Infectious etiopathogenesis of Crohn’s disease
Jessica Carrière, Arlette Darfeuille-Michaud, - Hang Thi Thu Nguyen

To cite this version:
Jessica Carrière, Arlette Darfeuille-Michaud, - Hang Thi Thu Nguyen. Infectious etiopathogenesis of Crohn’s disease. World Journal of Gastroenterology, Baishideng Publishing Group Co. Limited, 2014, 20 (34), pp.12102 - 12117. 10.3748/wjg.v20.i34.12102 . hal-02637525

HAL Id: hal-02637525
https://hal.inrae.fr/hal-02637525
Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Infectious etiopathogenesis of Crohn’s disease

Jessica Carrière, Arlette Darfeuille-Michaud, Hang Thi Thu Nguyen

Abstract

Important advances during the last decade have been made in understanding the complex etiopathogenesis of Crohn’s disease (CD). While many gaps in our knowledge still exist, it has been suggested that the etiology of CD is multifactorial involving genetic, environmental and infectious factors. The most widely accepted theory states that CD is caused by an aggressive immune response to infectious agents in genetically predisposed individuals. The rise of genome-wide association studies allowed the identification of loci and genetic variants in several components of host innate and adaptive immune responses to microorganisms in the gut, highlighting an implication of intestinal microbiota in CD etiology. Moreover, numerous independent studies reported a dysbiosis, i.e., a modification of intestinal microbiota composition, with an imbalance between the abundance of beneficial and harmful bacteria. Although microorganisms including viruses, yeasts, fungi and bacteria have been postulated as potential CD pathogens, based on epidemiological, clinicopathological, genetic and experimental evidence, their precise role in this disease is not clearly defined. This review summarizes the current knowledge of the infectious agents associated with an increased risk of developing CD. Therapeutic approaches to modulate the intestinal dysbiosis and to target the putative CD-associated pathogens, as well as their potential mechanisms of action are also discussed.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Crohn’s disease; Intestinal microbiota; Dysbiosis; Adherent-invasive Escherichia coli; Probiotics; Antibiotics; Fecal microbiota transplantation

Core tip: Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract of which the etiopathogenesis is not fully understood. Increasing evidence has shown that the etiology of CD is multifactorial involving genetic, environmental and infectious factors. A dysbiosis with an increase in the abundance of putative pathogenic bacteria and a decrease in that of potentially beneficial bacteria has been observed in CD patients, revealing the involvement of intestinal microbiota in such disease. This review aims to summarize the current knowledge of the infectious etiology of CD and to discuss therapeutic approaches to modulate intestinal dysbiosis and to target CD-associated pathogens.

Carrière J, Darfeuille-Michaud A, Nguyen HTT. Infectious etiopathogenesis of Crohn’s disease. World J Gastroenterol 2014; 20(34): 12102-12117 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i34/12102.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i34.12102

INTRODUCTION

The etiopathogenesis of Crohn’s disease (CD), a type of inflammatory bowel diseases (IBD), is complex and con-
INTESTINAL MICROBIOTA AND CD

Human intestinal microbiota

The human gastrointestinal (GI) tract contains 10^{14} microorganisms of more than 500-1000 different species, forming intestinal microbiota\[17]. The density of intestinal microbiota varies along the GI tract, going from 10^7 colony forming units (CFU) per gram in stomach to 10^{12} CFU per gram in colon\[18].

The intestinal microbial composition can vary greatly between individuals, and an epidemiological study comparing the fecal microbiota between African and European children showed that its composition is determined in part by hygiene, geography and diet\[19]. Higher similarity in fecal bacterial species was reported within twins than in genetically unrelated couples sharing environment and dietary habits\[20]. The gut microbiota composition of siblings also showed increased similarity compared to that of spouses, who were living in the same environment and had similar eating habits\[21].

Given the complexity of the human intestinal microbiota, the characterization of its composition using conventional culture methods and morphological and biochemical-based traditional techniques is limited. Development of new biomolecular techniques, using high-throughput sequencing, allows circumventing these difficulties. Two approaches are currently available. The first is based on sequencing of the 16S ribosomal RNA coding gene (16S rDNA), which is conserved between all phylogenetic bacterial groups\[22]. The second one, namely the metagenomic approach, is based on a complete sequencing of bacterial genome. The evolution of high-throughput technologies with next-generation sequencing allows producing thousands or millions of sequences at once, reducing drastically the costs and facilitating access to full metagenomic sequencing. Dominant bacterial populations in the human intestinal microbiota (> 90%) belong to two phyla: the Firmicutes and the Bacteroidetes; the remainders belong to rarer phyla such as Proteobacteria (containing genera such as Escherichia and Helicobacter) and Actinobacteria as well as viruses, protists, and fungi\[23-26]. Interestingly, mucosa-associated microbiota is different from the fecal microbiota\[27]. The composition of the fecal microbiota may temporally vary following exposure to different types of foods, medications, or physical environments, and also from changes in transit time, as microbial composition in the lumen varies from caecum to rectum\[24].

Intestinal dysbiosis and CD

An imbalance of the intestinal microbiota, i.e. a modification of its composition, with decreased complexity of commensal bacterial profiles and higher numbers of mucosa-associated bacteria, has been reported in CD patients. Using a 16S rDNA-based profiling technique, Ott...
and colleagues showed that the diversity of mucosa-associated microbiota in specimens from patients with active CD undergoing surgery was markedly reduced compared with mucosal specimens from control individuals without inflammation[20,21]. Metagenomic studies have shown a decrease in the abundance of several species of the Firmicutes and the Bacteroidetes phyla in CD patients compared with control subjects[20,22–24]. The decrease in the abundance of Bacteroidetes could contribute to inflammation since some bacteria belonging to this phyla such as Bacteroides fragilis have been shown to exhibit protective effects in a mouse model of colitis induced by Helicobacter hepaticus, a murine commensal bacterium with pathogenic properties[25]. Among Firmicutes, a decrease of the amount of Faecalibacterium prausnitzii (F. prausnitzii) has been observed in CD patients compared with control subjects[20,26]. In mouse models of intestinal inflammation, administration of F. prausnitzii resulted in anti-inflammatory effects[27,28]. Therefore, the decreased abundance of F. prausnitzii could contribute to intestinal inflammation in CD. It has been consistently reported that CD patients have relatively increased amount of Enterobacteriaceae, particularly Escherichia coli (E. coli) species, with control subjects, with a more pronounced difference was observed for mucosa-associated microbiota than fecal samples[29–32]. An increase in the abundance of some mucolytic bacteria, such as Ruminococcus gnavus and Ruminococcus torques, in CD patients was also observed[33].

ROLE OF BACTERIA IN THE PATHOGENESIS OF CD

The intestinal mucosal surface is in a continuous contact with the intestinal microbiota. Given the enormous numbers of enteric bacteria and the persistent threat of opportunistic invasion, it is crucial that the host maintains homeostasis at the luminal surface of the intestinal-microbial interface. This is mediated by a perfect integrity of the intestinal barrier and a functional immunotolerance to the intestinal microbiota and luminal antigens.

Excessive bacterial translocation caused by intestinal epithelial barrier dysfunction

The intestinal barrier allows the absorption of water, ions and nutrients without leaving the microorganisms to penetrate across the mucosal surface. The first line of defense between the intestinal lumen and inner milieu, the physical barrier, is made up of a layer of columnar epithelial cells. More than 80% of these cells are enterocytes, and the rest are enteroendocrine, goblet, and Paneth cells[34]. Epithelial cells are connected via the intercellular junctional complexes including tight junctions, adherent junctions, desmosomes and gap junctions[35].

Many studies have shown an increased intestinal permeability in CD patients during active phases and a decreased permeability in remission phases[36–38]. Electron microscopy analyses of biopsies from CD patients in active phases revealed a reduced number of tight junctions compared with control subjects[39]. A deregulation of tight junction proteins has been reported in CD patients, with an up-regulation of claudin-2 and a down-regulation of claudin-5 and 8[40]. The alteration of intestinal permeability observed during active phases of CD could explain the chronic inflammation, given the probably resulting transit of bacteria and other luminal antigens through the mucosa, which are able to activate the sub-mucosal innate immune system.

