REVIEW

Recent advances in mast cell activation and regulation [version 1; peer review: 2 approved]

Hwan Soo Kim1,2, Yu Kawakami1, Kazumi Kasakura1, Toshiaki Kawakami1,3

1Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
2Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
3Department of Dermatology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA

Abstract
Mast cells are innate immune cells that intersect with the adaptive immunity and play a crucial role in the initiation of allergic reactions and the host defense against certain parasites and venoms. When activated in an allergen- and immunoglobulin E (IgE)-dependent manner, these cells secrete a large variety of allergenic mediators that are pre-stored in secretory granules or \textit{de novo} synthesized. Traditionally, studies have predominantly focused on understanding this mechanism of mast cell activation and regulation. Along this line of study, recent studies have shed light on what structural features are required for allergens and how IgE, particularly anaphylactic IgE, is produced. However, the last few years have seen a flurry of new studies on IgE-independent mast cell activation, particularly via Mrgprb2 (mouse) and MRGPRX2 (human). These studies have greatly advanced our understanding of how mast cells exert non-histaminergic itch, pain, and drug-induced pseudoallergy by interacting with sensory neurons. Recent studies have also characterized mast cell activation and regulation by interleukin-33 (IL-33) and other cytokines and by non-coding RNAs. These newly identified mechanisms for mast cell activation and regulation will further stimulate the allergy/immunology community to develop novel therapeutic strategies for treatment of allergic and non-allergic diseases.

Keywords
Allergy, mast cells, allergen, IgE, FceRI, MRGPRX2, IL-33, miRNA

Open Peer Review

Reviewer Status ✔ ✔

Invited Reviewers
\begin{tabular}{c}
1 \\
2
\end{tabular}

version 1
19 Mar 2020

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1 Jiro Kitaura, Juntendo University, Tokyo, Japan
2 Cem Akin, University of Michigan, Ann Arbor, USA

Any comments on the article can be found at the end of the article.
Introduction

Mast cells (MCs) play a crucial role in allergic reactions and the host defense against certain parasites, bacteria, and venoms. Morphologically, MCs are featured by a large number of secretory granules containing various bioactive molecules, including histamine, serotonin, proteoglycans, and proteases. Upon encounter with multivalent antigen (or allergen), antigen-specific immunoglobulin E (IgE)-bound high-affinity IgE receptors (FceRI) on the surface of MCs are cross-linked or aggregated. Consequently, activation of the FceRI signaling system is triggered, leading to the release of granular contents (degranulation) and de novo synthesis and secretion of lipid mediators, cytokines, and chemokines. Activation of MCs entails immediate hypersensitivity and late-phase allergic inflammation. With regard to the IgE-mediated MC activation, recent years have seen a deeper understanding of IgE synthesis, structural features of allergens, FcεRI signaling mechanisms, and counter-mechanisms. Non-IgE-dependent MC activation mechanisms have been studied at a slow pace for many years. However, we have witnessed significant progress in this area more recently.

Murine MCs are classified as connective tissue MCs (CTMCs) and mucosal MCs (MMCs) on the basis of their tissue distribution. CTMCs and MMCs are also characterized by the heparin content of their granules: CTMCs contain a large amount of heparin in their granules, whereas MMCs have very little or no heparin. Human MC proteases include tryptases (mMCP-6 and -7 in mouse), chymases (mMCP-1, -2, and -4), an elastase (mMCP-5), and a carboxypeptidase-A3 (CPA3). Human MCs are categorized by expression of MC tryptase (MCΔe) or MC chymase (MCΔc) or both (MCΔmc). A recent transcriptional analysis demonstrated that the MC is one of the most transcriptionally variable cell types of the immune system. Murine MCs that were purified from different tissues shared an “MC-specific” transcriptional signature of at least 100 genes. Also, these MCs showed a tissue-specific regulation of their transcriptomes.

Substantial progress has recently been made in several areas of MC research, such as degranulation machinery, cancer, microbiota, and food allergy. Readers interested in these topics are referred to recent review articles.

Allergen, immunoglobulin E, and FceRI

A comprehensive understanding of the IgE-mediated MC activation requires a better knowledge of allergens, IgE synthesis and structure, and FceRI structure and signaling pathways. Here, we highlight recent advances in this area, particularly allergens and IgE synthesis. We certainly know three-dimensional structures of many parts of IgE and FceRI (composed of an IgE-binding α and receptor-stabilizing and signal-amplifying β and activation signal-triggering γ subunits) and important principles in signaling, such as tyrosine phosphorylation of β and γ subunits at the immunoreceptor tyrosine-based activation motif (ITAM) by Src family kinases, the essential functions of Syk, Ca2+ influx, several adaptor molecules, mitogen-activated protein kinases (MAPKs), and several transcription factors.

However, we feel obliged to note that our understanding of FceRI signaling pathways is still in the early stages in light of an incomplete understanding of degranulation processes and a large number of genes regulated by MC activation.

One of the most important hypotheses on structural features of allergens stemmed from the requirement of cross-linking of cell surface IgE molecules by various allergens for MC activation and IgE synthesis. This line of thinking led Jensen-Jarolim et al. to recognize that allergens display repetitive motifs, which they designate allergen-associated molecular patterns (AAMPs). Indeed, many allergenic molecules occur as dimers or multimers.

