High energy, high resolution photoelectron spectroscopy of $\text{Co}_2\text{Mn}_{1-x}\text{Fe}_x\text{Si}$

Gerhard H Fecher1, Benjamin Balke1, Siham Ouardi1, Claudia Felser1, Gerd Schönhense2, Eiji Ikenaga3, Jung-Jin Kim3, Shigenori Ueda3 and Keisuke Kobayashi3

1 Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
2 Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
3 Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), Kouto 1-1-1, Sayo-cho, Sayou-gun, Hyogo, 679-5198, Japan

E-mail: fecher@uni-mainz.de

Received 9 October 2006, in final form 17 November 2006
Published 2 March 2007
Online at stacks.iop.org/JPhysD/40/1576

Abstract
This work reports on high resolution photoelectron spectroscopy for the valence band of $\text{Co}_2\text{Mn}_{1-x}\text{Fe}_x\text{Si}$ ($x = 0, 0.5, 1$) excited by photons of about 8 keV energy. The measurements show good agreement with calculations of the electronic structure using the LDA + U scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared with low energy x-ray photoelectron spectroscopy spectra. The high resolution measurements of the valence band close to the Fermi energy indicate the existence of the gap in the minority states for all the three alloys.

1. Introduction

Electronic devices exploiting the spin of an electron (spintronics [1]) have attracted great scientific interest in particular for magneto-electronics [2]. The basic element is a ferromagnetic electrode providing a spin polarized electrical current. Materials with a complete spin polarization would be most desirable, i.e. a metal for spin up and an insulator for spin down electrons. Such materials are called half-metallic ferromagnets [3, 4]. Kübler et al [5] recognised that the minority-spin state density at the Fermi energy nearly vanishes in the Heusler compounds Co_2MnAl and Co_2MnSn. The authors concluded that this should lead to peculiar transport properties in these compounds because only the majority density contributes. The Heusler alloy Co_2MnSi has attracted particular interest because it is predicted to have a large minority-spin band gap of 0.4 eV and, at 985 K, has one of the highest Curie temperatures, among the known Heusler compounds [6, 7]. An even higher Curie temperature (1100 K) accompanied by a large magnetic moment (6 μ_B) was found in recent investigations of Co_2FeSi [8–10]. The end members of the series $\text{Co}_2\text{Mn}_{1-x}\text{Fe}_x\text{Si}$, that are the purely Mn or Fe containing compounds, have been used for the fabrication of magnetic tunnel junctions [11, 12]. The tunnel magneto-resistance ratios of 159% in the Mn compound at low temperature and 41% in the Fe compound at room temperature suggest that an improvement in the materials is still necessary for successful use in devices.

It was recently shown that the complete substitutional series $\text{Co}_2\text{Mn}_{1-x}\text{Fe}_x\text{Si}$ ($0 \leq x \leq 1$) exhibits the Heusler type L_2_1 structure [13]. Magneto-structural investigations using ^{57}Fe Mößbauer spectroscopy confirmed the high degree of structural order. A structural phase transition at about 1025 K was detected by means of differential scanning calorimetry. Low temperature magnetometry confirmed a Slater–Pauling like behaviour [14] of the complete series of alloys with the magnetic moment increasing linearly from $5\mu_B$ to $6\mu_B$ with increasing iron content x from 0 to 1.

Photoelectron spectroscopy is one of the best suited techniques to study the occupied electronic structure of materials. Low kinetic energies result in a small electron mean free path of less than 5.2 Å at kinetic energies below 100 eV. This is the case for the escape depth of the electrons is less than one cubic cell of the investigated compounds and mainly the
surface will contribute to the intensity if using UV light for excitation. This very high surface sensitivity may be able to explain the quite low spin polarization of photoelectrons emerging from single crystalline Co$_2$Mn$_{1-x}$Fe$_x$Si films at the Fermi level of only 12% [15]. Wang et al. [15,16] assumed that partial chemical disorder was responsible for this discrepancy with the Al-K level of only 12% [15].