The intestinal epithelial surface is covered by a mucus layer that prevents the contact between the epithelial layer and microorganisms and the diffusion of unwanted substances, as well as protects the physical barrier from sheer stress. The main component of the mucus layer is mucins secreted by goblet cells, which are heavily glycosylated proteins[41]. The outer loose mucus layer contains a limited number of intestinal microbes; whereas the inner adherent mucus layer contains very few microbes, forming a protected zone adjacent to the epithelial surface[42]. It is likely that the antimicrobial proteins, which are secreted by epithelial cells and are retained in the mucus layer, contribute to the maintenance of low bacterial numbers in the inner mucus layer[43]. These “bodyguards” are members of several distinct protein families such as defensins, cathelicidins, and C-type lectins, and they promote bacterial killing by targeting the integrity of bacterial cell walls[44]. Mice lacking the mucin MUC2 are unable to maintain this relative “bacteria-free” zone and suffer from intestinal inflammation[45]. It has been shown that mucin gene expression, mucus composition and secretion are altered by intestinal microbiota and host-derived inflammatory mediators[46].

Dysfunction of immunotolerance and innate immune response to bacteria

Maintenance of immunotolerance and innate immune responses, which allows the control of inflammatory responses in intestinal epithelium, is mediated by several mechanisms: (1) secretion of IgA; (2) bacterial clearance via the production of antimicrobial peptides; or (3) a functional autophagic process. Changes in these processes have been observed in CD, which could contribute to abnormal immune responses.

Defective secretory IgA production in CD: The IgA immunoglobulins are secreted by B lymphocytes localized in the intestinal lamina propria[47]. The secretory IgA is transcytosed across the epithelium and retained in the mucus layer, where it acts to entrap the luminal antigens and bacteria. Bacteria present in the lumen or penetrating the intestinal epithelium are detected by dendritic cells that will alert B cells in the Peyer’s patches, which will, in turn, produce IgA specific for intestinal bacteria[48]. Mice that lack activation-induced cytidine deaminase (AID), which results in defective IgA production in the intestine, exhibit an expansion of mucosa-associated bacteria such as segmented filamentous bacteria (SFB)[49]. This suggests that secreted IgA also regulates the composition and
density of bacterial communities\textsuperscript{[59]. In IBD patients, a serologic shift from an IgA-dominant to an IgG-dominant response in the intestine, which may act as another local defense line, has been reported\textsuperscript{[59]. IgG is likely to have an inflammatory effect because in response to flagellin, a common bacterial antigen, the neonatal receptor for IgG FcRn, expressed in hematopoietic cells, promotes inflammation in the presence of anti-flagellin IgG in mice[60].

Defective bacterial killing through secretion of antimicrobial peptides: The intestinal epithelia secrete antimicrobial molecules whose function is to kill commensal or pathogenic bacteria. Among these molecules are peptides named defensins. Most defensins function by binding to the microbial cell membrane, and, once embedded, forming pore-like membrane defects that allow efflux of essential ions and nutrients[61,62]. Two classes of defensins have been described in human, α and β-defensins. The α-defensin peptides are mainly secreted by Paneth cells and neutrophils, while β-defensins are more generally secreted by epithelial cells[81]. The biosynthesis of defensins is triggered by the activation of receptors involved in recognition of extracellular and intracellular bacterial components like Toll-like receptors (TLR) and NOD receptors, respectively, leading to a rapid killing of bacteria in contact with the intestinal epithelium[60]. Changes in intestinal microbiota were observed in mice that express α-defensin 5 and also in mice that do not produce functional α-defensins[64], suggesting that defensins also regulate the composition and density of bacterial communities. A decrease in α-defensin expression in Paneth cells has been reported in patients with ileal CD, particularly those carrying mutations in $NOD2$ gene[63], indicating the link between infectious etiology and host genetic susceptibility. Reduced expression of β-defensins has been observed in patients with colonic CD[63]. Other antimicrobial proteins including lysozyme and RegIIIγ are secreted by Paneth cells upon exposure to bacteria or bacterial antigens[69], thereby contributing to host defense against mucosal penetration of both symbiotic and pathogenic bacteria. Mice with a genetic ablation of Paneth cells exhibit increased translocation of bacteria into the host tissues, indicating that Paneth cells contribute to maintaining luminal compartmentalization of intestinal bacteria[87]. The abnormal synthesis of antimicrobial proteins in CD patients could result in increased intestinal barrier permeability to bacteria that could consequently lead to chronic inflammation.

Defective bacterial clearance by autophagy: Autophagy is a homeostatic process that involves degradation of dysfunctional cellular components through the lysosomal machinery. The newly discovered specialized role of autophagy expands autophagic functions as an immune defense mechanism against intracellular pathogens (also referred to as xenophagy)[87,88]. GWAS have revealed CD-associated risk variants in several autophagy genes, such as $ATG16L1$, $IRGM$, $ULK1$ (Unc-51 like autophagy activating kinase 1), $PTPN2$ (protein tyrosine phosphatase nonreceptor type 2) and $LRRK2$ (leucine-rich repeat kinase 2)[88]. This raised autophagy as one of the most attractive molecular pathways in the field of CD. Further efforts have been made to investigate a functional implication of autophagy in CD pathogenesis[88,89]. A link between autophagy and the innate immune receptor $NOD2$ has been established, the latter recruits and interacts with $ATG16L1$ at site of bacterial entry in the plasma membrane[70-72]. These studies have also shown that in epithelial cells, macrophages and dendritic cells, one of the $ATG16L1$ or $NOD2$ risk variants could result in impaired intracellular pathogenic bacterial clearance owing to a defect in xenophagy response. CD patients homozygous for the $ATG16L1$ risk allele exhibited structural aberrances in Paneth cells similar to those observed in mice with hypomorphic $ATG16L1$ expression, i.e. decreased granule number and lack of lysosomes in the ileal mucus layer[73]. This indicates that defects in intestinal barrier function in CD could involve dysfunction of Paneth cells related to $ATG16L1$ mutation. Interestingly, the CD-associated c.313C>T polymorphism located within the $IRGM$ mRNA region results in loss of binding of microRNA-196[74]. This consequently leads to aberrance of regulation of $IRGM$ expression by microRNA-196 and defects in autophagy-mediated control of intracellular replication of the CD-associated adherent-invasive E. coli[75]. Together, these studies suggest that a defect in the autophagy machinery in CD patients could lead to an uncontrolled bacterial proliferation inside host cells and consequently cause chronic inflammation.

INFECTIONOUS AGENTS AND CD

Numerous epidemiological, clinicopathological, genetic and experimental evidence has suggested an intervention of infectious agents in CD etiology. Firstly, the preferential location of the lesions in CD are situated in the terminal ileum and colon[5], where the largest population of bacteria is found[18]. Secondly, the use of antibiotics in CD treatment has been proven to be sometimes effective[70]. Thirdly, higher numbers of mucosa-associated and internalized bacteria in biopsies from CD patients compared to control subjects was also reported[57]. These observations, together with the identification of CD-associated polymorphisms in genes encoding innate immune receptors involved in the recognition of bacterial components or proteins participating in the clearance of pathogenic bacteria by autophagy highly support the hypothesis of an involvement of infectious agents in CD etiology. Those who have been suspected to modify the risk of developing CD include viruses, eukaryotes and bacteria.

Implication of virus in CD

Investigations of viral agents in CD patients have been accomplished with the use of PCR and RT-PCR, and allowed to identify the Epstein Barr virus (EBV) in
15% of patients[77].
No enterovirus has been detected in the gut of CD patients[77]. Interestingly, Cadwell et al[80] showed that the abnormalities of Paneth cells in hypomorph ATG16L1\textsuperscript{[11TM]} mice are dependent on a contact with a particular murine norovirus strain CR6, since mice raised in a germ-free condition or infected with a non-persistent norovirus strain exhibited normal Paneth cell morphology. In humans, several clinical studies have shown that norovirus infection can aggravate IBD symptoms[79,80]. Although there is no direct evidence showing that viral infection could be a causative factor of CD, the study by Cadwell et al[80] suggests that the combination of host genetic susceptibility and the presence of viral factors could lead to CD occurrence.

Bacteriophages are other viral agents that have been suspected to play a role in CD pathogenesis. Indeed, it has been shown that bacteriophages may result in dysbiosis by triggering a destabilization of microbial communities[81]. A study analyzing the bacteriophage population in CD patients reported that each patient is colonized by one dominant phage family[82]. In addition, the amount of bacteriophages is significantly increased in CD patients compared with control subjects, and is decreased in ulcerated areas compared with non-ulcerated areas[82].