Allergen, immunoglobulin E, and FcεRI

Recent studies have shown that T follicular helper (Tfh) cells are the primary T-cell subset responsible for IgE responses. Interleukin-4 (IL-4) is required to generate and sustain IgE production in mice. In response to allergens, T helper type 2 (Th2) and Tfh cells show unique cytokine responses, tissue localization, and phenotypes. In vivo, Tfh cells assist the sustained production of IgE antibody. But conditional deficiency of Bcl6, the master regulator of Tfh, in CD4+ T cells results in a significant decrease in IgE antibody levels and Tfh cell numbers. However, eosinophilic inflammation and type 2 cytokine responses in the airways are not affected. Thus, Th2-derived IL-4, but not Th2-derived IL-4, is necessary for IgE production. Gouthaman et al. recently discovered a new Tfh subset in mice with T cell-specific Dock8 deficiency. These mice made allergen-specific anaphylactic IgE with the help of cytokines, chemokines, and growth factors.
of an IL-4– and IL-13–producing Th2 cell population called Thh13 cells. Thh13 cells have an unusual cytokine profile (IL-13 IL-4 IL-5 IL-21) and co-express the transcription factors Bcl6 and GATA3. These cells are required for production of high but not low-affinity IgE and subsequent allergen-induced anaphylaxis. Single-cell RNA sequencing analysis confirmed that Thh13 cells are distinct from related Th2 or IL-4–expressing Thh2 cells. Conditional ablation of Thh13 cells or isolated loss of IL-13 in Thh cells resulted in impaired anaphylactic IgE responses to allergens. Thus, blocking Thh cells might represent a therapeutic means to ameliorate anaphylaxis.

We have known effects of monomeric IgE on FcεRI surface levels and on survival of MCs in the absence of allergen for a long time. A recent study showed that IL-3 but not monomeric IgE regulates FcεRI expression and cell survival in primary human basophils, in contrast to human and murine MCs.

Mast cell activation by interleukin-33

IL-33 belongs to the IL-1 family and is expressed by several cell types, including epithelial cells. IL-33 binds to a specific receptor called T1/ST2 (ST2) that belongs to the Toll-like receptor/IL1R family. ST2 forms heterodimers with the IL-1 receptor accessory protein (IL-1RACP), namely a transmembrane form (ST2 or ST2L) and a soluble form (sST2). ST2L isoform is expressed on MCs, basophils, Th2 cells, and natural killer cells and coordinates spatially and temporally with IL-33 signaling, which might trigger a key regulatory amplification loop involved in immune homeostasis. IL-33 is considered an alarmin as it is released after necrosis or tissue damage. However, apoptosis leads to the inactivation of IL-33 by cleavage of IL-33 by caspases. In contrast, MC serine proteases cleave the full-length IL-33 (IL-33) and liberate active forms: IL-33, IL-33, and IL-33. These cleaved forms have 10 times greater potency than the full-length protein. MC chymase also degrades IL-33 that leads to higher bioactivity. Downstream of ST2, the IL-33–mediated signaling pathway involves MyD88, IRAK1, IRAK4, and TRAF6 as well as activation of MAPKs (ERK1/2, p38, and JNK1/2) and nuclear factor-kappa B (NF-kB).

IL-33 can induce full activation of MCs, including degranulation and production of several cytokines and chemokines, and elicits systemic MC-dependent anaphylaxis. Several studies have shown that IL-33 plays a significant role in severe asthma and refractory nasal polyposis. Earlier studies have been summarized in excellent reviews. Here, we touch on newer reports that showed a possible role of IL-33 in various allergic conditions: IL-33–mediated airway constriction was exacerbated through increased secretion of serotonin from MCs. *Staphylococcus aureus*–derived serine protease-like protein (Sph) D is a potent allergen and induces a Th2-biased inflammatory response in the airways in an IL-33–dependent manner. Aspirin-exacerbated respiratory disease (AERD) is a severe eosinophilic disorder of the airways and is characterized by overproduction of cysteinyl leukotrienes, activation of airway MCs, and bronchoconstriction in response to non-selective cyclooxygenase inhibitors that deplete prostaglandin E (PGE) (Figure 1). A study using clinical samples and mice deficient in PGE synthase (a model of AERD) found up-regulation of IL-33 in airway epithelium. Deletion of leukotriene C4 synthase in the AERD model mice eliminates the increased IL-33, lung eosinophilia, and aspirin-induced MC activation and bronchoconstriction. MCs have been shown to play a crucial role in a model of skin inflammation by IL-33–mediated recruitment of leukocytes and resulting inflammation in an MK2/3 (MAPK-activated protein kinases 2 and 3)–dependent manner. In a murine model of food allergy, IL-33 and MCs promote inflammation in the gastrointestinal tract through IL-4 production by IL-33–stimulated ILC2s, as IL-4 blocks the generation of allergen-specific regulatory T (Treg) cells.

However, on the positive side, IL-33 and MCs play a protective role in intestinal helminth infections by activating IL-2, leading to helminth expulsion. MCs can ameliorate IL-33–mediated inflammatory effects under certain circumstances. Stimulation of MCs with IL-33 in the absence of IgE cross-linking can induce Treg cell expansion by producing IL-2 and reduce the inflammation in a papain-induced innate-type airway inflammation model.

Mast cell activation via Mrgprb2/MRGPRX2

Mas-related G protein–coupled receptor-X2 (MRGPRX2) has been the hottest receptor in MC research over the last few years. Mrgprb2 is the murine ortholog of MRGPRX2. Under homeostatic conditions, CTMCs in the skin and peritoneum of mice express Mrgprb2, whereas MMCs do not express Mrgprb2. Mrgprb2/MRGPRX2 recognizes a wide range of cationic molecules, including substance P (SP), basic secretagogues (for example, compound 48/80), numerous US Food and Drug Administration–approved drugs, and endogenous protein fragments. Mrgprb2/MRGPRX2–mediated activation of MCs by these ligands results in their rapid degranulation of individual granules and MC-dependent local inflammation, whereas FcεRI-elicited secretion is delayed but progressive and is characterized by granule-to-granule fusions.

