Saponins as cytotoxic agents: an update (2010–2018). Part I—steroidal saponins

Danuta Sobolewska · Agnieszka Galanty · Karolina Grabowska · Justyna Makowska-Wąs · Dagmara Wróbel-Biedrawa · Irma Podolak

Received: 5 November 2019/Accepted: 28 January 2020/Published online: 22 February 2020
© The Author(s) 2020

Abstract Steroidal saponins are a group of glycosides widely distributed among monocotyledonous families. They exert a wide spectrum of biological effects including cytotoxic and antitumor properties which are the most studied. This review is an update of our previous paper—Saponins as cytotoxic agents (Podolak et al. in Phytochem Rev 9:425–474, 2010) and covers studies that were since published (2010–2018). In this paper we refer to steroidal saponins presenting results of cytotoxicity studies, mechanisms of action and structure–activity relationships.

Keywords Cytotoxicity · Steroidal glycosides · Mechanisms of action

Introduction

Steroidal saponins are an important group of glycosidic plant metabolites. They are mainly distributed among monocotyledonous families: Amarillidaceae (Agapanthus, Allium), Asparagaceae (Agave, Anemarrhena, Asparagus, Convallaria, Hosta, Nolina, Ophiorhizos, Ornithogalum, Polygonatum, Ruscus, Sansevieria, Topsis, Yucca), Costaceae (Costus), Dioscoreaceae (Dioscorea), Liliaceae (Fritillaria, Lilium), Melanthiaceae (Paris), Smilacaceae (Smilax). Although it is uncommon, steroidal saponins can also be found in some dicotyledonous angiosperms, such as: Fabaceae (Trigonella), Zygophyllaceae (Trubulus, Zygophyllum), Solanaceae (Solanum, Lycopersicon, Capsicum), Asteraceae (Vernonia), and Plantaginaceae (Digitalis) (Faizal and Geelen 2013; Rahman et al. 2017; Lanzotti 2005; Sobolewska et al. 2016; Tang et al. 2013; Wang et al. 2018). Moreover, these compounds have been identified in starfish and marine sponges (Ivanchina et al. 2011; Barnett et al. 1988; Regaldo et al. 2010).

Structurally, steroidal saponins are distinguished by the nature of the aglycone part. Sapogenins are polycyclic 27-C-compounds which can be divided into three distinct groups: spirostane, furostane, and open-chain (cholestane) compounds (Challinor and De Voss 2013). Some authors distinguish iso-spirostane-type saponins—possessing an equatorial oriented (hydroxy)methyl on F ring versus spirostane-type with an axial oriented C-27 group (Tian et al. 2017).
Furthermore, spirosolane-type glycoalkaloids in which a nitrogen atom is incorporated in the steroid aglycone at the heterocyclic oxygen site (e.g. in solasodine) are sometimes included in the group of steroidal saponins. The sugar residue of steroidal saponins consists of one to three straight or branched sugar chains, which are composed usually of β-D-glucopyranosyl (Glc), α-L-rhamnopyranosyl (Rha), β-D-galactopyranosyl (Gal), β-L-arabinofuranosyl (Ara), β-D-xylopyranosyl (Xyl), β-D-fucopyranosyl (Fuc), β-D-mannopyranosyl (Man), or β-D-quinovopyranosyl (Qui) residues.

Since many years spirostanol sapogenins, such as e.g. disogenin or hecogenin, have been valued by pharmaceutical industry and used as substrates in the production of steroid hormones and drugs. Also, medicinal properties of saponin containing plants are well known. Some of most prominent examples include Ruscus aculeatus, which is used as vasoprotective agent, or Tribulus terrestris, found in many products dedicated to fertility stimulation in men (Masullo et al. 2016; Salgado et al. 2017). Steroidal saponins are a research target of many scientist groups. Numerous published reports have confirmed that these compounds exert a wide spectrum of pharmacological activities, including antimicrobial, anti-inflammatory, cardioprotective, cAMP phosphodiesterase inhibitory, or anti-adipogenic (Sohn et al. 2006; Huang et al. 2013; Tang et al. 2015; Ning et al. 2010; Nakamura et al. 1993; Poudel et al. 2014).

One of the activities that is especially widely explored is cytotoxic effect (Podolak et al. 2010; Böttger et al. 2012). The search for potential new chemotherapeutics within natural sources is obviously triggered by a growing need to provide effective treatment to counteract cancer. Results of studies on in vitro and in vivo cytotoxicity of steroidal saponins indicate that these compounds provide an interesting research target. In our previous review the results of experimental studies on cytotoxicity of saponins, both triterpene and steroidal, covering the period from 2005 to 2009 have been summarized (Podolak et al. 2010). Since then, a vast number of new experimental data have appeared in literature. This issue is however scarcely reviewed. Several papers that discussed biological activities of compounds found in a particular genus, like e.g. Allium or Smilax, (Sobolewska et al. 2016; Tian et al. 2017), referred also to their cytotoxic effects, but there are virtually none reviews focused entirely on this activity despite a growing number of reports with experimental data. Some more general aspects were tackled by Xu et al. (2016) who discussed anticancer sapogenins from Chinese plants. In a recent paper by Zhao et al. (2018), advances in antitumor potential of steroidal sapogenins have been focused on the mechanisms of action, and included examples of sapogenins and saponins, as well as some other compounds such as a cardiac glycoside—bufalin or cucurbitacins.

Taking into account a large number of experimental data referring to cytotoxicity of saponins, that have been published since our previous review, we decided to divide this update into two parts, each dedicated to the one of the distinct structural groups, that is triterpene and steroidal compounds.

Thus, in the current review, we present an update on the cytotoxic activity of steroidal saponins and sapogenins covering recent studies from the period of 2010 to 2018. Discussion of structure–activity data and mechanisms of action is also provided, together with a selection of most promising compounds with a potential for future development as anticancer chemotherapeutics.

The literature search was conducted in the following electronic databases: SCOPUS, EMBASE and MEDLINE/PubMed. The keywords used were: steroidal saponins, steroidal sapogenins, cancer, cytotoxicity.

Since 2010 year in vitro cytotoxicity studies have been performed on different human and animal cell cancer and normal lines, including:

- **Human cancer cell lines** Breast: BT-549, MCF-7, MDA-MB-231, MDA-MB-435, MDA-MB-468, SK-BR-3; bone: 143-B, HOS; cervix: HeLa, Caski, KB, SiHa; colon: COLO, DLD-1, HT-29, HCT 116, HCT-15, CaCo-2, SW480, SW620, W480, LOVO; esophagus: KYSE 510; gingival: Ca9-22; glioblastoma: SF-268, SF-295, U251, U87MG; larynx: Hep2; leukemia: CCRF-CEM, HL-60, Jurkat, K562; liver: HLE, Hep3B, HepG2, HuH-7, C3A, BEL-7402, BEL-7403, BEL-7404, MHCC97-L, SMMC-7721, SMMC-7221, SNU-387, WRL; lung: 95D, A549, LAC, NCI-H1299, NCI-H446, NCI-H460, SK-MES-1; melanoma: A375, A375.S2, MM96L, SK-MEL, SK-MEL-2, WM-115; neuroblastoma: IMR-32, LA-N-2, NB-69; ovary: HO-8910PM, OVCAR-8, SK-OV-3;
pancreas: BxPC-3, PANC-1; pharynx: 5-8F, CNE; prostate: DU145, PC-3; sarcoma: MG-63, Rh1; stomach: BGC-823, SGC-7901, SGC-7901/DDP [cisplatin (DDP)-resistant], HIF1α-knockdown BGC-823 (hypoxia-mimic sensitive), MGC-803; urinary bladder: ECV-304;
- **Animal normal cell lines** Breast: EMT6; glioblastoma: C6; leukemia: Baf3-WT; lung: LL2; colon: C26; melanoma: B16; sarcoma: WEHI-164, J-774;
- **Human normal cell lines** Fibroblasts: HFF, NFF, Hs68; keratinocytes: HaCaT; kidney embryonic: HEK293; lung epithelial: MRS-5; vein endothelial: EA.hy926, HUVEC;
- **Animal cancer cell lines** Cardiomyoblasts: H9c2; epidermal: JB6 P+Cl-41; fibroblasts: 3T3; kidney epithelial: LLC-PK1; kidney fibroblasts: VERO.

The results of these studies have been summarized in Table 1.

Based on data published in years 2010–2018 it may be concluded that out of 284 substances that are included in the current review, a vast majority, that is 96.8%, were pure single compounds, both saponins and sapogenins, either structurally novel or known previously. A graph representing a number of tested substances and a number of reports published in the time scope covered by this review (2010–2018) is shown in Fig. 1.

Cytotoxicity studies were performed on animal and human cell line models, with significant predominance of the latter, which accounted to 92.7% of all assays. The effects of steroidal saponins/sapogenins against human colon, breast and liver cancers have been most widely studied, accounting to 17.9%, 16.5% and 16% of all assays on human cell lines, respectively. A graph showing the share of experiments on specific types of tumors and normal cell lines in the total number of tests performed on human cell lines is shown in Fig. 2.

The largest number of substances was analysed against following cell lines: HepG2—human hepatocellular carcinoma, MCF-7—human breast adenocarcinoma, and A549—human lung adenocarcinoma cells, which constituted 27.8%, 27.4% and 23.5% of the pool of substances under study, respectively. Tests in which normal cell lines were included in the study accounted for only 4.4% of all assays conducted on human cell lines.

The most preferred method used was the MTT assay. In most cases (80.4% of all assays) IC50 values for analysed saponins were compared with a positive control. Well-known anticancer drugs such as doxorubicin, cisplatin and paclitaxel were most frequently used as reference substances. Other compounds with anticancer activity were chosen definitely less often and these include: actinomycin D, adriamycin, beta-l-(-)-dioxalane-cytidine (-)-OddC, camptothecin, etoposide, 5-FU, mitamycin C, mitoxantrone, nimustine (ACNU), podophyllotoxin, stauroporine, tamoxifen, and troxacitabine. In one study resveratrol, which is not an approved anticancer drug, served as the control (Shen et al. 2012).

In the majority of cases steroidal saponins were less active than the control substances. However, there were some noticeable examples of compounds which displayed cytotoxic effect higher than the reference drug. Three saponins isolated from *Dracaena canbowiana* dragon’s blood that are glycosides of diosgenin, pennongenin and spirost-5,25(27)-dien-1b,3b-diol, exerted stronger cytotoxic activity (IC50: 1.27 µM, 5.09 µM, 4.77 µM, respectively) against K-562 cells than paclitaxel (IC50: 5.98 µM), while a pennongenin glycoside showed higher cytotoxic effect on BEL-7402 than paclitaxel (IC50: 1.13 µM and 3.75 µM respectively) (Shen et al. 2014). Results obtained by Teponno et al. showed that a well known steroidal glycoside—dioscin—diosgenin 3-O-α-L-Rha-(1→4)-[β-L-Rha-(1→2)]-β-D-Glc (for the purpose of the study isolated from *Dracaena viridiflora*) had cytotoxic activity against Jurkat, Caco-2, SK-OV-3, and A549 cells (IC50: 1.70 ± 0.38 µg ml⁻¹, 2.58 ± 0.21 µg ml⁻¹, 1.90 ± 0.86 µg ml⁻¹, and 0.42 ± 0.15 µg ml⁻¹, respectively) comparable to doxorubicin used as positive control (IC50: 0.61 ± 0.04 µg ml⁻¹, 2.32 ± 1.04 µg ml⁻¹, 0.84 ± 0.08 µg ml⁻¹, and 1.15 ± 0.84 µg ml⁻¹, respectively) (Teponno et al. 2017). Another diosgenin derivative named SAP-1016 (diosgenin 3-O-[β-D- Xyl-(1→3)-β-D-Glc-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc) which was found in the fruits and roots of *Balanites aegyptiaca* showed potent antiproliferative activity against MCF-7 and HT-29 cancer cells (IC50: 2.4 ± 0.35 and 3.3 ± 0.19 µM, respectively) higher than dioscin (IC50: 3.1 ± 0.39 µM and 4.9 ± 0.32 µM, respectively) and cisplatin (IC50: 30.3 ± 0.33 µM and 40.2 ± 0.44 µM, respectively) (Beit-Yannai et al. 2011).
Source	Compound	Cell line	Concentration	Assay	References
Agave sisalana	Hecogenin 3-O-β-D-Glc-(1→2)-[β-D-Xyl-(1→3)]-β-D-Glc-(1→4)-β-D-Gal	NCI-H460	5.3 ± 1.8	Methylene blue dye assay	Chen et al. (2011b)
		MCF-7	11.9 ± 2.6		
		SF-268	4.0 ± 2.2		
	Hecogenin 3-O-α-L-Rha-(1→3)-β-D-Xyl-(1→2)-[β-D-Xyl-(1→3)]-β-D-Glc-(1→3)-β-D-Glc-(1→4)-β-D-Gal	NCI-H460	6.5 ± 1.1		
		MCF-7	9.5 ± 4.8		
		SF-268	8.2 ± 1.2		
	Polianthoside E	NCI-H460	> 20		
		MCF-7	> 20		
		SF-268	7.5 ± 1.4		
	Neotigogenin 3-O-α-L-Rha-(1→4)-β-D-Glc-(1→2)-[β-D-Xyl-(1→3)]-β-D-Glc-(1→3)-β-D-Glc-(1→4)-β-D-Gal	NCI-H460	3.8 ± 2.7		
		MCF-7	1.2 ± 0.1		
		SF-268	1.5 ± 0.8		
	Actinomycin D (control)	NCI-H460	2.6 ± 1.6		
		MCF-7	31.1 ± 2.9		
		SF-268	7.5 ± 5.2		
Allium flavum	Yuccagenin 3-O-β-D-Xyl-(1→3)-[β-D-Gal-(1→2)]-O-β-D-Gal-(1→4)-O-β-D-Gal	SW480	14.3	XTT assay	Rezgui et al. (2014)
whole plant	Yuccagenin 3-O-β-D-Xyl-(1→3)-[β-D-Glc-(1→2)]-O-β-D-Gal-(1→4)-O-β-D-Gal	SW480	14		
	Diosgenin 3-O-α-L-Rha-(1→4)-[β-D-Glc-(1→2)]-O-β-D-Glc	SW480	18.1		
	Doxorubicin (control)	SW480	1.47		
Allium nigrum	Nigrosides A1/A2	HCT 116	47.8	MTT assay	Jabrane et al. (2011)
bulbs		HT-29	70.8		
	Aginoside/turosise A	HCT 116	1.59		
		HT-29	1.09		
	25(R,S)-5α-spirostan-2α,3β,6β-triol 3-O-β-D-Glc-(1→2)-O-[4-O-(3S)-3-hydroxy-3-methylglutaryl-β-D-Xyl-(1→3)]-O-β-D-Glc-(1→4)-β-D-Gal	HCT 116	3.45		
		HT-29	2.82		
	Paclitaxel (control)	HCT 116	0.00321		
		HT-29	0.0014		
Source	Compound	Cell line	Concentration	Assay	References
--------	----------	-----------	---------------	-------	------------
Allium schoenoprasum whole plant	(25R)-5α-spirostan-3β,11α-diol 3-O-β-D-Glc-(1 → 3)[β-β-D-Glc-(1 → 4)]-O-β-D-Gal	HCT 116	8.45	IC50 (µM) MTT assay	Timite et al. (2013)
	Laxogenin 3-O-α-L-Rha-(1 → 2)-O-β-D-Glc	HCT 116	> 100		
	Deltonin	HT-29	8.64		
	Deltoside	HT-29	> 100		
	Paclitaxel (control)	HT-29	0.4		
		HT-29	0.75		
		HCT 116	1.58		
		HT-29	1.56		
		HCT 116	0.00275		
		HT-29	0.00206		
Allium vavilovii bulbs			IC50 (µg ml⁻¹) MTT assay		
	Vavilosides A1/A2	J-774	5.1		
		WEHI-164	4.7		
	Vavilosides B1/B2	J-774	3.5		
		WEHI-164	3.1		
	Ascalonicosides A1/A2	J-774	4		
		WEHI-164	3.7		
Anemarrhena asphodeloides rhizomes	Timosaponin AIII	HCT-15	6.1	IC50 (µM) SRB assay	
		HCT 116	5.5	Kang et al. (2011)	
		HT-29	10.3		
		SW480	13.1		
		SW620	11.1		
		normal lung epithelial (MRS-5) cells	> 50		
		fibroblast (Hs68) cells	> 50		
Anemarrhena asphodeloides rhizomes	Timosaponin BI	HT-29	14.3	IC50 (µM) SRB assay	
		HeLa	12.29	Guo et al. (2015)	
		MDA-MB-468	4.5		
	Timosaponin BII	BEL-7402	2.01		
		HT-29	1.65		
		MDA-MB-468	5.5		
	Timosaponin AIII	BEL-7402	1.65		
Source	Compound	Cell line	Concentration	Assay	References
------------------------------	-------------------------------	---------------	---------------	--------	-------------------
Anemarrhena asphodeloides rhizomes	Anemarsaponin F	HT-29	2.2		
		HeLa	9.63		
		MDA-MB-468	1.6		
	Schidigerasaponin F2	HT-29	4.04		
	Doxorubicin (control)	BEL-7402	0.3		
		HT-29	0.46		
		HeLa	6.91		
		MDA-MB-468	0.28		
Anemarrhena asphodeloides rhizomes	Anemarsaponin R	HepG2	43.90 ± 3.36	MTT	Yang et al. (2017)
	Timosaponin E1	SGC7901	57.90 ± 2.88	MTT	
	Doxorubicin (control)	HepG2	8.20 ± 1.25	MTT	
		SGC7901	6.25 ± 2.18	MTT	
Anemarrhena asphodeloides rhizomes	Schidigerasaponin F2	MCF-7	98 ± 8.98		
		SW480	97.02 ± 14.99		
		HepG2	> 100		
		SGC7901	> 100		
	Anemarsaponin F	MCF-7	2.76 ± 0.59		
		SW480	5.56 ± 1.50		
		HepG2	11.73 ± 1.24		
		SGC7901	8.18 ± 0.26		
	Timosaponin AI	MCF-7	6.83 ± 1.99		
		SW480	4.17 ± 0.72		
		HepG2	7.83 ± 1.72		
		SGC7901	4.38 ± 0.50		
	Timosaponin AIII (control)	MCF-7	3.34 ± 1.10		
		SW480	2.94 ± 1.05		
		HepG2	4.96 ± 0.93		
		SGC7901	12.15 ± 1.36		
Anemarrhena asphodeloides rhizomes	Aneglycoside A	HepG2	38.4 ± 2.4		
		HeLa	29.7 ± 0.19		
		SGC7901	> 100		
	Aneglycoside B	HepG2	41.8 ± 3.5		
		HeLa	34.2 ± 3.6		
		SGC7901	> 100		
	Timosaponin U	HepG2	61.8 ± 4.1		
Table 1 continued