In the common x-ray photoelectron spectroscopy (XPS) one uses medium energies for excitation being provided by Al-K$_x$ or Mg-K$_x$ sources resulting in a probing depth of about 24 Å at 1.2 keV. The situation becomes much better at higher energies. In hard XPS with excitation energies of about 8 keV one will reach a high bulk sensitivity with an escape depth larger than 115 Å (corresponding to 20 cubic cells). Lindau et al. [17] demonstrated in 1974 the possibility of high energy photoemission with energies up to 8 keV; however, no further attention was devoted to such experiments for many years. High energy photoemission (at about 15 keV excitation energy) was also performed as early as 1989 [18] using a 57Co Mössbauer γ-source for excitation, however with very low resolution only. Nowadays, high energy excitation and analysis of the electrons become easily feasible due to the development of high intense sources (insertion devices at synchrotron facilities) and multi-channel electron detection. Thus, high energy photoemission spectroscopy was recently introduced by several groups [19–24] as a bulk sensitive probe of the electronic structure in complex materials.

In [25] it was demonstrated that high energy photoelectron spectroscopy is a useful tool to study the electronic structure of complex Heusler alloys using the example of Co$_2$Cr$_{0.6}$Fe$_{0.4}$Al. In that work photon energies of 3.5 keV were used for excitation and compared with resonant, medium energy (0.5–0.8 keV) excitation at the $L_{\gamma,2}$ edges of the contributing 3d-transition metals. In the present work, an excitation energy of $h\nu = 8$ keV was used to study the density of states of Co$_2$Mn$_{1-x}$Fe$_x$Si with $x = 0, 0.5, 1$.

2. Experimental and computational details

Co$_2$Mn$_{1-x}$Fe$_x$Si samples were prepared by arc melting of stoichiometric amounts of the constituents in an argon atmosphere at 10$^{-4}$ mbar. Care was taken to avoid oxygen contamination. This was ensured by evaporating Ti inside the vacuum chamber before melting the compound as well as by additional purifying of the process gas. After cooling of the resulting polycrystalline ingots, they were annealed in an evacuated quartz tube for 21 days at 900 K. Rods with a dimension of $(1 \times 1 \times 5)$ mm3 were cut from the ingots by spark erosion for experiments on in situ fractured samples. Flat discs with about 10 mm diameter and 1 mm thickness were cut and polished for spectroscopic investigations. Further experimental details and results of the structural and magnetic properties are reported in [13,26].

X-ray photoemission spectroscopy was used to verify the composition and to check the cleanliness of the samples. After removal of the native oxide from the polished surfaces by Ar$^+$ ion bombardment, no impurities were detected with XPS. The ESCALAB Mk II (VG) was also used to take valence band spectra at 1253.6 eV (Mg K$_\alpha$ with a natural line width of 0.69 eV [27]) for comparison. For this purpose, the slits and pass energy were set for an analyser-resolution of 200 meV. The energy was calibrated at the Au 4f$_{7/2}$ emission line.

The electronic structure was explored experimentally by means of high energy x-ray photoemission spectroscopy (HXPS). The measurements were performed at the beamline BL47XU of SPring-8 (Hyogo, Japan). The photons are produced by means of a 140-pole in-vacuum undulator and are further monochromatized by two double-crystal monochromators. The first monochromator uses Si(1 1 1) crystals and the second a Si(1 1 1) channel-cut crystal with 444 reflections (for 8 keV x-rays). The energy of the photoemitted electrons is analysed using a Gammadata-Sciencia R 4000–10 kV electron spectrometer. The ultimate resolution of the set-up (monochromator plus analyser at 50 eV pass energy using a 200 µm slit) is 83.5 meV at 7935.099 eV photon energy as employed for the reported experiments. Under the present experimental conditions an overall resolution of 250 meV has been reached for the valence band spectra and 130 meV for the spectra taken at the Fermi energy. All values concerning the resolution are determined from the Fermi-edge of an Au sample. Due to the low cross section of the valence states from the investigated compounds, the spectra had to be taken with $E_{\text{pass}} = 200$ eV and a 500 µm (200 µm) slit for a good signal to noise ratio. The polycrystalline samples have been fractured in situ before taking the spectra to remove the native oxide layer. Core-level spectra have been taken to check the cleanliness of the samples. No traces of impurities were found. The valence band spectra were collected over up to 4 h at about 100 mA electron current in the storage ring in the top-up mode. All measurements have been taken at a sample temperature of 20 K.

