Fractal solutions of dispersive partial differential equations on the torus

George Shakan

Joint work with Burak Erdoğan

University of Illinois at Urbana–Champaign
The Talbot Effect

Figure 1: An 1836 Optical experiment of Talbot.
Schrödinger’s equation

- Berry and Klein in 1996 used linear Schrödinger to model the Talbot effect
- Time is distance from the grating

\[iq_t + q_{xx} = 0. \]
Consider the differential equation

\[
\begin{cases}
 iq_t + L_\omega q = 0, & t \in \mathbb{R}, \ x \in \mathbb{T} := \mathbb{R}/(2\pi \mathbb{Z}), \\
 q(0, \cdot) = g(\cdot) \in L^2(\mathbb{T}).
\end{cases}
\] \tag{1}

where

\[\hat{L_\omega} q(n) = \omega(n) \hat{q}(n), \quad n \in \mathbb{Z}.\]

We say \(\omega\) is the dispersion relation.

Key example (Schrödinger)

\[\omega(n) = -n^2, \quad g(x) = \chi[0,\pi]\]
Other Examples

Airy (linear KdV): \(u_t + u_{xxx} = 0, \quad \omega(n) = n^3 \)

Fractional Schrödinger: \(iu_t + |\partial_x|^{\alpha}, \quad \omega(n) = |n|^\alpha \)

Boussinesq: \(\omega(n) = \sqrt{n^2 + n^4} \)

Gravity–Capillary wave: \(\omega(n) = \sqrt{(n + n^3 \tanh(n))} \)
Figure 2: Initial Data: $g(x) = \chi_{[0, \pi]}(x)$.
Figure 3: Initial Data: $g(x) = \chi_{[0,\pi]}(x)$.
Polynomial dispersion at rational times

Can prove at rational times $t = 2\pi \frac{p}{q}$, one has

$$q(t, x) = \frac{1}{q} \sum_{j=0}^{q-1} G_{p,q}(j) g(x - 2\pi \frac{j}{q}),$$

where

$$G_{p,q}(j) = \sum_{\ell=0}^{q-1} e(i \omega (\ell \frac{p}{q}) e(\ell \frac{j}{q}), \quad e(\theta) = e^{2\pi i \theta}.$$

Thus $q(t, x)$ is a finite $(2q)$ linear combination of characteristic functions of intervals of length $1/(2q)$.
Irrational times

Figure 4: Initial Data: \(g(x) = \chi_{[0, \pi]}(x) \).
At a rational time $t = 2\pi^p\frac{p}{q}$, $q(t, x)$ is a linear combination of $\chi[\pi\frac{i}{q}, \pi\frac{j+1}{q}]$, for $0 \leq j \leq 2q - 1$.

- Coefficients are Gauss sums
- For $t \notin 2\pi\mathbb{Q}$, consider $2\pi\frac{p_n}{q_n} \rightarrow t$, where $q_n \rightarrow \infty$.
- Each $u(2\pi\frac{p_n}{q_n}, x)$ increases in complexity
Fractal behavior in a classical example

Riemann’s proposed continuous but nowhere differential function:

\[\phi(t) = \sum_{n \neq 0} \frac{e^{itn^2}}{n^2}. \]

- We know now that \(\phi(t) \) is differentiable at certain \(t \in 2\pi \mathbb{Q} \)
- Obtained from integrating fundamental solution of Schrödinger along vertical line \(x = 0 \)
- Jaffard (1996) proved the multifractility of \(\phi \)
Recall that the fractal (also known as upper Minkowski or upper box–counting) dimension, $\dim(E)$, of a bounded set E is given by

$$\limsup_{\epsilon \to 0} \frac{\log(N(E, \epsilon))}{\log(\frac{1}{\epsilon})},$$

where $N(E, \epsilon)$ is the minimum number of ϵ–balls required to cover E.

