This article can be cited before page numbers have been issued, to do this please use: J. Song, F. Zhang, L. Yang, K. Chen, A. Li, R. Sheng, Y. Duan and P. Chen, Mater. Adv., 2021, DOI: 10.1039/D0MA01005G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Highly Efficient, Ultralow Turn-on Voltage Red and White Organic Light-Emitting Devices Based on Novel Exciplex Host

Jian Song, Fujun Zhang, Liping Yang, Keming Chen, Asu Li, Ren Sheng, Yu Duan, Ping Chen* a,b

The exciplex forming co-host is one of the most promising candidates for developing high-performance organic light-emitting devices (OLEDs) that can implement an internal quantum efficiency of 100%. In this work, a novel exciplex co-host system by employing N-[(1,1’-biphenyl)-2-yl]-N-(9,9-dimethyl-9H-fluoren-2-yl)-9,9’-spirobi[fluoren]-4-amine (FSF4A) and 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T) is applied to design simplified red and white OLEDs with low turn-on voltage and high efficiency. The high performance red phosphorescent organic light-emitting diode (PhOLED) is achieved by employing exciplex co-host under a low guest doping level of 3%, showing the best performance with a maximum power efficiency of 38.5 lm W⁻¹, a maximum external quantum efficiency of 17.3%, and an ultralow turn-on voltage of 1.95 V, respectively. Based on the red device, the ultra-thin FirPic layer is inserted to achieve high performance white OLED, exhibiting a low turn-on voltage of 2.2 V with a maximum power efficiency of 34.1 lm W⁻¹, and the Commission Internationale de l’Éclairage (CIE) coordinate (0.33, 0.33) at 1000 cd m⁻². These superior properties can be attributed to reduced barriers and the effective energy transfer by employing exciplex co-host.

1. Introduction

Phosphorescent organic light-emitting diodes (PhOLEDs) have attracted great attention due to their extensive application prospects in the field of solid-state lighting and flat-panel displays with the theoretical value of 100% exciton utilization by harvesting both singlet and triplet excitons for electroluminescence (EL). In general, to improve device efficiency and stability, host-guest technology is a superior method for designing high performance phosphorescent devices. The host materials usually need to have proper highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels to facilitate balanced charge injection and transportation capabilities, as well as high triplet energy levels (T1) to ensure effective energy transfer and confine excitons in the phosphorescent guest. However, there are still huge challenges to achieve PhOLED with low driving voltage and low energy consumption. In order to meet the needs of high-quality red and white OLEDs, it is essential to design an advantageous emission layer structure, which can achieve high exciton utilization for both singlet and triplet, as well as effective charge injection and transportation at low voltage.

Recently, the co-hosts of exciplex formed by an acceptor and a donor, instead of traditional hole or electron type single hosts, has been regarded as a promising candidate for using as a host on phosphorescent OLEDs due to its good charge balance and exciton utilization. Furthermore, it has been demonstrated that exciplex host with small singlet-triplet energy difference (ΔEst) can notably reduce the turn-on voltage and improve the power efficiency (PE) and external quantum efficiency (EQE) of the PhOLEDs. In general, exciplex systems are found to have thermally activated delayed fluorescence (TADF) effect through reverse intersystem crossing (RISC), triplet excitons can be upconverted to single excitons due to intrinsically smaller ΔE values. It is found that the exciplex co-host is more beneficial to facilitate effective Förster energy transfer, which can further improve device efficiency. Many exciplex co-host systems have been reported to demonstrate high efficiency of red and white phosphorescent OLEDs with the development of exciplex co-host. Sheng et al. adopted exciplex co-host to achieve red phosphorescent OLEDs with maximum power efficiency of 35.3 lm W⁻¹ and external quantum efficiency of 19.8%. Xu et al. reported a red phosphorescent OLED through exciplex co-host system with maximum power efficiency of 31.8 lm W⁻¹ and turn-on voltage of 2.24 V. Yao et al. realized a red phosphorescent device with maximum power efficiency of 36.9 lm W⁻¹ and external quantum efficiency of 15.5%. However, despite the remarkable progress in the use exciplex co-hosts in OLEDs, it is still a great challenge to precisely predict the likelihood of electron hole pairs induce exciplex emission and achieve ultra-low turn-on voltage PhOLEDs.

