The Role of T-Cell Subsets in Chronic Inflammation in Celiac Disease and Inflammatory Bowel Disease Patients: More Common Mechanisms or More Differences?

Tadakazu Hisamatsua Ulrike Erbenb, c Anja A. Kühlb, c

aThe Third Department of Internal Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan; bMedical Department (Gastroenterology/Infectious Diseases/Rheumatology) and cResearch Center ImmunoSciences, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany

\textbf{Abstract}

\textbf{Background:} Chronic intestinal inflammation due to noninfectious causes represents a growing health issue all over the world. Celiac disease as well as inflammatory bowel diseases (IBD) like Crohn’s disease and ulcerative and microscopic colitis involve uncontrolled T-cell activation and T-cell-mediated damage as common denominators. Therefore, diagnosis and treatment decisions clearly benefit from the knowledge of the intricacies of the systemic and the local T-cell activity. \textbf{Summary:} Depending on the cytokine milieu, CD4+ T cells can differentiate into proinflammatory T helper 1 (Th1), anti-inflammatory Th2, antimicrobial Th17, pleiotropic Th19, tissue-instructing Th22 cells, and in the regulatory compartment forkhead box protein 3+ Treg, suppressive Tr1 or Th3 cells. Additionally, follicular Th cells provide B-cell help in antibody class switching; cytotoxic CD8+ T cells target virus-infected or tumor cells. This review discusses our current knowledge on the contribution of defined T-cell subpopulations to establishing and maintaining chronic intestinal inflammation in either of the above entities. It also puts emphasis on the differences in the prevalence of these diseases between Eastern and Western countries. \textbf{Key Messages:} In celiac disease, the driving role of T cells in the lamina propria and in the epithelium mainly specific for two defined antigens is well established. Differences in genetics and lifestyle between Western and Eastern countries were instrumental in understanding underlying mechanisms. In IBD, the vast amount of potential antigens and the corresponding antigen-specific T cells makes it unlikely to find universal triggers. Increased mucosal CD4+ regulatory T cells in all four entities fail to control or abrogate local inflammatory processes. Thus, prevailing differences in the functional T-cell subtypes driving chronic intestinal inflammation in celiac disease and IBD at best allow some overlap in the treatment options for either disease.

\textbf{Introduction}

Chronic intestinal inflammation clinically represents itself by frequent/recurrent vomiting, periods of (nonbloody) diarrhea and/or obstipation, abdominal pain, rectal bleeding, internal cramps and spasm, nausea, fever, T. Hisamatsu and A.A. Kühl contributed equally to this work.
weight loss and overall developmental delay in children. With infectious causes excluded, celiac disease and inflammatory bowel diseases (IBD) represented by Crohn’s disease (CD), ulcerative colitis (UC) and microscopic colitis cover the main range of diagnoses for the self-driving immune disorders. Differences in the genetic backgrounds, lifestyles and diet of the populations define the uneven distribution of these conditions throughout the world (table 1). Celiac disease peaks at two different ages, usually setting on in early childhood after weaning or in the 4th decade of life [9]. Although it affects more women than men, the latter show more severe manifestations [10]. With the advent of screening methods, celiac disease is diagnosed in an increasing number of individuals without overt clinical symptoms [11]. Celiac disease is very rare in Japan, where rice is the staple food [3]. In contrast, celiac disease is frequent (about 1 out of 100 people) in Western countries [1, 2]. As for the main entities of IBD, CD and UC can manifest at any age, but the peak of onset is 15–30 and 20–40 years of age, respectively, with both sexes equally affected [12]. The onset of microscopic colitis occurs at late ages (50–60 years). Overall, it is rare and affects more women than men [13]. While CD and UC are about 10 times more frequent in Western than in Eastern countries, the prevalence of microscopic colitis, though overall rare, is similar in developed countries [7, 8]. These epidemiologic background data corroborate chronic intestinal inflammation as a major health issue. They also highlight that detailed knowledge of cellular mechanisms driving the diseases helps to understand the relative contribution of external and intrinsic factors leading to the different types of chronic intestinal inflammation. T cells of various subtypes are deeply involved in initiating, maintaining and controlling chronic inflammation. We here thoroughly reviewed the literature searching for similarities and differences in celiac disease, CD, UC and microscopic colitis with respect to the T-cell compartments. We also addressed the contribution of established regional epidemiologic differences to our knowledge on T cell-dependent mechanisms.

Celiac Disease

By its dependency on defined antigens, celiac disease represents a prototypic CD4+ T cell-dependent disease with chronic intestinal inflammation. A strict diet free of wheat and other cereals that contain gluten consisting of glutenin and gliadin ensures absence of intestinal symptoms [14]. Histopathologically, celiac disease is diagnosed by severe crypt hyperplasia and villous atrophy in the small intestine [15]. Specific antibodies, primarily autoantibodies directed at the tissue transglutaminase and antibodies directed at gliadin confirm the diagnosis [15, 16]. In persons genetically predisposed by the human leukocyte antigen (HLA) class II variants DQ2 (α1*0501, β1*0201) and/or DQ8 (α1*0301, β1*0302), CD4+ T cells recognize gluten-derived peptides that are deaminated by the tissue transglutaminase and effectively presented by the said HLA-DQ variants [17, 18]. Antigen-specific activated effector CD4+ T cells release proinflammatory cytokines, predominantly interferon-γ (IFNγ) [19] and interleukin-21 (IL-21) (fig. 1) [20]. Albeit crucial to initiate the immunopathology in the small intestine, various other T-cell subsets are involved in sustaining the heterogeneous cytokine milieu maintaining or counteracting the local inflammation. Besides gluten-specific CD4+ T cells within the lamina propria, intraepithelial lymphocytes (IEL) are massively increased and considered a hallmark of celiac disease [21–23]. These IEL are CD8+ T cells carrying the αβ T-cell receptor (TCR) or CD4+CD8–γδTCR+ T cells [24]. Innate IEL are drastically reduced upon intestinal inflammation in celiac disease [25, 26]. Both αβ+ and γδ+ IEL express NKG2D [27], a receptor recognizing self-proteins induced by stress, infection and transformation [28], while the inhibitory NKG2A receptors are downregulated [29]. NKG2D is upregulated by IL-15 produced by epithelial cells and the myeloid-cell compartment within the lamina propria [30, 31]. The oxidative stress in celiac disease [32, 33] leads to upregulation of the major histocompatibility complex class I chain-related protein A (MICA), the ligand for NKG2D, on epidermis and lamina propria epithelial cells."