Source	Compound	Cell line	Concentration	Assay	References
Archaster typicus	starfish			IC₅₀ (µM)	MTS assay
HeLa	39.7 ± 3.7				Kicha et al. (2010)
SGC7901	44.5 ± 2.0				
Doxorubicin (control)	HepG2	8.4 ± 2.2			
HeLa	9.0 ± 1.4				
SGC7901	6.7 ± 1.8				
Archasteroside A	HeLa	24			
JB6 P+ Cl41	37				
Archasteroside B	HeLa	14			
JB6 P+ Cl41	18				
Regulararoside A	HeLa	110			
JB6P+Cl41	> 50				
Asparagus filicinus	roots			IC₅₀ (µM)	MTT assay
Filiasparoside A	MDA-MB-231	19.8 ± 1.3			Wu et al. (2010)
Filiasparoside B	MDA-MB-231	> 50			
Filiasparoside C	MDA-MB-231	3.4 ± 0.2			
Filiasparoside E	MDA-MB-231	> 50			
Filiasparoside F	MDA-MB-231	> 50			
Filiasparoside G	MDA-MB-231	> 50			
Asparagusin A	MDA-MB-231	> 50			
Aspafilioside A	MDA-MB-231	6.6 ± 0.3			
Aspafilioside B	MDA-MB-231	5.3 ± 0.4			
Staurosporine (control)	MDA-MB-231	0.0145 ± 0.0004			
Aspidistra elatior	rhizomes			IC₅₀ (µM)	MTT assay
(25R)-26-O-β-D-Glc-furost-5,20-dien-3β,26-diol-3-O-β-D-Glc (1 → 2)-[β-D-Glc-(1 → 3)]-β-D-Glc-(1 → 4)-β-D-Gal	A549	3.8		Zuo et al. (2018)	
Caski	7.2				
HepG2	8.2				
MCF-7	10.7				
Aspidsaponin A	A549	5.1			
Caski	8.6				
HepG2	11.1				
MCF-7	13.8				
Adriamycin (control)	A549	1.4			
Caski	1.5				
HepG2	0.7				
MCF-7	1.7				
Avena sativa brun				IC₅₀ (µM)	MTT assay
Avenacoside B	HCT 116	175.3			Yang et al. (2016b)

 Springer
Table 1 continued

Source	Compound	Cell line	Concentration	Assay	References
Balanites aegyptiaca fruits and roots			IC₅₀ (µM)		
	SAP-1016	MCF-7	2.4 ± 0.35	MTT assay	Beit-Yannai et al. (2011)
		HT-29	3.3 ± 0.19		
		HFF	2.1 ± 0.16		
	SAP-884	MCF-7	4.3 ± 0.18		
		HT-29	7.6 ± 0.17		
		HFF	5.2 ± 0.32		
	KE-1046	MCF-7	5.3 ± 0.26		
		HT-29	10.4 ± 0.11		
		HFF	10.3 ± 0.18		
	KE-1064	MCF-7	5.1 ± 0.28		
		HT-29	7.8 ± 0.32		
		HFF	7.4 ± 0.20		
Diosgenin		MCF-7	28.1 ± 0.52		
		HT-29	30.6 ± 0.33		
		HFF	20.7 ± 0.45		
Dioscin (control)		MCF-7	3.1 ± 0.39		
		HT-29	4.9 ± 0.32		
		HFF	2.8 ± 0.19		
Cisplatin (control)		MCF-7	30.3 ± 0.33		
		HT-29	40.2 ± 0.44		
		HFF	20.6 ± 0.30		
Bletilla striata roots			IC₅₀ (µM)		
	Bletilnoside A	A549	4.56 ± 0.29	SRB assay	Park et al. (2014)
		SK-OV-3	4.00 ± 0.06		
		SK-MEL-2	3.98 ± 0.16		
		HCT-15	5.08 ± 0.51		
	Bletilnoside B	A549	8.79 ± 1.01		
		SK-OV-3	8.08 ± 0.83		
		SK-MEL-2	5.29 ± 0.34		
		HCT-15	9.29 ± 1.23		
	3-O-β-D-Glc-3-Epiruscogenin	A549	12.10 ± 0.40		
		SK-OV-3	11.80 ± 0.28		
		SK-MEL-2	11.55 ± 0.27		
		HCT-15	11.00 ± 0.23		
	Doxorubicin (control)	A549	0.0035 ± 0.0025		
		SK-OV-3	0.0037 ± 0.0022		
		SK-MEL-2	0.0009 ± 0.0001		
		HCT-15	0.1574 ± 0.0569		
Table 1 continued

Source	Compound	Cell line	Concentration	Assay	References
Bletilla striata roots	*(1α,3α)-1-O-[(β-α-Xyl-(1 → 2)-α-1-L-Rha)]-3-O-α-Glc-5α-spirostan*	A549	12.3	MTT assay	Wang and Meng (2015)
		BGC-823	15.9		
		HepG2	14.3		
		HL-60	17		
		MCF-7	15.1		
		SMMC-7721	14.7		
		W480	17.1		
	(1α,3α)-1-O-[(β-α-Xyl-(1 → 2)-α-1-L-Rha)oxy]-3-O-α-Glc-25(27)-ene-5α-spirostan	A549	12.7	MTT assay	Wang and Meng (2015)
		BGC-823	12.2		
		HepG2	12.8		
		HL-60	13.8		
		MCF-7	11.3		
		SMMC-7721	11.7		
		W480	18.3		
	(1α,3α)-1-O-[(β-α-Xyl-(1 → 2)-α-1-L-Rha)oxy]-epuruscogenin	A549	24.3	MTT assay	Wang and Meng (2015)
		BGC-823	29.4		
		HepG2	30.1		
		HL-60	31.1		
		MCF-7	30.4		
		SMMC-7721	29.7		
		W480	29.1		
	(1α,3α)-1-O-[(β-α-Xyl-(1 → 2)-α-1-L-Rha)oxy]-epineoruscogenin	A549	29.7	MTT assay	Wang and Meng (2015)
		BGC-823	29.6		
		HepG2	29.4		
		HL-60	29.4		
		MCF-7	27.1		
		SMMC-7721	30.1		
		W480	24.9		
Bletilnoside A		A549	76.3	MTT assay	Wang and Meng (2015)
		BGC-823	68.7		
		HepG2	66.9		
		HL-60	72.3		
		MCF-7	76.2		
		SMMC-7721	70.8		
		W480	69.4		
3-O-β-α-Glc-3-epi-neoruscogenin		A549	31.9	MTT assay	Wang and Meng (2015)
		BGC-823	31.2		
		HepG2	30.7		
		HL-60	32.2		
		MCF-7	28.1		
		SMMC-7721	29.9		
		W480	27.6		
Source	Compound	Cell line	Concentration (µM)	Assay	References
------------------------	--	---------------	--------------------	--------------	-----------------------
Cestrum laevigatum					
leaves	(25R)-Spirost-5-ene-3β,26β-diol 3-O-α-L-Rha-(1→4)-α-L-Rha-(1→4)-[(1→2)-α-L-Rha]-β-D-Glc	HL-60	6.5 (5.2–8.1)	MTT assay	Ribeiro et al. (2016a)
		OVCAR-8	10.3 (5.4–19.9)		
		HCT 116	10.1 (4.5–23.0)		
		SF-295	7.7 (4.2–14.1)		
	(25R)-Spirost-6-ene-3β,5β-diol 3-O-α-L-Rha-(1→4)-α-L-Rha-(1→4)-[(1→2)-α-L-Rha]-β-D-Glc	HL-60	7.3 (6.7–7.9)	MTT assay	
		OVCAR-8	15.3 (11.9–19.6)		
		HCT 116	11.4 (9.6–13.5)		
		SF-295	12.9 (10.8–15.4)		
	Diosgenin 3-O-α-L-Rha-(1→4)-α-L-Rha-(1→4)-β-D-Glc	HL-60	> 25	MTT assay	
		OVCAR-8	> 25		
		HCT 116	> 25		
		SF-295	> 25		
	Chonglouoside SL-5	HL-60	8.2 (7.4–9.1)	MTT assay	
		OVCAR-8	10.8 (9.4–12.4)		
		HCT 116	8.6 (7.6–9.9)		
		SF-295	6.9 (5.6–8.4)		
	Paris saponin Pb	HL-60	0.6 (0.4–0.7)	MTT assay	
		OVCAR-8	2.4 (1.9–2.9)		
		HCT 116	1.01 (0.74–1.37)		
		SF-295	1.3 (1.0–1.6)		
	Doxorubicin (control)	HL-60	0.02 (0.01–0.02)	MTT assay	
		OVCAR-8	0.3 (0.2–0.3)		
		HCT 116	0.1 (0.1–0.2)		
		SF-295	0.2 (0.2–0.3)		
Cestrum laevigatum					
stems and roots	(25R,S)-5α-spirostan-2α,3β-diol 3-O-β-D-Glc-(1→4)-β-D-Gal-(1→4)-β-D-Gal	HL-60	2.22 (1.55–3.17)	MTT assay	Ribeiro et al. (2016b)
		OVCAR-8	10.80 (9.51–2.27)		
		HCT 116	7.27 (5.93–8.90)		
		SF-295	6.88 (4.49–10.56)		
	(25R,S)-5α-spirostan-2α,3β-diol 3-O-β-D-Glc-(1→2)-α-L-Rha-(1→4)-β-D-Gal	HL-60	7.28 (6.68–7.95)	MTT assay	
		OVCAR-8	15.30 (11.91–19.64)		
		HCT 116	11.41 (9.63–13.51)		
		SF-295	12.90 (10.78–15.43)		
	(25R,S)-5α-spirostan-2α,3β-diol 3-O-β-D-Gal	HL-60	16.68 (11.85–23.49)	MTT assay	
		OVCAR-8	11.30 (9.21–13.87)		
		HCT 116	16.50 (14.3–19.1)		
		SF-295	> 25		
	Doxorubicin (control)	HL-60	0.02 (0.01–0.02)	MTT assay	
		OVCAR-8	0.26 (0.17–0.3)		
		HCT 116	0.12 (0.09–0.17)		
Table 1 continued

