Quantum Aspects of Gravity

Contributions from the G1 Working Group to appear in Proceedings of the APS Summer Study on Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, Snowmass, Colorado, June 29 - July 14, 1994.

Contents

V. Frolov and L. Thorlacius QUANTUM ASPECTS OF GRAVITY 2
S.B. Giddings and L. Thorlacius INTRODUCTION TO THE INFORMATION PROBLEM 6
A. Strominger TWO-DIMENSIONAL BLACK HOLES AND THE INFORMATION PUZZLE 9
V. Frolov ENTROPY OF BLACK HOLES 12
L. Thorlacius BLACK HOLE COMPLEMENTARITY 15
D.A. Lowe CAUSALITY IN STRING THEORY 18
A.O. Barvinski NONLOCAL EFFECTIVE ACTION AND BLACK HOLES 22
P.C. Argyres UNIVERSALITY AND SCALING IN BLACK HOLE FORMATION 23
Quantum Aspects of Gravity

Valeri P. Frolov

CIAR Cosmology Program, Theoretical Physics Institute, University of Alberta, Edmonton, Canada T6G 2J1

and Lárus Thorlacius

Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA

The reconciliation of gravity theory and quantum physics is an important goal of theoretical physics and many fundamental issues can only be settled when a theory of quantum gravity is in hand. Superstring theory offers the promise of a unified description of all interactions including gravity, but many aspects of string physics remain mysterious. Theoretical study of the very early universe and black holes, where Planck scale physics comes into play, may reveal important clues about fundamental physical law.

The G1 Working Group focused on quantum aspects of gravitational phenomena. By the nature of the subject, all the talks and discussions were on theoretical problems and most were on formal black hole theory, reflecting the current research interests of the active participants in the Working Group. In these introductory words we will discuss some general features of the endeavor which collectively goes under the heading ‘quantum gravity’ and attempt to motivate some of the key physical questions that workers in this area are addressing. Our remarks will be brief and as there exists at present no accepted theory of quantum gravity they can only reflect our personal assessment of the subject. The general discussion will be followed by contributions from speakers in the organized lecture sessions of the Working Group. These contain accounts of current research topics but an effort has been made to keep them accessible to non-experts.

§1 Gravity and Quantum Physics

Exploring the interface between general relativity and quantum theory has been one of the great intellectual challenges of twentieth century physics and will undoubtedly remain one well into the next millennium. The measured values of the constants of nature c, G, and \hbar, which govern the strength of relativistic, gravitational and quantum effects, indicate that the realm of quantum gravity is remote indeed. The characteristic energy and length scales are the Planck energy, $E_{\text{pl}} = \sqrt{\hbar c^5/G} \sim 10^{19}$ GeV, and the Planck length, $l_{\text{pl}} = \sqrt{\hbar G/c^3} \sim 10^{-33}$ cm, which are very far out of reach in present day experiments.

It is nevertheless important to push forward our understanding at this frontier. For one thing, Planck scale dynamics may have subtle effects on physics at lower energies, which cannot be anticipated without some knowledge of that dynamics. If our attention is restricted to low-energy physics alone we will be left with an incomplete theory, within which many fascinating fundamental questions could never be resolved. Furthermore, the very search for underlying principles can benefit physics in general. Theoretical efforts to understand basic physical laws have in the past led to important insights and new ideas that have had impact on different branches of physics.

It is difficult to achieve theoretical understanding of fundamental physical laws without the guiding light of experimental discovery. The lack of laboratory data has led theorists to rely increasingly on internal consistency and even mathematical aesthetics as tools for shaping their theories. This approach has been remarkably fruitful, culminating in the development of superstring theory, which successfully addresses the short distance problems that undermine a more conventional quantum field theory of gravity.

Superstring models have a number of appealing features. Gravity is united with the other known interactions into a single geometric framework, which can also accommodate multiple generations of chiral fermions in a natural way. Unification is widely believed to be a necessary ingredient in a successful theory of quantum gravity. On the other hand, our understanding of string dynamics is limited. The theory is defined in terms of a perturbation expansion around a classical ground state and there is a multitude of equally valid ground states to choose from, without any a priori preference given to one over another. The formalism is well suited to the calculation of scattering amplitudes but is not equipped to address many important issues in quantum gravity, such as initial conditions, quantum mechanical interpretation, or the
cosmological constant problem.

Despite its shortcomings, string theory remains the only candidate for a consistent unification of gravity with quantum physics and a high priority should be placed on obtaining a deeper understanding of string physics.

While further mathematical developments are clearly called for it is also important to maintain focus on physical phenomena in quantum gravity. In this respect, black holes and the very early universe provide a useful testing ground for theoretical ideas. Conditions extreme enough to bring Planck scale physics into play are realized in these systems and the various theoretical puzzles of black hole physics and quantum cosmology provide hurdles for candidate theories to pass over. There is also the chance that some observable features of the Universe can be traced to quantum gravity effects, either at the earliest epoch or through primordial black holes.

§2 Black Holes

In general relativity a black hole is by definition a region of spacetime which is not in the causal past of future null infinity, or in less precise words, it is a region from which signals cannot escape to the outside world. Since nothing that occurs inside a classical black hole can influence events outside, is it even necessary to develop the physics of black hole interiors? If the black hole mass is large compared to the Planck mass then all invariant features of the geometry outside the event horizon, including the curvature, are similar to those of flat Minkowski space. We could hope to get by without invoking quantum gravity at all, provided we ignore everything that goes on inside the black hole.

There are at least two compelling reasons why this is not so. An obvious one is that if we want to use black holes as tools to learn about strong gravity effects then we have to go where the action is, i.e. deep inside a black hole. The classical singularity occurs in a region where the gravitational coupling is strong and quantum effects are expected to be significant. A singularity signals a breakdown of the equations that predict it and it is an interesting question what replaces the black hole singularity in the quantum theory.

A second reason is that the classical picture of a black hole as a stable end-result of gravitational collapse is incorrect. Black holes emit Hawking radiation and gradually evaporate. A large black hole with a smooth external geometry will eventually reduce to a small one with strong curvature at the event horizon. The final stage of the evaporation can only be described by a quantum theory and it is unknown at present whether the black hole completely disappears or whether some strong coupling effects stabilize a Planck scale remnant.

Black hole evaporation precipitates a serious conflict between general relativity and quantum physics. Semi-classical calculations indicate that a black hole emits black body radiation at the Hawking temperature $T_h = \frac{\hbar c^3}{8\pi kGM}$, where M is the black hole mass. Now imagine matter in a pure quantum mechanical state undergoing gravitational collapse. In quantum mechanics a pure initial state always evolves to a pure final state but if a black hole is formed then, according to the semi-classical computations, the final state will contain outgoing thermal radiation and thus be a mixed state. The information about the initial pure quantum state appears to have been lost inside the black hole. This paradox has received a lot of attention in recent years and will be discussed in more detail in some of the lectures in this volume. Its resolution will presumably require us to give up some accepted dogma and this is often the route to progress.

A related issue concerns thermodynamic properties of black holes. The laws that govern classical black hole dynamics can be cast in a form that closely parallels the laws of thermodynamics and the analogy is strengthened when quantum effects are included. A black hole emits black-body radiation at a temperature which is proportional to the black hole surface gravity, and appears to carry an entropy $S = A/4$, where A is the area of the event horizon in Planck units. The black hole entropy must be considered physical if the second law of thermodynamics is to extend to systems which include black holes, for otherwise one could reduce the total entropy by sending thermal matter into a black hole. The ordinary laws of thermodynamics can be understood in terms of statistical physics and we would like to have a corresponding explanation of black hole thermodynamics. An actively pursued question is how black hole entropy can be given a microphysical interpretation in quantum gravity.

At the technical level, much of the work on quantum aspects of black hole physics has been in a semiclassical context, involving quantized matter in a classical background geometry. Some progress has been made in taking into account the back-reaction on the geometry due to Hawking emission, although so far a controlled systematic framework is only available in simplified toy models. It is important to develop this area further but many important questions cannot be answered within a semiclassical approximation and will require a more fundamental approach.

We have by no means exhausted the list of interesting questions that arise in black hole physics. Let us mention a few more: 1) In a quantum theory one expects pair creation of black holes and there is some controversy as to what the rate of pair creation would be. 2) Is the spectrum of black hole states in quantum gravity discrete or continuous? The answer to this question is intimately related to the issues of entropy and information loss mentioned
abilities to different possibilities. Similarly, the very laws that does not uniquely determine the initial configuration are 'universes'. We may have to settle for a theory causal contact with our region, or even topologically separated regions of spacetime that are removed from some of these problems.

The other main area where quantum gravity finds application is in cosmology. In the hot big bang scenario the Universe expands from a configuration governed by physics at very high energy, where quantum effects are expected to be important. A quantum theory of cosmology must deal with the earliest epoch in the evolution of the Universe, where the classical cosmological solution breaks down at a singularity. The relevant laws of physics are unknown at present and the nature of the questions to be answered will depend on the form these laws take.

If we assume that the Universe evolves from some initial quantum state we can ask to what extent the theory specifies this initial state and what observations on the present Universe could in principle reveal information about it. Possibly the dynamics of the subsequent evolution is such as to seek out a particular configuration for a large class of different initial states, as for example in inflationary models. In that case the precise nature of the initial state is somewhat less important and will at any rate not be accessible from later observations.

In order to properly address such issues we have to confront some basic conceptual problems that arise when we attempt to give a quantum mechanical description of cosmology. First of all, our Universe is a unique object whereas the statistical predictions of quantum mechanics normally apply to ensembles of identically prepared systems. A closely related concern is the meaning of quantum measurements when all observers are necessarily part of the quantum system itself. Another important question is how the classical Universe we inhabit now, with its irregular matter distribution, evolves from an initial pure quantum mechanical state. Recent work on the decoherence of histories in quantum theory is aimed at addressing some of these problems.

In many models of quantum cosmology our observable Universe is only a small piece of a much larger structure, which contains regions of spacetime that are removed from causal contact with our region, or even topologically separate 'universes'. We may have to settle for a theory that does not uniquely determine the initial configuration of our region of spacetime but only assigns probabilities to different possibilities. Similarly, the very laws of low-energy physics in our observable Universe and the number of observed spacetime dimensions could also be subject to stochastic rules. If the probability distribution is strongly peaked around some given set of low-energy laws and matter configuration we could still claim that our theory predicts these. Another possibility is that the measured values of the constants of nature and the matter content we observe are only favored by the fact that our form of intelligent life can only evolve in regions of spacetime with these properties. This weak form of the so called anthropic principle does not give very satisfying answers but is hard to rule out as a logical possibility.

There is no lack of interesting questions in quantum cosmology. The challenge for workers in this field is to organize the answers into a coherent framework and extract physical predictions that are relevant to the observable world around us. At present, quantum cosmology is a speculative enterprise which borders too closely on the metaphysical for the taste of many physicists. On the other hand, the inquiry into the origin of the Universe has always had a strong appeal and physics brings a unique perspective, rooted in physical observations made on the Universe at large, to the debate.

§3 Quantum Cosmology

The other main area where quantum gravity finds application is in cosmology. In the hot big bang scenario the Universe expands from a configuration governed by physics at very high energy, where quantum effects are expected to be important. A quantum theory of cosmology must deal with the earliest epoch in the evolution of the Universe, where the classical cosmological solution breaks down at a singularity. The relevant laws of physics are unknown at present and the nature of the questions to be answered will depend on the form these laws take.

