Review of the Phytochemical and Pharmacological Studies of the Genus Markhamia

Mutiat Bolanle Ibrahim, Nutan Kaushik¹, Abimbola Adepeju Sowemimo, Olukemi A. Odukoya

Department of Pharmacognosy, University of Lagos, Lagos, Nigeria, ¹Plant Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India

ABSTRACT
Natural product compounds obtained from medicinal plants have been great contributions in the discovery of numerous clinically useful drugs. Markhamia species have been reportedly used by many cultures in human and veterinary traditional medicines. The five identified species of Markhamia, that is, Markhamia lutea, Markhamia obtusifolia, Markhamia stipulata, Markhamia tomentosa, and Markhamia zanzibarica have been the subject of chemical investigations that have led to the characterization of their secondary metabolites. Plants of the genus with the identified phytoconstituents, including phenylpropanoid glycosides (PhGs), terpenoids, phytosterols, lignans, quinones, and flavonoids, have been claimed to possess antiviral, antifungal, antiplatelet, analgesic, antiinflammatory, and cytotoxic activities. In vitro and in vivo pharmacological research studies have reported the validation of the medicinal properties of plants of this genus. The present review analyzes published data from the ethnomedicinal, phytochemical, and pharmacological studies of plants of the genus Markhamia.

Key words: Ethnomedicine, ethnopharmacology, Markhamia, phytochemistry

INTRODUCTION
Markhamia (Seemann ex K.Schum) is a genus of flowering plants in the family Bignoniaceae with about 100 genera and 800 species. Markhamia has been reported among other genera of the family in Nigeria and 10 species are widely distributed in tropical Africa and Asia.¹,² The genus was named by Berthold Seemann, in honor of Sir Clements Robert Markham (1830–1916), who introduced the well-known quinine-yielding Cinchona into India.³ Plants of this genus are trees or shrubs with opposite, compound imparipinnate leaves and yellow-green flowers grown mostly for social, agrihorticultural, and medicinal purposes.⁴ They are mostly found in fringing forests and are drought-resistant. The roots, barks, stems, and leaves of Markhamia species have been used by traditional healers for the treatment of miscellaneous disease conditions such as microbial and parasitic diseases, anemia, diarrhea, backache, sore eyes, intercostal pain, pulmonary troubles, gout, scrotal elephantiasis, rheumatoid arthritis, and external skin diseases.⁵-¹² The plant has also been used in the treatment of diarrhea, dysentery, pain, and inflammation in veterinary patients.¹²,¹³

The therapeutic value of plants used in traditional medicine is due to the presence of phytochemical compounds that are found in parts of the plants; moreover, a medicinal plant is a plant whose biological activity has been ethnoBotanically reported and scientifically established.¹⁴,¹⁵ Preliminary phytochemical investigations of Markhamia species have shown the presence of biologically active substances such as flavonoids, saponins, steroids, terpenes and terpenoids, phytosterols, tannins, phenols, coumarins, and quinones.²,¹⁶,¹⁷ In support of the significance of the genus Markhamia, diverse pharmacological investigations have been reported in the literature.¹⁸-²¹ The isolation and identification of various chemical constituents from different plant parts of species including their pharmacological effects have been reported.

This review aims to provide a comprehensive and up-to-date report on species of the genus Markhamia with emphasis on the ethnomedicinal uses, the phytochemical and pharmacological studies, and highlights of research reports on the isolation, characterization, and identification of various active constituents present in the plant.

ETHNOMEDICINAL USES

The medicinal uses of plants range from administration of the various plant parts (alone or in combination with other plant parts) to the use of decoctions and extracts from the plants.²²,²³ Plants of the genus Markhamia have been used by different tribes in various parts of African and Asian countries. Details of the uses of Markhamia species and the associated references are indicated in Table 1.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Ibrahim MB, Kaushik N, Sowemimo AA, Odukoya OA. Review of the phytochemical and pharmacological studies of the Genus Markhamia. Phcog Rev 2016;10:50-9.
Table 1: Ethnomedicinal data of plants of the genus Markhamia

