Vaccines remain the single greatest public health tool to combat infectious diseases. Vaccine formulation and delivery are key to the ability of vaccines to induce the desired immune responses. One goal of vaccine delivery is to present vaccine antigens in a manner that enhances antigen-presenting-cell (APC) activation, leading to antigen/organism uptake and processing of vaccine antigen(s). Delivery methods or adjuvants that safely enhance vaccine immunogenicity/efficacy are desirable for vaccines that are marginally effective and for vaccines administered to low responders or immunocompromised populations. Additional goals are to reduce the number of doses required to induce effective, vaccine responses and to reduce the amount of vaccine/dose, especially when a single dose of vaccine is administered, as with annual influenza vaccines. Lastly, in pandemics, a vaccine that produces high titers after a single administration would be beneficial.

Recent advances in the understanding of how innate mechanisms influence adaptive immunity have led to more rational design in the development of new vaccine adjuvants and delivery systems.

Aluminum salts were the first adjuvants licensed for human vaccines in the 1920s. The licensure of non-aluminum salt adjuvants took an additional 80 years (1). One reason for this long gap is that the principles of adjuvant activity were largely unknown; thus, the development of adjuvants was empirical. Moreover, many adjuvants, including Freund’s adjuvant, were reactogenic and not acceptable for licensure (2). Recent methods to improve vaccine delivery have taken several approaches, including the use of virosomes (3–5), vector-based methods (6–8), liposome-based methods (9–11), and the use of more traditional formulation with adjuvants (12–17). Each of these methods has some drawbacks, in terms of reactogenicity, regulatory issues, product stability, or time required for formulation; however, each of these methods focuses on presenting the vaccine as a particulate.

To enhance vaccine immunogenicity over that seen when conventional alum-based delivery methods are used, we focused on identifying ways to deliver vaccines such that vaccine antigens are released over time. This led to our development of a new vaccine delivery method we call VacSIM (vaccine self-assembling immune matrix).

VacSIM is based on the unique properties of the (RADA)4 synthetic oligopeptide and other biopolymers (18–22). The (RADA)4 synthetic oligopeptide was created by Zhang (22) and commercialized by 3-D Matrix Inc. for cell scaffolding and is currently in clinical trials for wound healing (PuraStat), tissue repair (23), and dental implant scaffolding (PuraMatrix) (24). As such, it has already undergone third-party reactogenicity and toxicity testing (25). VacSIM is composed solely of the (RADA)4 synthetic oligopeptide. Thus, it is biocompatible and biodegradable. Ex vivo, a 1.0% VacSIM solution is in liquid phase, resulting in the flexibility to mix virtually any antigen, organism, and adjuvant. Upon injection into tissue, VacSIM self-assembles into hydrated nanofibers (26), forming a gel matrix depot, which entails...
and concentrates vaccine components in the aqueous phase at the injection site (27). We hypothesize that the vaccine depot allows slow egress of antigen out of the gel pores, leading to persistent release of antigen, which is considered to be important in the development of robust adaptive immunity and memory responses (28, 29). We theorize that slow release of antigen and possible cellular infiltration of the VacSIM gel depot increases activation and maturation of antigen-presenting cells, which then drive more robust adaptive responses. Further, it is possible that the gel depot protects vaccine components from degradation.

VacSIM is different from other hydrogels, such as alginate and methacrylates, as well as microneedle and layer-by-layer technology, as all of these require polymerization \textit{ex vivo} (30–35). Further, it is different from other self-assembling peptide (SAP) technologies, such as the Q11 peptide, where the antigenic motif must be directly conjugated to the SAP (36–38). In contrast, VacSIM is prepared by simply mixing SAP and antigens prior to administration.

The biphasic property of VacSIM, coupled with the inert nature of the resultant vaccine gel depot, provides novel technology that can be translated for use in a multitude of vaccines. In this study, we tested the ability of VacSIM to enhance specific immune responses to the recombinant hepatitis B virus surface antigen.

