Almost every graph is divergent under the biclique operator

Marina Groshaus
Universidad de Buenos Aires
Departamento de Computación
groshaus@dc.uba.ar

André L.P. Guedes
Universidad de Buenos Aires / Universidade Federal do Paraná
Departamento de Computación / Departamento de Informática
andre@inf.ufpr.br

Leandro Montero
Universidad de Buenos Aires / Université Paris-Sud
Departamento de Computación / Laboratoire de Recherche en Informatique
lmontero@{dc.uba.ar/lri.fr}

ABSTRACT

A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G denoted by $KB(G)$, is the intersection graph of all the bicliques of G. The biclique graph can be thought as an operator between graphs. The iterated biclique graph of G denoted by $KB^k(G)$, is the graph obtained by applying the biclique operator k successive times to G. The associated problem is deciding whether an input graph converges, diverges or is periodic under the biclique operator when k grows to infinity. All possible behaviors were characterized recently and an $O(n^4)$ algorithm for deciding the behavior of any graph under the biclique operator was also given. In this work we prove new structural results of biclique graphs. In particular, we prove that every false-twin-free graph with at least 13 vertices is divergent. These results lead to a linear time algorithm to solve the same problem.

Keywords: Bicliques; Biclique graphs; False-twin-free graphs; Iterated graph operators; Graph dynamics

\footnote{1Partially supported by UBACyT grant 20020100100754, PICT ANPCyT grant 2010-1970, CONICET PIP grant 11220100100310
2Partially supported by Math-Amsud project 14 Math 06}
1 Introduction

Intersection graphs of certain special subgraphs of a general graph have been studied extensively. For example, line graphs (intersection graphs of the edges of a graph), interval graphs (intersection of intervals of the real line), clique graphs (intersection of cliques of a graph), etc [4, 5, 11, 14, 15, 28, 30].

The *clique graph* of G denoted by $K(G)$, is the intersection graph of the family of all maximal cliques of G. Clique graphs were introduced by Hamelink in [20] and characterized by Roberts and Spencer in [35]. The computational complexity of the recognition problem of clique graphs had been open for more than 40 years. In [1] they proved that clique graph recognition problem is NP-complete.

The clique graph can be thought as an operator between graphs. The *iterated clique graph* $K^k(G)$ is the graph obtained by applying the clique operator k successive times ($K^0(G) = G$). Then K is called *clique operator* and it was introduced by Hedetniemi and Slater in [21]. Much work has been done on the scope of the clique operator looking at the different possible behaviors. The associated problem is deciding whether an input graph converges, diverges or is periodic under the clique operator when k grows to infinity. In general it is not clear that the problem is decidable. However, partial characterizations have been given for convergent, divergent and periodic graphs restricted to some classes of graphs. Some of these lead to polynomial time recognition algorithms. For the clique-Helly graph class, graphs which converge to the trivial graph have been characterized in [3]. Cographs, P_4-tidy graphs, and circular-arc graphs are examples of classes where the different behaviors are characterized [8, 23]. Divergent graphs were also considered. For example in [32], families of divergent graphs are shown. Periodic graphs were studied in [11, 27]. In particular it is proved that for every integer i, there exist periodic graphs with period i and also convergent graphs which converge in i steps. More results about iterated clique graph can be found in [12, 13, 24, 25, 26, 33].

A biclique is a maximal bipartite complete induced subgraph. Bicliques have applications in various fields, for example biology: protein-protein interaction networks [6], social networks: web community discovery [22], genetics [2], medicine [31], information theory [19], etc. More applications (including
some of these) can be found in [29].

The biclique graph of a graph G denoted by $KB(G)$, is the intersection graph of the family of all maximal bicliques of G. It was defined and characterized in [17]. However no polynomial time algorithm is known for recognizing biclique graphs. As for clique graphs, the biclique graph construction can be viewed as an operator KB between graphs.

The iterated biclique graph $KB^k(G)$ is the graph obtained by applying to G the biclique operator KB k times iteratively. It was introduced in [10] and all possible behaviors were characterized. It was proven that a graph G is either divergent or convergent but it is never periodic (with period bigger than 1). In addition, general characterizations for convergent and divergent graphs are given. These results are based on the fact that if a graph G contains a clique of size at least 5, then $KB(G)$ or $KB^2(G)$ contains a clique of larger size. Therefore, in that case G diverges. Similarly if G contains the gem or the rocket graphs as an induced subgraph, then $KB(G)$ contains a clique of size 5, and again G diverges. Otherwise it is shown that after removing false-twin vertices of $KB(G)$, the resulting graph is a clique on at most 4 vertices, in which case G converges. Moreover, it was proved that if a graph G converges, it converges to the graphs K_1 or K_3, and it does so in at most 3 steps. These characterizations led to an $O(n^4)$ time algorithm for recognizing convergent or divergent graphs under the biclique operator.