Markhamia species	Synonym (s)	Distribution	Part used	Traditional uses	Reference
M. lutea (Benth.) K.Schum	Dolichandrone lutea Benth. ex Hook	Tanzania, Kenya, Uganda, Ethiopia	Root bark	The root barks are used in the treatment of anemia, diarrhea and backache	3,6,11,17,24
	Dolichandrone platycalyx (Baker) Sprague	Tanzania, Mozambique, Zimbabwe,		The roots are soaked in cold water and the resulting tea is taken thrice daily to	
	Markhamia hildebrandtii Sprague	Zambia, Angola, Namibia, Botswana,		reduce symptoms of watery bloodless diarrhea. It is also used in treating	
	Markhamia platycalyx Sprague	South Africa		difficult urination and as an analgesic	
	Spathodea lutea Benth				
M. obtusifolia (Baker) Sprague	Dolichandrone obtusifolia Baker	Tanzania, Mozambique, Zimbabwe,	Root	Toothache and fever in children; treatment of hookworm infestation	17,30,37,45
		Angola, Namibia, Botswana, and			
		South Africa			
M. stipulata Seem. ex K.Schum	Dolichandrone stipulata (Wall.) Clarke	India, China, Myanmar, Laos,	Leaves and bark	External application on skin diseases; used internally for an analgesic effect	7,47
		Vietnam, Cambodia, and Thailand			
M. tomentosa (Benth.) K.Schum. Ex Engl	Dolichandrone tomentosa (Benth.) B.D J acks	West African countries from	Leaves, bud sap,	Leaves are used in the treatment of diarrhea and scrotal elephantiasis and	4,8-11,15,47,49
	Markhamia sessilis Sprague	Senegal, Ghana, and Nigeria to	bark, root, and	against snake venom/bite. The leaf decoction and chewed leaves are also used	
	Muenteria tomentosa (Benth.) Seem	Cameroon, including Congo and Angola	stem bark	for treating general body pains, backache, lumbago, and headache. The bud sap	
	Spathodea tomentosa Benth			is used for eye treatment	
M. zanzibarica (Bojer ex D.C.) K.Schum	Markhamia stenocarpa (Seem.) K.Schum	South Africa, Botswana, Namibia,	Roots	Decoction of the leaves and bark are used as mild laxative	3,45
	Muenteria stenocarpa Seem	Zimbabwe, Malawi, Tanzania,		The stem bark is used as an antimarial and in the treatment of intercostal pain	
	Spathodea zanzibarica Bojer ex D.C.	Somali and recently reported in			
		India			

PHYTOCHEMISTRY OF MARKHAMIA SPECIES

Chemical investigations of different plant parts of the Markhamia species Markhamia lutea (Benth.) K.Schum [Figure 1], Markhamia obtusifolia (Baker) Sprague [Figure 2], Markhamia stipulata (Wall.) Seem [Figure 3], Markhamia tomentosa (Benth.) K.Schum. ex Engl [Figure 4], and Markhamia zanzibarica (Bojer ex D.C.) K.Schum [Figure 5] have led to the characterization of various secondary metabolites. These chemical constituents have been categorized as phenylpropanoid glycosides (PhGs), alkaloids, terpenoids, phytosterols, quinones, lignans, and flavonoids.

PhGs are acylated glycoconjugates with the core structure [Figure 6] characterized by a hydroxyphenethyl aglycone linked to a β-glucopyranose through glycosidic linkage. The glucose residue of the core structure is often encircled with substituents such as aromatic acids (cinnamic acid, ferulic acid, isoflavonic acid, and caffeic acid) and various sugars (apiose, arabinose, rhamnose, galactose, and xylose) through ester and glycosidic linkages, respectively.

Isolation of PhGs from the genus Markhamia was reported for the first time by Kernan et al.

The known PhGs verbacoside (1) and isoverbacoside (2) and three new PhGs lutidosides A–C (3–5) were isolated from the roots of Markhamia lutea. This was followed by the isolation of five new verbacoside derivatives: Markhamiosides A–E (6–10) and 13 known compounds from the leaves and branches of Markhamia stipulata. The characterization and identification of acteoside, also known as verbacoside (1) and isooacteoside (2), in the ethyl-acetate fraction of the leaves of Markhamia tomentosa have been reported.

