BAKMP-IoMT: Design of Blockchain Enabled Authenticated Key Management Protocol for Internet of Medical Things Deployment

NEHA GARG1, MOHAMMAD WAZID1, (Senior Member, IEEE), ASHOK KUMAR DAS2, (Senior Member, IEEE), DEVESH PRATAP SINGH3, JOEL J. P. C. RODRIGUES3,4, (Fellow, IEEE), AND YOUNGHO PARK5, (Member, IEEE)

1Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248 002, India
2Center for Security, Theory and Algorithmic Research, International Institute of Information Technology, Hyderabad 500 032, India
3PPGEE, Federal University of Piauí (UFPi), Teresina 64049-550, Brazil
4Instituto de Telecomunicações, 1049-001 Lisboa, Portugal
5School of Electronics Engineering, Kyungpook National University, Daegu 41566, South Korea

Corresponding author: Youngho Park (parkyh@knu.ac.kr)

ABSTRACT

The Internet of Medical Things (IoMT) is a kind of connected infrastructure of smart medical devices along with software applications, health systems and services. These medical devices and applications are connected to healthcare systems through the Internet. The Wi-Fi enabled devices facilitate machine-to-machine communication and link to the cloud platforms for data storage. IoMT has the ability to make accurate diagnoses, with fewer mistakes and lower costs of care. IoMT with smartphone applications permits the patients to exchange their health related confidential and private information to the healthcare experts (i.e., doctors) for the better control of diseases, and also for tracking and preventing chronic illnesses. Due to insecure communication among the entities involved in IoMT, an attacker can tamper with the confidential and private health related information for example an attacker can not only intercept the messages, but can also modify, delete or insert malicious messages during communication. To deal this sensitive issue, we design a novel blockchain enabled authentication key agreement protocol for IoMT environment, called BAKMP-IoMT. BAKMP-IoMT provides secure key management between implantable medical devices and personal servers and between personal servers and cloud servers. The legitimate users can also access the healthcare data from the cloud servers in a secure way. The entire healthcare data is stored in a blockchain maintained by the cloud servers. A detailed formal security including the security verification of BAKMP-IoMT using the widely-accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) tool is performed to demonstrate its resilience against the different types of possible attack. The comparison of BAKMP-IoMT with relevant existing schemes is conducted which identifies that the proposed system furnishes better security and functionality, and also needs low communication and computational costs as compared to other schemes. Finally, the simulation of BAKMP-IoMT is conducted to demonstrate its impact on the performance parameters.

INDEX TERMS

Blockchain, Internet of Medical Things (IoMT), authentication, key management, security, simulation.

I. INTRODUCTION

Internet of Medical Things (IoMT) is an assortment of health care systems (medical devices, software applications and services etc.) to provide secure transmission of health related data between smart devices which help the remotely located doctors, care-providers, medical test centers to store and exchange health data electronically. It further provides real time medical services and assistance through Internet enabled smart devices like smart phones, smart medical wearable...
and implanted devices, electronic medical reports (EMR) etc. Other benefits of IoMT includes reduced health care costs, provides timely medical responses, fast decision making and improved quality of medical treatment. Presently, billions of devices are connected to Internet of Things (IoT) for various verticals of applications including the healthcare. With this exponential growth, user’s privacy and security becomes most challenging issues in IoT (especially in IoMT) and requires essential consideration. Several potentials for security and privacy breaches that might occur in the healthcare systems are unauthorised access to enormous patients sensitive data (i.e., personal and medical records) that helps in making life critical decisions. Other malicious activities are modification of health data, hijacking of medical devices, gaining access to hospitals networks and exploitation of exchanged and stored information are performed to threat the lives of the patients. This necessitates to explore optimized solutions to deal with the threats and attacks on IoMT. Among several security mechanisms blockchain has the potentials to conquer the impediments of conventional ways to deal with the security and user privacy and is considered to be the backbone of future IoT (i.e., IoMT) applications with various benefits like enhanced security, reduced cost, true traceability, improved speed and efficient mechanism etc. Therefore, integrating Blockchain with IoMT can provide resilience to several attacks related to “user authentication problem & key management” problem such as “replay”, “man-in-the-middle”, “impersonation”, “password guessing”, “illegal session key computation”, “health data disclosure”, “denial of service (DoS)”, “privileged insiders”, etc., and in turn provides better healthcare services in a secured and real time environment.

A. MOTIVATION

As discussed earlier IoMT communication environment is vulnerable to various types of attacks. Therefore, we need some strong mechanism to secure the communication occur in an IoMT environment. For such purpose, the mechanism of blockchain will be helpful as it is decentralized and temper-proof can resist different types of attacks. Hence, a secure, blockchain-enabled authenticated key management protocol for IoMT is proposed. Moreover, in the designing of the proposed scheme, we consider a private blockchain. This is primarily because the healthcare data are typically strictly confidential and private. Therefore, if we put the confidential and private health related information on a public or even on a hybrid blockchain, it will raise privacy issues. It is then recommended to consider a private blockchain in such an environment.

B. CONTRIBUTIONS OF PROPOSED WORK

The contributions of this paper are manyfold:

- We propose a novel blockchain-based authentication and key management scheme for IoMT environment, called BAKMP-IoMT. Moreover, the private blockchain is considered in the designing of BAKMP-IoMT. In BAKMP-IoMT, we only incorporate efficient one-way cryptographic hash function and bitwise XOR operations.

- The formal security verification of BAKMP-IoMT using the widely-accepted AVISPA tool is performed to demonstrate its resilience against various known passive/active attacks, and also through non-mathematical (informal) security analysis we show that BAKMP-IoMT is robust against other attacks, such as “replay attack”, “man-in-the-middle attack”, “impersonation attacks”, “Ephemeral Secret Leakage (ESL) attack”, “privileged-insider attack”, “physical medical devices capture attack” and “data modification attack”. Moreover, BAKMP-IoMT also preserves “anonymity” and “untraceability” properties.

- The comparison of BAKMP-IoMT with relevant existing schemes is conducted, which identifies that the proposed BAKMP-IoMT furnishes better security and functionality features, and low communication and computational costs as compared to those schemes.

- Finally, the simulation of BAKMP-IoMT is conducted to demonstrate its impact on the performance parameters.

C. PAPER STRUCTURE

The discussion on the associated existing schemes in healthcare applications is given in Section II. The system models (network and threat) are discussed in Section III. Various phases associated with the proposed “blockchain based authentication and key management scheme for Internet of Medical Things (BAKMP-IoMT)” have been discussed in Section IV. The security analysis of BAKMP-IoMT is carried out in Section V. To make further security analysis strong, the detailed formal security verification using AVISPA tool has been provided in Section VI. The comparative performance analysis of BAKMP-IoMT with relevant existing authentication schemes is also provided in Section VII. Moreover, the practical demonstration of BAKMP-IoMT using the strategies of blockchain is given in Section VIII. Finally, we conclude the work in Section IX.

II. RELATED WORK

In recent years, several authentication and access control mechanisms have been designed in Internet of Things (IoT), wireless sensor networks, healthcare, and other applications [1]–[23].

Monrat et al. [24] surveyed the potential applications of blockchain in diverse disciplines like healthcare, voting, energy trading stock exchange, insurance, education etc. They also discussed the opportunities, trade off and challenges of blockchain in respective domains. Moreover, the taxonomy and architecture of blockchain was provided. Furthermore, several other approaches to reach a consensus in the blockchain was surveyed. Some future research directions of the domain were also highlighted.

Zheng et al. [25] discussed the concepts and characteristics of blockchain and identifies it’s benefits in various domains...
apart from “bitcoin”. Further, the authors discussed a number of technical challenges like scalability, privacy leakage, selfish mining associated with consensus algorithms “Proof of Work (PoW)” and “Proof of Stake (PoS)”. Their study also focused on state-of-art of blockchain including recent growth and future directions. Further, they planned to work on smart contract in a detailed manner to overcome associated defects and limitations.

Aggarwal et al. [26] discussed the usage of blockchain in “smart communities” like “smart cities” and “smart nations” where different IoT devices are located in different geographical regions. Processes of block creation and block verification, various consensus mechanisms, cryptographic primitives are also discussed. Further, classification of the application realm in cyber security is provided in an extensive manner. For example, financial systems, intelligent transportation systems, IoT, smart grid, healthcare networks, voting systems, data center networks etc. Thereafter they discussed various process models (behavior model, government sector, business model) where clusters are formed by grouping the similar process and thus provided data security using blockchain technology. Moreover they provided the information regarding communication infrastructure support like wired and wireless networks (5G, Wifi, SDN, Mobile computing).

Lin et al. [27] discussed the benefit of smart homes and other smart facilities for the society. At the same time they also focused on the risks associated with the remotely accessed and controlled IoT devices that could be exploited for malicious purpose. Thus they analyzed the importance of a secure and efficient remote user authentication and presented a system. For example, “Homechain” which integrates blockchain, group signatures and message authentication code.

Zhang et al. [28] discussed the issues in smart grid like secure communication, reliable mutual authentication and privacy credentials, key management etc., and considered key management between smart meters, the most critical aspect of smart grid. They presented a decentralized keyless signature scheme using consortium blockchain which is computationally cost effective, time effective, scalable, robust and efficient.

Wang et al. [29] discussed about the “Internet of Vehicles (IoV)” as one of the important application of mobile vehicles and wireless technologies, providing the information regarding mobile position, direction, speed and other real time information thus avoiding the traffic jams and accidents. Further, proposed a decentralized authentication mechanism using consensus algorithm of blockchain for IoV. They used blockchain to design new key distribution mechanism for joining the new node’s information in the blockchain ledger.

Lin et al. [30] focused on the limitation of the IoT system due to resource constrained IoT devices and proposed an “outsourcing of bilinear pairings (SOBP)” integrated with permissioned blockchain to address the shortcoming. Thus helps in overcoming the limitations of IoT. They utilized the potentials of permission blockchain (i.e., enhancing security, service availability and system scalability). Finally authors proved and implemented the proposed system to evaluate its security, performance and feasibility.

Chauhary et al. [31] focused on the emerging and recent technology “Tactile Internet” in the field of intelligent transportation system and identified the need to create a secure energy trading ecosystem. Further, proposed a blockchain based secure energy trading scheme in electric vehicle (EVs) for validating EVs request, selecting minor nodes to validate the request, etc. In order to make it computationally effective i.e., low latency and provide real time services, SDN was utilized as an under lying architecture.

Feng et al. [32] discussed the VANET environment i.e., vehicles were connected through wireless communication medium. Some of the potential benefits were like intelligent routing, weather monitoring emergency call etc. They also identified the importance of accuracy and reliability of the communicated message. Further, proposed a framework named as “blockchain assisted privacy pressuring authentication system (BPAS)” that preserved the vehicle privacy and provides automatic authentication in VANET. Blockchain automatically checked the message credibility, monitor vehicle behavior and also traced immutable communication record. Further security analysis was conducted to check the proposed framework for security and privacy of VANET.

Jindal et al. [33] proposed a framework to provide energy trading between electric vehicles (EVs) and charging stations (CSs). To secure the energy trading transactions in software defined networking (SDN) aided vehicle to grid environment, consensus based blockchain was used. It reduced the latency and increased the throughout and thus make the proposed system effective and efficient.

Mingxiao et al. [34] surveyed the effectiveness of blockchain because of its decentralization, stability, security and non-modifiability properties. It identified that consensus algorithm played an important role in the success of blockchain. Further, they reviewed the principles, characteristics, performance analysis and application scenarios of different consensus algorithm.

Zhang et al. [35] highlighted the importance of reaching a consensus in group decision making process (GDM) with minimum cost and maximum return. Further, proposed a generalized “minimum cost soft consensus models” and “maximum return model” under a certain degree of consensus. The correlation between both the model and their economic significance was also presented. In order to prove its utility the proposed models were applied in loan consensus problem in P2P lending utilizing data from Chinese P2P platform and demonstrated how it helped borrowers and lenders to attain a certain level of consensus about interest rate. It efficiently coordinated the supply and demand in P2P lending.

Jang et al. [36] designed a “hybrid security scheme that uses both heterogeneous cryptosystems, such as symmetric and asymmetric (public) key cryptographic techniques”.

Unfortunately, their scheme fails to maintain “anonymity property” and also it does not support “dynamic controller node addition and medical device addition”.

