Dendrons containing boric acid and 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently attached to silica-coated magnetite for the expeditious synthesis of Hantzsch esters

Mahsa Sam, Mohammad G. Dekamin* & Zahra Alirezvani

A new multifunctional dendritic nanocatalyst containing boric acid and 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently attached to core–shell silica-coated magnetite (Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂) was designed and properly characterized by different spectroscopic or microscopic methods as well as analytical techniques used for mesoporous materials. It was found that the combination of both aromatic π–π stacking and boron–oxygen ligand interactions affords supramolecular arrays of dendrons. Furthermore, the use of boric acid makes this dendritic catalyst a good choice, from corrosion, recyclability and cost points of view. The catalytic activity of Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ as an efficient magnetically recoverable catalyst, was investigated for the synthesis of polyhydroacridines (PHAs) as well as polyhydroquinolines (PHQs) via one-pot multicomponent reactions of dimesdine and/or ethyl acetoacetate, different aldehydes and ammonium acetate in EtOH under reflux conditions. Very low loading of the catalyst, high to quantitative yields of the desired PHAs or PHQs products, short reaction times, wide scope of the substrates, eliminating any toxic heavy metals or corrosive reagents for the modification of the catalyst, and simple work-up procedure are remarkable advantages of this green protocol. An additional advantage of this magnetic nanoparticles catalyst is its ability to be separated and recycled easily from the reaction mixture with minimal efforts in six subsequent runs without significant loss of its catalytic activity. This magnetic and dendritic catalyst can be extended to new two- and three-dimensional covalent organic frameworks with different applications.

New materials are required to be developed for the modern science and technology. These new materials are used for different applications such as drug delivery, medical diagnosis, reinforced composites, semiconductors, electronics, optics, sensors, sorbents, CO₂ capture, heterogeneous catalysis, etc. In this manner, nanomaterials can play a vital role. One of the emerging fields for the preparation and fabrication of new nanomaterials is dendrimer chemistry which has been recently expanded as two- or three-dimensional covalent organic frameworks (COFs). These strategies afford multifunctional materials which demonstrate synergistic effects and hence, higher performance and efficacy as well as newer and more specific properties than previous counterparts. In addition, dendrimers can encapsulate and consequently, stabilize metallic catalytic active nanoparticles. Furthermore, the properties of new materials can be modified and improved by their immobilization onto the surface of magnetic nanoparticles (MNPs), especially in the case of heterogeneous catalysis. These improvements include better separation using an external magnetic field, enhancement of the reaction rates by MNPs via local heating through induction and increasing the surface area as well as synergistic effects in conjunction with other catalytic species or centers due to the catalytic performance of magnetic materials, including Fe, Ni, Co or Ce-based ones. Hence, active catalytic species or centres supported onto the surface...
of MNPs have received much attention in the field of heterogeneous catalysis for promoting organic reactions in recent years

As a particular type of magnetic nanoparticles, superparamagnetic iron oxide nanoparticles (SPIONs) are more widely available than other MNPs due to advantages such as biologically well-accepted constituents, established size-selective preparation, diminished agglomeration, ease of preparation, and lower cost . On the other hand, heterogenization of the active sites of usual dendritic catalysis has been pursued by either attaching the catalyst covalently within the dendrimer core or at the branch termini as well as through supramolecular interactions such as metal–ligand, hydrogen bonding, aromatic π–π stacking, hydrophobic and van der Waals forces . Design and preparation of new magnetic dendritic catalytic systems by appropriate application of dendron segments which can be expanded to 2D or 3D covalent organic frameworks (COFs) is still in high demand.

In recent years, thermally stable heteroaromatic 1,3,5-triazinane-2,4,6-trione (isocyanurate) moiety has received significant attention in polymer and material chemistry due to its numerous industrial applications, particularly in the field of low toxic drug-delivery agents, tensioactive building blocks and nonlinear optical properties, foams, surface coatings, films, paints, fibers, selective anion receptors and preparation of periodic mesoporous organosilica . On the other hand, boronic acid and its derivatives have achieved specific attention, as appropriate catalysts, in their advantages including high solubility in water, easy handling, low prices, and environmentally friendly and commercial availability . In an attempt to indicate how applying SPIONs would affect the dendrimer bearing tridentate and thermally stable isocyanurate moiety as well as boronic acid catalytic activity, this study reports the use of multifunctional dendritic nanocatalyst containing boronic acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to core–shell silica-coated SPIONs (FeO@SiO₂@PTS-THEIC-(CH₂)OB(OH)₂, 1), as a novel and efficient supramolecular heterogeneous catalyst, in the one-pot synthesis of polyhydroacridines (PHAs), and polyhydroquinolines (PHQs) through multicomponent reaction (MCR) strategy (Scheme 1).

MCRs are one-pot reactions that involve more than two substrates demonstrating convergence as well as very high atom efficiency and bond-forming-index (BFI) . Thus, MCRs are usually a good alternative for the sequential multistep synthesis, especially for heterocyclic scaffolds such as Hantzsch esters including 1,4-dihydropyridines (DHPs), PHQs and PHAs in organic synthesis and medicinal chemistry . Generally known as one of the main groups of nitrogen heterocycles, polyhydroquinolines (PHQs) and polyhydroacridines (PHAs) have become considerably interesting due to their significant therapeutic and pharmacological properties . Indeed, they are used as antimalaria, calcium β-blocker, antioxidant, antimicrobial, antifungal, vasodilator, anticancer, bronchodilator, antithrombotic, hepatoprotective and antiadhesive agents as well as in the production of laser colors, radical reservoirs and safe hydrogen transfer agents . First introduced by Arthur Hantzsch in 1882, Hantzsch reaction is an MCR that contains the combination of a β-dicarbonyl compound, an aldehyde and a source consisting of ammonia (usually NH₄OAc) . However, catalytic systems are required to accelerate this multicomponent reaction. Here are some recent reported catalysts in this area: Mn@PMO-IL, vanadium ion doped titania nanoparticles, Lewis acidic mesoporous material (TUD-1) containing Fe, magnetite nanoparticle-supported ceria, silica-coated magnetic nanoparticles with tags of ionic liquid, Boehmite silica sulfuric acid (Boehmite-SSA), PMO-ICSPrSO_3H, FeO@B-MCM-41, PS/PTSA, PdRuNi@GO, 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently functionalized MCM-41, alginic acid and glycine nitrate (GlyNO₃) ionic liquid .

