Abstract

Emergence of a new chronic myeloid neoplasm in the setting of a previous one, or their concomitant appearance seems to be a rare event, but plenty of cases have been reported. We describe the case of a patient with JAK2-V617F polycythemia vera, which looses JAK2 clone and develops overt BCR-ABL1 chronic myeloid leukemia after 6 years. Once treatment with tyrosine kinase inhibitors controls BCR-ABL1 clone, JAK2 clone arises again. In this report, we review the literature and discuss the clonal relationship of this event in light of the new molecular data.

Keywords: Chronic myeloid leukemia; Chronic myeloproliferative neoplasm; BCR-ABL1; JAK2-V617F

Introduction

Myeloproliferative neoplasms (MPNs) include a heterogeneous group of disorders. The most frequent are chronic myelogenous leukemia (CML), essential thrombocytosis (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). CML is characterized by Philadelphia chromosome translocation between the long arms of chromosome 9 and 22, leading to the emergence of a patient with JAK2-V617F polycythemia vera, which looses JAK2 clone and develops overt BCR-ABL1 chronic myeloid leukemia after 6 years. Once treatment with tyrosine kinase inhibitors controls BCR-ABL1 clone, JAK2 clone arises again. In this report, we review the literature and discuss the clonal relationship of this event in light of the new molecular data.

Case Report

In 2012 a 70-year-old female was admitted with hematocrit of 63.9%, hemoglobin 22 g/dL, normal platelets, and white blood cell (WBC) of 15.97 × 10^9/L with neutrophilia without spleen enlarge. Her smear showed absence of leukoerythroblastic picture and presence of mature granulocytes. Bone marrow aspirate showed granular hyperplasia without blast excess; and biopsy was not performed at that time. Molecular testing revealed V617F mutation in JAK2 gene. JAK2-PV was diagnosed and she was treated with phlebotomies, acetylsalicylic acid (ASA) and hydroxyurea. Her disease was controlled, without thrombotic or hemorrhagic complications.

Six years later, progressive leukocytosis and spleen enlargement were observed. Her WBC was 80 × 10^9/L with normal hemoglobin and platelets counts. There was concern of progression to acute leukemia so she was re-evaluated. Her smear showed leukoerythroblastosis with no blasts excess. Bone marrow smear showed no leukemic progression and biopsy informed granulocyte hyperplasia, absence of fibrosis, and 5% of cluster of differentiation (CD)34/CD117 progenitors. Cyto genetic analysis had no evaluable metaphases, and fluorescence in situ hybridization (FISH) for BCR-ABL1 was positive in 99% of nucleus. Conventional reverse transcription polymerase chain reaction (RT-PCR) showed b2a2 BCR-ABL1 fusion gene.

At this point we had a patient with JAK2-PV who evolved to chronic phase of BCR-ABL1 CML. In order to assess if this was a progression of the same clone or was a second myeloproliferative clone, we performed JAK2 by allele specific oligonucleotide (ASO)-PCR (ASO-PCR) for V617F mutation, which was negative, suggesting two different clones. We also assessed the presence of BCR-ABL1 by FISH in marrow sample of her diagnosis in 2012, but it was not an evaluable sample.

She started imatinib 400 mg QD and ASA, and stopped hydroxyurea, achieving complete hematologic remission at the first month of treatment. Cutaneous and hematologic toxicity was detected required dose reduction to 300 mg QD. She achieved cytogenetic complete remission at 3 months despite dose adjustment, but minor molecular response at 6 months.

Six months after the diagnosis of BCR-ABL1 CML, the hematocrit rose to 48%, suggesting JAK2-PV clone recurrence, and indeed JAK2-V617F was confirmed by molecular testing.

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
so phlebotomies were added in order to control both clones. Because of poor response and toxicities to imatinib, dasatinib was started at 9 months of BCR-ABL1 CML diagnosis achieving major molecular response. She stopped ASA for 1 month and developed a deep vein thrombosis, but with normal hematocrit.