In this work, a novel exciplex system is fabricated by employing new hole transport material of N-[(1,1’-biphenyl)-2-yl]-N-(9,9-dimethyl-9H-fluoren-2-yl)-9,9’-spirobi[fluoren]-4-amine (FSF4A) and electron transport material of 2,4,6-tris[3-(diphenylphosphinyl)phenyl]...
phenyl]-1,3,5-triazine (PO-T2T), the yellow exciplex emission can be observed in both photoluminescence (PL) and electroluminescence (EL). Compared with common mixed-host devices, the red PhOLED based on exciplex co-host demonstrates an ultralow turn-on voltage of 1.95 V and maximum power efficiency of 38.5 lm W⁻¹ with external quantum efficiency of 17.3%. Moreover, its turn-on voltage is almost the same as the lowest turn-on voltage achieved by the red OLED based on exciplex co-host. Further, by inserting a blue ultrathin layer, white OLED achieves ultralow turn-on voltage of 2.2 V and maximum power efficiency of 34.1 lm W⁻¹ with external quantum efficiency of 12.4%, and the turn-on voltage is almost one of the lowest compared to previous references. Furthermore, the Commission Internationale de l’Eclairage (CIE) coordinates is (0.33,0.33) at 1000 cd m⁻², and CIE coordinates variation is only (0.026,0.003) over a large luminance range, which is better among theWOLEDs of exciplex co-hosts. It is found that the high performances of PhOLEDs are mainly attributed to balanced charge transport and proper energy transfer channels from exciplex co-host to dopant. This work may provide valuable clues for rational design of the exciplex system, as well as their application as co-host materials in PhOLEDs with high efficiency and ultralow turn-on voltage.

2. Experimental section

2.1 Materials

FSF4A was purchased from Shenzhen PURI Materials Technologies Co., Ltd. Ir(MDQ)acac and FIrPic were purchased from Luminescence Technology Corp. MoO₃, TPBi, MCP, Liq, PO-T2T were purchased from Xi’an Polymer Light Technology Corp.

For the basic parameters of FSF4A: S is 3.0 eV, T is 2.6 eV, HOMO is 5.3 eV, LUMO is 2.1 eV, and the absorption peak positions are 310 nm and 340 nm.

2.2 Device fabrication and characterization

The OLED were grown on pre-patterned ITO coated glass (20 Ω/square). Before depositing into the evaporation system, the ITO substrates were cleaned with acetone, ethyl alcohol, deionized water by ultrasonic cleaning machine for 20 min. All the devices were deposited sequentially under fine vacuum of 8x10⁻⁵ Pa. The organic transport materials were grown by the rate of 0.8-1.5 Å/s, while organic dopants Ir(MDQ)acac and FIrPic were deposited at the rate of 0.01-0.1 Å/s, the FIrPic ultra-thin layer of 0.2 nm is deposited at a rate of 0.05 Å/s for 40 s, Liq and MoO₃ were deposited at the rate of 0.15-0.3 Å/s, Al was deposited by the rate of 3 Å/s.

The photoluminescence (PL) spectra were acquired by an RF-5301PC fluorescence spectrophotometer. The transient PL decay curves were recorded by IHR320 spectrometer. The CIE coordinates, luminescence and electroluminescent (EL) spectra were carried out by a PR655 spectra-scan photometer simultaneously. The CE, PE, and EQE were measured by a programmable Keithley 2400 source-meter and an absolute external quantum efficiency measurement system. All devices were characterized at room temperature without encapsulation.

3. Results and discussion

![Fig. 1] The organic materials used in this work (a) energy level diagram and (b) chemical structures.