In this work we show new results that lead to a linear time algorithm to solve the same problem. We study conditions for a graph to contain a K_5, a C_5, a butterfly, a gem or a rocket (see Figure 1) as induced subgraphs so we can decide divergence (since $K_5 \subseteq KB(C_5), KB(butterfly), KB(gem), KB(rocket)$). First we prove that if G has at least 7 bicliques then it diverges. Then, we show that every false-twin-free graph with at least 13 vertices has at least 7 bicliques, and therefore diverges. Since adding false-twins to a graph does not change its KB behavior, then the linear algorithm is based on the deletion of false-twin vertices of the graph and looking at the size of the remaining graph.

It is worth to mention that these results are indeed very different from the ones known for the clique operator, for which it is still an open problem to know the computational complexity of deciding the behavior of a graph under K.

This work is organized as follows. In Section 2 the notation is given. Section 3 contains some preliminary results that we will use later. In Section 4 we prove that any graph with at least 7 bicliques diverges, and that every graph with at least 13 vertices with no false-twins vertices contains at least 7 bicliques. This leads to a linear time algorithm to decide convergence or divergence under the biclique operator.

2 Notation and terminology

Along the paper we restrict to undirected simple graphs. Let $G = (V, E)$ be a graph with vertex set $V(G)$ and edge set $E(G)$, and let $n = |V(G)|$ and $m = |E(G)|$. A subgraph G' of G is a graph $G' = (V', E')$ where $V' \subseteq V$ and $E' \subseteq (V' \times V') \cap E$. When $E' = (V' \times V') \cap E$ say that $G' = (V', E')$ is an induced subgraph of G. A graph $G = (V, E)$ is bipartite when $V = U \cup W$, $U \cap W = \emptyset$ and $E \subseteq U \times W$. Say that G is a complete graph when every possible edge belongs to E. A complete graph of n vertices is denoted K_n. A clique of G is a maximal complete induced subgraph while a biclique is a maximal bipartite complete induced subgraph of G. The open neighborhood of a vertex $v \in V(G)$ denoted $N(v)$, is the set of vertices adjacent to v while the closed neighborhood of v denoted by $N[v]$, is $N(v) \cup \{v\}$. Two vertices u, v are false-twins if $N(u) = N(v)$. A vertex $v \in V(G)$ is universal if it is adjacent to all of the other vertices in $V(G)$. A path (cycle) of k vertices, denoted by P_k (C_k), is a set of vertices $v_1v_2...v_k \in V(G)$ such that $v_i \neq v_j$ for all $1 \leq i \neq j \leq k$ and v_i is adjacent to v_{i+1} for all $1 \leq i \leq k - 1$ (and v_1 is adjacent to v_k). A graph is connected if there exists a path between each pair of vertices. We assume that all the graphs of this paper are connected.

A rocket is a complete graph with 4 vertices and a vertex adjacent to two of them. A butterfly is the graph obtained by joining two copies of the K_3.

![Graphs K_5, C_5, butterfly, gem and rocket, respectively.](image-url)
with a common vertex.

Given a family of sets \mathcal{H}, the \textit{intersection graph} of \mathcal{H} is a graph that has the members of \mathcal{H} as vertices and there is an edge between two sets $E, F \in \mathcal{H}$ when E and F have non-empty intersection.

A graph G is an \textit{intersection graph} if there exists a family of sets \mathcal{H} such that G is the intersection graph of \mathcal{H}. We remark that any graph is an intersection graph \cite{36}.

Let F be any graph operator. Given a graph G, the iterated graph under the operator F^k is defined iteratively as follows: $F^0(G) = G$ and for $k \geq 1$, $F^k(G) = F^{k-1}(F(G))$. We say that a graph G diverges under the operator F whenever $\lim_{k \to \infty} |V(F^k(G))| = \infty$. We say that a graph G converges under the operator F whenever $\lim_{k \to \infty} F^k(G) = F^m(G)$ for some m. We say that a graph G is periodic under the operator F whenever $F^k(G) = F^{k+s}(G)$ for some $k, s, s \geq 2$.

The \textit{iterated biclique graph} $KB^k(G)$ is the graph obtained by applying iteratively the biclique operator KB k times to G.

In the paper we will use the terms convergent or divergent meaning convergent or divergent under the biclique operator KB.

By convention we arbitrarily say that the trivial graph K_1 is convergent under the biclique operator (observe that this remark is needed since the graph K_1 does not contain bicliques).

\section{Preliminary results}

We start with this easy observation.

\textbf{Observation 3.1} \textit{(\cite{16})}. \textit{If G is an induced subgraph of H, then $KB(G)$ is a subgraph (not necessarily induced) of $KB(H)$}.