Results and discussion

Characterization of dendritic nanocatalyst containing boronic acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to core–shell silica-coated magnetic (FeO@SiO₂@PTS-THEIC-(CH₂)OB(OH)₂, 1). At first, the boronic-acid-functionalized-1,3,5-tris(2-hydroxyethyl)isocyanurate attached to the silica-coated SPIONs (FeO@SiO₂@PTS-THEIC-(CH₂)OB(OH)₂, 1) was characterized using different spectroscopic or analytical methods. As it has been shown in FT-IR spectrum (Fig. 1), the absorption bands at around 632 and 572 cm⁻¹ are related to the Fe–O bond vibrations. On the other hand, absorption band of Si–O–Si asymmetric stretching vibrations are apparent at around 1076 cm⁻¹. Furthermore, the observed signals at 954, 802 and 459 cm⁻¹ are assigned to the symmetric stretching and bending vibrations of Si–O–Si bonds . Also, the absorption band of C=O bond vibrations of the isocyanurate moiety appeared at around 1637 cm⁻¹. Furthermore, the signals in range of 1350–1000 cm⁻¹ belong to the C–N bonds vibrations. On the other hand, the absorption band of B–O vibrations appeared at 1510 cm⁻¹. Furthermore, there is an absorption signal at around 1191 cm⁻¹ which is related to B–O–H bond vibrations. Also, the signal at 563 cm⁻¹ is assigned to O–B–O bond vibrations.

Energy dispersive spectroscopy (EDX) spectrum of FeO@SiO₂@PTS-THEIC-(CH₂)OB(OH)₂ (1) proved that the magnetic catalyst functionalized with dendrons containing 1,3,5-tris(2-hydroxyethyl)isocyanurate and boronic acid has been functionalized properly due to the presence of Fe, Si, O, C, N and B elements. The percentages of elements were measured to be B (1.96), C (6.99), N (2.50), O (63.58), Si (12.33) and Fe (12.65), respectively. It can be deduced from the absence of Cl and Br elements that terminal chloride groups of the 3-chloropropyl trimethoxysilane (3-APTS) linker as well as terminal bromide groups of the 1,3-dibromopropane linker have been completely replaced by covalent bonding (Fig. 2).

The X-ray diffraction (XRD) pattern of FeO@SiO₂@PTS-THEIC-(CH₂)OB(OH)₂ (1) exhibited the phase structure and crystallization of the magnetic nanomaterials (Fig. 3). The main peaks were observed at 2θ: 27.9°, 32.5°, 33.8°, 55.6°, 56.4°, 62.3°. By comparing the XRD pattern of the prepared nanocatalyst (1) with the reference
card numbers in the X’pert software, the crystal network of Fe₃O₄, SiO₂ and B(OH)₃ correspond with 072–2303, 082–1572 and 030–0199 card numbers, respectively.

The textural properties of the magnetic dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1) was investigated by nitrogen adsorption–desorption isotherms (Fig. 4). The BET isotherm of the prepared catalyst corresponds with the BET standard type II adsorption isotherm. The surface area (BET), pore size and pore volume of the catalyst were calculated 55.8 m²/g, 13.9 nm, 0.19 cm³/g, respectively.

Thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) measurements were carried out under air atmosphere by heating the sample at the rate of 10 °C min⁻¹ up to 800 °C (Fig. 5). The first weight loss under 100 °C is related to the removal of water and organic solvents which have remained in the dendritic catalyst through its preparation processes. On the other hand, the second weight loss about 150 °C can be assigned to the dehydration of boric acid moieties and their condensation. Furthermore, two distinct weight losses about 460 and 510 °C are attributed respectively to the decomposition of aliphatic linkers and 1,3,5-tris(2-hydroxyethyl) isocyanurate moieties in the structure of the dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1) according to the data obtained by DTA (Fig. 5b).

Vibrating sample magnetometry (VSM) technique was used for measuring the magnetic properties of catalyst (1) at room temperature (Fig. 6). The saturation value of magnetization of Fe₃O₄ and Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ was measured to be 47.9 and 35.2 emu/g, respectively. Indeed, the reduction of saturation magnetization of Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ shows that the dendritic catalyst has been formed. However, the observed saturation magnetization of catalyst (1) is enough and hence, it can be easily separated by an external magnetic field.

Scheme 1. Schematic representation of the Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1) and its catalytic activity in the one-pot synthesis of polyhydroacridines (5) and polyhydroquinolines (7) through multicomponent reaction (MCR) strategy (Drawn using the ChemDraw Ultra 12.0 software developed by PerkinElmer).
To determine the size and morphology of the dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1), field emission scanning electron microscopy (FESEM) technique was used (Fig. 7). Interestingly, dendrons containing 3-propyl triethoxysilane (3-PTS), 1,3,5-tris(2-hydroxyethyl)isocyanurate and boric acid moieties are apparent (Fig. 7a–c). This may arise from the combination of both aromatic isocyanurate π-π stacking and boron-oxygen ligand interactions to afford supramolecular arrays of dendrons. Furthermore, the obtained images shown in Fig. 7c illustrate that the structure of catalyst was made up of particles smaller than 46 nm.

Investigation of the catalytic activity of dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ (1) for the synthesis of Hantzsch esters. After characterization of the dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1), the Hantzsch reaction for the synthesis of polyhydroacridine and polyhydroquinoline derivatives was chosen to examine the catalytic activity of Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ (1). For this purpose, the condensation of 4-chlorobenzaldehyde (2a, 1 mmol), dime done (3), NH₄OAc (4, 1 mmol) and/or ethyl acetooacetate (6, 1 mmol) were selected as the model reactions, for the synthesis of polyhydroacridine 5a and polyhydroquinoline 7a, respectively. The reactions were optimized considering different parameters such as the amount of catalyst loading, solvents and temperature. The results are reported in Table 1. Indeed, the reaction yield for the desired products 9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (5a) or ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-o xo-1,4,5,6,7,8-hexahyd-
Figure 3. X-ray diffraction (XRD) pattern of the magnetic dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1, the individual reference card numbers of the catalyst I components were collected from the X'pert HighScore Plus version 2.1 software developed by the PANalytical B.V.).
roquinoline-3-carboxylate (7a) were trace in the absence of any catalyst in EtOH at room temperature (entry 1). However, low yields of the desired products 5a and 7a were obtained under reflux conditions (entry 2) after long times. Interestingly, the yields were improved significantly in the presence of dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1, entries 3–5). Further optimization of the reaction conditions illustrated that EtOH is the best solvent to promote the reaction with high efficiency for the synthesis of the desired products 5a or 7a (entries 6–12). The results of optimizing of the model reactions demonstrated that the optimal conditions for the reaction are 10 mg catalyst 1 loading in EtOH under reflux conditions. On the other hand, both boric acid and Fe₃O₄@SiO₂@PTS-THEIC, as the components of the catalyst 1, afforded moderate yields of the desired products 5a and 7a at same catalyst loading under optimized conditions (entries 13 and 14). Finally, hot filtration test (the Sheldon test) was performed to prove the heterogeneous nature of the catalyst 1. During this test, the solid catalyst 1 was removed from the mixture of model reaction for producing 7a by filtration after 10 min using an external magnet. Then, the obtained mixture was heated again for 10 min. The result showed that after removal of the magnetic catalyst 1, the model reaction did not proceed significantly. Indeed, only 48% of the desired product 7a was isolated after 1 h (Fig. 8).