Recently, organic light-emitting diodes using exciplex as the host have been extensively researched compared with traditional host devices due to their excellent EL performance. Fig. 1 shows the energy level diagrams and chemical structures of the materials used in this work. From the orbital energy level diagram (Fig. 1a), the difference between LUMO of the donor of FSF4A and the acceptor of PO-T2T is 1.1 eV, which can effectively restrict the electrons from PO-T2T to FSF4A; meanwhile, their HOMO difference is 1.8 eV, which can also obviously block hole from FSF4A to PO-T2T. Therefore, we infer that such a large energy level difference may produce an exciplex system.

The photoluminescence (PL) spectra of FSF4A, PO-T2T (solution), TPBi, FSF4A:PO-T2T (molar ratio of 1:1) and FSF4A:TPBi (molar ratio of 1:1) are depicted in Fig. 2(a and b). As can be seen, the PL emission spectra (films measured at 300 K) of FSF4A, PO-T2T (solution) and FSF4A:PO-T2T mixed film (1:1, molar ratio) are completely different, and the PL emission peak position of FSF4A:PO-T2T film is 549 nm, which is obviously red-shifted relative to those of the pure FSF4A or PO-T2T (i.e., 407 nm for FSF4A and 319 nm for PO-T2T). The PL spectrum of FSF4A:PO-T2T mixed film also exhibits a full width at half maximum of 103 nm, and it is highly shifted to the long wavelength region due to its intermolecular charge transfer (CT) characteristics. The exciplex photon energy of FSF4A:PO-T2T can be estimated to be 2.25 eV by the emission peak of mixed film. The value is quite close to the difference (2.1 eV) between the HOMO of FSF4A (donor) and the LUMO of PO-T2T (acceptor). The results indicate that an exciplex is formed between the FSF4A molecule and the PO-T2T molecule under photo excitation, and the FSF4A:PO-T2T mixed film generates a pure CT exciplex emission. The PL emission spectrum of peak position of FSF4A:PO-T2T film (1:1, molar ratio) at 409 nm and 385 nm is depicted in Fig. 2b, which is quite similar to those of pure FSF4A (407 nm) and TPBi (385 nm) films. Thus, we infer that the mixed film of FSF4A:TPBi cannot form exciplex emission. The formation process of the exciplex can be described as the following equation (1)³⁶

\[
\text{Donor (D) + Acceptor (A) + hv} \rightarrow \text{D}^{+} + \text{A}^{-}
\]

\[
\text{D} + \text{A}^{-} \rightarrow \left(\text{D}^{+} \text{A}^{-} \right)^{\ast} \rightarrow h_{\text{exciplex}} + \text{D} + \text{A}
\]

(1)
In order to further confirm the formation of exciplex in the FSF4A:PO-T2T mixed film and the absence of exciplex in the FSF4A:TPBi mixed film, the transient decay PL curves are measured at 300 K. The transient decay curves of (c) FSF4A, PO-T2T, and FSF4A:PO-T2T (1:1) co-deposited film; (d) FSF4A, TPBi, and FSF4A:TPBi (1:1) co-deposited film (all films are 50 nm thick and measured at 300 K).

In order to further confirm the formation of exciplex in the FSF4A:PO-T2T mixed film and the absence of exciplex in the FSF4A:TPBi mixed film, the transient decay PL curves are measured at 300 K. The transient decay curves of FSF4A, PO-T2T and FSF4A:PO-T2T mixed films are depicted in Fig. 2c. The FSF4A film shows transient PL decay time components of 2.65 ns, and that of PO-T2T film exhibits two decay components with times of 0.85 ns and 18.92 ns. Obviously different from the films of donor and acceptor molecules, the mixed film of FSF4A:PO-T2T contains a long-lived delayed component with decay time of 2.45 μs and a short decay time of 37.53 ns. Furthermore, the short decay time of 37.53 ns in the mixed film can be attributed to prompt fluorescence of the FSF4A:PO-T2T exciplex, rather than the separate FSF4A and PO-T2T. The long decay time of 2.45 μs can be attributed to delayed fluorescence of the FSF4A:PO-T2T exciplex. Meanwhile, the fitting formula for the tested data of the exciplex is as follows:

\[I(t) = A_t \exp\left(-t/\tau_1\right) + A_d \exp\left(-t/\tau_2\right) \]

where \(A_t \) and \(A_d \) are the constants fitted according to the data of photoluminescence lifetime test, while \(\tau_1 \) and \(\tau_2 \) are the fitted prompt fluorescence and delayed fluorescence components respectively. The high RISC process from triplet to singlet is attributed to the small \(\Delta E_{ST} \). The \(\Delta E_{ST} \) value can be obtained from the following formula:

\[\Delta E_{ST} = RT \ln\left(K_{SC}/3\right) \]

where \(R \) is the ideal gas constant, \(T \) is the thermodynamic temperature, \(K_{SC} \) is the ratio of intersystem crossing process (kISC) and reverse intersystem crossing (kRISC). \(K_{SC} \) and \(K_{RISC} \) can be obtained by the following formulas:

\[K_P = \frac{1}{\tau_P} \]

\[K_{ISC} = K_P \times (1 - \Phi_P) \]

\[K_{RISC} = \frac{K_{ISC} \times \Phi_P}{K_{ISC}} \]

where \(\Phi_P \) and \(\Phi_D \) are the photoluminescence quantum efficiency of PF and DF respectively, \(\tau_P \) and \(\tau_D \) can be revealed by fitting the decay curve in the time-resolved PL spectrum. We obtained \(k_{ISC} \) of \(2.57 \times 10^6 \) s\(^{-1}\) and \(k_{RISC} \) of \(3.42 \times 10^5 \) s\(^{-1}\), and calculated that the singlet-triplet energy difference of the exciplex is 0.5 kcal/mol (0.022 eV). The photoluminescence quantum yield (\(\eta_P \)) is 31% (5.5). Thus, the exciplex system can be realized by effectively converting the triplet CT into singlet CT through the reverse intersystem crossing (RISC).
an ultralow turn-on voltage of 2.4 V. Detail characteristics are summarized in Table 1. The low turn-on voltage and high performance can be attributed to the “barrier-free” device structure, that is, holes and electrons can be injected into EML from FSF4A and PO-T2T without barrier, respectively.29 Meanwhile, the device with the FSF4A:PO-T2T mixing ratio of 5:5 achieves the greatest luminance and efficiency, which is due to a more balanced carrier transport. Therefore, all the OLEDs based on FSF4A:PO-T2T emitting were developed with the optimized molar ratio of 5:5. Fig. 3d shows the electroluminescence spectra of different ratios of exciplex as emitting layer device. The emission peak position of the device with a mixing ratio of 5:5 is 550 nm at the voltage of 6 V, which is extremely consistent with the photoluminescence peak. The energy transfer characteristics of FSF4A:PO-T2T exciplex should be considered when it is used as the host: (1) Higher LUMO of FSF4A and deeper HOMO of PO-T2T limit the exciton recombination zone to consider when it is used as the host: (1) Higher LUMO of FSF4A and deeper HOMO of PO-T2T limit the exciton recombination zone to effectively restrain the exciton energy transfer to the consisting donor or acceptor. (3) The exciplex need to have a higher T1 level than phosphorescent dopants to restrain energy transfer from the phosphors to the exciplex.28, 29 According to the PL spectrum (51=2.258 eV) and ΔE2 (0.022 eV) of the exciplex, T1 can be estimated to about 2.236 eV, which is obviously lower than FSF4A (2.6 eV) and PO-T2T (3.0 eV).40 Therefore, the red dye Ir(MDQ)acac (2.0 eV) is used as a dopant to design red PhOLEDs based on the characteristics of a novel exciplex co-host.31

![Image](image1.png)

Table 2. Summary of EL performance of red OLEDs based on exciplex co-host.