The self-consistent electronic structure calculations have been carried out using the full potential linearized augmented plane wave method (FLAPW) as provided by Wien2k [28]. The exchange-correlation functional was taken within the generalized gradient approximation (GGA) as introduced by Perdew et al. [29]. A 25 × 25 × 25 mesh has been used for integration, resulting in 455 k-points in the irreducible wedge of the Brillouin zone of the primitive cell of the cubic compounds. All muffin tin radii have been set as nearly touching spheres with $R_{\text{MT}} = 2.29a_{0B}$ for the 3d elements and 2.15a_{0B} for Si (a_{0B} = 0.529 177 Å). A structural optimization for the compounds showed that the calculated lattice parameters deviate from the experimental ones only marginally [10]. Further details of the calculations and their results are reported in [10,13].

Partial cross sections have been calculated for better comparison of the calculated electronic structure with the valence band photoemission spectra. The orbital momentum and site resolved cross sections were calculated for atomic valence states using a modified relativistic Dirac-solver based on the computer programs of Salvat and Mayol [30,31]. The radial integrals for the various transitions ($s \rightarrow p$, $p \rightarrow s$, d, and $d \rightarrow p$, f) have been computed using the dipole length-form. In addition, the electron mean free path was calculated using the Tanauma–Powell–Penn (TPP-2M) equations [32].
Figure 1. Cross sections and electron mean free path. The atomic, partial cross sections of the contributing elements are displayed in (a)–(d) and the electron mean free path (Mfp) as calculated for Co$_2$Mn$_{0.5}$Fe$_{0.5}$Si in (e).

3. Results and discussion

Figure 1 displays the calculated energy dependence of the atomic and orbital resolved cross sections together with the electron mean free path in Co$_2$Mn$_{0.5}$Fe$_{0.5}$Si. The shown data cover the range of kinetic energies observed in XPS and HXPS. In this energy range, the electron mean free path (figure 1(e)) varies nearly linearly with increasing kinetic energy and covers a range of escape depths from about 5 to 20 cubic Heusler cells. The calculated electron mean free path in the pure Mn or Fe containing compounds is very close to the one of the mixed compound as the physical properties (density, number and kind of valence electrons) entering the TPP-2M equations are almost the same.

At low energies (1 keV), like used in regular XPS, the partial cross section of the valence states is dominated by the d-states of the transition metal elements. This cross section decreases faster with increasing energy compared with that of the s or p states. At high energies (8 keV) the strongest cross sections is observed for the s-states, because the cross section of p states also drops faster with energy compared with s-states. Thus one expects a pronounced change of the photoemission intensities if going from XPS (1.2 keV) to HXPS (8 keV).

Figure 2 displays the calculated, spin resolved density of states for the investigated compounds. All three compounds, Co$_2$Mn$_{1-x}$Fe$_x$Si with $x = 0$, 1/2 and 1, exhibit a clear gap in the minority density of states, that is they are half-metallic ferromagnets. The gap has the result that the calculated spin magnetic moments of Co$_2$MnSi and CoFeSi have integer values of 5 μ_B and 6 μ_B, respectively. The magnetic moment of Co$_2$Mn$_{1/2}$Fe$_{1/2}$Si is 5.5 μ_B. All those values are in perfect agreement with the experimental values [13] and the Slater–Pauling rule [14]. The majority spin density reveals that the d-states emerging from flat majority bands are shifted away from the Fermi energy ϵ_F with increasing Fe content. At the same time the Fermi energy moves from near the top of the minority valence states towards the bottom of the minority conduction bands. It is clearly visible that the gap in the minority states is defined by regions of high density emerging from flat d-bands. At the same time, the majority spin density contributes only a few states in the region close to the Fermi energy. This behaviour is typical for Heusler compounds with high magnetic moments. More details of the electronic structure are reported in [10, 13].

