An extension to the complex plane of the Riemann-Siegel Z function.

Giovanni Lodone

Abstract

The usual Riemann-Siegel Z(t) is a real-valued function. We construct a complex function depending from t and from distance from critical line. It is linked to Riemann Xi(s) function by the same real scaling factor of the usual Riemann-Siegel Z(t) on critical line. Errors are not greater than the errors of Riemann-Siegel Z(t) on the critical line, while this result covers at least the whole critical strip.

MSC-Class: 11M06, 11M26, 11M99

Keywords: Riemann Hypothesis; Generalized Riemann Hypothesis; Dirichlet L function; Riemann Z functions.

Contents

1 Introduction 2

2 Starting point 4

3 Splitting in simple pieces 7

3.1 First substitution ... 8

3.2 Computation of ℜ₁ ... 9

3.3 Computation of ℜ₂ ... 9

3.4 Computation of ℑ₁ ... 9

3.5 Computation of ℑ₂ ... 10

3.6 Computation of ℜ₃ and ℑ₃ 10

3.7 Second substitution .. 11

3.8 Computation of ℜ₁ ... 12

3.9 Computation of ℜ₂ ... 12

3.10 Computation of ℑ₁ .. 12

3.11 Computation of ℑ₂ .. 13

3.12 Computation of ℜ₃ .. 13

3.13 Computation of ℑ₃ .. 13

1Retired. Email: giolodone3@gmail.com
1 Introduction

In 1859 Bernhard Riemann in an outstanding paper [2] [3, p. 299] [1] suggested that the non-trivial zeros of the analytic continuation of the function:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \quad \Re(s) > 1$$ \hspace{1cm} (1.1)

to the so-called critical strip $0 < \Re(s) < 1$ must all lie on the line $\Re(s) = 1/2$ (the critical line). The complex argument s is expressed throughout as:

$$s = \frac{1}{2} + \epsilon + it$$ \hspace{1cm} (1.2)

so that ϵ is the distance from critical line parallel to the real axis and t is the imaginary coordinate. Until now, this conjecture has remained unproven, and is referred to as the Riemann Hypothesis (RH) [1]. A key finding in this effort has been the introduction of the function $\xi(s)$ [9] [3, p. 16], that is real on the critical line and has the same zeros of $\zeta(s)$ in the critical strip:

$$\xi(s) = \Gamma\left(\frac{s}{2} + 1\right) (s - 1)\pi^{-s/2} \zeta(s).$$ \hspace{1cm} (1.3)
In 1932 C. L. Siegel crucially succeeded in mastering the information contained in Riemann’s private notes about the values of the ζ function on the critical line [3, p. 136] [5, p. 3]. His main result was the approximate formula:

$$Z(t) = 2 \sum_{n=1}^{n=N} \cos \left(\frac{t \ln \left(\frac{n}{2\pi n^2} \right) - \frac{\pi}{8} }{\sqrt{n}} \right) + R_0(t) \sim -\frac{\xi(1/2 + it)}{f(t)} ; \quad N = \left\lceil \sqrt{\frac{t}{2\pi}} \right\rceil$$ (1.4)

where \sim means asymptotically equal for $t \to \infty$ and $f(t)$ is the scale factor used in [3, p. 176], reported in eq. (3.33). Equation (1.4) has been the core of large scale computations of the zeros of $\zeta(s)$ as described in [4] and [5, p. 4].

The purpose of this paper is to develop an extension of the Riemann-Siegel function (1.4) that provides a means of expressing $\xi(1/2 + \epsilon + it)$ at least for $-1 < \epsilon < 1$ using a scale factor defined in eq. (3.31):

$$F(t) = \left(\frac{\pi}{2} \right)^{0.25} t^{2} e^{-\frac{\pi}{4} t}$$

and hyperbolic functions. For ease of reading, we present our final result, given in eq. (4.8):

$$Z(t, \epsilon) = 2 \sum_{n=1}^{N} \cosh \left[\epsilon \ln \left(\frac{t}{2\pi n^2} \right) \right] \cos \left(\frac{t \ln \left(\frac{n}{2\pi n^2} \right) - \frac{\pi}{8} }{\sqrt{n}} \right) +$$

$$+ 2t \sum_{n=1}^{N} \sinh \left[\epsilon \ln \left(\frac{t}{2\pi n^2} \right) \right] \sin \left(\frac{t \ln \left(\frac{n}{2\pi n^2} \right) - \frac{\pi}{8} }{\sqrt{n}} \right) + R(t, \epsilon) + \text{Err}(t, \epsilon) = -\frac{\xi(1/2 + \epsilon + it)}{F(t)e^{\frac{\pi}{8} t}}$$

where $N = \left\lceil \sqrt{\frac{t}{2\pi}} \right\rceil$, $F(t) = \left(\frac{\pi}{2} \right)^{0.25} t^{2} e^{-\frac{\pi}{4} t}$, [3, p. 119] for t big, $|\text{Err}(t, \epsilon)| < e^{-0.1t}$ at least for $|t| > 100$ [3, p. 144], see (B.25), (B.26), and (B.27). $R_1(t)$ is given by eq. (4.4) specialized below for $M = 1$:

$$R_1(t, \epsilon) = (-1)^{N-1} \left(\frac{2\pi}{t} \right)^{1/4} \left[C_0(p) + C_1(p, \epsilon) \left(\frac{2\pi}{t} \right)^{1/2} \right] ; \quad p = \sqrt{\frac{t}{2\pi}} - N$$ (1.6)

where $C_0(p) = \cos(2\pi(p^2 - p - 1/16))/\cos(2\pi p)$. Using $C_1(p, \epsilon)$ the Z function given in eq. (1.5) is almost holomorphic for $t >> 1$ and small $\left| \frac{1}{2} \right|$, as shown in eq. (4.13). From a computational point of view it can be meaningful to use eq. (1.5) with only $C_0(p)$, that is disregarding $C_1(p, \epsilon)$, since the errors of (1.5) with $R_0(t)$ are not higher than the errors of the original Riemann-Siegel (1.4), as shown in Figure 3.

We report in tables 1 and 2 the result of a numerical comparison with Wolfram Mathematica Riemann-SiegelZ function, referred to as $Z_M(t - i\epsilon)$, evaluated in same points outside critical line.

Using (4.8) it is easy, for example, to compute points of a topographical surface defined by $\Re[e^{i\pi/2}Z(t, \epsilon)]$ above the (t, ϵ) plane, or to plot in the (t, ϵ) plane the zero-height points (i.e $(t, \epsilon) : \Re[e^{i\pi/2}Z(t, \epsilon)] = 0$). The same can be done with $\Im[e^{i\pi/2}Z(t, \epsilon)]$; see Figures 1 and 2. In fact the real or imaginary zero-condition computed for $e^{i\pi/2}Z(t, \epsilon)$, applies to $\xi(1/2 + \epsilon + it)$ as well. The original reason of the present work was precisely to plot such curves for the ξ function, as is done for the ζ function in [2, p. 342].

The paper is an exercise on [3, p. 136-155]. The reading will be easier with a copy of chapter 7 of [3] within reach.
ε | ℜ[\(Z(t, \epsilon)\)]; see 1.5 | ℑ[\(Z(t, \epsilon)\)]; see 1.5 | ℜ[\(Z_M(t - i \epsilon)\)] | ℑ[\(Z_M(t - i \epsilon)\)] | ||\(Z - Z_M||\) |
---|---|---|---|---|---|
0.1 | 3.241730475804 | -0.5787044368126 | 3.241771462370 | -0.578683059836 | 4.62E-005 |
0.2 | 3.744381644160 | -1.199282431530 | 3.744419881769 | -1.199241919295 | 5.57E-005 |
0.3 | 4.642337399179 | -1.907135487575 | 4.642369954238 | -1.907080635877 | 6.37E-005 |
0.4 | 6.033267420500 | -2.755039800815 | 6.033289474138 | -2.754980028392 | 6.36E-005 |
0.5 | 8.069550741786 | -3.807665184897 | 8.069554328448 | -3.807617504896 | 4.78E-005 |

Table 1: Comparison at \(t = 7000\) between \(Z(t, \epsilon)\) (with only \(C_0(p)\)) in 1.5 and Wolfram Mathematica RiemannSiegelZ function \(Z_M(t - i \epsilon)\). Both are evaluated with a precision of 16 digits.

ε | ℜ[\(Z(t, \epsilon)\)]; see 1.5 | ℑ[\(Z(t, \epsilon)\)]; see 1.5 | ℜ[\(Z_M(t - i \epsilon)\)] | ℑ[\(Z_M(t - i \epsilon)\)] | ||\(Z - Z_M||\) |
---|---|---|---|---|---|
0.1 | -0.9050244263086 | 0.1402585183494 | -0.9050238453328 | 0.1402587799723 | 6.37E-007 |
0.2 | -1.308045529855 | 0.2878855199489 | -1.3080449625265 | 0.2878860590214 | 7.83E-007 |
0.3 | -2.143656564420 | 0.441671103478 | -2.143656009082 | 0.441671983111 | 1.04E-006 |
0.4 | -3.715336354275 | 0.578566730780 | -3.715335798319 | 0.578568148509 | 1.52E-006 |
0.5 | -6.582066395361 | 0.629253718227 | -6.582065829497 | 0.629256211048 | 2.56E-006 |

Table 2: Comparison at \(t = 250000\) between \(Z(t, \epsilon)\) (with only \(C_0(p)\)) in 1.5 and Wolfram Mathematica RiemannSiegelZ function \(Z_M(t - i \epsilon)\). Both are evaluated with a precision of 16 digits.

2 Starting point

In [9] [3, p. 137] a contour integral is given for \(\zeta(s)\), \(s \neq 1\), \(s \in \mathbb{C}\):

\[
\zeta(s) = \frac{\Gamma(1-s)}{2\pi i} \int_C \frac{(-x)^s}{(e^x - 1)x} dx
\]

(2.1)

where \(C\) is the contour described in the positive sense starting at \(+\infty\), encircling the origin and returning to \(+\infty\) without crossing the positive real axis. Afterwards this path \(C\) is deformed continuously in \(\mathbb{C}_N\), encircling \(2N+1\) poles of the integral in eq. (2.1). Evaluating the integral and putting the result in the definition of \(\xi(s)\) in eq. (1.3), one finds (see [3, p. 138], [7, p. 20]):

\[
-\xi(s) = (1-s)\Gamma\left(\frac{s}{2} + 1\right) \pi^{\frac{s}{2}} \left(\sum_{n=1}^{n=N} n^{-s}\right) + (s)\Gamma\left(\frac{1-s}{2} + 1\right) \pi^{-\frac{1-s}{2}} \left(\sum_{n=1}^{n=N} n^{-(1-s)}\right) + \frac{(-s)^{s-1}}{(2\pi)^{s-1} 2 \sin(\pi s/2) 2\pi i} \int_{C_N} \frac{(-x)^{s-1} e^{-Nx} dx}{e^x - 1}
\]

(2.2)

where the sign has been changed for later convenience and:

\[
N = \left\lfloor \frac{t}{2\pi} \right\rfloor.
\]

(2.3)
Figure 1: The points of $\Im[Z(t, \epsilon)] = 0$ and $\Re[Z(t, \epsilon)] = 0$ are computed on equispaced lines at constant $t = \Delta t \times m : m = 1, 2, 3,...$. At the intersection between the curve $\Im[\xi(t, \epsilon)] \sim \Im[Z(t, \epsilon)] = 0$ with the critical line, at $\epsilon = 0$, the conformality of the $\xi(t, \epsilon)$, seen as a complex transformation, is lost. These points are extremal points for the amplitude of $\xi(1/2+it)$. At low t values this is not true for $Z(t, \epsilon)$ because of the distorting effect of the scale factor $F(t)$. Note the first seven zeros at $t = 14.13...; 21.02...; 25.01...; 30.42...; 32.93...; 37.58...; 40.91...$

We now denote by L_N is the usual broken line whose path segments L_0, L_1, L_2 and L_3 are defined in [3, p. 138] [7, p. 20] in order to apply the steepest descent method. In Appendix B it is shown that the dominant contribution to the integral in (2.2) comes from L_1 which extends from $a + \frac{1}{2} e^{i \frac{\pi}{4}}|a|$ to $a - \frac{1}{2} e^{i \frac{\pi}{4}}|a|$, see (B.1) and (B.17), where:

$$a = i\sqrt{2\pi t}$$

(2.4)

is the saddle point for the evaluation of main integral in (2.2), see Appendix A for the details. We also use the notation of [3, p. 139], where:

$$e^{\phi(x)} = (-x)^{s-1} e^{-N x}$$

The saddle point occurs when $\phi'(x) = 0$ with $\phi(x) = \Re[(s - 1) \ln(-x) - N x]$ to yield:

$$\alpha = -\frac{1}{2} + it \approx \frac{-\frac{1}{2} + it}{\sqrt{\frac{t}{2\pi}}} \approx 2\pi i N \approx i\sqrt{2\pi t} = a \quad \text{for} \quad t >> 1$$

(2.5)

so that a in (2.4), is an approximation for the value α used in [3, p. 140]. Notice that in (2.5), N comes from the numerator in $\frac{-\frac{1}{2} + it}{N}$, while in $2\pi i N$ it comes from intergrand denominator (i.e. $e^x - 1$).
Figure 2: See [3, p. 176] and [5, p. 6]. First Lehmer phenomenon is at $t \approx 7005$. Note the much simpler plot of $\Re[\xi] = 0$ and $\Im[\xi] = 0$ curves with respect to the plot of $\Re[\zeta] = 0$ and $\Im[\zeta] = 0$ curves in (t, ϵ) plane shown in [2, p. 342].

Nothing changes in the saddle point integral evaluation procedure with the replacement:

$$-\frac{1}{2} + it \rightarrow -\frac{1}{2} + \epsilon + it \text{ with } 0 < \epsilon < 1$$

as shown in Appendix A. Notice that for $\epsilon = \frac{1}{2}$ the approximation (2.5) becomes exact and we have $\alpha = a$.

We now make use of the Stirling series [8, p. 30] that allows us to write:

$$\ln(\Gamma(z + 1)) = \ln \left(e^{-z}z^{z+\frac{1}{2}}(2\pi)^{\frac{1}{2}}\right) + \sum_{k=1}^{K-1} \frac{B_{2k}}{2k(2k-1)z^{2k-1}} + R_{2K}(z) \quad (2.6)$$

Although the expression (2.6) is a non-convergent asymptotic expansion, it can be used to estimate the size of the error $|R_{2K}(z)|$ [3, p. 112]. The B_i are the Bernoulli numbers that vanish for odd i while (see for example [6, p. 114]):

$$B_2 = \frac{1}{6} \; ; \; B_4 = -\frac{1}{30} \; ; \; B_6 = \frac{1}{42} \; ; \; B_8 = -\frac{1}{30} \; ; \; B_{10} = \frac{5}{66} \; ; \; B_{12} = -\frac{691}{2730} \; ...$$

The modulus of the error term $|R_{2K}(z)|$ is bounded by:

$$|R_{2K}(z)| < \left(\frac{B_{2K}}{2K(2k-1)z^{2K-1}}\right)^{2K} \cdot \frac{1}{\cos\left(\frac{\text{arg}(z)}{2}\right)} \quad (2.7)$$

where $\text{arg}(z)$ is taken in the interval: $-\pi < \text{arg}(z) < \pi$ (see [3, p. 112] and theorem 2.3 in [8, p. 40] due to Stieltjes).
3 Splitting in simple pieces

To evaluate the expression in (2.2) it is convenient to rewrite s in terms of the variable z defined by:
\[
z = \frac{s}{2} = \frac{1 + 2\epsilon}{4} + \frac{it}{2}
\]
(3.1)
in the first sum, so that we have:
\[
\pi^{\frac{s}{2}}(1 - s) = \pi^{-s}(1 - 2z),
\]
while in the second sum and in the third term we use:
\[
z = \frac{1 - s}{2} = \frac{1 - 2\epsilon}{4} - \frac{it}{2}
\]
(3.2)
so that:
\[
\pi^{\frac{(1 - s)}{2}}(s) = \pi^{-s}(1 - 2z)
\]

In order to manage the computation and also to exploit intermediate results, it has been devised the notation A_p^s where:

"A " can be: $A = \Re$ or $A = \Im$,

"s= +" means substitution (3.1) while "s= -" means substitution (3.2).

