A concise access to bridged [2,2,1] bicyclic lactones with a quaternary stereocenter via stereospecific hydroformylation

Shuailong Li¹, Zhuangxing Li¹, Mingzheng Li¹, Lin He², Xumu Zhang³ & Hui Lv¹,²

Chiral bridged [2,2,1] bicyclic lactones are privileged structural units in pharmaceutics and bioactive nature products. However, the synthetic methods for these compounds are rare. Here we report an efficient method for enantioselective construction of bridged [2,2,1] bicyclic lactones bearing a quaternary stereocenter via Rh-catalyzed asymmetric hydroformylation/intramolecular cyclization/pyridium chlorochromate (PCC) oxidation. By employing a hybrid phosphine-phosphite chiral ligand, a series of cyclopent-3-en-1-ols are transformed into corresponding γ-hydroxyl aldehydes with specific syn-selectivity. Then, hemiacetals form in situ and oxidation with PCC in one-pot affords bridged [2,2,1] bicyclic lactones in high yields and excellent enantiomeric excess. Replacing the hydroxyl group by an ester group, cyclopentanecarbaldehydes with a chiral all-carbon quaternary stereocenter in the γ-position can be generated efficiently.
E nantiomeric bridged [2,2,1] bicyclic lactone skeletons and their ring-opening products, cyclopentanols bearing two chiral centers, are important scaffolds widely occurring in both pharmaceutics and biology active compounds (Fig. 1). For example, chiral molecular DCK is a kind of anti-HIV agent. Consequently, the synthesis of bridged [2,2,1] bicyclic lactones received wide attentions and several approaches have been developed. The typical methods include Baeyer–Villiger oxidation, esterification, halolactonization, electrocatalytic reaction, and others. However, most of these approaches focused on the synthesis of racemic bridged [2,2,1] bicyclic lactones and multistep synthesis was necessary to achieve these transformations. To date, there are only two examples on the synthesis of enantiomerically pure bridged [2,2,1] bicyclic lactones.

Recently, our group developed a Rh-catalyzed AHF of 1,1-disubstituted allyl alcohols to generate γ-butyrolactones. We envisioned that the similar transformation might occur if 1-substituted cyclopent-3-en-1-ols were used as starting material, providing efficient access to bridged [2,2,1] bicyclic lactones with a quaternary stereocenter. However, this transformation faces several challenges (Fig. 2c). First, it is very difficult to generate chiral aldehydes with exclusive syn-selectivity through AHF of 1-substituted cyclopent-3-en-1-ols, but it’s an essential factor to form bridged [2,2,1] bicyclic lactones in high yield. Moreover, the isomerization of alkenes is difficult to be inhibited in AHF of cyclic olefins, which further increases the difficulty of producing syn γ-hydroxyaldehydes. Second, the generation of the hemiacetals is unfavorable in this transformation because the large steric hindrance of tertiary alcohols greatly decreased the nucleophilic ability of hydroxy group to aldehydes. In addition, the relatively small steric difference between the two prochiral faces makes it difficult to obtain high enantioselectivity. Thus, the development of a highly efficient method for asymmetric synthesis of bridged [2,2,1] bicyclic lactones containing a quaternary stereocenter is still a challenge.

Herein, we report one-pot synthesis of chiral bridged [2,2,1] bicyclic lactones from readily available cyclopent-3-en-1-ols, delivering target products with good yields and high enantioselctivities, which provides efficient access to bridged [2,2,1] bicyclic lactones containing a quaternary stereocenter.

Results and discussion

Initially, considering only syn oxo-products can be transferred to corresponding bridged [2,2,1] bicyclic lactones, AHF of 1a was investigated to obtain 2a stereospecifically. When (S,S)-Ph-BPE, the representative ligand in AHF, was employed, 1a was transformed into oxo-product with high conversion and excellent ee, along with good diastereoselectivity (Table 1, entry 1). (R,S)-Duanphos showed low activity in this transformation albeit with good stereocontrol (Table 1, entry 2). (R,R)-Quinoxp, which performed well in asymmetric hydrogenation reactions, afforded target product in low yield with moderate enantioselctivity (Table 1, entry 3). The reaction was totally inhibited when (S,S)-Me-Duphos and (S)-Segphos were employed (Table 1, entry 4). Highly efficient synthesis of multichiral aldehydes bearing a quaternary stereocenter is still a problematic issue in this field.