Source	Compound	Cell line	Concentration	Assay	References
Cestrum parqui leaves	Parquispiroside	HeLa	7.7 ± 1.5	CCK-8 assay	Mosad et al. (2017)
		HepG2	7.2 ± 1.4		
		MCF-7	14.1 ± 4.5		
		U87	3.3 ± 0.63		
Cisplatin (control)		HeLa	39.2 ± 8.2		
		HepG2	14.6 ± 5.9		
		MCF-7	7.3 ± 1.3		
		U87	23.0 ± 5.6		
Chlorophytum deistelianum aerial parts	Chlorodeistelanioloside A	SW480	> 22.12	XTT assay	Tabopda et al. (2016)
		H9c2	> 22.12		
	Chlorodeistelanioloside C	SW480	> 24.12		
		H9c2	> 24.12		
	(25R)-3β-{{β-D-Glc-(1 → 2)-{β-D-Xyl-(1 → 3)β-D-Glc-(1 → 4)β-D-Gal}oxy}5α-spirostan-12-one}	SW480	9.13 ± 0.41		
		H9c2	8.25 ± 1.16		
	Solanigroside G	SW480	10.07 ± 0.61		
		H9c2	9.57 ± 0.21		
	F-gitonin	SW480	9.45 ± 0.58		
		H9c2	9.82 ± 0.30		
	Polianthoside D	SW480	> 24.43		
		H9c2	> 24.43		
	(25R)-26-{{β-D-Glc}oxy}-22α-methoxy-5α-furostan-3β-yl β-D-Glc-(1 → 2)-{β-D-Xyl-(1 → 3)β-D-Glc-(1 → 4)β-D-Gal}	SW480	> 24.43		
		H9c2	> 24.43		
Chlorophytum laxum roots	25-R-Spirosta-3,5-dien-12β-ol	5-8F	24.8	CCK-8 assay	Chu et al. (2018)
	Diosgenin	5-8F	41.9		
Chlorophytum orchidastrum roots	Orchidastroside A	HCT 116	1.6	MTT assay	Acharya et al. (2010)
		HT-29	1.5		
	Orchidastroside C	HCT 116	1.35		
		HT-29	3.6		
	Orchidastroside D	HCT 116	2.19		
		HT-29	9.15		
	Orchidastroside F	HCT 116	2.12		
		HT-29	8.87		
Source	Compound	Cell line	Concentration	Assay	References
----------------------------	---------------------------------	--------------------	---------------	---------	-----------------------------
Paclitaxel (control)		HCT 116	2.4 (nM)		
		HT-29	2.1		
Cordyline fruticosa leaves	Fruticoside H	MDA-MB231	69.68	IC50 (µM)	MTT assay
		A375	37.83		Fouedjou et al. (2014)
		HCT 116	39.8		
	Fruticoside I	MDA-MB231	50.45	IC50 (µM)	MTT assay
		A375	46.59		
		HCT 116	59.97		
	Fruticoside J	MDA-MB231	> 200	IC50 (µM)	MTT assay
		A375	> 200		
		HCT 116	> 200		
Cisplatin (control)		MDA-MB231	7.28	IC50 (µM)	MTT assay
		A375	0.62		Selim and Al Jaouni (2015)
		HCT 116	4.97		
Costus speciosus tuber	Diosgenin	HepG2	32.62	IC50 (µg ml⁻¹)	MTT assay
		HL-60	22.98		
		MCF-7	11.03		
Paclitaxel (control)		HepG2	0.48	IC50 (µM)	MTT assay
		HL-60	0.78		
		MCF-7	0.61		
Cynanchum paniculatum roots	Cynanside A	A549	> 30	IC50 (µM)	SRB assay
		SK-OV-3	> 30		Kim et al. (2013)
		SK-MEL-2	26.55		
		HCT-15	> 30		
	Cynanside B	A549	> 30	IC50 (µM)	SRB assay
		SK-OV-3	> 30		
		SK-MEL-2	17.36		
		HCT-15	> 30		
Doxorubicin (control)		A549	0.029	IC50 (µM)	SRB assay
		SK-OV-3	0.036		
		SK-MEL-2	0.001		
		HCT-15	2.041		
Datura metel whole plant		Cell death (%)	SRB assay	Mai et al. (2017)	
Source	Compound	Cell line	Concentration	Assay	References
------------------	---	-----------	---------------	-------	------------
	3-O-β-D-Xyl-(1 → 2)-α-L-Rha-(1 → 4)[α-L-Rha-(1 → 2)]-β-D-Glc (25R,26R)-spirost-5-en-3β-ol-26-acetamide	HepG2	4 (μg ml⁻¹)	9.4 (%)	
		MCF-7	20	16.0	
		SK-MEL-2	100	34.9	
	Dioscoroside D	HepG2	4	12.7	
		MCF-7	20	14.1	
		SK-MEL-2	100	28.3	
	Meteloside D	HepG2	4	10.4	
		MCF-7	20	15.5	
		SK-MEL-2	100	30.0	
	Meteloside E	HepG2	4	14.1	
		MCF-7	20	16.1	
		SK-MEL-2	100	25.8	
	Camptothecin (control)	HepG2	4	6.9	
		MCF-7	20	15.5	
		SK-MEL-2	100	35.5	
		4	16.4		
		20	19.9		
		100	31.9		
		4	18.5		
		20	28.6		
		100	38.8		
		4	11.4		
		20	27.1		
		100	44.4		
		4	5.7		
		20	22.5		
		100	44.2		
		4	13.3		
		20	28.6		
		100	41.2		
		4	11.1		
		20	28.4		
		100	48.3		
		4	14.3		
		20	18.7		
		100	41.6		
		4	72.5		
		20	97.0		
		4	76.8		
		20	96.9		
		4	68.1		
Source	Compound	Cell line	Concentration	Assay	References
--------	----------	-----------	---------------	-------	-------------
Digitalis trojana aerial parts	22-O-methylparvispino B	HT29	10.0 ± 0.25	MTT assay	Kirmizibilmez et al. (2014)
	Parvispino B	HT29	50.0 ± 0.20	MTT assay	
	PC3	> 50			
	Digitalis trojana aerial parts	MCF-7	50.0 ± 0.15	MTT assay	
	PC3	> 50			
	Digitalis trojana aerial parts	HT29	50.0 ± 0.90	MTT assay	Kirmizibilmez et al. (2014)
	MCF-7	50.0 ± 0.15	MTT assay		
	PC3	> 50			
Dioscorea bulbifera var. sativa flowers	Spiroconazol A	ECV-304	5.8	MTT assay	Tapondjou et al. (2013)
	Pennogenin 3-O-α-L-Rha-(1→4)-α-L-Rha-(1→4)-α-L-Rha-(1→2)-β-D-Glc	ECV-304	8.5	MTT assay	
	26-O-β-D-Glc-(25R)-5-en-furost-3β,17α,22α,26-tetraol-3-O-α-L-Rha-(1→4)-α-L-Rha-(1→4)-β-D-Glc	ECV-304	14.3	MTT assay	
Dioscorea preussii rhizomes	Diospreussinoside B	HCT 116	48.7	MTT assay	Tabopda et al. (2014)
	HT-29	31			
	(25R)-17α-hydroxyspirost-5-en-3β-γl O-α-L-Rha-(1→4)-O-α-L-Rha-(1→4)-β-O-Glc	HCT 116	37.41	MTT assay	
	HT-29	42.43			
	(25R)-17α-hydroxyspirost-5-en-3β-γl O-α-L-Rha-(1→4)-O-α-L-Rha-(1→4)-β-O-Glc	HCT 116	2.17	MTT assay	
	HT-29	1.64			
	Paclitaxel (control)	HCT 116	2.65 x 10^{-3}	MTT assay	
	HT-29	2.29 x 10^{-3}			
Dioscorea zingiberensis rhizomes	Diosgenin	SK-OV-3	> 20	MTT assay	Tong et al. (2012)
	B16	> 20			
	LL2	> 20			
	C26	> 20			
	A549	> 20			
	HEK293	> 20			
	Trillin	SK-OV-3	> 20		
Source	Compound	Cell line	Concentration	Assay	References
---------------	------------------------	-----------	---------------	-------	------------
	Diosgenin diglucoside	SK-OV-3	16.71 ± 0.84		
		B16	16.53 ± 0.28		
		LL2	18.02 ± 0.66		
		C26	14.51 ± 0.90		
		A549	18.86 ± 1.24		
		HEK293	> 20		
	Deltonin	SK-OV-3	3.15 ± 0.29		
		B16	4.88 ± 0.43		
		LL2	4.42 ± 0.77		
		C26	1.41 ± 0.51		
		A549	5.65 ± 0.82		
		HEK293	9.73 ± 0.85		
	Zingiberensis saponin	SK-OV-3	1.51 ± 0.53		
		B16	2.64 ± 0.49		
		LL2	2.37 ± 0.54		
		C26	0.81 ± 0.35		
		A549	2.13 ± 0.48		
		HEK293	4.15 ± 0.22		
	Protodeltonin	SK-OV-3	15.86 ± 0.55		
		B16	14.23 ± 1.60		
		LL2	15.58 ± 0.75		
		C26	12.54 ± 0.81		
		A549	14.82 ± 1.28		
		HEK293	> 20		
	Parvifloside	SK-OV-3	16.59 ± 0.72		
		B16	16.12 ± 0.90		
		LL2	14.82 ± 1.60		
		C26	13.83 ± 2.52		
		A549	14.36 ± 1.14		
		HEK293	> 20		
	Dioscin (control)	SK-OV-3	4.14 ± 0.80		
		B16	4.57 ± 0.61		
		LL2	5.03 ± 0.76		
		C26	2.81 ± 1.21		
Source	Compound	Cell line	Concentration	Assay	References
------------------------	--	-----------	----------------	--------------	------------------
	A549	6.82 ± 1.55			
	HEK293	6.62 ± 0.28			
	SK-OV-3	0.73 ± 0.35			
	B16	0.77 ± 0.28			
	LL2	0.67 ± 0.12			
	C26	0.50 ± 0.18			
	A549	1.05 ± 0.25			
	HEK293	1.32 ± 0.52			
Dracaena cambodiama	resin	IC₅₀ (µM)		MTT assay	Shen et al. (2014)
	Diosgenin 3-O-α-L-Rha-(1 → 2)-[α-L-Rha-(1 → 3)]-β-D-Glc	K562	1.27		
	BEL-7402	4.72			
	SGC-7901	2.88			
	Pennogenin 3-O-α-L-Rha-(1 → 2)-[α-L-Rha-(1 → 3)]-β-D-Glc	K562	5.09		
	BEL-7402	1.13			
	SGC-7901	3.39			
	Spirost-5,25(27)-dien-1β,3β-diol 1-O-α-L-Rha-(1 → 2)-[β-D-Xyl-(1 → 3)]-α-L-Ara	K562	4.77		
	BEL-7402	6.44			
	SGC-7901	5.61			
	Paclitaxel (control)	K562	5.98		
	BEL-7402	3.75			
	SGC-7901	1.88			
Dracaena deisteliana	stem Dracaena arborea bark	IC₅₀ (µM)		MTT assay	Kougan et al. (2010)
	Neoruscogenin 1-O-α-L-Rha-(1 → 2)-[β-D-Xyl-(1 → 3)]-α-L-Ara	HT-29			
	HCT 116	values in the range 7.60–70.73			
	Manioside A	HT-29	1.67		
	HCT 116	2.04			
	Spiroconazol A	HT-29	3.21		
	HCT 116	1.4			
	Paclitaxel (control)	HT-29			
	HCT 116				
Dracaena marginata	roots	IC₅₀ (µg ml⁻¹)	Acid phosphatase assay	Ghaly et al. (2014)	
	Saponin fraction	HepG2	13.4		
	MCF7	35			
	Methylprotogracillin	HepG2	29.8		
	MCF7	> 50			
Source	Compound	Cell line	Concentration	Assay	References
------------------------	---------------------------------------	-----------	---------------	--------------	--------------------
	Methylprotodioscin	HepG2	29.8		
		MCF7	> 50		
	Adriamycin (control)	HepG2	6.9		
		MCF7	2.5		
Dracaena viridiflora	leaves	IC50 (µg ml⁻¹)	MTT assay	Teponno et al. (2017)	
	Trillin	Jurkat	22.36 ± 1.40		
		Caco-2	36.49 ± 2.14		
		SK-OV-3	64.78 ± 1.91		
		A549	14.14 ± 0.10		
	Prosapogenin A of dioscin	Jurkat	2.06 ± 0.12		
		Caco-2	2.51 ± 0.32		
		SK-OV-3	5.69 ± 0.88		
		A549	2.11 ± 0.54		
	Prosapogenin B of dioscin	Jurkat	21.74 ± 1.80		
		Caco-2	13.72 ± 0.84		
		SK-OV-3	62.33 ± 1.42		
		A549	42.44 ± 1.60		
	Dioscin	Jurkat	1.70 ± 0.38		
		Caco-2	2.58 ± 0.21		
		SK-OV-3	1.90 ± 0.86		
		A549	0.42 ± 0.15		
	Methylprotodioscin	Jurkat	4.82 ± 0.33		
		Caco-2	16.13 ± 0.34		
		SK-OV-3	7.07 ± 0.39		
		A549	5.26 ± 0.29		
	Doxorubicin (control)	Jurkat	0.61 ± 0.04		
		Caco-2	2.32 ± 1.04		
		SK-OV-3	0.84 ± 0.08		
		A549	1.15 ± 0.84		
Fritillaria pallidiflora	bulbs	IC50 (µM)	MTT assay	Shen et al. (2012)	
	Pallidifloside D	C6	53.2 ± 3.2		
		HeLa	75.8 ± 4.5		
	Polygonatoside B3	C6	24.1 ± 1.7		
		HeLa	28.1 ± 3.9		
	Polyphyllin V	C6	10.3 ± 2.2		
		HeLa	9.4 ± 1.1		
	Deltonin	C6	5.1 ± 0.2		
		HeLa	5.2 ± 0.9		
	Resveratrol	C6	24.8 ± 1.8		
	(control)	HeLa	28.3 ± 1.4		
Lilium longiflorum	bulbs	IC50 (µM)	MTT assay	Esposito et al. (2013)	
	(22R,25R)-spirosol-5-en-3β-yl 3-O-α-L-	3T3	8.2		
	Rha-(1 → 2)-β-D-Glc-(1 → 4)-β-D-Glc				
Source	Compound	Cell line	Concentration	Assay	References
--------	----------	-----------	---------------	-------	------------
(22R,25R)-spirosol-5-en-3β-yl 3-O-α-L-Rha-(1 → 2)-[β-O-acetyl-β-D-Glc-(1 → 4)]-β-D-Glc	3T3	25.8			
Liriope graminifolia tubers					
Lirigramoside A	SMMC-7721	76.4 ± 6.6	MTT assay	Wang et al. (2011)	
	HeLa	26.1 ± 4.4			
Lirigramoside B	SMMC-7721	> 100	MTT assay		
	HeLa	18.6 ± 3.6			
1-O-β-D-Xyl-3-O-α-L-Rha-(25S)-ruscogenin	SMMC-7721	45.8 ± 5.4	MTT assay		
	HeLa	13.3 ± 3.0			
3-O-α-L-Rha-1-O-sulfo-(25S)-ruscogenin	SMMC-7721	> 100	MTT assay		
	HeLa	40.6 ± 6.4			
Cisplatin (control)	SMMC-7721	12.8 ± 4.8	MTT assay		
	HeLa	5.4 ± 1.8			
Liriope muscari roots					
(25S)-Ruscogenin 1-O-β-D-Glc-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Glc	MDA-MB-435	15.99 ± 1.03	MTT assay	Wu et al. (2017b)	
	95D	20.13 ± 1.18			
	HepG2	49.68 ± 1.57			
	HeLa	39.98 ± 1.20			
	MCF-7	47.30 ± 1.56			
	A549	36.35 ± 1.39			
(25R)-Ruscogenin 1-O-β-D-Glc-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Glc	MDA-MB-435	26.01 ± 0.85	MTT assay		
	95D	30.00 ± 0.51			
	HepG2	40.52 ± 0.96			
	HeLa	33.42 ± 1.39			
	MCF-7	39.12 ± 1.02			
	A549	36.01 ± 1.31			
(25S)-Ruscogenin 1-O-β-D-Glc-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Xyl	MDA-MB-435	18.07 ± 1.34	MTT assay		
	95D	25.67 ± 0.41			
	HepG2	37.17 ± 1.71			
	HeLa	21.58 ± 1.42			
	MCF-7	45.82 ± 1.44			
	A549	43.53 ± 1.16			
Source Compound	Cell line	Concentration	Assay	References	
-----------------	-----------	---------------	-------	------------	
(25R)-Ruscogenin 1-β-D-Glc-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Xyl	MDA-MB-435	17.68 ± 2.50			
95D	17.83 ± 0.37				
HepG2	29.48 ± 1.64				
HeLa	22.23 ± 1.43				
MCF-7	42.16 ± 1.26				
A549	43.20 ± 1.53				
(25R)-Ruscogenin 1-O-α-L-Rha-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Glc	MDA-MB-435	19.63 ± 0.76			
95D	10.82 ± 0.18				
HepG2	15.26 ± 1.29				
A549	35.56 ± 1.46				
(25S)-Ruscogenin 1-O-β-D-Glc-(1 → 2)-[α-L-Ara-(1 → 3)]-β-D-Fuc	MDA-MB-435	16.34 ± 0.60			
95D	14.34 ± 0.33				
HepG2	27.10 ± 0.84				
HeLa	14.76 ± 0.52				
MCF-7	35.21 ± 2.02				
A549	24.69 ± 0.76				
(25R)-Ruscogenin 1-O-β-D-Glc-(1 → 2)-[α-L-Ara-(1 → 3)]-β-D-Fuc	95D	22.15 ± 1.41			
HeLa	42.56 ± 3.75				
Neoruscogenin 1-O-β-D-Glc-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Xyl	MDA-MB-435	24.52 ± 0.91			
95D	36.12 ± 1.08				
HeLa	24.30 ± 1.55				
Neoruscogenin 1-O-α-L-Rha-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Glc	MDA-MB-435	24.52 ± 0.91			
95D	36.12 ± 1.08				
HeLa	24.30 ± 1.55				
Neoruscogenin 1-O-β-D-Glc-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Fuc	MDA-MB-435	9.74 ± 0.62			
95D	10.64 ± 0.21				
HepG2	15.48 ± 0.52				
HeLa	11.02 ± 0.42				
MCF-7	10.02 ± 0.73				
A549	21.25 ± 1.42				
(25R)-Ruscogenin 1-O-β-D-Glc-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Fuc	MDA-MB-435	4.71 ± 0.75			
95D	11.62 ± 2.00				
HepG2	Not active				
HeLa	26.36 ± 2.01				
MCF-7	NA				
A549	23.56 ± 2.64				
(25S)-Ruscogenin 1-O-β-D-Glc-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Fuc	MDA-MB-435	5.91 ± 0.27			
95D	11.20 ± 0.17				
HepG2	12.76 ± 0.74				
HeLa	8.00 ± 0.45				
MCF-7	17.88 ± 0.97				
A549	8.226 ± 0.78				
Source	Compound	Cell line	Concentration	Assay	References
--------	----------	-----------	---------------	-------	------------
(25S)-Ruscogenin 1-O-α-L-Rha-(1 → 2)-[β-d-Xyl-(1 → 3)]-β-d-Glc	MDA-MB-435	9.75 ± 0.34	MTT	Wu et al. (2018)	
	95D	19.58 ± 0.67			
	HepG2	15.24 ± 1.53			
	HeLa	14.03 ± 0.61			
	MCF-7	16.30 ± 0.73			
	A549	13.99 ± 0.64			
5-Fluorouracil (control)	MDA-MB-435	116.8 ± 13.93	MTT		
	95D	83.55 ± 10.66			
	HepG2	91.9 ± 16.20			
	HeLa	251.3 ± 19.93			
	MCF-7	568.3 ± 54.37			
	A549	244.8 ± 21.23			

Ophiopogon japonicus roots

Source	Compound	Cell line	Concentration	Assay	References
Pennogenin-3-O-α-L-Rha-(1 → 2)-[β-d-Api-(1 → 4)]-β-d-Glc	MDA-MB-435	1.90 ± 0.17	MTT		
	HepG2	1.69 ± 0.18			
	A549	4.39 ± 0.37			
Pennogenin-3-O-α-L-Rha-(1 → 2)-[β-d-Xyl-(1 → 3)]-[β-d-Glc-(1 → 4)]-β-d-Glc	MDA-MB-435	9.13 ± 1.43	MTT		
	HepG2	21.18 ± 1.87			
	A549	21.27 ± 2.53			
(25R)-Ruscogenin-1-O-α-L-Rha-(1 → 2)-[β-d-Xyl-(1 → 3)]-α-L-Ara	MDA-MB-435	10.32 ± 2.37	MTT		
	HepG2	NA (IC50 > 50 μM)			
	A549	29.12 ± 4.66			
5-FU (control)	MDA-MB-435	120 ± 15.53	MTT		
	HepG2	87.3 ± 12.10			
	A549	256.8 ± 19.03			