Table 1. Prevalence of noninfectious chronic intestinal inflammation in different regions of the world

	USA	Europe	Asia
Celiac disease	710 [1]	1,000 [2]	<5 [3]^a
CD	241 [4]	1.5–213 [5]	13.5 [6]^a
UC	263 [4]	2.4–294 [5]	21.2 [6]^a
Microscopic colitis			
Lymphocytic	39.3 [7]	~39.3 [8]	~39.3 [8]
Collagenous	63.7 [7]	~63.7 [8]	~63.7 [8]

Numbers of patients suffering from the condition per 100,000 persons are given. Data from most recent available references. ^a Japan only.
Hence, upregulation of NKG2D on IEL and the upregulation of MICA on epithelial cells results in IEL-mediated cytolysis of epithelial cells [35]. For induction of villous atrophy, the IEL must acquire a fully activated NK phenotype [29]. In celiac disease, IEL express high levels of IL-15Ra binding IL-15 with high affinity [36]. In these IEL, IL-15 enhances production of IFNγ and tumor necrosis factor-α (TNFα) [30], induces proliferation [30] and has an antiapoptotic effect [37].

A small group of celiac disease patients do not respond to strict gluten-free diet and present with large numbers of aberrant IEL in a type 2 refractory celiac disease [38]. The abnormal cell phenotype includes the los of surface CD3 with preservation of cytoplasmic CD3ε [39, 40] and rearranged TCRγ chains [38, 41]. These abnormal and highly proliferative IEL are suggested to give rise to T-cell lymphoma [42], while others suggest innate IEL giving rise to enteropathy-associated T-cell lymphoma (EATL) [26, 43]. However, lymphoma in celiac disease patients is not confined to the EATL [44].

Besides its effect on IEL, IL-15 acts on other immune cells within the mucosa. It enhances IL-21 production in lamina propria lymphocytes (LPL) [45] and renders effector T cells resistant to suppression by forkhead box P3 (Foxp3)-positive regulatory T cells (Treg) [46]. Foxp3+ is the master regulator of the development of Treg, which were first identified as CD4+CD25high T cells [47]. In humans, Foxp3 gene mutation also causes multiorgan inflammatory disease known as immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome [48, 49]. Treg also express high levels of IL-15Ra and are increased in the lamina propria of celiac disease patients, where they are mainly located beneath the epithelium [36, 50]. So far, the cytokine profile of these mucosal Treg was never examined. It is likely that they produce IL-10 and transforming growth factor-β (TGFβ) [51]. Early studies found normal IL-10 levels in the intestinal mucosa [32, 52]. Later, more sensitive approaches revealed increased levels of mucosal IL-10 mRNA [53]. As for the lymphocytes, IEL but not LPL are major sources of this IL-10 [54, 55].

Regarding mucosal TGFβ production in celiac disease patients, LPL seem to be the main producers [56, 57]. Although mucosal TGFβ seems to be inefficient in counterbalancing the proinflammatory milieu with IL-15 being a strong opponent, TGFβ inhibits IL-2- but not IL-15-dependent T-cell proliferation [58, 59]. Additionally, low concentrations of TGFβ in the presence of proinflammatory cytokines promote T helper 17 (Th17) differentiation [60]. Mucosal Th17 cells have been found in celiac disease [61–64], and elevated levels of IL-17A are associated with late-stage disease when villous atrophy has developed [65]. The main producers of IL-17 are CD4+ and CD4+CD8+ T cells [63]. The majority of these Th17 cells also produce IFNγ [63]. Gliadin-specific Th17 cells display functional plasticity playing a dual role as effector memory cells expressing CD45RO, the CC chemokine receptor 6, the natural killer cell receptor NKR-P1A and the IL-23 receptor [62]. They also produce proinflammatory cytokines (IL-17, IFNγ and IL-21) as well as the mucosa-protective cytokine IL-22 and regulatory TGFβ [62].

All T-cell subsets involved in celiac disease seem to be antigen-specific: gliadin-specific CD4+ T cells [18], gliadin-specific Th17 cells [62], tissue transglutaminase-specific T cells [66, 67], antigen-specific IEL [68]. Gliadin might be recognized by cytotoxic CD8+ T cells due to epitope spreading [69].
Inflammatory Bowel Disease

CD and UC are the two main forms of IBD. CD is a chronic inflammatory disease that could involve the entire digestive organ, especially the small bowel and the colon, leading to the progressive destruction of the alimentary tract. Inflammation in CD observed in the mucosal, submucosal and muscular layers causes intestinal complications such as fistulae, perforation and stricture. Chronic inflammation in UC mainly affects the colon and rectum. Endoscopic and radiological examination reveals continuous and diffuse mucosal inflammation from the rectum to the proximal colon. In UC, fistula formation is relatively rare compared to CD, since the mucosal layer is a main target of inflammation. Another form of IBD, microscopic colitis, is mainly an inflammation of the large intestine, though the terminal ileum can be involved [70]. The term ‘microscopic’ refers to the fact that diagnosis demands microscopic examination. The patients suffer from chronic nonbloody diarrhea. On histology, lymphocytic and collagenous colitis appear as different entities from chronic nonbloody diarrhea. On histology, lymphocytic colitis, an increase in IEL to over 20 IEL counts per 100 enterocytes accompanies an architectural normal colonic mucosa, a surface epithelial disarray and a mixed leukocytic infiltrate in the lamina propria [72–74]. Total IEL numbers are lower in collagenous colitis than in lymphocytic colitis [75]. Collagenous colitis shows an eponymous subepithelial collagen band of over 10 μm without alterations in the overall local lymphocyte counts [73, 76, 77].

