A complementary proof of Baker's theorem of completely invariant components for transcendental entire functions

P. Domíngueza and G. Sienrab

a(a) Fac. Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla
Avenida San Claudio y 18 Sur, C.U., Puebla Pue, 72570, México.

b(b) Facultad de Ciencias, Universidad Nacional Autónoma de México
Avenida Universidad 3000, C.U. Ciudad de México, 04510, México

Abstract

Baker in [1] proved that for transcendental entire functions there is at most one completely invariant component of the Fatou set. It was observed by Julien Duval that there is a missing case in Baker’s proof. In this article we follow Baker’s ideas and give some alternative arguments to establish the result.

1 Introduction

Let \(\mathcal{E} \) be the set of transcendental entire functions \(f : \mathbb{C} \to \mathbb{C} \). For \(f \in \mathcal{E} \), we write \(f^n = f \circ f^{n-1} \) for the \(n \)-th iterate of \(f \), \(n \in \mathbb{N} \), and \(f^0 = \text{Id} \) where the symbol \(\circ \) denotes composition. When \(f^n(z_0) = z_0 \), for some \(n \in \mathbb{N} \), the point \(z_0 \) is called a periodic point. If \(n \) is the minimal positive integer for which this equality holds, we say that \(z_0 \) has period \(n \). If \(n = 1 \), \(z_0 \) is called a fixed point. The classification of a periodic point \(z_0 \) of period \(n \) of \(f \in \mathcal{E} \) can be attracting, super-attracting, rationally indifferent, irrationally indifferent and repelling.

Given \(f \in \mathcal{E} \), the Fatou set \(\mathcal{F}(f) \) is defined as the set of all points \(z \in \mathbb{C} \) such that the sequence of iterates \((f^n)_{n \in \mathbb{N}} \) forms a normal family in some neighborhood of \(z \). The Julia set, denoted by \(\mathcal{J}(f) \), is the complement of the Fatou set.

Some properties of the Julia and Fatou sets for functions in class \(\mathcal{E} \) are mentioned below:

(i) \(\mathcal{F}(f) \) is open, so \(\mathcal{J}(f) \) is closed.
(ii) \(\mathcal{J}(f) \) is perfect and non-empty.
(iii) The sets \(\mathcal{J}(f) \) and \(\mathcal{F}(f) \) are completely invariant under \(f \).
(iv) \(\mathcal{F}(f) = \mathcal{F}(f^n) \) and \(\mathcal{J}(f) = \mathcal{J}(f^n) \) for all \(n \in \mathbb{N} \).
(v) The repelling periodic points are dense in \(\mathcal{J}(f) \).

See [2], [5], [6] and [7] for definitions, proofs and more details concerning the Fatou and Julia sets.

We denote by \(\text{CV} \) the set of critical values and by \(\text{OV} \) the set of omitted values of a function \(f \in \mathcal{E} \).

2017 pdsoto@fcfm.buap.mx, guillermo.sienra@gmail.com
We recall that a Fatou component G of f is completely invariant if $f^{-1}(G) = G$. Also, for any two points $z_1, z_2 \in G$, there is a path contained in G that joins the two points. For f a transcendental entire function, due to Picard theorem, every completely invariant Fatou component of f is unbounded. If f has k completely invariant components, G_k, with $k \in \mathbb{N}$, then for every point $z \in \mathfrak{F}(f)$ and any neighborhood N_z of z, we have $G_k \cap N_z \neq \emptyset$.

Observation 1. Let $f \in \mathcal{E}$, and G a completely invariant Fatou component of f. Let $w \in G$ a regular value of f and $z(w)$ any pre-image point, then there exist an oriented curve $\Gamma \subset G$ beginning at w, such that: (i) intersects any neighborhood of infinity with $\Gamma \cap \Omega V = \emptyset$ and (ii) has a pre-image Γ' beginning at $z(w)$, so $f(\Gamma') = \Gamma$.

The construction of the curve Γ can be obtained by successive applications of a generalization of the Gross-star theorem, due to Kaplan [11] Theorem 3. In few words, Kaplan proves in particular, that for a (star) family of non intersecting bounded curves beginning at a regular value w, the pre-images based at any $z(w)$ exist and can be continued indefinitely, for almost all of the curves, see details in [11] (compare with Inversen’s Theorem in [3]).