MRGPRX2 has been implicated in allergic and chronic inflammatory diseases. LL-37, the cathelicidin peptide and MRGPRX2 agonist, is up-regulated in rosacea, and MCs play a key role as the primary source of LL-37 in a murine model of rosacea. The pathology in asthma and urticaria correlates with MC-specific expression of MRGPRX2. Mrgprb2 inactive mutant mice show reduced itch in multiple models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder. MC numbers and PAMP1-20 (MRGPRX2 agonist) concentrations are increased in human ACD skin, which is associated with pathogenic CD8 T-cell responses. MCs are found in close proximity to peripheral nerve endings. Atopic dermatitis, another pruritic skin disease, has been studied by using a mouse model sensitized and challenged with HDMs in the presence of staphylococcal enterotoxin B. Using this model, a recent study shows that HDMs with cysteinyl protease activity directly activate peptidergic nociceptors on sensory neurons expressing the ion channel TRPV1 and
Tac1 (gene encoding the precursor for SP)\(^7\). HDM-activated nociceptors drive the development of allergic skin inflammation by SP/Mrgprb2-mediated activation of MCs\(^7\). Another study indicates that activation of the natriuretic polypeptide b (Nppb)-expressing class of sensory neurons elicits scratching responses in mice\(^7\). Interestingly, however, Nppb\(^+\) neurons express receptors for leukotrienes, serotonin and sphingosine-1-phosphate, and these receptors induce itch by the direct activation of Nppb\(^+\) neurons and neurotransmission through the canonical gastrin-releasing peptide-dependent spinal cord itch pathway\(^7\). Mrgprb2/MRGPRX2 is also involved in inflammatory mechanical and thermal hyperalgesia\(^8\). In this case, SP activates MCs via Mrgprb2/MRGPRX2 to release multiple pro-inflammatory cytokines and chemokines, which facilitate the migration of immune cells. It is noteworthy that SP-mediated activation of MCs does not involve its canonical receptor, neurokinin 1 receptor (NK-1R). However, activation of NK-1R by hemokinin-1 likely contributes to allergic airway inflammation in mice, whereas activation of the human MC line LAD-2 by hemokinin-1 requires MRGPRX2. MRGPRX2 expression is upregulated in lung MCs from patients with lethal asthma\(^9\).

Studies of Mrgprb2/MRGPRX2-mediated MC activation have been extended to their new ligands, signal transduction, effects of other MC modulators, and so on. For example, compound 48/80, AG-30/5C (angiogenic defense peptide), and icatibant (bradykinin B2 receptor antagonist) all activate pertussis toxin-sensitive G proteins, but only compound 48/80 activates β-arrestin\(^9\). The same study also found resveratrol (polyphenolic compound in peanuts, grapes, red wine, and some berries) as an inhibitor of MRGPRX2. As the FcεRI signaling is initiated by tyrosine phosphorylation with Src, Syk, and Tec family kinases while Mrgprb2 and MRGPRX2 are G protein–coupled receptors, FcεRI- and MRGPRX2-stimulated pathways are completely independent of each other\(^9\). Stem cell factor (SCF) and IL-4, which are the two main MC differentiation and growth factors, negatively regulate MRGPRX2 expression in human skin MCs, whereas SCF promotes allergic stimulation via FcεRI\(^9\). In contrast, pre-incubation (20 minutes) of human MCs with IL-33 or IL-6 or both does not affect their activation with SP, whereas such priming, particularly that with both IL-33 and IL-6, enhances IgE/allergen-mediated MC activation\(^9\). Another study shows that chronic exposure (5 weeks) of human MCs to IL-33 reduces FcεRI expression and responsiveness to its aggregation\(^9\). Short-term (30 minutes) pre-incubation with IL-33 enhances MRGPRX2-mediated degranulation by SP or compound 48/80 without changing MRGPRX2 expression, whereas chronic (5 weeks) pre-treatment with IL-33 reduces...
mRNA and protein expression of MRGPRX2 and its function. MCs are also required for cardiac fibrosis in multiple animal models. Interestingly, NK-1R expression in MCs is not required in cardiac fibrosis. It should be tested whether Mrgprb2 is involved in this process.

MicroRNA and mast cell biology

MicroRNA (miRNA), a small non-coding RNA molecule that is 19 to 25 nucleotides in length, functions in post-transcriptional regulation and RNA silencing of gene expression. miRNAs work by base pairing with complementary sequences inside of mRNA molecules. Because of the broad regulatory mechanisms, miRNAs regulate differentiation, proliferation, survival, apoptosis, stress response, and the effector function as well as the resolution of an immune response.

