Finding perfect matchings in random cubic graphs in linear time

Michael Anastos and Alan Frieze

August 3, 2018

Abstract

In a seminal paper on finding large matchings in sparse random graphs, Karp and Sipser [12] proposed two algorithms for this task. The second algorithm has been intensely studied, but due to technical difficulties, the first algorithm has received less attention. Empirical results in [12] suggest that the first algorithm is superior. In this paper we show that this is indeed the case, at least for random cubic graphs. We show that w.h.p. the first algorithm will find a matching of size $n/2 - O(\log n)$ on a random cubic graph (indeed on a random graph with degrees in $\{3, 4\}$). We also show that the algorithm can be adapted to find a perfect matching w.h.p. in $O(n)$ time, as opposed to $O(n^{3/2})$ time for the worst-case.

1 Introduction

Given a graph $G = (V, E)$, a matching M of G is a subset of edges such that no vertex is incident to two edges in M. Finding a maximum cardinality matching is a central problem in algorithmic graph theory. The most efficient algorithm for general graphs is that given by Micali and Vazirani [13] and runs in $O(|E||V|^{1/2})$ time.

In a seminal paper, Karp and Sipser [12] introduced two simple greedy algorithms for finding a large matching in the random graph $G_{n,m}$, $m = cn/2$ for some positive constant $c > 0$. Let us call them Algorithms 1 and 2 as they are in [12]. Algorithm 2 is simpler than Algorithm 1 and has been intensely studied: see for example Aronson, Frieze and Pittel [1], Bohman and Frieze [2], Balister and Gerke [3] or Bordenave and Lelarge [6]. In particular, [1] together with Frieze and Pittel [9] shows that w.h.p. Algorithm 2 finds a matching that is within $\tilde{\Theta}(n^{1/5})$ of the optimum, when applied to $G_{n,m}$. Subsequently, Chebolu, Frieze and Melsted [5] showed how to use Algorithm 2 as a basis for a linear expected time algorithm. Algorithm 2 proceeds as follows. While there are vertices of degree one in the graph, it chooses one at random and adds the edge incident with it to the matching and deletes the endpoints of the edge. Otherwise, if the current graph has minimum degree at least two, then it adds a random edge to the matching and deletes the endpoints of the edge.

In the same paper Karp and Sipser proposed another algorithm for finding a matching that also runs in linear time. This was Algorithm 1. The algorithm sequentially reduces the graph until it reaches the empty graph. Then it unwinds some of the actions that it has
taken and grows a matching which is then output. Even though it was shown empirically to outperform Algorithm 2, it has not been rigorously analyzed. In this paper we analyze Algorithm 2 in the special case where the graph is random with a fixed degree sequence $3 \leq d(i) \leq 4$ for $i = 1, 2, \ldots, n$. We prove the following:

Theorem 1. Let G be a random (multi)-graph with an even number of vertices, degree sequence $3 \leq d(i) \leq 4$ for $i = 1, 2, \ldots, n$ and no loops. Then

(a) Algorithm 1 finds a matching of size $n/2 - O(\log n)$, w.h.p.

(b) Algorithm 1 can be modified to find a perfect matching in $O(n)$ time w.h.p. and in expectation.

Note that in the case of cubic graphs, it is known that they have perfect matchings w.h.p., see Bollobás [4]. Note also that it was shown by Frieze, Radcliffe and Suen [10] that w.h.p. Algorithm 2 finds a matching of size $n/2 - \tilde{\Theta}(n^{1/5})$

2 The Algorithm

The algorithm that is given in [12] can be split into two parts. The first part sequentially reduces the graph until it reaches the empty graph. Then the second part reverses part of this reduction and grows a matching which is then output.

To reduce the graph,

(1) First, while there are vertices of degree 0 or degree 1 the algorithm removes them along with any edge incident to them. The edges removed at this stage will be part of the output matching.

(2) Second, while there are vertices of degree 2 the algorithm contracts them along with their two neighbors. That is the induced path (x, y, z) is replaced by a single contracted vertex y_c whose neighbors are those of x, z other than y. The description in [12] does not explicitly say what to do with loops or multiple edges created by this process. In any case, such creations are very rare.

In the unwinding, if we have so far constructed a matching containing an edge $\{y_c, \xi\}$ incident with y_c and ξ is a neighbor of x then we replace this edge by $\{x, \xi\}$ and $\{y, z\}$ and add these edges to our matching. If there is no matching edge so far chosen incident with y_c then we add an arbitrary one of $\{x, y\}$ or $\{y, z\}$ to our matching.

(3) Finally if the graph has minimum degree 3 then a random vertex is chosen among those of maximum degree and then a random edge incident to that vertex is deleted. These edges will not be used in the unwinding.

2.1 Idea of proof:

No mistakes are made while handling vertices of degree 0, 1 or 2 (except maybe in the rare case of deleting loops or repeated edges). Each mistake decreases the size of the final matching
produced by one from the maximum size. We will show that mistakes occur only at parts of the graph that have become denser than is likely.

The subgraph that remains at each stage is uniformly random, given its degree sequence. We show that w.h.p. the maximum degree remains bounded and so as long as the number of vertices remaining is at least $\log n$, say, then w.h.p. there will be no dense subgraphs and the algorithm will not make any mistakes. This explains the $O(\log n)$ error term. Finally, we assert that removing an edge incident to a vertex of a maximum degree will help to control the maximum degree, explaining this choice of edge to delete.

2.2 Details

The precise algorithm that we analyze, which we call Reduce-Backtrack, is a slightly modified version of the one given in [12]. We will be explicit about what we do with loops or multiple edges. We keep the multi-edges but we remove the loops.

We assume that our input (multi-)graph $G = G([n], E)$ has degree sequence d and is generated by the configuration model of Bollobás [4] with the restriction that G has no loops.

Let $W = [2\nu]$, $2\nu = \sum_{i=1}^{n} d(i)$, be our set of configuration points and let Φ be the set of configurations i.e. functions $\phi : W \mapsto [n]$ that such that $|\phi^{-1}(i)| = d(i)$ for every $i \in [n]$. Given $\phi \in \Phi$ we define the graph $G_\phi = ([n], E_\phi)$ where $E_\phi = \{\phi(2j - 1), \phi(2j) : j \in [\nu]\}$.

Choosing a function $\phi \in \Phi$ uniformly at random yields a random (multi-)graph G_ϕ with degree sequence d.

It is known that conditional on G_ϕ being simple, i.e. having no loops or multiple edges, it is equally likely to be any graph that has degree sequence d. Also, if the maximum degree is $O(1)$ then the probability that G_ϕ is simple is bounded below by a quantity that is independent of n. Thus results on this model can be translated immediately to random simple graphs.

We split the Reduce-Backtrack Algorithm into the Reduce and Backtrack algorithms which we present separately.

Algorithm Reduce:

The input $G_0 = G_\phi$ where we condition on there being no loops.

$i = \tau = 0$.

While $G_i = (V_i, E_i) \neq (\emptyset, \emptyset)$ do:

 If $\delta(G_i) = 0$: Perform a vertex-0 removal: choose a random vertex of degree 0 and remove it from V_i.

 Else if $\delta(G_i) = 1$: Perform a vertex-1 removal: choose a random vertex v of degree 1 and remove it along with its neighbor w and any edge incident to either of v, w.

 Else if $\delta(G_i) = 2$: Perform a contraction: choose a random vertex v of degree 2. Then replace $\{v\} \cup N(v)$ (v and its neighbors $N(v)$) by a single vertex v_c. For $u \in V \setminus (\{v\} \cup N(v))$, u is joined to v_c by as many edges as there are in G_i from u to $\{v\} \cup N(v)$.
Else if $\delta(G_i) \geq 3$: Perform a **max-edge removal**: choose a random vertex of maximum degree and remove a random edge incident with it.

End if

If the last action was a max-edge removal, say the removal of edge \(\{u, v\}\) and in the current graph we have \(d(u) = 2\) and \(u\) is joined to a single vertex \(w\) by a pair of parallel edges then perform an **auto correction contraction**: contract \(u, v\) and \(w\) into a single vertex. Also set \(i = i - 1\).

End If

Set \(i = i + 1, \tau = i\) and let \(G_i\) be the current graph.

End While

Observe that we only reveal edges (pairs of the form \((\phi(2j - 1), \phi(2j)) : j \in [\nu]\)) of \(G_\phi\) as the need arises in the algorithm. Moreover the algorithm removes any edges that are revealed. Thus if we let \(d(i)\) be the degree sequence of \(G_i\) then, given \(G, d(i)\) and the actions performed by Reduce until it generates \(G_i\) we have that \(G_i\) is uniformly distributed among all configurations with degree sequence \(d(i)\) and no loops.