"p" is for part ($p=1,2$ or 3)

Part 1 (i.e \Re_1^\pm or \Im_1^\pm) is the asymptotic part (as $t \to \infty$) of $\ln (e^{-z}z^{\pm \frac{1}{2}}(2\pi)^{\frac{1}{2}})$

Part 2 (i.e \Re_2^\pm or \Im_2^\pm) refers always to $\ln (e^{-z}z^{\pm \frac{1}{2}}(2\pi)^{\frac{1}{2}})$, but as $t \to \infty$ goes to zero

Part 3 (i.e \Re_3^\pm or \Im_3^\pm) refers to:
\[
\left(\sum_{k=1}^{K-1} \frac{B_{2k}}{2k(2k - 1)z^{2k-1}} \right)
\]
(3.3)

For example for $K = 3$, setting $\arg(z) \approx \frac{\pi}{2}$ and $B_{2K} = 1/42$ as first erased term in (2.6), the error $|R_{2K}(z)|$ is bounded by (2.7) and using (3.1) and (3.2) we have, for the error term:
\[
|R_{2K}(z)^\pm| = |R_{error}^\pm + i \ Im_{error}^\pm| = \left| R_6 \left(\frac{1/2 \pm \epsilon \pm it}{2} \right) \right| \leq \left| \frac{B_6}{6 \times 5 \times \left(\frac{1/2 \pm \epsilon \pm it}{2} \right)^5 \times \cos \left(\arg \left(\frac{1/2 \pm \epsilon \pm it}{2} \right) \right)^6} \right| \leq \left| \frac{1}{157 \left(\frac{1/2 \pm \epsilon \pm it}{2} \right)^5} \right| < \frac{1}{4.9t^5}
\]
(3.4)

It is possible to improve the precision by increasing K but, as we will see in the following, if we content ourselves with an error $< t^{-1}$ then we can completely ignore the Bernoulli sum in (2.6).
3.1 First substitution

If we take the first case \([3.1]\), to be used in first sum of \([2.2]\), we have for \([2.6]\):

\[
\ln \left(e^{-z} z^{\frac{1}{2}} (2\pi)^{\frac{1}{2}} \pi^{-z}(1 - 2z) \right)_{z = \frac{1+i2\epsilon}{2}} = \Re_1^+ + i\Im_1^+ + \Re_2^+ + i\Im_2^+
\]

\[
= \left(3 + 2\epsilon \frac{i}{2} \right) \left[\ln \left(\frac{1 + 2\epsilon}{4} \right)^2 + \frac{t^2}{4} + i \arctan \left(\frac{2t}{1 + 2\epsilon} \right) \right] -
\]

\[
- \left(1 + 2\epsilon \frac{i}{2} \right) - \frac{\ln(2\pi)}{2} - \frac{1}{2} + \epsilon + it \ln(\pi) + \ln \left(\epsilon - \frac{1}{2} \right)^2 + t^2 + i \arctan \left(\frac{-t}{1 + 2\epsilon} \right)
\]

(3.5)

We have:

\[
\arctan \left(\frac{-t}{1 + 1/2 - \epsilon} \right) = -\frac{\pi}{2} + \arctan \left(\frac{1 - 2\epsilon}{2t} \right) \quad \text{and} \quad \arctan \left(\frac{2t}{1 + 2\epsilon} \right) = \frac{\pi}{2} - \arctan \left(\frac{1 + 2\epsilon}{2t} \right)
\]

so separating real part from imaginary part we have:

\[
\Re \left(\ln \left(e^{-z} z^{\frac{1}{2}} (2\pi)^{\frac{1}{2}} \pi^{-z}(1 - 2z) \right)_{z = \frac{1+i2\epsilon}{2}} \right) = \Re_1^+ + \Re_2^+ =
\]

\[
= \left(3 + 2\epsilon \frac{i}{2} \right) \left[\ln \left(\frac{t}{2} \right) + \frac{1}{2} \ln \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right) \right] -
\]

\[
- \frac{t}{2} \left[\frac{\pi}{2} - \arctan \left(\frac{1 + 2\epsilon}{2t} \right) \right] - \left(1 + 2\epsilon \frac{i}{2} \right) - \frac{\ln(2\pi)}{2} - \frac{\ln(\pi)(1 + 2\epsilon)}{4} + \ln(t) + \frac{1}{2} \ln \left[1 + \left(\frac{1 - 2\epsilon}{2t} \right)^2 \right]
\]

(3.6)

For \(t >> \epsilon \) we have

\[
- \frac{t}{2} \left[- \arctan \left(\frac{1 + 2\epsilon}{2t} \right) \right] = \frac{1 + 2\epsilon}{4} \frac{2t}{1 + 2\epsilon} \arctan \left(\frac{1 + 2\epsilon}{2t} \right) \to \frac{1}{4} + \frac{\epsilon}{2}; \quad t \to \infty
\]

(3.7)

And we can write the asymptotic part not leading to zero as:

\[
- \frac{t}{2} \left[- \arctan \left(\frac{1 + 2\epsilon}{2t} \right) \right] = \frac{1 + 2\epsilon}{4} \left[\frac{2t}{1 + 2\epsilon} \arctan \left(\frac{1 + 2\epsilon}{2t} \right) + 1 - 1 \right] = \frac{1 + 2\epsilon}{4}
\]

(3.8)

And we put it in first piece \(\Re_1^+ \). While:

\[
\frac{1 + 2\epsilon}{4} \left[\frac{2t}{1 + 2\epsilon} \arctan \left(\frac{1 + 2\epsilon}{2t} \right) - 1 \right]
\]

is put in second piece (i.e. \(\Re_2^+ \)), because as \(t \to \infty \) it goes to zero.

Using the notation \(A_p^s \), we try afterward to put together all pieces.

\(\Re_1^+ + \Re_2^+ \) and \(\Im_1^+ + \Im_2^+ \) are developed in powers of \(t^{-1}, t^{-2}, t^{-3} \ldots \) in subsection \(3.14 \); see \(3.25 \).
3.2 Computation of \Re_1^+

So \Re_1^+ first piece of Real part with first substitution (3.1) is:

$$\Re_1^+ = \frac{3}{4} \ln \left(\frac{t}{2} \right) - \frac{1}{4} + \frac{\ln(2\pi)}{2} - \frac{\ln(\pi)}{4} + \frac{1}{4} + \frac{\epsilon}{2} + \frac{\epsilon}{2} \left(\ln \left(\frac{t}{2} \right) - \ln(\pi) \right) -$$

$$- \frac{\epsilon}{2} - \frac{\pi}{4} t + \ln(t) = \left(\frac{3}{4} \ln \left(\frac{t}{2} \right) + \frac{\ln(2\pi)}{2} - \frac{\ln(\pi)}{4} - \frac{\pi}{4} t + \ln(t) \right) + \ln \left(\sqrt{\frac{t}{2\pi}} \right)^\epsilon$$

(3.9)

3.3 Computation of \Re_2^+

While \Re_2^+, second piece of Real part for first substitution (3.1), is:

$$\Re_2^+ = \left(\frac{3 + 2\epsilon}{4} \right) \left[\frac{1}{2} \ln \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right) \right] +$$

$$+ \frac{1 + 2\epsilon}{4} \left[\frac{2t}{1 + 2\epsilon} \arctan \left(\frac{1 + 2\epsilon}{2t} \right) - 1 \right] + \frac{1}{2} \ln \left[1 + \left(\frac{1 - 2\epsilon}{2t} \right)^2 \right] =$$

(3.10)

$$= \left(\frac{3 + 2\epsilon}{4} \right) \left[\frac{1}{2} \left(\frac{1 + 2\epsilon}{2t} \right)^2 - \frac{1}{4} \left(\frac{1 + 2\epsilon}{2t} \right)^4 + \ldots \right] + \frac{1 + 2\epsilon}{4} \left[1 - \frac{1}{3} \left(\frac{1 + 2\epsilon}{2t} \right)^2 - 1 + \ldots \right] +$$

$$+ \frac{1}{2} \left[\left(\frac{1 - 2\epsilon}{2t} \right)^2 - \frac{1}{2} \left(\frac{1 - 2\epsilon}{2t} \right)^4 + \ldots \right] =$$

Note that the most significant powers are t^{-2} so that, up to the terms of order t^{-2}

$$\Re_2^+ = \left(\frac{3 + 2\epsilon}{4} \right) \left[\frac{1}{2} \left(\frac{1 + 2\epsilon}{2t} \right)^2 - \ldots \right] + \frac{1 + 2\epsilon}{4} \left[-\frac{1}{3} \left(\frac{1 + 2\epsilon}{2t} \right)^2 + \ldots \right] + \frac{1}{2} \left[\left(\frac{1 - 2\epsilon}{2t} \right)^2 + \ldots \right]$$

It is apparent that all three terms of \Re_2^+ go to zero as $t \to \infty$.

3.4 Computation of \Im_1^+

For the imaginary part we have:

$$\Im \left(e^{-z} e^{z^+ 2\pi i} (2\pi i)^{1/2} e^{-z} (1 - 2z) \right) \bigg|_{z = \frac{1 + 2\epsilon}{2} + \frac{i}{2}} \right) = \Im_1^+ + \Im_2^+ =$$

$$= \left(\frac{t}{2} \right) \left[\ln \left(\frac{t}{2} \right) + \frac{1}{2} \ln \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right) \right] +$$

9
\[+ \left(\frac{3 + 2\epsilon}{4} \right) \left[\frac{\pi}{2} - \arctan \left(\frac{1 + 2\epsilon}{2t} \right) \right] - \frac{t}{2} - \frac{t}{2} \ln(\pi) - \frac{\pi}{8} + \arctan \left(\frac{1 - 2\epsilon}{2t} \right) \] (3.11)

For \(t >> \epsilon \)

\[\Im_1^+ = \frac{t}{2} \ln \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{\pi \epsilon}{4} ; \quad t >> \epsilon \] (3.12)

3.5 Computation of \(\Im_2^+ \)

\[\Im_2^+ = \frac{t}{4} \ln \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right) - \left(\frac{3 + 2\epsilon}{4} \right) \left[\arctan \left(\frac{1 + 2\epsilon}{2t} \right) \right] + \arctan \left(\frac{1 - 2\epsilon}{2t} \right) = \] (3.13)

\[= \frac{t}{4} \left(\left(\frac{1 + 2\epsilon}{2t} + ... \right)^2 \right) - \left(\frac{3 + 2\epsilon}{4} \right) \left[\left(\frac{1 + 2\epsilon}{2t} \right) + ... \right] + \left(\frac{1 - 2\epsilon}{2t} \right) \]

up to terms of order \(t^{-1} \). Notice that \(\Im_2^+ \) goes to zero for \(t \rightarrow \infty \).

3.6 Computation of \(\Re_3^+ \) and \(\Im_3^+ \)

Let us take now the sum in (2.6), always with substitution (3.1), for \(K=3 \).

Here too it is useful to consider real part:

\[\Re_3^+ (\text{only till } t^{-2} \text{ terms}) = \text{Re} \left(\sum_{k=1}^{K-1} \frac{B_{2k}}{2k(2k - 1)z^{2k-1}} \right) \bigg|_{z = \frac{1 + 2\epsilon}{4t + \frac{\eta}{2}}} ; \quad K=3 \]

\[= \frac{1 + 2\epsilon}{48 \left[1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right] \left(\frac{t}{2} \right)^2} - \frac{(1 + 2\epsilon)^3}{360t^6 \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right)^3} + \frac{(1 + 2\epsilon)^2}{30t^4 \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right)^2} = \] (3.14)

\[= \frac{1 + 2\epsilon}{12t^2} - ... \]

and imaginary part:

\[\Im_3^+ (\text{only till } t^{-1} \text{ terms}) = \Im \left(\sum_{k=1}^{K-1} \frac{B_{2k}}{2k(2k - 1)z^{2k-1}} \right) \bigg|_{z = \frac{1 + 2\epsilon}{4t + \frac{\eta}{2}}} ; \quad K=3 \]

\[= -\frac{1}{6t \left[1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right]} - \frac{1}{45t^3 \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right)^3} + \frac{(1 + 2\epsilon)^2}{60t^5 \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right)^2} = \] (3.15)

\[= -\frac{1}{6t} + ... \]
3.7 Second substitution

Second substitution (3.2) applies to second sum ant remainder (i.e. 3rd term) in (2.2) . So we have, likewise:

\[
\ln \left(e^{-z}z^{+\frac{1}{2}}(2\pi)^{\frac{1}{2}}\pi^{-z}(1 - 2z) \right)_{z = \frac{-1}{2} - \frac{u}{2}} = \Re R_1^- + \Re R_2^- + i\Im S_1^- + i\Im S_2^- =
\]

\[
= \left(\frac{3}{4} - \frac{e}{2} - \frac{it}{2} \right) \ln \sqrt{\left(\frac{1}{4} - \frac{e}{2} \right)^2 + \frac{t^2}{4}} + i \tan \left(\frac{-t}{1/2 - e} \right) +
\]

\[
- \left(\frac{1 - 2\epsilon}{4} - \frac{it}{2} \right) + \ln \left(\frac{2\pi}{2} \right) -
\]

\[
- \frac{\pi}{2} - \ln \left(\frac{\pi}{2} \right) + \ln \left[\left(\frac{1}{2} + \frac{1 + 2\epsilon}{2t} \right)^2 \right] + i \tan \left(\frac{+t}{1/2 + \epsilon} \right)
\]

Referring to (3.6), we separate again the real from the imaginary part. We find:

\[
\Re \left(\ln \left(e^{-z}z^{+\frac{1}{2}}(2\pi)^{\frac{1}{2}}\pi^{-z}(1 - 2z) \right)_{z = \frac{-1}{2} - \frac{u}{2}} \right) = \Re R_1^- + \Re R_2^- =
\]

\[
= \left(\frac{3}{4} - \frac{e}{2} \right) \ln \left(\frac{t}{2} \right) + \ln \left(\frac{1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2}{2} \right) +
\]

\[
+ \frac{t}{2} \left[\frac{\pi}{2} + \tan \left(\frac{1 - 2\epsilon}{2t} \right) \right] - \left(\frac{1 - 2\epsilon}{2} - \frac{t}{2} \right) + \ln \left(\frac{2\pi}{2} \right) - \left(\frac{1}{2} - \epsilon \right) \ln \left(\frac{\pi}{2} \right) +
\]

\[
+ \ln \left(t \right) + \frac{1}{2} \ln \left(1 + \left[\frac{1 + 2\epsilon}{2t} \right]^2 \right)
\]

For \(t \gg \epsilon \) we have

\[
\frac{t}{2} \left[\tan \left(\frac{1 - 2\epsilon}{2t} \right) \right] = \frac{1 - 2\epsilon}{4} \tan \left(\frac{1 - 2t}{2t} \right) \rightarrow \frac{1}{4} - \frac{\epsilon}{2}; \quad t \rightarrow \infty \quad (3.16)
\]

And we can write the asymptotic part not leading to zero (contained in \(\Re R_1^- \)) as:

\[
\frac{t}{2} \left[\tan \left(\frac{1 - 2\epsilon}{2t} \right) \right] = \frac{1 - 2\epsilon}{4} \left[\tan \left(\frac{2t}{1 - 2\epsilon} \right) + 1 - 1 \right] = \frac{1 - 2\epsilon}{4} \quad (3.17)
\]

and

\[
\frac{1 - 2\epsilon}{4} \left[\tan \left(\frac{2t}{1 - 2\epsilon} \right) - 1 \right]
\]

11
which is contained in \(\Re^{-2} \), because as \(t \to \infty \) it goes to zero. Thus for \(t >> \epsilon \) and \(t >> 1 \):

\[
\Re \left(\ln \left(e^{-z} z^{1/2} (2\pi)^{1/2} \pi^{-z} (1 - 2z) \right) \right)_{z = \frac{\epsilon}{4} - \frac{1}{2} t} = \Re_1^- + \Re_2^-
\]

3.8 Computation of \(\Re_1^- \)

We can write:

\[
\Re_1^- = \frac{3}{4} \ln \left(\frac{t}{2} \right) - \frac{1}{4} + \frac{1}{4} + \frac{\ln(2\pi)}{2} - \frac{\ln(\pi)}{4} + \frac{\epsilon}{2} \left(\ln(\pi) - \ln \left(\frac{t}{2} \right) \right) + \frac{\epsilon}{2} - \frac{\pi t}{4} + \ln(t) + \frac{1}{4} - \frac{\epsilon}{2} = \\
= \frac{3}{4} \ln \left(\frac{t}{2} \right) + \frac{\ln(2\pi)}{2} - \frac{\ln(\pi)}{4} - \frac{\pi t}{4} + \ln(t) + \ln \left(\sqrt{\frac{2\pi}{t}} \right) ^\epsilon
\]

3.9 Computation of \(\Re_2^- \)

While \(\Re_2^- \), the second piece of the Real part using eq. (3.2), is:

\[
\Re_2^- (only \ till \ t^{-2} \ terms) = \left(\frac{3 - 2\epsilon}{4} \right) \left[\frac{1}{2} \ln \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right) \right] + \\
+ \frac{1 - 2\epsilon}{4} \left[\frac{2t}{1 - 2\epsilon} \arctan \left(\frac{1 - 2\epsilon}{2t} \right) - 1 \right] + \frac{1}{2} \ln \left[1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right] = \\
\left(\frac{3 - 2\epsilon}{4} \right) \left[\frac{1}{2} \left(\left(\frac{1 + 2\epsilon}{2t} \right)^2 \right) \right] + \frac{1 - 2\epsilon}{4} \left[- \frac{1}{3} \left(\frac{1 - 2\epsilon}{2t} \right)^2 \right] + \frac{1}{2} \left(\left(\frac{1 + 2\epsilon}{2t} \right)^2 \right) + \ldots
\]

Clearly all three terms of \(\Re_2^- \) go to zero as \(t \to \infty \).

