Determination of quark masses from $n_f = 4$ lattice QCD and the RI-SMOM intermediate scheme

A. T. Lytle,1,* C. T. H. Davies,1,† D. Hatton,1 G. P. Lepage,2 and C. Sturm3
(HPQCD collaboration)†

1SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
2Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA
3Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Emil-Hilb-Weg 22, D-97074 Würzburg, Germany
(Dated: May 17, 2018)

We determine the charm and strange quark masses in the $\overline{\text{MS}}$ scheme, using $n_f = 2 + 1 + 1$ lattice QCD calculations with highly improved staggered quarks (HISQ) and the RI-SMOM intermediate scheme to connect the bare lattice quark masses to continuum renormalisation schemes. Our study covers analysis of systematic uncertainties from this method, including nonperturbative artefacts and the impact of the non-zero physical sea quark masses. We find $m_c^{\overline{\text{MS}}}(3 \text{ GeV}) = 0.9896(61) \text{ GeV}$ and $m_s^{\overline{\text{MS}}}(3 \text{ GeV}) = 0.08536(85) \text{ GeV}$, where the uncertainties are dominated by the tuning of the bare lattice quark masses. These results are consistent with, and of similar accuracy to, those using the current-current correlator approach coupled to high-order continuum QCD perturbation theory, implemented in the same quark formalism and on the same gauge field configurations. This provides a strong test of the consistency of methods for determining the quark masses to high precision from lattice QCD. We also give updated lattice QCD world averages for c and s quark masses.

I. INTRODUCTION

Quark masses are fundamental parameters of the Standard Model which must be connected via theory to experimentally measured quantities. They arise in the Standard Model from interactions with the Higgs field, and precise knowledge of quark masses will be needed to test stringently the Standard Model picture of mass generation [1].

In lattice QCD simulations the bare quark masses of the theory are input parameters, and these are tuned to reproduce a set number of physical observables, typically meson masses (one for each quark mass in the simulation). These parameters are however defined at the cutoff scale of the theory and are non-universal, because they depend on the specific lattice regularisation of QCD used. To be useful, these values must then be converted to a chosen quark mass definition in a continuum regularisation of QCD at a fixed physical scale. The conversion, or mass renormalisation, factor adjusts for the different treatment of ultraviolet modes on the lattice and in the continuum and so in principle can be calculated straightforwardly by a ‘matching’ calculation in lattice QCD and continuum QCD perturbation theory. Lattice QCD perturbation theory [2] is very hard beyond the first order in the strong coupling constant, α_s, and so this method is limited to an accuracy of several percent [3]. Higher accuracy can be achieved by methods that make use of nonperturbative calculations in lattice QCD combined with continuum QCD perturbation theory and we will compare results from two such methods here. One issue with these methods is the control of infrared nonperturbative artefacts from the lattice QCD calculation that are a source of systematic uncertainty.

The conventional continuum scheme to which lattice masses are converted is the $\overline{\text{MS}}$ scheme and we will denote masses in the $\overline{\text{MS}}$ scheme by \overline{m}. A scale for the mass must also be chosen and we will use 3 GeV. Having a fixed convention for quoting quark masses allows a comparison between different determinations.

One way to make the lattice QCD to continuum QCD quark mass connection is to calculate short distance physical quantities in lattice QCD that are both sensitive to the quark mass and for which continuum QCD perturbation theory (in the $\overline{\text{MS}}$ scheme) has been done to a high order. The appropriate energy scale for α_s should also be large. A successful method of this type is the ‘current-current correlator method’ [4] that uses time-moments of heavyonium correlators, extrapolated to the continuum from lattice QCD and then matched to QCD perturbation theory accurate through $\mathcal{O}(\alpha_s^3)$ [5–10]. The advantage of this method (which we will denote the JJ method) is that nonperturbative effects (condensate contributions), that would otherwise obscure the match to perturbation theory, are suppressed by four powers of $\Lambda/(2m_h)$, where m_h is the heavy quark mass [11, 12]. The suppression is very effective, to the point where these effects have negligible impact, because: Λ is small at around 0.3 GeV; m_h is large (and can be varied to test the contribution) and 4 is a high power. Here $\langle \mu \rangle^4$ represents the expected size of the gluon condensate $\langle \mu | \bar{c}c | 0 \rangle$ constructed from the gluon field-strength tensor.

Uncertainties in the JJ method arise from missing higher orders in QCD perturbation theory, but these can...
be tested by implementing the perturbation theory at different scales [12]. This method has given 1% accurate results for charm and bottom quark masses in the \(\overline{\text{MS}} \) scheme [4, 12–16]. The results for \(\overline{\text{m}}_c \) and \(\overline{\text{m}}_b \) can then be leveraged into an accurate result for lighter quark masses, such as the strange quark mass \(\overline{\text{m}}_s \). This is done by determining fully nonperturbatively in lattice QCD the ratio of two quark masses, such as \(m_c/m_s \), using the same quark formalism for both quarks [12, 17–21]. This ratio (in the continuum limit) is independent of the lattice quark formalism or continuum scheme and so also holds for the \(\overline{\text{MS}} \) scheme at a fixed scale [27].

The earlier RI-MOM scheme, see [27], and the ‘RI-SMOM’ (regularisation-independent symmetric momentum-subtraction) scheme [24]. For a review of this and the earlier RI-MOM scheme, see [27].

The RI-SMOM scheme is expected to work in a window in which

\[
\Lambda_{\text{QCD}} \ll \mu \ll \frac{\pi}{a}.
\]

Here the upper limit \(\mu \) keeps control of lattice discretisation effects and the lower limit guards against being dominated by potentially large nonperturbative effects [28] that behave as condensates multiplied by inverse powers of \(\mu \). Nonperturbative effects were a major issue with the original RI-MOM scheme [23] which set up the kinematics for eq. (1) so that \(p_1^2 = p_2^2 = -\mu^2 \), but \(p_1 = p_2 \) so that \(q^2 = 0 \). This ‘exceptional’ configuration gave rise to differences, inversely proportional to \(\mu^2 \), between renormalisation factors that should be the same from chiral symmetry (such as those of the pseudoscalar and scalar operators). This was coupled in some cases to strong nonperturbative dependence of the renormalisation factors on the quark mass, see for example [29–32].

In contrast, since none of the momenta are light-like in the RI-SMOM scheme, the operators associated with it can be analysed within the Operator Product Expansion (OPE) and sensitivity to nonperturbative effects is under better control. Those associated with spontaneous chiral symmetry breaking, for example, are more benign, with behaviour as \(1/\mu^6 \) following expectations from the OPE [32, 33]. The SMOM vertex functions show only small quark mass dependence. An added bonus is that the RI-SMOM to \(\overline{\text{MS}} \) matching factors [25, 26] for \(Z_m \) are much closer to unity (through \(O(\alpha_s^2) \)) than their RI-MOM counterparts [34, 35]. This means that the RI-SMOM mass renormalisation factor can be obtained with smaller systematic uncertainty.

Nonperturbative condensate effects are still present in the RI-SMOM scheme, however, and their effects must be included in any accurate determination of the quark mass. The leading condensate contribution to \(Z_m \) is chirally-symmetric and is only suppressed by \(1/\mu^2 \). Since the associated condensate is the Landau gauge gluon condensate (also known as the gluon mass condensate) [36], \(\langle 0 | \overline{\psi} \gamma^\mu \psi | 0 \rangle \), which is thought to be \(O(1) \mathrm{GeV}^2 \) [37, 38], this contribution could have a significant effect up to very high values of \(\mu^2 \). Such a contribution must be included in the analysis and constrained with results at multiple \(\mu \) values. Here we provide a thorough analysis of systematic uncertainties in the determination of the quark mass with this method, including that of nonperturbative effects.

Using the RI-SMOM intermediate scheme we are then able to determine values for \(\overline{\text{m}}_c \) and \(\overline{\text{m}}_s \) with comparable accuracy, around 1%, to that obtained using the current-current correlator method, and using the same lattice quark formalism (highly-improved staggered quarks (HISQ)). The RI-SMOM approach has completely different systematic uncertainties, however, so that a comparison of results from the two methods is then a strong test of our understanding of systematic uncertainties, because the lattice bare quark masses are tuned to the same values in both cases.
The paper is laid out as follows: Section II describes briefly the RI-SMOM approach and Section III gives some details needed to implement it for staggered quarks; Section IV then gives results for the lattice determination of Z_m in the SMOM scheme; Section V uses these results to determine the quark masses in the \(\overline{\text{MS}} \) scheme. Finally Section VI compares to earlier values, giving new world averages, and concludes with prospects for future improvements.

II. THE RI-SMOM METHOD

As outlined in Section I the lattice QCD RI-SMOM approach mimics what would be done in continuum QCD in a momentum-subtraction scheme. A key part of the argument is that the calculation should be set up in a way that is regularisation-independent. Thus within the lattice QCD calculation the same answer for the quark mass in the SMOM scheme should be obtained in any quark formalism up to discretisation effects. Then the continuum limit of the lattice result also holds in the equivalent continuum SMOM scheme. The continuum SMOM to \(\overline{\text{MS}} \) matching completes the conversion to the \(\overline{\text{MS}} \) scheme. Within the lattice QCD calculation we must then also ensure that the tuning of quark masses and the determination of the lattice spacing are done in a regularisation-independent way. This is of course the standard practice when we determine the lattice spacing and tune lattice quark masses using physical quantities (such as hadron masses) calculated at the lattice QCD physical point (i.e. including sea quarks with physical masses) and take the value from experiment. We will return to this point below.

To determine the renormalisation factor for an operator \(O_\Gamma \) in this framework we then need to apply renormalisation conditions to the inverse propagator (to obtain a wavefunction renormalisation factor) and to an amputated vertex function containing \(O_\Gamma \).

For free quarks in the continuum the inverse of the quark propagator, \(S(p) \), is

\[
S_0^{-1}(p) = m - \not{p} \tag{3}
\]

The wavefunction renormalisation factor, \(Z_q \), in this scheme can be defined by \([23, 24]\)

\[
\frac{1}{12p^2} \text{Tr}[S^{-1}(p)\not{p}] = -Z_q \tag{4}
\]

so that \(Z_q = 1 \) in the free theory.

Vertex functions \(G_\Gamma \) of operator \(O_\Gamma \) \((=\overline{\psi}i\Gamma\psi)\) can be calculated between two external, off-shell quark lines and ‘amputated’ as:

\[
\Lambda_\Gamma = S^{-1}(p_2)G_\Gamma S^{-1}(p_1). \tag{5}
\]

The renormalisation condition (eq. (1)) on \(\Lambda_\Gamma \) yields \(Z_\Gamma/Z_q \) given lattice values for \(\Lambda_\Gamma \). From this we can determine \(Z_\Gamma \) if we have \(Z_q \). Here we are interested in the mass renormalisation factor, \(Z_m = 1/Z_S \) obtained from the scalar quark bilinear:

\[
\frac{1}{12} Z_S \text{Tr}[\Lambda_S(p_1, p_2)]_{\text{sym}} = 1. \tag{6}
\]

Again the tree-level value of \(Z_S \) is 1. Here \(|\text{sym} \rangle \) indicates that \(p_1 \) and \(p_2 \) satisfy \(p_1^2 = p_2^2 = (p_1 - p_2)^2 = -\mu^2 \) (the RI-SMOM condition), so that there is a single momentum scale. We will also be interested in the pseudoscalar with renormalisation condition

\[
\frac{1}{12i} Z_q \text{Tr}[\Lambda_P(p_1, p_2)\gamma_5]_{\text{sym}} = 1. \tag{7}
\]

This method is straightforward to implement in lattice QCD. The inverse propagators and vertex functions are calculated from ensemble averages over a set of gluon fields. Note that this means that eq. (5) gives \(\Lambda_\Gamma \) as the product of three ensemble averages. \(Z_\Gamma \) and \(Z_S \) in eqs. (6) and (7) are then defined as a ratio of ensemble averages, with uncertainties determined via a bootstrap procedure. In practice, a relatively small number of gluon field configurations are needed for good numerical precision in the renormalisation factors \(Z_S \) and \(Z_\Gamma \).