Call a contraction that is performed by Reduce and involves only 2 vertices bad i.e. one where we contract \(u, v\) to a single vertex given that \(G\) contains a parallel pair of the edge \(\{u, v\}\) and \(u\) has degree 2. Otherwise call it good. Observe that a bad contraction can potentially be a mistake while a good contraction is never a mistake. By introducing the auto correction contraction we replace the bad contraction of the vertex set \(\{u, w\}\), as presented in the description of Reduce, with the good contraction of the vertex set \(\{v, u, w\}\).

In the following, we allow the algorithm to backtrack after an arbitrary number of iterations \(j\). In this way we can run almost to the end and then use an optimal algorithm to find a perfect matching in the remaining graph. This, in conjunction with the first remark of this paragraph, is how we prove part (b) of Theorem 1.

Algorithm BACKTRACK:

Input: \(G_0, G_1, \ldots, G_\tau\) - the graph sequence produced by Reduce, an integer \(j \in \{0, 1, \ldots, \tau\}\) and a matching \(M_j\) of \(G_j\). In the special case \(j = \tau\) we take \(M_\tau := \emptyset\).

For \(i = 1\) to \(j\) do:

If $\delta(G_{j-i}) = 0$: Set $M_{j-i} = M_{j-i+1}$

Else if $\delta(G_{j-i}) = 1$: Let \(v\) be the vertex of degree 1 chosen at the \((j-i)\)th step of Reduce and let \(e\) be the edge that is incident to \(v\) in \(G_{j-i}\). Then, Set $M_{j-i} = M_{j-i+1} \cup \{e\}$.

Else if $\delta(G_{j-i}) = 2$: Let \(v\) be the vertex of degree 2 selected in \(G_{j-i}\). If $|N(v)| = 1$ i.e. \(v\) is joined to a single vertex by a double edge in \(G_{j-i}\), set $M_{j-i} = M_{j-i+1}$. Else let $N(v) = \{u, w\}$ and \(v_c\) be the new vertex resulting from the contraction of \(\{v, u, w\}\). If \(v_c\) is not covered by M_{j-i+1} then set $M_{j-i} = M_{j-i+1} \cup \{u, v\}$. Otherwise assume that \(\{v_c, z\} \in M_{j-i+1}\) for some \(z \in V(G_{j-i})\). Without loss of generality assume that in \(G_{j-i}\), \(z\) is connected to \(u\). Set $M_{j-i} = (M_{j-i+1} \cup \{v, w\}) \setminus \{v_c, z\}$.

Else if : $\delta(G_{j-i}) \geq 3$: Set $M_{j-i} = M_{j-i+1}$
End For

For a graph G and $j \in \{0, 1, ..., \tau\}$ denote by $R_0(G, j)$ and $R_{2b}(G, j)$ the number of times that Reduce has performed a vertex-0 removal and a bad contraction respectively until it generates G_j. For a graph G and a matching M denote by $\kappa(G, M)$ the number of vertices that are not covered by M. The following Lemma assesses the final output of the Reduce-Backtrack algorithm.

Lemma 2. Let G be a graph and M be the output of the Reduce-Backtrack algorithm applied to G. Then, for $j \geq 0$,

$$
\kappa(G, M) = R_0(G, j) + R_{2b}(G, j) + \kappa(G_j, M_j).
$$

Proof. Let $G = G_0, G_1, ..., G_\tau$ be the sequence of graphs produced by Reduce and let $M_j, M_{j-1}, ..., M_0 = M$ be the sequence of matchings produced by backtrack. Let $R_0(G, j, i)$ and $R_{2b}(G, j, i)$ be the number of vertex-0 removals and bad contractions performed by Reduce going from G_{j-i} to G_j. We will prove that for every $0 \leq i \leq j$,

$$
\kappa(G_{j-i}, M_{j-i}) = R_0(G, j, i) + R_{2b}(G, j, i) + \kappa(G_j, M_j).
$$

Taking $i = j$ yields the desired result.

For $i = 0$, equation (1) holds as $R_0(G, j, 0) = R_{2b}(G, j, 0) = 0$. Assume inductively that (1) holds for $i = k-1$ where $k-1$ satisfies $0 \leq k-1 \leq j-1$. For $i = k$, if a max-edge deletion was performed on G_{j-k} then $|V_{j-k}| = |V_{j-k+1}|$. Furthermore, $R_0(G, j, k) = R_0(G, j, k-1)$ and $R_{2b}(G, j, k) = R_{2b}(G, j, k-1)$ and hence (1) continues to hold. If a vertex-0 deletion or a bad contraction was performed on G_{j-k} then $|V_{j-k}| = |V_{j-k+1}| + 1$ and $M_{j-k} = M_{j-k+1}$. In the case of a vertex-0 deletion we have $R_0(G, j, k) = R_0(G, j, k-1) + 1$ and $R_{2b}(G, j, k) = R_{2b}(G, j, k-1)$ and both sides of (2) increase by one. In the case of a bad contraction we have $R_0(G, j, k) = R_0(G, j, k-1)$ and $R_{2b}(G, j, k) = R_{2b}(G, j, k-1) + 1$ and again both sides of (2) increase by one. Finally if a good contraction or a vertex-1 removal was performed on G_{j-k} then $R_0(G, j, k) = R_0(G, j, k-1)$ and $R_{2b}(G, j, k) = R_{2b}(G, j, k-1)$. At the same time we have that $\kappa(G_{j-i}, M_{j-i}) = \kappa(G_{j-i+1}, M_{j-i+1})$, completing the induction. \hfill \Box

2.3 Organizing the actions taken by Reduce

We do not analyze the effects of each action taken by Reduce individually. Instead we group together sequences of actions, into what we call hyperactions, and we analyze the effects of the individual hyperactions.

The first group of actions consists of all the vertex-0, vertex-1 removals and contractions performed before the first max-edge removal is performed. We let Γ_0 be the graph resulting from performing the first group of actions. Observe that Γ_0 is the first graph in the sequence $G_0, G_1, ..., G_\tau$ with minimum degree at least 3. Moreover since every graph that we study in this paper has minimum degree at least 3, in our case we have $G = \Gamma_0$.

Thereafter, every hyperaction, starts with a max-edge removal and it consists of all the actions taken until the next max-edge removal. We let Γ_{i-1} be the graph that results from performing the first i hyperactions. Thus Γ_{i-1} is the ith graph in the sequence $G_0, G_1, ..., G_\tau$.
that has minimum degree at least 3 and going from Γ_{i-1} to Γ_i. Reduce performs a max-edge removal followed by a sequence of sequence vertex-0, vertex-1 removals and contractions. We finally let $\Gamma_{\hat{\tau}}$ be the final graph. Thus when G has minimum degree 3 we have that $\Gamma_0, \Gamma_1, ..., \Gamma_{\hat{\tau}}$ is a subsequence of $G_0, G_1, ..., G_\tau$. Furthermore, $\Gamma_0 = G_0$, $\Gamma_{\hat{\tau}} = G_\tau$ and $\Gamma_0, \Gamma_1, ..., \Gamma_{\hat{\tau}}-1$ consists of all the graphs in the sequence $G_0, G_1, ..., G_\tau$ with minimum degree at least 3.

2.4 Excess and Proof Mechanics

The central quantity of this paper is the excess ℓ, which we denote by $ex_\ell(\cdot)$. For a graph G and a positive integer ℓ we let

$$ex_\ell(G) : = \sum_{v \in V(G)} [d(v) - \ell]1[d(v) > \ell].$$

The idea behind defining $ex_\ell(G)$ is the following: Assume that Reduce performs only max-edge removals. Then either $ex_\ell(G) = 0$ or after every hyperaction $ex_\ell(\cdot)$ is reduced until it reaches 0. Hence $ex_\ell(G)$ is related to the number of hyperactions that Reduce needs to take in order to reduce the current graph to a graph with maximum degree ℓ.

Having defined $ex_\ell(G)$, it is now easy to state our strategy. It is described in the following lemmas. For a graph G set $s(G) = |V(G)| + |E(G)|$. Observe that after every hyperaction $s(\cdot)$ is reduced.

Hyperactions of Interest

For the analysis of Reduce we consider 7 distinct hyperactions (sequences of actions) which we call hyperactions of Type 1,2,3,4,5,33 and 34 respectively. In the case that the maximum degree is larger than 3 we consider the following hyperactions: we have put some diagrams of these hyperactions at the end of the paper.

Type 1: A single max-edge removal,

Type 2: A max edge removal followed by an auto correction contraction.

Type 3: A single max-edge removal followed by a good contraction.

Type 4: A single max-edge removal followed by 2 good contractions. In this case we have the restriction that there are exactly 6 distinct vertices v, u, x_1, x_2, w_1, w_2 involved in this hyperaction and they satisfying the following: (i) v is a vertex of maximum degree, it is adjacent to u and $\{u, v\}$ is removed during the max-edge removal, (ii) $d(u) = d(x_1) = d(x_2) = 3$, (iii) $N(u) = \{v, x_1, x_2\}$, $N(x_1) = \{u, x_2, w_1\}$ and $N(x_2) = \{u, x_1, w_2\}$. The two contractions have the same effect as contracting $\{u, x_1, x_2, w_1, w_2\}$ into a single vertex.

