Investigation of the suitable dimensions for hydraulic prop support of self-advancing hydraulic roof support in underground mining at Quang Ninh coal basin in Viet Nam

Yu V Lykov¹, Bui Thanh Nhu², Do Duc Trong¹ and Le Van Tung¹,².

¹ St. Petersburg Mining University, 2, 21 Line of Vasilevsky Island, St. Petersburg, 199106, Russian Federation
² Quang Ninh University of Industry, 18 streets, Yen Tho Ward, Quang Ninh province, Viet Nam

E-mail: Ductrongiemm@mail.com

Abstract. According to the study, the authors have calculated and determined the reasonable size of hydraulic prop support of self-advancing hydraulic roof support, used in underground coal mining in the Quang Ninh area. The study took into account various factors that are related to the geological conditions of the mine areas, the manufacturing materials, and mining technology. The results obtained from the study can be reasonably applied to calculate the suitable size of the hydraulic prop support based on the durability and stability required for coal mines with similar geological conditions as the Quang Ninh mines. The study was carried out with the aim of improving the efficiency of using hydraulic prop support and reducing product costs. In addition, the research results can be the basis for calculating other types of hydraulic prop support used as a reference for manufacturing other underground coal mining supports at Quang Ninh coal basin.

1. Introduction

Self-advancing hydraulic roof support (Figure 1) is a device used to support coal in a coal mine kiln to protect the mining space and to control kiln pressure.

Figure 1. Self-advancing hydraulic roof support ZH 1600/16/24Z

where: 1 - metal articulated roof beam; 2 - supporting beams; 3 - linear cylinder; 4 - cylinder lift the roof first; 5 - front roof; 6 - rear roof; 7 - hydraulic control station; 8 - shield; 9 - hydraulic prop.
The self-advancing hydraulic roof support must be sustainable, stable, light weighted and long-lasting. The calculation of its design consists of two main parts: the metal articulated roof beam design and the system of hydraulic supports [1, 2].

Figure 2. Structure of hydraulic prop support

The principle of operation. The emulsification solution is pumped under high pressure through the main supply line via the distribution valve assembly to the cylinder, causing kinetic energy for the hydraulic prop support operation. The whole structure is movable thanks to the support of bulkhead structure and supporting beams. Firstly, the two-way hydraulic prop support unloads simultaneously leading to a lifting of the hydraulic prop support. The metal articulated roof beam is on the supporting beams, and during the lifting process it injects the solution into the pushing cylinder. The supporting beams represent the fulcrum to support the articulated metal. The roof beam moves forward and loads the pillar to support the wall, completing the support move [3,4].

While working, the maximum total load (Qmax) applied to the roof metal equates to 160 tons (Figure 1). That load is transferred to the ground through 4 hydraulic prop supports. Due to the designated connection between the hydraulic prop supports; the metal roof has a spherical shape which allows it to be "self-selected" during operation. When calculating, hydraulic prop support can be considered as a center bearing bar. Previously, the calculation and testing of the durability of cylinders was accomplished by solving of differential equations combined with stress standard equivalent to Tresca. According to this calculation, the cross-section of the cylinder has not been calculated in the most optimal way. Therefore, it does not properly reflect the ability to withstand the stresses of the cylinder, leading to an increase in the cylinder wall thickness (minimum thickness according to Tresca standards) [5,6]. In this paper, the authors used the equivalent stress standard Von - Mises [7,8] (Figure 3) instead of the Tresca standard and used the criteria for calculating the critical load to calculate the dimensional details on the durability of pistons, cylinders, and pillar stability. This is undertaken in order to minimize the weight of hydraulic prop support, make it easier during construction and reduce the cost of using self-advancing hydraulic roof support.

Figure 3. Standard stress equivalent Tresca (polygons) and von-Mises (ellipse)

2. Materials and methods
The piston is a cylindrical bar with a radius rpt in the process of being subjected to axial compressive
force Q and is made of a material with allowable stress as $[\sigma]_1$, so that the smallest radius of the piston is determined by the formula [3,4,5,1]:

$$r_{pr,\text{min}} = \frac{Q}{\pi [\sigma]_1}.$$ (1)

A cylinder is a hollowed geometric shape with an outer radius and an inner radius of r_2, r_1, the pressure inside the cylinder is p, and the problem used to calculate the cylinder is a flat stress problem. For each point on the cylinder, there are 2 main stress components, the stress component σ_t is perpendicular to the radius, the stress component σ_ρ has a radial direction. To determine the relationship between stress components, we need to solve the differential equation (Lame's equations). The equilibrium differential equation of an element on the cylinder wall (Figure 4) (Lame's equations) is determined as follows [9,10,11,12]:

$$\sigma_t - \sigma_t + r \frac{d\sigma_t}{dr} = 0$$ (2)

