Amenability of an Agrobacterium tumefaciens-mediated shoot apical meristem-targeted in planta transformation strategy in Mango (Mangifera indica L.)

Kuldeep Pandey*a, Kesiraju Karthikb, Sanjay Kumar Singhc, Vinodc, Rohini Sreevathsa, and Manish Srivastava*

“Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India; bICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, India; cDivision of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India

ABSTRACT

Mango (Mangifera indica L.) is one of the most popular tropical fruits in the world owing to its rich taste, flavor, color, production volume and diverse end usage. Conventional mango breeding practices are unable to withstand the demand for improved varieties as it is time consuming and requires heavy investment. However, problems associated with traditional plant breeding can be curtailed through genetic transformation. Nevertheless, major limitation of transgenic development has been its recalcitrant nature toward tissue culture practices involving latent microbial infection, phenol exudation, etc. This opens wide scope for tissue culture-independent in planta transformation approaches. These strategies have proved to be easy to execute and cost effective in producing large number of transformants. One such apical meristem targeted in planta approach was successfully exploited to demonstrate its utility in transforming a tree species. Mango variety Amrapali was transformed with two visual marker gene vectors GFP::hptll in pCAMBIA1302 and GUS::nptII in pCAMBIA2301 individually, to demonstrate its amenability. Preliminary confirmations identified 65.0% of GFP and 57.14% of GUS plants to be transformed. Further, molecular characterization of these primary transformants demonstrated transgene integration at genomic and transcript level in some of the plants. This established protocol holds good for functional gene validation and knock in/out studies and aid in mango improvement programs.

1. Introduction

Mango (Mangifera indica L.) belonging to family Anacardiaceae is an allopolyploid (2 n = 40) with medium genome size (~439 Mbp). It is the most widely grown fruit crop in India and acclaimed as “King of fruits.” India is one of the largest grower and exporter of mango, yielding foreign earnings of 39.6 million US dollars (https://www.statista.com/). In India, mango is being cultivated in an area of 2315 thousand hectares with annual production of 20899 thousand metric tonnes (https://nhb.gov.in/).

Mango cultivation deals with biennial bearing habit, large tree size, susceptibility to major diseases (mango malformation, anthracnose, powdery mildew, bacterial black spot); pests (mango hopper, mealy bug, fruit fly, stone weevil); short-post-harvest life and physiological disorders (spongy tissue, jelly stone) being the major constraints. Conventional breeding of woody perennial fruit crops such as mango is difficult due to their long juvenile phase, existence of self-incompatibility, high degree of cross-pollination, low fruit set, high fruit drop, development of single seed per fruit, polynembyryony, allopolyploid nature, highly heterozygous genetic background and lack of information about inheritance pattern of important quantitative traits. Moreover, improving popular mango cultivars by introducing genes from other wild species through interspecific hybridization has also been inadequate due to cross incompatibility barriers. Genetic transformation facilitates the introduction of a desired gene into the plant genome to overcome problems associated with traditional plant breeding.

Mango micropropagation has not achieved much economic success than compared to other horticultural crops. This is due to several challenges that are associated with mango in vitro culture, including latent microbial infection, phenol exudation, culture
medium discoloration, explant browning, *in vitro* recalcitrance of tissues either singly or in combination imperil the entire tissue culture attempts. 4

Non-availability of *in vitro* regeneration protocols is mainly due to the basic barriers which involve excessive phenolic exudation post excision of explants (activation of oxidative enzyme system), explant browning (necrosis), culture media discolorations, deep-seated microbial contamination; slow and sporadic *in vitro* response of mango to tissue culture. 8 Few studies have demonstrated genetic transformation of mango using *Agrobacterium tumefaciens* 6, 9–11 and gene gun 12 with varying levels of success. Further, *in vitro* regeneration is genotype-dependent, time resilient and prone to somaclonal variations. 13, 14 Thus, to overcome the concerns associated with difficult-to-regenerate crops, the need of *in planta* approaches have begun to gain importance. 15, 16

Tissue culture-independent *in planta* transformation has been demonstrated in many crops such as *Brassica rapa*, 17 *B. napus*, 18 *B. campestris*, 19 *Arabidopsis thaliana*, 20 *Medicago truncatula*, 21 *Raphanus sativus*, 22 *Solanum lycopersicum*, 23 *Glycine max*, 24 *Meliolotus alba*, 25 *Zea mays*, 26 *Oryza sativa*, 27 *Citrus maxima* 28 and *Passiflora edulis*. 29 Several *in planta* transformation strategies have been developed using different tissues, *i.e.*, seed, epicotyl, shoot apical meristem, flower, fruit etc. 30

The advantages of *in planta* approaches are that they are cost effective, easy to execute and can produce a large number of transformants in a short period of time. Several reports have confirmed high transformation efficiencies in different crops. 31 Among several *in planta* transformation techniques, apical meristem mediated transformation targets T-DNA to the growing shoot apical meristematic regions *in vitro* and allows the development of plants *ex vitro*. The methodology has been unequivocally proved in different crops like field bean, 32 groundnut, 33 capsicum, 34 chili, 35 pigeon pea, 36, 37 flax 38 and cotton. 39, 40

Genetic transformation of mango holds significant potential, which can give leads in solving the problem of flowering, alternate bearing habit, development of parthenocarpy varieties and tolerance to different biotic and abiotic stresses. Furthermore, there is no information available on *in planta* transformation of mango. In the present study, our team has developed a successful strategy for transforming mango with the apical meristem-targeted *in planta* genetic transformation protocol. This strategy is expected to provide an alternate approach over tissue culture mediated transformation to develop genetically modified mango genotypes, which can hasten and shorten the varietal improvement programs.