Terpenoids and phytosterols

Terpenoids including their oxygenated, hydrogenated, and dehydrogenated derivatives are naturally occurring hydrocarbon molecules that are built up of isoprene units (C_5H_8) n joined in a head-to-tail fashion. Terpenoids are classified based on the number of isoprene units into monoterpenoids C_{10}, sesterterpenoids C_{15}, diterpenoids C_{20}, sterterpenoids C_{25}, triterpenoid C_{30}, and carotenoids C_{40}. Phytosterols are among the subclass of terpenoids and are derived from tetracyclic triterpenes. Six cyctoartane triterpenoids [Figure 7], that is, musambins A–C (19–21) and their 3-O-xyloside derivatives musambiosides A–C (22–24), along with other with pentacyclic triterpenes [Figure 8], that is, 2-epi-tormenolic acid (25) and arjunic acid (26), were reportedly isolated from the ethylacetate leaf extract of...
Markhamia lutea. Three bioactive pentacyclic triterpenoids [Figure 8], that is, epi-tormentic acid (25), ursolic acid (29), and pomic acid (30) were isolated from the leaves of Markhamia obtusifolia.31 Gamma-sitosterol (38), campesterol (39), and tritriacontane (40) were isolated from the root, stem bark, and leaves of Markhamia zanzibarica, respectively.26 Additionally, the isolation of pentacyclic triterpenoids such as pomolic acid (30), oleanolic acid (33), tormentic acid (35), and β-sitosterol (28) and its derivatives has been reported from the stem bark of Markhamia tomentosa.29 Ajugol (31), tormentic acid (35), carnasol (36), and oxopomolic acid (37) were identified in the leaves of M. tomentosa.29 The structures of the compounds were established by proton nuclear magnetic resonance (1H-NMR) and carbon-13 nuclear magnetic resonance (13C-NMR)—including one- and two-dimensional techniques—spectroscopy and mass spectrometry.
Table 2: Secondary metabolites isolated from plants of the genus *Markhamia* and their phytochemical analyses

Species/Part used	Extract type	Class of compounds	Isolation/Purification technique	Mobile phase	Reference
M. lutea roots	Aqueous extract	Phenylpropanoid glycosides: Verbascoside (1) (3,4-dihydroxyphenylethyl alcohol 8-O-[(4'-O-caffeoyl)-3'-O-a-L-rhamnopyranosyl (1->3')-β-D-glucopyranoside). Isoverbascoside (2); Luteoside A (3) (1-O-(3,4-dihydroxyphenyl) ethyl β-D apiofuranosyl (1->2')-a-L-rhamnopyranosyl (1->3')-4'-O-caffeyl-6'-acetyl-β-D-glucopyranoside); Luteoside B (4) (1-O-(3,4-dihydroxyphenyl) ethyl β-D-apiofuranosyl (1->2')-a-L-rhamnopyranosyl (1->3')-6'-O-caffeyl-β-D-glucopyranoside); Luteoside C (5) (1-O-(3,4-dihydroxyphenyl) ethyl β-D-apiofuranosyl (1->2')-α-L-rhamnopyranosyl (1->3')-6'-O-feruloyl-β-D-glucopyranoside)	Crude extract was subjected to successive reverse-phase HP-20 and C-18 column chromatography. Eluting fractions were monitored by thin-layer chromatography on C18. Purification of fractions by preparative TLC on silica gel. Purification of fractions by centrifugal partition chromatography. Monitoring of eluent by TLC on C-18	Increasing amount of methanol in water	24
M. lutea leaves	Ethylacetate extract	Terpenoids: Musambin A (19) (1α,3β-dihydroxy-24-hydroperoxy-cycloart-26-methylene-28-carboxylic acid); Musambin B (20) (1α,3β-dihydroxy-25-hydroperoxy-cycloart-23E-en-28-carboxylic acid); Musambin C (21) (1α,3β-dihydroxy-24-hydroperoxy-cycloart-26-methylene-24-oxo-28-carboxylic acid); Musambioside A (22) (3β-D-xylloside of musambin A); Musambioside B (23) (3β-D-xylloside of musambin B); Musambioside C (24) (3β-D-xylloside of musambin C); 2-epi-tormentic acid (25), arjunic acid (26)	Repeated medium-pressure chromatography of crude extract on 60 H Merck silica gel column. Fractions were chromatographed on Sephadex LH-20 column. Further purification of fractions on silica gel column	Gradient elution with cyclohexane: dichloromethane: methanol: ethyl-acetate: methanol: cyclohexane: ethyl-acetate gradient elution	26
M. lutea leaves	Ethylacetate extract	Phaeophorbide A (27) and β-sitosterol (28)	Purification of subfractions by HPLC and semi preparative HPLC on RP-18 silica gel	Acetonitrile: water gradient elution	26
M. obtusifolia roots and leaves	Methanol root and acetone leaf extracts	Terpenoids: Ursolic acid (29) (3β-hydroxyurs-12-en-28-oic acid); Pomolic acid (30) (3β, 19α-dihydroxy-urs-12-en-28-oic acid); Epi-tormentic (25) (25α, 3β, 19α-trihydroxy-urs-12-en-28-oic acid) Hydroxynaphthoquinones	Fractionation of extract on silica gel column. Silica gel CC of fractions	Successive elution with chloroform (100%) followed by chloroform: methanol (95:5 v/v) Elution with 100% chloroform followed by increasing gradient of ethylacetate: methanol up to 50%	30,42
M. stipulata stem heartwood	Alcohol extract	Naphthoquinone: Dehydro-α-lapachone (43); lapachol (44); dehydro-iso-α-lapachone (45); β-lapachone (46); tectol (47) Phytosterol; β-sitosterol (28) Lignans: Paulownin (41); Palmitone (42)	Successive CC on silica gel	Elution with light petroleum and benzene (3:1 and 1:4); pure benzene; benzene and ethylacetate (9:1; 3:1; 1:1; 1:3) and ratio 9:1 of ethylacetate: methanol	32

Contd...
Table 2: Contd...