Discussion

Concomitance or emergence of a new chronic myeloid neoplasm is a rare event; however plenty of evidence is published. Tables 1, 2 and 3 [5-37] show the latest reports on the matter. The presence of driver mutations with concomitant phenotypes (CML and Ph-MPN) at the beginning of the disease has been reported. Treatment of this scenario is challenging, but concomitant ruxolitinib and tyrosine kinase inhibitor (TKI) were successfully used [5].

Table 1. Clinical and Genetic Characteristics of Published Cases Including Initial Molecular Lesion JAK2 in Combination With Molecular Change of JAK2, BCR/ABL or JAK2 and BCR/ABL

Reference	Initial phenotype	Initial molecular lesion	Phenotype change	Molecular change	Observations
Siricilla et al, 2017 [10]	PVa JAK2	CML	Add BCR/ABL	Two clones by cytogenetics.	
Hummel et al, 2012 [6]	ET JAK2	MF	Add BCR/ABL	BCR/ABL controlled with TKI.	
Zhou et al, 2015 [5]	PV JAK2	CML	Add BCR/ABL	Two clones by progenitor colonies genotyping. Treatment: dasatinib and ruxolitinib.	
Swaminathan et al, 2018 [11]	PV JAK2 exon12b	CML	Add BCR/ABL (b3a3)	BCR/ABL controlled with TKI.	
Ursuleac et al, 2013 [12]	PV JAK2	CML	Add BCR/ABL	BCR/ABL controlled with TKI.	
Iallades et al, 2008 [13]	PMF JAK2	CML	Add BCR/ABL	BCR/ABL absent in first sample. BCR/ABL controlled with TKI. Persistent JAK2 with same ratio.	
Pingali et al, 2009 [14]	PV JAK2	CML	Add BCR/ABL	PV-JAK2 re-emerge when BCR/ABL controlled.	
Bocchia et al, 2007 [7]	PV t(9;18)	CML	Add BCR/ABL	JAK2 positive tested in deferred in first sample.	
Yamada et al, 2014 [15]	PMF JAK2	CML	Add BCR/ABL	BCR/ABL secondary event proved by progenitor colonies analysis.	
Wang et al, 2015 [9]	PV JAK2	CML	Add BCR/ABL	BCR/ABL secondary event on JAK2 cells proved by progenitor colonies genotyping.	
Mirza et al, 2007 [16]	PV JAK2	CML	Add BCR/ABL	-	
Hussein et al, 2008 [17]	PV JAK2, BCR/ABL	CML	Add BCR/ABL	BCR/ABL controlled with TKI. Blast crisis of JAK2 clone.	

Additional high WBC/thrombocytosis/erythrocytosis. bIn-frame deletion of six nucleotides (c.1620_1627delinsGA). PV: polycythemia vera; PMF: primary myelofibrosis; ET: essential thrombocytosis; CML: chronic myelogenous leukemia; TKI: tyrosine kinase inhibitor.
Tabassum et al reported a surprisingly high frequency (44%) of JAK2-V617F and BCR-ABL1 in 25 CML patients in Pakistan [39].

JAK2 and BCR-ABL1 coexistence with a predominant phenotype has also been reported [40]. In fact, the presence of very low levels of BCR-ABL1 in Phi-MPN and even its disappearance without treatment could represent a clonal hematopoiesis of indeterminate potential (CHIP) abnormality [41].

There are also reports on transforming phenotypes with second genetic mutations. The appearance of JAK2 Phi-MPN phenotype in the course of a CML treated with TKI was observed [6, 23, 42]; and a diagnosis of CML in the course of a Phi-MPN like our patient was also described [5, 42]. This could represent a previous masked clone, or a new one because of selective pressure.

