Bacillus “next generation” diagnostics: moving from detection toward subtyping and risk-related strain profiling

Monika Ehling-Schulz1* and Ute Messelhäuser2

1 Institute of Functional Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
2 Bavarian Health and Food Safety Authority, Oberschleißheim, Germany

INTRODUCTION

Proper diagnostic tools are of utmost importance, not only in the field of clinical but also in the field of food and veterinary microbiology diagnostics. Since the first isolation, purifi-
cation, and cultivation of a pathogenic bacterium, namely Bacillus anthracis, by Koch (1876), the use of solid plating media has become the “golden standard” in classical microbiology and is still the “method of choice” for identification and enumeration of bacteria in routine diagnostic labs. How-
ever, general drawbacks of conventional culture-based methods, such as low specificity (poor inclusivity/exclusivity) and low discriminatory power, question their suitability to cope with today’s diagnostic needs. In addition, it has been shown that certain characteristics, such as the presence of toxin genes, are rather strain than species-specific. For instance, botulinum neurotoxins are not only produced by C. botulinum but also by some C. baratti and C. butyricum strains, Staphylococcus aureus enterotoxin genes have also been found in other Staphylococ-
cus spp. (e.g., Tsukamoto et al., 2002; De Medici et al., 2009; Oliveira et al., 2010). There are also some studies reporting on the detection of B. cereus enterotoxins in non-B. cereus group Bacillus spp. (Kovan et al., 2001; Phelps and McKillip, 2002) and, more recently, a heat stable toxin, structural related to the B. cereus emetic toxin cereulide, has been found in a Paeni-
bacillus tundrae strain (Rasimus et al., 2012). The capacity for the production of spoilage-associated enzymes, such as prote-
tases and lipases, may also vary significantly among strains of the same species (see, e.g., De Jonghe et al., 2010). Gener-
ally, members of the genus Bacillus and related genera show a high inter- and intra-species heterogeneity, which confronts diagnostic labs with various challenges and the urgent need for novel diagnostic concepts.

The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture-based methods, which are still widely used. However, due to the extreme intra-species diversity found in the genus Bacillus, DNA-based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain-dependent than species-specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential), trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains.

Keywords: Bacillus cereus, Bacillus toxin, enterotoxins, cereulide, toxin gene profiling, MLST, fingerprinting, food poisoning

*Correspondence: Monika Ehling-Schulz, Institute of Functional Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinarplatz 1, A-1210 Vienna, Austria. email: monika.ehling-schulz@vetmeduni.ac.at

www.frontiersin.org

February 2013 Volume 4 Article 32 1
plating media. Two standard plating media, the polymyxin-egg different food matrices is routinely performed using selective sequencing and are therefore subsumed as “presumptive differentiated by classical cultural detection methods or 16S rDNA diagnostics, focusing rather on strain characterization than on species identification.

WHO IS OUT THERE?
The B. cereus group (Figure 1) comprises bacteria that can grow over a wide temperature range and showing quite variable pathogenic potentials, ranging from strains used as plant growth promoters and biopesticides to strains causing fatal diseases. The CLASSICAL WAY of Bacillus diagnostic: CULTURAL DETECTION, ENUMERATION, AND DIFFERENTIATION

Cultural detection and enumeration of presumptive B. cereus (B. cereus s.l.), following internationals standards (such as the ISO 7932; Anonymous, 2004), is still the standard procedure for Bacillus diagnostic in food microbiology laboratories. Because of their close genetic relatedness, B. cereus group members cannot be differentiated by classical cultural detection methods or 16S rDNA sequencing and are therefore subsumed as “presumptive B. cereus.” Isolation and enumeration of presumptive B. cereus from different food matrices is routinely performed using selective plating media. Two standard plating media, the polymyxin-egg yolk-mannitol-bronothyromol blue agar (PEMBA) and the mannitol-egg yolk-polymyxin (MYP) agar, are currently recommended by the International Organization for Standardization (ISO) or the Food and Drug Administration (FDA). However, these media bear the risk of substantial misidentifications since various strains, especially if food matrices are analyzed, are showing atypical reaction on these media (Fricker et al., 2008). In the last few years, new chromogenic media have been designed for the detection of B. cereus group members. All these media are based on enzymes that are under regulatory control of the pleiotropic regulator PlcR. However, since molecular polymorphisms in the plcR gene have been found in all strains showing atypical growth characteristics, the concept of the selective plating media using PlcR-regulated enzymatic activities must be generally questioned and should be reconsidered (Fricker et al., 2008).