Numerous studies have examined the role of miRNAs in MC biology (Table 1). Silencing of Dicer, a key enzyme of miRNA biogenesis, attenuates degranulation, indicating that miRNAs are involved in MC activation. Overexpression of mir-142-3p, which rescues Dicer expression, enhances FcεRI-mediated degranulation in MCs. IgE/antigen stimulation of bone marrow–derived MCs induces up- or down-regulation of several miRNAs, which affects mRNA expression of some key signaling molecules, including Lyn, Vav3, and Csf2. miR-155 plays a critical role in FcεRI-mediated MC responses by modulating components of the PI3K pathway, and miR-155-deficient mice show enhanced anaphylaxis. Down-regulation of miR-155 in MCs is also involved in suppression of IL-33–induced inflammation by lactic acid or of IL-33–induced IL-6 production in MCs. As a basis of IL-10–mediated MC regulation, IL-10–induced miR-155 expression enhances protease and cytokine production in MCs by suppressing SOCS1, a suppressor of cytokine signaling. A novel miRNA let-7i inhibits MC degranulation by suppressing expression of Exoc8, which is an exocytosis-related gene. MiR-126 accelerates IgE-mediated MC degranulation, which is associated with PI3K/Akt activation and increased Ca\(^{2+}\) influx. MiR-223 reduces IL-6 secretion in MCs by inhibiting the IGF1R/PI3K signaling pathway. Expression of miR-210 and miRNA-132/212 cluster is increased by IgE-mediated MC activation. MiR-21 inhibits MC degranulation by inhibiting the p38 pathway in a murine model of ACD. MiR-221-222 is up-regulated in MC stimulation and regulates the cell cycle by...

miRNA	Trigger	miRNA effect on mast cells	Target mRNA	References
miR-142	FcεRI	Increase degranulation		81
miR-155	FcεRI	Increase degranulation	PI3K	84–87
	IL-33	Ca\(^{2+}\) influx with degranulation	SOCS1	
	IL-10	Increase cytokine production		
		Increase cytokine production		
Let-7i		Decrease degranulation	Exoc8	88
miR-126	FcεRI	Decrease degranulation		
miR-223	FcεRI	Decrease granulation and interleukin-6 (IL-6) release	IGF1R	90
miR-210	FcεRI	Decrease granulation		91
miR-132/212	FcεRI	Decrease granulation with IL-12 production	HB-EGF	91
miR-21	Allergic inflammation	Decrease degranulation and IL-12 production	IL-12p35	92
miR-221/222	FcεRI	Regulate proliferation and cell cycle	p27\(^{kip1}\), PTEN	93–95
miR-302e	FcεRI	Decrease cytokine secretion	RelA	96
miR-146	FcεRI	Reduces activation	TRAF6, IRAK1	97–99
miR-20a	PMA/IONO	Activate mast cells (MCs)	IL-13Rα1	100
miR-4443	T cell–derived microvesicle	Increase ERK phosphorylation and IL-8 release	PTPRJ	102–108
miR-490	HCV-E2	Inhibits tumor metastasis		109
miR-9		Increase invasion of neoplastic MCs		110
miR-122	Tumor response	Decrease activation	SOCS1	111
inhibiting p27Kip1 expression26,27. MiR-221-3p, which is markedly increased in asthmatics, up-regulates IL-4 secretion from MCs by targeting phosphatase and tensin homolog (PTEN) as well as activation of p38 and NF-κB. MiR-30e negatively regulates RelA/p65 expression in MCs and ameliorates allergic inflammation through inhibition of the NF-κB signaling pathway30. MiR-143 and miR-146 reduce MC activation by targeting IL-13Rα1 and TRAF/IRAK, respectively, leading to a reduced allergic response100–101. miR-20a inhibits expression of tumor necrosis factor (TNF), IL-1β, and interferon gamma (IFN-γ) while promoting IL-10 in HMC-1 human MCs. miR-20a also targets histone deacetylase 4 (HDAC4), which contributes to the epigenetic regulation of IL-10 expression104.

Shefler et al. showed that MCs are activated by interaction with activated T cells or their microvesicles (mvT*s)105,106. The physical contact of MCs with activated T cells or with mvT*s induces Ras activation and ERK phosphorylation, leading to degranulation and release of several cytokines in MCs106–110. The same group later found that miR-4443 in mvT*s targets the expression of protein tyrosine phosphatase receptor type J (PTPRJ), a known ERK inhibitor111. Several miRNAs that play a role in cancer have recently been discovered: miR-9 increases the invasion of neoplastic MCs112. miR-122 targets SOCS1 mRNA and regulates cellular interactions involving cancer cells, MCs, and macrophages during allergic inflammation111. Exosomal miRNAs have emerged as mediators of the interaction between MCs and tumor cells. MCs can inhibit hepatocellular carcinoma cell metastasis by inhibiting the ERK1/2 pathway by transferring the exosomal shuttle microRNAs, including miR-490, into hepatocellular carcinoma cells113.

Perspectives on mast cells in diseases

Traditionally, MCs have been implicated in allergic diseases. Efficacy of omalizumab—humanized anti-IgE monoclonal antibody (mAb)—and mAbs targeting Th2 cytokines or Th2 cytokine receptors for the treatment of asthma and other allergic diseases supports crucial pathogenic roles for MCs in these diseases115–117. Among the mAbs targeting cytokine/receptors, the most illustrative example is dupilumab (mAb for IL4Rα, the subunit shared by IL-4 and IL-13 receptors). This mAb blocks the functions of both IL-4 and IL-13 and is highly efficacious for the treatment of atopic dermatitis118 and asthma119,120. However, effects of dupilumab likely reflect pleiotropic functions of IL-4 and IL-13 in immune and non-immune cells.

