The Characteristics of Exposure and Health Risk to PM$_{2.5}$ for Urban Cyclists

Wang Bao Qing*, Liu Bo Wei, Niu Hong Hong, Liu Jian Feng, Ren Zi Hui, Chen Rong Hui, Wang Ze Bei and Zhao Jia Jia

College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China

Abstract

To study the characteristic of inorganic elements, carbon species, PAHs of exposure and elements health risk to PM$_{2.5}$ for urban cyclists in Tianjin. Exposure to PM$_{2.5}$ samples in cycling were collected during Summer in Tianjin. The non-carcinogenic risk and carcinogenic risk of personal exposure heavy metal in PM$_{2.5}$ were discussed. The average personal exposure mass concentration of PM$_{2.5}$ is 340.63 µg/m3 in the weekday, 281.25 µg/m3 at the weekend for cyclists. Enrichment factor analysis showed that Pb, Zn, Ni, and Cu exhibited heavy or extreme contamination, indicating the influence of anthropogenic sources, but K, Ca, Mg, Mn and Fe were minimally enriched and were mainly influenced by crustal sources or lesser anthropogenic sources. The average SOC is 23.33 µg/m3. The proportion of SOC is 34.78% in OEC. PAHs in PM$_{2.5}$ 2-ring and 3-ring compounds were predominant with NAP, PHE and ACY accounting for 26%, 48% and 9% of PAHs for the personal exposure for cyclist, respectively. For non-carcinogenic effects, Hazard index values for all studied metals were lower than the safe level of 1 for cyclists. The carcinogenic risk for Cr and Ni were all below the acceptable level (10^{-6}). The present study demonstrated the elements health risk in Urban Cyclists. The study may provide a scientific basis for protecting cyclists’s health and safety.

Keywords: PM$_{2.5}$; Cyclists; Inorganic elements; Carbon specials; PAHs; Health risk

Introduction

Bicycle sharing schemes have become increasingly popular in countries throughout Europe, Asia, and America to encourage cycling as an alternative means of transport in urban areas [1]. The World Health Organization report on the health effects of traffic-related air pollution points out that people spend 1-1.5 h/d commuting in many countries [2]. Health effects such as myocardial infarction have been specifically linked with presence in the transport environment [3].

In China, a combination of rapid industrialization and high population density has inevitably made the air quality deteriorating, of which PM (particulate matter) has been frequently observed as the principal pollutant in most urban area [4]. Tianjin is also faced with serious problems of particulate matter pollution and poor visibility. The problem is compounded by the fact that traffic congestion has caused many vehicles to stay on the road and in traffic microenvironments for extended stretches, exposing the commuters of these vehicles to air pollutants over prolonged periods of time [5]. Tianjin is a major city of a production of bicycle and also is a city of cycling as a mode of transport. So, it is vital investigate cyclists’ exposure to traffic-related air pollutants.

Recent studies investigated the exposure of commuters in different commuting modes. Rank et al. [6] measured higher total dust concentrations when driving in cars than when riding on bicycles in the city of Copenhagen. Adams et al. [7-9] detected highest exposures to PM$_{2.5}$ in buses, followed by cars, and lowest on bicycles in London. They found that elemental carbon (EC) exposure was highest when riding in cars, followed by buses, and lowest when riding on bicycles. Kaur et al. [10] found that exposure to particulate matter was higher in buses and cars than were exposures encountered during walking or cycling in central London. In another study, McNabola et al. [11] found that PM$_{2.5}$ exposures were highest in buses, followed by cars and bicycles, and lowest when walking in Dublin. Simon et al. [12] found that car and bus occupants were exposed to higher average levels of UFP than cyclists in Christchurch, New Zealand. Karanasiou et al. [13], reviewed personal exposure to particulate air pollution during commuting in European cities for different modes. Above studies located in the clean Europe and Oceania, and showed exposure to particulate matter was higher in buses or cars than were exposures encountered during walking or cycling. However, Huang et al. [5] found that taxi commuters were exposed to lower concentrations of PM$_{2.5}$ compared with bus commuters and cyclists in Beijing. That is, PM$_{2.5}$ exposures were highest when walking in Beijing. It is possibly related this situation to high PM$_{2.5}$ concentration in China. However, there are few studies exploring personal exposure to PM$_{2.5}$ for cyclists in China.

