**Book Chapter**

**Effect of Electronegativity on Structural, Spectrophotometric and Thermo-Chemical Properties of Fluorine and Chlorine Substituted Isoxazoles by DFT Method**

Nilesh U Jadhao* and Anil B Naik

Department of Chemical Technology, Sant Gadge Baba Amravati University, India

*Corresponding Author:* Nilesh U Jadhao, Department of Chemical Technology, Sant Gadge Baba Amravati University, Amravati-444602, Maharastra, India

Published **June 15, 2020**

This Book Chapter is a republication of an article published by Nilesh U Jadhao and Anil B Naik at Cogent Chemistry in February 2017. (Nilesh U. Jadhao & Anil B. Naik (2017) Effect of electronegativity on structural, spectrophotometric and thermo-chemical properties of fluorine and chlorine substituted isoxazoles by DFT method, Cogent Chemistry, 3:1, 1296342)

**How to cite this book chapter:** Nilesh U Jadhao, Anil B Naik. Effect of Electronegativity on Structural, Spectrophotometric and Thermo-Chemical Properties of Fluorine and Chlorine Substituted Isoxazoles by DFT Method. In: Ayuk Eugene Lakem, editor. Prime Archives in Chemistry. Hyderabad, India: Vide Leaf. 2020.

© The Author(s) 2020. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Acknowledgment: The authors are thankful to Principal, Ismail Yusuf College, Jogeshwari, Mumbai-60 for permission to use of Gaussian programs.

Funding: The authors received no direct funding for this research.

Abstract

The effect of electronegativity (F and Cl atom) on structural, spectrophotometric, thermo-chemical properties, and solvent effect on electronic absorption spectra of \{3-(3,5-dichloro-2-hydroxyphenyl)-5-[(4-fluorophenyl)amino] isoxazol-4-yl\}(phenyl)methanone (Ia) and \{3-(3,5-dichloro-2-hydroxyphenyl)-5-[(4-chlorophenyl)amino] isoxazol-4-yl\}(phenyl) methanone (Ib) were studied by DFT method using PBE1PBE functional with 6-311++g (d, p) basis set. The results show that the electronegativity of halogen group affect the bond length, atomic charges, excited wavelength, molecular orbital energy gap, vibration frequency, thermo-chemical parameters, and stability of compounds.

Keywords

DFT, Electronegativity, Stability, HOMO–LUMO Gap

Public Interest Statement

The work presented here shows how computational methods used for understanding the molecular problem more clearly and that helps to design the drug with better action. In particular, the results presented here demonstrate that the DFT method is good tool for studying the stability of isoxazole by computational technique. This is a very useful tool for synthesizing a target molecule because a single compound may generate toxic waste, require months of labor, and raw materials cost. So before synthesizing the drug, firstly design the molecule, understand the molecular properties by computational method, and minimize the chemical pollution by synthesizing lots of unusable drug.
Introduction

Isoxazole derivatives are five-member nitrogen–oxygen-containing heterocyclic compounds that play an important role in pharmacological activities such as anti-cancer [1], anti-tuberculosis [2,3], anti-inflammatory [4], cytotoxic [5], antimicrobial [6], anti-HIV [7], anti-diabetic [8], antipsychotic [9,10], and anticonvulsant [11].

The density functional theory (DFT) is a common method to study the electronic structures that helps for understanding the drug activity of molecules. FT-IR, FT-Raman spectra, NBO, HOMO–LUMO, and thermodynamic properties of 4-chloro-3-nitro benzaldehyde [12], pycinaldehyde oxime [13] was satisfactorily analyzed by DFT. The spectral properties of heterocyclic compounds such as the valence shell photoelectron spectra, geometry optimization, X-ray, vibrational frequency analysis of purine, pyrimidine [14], heteroaromatic molecules [15], and substituted isoxazole [16,17] were studied using DFT calculation.

Thermodynamic properties (enthalpy, entropy, and Gibbs free energy) are important to understand the stability of molecule at different temperature and pressure that can easily explained using DFT (B3LYP/6-31G*) with the Gaussian 03 program [18,19].

In this work, a theoretical study of {3-(3,5-dichloro-2-hydroxyphenyl)-5-[(4-fluoro phenyl)amino]isoxazol-4-yl}(phenyl)methanone (Ia) and {3-(3,5-dichloro-2-hydroxyphenyl)-5-[(4-chlorophenyl)amino]isoxazol-4-yl}(phenyl)methanone (Ib) has been performed using DFT method in order to elucidate the effect of electronegativity on structural, spectrophotometric, and thermo-chemical properties.