To construct Γ we consider any neighborhood N_1 of ∞ and any pre-image w_1 of w in N_1, then let τ_1 any path contained in G joining w and w_1 (with that orientation). By Kaplan’s theorem, for any small enough neighborhood $B(w_1)$ of w_1, there is a curve τ'_1 beginning at w and ending in some $w'_1 \subset B(w_1)$ which has a pre-image τ_2, beginning at w'_1.

Now, proceed inductively by choosing neighborhoods $N_i \subset N_{i-1}$, with N_i converging to ∞ as i tends to ∞ and choosing points $w_i \subset N_i$, with w_i a pre-image of w_{i-1}', also take paths τ_i joining w_{i-1}' with w_i and modify them to τ'_i accordingly to Kaplan’s theorem.

In conclusion $\Gamma := \bigcup_{i=1}^{\infty} \tau'_i$ is a curve satisfying (i) and (ii) and its closure $\overline{\Gamma}$ is a continuum in the sphere.

An important result related to completely invariant components of transcendental entire functions was given by Baker in [1], it is stated as follows.

Theorem 1.1. If $f \in \mathcal{E}$, then there is at most one completely invariant component of $\mathfrak{F}(f)$.

As it was mentioned in the abstract that there is a missing case in Baker’s proof, in this paper we follow Baker’s ideas and give some alternative arguments to solve the missing case.

It is interesting to note that a recent paper by Rempe and Sixmith [12], studies the connectivity of the pre-images of simply-connected domains of a transcendental entire function. The paper describes in detail the error in Baker’s proof and mentions Duval’s example, which is equivalent to the case of Figure 5 in this article. Also, they prove that if infinity is accessible from some Fatou component, then at least one of the pre-images of some component is disconnected. Since infinity is accessible in Baker domains, they conclude that if the function has two completely invariant Fatou components both components must be attracting or parabolic basins. In their article it is included a list of papers which use Baker’s result.

While we were making final corrections of this paper we got, by communication, the results obtained by Rempe and Sixmith in [12].
2 Proof of Theorem

The idea of the proof is by contradiction assuming that there are at least two completely invariant open components G_1 and G_2. We begin considering the cut system of Baker in Step 1, which is an open disc D_1 with boundary the simple curves $\hat{\gamma}_1$, $\beta_1, \gamma_2, \beta_2$, with the properties that $\beta_1 \subset G_1$ and $\beta_2 \subset G_2$ and such that $f(\hat{\gamma}_1) \subset \gamma$, $f(\hat{\gamma}_2) \subset \gamma$ are conformal injections, for γ a segment with extremes at G_1 and G_2. In Step 2, we consider the image of the disc $f(D_1)$ which has to be bounded and state some of its properties. We proceed in Step 3 to extend the curves $f(\beta_1)$ and $f(\beta_2)$ to infinity as in the Observation 1, creating two unbounded curves $\Gamma \subset G_1$ and $\Theta \subset G_2$. Such curves can be very complicated inside $f(D_1)$, so we consider their intersection with the complement of $f(D_1)$ that we named B. Then, we studied their pre-images in the complement of D_1. By adding a certain path σ (Case A) and Σ (Case B) between those pre-images in the same component, we show that one of the regions G_1 or G_2 is disconnected, which is a contradiction. It is important for the proof, the cut system since it helps to have certain control on the pre-images of $\Gamma \cap B = \Gamma_0$ and $\Theta \cap B = \Theta_0$. The differences between Case A and Case B rely in the way the pre-images of Γ_0 and Θ_0 intersect the cut system, as indicated in the Step 3.

Proof. Suppose that $\mathfrak{F}(f)$ has at least two mutually disjoint completely invariant domains G_1 and G_2.

Step 1. The Cut System and the cancelation procedure.

Take a value α in G_1 such that $f(z) = \alpha$ has infinitely many simple roots z_i ($f'(z) = 0$ at only countably many z so we have to avoid only countably many choices of α). All z_i are in G_1. Similarly take β in G_2 such that $f(z) = \beta$ has infinitely many simple roots z'_i in G_2. By Gross’ star theorem [10] we can continue all the regular branches g_i of f^{-1} such that $g_i(\alpha) = z_i$, along almost every ray to ∞ without meeting any singularity (even algebraic). Thus we can move $\beta \in G_2$ slightly if necessary so that all g_i continue to β analytically along the line γ, which joins α and β. The images $g_i(\gamma)$ are disjoint curves joining z_i to z'_i. Denote $g_i(\gamma) = \gamma_i$. Note that γ_i is oriented from z_i to z'_i, see Figure 1.