Device	V_{on} (V)	J_{max} (A/cm²)	L_{max} (cd/m²)	CE (cd/A)	PE (lm/W)	EQE (%)
This work	1.95	35400	18.5	12.0	25.7	1.95
30	2.4	26385	13.1	16.9	26.6	15.5
41	2.35	7604	34.0	44.3	42.7	19.2
31	1.90	-	48.9	26.8	12.5	19.2
29	2.24	-	32.87	31.80	42.72	16.07
42	2.4	-	36.0	41.6	25.3	12.0
38	2.0	-	30.13	35.3	42.9	16.07
32	2.6	-	35.60	35.7	42.5	19.9

Fig. 4 (a) Current density-voltage-luminance characteristics of the device A_{1}-A_{3}. **(b)** Current efficiency-luminance-power efficiency characteristics of the device A_{1}-A_{3}, inset shows normalized EL spectra of the devices at 6 V. **(c)** Current density-voltage-luminance characteristics of the device B_{1}-B_{3}. **(d)** Current efficiency-luminance-power efficiency characteristics of the device B_{1}-B_{3}. Inset shows normalized EL spectra of the devices at 6 V.

The red PhOLEDs are prepared in the structures of ITO/MoO_3 (2 nm)/FSF4A (45 nm)/FSF4A : PO-T2T : x wt% Ir(MDQ)acac (20 nm)/PO-T2T (35 nm)/Liq (1 nm)/Al (100 nm) and comparative device structure of ITO/MoO_3 (2 nm)/FSF4A (45 nm)/FSF4A : TPBi : x wt% Ir(MDQ)acac (20 nm)/TPBi (35 nm)/Liq (1 nm)/Al (100 nm), in which the mixing ratio of FSF4A : PO-T2T exciplex co-host and FSF4A : TPBi common co-host are 1:1 corresponding to device A and B, and the doping concentration of the red dye Ir(MDQ)acac is 0.6%, 3%, 8% corresponding to devices A_{1}-A_{3} and B_{1}-B_{3}, respectively. As can be seen from Fig. 4a, device A_{2} (3 wt% Ir(MDQ)acac) displays an extremely low turn-on voltage of 1.95 V and a maximum brightness of 3540 cd m^{-2}. The maximum CE, PE, EQE of 30.6 cd A^{-1}, 38.5 lm W^{-1}, 17.3% are shown in Fig. 4b, and the inset shows the emission peak at 616 nm with CIE coordinates of (0.61,0.37). It is encouraging that the turn-on voltage of A_{1}-A_{3} is extremely low as 1.95 V, which is even 0.05 V lower than the theoretical limit voltage corresponding to the emission photon energy of Ir(MDQ)acac (2.0 eV). We believe that the extremely low turn-on voltage is due to the fact that the thermally activated carriers.44 Such low turn-on voltage and high efficiency are a great improvement compared with previous reported red OLEDs based on the exciplex co-host (Table 2). Fig. 4c shows that device B_{2} (with a doping concentration of 3 wt% Ir(MDQ)acac) achieves a low turn-on voltage of 2.55 V and a maximum brightness of 24410 cd m^{-2}. The maximum CE, PE, EQE are 25.7 cd A^{-1}, 26.9 lm W^{-1}, 11.9%, which can be seen in Fig. 4d, and the inset displays the emission peak at 612 nm with CIE coordinates of (0.61,0.37). As can be seen, the device employing FSF4A : PO-T2T exciplex co-host exhibits superior electroluminescence performance compared to the device employing the FSF4A : TPBi common co-host. The EL performance of device A_{2} and B_{2} confirms the superiority of the exciplex as co-host in achieving ultralow turn-on voltage and high efficiency, which may be attributed to the carriers being more likely to cross the barrier and the excitons being effectively transferred to the dopant. It is also noticed that the J-V-L and CE-L-PE characteristics exhibited by device A and B with varied Ir(MDQ)acac doping concentrations are quite different, as shown in Fig. 4. Detail characteristics for device A_{1}-A_{3} and B_{1}-B_{3} are summarized in Table 3.

Table 3. The EL performance summary of the red PhOLEDs.

