Clinical Heterogeneity in Monogenic Diabetes Caused by Mutations in the Glucokinase Gene (GCK-MODY)

ANTONIO L. CUESTA-MUÑOZ, MD, PHD
TINAMAJA TUOMI, MD, PHD
NADIA COBO-VULLEUMIER, MSC
HANNA KOSKELA, PHD
STELLA ODILI, BA
AMANDA STRIDE, MRCP

RESEARCH DESIGN AND METHODS — Members (three generations) of the same family presented either with overt neonatal hyperglycemia, marked postprandial hyperglycemia, or glucosuria. Homeostasis model assessment of insulin resistance (HOMA$_{IR}$) and insulinogenic and disposition indexes were calculated. Oral glucose tolerance test (OGTT) results in the GCK mutation carriers from the same family were compared with those from other subjects with GCK mutations in the same codon (GCK$_{261}$), with other missense and other types of GCK mutations in different codons from the European MODY Consortium database (GCK$_{m}$).

RESULTS — Mutation G261R was found in the GCK gene. During the OGTT, glucose ($P = 0.02$) and insulin ($P = 0.009$) response at 2 h as well as at the 2-h glucose increment (GCK$_{261}$ versus other missense GCK mutations, $P = 0.003$) were significantly higher in GCK$_{261}$ than in GCK$_{m}$ carriers.

CONCLUSIONS — Differing from other GCK$_{m}$ carriers, the glucose and insulin response to oral glucose was significantly higher in GCK$_{261}$ carriers, indicating clinical heterogeneity in GCK-MODY.

Diabetes Care 33:290–292, 2010

RESEARCH DESIGN AND METHODS — The proband (online appendix Fig. A1, available at http://care.diabetesjournals.org/cgi/content/full/dc09-0681/DC1) was a firstborn child from a Finnish family with neonatal plasma glucose of 10 mmol/l. At 2 years of age, without treatment, she presented preprandial and postprandial capillary glucose of 6.5–6.8 and 8.6 mmol/l, respectively. Her younger sister had random glucose between 7 and 11.5 mmol/l as a neonate. Their mother was diagnosed with gestational diabetes and treated with insulin. After the pregnancy, she had an A1C of 5.8% without insulin treatment, but due to high postprandial plasma glucose (10–11 mmol/l), rapid-acting mealtime insulin was started. Since the second pregnancy, she is treated with diet alone. The maternal grandmother presented with hyperglycemia and glucosuria at age of 22 years and gestational diabetes during four pregnancies. She was treated with diet during the first pregnancy and with insulin during three later pregnancies, after which she had been without treatment. Her fasting capillary glucose level was normally ~6–7 mmol/l but stayed at ~10 mmol/l for nearly 2 weeks after intake of larger quantities of carbohydrates and returned to 6–7 mmol/l when carbohydrates were restricted. She takes 60 mg of nateglinide before meals. All available family members were offered an oral glucose tolerance test (OGTT) and/or genetic testing for the mutation after genetic counseling.

OGTT (except subjects <15 years) with samples drawn at –5, 0, 30, 60, 90, and 120 min was performed to determine plasma glucose and serum insulin. Insulin resistance and β-cell function was estimated using the homeostasis model assessment of insulin resistance (HOMA$_{IR}$) and the insulinogenic indexes (IG30), respectively. The disposition index (DI) was used to assess β-cell compensation. These results and those from 15 subjects with GCK mutations in position 261 (GCK$_{261}$) from the European MODY Consortium Database (EMCD) (3) were compared with that of carriers of other missense and other types of GCK

From the 1IMABIS Foundation and Center for the Study of Pancreatic β-Cell Diseases, Carlos Haya University Hospital, Malaga, Spain; the 2Research Program for Molecular Medicine, Helsinki University, Department of Medicine, Helsinki University Hospital, and the Genetic Institute, Folkhalsan Research Center, Helsinki, Finland; the 3Department of Biochemistry and Biophysics and Diabetes Research Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; the 4Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, U.K.; the 5Hospital for Children and Adolescents and Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; the 6Centre National de la Recherche Scientifique, Institut de Biologie, Pasteur Institute, Lille, France; the 7Department of Metabolic Diseases, Hoffmann-La Roche, Nutley, New Jersey; and the 8Biomedicine Institute of Valencia and of Rare Diseases, Valencia, Spain.

Corresponding author: Antonio L. Cuesta-Muñoz, alcm@fundacionimabis.org.