3.10 Computation of \(\Im_1^- \)

For the imaginary part we have:

\[
\Im \left(\ln \left(e^{-z} z^{1/2} (2\pi)^{1/2} \pi^{-z} (1 - 2z) \right) \right)_{z = \frac{\epsilon}{4} - \frac{1}{2} t} = \Im_1^- + \Im_2^- = \\
= - \left(\frac{t}{2} \right) \left[\ln \left(\frac{t}{2} \right) + \frac{1}{2} \ln \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right) \right] + \\
+ \frac{3 - 2\epsilon}{4} \left[- \frac{\pi}{2} + \arctan \left(\frac{1 - 2\epsilon}{2t} \right) \right] + \frac{t}{2} + \frac{t}{2} \ln(\pi) + \frac{\pi}{2} - \arctan \left(\frac{1 + 2\epsilon}{2t} \right)
\]

(3.20)
Likewise for \(t >> \epsilon \) separating real and imaginary parts in a single expression we can write:

\[
\Re_1^- + i\Im_1^- = \frac{3}{4} \ln \left(\frac{t}{2} \right) + \frac{\ln(2\pi)}{2} - \frac{\ln(\pi)}{4} \\
+ \ln \left(\sqrt{\frac{2\pi}{t}} \right)^\epsilon - \frac{\pi}{4} t + \ln(t) + i \left(-\frac{t}{2} \ln \frac{t}{2\pi} + \frac{t}{2} + \frac{\pi}{8} + \frac{\pi}{4} \epsilon \right)
\]
(3.21)

3.11 Computation of \(\Im_2^- \)

\(\Im_2^- \text{ (only till } t^{-1} \text{ terms)} = -\frac{t}{4} \ln \left(1 + \left(\frac{1 + 2\epsilon}{2t} \right)^2 \right) + \frac{3 - 2\epsilon}{4} \left[\arctan \left(\frac{1 - 2\epsilon}{2t} \right) \right] - \arctan \left(\frac{1 + 2\epsilon}{2t} \right)
\)
(3.22)

\[= -\frac{t}{4} \left(\frac{1 + 2\epsilon}{2t} \right)^2 + \frac{3 - 2\epsilon}{4} \left(\frac{1 - 2\epsilon}{2t} \right) - \frac{1 + 2\epsilon}{2t} + ... \]

3.12 Computation of \(\Re_3^- \)

Let us consider the sum in (2.6), with substitution (3.2), for \(K=3 \).

Here too it is useful to consider the real part:

\[
\Re_3^- \text{ (only till } t^{-1} \text{ terms)} = \Re \left(\sum_{k=1}^{K-1} \frac{B_{2k}}{2k(2k-1)z^{2k-1}} \right)_{z=\frac{1-2\epsilon}{4} - \frac{\epsilon}{2}} ; \quad K=3
\]

\[
= \frac{1 - 2\epsilon}{48 \left[1 + \left(\frac{1 - 2\epsilon}{2t} \right)^2 \right] \left(\frac{t}{4} \right)^2} - \frac{(1 - 2\epsilon)^3}{360t^6 \left(1 + \left(\frac{1 - 2\epsilon}{2t} \right)^2 \right)^3} + \frac{(1 - 2\epsilon)}{304 \left(1 + \left(\frac{1 - 2\epsilon}{2t} \right)^2 \right)^2} = (3.23)
\]

\[= \frac{1 - 2\epsilon}{12t^2} - ... \]

3.13 Computation of \(\Im_3^- \)

For the imaginary part:

\[
\Im_3^- \text{ (only till } t^{-1} \text{ terms)} = \Im \left(\sum_{k=1}^{K-1} \frac{B_{2k}}{2k(2k-1)z^{2k-1}} \right)_{z=\frac{1-2\epsilon}{4} - \frac{\epsilon}{2}} ; \quad K=3
\]

\[
= + \frac{1}{6t \left(1 + \left(\frac{1 - 2\epsilon}{2t} \right)^2 \right)} + \frac{1}{45t^3 \left(1 + \left(\frac{1 - 2\epsilon}{2t} \right)^2 \right)^3} - \frac{(1 - 2\epsilon)^2}{60t^5 \left(1 + \left(\frac{1 - 2\epsilon}{2t} \right)^2 \right)^3} = (3.24)
\]

\[= - \frac{1}{6t} + ... \]
3.14 Error merging

Let us merge the more significant errors (i.e. second and third part).

For imaginary part we take only till t^{-1} term (for $\epsilon = 0$ we get $\pm \frac{1}{48}$ as in [p. 120 (1)]

$$\Im \pm 2 + \Im \pm 3 = \frac{t}{2} - 1 + \frac{(1 + 2\epsilon)^2}{2} + \frac{3 + 2\epsilon}{8} \pm \frac{1 + 2\epsilon}{2} \pm \frac{1}{2} (1 + 2\epsilon)^2 + \frac{1}{2} \frac{1 + 2\epsilon}{12} \pm \frac{1}{2} \frac{1 + 2\epsilon}{12} \pm \frac{1}{2} (1 + 2\epsilon)^2 + \frac{1}{2} \frac{1 + 2\epsilon}{12} \pm \frac{1}{2} \frac{1 + 2\epsilon}{12} + ... = (3.25)$$

For real part we take only till t^{-2} term:

$$\Re \pm 2 + \Re \pm 3 = \frac{t}{2} \left[\frac{3 + 2\epsilon}{4} - \frac{1 + 2\epsilon}{12} \right] + \frac{1 + 2\epsilon}{2} \left[\frac{1 + 2\epsilon}{2} \right] + \frac{1 + 2\epsilon}{12} \pm \frac{1}{2} \frac{1 + 2\epsilon}{12} \pm \frac{1}{2} \frac{1 + 2\epsilon}{12} + ... = (3.26)$$

The error (3.4) contribution, if we limit to t^{-1} for \Im and t^{-2} for \Re, does not appear.

So we have:

$$\Im \pm 2 + \Im \pm 3 = \frac{1 - 84\epsilon + 10\epsilon^2}{48t} + \left[t^{-3} + t^{-5} + ... \right] \quad \Im \pm 2 + \Im \pm 3 = - \frac{1 + 108\epsilon - 12\epsilon^2}{48t} + \left[t^{-3} + t^{-5} + ... \right]$$

and

$$\Re \pm 2 + \Re \pm 3 = \frac{27 + 94\epsilon + 84\epsilon^2 + 8\epsilon^3}{96t^2} + \left[t^{-4} + ... \right] \quad \Re \pm 2 + \Re \pm 3 = \frac{27 - 22\epsilon + 36\epsilon^2 - 8\epsilon^3}{96t^2} + \left[t^{-4} + ... \right]$$

In \Im_3 we could include also the error whose we know only the bound (2.7).

3.15 Putting pieces together

Let us try to summarize.

The coefficient of first sum of (2.2) is:

$$\ln(\Gamma(z + 1)) = \ln \left(e^{-\frac{1}{2} \left(2\pi \right)^{\frac{1}{2}}} \right) + \sum_{k=1}^{K-1} \frac{B_{2k}}{2k(2k - 1)z^{2k-1}} = \Re_1 + \Re_2 + \Re_3 + i(\Im_1 + \Im_2 + \Im_3) \quad (3.29)$$

while for the second sum and the remainder of (2.2):

$$\ln(\Gamma(z + 1)) = \ln \left(e^{-\frac{1}{2} \left(2\pi \right)^{\frac{1}{2}}} \right) + \sum_{k=1}^{K-1} \frac{B_{2k}}{2k(2k - 1)z^{2k-1}} = \Re_1 + \Re_2 + \Re_3 + i(\Im_1 + \Im_2 + \Im_3) \quad (3.30)$$
Let us neglect now \((\Re_j^+) \) and \((\Re_j^-) \) with \(j > 1 \), namely second and third piece.

It is useful to isolate real terms that depend only on \(t \).

We define:

\[
\ln[F(t)] := \frac{3}{4} \ln\left(\frac{t}{2}\right) + \frac{\ln(2\pi)}{2} - \frac{\ln(\pi)}{4} - \frac{\pi}{4} t + \ln(t)
\]

(3.31)

\(F(t) \) is the scale factor :

\[
F(t)e^{i\frac{\pi}{4} \epsilon} = e^{\frac{\ln(2\pi)}{2} - \frac{\ln(\pi)}{4} - \frac{\pi}{4} t} e^{i\frac{\pi}{4} (\epsilon + it)} = \left(\frac{\pi}{2}\right)^{0.25} t^{\frac{\pi}{4}} e^{i\frac{\pi}{4} (\epsilon + it)}
\]

(3.32)

In [3, p. 176], for \(\epsilon = 0 \) and in [5, p. 5]

\[
f(t) = \frac{1}{2} \pi^{-1/4} (t^2 + 1/4) |\Gamma(1/4 + it/2)| = e^{Re[\ln\Gamma(s/2)]} -1/4 t^2 - 1/4
\]

(3.33)

While

\[
F(t) = \Re\left[(s-1)\Gamma\left(\frac{s}{2} + 1\right) \pi^{-\frac{s}{2}}\right]_{\epsilon=0} = f(t)
\]

So \(F(t) \) used here and \(f(t) \) in in [3, p. 176] and in [5, p. 5] are the same.

Note that same scale factor \(F(t) \), applies to (3.9) (i.e. \(\Re_1^+ \)), as well as to (3.21) (i.e. \(\Re_1^- \)).

Looking at the imaginary terms and we define:

For (3.12)

\[
i\Im_1^+ = i\left(\frac{t}{2} \ln\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{\pi}{4} \epsilon\right) = i\left(\theta_1(t) + \frac{\pi}{4} \epsilon\right)
\]

For (3.21)

\[
i\Im_1^- = i\left(-\frac{t}{2} \ln\frac{t}{2\pi} + \frac{t}{2} + \frac{\pi}{8} - \frac{\pi}{4} \epsilon\right) = i\left(-\theta_1(t) + \frac{\pi}{4} \epsilon\right)
\]

Where

\[
\theta_1(t) := \frac{t}{2} \ln\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} = \frac{t}{2} \ln\left(\frac{t}{2\pi}\right) - \frac{\pi}{8}
\]

(3.34)

Meanwhile referring to (1) [3, p. 120] we have coherently:

\[
\theta(t) = -[-\theta_1(t) + \Im_2^+ (\epsilon = 0) + \Im_3^- (\epsilon = 0)] = \theta_1(t) + \Im_3^+ (\epsilon = 0) + \Im_3^- (\epsilon = 0)
\]

Looking at the real terms that depend on \(\epsilon \) and on \(t \) at the same time we have:

For (3.9)

\[
\frac{\epsilon}{2} \left(\ln\frac{t}{2} - \ln(\pi)\right) = \ln\left(\frac{t}{2\pi}\right)^{\frac{\epsilon}{2}}
\]

For (3.21)

\[
\frac{\epsilon}{2} \left(\ln(\pi) - \ln\left(\frac{t}{2}\right)\right) = \ln\left(\frac{2\pi}{t}\right)^{\frac{\epsilon}{2}}
\]

Note that also this apply to 3.9 (i.e. \(\Re_1^+ \)), as well as to 3.21 (i.e. \(\Re_1^- \)). So we could write:
\[\Re_1^+ = \ln[F(t)] + \ln \left(\frac{t}{2\pi} \right)^{\epsilon/2} \]

\[\Re_1^- = \ln[F(t)] + \ln \left(\frac{2\pi}{t} \right)^{\epsilon/2} \]

Thus (for \(t >> 1 \)) we can use only the first piece (\(\Re_1 \) and \(\Im_1 \)).

So we have:

\[\ln \left[\Gamma \left(\frac{S}{2} + 1 \right) (1 - s)\pi^{-\frac{s}{2}} \right] \]

\[= \ln \left(e^{-z} z^{-\frac{1}{2}} (2\pi)^{\frac{1}{2}} \pi^{-\frac{1}{2}} (1 - 2z) \right)_{z = \frac{1 + 2s - \sqrt{t^2}}{2}} \approx \Re_1^+ + i\Im_1^+ = \ln[F(t)] + \ln \left[\left(\frac{t}{2\pi} \right)^{\epsilon/2} \right] + i \left(\theta(t) + \frac{\pi}{4} \epsilon \right) \]

and

\[\ln \left[\Gamma \left(\frac{1 - S}{2} + 1 \right) (+s)\pi^{-\frac{1-s}{2}} \right] \]

\[= \ln \left(e^{-z} z^{-\frac{1}{2}} (2\pi)^{\frac{1}{2}} \pi^{-\frac{1}{2}} (1 - 2z) \right)_{z = \frac{1 - 2s - \sqrt{t^2}}{2}} \approx \Re_1^- + i\Im_1^- = \ln[F(t)] + \ln \left[\left(\frac{2\pi}{t} \right)^{\epsilon/2} \right] + i \left(-\theta(t) + \frac{\pi}{4} \epsilon \right) \]

(3.35)

\[\text{and} \]

\[\ln \left[\Gamma \left(\frac{S}{2} + 1 \right) (1 - s)\pi^{-\frac{s}{2}} \right] \]

\[= \ln \left(e^{-z} z^{-\frac{1}{2}} (2\pi)^{\frac{1}{2}} \pi^{-\frac{1}{2}} (1 - 2z) \right)_{z = \frac{1 + 2s - \sqrt{t^2}}{2}} \approx \Re_1^- + i\Im_1^- = \ln[F(t)] + \ln \left[\left(\frac{2\pi}{t} \right)^{\epsilon/2} \right] + i \left(-\theta(t) + \frac{\pi}{4} \epsilon \right) \]

(3.36)

\section{Asymptotic expressions}

Putting together all the terms in (2.2) and setting \(\theta(t) \approx \theta_1(t) \) we have:

\[-\xi \left(\frac{1}{2} + \epsilon + it \right) \sim F(t)e^{i\pi/4} \sum_{n=1}^{N} \left(\frac{\sqrt{\frac{t}{2\pi}}}{n} \right)^{\epsilon} e^{i(\theta(t) - t \ln(n))} \sqrt{n} \]

\[+ F(t)e^{i\pi/4} \left\{ \sum_{n=1}^{N} \left(\frac{n}{\sqrt{\frac{t}{2\pi}}} \right)^{\epsilon} e^{-i(\theta(t) - t \ln(n))} \sqrt{n} + R(t) \right\} \quad ; \quad t >> \epsilon \]

(4.1)

where \(F(t) = (\pi/2)^{0.25} t^{\frac{3}{2}} e^{-\frac{\pi}{4} t} \), see (3.31).

Let us look for an exact expression. Using (3.29) and (3.30), and using:

\[A^\pm = e^{\Re_2^\pm + i\Im_2^\pm} + e^{i(\Im_2^\pm + \Im_\text{error})} \]

we obtain:

\[-\xi \left(\frac{1}{2} + \epsilon + it \right) = F(t)e^{i\pi/4}. \]

16
Let us define a useful function strictly related to R in (6) [3, p. 147] and [3, p. 154].

The remainder R is the same quantity computed in Appendix A also for $\epsilon \neq 0$.

Note however that (1.3) cannot be actually computed because of the errors in (4.2) and in (B.28), we only have an upper bound.

In Appendix A the coefficients $C_n(p, \epsilon)$ for $\epsilon > 0$ are generalized.

$$R_M(t, \epsilon) \approx (-1)^{N-1} \left(\frac{2\pi}{t} \right)^{1/4} \sum_{j=0}^{M} C_j(p, \epsilon) \left(\frac{2\pi}{t} \right)^{j/2} \quad \text{with:}$$

$$C_0(0.5) = 0.382683, \quad \leq C_0(p) = \frac{\cos(2\pi(p^2 - p - 1/16))}{\cos(2\pi p)} \leq \cos(\pi/8) \approx 0.923879.$$

where $C_0(p, \epsilon) \equiv C_0(p)$ is independent of ϵ; see Appendix A

So we can put $\forall \epsilon$:

$$R_0(t) = (-1)^{N-1} \left(\frac{2\pi}{t} \right)^{1/4} C_0(p) \quad \forall \epsilon$$

In the following we use $R(t)$ in the meaning of (4.4) with sum in square brackets only till C_i. We use simply $R(t)$ instead of $R_{\infty}(t)$.

Let us define an useful function strictly related to $\xi(s)$:

$$Z(t, \epsilon) := \sum_{n=1}^{N} \left(\frac{\sqrt{2\pi}}{n} \right)^{\epsilon} e^{i(\theta(t) - \ln(n))} \frac{e^{-i(\theta(t) - \ln(n))}}{\sqrt{n}} + R(t) \sim -\xi(\frac{1}{2} + \epsilon + it) \frac{F(t)e^{\frac{\pi}{4}t}}{}$$

By the way: as $A^\pm \rightarrow 1$ (see (4.2)), for $\epsilon \rightarrow 0$, then (4.3) or (4.1), lead us to the classical Z of Riemann Siegel [3, p. 139].