The following proposition is central in the characterization of convergent and divergent graphs under the biclique operator. Basically, it shows that if a graph contains a big complete subgraph, it is going to grow in one or two steps of KB.

\begin{proof}
\end{proof}
Proposition 3.2 ([16]). Let G be a graph that contains K_n as a subgraph, for some $n \geq 4$. Then, $K_{2n-4} \subseteq KB(G)$ or $K_{(n-2)(n-3)} \subseteq KB^2(G)$.

Next theorem characterize the behavior of a graph under the biclique operator.

Theorem 3.3 ([16]). If $KB(G)$ contains either K_5 or the gem or the rocket as an induced subgraph, then G is divergent. Otherwise, G converges to K_1 or K_3 in at most 3 steps.

Notice that differently than the clique operator, a graph is never periodic under the biclique operator (with period bigger than 1). We remark the importance of the graph K_5 to decide the behavior of a graph under the biclique operator since we have that $KB(gem) = K_5$ and $K_5 \subseteq KB(rocket)$.

Observe that as proved in [16], the biclique graph does not change by the deletion or addition false-twin vertices since each pair of false-twins belongs to exactly the same set of bicliques. That is, for any graph G, $KB(G) = KB(G - \{v\})$ for any false-twin vertex v. It follows that the behavior of a graph under KB does not change either. Therefore we focus our study on false-twins-free graphs. For that we need the following definition used in [16].

Consider all maximal sets of false-twin vertices $Z_1, ... Z_k$ and let $\{z_1, z_2, ..., z_k\}$ be the set of representative vertices such that $z_i \in Z_i$. The graph obtained by the deletion of all vertices of $Z_i - \{z_i\}$ for $i = 1, ..., k$, is denoted $Tw(G)$.

Observe that $Tw(G)$ has no false-twin vertices.

Using $Tw(G)$, as a corollary of Theorem 3.3, the next useful result was obtained.

Corollary 3.4 ([16]). A graph G is convergent if and only if $Tw(KB(G))$ has at most four vertices. Moreover, $Tw(KB(G)) = K_n$ for $n = 1, ..., 4$.

Note that if some vertex lies in five bicliques, then $KB(G)$ contains a K_5 and then G diverges. Therefore, Corollary 3.4 gives a polynomial time algorithm to test convergence of G: If some vertex lies in five bicliques answer that G is divergent. Else, the computation of $KB(G)$ and $Tw(KB(G))$ is polynomial (we remark however that the number of bicliques of a graph can be exponential [34]). If $Tw(KB(G))$ has at most four vertices, answer that G is convergent, otherwise answer that G is divergent.
Constructing $KB(G)$ takes $O(n^4)$ time since for the case that it is done, each vertex belongs to at most 4 bicliques and then the input graph has at most $2n$ bicliques. Generating each biclique is $O(n^3)$ \([9, 10]\). Building $Tw(KB(G))$ can be done in $O(n+m)$ time using the modular decomposition \([18]\). Therefore the algorithm runs in $O(n^4)$ time.

4 Linear time algorithm

In this section we give a linear time algorithm for deciding whether a given graph is divergent or convergent under the biclique operator.

Motivated by Theorem 3.3 and Corollary 3.4, we study the structure of biclique graphs with false-twin vertices in order to find properties of graphs that contains K_5 so we can guarantee the divergence of the graph.

The following two lemmas answer that question.

Lemma 4.1. Let $G = KB(H)$ for some graph H. Let b_1, b_2 be false-twin vertices of G and B_1, B_2 their associated bicliques in H. Suppose that there are no edges between vertices of B_1 and vertices of B_2. Then there exists a vertex $v \in H$ such that v is adjacent to every vertex of B_1 and B_2. Furthermore, G contains a K_5 as induced subgraph.

Proof. Let b_1, b_2 be false-twin vertices of G and B_1, B_2 their associated bicliques in H, such that there are no edges between vertices of B_1 and vertices of B_2. Since G is connected, take the shortest path from some vertex of B_1 to B_2. Let w be the first vertex in the path such that $w \notin B_1$. Clearly, $w \notin B_2$. Let $v \in B_1$ be a vertex adjacent to w.

First, suppose that there exists a vertex $x \in B_1$ such that x is not adjacent to w. Consider the following alternatives:

Case 1: $xv \in E(H)$. Then $\{x, v, w\}$ is contained in some biclique B, $B \neq B_1$ and $B \neq B_2$, such that it does not intersect B_2 since there is no edge between B_1 and B_2. This is a contradiction since b_1 and b_2 are false-twin vertices. It follows that every vertex in B_1 not adjacent to w is not adjacent to v.