Fig. 1 Pharmaceutics and bioactive compounds containing bridged [2,2,1] bicyclic lactones and their ring-opening derivatives. a Bioactive molecules containing bridged [2,2,1] bicyclic lactones. b Ring-opening derivatives of bridged [2,2,1] bicyclic lactones.
Fig. 2 Methods for synthesis of chiral bridged [2,2,1] bicyclic lactones.

a Synthesis of bridged [2,2,1] bicyclic lactones by using chiral alcohol as starting material.

b Desymmetrization of prochiral cyclopentenes and iodolactonization to bridged [2,2,1] bicyclic lactones.

c This work:

Challenges:
1) Stereoselective formation of syn chiral aldehydes
2) The formation of hemiacetal is unfavorable due to the steric effect of tertiary alcohol
3) The relatively small steric difference makes it difficult to differentiate the two prochiral faces

Table 1 Ligand screening in the asymmetric hydroformylation of 1a*.
In order to obtain higher enantio- and diastereoselectivity, a series of YanPhos-type ligands with different axial chirality (Fig. 3), which were developed by our group, were evaluated\(^\text{60–63}\). The results showed that all YanPhos-type ligands had good catalytic activity for this transformation, but there were big differences in the control of enantioselectivity and diastereoselectivity. Generally, YanPhos containing (S,R) axial chirality had better performance than that of YanPhos with (S,S) axial chirality (Table 1, entries 6–13). When (S,R)-DM-YanPhos was employed (Table 1, entry 11), the target product was obtained with the best diastereo- and enantioselectivity.

Table 2 Additive screening in the PCC oxidation\(^\text{a}\).

Entry	Additive	Yield (%)	Ee (%) \([\text{b}]\)
1	–	94	
2\(^c\)	–	94	
3	AcOH	94	
4	NaOAc•3H₂O	94	
5	K₂CO₃	94	
6	Cs₂CO₃	94	
7	NET₃	94	
8	NaOH	94	
9	K₂HPO₄	94	
10	Na₂CO₃	94	
11	AcOH	94	
12	NaOAc•3H₂O	94	
13	K₂CO₃	94	
14	Cs₂CO₃	94	
15	NET₃	94	
16	NaOH	94	

\(^a\)The reaction of 1a (0.2 mmol) was performed in the presence of Rh(acac)(CO)₂ (2 mol%), L11 (4 mol%), H₂/CO = 5/5 bar in toluene (1 mL) at 70 °C for 24 h. The reaction was cooled to room temperature and the pressure was carefully released in a well-ventilated hood, then the mixture was treated with PCC (0.5 mmol), additive (0.1 mmol) in DCM (4 mL) 25 °C for 12 h in one pot.

\(^b\)Determined by HPLC analysis on a chiral stationary phase.

Having established the optimized reaction condition for AHF of 1a, we attempt to synthesize bridged [2,2,1] bicyclic lactone 3a in one pot by sequential AHF/intramolecular cyclization/dehydrogenation oxidation (Table 2). Based on our previous work\(^\text{64}\), PCC (pyridinium chlorochromate) was selected as oxidant and delivered target product 3a with moderate yield (entry 1). Increasing reaction temperature could not improve the yield (entry 2). Considering the bulky steric hindrance greatly decreased the nucleophilicity of tertiary alcohol\(^\text{65}\), several additives were screened to promote the cyclization of 2a. Acetic acid lead to a significant drop in yield, NaOAc resulted in the decrease
of yield to some extent. To our delight, K$_2$CO$_3$, Cs$_2$CO$_3$ and NEt$_3$ can promote this reaction, affording target product in high yield without compromising the enantioselectivity (entries 5–7). However, a racemization occurred when NaOH was used, resulting in the decrease of ee and dr values (entry 8, 40% yield, 80% ee). Thus, one practical method for synthesis of bridged [2,2,1] bicyclic lactones was most effective with (S,R)-DM-YanPhos as the ligand in AHF and NEt$_3$ as additive in PCC oxidation.

Under the optimal conditions, we investigated the substrate scope. All the bridged [2,2,1] bicyclic lactones were prepared in good yields with excellent enantioselectivities (Fig. 4). Substrates bearing halides on the phenyl ring performed well in this transformation, giving target products with high yields and excellent ee’s (3b–3f). The absolute configuration of 3d was confirmed by X-ray crystallographic analysis. Electron-donating and electron-withdrawing substituted groups on the phenyl ring were also tolerated, furnishing 3f, 3g, 3h, 3i, 3j with high yields and...
Fig. 5 Substrates for synthesis of chiral aldehydes with an all-carbon quaternary stereocenter. Reaction conditions: 4 (0.2 mmol), Rh(acac)(CO)₂ (2 mol %), L11 (4 mol%), H₂/CO = 2.5/2.5 bar, toluene (1 mL), 80 °C, 48 h. The dr value of 5a-5c were determined by ¹H NMR spectroscopy.