He and Zeadally [37] designed another authentication protocol by using the “ambient intelligence, specifically for an Ambient Assisted Living (AAL) system”. Their protocol helps in monitoring health-related information and also in providing “tele-health care services”. Their system applies the “wearable sensors in the wireless body area networks (WBANs) and assistive robotics”.

Merabet et al. [38] discussed “Machine-to-Machine (M2M)” and “Machine-to-Cloud (M2C)” modes needed in the IoT-based healthcare applications. Next, they proposed two protocols: 1) Protocol-I: “M2C authentication protocol” and b) Protocol-II: “M2M authentication protocol”. Unfortunately, their protocols do not support “dynamic controller node addition and medical device addition”.

Chase and MacBrough [39] provided a comprehensive description and carried detailed analysis of XRP ledger consensus protocol (low latency Byzantine agreement protocol to reach a consensus without universal agreement of network participants. Along with providing the detailed description of the XRP ledger consensus protocol, they validated the networks conditions required to guarantee correctness of the algorithm.

In order to achieve both anonymity and regulation properties, Lin et al. [40] designed a “conditional anonymous payment scheme” and applied the designed scheme to construct their first “decentralized conditional anonymous payment system”. As compared with the Zerocash, they have shown that their proposed system can be deployed for practical real-world deployment.

Ismail and Materwala [41] provided a detailed study on the evolution of blockchain frameworks and consensus protocols. They identified the need to develop a scalable, cost-efficient and green blockchain frameworks to address the goals for a green collaborative, decentralized and agile ecosystems like smart cities, such as health care and governance. An overview of blockchain technology including blockchain layers i.e., infrastructure layer, platform layer, distributed computing layer and application layer/business logic were also presented. Furthermore, the taxonomy, classification (compute-intensive based, voting based and capability based) and comparison among different consensus protocols were provided.

Finally, in Table 1 we summarize discussed existing authentication schemes with their applied cryptographic techniques and disadvantages/limitations.

III. SYSTEM MODELS

We follow the following two models in the designing of BAKMP-IoMT.

A. NETWORK MODEL

BAKMP-IoMT uses network model as shown in Figure 1. In this figure, we have a patient who is implanted with medical devices such as neurostimulator, cochlear implant, cardiac pacemaker and gastric stimulator. There is personal server node (sometimes called as controller node) nearby to the patient which collects the data from the IMDs through some wireless communication technology such as bluetooth. Personal server then transmits the collected data to the cloud server through the access point. Cloud servers receive and store the data which can be used for the further processing. There are some users who are interested in accessing the data of the patient (i.e., doctor, nurse and patient’s relative). Various network entities i.e., IMDs, personal server, cloud server and users, in the system is registered by the trusted authority. User’s data can be accessed by the user from the cloud server after performing the certain steps of the user authentication process. In this model personal devices are the resource rich devices which have high processing, storage and communication capacity. Cloud server acts the miner node in this blockchain based Internet of Medical of Things communication environment. After receiving the data from the personal server, cloud server (miner node) prepares a block and add this in the blockchain when it is successfully committed by the other miners. This kind of communication environment is susceptible to different attacks such as “replay”, “man-in-the-middle”, “impersonation”, “password guessing”, “session key computation” through physical capturing of devices, “health data disclosure” and “denial of service”. Communication between IMDs to personal server, personal server to cloud server and cloud server to user, must be secured. Hence, session key must be established between the user and the cloud server, and also between the cloud devices.

TABLE 1. Summary of various cryptographic techniques used and limitations of existing authentication schemes.

Scheme	Cryptographic Techniques	Drawbacks/Limitations
Jang et al. [36]	* Uses a hybrid security scheme that applies both heterogeneous cryptosystems (symmetric and public key cryptosystems) * Uses “Elliptic Curve Cryptography (ECC)” primitives and one-way cryptographic hash function	* Does not preserve anonymity property * Does not support dynamic controller node addition * Does not support dynamic medical device addition * Does not support blockchain solution
He and Zeadally [37]	* Based on authentication using Ambient Assisted Living (AAL) system * Applies wearable sensors in WBANs and assistive robotics * Uses ECC primitives, symmetric encryption/decryption and one-way cryptographic hash function	* Does not support dynamic controller node addition * Does not support dynamic medical device addition * Does not support blockchain solution
Merabet et al. [38]	* Based on M2C authentication protocol * Based on M2M authentication protocol * Uses ECC primitives and one-way cryptographic hash function	* Does not support dynamic medical device addition * Does not support blockchain solution

In order to achieve both anonymity and regulation properties, Lin et al. [40] designed a “conditional anonymous payment scheme” and applied the designed scheme to construct their first “decentralized conditional anonymous payment system”. As compared with the Zerocash, they have shown that their proposed system can be deployed for practical real-world deployment.

Ismail and Materwala [41] provided a detailed study on the evolution of blockchain frameworks and consensus protocols. They identified the need to develop a scalable, cost-efficient and green blockchain frameworks to address the goals for a green collaborative, decentralized and agile ecosystems like smart cities, such as health care and governance. An overview of blockchain technology including blockchain layers i.e., infrastructure layer, platform layer, distributed computing layer and application layer/business logic were also presented. Furthermore, the taxonomy, classification (compute-intensive based, voting based and capability based) and comparison among different consensus protocols were provided.

Finally, in Table 1 we summarize discussed existing authentication schemes with their applied cryptographic techniques and disadvantages/limitations.
server and personal server. Since majority of implantable medical devices have limited resources so we select to utilize lightweight cryptographic operations (i.e., hash, XOR operations) in the different exchanged messages. The addition of blockchain operations at the cloud servers give more resilience to this scheme against the possible attacks. Therefore, we need a secure data access scheme in the blockchain based IoMT communication environment. Using this scheme the communicating entity (i.e., doctor) can securely access the data of a patient without any disclosure. Moreover, in our proposed scheme (BAKMP-IoMT), we consider only a private blockchain because the healthcare data is fully confidential and private. As a result, if these data is somehow put on a public or even on a hybrid blockchain, privacy issues related to healthcare data will arise.

B. THREAT MODEL

BAKMP-IoMT is designed using the guidelines of widely-used (DY) threat model [42]. According to DY model any two communicating parties communicate over an open insecure channel and also, the end-point entities such as IMDs, personal servers and users are not in general trustworthy. An adversary (\(A\)) can read (eavesdrop) the communicated messages and can also modify or delete the transmitted messages over insecure channel. We also follow Canetti and Krawczyk’s adversary model, known as the CK-adversary model [43], [44] which is current de facto standard model in the modeling of an “authenticated key-agreement security protocol”. According to the assumptions of CK-adversary model, \(A\) can have all the potentialities as in the DY model along with that he/she can compromise the secret credentials and with the session states (session keys) in the sessions. Apart from that \(A\) can physical capture some IMDs, personal servers or the mobile device of the users and extracts the stored information from these devices by utilizing the sophisticated power analysis attack [45]. This derived information can be used to perform other malicious activities for example acquiring of secret credentials and session key computations, “device impersonation attack”, “replay attack”, “privileged-insider attack” and “man-in-the-middle attack”. At long Last, the trusted authority (TA) is thought to be full trusted entity in the network and it won’t be compromised. Moreover, cloud servers acts as the miners in the network. Hence, they are also considered as the trusted entities.

IV. THE PROPOSED SCHEME

In the designing of the proposed blockchain enabled authentication key agreement protocol for IoMT environment (BAKMP-IoMT), we use following phases. The different notations used in explaining and analyzing BAKMP-IoMT are given in Table 2. BAKMP-IoMT includes following eight stages: 1) pre-deployment, 2) key management, 3) user registration, 4) login, 5) authentication & key agreement, 6) Blockchain construction and addition, 7) password & biometric update and 8) dynamic IMD addition.

In order to improve the security of BAKMP-IoMT, following three factors are used for authentication purpose: 1) mobile device \(MD_{U_i}\) of a user \(U_i\) which stores significant credentials required for authentication, 2) password of \(U_i\), and 3) personal biometric of \(U_i\). To safeguard against replay
attack, different random nonces (numbers) and current timestamps are utilized. Moreover, all the network entities participating in BoMT communication environment are assumed to be synchronized with their clocks. This is a fair assumption, which is included in the designing of several newly proposed authentication protocols [46]–[49], [50]. We utilize cryptographic one-way hash function and bitwise XOR operations to form BAKMP-IoMT lightweight as IMDs are resource constraint in nature. For biometric verification, we utilize the fuzzy extractor at the user side only. In order to provide better security, expensive computations are carried on resource-rich devices i.e., user’s mobile device and cloud server, in the network [51].

It is worth noticing that the trusted authority (TA) only involves during the registration phase, which is one-time process. The TA does not have any other role in our proposed system. Moreover, the TA does not take any participation in active role during the communication (for example, key management phase, user login and authentication & key agreement phases, and blockchain construction and addition phase). In addition, even the TA does not know what kind of information the entities exchange and what are the values of established session keys among various network entities. Hence, it will be definitely a risky task to involve the cloud servers for the registration of different network entities, and in that situation, some active attacks, such as “privileged insider attack”, “illegal credential leakage attack” and “unauthorized session key computation attack” may be possible. As a result, we utilize only the trusted authority (TA) for the purpose of registration of various network entities instead of the cloud servers.

A. PRE-DEPLOYMENT

In this phase the registration of various network entities is done by TA. The pre-deployment phase is explained below.

1) IMD REGISTRATION

The TA selects a unique identity ID_{IMD_k} for implantable medical device IMD_k and computes corresponding pseudo-identity

\[R_{ID_{IMD_k}} = h(ID_{IMD_k}) | N \]

where the TA’s secret key is \(N \). Thereafter, the TA choose a distinct “symmetric bivariate polynomial” \(\chi(x, y) = \sum_{a \in GF(p), x + y \neq 0} a_{m,n} x^m y^n \in GF(p)[x, y] \) of degree \(t \) over a finite field (Galois field) \(GF(p) \) (\(Z_p \)), where the co-efficients \(a_{i,j} \)'s are selected from \(GF(p) \) and \(Z_p \) = \{ 0, 1, 2, \ldots, p - 1 \} with \(p \) being an adequately large prime and \(t \) is sufficiently greater than the total count of IMDs to be deployed. For instance, a bivariate polynomial

\[\chi(x, y) = x^4 + 3x^3 + 2x^2y^3 + 3y^4 \]

is symmetric as \(\chi(y, x) = y^4 + 3y^3 + 2y^2x^3 + 3x^4 = \chi(x, y) \). Furthermore, TA computes a polynomial share \(\chi(R_{ID_{IMD_k}}, y) = \sum_{m,n=0}^{t} a_{m,n} R_{ID_{IMD_k}}^m y^n \) which is certainly a univariate polynomial of the same degree \(t \). Then TA stores the credentials \(\{ R_{ID_{IMD_k}}, \chi(R_{ID_{IMD_k}}, y) \} \) in IMD_k’s memory before their implementation. Note that for safeguarding unconditional security and \(t \)-collusion resistant property against IMD physical capture attack by an adversary \(A \) [52], [53], it is necessary to achieve the property \(t > n_{IMD} \). This is because if greater than \(t \) IMDs are not trapped by \(A \), the original polynomial \(\chi(x, y) \) will not be computed by the compromised polynomial shared from these IMDs.”memory respectively.

2) PERSONAL SERVER REGISTRATION

The TA first chooses his/her own identity ID_{TA} and computes corresponding pseudo-identity R_{ID_{TA}} = h(ID_{TA}) | N). TA further selects a unique identity ID_{PS_j} for personal server PS_j and computes corresponding pseudo-identity R_{ID_{PS_j}} = h(ID_{PS_j}) | N) using the TA’s secret key \(N \) and temporal credential TC_{PS_j} = h(ID_{PS_j}) | ID_{TA} | RTS_{PS_j} | N) where the registration timestamp of PS_j is RTS_{PS_j}. TA then computes the polynomial share \(\chi(R_{ID_{PS_j}}, y) = \sum_{m,n=0}^{t} a_{m,n} (R_{ID_{PS_j}})^m y^n \) for each PS_j, where \(\chi(x, y) = \sum_{m,n=0}^{t} a_{m,n} x^m y^n \in GF(p)[x, y] \) is the same symmetric bivariate polynomial of degree \(t \) that is previously chosen in Section IV-A1. Then TA stores the information \(\{ R_{ID_{PS_j}}, TC_{PS_j}, R_{ID_{TA}}, \chi(R_{ID_{PS_j}}, y) \} \) in PS_j’s database before its deployment.
3) CLOUD SERVER (MINERS) REGISTRATION
The TA first chooses a unique identity ID_{CS} for cloud server CS_j and computes corresponding pseudo-identity $RID_{CS} = h(ID_{CS}) \mod N$ using the TA’s secret key N. After that TA stores the information $\{RID_{CS}, RID_{TA}\}$ in CS_j’s database before its deployment.