Case 2: $xv \notin E(H)$. Then there exists a vertex $y \in B_1$ adjacent to v and x. By **Case 1**, y must be adjacent to w. This is the same situation
as previous case but considering y instead of v and the biclique containing \{x, y, w\} instead of \{x, v, w\}. A contradiction.

We conclude that for all $x \in B_1$, x is adjacent to w.

Now, the edge vw is contained in a biclique B that must intersect B_2. Since there are no edges between B_1 and B_2 there exists a vertex $z \in B_2$ such that z is adjacent to w. The same argument used for $v \in B_1$ and w also holds for $z \in B_2$ and w. That is, for all $z \in B_2$, z is adjacent to w.

Finally, let v, v' be adjacent vertices in B_1 and let z, z' be adjacent vertices in B_2. Since v, v', z, z' are adjacent to w, then \{v, w, z\}, \{v', w, z\}, \{v, w, z'\} and \{v', w, z'\} are contained in four different bicliques B_3, B_4, B_5 and B_6 such that $B_i \neq B_j$, for $1 \leq i \neq j \leq 6$. As $B_i \cap B_j \neq \emptyset$, for $2 \leq i \neq j \leq 6$ (Fig. 2), K_5 is an induced subgraph of G.

Lemma 4.2. Let $G = KB(H)$ for some graph H. Let b_1, b_2, b_3 be false-twin vertices of G and let B_1, B_2, B_3 be their associated bicliques in H. Suppose that for any pair of bicliques B_i, B_j, $1 \leq i \neq j \leq 3$, there is an edge between some vertex of B_i and some vertex of B_j. Then, K_5 is an induced subgraph of G.

Proof. Let b_1, b_2, b_3 be the false-twin vertices of G and B_1, B_2, B_3 their associated bicliques in H such that for any pair of bicliques B_i, B_j, $1 \leq i \neq j \leq 3$, there is an edge between some vertex of B_i and some vertex of B_j. We will show that H contains either a *butterfly*, a *gem*, a *rocket* or a C_5, or four...
mutually intersecting bicliques also intersecting with B_1, B_2 and B_3. In any case we obtain a K_5 in G. We have the following cases:

Case 1: There is a K_3 with one vertex in each biclique. Let $a \in B_1$, $b \in B_2$, $c \in B_3$ be the K_3. Now ab, ac and bc are contained in 3 different bicliques of H. It is easy to see that none of B_1, B_2 or B_3 are bicliques isomorphic to K_2, otherwise they would not intersect the biclique containing the opposite edge of the K_3 (e.g. B_1 with bc).

Case 1.1: One of the bicliques, say B_1, is isomorphic to $K_{1,r}$ where the vertex a is in the partition of size one. As the biclique containing bc must intersect B_1, there exists a vertex $d \in B_1$ adjacent to b and not adjacent to c. Now, as $c \notin B_1$, there exists a vertex $e \in B_1$, such that c is adjacent to e. Therefore $\{a, b, c, d, e\}$ induces a gem or a rocket depending on the edge eb. See Figure 3.

![Figure 3: Case 1.1](image)

Case 1.2: None of the bicliques B_1, B_2 and B_3 are isomorphic to $K_{1,r}$ where the vertex of the K_3 is in the partition of size one. As the biclique containing bc has to intersect B_1, call $e \in B_1$ a vertex in that intersection and w.l.g. assume e adjacent to c and not to b.

Case 1.2.1: Suppose e is adjacent to a. Now, as B_1 is not isomorphic to $K_{1,r}$, we have the following cases.

If there exists a vertex $g \in B_1$ adjacent to e and not adjacent to b. Depending
on the edge gc, \{a, b, c, e, g\} induces a gem or \{a, b, e\}, \{b, c, e\}, \{a, c\} and \{g, e, c\} are contained in four mutually intersecting bicliques. See Figure 4.

Figure 4: Case 1.2.1 with g adjacent to e and not to b

Otherwise, assuming that every $g \in B_1$ adjacent to e is adjacent to b, and considering that $b \notin B_1$, there exists $f \in B_1$ adjacent to a and b. In this case \{a, b, c, e, f\} induces a gem or a rocket depending on the edge fc. See Figure 5.