Fractal Dimension
Fractal Dimension
Fractal Dimension

In our case, E will be the graph of an $f : [0, 2\pi] \rightarrow \mathbb{R}$ and so the dimension will lie between 1 and 2.

- If f is differentiable, then the dimension is 1
- A space filling curve has dimension 2
Conjectures of Berry and coauthors

For step function initial data of the Schrödinger, Berry conjectured

- Fractal dimension \(\frac{3}{2} \) at irrational times
- There are space slices with fractal dimension \(\frac{7}{4} \)
- There are diagonal slices with fractal dimension \(\frac{5}{4} \)
- Same holds for non–linear perturbation
The General Question

Given the solution, \(q(t, x) \) of a dispersive PDE and a line \(\mathcal{L} \) in space–time, determine the fractal dimension of the real and imaginary parts of \(q_{\mathcal{L}}(t, x) \).

For a fixed \(t \) we denote

\[
D_t(\omega, g)
\]

the maximum fractal dimension of the real and imaginary parts of \(q(t, x) \) (horizontal line).
The solution to the dispersive PDE

\[
\begin{align*}
\left\{
\begin{array}{l}
iq_t + L_\omega q = 0, \quad t \in \mathbb{R}, \quad x \in \mathbb{T} := \mathbb{R}/(2\pi \mathbb{Z}), \\
q(0, \cdot) = g(\cdot) \in L^2(\mathbb{T})
\end{array}
\right.
\end{align*}
\]

is

\[
q(t, x) = \sum_{n \in \mathbb{Z}} \hat{g}(n) e^{i t \omega(n) + i n x}.
\]

In our running example,

\[
q(t, x) = \frac{1}{2} - \sum_{n \in \mathbb{Z}} \frac{1}{in} e^{i t n^2 + in x}.
\]

n \equiv 1 \mod 2
Oskolkov bounded variation initial data and polynomial dispersion, \(q(t, x) \) is continuous at irrational \(t \)

Rodnianski: Berry’s conjecture for linear Schrödinger, dimension \(= \frac{3}{2} \) (discrete Hilbert transform)

Chamizo and Cordoba, dimension of

\[
\sum_{n=1}^{\infty} \frac{e^{in^k}}{n^a}, \quad \frac{k + 1}{2} \leq a \leq k + \frac{1}{2},
\]

is exactly \(2 - \frac{2a - 1}{2k} \).

Erdoğan and Tzirakis, smoothing estimates to non-linear equations

Chousionis, Erdoğan and Tzirakis addressed Berry’s conjecture on \(|e^{it\partial_{xx}}|^2\) and applied to the vortex filament equation.
Determining the fractal dimension

Spatial smoothness \iff Frequency Decay

- The graph of a $C^\gamma(\mathbb{T})$ function has fractal dimension $\leq 2 - \gamma$

 $$|f(x) - f(y)| \lesssim |x - y|^{\gamma}$$

- If $f \in C^\gamma(\mathbb{T})$ then $|\hat{f}(n)| \lesssim |n|^{-\gamma}$

- Dispersive PDE preserve Sobolev norm

- Besov Spaces and Littlewood Paley projections
For \((t, x) \in \mathcal{L}\), we want to determine the fractal dimension of the real and imaginary parts of

\[q(t, x) = \sum_{n \in \mathbb{Z}} \hat{g}(n) e^{it\omega(n) + inx}. \]

Using Littlewood–Paley and Besov theory, it is enough to estimate

\[P_N(q(t, x)) = \sum_{n \sim N} \hat{g}(n) e^{it\omega(n) + inx}, \]

in \(L^p(\mathbb{T})\) for various \(p\), where \(p = \infty\) is “most wanted.”
Removing the weight

We have

\[P_N(q(t, x)) = \sum_{n \sim N} \hat{g}(n) e^{it\omega(n) + inx}, \]