After finding the optimal conditions, the catalytic activity of Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ nanocatalyst (1) was further expanded to several other aromatic or heterocyclic aldehydes for the synthesis of other derivatives of PHAs 5a–o and PHQs 7a–u. As it is shown in Tables 2 and 3, the isolated yields of the desired products 6 or 8 were good to excellent in all studied cases under the optimized condition of reaction. In most cases, the products were obtained in similar periods of time and yields compared to the model reaction. Indeed, aldehydes including aromatic carbocyclic or heterocyclic substrates well survived under optimized conditions without formation of any by-products. It is noteworthy that aldehydes bearing electron-withdrawing groups or six-membered heterocycles almost reacted faster than substrates having electron-donating groups or five-membered heterocycles. This trend of reactivity was observed in both symmetric and asymmetric Hantzsch reaction to afford PHAs 5a–o or PHQs 7a–u derivatives, respectively. Furthermore, the α,β-unsaturated cinnamaldehyde (2q) or aliphatic butyraldehyde (2r) reacted in longer reaction times and afforded lower yields. These may be due to resonance and electron-releasing of the double bond and alkyl groups, respectively. All of these findings, led us to propose a plausible mechanism depicted in Scheme 2.

An important distinguishing feature of this magnetic dendritic nanocatalyst (1) beside easy separation from the reaction mixture is its recyclability. After the reaction was completed, the catalyst was separated and washed by acetone and hexane, respectively. Then, it was dried and reused in the model reactions for the next runs. The obtained results have been summarized in Fig. 9. These results show that this catalyst can be recovered and reused for at least five times in further runs under optimized conditions without a notable loss of its activity. Furthermore, comparison of the FTIR spectra of both fresh dendritic Fe₃O₄@SiO₂@CPTS-THEIC-(CH₂)₃OB(OH)₂ nanocatalyst (1) and the recycled sample after six consecutive runs for the synthesis of 5a demonstrated that their structures are almost similar (Fig. 10).

Table 4 contains some of the formerly reported methods and representing their catalytic activity for the synthesis of polyhydroacridines and polyhydroquinolines to compare them with the dendritic Fe₃O₄@SiO₂@CPTS-THEIC-(CH₂)₃OB(OH)₂. These data clearly demonstrate that the nanocatalyst 1 is more active than other previously reported catalytic systems in terms of catalyst loading, product yield, required reaction time and avoiding the toxic solvents.
Figure 5. (a) Thermal gravimetric analysis (TGA) and (b) differential thermal analysis (DTA) curves of the magnetic dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1).

Figure 6. VSM analysis of the magnetic dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1, reproduced using the Microsoft Excel 2016).
Experimental section. General information. All chemicals and reagents were provided by Merck or Aldrich chemical companies and used as received without any further purification, except for benzaldehyde which was used as a fresh distilled sample. FTIR spectra were recorded using KBr pellets on a Shimadzu FT IR-8400S spectrometer. Energy dispersive spectroscopy (EDS) was recorded on a SAMx instrument. The X-ray powder diffraction (XRD) data were collected on an X’Pert MPD Philips diffractometer with Cu radiation source (λ = 1.54050 Å) at 40 kV voltage and 40 mA current. Field emission scanning electron microscopy (FESEM) images were obtained using a MIRA3 instrument of TESCAN Company, Czech Republic. Thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) were performed by means of a Bahr company STA 504 instrument. The BET specific surface area of the catalyst was obtained using an equipment ASAP 2020 Micromeritics. Magnetic susceptibility measurements were taken out by using a Lakeshore VSM, 7410 series. Melting points were determined using an Electrothermal 9100 apparatus and are uncorrected. 1H NMR (500 MHz) spectra were obtained using a Bruker DRX-500 AVANCE spectrometer in CDCl3 at ambient temperature. Analytical TLC was carried out using Merck 0.2 mm silica gel 60 F-254 Al-plates and n-hexane: EtOAc, (3:1, v/v %) as eluent. All products are known and their structures were established by comparing the physical constants as well as FTIR and NMR spectroscopic data with authentic samples.

Preparation of Fe3O4@SiO2 nanoparticles modified by (3-chloropropyl) trimethoxysilane (Fe3O4@SiO2@CPTS). The Fe3O4@SiO2@CPTS materials were prepared according to the reported methods in literature with a slight modification.

Figure 7. FESEM images of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 magnetically recoverable catalyst (1).
Table 1. Optimization of the reaction of 4-chlorobenzaldehyde (2a), dimedone (3), NH₄OAc (4) and/or ethyl acetoacetate (6) under different conditions (The chemical structures were drawn using ChemDraw Ultra 12.0 software developed by PerkinElmer)a.

Entry	Catalyst 1 loading (mg)	Solvent	Temp. (°C)	Time (min)	Yield (%)	Product 5a Time (min)	Yield (%)	Product 7a
1	-	EtOH	rt	190	Trace	Trace		
2	-	EtOH	Reflux	140	22	100	25	
3	5	EtOH	Reflux	100	86	45	85	
4	10	EtOH	Reflux	60	92	20	95	
5	15	EtOH	Reflux	60	92	20	95	
6	10	H₂O	Reflux	110	67	70	64	
7	10	CH₂CN	Reflux	115	78	80	85	
8	10	EtOH	rt	100	76	90	80	
9	10	H₂O	rt	130	70	100	64	
10	10	EtOH	60 °C	90	84	60	64	
11	10	H₂O	60 °C	60	70	120	90	64
12	10	Solvent-Free	60 °C	100	82	60	86	
13	10	(H₃BO₃)	EtOH	60	75	60	86	
14	10	(Fe₃O₄@SiO₂@PTS-THEIC)	EtOH	Reflux	60	75	20	78

*Reaction conditions: 4-chlorobenzaldehyde (2a, 1 mmol), dimedone (3, 2 or 1 mmol), NH₄OAc (4, 1.5 mmol) or ethyl acetoacetate (6, 1 mmol) in EtOH (2 ml); aisolated yields.

Figure 8. Hot filtration test for the synthesis of ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (7a) under optimized conditions (reproduced using the Microsoft Excel 2016).
Entry	ArCHO 2	Product 5	Time (min)	Yield%	Mp (°C) Obs [Lit.]
1	OHC–C\(_2\)Cl \((2a)\)	5a	60	92	311–313 [315–317] \([29]\)
2	OHC–C\(_2\)NO\(_2\) \((2b)\)	5b	90	80	197–200 [201–203] \([30]\)
3	OHC–C\(_2\)Cl \((2c)\)	5c	75	80	321–323 [321] \([31]\)
4	OHC–C\(_2\)OMe \((2d)\)	5d	45	93	311–314 [311–313] \([31]\)
5	OHC–C\(_2\)N \((2e)\)	5e	60	80	308–310 [310–312] \([32]\)
6	OHC–CHO \((2f)\)	5f.	60	85	249–252 [249–251] \([33]\)
7	OHC–C\(_2\)O \((2g)\)	5g	160	72	220–223 [223–225] \([34]\)
8	OHC–C\(_2\)NO\(_2\) \((2h)\)	5h	90	87	268–270 [273–275] \([35]\)
9	OHC–C\(_2\)N \((2i)\)	5i	60	82	284–286 [284–286] \([35]\)
10	OHC–C\(_2\)O\(_2\) \((2j)\)	5j	95	85	280–282 [282–283] \([36]\)
11	OHC–C\(_2\) \((2k)\)	5k	100	85	244–246 [246–248] \([36]\)
12	OHC–C\(_2\)OMe \((2l)\)	5l	60	88	301–303 [298–300] \([36]\)
13	OHC–C\(_2\)Br \((2m)\)	5m	60	86	328–330 [320–325] \([37]\)
14	OHC–C\(_2\)N \((2n)\)	5n	160	80	277–279 [278–279] \([38]\)
15	OHC–C\(_2\)F \((2o)\)	5o	90	82	272–274 [274–276] \([39]\)
Preparation of the dendritic Fe₃O₄@SiO₂@PTS-THEIC nanomaterials. Fe₃O₄@SiO₂@CPTS (1 g) was dispersed in toluene (30 ml) and KI (1.66 g) was added to the obtained mixture with the mechanical stirring at 80 °C for 1 h. Then, K₂CO₃ (1.38 g) and tris-(2-hydroxyethyl)-1,3,5-triazinane-2,4,6-trione (1 g) were added to the mixture and it was heated under reflux conditions for 8 h. The obtained solid was filtered off and washed with EtOH (5 ml) and then dried in an oven for 2 h.