Species/Part used	Extract type	Class of compounds	Isolation/Purification technique	Mobile phase	Reference
M. stipulata leaves and branches	Methanol extract	Phenylpropanoid glycosides:- Markhamioside A (6) (3,4-dihydroxy-β-phenylethoxy-O-[β-apiofuranosyl-(1’→2’)-α-β-hamnopyranosyl-(1”→3”)-O-β-glucopyranoside]); Markhamioside B (7) (3-hydroxy-4-methoxy-β-phenethoxy-O-[β-apiofuranosyl-(1’→2’)-α-hamnopyranosyl-(1”→3”)-6’-O-feryluloyl-β-glucopyranoside]); Markhamioside C (8) (3,4-dihydroxy-β-phenethoxy-O-[α-arabinopyranosyl-(1’→2’)-α-hamnopyranosyl-(1”→3”)-6’-O-caffeyl-β-glucopyranoside]); Markhamioside D (9) (3,4-dihydroxy-β-phenylethoxy-O-[α-arabinopyranosyl-(1’→2’)-α-rhamnopyranosyl-(1”→3”)-6’-O-caffeyl-6-O-acetyl-β-glucopyranoside])	Chromatography on column of highly porous copolymer of styrene and divinylbenzene	Successful elution with methanol, water and acetone	7
M. stipulata leaves and branches	Methanol extract	Phenethyl-0-β-glucopyranosyl-(1’→2’)-0-β-glucopyranoside (11); Decaffeoylverbacoside (12); Verbacoside (1); Isoverbacoside (2); Luteoside A (3); Luteoside B (4); 2’-O-apisoylverbacoside (13); Khaephuoside B (14); Sequinoside K (15); (6S,9R)-rosicoside (16); Rengyoside B (17); (+)-lyoniresinol 3α-O-β-glucopyranoside (18) Terpene: Iridoid, ajugol (31) Hydroquinone: Markhamioside F (48) (deacyl-ester of sequinoside K);	Gradient elution with n-hexane-ethylacetate mixture of increasing polarity	Successful gradient elution with hexane: ethylacetate and dichloromethane: methanol	9
M. tomentosa stem bark	Ethyl-acetate extract	Phytosterol: -β-sitosterol (28); β-sitosterol-3-O-β-D-glucopyranoside (32) Naphthoquinone: 2-acetyl-naphth[2,3-b]furan-4,9-dione (49); 2-acetyl-6-methoxynaphth[2,3-b]furan-4,9-dione (50) Triterpenoid: -Oleanolic acid (33); Pomolic acid (31); 3-acetylpomolic acid (34); tormentic acid (35)	Gradient elution with a-hexane-ethylacetate mixture of increasing polarity	Successful gradient elution with hexane: ethylacetate and dichloromethane: methanol	28
M. tomentosa leaves	Ethyl-acetate fraction	Phenylpropanoid glycosides:- Acteoside, also known as verbacoside (1), isoacteoside (2) Terpenoids:- Iridoid, ajugol (31), tormentic acid (35), carnasol (36) and 2-oxo-pomolic acid (37) Naphthoquinone: Dilapachone (51) Flavonoids:- Luteolin (52), Luteolin-7-rutinoside (53), Luteolin-3,7-di-O-glucoside (54)	Fractionation of crude extract by silica CC	Gradient elution with acidified water and acetonitrile	25,42
M. zanzibarica root, stem bark, and leaves	Chloroform root and leaf extracts; petroleum stem bark extract	Phytosterol: γ-sitosterol (38), campesterol (39), tritriacontane (40)	Crude extracts were subjected to silica gel CC to yield colorless and colored fractions	Chloroform and petrol	25,42

CC: Column chromatography; TLC: Thin-layer chromatography; CPC: Centrifugal partition chromatography; MPLC: Medium-pressure chromatography; HPLC: High-performance liquid chromatography
Lignans
Lignans are dimeric compounds formed by the union of two molecules of a phenylpropene derivative. The lignans paulownin (41) and palmitone (42), as well as palustrine, have been isolated from the stem heartwood of *Markhamia stipulata* and *Markhamia tomentosa*, respectively.