Computational Details

All theoretical calculations performed with the Gaussian-03 package [20]. Full ground-state geometry optimizations and frequency were carried out at the DFT [21-25] using the
PBE1PBE functional [26,27] and the 6-311++g (d, p) basis set [28-32]. Electronic absorption spectra were computed as vertical electronic excitations from the ground state using TD-DFT [33-35] with PBE1PBE/6-311++g (d, p).

**Results and Discussion**

**Geometry Optimization**

The geometry optimization has started without symmetry constraints and after optimization; the structure converged to $C_1$ symmetrical species. The geometry was optimized in the lowest energy singlet ground state by DFT method with PBE1PBE function using 6-311++g (d, p) basis set in gas phase and the optimized structures of Ia and Ib shown in Figures 1 and 2, respectively.

![Figure 1: Optimized structure of Ia in gas phase.](image-url)
The geometry was non-planer because of strong distortion between electron cloud of three aromatic rings and isoxazole ring. The optimized geometric parameters of Ia and Ib are recorded in supplementary information Tables S1 and S2, respectively.

Bond lengths of isoxazole ring were not largely affected by electronegativity of fluorine and chlorine substituent but the bond lengths of 16O–17N, 14C–15C, and 15C–16O were slightly more in Ia than Ib. The 9O–10H bond length was important in formation of metal complexes but the difference between 9O–10H bond length in Ia and Ib was very less i.e. 0.00014 Å (Table 1).
Table 1: Bond length and NBO atomic charges of Ia and Ib.

| Type          | Bond Length (Å) | Atoms | NBO atomic charges |
|---------------|-----------------|-------|--------------------|
|               | Ia              | Ib    | Ia                 | Ib     |
| 16 O–17 N     | 1.40411         | 1.40355 | 9 O               | −0.695 | −0.694 |
| 17 N–13 C     | 1.30429         | 1.30435 | 10 H              | 0.500  | 0.500  |
| 13 C–14 C     | 1.44012         | 1.44027 | 13 C              | 0.209  | 0.208  |
| 14 C–15 C     | 1.39562         | 1.39489 | 14 C              | −0.320 | −0.318 |
| 15 C–16 O     | 1.32216         | 1.32195 | 15 C              | 0.608  | 0.607  |
| 15 C–31 N     | 1.34401         | 1.34522 | 16 O              | −0.339 | −0.338 |
| 31 N–32 H     | 1.01025         | 1.01047 | 17 N              | −0.141 | −0.139 |
| 14 C–18 C     | 1.44796         | 1.44871 | 18 C              | 0.544  | 0.545  |
| 18 C–19 O     | 1.23004         | 1.22974 | 19 O              | −0.592 | −0.591 |
| 13 C–3 C      | 1.47812         | 1.47802 | 31 N              | −0.584 | −0.584 |
| 9 O–10 H      | 0.98723         | 0.98709 | 32 H              | 0.427  | 0.428  |

Natural Bond Orbital Charges

The natural bond orbital (NBO) atomic charges have calculated in gas phase (Table 1). The atomic charge gives information about oxidation states of atoms in molecule, which gives important information for complex formation.

The carbon atoms connected to the high electronegative (F, Cl, O, and N) atoms were positive in nature. The 9O will provide the binding site for metal ion in formation of metal complex; as 9O contained the highest negative charge and the 10H contained highest positive charge.

Electronic Absorption Spectra

The electronic absorption spectra has computed as the lowest 10 vertical electronic excitations from the singlet ground state to singlet excited state using TD-DFT and the effect of solvent was simulated by IEFPCM (Table 2).
Table 2: Electronic absorption data in different solvent of Ia and Ib.