In the case that the maximum degree equals 3 we consider the following hyperactions:

Type 5: A max-edge removal followed by 2 good contractions that interact. In this case the 5 vertices u, v, x_1, x_2, z involved in the hyperaction satisfy the following: $\{u, v\}$ is the edge removed by the max-edge removal. $N(v) = \{u, x_1, x_2\}$, $N(u) = \{v, x_1, z\}$,
Moreover with probability \(1\) this hyperaction has the same effect as contracting all of \(\{u, v, x_1, x_2, z\}\) into a single vertex.

Type 33: A max-edge removal followed by 2 good contractions that do not interact. There are 6 distinct vertices involved \(v, v_1, v_2, u, u_1, u_2\). During the max-edge removal \(\{u, v\}\) is removed. Thereafter each of the 2 sets of vertices \(\{v, v_1, v_2\}\) and \(\{u, u_1, u_2\}\) is contracted to a single vertex.

Type 34: A max-edge removal followed by 3 good contractions. There are 8 distinct vertices involved \(v, v_1, v_2, v, u, u_1, w_1, w_2\). During the max-edge removal \(\{u, v\}\) is removed. The conditions satisfied by \(v, u, u_1, w_1, w_2\) and the actions that are performed on them are identical with the ones in a hyperaction of type 4. In addition \(\{v, v_1, v_2\}\) is contracted into a single vertex.

We note that unless an unlikely event \(B(\Gamma, v)\) occurs (see Lemma 10 below) then a hyperaction of interest will take place. Also recall that any hyperaction, even the ones not listed above, will take a graph with minimum degree 3 to another with minimum degree 3.

We next state three lemmas, whose proofs will be deferred to Section 3.

Lemma 3. Let \(\Gamma = \Gamma_i\), for some \(i \geq 0\), satisfy \(ex_4(\Gamma) \leq \log^2 s(\Gamma)\). Then with probability \(1 - o(s(\Gamma)^{-1.9})\) the hyperaction that Reduce applies to \(\Gamma\) is one of the hyperactions of interest listed above.

The primary characteristic of the hyperactions listed above is that none of them consists of a vertex-0 removal or a bad contraction. Furthermore the fact that w.h.p. we perform a hyperaction out of a finite set helps in controlling \(ex_\ell\). Namely we have

Lemma 4. Suppose that \(\Gamma = \Gamma_i\) satisfies \(ex_4(\Gamma) \leq \log^2 s(\Gamma)\). Then with \(\Gamma' = \Gamma_{i+1}\) either \(ex_4(\Gamma) = 0\) or

\[
\mathbb{E}(ex_4(\Gamma') - ex_4(\Gamma)|\Gamma) \leq -\frac{1}{3}.
\]

Moreover with probability \(1 - o(s(\Gamma)^{-1.9})\) we have that

\[
|ex_4(\Gamma) - ex_4(\Gamma')| \leq 2.
\]

Lemma 5. Suppose that \(\omega \geq \log n\). Then for every \(i \in \{0, 1, \ldots, \tau\}\), \(|V(\Gamma_i)| \geq \omega\) implies that with probability \(1 - O(\omega^{-0.8})\), we have \(ex_4(\Gamma_i) \leq \log^2 s(\Gamma_i)\). Furthermore with probability \(1 - O(\omega^{-0.8})\) there exists \(\Gamma \in \{\Gamma_0, \Gamma_1, \ldots, \Gamma_\tau\}\) that satisfies \(\omega \leq V(\Gamma) \leq 2\omega\) and \(ex_4(\Gamma) = 0\).

Lemma 3 states that as long as \(excess_\ell\) stays small then w.h.p. we perform only specific hyperactions. Lemmas 4 and 5 imply that as long we perform only those hyperactions then w.h.p. \(excess_4\) stays small. Finally as mentioned earlier none of those hyperactions consist of a vertex-0 removal or a bad contraction making it easy to appeal to Lemma 2. We now use the above three lemmas to prove the following:

Lemma 6. Let \(\Gamma = \Gamma_h\) be as promised by Lemma 5 that is, \(\Gamma \in \{\Gamma_0, \Gamma_1, \ldots, \Gamma_\tau\}\) and it satisfies \(\log n \leq \omega \leq V(\Gamma) \leq 2\omega\) and \(ex_4(\Gamma) = 0\). Then with probability \(1 - O(\omega^{-0.8})\), for any matching \(M_h\) of \(\Gamma_h\), the matching \(M\) generated by Backtrack with \(j = h\), \(M_h\) as an input satisfies

\[
\kappa(\Gamma, M) = \kappa(\Gamma_h, M_h).
\]
Proof. For $i < h$, Lemma 5 states that w.h.p. $ex_4(\Gamma_i) \leq \log^2 s(\Gamma_i)$. Lemma 3 then implies that for $i < h$ with probability

$$1 - \sum_{i=1}^{h} o(s(\Gamma_i)^{-1.9}) \geq 1 - \sum_{i=\omega}^{\infty} o(i^{-1.9}) = 1 - o(\omega^{-0.9})$$

only hyperactions of interest take place. Hence w.h.p., until $Reduce$ generates Γ_h it performs no vertex-0 removals or bad contractions in which case $R_0(\Gamma, h) = R_2(0, h) = 0$. Finally in this case Lemma 2 implies that

$$\kappa(\Gamma, M_h) = \kappa(\Gamma_h, M_h).$$

Observe that by a straightforward application of the above Lemma with $\omega = \log n$ and M_h being the matching produced by $Backtrack$ in the case $j = \hat{\tau}$ we have that the matching M output by the $Reduce-Backtrack$ algorithm satisfies

$$\kappa(\Gamma, M) = \kappa(\Gamma_h, h) \leq |V(\Gamma_h)| \leq 2 \log n.$$

This proves Part (a) of Theorem 1.

2.5 Finding a perfect matching in linear time

Lemma 6 suggests that when we run $Backtrack$ we should finish our algorithm by finding a maximum matching M' of Γ_h. The final ingredient for the proof of Theorem 1(b) is given by the next Theorem which implies that Γ_h has a perfect matching w.h.p.

Theorem 7. Let d be a degree sequence of even length where $3 \leq d(i) \leq 4$ for all i. Let G be a random graph with degree sequence d and no loops. Then G has a perfect matching with probability $1 - O(n^{-3/4}).$

We defer the proof of Theorem 7 to Section 4. To prove Part (b) of Theorem 1 we run algorithm $Reduce$ until we find a Γ_h as promised in Lemma 5. Here we take $\omega = n^{2/3}$. Observe that since w.h.p. for $i < h$ $Reduce$ does not preform a vertex-0 removal or a bad contraction, each action reduces the number of vertices by either 0 or 2 and so Γ_h has an even number of vertices. Then we know from Lemma 6 and Lemma 7 that Γ_h has a perfect matching with probability $1 - O(\omega^{-0.8}) - O(\omega^{-3/4}) = 1 - O(n^{-1/2})$ that can be expanded to a perfect matching of the original graph G. Moreover since $|V(G_h)| \leq 2\omega$, such a matching can be found in $O(\omega^{3/2}) = O(n)$ time. The rest of the algorithm can be executed in $O(n)$ time and this completes the high probability part of the proof of Part (b). Also, if $Reduce-Backtrack$ fails, then we can resort to an $O(n^{3/2})$ time algorithm. This only happens with probability $O(n^{-1/2})$ and this yields the in expectation part of the proof of Part (b).
3 Proof of Lemmas 3, 4 and 5

Notation 8. We sometimes write \(A \leq O(B) \) in place of \(A = O(B) \) for aesthetic purposes.

Notation 9. Let \(K \) be an arbitrary positive integer. For a random graph \(G \) and \(v \in V(G) \), let \(\mathcal{B}_K(G,v) \) be the event that \(G \) spans a subgraph that covers \(v \), spans \(a \leq K \) vertices and \(a + 1 \) edges.

We show later that \(\text{Reduce} \) either performs one of the hyperactions given in Section 2.4 or \(\mathcal{B}(G,v) \) occurs where \(v \) is the vertex of maximum degree chosen by \(\text{Reduce} \).

Lemma 10. Let \(K \) be an arbitrary positive integer. Let \(d \) be a degree sequence of length \(n \) that satisfies \(\text{ex}_4(G) \leq \log^2 s(G) \). Let \(G \) be a random graph with degree sequence \(d \) and no loops. Then for \(v \in V(G) \) and \(i = 0, 1 \) the probability that \(G \) spans a subgraph that covers \(v \), spans \(a \leq K \) vertices and \(a + i \) edges is \(o(n^{-0.9-i}) \). Hence \(\Pr(\mathcal{B}_K(G,v)) = o(n^{-1.9}) \).

Proof. Let \(G \) be a random graph with degree sequence \(d \). The fact that \(\text{ex}_4(G) \leq \log^2 s(G) \) implies that \(G \) has no loops with probability bounded below by a positive constant (see for example [7]). Hence the condition of having no loops can be ignored in the proof that events have probability \(o(1) \).