a Gram-scale reaction of 1d

1) Rh(acac)(CO)₂/L11
H₂/CO, PhMe, 70 °C
2) PCC, NET₃, DCM

b Transformation of 3d to alkyne, alkene, amide

Pd(PPh₃)₂Cl₂, Cul, PPh₃
2-methyl-but-3-yne-2-ol
NET₃/pyridine, 90 °C

C Transformation of 2a to alcohol

NaBH₄, MeOH, 0 °C

Fig. 6 Gram-scale reaction and transformations of oxo-products and ring-opening reaction of bridged [2,2,1] bicyclic lactones. a Gram-scale reaction. b Transformation of 3d to corresponding alkyne, alkene and amide. c Reduction of 2a to alcohol. d Oxidation of 2m to acid.
excellent enantioselectivities, respectively. The yield of 3k was dropped sharply due to the ortho effect of methoxy group, but the high enantioselectivity was remained. In addition, functional groups, such as trifloromethyl, phenyl and borate (3l–3n) on the para-position of the benzene ring were compatible, and the corresponding products were afforded with moderate to good yields and high ee’s. Replacing phenyl by a naphthyl group (3o), the reaction also proceeded smoothly, providing the desired compound with high yield and excellent ee. Notably, alkyl substituents, such as benzyl, n-hexyl, isopropyl, cyclopropyl, cyclopentyl and cyclohexyl were also well tolerated in this transformation, delivering bridged [2,2,1] bicyclic lactones with excellent ee’s and high yields (3p–3u). Cyclopent-3-en-1-ol bearing a bulky sterically hindered damantyl group also proceeded effectively, affording target product with high yield (3v). Moreover, the oxo-product 2w was produced with high diastereoselectivity and excellent enantioselectivity66. Interestingly, 1-phenylcyclohept-4-en-1-ol, a challenge substrate for AHF because of the substituent far away from reaction site, which made it difficult to control the stereoselectivity, also worked very well in this transformation, delivering 6-oxabicyclo[3.2.2]nonan-7-one 3x with high yield and good enantioselectivity.

Encouraged by the success of desymmetric strategy for construction of chiral bridged [2,2,1] bicyclic lactones with a O-substituted quaternary center, primary exploration on efficient synthesis of cyclopentanecarbaldehyde with an all-carbon quaternary stereocenter was conducted. As shown in Fig. 5, when symmetric cyclopentene with phenyl and ester substituents was employed, the desired chiral aldehyde 5a was generated in good yield with high diastereoselectivity and enantioselectivity. Moreover, all-carbon substituted chiral spiro-lactones could also be efficiently synthesized by this strategy, delivering target products with good yields and high enantioselectivities (5b, 5c).

To further demonstrate the practical utility of this methodology, a gram-scale reaction of 1d was conducted in the presence of 0.2 mol% catalyst, then treated with NEt3 and PCC, 3d was obtained with high yield and without any loss in enantioselectivity (Fig. 6a). Under the classical conditions of Sonogashira reaction and Heck reaction, alkyne and alkene groups were effectively incorporated into 3d, and the chiral bridged [2,2,1] bicyclic lactone skeleton was not affected (Fig. 6b). In order to obtain the ring-opening derivatives of bridged [2,2,1] bicyclic lactones, 3d was treated with methanol solution of ammonia, furnishing chiral amide 8 with high yield and excellent ee (Fig. 6b). The hydroformylation product 2a can be efficiently reducted by NaBH₄, affording chiral dual alcohol 9 in high yield (Fig. 6c). Under a mild condition, the bioactive chiral acid 10 was readily prepared by oxidation of 2m with H₂O₂ and NaClO₂ (Fig. 6d).

Based on the experimental results and the related mechanism studies on Rh/Yanphos catalyzed AHF in literature27,61, we proposed the possible stereoselective model to explain the reason for high stereoselectivity in this transformation. According to the orientation of substrate closed to the catalyst, there are two possible coordination models (Fig. 7). In model A, there is a large repulsion between the benzene ring of the substrate and the naphthalene ring of ligand, hence this model is disfavored. By comparison, the repulsion between substrate and catalyst is much smaller in model B due to the small steric hindrance of hydroxy group, thus the asymmetric hydroformylation reaction occurred smoothly, delivering chiral γ-hydroxyaldehyde with excellent syn-selectivity, which can be efficiently transfer to the target bridged [2,2,1] bicyclic lactone in the presence of PCC.