The particular shape of the spin densities close to ϵ_F—a low density emerging from majority states surrounded by regions of high minority density—should be easily detected in valence band photoemission and thus may be a good indicator of the existence of the gap, even without spin analysis. Figures 3(a)–(c) show the total, spin integrated density of states. The low density of states in the vicinity of the Fermi energy is clearly visible. Additionally, the orbital momentum resolved density of states (l-DOS) is shown in figures 3(d)–(f). The partial DOS of the interstitial cannot be extracted from the calculations in an l-resolved way and therefore is not included. The l-DOS for higher angular momenta (l) is omitted as states with higher l contribute much less to the total density of states. From figures 3(d)–(f) it follows that the s-states are mainly found at below 8.5 eV below ϵ_F. The density at the Fermi energy is dominated by d-states. Although the density of d-states is already low at ϵ_F, the s-like density is still at least one order of magnitude smaller. The density related to p-states is found from the bottom of the d-bands up to about 1 eV below ϵ_F. This behaviour reflects the interaction between transition metal d-states with Si p-states. For better comparison with the measured photoemission spectra, the l-DOS has been weighted in the following by the partial cross sections. The sum of
the weighted \(l \)-DOS has been additionally convoluted by the Fermi–Dirac distribution (300 K for XPS; 20 K for HXPS) and afterwards has been broadened by Gaussians of 0.7 eV (XPS) or 0.27 eV (HXPS) width to account roughly for the experimental resolution at excitation energies of 1.2 keV or 8 keV, respectively.

The valence band spectra excited by Mg K\(_\alpha\) radiation are shown in figure 4. All three spectra show a high intensity close to the Fermi energy. The low lying sp band at 8–11 eV below \(\epsilon_F \) is only weakly revealed. There is also no particular structure seen close to \(\epsilon_F \). However, a closer inspection of the maximum intensity of the emission exhibits that it is shifted away from the Fermi energy in the Fe containing alloys (b), (c). The maximum intensity is found at \(-1.3\) eV, \(-1.46\) eV and \(-1.55\) eV for \(x = 0, 0.5 \) and 1, respectively. This observation is in rough agreement with the density of states where the maximum of the majority density (as well as the total DOS) is also shifted to higher binding energies with increasing Fe content. It is also seen in the DOS weighted by the partial cross sections (dashed lines in figure 4) where the maximum of the intensity shifts from \(-1.48\) eV for \(x = 0 \) to \(-2.85\) eV for \(x = 1 \). Both values in the calculations are larger than those observed in the spectra. In particular, this suggests that the calculations shift the d-states in Co\(_2\)FeSi to much below the Fermi energy, which may be prevented by using different values of \(U_{\text{eff}} \) such that the Fermi energy comes closer to the top of the minority valence band [10].

The results from high energy photoemission are shown in figure 5. The spectra of all the three compounds reveal clearly the low lying s-states at about \(-11\) to \(-9\) eV below the Fermi energy, in good agreement with the calculated DOS. These low lying bands are separated from the high lying d-states by the Heusler-typical hybridization gap being clearly resolved in the spectra as well as in the calculated DOS. The size of this gap typically amounts to \(\Delta E \approx 2\) eV in Si containing compounds.

Obviously, the emission from the low lying s-states is pronouncedly enhanced compared with the emission from the d-states. This can be explained by a different behaviour of the cross sections of the s, p and d states with increasing kinetic energy as was recently demonstrated by Panaccione et al for the case of the silver valence band [23]. In particular, the cross section for d-states decreases faster with increasing photon energy than the one for the s-states. This behaviour also influences the onset of the d-bands at about \(-7\) eV. Just at the bottom of those d-bands, they are hybridized with s, p-like states, leading to a relatively high intensity in this energy region.

The structure of the spectra in the range of the d states agrees with the structures observed in the total DOS. One has to account that the width of the structures in that energy range depends not only on the experimental resolution but also on the lifetime broadening. The lowest flat band of the majority band structure, accompanying the localized moment, results in a sharp peak in the DOS at about \(-3.5\) eV and \(-5\) eV for Mn and Fe, respectively (marked by arrows in figures 3(a) and (c)). These peaks are shifted away from \(\epsilon_F \) by the electron–electron correlation in the LDA + U calculation and would appear without \(U \) closer to the Fermi energy. Their energetic

Figure 3. Spin averaged density of states of Co\(_2\)Mn\(_{1-x}\)Fe\(_x\)Si. The total, spin averaged density of states \(\rho_{\text{tot}} \) is shown in (a)–(c) for \(x = 0, 1/2 \) and 1. The corresponding orbital momentum resolved \(l \)-DOS \(\rho_l \) is displayed in (d)–(f).

Figure 4. Low energy valence band spectra of Co\(_2\)Mn\(_{1-x}\)Fe\(_x\)Si. (a)–(c) display the XPS valence band spectra for \(x = 0, 0.5 \) and 1. The DOS—convoluted by the Fermi–Dirac distribution and weighted by the partial cross sections—is shown as a dashed line. The spectra were excited by Mg K\(_\alpha\) radiation (1.254 keV).