| Excited state | Gas phase | Water phase | Ethanol phase | DMSO phase |
|---------------|-----------|-------------|---------------|------------|
|               | $\lambda$ (nm) | $f$ |
| Ia            |           |       |               |       |               |       |               |       |
| 1st           | 379.31    | 0.0511 | 360.56        | 0.1977 | 360.45        | 0.2000 | 361.22        | 0.2101 |
| 2nd           | 358.75    | 0.1055 | 318.13        | 0.0344 | 321.03        | 0.0328 | 320.33        | 0.0353 |
| 3rd           | 302.59    | 0.0049 | 288.12        | 0.0099 | 289.13        | 0.0091 | 289.02        | 0.0106 |
| 4th           | 295.23    | 0.0354 | 281.99        | 0.1544 | 280.70        | 0.1572 | 281.48        | 0.1690 |
| 5th           | 282.49    | 0.0422 | 270.77        | 0.0726 | 271.43        | 0.1043 | 271.54        | 0.0942 |
| 6th           | 268.00    | 0.1248 | 269.08        | 0.0828 | 269.39        | 0.0721 | 269.76        | 0.0827 |
| 7th           | 266.38    | 0.0547 | 265.83        | 0.1495 | 267.15        | 0.1325 | 267.09        | 0.1574 |
| 8th           | 263.04    | 0.2338 | 262.25        | 0.0272 | 262.33        | 0.0204 | 262.30        | 0.0237 |
| 9th           | 260.46    | 0.0052 | 257.98        | 0.1501 | 257.90        | 0.1417 | 258.24        | 0.1395 |
| 10th          | 256.83    | 0.0044 | 252.09        | 0.4278 | 252.00        | 0.4434 | 252.47        | 0.4665 |
| Ib            |           |       |               |       |               |       |               |       |
| 1st           | 380.67    | 0.0550 | 358.51        | 0.2333 | 359.53        | 0.2355 | 360.11        | 0.2472 |
| 2nd           | 359.65    | 0.1249 | 317.61        | 0.0335 | 322.09        | 0.0308 | 321.26        | 0.0332 |
| 3rd           | 303.14    | 0.0064 | 288.10        | 0.0108 | 289.45        | 0.0094 | 289.37        | 0.0110 |
| 4th           | 295.99    | 0.0326 | 282.96        | 0.2655 | 281.51        | 0.2756 | 282.34        | 0.2921 |
| 5th           | 284.14    | 0.0331 | 271.54        | 0.0726 | 272.35        | 0.1241 | 272.41        | 0.1144 |
| 6th           | 270.98    | 0.4253 | 269.78        | 0.0941 | 270.00        | 0.0689 | 270.41        | 0.0775 |
| 7th           | 267.85    | 0.0620 | 265.84        | 0.1524 | 267.88        | 0.1333 | 267.77        | 0.1608 |
| 8th           | 264.60    | 0.0683 | 263.74        | 0.0345 | 263.81        | 0.0125 | 263.74        | 0.0152 |
| 9th           | 262.39    | 0.0056 | 260.01        | 0.2014 | 259.90        | 0.1676 | 260.17        | 0.1667 |
| 10th          | 258.20    | 0.0078 | 254.20        | 0.4036 | 254.43        | 0.4355 | 254.93        | 0.4448 |
In both compounds, polarity of solvent affects wavelength and follows the same order, i.e. \( \lambda \) in DMSO > in water > in ethanol. Decrease in electronegativity increases the excited wavelengths in both phases because when electronegativity decreases the electron cloud slightly shifted toward HOMO and after that electron excited to LUMO by low energy.

**Frontier Molecular Orbital**

Highest occupied molecular orbital (HOMO) contains electrons and tends to donate these electrons such as an electron donor. On the other hand, lowest unoccupied molecular orbital (LUMO) contains free places and tends to accept electrons. The \( \lambda_{\text{max}} \) of compound formed due to excitation of electron from HOMO to LUMO. HOMO and LUMO in different phases for Ia and Ib shown in Figures 3 and 4, respectively.