Assuming some smoothness condition on \(g \) (i.e. bounded variation, as in our key example) it is enough to study

\[H_N(t, x) = \sum_{n \sim N} e^{it\omega(n) + inx}. \]
Theorem (\(L^\infty\) decay and fractal behavior)

Fix \(t\) and \(0 < \gamma \leq 1/2\). Let \(g \in BV(\mathbb{T})\) such that \(g \notin H^{1/2+}(\mathbb{T})\) and \(e^{itL_\omega}g\) is continuous. Suppose

\[
\|H_{N,w}(t, x)\|_{L^\infty} \lesssim N^{1-\gamma}, \quad N \in \mathbb{N}. \tag{3}
\]

Then \(1 + \gamma \leq D_t(\omega, g) \leq 2 - \gamma.\)
To use the Besov space theory, we need non–trivial estimates for
\[\| H_N(t, x) \|_{L^\infty_x}, \quad H_N(t, x) = \sum_{n \sim N} e^{it\omega(n) + inx}, \quad (t, x) \in \mathcal{L}. \]

- Trivial bound N, tight when $t = x = 0$.
- Generically, expect $N^{1/2+}$, “square root cancellation” (i.e. Khintchine’s inequality, Rademacher functions, Central Limit Theorem, etc.)
Let q_n be the sequence of numbers satisfying

$$|\frac{t}{2\pi} - \frac{p_n}{q_n}| \leq \frac{1}{q_n^2},$$

(4)

We say t is Khinchin–Lévy if for all $\epsilon > 0$ and n large depending on ϵ, one has $q_{n+1} \leq q_n^{1+\epsilon}$.
Theorem (Weyl’s inequality)

Suppose t satisfies the Khinchin–Lévy hypothesis. Then

$$\left| \sum_{N \leq n < 2N} e^{itn^d + ixn} \right| \lesssim N^{1 - 2^{1-d} +}.$$

- Even the $d = 3$ case is far from square–root cancellation: this is an old important problem in number theory
- Recent progress on Vinogradov’s mean value theorem, due to Bourgain, Demeter, and Guth, allows for improved bounds for $d \geq 7$
Theorem (Vinogradov’s mean value theorem)

We set

\[J_{s,d}(N) := \int_{[0,1]^d} \left| \sum_{j=1}^{N} e(x_1 j + \ldots + x_d j^d) \right|^{2s} \, dx_1 \ldots dx_d \]

Then

\[J_{s,d}(N) \lesssim N^{s+} + N^{\frac{2s-d(d+1)}{2}}. \]

- Suppose \(| \sum_{N \leq n < 2N} e(itn^d + ixn) |\) is large, then

\[\sum_{N \leq n < 2N} e(t(n+q)^d + ix(n+q)) \sim \sum_{N \leq n \leq 2N} e(\alpha_1(q)n + \ldots + \alpha_d(q)n^d) \]

is large for many small \(q\)

- The points \((\alpha_1(q), \ldots, \alpha_d(q))\) are well–distributed in \([0, 1]^d\) which makes the \(L^{2s}\) norm large
We no longer have an optimal L^∞_x estimate.

Can still obtain conjectured lower bounds

Theorem (Fractal behavior and L^q decay)

Fix t and $0 < \gamma \leq 1/2$. Let $g \in BV(\mathbb{T})$ such that $g \notin H^{1/2+}(\mathbb{T})$ and $e^{it\omega}g$ is continuous. Suppose

$$\|H_{N,w}(t,x)\|_{L^q_x} \lesssim N^{1-\gamma+}, \quad N \in \mathbb{N}, \quad 2 < q < \infty. \quad (5)$$

Then

$$D_t(\omega, g) \geq 2 - \frac{1 - \gamma q'}{2 - q'}, \quad q' := \frac{q}{q - 1}.$$

In particular when $\gamma = 1/2$ (square root), $D_t(\omega, g) \geq \frac{3}{2}$.
Oblique Lines for Schrödinger