B. KEY MANAGEMENT
Key management phase is required to secure the communication between IMD_k to PS_I and PS_J to CS_j. After the successful completion of all steps of key management phase IMD_k to PS_I and PS_J to CS_j establish secret pairwise keys for their secure communication.

1) KEY MANAGEMENT BETWEEN IMPLANTABLE MEDICAL DEVICE AND PERSONAL SERVER
To establish secret pairwise key between an implantable medical device IMD_k and a personal server PS_I following steps are used:
- IMD_k first generates current timestamp TIP_1 and sends the message $\{RID_{IMD_k}, TIP_1\}$ to PS_I via open channel.
- After receiving $\{RID_{IMD_k}, TIP_1\}$, PS_I examines the timeliness of TIP_1 by the expression $|TIP_1 - TIP^*| \leq \Delta T$, where TIP^* denotes the receiving timestamp of the message. If it is valid, PS_I again produce current timestamp TIP_2 calculates $\omega = \chi(RID_{PS_I}, RID_{IMD_k})$, the secret key $SK_{PS_I,IMD_k} = h(\omega(TIP_1))$ and $M_1 = h(SK_{PS_I,IMD_k} \| TIP_2)$. Then PS_I transmits the message $\{RID_{PS_I}, M_1, TIP_2\}$ to IMD_k through public channel.
- After receiving $\{RID_{PS_I}, M_1, TIP_2\}$ from PS_I, IMD_k substantiate the timeliness of TIP_2 by investigating if $|TIP_2 - TIP^*_2| \leq \Delta T$ is valid, where TIP^*_2 is the receiving time of the message. If TIP_2 is successfully verified, IMD_k computes $\omega^* = \chi(RID_{IMD_k}, RID_{PS_I})$, the secret key $SK_{IMD_k,PS_I} = h(\omega^*(TIP_1))$ and $M_2 = h(SK_{IMD_k,PS_I} \| TIP_2)$. Then IMD_k checks whether $M_2 = M_1$. If the condition is fulfilled, the calculated secret pairwise key is correct.

Later on, both IMD_k and PS_I store $SK_{IMD_k,PS_I} (= SK_{PS_I,IMD_k})$ for their future secure communication. This phase is summarized in Figure 2.

2) KEY MANAGEMENT BETWEEN PERSONAL SERVER AND CLOUD SERVER
To establish secret pairwise key between a personal server PS_J and a cloud server CS_j following steps are performed:
- PS_J first produces a random nonce r_1 and a current timestamp TPC_1 and calculates $M_1 = h(r_1 \| TPC_{PS_J}) \oplus RID_{TA}$ and $M_2 = h(r_1 \| TPC_{PS_J}) \| RID_{TA} \| TPC_1$. Then PS_J sends message $\{M_1, M_2, TPC_1\}$ to CS_j via open channel.
- After receiving $\{M_1, M_2, TPC_1\}$, CS_j examines the timeliness of TPC_1 by the expression $|TPC_1 - TPC^*_1| \leq \Delta T$, where TPC^*_1 is the receiving timestamp of the message. If it is valid, CS_j computes $h(r_1 \| TPC_{PS_J}) = M_1 \oplus RID_{TA}$ and $M_2' = h(h(r_2) \| TPC_{PS_J}) \| RID_{TA} \| TPC_1$. Then CS_j checks whether $M_2' = M_2$, if so PS_J is authenticated with CS_j. Otherwise CS_j immediately terminates the session with PS_J. Further, CS_j produces a random nonce r_2 and a current timestamp TPC_2, and computes $M_3 = h(r_2) \| RID_{CS_j} \oplus RID_{TA}$. After that CS_j computes secret key $SK_{CS_j,PS_J} = h(h(r_2) \| RID_{CS_j}) \| RID_{TA} \| h(r_1) \| TPC_{PS_J} \| TPC_1 \| TPC_2 \| M_4 = h(SK_{CS_j,PS_J} \| TPC_2)$ then transmits the message $\{M_3, M_4, TPC_2\}$ to PS_J through public channel.
- After receiving $\{M_3, M_4, TPC_2\}$ from CS_j, PS_J substantiates the timeliness of TPC_2 by examining if $|TPC_2 - TPC^*_2| \leq \Delta T$ is valid, where TPC^*_2 is the receiving time of the message. If TPC_2 is successfully verified, PS_J computes $h(r_2) \| RID_{CS_j} = M_3 \oplus RID_{TA}$, secret key $SK_{PS_J,CS_j} = h(h(r_2) \| RID_{CS_j}) \| RID_{TA} \| h(r_1) \| TPC_{PS_J} \| TPC_1 \| TPC_2$ and $M_5' = h(SK_{PS_J,CS_j} \| TPC_2)$. Then PS_J checks whether $M_5' = M_5$, if so CS_j is authenticated with PS_J and computed session key is correct.
- Further PS_J generates a current timestamp TPC_3 and computes $M_5 = h(SK_{PS_J,CS_j} \| TPC_3)$ sends message $\{M_5, TPC_3\}$ to CS_j through open channel. After receiving $\{M_5, TPC_3\}$ from PS_J, CS_j verifies the timeliness of TPC_3 by examining if $|TPC_3 - TPC^*_3| \leq \Delta T$ is valid, where TPC^*_3 is the receiving time of the message. If it holds CS_j computes $M_5' = h(SK_{CS_j,PS_J} \| TPC_3)$ and check whether $M_5' = M_5$, if so CS_j confirms that PS_J computed the correct secret key.

At the end, both PS_J and CS_j store $SK_{PS_J,CS_j} (= SK_{CS_j,PS_J})$ for their future secure communication. This phase is summarized in Figure 3.

C. USER REGISTRATION
For accessing the data of IMD_k in a “blockchain based Internet of Medical Things” communication, user (i.e., doctor) U_i is registered using User registration method. For this purpose, U_i requires secure registration at the trusted authority TA either in person or through a secure channel using the below mentioned steps:

IMD_k	PS_I
Generate TIP_1.	Check $TIP_1 - TIP^*_1 \leq \Delta T$.
\(<RID_{IMD_k}, TIP_1\) > (via open channel).	If so, generate TIP_2.
Compute $\omega = \chi(RID_{PS_I}, RID_{IMD_k})$.	Compute $\omega = \chi(RID_{PS_I}, RID_{IMD_k})$.
$SK_{PS_I,IMD_k} = h(\omega(TIP_1))$.	$SK_{IMD_k,PS_I} = h(\omega(TIP_1))$.
$MS_1 = h(SK_{PS_I,IMD_k} \| TIP_2)$.	$MS_1 = h(SK_{PS_I,IMD_k} \| TIP_2)$.
Check $M_2 = M_1$.	Check $M_3 = M_4$.

If valid, secret key is authentic. Both IMD_k and PS_I store $SK_{IMD_k,PS_I} (= SK_{PS_I,IMD_k})$.

FIGURE 2. Summary of key management between implantable medical device and personal server.
• **Step REG1.** U_i/MDU_i chooses his/her identity IDU_i and sends the request for registration (IDU_i) to TA securely.

• **Step REG2.** After receiving registration request, TA computes U_i’s pseudo identity as $RID_U = h(IDU_i) \| N$. TA also computes temporal credential of U_i as $\alpha = h(RID_{\Delta U} \| RID_Ta \| RTS_{U_i})$, where RTS_{U_i} is the registration timestamp generated for U_i by TA. Then TA prepares a registration reply for U_i as $(RID_{\Delta U}, \alpha, RID_Ta, h(\cdot))$ and sends that to U_i through a secure channel.

• **Step REG3.** After receiving registration reply $(RID_{\Delta U}, \alpha, RID_Ta, h(\cdot))$ from TA, U_i selects a password PW_{U_i} according to his/her liking and also furnishes biometric data BIO_{U_i} to the terminal of a specific device. MDU_i then determines $(\sigma_{U_i}, \tau_{U_i}) = Gen(BIO_{U_i})$, where σ_{U_i} and τ_{U_i} are the biometric secret key of U_i bits and public reproduction parameter.

• **Step REG4.** U_i selects 160-bit secret number x and computes pseudo-random password $RPW_{U_i} = h(PW_{U_i} || x)$, other parameters such as $\beta = x \oplus h(IDU_i) \| PW_{U_i} || (\sigma_{U_i})$, $RID_{U_i} = RID_{\Delta U} \oplus h(PW_{U_i} || (\sigma_{U_i}))$, $RID_{TA} = RID_{TA} \oplus h(IDU_i || x) \| \sigma_{U_i}$, $\delta = h(\alpha || RPW_{U_i} || \sigma_{U_i})$ and $EQ = h(IDU_i || RID_{TA} || \delta)$.

Finally, MDU_i of U_i stores the information $(RID_{\Delta U}, RID_{TA}, \alpha', EQ, \beta, \tau_{U_i}, h(\cdot), \Gen(\cdot), \Rep(\cdot), t)$ in its memory. U_i discards the information $(RID_{\Delta U}, RID_{TA}, \alpha, x)$ from MDU_i’s memory as a means to safeguard the lost/stolen smart card/mobile device attack by an adversary.

• **Step REG5.** For the secure communication between TA and CS_j, we assume a master symmetric key MK_{TA-CS_j}. After U_i’s successful registration, TA transmits the information (RID_{U_i}) encrypted utilizing the symmetric key MK_{TA-CS_j}, and then the CS_j decrypts the received information utilizing the same symmetric key MK_{TA-CS_j} to store it in its database. Finally, the CS_j accumulates information $(RID_{CS_j}, RID_{TA}, RID_{U_i})$ in its database.

This phase is abridged in Figure 4.

D. LOGIN PHASE

In order to login into the system, U_i is required to execute the below mentioned steps:

• **Step LOG1.** U_i furnishes his/her identity IDU_i and password PW_{U_i} and also marks biometrics information BIO_{U_i} at the sensor of the specified device. MDU_i computes biometric secret key $\sigma_{U_i}' = \Rep(BIO_{U_i}, \tau_{U_i})$ with the constraint that the hamming distance between the actual biometrics BIO_{U_i} furnished at the time of user registration process and currently provided BIO_{U_i}' is less than or equal to the error tolerance threshold value t.

• **Step LOG2.** MDU_i next computes other parameters such as $\beta = \beta \oplus h(IDU_i || PW_{U_i} || (\sigma_{U_i}'))$, $RPW_{U_i}' = h(PW_{U_i}' || x)$, $RID_{U_i} = RID_{U_i} \oplus h(PW_{U_i}' || (\sigma_{U_i}'))$, $RID_{TA} = RID_{TA} \oplus h(IDU_i || x) \| \sigma_{U_i}'$, $\alpha' = \alpha' \oplus h(x || PW_{U_i} || (\sigma_{U_i}'))$, $\delta' = h(\alpha || RPW_{U_i}' || (\sigma_{U_i}')).$ After the computation of these parameters, MDU_i also calculates $EQ' = h(IDU_i || RID_{TA} || \delta')$, and then examines the equality of $EQ' = EQ$. If it results in a match, MDU_i validates the authenticity of U_i locally, else the login phase ends immediately.

• **Step LOG3.** MDU_i generates the current timestamp TS_j besides with 128-bit random nonce r_{U_i}. MDU_i then calculates $M_1 = r_{U_i} \oplus h(RID_{TA} || RID_{U_i})$ and $M_2 = h(r_{U_i} || RID_{U_i} || RID_{TA} || TS_j).$ Finally, MDU_i sends the message $Msg_1 = (M_1, M_2, TS_j)$ as a login request to the CS_j via insecure channel.

E. AUTHENTICATION AND KEY AGREEMENT PHASE

After receiving the login request (M_1, M_2, TS_j) from U_i, the specified steps are executed between a user U_i and cloud
server i.e., CS′ j which provides service to U i. After the successful completion of these steps, mutual authentication is achieved between communicating parties U i and CS′ j and for their secure communication, session Key is also established.