Whether these scenarios are a consequence of a single clone that acquires a “second hit” or emergence of a second clone, it is not well known. There are some reports that address this issue by progenitor colonies genotyping. Bocchia et al observed that JAK2-V617F and BCR-ABL1 transcript can co-exist in an early (erythroid-myeloid-committed) progenitor cell, but few colonies showed JAK2-V617F mutation alone, whereas none showed BCR-ABL1 transcript alone. Treatment with imatinib caused disappearance of BCR-ABL1 remaining JAK2 in most of colonies, suggesting that a subclone of pre-existing JAK2-V617F mutant hemopoietic progenitors at a certain point acquired BCR-ABL1 translocation [7]. Bornhauser reported concurrent JAK2-BCR-ABL1 in only two of 16 granulocytic colonies but in none of 15 erythroid colonies, suggesting that BCR-ABL1 occurred at a later stage of myelopoiesis [8]. Zhou described a patient with concurrent PV and CML where the majority of the myeloid colonies have JAK2-V617F or BCR-ABL1, but not both, confirming that the two disorders arose within distinct clones [5].

Wang et al observed in two patients with features like the one in this report, that the acquisition of BCR-ABL1 occurred after JAK2 mutation, and that the development of CML is a secondary event that may occur in either heterozygous or homozygous JAK2-V617F hematopoietic progenitor cells [9].

Molecular landscape of MPN is rapidly evolving, and many driver and secondary mutations are arising with next-generation sequencing (NGS). Some epigenetic regulators mutations or oncogenic mutations described in myelodysplastic syndromes and acute myeloid leukemia are common in myeloproliferative diseases [2]. Kandarpa et al recently described the molecular characteristics of eight patients with combined phenotypes (CML and MF) by exome/transcriptome sequencing. They found the presence of mutations in epigenetic regulators such as ASXL1/2, IDH2, SRSF2, and GNAS at different frequencies (1-47%). Some patients harbored oncogenic mutations in K/RAS, TP53, BRAF, EZH2, and GNAS at low frequencies (0.5-39%). Subclonal frequencies of these mutations might indicate clonal evolution of the disease. Genomic instability might be a result of mutation in epigenetic regulators and probably hematopoietic stem cells accumulate multiple genetic variants with clonal dominance. Findings in this study suggest that CML in those patients might be a secondary disease arising from underlying genetic instability [43].

Table 2. Clinical and Genetic Characteristics of Published Cases Including Initial Molecular Lesion BCR/ABL in Combination With Molecular Change of JAK2, BCR/ABL or JAK2 and BCR/ABL

Reference	Initial phenotype	Initial molecular lesion	Phenotype change	Molecular change	Observations
Hummel et al, 2012 [6]	CML	BCR/ABL	MF	Add JAK2	BCR/ABL controlled with TKI. JAK2 low allele burden.
Darling et al, 2017 [18]	CML	BCR/ABL	ET	Add JAK2	BCR/ABL controlled with TKI.
Pagnan et al, 2016 [19]	CML	BCR/ABL	ET	JAK2	BCR/ABL controlled with TKI.
Hussein et al, 2008 [17]	CML	BCR/ABL	MF	Add JAK2	-
				Add JAK2	BCR/ABL not evaluated.
				JAK2	BCR/ABL controlled with TKI.
Curtin et al, 2005 [22]	ET	-	CML	BCR/ABL	Before JAK2 description, BCR/ABL positive in first sample.
Tefferi et al, 2010 [23]	CML	BCR/ABL	PV	Add JAK2	JAK2 positive when BCR/ABL controlled with TKI.
Kim et al, 2006 [20]	CML	BCR/ABL	MF	JAK2	JAK2 remain positive when BCR/ABL controlled with TKI.
				JAK2	JAK2 remain positive when BCR/ABL controlled with TKI.