After solving equation (2) combined with the initial conditions, we get the law of normal stress and shear stresses in the cylinder as follows:

$$\sigma_i = \frac{pr_i^2 + (r_i^2 r_2^2 / \rho^2) p}{r_2^2 - r_1^2}$$ (3)

$$\sigma_\rho = \frac{pr_i^2 - (r_i^2 r_2^2 / \rho^2) p}{r_2^2 - r_1^2}.$$ (4)

Stress tensor with elements in the cylinder wall is determined:

$$\sigma(\rho) = \begin{bmatrix} \sigma_i(\rho) & 0 & 0 \\ 0 & \sigma_i(\rho) & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{pr_i^2 + (r_i^2 r_2^2 / \rho^2) p}{r_2^2 - r_1^2} & 0 & 0 \\ 0 & \frac{pr_i^2 - (r_i^2 r_2^2 / \rho^2) p}{r_2^2 - r_1^2} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$ (5)

The equivalent stress von - Mises is determined as follows:
Thus, the necessary conditions for a cylinder to work safely are:

$$\sigma_{eq}(\rho) = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2} = \rho \frac{r_2^2}{r_2^2 - r_1^2} \sqrt{1 + \frac{3 r_2^4}{\rho^4}}. \quad (5)$$

Thus, the necessary conditions for a cylinder to work safely are:

$$\sigma_{eq}(\rho) = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2} = \rho \frac{r_2^2}{r_2^2 - r_1^2} \sqrt{1 + \frac{3 r_2^4}{\rho^4}} \leq \sigma_2. \quad (6)$$

$[\sigma_2]$ - reasonable stress of cylinder fabricating material. ρ - distance from the center to the points on the cylinder wall $r_1 \leq \rho \leq r_2$.

Solving equation (6), we get the minimum thickness of the cylinder wall:

$$\Delta s_{\text{min}} = \frac{2 r_i}{-1 + \sqrt{\left(\frac{\sigma_2}{\rho}\right)^2 - 2 + \sqrt{\left(\frac{\sigma_2}{\rho}\right)^2} - 3}}. \quad (7)$$

Minimum thickness according to Tresca standard:

$$\Delta s_{\text{min}} = \frac{2 r_i}{\frac{\sigma_2}{\rho} - 2}.$$

Hydraulic prop support can be considered as two solid cylindrical rods with different parameters of inertia moment and length, piston length is l_1, and piston section inertia moment is I_1; corresponding cylinder length is l_2 and the inertial moment of the piston is I_2, axial compression force (Figure 2). The critical load of hydraulic prop support is determined as the solution of the following trigonometric equation [13,14]:

$$K_1 \cos(K_1 l_1) \sin(K_2 l_2) + K_2 \cos(K_2 l_2) \sin(K_1 l_1) = 0 \quad (8)$$

where:

$$k_1 = \frac{Q}{E_1 I_1} \quad ; \quad k_2 = \frac{Q}{E_2 I_2}$$

or:

$$\sqrt{Q_{\text{th}} y_1} \cos\left(\sqrt{Q_{\text{th}} x_1}\right) \sin\left(\sqrt{Q_{\text{th}} x_2}\right) + \sqrt{Q_{\text{th}} y_2} \cos\left(\sqrt{Q_{\text{th}} x_2}\right) \sin\left(\sqrt{Q_{\text{th}} x_1}\right)$$

where:

$$I_1 = \frac{E_1}{4} r_1^4; I_2 = \frac{E_2}{4} (r_2^4 - r_1^4); x_1 = \frac{l_1}{\sqrt{E I_1}}; x_2 = \frac{l_2}{\sqrt{E I_2}}; y_1 = \frac{1}{\sqrt{E I_1}}; y_2 = \frac{1}{\sqrt{E I_2}}$$

E - Young’s modulus of the material. y_i - displacement of hydraulic prop support. Stable condition is given as $P_{\text{th}} < Q_{\text{th}}$ (where Q_{th} - the critical load at which the hydraulic prop support is stable).

When conducting design calculations for the hydraulic prop supports, conditions which ensure both the strength and their lightest weight are [9,10, 15]:

$$V = \pi \left(r_{11}^2 l_1 - r_{12}^2 l_2 + r_{21}^2 l_1 - r_{22}^2 l_2 \right) \rightarrow \min \quad (10)$$
3. Results and Discussion