Research into cyclist’s exposure to PM$_{2.5}$ has focused on measuring actual exposure levels of samples of cyclists on pre-selected routes using personal samplers. In this paper we present the results of measurements of concentrations of fine particulate matter on a bicycle.

Materials and Methods

Study design

The study was performed in the summer of Tianjin on August 15-24. No measurements were taken during days with rain. A selected route of approximately 6 km that linked Sheng-an Street bus station and Sports Hotel bus station along three main roads (Nanmenwai Street, Weijin Road and Weijin south Road). This route is one of the “8 ring roads” in Tianjin that commuters frequently use and this road was selected because there are two universities and two spots in this section of the road and heavy congestion can reflect the traffic situation of most of the main roads in Tianjin. We selected 4 non-smoking volunteers and simultaneously collected commuters exposure data to PM$_{2.5}$ on the same route. The volunteers carried real-time PM$_{2.5}$ monitors during both traffic heavy times (07:00–09:00 in the morning and 17:00–19:00 in the afternoon) when the traffic is heaviest. The study was conducted during days with an hourly traffic volume exceeding 2,000 vehicles.

*Corresponding author: Wang Bao Qing, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China, Tel: +13702057415; E-mail: wbqchina163.com

Received February 27, 2017; Accepted March 10, 2017; Published March 15, 2017

Citation: Qing WB, Wei LB, Hong NH, Feng LJ, Hui RZ, et al. (2017) The Characteristics of Exposure and Health Risk to PM$_{2.5}$ for Urban Cyclists. J Environ Anal Toxicol 7: 445. doi: 10.4172/2161-0525.1000445

Copyright: © 2017 Qing WB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
With 5 mL HNO₃ (pH=5.6) and a drop of HF (pH=5.3) was added. After sampling, PTFE filters were heated for one hour in the 60°C oven, then conditioned in a room with constant temperature and relative humidity for at least 72 h and weighed using a microbalance (XS105, Mettler Toledo, USA) with 0.01 mg precision. After sampling, PTFE filters were also conditioned in the same room for 48 h, then weighed using same microbalance to analysis PM₂.₅. The climate controlled weighing room was conditioned in a room with constant temperature and relative humidity of 20°C ± 2°C, and relative humidity of 37% ± 2%. The mini-BUCK soap film flow calibrator (M-30, BUCK, USA) is used for correction of sampling pump flow to make sampling flow stabilized for 4.000 ± 0.100 L/min.

Chemical analysis

Inorganic elements: The PTEF filters were used to analyze the inorganic elements. Some elements in PM₂.₅ are measured by ICP-OES (Vista-MPX, Varian Co., USA), such as Al, Fe, Ca, Ba, Si, Mg, Sr and Ti. Ten metals, including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb, were analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) (Agilent 7500a, Agilent Co. USA) fitted with 37 mm 2.5 μm pore size polytetrafluoroethylene (PTFE) filters that connected to collect PM₂.₅ at a flow rate of 4.000 L/min. Before sampling, PTFE filters were heated for one hour in the 60°C oven, then conditioned in a room with constant temperature and relative humidity for at least 72 h and weighed using a microbalance (XS105, Mettler Toledo, USA) with 0.01 mg precision. After sampling, PTFE filters were also conditioned in a room for 48 h, then weighed using same microbalance to analysis PM₂.₅. The climate controlled weighing room had a temperature of 20°C ± 2°C, and relative humidity of 37% ± 2%. The mini-BUCK soap film flow calibrator (M-30, BUCK, USA) is used for correction of sampling pump flow to make sampling flow stabilized for 4.000 ± 0.100 L/min.