Quinones
Quinones are derived from benzoquinone, naphthoquinone, or anthraquinone structural moieties. Four lapachol-type naphthoquinones (43–46) and markhamioside F (48) were isolated from the stem heartwood of *Markhamia stipulata*. Two bioactive naphtho[2,3-b] furan-4,9-diones [Figure 9a], that is, 2-acetyl naptho[2,3-b] furan-4,9-dione (49) and 2-acetyl-6-methoxy-naphtho[2,3-b] furan-4,9-dione (50) were reported to have been isolated from the stem bark of *Markhamia tomentosa*. In addition, dilapachone (51) [Figure 9b] was identified in the ethyl-acetate fraction of the leaves of *Markhamia tomentosa*.

Flavonoids
The identification of luteolin (52), luteolin-7-rutinoside (53), and luteolin-3',7-di-O-glucoside (54) [Figure 10] from the ethyl-acetate fraction of the leaves of *Markhamia tomentosa* has been reported.
MUTIAT BOLANLE IBRAHIM, et al.: Review of the Genus *Markhamia*

ETHNOPHARMACOLOGICAL ACTIVITY

The primary metabolites are mainly important to the plants, while the secondary metabolites are of medicinal value for humans.[34] The medicinal plants of the genus *Markhamia* have emerged as a good source of medicines. Researchers have carried out various *in vitro* and *in vivo* screenings on the extracts and isolated compounds from members of the genus to authenticate their use in traditional medicine. Plants of this genus have demonstrated a wide spectrum of pharmacological profiles such as antiulcer, antioxidant, antimicrobial, antiinflammatory, analgesic, and antiviral activities. In our earlier work,[20] we reported the
cytotoxicity and the antiproliferative and apoptosis-inducing activity of one member of the genus *Markhamia* against brine shrimp larvae and HeLa cervical cancer cell lines. The following section presents a review of the pharmacological properties of these species and the associated references shown in Table 3.

M. lutea (Benth.) K.Schum

The roots of *Markhamia lutea* are soaked in cold water for 30 min and the resulting tea is used to reduce symptoms of watery and bloodless diarrhea.[25] The aqueous extract of the root bark is used in the treatment of anemia and diarrhea.[9] *Markhamia lutea* and *Markhamia tomentosa* are both used to cure various parasitic and microbial diseases.[11] In ethnoveterinary medicine, the plant is eaten by primates such as chimpanzees and red and black-and-white colobus monkeys.[17,35,36] The presence of phytocomponents such as flavonoids, saponins, terpenoids, phytoestrogens, quinones, and coumarins in the different solvent extracts of *M. lutea* have been reported.[17] Several *in vitro* and *in vivo* studies have so far been carried out to validate the use of this plant. The commonly occurring PhGs include verbacoside (1) and isoverbacoside (2) and new PhGs such as luteosides A, B, and C (1–3) isolated from the root of *M. lutea* showed activity against respiratory syncytial virus.[24] The bioactive compounds musambins A, B, and C (19–21) isolated from the leaves of the plant...
exhibited mild antileishmanial and antitrypanosomal activities.\cite{27} Dichloromethane leaf extract of the plant showed weak antiplasmodial activity with a half maximal inhibitory concentration (IC_{50}) value of 29 μg/mL.\cite{19} The cytotoxic potential of the methanolic root extract of *Markhamia hildebrandtii* (synonym of *Markhamia lutea*) was investigated against cervical carcinoma, colon adenocarcinoma, and skin carcinoma.\cite{18} In *in vivo* pharmacological screening of the leaf extract of *Markhamia platycla** (synonym of *Markhamia lutea*) provided evidence that the plant has high potential as an anti-Alzheimer’s disease drug lead due to its high phenolic content.\cite{21}

M. obtusifolia (Baker) Sprague

The root of *Markhamia obtusifolia* is used in folk medicine to treat tuberculosis infection of lymph nodes in the neck,\cite{31} convulsion in children,\cite{18} and hookworm infestation.\cite{19} The roots, barks, and leaves are boiled with other plants and used as an inhalant for the treatment of colds. In ethnovenery medicine, the leaves and fruits of this species are consumed as fodder by goats.\cite{40} The methanolic root extract of *M. obtusifolia* exhibited minimal cytotoxic effect (<50% cell proliferation) against A431 skin carcinoma at 100 μg/mL.\cite{18} The antifungal activity of three isolated triterpenoids (25, 29, and 30) from the acetone extract of *M. obtusifolia* has been reported.\cite{31} The claimed anthelmintic activity of this plant species has been confirmed *in vitro*.\cite{19} Further research is required to confirm the folk uses of the plant in treating other disease conditions.