Ophiopogon japonicus tuberous roots

Source	Compound	Cell line	Concentration	Assay	References
Ophiopogonin Q	HepG2	24 h	2.88		
	HepG2	72 h	1.06		
	HLE	24 h	2.61		
	BEL-7402	24 h	3.59		
	BEL-7403	24 h	6.25		
	HeLa	24 h	2.74		
Pennogenin 3-O-[2-O-acetyl-α-L-Rha-(1 → 2)]-[β-d-Xyl-(1 → 4)]-β-d-Glc	HepG2	24 h	3.54		
	HepG2	72 h	1.60		
	HLE	24 h	3.63		
	BEL-7402	24 h	3.72		
	BEL-7403	24 h	12.28		
Source	Compound	Cell line	Concentration	Assay	References
-------------------------	--	-----------	---------------	-------	------------
	Diosgenin 3-O-[2-O-acetyl-α-L-Rha-(1 → 2)]([β-β-Xyl-(1 → 4)]-β-β-Glc)	HeLa	4.26		
		HepG2	3.30		
		HepG2	72 h	1.49	
Sprengerinin C		HLE	24 h	1.49	
		BEL-7402	24 h	8.06	
		BEL-7403	24 h	5.13	
		HeLa	24 h	1.47	
	Pennogenin 3-O-α-L-Rha-(1 → 2)-[β-β-Xyl-(1 → 4)]-β-β-Glc	HepG2	24 h	3.04	
		HepG2	72 h	1.71	
		HLE	24 h	3.30	
		BEL-7402	24 h	6.08	
		BEL-7403	24 h	5.14	
		HeLa	24 h	3.34	
Taxol (control)		HepG2	24 h	33.3	
		HepG2	72 h	0.251	
		HLE a	24 h	1.95	
		BEL-7402	24 h	5.92	
		BEL-7403	24 h	11.84	
		HeLa	24 h	3.10	
Ophiopogon japonicus	IC50 (µM)	MTT assay			
tubers					
	Ophiopogonin D'	MG-63	3.09		Wang et al. (2017a)
		SNU-387	3.63		
	Diosgenin 3-O-[2-O-acetyl-]-L-Rha-(1 → 2)β-β-Xyl-(1 → 3)β-β-Glc	MG-63	1.9		
		SNU-387	0.76		
	Cisplatin (control)	MG-63	11.31		Duan et al. (2010)
		SNU-387	5.59		
Ophiopogon japonicus	IC50 (µg ml−1)	MTT assay			
fibrous roots					
	(25R)-Ruscogenin-3-yl α-L-Rha-(1 → 2)-[β-β-Xyl-(1 → 4)]-β-β-Glc	HeLa	9.14		
		HEp2	11.27		
	Diosgenin-3-yl 2-O-acetyl-α-L-Rha-(1 → 2)-[β-β-Xyl-(1 → 4)]-β-β-Glc	HeLa	10.77		
		HEp2	10.08		
	Pennogenin-3-yl 2-O-acetyl-α-L-Rha-(1 → 2)-[β-β-Xyl-(1 → 4)]-β-β-Glc	HeLa	13.46		
Source	Compound	Cell line	Concentration	Assay	References
-------------------------------	--	-----------	---------------	------------------	-----------------------------
		HEP2	13.32	IC₅₀ (µg ml⁻¹)	MTT assay
					Duan et al. (2018)
Ophiopogon japonicus	Fibrophiopogonin A	A375	201.1		
	Fibrophiopogonin B	A375	42.06		
	(25R)-26-[(O-β-D-Glc-(1 → 2)-β-D-Glc)]-22α-hydroxyfurost-5-ene-3-O-[α-	MCF-7	45.32		
	l-Rha-(1 → 2)]-β-D-Glc	A375	63.43		
Panicum turgidum				IC₅₀ (µM)	Neutral red uptake assay
					Zaki et al. (2017)
	Pennogenin 3β-O-α-L-Rha-(1 → 2)-O-[α-L-Rha-(1 → 4)-O-α-L-Rha-1 → 4)]-O-	SK-MEL	0.47 ± 0.15		
	β-D-Glc	KB	1.6 ± 0.4		
		BT-549	0.59 ± 0.09		
		SK-OV-3	0.81 ± 0.11		
		VERO	1.5 ± 0.2		
		LLC-PK1	1.005 ± 0.105		
	Yamogenin 3β-O-α-L-Rha-(1 → 2)-O-[α-L-Rha-(1 → 4)]-O-β-D-Glc	SK-MEL	0.76 ± 0.04		
		KB	3.5 ± 1.5		
		BT-549	3.3 ± 1.2		
		SK-OV-3	1.24 ± 0.26		
		VERO	2.8 ± 1.7		
		LLC-PK1	3.15 ± 1.15		
	Yamogenin 3β-O-α-L-Rha-(1 → 2)-O-[α-L-Rha-(1 → 4)-O-α-L-Rha-1 → 4)]-O-	SK-MEL	4.2 ± 1.3		
	β-D-Glc	KB	8.25 ± 3.25		
		BT-549	4.1 ± 1.9		
		SK-OV-3	3.35 ± 1.15		
		VERO	7.0 ± 3.8		
		LLC-PK1	3.7 ± 1.6		
	Pennogenin 3β-O-α-L-Rha-(1 → 2)-O-[α-L-Rha-(1 → 4)]-O-β-D-Glc	SK-MEL	0.295 ± 0.07		
		KB	1.0 ± 0.1		
		BT-549	1.55 ± 0.15		
		SK-OV-3	0.765 ± 0.015		
		VERO	0.5 ± 0.05		
		LLC-PK1	0.65 ± 0.05		
	Doxorubicin (control)	SK-MEL	3.0 ± 0.78		
		KB	1.7 ± 0.0		
		BT-549	2.9 ± 1.4		
		SK-OV-3	3.3 ± 0.17		
		VERO	> 9		
		LLC-PK1	2.5 ± 0.9		
Source	Compound	Cell line	Concentration	Assay	References
---	---------------------------------------	-------------------	---------------	-------------	--------------------
Paris polyphylla rhizomes					
Parisyunnanoside G	CCRF-CEM	NA		XTT assay	Kang et al. (2012)
Parisyunnanoside H	CCRF-CEM	NA			
Parisyunnanoside I	CCRF-CEM	NA			
Dichotomin	CCRF-CEM	0.59 ± 0.11			
Pseudoproto-Pb	CCRF-CEM	6.52 ± 0.29			
Parisyunnanoside A	CCRF-CEM	6.68 ± 0.22			
Th	CCRF-CEM	5.15 ± 0.16			
Paris saponin I	CCRF-CEM	1.23 ± 0.08			
Protogracillin	CCRF-CEM	1.77 ± 0.14			
Doxorubicin (control)	CCRF-CEM	2.14 ± 0.005			
Paris polyphylla var. yunnanensis rhizomes	Total saponins Rs	HL-60	1.77	MTT assay	Qin et al. (2018)
		A-549	1.75		
		SM MC772	5.23		
		MCF-7	6.62		
		SW480	3.49		
	Total saponins LSs	HL-60	9.54	MTT assay	
		A-549	9.3		
		SM MC772	12.61		
		MCF-7	8.12		
		SW480	11.25		
	Cisplatin (control)	HL-60	0.87	MTT assay	
		A-549	6.48		
		SM MC772	3.77		
		MCF-7	6.4		
		SW480	4.18		
Paris polyphylla var. yunnanensis rhizomes	(3β,25R)-spirost-5-en-3-ol-3-O-β-D-API-(1 → 3)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	5.06 ± 1.42	MTT assay	Wu et al. (2012b)
	(3β,17α,25R)-spirost-5-ene-3,17-diol-3-O-β-D-API-(1 → 3)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	3.57 ± 1.05	MTT assay	
	(3β,17α,25R)-spirost-5-ene-3,17-diol-3-O-β-D-Glc-(1 → 5)-α-L-Ara-(1 → 4)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	9.50 ± 0.80	MTT assay	
	(3β,17α,25R)-spirost-5-ene-3,17-diol-3-O-β-D-Xyl-(1 → 5)-α-L-Ara-(1 → 4)-β-D-Glc	CNE	188.55 ± 7.62	MTT assay	
	(3β,25S)-spirost-5-ene-3,27-diol-3-O-α-L-Rha-(1 → 4)-α-L-Rha-(1 → 4)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	134.38 ± 2.95	MTT assay	
	(3β,25S)-spirost-5-ene-3,27-diol-3-O-α-L-Rha-(1 → 4)-α-L-Rha-(1 → 2)]-β-D-Glc	CNE	35.58 ± 2.80	MTT assay	
Source	Compound	Cell line	Concentration	Assay	References
--------	----------	-----------	---------------	-------	-------------
(3β,7β,25R)-spirost-5-ene-3,7-diol-3-O-β-D-Glc-(1 → 3)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	164.43 ± 15.0	MTT assay	Wu et al. (2017a)	
(3β,7α,25R)-spirost-5-ene-3,7-diol-3-O-α-L-Ara-(1 → 4)-β-D-Glc	CNE	1.50 ± 0.14	MTT assay	Wu et al. (2017a)	
(3β,25R)-spirost-5-en-3-ol-3-O-β-D-Glc-(1 → 4)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	63.98 ± 4.90	MTT assay	Wu et al. (2017a)	
(3β,17α,25R)-spirost-5-ene-3,17-diol-3-O-α-L-Rha-(1 → 4)-α-L-Rha-(1 → 4)-β-D-Glc	CNE	2.51 ± 0.42	MTT assay	Wu et al. (2017a)	
(3β,25R)-spirost-5-ene-3-ol-3-O-α-L-Ara-(1 → 4)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	7.28 ± 1.10	MTT assay	Wu et al. (2017a)	
(3β,25R)-spirost-5-ene-3-ol-3-O-β-D-Glc-(1 → 3)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	95.98 ± 0.65	MTT assay	Wu et al. (2017a)	
(3β,17α,25R)-spirost-5-ene-3,17-diol-3-O-α-L-Ara-(1 → 4)-β-D-Glc	CNE	5.92 ± 0.83	MTT assay	Wu et al. (2017a)	
(3β,17α,25R)-spirost-5-ene-3,17-diol-3-O-α-L-Rha-(1 → 4)-α-L-Rha-(1 → 4)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	50.46 ± 2.90	MTT assay	Wu et al. (2017a)	
(3β,25R)-3-hydroxyspirost-5-ene-7-one-3-O-α-L-Ara-(1 → 4)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	23.73 ± 1.53	MTT assay	Wu et al. (2017a)	
Paris polyphylla var. yunnanensis rhizomes	IC₅₀ (μM)	MTT assay	Wu et al. (2012a)		
(23S,24S)-spirost-5,25(27)-diene-1β,3β,21,23α,24α-pentol-1-O-[α-L-Rha-(1 → 2)]-β-D-Xyl-(1 → 3)-[β-D-Glc]-21-O-β-D-Gal-24-O-β-D-Gal	CNE	32.56	MTT assay	Wu et al. (2012a)	
Parisyunnanoside I	CNE	33.1	MTT assay	Wu et al. (2012a)	
Paris polyphylla var. yunnanensis roots	IC₅₀ (μM)	MTT assay	Wu et al. (2012a)		
(3β,25R)-spirost-5-en-3-ol 3-O-α-L-Rha-(1 → 2)-β-D-Glc	CNE	9.2 ± 0.7	MTT assay	Wu et al. (2012a)	
(3β,25R)-spirost-5-en-3-ol 3-O-β-D-Glc-(1 → 6)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	52.9 ± 3.7	MTT assay	Wu et al. (2012a)	
(3β,25R)-spirost-5-en-3-ol 3-O-α-L-Rha-(1 → 4)-α-L-Rha-(1 → 4)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	4.7 ± 1.1	MTT assay	Wu et al. (2012a)	
(3β,17α,25R)-spirost-5-ene-3,17-diol 3-O-α-L-Rha-(1 → 2)-β-D-Glc	CNE	11.1 ± 4.7	MTT assay	Wu et al. (2012a)	
(3β,17α,25R)-spirost-5-ene-3,17-diol 3-O-α-L-Ara-(1 → 4)-[α-L-Rha-(1 → 2)]-β-D-Glc	CNE	2.7 ± 1.1	MTT assay	Wu et al. (2012a)	
Paris yunnanoside I	CNE	9.35	MTT assay	Wu et al. (2012a)	
Source	Compound	Cell line	Concentration	Assay	References
--------------------------------	---	-----------	---------------	-----------	---------------------------
Paris polyphylla var. *yunnanensis* rhizomes	Parisyunnanoside H	HEK293	0.9	MTT assay	Wen et al. (2015)
	Paris saponin I	HEK293	1.8	MTT assay	
	Trigofoenoside A	HEK293	3.4	MTT assay	
	Dichotomin	HEK293	0.58	MTT assay	
	Parisyunnanoside B	HEK293	2.5	MTT assay	
	Pseudoprotot-Pb	HEK293	1.8	MTT assay	
	(−)-OddC (control)	HEK293	0.3	MTT assay	
Paris polyphylla var. *yunnanensis* leaves	Nuatigenin 3-O-α-L-Rha-(1 → 2)-β-D-Glc	HepG2	2.9 ± 0.5	MTT assay	Qin et al. (2016)
	Abutiloside L	HEK293	5.0 ± 0.6	MTT assay	
	Troxacitabine (control)	HEK293	7.0 ± 0.8	MTT assay	
		HEK293	12.9 ± 2.7	MTT assay	
		HEK293	0.17 ± 0.02	MTT assay	
		HEK293	0.30 ± 0.03	MTT assay	
Paris quadrifolia rhizomes	Saponin-rich fractions:	HL-60	13 ± 1.3	MTT assay	Stefanowicz-Hajduk et al. (2011)
	Solid residue	HeLa	10 ± 0.5	MTT assay	
	MNDA-MB-468 fibroblasts	MDA-MB-468	27 ± 1.3	MTT assay	
		HL-60	15 ± 2	MTT assay	
	Butanolic fraction	HeLa	24 ± 1.2	MTT assay	
	MNDA-MB-468 fibroblasts	MDA-MB-468	60 ± 5	MTT assay	
		HL-60	60 ± 6	MTT assay	
Paris quadrifolia rhizomes	Pennogenin 3-O-α-L-Rha-(1 → 4)-β-D-Glc	HL-60	47 ± 2.8	MTT assay	Gajdus et al. (2014)
	Pennogenin 3-O-α-L-Rha-(1 → 2)-β-D-Glc	HL-60	16 ± 0.8	MTT assay	
		HeLa	18 ± 0.9	MTT assay	
	Pennogenin 3-O-α-L-Rha-(1 → 4)-α-L-Rha-(1 → 2)-β-D-Glc	HL-60	1.0 ± 0.04	MTT assay	
Source	Compound	Cell line	Concentration	Assay	References
--------------------------------	---	-----------	---------------	---------	----------------------------------
	HeLa 1.8 ± 0.072	MCF-7	2.4 ± 0.096		
	MCF-7 2.0 ± 0.08	HL-60			
	HeLa 2.5 ± 0.125	MCF-7	3.2 ± 0.128		
	MCF-7 > 50	HL-60	0.06 ± 0.004		
	HeLa 0.4 ± 0.012	MCF-7	0.2 ± 0.008		
	Paris quadrifolia rhizomes **IC50 (µg ml⁻¹)**	MTT assay	Stefanowicz-Hajduk et al. (2015)		
	PS-1 0.93 ± 0.15	HeLa	0.82 ± 0.13		
	HaCaT 0.55 ± 0.01	HeLa	0.58 ± 0.04		
	PS-2 0.58 ± 0.04	HaCaT			
	Paris thibetica rhizomes **IC50 (µmol l⁻¹)**	MTT assay	Jing et al. (2017)		
	PARIS saponin II 0.48	BEL-7402			
	Paris vietnamensis rhizomes **IC50 (µM)**	CCK-8 assay	Liu et al. (2018b)		
	25(R)-Diosgenin-3-O-α-L-Rha-(1 → 2)-α-L-Rha-(1 → 3)-β-D-Glc 2.16 ± 0.65	U251			
	25(R)-Spirost-5-en-3β,17α-diol-3-O-α-L-Rha-(1 → 4)-α-L-Rha-(1 → 2)-β-D-Glc 3.14 ± 1.26	U251			
	ACNU (control) 2.97 ± 0.94	U87MG	0.96 ± 0.05		
	0.88 ± 0.04	U87MG			
	Sansevieria trifasciata aerial parts **IC50 (µM)**	MTS assay	Teponno et al. (2016)		
	Trifasciatoside B 47.1	HeLa			
	Trifasciatoside D 40.7	HeLa			
	Trifasciatoside I 26.5	HeLa			
	Trifasciatoside J 26.5	HeLa			
	Sansevieria cylindrica aerial parts **IC50 (µg ml⁻¹)**	MTT assay	Raslan et al. (2017)		
	(25S)-Ruscogenin-1-O-α-L-Rha-(1 → 2)-β-D-Glc 24 ± 1	MCF-7			
	HCT 116 23 ± 1	HepG2	21 ± 1		
Source	Compound	Cell line	Concentration	Assay	References
---------------------------------	---	-----------------	---------------	-------	------------------
	(25S)-Ruscogenin-3-O-α-L-Rha-(1 → 4)-β-D-Glc	MCF-7	12 ± 1		
		HCT 116	11 ± 2		
		HepG2	13 ± 1		
	(25S)-Ruscogenin-3-O-β-D-Glc	MCF-7	> 50		
		HCT 116	> 50		
		HepG2	> 50		
	(25S)-Ruscogenin-1-O-α-L-Rha-(1 → 2)-[β-D-Xyl-(1 → 3)]-α-L-Ara	MCF-7	7 ± 2		
		HCT 116	4 ± 2		
		HepG2	9 ± 2		
	(25R)-26-O-β-D-Glc-furost-5-ene-1β,3β,22α,26-tetrol-1-O-α-L-Rha-(1 → 2)-[β-D-Xyl-(1 → 3)]-α-L-Ara	MCF-7	25 ± 1		
		HCT 116	19 ± 1		
		HepG2	21 ± 1		
	Doxorubicin hydrochloride (control)	MCF-7	13 ± 1		
		HCT 116	2 ± 3		
		HepG2	1 ± 1		
	Sansevieria cylindrica aerial parts	IC₅₀ (µM)	SRB assay	Said et al. (2015)	
		HCT 116	38		
	1β-Hydroxy-kryptogenin-1-O-α-L-Rha-(1 → 2)-α-L-Ara	MCF-7	153		
		PC-3	175		
		HCT 116	90		
	Alliospirose A	MCF-7	69		
		PC-3	99		
		HCT 116	10		
	Doxorubicin (control)	MCF-7	6		
		PC-3	4		
	Schizocapsa plantaginea tubers	IC₅₀ (µM)	MTT assay	Sun et al. (2016)	
	Taccoside	SMMC-7721	24 h	2.55	
			48 h	1.72	
		BEL-7404	24 h	8.10	
			48 h	5.94	
	Smilacina japonica rhizomes and roots	IC₅₀ (µM)	MTT assay	Liu et al. (2012c)	
	Japonicoside A	SMMC-7221	1.19 ± 0.03		
		DLD-1	1.66 ± 0.08		
	Japonicoside B	SMMC-7221	5.40 ± 0.11		
		DLD-1	1.21 ± 0.05		
	Japonicoside C	SMMC-7221	3.14 ± 0.11		
		DLD-1	2.16 ± 0.09		
	Taxol (control)	SMMC-7221	3.14 ± 0.11		
Source	Compound	Cell line	Concentration	Assay	References
-----------------------	-----------------------------	---------------	---------------	---------------	------------------
Smilax glaucochina					
tubers	Glauco-chinaoside A	SGC-7901	2.7	IC₅₀ (µM)	MTT assay
	Glauco-chinaoside B	SGC-7901	11.5		Liu et al. (2017b)
	Glauco-chinaoside E	SGC-7901	6.8		
	Cisplatin (control)	SGC-7901	Not specified	MTT assay	
Smilax korthalsii					
leaves	Diosgenin	K562	6.25	IC₅₀ (µM)	MTT assay
		WRL	14.34		Hamid et al. (2016)
		MCF-7	38		
		COLO	12.4		
	Tamoxifen (control)	K562	7.26		
		WRL	12.25		
		MCF-7	8.54		
		COLO	10.08		
Smilax ornata					
roots and rhizomes	Sarsaparilloside B	NFF	> 50	inhibition	SRB assay
		HeLa	> 50	of cell	Challinor et al. (2012)
		HT29	> 50	proliferation	
		MCF-7	> 50	(µg ml⁻¹)	
		MM96L	> 50		
		K562	> 50		
	Sarsaparilloside C	NFF	27	inhibition	SRB assay
		HeLa	42	of cell	Challinor et al. (2012)
		HT29	4.8	proliferation	
		MCF-7	24	(µg ml⁻¹)	
		MM96L	23		
		K562	28		
	Sarsaparilloside	NFF	13	inhibition	SRB assay
		HeLa	12	of cell	Challinor et al. (2012)
		HT29	5	proliferation	
		MCF-7	9.5	(µg ml⁻¹)	
		MM96L	14		
		K562	22		
	Δ20(22)-sarsaparilloside	NFF	4.5	inhibition	SRB assay
		HeLa	40	of cell	Challinor et al. (2012)
Source	Compound	Cell line	Concentration	Assay	References
--------------------------------	--	-----------	---------------	-----------	--------------------------
		HT29	14	MTT assay	Zhang et al. (2013)
		MCF-7	3.4		
		MM96L	3.8		
		K562	4.3		
		Parillin	NFF > 50		
			HeLa > 50		
			HT29 > 50		
			MCF-7 > 50		
			MM96L > 50		
			K562 > 50		
Smilax scobinicaulis rhizomes	(25 R)-5α-spirostan-3β, 6β-diol 3-O-β-D-Glc-(1 → 4)-[α-L-Ara-(1 → 6)]-β-D- Glc	A549	3.7	MTT assay	Shu et al. (2017)
and roots		LAC	5.7		
		HeLa	3.64		
Doxorubicin (control)		A549	1.08		Liang et al. (2016)
		LAC	0.95		
		HeLa	1.16		
Smilax scobinicaulis rhizomes		IC$_{50}$ (µM)		MTT assay	Abdel-Sattar et al. (2015)
and roots		HCT-116	10.5		
		SGC-7901	21.4		
Smilascobinoside D		IC$_{50}$ (µM)		MTT assay	
		HCT-116	7.8		
		SGC-7901	15.8		
Smilax trinervula rhizomes		IC$_{50}$ (µM)		MTT assay	
and roots		Trinervuloside B	8.1		Liang et al. (2016)
		SGC-7901	5.5		
		HCT-116	5.5		
Solanum glabratum var.		IC$_{50}$ (µM)		MTT assay	
sepicula aerial parts	23-β-D-Glc-(23S, 25R)-spirost-5-en-3, 23 diol 3-O-α-L-Rha-(1 → 2)-O-[α-L-Rha-(1 → 4)]-β-D-Glc	PC3	> 32		Abdel-Sattar et al. (2015)
		HT29	> 2		
	(25R)-spirost-5-en-3-ol 3-O-α-L-Rha-(1 → 2)-O-[β-D-Glc-(1 → 3)]-β-D-Gal	PC3	14		
		HT29	16.7		
	(23S,25R)-spirost-5-en-3, 23 diol 3-O-α-L-Rha-(1 → 2)-O-[α-L-Rha-(1 → 4)]- β-D-Glc	PC3	> 32		
		HT29	> 32		
	Digitonin (positive control)	PC3	1.8		
		HT29	3		
Source Compound	Cell line	Concentration	Assay	References	
-----------------	-----------	---------------	-------	------------	
Solanum incanum roots/ **S. heteracanthum** roots	HCT 116	62.42 ± 0.66	XTT assay (with SW480, DU145 and EMT6)	Manase et al. (2012)	
(23S,25R)-spirost-5-en-3β,23-diol 3-O- [(β-D-Xyl-(1 → 2))-O-α-L-Rha-(1 → 4)] [-O-α-L-Rha-(1 → 2)]-β-D-Glc	Protodioscin	72.24 ± 20.62	HT-29		
		> 29.53	SW480		
		> 29.53	DU145		
		> 29.53	EMT6		
Methyl-protodioscin	HCT 116	2.26 ± 2.29	HT-29		
		3.48 ± 3.01	SW480		
		6.68	DU145		
		6.68	EMT6		
Indioside D	HCT 116	2.76 ± 1.93	HT-29		
		3.30 ± 3.00	SW480		
		> 28.25	DU145		
		> 28.25	EMT6		
Paclitaxel (control)	HCT 116	3.87 ± 2.51	HT-29		
		5.28 ± 0.51	SW480		
		20.68	DU145		
		24.44	EMT6		
Etoposide (control)	HCT 116	2.65 × 10⁻³	HT-29		
		2.29 × 10⁻³	SW480		
		13.22 ± 3.79	DU145		
		> 200	EMT6		
Solanum procumbens whole plant	HepG2	55.7 ± 1.5	MTT assay	Hien et al. (2018)	
Solaprocumoside A	HepG2	48.1 ± 2.2			
Solaprocumoside B	HepG2	78.3 ± 2.4			
Paniculonin B	HepG2	1.43 ± 0.17			
Elipticine (control)	HepG2	55.7 ± 1.5	MTT assay	Hien et al. (2018)	
Solanum surattense aerial parts	AS49	20.3 ± 1.1	MTT assay	Lu et al. (2011)	
(22R,25R)-16β-H-22α-N-spirosol-3β,6α,23-trihydroxy-5α-spirostanol 3-O-α-L-Rha-(1 → 2)[-O-α-L-Rha-(1 → 4)]-β-D-Glc	MGC-803	45.6 ± 1.5	HepG2	26.1 ± 0.6	
(22R,23S,25R)-3β,6α,23-trihydroxy-5α-spirostanol 6-O-β-D-Xyl-(1 → 3)-β-D-Qui	AS49	71.2 ± 2.0			
Table 1 continued