2. Materials and Methods

2.1. Plant Material and Binary Vectors Used for Transformation

In the present study, mango variety Amrapali, was used for the development of transformants. Seeds were surface sterilized with Ridomil Gold* (Syngenta Basal, Switzerland), seed coat was removed to facilitate germination and sown in plastic bags containing sterile potting media (cocompeat, vermiculite and perlite, 3:1:1). These bags were maintained under controlled conditions (26 ± 1°C; RH 65–75%; 16/8 h photoperiod of 57 μmole m⁻² s⁻¹) till transformation. Two-week-old seedlings were used as explants for *Agrobacterium* infection.

Agrobacterium tumefaciens strain EHA105 harboring binary vectors pCAMBIA1302 carrying GFP (Green Fluorescent Protein) gene and hptII as antibiotic gene; pCAMBIA2301 carrying GUS (β-glucuronidase) marker gene which contains a 5′ extension of modified castor bean catalase intron (190 bp) to facilitate expression in plants but not in bacteria and nptII selectable marker gene were used for transformation of mango seedlings individually (Fig. 1a, b).

2.2. Development of Transgenics through an Apical meristem-targeted *in planta* Transformation Strategy

Axenic culture of *Agrobacterium* harboring 35S:: GFP and 35S:: hptII in pCAMBIA1302 and 35S:: GUS and 35S:: nptII in pCAMBIA2301 from freshly streaked culture plate was inoculated into 5 ml LB medium (pH 7.0) containing 50 mg/L kanamycin, 10 mg/L rifampicin and incubated overnight at 28°C. The 5 ml starter culture on the next day was transferred to 200 ml of LB broth suplemented
with antibiotics, which was later inoculated into 1 L of Winans’ AB minimal medium (pH 5.2) \(^{41}\) and incubated for 18 h at 28°C; 220 rpm. Two-week-old mango seedlings with emerging plumules were punctured 15–20 times with an insulin syringe at the apical meristem and incubated in AB minimal medium previously supplemented with crushed mature tobacco leaf extract \(^{42}\) maintained at 28°C; 50 rpm for 5 h. The plants were later allowed to grow under controlled conditions until they recovered from injury and resumed their growth (Figs. 2 and 3).

2.3. Identification of Putative Transformants

2.3.1. GFP Expression

Seedlings transformed with pCAMBIA1302 were preliminarily confirmed using a fluorescence microscope with a 488 nm excitation wavelength. GFP expression in primary transformants, 36 h post infection was observed under a fluorescence microscope (ZEISS SteREO Discovery V20 microscope, Oberkochen, Germany). An excitation wavelength of 488 nm and 505–530 band-path filter (which permits visualization of GFP by blue light) to separate GFP and a 560 long-pass filter to determine chlorophyll fluorescence were used.\(^{16}\)

2.3.2. GUS Histochemical Analysis

Seedlings transformed with pCAMBIA2301 were initially confirmed by GUS histochemical analyses. Excised tissues (leaf and stem) after 76 h of Agrobacterium infection were incubated overnight in GUS assay buffer (0.1 M phosphate buffer, pH 7.0, 2 mM X-Gluc, 5 mM each of potassium ferricyanide and potassium ferrocyanide and 0.1% Triton X100) at 37°C in water bath. Chlorophyll present in the tissues were later destained using 75% ethanol (v/v).\(^{43}\) GUS expression at cellular level was observed using binocular microscope (Olympus, CX33, Shinjuku, Tokyo, Japan).\(^{44}\)

2.4. Molecular Analyses of Transgenic Plants

2.4.1. DNA Isolation

The leaves of transgenic and wild-type mango plants were crushed in liquid nitrogen to isolate genomic DNA using a CTAB (Cetyl Trimethyl Ammonium Bromide) method\(^{44}\) with minor modifications.
For purification of DNA, 2 µl RNase A (10 mg/ml) was added per 200 µl of crude DNA solution and incubated for 1 h at 37°C, then treated with an equal volume of phenol: chloroform: isoamyl alcohol (25:24:1) and then precipitated with ethanol. The concentration and quality of DNA was estimated using NanoDrop™ (Thermo Scientific, Waltham, Massachusetts, USA) at 260 nm and by electrophoresis on 0.8% agarose gel.

2.4.2. Polyermase Chain Reaction (PCR) Analyses

The presence of transgenes and Agrobacterium specific VirD1 gene in the genome of putative mango transformants was assessed through PCR. The PCR reaction mixture (25 µl) containing 1 U Taq DNA polymerase (GeNie, Bengaluru, Karnataka, India), 1X assay buffer (10 mM pH 9.0 Tris–HCl, 50 mM KCl, 1.5 mM MgCl₂, 0.01% gelatin), 2.5 µM of each dNTP, 0.5 µl of each forward and reverse primer (Table 1) at a final concentration of 10 pM and 100 ng of template
DNA was used to amplify the transgenes. PCR amplification was carried out in a thermal cycler (Applied Biosystems® Veriti® 96-Well Fast Thermal Cycler, Waltham, Massachusetts, USA) programmed with a hot start of initial denaturation at 95°C for 5 min followed by 35 cycles of denaturation at 95°C for 1 min, annealing at 65°C for GFP, 55°C for hptII & GUS, 61°C for VirD1 and 58°C for nptII for 1 min, extension at 72°C for 1 min, final extension at 72°C for 10 min. Amplified gene products of size 571 bp (GFP), 700 bp (hptII), 438 bp (VirD1) 750 bp (nptII) and 1 kb (GUS) were visualized by gel electrophoresis.