M. stipulata Seem. ex K.Schum.

The leaves and barks of *Markhamia stipulata* are used externally for the treatment of skin diseases and internally as an analgesic [Table 1]. Bioactive chemical compounds including quinones, phytosterols, lignans, and PhGs have been isolated from different parts of the plant.\cite{7,33} Although the pharmacological activity of the compounds isolated from the plant has not been investigated, the pharmacological activities of verbascoside derivatives have been reported to have antifungal, antibacterial, antiviral, and analgesic effects.\cite{10,41,42}

M. tomentosa (Benth.) K.Schum. ex Engl.

Of all the members of the *Markhamia* genus, the traditional use of the different plant parts of *Markhamia tomentosa* is the most reported [Table 1]. The species has found use in both human folk and ethnovenery medicines.\cite{2,40} The plant is used in ethnovenery medicine to control gastrointestinal ailments and in pain management.\cite{12,13} Preliminary phytochemical investigations of the leaves revealed the presence of major classes of bioactive compounds including saponins, flavonoids, terpenes, steroids, and phenolic nuclei.\cite{2,40} A number of *in vitro* and *in vivo* studies have been carried out to validate the activity of the plant. Two naphthoquinone [Figure 9] compounds (49–50) isolated from the stem bark of *M. tomentosa* exhibited potent antiprotozoal activity against *Plasmodium falciparum, Leishmania donovani,* and *Trypanosoma brucei rhodesiense.*\cite{9} The leaf extract of the plant was reported to possess strong antimicrobial and antioxidant effects.\cite{8} The inhibition of *Escherichia coli* by the hexane and ethylacetate extracts of *M. tomentosa* justifies the traditional use of the plant in the management of dysentery and diarrhea.\cite{2} Although hepatoprotective activity has not been reported for this plant species, there has been a report on the prophylactic and therapeutic activities of a member of the family Bignoniaceae against paracetamol-induced liver damage in rats.\cite{40} Alcoholic extracts of the leaves of *M. tomentosa* were shown to have potent analgesic and antiinflammatory effects on rats and mice. The selective inhibition of butyrylcholinesterase enzymes by the root bark of this species in the management of Alzheimer’s disease has also been reported.\cite{43,44} Ethanol crude extract and the different solvent fractions of *M. tomentosa* leaves were reported to prevent gastric mucosal ulceration in the stomachs of rats.\cite{20} In our earlier work,\cite{20} we reported the cytotoxicity activity and underlying mechanisms of *Markhamia tomentosa* leaf extract on brine shrimp larvae, HeLa and MCF-7 cancer cell lines, and noncancerous Vero cell lines. In view of the wide application of this plant species and the tendency for prolonged intake, we are currently investigating the dose- and time-dependent chronic toxicity effects of *Markhamia tomentosa* in rodents (not published).

M. zanzibarica (Bojer ex DC.) K.Schum.

Markhamia zanzibarica is widely distributed in tropical Africa and Asia. In India, the plant is the second most reported *Markhamia* species after *Markhamia lutea*.\cite{20} The plant is used to treat toothache, headache, and general pains [Table 1]. The cytotoxic effect of this species on *Artemia salina* has been investigated\cite{47} and the activity was attributed to the bioactive gamma-sitosterol (38) compound isolated from the root of the species.\cite{26}