![Figure 3: HOMO and LUMO of Ia (Isodensity value = 0.02).](image)

```
In gas phase, HOMO was formed due to non-bonding (n) and pi-bonding electron density (switched on benzene ring containing hydroxyl group) but in solvent phase, HOMO was formed due to non-bonding (n) and pi-bonding electron density (switched on benzene ring containing halogen group). In both phases, LUMO was formed due to π* bonding electron density (switched on isoxazole ring and benzene ring) and electron transition was mixed type (n to π* and π to π*).

The molecular orbital energy gap was very important to study the photo-physics and kinetic stability of isoxazole compounds. E (LUMO), E (HOMO), and molecular orbital energy gap of Ia and Ib were shown in Table 3 in different phases.
Table 3: Energy gap (a.u.) for Ia and Ib.

| Solvent | E-LUMO | E-HOMO | Energy gap |
|---------|--------|--------|------------|
| Ia      |        |        |            |
| Gas phase | −0.093 | −0.240 | 0.147      |
| DMSO    | −0.083 | −0.238 | 0.155      |
| Ethanol | −0.083 | −0.238 | 0.155      |
| Water   | −0.082 | −0.237 | 0.155      |
| Ib      |        |        |            |
| Gas phase | −0.094 | −0.240 | 0.146      |
| DMSO    | −0.084 | −0.239 | 0.155      |
| Ethanol | −0.084 | −0.239 | 0.155      |
| Water   | −0.082 | −0.237 | 0.155      |

The molecular orbital energy gap decreased with a decrease in electronegativity of halogen group and the lowest molecular orbital energy gap (0.146 a.u.) was found in Ib gas phase. The molecular orbital energy gap was lower in gas phase than in solvent phase and no significance effect shown by solvent.

A large HOMO–LUMO gap implies high kinetic stability and low chemical reactivity because it is energetically unfavorable to add electrons to a high-lying LUMO. Meanwhile, a molecule with a small frontier orbital gap is more polarizable, is generally associated with a high chemical reactivity, low kinetic stability, and is termed as soft molecule [36].

Vibration Mode

The IR spectral data of Ia and Ib were recorded in Table 4. The calculated IR frequencies were show the difference with reported [37] value. The suggested reason is the computational data obtained when the Ia and Ib molecules in isolated state of vacuum condition and the reported values in solid phase. The phenolic O–H stretching frequency increased with decrease in electronegativity of halogen group, due to which more electronegative fluorine atom in Ia attracted the electron cloud on oxygen atom toward itself and phenolic O–H stretching was less from electron interaction.
Table 4: IR spectral data of Ia and Ib.

| Type              | Vibration mode | Frequency (cm\(^{-1}\)) | Ia       | Ib       | Reported |
|-------------------|---------------|--------------------------|----------|----------|----------|
| Isoxazole ring    | N–O str.      | 1,014.75                 | 1,015.32 | 850–800  |
|                   | C=N str.      | 1,555.15                 | 1,554.59 | 1,690–1,640 |
| Amine             | N–H Str.      | 3,589.04                 | 3,584.64 | 3,400–3,200 |
| Phenolic OH       | O–H Str.      | 3,319.27                 | 3,323.84 | 3,200–3,600 |
| Carbonyl          | C=O Str.      | 1,751.17                 | 1,752.53 | 1,650–1,800 |

**Thermo-Chemical Study**

The thermo-chemical parameters were calculated to their ideal gas state at 298.15 K and 101.325 kPa for Ia and Ib, respectively. The thermodynamic parameters including total electronic energy (\(E_t\)), enthalpy (\(H^{\Theta}\)), entropy (\(S^{\Theta}\)), Gibbs free energy (\(G^{\Theta}\)), and standard heat capacity at constant volume (\(C_{v}^{\Theta}\)) were obtained from the Gaussian frequency output files (Table 5). The equations used for computing thermo-chemical data in Gaussian programs have derived from statistical thermodynamics [38]. The thermal energy (\(E_{\text{thermal}}\)) calculated as the sum of zero-point energy and thermal energy corrections for molecular translation (\(E_{\text{trans}}\)), rotation (\(E_{\text{rot}}\)), and vibration (\(E_{\text{vib}}\)). The enthalpy (\(H^{\Theta}\)) was obtained by adding \(RT\) to the total electronic energy (\(E_t\)) and thermal energy at 298.15 K and 101.325 kPa.