[a] Additional high WBC/thrombocytosis/erythrocytosis. PV: polycythemia vera; MF: myelofibrosis; ET: essential thrombocytosis; CML: chronic myelogenous leukemia; TKI: tyrosine kinase inhibitor; AP: accelerated phase; Ph: Philadelphia positive chromosome.
Table 3. Clinical and Genetic Characteristics of Published Cases Including Initial Molecular Lesion JAK2 and BCR/ABL in Combination With Molecular Change of JAK2, BCR/ABL or JAK2 and BCR/ABL

Reference	Initial phenotype	Initial molecular lesion	Phenotype change	Molecular change	Observations
Bee et al, 2010 [24]	PV^a	JAK2 and BCR/ABL	CML	JAK2 present when BCR/ABL is treated, and vice versa.	Two clones with clonal dominance.
Payande et al, 2011 [25]	ET^a	JAK2 and BCR/ABL	No	No	-
Hummel et al, 2012 [6]	CML	JAK2 and BCR/ABL	PV	High JAK2 allele burden when PV phenotype.	PV phenotype when treated with imatinib.
Darling et al, 2017 [18]	Neutrophil leukocytosis, basophilia and thrombocytosis	JAK2 and BCR/ABL	No	-	Treated with TKI.
Park et al, 2013 [29]	ET	JAK2 and BCR/ABL	None	-	Poor response with hydroxyurea.
Qin et al, 2014 [30]	ET	JAK2 and BCR/ABL	-	-	Diagnosis during pregnancy.
Kramer et al, 2007 [31]	CML	BCR/ABL	MF	JAK2	JAK2 positive tested in deferred in first sample.
Bornhauser et al, 2007 [8]	MF	-	-	BCR/ABL JAK2	BCR/ABL secondary event proved by progenitor colonies analysis.
Campiotti et al, 2009 [32]	CML	BCR/ABL and JAK2	-	-	JAK2 and BCR/ABL controlled with TKI.
Pastore et al, 2013 [33]	CML	BCR/ABL	TE	JAK2	JAK2 positive tested in deferred in first sample.
Cambier et al, 2008 [34]	PV	BCR/ABL and JAK2	-	-	Two clones proved by progenitor colonies analysis.
Conchon et al, 2008 [35]	MF	BCR/ABL and JAK2	-	-	JAK2 positive when BCR/ABL controlled with TKI.
Inami et al, 2007 [36]	CML^a	BCR/ABL	PV	JAK2	JAK2 positive tested in deferred in first sample.
Gattenlohner et al, 2009 [37]	CML	BCR/ABL	MDS/MPN	JAK2	JAK2 positive since the beginning.

^aAdditional high WBC/thrombocytosis/erythrocytosis. ^bBone marrow findings of other MPN. WBC: white blood cell; PV: polycythemia vera; PMF: primary myelofibrosis; ET: essential thrombocytosis; CML: chronic myelogenous leukemia; TKI: tyrosine kinase inhibitor; MPN: myeloproliferative neoplasm; MDS: myelodysplastic syndrome; CMR: Complete molecular response.
There is no enough information about which patients harbor both genetic mutations or will develop a second myeloproliferative disease, but at least those who have mixed phenotype or bone marrow histopathology are candidates for molecular testing. Recent reports of the concomitance of BCR-ABL1 and CALR in patients with CML and PMF suggest testing CALR in JAK2-negative patients [44].

Management of these cases could be complicated, especially if two phenotypes are expressed, but CML treatment with TKIs and Ph+MPN control with hydroxyurea and/or phlebotomies in case of PV in association with ASA has been used, like in our patient. Ruxolitinib and TKIs, either given together or in alternating schedule, have been successfully used with no major adverse events [5, 43].

In conclusion, we described a patient with JAK2-PV who developed a BCR-ABL1 CML, but with absence of JAK2-V617F at the time of switching. Then PV phenotype and JAK2 mutation reappeared during CML treatment with TKI. These could be a result of two clones with clonal predominance.

Acknowledgments

We acknowledge Carolina Otati, Ana Ines Catalan, and Dr. Daniela Lens from the Departamento Basico de Medicina, Hospital de Clinicas, Montevideo, Uruguay for their help.

Financial Disclosure

None to declare.

Conflict of Interest

None to declare.

Informed Consent

Not applicable.

Author Contributions

Mariana Lorenzo is the manuscript author; Sofia Grille and Mariana Stevenazzi are the reviewers.