Source	Compound	Cell line	Concentration	Assay	References
MGC-803, HepG2	(22R,23S,25S)-3β,6α,23-trihydroxy-5α-spirostane 6-O-β-D-Xyl-(1 → 3)-O-β-D-Quin	NA	NA	NA	Yen et al. (2012)
A549					
MGC-803, HepG2	(22R,23R,25S)-3β,6α,23-trihydroxy-5α-spirostane 6-O-β-D-Xyl-(1 → 3)-O-β-D-Quin	NA	63.2 ± 0.8	NA	
A549					
MGC-803, HepG2	Khasianine	NA	88.8 ± 1.2		
A549			26.7 ± 1.5		
HepG2			35.4 ± 0.7		
Solamargine	A549	15.7 ± 0.6			
MGC-803			NA		
HepG2			23.2 ± 0.8		
Cisplatin (control)	A549	7.6 ± 1.6			
MGC-803			3.5 ± 0.3		
HepG2			8.7 ± 0.4		
Solanum violaceum	whole plant	IC50 (μg ml⁻¹)	MTT assay	Yen et al. (2012)	
Indioside H	HepG2	2.22 ± 0.01			
Hep3B		2.95 ± 0.02			
MCF-7		4.78 ± 0.02			
A549		3.09 ± 0.02			
Ca9-22		2.95 ± 0.07			
MDA-MB-231		6.12 ± 0.15			
Indioside I	HepG2	5.33 ± 0.16			
Hep3B		3.32 ± 0.42			
MCF-7		11.57 ± 0.70			
A549		7.27 ± 0.07			
Ca9-22		6.76 ± 0.15			
MDA-MB-231		8.04 ± 0.12			
Borassoside D	HepG2	> 20			
Hep3B		> 20			
MCF-7		> 20			
A549		> 20			
Ca9-22		> 20			
MDA-MB-231		> 20			
Yamogenin 3-O-α-L-Rha-(1 → 2)-β-D-Glc	HepG2	6.48 ± 0.01			
Hep3B		6.98 ± 0.05			
MCF-7		5.84 ± 0.04			
A549		4.26 ± 0.02			
Table 1 continued

Source	Compound	Cell line	Concentration	Assay	References
Ca9-22	4.51 ± 0.24				
MDA-MB-231	7.25 ± 0.15				
HepG2	1.83 ± 0.12				
Hep3B	2.03 ± 0.03				
MCF-7	2.61 ± 0.10				
A549	2.34 ± 0.02				
Ca9-22	2.33 ± 0.02				
MDA-MB-231	2.75 ± 0.10				
Borassoside E	HepG2	6.44 ± 0.45			
	Hep3B	2.87 ± 0.04			
	MCF-7	8.84 ± 0.12			
	A549	4.09 ± 0.08			
	Ca9-22	3.77 ± 0.02			
	MDA-MB-231	5.84 ± 0.06			
3-O-chacotriosyl-(25S)-spirost-5-en-3β-ol	HepG2	0.18 ± 0.00			
	Hep3B	1.31 ± 0.12			
	MCF-7	0.80 ± 0.03			
	A549	1.40 ± 0.02			
	Ca9-22	0.31 ± 0.01			
	MDA-MB-231	1.39 ± 0.00			
Tacca integrifolia	rhizomes		IC50 (µM)	MTT assay	Shwe et al. (2010)
(3β,25R)-spirost-5-en-3-yl 6-deoxy-α-L-Man-(1 → 2)-[β-d-Glc-(1 → 4)-6-deoxy-α-L-Man-(1 → 3)]-β-d-Glc	HeLa	3.0 ± 0.5			
(3β,25R)-spirost-5-en-3-yl 6-deoxy-α-L-Man-(1 → 2)-[6-deoxy-α-L-Man-(1 → 3)]-β-d-Glc	HeLa	1.2 ± 0.4			
(3β,22R,25R)-26-[β-d-Glc]-22-hydroxyfurost-5-en-3-yl 6-deoxy-α-L-Man-(1 → 2)-[6-deoxy-α-L-Man-(1 → 3)]-β-d-Glc	HeLa	1.5 ± 0.3			
(3β,22R,25R)-26-[β-d-Glc]-22-methoxyfurost-5-en-3-yl 6-deoxy-α-L-Man-(1 → 2)[6-deoxy-α-L-Man-(1 → 3)]-β-d-Glc	HeLa	3.5 ± 0.5			
(3β,22R,25R)-26-[β-d-Glc]-22-hydroxyfurost-5-en-3-yl 6-deoxy-α-L-Man-(1 → 2)-[β-d-Glc-(1 → 4)-6-deoxy-α-L-Man-(1 → 3)]-β-d-Glc	HeLa	4.0 ± 0.6			
Podophyllotoxin (control)	HeLa	0.1 ± 0.02			
Trillium kamtschaticum	whole plant		IC50 (µM)	MTT assay	Qin et al. (2017)
Trilikamtsoside L	HCT 116	17.28 ± 2.69			
Table 1 continued

Source	Compound	Cell line	Concentration	Assay	References	
Trillium tschonoskii rhizomes	Trillikamtoside P	HCT 116	4.92 ± 1.00			
	Trillikamtoside Q	HCT 116	22.48 ± 8.68			
	Trillikamtoside R	HCT 116	5.84 ± 1.05			
	Camptothecin (control)	HCT 116	0.0115 ± 0.0009			
	Trillium tschonoskii rhizomes	IC50 (µM)	Trypan blue dye exclusion assay	Huang and Zou (2015)		
	Pennogenin 3-O-α-L-Rha-(1→2)[α-L-Rha-(1→4)]-β-D-Glc (TTB2)	Rh1	48 h	7.5		
Tupistra chinensis rhizomes	Tupichinin A	HL-60	18.58			
		SMMC-7721	> 40			
		A549	19.99			
		MCF-7	11.01			
		SW480	10.78			
	3-Epi-neoruscogenin 3-β-D-Glc	HL-60	10.02			
		SMMC-7721	12.76			
		A549	11.4			
		MCF-7	5.02			
		SW480	28.26			
	Cisplatin (control)	HL-60	2.03			
		SMMC-7721	13.54			
		A549	12.56			
		MCF-7	18.65			
		SW480	19.7			
Tupistra chinensis rhizomes	Tupisteroide C	A549	25.9		Liu et al. (2012b)	
Tupistra chinensis rhizomes	Mitomycin C	A549	not specified			
Tupistra chinensis rhizomes	(25R)-26-O-β-D-Glc-furost-1β,3β,22α,26-tetraol 3-O-β-D-Glc	A549	6.6			
Tupistra chinensis rhizomes	(25R)-26-O-β-D-Glc-furost-5-en-1β,3α,22α,26-tetraol 3-O-β-D-Glc	A549	6.7			
Tupistra chinensis rhizomes	(25R)-26-O-β-D-Glc-furost-1β,3β,5β,22α,26-pentaol-3-O-β-D-Glc	A549	29.1			
Tupistra chinensis roots and rhizomes	(20S,22R)-Spirost-25 (27)-en-1β,3β,5β-trihydroxy-1-O-β-D-Xyl	A549	86.63 ± 2.33		Li et al. (2015)	
		NCI-H1299	88.21 ± 1.34			
Source	Compound	Cell line	Concentration	Assay	References	
--------	----------	-----------	---------------	-------	------------	
5-FU (control)	A549	38.65 ± 1.59		MTT assay	Wang et al. (2018)	
	NCI-H1299	42.78 ± 1.63				
Vernonia amygdalina leaves	Concentration not specified			MTT assay		
Vernoniamyoside A	BT-549	63.61				
	MDA-MB-231	28.97				
	MCF-7	46.54				
Vernoniamyoside B	HeLa	42.05				
	BT-549	62.17				
	MDA-MB-231	27.78				
	MCF-7	37.07				
Vernoniamyoside C	HeLa	31.64				
	BT-549	34.18				
	MDA-MB-231	32.74				
	MCF-7	39.38				
Vernoniamyoside D	HeLa	26.73				
	BT-549	44.00				
	MDA-MB-231	31.53				
	MCF-7	31.36				
Vernonioside B2	HeLa	32.93				
	BT-549	36.41				
	MDA-MB-231	33.61				
	MCF-7	49.72				
Vernonamyoside D	HeLa	21.48				
	BT-549	51.14				
	MDA-MB-231	30.75				
	MCF-7	39.08				
Doxorubicin (control)	HeLa	35.63				
	BT-549	83.79				
	MDA-MB-231	83.39				
	MCF-7	95.32				
	HeLa	92.70				
Ypsilandra thibetica whole plant	IC50 (μM)	MTT assay	Lu et al. (2010)			
Ypsilandroside H	A549	> 40				
Ypsilandroside I	HL-60	Not specified				
Ypsilandroside J	PANC-1					
Ypsilandroside K	SMMC-7721					
Ypsilandroside L	SK-BR-3					
Polyphyll lowest				(control)		
Source	Compound	Cell line	Concentration	Assay	References	
------------------------	---	-----------	---------------	----------	------------------------------	
Yucca de-smetiana	Smilagenin 3-O-[β-D-Glc-(1 → 2)-O-β-D-Gal]	HCT 116	4.4 ± 0.47	MTT assay	Eskander et al. (2013)	
		MCF-7	4.0 ± 0.85			
		A549	16.5 ± 1.45			
		HepG2	3.5 ± 0.41			
	Desmettianoside C	HCT 116	2.4 ± 0.57			
		MCF-7	2.6 ± 0.49			
		A549	10.2 ± 0.97			
		HepG2	1.1 ± 0.56			
	Doxorubicin (control)	HCT 116	6.86		Tong et al. (2011)	
		MCF-7	5.46			
		A549	0.84			
		HepG2	7.36			
	Deltonin	C26	48 h	1.22 ± 0.22	MTT assay	Tao et al. (2017)
		SW620	48 h	1.29 ± 0.69		
		SW480	48 h	1.30 ± 0.05		
		LOVO	48 h	2.11 ± 0.68		
	Dioscin	PC3	5.6		CCK-8 assay	Tong et al. (2014)
	Dioscin	C26	7.36			
		EAHy926	3.87			
		HUVEC	1.6			
	Dioscin	KYSE 510	5.4		MTT assay	Zhiyu et al. (2012)
	Diosgenin	A549	24 h	47		
		48 h	44			
		72 h	43			
		IC₅₀ (mg ml⁻¹)		MTT assay	Mirunalini et al. (2011)	
	Diosgenin	HEP2	0.125			
		IC₅₀ (µM)			MTS assay	Watanabe et al. (2017)
	Polyphyllin D	IMR-32	25			
		LA-N-2	20			
		NB-69	5			
Table 1 continued

Source	Compound	Cell line	Concentration (µg ml\(^{-1}\))	Assay	References
Polyphyllin I	A549		0.625	MTT assay	Kong et al. (2010)
			24 h 10.0 ± 8.7 (%)		
NCI-H460		24 h	16.9 ± 3.2 (%)		
		48 h	76.9 ± 2.8		
		72 h	84.7 ± 4.8		
SK-MES-1		24 h	68.7 ± 3.2 (%)		
		48 h	87 ± 1.5		
		72 h	93.9 ± 0.5		
		1.25 (µg ml\(^{-1}\))	24 h 39.6 ± 3.6 (%)		
			48 h 22.8 ± 9.0		
			72 h 24.5 ± 7.0		
		2.5 (µg ml\(^{-1}\))	24 h 81.2 ± 11.8 (%)		
			48 h 79.3 ± 3.4		
			72 h 87.5 ± 1.5		
		5 (µg ml\(^{-1}\))	24 h 79.3 ± 1.4 (%)		
			48 h 87.8 ± 1.2		
			72 h 93.7 ± 0.7		
		0.625 (µg ml\(^{-1}\))	24 h 27.9 ± 10.1 (%)		
			48 h 16.1 ± 7.3		
			72 h 12.9 ± 8.4		
		1.25 (µg ml\(^{-1}\))	24 h 39.6 ± 3.6 (%)		
			48 h 22.8 ± 9.0		
			72 h 24.5 ± 7.0		
		2.5 (µg ml\(^{-1}\))	24 h 60.3 ± 10.6 (%)		
			48 h 49.1 ± 7.5		
			72 h 52.1 ± 2.2		
		5 (µg ml\(^{-1}\))	24 h 81.2 ± 11.8 (%)		
			48 h 79.3 ± 3.4		
			72 h 87.5 ± 1.5		
Structure–activity correlation

Despite a vast number of papers that cite the results of cytotoxic activity of steroidal saponins only a relatively small number include some reference to potential structure–activity elationships. These are usually not fully conclusive statements resulting from the observations made on a very limited number of compounds. In the time-span covered by this review, only a few studies have been specially designed to

Table 1 continued

Source	Compound	Cell line	Concentration	Assay	References
			24 h	93.4 ± 0.6 (%)	
			48 h	88.8 ± 2.8	
			72 h	94.8 ± 0.4	
			0.625 (μg ml⁻¹)		
			24 h	14.5 ± 8.9 (%)	
			48 h	8.6 ± 4.3	
			72 h	19.3 ± 5.0	
			1.25 (μg ml⁻¹)		
			24 h	31.9 ± 8.9 (%)	
			48 h	25.3 ± 5.9	
			72 h	39.7 ± 8.4	
			2.5 (μg ml⁻¹)		
			24 h	67.8 ± 8.9 (%)	
			48 h	60.2 ± 2.7	
			72 h	71.9 ± 2.9	
			5 (μg ml⁻¹)		
			24 h	83.1 ± 3.3 (%)	
			48 h	81.2 ± 2.4	
			72 h	82.8 ± 2.2	
			10 (μg ml⁻¹)		
			24 h	80.3 ± 4.5 (%)	
			48 h	85.7 ± 0.8	
			72 h	90.8 ± 0.8	
			IC₅₀ (μg ml⁻¹)		
			24 h	0.707 ± 0.103	

Polyphyllin I

HCT-116 72 h 0.7107 ± 0.103

CCK-8 assay Yu et al. (2018b)

Human cancer cell lines: breast: BT-549, MCF-7, MDA-MB-231, MDA-MB-435, MDA-MB-468, SK-BR-3; cervix: Caski, HeLa, KB; colon: CaCo-2, COLO, DLD-1, HCT 116, HCT-15, HT-29, LOVO SW480, SW620, W480; esophagus: KYSE 510; gingival: Ca9-22; glioblastoma: SF-268, SF-295, U251, U87MG; leukemia: CCRF-CEM, HL-60, Jurkat, K562; larynx: Hep2; liver: BEL-7402, BEL-7403, BEL-7404, HLE, Hep3B, HepG2, SMMC-7721, SMMC-7221, SNU-387, WRL; lung: 95D, A549, LAC, NCI-H1299, NCI-H460, SK-MES-1; melanoma: A375, MM96L, SK-MEL, SK-MEL-2; neuroblastoma: IMR-32, LA-N-2, NB-69; ovary: OVCAR-8, SK-OV-3; pancreas: PANC-1; pharynx: 5-8F, CNE; prostate: DU145, PC-3; sarcoma: MG-63, Rh1; stomach: BGC-823, MGC-803, SGC-7901; urinary bladder: ECV-304

Animal cancer cell lines: breast: EMT6; glioblastoma: C6; lung: LL2; colon: C26; melanoma: B16; sarcoma: WEHI-164, J-774

Human normal cell lines: fibroblasts: HFF, NFF, Hs68; keratinocytes: HaCaT; kidney embryonic: HEK293; lung epithelial: MRS-5; vein endothelial: EA.hy926, HUVEC

Animal normal cell lines: cardiomyoblasts: H9c2; epidermal: JB6 P⁺Cl-41; fibroblasts: 3T3; kidney epithelial: LLC-PK1; kidney fibroblasts: VERO

NA not active
explore structure–activity correlations. These include the one by Pérez-Labrada et al. (2012a, b) who, for the purpose of their study, had synthesized twelve spirostanol glycosides differing mainly in C-ring functional groups, which influenced the lipophilicity and conformational flexibility of compounds (Pérez-Labrada et al. 2012a). These included methylene-, methoxyl-, α,β-unsaturated ketone and lactone. Two glycosylation pathways led to a series of 3,6-dipivaloylated β-D-glucosides (pivaloyl = 2,2-dimethylpropanoyl) and a series of β-chacotriosides (α-L-Rha-(1 → 2)-(α-L-Rha-(1 → 4))-β-D-Glc). The obtained compounds were analysed with respect to their cytotoxicity against the human myeloid leukemia cell line (HL-60) and benign blood cells. The results indicate that among the two glycosidic series, the one
based on a \(\beta \)-chacotrioside moiety was more potent. This activity was however greatly correlated with the rigidity of the aglycone and its hydrophobic character. From among all tested saponins, chacotriosides either with a methylene group at C-12 or no substitution in C-ring showed the highest cytotoxic potential against malignant cell line. However, their selectivity as compared to 3,6-dipivaloylated spirostanyl glucosides was much lower.