Figure 5: Case 1.2.1 with f adjacent to a and b

Case 1.2.2: There exists $e \in B_1$ not adjacent to a and b, and adjacent to c. Let $h \in B_1$ be a vertex adjacent to e and a. Clearly, if h is adjacent to
c, it must be adjacent to b, otherwise we would be in the case above. So, if h is adjacent to both, \{a, b, c, e, h\} induces a rocket. Therefore, we can assume that for every \(h \in B_1 \) adjacent to e and a, h is not adjacent to b and c. Moreover, this must be also true for every vertex in \(B_2 \) adjacent to b and every vertex in \(B_3 \) adjacent to c, that is, every vertex in \(B_2 \) adjacent to b is not adjacent to a and c, and every vertex in \(B_3 \) adjacent to c is not adjacent to a and b. Suppose that there exists \(k \in B_2 \) adjacent to b and not adjacent to h, then \{a, b, h\}, \{a, b, k\}, \{b, c\} and \{a, c\} are contained in four mutually intersecting bicliques. Then, we can assume \(k \) is adjacent to h. Indeed, assume that every vertex in \(B_1 \) adjacent to a is adjacent to every vertex in \(B_2 \) adjacent to b and to every vertex in \(B_3 \) adjacent to c. Also every vertex in \(B_2 \) adjacent to b is adjacent to every vertex in \(B_3 \) adjacent to c. Otherwise, we would obtain four mutually intersecting bicliques. Let \(j \in B_3 \) adjacent to c. Observe that if \(e \) is adjacent to \(k \) then \(e \) is also adjacent to \(j \), otherwise we are in case 1.2.1 considering the \(K_3 = \{h, k, j\} \). Then, depending on the edge \(ek \), \{e, h, k, j, c\} induces a rocket, or \{a, b, k, h\}, \{a, c, j, h\}, \{b, c, k, j\} and \{e, c, b\} are contained in four mutually intersecting bicliques. See Figure 6.

\[
\begin{align*}
\text{Figure 6: Case 1.2.2}
\end{align*}
\]

We covered all the cases when a \(K_3 \) is in \(H \).

Case 2: There is an induced \(C_4 = \{a, b, c, d\} \) in \(H \) such that \(a, b \in B_1 \), \(c \in B_2 \) and \(d \in B_3 \), that is, \(ab, bc, cd, ad \in E(H) \). Now as \(c \notin B_1 \), there exists either \(e \in B_1 \) adjacent to \(b \) and \(c \), or \(h \in B_1 \) adjacent to \(a \) and not adjacent
to c. We have the following cases:

Case 2.1: e is adjacent to b and c (the case where e is adjacent to a and d is analogous). Observe that e is not adjacent to d as we would obtain a triangle with one vertex in each biclique (case 1). Let \(k \in B_3 \) be a vertex adjacent to d. If \(k \) is adjacent to c then \(\{b, e, c, d, k\} \) induces a butterfly (otherwise case 1). Then assume every vertex \(k \in B_3 \) adjacent to d is not adjacent to c. Furthermore, if any vertex \(j \in B_2 \) adjacent to c, is also adjacent to d, then \(\{e, b, c, d, j\} \) induces a butterfly, a gem or a rocket depending on the edges \(ej, bj \). Therefore we can assume that every vertex \(j \in B_2 \) adjacent to c is not adjacent to d. See Figure 7.

Figure 7: Case 2.1

Case 2.1.1: There is some \(k \) not adjacent to b. Now as c \(\notin B_3 \), there exists \(\ell \in B_3 \) adjacent to k and not adjacent to c. If \(\ell \) is adjacent to b then \(\{\ell, b, c, d, k\} \) induces a \(C_5 \). We can assume \(\ell \) is not adjacent to b.

If \(k \) is adjacent to a then \(\{a, b, c, d\}, \{a, b, k\}, \{c, d, k\} \) and one of \(\{a, k, \ell\} \) or \(\{a, d, \ell\} \) depending on the edge \(al \), are contained in four different mutually intersecting bicliques. So we can assume \(k \) is not adjacent to a.

As a \(\notin B_2 \), either a is not adjacent to some vertex of \(B_2 \) that is adjacent to c, or a forms a triangle with two vertices of \(B_2 \).
Suppose first that a is not adjacent to $j \in B_2$ such that j is adjacent do c. Note that \{a, b, c, d\}, \{a, c, d, k\} and \{c, d, e\} are contained in three different mutually intersecting bicliques. See Figure 8.

![Diagram](image)

Figure 8: Case 2.1.1 with a not adjacent to j

If j is not adjacent to b then \{b, c, j\} is contained in the fourth biclique (and we got four different mutually intersecting bicliques). So suppose j is adjacent to b. If j is not adjacent to e, the fourth biclique contains \{a, b, e, j\}. Finally, if j is adjacent to e then \{c, d, j\} is contained in the fourth biclique.