Let \(2m = \sum_{i=1}^{n} d(i) = \Theta(n) \). Let \(\Delta = O(\log^2 s(n)) \) denote the maximum degree. Then for vertex \(v \) and for \(i = 0, 1 \) the probability that \(G \) spans a subgraph that covers \(v \), spans \(a \leq K \) vertices and \(a + i \) edges can be bounded above by

\[
\begin{align*}
&\leq O \sum_{a=2}^{K} \left(\frac{n}{a-1} \right)^2 (\Delta a)^{2(a+i)} \frac{(2m - 2(a+i))!}{2^m m!} \\
&\leq O \sum_{a=2}^{K} n^{a-1} \Delta 2^{a+i} \frac{m(m-1)...(m-(a+i)+1)}{2m(2m-1)...(2m-2(a+i)+1)} \\
&\leq O \sum_{a=2}^{K} n^{a-1} \Delta 2^{a+i} m^{-a-i} \\
&= o(n^{-0.9-i}).
\end{align*}
\]

We will drop the subscript from \(\mathcal{B} \). Taking \(K = 20 \) will easily suffice for the rest of the proof.

3.1 Proof of Lemma 3

Let \(v \) be the vertex of maximum degree chosen by \(\text{Reduce} \) and let \(u \) be the vertex adjacent to \(v \) such that \(\{u, v\} \) is chosen for removal. We will show that if \(\mathcal{B}(\Gamma, v) \) does not occur then \(\text{Reduce} \) performs one of the hyperactions given in Section 2.4.

Case A: \(d(v) \geq 4 \).

If \(d(u) \geq 4 \) then a hyperaction of Type 1 is performed. Thus assume \(d(u) = 3 \) and consider the cases where \(|N(u)| = 1, 2, 3 \), (recall that we allow parallel edges but not self-loops).
Case A1: $|N(u)| = 1$.

u is connected to v by 3 parallel edges and so $B(\Gamma, v)$ occurs.

Case A2: $|N(u)| = 2$.

Let $N(u) = \{v, u'\}$ and $S = \{u, u', v\}$. Let $T = (N(u') \cup N(v)) \setminus S$. If $|T| < 3$ then we have $d(S) \geq 10$ and $e(S : \bar{S}) \leq 2$ and this implies that S contains at least 4 edges and so $B(\Gamma, v)$ occurs. Now either $\{u, u'\}$ or $\{u, v\}$ is repeated and so if $N(u') \cap N(v) \neq \emptyset$ then $B(\Gamma, v)$ occurs. If $\{u, u'\}$ is repeated then we perform an auto correction contraction. All resulting to a Hyperaction of Type 2. If $\{u, v\}$ is repeated then we contract the remaining path (u', u, v). Hence we have performed a Hyperaction of Type 3.

Case A3: $|N(u)| = 3$.

Let $N(u) = \{v, x_1, x_2\}$ and $T = (N(x_1) \cup N(x_2)) \setminus \{u, x_1, x_2\}$.

Sub-case A3a: $|T| \leq 1$.

Let $S = T \cup \{u, x_1, x_2\}$ Then $d(S) \geq 3|S|$ and $e(S : \bar{S}) \leq 2$ and the event $B(\Gamma, v)$ occurs.

Sub-case A3b: $T = \{w_1, w_2\}$.

If v is at distance less than 6 from $u \cup N(u)$ in $\Gamma \setminus \{u, v\}$ then $B(\Gamma, v)$ occurs. To see this consider the subgraph H spanned by $\{u, x_1, x_2, w_1, w_2\}$ and the vertices on the shortest path P from v to u in $\Gamma \setminus \{u, v\}$. It must contain at least two distinct cycles. One contained in $\{u, x_1, x_2, w_1, w_2\}$ and u, v, P.

Also if there is no edge from x_1 to x_2 then $\{v, u, x_1, x_2, w_1, w_2\}$ span at least 7 edges and so $B(\Gamma, v)$ occurs.

Thus we may assume that $N(x_1) = \{u, x_2, w_1\}, N(x_2) = \{u, x_1, w_2\}$ and $v \notin \{u, w_1, w_2\}$. We may also assume that $\{w_1, w_2\}$ is not an edge of Γ, for otherwise $\{u, x_1, x_2, w_1, w_2\}$ contains two distinct cycles and $B(G, v)$ occurs. The algorithm $Reduce$ proceeds by contracting u, x_1, x_2 into a single vertex x'. x' has degree 2 and the algorithm proceeds by performing a contraction of x', w_1, w_2 into a new vertex w'. Let $S = N\{w_1, w_2\} \setminus \{x_1, x_2\}$. If $|S| \leq 3$ then $B(\Gamma, u)$ occurs. To see this observe that w_1, w_2 must have a common neighbor w_3 say. Consider the subgraph H spanned by $\{u, x_1, x_2, w_1, w_2, w_3\}$. H contains at least 7 edges and 6 vertices. If $|S| \geq 4$ then the new vertex has degree 4 and the sequence of actions taken by $Reduce$ corresponds to a hyperaction of Type 4.

Sub-case A3c: $|T| \geq 3$. After the removal of $\{v, u\}$ we contract $\{u, x_1, x_2\}$ into a single vertex of degree at least 3, hence a hyperaction of Type 3 is performed.

Case B: $d(v) = d(u) = 3$.

Let $\Gamma' = \Gamma \setminus \{e\}$ where $e = \{v, u\}$.

Case B1: In Γ', u and v are at distance at least 4.

If $|N(N(u))| = 4$ and/or $|N(N(v))| = 4$ then $Reduce$ will perform 2 good contractions and this amounts to a hyperaction of type 33. Assume then that $|N(N(u))| = 4$ and that $|N(N(v))| \leq 3$. If $|N(N(v))| = 3$ then again $Reduce$ will perform 2 good contractions. If $|N(N(v))| = 2$ and so v is in a triangle then $Reduce$ will perform a hyperaction of type 34. Finally, if $|N(N(v))| = 1$ then $Reduce$ performs a hyperaction of Type 2.
Case B2: In Γ', u and v are at distance 3.
In Γ there is a cycle C of length 4 containing u, v. If in Γ' we find that $|N(N(u))| \leq 3$ or $|N(N(v))| \leq 3$ or $|N(u) \cap N(N(v))| > 1$ or $|N(v) \cap N(N(u))| > 1$ then $B(\Gamma, v)$ occurs. The graph spanned by $\{u, v\} \cup N(u) \cup N(v) \cup N(N(u) \cup N(N(v)))$ in Γ' includes a cycle distinct from C. Assume this is not the case. Then after the max-edge removal of $\{u, v\}$ we have a contraction of $\{u\} \cup N(u)$ followed by a contraction of $\{u\} \cup N(u)$. Observe that neither contraction reduces the size of $N(N(u))$ or $N(N(v))$. Thus $Reduce$ performs a hyperaction of Type 33.

Case B3: In Γ', u and v are at distance 2.
In the case that u, v have 2 common neighbors in Γ' we see that $B(\Gamma, v)$ occurs. Assume then that they have a single common neighbor x_1. Let z, x_2 be the other neighbors of u, v respectively. Then either $B(\Gamma, v)$ occurs or $Reduce$ performs a hyperaction of Type 5.

Case B4: In Γ', u and v are at distance 1.
So here we have that $\{u, v\}$ is a double edge in Γ. Let x, y be the other neighbors of u, v respectively in Γ. Assuming that $B(\Gamma, v)$ does not occur, $Reduce$ performs a max-edge removal followed by a single good contraction and this will be equivalent to a hyperaction of Type 2, involving the contraction of one of x, u, v or u, v, y.

3.2 Proof of Lemma 4

Let

$$2m = \sum_{i=1}^{n} d(i), \quad p_3 = \frac{\sum_{i=1}^{n} d(i) \mathbb{I}(d(i) = 3)}{2m}, \quad p_4 = \frac{\sum_{i=1}^{n} d(i) \mathbb{I}(d(i) = 4)}{2m}, \quad p_{\geq 5} = \frac{\sum_{i=1}^{n} d(i) \mathbb{I}(d(i) \geq 5)}{2m}.$$

The inequality $ex_4(\Gamma) \leq \log^2 s(\Gamma)$ implies that $p_5 = o(n^{-0.95})$. It also implies that the maximum degree Δ of Γ satisfies $\Delta = O(\log^2 n)$.

In the case that $B(G, v)$ occurs, since $Reduce$ always reduces the sum of the given degree sequence we have that

$$|ex_4(\Gamma) - ex_4(\Gamma')| \leq 2|E(\Gamma)| \leq 4|V(\Gamma)| + ex_4(\Gamma) \leq 5|V(\Gamma)|.$$

This occurs with probability $O(s(\Gamma)^{-1.9})$.

