The circadian rhythm in metazoan organisms is a fundamental biological process that regulates metabolic and physiological functions, allowing organisms to adapt to the 24-hour light-dark cycle. The molecular basis of circadian rhythm involves a network of interacting transcriptional and translational control mechanisms, which are conserved across species.

One central feature of the circadian rhythm is the transcription of genes by a heterodimeric transcription factor that regulates the expression of other clock genes. This regulatory apparatus involves the interaction of several proteins, including CLOCK (CLK), BMAL1, and CRY (cryptochrome) family members. Mammalian PERIOD (PER) proteins also play a crucial role in the circadian rhythm, acting as a scaffold with distinct domains that interact with and phosphorylate other clock proteins.

The serine/threonine protein kinase casein kinase Iε (CKIε) is a key regulator of metazoan circadian rhythm. Genetic and biochemical data suggest that CKIε binds to and phosphorylates the PERIOD proteins. However, the PERIOD proteins interact with a variety of circadian regulators, suggesting the possibility that CKIε may interact with and phosphorylate additional clock components as well. We find that CRY1 and BMAL1 are phosphoproteins in cultured cells. Mammalian PERIOD proteins act as a scaffold with distinct domains that simultaneously bind CKIε and mCRY1 and mCRY2 (mCRY). mCRY is phosphorylated by CKIε only when both proteins are bound to mammalian PERIOD proteins. BMAL1 is also a substrate for CKIε in vitro, and CKIε kinase activity positively regulates BMAL1-dependent transcription from circadian promoters in reporter assays. We conclude that CKIε phosphorylates multiple circadian substrates and may exert its effects on circadian rhythm in part by a direct effect on BMAL1-dependent transcription.

Circadian rhythms allow organisms to optimize their metabolic and physiologic behavior in response to the 24 h day. The rhythm is generated by cell-autonomous transcription-translation feedback loops highly conserved in outline if not in detail in most eukaryotes studied to date (recently reviewed in Refs. 1–4). Extensive genetic investigation coupled with molecular studies has uncovered many of the essential elements of the metazoan clock. The central feature of the clock is the transcription, regulated by a heterodimeric transcription factor that drives expression of genes whose protein products are negative regulators of their own transcription. This negative feedback loop establishes stable molecular oscillations with a period of ~24 h. In mammals, the transcription factors are the PAS domain-containing proteins CLK and BMAL1, whereas the negative factors include the PERIOD proteins PER1 and PER2 and the cryptochromes CRY1 and CRY2. The stability and period of the circadian oscillations are likely to be dependent on multiple factors, including the rate at which these regulators accumulate in the cell (i.e. the sum of their synthesis and degradation rates) and the rate at which they accumulate in the nucleus. Finally, the activities of circadian regulators are modified by post-translational modifications.

Analysis of animals and humans with altered circadian rhythms demonstrates the importance of phosphorylation in the regulation of the molecular clock. Mutations in the casein kinase Iε (CKIε) homolog double-time (dbt) in Drosophila markedly lengthen or shorten the circadian period, depending on the allele (5–8). In hamsters, a point mutation in CKIε that decreases kinase activity causes the semidominant short period tau phenotype (9). The functional role of CKIε within the circadian clock has not been fully elucidated (1, 10). A number of studies indicate the PER proteins are critical targets of CKIε. dbt-mutant flies have altered patterns of PER phosphorylation and accumulation (6, 8, 11). Mutations in a CKIε phosphorylation site in human PER2 have been identified in a family with advanced sleep phase syndrome (FAPS), a dominantly inherited short circadian period disorder (12). Overexpression of CKIε leads to decreased mPER1 protein half-life and alters the nucleocytoplasmic localization of the proteins (13–15). Whether CKIε can phosphorylate other circadian regulatory proteins has not yet been explored.