Data Availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

1. Tefferi A, Barbui T. Polycythemia vera and essential thrombocytethemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2017;92(1):94-108.
2. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulous N, Cantrill R, Godfrey AL, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379(15):1416-1430.
3. Jelinek J, Oki Y, Gharibyan V, Bueso-Ramos C, Prchal JT, Verstovsek S, Beran M, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood. 2005;106(10):3370-3373.
4. Kronenwett R, Graf T, Neumann F, Pechtel S, Steidl U, Diaz-Blanco E, Haas R. Absence of the JAK2 mutation V617F in CD34+ hematopoietic stem and progenitor cells from patients with BCR-ABL-positive CML in chronic phase and blast crisis. Leuk Res. 2006;30(10):1323-1324.
5. Zhou A, Knoche EM, Engle EK, Fisher DA, Oh ST. Concomitant JAK2 V617F-positive polycythemia vera and BCR-ABL-positive chronic myelogenous leukemia treated with ruxolitinib and dasatinib. Blood Cancer J. 2015;5:e351.
6. Hummel JM, Kletecka MC, Sanks JK, Chiselite MD, Roulston D, Smith LB, Czuchlewski DR, et al. Concomitant BCR-ABL1 translocation and JAK2(V617F) mutation in three patients with myeloproliferative neoplasms. Diagn Mol Pathol. 2012;21(3):176-183.
7. Bocchia M, Vannucchi AM, Gozzetti A, Guglielmelli P, Poli G, Crupi R, Defina M, et al. Insights into JAK2-V617F mutation in CML. Lancet Oncol. 2007;8(10):864-866.
8. Bornhauser M, Mohr B, Oelschlaegel U, Bornhauser P, Jacki S, Ehninger G, Thiede C. Concurrent JAK2(V617F) mutation and BCR-ABL translocation within committed myeloid progenitors in myelofibrosis. Leukemia. 2007;21(8):1824-1826.
9. Wang X, Tripodi J, Kremyanskaya M, Blouin A, Roda P, Hoffman R, Najfeld V. BCR-ABL1 is a secondary event after JAK2V617F in patients with polycythemia vera who develop chronic myeloid leukemia. Blood. 2013;121(7):1238-1239.
10. Siricilla M, Nader K, Ferber A. A case report of chronic myelogenous leukemia with JAK2- and BCR/ABL- positive mutation. AJHO. 2017;13(2):24-30.
11. Swaminathan M, Patel KP, Huynh-Lu J, Tang G, Zuo Z, Miranda R, Verstovsek S. Unique case of myeloproliferative neoplasm with two rare clonal abnormalities: rare JAK2 exon 12 mutation and rare e14a3 (b3a3) BCR/ABL fusion transcript. Acta Haematol. 2019;141(1):23-27.
12. Ursuleac I, Colita A, Adam T, Jardan C, Ilea A, Coriu D. The concomitant occurrence of JAK2V617F mutation and BCR/ABL transcript with phenotypic expression - an overlapping myeloproliferative disorder or two distinct diseases? - case report. J Med Life. 2013;6(1):34-37.
13. Jallades L, Hayette S, Tigaud I, Johnston A, Coiffier B, Magauid JP, Ffrench M. Emergence of therapy-unrelated CML on a background of BCR-ABL-negative JAK2V617F-positive chronic idiopathic myelofibrosis. Leuk Res. 2008;32(10):1608-1610.
Chronic Myeloid Leukemia and PV

14. Pingali SR, Mathiason MA, Lovrich SD, Go RS. Emergence of chronic myelogenous leukemia from a background of myeloproliferative disorder: JAK2V617F as a potential risk factor for BCR-ABL translocation. Clin Lymphoma Myeloma. 2009;9(5):E25-29.

15. Yamada O, Maroufdoei E, Plo I, Ozaki K, Natake M, Akiyama M, Yamada H, et al. Emergence of a BCR-ABL translocation in a patient with the JAK2V617F mutation: evidence for secondary acquisition of BCR-ABL in the JAK2V617F clone. J Clin Oncol. 2014;32(21):e76-79.