Observe that if an action of type 2, 4, 5 or 34 takes place then v lies on a subgraph with $a < 12$ vertices and a edges. Lemma 10 implies that this occurs with probability $o(n^{-0.9})$. For all the above hyperactions we have $|ex_4(\Gamma) - ex_4(\Gamma')| \leq 2$. This follows from the fact that performing a contraction can increase ex_4 by at most 2. This is because the initial vertices with degrees say 2, d_1, d_2 contributed max$\{0, (d_1 - 4) + (d_2 - 4)\}$ to $ex_4(\Gamma)$ while the new contracted vertex has degree $d_1 + d_2 - 2$ and contributes max$\{0, d_1 + d_2 - 2 - 4\}$ to $ex_4(\Gamma')$. Moreover observe that if a hyperaction of Type 5, 33 or 34 occurs then all the vertices involved have degree 3. If $B(\Gamma, v)$ does not occur then a hyperaction of Type 5 or of Type 34 will increase ex_4 by 1 (since their will be one new vertex of degree 5). Hyperactions of Type 33 do not change ex_4. Thus it remains to examine the effects of a hyperaction of Type 1 or of Type 3.
If \(ex_4(\Gamma) = 0 \) then a hyperaction of Type 1 will not increase \(ex_4 \), while a hyperaction of Type 3 could increase it by 2.

If \(ex_4(\Gamma) > 0 \) then Reduce performs a max-edge removal.

Case 1: If the smaller degree vertex involved is of degree larger than 3, then this results in a hyperaction of Type 1. This happens with probability \((1 + o(1))(1 - p_3)\). Furthermore in this case \(ex_4(\Gamma) - 2 \leq ex_4(\Gamma') \leq ex_4(\Gamma) - 1 \). (The \((1 + o(1)) \) factor arises because of \(O(1) \) degree changes during the hyperaction.)

Case 2: If the smaller degree vertex \(v \) involved is of degree 3 then a contraction is performed. And this occurs with probability \((1 + o(1))p_3\). If the contraction results in a vertex of degree at least 3 then we have a hyperaction of Type 3. Also this is the only way for a hyperaction of Type 3 to occur. Let the other two vertices involved in the contraction be \(w_1, w_2 \) and have degrees \(d_1, d_2 \) respectively. Now \(d_1 = d_2 = 3 \) with probability \((1 + o(1))p_3^2\), resulting in a new vertex that has degree at most 4. In this case, \(ex_4(\Gamma') - ex_4(\Gamma) = -1 \) (the -1 here originates from the max edge removal). Else if \(d_1 = 3, d_2 = 4 \) then we have \(-1 \leq ex_4(\Gamma') - ex_4(\Gamma) \leq -1 + 1 = 0 \). And this occurs with probability \((1 + o(1))2p_3p_4\). Else if \(d_1 = d_2 = 4 \) then we have \(-1 \leq ex_4(\Gamma') - ex_4(\Gamma) \leq -1 + 2 = 1 \). Otherwise a vertex of degree at least 5 is involved and this happens with probability \(o(1) \). If the event \(B(\Gamma, v) \) does not occur then the new contracted vertex has degree either \(d_1 + d_2 - 2 \) or \(d_1 + d_2 - 3 \). Hence \(-1 \leq ex_4(\Gamma') - ex_4(\Gamma) \leq -1 + 2 = 1 \).

Thus in all cases \(|ex_4(\Gamma') - ex_4(\Gamma)| \leq 2\). Furthermore in the case that \(ex_4(\Gamma) > 0 \) we have

\[
\mathbb{E}[ex_4(\Gamma') - ex_4(\Gamma)|\Gamma'] \leq -(5n)o(n^{-1.9}) + 2n^{-0.95} - (1 - p_3) - p_3^3 + 2p_3p_4^2 + o(1)
\leq -(1 - p_3) - p_3^3 + 2p_3(1 - p_3)^2 + o(1) \leq -\frac{1}{3}
\]

(The final expression in \(p_3 \) is maximised at \(p_3 = (4 - \sqrt{7})/3 \), for \(p_3 \in [0, 1] \).

3.3 Proof of Lemma 5

Let \(\mathcal{E}_T \) be the event that for \(j \leq 0.25 \log^2 n \) Reduce performs only hyperactions of Type 1, 2, 3, 4, 5, 33 or 34. Such a hyperaction reduces \(s() \) by at most 100 and the vertex set by at most 8. Also we have that \(\mathcal{E}_T \) occurs with probability \(1 - o(n^{-1.8}) \). Moreover if \(\mathcal{E}_T \) occurs for \(j < 0.25 \log^2 n \) then \(|V(\Gamma_j)| \geq n - 8 \cdot 0.25 \log^2 n \). In addition from Lemma 4 we have that with probability \(1 - o(n^{-1.8}) \), \(|ex_4(\Gamma_j) - ex_4(\Gamma_{j-1})| < 2 \) for \(j < 0.25 \log^2 n \) hence \(ex_4(\Gamma_j) \leq 2 \cdot 0.25 \log^2 n \leq \log^2 s(\Gamma_j) \). Finally conditioned on \(\mathcal{E}_T \) and \(ex_4(\Gamma) = 1 \) or 2, the probability that there is no \(i \leq 0.25 \log^2 n \) satisfying \(ex_4(\Gamma_i) = 0 \) is bounded by the probability that the sum of \(0.25 \log^2 n - 1 \) independent random variables with magnitude at most 2 and expected value smaller than \(-1/3\) is positive. From Hoeffding’s inequality we have that the later probability is bounded by \(\exp \left\{-\frac{-(\log^2 n - 3)^2}{2 - \log^2 n} \right\} = o(n^{-2}) \).

Now let \(\Gamma_0, \Gamma_1, ..., \Gamma_\ell \) be the subsequence of \(\Gamma_0, \Gamma_1, ..., \Gamma_\ell \) that includes all the graphs that have \(ex_4 = 0 \) and at least 0.8\(\omega \) vertices. Then from the preceding analysis, we see that with probability \(1 - \sum_{i=\omega}^n i^{-1.8} = 1 - o(\omega^{-0.8}) \) that for \(j < \ell \) we have \(|V_{ij}| - |V_{ij+1}| \leq 4 \log^2 |V_{ij}| \) and all the graphs \(\Gamma_i \) preceding \(\Gamma_\ell_i \) in \(\Gamma_0, \Gamma_1, ..., \Gamma_\ell \) satisfy \(ex_4(\Gamma_i) \leq \log^2 s(\Gamma_i) \). Finally \(|V_{ij}| - 4 \log^2 |V_{ij}| \leq 0.8 \omega \) implies \(|V_{ij}| < \omega \) and a desired graph \(G' \) satisfying \(\omega \leq |V(G')| \leq 2 \omega \) exists among the \(\Gamma_0, \Gamma_1, ..., \Gamma_\ell \).
4 Existence of a Perfect Matching

We devote this section to the proof of Lemma 11. As discussed in the previous section it is enough to prove that given a degree sequence \(d = (d(1), ..., d(n)) \) consisting only of 3’s and 4’s, if we let \(G \) be a random configuration (multi)-graph with degree sequence \(d \), then w.h.p. \(G \) has a perfect matching (i.e we can lift the condition that \(G \) has no loops). To do so we verify Tutte’s condition. That is for every \(W \subset V \) the number of odd components induced by \(V \setminus W \), \(o(V/W) \), is not larger that \(|W| \). We split the verification of Tutte’s condition into two Lemmas.

Lemma 11. Let \(W \subset V \) be a set of minimum size that satisfies \(o(V/W) > |W| \). Then with probability \(1 - O(n^{-3/4}) \), \(|W| > 10^{-5} n \).

Lemma 12. Let \(W \subset V \) be a set of maximum size that satisfies \(o(V/W) > |W| \). Then with probability \(1 - O(n^{-3/4}) \), \(|W| < 10^{-5} n \).

Lemmas 11 and 12 together imply Tutte’s condition as there exists no set with size that is both strictly larger and strictly smaller than \(10^{-5} n \). In the proofs of these two Lemmas we are going to use the following estimates.

Lemma 13. The number of distinct partitions of a set of size \(2r \) into \(2 \)-element subsets, denoted by \(\phi(2r) \), satisfies \(\phi(2r) = \Theta \left(\left(\frac{2r}{e} \right)^r \right) \). Also for \(\ell < r \) we have \(\phi(2r) \leq C r^{r-\ell} \left(\frac{2r}{e} \right)^{\ell} \) for some absolute constant \(C \).