Calculations can readily be done for a range of different masses for the ‘valence’ quarks for which propagators are calculated. We will use the same quark mass for the two sides of the vertex function but note that only quark-line connected Wick contractions appear in this calculation. It is conventional to define the RI-SMOM renormalisation constants in the limit of zero valence quark mass, and we do that here. One reason for doing this is that of consistency, since the perturbative calculations that match RI-SMOM to \(\overline{\text{MS}} \) have been done for massless quarks\(^1\). This is discussed further below.

In practice a more important issue is that of nonperturbative quark mass dependence associated with condensate contributions. An operator product expansion (OPE) approach to the RI-SMOM scheme (where it can be rigorously applied) shows that there are contributions to the quark propagators and vertex functions used to define \(Z_m \) that appear as inverse powers of \(\mu^2 \) multiplied by powers of quark masses, or quark or gluon condensates or combinations of all of these \([32, 36]\). It is important to remember that, because we are dealing with gauge-noninvariant quantities here, gauge-noninvariant condensates can also appear. These nonperturbative contributions are not part of the perturbative mass renormalisation factor, but they cannot be trivially separated from it in a lattice QCD calculation. Although the nonperturbative terms seen in the RI-SMOM scheme are well-behaved, they are not entirely negligible at the values of \(\mu^2 \) that we use here, as we will discuss in Section IV.

\(^1\) Note that it is perfectly possible to define an RI-SMOM scheme for nonzero quark mass and match this perturbatively to \(\overline{\text{MS}} \)\(^{[39]}\).
therefore makes sense to remove them, where possible, by extrapolating in the valence quark mass to zero. This only works, of course, for cases where the effect is proportional to a power of the quark mass (and we will study these in Section IV B). The leading contribution to Z_m in terms of inverse powers of μ comes from the Landau gauge gluon condensate with no powers of quark masses multiplying it and so it cannot be removed by extrapolating to zero quark mass. There are also higher order contributions of this form. This means that we have to allow for contributions of this kind in our fit ansatz for Z_m and test for them by varying μ. This enables us to remove them from our determination of the $\overline{\text{MS}}$ quark mass and to allow an appropriate uncertainty in our error budget from our incomplete knowledge of these contributions.

Note that the sea quark masses are not extrapolated to zero. We use calculations at physical values of the masses of the u, d, s and c quarks in the sea (with $m_u = m_d$) to determine the lattice spacing and tune the valence masses [12]. We also calculate Z_m on multiple gluon configurations with different unphysical values of the masses of the sea quarks (for a given bare coupling) to test the dependence on these parameters. As we show in Section IV A dependence of Z_m on the sea quark masses is much smaller than that on the valence quark mass and barely visible. Nonperturbative contributions arising from the sea quarks, some of which depend on the strange quark mass, will be present and we have to estimate a systematic error from that effect.

We return now to the issue of the perturbative matching to $\overline{\text{MS}}$. The renormalisation factor between the RI-SMOM scheme and the $\overline{\text{MS}}$ scheme has been worked out through $O(\alpha_s^2)$ in continuum QCD perturbation theory in [24–26]. Writing this renormalisation factor as

$$Z_m^{\overline{\text{MS}}/\text{SMOM}}(\mu) = 1 + c_1 \alpha_s^{\overline{\text{MS}}}(\mu) + c_2 [\alpha_s^{\overline{\text{MS}}}(\mu)]^2 + \ldots$$

we tabulate the results for c_1 and c_2 in Table I. These are calculated at zero (valence and sea) quark mass.

Scheme	c_1	c_2
RI-SMOM ($n_f=3$)	-0.0514	-0.0669
RI-SMOM ($n_f=4$)	-0.0514	-0.0415

We must also account for systematic errors in the perturbative matching in the continuum from our RI-SMOM scheme with non-zero sea quark mass to the $\overline{\text{MS}}$ scheme. Sea quarks appear first at $O(\alpha_s^2)$ in the matching and the largest effect present in our calculation will be for the sea c quark. We estimate the size of this effect in Appendix A. This gives an adjustment to c_2 that we will include when evaluating $Z_m^{\overline{\text{MS}}/\text{SMOM}}$ in Section V.

III. RI-SMOM WITH STAGGERED QUARKS

There are minor complications on the lattice QCD side if a staggered quark formalism is used, as here, because of the fermion doubling issue. The staggered quark action is derived from a naive transcription of the Dirac action onto the lattice in which a rotation is made to diagonalise the action in spin-space. The spin degree of freedom can then be dropped and the 16 ‘doublers’ or tastes of the naive action become 4 tastes in the staggered action. To reconstruct the 4-taste 4-spin Dirac field then requires combining staggered quark fields, χ, over a 2^4 hypercube [40]. This has implications for the momentum-space quark field that enters into the momentum-subtraction renormalisation formalism. The full lattice Brillouin zone, in lattice units

$$-\pi \leq ap \leq \pi$$

contains, for staggered quarks, both momentum and taste information [41]. To separate them we must work in a reduced Brillouin zone

$$-\pi/2 \leq ap' \leq \pi/2$$

with an additional 4-dimensional label for each subzone. Then

$$ap_\mu = ap'_\mu + \pi B_\mu$$

with B_μ a 4-dimensional vector of 0s and 1s. We use the method for staggered quarks developed in [42], and here simply give an overview of that procedure.

For a given momentum (in lattice units) ap' in the reduced Brillouin zone, we invert the staggered Dirac operator on 16 momentum sources of the form e^{ipx} with $ap = ap' + \pi A$, where A is a 4-vector composed of 0s and 1s. Each of the resulting propagators, $S(y,p)$ where y runs over the lattice volume, is Fourier transformed 16 times with momenta $-ap' + \pi B$, with B a 4-vector of the same type as A. The results are assembled into a propagator

$$S(ap') = S_{AB}(ap') = S(ap' + \pi A, -ap' + \pi B).$$

This is a 48×48 matrix, but we have kept the colour indices implicit; the matrix is diagonal in colour space on forming the ensemble average over lattice gluon fields. The propagator is also a taste-singlet [43] and so has the same properties for the purposes of the SMOM approach to those for other quark formalisms. After averaging over gluon fields the matrix is inverted for each value of p' to obtain the inverse propagator.

To apply the condition in eq. (4) to determine Z_q we must multiply by a representation of the matrix γ_μ in AB space. Using the notation of [42] this is the matrix $\hat p'_\mu (\gamma_\mu \otimes I)$ that is the Fourier transform of the (taste-singlet) derivative term in the free inverse propagator. Since this derivative is improved to remove a^2 discretisation effects for our improved staggered quark action, we

Scheme	c_1	c_2
RI-SMOM ($n_f=3$)	-0.0514	-0.0669
RI-SMOM ($n_f=4$)	-0.0514	-0.0415
take $a p^a_q = \sin(ap^a_q) + \sin^3(ap^a_q)/6$ so that Z_q is equal to 1 in the free case. $(\gamma_{\mu} \otimes I)$ is a matrix of 0, 1 and -1 obtained by tracing over products of gamma matrices as described in Appendix A of [42]. Then
\[
Z_q(p') = -\frac{i}{48} \sum_{\mu} \frac{p^\mu_q}{(p'^2)^2} \text{Tr} \left[(\gamma_{\mu} \otimes I) S^{-1}(p') \right].
\] (13)
The trace is over spin, taste and colour.

The scalar operator that we use to determine the mass renormalisation factor is the local taste-singlet operator $\chi(x)\chi(x)$. The vertex function for this operator is then constructed as
\[
G_{S,AB}(p_1, p_2) = \left(\chi(p' + \pi A) \left(\sum_x \chi(x) \chi(x) e^{i(p_1-x)\pi} \chi(p_2 + x\pi B) \right) \right)
\]
\[
= \frac{1}{n_{c\ell} \times c\ell} \sum_{x, c\ell} S(p_1 + \pi A, x) e^{i(p_1-x)\pi} (1 - x^\pi) S^\dagger(p_2 + \pi B, x).
\]
Here $(-1)^x$ is the alternating phase factor over the lattice, $-1)^{x_1 + x_2 + x_3 + x_4}$. S^\dagger is the hermitian conjugate in colour space and has a permuted B index according to $B = B + 2 (1, 1, 1, 1)$. To apply eq. (6) we must multiply $G_{S,AB}$ on both sides by the inverse propagator to give S_{AB} and again take the trace over spin, taste and colour. For the local taste-singlet scalar this gives the simple expression
\[
Z_q = Z_S = \frac{1}{48} \text{Tr} A_S(p').
\] (15)
For the local pseudoscalar operator the procedure is identical except that there is no $(-1)^x$ in the equivalent of eq. (14) and in the equivalent of eq. (15) multiplication by the matrix $\gamma_5 \otimes \gamma_5$ is needed before taking the trace. This can be written simply as a 16×16 matrix with a skew-diagonal of 1s. $1/Z_S = Z_m$ is then obtained by dividing by Z_q.

IV. LATTICE QCD CALCULATION

For this calculation we use ensembles of gluon field configurations generated by the MILC collaboration [43, 44]. These include u, d, s and c quarks in the quark sea, with $m_u = m_d = m$. The gluon action is fully improved to remove discretisation errors through $O(\alpha_s a^2)$ [45]. The sea quarks are implemented through the Highly Improved Staggered Quark (HISQ) formalism [46, 47] designed, and demonstrated, to have very small discretisation effects, at $\alpha_s a^2$ and a^2. We also use the HISQ formalism for our propagator and vertex function calculations. The simulation parameters for the sets (ensembles) of gluon field configurations used are given in Table II. We have sets at three different values of the bare QCD coupling, β, with finer lattice spacing as β increases. For $\beta = 6.0$, referred to here as ‘coarse’ lattices, we have 7 different values of the sea quark masses, varying over a wide range. This enables us to test the dependence on the sea quark masses of our results. We also have 3 different values of the lattice spatial volume to test for volume-dependence.

On ‘coarse’ and ‘fine’ lattices we include ensembles with physical sea u/d (as well as s and c) quark masses.