In this work, we have developed an efficient and concise method for preparing bridged [2,2,1] bicyclic lactones bearing a quaternary stereocenter from readily available starting material by one-pot process. This methodology shows excellent substrate compatibility and excellent stereocontrol, giving target products with high yields and excellent enantioselectivities. In addition, this protocol also provides a useful strategy for construction of chiral aldehydes with an all-carbon quaternary stereocenter. Gram-scale reaction and diverse transformations of the oxo-products and bridged [2,2,1] bicyclic lactones demonstrate the utility of this method in synthetic chemistry. Further exploration on the
construction of quaternary chiral center by AHF is ongoing in our laboratory.

Methods

In a glovebox filled with argon, to a 5 mL vial equipped with a magnetic bar was added (S,R)-DM-YanPhos (0.004 mmol) and Rh(acac)(CO)2 (0.002 mmol in 1 mL toluene). After stirring for 10 min, the mixture was charged to substrate (0.2 mmol). The vial was transferred into an autoclave and taken out of the glovebox. The argon gas was replaced with hydrogen gas for three times, and then the reaction mixture was stirred at 70 °C (oil bath) for 48 h. The reaction was cooled to room temperature and the pressure was carefully released in a well-ventilated hood. The solution was transferred into a solution of PCC (0.5 mmol) and triethylamine (0.1 mmol) in 4 mL dichloromethane, the reaction mixture was stirred at 25 °C (oil bath) overnight. The solution was concentrated and the product was isolated by column chromatography using petrol ether/EtOAc (3:1–1:1) as eluent to give the desired product.

Data availability

The data supporting the findings of this study are available in the paper and its Supplementary Information, further data are available from the corresponding author on request. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2034549 (14). These data can be obtained for free from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