For the enumeration of presumptive B. cereus two main methods are widely used in food microbiology, colony-count-techniques on different solid agars and the most probable number (MPN)-technique. For colony count methods employing solid media the detection limit is routinely assessed according to international standards, such as the ISO 7932 (Anonymous, 2004). Since routinely 0.1 mL of the sample (fluid material) or the first serial dilution step (solid material) are plated, the theoretical detection limit is about 10 or 100 CFU/g, respectively, but the detection limit can be lowered by the power of ten by plating 1 mL of the sample or first dilution step on three plates of the solid medium. Enumeration procedures can also be combined with a molecular-based differentiation of the isolates based on their toxin gene profiles, enabling a rough estimate of the number of pathogenic B. cereus in the food sample investigated (see following section for details). Since B. cereus is a ubiquitous spore former, its presence cannot totally be avoided in many food products and, from a consumer safety perspective, the determination of the presence and prevalence of toxigenic strains is of special importance. First assays for enumeration of presumptive and/or toxigenic B. cereus strains employing molecular methods, such as qPCR have been described (Martínez-Blanch et al., 2009; Ceuppens et al., 2010; Drácsel et al., 2013) but their applicability in route diagnostic is still hampered by the fact that the current systems do not allow a differentiation of live and dead bacteria, vegetative cells or spores.

THE GOOD, THE BAD, THE UGLY: MOLECULAR TOOL BOX FOR TYping AND PROFiling OF STRAINS

Molecular diagnostic tools for B. cereus focus more and more on detection of toxin genes rather than on the differentiation between B. cereus sensu stricto and other members of the B. cereus group. Although for other purposes the determination of the species might be required. Due to the bioterrorism potential B. anthracis various PCR systems for its specific detection and differentiation from the other members of the B. cereus group have been developed. For instance, Leski et al. (2009) used the Bacillus collagen-like protein \(b \) genes as target sequence whereas Wielinga et al. (2011) integrated a chromosomal marker sequence, target genes located on the two B. anthracis virulence plasmids and an internal amplification control in a probe-based multiplex real-time PCR assay. Since the latter assay targets, beside a B. anthracis-specific chromosomal marker, the coding region of the...
edema factor gene (cyA, encoding an anthrax toxin component) located on pX01, and the coding region of the capsule synthesis gene capP located on pX02, this assay allows a one-step detection and discrimination of different B. anthracis virulence types (Wielinga et al., 2011). Because of the economic importance of B. thuringiensis as biopesticide, PCR systems targeting different parts of the cry insecticidal toxin genes, have been developed during the last two decades (see, e.g., Bourque et al., 1993).

More recently, PCR systems for toxin gene profiling of B. cereus group strains have been developed. The detection of the different toxin genes can either be performed using gel-based PCR or real-time PCR systems (e.g., Guinebretière et al., 2002; Ehling-Schulz et al., 2004b, 2006a; Fricker et al., 2007; Wehbe et al., 2010). Because members of the B. cereus group frequently possess the ability to produce more than one toxin, suitable diagnostic tools for toxin gene profiling should cover the genes encoding the three main enterotoxins, namely the non-hemolytic enterotoxin (Nhe), the hemolysin BL (Hbl), and cytotoxin K (CytK) as well as the emetic toxin cereulide synthetase genes ces. Nhe and Hbl are related to three component toxins whereas CytK is a single component protein toxin, belonging to the group of β-barrel toxins (for review, see Stenfors Arnesen et al., 2008). The emetic toxin cereulide is a cyclic heat stable depsipeptide produced by the non-ribosomal cereulide peptide synthetase (Ehling-Schulz et al., 2005a, 2006a). Current studies indicate that literarily all B. cereus group strains carry the nhe genes and most of the strains are also able to produce Nhe, although the levels of toxin production vary significantly from strains to strains (Moravek et al., 2006; Stenfors Arnesen et al., 2008). Between 44 and 60% of B. cereus strains are able to produce the Hbl toxin (Ehling-Schulz et al., 2005b; Moravek et al., 2006). The ability for CytK production was found in about 40–85% of B. cereus isolates investigated so far (Ngammongsa et al., 2008; Stenfors Arnesen et al., 2008). Generally, it seems that certain toxin gene profiles are predominant in specific groups of strains derived from different origin (Ehling-Schulz et al., 2005b, 2006a). For instance, cytK was found in 70% of strains connected to diarrhoeal food borne outbreaks but it was only rarely found in emetic strains (8%). Recent studies from different continents including isolates from diverse origins indicate the progressive emergence of pathotypes with novel toxin gene profiles (Thøersen et al., 2006; Ehling-Schulz et al., 2011a; Chon et al., 2012), confronting food industry and food microbiology labs with potential novel hazards.