![FIG. 1: Scatter plots from bootstrap samples of Z_m^SMOM at $\mu = 2$ GeV and Landau gauge Trace link values on coarse set 4, for a quark mass value in lattice units of 0.0153. On the left results are for a gauge-fixing tolerance on 10^{-7} (the tolerance we use); on the right the tolerance is successively tightened to 10^{-10}. Mean values for Z_m^SMOM are indicated by dashed lines of matching colour.](image)

We fix the gauge field configurations to lattice Landau gauge by maximising the average trace over colour of the gluon field link. Note that this differs from the continuum Landau gauge by discretisation errors [48]. On

Set	β	L_t	L_t	$m_{u,s,c}^{\text{sea}}$	$m_{u,s,c}^{\text{sea}}$	$m_{u,s,c}^{\text{sea}}$
1	6.0	20	64	0.0008	0.040	0.480
2	6.0	24	64	0.0102	0.0509	0.635
3	6.0	24	64	0.00507	0.0507	0.628
4	6.0	32	64	0.00507	0.0507	0.628
5	6.0	40	64	0.00507	0.0507	0.628
6	6.0	32	64	0.00507	0.00507	0.628
7	6.0	32	64	0.00507	0.012675	0.628
8	6.0	32	64	0.00507	0.022815	0.628
9	6.0	48	64	0.00184	0.0507	0.628
10	6.30	48	96	0.00363	0.0363	0.430
11	6.30	64	96	0.00120	0.0363	0.432
12	6.72	48	144	0.00488	0.024	0.286
each ensemble we then calculate quark propagators for a range of quark masses and momentum values and assemble vertex functions as described in Section II. We use the bootstrap method to determine the uncertainty in Z_{SMOM}^{m} from combining Z_{S} and Z_{q}, as well as the correlations between results obtained on a given ensemble. High precision is possible with these calculations with only a moderate number of samples of gluon field configurations. We use 20 from each set, well-spaced in Monte Carlo generation time for statistical errors below 0.1%. We have tested that the statistical errors are Gaussian by comparing the mean and median from a bootstrap distribution. We have also checked that the tolerance we use for the Dirac matrix inversion is such that tightening the tolerance has no significant effect on the results. The impact of the gauge-fixing tolerance will be discussed below.

For the RI-SMOM calculations reported here, the momenta that we use in the two propagators combined in the vertex function are given in lattice units by

$$a p_1 = \frac{2\pi}{L_s} (x + \frac{\theta}{2}, 0, x + \frac{\theta}{2}, 0),$$
$$a p_2 = \frac{2\pi}{L_s} (x + \frac{\theta}{2}, -x - \frac{\theta}{2}, 0, 0)$$

for integer x. Adding the additional $\theta/2$ term through a ‘momentum-twist’ using phased boundary conditions [49, 50] allows us to tune the value of the momenta used precisely. This means, for example, that we can tune the momenta to be the same on ensembles with different values of L_s. With the definitions of eq. (16) $a(p_1 - p_2)$ has the same magnitude as each of $a p_1$ and $a p_2$, which is the appropriate kinematics for the RI-SMOM scheme. We will call this magnitude $a\mu$:

$$a\mu = a |p_1| = a |p_2| = a |p_1 - p_2|.$$

We use momenta only in the spatial directions for simplicity because our lattices have a different extent in the time direction. We use a variety of x and θ values and have tested that results do not change under a change of x and θ to achieve the same $a p$. Note that, in keeping with eq. (10), we do not want any momentum component in lattice units to exceed $\pi/2$. This limits how high a value of μ we can reach; for example we cannot exceed a μ value of 3 GeV on the coarse lattices.

The results enable us to extract a renormalisation factor for the scalar current, Z_{SMOM}^{m}, in the RI-SMOM scheme for each ensemble for a variety of $a\mu$ values and HISQ quark masses used in the propagators, am. Insofar as Z_{m} is a renormalisation factor from one QCD regularisation scheme to another, taking account of the differences in the scheme at the cutoff, we expect Z_{m} to behave as a power series in α_{s} with coefficients that depend logarithmically on the ratio of the two cutoffs, i.e. on $\ln(a\mu)$. Since Z_{m} here is being determined nonperturbatively in lattice QCD, differences from this expectation arise both for small $a\mu$ and large $a\mu$ values and we will address both of these here.

For large $a\mu$ values, systematic discretisation effects can appear from the granularity of the lattice. In Z_{m} such effects would cause systematic errors of the form $(a\mu)^n$ where n is a positive power whose value depends on the quark action, a higher power corresponding to a more highly improved action. With the HISQ action we have removed tree-level a_s^2 terms and so we expect discretisation effects at $(a\mu)^2$ to be suppressed by powers of α_{s} and therefore to be relatively small [46]. The lowest order at which tree-level discretisation errors can appear is at $(a\mu)^3$. In fact the discretisation errors, as long as they are not too large, are benign. In the end, in order to determine a quark mass relevant to the physical world, we will perform an extrapolation in a to the continuum limit $a = 0$, at fixed μ, and remove discretisation errors. Of more concern are nonperturbative effects that can have an impact at small values of μ. An operator product expansion (OPE) tells us that the vertex functions can be expanded in inverse powers of μ with coefficients that depend on condensates, vacuum expectation values of local quark and gluon operators. In the current-current correlator method, this effect was studied in [12]. There the heavy quark mass, $m_{h_{}}$, replaces μ and nonperturbative terms of the form

$$d_1 \frac{m_G}{m_{h_{}}} + d_2 \frac{\alpha_s G^2/\pi}{m_{h_{}}} + \ldots$$

(18)

can appear in the correlator moments. The first term contains the light quark chiral condensate $\langle \bar{\psi} \psi \rangle$ and the second, the gluon condensate constructed from the gluon field-strength tensor (the heavy quark condensate being absorbed into this). Since the current-current correlator method uses gauge-invariant correlation functions only gauge-invariant condensates can appear. To mass dimension four these are the only possibilities. The size of such condensates is typically $[O(300\text{MeV})]^n$ where n is their mass dimension.

Here we use gauge-noninvariant vertex functions and
and then successive tightening of this tolerance by factors of 10 down to 10^{-10}. The tighter tolerance gives a shift in the mean value of Z_m^{SMOM} by around 0.0004. Results at higher μ values show much smaller effects in a way that demonstrates their origin in nonperturbative effects. This is illustrated in Figure 2 which shows the change in Z_m^{SMOM} for a factor of 10 change in gauge-fixing tolerance as a function of μ. To cover the residual gauge-fixing effects we take an additional uncorrelated uncertainty on our Z_m^{SMOM} results of 0.0004 for $\mu = 2$ GeV, 0.0001 for $\mu = 3$ GeV and 0.00002 at $\mu = 4$ GeV on sets 1 through 11. This is typically at the level of our statistical uncertainties. On set 12 we fixed to Landau gauge with a tolerance of 10^{-14} and do not take any additional uncertainty from residual gauge-fixing effects. We do not consider any possible effects from Gribov copies (for studies of this in the RI-MOM scheme see, for example, [51, 52]).

Another way to assess the size of nonperturbative effects is to look at differences of Z factors for operators which should have the same perturbative expansion. Since we are concentrating here on Z_S it makes sense to look at the difference between Z_S and Z_P. This difference showed significant problems with Z_P in the RI-MOM scheme because it exposed nonperturbative contributions that behaved as $1/\mu^6$ [31]. This behaviour can be traced to the fact that the inserted operator is carrying no momentum ($q = 0$) in that scheme [23]. This causes particular problems for the pseudoscalar operator and was deemed to make this vertex function of only very limited use. A related issue arises with the scalar operator in the RI-MOM scheme, however, and that is one of very strong dependence on the quark mass. These features were illustrated for the HISQ action in [53] where the vertex functions Λ_P and Λ_S are compared for the RI-MOM and RI-SMOM schemes as a function of momentum and quark mass, and the superior behaviour of the RI-SMOM scheme is very clear.

In the RI-SMOM scheme, as Figure 3 shows, the nonperturbative behaviour of $\text{Tr}(\Lambda_P - \Lambda_S)/48$ (proportional to $(1/Z_P - 1/Z_S)$) is quite benign, falling as $1/\mu^6$ with little dependence on the lattice spacing. This indicates that either Z_P or Z_S could be used to determine the mass renormalisation factor; we will however concentrate here on Z_S. As we will see in Section IV B, the quark mass dependence of Z_m derived from Z_S in the RI-SMOM scheme is also much less of an issue than it was in the RI-MOM scheme.

The slope with $1/\mu^6$ of $\text{Tr}(\Lambda_P - \Lambda_S)/48$ in Figure 3 is $O(1)$ GeV6 when translated into its effect on $Z_P - Z_S$, in approximate agreement with what is seen with domain-wall quarks [33]. This sets an appropriate scale to use when assessing systematic effects from nonperturbative contributions in Section V. These systematic effects will show up when results evaluated at different μ are run perturbatively in the continuum to a common scale. We will use multiple values of μ (2, 2.5, 3, 4 and 5 GeV) in our analysis and compare results for the MS mass at a reference scale of 3 GeV.

Study of the impact of the gauge-fixing tolerance provides some evidence of sensitivity to these gauge-noninvariant nonperturbative effects. For the Landau gauge-fixing, we use a tolerance of 10^{-7} on the magnitude of the gradient of the gauge field on gluon configuration sets 1 through 11. This fixes the average trace of the link in Landau gauge to a few parts in 10,000. The residual effect on Z_m from this gauge-fixing tolerance is at the same level as we now demonstrate. Figure 1 shows a scatter plot of bootstrap samples for Z_m^{SMOM} on coarse set 4 at $\mu = 2$ GeV for a gauge-fixing tolerance of 10^{-7}
Z_{m}^{SMOM} is dimensionless but the appropriate scale for it, μ, must be obtained in GeV by multiplying a_{μ} by the inverse of the lattice spacing. The value of the lattice spacing is obtained from determining a dimensionful quantity that can be matched in the continuum limit at physical quark masses to an experimental value. We use the Wilson flow parameter, w_0 [54], itself fixed at the value 0.1715(9) fm using the decay constant of the π [55].

The physical quark mass limit can be approached in a number of different ways. When calculating quantities such as hadron masses, which are sensitive to low momentum scales, it is convenient to keep the bare coupling constant, $\alpha_{lat} = g^2/(4\pi)$, and w_0 fixed. This means that the value of α varies slightly with the sea quark masses but the variation of hadron masses is small, since they behave in a similar way to w_0. An alternative, which is more suitable for the determination of bare parameters such as quark masses for reasons discussed in Appendix A of [12], is to fix α_{lat} and the lattice spacing. This latter method is the one that we will implement here.

We use results from [12] where the sea quark mass dependence of w_0/a in terms of the result at the tuned physical point is determined for different α_{lat}. A universal linear dependence on $\delta m_{uds}^\text{sea}$ (the deviation of the sum of the u/d and s sea masses from their physical values) is seen, for values of $\delta m_{uds}^\text{sea}$ in units of the tuned s quark mass less than 0.5 (see Figure 10 in Appendix A). An analysis of dependence on the c quark mass away from the physical point is also given. We use the fits of [12] to interpolate results for w_0/a for sets of ensembles at a given value of β to the physical quark mass point. The values that we obtain for w_0/a in this way are given for 'coarse' ($\beta = 6.0$), 'fine' ($\beta = 6.30$) and 'superfine' ($\beta = 6.72$) sets in Table III. We will use the w_0/a result (and the value it implies for a^{-1} in GeV) for all the ensembles with that value of β.