If we assume that the Universe evolves from some initial quantum state we can ask to what extent the theory specifies this initial state and what observations on the present Universe could in principle reveal information about it. Possibly the dynamics of the subsequent evolution is such as to seek out a particular configuration for a large class of different initial states, as for example in inflationary models. In that case the precise nature of the initial state is somewhat less important and will at any rate not be accessible from later observations.

In order to properly address such issues we have to confront some basic conceptual problems that arise when we attempt to give a quantum mechanical description of cosmology. First of all, our Universe is a unique object whereas the statistical predictions of quantum mechanics normally apply to ensembles of identically prepared systems. A closely related concern is the meaning of quantum measurements when all observers are necessarily part of the quantum system itself. Another important question is how the classical Universe we inhabit now, with its irregular matter distribution, evolves from an initial pure quantum mechanical state. Recent work on the decoherence of histories in quantum theory is aimed at addressing some of these problems.

In many models of quantum cosmology our observable Universe is only a small piece of a much larger structure, which contains regions of spacetime that are removed from causal contact with our region, or even topologically separate 'universes'. We may have to settle for a theory that does not uniquely determine the initial configuration of our region of spacetime but only assigns probabilities to different possibilities. Similarly, the very laws of low-energy physics in our observable Universe and the number of observed spacetime dimensions could also be subject to stochastic rules. If the probability distribution is strongly peaked around some given set of low-energy laws and matter configuration we could still claim that our theory predicts these. Another possibility is that the measured values of the constants of nature and the matter content we observe are only favored by the fact that our form of intelligent life can only evolve in regions of spacetime with these properties. This weak form of the so called anthropic principle does not give very satisfying answers but is hard to rule out as a logical possibility.

There is no lack of interesting questions in quantum cosmology. The challenge for workers in this field is to organize the answers into a coherent framework and extract physical predictions that are relevant to the observable world around us. At present, quantum cosmology is a speculative enterprise which borders too closely on the metaphysical for the taste of many physicists. On the other hand, the inquiry into the origin of the Universe has always had a strong appeal and physics brings a unique perspective, rooted in physical observations made on the Universe at large, to the debate.

§4 The G1 Working Group

We have touched upon a number of topics that are of current interest in quantum gravity. Some of these are discussed further in the various contributions that follow, and are based on lectures delivered during the Working Group sessions. The black hole information paradox has been actively studied in recent years and a majority of the lectures were concerned with different aspects of this problem. The following is a list of the contributions and the topics covered in each:

- S.B. Giddings and L. Thorlacius give an introductory review of the information puzzle.
- V. Frolov considers black hole thermodynamics and discusses some recent efforts to give a dynamical interpretation to the entropy carried by a black hole.
- L. Thorlacius discusses kinematic requirements for returning quantum information in Hawking radiation and their possible implementation in string theory.
- Unusual causal properties of string field theory, which may enable information return, are described in the contribution by D.A. Lowe.
- The issue of back-reaction on the geometry of spacetime due to quantum effects is addressed by A.O. Barvinsky,
who discusses an approach based on a non-local effective action.

The final contribution from the G1 Working Group to these Proceedings is by P.C. Argyres and deals with recent numerical work, which has exhibited universality and scaling in black hole formation, reminiscent of scaling in statistical systems. As it is based on classical Einstein equations this work does not directly involve quantum aspects of gravity but it hints at an interesting mathematical structure and may have implications beyond the classical theory.

§Acknowledgements

We thank the organizers and the staff of the Summer Study for their efforts and the participants in the G1 Working Group for lively discussions.

The work of V.F. is supported in part by NSERC and that of L.T. is supported in part by NSF grant No. PHY89-04035.
Hawking’s black hole information paradox highlights the incompatibility between our present understanding of gravity and quantum physics. The paradox arises in the context of black hole evolution where infalling matter in a pure initial quantum state appears to evolve into outgoing thermal radiation. Its resolution may involve fundamental information loss, subtle athermal correlations in the outgoing radiation, or long-lived black hole remnants.

§1 The Puzzle

The black hole information problem has received considerable attention as it identifies a serious conflict between quantum mechanics and general relativity. To illustrate the problem, consider a gedanken experiment in which a black hole of mass M is formed in collapse of matter initially described by a pure quantum state $|\psi\rangle$, with corresponding density matrix $\rho = |\psi\rangle\langle\psi|$. An important quantity is the entropy, which for a general density matrix is given by

$$S = -\text{Tr} \rho \ln \rho,$$

and is zero for this pure state. After formation, the black hole decays by emitting Hawking radiation [1]. The original semi-classical calculation involved quantized matter in a classical background black hole geometry. It showed the radiation to be approximately thermal and thus described by a mixed-state density matrix of the form

$$\rho = \sum_n p_n |\psi_n\rangle\langle\psi_n|.$$ \hfill (1)

The entropy in the Hawking radiation is nonzero, and can be shown to be of order M^2/m_{pl}^2, where m_{pl} is the Planck mass. This indicates that the final state is missing information as compared to the initial state, in accord with the general formula $\Delta I = -\Delta S$ relating information and entropy. Hawking argued that the source of the missing information is the correlation between the particles that come out in Hawking radiation and those that enter the black hole; without observing the internal state of the black hole, this information cannot be recovered.

An obvious question is what happens to the information. There are several possibilities. The first is that the black hole completely disappears at the end of Hawking evaporation. If the above calculation is to be trusted, this then means that a pure quantum state has evolved into a mixed quantum state. That implies a fundamental loss of information, and conflicts with the basic principles of quantum mechanics which always evolves pure states to pure states. Such a radical conclusion suggests one consider other options. One is that some assumptions that go into the semi-classical calculations are flawed and the information is in fact gradually released from the black hole over its lifetime and carried in the Hawking radiation. Alternately, one might imagine that the information only escapes after the black hole reaches the Planck mass, where quantum gravity becomes important and Hawking’s calculation fails in any case. The resulting outgoing state must, however, contain a huge amount of information, $I \sim M^2/m_{\text{pl}}^2$, and this information is to be transmitted using only the remaining energy, $E \sim m_{\text{pl}}$. The only way to send a large amount of information with a small amount of energy is to use a large number of very low energy particles, and this takes a long time. A simple estimate [2] gives a time

$$\tau \sim \left(\frac{M}{m_{\text{pl}}}\right)^4 t_{\text{pl}},$$ \hfill (2)

which substantially exceeds the age of the Universe for an initial black hole formed from a mass as small as that of Pyramid peak. This means that in this case one is left with a slowly-decaying black hole remnant.

Each of these three alternatives – information loss, information return, and remnants – has been advocated by serious physicists but in each case serious physical objections have also been raised. By considering a sufficiently massive black hole the spacetime curvature and other local invariant features of the geometry can be made arbitrarily close to those of flat Minkowski space everywhere outside the black hole horizon. It is often claimed that the physics of black hole evaporation must therefore be governed by
low-energy physics and in particular be independent of Planck scale dynamics. On the other hand, each of the three alternatives appears to violate some principle of low-energy physics and therefore, if one of these scenarios is to be correct, we expect there must be a loophole in some of the low-energy arguments, through which Planck scale physics enters in some way. In what follows we consider each proposal in turn and identify key theoretical challenges that must be met in order to make it viable. We will stick to the three basic scenarios outlined above as other proposed resolutions of the information puzzle usually involve variations on these themes [2,3].

§2 Information Loss

Hawking’s proposal that pure states evolve into mixed states due to gravitational effects manifestly violates the basic quantum mechanical principle of unitarity. Furthermore, a general connection between information and energy indicates that loss of information should imply violation of energy conservation. In particular, it is natural to expect that virtual processes involving Planck scale black holes cause information and energy loss in low-energy physics. The question is then whether this will be a small effect or one which severely disturbs the low-energy vacuum.

Hawking attempted to generalize quantum mechanics to allow for information loss [4]. He proposed to replace the unitary \(S \) matrix, which maps an initial pure quantum state to a pure final state, by a superscattering matrix \(\mathrel{\mathcal{S}} \) which acts on density matrices rather than state vectors,

\[
\rho_{AB} \rightarrow \mathcal{S}_{AB} \rho_{CD},
\]

and can map a pure quantum state to a mixed one. It was subsequently argued [5] that this generalization, at least when implemented in terms of an evolution equation for density matrices, violates either locality or energy-momentum conservation. Hawking’s proposal is undermined by virtual black hole creation leading to unsuppressed Planck scale energy fluctuations. The challenge to advocates of the information-loss scenario is, therefore, to find an explicit description of information loss consistent with energy conservation.

§3 Information Return

Unitarity can be maintained if all information about the quantum state of the collapsing matter is encoded into the Hawking radiation, but in this case we have to give up some notions of locality and causality [6,7].

Imagine a hapless traveler falling into a large black hole. From the traveler’s perspective nothing bad happens until near the singularity long after passing the event horizon. If the traveler’s information is to be encoded into the Hawking radiation there must be some physical mechanism that transfers all the information from the infalling traveler to the outgoing radiation leaving nothing behind. Since the Hawking radiation originates outside the black hole, and the local spacetime curvature is weak everywhere in its causal past, this mechanism cannot operate in a local fashion. In the context of a large black hole the non-local effects must operate over long distances in order to reconcile the viewpoints of the traveler, who feels fine until deep inside the black hole, and of outside observers, who claim the traveler is completely disrupted before entering the black hole. The principle of black hole complementarity [7] states that such a reconciliation need not contradict the known laws of low-energy physics, because in order to compare measurements made by distant observers to measurements made inside a black hole one must either be a superobserver outside spacetime or have knowledge of extreme short-distance physics.

Susskind has suggested that string theory is sufficiently non-local to enable information return [8]. Strings are indeed not point-like objects but naively one would only expect non-local effects on the fundamental string scale. According to Susskind, the enormous relative boosts encountered in describing different observers near the event horizon magnify this short distance non-locality so that it becomes relevant on macroscopic scales. However, even if the kinematics of string theory differ sufficiently radically from point-like theories that information from the contents of a black hole is in some sense accessible at the horizon, it remains an open question whether string interactions alter the Hawking radiation significantly enough to imprint this information on the outgoing state. A concrete challenge in this scenario is thus to find nonlocal dynamics (string or otherwise) sufficient to transfer the information to the Hawking radiation.

§4 Remnants

If remnants solve the information problem, there must be an infinite number of remnant species so that they can encompass the information associated with an arbitrarily large black hole. These remnants should have masses \(~ m_{\text{pl}}\). The obstacle here is that an infinite variety of remnants with approximately equal masses leads to the problem of infinite production rates for remnants in ordinary processes. Examples would be in Hawking radiation from large black holes, in thermal ensembles, or if the remnants are charged, in Schwinger pair production in electric fields. The production rate for a given remnant species may be incredibly tiny, but the infinite number of species still gives an infinite total rate.

This logic has been questioned [9] on the grounds that
it considers remnants to be essentially similar to elementary particles and in particular to be described by effective field theory. A concrete model for remnants are extremal Reissner-Nordstrom black holes, which are also expected to have an infinite number of internal states [10]. Studies of their pair production [11] suggest the possible relevance of Planck-scale physics in computing production rates [12]. This opens the possibility of finite production. A challenge to remnant advocates is then to exhibit the mechanism by which remnants evade the naïve estimates, and in particular to provide a concrete effective description of remnants that avoids the connection between infinite species and infinite production rates.

§5 Discussion

Theorists have already learned a great deal by thinking about Hawking’s paradox. In particular, our picture of semiclassical black hole physics, including the backreaction on the geometry due to Hawking emission, has been considerably clarified in recent years. A conclusive resolution of the paradox nevertheless remains elusive.

It is of course quite possible that none of the above proposals correctly describes the physics of black hole evaporation. Perhaps some combination of these ideas is closer to the truth or perhaps some key observation is missing and a completely new approach is required. The correct scenario may or may not be determined in the next six years, but understanding the underlying Planck-scale physics is certain to be an important element of the physics of the next millennium.

§Acknowledgements

We wish to thank the organizers for organizing an interesting and enjoyable workshop. The work of S.B.G. is supported in part by DOE grant No. DOE-91ER40618 and NSF grant No. PHY91-57463 and that of L.T. by NSF grant No. PHY89-04035.

§References

[1] S.W. Hawking, Comm. Math. Phys. 43 (1975) 199, Phys. Rev. D14 (1976) 2460.

[2] R.D. Carlitz and R.S. Willey, Phys. Rev. D36 (1987) 2327,2336; J. Preskill, “Do Black Holes Destroy Information?” Caltech preprint, CALT-68-1819, January 1992, hep-th/9209055.

[3] S.B. Giddings, Phys. Rev. D46 (1992) 1347; D.N. Page, “Black Hole Information,” Alberta preprint, ALBERTA-THY-23-93, May 1993, hep-th/9305040.

[4] S.W. Hawking, Comm. Math. Phys. 87 (1982) 395.

[5] J. Ellis, J. Hagelin, D.V. Nanopoulos, and M. Srednicki, Nucl. Phys. B241 (1984) 381; T. Banks, M.E. Peskin, and L. Susskind, Nucl. Phys. B244 (1984) 125.

[6] G. ‘t Hooft, Nucl. Phys. B335 (1990) 138, Phys. Scr. T36 (1991) 247; E. Verlinde and H. Verlinde, Nucl. Phys. B406 (1993) 43.

[7] L. Susskind, L. Thorlacius, and J. Uglum, Phys. Rev. D48 (1993) 3743; L. Susskind and L. Thorlacius, Phys. Rev. D49 (1994) 966.

[8] L. Susskind, Phys. Rev. Lett. 71 (1993) 2367; Phys. Rev. D49 (1994) 6606.

[9] T.Banks and M. O'Loughlin, Phys. Rev. D47 (1993) 540; T. Banks, M. O'Loughlin, and A. Strominger, Phys. Rev. D47 (1993) 4476.

[10] A. Strominger and S. Trivedi, Phys. Rev. D48 (1993) 5778.

[11] G.W. Gibbons, in Fields and geometry, ed. A. Jadczyk (World Scientific, 1986); D. Garfinkle and A. Strominger, Phys. Lett. B256 (1991) 146.

[12] S.B. Giddings, Phys. Rev. D49 (1994) 4078.
Two-Dimensional Black Holes and the Information Puzzle

Andrew Strominger

Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA

Several years ago it was realized that two-dimensional methods provide effective tools for addressing the black hole information puzzle [1]. Vigorous application and improvements of these tools over the last two years have crystallized the puzzle, eliminating some proposed resolutions and greatly constraining the nature of others. In the first half of this report I will briefly review some of the work on these two-dimensional models. In the second half I will briefly describe a possible resolution of the information puzzle that we were led to by these investigations. Discussion of other approaches to the puzzle can be found for example in [2].

§1 Two-dimensional Models

Two-dimensional dilaton gravity models may be viewed as the S-wave sector of a four-dimensional theory of gravity. The general spherically symmetric, four-dimensional line element may be written

$$ds^2 = g_{ab}(\sigma)d\sigma^ad\sigma^b + e^{-2\phi(\sigma)}d\Omega^2$$

where $(\sigma^1, \sigma^0) \sim (r, t)$, g_{ab} is a two-dimensional metric and $4\pi e^{-2\phi}$ is the area of a two sphere at fixed σ expressed in terms of the dilaton field ϕ. Thus the dynamics of four-dimensional S-wave gravity are described by a two-dimensional metric plus a scalar dilaton.

Models of this general type (when coupled to matter) contain black holes, Hawking evaporation and, consequently, an information puzzle. However, they are far simpler than their four-dimensional cousins. This is in part because two-dimensional quantum gravity is renormalizable: the short distance problems of quantum gravity are successfully untangled from the long-distance information problem. Even better, it is known that two-dimensional quantum gravity is equivalent to conformal field theory and the technology developed in this context over the last ten years can be fruitfully applied to the black hole problem.

Of course one should always bear in mind the possibility that we are being led down the garden path. There is no guarantee that the resolution of the information puzzle for real four-dimensional black holes is the same as that for toy two-dimensional black holes.

Two-dimensional models have been improved in steps over the last four years. The starting point is the classical action [1]

$$S_{cl} = \frac{1}{4\pi} \int d^2\sigma \sqrt{-g} \left[e^{-2\phi} (R + 4(\nabla \phi)^2 + 4\lambda^2) + \sum_{i=1}^{N} (\nabla f_i)^2 \right]$$

where λ is a dimensionful constant and the f_i are N matter fields. Classical solutions of this theory describe formation of black holes by collapsing matter.

The quantum theory is described to leading order in a $1/N$ expansion by the effective action [1]

$$S_{eff} = S_{cl} + \frac{N}{24\pi} \int d^2\sigma \partial_+ \rho \partial_- \rho$$

in a conformal gauge in which the two-dimensional metric is $ds^2 = -e^{2\phi}d\sigma^+ d\sigma^-$. The last term is deduced from the trace anomaly, and incorporates the back reaction of the Hawking radiation on the geometry. Solutions of S_{eff} can be found numerically [3]. One finds that black holes shrink due to Hawking emission as expected. Eventually they reach zero size, a naked singularity appears, and the computer crashes. While more input is required to evolve beyond this point, one important lesson can already be gleaned: in large-N, two-dimensional models the information does not come out of the black hole prior to the evaporation endpoint. This was quantified in [4] by direct calculation of the entropy.

A great improvement of this model was found in references [5,6,7], where it was noted that equally sensible toy models for black hole physics can be obtained by modifying S_{cl} with counterterms which vanish at large radius (large negative ϕ). These counterterms are constrained by conformal invariance. A judicious choice of counterterms leads to a theory which can be transformed (using field redefinitions) to a free field theory! Furthermore, in terms of the redefined fields, the spacetime can be analytically continued both through the origin and through the singularity.

These improved theories are simple enough that a fully quantum treatment is feasible. Notable progress in this direction has been made in [8], but some issues remain unresolved. In the remainder of our discussion we shall concentrate on the large-N, semic classical behavior.

A semiclassical analysis reveals a disaster lurking in the improved theories. Collapsing matter forms a black hole
which initially evaporates as expected. Unfortunately, black holes never stop evaporating, even when the horizon reaches $r = 0!$ The mass of the spacetime asymptotically tends to minus infinity. Of course no one believes that anything like this could happen in the real world. Evidently these two-dimensional models fail to provide a faithful model of four-dimensional black hole physics at (and after) the evaporation endpoint. Thus while two-dimensional models have been of use for studying the flow of information in and out of black holes prior to the endpoint, models developed so far have not been as useful for studying possible types of endpoint behavior.

Attempts to alleviate this problem have been made by imposing reflecting boundary conditions at the origin $r = 0$ (which corresponds to a timelike line of constant ϕ in the two-dimensional field theory) [7,9,10] This is a standard problem in conformal field theory. Interestingly, it turns out that the simplest stable solution in the present context is highly non-linear. With these boundary conditions, all incoming matter is reflected through the origin. However, there is a threshold for black hole formation, above which unphysical behavior reappears. The black hole never stops evaporating and the mass of the spacetime in the region exterior to the black hole goes to minus infinity. The reflected pulse in a sense comes back out, but it does so after the end of time as measured by an observer exterior to the black hole. This is a consequence of distortion of the geometry by the infalling matter.

Indeed both the evaporation endpoint (i.e. the point at which the black hole horizon has zero size) and the end of time are (for large infalling pulses) prior to the future lightcone of the region where the pulse reaches the origin. Thus no boundary conditions at the origin can avert this disaster.

Modifications of the two-dimensional model are needed to obtain dynamics which are sensible in all regimes. No fully satisfactory model exists as of this writing. Attempts are being made to modify the theory as follows [11].

At the evaporation endpoint, the black hole horizon has reached zero (or Planckian) size. However, it may have a large interior region. The geometry (at least for some spacelike slices) contains a large black hole interior region (storing lots of information) connected by a Planckian umbilical cord to the exterior spacetime. In our discussion so far, this umbilical cord cannot be broken. However, if topology change is allowed in quantum gravity (as we believe to be the case) eventually the umbilical cord will break and the black hole interior becomes a baby universe. This possibility should be incorporated into the two-dimensional models.

To a string theorist, this process is nothing more than open string (baby universe) emission from the end of a semi-infinite string (the original spacetime) and the technology for describing such a process is at least partially in hand.

§2 Information Retrieval

Let us assume that black hole evaporation indeed terminates in the decay of the black hole interior into its own baby universe. What does this mean for the issue of information loss?

The answer depends on how one treats the portion of the quantum state which is carried away by the baby universe. Hawking has proposed that one simply throw away (i.e. trace over) this portion of the state. This leads to a theory in which information is irretrievably lost. Indeed in this context there is no observable content to the statement that it is “carried away by a baby universe”.

The information might as well have been destroyed at a singularity.

A second, inequivalent, proposal [11] is to treat the baby universes as indistinguishable quantum particles in their own right, which inhabit a larger “third-quantized” Hilbert space. The indistinguishability means that one does not just trace separately over the state of each baby universe, but one symmetrizes by tying together in all possible ways the traces over all baby universes created at any time in the entire history of the universe.

This proposal was objected to [12] on the grounds that it violates cluster decomposition: the symmetrizing over all baby universe correlates widely separated events. However, it turns out [13] that this violation of clustering is physically unobservable, because the theory decomposes into superselection sectors, in each of which clustering is valid. Even better, the scattering is unitary within each superselection sector! The argument [13] is in essence very similar to those used earlier in wormhole physics [14], but with additional subtleties.

The superselection sectors are labeled by the eigenvalues α_i of the (third-quantized) operators ϕ_i which create and destroy a baby universe in the ith quantum state. The unitary outcome of gravitational collapse depends on the α_i’s, but they cannot be measured except by forming black holes and watching them evaporate. This requires an enormous number of experiments. Before the α_i’s are known, the outcome of gravitational collapse is unpredictable, even if the exact solution of quantum string theory were at hand. Indeed, an averaging over the unknown α_i’s for the case of a single black hole formation/evaporation exactly reproduces Hawking’s prescription. Thus, in this proposal, information is preserved in principle but lost in practice.
§References

[1] C. G. Callan, S. B. Giddings, J. A. Harvey and A. Strominger, Phys. Rev. D45 (1992) R1005.

[2] L. Susskind, to appear proceedings of the conference Particles, Strings, & Cosmology, Syracuse University, May ’94.

[3] D. Lowe, Phys. Rev. D47 (1993) 2446; T. Piran and A. Strominger, Phys. Rev. D48 (1993) 4729.

[4] T. Fiola, J. Preskill, A. Strominger, and S. Trivedi, Phys. Rev. D50 (1994) 3994.

[5] A. Bilal and C.G. Callan, Nucl. Phys. B394 (1993) 73.

[6] S.P. de Alwis, Phys. Lett. B289 (1992) 278; Phys. Lett. B300 (1993) 330; Phys. Rev. D46 (1992) 5429.

[7] J.G. Russo, L. Susskind, and L. Thorlacius, Phys. Rev. D46 (1992) 3444; Phys. Rev. D47 (1993) 533.

[8] E. Verlinde and H. Verlinde, Nucl. Phys. B406 (1993) 43.

[9] T.D. Chung and H. Verlinde, Nucl. Phys. B418 (1994) 305.

[10] A. Strominger and L. Thorlacius, Phys. Rev. D50 (1994) 5177.

[11] A. Strominger, unpublished.

[12] L. Susskind, Comment on a Proposal by Strominger. Preprint SU-ITP-94-14; hep-th/9405103.

[13] J. Polchinski and A. Strominger, A Possible Resolution of the Black Hole Information Puzzle, Preprint UCSBTH-94-20, hep-th/9407008.

[14] S. Coleman, Nucl. Phys. B307 (1988) 864; S.B. Giddings and A. Strominger, Nucl. Phys. B307 (1988) 854.
Entropy of Black Holes

Valeri Frolov

CIAR Cosmology Program; Theoretical Physics Institute, University of Alberta, Edmonton, Canada T6G 2J1

§1 Black-Hole Entropy Problem

According to the thermodynamical analogy in black hole physics, the entropy of a black hole in the Einstein theory of gravity equals $S_{BH} = A_H/(4l_P^2)$, where A_H is the area of a black hole surface and $l_P = (hG/c^3)^{1/2}$ is the Planck length.

The entropy in black hole physics plays essentially the same role as in the usual thermodynamics. In particular it allows one to estimate what part of the internal energy of a black hole can be transformed into work. The generalized second law implies that when a black hole is a part of a thermodynamical system the total entropy (i.e. the sum of the entropy of a black hole and the entropy of the surrounding matter) does not decrease. The success of the thermodynamical analogy in black hole physics allows one to hope that this analogy may be even deeper and it allows one to estimate what part of the internal energy of a black hole can be transformed into work. The generalized second law implies that when a black hole is a part of a thermodynamical system the total entropy (i.e. the sum of the entropy of a black hole and the entropy of the surrounding matter) does not decrease. The success of the thermodynamical analogy in black hole physics allows one to hope that this analogy may be even deeper and it allows one to develop a statistical-mechanical foundation of black hole thermodynamics.

Thermodynamical and statistical-mechanical definitions of the entropy are logically different. Thermodynamical entropy S^{TD} is defined by the response of the free energy F of the system to a change of its temperature:

$$dF = -S^{TD}dT.$$ (1)

(This definition applied to a black hole determines its Bekenstein-Hawking entropy.)

Statistical-mechanical entropy S^{SM} is defined as

$$S^{SM} = -\text{Tr}(\rho \ln \rho),$$ (2)

where ρ is the density matrix describing the internal state of the system under consideration. It is also possible to introduce the informational entropy S^I by counting different possibilities to prepare a system in a final state with given macroscopical parameters from different initial states

$$S^I = -\sum_n p_n \ln p_n,$$ (3)

with p_n being the probabilities of different initial states.

In standard case all three definitions give the same answer.

Is the analogy between black holes thermodynamics and the ‘standard’ thermodynamics complete? Do there exist internal degrees of freedom of a black hole which are responsible for its entropy? Is it possible to apply the statistical-mechanical and informational definitions of the entropy to black holes and how are they related with the Bekenstein-Hawking entropy? These are the questions which are to be answered.

Historically first attempts of the statistical-mechanical foundation of the entropy of a black hole were connected with the informational approach. According to this approach the black hole entropy is interpreted as “the logarithm of the number of quantum mechanically distinct ways that the hole could have been made”. The so defined informational entropy of a black hole is simply related with the amount of information lost by stretching the horizon, and as was shown by Thorne and Zurek it is equal to the Bekenstein-Hawking entropy.

The dynamical origin of the entropy of a black hole and the relation between the statistical-mechanical and Bekenstein-Hawking entropy have remained unclear. In the present talk I describe some new results obtained in this direction.

§2 Dynamical Degrees of Freedom

Calculations in the framework of the Euclidean approach initiated by Gibbons and Hawking relate the entropy of a black hole to the tree-level contribution of the gravitational action, namely the action of the Euclidean black hole instanton. In this approach the entropy of a black hole has pure topological origin, and it remains unclear whether there exist any real dynamical degrees of freedom which are responsible for it. The problem of the dynamical origin of the black hole entropy was intensively discussed recently. The basic idea which was proposed is to relate the dynamical degrees of freedom of a black hole with its quantum excitations. This idea has different realizations.

Here I discuss the recent proposal to identify the dynamical degrees of freedom of a black hole with the states of all fields (including the gravitational one) which are located inside the black hole. Such modes (for a non-rotating black hole) have negative energy. In the Hawking process, the creation of a particle outside a black hole (such a particle necessarily has positive energy) is accompanied by a creation of a corresponding particle in a mode with negative energy inside a black hole. As a
result these modes with negative energies are permanently excited and their state is described by thermal density matrix. Only very small number of those particles which are created outside a black hole (external particles) can penetrate the potential barrier and reach infinity. Namely these particles form the quantum radiation of a black hole. All other external particles are reflected by the potential barrier and fall down into the black hole. During the time when they are still outside the horizon, the corresponding internal modes (which are described by a thermal density matrix) give the contribution to the black hole entropy.

§3 Statistical-Mechanical Entropy

By averaging over states located outside the black hole one generates the density matrix of a black hole and can calculate the corresponding statistical-mechanical entropy S^{SM}. The main contribution to the entropy of a black hole is given by inside modes of fields located in the very close vicinity of the horizon. Contributions of different fields enter S^{SM} additively. The calculations give the following result for the contribution of a chosen field to S^{SM}

$$S^{SM} = \int dx \sum_\lambda \mu_\lambda(x)s(\beta \omega_\lambda),$$

$$s(\beta \omega) = \frac{\beta \omega}{e^{\beta \omega} - 1} - \ln(1 - e^{-\beta \omega}),$$

where $s(\beta \omega)$ is the entropy of a single oscillator with the frequency ω at temperature $T = 1/\beta$. Here $$\mu_\lambda(x) = g^T g^{1/2}[R_\lambda(x)]^2$$ is a phase space density of quantum modes and $R_\lambda(x)$ are spatial harmonics corresponding to the mode with a collective quantum number $\lambda = (\omega, l, m)$.

The so defined S^{SM} contains a volume divergence, connected with the integration over the space regions near the horizon and is of the form

$$S^{SM} \approx \frac{\alpha}{\pi^2 \varepsilon}$$

where $\alpha \equiv \pi^2 \varepsilon [h(0) + \frac{7}{2}h(1/2) + h(1)]$, $\varepsilon = (l/r_+)^2$, $h(s)$ is the number of helicities of field of spin s, and l is the proper distance cut-off parameter. One may expect that quantum fluctuations of the horizon may provide natural cut-off and make S^{SM} finite. Simple estimations of the cut-off parameter show that $S^{SM} \approx S^{BH}$.

§4 No-Boundary Wave Function

Another approach to the problem of dynamical degrees of freedom of a black hole was proposed in Ref. [11]. Its basic idea is the following. The study of propagation of perturbations in the spacetime of a real black hole can be reduced to the analogous problem for its ‘eternal version’, (i.e. in a spacetime of an eternal black hole with the same parameters). The space of physical configurations of a system including a black hole can be related to the space of ‘deformations’ of the Einstein-Rosen bridge of the eternal black hole and possible configurations of other (besides the gravitational) fields on it, which obey the constrains and preserve asymptotic flatness. In a spacetime of an ‘eternal version’ of a black hole, perturbations with initial data located on the inner part of the Einstein-Rosen bridge are propagating to the future remaining entirely inside the horizon, and hence the corresponding perturbations in a ‘physical’ black hole also always remain under the horizon. That is why these data should be identified with internal degrees of freedom of a black hole. A quantum state of a black hole can be described by a wavefunction defined as a functional on the configuration space of deformations of the Einstein-Rosen bridge. In this representation deformations of the external and internal parts of the Einstein-Rosen bridge naturally represent degrees of freedom of matter outside the black hole and black hole’s internal degrees of freedom. The no-boundary ansatz (analogous to Hartle-Hawking ansatz in quantum cosmology) singles out a state which plays the role of ground state of the system [11]. By its construction the no-boundary wavefunction of a black hole is symmetric with respect to the transposition of the interior and exterior parts of the Einstein-Rosen bridge. We call this property duality. For a ‘real’ black hole formed in the gravitational collapse, this exact symmetry is broken. Nevertheless, since there is a close relation between physics of a ‘real’ black hole and its ‘eternal version’, the duality of the above type plays an important role and allows one, for example, to explain why the approach based on identifying the dynamical degrees of freedom of a black hole with its external modes gives formally the same answer for the dynamical entropy of a black hole as our approach.

For study the fields contribution to the statistical-mechanical entropy in the one-loop approximation it is sufficient to fix mass M of a black hole as a parameter in the wave function, and consider only the part describing fields perturbations. By tracing over the external variables one obtains the density matrix of a black hole and can calculate its statistical-mechanical entropy [11]. The result coincides with [10].

§5 Why the Entropy is $A/4$?

In the above approach (as well as in other dynamical approaches) different fields give independent contributions to S^{SM}. Even if the cut-off parameter depends on the
number of fields in Nature it is virtually impossible to exclude the dependence of the expression for S_{SM} on the fields properties. This behavior of S_{SM} differs this quantity from the universally defined Bekenstein-Hawking entropy. This was considered by many as the puzzle. In Ref.[12] a simple solution to this puzzle was proposed. The Bekenstein-Hawking entropy is analogous to the thermodynamical entropy, defined by the response of the free energy on the change of the temperature. The standard prove of the equality of the statistical-mechanical and thermodynamic entropy requires commutativity of the operations of tracing over the internal states of the system and differentiating with respect to the temperature. In the case of a black hole, where the number and properties of the internal states depend on the mass of a black hole, which in its turn depends on the equilibrium temperature, this commutativity property is not valid. In order to demonstrate this one can write the contribution of a chosen field to the free energy of a black hole in the form, which is similar to (4)

$$F = \int dx \sum_{\lambda} \mu_\lambda(x) f(\beta \omega_\lambda) + \ldots, \quad (8)$$

$$f(\beta \omega) = \ln(1 - e^{-\beta \omega}), \quad (9)$$

where (...) denotes the terms independent of β which do not contribute to S_{SM}. After summation over l, m and integration over the spatial volume one gets

$$F = \int d\omega N(\omega|M, \epsilon) f(\beta \omega) + \ldots, \quad (10)$$

where $N(\omega|M, \epsilon)$ is the density of number of states.

For the thermal equilibrium the mass M of a black hole is related with temperature ($\beta \equiv T^{-1} = 4\pi M$). That is why for the calculation of the response dF on the change of the temperature dT one needs to take into account additional dependence of N on T. This additional dependence of N on T reflects the fact that operations d/dT and Tr do not commute for our system. As the result S_{TD} differs from S_{SM} and one has [11] $S_{TD} = S_{SM} + \Delta S$.

It is possible to show that the additional term ΔS exactly cancels the leading (divergent near the horizon) contribution to the black hole statistical-mechanical entropy [12]. As the result of this cancellation one-loop corrections to the thermodynamical entropy of a black hole (describing the contribution to this quantity of the internal dynamical degrees of freedom of a black hole) are small. This explains the universality (independence on number and properties of fields) of the expression for the thermodynamical (Bekenstein-Hawking) entropy of a black hole.

1 It is interesting to note that this relation can be used to give a simple explanation of the entropy ‘renormalization’ procedure, which was postulated by Thorne and Zurek [3].

§Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

§References

[1] J. D. Bekenstein, Nuov. Cim. Lett. 4 (1972) 737.
[2] J. D. Bekenstein, Phys. Rev. D7 (1973) 2333.
[3] W. H. Zurek and K. S. Thorne, Phys. Rev. Lett. 54 (1985) 2171.
[4] G. W. Gibbons and S. W. Hawking, Phys. Rev. D15 (1976) 2752.
[5] S. W. Hawking, In: General Relativity: An Einstein Centenary Survey, (eds. S. W. Hawking and W. Israel), Cambridge Univ. Press, Cambridge, 1979.
[6] G. ’t Hooft, Nucl. Phys. B256 (1985) 727.
[7] V. Frolov and I. Novikov, Phys. Rev. D48 (1993) 4545.
[8] S. Carlip and C. Teitelboim, preprint gr-qc/9312002 (1993).
[9] L. Susskind and J. Uglum, Phys. Rev. D50 (1994) 2700.
[10] D. Garfinkle, S. B. Giddings, and A. Strominger, Phys. Rev. D49 (1994) 958.
[11] A. I. Barvinsky, V. P. Frolov, and A. I. Zelnikov, preprint Thy 13-94, gr-qc/9404036 (1994).
[12] V. Frolov, preprint Thy 22-94, gr-qc/9406037 (1994).
§1 Introduction

In this talk I shall discuss Hawking’s information paradox [1] solely from the viewpoint that the information about the initial quantum state of infalling matter forming a black hole is returned to outside observers and is encoded in the outgoing Hawking radiation as the black hole evaporates. I’ll assume that there is no fundamental information loss and that any stable or long-lived black hole remnants are finitely degenerate at the Planck scale. This is a conservative viewpoint in that it assumes unitarity in all quantum processes, even when gravitational effects are taken into account, but it presents a novel view of spacetime physics near an event horizon.

Imagine a team of technologically advanced observers studying the formation of a black hole and its subsequent evaporation from a safe distance. The observers prepare a pure quantum state of infalling matter and then make careful measurements on the Hawking radiation emitted by the black hole over its entire lifetime. To determine the final state, our observers will have to patiently perform an enormous number of such experiments, using an identically prepared initial state, because only mutually commuting observables can be measured in any single run. They also have to be able to make sophisticated observations of correlations between quanta emitted at different times in the life of the black hole, for even if the formation and evaporation process as a whole is governed by a unitary S-matrix the radiation emitted at any given moment will appear thermal.

Only the region exterior to the black hole event horizon is accessible in the reference frame of the asymptotic observers. In this frame the infalling matter must give up all information about its quantum state to the outgoing Hawking radiation. Note that it is not enough for the information to be imprinted onto the Hawking radiation. It must also be removed from the infalling matter as it approaches the event horizon, for otherwise we would have a duplication of information in the quantum state in violation of linear quantum mechanics [2]. A useful analogy is a book set on fire. All the information initially contained on the pages can in principle be gleaned from measurements on the outgoing smoke and radiation but at the end of the day this information is no longer available in book form. There is an important difference between the burning book and matter falling into a black hole. In the former case it is a well understood microphysical process which transfers the information from book to radiation whereas matter in free fall entering a black hole encounters nothing out of the ordinary upon crossing the event horizon. The curvature and other coordinate invariant features of the geometry are weak there if the black hole is large and the region where strong gravitational effects are expected is a proper distance of order the Schwarzschild radius further inside the black hole.

We are thus led to conclude that the physical description of matter approaching the event horizon differs between the asymptotic and free fall reference frames by more than is warranted by the usual behavior of local fields under coordinate transformations. How serious is this apparent contradiction? The gravitational redshift between the two frames is enormous; the relative boost factor grows exponentially with the time measured in the asymptotic frame and, as ’t Hooft has emphasized [3], it becomes much larger than anything that has been achieved in experiments. It is therefore legitimate to question whether the usual Lorentz transformation properties of localized objects correctly relate observations made in the two frames [4].

The principle of black hole complementarity [2] states that there is no contradiction between having all the information return to outside observers encoded in the Hawking radiation and having observers in free fall carry information into a black hole. The validity of this principle rests on matter having unusual kinematic properties at high energy but I will argue that it does not conflict with low-energy physics. The basic point is that the apparent contradiction only comes about when we attempt to compare the physical description in different reference frames. The laws of nature are the same in each frame and low-energy observers in any single frame cannot establish duplication of information.

§2 The Stretched Horizon

The evaporation of a large black hole is a slow process and on a short timescale compared to the black hole lifetime we can approximate the evolving geometry by a static Schwarzschild geometry. An outside observer, who is at rest in Schwarzschild coordinates sees thermal radiation
at a temperature which depends on the spatial position. Near the black hole this temperature goes like $T \sim 1/\delta$, where δ is the proper distance between the observer and the event horizon. The high temperature radiation can be attributed to the acceleration required to prevent the observer from falling into the black hole, which diverges in the $\delta \to 0$ limit.

Our knowledge of the laws governing very high energy physics is limited and for now I'll only deal phenomenologically with the region nearest the event horizon where the local temperature is diverging. Later in the talk I'll motivate the phenomenological description by appealing to string theory. It is well established that, from the point of view of outside observers, the classical physics of a quasistationary black hole can be described in terms of a 'stretched horizon' which is a membrane placed near the event horizon and endowed with certain mechanical, electrical and thermal properties [5]. The nature of this description is coarse grained in that it is dissipative and irreversible in time. One doesn't have to be very specific about how near the event horizon the stretched horizon is placed as long as it is close compared to the typical length scale of the classical problem, which could for example be to describe a black hole interacting with a companion in a binary.

To go beyond this classical picture we postulate that the coarse grained thermodynamic description of the classical theory has an underlying microphysical basis. The quantum mechanical stretched horizon is a membrane, carrying microphysical degrees of freedom, with an area larger than that of the event horizon by one Planck unit [2]. The term Planck unit is being used in a loose sense and simply refers to whatever high-energy scale at which the radical kinematic behavior, required for returning the information, enters. In string theory this would be the fundamental string scale which can be considerably lower than the usual Planck energy. In order to implement black hole complementarity we also have to postulate that the membrane has no substance in the frame of an observer entering the black hole in free fall.

§3 Gedanken Experiments

It is important to determine whether black hole complementarity leads to observable duplication of information. The results of measurements performed inside a black hole are not available outside the event horizon so outside low-energy observers cannot establish duplication. Consider, however, a gedanken experiment [6] where an observer first learns the results of measurements made on the outgoing Hawking radiation, which reveal the quantum state of some system that was previously sent into the black hole, and then enters the black hole in order to receive a direct signal from the same system.

It turns out that it is impossible to carry out this experiment employing only low energy physics [6,7]. Outside observers have to carry out correlation measurements on the outgoing Hawking radiation for a very long time before they can hope to recover the information about the system that is sent into the black hole. An observer who waits outside for that information and then enters the black hole should receive the message from the original system before crashing into the singularity. The black hole geometry is such that the measurement on the system must then be made, and the result transmitted, in an extremely short time after the system passes through the event horizon. The timescale is in fact so short that quanta of frequency $\omega \sim \exp (M^2)$, where M is the black hole mass in Planck units, would have to be employed to achieve this task [6] and the back-reaction on the geometry due to such a high-energy pulse would be very violent. Conversely, if the experimenters only have low energy radiation, i.e. less than Planck energy, at their disposal then it will be impossible to transmit the signal in time for the later observer to receive it before encountering strong gravitational effects near the singularity.

It is a generic feature of gedanken experiments of this type that short distance physics enters into their analysis in an essential way and apparent contradictions with black hole complementarity can be traced to unwarranted assumptions about physics beyond the Planck scale. Another class of experiments involves attempts by external observers to detect whether quantum information is stored at the stretched horizon by probing the neighborhood of the event horizon [6]. Their analysis also requires short-distance physics even for a large black hole.

§4 The Stretched Horizon in String Theory

If the ideas presented above are correct then it is essential to gain understanding of physics at very short distances in order to resolve the issue of information loss. String theory is widely believed to provide a consistent short-distance description of matter and gravity and Susskind has argued that the kinematic behavior of fundamental strings is consistent with the requirements of black hole complementarity [4]. The basis for this claim is that zero-point fluctuations of string modes make the size of a string depend on the time resolution employed [8]. The shorter the time over which the oscillations of a string are averaged the larger its spatial extent will appear.

Consider a string configuration in free fall approaching a black hole event horizon. An observer at rest far away from the black hole measures asymptotic time t but because of the increasing redshift, a unit of asymp-
otic time corresponds to an even shorter time interval, \(\delta \tau \sim \delta t \exp(-t/4M) \), in the free-fall frame near the event horizon. The distant observer is therefore using a shorter and shorter resolution time to describe the string configuration and, once it passes within a proper distance of order the string scale from the event horizon, the string begins to spread both in the longitudinal and transverse directions [4]. The longitudinal spread cancels out the longitudinal Lorentz contraction caused by the black hole geometry. Meanwhile, the spread in the transverse directions causes the configuration to cover the entire horizon area in a short time compared to the black hole lifetime. In this view, the stretched horizon is made out of the strings in the infalling matter which forms the black hole. On the other hand, the spreading effect is not present in the free-fall frame, where there is no redshift to enhance the time resolution, and from the point of view of an infalling observer there is no stretched horizon, in line with the principle of black hole complementarity.

Since the stringy stretched horizon is formed from the infalling matter itself, it efficiently absorbs the quantum information contained in that matter. The string spreading process also thermalizes the stretched horizon [9]. This comes about because a fixed time resolution in the asymptotic frame translates in the free-fall frame into a time-dependent mode cutoff on the scalar fields, which give the transverse location of the string. As time goes on, new modes emerge below the cutoff, and the random phases of the different modes lead to a classical stochastic evolution of the scalar fields, which can be given an interpretation in terms of a branching diffusion of discrete string bits. This discussion has entirely been in terms of free string theory and there are indications that string interactions significantly enhance the spreading effect [10].

A crucial remaining question in this approach is how the thermalized information stored at the stretched horizon gets imprinted on the outgoing Hawking radiation. Our present understanding of interacting string theory is insufficient to properly address this issue.

To summarize, it appears that black hole complementarity cannot be ruled out on the basis of known principles of low-energy physics. It requires radical kinematic behavior at high energies, which is not a feature of conventional local quantum field theories, but seems to be realized in string theory.

§Acknowledgements

This work was supported in part by NSF Grant No. PHY89-04305.

§References

[1] S.W. Hawking, *Comm. Math. Phys.* **43** (1975) 199, *Phys. Rev.* **D14** (1976) 2460.

[2] L. Susskind, L. Thorlacius, and J. Uglum, *Phys. Rev.* **D48** (1993) 3743.

[3] G. ‘t Hooft, *Nucl. Phys.* **B335** (1990) 138, *Phys. Scr.* **T36** (1991) 247.

[4] L. Susskind, *Phys. Rev. Lett.* **71** (1993) 2367; *Phys. Rev.* **D49** (1994) 6606.

[5] K.S. Thorne, R.H. Price, and D.A. MacDonald, *Black Holes: The Membrane Paradigm*, (Yale University Press, New Haven, CT, 1986), and references therein.

[6] L. Susskind and L. Thorlacius, *Phys. Rev.* **D49** (1994), 966.

[7] J. Preskill (private communication, 1993); H. Verlinde (private communication, 1993).

[8] M. Karliner, I. Klebanov, and L. Susskind, *Int. J. Mod. Phys.* **A3** (1988) 1981.

[9] A. Mezlhmnian, A. Peet, and L. Thorlacius, *Phys. Rev.* **D50** (1994) 2725.

[10] L. Susskind, *The World as a Hologram*, Stanford University preprint, SU-ITP-94-33, September 1994, hep-th/9409089.
The extended structure of fundamental strings gives rise to a string field theory with unusual causal properties. This is examined by considering the commutator of string fields in interacting light-cone string field theory. In general, this commutator is non-vanishing outside the string analog of the light-cone. This fact could have important implications for our understanding of localization of information in quantum gravity. This talk was based on work done in collaboration with L. Susskind and J. Uglum [1].

§1 Introduction

Conventional string theory provides us with a perturbative S-matrix. However, it is of interest to compute more general observable quantities, such as probability amplitudes at finite times. Here, we will be primarily interested in the causal properties of such amplitudes, and we will use string field theory to try and answer these questions.

In the known covariant formulations of quantized string field theory, the interactions are nonlocal in the center of mass coordinate \(x^+ = \tau \). This allows a conventional canonical quantization, and a second–quantized operator formulation exists [3-6], which allows one to perform the kind of calculations referred to in the preceding paragraph.

Our main concern will be the calculation of the commutator of two string fields on a flat spacetime background. Further details may be found in [1]. In the free theory, this commutator vanishes outside the “string light cone” [7,8], but it will be shown here that this is no longer the case when interactions are included. The conclusion is that measurements could detect the information carried by a string state outside the light cone of the center of mass, but only if these measurements could be performed with resolution times smaller than the string scale. This result supports recent arguments by Susskind concerning the nature of information in string theory [9], and could have important implications for our understanding of localization of information in a theory of quantum gravity.

§2 Commutator of String Fields

Let us introduce the light-cone coordinates

\[
X^+ = (X^0 + X^{D-1})/\sqrt{2}, \quad X^- = (X^0 - X^{D-1})/\sqrt{2} \quad (1)
\]

and parametrize the worldsheet of the string by the variables \(\sigma \) and \(\tau \). Light-cone gauge corresponds to fixing \(X^+(\sigma) = x^+ = \tau \). In the following we will consider open bosonic strings; the generalization to closed strings and to superstrings should be similar. The transverse coordinates are expanded as

\[
\vec{X}(\sigma) = \vec{x} + 2 \sum_{l=1}^{\infty} \vec{x}_l \cos(l\sigma) \quad (2)
\]

In light-cone gauge, the string field is a physical observable and can be decomposed in terms of an infinite number of component fields. In the absence of interactions, the string field takes the form [4,5]

\[
\Phi(\tau, x^-, \vec{X}(\sigma)) = \int \frac{d^{D-2}p}{(2\pi)^{D-1}} \int_0^{\infty} dp^+ \left[\sum_{\{\vec{n}\}} A(p^+, \vec{p}, \vec{n}) e^{i(p^+ x^- - \vec{p} \cdot \vec{x} + i\phi)} f_{\vec{n}}(\vec{x}_l) + h.c. \right] \quad (3)
\]

Here the light-cone energy of a string state is given by

\[
p^- (p^+, \vec{p}, \{\vec{n}\}) = \vec{p}^2 + 2 \sum_{i,l} ln_l + m_0^2 \quad (4)
\]

where \(m_0^2 \) is the mass squared of the ground state of the string. For bosonic strings, the ground state is a tachyon and \(m_0^2 \) is negative. In order to effect the light cone quantization and calculate the commutator, we will regard \(m_0^2 \) as a positive adjustable parameter [7,8]. Of course, this is inconsistent with Lorentz invariance for the bosonic string, but our results will be essentially unchanged in the superstring case where \(m_0^2 = 0 \).

The \(f_{\vec{n}}(\vec{x}_l) \) are harmonic oscillator wave functions given by

\[
f_{\vec{n}}(\vec{x}_l) = \prod_{l=1}^{\infty} \prod_{i=1}^{D-2} H_{n_l}^i(x^i_l) e^{-l(x^i_l)^2/(4r)} \quad (5)
\]
with $H_{n\ell}(x^i)$ a Hermite commutation polynomial. The A operators obey the canonical commutation relations

$$[A(p^+, \vec{p}, \{\nu_i\}), A(A(p^+, \vec{p}, \{\nu_i\})] = 2p^+ \times (2\pi)^{D-1} \delta(p^- - p'^-) \delta(\vec{p} - \vec{p}') \delta(\nu_i - \nu_i'), \quad (6)$$

A component field is obtained from Φ by multiplying by the appropriate wave function Φ and integrating over the normal mode coordinates \vec{x}_i. For example, the tachyon field is given by

$$T(\tau, x^-) = \int \frac{dD-2p}{(2\pi)^{D-1}} \int \frac{dp^+}{2p^+} [a(\vec{p}, p^+) e^{i\vec{p} \cdot x^+ - p^- \tau} + a^\dagger(\vec{p}, p^+) e^{-i\vec{p} \cdot x^+ - p^- \tau}], \quad (7)$$

where $a(\vec{p}, p^+) = A(\vec{p}, p^+, \{0\})$ and p^- is given by Φ.

Now we want to include a cubic interaction. The light cone Hamiltonian becomes $H = H_0 + H_3$, where H_0 is the Hamiltonian for free string field theory and the cubic interaction term H_3 is given by

$$H_3 = g \int \Phi_{\alpha_1}(\vec{X}_1(\sigma)) \Phi_{\alpha_2}(\vec{X}_2(\sigma)) \Phi_{\alpha_3}(\vec{X}_3(\sigma)) \delta(3 \sum_{r=1}^{\alpha_r} \Delta(\vec{X}_1(\sigma) - \vec{X}_2(\sigma) - \vec{X}_3(\sigma))) \times \mu(\alpha_1, \alpha_2, \alpha_3) \sum_{r=1}^{3} d\sigma \sum_{r=1}^{3} D\vec{x}_r(\sigma), \quad (8)$$

where g is the open string coupling and $\alpha_r = 2p_r^+$. The measure factor μ and the matrix Γ are defined in [1].

Now that interactions have been included, we wish to determine whether the commutator of two string fields vanishes when the arguments of the string fields lie outside the string light cone [7,8]. Suppose that

$$[\Phi(x_1^-, x_1^+, \vec{X}_1(\sigma)), \Phi(x_2^-, x_2^+, \vec{X}_2(\sigma))] = 0 \quad (9)$$

when

$$\frac{1}{\pi} \int d\sigma (X_1(\sigma) - X_2(\sigma))^2 < 0, \quad (10)$$

where we are using the mostly minus convention for the spacetime metric. For fixed $X_2(\sigma)$, equation (9) can be regarded as a function of $X_1(\sigma)$, which vanishes in the entire region in which equation (10) is satisfied. Differentiating equation (9) with respect to x_1^+ and setting $x_1^+ = x_2^+ = \tau$, one obtains

$$[\Phi(\tau, x_1^-, \vec{X}_1(\sigma)), \Phi(\tau, x_2^-, \vec{X}_2(\sigma))] = 0 \quad (11)$$

in the region in which equation (11) holds. Here Φ denotes $\partial \Phi / \partial x^+$. At equal light cone times, equation (11) reduces to

$$\frac{1}{\pi} \int d\sigma (\vec{X}_1(\sigma) - \vec{X}_2(\sigma))^2 > 0. \quad (12)$$

Therefore, to prove that the string field commutator does not vanish identically outside the string light cone, it is sufficient to prove that equation (11) fails to hold when equation (12) is satisfied.

To proceed, note that we can use the Heisenberg equation of motion to express the field Φ as

$$\dot{\Phi} = i[H, \Phi]. \quad (13)$$

Consider now the matrix element

$$\langle 0 \vert \Phi(p_1^+, \vec{X}_1(\sigma_3)) \vert \Phi(x_1^-, \vec{X}_1(\sigma_1)), \Phi(x_2^-, \vec{X}_2(\sigma_2)) \rangle \vert 0 \rangle = i \langle 0 \vert \Phi(p_3^+, \vec{X}_3(\sigma_3)) \vert [H, \Phi(x_1^-, \vec{X}_1(\sigma_1)), \Phi(x_2^-, \vec{X}_2(\sigma_2))] \langle 0 \rangle, \quad (14)$$

where all fields are evaluated at $\tau = 0$. Expanding $H = H_0 + H_3$, the terms involving H_0 all vanish by orthogonality. This is a reflection of the fact that the commutator does in fact vanish outside the string light cone in free string field theory [7]. The remaining terms can be expressed as

$$\langle 0 \vert \Phi(p_3^+, \vec{X}_3(\sigma_3)) \vert \Phi(x_1^-, \vec{X}_1(\sigma_1)), \Phi(x_2^-, \vec{X}_2(\sigma_2)) \rangle \vert 0 \rangle = \frac{2i g(2\pi)^{D-1/2}}{(2\pi)^{3}p_3^+} \int_0^\infty \frac{dp_1^+}{2p_1^+} \int_0^\infty \frac{dp_2^+}{2p_2^+} \left(V(2p_1^+, \vec{X}_1(\sigma_1); 2p_2^+, \vec{X}_2(\sigma_2); -2p_1^+, \vec{X}_3(\sigma_3)) - V(-2p_1^+, \vec{X}_1(\sigma_1); 2p_2^+, \vec{X}_2(\sigma_2); -2p_2^+, \vec{X}_3(\sigma_3)) - V(2p_1^+, \vec{X}_1(\sigma_1); -2p_2^+, \vec{X}_2(\sigma_2); -2p_3^+, \vec{X}_3(\sigma_3)) \right), \quad (15)$$

where V is the vertex factor obtained from (8). The three terms represent the three possible kinematical situations, in which the center of mass of string 3, 2, or 1 lies between the centers of mass of the other two, respectively. The p_1^+ integral may be performed by using the $\delta(\sum_{r=1}^{3} \alpha_r)$ factor. Then one notes that the functional δ-function in (8) contains a zero mode piece $\delta^{D-2} \sum_{r=1}^{3} \alpha_r \delta(\vec{x}_r \cdot \hat{x}_r)$. Using one of these delta functions, say for the x^1 component, allows the integral over p_1^+ to be performed, and sets

$$\alpha_2 = -\alpha_3 s, \quad \alpha_1 = (s-1)\alpha_3, \quad (16)$$

where

$$s = \frac{(x_1^1 - x_2^1)}{(x_2^1 - x_1^1)}. \quad (17)$$

The crucial point to notice is that one is left with a $(D-3)$-dimensional δ-function requiring the \vec{x}_r to be collinear, and that each term in (17) has support on a distinct ordering of the \vec{x}_r on the line connecting them.
We therefore find that the commutator of two string fields is in general non–vanishing outside the string light–cone,
\[\int d\sigma (\delta X^\mu (\sigma))^2 = 0, \] when interactions are included. This also implies the commutator is non–vanishing when the centers of mass of the strings are spacelike separated. It should be stressed here that the non–vanishing of the commutator at spacelike separations has nothing to do with the fact the bosonic string has a tachyon. The same will be true in the tachyon–free superstring case.

Of more direct physical interest is the analogous calculation for the component fields. For simplicity, we will only consider the tachyfield, though the generalization to an arbitrary mass eigenstate is straightforward. Following the previous line of reasoning, we compute the matrix element

\[\langle 0|T(p_1^+ + \bar{p}_1, \bar{x}_3)|\hat{T}(x_1^- + \bar{x}_1, T(x_2^- + \bar{x}_2)|0 \rangle \]

where, as before, all operators are at time \(\tau = 0 \). The vertex appearing in equation (18) is the Mandelstam vertex [3], which has the momentum space representation

\[V(\alpha_r, \bar{p}_r) = \delta^{D-2}(\sum_{r=1}^3 \bar{p}_r^2)\delta(\sum_{r=1}^3 \alpha_r) \times \exp \left(\frac{\sum_{r=1}^3 \bar{p}_r^2 m_2^2}{2\alpha_r} \right). \]

Fourier transforming to coordinate representation, one obtains

\[V(\alpha_r, \bar{x}_r) = \delta^{D-2}(\sum_{r=1}^3 \alpha_r, \bar{x}_r)\delta(\sum_{r=1}^3 \alpha_r) \times \frac{(\alpha_1 \alpha_2 \alpha_3)}{8\pi^2 \tau_0} \left(\frac{(D-2)/2}{\sigma_r} \right), \]

as was the case for the general string field vertex, equation (21) contains the factor \(\delta^{D-2}(\sum_{r=1}^3 \alpha_r, \bar{x}_r) \), so the result is non–vanishing only when the points \(\bar{x}_r \) are collinear. The off-shell vertex corresponds to, say, one tachyon splitting into two others such that all transverse centers of mass lie along the same line at equal times. In addition there is a Gaussian factor depending on the separation of the particles.

Consider a configuration in which \(\bar{x}_3 \) lies between \(\bar{x}_1 \) and \(\bar{x}_2 \), so that only the first term in equation (21) is non–zero. A simple calculation then gives

\[\langle 0|T(p_1^+ + \bar{p}_1, \bar{x}_3)|\hat{T}(x_1^- + \bar{x}_1, T(x_2^- + \bar{x}_2)|0 \rangle = -ie^{ip_1^+(1-s)x_1^- + sx_2^-} \left(\sum_{r=1}^3 (\bar{x}_3 - \bar{x}_r) \right) \frac{\delta^{D-3}(\bar{x}_3 - \bar{x}_1 - s(\bar{x}_2 - \bar{x}_1))}{8\sqrt{2\pi}(p_1^+)^2 s(1-s)\left|\bar{x}_2 - \bar{x}_1\right|^2} \times \frac{\exp \left(\frac{s(1-s)}{2\gamma(s)}(\bar{x}_1 - \bar{x}_2)^2 - m_0^2 \gamma(s)(s^2 - s + 1) \right)}{\gamma(s)} \times \frac{(2\pi)^2 s(1-s)}{\gamma(s)} \left((D-2)/2 \right), \]

where \(s \) is given in equation (17) and

\[\gamma(s) = -[s \log(s) + (1-s) \log(1-s)]. \]

Note that because of our choice of configuration, \(s \in (0, 1] \), and that \(\gamma \) is non–negative. The matrix element (21) depends on the transverse displacement \((\bar{x}_1 - \bar{x}_2) \) through a Gaussian factor with variance

\[\sigma^2 = \frac{\gamma(s)}{s(1-s)}. \]

One therefore finds that the matrix element has support over a distance of order \(\sigma^2 \) outside the light–cone of the center of mass. This spread can be made quite large. Indeed, for small \(s \), we have

\[\lim_{s \to 0} \frac{\gamma(s)}{s(1-s)} \sim -\log(s), \]

so for \(s \sim \exp(-\left(\bar{x}_1 - \bar{x}_2\right)^2) \), the matrix element is appreciable. This can always be achieved by choosing \(x^3_1 \) sufficiently close to \(x^3_1 \).

The conclusion is whether one is able to resolve this information in practice. To get an estimate of how quickly the matrix element is oscillating in light cone time, we can calculate the matrix element

\[\langle 0|T(p_1^+ + \bar{p}_1, \bar{x}_3)|\hat{T}(x_1^- + \bar{x}_1, T(x_2^- + \bar{x}_2)|0 \rangle, \]

and divide by the matrix element (18). This is proportional to the frequency of oscillation. To do this carefully, we must multiply both (18) and (23) by a slowly varying function \(f \) and then integrate over \(\bar{x}_2, \ldots, \bar{x}_{D-2} \) to eliminate the \(\delta^{D-3}(\sum \alpha_r \bar{x}_r) \) factors. Performing this calculation leads to the following oscillating time scale

\[\delta t \sim \frac{p_1^+ \hat{p}_1}{(\bar{x}_2 - \bar{x}_1)^2 \log^2(s) + (D - 2 + m_0^2)} \]

valid for \(s \to 0 \). For the case of interest, \(s = \exp(-\left(\bar{x}_1 - \bar{x}_2\right)^2) \), this becomes

\[\delta t \sim \frac{p_1^+ \exp(-\left(\bar{x}_1 - \bar{x}_2\right)^2)}{(\bar{x}_1 - \bar{x}_2)^2 + (D - 2 + m_0^2)}. \]

The conclusion is that in order to observe the spread of information over more than a string length, one must perform measurements involving time scales much smaller than the string time.
The information content of these matrix elements exhibits precisely the same type of diffusive behavior as was described in [9], and which was argued to provide a possible resolution of the black hole information paradox. Under conditions relevant to strings propagating near the horizon of a very massive black hole, the spread of the matrix elements (18) can become arbitrarily large. The calculation presented above is relevant because the near horizon geometry can be approximated by Rindler space, which is simply a section of flat Minkowski space. Suppose \(T(\tau, p_1^+, \vec{x}_1) \) and \(T(\tau, p_3^+, \vec{x}_3) \) represent two strings, closely separated in the transverse coordinates, falling together toward the horizon \(\tau = 0 \) of a black hole of mass \(M \). As a function of Schwarzschild time \(t \), the radial momentum \(P \) of a string, measured by a static Schwarzschild observer, is given at late times by

\[
P(t) = e^{t/4M} p^+, \tag{28}
\]

where \(p^+ \) is the (conserved) longitudinal momentum of the string.

We would like to sample string 1 with a string near the horizon which is very far from string 1 in the transverse coordinates, and which has radial momentum which is small compared to that of string 1 or 3. To that end, we will choose \(P_2(t) = P_3(0) \). This means we must choose \(p_2^+ \) as a function of time, given by \(p_2^+(t) = e^{-t/4M} P_3(0) \). For the arguments of these fields, the parameter \(s \) appearing in the matrix element (21) is given by

\[
s = \frac{p_2^+(t)}{p_3^+} = e^{-t/4M}. \tag{29}
\]

One thus finds that the spread of the Gaussian is given by \(\sigma^2 \sim \frac{t}{4M} \). This diffusive behavior is the same as that found in [9,10] for the mean square transverse radius of a string.

§Acknowledgements

This work was supported in part by NSF grant No. PHY91-16964.

§References

[1] D.A. Lowe, L. Susskind and J. Uglum, Phys. Lett. 327B (1994) 226.
[2] D. A. Eliezer and R. P. Woodard, Nucl. Phys. B325 (1989) 389.
[3] S. Mandelstam, Nucl. Phys. B64 (1973) 205; Nucl. Phys. B83 (1974) 413; Phys. Rep. 13C (1974) 259.
[4] E. Cremmer and J.-L. Gervais, Nucl. Phys. B76 (1974) 209; Nucl. Phys. B90 (1975) 410.
[5] M. Kaku and K. Kikkawa, Phys. Rev. D10 (1974) 1110; Phys. Rev. D10 (1974) 1823.
[6] J. F. L. Hopkinson, R. W. Tucker and P. A. Collins, Phys. Rev. D12 (1975) 1653.
[7] D. A. Lowe, Phys. Lett. 326B (1994) 223.
[8] E. Martinec, Class. Quant. Grav. 10 (1993) L187; "Strings and Causality", preprint EFI-93-65, November 1993, hepth/9311129.
[9] L. Susskind, Phys. Rev. Lett. 71 (1993) 2367; Phys. Rev. D49 (1994) 6606.
[10] A. Mezhlumian, A. Peet, and L. Thorlacius, Phys. Rev. D50 (1994) 2725.
Progress in understanding the quantum physics of black holes and gravitational collapse to an essential extent depends on the issue of singularities in the quantum gravitational domain. While classical Einstein equations typically lead to the development of spacetime singularities and, thus, give rise to the problem of information loss, the inclusion of quantum effects can drastically change the classical picture [1] due to the back reaction of the vacuum polarization and particle creation. In certain situations the back reaction damps the spacetime singularities and even makes the curvature invariants uniformly bounded throughout the whole spacetime [1]. This, in particular, qualitatively changes the setting of the information problem in quantum gravity.

A direct way to the quantum back-reaction problem is the formalism of the effective action and effective equations [2]. Their calculation cannot be done explicitly, but one can develop approximation schemes appropriate to the setting of the quantum gravitational problem. One such scheme, motivated by the potential boundedness of the spacetime curvature, is the covariant expansion in powers of curvatures. A local version of this expansion, known as the Schwinger-DeWitt technique [2,3], relies on the smallness of both the curvatures and their spacetime derivatives and breaks down in massless theories. In the series of papers [4-6] this expansion was generalized to the case of arbitrarily high spacetime gradients of curvature field strengths. This results in the nonlocal expansion of the effective action in powers of curvatures with coefficients – nonlocal covariant form factors. The systematic study of these form factors within the semiclassical expansion theory allows one to reproduce the known conformal (anomalous) part of the effective action and also obtain its previously unknown conformally-invariant part unrelated to local conformal anomalies [4,5]. This, in particular, allows one to obtain the one-loop vertex form factors for the theory of the most general type including arbitrary matter and gravitational fields [5].

Beyond the semiclassical loop expansion, the analysis of the covariant perturbation theory shows that important observable characteristics of collapsing gravitational systems require only the knowledge of certain asymptotic limits of the spectral weights of the above form factors. Numerical values of these limits may have a nonperturbative nature and can be kept as fundamental parameters of the theory determining the qualitative behavior of the system. Within such a model-independent approach to quantum gravity theory [7,8] it was, in particular, shown that in the self-consistent problem the asymptotic flatness of spacetime requires at most logarithmic low-energy behaviour of the nonlocal form factors, the coefficients of this logarithmic behaviour determining the energy flux through future null infinity [8]. It has been also demonstrated that the stable component of the Hawking radiation, which plays an important role in gravitational collapse and the problem of information loss, begins at cubic order in the effective action expanded in powers of the curvatures [8]. This important contribution, which is currently under study, promises to maintain the future asymptotic flatness in gravitational systems due to nontrivial cancellations in nonlocal form factors and also generates a qualitatively new phenomenon – coherent gravitational waves radiated by these systems entirely due to quantum gravitational effects [9].

§References

[1] V.P.Frolov and G.A.Vilkovisky, Phys. Lett. 106 (1981) 307.
[2] B.S.DeWitt, Dynamical theory of groups and fields (Gordon and Breach, New York, 1965).
[3] A.O.Barvinsky and G.A.Vilkovisky, Phys. Rep. 119 (1985) 1.
[4] A.O.Barvinsky and G.A.Vilkovisky, Nucl. Phys. 282 (1987) 163; B333 (1990) 471; 333 (1990) 512.
[5] A.O.Barvinsky, Yu.V.Gusev, G.A.Vilkovisky and V.V.Zhytnikov, Covariant Perturbation Theory (IV). Third Order in the Curvature, Report of the University of Manitoba (University of Manitoba, Winnipeg, 1993).
[6] A.O.Barvinsky, Yu.V.Gusev, G.A.Vilkovisky and V.V.Zhytnikov, J.Math.Phys. 35 (1994) 3525; 35 (1994) 3543.
[7] G.A.Vilkovisky, Class.Quantum Grav. 9 (1992) 895.
[8] A.G.Mirzabekian and G.A.Vilkovisky, Phys. Lett. B317 (1993) 517.
[9] A.G.Mirzabekian and G.A.Vilkovisky, work in progress.
Universality and Scaling in Black Hole Formation

Philip C. Argyres

School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

This is a brief review of numerical work of Refs. [1–3] on the formation of small-mass black holes in classical general relativity. Their results are described from a point of view which treats Einstein’s equations as generating a renormalization group (RG) flow on the space of initial conditions.

The recent intriguing numerical results of Choptuik [1], Abrahams & Evans [2], and Evans & Coleman [3], indicate a connection between classical general relativity and scaling at critical points in statistical systems. The purpose of this talk is to briefly review the results of the above-mentioned authors, and, along the way, to make a few obvious remarks on the relation of scaling solutions in general relativity to scaling in statistical systems.

Choptuik simulated the collapse of spherical wave-packets of a massless scalar field ϕ minimally coupled to gravity. Abrahams & Evans simulated the axial collapse of gravity waves, while Evans & Coleman examined the spherical collapse of a relativistic perfect fluid (satisfying $p = \frac{1}{3} \rho$). In all three cases it was found that for initial conditions depending on a generic parameter s, there exists a critical value s^* of this parameter above which no black hole forms (i.e., all the incoming mass is eventually scattered back to spatial infinity, and the space-time settles down to flat Minkowski space), while for $s < s^*$ a black hole forms with a mass M_{bh} satisfying the universal relation $M_{bh} \sim (s^* - s)^\gamma$, with $\gamma = 0.37p - 0.01$. This relation holds only for s sufficiently close to s^*, and is universal in the sense that the exponent γ does not depend on the shape of the initial wave packet (the initial conditions) or on the type of matter or symmetry of the problem (since all three groups find the same exponent). Also, Choptuik has found the same behavior for non-minimally coupled and massive scalar fields in spherical geometries [4].

Before discussing this universality more critically, let me describe in more detail Choptuik’s simulation [1]. Consider the initial condition consisting of a spherical shell of scalar field with compact support inside a radius r_0, with total mass M_0. We will let the profile of the scalar field and its first time derivative be arbitrary but fixed, and will make a one-parameter family of initial conditions by varying r_0, i.e., by translating the scalar wave-packet radially. A massless scalar field minimally coupled to gravity is scale-invariant: an overall rescaling of the coordinates will take one solution into another. So, the relevant scale-invariant parameters to measure are $s = r_0/(2M_0)$ and M_{bh}/M_0. Then, qualitatively, Choptuik’s results are sketched in Fig. 1, where

$$\frac{M_{bh}}{M_0} \sim (s^* - s)^{0.37}$$

for s less than but close to s^*. Note that for $s > s^*$ the initial data is in the weak-coupling regime, since however wild the shape of the scalar wave-packet, by taking s large enough and rescaling the radial and time coordinates we see that the initial data can be made as close to flat space as we like. In this limit it has been shown analytically that no black hole forms [5]. In the opposite extreme, when $s \leq 1$ then all the mass is inside its Schwarzschild radius and a black hole with mass $M_{bh} = M_0$ is inevitable.

The formation of a zero-mass black hole in the strongly-coupled regime at $s = s^*$ is strongly reminiscent of the ferromagnetic second-order phase transition where a spontaneous magnetization arises below a critical temperature. Taking this analogy seriously suggests that the value of the critical exponent $\gamma = 0.37p - 0.01$, however, must be taken with a grain of salt, since it has been determined...
numerically by fitting to the curve in Fig. 1 only over two or three e-foldings in ln(s’ − s). Experience with fitting exponents in numerical simulations in other critical systems indicates that this may only give a determination accurate at the 20% level: there are often universal sub-leading corrections to the scaling relations which tend to increase the apparent exponent unless one is much closer to the critical point s = s∗.

As further evidence supporting this analogy to second-order phase transitions, the numerical simulations also show that solutions approach universal scaling solutions at criticality. In order to describe these solutions I first need to describe the coordinate systems for the resulting space-times. Let us approach the critical point from large s, so that globally space-time is like Minkowski space. Then, for the spherically symmetric solutions we can use dynamical Schwarzschild coordinates, for which the line element is

\[ds^2 = -\alpha^2(r, t)dt^2 + \beta^2(r, t)dr^2 + r^2d\Omega^2. \]

(2)

This fixes the gauge up to an arbitrary reparametrization of the time coordinate (i.e., an arbitrary positive function of t). A natural gauge choice is to fix \(\alpha(0, t) = 1 \), which implies that t measures central proper time. For an arbitrary gauge, the central proper time \(T \) is defined by

\[T(t) = \int^t \alpha(0, \tilde{t})d\tilde{t}. \]

(3)

(Note that the origin of central proper time is still not fixed by this definition.) The spherical symmetry keeps the metric functions \(\alpha \) and \(\beta \) from being dynamical degrees of freedom. For a scalar field coupled to gravity with spherical symmetry (Choptuik’s case) only the scalar field \(\phi(r, t) \) itself is dynamical. Einstein’s equations can be shown to reduce to a single nonlinear second order partial integro-differential equation for \(\phi \). Similarly for a perfect fluid with spherical symmetry (Evans & Coleman) the single dynamical degree of freedom can be taken to be the fluid energy density \(\rho(r, t) \). In the axially-symmetric case (Abrahams & Evans) the line element is more complicated, and includes a function \(\eta(r, t, z) \) which is the single dynamical degree of freedom.

We can classify the self-similar (scaling) solutions to Einstein’s equations in these situations by viewing the evolution equations as generating a RG flow on the space of initial conditions. This point of view has proven useful in discussions of “intermediate asymptotics” in hydrodynamics and scaling in nonlinear diffusion equations [6]. We define the RG transformation with parameter \(\Lambda \) to be simply

\[\text{RG}_\Lambda : \phi(r, t) \to \phi_\Lambda(r, t) \equiv \Lambda^{\beta_\phi} \phi \left(\frac{r}{\Lambda^{\alpha_r}}, \frac{t^* - t}{\Lambda^{\alpha_t}} \right), \]

(4)

where I have used the scalar field for illustration. A self-similar (scaling) solution of the equations would then correspond to a fixed point of the RG transformations. For example, a continuously self-similar solution is a solution \(\phi^*(r, t) \) satisfying \(\phi^*(r, t) = \phi^*_\Lambda(r, t) \) for all \(\Lambda \). Using the definition (4) this has the solution

\[\phi^*(r, t) = (t^* - t)^{\beta_\phi/\alpha_t} \tilde{\phi}^* \left(\frac{r^*}{(t^* - t)^{\alpha_r}} \right), \]

(5)

where \(\tilde{\phi}^* \) is a fixed function of one variable. More generally, we can consider the situation where the solution is discretely self-similar. This solution corresponds to a limit cycle of the RG flow instead of a fixed point: \(\phi^*(r, t) = \phi^*_\Lambda(r, t) \) for all integers \(n \). Such a limit cycle can always be written as

\[\phi^*(r, t) = \sum_n (t^* - t)^{\beta_\phi/\alpha_t + 2\pi in/\ln \Lambda_0} \times \tilde{\phi}^*_n \left(\frac{r^*}{(t^* - t)^{\alpha_r}} \right), \]

(6)

which is now described by the infinite series of functions \(\tilde{\phi}^*_n \).

The results of the numerical simulations in this language are:

- scalar field S-wave [1]: \(\alpha_r = \alpha_T = 1 \)
 \(\beta_\phi = 0 \)
 \(\Lambda_0 = 3.4 \)

- axial gravity-wave [2]: \(\alpha_r = 1, \alpha_{t, z} = ? \)
 \(\beta_\phi = 0 \)
 \(\Lambda_0 = 0.6 \)

- perfect fluid S-wave [3]: \(\alpha_r / \alpha_T = 1 \)
 \(\beta_\rho / \alpha_T = -2 \)
 \(\Lambda_0 = 0 \)

Thus, only the perfect fluid collapse gives a simple fixed point; the others have limit cycles. Note that the appropriate scaling variables in the spherically symmetric cases are the geometric (areal) radial coordinate \(r \) and the central proper time \(T \); and that the exponents all have their naive scaling values. Fig. 2 presents a heuristic sketch of the limit cycle RG flows.

The immediate question presented by these numerical simulations is how one could analytically compute the critical exponent \(\gamma = 0.37 \). The most direct approach to this problem is to try to get an analytic understanding of the critical (scaling) solution, and then to do linear perturbation theory around this solution to obtain the exponent(s). However, since the critical point is in the strongly-coupled regime, this seems a daunting problem. In this regard our experience with critical phenomena in statistical systems suggests that we look for a simpler (weakly-coupled) system in the same universality class. A broader question is whether this critical behavior persists when we move away from spherical symmetry or add
more matter fields. When there is more than one dynamical degree of freedom, direct computation becomes prohibitively difficult, so this question would be best approached by the type of linear stability analysis mentioned above.

My thanks to M. Bucher, J. Distler, and A. Shapere for helpful discussions.

§References
[1] M.W. Choptuik, Phys. Rev. Lett. 70 (1993) 9.
[2] A.M. Abrahams and C.R. Evans, Phys. Rev. Lett. 70 (1993) 2980.
[3] C.R. Evans and J.S. Coleman, Observation of Critical Phenomena and Self-Similarity in the Gravitational Collapse of Radiation Fluid, gr-qc/9402041.
[4] M.W. Choptuik, in Approaches to Numerical Relativity, edited by R. d’Inverno (Cambridge Univ. Press, London, 1989).
[5] D. Christodoulou, Comm. Math. Phys. 105 (1986) 337.
[6] For an explanation of this point of view and further references, see N.D. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Addison-Wesley (1992).