α-decay properties of $^{296}_{118}$ from double-folding potentials

Peter Mohr

Diakonie-Klinikum, D-74523 Schwäbisch Hall, Germany and Institute for Nuclear Research (Atomki), H-4001 Debrecen, Hungary

(Dated: July 8, 2018)

α-decay properties of the yet unknown nucleus $^{296}_{118}$ are predicted using the systematic behavior of parameters of α-nucleus double-folding potentials. The results are $Q_\alpha = 11.655 \pm 0.095$ MeV and $T_{1/2} = 0.825$ ms with an uncertainty of about a factor of 4.

PACS numbers: 23.60.+e,27.90.+b,21.60.Gx

Very recently, Sobiczewski [1] has analyzed the decay properties of the yet unknown nucleus $^{296}_{118}$ using a combination of Q_α values from mass models and a phenomenological formula for the α-decay half-lives. This study was motivated by ongoing experiments which attempt to synthesize this heaviest nucleus to date. The present work uses a completely different approach which is based on the smooth and systematic behavior of parameters of α-decay using double-folding potentials [2].

Sobiczewski finds Q_α values between 10.93 MeV and 13.33 MeV from 9 different mass models. Using the phenomenological formula for α-decay half-lives of [3], the resulting half-lives for $^{296}_{118}$ vary by more than 5 orders of magnitude between 1.4 µs and 0.21 s. To reduce this uncertainty, three mass models are identified in [1] which describe the masses of nearby nuclei with the smallest deviations: Wang and Liu (WS3+, [3]), Wang et al. (WS4+, [3, 4]), and Muntian et al. (HN, [3, 5]). In detail, two α-decay chains are studied for this purpose: the known chain $^{294}_{118} \rightarrow ^{290}_{114} \text{Lv} \rightarrow ^{286}_{110} \text{Fl} \rightarrow ^{282}_{106} \text{Cn}$ (hereafter: “chain-1”), and the chain $^{296}_{118} \rightarrow ^{292}_{114} \text{Lv} \rightarrow ^{288}_{110} \text{Fl} \rightarrow ^{284}_{106} \text{Cn} (“chain-2”) where only the two latter α-decays are known from experiment. The selection of the mass formulae leads to a restricted range of Q_α for $^{296}_{118}$ from 11.62 MeV (WS3+), 11.73 MeV (WS4+), and 12.06 MeV (HN), and the corresponding α-decay half-lives are 4.8 ms (WS3+), 2.7 ms (WS4+), and 0.50 ms (HN). This range of predictions of almost one order of magnitude for the α-decay half-life of $^{296}_{118}$ does not yet include an additional uncertainty of the phenomenological formula of [3] which is on average a factor of 1.34 for even-even nuclei and does not exceed a factor of 1.78 in most cases [3].

In a further study Budaca et al. [9] have applied empirical fitting formulae for the prediction of the decay properties of $^{296}_{118}$. They obtain a slightly lower $Q_\alpha = 11.45$ MeV and half-lives of about 3 ms. A very low value of $Q_\alpha = 10.185$ MeV is derived from mass formulae in [10, 11], leading to predicted half-lives up to minutes for $^{296}_{118}$. Half-lives of the order of 1 ms have been found in [12, 13, 14] using the WS4+ Q_α and various empirical formulae for the half-life, and similar half-lives slightly below 1 ms were found very recently in [13, 14].

\[V(r) = \lambda V_{DF}(r) + V_C(r) \] \hspace{1cm} (1)

with the strength parameter $\lambda \approx 1.1 - 1.3$ for heavy nuclei [28, 30]. The Coulomb potential is calculated from the model of a homogeneously charged sphere where the Coulomb radius R_C is taken from the root-mean-square (rms) radius of the double-folding potential.

* Email: WidmaierMohr@t-online.de; mohr@atomki.mta.hu
The strength parameter λ is adjusted to reproduce the experimental Q_α; i.e., the potential $V(r)$ has an eigenstate at the correct energy with a chosen number of nodes in the corresponding wave function ($N = 11$ in the present case of 0^+ ground states of even-even superheavy nuclei; see [2]). The resulting λ values and volume integrals J_R of the nuclear potential are given in Table 1 for chain-1 and chain-2. In addition, Fig. 1 shows J_R as a function of the proton number Z_D, neutron number N_D, and mass number A_D of the daughter nucleus. Fig. 1 is a copy of Fig. 3 of my previous study [2] where recent experimental data for chain-1 (blue triangles) and chain-2 (red diamonds) have been added. Otherwise, this figure is identical to Fig. 3 of my previous study [2]; the lines are quadratic fits to the experimental data available in 2006.

