Dynamical barriers in the Dyson hierarchical model via real space renormalization

Cécile Monthus and Thomas Garel

Institut de Physique Théorique, CNRS and CEA Saclay, F-91191 Gif-sur-Yvette, France
E-mail: Cecile.Monthus@cea.fr and thomas.garel@cea.fr

Received 19 December 2012
Accepted 3 January 2013
Published 12 February 2013

Online at stacks.iop.org/JSTAT/2013/P02023
doi:10.1088/1742-5468/2013/02/P02023

Abstract. The Dyson hierarchical one-dimensional Ising model of parameter $\sigma > 0$ contains long-ranged ferromagnetic couplings decaying as $1/r^{1+\sigma}$ in terms of the distance r. We study the stochastic dynamics near zero temperature via the real space renormalization introduced in our previous work (Monthus and Garel, 2012 arXiv:1212.0643) in order to compute explicitly the equilibrium time $t_{eq}(L)$ as a function of the system size L. For $\sigma < 1$ where the static critical temperature for the ferromagnetic transition is finite, $T_c > 0$, we obtain that dynamical barriers grow as the power law $\ln t_{eq}(L) \simeq \beta (4J_0/3(2^{1-\sigma} - 1))L^{1-\sigma}$. For $\sigma = 1$ where the static critical temperature vanishes, $T_c = 0$, we obtain that dynamical barriers grow logarithmically as $\ln t_{eq}(L) \simeq [\beta (4J_0/3\ln 2) - 1]\ln L$. We also compute finite contributions to the dynamical barriers that can depend on the choice of transition rates satisfying detailed balance.

Keywords: renormalization group, dynamical processes (theory), stochastic processes (theory)

ArXiv ePrint: 1212.4361
1. Introduction

The Dyson hierarchical Ising model [1] has been introduced as a ferromagnetic model where the partition function could be analyzed via exact renormalization. The hierarchical couplings are chosen to mimic effective long-range power-law couplings \(J(r) \approx 1/r^{1+\sigma} \) in one dimension so that a phase transition with finite \(T_c \) is possible in the region \(0 < \sigma < 1 \).

\[\text{doi:10.1088/1742-5468/2013/02/P02023} \]
This type of hierarchical model has thus attracted great interest in statistical physics, both among mathematicians [2]–[5] and among physicists [6]–[9]. Note that Dyson hierarchical models have also been introduced in the field of quenched disordered models, in particular for random fields [10, 11], spin glasses [12]–[14], and Anderson localization [15]–[22].

In the present paper, we consider the Dyson hierarchical ferromagnetic Ising model and we focus on stochastic dynamics satisfying detailed balance, such as the Glauber dynamics [23]. We do not consider the coarsening dynamics starting from a random initial condition (see the review [24]) but focus instead on the equilibrium time \(t_{eq} \) near zero temperature, i.e. the time needed to go from one ground state (where all spins take the value +1) to the opposite ground state (where all spins take the value −1). In a previous work, we have introduced a real space renormalization procedure to determine this equilibrium time \(t_{eq} \) [25] as a function of the system size. Here we solve the corresponding RG flow for the Dyson hierarchical Ising model.

The paper is organized as follows. In section 2, we recall the important properties of the equilibrium of the Dyson hierarchical Ising model. In section 3, we study the stochastic dynamics satisfying detailed balance via the real space renormalization procedure introduced in [25]. The explicit solutions of the renormalization flow for the ‘simple’ dynamics and for the Glauber dynamics are presented in sections 4 and 5 respectively. Our conclusions are summarized in section 6. Finally in the appendix, we discuss the link between dynamical barriers and the energy cost of a single domain wall.

2. Reminder on the statics of the Dyson hierarchical Ising model

2.1. Definition of the Dyson hierarchical Ising model

The Dyson hierarchical Ising model is a model of \(2^N \) classical spins \(S_i = \pm 1 \) where each configuration \(C = (S_1, S_2, \ldots, S_{2^N}) \) has for the energy

\[
U_{2^N}(S_1, \ldots, S_{2^N}) = - \sum_{i<j} J_{ij} S_i S_j = -J_0 [S_1 S_2 + S_3 S_4 + S_5 S_6 + S_7 S_8 + \cdots] - J_1 \left[\left(\frac{S_1 + S_2}{2} \right) \left(\frac{S_3 + S_4}{2} \right) + \left(\frac{S_5 + S_6}{2} \right) \left(\frac{S_7 + S_8}{2} \right) + \cdots \right] - J_2 \left[\left(\frac{S_1 + S_2 + S_3 + S_4}{2^2} \right) \left(\frac{S_5 + S_6 + S_7 + S_8}{2^2} \right) + \cdots \right] - \cdots - J_{N-1} \left(\frac{S_1 + \cdots + S_{2^{N-1}}}{2^{N-1}} \right) \left(\frac{S_{2^{N-1}+1} + \cdots + S_{2^N}}{2^{N-1}} \right) \tag{1}
\]

where the positive couplings \(J_n \) depend on \(n \) via

\[
J_n = J_0 2^{(1-\sigma)n}. \tag{2}
\]

To make the link with the physics of long-range one-dimensional models, it is convenient to consider that the sites \(i \) of the Dyson model are displayed on a one-dimensional lattice, with a lattice spacing of unity. Then the site \(i = 1 \) is coupled via the coupling \(J_n / (2^n)^2 \) to each spin of index \(2^{n-1} < i \leq 2^n \). At the scaling level, the hierarchical Dyson model is thus somewhat equivalent to the following power-law dependence in the
real space distance $L_n = 2^n$:

$$J_{\text{eff}}(L_n) = \frac{J_n}{(2^n)^2} = \frac{J_0}{2^{n(1+\sigma)}} = \frac{J_0}{L_n^{1+\sigma}}. \tag{3}$$

The parameter σ is thus the important parameter of the model.

