Toda lattice hierarchy and Goldstein-Petrich flows for plane curves

Kenji Kajiwara1 and Saburo Kakei2

1 Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
2 Department of Mathematics, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

Abstract

A relation between the Goldstein-Petrich hierarchy for plane curves and the Toda lattice hierarchy is investigated. A representation formula for plane curves is given in terms of a special class of \(\tau\)-functions of the Toda lattice hierarchy. A representation formula for discretized plane curves is also discussed.

1 Introduction

Intimate connection between integrable systems and differential geometry of curves and surfaces has been an important topic of intense research \cite{1, 23}. Goldstein and Petrich introduced a hierarchy of commuting flows for plane curves that is related to the modified Korteweg-de Vries (mKdV) hierarchy \cite{6}. The second Goldstein-Petrich flow is defined by the modified Korteweg-de Vries equation,

\[
\frac{\partial \kappa}{\partial t} = \frac{\partial^3 \kappa}{\partial x^3} + \frac{3}{2} \kappa^2 \frac{\partial \kappa}{\partial x},
\]

where \(\kappa = \kappa(x, t)\) denotes the curvature and \(x\) is the arc-length. This result has been extended and investigated from various viewpoints \cite{3, 4, 5, 9, 10, 11, 16, 21, 22}. In \cite{9, 10}, a representation formula for curve motion in terms of the \(\tau\) function with respect to the second Goldstein-Petrich flow has been presented by means of the Hirota bilinear formulation and determinant expression of solutions. The aim of this article is to generalize the results in \cite{9, 10} to the whole hierarchy. We will show how the Goldstein-Petrich hierarchy is embedded in the Toda lattice hierarchy\cite{24, 28}. We remark that the semi-discrete case, discussed in \cite{10}, is not considered in this paper.

An advantage of infinite hierarchical formulation is its relation to integrable discretization. Miwa showed that Hirota’s discrete Toda equation \cite{7} can be obtained by applying a change of coordinate to the KP hierarchy \cite{12, 19, 24}. Using a generalization of Miwa’s approach, we will show that Matsuura’s discretized curve motion \cite{18} can be obtained also from the Toda lattice hierarchy. Another merit of the KP theoretic formulation is Lie algebraic aspect of the hierarchy \cite{12, 20}. We will discuss a relationship between the Goldstein-Petrich hierarchy and a real form of the affine Lie algebra \(\hat{sl}(2, \mathbb{C})\).
2 Goldstein-Petrich flows for Euclidean plane curves

We assume that \(\mathbf{r}(x) = (X(x), Y(x)) \) is a curve in Euclidean plane \(\mathbb{R}^2 \), parameterized by the arc-length \(x \). Define the tangent vector \(\hat{\mathbf{r}} \) and the unit normal \(\hat{\mathbf{n}} \) by

\[
\hat{\mathbf{r}} = x, \quad \hat{\mathbf{n}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \hat{\mathbf{r}}.
\]

(2.1)

Here the subscript \(x \) indicates differentiation. The Frenet equation for \(\mathbf{r} \) is given by

\[
\hat{\mathbf{r}}_x = \kappa \hat{\mathbf{n}}, \quad \hat{\mathbf{n}}_x = -\kappa \hat{\mathbf{r}},
\]

(2.2)

where \(\kappa \) is the curvature of the curve \(\mathbf{r} \). Goldstein and Petrich [6] considered dynamics of a plane curve described by the equation of the form

\[
\frac{\partial \mathbf{r}}{\partial t_n} = f^{(n)}(\hat{\mathbf{n}}) + g^{(n)}\hat{\mathbf{r}}.
\]

(2.3)

The coefficients \(f^{(n)} = f^{(n)}(x, t) \), \(g^{(n)} = g^{(n)}(x, t) \) \((t = (t_1, t_2, t_3, \ldots)) \) are differential polynomials in \(\kappa \). We remark that our choice of signature in (2.2) is different from that of [6]. Following the discussion in [6], we choose \(f^{(n)}(x, t), g^{(n)}(x, t) \) as

\[
f^{(1)} = 0, \quad g^{(1)} = 1, \quad f^{(2)} = \kappa_x, \quad g^{(2)} = \kappa^2/2,
\]

\[
g^{(n)} = \kappa f^{(n)}, \quad f^{(n+1)} = \left(f_x^{(n)} + \kappa g^{(n)}\right)_x.
\]

(2.4)

We call as Goldstein-Petrich hierarchy the equations defined by (2.1), (2.2), (2.3) and (2.4).

Applying the condition (2.4) to (2.3), we obtain

\[
\frac{\partial \hat{\mathbf{r}}}{\partial t_n} = \left(f_x^{(n)} + \kappa g^{(n)}\right)\hat{\mathbf{n}}, \quad \frac{\partial \hat{\mathbf{n}}}{\partial t_n} = -\left(f_x^{(n)} + \kappa g^{(n)}\right)\hat{\mathbf{r}}.
\]

(2.5)

The compatibility condition for (2.2) and (2.5) is reduced to

\[
\frac{\partial \kappa}{\partial t_n} = \left(f_x^{(n)} + \kappa g^{(n)}\right)_x = f^{(n+1)}.
\]

(2.6)

The case \(n = 2 \) of (2.6) gives the mKdV equation (1.1). One finds that

\[
f^{(n)} = \Omega f^{(n-1)}, \quad \Omega = \partial_x^2 + \kappa^2 + \kappa \partial_x^{-1} \kappa.
\]

(2.7)

We remark that the operator \(\Omega \) is the recursion operator for the modified KdV hierarchy [2].

We now introduce complex coordinate via a map \(\rho : \mathbb{R}^2 \rightarrow \mathbb{C} \) given by

\[
\rho(X, Y) = X + \sqrt{-1} Y.
\]

(2.8)

and define \(Z, T, N \) as

\[
Z = \rho(\mathbf{r}), \quad T = \rho(\hat{\mathbf{r}}), \quad N = \rho(\hat{\mathbf{n}}) = \sqrt{-1} T.
\]

(2.9)

Since \(|\hat{\mathbf{r}}| = |\hat{\mathbf{n}}| = 1 \), the complex variables \(T \) and \(N \) satisfy \(|T| = |N| = 1 \). The equations (2.1), (2.2), (2.3) are rewritten as

\[
T = Z_x, \quad T_x = \sqrt{-1} \kappa T, \quad \frac{\partial Z}{\partial t_n} = \left(g^{(n)} + \sqrt{-1} f^{(n)}\right) T.
\]

(2.10)
3 Toda lattice hierarchy

In this section, we briefly review the theory of Toda lattice hierarchy using the language of difference operators [24, 28] (See also [13, 25, 26]). We denote as e^{∂_s} the shift operator with respect to s: $e^{\partial_s} f(s) = f(s + 1)$. For a difference operator $A(s) = \sum_{-\infty < j < +\infty} a_j(s)e^{i\partial_s}$, we define the non-negative and negative part of $A(s)$ as

$$
(A(s))_{\geq 0} = \sum_{0 \leq j < +\infty} a_j(s)e^{i\partial_s}, \quad (A(s))_{< 0} = \sum_{-\infty < j < 0} a_j(s)e^{i\partial_s}.
$$