In a next step the α-decay half-lives $T_{1/2,\alpha}^{\text{calc}}$ are calculated from the transmission through the barrier of the potential in Eq. (1) using the semi-classical formalism of [31]. And finally the preformation factor P is calculated from the ratio

$$ P = \frac{T_{1/2,\alpha}^{\text{calc}}}{T_{1/2,\alpha}^\text{exp}}. $$

The resulting preformation factors are shown in Fig. 2 which is a repetition of Fig. 1 of [2] with the additional results for chain-1 and chain-2. An average value of about 8% for P was found in [2], and the new data for chain-1 and chain-2 fit nicely into this systematics. Because α-decay is the dominating decay mode of the nuclei in chain-1 and chain-2 (except 296Pb), in the following the subscript α is omitted in $T_{1/2}$.

The very smooth and systematic behavior of the volume integrals J_R in Fig. 1 can be used for the prediction of unknown Q_α values. Instead of adjusting the strength parameter λ to experimentally known Q_α, the strength parameter λ is now fixed from neighboring nuclei, and from the resulting potential $V(r)$ the eigenstate energy is calculated. This is illustrated in Fig. 3 where recent experimental data for 296Pb (28% for P was found in [2]) are used as a reference. The very smooth and systematic behavior of the volume integrals J_R in Fig. 1 can be used for the prediction of unknown Q_α values. Instead of adjusting the strength parameter λ to experimentally known Q_α, the strength parameter λ is now fixed from neighboring nuclei, and from the resulting potential $V(r)$ the eigenstate energy is calculated. This is illustrated in Fig. 3 where recent experimental data for 296Pb (28% for P was found in [2]) are used as a reference.
TABLE I. Parameters of the α-decays in chain-1 and chain-2. Experimental values are taken from [32].

decay	Q_α (MeV)	λ	J_R (MeV fm2)	$T_{1/2}^{\text{calc}}$ (s)	$T_{1/2}^{\text{exp}}$ (s)	P	
chain-1 $^{286}\text{Fl} \rightarrow ^{284}\text{Cn}$	10.35	1.1633	302.86	4.8×10^{-3}	2.0×10^{-1}	0.0424	
chain-1 $^{290}\text{Lv} \rightarrow ^{288}\text{Fl}$	11.00	1.1568	300.96	7.36×10^{-4}	8.3×10^{-3}	0.0887	
chain-1 $^{294}\text{II} \rightarrow ^{292}\text{Lv}$	11.82	1.1486	298.63	3.27×10^{-5}	6.9×10^{-4}	0.0473	
chain-2 $^{288}\text{Fl} \rightarrow ^{286}\text{Cn}$	10.07	1.1615	302.29	4.70×10^{-2}	6.6×10^{-1}	0.0713	
chain-2 $^{292}\text{Lv} \rightarrow ^{288}\text{Fl}$	10.78	1.1545	300.26	2.51×10^{-1}	1.3×10^{-2}	0.1930	
chain-2 $^{296}\text{II} \rightarrow ^{294}\text{Lv}$	11.655	0.095^a	1.15^b	297.80	7.30×10^{-5}	8.25×10^{-4}	0.0885d

a calculated using $\lambda = 1.1458 \pm 0.0010$
b extrapolated from neighboring nuclei; see Fig. 4
c $T_{1/2}^{\text{predict}}$
d average of neighboring nuclei; see Fig. 4

note that already the fits of J_R in Fig. 1 (taken from [2] and based on the available data in 2006) predict λ between 1.1413 and 1.1463 for 296II, corresponding to Q_α between 11.6 MeV and 12.1 MeV which is almost exactly the range of Q_α from the three selected mass models WS3+, WS4+, and HN in [1].

Finally, the half-life of 296II can be calculated from this potential with $\lambda = 1.1458$. The result is $T_{1/2}^{\text{calc}} = 73.0 \mu$s. According to Eq. [2], for a prediction of the experimental half-life $T_{1/2}^{\text{exp}}$, the calculated half-life has to be divided by the preformation factor P. Taking the average preformation factor $P_{av} = 0.0885$ of chain-1 and chain-2, one finally obtains $T_{1/2}^{\text{exp}} = 0.825$ ms.

A careful estimate of the uncertainty of the preformation factor P can be read from Fig. 1. The average value of the 5 known P in chain-1 and chain-2 is $P_{av} = 0.0885$. However, all P have significant uncertainties which result from the uncertainties of the experimental α-decay half-lives, and the P vary between 0.0424 for 284Fl in chain-1 and 0.193 for 292Lv in chain-2. Thus, I estimate the uncertainty of P for 296II from the highest and smallest values of P in chain-1 and chain-2, leading to $P = 0.0885^{+0.1045}_{-0.0461}$. Again it is interesting to note that my earlier study in 2006 [2] found very similar values of $P \approx 0.08$ with an uncertainty of a factor of three.

The uncertainty of the predicted half-life $T_{1/2}^{\text{predict}} = 0.825$ ms can be estimated from the uncertainties of Q_α and P. The uncertainty of Q_α of about 100 keV translates to a factor of about 1.7 for the uncertainty of the half-life, and the uncertainty of P of slightly above a factor of two enters directly into the uncertainty of $T_{1/2}^{\text{predict}}$. Combining both uncertainties results in a factor of about 4 uncertainty for the predicted half-life; i.e., the half-life of 296II should lie in between 0.2 ms and 3.3 ms.