Device	Doping concentration (wt%)	V_{on} (V)	J_{max} (A/cm²)	L_{max} (cd/m²)	CE (cd/A)	PE (lm/W)	EQE (%)
A_{1}	0.0%	1.95	26.6/21/15.3	38.4/18/20.3	12.0/12/1.4	0.56/0.45	
A_{2}	5%	1.95	36.2/26/17.7	35.6/24/12.4	17.3/12/1.0	0.65/0.57	
A_{3}	10%	1.95	44.2/38/16.7	26.8/14/12.7	13.8/7.8/0.9	0.65/0.23	
B_{1}	0.0%	2.55	23.3/21/13.7	24.2/14/10.1	10.7/5.4/0.5	0.63/0.37	
B_{2}	3%	2.55	25.7/22/16.5	26.4/10/11.1	11.9/7.8/0.2	0.63/0.37	
B_{3}	8%	2.55	28.4/23/19.0	25.1/12/9.6	9.6/6.5/0.7	0.63/0.34	

Doping concentration of Ir(MDQ)acac; (b) Turn-on voltage at a luminance of 1 cd m^{-2}; (c) Maximum current efficiency/luminance power efficiency at 1000 cd m^{-2}; (d) Maximum power efficiency/power efficiency at 3000 cd m^{-2}; (e) Maximum EQE/EQE at 1000 cd m^{-2} and CIE coordinates are measured at 1000 cd m^{-2}.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
It can be seen from the insets that the host emission peaks exist only at low doping concentration of 0.6% Ir(MDQ)_acac, which can be explained as incomplete energy transfer from host to the dopant. The EL efficiency declined as the doping concentration of Ir(MDQ)_acac increases to 8%, which is due to the strengthening of triplet-triplet annihilation, triplet-polaron quenching with a higher proportion of dye. Meanwhile, a slight red shift with increasing doping concentration can be observed in the insets of Fig. 4(b and d), which is due to reabsorption of the emitter emission. Based on the above results, it is confirmed that the FSF4A:PO-T2T exciplex co-host doped with 3% Ir(MDQ)_acac concentration achieves the optimal EL efficiency.

To further understand the effect of dopant on the charge transport properties of the device, we subsequently research the charge transport properties by varying the doping concentration of hole-only and electron-only devices with the structures of ITO/MoO_3 (2 nm)/FSF4A (45 nm)/FSF4A : PO-T2T : x wt% Ir(MDQ)_acac (20 nm)/FSF4A (35 nm)/MoO_3 (1 nm)/Al and ITO/Liq (1 nm)/PO-T2T (45 nm)/ FSF4A : PO-T2T : x wt% Ir(MDQ)_acac (20 nm)/PO-T2T (35 nm)/Liq (1 nm)/Al, respectively. Here x = 0, 0.6, 3, and 8. Fig. 5 exhibits the current density-voltage characteristics of these devices. Obviously we can notice that the charge carrier transmission of device tends to be more balanced as the doping concentration of Ir(MDQ)_acac increases from 0% to 8%, it is due to Ir(MDQ)_acac has a strong hole trap effect and creates additional electron transport channel. Ir(MDQ)_acac has the highest occupied molecular orbital energy level of 5.1 eV, which is 0.2 eV difference from FSF4A (5.3 eV), indicating that Ir(MDQ)_acac acts as trapping sites for holes. On the contrary, the current density of electron-only devices increases with increasing the doping concentration of Ir(MDQ)_acac. The improvement can be attributed to the fact the Ir(MDQ)_acac molecules create an additional electron transport channel, which is beneficial for more balanced charge carriers in the devices.

Overall, it is found that doping Ir(MDQ)_acac into exciplex co-host can simultaneously trap holes and facilitate electron transport. Both of these processes lead to a more balanced charge carriers, which causes a slight shift of the recombination zone to the center of the device.\(^4^4^\)

Fig. 5 The current density-voltage characteristics of (a) 0% Ir(MDQ)_acac (b) 0.6% Ir(MDQ)_acac (c) 3% Ir(MDQ)_acac (d) 8% Ir(MDQ)_acac.