The ground state energy where all spins have the same sign

$$U_{\text{GS}}^{2N} = U_{2N}(S_1 = 1, \ldots, S_{2N} = 1) = -J_02^{N-1} - J_12^{N-2} - J_22^{N-3} - \ldots - J_{N-1}$$

$$= -J_02^{N-1} \frac{1 - 2^{-\sigma N}}{1 - 2^{-\sigma}} = -\frac{J_0}{2} L_N \frac{1 - L_N^{-\sigma}}{1 - 2^{-\sigma}} \tag{4}$$

is extensive in the number $L_N = 2^N$ of spins in the region

$$\sigma > 0. \tag{5}$$

The energy cost of the configuration where the first 2^{N-1} spins are (-1) whereas the other 2^{N-1} spins are $(+1)$,

$$U_{2N}^{(2^{N-1},-2^{N-1})} - U_{2N}^{\text{GS}} = 2J_{N-1} = 2J_0 2^{(1-\sigma)(N-1)} = J_0 2^\sigma L_N^{1-\sigma}, \tag{6}$$

grows with the distance $L_N = 2^N$ for $\sigma < 1$, remains constant for $\sigma = 1$, and decays for $\sigma > 1$. It has been shown [1] that the critical temperature T_c for the ferromagnetic transition is finite for $\sigma < 1$ only:

$$T_c(\sigma < 1) > 0$$

$$T_c(\sigma \geq 1) = 0. \tag{7}$$

For $\sigma > 1$, note that equation (6) is not very physical since the energy cost of a single domain wall in the middle of the sample becomes exponentially small instead of remaining finite in the usual one-dimensional ferromagnetic chain. So, in the following, we will consider only the region

$$0 < \sigma \leq 1. \tag{8}$$

2.2. Real space renormalization for the equilibrium near zero temperature

In this paper, we will focus on the regime ‘near zero temperature’

$$T \ll J_0 \tag{9}$$

where the partition function is dominated by the two ferromagnetic ground states. Then the real space renormalization of the partition function becomes very simple. The consecutive spins (S_{2i-1}, S_{2i}) that are coupled by J_0 are grouped into a single renormalized spin $S_i^R = (S_{2i-1} + S_{2i})/2$ corresponding to the ferromagnetic cluster of the two spins

$$|S_i^R = 1 \rangle \equiv |S_{2i-1} = 1 \rangle |S_{2i} = 1 \rangle$$

$$|S_i^R = -1 \rangle \equiv |S_{2i-1} = -1 \rangle |S_{2i} = -1 \rangle. \tag{10}$$

In terms of these 2^{N-1} renormalized spins for $i = 1, 2, \ldots, 2^{N-1}$, the energy of equation (1)
becomes
\[U_{2N}(S_1, \ldots, S_{2N}) = -J_0 2^{N-1} - J_1 \left[S_1^R S_2 + S_2^R S_4 + \cdots \right]
- J_2 \left[\left(\frac{S_1^R + S_2^R}{2} \right) \left(\frac{S_3^R + S_4^R}{2} \right) + \cdots \right] - \cdots
- J_{N-1} \left(\frac{S_1^R + \cdots + S_{2N-2}^R}{2^{N-2}} \right) \left(\frac{S_{2N-2+1}^R + \cdots + S_{2N-1}^R}{2^{N-2}} \right) \]
\[= -J_0 2^{N-1} + 2^{1-\sigma} U_{2N-1}(S_1^R, \ldots, S_{2N-1}^R). \] (11)

So if one considers the partition function where the ratio \(U/T \) enters, one obtains that equation (11) corresponds to the following renormalization of the temperature upon the elimination of the lowest generation:
\[T_R = 2^{\sigma-1}T. \] (12)

This is in agreement with equation (7): for \(\sigma < 1 \), \(T_R \) flows towards the attractive fixed point \(T = 0 \); for \(\sigma > 1 \), \(T_R \) flows away from the unstable fixed point \(T_c = 0 \).

To prepare for the following sections, it is also convenient to describe the renormalization of the local field. In the initial model of equation (1), the local field on spin \(S_i \) is defined as
\[B_i = -\frac{\partial U_{2N}(S_1, \ldots, S_{2N})}{\partial S_i} = \sum_{j \neq i} J_{ij} S_j, \] (13)
i.e. for instance for the two first spins \(i = 1, 2 \),
\[B_1 = J_0 S_2 + \frac{J_1}{2} \left(\frac{S_3 + S_4}{2} \right) + \frac{J_2}{2^2} \left(\frac{S_5 + S_6 + S_7 + S_8}{2^2} \right) + \cdots + \frac{J_{N-1}}{2^{N-1}} \left(\frac{S_{2N-1+1} + \cdots + S_{2N}}{2^{N-1}} \right) \]
\[B_2 = J_0 S_1 + \frac{J_1}{2} \left(\frac{S_3 + S_4}{2} \right) + \frac{J_2}{2^2} \left(\frac{S_5 + S_6 + S_7 + S_8}{2^2} \right) + \cdots + \frac{J_{N-1}}{2^{N-1}} \left(\frac{S_{2N-1+1} + \cdots + S_{2N}}{2^{N-1}} \right). \] (14)

After the renormalization where \((S_1, S_2)\) have been grouped into the renormalized spin \(S_1^R = (S_1 + S_2)/2 \) (equation (10)), the renormalized local field \(B_1^R \) on \(S_1^R \) reads
\[B_1^R = J_1 \left(\frac{S_3 + S_4}{2} \right) + \frac{J_2}{2} \left(\frac{S_5 + S_6 + S_7 + S_8}{2^2} \right) + \cdots + \frac{J_{N-1}}{2^{N-2}} \left(\frac{S_{2N-1+1} + \cdots + S_{2N}}{2^{N-1}} \right) \]
\[= 2^{1-\sigma} J_0 \left[S_2^R + 2^{-\sigma} \left(\frac{S_3^R + S_4^R}{2} \right) + \cdots + 2^{-\sigma(N-2)} \left(\frac{S_{2N-2+1}^R + \cdots + S_{2N-1}^R}{2^{N-2}} \right) \right]. \] (15)
i.e. it is renormalized by the same factor \(2^{1-\sigma} \) as the couplings, as it should be.
3. Real space renormalization for the dynamics of the Dyson model

3.1. Stochastic single-spin-flip dynamics satisfying detailed balance

We consider the stochastic dynamics generated from the Master equation for the probability $P_t(C)$ of being in configuration C at time t:

$$\frac{dP_t(C)}{dt} = \sum_{C'} P_t(C') W(C' \rightarrow C) - P_t(C) \sum_{C'} W(C \rightarrow C')$$

where the transition rates $W(C \rightarrow C')$ satisfy the detailed balance condition

$$e^{-\beta U(C)} W(C \rightarrow C') = e^{-\beta U(C')} W(C' \rightarrow C).$$

For the Ising model of equation (1), where the energy is of the form

$$U(C) = -\sum_{i<j} J_{ij} S_i S_j$$

with the local fields (equation (13))

$$B_k = -\frac{\partial U(C)}{\partial S_k} = \sum_{i \neq k} J_{ik} S_i$$

it is natural to consider the following single-spin-flip transition rates for the flip of the spin S_k:

$$W(S_k \rightarrow -S_k) = G_0(B_k) e^{-\beta S_k B_k}$$

where the function $G_0(B)$ is an even positive function of B (see [25] for more details):

$$G_0(B) = G_0(-B) > 0.$$ \hspace{1cm} (21)