![Figure 1: The images $g_i(\gamma) = \gamma_i$](image)

The branches f^{-1} are univalent so γ_i are disjoint simple arcs. Different γ_i are disjoint since γ_i meets γ_j at say w_0 only if two different branches of f^{-1} become equal with values w_0 which can occur only if f^{-1} has branch point at $f(w_0)$ in γ_i, but this does not occur.
Take γ_1 and γ_2. Since G_1 is a domain we can join z_1 to z_2 by an arc δ_1 in G_1 and similarly z'_1 to z'_2 by an arc δ_2 in G_2. If δ_2 is oriented from z'_1 to z'_2, let p' be the point where, for the last time, γ_1 meets δ_2 and q' be the point where, for the first time, γ_2 meets δ_2. If δ_1 is oriented from z_1 to z_2, let p be the point where, for the last time, γ_1 meets δ_1 and q be the point where, for the first time, γ_2 meets δ_1, these might look like Figure 2.

![Figure 2](image)

Figure 2: The points p, p', q, q' and the curves δ_1, δ_2, γ_1 and γ_1

Now we denote by β_1 the part of δ_1 which joins the points p and q, by β_2 the part of δ_2 which joins the points p' and q', by $\hat{\gamma}_1$ the part of γ_1 which joins the points p and p', oriented from p to p', and by $\hat{\gamma}_2$ the part of γ_2 which joins the points q and q', oriented from q to q'. Then $\hat{\gamma}_1\beta_2\hat{\gamma}_2^{-1}\beta_1^{-1}$ is a simple closed curve with an interior D_1, see Figure 3.

![Figure 3](image)

Figure 3: The arcs β_1, β_2, $\hat{\gamma}_1$, $\hat{\gamma}_2$ and D_1

Step 2. The map on the Disc D_1.

Recall that the disc D_1 has boundary $\beta_1 \cup \beta_2 \cup \hat{\gamma}_1 \cup \hat{\gamma}_2$, the end points of the curve β_1 are the points p and q, the end points of the curve β_2 are the points p' and q', the end points of the curve $\hat{\gamma}_1$ are the points p and p' and the end points of the curve $\hat{\gamma}_2$ are the points q and q', see Figure 3. The function f maps $\hat{\gamma}_i$ injectively into the cut γ_i for $i = 1, 2$, and we consider $f(\beta_1)$ and $f(\beta_2)$ two non intersecting curves (with possible self intersections) with ends at $f(p)$, $f(q)$ and $f(p')$, $f(q')$ respectively.
A natural question arises: Where is mapped D_1 under f?

Observe that $f(D_1)$ can be either unbounded or bounded. If $f(D_1)$ is unbounded, so there is a pole in D_1. Thus we ruled out this case. Necessarily $f(D_1)$ must be bounded and $f(\beta_1)$ or $f(\beta_2)$ need not be closed curves. This is the missing case in Baker’s proof.

Remember that, the orientations of γ_1 and γ_2 are given by the chosen orientation in γ as in Step 1 above. Two main possibilities arises when we consider the orientation of γ_1 together with the order of the set of points $\{p, p'\}$ and the orientation of γ_2 together with the order of the set of points $\{q, q'\}$. Let us define $a < b$ for a, b points in an oriented curve $\gamma(t)$, if $\gamma(t_1) = a$ and $\gamma(t_2) = b$ and $t_1 < t_2$. The possibilities are: (a) γ_1 and γ_2 preserve the same order, that is, if $p < p'$, then $q < q'$, see Figure 4 or (b) γ_1 and γ_2 reverse the order, that is, $p < p'$ but $q > q'$ or $q < q'$ but $p > p'$, see Figure 5.