Results and Discussion

PM₂.₅ concentrations

Bicycle commuting is being encouraged in many cities around the world to improve public health, air quality, and traffic congestion. However PM₂.₅ which emits from motovo vehicles can result in bicycle commuting health risk. The mass concentration of PM₂.₅ ranged from 234.38 to 427.08 μg/m³, with an arithmetic average of 340.63 μg/m³ in the weekday for cyclist, but the arithmetic average concentration is 281.25 μg/m³ at the weekend. It resulted from the different traffic volume in weekday and weekend. The traffic volume is 5122 and 4507 vehicle/h in weekday and weekend, respectively. So, the traffic volume is also important factor to the exposure to PM₂.₅. Ni [18] carried out a field investigation measuring elderly personal exposure to PM₂.₅ in Tianjin family community and showed that personal exposure concentrations of PM₂.₅ were 124.2 ± 75.2 μg/m³ in June and 170.8 ± 126.6 μg/m³ in December of 2011, which is lower than the results of our experiment. The major reason is related to the higher concentration of PM₂.₅ nearby the road for cyclist. Kaur et al. [19] thought that the mass concentration of PM₂.₅ ranged from 9.7 to 77.5 μg/m³, with an arithmetic average of 33.8 μg/m³ for cyclist. The possible reason is that there are lower concentration of PM₂.₅ in the ambient environment around a street canyon intersection in Central London, UK. Weichenthal et al. [20] concluded that an interquartile range increase in UFP levels (18,200/ cm³) was associated with a significant decrease in high-frequency power 4 h after the start of cycling. So we easily know it is significant that the concentrations of PM₂.₅ personal exposure are connected with the

PM₂.₅ exposure	Equipment	Number of samples	Mean, μg/m³	Min-max	References
London, UK	High flow personal sampler	56	23.5	6.8-76.2	[7]
London, UK	High flow personal sampler	48	33.5	9.7-77.5	[10]
Dublin, Ireland	High flow personal sampler (HFPS)	56 (route 1); 48 (route 2)	88.1 (route 1); 71.6 (route 2)	[11]	
Arnhem, Netherlands	Personal aerosol monitor, DataRAM	16 (days)	72.3 (high traffic); 71.7 (low traffic)	[23]	
Beijing, China	4L/min flow personal sampler	43	49.10	18.9-112.5	[5]

Table 1: Related Studies about Exposure Levels When Commuting by Bicycle.

PAHs analysis: For PAHs analysis, the filters were extracted ultrasonically with dichloromethane, concentrated using a rotary evaporator, purified with a silica gel cleanup technique, reconcentrated by rotary evaporation, and finally condensed to exactly 1 mL under a gentle nitrogen stream in 60°C water bath. The extracts were transferred into two ampoule bottles and stored in refrigerator until GC/MS analysis. The PAHs determined in the process were: naphthalene (NAP), acenaphthylene (ACY), acenaphthene (ACE), fluorene (FLO), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLA), pyrene (PYR), benz(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), dibenz(ah)anthracene (DahA), indeno(1,2,3-cd)pyrene (IcdP) and benzo(g,h,i)perylene (BghiP).

PAHs in the final extracts were analyzed with a trace 2000 GC/MS (Thermo Finnigan, USA) apparatus with selected ion monitoring (SIM). Each standard and sample was measured in duplicate, and the sample was re-analyzed if the relative standard deviation of the two measurements was higher than 5%. For every set of 10 samples, a reference sample was run to check the interference and cross-contamination, and minimize any errors due to losses during the extraction, cleaning, and concentration procedures.
respiratory rate and the concentration of PM$_{2.5}$ in ambient environment while cycling. Table 1 is other related studies about exposure levels when commuting by bicycle. Exposure to air pollution while cycling in urban areas is generally considered high if taking into account that the minute ventilation (volume of air per minute) of cyclists is 1-5 times the minute ventilation of car and bus passengers [13,21,22].

Inorganic elements

The inorganic elements attached to PM$_{2.5}$ were usually more concern because of heavily polluting in recent years [23-25]. The concentrations of inorganic elements associated PM$_{2.5}$ were showed in Figure 1.