In a subsequent study by the same research group on a larger variety of synthetic spirostanol glycosides, the partially pivaloylated \(\beta \)-d-glucosides of 5\(\alpha \)-hydroxy-laxogenin were the most potent (Pérez-Labrada et al. 2012b). Comparison of the results obtained for different \(\beta \)-chacotriosides, has again confirmed that vast differences can be seen with a change in the aglycone part. Hecogenin derivative was highly cytotoxic against the tested HL-60 cell line (IC\(_{50}\) 4.3 \(\pm \) 1.0 \(\mu \)M) whereas 5\(\alpha \)-hydroxy-laxogenin \(\beta \)-cha-

cotrioside showed a complete loss of activity (IC\(_{50}\) > 100 \(\mu \)M).

Other studies in which any references to possible structure–activity relationships were made, generally indicate that both structural features of steroidal saponins, that is the nature of the aglycone and the sugar moiety, together determine their cytotoxicity.

Thirteen saponins isolated from the roots of \textit{Liriope muscari} were analysed in this respect against a fairly wide panel of cancer cell lines (MDA-MB-435, 95D, HepG2, HeLa, MCF-7 and A549) (Wu et al. 2017b). The authors were able to distinguish three groups based on the structural features of the aglycone, namely the (25S)-ruscogenin, (25R)-ruscogenin, and neoruscogenin groups. This allowed to compare the potential contribution to the cytotoxic activity of the specific configuration at C-25, either 25R, 25S or 25,27-double bond. The obtained cytotoxicity results have shown that the impact of this structural feature is related to the nature of the sugar chain. In all saponins bearing \(\beta \)-d-Glc-(1 \(\rightarrow \) 2)-[\(\beta \)-d-Xyl-(1 \(\rightarrow \) 3)]-\(\beta \)-d-Xyl or \(\beta \)-d-Glc-(1 \(\rightarrow \) 2)-[\(\beta \)-d-Xyl-(1 \(\rightarrow \) 3)]-\(\beta \)-d-Glc sugar chains at C-1, the configuration at C-25 was of no consequence in all tested cell lines. Interestingly, a different sugar chain composed of \(\beta \)-d-Glc-(1 \(\rightarrow \) 2)-[\(\beta \)-d-Ara-(1 \(\rightarrow \) 3)]-\(\beta \)-d-Fuc, together with 25R configuration seemed to have a detrimental effect on the cytotoxicity, which was observed against all the tested cell lines. Similar regularity was seen when comparing compounds with yet another sugar chains, however not in case of the whole spectrum of tested cell lines.

In another study on ten saponins from \textit{Asparagus filicinus} similar results with respect to C-25 configuration were obtained, suggesting that 25S spirostanol aglycone may be a more important structural feature (Wu et al. 2010). Another conclusion drawn from these studies refers to the sugar moiety, clearly indicating that its presence at C-23 significantly reduces the cytotoxic potential of these compounds.

Beit-Yannai et al. (2011) in their study on saponins from \textit{Balanites aegyptiaca} have seen a pronounced difference in cytotoxicity against MCF-7 human breast cancer and HT-29 human colon cancer cells between two compounds differing in only one terminal sugar (dioscin vs SAP-884—diosgenin 3-O-\(\beta \)-d-

Glc-(1 \(\rightarrow \) 4)-[\(\alpha \)-L-Rha-(1 \(\rightarrow \) 2)]-\(\beta \)-d-Glc) led the authors to postulate that terminal l-rhamnose seems to be more beneficial than d-glucose (Beit-Yannai et al. 2011). Results of their study also confirmed previous observations with regard to the general aglycone type, that furostane derivatives have lesser cytotoxic effect as compared to spirostanes.

Also Wu et al., who analysed the activity of three new saponins from \textit{Paris polyphylla} var. \textit{yunanensis} against CNE cells, concluded that the presence of F ring in steroidal saponins may be the structural feature essential for their cytotoxicity (Wu et al. 2017a).

However, a study of Kang et al. showed contradictory results against human CCRF-CEM leukemia cells. From among twenty compounds (including saponins, sapogenins and sterols) isolated from \textit{P. polyphylla}, only furostanols were active and their activity was highly potent. Both spirostanol saponins and sterols lacked any effect on this cell line (Kang et al. 2012).

In some papers included in this review the authors tried to draw conclusions referring solely to the composition and structure of the sugar moieties. This was possible when the isolated saponins differed only with respect to the sugar chain. However, the number of compounds was usually so small that it is hardly possible to consider these observations as contributing to more general statements which would be conclusive. For example, two pennogenyl saponins from \textit{Paris quadrifolia} differing in the length and number of monosaccharides were compared on a single cell line, namely HeLa. Compound bearing a sugar chain at C-3 composed of two rhamnose unit was slightly more
active than the one with single rhamnose unit (Stefanowicz-Hajduk et al. 2015).

Zolfaghari et al. (2013) in their study of four furostanol glycosides from Allium vavilovii have suggested that xylose instead of galactose and glucose instead of rhamnose seem to enhance cytotoxicity against J-744 (murine macrophage) and WEHI-164 (murine fibrosarcoma) cell lines.

Mechanisms of action

Similarly to what have been published in our previous work (Podolak et al. 2010), most of the steroidal saponins, which are discussed in the present review, triggered cell death by apoptosis stimulation, mainly on its intrinsic pathway. Other effects observed while testing steroidal saponins impact on cancer cells included the stimulation of autophagy, phagocytosis or oncosis, the inhibition of metastatic properties of the tested cells or angiogenesis.

Results of in vitro studies

Apoptosis stimulation

Lin et al. (2018) described the effect of protodioscin on human cervical cancer cells, trying to determine the molecular mechanism of the compound. The authors observed that protodioscin inhibited the viability of cervical cancer cells by stimulating apoptotic process in the cells, expressed by the up-regulation of caspases 8, 3 and 9, but also down-regulation of Bcl-2 expression. Moreover, protodioscin stimulated ROS and ER stress pathway in the examined cells and increased p38 and JNK levels. The authors suggest that protodioscin stimulated ER-stress dependent apoptosis in the human cervical cancer cells and the observed effect could be additionally mediated by the activation of JNK and p38 pathways (Lin et al. 2018). Terrestrosin D (hecogenin 3-O-β-D-Glc-(1 → 2)-[α-L-Rha-(1 → 2)]-β-D-Glc) and PS2 (penogenin 3-O-α-L-Rha-(1 → 4)-α-L-Rha-(1 → 4)-[α-L-Rha-(1 → 2)]-β-D-Glc) markedly inhibited cell viability in HepG2, MCF-7 and PC-3 cells. The two compounds also induced apoptosis and caused cell cycle arrest in HepG2 cells affecting multiple targets, including mitochondrial caspase-dependent and independent pathway, cyclin-dependent kinase 1 activation or PI3K/Akt signalling (Long et al. 2015). In another study P. polyphylla steroidal saponins decreased the viability of human lung cancer A549 cells through both apoptosis and autophagy, with the activation of caspase-8 and 3 and PARP cleavage for the former, and up-regulation of Beclin 1 and conversion from LC3 I to LC3 II for the latter process, respectively (He et al. 2014). For the same cell line, A549, an apoptosis inducement was described as the effect of a treatment with novel steroidal saponin cholestanol glucoside CG. The compound had cytotoxic effect also in PC-3 and HepG2 cells, but A549 cell line was most susceptible, with the observed ROS generation inducement and the loss of mitochondrial membrane permeability (Valayil et al. 2016). Similar effect of ROS accumulation was also described for aspafilioside B (sarsasapogenin 3-O-β-D-Xyl-(1 → 4)-[α-L-Ara-(1 → 6)]-β-D-Glc), isolated from Asparagus filicinus. The compound additionally inhibited both viability and proliferation of HepG2 cells, by arresting the cells in G2 phase and stimulating apoptosis. The underlying mechanism included up-regulation of H-Ras and N-Ras proteins, c-Raf phosphorylation and the activation of ERK and p38. Interesting proapoptotic mechanism was recently proposed for a sapogenin–diosgenin by Chen et al. (2018). The compound was found to inhibit TAZ, one
of the transcription co-activators in Hippo signalling pathway, which may play a role as an oncogenic factor in the cells. Diosgenin also inhibited the growth and migration of human liver cancer cells (Chen et al. 2018). Its widely known glycoside—dioscin exerted rare mechanism of proapoptotic activity by triggering both intrinsic (loss of mitochondrial membrane potential, activation of tBid and Bak proteins) and extrinsic (up-regulation of death ligands and receptors) apoptosis pathways in human leukemia cells. Additionally, the compound induced the differentiation of promyelocytes to granulocytes and monocytes (Chan et al. 2018).

Oncosis stimulation

Oncosis is a non-apoptotic cell death mode, manifested as marked cell swelling, coagulation of the cytoplasma and alterations in cell cytoskeleton elements, noted within a short time after the application of the tested substance. The only report describing oncosis stimulation for steroidal saponins was published by Sun et al. (2011) for solamargine (solasodine 3-O-α-L-Rha-(1 → 2)-α-L-Rha-(1 → 4)-β-D-Glc)—a steroidal alkaloid glycoside in human K562 leukemia and KB squamous carcinoma cells. The authors suggested that compound initiated cell membrane blebbing, the increase in cytoplasm volume and also disrupted microtubules and actin filaments within the tested cells (Sun et al. 2011).

Angiogenesis inhibition

Terrestrosin D isolated from T. terrestris effectively inhibited viability of HUVEC cells and also induced cell cycle arrest and apoptosis in the cells, which suggests its antiangiogenic potential in vitro (Wei et al. 2014). Similar observations were made for ASC (diosgenin 3-O-[2-O-acetyl-α-L-Rha-(1 → 2)]-β-D-Xyl-(1 → 4)-[β-D-Glc], a steroidal saponin from Ophiopogon japonicus, which markedly inhibited the proliferation of HUVEC cells and induced G2/M phase arrest in the cells by decreasing the expression of cdc2 and cyclin B1. The compound also significantly inhibited the invasive potential of the examined cells in transwell migration and tube formation assays. Moreover, ASC was found to be a strong inhibitor of Src/Akt/mTOR-dependent metalloproteinases pathway, which may explain its antiangiogenic properties (Zeng et al. 2015). Antiangiogenic properties were also described for another compound from the O. japonicus, ophiopogonin T (26-O-β-D-Glc (25R)-furost-5-ene-1β,3β,22β,26-tetraol 1-O-β-D-Xyl-(1 → 3)-[α-L-Rha-(1 → 2)]-β-D-Fuc), which inhibited tube formation of HUVEC cells (Lee et al. 2016).

Metastasis inhibition

Ophiopogonin D (25(R)-ruscogenin 1-O-α-L-Rha-(1 → 2)-[β-D-Xyl-(1 → 3)]-β-D-Fuc) isolated from O. japonicus significantly decreased not only the proliferation of MDA-MB-435 melanoma cells, but also decreased the cell invasion properties, probably through the inhibition of the MMP-9 matrix metalloproteinase expression and suppression of the p38/MAPK pathway. The compound inhibited also the adhesion of melanoma cells to human umbilical vascular endothelial cells and fibronectin (Zhang et al. 2015). An interesting explanation for the antiinvasive potential was proposed for dioscin in the experiment on murine B16 melanoma cells. The compound significantly affected the transcription and translation of connexin 43 via retinoid acid signalling pathway and at the same time enhanced the transporting function of connexin 43. Additionally, dioscin increased the secretion of pro-inflammatory interleukines 6 and 1β and TNFα, but also the increase in phagocytic activity of tumor-associated macrophages was observed (Kou et al. 2017).

Multidrug resistance decreasing

Interesting study was described by Wang et al. on the potential of steroidal saponin from Trillium tschonoskii in reversing multidrug resistance (MDR) in hepatocellular carcinoma cells (Wang et al. 2013a). The compound not only reversed MDR in the cells but also enhanced the chemosensitization of the cells to doxorubicin, demonstrated as the significant decrease in IC50 value for the anticancer drug. Moreover, the compound suppressed the P-glucoprotein expression in the drug resistant cells, which led to the accumulation of doxorubicin inside the cells, and also blocked the expression of some genes coding multidrug resistance (Wang et al. 2013a).
Results of in vivo studies

Only a small number of papers describe the in vivo effects of steroidal saponins. In one of them, after 35 days of intraperitoneal administration of 10, 50 or 100 mg kg\(^{-1}\) daily of macrostemonoside A to BALB/c nude mice (with SW480 cells injected s.c.), a significant decrease in tumor volume and weight was noted (Wang et al. 2013c). Similar effect was described by Wei et al. (2014) for terrestrocin D, a steroidal saponin isolated from \textit{T. terrestris}. The compound at the doses of 25 or 50 mg kg\(^{-1}\) was administered 3 times a week for 4 weeks to BALB/c nude mice bearing PC-3 prostate cancer cells and reduced the tumor growth when compared to the control animals. Moreover, no toxic effect was noted during the treatment. Another steroidal saponin, aspafilioside B, significantly inhibited tumor growth in nude mice bearing HepG2 human hepatocellular carcinoma cells, when administered in 5 and 10 mg kg\(^{-1}\) doses. Further analysis indicated the increase in the expression of H-Ras and N-Ras signalling proteins in the tumor cells obtained from aspafilioside B treated animals. Moreover, no side effects were observed during treatment in terms of haematological or histopathological parameters. In a similar study, dioscin revealed significant anti-metastatic effects, activating the expression of a gap junction protein connexin 43 both in metastatic lung nodes and in situ tumor animal models (Kou et al. 2017). An interesting experiment was described by Chen et al. (2016) on the effect of dioscin aglycone—diosgenin on benign prostate hyperplasia in rats (Chen et al. 2016). After 3 weeks of administration the compound at the doses of 50 and 100 mg kg\(^{-1}\) significantly decreased prostate index and PSA level but also improved the pathological changes of the prostate in the treated animals. Moreover, diosgenin down-regulated the expression of Bcl-2 and up-regulated that of Bax and p53 in the treated animals, which suggests the efficacy of the compound in the treatment of prostate enlargement. Interesting antiangiogenic properties of ASC, isolated from \textit{O. japonicus}, were described in matrigel plug in vivo assay. The compound significantly inhibited the formation of new blood vessels and decreased the number of the cells with the expression of PECAM-1, cell adhesion molecule, but also the number of MMP-2, MMP-9 and VEGF positive cells (Zeng et al. 2015).

Compounds with a potential as future anti-cancer therapeutic agents

Several reports indicate that some saponins/sapogenins can be considered as potential candidates for cancer treatment. In many studies on human cancer cell lines of different origin they displayed significant in vitro and in vivo activities through different signaling pathways associated with cell cycle. What is most important, apart from direct cytotoxic effect these compounds revealed also other activities, for example anti-inflammatory, that may be of importance in order to obtain the multidirectional therapeutic effect in cancer treatment. The authors of the present review have chosen five compounds: diosgenin, dioscin, polyphyllin I, paris saponin II, and timosaponin III, which, in our opinion have some interesting features, that make them especially promising for future development as anticancer agents. All selected saponins, except timosaponin AIII, share a common structural feature that is the same sapogenin—diosgenin as well as the presence of one branched sugar chain. It is noteworthy that this sapogenin itself can be considered as a potential lead compound for future development. Below, a short summary of the most interesting data referring to complex mechanisms of action is provided. Moreover, the results of the studies referring to their mechanisms of action at the molecular level, that were published in years 2010–2018 are summarized in details in Table S2 (Tab. S2)—see supplementary material. The structures of selected compounds are presented on Fig. 3.

\textit{Diosgenin} (3β,25R)-spirost-5-en-3-ol, was discovered for the first time in \textit{Dioscorea tokoro} in 1935 (Chen et al. 2015). Since then it has been found in numerous plants of several genera: \textit{Dioscorea}, \textit{Costus}, \textit{Smilax}, \textit{Paris}, \textit{Alteris}, \textit{Allium}, \textit{Helicteres}, \textit{Trillium}, and \textit{Trigonella} (Sethi et al. 2018; Sobolewska et al. 2016; Deshpande and Bhalsing 2014–2015). Diosgenin exerts different pharmacological activities: hypolipemic, neuroprotective, gastro- and hepatoprotective (Jesus et al. 2016; Sethi et al. 2018). Of current interest are its anti-proliferative properties as well as anti-inflammatory effects.

Multiple molecular targets of this sapogenin are noteworthy. It is able to modulate various oncogenic processes (cancer cells proliferation, migration, apoptosis), inhibit angiogenesis, reverse multi-drug resistance in cancer cells and sensitize cancer cells to
Fig. 3 Chemical structures of some of the promising anticancer steroidal saponins/sapogenins
Diosgenin was suggested to be a good candidate for lung cancer therapy as an inhibitor of hTERT gene expression (Rahmati-Yamchi et al. 2013). Its activity against lung cancer cell line A549 was time- and dose-dependent, with the best effect after 72 h. The compound revealed also antimetastatic potential, which was observed for example on breast cancer cell line MDA-MB-231 (He et al. 2014). A significant suppression of cell migration was seen at the concentration as low as 5 μM, after only 24 h of incubation, without affecting cell proliferation. Moreover, except from downregulation of STAT3 signaling pathway and the inhibition of human hepatocellular carcinoma cells proliferation, diosgenin also potentiated paclitaxel and doxorubicin apoptotic effects (Li et al. 2010). This synergistic effect may be of special importance for further studies of this compound. Diosgenin also downregulated the peroxidation reaction and enhanced the indigenous antioxidant defense system in female rats with NMU-induced mammary cancer (Jagadeesan et al. 2012). As cancer is often related to the hyperactivity of free radicals, this activity profile completes and expands the direct impact of diosgenin on cancer cells.

Dioscin Diosgenin 3-O-α-L-Rha-(1→4)-α-L-Rha-(1→2)-β-D-Glc, is a spirostanol saponin found mostly in Dioscorea species; and also in other genera such as Allium, Polygonatum, and Smilax (Sobolewska et al. 2016; Rani et al. 2012; Xu et al. 2016; Wang et al. 2001; Tian et al. 2017). Dioscorea nipponica and Dioscorea zingiberensis are especially good sources of dioscin and provide raw material for the synthesis of steroid hormone drugs. Many pharmacological studies described antimicrobial, lipid-lowering, hepatoprotective, and anti-allergic activities of dioscin (Cho et al. 2013; Kwon et al. 2003; Tao et al. 2018). A large number of experimental data have confirmed not only its direct cytotoxicity towards cancer cells but also anti-inflammatory and immunoregulatory activities that may contribute to the widely reported anti-tumor effect (Tao et al. 2018; Wu et al. 2015).