Note that $Z(t, \epsilon)$ has “almost” the same phase of $-\xi(\frac{1}{2} + \epsilon + it)$. So now it is clear why we changed the sign in (2.2) with respect to (5) [3, p. 138].

This choice is congruent with $\theta(t)$ in [3, p. 119-120] where $\theta(t)$ is developed in powers of $1/t$ and $(1/t)^3$.

17
In fact, from (3.11), we have

$$\theta(t, \epsilon = 0) = 3 \left(\ln \left[\Gamma \left(\frac{s}{2} + 1 \right) \pi^{\frac{s}{2}} (1 - s) \right] \right)_{s=1/2+i\epsilon} = \frac{t}{2} \ln \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{1}{48t} + \frac{7}{5760t^3} = \theta(t)$$

like in (1) [3, p. 120].

An interesting way to express (4.7) is using hyperbolic functions:

$$-\xi(t, \epsilon) \sim Z(t, \epsilon) = 2 \sum_{n=1}^{N} \cosh \left[\frac{\epsilon}{\sqrt{n}} \ln \left(\sqrt{\frac{t}{2\pi n^2}} \right) \right] \cos \left(t \ln \left(\sqrt{\frac{t}{2\epsilon n^2}} \right) - \frac{\pi}{8} \right) + .. + 2i \sum_{n=1}^{N} \sinh \left[\frac{\epsilon}{\sqrt{n}} \ln \left(\sqrt{\frac{t}{2\pi n^2}} \right) \right] \sin \left(t \ln \left(\sqrt{\frac{t}{2\epsilon n^2}} \right) - \frac{\pi}{8} \right) + R(t, \epsilon)$$

(4.8)

Note that, as \(\partial \frac{\partial}{\partial t} \ln \left(\sqrt{\frac{t}{2\pi n^2}} \right) = \frac{\epsilon}{\sqrt{2\pi t}}\), each addend of the sum in (4.8) verifies for small \(\epsilon\):

$$\partial \text{Im} \frac{\partial}{\partial \epsilon} = -\partial \text{Re} \frac{\partial}{\partial t} ; \quad \partial \text{Re} \frac{\partial}{\partial \epsilon} = \partial \text{Im} \frac{\partial}{\partial t}$$

(4.9)

For reminder term we have:

$$\frac{\partial R_0(t)}{\partial t} = \partial \left\{ (1)^{N-1} \left(\frac{2\pi}{t} \right)^{1/4} [C_0(p) + ...] \right\}$$

where:

$$p = \sqrt{\frac{t}{2\pi}} - N \rightarrow \frac{\partial p}{\partial t} = \frac{1}{2\sqrt{2\pi t}}$$

So we have:

$$\frac{\partial R_0(t)}{\partial t} = (1)^{N-1} \left\{ -\frac{1}{4t} \left(\frac{2\pi}{t} \right)^{1/4} C_0(p) + \frac{\partial C_0(p)}{\partial p} \left(\frac{2\pi}{t} \right)^{1/4} \frac{1}{2\sqrt{2\pi t}} \right\} \approx_{t>1} ...$$

(4.10)

$$\approx_{t>1} (1)^{N-1} \frac{\partial C_0(p)}{\partial p} \left(\frac{2\pi}{t} \right)^{1/4} \frac{1}{2\sqrt{2\pi t}}$$

in (A.30)

$$C_1(p, \epsilon) \omega^1 = -\epsilon \psi^{(1)}(p) \frac{i\omega}{4\pi} - \psi^{(3)}(p) \frac{\omega}{2^5\pi^23}$$

(4.11)

as \(\omega = \sqrt{\frac{2\pi}{t}}\); see (A.21).

As \(\psi^{(1)}(p) = \frac{\partial C_0(p)}{\partial p}\); see (A.28). Besides \(\frac{\partial \psi^{(3)}(p)}{\partial t} < (t>1) \frac{\partial C_0(p)}{\partial p} \frac{1}{2\sqrt{2\pi t}}\).

So taking only \(C_1(p, \epsilon)\), after \(C_0(p)\), in (4.4):
$$R_1(t, \epsilon) = (-1)^{N-1} \left(\frac{2\pi}{t} \right)^{1/4} \left[C_0(p) + C_1(p, \epsilon) \left(\frac{2\pi}{t} \right)^{1/2} \right]$$ \hspace{1cm} (4.12)$$

if \(t \gg 1 \), we almost match, also for the remainder \(R_1(t, \epsilon) \), the first equation of (4.9). From (4.10) the main part of \(\frac{\partial \text{Re}[R(t, \epsilon)]}{\partial t} \) is:

$$\frac{\partial \text{Re}[R(t, \epsilon)]}{\partial t} \approx _{t>\gg 1} (-1)^{N-1} \frac{\partial C_0(p)}{\partial p} \left(\frac{2\pi}{t} \right)^{1/4} \frac{1}{2\sqrt{2\pi t}}$$

While

$$\frac{\partial \text{Im}[R(t, \epsilon)]}{\partial \epsilon} \approx _{t>\gg 1} -(-1)^{N-1} \frac{\omega}{4\pi} \frac{\partial C_0(p)}{\partial p} = -(-1)^{N-1} \frac{\partial C_0(p)}{\partial p} \left(\frac{2\pi}{t} \right)^{1/4} \frac{1}{2\sqrt{2\pi t}}$$ \hspace{1cm} (4.13)

So the first of the (4.9) is almost verified also for \(R_1(t, \epsilon) \); see (4.12).

Note that the second of (4.9) is identically zero for \(\epsilon \to 0 \).

With reminder \(R_1(t, \epsilon) \) which uses (4.4) with only \(C_0(p) \), and \(C_1(p, \epsilon) \), we can then say that (4.8), for \(t \gg 1 \) and for small \(\frac{\epsilon}{t} \), is almost holomorphic as the RiemannCauchy (4.9) holds only with small discrepancies that tend to zero as \(t \to \infty \).

A Main integral in 2.2 along path \(L_1 \) with offset from critical line \((\epsilon > 0)\)

The aim of this appendix is to compute the main integral (A.2) following the same logical path of [3, p. 138-155] with the only addition of \(\epsilon \neq 0 \).

First footnote in [3, p. 138] suggests exactly this. A brief summary shows the path to follow.

A.1 Summary of logical path

Let us summarize the logical path of the following evaluation.

- To ignore the integral contribution on \(L_0, L_2, L_3 \); see (A.5).
- To develop \((-x)^{\epsilon-1/2+it}e^{-Nx}\) as a power series centered at \(a = i\sqrt{2\pi t} \); see (A.9).
- To use a “matching factor” (A.11) (rewritten here for easy reading)

$$g(x-a) = \sum_{n=0}^{n=\infty} b_n(x-a)^n = e^{\left[-\frac{i(x-a)^2}{4\epsilon}-(p+N)(x-a)+(-\frac{1}{2}+\epsilon+it) \ln(1+x-x/a)\right]}$$ \hspace{1cm} (A.1)

To compute the \(b_n(\omega, \epsilon) \) for a perfect matching of all like powers of \(\omega = \sqrt{\frac{2\pi}{t}} \) obtained by iteration (A.23); see also (A.22).
With (4.3) and (4.2) we can write:

\[L \]

Some note on (A.2).

The \((-1)\) factor at the integrand numerator stems for the gathering of:

- Suppose now (3.27) and (3.28):

 \[
 \text{To expand the expression obtained by the matching (i.e. } \sum_{n=0}^{\infty} b_n(x - a)^n, \text{ on all } L_1 \text{ line, irrespective of the radius of convergence of the power series centered in } x = i\sqrt{2/\pi} \text{ (A.20) by a wise contour integration [3 p. 147-148] due to Riemann. This allows us to compute exactly, on complex plane } u = x - 2\pi Ni \text{ [3 p. 147-148], the main integral for } b_0 i.e. \ C_0(p) = \psi^{(0)}(p) \text{ (A.20). In order to compute } C_n(p, \epsilon) \text{ by formula (A.25) we need till } b_{3n} \text{ see (A.29).}
 \]

- through (A.29) all pieces are joined to compute } C_i(p, \epsilon) \text{ of (4.4).

 The computation has been actually carried on only for } i = 1, 2; \text{ see (A.30) and (A.35).}

A.2 Main integral over } L_0 + L_1 + L_2 + L_3

With (4.3) and (4.2) we can write:

\[
F(t)e^{\frac{t}{2}x}A^-R(t, \epsilon) = \left(\frac{2i}{\sqrt{\pi}}\right)^{-\frac{x-1}{2}} \frac{\Gamma\left(\frac{1-s}{2}\right)}{(2\pi)^{s-1}} \frac{1}{\sin(\pi s/2)} \frac{1}{2\pi i} \int_{L_0, L_1, L_2, L_3} (-1)^{s-1} e^{-N_x} dx \ e^{\frac{s-1}{2}x - 1} \]

\[
e^{\Re_2 + \Re_3 + \Re_{error} + i(3\Re_2 + 3\Re_3 + 3\Re_{error})} \]

\[
\cdots \left(\frac{2i}{\sqrt{\pi}}\right)^{\frac{s-1}{2}} e^{-\frac{t}{2}x} e^{-i\theta_1(t)} \left(\sqrt{\frac{2\pi}{t}}\right)^{\epsilon} \int_{L_0, L_1, L_2, L_3} (-x)^{s-1} e^{-N_x} dx \ e^{\frac{s-1}{2}x - 1} \]

(A.2)

Some note on (A.2).

- Suppose now (3.27) and (3.28): \(e^{\Re_2 + \Re_3 + \Re_{error} + i(3\Re_2 + 3\Re_3 + 3\Re_{error})} \approx 1 \).

Below in (A.25) for higher order approximation \(e^{it(3\Re_2 + 3\Re_3)} \) is taken in the evaluation of \(C_2(p, \epsilon) \); see (A.4).

- From (3.36) \((s)\Gamma\left(\frac{1-s}{2}\right) \approx e^{\Re_2 + i\Im_1} = F(t)e^{\frac{t}{2}x} e^{-i\theta_1(t)} \left(\sqrt{\frac{2\pi}{t}}\right)^{\epsilon} \).

- The \((-1)\) factor at the integrand numerator stems for the gathering of \(x, \), under \((s - 1)\) exponent: \(\frac{(-x)^{s-1} dx}{(e^{s-1} - 1) x} = \frac{(-1)^{s-1} dx}{e^{s-1} - 1} \).

- This \((-1)\) at numerator integrand is, afterward, joined to \(2i \sin(\pi s/2) \) development [3 p. 139] in the denominator of external coefficient:

\[
(-1)2i \sin(\pi s/2) = -\left[e^{\frac{2\pi}{t} (\frac{1}{s} + \epsilon + it)} - e^{-\frac{2\pi}{t} (\frac{1}{s} + \epsilon + it)} \right] = -e^{-\frac{2\pi}{t}} \left[e^{\frac{2\pi}{t} - \frac{2\pi}{t} + \frac{2\pi}{t} - e^{-\frac{2\pi}{t}} e^{\frac{2\pi}{t}} + \frac{2\pi}{t}} \right]
\]

\[
e^{-\frac{2\pi}{t}} e^{\frac{2\pi}{t}} \left[e^{-\frac{2\pi}{t}} - ie^{\frac{2\pi}{t}} e^{-\epsilon t} \right] = e^{-\frac{2\pi}{t}} \left[e^{-\frac{2\pi}{t}} - ie^{\frac{2\pi}{t}} e^{-\epsilon t} \right] e^{\frac{2\pi}{t}}
\]

- So in (A.2) the integral is multiplied by:

\[
\frac{1}{(2\pi)^{s}} \left(F(t)e^{\frac{t}{2}x} e^{-i\theta_1(t)} \left(\sqrt{\frac{2\pi}{t}}\right)^{\epsilon} \right) \left(e^{-\frac{2\pi}{t}} \left[e^{-\frac{2\pi}{t}} - ie^{\frac{2\pi}{t}} e^{-\epsilon t} \right] e^{\frac{2\pi}{t}} \right)
\]
If we put [3, p. 139]:

\[P_0 = \frac{e^{-i \theta_1(t)}e^{-t \pi /2}}{(2\pi)^{1/2}e^{-i \pi /4}(1 - ie^{-t \pi})} \quad \text{for} \quad \epsilon = 0 \quad (A.3) \]

then, for \(\forall \epsilon \) we may write:

\[P_{\epsilon} = \left\{ \frac{e^{-i \theta_1(t)}e^{-t \pi /2}}{(2\pi)^{1/2}e^{-i \pi /4}(1 - ie^{-t \pi})} \right\} \left[\frac{(1 - ie^{-t \pi})}{(2\pi)^{1/2}e^{-i \pi /2 - i \epsilon e^{-t \pi}}} \right] \quad \epsilon > 0 \quad (A.4) \]

As from Appendix B contributions outside \(L_1 \) are very small (see fig. 3) then \((A.2) \) can be written:

\[P_{\epsilon} \int_{L_0,L_1,L_2,L_3} \frac{(-x)^{s-1}e^{-N_x}dx}{e^{x} - 1} \approx P_{\epsilon} \int_{L_1} \frac{(-x)^{s-1}e^{-N_x}dx}{e^{x} - 1} \quad (A.5) \]

A.3 Evaluation of main integral on \(L_1 \)

We follow the path of [3, p. 145] with the only difference of introducing \(\forall \epsilon \).

It is useful also [7, p. 14-28]. We sum and subtract \(a \).

\[-x - a + a = -a \left(1 + \frac{a - x}{-a} \right) = -a \left(1 + \frac{x - a}{a} \right) \quad (A.6) \]

Where \(a = i\sqrt{2\pi t} \) is the point chosen to expand (A.10) in powers of \((x - a) \).

\[(-x)^{-\frac{1}{2} + \epsilon + it}e^{-N x} = e^{(\epsilon - 1/2 + it)} \ln(-a) + \ln(1 + \frac{x - a}{a}) e^{-Na - N(x - a)} \quad (A.7) \]

for \(\left| \left(\frac{x - a}{a} \right) \right| < 1 \)

\[\ln \left(1 + \frac{x - a}{a} \right) \approx \frac{x - a}{a} - \frac{(x - a)^2}{2a^2} + \frac{(x - a)^3}{3a^3} - \quad (A.8) \]

So:

\[(-x)^{-\frac{1}{2} + \epsilon + it}e^{-N x} = (-a)^{-\frac{1}{2} + \epsilon + it}e^{-Na} e^{\left(\frac{-\frac{1}{2} + \epsilon + it}{a} - N \right)(x - a) + \left(-\frac{\epsilon}{2a^2} + \frac{(x - a)^3}{3a^3} - \right)} \quad (A.9) \]

We have:

\[\frac{-\frac{1}{2} + \epsilon + it}{a} = \frac{-\frac{1}{2} + \epsilon + it}{i\sqrt{2\pi t}} \approx \sqrt{\frac{t}{2\pi}} \]

and:

\[\frac{1 - \frac{1}{2} + \epsilon + it}{a^2} = \frac{1 - \frac{1}{2} + \epsilon + it}{2 \left(i\sqrt{2\pi t} \right)^2} \approx \frac{i}{4\pi} \]

The numerator of the integral can be written (with \(a = i\sqrt{2\pi t} \) [3, p. 145] bottom):

\[(-x)^{-\frac{1}{2} + \epsilon + it}e^{-N x} \approx (-a)^{-\frac{1}{2} + \epsilon + it}e^{-Na} e^{\rho(x - a) e^{i(x - a)^2/4\pi}} \]

We look for a factor that transform the above approximate relation in a true equality:
\[-x^{-\frac{1}{2}+\epsilon+it}e^{-N\epsilon x} = (-a)^{-\frac{1}{2}+\epsilon+it}e^{-Na\epsilon p(x-a)}e^{\frac{i(x-a)^2}{4\pi}}g(x-a) = (A.10)\]

\[= (-a)^{-\frac{1}{2}+\epsilon+it}e^{-Na\epsilon p(x-a)}e^{\frac{i(x-a)^2}{4\pi}}\sum_{n=0}^{\infty}b_n(x-a)^n\]

Where \(a = i\sqrt{2\pi t}\) is the point chosen to expand \([A.10]\) in powers of \((x-a)\).

\[g(x-a) \text{ defined in [3, p. 145] bottom and in [7, p. 24] is:}\]

\[g(x-a) = \sum_{n=0}^{\infty} b_n(x-a)^n = e^{\frac{-(x-a)^2}{4\pi} - (p+N)(x-a)+(-\frac{1}{2} + \epsilon + it) \ln(1+\frac{e-x}{a})}\]

\[(A.11)\]

