	–14.5	6	3.00	0.00	0.00	3.00	3.00	3	3
	–16.5	6	4.33	0.82	0.33	3.48	5.19	3	5
	–17.5	6	2.50	0.55	0.22	1.93	3.07	2	3
	–18.5	6	3.00	0.63	0.26	2.34	3.66	2	4
ω5 gliadins	–14.5	6	4.17	0.75	0.31	3.38	4.96	3	5
	–16.5	6	6.67	0.52	0.21	5.12	7.22	5	7
	–17.5	6	3.00	0.63	0.26	2.34	3.66	2	4
	–18.5	6	4.67	1.03	0.42	3.58	5.75	3	6

ANOVA (TP) F(3.20) = 46.16, Sig. = 0.000, eta square = 242.33/277.33 = 0.87
ANOVA (α + β) F(3.20) = 12.50, Sig. = 0.000, eta square = 30.00/46.00 = 0.65
ANOVA (γ) F(3.20) = 26.82, Sig. = 0.000, eta square = 22.12/27.62 = 0.80
ANOVA (ω1.2) F(3.20) = 10.85, Sig. = 0.000, eta square = 11.12/17.96 = 0.62
ANOVA (ω5) F(3.20) = 12.83, Sig. = 0.000, eta square = 22.12/33.62 = 0.66

caused the highest (26.73%) and –18.5 the lowest (3.91%) relative concentration of ω1.2-gliadins. The one-factor analysis of variance showed a statistically significant difference, F(3.20) = 1316.91, Sig. = 0.000. Relative concentration of ω5-gliadins obtained at a voltage of –18.5 kV was the highest (40.30%) and at –17.5 kV the lowest (4.91%). There was a statistically significant difference in the relative concentration, F(3.20) = 549.81, Sig. = 0.000.

According to the results obtained, the increasing voltage decreased then increased and decreased again the relative concentration of α + β gliadin proteins. Within the fraction of γ- and ω1.2- gliadins the concentration decreased, and ω5-gliadins increased then decreased and increased again.

Lookhart and Bean performed separation and characterization of wheat proteins by high-pressure capillary electrophoresis (HPCE) [21]. Gliadins were extracted with 70% (v/v) ethanol. Separation of proteins was performed at a voltage of 22 kV and at a temperature of 45°C. The detection wavelength was 200 nm. Based on the obtained results, the retention time of gliadin proteins was: α gliadins 3–4 min (molecular weight according to SDS-PAGE 35–38 kDa), β 4–6 min (37–43 kDa), γ 5–6 min (43–47 kDa), and ω 6.8–10 min (48–63 kDa).

Bietz and Schmalzried analyzed gliadins from wheat by capillary electrophoresis [25]. Gliadins were extracted with ethanol and methanol of different concentrations (30, 40, 50, 60 and 70% v/v), with and without the reducing agent dithioerythritol. The temperature of the capillary ranged from 30 to 50°C, and the voltage from 8 to 12 kV. The detection wavelength was 200 nm. Capillary temperature of 40°C and voltage 10 kV showed optimal conditions. Ethanol proved to be a better solvent than methanol.

Changing ethanol concentration (50, 60, and 70% v/v), capillary temperature (20, 25, 30, 35, and 40°C), and voltage (–14.5; –16.5, –17.5, and –18.5 kV), we found that the optimal conditions for separation of gliadin proteins were 70% ethanol concentration, a capillary temperature of 25°C, and a voltage of –16.5 kV (reverse mode) (Fig. 3).

Our results are in agreement with Lookhart and Bean and Bietz and Schmalzried [21, 25]. Although the mentioned authors separated gliadin proteins by using different techniques of capillary electrophoresis, 70% ethanol proved to be the optimal solvent, which lines up with our results [21]. The gliadin proteins in this work were separated in less than 10 min, which is in agreement with Lookhart and Bean [21].
CONCLUSION

Based on the results obtained, the optimal conditions for gliadin separation were 70% ethanol concentration, a capillary temperature of 25°C, and a voltage of –16.5 kV (reverse mode). Under these conditions, total proteins were 23.5, including α + β gliadin proteins (Xav = 7.50, relative concentration 28.29%), γ-fractions (Xav = 5.00, RC = 26.66%), α1.2-gliadins (Xav = 4.33, RC = 14.93%), and α5-gliadins (Xav = 6.67, RC = 30.98%).

The results obtained in this paper can greatly contribute to the prevention of the incorrect declaration of the “gluten free” products, reduction of health risks for people who are sensitive to gluten proteins, as well as the cost of treating the ones with celiac disease.