Figure 5. High energy valence band spectra of Co\(_2\)Mn\(_{1-x}\)Fe\(_x\)Si. The complete valence band is shown in panels (a)–(c) for \(x = 0, 0.5 \) and 1. The DOS—convoluted by the Fermi–Dirac distribution and weighted by the partial cross sections—is shown as a dashed line. High resolution valence band spectra taken close to the Fermi energy are displayed in (d)–(f). The spectra were excited by synchrotron radiation with \(h\nu = 7.939 \) keV.
position corresponds to structures revealed in the measured spectra, thus they are a good proof of the use of the LDA + U scheme.

As mentioned, one also has to account for lifetime broadening. At 1.3 keV excitation, the emission is dominated by the high dense d-states at about -1.4 eV. Increasing the excitation energy to 8 keV (note the better resolution of setup at that energy) has the result that the intensity in this energy range becomes considerably lower. At the same time, the emission from the remaining d-bands becomes strongly enhanced. Obviously, the intensity at the Fermi energy is much higher compared with the calculated DOS even after weighting by the partial cross sections. As those structures in the DOS emerge mostly from d-states, the transfer of the intensity maximum is not explained only by pure cross section effects. The valence band spectra may be seen as a convolution of the initial (bound) and final (unoccupied) state DOS. The final state DOS is rather constant at high kinetic energies and final state effects may play only a minor role. Two other weighting factors enter the DOS-convolution. The first is, as explained above, the transition matrix element that contains both the selection rules and the cross sections (radial matrix elements). The radial matrix elements are partially responsible for the rearrangement of the orbital resolved intensities as discussed above. The second weighting factor is the complex self-energy of the photoelectron. Among other things, it depends on the hole lifetime due to the coupling of the photoemitted electron with the hole left behind. At low kinetic energies, the spectra are obviously governed by the long lifetime of the holes at binding energies close to ϵ_F. At high kinetic energies, where the sudden approximation is reached, the photoelectron is not as strongly coupled to its hole and the lifetime at ϵ_F plays less of a role. Not only from the mean free path but also from the presented point of view, the high energy photoemission may help to understand the bulk electronic structure better than using only the low energy XPS.

Most interesting is the behaviour of the calculated DOS and the measured spectra close to ϵ_F as this might give an advice about the gap in the minority states. The majority band structure contributes only a few states to the density at ϵ_F emerging from strongly dispersive bands. This region of low density is enclosed by a high density of states arising from flat bands at the upper and lower limits of the minority band gap. The onset of the minority valence band is clearly seen in the total DOS as well as the low majority density at the Fermi energy. The same behaviour is obviously governed by the long lifetime of the holes at binding energies close to ϵ_F. At high kinetic energies, where the sudden approximation is reached, the photoelectron is not as strongly coupled to its hole and the lifetime at ϵ_F plays less of a role. Not only from the mean free path but also from the presented point of view, the high energy photoemission may help to understand the bulk electronic structure better than using only the low energy XPS.

The quaternary Heusler compound Co$_2$Mn$_{1-x}$Fe$_x$Si was investigated for $x = 0, 0.5, 1$. All samples of the substitutional series exhibit an $L2_1$ order, independent of the Fe concentration. In agreement with the expectation from the Slater–Pauling curve for half-metallic ferromagnets, the magnetic moment increases linearly with x from 5 μ_B to 6 μ_B.

True bulk sensitive, high energy photoemission revealed the inclusion of electron–electron correlation in the calculation of the electronic structure and gave an indirect indication on the gap in the minority states. The valence band spectra indicate an increase in the effective Coulomb exchange parameters with increasing Fe concentration.

4. Summary and conclusions

The quaternary Heusler compound Co$_2$Mn$_{1-x}$Fe$_x$Si was investigated for $x = 0, 0.5, 1$. All samples of the substitutional series exhibit an $L2_1$ order, independent of the Fe concentration. In agreement with the expectation from the Slater–Pauling curve for half-metallic ferromagnets, the magnetic moment increases linearly with x from 5 μ_B to 6 μ_B.

True bulk sensitive, high energy photoemission revealed the inclusion of electron–electron correlation in the calculation of the electronic structure and gave an indirect indication on the gap in the minority states. The valence band spectra indicate an increase in the effective Coulomb exchange parameters with increasing Fe concentration.