Received: 11 January 2021; Accepted: 10 August 2021; Published online: 06 September 2021;
44. Hua, Z., Vassar, V. C., Choi, H. & Ojima, I. New biphenoil-based, fine-tunable monodentate phosphoramidite ligands for catalytic asymmetric transformations. Proc. Natl Acad. Sci. USA 101, 5411–5416 (2004).
45. Wang, X. & Buchwald, S. L. Rh-Catalyzed Asymmetric Hydroformylation of Functionalized 1,1-Disubstituted Olefins. J. Am. Chem. Soc. 133, 19080–19083 (2011).
46. Sherrill, W. M. & Rubin, M. Rhodium-Catalyzed Hydroformylation of Cyclopropene-Rh(I). J. Am. Chem. Soc. 130, 4288–4290 (2008).
47. You, C., Li, S., Li, X., Lv, H. & Zhang, X. Enantioselective Rh-Catalyzed Anti-Markovnikov Hydroformylation of 1,1-Disubstituted Allylic Alcohols and Amines: an Efficient Route to Chiral Lactones and Lactams. ACS Catal. 9, 8529–8533 (2019).
48. Dieguez, M., Pamies, O., Claver, C. First successful application of diphosphite ligands in the asymmetric hydroformylation of dihydrofurans. Chem. Commun. 41, 1221–1223 (2005).
49. Gual, A., Godard, C., Castillo, S. & Claver, C. Highly Efficient Rhodium Catalysts for the Asymmetric Hydroformylation of Vinyl and Allyl Ethers using C₂-Symmetrical Diphosphite Ligands. Adv. Synth. Catal. 352, 463–477 (2010).
50. Chikkali, S. H. et al. Highly enantioselective hydroformylation of dihydrofurans catalyzed by hybrid phosphine-phosphonite rhodium complexes. Chem. Commun. 46, 1244–1246 (2010).
51. Chikkali, S. H., Bellini, R., de Bruin, B., van der Vlugt, J. I. & Reek, J. N. H. Highly selective asymmetric Rh-catalyzed hydroformylation of heterocyclic olefins. J. Am. Chem. Soc. 134, 6607–6616 (2012).
52. Fernández-Pérez, H., Benet-Buchholz, J. & Vidal-Ferran, A. Small Rite-Angle P-O Ligands for Asymmetric Hydroformylation and Hydrogenation. Org. Lett. 15, 3634–3637 (2013).
53. Horiiuchi, H., Ohta, T., Shirakawa, E., Nozaki, K. & Takaya, H. Asymmetric Hydroformylation of Heterocyclic Olefins Catalyzed by Chiral Phosphino-Phosphate-Rh(I) Complexes. J. Org. Chem. 72, 4285–4292 (1997).
54. Axtell, A. T. et al. Highly Regio- and Enantioselective Asymmetric Hydroformylation of Olefins Mediated by 2,5-Disubstituted Phospholane Ligands. Angew. Chem. Int. Ed. 44, 5834–5838 (2005).
55. Li, B., Chen, J., Zhang, Z., Gridnev, I. D. & Zhang, W. Nickel-Catalyzed Asymmetric Hydrogenation of N-Sulfonyl Imines. Angew. Chem. Int. Ed. 58, 7329–7334 (2019).
56. Llopis, Q., Guillamot, G., Phansavath, P. & Ratovelomanana-Vidal, V. Enantioselective Synthesis of α-Acetamide-Amino Ketone Derivatives by Rhodium-Catalyzed Asymmetric Hydrogenation. Org. Lett. 19, 6428–6431 (2017).
57. Hoi, Q., Chen, J., Zhang, Z., Liu, Y. & Zhang, W. Rh-Catalyzed One-Pot Sequential Asymmetric Hydrogenation of α-Dehydropino Ketones for the Synthesis of Chiral Cyclic trans-β-Amino Alcohols. Org. Lett. 18, 1290–1293 (2016).
58. Zhang, Z., Tamura, K., Mayama, D., Sugiyama, M. & Imamoto, T. Three-Hindered Quadrant Phosphine Ligands with an Aromatic Ring Backbone for the Rhodium-Catalyzed Asymmetric Hydrogenation of Functionalized Alkenes. J. Org. Chem. 77, 4184–4188 (2012).
59. Ma, M., Hou, G., Wang, J. & Zhang, X. Rhodium-catalyzed asymmetric hydrogenation of β-acetylamino acrylonitriles. Tetrahedron: Asymmetry 22, 506–511 (2011).
60. Yan, Y. & Zhang, X. A Hybrid Phosphorus Ligand for Highly Enantioselective Asymmetric Hydroformylation. J. Am. Chem. Soc. 128, 7198–7202 (2006).
61. Zhang, X. et al. Synthesis and Application of Modcular Phosphine-Phosphoramidite Ligands in Asymmetric Hydroformylation: Structure-Selectivity Relationship. Chem. Eur. J. 16, 871–877 (2010).
62. Wei, B., Chen, C., You, C., Lv, H. & Zhang, X. Efficient synthesis of (S,R)-Bn-Yanphos and Rh(S,R)-Bn-Yanphos catalyzed asymmetric hydroformylation of vinyl heteroarenes. Org. Chem. Front. 4, 288–291 (2017).
63. You, C. et al. Design and Application of Hybrid Phosphorus Ligands for Enantioselective Rh-Catalyzed Anti-Markovnikov Hydroformylation of Unfunctionalized 1,1-Disubstituted Alkenes. J. Am. Chem. Soc. 140, 4977–4981 (2018).
64. Chen, C. et al. Rhodium/Yanphos-Catalyzed Asymmetric Interrupted Intramolecular Hydroximino-methylation of trans-1,2-Disubstituted Alkenes. J. Am. Chem. Soc. 138, 9017–9020 (2016).
65. The result is different with that of our previous work on AHF initiated cascade reaction to form stable hemiacetal (ref. 47), only small amount of hemiacetal was detected on crude 1H NMR in this transformation, which was unstable on silicon gel column and transformed to aldehyde, giving aldehyde 2a in 94% isolated yield.
66. The target product 3w can be prepared under standard reaction conditions, but it was difficult to obtain pure 3w due to the low boiling point, thus only the data of 2w was provided.
67. Krakl, J. et al. Molecular Hybridization of Potent and Selective γ-Hydroxybutyric Acid (GHB) Ligands: Design, Synthesis, Binding Studies, and Molecular Modeling of Novel 3-Hydroxycyclopentan-1-onecarboxylic Acid (HOCPCA) and trans-γ-Hydroxycrotonic Acid (T-HCA) Analogues. J. Med. Chem. 60, 9022–9039 (2017).

Acknowledgements
We are grateful for financial support from the National Natural Science Foundation of China (Grant Nos. 22071188, 21871212), the open foundation of CAS Key Laboratory of Molecular Recognition and Function, the "Double First-Class" project of Shihzhi University.

Author contributions
H. Lv directed the project. S. Li and H. Lv contributed to the concept and design of the experiments. S. Li, Z. Li, M. Li, and L. He performed the experiments and data analysis. S. Li wrote the paper with feedback and guidance from H. Lv and X. Zhang. All authors discussed the experimental results and commented on the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-25569-5.

Correspondence and requests for materials should be addressed to H.L.

Peer review information Nature Communications thanks Joost Reek and the other anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021, corrected publication 2021