MATERIALS AND METHODS

Immunizations. Five- to seven-week-old female BALB/c or C57BL/6 mice were purchased from Harlan Laboratories, housed under specific-pathogen-free conditions, and allowed to acclimate for 1 week prior to manipulation. All animal work was performed in accordance with all applicable policies and approved by the University of Georgia institutional animal care and use committee. Mice were immunized subcutaneously with recombinant hepatitis B virus surface antigen (rHBsAg), subtype adw (5 μg; Fitzgerald Industries, Inc., North Acton, MA, USA), with or without CpG (50 μg; ODN 1826; InvivoGen, Inc., San Diego, CA, USA), via alhydrogel (250 μg; Inject Alum; Thermo Fisher Scientific, Inc., Pittsburgh, PA, USA) or without CpG, by VacSIM with or without CpG, or in Freund’s (13 μl; Sigma-Aldrich Co., St. Louis, MO, USA) or sham immunized with VacSIM or phosphate-buffered saline (PBS), at a maximum volume of 200 μl per injection site. Three or four weeks later, as indicated in the figures, mice were administered a second, identical immunization.

Antibody responses. For the kinetic studies, blood samples were collected from all immunized and control mice weekly, beginning at week −1 prior to primary immunization. rHBsAg-specific antibodies in sera were analyzed by enzyme-linked immunosorbent assay (ELISA). Briefly, plates were coated with 4 μg/ml rHBsAg before singly diluted serum (1:800 for IgA and IgG2a, and 1:1,200 for IgM, IgG, and IgG1) was added. Antibodies specific for rHBsAg were detected by horseradish peroxidase (HRP)-conjugated secondary antibodies (1:2,000 anti-IgA, 1:2,500 anti-IgM, and 1:2,500 anti-IgG from Santa Cruz; 1:1,000 anti-IgG1 and 1:1,000 anti-IgG2a from Invitrogen). Plates were developed with SureBlue TMB = tetramethylbenzidine) 1-component substrate (KPL), and the reaction was stopped by the addition of 2 N sulfuric acid. To evaluate the IgG1/IgG2a ratio, we multiplied the absorbance values by the dilution factors of the sera to normalize prior to dividing. For nonkinetic studies, the absorbance values were from the minimum value to the maximum, with the mean displayed as a plus sign. Statistical analyses (one- or two-way analyses of variance [ANOVA]) with Bonferroni posttests) were performed using Prism 5 (GraphPad, La Jolla, CA, USA). Differences were considered statistically significant when P values were ≤0.05, as indicated by asterisks in the figures.

RESULTS

Using recombinant hepatitis B surface antigen (rHBsAg) as a model immunogen, we compared the VacSIM delivery to that of rHBsAg in alum or Freund’s, with or without CpG as a model adjuvant for use with VacSIM and alum.

VacSIM enhances and sustains specific humoral immunity. To assess humoral immunity, total rHBsAg-specific IgA, IgM, and IgG titers were quantified at various times postimmunization and are presented in Fig. 1A. Mice immunized with VacSIM-delivered rHBsAg had higher specific IgM levels than CFA-delivered antigen (Fig. 1B, top) (P < 0.05) 21 days after a single injection. When mice were given rHBsAg administered with CpG adjuvant and delivered by VacSIM, IgM levels were higher than those in all other groups except those receiving antigen by VacSIM without CpG adjuvant. Mouse immunized with rHBsAg in VacSIM developed anti-rHBsAg IgG antibody within 2 weeks postprime. At 21 days postprime (Fig. 1B, bottom), mice receiving rHBsAg in VacSIM had significantly higher levels of rHBsAg-specific IgG antibodies than mice immunized with rHBsAg alone (P < 0.0001) or rHBsAg with the standard adjuvant/delivery methods, CpG (P <
When rHBsAg was delivered by CpG-adjuvanted VacSIM, the IgG levels postprime were higher than those obtained with CpG-adjuvanted alum delivery of rHBsAg (P < 0.0001) and all other groups (P < 0.0001). One week postboost (Fig. 1A), levels of antibodies were similar between groups, with the exception that the group immunized with rHBsAg in VacSIM plus CpG had higher specific IgA levels than mice immunized with rHBsAg in Freund’s. Immunization via VacSIM, compared to immunization with CpG, alum, or Freund’s adjuvant, generated higher levels of specific antibody responses after only a single injection, which remained elevated postboost.