Let $L^{(\infty)}(s), L^{(0)}(s)$ be difference operators of the form

$$
L^{(\infty)}(s) = e^{\partial_s} + \sum_{-\infty < j \leq 0} b_j(s)e^{i\partial_s}, \quad L^{(0)}(s) = \sum_{-1 \leq j < +\infty} c_j(s)e^{i\partial_s},
$$

where we assume $c_{-1}(s) \neq 0$ for any s. We introduce two sets of infinitely many variables $x = (x_1, x_2, \ldots), y = (y_1, y_2, \ldots)$ and define the weight of the variables as

$$
\text{weight}(x_n) = n, \quad \text{weight}(y_n) = -n \quad (n = 1, 2, \ldots).
$$

Each coefficient of $L^{(\infty)}(s), L^{(0)}(s)$ is a function of x, y, i.e. $b_j(s) = b_j(s; x, y), c_j(s) = c_j(s; x, y)$. The Toda lattice hierarchy is defined as the following set of differential equations of Lax-type:

$$
\frac{\partial L^{(\infty)}(s)}{\partial x_n} = [B_n(s), L^{(\infty)}(s)], \quad \frac{\partial L^{(0)}(s)}{\partial x_n} = [B_n(s), L^{(0)}(s)],
$$

$$
B_n(s) = \left(L^{(\infty)}(s)^n\right)_{\geq 0} \quad (n = 1, 2, 3, \ldots),
$$

$$
\frac{\partial L^{(\infty)}(s)}{\partial y_n} = [C_n(s), L^{(\infty)}(s)], \quad \frac{\partial L^{(0)}(s)}{\partial y_n} = [C_n(s), L^{(0)}(s)],
$$

$$
C_n(s) = \left(L^{(0)}(s)^n\right)_{\leq 0} \quad (n = 1, 2, 3, \ldots).
$$

Proposition 1 [28, Proposition 1.4]. Let $L^{(\infty)}, L^{(0)}$ be difference operators of the form (3.2) and satisfy the differential equations (3.4), (3.5). Then there exist difference operators $\hat{W}^{(\infty)}(s), \hat{W}^{(0)}(s)$ of the form,

$$
\hat{W}^{(\infty)}(s) = 1 + \sum_{j=1}^{\infty} \hat{w}_j^{(\infty)}(s)e^{-j\partial_s},
$$

$$
\hat{W}^{(0)}(s) = \sum_{j=0}^{\infty} \hat{w}_j^{(0)}(s)e^{j\partial_s} \quad (\hat{w}_0^{(0)}(s) \neq 0),
$$

satisfying the following equations:

$$
L^{(\infty)}(s) = \hat{W}^{(\infty)}(s)e^{\partial_s}\hat{W}^{(\infty)}(s)^{-1},
$$

$$
L^{(0)}(s) = \hat{W}^{(0)}(s)e^{-\partial_s}\hat{W}^{(0)}(s)^{-1},
$$

$$
\frac{\partial \hat{W}^{(\infty)}(s)}{\partial x_n} = B_n(s)\hat{W}^{(\infty)}(s) - \hat{W}^{(\infty)}(s)e^{n\partial_s},
$$

$$
\frac{\partial \hat{W}^{(\infty)}(s)}{\partial y_n} = C_n(s)\hat{W}^{(\infty)}(s),
$$

$$
\frac{\partial \hat{W}^{(0)}(s)}{\partial x_n} = B_n(s)\hat{W}^{(0)}(s),
$$

$$
\frac{\partial \hat{W}^{(0)}(s)}{\partial y_n} = C_n(s)\hat{W}^{(0)}(s) - \hat{W}^{(0)}(s)e^{-n\partial_s}.
$$
Proposition 2 ([28], (1.2.18)). The difference operators $\hat{W}^{(s)}(s; x', y') \exp \left[\sum_{n=1}^{\infty} (x'_n - x_n) e^{\theta x_n} \right] \hat{W}^{(s)}(s; x, y)^{-1}$

$$\hat{W}^{(s)}(s; x', y') \exp \left[\sum_{n=1}^{\infty} (y'_n - y_n) e^{-\theta y_n} \right] \hat{W}^{(s)}(s; x, y)^{-1}$$

(3.9)

for any x, x', y, y' and any integer s.

Define $\hat{W}_j^{(s)}(s; x, y), \hat{W}_j^{(s),*}(s; x, y)$ by expanding $\hat{W}^{(s)}(s; x, y)^{-1}, \hat{W}^{(s)}(s; x, y)^{-1}$ with respect to $e^{\theta x}$:

$$\hat{W}_j^{(s)}(s; x, y)^{-1} = \sum_{j=0}^{\infty} e^{-\theta j} \hat{W}_j^{(s)*}(s + 1; x, y),$$

(3.10)

$$\hat{W}^{(s)}(s; x, y)^{-1} = \sum_{j=0}^{\infty} e^{\theta j} \hat{W}_j^{(s)*}(s + 1; x, y).$$

From (3.6), (3.7) and (3.10), we obtain

$$b_0(s) = \hat{W}_1^{(s)}(s) + \hat{W}_1^{(s)*}(s + 1) = \hat{W}_1^{(s)}(s) - \hat{W}_1^{(s)}(s + 1),$$

$$b_{-n}(s) = \hat{W}_n^{(s)}(s) + \hat{W}_n^{(s)*}(s + 1 - n) + \sum_{j=1}^{n} \hat{W}_j^{(s)}(s) \hat{W}_n^{(s)*}_{n+1-j}(s + 1 - n) \quad (n \geq 1),$$

(3.11)

$$c_n(s) = \sum_{j=0}^{n+1} \hat{W}_j^{(s)}(s) \hat{W}_{n-j+1}^{(s)*}(s + n + 1) \quad (n \geq -1).$$

Theorem 3 ([28], Theorem 1.7). There exists a function $\tau(s) = \tau(s; x, y)$ satisfying

$$\hat{W}_j^{(s)}(s; x, y) = \frac{p_j(-\tilde{\partial}_x) \tau(s; x, y)}{\tau(s; x, y)},$$

$$\hat{W}_j^{(s),*}(s; x, y) = \frac{p_j(-\tilde{\partial}_x) \tau(s + 1; x, y)}{\tau(s; x, y)},$$

$$\hat{W}_j^{(s)*}(s; x, y) = \frac{p_j(\tilde{\partial}_x) \tau(s; x, y)}{\tau(s; x, y)},$$

$$\hat{W}_j^{(s)*}(s; x, y) = \frac{p_j(\tilde{\partial}_x) \tau(s - 1; x, y)}{\tau(s; x, y)}$$

(3.12)

where $\tilde{\partial}_x = (\partial_{x_1}, \partial_{x_2}/2, \partial_{x_3}/3, \ldots), \tilde{\partial}_y = (\partial_{y_1}, \partial_{y_2}/2, \partial_{y_3}/3, \ldots)$, and the polynomials $p_n(t)$ ($n = 0, 1, 2, \ldots$) are defined by

$$\xi(t, \lambda) = \exp \left[\sum_{j=1}^{\infty} t_n \lambda^j \right] = \sum_{n=0}^{\infty} p_n(t) \lambda^n, \quad t = (t_1, t_2, \ldots).$$

(3.13)

Furthermore, the τ-function $\tau(s; x, y)$ of the Toda lattice hierarchy is determined uniquely by (3.12) up to a constant multiple factor.

