Bode, Andreas
Completed tensor products and a global approach to p-adic analytic differential operators. (English) Zbl 1441.14084
Math. Proc. Camb. Philos. Soc. 167, No. 2, 389-416 (2019).

Summary: K. Ardakov and S. J. Wadsley [J. Reine Angew. Math. 747, 221–275 (2019; Zbl 1439.14064)] defined the sheaf $\hat{\mathcal{D}}_X$ of p-adic analytic differential operators on a smooth rigid analytic variety by restricting to the case where X is affinoid and the tangent sheaf admits a smooth Lie lattice. We generalise their results by dropping the assumption of a smooth Lie lattice throughout, which allows us to describe the sections of $\hat{\mathcal{D}}$ for arbitrary affinoid subdomains and not just on a suitable base of the topology. The structural results concerning $\hat{\mathcal{D}}$ and coadmissible $\hat{\mathcal{D}}$-modules can then be generalised in a natural way.

The main ingredient for our proofs is a study of completed tensor products over normed K-algebras, for K a discretely valued field of mixed characteristic. Given a normed right module U over a normed K-algebra A, we provide several exactness criteria for the functor $U \hat{\otimes} A$ – applied to complexes of strict morphisms, including a necessary and sufficient condition in the case of short exact sequences.

MSC:
14G22 Rigid analytic geometry
14G35 Modular and Shimura varieties
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
16S38 Rings arising from noncommutative algebraic geometry
22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] Ardakov, K. Equivariant \mathcal{D}-modules on rigid analytic spaces. [arXiv:1708.07475v1 [math.RT]] (2017).
[2] Ardakov, K. and Johansson, C. A canonical dimension estimate for non-split semisimple p-adic Lie groups. Represent. Theory 20 (2016), 128-138. · Zbl 1397.22013
[3] Ardakov, K. and Wadsley, S. J. $\wideparen{\mathcal{D}}$-modules on rigid analytic spaces I. arXiv 1501.02215 [math.NT], (2015).
[4] Berthelot, P. \mathfrak{m}-modules arithmétiques I. Opérateurs différentiels de niveau fini. Ann. Sci. Éc. Norm. Sup. (4), 29 (1996), no. 2, 185-272. · Zbl 0886.14004
[5] Bode, A. A proper mapping theorem for coadmissible $\wideparen{\mathcal{D}}$-modules. In preparation. · Zbl 1420.14042
[6] Bosch, S. Lectures on formal and rigid geometry. Lecture Notes in Math. vol. 2105 (Springer-Verlag, 2014). · Zbl 1314.14004
[7] Bosch, S., Güntzer, U. and Remmert, R.. Non-Archimedean Analysis (Springer-Verlag, 1984).
[8] Bourbaki, N., Algèbre: chapitres 1-3, (1970), Hermann
[9] Bourbaki, N.. Commutative algebra: chapters 1-7. (1989), Springer-Verlag · Zbl 0666.13001
[10] Emerton, M. Locally analytic vectors in representations of locally \mathfrak{p}-adic groups. Mem. Amer. Math. Soc. 248 (2017), no. 1175. · Zbl 1340.22020
[11] Grothendieck, A. and Dieudonné, J. Elements de géometrie algébrique III. Publ. Math. IHES 11, 1961.
[12] Nastasescu, C. and Van Oystaeyen, F. Graded Ring Theory (North Holland, 1982).
[13] Rinehart, G. S., Differential forms on general commutative algebras, Trans. Amer. Math. Soc., 108, 195-222, (1963) · Zbl 0113.26204
[14] Schmidt, T. Stable flatness of nonarchimedean hyperenveloping algebras. J. Algebra 323 (2010), no. 3, 757-765. · Zbl 1287.17004
[15] Schmidt, T., Verma modules over \mathfrak{p}-adic Arens-Michael envelopes of reductive Lie algebras, J. Algebra, 390, 160-180, (2013) · Zbl 1285.17006
[16] Schneider, P., Nonarchimedean Functional Analysis, (2002), Springer-Verlag · Zbl 0998.46044
[17] Schneider, P. and Teitelbaum, J. Algebras of \mathfrak{p}-adic distributions and admissible representations. Invent. Math., 153 (2003), no. 1, 145-196. · Zbl 1028.11070
[18] (2017)
[19] Weibel, C. A. An introduction to homological algebra \textit{Camb. Stud. Adv. Math.} vol. 38 (Cambridge University Press, 1994).

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.