For outbreak investigations of B. cereus s.l., the toxin gene profile might be much more important than the exact species determination. It is well known that not only B. cereus sensu stricto can harbor the toxin genes described above; instead, enterotoxin genes are broadly distributed within the B. cereus group (e.g., Pries et al., 1999; Guinebretière et al., 2008) and B. thuringiensis has also been described as the possible cause of foodborne outbreaks and other infections, such as local wound and eye infection as well as pulmonary infections (Jackson et al., 1995; Hernandez et al., 1998; Laurence et al., 2000; Cheung et al., 2006). Therefore, future developments in food microbiology diagnostics should be more focused on the determination of toxins and virulence factors than on the differentiation of species. Nevertheless, one should bear in mind that the sole presence or absence of an individual toxin gene does not fully explain the pathogenic potential of a certain strain and molecular methods should always be accompanied by sensitive and accurate toxin quantification systems (see, e.g., Bauer et al., 2010). For instance, it has been shown that the toxigenic potential among emetic as well as enterotoxic strains can vary substantially (see, e.g., Moravek et al., 2006; Stark et al., 2013).

POPULATION STUDIES AND CONTAMINATION ROUTE ANALYSIS

DIGGING INTO Bacillus POPULATIONS: PCR-BASED TYPING SYSTEMS

For molecular typing of members of the B. cereus group various PCR-based methods are currently available. Besides random amplification of polymorphic DNA (RAPD)-PCR, REP (repetitive extragenic palindromic),- or BOX-PCR can be used for genomic fingerprinting of isolates. For instance, BOX-PCR genomic fingerprinting and also variable-number tandem repeats (VNTR) analysis show the close relationship between B. anthracis and some B. cereus strains (e.g., Kim et al., 2002; Chaves et al., 2011). Since several years, the RAPD-PCR is an established method for molecular typing of different members of Bacillus spp. Therefore, RAPD-PCR was applied for epidemiological subtyping of B. cereus and B. lentus and for differentiation between B. anthracis and other members of the B. cereus group (Stephan, 1996; Hufnagel et al., 1999). RAPD may also represent an interesting screening method for emetic B. cereus strains also on a routine laboratory basis (Ehling-Schulz et al., 2005b). In summary, RAPD is a valuable and widely used tool for molecular typing of different Bacillus spp. Nevertheless, in contrast to other molecular typing methods, such as multilocus sequence typing (MLST), the interlaboratory reproducibility of data frequently causes difficulties, which might have been one of the reasons why MLST-based systems gradual became the "golden standard" during the last years.

The "GOLDEN STANDARDS" FOR POPULATION STUDIES OF B. cereus s.l.