2.4.3. Genomic Southern Analysis

For identification of T-DNA copy number in transgenic plants developed using both the binary vectors, 10 µg of genomic DNA from transgenic and wild-type plants was digested with HindIII (NEB high fidelity, New England Biolabs, Ipswich, Massachusetts, USA) overnight and separated on 0.8% agarose gel in 1X TAE buffer at constant voltage of 40 V. Restricted fragments were transferred onto a positively charged nylon membrane (Amersham™ Hybond™-N+) by capillary movement using 20× SSC and the membrane was later UV

Figure 3. Schematic workflow of different steps involving *in planta* transformation in Mango.
cross-linked. The membrane was hybridized with a DIG labeled 571 bp GFP and 750 bp nptII gene fragment for their corresponding transgenic plants. The blot was further processed with washing, blocking, and development as per manufacturer’s instructions (Roche Holding AG, Basel, Switzerland). The membranes were exposed to X-ray film for 1 h in dark and later observed for hybridization signal.

2.5. Analysis of Transgenic Plants for Transcript Accumulation by sqRT-PCR

Total RNA was isolated from transgenic and wild-type mango plants using a total RNA isolation kit (Spectrum™, Sigma Aldrich, St. Louis, MO, United States). Further, the isolated RNA was quantified using Nanodrop™ 3300 (ThermoFisher Scientific, Carlsbad Waltham, Massachusetts, USA) and transcribed to cDNA using SuperScript™ (VILO™, Invitrogen, Carlsbad, CA, USA). sqRT-PCR was performed with 100 ng of diluted cDNA as a template.

M. indica actin 1 (*MiACT1*) was used as an internal control gene. PCR reaction mixture of 25 μL consisting of 2.5 μL 10× Taq buffer, 10 pM each of forward and reverse primer, 2.5 μM dNTPs, and 1 U of Taq DNA polymerase (Bangalore Genei, Bengaluru, India); 1 μL of diluted cDNA was made up to a final volume of 25 μL with nuclease-free water (Invitrogen, Waltham, Massachusetts, USA) in a thermocycler (Applied Biosystems® Veriti® 96-Well Fast Thermal Cycler, Waltham, Massachusetts, USA). PCR program consisted of an initial denaturation step at 95°C for 4 min followed by 30 cycles of denaturation at 95°C for 30s, annealing at 58°C for 30s for *MiACT1* (134 bp), *nptII* (67 bp), *GUS* (111 bp), *GFP* (124 bp) and *hptII* (130 bp) gene RT-primers (Table 1) and extension at 72°C for 30s. The final extension was carried out at 72°C for 7 min to amplify specific gene products. “Blank” was devoid of cDNA, wild type contained 1 μL of cDNA of wild type, and positive control contained 25 ng of pCAMBIA2301/ pcAMBI1302. The amplified gene products were analyzed on a 2.0% agarose gel.

Primer used for PCR amplification	Primer sequence (5'-3')	Amplicon Size (bp)
GFP FP	TGGGCCACAATTTCGCGCTGGA	571 bp
GFP RP	ATGCCATGTATCACTCCGAGCT	
hptII FP	GCCGATGACAGCAACACACAC	700 bp
hptII RP	GCTAAGGTGACGCGTGCTGCT	
GUS FP	TTA TGCGGCAAGCTGATTGAT	1 kb
GUS RP	TGA CAA AAA CCA ACC AAG G TG	
NptII FP	CCGGAATTCTATTTGGAACAAA	750 bp
NptII RP	CCAAGCTTCAAGAAACTCT	
VirD1FP	ATTCGCGGAGGCTTTGCAAGCA	438 bp
VirD1 RP	GGACTTCTTCCAGCTGGAGGCA	

Primers used for sqRT-PCR	Primer sequence (5'-3')	Amplicon Size (bp)
sqRT-PCR GFP FP	TCCACACAATCTGGGCTTTC	124 bp
sqRT-PCR GFP RP	ATATACAAAGCTAGCCACCC	
sqRT-PCR hptII FP	GTGAGCTGCTGCTGAACTCT	130 bp
sqRT-PCR hptII RP	ATGCTGGCTGCGTAATAGC	
sqRT-PCR GUS FP	ACCTCGCATTTACCCTTACGGT	122 bp
sqRT-PCR GUS RP	CCGGCTCGAACACACGATTG	
sqRT-PCR NptII RP	ATGGCCGAGGCTTTGCAAGCA	67 bp
sqRT-PCR MiACT1 FP	GTTCGTGTTGCGCCGAGCTCA	
sqRT-PCR MiACT1 RP	GGTCCCAGTATGCTGGTAGG	134 bp

Primer ID	Primer sequence (5'-3')	Amplicon Size (bp)
VirD1 FP	AGATCTTTTCCATATCCTCAGT	

Table 1. List of primers used in the study.
was proved inefficient and established mango in the category of hard to deal with tissue culture-based approaches. Unavailability of an efficient regeneration protocol makes transformation more difficult in mango. However, in planta transformation strategies provide an alternative to evade all the steps involved in tissue culture.15,16 The current study provides evidences for the development of transgenics in mango by an apical meristem targeted in planta transformation protocol.