As we will see in Section IV A this approach means that Z_{m}^{SMOM} has little discernible sea quark mass dependence. This is expected insofar as Z_{m}^{SMOM} represents physics at the cut-off scale that is a function of α_{lat}, with the light sea quark masses having only a very small effect on its perturbative expansion. We will test the impact of the c sea mass in the next section and in Appendix A.

We take a similar approach for the tuned bare quark masses for s and c, as will be discussed further in section V.

A. Sea mass dependence

Table II shows the variety of ensembles on which we have calculated Z_{m}^{SMOM}. Note particularly how many different combinations of sea quark masses we have studied for $\beta = 6.0$ (‘coarse’). This allows us to test for dependence on the sea quark masses, given the method described in Section IV for fixing the lattice spacing. No significant sea quark mass dependence is seen for the μ values that we will use for our analysis. Some of the ensembles have very different combinations of sea quark masses from those that would be considered suitable for a comparison to the real world. For example, set 6 has u/d and s quark masses equal at a value around 1/10th that of the physical s mass. Nevertheless even this ensemble has a Z_{m}^{SMOM} that agrees (for a given μ) with that from set 4 where m_s is ten times larger and therefore more realistic. Note that the components of Z_m, i.e. Z_q and the vertex function, typically show somewhat larger changes with sea mass but the effects cancel in Z_m.

Figure 4 shows a comparison of Z_{m}^{SMOM} for sets 4, 6, 7 and 8 in which am_s^sea varies over a wide range with no discernible difference, at a level below 0.1%, in Z_{m}^{SMOM}, for μ values of 1.8 GeV and above. The lowest value of am_s^sea shown in Figure 4 corresponds to the u/d quark mass in the sea. This figure therefore also indicates how little variation we can expect as the u/d quark mass in the sea is varied. In our final analysis we will include results from different values of the sea quark masses to allow for small variations to be taken into account, but these results indicate that such variations are below the level of our statistical uncertainties.

A similar picture is seen for variation with the c sea mass, even though the c sea mass is much larger and $2m_c$ is close to μ in our range of μ values, so that one could worry that an effect might be discernible. We can gauge the possible size of such an effect from the perturbative analysis of the impact of massive c quarks in the sea given in Appendix A. That shows a shift of size 0.1% for a change in m_c from zero to m_c at $\mu = 2$ GeV. Figure 5 shows a comparison of results for Z_{m}^{SMOM} as a function of μ for sets 1 and 2 which have a substantially (30%) different c sea quark mass, along with slightly different u/d and s sea quark masses (which Figure 4 has already demonstrated have no effect) and different spatial volumes (again for which we see no effect in Section IV C). We also include results for set 3 which has a value of am_c differing from that on set 2 by 1%, a size of varia-

w_0/a	m_c^tuned (GeV)	m_s^tuned (GeV)
coarse	1.3075(18)	1.049(1)(3)
	0.059(1)(7)	
fine	1.9500(21)	0.973(1)(3)
	0.0818(1)(7)	
superfine	2.994(10)	0.901(2)(3)
	0.0768(2)(7)	
Finally, in Figure 6 we compare results for two fine lattices with different sea mass values (sets 10 and 11). This plot covers three \(\mu \) values we will use in our final analysis, 2, 3 and 4 GeV. Good agreement is seen between the results on sets 10 and 11 (with the largest discrepancy being 0.1% for \(\mu = 2 \) GeV), testing sea-mass dependence as well as dependence on the spatial volume, to be discussed in more detail in Section IV C.

B. Valence mass dependence & extrapolation

In Section IV A the \(Z_{m}^{SMOM} \) renormalisation factors are determined for small and fixed but non-zero valence quark masses and we showed that the dependence on sea quark masses is almost negligible. Here we will show that there is a small but visible dependence for \(Z_{m}^{SMOM} \) on the valence quark mass. This dependence comes from the vertex function since the wave function renormalisation is almost independent of the valence quark mass. Since the impact in perturbation theory of the small valence quark masses we use should be negligible, the most likely source of valence quark mass dependence is nonperturbative, i.e. that of quark masses multiplying a condensate appearing in conjunction with inverse powers of \(\mu \) as expected from the OPE.

Figure 7 shows the dependence of \(Z_{m}^{SMOM} \) on valence mass in lattice units, \(m_{a} \), for a coarse, fine and superfine ensemble (sets 2, 10 and 12) at a fixed value of \(\mu \) (3 GeV). For each case we determine \(Z_{m}^{SMOM} \) for three va-
SM scheme using SMOM. Z

masses by the tuned s quark mass at that lattice spacing and cubic term: tions are included. We therefore add in both a quadratic

perturbation theory at zero valence quark mass. The ex-

trapolation also has the advantage of removing some of the non-perturbative condensate contributions that are not part of Z

SMOM. The size of the observed mass dependence then provides an indication of the size of the remaining condensate contributions that do not depend on the quark mass.

To extrapolate to zero valence quark mass we fit Z

SMOM to a simple polynomial form in am

val given below. Including only a linear term does not give a good fit over the range of am values that we use when correlations are included. We therefore add in both a quadratic and cubic term:

\[Z_{m}^{\text{SMOM}}(am_{\text{val}}) = Z_{m}^{\text{SMOM}} + d_{1} \frac{am_{\text{val}}}{am_{s}} + d_{2} \left(\frac{am_{\text{val}}}{am_{s}} \right)^{2} + d_{3} \left(\frac{am_{\text{val}}}{am_{s}} \right)^{3}. \] (19)

We use a prior on Z

SMOM (the value of Z

SMOM(am) in the massless limit) of 1.0±0.5. For the coefficients d

i priors of \(0 \pm 0.1, 0 \pm 0.01, 0 \pm 0.001\) are used for \(\mu = 2\) GeV with the values being decreased by a factor of 2 and 4, respectively for \(\mu = 3\) GeV and 4 GeV to allow for an approximate \(\mu^{-2}\) suppression, the smallest inverse power of \(\mu\) that we expect to appear. We divide the lattice valence masses by the tuned s quark mass at that lattice spacing so that the \(d_{i}\) are dimensionless and physical. Note that, if the linear term were set by the gauge-invariant condensate \(m\langle \bar{\psi}\psi \rangle/\mu^{4}\), we would expect \(d_{1}\) to be \(O(2 \times 10^{-4})\), which would make the mass dependence scarcely visible. Instead our priors allow for possibly larger gauge-noninvariant condensates to appear. The linear slope shows significant lattice spacing dependence and is consistent with zero on the superfine lattices, as shown in Figure 8. The coefficient of the quadratic mass dependence, \(d_{2}\), is non-zero and is shown for the superfine lattices in Figure 8 along with the results of a simple fit to the form \(C/\mu^{4}\). \(C/\mu^{4}\) does not give a good fit, although \(C/\mu^{6}\) is also acceptable) with \(C = -0.10(3)\) GeV, equivalent to \(-0.56(4)\) GeV)

From this (and earlier results in Section IV) we conclude that in our fits in Section V, comparing quark masses determined using Z

SMOM values at different values of \(\mu\), we should allow for condensate contributions remaining in Z

SMOM that could be as large as \((1\text{GeV})^{n}/\mu^{n}\) coming from gauge-noninvariant condensates. This will allow us to include an uncertainty from such nonperturbative contributions in our determination of the mass.
The MS scheme has three ingredients: MS scheme at scale m_{MS} mass obtained this way as MS scheme [56, 57].

V. DETERMINATION OF MASSES IN THE MS SCHEME

Our procedure here for determining the quark mass in the $\overline{\text{MS}}$ scheme has three ingredients:

- A quark mass in our lattice QCD scheme tuned nonperturbatively to reproduce the mass of a given hadron from experiment;
- A nonperturbative determination from lattice QCD of the mass renormalisation factor Z_m^{SMOM} that converts this mass at each value of the lattice spacing to a mass in our SMOM scheme at a given value of the scale, μ;
- A perturbative calculation of the mass renormalisation factor $Z_m^{\overline{\text{MS}}/\text{SMOM}}$ (through α_s^2) that further converts the SMOM mass at scale μ to the mass in the $\overline{\text{MS}}$ scheme at scale μ. From there we can run the mass to different scales using 4-loop running in the $\overline{\text{MS}}$ scheme [56, 57].

Then

$$\bar{m}(\mu, a) = Z_m^{\overline{\text{MS}}/\text{SMOM}}(\alpha_s(\mu)) Z_m^{\text{SMOM}}(\mu, a)m(a).$$ (20)

Here $m(a)$ is the bare lattice quark mass, in physical units, at a specific value of the lattice spacing, the first item from the list above. Z_m^{SMOM} is the mass renormalisation factor calculated nonperturbatively on lattice QCD configurations at a specific lattice spacing, allowing us to convert the lattice mass to the SMOM scheme at a scale μ. How this is calculated has been discussed in earlier sections; here we will give the results. The intermediate quark mass we obtain in the SMOM scheme, although nominally now in a continuum scheme at a physical scale, will still carry remnants of its lattice origins through discretisation errors. These must be removed by calculation at multiple values of the lattice spacing, so that an extrapolation to the continuum limit, $a = 0$, can be made. This could be done with the SMOM masses, but we choose to first convert to the $\overline{\text{MS}}$ scheme at scale μ by multiplying by the final factor $Z_m^{\overline{\text{MS}}/\text{SMOM}}$. We denote the $\overline{\text{MS}}$ mass obtained this way as $\bar{m}(\mu, a)$ to show that it has yet to be extrapolated to the continuum limit.
TABLE IV: Results for Z_m^{SMOM} for $\mu = 2, 2.5, 3, 4$ and 5 GeV on a subset of ensembles from Table II covering coarse to superfine lattice spacings. The values are obtained by extrapolating to zero valence quark mass as discussed in the text. For each set of results we also give, in column 5, the correlation matrix between the values for different μ. Note that there is very slight mistuning of some μ values on the coarse and fine lattices (sets 2 – 11) and the actual μ values are given in the column headings. Statistical errors only are given here. We include a further uncorrelated uncertainty on Z_m values for sets 2 – 11 as described in Section IV to account for residual gauge-fixing effects (± 0.0004 at $\mu = 2$ GeV, ± 0.0001 at 3 GeV and ± 0.00002 at 4 GeV).

Set	2.004	2.500	3.005	4.007	correlation
2	1.12967(40)	1.07935(20)	1.045628(90)	-	-
4	1.12990(42)	-	1.045434(61)	-	-
9	1.13061(22)	-	1.045518(53)	-	-
10	1.17726(45)	1.11954(15)	1.083082(77)	1.040445(25)	-
11	1.17748(35)	-	1.082955(55)	1.040350(23)	-
12	1.24884(93)	1.18100(31)	1.13662(12)	1.083481(54)	1.053782(32)

We will describe how we do this below; first we give the results that we will use for each of the ingredients of eq. (20).