It follows that

$$c_{-1}(s) = \hat{W}_0^{(0)}(s) \hat{W}_0^{(0)*}(s) = \frac{\tau(s + 1) \tau(s - 1)}{\tau(s)^2},$$

$$c_0(s) = \hat{W}_0^{(0)}(s) \hat{W}_1^{(0)*}(s + 1) + \hat{W}_1^{(0)}(s) \hat{W}_0^{(0)*}(s + 1) = \frac{\partial}{\partial y_1} \log \frac{\tau(s)}{\tau(s + 1)}.$$

(3.14)
Theorem 4 ([28], Theorem 1.11). \(\tau\)-functions of Toda lattice hierarchy satisfy the following equation (bilinear identity):

\[
\oint \tau(s'; x' - [\lambda^{-1}], y')\tau(s; x + [\lambda^{-1}], y)e^{S(x'-x,y',\lambda)}x'^{-s}d\lambda = \oint \tau(s' + 1; x', y' - [\lambda])\tau(s - 1; x, y + [\lambda])e^{S(y'-y,x',\lambda)}x'^{-s}d\lambda,
\]

where \([\lambda] = (\lambda, \lambda^2/2, \lambda^3/3, \ldots)\), and we have used the notation of formal residue,

\[
\oint \left(\sum_n a_n x^n \right) d\lambda = 2\pi \sqrt{-1} a_{-1}.
\]

Conversely, if \(\tau(s; x, y)\) solves the bilinear identity (3.15), then \(\check{W}^{(\infty)}(s; x, y)\) and \(\check{W}^{(0)}(s; x, y)\) defined by (3.6) and (3.12) satisfy (3.8).

4 Time-flows with negative weight with 2-reduction condition

4.1 Reduction to Goldstein-Petrich hierarchy

We now impose the 2-reduction condition [28]

\[
L^{(\infty)}(s)^2 = e^{2d_1}, \quad L^{(0)}(s)^2 = e^{-2d_1},
\]

that implies

\[
W^{(\infty)}(s + 2) = W^{(\infty)}(s), \quad W^{(0)}(s + 2) = W^{(0)}(s),
\]

\[
L^{(\infty)}(s + 2) = L^{(\infty)}(s), \quad L^{(0)}(s + 2) = L^{(0)}(s).
\]

Proposition 5 ([28], Proposition 1.13). Let \(L^{(\infty)}(s; x, y)\), \(L^{(0)}(s; x, y)\) be solutions to the Toda lattice hierarchy (3.4), (3.5), which satisfy the 2-reduction conditions (4.1). Then one finds that

\[
\frac{\partial L^{(\infty)}}{\partial x_{2n}} = \frac{\partial L^{(0)}}{\partial x_{2n}} = \frac{\partial L^{(\infty)}}{\partial y_{2n}} = \frac{\partial L^{(0)}}{\partial y_{2n}} = 0
\]

for \(n = 1, 2, \ldots\).

Proposition 6 ([28], Corollary 1.14). Suppose \(L^{(\infty)}(s; x, y)\), \(L^{(0)}(s; x, y)\) be solutions to the Toda lattice hierarchy (3.4), (3.5), which satisfy the 2-reduction conditions (4.1). Then there exist suitable difference operators \(\check{W}^{(\infty)}(s; x, y)\), \(\check{W}^{(0)}(s; x, y)\) such that the corresponding \(\tau\) functions subject to the following conditions:

\[
\tau(s; x, y) = \tau'(s; x, y)\exp\left(-\sum_{n=1}^{\infty} n x_n y_n\right),
\]

\[
\tau'(s + 2; x, y) = \tau'(s; x, y),
\]

\[
\frac{\partial \tau'(s; x, y)}{\partial x_{2n}} = \frac{\partial \tau'(s; x, y)}{\partial y_{2n}} = 0 \quad (n = 1, 2, \ldots).
\]
We consider the time-evolutions with respect to the variables with negative weight \(y = (y_1, y_2, \ldots) \) under the 2-reduction condition (4.1). In this case, one can write down the difference operators \(C_n(s) (n = 1, 2, \ldots) \) explicitly:

\[
C_{2n}(s) = e^{-2n\partial_s}, \quad C_{2n-1} = \sum_{j=1}^{2n-3} c_j(s)e^{(j-2n)\partial_s}. \tag{4.6}
\]

Applying (4.6) to (3.5) and (3.8), we obtain the following equations \((n = 0, 1, 2, \ldots)\):

\[
\begin{align*}
\frac{\partial w_1(s)}{\partial y_{2n+1}} &= c_{2n-1}(s) \tag{4.7} \\
\frac{\partial c_{2n}(s)}{\partial y_1} &= \frac{\partial c_0(s)}{\partial y_{2n+1}} = c_{-1}(s)c_{2n+1}(s + 1) - c_{-1}(s + 1)c_{2n+1}(s), \tag{4.8} \\
\frac{\partial c_{-1}(s)}{\partial y_{2n+1}} &= \frac{\partial c_{2n-1}(s)}{\partial y_1} = c_{-1}(s)\{c_{2n}(s + 1) - c_{2n}(s)\}, \tag{4.9}
\end{align*}
\]

where we have used the property \(c_j(s + 2) = c_j(s) \).

Proposition 7. For \(n = 0, 1, 2, \ldots \), the coefficients \(c_n(s; x, y) \) can be represented by \(c_{-1}(s; x, y) \). For example, \(c_0(s; x, y) \) and \(c_1(s; x, y) \) can be written as

\[
c_0(s) = -\frac{1}{2c_{-1}(s)} \frac{\partial c_{-1}(s)}{\partial y_1} = -\frac{1}{2} \frac{\partial}{\partial y_1} \log c_{-1}(s),
\]

\[
c_1(s) = -\frac{c_{-1}(s)}{2} \left\{ c_0(s)^2 + \frac{\partial c_0(s)}{\partial y_1} \right\} = -\frac{c_{-1}(s)}{8} \left[\left(\frac{\partial}{\partial y_1} \log c_{-1}(s) \right)^2 - 2 \frac{\partial^2}{\partial y_1^2} \log c_{-1}(s) \right]. \tag{4.10}
\]

Proof. From (3.2) and (4.1), we have

\[
c_{-1}(s)c_{-1}(s - 1) = 1, \quad c_0(s) + c_0(s - 1) = 0,
\]

\[
c_{-1}(s)c_{k+1}(s - 1) + c_{-1}(s + k + 1)c_{k+1}(s) + \sum_{j=0}^{k} c_j(s)c_{k-j}(s + j) = 0. \tag{4.11}
\]

The desired result can be obtained from (4.8), (4.9) and (4.11). \(\square \)

Remark: Under the 2-reduction conditions (4.1), the map

\[
\sum_{n \in \mathbb{Z}} a_n(s)e^{n\partial_s} \mapsto \sum_{n \in \mathbb{Z}} \begin{bmatrix} a_n(0) & 0 \\ 0 & a_n(1) \end{bmatrix} \begin{bmatrix} 0 & 1^a \\ \xi^2 & 0 \end{bmatrix} \]

\[
\tag{4.12}
\]

gives an algebra isomorphism [28]. For example, the operators \(C_1(s), C_3(s) \) are mapped as follows:

\[
C_1(s) \mapsto \begin{bmatrix} c_{-1}(0) & 0 \\ 0 & c_{-1}(1) \end{bmatrix} \begin{bmatrix} 0 & \xi^{-2} \\ \xi^2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & c_{-1}(0)\xi^{-2} \\ 1/c_{-1}(0) & 0 \end{bmatrix},
\]

\[
C_3(s) \mapsto \begin{bmatrix} c_0(0)\xi^{-2} & c_{-1}(0)\xi^{-4} + c_1(0)\xi^{-2} \\ \xi^{-2}/c_{-1}(0) + c_1(1) & -c_0(0)\xi^{-2} \end{bmatrix}. \tag{4.13}
\]