MCs are considered an important player in inflammation-associated diseases in general, as recent studies have extended their potential role in other diseases. For example, MCs seem to be involved in gastrointestinal diseases such as inflammatory bowel disease, celiac disease, and irritable bowel syndrome121. The phenotype and the activation status of MCs rather than the absolute numbers in the intestinal mucosa are important for the development and progression of the diseases122. MCs might also play a role in atherosclerosis. Immunohistochemical studies in autopsied human subjects and studies in murine atherosclerotic models have collectively provided evidence that the compounds released by activated MCs might promote atherogenesis at various stages during the development of atherosclerotic lesions123. MCs can be pro-tumorigenic and anti-tumorigenic4,124. A recent study found that immune cells such as MCs, tumor-associated neutrophils, tumor-infiltrating macrophages, and myeloid-derived suppressor cells promote prostate cancer via various types of intercellular signaling125. With regard to neural diseases, MCs might contribute to modulate the intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front126. Preclinical evidence suggests that the intestinal microbiota contributes significantly to behavioral and mood disorders. Microbiotic conditions have been linked to pain, anxiety, stress, and depression in humans126. Far from being substantiated by other studies, symptoms of autism spectrum disorder might also be caused by the mediators derived from MCs which could activate microglia, causing localized inflammation127. MCs might play a significant role as a neuroimmune connection between these components. The next decade might see unexpected developments in MC research and their clinical translations.

References

1. Peijler G, Abrink M, Ringvall M, et al.: Mast cell proteases. Adv Immunol. 2007; 95: 167–255. Published Abstract | Publisher Full Text
2. Dwyer DF, Barrett NA, Austen KF.: Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol. 2016; 17(7): 879–87. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
3. Klein O, Sag-Elisenberg R: Anaphylactic Degranulation of Mast Cells: Focus on Compound Exocytosis. J Immunol Res. 2019: 2019: 9542656. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
4. Varricchio G, Gaido MR, Loffredo S, et al.: Are Mast Cells MASTers in Cancer? Front Immunol. 2017; 8: 424. Published Abstract | Publisher Full Text | Free Full Text
5. Igawa S, Di Nardo A: Skin microbiome and mast cells. Transl Res. 2017; 184: 68–76. Published Abstract | Publisher Full Text | Free Full Text
6. Zuan I, Secco C, Frossi B: Mast cells at the crossroads of microbiota and IBD. Eur J Immunol. 2018; 48(12): 1829–37. Published Abstract | Publisher Full Text
7. Yu W, Freeland DMH, Nadeau KC: Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol. 2016; 16(12): 751–65. Published Abstract | Publisher Full Text | Free Full Text
8. Tordesillas L, Berin MC, Sampson HA: Immunology of Food Allergy. Immunity. 2017; 47(1): 32–50. Published Abstract | Publisher Full Text
9. Kinet JP: The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol. 1999; 17: 931–72. Published Abstract | Publisher Full Text
10. Gould HJ, Sutton BJ, Beavil AJ, et al.: The biology of IgE and the basis of allergic disease. Annu Rev Immunol. 2003; 21: 579–628. Published Abstract | Publisher Full Text
11. Gilliland AM, Tkaczyk C: Integrated signalling pathways for mast-cell activation.
family member, is expressed in human adipocytes. Biochim Biophys Res Commun 2009; 384(1): 109-9.

12. Gillifan AM, Rivera J: The tyrosine kinase network regulating mast cell activation. Immunol Rev 2009; 228(1): 149-69. PubMed Abstract | Publisher Full Text | Free Full Text

13. Jensen-Jarolim E, Metchcherianova D, Pali-Schöll I: Cancer and IgE. Introducing the Concept of AllergyOncology. (eds E. Jensen-Jarolim & Penichet M.L.) Springer, 2010: 231-254. PubMed Abstract | Publisher Full Text | Free Full Text

14. Pali-Schöll I, Jensen-Jarolim E: The concept of allergen-associated molecular patterns (AAMP). Curr Opin Immunol. 2016; 42: 113-8. PubMed Abstract | Publisher Full Text

15. Yang Z, Sullivan BM, Allen CD: Fluorescent in vivo detection reveals that IgE(B) cells are restrained by an intrinsic cell fate predisposition. Immunity. 2012; 36(5) 857-72. PubMed Abstract | Publisher Full Text | F1000 Recommendation

16. He JS, Meyer-Hermann M, Xiangying D, et al.: The distinctive germinal center phase of IgE-B lymphocytes limits their contribution to the classical memory response. J Exp Med. 2013; 210(12): 2755-71. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

17. Laffleur B, Duchez S, Tarte K, et al.: Self-Restrained B Cells Arise following Membrane IgE Expression. Cell Rep. 2015; 18(6): 990-8. PubMed Abstract | Publisher Full Text

18. He JS, Narayanan S, Subramaniam S, et al.: Biology of IgE production: IgE cell differentiation and the memory of IgE responses. Curr Top Microbiol Immunol. 2015; 388: 1-19. PubMed Abstract | Publisher Full Text

19. Kong H, Dolpady J, Wabi M, et al.: Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med. 2012; 209(2): 363-64. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

20. Hanikuda F, Fukuo S, Kodama T, et al.: Autonomous membrane IgE signaling prevents IgE-memory formation. Nat Immunol. 2016; 17(9): 1109-17. PubMed Abstract | Publisher Full Text | F1000 Recommendation

21. Finkelman FD, Katona IM, Urban JF, Jr., et al.: IL-4 is required to generate and sustain in vivo IgE responses. J Immunol. 1988; 141(7): 2335-41. PubMed Abstract

22. Crotty S: T follicular helper cell differentiation, function, and role in disease. Immunity; 2016; 41(4): 529-42. PubMed Abstract | Publisher Full Text | Free Full Text

23. Kobayashi T, Iijima K, Dent AL, et al.: Follicular helper T cells mediate IgE antibody response to airborne allergens. J Allergy Clin Immunol. 2017; 139(1): 300-313.e7. PubMed Abstract | Publisher Full Text | Free Full Text