CONCLUSION

This review summarizes information on the plants of the genus *Markhamia* with emphasis on their ethnomedicinal uses, isolated phytoconstituents, and ethnopharmacological studies on them. Species of this genus have been useful in the management of various disease conditions in both human and veterinary traditional medicines. Some of the claimed traditional uses have been validated through phytochemical and pharmacological studies of the genus. On preliminary phytochemical screening of plants of this genus, the presence of a wide range of secondary metabolites was reported. However, the major reported class of phytoconstituents, isolated through various separation and purification techniques from *M. lutea, M. obtusifolia, M. stipulata, M. tomentosa,* and *M. zanzibarica*, were PhGs, terpenoids, phytosterols, lignans, quinones, and flavonoids. The isolated compounds were identified on analysis of their spectroscopic and chemical data, which were consistent with values reported in the literature. A number of *in vitro* and *in vivo* pharmacological studies have confirmed that the plant extracts and isolated compounds possess significant antiviral, antiprotozoal, antimicrobial, antioxidant, analgesic, antiinflammatory, anti-Alzheimer, antiulcer, and cytotoxic activities. It may be concluded that plants of this genus hold great potential as a source of new drugs. Thus, further studies aimed at the proper documentation of folk uses, validation of the claimed bioactivities, and isolation and identification of the bioactive compounds of species of the genus are required.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Hutchinson J, Dalziel JM. Flora of West Tropical African. Part I. Vol. 2. London: Crown Agents for Oversea Government and Administrations; 1954. p. 383-8.
2. Ugbabe GE, Ayoede AE, Ajuku GA, Kunle OF, Kolo I, Okogun JJ. Preliminary phytochemical and antimicrobial analyses of the leaves of Nigerian Bignoniaceae Juss. Global Res J 2010;1:1-5.
3. Mohammed I, Malik V, Pranita. *Markhamia zanzibarica* (Bojer ex DC.) K.Schum. A new exotic beauty for India. Species 2013:5;16-7.
4. Burkill HM. The Useful Plant of West Tropical African. Vol. 1. England: Royal Botanical Gardens, Kew; 1965. p. 252-8.
5. Bouquet A, Debray M. Plantes M’dicinales de la C te d’Ivoire. Paris: ORSTOM (Spanish); 1994. p. 50-2.
6. Kerharo J. Historic and Ethnopharmacognosic Review on the Belief and Traditional Practices in the Treatment of sleeping sickness in West Africa. Bull Soc Med Afr Noire Lang FR 1974;19:490.
7. Kancharapoom T, Kasai R, Yamasaki K. Phenolic glycosides from *Markhamia stipulata*. Phytochemistry 2002;69:557-63.
8. Aladesanmi AJ, Iwalowo EO, Adejabo AC, Akinkikumi EO, Tawo BJ, Olorunmola FO, et al. Antimicrobial and antioxidant activities of some Nigerian medicinal plants. Afr J Tradit Complement Altern Med 2007;4:173-84.
9. Tantangono F, Lenta BN, Boyorn FF, Ngouela S, Kaiser M, Tsamo E, et al. Antiprotozoal activities of some constituents of Markhamia tomentosa (Bignoniaceae). Ann Trop Med Parasitol 2010;104:391-9.
10. Tembile RJ, Fioto LA, Dimo T, Bepe JG, Tsague M. Alkaloidal and anti-inflammatory effects of extracts from the leaves of Markhamia tomentosa (Benth.) K. Schum. (Bignoniaceae). Pharmacol 2012;3:565-73.
11. Adjihouno EH, Abukabalar N, Dramane K, Ebat ME, Ekpere JE, Enow‑on‑ock EG, et al. Contribution to Ethnobotanical and Floristic Studies in Cameroon. ‘Yaoundé’. Commission Scientifique Technique et de la Recherche, 1996. p. 423-64.
12. De Villiers BJ, Van Vuuren SF, Van Zyl RL, Van Wyk BE. Anti‑micronidal and antimalarial activity of Custosma species (Araliaceae). J Ethnopharmacol 2010;129:189-96.
13. Stark TD, Mtui DJ, Balamba OB. Ethnopharmacological survey of plants used in the traditional treatment of gastrointestinal pain, inflammation and diarrhea in Africa: Future perspectives for integration in modern medicine. Animals 2013;3:158-227.
14. Eluoja AA. The role of pharmacognosy in phytotherapy, the challenges of our time. Nigerian J Nat Prod and Med 1998;3:5-8.
15. Ayodele SQ. The Effects of Herbal Remedies. Paper Presented at the 12th Annual Conference of the Botanical Society of Nigeria (BOSON). Lagos, Nigeria. University of Lagos; 2003. p. 21-9.
16. Borokiri TI, Oromofo P. Phytochemical and ethnobotanical study of some selected medicinal plants from Nigeria. J Med Plant Res 2012;6:1106-16.
17. Joselin J, Brinha TS, Florence AR, Jeeva S. Phytochemical evaluation of Bignoniaceae flowers. J Chem Pharm Res 2013;5:106-11.