In the local immunity of the intestinal mucosa, imbalances of T-cell subsets [e.g. Th1, Th2, Th17, Treg, natural killer T (NKT) cells] in the intestinal mucosa are hallmarks of IBD. The recent progress of research on the microbiota in mice has demonstrated that the intestinal flora can regulate T-cell differentiation [78–82], suggesting that dysbiosis may play a role in IBD pathogenesis.

Crohn’s Disease

Before the discovery of Th17, the classical concept of CD as a Th1-dominant disease was widely accepted. Numerous studies demonstrate that lamina propria CD4+ T cells isolated from CD patients produce high levels of IFNγ (Th1). After the discovery of Th17 subsets, it has been reported that the IL-17-producing T-cell population (Th17) is also increased in the lamina propria of CD patients as well as Th1 cells. At present, dysregulation of the innate immune system may trigger the onset of enhanced Th1- and Th17-acquired immune responses in CD. IL-12 and IL-23, mainly produced by dendritic cells and macrophages, play a key role in inducing the differentiation to Th1 cells. Indeed, mucosal IL-12 and IL-23 levels are elevated in CD patients [83, 84]. Dendritic cells from the mesenteric lymph nodes in CD generated Th1 and Th17 cells in vitro [85]. Abnormally activated intestinal macrophages in CD patients producing abundant TNFα, IL-6, IL-23 and TNF-like ligand 1A in response to commensal bacteria elicit an inflammation dominated by Th1 and Th17 cells [86–89]. The CD14+ macrophage subset is increased within the lamina propria of CD patients [88, 89]. CD14+ macrophages also possess an antigen-presenting function inducing both Th1 and Th17 cells [86]. Interestingly, CD14+ macrophages can induce a T-cell population producing IFNγ and IL-17 in vitro. Consistently, an IFNγ+ IL-17+ T-cell population was observed in the intestinal mucosa of CD patients [90]. As for the plasticity in the T-cell development, this double-positive T-cell population is thought to differ from Th17 cells [91]. Colitis models in mice suggested a central role of the IFNγ+ IL-17+ T cells in chronic intestinal inflammation [92, 93]. IL-21, mainly produced by activated CD4+ T cells and NKT cells, is required for Th17 cell differentiation, and the level of mucosal IL-21 is elevated in CD patients [94, 95].

IL-22 is a member of the IL-10 cytokine family that was recently discovered to be mainly produced by both adaptive and innate immune cells including dendritic cells, innate lymphoid cells, NK cells and CD4+ T cells. IL-22 regulates the intestinal immune status, especially enhancing barrier integrity and epithelial innate immunity. Among memory T cells, Th17 cells produce both IL-17 and IL-22. The novel T-cell subset Th22 produces IL-22, but neither IL-17 nor IFNγ. IL-22 produced by Th22 cells and innate lymphoid cells may play a beneficial role in human CD [96, 97].

Despite accumulating evidence from experimental colitis that mucosal Treg contribute to intestinal immune homoeostasis and Treg dysfunction exacerbates colitis in mice, the role of Treg in human CD pathophysiology remains unclear. Treg in the human intestinal lamina propria were firstly identified as CD4+CD25bright cells and were increased in the lamina propria of CD patients compared to normal controls [98]. The CD4+CD25bright Treg numbers were higher in inactive than in active CD [99]. Immunohistochemical evaluation of mucosal Foxp3+ Treg corroborates the data from the periphery [99]. Treg accumulate in areas of active inflammation, including
granulomas and retain potent regulatory activity ex vivo [100]. Linking these Treg to Th17 cells in CD, the Treg population includes IL-17-producing cells [101, 102].

Ulcerative Colitis

In human UC, several studies of the mucosal cytokine profile, especially containing IL-4, IL-5 and IL-13, supported the hypothesis of UC as a Th2-associated inflammation [103–110]. As a histopathological characteristic of UC, mucosal IgG1+ plasma cell infiltration is observed, suggesting Th2 polarization. In addition, several studies demonstrated enhanced expression of Th2-associated cytokine such as IL-33 and thymic stromal lymphopoietin in colonic epithelial cells of UC patients, also suggesting a preference for Th2 polarization [111–115]. Other reports do not show Th2 polarization in UC [116–119]. The missing efficacy of type 1 IFN in clinical trials for human UC also contradicts the hypothesis of the Th2 dominance [120]. Since Th1 and Th2 cytokines are found in the inflamed colon in UC [105, 110], the Th1/Th2 balance may vary depending on the severity and duration of the disease [105, 108]. Recently, several reports suggested enhanced production of IL-13 by mucosal NKT cells [121, 122]. IL-13 produced by mucosal NKT cells is a key cytokine in the pathogenesis of oxazolone-induced colitis, a Th2-dominant colitis model representing human UC also insofar as high numbers of nonclassical NKT cells producing IL-13 are found in the colonic mucosa [122–125]. IL-13 may play a role in the pathogenesis of UC by inducing epithelial cell damage [124, 126, 127]. Despite the accumulating evidence of IL-13 as a key molecule in a Th2-dominant mouse model of colitis as well as in human UC, anti-IL-13 therapy was not efficient in clinical trials with UC patients [128, 129]. Additionally, in the actively inflamed mucosa of UC patients, IL-22+ cells were reduced [130]. In 2014, a novel helper T cell subset expressing the transcription factor PU.1 and IL-9 consequently named Th9 cells was identified in patients with UC [131]. IL-9 is closely associated with autoimmune diseases, regulates the function of the intestinal epithelial barrier and therefore plays a role in the pathogenesis of UC [132] (fig. 2).
Recent studies have demonstrated that IL-17 also contributes to the pathogenesis of UC. IL-17 is expressed in the inflamed mucosa of UC patients [83, 106, 133, 134]. Like in CD, IL-23 from CD14+CD68+ macrophages promote Th17-cell immune responses crucially contributing to the chronic local inflammation of UC [135, 136]. Additionally, the T-cell population double positive for IFNγ and IL-17 and originating from Th17 cells is not specific for CD but also present in the intestinal mucosa of patients with active UC [90].

As for the regulatory T-cell compartment, increased Treg cells were also found in UC patients [98, 99, 137]. However, an IL-17+ Foxp3+ T-cell population in the peripheral blood of UC patients had impaired suppressive function ex vivo [138].