Table 5: Thermo-dynamical properties of I (a, b).

| Properties          | Thermo-dynamical properties |
|---------------------|-----------------------------|
|                     | Ia                          | Ib                          |
| \(E_t\) (Hartree)   | -2,200.1584                 | -2,560.4430                 |
| \(H^{\Theta}\) (Hartree) | -2,199.3851             | -2,559.9730                 |
| \(G^{\Theta}\) (Hartree) | -2,199.4581                 | -2,559.7462                 |
| \(C_{v}^{\Theta}\) (cal/mole-K) | 83.292                  | 83.970                      |
| \(S^{\Theta}\) (cal/mole-K) | 153.511                    | 154.181                     |

With decrease in electronegativity of halogen group, the values of \(E_t\), \(H^{\Theta}\), and \(G^{\Theta}\) decreased and the value of \(C_{v}^{\Theta}\) and \(S^{\Theta}\) increased. It has known that the compounds with higher free energies are less stable than those with lower free energies. The Ib was more stable because it had low free energy i.e. -2559.7462 Hartree.
Conclusion

The DFT method reveals the useful information about the effect of solvent on electronic absorption spectra. There is less effect of electronegativity on structural, spectrophotometric, and thermo-chemical properties of fluorine- and chlorine-substituted isoxazoles. The chlorine (less electronegative)-substituted isoxazole (Ib) is soft molecule, more polarizable, high chemical reactivity, low kinetic stability, and high $\lambda_{\text{max}}$ than Ia.

References

1. Monish J, Chul-Hoon K. 1,2-benzisoxazole phosphorodiamidates as novel anticancer prodrugs requiring bioreductive activation. Journal of Medicinal Chemistry. 2003; 46: 5428–5436.
2. Mao JL, Yuan H, Wang YH, Wan BJ, Pak D, et al. Synthesis and antituberculosis activity of novel mefloquine-isoxazole carboxylic esters as prodrugs. Bioorganic & Medicinal Chemistry Letters. 2010; 20: 1263–1268.
3. Subash V, Michael B, Reaz U, Wan B, Franzblau SG, et al. 5-tert- butyl-n-pyrazol-4-yl-4,5,6,7-tetrahydrobenzod isoxazole-3-carboxamide derivatives as novel potent inhibitors of mycobacterium tuberculosis pantothenate synthetase: Initiating a quest for new antitubercular drugs. Journal of Medicinal Chemistry. 2008; 51: 1999–2002.
4. Kankala S, Kankala RK, Gundepaka P, Thota N, Nerella S, et al. Regioselective synthesis of isoxazole-mercaptopbenzimidazole hybrids and their in vivo analgesic and anti-inflammatory activity studies. Bioorganic & Medicinal Chemistry Letters. 2013; 23: 1306–1309.
5. Rao PS, Kurumurthy C, Veeraswamy B, Poornachandra Y, Kumar CG, et al. Synthesis of novel 5-(3-alkylquinolin-2-yl)-3-aryl isoxazole derivatives and their cytotoxic activity. Bioorganic & Medicinal Chemistry Letters. 2014; 24: 1349–1351.
6. Suhas R, Chandrashekar S, Gowda DC. Synthesis of elastin based peptides conjugated to benzisoxazole as a new class of potent antimicrobials-A novel approach to enhance
biocompatibility. European Journal of Medicinal Chemistry. 2011; 46: 704–711.

7. Bo-Liang D, Yujie Z, Tracy LH, Karen W, Robert WB, et al. Design, synthesis and antimycobacterial activity of various 3-(4-(substituted sulfonyl) piperazin-1-yl) benzod isoxazole derivatives. European Journal of Medicinal Chemistry. 2009; 44: 1210–1214.

8. Shantharam CS, Suyoga Vardhan DM, Suhas R, Sridhara MB, Gowda DC. Inhibition of protein glycation by urea and thiourea derivatives of glycine/proline conjugated benzisoxazole analogue – Synthesis and structure–activity studies. European Journal of Medicinal Chemistry. 2013; 60: 325–332.

9. Aranda R, Villalba K, Raviña E, Masaguer CF, Brea J, et al. Synthesis, binding affinity, and molecular docking analysis of new benzofuranone derivatives as potential antipsychotics. Journal of Medicinal Chemistry. 2008; 51: 6085–6094.