Acknowledgments

The authors thank S Wurmehl for preparing the Co$_2$FeSi sample and H C Kandpal for help with the calculations. The synchrotron radiation experiments were performed at the beamline BL47XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal no 2006A1476). This work was partially supported by a Grant-in-Aid for Scientific Research (A) (No 15206006) and a Nanotechnology Support Project of The Ministry of Education, Culture, Sports, Science and Technology of Japan. Financial support by the Deutsche Forschungsgemeinschaft (project TP7 in research group FG 559) is gratefully acknowledged.
References

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chutchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Prinz G A 1998 Science 282 1660
[3] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[4] Coey J M D, Venkatesan M and Bari M A 2002 Half-metallic ferromagnets Lecture Notes in Physics vol 595 (Heidelberg: Springer)
[5] Kübler J, Williams A R and Sommers C B 1983 Phys. Rev. B 28 1745
[6] Fuji S, Sugimura S, Ishida S and Asano S 1990 J. Phys.: Condens. Matter 2 8583–9
[7] Brown P J, Neumann K-U, Webster P J and Ziebeck K A 2000 J. Phys.: Condens. Matter 12 1827–35
[8] Wurmehl S, Fecher G H, Kandpal H C, Ksenofontov V, Felser C, Lin H-J and Morris J 2005 Phys. Rev. B 72 184434
[9] Wurmehl S, Fecher G H, Kandpal H C, Ksenofontov V, Felser C and Lin H-J 2006 Appl. Phys. Lett. 88 032503
[10] Kandpal H C, Fecher G H and Felser C 2006 Phys. Rev. B 73 094422
[11] Inomata K, Okamura S, Miyazaki A, Kikuchi M, Tzuka N, Wojcik M and Jedryka E 2006 J. Phys. D: Appl. Phys. 39 816–23
[12] Oogane M, Sakuraba Y, Nakata J, Kubota H, Ando Y, Sakuma A and Miyazaki T 2006 J. Phys. D: Appl. Phys. 39 834
[13] Balke B, Fecher G H, Kandpal H C, Felser C, Kobayashi K, Ikenaga E, Kim J-J and Ueda S 2006 Phys. Rev. B 74 104405
[14] Fecher G H, Kandpal H C, Wurmehl S and Felser C 2006 J. Appl. Phys. 99 08J106
[15] Wang W H, Przybylska M, Kuch W, Chelaru I, Wang J, Lu Y F, Barthele J and Kirchner J 2005 J. Magn. Magn. Mater. 286 336–9
[16] Wang W H, Przybylski M, Kuch W, Chelaru I, Wang J, Lu F, Barthele J, Meyerheim H L and Kirchner J 2005 Phys. Rev. B 71 144416
[17] Lindau I, Pianetta P, Doniach S and Spicer W E 1974 Nature 249 214
[18] Meisel W 1989 Hyperfine Interact. 45 73–90
[19] Kobayashi K et al 2003 Appl. Phys. Lett. 83 1005
[20] Sekiyama A and Suga S 2004 J. Electron Spectrosc. Relat. Phenom. 137–140 681–5
[21] Thiess S, Kunz C, Cowie B C C, Lee T-L, Reniera M and Zegenhagen J 2004 Solid State Commun. 132 589
[22] Kobayashi K 2005 Nucl. Instrum. Methods Phys. Res. A 547 98
[23] Panaccione G et al 2005 J. Phys.: Condens. Matter 17 2671
[24] Torelli P et al 2005 Rev. Sci. Instrum. 76 023909
[25] Wurmehl S et al 2006 J. Phys. D: Appl. Phys. 39 803–15
[26] Kalimayer M, Elmers H J, Balke B, Wurmehl S, Emmerling F, Fecher G H and Felser C 2006 J. Phys. D: Appl. Phys. 39 786
[27] Banna M S and Shirley D A 1976 J. Electron Spectrosc. Relat. Phenom. 8 23, 255
[28] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties Techn. Universität Wien
[29] Perdue J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Salvat F and Mayrol R 1991 Comput. Phys. Commun. 62 65
[31] Salvat F and Mayrol R 1993 Comput. Phys. Commun. 74 358
[32] Tanuma S, Powell C J and Penn D R 1993 Surf. Interface Anal. 21 165