18. Kamuhawa A, Nshimo C, de Witte P. Cytoxicity of some medicinal plant extracts used in Tanzanian traditional medicine. J Ethnopharmacol 2000;70:143‑9.
19. Souvermo A, Samuel F, Fageyinbo MS. Anti‑inflammatory activity of Markhamia tomentosa (Benth.) K. Schum. Ex Engl. ethanic leaf extract. J Ethnopharmacol 2013;149:191-4.
20. Ibrahim B, Souvermo A, Spiers L, Kekonkoor T, van de Venter M, Odouko YA. Antiproiferative and apoptosis inducing activity of Markhamia tomentosa leaf extract on HeLa cells. J Ethnopharmacol 2013;149:465-9.
21. Hassan Y, Handoussa H, El‑Khatib AH, Linscheid MW, El‑Sayed N, Ayoub N. Evaluation of plant phenolic metabolites as a source of Alzheimer’s drug leads. Biomed Res Int 2014;2014:842638.
22. Ogbule JN, Ogueke CC, Okonundo S. Antibacterial properties of A. cordofillia, m. formur, U. chaeme, B. pinnatum, C. abisdes, and A. citala on some hospital isolates. Nigerian J Microbiol 2004;18:249-55.
23. Halde UK, Wake R, Patil N. Genus Markhamia tomentosa (Bignoniaceae) — a plant ingested by wild chimpanzees. Phytochemistry 2009;70:1239‑45.
24. Zebulon A, Basha MC, Sire M, Amozou A, Yo‑no‑mo A, et al. In vitro Antimicrobial and Antiproliferative activities of plant extracts from the leaves of Markhamia tomentosa in rats. J Ethnopharmacol 2014;157:1-6.
25. Dillard CJ, German JB. Phytochemicals: Nutraceuticals and Human Health. J Sci Food Agric 2000;80:1744-56.
26. Nchu F, Aderogba MA, Mdee LK, El‑OJ. Isolation of anti‑Candida albicans compounds from Markhamia obtusifolia (Baker) Sprague (Bignoniaceae). S Afr J Bot 2010;76:54-7.
27. Mohammed A. Pharmacognosy (Pharmacognosy and Phytochemistry) Vol. 1. New Delhi (India): Satish Kumar Jain for CBS Publisher & Distributors; 2008. p. 189-96.
28. Jordanic DA, Chapman CA. Coping with forest fragmentation: The primates of Kibale National Park, Uganda. Int J Primatol 2000;21:587-611.
29. Chapman CA, Chapman LJ, Rode KD, Hauck EM, McDowell LR. Variation in the nutritional value of prime foods: Among trees, time periods, and areas. Int J Primatol 2003;24:317-33.
30. Muganga R, Angenot L, Titis M, Frédérique M. Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria. J Ethnopharmacol 2010;128:52-7.
31. Chhabra SC, Mahunnah RL. Plants used in traditional medicine by the Kagera Region, Tanzania. Econ Bot 1994;48:121-9.
32. Nchu F, Gholiory JB, McGaw LJ, El‑OJ. Anthelmintic and cytotoxic activities of extracts of Markhamia obtusifolia Sprague (Bignoniaceae). Vet Parasitol 2011;183:184-8.
33. Kokaurro JO. Medicinal Plants of East Africa. 2nd ed. Nairobi: East Africa Literature Bureau; Kokwaro; 1976. p. 384.
34. Cometa F, Tomassini L, Nicolloni M, Peretti S. Phenylpropanoid glycosides: Distribution and pharmacological activity. Fitoterapia 1993;64:195-217.
35. Jiménez C, Riquera R. Phenylethanol glycosides in Plants: Structure and biological activity. Nat Prod Rep 1994;11:591-606.
36. Khan MR. Cytotoxic assay of some Bignoniaceae. Fitoterapia 1998;69:538-40.
37. Arnold TH, De Wet BC. Plants of SOUTHERN Africa: Names and Distribution. South Africa: Botanical Survey of South Africa; 1993. p. 62.
38. Shabana MH, Hashem FA, Sinab A, Khaled S, Farrag A. Protective and therapeutic activities of Mayodendron ignem Kurz against paracetamol induced liver toxicity in rats and its bioactive constituents. J Applied Pharma Sci 2013:1:47-55.
39. Eludioj TO, Obubotor EM, Semma AT, Agbedehunsi JM, Aderanyena SA. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants. Braz J Pharmacol 2010:20:472-7.
40. Hoang VS, Nanthavong K, Kessler PJ. Trees of Laos and Vietnam: A field guide to 100 economically and ecologically important species. Bluesum 2004;49:201-349.
41. Arbonnier M. Trees, Shrubs and Lianas of West Africa Dry Zones. France: CIRAD, MNHN, Margraf Publishers GmBH; 2004. p. 573.
42. Adebajo AG, Fumuyiwa FG, John JD, Ideri ES, Adeoye AO. Activities of some Nigeria Medicinal Plants against Aedes aegypti. Chinese Med 2012;3:151-6.

ABOUT AUTHORS
Mutiat Bolanle Ibrahim, (MRS) Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine campus, Ii‑araba, Lagos, Nigeria.

Nutan Kaushik, (PhD) Senior Fellow and Area Convenor. Plant Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Darbahi Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110 003, India.

Abimbola Adepeju Sovemimo, (PhD) Sub‑dean, Faculty of Pharmacy, University of Lagos. Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine campus, Ii‑araba, Lagos, Nigeria.

Olukemi A. Odukoya, (PhD) Professor of Pharmacognosy Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine campus, Ii‑araba, Lagos, Nigeria.