A study on controllability of impulsive fractional evolution equations via resolvent operators.

Summary: In this article, we study the controllability for impulsive fractional integro-differential evolution equation in a Banach space. The discussions are based on the Mönch fixed point theorem as well as the theory of fractional calculus and the α, β-resolvent operator, we concern with the term $u'(\cdot)$ and finding a control v such that the mild solution satisfies $u(b) = u_0$ and $u'(b) = u_0'$. Finally, we present an application to support the validity study.

MSC:

34K30 Functional-differential equations in abstract spaces
34K37 Functional-differential equations with fractional derivatives
34K45 Functional-differential equations with impulses
45J99 Integro-ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
93B05 Controllability

Keywords: controllability; measure of noncompactness; mild solution; Mönch fixed point theorem

Full Text: DOI

References:

[1] Abada, N.; Benchohra, M.; Hammouche, H., Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equ., 246, 3834-3863 (2009) · Zbl 1171.34052 · doi:10.1016/j.jde.2009.03.004
[2] Aimele, D.; Baleanu, D.; Seba, D., Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Solitons Fractals, 128, 51-57 (2019) · doi:10.1016/j.chaos.2019.07.027
[3] Bai, Z.; Lü, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[4] Balachandran, K.; Park, J. Y., Controllability of fractional integrodifferential systems in Banach spaces, Nonlinear Anal. Hybrid Syst., 3, 363-367 (2009) · Zbl 1175.93028 · doi:10.1016/j.nahs.2009.01.014
[5] Balachandran, K.; Sukthivel, R., Controllability of integrodifferential systems in Banach spaces, Appl. Math. Comput., 118, 63-71 (2001) · Zbl 1034.93005
[6] Baleanu, D.; Fedorov, V. E.; Gorbievskikh, D. M.; Tae, K., Approximate controllability of infinite-dimensional degenerate fractional order systems in the sectorial case, Mathematics, 7, 8 (2019) · Zbl 1438.93010 · doi:10.3390/math7080735
[7] Banas, J.; Goebel, K., Measure of Noncompactness in Banach Spaces (1980), New York: Dekker, New York · Zbl 0441.47056
[8] Benchohra, M.; Gorniewicz, L.; Ntouyas, S. K.; Ouahab, A., Controllability results for impulsive functional differential inclusions, Rep. Math. Phys., 54, 211-228 (2004) · Zbl 1130.93310 · doi:10.1016/S0034-4877(04)80015-6
[9] Chang, Y. K.; Pereira, A.; Ponce, R., Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators, Fract. Calc. Appl. Anal., 20, 4, 963-987 (2017) · Zbl 1369.93081 · doi:10.1515/fca-2017-0050
[10] Dabas, J.; Chauhan, A., Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Math. Comput. Model., 57, 3-4, 754-763 (2013) · Zbl 1305.34132 · doi:10.1016/j.mcm.2012.09.001
[11] Debrouchea, A.; Baleanu, D., Controllability of fractional evolution nonlocal impulse quasilinear delay integro-differential systems, Comput. Math. Appl., 62, 1442-1450 (2011) · Zbl 1228.45013 · doi:10.1016/j.camwa.2011.03.075
[12] Gou, H.; Li, Y., The method of lower and upper solutions for impulsive fractional evolution equations, Annals. Functional Analysis., 11, 290-309 (2020) · Zbl 1441.43008 · doi:10.1007/s43034-019-00007-2
[13] Guo, D. J.; Sun, J. X., Ordinary Differential Equations in Abstract Spaces (1989), Jinan: Shandong Science and Technology, Jinan
[14] Kalassavali, S.; Suganya, S.; Mallika Arjunan, M., Existence and controllability of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Korean Soc. Ind. Appl. Math., 1, 20, 51-82 (2016) · Zbl 1336.93032
[15] Kalman, R. E., Controllability of linear dynamical systems, Contrib. Differ. Equ., 1, 1, 189-213 (1963)

[16] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier

[17] Li, Y., The positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sin., 39, 5, 666-672 (1996) - Zbl 0870.47040

[18] Lian, T.; Fan, Z.; Li, G., Approximate controllability of semilinear fractional differential systems of order \((1 < \alpha < 2)\) via resolvent operators, Filomat, 31, 18, 5769-5781 (2017) - Zbl 07455297 - doi:10.2298/FIL1718769L

[19] Liang, J.; Yang, H., Controllability of fractional integro-differential evolution equations with nonlocal conditions, Appl. Math. Comput., 254, 20-29 (2015) - Zbl 1410.93022

[20] Ma, H.; Liu, B., Exact controllability and continuous dependence of fractional neutral integro-differential equations with state dependent delay, Acta Math. Sci. Ser. B Engl. Ed., 37, 1, 235-258 (2017) - Zbl 1389.34241 - doi:10.1016/S0252-9602(16)30128-X

[21] Mönch, H., Boundary value problems for linear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4, 985-999 (1980) - Zbl 0462.34041 - doi:10.1016/0362-546X(80)90010-3

[22] Sakthivel, R.; Anthoni, S. M.; Kim, J. H., Existence and controllability result for semilinear evolution integrodifferential systems, Math. Comput. Model., 41, 1005-1011 (2005) - Zbl 1129.93005 - doi:10.1016/j.mcm.2004.03.007

[23] Sakthivel, R.; Choi, Q. H.; Anthoni, S. M., Controllability result for nonlinear evolution integrodifferential systems, Appl. Math. Lett., 17, 1015-1023 (2004) - Zbl 1072.93005 - doi:10.1016/j.aml.2004.07.003

[24] Sakthivel, R.; Mahmudov, N. I.; Nieto, J. J., Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218, 10334-10340 (2012) - Zbl 1245.93022

[25] Shu, X. B.; Xu, F., Upper and lower solution method for fractional evolution equations with order \((1<\alpha<2)\), J. Korean Math. Soc., 51, 6, 1123-1139 (2014) - Zbl 1328.35282 - doi:10.4134/JKMS.2014.51.6.1123

[26] Singh, V.; Pandey, D. N., Controllability of second-order Sobolev-type impulsive delay differential systems, Math. Methods Appl. Sci., 42, 5, 1377-1388 (2019) - Zbl 1418.34142 - doi:10.1002/mma.5427

[27] Yan, Z. M., Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay, Int. J. Control, 85, 8, 1051-1062 (2012) - Zbl 1282.93059 - doi:10.1080/00207179.2012.675518

[28] Yan, Z. M., Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces,IMA J. Math. Control Inf., 30, 4, 443-462 (2013) - Zbl 1279.93002 - doi:10.1093/imamci/dnt033

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.