Received 8 May 2009 and accepted 27 October 2009. Published ahead of print at http://care.diabetesjournals.org on 10 November 2009. DOI: 10.2337/dc09-0681

© 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Clinical characteristics of patients with glucokinase inactivating mutation GCK261 and functional studies of recombinant human wild-type and mutants’ gk

	GCK261- mutations	Other missense: GCK mutations	Other GCK mutation types	Normal glucose tolerance: control subjects		
n (male/female)	23 (13/10)	144 (73/71)	82 (42/40)	45 (20/25)		
BMI (kg/m²)	21.80 (7.0)	20.00 (5.42)	21.30 (5.73)	NS		
Age (years)	20.00 (27.0)	19.00 (27.00)	29.00 (28)	NS		
0-min plasma glucose (mmol/l)	7.00 (0.69)	6.70 (0.90)	6.80 (1.01)	0.17		
120-min plasma glucose (mmol/l)	10.90 (4.13)	8.60 (2.58)	8.60 (2.98)	0.38		
2hΔPG (mmol/l)	4.12 (3.25)	2.00 (2.05)	2.50 (2.20)	0.233		
0-min plasma insulin (mU/l)	10.00 (7.44)	8.00 (6.00)	9.00 (5.00)	0.41		
120-min plasma insulin (mU/l)	55.2 (28.05)	25.00 (23.30)	24.00 (13.50)	0.11		
Incremental I/G30	8.71 (7.46)	6.09 (3.74)	4.21 (5.55)	0.672		
HOMAIR	3.47 (2.31)	2.68 (2.45)	2.21 (1.92)	0.259		
DI	3.23 (2.25)	2.64 (2.02)	1.98 (2.18)	0.76		
Proteins studied	Glucose S₂₅	Hill number (unit less)	ATPₖₐₚ (mmol/l)	Turnover rate (Kcat) (sec⁻¹)	Activity index (AI)	T-GSIR (mmol/l)
gk-WT	7.55 ± 0.23	1.74 ± 0.04	0.41 ± 0.03	62.3 ± 4.75	1.45 ± 0.11	5
gk-G261R	68.61 ± 16.15	1.53 ± 0.11	0.63 ± 0.10	17.03 ± 4.11	0.04 ± 0.001	7
gk-G261E	334.73 ± 26.78	1.92 ± 0.06	2.99 ± 0.37	3.72 ± 0.32	0.00	7

Upper panel: data are median (interquartile range). Clinical characteristics, glucose, and insulin values of patients with GCK-inactivating mutation GCK261, other missense GCK-inactivating mutations, and other types of GCK mutations (insertions, deletions, frameshifts, etc.). For insulin data: n = 11 (GCK261), 36 (other missense GCK mutations), 45 (other types of GCK mutations), and 45 (normal glucose tolerant controls). P₁: GCK261 mutations vs. other missense GCK mutations; P₂: GCK261 mutations vs. other types of GCK mutations; P₃: other missense GCK mutations vs. other types of GCK mutations; P₄: GCK261 mutations vs. control subjects. P < 0.05–0.00001 are considered statistically significant. HOMAIR = fasting serum insulin × fasting glucose/22.5. Insulinogenic index (I/G30) = serum insulin at 30 min / serum insulin at 0 min / serum glucose at 30 min / serum glucose at 0 min. DI = insulinogenic index/HOMAIR. Lower panel: data are means of the three independent analyses. Results of the functional studies were approved by the institutional ethics committee. Written consent was obtained from the adults and from the parents of the children. DNA extraction, microsatellite genotyping, direct sequencing, and functional analysis of the glucokinase protein (gk), with and without gk activator, were performed as described (7–10).

RESULTS—The mutation G261R (exon 7) on GCK was found in the proband and in nine family members (aged 0.2–72 years) with abnormal fasting glucose. Fasting plasma glucose ranged from 6.0 to 7.6 mmol/l. The 2-h plasma glucose ranged from 9.3 to 14.5 mmol/l in the carriers, three of them presented values exceeding 13 mmol/l. All but one of the carriers had a 2-h increment in plasma glucose (2hΔPG) higher than 3 mmol/l and half higher than 6 mmol/l. Fasting insulin was 4.1–9.9 mU/l and 2-h insulin 28.8–61.9 mU/l. There was no relationship between age and glucose or insulin concentrations.

The GCK261 mutation carriers from our family, like those from the EMCD, had a significantly higher glucose and insulin response compared with GCKm carriers (Table 1). Fasting plasma glucose and insulin were similar in all groups; however, the 2-h plasma glucose and insulin and 2hΔPG values were significantly higher in GCK261 carriers than in GCKm carriers (Table 1). The glucose response during OGT was higher at all time points in GCK261 carriers compared also with GCKm carriers (data not shown). In 61 and 35% of GCK261 carriers, 2hΔPG was >3 and 4.6 mmol/l, respectively. HOMAIR, I/G30, and DI values were higher (not significant) in the GCK261 carriers (Table 1), indicating possibly higher degree of β-cell compensation (Table 1).

The results from the functional studies showed that the mutations gk-G261R/E lead to a severely affected protein, with an almost negligible enzyme activity, indicating that these gk mutants cannot contribute to β-cell and hepatic glucose phosphorylation. The effect of the gk activator on the inactivating gk-G261R mutation was similar to that on the gk-WT (see online appendix Table A1).