The energy transfer mechanism of red OLEDs based on the exciplex co-host is illustrated in Fig. 6. Excitons are produced by the direct recombination between holes on the donor (FSF4A) and electrons on the acceptor (PO-T2T), the exciplex excitons can also be divided into singlet excitons of 25% and triplet excitons of 75%. For singlet excitons of exciplex, one is converted to triplet excitons by intersystem crossing, and the other is to transfer energy to the dopant by Förster energy transfer (FRET); for triplet excitons of exciplex, part of which can diffuse into the dopant through Dexter energy transfer (DET), but the triplet energy is lost as the diffusion length increases.\(^5^5^\) Meanwhile, another triplet could upconvert into the singlet by the reverse intersystem crossing due to the small \(\Delta E_T\) of exciplex. This process can effectively reduce energy loss due to improving FRET energy transfer and suppressing DET energy transfer. Therefore, we can achieve efficient and stable exciplex co-host POLEDs.

Fig. 6 Operational mechanism of the exciplex type host.

Table 4. Summary of EL performance of white OLEDs

Device	EL (cd/m\(^2\))	CE (mAcd\(^{-1}\))	PI (mWcd\(^{-1}\))	EQE \(\%\)	\(\eta_{\text{tr}}\) \(\%\)	
This work	2.05	2.54	12.6	19.4	(33,33,33)	
46	4.43	-	28.0	20.2	12.0	(33,33,33)
47	-	-	23.1	15.6	13.5	(33,33,33)
48	3.20	19200	10.7	8.1	6.4	(33,33,33)
49	2.62	-	44.0	52.7	18.0	(34,34,34)
50	3.0	-	27.2	21.4	11.2	(35,35,35)
51	2.5	-	36.7	46.2	19.2	(33,33,33)

\(^2^2^\) Turn-on voltage at a luminance of 1 cd m\(^{-2}\); \(^2^3^\) Maximum brightness value; \(^2^4^\) Maximum CE, PE, EQE; \(^2^5^\) The CIE coordinates at 1000 cd m\(^{-2}\).

Based on the above excellent monochrome devices, ultra-thin blue layers and spacer-layers are inserted to achieve high-performance WOLEDs, and the device structure is ITO/MoO_3 (2 nm)/FSF4A (45 nm)/FSF4A : PO-T2T : 3 wt% Ir(MDQ)_acac (20 nm)/MCP (x nm)/FirPic (0.2 nm)/PO-T2T (35 nm)/Liq (1 nm)/Al (100 nm), as shown in Fig. 7a. The x is 1, 2, 3, and 4, corresponding to devices W\(_1\), W\(_2\), W\(_3\) and W\(_4\), respectively. As can be seen from Fig. 7b, all WOLEDs realize an ultra-low turn-on voltage of 2.20 V due to the barrier-free charge transfer. The current density of the four devices decreases as the thickness of the spacer layer increases, which can be explained by the following formula (J-V curves)\(^2^2^\):

\[
J = \mu \frac{V_{\text{tr}}^{\frac{2}{3}}}{d^{\frac{2}{3}}} \tag{8}
\]