Applying this isomorphism to the equations (3.4), (3.5), one obtains the Lax equations of \(2 \times 2 \)-matrix form.
For \(n = 0, 1, 2, \ldots \), define \(F^{(n)}(s) \) and \(G^{(n)}(s) \) as
\[
F^{(n)}(s) = \frac{1}{2} \{ c_{-1}(s + 1)c_{2n-1}(s) - c_{-1}(s)c_{2n-1}(s + 1) \},
\]
\[
G^{(n)}(s) = \frac{1}{2} \{ c_{-1}(s + 1)c_{2n-1}(s) + c_{-1}(s)c_{2n-1}(s + 1) \}.
\]

From (4.7), (4.11) and (4.14), we have
\[
\frac{\partial w_1(s)}{\partial y_{2n+1}} = \frac{F^{(n)}(s) + G^{(n)}(s)}{c_{-1}(s + 1)} = c_{-1}(s) \left\{ F^{(n)}(s) + G^{(n)}(s) \right\}.
\]

It is straightforward to show that
\[
\frac{\partial F^{(n)}(s)}{\partial y_1} = 2c_0(s)G^{(n)}(s) + c_{2n}(s + 1) - c_{2n}(s),
\]
\[
\frac{\partial G^{(n)}(s)}{\partial y_1} = 2c_0(s)F^{(n)}(s).
\]

Next we consider reality condition. Assume \(x_j, y_j \in \mathbb{R} \) (\(j = 1, 2, \ldots \)) and the \(\tau \)-function \(\tau(s; x, y) \) satisfies
\[
\overline{\tau(s; x, y)} = \tau(s + 1; x, y),
\]
where \(\overline{\cdot} \) denotes complex conjugation. Under this condition, the following relations hold:
\[
\hat{w}_j^{(s)}(s) = \hat{w}_j^{(s + 1)}, \quad \hat{w}_j^{(0)}(s) = \hat{w}_j^{(0)}(s + 1),
\]
\[
b_{-n}(s) = b_{-n}(s + 1), \quad c_n(s) = c_n(s + 1),
\]
\[
F^{(n)}(s) = -F^{(n)}(s), \quad G^{(n)}(s) = G^{(n)}(s).
\]

Furthermore, it follows from (3.14) that
\[
c_{-1}(s) c_{-1}(s) = 1, \quad c_0(s) + c_0(s) = 0.
\]

Theorem 8 (Representation formula in terms of the \(\tau \)-functions). If we set
\[
x = 2y_1, \quad t_n = 2y_{2n-1} \quad (n = 1, 2, \ldots),
\]
\[
Z = \hat{w}_1^{(s)}(s = 0; x, y) = -\frac{\partial}{\partial x_1} \log \tau(0; x, y),
\]
\[
T = \frac{1}{2} c_{-1}(s = 0; x, y) = \frac{\tau(1; x, y)^2}{2\tau(0; x, y)^2},
\]
\[
\kappa = \sqrt{-1} c_0(s = 0; x, y) = \sqrt{-1} \frac{\partial}{\partial y_1} \log \frac{\tau(0; x, y)}{\tau(1; x, y)},
\]
\[
f^{(n)} = -\sqrt{-1} F^{(n-1)}(s = 0), \quad g^{(n)} = G^{(n-1)}(s = 0),
\]
then \(Z, T, \kappa, f^{(n)}, g^{(n)} \) solve the equations (2.4), (2.10).

Proof. The first equation of (2.10) follows from (4.7). The second and the third are obtained from (4.9), (4.15). The recurrence relations (2.4) follows from (4.8), (4.14) and (4.16). □
4.2 Discrete mKdV flow on discrete curves

We recall a discrete analogue of the mKdV-flow of plane curve introduced by Matsuura [18]. Let \(\gamma_n^m : \mathbb{Z} \rightarrow \mathbb{C} \) be a map describing the discrete motion of discrete plane curve with segment length \(a_n \):

\[
\begin{align*}
\frac{\gamma_{n+1}^m - \gamma_n^m}{a_n} &= 1, \\
\frac{\gamma_{n+1}^m - \gamma_n^m}{a_n} &= e^{\sqrt{-1} T_n^m} \frac{\gamma_{n+1}^m - \gamma_n^m}{a_{n-1}}, \\
\gamma_{n+1}^m - \gamma_n^m &= e^{\sqrt{-1} W_n^m} (\gamma_{n+1}^m - \gamma_n^m).
\end{align*}
\]

(4.21)

The compatibility condition for (4.21) implies the existence of the function \(\theta_n^m \) defined by

\[
W_n^m = \frac{\theta_{n+1}^m - \theta_n^m}{2}, \quad K_n^m = \frac{\theta_{n+1}^m - \theta_n^m}{2}.
\]

(4.22)

Then the isoperimetric condition (the first equation in (4.21)) implies that \(\theta_n^m \) satisfies the discrete potential mKdV equation [8]

\[
\tan \left(\frac{\theta_{n+1}^m - \theta_n^m}{2} \right) = \frac{b_m + a_n}{b_m - a_n} \tan \left(\frac{\theta_{n+1}^m - \theta_n^m + 1}{2} \right).
\]

(4.23)

In what follows, we will show that the equations (4.21) can be obtained from the Toda lattice hierarchy. We introduce discrete variables \(m, n \in \mathbb{Z} \) and assume \(y_k \) depends on \(m, n \) as

\[
y_k(m, n) = -\sum_{n'} \frac{d_{n'}^k}{k} - \sum_{m'} \frac{b_{m'}^k}{k} \quad (k = 1, 2, 3, \ldots),
\]

(4.24)

which is a non-autonomous version of Miwa transformation [30]. We remark that if \(a_n = a \) and \(b_m = b \) for any \(n, m \) then (4.24) is reduced to original Miwa transformation [19]:

\[
y_k(n, m) = -\frac{na_k^k}{k} - \frac{mb_k^k}{k} \quad (k = 1, 2, 3, \ldots).
\]

(4.25)

To consider the dependence on \(m, n \), we use the following abbreviation:

\[
\hat{W}^{(0)}(s; m, n) = \hat{W}^{(0)}(s; x, y = \hat{y}(m, n)),
\]

(4.26)

Proposition 9. \(\hat{W}^{(0)}(s; m, n) \) and \(\hat{W}^{(0)}(s; m, n) \) satisfy

\[
\begin{align*}
\hat{W}^{(0)}(s; m, n + 1) &= \left\{ 1 - a_n \hat{u}(s; m, n)e^{-\theta_s} \right\} \hat{W}^{(0)}(s; m, n), \\
\hat{W}^{(0)}(s; m, n + 1) &= \left\{ 1 - a_n \hat{u}(s; m, n)e^{-\theta_s} \right\} \hat{W}^{(0)}(s; m, n), \\
\hat{W}^{(0)}(s; m + 1, n) &= \left\{ 1 - b_m \hat{v}(s; m, n)e^{-\theta_s} \right\} \hat{W}^{(0)}(s; m, n), \\
\hat{W}^{(0)}(s; m + 1, n) &= \left\{ 1 - b_m \hat{v}(s; m, n)e^{-\theta_s} \right\} \hat{W}^{(0)}(s; m, n),
\end{align*}
\]