- \(\mathcal{L} : t = c - \frac{k}{\ell} x \) where \(k \) and \(\ell \) are coprime
- We modify the Besov space theory, the Sobolev index changes and the fractal dimension increases to \(7/4 \),

\[
\sum_{n \sim N} e^{i t n^2 + i n x} = \sum_{n \sim N} e^{i ((c - \frac{k}{\ell} x)n^2 + i n x} \approx P_N^2(q(t, x)),
\]

so the Archimedean size of the dispersion relation changes the relevant Besov space.
The lower bound

- We utilize an L^4 argument (Chamizo–Cordoba) which leads to an analog of the following

$$\#\{a, b, c, d \sim N : a^2 - b^2 = c^2 - d^2\}.$$

- $(a - b)(a + b) = (c - d)(c + d)$, Divisor Bound

A sample calculation when $x = 0$ (vertical line):

$$\int \left| \sum_{n \sim N} e^{itn^2} \right|^4 dt = \int \sum_{n_1, n_2, n_3, n_4 \sim N} e^{it(n_1^2 + n_2^2 - n_3^2 - n_4^2)} dt.$$
Oblique Lines

- Our L^∞_x bound follows from our exponential sum estimate

$$\sup_x \left| \sum_{n \sim N} e^{inx + in^2(c-rx)} \right| \lesssim N^{4 \frac{4}{5} +}, \quad \text{a.e. } c \in \mathbb{R}, \ r \in \mathbb{Q}$$

- Have to get cancellation from both quadratic term and linear term

- Expect to be able to replace $4 \frac{4}{5}$ with $\frac{1}{2}$.
Theorem (Erdo\u{g}an–S.)

For any \(g \in BV(\mathbb{T}) \), \(g \notin H^{1/2+} \) and for each \(t \neq 0 \), the linear fractional Schrödinger evolution, \(e^{it(-\Delta)^{3/4}}g \), satisfies

\[
1 + \frac{1}{4} \leq D_t(\omega, g) \leq 2 - \frac{1}{4}.
\]

Thus the rational/irrational dichotomy is not valid for fractional Schrödinger. Our methods indicate that there is some dependence on algebraic properties of \(t \), but it is not clear if this is just an artifact of our methods.

For instance, we showed \(1 + \frac{3}{8} \leq D_t(\omega, g) \leq 2 - \frac{3}{8} \), for Khinchin–Lévy \(t \).

Techniques: A and B processes from exponential sums (Weyl Differencing and Poisson Summation/Stationary Phase)
KdV on oblique lines

Theorem (Erdoğan-S.)

Let g be a non–constant, mean–zero, and real valued step function on the torus. Let $u(t, x)$ solve the Airy equation or the KdV equation with data g. Fix $k, \ell \in \mathbb{N}$ with $(k, \ell) = 1$. For $c \in \mathbb{R}$, let $F_c(x) = u(c - \frac{k}{\ell}x, x)$, $x \in [0, 2\pi\ell]$. Then for a.e. c, $F_c \in C^{1 - \frac{1}{27}}$ and the dimension of the graph of F_c is in $\left[\frac{11}{6}, \frac{53}{27}\right]$.

- Our results extended to non–linear Schrödinger and KdV using the smoothing estimates of Erdoğan and Tzirakis: the solution to the non–linear PDE is the linear plus a “smooth perturbation”
Thank you!

Further Reading

- M. B. Erdoğan and N. Tzirakis, *Dispersive Partial Differential Equations: Wellposedness and Applications*, London Mathematical Society Student Texts 86, Cambridge University Press, 2016.

- G. Chen and P. J. Olver, *Numerical simulation of nonlinear dispersive quantization*, Discrete Contin. Dyn. Syst. 34 (2014), no. 3, 991–1008.

- B. Erdoğan, G. Shakan, *Fractal solutions of dispersive partial differential equations on the torus*, arXiv:1803.00674 (2018).

- These slides can be found on my website: gshakan.wordpress.com