To determine if immunization using VacSIM would alter rHBsAg-specific IgG isotype responses, we measured rHBsAg-specific IgG1 and IgG2a levels in mice after the prime and boost. As shown in Fig. 1C, the IgG1/IgG2a ratio elicited in vivo shows that VacSIM delivery drove a mixed Th1/Th2 response, which could be skewed further toward the Th1 type by the inclusion of CpG. As expected, mice immunized with Freund’s trended toward a Th1 response, and those immunized with alum trended toward a Th2 response, which could be driven toward Th1 by addition of CpG. Overall, these data show that single immunization with VacSIM enhances specific antibody responses over that seen with single immunization in the absence of adjuvants or with conventional adjuvants such as alum or Freund’s.

To determine if host Th1/Th2 bias would alter the effect of VacSIM, both C57BL/6 and BALB/c mice (Th1 and Th2 biased, respectively) were immunized in a prime-boost manner, 3 weeks apart, and serum was collected 3 weeks postboost. Tenfold serial dilutions of the serum were analyzed by ELISA, as described in Materials and Methods. The reciprocal value of the last dilution showing a positive value after baseline correction was recorded as the endpoint titer. As shown in Fig. 2, rHBsAg delivered by VacSIM and CpG had high titers of all antibody types tested. Evaluat-
ing specific antibodies in serum showed high IgM, IgG, IgG1, and IgG2b endpoint titers in both C57BL/6 and BALB/c mice.

Together, these results indicate that immunization of mice with rHBsAg using VacSIM substantially improves and sustains humoral immunity while requiring fewer doses and that it can be used in a variety of host environments.

VacSIM induces rHBsAg-specific cellular responses. rHBsAg-specific cytotoxic-T-lymphocyte (CTL) responses were evaluated after the prime and boost by IFN-γ ELISpot and flow cytometry upon restimulation of splenocytes with the dominant CD8-restricted peptide epitope (Fig. 3). All delivery methods tested resulted in specific IFN-γ ELISpot responses. Responses in groups administered rHBsAg via VacSIM with and without CpG were not significantly higher than those in other groups. When molecular specificity of the CTL was examined by flow cytometry, all groups showed an increase in percentage of CD8+ T cells with T cell receptors specific for the immunodominant epitope. Responses in the group immunized with rHBsAg adjuvanted with alum were significantly higher than the others, but only after the boost.

We analyzed cytokine responses to rHBsAg at 2 weeks post-boost. Splenocytes were stimulated with rHBsAg ex vivo for 24 to 72 h, and levels of Th1 and Th2 cytokines were determined as an estimate of the Th1/Th2 cytokine balance of the host. Figure 4A shows the levels of the proinflammatory cytokines IFN-γ and TNF-α, collected at 24 and 48 h after ex vivo rHBsAg restimulation of splenocytes. As expected, splenocytes from mice administered phosphate-buffered saline (PBS) or VacSIM, without rHBsAg co-administration, had minimal IFN-γ secretion, whereas immunization with rHBsAg alone resulted in a dramatic increase in IFN-γ at 24 h. Similarly, splenocytes from mice immunized via VacSIM without CpG made amounts of IFN-γ and TNF-α similar to those in splenocytes from mice immunized with only rHBsAg. Interestingly, splenocytes from mice immunized using Freund’s adjuvant delivery of rHBsAg had the lowest levels of IFN-γ expression at 24 h, close to the amounts produced from splenocytes from PBS (sham)- or VacSIM only-immunized mice. Surprisingly, splenocytes from VacSIM with CpG-immunized mice had reduced IFN-γ expression at 24 h, compared to splenocytes from VacSIM-
rHBsAg, CpG-rHBsAg, and rHBsAg-alone groups. This result suggests that VacSIM does not cause an immediate proinflammatory response in the host. All remaining comparisons were not significantly different from that obtained with antigen alone.

We assayed for IL-4, IL-5, and IL-10 at 48 and 72 h after rHBsAg restimulation by ELISA (Fig. 4B). Cells from mice immunized with rHBsAg in VacSIM or Freund’s adjuvant showed increased levels of anti-inflammatory cytokines at both time points, with significantly higher levels of IL-10 at 72 h than cells from rHBsAg-only mice. Immunization via alum also induced a not statistically significant increase in production of anti-inflammatory cytokines. Addition of CpG to the immunogens inhibited production of Th2 and anti-inflammatory cytokines.