One central feature of the circadian regulatory machinery is the multiple interactions between the clock proteins. CKIε forms stable complexes with PER proteins. PER proteins heterodimerize with each other and interact with CRY1 and CRY2 (16–18). CRY1 and CRY2 also interact with the heterodimeric transcription factor CLK/BMAL1 both functionally and in yeast two-hybrid assays (19, 20). Hence, the potential for higher order complexes exists. Given the changing abundance of these factors over time, different complexes are likely to form at different times of day.

In the present study, we examined the ability of CKIε to interact with and phosphorylate other clock proteins in vitro and in cell culture, both directly and when in multiprotein complexes. We find that mCRY1 and mCRY2 are substrates of CKIε but only when both CRY and kinase are bound to PER1 or PER2. Furthermore, mCRY1 can overcome the CKIε-dependent cytoplasmic retention of mPER1 seen in human embryonic kidney 293 (HEK 293) cells and relocalize the entire multimeric complex to the nucleus. The ability of CKIε to phosphorylate CLK and BMAL1 was examined as well. BMAL1 but not CLK is a substrate of CKIε in vitro. BMAL1 phosphorylation by CKIε is neither dependent on nor stimulated by the presence of PER or CRY proteins. BMAL1 is also a phosphoprotein when expressed in HEK 293 cells, and co-expression of a dominant-negative CKIε inhibits BMAL1 phosphorylation. Inhibition of CKIε activity using dominant-negative CKIε or dsRNA-mediated interference also led to decreased CLK/BMAL1-dependent transcription. The data suggest CKIε has multiple functional substrates in the circadian rhythm regulatory apparatus.
MULTIPLE CIRCADIAN SUBSTRATES OF CKIε

MATERIALS AND METHODS

Cell Line Maintenance and Transfection—HEK 293 cells were maintained in Dulbecco’s modified Eagle’s medium with 10% fetal calf serum in a humidified incubator at 37 °C and 5% CO₂. Cells were transfected using LipofectAMINE PLUS (Invitrogen) with between 0.3 and 0.7 μg of expression constructs, as indicated in the figures. Eighteen hours after transfection, Myc epitope-tagged proteins were immunoprecipitated using LipofectAMINE PLUS (Invitrogen) with 0.3–0.7 μg of 9E10 anti-Myc monoclonal antibodies and protein A-agarose beads. The beads were then washed three times in HTS buffer, and proteins were eluted with SDS-PAGE loading buffer. After SDS-PAGE, the proteins were transferred to a nitrocellulose membrane (Hybond-C extra, Amersham Biosciences) and further analyzed by immunoblotting using the indicated antibodies. For immunofluorescence, HEK 293 cells were transiently transfected as indicated in Fig. 3. 18 h after transfection, the cells were fixed in 4% paraformaldehyde and permeabilized with 0.1% Triton X-100. Anti-Myc (9E10) and anti-influenza hemagglutinin epitope (12CA5) monoclonal antibodies were directly conjugated to Alexa 488 (green) or Alexa 594 (red) according to the manufacturer’s directions (Molecular Probes). The antibodies and 4,6-diamidino-2-phenylindole nuclear stain were incubated with the cells for 1 h at room temperature. The epitope-tagged proteins were then visualized with an Olympus fluorescent microscope equipped with a cooled charge-coupled device camera (Photometrics Ltd.) at 60× magnification. Images were acquired using the mFISH (Vysis, Inc) software package and further analyzed with Photoshop 5.0 (Adobe).