(4.27)

where

\[
\begin{align*}
\hat{u}(s; m, n) &= \frac{\hat{w}_0^0(s; m, n + 1)}{\hat{w}_0^0(s - 1; m, n)} = \frac{\tau(s - 1; m, n)\tau(s + 1; m, n + 1)}{\tau(s; m, n)\tau(s; m, n + 1)}, \\
\hat{v}(s; m, n) &= \frac{\hat{w}_0^0(s; m + 1, n)}{\hat{w}_0^0(s - 1; m, n)} = \frac{\tau(s - 1; m, n)\tau(s + 1; m + 1, n)}{\tau(s; m, n)\tau(s; m + 1, n)}.
\end{align*}
\]

(4.28)
Proof: Setting \(x'_k = x_k, y'_k = \tilde{y}(m, n + 1), y_k = \tilde{y}(m, n) \) \((k = 1, 2, \ldots)\) in (3.9), we have
\[
\hat{W}^{(\infty)}(s; m, n + 1)\hat{W}^{(\infty)}(s; m, n)^{-1} = \hat{W}^{(0)}(s; m, n + 1)\left(1 - a_ne^{-\partial_s}\right)\hat{W}^{(0)}(s; m, n)^{-1},
\]
where we have used the formula \(\exp(-\sum_{n=0}^{\infty} a^n/n) = 1 - z \). Since the left-hand side of (4.29) is of non-positive order with respect to \(e^{\partial_s} \), it follows that it is of the form
\[
(4.29) = \tilde{c}_0(s; m, n) + \tilde{c}_1(s; m, n)e^{-\partial_s}.
\]
Inserting \(\hat{W}^{(\infty)} \) and \(\hat{W}^{(0)} \) of (3.6) to (4.29) with (4.30), we obtain the first and the second equation of (4.27). The third and the fourth can be obtained in the same fashion. \(\square \)

Remark: Tsujimoto [27] proposed and investigated the equations (4.27) as a discrete analogue of (3.8). In our approach, the results in [27] can be obtained directly from (3.9) with the Miwa transformation.

Hereafter in this section, we impose the 2-reduction condition \(\tau(s + 2; m, n) = \tau(s; m, n) \). From the first and the third equations of (4.27), we obtain
\[
\begin{align*}
\hat{w}_1^{(\infty)}(s; m, n + 1) &= \hat{w}_1^{(\infty)}(s; m, n) - a_n\tilde{u}(s; m, n), \\
\hat{w}_1^{(\infty)}(s; m, n + 1) &= \hat{w}_1^{(\infty)}(s; m, n) - b_m\tilde{v}(s; m, n).
\end{align*}
\]
It follows that
\[
\begin{align*}
\frac{\hat{w}_1^{(\infty)}(s; m, n + 1) - \hat{w}_1^{(\infty)}(s; m, n)}{a_n} &= \mathcal{K}(s; m, n)\frac{\hat{w}_1^{(\infty)}(s; m, n) - \hat{w}_1^{(\infty)}(s; m, n - 1)}{a_{n-1}}, \\
\frac{\hat{w}_1^{(\infty)}(s; m, n + 1) - \hat{w}_1^{(\infty)}(s; m, n)}{b_m} &= \mathcal{W}(s; m, n)\frac{\hat{w}_1^{(\infty)}(s; m, n + 1) - \hat{w}_1^{(\infty)}(s; m, n)}{a_n},
\end{align*}
\]
with
\[
\begin{align*}
\mathcal{K}(s; m, n) &= \frac{\tilde{u}(s; m, n)}{\tilde{u}(s; m, n - 1)} = \frac{\tau(s + 1; m, n + 1)\tau(s; m, n - 1)}{\tau(s; m, n + 1)\tau(s + 1; m, n - 1)}, \\
\mathcal{W}(s; m, n) &= \frac{\tilde{v}(s; m, n)}{\tilde{u}(s; m, n)} = \frac{\tau(s + 1; m + 1, n)\tau(s; m, n + 1)}{\tau(s; m + 1, n + 1)\tau(s + 1; m, n + 1)}.
\end{align*}
\]
If we introduce \(\Theta(s; m, n) \) as
\[
\Theta(s; m, n) = \frac{\tau(s + 1; m, n + 1)\tau(s; m, n - 1)}{\tau(s; m, n + 1)\tau(s + 1; m, n - 1)},
\]
then \(\mathcal{K}(s; m, n) \) and \(\mathcal{W}(s; m, n) \) are written as
\[
\begin{align*}
\mathcal{K}(s; m, n) &= \frac{\Theta(s; m, n + 1)}{\Theta(s; m, n - 1)}, \\
\mathcal{W}(s; m, n) &= \frac{\Theta(s; m + 1, n)}{\Theta(s; m, n + 1)}.
\end{align*}
\]
We furthermore impose the reality condition (4.17). Under the condition, \(\Theta(s; m, n) \) satisfies \(|\Theta(s; m, n)| = 1 \) and one can set
\[
e^{\sqrt{-1}\Theta_n} = \Theta(s = 0; m, n) = \tau(1; m, n)/\tau(0; m, n).
\]
Theorem 10 (Representation formula for discrete curves in terms of the τ-functions). If we set

$$
\gamma^m_n = \hat{\omega}^{(\infty)}(s = 0; m, n) = -\frac{\partial}{\partial x_1} \log \tau(0; m, n),
$$

$$
\theta^m_n = \frac{1}{\sqrt{-1}} \log \Theta(s = 0; m, n) = \frac{1}{\sqrt{-1}} \log \frac{\tau(1; m, n)}{\tau(0; m, n)},
$$

then γ^m_n and θ^m_n solve the equations (4.21) and (4.22).

Proof. From (4.31) and (4.28), it follows that

$$
\left| \frac{\hat{\omega}^{(\infty)}(s; m, n + 1) - \hat{\omega}^{(\infty)}(s; m, n)}{a_n} \right| = \left| \frac{\tau(s - 1; m, n)\tau(s + 1; m, n + 1)}{\tau(s; m, n)\tau(s; m, n + 1)} \right| = 1
$$

under the condition (4.17). This is equivalent to the first equation of (4.21). The remaining equations follow directly from (4.32), (4.35) and (4.36). \qed

5 Fermionic construction of τ-functions

In [25, 26], Takebe described τ-functions for the Toda hierarchy as expectation values of fermionic operators (See also [24]). We firstly recall the definition of charged free fermions [12, 20].