It is apparent that \(b_0 = 1\) even when \(\epsilon \neq 0\).
Because \([A.11]\) for \(x = a\) is bound to be \(\epsilon\) independent as \(\epsilon\) effects are multiplied by \(\ln(1)\).
For a given \(\epsilon\), with the power series \([A.1]\) “a” centered the reminder \(R(t, \epsilon)\) is:

\[R(t, \epsilon) = P_\epsilon \int_{L_1} (-a)^{-\frac{1}{2}+\epsilon+it}e^{-Na\epsilon p(x-a)}e^{\frac{i(x-a)^2}{4\pi}}g(x-a)dx = \frac{e^{-it\sqrt{N\epsilon}}}{e^x-1}\]

\[= P_\epsilon (-a)^\epsilon \int_{L_1} (-a)^{-\frac{1}{2}+it}e^{-Na\epsilon p(x-a)}e^{\frac{i(x-a)^2}{4\pi}}g(x-a)dx = . . .\]

\[(A.12)\]

We have eliminated \(F(t)e^{ix\epsilon}\) as we are looking for \([4,7]\) i.e. \(Z(t, \epsilon) \sim \frac{-\xi(\frac{1}{2}+\epsilon+it)}{F(t)e^{ix\epsilon}}\).
If we ignore \(e^{-t\pi}\) with respect to 1 (note that for \(t > 14\) : \(e^{-t\pi} < e^{-14\times\pi} \approx 10^{-19}\) we get:

\[P_0 \approx \frac{e^{-it\sqrt{N\epsilon}}}{(2\pi)^{\frac{1}{2}}(2\pi)^{it}e^{-it\pi/4}(1-i\times 0)} \text{ for } \epsilon = 0\]

\[(A.13)\]

and for same reason we have:

\[P_\epsilon \approx \left\{\frac{e^{-it\sqrt{N\epsilon}}}{(2\pi)^{\frac{1}{2}}e^{-it\pi/4}(2\pi)^{it}(1-i\times 0)}\right\} \left[\frac{(1-i\times 0)}{(2\pi)^{it}e^{-it\pi/4}(1-i\times 0)}\right] \left[\left(\frac{2\pi}{t}\right)^{\epsilon}\right] \text{ for } t > > \epsilon > 0\]

\[(A.14)\]

So \(R(t, \epsilon)\) in \((A.12)\) becomes:

\[= P_0 \int_{L_1} \frac{(-a)^{-\frac{1}{2}+\epsilon+it}e^{-Na\epsilon p(x-a)}e^{\frac{i(x-a)^2}{4\pi}}g(x-a)dx}{e^x-1} \text{ for } t > > \epsilon > 0\]

\[(A.15)\]

because:

\[P_\epsilon (-a)^\epsilon = P_0 \frac{1}{(2\pi)^{it}e^{-it\pi}}\left(\sqrt{\frac{2\pi}{t}}\right)^{\epsilon} (-a)^\epsilon = \left(\sqrt{\frac{2\pi}{t}}\right)^{\epsilon} e^{it\frac{\pi}{2}}(-i)^\epsilon P_0 = P_0 \text{ for } t > > \epsilon > 0\]

What happens is that main integral in \((A.2)\) gives rise to a factor \((-a)^\epsilon = (-i\sqrt{2\pi})^\epsilon\) [(2) p. 146 [3]] who keeps invariant the coefficient \(P_0\) before integral \(\forall \epsilon\).
We can fetch out from integral in (A.15) the expression:

\[-a^{-\frac{1}{2} + it} e^{Na} = -i\sqrt{2\pi t}^{-\frac{1}{2} + it} e^{-N\sqrt{2\pi t}} = [-i\sqrt{2\pi t}]^{-\frac{1}{2} + it} e^{-Ni2\pi\sqrt{\frac{t}{\pi}}}\]

\[= [-i\sqrt{2\pi t}]^{-\frac{1}{2} + it} e^{-Ni2\pi\sqrt{\frac{t}{\pi}}} = [-i\sqrt{2\pi t}]^{-\frac{1}{2} + it} e^{-Ni2\pi(N+p)}\]

So (A.15) becomes:

\[= P_0 \ (a)^{-\frac{1}{2} + it} e^{-Na} \int_{L_1} \ \frac{e^{p(x-a)} e^{i(x-a)^2} g(x-a) dx}{e^x - 1} \ ; \ \quad t >> \epsilon \quad (A.16)\]

Developing the coefficient taking into account (A.14) gives the same result of [3, p. 146]:

\[P_0 \ (a)^{-\frac{1}{2} + it} e^{-Na} = \frac{e^{-\theta_1(t)} e^{-i\pi/2} [-i\sqrt{2\pi t}]^{-\frac{1}{2} + it} e^{-Ni2\pi(N+p)}}{(2\pi)^{1/2} (2\pi)^i e^{-i\pi/4}}\]

\[= \frac{e^{-\theta_1(t)} (\sqrt{t/2\pi})^{-\frac{1}{2} + it} e^{-Ni2\pi(N+p)}}{(2\pi)^{1} e^{-Ni2\pi(N+p)}}\]

\[= \frac{e^{-\theta_1(t)} (\sqrt{t/2\pi})^{-\frac{1}{2} + it} e^{-Ni2\pi(N+p)}}{2\pi i}\]

Which is the coefficient of \(\int_{L_1} e^{p(x-a)} e^{i(x-a)^2} g(x-a) dx\) in [3, p. 146] (apart \(1 - ie^{-\pi t}\) at denominator just reduced to 1).

We can change variable accordingly to [3, p. 146]:

\[x = u + 2\pi i N, \quad x - a = u + 2\pi i N - 2\pi i \sqrt{\frac{t}{2\pi}} = u - 2\pi ip \quad (A.17)\]

So numerator integrand change in :

\[e^{p(x-a)} e^{i(x-a)^2 / 4\pi} \rightarrow e^{pu-2\pi ip^2} e^{i^{2\pi^2-2\pi ip^2} / 4\pi} = e^{i^{2\pi^2+2\pi ip^2-4\pi i/p^2\pi}} \quad (A.18)\]

We can now take away from integral the objects: \(-2\pi ip^2 - \pi ip^2\)

Elaborating we get:

\[-Ni2\pi(N+p) = -2\pi i N^2 - 2\pi i Np \rightarrow -2\pi i N^2 - 2\pi i Np - 2\pi ip^2 \quad \pi ip^2 = \]

which is the same as :

\[-i\pi(N + p)^2 - i\pi N^2 - 2\pi ip^2 = -i\pi N^2 - i\pi p^2 - i\pi 2Np - i\pi N^2 - 2\pi ip^2\]

Besides \(-i\pi(N + p)^2 - i\pi N^2 - 2\pi ip^2 = -i\pi N^2 - i\pi \frac{t}{2\pi} - 2\pi ip^2\)

but:
\[-\theta(t) = -\left[\frac{t}{2} \ln \left(\frac{t}{2\pi e}\right) - \frac{\pi}{8}\right]\]

so we have:

\[e^{-i\left[\frac{t}{2} \ln \left(\frac{t}{2\pi}\right)\right] + it} e^{-i\pi \frac{t}{4\pi}} = e^{i\frac{\pi}{8}}\]

\[e^{-i\pi N^2} = (-1)^{N-1}\]

So like in (2) [3 p. 147] we can write \(R(t, \epsilon)\) in (A.15) as:

\[R(t, \epsilon) = (-1)^{N-1} \left(\sqrt{\frac{t}{2\pi}}\right)^{-\frac{1}{2}} \frac{e^{i\frac{\pi}{8}} e^{-2\pi i p^2}}{2\pi i} \int_{L_1} \frac{e^{i\frac{u^2}{4\pi} + 2\pi u}{g(u - 2\pi i p)}}{e^u - 1} du \quad (A.19)\]

The usual notation is:

\[C_0(p) = \psi(p) = \frac{e^{i\frac{\pi}{8}} e^{-2\pi i p^2}}{2\pi i} \int_{\text{whole } L_1} \frac{e^{i\frac{u^2}{4\pi} + 2\pi u}{g(u - 2\pi i p)}}{e^u - 1} du \quad (A.20)\]

Details of contour integration used to get (A.20) are in [3 p. 147-148].

A.4 Dependence from \(\epsilon\)

So from (5) [3 p. 145] and (3) [3 p. 150] it is obvious that \(C_0(p)\), defined in [3 p. 154] is \(\epsilon\) independent; see (4.4). For \(C_i(p, \epsilon)\) with \(i > 0\) the usefulness of following manipulation is apparent when logarithmic derivative of \(g(x - a)\) with exponential and with the sum: \(\sum_{n=0}^{\infty} b_n(x - a)^n\) are equated; see (A.23).

Putting

\[\omega = \sqrt{\frac{2\pi}{t}} \quad (A.21)\]

for [3 p. 148] (bottom page) we have:

\[\frac{\partial}{\partial x} \left[-\frac{i(x - a)^2}{4\pi} - (p + N)(x - a) + \left(-\frac{1}{2} + \epsilon + it\right) \ln \left(1 + \frac{x - a}{\epsilon}\right)\right]\]

\[= \frac{x - a}{2\pi i} - \omega^{-1} + \frac{\epsilon - \frac{1}{2} + 2\pi i\omega^{-2}}{2\pi i\omega^{-1} + (x - a)} = \frac{(x - a)^2 + 2\pi i(\epsilon - \frac{1}{2})}{2\pi i[2\pi i\omega^{-1} + (x - a)]} = \sum_{n=0}^{\infty} b_n n(x - a)^{n-1} \quad (A.22)\]

where, equating like powers of \((x - a)\), it is easy to get \(b_k\) recursively. So we get the generalization with \(\epsilon > 0\) of [(5) [3 p. 152]:

24
\[b_{n+1} = \frac{\omega}{4\pi^2(n+1)} \left(2\pi i(n + 0.5 - \epsilon)b_n - b_{n-2} \right) \rightarrow b_n = \left(\frac{i}{2\pi} \right)^n \omega \frac{P_n(n, n)b_{n+1} + \left(\frac{i}{2\pi} \right)^2 \omega}{n} b_{n-3} \] (A.23)

where \(P_n(n, n) \) is defined as:

\[P_n(n, n) = \prod_{n=n+1}^{n=n^2} \left(n - \frac{1}{2} - \epsilon \right) \] (A.24)

with \(b_0 = 1 \); \(b_{-1} = b_{-2} = 0 \)

For higher order approximation the expression (3) [3, p. 150] is exactly:

\[\left[F(t) e^{i\frac{n\pi}{4}} \right]^{-1} = \left(+s \right) \Gamma \left(\frac{1-s}{2} + 1 \right) \pi^{-\frac{1-s}{2}} \int_{C_{h,N}} \frac{(-x)^{s-1} e^{-Nx} dx}{e^x - 1} \]

\[= R(t, \epsilon) \approx (-1)^{N-1} \left(\sqrt{\frac{2\pi}{t}} \right)^{0.25} e^{i(\Re - \Im)} \left[\sum_{k=0}^{K} b_k(\omega)c_k \right] \] (A.25)

where \(b_k(\omega, \epsilon) \) is a polynomial of max degree \(n \) in \(\omega \), while \(c_k \) (“\(\epsilon \) independent”) is a linear combination of even, if \(n \) is even, or odd, if \(n \) is odd, derivatives with respect to \(p \) of \(C_0(p) = \psi(p) \); see (A.20).

And where the recovered \(\Re - \Im \) terms in \(t^{-1} \) is given in (3.25). While \(c_k \) is from (A.26) and \(F(t) \) is defined in (3.31).

With variable change \(x - a = u - 2\pi p \); see (A.17) and (A.10).

The \(c_n \) are in (3) [3, p. 150] which is the same of (A.25) here.

They are computed in (A.26) which derives from (4) [3, p. 150] given below:

\[e^{2\pi i j} \sum_{m=0}^{\infty} \frac{\psi^m(p)}{m!} y^m = \sum_{n=0}^{\infty} \frac{(2y)^n}{n!} c_n \] (4) [3, p. 150]

equating homogeneous coefficients in \(y \) of left and right series.

Result is the following:

\[c_n = \frac{e^{\pi/8} e^{-2\pi p^2}}{2\pi i} \int_{\Gamma} e^{iu^2/4\pi e^{2\pi pu}} (u - 2\pi ip)^n du = \frac{n}{2^n} \sum_{j=0}^{[n/2]} \frac{(2\pi i)^j \psi(n-2j)(p)}{j! (n-2j)!} \] (A.26)

\[= \sum_{j=0}^{[n/2]} c_{n,n-2j} \psi(n-2j) = c_n \] (A.27)

So \(c_{k,j} \) is the coefficient of contribution at \(c_k \) of derivative \(\psi^{(j)} \).

Remind that

\[\psi^{(0)}(p) = \frac{\cos[2\pi(p^2 - p - 1/16)]}{\cos(2\pi p)} \] (A.28)
From iteration (A.23) we have:

\[b_{-2}(\omega) = 0 \quad , \quad b_{-1}(\omega) = 0 \quad , \quad b_0(\omega) = 1 \quad , \quad b_1(\omega) = B_{1,1} \omega^1 \]

\[b_2(\omega) = B_{2,2} \omega^2 \quad , \quad b_3 = B_{3,3} \omega^3 + B_{3,1} \omega^1 \quad , \quad b_4(\omega) = B_{4,4} \omega^4 + B_{4,2} \omega^2 \quad , \quad b_5(\omega) = B_{5,5} \omega^5 + B_{5,3} \omega^3 \]

\[b_6(\omega) = B_{6,6} \omega^6 + B_{6,4} \omega^4 + B_{6,2} \omega^2 \quad , \quad b_7(\omega) = B_{7,7} \omega^7 + B_{7,5} \omega^5 + B_{7,3} \omega^3 \quad , \quad b_8(\omega) = B_{8,8} \omega^8 + B_{8,6} \omega^6 + B_{8,4} \omega^4 \]

\[b_9(\omega) = B_{9,9} \omega^9 + B_{9,7} \omega^7 + B_{9,5} \omega^5 + B_{9,3} \omega^3 \]

Where \(B_{m,k}(\epsilon) \) is the coefficient of \(\omega^k \) in the polynomial \(b_m(\omega, \epsilon) \). They contain the dependence from \(\epsilon \) throughout (A.24) factors.

The polynomial \(b_m(\omega, \epsilon) \) max degree is \(n \).

While the minimum degree is:

\[\left\lfloor \frac{n}{3} \right\rfloor + n - 3 \times \left\lfloor \frac{n}{3} \right\rfloor \]

The formula connecting big single indexed \(C_i(p, \epsilon) \) in (4.4), small single indexed \(c_k \), from (A.26), small doubly indexed \(c : c_{k,j} \), from (A.27) and doubly indexed big B above i.e. \(B_{m,k}(\epsilon) \) is:

\[C_k \omega^k = \sum_{i \geq 3k - 2j \leq 3k} c_i B_{i,k} \omega^k = \sum_{i \geq 3k - 2h \leq 3k} \sum_{j=0,1,2...} \left\lceil \frac{n}{2} \right\rceil \sum_{j=0,1,2...} \left\lfloor \frac{n}{2} \right\rfloor c_{i,i-2j} \psi^{(i-2j)} \right \} B_{i,k} \omega^k \]

(A.29)

Once fixed \(k \) of \(C_k \omega^k \) in (4.4), the index \(i \) can varies between \(3k \) and \(3k - 2h \geq k \), with \(h = 0, 1, 2,... \)

A.5 Evaluation of \(C_1(p, \epsilon) \)

From (A.24) we have:

\[B_{1,1} = \frac{i \omega}{2\pi} \frac{P_\epsilon(1,1)}{1!} \]

\[B_{2,2} = \left(\frac{i \omega}{2\pi} \right)^2 \frac{P_\epsilon(1,2)}{2!} \]

\[B_{3,3} = \left(\frac{i \omega}{2\pi} \right)^3 \frac{P_\epsilon(1,3)}{3!} \quad , \quad B_{3,1} = \left(\frac{\omega}{2\pi} \right) \frac{i^2}{2\pi 3} \]
\[C_1 \omega^1 = c_1 B_{1,1} \omega^1 + c_3 B_{3,1} \omega^1 \]

where
\[
c_1 = \frac{1! (2\pi i)^0 \psi^{1-0}}{2^1 0! 0!}
\]
and
\[
c_3 = \frac{3!}{2^3} \left[\frac{(2\pi i)^0 \psi^{3-0}}{0! 3!} + \frac{(2\pi i)^1 \psi^{3-2}}{1! 1!} \right] = c_{3,3} \psi^{(3)} + c_{3,1} \psi^{(1)}
\]

Terms like \(\omega^1 \) have “b” produced by \(b_1 \) and by \(b_3 \), so:

\[
C_1(p, \epsilon) \omega^1 = \frac{i \omega}{2 \pi} P_t(1, 1) \left[\frac{1}{2^1} (2\pi i)^0 \psi^{1-0} \frac{1}{0!} + \frac{3!}{2^3} \left[\frac{(2\pi i)^0 \psi^{3-0}}{0! 3!} + \frac{(2\pi i)^1 \psi^{3-2}}{1! 1!} \right] \left[-\frac{\omega}{2 \pi} \frac{1}{2 \pi 3} \right] \right)
\]
\[
= \psi^{(1)}(p) \frac{i \omega}{4 \pi} \left(\left[\frac{1}{2} - \epsilon \right] - \frac{3!}{2^3} \frac{2\pi}{2 \pi 3} \right) - \psi^{(3)}(p) \frac{\omega}{2^5 \pi^2 3} = -\epsilon \psi^{(1)}(p) \frac{i \omega}{4 \pi} - \psi^{(3)}(p) \frac{\omega}{2^5 \pi^2 3} \quad (A.30)
\]

Putting \(\epsilon = 0 \), then the imaginary part is zero and the real part happens to be like in [3, p. 153-154].