Step AU1. CS′ j first examines the timeliness of TS 1 by the expression |TS 1 − TS 1 | ≤ ΔT, where the maximum transmission delay is denoted by ΔT and TS 1 is the reception time of the message ⟨M 1, M 2, TS 1 ⟩. If it matches, CS′ j computes r U i = M 1 ⊕ h(RID TA || RID U i) and M 2 = h(r U i || RID TA || RID TA || TS 1) by using the stored value RID U i for user U i. Further CS′ j verifies the equality of the equation M 2 = M 2. If it holds, U i is authenticated by CS′ j. Else, CS′ j terminates the session with U i immediately.

Step AU2. Then CS′ j generates the current timestamp TS 2 along with 128-bit random nonce r CS′ j and computes M 3 = h(r CS′ j || RID CS′ j) ⊕ h(RID U i || RID TA). Further CS′ j computes the session key SK CS′ j ′,U i = h(r U i || RID TA || TS 2 || h(r CS′ j || RID CS′ j || RID TA)) and M 4 = h(SK CS′ j ′, U i || TS 2). After that CS′ j sends authentication reply Msg 2 = ⟨M 3, M 4, TS 2 ⟩ to U i through open channel.

Step AU3. After receiving authentication reply Msg 2 = ⟨M 3, M 4, TS 2 ⟩ from CS′ j, U i first examines the timeliness of TS 2 by the expression |TS 2 − TS 2 | ≤ ΔT, where the maximum transmission delay is indicated by ΔT and TS 2 is the reception time of the message ⟨M 3, M 4, TS 2 ⟩. If it matches, U i computes h(r CS′ j || RID CS′ j) = M 3 ⊕ h(RID U i || RID TA), session key SK U i ,CS′ j = h(r U i || RID TA || TS 2 || h(r CS′ j || RID CS′ j || RID TA)) and M 4′ = h(SK U i ,CS′ j || TS 2). Further U i verifies the equality of the equation M 4′ = M 4. If it holds, CS′ j is authenticated by U i and calculated session key is correct. Else, U i terminates the session with CS′ j immediately.

Step AU4. Then U i generates the current timestamp TS 3 and computes M 5 = h(SK U i ,CS′ j || TS 3) and then sends message Msg 3 = ⟨M 5, TS 3 ⟩ to CS′ j via open channel for cross verification of computed session key. After receiving authentication reply Msg 3 = ⟨M 5, TS 3 ⟩ from U i, CS′ j first examines the timeliness of TS 3 by the condition |TS 3 − TS 3 | ≤ ΔT, where the maximum transmission delay is denoted by ΔT and TS 3 is the reception time of the message ⟨M 5, TS 3 ⟩. If it matches, U i computes M 3′ = h(SK CS′ j ′, U i || TS 3) and examines M 3′ = M 3. If it holds, CS′ j confirms that computed session key by U i is correct.

For their secure communication in future, both U i and CS′ j store SK U i ,CS′ j (= SK CS′ j ′, U i) at the end. Login and authentication & key agreement phases are summarized in Figure 5.

F. BLOCKCHAIN CONSTRUCTION AND ADDITION PHASE

To serve this purpose, an implantable medical device IMD k, personal server PS j, cloud server CS j and user U i can perform following steps:

Step BDA1. When IMD k has to send some data to PS j, it first generates a current timestamp TP 1 and prepares a message by applying the encryption using the computed and established pairwise secret key SK IMD k,PS j , say msg 1 = E SK IMD k,PS j (d IMD k, TP 1) and sends this to PS j via open channel. After receiving msg 1 = E SK IMD k,PS j (d IMD k, TP 1) from IMD k, PS j decrypts the message E SK IMD k,PS j (d IMD k, TP 1) to get the values of d IMD k and TP 1. PS j then examines the timeliness of TP 1 by the expression |TP 1 − TP 1 | ≤ ΔT, where TP 1 is the receiving timestamp of the message. If it holds, PS j generates a current timestamp TP 2 and prepares a message by applying the encryption using the computed and established pairwise secret key SK PS j,CS j, as msg 2 = E SK PS j,CS j (d IMD k, TP 2) and sends this to CS j via open channel.

Step BDA2. In the proposed model, the cloud servers act as the miner nodes. Each cloud server receives the data of the patient from the personal server through the established secret key securely between the cloud server and the personal server. After receiving

U i /M D j	CS j
Input ID U i & PW U i	Imprint biometrics Bi C k
Compute c i = h(IDU i ⊕ PW U i)	c i = h(IDU i ⊕ PW U i)
a ∈ [0, 256)	a ∈ [0, 256)
Check (TP 1 − TP 1) ≤ ΔT if so, generate PS j & PS k	Checking (TP 1 − TP 1) ≤ ΔT if so, generate PS j & PS k
Compute M = h(r CS′ j	
Check M = M and compute TS 1	Check M = M and compute TS 1
If so, generate TS 1, PS j & PS k	If so, generate TS 1, PS j & PS k
Compute M j = h(SK CS′ j ′, U i	
Check M j = M & TS 1	Check M j = M & TS 1
If so, public key symmetric key is authentic	
All steps are updated in the public chain	All steps are updated in the public chain

FIGURE 5. Summary of login and authentication phases.
\[\text{msg}_3 = E_{SK_{CSj, P}}(d_{IMD_k} \cdot TP_3) \]

CS \(_j\) decrypts the message \(E_{SK_{P, CS}}(d_{IMD_k}, TP_2) \) to get the values of \(d_{IMD_k} \) and \(TP_2 \). Next, \(CS \(_j\) \) examines the timeliness of \(TP_2 \) by the expression \(|TP_2 - TP^*_2| \leq \Delta T \), where \(TP^*_2 \) is the receiving timestamp of the message. If it holds, the message is treated as a valid one.

- **Step BDA3.** Using data \(d_{IMD_k} \), \(CS \(_j\) \) starts the procedure of block creation and its addition into the blockchain. The procedure is explained as follows.

 Here, the details of generating a block by the \(CS \(_j\) \) and verification of the created block by the P2P cloud server (CS) network is provided. The block is added in the blockchain when the consensus is successfully committed among all the cloud servers in P2P CS network. The structure of block is depicted in Figure 6. After successfully collecting the data \(d_{IMD_k} \), \(CS \(_j\) \) builds the transactions of the collected data. Let \(Tx_1 \), \(Tx_2 \), \(\ldots \), \(Tx_n \) be the transactions generated during a session by the \(CS \(_j\) \). The creation of a block, say \(BLK_i \), contains the transactions \(Tx_1 \), \(Tx_2 \), \(\ldots \), \(Tx_n \) as provided in Figure 6. The concept of private blockchain is used in the BAKMP-IoMT for the better secrecy and confidentiality of the information. The block \(BLK_i \) can be formed as follows.

 - A public key encryption \(E(\cdot) \) is used to encrypt all the transactions utilizing public key \(Pub_{CSj} \) (for BAKMP-IoMT, we employ the “ECC encryption”).

 - Next, the encrypted transactions \(E_{Pub_{CSj}}(Tx_i) \), \(i = 1, 2, \ldots, n \), are utilized to compute the “Merkle tree root” (MR) by building the “Merkle tree”.

 - The hash of the information \(\{BVer, PBHash, MR, TR, OB, Pub_{GSS}, \text{block payload (encrypted transactions)}\} \) is computed for the current hash block (CBHash).

 - Further, the ECDSA signature, say \(BSign = (r_m, s_m) \) on the message \(\text{msg} = \text{CBHash} \) is computed using the ECDSA signature generation algorithm [54] on the current hash block CBHash.

Block Header	\(BVer \)
Previous Block Hash	\(PBHash \)
Merkle Tree Root	\(MR \)
Timestamp	\(TR \)
Owner of Block	\(OB \)
Public Key of Owner	\(Pub_{CSj} \)

Block Payload (Encrypted Transactions)	\(E_{Pub_{CSj}}(Tx_1) \)
\(\cdots \)	\(\cdots \)
\(\text{Encrypted Transaction } \#n \)	\(E_{Pub_{CSj}}(Tx_n) \)

Current Block Hash	\(CBHash \)
Signature on Block using ECDSA	\(BSign \)

FIGURE 6. Formation of a block \(BLK_i \) on the transactions by \(CS \(_j\) \).

When the block \(BLK_i \) is built by \(CS \(_j\) \), this block is forwarded to other miner nodes (cloud servers) in the P2P CS network. For the verification and addition of the constructed block (i.e., \(BLK_i \)) using the consensus algorithm by P2P CS network, the following steps are needed to be executed.

- When a block \(BLK_i \) is received by a cloud server, a miner (cloud server \(CS \(_j\) \) will be chosen as a leader, say \(L \) from the all available cloud servers in the P2P CS network using the existing leader selection process described in [28].

- The “Ripple Protocol Consensus Algorithm (RPCA)” [29] for block verification and addition via voting method is utilized. It is also assumed that each cloud server \(CS \) in the P2P CS network has an ECC-based private-public key pair \((r_{CS}, Pub_{CS}) \), where \(Pub_{CS} = r_{CS} \cdot G \).

- Moreover, the public keys of other cloud servers are accessible to \(CS \).

- Algorithms 1 and 2 are used to explain this process, which is similar to the consensus mechanism applied in [1].

- **Step BDA4.** Suppose a user \(U_i \) needs to access secret information \(d_{IMD_k} \) from \(B_{IMD_k} \). For this issue, his/her request goes to the corresponding cloud server (miner node, i.e., \(CS \(_j\) \)). Furthermore, note that \(CS \(_j\) \) and \(CS \(_j\) \)' maintain a common ledger. Therefore, \(CS \(_j\) \) has access \(B_{IMD_k} \). \(CS \(_j\) \) extracts \(d_{IMD_k} \) from \(B_{IMD_k} \) by applying the operations of blockchain. For example, \(CS \(_j\) \) extracts \(KU_{IMD_k} \) from certificate part of \(B_{IMD_k} \). \(CS \(_j\) \) further applies the hash function \(h(\cdot) \) on data \(d_{IMD_k} \) and gets \(h(d_{IMD_k}) \). \(CS \(_j\) \) then decrypts \(E_{KIMD_k}(h(d_{IMD_k})) \) and again gets \(h(d_{IMD_k}) \). If both hashes are equal, that is, \(h(d_{IMD_k}) = h(d_{IMD_k}) \), the block \(B_{IMD_k} \) is not modified; otherwise, \(CS \(_j\) \) discards the data of \(B_{IMD_k} \).

- **Step BDA5.** \(U_i \) and \(CS \(_j\) \) already established the session key \(SK_{CSj, U_i} \). Therefore, \(CS \(_j\) \) generates a current timestamp \(TP_3 \) and computes a message \(msg_3 = E_{SK_{CSj, U_i}}(d_{IMD_k}, TP_3) \). Then \(CS \(_j\) \) sends \(msg_3 = E_{SK_{CSj, U_i}}(d_{IMD_k}, TP_3) \) to \(U_i \) via open channel. After receiving \(msg_3 \), \(U_i \) decrypts the message \(E_{SK_{CSj, U_i}}(d_{IMD_k}, TP_3) \) and gets the values of \(d_{IMD_k} \) and \(TP_3 \). \(U_i \) checks the timeliness of \(TP_3 \) by the condition \(|TP_3 - TP^*_3| \leq \Delta T \), where \(TP^*_3 \) is the receiving timestamp of the message. If it holds, the message is treated as valid one.

This phase is summarized in Figure 7.

G. PASSWORD AND BIOMETRIC UPDATE PHASE

BAKMP-IoMT provides the facility to update password and biometric information by any authorized user. Following steps can be used by a legal user to update his/her password and biometric information regardless of time without involving TA. These steps must be rigorously executed to maintain
Algorithm 1 Consensus Procedure for Block Verification and Addition in Blockchain

Input: Given a block $BLK_i = \{BVer, PBH\text{ash}, MR, TR, OB, PdCS, \{E_{PdCS}(TX_s)\}_{s = 1, 2, \ldots, n_t}, CBH\text{ash}, BSign\}$; private-public keys pairs $(rc_S, PdCS = r_{CS}, G)$ for all other cloud servers in the P2P CS network.

Output: Verification and addition of BLK_i in the blockchain.

1: First, a leader (L) is selected among the peer nodes in the P2P CS network using the existing leader selection process described in [28]. Assume L has a block $BLK_i = \{BVer, PBH\text{ash}, MR, TR, OB, PdCS, \{E_{PdCS}(TX_s)\}_{s = 1, 2, \ldots, n_t}, CBH\text{ash}, BSign\}$.