Table 7 Descriptive indicators of the relative concentration of proteins and relative concentration of gliadin fractions (solvent 70% ethanol, Agilent, CE 7100, capillary inside diameter 50 µm, total capillary length 33 cm, effective capillary length 23.50 cm, capillary temperature 25°C, duration 30 min, absorbance measured at 220 nm)

Voltage, kV	N	RC, %	SD	Std. error	95% confidence interval of average	Min	Max	
-14.5	6	100.00	0.00	0.00	100.00	100	100	
-16.5	6	100.00	0.00	0.00	100.00	100	100	
-17.5	6	100.00	0.00	0.00	100.00	100	100	
-18.5	6	100.00	0.00	0.00	100.00	100	100	
α + β gliadins	-14.5	35.42	1.27	0.52	34.09	36.75	33.06	36.81
α + β gliadins	-16.5	28.29	1.40	0.57	26.82	29.76	26.06	30.09
α + β gliadins	-17.5	65.13	1.90	0.78	63.13	67.13	61.63	67.05
α + β gliadins	-18.5	34.08	0.73	0.29	33.31	34.85	33.09	34.95
γ gliadins	-14.5	27.37	1.03	0.42	26.29	28.45	26.10	29.22
γ gliadins	-16.5	26.66	1.35	0.55	25.25	28.08	24.75	28.13
γ gliadins	-17.5	25.51	1.24	0.51	24.20	26.81	23.81	26.96
γ gliadins	-18.5	21.87	1.61	0.66	20.18	23.56	20.02	24.38
α1.2-gliadins	-14.5	26.73	0.74	0.30	25.95	27.51	25.98	28.10
α1.2-gliadins	-16.5	14.93	1.04	0.43	13.84	16.03	13.03	15.95
α1.2-gliadins	-17.5	5.34	0.37	0.15	4.95	5.73	4.99	5.89
α1.2-gliadins	-18.5	3.91	0.50	0.20	3.39	4.43	3.21	4.52
α5-gliadins	-14.5	10.66	0.75	0.31	9.87	11.45	9.92	11.98
α5-gliadins	-16.5	30.98	3.13	1.28	27.70	34.27	29.55	37.36
α5-gliadins	-17.5	4.91	1.01	0.41	3.85	5.97	3.99	6.73
α5-gliadins	-18.5	40.30	0.88	0.36	39.37	41.22	38.88	41.25

ANOVA (α + β) F(3.20) = 851.47, Sig. = 0.000, eta square = 4935.49/4974.13 = 0.99
ANOVA (γ) F(3.20) = 20.47, Sig. = 0.000, eta square = 107.68/142.75 = 0.75
ANOVA (α1.2) F(3.20) = 1316.91, Sig. = 0.000, eta square = 2000.54/2010.67 = 0.99
ANOVA (α5) F(3.20) = 549.81, Sig. = 0.000, eta square = 5014.18/5074.98 = 0.99

Figure 3 Electrophoregram of gliadin proteins extracted from wheat flour using 70% (v/v) ethanol and separated by capillary gel electrophoresis at a capillary temperature of 25°C and at a voltage of –16.5 kV
In addition, the results of the research are of fundamental importance in the study of gluten proteins and the influence of technological procedures on their change and the possibility of reducing the allergic effect of individuals gluten proteins, during processing.

CONTRIBUTION

Authors are equally related to the writing of the manuscript and are equally responsible for plagiarism.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

REFERENCES

1. Shan L, Khosla C. Chemistry and biology of gluten proteins. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry. 2007;7(3):187–193. DOI: https://doi.org/10.2174/187152207780832397.

2. Urade R, Sato N, Sugiyama M. Gliadins from wheat grain: an overview, from primary structure to nanostructures of aggregates. Biophysical Reviews. 2018;10(2):435–443. DOI: https://doi.org/10.1007/s12551-017-0367-2

3. Wieser H. Chemistry of gluten proteins. Food Microbiology. 2007;24(2):115–119. DOI: https://doi.org/10.1016/j.fm.2006.07.004.

4. Zhang Y, Luo G, Liu D, Wang D, Yang W, Sun J, et al. Genome-, transcriptome- and proteome wide analyses of the gliadin gene families in *Triticum urartu*. PloS ONE. 2015;10(7). DOI: https://doi.org/10.1371/journal.pone.0131559.

5. Balakireva AV, Zamyatin AA. Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients. 2016;8(10). DOI: https://doi.org/10.3390/nu8100644.

6. Wieser H. Relation between gliadin structure and coeliac toxicity. Acta Paediatrica. 1996;85(412):3–9. DOI: https://doi.org/10.1111/j.1651-2227.1996.tb14239.x.

7. Qian Y, Preston K, Krokhin O, Mellish J, Ens W. Characterization of wheat gluten proteins by HPLC and MALDI TOF mass spectrometry. Journal of the American Society for Mass Spectrometry. 2008;19(10):1542–1550. DOI: https://doi.org/10.1016/j.jasms.2008.06.008.