24. Gawthman U, Chen JS, Zhang B, et al.: Identification of a T follicular helper cell subset that drives anaphylactic IgG. Science. 2019; 365(6456): pii. eaz25433. PubMed Abstract | Publisher Full Text | F1000 Recommendation

25. Hsu C, MacGlashan D Jr: IgE antibody up-regulates high affinity IgE binding on murine bone marrow-derived mast cells. Immunol Lett. 1990; 29(2-3): 129-34. PubMed Abstract | Publisher Full Text

26. Yamaguchi M, Lantz CS, Oettgen HC, et al.: IgE enhances mouse mast cell FcεRI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J Exp Med. 1997; 185(4): 663-72. PubMed Abstract | Publisher Full Text | Free Full Text

27. Asai K, Kitaura J, Dent AL, et al.: The role of IL-33 and mast cells in allergy and inflammation. Clin Transl Allergy. 2015; 5: 3-33. PubMed Abstract | Publisher Full Text | Free Full Text

28. Makinod H, Toussaint M, Jackson DJ, et al.: Role of Interleukin 33 in respiratory allergy and asthma. Lancet Respir Med. 2014; 2(3): 226-37. PubMed Abstract | Publisher Full Text

29. Sjöberg LC, Gregory JA, Dahlén SE, et al.: Interleukin-33 exacerbates allergic bronchoconstriction in the mice via activation of mast cells. Allergy. 2015; 70(5): 514-21. PubMed Abstract | Publisher Full Text | Free Full Text

30. Teufelberger AR, Nordingrímur M, Braun H, et al.: The IL-33/ST2 pathway is crucial in type 2 allergy responses induced by Staphylococcus aureus-derived serum protease-like protein D. J Allergy Clin Immunol. 2014; 134(2): 549-559.e7. PubMed Abstract | Publisher Full Text | F1000 Recommendation

31. Liu T, Kanaka Y, Barrett NA, et al.: Aspin-Exacerbated Respiratory Disease Involves a Cysteinyl Leukotriene-Driven IL-33-Mediated Mast Cell Activation Pathway. J Immunol. 2015; 195(3): 1111-20. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

32. Drube S, Kraft F, Dudeck J, et al.: MK2/3 Are Pivotal for IL-33-Induced and Mast Cell-Dependent Leukocyte Recruitment and the Resulting Skin Inflammation. J Immunol. 2016; 197(5): 362-8. PubMed Abstract | Publisher Full Text | Free Full Text

33. Noval Rivas M, Burton OT, Oettgen HC, et al.: IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J Allergy Clin Immunol. 2016; 138(3): 801-811.e9. PubMed Abstract | Publisher Full Text | Free Full Text

34. Leyva-Castillo JM, Galand C, Cam K, et al.: Mechanical Skin Injury Promotes Food Anaphylaxis by Driving Intestinal Mast Cell Expansion. Immunity; 2019; 50(5): 1262-1275.e4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

35. Galand C, Leyva-Castillo JM, Yoon J, et al.: IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J Allergy Clin Immunol. 2016; 138(5): 1356-66. PubMed Abstract | Publisher Full Text | Free Full Text

36. Shimokawa C, Kanaya T, Hachiwaka M, et al.: Mast Cells Are Crucial for Induction of Group 2 Innate Lymphoid Cells and Clearance of Helminth Infections. Immunity; 2017; 46(5): 863-874.e4. PubMed Abstract | Publisher Full Text | Free Full Text

37. Morita H, Arase K, Unno H, et al.: An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immunity; 2015; 43(1): 175-86. PubMed Abstract | Publisher Full Text | Free Full Text

38. Kawakami T, Kasakura K: Mast Cell Eosinophils and the NLRP3 Inflammasome. J Cell Commun Signal. 2019; 28(1): 3-5. PubMed Abstract | Publisher Full Text | Free Full Text

39. McNeil BD, Pundir P, Meeker S, et al.: Identification of a mast-cell-specific
receptor crucial for pseudo-allergic drug reactions. Nature. 2015; 519(7542): 237–41.

65. Tatemoto K, Nozaki Y, Tsuda R, et al.: Endogenous protein and enzyme fragments induce immunoglobulin E-independent activation of mast cells via a G protein-coupled receptor, MRGPRX2. Scand J Immunol. 2016; 87(5): e12655.

66. Pundr P, Liu R, Yasavadi C, et al.: A Connective Tissue Mast-Cell-Specific Receptor Detects Bacterial Quorum-Sensing Molecules and Mediates Antibacterial Immunity. Cell Host Microbe. 2019; 26(1): 114–122.e8.

67. Gaudenzio N, Sibalian R, Marichal T, et al.: Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest. 2016; 126(10): 3981–98.

68. Subramanian H, Gupta K, Guo Q, et al.: Mas-related gene X2 (Mrx2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J Biol Chem. 2011; 286(52): 47379–49.

69. Yu Y, Zhang Y, Zhang Y, et al.: LL-37-induced human mast cell activation through G protein-coupled receptor Mrx2. Int Immunopharmacol. 2017, 49: 6–12.

70. Manzarik W, Idahosa C, Gupta K, et al.: Upregulation of Mas-related G Protein-coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-I. Respir Res. 2018; 19(1): 1.

71. Fuegami D, Kashiwakura J, Kita H, et al.: Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J Allergy Clin Immunol. 2014; 134(3): 622–633.e9.