2: L sets $VTC\text{ount} \leftarrow 0$, where $VTC\text{ount}$ signifies the vote counter.

3: L creates distinct random nonce rn_j and a current timestamp TS_j for each cloud server.

4: L encrypts rn_j with the public key $PdCS$ of each CS_j as $E_{PdCS}(rn_j, TS_j)$.

5: L sends the message $SM_{SG_j} = \{BLK_i, E_{PdCS}(rn_j, TS_j), TS_j\}$ to all other cloud servers CS_j, $j = 1, 2, \ldots, n_{cs}$, $L \neq CS_j$.

6: Assume SM_{SG_j} receives from L by each CS_j in the P2P CS network at time TS_j^r.

7: for each cloud server CS_j do

8: if $(|TS_j - TS_j^r| < \Delta T)$ then

9: Compute the Merkle tree root, MR^r on the encrypted transactions $\{E_{PdCS}(TX_s)\}_{s = 1, 2, \ldots, n_t}$.

10: if $(MR^r \neq MR)$ then

11: Terminate the consensus process.

else

12: Calculate block hash $CBH\text{ash}^r$ on the received block $Block_i$ as $CBH\text{ash}^r = BVer \| PBH\text{ash} || MR^r || TR || OB || E_{PdCS}(TX_1) || E_{PdCS}(TX_2) || \cdots || E_{PdCS}(TX_{n_t})$.

13: if $(CBH\text{ash}^r = BSign)$ then

14: Verify the signature $BSign = (r_m, s_m)$ on BLK_i using the message $msg = CBH\text{ash}^r$ with the help of ECDSA signature verification algorithm.

15: if signature is valid then

16: Decrypt the encrypted random nonce using pre-computed private key rc_S as $(rn_j^r, TS_j^r) = D_{rc_S}(E_{PdCS}(rn_j, TS_j))$ by applying the ECC decryption algorithm.

17: if $(TS_j^r = TS_j)$ then

18: Send the block verification message containing verification status $(VStatus)$ and decrypted random nonce as $RM_{SG_j} = \{E_{PdCS}(rn_j^r, VStatus)\}$ to the leader L.

19: end if

20: end if

21: end if

22: end if

23: end if

24: end if

25: end for

Algorithm 2 Consensus for Block Verification and Addition in Blockchain (Continued…)

for each received RM_{SG_j} from the responders CS_j do

26: L computes $(rn_j, VStatus) = D_{rc_S}(E_{PdCS}(rn_j^r, VStatus))$.

27: if $(rn_j = rn_j^r)$ and $(VStatus = valid)$ and $(flag_{CS_j} = 0)$ then

28: L sets $VTC\text{ount} = VTC\text{ount} + 1$ and flag_{CS_j} = 1.

29: end if

30: end if

else

31: if $(VStatus)$ is more than 50% of the votes then

32: Transaction enters to the next round.

33: if $(VStatus)$ less than the threshold value, that is, 80% of the votes then

34: Continue from Step 26.

35: end if

else

36: Send the commit response to all other followers peer nodes CS_j.

37: Add block BLK_i to the blockchain and adjourn the consensus process.

38: end if

39: end if

To design the efficiency of the system, the required steps are given below:

- **Step PB1**: First of all U_i needs to provide his/her current identity ID^n_i and password $PW^n_{U_i}$ to the terminal of MD_{U_i}. U_i also has to imprint his/her current biometrics information $BIO^n_{U_i}$ at the sensor of the specified device. Then MD_{U_i} computes biometric secret key $\sigma^n_{U_i} = Rep(BIO^n_{U_i}, \tau_{U_i})$ with the condition that the hamming distance between the actual biometrics BIO_{U_i} provided at the time of registration and currently furnished $BIO^n_{U_i}$ is less than or equal to the error tolerance threshold value t.

- **Step PB2**: MD_{U_i} again computes the required parameters such as $x = \beta \oplus h(ID^n_{U_i} || PW^n_{U_i} || \sigma^n_{U_i}), RPW^n_{U_i} = h(PW^n_{U_i} || x), RID_{TA} = RID'_{TA} \oplus h(ID^n_{U_i} || x || \sigma^n_{U_i}), \alpha = \alpha' \oplus h(x || PW^n_{U_i} || \sigma^n_{U_i}), \delta^n = h(\alpha || RPW^n_{U_i} || \sigma^n_{U_i})$. After these computations, MD_{U_i} further computes $EQ^n = h(ID^n_{U_i} || RID_{TA} || \delta^n)$, and checks the equality of $EQ^n = EQ$. If it holds, U_i is validated as the genuine user and can proceed for password and biometric updates.

- **Step PB3**: U_i inputs new password PW^n and imprints new biometric information BIO^n according to his/her liking at the sensor of the specified device. Old biometrics information BIO^n can also be used if U_i does not wish to modify his/her biometrics information. In such a scenario, BIO^n will be considered as BIO^n. Otherwise, MD_{U_i} computes $Gen(BIO^n) = (\sigma^n, \tau_{U_i})$. MD_{U_i} then computes $RPW^n_{U_i} = h(PW^n || x)$, other parameters such as $\beta^n = x \oplus h(ID^n_{U_i} || PW^n_{U_i} || \sigma^n_{U_i}), RID_{TA} = RID'_{TA} \oplus h(PW^n_{U_i} || \sigma^n_{U_i}), RID_{TA} = RID_{TA} \oplus h(ID^n_{U_i} || x || \sigma^n_{U_i}), \alpha^n = \alpha \oplus h(x || PW^n_{U_i} || \sigma^n_{U_i}), \delta^n = h(\alpha || RPW^n_{U_i} || \sigma^n_{U_i})$, and $EQ^n = h(ID^n_{U_i} || RID_{TA} || \delta^n)$. MD_{U_i} then replaces $RID_{TA}, RID_{TA}, \alpha, EQ, \beta$, and τ_{U_i} with RID^n_{TA}, RID^n_{TA},
a^n, EQ^n, β^n, and τ^n_U, respectively. Finally, MD_U stores the information \(\{RID_U, RID_TA, a^n, EQ^n, β^n, τ^n_U, h(\cdot), Gen(\cdot), Rep(\cdot), t\} \) in its memory.

H. DYNAMIC NODES ADDITION PHASE

Following steps can be used by the BAKMP-IoMT to add a new device i.e., IMD in the network any time.

1) **DYNAMIC IMD ADDITION**

The addition of IMD can be done using the following steps.

- **Step DAI1.** A unique identity for new IMD, ID_{IMD}, is selected by the TA and it also computes the corresponding pseudo-identity RID_{IMD} = h(ID_{IMD}, || N) where the TA’s secret key is N. Next the TA determines a unique symmetric bivariate polynomial \(χ(x, y) = \sum_{m,n=0}^{t} a_{m,n} x^m y^n \in GF(p)[x, y] \) of degree \(t \) over a finite field (Galois field) \(GF(p) = \mathbb{Z}_p \), where the co-efficient \(a_{i,j} \)'s are chosen from \(GF(p) \) and \(\mathbb{Z}_p = \{0, 1, 2, \ldots, p - 1\} \) with \(p \) being a satisfactorily large prime and \(t \) is enough larger than the total count of IMDs to be deployed. For instance, a bivariate polynomial \(χ(x, y) = x^4 + 3x^3 + 2x^2y + 3y^3 + y^4 \) over \(GF(5) \) is symmetric as \(χ(y, x) = y^4 + 3y^3 + 2y^2x^2 + 3x^3 + x^4 = χ(x, y) \).

- **Step DAI2.** The TA computes a polynomial share \(χ(RID_{IMD_\nu}, y) = \sum_{m,n=0}^{t} a_{m,n}(RID_{IMD_\nu})^m y^n \), which is clearly a univariate polynomial of the same degree \(t \). Then TA stores the credentials \(\{RID_{IMD_\nu}, χ(RID_{IMD_\nu}, y)\} \) in IMD_\nu’s memory before their deployment.

2) **DYNAMIC PERSONAL SERVER ADDITION**

The addition of new personal server can be done using the specified steps.

- **Step DAP1.** The TA chooses a unique identity ID_{PS_\eta} for new personal server PS_\eta and determines corresponding pseudo-identity RID_{PS_\eta} = h(ID_{PS_\eta}, || N) utilizing the TA’s secret key N and temporal credential TC_{PS_\eta} = h(ID_{PS_\eta}, || ID_TA || RTS_{PS_\eta}, || N) where the registration timestamp of PS_\eta is RTS_{PS_\eta}. TA next computes the polynomial share \(χ(RID_{PS_\eta}, y) = \sum_{m,n=0}^{t} a_{m,n}(RID_{PS_\eta})^m y^n \) for each PS_\eta, where \(χ(x, y) = \sum_{m,n=0}^{t} a_{m,n} x^m y^n \in GF(p)[x, y] \) is the same symmetric bivariate polynomial of degree \(t \) that was previously chosen in Section IV-A1.

- **Step DAP2.** The TA stores the information \(\{RID_{PS_\eta}, TC_{PS_\eta}, RID_TA, χ(RID_{PS_\eta}, y)\} \) in PS_\eta’s database before its deployment.

3) **DYNAMIC CLOUD SERVER (MINERS) ADDITION**

The addition of new cloud server can be done using the following steps.

- **Step DAC1.** The TA first chooses a unique identity ID_{CS_j}^new for cloud server CS_j^new and computes corresponding pseudo-identity RID_{CS_j}^new = h(ID_{CS_j}^new, || N) utilizing the TA’s secret key N.

- **Step DAC2.** After that TA stores the information \(\{RID_{CS_j}^new, RID_TA\} \) in CS_j^new’s database before its deployment. TA then announce the addition of new cloud server to the other parties of the network through some secure channel.
Remark 1: In BAKMP-IoMT, various involved communicating entities include implantable medical devices (IMDs), personal server (PS), users having mobile devices (UI/MD) and cloud servers (CS). Among all these entities, IMD, PS and MD are resource constrained end devices which have less computation, communication and storage capabilities as compared to the TA and cloud servers CS. Moreover, we need these devices for collection and local processing of essential healthcare related data. Apart from it, CS are resource rich nodes which have high computation, communication and storage capabilities. Therefore, it is not typically desirable to use IMD, PS and MD for the block creation and consensus via voting tasks because of their resource constrained factor. Hence, in practice it is preferable to use the cloud servers (CS) for block consensus via voting and blockchain implementation. Though the RPCA mechanism is not that heavy, but still we preferred to execute block consensus via voting and blockchain implementation over the peer nodes (CS) in the P2P cloud servers network only in order to reduce the computational burden on IMD, PS and MD. As discussed earlier, we consider a private blockchain in BAKMP-IoMT, which provides more security, and at the same time it has several restrictions and limited entities. As far as the annual fee is concerned, in most of the countries the healthcare facilities (including healthcare infrastructure) are supported by the government organisations. Therefore, payment of annual fee will not be an issue for healthcare infrastructure users in the proposed scheme.

V. SECURITY ANALYSIS OF BAKMP-IoMT

This section contains the “security analysis of BAKMP-IoMT” in Propositions 1–8, which prove the resilience of BAKMP-IoMT against the below mentioned attacks.

Proposition 1: BAKMP-IoMT can resist “replay attack”.

Proof: In BAKMP-IoMT, we have used different current timestamps values in the transmitted messages. Each exchanged message of BAKMP-IoMT, have a maximum transmission delay ΔT component (a small value). Moreover, replaying the old transmitted messages does not provide any profit to the adversary A which were required for “authentication and key management procedure” among IMD, PS, CS and UI within ΔT. Therefore, BAKMP-IoMT is capable to resist replay attack.

Proposition 2: BAKMP-IoMT is able to protect against the “man-in-the-middle attack (MITM)”.