Enrichment factor (EF) is a good tool to differentiate the metal source between anthropogenic and naturally occurring [26,27]. According to this way, metal concentrations were normalized to metal concentrations of certain elements [28,29].

The metal enrichment factor (EF) is defined as follows:

$$EF = \frac{C_{sample}}{C_{background}}$$

Where, EF refers to the Enrichment factor of element; C_{sample} refers to concentration of the examined metal in PM$_{2.5}$; $C_{background}$ refers to concentration of the reference metal in PM$_{2.5}$; $C_{background}$ refers to concentration of the reference metal in the topsoil of Tianjin.

In our study, Al was selected as a reference element to differentiate and quantify the degree of inorganic elements pollution. In general, the enrichment level can be divided into 5 degrees including deficiency to minimal enrichment (EF<2), moderate enrichment (2 ≤ EF<5), significant enrichment (5 ≤ EF<20), very highly enrichment (20 ≤ EF<40) or extremely enrichment (EF ≥ 40) [30].

Figure 2 shows the enrichment factors of inorganic elements in PM$_{2.5}$. The EF can be used to identify the potential sources of crustal and anthropogenic components. Among the investigated elements, the enrichment level was extremely enrichment for Pb, Zn, Ni, and Cu, significant enrichment for Na and Cr, moderate enrichment for K, Ca and Mg, minimal enrichment for Mn and Fe. High EF value were obtained for Pb, Zn, Ni, and Cu, which suggested the predominance of non-crustal sources such as vehicular exhaust and industrial emission. Relatively lower EFs values were observed for Na, Cr, K, Ca, Mg, Mn and Fe, suggesting a lesser contribution from anthropogenic sources.

Table 2 shows Pearson’s correlation coefficients between elements in PM$_{2.5}$. The Pearson’s correlation coefficients for element Ca had good relationship with Si, K and Ti, and for Si with Mg, Ca and Fe, and for Ti with Ca, Si and K, and for Na with K and Ti. These indicate they mainly originated from the crustal sources, for they were typical crustal elements. The Pearson’s correlation coefficients were 0.855, 0.728 and 0.741 between Al and Pb, Mn and Cu, Mn and Zn, respectively, indicating that these elements were likely related to urban anthropogenic sources, such as traffic sources and coal combustion. Coal analyses have indicated that certain elements (Pb, Cu, Zn, Mn, etc.) are ubiquitous in the matrix, and experiments have indeed demonstrated that coal trace elements, especially for semivolatile elements, such as Cu, Pb, and Zn, are released to the atmosphere in effluents of most combustion processes [31,32].

Carbon species

The exposure concentrations of OC in PM$_{2.5}$ ranged between 50.16 and 98.09 μg/m3, with an average of 67.09 μg/m3, EC between 4.37 and 7.84 μg/m3, with an average of 6.45 μg/m3, while TC between 55.31 and 104.25 μg/m3, with an average of 73.53 μg/m3, respectively.

Turpin et al. [33] pointed that the OC/EC ratio exceeding 2.0-2.2 has been used for identification and evaluation of secondary organic aerosols. In our study, the average OC/EC ratio was 10.71, indicating the possible presence of secondary organic carbon (SOC). Some researcher hold the idea that the value of OC/EC can determine the extent of secondary pollution [34-36].
could be calculated by the experimentally derived equation:

\[SOC = OC_{tot} - EC \times \left(\frac{OC}{EC} \right)_{min} \]

(2)

Where SOC for secondary organic carbon, \(OC_{tot} \) is the total organic carbon concentration in the sample, \(EC \) is the elemental carbon concentration in the sample, \(\frac{OC}{EC} \) is the minimum value of OC/EC.

Secondary organic carbon is the formation of gaseous organic pollutants by means of photochemical reaction products. The average SOC results in this study is 23.33 \(\mu g/m^3 \). The proportion of SOC is 34.78% in Tianjin (SOC=14.6 \(\mu g/m^3 \)) [4] and in Tianjin (SOC=3.91 \(\mu g/m^3 \)) [38].