A. $m(a)$

The bare lattice quark masses that we use are for s and c quarks and are given in [12] for the ensembles and lattice spacing values that we use here. The c quark mass, $m_c(a)$, was tuned by adjusting the lattice mass to give the physical value for the η_c meson mass. The physical value for the η_c mass was defined from the experimental value with a shift upwards by 2.7 MeV (less than 0.1%) to remove electromagnetic effects and to account for $c\bar{c}$ annihilation, since both of these effects are missing in our lattice QCD calculation [58, 59]. The uncertainty on the physical η_c mass to which we match is then increased (to 2.7 MeV) to allow for uncertainty in these corrections. The s quark mass is similarly tuned based on the physical mass of the $s\bar{s}$ pseudoscalar particle known as the η_s. It is an unphysical particle since its valence quarks are artificially not allowed to annihilate, but its properties can be well determined in lattice QCD [55, 60]. Its mass can be determined in terms of K and π meson masses as [55]

$$M_{\eta_s}^{\text{phys}} = 0.6885(22) \text{ GeV.}$$ \hspace{1cm} (21)

where the uncertainty includes a systematic error from the neglect of electromagnetism in the lattice QCD calculations.

The tuned lattice bare c and s quark masses are given in GeV in Table II of [12]. These are the values that give the physical η_c or η_s mass on each ensemble given a fixed value for w_0. Since here (as explained in Section IV) we are approaching the physical mass point using a fixed lattice spacing value (since that removes sea quark mass dependence from our results, as shown in Section IV A) then we also need fixed tuned quark mass for sets of ensembles at a fixed value of β. The fits to the dependence on sea quark mass discussed in Appendix A of [12] enable us to determine the tuned c and s quark masses for physical sea quark masses at each value of β. These are the values that we will use here and they are given in Table III.

The uncertainties in the tuned masses include the uncertainty from the lattice spacing. This gives a 3× smaller relative uncertainty for the c quark mass than for the s quark mass because the lattice spacing uncertainty appears with the ‘binding energy’ of the meson rather than its mass. For the η_c the binding energy is much smaller than the mass, but for the η_s it is of the same size. Table III divides the uncertainty on the tuned masses into two components: a correlated uncertainty from the value of w_0 and the value of the meson masses.
TABLE V: Results for $Z_m^{\overline{MS}}/Z_m^{\overline{SMOM}}$ for $\mu = 2, 2.5, 3, 4$ and 5 GeV using eq. (8) and values from Tables I and VII. The uncertainty in Z quoted here comes from the uncertainty in the value of α_s (and so is 100% correlated between the values). We use $\alpha_{\overline{MS}}(m_t = 4, 5.0 \text{GeV}) = 0.2128(25)$ [12]. Column 3 gives the multiplicative factor $R(3 \text{GeV}, \mu)$ that converts the MS mass at scale μ to the mass at the reference scale of 3 GeV. This is obtained from 4-loop running in perturbative QCD. The uncertainty is dominated by that in α_s; the uncertainty from missing higher order terms in the running is negligible in comparison. The error in R is then 100% correlated or anti-correlated between the values, depending on whether R is greater than or less than 1. There is also a 100% correlation (or anticorrelation, as appropriate) with the errors in $Z_m^{\overline{MS}}/Z_m^{\overline{SMOM}}$. Note that the values in the table are for the μ values in column 1. We calculate R and Z inside our fit function and hence allow for the fact there that the μ values are slightly mistuned on coarse and fine lattices (see Table IV). We include an additional uncertainty, as described in the text, to allow for w_0/a errors feeding in to the determination of μ. This gives a (correlated) uncertainty of 0.0003 on the coarse lattices, 0.0002 on the fine lattices and 0.0008 on the superfine lattices.

μ (GeV)	$Z_m^{\overline{MS}}/Z_m^{\overline{SMOM}}(\mu)$	$R(3 \text{GeV}, \mu)$
2.0	0.9792(5)	0.9034(20)
2.5	0.9821(3)	0.9582(8)
3.0	0.9838(3)	-
4.0	0.9859(2)	1.0616(11)
5.0	0.9871(2)	1.1063(19)

FIG. 10: (Upper) $\overline{m}_c(3 \text{GeV})$ and (lower) $\overline{m}_s(3 \text{GeV})$ obtained from nonperturbative lattice QCD calculations of $Z_m^{\overline{SMOM}}$ at three different values of μ, followed by perturbative matching to the MS scheme and running to 3 GeV. The results are plotted for $\mu = 2, 2.5, 3, 4$ and 5 GeV against the square of the lattice spacing. Extrapolations to the continuum limit for each value of μ, as discussed in the text, are shown as dashed lines (these give the fit result at $\delta_{\text{sea}}^{\text{m}} = \delta_{\text{sea}}^{\text{c}} = 0$). The error bars on the data points show only the uncorrelated uncertainties. The point plotted as a dark grey filled circle, offset to the left, is the final physical result, $\overline{m}(3 \text{GeV})$, from the fit described in the text. The inner error bar for this point is the uncorrelated uncertainty and the outer error bar the full uncertainty. The point plotted as a white circle, further offset to the left, is from the current-current correlator method [12] (along with a nonperturbative determination of m_c/m_s in the m_s case).

B. $Z_m^{\overline{SMOM}}$

Working from right to left in eq. (20) the next set of results that we need are for $Z_m^{\overline{SMOM}}$ for each ensemble that we will use in determining our continuum and chiral limit for the quark masses. We have chosen to work with multiple values of μ in order to assess the impact of nonperturbative terms on the mass renormalisation. These are $\mu = 2, 2.5, 3, 4$ and 5 GeV. At each value of μ we determine $Z_m^{\overline{SMOM}}$ at three values of the valence quark mass, as described in Section IV B, and extrapolate to zero valence mass. Results are given in Table IV for the ensembles that we will use. The results for differ-
ent \(\mu \) values on a given ensemble are correlated and so we include in the Table the correlation matrix for the \(Z \) values. The correlation matrix, \(\rho_{ij} \), for variable \(x_i \) and \(x_j \) is defined by

\[
\rho_{ij} = \frac{\langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle}{\sigma_i \sigma_j}
\]

(22)

with \(\langle \cdot \rangle \) indicating the expectation value, and \(\sigma \) the standard deviation.

Results are given for sets 2, 4, 9, 10, 11 and 12 that we will use in our final analysis which will determine a continuum limit for the mass and allow for small residual sea quark mass effects. Note the very slight mistunings of \(\mu \) from the nominal values on sets 2–11. These are allowed for in our fits.

C. \(Z_{m}^{\overline{\text{MS}}/\text{SMOM}} \)

The third ingredient for eq. (20) is the matching coefficient from SMOM to \(\overline{\text{MS}} \). For this we use the perturbative expansion of eq. (8) with \(c_1 \) and \(c_2 \) values from Table I for the RI-SMOM case and for \(n_f = 4 \). Values for \(\alpha_s \) in the \(\overline{\text{MS}} \) scheme at the different values of \(\mu \) are given in Table VII. We use the results of Appendix A to adjust \(c_2 \) to allow for having a massive c quark in the sea. This has a very small effect for \(\mu = 2 \) GeV, and even smaller one for \(\mu = 2.5 \) GeV and is otherwise negligible. The resulting values for \(Z_{m}^{\overline{\text{MS}}/\text{SMOM}} \) are given in Table V. The uncertainty in the \(Z \) values quoted there comes from the uncertainty in \(\alpha_s \) and so is 100\% correlated between the values. There is also a systematic uncertainty from missing higher orders in the perturbative expansion and we will allow for that in our final fits below.

D. Fitting \(\overline{m}(\mu, a) \) to determine \(\overline{m}(3 \text{GeV}) \)

By multiplying all three ingredients together as in eq. (20) we obtain values for the \(c \) or \(s \) quark mass in the \(\overline{\text{MS}} \) scheme at a (nominal) scale of \(\mu = 2, 2.5, 3, 4 \) or 5 GeV from each lattice ensemble. These results still contain discretisation effects from the lattice QCD component of the calculation. To remove these effects we must extrapolate to the continuum limit. At the same time we want to assess other systematic effects such as the nonperturbative contributions to the lattice QCD determination of \(Z_{m}^{\text{SMOM}} \) that have not been removed by our extrapolation to zero valence quark mass, and missing higher order perturbative contributions to \(Z_{m}^{\overline{\text{MS}}/\text{SMOM}} \). This can be done by comparing results at different \(\mu \) but, the simplest way to pick out these effects is to run all the results to a common scale, \(\mu_{\text{ref}} \). We take \(\mu_{\text{ref}} = 3 \) GeV, so that we run up from 2 and 2.5 GeV and down from 4 and 5 GeV. The running is done by integrating the evolution equations numerically in the \(\overline{\text{MS}} \) scheme using 4-loop expressions [56, 57, 61, 62]. The result of this is a multiplicative factor \(R(\mu_{\text{ref}}, \mu) \) such that

\[
\overline{m}(\mu_{\text{ref}}) = R(\mu_{\text{ref}}, \mu)\overline{m}(\mu).
\]

(23)

Values of \(R(3 \text{GeV}, \mu) \) are given in Table V. Note that, because the uncertainty comes from the uncertainty in \(\alpha_s \) the uncertainty is 100\% (anti-)correlated between the different \(\mu \) values. The uncertainties in \(R \) and \(Z_{m}^{\overline{\text{MS}}/\text{SMOM}} \) are also 100\% (anti-)correlated for the same reason.

At this point we also need to include an uncertainty coming from the relative determination of the lattice spacing on coarse, fine and superfine lattices. The uncertainty in \(w_0/a \), given in Table III, means that the \(\mu \) values on each set may not match and this gives an additional uncertainty in the running of the mass to the 3 GeV reference point, including in the values obtained at \(\mu = 3 \) GeV. This gives an additional (correlated) uncertainty of 0.0003 on the coarse lattices, 0.0002 on fine lattices and 0.0008 on superfine lattices. There is an additional correlated 0.1\% uncertainty on all points coming from the effect on \(\mu \) of the uncertainty in the value of \(w_0 \).

We then have results for \(\overline{m}_s(\mu_{\text{ref}}) \) and \(\overline{m}_c(\mu_{\text{ref}}) \) that come from lattice calculations with different values of the lattice spacing and different values of \(\mu \). We fit these to a function that allows for discretisation effects that depend on \(a \) and other systematic effects that depend on \(\mu \). It is important to include the correlations between the points: our results at different values of \(a \) are correlated through their dependence on the value of \(w_0 \) which is used to determine the lattice spacing and our results at different \(\mu \) for a given ensemble are correlated through the statistical uncertainties in the values of \(Z_{m}^{\overline{\text{MS}}/\text{SMOM}} \) (see Table IV).

Our results are plotted in Figure 10. Discretisation effects are clearly evident with the slope in \(a^2 \) becoming larger with larger \(\mu \), not surprisingly. Results at different \(\mu \) come together on the finer lattices.