Preparation of the dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ nanocatalyst (1). A mixture of Fe₃O₄@SiO₂@CPTS-THEIC (1 g) and 1,3-dibromopropane (d = 1.98 g cm⁻³, 2 ml) was added to toluene (15 ml) and heated at 40 °C for 12 h. The obtained solid was filtered off, washed with toluene (5 ml) and then dried in a vacuum oven at 80 °C for 1 h. Then, K₂CO₃ (1.38 g) and tris-(2-hydroxyethyl)-1,3,5-triazinane-2,4,6-trione (1 g) were added to the mixture and it was heated under reflux conditions for 8 h. The obtained solid was filtered off and washed with EtOH (3 ml) and then kept in a vacuum oven at 60 °C for 12 h. The complete procedure for the preparation of catalyst 1 has been represented in Scheme 3.

General procedure for the synthesis of 1,8-dioxoacridinoidine derivatives 5a–o catalyzed by magnetic dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1). In a 5 ml round-bottomed flask, a mixture of aldehyde (2a–o, 1 mmol), dimedone (3, 2 mmol), NH₄OAc (4, 1.5 mmol, 0.11 g) and Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ (1, 0.01 g) were added to EtOH 96% (2 ml). The obtained mixture was stirred under reflux conditions for times indicated in Table 2. The progress of the reactions was monitored by TLC experiment (eluent; n-hexane: EtOAc, 3:1, v/v %). After completion of the reaction, EtOH (3 ml) was added to the mixture and it was heated to dissolve all organic compounds. Then, the catalyst 1 was easily separated by an external magnet and the solution was filtered. The filtrate was kept at room temperature and the crystals were collected by filtration to afford 1,8-dioxoacridinoidine derivatives 5a–o in high purity.

Table 2. Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂-catalyzed one-pot synthesis of polyhydroacridines 5a–o from different aldehydes (2a–o), dimedone (3) and NH₄OAc (4) under the optimized conditions (The chemical structures were drawn using ChemDraw Ultra 12.0 software developed by PerkinElmer)†.

| Reaction conditions: aldehyde (2a–o, 1 mmol), dimedone (3, 2 mmol) and NH₄OAc (4, 1.5 mmol) in EtOH (2 ml); †isolated yields. ‡All products are known and their structures were established from their spectral data and melting points compared to authentic samples or literature values. |

Selected spectral data. 9-(4-Chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinedione (5a). Pale yellow solid; m.p. = 310–312 °C; FT-IR (KBr, cm⁻¹): 3282, 3176, 3060, 2954, 2875, 1650, 1608, 1492, 1365, 1220, 1147, 1014, 840, 761, 597, 526; 1H NMR (500 MHz, CDCl₃): δ (ppm): 0.98 (s, 6H, 2CH₃), 1.10 (s, 6H, 2CH₃), 2.19–2.37 (8H, m, 4CH₂), 5.06 (s, 1H, CH), 7.17 (d, 2H, Ar–H), 7.28 (d, 2H, Ar–H), 6.97 (s, 1H, NH), 6.97 (s, 1H, NH).

3,3,6,6-Tetramethyl-9-(pyridin-2-yl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (5i). Pale yellow solid; m.p. = 235–236 °C; FT-IR (KBr, cm⁻¹): 3604, 3519, 3440, 3284, 2875, 1637, 1600, 1477, 1365, 1218, 1139, 995, 744, 563; 1H NMR (500 MHz, CDCl₃): δ (ppm): 0.98 (s, 6H, 2CH₂), 1.07 (s, 6H, 2CH₂), 2.12–2.46 (8H, m, 4CH₂), 5.22 (s, 1H, CH), 7.51–7.58 (t, 3H, Ar–H), 8.41 (d, 1H, Ar–H), 6.97 (s, 1H, NH).

Ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (7l). Pale yellow solid; m.p. = 255–260 °C; FT-IR (KBr, cm⁻¹): 3278, 3203, 3076, 2956, 1699, 1604, 1496, 1379, 1276, 1218, 1070, 1031, 842, 765, 536; 1H NMR (500 MHz, CDCl₃): δ (ppm): 0.92 (s, 3H, CH₃), 1.04 (s, 3H, CH₃), 1.20 (t, 3H, J = 7.2 Hz, CH₃(OEt)), 2.11–2.28 (m, 4H, CH₂), 2.33 (s, 3H, CH₃), 3.71 (s, 3H, OCH₃), 4.03–4.07 (q, 2H, J = 7.2 Hz, OCH₂, 5.22 (s, 1H, CH), 7.51–7.58 (t, 3H, Ar–H), 8.41 (d, 1H, Ar–H), 6.97 (s, 1H, NH).
Entry	ArCHO 2	Product 7	Time (min)	Yield%	Mp (°C) Obs [Lit.]*
1	(2a)	7a	20	95	243–245 [242–244]
2	(2b)	7b	20	92	249–251 [248–250]
3	(2c)	7c	45	89	234–236 [238–240]
4	(2d)	7d	45	92	196–198 [200–202]
5	(2e)	7e	45	84	182–184 [182–184]
6	(2f)	7f	60	80	224–226 [226–228]
7	(2g)	7g	45	85	234–237 [238–241]
8	(2h)	7h	45	96	223–225 [224–226]
9	(2i)	7i	55	96	235–237 [239–242]
10	(2j)	7j	25	93	260–263 [263–265]
11	(2k)	7k	220	67	209–212 [208–211]
12	(2l)	7l	20	95	256–259 [255–257]
13	(2m)	7m	190	62	223–225 [225–227]
14	(2n)	7n	80	70	230–232 [233–235]

Continued
Ethyl 2,7,7-trimethyl-4-(3-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (7e). Pale yellow solid; m.p. = 180–184 °C; FT-IR (KBr, cm⁻¹): 3276, 3193, 2964, 1703, 1604, 1490, 1379, 1278, 1215, 1143, 1070, 1022, 829, 754, 690, 507; ¹H NMR (500 MHz, CDCl₃): δ (ppm): 0.93 (s, 3H, CH₃), 1.09 (s, 3H, CH₃), 1.19 (t, 3H, J = 7.2 Hz, CH₃ (OEt)), 2.13–2.40 (7H, s CH₃, m 2CH₂), 4.03–4.07 (q, 2H, J = 7.2 Hz, CH₂ (OEt)), 5.15 (s, 1H, CH₃ (benzylic)), 5.98 (s, 1H, NH), 6.71–6.73 (d, 2H, J = 8.2 Hz, Ar–H), 7.21 (d, 2H, J = 8.2 Hz, Ar–H).