Suppose next that a forms a triangle with two vertices of B_2. That is, there are two adjacent vertices $j, p \in B_2$ such that j is adjacent to c and a, and p is adjacent to a (see Figure 9). If p is adjacent to b, then depending on the edge ep, \{a, b, c, e, p\} induces a *butterfly* or a *gem*. Assume therefore that p is not adjacent to b. Now suppose that j is not adjacent to b. Then, \{a, b, c, d\}, \{a, c, d, k\} and depending on the edge dp, either \{c, d, e\} and \{a, d, p\}, or \{c, d, j, p\} and \{a, b, p\} are contained in four different mutually intersecting bicliques. Finally, if j is adjacent to b, depending on the edge ej, \{a, b, c, e, j\} induces a *gem* or a *rocket*.
Figure 9: Case 2.1.1 a form a triangle with 2 vertices of B_2

Case 2.1.2: Every vertex $k \in B_3$ adjacent to d is adjacent to b. Now as $b \notin B_3$, there exists $m \in B_3$ adjacent to k and b. Note that m is not adjacent to c, otherwise case 1. Then $\{b, e, c, k, m\}$ induces a *butterfly, gem* or *rocket* depending on the edges ek and em. See Figure [10]

Case 2.2: h is adjacent to a and not adjacent to c. By symmetry there exists $g \in B_1$ adjacent to b and not adjacent to d. Assume that g is not adjacent to c and h is not adjacent to d (otherwise case 2.1).

Suppose first that there exists $k \in B_3$ adjacent to d and c. Observe that k is not adjacent to b (case 1) and k is not adjacent a and h at the same time (case 2.1 considering the $C_4 = \{b, c, k, a\}$). Depending on the edge ak, one of $\{b, c, k\}$ or $\{a, h, k\}$ along with $\{a, b, c, g\}$, $\{a, b, c, d\}$, $\{a, b, d, h\}$ are contained in four different mutually intersecting bicliques.

Suppose therefore that every $k \in B_3$ adjacent to d is not adjacent to c. If k is not adjacent to b or k is adjacent to a, then $\{a, b, c, g\}$, $\{a, b, c, d\}$, $\{a, b, d, h\}$ and $\{c, d, k\}$ are contained in four different mutually intersecting bicliques. Therefore k is adjacent to b and not adjacent to a. Since $c \notin B_3$, there exists $\ell \in B_3$ adjacent to k and not adjacent to c. As ℓ is not adjacent to b (case 2.1 considering the $C_4 = \{b, c, d, k\}$), then $\{a, b, c, g\}$, $\{a, b, c, d\}$, $\{a, b, d, h\}$
and \(\{b, d, k, \ell\} \) are contained in four different mutually intersecting bicliques. See Figure 11.

We covered all the cases when a \(C_4 \) is in \(H \) with all of the vertices in the bicliques \(B_1, B_2 \) and \(B_3 \).

Case 3: There is an induced \(C_k \), \(5 \leq k \leq 9 \) in \(H \) with at least one vertex from each biclique \(B_1, B_2 \) and \(B_3 \). For the case \(k = 5 \) there is nothing to do. Finally, for \(6 \leq k \leq 9 \), it is easy to see that, as each biclique containing two consecutive edges of the \(C_k \) has to intersect \(B_1, B_2 \) and \(B_3 \), then we would obtain a smaller cycle and therefore this case cannot occur.

Since we covered all cases the proof is done.

Next, we present the main theorem of this section. This theorem shows that almost every graph is divergent under the biclique operator. We remark that the linear time algorithm for recognizing convergent or divergent graphs given later in this section is based on this theorem.

Theorem 4.3. Let \(G \) be a graph. If \(G \) has at least 7 bicliques, then \(G \) diverges.
under the biclique operator.

Proof. By way of contradiction, suppose that G has at least 7 bicliques and G converges under the biclique operator. By Corollary 3.4, $Tw(KB(G)) = K_n$ for $n = 1, ..., 4$. Consider the following cases.

Case $n = 1$. Then $KB(G) = K_1$ is a contradiction since G has at least 7 bicliques.

Case $n = 2$. Then $KB(G) = K_2$ or $KB(G)$ is bipartite with more than two vertices. In the first case G has only 2 bicliques and therefore a contradiction. If $KB(G)$ is bipartite with more than two vertices $KB(G)$ is not a biclique graph [17] and that leads to a contradiction.

Case $n = 3$. Since G has at least 7 bicliques it follows that in $KB(G)$ there exists a set of false-twin vertices of size at least three. Consider the bicliques B_1, B_2, B_3 of G associated to the three false-twin vertices. If there is a pair of bicliques B_i, B_j such that there is no edge between any vertex of B_i and any vertex of B_j, by Lemma 4.1 it follows that K_5 is an induced subgraph of $KB(G)$. Otherwise, for every two pair of bicliques B_i, B_j there is an edge between some vertex of B_i and some vertex of B_j and by Lemma 4.2 $KB(G)$
contains K_5 as an induced subgraph. In any case, by Theorem 3.3 G diverges under the biclique operator, a contradiction.

Case $n = 4$. There are two alternatives. Suppose that $KB(G)$ has a set of false-twin vertices of size at least three. Then following the proof of the case $n = 3$ we arrive to a contradiction. Otherwise, there are only two possible graphs isomorphic to $KB(G)$ ($KB(G)$ has 7 or 8 vertices and it has no set of three false-twin vertices, see Fig. 12). By inspection, using the characterization given in [17] we prove that these two graphs are not biclique graphs. We conclude that this case can not occur.