MULTILOCUS SEQUENCE TYPING AND AMPLIFIED FRAGMENT LENGTH POLYMORPHISM

Due to high genomic plasticity, the population structure of B. cereus s.l. is quite dynamic and there is potential within this group of bacteria for emergence of new pathogenic lineages with increased or new virulence, or increased ability to survive in adverse environmental conditions (Kolsto et al., 2009; Ehling-Schulz et al., 2011a; Tourasse et al., 2011). An in-depth knowledge of the population structure of B. cereus s.l. is therefore not only of general academic interest but also of great importance for clinical and food microbiology diagnostics. During the last decade various MLST-based schemes for typing of B. cereus s.l. strains have been developed (for overview, see Tourasse and Kolsto, 2008), which have been successfully applied for inferring genetic relationships among B. cereus s.l. strains of different origin, such as soil, insects, food, and humans (Ehling-Schulz et al., 2005b; Vassileva et al., 2006; Candelier et al., 2008; Hoffmaster et al., 2008; Raymond et al., 2010). Although the different MLST schemes employ different
housekeeping genes, all of them revealed three major clades. Interestingly, the same major clusters were found by Fourier transform infrared (FTIR) spectroscopic analysis, pointing toward conserved phenotypic traits of genetic-related strains (Ehling-Schulz et al., 2005b). However, regardless of the typing method used, the different B. cereus group species are interspersed within the different clusters, questioning the suitability of diagnostics solely based on species identification.

One major drawback of MLST-based approaches is the requirement of substantial hands-on-time for sequencing of seven genes per strain and subsequent data analysis, which limits its applicability for high throughput studies. The development of microfluidic biochips might simplify MLST analysis in the future (Read et al., 2010). Currently, the use of the sporulation stage III AB gene (spoIIIAB) as a single genetic marker might represent an alternative to obtain a rough snapshot of genetic relations among B. cereus s.l. strains under study (Ehling-Schulz et al., 2005b). This genetic marker resembles the structure of MLST-derived clusters and its suitability for sequence typing was recently reconfirmed by comparing clusters derived form hierarchical cluster analysis of SpoIIIAB sequences with the clusters obtained by whole genome sequencing using a sliding window approach (Fricker et al., 2011; Segerman et al., 2011).

When high throughput capacities are needed, amplified fragment length polymorphism (AFLP) might be the method of choice because it does not require laborious sequencing efforts. For instance, Guinebretière et al. (2008) used AFLP for typing of a comprehensive collection of 423 well-characterized B. cereus group strains derived from very different ecological niches. Seven major clusters (denoted I–VII) were identified, which correlate with physiological properties of the strains. Interestingly, the potential of strains for causing food poisoning correlated with certain phylogenetic groups (Guinebretière et al., 2010). To assign strains to different genetic groups an online tool has been developed, which is available at https://www工具s.ympevius.org/Bcereus/english.php.

In addition, Tourasse et al. (2010) have developed a database called HyperCat, allowing the integration of data from the two different typing systems (MLST, AFLP) described above as well as data derived from multilocus enzyme electrophoresis (MEE), to calculate super trees. HyperCat was applied to carry out a multitype analysis of 425 well-characterized B. cereus group strains derived from different origins, including 450 food and dairy production strains. This integrative approach confirmed the major clusters but also revealed some novel phylogenetic branches, including a putative new lineage of B. anthracis (Tourasse et al., 2011). The next step toward a more holistic understanding of this evolutionary interesting and economical important group of microorganisms would be now to include data from functional genomics (transcriptomics, proteomics, and metabolomics).

BACTERIAL IDs: FINGERPRINTING TECHNIQUES

Molecular fingerprints
The main fingerprinting technique, the pulsed field gel electrophoresis (PFGE) is used as one of the most important typing method for a wide field of foodborne pathogens, especially for epidemiological studies in outbreak situations. In principle, PFGE can be used for typing of B. cereus (Carlson et al., 1994; Liu et al., 1997; Ohsaki et al., 2007) but PulseNet International, a network for tracking foodborne infections worldwide, does not provide a protocol for molecular typing of B. cereus so far (Swaminathan et al., 2006). However, for epidemiological studies, especially in case of foodborne outbreaks, standard protocols would be mandatory for generating comparable data worldwide. In addition, there are technical difficulties in attaining sufficient chromosomal DNA for macrorestriction of certain strains, especially from food-derived ones. Generally, MLST and AFLP are more commonly used for the differentiation and epidemiological investigations of B. cereus group members than PFGE, and multilocus VNTR analysis (MLVA) and single-nucleotide polymorphism (SNP) analysis are the current “methods of choice” for typing of isolates belonging to the highly monomorphic species B. anthracis (e.g., Keim et al., 2000; Kuroda et al., 2010).