72. Meixiong J, Anderson M, Limjunyawong N, et al.: Activation of Mast-Cell-Expressed Mas-Related G Protein-Coupled Receptors Drives Non-histaminergic itch. Immunity. 2019; 50(3): 1163–1171.e7.

73. Vaciono M, Hennino A, Rozieres A, et al.: Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 2009; 64(2): 1699–714.

74. Arizono N, Matsuda S, Hattori T, et al.: The Nppb Neurons Are Sensors of Angiogenic Host Defense Peptide AG-237–41. J Immunol. 2016; 197(10): 4959–67.

75. Biethahn K, Orinska Z, Vigorito E, et al.: Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 2010; 24(10): 992–1009.

76. Sheller I, Salamon P, Meikir YA: MicroRNA Involvement in Allergic and Non-Allergic Mast Cell Activation. Int J Mol Sci. 2015; 20:2513–33.

77. Yang Q, Xu H, Yang J, et al.: F1000 Recommendation of MicroRNAs: target recognition and regulatory functions. Cell 2009; 138(2): 215–33.

78. Chiang HR, Schoenfeld LW, Ruby JG, et al.: Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 2010; 24(10): 992–1009.

79. Shimizu N, Matsuoka Y, et al.: Regulation of Cardiac Mast Cell Maturation and Function by the Neurokinin-1 Receptor in the Fibrotic Heart. Sci Rep. 2019; 9(1): 11004.

80. Chiang HR, Schoenfeld LW, Ruby JG, et al.: Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 2010; 24(10): 992–1009.

81. Monticelli S, Ansel KM, Xiao C, et al.: MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005; 6(8): R71.

82. Biethahn K, Orinska Z, Vigorito E, et al.: miRNA-155 controls mast cell activation by regulating the PI3K/AKT pathway and anaphylaxis in a mouse model. Allergy. 2014; 69(6): 702–62.

83. Biethahn K, Orinska Z, Vigorito E, et al.: miRNA-155 controls mast cell activation by regulating the PI3K/AKT pathway and anaphylaxis in a mouse model. Allergy. 2014; 69(6): 702–62.

84. Abebayehu D, Spence AJ, Qayum AA, et al.: Lactic Acid Suppresses IL-33-Mediated Mast Cell Inflammatory Responses via Hypoxia-Inducible Factor-1α-Dependent miR-155 Suppression. J Immunol. 2016; 197:7: 2909–17.

85. Wang Z, Yi T, Long M, et al.: Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation. 2018; 41(3): 859–69.

86. Qayum AA, Paranjape A, Abebayehu D, et al.: IL-10-Induced miR-155 Targets SOCS1 To Enhance IgE-Mediated Mast Cell Function. J Immunol. 2016; 196(11): 4457–67.

87. Li Y, Liu J, Zhang J, et al.: Characterization of microRNA profile in IgE-mediated mouse BMBCs degranulation. J Microbiol Immunol Infect. 2018; pii: 10478-18(3):0477-8.

88. Bao Y, Wang S, Gao Y, et al.: MicroRNA-126 accelerates IgE-mediated mast cell degranulation associated with the PI3K/Akt signaling pathway by promoting Ca2+ influx. Exp Ther Med. 2016; 16(3): 2763–2769.

89. Wang Z, Yi T, Long M, et al.: Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation. 2018; 41(3): 859–69.

90. Wang Z, Yi T, Long M, et al.: Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation. 2018; 41(3): 859–69.

91. Wang Z, Yi T, Long M, et al.: Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation. 2018; 41(3): 859–69.

92. Wang Z, Yi T, Long M, et al.: Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation. 2018; 41(3): 859–69.

93. Wang Z, Yi T, Long M, et al.: Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation. 2018; 41(3): 859–69.

94. Wang Z, Yi T, Long M, et al.: Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation. 2018; 41(3): 859–69.

95. Wang Z, Yi T, Long M, et al.: Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Inflammation. 2018; 41(3): 859–69.
actin cytoskeleton in mast cells. PLoS One. 2011; 6(10): e26133.

97. Mayoral RJ, Pipkin ME, Pachtov M, et al.: MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol. 2008; 182(1): 433–45. Published Abstract | Publisher Full Text | Free Full Text

98. Zhou Y, Yang Q, Xu H, et al.: miRNA-221-3p Enhances the Secretion of Interleukin-4 in Mast Cells through the Phosphatase and Tensin Homolog/p38/Nuclear Factor-kappaB Pathway. PLoS One. 2016; 11(2): e0148821. Published Abstract | Publisher Full Text | Free Full Text

99. Xiao L, Jiang L, Hu Q, et al.: MiR-302e attenuates allergic inflammation in vitro model by targeting RelA. Biosci Rep. 2018; 38(3): pii: BSRR0180025. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

100. Rusca N, Dehd L, Montagner S, et al.: MiR-146a and NF-kB1 regulate mast cell survival and T lymphocyte differentiation. Mol Cell Biol. 2012; 32(21): 4432–44. Published Abstract | Publisher Full Text | Free Full Text

101. Taganov KD, Boldin MP, Chang KJ, et al.: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006; 103(33): 12481–6. Published Abstract | Publisher Full Text | Free Full Text

102. Yang L, Boldin MP, Yu Y, et al.: miR-146a controls the resolution of T cell responses in mice. J Exp Med. 2012; 209(9): 1655–70. Published Abstract | Publisher Full Text | Free Full Text

103. Yu S, Zhang R, Zhu C, et al.: MicroRNA-143 downregulates interleukin-13 receptor alpha1 in human mast cells. Int J Mol Sci. 2013; 14(8): 16958–69. Published Abstract | Publisher Full Text | Free Full Text