Proof. To generate a matching we first choose a permutation of the \(2r \) items and then we pair the \(2i \)th item with the \((2i + 1)\)th item. Observe that since we may permute the \(r \) pairs matching in \(r! \) and for each pair we may flip the order in which the corresponding items appear, every matching may appear in \(2^r r! \) ways. Therefore, using Stirling’s approximation we have

\[
\phi(2r) = \frac{(2r)!}{2^r r!} = \frac{\Theta(\sqrt{2r} \left(\frac{2r}{e} \right)^2 r)}{\Theta(2^r \sqrt{r} \left(\frac{r}{e} \right)^r)} = \Theta \left(\left(\frac{2r}{e} \right)^r \right).
\]

Also

\[
\phi(2r) = \frac{(2r)!}{2^r r!} \leq \frac{(2r)^{r-\ell}(2\ell)!}{2^{r-\ell} \ell!} \leq C r^{r-\ell} \left(\frac{2\ell}{e} \right)^{\ell},
\]

where we have used \((2r)! \leq (2r)^{2(r-\ell)}(2\ell)! \).

4.1 Proof of Lemma 11:

Let \(W \) be a set satisfying \(o(V/W) > |W| \) of minimum size and assume 2 \(\leq w = |W| \leq 10^{-5} n \). We can rule out the case \(w = 1 \) from the fact that with probability \(1 - O(1/n) \), \(G \) will be 3-connected, see e.g. the proof of Theorem 10.8 in [7]. Let \(C_z \) be a component spanned by \(V \setminus W \) of maximum size and let \(r = |C_z| \).

Case 1: \(r = |C_z| \leq 0.997 n \). In this case we can partition \(V \setminus W \) into two parts \(V_1, V_2 \) such that (i) each \(V_l, l = 1, 2 \) is the union of components of \(V \setminus W \), (ii) \(|V_1| \geq |V_2| \), and (iii) \(|V_2| \geq (n - (r + w))/2 \geq 10^{-3} n \).
Let \(d_2 = d(V_2) \) and \(d_W = d(W) \). Out of the \(d_W \) endpoints in \(W \) (i.e. configuration points that correspond to vertices in \(W \)), \(\ell \leq d_W \) are matched with endpoints in \(V_2 \) and the rest with endpoints in \(V_1 \).

For fixed \(i, w, d_W \) the probability that there are sets \(V_1, V_2, W \) with \(w = |W|, d(W) = d_W \) and \(|V_2| = i \) satisfying \(1 \leq w \leq 10^{-5}n, 10^{-3}n \leq i \leq 0.5n \) and \(d_W \leq 4w \leq 0.04i \), such that \(V_1 \times V_2 \) spans no edges is bounded by

\[
p_1 \leq \sum_{\ell=0}^{d_W} \binom{n}{i} \binom{n-i}{w} \binom{d_W}{\ell} \frac{\phi(d_2 + \ell) \cdot \phi(2m - d_2 - \ell)}{\phi(2m)}
\]

\[
\leq O \sum_{\ell=0}^{d_W} \left(\frac{en}{i} \right)^i \left(\frac{en}{w} \right)^w 2^{d_W} \frac{\left(\frac{d_2 + \ell}{2} \right)^{(d_2 + \ell)/2}}{\left(\frac{2m}{2m} \right)^m} \frac{(2m-d_2-\ell)/2}{(2m-d_2-\ell)^2}
\]

\[
\leq O \sum_{\ell=0}^{d_W} \left(\frac{1600(en)^{101}}{i^{101}} \right)^i \left(\frac{d_2 + \ell}{2m} \right)^{(d_2 + \ell)/2} e^{-(d_2 + \ell)(1 - \frac{d_2 + \ell}{2m})/2}
\]

For the third line we used the fact that \(w \leq i/100 \) and \(d_W \leq 4w \leq i/25 \). Now \(d_2 + \ell \in J = [3i, 4.04i] \) and since \(\left(\frac{d_2 + \ell}{2m} \right)^{(d_2 + \ell)/2} e^{-(d_2 + \ell)(1 - \frac{d_2 + \ell}{2m})/2} \) is convex as a function of \(d_2 + \ell \) we see that its maxima are at the endpoints of \(J \). In general \(3i \leq 3n/2 \leq m \). However when \(d_2 + \ell = 4.04i \) we have that

\[
2m \geq 4.04i + 3(n - i - w) \geq 4.04i + 3(n - 1.01i) = 3n + 1.01i.
\]

Case 1a: \(d_2 + \ell = 3i \).
We have \(\frac{d_2 + \ell}{2m} \leq \frac{3i}{3n} \leq \frac{1}{2} \) and \((d_2 + \ell)(1 - \frac{d_2 + \ell}{2m}) \geq 3i/2 \). Therefore,

\[
p_1 \leq O w \left(\frac{1600(en)^{101}}{i^{101}} \right)^i \left(\frac{i}{n} \right)^{3i/2} e^{-3i/4}
\]

\[
= w \left[\frac{1600e^{26}}{49} \left(\frac{2i}{n} \right)^{49} \right]^{i/100}
\]

\[
\leq w e^{-1/2} \left(\frac{2i}{n} \right)^{49} \leq we^{-i/200}.
\]

Case 1b: \(d_2 + \ell = 4.04i \).
It follows from [1] that \(\frac{d_2 + \ell}{2m} \leq \frac{4.04i}{3n + 1.01i} \leq 0.577 \) where the second inequality uses \(i \leq n/2 \). It
follows from this that \((d_2 + \ell)(1 - \frac{d_2 + \ell}{2m})/2 \geq 0.85i\). Hence,

\[
p_1 \leq o \left(\frac{1600(e/n)^{101} i^{1/100}}{i^{101}} \left(\frac{4.04i}{3n + 1.01i} \right)^{2.02i} e^{-0.85i} \right) \\
\leq o \left[1600e^{16} \left(\frac{n}{i} \right)^{101} \left(\frac{4.04i}{3n} \right)^{101} \left(\frac{4.04i}{3n + 1.01i} \right)^{101} \right]^{i/100} \\
\leq o \left[1600e^{16} \left(\frac{4.04}{3} \cdot 0.577 \right)^{101} \right]^{i/100} \\
\leq o \left[e^{-i/100} \right].
\]

Therefore the probability that Case 1 is satisfied is bounded by a constant times

\[
\sum_{w=1}^{10^{-5}n} \sum_{i=10^{-3}n} we^{-i/200} = O(n^{-3/4}).
\]

Case 2: \(r = |C_z| \geq 0.997n\). Let \(V_1 = V(C_z)\), \(V_2 = V \setminus (V_1 \cup W)\). First note that \(V_2\) spans at least \(w\) components. Therefore \(|V_2| \geq w\). To lower bound \(e(V_2 : W)\) we use the following Claim.

Claim 1 Every vertex in \(W\) is adjacent to at least 3 distinct components in \(V \setminus W\), hence to at least 2 vertices in \(V_2\).

Proof of Claim 1: Let \(v \in W\) be such that it is adjacent to \(t \in \{0, 1, 2\}\) components in \(V \setminus W\). Consider \(W' = W \setminus \{v\}\). Thus \(|W'| = |W| - 1\). If \(t = 0\) then \(o(V \setminus W') = o(V \setminus W) + 1\). If \(t = 1\) then \(o(V \setminus W') \geq o(V \setminus W') - 1\). If \(t = 2\) then if the both of the corresponding components have odd size then the new component will also have odd size, while if only one of them has odd size then the new one has even size. Finally if both have even size the new one has odd size. In all three cases the inequality \(o(V \setminus W') \geq o(V \setminus W') - 1\) is satisfied. Therefore \(|W'| > o(V \setminus W')\) contradicting the minimality of \(W\).

From Claim 1 it follows that \(W : V_2\) spans at least \(2w\) edges. We also have that \(|V_2| \leq n - r - w \leq 0.003n\). For fixed \(2 \leq w \leq 10^{-5}n\), \(3w \leq d_W \leq 4w\) and \(w \leq i\) the probability
that there exist such sets \(V_1, V_2, W, |V_2| = i, w = |W| \) and \(d(W) = d_W \) is bounded by
\[
\sum_{\ell=2w}^{d_w} \binom{n}{i} \binom{n-i}{w} \left(d_W \right) \frac{\phi(d_2 + \ell) \cdot \phi(2m - d_2 - \ell)}{\phi(2m)} \\
\leq O \left(\sum_{\ell=2w}^{d_w} \binom{en}{i} \binom{en}{w} \right) 2^{4w} \frac{\left(d_2 + \ell - 2w \right)}{2m} \left(\frac{w}{m} \right)^{d_2 + \ell - 2w/2} (1 - d_2 + \ell) \left(\frac{2m - d_2 - \ell}{2m} \right)^{(2m - d_2 - \ell)/2} \\
\leq O \left(w \left(\frac{en}{i} \right)^2 \left(\frac{16e}{3} \right) \left(\frac{e}{2n} \right)^{3i/2} \right) \\
\leq O \left(w \left(\frac{e^2}{16e/3} \right)^{2w/i} \left(\frac{i}{n} \right)^{i/2} \right)
\]