Metabolic fingerprints
Fourier transform infrared spectroscopy is a powerful tool for microbial diagnostics and epidemiological studies and has already been successfully used to type B. cereus group strains (Ehling-Schulz et al., 2005b; Mietke et al., 2010). Basically, FTIR is a vibrational spectroscopic technique, which is able to distinguish microbial cells at different taxonomic levels (Neumann et al., 1991; Wenning et al., 2008). The entire biochemical composition of whole cells is recorded by the absorbance of mid-infrared light by the molecules present in the cells. The resulting spectra are used as fingerprints and analyzed by pattern recognition techniques. The same spectrum from a microbial sample can be used for identification purposes as well as for typing below the species level. This enables an application in contamination route analysis, epidemiological studies and for determination of specific properties of B. cereus s.l. (Ehling-Schulz et al., 2005b, 2011b). Due to its cost efficiency and high throughput capacities, FTIR spectroscopy represents an interesting alternative to genetic methods for B. cereus subtyping and for tracing contamination sources.

THIRD GENERATION SEQUENCING FOR NEXT GENERATION DIAGNOSTICS?
The introduction of massive parallel sequencing in the mid-2000s was a hallmark in genome sequencing, allowing rapid sequencing of DNA on a gigabase scale. The advances in high throughput sequencing technologies during the last years enable the sequencing of microbial genomes in less than 1 day. Concurringly, with the upscaling of sequencing capacities the costs per base for sequencing are constantly dropping, thereby opening new perspectives for genome-based diagnostics.

The role of B. anthracis as a potent bioterror agent has lead to renewed interest in its close relative B. cereus, resulting in several genome sequencing projects. Currently (January 2013), genomic sequence information is available for about 225 B. cereus group strains (Table 1). The list of strains in the sequencing pipeline is steadily growing but the lack of bioinformatic tools is still the bottleneck for a broader application of genome sequence-based diagnostics. Especially for bacteria, such as B. cereus, showing a high rate of genome rearrangements and genomic repeats and transposable elements (Tourasse et al., 2006; Kolsto et al., 2009;
de novo sequence assembly is laborious and time consuming. Therefore, more and more genomes are left unfinished as permanent draft sequences. Third generation sequencing may help to overcome this obstacle to a certain degree by generating longer reads, facilitating sequence assembly. However, the development of appropriate, user-friendly bioinformatic tools will be the major challenge for implementation of genomics in microbial diagnostics in the upcoming years.

First tools to minimize post-sequencing data processing have already been developed. For instance, Segerman et al. (2011) used a method that defines orthologous sequence reads instead of orthologous genes for subtyping B. anthracis strains and for obtaining a general overview of the phylogenomic structure of the genus Bacillus. Very recently, Agren et al. (2012) presented a software tool, which uses fragmented alignments to analyze multiple genomes. This software, named after the Greek Argonauts six-armed giant
Table 1 | Overview on Bacillus species for which multiple genomes are public available (http://www.ncbi.nlm.nih.gov/genome, last accessed January 2013)

Species	Number of genomes	Economic relevance
Bacillus cereus s.l.		
Bacillus cereus	154 (41)	P, S, (B)
Bacillus thuringiensis	32 (23)	B, (P)
Bacillus anthracis	31 (7)	P
Bacillus weihenstephanensis	5 (1)	S
Bacillus mycoides	3 (1)	S

Non-B. cereus group Bacillus spp.

Species	Number of genomes	Economic relevance
Bacillus subtilis	42 (13)	B, S, (P)
Bacillus amyloliquefaciens	19 (10)	B
Bacillus atropheus	16 (1)	S
Bacillus licheniformis	10 (2)	B, (S), (P)
Bacillus megaterium	7 (4)	B
Bacillus pumilus	7 (1)	B, (S), (P)
Bacillus coagulans	5 (2)	B, S

*Number refers to Bacillus genome sequencing projects; number of finished genomes is given in brackets.

†Pathogenic potential; S, spoilage potential; B, beneficial (biopesticide, probiotic, plant growth promoter, biotechnological applications).