Proof: Let an adversary A eavesdrops an authentication request message \[\{M_1^A, M_2^A, TS_1^A\}\] which was exchanged between UI and CS, and after that A tries to update this message so that it resembles like the original authentication message, as \[\{M_1^A, M_2^A, TS_1^A\}\] with the help of parameters such as \[M_1^A = r_{U_i}^A \oplus h(RID_{TA}||RID_{U_i})\], and \[M_2^A = h(r_{U_i}^A||RID_{U_i}||RID_{TA}||TS_1^A)\]. For the launching of MITM, A can start the generation of random nonce \(r_{U_i}^A\) and current timestamp \(TS_1^A\). However, in the absence of knowledge of “long term secret” \(RID_{TA}\), \(RID_{U_i}\) and \(N\) the secret key of TA, A can not regenerate another valid authentication request message \([M_1^A, M_2^A, TS_1^A]\). Similarly, we can also elucidate that other messages can not be computed again by A which are utilized in the “authentication and key management” phase without the “long-term secrets” utilized by UI and CS or the other entities of the network. Hence, BAKMP-IoMT is secured against the man-in-the-middle attack.

Proposition 3: BAKMP-IoMT is secured against various “impersonation attacks”.

Proof: Let an adversary A tries to impersonate as an valid communicating entity of the network by creating an authentication request message on behalf of that entity say UI. After obtaining UI’s authentication request \[Msg_1 = \{M_1, M_2, TS_1\}\] which was sent to CS where \(M_1 = r_{U_i} \oplus h(RID_{TA}||RID_{U_i})\) and \(M_2 = h(r_{U_i}||RID_{U_i}||RID_{TA}||TS_1)\). Here it is important to notice that \(Msg_1\) uses \(M_1\) and \(M_2\) which are generated through “long term secrets” i.e., \(RID_{U_i}\), \(RID_{TA}\) and \(N\), and also through the “short term secrets” for example, random nonce \(r_{U_i}\). A is not capable to generate a valid “authentication request message” representing the legitimate user UI without having the knowledge of these secret values. Therefore, BAKMP-IoMT is secured against the “user impersonation attack”. By using the same methodology, we can prove that BAKMP-IoMT is also secured against other types of impersonation attacks i.e., “cloud server”, “personal server” and “implantable medical device”, because the creation of other messages also utilize both “long term” and “short term” secrets. Hence, BAKMP-IoMT is resilient against the various impersonations attacks.

Proposition 4: BAKMP-IoMT protects “Ephemeral Secret Leakage (ESL) attack”.

Proof: In BAKMP-IoMT, “session key” is calculated by a legitimate user UI and the cloud server CS, during the “authentication and key management process” as \[SK_{CS_U} = h(r_{U_i}||RID_{U_i}||TS_1||TS_2||h(r_{CS}||RID_{CS}||RID_{TA}))\]. In the creation of the session key, the pseudo identities \(RID_{U_i}, RID_{CS}\) of user UI and cloud server CS are used. It also consists of the different random nonce values \(r_{U_i}, r_{CS}\) of user and cloud server. It is important to notice that “session key” is the amalgamation of both the session-temporary (ephemeral) information also known as “short term secrets” (various timestamp and random nonce values) along with “long-term secrets” (various identities and secret keys). Therefore, session key can only be revealed in a situation if A compromises both the “short-term” and “long-term” secret values. Furthermore, as various random nonce and timestamps values are utilized in calculation of the session keys among various entities i.e., UI and CS, IMD and PS, and CS in all different sessions, even if a session key is revealed for a specific session. It will not cause the revealing (i.e., illegal computation) of session keys of other sessions because of coalescence of short and long term secret values. Thus, BAKMP-IoMT is capable to protect session-temporary information attack and it also preserves the “perfect forward secrecy” goal. Hence, BAKMP-IoMT is secured against “ESL attack”.

□
Proposition 5: BAKMP-IoMT is capable to protect “privileged-insider attack”.

Proof: The privileged-insider user of the trusted authority i.e., attacker A knows the registration information of the various entities i.e., IMD\(_k\), PS\(_l\) \(\&\) CS\(_j\) and U\(_i\). Still, he/she is not able to calculate the “session key” on behalf of a genuine communicating entity as the “session key” is created using the credentials that are only known to that particular entity i.e., IMD\(_k\), PS\(_l\) \(\&\) CS\(_j\) and U\(_i\). The “session key” computed by a legitimate cloud server CS\(_j\) is SK\(_{CS_j,U_i} = h(r(U_i)||RID(U_i)||TS_1||TS_2||h(r(CS_j)||RID(CS_j)||RID(TA)) which consists of various short and long term secret values i.e., random nonces, timestamps, secret keys and identities, as elaborated earlier. The privileged-insider user of the TA does not have the knowledge of this information. Thus A is not able to compute the “session key” on the behalf of a legitimate communicating entity. Moreover, he/she can not impersonate as the “legitimate communicating entity i.e., CS\(_j\)” as explained in Proposition 3. Therefore, BAKMP-IoMT is able to protect the “privileged-insider attack”.

Proposition 6: BAKMP-IoMT preserves anonymity and untraceability properties.

Proof: Suppose an adversary A seizes the messages MSG\(_1 = M_1, M_2, TS_1, MSG_2 = M_3, M_4, TS_2 and MSG_3 = M_5, TS_3 during the “authentication and key management phase” between U\(_i\) and CS\(_j\). These messages are computed by using the various random nonce values and current timestamps values which help to generate dynamic and unique messages in distinct sessions. Apart from that any identity information is not transmitted in the “plaintext format”. Similar method is also followed for other exchanged messages among other entities i.e., IMD\(_k\) and PS\(_l\), and PS\(_l\) and CS\(_j\); This mechanism helped us to achieve both “anonymity and untraceability” properties in BAKMP-IoMT.

Proposition 7: BAKMP-IoMT is resilient against “implantable medical device (IMD)”’ physical capture attack.

Proof: Each IMD contains the credentials \(\{RID(IMD_k, \chi(RID(IMD_k, y))\) that are utilized for the “authentication and key establishment” related work with different communicating entities. To safeguard against IMD device physical capture attack is an crucial requirement from the security point of view [55], [56]. Let say \(n_e\) IMD devices are physically trapped by an adversary A. We do evaluation of “IMD physical capture attack” as the fraction of total secure communications which are compromised from the capturing (physical stolen) of \(n_e\) IMDs not including the communication in which the “compromised IMD” are clearly extended. For instance, one can calculate the probability of \(A’s\) expertise to decrypt the “secure communication” between a personal server PS\(_l\) and a non-compromised IMD IMD\(_k\) when \(n_e\) IMDs are already compromised (under the influence of attack). Let’s assume this probability as \(P_o(n_e)\). If \(P_o(n_e) = 0\), an “authentication and key management” scheme is treated as the “unconditionally secure against IMD physical capture attack”. From a physically stolen IMD IMD\(_k\), attacker A will have deduced information i.e., \(\{RID(IMD_k, \chi(RID(IMD_k, y))\) along with the secret pairwise session key \(SK_{PS_l, IMD_k} = h(\omega||TIP)\) shared between IMD\(_k\) and PS\(_l\) from its memory, where \(\omega = \chi(RID(PS_l, RID(IMD_k)))\). However, it is worthy to notice that all \(RID(IMD_k)\) and \(\chi(RID(IMD_k, y))\) are different for different IMDS. Therefore, the physical stolen of IMD\(_k\) by A can only help him/her in the obtaining of secret session key between that IMD\(_k\) and PS\(_l\) not the other session keys. Thus all other secret keys between the PS\(_l\) and other non-compromised IMDS are still unrevealed. Hence, the compromising of an IMD will not cause the compromising of the entire communication, and the secure communications among personal server and other non-compromised IMDS can be still achieved. Thus BAKMP-IoMT is unconditionally secure against the IMD physical capture attack.

Proposition 8: BAKMP-IoMT is resilient against the data modification attack at the cloud server.

Proof: Cloud server (miner node) CS\(_j\) receives data from the concerned personal server PS\(_l\) and prepares a block to add this block into the existing blockchain. For that purpose, all miner nodes call the steps of Algorithm 1 and Algorithm 2. After the completion of all steps of these algorithms, a block will be added into the blockchain. Since, blockchain is a tamper proof technology and the attacker A does not have ability to update the required fraction of blocks. Therefore, A can not modify the data of a block. Hence, BAKMP-IoMT is resilient against the data modification attack.

VI. FORMAL SECURITY VERIFICATION USING AVISPA TOOL

In this section, we do simulation of the proposed BAKMP-IoMT for the “formal security verification using the widely accepted automated software validation tool, called AVISPA” [57].

A tested security protocol is first implemented under the High Level Protocol Specification Language (HLPSL) [58]. HLPSL is a “role-oriented language” containing the following types of roles:

- Basic roles: They denote “different participating entities in the protocol”.
- Composition roles: They present “different scenarios involving basic roles”.

An intruder always takes part in the protocol as “one of the basic legitimate roles and is always represented by i”’. The “HLPSL specification of the protocol” is converted into the “Intermediate Format (IF)” using the HLPSL2IF translator. The IF is then given as input to one of the four backends available in AVISPA to its “Output Format (OF)”. The four back-ends of AVISPA are: a) “On-the-fly Model-Checker (OFMC)”, b) “Constraint Logic based Attack Searcher (CL-AtSe)”, c) “SAT-based Model-Checker (SATMC)” and d) “Tree Automata based on Automatic Approximations for the Analysis of Security Protocols (TA4SP)”. More detailed
discussions on these back-ends and HLPSL can be found in [57], [58].

The OF contains following sections [58]:

- **SUMMARY**: It tells “whether the tested protocol is safe, unsafe, or whether the analysis is inconclusive”.
- **DETAILS**: It states an explanation of “why the tested protocol is concluded as safe, or under what conditions the test application or protocol is exploitable using an attack, or why the analysis is inconclusive”.
- **PROTOCOL**: It denotes the “HLPSL specification of the target protocol in the IF”.
- **GOAL**: It presents the “goal of the analysis which is being performed by AVISPA using HLPSL specification”.
- **BACKEND**: It is the “name of the back-end that is used for the analysis, that is, one of OFMC, CL-AtSe, SATMC and TA4SP”.
- **Final section includes the “trace of a possible vulnerability to the target protocol, if any, along with some useful statistics and relevant comments”**.

We have implemented the registration, login and authentication phases of our proposed BAKMP-IoMT in HLPSL specification. The basic roles for the TA, a user U_i, and a cloud server CS_j are shown in figures 8, 9 and 10, respectively. The mandatory roles (session and goal & environment) are also implemented as composite roles in Figure 11.

In the simulation under the AVISPA backends, three verifications, namely: a) “executability checking on non-trivial HLPSL specifications”, b) “replay attack checking”, and c) “Dolev-Yao threat model (DY model) [42] checking”. The “executability check” is essential to assure that “the protocol will reach to a state where a possible attack can happen, during the run of the protocol”. From figures 8, 9 and 10, it is clear that “BAKMP-IoMT has been properly translated to HLPSL specification and it meets the design goals by ensuring the executability”. For the “replay attack checking” on BAKMP-IoMT, both OFMC and CL-AtSe check “if the legitimate agents can execute the specified protocol by performing a search of a passive intruder”. Finally, both OFMC and CL-AtSe backends verify “whether any man-in-the-middle attack is possible by i for the DY model checking”.

The simulation results reported in figures 12 and 13 clearly exhibit that the proposed BAKMP-IoMT is safe against both ‘replay’ and ‘man-in-the-middle’ attacks.

VII. PERFORMANCE ANALYSIS

In this section, we first evaluate the performance of the user registration, and user login and authentication phases of our

FIGURE 8. HLPSL specification for the role of TA.

In the simulation under the AVISPA backends, three verifications, namely: a) “executability checking on non-trivial HLPSL specifications”, b) “replay attack checking”, and c) “Dolev-Yao threat model (DY model) [42] checking”. The “executability check” is essential to assure that “the protocol will reach to a state where a possible attack can happen, during the run of the protocol”. From figures 8, 9 and 10, it is clear that “BAKMP-IoMT has been properly translated to HLPSL specification and it meets the design goals by ensuring the executability”. For the “replay attack checking” on BAKMP-IoMT, both OFMC and CL-AtSe check “if the legitimate agents can execute the specified protocol by performing a search of a passive intruder”. Finally, both OFMC and CL-AtSe backends verify “whether any man-in-the-middle attack is possible by i for the DY model checking”. The simulation results reported in figures 12 and 13 clearly exhibit that the proposed BAKMP-IoMT is safe against both ‘replay’ and ‘man-in-the-middle’ attacks.

VII. PERFORMANCE ANALYSIS

In this section, we first evaluate the performance of the user registration, and user login and authentication phases of our

FIGURE 9. HLPSL specification for the role of a user U_i.