A key point, as we have emphasised, is to provide constraints on nonperturbative \(\mu \) dependence (from condensate terms) that would survive the continuum limit from our lattice QCD calculation but is not part of \(Z_m \). To understand how big these terms might be, we turn to the OPE (for more details, see Appendix B). The analysis of the quark propagator is given in [36, 63, 64]. To lowest order in inverse powers of the momentum \((p \equiv \mu) \) and \(\alpha_s \) this gives (rather than eq. (4))

\[
\frac{1}{12p^2} \text{Tr}[S^{-1}(p)\not{p}] = -Z_q + \frac{\pi\alpha_s(p)}{3}\langle A^2 \rangle\frac{1}{p^2} + O(X/p^4).
\]

(24)

Here \(Z_q \) is the perturbative contribution from the leading (unit) operator, \(A^2 \) is the square of the Landau gauge gluon field and \(X \) denotes vacuum expectation values of dimension 4 operators such as \(m\overline{\psi}\psi \) (which vanishes at zero quark mass), \(\overline{\psi}A\psi \) and \(G^2 \). The coefficients of the higher dimension operators in the OPE are obtained by matching scattering amplitudes for both sides of the OPE
from, for example, low-momentum gluons. Repeating
this procedure for the scalar vertex function for the sym-
metric kinematic point that we use in this calculation
(and which allows an OPE treatment), yields
\[
\frac{1}{12} \text{Tr}[\Lambda S(p_1, p_2)]|_{\text{sym}} = \frac{Z_m}{Z_S} \left(\pi \alpha_s(\mu) \langle A^2 \rangle \right) \left(\frac{\mu^2}{\pi^2} \right) + O(X/\mu^4)
\]
(25)
rather than eq. (6). From eqs (24) and (25) we see that
the leading nonperturbative contribution to our determi-
nation of \(Z_m \) is \(-2(\pi/3)\alpha_s(\mu)\langle A^2 \rangle/\mu^2\). The value of \(\langle A^2 \rangle \)
is not well-known \cite{37, 38} and so we simply allow for it
to be of size \(O(1 GeV)^2 \) in our fits to obtain the con-
tinuum limit of the \(\overline{MS} \) quark mass. We must also allow
for the higher dimension condensates denoted \(X \) above,
about which even less is known. To do this we include
terms at \(1/\mu^4 \) and \(1/\mu^6 \) in our fits, again allowing the op-
erator vacuum expectation values (summed over all the
operators that could appear) to be \(O(1 GeV)^2 \).

In fitting our results to obtain physical values for the
quark masses we must then allow for: lattice spacing
artefacts, non-perturbative effects, sea quark mass effects
and missing terms in the perturbative matching to \(\overline{MS} \).
To allow for all of these, we fit our results to the following
form:
\[
\overline{m}(\mu_{\text{ref}}, \mu, a) = \overline{m}(\mu_{\text{ref}}) \times \left[1 + \sum_{n=1}^{4} c_{\Lambda^2 a^2}(\Lambda a/\pi)^{2n} \right] \times \left[1 + \sum_{n=1}^{10} c_{\mu^2 a^2}(\mu a/\pi)^{2n} + c_\alpha \alpha_s^3 \langle \overline{MS} \rangle(\mu) + \right. \\
\left. \sum_{n=1}^{3} \frac{(n)}{c_{\mu^2 a^2}} \langle \overline{MS} \rangle(\mu a/\pi)^{2n} \left[1 + k_{\text{med}} \delta_{\text{med}} + k_{\text{med}} \delta_{\text{med}} \right] \right]
\]
Here \(\overline{m}(\mu_{\text{ref}}) \) is the physical result. The coefficients \(c_{\mu^2 a^2} \)
allow for discretisation effects set by the scale \(\mu \) (com-
ing from \(Z_m \)) and the \(c_{\Lambda^2 a^2} \) allow for those set by the scale
\(\Lambda \) in the tuning of the bare quark masses, independent of
\(\mu \). We take \(\Lambda \) to be 500 MeV in the case of the \(s \) quark
mass, but 1 GeV in the \(c \) quark mass case, since it could
be set by \(m_c \) itself. We take the prior on all the \(c_{\alpha} \) coeffi-
cients to be \(0.0 \pm 1.0 \). \(c_\alpha \) allows for systematic uncertain-
tries in the continuum limit from missing \(\alpha_s^n \) terms in
the matching of SMOM to \(\overline{MS} \). We take the prior on \(c_\alpha \) to be
\(0.0 \pm 0.2 \), allowing for a size four times larger than \(c_1 \) or \(c_2 \). The coefficients \(c_{\text{cond}} \) allow for nonperturbative conden-
sate effects that have not been removed by extrapolating
the valence quark masses to zero. We include three such
terms with inverse powers of \(\mu \) of 2, 4 and 6 since we
expect these to be the most significant. The results that
we give in Sections IV and IVB show that we need to
the numbers of terms used to describe discretisation effects, condensate contributions or missing pieces of the perturbative matching. Effects are relatively minor and generally well within our uncertainties.

The values we obtain for the physical result, $\bar{m}(\mu_{\text{ref}})$ at the reference scale of 3 GeV (using separate fits to each mass) are:

$$\bar{m}_c(3 \text{ GeV}, n_f = 4) = 0.9896(61) \text{ GeV} \quad (28)$$
$$\bar{m}_s(3 \text{ GeV}, n_f = 4) = 0.08536(85) \text{ GeV}$$

The error budget for the two numbers, evaluated from the fit, is given in Table VI. The uncertainties are dominated by those from the tuned bare quark masses (especially for m_s) but with sizeable contributions from the continuum extrapolation, possibly missing α_s^3 terms in the SMOM to $\overline{\text{MS}}$ matching and condensate effects.

VI. CONCLUSIONS

Lattice QCD is the method of choice for determining quark masses because it gives direct access to those parameters in the QCD Lagrangian and allows them to be tuned very cleanly against hadron masses measured in experiment. As emphasised in Section I, the key complication in determining quark masses is in providing the matching factor from the quark mass in a particular lattice QCD regularisation scheme to the preferred $\overline{\text{MS}}$ continuum regularisation scheme. Here we compare two accurate methods for providing this matching factor directly for the c quark mass: one is to take the continuum limit of time-moments in the current-current correlator method and the second is to use an intermediate momentum-subtraction scheme whose definition on the lattice translates directly to the continuum. Both methods then use continuum QCD perturbation theory for the final matching step. The two methods are very different in approach; one uses gauge-invariant meson correlators (2-point functions) in position space that are extrapolated to the continuum limit before matching to perturbation theory; the other uses gauge-noninvariant 2-point and 3-point functions in momentum space, obtaining a renormalisation factor at each value of the lattice spacing. Both methods have mechanisms for testing and estimating systematic uncertainties within them and so both are capable of yielding a complete error budget for the final result. A comparison of the two methods is important to make sure that the uncertainties are being fully controlled. The best comparison in this respect is a direct one between the two different methods for the same lattice QCD quark formalism on the same gauge field configurations. This is the comparison that we provide here, for the first time.

Both the current-current correlator method and the intermediate momentum-subtraction scheme approaches have variants that allow for improved control of systematic errors. Our comparison uses the best variant to date of each method. We compare earlier results from the improved current-current correlator method (method c) from [12] to those obtained here using the RI-SMOM intermediate scheme [24], which improves on earlier momentum-subtraction schemes in having smaller nonperturbative and perturbative uncertainties.

The lattice QCD results that we give here are for the matching factor, Z_{SMOM}^n, determined nonperturbatively on the lattice between the HISQ quark mass and that in the symmetric MOM (RI-SMOM) scheme at multiple

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure12.png}
\caption{Comparison of lattice QCD results for $\bar{m}_c(\bar{m}_c, n_f = 4)$. Note that results are determined at a higher energy scale and then run down to \bar{m}_c using perturbation theory. Calculations are listed chronologically and divided into those obtained on gluon configurations that include 3 (blue symbol) or 4 (red symbol) flavours of quarks in the sea. Results obtained on 3 flavour configurations have in all cases been adjusted to $n_f = 4$ using perturbation theory (see the references for details of how this is done in each case). Different symbols denote different methods: open triangles, the current-current correlator (JJ) method (‘a’, ‘b’ and ‘c’ variants, see text); open diamonds use the RI-MOM intermediate scheme, open circles, the RI-SMOM intermediate scheme and open squares, the MRS scheme. Labels on the right indicate collaboration name, quark formalism and method. The result denoted ‘HPQCD HISQ RI-SMOM’ is this work, ‘FNAL/MILC/TUM HISQ MRS’ is from [22], ‘HPQCD HISQ JJ’ (red) is from [12], ‘ETMC RI-MOM’ is from [20], ‘JLQCD DW JJ’ is from [15], ‘MP(hotQCD) HISQ JJ’ from [16], ‘χQCD overlap RI-MOM’ is from [65], ‘HPQCD+ HISQ JJ’ (blue) is from [13] and ‘HPQCD+ HISQ JJ’ is from [4]. The grey shaded band indicates the world average (taking correlations into account) of the $n_f = 4$ results and the lighter shaded band shows the evaluation of 1.28(3) GeV from the Particle Data Group [66].}
\end{figure}
different scales between 2 and 5 GeV. We obtained results at different valence (Section IV B) and sea (Section IV A) quark masses and different spatial volumes (Section IV C) to understand in detail what the sources of lattice systematic uncertainty are. We find that variations with sea mass and volume are barely discernible over a large range and valence mass effects are small (in contrast to those seen in the RI-MOM intermediate scheme). We combine results for the matching factor at 3 different values of the lattice spacing with the tuned c and s HISS masses at that value of the lattice spacing obtained from the HPQCD current-current correlator calculation [12]. We are then able, by including an SMOM to $\overline{\text{MS}}$ matching factor (where we include the impact of having a non-zero c mass in the sea), to extrapolate the resulting masses in the $\overline{\text{MS}}$ scheme to the $a = 0$ continuum limit (see Section V). By having results at a range of values of the scale, μ, we are able to include a systematic uncertainty for remaining nonperturbative (condensate) contributions that depend on inverse powers of μ. These are expected to be much smaller than in the RI-MOM case, but we demonstrate their existence at several points in our calculation and they cannot be ignored. We find a residual effect of 0.2 % in our error budget from these nonperturbative contributions (see Table VI).

The values we obtain at the reference scale of 3 GeV for the c and s quark masses are:

$$m_c(3 \text{ GeV}, n_f = 4) = 0.9896(61) \text{ GeV} \quad (29)$$

$$m_s(3 \text{ GeV}, n_f = 4) = 0.08536(85) \text{ GeV}$$

These results are to be compared to those from the current-current correlator method [12] using the same formalism on the same gluon field configurations. The $\overline{\text{MS}}$ value of 0.9851(63) GeV is obtained directly in the current-current correlator method; the value of m_c of 0.0845(7) GeV (adjusting the value quoted in [12] from $n_f = 3$ to 4) uses in addition a fully nonperturbative determination of the mass ratio m_c/m_s [12]. There is good agreement between the two sets of results, within the uncertainties quoted3. The uncertainties are small (1%) in both approaches and they are not strongly correlated between them. This is because the dominant sources of uncertainty are very different in the two cases: for the RI-SMOM calculation a key source of error is that from the determination of the tuned lattice quark masses, whereas the current-current correlator method is less sensitive to those and a larger source of uncertainty is that from missing higher order terms in the continuum QCD perturbation theory for that quantity. Note that α_s can be determined in the same calculation in the current-current correlator approach and the correlation between α_s and m_c determined [12]. For this RI-SMOM calculation we must take a value of α_s from elsewhere when we need one for the SMOM to $\overline{\text{MS}}$ conversion. Both the JJ and RI-SMOM mass determinations have uncertainties from lattice discretisation effects but they appear in different ways: in the RI-SMOM method it is the quark mass itself that is extrapolated to the continuum limit; in the current-current correlator method it is the time-moments of the correlator that are extrapolated. The agreement between the two methods is then a strong additional indication that the separate sources of systematic error are well controlled.