In summary, I have used the smooth and regular behavior of the strength parameter λ of the α-nucleus double-folding potential to estimate the α-decay energy Q_α of the unknown nucleus 296II. The prediction of $Q_\alpha = 11.655 \pm 0.095$ MeV is completely independent of mass formulae, but nevertheless in excellent agreement with the results from the selected mass formulae in [1]. From the barrier transmission and from the preformation P of about 9%, a half-life for 296II of 0.825 ms is predicted with an uncertainty of a factor of 4. These predictions for the Q_α value and for the α-decay half-life of

![FIG. 3. (Color online) Potential strength parameter λ for chain-1 (blue triangles) and for chain-2 (red diamonds). The full symbols are derived from experimental data [32]; the open diamond is the extrapolation for the unknown nucleus 296II. Further discussion see text.](image1)

![FIG. 4. (Color online) Extrapolation of the preformation factor P to 296II.](image2)
may help to guide experimentalists, and hopefully, these predictions can be confronted with experimental results in the near future.

ACKNOWLEDGMENTS

I thank Zs. Fülöp, Gy. Gyürky, G. G. Kiss, and E. Somorjai for many encouraging discussions on α-nucleus potentials. This work was supported by OTKA (K108459 and K120666).

[1] A. Sobiczewski, Phys. Rev. C 94, 051302(R) (2016).
[2] Peter Mohr, Phys. Rev. C 73, 031301(R) (2006); Erratum: Phys. Rev. C 74, 069902(E) (2006).
[3] A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36, 3095 (2005).
[4] N. Wang and M. Liu, Phys. Rev. C 84, 051303(R) (2011).
[5] Ning Wang, Min Liu, Xizhen Wu, Jie Meng, Phys. Rev. C 93, 014302 (2016).
[6] N. Wang, M. Liu, X. Wu, J. Meng, Phys. Lett. B 734, 215 (2014).
[7] I. Muntian, Z. Patyk, A. Sobiczewski, Acta Phys. Pol. B 32, 691 (2001).
[8] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007).
[9] A. I. Budaca, R. Budaca, I. Silisteanu, Nucl. Phys. A 951, 60 (2016).
[10] K. P. Santhosh, B. Priyanka, C. Nithya, Nucl. Phys. A955, 156 (2016).
[11] K. P. Santhosh and B. Priyanka, Phys. Rev. C 90, 054614 (2014).
[12] Eunkyoung Shin, Yeunhwan Lim, Chang Ho Hyun, Yoogeok Oh, Phys. Rev. C 94, 024320 (2016).
[13] X. J. Bao, S. Q. Guo, H. F. Zhang, Y. Z. Xing, J. M. Dong, J. Q. Li, J. Phys. G 42, 085101 (2015).
[14] Shan Zang, Yanli Zhang, Jianpo Cui, Yanzhao Wang, Phys. Rev. C, accepted for publication.
[15] K. P. Santhosh and C. Nithya, Phys. Rev. C 94, 054621 (2016).
[16] M. Bao, Z. He, Y. M. Zhao, A. Arima, Phys. Rev. C 90, 024314 (2014).
[17] N. G. Kelkar and M. Nowakowski, J. Phys. G 43, 105102 (2016).
[18] Yibin Qian and Zhongzhou Ren, J. Phys. G 43, 065102 (2016).
[19] M. Ismail, A. Y. Ellithi, A. Adel, A. R. Abdulghany, Nucl. Phys. A947, 64 (2016).
[20] M. Ismail, A. Adel, M. M. Botros, Phys. Rev. C 93, 054618 (2016).
[21] Dongdong Ni and Zhongzhou Ren, Phys. Rev. C 93, 054318 (2016).
[22] Dongdong Ni and Zhongzhou Ren, Phys. Rev. C 92, 054322 (2015).
[23] A. Adel and T. Alharbi, Phys. Rev. C 92, 014619 (2015).
[24] M. Ismail, W. M. Seif, A. Y. Ellithi, A. Abdurrahman, Phys. Rev. C 92, 014311 (2015).
[25] Yibin Qian and Zhongzhou Ren, Phys. Lett. B 738, 87 (2014).
[26] Yibin Qian and Zhongzhou Ren, Phys. Rev. C 90, 064308 (2014).
[27] M. Ismail and A. Adel, Nucl. Phys. A912, 18 (2013).
[28] P. Mohr, G. G. Kiss, Zs. Fülöp, D. Galaviz, Gy. Gyürky, E. Somorjai, At. Data Nucl. Data Tables 99, 651 (2013).
[29] H. de Vries, C. W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).
[30] U. Atzrott, P. Mohr, H. Abele, C. Hillenmayer, G. Staudt, Phys. Rev. C 53, 1336 (1996).
[31] S. A. Gurvitz and G. Kälberrman, Phys. Rev. Lett. 59, 262 (1987).
[32] Yu. Ts. Oganessian and V. K. Utyonkov, Nucl. Phys. A944, 62 (2015).