Overall, these results suggest that VacSIM by itself is not pro-inflammatory and that it has significant potential to enhance immunogenicity and efficacy of various immunogens.

DISCUSSION

Design and development of novel, nonreactogenic adjuvants, including synthetic LPS derivatives such as glucopyranosyl lipid A (GLA), are aimed at improving vaccine immunogenicity and efficacy (14). Candidate vaccines have been defined for a number of diseases that are currently unable to drive reasonable levels of efficacy. For example, vaccines that need to drive robust CTL responses to kill intracellular pathogens induce weak Th1-biased responses (39–41). Here, we compared a new delivery method (VacSIM) to alhydrogel and CFA delivery of the rHBsAg immunogen, to determine if VacSIM delivery would drive enhanced hepatitis B-specific humoral and cellular responses. For VacSIM, alum and rHBsAg alone, we also compared immunization plus or minus CpG as an adjuvant. The results demonstrate that delivery of rHBsAg with VacSIM with or without CpGs functioned to increase specific humoral (Fig. 1 and 2) and cellular (Fig. 3 and 4) responses. Alum has been considered a reasonable, nonreactogenic adjuvant for years, promoting antigen presentation in a particulate form and enhancing internalization by APCs (42). The results presented here show that for the rHBsAg, VacSIM is superior to alum, significantly enhancing the humoral response postprime, by increasing antibody titers at earlier time points and maintaining them in a sustained manner (Fig. 1). The ability of VacSIM to increase early rHBsAg-specific adaptive immune responses may be due to the slow release of antigen from the gel depot, possibly enhancing antigen uptake by APCs compared to that seen when aluminum hydroxide particles or oil-in-water emulsions are used.

A major focus for enhancing immunogenicity is activation of...
the innate immune system by incorporating agents that ligate one or more innate immune pattern recognition receptors on antigen-presenting cells. Maturation of APCs is essential for priming antigen-specific naive T cells, influencing both the magnitude and the type of the T and B cell responses as well as the induction of memory cells (2). Furthermore, the interaction of T cells and APCs in the presence of immunomodulatory molecules (IL-4, IL-2, IFN-γ, IL-12, TGF-β, and/or other cytokines) defines the lineage commitment of CD4+ T cells to Th1 and Th2 subtypes.

We examined the T helper biasing of the humoral response by evaluating IgG subtypes produced by the various immunization schemes. Immunization using VacSIM resulted in a mixed Th1/Th2 type antibody response, with more IgG1 than IgG2a. Adding CpG to VacSIM skewed the response toward Th1. We also tested biasing of cellular responses by analyzing antigen-specific restimulation of splenocytes after the boost. In that context, VacSIM induced a mixed Th1/Th2 type response, with high levels of all cytokines. Interestingly, when CpG was added to rHBsAg and VacSIM, the levels of all cytokines were reduced.

Conclusions. The VacSIM delivery system tested in this study was superior to conventional delivery/adjuvants in driving early immune responses. Given the flexibility afforded by VacSIM, differential administration of adjuvants and delivery methods can be employed to produce a Th2 or mixed-type response, depending on the outcome desired for each vaccine target. In addition to our studies on VacSIM delivery of recombinant subunit vaccines, we are also evaluating VacSIM as a vaccine delivery method for parasitic and viral vaccines. In this regard, we are evaluating VacSIM for delivery of influenza vaccines, including both whole inactivated virus and subunit vaccines. A major goal of ongoing studies is to determine the mechanism(s) whereby VacSIM delivery of vaccines results in enhanced vaccine immunogenicity and efficacy. Lastly, we are working to define optimal parameters for VacSIM delivery, particularly the concentration of the (RADA)4 peptide, as gel pore size will get smaller/larger with higher/lower (RADA)4 concentration, respectively, altering the rate of antigen release from the gel depot. Because VacSIM delivery leads to release of antigen from the gel depot over time, we also need to optimize the interval between prime and boost and determine whether VacSIM will function to deliver mucosal vaccines. In