Tianjin is very serious. The result of SOC is significantly higher than in Dezhou (SOC=0.855 \(\mu g/m^3 \)) [39].

The degree of secondary pollution. It shows that the secondary pollution in our study is the minimum value of OC/EC.

The Pearson’s correlation between elements in PM\(_{2.5}\):

Parameter	Definition	Value	References
C	Average concentration(mg/Kg)	0.846	1
EF	Exposure frequency (days/year)	0.535	1
ED	Exposure duration (years)	0.399	1
BW	Body weight (kg)	0.145	1
AT	Averaging time (days)	0.818	1
PEF	Particle emission factor	0.16	1
InhR	Inhalation rate(mg/day)	0.101	1

Table 2: The Pearson’s correlation between elements in PM\(_{2.5}\).

Following the Castro’s equation [37], the concentration of SOC could be calculated by the experimentally derived equation:

The content of the PAHs from high to low are PHE, NAP, FLA and ACY, the rest of the PAHs did not be obtained, because their concentrations are below the detection line. This phenomenon may be related to exposure time is shorter. This result is consistent with the result of the Tianjin exposed children [41]. This shows that in the summer, the highest content of PAHs is phenanthrene in Tianjin. The data showed relatively high levels of 2–3 ring PAHs and much lower levels for the higher molecular weight species. For particulate phase PAHs, 2-ring and 3-ring compounds such as NAP, PHE and ACY accounted 25%, 48% and 9% of PAHs for the personal exposure for cyclist, respectively. These findings are similar to those discussed by Kuo et al. [42] and Bylina et al. [43].

The main source of PHE, NAP and FLA is coal tar. Coal tar is the primary form of plastic increased by 14%, chemical fiber increased by 15%, 12% growth chemical pesticide, and the product of sugar growth 7%, which illustrate that the increase of the usage of coal tar in Tianjin from 2001 to 2010 in Tianjin [44]. This is the reason that the concentration of the PHE, NAP, FLA and ACY are the highest in our study.

Risk Assessment

There are three ways for the body to absorb heavy metals: handling-oral direct ingestion, skin contact and inhalation through the respiratory system. The personal exposure samplings were conducted in this study. So five heavy metals (Cr, Ni, Cu, Zn and Pb) absorbed by inhalation were analyzed to determine heavy metal non-carcinogenic risk to humans [45,46] (Table 3).
Table 4: The value of the ADDinh, the value HQ potential non-carcinogenic for individual metals and the risk characterization of heavy metals in PM2.5.

	Cr	Ni	Cu	Zn	Pb	HI
ADDinh	2.99E-08	8.98E-08	5.07E-08	2.73E-07	9.07E-08	
HQ	4.98E-04	1.65E-05	4.23E-06	9.12E-07	2.58E-05	5.45E-04
CR	1.25E-06	7.47E-08				

For non-carcinogenic effects, Hazard index values for all studied metals were lower than the safe level of 1 for cyclists. And, the carcinogenic risk for Cr and Ni were all below the acceptable level (10^{-4} to 10^{-6}).

Acknowledgements

This study was supported by Scholarship from the Chinese Scholarship Council (No. 201406205010), the Environmental Protection Commonwealth Industry Scientific Research Project (No. 201009032) and National Major Scientific Instrument Development Special (No. 2011YQ060111).