3.1. Apical meristem-targeted in Planta Transformation

Two-week-old mango seedlings were subjected to transformation with pCAMBIA1302 and pCAMBIA2301 (Fig. 1a–b). The emerging shoots with brown-green coleoptiles were pricked in the upper region of the epicotyl, near the apical meristem with an insulin syringe (Fig. 2a–d). The punctured seedlings were co-cultivated with Agrobacterium strains (pCAMBIA1302/ pCAMBIA2301) in AB minimal medium containing wounded tobacco leaf (mature, yellowish-green) extract to increase the virulence of Agrobacterium (Fig. 2e). Pricked seeds were incubated on a rotatory shaker at 28°C with 50 rpm for 2 h. After infection, seeds were thoroughly washed with autoclaved double distilled water and transferred to polybags containing sterilized growing media (cocopeat, vermiculite and perlite, 3:1:1 ratio) and maintained under diffused light initially and later transferred to direct light in growth chambers maintained at 25°C with 16 h light and 8 h dark photoperiod (fig. 2f). Diffused light has positive effect on the shoot regeneration and dark incubation was always found useful in regeneration and transformation experiments.28,29,53,54 Seedlings took 4–5 weeks for recovery during which, they were regularly irrigated with sterile-double distilled water and Hoagland solution (Fig. 2g). Recovered plants were later transferred to transgenic glasshouse as per regulatory guidelines (Fig. 2h, i). The overview of apical meristem targeted in planta transformation has been provided in a flow chart (Fig. 3).

Tissue culture mediated regeneration and transformation have been proven to be disadvantageous in several plant species due to low transformation efficiencies, genotype dependence and are time consuming.55–57 However, the in planta transformation approach does not demand any sterile growth conditions, phyto-hormones, is less time-consuming, needs low-cost inputs and also genotype independent.

3.2. Preliminary Screening of Transformants

Detection of visible scorable markers like GUS and GFP provide an early signal of transformability and/ or successful transformation of infected tissues.38 Therefore, in this study, GFP expression and GUS histochemical analysis were performed in their specific transformants to identify primary transformants.

As Agrobacterium infection is a random event, GFP expression analysis in the pricked apical meristematic regions (Fig. 4a) identified GFP expression in some transformed seedlings (Fig. 4b iii–v) indicating that few of the infected seedlings were found to be positive toward the transformation strategy. Some transgenic plants lacked expression in the pricked regions indicating the chances of transformation as random (Fig. 4b ii). Further, GFP expression was absent in wild type seedlings (Fig. 4b i). Microscopic observation under UV illumination revealed that out of 40 seedlings taken for visualization, 26 seedlings displayed the presence of green fluorescent protein (GFP) and were selected as primary transformants (T0 plants) of which, 24 plants were transferred in transgenic glasshouse. This precisely demonstrates a preliminary confirmation of 65.0% of the seedlings having GFP expression and putatively transgenic (Table 2).

Another batch of plants where GUS gene was used as scorable marker identified primary transformants which demonstrated the presence of GUS expression in the pricked regions. Out of 30 primary transformants, GUS histochemical assay was performed using 7 plants and remaining plants were allowed to grow normally. It was found that out of 7 plants, 4 showed GUS expression at the pricked regions (Fig. 4b, viii). However, wild type plants did not show any color in stem and its dissections as they lacked the GUS transgene (Fig. 4b vi, vii). Presence of GUS expression at cellular level was further confirmed by observing the GUS-
stained tissue sections under microscope (Fig. 4b ix, x). Since the binary vector used for transformation had a GUS gene with a catalase intron, the histochemical analysis provided evidences for the integration of the T-DNA into the genome of mango plants. Nearly 57% of the plants showed GUS expression. Based on post prickng recovery and initial evidences of transformability in mango, the remaining 15 seedlings were transferred to the transgenic glasshouse and were allowed for growth.

A successful genetic transformation system seeks an appropriate visualization marker gene for the identification of transgenic plants. In our experiment, GFP and GUS were used as screeenable marker genes and similar studies have been reported in mango, pummelo, and passion fruit.

3.3. Recovery of Primary Transformants

Recovery of plants after genetic transformation and their establishment is essential for the success of the protocol. After transferring plants to glasshouse, 24 of 26 GFP and 12 of 15 GUS plants could survive. These plants were transferred to pots filled with soil, sand and farm yard manure 2:1:1 (FYM) and allowed to grow in glasshouse. Plants were continuously irrigated and supplemented with Hoagland’s solution at regular intervals.

3.4. Molecular Analyses for Transgene Integration in Mango

The purview of the study considering the perennial nature of mango (long juvenile phase of 6–8 years), deals with the demonstration of T-DNA integration in the T0 generation, despite the fact that the primary transformants produced through in planta transformation are chimeric. Similar kind of molecular characterization in the chimeric plants of other perennial tree species have been reported in pummelo, and passion fruit.