‡Use as non-pathogenic surrogate in food microbiology and biodefense research.

tribe “Gegenees,” is designed as an open platform and can be accessed at http://gegenees.org/index.html. “Gegenees” was successfully used to search for unique signatures for B. anthracis, by analyzing 134 Bacillus genomes. Based on the identified signatures, target group specific primes were designed (Agren et al., 2012).

For comparative genotyping DNA microarray-based analysis might also be an interesting route to follow. The huge amount of genetic information from recent and ongoing Bacillus sequencing projects makes it feasible to design high-density whole genome microarrays to gain in-depth insights into genetic footprints of strains. For instance, Papazisi et al. (2011) used a multi-genome DNA array to study the genomic diversity of B. cereus s.l. and evolutionary traits of B. anthracis. Such arrays are not only useful to gain insights into the pathophysiology of Bacilli but might also be valuable tools to search for specific strain characteristics, such as stress resistance genes and spoilage-associated genetic determinants.

CONCLUSION AND FUTURE PERSPECTIVES

The pathogenic potential among B. cereus group strains ranges from probiotics to highly toxic strains, causing fatal diseases. The discrimination of hazardous strains from harmless, or even beneficial, isolates is therefore the major challenge in future B. cereus diagnostics. It is expected that the currently taxonomic focused diagnostics will gradually be replaced or complemented by more risk-oriented diagnostics. The diagnostic tools, developed during the last decade, for toxin gene profiling and for the determination of specific molecular characteristics as well as for the detection of specific patho- and ecotypes and for quantification of toxins are gaining increasing importance and will lead to a significant improvement of B. cereus diagnostics.

However, the classical cultural methods for detection and enumeration of members of the B. cereus group are still important tools in the field of food microbiology and could complement and cross-validate results from molecular analyses (Figure 2). Because current methods exploited for identification and subtyping of B. cereus s.l. require the isolation of single strains, culture-based methods will still be an intrinsic part of food microbiology diagnostics during the next years.

Recent developments in genotyping are also opening new perspectives for food microbiology diagnostics and are expected to (i) help to decipher specific molecular characteristics of highly pathogenic, food spoiling or beneficial strains and provide biomarkers for a new generation of diagnostics, (ii) foster rapid contamination route analyses, which is getting increasingly important due to globalization of food production, and (iii) facilitate tracing of sources of food borne outbreak by supporting link-age of patient isolates with food-derived isolates. However, before the full potential of next generation sequence-based genomics, or even a part of it, can be exploited for food microbiology diagnostic, appropriate user-friendly bioinformatic tools need to be developed.

ACKNOWLEDGMENTS

We thank Irene Klein for her help with mixed cultures preparations of B. cereus s.l. and acknowledge Stefan Schulz’s assistance in manuscript preparation. This work was supported by the German Ministry of Economics and Technology (via AiF) and the FEI Ministry of Economics and Technology (via AiF) and the FEI Ministry of Economics and Technology (via AiF) and the FEI Ministry of Economics and Technology (via AiF) and the FEI Ministry of Economics and Technology (via AiF) and the FEI Ministry of Economics and Technology (via AiF).

REFERENCES

Agren, J., Sundström, A., Håfström, T., and Segerman, B. (2011). Genomic fragmented alignment of multiple genomes for determining phylogenetic distances and genetic signatures unique for specified target groups. PLoS ONE 7:e39107. doi: 10.1371/journal.pone.0039107

Anagnostou (2004). Microbiology of Food and Animal Feeding Stuffs — Horizontal Method for the Enumeration of Presumptive Bacillus cereus — Colony-count Technique at 30 Degrees C. Geneva: International Organization for Standardization (ISO).

Bauer, T., Stark, T., Hofmann, T., and Elding, Schulz, M. (2010). Development of a stable isotope dilution assay for the quantification of the Bacillus cereus toxin cereulide in foods. J. Agric. Food Chem. 58, 1420–1428.

Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev. 23, 482–498.

Bouque, S. N., Villers, J. B., Mennet, J., Larmin, M. C., and Loretteau, B. C. (1993). Multiplex polymerase chain reaction for detection and discrimination of the microbial insecticide Bacillus thuringiensis. Appl. Environ. Microbiol. 59, 525–527.