Conclusions. In conclusion, the multifunctional dendritic nanocatalyst containing boric acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to core–shell silica-coated magnetite (Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂) was prepared and properly characterized for the first time. It was found that the combination of both aromatic π–π stacking and boron–oxygen ligand interactions affords supramolecular arrays of dendrons. The use of boric acid makes this dendritic catalyst a green choice from corrosion, recyclability and cost points of view. The magnetic dendritic catalyst was used, as a mild and recyclable catalyst, for the one-pot efficient synthesis of polyhydroacridines and polyhydroquinolines through MCR strategy in EtOH as a green solvent. Indeed, very low catalyst loading, short reaction times, mild reaction conditions, high to excellent yields, reusability of the catalyst, ease of separation by an external magnetic field, and the use of nontoxic materials for the preparation of the catalyst are among other advantages of this protocol. Further exploring of this magnetic dendritic magnetic catalyst for other organic transformations is underway in our research lab and would be presented in due course.

Table 3. Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂-catalyzed one-pot synthesis of polyhydroquinolines 7a–u from different aldehydes (2a–u), dimedone (3), NH₄OAc (4) and ethyl acetoacetate (5) under the optimized conditions (The chemical structures were drawn using ChemDraw Ultra 12.0 software developed by PerkinElmer).^a

Entry	ArCHO 2	Product 7	Time (min)	Yield%	Mp (°C) Obs [Lit.]c
15	(2o)	7o	90	65	186–188 [184–186]
16	(2p)	7p	120	74	218–221 [223–225]
17	(2q)	7q	90	56	203–20 [204–205]
18	(2r)	7r	90	67	166–168 [165–167]
19	(2t)	7t	55	94	273–275 [274–276]
20	(2u)	7u	45	80	157–160 [157–160]

^a Reaction conditions: aldehyde (2, 1 mmol), dimedone (3, 1 mmol), NH₄OAc (4, 1.5 mmol) and ethyl acetoacetate (5, 1 mmol) in EtOH (2 ml); isolated yields. All products are known and their structures were established from their spectral data and melting points compared to authentic samples or literature values.

CH₂(ΟΗ₂). 4.98 (s, 1H, CH₃ (benzylic)), 6.43 (br s, 1H, NH), 6.71–6.73 (d, 2H, J = 8.2 Hz, Ar–H), 7.21 (d, 2H, J = 8.2 Hz, Ar–H).
Scheme 2. Plausible mechanism for the one-pot synthesis of polyhydroacridines 5 and polyhydroquinolines 7 catalyzed by the agnetically recoverable Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1, Drawn using the ChemDraw Ultra 12.0 software developed by PerkinElmer).
Figure 9. Recyclability of the dendritic Fe$_3$O$_4$@SiO$_2$@CPTS-THEIC-(CH$_2$)$_3$OB(OH)$_2$ nanocatalyst (1) for the synthesis of 5a and 7a (Drawn using the Microsoft Excel 2016).

Figure 10. FTIR spectra of the fresh Fe$_3$O$_4$@SiO$_2$@CPTS-THEIC-(CH$_2$)$_3$OB(OH)$_2$ nanocatalyst (1) and the recycled sample after six consecutive runs for the synthesis of 5a (reproduced using the Microsoft Excel 2016).
Table 4. Comparison of the synthesis of compounds 5a and 7a using the reported methods versus the present method.

Entry	Catalyst	Product	Catalyst Loading (mg)	Solvent	T °C	Time (min.)	Yield	Ref
1	KH₂PO₄	5a	5 mol%	EtOH/H₂O	120	5 h	94	146
2	DABCO-PEG-400 ionic liquid	5a	80	-	115	12–14 h	92	148
3	Silica bonded N-propyl sulfamic acid	5a	30	EtOH	Reflux	2 h	86	149
4	Sawdust sulfonic acid	5a	50	EtOH	Reflux	1 h	90	150
5	Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂	5a	10	EtOH	Reflux	1 h	92	This Work
6	L-proline	7a	10	EtOH	Reflux	360	92	151
7	Yb(OH)₃	7a	60	EtOH	25	300	90	152
8	PdRuNipGO	7a	6	DMF	70	45	92	154
9	p-Toluensulfonic acid	7a	18	--	rz	120	90	155
10	Fe₃O₄@R-MCM-41	7a	50	EtOH	Reflux	40	92	156
11	Silica Sulfuric Acid (SSA)	7a	80	EtOH	60	45	93	157
12	PMO-ICS-PrSO₃H	7a	20	EtOH	Reflux	20	95	158
13	Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂	7a	10	EtOH	Reflux	20	95	This Work

Scheme 3. Schematic preparation of the dendritic Fe₃O₄@SiO₂@PTS-THEIC-(CH₂)₃OB(OH)₂ catalyst (1, Drawn using the ChemDraw Ultra 12.0 software developed by PerkinElmer).
5. Jiang, J. et al. Modularly constructed polyhedral oligomeric silsesquioxane-based giant molecules for unconventional nanomaterial fabrication. ACS Appl. Nano Mater. 3, 2922–2938. https://doi.org/10.1021/acs.anmks.0c0231 (2020).

6. Xu, F. et al. Tunable superstructures of dendronized graphene nanoribbons in liquid phase. J. Am. Chem. Soc. 141, 10972–10977. https://doi.org/10.1021/jacs.9b04927 (2019).

7. Guo, C. et al. The potential of peptide dendron functionalized and gadolinium loaded mesoporous silica nanoparticles as magnetic resonance imaging contrast agents. J. Mater. Chem. B 4, 2322–2331 (2016).

8. Ren, X. & Xu, Q. Building close ties between CO2 and functional two-dimensional nanomaterials with green chemistry strategy. Energy Environ. Mater. 1, 46–60. https://doi.org/10.1002/eem2.12005 (2018).

9. Han, T.-H., Kim, H., Kwon, S.-J. & Lee, T.-W. Graphene-based flexible electronic devices. Mater. Sci. Eng. R Rep. 118, 1–43 (2017).

10. Tomalia, D. A., Christensen, J. B. & Boas, U. Dendrimers, Dendrons, and Dendritic Polymers: Discovery, Applications, and the Future (Cambridge University Press, Boca Raton, 2016).

11. Sun, S. S. & Dalton, L. R. Introduction to Organic Electronic and Optoelectronic Materials and Devices (CRC Press, Boca Raton, 2012).

12. Buzzacchera, I. et al. Screening libraries of amphiphilic janus dendrimers based on natural phenolic acids to discover monodisperse unilamellar dendrimersomes. Biomacromolecules 20, 712–727. https://doi.org/10.1021/acs.biomac.8b01405 (2019).