We can run our new RI-SMOM values for \overline{m}_c and \overline{m}_s given in eq. (29) to other scales for comparison with other results. The scale used for the \overline{m}_c is often that of \overline{m}_c itself and for \overline{m}_s, 2 GeV [66]. We give these values below using

3 Note that the Z_m values quoted in [12] cannot be directly compared to those given here because they are defined to incorporate lattice spacing artefacts in a different way.
4-loop perturbative QCD running in the $\overline{\text{MS}}$ scheme to run down from the higher scales at which the masses were determined:

$$m_c(\alpha_s, n_f = 4) = 1.2757(84) \, \text{GeV},$$

$$m_s(2 \, \text{GeV}, n_f = 4) = 0.0949(96) \, \text{GeV}. \quad (30)$$

The uncertainty on the value of both m_c and m_s increase because of the uncertainty in α_s at these low scales. Quoting m_c at its own scale reduces the resulting error a little because the mass runs down as its scale goes up. The comparable results from the current-current correlator method are $1.2715(95) \, \text{GeV}$ for m_c and $0.0936(8) \, \text{GeV}$ for m_s [12].

The information that the JJ and RI-SMOM methods agree means that an average of the two results should have a reduced uncertainty. We must take care in the averaging to allow for the correlations between the two methods and we do this by dividing the uncertainty in each case into correlated and uncorrelated pieces and then fitting the two results to a constant. The correlated portion comes from the tuning of the quark mass and determination of the lattice spacing (as given in the error budget) and is taken to be 100% correlated between the two methods. The breakdown in the uncertainty is then:

$$m_c(3 \, \text{GeV}) : \quad JJ : 0.9851(22)(59) \, \text{GeV} \quad \text{SMOM} : 0.9896(32)(52) \, \text{GeV},$$

$$m_s(3 \, \text{GeV}) : \quad JJ : 0.0845(4)(6) \, \text{GeV} \quad \text{SMOM} : 0.08536(71)(47) \, \text{GeV} \quad \text{with the first uncertainty being correlated and the second uncorrelated. This corresponds to a correlation coefficient between the two results for m_c of 0.18 and for m_s of 0.47. The resulting averages are given below. The Q value for the fits were 0.6 for m_c and 0.3 for m_s.}$$

$$\langle m_c(3 \, \text{GeV}) \rangle_{JJ, \text{SMOM}} = 0.9874(48) \, \text{GeV},$$

$$\langle m_s(3 \, \text{GeV}) \rangle_{JJ, \text{SMOM}} = 0.08478(65) \, \text{GeV}. \quad (31)$$

The uncertainties are reduced by a small amount over those of the two separate values, giving a 0.8% uncertainty in m_s and a 0.5% uncertainty in m_c.

We can also run these averages down to the lower scales discussed above to give

$$\langle m_c(\alpha_s, n_f = 4) \rangle_{JJ, \text{SMOM}} = 1.2737(77) \, \text{GeV}, \quad (33)$$

$$\langle m_s(2 \, \text{GeV}, n_f = 4) \rangle_{JJ, \text{SMOM}} = 0.09385(75) \, \text{GeV}. \quad (30)$$

A. World average for $\overline{m}_c(\overline{m}_s)$

In Figure 12 we compare our results for $\overline{m}_c(\overline{m}_s, n_f = 4)$ to previous lattice QCD results. This graphically shows the agreement between the RI-SMOM results here and the directly comparable current-current correlator results (the top and third from top values in the figure). We also include a result (second from the top in the figure) obtained recently by the Fermilab Lattice, MILC and TUMQCD collaborations from a new method they have developed using the minimal renormalon-subtracted (MRS) scheme [22, 71]. This uses Heavy Quark Effective Theory to map out the heavy quark mass dependence of pseudoscalar heavy-light meson masses calculated in lattice QCD. A well-defined quark mass for this expansion is obtained by identifying and removing the leading renormalon from the perturbative expansion for the pole mass in terms of the $\overline{\text{MS}}$ mass. This MRS mass then has available a high-order continuum QCD perturbative matching to the $\overline{\text{MS}}$ scheme. Application of this method also yields 1%-accuracy and agrees, well within its uncertainty, with our JJ and RI-SMOM results.

Although the majority of results in Figure 12 have been obtained using the HISQ formalism there are results using other formalisms that demonstrate good agreement, for example the results from JLQCD using domain-wall quarks [15]. The results are divided into those obtained on gluon field configurations that include u, d, s and c quarks in the sea (as here) and those that include u, d and s quarks in the sea. Results obtained on gluon field configurations that include only u and d quarks in the sea are not shown, because it is not clear how to connect them in perturbative QCD (adding an s sea quark) to the values shown here. We see good agreement between almost all the results. The majority of accurate previous results used the current-current correlator method; the RI-MOM intermediate scheme has larger sources of systematic error for the reasons discussed in Section I. The current-current correlator results are tagged with ‘a’, ‘b’ or ‘c’ to denote different implementations of the method; this will be discussed further below.

We can provide a new world average for $\overline{m}_c(\overline{m}_s)$ allowing for correlations between the two HPQCD results by using the average given in eq. (33) and then combining in a weighted average with the ETMC result [20] and the Fermilab Lattice/MILC/TUMQCD result [22]. The ETMC result (using the RI-MOM approach in the Twisted Mass formalism), $1.348(42) \, \text{GeV}$, is nearly 2σ from the HPQCD results and uncorrelated with it. The Fermilab Lattice/MILC/TUMQCD result is $1.273(10) \, \text{GeV}$ and is correlated with the HPQCD JJ result because it uses the HPQCD determination of α_s obtained concurrently with m_c in [12]. The correlation coefficient between α_s and m_c is given there as 0.16. Since the uncertainty in the Fermilab Lattice/MILC/TUMQCD result is strongly dominated by that from α_s we apply a correlation coefficient of 0.16 between that result and the HPQCD average. The HPQCD average will be slightly less correlated with it than the JJ result alone. This allows, however, for some further correlation through the fact that all of these calculations use some of the same sets of gluon field configurations and are done with the

4 Note that there is a typographical error in that work so that the value quoted at 2 GeV is for $n_f = 4$ and not $n_f = 3$ as stated.
same quark formalism, although different lattice QCD quantities are calculated and the lattice spacing was fixed and quark masses tuned in a different way.

The weighted average of lattice QCD results including 4 flavours of sea quarks is then

$$\bar{m}_c(\overline{m_c}, n_f = 4)_{2+1+1\ \text{av.}} = 1.2753(65) \text{ GeV}, \quad (34)$$

shown as the dark shaded band on Figure 12. The average has a poor χ^2/dof of 3 because of the tension between the ETMC result, which has almost no impact on the average, and the other three values. Our dark shaded band is a somewhat narrower band than the evaluation given in the Particle Data Tables [66], shown as the lighter shaded band.

B. World average for $\bar{m}_c(2\text{GeV})$

Figure 13 provides a comparison of lattice QCD results for the s quark mass in the $\overline{\text{MS}}$ scheme at a scale of 2 GeV. Results are given for calculations with 4 flavours in the sea (as here) and also 3 flavours in the sea. There is very little difference (0.2 MeV, with $n_f=3$ larger) between these from perturbative QCD. Again results for 2 flavours in the sea are not shown since they cannot be connected perturbatively to the more realistic 3 and 4 flavour results. There is reasonably good overall agreement between results using current-current correlator methods or the MRS scheme and m_c/m_s ratios and those using RI-MOM and RI-SMOM intermediate schemes directly for m_s, as well as between results using a variety of quark formalisms. Our new RI-SMOM result, however, shows a 2.7σ tension with the earlier RI-SMOM result from RBC/UKQCD [67] using domain-wall quarks. In [67] the RI-SMOM implementation is slightly different, using the vector current vertex to fix Z_q. Two values of the lattice spacing are used but only one value of μ (3 GeV) and possible nonperturbative effects are not included in the analysis or allowed for as a systematic uncertainty.

We can determine a new world average for the results from 4 flavour calculations allowing for correlations between the two different HPQCD results and the Fermilab/MILC/TUMQCD MRS result. We combine them at 3 GeV where we have correlated the breakdown of errors in the HPQCD results in eq. (31). There we take the uncertainties associated with fitting/scale-setting from the Fermilab/MILC/TUMQCD result to be 100% correlated with the HPQCD results (an overestimate given the different methods used) but take α_s and statistical uncertainties to be uncorrelated, ignoring the relatively small correlations between the uncertainty coming from α_s (which does not dominate in this case) and a part of the HPQCD JJ errors coming from m_c. We combined this with the uncorrelated ETMC result run to 3 GeV. This average gives 0.08393(43) GeV with a χ^2/dof of 2.5. Inflating the uncertainty by $\sqrt{2.5}$ to take account of this more general tension, and running down to 2 GeV gives

$$\bar{m}_c(2\text{GeV}, n_f = 4)_{2+1+1\ \text{av.}} = 0.09291(78) \text{ GeV}. \quad (35)$$

This is given as the dark shaded band in Figure 13 to be compared to the light shaded band of the evaluation in the Particle Data Tables [66]. The Particle Data Tables result seems unduly pessimistic about our level of knowledge of the s quark mass and has a high central value, given the accuracy of lattice QCD results now available.

C. Future

Accurate though these results are, it is worth asking what the prospects are for reducing uncertainties further in the future. The original current-current correlator method (method a) [4] used lattice QCD results for quarks tuned to the c mass only and so one of the largest sources of uncertainty was from missing higher order terms in the perturbative series for time-moments because the scale of α_s was related to m_c. Subsequently (in method b) [13] heavier quark masses were included, giving access to m_b but also reducing the perturbative uncertainty because the combined fit now included α_s terms evaluated at higher scales. The newest variant, method c [12] also includes results for quarks with heavier masses than c. By making use of quark mass ratios, m_c is then determined through a perturbative series for the time-moments in which the scale of α_s is set by the heavier quark masses. This method then offers the potential to reduce the perturbative uncertainty by working on yet finer lattices where a given value of quark mass in lattice units corresponds to a higher quark mass. This will also reduce the sizeable uncertainty from the $a \to 0$ extrapolation.

For the RI-SMOM intermediate scheme method used here, the largest sources of uncertainty are those from the bare tuned lattice quark masses which in turn depend on the determination of the lattice spacing. Working on finer lattices could cut this uncertainty significantly since the lattice spacing is fixed from f_π in the continuum and physical u/d mass limit [55]. The impact of missing higher order terms in the SMOM to $\overline{\text{MS}}$ matching would be reduced by going to higher μ values and this is also possible on finer lattices. At the same time this would also reduce the impact of nonperturbative contributions since they fall rapidly with μ.

In conclusion, lattice QCD now has three very different methods for determination of quark masses at an accuracy of 1% or better. They yield consistent results for $\bar{m}_c(\overline{m_c})$ and $\bar{m}_s(2\text{GeV})$. We have given here a particularly strong test of the consistency of the current-current correlator and RI-SMOM methods. Lattice QCD calculations are then well on the way to providing the accuracy needed for stringent future tests of the Standard Model.

Acknowledgements

We are grateful to the MILC collaboration for the use of their configurations and their code. We thank E. Fol-
lana and E. Royo-Amondarain for fixing the superfine configurations. Computing was done on the Darwin supercomputer at the University of Cambridge High Performance Computing Service as part of the DiRAC facility, jointly funded by the Science and Technology Facilities Council, the Large Facilities Capital Fund of BIS and the Universities of Cambridge and Glasgow. We are grateful to the Darwin support staff for assistance. Funding for this work came from the National Science Foundation, the Royal Society, the Science and Technology Facilities Council and the Wolfson Foundation.