Microscopic Colitis

So far, little is known about the specifics of T-cell contribution to the course of microscopic colitis. It remains unclear whether local expansion or infiltration is responsible for an increase in T cells [71, 139]. Absent correlation between the severity of the clinical symptoms and IEL numbers or thickness of the collagen layer as characteristic features of the two entities points to a dominance of the inflammatory infiltrates in the mucosal lamina propria [140]. The LPL composition strongly depends on the disease state and the exact origin of the samples [141], which might help to explain differences in the T-cell compartment found in independent surveys.

Immunohistochemistry clearly showed CD8+ IEL locally increased in the colon tissue [142–145]. Defining them as effector T cells, these CD8+ IEL predominantly express the transcription factor T-bet [144]. Flow cytometry indicates that CD8+ cells within the LPL might be in fact memory cells double positive for CD8 and CD4 [139, 143]. Immunohistochemistry also revealed LPL single positive for CD4 [142, 144, 145]. About 60% of the CD4+ LPL were GATA-3+ [144] pointing to Th2 cells activated by TCR dependent or independent of the IL-4 receptor [146]. Treg counts are more increased in collagenous than in lymphocytic colitis [147]. In patients initially diagnosed with lymphocytic colitis that later developed collagenous colitis, overall IEL numbers dropped while Treg counts increased [147].

Although not specific for T cells, additional but indirect evidence for the contribution of defined T-cell populations comes from studies on the local inflammatory environment as defined by cytokines and chemokines. IEL in microscopic colitis of both entities do not produce IL-15 [75]. Regarding mucosal cytokine production, mucosal mRNA of IFN-γ and IL-12/35 p35 was upregulated, while protein levels were not statistically significantly different [139]. Increased protein levels of IL-6 and TNFα were found in the mucosa of collagenous colitis but not lymphocytic colitis patients, while IL-21 was increased in both entities [139]. Immunohistochemistry also revealed increased IL-17 and IFNγ production [148]. Regarding Th2 cytokines, mucosal levels of IL-4, IL-5 and IL-10 were unaltered in microscopic colitis [139]. In the colonic mucosa of collagenous colitis patients, IFNγ, TNF, IL-17, IL-1β and IL-6 but not IL-4 or IL-10 were found enhanced [149]. Chemokines and their receptors especially associated with CD8+ T cells in colon biopsies and overall low CD4+ T-cell counts, except for Treg, provide additional indirect evidence for a central role of CD8+ T cells in both entities [71].

Taken together, a closer look at the subgroups within the intestinal T-cell compartments in microscopic colitis might shed light on the sequence of inflammatory processes in individual patients and might clarify whether the types of microscopic colitis indeed are independent entities or if and under which conditions lymphocytic colitis also precedes the collagenous type.

Common and Different T-Cell-Dependent Mechanisms in Celiac Disease and IBD

The cytokines IL-17, IL-21 and IFNγ are increased in celiac disease and IBD, while an increase in IL-15 is only attributed to celiac disease. In celiac disease, antigen-specific CD4+ LPL and IEL (CD8+ and CD4+CD8–γδTCR+) are the main drivers of the disease. Antigen-specific T cells might be critically involved in IBD too. Our lack of knowledge of defined antigens and the vast amount of potential candidates against the background of a variety of genetic dispositions renders it difficult to name common antigen-specific T-cell populations. The underlying assumption that individual combinations of antigens and presenting cells might be critical directs our hopes to the accessibility of high-throughput techniques. Although playing a role in microscopic colitis, IEL show no increased production of IL-15. Mucosal Treg are increased in celiac disease as well as in IBD. A specific Treg cell population also producing IL-17 in the mucosa of CD shows no impairment in regulatory capacity, while the suppressive activity of these cells was diminished in UC patients. As for microscopic colitis, Treg are more increased in lymphocytic than collagenous colitis.
In the past, CD was accepted as a Th1-dominated disease, while UC to be mainly mediated by Th2 cells. With the discovery of Th17 cells, it is acknowledged, that these cells contribute to the recurrent chronic intestinal inflammation in CD and that in UC Th1 cytokines are also increased. In microscopical colitis, Th1 cytokines are increased, while Th2 cytokines are unaltered. Also marking a difference in the IBD entities, Th22 cells are increased in CD but decreased in UC. Nothing is known so far about Th22 cells in celiac disease or microscopical colitis. The producers of IL-22 in the mucosa of celiac disease patients are Th17 cells. The hypothesis of altered Th1/Th2 or Th1/Th17 balance in the IBD pathogenesis seems very attractive. However, the mucosal immune status is more complex in IBD in humans than in inbred mouse models. Except for anti-TNFα and IL-12p40, targeting specific pro-inflammatory cytokines involved in the balance of local T-cell subsets in IBD treatment does not present promising additional therapeutic strategies yet. Clinical trials of both anti-IFNy mAb (Th1) and anti-IL-17A mAb (Th17) in CD did not show significant efficacy [150, 151].

The role of Th17 in the pathogenesis of UC is also suggested in translational researches in patients treated with the anti-TNFα mAb infliximab. A subanalysis of the Active Colitis Trial 1 revealed that the expression profiles of Th1-, Th2- and Th17-related cytokines in mucosal biopsy specimens were altered in the group of UC patients responding to the treatment with clinical remission [152]. The CD68+ macrophage-Th17 cell axis could be a therapeutic target for infliximab in UC as well as in CD [153, 154]. Infliximab has also been shown to be beneficial for patients with severe refractory celiac disease [155, 156]. For the treatment of diet nonresponsive celiac disease and refractory celiac disease, an IL-15 antibody is launched for testing in phase II by Celimmune. Microscopic colitis patients will require corticosteroid or immunosuppressive treatments, or even surgical intervention in refractory cases [157].

In conclusion, comparing T cell-dependent mechanisms in intestinal inflammation revealed more differences than similarities in the entities UC, CD, microscopical colitis and celiac disease.

Disclosure Statement

None of the authors has any potential financial conflict of interest related to this study.