13. Demirci, T. et al. One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Adv. 6, 76948–76956 (2016).

14. Svensson, S. The dendrimer paradox—high medical expectations but poor clinical translation. Chem. Soc. Rev. 43, 4131–4144 (2015).

15. Newkome, G. R. & Shreiner, C. D. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. Polymer 49, 1–173. https://doi.org/10.1016/j.polymertoday.2007.10.021 (2008).

16. Li, W., Huang, Y., Liu, Y., Tekell, M. C. & Fan, D. Three dimensional nanosuperstructures made of two-dimensional materials by design: Synthesis, properties, and applications. Nano Today 29, 100799. https://doi.org/10.1016/j.nantod.2019.100799 (2019).

17. Knights, K. A. et al. A rapid route to carbazole containing dendrions and phosphorescent dendrimers. J. Mater. Chem. 18, 2121–2130. https://doi.org/10.1039/B717570J (2008).

18. Paez, J. I., Martinelli, M., Brunetti, V. & Strumia, M. C. Dendronization: A useful synthetic strategy to prepare multifunctional materials. Polymers 4, 355–395 (2012).

19. Alahakoon, S. B., Diwakara, S. D., Thompson, C. M. & Smaldone, R. A. Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 49, 1344–1356 (2020).

20. El Kadib, A., Katir, N., Boussmina, M. & Majoral, J. P. Dendrimer–silica hybrid mesoporous materials. New J. Chem. 36, 241–255 (2012).

21. Maniy, A., Belgamwar, R. & Polshettwar, V. Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO2 capture. Nat. Protoc. 14, 2177 (2019).

22. Keller, M. et al. Pyrene-tagged dendritic catalysts noncovalently grafted onto magnetic Co/C nanoparticles: An efficient and recyclable system for drug synthesis. Angew. Chem. Int. Ed. 52, 3626–3629. https://doi.org/10.1002/anie.201209968 (2013).

23. Caminade, A. M., Yan, D. & Smith, D. K. Dendrimers and hyperbranched polymers. Chem. Soc. Rev. 44, 3870–3873 (2015).

24. Cui, W.-R. et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat Commun 11, 436. https://doi.org/10.1038/s41467-020-14289-x (2020).

25. Liu, X. et al. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis. Nat Commun 7, 1–8 (2016).

26. Wang, D., Deraedt, C., Ruiz, J. & Astruc, D. J. A. Magnetic and dendritic catalysts. Acc. Chem. Res. 48, 1871–1880 (2015).

27. Deraedt, C., Pinaud, N. & Astruc, D. Recyclable catalytic dendrimer nanoreactor for per–per-milion cui catalysis of "click" chemistry in water. J. Am. Chem. Soc. 136, 12092–12098. https://doi.org/10.1021/jacs.1005138 (2014).

28. Tarahomi, M., Alinezhad, H. & Maleki, B. Immobilizing Pd nanoparticles on the ternary hybrid system of graphene oxide, Fe3O4 nanoparticles, and PAMAM dendrimer as an efficient support for catalyzing sonogashira coupling reaction. Appl. Organomet. Chem. 33, e5203 (2019).

29. Nguyen, D.-V. et al. Mastering bioactive coatings of metal oxide nanoparticles and surfaces through phosphonate dendrons. New J. Chem. 44, 3206–3214. https://doi.org/10.1039/CNJ0565G (2020).

30. Qi, W. et al. An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility. Green Chem. 21, 1292–1304 (2019).

31. Wei, X. W., Guo, G., Geng, C. Y., Gou, M. L. & Yong Qian, Z. A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications 365–387 (The Royal Society of Chemistry, London, 2011).

32. Grippin, A. J. et al. Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano 13, 13884–13898. https://doi.org/10.1021/acsnano.9b05307 (2019).

33. Zhou, L., Gao, C. X. & Wu, M. Dendritic metal nanoparticles for highly efficient adsorption of dyes and drugs. ACS Appl. Mater. Interfaces 2, 1483–1491. https://doi.org/10.1021/am100114f (2010).

34. Ross, I. M., Costa, N. J. S., Silva, F. P. & Wojcieszak, R. Magnetic nanoparticles in catalysis: Advanced catalysts for magnetic separation and beyond. Green Chem. 16, 2906–2933. https://doi.org/10.1039/C4GC0164H (2014).

35. Pasinski, T. et al. Copper nanoparticles grafted on carbon microspheres as novel heterogeneous catalysts and their application for the reduction of nitrophenol and one-pot multicomponent synthesis of hexahydroxquinolines. New J. Chem. 42, 1092–1098 (2018).

36. Maleki, B., Reiser, O., Esmaeelnezhad, E. & Choi, H. J. SO3H–dendrimer functionalized magnetic nanoparticles (Fe3O4@ DNH (CH2) 4SO3H): Synthesis, characterization as its novel application and its role as efficient catalyst for the one-pot synthesis of multifunctional pyryls and polyhydroquinolines. Polyhedron 162, 129–141 (2019).

37. Hudson, R., Feng, Y., Varma, R. S. & Moore, A. Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem. 16, 4493–4505 (2014).

38. Dalpozzo, R. J. G. C. Magnetic nanoparticle supports for asymmetric catalysts. Green Chem. 17, 3671–3686 (2015).

39. Zololégl, M. A. et al. A highly stable and active magnetically separable Pd nanocatalyst in aqueous phase heterogeneously catalyzed couplings. Green Chem. 15, 2132–2140. https://doi.org/10.1039/C3GC40421H (2013).

40. Mohammadinezhad, A. & Akhlaghina, B. Fe3O4@Boehmite-NH2 CoILPs: an inexpensive and highly efficient heterogeneous magnetic nanocatalyst for the Suzuki-Miyaura and Heck-Mizoroki cross-coupling reactions. Green Chem. 19, 5625–5631. https://doi.org/10.1039/C7GC02647A (2017).

41. Gawande, M. B. et al. Magnetically recyclable magnetite–ceria (NanoFe@PMO-ICS-PrSO3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Sci. Rep. 10, 10666. https://doi.org/10.1038/s41598-020-67592-4 (2020).
54. Heitsch, A. T., Smith, D. K., Patel, R. N., Ress, D. & Korgel, B. A. Multifunctional particles: Magnetic nanocrystals and gold

56. Ishani, M., Dekamin, M. G. & Alirezvani, Z. Superparamagnetic silica core-shell hybrid attached to graphene oxide as a promis-

57. Karami, S., Dekamin, M. G., Valiey, E. & Shakib, P. DABA MNPs: A new and efficient magnetic bifunctional nanocatalyst for

48. Das, V. K. et al. Graphene derivative in magnetic graphenically recoverable catalyst determines catalytic properties in transfer hydrogena-

71. Pokladek, Z.

72. Singh, H. & Jain, A. K. Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: A comprehensive review.

49. Mohammadi, R., Esmati, S., Gholamhosseini-Nazari, M. & Teimuri-Mofrad, R. Synthesis and characterization of a novel Fe3O4@

62. Li, C., Zhao, W., He, J. & Zhang, Y. Highly efficient cyclotrimerization of isocyanates using N-heterocyclic olefins under bulk

63. Guo, Z., Xu, Y., Wu, X., Wei, X. & Xi, C. Potassium complexes containing bidentate pyrrole ligands: synthesis, structures, and

64. Liu, D., Zhou, D., Yang, H., Li, J. & Cui, C. Yttrium dialkyl supported by a silaamidinate ligand: synthesis, structure and catalysis

48. Das, V. K. et al. Graphene derivative in magnetic graphenically recoverable catalyst determines catalytic properties in transfer hydrogena-

74. Gale, P. A., García-Garrido, S. E. & Garric, J. Anion receptors based on organic frameworks: Highlights from 2005 and 2006.