FIG 4 VacSIM delivery produces a mixed Th1/Th2 type cellular response. Mice were immunized 4 weeks apart, and splenocytes were prepared from mice 2 weeks postboost. For rHBsAg-immunized mice, there are 10 mice per group and data were pooled from 2 independent experiments, whereas control groups (PBS- and VacSIM-immunized) had only 5 mice per group. Splenocytes were restimulated with 5 μg/ml rHBsAg, and levels of proinflammatory (IFN-γ and TNF-α) (A) and anti-inflammatory (IL-4, IL-5, and IL-10) (B) cytokines were measured at 24, 48 or 72 h by ELISA. Statistical differences (*, \(P < 0.05\); **, \(P < 0.01\); ***, \(P < 0.001\); ****, \(P < 0.0001\)) were determined by two-way ANOVA with Bonferroni posttest.

March 2015 Volume 22 Number 3 cvi.asm.org

Clinical and Vaccine Immunology cvi.asm.org

Adjuvanticity of Vaccine Self-Assembling Immune Matrix

March 2015 Volume 22 Number 3 cvi.asm.org

Clinical and Vaccine Immunology cvi.asm.org
summary, VacSIM delivery is a flexible “plug-and-play” platform technology, representing a new approach for delivery of vaccines.

ACKNOWLEDGMENTS
This work was supported by NIH grants AI071883 and AI036657 awarded to D.A.H. and Coordination for the Improvement of Higher Level Education Personnel (CAPES) and The Council of the International Educational Exchange of Scholars (Fulbright, U.S. Department of State), both awarded to R.F.Q.G.

We thank Cac Bui and Lindsay Nyhoff for technical assistance and the University of Georgia College of Veterinary Medicine Cytometry Core Facility.

Patent applications have been filed on behalf of the authors for the use of the polypeptide matrix as a vaccine delivery system.