10. Chen Y, Wang S, Xu X, Liu X, Yu M, et al. Synthesis and biological investigation of coumarin piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics. Journal of Medicinal Chemistry. 2013; 56: 4671–4690.

11. Uno H, Kurokawa M, Masuda Y, Nishimura H. Studies on 3-substituted 1,2-benzisoxazole derivatives. 6. Syntheses of 3-(sulfamoylmethyl) -1, 2-benzisoxazole derivatives and their anticonvulsant activities. Journal of Medicinal Chemistry. 1979; 22: 180–183.

12. Karunakaran V, Balachandran V. FT-IR, FT-Raman spectra, NBO, HOMO–LUMO and thermodynamic functions of 4-chloro-3-nitrobenzaldehyde based on ab initio HF and DFT calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012; 98: 229–239.

13. Suvitha A, Periandy S, Boomadevi S, Govindarajan M. Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO–LUMO and electronic structure calculations on pycolinaldehyde oxime. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014; 117: 216–224.

14. Potts AW, Holland DMP, Trofimov AB, Schirmer J, Karlsson L, et al. An experimental and theoretical study of the valence
shell photoelectron spectra of purine and pyrimidine molecules. Journal of Physics B: Atomic, Molecular and Optical Physics. 2003; 36: 3129–3143.

15. Suzuki Y, Suzuki T. Photoelectron angular distribution in valence shell ionization of heteroaromatic molecules studied by the continuum multiple scattering Xα method. The Journal of Physical Chemistry A. 2008; 112: 402–411.

16. Jin RY, Sun XH, Liu YF, Long W, Chen B, et al. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016; 152: 226–232.

17. Karabacak M, Şahin E, Çınar M, Erol I, Kurt M. X-ray, FT-Raman, FT-IR spectra and ab initio HF, DFT calculations of 2-(5-methylisoxazol-3-yl)amino-2-oxo-ethyl methacrylate. Journal of Molecular Structure. 2008; 886: 148–157.

18. Ping, Sun, Yang, Guo Y, Liu, et al. DFT calculation on 76 polybromophenazines: Their thermodynamic function and stability. Journal of Chemical and Engineering Data. 2009; 54: 2404–2410.

19. Yan Wang, Zeng, Xiao L, Chen, et al. Thermodynamic properties and relative stability of polychlorinated thianthrenes by DFT. Journal of Chemical and Engineering Data. 2007; 52: 1442–1448.

20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. Gaussian 03, Revision D. 01. Wallingford: Gaussian. 2004.

21. Becke AD. Density functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics. 1993; 98: 5648–5652.

22. Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review. 1964; 136: B864.

23. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical Review. 1965; 140: A1133.

24. Pople JA, Gill PMW, Johnson BG. Kohn-Sham density-functional theory within a finite basis set. Chemical Physics Letters. 1992; 199: 557–560.
25. Slater JC. Quantum theory of molecular and solids. Volume 4: The self-consistent field for molecular and solids. New York: McGraw-Hill. 1974.
26. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996; 77: 3865–3868.
27. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1997; 78: 1396.
28. Binning RC, Curtiss LA. Compact contracted basis sets for third-row atoms: Ga-Kr. Journal of Computational Chemistry. 1990; 11: 1206–1216.
29. Curtiss LA, McGrath MP, Blaudeau JP, Davis NE, Binning RC, et al. Extension of Gaussian-2 theory to molecules containing third-row atoms Ga–Kr. The Journal of Chemical Physics. 1995; 103: 6104–6113.
30. Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics. 1980; 72: 650–654.
31. McGrath MP, Radom L. Extension of Gaussian[1] (G1) theory to bromine-containing molecules. The Journal of Chemical Physics. 1991; 94: 511–516.
32. McLean AD, Chandler GS. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. The Journal of Chemical Physics. 1980; 72: 5639–5648.
33. Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters. 1996; 256: 454–464.
34. Casida ME, Jamorski C, Casida KC, Salahub DR. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. The Journal of Chemical Physics. 1998; 108: 4439–4449.
35. Stratmann RE, Scuseria GE, Frisch MJ. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. The Journal of Chemical Physics. 1998; 109: 8218–8224.