Kinase Assays—HEK 293 cells were transiently transfected with expression constructs as indicated in the figures. Eighteen hours after transfection, the cells were fixed in 4% paraformaldehyde and permeabilized with 0.1% Triton X-100. Anti-Myc (9E10) and anti-influenza hemagglutinin epitope (12CA5) monoclonal antibodies were directly conjugated to Alexa 488 (green) or Alexa 594 (red) according to the manufacturer’s directions (Molecular Probes). The antibodies and 4,6-diamidino-2-phenylindole nuclear stain were incubated with the cells for 1 h at room temperature. The epitope-tagged proteins were then visualized with an Olympus fluorescent microscope equipped with a cooled charge-coupled device camera (Photometrics Ltd.) at 60× magnification. Images were acquired using the mFISH (Vysis, Inc) software package and further analyzed with Photoshop 5.0 (Adobe).

mCRY Binds a Conserved Domain in the Carboxyl Terminus of PER—Genetic, biochemical, and immunofluorescence data suggest there is a physical interaction between mCRY and mPER (17, 18, 20). To map the region of mPER1 and mPER2 that bind mCRY1 and mCRY2, amino- and carboxyl-terminal truncations of mPER1 and mPER2 were co-expressed with full-length mCRY1 or mCRY2, and the mPER protein was immunoprecipitated. As expected, mPER1 efficiently immunoprecipitated full-length mCRY1 (Fig. 1A, lane 1'). mCRY1 also binds mPER1Δ1219, a truncation of mPER1 lacking the carboxyl-terminal 72 residues (Fig. 1A, lane 5'). However, when mPER1 was further truncated by an additional 100 residues (mPER1Δ1118), all detectable mCRY binding was lost (Fig. 1A, lane 6'). These results indicate that mCRY binds to mPER1 in its carboxyl-terminal region bound by amino acids 1117 and 1219, outside the CK1ε binding domain. Supporting this, a fragment of mPER1 encompassing amino acids 1027 and 1291, mPER1(1027–1291), also binds mCRY1 (Fig. 1A, lane 4'). The efficiency of the mCRY1 interaction with mPER1(1027–1291) and mPER1Δ1219 is less than that seen with full-length mPER1, suggesting that additional contacts between CRY and PER1 contribute to the full-length protein (Fig. 1A, lanes 4' and 5'). As reported by others, mCRY does not require the PAS domains of mPER for stable interaction (Fig. 1A, lane 2' (20)). The mCRY1 binding domain of mPER2 similarly maps to between residues 1127 and 1225 (Fig. 1B). mCRY2 binds in a manner that complements with mPER1 and mPER2 in the same domain as does mCRY1 (data not shown). This CRY binding region of mPER1 and mPER2 is conserved among vertebrate PER proteins but is absent in insect PER and other proteins in GenBank™ (data not shown).

RESULTS

mPER Is a Scaffold That Brings mCRY1 and CKIε into a Multimeric Complex—mPER1 and mPER2 bind to both endogenous and overexpressed CKIε using a conserved domain in the approximate center of PER (e.g. mPER1 amino acids 496–815) (12, 13). We therefore tested whether CKIε and CRY could simultaneously bind to PER, forming a ternary complex in
mPER1 and mPER2 (Fig. 2). The presence of mPER in the pellet was probed by Western blotting. mCRY1 efficiently interacted with both full-length and truncated mPER proteins. The presence of co-immunoprecipitating mPER was assessed by SDS-PAGE and immunoblotting with anti-V5 antibodies. The blot was sequentially stripped and reprobed with an anti-mCRY1 polyclonal antibody to detect the presence of co-immunoprecipitating endogenous mCRY1 and with an anti-Myc antibody to confirm the presence of mCRY1 in the immunoprecipitate pellet. The same amount of input cell lysates is shown on the left (lanes 1–5), whereas the proteins present in the immunoprecipitate are shown on the right (lanes 1’–5’).