REFERENCES
1. De Gregorio E, Trittio E, Rappuoli R. 2008. Alum adjuvanticity: unraveling a century old mystery. Eur J Immunol 38:2068–2071. http://dx.doi.org/10.1002/eji.200838648.
2. Miyaji EN, Carvalho E, Oliveira ML, Raw I, Ho PL. 2011. Trends in adjuvant development for vaccines: DAMPs and PAMPs as potential new adjuvants. Braz J Med Biol Res 44:500–513. http://dx.doi.org/10.1590/S0100-879X2011000700060.
3. Easterbrook JD, Schwartzman LM, Gao J, Kash JC, Morens DM, Couzens L, Wan H, Eichelberger MC, Taubenberger JK. 2012. Protection against a lethal H5N1 influenza challenge by intranasal immunization with virus-like particles containing 2009 pandemic H1N1 neuraminidase in mice. Virology 432:39–44. http://dx.doi.org/10.1016/j.virol.2012.06.003.
4. Deng MP, Hu ZH, Wang HL, Deng F. 2012. Developments of subunit and VLP vaccines against influenza A virus. Virolog Sin 27:145–153. http://dx.doi.org/10.1007/s12250-012-3241-1.
5. Hossain MJ, Bourgeois M, Quan FS, Lipatov AS, Song JM, Chen LM, Comps RW, York I, Kang SM, Donis RO. 2011. Virus-like particle vaccine containing hemagglutinin confers protection against 2009 H1N1 pandemic influenza. Clin Vaccine Immunol 18:2010–2017. http://dx.doi.org/10.1128/CVI.02046-11.
6. Mooney AJ, Li Z, Gabbard JD, He B, Tompkins SM. 2013. Recombinant parainfluenza virus V5 vaccine encoding the influenza virus hemagglutinin protects against H5N1 highly pathogenic avian influenza virus infection following intranasal or intramuscular vaccination of BALB/c mice. J Virol 87:363–371. http://dx.doi.org/10.1128/JVI.02330-12.
7. Cornellsen LA, de Leeuw OS, Tacken MG, Klos HC, de Vries RP, de Boer-Luijtje EA, van Zoelen-Bos DJ, Riggert A, Rottier PJ, Moormann RJ, de Haan CA. 2012. Protective efficacy of Newcastle disease virus expressing soluble trimeric hemagglutinin against highly pathogenic H5N1 influenza in chickens and mice. PLoS One 7:e44447. http://dx.doi.org/10.1371/journal.pone.0044447.
8. Hashem A, Jaentschke B, Gravel C, Tocchi M, Rosu-Myles M, He R, Li X. 2012. Subcutaneous immunization with recombinant adenovirus expressing influenza A nucleoprotein protects mice against lethal viral challenge. Hum Vaccin Immunother 8:425–430. http://dx.doi.org/10.4161/hv.19109.
9. Rosenkranz I, Vingsbo-Lundberg S, Bundgaard TJ, Andersen P, Agger EM. 2011. Enhanced protective efficacy of a pre-pandemic influenza A H5N1 vaccine in mice. Vaccine 29:2474–2486. http://dx.doi.org/10.1016/j.vaccine.2011.01.009.
10. Even-Or O, Joseph A, Itskovitz-Cooper N, Samira S, Rochlin E, Eliyahu H, Goldwaser I, Balasingam S, Mann AJ, Lambkin-Williams R, Kedar E, Barenholz Y. 2011. A new intranasal influenza vaccine based on a novel polycationic lipid-ceramide carbamoyl-spermine (CCS). IL. Studies in mice and ferrets and mechanism of adjuvanticity. Vaccine 29:2474–2486. http://dx.doi.org/10.1016/j.vaccine.2011.01.009.
11. Dong L, Liu F, Freeman J, Hong DK, Lewis DB, Monar T, Warner JF, Belcher JA, Patel J, Hancock K, Katz JM, Lu X. 2012. Cationic liposome-DNA complexes (CLDC) adjuvant enhances the immunogenicity and cross-protective efficacy of a pre-pandemic influenza A H5N1 vaccine in mice. Vaccine 30:254–264. http://dx.doi.org/10.1016/j.vaccine.2011.10.103.
12. Principi N, Esposito S. 2012. Adjuvanted influenza vaccines. Hum Vaccin Immunother 8:59–66. http://dx.doi.org/10.4161/hv.8.1.18011.
13. Zucconi GV, Pariani E, Scaramuzza A, Santoro L, Giani E, Macdonedi M, Gazzarri A, Anselmi G, Amendola A, Zanetti A. 2011. Long-lasting immunogenicity and safety of a 2009 pandemic influenza A(H1N1) MF59-adjuvanted vaccine when co-administered with a 2009-2010 seasonal influenza vaccine in young patients with type 1 diabetes mellitus. Diabet Med 28:1530–1536. http://dx.doi.org/10.1111/j.1464-5491.2011.03439.x.
14. Behzad H, Huckriede AL, Haynes L, Gentleman B, Coyle K, Wilscht JC, Kollmann TR, Reed SG, McElhaney JE. 2012. GLA-SE, a synthetic Toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults, J Infect Dis 205:466–473. http://dx.doi.org/10.1093/infdis/jir769.
15. Clegg CH, Roque R, van Hoeven N, Perrone L, Baldwin SL, Rininga JA, Bowen RA, Reed SG. 2012. Adjuvant solution for pandemic influenza vaccine production. Proc Natl Acad Sci U S A 109:17585–17590. http://dx.doi.org/10.1073/pnas.1203708109.
16. Coler RN, Bladerd SL, Shaverdian N, Bertholet S, Reed SJ, Raman VS, Lu X, DeVos J, Hancock K, Katz JM, Vedvick TS,Duthie MS, Clegg CH, Van Hoeven N, Reed SG. 2010. A synthetic adjuvant to enhance and expand immune responses to influenza vaccines. PLoS One 5:e33677. http://dx.doi.org/10.1371/journal.pone.0033677.
17. Manon MJ, Cox PSC. 9 August 2012. Safety and immunogenicity of PanBlock influenza vaccine in healthy adults. ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT01147068. Accessed Accessed 29 October 2012.
18. Kondo J, Jin M, Kurz B, Hungh S, Zheng S, Grodzinski AJ, WD, 2002. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99:9996–10001. http://dx.doi.org/10.1073/pnas.142309999.
19. Iwai Y, Matsuda Y, Nakatsuka M, Mikami Y, Kumabe S. 2012. A preliminary study of the dental implant therapy—initial osteogenesis of human mesenchymal stem (HMS00014) cells on titanium discs with different surface modifications. Okajimas Folia Ana Jpn 88:133–140. http://dx.doi.org/10.2535/ofaj.88.133.
20. Horii A, Wang X, Gelain F, Zhang S. 2007. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2:e190. http://dx.doi.org/10.1371/journal.pone.0001980.
21. Henriksson H, Hagman M, Hron M, Lindahl A, Brisby H. 2011. Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies. J Tissue Eng Regen Med 6:738–747. http://dx.doi.org/10.1002/term.480.
22. Zhang S. 2003. Fabrication of novel biomaterials through molecular self-assembly, Nat Biotechnol 21:1171–1178. http://dx.doi.org/10.1038/nbt874.
23. Hiroki Y, Nagasaka T, Kobayashi S, Kobayashi N, Fujisawa T. 2014. Management of peritoneal effusion by sealing with a self-constructing polypeptide following pelvic surgery. Hepatogastroentorlogy 61:349 –353.