73. Gama, N. V., Ferreira, A. & Barros-Timmons, A. Polyurethane foams: Past, present, and future.

76. Olkhovyk, O. & Jaroniec, M. Periodic mesoporous organosilica with large heterocyclic bridging groups.

78. Hansen, T. S., Mielby, J. & Riisager, A. Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxy-

18
79. Bhattacharyya, D. et al. Boric acid catalyzed chemoselective reduction of quinolines. Org. Biomol. Chem. 18, 1214–1220. https://doi.org/10.1039/C8OB02673H (2020).

80. Pal, R. Boric acid in organic synthesis: scope and recent developments. ARKIVOC Online J. Org. Chem. 2018, 346–371 (2018).

81. Chatterjee, M., Ishizaka, T., Suzuki, T., Suzuki, A. & Kawanami, H. In situ synthesized Pd nanoparticles supported on B-MCM-41: An efficient catalyst for hydrogenation of nitroaromatics in supercritical carbon dioxide. Green Chem. 14, 3415–3422. https://doi.org/10.1039/C2GC36160D (2012).

82. Brun, E. et al. Microwave-assisted condensation reactions of acetophenone derivatives and activated methylene compounds with aldehydes catalyzed by boric acid under solvent-free conditions. Molecules 20, 11617–11631 (2015).

83. Houston, T. A., Wilkinson, B. L. & Blanchfield, J. T. Boric acid catalyzed chemoselective esterification of α-hydroxycarboxylic acids. Org. Lett. 6, 679–681. https://doi.org/10.1021/ol036123g (2004).

84. Halimehnajat, A. Z., Hosseyni, S., Gholami, H. & Hashemi, M. M. Boric acid/glycerol as an efficient catalyst for synthesis of thiomorpholine 1,1-dioxide by double Michael double addition reaction in water. Synth. Commun. 43, 191–197. https://doi.org/10.1080/00397911.2011.594930 (2013).

85. Kumar, A. & Maurya, R. A. An unusual Mannich type reaction of tertiary aromatic amines in aqueous micelles. Tetrahedron Lett. 49, 5471–5474. https://doi.org/10.1016/j.tetlet.2008.07.019 (2008).

86. Dekamin, M. G., Mohkhaiari, Z. & Karimi, Z. Nano-ordered B-MCM-41 as a robust heterogeneous catalyst via the Hantzsch reaction. New J. Chem. 42, 3296–3300. https://doi.org/10.1039/C8NJ03225C (2018).

87. Palermo, V. et al. Heterocyclic drugs and drug discovery. Chem. Heterocycl. Compd. 48, 7–10 (2012).

88. Dömling, A., Wang, W. & Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135. https://doi.org/10.1021/rr100233y (2012).

89. Dekamin, M. G., Azimoshan, M. & Ramezani, L. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrimidines and 1,8-dioxo-decahydroacridines. Green Chem. 16, 4914–4921. https://doi.org/10.1039/C4GC00411F (2014).

90. Mathew, G., Lincy, J. & Chippy, J. Synthesis, characterization and biological screening of novel 1,4-dihydropyridine derivatives. New J. Chem. 42, 327–335 (2018).

91. Janis, R. A. & Triggle, D. J. New developments in calcium ion channel antagonists. J. Med. Chem. 56, 103617–103624. https://doi.org/10.1021/acs.jmedchem.8b00138 (2019).

92. Pyrko, A. Synthesis and transformations of new 1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione derivatives. Molecules 24, 16852–16891 (2019).

93. Mathew, G., Lincy, J. & Chippy, J. Synthesis, characterization and biological screening of novel 1,4-dihydropyridine derivatives for certain pharmacological activities. The Pharma Innovation 6, 165 (2017).

94. Srinivasan, V. V., Pachamuthu, M. & Prasad, G. K. Solvent-free synthesis of polyhydroquinoline derivatives employing Dharma Rao, G. B., Nagakalyan, S. & Prasad, G. K. Solvent-free synthesis of polyhydroquinoline derivatives employing mesoporous vanadium iodine doped titania nanoparticles as a robust heterogeneous catalyst via the Hantzsch reaction. RSC Adv. 7, 3611–3616. https://doi.org/10.1039/C6RA26664A (2017).

95. Zolfigol, M. A. & Varie, M. Synthesis and characterization of novel silica-coated magnetic nanoparticles with tags of ionic liquid. Applicability in the synthesis of polyhydronquinolines. RSC Adv. 5, 10363–10364. https://doi.org/10.1039/C5RA23670C (2015).

96. Ghorbani-Choghamarani, A., Rabiieh, H., Tahmashi, B., Ghasesmi, B. & Mardi, F. Preparation of DSA® MNPs and application as heterogeneous and recyclable nanocatalyst for oxidation of sulfides and oxidative coupling of thiols. Res. Chem. Intermed. 42, 5723–5737 (2016).
117. Yaghoubi, A., Dekamin, M. G. & Karimi, B. Propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (PMO-I-SCs-PrSO3H): A highly efficient and recoverable nanocatalyst for the one-pot synthesis of substituted polyhydroxyquinolines. *Catal. Lett.* **147**, 2656–2663 (2017).

118. Abdollahi-Alibeik, M. & Rezaeeipoor-Anari, A. Fe3O4@ B-MCM-41: A new magnetically renewable nanostructured catalyst for the synthesis of polyhydroxyquinolines. *J. Magn. Magn. Mater.* **398**, 205–214 (2016).

119. Reddy, M. & Jeong, Y. T. Letter polystyrene-supported p-toluene sulfonic acid: A new, highly efficient, and recyclable catalyst for the synthesis of hydroxyquinoline derivatives under solvent-free conditions. *Synth. Commun.* **42**, 2985–2991 (2012).

120. Alirezavi, Z., Dekamin, M. G. & Valiey, E. New hydrogen-bond–enriched 1,3,5-tris(2-hydroxethyl) isocyanurate covalently functionalized MCM-41: An efficient and recoverable hybrid catalyst for convenient synthesis of acridinediones. *ACS Omega* **4**, 20618–20633. https://doi.org/10.1021/acsomega.9b02755 (2019).

121. Dekamin, M. G. et al. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroxyquinolines. *Int. J. Biol. Macromol.* **108**, 1273–1280. https://doi.org/10.1016/j.jbiomac.2017.11.050 (2018).