Implication of yeast in CD: Candida albicans

In 2006, the presence of anti-S. cerevisiae antibodies (ASCA), involved in the recognition of a mannose residue on the surface of the non-pathogenic yeast S. cerevisiae[83], was shown in the serum of 39%–70% of CD patients vs 0%–5% of control subjects[84]. A study proposed that the fungal pathogen Candida albicans could act as an intestinal pathogen by triggering the production of ASCA, given that it expresses the ASCA epitope on many surface molecules[85]. The presence of ASCA in CD patients could reflect a decrease of immunotolerance towards specific antigens of this endogenous yeast. It has been observed that CD patients and their unaffected relatives display a greater colonization of the gastrointestinal tract by Candida albicans with respective values of 44 and 38% than the general population with 22%[86]. In addition, Candida albicans colonizes and aggravates gut inflammation in mice[87]. Although its role in CD etiopathogenesis has not yet been elucidated, the hypothesis of an involvement of Candida albicans needs to be taken into consideration.

Implication of pathogenic bacteria in CD

Mycobacterium avium subspecies paratuberculosis:

Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of the Johne’s disease, a chronic granulomatous ileitis most common in ruminants, but can also affect many other species including primates. Given that this pathology shares some facets with CD, MAP could be an agent implicated in the complex etiology of CD[88,89]. Research groups aiming to identify MAP in CD patients by isolation methods or by amplification of specific DNA sequences have reported contradictory results; while some show the presence of this bacterium in the blood and intestinal biopsies from CD patients\textsuperscript{[90-93]–[96], some do not[94–96]. Furthermore, serologic analyses have highlighted the presence of antibodies against MAP in 90% of CD patients[99]. Administration of antibiotics with strong activity against mycobacteria has resulted in remission in approximately 66%–75% of patients with active CD as reported by three independent studies[100–102]. Although these antibiotics are also active against other bacterial groups and their effect needs to be confirmed, these studies highlight the potential role of MAP in CD etiology.

Yersinia: Yersiniosis, an infectious disease caused by the psychotrophic bacterium Yersinia, displays the common facets of CD, including the presence of granulomas and ulcerations along the epithelium[103]. Another study has shown the penetration of Yersinia enterocolitica across the epithelium via Peyer’s patches[104]. A Yersinia enterocolitica oral infection induces the secretion of pro-inflammatory cytokines in mice[105]. The presence of Yersinia enterocolitica and Yersinia pseudotuberculosis strains in the gut of CD patients has been shown[106,107]. It was also reported that two cases of patients displaying terminal ileitis involving Yersinia pseudotuberculosis were diagnosed with CD thereafter[108,109]. These observations support the hypothesis of the involvement of Yersinia in CD pathogenesis, but further studies are required to determine their precise role.

Listeria: Numerous studies have been conducted to investigate the role of Listeria in CD etiology[108–110]. Immunohistochemical[111,112] and molecular[113,114] analyses have shown the presence of Listeria monocytogenes in CD lesions. Listeria monocytogenes has been shown to disrupt and cross the intestinal barrier by entering non-phagocytic cells, escaping from the internalization vacuole, allowing bacteria to move in the cell and to spread from cell to cell[115]. A study reported that NOD2-deficient mice display an increased susceptibility to oral infection by Listeria monocytogenes, with a down-regulation of genes coding cryptids, the murine homologs to human α-defensins, in Paneth cells[115]. These elements are in favor of the hypothesis that Listeria is involved in CD etiology, but additional studies are required to ascertain its causative role.

Helicobacter: Bacteria belonging to the Helicobacter family have been suspected to play a role in CD pathogenesis. An association between the Helicobacter pylori strain and the human gastric mucosal system was highlighted since Helicobacter pylori provokes mucosal ulcerations[116,117]. Numerous species of Helicobacter have been identified in the human gut[117,118], suggesting that they can cause pathology by colonizing the intestinal mucosa. In vivo studies have shown that Helicobacter hepaticus, a benign murine commensal bacterium closed to the human Helicobacter pylori strain, was able to induce considerable intestinal inflammation in immunocompromised mouse models (mice deficient in T-cell receptor alpha, T-cell receptor alpha, and T-cell receptor alpha).
beta or interleukine (IL)-10] by triggering similar immune responses to those observed in CD\cite{119,120}. These experimental data suggest that Helicobacter could initiate disease in individuals being genetically susceptible to CD.

E. coli AND CD

The involvement of *E. coli* in CD etiopathogenesis has been argued for long time. According to serologic studies, the antibodies raised against the outer membrane porin C of *E. coli* (anti-OmpC) have been found in 37%-55% of CD patients\cite{121,122}. Numerous studies have shown the presence of *E. coli*-specific antigens in biopsies from CD patients, particularly in the ulcer areas, along the fissures and within the granulomas and lamina propria\cite{123,124}. These reports are in accordance with numerous independent studies showing increased abundance of *E. coli* in the mucosa-associated microbiota of CD patients with dysbiosis compared with control subjects\cite{125,126}. Specifically, we have shown that *E. coli* abnormally colonize acute and chronic ileal lesions of CD patients comparatively to control subjects\cite{127,128}.

Pathogenic traits of CD-associated E. coli

Adhesion and invasion of epithelial cells: Phenotypic characterization of the *E. coli* strains isolated from CD patients has evidenced their capacity to adhere to eukaryotic cells *in vitro*. It has been shown that 53%-62% of CD patients carry *E. coli* strains that display adhesion properties to buccal cells *ex vivo* only 5%-6% of control subjects\cite{129,130}. Another study reported that 84.6% of CD patients and 78.9% of patients with disease recurrence carry *E. coli* strains capable of adhering to human intestinal epithelial Caco-2 cells, *ex vivo* only 33.3% of control individuals\cite{131}. Finally, several independent studies have shown the presence of *E. coli* strains internalized in the intestinal mucosa of CD patients and their capacity to invade intestinal epithelial cells (IECs)\cite{132,133,134,135}. Our group has more particularly studied the *E. coli* reference strain LF82, isolated from a chronic ileal lesion of a CD patient\cite{136,137}, and shown that LF82 is able to adhere to and to invade IECs\cite{138}.

Survival and proliferation in host cells: Increasing evidence has shown the capability of the CD-associated *E. coli* strains to invade, survive and replicate in IECs and macrophages. The first study showed by electron microscopy that the *E. coli* strain LF82 can trigger, in the same way as other enteropathogens such as Shigella, the lysis of endocytic vacuoles to be released in the cytoplasm, where the environment is more favorable for bacterial replication\cite{139}. It has been later reported that CD-associated *E. coli* are able to survive and replicate in macrophages without inducing cell death\cite{140,141}. The mechanism underlying these pathogenic properties of CD-associated *E. coli* has been then investigated. Given the association of polymorphisms in autophagy genes *ATG16L1* and *IRGM* with an increased risk of developing CD, it has been proposed that defects in autophagic process could allow the CD-associated *E. coli* to survive and replicate within host cells. Our group has shown that the *E. coli* strain LF82 replicates more importantly in autophagy-deficient murine fibroblasts than in wild-type fibroblasts, and in human epithelial cells and macrophages with siRNA-mediated *ATG16L1* expression silencing\cite{142}. Increased intracellular replication of the LF82 strain was also observed in human cells expressing the *ATG16L1* risk variant\cite{143}. As discussed earlier, the CD-associated C313T mutation in *IRGM* gene results in loss of tight regulation of *IRGM* protein and therefore autophagy, leading to an increased persistence of the LF82 bacteria in host cells\cite{144,145}. These studies suggest that impaired capacity of autophagy to handle and clear bacteria could be a mechanism underlying the increased risk of CD patients *via* increased numbers of pro-inflammatory bacteria.

Disruption of the intestinal barrier function: Several pathogenic bacteria are capable of disrupting the intestinal barrier to cross the mucosal surface by modulating expression and/or organization of proteins involved in establishment and maintenance of epithelial cell junctions. It has been shown that the CD-associated *E. coli* strains induce disorganization of F-actin and displacement of ZO-1 and E-cadherin from the apical junctional complex in human intestinal Caco-2 cell monolayer, leading to a drop in the trans-epithelial resistance and consequently increased epithelial permeability\cite{146,147}. Likewise, the LF82 strain induces a redistribution of ZO-1 in Madin-Darby canine kidney-1 cell monolayer, causing a severe disruption of the epithelial barrier\cite{148}. These data suggest that the CD-associated *E. coli* could play a causative role in CD etiopathogenesis by inducing disruption of intestinal barrier function.

Inducing pro-inflammatory cytokine/chemokine production: Several *in vitro* and *in vivo* studies have reported that the CD-associated *E. coli* can induce pro-inflammatory responses in host cells. Infection of macrophages with the LF82 strain induces the secretion of high level of TNF-α\cite{149,150}, and this is essential for the intramacrophagic replication of the bacteria\cite{151}. This indicates that the CD-associated *E. coli* could induce production of TNF-α to create an amplification loop of replication and of inflammation. Increased production of IL-8 in LF82-infected IECs has been also reported\cite{152,153,154}. In a transgenic CEABAC10 mouse model expressing human Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), the CD-associated *E. coli* strain LF82 can induce a severe colitis accompanied with an increase in production of the pro-inflammatory cytokines IL-1β, IL-6, and IL-17 and a decrease in that of the anti-inflammatory cytokine IL-10\cite{155,156}. These *in vitro* and *in vivo* data support the hypothesis of the involvement of CD-associated *E. coli* in the etiopathogenesis of this chronic inflammatory disease.

Adherent-invasive E. coli: A new pathovar

Pathovar definition: Analysis of virulence factors and
clinical manifestations engendered by different *E. coli* strains has allowed distinguishing six pathovars: entero-toxigenic *E. coli*, enterohemorrhagic *E. coli*, enteroaggregative *E. coli*, diffusely adherent *E. coli*, enteropathogenic *E. coli* and enteroinvasive *E. coli* (EIEC)\[117\]. CD-associated *E. coli* strains share some virulence features with already established *E. coli* pathovars such as the ability to induce macrophage cell death, but the factors involved in the adhesion and invasion properties of the known pathovars are not present in the CD-associated *E. coli* strains\[10,128\]. Thus, a new pathovar was defined to classify these strains, and called adherent-invasive *E. coli* (AIEC)\[129\]. The criteria of this pathovar group include abilities to adhere to and to invade IECs, to survive and replicate in large vacuoles within macrophages without inducing cell death, and to induce secretion of high levels of the pro-inflammatory cytokine TNF-α by infected macrophages. The ability to trigger increased intestinal permeability also constitutes one of the pathogenic characteristics of AIEC\[127\]. Finally, AIEC have been shown to form biofilm and to induce granulomas formation *in vitro*\[138-140\]. The *E. coli* LF82 strain displays all of these characteristics, and is therefore considered as the AIEC reference strain.

AIEC prevalence in CD patients: Evidence has shown a high prevalence of ileal mucosa-associated AIEC in CD, since AIEC have been identified in the neoterminal ileum of 36.4%–51.9% of CD patients *vs* only 6.2%–16.7% of controls\[146,149\]. Comparative genomic analyses of AIEC strains isolated from different patients have shown that only one specific strain was not found in all of the patients, nevertheless, some genotypes of particular strains seem to be more frequently associated with ileal lesions of CD\[36,141\].

Virulence factors of AIEC: Genetic determinants of virulence of the AIEC reference strain LF82 are not known and are not similar to those of other invasive *E. coli* strains. Thus, they have been searched by random mutagenesis (insertion of the transposon *Tn5*pho*A*) and by comparison of the genome of LF82 with that of other pathogens\[143,144\]. These studies have permitted the identification of the lipoprotein NlpI which appears to be involved in adhesion and invasion capacities of LF82, since the insertion of the *Tn5*pho*A* transposon in the NlpI-encoding gene leads to a loss of invasion capacity of LF82 and the LF82-*ΔnlpI* isogenic mutant showed a decreased adhesion and invasion capacity in Intestine-407 epithelial cells\[143,144\]. Likewise, the analysis of the *Tn5*pho*A* insertion mutant library and the construction of isogenic mutants led to the identification of flagella and the membrane proteins YfgL, OmpC and OmpA as factors involved in adhesion and invasion properties of the reference strain LF82\[144-146\]. Another study showed that type 1 pili are a crucial virulence factor that allows AIEC to adhere to IECs *via* the receptor CEACAM6\[150\]. These factors are involved in the colonization of the epithelium by AIEC\[150\].

THERAPEUTIC APPROACHES

TARGETING INFECTIOUS AGENTS TO TREAT CD

Current CD treatment strategies aim to control inflammation, relieve symptoms and correct nutritional deficiencies. The treatment depends on the location and severity of disease, complications and response to previous treatment. At this time, treatment can help control the disease, but there is no cure. Established therapies for CD include anti-inflammatory agents (e.g., aminosalicylates (5-ASA), cyclosporine, immunosuppressive drugs (e.g., corticosteroids, azathioprine and 6-mercaptopurine) and antibiotics. An increasing number of novel and alternative therapeutic approaches are in progress\[157\]. New biologic therapies include the targeting of pro-inflammatory cytokines, enhancement or infusion of anti-inflammatory cytokines, blocking intravascular adhesion molecules, and modifying T-cell functions\[157\]. Given the increasing evidence supporting the infectious etiology of CD, therapeutic approaches to manipulate gut microbiota have been attempted by using antibiotics, probiotics, prebiotics and possibly defensins. Although these approaches are widely used, their benefits are variable and certainly not permanent. One important reason for this is the fact that the etiology of CD is complex and multifactorial, and does not include only infectious factors. Therefore, manipulation of the gut microbiota is beneficial, but, on its
own, is insufficient to cure the disease.

Antibiotics

The beneficial effect of broad-spectrum antibiotics in the treatment of a moderate form of CD has been reported, although it lacked a large-scale clinical trial\cite{158}. A controlled clinical trial conducted in American and Canadian centers reported that metronidazole, an antibiotic active against strictly anaerobic bacteria, is more effective in CD patients than a placebo at both a low dose (10 mg/kg per day) and a high dose (20 mg/kg per day)\cite{159}. A therapy based on ciprofloxacin has been shown to be effective in CD treatment and is also effective in combination with conventional treatments in patients with resistant CD\cite{160,161}. Combination of ciprofloxacin and metronidazole has been tested in treatment of acute phase of the disease and appeared to be effective\cite{162}. Numerous clinical trials have been performed to test the potential benefit of antibiotics during different clinical manifestations of CD. Papi and colleagues showed that administration of antibiotics (metronidazole and ornidazole) is effective in preventing post-operative recurrence of CD, which is inevitable since the surgery is not curative\cite{163}. The efficiency of antibiotics in the treatment of perianal fistulas, a complication of CD, was tested, but did not allow obtaining extended closure of fistulas\cite{164}. The authors of this study suggest the use of antibiotics as a second-line therapy for fistula healing following the use of anti-TNF-α antibodies, which are known to be effective. Pre-operative administration of antibiotics seems to reduce the risk of surgery\cite{165}. Although antibiotic treatment is effective in some cases, it has some side effects including non-specific effects against microbiota, the possibility of inducing an antibiotic resistance and the risk of *Clostridium difficile* superinfection. Those antibiotics have been therefore recommended as a second-line treatment for CD.

Probiotics

Given that intestinal dysbiosis has been postulated to cause CD in genetically predisposed individuals, therapeutic strategies based on the use of probiotics have been developed to modulate the imbalance of intestinal microbiota observed in CD patients.

Potential action mechanisms of probiotics include competitive interactions with enteropathogens, production of antimicrobial metabolites, influences on the epithelium, and immune modulation\cite{166}. The use of the probiotic yeast strain *Saccharomyces boulardii* has been shown to be effective in prevention and treatment of antibiotic-associated and *Clostridium difficile* infection-associated diarrhea, as well as traveler’s diarrhea\cite{167}. Several probiotic strains have been tested in CD treatment. Treatment of CD patients with the probiotic *E. coli* strain Nissle 1917 leads to a remission more rapidly than untreated patients, without affecting the number of patients entering remission\cite{168}. One study, although involving only a few subjects, 32 patients, reported the maintenance of remission in CD patients treated with the probiotic strain *Saccharomyces boulardii* comparatively to patients treated with mesalamine\cite{169}, of which the effect in maintaining remission has been raised\cite{170,171}. However, a recent randomized, placebo-controlled trial reported no significant effect of the yeast *Saccharomyces boulardii* in preventing relapse following a medically-induced remission\cite{172}. Clinical trials have been carried out to evaluate the potential efficacy of the probiotic strain *Lactobacillus GG* in the prevention of post-operative recurrence in CD patients\cite{173} and on the average time of relapse after a medically induced remission period\cite{174}. The first reported contradictory effects with rates of clinical and endoscopic recurrence of 16.6% and 60%, respectively, in the *Lactobacillus*-treated group vs 10.5% and 35.3% in the placebo group. The second showed a shorter average time of relapse of 9.8 mo in patients treated with the probiotic vs 11 mo in the placebo group. Another strain of *Lactobacillus*, *Lactobacillus johnsonii*, was tested in CD patients during two double-blind trials, and both reported no significant effect of this strain in preventing clinical recurrence of the disease following a surgically-induced remission in probiotic-treated patients comparatively to the placebo group\cite{175,176}. Although probiotics may be the most physiologic and nontoxic way to prevent and treat CD, it may be transient and has a limited and debatable usefulness at present.