16. Mirza I, Frantz C, Clarke G, Voth AJ, Turner R. Transformation of polycythemia vera to chronic myelogenous leukemia. Arch Pathol Lab Med. 2007;131(11):1719-1724.

17. Hussein K, Bock O, Elphile K, Seevers A, Arps H, Basta N, Grpis KH, et al. Chronic myeloproliferative diseases with concurrent BCR-ABL junction and JAK2V617F mutation. Leukemia. 2008;22(5):1059-1062.

18. Darling HS, Kumar R, Kapoor R, Singh J, Verma T, BCR-ABL and JAK2V617F mutation co-existence, rare or just unexplored. Indian J Hematol Blood Transfus. 2017;33(4):633-635.

19. Pagnano KB, Delamain MT, Magnus MM, Vassallo J, CA DES, D DEA, Lorand-Metze I. Concomitant essential thrombocytethemia with JAK2 V617F mutation in a patient with chronic myeloid leukemia with major molecular response with imatinib and long-term follow-up. Oncol Lett. 2016;12(1):485-487.

20. Kim YK. Letters to the editor. Am J Hosp Palliat Med. 2006;15(6):311-312.

21. Bader G, Dreiling B. Concurrent JAK2-positive myeloproliferative disorder and chronic myelogenous leukemia: a novel entity? A case report with review of the literature. J Investig Med High Impact Case Rep. 2019;7:2324709619833222.

22. Curtin NJ, Campbell PJ, Green AR. The Philadelphia translocation and pre-existing myeloproliferative disorders. Br J Haematol. 2005;128(5):734-736.

23. Tefferi A, Levitt R, Lasho T, Knudson RA, Ketreling RP. Postmatinib therapy emergence of a new JAK2V617F clone and subsequent development of overt polycythemia vera in a patient with chronic myelogenous leukemia. Eur J Haematol. 2010;85(1):86-87.

24. Bee PC, Gan GG, Nadarajan VS, Latiff NA, Menaka N. A man with concomitant polycythemia vera and chronic myeloid leukemia: the dynamics of the two disorders. Int J Hematol. 2010;91(1):136-139.

25. Payande Mehrdad SZF, Erfan Zare Mohammad, Haji Shure Saber Ghanbari. JAK2-V617F mutation combined with Philadelphia chromosome-positive myeloid leukaemia: a case report. Int J Hematol Oncol Stem Cell Res. 2011;5(2):14-15.

26. Xu W, Chen B, Tong X. Chronic myeloid leukemia patient with co-occurrence of BCR-ABL junction and JAK2 V617F mutation. Int J Hematol. 2014;99(1):87-90.

27. Hassan A, Dogara LG, Babadoko AA, Awwalu S, Mamman AI. Coexistence of JAK2 and BCR-ABL mutation in patient with myeloproliferative neoplasm. Niger Med J. 2015;56(1):74-76.

28. Toogeh G, Ferdowsi S, Naadali F, Alimoghaddam K, Ghavamzadeh A, Shirkooohi R, Ghaffari SH. Concomitant presence of JAK2 V617F mutation and BCR-ABL translocation in a pregnant woman with polycythemia vera. Med Oncol. 2011;28(4):1555-1558.

29. Park SH, Chi HS, Cho YU, Jang S, Park CJ, Kim DY, Lee JH, et al. Two cases of myeloproliferative neoplasm with a concurrent JAK2 (V617F) mutation and BCR/ABL translocation without chronic myelogenous leukemia phenotype acquisition during hydroxyurea treatment. Ann Lab Med. 2013;33(3):229-232.

30. Qin YW, Yang YN, Li S, Wang C. Coexistence of JAK2V617F Mutation and BCR-ABL Translocation in a Pregnant Woman with Essential Thrombocythemia. Indian J Hematol Blood Transfus. 2014;30(Suppl 1):S31-S34.