To distinguish between these two possibilities, epitope-tagged CKIε and mCRY1 were transiently expressed in HEK 293 cells with empty vector and either full-length or truncated mPER1 (Fig. 3), and their intracellular localization was examined by direct immunofluorescence microscopy. In the absence of mPER1, mCRY1 was nuclear in 97% of cells examined, whereas in the same cells, CKIε was predominantly cytoplasmic (only nuclear in 3% of cells) (Fig. 3, panels a, d, and g). However, when mPER1 was co-expressed with CKIε and mCRY1, CKIε localization changed from predominantly cytoplasmic to nuclear (Fig. 3, panels b, e, and h). Thus, mPER1 allows mCRY1 to bring CKIε to the nucleus despite the CKIε kinase activity that otherwise promotes mPER1 cytoplasmic localization in HEK 293 cells (13). Consistent with this model, when the mCRY1 binding-deficient form of mPER1 (mPER1Δ1118) was co-expressed, CKIε remained predominantly in the cytoplasm (Fig. 3, panels c, f, and i).

These results, when taken together with the immunoprecipitation data (Fig. 2), suggest that mPER1 must interact with both CKIε and mCRY1 in order for mCRY1 to bring CKIε into the nucleus. We note that there was some accumulation of CKIε in the nucleus when mPER1Δ1118 was expressed (compare Fig. 3, panels d–f), again suggesting there is some additional interaction between mPER1Δ1118 and mCRY1 (Fig. 2).

mCRY1 Requires mPER1 or mPER2 to Be Phosphorylated by CKIε in Vitro—The ability of CKIε to phosphorylate mPER1 requires that the kinase first bind to the substrate, presumably ensuring high local concentration and/or appropriate positioning of the kinase (Ref. 13 and data not shown). Because mCRY1 can be found in a multimeric complex with PER and CKIε, mCRY1 present in this complex might similarly be phosphorylated by CKIε. We first assessed whether mCRY1 was in fact a phosphoprotein in intact cells. Epitope-tagged mCRY1 also binds and promotes nuclear translocation of mPER1 and mPER2 proteins (18). These observations, when taken together with the fact that mCRY1, mPER1, and CKIε form a multiprotein complex suggest at least two possibilities with respect to subcellular localization. One, mCRY1 may translocate the CKIε-mPER1 complex to the nucleus, overcoming the CKIε-dependent mPER1 cytoplasmic localization seen in HEK 293 cells. Conversely, CKIε may promote mCRY1 cytoplasmic localization that is dependent on its interaction with mPER1.
was transiently expressed in 32P-metabolically labeled HEK 293 cells, immunoprecipitated, and analyzed by autoradiography (Fig. 4A). mCRY1 incorporated significant amounts of 32P during a 3-h labeling, indicating it is in fact phosphorylated in cultured cells.

To test whether CKIε could phosphorylate mCRY1, mCRY1 alone and mCRY1-mPER complexes were assembled by co-expression in HEK 293 cells, and the proteins were recovered by immunoprecipitation of mCRY1 (Fig. 4C). When mCRY1, expressed alone, was immunoprecipitated and incubated with recombinant CKIε, there was minimal phosphorylation of mCRY1 (Fig. 4B, lane 2). However, when full-length mPER1 or mPER2 was co-expressed with mCRY1, mCRY1 was efficiently phosphorylated by CKIε (Fig. 4B, lanes 4 and 8). Phosphorylation of mCRY1 seen without added CKIε may be due to endogenous CKIε and/or CKIδ co-precipitating with PER1 and PER2 (Fig. 4B, lanes 3 and 7). The interaction of CRX with mPER was required for CRX phosphorylation by CKIε, since mCRY1 phosphorylation fell back to background levels when truncated mPER proteins that do not interact with mCRY1 were co-expressed with mCRY1 (Fig. 4B, lanes 6 and 10). mCRY2 was similarly phosphorylated by CKIε only in the presence of PER containing both CKIε and CRX binding sites (data not shown). These results suggest that PER acts as a scaffold that brings mCRY and CKIε into close proximity with each other. This effectively raises the local concentration of CKIε around mCRY, allowing for efficient phosphorylation of mCRY by CKIε.