Let \mathcal{A} be an associative unital \mathbb{C}-algebra generated by $\psi_i, \psi_i^* (i \in \mathbb{Z})$ satisfying the relations

$$
\psi_i \psi_j^* + \psi_j \psi_i = \delta_{ij}, \quad \psi_i \psi_j + \psi_j \psi_i = \psi_i^* \psi_j^* + \psi_j^* \psi_i^* = 0.
$$

We consider a class of infinite matrices $A = [a_{ij}]_{i,j \in \mathbb{Z}}$ that satisfies the following condition:

there exists $N > 0$ such that $a_{ij} = 0$ for all i, j with $|i - j| > N$. (5.2)

Define the Lie algebra $\mathfrak{gl}(\infty)$ as [12]

$$
\mathfrak{gl}(\infty) = \left\{ \sum_{i,j \in \mathbb{Z}} a_{ij} : \psi_i \psi_j^* : \right\} A = [a_{ij}]_{i,j \in \mathbb{Z}} \text{ satisfies (5.2)} \oplus \mathbb{C}
$$

where $: \cdot :$ indicates the normal ordering

$$
: \psi_i \psi_j^* : = \begin{cases} \psi_i \psi_j^* & \text{if } i \neq j \text{ or } i = j \geq 0, \\ -\psi_j^* \psi_i & \text{if } i = j < 0. \end{cases}
$$

We also define the group \mathbf{G} corresponds to $\mathfrak{gl}(\infty)$ to be

$$
\mathbf{G} = \left\{ e^{X_1} e^{X_2} \cdots e^{X_i} \mid X_i \in \mathfrak{gl}(\infty) \right\}.
$$

Consider a left \mathcal{A}-module with a cyclic vector $|\text{vac}\rangle$ satisfying

$$
\psi_j |\text{vac}\rangle = 0 \quad (j < 0), \quad \psi_j^* |\text{vac}\rangle = 0 \quad (k \geq 0).
$$

The \mathcal{A}-module $\mathcal{A}|\text{vac}\rangle$ is called the fermion Fock space \mathcal{F}, which we denote \mathcal{F}. We also consider a right \mathcal{A}-module (the dual Fock space \mathcal{F}^*) with a cyclic vector $\langle \text{vac}|$ satisfying

$$
\langle \text{vac}| \psi_j = 0 \quad (j \geq 0), \quad \langle \text{vac}| \psi_j^* = 0 \quad (k < 0).
$$

10
We further define the generalized vacuum vectors $|s\rangle$, $\langle s|$ ($s \in \mathbb{Z}$) as

$$
|s\rangle = \begin{cases}
\psi_s^* \cdots \psi_1^* |\text{vac}\rangle & \text{for } s < 0, \\
|\text{vac}\rangle & \text{for } s = 0, \\
\psi_{s-1} \cdots \psi_0 |\text{vac}\rangle & \text{for } s > 0,
\end{cases}
$$

(5.8)

$$
\langle s| = \begin{cases}
\langle \text{vac}| \psi_{s-1} \cdots \psi_1 & \text{for } s < 0, \\
\langle \text{vac}| & \text{for } s = 0, \\
\langle \text{vac}| \psi_s^* \cdots \psi_{s-1}^* & \text{for } s > 0.
\end{cases}
$$

There exists a unique linear map (the vacuum expectation value) $\mathcal{F}^* \otimes \mathcal{A} \mathcal{F} \rightarrow \mathbb{C}$ such that $\langle \text{vac}| \otimes |\text{vac}\rangle \mapsto 1$. For $a \in \mathcal{A}$ we denote by $\langle \text{vac}|a|\text{vac}\rangle$ the vacuum expectation value of the vector $\langle \text{vac}|a|\text{vac}\rangle = \langle \text{vac}|a \otimes |\text{vac}\rangle$ in $\mathcal{F}^* \otimes \mathcal{A} \mathcal{F}$.

Theorem 11 ([25] §2, [26] §2). For $s \in \mathbb{Z}$ and $g \in \mathcal{G}$, define $\tau_g(s; x, y)$ as

$$
\tau_g(s; x, y) = \langle s| e^{H(x)} g e^{-H(y)} |s\rangle,
$$

(5.9)

where

$$
H(x) = \sum_{n=1}^{\infty} x_n \sum_{j \in \mathbb{Z}} \psi_j \psi_j^*, \quad H(y) = \sum_{n=1}^{\infty} y_n \sum_{j \in \mathbb{Z}} \psi_{j+n} \psi_j^*.
$$

(5.10)

Then $\tau_g(s; x, y)$ satisfies the bilinear identity (3.15).

We introduce an automorphism ι_l of \mathcal{A} by

$$
\iota_l(\psi_i) = \psi_{i-l}, \quad \iota_l(\psi_i^*) = \psi_{i-l}^*,
$$

(5.11)

which satisfies

$$
\langle s'|a|s\rangle = \langle s' - l\iota_l(a)|s - l\rangle
$$

(5.12)

for any s, s', l and any $a \in \mathcal{A}$.

Proposition 12. If $g \in \mathcal{G}$ satisfies

$$
\iota_l(g) = \overline{g},
$$

(5.13)

then the τ-function corresponds to g gives a solution of the Goldstein-Petrich hierarchy.

Proof. From (5.12) and (5.13), it is clear that (4.17) holds. \hfill \Box

To construct soliton-type solutions, we choose g as

$$
g_N(c_j, \{p_j\}, \{q_j\}) = \prod_{j=1}^{N} e^{c_j \psi(p_j) \psi^*(q_j)},
$$

$$
\psi(p) = \sum_{j \in \mathbb{Z}} \psi_j p^j, \quad \psi^*(q) = \sum_{j \in \mathbb{Z}} \psi_j^* q^{-j}.
$$

(5.14)

We remark that the vacuum expectation value of $e^{c \psi(p) \psi^*(q)}$ makes sense even when $X = c \psi(p) \psi^*(q)$ does not satisfy the condition (5.2):

$$
\langle s| e^{c \psi(p) \psi^*(q)} |s\rangle = \langle s| \{1 + c \psi(p) \psi^*(q)\} |s\rangle = 1 + \left(\frac{p}{q}\right)^s \frac{cq}{p - q}.
$$

(5.15)

We consider the following two types of conditions for the parameters in (5.14):

11
A. (Soliton solutions)

\[c_j \in \sqrt{-1}\mathbb{R}, \quad p_j \in \mathbb{R}, \quad q_j = -p_j \quad (j = 1, 2, \ldots, N), \] \hspace{1cm} (5.16)

B. (Breather solutions)

\[N = 2M, \quad c_{2k-1} = -c_{2k}, \quad p_{2k-1} = p_{2k} \quad (k = 1, 2, \ldots, M), \]
\[q_j = -p_j \quad (j = 1, 2, \ldots, N). \] \hspace{1cm} (5.17)

An straightforward calculation shows that \(g_N(c_j, \{p_j\}, \{q_j\}) \) satisfies (5.13) under each of the conditions (5.16), (5.17). The \(\tau \)-functions under these conditions provide the solutions given in [9, 10].

We now consider Lie algebraic meaning of the condition (5.13). We recall the facts about a fermionic representation of the affine Lie algebra \(\widehat{\mathfrak{sl}}(2, \mathbb{C}) \). The affine Lie algebra \(\widehat{\mathfrak{sl}}(2, \mathbb{C}) \) is generated by the Chevalley generators \(\{e_0, e_1, f_0, f_1, h_0, h_1\} \) that satisfy

\[
\begin{align*}
[h_i, h_j] &= 0, \quad [e_i, f_j] = \delta_{ij} h_i \text{ for all } i, j, \\
h_i, e_j &= \begin{cases} 2e_j & \text{if } i = j, \\ -2e_j & \text{if } i \neq j, \end{cases} \quad [h_i, f_j] = \begin{cases} -2e_j & \text{if } i = j, \\ 2e_j & \text{if } i \neq j, \end{cases} \\
[e_i, [e_i, e_j]] = [f_i, [f_i, f_j]] &= 0 \text{ if } i \neq j.
\end{align*}
\] \hspace{1cm} (5.18)

Define a linear map \(\pi : \widehat{\mathfrak{sl}}(2, \mathbb{C}) \to \mathfrak{gl}(\infty) \) as

\[
\begin{align*}
\pi(e_j) &= \sum_{n \equiv j \mod 2} \psi_{n-1}\psi_n^*, \quad \pi(f_j) = \sum_{n \equiv j \mod 2} \psi_n\psi_{n-1}^*, \\
\pi(h_j) &= \sum_{n \equiv j \mod 2} (\psi_{n-1}\psi_{n-1}^* - \psi_n\psi_n^*) + \delta_{j0} \quad (j = 0, 1).
\end{align*}
\] \hspace{1cm} (5.19)

Theorem 13 ([12, 20]). \((\pi, \mathcal{F})\) is a representation of \(\widehat{\mathfrak{sl}}(2, \mathbb{C}) \).