References

1. Rubio-Tapia A, Ludvigsson JF, Brantner TL, et al: The prevalence of celiac disease in the United States. Am J Gastroenterol 2012;107:1538–1544; quiz 1537, 1545.
2. Mustalathi K, Catassi C, Reunanen A, et al: The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med 2010;42:587–595.
3. Cummins AG, Roberts-Thomson IC: Prevalence of celiac disease in the Asia-Pacific region. J Gastroenterol Hepatol 2009;24:1347–1351.
4. Kappelman MD, Moore KR, Allen JK, et al: Recent trends in the prevalence of Crohn’s disease and ulcerative colitis in a commercially insured US population. Dig Dis Sci 2013;58:519–525.
5. Burisch J, Jess T, Martinato M, et al: The burden of inflammatory bowel disease in Europe. J Crohns Colitis 2013;7:322–337.
6. Prideaux I, Kamm MA, De Cruz PP, et al: Inflammatory bowel disease in Asia: a systematic review. J Gastroenterol Hepatol 2012;27:1266–1280.
7. Sonnenberg A, Genta RM: Geographic distributions of microscopic colitis and inflammatory bowel disease in the United States. Inflamm Bowel Dis 2012;18:2288–2293.
8. Storr MA: Microscopical colitis: epidemiology, pathophysiology, diagnosis and current management—an update 2013. ISRN Gastroenterol 2013;2013:352718.
9. Catassi C, Krysakz D, Bhatti B, et al: Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann Med 2010;42:530–538.
10. Bai D, Brar P, Holleran S, et al: Effect of gender on the manifestations of celiac disease: evidence for greater malabsorption in men. Scand J Gastroenterol 2005;40:183–187.
11. Barker JM, Liu E: Celiac disease: pathophysiology, clinical manifestations, and associated autoimmune conditions. Adv Pediatr 2008;55:349–365.
12. Birrenbach T, Becker U: Inflammatory bowel disease and smoking: a review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis 2004;10:848–859.
13. Yen EF, Pokhrel B, Du H, et al: Current and past cigarette smoking significantly increase risk for microscopic colitis. Inflamm Bowel Dis 2012;18:1835–1841.
14. Wieser H: Chemistry of gluten proteins. Food Microbiol 2007;24:115–119.
15. Trier JS: Celiac sprue. N Engl J Med 1991;325:1709–1719.
16. Dieterich W, Laeg E, Schopper H, et al: Autoantibodies to tissue transglutaminase as predictors of celiac disease. Gastroenterology 1998;115:1317–1321.
17. Anderson RP, Degano P, Godkin AJ, et al: In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 2000;6:337–342.
18. Lundin KE, Scott H, Fausa O, et al: T cells from the small intestinal mucosa of a DR4, DQ7/DR4, DQ8 celiac disease patient preferentially recognize gliadin when presented by DQ8. Hum Immunol 1994;41:285–291.
19. Nilson EM, Lundin KE, Krajci P, et al: Gluten-specific, HLA-DQ restricted T cells from celiac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 1995;37:766–776.
20. Bodd M, Raki M, Tollesen S, et al: HLA-DQ2-restricted gluten-reactive T cells from celiac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 2000;47:219–228.
21. Chang P, Mahadeva U, Deere H: Pathological and clinical significance of increased intraepithelial lymphocytes (IELs) in small bowel mucosa. APMS 2005;113:385–399.
25 Eiras P, Roldan E, Camarero C, et al: Flow cytometry of the duodenal mucosa in coeliac disease: license to kill revealed. Immunity 2004;21:303–304.

26 Schmitz F, Kooy-Winkelklaar Y, Wiekmeijer AS, et al: The composition and differentiation potential of the duodenal intraepithelial in- nate lymphocyte compartment is altered in coeliac disease. Gut 2015, Epub ahead of print.

27 Bauer S, Groh V, Wu J, et al: Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999;285:727–729.

28 Medzhitov R, Janeway CA Jr: Decoding the patterns of self and nonself by the innate im- mune system. Science 2002;296:298–300.

29 Setty M, Discollopo V, Abadie V, et al: Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology 2015;148:691–691 el0.

30 Di Sabatino A, Ciccocioppo R, Cupelli F, et al: Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine pro- duction, cytotoxicity, and survival in coeliac disease. Gut 2006;55:469–477.

31 Meresse B, Malamut G, Cerf-Bensussan N: Celiac disease: an immunological jigsaw. Mim- icking of clonal intraepithelial T lymphocyte proliferations in enteropathy-type intestinal T cell lymphoma, coeliac disease, and refractory sprue. Gut 2001;49:804–812.

32 Brousse N, Meijer JW: Malignant coeliac disease: license to kill revealed. Immunity 2004;21:303–304.

33 Murray IA, Daniels I, Coupland K, et al: Increased activity and expression of sCD163 in human duodenal enterocytes from patients with celiac disease. Am J Physiol Gastrointest Liver Physiol 2002;283:G319–G326.

34 Martin-Pagola A, Perez-Nancule G, Ortiz L, et al: MICA response to gliadin in intestinal mucosa from celiac patients. Immunogenetics 2004;56:549–554.

35 Meresse B, Chen Z, Ciszewski C, et al: Coor- dinated induction by IL15 of a TCR-indepen- dent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunology 2004;21:357–366.

36 Zanzi D, Stefaneli R, Santagata S, et al: IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in Celiac disease. Am J Gastroenterol 2011;106:1308–1317.

37 Malamut G, El Machhour R, Montcuquet N, et al: IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 2010;120:2131–2143.

38 Cellier C, Delabesse E, Helmer C, et al: Refrac- tory sprue, coeliac disease, and enteropathy- associated T cell lymphoma. French Coeliac Disease Study Group. Lancet 2000;356:203–208.

39 Patey-Mariaud De Serre N, Cellier C, Jabri B, et al: Distinction between coeliac disease and refractory sprue: a simple immunohisto- chemical method. Histopathology 2000;37: 70–77.

40 Rubio-Tapia A, Murray IA: Classification and management of refractory coeliac disease. Gut 2010;59:547–557.

41 Taam S, Weiss D, Hummel M, et al: Frequen- cy of clonal intraepithelial T lymphocyte pro- liferations in enteropathy-type intestinal T cell lymphoma, coeliac disease, and refractory sprue. Gut 2001;49:804–812.