To test the potential biological function of mCRY phosphorylation by CKIε, we tested the effect of CKIε co-expression on the ability of CRX1 and CRX2 to repress transcription from the mPer1 promoter (18). No consistent effect of active or dominant-negative CKIε on CRX activity was found (data not shown). Similarly, no effect of dominant-negative CKIε (K38A) on the level of CRX phosphorylation in transfected cells was detectable. Thus, although CKIε can clearly phosphorylate mCRY in a multimeric complex in vitro, the physiological significance of this phosphorylation remains to be determined.

BMAL1 Phosphorylation Is Regulated by CKIε—CKIε is found both in the nucleus and cytoplasm depending on cell and tissue type (13, 15, 25). Depending on its subcellular localization, CKIε may phosphorylate distinct sets of substrates. Because CKIε forms intermolecular complexes with and phosphorylates clock proteins such as mPER1, mPER2, and mCRY1, we next asked if CKIε could phosphorylate other circadian regulators. CKIε was able to phosphorylate BMAL1 immunoprecipitated from programmed reticulocyte lysates and from transfected cells (Fig. 5, A and B). Immunoprecipitated CLK was not phosphorylated by CKIε (Fig. 5A). We did not observe a reproducible, robust interaction between CKIε and BMAL1 by co-immunoprecipitation assays. Unlike the stimulation of mCRY phosphorylation seen in the presence of mPER, BMAL1 phosphorylation by CKIε was not appreciably altered by the

FIG. 4. mPER-dependent mCRY1 phosphorylation. A, mCRY1 is a phosphoprotein in intact cells. HEK 293 cells were transiently transfected with either empty vector (−) or with a plasmid encoding Myc-tagged mCRY1 (+). 18 h after transfection, cells were metabolically labeled with 32Porthophosphoric acid for 3 h, at which time cell free lysates were prepared and subjected to immunoprecipitation with anti-Myc antibody. 32P incorporation into mCRY1 was assessed by SDS-PAGE and phosphorimaging analysis. B, mCRY1 is phosphorylated by CKIε in a CKIε-PER/mCRY1 complex in vitro. HEK 293 cells were transiently transfected with mCRY1 and PER expression plasmids as indicated. mCRY1 protein was then immunoprecipitated (IP) with anti-Myc antibodies, and the immunoprecipitates were split three ways. Two of the three fractions were subjected to an in vitro kinase assay in the presence of [γ-32P]ATP and without (−) or with (+) added recombinant CKIε (Lα320): mCRY1 phosphorylation was then visualized by SDS-PAGE and phosphorimaging. C, the third bead fraction was subjected to immunoblotting after SDS-PAGE to confirm the presence of CRY and PER proteins in the immunoprecipitates as indicated in the figure.
formation of a BMAL1-mPER2 complex (Fig. 5B and data not shown).

BMAL1 was found by metabolic labeling to be a phosphoprotein in cells (Fig. 5C). Because CKIε was able to directly phosphorylate BMAL1 in vitro, the effect of overexpression of a dominant-negative form of CKIε on BMAL1 phosphorylation in intact cells was also examined. CKIε(K38A) co-expression reduced BMAL1 phosphorylation by about 40% (Fig. 5, C and D). The decrease in BMAL1 phosphorylation was not due to a decrease in BMAL1 protein levels, which were unchanged regardless of the presence or absence of CKIε(K38A) (Fig. 5C, lower panel). The partial reduction in BMAL1 phosphorylation could be due to complete inhibition of phosphorylation of a subset of sites or a partial reduction in CKIε activity. Phosphopeptide mapping of BMAL1 expressed without and with CKIε(K38A) demonstrated that there was a global decrease in BMAL1 phosphorylation (data not shown), consistent with CKIε(K38A) partially blocking the endogenous kinases phosphorylating BMAL1.