36. Fleming I. Frontier orbitals and organic chemical reaction. New York: John Wiley and Sons. 1976.
37. Silverstein RM, Bassler GC, Morrill TC. Spectrometric identification of organic compounds, 4th edn. New York: John Wiley and Sons. 1981.
38. Foresman JB, Frisch E. Exploring chemistry with Electronic structure method: A Guide to Using Gaussian. Pittsburg: Gaussian. 1996.
Effect of electronegativity on structural, spectrophotometric and thermo-chemical properties of fluorine and chlorine substituted isoxazoles by DFT method.

Table S1: Full geometry parameter of 1a.

| #  | Symbol | NA | NB | NC | Bond | Angle | Dihedral | X     | Y     | Z     |
|----|--------|----|----|----|------|-------|----------|-------|-------|-------|
| 1  | C      | ----| ----| ----| -----| ------| ---------| -----  | -----  | -----  |
| 2  | C      | 1   | ----| ----| 1.382086 | ---- | ---------| 4.452798 | -1.431318 | 1.099516 |
| 3  | C      | 2   | 1   | 1.397135 | 120.056125 | ---- | 2.481565 | -0.621173 | -0.020434 |
| 4  | C      | 3   | 2   | 1.406247 | 120.426968 | 0.479239 | 3.276110 | 0.065870  | -0.955421 |
| 5  | C      | 4   | 3   | 1.402798 | 117.710470 | 1.567976 | -6.691666 | -0.049797 | -0.837694 |
| 6  | C      | 5   | 4   | 1.384907 | 121.975184 | 1.355191 | 5.260932  | -0.787056 | 0.174348  |
| 7  | H      | 2   | 1   | 6    | 1.082585 | 120.429447 | 177.816839 | 2.449900  | -1.895296 | 1.708520  |
| 8  | H      | 5   | 4   | 1.082753 | 120.033349 | 179.354848 | 6.339952  | -0.846577 | 0.241640  |
| 9  | H      | 6   | 5   | 1.336873 | 123.180462 | 178.622448 | 2.766799  | 0.768184  | -1.972567 |
| 10 | H      | 9   | 4   | 3    | 0.987299 | 108.011815 | 48.857739  | 2.060679  | 1.357294  | -1.613449 |
| 11 | Cl     | 5   | 4   | 3    | 1.729089 | 118.893274 | 178.834871 | 5.674839  | 0.757519  | -1.989480 |
| 12 | Cl     | 1   | 2   | 3    | 1.738641 | 119.795319 | 179.538607 | 5.185048  | -2.344943 | 2.384807  |
| 13 | C      | 3   | 2   | 1    | 1.478123 | 116.677663 | 173.434406 | 1.011704  | -0.717943 | -0.12873 |
| 14 | C      | 3   | 2   | 1    | 1.440120 | 132.186881 | 124.318323  | -0.026415 | 0.280181  | -0.144551 |
| 15 | C      | 4   | 3   | 1    | 1.395617 | 102.588657 | 175.002960  | -1.189415 | -0.490604 | -0.177251 |
| 16 | D      | 15  | 14  | 13   | 1.322159 | 109.895096 | 0.651558  | -0.877726  | -1.775498 | -0.178680 |
| 17 | N      | 13  | 3   | 2    | 1.304285 | 115.912624 | 26.072503  | 0.517894  | -1.925134 | -0.141547 |
| 18 | C      | 4   | 13  | 3    | 1.447956 | 129.069834 | 8.308636  | 0.094452  | 1.722547  | -0.183883 |
| 19 | D      | 18  | 14  | 13   | 1.230044 | 122.019273 | 26.696293  | 1.066479  | 2.282021  | -0.689017 |
| 20 | C      | 18  | 14  | 13   | 1.490902 | 119.644494 | 153.508025 | -0.986192  | 2.569242  | 0.397586  |
| 21 | C      | 20  | 18  | 14   | 1.397996 | 121.659248 | 40.184742  | -1.623498  | 2.226443  | 1.593714  |
| 22 | C      | 20  | 18  | 14   | 1.397474 | 118.546736 | 143.765401 | -1.303934  | 3.774113  | -0.235074 |
| 23 | C      | 21  | 20  | 18   | 1.389616 | 120.052229 | 176.629069 | -2.577370  | 3.075233  | 2.142090  |
| 24 | H      | 21  | 20  | 18   | 1.085866 | 119.727866 | 1.692445  | -1.350324  | 1.308557  | 2.105541  |
| 25 | C      | 22  | 20  | 18   | 1.387174 | 120.079220 | 177.891287 | -2.273602  | 4.607382  | 0.303124  |
| 26 | H      | 22  | 20  | 18   | 1.084646 | 118.861076 | 1.887969  | -0.778150  | -4.042161 | -1.145106 |
| 27 | C      | 23  | 21  | 20   | 1.391286 | 119.990201 | 0.755485  | -2.909543  | -4.259514 | 1.491847 |
| 28 | H      | 23  | 21  | 20   | 1.084828 | 119.856044 | 178.666561 | -3.054243  | 2.816546  | 3.081518  |
| 29 | H      | 25  | 22  | 20   | 1.084812 | 119.901812 | 179.197603 | -2.522725  | 5.535806  | -0.197398 |
| 30 | H      | 27  | 23  | 21   | 1.085176 | 119.874438 | 179.695245 | -3.658211  | 4.918938  | 1.918769  |
Table S2: Full geometry parameter of 1b.