Note that \(\iota_1 \) works as an involutive automorphism:

\[\iota_1(e_0) = e_1, \quad \iota_1(f_0) = f_1, \quad \iota_1(e_1) = e_0, \quad \iota_1(f_1) = f_0, \] \hspace{1cm} (5.20)

which defines a real form of \(\widehat{\mathfrak{sl}}(2, \mathbb{C}) \). Kobayashi [15] classified automorphisms of prime order of the affine Lie algebra \(\widehat{\mathfrak{sl}}(n, \mathbb{C}) \). The involutive automorphism \(\iota_1 \) under consideration is labeled as \((1\alpha') \)-type ([15], Theorem 3). We remark that the same real form of \(\widehat{\mathfrak{sl}}(2, \mathbb{C}) \) appeared also in construction of solutions of a derivative nonlinear Schrödinger equation [14].

Appendix: Time-flows with positive weight

So far, we have used the time-evolutions with respect to the variables with negative weight \(y = (y_1, y_2, \ldots) \) to derive the Goldstein-Petrich hierarchy. In this appendix, we use \(x = (x_1, x_2, \ldots) \) and show that the mKdV hierarchy can be obtained under the 2-reduction condition (4.1). Applying the condition (4.1), one can show that

\[B_{2n-1}(s) = e^{(2n-1)\partial_s} + \sum_{-2(n-1)\leq j \leq 0} b_j(s) e^{(2n-2+j)\partial_s}, \] \hspace{1cm} (A.1)

\[B_{2n}(s) = e^{2n\partial_s} \quad (n = 1, 2, \ldots). \]
From (3.2) and (4.1), we obtain
\[b_0(s + 1) + b_0(s) = 0, \]
\[b_{-k-1}(s + 1) + b_{-k-1}(s) + \sum_{j=0}^{L} b_j(s)b_{j-k}(s-j) = 0 \quad (k = 0, 1, 2, \ldots). \]

Applying (A.1) to (3.4), we obtain
\[\frac{\partial b_0(s)}{\partial x_{2n-1}} = b_{-2n+1}(s + 1) - b_{-2n+1}(s). \]

Define \(L_1(x, y), L_2(x, y) \) by
\[L_1(x, y) = \frac{1}{2} \left\{ L^{(0)}(s = 0; x, y) - L^{(0)}(s = 1; x, y) \right\}, \]
\[L_2(x, y) = \frac{1}{2} \left\{ L^{(0)}(s = 0; x, y) + L^{(0)}(s = 1; x, y) \right\}, \]
which have the following form:
\[L_1(x, y) = \sum_{n=0}^{\infty} q_n(x, y)e^{-n\delta_s}, \quad L_2(x, y) = e^{\delta_s} + \sum_{n=1}^{\infty} r_n(x, y)e^{-n\delta_s}, \]
\[q_n(x, y) = \frac{b_{-n}(s = 0, x, y) - b_{-n}(s = 1, x, y)}{2} \quad (n = 0, 1, 2, \ldots), \]
\[r_n(x, y) = \frac{b_{-n}(s = 0, x, y) + b_{-n}(s = 1, x, y)}{2} \quad (n = 1, 2, 3, \ldots). \]

We remark that \(q_n \) and \(r_n \) are eigenfunctions of \(e^{\delta_s} \):
\[e^{\delta_s}q_n = -q_n, \quad e^{\delta_s}r_n = r_n. \]
Applying the notation (A.5) to (A.3), we have
\[\frac{\partial q_0}{\partial x_{2n-1}} = -2q_{2n-1} \]
Since \(B_1(0), B_1(1) \) are of the form
\[B_1(0) = e^{\delta_s} + q_0, \quad B_1(1) = e^{\delta_s} - q_0, \]
it follows that
\[\frac{\partial L_1}{\partial x_1} = -2L_1e^{\delta_s} + [q_0, L_2], \quad \frac{\partial L_2}{\partial x_1} = [q_0, L_1], \]
and hence
\[\frac{\partial q_{2n-1}}{\partial x_1} = -2q_{2n} + 2q_0r_{2n-1}, \quad \frac{\partial q_{2n}}{\partial x_1} = -2q_{2n+1}, \]
\[\frac{\partial r_{2n-1}}{\partial x_1} = 2q_0q_{2n-1}, \quad \frac{\partial r_{2n}}{\partial x_1} = 0. \]
From (A.7) and (A.10), we have
\[\frac{\partial q_0}{\partial x_{2n+1}} = \left(\frac{1}{4} \frac{\partial^2}{\partial x_1^2} - q_0^2 - \frac{\partial q_0}{\partial x_1} \right) \frac{\partial q_0}{\partial x_{2n-1}}. \]
Especially for the case $n = 1$,

$$\frac{\partial q_0}{\partial x_3} = \frac{1}{4} \frac{\partial^3 q_0}{\partial x_1^3} - \frac{3}{2} \frac{\partial q_0}{\partial x_1}.$$ \hfill (A.12)

After suitable scaling, the linear operator appeared in the right-hand side of (A.11) yields the recursion operator Ω in (2.7), and the equation (A.12) yields the mKdV equation (1.1).

We remark that another derivation of the recursion operator Ω in terms of bilinear differential equations of Hirota-type was given in [29]. Here we briefly summarize the approach in [29]. We use the Hirota differential operators D_x, D_y, \ldots, defined by

$$D^n_x D^n_y f(x,y) \cdot g(x,y) = (\partial_x - \partial_x')^n (\partial_y - \partial_y')^n f(x,y)g(x',y') \big|_{x'=x, y'=y}.$$ \hfill (A.13)

Setting $s'=0$, $s=1$ $y'_n = y_n$, $x'_n = x_n + a_n$ ($n = 1, 2, \ldots$), the bilinear identity (3.15) is reduced to

$$\int \tau(0; x'-[\lambda^{-1}], y) \tau(1; x + [\lambda^{-1}], y) e^{\delta(x'-x, y) \lambda^{-1} d\lambda} = \tau(1; x', y) \tau(0; x, y),$$ \hfill (A.14)

or, using the Hirota operators $\tilde{D} = (D_1, D_2/2, D_3/3, \ldots), D_j = D_{x_j}$ ($j = 1, 2, \ldots$), we can write

$$\sum_{j=0}^\infty p_j(-2a)p_j(\tilde{D}) \left(\sum_{k=1}^\infty a_k D_k \right) \tau(0) \cdot \tau(1) = \exp \left(\sum_{k=1}^\infty a_k D_k \right) \tau(0) \cdot \tau(0),$$ \hfill (A.15)

for any $a = (a_1, a_2, \ldots)$ (cf. [17]). Expanding (A.15) with respect to the variables $a = (a_1, a_2, \ldots)$, we obtain

$$\left(p_m(\tilde{D}) - D_m \right) \tau(1) \cdot \tau(0) = 0$$ \hfill (A.16)

from the coefficient of a_m, and

$$\left(-2p_{m+k}(\tilde{D}) + p_m(\tilde{D}) D_k + p_k(\tilde{D}) D_m \right) \tau(1) \cdot \tau(0) = 0$$ \hfill (A.17)

from the coefficient of $a_m a_k$. Using (A.16) to eliminate the first term in (A.17), we have

$$\left(-2D_{m+k} + p_m(\tilde{D}) D_k + p_k(\tilde{D}) D_m \right) \tau(1) \cdot \tau(0) = 0.$$ \hfill (A.18)