For the second line we used the second inequality of Lemma \(\text{[13]} \). For the fourth line we used that \(d_2 + \ell - 2w \leq 0.012n \) and so \(\left(\frac{d_2 + \ell - 2w}{2m} \cdot \frac{\ell}{2} \right)^{(d_2 + \ell - 2w)/2} \) is maximised when \(d_2 + \ell - 2w \) is as small as possible. Furthermore note that \(d_2 + \ell - 2w \geq d_2 \geq 3i \). Therefore the probability that Case 2 is satisfied is bounded by a constant times
\[
\sum_{w=2}^{10^{-5}n} \sum_{i=w}^{2w} \sum_{\ell=2w}^{d_w} w \left(e^2 \left(\frac{16e}{3} \right) \left(\frac{i}{n} \right)^{i/2} \right) \\
\leq O \sum_{w=2}^{10^{-5}n} \sum_{i=w}^{2w} w^2 \left(\frac{C_1}{n} \right)^{i/2} + \sum_{i=2w}^{10^{-5}n} 0.003n \sum_{w=1}^{10^{-5}n} w^2 \left(\frac{C_2}{n} \right)^{i/2} \\
\]
where \(C_1 = 256e^4/3, C_2 = 16e^3/3 \),
\[
\leq \sum_{i=2}^{n^{3/4}} i^3 \left(\left(\frac{C_1}{n^{3/4}} \right)^{i/2} + \left(\frac{C_2}{n^{3/4}} \right)^{i/2} \right) + \sum_{i=n^{1/4}}^{2 \cdot 10^{-5}n} i^3 \left(\frac{2C_1}{10^5} \right)^{i/2} + \sum_{i=n^{1/4}}^{0.003n} i^3 \left(\frac{6C_2}{10^5} \right)^{i/2} \\
= O(n^{-3/4}).
\]

Finally, since \(G \) has an even number of vertices, for \(W = \emptyset \) we have \(|W| = o(V \setminus W) = 0 \). \(\square \)

4.2 Proof of Lemma \([12]\)

Let \(W \) be a set satisfying \(o(V \setminus W) > |W| \) of maximum size and assume \(w = |W| \geq 10^{-5}n \).

Claim 2 No component induced by \(V \setminus W \) is a tree with more than one vertex.

Proof of Claim 2: Indeed assume that \(C_i \) is such a component of size \(s \geq 1 \). Let \(L_1 \) be the set of leaves of \(C_i \). Having defined \(L_j, 1 \leq j \leq s - 1 \) set \(L_j \) to be the set of leaves induced by \(V(C_i) \setminus \left(\bigcup_{1 \leq \ell \leq j} L_\ell \right) \). Let \(L_{odd} = \bigcup_{1 \leq \ell \leq s, \ell \bmod 2 = 1} L_\ell \) and \(L_{even} = \bigcup_{1 \leq \ell \leq s, \ell \bmod 2 = 0} L_\ell \). Then \(|L_1| \geq |L_2| \geq \cdots \geq |L_s| \) and therefore \(|L_{odd}| \geq |L_{even}| \). Moreover if \(|V(C_i)| \) is odd we have
\(|L_{odd}| \geq |L_{even}| + 1\). Let \(W' = W \cup L_{even}\). Since every vertex in \(L_{odd}\) forms a component in the graph induced by \(V/W'\) we have \(o(V/W') = o(V/W) - I(\text{is odd}) + L_{odd}\). Thus,
\[
o(V/W') - |W'| \geq [o(V/W) - I(\text{is odd}) + L_{odd}] - (|W| + |L_{even}|)
\]
\[
\geq o(V/W) - |W| > 0,
\]
contradicting the maximality of \(W\). \(\square\)

We partition \(V \setminus W\) into three sets, \(W_1, W_2\) and \(W_3\), as follows. With the underlying graph being the one spanned by \(V \setminus W\), \(W_1\) consists of the isolated vertices in \(V \setminus W\), \(W_2\) consists of the vertices spanned by components that contain a cycle and have size \(s \leq \frac{1}{10} \log n\) and \(W_3\) consists of the vertices that are spanned by a component of size at least \(\frac{1}{10} \log n\). Finally let \(W_4 = W_2 \cup W_3\). To lower bound \(W_1\) we use the following two claims.

Claim 3: W.h.p. \(W_4\) spans at most and \(\frac{11w}{\log n}\) components in \(V \setminus W\).

Proof of Claim 3: First observe that the number of components spanned by \(W_2\) is smaller than the number of cycles of size at most \(\frac{1}{10} \log n\) in \(G\), which we denote by \(r\).

\[
\Pr(r \geq n^{0.3}) \leq n^{-0.3} \sum_{q=1}^{0.1 \log n} \binom{n}{q} 4^q q^4 \frac{\phi(2q) \phi(2m-2q)}{\phi(2m)}
\]
\[
\leq O n^{-0.3} \cdot (\frac{en}{q})^q 4^q \left(\frac{2q}{e}\right)^q \left(\frac{e}{2m}\right)^q
\]
\[
\leq O n^{-0.3} \cdot (\frac{8e}{3})^q \leq O n^{-0.3} (\log n)^{8(0.1 \log n) = o(1)}.
\]

Hence w.h.p. \(W_2\) spans at most \(n^{0.3}\) components. Moreover every component spanned by \(W_3\) has size at least \(\frac{1}{10} \log n\). Therefore \(W_4\) spans at most \(n^{0.3} + \frac{11w}{\log n} = \frac{(1+o(1))11w}{\log n}\) components in \(V \setminus W\). \(\square\)

Since \(W_4\) spans at most \(\frac{11w}{\log n}\) components in \(V \setminus W\) and no component is a tree it follows that the rest of the components consist of isolated vertices. Equivalently \(V = W \cup W_1 \cup W_4\). Therefore \(|W_1| \geq w - \frac{11w}{\log n}\). We assume that out of the vertices that have been chosen for \(W_1\), \(k_1\) have degree 4. Then \(d = d(W) - d(W_1)\) satisfies \(0 \leq d \leq 4w - (3(w-u) + k_1) = w + 3u - k_1\). For fixed \(10^{-5} n \leq w \leq 0.5n, 0 \leq u \leq \frac{11w}{\log n}\) the probability that there exist such sets \(W, W_1, W_4\) satisfying \(|W| = w, |W_1| = w - u\) is bounded by

\[
p_2 \leq \sum_{k_1=0}^{w-u} \sum_{u=0}^{3w-u-k_1} \binom{n}{2w} \binom{2w}{w} \binom{w}{u} \binom{4w}{d} \Pr(d(W) - d(W_1) = d)
\]
\[
\times (3(w-u) + k_1)! \times \frac{[2m - (6(w-u) + 2k_1)]!}{2m - [3(w-u) + k_1]} \times \frac{m - [3(w-u) + k_1]}{(2m)!}.
\]

Explanation: We first choose the sets \(W, W_1\) and \(W_4\) of size \(w, w - u\) and \(n - 2w + u\) respectively. This can be done in \(\binom{n}{2w} \binom{2w}{w} \binom{w}{u} (n-2w+u)^{-1}\) ways, but we ignore the final factor.
From the at most 4w copies of vertices in \(W \) we choose a set \(W' \subseteq W \) be of size \(d \). We let \(W' = W/W'' \). These are the copies of vertices that will be matched with those in \(W_1 \).

In the calculations that follow we let \(a = w/n \geq 10^{-5} \). We also let \(u^+ = \frac{1}{\log n} \) and \(k_4 \) be the number of vertices of degree 4 that lie in \(W_4 \). We first bound the binomial coefficients, found in the first line.

\[
\binom{n}{2w} \binom{2w}{w} \binom{w}{u} \binom{4w}{d} = \binom{n}{2an} \binom{2an}{an} \binom{an}{u} \binom{4an}{d} \leq 2^{o(n)} \left(\frac{1}{2a} \right)^{2an} \left(\frac{1}{1-2a} \right)^{(1-2a)n} \left(\frac{4ean}{d} \right)^d.
\]

For the second line we used that \(u \leq u^+ \leq 11n/\log n \) which implies that \(\binom{an}{u} = 2^{o(n)} \). Observe that

\[
2m = 6(w-u) + 2k_1 + d + 3(n-2w+u) + k_4 = 3n + d + 2k_1 + k_4 - 3u. \tag{8}
\]

Let \(m^+ = d + 2k_1 + k_4 - 3u \). For the terms in line (2) we have

\[
\frac{(2m)!}{2^m m!} = \frac{(3n)!}{2^{1.5n}(1.5n)!} \prod_{i=1}^{m^+} (3n + i) \geq O \left(\frac{3n}{e} \right)^{1.5n} m^+ / \prod_{i=1}^{m^+} (3n + (2i - 1)).
\]

Equation (8) implies that

\[
2m - [6(w-u) + 2k_1] = 3(1-2a)n + 3u + k_4 + d.
\]