In order to confirm the presence of transgenes in the transgenic mango plants, genomic DNA was isolated from primary transformants and wild-type mango plants. PCR analysis was carried out using GFP and hptII; GUS and nptII gene-specific primers in their respective transgenic plants. Thirteen out of 24 plants showed the presence of 700 bp hptII and 570 bp GFP gene fragments (Fig. 5).
Ai–ii, Bi–ii). Further, no amplification was found in wild type (WT) plants. The absence of Agrobacterium contamination in GFP transgenic plants were confirmed using PCR analysis of VirD1 gene (Fig. 5c). This unequivocally demonstrated that the GFP expression in the transgenic plants was due to the integration of the transgene and not due to the persisting bacteria.

Transgenic plants that tested positive by PCR were further assessed at transcription level and expression of transgene was confirmed by semi-quantitative RT-PCR analysis. Five transgenic plants and positive control showed the amplification of 124 and 130 bp GFP and hptII gene transcript fragments in the respective transgenic plants. However, amplification was absent in wild type (WT) plants (Fig. 5d i–ii). An internal control (MiACT1) authenticated amplification of 134 bp fragment in both transgenic and wild-type plants (Fig. 5d, iii). Finally, transgenic mango plants were assessed to determine the copy number of the transgene. Two transgenic mango plants (1 F and 15 F) were found to have a single copy of the transgene integrated in the genome and the absence of hybridization signal in the wild type providing proof for transgene integration (Fig. 5e).

Out of 12 plants tested for GUS and nptII genes, 8 plants showed PCR amplification of 1 kb GUS gene and 750 bp nptII gene fragments indicating the presence of transgenes in the primary transformants (Fig. 6a i–ii). Five GUS positive PCR plants were further tested for transgene accumulation that have shown amplification of 122 bp (GUS) and 67 bp (nptII) fragments verifying the presence of transcripts in transgenic plants and their absence in wild-type plants (Fig. 6b i–ii). Amplification of

![Figure 5](image-url)

Figure 5. Molecular analysis of primary transformants harboring pCAMBIA1302 GFP::hptII. (a) i–ii; b i–ii) PCR analysis for the amplification of GFP gene (571 bp) and hptII (700 bp) gene fragments. Lane M- 1Kb marker, Lane B- water blank, Lane WT- wild-type DNA, Lane P- plasmid (25 ng). Lanes 1 F-12 F and 13 F-24 F primary transformants. (c) PCR analysis for the amplification of 438 bp Agrobacterium-specific VirD1 gene in transgenic Mango plants. Lane M-1 Kb marker (Thermo scientific), Lane B- water blank, Lane WT- wild type, Lanes 1 F, 5 F, 9 F, 15 F, 24 F- transgenic plants, Lane P- binary vector, +ve is DNA from Agrobacterium strain EHA 105 (d) sqRT-PCR analyses for the assessment of transgene transcripts. (i) 124 bp GFP, (ii) 130 bp hptII and (iii) 134 bp MiACT1. Lane B- water blank, Lane WT- wild type, Lanes 1 F, 5 F, 9 F, 15 F, 24 F- transgenic plants, Lane P- binary vector. (e) Genomic Southern analysis of transgenic plants probed with DIG-labeled 571 bp GFP gene fragment, Lane L- Lambda HindIII DNA digest, Lane WT- untransformed wild type, Lanes 1 F, 15 F- transgenic Mango, P- linearized plasmid of pCAMBIA1302 10 pg.
MiACT11 internal gene fragment in both transgenic and wild-type plants by sqRT-PCR further authenticated the results (Fig. 6b iii). Furthermore, transgene integration by Southern blotting identified single copy integration of the transgene in one transgenic plant (1 U) and the hybridization signal was absent in the wild-type plant DNA precisely confirming the transgenic nature of the plant (Fig. 6c).

Several researchers have tried to develop transformation protocols for mango using different methodologies. However, in all the previous studies they were unable to unequivocally demonstrate transformability, more so the transgene integration by genomic Southern analysis. This study demonstrated gene introgression in mango genome using shoot apical meristem-targeted in planta transformation and the associated molecular analyses. Tree crops have always been found difficult to improve by conventional breeding tools, biotechnology complement the conventional breeding and amends the mango improvement programs. Transgenic technology holds several promises and can open ways in tackling a multitude of problems in mango.

4. Conclusion

This study demonstrates the amenability of mango to apical meristem targeted in planta transformation protocol in a genotype independent manner. This report is the first successful demonstration of transgenic mango development using in planta transformation, which can assure it to be a significant contribution toward advancement in the area of mango biotechnology.

Acknowledgments

KP thanks and acknowledges ICAR-IARI, Senior Research Fellowship during PhD program. Authors thank Dr. N Srinivas (Late), Division of Plant pathology, ICAR-IARI,
New Delhi for providing microscope facility. The authors also thank Mr. Rakesh Kumar Pandey (Late), PhD Research Scholar, Division of Fruits & Horticultural Technology, ICAR-IARI, New Delhi for the assistance during the experiment.

Disclosure Statement

The authors declare no conflict of interest. All the authors have read and approved the final draft of the manuscript.

Funding

The author(s) are thankful for funds received from ICAR-Indian Agricultural Research Institute, New Delhi, India.

CRediT Authorship Contribution Statement

Kuldeep Pandey and Kesiraju Karthik developed the transgenic plants and identified putative transformants. Kuldeep Pandey performed molecular analyses. Rohini Sreevathsa and Manish Srivastav hypothesized the study. Kesiraju Karthik, Rohini Sreevathsa designed the experiments. Kuldeep Pandey wrote the manuscript. Kesiraju Karthik, Rohini Sreevathsa, Sanjay Kumar Singh, Vinod and Manish Srivastav critically edited the manuscript and finalized the manuscript. Manish Srivastav was responsible for fund acquisition.