where \(\mu\) and \(d\) correspond to the carrier mobility and the thickness of the device, \(m\) is defined as \(m = \frac{E_{\text{tr}}}{kT}\) \(E_{\text{tr}}\) is characteristic energy of the trap distribution, \(k\) is Boltzmann constant, and \(T\) is the temperature.
device operating temperature). Meanwhile, the EL efficiency of the four devices has a significant improvement as the thickness of the spacer layer increases. As depicted in Fig. 7c, the maximum CE of 32.6 cd A\(^{-1}\) and PE of 34.1 lm W\(^{-1}\), corresponding to an external quantum efficiency of 12.4%, are achieved in the W\(_4\). Such a low turn-on voltage and high efficiency when the standard CIE coordinate of (0.33,0.33) is achieved at a luminance of 1000 cd m\(^{-2}\) are a great enhancement compared to previous reported of WOLEDs (Table 4). The low CE roll-off is clearly observed in devices W\(_1\)-W\(_4\), for device W\(_4\), the current efficiency drops to 30.3 cd A\(^{-1}\) at 1000 cd m\(^{-2}\), corresponding to the roll-off of 7.1%. The low efficiency roll-off could be attributed to the extended exciton recombination zone due to balanced carrier transport. Meanwhile, according to reported reference, there is an interface exciplex between the interlayer MCP and the electron transport layer PO-T2T, and the emission peak position of exciplex is about 452 nm (2.74 eV).\(^{31}\) The FlrPic emission peak position is about 476nm (2.6 eV). Therefore, we believe that there is energy transfer from interface exciplex to phosphorescent dyes, which can improve the efficiency of the devices. Detail characteristics of the W\(_1\)-W\(_4\) are summarized in Table 5. As shown in Fig. 7d, device W\(_4\) shows an intense red emission peak and the quite weak blue emission, which is the result of energy transfer from the blue emission layer to the red emission layer caused by the thinner spacer layer. The blue emission gradually increases as the thickness of the spacer MCP increases. Device W\(_4\) achieves a WOLED with CIE coordinates of (0.33,0.33) at 1000 cd m\(^{-2}\), corresponding to the CRI of 52 and CCT of 5439.

4. Conclusions

In summary, we have successfully achieved ultralow turn-on voltage, high-performance simplified red and white phosphorescent OLEDs based on a novel exciplex co-host. The energy transfer from the exciplex co-host to its constituents is completely suppressed due to the high E\(_T\) of both FSF4A and PO-T2T, while from the host to the dopant is improved through long-range Förster energy transfer. The red device implements an ultra-low turn-on voltage of 1.95 V and the maximum EQE of 17.3% under a low doping level of 3 wt%, which is due to barrier-free charge transfer and effective energy transfer. Meanwhile, white OLEDs with a low turn-on voltage of 2.2 V is realized based on doping red dye and inserting ultra-thin blue layer, the optimized device shows relatively stable spectra and low efficiency roll-off. These superior performances can be attributed to the balanced charge transfer of exciplex co-host and the effective energy transfer from exciplex co-host to dopant. Such results indicate a promising method for designing a simplified high-performance OLEDs.

Fig. 7 (a) The structures of the white OLEDs. (b) The current density-voltage-luminance characteristics of devices W\(_1\)-W\(_4\). (c) The current efficiency-luminance-power efficiency characteristics of devices W\(_1\)-W\(_4\). (d) Normalized EL spectra of the devices W\(_1\)-W\(_4\) at 5V.

Fig. 8 Normalized EL spectra of the devices W\(_1\)-W\(_4\) at different luminance.

Device	V\(_T\)	CE	PE	EQE	CIE	PE	CE	EQE	CIE	PE	CE	EQE	CIE
W\(_1\)	2.20	23.9/21.8/20.7	23.5/21.7/20.3	10.7/9.4/8.2	2.5%	(0.352,0.343)	(0.352,0.343)	(0.352,0.343)	(0.352,0.343)				
W\(_2\)	3.80	25.0/22.8/22.1	25.0/22.8/22.1	12.0/10.8/9.4	2.1%	(0.480,0.392)	(0.480,0.392)	(0.480,0.392)	(0.480,0.392)				
W\(_3\)	4.00	28.5/26.0/23.8	30.5/28.4/26.0	13.6/12.1/10.6	10.5%	(0.403,0.351)	(0.403,0.351)	(0.403,0.351)	(0.403,0.351)				
W\(_4\)	3.00	29.5/27.0/23.9	30.5/28.4/26.0	13.6/12.1/10.6	10.5%	(0.403,0.351)	(0.403,0.351)	(0.403,0.351)	(0.403,0.351)				

The CE roll-off at 1000 cd m\(^{-2}\);\(^{a}\) The CIE coordinates at 1000 cd m\(^{-2}\);\(^{b}\) The CIE coordinates variation from 4 to 7 V.

Conflict of interest

There are no conflicts to declare.