CONCLUSIONS—The clinical phenotype of carriers from our family was heterogeneous. The proband and her sister presented with neonatal hyperglycemia, their mother with gestational diabetes, and the maternal grandmother with glucosuria. Many carriers had much higher 2hΔPG values than what is usually seen in GCK-MODY. In three carriers (one child and two adults), it exceeded 13 mmol/l and in another young carrier 12 mmol/l, indicating no relationship between high 2hΔPG values and age. A sim-

 care.diabetesjournals.org
Clinical heterogeneity in GCK-MODY

ilar pattern was seen in other carriers of the same mutation, while those with other GCK mutations in the MODY database had a lower glucose response during OGTT. Of note, a similar pattern of glucose response as in GCK_{261} carriers has previously been observed in GCK-L184P carriers (6). However, while the insulin response was attenuated in GCK-L184P carriers, in GCK_{261} carriers it was high and significantly different from that seen with other GCK mutations (11). Glucokinase is required for glycogen synthesis in liver (12). One explanation for the high 2-h glucose in GCK_{261} carriers could be reduced hepatic glycogen synthesis due to the lost of activity of GCK_{261}. Hence, the marked insulin response could be due to larger β-cell compensation in GCK_{261} carriers. Nonetheless, possible additional genetic defects could be also involved.

In summary, the clinical phenotype of patients with GCK-MODY can be heterogeneous and patients carrying severe inactivating GCK mutations can have high postchallenge glucose values, possibly resulting from a marked liver component of the disease.

Acknowledgments — Support for this work was given by the Ministerio de Ciencia e Innovación, Dirección General de Investigación Científica y Técnica (SAF2005-08014; SAF2006-12863), Junta de Andalucía (SAS/PI-024/2007; SAS/PI-0236/2009), Novo Nordisk Spain Grants (to A.L.C.-M.), and the National Institutes of Health through the National Institute of Diabetes and Digestive and Kidney Diseases (22122 to F.M.M.). J.G. is an employee of Roche engaged in preclinical research and development for the department of metabolic diseases. No other potential conflicts of interest relevant to this article were reported.

We thank Dr. Pascual Sanz and Pablo Rodríguez-Bada for their priceless help in the development of this study.

References
1. Froguel P, Zouali H, Vionnet N, Velho G, Vaxillaire M, Sun F, Lesage S, Stoffel M, Takeda J, Passa P. Familial hyperglycemia due to mutations in glucokinase. N Engl J Med 1993;328:697–702
2. Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001;345:971–980
3. Stride A, Vaxillaire M, Tuomi T, Barbet F, Njølstad PR, Hansen T, Costa A, Congel I, Pedersen O, Sovik O, Lorini R, Groop L, Froguel P, Hattersley AT. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia 2002;45:427–435
4. Ellard S, Bellanne-Chantelot C, Hattersley AT, the European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008;51:546–553
5. Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nat Clin Pract Endo Metab 2008;4:200–213
6. Fajans SS, Bell GI. Phenotypic heterogeneity between different mutations of MODY subtypes and within MODY pedigrees. Diabetologia 2006;49:1106–1108
7. Lehto M, Tuomi T, Mahtani MM, Widén E, Forsblom C, Sarelín L, Gullström M, Isomaa B, Lehtovirta M, Hyrkko A, Katainen T, Orho M, Manley S, Turner RC, Brettin T, Kirby A, Thomas J, Duyk G, Lander E, Taskinen MR, Groop L. Characterization of the MODY3 phenotype: early-onset diabetes caused by an insulin secretion defect. J Clin Invest 1997;99:582–591
8. Davis EA, Cuesta-Muñoz A, Raoul M, Buetgiger C, Sweet I, Moates M, Magnuson MA, Matschinsky FM. Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia 1999;42:1175–1186
9. Matschinsky FM. Assessing the potential of glucokinase activators in diabetes therapy. Nat Rev Drug Discov 2009;8:399–416
10. Grimsby J, Sarabu R, Corbett WL, Haynes NE, Bizzarro FT, Coffey JW, Guertin KR, Hillard DW, Kester RF, Mahaney PE, Marcus L, Qi I, Spence CL, Tengi J, Magnuson MA, Chu CA, Dvorozniak MT, Matschinsky FM, Grippio JF. Allosteric activators of glucokinase: potential role in diabetes therapy. Science 2003;301:370–373
11. Martin D, Bellanne-Chantelot C, Deschamps I, Froguel P, Robert J-J, Velho G. Long-term follow-up of oral glucose tolerance test-derived glucose tolerance and insulin secretion and insulin sensitivity indexes in subjects with glucokinase mutations (MODY2). Diabetes Care 2008;31:1321–1323
12. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta-cell-specific gene knockouts using Cre recombinase. J Biol Chem 1999;274:305–315