Numerous studies were focused on the possible mechanism of antitumor activity of dioscin (Tab. S2). The compound was found to inhibit cancer cell viability via different pathways: G2/M cell arrest, induction of apoptosis and autophagy, downregulation of anti-apoptotic proteins, induction DNA damage mediated by ROS (Xu et al. 2016). Dioscin treatment increased cellular apoptosis in ovarian cancer SK-OV-3 cells in a dose-dependent manner. At the concentrations of 2.5 or 5 μM it significantly decreased PI3K and phosphorylated (p)-AKT, VEGFR2 protein expression compared with the non-treated control group, and induced expression of p-p38 protein (Guo and Ding 2018). Dioscin induced apoptosis in SGC-7901 cells in a dose-dependent manner (Hu et al. 2011). It was more active than hCPT (IC50 of 1.2 μg ml⁻¹ and IC50 of 25.2 μg ml⁻¹, respectively).

Paris saponin II (PSII, formosanin C) Diosgenin 3-O-α-L-Rha-(1→4)-α-L-Rha-(1→4)-α-L-Rha-(1→2)-β-D-Glc is one of the main active components of *Paridis rhizoma* obtained from *P. polyphylla* var. yunnanensis and *P. polyphylla* var. chinensis. This saponin was reported also in other *Paris* sp., as well as in *Cestrum*, *Allium*, *Ypsilandra*, and *Dioscorea* species (Xia et al. 2016; Ribeiro et al. 2016a, b; Sobolewska et al. 2006). With respect to the mechanisms underlying its cytotoxic activity it was found that paris saponin II induced apoptosis via activation of caspase 2, S-phase arrest, and suppressed expression of metalloproteinases MMP-1, -2, and -9 (Li et al. 2014; Man et al. 2011). Intraperitoneal administration of formosanin C at 15 and 25 mg kg⁻¹ in a xenograft mouse model of ovarian cancer led to a 46% and 70% tumor growth inhibition, respectively (Xiao et al. 2012). It is noteworthy that a combination of PSII and curcumin exerted synergic anti-cancer activity on different lung cancer cells, revealed as the increase in the cellular uptake and the bioavailability of both compounds (Man et al. 2018). Additionally, formosanin C showed immunomodulatory activity when given intraperitoneally to mice. The compound activated natural killer cells and induced interferon production (Wu et al. 1990), what can be considered as another aspect of multitargeted anticancer treatment.

Polyphyllin I (PPI) Diosgenin 3-O-α-L-Rha-(1→2)-[α-L-Ara-(1→4)]-β-D-Glc, is a spirostanol saponin isolated from the rhizomes of *P. polyphylla*. Polyphyllin I significantly suppressed in vitro proliferation of A549, NCI-H460 and SK-MES-1 cell lines with significantly low values of IC50 1.24, 2.40, and 2.33 μg ml⁻¹, respectively and the tumor growth of A549 cells in the nude mice (Kong et al. 2010). PPI inhibited also the vasculogenic mimicry formation in both hepatocellular carcinoma cell lines (HCC) and...
xenografts of HCC (Xiao et al. 2018). The activity of PPI against osteosarcoma was examined both in vitro and in vivo, with interesting results. The compound was found to suppress in vitro growth of osteosarcoma 143-B and HOS cells, as well as the primary cells from a osteosarcoma patient and, what is more important, inhibited in vivo intratibial primary tumor growth in xenograft orthotopic mouse model. Moreover, it induced cell apoptosis, cell cycle arrest and inhibited the invasion and migration of osteosarcoma cells (Chang et al. 2017). Other interesting effects were obtained in the studies on concomitant administration of PPI with other compounds, including currently used chemotherapeutics. The combination of polyphyllin I and paris saponin II showed synergistic anti-tumor activity on HepG2 cells. Both compounds inhibited liver cancer growth through the induction of apoptosis, G1 phase arrest and inhibition of the cellular migration (Liu et al. 2016a). It was shown that the combined treatment of PPI and erlotinib resulted in the strengthened drug response and prolonged survival of lung cancer patients (Lou et al. 2017).

Timosaponin AIII (TAIII) Sarsasapogenin 3-O-β-D-Glc-(1 → 2)-β-D-Gal, was isolated by Kawasaki et al. in 1963 (Kawasaki and Yamauchi 1963; Kawasaki et al. 1963). It is the main active ingredient of the rhizomes of *Anemarrhena asphodeloides*. The compound exerts a wide range of pharmacological effects including anti-inflammatory, antiplatelet, antithrombotic, anti-diabetic, anti-depressant, improving learning and memory deficits activities (Han et al. 2018; Cong et al. 2016). In recent years, it was found that timosaponin AIII is a promising compound that inhibits the growth of a variety of tumor cells. In different studies it was reported that TAIIM may induce autophagy in cancer cells followed by apoptotic cell death, cell cycle arrest in the G0/G1 and G2/M phases, and suppresses HGF-induced invasiveness of cancer cells (Sy et al. 2008; Huang et al. 2015).

Summary

A large number of experimental data that are published each year on antitumor potential of steroidal saponins and their interesting results indicate that these natural compounds are considered to be valuable research targets in the process of development of novel chemotherapeutics for human cancers. Similarly to previous years, the majority of experiments were performed in in vitro conditions with a relatively small number of compounds to enter in vivo studies. Assays performed on human cancer-derived cell lines were definitely predominant over animal cell models. Interestingly several cell lines were used most widely and the pool of experimental data is therefore more conclusive. These include: HepG2—human hepatocellular carcinoma, MCF-7—human breast adenocarcinoma, and A549—human lung adenocarcinoma. Based on the studies summarized in this review (see Tab. 1), it can be seen that the analyzed steroidal saponins/sapogenins revealed a differentiated cytotoxic effect. It is worth noting, however, that tests in which normal cell lines were included in the study accounted for only about 4% of all assays conducted on human cell lines. In addition, simultaneous studies on the cytotoxic activity of a given compound on cancer cells and normal cells derived from the same organ or tissue were extremely rare. Thus, it is difficult to draw more general conclusions with regard to selectivity of steroidal saponins towards cancer cells. Similarly, studies relevant to structure–activity relationships are lacking. It is noteworthy that some species containing steroidal saponins have been more frequently evaluated as sources of cytotoxic compounds in comparison to other, three of them were especially extensively analysed: *A. asphodeloides*, *P. polyphylla* var. *yunanensis*, and *O. japonicus*.

Several compounds, such as diosgenin, dioscin, paris saponin II, polyphyllin I, and timosaponin AIII seem to be specially promising as candidates for future antitumor agents. Not only their activity has been confirmed by numerous studies, but also these compounds are easily accessible for isolation being present in substantial amounts in several plant species. All of them have revealed multidirectional mechanisms of cytotoxicity as well as other effects, e.g. anti-inflammatory, that may contribute to the overall antitumor activity. Moreover, they were effective not only in in vitro assays, but also in animal models and in most cases a significant reduction in tumor size and angiogenesis was seen, especially with respect to prostate, breast, and lung cancers, of which non-small lung cancer seems to be most susceptible. Further studies on steroidal saponins with respect to their anticancer potential are certainly needed and worth continuing with more attention paid to compound...
selectivity and synergistic effects of combinations with currently applied chemotherapeutics.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdel-Sattar E, Farag MA, Mahrous EA (2015) Chemical constituents from Solanum glabratum Dunal var. sepicula. Rec Nat Prod 9(1):94–104
Acharya D, Mitaine-Offer A-C, Kaushik N et al (2010) Steroidal saponins from Chlorophytum orchidastrum. J Nat Prod 73(1):7–11
Barnett D, Dean PW, Hart RJ et al (1988) Determination of contents of steroidal saponins in starfish tissues and study of their biosynthesis. Comp Biochem Phys Part B Comp Biochem 90(1):141–145
Beit-Yannai E, Ben-Shabat S, Goldschmidt N et al (2011) Antiproliferative activity of steroidal saponins from Balanites aegyptiaca—an in vitro study. Phytochem Lett 4(1):43–47
Bhuvalnalakshmi G, Basappa Rangappa KS et al (2017) Breast cancer stem-like cells are inhibited by diosgenin, a steroidal saponin, by the attenuation of the Wnt β-catenin signaling via the Wnt antagonist secreted frizzled related protein-4. Front Pharmacol 8:124
Böttger S, Hofmann K, Melzig MF (2012) Saponins can perturb biologic membranes and reduce the surface tension of aqueous solutions: a correlation? Bioorg Med Chem 20(9):2822–2828
Challinor VL, De Voss JJ (2013) Open-chain steroidal glycosides, a diverse class of plant saponins. Nat Prod Res 30(3):429–454
Challinor VL, Parsons PG, De Voss JJ (2012) Steroidal saponins from the roots of Smilax sp.: structure and bioactivity. Steroids 77(5):504–511
Chan SH, Liang PH, Guh JH (2018) An integrated approach to elucidate signaling pathways of dioscin-induced apoptosis energy metabolism and differentiation in acute myeloid leukemia. Naunyn Schmiedebergs Arch Pharmacol 391(6):587–602
Chang J, Li Y, Wang X et al (2017) Polyphyllin I suppresses human osteosarcoma growth by inactivation of Wnt/β-catenin pathway in vitro and in vivo. Sci Rep 7:7605

Chen P-S, Shih Y-W, Huang H-C et al (2011a) Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by ceding matrix metalloproteinases expression. PLoS 6(5):e20164
Chen P-Y, Chen C-H, Kuo C-C et al (2011b) Cytotoxic steroidal saponins from Agave sisalana. Planta Med 77(9):929–933
Chen Y, Tang Y-M, Yu S-L et al (2015) Advances in the pharmacological activities and mechanisms of diosgenin. Chin J Nat Med 13(8):578–587
Chen J, Zhang H-F, Xiong C-M et al (2016) Inhibitory effect of diosgenin on experimentally induced benign prostatic hyperplasia in rats. J Huazhong Univ Sci Technolog Med Sci 36(6):806–810
Chen Z, Xu J, Wu Y et al (2018) Diosgenin inhibited the expression of TAZ in hepatocellular carcinoma. Biochem Biophys Res Commun 503(3):1181–1185
Cho J, Choi H, Lee J et al (2013) The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim Biophys Acta 1828:1153–1158
Chu C, Cui T, Li S et al (2018) Structure and activity of a new sapogenin from Chlorophytum laxum R. Br. Chem Res Chin Univ 34(5):732–735
Cong Y, Wang L, Peng R et al (2016) Timosaponin AIII induces antiplatelet and antithrombotic activity via Gq-mediated signaling by thromboxane A2 receptor. Sci Rep 6:38757
Deshpande HA, Bhalsing SR (2014–2015) Plant derived novel biomedical: diosgenin. Int J Pharmacogos Phytochem Res 497(4):1129–1134
Duan C-L, Li Y-J, Li P et al (2010) Spirostanol sapogenins from the fibrous roots of Ophiopogon japonicus (Thunb.) Ker-Gawl. Helv Chim Acta 93(2):227–232
Duan C-L, Li Y-J, Wang F-Y et al (2018) New steroidal glycosides from the fibrous roots of Ophiopogon japonicus. J Asian Nat Prod Res 20(8):744–751
Eskander J, Sakka OK, Harakat D et al (2013) Steroidal sapogenins from the leaves of Yucca de-smetiana and their in vitro antitumor activity: structure activity relationships through a molecular modeling approach. Med Chem Res 22(10):4877–4885
Esposito D, Munafò JP Jr, Lucibello T et al (2013) Steroidal glycosides from the bulbs of Easter lily (Lilium longiflorum Thunb.) promote dermal fibroblast migration in vitro. J Ethnopharmacol 148(2):433–440
Faizal A, Geelen D (2013) Saponins and their role in biological processes in plants. Phytochem Rev 12:877–893
Fouedjou RT, Teppono RB, Quassinti L et al (2014) Steroidal saponins from the leaves of Cordyline fruticosa (L.) A. Chev. and their cytotoxic and antimicrobial activity. Phytochem Lett 7:62–68
Gajduś J, Kaczyński Z, Kawiak A et al (2014) Isolation and identification of cytotoxic compounds from the rhizomes of Paris quadrifolia L. Pharmacogn Mag 10(38):S324–S333
Gergely JE, Dorsey AE, Dimri GP et al (2018) Timosaponin A-III inhibits oncogenic phenotype via regulation of PcG protein BMI1 in breast cancer cells. Mol Carcinog 57(7):831–841

Ghaly NS, Nabil M, Miyase T et al (2014) Steroidal saponins from the roots of Dracaena marginata tam. Pharm Lett 6(2):132–141

Gu L, Feng J, Xu H et al (2013) Polyphyllin I inhibits proliferation of metastasis of ovarian cancer cell line HO-8910PM in vitro. J Trad Chin Med 33(3):325–333

Guo X, Ding X (2018) Dioscin suppresses the viability of ovarian cancer cells by regulating the VEGFR2 and PI3K/AKT/ MAPK signaling pathways. Oncol Lett 15(6):9537–9542

Guo J, Xu C, Xue R (2015) Cytotoxic activities of chemical constituents from rhizomes of Anemarrhena asphodeloides and their analogues. Arch Pharm Res 38:598–603

Hamid AA, Aiyelaagbe OO, Negi AS et al (2016) Bioguided isolation and antiproliferative activity of constituents from Smilax korthalsii A.D.C. leaves. J Chin Chem Soc 63:562–571

Han W, Hou G, Liu L (2015) Polyphyllin I (PPI) increased the protein BMI1 in breast cancer cells. Mol Carcinog 57(7):831–841

Han F-Y, Song X-Y, Chen J-J et al (2018) Timosaponin A-III inhibits oncogenic phenotype via regulation of PcG protein BMI1 in breast cancer cells. Phytomedicine 21:871–876

Huang H-L, Chiang W-L, Hsiao P-C et al (2015) Timosaponin inhibits migration and invasion of A549 human non-small-cell lung cancer cells via attenuations of MMP-2 and MMP-9 by inhibitions of ERK1/2, Src/FAK and β-catenin signaling pathways. Bioorg Med Chem Lett 26(16):3963–3967

Kang Y-J, Chung H-J, Nam J-W et al (2011) Cytoxic and antineoplastic activity of timosaponin A-III for human colon cancer cells. J Nat Prod 74(4):701–706

Kang L-P, Liu Y-X, Eichhorn T et al (2012) Polyhydroxylated steroidal glycosides from Paris polyphylla. J Nat Prod 75(6):1201–1205

Kawasaki T, Yamauchi T (1963) Saponins of timo (Anemarrhena rhizoma). II. Structure of timosaponin A-III. Chem Pharm Bull 11(10):1221–1224

Kawasaki T, Yamauchi T, Itakura N (1963) Saponins of timo (Anemarrhena rhizoma). I. Yakugaku Zassi 83:892–896

Kicha AA, Ivanchina NV, Huong TTT et al (2010) Two new asteroxasapons, archasterosides A and B, from the Vietnamese starfish Archaster typicus and their antitumor properties. Bioorg Med Chem Lett 20(12):3826–3830

Kim DS, Jeon BK, Lee YE et al (2012) Diosgenin induces apoptosis in HepG2 cells through generation of reactive oxygen species and mitochondrial pathway. Evid Based Complement Alternat Med 2012:981675

Kim CS, Oh JY, Choi SU et al (2013) Chemical constituents from the roots of Cynanchum paniculatum and their cytotoxic activity. Carbohydr Res 381:1–5

Kim KM, Im A-R, Kim SH et al (2016) Timosaponin AIII inhibits melanoma cell migration by suppressing COX-2 and in vivo tumor metastasis. Cancer Sci 107:181–188

Kirmizibekmez H, Masullo M, Festa M et al (2014) Steroidal glycosides with antiproliferative activities from Digitalis trojana. Phytother Res 28:534–538

Kong M, Fan J, Dong A et al (2010) Effects of polyphyllin I on growth inhibition of human non-small lung cancer cells and in xenograft. Acta Biochim Biophys 42:827–833

Kou Y, Ji L, Wang H et al (2017) Connexin 43 upregulation by dioscin inhibits melanoma progression via suppressing malignancy and inducing M1 polarization. Int J Cancer 141(8):1690–1703

Kougan GB, Miyamoto T, Tanaka C et al (2010) Steroidal saponins from two species of Dracaena. J Nat Prod 73(7):1266–1270

Kwon C-S, Sohn HY, Kim SH et al (2003) Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents. Biosci Biotechnol Biochem 67(7):1451–1456

Lanzotti V (2005) Bioactive saponins from Allium and Aster plants. Phytochem Rev 4(2–3):95–100

Lee SR, Han J-Y, Kang HR et al (2016) A new steroidal saponin from the tubers of Ophiopogon japonicus and its protective effect against cisplatin-induced renal cell toxicity. J Braz Chem Soc 27(4):706–711

Lepage C, Liagre B, Cook-Moreau J et al (2010) Cyclooxygenase-2 and 5-lipoxygenase pathways in diosgenin-induced pathway in chronic myeloid leukemia cells. Phytomedicine 23:243–252

Jing S-S, Wang Y, Li X-J et al (2017) Chemical constituents from Paris thibetica and their antitumor activities. Chin Trad Herb Drugs 48(6):1093–1098

Jung O, Lee J, Lee YJ et al (2016) Timosaponin AIII inhibits migration and invasion of A549 human non-small-cell lung cancer cells via attenuations of MMP-2 and MMP-9 by inhibitions of ERK1/2, Src/FAK and β-catenin signaling pathways. Bioorg Med Chem Lett 26(16):3963–3967
apoptosis in HT-29 and HCT-116 colon cancer cells. Int J Oncol 36:1183–1191

Lepage C, Léger DY, Bertrand J et al (2011) Diosgenin induces death receptor-5 through activation of p38 pathway and promotes TRAIL-induced apoptosis in colon cancer cells. Cancer Lett 301:193–202

Li F, Fernandez PP, Rajendran P et al (2010) Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett 292(2):197–207

Li N, Zhang L, Zeng K et al (2013) Cytotoxic steroidal saponins from *Ophiopogon japonicus*. Steroids 78(1):1–7

Li Y, Man S, Li J et al (2014) The antitumor effect of formosanin C on HepG2 cell as revealed by 1H-NMR based metabolic profiling. Chem Biol Interact 220:193–199

Li Y, Wang X, He H et al (2015) Steroidal saponins from the roots and rhizomes of *Tupistra chinensis*. Molecules 20(8):13659

Li L, Wu J, Zheng F et al (2016) Inhibition of EZH2 via activation of SAPK/JNK and reduction of p65 and DNMT1 as a novel mechanism in inhibition of human lung cancer cells by polyphyllin I. J Exp Clin Canc Res 5:112–124

Li G-B, Fu R-Q, Shen H-M et al (2017) Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget 8(6):10359–10374

Liang F, He J-W, Zhu G-H et al (2016) New steroidal saponins with cytotoxic activities from *Smilax trinervula*. Phytochem Lett 16:294–298