In the following, we will consider as two important examples the ‘simple’ dynamics

Simple dynamics : $G_0^{\text{simple}}(B) = 1$ \hspace{1cm} (22)

and the Glauber dynamics [23]

Glauber dynamics : $G_0^{\text{Glauber}}(B) = \frac{1}{2 \cosh \beta B}$. \hspace{1cm} (23)

3.2. Mapping onto a quantum Hamiltonian

As recalled in detail in [25], the Master equation with the transition rates of equation (20) can be mapped via a similarity transformation onto the quantum Hamiltonian [26]–[30]

$$H = \sum_{k=1}^{2^N} G_0 \left(\sum_{i \neq k} J_{ik} \sigma_i^z \right) \left(e^{-\beta \sigma_k^z \left(\sum_{i \neq k} J_{ik} \sigma_i^z \right)} - \sigma_k^z \right)$$

for 2^N quantum spins described via Pauli matrices, with the following properties. The ground state energy exactly vanishes, $E_0 = 0$, and represents the thermal equilibrium. The smallest non-vanishing energy $E_1(2^N)$ determines the equilibrium time $t_{eq}(2^N)$ (defined
as the largest relaxation time of the Master equation, equation (16))

\[t_{eq}(2^N) = \frac{1}{E_1(2^N)}. \]

(25)

3.3. Real space renormalization of the associated quantum Hamiltonian

In our previous work [25], we have introduced a procedure for real space renormalization for a quantum Hamiltonian of the form of equation (24) to determine \(E_1 \) near zero temperature. We now describe the application to the Dyson hierarchical model. The quantum Hamiltonian associated with the stochastic dynamics of the Dyson hierarchical Ising model can be rewritten as a sum of elementary operators (equation (24)):

\[
H = 2^N - 1 \sum_{i=1}^{2^N-1} (h_{2i-1} + h_{2i})
\]

with \(B_i^R \) the static renormalized local field introduced in equation (15).

Let us consider the first two spins: as explained in [25], the sum

\[
h_1 + h_2 = G_0 \left(J_0 \sigma_2^z + \frac{B_1}{2} \right) \left(e^{-\beta \sigma_1^z (J_0 \sigma_2^z + B_1^R/2)} - \sigma_1^x \right)
\]

\[+ G_0 \left(J_0 \sigma_1^z + \frac{B_1^R}{2} \right) \left(e^{-\beta \sigma_2^x (J_0 \sigma_1^z + B_1^R/2)} - \sigma_2^x \right) \]

(26)

can be renormalized into the following operator describing the flip of the renormalized spin \(S^R = (S_1 + S_2)/2 \) (equation (10)):

\[
h_{R(1,2)} \equiv G_1^{R}(B_1) \left(e^{-\beta \sigma_1^z B_1^R} - \sigma_1^x \right) \]

(28)

where the renormalized amplitude \(G_1^{R}(B) \) can be computed from the function \(B_0 \) via

\[
G_1^{R}(B) = e^{-\beta J_0} \frac{2G_0(J_0 + B/2)G_0(J_0 - B/2)}{e^{\beta B/2}G_0(J_0 + B/2) + e^{-\beta B/2}G_0(J_0 - B/2)}
\]

(29)

or equivalently using the inverse

\[
1 \frac{1}{G_1^{R}(B)} = \frac{e^{\beta J_0}}{2} \left[\frac{e^{\beta B/2}}{G_0(J_0 - B/2)} + \frac{e^{-\beta B/2}}{G_0(J_0 + B/2)} \right].
\]

(30)

In conclusion, the real space renormalization of the quantum Hamiltonian corresponds for the Dyson model to the renormalization of the function \(G(B) \) starting from the initial condition \(G_0(B) \) that defines the initial dynamics (equation (21)).

3.4. Equilibrium time \(t_{eq}(2^N) \) for a finite system of \(2^N \) spins

We apply iteratively the previous renormalization rule as follows:
(0) The initial dynamics concerns the Dyson hierarchical model of 2^N spins with the couplings (J_0, \ldots, J_{N-1}) and the function $G_0(B)$ that defines the transition rates of equation (20).

(1) After one RG step, we have a Dyson hierarchical model of 2^{N-1} renormalized spins with the couplings (J_1, \ldots, J_{N-1}) and the function $G^R_1(B)$ obtained by using equation (30):

$$\frac{1}{G^R_1(B)} = \frac{1}{2} \sum_{\epsilon_1 = \pm} e^{-\beta \epsilon_1(B/2)}. \quad \text{(31)}$$

(2) After two RG steps, we have a Dyson hierarchical model of 2^{N-2} renormalized spins with the couplings (J_2, \ldots, J_{N-1}) and the function $G^R_2(B)$ obtained by using equation (30):

$$\frac{1}{G^R_2(B)} = \frac{1}{2} \sum_{\epsilon_2 = \pm} e^{-\beta \epsilon_2(B/2)} \frac{1}{G^R_1(J_1 + \epsilon_2(B/2))}. \quad \text{(32)}$$

\ldots

(k) After k RG steps, we have a Dyson hierarchical model of 2^{N-k} renormalized spins with the couplings (J_k, \ldots, J_{N-1}) and the function $G^R_k(B)$:

$$\frac{1}{G^R_k(B)} = \frac{1}{2} \sum_{\epsilon_k = \pm} e^{-\beta \epsilon_k(B/2)} \frac{1}{G^R_{k-1}(J_{k-1} + \epsilon_k(B/2))}. \quad \text{(33)}$$

\ldots

(N) After N RG steps, only one spin remains, whose flipping is governed by the function $G^R_N(B)$:

$$\frac{1}{G^R_N(B)} = \frac{1}{2} \sum_{\epsilon_N = \pm} e^{-\beta \epsilon_N(B/2)} \frac{1}{G^R_{N-1}(J_{N-1} + \epsilon_N(B/2))}. \quad \text{(34)}$$

However since this spin is alone, there is no local field $B = 0$, so we just have to compute the final number $G^R_N(B = 0) = G^R_N(0)$:

$$\frac{1}{G^R_N(B = 0)} = \frac{1}{2} \sum_{\epsilon_N = \pm} e^{-\beta \epsilon_N(B/2)} G^R_{N-1}(J_{N-1} + \epsilon_N(B/2)). \quad \text{(35)}$$

in terms of the variables B_n that can be computed from the recurrence

$$B_{n-1} = J_{n-1} + \epsilon_n \frac{B_n}{2}, \quad \text{(36)}$$

with the initial condition

$$B_N = 0. \quad \text{(37)}$$

doi:10.1088/1742-5468/2013/02/P02023
The first terms read
\[B_{N-1} = J_{N-1} \]
\[B_{N-2} = J_{N-2} + J_{N-1} \left(\frac{\epsilon_{N-1}}{2} \right) \]
and more generally for \(0 \leq n \leq N - 1 \), one obtains
\[B_n = J_n + \sum_{m=n+1}^{N-1} J_m \prod_{k=n+1}^m \left(\frac{\epsilon_k}{2} \right). \]

In the following, we will need
\[B_0(\epsilon_1, \ldots, \epsilon_{N-1}) = J_0 + \sum_{m=1}^{N-1} J_m \prod_{k=1}^m \left(\frac{\epsilon_k}{2} \right) \]
and the sum present in the exponential of equation (35):
\[\Sigma(\epsilon_1, \ldots, \epsilon_{N-1}) \equiv \sum_{n=1}^{N-1} \epsilon_n \frac{B_n}{2} = \sum_{n=1}^{N-1} \epsilon_n \left[J_n + \sum_{m=n+1}^{N-1} J_m \prod_{k=n+1}^m \left(\frac{\epsilon_k}{2} \right) \right] \]
\[= \sum_{m=1}^{N-1} J_m \left[\sum_{n=1}^m \prod_{k=n}^m \left(\frac{\epsilon_k}{2} \right) \right]. \]

In conclusion, the equilibrium time \(t_{\text{eq}}(2^N) \) that can be computed from the final amplitude \(G_{N,\text{final}} \) \[25\]
\[t_{\text{eq}}(2^N) = \frac{1}{2G_{N,\text{final}}} \]
reads
\[t_{\text{eq}}(2^N) = e^{\beta \sum_{n=0}^{N-1} \epsilon_n \sum_{\epsilon_{N-1}=\pm} \sum_{\epsilon_{N-2}=\pm} \cdots \sum_{\epsilon_{1}=\pm} \frac{e^{-\beta \Sigma(\epsilon_1, \ldots, \epsilon_{N-1})}}{G_0(\epsilon_1, \ldots, \epsilon_{N-1})}} \]
\[= \frac{e^{\beta \sum_{n=0}^{N-1} J_n \sum_{\epsilon_{N-1}=\pm} \sum_{\epsilon_{N-2}=\pm} \cdots \sum_{\epsilon_{1}=\pm} e^{-\beta \Sigma(\epsilon_1, \ldots, \epsilon_{N-1})}}}{2^N} \]
where \(B_0(\epsilon_1, \ldots, \epsilon_{N-1}) \) and \(\Sigma(\epsilon_1, \ldots, \epsilon_{N-1}) \) are given in equations (40) and (41). To determine the leading behavior near zero temperature, we have to distinguish whether the initial function \(G_0(B) \) does not depend on \(\beta \) (as in the simple dynamics of equation (22)) or does depend on \(\beta \) (as in the Glauber dynamics of equation (23)). These two cases are studied separately in the following two sections.

4. Equilibrium time for the ‘simple’ dynamics

4.1. Real space renormalization solution

For the initial condition of equation (22) that defines the ‘simple’ dynamics, the result of equation (43) for the equilibrium time becomes
\[t_{\text{eq}}(2^N) = e^{\beta \sum_{n=0}^{N-1} J_n \sum_{\epsilon_{N-1}=\pm} \sum_{\epsilon_{N-2}=\pm} \cdots \sum_{\epsilon_{1}=\pm} e^{-\beta \Sigma(\epsilon_1, \ldots, \epsilon_{N-1})}} \]
\[= \frac{e^{\beta \sum_{n=0}^{N-1} J_n \sum_{\epsilon_{N-1}=\pm} \sum_{\epsilon_{N-2}=\pm} \cdots \sum_{\epsilon_{1}=\pm} e^{-\beta \Sigma(\epsilon_1, \ldots, \epsilon_{N-1})}}}{2^N} \]
where
\[
\Sigma(\epsilon_1, \ldots, \epsilon_{N-1}) = \sum_{m=1}^{N-1} J_m \left[\sum_{n=1}^m \prod_{k=n}^m \left(\frac{\epsilon_k}{2} \right) \right] \\
= J_1 \frac{\epsilon_1}{2} + J_2 \frac{\epsilon_2}{2} \left[1 + \frac{\epsilon_1}{2} \right] + J_3 \frac{\epsilon_3}{2} \left[1 + \frac{\epsilon_2}{2} + \frac{\epsilon_1 \epsilon_2}{2^2} \right] + \cdots \\
+ J_{N-2} \frac{\epsilon_{N-2}}{2} \left[1 + \frac{\epsilon_{N-3}}{2} + \frac{\epsilon_{N-3} \epsilon_{N-4}}{2^2} + \cdots + \frac{\epsilon_{N-3} \epsilon_{N-4} \cdots \epsilon_1}{2^{N-3}} \right] \\
+ J_{N-1} \frac{\epsilon_{N-1}}{2} \left[1 + \frac{\epsilon_{N-2}}{2} + \frac{\epsilon_{N-2} \epsilon_{N-3}}{2^2} + \cdots + \frac{\epsilon_{N-2} \epsilon_{N-3} \cdots \epsilon_1}{2^{N-2}} \right].
\] (45)

4.2. Leading term near zero temperature

At low temperature, the sum of equation (44) will be dominated by the minimal value of $\Sigma(\epsilon_1, \ldots, \epsilon_{N-1})$ of equation (41). Since ϵ_{N-1} appears only in the last line, and since the term between the brackets cannot change sign with respect to the first term 1, we are led to the choice
\[
\epsilon_{N-1} = -1
\] (46)
and we have now to minimize
\[
\Sigma(\epsilon_1, \ldots, \epsilon_{N-2}, \epsilon_{N-1} = -1) = J_1 \frac{\epsilon_1}{2} + J_2 \frac{\epsilon_2}{2} \left[1 + \frac{\epsilon_1}{2} \right] + J_3 \frac{\epsilon_3}{2} \left[1 + \frac{\epsilon_2}{2} + \frac{\epsilon_1 \epsilon_2}{2^2} \right] + \cdots \\
+ \frac{\epsilon_{N-2}}{2} \left(J_{N-2} - J_{N-1} \right) \left[1 + \frac{\epsilon_{N-3}}{2} + \frac{\epsilon_{N-3} \epsilon_{N-4}}{2^2} + \cdots + \frac{\epsilon_{N-3} \epsilon_{N-4} \cdots \epsilon_1}{2^{N-3}} \right] \\
- \frac{J_{N-1}}{2}.
\] (47)

Since from equation (2)
\[
J_{N-2} - \frac{J_{N-1}}{2} = J_0 2^{(1-\sigma)(N-2)} (1 - 2^{-\sigma}) > 0
\] (48)
we are led to the choice
\[
\epsilon_{N-2} = -1
\] (49)
and so on, so the minimum is achieved when all $\epsilon_i = -1$. The corresponding minimum reads using equation (2)
\[
\Sigma_{\text{min}} = \Sigma(\epsilon_1 = -1, \epsilon_2 = -1, \ldots, \epsilon_{N-1} = -1) = \sum_{m=1}^{N-1} J_m \left[\sum_{n=1}^m (-\frac{1}{2})^{m-n+1} \right] \\
= -\frac{1}{3} \sum_{m=1}^{N-1} J_m \left[1 - (-\frac{1}{2})^m \right]
\] (50)
and so finally
\[
\tau_{\text{simple}}(2^N) \simeq e^\beta \frac{\Sigma_{\text{min}}^N - \Sigma_{\text{min}}}{2^N} = \frac{1}{2^N} e^{\beta [J_0 + \Sigma_{m=1}^{N-1} J_m (4(-1/2)^m/3)]},
\] (51)
We may now use equation (2) to compute explicitly
\[
\ln \left[2^{N_{eq}(2^N)} \right] = \beta \left[J_0 + \sum_{m=1}^{N-1} J_0 2^{(1-\sigma)m} \left(\frac{4 - (-1/2)^m}{3} \right) \right]
\]
\[
= \beta J_0 \left[1 + \frac{4}{3} 2^{1-\sigma} \frac{1 - 2^{(1-\sigma)(N-1)}}{1 - 2^{1-\sigma}} + \frac{1}{3} 2^{-\sigma} \frac{1 - (-2^{-\sigma})^{(N-1)}}{1 + 2^{-\sigma}} \right]. \tag{52}
\]
This expression is valid for finite \(N \) and we may check the first terms
\[
\ln \left[2^{t_{eq}(2)} \right] = \beta J_0 \ln \left[2^{2^{t_{eq}(2^2)}} \right] = \beta J_0 \left[1 + 3.2^{-\sigma} \right] = \beta \left[J_0 + \frac{3}{2} J_1 \right]. \tag{53}
\]
To obtain the leading behavior for large \(N \), we should now specify the value of \(\sigma \).

4.3. Case \(\sigma < 1 \): power-law barrier

For \(\sigma < 1 \), equation (52) becomes in terms of the length \(L_N = 2^N \)
\[
\sigma < 1 : \ln \left[2^{N_{eq}(L_N = 2^N)} \right]
\]
\[
= \beta J_0 \left[\frac{4}{3} L_N^{(1-\sigma)} \frac{1}{2^{1-\sigma} - 1} + \frac{4}{3} \frac{1}{2^{\sigma} - 1} + \frac{1}{3} \frac{1}{2^{\sigma} + 1} \right] + O(L_N^{-\sigma}) \tag{54}
\]
i.e. the energy barrier near zero temperature scales as the following power law of the length \(L_N = 2^N \):
\[
\frac{\ln \left[2^{N_{eq}(L_N = 2^N)} \right]}{\beta} \approx \frac{4 J_0}{3(2^{1-\sigma} - 1)} L_N^{(1-\sigma)}. \tag{55}
\]

4.4. Case \(\sigma = 1 \): logarithmic barrier

For \(\sigma = 1 \), equation (52) becomes in terms of the length \(L_N = 2^N \)
\[
\sigma = 1 : \ln \left[2^{N_{eq}(L_N = 2^N)} \right] = \beta J_0 \left[\frac{4}{3} N - \frac{2}{9} \right] + O(L_N^{-1})
\]
\[
= \beta J_0 \left[\frac{4}{3} \ln(L_N) - \frac{2}{9} \right] + O(L_N^{-1}), \tag{56}
\]
i.e. the energy barrier near zero temperature grows logarithmically with the length \(L_N = 2^N \):
\[
\frac{\ln \left[2^{N_{eq}(L_N = 2^N)} \right]}{\beta} \approx \frac{4 J_0}{3 \ln 2} \ln(L_N). \tag{57}
\]

4.5. Generalization to other dynamics where \(G_0(B) \) does not depend explicitly on \(\beta \)

It is clear from equation (43) that for all dynamics where \(G_0(B) \) does not depend explicitly on \(\beta \), the equilibrium time will be dominated again by \(\Sigma_{min} \) near zero temperature, with the result (using equation (40))

\[
\text{doi:10.1088/1742-5468/2013/02/P02023}
\]
\[t_{\text{eq}}(2^N) \simeq \frac{e^{\beta \Sigma_{n=0}^{N-1} J_n}}{2^N G_0(B_0(\epsilon = -1, \ldots, \epsilon_{N-1} = -1))} e^{-\beta \Sigma_{\text{min}}} \]
\[\simeq \frac{e^{\beta \Sigma_{n=0}^{N-1} J_n}}{2^N G_0\left(J_0 + \sum_{m=1}^{N-1} J_m (-1/2)^m\right)}, \]

i.e. the dynamical barriers are the same as above in equation (55) and equation (57) (the only difference is in the prefactor of the exponential).

5. Equilibrium time for the Glauber dynamics

5.1. Real space renormalization solution

For the initial condition of equation (23) describing the Glauber dynamics, equation (43) becomes

\[t_{\text{Glauber}}^{\text{eq}}(2^N) = \frac{1}{2G_{\text{final}}} = \frac{e^{\beta \Sigma_{n=0}^{N-1} J_n}}{2^N} \]
\[\times \sum_{\epsilon_{N-1} = \pm} \sum_{\epsilon_{N-2} = \pm} \cdots \sum_{\epsilon_1 = \pm} e^{-\beta \Sigma(\epsilon_1, \ldots, \epsilon_{N-1})} \left[e^{\beta B_0(\epsilon_1, \ldots, \epsilon_{N-1})} + e^{-\beta B_0(\epsilon_1, \ldots, \epsilon_{N-1})} \right]. \]

5.2. Leading term near zero temperature

So at low temperature, we have to minimize over the \(\epsilon_i = \pm 1 \) and over \(\epsilon = \pm 1 \) the combination (equations (45) and (40))

\[\Sigma(\epsilon_1, \ldots, \epsilon_{N-1}) + \epsilon B_0(\epsilon_1, \ldots, \epsilon_{N-1}) = \sum_{m=1}^{N-1} J_m \left[\sum_{k=1}^{m} \left(\frac{\epsilon_k}{2} \right) \right] + \epsilon \left[J_0 + \sum_{m=1}^{N-1} J_m \prod_{k=1}^{m} \left(\frac{\epsilon_k}{2} \right) \right] \]
\[= J_0 \epsilon + J_1 \frac{\epsilon_1}{2} (1 + \epsilon) + J_2 \frac{\epsilon_2}{2} \left[1 + \frac{\epsilon_1}{2} (1 + \epsilon) \right] + J_3 \frac{\epsilon_3}{2} \left[1 + \frac{\epsilon_2}{2} + \frac{\epsilon_1}{2} + (1 + \epsilon) \right] + \cdots \]
\[+ J_{N-2} \frac{\epsilon_{N-2}}{2} \left[1 + \frac{\epsilon_{N-3}}{2} + \frac{\epsilon_{N-3} \epsilon_{N-4}}{2^2} + \cdots + \frac{\epsilon_{N-3} \epsilon_{N-4} \cdots \epsilon_1}{2^{N-3}} (1 + \epsilon) \right] \]
\[+ J_{N-1} \frac{\epsilon_{N-1}}{2} \left[1 + \frac{\epsilon_{N-2}}{2} + \frac{\epsilon_{N-2} \epsilon_{N-3}}{2^2} + \cdots + \frac{\epsilon_{N-2} \epsilon_{N-3} \cdots \epsilon_1}{2^{N-2}} (1 + \epsilon) \right]. \]

The new factors containing \(\epsilon \) are not able to change the signs of the expressions between brackets, so we find again by recurrence (equations (46) and (49)) that this function is minimum by choosing all \(\epsilon_i = -1 \) and finally \(\epsilon = -1 \). The corresponding minimum reads

\[\Sigma(\epsilon_1, \ldots, \epsilon_{N-1}) + \epsilon B_0(\epsilon_1, \ldots, \epsilon_{N-1}) \]

\[= \sum_{m=1}^{N-1} J_m \left[\sum_{n=1}^{m} (-\frac{1}{2})^{m-n+1} \right] - \left[J_0 + \sum_{m=1}^{N-1} J_m (-\frac{1}{2})^m \right] \]
\[= - J_0 + \sum_{m=1}^{N-1} J_m \left[\sum_{k=1}^{m-1} (-\frac{1}{2})^k \right] \]
\[= - J_0 - \frac{1}{3} \sum_{m=1}^{N-1} J_m \left[1 - (-\frac{1}{2})^{m-1} \right]. \]
We thus obtain the following leading behavior at low temperature (equation (59)):
\[
\begin{align*}
\tilde{t}_{\text{eq}}^{\text{Glauber}}(2^N) &\approx \frac{1}{2N} e^{\beta \sum_{m=0}^{N-1} J_m - [\Sigma(e_1, \ldots, e_{N-1}) + \epsilon B_0(e_1, \ldots, e_{N-1})]_{\text{min}}} \\
&= \frac{1}{2N} e^{\beta \sum_{m=0}^{N-1} J_m + J_0 + (1/3) \sum_{m=1}^{N-1} J_m \left[1 - (-1/2)^{m-1}\right]} \\
&= \frac{1}{2N} e^{\beta \sum_{m=1}^{N-1} J_m \left(4/3 - 1/3(-1/2)^{m-1}\right)}. \quad (62)
\end{align*}
\]

We may now use equation (2) to compute explicitly
\[
\ln \left[2^N \tilde{t}_{\text{eq}}^{\text{Glauber}}(2^N)\right] = \beta \left[2J_0 + \sum_{m=1}^{N-1} J_0 2^{(1-\sigma)m} \left(\frac{4}{3} - \frac{1}{3} \left(-\frac{1}{2}\right)^{m-1}\right)\right]
\]
\[
= \beta J_0 \left[2 + \frac{4}{3} \sum_{m=1}^{N-1} 2^{(1-\sigma)m} - \frac{1}{3} \sum_{m=1}^{N-1} 2^{(1-\sigma)m} \left(-\frac{1}{2}\right)^{m-1}\right]
\]
\[
= \beta J_0 \left[2 + \frac{4}{3} \left(2^{1-\sigma} - 1\right) - \frac{4}{3} \sum_{m=1}^{N-1} 2^{(1-\sigma)(N-1)} \frac{1 - (-2^{-\sigma})(N-1)}{1 + 2^{-\sigma}}\right]. \quad (63)
\]

This expression is valid for finite N and we may check the first terms
\[
\begin{align*}
\ln \left[2^0 \tilde{t}_{\text{eq}}^{\text{Glauber}}(2)\right] &= 2\beta J_0 \\
\ln \left[2^1 \tilde{t}_{\text{eq}}^{\text{Glauber}}(2^2)\right] &= \beta J_0 \left[2 + 2^{1-\sigma}\right] = \beta \left[2J_0 + J_1\right]. \quad (64)
\end{align*}
\]

To obtain the leading behavior for large N, we should now specify the value of σ.

5.3. Case $\sigma < 1$: power-law barrier

For $\sigma < 1$, equation (63) becomes in terms of the system size $L_N = 2^N$
\[
\sigma < 1 : \ln \left[2^N \tilde{t}_{\text{eq}}^{\text{Glauber}}(2^N)\right] \approx \beta J_0 \left[\frac{4}{3} \frac{2^{(1-\sigma)N}}{2^{1-\sigma} - 1} + \frac{4}{3} \frac{1}{2^{\sigma-1} - 1} - \frac{2}{3} \frac{1}{2^{\sigma} + 1}\right]
\]
\[
= \beta J_0 \left[\frac{4}{3} \frac{L_N^{(1-\sigma)}}{2^{1-\sigma} - 1} + \frac{4}{3} \frac{1}{2^{\sigma-1} - 1} - \frac{2}{3} \frac{1}{2^{\sigma} + 1}\right], \quad (65)
\]
i.e. the energy barrier near zero temperature scales as the same power law of the length $L_N = 2^N$:
\[
\ln \left[2^N \tilde{t}_{\text{eq}}^{\text{Glauber}}(L_N = 2^N)\right] \approx \frac{4J_0}{3(2^{1-\sigma} - 1)} L_N^{(1-\sigma)} \quad (66)
\]
and with the same prefactor as in equation (55), even if the finite corrections of equation (65) are different to the finite corrections of equation (54) (more explanations as regards these finite differences are given in the appendix).

5.4. Case $\sigma = 1$: logarithmic barrier

For $\sigma = 1$, equation (63) becomes in terms of the system size $L_N = 2^N$
\[\sigma = 1 : \ln \left[2^N t_{eq}^{\text{Glauber}}(2^N) \right] \simeq \beta J_0 \left[2 + 4 \frac{2}{3}(N - 1) - \frac{2}{9} \right] = \beta J_0 \left[\frac{4}{3} N + \frac{4}{9} \right] \]

i.e. the energy barrier near zero temperature grows with the same logarithmic barrier:

\[\frac{\ln \left[2^N t_{eq}^{\text{Glauber}}(L_N = 2^N) \right]}{\beta} \simeq \frac{4J_0}{3 \ln 2} \ln(L_N) \]

with the same prefactor as in equation (57), even if the finite corrections of equation (56) and of equation (67) are different (see more details in the appendix).

5.5. Generalization to other dynamics where \(G_0(B) \propto e^{-\beta|B|} \)

From the analysis presented above, it is clear that dynamical barriers near zero temperature will remain the same for all dynamics where the amplitude \(G_0(B) \) displays the same exponential decay as the Glauber amplitude of equation (23):

\[G_0(B) \propto e^{-\beta|B|}. \]

As an example of other dynamics with the same exponential decay, we may cite the Metropolis dynamics corresponding to (see equation (20))

\[G_0^{\text{Metropolis}}(B) = \min(e^{\beta B}, e^{-\beta B}) = e^{-\beta|B|}. \]

6. Conclusion

In this paper, we have studied the stochastic dynamics of the Dyson hierarchical one-dimensional Ising model with parameter \(0 < \sigma \leq 1 \) via the real space renormalization introduced in our previous work [25]. We have shown that this renormalization procedure amounts to renormalizing a single function \(G(B) \) that defines the transition rates of the renormalized dynamics. We have obtained explicitly the RG flow for two types of dynamics, namely the ‘simple’ dynamics (and other equivalent dynamics of section 4.5) and the Glauber dynamics (and other equivalent dynamics of section 5.5). We have obtained that the leading diverging dynamical barrier is the same power law, \(\ln t_{eq}(L) \simeq \beta(4J_0/3(2^{1-\sigma} - 1))L^{1-\sigma} \), for \(\sigma < 1 \) and the same logarithmic term, \(\ln t_{eq}(L) \simeq [\beta(4J_0/3 \ln 2) - 1] \ln L \), for \(\sigma = 1 \), even if the finite corrections are different, as explained in the appendix.

Appendix. The link between dynamical barriers and the highest energy cost of a domain wall

A.1. Case of the Glauber dynamics

For the Glauber dynamics, the dynamical barrier for a system of \(2^N \) spins corresponds to the maximal energy cost of one domain wall inside the system

\[\frac{1}{\beta} \ln \left[2^N t_{eq}^{\text{Glauber}}(2^N) \right] = \max_{0 \leq k \leq 2^N} \left(U_{2^N}^{(k, 2^N-k)} - U_{2^N}^{GS} \right) \]
where $U_{2N}^{(k,2N-k)}$ represents the energy of the configuration where the first k spins are (-1), whereas all others spins are $(+1)$.

The property of equation (A.1) can be easily checked for small systems, for instance for the case $N = 1$ containing $2^1 = 2$ and the case $N = 2$ containing $2^2 = 4$ spins (equation (64)):

$$
\frac{1}{\beta} \ln \left[2t_{\text{eq}}^{\text{Glauber}}(2^2) \right] = 2J_0 = U_{2}^{(1,1)} - U_{2}^{\text{GS}}
$$

$$
\frac{1}{\beta} \ln \left[2^2 t_{\text{eq}}^{\text{Glauber}}(2^2) \right] = 2J_0 + J_1 = U_{4}^{(1,3)} - U_{4}^{\text{GS}} = U_{4}^{(3,1)} - U_{4}^{\text{GS}}.
$$

For an arbitrary number N of generations containing 2^N spins, the correspondence of equation (A.1) is less straightforward because the energy cost of the configuration where the first k spins are (-1) whereas all others spins are $(+1)$ reads

$$
U_{2N}^{(k,2N-k)} - U_{2N}^{\text{GS}} = 2J_0c_0(k) + \sum_{j=1}^{N-1} J_j \left[2c_j(k) + (1 - 2c_j(k)) 2^{1-j} \Sigma_{j-1}(k) \right]
$$

in terms of the coefficients $c_i(k) \in \{0, 1\}$ of the base 2 decomposition

$$
k = \sum_{i=0}^{N-1} c_i(k)2^i = c_0(k) + c_1(k)2 + c_2(k)2^2 + \cdots
$$

and of the corresponding partial sums for $i = 0, \ldots, N - 1$,

$$
\Sigma_i(k) = \sum_{j=0}^{i} c_j(k)2^j.
$$

Nevertheless, one can check that the energy barrier obtained in equation (62) corresponds to the energy cost of a domain wall located at k_s:

$$
\frac{1}{\beta} \ln \left(2^N t_{\text{eq}}^{\text{Glauber}}(2^N) \right) \simeq 2J_0 + \sum_{m=1}^{N-1} J_m \left[\frac{4}{3} - \frac{1}{3} \left(\frac{1}{2} \right)^{m-1} \right] = \left(U_{2N}^{(k_s,2N-k_s)} - U_{2N}^{\text{GS}} \right)
$$

where k_s is characterized by the following coefficients in the base 2 decomposition (A.4):

$$
c_{2p}(k_s) = 1
$$

$$
c_{2p+1}(k_s) = 0
$$

so that

$$
k_s = 1 + 2^2 + 2^4 + \cdots
$$

A.2. Case of the simple dynamics

For the ‘simple’ dynamics, the correspondence of equation (A.1) between the dynamical barrier and the maximal energy cost of a single domain wall does not hold, as can be seen already for the case $N = 2$ corresponding to $2^1 = 2$ spins and for the case $N = 2$
corresponding to $2^2 = 4$ spins, since the dynamical barriers of equation (53):

$$\frac{1}{\beta} \ln \left[2 t_{\text{eq}}^{\text{simple}}(2) \right] = J_0$$

$$\frac{1}{\beta} \ln \left[2^2 t_{\text{eq}}^{\text{simple}}(2^2) \right] = J_0 + \frac{3}{2} J_1$$

are clearly different from the maximal energy cost of equation (A.2). This can be understood as follows for the case $N = 1$ with two spins. The transition rates associated with the simple dynamics (equations (20) and (22)) read

$$W_{\text{simple}}^{\text{simple}}(++ \rightarrow +-) = W_{\text{simple}}^{\text{simple}}(+- \rightarrow ++) = e^{-\beta J_0}$$

$$W_{\text{simple}}^{\text{simple}}(++ \rightarrow -+) = W_{\text{simple}}^{\text{simple}}(-+ \rightarrow --) = e^{+\beta J_0}$$

whereas the Glauber transition rates (equation (23)) are given by

$$W_{\text{Glauber}}^{\text{Glauber}}(++) \rightarrow +-- = W_{\text{Glauber}}^{\text{Glauber}}(+-) \rightarrow -- = e^{-\beta J_0}$$

$$W_{\text{Glauber}}^{\text{Glauber}}(++) \rightarrow -+ = W_{\text{Glauber}}^{\text{Glauber}}(-+) \rightarrow -+ = e^{+\beta J_0}$$

For two spins, the equilibrium time is determined by the rate $W(++) \rightarrow +--$ for creating a domain wall when starting from one ground state (the time for eliminating the domain wall is then negligible), and these two rates are respectively of order $e^{-\beta J_0}$ for the simple dynamics and of order $e^{-2\beta J_0}$ for the Glauber dynamics, i.e. the dynamical barriers differ by a factor of 2. One could argue that the Glauber dynamics (or other equivalent dynamics of section 5.5) is more ‘physical’, in the sense that all transition rates remain bounded near zero temperature, whereas in the ‘simple’ dynamics (or other equivalent dynamics of section 4.5), transition rates corresponding to a decrease of the energy diverge near zero temperature. Nevertheless, we should stress that the difference between the dynamical barriers of the two dynamics remains of order $O(1)$, whereas the leading terms found in the text for the case $\sigma < 1$ (equations (55) and (66)) and for the case $\sigma = 1$ (equations (57) and (68)) are the same.

References

[1] Dyson F J, 1969 Commun. Math. Phys. 12 91
 Dyson F J, 1971 Commun. Math. Phys. 21 269
[2] Bleher P M and Sinai Y G, 1973 Commun. Math. Phys. 33 23
 Bleher P M and Sinai Y G, 1975 Commun. Math. Phys. 45 247
 Sinai Ya G, 1983 Theor. Math. Phys. 57 1014
 Bleher P M and Major P, 1987 Ann. Prob. 15 431
 Bleher P M, 2010 arXiv:1010.5855
[3] Gallavotti G and Knops H, 1975 Nuovo Cimento 5 341
[4] Collet P and Eckmann J P, 1978 A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics (Springer Lecture Notes in Physics) (Berlin: Springer)
[5] Jona-Lasinio G, 2001 Phys. Rep. 352 439
[6] Baker G A, 1972 Phys. Rev. B 5 2622
 Baker G A and Golner G R, 1973 Phys. Rev. Lett. 31 22
 Baker G A and Golner G R, 1977 Phys. Rev. B 16 2081
 Baker G A, Fisher M E and Moussa P, 1979 Phys. Rev. Lett. 42 615
[7] McGuire J B, 1973 Commun. Math. Phys. 32 215
[8] Guttmann A J, Kim D and Thompson C J, 1977 J. Phys. A: Math. Gen. 10 L125

doi:10.1088/1742-5468/2013/02/P02023
Dynamical barriers in the Dyson hierarchical model via real space renormalization

Kim D and Thompson C J, 1978 J. Phys. A: Math. Gen. 11 375
Kim D and Thompson C J, 1978 J. Phys. A: Math. Gen. 11 385
Kim D, 1980 J. Phys. A: Math. Gen. 13 3049
[9] Kim D and Thompson C J, 1977 J. Phys. A: Math. Gen. 10 1579
[10] Rodgers G J and Bray A J, 1988 J. Phys. A: Math. Gen. 21 2177
[11] Monthus C and Garel T, 2011 J. Stat. Mech. P07010
[12] Theumann A, 1980 Phys. Rev. B 21 2984
Theumann A, 1980 Phys. Rev. B 22 5441
[13] Hertz J A and Sibani P, 1985 Phys. Scr. 9 199
Sibani P and Hertz J A, 1985 J. Phys. A: Math. Gen. 18 1255
[14] Franz S, Jörg T and Parisi G, 2009 J. Stat. Mech. P02002
Castellana M, Decelle A, Franz S, Mézard M and Parisi G, 2010 Phys. Rev. Lett. 104 127206
Castellana M and Parisi G, 2010 Phys. Rev. E 82 040105(R)
[15] Bovier A, 1990 J. Stat. Phys. 59 745
[16] Molchanov S, Hierarchical random matrices and operators, application to the Anderson model, 1996
Multidimensional Statistical Analysis and Theory of Random Matrices ed A K Gupta and
V L Girko (Utrecht: VSP) p 179
[17] Kritchevski E, 2007 Proc. Am. Math. Soc. 135 1431
Kritchevski E, 2008 Ann. Henri Poincaré 9 685
Kritchevski E, Hierarchical Anderson Model, 2007 Probability and Mathematical Physics: a Volume in
Honor of S Molchanov ed D A Dawson et al (Providence, RI: Am. Math. Soc.) p 309
[18] Kuttruf S and Müller P, 2012 Ann. Henri Poincaré 13 525
[19] Fyodorov Y V, Ossipov A and Rodriguez A, 2009 J. Stat. Mech. L12001
[20] Bogomolny E and Giraud O, 2011 Phys. Rev. Lett. 106 044101
[21] Rushkin I, Ossipov A and Fyodorov Y V, 2011 J. Stat. Mech. L03001
[22] Monthus C and Garel T, 2011 J. Stat. Mech. P05005
[23] Glauber R J, 1963 J. Math. Phys. 4 294
[24] Bray A J, 1994 Adv. Phys. 43 357
[25] Monthus C and Garel T, 2012 arXiv:1212.0643
[26] Felderhof B U, 1970 Rev. Math. Phys. 1 215
Felderhof B U, 1971 Rev. Math. Phys. 2 151
[27] Siggia E D, 1977 Phys. Rev. B 16 2319
[28] Kimball J C, 1979 J. Stat. Phys. 21 289
[29] Peschel I and Emery V J, 1981 Z. Phys. B 43 241
[30] Castelnovo C, Chamon C and Sherrington D, 2012 Phys. Rev. B 81 184303

doi:10.1088/1742-5468/2013/02/P02023