| #  | Symbol | NA  | NB  | NC  | Bond          | Angle  | Dihedral     | X     | Y     | Z     |
|----|--------|-----|-----|-----|---------------|--------|--------------|-------|-------|-------|
| 1  | C      | 1   | 1   | 1   | 1.3841843     | 119.352851 | 197.984082 | -7.23676 | -2.908698 | -0.521712 |
| 2  | C      | 1   | 1   | 1   | 1.083787      | 120.572067 | 120.842924 | 0.560729 | -2.751786 | -0.49257 |
| 3  | C      | 1   | 1   | 1  | 1.0830940     | 119.724963 | 119.9719007 | -7.014539 | -0.340517 | -0.289115 |
| 4  | C      | 1   | 1   | 1  | 1.384891      | 121.974100 | 177.838636 | 2.609227 | -1.942041 | 1.737803 |
| 5  | C      | 1   | 1   | 1  | 1.082761      | 120.031942 | 179.373622 | 6.546574 | -1.199602 | 0.211342 |
| 6  | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 3.071472 | 0.620054 | -1.999691 |
| 7  | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 8  | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 9  | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 10 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 11 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 12 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 13 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 14 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 15 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 16 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 17 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 18 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |
| 19 | C      | 1   | 1   | 1  | 1.384913      | 121.974100 | 178.489272 | 0.731361 | 1.999691 | -1.999691 |

Prime Archives in Chemistry
|   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|
| 20 | C | 18 | 14 | 13 | 1.490525 | 119.603594 | -153.439324 | -0.511550 | 2.733800 | 0.377086 |
| 21 | C | 20 | 18 | 14 | 1.398021 | 121.616036 | 40.196388 | -1.153425 | 2.459721 | 1.588424 |
| 22 | C | 20 | 18 | 14 | 1.397492 | 118.603023 | -143.647799 | -0.754532 | 3.945201 | -0.275947 |
| 23 | C | 21 | 20 | 18 | 1.389620 | 120.061067 | 176.713205 | -2.037766 | 3.383461 | 2.132197 |
| 24 | H | 21 | 20 | 18 | 1.085903 | 119.760447 | -1.587452 | -0.937370 | 4.158265 | -1.198461 |
| 25 | C | 22 | 20 | 18 | 1.397492 | 118.603023 | -143.647799 | -0.754532 | 3.945201 | -0.275947 |
| 26 | H | 22 | 20 | 18 | 1.084672 | 118.873035 | 1.807575 | -0.225302 | 4.158265 | -1.198461 |
| 27 | C | 23 | 21 | 20 | 1.391245 | 119.959972 | 0.813531 | -2.297385 | 4.574651 | 1.461953 |
| 28 | H | 23 | 21 | 20 | 1.084811 | 119.849403 | -178.657381 | -2.517284 | 1.144335 | -0.201043 |
| 29 | H | 25 | 22 | 20 | 1.084819 | 119.883855 | -179.157027 | -1.853252 | 5.787263 | -0.258926 |
| 30 | H | 27 | 23 | 21 | 1.085158 | 119.883855 | 176.49728 | -2.992510 | 5.292669 | 1.884823 |
| 31 | N | 15 | 14 | 13 | 1.345225 | 130.917462 | -176.824851 | -2.207380 | 0.137847 | -0.201043 |
| 32 | H | 31 | 15 | 14 | 1.010466 | 113.743017 | -6.338537 | -2.283417 | 0.233487 | -0.193040 |
| 33 | C | 31 | 15 | 14 | 1.398479 | 116.269285 | 174.555158 | -4.585770 | 0.137847 | -0.201043 |
| 34 | C | 33 | 31 | 15 | 1.398479 | 116.269285 | 174.555158 | -4.585770 | 0.233487 | -0.193040 |
| 35 | C | 33 | 31 | 15 | 1.398479 | 116.269285 | 174.555158 | -4.585770 | 0.233487 | -0.193040 |
| 36 | C | 33 | 31 | 15 | 1.398479 | 116.269285 | 174.555158 | -4.585770 | 0.233487 | -0.193040 |
| 37 | H | 34 | 33 | 31 | 1.086516 | 119.831079 | -0.696026 | -4.502106 | 0.233487 | -0.193040 |
| 38 | C | 35 | 33 | 31 | 1.388917 | 119.745909 | -179.251658 | -4.812747 | 0.233487 | -0.193040 |
| 39 | H | 35 | 33 | 31 | 1.080016 | 120.938034 | 0.666372 | -2.670959 | 0.233487 | -0.193040 |
| 40 | C | 38 | 35 | 33 | 1.386400 | 120.417147 | 0.065467 | -5.950667 | 0.233487 | -0.193040 |
| 41 | H | 36 | 34 | 33 | 1.083460 | 120.373981 | -179.936271 | -6.731391 | 0.233487 | -0.193040 |
| 42 | H | 38 | 35 | 33 | 1.083615 | 119.660797 | 179.985300 | -4.905563 | 0.233487 | -0.193040 |
| 43 | Cl | 40 | 38 | 35 | 1.736180 | 119.944853 | -179.980915 | -7.521339 | 0.233487 | -0.193040 |