42 Brousse N, Meijer JW: Malignant coeliac disease: license to kill revealed. Immunity 2004;21:303–304.

43 Gunther U, Holloway JA, Gordon JN, et al: Phenotypic characterization of CD3+7+ cells in developing human intestine and an analy- sis of their ability to differentiate into T cells. J Immunol 2005;174:5414–5422.

44 Smelby KE, Akerman M, Hildebrand H, et al: Malignant lymphomas in coeliac disease: evi- dence of increased risks for lymphoma types other than enteropathy-type T cell lympho- ma. Gut 2005;54:54–59.

45 Sarra M, Cupi ML, Monteleone I, et al: IL-15 positively regulates IL-21 production in celiac disease mucosa. Mucosal Immunol 2013;6: 244–255.

46 Hamida NB, Ben Ahmed M, Moussa A, et al: Impaired control of effector T cells by regula- tory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease? Am J Gastro- enterol 2012;107:604–611.

47 Sakaguchi S, Sakaguchi N, Asano M, et al: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpa- chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155: 1151–1164.

48 Bennett CL, Christie J, Ramsdell F, et al: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27:20–21.

49 Wildin RS, Ramsdell F, Peake J, et al: X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27:18–20.

50 Cianci R, Cammarota G, Frisullo G, et al: Tis- sue-infiltrating lymphocytes analysis reveals large modifications of the duodenal ‘immu- nobiologic niche’ in coeliac disease after gluten-free diet. Clin Transl Gastroenterol 2012; 3:e28.

51 Gianfrani C, Levings MK, Sartirana C, et al: Gliadin-specific type I regulatory T cells from the intestinal mucosa of treated celiac patients inhibit pathogenic T cells. J Immunol 2006; 177:4178–4186.

52 Lahat N, Shapira S, Karban A, et al: Cytokine profile in celiac disease. Scand J Immunol 1999;49:441–446.

53 Salvati VM, Mazzarella G, Gianfrani C, et al: Reconstituent human interleukin 10 sup- presses gliadin dependent T cell activation in ex vivo cultured coeliac intestinal mucosa. Gut 2005;54:46–53.

54 Forsberg G, Hennell O, Hammarstrom S, et al: Concomitant increase of IL-17 and pro-in- flammatory cytokines in intraepithelial lymphocyte subsets in celiac disease. Int Immuno- nol 2007;19:993–1001.

55 Forsberg G, Hennell O, Melgar S, et al: Para- doxical coexpression of proinflammatory and down-regulatory cytokines in intestinal T cells in childhood celiac disease. Gastroentero- logy 2002;123:667–678.

56 Hansson T, Ulgren AK, Lindroos E, et al: Transforming growth factor-beta (TGF-beta) and tissue transglutaminase expression in the small intestine in children with coeliac disease. Scand J Immunol 2002;56:530–537.

57 Lionetti P, Pazzaglia A, Moriondo M, et al: Differing patterns of transforming growth factor-beta expression in normal intestinal mucosa and in active celiac disease. J Pediatr Gastroenterol Nutr 1999;29:308–313.

58 Benahmed M, Meresse B, Arnulf B, et al: Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology 2007;132:994–1008.

59 Kehrl JH, Wakefield LM, Roberts AB, et al: Production of transforming growth factor beta by human T lymphocytes and its poten- tial role in the regulation of T cell growth. J Exp Med 1986;163:1037–1050.

60 O’Garra A, Stockinger B, Veldhoen M: Dif- ferentiation of human T(H)-17 cells does re- quire TGF-beta. Nat Immunol 2008;9:588– 590.

61 Castellanos-Rubio A, Santin I, Irastorza I, et al: TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin. Autoimmunity 2009;42:69–73.

62 Fernandez S, Molina IJ, Romero P, et al: Characterization of gliadin-specific Th17 cells from the mucosa of celiac disease patients. Am J Gastroenterol 2011;106:528–538.

63 Monteleone I, Sarra M, Del Vecchio Blanco G, et al: Characterization of IL-17A-produc- ing cells in celiac disease mucosa. J Immunol 2010;184:2211–2218.

Inflamm Intest Dis 2016;1:52–62
DOI: 10.1159/00044533
70 Gunaltay S, Sandstrom O, Hedberg M, et al: Intestinal T-cell responses in celiac disease – impact of celiac disease associated bacteria. PLoS One 2013;8:e53414.

71 Lahdenpera AI, Falth-Magnusson K, Hogberg L, et al: Expression pattern of T-helper 17 cell signaling pathway and mucosal inflammation in celiac disease. Scand J Gastroenterol 2014;49:145–156.

72 Ciccioccioppo R, Finamore A, Mengheri E, et al: Isolation and characterization of circulating tissue transglutaminase-specific T cells in celiac disease. Int J Immunopathol Pharmacol 2010;23:179–191.

73 Comerford R, Coates C, Byrne G, et al: Characterization of tissue transglutaminase-reactive T cells from patients with celiac disease and healthy controls. Clin Immunol 2014;154:155–163.

74 Han A, Newell EW, Glanville J, et al: Dietary gluten triggers concomitant activation of CD14+ and CD163+ alpha beta T cells and gammagated T cells in celiac disease. Proc Natl Acad Sci USA 2013;110:13073–13078.

75 Gianfrani C, Camarca A, Mazzarella G, et al: Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: implication for celiac disease. Mol Nutr Food Res 2015;59:1844–1854.

76 Sapp H, Ithamukkala S, Brien TP, et al: The terminal ileum is affected in patients with lymphocytic or collagenous colitis. Am J Surg Pathol 2002;26:1484–1492.

77 Gunaltay S, Kumawat AK, Nyhlin N, et al: Enhanced levels of chemokines and their receptors in the colon of microscopic colitis patients indicate mixed immune cell recruitment. Mediators Inflamm 2015;2015:132458.

78 Tysk C, Bohr J, Nyhlin N, et al: Diagnosis and management of microscopic colitis. World J Gastroenterol 2008;14:7280–7288.