References

1. Midgley P (2011) Bicycle-sharing schemes: enhancing sustainable mobility in urban areas. United Nations, Department of Economic and Social Affairs.
2. World Health Organization (2005) Health effects of transport related air pollution. Copenhagen: WHO Regional Office for Europe.
3. Zheng N, Liu J, Wang Q, Liang Z (2010) Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment 408: 726-733.
4. Peters A, von Klott S, Heier M, Trentinaglia I, Hörmann A, et al. (2004) Exposure to traffic and the onset of myocardial infarction. N Engl J Med 351: 1721-1730.
5. Gu J, Bai Z, Li W, Wu L, Liu A, et al. (2011) Chemical composition of PM2.5 during winter in Tianjin, China. Particology 9: 215-221.
6. Huang J, Deng F, Wu S, Guo X (2012) Comparisons of personal exposure to PM2.5 and CO by different sampling modes in Beijing, China. Science of the Total Environment 425: 52-59.
7. Rank J, Folke J, Jespersen PH (2001) Differences in cyclists and car drivers exposure to air pollution from traffic in the city of Copenhagen. Sci Total Environ 279: 131-136.
8. Adams HS, Nieuwenhuijsen MJ, Colville RN, McMullen MA, Khandelwal P (2001) Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Science of the Total Environment 279: 29-44.
9. Adams HS, Nieuwenhuijsen MJ, Colville RN (2001) Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Atmospheric Environment 35: 4557-4566.
10. Adams HS, Nieuwenhuijsen MJ, Colville RN, Older MJ, Kendall M (2002) Assessment of road users' elemental carbon personal exposure levels, London, UK. Atmospheric Environment 36: 5335-5342.
11. Kaur S, Nieuwenhuijsen M, Colville R (2005) Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in Central London, UK. Atmospheric Environment 39: 3629-3641.
12. McNabola A, Broderick BM, Gill LW (2008) Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: Personal exposure and uptake. Atmospheric Environment 42: 6496-6512.
13. Kingham S, Longley I, Salmond J, Patllinson W, Shrestha K (2013) Variations in exposure to traffic pollution while travelling by different modes in a low density, less congested city. Environmental Pollution 181: 211-218.
14. Karanasios A, Viana M, Querol X, Moreno T, de Leeuw F (2014) Assessment of personal exposure to particulate air pollution during commuting in European cities - Recommendations and policy implications. Science of the Total Environment 490: 785-797.
15. Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, et al. (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies. Atmospheric Environment. Part A. General Topics 27: 1185-1201.
16. Chow JC, Watson JG, Crow D, Lowenthal DH, Merrill F (2001) Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Science & Technology 34: 23-34.
17. Fung K, Chow JC, Watson JG (2002) Evaluation of OC/EC speciation by thermal manganese dioxide oxidation and the IMPROVE method. Journal of the Air & Waste Management Association 52: 1333-1341.
18. Shen ZX, Cao J, Aimioto R, Zhang R, Jie DM, et al. (2007) Chemical composition and source characterization of spring aerosol over Hongiu sand land in northeastern China. Journal of Geophysical Research: Atmospheres 112.
19. Ni TR (2013) Sources of PM2.5 personal exposure and risk assessment for elderly people in Tianjin. Nankai University.
20. Kaur S, Nieuwenhuijsen MJ (2009) Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment. Environmental Science & Technology 43: 4737-4743.

21. Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, et al. (2011) Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environmental Health Perspectives 119: 1373.

22. Zuurbier M, Hoek G, van den Hazel P, Brunekreef B (2009) Minute ventilation of cyclists, car and bus passengers: an experimental study. Environ Health 8: 48.

23. Panis Li, De Geus B, Vandenbulcke G, Willems H, Degraeuwe B, et al. (2010) Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmospheric Environment 44: 2263-2270.

24. Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, et al. (2010) Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect. 118: 783-789.

25. Ho KF, Lee SC, Cao JJ, Chow JC, Watson JG, et al. (2006) Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Sci Total Environ 355: 276-287.

26. Li PH, Kong SF, Geng CM, Han B, Lu B, et al. (2013) Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their work places. Aerosol and Air Quality Research 13: 255-265.

27. Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55: 431-442.

28. Selvaraj K, Mohan VR, Szefi P (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Marine Pollution Bulletin 41: 174-185.

29. Din ZB (1992) Use of aluminium to normalize heavy-metal data from estuarine and coastal sediments of Straits of Melaka. Marine Pollution Bulletin 24: 484-491.

30. Cevik F, Gökşu MZ, Derici OB, Findik Ö (2009) An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment 152: 309-317.

31. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Dahau, Hawaii. Environmental geochemistry 39: 611-627.