31. Kramer A, Reiter A, Kruth J, Erben P, Hochhaus A, Muller M, Cross NC, et al. JAK2-V617F mutation in a patient with Philadelphia-chromosome-positive chronic myeloid leukemia. Lancet Oncol. 2007;8(7):658-660.

32. Campiotti L, Appio L, Solbiati F, Ageno W, Venco A. JAK2-V617F mutation and Philadelphia positive chronic myeloid leukemia. Leuk Res. 2009;33(11):e212-213.

33. Pastore F, Schneider S, Christ O, Hiddemann W, Spiekermann K. Impressive thrombocytosis evolving in a patient with a BCR-ABL positive CML in major molecular response during dasatinib treatment unmask an additional JAK2V617F. Exp Hematol Oncol. 2013;2(1):24.

34. Cambier N, Renneville A, Cazaentre T, Soenen V, Cossement C, Giraudier S, Grardel N, et al. JAK2V617F-positive polycythemia vera and Philadelphia chromosome-positive chronic myeloid leukemia: one patient with two distinct myeloproliferative disorders. Leukemia. 2008;22(7):1454-1455.

35. de Conchon MRM, Costa JL, Novaea MMY, Dohlhall-Llacer PE, de Alencar Fischer Chamone D, Bentidt S. Simultaneous detection of JAK2 V617F mutation and BCR-ABL translocation in a patient with chronic myelogenous leukemia. Int J Hematol. 2008;88(2):243-245.

36. Inami M, Inokuchi K, Okabe M, Kosaka F, Mitamura Y, Yamaguchi H, Dan K. Polycythemia associated with the JAK2V617F mutation emerged during treatment of chronic myelogenous leukemia. Leukemia. 2007;21(5):1103-1104.

37. Gattenloher S, Volker HU, Etschmann B, Einsele H, Muller-Hermelink HK. BCR-ABL positive chronic myeloid leukemia with concurrent JAK2(V617F) positive myelodysplastic syndrome/myeloproliferative neoplasm (RARS-T). Am J Hematol. 2009;84(5):306-307.

38. Cappetta M, Perez v, Zubillaga MN, Elizondo v, Manrique G, Prosper I, Boschis S, et al. Concomitant detection of BCR-ABL translocation and JAK2 V617F mutation in five patients with myeloproliferative neoplasm at diagnosis. Int J Lab Med. 2013;35(1):e4-5.

39. Tabassum N, Saboor M, Ghani R, Moinuddin M. Frequency of JAK2 V617F mutation in patients with Philadelphia positive Chronic Myeloid Leukemia in Pakistan. Pak J Med Sci. 2014;30(1):185-188.

40. Pahore ZA, Shamsi TS, Taj M, Farzana T, Ansari SH, Nadeem M, Ahmad M, et al. JAK2V617F mutation in chronic myeloid leukemia predicts early disease progres-
sion. J Coll Physicians Surg Pak. 2011;21(8):472-475.
41. Boddu P, Chihara D, Masarova L, Pemmaraju N, Patel KP, Verstovsek S. The co-occurrence of driver mutations in chronic myeloproliferative neoplasms. Ann Hematol. 2018;97(11):2071-2080.
42. Hussein K, Bock O, Seegers A, Flaschhove M, Henneke F, Buesche G, Kreipe HH. Myelofibrosis evolving during imatinib treatment of a chronic myeloproliferative disease with coexisting BCR-ABL translocation and JAK2V617F mutation. Blood. 2007;109(9):4106-4107.
43. Kandarpa M, Wu YM, Robinson D, Burke PW, Chinnaian AM, Talpaz M. Clinical characteristics and whole exome/transcriptome sequencing of coexisting chronic myeloid leukemia and myelofibrosis. Am J Hematol. 2017;92(6):555-561.
44. Diamond JM, de Almeida AM, Belo HJ, da Costa MP, Cabecadas JM, Abecasis MM. CALR-mutated primary myelofibrosis evolving to chronic myeloid leukemia with both CALR mutation and BCR-ABL1 fusion gene. Ann Hematol. 2016;95(12):2101-2104.