Browe, A., Jakobswalterm, S., Gill, S., and Sobel, T. (2011). Bacillus cereus: a story of a successful biomolecular. Infect. Biol. 41, 423–431.

Callegan, M. C., Crochan, D. C., Kane, S. T., Radiaco, R. T., Ochodo, I., MeLean, C., et al. (2008). Virulence factor profiles and antimicrobial susceptibility of ocular Bacillus isolates. Curr. Eye Res. 33, 693–702.

Cardenas, R., Nigros, E., Carrero, L., Alberghini, L., Pandolfo, T., and Gascon, V. (2008). Multiple locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl. Environ. Microbiol. 74, 850–860.
Carlson, C. R., Cangan, D. A., and Kolster, A. B. (1994). Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60, 752–756.

Caugant, D. A., and Kohler, B. (1994). Neurotoxins of Bacillus cereus and Bacillus thuringiensis isolated from food in Brazil over three decades. Int. J. Food Microbiol. 31, 129–135.

Carlson, C. R., Caugant, D. A., and Kolster, A. B. (2002). Genotypic relationships of Bacillus anthracis and closely related species based on variable-number tandem repeat analysis and BOS-PCR genomic fingerprinting. FEMS Microbiol. Lett. 207, 21–27.

Khosravi, S. R., Orud, M., Appel, B., Bosch, C., Ellenberg, H., Jacob, D., et al. (2008). Characterisation of Bacillus anthracis-like bacteria isolated from solid goods at time of entry in the EU and Cameroon. J. Bacteriol. 190, 5353–5354.

Kor, R. (1876). Untersuchungen über Bakterien: V. Die Ätiologie der Miliar-Bacillosis, begründet auf die Entwicklungsgeschichte des Bacillus anthracis. Gebir. Biol. Physiol. 2, 277–310.

Kohler, S. J., Qj, Piso, E. S., and Vynny, A. M. (2011). Genotypic diversity, antimicrobial resistance and xenogeneic profiles of Bacillus cereus isolated from food in Brazil. Int. J. Food Microbiol. 151, 183–197.
Phelps, R. J., and McKillip, J. L. (2002).

Prüss, B. M., Francis, K. P., von Stetten, M., Rasko, D. A., Ratnayake, S., Ohsaki, Y., Koyano, S., Tachibana, M., Naumann, D., Helm, D., and Labischinski, M., and Fouet, A. (2001).

Moravek, M., Dietrich, R., Buerk, C., Ehling-Schulz and Messelhäusser Bacillus “next generation” diagnostics

Annu. Rev. Microbiol. 54, 617–622.

Broad distribution of enterotoxin M., Assavanig, A., et al. (2008). Pseudo-outbreak after renovation in milk, and confectionery cream.

J. Food Microbiol. 75, M475–M481.

Stark, T., Marxen, S., Rütschle, A., Rasimus, S., Mikkola, R., Andersson, J., et al. (2011). Sudden anthrax. Annu. Rev. Microbiol. 65, 311–316.

Granum, P. E., et al. (2006). Determination of the toxic potential of Bacillus cereus isolates from severe systemic infections using multilocus sequencing scheme.

Microb. Pathog. 38, 740–749.

Wehrle, E., Dohler, A., Moraski, M., Dietrich, B., and Mariathase, E. (2010). Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR Green I & J&K Probe. 24, 124–130.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 20 October 2012, paper pending published: 02 January 2013; accepted: 05 February 2013; published online: 22 February 2013.

Bacillus “next generation” diagnostics: moving from detection to subtyping and risk-related strain profiling. Front. Microbiol. 4:32. doi: 10.3389/fmicb.2013.00032

This article was submitted to Frontiers in Food Microbiology, a specialty of Frontiers in Microbiology.

Copyright © 2013 Ehling-Schulz M and Messelhäuser U (2013) Bacillus “next generation” diagnostics: moving from detection to subtyping and risk-related strain profiling. Front. Microbiol. 4:32. doi: 10.3389/fmicb.2013.00032

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided that the original authors and source are credited and that the original publication is cited.