References

1. Anonymous. Export value of fresh mangoes from India FY 2016-2021 published by statista research department (Hamburg: Statista [https://www.statista.com/]). 2022. Mar 17, 2022.
2. Anonymous (2021). National horticulture board, ministry of agriculture government of India. 3rd Advance Estimate. Accessed April 12, 2021. [http://www.nhb.gov.in/]
3. Iyer CPA, Degani C. Classical breeding and genetics. In: Litz RE, editor. The mango-botany, production and Uses, Wallingford Oxon: CAB International. 1997. p. 49–68.
4. Krishna H, Singh SK. Biotechnological advances in Mango (*Mangifera indica* L) and their future implication in crop improvement a review. Biot. Adv. 2007;25:223–43. doi:10.1016/j.biotechadv.2007.01.001.
5. Ramachandra S, Srivastav M, Singh SK, Mahato AK, Singh N, Arumugam N, Singh NK. New genomic markers for marker assisted breeding in Mango (*Mangifera indica* L.). The J. of Horti. Sci, and Biotec. 2021;96:624–33. doi:10.1080/14620316.2021.1906760.
6. Samanta S, Ravindra MB, Dinesh MR, Anand L, Mythili JB. *In vitro* regeneration and transient gene expression in Mango cv. ‘Vellaiikolumban.’ The J. Horti. Sci, Biotech. 2007;82:275–82. doi:10.1080/14620316.2007.11512229.
7. Niazian M, Noori SS, Galuszka P, Mortazavian SMM. Tissue culture-based *Agrobacterium*-mediated and *in planta* transformation methods. Soil and Water Res. 2017;53:133–43. doi:10.17221/177/2016-CJGPB.
8. Krishna H, Sairam RK, Singh SK, Patel VB, Sharma RR, Grover M, Sachdev A. Mango explant browning: effect of ontogenic age, mycorrhization and pre-treatments. Sci. Horti. 2008;118:132–38. doi:10.1016/j.scienta.2008.05.040.
9. Litz RE, Mathews H, Bharathan N, Narayan KR, 1990. Transformation of somatic embryos of Mango. *Proceedings of the VII International Congress on Plant Tissue and Cell Culture*, Amsterdam, 67. Abstract.
10. Mathews H, Litz RE, Wilde DH, Wetzstein HY. Genetic transformation of Mango. Acta. Hortic. 1993;341:93–97.
11. Mathews H, Litz RE, Wilde DH, Merkela S, Wetzstein HY. Stable integration and expression of *bitu-glucurono-nidase* and NPT-II genes in Mango somatic embryo. Vitro Cell Dev Biol Plant. 1992;28:172–78. doi:10.1007/BF02823312.
12. Cruz-Hernandez A, Town L, Cavallaro A, Botella IR. Transient and stable transformation in Mango by particle bombardment. Acta Hortic. 2000;509:237–42. doi:10.17660/ActaHortic.2000.509.24.
13. Hamada H, Linghu Q, Nagira Y, Miki R, Taoka N, Imai R. An *in planta* biolistic method for stable wheat transformation. Sci. Rep. 2017;7:1–8. doi:10.1038/s41598-017-11936-0.
14. Kaepppler SM, Kaepppler HF, Rhee Y. Epigenetic aspects of somaclonal variation in plants. Plant Gene Silencing. 2000;59–68. doi:10.1007/978-94-011-4183-3_4.
15. Kesiraju K, Sreevathsa R. Apical meristem-targeted *in planta* transformation strategy: an overview on its utility in crop improvement. Agri. Res. Technol. Open Access J. 2017;8:555734. doi:10.19080/ARTOAJ.2017.08.555734.
16. Kesiraju K, Mishra P, Bajpai A, Sharma M, Rao U, Sreevathsa R. *Agrobacterium tumefaciens*-mediated *in planta* transformation strategy for development of transgensics in cotton (*Gossypium hirsutum* L.) with GFP as a visual marker. Physiol. Mol. Biol. Plants. 2020;26:2319–27. doi:10.1007/s12298-020-00887-y.
17. Tague BW, Mantis J. In planta *Agrobacterium*-mediated transformation by vacuum infiltration. In *Arabidopsis* protocols. Humana Press. 2006:215–23. doi:10.1385/1-59745-003-0:215.
18. Wang WC, Menon G, Hansen G. Development of a novel *Agrobacterium*-mediated transformation method to recover transgenic *Brassica napus* plants. Plant Cell Rep. 2003;22:274–81. doi:10.1007/s00299-003-0691-9.
19. Chen G, Zeng F, Wang J, Ye X, Zhu S, Yuan L, Wang C. Transgenic Wucii (*Brassica campestris* L.) produced via *Agrobacterium*-mediated anther transformation in planta. Plant Cell Rep. 2019;38:577–86. doi:10.1007/s00299-019-02387-0.
20. Das P, Joshi NC. Minor modifications in obtainable *Arabidopsis* floral dip method enhances transformation efficiency and production of homologous transgenic lines harboring a single copy of transgene. Adv. Biosci. Biotechnol. 2011;2:59. doi: 10.4236/abb.2011.22010.

21. Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Harrison MJ. Transformation of *Medicago truncatula* via infiltration of seedlings or flowering plants with *Agrobacterium*. The Plant J. 2000;22:531–41. doi: 10.1046/j.1365-313x.2000.00757.x.

22. Curtis IS, Nam HG. Transgenic radish (*Raphanus sativus* L. longipinnatus Bailey) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Trans. Res. 2001;10:363–71. doi: 10.1023/A:1016600517293.

23. Shah SH, Ali S, Jan SA, Ali GM. Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing *DREB1A* gene in tomato (*Solanum lycopersicum* Mill.). Plant Cell, Tissue and Organ Cult. 2015;120:1139–57. doi: 10.1007/s11240-014-0670-6.

24. Li J, Todd TC, Trick HN. Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep. 2009;29:113–23. doi: 10.1007/s00299-009-0803-2.

25. Hirsch AM, Lee A, Deng W, Tucker SC. An open-flower mutant of *Melilotus alba*: potential for floral-dip transformation of a papilloid legume with a short life cycle? Am. J. Bot. 2010;97:395–404. doi: 10.3732/ajb.0900152.

26. Mu G, Chang N, Xiang K, Sheng Y, Zhang Z, Pan G. Genetic transformation of maize female inflorescence following floral dip method mediated by *Agrobacterium*. Biotechnol. Ther. 2012;11:178–83. doi: 10.3923/biotech.2012.178.183.

27. Ratanasut K, Rod-In W, Sujipali K. *In planta Agrobacterium*-mediated transformation of rice. Rice Sci. 2017;24:181–86. doi: 10.1016/j.rsci.2016.11.001.

28. Zhang YY, Zhang DM, Zhong Y, Chang XJ, Hu ML, Cheng CZ. A simple and efficient in planta transformation method for pommelo (*Citrus maxima*) using *Agrobacterium* tumefaciens. Sci. Horti. 2017;214:174–79. doi: 10.1016/j.scienta.2016.11.033.

29. Rizwan HM, Yang Q, Yousef AF, Zhang X, Sharif Y, Kaijie J, Chen F. Establishment of a novel and efficient *Agrobacterium*-mediated in planta transformation system for passion fruit (*Passiflora edulis*). Plants. 2021;10:2459. doi: 10.3390/plants10112459.

30. Jaganath B, Subramanyam K, Mayavan S, Karthik S, Elayaraja D, Udayakumar R, Ganapathi A. An efficient *in planta* transformation of *Jatropha curcas* (L.) and multiplication of transformed plants through *in vivo* grafting. Protoplasma. 2014;251:591–601. doi: 10.1007/s00709-013-0588-z.

31. Saifi SK, Passricha N, Tuteja R, Kharb P, Tuteja N. *In planta* transformation: a smart way of crop improvement. In: Advancement in crop improvement techniques, Narendra Tuteja, Renu Tuteja, Nishat Passricha, Shabnam K. Saifi . Duxford, CB22 4QH, United Kingdom: Woodhead Publishing; 2020. p. 351–62.

32. Keshamma E, Sreevathsa R, Kumar AM, Reddy KN, Manjalatha M, Shannugam NB, Kumar ARV, Udayakumar M. *Agrobacterium*-mediated *in planta* transformation of field bean (*lablab purpureus* L.) and recovery of stable transgenic plants expressing the cry1AcF gene. Plant Mol. Biol. Rep. 2012;30:67–78. doi: 10.1007/s11105-011-0312-7.

33. Keshavreddy G, Rohini S, Ramu SV, Sundaresha S, Kumar ARV, Kumar PA, Udayakumar M. Transgenics in groundnut (*Arachis hypogaea* L.) expressing cry1AcF gene for resistance to *Spodoptera litura* (F.). Physio. Mol. Biol. Plants. 2013;19:343–52. doi: 10.1007/s12298-013-0182-6.

34. Kumar AM, Reddy KN, Manjalatha M, Arellano ES, Sreevathsa R. A rapid, novel and high throughput identification of putative bell pepper transformants generated through *in planta* transformation approach. Sci. Horti. 2011;129:898–903. doi: 10.1016/j.scienta.2014.02.034.

35. Shivakumara TN, Sreevathsa R, Dash PK, Sheshshayee MS, Papolu PK. Over expression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (*Capsicum annuum* L.). Sci Rep. 2017;7. doi: 10.1038/s41598-017-02589-0.

36. Ramkumar N, Rathinam S, Singh S, Kesiraju K, Muniyandi V, Singh NK, Dash PKSR. Assessment of *Pigeonpea* (*Cajanus cajan* L.) transgenics expressing Bt ICPs, Cry2Aa and Cry1AcF under nethouse containment implicated an effective control against herbivory by *Helicoverpa armigera* (Hübner). Pest Manag. Sci. 2020;76:1902–11. doi: 10.1002/ps.5722.

37. Singh S, Kumar NR, Maniraj R, LakshmiKanth R, Rao KYS, Muralimohan N. Expression of Cry2Aa, a *Bacillus thuringiensis* insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, *Helicoverpa armigera*. Sci. Rep. 2018;8:8820.

38. Kesiraju K, Tyagi S, Mukherjee S, Rai R, Singh NK, Sreevathsa R, Dash PK. An apical meristem-targeted *in planta* transformation method for the development of transgenics in flax (*Linum usitatissimum*): optimization and Validation. Front. Plant Sci. 2021;11:562056. doi: 10.3389/fpls.2020.562056.