A.6 Evaluation of \(C_2(p, \epsilon) \)

Consider now:
\[
C_2 \omega^2 = c_2 B_{2,2} \omega^2 + c_4 B_{4,2} \omega^2 + c_6 B_{6,2} \omega^2
\]

Terms like \(\omega^2 \) stem from \(b_{3 \times 2} \) till \(b_2 \): \(b_2(\omega), b_4(\omega) \) e \(b_6(\omega) \), so may be involved only the even derivatives:

\[
\psi^{(m)}(p) \quad ; \quad m = 0, 2, 4, 6
\]

\(B_{2,2} \) is computed above.

\[
B_{4,2} = \left(\frac{\omega}{2 \pi} \right)^2 \frac{(i)^{4-1}}{\pi 4!} \left[P_t(4, 4) + \frac{3 \times 2}{2} P_t(1, 1) \right]
\]
and

\[
B_{6,2} = \left(\frac{\omega}{2 \pi} \right)^2 \frac{(i)^{6-2} 5 \times 4}{\pi 6!} \frac{1}{2}
\]

Besides

\[
c_2 = \frac{2!}{2^2} \left[\frac{\psi^{(2)}}{2!} + \frac{\psi^{(0)} (2\pi i)^1}{0! 1!} \right] = c_{2,2} \psi^{(2)} + c_{2,0} \psi^{(0)}
\]

with:

\[
c_4 = \frac{4!}{2^4} \left[\frac{\psi^{(4)}}{4!} + \frac{\psi^{(2)} (2\pi i)^1}{2! 1!} + \frac{\psi^{(0)} (2\pi i)^2}{0! 2!} \right] = c_{4,4} \psi^{(4)} + c_{4,2} \psi^{(2)} + c_{4,0} \psi^{(0)}
\]
and:

\[
c_6 = \frac{6!}{2^6} \left[\frac{\psi^{(6)}}{6!} + \frac{\psi^{(4)}}{4!} \frac{(2\pi i)^1}{1!} + \frac{\psi^{(2)}}{2!} \frac{(2\pi i)^2}{2!} + \frac{\psi^{(0)}}{0!} \frac{(2\pi i)^3}{3!} \right] = c_{6,6}\psi^{(6)} + c_{6,4}\psi^{(4)} + c_{6,2}\psi^{(2)} + c_{6,0}\psi^{(0)}
\]

Let us compute separately terms like \(\omega^2 \) produced by \(\psi^{(0)}(p), \psi^{(2)}(p), \psi^{(4)}(p), \psi^{(6)}(p) \):

A.6.1 Factors of \(\psi^{(0)}(p) \)

\[
\psi^{(0)}(p) \left\{ \frac{2!}{2^2} \frac{(2\pi i)^1}{2!} \left(\frac{i\omega}{2\pi} \right)^2 P_\epsilon(1, 2) \right\} + \\
+ \psi^{(0)}(p) \left\{ \frac{4!}{2^4} \frac{(2\pi i)^2}{2!} \frac{(\omega)}{2\pi}^2 \left(\frac{(i)^{4-1}}{\pi4!} P_\epsilon(4, 4) + \frac{3 \times 2}{2} P_\epsilon(1, 1) \right) + \frac{6!}{2^6} \frac{(2\pi i)^3}{3!} \frac{(\omega)}{2\pi}^2 \left(\frac{(i)^{6-2}}{\pi^26!} 5 \times 4 \right) \right\} = \\
\psi^{(0)}(p)\pi\omega^23 \quad \text{[A.31]}
\]

dropping powers of \(\epsilon \) greater that 1

Consider now the phase shift due the multiplication by \(A^- \) of the reminder integral in 4.3. Let us limit to the \(t^{-1} \) term, then from (3.25) we have:

\[
\theta^+(t, \epsilon) = \theta_1(t) - \frac{-1 + 84\epsilon + 10\epsilon^2}{48t} \quad ; \quad \theta^-(t, \epsilon) = -\theta_1(t) - \frac{1 + 108\epsilon - 12\epsilon^2}{48t}
\]

from (4) in [3 p. 147], we can argue that \(C_n(p, \epsilon) \) terms are multiplied by:

\[
e^{i(\frac{3\pi}{2} + 3\pi)} = e^{i\left(\frac{-11 + 108\epsilon - 12\epsilon^2}{48t}\right)} \approx 1 - \frac{i\omega^2(1 + 108\epsilon - 12\epsilon^2)}{2^5\pi^3} \quad \text{[A.32]}
\]

If we multiply main integral in \(\text{(A.2)} \) by \(\text{(A.32)} \), then the term in \(\omega^0 : \psi^{(0)}(p) \), will be translated to \(\omega^2 \) summing up with homogeneous term stemming by other source.

In this case (sum of \(\text{(A.31)} \) with \(\text{(A.32)} \) at \(\epsilon = 0 \)) we have a cancellation, so for \(\epsilon = 0 \), \(\psi^{(0)}(p) \) does not contribute to \(C_2(p, \epsilon = 0) \).

A.6.2 Factors of \(\psi^{(2)}(p) \)

\[
\psi^{(2)}(p) \left\{ \frac{2!}{2^22!} \left(\frac{i\omega}{2\pi} \right)^2 P_\epsilon(1, 2) + \frac{4!}{2^42!} \frac{(2\pi i)^2}{2!} \frac{(\omega)}{2\pi}^2 \left(\frac{(i)^{4-1}}{\pi4!} P_\epsilon(4, 4) + \frac{3 \times 2}{2} P_\epsilon(1, 1) \right) \right\} + \\
+ \psi^{(2)}(p) \left\{ \frac{6!}{2^62!} \frac{(2\pi i)^3}{2!} \frac{(\omega)}{2\pi}^2 \left(\frac{(i)^{6-2}}{\pi^26!} 5 \times 4 \right) \right\} = \\
\psi^{(2)}(p)\frac{5}{2^6\pi^2} \left(1 - \frac{8\epsilon}{10} \right) - \frac{\psi^{(2)}(p)3}{2^7\pi^2} \left[\left(1 - \frac{2\epsilon}{3} \right) \left(1 - 2\epsilon \right) \right] - \frac{\psi^{(2)}(p)5}{2^7\pi^2}
\]

which is \(\psi^{(2)}(p)\frac{5}{2^6\pi^2} \) for \(\epsilon = 0 \).
A.6.3 Factors of $\psi^{(4)}(p)$

\[
\psi^{(4)}(p) \left\{ \frac{4!}{2^44!} \left(\frac{\omega}{2\pi} \right)^2 \left(\frac{i}{4!} \right)^{4-1} P_4(4, 4) + \frac{3 \times 2}{2} P_2(1, 1) \right\} + \frac{6!}{2^64!} \frac{5 \times 4}{1!} \left(\frac{\omega}{2\pi} \right)^2 \left(\frac{i}{\pi^26!} \right)^{6-2} \left(\frac{5 \times 4}{2} \right)
\]

\[= \frac{-i\psi^{(4)}(p)(5 - 8\epsilon)}{2^9\pi^33} + \frac{i\psi^{(4)}(p)5}{2^9\pi^33} \]

which is 0 for $\epsilon = 0$. So $\psi^{(4)}(p)$ gives no contribution to $C_2(p, \epsilon = 0)$.

A.6.4 Factors of $\psi^{(6)}(p)$

\[
\frac{6!}{2^6} \left[\frac{(2\pi i)^0}{0!} \frac{\psi^{(6)}(p)}{6!} \right] \left(\frac{\omega}{2\pi} \right)^2 \frac{2}{\pi^6} \frac{5(i)^{6-2}}{\pi^6} = \frac{\psi^{(6)}(p)5\omega^2}{2^7\pi^46!} = \frac{\psi^{(6)}(p)5}{2^7\pi^46!}
\]

So it does not depend on ϵ accordingly with third row in [3, p. 153] bottom.

In summary for $\epsilon = 0$ the contribution to ω^2 term simplify drastically [3, p. 154] bottom:

\[C_2(p, \epsilon = 0) = \frac{\psi^{(2)}(p)}{2^6\pi^2} + \frac{\psi^{(6)}(p)5}{2^7\pi^46!} \quad (A.34)\]

Similarly we can built all the $C_i(p, \epsilon)$ of (4.4):

\[C_2(p, \epsilon) = \frac{i\psi^{(0)}(p)}{2^0\pi3} \left[15 \left(1 - \frac{2\epsilon}{3} \right) (1 - 2\epsilon) - 5 \left(1 - \frac{8\epsilon}{10} \right) \right] - \frac{i\psi^{(0)}(p)(1 + 108\epsilon - 12\epsilon^2)}{2^5\pi3} + \frac{\psi^{(2)}(p)5}{2^6\pi^2} \left(1 - \frac{8\epsilon}{10} \right) - \frac{\psi^{(2)}(p)3}{2^7\pi^2} \left[\left(1 - \frac{2\epsilon}{3} \right) (1 - 2\epsilon) \right] - \frac{\psi^{(2)}(p)5}{2^7\pi^2} + \frac{-i\psi^{(4)}(p)(5 - 8\epsilon)}{2^9\pi^33} + \frac{i\psi^{(4)}(p)5}{2^9\pi^33} + \frac{\psi^{(6)}(p)5}{2^7\pi^46!} \quad (A.35)\]
B Bounds for Main Integral on paths: L_0, L_1, L_2, L_3. With offset from critical line ($\epsilon > 0$)

B.1 Upperbound of Main integral on L_0 path

We follow [3, p. 141-142] “Estimation of the integral away from saddle point”, first case $j=0$, with the only difference of introducing $\epsilon > 0$.

We move in the complex plane x on line: $x = a + ke^{i\pi/4}$ with real $k \geq 1$, and, we choose as boundary between L_0 and L_1 point:

$$\text{Boundary}(L_0, L_1) = a + \frac{|a|}{r} e^{i\pi/4} ; \quad 1 < r \leq 2$$ (B.1)

Where a is defined in (2.4).

In [3, p. 141-142] $r = 2$, but, if $r > 1$ it is enough for the logarithmic series (A.8) to converge.

If we write the numerator module of the integrand in (A.2) as $|(-x)^{s-1} e^{-Nx}| = e^{\phi(k)}$ where

$$\phi(k) = Re[(\epsilon - 1/2 + it) \ln(a + ke^{i\pi/4}) - N(a + ke^{i\pi/4})]$$

then

$$\frac{d\phi(k)}{dk} = Re\left[Ne^{i\pi/4} \left(\frac{-1/2 + \epsilon + it}{N(a + ke^{i\pi/4})} - 1 \right) \right] = Re\left[Ne^{i\pi/4} \left(\left[\frac{-1/2 + \epsilon}{N} + \frac{it}{N} \right] \frac{i\sqrt{2\pi t + \frac{k}{\sqrt{2}}} + \frac{1}{\sqrt{2}} + i\frac{k}{\sqrt{2}}}{1} \right) \right] =$$

$$Re\left[Ne^{i\pi/4} \left(\left[\frac{-1/2 + \epsilon - t}{N} + i\frac{1/2 + \epsilon}{N} \right] \frac{k/\sqrt{2} - i\sqrt{2\pi t + \frac{k}{\sqrt{2}}} + \frac{1}{\sqrt{2}}}{(2\pi t + \frac{k}{\sqrt{2}})^2 + \frac{k^2}{2}} \right) \right] =$$

$$= \frac{N}{\sqrt{2}} \left[Re \left(\frac{-1/2 + \epsilon - t}{N} + i\frac{1/2 + \epsilon}{N} \right) \frac{k/\sqrt{2} - i\sqrt{2\pi t + \frac{k}{\sqrt{2}}} + \frac{1}{\sqrt{2}}}{(2\pi t + \frac{k}{\sqrt{2}})^2 + \frac{k^2}{2}} \right] - 1 \right] =$$

$$= \frac{N}{\sqrt{2}} \left[\frac{-1/2 + \epsilon - t}{N} \frac{k/\sqrt{2} - i\sqrt{2\pi t + \frac{k}{\sqrt{2}}} + \frac{1}{\sqrt{2}}}{(2\pi t + \frac{k}{\sqrt{2}})^2 + \frac{k^2}{2}} \right] + \frac{(t - 1/2 + \epsilon) \left(\sqrt{2\pi t + \frac{k}{\sqrt{2}}} \right)}{N \left((2\pi t + \frac{k}{\sqrt{2}})^2 + \frac{k^2}{2} \right)} - 1 \right] = ..$$

$$= \frac{N}{\sqrt{2}} \left[\frac{-1/2 + \epsilon - t}{N} \frac{2k/\sqrt{2}}{(2\pi t + \frac{k}{\sqrt{2}})^2 + \frac{k^2}{2}} + \frac{(t - 1/2 + \epsilon) \left(\sqrt{2\pi t} \right)}{N \left((2\pi t + \frac{k}{\sqrt{2}})^2 + \frac{k^2}{2} \right)} - 1 \right] < 0$$ (B.2)

Where to be $.. < 0$ is justified by:

(1) $N = \sqrt{\frac{1}{2\pi}}$,

(2) Both numerator and denominator have: $\sqrt{\frac{t}{2\pi}}(2\pi t)$.

At numerator, for $|\epsilon| < 1/2$ and $k \geq 1$ we have to add negative quantities, while at denominator we add all positive quantities .

In [3 p. 141-142] it is chosen $r = 2$, but , in order (A.8) to converge $r > 1$ is enough.
So the numerator module of the integrand in (A.2) on \(L_0 \), is max in \(x = \text{Boundary}(L_0, L_1) = a + \frac{|a|}{r} e^{i \frac{\pi}{4}} \); see B.1.

As \(\ln(w) = \ln |w| + i \angle[w] \) and \(|e^w| = e^{Re[w]} \), with complex \(w \), So

\[
e^{(\frac{-t}{2} + it) \ln|a - \frac{|a|}{r} e^{i \frac{\pi}{4}}|} = \left|\sqrt{2\pi t} e^{\frac{-t}{2} - i \left(1 + \frac{1}{r \sqrt{2}}\right)}\right|
\]

then the numerator module of the integrand in (A.2) is at most:

\[
e^{\Re\left[\left(-\frac{t}{2} + it\right) \ln\left(-a - \frac{|a|}{r} e^{i \frac{\pi}{4}}\right)\right] - N \frac{|a|}{r \sqrt{2}}} = \left|\sqrt{2\pi t} e^{\frac{-t}{2} - i \left(1 + \frac{1}{r \sqrt{2}}\right)}\right|
\]

remembering \(a = i \sqrt{2\pi t} \) and \(N + p = \sqrt{\frac{t}{2\pi}} \), we have:

\[
-N \frac{|a|}{r \sqrt{2}} = - \left(\sqrt{\frac{t}{2\pi}} - p\right) \frac{\sqrt{2\pi t}}{r \sqrt{2}} = - \frac{t}{r \sqrt{2}} + p \frac{\sqrt{\pi t}}{r} \quad 0 \leq p < 1
\]

Or in other words: we can elaborate \(-N \frac{\sqrt{\pi t}}{r}\) to get:

\[
-N \frac{\sqrt{\pi t}}{r} < -(N - 1) \frac{\sqrt{\pi t}}{r} \leq - \left(\sqrt{\frac{t}{2\pi}} - 1\right) \frac{\sqrt{\pi t}}{r} = - \frac{t}{r \sqrt{2}} + \frac{\sqrt{\pi t}}{r}
\]

besides

\[
\Im\left[\ln\left(-a - \frac{|a|}{r} e^{i \frac{\pi}{4}}\right)\right] = \Im\left[\ln(a) + \Im\left[-1 + \frac{i}{r} e^{i \frac{\pi}{4}}\right]\right] = -\frac{\pi}{2} + \Im\left[-1 + \frac{i}{r} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)\right]
\]

so we can write:

\[
e^{-t \Im\left[\ln\left(-a - \frac{|a|}{r} e^{i \frac{\pi}{4}}\right)\right] - N \frac{|a|}{r \sqrt{2}}} = e^{-t \left(-\frac{\pi}{2} - \arctan\left(\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} + 1}\right)\right)}\left(-N \frac{\sqrt{\pi t}}{r}\right)
\]

defining further:

\[
K_0(r) := \arctan\left(\frac{1}{r \sqrt{2} + 1}\right) - \frac{1}{r \sqrt{2}} \quad 1 < r \leq 2
\]

we can write (B.3) as:

\[
\left|\sqrt{2\pi t} e^{\frac{-t}{2} - i \left(1 + \frac{1}{r \sqrt{2}}\right)}\right| e^{-t \left(-\frac{\pi}{2} - \arctan\left(\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} + 1}\right)\right)}\left(-N \frac{\sqrt{\pi t}}{r}\right)
\]

taking \(p = 1 \), we can bound the numerator module of the integrand in (A.2) i.e. (B.3) with:

\[
< \left|\sqrt{2\pi t} e^{\frac{-t}{2} - i \left(1 + \frac{1}{r \sqrt{2}}\right)}\right| e^{-t \left(-\frac{\pi}{2} - \arctan\left(\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} + 1}\right)\right)}\left(-N \frac{\sqrt{\pi t}}{r}\right)\left(1 \leq r \leq 2\right)
\]

because
\[e^{-N \sqrt{\pi t}} < e^{-\frac{1}{r \sqrt{2}} \frac{\sqrt{\pi t}}{r^2}} \]

but:

\[1 < \left| \left(1 + \frac{1}{r \sqrt{2}} \right) - i \frac{1}{r \sqrt{2}} \right| < 2 \quad \forall r : 1 < r \leq 2 \]

We can bound, by (B.5), the numerator value on \(L_0 \) with the value that \(|(-x)^{s-1}e^{-Nx}| \) assumes on \(\text{Boundary}(L_0, L_1) \), so the integral on \(L_0 \) is bounded by:

\[u = \Re(x) \text{ from } u = \frac{|u|}{r \sqrt{2}} = \frac{\sqrt{\pi t}}{r} \text{ to } \infty \]

\[\int_{L_0} \frac{|dx|}{|e^x - 1|} \leq \int_{L_0} e^{-u} \frac{\sqrt{2} du}{1 - e^{-u}} \quad u = \Re(x) \quad x = i\sqrt{2\pi} + \frac{\sqrt{2t\pi}}{r} e^{i\pi/4} k \quad |dx| = \sqrt{2} du \]

(B.6)

because: \(|1 - e^{-x}| = \sqrt{(1 - e^{-\Re(x)} \cos(-\Im(x)))^2 + (e^{-\Re(x)} \sin(-\Im(x)))^2} \geq |1 - e^{-\Re(x)} \cos(-\Im(x))| \geq |1 - e^{-\Re(x)}| = 1 - e^{-u} \). And we e have \(\Re(x) > 0 \)

In other words we change an integral on “x” complex variable with an integral on real variable \(u \)

which gives us a bound of module.