79 Carmack SW, Lash RH, Gulizia JM, et al: Lymphocytic disorders of the gastrointestinal tract: a review for the practicing pathologist. Adv Anat Pathol 2009;16:290–306.

80 Liszka L, Woszczynski D, Pajak J: Histopathological diagnosis of microscopic colitis. J Gastroenterol Hepatol 2006;21:792–797.

81 Tagkalidis PP, Gibson PR, Bhathal PS: Microbial senescence factor prevents intestinal biocidal bacterial symbiosis. Cell 2009;139:485–498.

82 Hirose T, Takahashi Y, Shimizu T, et al: Increased Th17-inducing activity of CD14+CD163(high) macrophages in intestinal lamina propria of patients with Crohn’s disease. Inflamm Bowel Dis 2013;19:1380–1391.

83 Santti M, Kajamäki R, Ruuskanen A, et al: Regulatory T cells suppress development of colitis, block CD4+CD25(high) T cells in inflammatory bowel disease. J Exp Med 2011;220:973–981.

84 Matsuoka K, Inoue N, Sato T, et al: T-bet up-regulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn’s disease. Gut 2004;53:1303–1308.

85 Sakuraba A, Sato T, Kamada N, et al: Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in celiac disease. Gastroenterology 2009;137:1736–1745.

86 Kamada N, Hiramatsu T, Honda H, et al: Human CD14+ macrophages in intestinal lamina propria exhibit potent antigen-presenting ability. J Immunol 2009;183:1724–1731.

87 Kamada N, Hiramatsu T, Honda H, et al: TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn’s disease. Inflamm Bowel Dis 2010;16:568–575.

88 Kamada N, Hiramatsu T, Okamoto S, et al: Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest 2008;118:2269–2280.

89 Ogino T, Nishimura J, Barman S, et al: Increased Th17-inducing activity of CD14+CD163 low myeloid cells in intestinal lamina propria of patients with Crohn’s disease. Gastroenterology 2013;145:1380–1391 e1.

90 Gloag AM, Hennecke N, Martin B, et al: Comprehensive intestinal T-helper cell profiling reveals specific accumulation of IFN-gamma+IL-17+ co-producing CD4+ T cells in active inflammatory bowel disease. Inflamm Bowel Dis 2014;20:3231–3239.

91 Lee YK, Turner H, Maynard CL, et al: Late developmental plasticity in the T-helper 17 lineage. Immunology 2009;30:92–107.

92 Harbour SN, Maynard CL, Zindl CL, et al: Th17 cells give rise to Th1 cells that are required for the prevention of colitis. Proc Natl Acad Sci USA 2015;112:7061–7066.

93 Sujino T, Kani T, Ono Y, et al: Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology 2011;141:1014–1023.

94 Fantini MC, Monteleone G, MacDonald TT: IL-21 comes of age as a regulator of effector T cells in the gut. Mucosal Immunol 2008;1:110–115.

95 Monteleone G, Monteleone I, Fina D, et al: Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn’s disease. Gastroenterology 2005;128:687–694.

96 Geremia A, Arancibia-Carcano CV, Fleming MP, et al: IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 2011;208:1127–1133.

97 Wolk K, Witte E, Hoffmann U, et al: IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn’s disease. J Immunol 2007;178:5973–5981.

98 Makita S, Kanai T, Oshima S, et al: CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells. J Immunol 2004;173:3119–3130.

99 Mahl J, Loddenkemper C, Mundt P, et al: Peripheral and intestinal Th17 and CD4+CD25(high) T cells in inflammatory bowel disease. Gastroenterology 2005;128:1868–1878.

100 Saruta M, Yu QT, Flesher PR, et al: Characterization of FOXP3+CD4+ regulatory T cells in Crohn’s disease. Clin Immunol 2007;125:281–290.

101 Howhmannian Z, Treatman J, Littman DR, et al: Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology 2011;140:957–965.

102 Lord JD, Valliant-Sanders K, Hahn H, et al: Paradoxically increased FOXP3+ T cells in IBD do not preferentially express the isoform of FOXP3 lacking exon 2. Dig Dis Sci 2012;57:2846–2855.

103 Berrebi D, Lagnequin J, Ferkjadji L, et al: Cytokines, chemokine receptors, and homing molecule distribution in the rectum and stomach of pediatric patients with ulcerative colitis. J Pediatr Gastroenterol Nutr 2003;37:300–308.

104 Giacomelli R, Pasqualinato A, Parzanese I, et al: Serum levels of soluble CD30 are increased in ulcerative colitis (UC) but not in Crohn’s disease (CD). Clin Exp Immunol 1998;111:532–535.

105 Hart AL, Kamm MA, Knight SC, et al: Prospective evaluation of intestinal homing memory T cells in ulcerative colitis. Inflamm Bowel Dis 2004;10:496–503.

106 Ibasho Y, Nakamura K, Ibara E, et al: Multi-gene analysis unveils distinctive expression profiles of helper T-cell-related genes in the intestinal mucosa that discriminate between ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis 2014;20:967–977.

107 Inoue S, Matsumoto T, Iida M, et al: Characterization of cytokine expression in the rectal mucosa of ulcerative colitis: correlation with disease activity. Am J Gastroenterol 1999;94:2441–2446.
116 Camoglio L, Te Velde AA, Tigges AJ, et al: Mucosal Th2 cells in colonic mucosa of inflammatory bowel disease. Gastroenterol Hepatol 2003;18:1081–1088.

117 Funakoshi K, Sugimura K, Sasakawa T, et al: Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005;129:550–564.

118 Kawashima R, Kawamura YI, Kato R, et al: IL-13 receptor alpha2 promotes epithelial cell regeneration from radiation-induced small intestinal injury in mice. Gastroenterology 2006;131:130–141.

119 Radford-Smith G, Jewell DP: Cytokines and their interactions between Crohn’s disease and ulcerative colitis. Baillieres Clin Gastroenterol 2002;18:1081–1088.

120 Seow CH, Benchimol EI, Griffiths AM, et al: Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflamm Bowel Dis 2010;16:1097–1105.