39. Karthik K, Nandiganti M, Thangaraj A, Singh S, Mishra P, Sharma MS, K N, Dash PK, Sreevathsa R. Transgenic cotton (*Gossypium hirsutum* L.) to combat weed vagaries: utility of an apical meristem-targeted *in planta* transformation strategy to introgress a modified CP4-EPSPS gene for glyphosate tolerance. Front. Plant Sci. 2020;11:768. doi: 10.3389/fpls.2020.00768.

40. Karthik K, Negi J, Rathinam M, Saini N, Sreevathsa R. Exploitation of novel Bt ICPs for the management of *Helicoverpa armigera* (Hübner) in cotton (*Gossypium hirsutum* L.): a transgenic approach. Front. in Micro. 2021;12:794. doi: 10.3389/fmicb.2021.661212.
41. Winans SC, Kerstetter RA, Nester EW. Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol. 1988;170:4047–54.

42. Rohini VK, Rao S. Transformation of peanut (Arachis hypogea L.) A non-tissue culture-based approach for generating transgenic plants. Plant Sci. 2000;150:41–49. doi:10.1016/s0168-9452(99)00160-0.

43. Keshamma E, Rohini S, Rao K, Madhusudhan B, Kumar MU. Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J. Cotton Sci. 2008;12:264–72. doi:ISSN 1523-6919.

44. Murray M and Thompson W. (1980). Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 8 (19), 4321–4326. 10.1093/nar/8.19.4321

45. Luo C, He XH, Hu C, Ying H, Shi-Jin O. Molecular cloning and expression analysis of four actin genes (MiACT) from Mango. Biol Plant. 2013;57:238–44. doi:10.1007/s10535-012-0278-9.

46. Gomez-Lim MA, Litz RE. Genetic transformation of perennial tropical fruits. In Vitro Cell Dev. Biol.-Plant. 2004;40:442–49. doi:10.1079/IVP2004547.

47. Cruz-Hernandez A and Gomez-Lim M. (1995). Alternative oxidase from mango (Mangifera indica, L.) is differentially regulated during fruit ripening. Planta, 197(4), 10.1007/BF0191562

48. Mishra, Manish, Seal, Shubhendu, Chandra, Ramesh 1 1 Mango Advances in Horticultural Biotechnology Transformation System. Singh, H.P., Parthasarathy, V. A., Babu, Nirmal K. Vol. 5 I (New Delhi: Westville Publishing House) 2011

49. Raghuvanshi SS, Srivastava A. Plant regeneration of Mangifera indica using liquid shaker to reduce phenolic exudation. Plant Cell Tissue Organ Cult.41. 1995;83–85. doi:10.1007/BF00124092.

50. Singh SK, Sharma HC, Singh SP, Kishore PBK. Callus induction and root initiation from explants of zygotic embryos in Mango hybrids. Plant Tissue Cult. Biotech. Emerging Trends. Proceeding of Sym. 1991;1:129–33.

51. Sharma RR, Singh SK. Etiolation reduces phenolic content and polyphenol oxidase activity at the pre-culture and in vitro exudation of phenols from Mango explants. Trop. Agric. 2002;79:94–99.

52. Thomas P, Ravindra MB. Shoot tip culture of Mango, influence of media, genotype, explant factors, season, and decontamination treatments on phenolic exudation, explant survival and axenic culture establishment. J. Horti. Sci. 1997;72:713–22. doi:10.1080/14620316.1997.11515563.

53. Ara H, Jaiswal U, Jaiswal VS. Germination and plantlet regeneration from encapsulated somatic embryos of Mango (Mangifera indica L.). Plant Cell Rep. 1999;19:166–70. doi:10.1007/s002990050728.

54. Litz RE, Mathews H, Moon PA, Pliego-Alfaro F, Yurgalevitch C, Dewald SG. Somatic embryos of Mango (Mangifera indica L.). In: Redenbaugh K (boca raton: CRC press), editor. Synseeds applications of synthetic seeds to crop improvement. 1993. p. 409–25.

55. Da Silva ML, Pasos PPDL, Marcelino-Guimarães AB, Rossi FC, B AA, Krause W, Otoni WC. Novel and efficient transformation of wild passion fruit (Passiflora cincinnata Mast.) using sonic-aided assisted Agrobacterium-mediated transformation. Vitr Cell Dev. Biol. -Plant. 2021;57:380–86. doi:10.1007/s11627-020-10134-4.

56. Eibl R, Meier P, Stutz I, Schildberger D, Hühn T, Eibl D. Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology. 2018;102(20):8661–75. doi:10.1007/s00253-018-9279-8.

57. Espinosa-Leal CA, Puente-Garza CA, Garcia-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta. 2018;248:1–18. doi:10.1007/s00425-018-2910-1.

58. Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Munoz P, Christou P. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Trans. Res. 2007;16:261–80. doi:10.1007/s11248-007-9083-1.

59. Cruz-Hernandez A, Gomez-Lim MA, Litz RE. Transformation of Mango somatic embryos. Acta Hortic. 1997;455:287–91. doi:10.17660/ActaHortic.1997.455.38.

60. Mathews H, Litz RE. Kanamycin sensitivity of Mango somatic embryos. HortScience. 1990;25:965–66. doi:10.21273/HORTSCI.25.8.965.