![Figure 12: Unique two possible graphs for case $n = 4$.](image)

Since we covered all cases, G diverges under the biclique operator and the proof is finished.

The next step is to study graphs without false-twin vertices with at least 7 bicliques. This will complete the idea of the linear time algorithm for recognizing divergent and convergent graphs under the biclique operator.

Theorem 4.4. Let G be a false-twin-free graph. If G has at least 13 vertices then G has at least 7 bicliques.

Proof. We prove the result by induction on n. For $n = 13$, by inspection of all graphs without false-twin vertices the result holds. Suppose now that $n \geq 14$. By a Theorem in [7] there is a vertex v such that $G - \{v\}$ has no false-twin vertices. Consider the graph $G' = G - \{v\}$. If G' is connected, since it has at least 13 vertices, by inductive hypothesis it has at least 7 bicliques. Now as G' is an induced subgraph of G we conclude that G also has at least
7 bicliques. Suppose now that G' is not connected. Let G_1, G_2, \ldots, G_s be the connected components of G' on n_1, n_2, \ldots, n_s vertices respectively. Since G has no false-twin vertices, it can be at most one G_i such that $n_i = 1$. If there is no component with at least 13 vertices, then by inductive hypothesis this component has at least 7 bicliques and so does G. Therefore every component has at most 12 vertices. Now, by inspection we can verify that every component G_i (but maybe one with just 1 vertex) has at least $\left\lceil \frac{n_i}{2} \right\rceil$ bicliques. Also, since G' is disconnected, v along with at least one vertex of each of the s components is a biclique in G isomorphic to $K_{1,s}$ that is lost in G'. Summing up and assuming the worst case, that is, there exists one $n_i = 1$ (suppose $i = s$) we obtain that the number of bicliques of G is at least

$$\left(\sum_{i=1}^{s-1} \left\lceil \frac{n_i}{2} \right\rceil \right) + 1 \geq \left\lceil \frac{11}{2} \right\rceil + 1 = 7$$

as we wanted to prove. Now the proof is complete. \qed

Theorem 4.4 implies that the number of convergent graphs without false-twin vertices is finite since convergent graphs without false-twin vertices have at most 12 vertices. This fact leads to the following linear time algorithm.

Algorithm: Given a graph G, build $H = Tw(G)$. If H has at least 13 vertices, answer “G diverges” and STOP. Otherwise, build $Tw(KB(H))$. If $Tw(KB(H))$ has at most 4 vertices answer “G converges” and STOP. Otherwise, answer “G diverges” and STOP.

The algorithm has $O(n + m)$ time complexity. For this observe that H can be built in $O(n + m)$ time using the modular decomposition [18]. Finally, if H has at most 12 vertices any further operation takes $O(1)$ time complexity.

5 Conclusions

In [16] it is given an $O(n^4)$ time algorithm to recognize convergent and divergent graphs under the biclique operator. In this paper we prove that graphs without false-twin vertices with at least 13 vertices diverge. This shows that “almost every” graph is divergent and as a direct consequence, we obtain a
linear time algorithm for recognizing the behavior of a graph under the biclique operator. We remark that in contrast as the iterated clique operator, no polynomial time algorithm is known for recognizing any of its possible behaviors.

References

[1] L. Alcón, L. Faria, C. M. H. de Figueiredo, and M. Gutierrez. Clique graph recognition is NP-complete. *Graph Theoretic Concepts in Computer Science*, 4271:269–277, 2006.

[2] G. Atluri, J. Bellay, G. Pandey, C. Myers, and V. Kumar. Discovering coherent value bicliques in genetic interaction data. In *Proceedings of 9th International Workshop on Data Mining in Bioinformatics (BIOKDD’10)*, 2000.

[3] H.-J. Bandelt and E. Prisner. Clique graphs and Helly graphs. *J. Combin. Theory Ser. B*, 51(1):34–45, 1991.

[4] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. *J. Comput. System Sci.*, 13(3):335–379, 1976.

[5] A. Brandstädt, V. Le, and J. P. Spinrad. *Graph Classes: a Survey*. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[6] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, N. Zhang, G. Li, and R. Chen. Topological structure analysis of the proteinprotein interaction network in budding yeast. *Nucleic Acids Research*, 31(9):2443–2450, 2003.

[7] I. Charon, I. Honkala, O. Hudry, and A. Lobstein. Structural properties of twin-free graphs. *Electron. J. Combin.*, 14(1):Research Paper 16, 15 pp. (electronic), 2007.