121 Camelo A, Barlow JL, Drynan LF, et al: IL-33 differentially regulates the Th1/Th2 development with inflammatory bowel disease. Inflamm Bowel Dis 2007;13:191–199.

122 Fuss IJ, Nunez LE, Diaz-Jimenez D, et al: FOXP3+ regulatory T cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease. Inflamm Bowel Dis 2013;19:2522–2534.

123 Boirivant M, Fuss IJ, Chu A, et al: Oxazolone colitis: a murine model of T helper cell 2 colitis treatable with antibodies to interleukin 4. J Exp Med 1998;188:1929–1939.

124 Heller F, Florian P, Bojarski C, et al: Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005;129:550–564.

125 Heller F, Fuss IJ, Nieuwenhuis EE, et al: Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13 producing NK-T cells. Immunity 2002;17:629–638.

126 Kawashima R, Kawamura YI, Kato R, et al: IL-13 receptor alpha2 promotes epithelial cell regeneration from radiation-induced small intestinal injury in mice. Gastroenterology 2006;131:130–141.

127 Kawashima R, Kawamura YI, Oshio T, et al: Interleukin-13 damages intestinal mucosa via TWEAK and Fn14 in mice—a pathway associated with ulcerative colitis. Gastroenterology 2011;141:2119–2129 e8.

128 Danese S, Rudzinski J, Brandt W, et al: Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut 2015;64:243–249.

129 Reinsch W, Panes J, Khurana S, et al: Anti- interleukin-13 monoclonal antibody, in active UC: efficacy and safety from a phase IIa randomised multicentre study. Gut 2015;64:894–900.

130 Leung JM, Davenport M, Wolff MJ, et al: IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol 2014;7:124–133.

131 Gerlach K, Hwang Y, Nikolaev A, et al: TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immnuol 2014;15:676–686.

132 Nalleweg N, Chiriac MT, Podstawa E, et al: IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 2015;64:743–755.

133 Granlund A, Flatberg A, Ostvik AE, et al: PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 2014;15:676–686.

134 Leung JM, Davenport M, Wolff MJ, et al: IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol 2014;7:124–133.

135 Granlund A, Flatberg A, Ostvik AE, et al: Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn’s disease and ulcerative colitis. PLoS One 2013;8:e56818.

136 Liu Z, Yadav PK, Xu X, et al: The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity. J Leukoc Biol 2011;89:597–606.

137 Yu QT, Saruta M, Avenasen A, et al: Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis 2007;13:191–199.

138 Ueno A, Iijin H, Chan R, et al: Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflamm Bowel Dis 2013;19:2522–2534.

139 Kumawat AK, Elghratt K, Tysk C, et al: Reduced T cell receptor excision circle levels in the colonic mucosa of microscopic colitis patients indicate local proliferation rather than homing of peripheral lymphocytes to the inflamed mucosa. Biomed Res Int 2013;2013:80638.

140 Shaz BH, Reddy SI, Ayata G, et al: Sequential clinical and histopathological changes in collagenous and lymphocytic colitis over time. Mod Pathol 2004;17:395–401.

141 Abdou AA, Urbsanski SJ, Beck PL: Lymphocytic and collagenous colitis: the emerging entity of microscopic colitis. An update on pathophysiology, diagnosis and management. Can J Gastroenterol 2003;17:425–432.

142 Armes J, Gee DC, Macrae FA, et al: Collagenous colitis: jejunal and colorectal pathological study. J Clin Pathol 1992;45:784–787.

143 Goranzon C, Kumawat AK, Hultgren-Hornqvist E, et al: Immunohistochemical characterization of lymphocytes in microscopic colitis. J Crohns Colitis 2013;7:e434–e442.

144 Johrens K, Grunbaum M, Anagnostopoulos I: Differences in the T-bet and GATA-3 expression patterns between lymphocytic colitis and coeliac disease. Virchows Arch 2010;457:451–456.

145 Mosnier JF, Larvol L, Barge J, et al: Lymphocytic and collagenous colitis: an immunohistological study. Am J Gastroenterol 1996;91:709–713.

146 Ouyang W, Lohning M, Gao Z, et al: Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000;12:27–37.

147 Bai S, Siegal GP, Jhala NC: Foxp3 expression patterns in microscopic colitides: a clinicopathologic study of 69 patients. Am J Clin Pathol 2012;137:931–936.

148 Park EK, Park YS, Park DR, et al: Cytokine expression of microscopic colitis including interleukin-17. Gut Liver 2015;9:381–387.
149 Kumawat AK, Nyhlin N, Wickbom A, et al: An in vitro model to evaluate the impact of the soluble factors from the colonic mucosa of collagenous colitis patients on T cells: enhanced production of IL-17A and IL-10 from peripheral CD4(+) T cells. Mediators Inflamm 2014;2014:879843.

150 Hueber W, Sands BE, Lewitzky S, et al: Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012;61:1693–1700.

151 Reinisch W, de Villiers W, Bene L, et al: Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis 2010;16:233–242.

152 Toedter G, Li K, Marano C, et al: Gene expression profiling and response signatures associated with differential responses to infliximab treatment in ulcerative colitis. Am J Gastroenterol 2011;106:1272–1280.

153 Caprioli F, Bose F, Rossi RL, et al: Reduction of CD68+ macrophages and decreased IL-17 expression in intestinal mucosa of patients with inflammatory bowel disease strongly correlate with endoscopic response and mucosal healing following infliximab therapy. Inflamm Bowel Dis 2013;19:729–739.

154 Rismo R, Olsen T, Cui G, et al: Mucosal cytokine gene expression profiles as biomarkers of response to infliximab in ulcerative colitis. Scand J Gastroenterol 2012;47:538–547.

155 Costantino G, della Torre A, Lo Presti MA, et al: Treatment of life-threatening type I refractory coeliac disease with long-term infliximab. Dig Liver Dis 2008;40:74–77.

156 Gillett HR, Arnott ID, McIntyre M, et al: Successful infliximab treatment for steroid-refractory celiac disease: a case report. Gastroenterology 2002;122:800–805.

157 Chande N: Microscopic colitis: an approach to treatment. Can J Gastroenterol 2008;22:686–688.