Downloaded from http://cvi.asm.org on July 19, 2018 by guest
31. Browning MB, Cereceres SN, Luong PT, Cosgriff-Hernandez EM. 2014. Determination of the in vivo degradation mechanism of PEGDA hydrogels. J Biomed Mater Res A 102:4244–4251. http://dx.doi.org/10.1002/jbm.a.35096.
32. Jose S, Hughbanks ML, Binder BY, Ingavle GC, Leach JK. 2014. Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine–Histidine–Lysine (GHK)-modified alginate hydrogels. Acta Biomater 10:1955–1964. http://dx.doi.org/10.1016/j.actbio.2014.01.020.
33. Xiong Y, Yan K, Bentley WE, Deng H, Du Y, Payne GF, Shi XW. 2014. Compartmentalized multilayer hydrogel formation using a stimulus-responsive self-assembling polysaccharide. ACS Appl Mater Interfaces 6:2948–2957. http://dx.doi.org/10.1021/am405544r.
34. Jorquera PA, Choi Y, Oakley KE, Powell TJ, Boyd JG, Palath N, Haynes LM, Anderson LJ, Tripp RA. 2013. Nanoparticle vaccines encompassing the respiratory syncytial virus (RSV) G protein CX3C chemokine motif induce robust immunity protecting from challenge and disease. PLoS One 8:e74905. http://dx.doi.org/10.1371/journal.pone.0074905.
35. Lee JW, Choi SO, Felner EI, Prausnitz MR. 2011. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small 7:531–539. http://dx.doi.org/10.1002/smll.201001091.
36. Rudra JS, Tian YF, Jung JP, Collier JH. 2010. A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A 107:622–627. http://dx.doi.org/10.1073/pnas.0912124107.
37. Chesson CB, Huelsmann EJ, Lacey AT, Kohlhapp FJ, Webb MF, Nabatiyan A, Zloza A, Rudra JS. 2014. Antigenic peptide nanofibers elicit adjuvant-free CD8(+) T cell responses. Vaccine 32:1174–1180. http://dx.doi.org/10.1016/j.vaccine.2013.11.047.
38. Rudra JS, Mishra S, Chong AS, Mitchell RA, Nardin EH, Nussenzweig V, Collier JH. 2012. Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials 33:6476–6484. http://dx.doi.org/10.1016/j.biomaterials.2012.05.041.
39. Brandzaeg P. 2007. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25:5467–5484. http://dx.doi.org/10.1016/j.vaccine.2006.12.001.
40. Roy MJ, Wu MS, Barr LJ, Fuller JT, Tussey LG, Speller S, Culp J, Burkholler JK, Swain WF, Dixon RM, Widera G, Vessey R, King A, Ogg G, Gallimore A, Haynes JR, Heydenburg Fuller D. 2000. Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19:764–778. http://dx.doi.org/10.1016/S0264-410X(00)00302-9.
41. Wang R, Doolan DL, Le TP, Hedstrom RC, Coonan KM, Charoenvit Y, Jones TR, Hobart P, Margalith M, Ng J, Weiss WR, Sebegah M, de Taisne C, Norman JA, Hoffman SL. 1998. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282:476–480. http://dx.doi.org/10.1126/science.282.5388.476.
42. Morefield GL, Sokolovska A, Jiang D, HogenEsch H, Robinson JP, Hem SL. 2005. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine 23:1588–1595. http://dx.doi.org/10.1016/j.vaccine.2004.07.050.