CKIε Regulates BMAL1-dependent Transcription—Phosphorylation regulates the activity of multiple transcription factors (26, 27). Because BMAL1 is phosphorylated by CKIε in vitro, and expression of a dominant-negative form of CKIε decreases BMAL1 phosphorylation in intact cells, we examined whether CKIε regulated the activity of a CLK/BMAL1-dependent promoter. Transcriptional activity was assessed by the CLK/BMAL1-dependent expression of luciferase from the mPer1 promoter (Fig. 6A). Co-expression of active CKIε had no effect on luciferase expression, whereas expression of dominant-negative CKIε, CKIε(K38A), caused a 40% decrease in luciferase activity. This change in luciferase expression is similar in magnitude to the decrease in BMAL1 phosphorylation seen with CKIε(K38A) co-expression. CKIε may regulate the expression of multiple genes, as it has been implicated in processes as diverse as Wnt/β-catenin signaling and NFAT (nuclear factor of activated T cells) nuclear localization (28, 29). However, CKIε(K38A) is not a global transcriptional repressor, as it had no effect on luciferase expression from actin and cdc2 promoters (Fig. 6, B and C).

To further assess the role of CKIε in regulation of circadian E box-containing promoters, we attempted to eliminate CKIε and CKIδ expression using siRNA (22). A 21-base pair RNA duplex (CKIε nucleotides 520–538, a sequence conserved in...
CKIβ was transiently transfected into HEK 293 cells. A dsRNA with the same sequence but in reverse order (denoted Inv) was similarly transfected in control experiments. The effect of siRNA on protein expression was assessed by immunoblot of cell extracts (Fig. 6D). Under these conditions, the dsRNA targeting CKIα and CKIβ reduced their abundance by almost 50%. As Fig. 6D illustrates, treatment of cells with the CKIβ dsRNA led to a 40% decrease in luciferase expression driven by the mPer1 promoter compared with mock-treated and control-treated cells. Hence, both dominant-negative CKIα and siRNA-mediated inhibition of CKI activity led to similar decreases in BMAL1-dependent transcriptional activity.

DISCUSSION

CKIα is firmly established as a critical component of the circadian clock. Studies in flies and mammals suggest that the stability and localization of the PERIOD proteins are regulated by CKI-dependent phosphorylation. In this study, we present evidence that CKIα acts on additional circadian substrates, including a PER-dependent phosphorylation of CRY and direct phosphorylation of BMAL1. Inhibition of CKIα activity by either expression of dominant-negative CKIα or use of small interfering RNAs reduced expression from the mPer1 promoter but not the cdc2 nor actin promoters. Although the data cannot exclude the possibility that additional CKI substrates may influence transcription from the mPer1 promoter, they are consistent with a model in which direct phosphorylation of BMAL1 by CKIα positively regulates the activity of BMAL1 in transcription.

The PER protein acts as a scaffold, bringing CKIα and CRY proteins into close proximity. Both CRY proteins interact with the carboxyl termini of mPER1 and mPER2 in a region of high sequence homology between the two proteins and distant from the previously defined PAS domain and CKI binding site. Identification of a similar CRY binding site on PER has been reported recently by others (30). Notably, the CRY binding domain has no homologous region in insect PER, consistent with a distinct role for cryptochromes as light-sensing proteins in non-vertebrates. The presence of distinct CRY and CKIα binding sites on PER allows formation of a ternary complex between CKIα, CRY, and PER proteins. Formation of this complex appears to have at least two consequences. First, CRY can overcome the CKIα-mediated PER1 cytoplasmic localization. This is consistent with immunolocalization studies showing nuclear CKIα in neurons within the suprachiasmatic nucleus (25, 31) and positions CKIα to phosphorylate nuclear circadian regulators. This conclusion is supported by the recent report of Lee et al. (32), who found CKIα and CKIβ in a complex with both PER and CRY in rat and hamster liver and additionally found circadian regulation of CKI nuclear localization. Second, CRY present in this complex can be efficiently phosphorylated by CKIα in vitro. The functional consequence of CKIα-dependent CRY phosphorylation is the subject of ongoing investigation, but it does not appear to modify the inhibitory effect of CRY upon circadian promoters (data not shown).