Lim W-Ch, Kim H, Kim Y-J et al (2017) Dioscin suppresses epithelial-mesenchymal transition suppression in HepG2 cells. Chem Biol Interact 220:193–199

Lin C-L, Lee C-H, Chen C-M et al (2018) Protodioscin induces apoptosis through ROS-mediated endoplasmic reticulum stress via the JNK/p38 activation pathways in human cervical cancer cells. Cell Physiol Biochem 46:322–334

Liu C-X, Guo Z-Y, Xue Y-H et al (2012a) Five new furostanol saponins from the rhizomes of *Tupistra chinensis*. Fitoterapia 83(2):323–328

Liu C-X, Guo Z-Y, Xue Y-H et al (2012b) Tupisteroid A–C, three new polyhydroxylated steroidal constituents from the roots of *Tupistra chinensis*. Magn Res Chem 50(4):320–324

Liu X, Zhang H, Niu X-F et al (2012c) Steroidal saponins from *Smilacina japonica*. Fitoterapia 83(4):812–816

Liu J, Man S, Liu Z et al (2016a) A synergistic antitumor effect of polyphyllin I and formosanin C on hepatocarcinoma cells. Bioorg Med Chem Lett 26:4970–4975

Liu W, Ning R, Chen R-N et al (2016b) Asparlifloride B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells. Mol Carcinog 55(5):440–457

Liu J, Zhang Y, Chen L et al (2017a) Polyphyllin I induces G2/M phase arrest and apoptosis in U251 human glioma cells via mitochondrial dysfunction and the JNK signaling pathway. Acta Biochim Biophys Sin 49(6):1–8

Liu X, Liang J, Pan L-L et al (2017b) Six new furostanol glycosides from *Smilax glauco-china* and their cytotoxic activity. J Asian Nat Prod Res 19(8):754–765

Liu X, Sun Z, Deng J et al (2018a) Polyphyllin I inhibits invasion and epithelial-mesenchymal transition via CIP2A/PP2A/ERK signaling in prostate cancer. Int J Oncol 53(3):1279–1288

Liu Y, Wang M, Liu K et al (2018b) New steroidal saponins from the rhizomes of *Paris vietnamensis* and their cytoxicity. Molecules 23(3):588

Long FY, Chen YS, Zhang L et al (2015) Pennogenyl saponins induce cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. J Ethnopharmacol 162:112–120

Lou W, Chen Y, Zhu K et al (2017) Polyphyllin I overcomes EMT-associated resistance to erlotinib in lung cancer cells via IL-6/STAT3 pathway inhibition. Biol Pharm Bull 40:1306–1313

Lu Y, Chen C-X, Ni W et al (2010) Spirostanol tetraglycosides from *Ypsilandra thibetica*. Steroids 75(12):982–987

Lu Y, Luo J, Kong L (2011) Steroidal alkaloid saponins and steroidal saponins from *Solanum surattense*. Phytochemistry 72(7):668–673

Luo Q, Yang D, Qi Q et al (2018) Role of the death receptor and endoplasmic reticulum stress signaling pathways in polyphyllin I-regulated apoptosis of human hepatocellular carcinoma HepG2 cells. Biomed Res Int 2018:5241941

Lv L, Zheng L, Dong D et al (2013) Dioscicin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: a potential new drug for treatment of glioblastoma multiforme. Food Chem Toxicol 59:657–669

Mai NT, Cuc NT, Anh HLT et al (2017) Steroidal saponins from *Datura metel*. Steroids 121:1–9

Man S, Gao W, Zhang Y et al (2011) Formosanin C-inhibited pulmonary metastasis through repression of matrix metalloproteinases on mouse lung adenocarcinoma. Cancer Biol Ther 11(6):592–598

Man S, Zhang L, Cui J et al (2018) Curcumin enhances the antitumor effect of formosanin C in human lung cancer cells. Int J Mol Sci 21:12458

Manase MJ, Mitaine-Offer A-C, Pertuit D et al (2012) Effect of diosgenin—a plant steroid on lipid peroxidation and antioxidant status in human laryngeal carcinoma cells (Hep2). Int J Pharm Sci 3(4):94–100
Mosad RR, Ali MH, Ibrahim MT et al (2017) New cytotoxic steroidal saponins from Cestrum parqui. Phytochem Lett 22:167–173

Nakamura O, Mimaki Y, Sashida Y et al (1993) Agapanthussaponins A-D, new potent cAMP phosphodiesterase inhibitors from the underground parts of Agapanthus inapertus. Chem Pharm Bull 41(10):1784–1789

Nie C, Zhou J, Qin X et al (2016) Diosgenin–induced autophagy and apoptosis in a human prostate cancer cell line. Mol Med Rep 14(4):4349–4359

Ning Z, Li Y, Zhang R (2010) Effects of methyl protodioscin on [Ca2+]i and ATPase activity in cardiomyocytes and analysis of mechanisms. Zhongguo Zhong Yao Za Zhi 35(1):80–83

Pan Z-H, Li Y, Liu J-L et al (2012) A cytotoxic cardenolide and a saponin from the rhizomes of Tupistra chinensis. Fitoterapia 83(8):1489–1493

Park JE, Woo KW, Choi SU et al (2014) Two new cytotoxic spirostan-steroidal saponins from the roots of Bletilla striata. Helv Chem Acta 97(1):56–63

Pérez-Labrada K, Brouard I, Estévez S et al (2012a) Effect of C-ring modifications on the cytotoxicity of spirostan saponins and related glycosides. Bioorg Med Chem 20(14):4522–4531

Pérez-Labrada K, Brouard I, Estévez S et al (2012b) New insights into the structure–cytotoxicity relationship of spirostan saponins and related glycosides. Bioorg Med Chem 20(8):2690–2700

Podolak I, Galanty A, Sobolewska D (2010) Saponins as cytotoxic agents: a review. Phytochem Rev 9:425–474

Poudel B, Lim S-W, Ki H-H et al (2014) Dioscin inhibits hTERT gene expression in the A549 cells and modulates fat accumulation in obese mice. Int J Mol Med 34:1401–1408

Qin X-J, Yu M-Y, Ni W et al (2016) Steroidal saponins from stems and leaves of Paris polyphylla var. yunnanensis. Phytochemistry 121:20–29

Qin X-J, Si Y-A, Chen Y et al (2017) Cytotoxic steroidal saponins from Trillium kamtschaticum. Bioorg Med Chem Lett 27:2267–2273

Qin X-J, Xi C-X et al (2018) Seeing the light: shifting from wild rhizomes to extraction of active ingredients from above-ground parts of Paris polyphylla var. yunnanensis. J Ethnopharmacol 224:134–139

Rahman SU, Ismail M, Khurram M et al (2017) Bioactive steroidal and saponins of the genus Trillium. Molecules 22:2156

Rahmati-Yamchi M, Ghareghomi S, Haddadchi G et al (2013) Diosgenin inhibits hTERT gene expression in the A549 lung cancer cell line. Asian Pac J Cancer Prev 14(11):6945–6948

Rani AS, Sulakshana G, Patnaik S (2012) Costus speciosus, an antidiabetic plant—review. FS J Pharm Res 1(3):52–53

Raslan MA, Melek FR, Said AA et al (2017) New cytotoxic dihydrochalcone and steroidal saponins from the aerial parts of Sansevieria cylindrica. Bojer ex Hook. Phytochem Lett 22:39–43

Regaldo EL, Tasdemir D, Kaiser M et al (2010) Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. J Nat Prod 73(8):1404–1410

Rezgui A, Mitaine-Offet A-C, Paululat T et al (2014) Cytotoxic steroidal glycosides from Allium flavum. Fitoterapia 93:121–125

Ribeiro PR, Araújo AJ, Costa-Lotufo LV et al (2016a) Spirostanol glucosides from the leaves of Cestrum laevigatum L. Steroids 106:35–40

Ribeiro PR, Braz-Filho R, Araújo AJ et al (2016b) New epimeric spirostanol and furostan-steroloid saponins from Cestrum laevigatum L. J Braz Chem Soc 27(12):2170–2180

Said A, Aboutabl EA, Melek FR et al (2015) Steroidal saponins and homoisofoflavonane from the aerial parts of Sansevieria cylindrica Bojer ex Hook. Phytochem Lett 12:113–118

Salgado RM, Marques-Silva MH, Gonçalves E et al (2017) Effect of oral administration of Tribulus terrestris extract on semen quality and body fat index of infertile men. Andrologia 49(5):e12655

Selim S, Al Jaouni S (2015) Anticancer and apoptotic effects on cell proliferation of diosgenin isolated from Costus speciosus (Koen.) Sm. BMC Complement Altern Med 15(1):301–307

Sethi G, Shannugam MK, Warrier S et al (2018) Pro-apoptotic and anti-cancer properties of diosgenin: a comprehensive and critical review. Nutrients 10:456–465

Shen S, Li G, Huang J et al (2012) Steroidal saponins from Fritillaria pallidiflora Shrenk. Fitoterapia 83:785–794

Shen H-Y, Zuo W-J, Wang H et al (2014) Steroidal saponins from dragon’s blood of Dracaena cambodiana. Fitoterapia 94:94–101

Shi Y-M, Yang L, Geng Y-D et al (2015) Polyphyllin I induced-apoptosis is enhanced by inhibition of autophagy in human hepatocellular carcinoma cells. Phytomedicine 22(13):1139–1149

Shi F, Lu L, Li Y et al (2018) Abstract 2871: diosgenin inhibits the proliferation of MCP-7 breast cancer cells through the demethylation of miR-145 gene. Cancer Res 78(13 Suppl):2871

Shu J, Zhu G, Huang G et al (2017) New steroidal saponins with L-arabinose moiety from the rhizomes of Smilax scobini-caulis. Phytochem Lett 21:194–199

Shwe HH, Aye M, Sein MM et al (2010) Cytotoxic steroidal saponins from the rhizomes of Tacc a integrifolia. Chem Biodiver 7(3):610–622

Sobolewska D, Janeczko Z, Bartoszewska S et al (2013) Bioactive saponins and related glycosides. Bioorg Med Chem 20(14):4522–4531

Sobolewska D, Michalska K, Podolak I et al (2016) Steroidal saponins from the underground parts of Allium ursinum L. and their cytostatic and antimicrobial activity. Acta Pol Pharm Drug Res 63(3):219–223

Sobolewska D, Michalska K, Podolak I et al (2016) Steroidal saponins from the genus Allium. Phytochem Rev 15:1–35

Sohn H-Y, Kum E-J, Ryu H-Y et al (2006) Antifungal activity of fistulosides, steroidal saponins from Allium fistulosum L. J Life Sci 16(2):310–314

Stefanowicz-Hajduk J, Bartoszewski R, Bartoszewska S et al (2015) Pennogenyl saponins from Paris quadrifolia L. induce extrinsic and intrinsic pathway of apoptosis in human cervical cancer HeLa cells. PLoS ONE 10(8):e0135993
Sun L, Zhao Y, Yuan H et al (2011) Solamargine, a steroidal alkaloid glycoside, induces oncasis in human K562 leukemia and squamous cell carcinoma KB cells. Cancer Chemother Pharmacol 67(4):813–821

Sun Y, Qiu H, Ou M et al (2016) Taccaoside induces apoptosis in hepatocellular carcinoma cell lines. J Int Med Res 44(6):395–1402

Sy LK, Yan SC, Lok CN et al (2008) Timosaponin A-III induces preceding mitochondria-mediated in HeLa cancer cells. Cancer Res 68(24):10229–10237

Tabopda TK, Mitaine-Offer A-C, Paululat T et al (2016) Steroidal saponins from Chlorophytum deistelianum Engl. & Krause and their semisynthetic analogues. Rec Nat Prod 175:451–455

Tao X, Xu L, Yin L et al (2017) Dioscin induces prostate cancer cell apoptosis through activation of estrogen receptor-β. Cell Death Dis 8:e2989

Tao X, Yin L, Peng J (2018) Dioscin: a diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol Res 137:259–269

Taponjou LA, Jenett-Siemens K, Böttger S et al (2013) Steroidal saponins from the flowers of Dioscorea bulbifera var. sativa. Phytochemistry 95:341–350

Teponno RB, Tanaka C, Jie B et al (2016) Trifasciatoisides A-J, steroidal saponins from Sansevieria trifasciata. Chem Pharm Bull 64(9):1347–1355

Teponno RB, Dzyoym JP, Nono RN et al (2017) Cytotoxicity of secondary metabolites from Dracaena viridiflora Engl & Krause and their semi-synthetic analogues. Rec Nat Prod 11(5):421–430

Tian L-W, Zhang Z, Long H-L et al (2017) Steroidal saponins from the genus Smilax and their biological activities. Nat Prod Bioprospect 7:283–298

Timité G, Mitaine-Offer A-C, Miyamoto T et al (2013) Structure and cytotoxicity of steroidal glycosides from Allium schoenoprasum. Phytochemistry 88:61–66

Tong Q-Y, Qiong Y, Shu D et al (2011) Deltonin, a steroidal saponin, inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis and antiangiogenesis. Cell Physiol Biochem 27(3–4):233–242

Tong Q-Y, He Y, Zhao Q-B et al (2012) Cytotoxicity and apoptosis-inducing effect of steroidal saponins from Dioscorea zingiberensis Wright against cancer cells. Steroids 77(12):1219–1227

Tong Q, Qing Y, Wu Y et al (2014) Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways. Toxicol Appl Pharmacol 281(2):166–173

Valayil JM, Kuriakose GC, Jayabaskaran C (2016) Isolation, purification and characterization of a novel steroidal saponin cholestenol glucoside from Lasiodiplodia theobromae that induces apoptosis in A549 cells. Anticancer Agents Med Chem 16(7):865–874

Wang W, Meng H (2015) Cytotoxic, anti-inflammatory and hemostatic spirostane-steroidal saponins from the ethanol extract of the roots of Bletilla striata. Fitoterapia 101:12–18

Wang Z, Zhou J, Ju Y et al (2001) Effects of two saponins extracted from the Polygonatum zanlancianense pamp on the human leukemia (HL-60) cells. Biol Pharm Bull 24(2):159–162

Wang K-W, Zhang H, Shen L-Q et al (2011) Novel steroidal saponins from Liriope graminifolia (Linn) Baker with anti-tumor activities. Carbohydr Res 346(2):253–258

Wang H, Zhai Z, Li N et al (2013a) Steroidal saponin of Trillium tschonoskii. Reverses multidrug resistance of hepatocellular carcinoma. Phytochemistry 88:985–991

Wang N, Feng Y, Zhu M et al (2013b) A novel mechanism of XIAP degradation induced by timosaponin AIII in hepatocellular carcinoma. Biochim Biophys Acta 1833:2890–2899

Wang Y, Tang Q, Jiang S et al (2013c) Anti-colorectal cancer activity of macrostemonoside A mediated by reactive oxygen species. Biochem Biophys Res Commun 441:825–830

Wang L, Jiang X-L, Zhang W-M et al (2017a) Homo-arocoleolestone, furostone and spirostone saponins from the tubers of Ophiopogon japonicus. Phytochemistry 136:125–132

Wang Y, Xu L, Lou L-L et al (2017b) Timosaponin AIII induces autophagy in human melanoma A375-S2 cells. Arch Pharm Res 40(1):69–78

Wang J, Song H, Wu X et al (2018) Steroidal saponins from Vernonia amygdalina Del. and their biological activity. Molecules 23:579

Watanabe S, Suzuki T, Hara F et al (2017) Polyphyllin D, a steroidal saponin in Paris polyphylla var. yunnanensis, induces apoptosis and necroptosis cell death of neuroblastoma cells. Pediatr Surg Int 33:713–719

Wei Y, Xu Y, Han X et al (2013) Anti-cancer effects of dioscin on three kinds of human lung cancer cell lines through inducing DNA damage and activating mitochondrial signal pathway. Food Chem Toxicol 59:118–128

Wei S, Fukuhara H, Chen G et al (2014) Terrestrosin D, a steroidal saponin from Tribulus terrestris L. inhibits growth and angiogenesis of human prostate cancer in vitro and in vivo. Pathobiology 81:123–132

Wen Y-S, Ni W, Qin X-J et al (2015) Steroidal saponins with cytotoxic activity from the rhizomes of Paris polyphylla var. yunnanensis. Phytochemistry 113:124–132

Wu RT, Chiang HC, Fu WC et al (1990) Formosanin-C, an immunomodulator with antitumor activity. Int J Immunopharmacol 12(7):777–786

Wu J-J, Cheng K-W, Zuo X-F et al (2010) Steroidal saponins from the genus Dracaena viridiflora. Fitoterapia 81:119–126

Wu X, Wang L, Wang G-C et al (2012a) New steroidal saponins and sterol glycosides from Asparagus filicinus and their cytotoxic activities. Steroids 75(10):734–739

Wu X, Wang L, Wang G-C et al (2012b) New steroidal saponins and sterol glycosides from Asparagus filicinus var. yunnanensis. Planta Med 78(15):1667–1675
Wu X, Wang L, Wang H et al (2012b) Steroidal saponins from *Paris polyphylla var. yunnanensis*. Phytochemistry 81:133–143

Wu S, Xu H, Peng J et al (2015) Potent anti-inflammatory effect of dioscin mediated by suppression of TNF-α-induced VCAM-1, ICAM-1 and EL expression via the NF-κB pathway. Biochimie 110:62–72

Wu X, Chen N-H, Zhang Y-B et al (2017a) A new steroidal saponin from the rhizomes of *Paris polyphylla var. yunnanensis*. Chem Nat Comp 53(1):93–98

Wu Y, Wang X-M, Bi S-X et al (2017b) Novel cytotoxic steroidal saponins from the roots of *Paris polyphylla var. yunnanensis*. J Chromatogr Sci 54(6):1010–1015

Xiang X, Zou P, Wu J et al (2018) Crosstalk of NF-κB/PI3K and lncRNA HOTAIR-mediated repression of MUC1 expression contribute to synergistic inhibition of castration-resistant prostate cancer by polyphyllin 1-enazalumide combination treatment. Cell Physiol Biochem 47(2):759–773

Zaki AA, Ali Z, Wang Y-H et al (2017) Cytotoxic steroidal saponins from *Panicum turgidum* Forssk. Steroids 125:14–19

Yu H, Liu Y, Niu C et al (2018a) Diosgenin increased DDX3 expression in hepatocellular carcinoma. Am J Transl Res 10(11):3590–3599

Yu S, Wang L, Cao Z et al (2018b) Anticancer effect of polyphyllin I in colorectal cancer cells through ROS-dependent autophagy and G2/M arrest mechanism. Nat Prod Res 32(12):1489–1492