[8] C. P. de Mello, A. Morgana, and M. Liverani. The clique operator on graphs with few P_4’s. *Discrete Appl. Math.*, 154(3):485–492, 2006.
[9] V. M. F. Dias, C. M. H. de Figueiredo, and J. L. Szwarcfiter. Generating bicliques of a graph in lexicographic order. *Theor. Comput. Sci.*, 337(1-3):240–248, 2005.

[10] V. M. F. Dias, C. M. H. de Figueiredo, and J. L. Szwarcfiter. On the generation of bicliques of a graph. *Discrete Appl. Math.*, 155(14):1826–1832, 2007.

[11] F. Escalante. Über iterierte Clique-Graphen. *Abh. Math. Sem. Univ. Hamburg*, 39:59–68, 1973.

[12] L. F., M. A. Pizaña, and R. Villarroel-Flores. Equivariant collapses and the homotopy type of iterated clique graphs. *Discrete Math.*, 308:3199–3207, 2008.

[13] M. E. Frías-Armenta, V. Neumann-Lara, and M. A. Pizaña. Dismantlings and iterated clique graphs. *Discrete Math.*, 282(1-3):263–265, 2004.

[14] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. *Pacific J. Math.*, 15:835–855, 1965.

[15] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. *J. Combinatorial Theory Ser. B*, 16:47–56, 1974.

[16] M. Groshaus and L. P. Montero. On the iterated biclique operator. *J. Graph Theory*, 73(2):181–190, 2013.

[17] M. Groshaus and J. L. Szwarcfiter. Biclique graphs and biclique matrices. *J. Graph Theory*, 63(1):1–16, 2010.

[18] M. Habib, F. Montgolfier, and C. Paul. A simple linear-time modular decomposition algorithm for graphs, using order extension. In T. Hagerup and J. Katajainen, editors, *Algorithm Theory - SWAT 2004*, volume 3111 of *Lecture Notes in Computer Science*, pages 187–198. Springer Berlin Heidelberg, 2004.

[19] W. H. Haemers. Bicliques and eigenvalues. *Journal of Combinatorial Theory, Series B*, 82(1):56 – 66, 2001.

[20] R. C. Hamelink. A partial characterization of clique graphs. *J. Combinatorial Theory*, 5:192–197, 1968.
[21] S. T. Hedetniemi and P. J. Slater. Line graphs of triangleless graphs and iterated clique graphs. In Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), pages 139–147. Lecture Notes in Math., Vol. 303. Springer, Berlin, 1972.

[22] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for emerging cyber-communities. In Proceeding of the 8th international conference on World Wide Web, pages 1481–1493, 1999., 2000.

[23] F. Larrión, C. P. de Mello, A. Morana, V. Neumann-Lara, and M. A. Pizaña. The clique operator on cographs and serial graphs. Discrete Math., 282(1-3):183–191, 2004.

[24] F. Larrión and V. Neumann-Lara. A family of clique divergent graphs with linear growth. Graphs Combin., 13(3):263–266, 1997.

[25] F. Larrión and V. Neumann-Lara. Clique divergent graphs with unbounded sequence of diameters. Discrete Math., 197/198:491–501, 1999. 16th British Combinatorial Conference (London, 1997).

[26] F. Larrión and V. Neumann-Lara. Locally C_6 graphs are clique divergent. Discrete Math., 215(1-3):159–170, 2000.

[27] F. Larrión, V. Neumann-Lara, and M. A. Pizaña. Whitney triangulations, local girth and iterated clique graphs. Discrete Math., 258(1-3):123–135, 2002.

[28] P. G. H. Lehot. An optimal algorithm to detect a line graph and output its root graph. J. ACM, 21(4):569–575, 1974.

[29] G. Liu, K. Sim, and J. Li. Efficient mining of large maximal bicliques.

[30] T. A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[31] N. Nagarajan and C. Kingsford. Uncovering genomic reassortments among influenza strains by enumerating maximal bicliques. 2012 IEEE International Conference on Bioinformatics and Biomedicine, 0:223–230, 2008.
[32] V. Neumann Lara. Clique divergence in graphs. In *Algebraic methods in graph theory, Vol. I, II (Szeged, 1978)*, volume 25 of *Colloq. Math. Soc. János Bolyai*, pages 563–569. North-Holland, Amsterdam, 1981.

[33] M. A. Pizaña. The icosahedron is clique divergent. *Discrete Math.*, 262(1-3):229–239, 2003.

[34] E. Prisner. Bicliques in graphs i: Bounds on their number. *Combinatorica*, 20(1):109–117, 2000.

[35] F. S. Roberts and J. H. Spencer. A characterization of clique graphs. *J. Combinatorial Theory Ser. B*, 10:102–108, 1971.

[36] E. Szpilrajn-Marczewski. Sur deux propriétés des classes d’ensembles. *Fund. Math.*, 33:303–307, 1945.