Fecal microbiota transplantation

Given the potential role played by intestinal microbiota in CD pathogenesis, another therapeutic approach has been considered for CD treatment: fecal microbiota transplantation. The transfer of fecal microbiota from a healthy individual to the gut of a patient, enabling the re-establishment of a normal microbial community, has been shown to be effective in the treatment of ulcerative colitis\cite{177}, another form of IBD, or infection with *Clostridium difficile*\cite{178}. *Clostridium difficile* infection has become a major public health problem, occurring after antibiotic treatment or ingestion of spores in the environment. In patients with a recalcitrant infection, fecal microbiota transplantation has been shown to be effective, with an efficiency rate of 90%\cite{179,180}. Only few case reports and case series of fecal microbiota transplantation for the management of CD have been published. The first case was a 31-year-old man diagnosed with terminal ileal CD who remained symptom-free for 4 mo after the transplantation\cite{181}. Among the other cases reported, the use of fecal microbiota transplants leads to CD resolution, i.e. to a complete cessation of symptoms or to the absence of active disease confirmed by endoscopic and histologic analyses, but in most cases, it does not\cite{182}. A recent study reported the effectiveness of fecal microbiota transplantation in a case of severe fistulizing CD with a sustained clinical remission for more than 9 mo after the treatment\cite{183}. Fecal microbiota transplants have also been used to manage *Clostridium difficile* infections in CD patients, and it appears to be effective in most of patients with a reduction or a complete resolution of the
infection-associated diarrhea[182]. More clinical trials with better standardized protocols are required to confirm the beneficial effect of fecal microbiota transplantation in treatment of this complex disease.

CONCLUSION

Since the first description of CD in 1932, numerous research groups worldwide have attempted to unravel the complex and multifactorial etiology of the disease to develop a curative therapy. In addition to the identification of genetic and environmental risk factors in CD, increasing lines of evidence have supported a role for infectious agents in CD etiopathogenesis. These include the disruption of the intestinal barrier function associated with excessive bacterial translocation, an intestinal dysbiosis, defects in the secretion of IgA entrapping antigens and bacteria in the intestinal lumen and inefficacy of autophagy-mediated clearance of intracellular bacteria. These defects, which have been reported in CD patients, can lead to the emergence of infectious agents (viruses, eukaryotes or bacteria) that could induce chronic inflammatory characteristic of CD. Advances in the knowledge of infectious etiology of CD enable to develop different therapies based on the clearance of CD-associated pathogens, the modification of the imbalanced intestinal microbiota and re-establishment of a “healthy” microbiota with the use of probiotics, probiotics and fecal microbiota transplantation. However, these therapies on their own are insufficient to provide a cure for CD. Therefore, successful CD therapies are likely to require multiple pathway-integrated treatments depending on the stage of the disease and each patient subset.

REFERENCES

1. **Hugot JP**, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Cassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahabatou M, Thomas G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. *Nature* 2001; **411**: 599-603 [PMID: 11385576 DOI: 10.1038/35079071]

2. **Ogura Y**, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Nunez G, Cho JH. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. *Nature* 2001; **411**: 603-606 [PMID: 11385577 DOI: 10.1038/35079141]

3. **Breit P**, Corcelle EA, Cesano A, Chargui A, Belaid A, Konisky DJ, Vouret-Craviari V, Hebuterne X, Hofman P, Mograbi B. Autophagy and Crohn’s disease: at the crossroads of infection, inflammation, immunity, and cancer. *Curr Mol Med* 2010; **10**: 486-502 [PMID: 20540703 DOI: 10.2174/1565214210781608252]

4. **Hampe J**, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Günther S, Prescott NJ, Ommen CM, Häser R, Sipos B, Fülöch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S. A genome-wide association scan of non-synonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. *Nat Genet* 2007; **39**: 207-211 [PMID: 17200669 DOI: 10.1038/ng1954]

5. **Parkes M**, Barrett JC, Prescott NJ, Treemelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Siors D, Drummond H, Lees CW, Khawaja SA, Bagnall R, Burke DA, Todhunter CE, Ahmad T, Onnie CM, Mcardle W, Strachan D, Bethel G, Bryan C, Lewis CM, Deloukas P, Forbes A, Sanderson J, Jewell DP, Satsangi J, Mansfield JC, Cardon L, Mathew CG. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. *Nat Genet* 2007; **39**: 830-832 [PMID: 17554261 DOI: 10.1038/ng2061]

6. **Wellcome Trust Case Control Consortium**. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature* 2007; **447**: 661-678 [PMID: 17554300 DOI: 10.1038/nature05911]

7. **Barrett JC**, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtula MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Liublins C, Sandor C, Lathrop M, Bélaïd A, Klion A, Rotter JI, Silverberg MS, Erazo M, Ostrer H, Abraham C, Abreu MT, Barzilai N, Gregersen PK, Hakonarson H, Jones MR, Marder K, Clark LN, Darvasi A, Ah-Reum T, Carey J, GOLD, Sanchez EM, Oikawa H, Abraham C, Abreu MT, Atzmon G, Barzilai N, Brant SR, Bressman S, Cummings FR, Deloukas P, Edwards C, Florin T, Hampe J, Karaliuskas R, Tanjore S, Thamerman A, Weekman S, Bari, D. Mc Gregor GN, Ommen CM, Mni M, Rutgeerts P, Van Gossum A, Guo J, Hampe J, Wijmenga C, Baldassano RN, Brant SR, Daly MJ. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. *Nat Genet* 2008; **40**: 955-962 [PMID: 18587394 DOI: 10.1038/ng.175]

8. **Cho JH**, Brant SR. Recent insights into the genetics of inflammatory bowel disease. *Gastroenterology* 2011; **140**: 1704-1712 [PMID: 21530736 DOI: 10.1053/j.gastro.2011.02.046]

9. **Franke A**, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellingham D, Festen EM, Georges M, Green T, Haretunians T, Jostins L, Latino A, Mathew CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, Wijnenga C, Baldassano RN, Barclay M, Bayless TM, Brant SR, Buning C, Cohen A, Colombel JF, Cottone M, Stratoni L, Denson T, De Vos M, d’Inca R, Dubinsky M, Edwards C, Florin T, Franchimont D, Garry R, Glas J, Van Gouwoss A, Guthery SL, Halfvarson J, Verspaget HW, Hugot JP, Karban R, Laukens D, Lawrance I, Leieman A, Levina A, Libioulle C, Louis E, Mowat C, Newman W, Panés J, Phillips A, Proctor DD, Regueiro M, Russell R, Rutgeerts P, Sandersen J, Sans M, Seibold F, Steinhart AH, Stokkers PC, Torkvist L, Kullak-Ublick G, Wilson D, Walters T, Targan SR, Brant SR, Rioux JD, D’Amato M, Weersma RK, Kugathasan S, Griffiths AM, Mansfield JC, Vermeire S, Duerr RH, Silverberg MS, Satsangi J, Schreiber S, Cho JH, Annesse V, Hakonarson H, Daly MJ, Parkes M. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. *Nat Genet* 2010; **42**: 1118-1125 [PMID: 21024635 DOI: 10.1038/ng.717]

10. **Kenny EE**, Pé’er I, Karban A, Ozelius L, Mitchell AA, Nq SM, Erazo M, Odor H, Abraham C, Abreu MT, Atzmon G, Barzilai N, Brant SR, Bressman S, Burns ER, Chowers Y, Clark LN, Darvasi A, Doheny D, Duerr RH, Eliakim R, Giladi N, Gregersen PK, Hakonarson H, Jones MR, Marder K, McGovern DP, Mülle T, Orr URTREGER A, Proctor DD, Pulver A, Rotter JI, Silverberg MS, Ullman T, Warren ST, Waterman M, Zhang W, Bergman A, Mayer L, Katz S, Desnick RJ, Cho JH, Peter I. A genome-wide scan of Ashkenazi Jewish Crohn’s disease suggests novel susceptibility loci. *PLoS Genet* 2012; **8**: e1002599 [PMID: 22412388 DOI: 10.1371/journal.pgen.1002599]

11. **Lees CW**, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. *Gut* 2011; **60**: 1739-1753 [PMID: 21300624 DOI: 10.1136/gut.2009.199679]
Carrière J et al. Infectious etiopathogenesis of Crohn's disease.
Carrière J et al. Infectious etiopathogenesis of Crohn's disease

2002; 2002; 2008; PALADE GE. Junctional complexes
2006; Qiao SW, Yoshida M, Baker K, Lencer WI, Selsted ME, Ganz T, Lehrer RI. Antimicrobial
2008; Kościuczuk EM, Lisowski P, Strzałkowska N, -
2010; 2005; 2006; Rayment NB, Rampton DS, Hudspith BN, Bernstein CN, Sepehri S, Krause DO. High
1987; 1987; -
2010;
19075245 DOI: 10.1073/pnas.0803124105

2009; 2009; -

2006; 2006; 2005; 2006; Ramage JK, Jones DB, Collins SM, Goodacre RL, Hunt RH. Small bowel and colonic permeability to

1992; 35: 678-682 [PMID: 1612487 DOI: 10.1136/gut.35.5.678]

Benjamin J, Makharia GK, Ahuva V, Kalaivani M, Joshi YK. Intestinal permeability and its association with the patient and disease characteristics in Crohn's disease. World J Gastroenterol 2008; 14: 1399-1405 [PMID: 18322955 DOI: 10.3780/jwg.14.1399]

Jenkins RT, Jones DB, Goodacre RL, Collins SM, Coates G, Hunt RH, Bienenstock J. Reversibility of increased intestinal permeability to 51Cr-EDTA in patients with gastrointestinal inflammatory diseases. Am J Gastroenterol 1987; 82: 1159-1164 [PMID: 3118697]

Jenkins RT, Ramage JK, Jones DB, Collins SM, Goodacre RL, Hunt RH. Small bowel and colonic permeability to 51Cr-EDTA in patients with active inflammatory bowel disease. Clin Invest Med 1988; 11: 151-155 [PMID: 3135136]

Sanderson IR, Boulton P, Menzies I, Walker-Smith JA. Improvement of abnormal lactulose/rhamnose permeability in active Crohn's disease of the small bowel by an elemental diet. Gut 1987; 28: 1073-1076 [PMID: 3678965 DOI: 10.1136/gut.28.9.1073]

Zeissig S, Börgel N, Günzel D, Richter J, Mankertz J, Wahn-schaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut 2007; 56: 61-72 [DOI: 10.1136/gut.2006.094375]

Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 2001; 73: 1195-1145 [PMID: 11393191]

Johansson ME, Phillipsen P, Petersson J, Velickich A, Holm L, Hansson GC. The inner of the two muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 2008; 105: 15064-15069 [DOI: 10.1073/pnas.0803124105]

Meyer-Hoffert U, Horneck MW, Henríques-Normark B, Axelsson LG, Midvoted T, Pütspe K, Andersson M. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 2008; 57: 764-771 [PMID: 18250125 DOI: 10.1136/gut.2007.144181]

Mukherjee R, Vanhuysse S, Hooper LV. Multi-layered regulation of intestinal antimicrobial defense. Cell Mol Life Sci 2008; 65: 3019-3027 [PMID: 18560756 DOI: 10.1007/s00018-008-1812-3]

Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012; 336: 1268-1273 [PMID: 22674334 DOI: 10.1126/science.122490]

Suzuki K, Meek B, Doy, Muramatsu M, Chiba T, Horjo T, Fagarasan S. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 2004; 101: 1981-1986 [PMID: 14766966 DOI: 10.1073/pnas.0307317101]

Brandtzaeg P, Carlsen HS, Halstensen TS. The B-cell system in inflammatory bowel disease. Adv Exp Med Biol 2006; 579: 149-167 [PMID: 16620017 DOI: 10.1007/0-387-33774-8_10]

Kobayashi K, Qiao SW, Yoshida M, Baker K, Lencer WI, Blumberg RS. An FcRn-dependent role for anti-flagellin immunoglobulin G in pathogenesis of colitis in mice. Gastroenterology 2009; 137: 1746-56.e1 [PMID: 19664634 DOI: 10.1016/j.gastro.2009.07.059]

Jarzczak J, Kościuczk EM, Lisowski P, Strzałkowska N, Jóźwik A, Horbariczuk J, Krzyżewszki J, Zwierzchowski L, Bagnicka E. Defensins: natural component of human innate immunity. Hum Immunol 2014; 75: 1069-1079 [PMID: 25756165 DOI: 10.1016/j.humimm.2013.09.018]

Kagan BL, Kolarov Z, Selsted ME, Selsted ME, T. Lehrer RI. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 1990; 87: 210-214 [PMID: 1688654]

Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol 2010; 28: 573-621 [PMID: 20192811 DOI: 10.1146/annurev-immunol-030409-101225]

Salzman NH, Fellermann K, Stange EF. Human defensins in inflammatory bowel disease. Annu Rev Physiol 2004; 66: 1760-1767 [PMID: 16648155 DOI: 10.1136/gut.2005.078824]

Mylonaki M, Rayment NB, Rampton DS, Hudspith BN, Brostoff J. Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis 2005; 11: 481-487 [PMID: 15867588 DOI: 10.1097/01>MIB.0000159663.62651.41]

Png CW, Lindén SK, Glishenka KS, Zoetendal EG, M-Sweeney CS, Sly LI, McGuckin MA, Florin TH. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Ann J Gastroenterol 2010; 105: 2420-2428 [PMID: 20648002 DOI: 10.1038/ajg.2010.281]

van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009; 71: 241-261 [PMID: 18808327 DOI: 10.1146/annurev.physiol.010908.163145]

Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17: 375-412 [PMID: 13944428 DOI: 10.1083/jcb.17.2.375]

Adenis A, Colombel JF, Lecouffe P, Wallaert B, Hequet B, Marchandise X, Cortot A. Increased pulmonary and intestinal permeability in Crohn's disease. Gut 1992; 33: 678-682 [PMID: 1612487 DOI: 10.1136/gut.33.5.678]

Benjamin J, Makharia GK, Ahuva V, Kalaivani M, Joshi YK. Intestinal permeability and its association with the patient and disease characteristics in Crohn’s disease. World J Gastroenterol 2008; 14: 1399-1405 [PMID: 18322955 DOI: 10.3780/jwg.14.1399]

Jenkins RT, Jones DB, Goodacre RL, Collins SM, Coates G, Hunt RH, Bienenstock J. Reversibility of increased intestinal permeability to 51Cr-EDTA in patients with gastrointestinal inflammatory diseases. Am J Gastroenterol 1987; 82: 1159-1164 [PMID: 3118697]

Jenkins RT, Ramage JK, Jones DB, Collins SM, Goodacre RL, Hunt RH. Small bowel and colonic permeability to 51Cr-EDTA in patients with active inflammatory bowel disease. Clin Invest Med 1988; 11: 151-155 [PMID: 3135136]

Sanderson IR, Boulton P, Menzies I, Walker-Smith JA. Improvement of abnormal lactulose/rhamnose permeability in active Crohn's disease of the small bowel by an elemental diet. Gut 1987; 28: 1073-1076 [PMID: 3678965 DOI: 10.1136/gut.28.9.1073]
Inflammatory bowel disease (IBD) is a chronic, inflammatory condition of the gastrointestinal tract, characterized by symptoms of abdominal pain, diarrhea, and bloody stools. The two main types of IBD are Crohn's disease and ulcerative colitis. The pathogenesis of these diseases is complex and involves multiple factors, including genetics, environmental factors, and the host immune response.

Crohn's disease is characterized by inflamed, ulcerated areas in the digestive tract, which can range from the mouth to the anus. It is often characterized by symptoms of abdominal pain, diarrhea, and weight loss. Infections, particularly with Mycobacterium avium subsp. paratuberculosis (MAP), have been suggested as a cause of Crohn's disease.

Several studies have suggested a possible association between MAP infection and Crohn's disease, but the evidence is not conclusive. Some studies have found increased levels of MAP DNA in gut tissues from individuals with Crohn's disease, while others have not. The role of MAP in the pathogenesis of Crohn's disease is still under investigation.

In addition to MAP, other bacteria have been implicated in the development of Crohn's disease. For example, a study published in the journal *Nature* found that gut colonization by Candida albicans aggravates inflammation in the gut and extra-gut tissues in mice. This suggests that the presence of certain bacteria in the gut can affect the immune system and contribute to the development of Crohn's disease.

The role of the immune system in the pathogenesis of Crohn's disease is also well-studied. Autophagy, a cellular process that involves the degradation of intracellular components, has been linked to the development of Crohn's disease. A study published in *Nature* found that the protein Atg16L1 phenotypes in intestine. This protein is involved in the autophagy process and its dysfunction has been associated with an increased risk of developing Crohn's disease.

Overall, the pathogenesis of Crohn's disease is complex and multifactorial. Further research is needed to fully understand the mechanisms that contribute to its development. However, studies such as these provide valuable insights into the potential causes and pathways involved in the disease.
The non-H pylori helicobacters: their expanding role in gastrointestinal and systemic diseases.

Cappart P. Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci USA 2011; 108: 19484-19491 [PMID: 22114192 DOI: 10.1073/pnas.1112371108]

Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G, Flavell R. Nos2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005; 307: 731-734 [PMID: 15692651 DOI: 10.1126/science.1109411]

Chiba M, Fukushima T, Inoue S, Horie Y, Iizuka M, Masumoto O. Listeria monocytogenes in Crohn’s disease. Scand J Gastroenterol 1998; 33: 430-434 [PMID: 9605266 DOI: 10.1080/00365529850170171]

Chen DX, Dargler CA, Fox JG, Schauer DB. Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin Microbiol Rev 2001; 14: 59-97 [PMID: 11148003 DOI: 10.1128/CMR.14.1.59-97.2001]

Chen EY, Dangler CA, Fox JG, Schauer DB. Helicobacter hepaticus infection triggers inflammatory bowel disease in T cell receptor alpha beta mutant mice. Comp Med 2000; 50: 586-594 [PMID: 11200563]

Kullberg MC, Ward JM, Gorelick PL, Caspar P, Hieny S, Lamps LW, Carrière J, Huijsdens XW, Shanahan F. Specific seroreactivity of Crohn’s disease patients against p35 and p36 antigens of M. avium subspp. paratuberculosis. Vet Microbiol 2002; 77: 397-400 [PMID: 11118734 DOI: 10.1016/S0378-1135(00)00334-5]

Borody TJ, Bilkey S, Wettstein AR, Leis S, Pang G, Tye S. Anti-mycobacterial therapy in Crohn’s disease heals mucosa with longitudinal scars. Dig Liver Dis 2007; 39: 341-344 [PMID: 17639114 DOI: 10.1016/j.dld.2007.01.008]

Borody TJ, Leis S, Warren EF, Surace R. Treatment of severe Crohn’s disease using anticytocbacteral triple therapy—approaching a cure? Dig Liver Dis 2002; 34: 29-38 [PMID: 11926571 DOI: 10.1016/S0195-6643(02)80061-6]

Gui GP, Thomas PR, Tizard ML, Lake J, Sanderson JD, Hermon-Taylor J. Two-year-outcomes analysis of Crohn’s disease treated with rifabutin and macrolide antibiotics. J Antimicrob Chemother 1997; 39: 393-400 [PMID: 9096189 DOI: 10.1093/jac/39.3.393]

Lamps LW, Madhusudhan KT, Greensoon JK, Pierce RH, Massoll NA, Chiles MC, Dean PJ, Scott MA. The role of Yersinia enterocolitica and Yersinia pseudotuberculosis in granulomatous appendicitis: a histologic and molecular study. Am J Surg Pathol 2001; 25: 508-515 [PMID: 11257626 DOI: 10.1016/S0891-4971(01)01000-1]

Grützkau A, Hanski C, Hahn H, Riecken EO. Involvement of enteroinvasive bacteria in surgically treated chronic inflammatory bowel disease. Virulence 2008; 4: 1311-1315 [PMID: 16450203 DOI: 10.1016/j.virulence.2007.08.016]

Fox JG. The non-H pylori helicobacters: their expanding role in gastrointestinal and systemic diseases. Gut 2002; 50: 273-283 [PMID: 11788573 DOI: 10.1136/gut.50.2.2273]

Solinick JV, Schauer DB. Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin Microbiol Rev 2001; 14: 59-97 [PMID: 11148003 DOI: 10.1128/CMR.14.1.59-97.2001]

Chen EY, Dangler CA, Fox JG, Schauer DB. Helicobacter hepaticus infection triggers inflammatory bowel disease in T cell receptor alpha beta mutant mice. Comp Med 2000; 50: 586-594 [PMID: 11200563]

Kullberg MC, Ward JM, Gorelick PL, Caspar P, Hieny S, Cheever A, Jankovic D, Sher A. Helicobacter hepaticus triggers colitis in a pathogen-free interleukin-10 (IL-10)-deficient mouse and an IL-12- and gamma interferon-dependent mechanism. Infect Immun 1998; 66: 5157-5166 [PMID: 9784517]

Mei L, Targan SR, Landers CJ, Dutridge D, Ippoliti A, Vasililaukas EA, Papadakis KA, Fleshner PR, Rotter JL, Yang H. Familial expression of anti-Escherichia coli outer membrane protein C in relatives of patients with Crohn’s disease. Gastroenterology 2006; 130: 1078-1085 [PMID: 16618402 DOI: 10.1053/j.gastro.2006.02.013]

Landers CJ, Cohavy O, Misra R, Yang H, Lin YC, Braun J, Targan SR. Selection of loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002; 123: 689-699 [PMID: 12198693 DOI: 10.1016/j.gastro.2002.05.0573]

Fujita H, Ishii Y, Ishige I, Saitoh K, Takizawa T, Arima T, Koike M. Quantitative analysis of bacterial DNA from Mycobacterium avium subsp. paratuberculosis in Crohn’s disease. Vet Microbiol 2005; 108: 1396-1404 [PMID: 17729631 DOI: 10.1016/j.vetmic.2005.08.001/DOI: 10.1016/j.vetmic.2005.08.001]

Borody TJ, Bilkey S, Wettstein AR, Leis S, Pang G, Tye S. Anti-mycobacterial therapy in Crohn’s disease heals mucosa with longitudinal scars. Dig Liver Dis 2007; 39: 341-344 [PMID: 17639114 DOI: 10.1016/j.dld.2007.01.008]

Borody TJ, Leis S, Warren EF, Surace R. Treatment of severe Crohn’s disease using anticytocbacteral triple therapy—approaching a cure? Dig Liver Dis 2002; 34: 29-38 [PMID: 11926571 DOI: 10.1016/S0195-6643(02)80061-6]

Gui GP, Thomas PR, Tizard ML, Lake J, Sanderson JD, Hermon-Taylor J. Two-year-outcomes analysis of Crohn’s disease treated with rifabutin and macrolide antibiotics. J Antimicrob Chemother 1997; 39: 393-400 [PMID: 9096189 DOI: 10.1093/jac/39.3.393]

Lamps LW, Madhusudhan KT, Greensoon JK, Pierce RH, Massoll NA, Chiles MC, Dean PJ, Scott MA. The role of Yersinia enterocolitica and Yersinia pseudotuberculosis in granulomatous appendicitis: a histologic and molecular study. Am J Surg Pathol 2001; 25: 508-515 [PMID: 11257626 DOI: 10.1016/S0891-4971(01)01000-1]

Grützkau A, Hanski C, Hahn H, Riecken EO. Involvement of M cells in the bacterial invasion of Peyer’s patches: a common mechanism shared by Yersinia enterocolitica and Yersinia pseudotuberculosis in granulomatous appendicitis: a histologic and molecular study. Am J Surg Pathol 2001; 25: 508-515 [PMID: 11257626 DOI: 10.1016/S0891-4971(01)01000-1]