In the simulation under the AVISPA backends, three verifications, namely: a) “executability checking on non-trivial HLPSL specifications”, b) “replay attack checking”, and c) “Dolev-Yao threat model (DY model) [42] checking”. The “executability check” is essential to assure that “the protocol will reach to a state where a possible attack can happen, during the run of the protocol”. From figures 8, 9 and 10, it is clear that “BAKMP-IoMT has been properly translated to HLPSL specification and it meets the design goals by ensuring the executability”. For the “replay attack checking” on BAKMP-IoMT, both OFMC and CL-AtSe check “if the legitimate agents can execute the specified protocol by performing a search of a passive intruder”. Finally, both OFMC and CL-AtSe backends verify “whether any man-in-the-middle attack is possible by i for the DY model checking”. The simulation results reported in figures 12 and 13 clearly exhibit that the proposed BAKMP-IoMT is safe against both ‘replay’ and ‘man-in-the-middle’ attacks.

VII. PERFORMANCE ANALYSIS

In this section, we first evaluate the performance of the user registration, and user login and authentication phases of our
proposed BAKMP-IoMT. Next, we compare the performance of BAKMP-IoMT with the relevant existing authentication schemes for healthcare applications.

During the login and authentication phase, the messages $M_{sg1} = \langle M_1, M_2, T_{S1} \rangle$, $M_{sg2} = \langle M_3, M_4, T_{S2} \rangle$ and $M_{sg3} = \langle M_5, T_{S3} \rangle$ are exchanged between a registered user U_i and a cloud server CS_j. Assume that an “identity”, a “timestamp”, a “random number (nonce)” and a “hash output (if SHA-256 hashing algorithm is applied)” need 160 bits, 32 bits, 160 bits and 256 bits, respectively. Then, the messages $M_{sg1} = \langle M_1, M_2, T_{S1} \rangle$, $M_{sg2} = \langle M_3, M_4, T_{S2} \rangle$ and $M_{sg3} = \langle M_5, T_{S3} \rangle$ require $(256 \times 3 + 256 + 32) = 544$ bits, $(256 + 256 + 32) = 544$ bits, and $(256 + 256 + 32) = 544$ bits. As a result, the total communication cost in BAKMP-IoMT due to three messages exchange needs 1376 bits.

For computational cost analysis, assume that T_h and T_{fe} denote the time needed to execute a “one-way hash function” (say, SHA-256 hashing algorithm) and a “fuzzy extractor function ($Gen(\cdot)/Rep(\cdot)$), respectively. During the login and authentication phase, a user U_i needs the computational cost of $12T_h + T_{fe}$ and a cloud server CS_j requires computational cost of $7T_h$. Thus, the total computational cost in BAKMP-IoMT becomes $19T_h + T_{fe}$. Since only hash function and fuzzy extractor are applied, the proposed scheme is very efficient.

During the user registration process, a user U_i’s mobile device MD_{U_i} requires the credentials $\{RID_{U_i}’, RID_{TA}, \alpha’, EQ, \beta, \tau_{U_i}, t\}$. If we assume that “public reproduction parameter τ_{U_i}” and “error-tolerance threshold value t” require
FIGURE 13. Analysis of results of BAKMP-IoMT under CL-AtSe backend.

160 bits and 32 bits, respectively, the storage cost needed to store these credentials in BAKMP-IoMT becomes \((256 + 256 + 256 + 256 + 160 + 32) = 1472\) bits.

We now perform a detailed comparative study for the “computation and communication costs” and “security and functionality features” among the proposed BAKMP-IoMT and other related existing schemes, such as the schemes of Jang et al. [36], He and Zeadally [37] and Merabet et al. [38].

In Table 3, we have shown a comparative analysis on “security and functionality features” among BAKMP-IoMT and other schemes against the considered features \(SFF_1\)–\(SFF_{17}\). It is seen that the proposed BAKMP-IoMT provides superior security and also more “functionality features” while these are compared with the schemes of Jang et al. [36], He and Zeadally [37] and Merabet et al. [38].

Feature	Merabet et al. [38]	Jang et al. [36]	He and Zeadally [37]	BAKMP-IoMT
\(SFF_1\)	✓	✓	✓	✓
\(SFF_2\)	✓	✓	✓	✓
\(SFF_3\)	✓	✓	✓	✓
\(SFF_4\)	✓	✓	✓	✓
\(SFF_5\)	✓	✓	✓	✓
\(SFF_6\)	✓	✓	✓	✓
\(SFF_7\)	✓	✓	✓	✓
\(SFF_8\)	✓	✓	✓	✓
\(SFF_9\)	✓	✓	✓	✓
\(SFF_{10}\)	N/A	N/A	N/A	✓
\(SFF_{11}\)	N/A	N/A	N/A	✓
\(SFF_{12}\)	✓	✓	✓	✓
\(SFF_{13}\)	✓	✓	✓	✓
\(SFF_{14}\)	✓	✓	✓	✓
\(SFF_{15}\)	✓	✓	✓	✓
\(SFF_{16}\)	✓	✓	✓	✓
\(SFF_{17}\)	✓	✓	✓	✓

Note: \(SFF_1\) : “mutual authentication/access control”; \(SFF_2\) : “anonymity”; \(SFF_3\) : “untraceability”; \(SFF_4\) : “session-key agreement”; \(SFF_5\) : “session key security under CK adversary model”; \(SFF_6\) : “confidentiality”; \(SFF_7\) : “integrity”; \(SFF_8\) : “strong replay attack”; \(SFF_9\) : “man-in-the-middle attack”; \(SFF_{10}\) : “efficient login phase”; \(SFF_{11}\) : “password update phase”; \(SFF_{12}\) : “biometric update phase”; \(SFF_{13}\) : “dynamic controller node addition”; \(SFF_{14}\) : “dynamic IMD addition”; \(SFF_{15}\) : “protection against stolen mobile device/programmer attack”; \(SFF_{16}\) : “protection against impersonation attack”; \(SFF_{17}\) : “formal security verification using AVISPA tool”.

\(\times\) : “a scheme is insecure against a particular attack or it does not support a particular feature”; ✓ : “a scheme is secure against a particular attack or supports a particular feature”; N/A: “not applicable in a scheme”.

For comparative analysis on computational costs among the proposed BAKMP-IoMT and other schemes during login and authentication phases, we use various execution time for cryptographic primitives as listed in Table 4 based on the existing experimental results in [59]. Using these results, a comparative study on computational costs among the proposed BAKMP-IoMT and other schemes has been done in Table 5. It is also worth noticing that BAKMP-IoMT requires low computational cost as compared to that for other schemes, such as the schemes of Jang et al. [36], He and Zeadally [37] and Merabet et al. [38].

Finally, a comparative study on communication costs among the proposed BAKMP-IoMT and other schemes is also provided in Table 6. It is observed that BAKMP-IoMT...
requires low communication cost as compared to that for other schemes, such as the schemes of Jang et al. [36], He and Zeadally [37] and Merabet et al. [38].

VIII. PRACTICAL DEMONSTRATION

The pragmatic delineation of BAKMP-IoMT using the strategies of blockchain was proceeded as follows [60]. Table 7 represents the details of different parameters used during the experimentation. Three unique scenarios were considered in the experimentation. The experimentation was conducted on a platform having Windows 10 64-bit OS with Intel (R) core i5-8250U, 1.60 GHz-1.80 GHz processor. The size of random-access memory (RAM) size was 8 GB. The programming platform was eclipse IDE 2019-12 with Java language. The count of IMDs considered were 50 (in scenario-1), 100 (in scenario-2) and 150 (in scenario-3). The number of computed and committed blocks were 5 (in scenario-1), 10 (in scenario-2) and 15 (in scenario-3). The count of users was taken as 10 (in scenario-1), 20 (in scenario-2) and 40 (in scenario-3) alongside four miner nodes (i.e., cloud servers). The voting based mechanism is used for the block verification and addition purpose. The snippets of the “main blockchain program” and the “data inside a block of blockchain” are given in Figures 14 and 15, respectively. Various fields utilized in a block of the blockchain are as follows:

- **Block Version (BVer):** It denotes the version of a block. The size of this field can be assumed as 32 bits.
- **Hash of previous block (PBHash):** It consists the hash value of the previous block. The size of this field can be considered as 256-bits (if “SHA256 hash algorithm” is taken).
- **Merkle Tree Root (MR):** It is the Merkle tree root on the encrypted transactions, whose size is 256-bits as “SHA-256 hash algorithm” is used.
- **Timestamp:** It is the value of timestamp for a particular block. The size of this field can be considered as 32-bits.
- **Owner of Block (OB):** It represents the identity of block owner. The size of this field can be considered as 160-bits.
- **Owner public key:** This field have the information of “public key of the owner (miner) node”. The size of this field is considered as 320-bits (since the “Elliptic Curve Cryptography (ECC) algorithm” is considered).

- **Encrypted transaction details:** It comprises the information about the “ongoing transactions”. For example, which entity (communicating party) is sending “which information” and for “what reason”. The size of each encrypted transaction is ECC-based ciphertext. Thus, it requires $(320 + 320) = 640$ bits. If we consider 100 encrypted transactions, the payload of the block becomes $(100 \times 640) = 64,000$ bits.

Table 7. Simulation parameters used BAKMP-IoMT.

Parameter	Remark
Platform used	Windows 10 64-bit OS
Processor	Intel (R) core (TM), i5-8250U, 1.60 GHz-1.80 GHz
Random-access memory (RAM) size	8 GB
Programming platform	Eclipse IDE 2019-12 with Java
Number of IMDs	50 (scenario-1), 100 (scenario-2), 150 (scenario-3)
Number of users	10 (scenario-1), 20 (scenario-2), 40 (scenario-3)
Number of miner nodes	in all scenarios
Size of a block	65,632 bits

![FIGURE 14. Snippet of the main blockchain program.](image1)

![FIGURE 15. Snippet of data inside a block of blockchain.](image2)
A. IMPACT ON COMPUTATIONAL COST

The effect on increasing number of IMDs and users was computed as the computation cost (in ms) for all considered scenarios. The various estimations of computation costs are 4.20, 5.01 and 6.21 seconds for scenario-1, scenario-2 and scenario-3, respectively. The reported results are likewise delineated in Figure 16. It is worthy to see that “computation cost” increases with the number of IMDs and users from scenario-1 to scenario-2 as well as from scenario-2 to scenario-3 as increase in number of IMDs and users causes “creation and addition” of more number of blocks in the blockchain.

B. IMPACT ON TRANSACTION PER SECOND (TPS)

The impact on our proposed BAKMP-IoMT on transactions per second (TPS) is also measured as per the considered scenarios. The values of TPS are 119, 200 and 242 for scenario-1, scenario-2 and scenario-3, respectively. The reported results are additionally delineated in Figure 17. It is worthy to see that the value of TPS increases as the blockchain grows with more number of IMDs and users. The reason is straightforward because it causes the creation and addition of more number of blocks in the blockchain.

IX. CONCLUSION

In this paper, we designed a novel blockchain enabled authentication key agreement protocol for IoMT environment (BAKMP-IoMT). BAKMP-IoMT provides secure key management among different communicating entities. The legitimate users can also access the healthcare data from the cloud servers in a secure way. The entire healthcare data is stored in a blockchain maintained by the cloud servers. The formal security verification of BAKMP-IoMT is also performed to demonstrate its resilience against the different types of possible attacks using the widely-accepted AVISPA tool and also through formal and informal security analysis. BAKMP-IoMT is compared with other related existing schemes and it also performs better in terms of security and functionality features, less communication and communication costs for authentication and key management phase as compared to the other schemes. Furthermore, the simulation of BAKMP-IoMT is conducted to demonstrate its impact on the performance parameters.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers and the associate editor for their valuable feedback on the paper which helped them to improve its quality and presentation.