Appendix A: Perturbative matching from SMOM to $\overline{\text{MS}}$ for non-zero sea quark mass

We have defined our SMOM scheme to have massive sea quarks so that we can work at physical sea quark masses. We then need a perturbative matching from SMOM to the $\overline{\text{MS}}$ scheme that allows for massive sea quarks. Sea quarks do not appear in the matching calculation until $O(\alpha_s^2)$ and even then they contribute only a very small part to that coefficient. Given the very small changes that we expect, we need only to consider the case of the most massive sea quark that we have, i.e. the c quark. We work close to the physical mass for c and this in turn (in the $\overline{\text{MS}}$ scheme) is a sizeable fraction of μ for the μ values that we use. We might therefore expect the $\alpha_s^2 \mu^2$ coefficient from the c quark in the sea to be significantly different from that for a massless c quark. Our results show that indeed this is true for μ close to our lower value of 2 GeV but even so this has very little impact on $Z_m^{\overline{\text{MS}}/\text{SMOM}}$.

The two-loop coefficient c_2 of eq. (8) can be decomposed into two terms: a contribution which is free of internal sea quarks, $C_{n_f=0}$, and a contribution which depends on them, $C_{n_f}(m)$. It can be written as
\[
c_2 = \frac{1}{(4\pi)^2} \left[C_{n_f=0} + C_F T_F n_f C_{n_f}(m) \right],
\]
where $C_F = 4/3$ and $T_F = 1/2$ are the usual colour factors. The two-loop coefficient $C_{n_f=0}$ of $Z_m^{\overline{\text{MS}}/\text{SMOM}}$ as well as the piece $C_{n_f}(m = 0)$ which is proportional to the number of massless sea quarks has been determined in [25, 26]. The result for $C_{n_f}(m = 0)$ reads
\[
C_{n_f}(m = 0) = \frac{83}{6} + \frac{40}{27} \pi^2 - \frac{20}{9} \Psi'\left(\frac{1}{2}\right) = 6.020..., \tag{A2}
\]
where Ψ' is the derivative of the digamma function. For a massive internal quark the result for $C_{n_f}(m \neq 0)$ depends on the ratio μ^2/m^2. For very heavy quarks $m \gg \mu$ the result for $C_{n_f}(m \neq 0)$ can be obtained in terms of an expansion in μ^2/m^2 where the leading term reads
\[
C_{n_f}(m) = -\frac{89}{18} \log \left(\frac{\mu^2}{m^2}\right) \left[\frac{26}{3} + \frac{8}{9} \pi^2 - \frac{4}{3} \Psi'\left(\frac{1}{2}\right) \right] - 2 \log^2 \left(\frac{\mu^2}{m^2}\right) + O\left(\frac{\mu^2}{m^2}\right) \text{ for } m \to \infty. \tag{A3}
\]
It can be derived with the help of the QCD decoupling functions. In order to access the complete mass dependence, we also have calculated the exact result, which is valid in any mass region. It is plotted in Figure 14. We have checked by computing power corrections in μ^2/m^2 to eq. (A3) that the expansion coincides as expected with the exact result for large values of m.

If we take $m_c^2(3 \text{ GeV})$ from [12], then the value of the ratio $\mu^2/m^2(\mu)$ for $\mu = 2, 2.5, 3, 4$ and 5 GeV reads $\mu^2/m^2(\mu) = 3.4, 5.9, 9.3, 18.6 \text{ and } 31.5$. Table VII gives the resulting shifts ΔC_m in C_{n_f} from the $m = 0$ result to the result that we need, which includes a massive c quark, at these five values of μ.

We also give the resulting shift Δc_2 in c_2 of eq. (A1). We can see from Table VII that the only significant effect

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
μ (GeV) & ΔC_m & Δc_2 & $\alpha_{\overline{\text{MS}}}(\mu, n_f = 4)$ \\
\hline
2 & -3.6 & -0.015 & 0.3030(54) \\
2.5 & -2.3 & -0.010 & 0.2741(43) \\
3 & -1.6 & -0.007 & 0.2545(37) \\
4 & -0.9 & -0.004 & 0.2291(29) \\
5 & -0.5 & -0.002 & 0.2128(25) \\
\hline
\end{tabular}
\caption{Changes to the α_s^2 coefficient of the perturbative matching factor $Z_m^{\overline{\text{MS}}/\text{SMOM}}$ as a result of having a massive c quark in the sea. The second column gives the change in C_{n_f}, i.e. $\Delta C_m = C_{n_f}(m) - C_{n_f}(m = 0)$ (for $n_f = 4$); the third column gives the change in the α_s^2 coefficient c_2 (eq. (8) and Table I) for five different values of the scale parameter, μ, which is given in the first column. In the fourth column we give values for $\alpha_{\overline{\text{MS}}}$ at each value of μ. These are obtained by four-loop running in the $\overline{\text{MS}}$ scheme from a value of 0.2128(25) at a scale of 5 GeV with $n_f = 4$ [12].}
\end{table}
is for \(\mu = 2 \text{ GeV} \) where the shift is about 40\% of the \(\alpha_s^2 \) coefficient. This coefficient is very small, however, and so the impact of this shift is also very small, less than about -0.2\% on \(Z_m^{\text{MS/SMOM}} \). We use the results in Table VII to shift the values of \(Z_m^{\text{MS/SMOM}} \) used in order to convert our SMOM results to the MS scheme in Section V.

Appendix B: OPE for the scalar vertex operator

The operator

\[
\hat{A}_S \equiv -\int d^4 x d^4 y e^{i p' \cdot y - i p \cdot x} \langle \bar{\psi}(y) \psi(x) \rangle S^{-1}(p)
\]

has vacuum expectation value \(\text{Tr} \hat{A}_S \langle p, p' \rangle /12 \) that we use to define \(Z_S \) in eq. (6). Here \(a \) and \(b \) are colour indices (summed over). For the symmetric kinematic configuration that we use, \(p^2 = \langle p' \rangle^2 = (p - p')^2 = -\mu^2 \) with \(\mu \) large, the operator is truly short-distance and has an OPE expansion in terms of local operators of increasing dimension multiplying inverse powers of \(\mu \):

\[
\hat{A}_S = c_1(\mu) \mathbf{1} + c_{A_2}^\Sigma(\mu) \frac{A^2}{\mu^2} + \ldots
\]

On taking the vacuum expectation, the first term yields the perturbative expansion and the second and higher terms give power-suppressed nonperturbative contributions. To determine the coefficients of these latter terms, matrix elements of \(\hat{A}_S \) can be taken between states for which the \(\mathbf{1} \) operator gives zero. For example, the scattering amplitude between low-momentum gluon fields with \(k^2 \to 0 \) and \(k \cdot \varepsilon = 0 \) can be evaluated for both sides of the OPE. The left-hand side gives

\[
\langle \hat{A}_S \rangle = -\pi \alpha_s C_F \int_k \text{Tr} \left[\gamma_\rho \gamma_\mu - i \frac{i}{p} \gamma_\mu - i \frac{i}{k} \gamma_\rho - i \frac{i}{m} \gamma_\sigma \right] \varepsilon_1^\rho \varepsilon_2^\sigma
\]

\[
= \frac{\pi \alpha_s C_F}{\mu^2} \text{Tr} \left[\gamma_\rho \gamma_\mu - i \frac{i}{p} \gamma_\mu - i \frac{i}{k} \gamma_\rho - i \frac{i}{m} \gamma_\sigma \right] \varepsilon_1^\rho \varepsilon_2^\sigma
\]

\[
= -\frac{2 \pi \alpha_s C_F}{\mu^2} \varepsilon_1 \cdot \varepsilon_2
\]

in agreement with results (for the expansion of the quark propagator) in [36, 63, 64].

We use the ratio of vacuum matrix elements of \(\hat{A}_S \) and \(\hat{\Sigma} \) to define \(Z_m \) in eq. (6). Hence the leading condensate contribution in \(Z_m \) has coefficient at \(O(\alpha_s) \) of \(c_{A_2}^\Sigma - c_{A_2}^\Sigma \), i.e. \(2 \pi \alpha_s / 3 \).

[1] G. P. Lepage, P. B. Mackenzie, and M. E. Peskin, (2014), arXiv:1404.0319 [hep-ph].
[2] Q. Mason, H. Trotter, and R. Horgan, Proceedings, 23rd International Symposium on Lattice field theory (Lattice 2005): Dublin, Ireland, Jul 25-30, 2005, PoS LAT2005, 011 (2006), arXiv:hep-lat/0510053 [hep-lat].
[3] Q. Mason, H. Trotter, R. Horgan, C. T. H. Davies, and G. P. Lepage (HPQCD), Phys. Rev. D73, 114501 (2006), arXiv:hep-ph/0511160 [hep-ph].
[4] I. Allison et al., Phys. Rev. D78, 054513 (2008), arXiv:0805.2999 [hep-lat].
[5] K. Chetyrkin, J. H. Kuhn, and C. Sturm, Eur.Phys.J. C48, 107 (2006), arXiv:hep-ph/0604234 [hep-ph].
[6] R. Boughezal, M. Czakon, and T. Schutzmeier, Phys.Rev. D74, 074006 (2006), arXiv:hep-ph/0605023 [hep-ph].
[7] C. Sturm, JHEP 09, 075 (2008), arXiv:0805.3358 [hep-ph].
[8] A. Maier, P. Maierhofer, and P. Marquard, Phys.Lett. B669, 88 (2008), arXiv:0806.3405 [hep-ph].
[9] A. Maier, P. Maierhofer, P. Marquard, and A. Smirnov, Nucl.Phys. B824, 1 (2010), arXiv:0907.2117 [hep-ph].
[61] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B400, 379 (1997), arXiv:hep-ph/9701390 [hep-ph].

[62] M. Czakon, Nucl. Phys. B710, 485 (2005), arXiv:hep-ph/0411261 [hep-ph].

[63] M. J. Lavelle and M. Schaden, Phys. Lett. B208, 297 (1988).

[64] M. Lavelle and M. Oleszczuk, Mod. Phys. Lett. A7, 3617 (1992).

[65] Y.-B. Yang et al., Phys. Rev. D92, 034517 (2015), arXiv:1410.3343 [hep-lat].

[66] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 100001 (2016).

[67] T. Blum et al. (RBC, UKQCD), Phys. Rev. D93, 074505 (2016), arXiv:1411.7017 [hep-lat].

[68] S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert, Phys. Lett. B701, 265 (2011), arXiv:1011.2403 [hep-lat].

[69] S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert, JHEP 08, 148 (2011), arXiv:1011.2711 [hep-lat].

[70] G. C. Donald, C. T. H. Davies, R. J. Dowdall, E. Foliana, K. Hornbostel, J. Koponen, G. P. Lepage, and C. McNeile (HPQCD), Phys. Rev. D86, 094501 (2012), arXiv:1208.2855 [hep-lat].

[71] N. Brambilla, J. Komijani, A. S. Kronfeld, and A. Vairo (TUMQCD), Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph].