Practice of Coronavirus Disease-19 Prevention Methods and Associated Factors in Three Zones of Southwest Ethiopia: Community based cross-sectional study

Wondimagegn Wondimu (wonde1983.ww@gmail.com)
Mizan Tepi University
https://orcid.org/0000-0003-4438-6542

Amare Genetu Ejigu
Mizan Tepi University

Mengistu Ayenew Mekonen
Mizan Tepi University

Angesom Weldu
Mizan Tepi University

Wondwossen Niguse Asmare
Mizan Tepi University

Mesfin Geremew
Mizan Tepi University

Gizachew Ayele Manaye
Mizan Tepi University

Ashenafi Asefa Berchedi
Mizan Tepi University

Research Article

Keywords: COVID-19, Southwest Ethiopia, Prevention, Practice

Posted Date: September 29th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-84406/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background Coronavirus disease 19 (COVID-19) is an emerging contagious respiratory infection that brings a big puzzle to global health. In Ethiopia, the number of cases and related deaths are increasing exponentially. Prevention is currently available effective management, and its implementation has not been assessed adequately.

Objective To assess the COVID-19 prevention practices in three zones of Southwest Ethiopia.

Methods A community-based cross-sectional study was conducted in the Bench Sheko, Kafa, and West Omo zones. A multistage sampling technique was employed to select 845 study participants. The data collection tool was adapted from the WHO resources and related literature. SPSS version 20 was used to analyze the data. Participants who scored at least a mean score of practice questions were categorized as having good practice. Binary logistic regression was fitted to identify factors associated with the practice.

Results In this study, 803 participants participated. About two-thirds (64.7%) of the respondents had a history of going to crowded places, while only 30.3% of the participants had a history of wearing a mask when leaving home. Two-thirds of the respondents had a history of maintaining their distance at 2 meters (64.4%) and washing their hands with soap and water or using alcohol-based hand sanitizers (64.8%). Generally, less than two-thirds (59.4%) of study participants had a good practice of COVID-19 prevention methods. Urban residence, good knowledge, positive attitude, intention to seek care, and perceived mortality were positively associated with good practice.

Conclusion The proportion of individuals who had good COVID-19 prevention practices was inadequate. For such highly infectious diseases, prevention should be the priority intervention, and improving its implementation needs further effort. Community-based interventions such as risk communication and mass education should center on scaling up community knowledge and practice by prioritizing vulnerable groups such as rural residents.

Introduction

Coronavirus disease 19 (COVID-19) is an emerging contagious respiratory infection that brings a large puzzle to global health and has become an international concern (1). It is challenging the health system of the world, and surprisingly, countries with strong health systems are not spared (2,3). In addition to its health impact, it is leading to economic, political, and social crises (4–6).

Since its emergence, the disease has reached 216 countries/territories, infected more than 25 million people, and took 848,255 lives globally as of September 1, 2020 (7,8). In Ethiopia, the disease was first reported on March 13, 2020 (9). Following this, the government of Ethiopia took different measures, such as isolating international passengers, arranging quarantine centers in different sites to follow the suspects, closure of universities and schools, mass disinfection, complete transport lockdown, and the
As per the Ethiopian Public Health Institute (EPHI) report of August 26, 2020, the total number of cases and deaths were 45,221 and 725, respectively (11).

As occurred in high-income countries during the emergence of the outbreak, currently, in Ethiopia, the number of cases and related deaths are increasing exponentially compared to those reported before a few months, which is suggestive of community transmission. (10,12).

Currently, the disease has no cure, and prevention is the only available effective weapon to control it. The recommended methods to prevent the pandemic of COVID-19 include regular and thorough cleaning of hands with an alcohol-based hand rub or washing them with soap and clean water, maintaining a physical distance of at least 2 meters, avoiding going to crowded places, and wearing a facemask (13).

Ethiopia is among the countries with a weak health system where the health professional to population ratio is only 0.96 per 1000 populations. This is much lower than the World Health Organization recommended standards (4.45 per 1000 populations) to meet the sustainable development goal health targets (14,15). This implies that if our globe becomes lucky and obtains effective treatment for COVID-19, Ethiopia will still be far away from providing treatment for those who will be in need. As a result, maintaining the recommended prevention methods in the country is the first available option to control the disease.

The practice of available prevention methods for COVID-19 in the community should be assessed to design appropriate interventions that can reduce community transmission. However, there is a lack of community-based evidence that discovered how the community is preventing the pandemic of COVID-19 in Ethiopia. Therefore, this study aimed to assess the community practice of COVID-19 prevention methods and associated factors in three zones of Southwest Ethiopia.

Methods And Materials

Study Design, Setting and period

A community-based cross-sectional study was conducted in the Bench-Sheko, Kafa, and West Omo zones from May 1 to 31, 2020. These three zones are found at 585 km, 460 km and 705 km from Addis Ababa, Capital of Ethiopia, respectively, to the southwest direction. The Bench-Sheko zone is administratively divided into six woredas (districts) and two town administrations. The Kafa zone is also divided into eleven woredas and two town administrations. Likewise, the West-Omo Zone has seven woredas. The main agro-ecology of these three zones includes *dega* (cool and humid high lands, which account for 56.7% of the land size), *kolla* (warm, semi-arid lowlands, which account for 28% of the land size) and *weinadega* (temperate, cool and sub-humid high lands, which account for 15.3%). Their annual mean temperature ranges from 15.1°C to 27°C, and the annual mean rainfall ranges between 400 mm and 2000 mm. In these zones, there are 7 hospitals, 97 health centres and 565 health posts that provide health services for residents. According to the population projection of Ethiopia figured for 2014 to 2017, the Bench-Maji zone (the former collective name for Bench Sheko Zone and West Omo Zone before their
Population and Sampling Techniques

The adult population who were 18 years old and above were included in this study. Individuals who were unable to respond due to different medical problems were excluded. The sample size was determined using a single population proportion formula \[n = \frac{Z_{\alpha/2}^2 \cdot p \cdot (1-p)}{d^2} \], where \(n \) stands for sample size, \(Z_{\alpha/2} \) stands for the reliability coefficient of standard error at the 5% level of significance, which equals 1.96, \(p \) stands for the proportion of good COVID-19 prevention practice, which was considered as 50% (since there was no previous study at comparable area), and \(d \) stands for the level of standard error tolerated, taken as 5%. The calculated sample was 384.16. After using the design effect of 2 and adding a non-response rate of 10%, the final sample size became 845.

A multistage sampling technique was employed to select the study participants. First, ten woredas and town administrations (three from Bench Sheko, three from West Omo and four from Kafa) were selected randomly and included in the study. Likewise, thirty percent of Kebeles (smallest administrative units) were selected from each of the selected woredas and town administrations. Then, the calculated samples were allocated to each of the selected Kebeles proportional to the size of households in the Kebeles. Finally, the households were selected using a systematic random sampling technique, and from each of the selected households, one eligible participant was selected by the lottery method.

Data Collection Technique and Data Quality Control

A pretested interviewer-administered structured questionnaire (see Additional file 1) adapted from WHO recommendations regarding COVID-19 prevention practices and a previous similar study was used to collect the data (13,17,18). The tool includes the sociodemographic characteristics of the study participants (age, sex, religion, residence, ethnicity, marital status, occupational status, educational status, family size), knowledge questions about COVID-19 (which includes about clinical symptoms, transmission, risk factors, treatment, and vulnerable groups), attitude questions (mainly about the success of the control at an individual and national level, the effectiveness of local treatments such as hot drinks, and the probability of the occurrence of the virus in the locality), practice questions (about risky and positive behaviors practiced recently) and others. The questionnaire was prepared in English and translated to the local language (Amharic) by a language expert. It was also back-translated to English by another expert to ensure its consistency. The Amharic version questionnaire was used to collect the data. To assure the quality of the data, two days of training was given before data collection for data collectors and supervisors about the objective of the study, techniques of data collection, different ethical issues, and care to be taken regarding COVID-19 during data collection. A pretest was performed on 10% of the total sample size in the comparable Kebeles that were not included in the actual study, and some modifications were added to the tool. Data were collected by thirty diploma nurses, and
the overall collection process was supervised by ten BSc nurses. The supervisors checked each filled questionnaire for completeness during the data collection.

Variables and measurement

The outcome variable of this study was the practice of COVID-19 prevention methods. The independent variables were sociodemographic characteristics (age, sex, residence, ethnicity, marital status, occupational status, educational status, family size), knowledge about COVID-19, attitude toward COVID-19 prevention methods, intention to seek care and perceived mortality.

The participants were asked 14 knowledge questions, 9 attitude questions, and 8 practice questions. Participants who scored at least the mean score of the above questions for each category were considered to have good knowledge, a positive attitude, and good practice.

Data entry, processing and analysis

Data were entered into Epi data manager version 4.0.2.101 and exported to Statistical Packages for Social Science (SPSS) version 20 for analysis. Data were cleaned to check for outliers and miscoded variables. Furthermore, negatively worded items were reverse scored. Data are presented as tables and proportions (percentages). Binary logistic regression was used to assess the association between the independent variables and an outcome variable. The odds ratio (OR) with its respective 95% confidence interval (CI) and the p-value were used to measure the strength of the association. In the bivariable analysis, variables with p-values <0.25 were considered candidates for multivariable analysis. The final significance was declared at a p-value <0.05.

Result

Characteristics of the study participants

In this study, out of the 845 total samples, 803 fully participated, resulting in a response rate of 95%. Among the total study participants, more than half were males (57.8%), Orthodox Tewahido religion followers (56.4%), and found in the age category of 18-30 years old (52.8%). Similarly, approximately one-third of the respondents had Kafa ethnicity (31.1%) and single marital status (32.1%). Furthermore, approximately two-thirds of the study participants had urban residence (67.7%), good knowledge about COVID-19 (64.6%), and positive attitude toward COVID-19 (66%). [Table 1]

Table 1- The characteristics of the study participants in the Bench Sheko, Kafa and West Omo zones, South West Ethiopia, 2020
Variable	Category	Frequency (803)	Percentage (%)
Sex	Male	464	57.8
	Female	339	42.2
Residence	Urban	544	67.7
	Rural	259	32.3
Age	18-30	423	52.8
	31-40	223	27.8
	>40	156	19.4
Ethnicity	Bench	133	16.6
	Sheka	102	12.7
	Amhara	112	13.9
	Kafa	150	19.4
	Oromo	94	11.7
	Others\(^a\)	112	13.9
Marital status	Single	258	32.1
	Married	435	54.2
	Divorced/widowed	74	9.2
	Separated	36	4.5
Occupational status	Unemployed	93	11.6
	Farmer	161	20.0
	Daily laborer	96	12.0
	Merchant	135	16.8
	Government employee	141	17.6
	Private business	113	14.1
	Students	64	8.0
Educational status	Cannot read and write	155	18.3
	Can read and write	149	18.6
	Primary (grade 1-8)	176	21.9
	Secondary or preparatory	142	17.7
	Diploma and above	181	22.5
Religion	Orthodox Tewahido	453	56.4
	Muslim	99	12.3
	Protestant	207	25.8
	Other\(^b\)	44	5.5
Family size	One to three	390	48.6
	Four to six	341	42.5
	Seven and more	72	9
Perceived mortality of COVID-19	Yes	347	43.2
	No		
Knowledge	Good	519	64.6
	Poor		
Attitude	Positive	530	66
	Negative		
Intend to seek care	Have intention	458	57
	No intention	345	43
Menit and Dizu; Catholic and traditional belief

Practice of COVID-19 prevention methods among study participants

Approximately two-thirds (64.7%) of the respondents had a history of going to crowded places. However, only approximately one-third (30.3%) of the total study participants had a history of wearing a mask when leaving home. The majority (68.1%) of the study participants had a history of covering their mouth and nose when coughing and sneezing. Two-thirds of the respondents had a history of maintaining their distance at 2 meters (64.4%) and washing their hands with soap and water or using alcohol-based hand sanitizers (64.8%). However, a significant proportion (45.6%) of them had a history of eating raw/uncooked foods. Generally, less than two-thirds (59.4%) of study subjects had a good practice of COVID-19 prevention methods. [Table 2]

Table 2- Practice of COVID-19 prevention methods among study participants in Bench Sheko, Kafa and West Omo zones, South West Ethiopia, 2020
Question /variables/	Response /Categories/	N(%)
Recent history of going to any crowded place	Yes	518 (64.7)
	No	283 (35.3)
Recent history of wearing a mask when leaving home	Yes	243 (30.3)
	No	558 (69.7)
Recent history of washing hands with soap and water frequently or using alcohol-based hand sanitizers	Yes	520 (64.8)
	No	283 (35.2)
A recent habit of touching eye, nose, and mouth	Yes	503 (62.6)
	No	300 (37.4)
Recent history of covering mouth and nose when coughing and sneezing	Yes	547 (68.1)
	No	256 (31.9)
Recent history of maintaining physical distance at 2 meters	Yes	515 (64.4)
	No	285 (35.6)
Recent history of eating raw/uncooked foods	Yes	366 (45.6)
	No	437 (54.4)
Recent history of shaking hands of others	Yes	308 (38.4)
	No	495 (61.6)
Overall practice	Good	477 (59.4)
	Poor	326 (40.6)
Factors associated with prevention practices of COVID-19

In bivariable logistic regression, residence, educational status, occupation, marital status, family size, knowledge, attitude, intention to seek care and perceived mortality were statistically significant at p-values less than 0.25. After controlling for confounders, in multivariable logistic regression, residence, knowledge status, attitude status, intention to seek care, and perceived mortality were significantly associated with the COVID-19 prevention practices of the participants at a p-value less than 0.05.

Urban residents had more than two (AOR=2.34) times higher odds of good practice compared to rural residents. Similarly, participants who were from the highest family size (more than six) had three (AOR=2.95) times higher odds of practice than those from the lowest (one to three) family size. Good knowledge status (AOR=1.74) and positive attitude (AOR=1.86) had a positive influence on COVID-19 prevention practices compared to their counterparts (poor knowledge and negative attitude, respectively). Furthermore, respondents who had the intention to seek care for COVID-19 symptoms had 73% (AOR=1.73) increased odds of good practice than those who had no intention. Lastly, individuals who had a perception of COVID-19-related death had double (AOR=2.20) odds of good practice than those who had no such perception. [Table 3]

Table 3- Factors associated with prevention practices of COVID-19 among the study participants in Bench Sheko, Kafa and West Omo zones, South West Ethiopia, 2020
Abil	Category	Practice	COR (95% CI)	AOR (95% CI)	P-value
dence	Urban	146	6.21 (4.49, 8.60)	2.34 (1.39, 3.94)	0.001*
	Rural	180	1	1	
cational is	Cannot read and write	101	1	1	
	Can read and write	60	2.77 (1.74, 4.42)	1.04 (0.58, 1.87)	0.904
	Primary	71	2.77 (1.77, 4.33)	1.12 (0.62, 2.01)	0.707
	Secondary	56	2.87 (1.79, 4.60)	1.08 (0.58, 2.01)	0.813
	Diploma and above	38	7.04 (4.33, 11.45)	1.65 (0.82, 3.33)	0.160
pation	Unemployed	42	1	1	
	Farmer	121	0.27 (0.16, 0.47)	0.68 (0.35, 1.33)	0.264
	Daily labor	30	1.81 (1.00, 3.28)	1.72 (0.84, 3.51)	0.136
	Merchant	38	2.10 (1.21, 3.66)	1.54 (0.81, 2.93)	0.191
	Government employee	31	2.92 (1.65, 5.17)	1.64 (0.78, 3.48)	0.194
	Private business	44	1.29 (0.74, 2.25)	0.99 (0.51, 1.93)	0.976
	Students	20	1.81 (0.93, 3.53)	1.50 (0.69, 3.24)	0.303
ital status	Single	94	1	1	
Status	N	M	OR (CI)	AOR (CI)	p-value
---------------------	----	----	----------	----------	---------
Married	190	245	0.74 (0.54, 1.01)	0.70 (0.46, 1.05)	0.081
Divorced/Widowed	30	44	0.84 (0.50, 1.43)	0.93 (0.49, 1.77)	0.832
Separated	12	24	1.15 (0.55, 2.40)	0.94 (0.40, 2.17)	0.877
Parent size					
One to three	166	224	1	1	
Four to six	137	204	1.10 (0.82, 1.48)	1.37 (0.94, 1.99)	0.098
More than six	23	49	1.58 (0.93, 2.69)	2.95 (1.56, 5.57)	0.001*
Knowledge					
Poor	189	95	1	1	
Good	137	382	5.55 (4.05, 7.60)	1.74 (1.10, 2.77)	0.019*
Marital status					
Negative	167	106	1	1	
Positive	159	371	3.68 (2.71, 4.99)	1.86 (1.27, 2.73)	0.001*
Intend to seek					
No intention	210	135	1	1	
Have intention	116	342	4.59 (3.39, 6.20)	1.73 (1.13, 2.63)	0.011*
Received mortality					
Yes	171	176	1	1	
No	155	301	1.89 (1.42, 2.51)	2.20 (1.50, 3.08)	0.000*

* statistically significant at p-value <0.05; AOR- Adjusted Odds Ratio; CI- Confidence Interval; COR- Crude Odds Ratio

Discussion

This study revealed that approximately two-thirds (64.7%) of the respondents had a history of going to a crowded place, which is comparable to the finding of the study conducted at Jimma University Medical Center (JUMC) (19). However, it is very high compared to the study conducted in China (17), where only
3.6% visited crowded places. The discrepancy might be due to the difference in socio-economic and demographic characteristics between the two countries. Since COVID-19 has a higher potential for person-to-person transmission, exposure to crowded places is risky behavior and should be discouraged.

One of the important findings in this study is that only one-third (30.3%) of the study participants had a history of wearing a protective mask when leaving home. This is very low compared to the finding from China (17), and it is also contrary to the WHO recommendations (19). This figure is very frustrating in the case of Ethiopia, where the community transmission of COVID-19 is more likely (10,12). An additional finding that magnifies the problem of COVID-19 prevention practice is that a significant proportion (35.6%) of people did not maintain appropriate physical distance. As a result, efforts should be made to encourage the public to use a protective mask and maintain appropriate physical distance as per the WHO recommendations.

Our findings show that only three of five participants had good COVID-19 prevention practices. This is very low compared to the Iranian finding (20), and the discrepancy might be attributable to the differences in socio-economic statuses and attention given by the community. This finding is highly public health important for Ethiopia, which was grouped as among African countries vulnerable to COVID-19 (21). This is because the provision of important health services to COVID-19 patients requires expensive resources, and in Ethiopia, the majority of the health services are substandard mainly due to resource scarcity (14,15). For instance, Ethiopia had 557 mechanical ventilators and 570 intensive care unit (ICU) beds for a population of 110 million (10). Thus, a major emphasis on prevention is mandatory, and sustainable intervention should be made to increase its implementation.

In this study, participants from urban residents had more than two times higher odds of practice than those from rural residents. This might be because urban residents had better access to COVID-19-related information and resources needed to prevent COVID-19, such as alcohol-based sanitizers, soap, water, and protective masks. In addition, the rural community may not obtain adequate information regarding COVID-19 due to limited access to phone and/or internet, which is common for the rural community of Ethiopia (10).

Higher family size (more than six) had three times higher odds of practice compared to those with lower family size. Members of an increased family size probably bring information related to COVID-19 prevention from different sources and discuss it, which could enable them to change it into practice.

Participants with good knowledge status about COVID-19 had more than one and a half times higher odds of practice compared to those with poor knowledge status. This is also supported by the previous finding where knowledge and practice were associated with direct proportionality (17). Most of the time, it is straightforward that having knowledge enables people to practice what they know. People who have good knowledge about the disease, its severity, transmission methods, and prevention methods can value their lives and take appropriate measures.
Likewise, individuals with a positive attitude regarding the success of COVID-19 prevention methods had 86% increased odds of good practice compared to those with a negative attitude. It is obvious that when people rely on the success of prevention methods, their interest in applying these methods will be high. Therefore, the information should be disseminated continuously to increase the trust of the community in prevention methods and to avoid their concentration on fake news that discourages preventive behaviors.

In our study, respondents who perceived that COVID-19 can lead to death had two times higher odds of good practice of preventive measures against COVID-19 compared to their counterparts. People in the world prefer to live long on the earth and invest to alleviate the risk of death as much as possible. Educating the community about the severe outcome of the COVID-19 could benefit them to have appropriate prevention behaviors. However, this should be done in a manner that will not bring an exaggerated panic to the community.

Limitation

This is the self-reported practice of COVID-19 prevention methods, and there may be the probability of social desirability bias.

Conclusion

The proportion of individuals who had good COVID-19 prevention practices was inadequate in our study area. Moreover, the practice of wearing a protective mask and maintaining recommended physical distance is very low, and these all need immediate interventions. It was also demonstrated that urban residents had good practice compared to rural residents. This gap should be addressed by educating rural dwellers and availing important inputs for COVID-19 prevention methods, keeping in mind that 79% of Ethiopians are living in rural areas with weak transportation and communication links (10). The respondents had moderate knowledge and attitudes about COVID-19, which had a positive influence on good practice. Thus, it is also important to center the interventions on updating the knowledge and attitude of respondents. This can also enhance the community's perceived mortality, which was recognized as a significant predictor of good practice. Overall, such highly infectious disease prevention should be a priority intervention, and the prevention practice of the community in our study area needs further effort.

List Of Abbreviations

AOR Adjusted Odds Ratio; CI Confidence Interval; COVID-19 Coronavirus Disease 19; EPHI Ethiopian Public Health Institute; ICU Intensive Care Unit; JUMC Jimma University Medical Center; OR Odds Ratio, SPSS Statistical Package for Social Sciences; WHO World Health Organization

Declarations

Ethics approval and consent to participate
The study protocol was approved by the ethical review committee of the health science college of Mizan Tepi University, and the approval letter with reference number HSC/0032/20 was obtained. The study participants were briefed about the purpose of the study, their right to participate or not, and the quitting of participation at any point of time during the data collection. Written informed consent was obtained from each participant. The possible prevention methods of COVID-19 (wearing a protective facemask and keeping at least 2 meters of physical distance) were implemented during data collection. The collected data were kept confidential.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare no conflicts of interest.

Funding

Not applicable.

Authors' contributions

Conceptualization: WW, WN, MA, AW. Data curation: WW, MA, AW, AA. Formal analysis: WW, MG, AG, MA, GA, AW. Funding acquisition: None. Methodology: WW, MG, WN, AG, MA, AW, AA. Project administration: WN and MA. Visualization: MG, WN, AG, GA, AW, AA. Writing – original draft: WW, MG, AG, MA, GA, AA. Writing – review & editing: MG, WN, AG, GA, AW, AA.

Acknowledgments

The authors would like to acknowledge the supervisors, data collectors, and study participants for their participation in this research and the local government bodies for their support.

Authors' Information (Affiliations)

1 Department of Public health, College of Medicine and Health Science, Mizan-Tepi University Mizan Aman, Ethiopia

2 Department of Nursing, College of Medicine and Health Science, Mizan-Tepi University Mizan Aman, Ethiopia
References

1. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol. 2020;92:401–2.

2. Austin Price. The lasting impact of the COVID-19 pandemic on our healthcare delivery system | Berkeley News [Internet]. Berkeley, University of California. 2020 [cited 2020 May 14]. Available from: https://news.berkeley.edu/2020/05/04/the-lasting-impart-of-the-covid-19-pandemic-on-our-healthcare-delivery-system/

3. Lai C, Wang C, Wang Y, Hsueh S, Ko W, Hssueh P-R. Global epidemiology of coronavirus disease 2019 (COVID-19): disease incidence, daily cumulative index, mortality, and their association with country healthcare resources and economic status. Int J Antimicrob Agents [Internet]. 2020;55. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105946

4. International Labor Organization. COVID-19 and the world of work: Impact and policy responses. 2020;(March):1–15. Available from: http://hdl.voced.edu.au/10707/533608

5. Maor M, Suliteazonu-Kenan R, Chinitz D. When COVID-19, constitutional crisis, and political deadlock meet: the Israeli case from a disproportionate policy perspective. J Policy Soc. 2020;39(3).

6. Oldekop JA, Homer R, Hulme D, Adhikari R, Agarwal B, Alford M, et al. COVID-19 and the case for global development. World Dev [Internet]. 2020;134:1–4. Available from: https://doi.org/10.1016/j.worlddev.2020.105044

7. World Health Organization(WHO). Coronavirus disease (COVID-19) pandemic- Situational Update [Internet]. WHO. 2020 [cited 2020 Jul 31]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019

8. Johns Hopkins University (JHU). COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Internet]. JHU. 2020 [cited 2020 Aug 9]. Available from: https://coronavirus.jhu.edu/map.html

9. World Health Organization (WHO). First Case of COVID-19 Confirmed in Ethiopia [Internet]. WHO. 2020 [cited 2020 Aug 1]. Available from: https://www.afro.who.int/news/first-case-covid-19-confirmed-ethiopia

10. Shigute Z, Mebratie AD, Alemu G, Bedi A. Containing the spread of COVID-19 in Ethiopia. J Glob Health. 2020;10(1):1–4.

11. Ethiopian Public Health Institute (EPHI). Status update on COVID19 Ethiopia [Internet]. EPHI. 2020 [cited 2020 Aug 9]. Available from: https://covid19.ephi.gov.et/status-update-on-covid19-ethiopia-august-7-2020/
12. Biadgilign S, Yigzaw M. COVID-19 in Ethiopia: current situation, missed opportunities, and the risk of health system disruptions. Pan Afr Med J. 2020;35(2):66.

13. World Health Organization (WHO). Coronavirus disease (COVID-19) advice for the public [Internet]. WHO. 2020 [cited 2020 Aug 3]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public

14. Haileamlak A. How Can Ethiopia Mitigate the Health Workforce Gap to Meet Universal Health Coverage? Ethiop J f Heal Sci. 2018;28(3):249–50.

15. World Health Organization (WHO). Health Workforce Requirements for Universal Health Coverage and the Sustainable Development Goals. Human Resource for Health Observers Series No. 17 [Internet]. WHO. 2016 [cited 2020 May 23]. Available from: http://www.who.int/hrh/resources/WH%0AO_GSHRH_DRAFT_05Jan16.pdf?ua=1

16. Federal Democratic Republic of Ethiopia Central Statistical Agency. Population Projection of Ethiopia for All Regions At Wereda Level from 2014 – 2017. 2013;114–5. Available from: http://www.csa.gov.et/ehioinfo-internal%3Fdownload%3D724:population-projection-of-eth

17. Zhong B, Luo W, Li H, Zhang Q, Liu X, Li W, et al. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: a quick online cross-sectional survey. Int J Biol Sci. 2020;16(10):1745–52.

18. World Health Organization (WHO). Risk Communication and Community Engagement (RCCE) Action Plan Guidance COVID-19 Preparedness and Response [Internet]. 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/covid19-rcce-guidance-final-brand.pdf

19. Kebede Y, Yitayih Y, Birhanu Z, Mekonen S, Ambelu A. Knowledge, perceptions and preventive practices towards COVID-19 early in the outbreak among Jimma university medical center visitors, Southwest Ethiopia. PLoS One [Internet]. 2020;1–15. Available from: http://dx.doi.org/10.1371/journal.pone.0233744

20. Erfani A, Shahriarirad R, Ranjbar K, Mirahmadizadeh A & Moghadami M. Knowledge, Attitude and Practice toward the Novel Coronavirus (COVID-19) Outbreak: A Population-Based Survey in Iran. Bull World Health Organ. E-pub: 30 March 2020. doi: http://dx.doi.or.

21. Gilbert M, Pullano G, Pinotti F, Valdano E, Poletto C, Boëlle P, et al. Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. Lancet. 2020;395:871–7.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Questionnaire.docx