122. Dekamin, M. G. et al. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. *RSC Adv.* **4**, 56658–56664. https://doi.org/10.1039/C4RA11881D (2014).

123. Kumar, R., Andhara, N. H., Shad, A. & Sinha, A. K. Multicomponent diversity-oriented synthesis of symmetrical and unsymmetrical 1,4-dihydropyridines in recyclable glyicine nitrate (GlyN03) liquid: A mechanistic insight using Q-TOF ESI-MS/MS. *RSC Adv.* **4**, 19111–19121 (2014).

124. Davoodi, F., Dekamin, M. G. & Alirezavi, Z. A practical and highly efficient synthesis of densely functionalized nitronitrile-trile derivatives catalyzed by zinc oxide-decorated superparamagnetic silica attached to graphene oxide nanocomposite. *Appl. Organomet. Chem.* **33**, e4735. https://doi.org/10.1002/aoc.4735 (2019).

125. Dekamin, M. G., Moghbeli, M. R., Barikani, M. & Javanshir, S. Fast and convenient synthesis of cross-linked poly(urethane-isocyanurate) in the presence of tetrabutylammonium phthalimide-N-oxyl or tetrathylammonium 2-(carboxyl)benzoate as efficient metal-free cyclotrimerization catalysts. *Polym. Plast. Technol. Eng.* **52**, 1172–1132. https://doi.org/10.1080/03602559.2013.779708 (2013).

126. Kocyiğit, S. et al. Structural investigation of boron undoped and doped indium stabilized bismuth oxide nanoceramic powders. *Ceram. Int.* **39**, 7767–7772 (2013).

127. Dekamin, M. G., Mehdipoor, F. & Yaghoubi, A. 1, 3, 5-Tris (2-hydroxyethyl) isocyanurate functionalized graphene oxide: a novel and efficient nanocatalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. *New J. Chem.* **41**, 6893–6901 (2017).

128. Liu, J., Shi, H., Shen, Q., Guo, C. & Zhao, G. A biomimetic photoelectrocatayst of co–porphyrin combined with a g-C3N4 nanosheet based on π–π supramolecular interaction for high-efficiency CO2 reduction in water medium. *Green Chem.* **19**, 5990–5910. https://doi.org/10.1039/C7GC02567A (2017).

129. Zarei, Z. & Akhlaghinia, B. Zn II doped and immobilized on functionalized magnetic hydrotalcite (Fe3O4/HT-SMTU-Zn II): A novel, green and magnetically recyclable bifunctional nanocatalyst for the one-pot multi-component synthesis of acridinediones under solvent-free conditions. *New J. Chem.* **41**, 15485–15500 (2017).

130. Fekri, L. & Nikpassand, M. Benzyl alcohol-based synthesis of mono- and bis-dihydropyridines in the presence of Al(HSO4)3, sodium nitrite, and sodium bromide under solvent-free conditions. *Russ. J. Gen. Chem.* **86**, 1412–1418 (2016).

131. Rostamizadeh, S., Amrabi, A., Shadjou, N. & Amani, A. M. MCM-41–SO3H as a nanoreactor for the one-pot, solvent-free synthesis of 1, 8-dioxo–9-aryl decachrylodienes. *J. Heterocycl. Chem.* **49**, 111–115 (2012).

132. Bakibaev, A. A., Filimonov, V. & Nevzgodova, E. S. Ureas in organic synthesis VI. Reactions of 1,3-dicarbonyl compounds with azomethines and urea in dimethyl sulfoxide as a method for the synthesis of Aril-supported Acridine-1,8-diones and 1,4-dihydropyridines. *J. Org. Chem. USSR* **27**, 1332–1336 (1991).

133. Mahesh, P. et al. Magnetically separable recyclable nano-ferrite catalyst for the synthesis of acridinediones and their derivatives under solvent-free conditions. *Chem. Lett.* **44**, 1386–1388 (2015).

134. Ramesh, K. B. & Pasha, M. A. Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1,8-diones using SiO2–I catalytic 2-(carbamoyl) benzoate as efficient metal-free cyclotrimerization catalysts. *Synth. Commun.* **39**, e4735. https://doi.org/10.1089/com.98-8272 (1999).

135. Das, P., Dutta, A., Bhounsuk, A. & Mukhopadhyay, C. Heterogeneous ditopic ZnFe2O4 catalyzed synthesis of 4H-pyrans: Further conversion to 1,4-DHPs and report of functional group interconversion from amide to ester. *J. Org. Chem.* **80**, 1386–1388 (2015).

136. Gazerani, P. G. et al. Magnetite polycitric acid (Fe3O4@ PCA) nanoparticles: A novel, efficient and reusable solid acid catalyst for the preparation of polyhydroquinolines derivatives via Hantzsch condensation under solvent-free conditions. *RSC Adv.* **6**, 26026–26037 (2016).

137. Yaghoubi, A., Shirini, F. & Javanshir, S. Dekamin, M. G. & Farhadnia, M. Tetraethylammonium 2-(carbamoyl) benzoate as efficient metal-free cyclotrimerization catalysts. *Synth. Commun.* **48**, 462–472 (2018).
149. Rashedian, F., Saberi, D. & Niknam, K. Silica-bonded N-propyl sulfamic acid: A recyclable catalyst for the synthesis of 1, 8-dioxodecahydroacridines, 1, 8-dioxo-octahydroxanthenes and quinoxalines. *J. Chin. Chem. Soc.* **57**, 998–1006 (2010).

150. Karade, N. N., Budhewar, V. H., Shinde, S. V. & Jadhav, W. N. L-proline as an efficient organo-catalyst for the synthesis of polyhydroquinoline via multicomponent Hantzsch reaction. *Lett. Org. Chem.* **4**, 16–19 (2007).

151. Wang, L.-M. *et al.* Facile Yb(OTf)₃ promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. *Tetrahedron* **61**, 1539–1543 (2005).

152. Cherkupally, S. R. & Mekala, R. <i>P</i>-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation. *Chem. Pharm. Bull.* **56**, 1002–1004. https://doi.org/10.1248/cpb.56.1002 (2008).

153. Mobinikhaledi, A. *et al.* Efficient one-pot synthesis of polyhydroquinoline derivatives using silica sulfuric acid as a heterogeneous and reusable catalyst under conventional heating and energy-saving microwave irradiation. *Synth. Commun.* **39**, 1166–1174 (2009).

Acknowledgements

We are grateful for the financial support from The Research Council of Iran University of Science and Technology (IUST), Tehran, Iran (Grant No 160/19108). We would also like to acknowledge the support of The Iran Nanotechnology Initiative Council (INIC), Iran.

Author contributions

M.S. worked on the topic as her MSc. Thesis and prepared the initial draft of the manuscript. Prof. M.G.D. is the supervisor of Sam and Z.A. as his MSc. and Ph.D. students, respectively. Also, he edited and revised the manuscript completely. Z.A. worked closely with Miss Sam for doing experimental section and interpretation of the characterization data of both catalyst and products.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-020-80884-z.

Correspondence and requests for materials should be addressed to M.G.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021