Kallinowski F, Wassmer A, Hofmann MA, Harmsen D, Heesemann J, Karch H, Herfarth C, Buhr HJ. Prevalence of oral Yersinia enterocolitica infection in three different strains of inbred mice. J Infect 1995; 37: 509-516 [PMID: 11200563 DOI: 10.1016/S1590-8658(02)80056-1]

Hermon-Taylor J. Two-year-outcomes analysis of Crohn’s disease. Mod Pathol 1993; 6: 212-219 [PMID: 8483983]
erties of Escherichia coli strains isolated from patients with inflammatory bowel disease. *Gut* 1992; 33: 646-650 [PMID: 1612481 DOI: 10.1136/gut.33.5.646]

126 Burke DA, Axon AT. Adhesive Escherichia coli in inflammatory bowel disease and infective diarrhoea. *BMJ* 1988; 297: 102-104 [PMID: 3044946 DOI: 10.1136/bmj.297.6641.102]

127 Sasaki M, Sitaraman SV, Babbin BA, Gerner-Smidt P, Ribot EM, Garrett N, Alpern JA, Akyildiz A, Theiss AL, Nrusat A, Klaproth JM. Invasive Escherichia coli are a feature of Crohn’s disease. *Lab Invest* 2007; 87: 1042-1054 [PMID: 17668846 DOI: 10.1038/lab.invest.5700661]

128 Chassaign B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. *Gastroenterology* 2011; 140: 1720-1728 [PMID: 21530738 DOI: 10.1016/j.gastro.2011.01.054]

129 Boudeau J, Glasser AL, Masserer ET, Joly B, Darfeuille-Michaud A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn’s disease. *Infect Immun* 1999; 67: 4499-4501 [PMID: 10458692]

130 Bringer MA, Billard E, Glasser AL, Colombel JF, Darfeuille-Michaud A. Replication of Crohn’s disease-associated AIEC within macrophages is dependent on TNF-α secretion. *Lab Invest* 2012; 92: 411-419 [PMID: 2204084 DOI: 10.1038/lab.nvest.2011.156]

131 Glasser AL, Boudeau J, Barnich N, Perruchot MH, Colombel JF, Darfeuille-Michaud A. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. *Infect Immun* 2001; 69: 5529-5537 [PMID: 11500426 DOI: 10.1128/JAI.69.9.5529-5537.2001]

132 Lapaquette P, Glasser AL, Huett A, Xavier RJ, Darfeuille-Michaud A. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. *Cell Microbiol* 2010; 12: 99-113 [PMID: 19747213 DOI: 10.1111/j.1462-5822.2009.01381.x]

133 Wine E, Ossa JC, Gray-Owen SD, Sherman PM. Adherent-invasive Escherichia coli, strain LF82 disrupts apical functional complexes in polarized epithelia. *BMC Microbiol* 2009; 9: 180 [PMID: 19709415 DOI: 10.1186/1471-2180-9-180]

134 Vazeille E, Bringer MA, Gardarin A, Chambon C, Becker-Paul K, Pender SL, Jakob C, Müller S, Lottaz D, Darfeuille-Michaud A. Role of meprins to protect ileal mucosa of Crohn’s disease patients from colonization by adherent-invasive E. coli. *PLoS One* 2010; 5: e12714 [PMID: 20862502 DOI: 10.1371/journal.pone.0012714]

135 Barnich N, Bringer MA, Clarit L, Darfeuille-Michaud A. Involvement of lipoprotein NiP1 in the virulence of adherent invasive Escherichia coli strain LF82 isolated from a patient with Crohn’s disease. *Infect Immun* 2004; 72: 2484-2493 [PMID: 15102755 DOI: 10.1128/IAI.72.5.2484-2493.2004]

136 Rolhion N, Barnich N, Clarit L, Darfeuille-Michaud A. Strong decrease in invasive ability and outer membrane vesicle release in Crohn’s disease-associated adherent-invasive E. coli strain LF82 with the yfgL gene deleted. *J Bacteriol* 2005; 187: 2266-2269 [PMID: 15774871 DOI: 10.1128/JB.187.7.2266-2269.2005]

137 Rolhion N, Carvalho FA, Darfeuille-Michaud A. OmpC and the sigmaE regulatory pathway are involved in adhesion and invasion of the Crohn’s disease-associated Escherichia coli strain LF82. *Mol Microbiol* 2007; 63: 1684-1700 [PMID: 17567388 DOI: 10.1111/j.1365-2958.2007.05638.x]

138 Rolhion N, Barnich N, Bringer MA, Glasser AL, Ranc J, Hébuterne X, Hofman P, Darfeuille-Michaud A. Abnormally expressed ER stress response chaperone Grp96 in CD favours adherent-invasive Escherichia coli invasion. *Gut* 2010; 59: 1355-1362 [PMID: 20587550 DOI: 10.1136/gut.2010.207456]

139 Barnich N, Boudeau J, Clarit L, Darfeuille-Michaud A. Regulatory and functional co-operation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn’s disease. *J Pathog* 2008; 6: e21199 [PMID: 21698174 DOI: 1371/journal.ppat.1000199]

140 Meconi S, Vercellone A, Levillain F, Payré B, Al Saati T, Capilla F, Desreumaux P, Darfeuille-Michaud A, Altare F. Adherent-invasive Escherichia coli isolated from Crohn’s disease patients induce granulomas in vitro. *Cell Microbiol* 2007; 9: 1252-1261 [PMID: 17223928 DOI: 10.1111/j.1462-5822.2006.00868.x]

141 Martinez-Medina M, Aldeguer X, Lopez-Siles M, Gonzalez-Huix F, Lopez-Oliu C, Dubi G, Blanco JE, Blanco J, Garcia-Lij LF, Darfeuille-Michaud A. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. *Inflamm Bowel Dis* 2009; 15: 872-882 [PMID: 192235912 DOI: 10.1002/ibd.20868]

142 Masselet E, Boudeau J, Colombel JF, Neut C, Desreumaux P, Joly B, Cortot A, Darfeuille-Michaud A. Genetically related Escherichia coli strains associated with Crohn’s disease. *Gut* 2001; 48: 320-325 [PMID: 11171820 DOI: 10.1136/gut.48.3.320]

143 Boudeau J, Barnich N, Darfeuille-Michaud A. Type 1 pilomediated adherence of Escherichia coli strain LF82 isolated from Crohn’s disease is involved in bacterial invasion of intestinal epithelial cells. *Mol Microbiol* 2001; 39: 1272-1284 [PMID: 11251843 DOI: 10.1111/j.1365-2958.2001.02315.x]

144 Miquel S, Peyretailleade E, Clarit L, de Vallée A, Dossat C, Vacherie B, Zineb el H, Seguens B, Barve V, Sauvanet P, Neut C, Colombel JF, Medigue C, Mojica FJ, Peyret P, Bonnet R, Darfeuille-Michaud A. Complete genome sequence of Crohn’s disease-associated adherent-invasive E. coli strain LF82. *PLoS One* 2010; 5: e12714 [PMID: 20862502 DOI: 10.1371/journal.pone.0012714]

145 Barnich N, Bringer MA, Clarit L, Darfeuille-Michaud A. Properties of Escherichia coli strains isolated from patients with Crohn’s disease. *Gut* 2005; 54: 991-995 [PMID: 15910508 DOI: 10.1136/gut.2004.066255]

146 Barnich N, Carvalho FA, Darfeuille-Michaud A. Effect of PmlA on cell invasion and in vivo virulence of the Crohn’s disease-associated Escherichia coli strain LF82. *Cell Microbiol* 2008; 10: 575-585 [PMID: 18597337 DOI: 10.1111/j.1462-5822.2007.00868.x]
tinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 2011; 53: 994-1002 [PMID: 22002980 DOI: 10.1093/cid/cir632]

181 Borody TJ, George L, Andrews P, Brandl S, Noonan S, Cole P, Hyland L, Morgan A, Maysey J, Moore-Jones D. Bowel-flora alteration: a potential cure for inflammatory bowel disease and irritable bowel syndrome? Med J Aust 1989; 150: 604 [PMID: 2783214]

182 Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease. Aliment Pharmacol Ther 2012; 36: 503-516 [PMID: 22827693 DOI: 10.1111/j.1365-2036.2012.05220.x]

183 Zhang FM, Wang HG, Wang M, Cui BT, Fan ZN, Ji GZ. Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn’s disease. World J Gastroenterol 2013; 19: 7213-7216 [PMID: 2422969 DOI: 10.3748/wjg.v19.i41.7213]