REFERENCES

[1] B. Bera, D. Chattaraj, and A. K. Das, “Designing secure blockchain-based access control scheme in IoT-enabled Internet of drones deployment,” Comput. Commun., vol. 153, pp. 229–249, Mar. 2020.
[2] M. Wazid, A. K. Das, V. Odelu, N. Kumar, M. Conti, and M. Jo, “Design of secure user authenticated key management protocol for generic IoT networks,” IEEE Internet Things J., vol. 5, no. 1, pp. 269–282, Feb. 2018.
[3] A. K. Das, A. K. Sutrala, S. Kumari, V. Odelu, M. Wazid, and X. Li, “An efficient multi-gateway-based three-factor user authentication and key agreement scheme in hierarchical wireless sensor networks,” Secur. Commun. Netw., vol. 13, no. 13, pp. 2070–2092, 2016.
[4] M. Wazid, A. K. Das, S. Kumari, X. Li, and F. Wu, “Design of an efficient and provably secure anonymity preserving three-factor user authentication and key agreement scheme for TMIS,” Secur. Commun. Netw., vol. 9, no. 13, pp. 1983–2001, Sep. 2016.
[5] S. Chatterjee, A. K. Das, and J. K. Sing, “A secure user anonymity-preserving three-factor remote user authentication scheme for the telecare medicine information systems,” Adhoc SensorWireless Netw., vol. 21, no. 1, pp. 121–149, 2014.
[6] A. K. Das, “A secure user anonymity-preserving three-factor remote user authentication scheme for the telecare medicine information systems,” J. Med. Syst., vol. 39, no. 3, p. 30, Mar. 2015.
[7] V. Odelu, A. K. Das, M. Khurram Khan, K.-K.-R. Choo, and M. Jo, “Expressive CP-ABE scheme for mobile devices in IoT satisfying constant-size keys and ciphertexts,” IEEE Access, vol. 5, pp. 3273–3283, 2017.
[8] S. Challa, M. Wazid, A. K. Das, N. Kumar, A. Goutham Reddy, E.-J. Yoon, and K.-Y. Yoo, “Secure signature-based authenticated key establishment scheme for future IoT applications,” IEEE Access, vol. 5, pp. 3028–3043, 2017.
[9] V. Odelu, A. K. Das, and A. Goswami, “SEAP: Secure and efficient authentication protocol for NFC applications using pseudonyms,” IEEE Trans. Consum. Electron., vol. 62, no. 1, pp. 30–38, Feb. 2016.
A. K. Das, S. Kumari, V. Odelu, X. Li, F. Wu, and X. Huang, “Provably secure user authentication and key agreement scheme for wireless sensor networks,” Secure Commun. Netw., vol. 9, no. 16, pp. 3670–3687, Nov. 2016.

S. Malani, J. Sinivas, A. K. Das, K. Srinathan, and M. Jo, “Certificate-based anonymous device access control scheme for IoT environment,” IEEE Internet Things J., vol. 6, no. 6, pp. 9762–9775, Dec. 2019.

M. Wazid, P. Bagga, A. K. Das, S. Shetty, J. J. P. C. Rodrigues, and Y. Park, “AKM-IoV: Authenticated key management protocol in fog computing-based Internet of vehicles deployment,” IEEE Internet Things J., vol. 6, no. 5, pp. 8804–8817, Oct. 2019.

N. Kumar, G. S. Aujla, A. K. Das, and M. Conti, “ECCAuth: A secure authentication protocol for demand response management in a smart grid system,” IEEE Trans. Ind. Inform., vol. 15, no. 12, pp. 6572–6582, Dec. 2019.

J. Sinivas, A. K. Das, N. Kumar, and J. J. P. C. Rodrigues, “TCALAS: Temporal credential-based anonymous lightweight authentication scheme for Internet of drones environment,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6903–6916, Jul. 2019.

S. Mandal, B. Bera, A. K. Sutrula, A. K. Das, K. R. Choo, and Y. Park, “Certificateless-signcryption-based three-factor user access control scheme for IoT environment,” IEEE Internet Things J., vol. 7, no. 4, pp. 3184–3197, Apr. 2020.

S. Chatterjee, A. K. Das, and J. K. Sing, “A novel and efficient user access control scheme for wireless body area sensor networks,” J. King Saud Univ. Comput. Inform. Sci., vol. 26, no. 2, pp. 181–201, Jul. 2014.

M. Wazid, A. K. Das, V. Odelu, N. Kumar, and W. Susilo, “Secure remote user authenticated key establishment protocol for smart home environment,” IEEE Trans. Dependable Secure Comput., vol. 17, no. 2, pp. 391–406, Mar. 2020.

A. K. Das, M. Wazid, N. Kumar, A. V. Vasilakos, and J. J. P. C. Rodrigues, “Biometrics-based privacy-preserving user authentication scheme for cloud-based industrial Internet of Things deployment,” IEEE Internet Things J., vol. 5, no. 6, pp. 4990–4913, Dec. 2018.

J. Sinivas, A. K. Das, N. Kumar, and J. Rodrigues, “Cloud-centric authentication for wearable healthcare monitoring system,” IEEE Trans. Dependable Secure Comput., early access, Apr. 19, 2018, doi: 10.1109/TDSC.2018.282306.

M. Shuai, B. Liu, N. Yu, L. Xiong, and C. Wang, “Efficient and privacy-preserving authentication scheme for wireless body area networks,” J. Inf. Secur. Appl., vol. 52, Jun. 2020, Art. no. 102499.

A. K. Sutrula, P. Bagga, A. K. Das, N. Kumar, J. J. P. C. Rodrigues, and P. Lorenz, “On the design of conditional privacy preserving batch verification-based authentication scheme for Internet of vehicles deployment,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5535–5548, May 2020, doi: 10.1109/TVT.2020.2981934.

S. Challa, A. K. Das, V. Odelu, N. Kumar, S. Kumari, M. K. Khan, and A. V. Vasilakos, “An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks,” Comput. Elect. Eng., vol. 69, pp. 534–544, Jul. 2018.

M. Wazid, A. K. Das, N. Kumar, V. Odelu, A. Goutham Reddy, K. Park, and Y. Park, “Design of lightweight authentication and key agreement protocol for vehicular ad hoc networks,” IEEE Access, vol. 5, pp. 14996–14980, 2017.

A. A. Monrat, O. Schelen, and K. Andersson, “A survey of blockchain from the perspectives of applications, challenges, and opportunities,” IEEE Access, vol. 7, pp. 117134–117151, 2019.

Z. Zheng, S. Xie, H. N. Dai, X. Chen, and H. Wang, “Blockchain challenges and opportunities: A survey,” Int. J. Web Grid Services, vol. 14, no. 4, p. 352, 2018.

S. Aggarwal, R. Chaudhary, G. S. Aujla, N. Kumar, K.-K.-R. Choo, and A. Y. Zomaya, “Blockchain for smart communities: Applications, challenges and opportunities,” J. Netw. Comput. Appl., vol. 144, pp. 13–48, Oct. 2019.

C. Lin, D. He, N. Kumar, X. Huang, P. Vijayakumar, and K.-K.-R. Choo, “HomeChain: A blockchain-based secure mutual authentication system for smart homes,” IEEE Internet Things J., vol. 7, no. 2, pp. 818–829, Feb. 2020.

H. Zhang, J. Wang, and Y. Ding, “Blockchain-based decentralized and secure keyless signature scheme for smart grid,” Energy, vol. 180, pp. 955–967, Aug. 2019.

X. Wang, P. Zeng, N. Patterson, F. Jiang, and R. Doss, “An improved authentication scheme for Internet of vehicles based on blockchain technology,” IEEE Access, vol. 7, pp. 45061–45072, 2019.
Computer Systems (Elsevier), Computers & Electrical Engineering (Elsevier), Computer Methods and Programs in Biomedicine (Elsevier), Security and Communication Networks (Wiley), and the Journal of Network and Computer Applications (Elsevier). His current research interests include information security, remote user authentication, the Internet of Things (IoT), cloud/fog/edge computing, and blockchain. He has also served as a program committee member in many international conferences. He was a recipient of the University Gold Medal and the Young Scientist Award by UCoST, Department of Science and Technology, Government of Uttarakhand, India. He has received Dr. A. P. J. Abdul Kalam Award for his innovative research works and ICT Express (Elsevier) Journal Best Reviewer Award for the year of 2019.

ASHOK KUMAR DAS (Senior Member, IEEE) received the M.Tech. degree in computer science and data processing, the M.Sc. degree in mathematics, and the Ph.D. degree in computer science and engineering from IIT Kharagpur, India. He is currently an Associate Professor with the Center for Security, Theory and Algorithmic Research, International Institute of Information Technology, Hyderabad, India. He has authored over 220 articles in international journals and conferences in the research areas, including over 190 reputed journal articles. Some of his research findings are published in top cited journals, such as the IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, the IEEE TRANSACTIONS ON DEFENDABLE AND SECURE COMPUTING, the IEEE TRANSACTIONS ON SMART GRID, the IEEE INTERNET OF THINGS JOURNAL, the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, the IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, the IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (formerly the IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE), the IEEE CONSUMER ELECTRONICS MAGAZINE, the IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE ACCESS, the IEEE COMMUNICATIONS MAGAZINE, Future Generation Computer Systems, Computers & Electrical Engineering, Computer Methods and Programs in Biomedicine, Computer Standards & Interfaces, Computer Networks, Expert Systems with Applications, and the Journal of Network and Computer Applications. His current research interests include cryptography, network security, blockchain, security in the Internet of Things (IoT), the Internet of Vehicles (IoV), the Internet of Drones (IoD), smart grids, smart city, cloud/fog computing, industrial wireless sensor networks, and intrusion detection. He has served as a program committee member in many international conferences. He was a recipient of the Institute Silver Medal from IIT Kharagpur. He also served as one of the Technical Program Committee Chairs of the International Congress on Blockchain and Applications (BLOCKCHAIN’19), Avila, Spain, in June 2019. He is on the Editorial Board of KSII TRANSACTIONS ON INFORMATION AND CURRENT TECHNOLOGIES, the International Journal of Internet Technology and Secured Transactions (Inderscience), and IET COMMUNICATIONS. He is a Guest Editor of Computers & Electrical Engineering (Elsevier) for the special issue on Big data and IoT in E-healthcare, ICT Express (Elsevier) for the special issue on Blockchain Technologies and Applications for 5G Enabled IoT, and Wireless Communications and Mobile Computing (Wiley/Hindawi) for the special issue on Attacks, Challenges, and New Designs in Security and Privacy for Smart Mobile Devices.

DEVESH PRATAP SINGH received the M.Tech. degree in computer science and engineering from Uttarakhand Technical University, Dehradun, India, in 2009, and the Ph.D. degree, in 2015. He is currently a Professor and the Head of the Computer Science and Engineering Department, Graphic Era deemed to be University, Dehradun, India. He has published more than 50 research articles in his area of expertise. His research interests include information security, wireless sensor networks, the Internet of Things, and soft computing.
JOEL J. P. C. RODRIGUES (Fellow, IEEE) is currently a Professor with the Federal University of Piauí, Brazil. He is also a Senior Researcher with the Instituto de Telecomunicações, Portugal. He is the Leader of the Next Generation Networks and Applications Research Group (CNPq). He has authored or coauthored over 850 articles in refereed international journals and conferences, three books, and one ITU-T Recommendation. He holds two patents. He is a member of the Internet Society and a Senior Member ACM. He is a Steering Committee Member of the IEEE Life Sciences Technical Community. He is a Member Representative of the IEEE Communications Society on the IEEE Biometrics Council. He had been awarded several Outstanding Leadership and Outstanding Service Awards by the IEEE Communications Society and several best papers awards. He is a Technical Activities Committee Chair with the IEEE ComSoc Latin America Region Board. He is a Past-Chair of the IEEE ComSoc Technical Committee on eHealth and the IEEE ComSoc Technical Committee on Communications Software. He is a Publications Co-Chair. He has been a General Chair and TPC Chair of many international conferences, including the IEEE ICC, the IEEE GLOBECOM, the IEEE HEALTHCOM, and the IEEE LatinCom. He is the President of the Scientific Council with ParkUrbis—Covilhã Science and Technology Park. He is the Editor-in-Chief of the International Journal on E-Health and Medical Communications. He is the editorial board member of several high-reputed journals. He is the Director of the Conference Development—the IEEE ComSoc Board of Governors. He is the IEEE Distinguished Lecturer.

YOUNGHO PARK (Member, IEEE) received the B.S., M.S., and Ph.D. degrees in electronic engineering from Kyungpook National University, Daegu, South Korea, in 1989, 1991, and 1995, respectively. From 1996 to 2008, he was a Professor with the School of Electronics and Electrical Engineering, Sangju National University, South Korea. From 2003 to 2004, he was a Visiting Scholar with the School of Electrical Engineering and Computer Science, Oregon State University, USA. He is currently a Professor with the School of Electronics Engineering, Kyungpook National University. His research interests include computer networks, multimedia, and information security.