104. Lu Y, Li Z, Xie B, et al.: hsa-miR-20a-5p attenuates allergic inflammation in HMC-1 cells by targeting HDAC4. Mol Immunol. 2015; 107: 84–90. Published Abstract | Publisher Full Text | F1000 Recommendation

105. Sheller I, Pasmanik-Chor M, Kidron D, et al.: T cell-derived microvesicles induce mast cell production of IL-24: relevance to inflammatory skin diseases. Proc Natl Acad Sci U S A. 2006; 103(33): 12481–6. Published Abstract | Publisher Full Text | Free Full Text

106. Sheller I, Salamon P, Reshef T, et al.: T cell-induced mast cell activation: a role for microvesicles released from activated T cells. J Immunol. 2010; 185(7): 4206–12. Published Abstract | Publisher Full Text

107. Baram D, Vaday GG, Salamon P, et al.: Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtapicination regulation by TNF-alpha. J Immunol. 2001; 167(7): 4008–16. Published Abstract | Publisher Full Text

108. Mor A, Sheller I, Salamon P, et al.: Characterization of ERK activation in human mast cells stimulated by contact with T cells. Inflammation. 2010; 33(2): 119–25. Published Abstract | Publisher Full Text

109. Salamon P, Shoham NG, Puxeddu I, et al.: Human mast cells release oncostatin M on contact with activated T cells: possible biologic relevance. J Allergy Clin Immunol. 2014; 133(1): 217–224.e3–3. Published Abstract | Publisher Full Text

110. Sheller I, Meoxdi YA, Mor A: Stimulation of human mast cells by activated T cells leads to N-Ras activation through Ras guanine nucleotide releasing protein 1, J Allergy Clin Immunol. 2008; 122(6): 1225–6. Published Abstract | Publisher Full Text

111. Sheller I, Salamon P, Levi-Schaffer F, et al.: MicroRNA-4443 regulates mast cell activation by T cell-derived microvesicles. J Allergy Clin Immunol. 2018; 141(6): 2132–2141.e4. Published Abstract | Publisher Full Text | F1000 Recommendation

112. Fenger JM, Bear MD, Volinia S, et al.: Overexpression of mir-9 in mast cells is associated with invasive behavior and spontaneous metastasis. BMC Cancer. 2014; 14: 84. Published Abstract | Publisher Full Text | Free Full Text

113. Noh K, Kim M, Kim Y, et al.: miR-122-5PSC51-JAK2 axis regulates allergic inflammation and allergic inflammation-promoted cellular interactions. Oncotarget. 2017; 8(39): 63155–63176. Published Abstract | Publisher Full Text | Free Full Text

114. Xiong L, Zhen S, Yu Q, et al.: HCV-E2 inhibits hepatocellular carcinoma metastasis by stimulating mast cells to secrete exosomal shuttle miRNAas. Oncol Lett. 2017; 14(2): 2141–2146. Published Abstract | Publisher Full Text | Free Full Text

115. Kawakami T, Blank U: From IgE to Omalizumab. J Immunol. 2016; 197(11): 4187–4192. Published Abstract | Publisher Full Text | Free Full Text

116. Holgate ST, Chuchalin AG, Hebert J, et al.: Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin Exp Allergy. 2004; 34(4): 632–8. Published Abstract | Publisher Full Text

117. Maurer M, Rösken K, Hsieh HJ, et al.: Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N Engl J Med. 2013; 368(10): 924–35. Published Abstract | Publisher Full Text | F1000 Recommendation

118. Simpson EL, Bieber T, Gutmans-Yasky E, et al.: Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N Engl J Med. 2016; 375(24): 2335–48. Published Abstract | Publisher Full Text | F1000 Recommendation

119. Castro M, Corren J, Pavord ID, et al.: Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N Engl J Med. 2018; 378(6): 2486–96. Published Abstract | Publisher Full Text | F1000 Recommendation

120. Rabe KF, Naar P, Brusselle G, et al.: Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. N Engl J Med. 2018; 378(20): 2475–85. Published Abstract | Publisher Full Text | F1000 Recommendation

121. Frossi S, De Carli M, Calabrò A: Coeliac Disease and Mast Cells. Int J Mol Sci. 2019; 20(14): pii: E3400. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

122. Theoharides TC, Valenta P, Akin C, et al.: Mast Cells, Mastocytosis, and Related Disorders. N Engl J Med. 2015; 373(19): 1885–9. Published Abstract | Publisher Full Text

123. Kovanen PT: Mast Cells as Potential Accelerators of Human Atherosclerosis-From Early to Late Lesions. Int J Mol Sci. 2019; 20(18): pii: E4749. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

124. Derakhshani A, Vahidian F, Alhasanzadeh M, et al.: Mast cells: A double-edged sword in cancer. Immunol Lett. 2019; 209: 28–35. Published Abstract | Publisher Full Text

125. Hayashi T, Fujita K, Matsumiwa M, et al.: Main Inflammatory Cells and Potentials of Anti-Inflammatory Agents in Prostate Cancer. Cancers (Basel). 2019; 11(8): pii: E1153. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

126. Traina G: Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci. 2019; 13: 345. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

127. Theoharides TC, Tsilioti I, Patel AB, et al.: Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry. 2016; 6(6): e844. Published Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✅ ✅

Editorial Note on the Review Process

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Cem Akin
 Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
 Competing Interests: No competing interests were disclosed.

2. Jiro Kitaura
 Atopy Research Center, Juntendo University, Tokyo, Japan
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com