On the other hand, the curves $f(\beta_i)$ has winding number either $+1$, 0 or -1 with respect to the points α and β. So, several possibilities occurs for the topology of $f(D_1)$ accordingly to how the intervals $f(\hat{\gamma}_1)$ and $f(\hat{\gamma}_2)$ are placed in the cut γ. In Figure 6 there are two examples, one when $f(\hat{\gamma}_1) \cap f(\hat{\gamma}_2) \neq \emptyset$ and the other when $f(\hat{\gamma}_1) \cap f(\hat{\gamma}_2) = \emptyset$.

![Figure 4](image1.png)

Figure 4: (a) γ_1 and γ_2 have the same orientations

![Figure 5](image2.png)

Figure 5: (b) γ_1 and γ_2 have opposite orientations
Step 3. Unbounded curves and their pre-images.

From now on, we will assume without lost of generality that \(f(\beta_2) \) surrounds \(f(\beta_1) \), it may look like Figures 5 or 6. Also we assume that \(\gamma_1, \gamma_2 \) and \(\gamma \) are compatibly oriented, as in Step 1.

For \(x, w \in \mathbb{C} \), we denote by \(\overline{pq} \) the oriented segment from \(p \) to \(w \) and by \(T_x(\tau) \) the tangent at \(x \) of some parametrization of a curve \(\tau \).

The step consists of considering certain unbounded curves on the regions \(G_1 \) and \(G_2 \) and their pre-images. We recall that \(\beta_1 \subset G_1 \) and \(\beta_2 \subset G_2 \). The curve \(f(\beta_1) \) has end points at \(f(p) \) and \(f(q) \) in \(\gamma \), and the curve \(f(\beta_2) \) has end points at \(f(p') \) and \(f(q') \) in \(\gamma \). So we define their pre-images on \(\gamma_1 \) and on \(\gamma_2 \) as follows: \(f^{-1}(f(q')) \cap \gamma_1 = p'_1 \), \(f^{-1}(f(q')) \cap \gamma_2 = q'_1 \), \(f^{-1}(f(p')) \cap \gamma_1 = p' \), \(f^{-1}(f(p')) \cap \gamma_2 = q' \), \(f^{-1}(f(p)) \cap \gamma_1 = p \), \(f^{-1}(f(p)) \cap \gamma_2 = q \), \(f^{-1}(f(q)) \cap \gamma_1 = p_1 \), \(f^{-1}(f(q)) \cap \gamma_2 = q_1 \), see Figure 7 as an example. The point \(p'_1 \) is the beginning of another pre-image of \(f(\beta_1) \), and \(p_1 \) is the end point of some pre-image of \(f(\beta_2) \) and \(q_1 \) is the beginning of another pre-image of \(f(\beta_2) \).

For brevity, we define \(I_1 \) as the interval \(\overline{p'p'_1} \) and \(I_2 \) as the interval \(\overline{q'_1q'} \). Thus \(I_1 \) and \(I_2 \) are pre-images of the interval \(I_0 = \overline{f(p')f(q')} \) in \(\gamma_1 \) and \(\gamma_2 \) respectively. We have two situations.

(i) Let us consider an unbounded oriented curve \(\Gamma \subset G_1 \) beginning at \(f(q) \), and an unbounded oriented curve \(\Theta \subset G_2 \) beginning at \(f(q') \), as in the Observation 1 in Section 1, see for instance Figure 8. More conveniently, we are interested in the piece of such curves complementary to \(f(D_1) \). Denote by \(B \) the complement of \(f(D_1) \) in the sphere and let \(\Gamma_0 = \Gamma \cap B \) and \(\Theta_0 = \Theta \cap B \).

(ii) The curves \(\Gamma \) and \(\Theta \) may oscillate and may intersect the interval \(I_0 \) in many points, so in this case \(\Gamma_0 \) and \(\Theta_0 \) are a union of curves beginning at points in \(I_0 \). By applying the Kaplan’s theorem to each of these curves, we consider their pre-images beginning at points in \(I_1 \), denoted by \(\Gamma_1 \) and \(\Theta_1 \) respectively and pre-images beginning at \(I_2 \), denoted by \(\Gamma_2 \) and
\[f(q') \]
\[f(p') \]
\[f(q) \]
\[f(p) \]
\[f(\alpha) \]
\[f(\beta) \]
\[f(\gamma) \]

Figure 7: The pre-images of \(f(p), f(q), f(p') \) and \(f(q') \)

\[\Gamma \]
\[\Theta \]

Figure 8: The curves \(\Gamma \) and \(\Theta \)

\[\Theta_2 \]

respectively, none of these curves intersects \(D_1 \) or more generally \(f^{-1}(D_1) \), it may look like Figure 8. If \(N_\infty \) is any neighborhood of infinity, we have \(\Gamma_i \cap N_\infty \neq \emptyset \) also \(\Theta_i \cap N_\infty \neq \emptyset \), \(i = 0, 1, 2 \), they are unbounded.

\[\Theta_2 \]

Figure 9: The curves \(\Gamma_1, \Theta_1, \Gamma_2 \) and \(\Theta_2 \)
We have now two cases, either (A) the intersection of the set \(\Gamma_1 \) or \(\Theta_1 \) with \(I_1 \) is finite, consequently the same for \(\Gamma_2 \) or \(\Theta_2 \), or (B) the intersection of both sets is not finite.

Case A. Assume without loss of generality that \(\Gamma_i \) intersects \(I_i \) in a finite set, \(i = 1, 2 \). We consider the component of \(\Gamma_1 \) which is unbounded and denote it by \(\Gamma'_1 \), similarly we have an unbounded component \(\Gamma'_2 \). Both curves are in \(G_1 \) and recall that their closure in the sphere is a continua that contains infinity. Let us denote \(x_1 = \Gamma'_1 \cap I_1 \) and \(x_2 = \Gamma'_2 \cap I_2 \), observe that the pairs \((T_{x_1}(I_1), T_{x_1}({\gamma}')_1)\) and \((T_{x_2}(I_2), T_{x_2}({\gamma}')_2)\) are sent conformally by \(f' \) to the corresponding pair \((T_{f(x_1)}(I_0), T_{f(x_1)}({\gamma}_0))\). Under such conditions, for any path \(\sigma \) joining \(x_1 \) with \(x_2 \) which does not intersect \(\Theta_1 \) nor \(\Theta_2 \), then the curve \(-\Gamma'_1 \cup \sigma \cup \Gamma'_2\) disconnects \(\Theta_1 \) from \(\Theta_2 \), it may look like Figure 10. Therefore, if \(\sigma \in G_1 \), then \(G_2 \) is disconnected.

![Figure 10: The curves \(\Gamma_0, \Theta_0 \) and the points \(z_i \) and \(w_j, i = 0, 1, 2 \).](image)

Case B. In this case the intersection \(I_1 \cap \Gamma_1 \) is an infinite collection of points \(\{x_i^j\} \), equally \(I_1 \cap \Theta_1 \) is an infinite collection of points \(\{w_i^j\} \) for \(i = 1, 2 \) and \(j \in \mathbb{N} \). Being \(I_1 \) and \(I_2 \) compact, the sequence \(\{x_i^j\} \) has at least an accumulation point, say \(x_i \), and let \(w_i \) be an accumulation point for the sequence \(\{w_i^j\}, i = 1, 2 \). Again we have two situations, either (1) at least one of the points \(x_1 \) or \(w_1 \) is in the Fatou set, or (2) both points \(x_1 \) and \(w_1 \) are in the Julia set.

(1) Assume without loss of generality that \(x_1 \) and so \(x_2 \) are in the Fatou set. Consider the closure on the sphere \(\overline{\Gamma}_i \) of \(\Gamma_i \), \(i = 0, 1, 2 \). Let \(\sigma \) be a path between \(x_1 \) and \(x_2 \) that does not intersect \(\Theta_i \), \(i = 1, 2 \). As in Case A, the pairs \((T_{x_1}(I_1), T_{x_1}(\overline{\Gamma}_1))\) and \((T_{x_2}(I_2), T_{x_2}(\overline{\Gamma}_2))\) are sent conformally by \(f' \) to the corresponding pair \((T_{f(x_1)}(I_0), T_{f(x_1)}(\overline{\Gamma}_0))\), where \((T_{x_i}(I_i), T_{x_i}(\overline{\Gamma}_i))\) means \(\lim_{x'_i \to x_i} (T_{x_i}(I_i), T_{x_i}(\overline{\Gamma}_i)) \), \(i = 0, 1, 2 \).

Under such conditions, for any path \(\sigma \) joining \(x_1 \) with \(x_2 \) which does not intersect neither \(\Theta_1 \) nor \(\Theta_2 \), the set \(\overline{\Gamma}_1 \cup \sigma \cup \overline{\Gamma}_2 \) disconnects \(\Theta_1 \) from \(\Theta_2 \). Therefore, if \(\sigma \in G_1 \), then \(G_2 \) is disconnected.
(2) Assume that x_i and w_i are in the Julia set, $i = 1, 2$. Consider paths σ_j between x_1^j and x_2^j, $j \in \mathbb{N}$ and let $\Sigma = \bigcup_j \sigma_j$ be the closure of the union of all the paths $\{\sigma_j\}$ in the sphere. Also, the pairs $(T_{x_1}(I_1), T_{x_1}(\Gamma_1))$ and $(T_{x_2}(I_2), T_{x_2}(\Gamma_2))$ are sent conformally by f' to the corresponding pair $(T_{f(x_1)}(I_0), T_{f(x_1)}(\Gamma_0))$. As explained in (ii), the intersection of the sets $\overline{\Gamma_1}, \overline{\Gamma_2}, \overline{\Theta_1}$ and $\overline{\Theta_2}$ with D_1 is empty.

Observe that the set $\Sigma \cup \overline{\Gamma_1} \cup \overline{\Gamma_2}$ disconnects G_2, since in any neighborhood of x_1 and x_2 there are points that belong to G_2. Now, if all $\sigma_j \in G_1$, then $\Sigma \cap \overline{G_2} = \emptyset$ and $\Sigma \cup \overline{\Gamma_1} \cup \overline{\Gamma_2}$ is disjoint of G_2, therefore in this case G_2 is disconnected.

In all these cases G_2 is disconnected which is a contradiction. Thus we have finished the proof of the Theorem 1.1.

Remark. This above proof applies also to the case of a transcendental meromorphic map with a finite number of poles, see [4], since we can choose a disc D_1 without poles exactly as in the proof of the Theorem and this case proceeds as above.

Acknowledgments. The authors would like to thank to P. Rippon, G. Stallard, M. Montes de Oca and the members of the holomorphic dynamics seminar in UNAM, for their comments and support when we were having different drafts and ideas of the proof. We thank specially to J. Kotus for her patience to listening our arguments and also for very interesting discussions of the proof.

References

[1] I. N. Baker, Completely invariant domains of entire functions, *Mathematical Essays Dedicated to A.J. MacIntyre*, Ohio University Press, Athens Ohio (1970), 33-35.

[2] W. Bergweiler, Iteration of meromorphic functions, *Bull. Amer. Math. Soc. (N.S.)* 29 (1993), 151-188.

[3] W. Bergweiler and A. E. Eremenko. Direct singularities and completely invariant domains of entire functions. Illinois Jour. of Maths. Vol 53, No1 (2008), 243-259.

[4] P. Domínguez, Dynamics of transcendental meromorphic functions, *Ann. Acad. Sci. Fenn. Math.* 23 (1998), 225-250.

[5] A. E. Eremenko, On the iteration of entire functions, *Dynamical Systems and Ergodic Theory, Banach Center Publications*, 23 (1989), 339-345.

[6] A. E. Eremenko and M. Yu Lyubich, Iteration of entire functions, *Soviet Math. Dokl.* 30, 3, (1984) 592-594 and preprint, Inst. for Low Temperatures Kharkov, 6 (1984) (Russian).

[7] A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, *Ann. Inst. Fourier* 42 (1992), 989-1020.

[8] P. Fatou, Sur les équations fonctionnelles *Bull. Soc. Math. France*, 47 (1919) 161-271.

[9] P. Fatou, Sur les équations fonctionnelles *Bull. Soc. Math. France*, 48 (1920) 33-94 and 208-314.
[10] W. Gross, Uber die Singularitaten Analytischer Funktionen, *Monat. Math: Physik*, 29, (1918), 3-7.

[11] W. Kaplan, Extensions of the Gross star theorem, *Michigan Math. J.*, Volume 2, Issue 2 (1953), 105-108.

[12] L. Rempe-Guillen and D. Sixmith: On connected preimages of simply-connected domains under entire functions. arXive:1801.06359v1, 19 Jan 2018.