Hereafter we impose the 2-reduction condition $\partial_{x_2}, \tau = 0$ ($n = 1, 2, \ldots$). Setting $k = 2$, the bilinear equations (A.16), (A.18) yield

$$D^2_1 \tau(1) \cdot \tau(0) = 0, \quad (-4D_{m+2} + D^2_1 D_m) \tau(1) \cdot \tau(0) = 0.$$ \hfill (A.19)

If we set

$$\psi = \log \left(\frac{\tau(1)}{\tau(0)} \right), \quad \phi = \log \left(\frac{\tau(0)}{\tau(1)} \right),$$ \hfill (A.20)

it follows that

$$(\partial_1 \psi)^2 + \partial^2_1 \phi = 0, \quad -4\partial_{m+2} \psi + \partial^2_1 \partial_m \psi + 2(\partial_1 \psi)(\partial_1 \partial_m \phi) = 0,$$ \hfill (A.21)

from (A.19), where $\partial_n = \partial/\partial x_n$. Setting

$$q_0 = \partial_1 \psi = \partial_1 \left(\log \frac{\tau(1)}{\tau(0)} \right),$$ \hfill (A.22)

we have the recursion relation (A.11).
Acknowledgments

S.K. acknowledges Simpei Kobayashi for bringing his attention to the paper [15], and Ralph Willox for explaining the results of [29]. This work is partially supported by JSPS Grant-in-Aid for Scientific Research No. 23340037 and No. 23540252.

References

[1] A. Bobenko and Y.B. Suris, *Discrete differential geometry* (American Mathematical Society, 2008).

[2] S.-S. Chern and C.-K. Peng, Lie groups and KdV equations, *Man. Math.* 28 (1979), 207–217.

[3] K.S. Chou and C. Qu, Integrable equations arising from motions of plane curves. I, *Physica D* 162 (2002), 9–33; II, *J. Nonlinear Sci.* 13 (2003), 487–517.

[4] A. Doliwa and P.M. Santini, An elementary geometric characterization of the integrable motions of a curve, *Phys. Lett. A* 85 (1992), 339–384.

[5] A. Fujioka and T. Kurose, Hamiltonian formalism for the higher KdV flows on the space of closed complex equicentroaffine curves, *Int. J. Geom. Methods Mod. Phys.* 07 (2010), 165–175.

[6] R.E. Goldstein and D.M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, *Phys. Rev. Lett.* 67 (1991), 3203–3206.

[7] R. Hirota, Discrete analogue of a generalized Toda equation, *J. Phys. Soc. Jpn.* 50 (1981), 3785–3791.

[8] R. Hirota, Discretization of the potential modified KdV equation. *J. Phys. Soc. Jpn.* 67 (1998), 2234–2236.

[9] J. Inoguchi, K. Kajiwara, N. Matsuura and Y. Ohta, Motion and Bäcklund transformations of discrete plane curves *Kyushu J. Math.* 66 (2012), 303–324.

[10] J. Inoguchi, K. Kajiwara, N. Matsuura and Y. Ohta, Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves, *J. Phys. A: Math. Theor.* 45 (2012), 045206.

[11] T.A. Ivey, Integrable geometric evolution equations for curves, in The Geometrical Study of Differential Equations, *Contemp. Math.* 285, Amer. Math. Soc., Providence RI, 2001, 71–84.

[12] M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, *Publ. RIMS, Kyoto Univ.* 19 (1983), 943–1001.

[13] K. Kajiwara, The conserved quantities and symmetries of the two-dimensional Toda lattice hierarchy, *J. Math. Phys.* 32 (1991), 506–514.

[14] S. Kakei, T. Ikeda and K. Takasaki, Hierarchy of (2 + 1)-dimensional nonlinear Schrödinger equation, self-dual Yang-Mills equation, and toroidal Lie algebras, *Annales Henri Poincare* 3 (2002), 817–845.
[15] Z. Kobayashi, Automorphisms of finite order of the affine Lie algebra $A_1^{(1)}$, *Tsukuba J. Math.* **10** (1986), 269–283.

[16] J. Langer and R. Perline, Curve motion inducing modified Korteweg-de Vries systems, *Phys. Lett. A* **239** (1998), 36–40.

[17] I. Loris, Bilinear representations of integrable equations, *Theor. Math. Phys.* **133** (2002), 1549–1556.

[18] N. Matsuura, Discrete KdV and discrete modified KdV equations arising from motions of discrete planar curves, *Int. Math. Res. Not.* **2012**(2012) 1681–1698, doi:10.1093/imrn/rnr080.

[19] T. Miwa, On Hirota’s difference equations, *Proc. Japan Acad. Ser. A Math. Sci.* **58** (1982), 9–12.

[20] T. Miwa, M. Jimbo and E. Date, *Solitons: differential equations, symmetries and infinite dimensional algebras*, Translated by M. Reid, Cambridge Tracts in Mathematics **135** (Cambridge University Press, 2000).

[21] E. Musso, Motions of curves in the projective plane inducing the Kaup-Kupershmidt hierarchy, *SIGMA* **8** (2012), 030, 20 pages.

[22] K. Nakayama, H. Segur and M. Wadati, Integrability and the motion of curves, *Phys. Rev. Lett.* **69** (1992), 2603–2606.

[23] C. Rogers and W.K. Schief, *Bäcklund and Darboux transformations: geometry and modern applications in soliton theory*, Cambridge texts in applied mathematics (Cambridge University Press, 2002).

[24] K. Takasaki, *The World of Integrable Systems* (In Japanese), Kyoritsu Pub., 2001.

[25] T. Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy I, *Lett. Math. Phys.* **21** (1991), 77–84.

[26] T. Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy II, *Publ. RIMS, Kyoto Univ.* **27** (1991), 491–503.

[27] S. Tsujimoto, On a discrete analogue of the two-dimensional Toda lattice hierarchy, *Publ. RIMS, Kyoto Univ.* **38** (2002), 113–133.

[28] K. Ueno and K. Takasaki, Toda lattice hierarchy, *Group Representations and Systems of Differential Equations*, K. Okamoto (ed.), Adv. Stud. Pure Math. vol. **4**, pp. 1–95 (North-Holland, Amsterdam, Kinokuniya, Tokyo, 1984).

[29] R. Willox, F. Lambert and J. Springael, From canonical bilinear forms to bi-Hamiltonian structures, *Reports of RIAM Symposium, Kyushu University*, **18ME-S5**, Article No. 06 (2007) [In Japanese].

[30] R. Willox, T. Tokihiro and J. Satsuma, Darboux and binary Darboux transformations for the nonautonomous discrete KP equation, *J. Math. Phys.* **38** (1997), 6455–6469.