Thus,

\[
\frac{[2m-[6(w-u) + 2k_1]]!}{2^{m-[3(w-u)+2k_1]]}[m-[3(w-u) + k_1]]!} = \frac{[3(1-2a)n]!}{2^{1.5(1-2a)n}[1.5(1-2a)n]!} \cdot \prod_{i=1}^{d} (3(1-2a)n + i) \prod_{j=1}^{4} 1.5(1-2a)n + j \cdot \prod_{i=1}^{k_4/2} (3(1-2a)n + d + 2i - 1) \cdot \prod_{j=1}^{k_4/2} 1.5(1-2a)n + d + k_4 + i \leq O \left(\frac{3(1-2a)n}{e} \right)^{1.5(1-2a)n} \prod_{i=1}^{d/2} [3(1-2a)n + (2i - 1)] \prod_{j=1}^{k_4/2} [3(1-2a)n + d + (2j - 1)] \cdot (2m)^{3u/2}
\]

For the last inequality we used the Arithmetic Mean-Geometric Mean inequality and the fact that \(d/2 \leq an/2 + o(n) \), which follows from \(d \leq w + 3u - k_1 \).
For the first term of (6) we have
\[[3(w - u) + k_1]! \leq \frac{3w!}{(3(w - u))^3w} \prod_{i=1}^{k_1} (3(w - u) + i) \leq \left(\frac{3an}{e} \right)^{3an} \frac{2^{o(n)}}{n^{3w}} \prod_{i=1}^{k_1} (3(w - u) + i). \]

Thus the expression in (6) is bounded by
\[
2^{o(n)} \left(\frac{3an}{e} \right)^{3an} \frac{1}{n^{3w}} \prod_{i=1}^{k_1} (3(w - u) + i)
\times \left(\frac{3(1 - 2a)n}{e} \right)^{1.5(1-2a)n} \prod_{i=1}^{k_1/2} \left[3(1 - 2a)n + d + 2i - 1 \right]
\times \prod_{i=1}^{k_1/2} \left(\frac{3n + (2i - 1)}{3n + d + 2k_1 + 2i - 1} \right)
\leq O 2^{o(n)} a^{3an} [(1 - 2a)n]^{1.5(1-2a)n} \prod_{i=1}^{k_1/2} \left(\frac{3n + (2i - 1)}{3n + d + 2k_1 + 2i - 1} \right)
\leq O 2^{o(n)} a^{3an} [(1 - 2a)n]^{1.5(1-2a)n} \left[(1 - 2a) + a/6 \right]^{d/2} 2^{-k_1}.
\]

Finally we consider the term \(\Pr(d(W) - d(W_1) = d) \) and we assume that \(h \) vertices of degree 4 were chosen to be included in \(W \cup W_1 \), so that \(d = h + 3u - 2k_1 \). Then,
\[p_3 = \Pr(d(W) - d(W_1) = d) = \begin{pmatrix} h \\ k_1 \end{pmatrix} \left(\frac{2w - u - h}{(w - u) - k_1} \right) \left(\frac{2w}{w - u} \right) \leq \begin{pmatrix} h \\ k_1 \end{pmatrix} \left(\frac{2w - u - h}{w - u} \right) \left(\frac{2w}{w - u} \right) \leq 2^{o(n)} 2^{hH(k_1/h) + (2w - h) - 2w} = 2^{o(n) + k_1 2^{-k_1 + H(k_1/h) - h}}. \]

Here \(H(x) = -x \log_2(x) - (1 - x) \log_2(1 - x) \) is the entropy function. For fixed \(d \) we have \(h = d + 2k_1 + o(n) \). Thus
\[p_3 \leq 2^{o(n) + k_1 + df(k_1/d)}, \] where \(f(x) = -x + (1 + 2x)H \left(\frac{x}{1 + 2x} \right) - (1 + 2x) \).

\(f(x) \) has a unique maximum at \(x^* \), the solution to \(8x(1 + x) = (1 + 2x)^2 \) and \(f(x^*) \leq -0.771 \).

Hence
\[p_3 \leq 2^{-0.771d + k_1 + o(n)}. \]
Multiplying the bounds in (7), (9), (10) together we have a bound

\[p_2 \leq 2^{o(n - 0.771d + k_1)} \left(\frac{1}{a} \right)^{2an} \left(\frac{1}{1 - 2a} \right)^{(1 - 2a)n} \left(\frac{4can}{d} \right)^d \times a^{3an} (1 - 2a)^{1.5(1 - 2a)n} \left(1 - 2a + \frac{a}{6} \right)^{d/2} 2^{-k_1} \]

\[= 2^{o(n)} \left(\frac{2^{1.229} can}{d} \right)^d a^{an} (1 - 2a)^{0.5(1 - 2a)n} \left(1 - \frac{11a}{6} \right)^{d/2} \]

Thus \(p_2 = o(1) \) when \(d = o(n) \). Let \(d = ban \) for some \(0 < b \leq 1 \). Then,

\[p_2 \leq \left\{ 2^{o(1)} \left[\frac{2^{1.229} e}{b} \left(1 - \frac{11a}{6} \right)^{0.5} \right] a(1 - 2a)^{0.5(1 - 2a)/a} \right\}^{an} \]

Let \(g(a) = 2^{1.229} e \left(1 - \frac{11a}{6} \right)^{0.5} \). When \(g(a) < e \) then \(\left(\frac{g(a)}{b} \right)^b \) is maximized when \(b = \frac{g(a)}{e} \) which yields

\[p_2 \leq \left\{ 2^{o(1)} e^{2^{1.229} \left(1 - \frac{11a}{6} \right)^{0.5}} a(1 - 2a)^{0.5(1 - 2a)/a} \right\}^{an} \leq \left(\frac{3}{4} \right)^{an} . \]

The last inequality is most easily verified numerically.

When \(g(a) > e \) then \(\left(\frac{g(a)}{b} \right)^b \) is maximized at \(b = 1 \). Hence

\[p_2 \leq \left\{ 2^{o(1)} 2^{1.229} e^{\left(1 - \frac{11a}{6} \right)^{0.5}} a(1 - 2a)^{0.5(1 - 2a)/a} \right\}^{an} \leq \left(\frac{19}{20} \right)^{an} . \]

The last inequality is most easily verified numerically. Thus the probability that there exists a set \(W \) satisfying \(o(V \setminus W) > |W| \) of size \(w = |W| \leq 10^{-5}n \) is bounded by

\[\sum_{w=10^{-5}n}^{0.5n} \sum_{u=0}^{\log n} \left(\frac{19}{20} \right)^w = o(1). \]

\[\square \]

5 Conclusions and open questions

The paper of Karp and Sipser [12] has been a springboard for research on matching algorithms in random graphs. Algorithm 1 of that paper has not been the subject of a great deal of analysis, mainly because of the way it disturbs the degree sequences of the graphs that it produces along the way. In this paper we have shown that if the original graph has small maximum degree then the maximum degree is controllable and the great efficiency of the algorithm can be verified.

It is natural to try to extend the analysis to random regular graphs with degree more than four and we are in the process of trying to overcome some technical problems. It would also be of interest to analyse the algorithm on \(G_{n,p} \), as originally intended.
6 Diagrams of Hyperactions of interest

Type 2.

Type 3.

Type 4.

Type 5.
Type 33.

Type 34.

References

[1] J. Aronson, A.M. Frieze and B. Pittel, Maximum matchings in sparse random graphs: Karp-Sipser revisited, Random Structures and Algorithms 12 (1998) 111-178.

[2] P. Balister and S. Gerke, Controllability and matchings in random bipartite graphs, Surveys in Combinatorics 424 (2015) 119-145.

[3] T. Bohman and A.M. Frieze, Karp-Sipser on random graphs with a fixed degree sequence, Combinatorics, Probability and Computing 20 (2011) 721-742.

[4] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European Journal on Combinatorics 1 (1980) 311-316.
[5] P. Chebolu, A.M. Frieze and P. Melsted, *Finding a Maximum Matching in a Sparse Random Graph in O(n) Expected Time*, Journal of the ACM 57 (2010) 1-27.

[6] C. Bordenave and M. Lelarge, *The rank of diluted random graphs*, Annals of Probability 39 (2011) 1097-1121.

[7] A.M. Frieze and M. Karoński, *Introduction to Random Graphs*, Cambridge University Press 2015.

[8] David A. Freedman, *On Tail Probabilities for Martingales*, The Annals of Probability 3 (1975), 100-118.

[9] A.M. Frieze and B. Pittel, *Perfect matchings in random graphs with prescribed minimal degree*, Trends in Mathematics, Birkhauser Verlag, Basel (2004) 95-132.

[10] A.M. Frieze, J. Radcliffe and S. Suen, *Analysis of a simple greedy matching algorithm on random cubic graphs*, Combinatorics, Probability and Computing 4 (1995) 47-66.

[11] W. Hoeffding, W. Hoeffding, *Probability inequalities for sums of bounded random variables*, Journal of the American Statistical Association 58 (1963) 13-30.

[12] R.M. Karp and M. Sipser, *Maximum matchings in sparse random graphs*, Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computing (1981) 364-375.

[13] S. Micali and V. Vazirani, *An O(V^{1/2}E) algorithm for finding maximum matching in general graphs*, 21st Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, New York. (1980) 1727.