32. Clarke LB (1993) The fate of trace elements during coal combustion and gasification: an overview. Fuel 72: 731-736.

33. Pavageau MP, Pichéyan C, Krupp EM, Morin A, Donard OF (2002) Volatile metal species in coal combustion flue gas. Environ Sci Technol 36: 1561-1573.

34. Turpin B, Huntzicker JJ (1991) Secondary formation of organic aerosol in the Los Angeles Basin: a descriptive analysis of organic and elemental carbon concentrations. Atmospheric Environment. Part A. General Topics 25: 207-215.

35. Cao JJ, Lee SC, Ho KF, Zou SC, Fung K, et al. (2004) Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmospheric Environment 38: 4447-4456.

36. Chow JC, Watson JG, Lu Z, Lowenthal DH, Frazier CA, et al. (1996) Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment 30: 2079-2112.

37. Lin JJ, Tai HS (2001) Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmospheric Environment 35: 2627-2636.

38. Castro LM, Pio CA, Harrison RM, Smith DJ (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmospheric Environment 33: 2771-2781.

39. Liu ZC, Xu X, Cheng HJ (2014) Pollution characteristics of OC and EC in PM2.5 in Dezhou, China. Environmental Science & Technology 37: 105-109.

40. Wang GH, Wei NN, Liu W, Lin J, Fan XB, et al. (2010) Size distributions of organic carbon (OC) and elemental carbon (EC) in Shanghai atmospheric particles. 31: 1993-2001.

41. Valavanidis A, Fiotaakis K, Vlahogianni T, Bakeas EB, Triantafyllaki S, et al. (2006) Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece). Chemosphere 65: 760-768.

42. Han J, Zhang N, Niu C, Han B, Bai Z (2014) Personal exposure of children to particle-associated polycyclic aromatic hydrocarbons in Tianjin, China. Polycyclic Aromatic Compounds 34: 320-342.

43. Kuo CY, Hsu YW, Lee HS (2003) Study of human exposure to particulate PAHs using personal air samplers. Arch Environ Contam Toxicol 44: 454-459.

44. Bylina BG, Rakivic B, Pustaszewa JS. Assessment of exposure to traffic-related aerosol and to particle-associated PAHs in Gliwice, Poland. Polish J. Environmental Stud: 14: 117-123.

45. Zheng SY (2013) The basic analysis on development of Tianjin industry. Industry Press: 7: 162-166.

46. Ferreira-Baptista L, Miguel ED (2005) Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos. Environ. 39: 4501-4512.

47. Kurt-Karakus PB (2012) Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environ Int 50: 47-55.

48. U.S. Environmental Protection Agency (2004) Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Office of Superfund Remediation and Technology Innovation, Washington D.C.

49. U.S. Environmental Protection Agency (2001) Risk Assessment Guidance for Superfund: Volume III — Part A, Process for Conducting Probabilistic Risk Assessment Office of Emergency and Remedial Response. U.S. Environmental Protection Agency, Washington D.C.

50. Du Y, Gao B, Zhou H, Ju X, Hao H, et al. (2013) Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environmental Sciences 18: 299-309.

51. U.S. Environmental Protection Agency (2009) Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Office of Superfund Remediation and Technology Innovation, Washington, D.C.

52. Wang ZS, Wu T, Duan XL, Wang S, Zhang WJ, et al. (2009) Research on Inhalation Rate Exposure Factors of Chinese Residents in Environmental Health Risk Assessment. Research of Environmental Sciences 22: 1171-1176.

53. Čupr P, Flegróvá Z, Francíč J, Landlová L, Klánová J (2013) Mineralogical, chemical and toxicological characterization of urban air particles. Environment international 54: 26-34.

54. U.S. Environmental Protection Agency (2011) Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, D.C.

55. Liu X, Zhai Y, Zhu Y, Liu Y, Chen H, et al. (2015) Mass concentration and health risk assessment of heavy metals insize-segregated airborne particulate matter in Changsha. Science of the Total Environment 517: 215-221.