We also examined whether or not BMAL1 was a substrate for CKIα. Given that CRY requires the formation of a CRY-PER-CKIα multimeric complex for its phosphorylation by CKIα, it was unexpected that CKIα can in fact directly phosphorylate BMAL1. This phosphorylation appears to be physiologically relevant, since overexpression of dominant-negative CKIα led to a decrease in BMAL1 phosphorylation and a decrease in BMAL1-dependent transcription from E-box-containing promoters. Similarly, a dsRNA-mediated decrease in CKIα protein in intact cells led to a decrease in BMAL1 transcriptional activation function. That the CKIα with the R178C mutation found in the tau hamster is likely to exhibit a dominant-negative phenotype (i.e., bind to substrates and block access of active kinases) (1, 9) suggests that decreased phosphorylation of BMAL1 may contribute to the tau short period phenotype. An alternative hypothesis not excluded here is that in the cell CKIα may regulate a pathway that then regulates BMAL1 phosphorylation and activity. Although in these studies we used CKIα, the closely related CKIβ which can similarly bind to and phosphorylate PER proteins is likely to similarly phosphorylate BMAL1 (13, 25). Recent work from two groups suggests that both BMAL1 and CLK are phosphorylated in intact animals. Both proteins have phosphorylation-dependent electrophoretic mobility shifts that change through the circadian day (32). Finally, we note that Sanada and co-workers (33) recently show that mitogen-activated protein kinase phosphorylates BMAL1 on several sites and modestly inhibits the activity of BMAL1 in transcription assays. Mitogen-activated protein kinase and CKIα are likely to phosphorylate distinct sites on BMAL1. BMAL1 may therefore be the target of several distinct signaling pathways, with divergent effects on its activity.

Immunolocalization studies of CKIα have produced conflicting results, dependent on cell type and co-expression of additional circadian proteins. The finding of a multimeric CKIα-PER-CRY complex that can relocalize CKIα from cytoplasm to nucleus implies that some of the variability in CKIα localization seen in cultured cells is due to co-expression of circadian regulators. For example, PER and CRY levels may be higher in COS7 than in HEK 293 cells and, hence, target CKIα to the nucleus more readily in those cells. These results also suggest that one function of the PER-CRY complex in vivo may be to relocalize CKIα to the nucleus during periods of CRY abundance, facilitating phosphorylation of BMAL1 and perhaps additional nuclear circadian regulators. What remains to be resolved is how the stimulatory effect of CKIα phosphorylation and the inhibitory effect of CRY on BMAL1 activity are coordinated to produce stable oscillations in expression from circadian promoters.

Acknowledgments—We thank R. Schackmann for oligonucleotide synthesis, M. Morgan for assistance with immunofluorescence microscopy, and S. Reppert and A. Schöntahl for plasmids.