And we can write

\[\int_{L_0}^\infty \frac{|dx|}{|e^x - 1|} \leq \int_{L_0}^\infty e^{-u} \frac{\sqrt{2} du}{1 - e^{-u}} < \sqrt{2} \frac{|-e^{-u}|}{\sqrt{\pi t}} = \frac{\sqrt{2} e^{-\frac{\sqrt{\pi t}}{r}}}{1 - e^{-\frac{\sqrt{\pi t}}{r}}} \]

(B.7)

Afterword \(\int_{L_0}^\infty \frac{|dx|}{|e^x - 1|} \) is multiplied by B.5

Then the \(A' R(t, \epsilon)e^{\frac{j\pi t}{4}} \) in A.2 module (\(\text{divided by } F(t) \text{ for } 4.7 \)) is bounded above (because of (B.2) by):

\[\left| e^{Re_2 + Re_3 + i(3_2 + \bar{3}_3)} \right| e^{\frac{j\pi}{4} e^{-\pi t/2} e^{-i\theta_4(t)}} \left(\frac{2\pi}{t} \right)^{\frac{1}{2} + \epsilon} |e^{-\frac{j\pi}{4} - ie^{\frac{i\pi}{4}} e^{-t\pi}}| \left(\sqrt{\frac{2\pi}{t}} \right)^{\epsilon} \left(\frac{2\pi}{t} \right)^{-\frac{1}{2}} 2 e^{K_0}(t) e^{\frac{\sqrt{\pi t}}{r}} \int_{L_0} |dx| \frac{\sqrt{2\pi t}}{r^{\epsilon - 1}} \right| \]

\[= \left(\frac{2\pi}{t} \right)^{\frac{1}{2} + \epsilon} |e^{-\frac{j\pi}{4} - ie^{\frac{i\pi}{4}} e^{-t\pi}}| \left(\sqrt{\frac{2\pi}{t}} \right)^{-\frac{1}{2}} 2 e^{K_0}(t) e^{\frac{\sqrt{\pi t}}{r}} \int_{L_0} |dx| \frac{\sqrt{2\pi t}}{r^{\epsilon - 1}} \right| \]

simplifies with \(\frac{1}{(2\pi)^{\frac{1}{2} + \epsilon}} \) resulting in :

\[= \left(\frac{2\pi}{t} \right)^{\frac{1}{2} + \epsilon} |e^{-\frac{j\pi}{4} - ie^{\frac{i\pi}{4}} e^{-t\pi}}| \left(\sqrt{\frac{2\pi}{t}} \right)^{-\frac{1}{2}} 2 e^{K_0}(t) e^{\frac{\sqrt{\pi t}}{r}} \int_{L_0} \frac{|dx|}{|e^x - 1|} \approx .. \]

\[t > 10 \quad \forall \epsilon \quad |e^{-\frac{j\pi}{4} - ie^{\frac{i\pi}{4}} e^{-t\pi}}| \to 1 \]

\[.. \approx \left(\frac{2\pi}{t} \right)^{\frac{1}{2} + \epsilon} |e^{-\frac{j\pi}{4} - ie^{\frac{i\pi}{4}} e^{-t\pi}}| \left(\sqrt{\frac{2\pi}{t}} \right)^{-\frac{1}{2}} 2 e^{K_0}(t) e^{\frac{\sqrt{\pi t}}{r}} \int_{L_0} \frac{|dx|}{|e^x - 1|} < ... \]

32
See (3.28) and (3.27) \(\Re_2 + \Re_3 = \left(\frac{27}{96} + f(\epsilon) \right) \frac{1}{t^2} + (\ldots) \frac{1}{t} \ldots \) so they can be neglected, for \(t > 10 \) and applying [B.7] we have

\[
.. < \left(\frac{27}{96} + f(\epsilon) \right) \frac{1}{t^2} + (\ldots) \frac{1}{t} < \frac{27}{96} + f(\epsilon) \frac{1}{t^2} + (\ldots) \frac{1}{t} = \text{UpperBound}_L(t)
\]

So we reach an stricter upper bound with respect to [3, p. 143]; see (A.2). So we have:

\[
\left(+s \right) \Gamma \left(\frac{1-s}{2} + 1 \right) \frac{\pi^{(1-s)/2}}{(2\pi)^{s-1} \sin(\pi s/2) 2\pi i} \int_{L_0} (-x)^{s-1} e^{-Nx} dx < \ldots
\]

\[
... < \left(\frac{27}{96} + f(\epsilon) \right) \frac{1}{t^2} + (\ldots) \frac{1}{t} < \frac{27}{96} + f(\epsilon) \frac{1}{t^2} + (\ldots) \frac{1}{t} = \text{UpperBound}_L(t)
\]

Note that upper bound on \(L_0 \) ([B.8]) is decreasing while \(\epsilon \) increasing.

B.2 \(L_1 \) spurious contribution

To compute (A.16) in Appendix A, we used, like [3, p. 147], a contour integral which gives an exact result (see (4.5) and (A.19)) on entire line \(L \supset L_1 \).

We are interested in the evaluation between \(\text{Boundary}(L_0, L_1) = a + |a| e^{i\pi/4} ; 1 < r \leq 2 \) and \(\text{Boundary}(L_1, L_2) = a - |a| e^{i\pi/4} ; 1 < r \leq 2 \), where \(a \) is the saddle point given in (2.4).

Here we evaluate the spurious contribution inserted with this contour integral in \(L - L_1 \), that in (4.3), is referred as :

\[
\gamma_{L - L_1} \quad \text{(B.9)}
\]

For standard Gaussian formulas see [6, p. 183].

\[
G(x) = \left(\frac{c}{\pi} \right)^{1/2} e^{-cx^2} = \frac{1}{\sqrt{2\pi \sigma}} e^{-x^2/2 \sigma^2} ; \quad c = \frac{1}{2\sigma^2}
\]

An approximate expression for large values of argument \(x > 2\sigma \) can be obtained from :

\[
\int_{-\infty}^{\infty} G(x) dx = \text{Erf} \left(y = \frac{x}{\sigma \sqrt{2}} \right) \approx 1 - \frac{e^{-y^2}}{\sqrt{\pi} y} \left(1 - \frac{1}{2y^2} + \frac{1 \times 3}{(2y^2)^2} - \frac{1 \times 3 \times 5}{(2y^2)^3} + \ldots \right) \quad \text{for} \quad y > \sqrt{\frac{2}{\sigma}}
\]

(B.10)

Now let us focus (A.16) on :

\[
\int_{L \to L_1} e^{p(x-a)} \frac{e^{(x-a)^2/4}}{e^x - 1} g(x-a) dx
\]

(B.11)

See also [3, p. 146].

Putting:

\[
x - a = \sqrt{2} y = y \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right)
\]

(B.12)
namely:

\[x = a + \sqrt{i}y = i\sqrt{2\pi}t + \sqrt{i}y = 2 \left(\frac{y}{2\sqrt{2}} + i \left(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}} \right) \right) \] \hspace{1cm} (B.13)

As \((\sqrt{i})^2 = i\) we have:

\[e^{i(x-a)^2} = e^{i(\sqrt{i})^2} = e^{-(y)^2} \]

and:

\[e^{p(x-a)} = e^{p(\sqrt{\frac{\pi}{2}} + \sqrt{\frac{\pi}{2}})} \]

Let us pose \(g(x - a) = 1\) and compute:

\[\frac{|e^{p(x-a)} e^{i(x-a)^2}|}{e^x - 1} \]

for \(\frac{1}{e^x - 1}\) on the line \(L_1\) we have

\[\frac{1}{e^x - 1} = \frac{e^{(-\frac{1}{2})x}}{e^{x/2} - e^{-x/2}} = 2 e^{(-1)\left(\frac{y}{2\sqrt{2}} + i(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}})\right)} \]

\[\sinh \left(\frac{y}{2\sqrt{2}} + i \left(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}} \right) \right) \]

\[= \sinh \left(\frac{y}{2\sqrt{2}} \right) \cos \left(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}} \right) + i \cosh \left(\frac{y}{2\sqrt{2}} \right) \sin \left(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}} \right) \]

and taking the module:

\[2 \frac{e^{-\frac{y}{2\sqrt{2}} - i(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}})}}{\sinh \left(\frac{y}{2\sqrt{2}} + i \left(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}} \right) \right)} \leq 2 \frac{e^{-\frac{y}{2\sqrt{2}}}}{\sqrt{\sinh^2 \left(\frac{y}{2\sqrt{2}} \right) \cos^2 \left(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}} \right) + \cosh^2 \left(\frac{y}{2\sqrt{2}} \right) \sin^2 \left(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}} \right)}} \]

If we avoid \(y = 0\) and the points \(\in L_1\), as :

\[\sinh[\alpha] < \cosh[\alpha] \quad \forall \alpha \in \mathbb{R}, \]

\[\left\{ \begin{array}{c}
2 \frac{e^{-\frac{y}{2\sqrt{2}} - i(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}})}}{\sinh \left(\frac{y}{2\sqrt{2}} + i \left(\sqrt{\frac{\pi t}{2}} + \frac{y}{2\sqrt{2}} \right) \right)}_{y \notin L_1} < 2 \frac{e^{-\frac{y}{2\sqrt{2}}}}{\sinh \left(\frac{y}{2\sqrt{2}} \right)}_{y \notin L_1} \quad \{ \begin{array}{c}
< 2 \quad \text{for } y < 0 \\
\approx 2e^{-\frac{y}{\sqrt{2}}} \quad \text{for } y > 0
\end{array} \}
\]

For others factors of integrand, by \(B.12\):

\[\text{...} \]

34
\[
|e^{p(x-a)} e^{i(x-a)^2/4\pi^2}| = |e^{py((1/\sqrt{2}) + i/\sqrt{2}) e^{-y^2/4\pi}}| = e^{(\sqrt{2}y - y^2/4\pi)}
\] (B.15)

The module \((B.15) \) has a Gaussian shape, with \(\sigma = \sqrt{2\pi} \approx 2.5066 \), and, the max at \(y_{\text{max}} = \frac{2\pi}{\sqrt{2}} \approx p \times 4.4428 \approx p\sigma \times 1.772 \); \(0 \leq p \leq 1 \)

While \((r \approx 1) : -|a| < y < |a| = \sqrt{2\pi t} \approx \sqrt{t} \times 2.5066 = \sqrt{t} \times \sigma \)

Or, if we follow [3, p. 141] i.e. \(r = 2 : -\frac{|a|}{2} < y < \frac{|a|}{2} \).

If \(t = 20, p = \sqrt{t/(2\pi)} - \left| \sqrt{t/(2\pi)} \right| = 0.7841 \).

So we have the maximum of Gaussian shape at:

\[p\sigma \times 1.772 = \sigma \times (0.7841 \times 1.772) = 1.3894 \times \sigma \]

See (2.4): \(|a| = \sqrt{2\pi t} \approx \sqrt{t} \times \sigma = 4.472\sigma \).

So for \(r \geq 1 \) we have a distance of Gaussian maximum to the boundary given by:

\[(4.472 - 1.38)\sigma = 3.19\sigma \]

So let us call

\[\text{Contribution}_{y \notin L_1} = \int_{y \notin L_1} e^{(\frac{ty}{\sqrt{2}} - t^2/4\pi)} dy \]

the additional spurious contribution that enters in contour integration of \((B.11) \), both for positive or negative \(y \), taking into account \((B.14) \).

And let us call

\[\text{Contribution}_{y \in L_1} = \int_{y \in L_1} e^{(\frac{ty}{\sqrt{2}} - t^2/4\pi)} dy \]

the contribution of the integral in \(-|a| < y < |a|\) for \(t = 20 \).

Then we have:

\[|\text{Contribution}_{y \notin L_1}| \times 0.003 > |\text{Contribution}_{y \in L_1}| \] (B.16)

because \((B.11) \), Gaussian beyond \(3\sigma \). If we take \(r = 2 \) like in [3, p. 141] the boundary is at \(\frac{|a|}{2} = 2.237\sigma \) and we ought to choose a \(t > 20 \) in order to reach the same \(3\sigma \) distance of border from Gaussian maximum .

Anyhow with \(t > 100 \) \((B.16) \) holds with huge margin .

This analysis together with fig. [3] and \((B.28) \), explains why the case study of \(\xi(t, \epsilon = 0) \), in [3, p. 155] presents a very good match with Haselgrove tabel [3, p. 122] at least from \(t > 18 \). Besides we have to take into account \((B.14) \) which lowers further the contributions at right. Instead spurious contribution at left are multiplied by \(\approx 2 \), but distance from \(\text{Boundary}(L_1, L_2) \), in worst case \((p = 0) \), is, for \(t > 20 \): \(|a| = \sqrt{2\pi t} \approx \sqrt{t} \times \sigma > 4.472\sigma \). With \((B.10) \) we can appreciate the corresponding \(\Delta R_R \) in \((B.28) \) and compare with data in fig. 3.
B.3 Upper bound of Main integral on \(L_2\) path

We follow [3, p. 142] “Estimation of the integral away from saddle point”, second case \(j=2\), with the only difference of introducing \(\epsilon \neq 0\). The boundary of \(L_2\) segment are:

\[
\text{Boundary}(L_1, L_2) = a - \frac{|a|}{r} e^{i\frac{\pi}{2}} \quad ; \quad 1 < r \leq 2
\]

\[
\text{Boundary}(L_2, L_3) = (\text{Re}[a - \frac{|a|}{r} e^{i\frac{\pi}{2}}], -\pi(2N + 1)) \quad ; \quad 1 < r \leq 2
\]

Where \(a\) is defined in (2.4).