8. Lesheller B, Colgrave ML, Scherf KA. Characterization and relative quantitation of wheat, rye, and barley gluten protein types by liquid chromatography-tandem mass spectrometry. Frontiers in Plant Science. 2019;10. DOI: https://doi.org/10.3389/fpls.2019.01530.

9. Seilmeier W, Valdez I, Mendez E, Wieser H. Comparative investigations of gluten proteins from different wheat species II. Characterization of α-gliadins. European Food Research and Technology. 2001;212(3):355–363. DOI: https://doi.org/10.1007/s002170000260.

10. Horváth C. Storage proteins in wheat (*Triticum aestivum* L.) and the ecological impacts affecting their quality and quantity, with a focus on nitrogen supply. Journal of Agricultural and Environmental Sciences. 2014;1(2):57–76.

11. Ceboła Á, Moreno ML, Coto L, Sousa C. Gluten immunogenic peptides as standard for the evaluation of potential harmful prolamin content in food and human specimen. Nutrients. 2018;10(12). DOI: https://doi.org/10.3390/nu10121927.

12. Helmerhorst EJ, Zamakhchari M, Schuppan D, Oppenheim FG. Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity. PloS ONE. 2010;5(10). DOI: https://doi.org/10.1371/journal.pone.0013264.

13. Shewry P. What is gluten – Why is it special? Frontiers in Nutrition. 2019;6. DOI: https://doi.org/10.3389/ fnut.2019.00101.

14. Grosch W, Wieser H. Redox reactions in wheat dough as affected by ascorbic acid. Journal of Cereal Science. 1999;29(1):1–16. DOI: https://doi.org/10.1006/jcrs.1998.0218.

15. Srinivasan B, Focke-Tejkl M, Weber M, Pahr S, Baar A, Atrey R, et al. Usefulness of recombinant γ-gliadin 1 for identifying patients with celiac disease and monitoring adherence to a gluten-free diet. The Journal of Allergy and Clinical Immunology. 2015;136(6):1607–1618. DOI: https://doi.org/10.1016/j.jaci.2015.04.040.

16. Daniel C, Triboi E. Effects of temperature and nitrogen nutrition on the grain composition of winter wheat: Effects on gliadin content and composition. Journal of Cereal Science. 2000;32(1):45–56. DOI: https://doi.org/10.1006/jcrs.2000.0313.

17. Wieser H, Kieffer R. Correlations of the amount of gluten protein types to the technological properties of wheat flours determined on a micro-scale. Journal of Cereal Science. 2001;34(1):19–27. DOI: https://doi.org/10.1006/jcrs.2000.0385.

18. Hurkmans WJ, Tanaka CK, Vensel WH, Thilmony R, Altenbach SB. Comparative proteomic analysis of the effect of temperature and fertilizer on gliadin and glutenin accumulation in the developing endosperm and flour from *Triticum aestivum* L. cv. Butte 86. Proteome Science. 2013;11(1). DOI: https://doi.org/10.1186/1477-5956-11-8.
19. Malvano F, Albanese D, Pilloton R, Di Matteo M. A new label-free impedimetric aptasensor for gluten detection. Food Control. 2017;79:200–206. DOI: https://doi.org/10.1016/j.foodcont.2017.03.033.

20. Sirén H. Capillary electrophoresis in food analysis. In: Nollet LML, Toldra F, editors. Handbook of food analysis – Two Volume Set. Boca Raton: CRC Press; 2015. pp. 493–519. DOI: https://doi.org/10.1201/b18668.

21. Lookhart G, Bean S. Separation and characterization of wheat protein fractions by high-performance capillary electrophoresis. Cereal Chemistry. 1995;72(6):527–532.

22. Wenz C. Performance of commercially available gels for protein characterization by capillary gel electrophoresis with UV detection on the Agilent 7100 CE System. Application Note [Internet]. [cited 2020 Jul 1]. Available from: https://www.gimitech.com/file/5990-7976EN.pdf.

23. Braud C, Devarieux R, Atlan A, Ducos C, Vert M. Capillary zone electrophoresis in normal or reverse polarity separation modes for the analysis of hydroxy acid oligomers in neutral phosphate buffer. Journal of Chromatography B: Biomedical Sciences and Applications. 1998;706(1):73–82. DOI: https://doi.org/10.1016/s0378-4347(97)00468-4.

24. Grujić R, Savanović D. Analysis of myofibrillar and sarcoplasmic proteins in pork meat by capillary gel electrophoresis. Foods and Raw Materials. 2018;6(2):421–428. DOI: https://doi.org/10.21603/2308-4057-2018-2-421-428.

25. Bietz JA, Schmalzried E. Capillary electrophoresis of wheat gliadin: initial studies and application to varietal identification. LWT – Food Science and Technology. 1995;28(2):174–184. DOI: https://doi.org/10.1016/s0023-6438(95)91346-7.

ORCID IDs
Vesna Gojković Cvjetković https://orcid.org/0000-0003-1118-4565