REFERENCES

1. Eide, E. J., and Virshup, D. M. (2001) Chronobiol. Int. 18, 389–398
2. Reppert, S. M., and Weaver, D. R. (2000) Annu. Rev. Physiol. 63, 647–676
3. Lowrey, P. L., and Takahashi, J. S. (2000) Annu. Rev. Genet. 34, 533–562
4. Auboa, R., Emery, P., Takahashi, J. S., and Rosbash, M. (2001) Annu. Rev. Neurosci. 24, 1091–1119
5. Kloss, B., Price, J. L., Saez, L., Blau, J., Rothenhuel, A., Wesley, C. S., and Young, M. W. (1998) Cell 94, 87–107
6. Price, J. L., Blau, J., Rothenhuel, A., Abodeely, M., Brien, J. A., Weaver, D. R., Reppert, S. M., and Young, M. W. (1998) Cell 94, 83–95
7. Rothenhuel, A., Abodeely, M., and Young, M. W. (2000) Curr. Biol. 10, 1399–1402
8. Suri, V., Hall, J. C., and Roshbash, M. (2000) J. Neurosci. 20, 7547–7555
9. Lowrey, P. L., Shimomura, K., Antoch, M. P., Yamazaki, S., Zemenides, P. D., Ralph, M. R., Menaker, M., and Takahashi, J. S. (2000) Science 288, 483–492
10. Vielhaber, E. L., and Virshup, D. M. (2001) Int. Union Biochem. Mol. Biol. Life 51, 273–278
11. Kloss, B., Rothenhuel, A., Young, M. W., and Saez, L. (2001) Neuron 30, 699–706
12. Toh, K. L., Jones, C. R., He, Y., Eide, E. J., Hinz, W. A., Virshup, D. M., Ptacek, L. J., and Fu, Y. H. (2001) Science 291, 1040–1043
13. Vielhaber, E. L., Eide, E., Rivers, A., Guo, Z.-H., and Virshup, D. M. (2000) Mol. Cell. Biol. 20, 4888–4899
14. Keeler, G. A., Camacho, F., Guo, Y., Virshup, D., Mondadori, C., and Yao, Z. (2000) Neuroreport 11, 851–855
15. Takano, A., Shimizu, K., Kani, S., Buijs, R. M., Okada, M., and Nagai, K. (2000) FEBS Lett. 477, 107–112
16. Yagita, K., Yamaguchi, S., Tanimoto, F., van der Horst, G. T., Hoeijmakers, J. H., Tanou, J. J., Dunlap, J. C., and Okamura, H. (2000) Genes Dev. 14, 1353–1363
17. Field, M. D., Maywood, E. S., O’Brien, J. A., Weaver, D. R., Reppert, S. M., and Hastings, M. H. (2000) Neuron 25, 437–447
18. Kume, K., Yzuka, M. J., Striram, S., Shearman, L. P., Weaver, D. R., Jin, X., Maywood, E. S., Hastings, M. H., and Reppert, S. M. (1999) Cell 98, 193–205
19. Griffin, E. A., Jr., Staknis, D., and Weitz, C. J. (1999) Science 286, 768–771
20. Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., Zheng, B., Kume, K., Lee, C. C., van der Horst, G. T., Hastings, M. H., and Reppert, S. M. (2000) Science 288, 1013–1019
21. Cegielska, A., Gietzen, K. F., Rivers, A., and Virshup, D. M. (1998) J. Biol. Chem. 273, 1357–1364
22. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Nature 411, 494–498
23. Fish, K., Cegielska, A., Getman, M., Landes, G., and Virshup, D. M. (1995) J. Biol. Chem. 270, 14875–14883
24. Vielhaber, E. L., Duricka, D., Ullman, K. S., and Virshup, D. M. (2001) J. Biol. Chem. 276, 45921–45927
25. Camacho, F., Cilio, M., Guo, Y., Virshup, D., Patel, K., Khorkova, O., Styren, S., Morse, B., Yao, Z., and Keesler, G. A. (2001) FEBS Lett. 489, 159–165
26. Hunter, T., and Karin, M. (1992) Cell 70, 375–387
27. Karin, M., and Hunter, T. (1995)Curr. Biol. 5, 747–757
28. Peters, J. M., McKay, R. M., McKay, J. P., and Graff, J. M. (1999) Nature 401, 345–350
29. Sakanaka, C., Leong, P., Xu, L., Harrison, S. D., and Williams, L. T. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 12548–12552
30. Miyazaki, K., Mesaki, M., and Ishida, N. (2001) Mol. Cell. Biol. 21, 6651–6659
31. Ishida, Y., Yagita, K., Fukuyama, T., Nishimura, M., Nagano, M., Shigeyoshi, Y., Yamaguchi, S., Komori, T., and Okamura, H. (2001) J. Neurosci. Res. 64, 612–616
32. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S., and Reppert, S. M. (2001) Cell 107, 855–867
33. Sanada, K., Okano, T., and Fukada, Y. (2002) J. Biol. Chem. 277, 267–271