So, in the integration on \(L_2\), always holds:

\[
\Re[x] = -\frac{|a|}{\sqrt{2}r} = -\frac{\sqrt{\pi}t}{r} = -b
\]

The integrand denominator of (A.2) is:

\[
|e^x - 1| \geq |e^{-b} - 1| > 0.5 \quad \text{for} \quad t > 10 \quad 1 < r \leq 2
\]

As \(-N(-b) = (-\sqrt{\frac{t}{2\pi}} + p)(-b) < \sqrt{\frac{t}{2\pi}}b\), the integrand numerator of A.2 is at most:

\[
|(-x)^{\epsilon - \frac{1}{2} + i\epsilon N}e^{-Nz}| \leq \max |x|^{\epsilon - \frac{1}{2} + i\epsilon N} e^{-\epsilon \Im[\ln(-x)]}e^{\frac{\sqrt{\pi}t}{2r}b}
\]

Because \(\epsilon - 1/2 \leq 0\) the \(\max |x|^{\epsilon - \frac{1}{2}}\) is positioned where \(L_2\) crosses real axis, and, it is:

\[
\max |x|^{\epsilon - \frac{1}{2}} = b^{\epsilon - \frac{1}{2}}
\]

the max value of \(e^{-t \Im[\ln(-x)]}\) happens to be where the exponent is max, i.e. where \(\Im[\ln(-x)]\) is min, namely in point \(\text{Boundary}(L_1, L_2)\) where -x phase has a minimum. We have (\(a\) is defined in [2.4]):

\[
\Im[\ln(-x)] = \Im[\ln(-a - \frac{|a|}{r} e^{i\frac{\pi}{2}})] = \Im \ln \left[-i + \frac{1}{r \sqrt{2}} + i \frac{1}{r \sqrt{2}} \right] = \Im \ln \left[(1 - \frac{1}{r \sqrt{2}} + i \frac{1}{r \sqrt{2}}) \right] = -\frac{\pi}{2} + \arctan \left(\frac{1}{1 - \frac{1}{r \sqrt{2}}} \right) = -\frac{\pi}{2} + \arctan \left(\frac{1}{\sqrt{2r} - 1} \right)
\]

So:

\[
\max_{on \ L_2} \left\{ e^{-t \Im[\ln(-x)]} \right\} = e^{\frac{t}{2}} e^{-t \arctan \left(\frac{1}{\sqrt{2r} - 1} \right)}
\]

while

\[
e^{-N(-b)} < e^{\frac{t}{\sqrt{2r}}}
\]

Then the numerator integrand module in (A.2) is at most:

\[
b^{\epsilon - \frac{1}{2}} e^{\frac{t}{2}} e^{-t \left(\arctan \left(\frac{1}{\sqrt{2r} - 1} \right) - \frac{\sqrt{\pi}t}{2r} \right)} = b^{\epsilon - \frac{1}{2}} e^{\frac{t}{2}} e^{-t(K_2(r))}
\]
Where:

\[K_2(r) := - \left(\arctan \left(\frac{1}{\sqrt{2r^2 - 1}} \right) - \frac{1}{\sqrt{2r^2}} \right) \]

(B.19)

So reminding that (B.18):

\[\left(\frac{1}{e^{x}} - 1 \right)_{L_2} < 2 \]

The length of segment \(L_2 \) is about 2|a| = 2\sqrt{2\pi t} = 2r\sqrt{2\sqrt{\pi t}} = 2r\sqrt{2b}, \) then, after clearing the common factor \(F(t) \) and for \(t > 10 \) (see also (A.2)) we have:

\[
\left| e^{R_{\xi_2}^2 + R_{\xi_3}^2} \right| \frac{e^{-\pi t/2}}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(e^{-\frac{\pi}{2} \epsilon} - ie^{\frac{\pi}{2} \epsilon} e^{-t\pi} \right) \left(\sqrt{\frac{2\pi}{t}} \right)^\epsilon \int_{L_2} \frac{(\pi e^{x})^{\epsilon - 1} e^{-N_x \pi x} dx}{e^x - 1} < \\
< \frac{e^{-\pi t/2}}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{\frac{2\pi}{t}} \right)^\epsilon b^{-\frac{1}{2}} e^{\frac{1}{2} \epsilon} e^{K_2(r)t} 2r\sqrt{2b} = \\
\quad = \frac{b^{-\frac{1}{2}}}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{\frac{2\pi}{t}} \right)^\epsilon e^{K_2(r)t} 2r\sqrt{2b} = \frac{2\epsilon \pi t e^{-t(k)2r\sqrt{2}}}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{\frac{2\pi}{t}} \right)^\epsilon e^{-t(k)2r\sqrt{2}} \left(\sqrt{\frac{\pi t}{r}} \right) = \\
\quad = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{2\pi} \right)^\epsilon e^{K_2(r)t} 2r\sqrt{2} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \ldots \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{2} \right)^{\frac{1}{2}} e^{-t(k)} 2r\sqrt{2} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \\
\quad = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{2} \right)^{\frac{1}{2}} e^{K_2(r)t} 2\sqrt{r} \sqrt{2} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} e^{-t(k)2\sqrt{r} \sqrt{2}} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \\
\quad = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{2} \right)^{\frac{1}{2}} e^{K_2(r)t} \sqrt{2} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} e^{-t(k)2\sqrt{r} \sqrt{2}} \sqrt{2} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \\
\quad = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{2} \right)^{\frac{1}{2}} e^{K_2(r)t} 2\sqrt{r} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} e^{-t(k)2\sqrt{r} \sqrt{2}} \sqrt{2} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} e^{K_2(r)t} 2\sqrt{r} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} e^{-t(k)2\sqrt{r} \sqrt{2}} \sqrt{2} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \\
\quad = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{2} \right)^{\frac{1}{2}} e^{K_2(r)t} 2\sqrt{r} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} e^{-t(k)2\sqrt{r} \sqrt{2}} \sqrt{2} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \\
\quad = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} \left(\sqrt{2} \right)^{\frac{1}{2}} e^{K_2(r)t} 2\sqrt{r} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = \frac{(\frac{1}{r})^\epsilon}{(2\pi)^{\frac{3}{2}+\epsilon}} e^{-t(k)2\sqrt{r} \sqrt{2}} \sqrt{2} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = (B.20)

\[
\left(\frac{1}{r} \sqrt{2} \right)^{\frac{1}{2}} e^{K_2(r)t} 2\sqrt{r} \left(\sqrt{\frac{\pi t}{r}} \right)^{\frac{1}{2}} = Upper Bound_{L_2}(t)
\]

Note that for \(\epsilon > 0 \) the upper bound (B.20) decreases.
B.4 Upperbound of Main integral on L_3 path

We follow [3, p. 144] “Estimation of the integral away from saddle point”, third case j=3, with the only difference of introducing $\epsilon > 0$.

$$Boundary(L_2, L_3) = (-b, -\pi i(2N + 1)) = \left(-\frac{\sqrt{\pi t}}{r}, -\pi i(2N + 1) \right)$$

Denominator is:

$$e^x - 1 = e^{\Re(x) - \pi i(2N+1)} - 1 = -e^{\Re(x)} - 1 \rightarrow | -e^{\Re(x)} - 1 | > 1$$

so module of denominator is always > 1. We can write integral numerator as:

$$(-x)^{\epsilon-1/2}(-x)^{\epsilon} e^{-Nx} \quad (B.21)$$

Because $\epsilon - 0.5 \leq 0$ the max of $|x|^{\epsilon-1/2}$, on L_3, is: $|\pi(2N+1)|^{\epsilon-1/2}$, attained when $\Re(x) = 0$.

$$|(-x)^\epsilon| = |e^{(\Re[\ln(-x)]+i\Im[\ln(-x)])\epsilon}| = e^{-t \Im[\ln(-x)]}$$

What about max reached by $-t \Im[\ln(-x)]$ on L_3? Namely which is the smallest phase of $-x$ on L_3?

Note that $\angle x = \angle[-(-x)]$ is negative and then increases, so $\angle[-x]$ is positive in $Boundary(L_2, L_3)$ and then decreases (i.e. $\Re(x) \rightarrow +\infty$ namely $\Re(-x) \rightarrow -\infty$).

Answer: the phase assumed in $Boundary(L_2, L_3)$:

$$\arctan\left(\frac{\pi(2N + 1)}{b} \right) \approx \arctan\left(\frac{\pi \frac{2\sqrt{\frac{t}{2\pi}} + 1}{\sqrt{2\pi} r}}{2\sqrt{2\pi} r} \right) > \frac{\pi}{4}$$

because $|b| = \frac{\sqrt{\pi t}}{r}$ and:

$$\frac{\pi \frac{2\sqrt{\frac{t}{2\pi}} + 1}{\sqrt{2\pi} r}}{2\sqrt{2\pi} r} = \frac{r}{\sqrt{t\pi}} \left(\sqrt{2\pi} + \pi \right) = r \left(\sqrt{2} + \sqrt{\frac{\pi}{t}} \right) > 1 \; ; \text{because} \; 1 < r \leq 2$$

So

$$|(-x)^\epsilon| < e^{-t\frac{\pi}{4}} \quad (B.22)$$

So the module of $A.2$ on L_3 ($t > 10$), putting $u = \Re(x)$ and taking off $F(t)$ factor, for $B.22$ is less then:

$$\left[\left(\frac{1}{2\pi t} \right)^{\epsilon/2} e^{-t\pi/2} \right] e^{-\pi/4}[(2N + 1)\pi]^{\epsilon-1/2} \int_{-b}^{\infty} e^{-Nu} du$$

$$= \left(\frac{\sqrt{2\pi t} + \pi}{\sqrt{2\pi t}} \right)^\epsilon e^{-\frac{\pi}{4} t} \frac{e^{t/\sqrt{2\pi r}}}{\sqrt{2\pi N t} + \frac{\pi}{\sqrt{2\pi t}}} < \left(\frac{\sqrt{2\pi t} + \pi}{\sqrt{2\pi t}} \right)^\epsilon e^{-t} = UpperBound_{L_3}(t) \quad (B.23)$$
because
\[\forall t > 10 \quad (e^{-t \pi/4} - ie^{-t \pi/4}) \approx e^{-t \pi/4} \]

And considering that
\[\left| \frac{e^{i \pi t/4} e^{-i \theta_1(t)}}{(2\pi)^{1/4} e^{-i \pi/4}} \right| = 1 \]

then we have:
\[\left| \frac{e^{i \pi t/4} e^{-\pi t/2} e^{-i \theta_1(t)}}{(2\pi)^{1/2} e^{-i \pi/4}} \right| = e^{-\pi t/2} \left(\frac{2\pi}{t} \right)^{\epsilon} = \left(\frac{1}{2\pi} \right)^{\epsilon} e^{-\pi t/2} \]

While, for \(B.22 \) and \(B.21 \)
\[\int_{L_3} (-x)^{-1/2 + \epsilon} e^{-N \epsilon} \, dx \left/ e^x - 1 \right| < e^{-\pi/4} [(2N + 1) \pi]^{1/2} \int_{-b}^{\infty} e^{-N u} \, du \]
besides:
\[N[-(-b)] \approx \sqrt{\frac{t}{2\pi \epsilon}} \frac{t}{r} = \frac{t}{\sqrt{2r}} \]

and:
\[-3t \pi / 4 + t / (\sqrt{2} r) = t \left(\frac{3\pi}{4} + \frac{1}{\sqrt{2r}} \right) < t \]

Note that upper bound on \(L_3 \) \(B.23 \) \(e^{-t} \) increases with \(\epsilon \) but it is irrelevant in front of \(B.8 \) and \(B.20 \) see fig 3.

B.5 Conclusions on Upperbounds

Upper bounds can be summed up and compared with minimum value of \(R_0(t) \) (i.e. when \(p = 0.5 \), see (4.5) and (4.6)).

Summarizing results we have:

\[\text{(B.24)} \]

(i.e. \(A.2 \) along \(L_0 \) upperbound) is decreasing if \(\epsilon \) grows. \(K_0(r) \) is defined in \(B.4 \) \(K_0(r) \leq K_0(2) \approx -0.1 \quad 1 < r \leq 2 \).

\[\int_{L_0} \frac{(x)^{t-1} e^{-N \epsilon} \, dx}{e^{x-1}} < \frac{2\sqrt{2}}{\sqrt{\sqrt{2\pi}}} e^{K_0(r) t} = \text{Upper Bound}_{L_0}(t) \quad \text{(B.25)} \]

\[\text{B.20} \] (i.e. \(A.2 \) along \(L_2 \) upperbound) is decreasing if \(\epsilon \) grows. \(K_2(r) \) is defined in \(B.19 \) \(K_2(r) \leq K_2(2) \approx -0.2 \quad 1 < r \leq 2 \).

\[\int_{L_2} \frac{(-x)^{t-1} e^{-N \epsilon} \, dx}{e^{x-1}} < \frac{2\sqrt{2}}{\sqrt{\sqrt{\sqrt{2\pi}}}} \left(\frac{t}{\pi} \right)^{1/4} e^{K_2(r) t} = \text{Upper Bound}_{L_2}(t) \quad \text{(B.26)} \]
Figure 3: Comparison of overall Upperbounds ratio $\frac{\Delta R}{R}$ (B.28) with parameters r (B.1) and ϵ. With $(r, \epsilon) = (1.05, \pm 0.5)$ we have the two lower curves, and, $\epsilon = +0.5$ is the lower one between the two. For upper curves we have $(r, \epsilon) = (2, \pm 0.5)$, and, the lower curve is always with $\epsilon = +0.5$. Of course the case $\epsilon = 0$ is midway between found bounds for $\epsilon = \pm 1/2$. Due to the conjugate symmetry of $\xi(1/2 + \epsilon + it)$ with respect to ϵ, it is the lower UpperBound that applies. So errors in (4.1) , and similar formulas, is maximum for $\epsilon = 0$. The aim of error upperbounds in extended $Z(t, \epsilon)$ less or equal to the same in $Z(t)$ is so met Here, differently as in [3, p. 141], (B.1) and (B.17), in $a \pm \frac{|a|}{r} e^{\pm \pi \frac{3}{4}}$ the parameter r has been left free to change in the interval $1 < r \leq 2$. This choice gives a more realistic evaluation of upperbounds error of (4.1), and similar formulas, at low t values. In [3, p. 144] it is suggested the value $t \geq 100$ to get a practically error free expression. Considering the figure, it appears pessimistic, and, only with r close to 2 (as chosen in [3]) is justified. The only restriction on r is linked to convergence of (A.8). The convergence speed is not an issue. By the way this explains the good match noted in [3, p. 155] between $Z(t > 18, \epsilon = 0)$ and Haselgrove table [3, p. 122].
\(B.23 \) (i.e. \(A.2 \) along \(L_3 \) upperbound) increases with \(\epsilon \) but the factor \(e^{-t} \) cancel the contribution.

\[
\int_{L_3} \frac{(-x)^{s-1}e^{-N\pi dx}}{R_0(t)_{p=0.5}} < \frac{\left(\frac{\sqrt{2\pi t+\pi}}{\sqrt{2\pi t}} \right)^{\epsilon}}{e^{-t}} = UpperBound_{L_3}(t)
\]

Of course the upper bound of the sum is less than the sum of the upper bounds, so we have an overall upperbound ratio of:

\[
\left| \int_{L_0,L_2,L_3} \frac{(-x)^{s-1}e^{-N\pi dx}}{e^{\pi-1}} \right| = \frac{\Delta R}{R} < UpperBound_{L_0}(t) + UpperBound_{L_2}(t) + UpperBound_{L_3}(t)
\]

Of course the case \(\epsilon = 0 \) is between \(\epsilon = \pm 1/2 \). Here, in \((B.1) \) and in \((B.17) \), differently that in \([3, p. 141]\) the parameter \(r \) has been left free to change in the interval \(1 < r \leq 2 \). This choice gives a more realistic evaluation of upper-bounds error of \((4.1) \) and similar formulas at low \(t \) values. In \([3, p. 144]\) it is suggested the value \(t \geq 100 \) to get a practically error free expression.

In light of above consideration, this appears pessimistic because only with \(r \) close to 2 is justified. The only restriction on \(r \) is linked to convergence of \([A.8]\). The convergence speed is not an issue. By the way, this explains the good match noted in \([3, p. 155]\) between \(Z(t > 18, \epsilon = 0) \) and Haselgrove table \([3, p. 122]\). The spurious contribution \((B.9)\) is an insignificant fraction of \(R_0(t) \) at least for \(t > 20 \).

Besides the bound with \(\epsilon > 0 \) (and so also for \(\epsilon < 0 \)) is lower than with \(\epsilon = 0 \).

We can affirm that \((4.8)\) can be used profitably from \(t = 20 \) with \(\epsilon \) in critical strip and beyond.

Acknowledgments

I thank professor Richard B. Paris for his kind support and for useful discussions. I also thank Paolo Lodone for useful discussions and for contributing in some points of this work.

Bibliography

References

[1] Bombieri E. The Riemann Hypothesis”, Official Problem Description, Clay foundation, www.claymath.org

[2] J. Brian Conrey “The Riemann Hypothesis” 2003 notices of the AMS

[3] Edwards H.M. “Riemann Zeta Function” Academic Press 1974

[4] Gourdon Xavier “ The 10^{13} first zeros of the Riemann Zeta function, and zeros computation at very large height “ October 24th 2004

[5] Ivi´c Aleksandar arXiv:math/0311162v1 [math.NT] 11 Nov 2003
[6] Murray R, Spiegel Manuale di Matematica ETAS Libri 1974

[7] Pugh Glendon Ralph “ The Riemann -Siegel formula and large scale computation of the Riemann zeta function ” B.Sc., University of New Brunswick, 1992

[8] Pugh Glendon Ralph “ An analysis of the Lanczos gamma approximation ”1999

[9] Riemann Bernhard ,“Uber die Anzahl der Primzahlen unter einer gegebenen Grosse”,Monatsberichte der Berliner Akademie 1859. (an English translation is included in [Reference 3] pag. 299] and available on www.claymath.org)