According to the study, the calculation of reasonable parameters for hydraulic prop supports is done by combining two conditions: durable condition and stable condition. Combining the conditions (1, 7, 8, 10) we get a reasonable size condition of the hydraulic prop support as follows:

\[
\begin{align*}
 r_{pt,min} &= \sqrt[\pi \sigma^t_1] {\frac{P_t}{\pi \sigma^t_1}} \\
 \Delta s_{min} &= \sqrt[2+\sqrt{\pi \sigma^t_2}] {\frac{2r_1}{2+\sqrt{\pi \sigma^t_2}}} - 1 \Rightarrow \left(r_{pt}, r_1, r_2 \right)_{\text{nl}}. \\
 P_t &\leq Q_{th} \\
 V = \pi \left(r_{pt,1}^2 - r_{1}^2 \right) + r_2^2 l_2 \rightarrow \text{min}
\end{align*}
\] (11)

To satisfy the condition (11), the implementation of the “Brute Force” algorithm on the C programming language is applied. In which:

- The design load of \(P_t \) varies from 25 tons to 40 tons
- The allowed stress of material \(\sigma \) varies from 600 MPa to 750 MPa
- The piston radius varies from 30 mm to 40 mm
- Inside radius of cylinder varies from 55 mm to 65 mm

The method of calculating the reasonable dimensions is shown by the "Brute force" algorithm diagram to find a reasonable size value for hydraulic prop supports as shown below:

| Change the material \([\sigma] \), loads \(P_t \) | Change the geometric size \(r_{pt}, r_1 \) | Determine the value of \(r_{pt}, r_1 \) to satisfy durable and stable conditions | Find the value of \(V \) so that it is the smallest \((V_{min}) \) | The sizes \(r_{pt}, r_1 \) are such that the following conditions are met: \(V = V_{min} \) |

Figure 5. Schematic calculation of reasonable dimensions according to the "Brute force" algorithm diagram

After running, the calculation program will receive reasonable results for the size of the hydraulic prop support, corresponding to each load case and material as shown in Table 1.

Table 1 shows:

- reasonable size of \(r_1, r_{pt} \): \(r_1 = 65 \text{ mm}, r_{pt} = 30 \text{ mm} \)
- The dimensions of \(r_2 \) are determined by \(r_1 \) and the inside pressure of the cylinder according to the formula \(r_2 = r_1 + \Delta s_{min} \) \((\Delta s_{min} \text{ determined by formula 11}) \).

From the obtained results, we draw 3D graphs that show the dependence on dimensions \(r_2 \) on the working load and manufacturing materials of hydraulic prop support (Figure 6), thereby determining the click value. The most reasonable size of hydraulic prop support.

In the case the work face slope is from 00 to 250, the load on hydraulic prop support from 36 tons to 40 tons is determined. The reasonable dimensions of hydraulic prop support are shown in Table 2.
Table 1. Dependence of the sphericity coefficient of lead inclusions and average sizes of bronze lead inclusions on the modifier concentration

Ptk, N	$[\sigma]$, MPa	Qth, Tons	r1, mm	r2, mm	rpit, mm	Vmin, mm3
250000	600	42.77301	65	67.07666	30	3938887
250000	630	42.47301	65	66.97604	30	3905003
250000	660	42.27301	65	66.88472	30	3874297
250000	690	42.07301	65	66.80148	30	3846345
250000	720	41.77300	65	66.72529	30	3820788
250000	750	41.57300	65	66.65529	30	3797334
280000	600	43.27301	65	67.33107	30	4024784
280000	630	43.07301	65	67.21785	30	396517
280000	660	42.87301	65	67.11513	30	3951854
280000	690	42.57301	65	67.02151	30	3920309
280000	720	42.37301	65	66.93584	30	3891481
280000	750	42.17301	65	66.85714	30	3856031
310000	600	43.67302	65	67.58672	30	4111426
310000	630	43.47302	65	67.46076	30	4068998
310000	660	43.27301	65	67.34653	30	4030014
310000	690	43.07301	65	67.24244	30	3994823
310000	720	42.87301	65	67.1472	30	3962672
310000	750	42.67301	65	67.05974	30	3933185
340000	600	43.97302	65	68.43634	30	4198833
340000	630	43.77302	65	68.70483	30	4151566
340000	660	43.67302	65	67.58985	30	4108789
340000	690	43.47302	65	67.46249	30	4069895
340000	720	43.27301	65	67.35941	30	4034374
340000	750	43.07301	65	67.26311	30	4001806
370000	600	44.27302	65	68.10188	30	4287018
370000	630	44.07302	65	67.95005	30	4235130
370000	660	43.97302	65	67.81243	30	4188197
370000	690	43.77302	65	67.6871	30	4145539
370000	720	43.57302	65	67.57248	30	4106592
370000	750	43.47302	65	67.46726	30	4070898
400000	600	44.47302	65	68.36146	30	4376002
400000	630	44.37302	65	68.19649	30	4319412
400000	660	44.17302	65	68.04699	30	4268247
400000	690	44.07302	65	67.91088	30	4221762
400000	720	43.87302	65	67.78644	30	4179343
400000	750	43.77302	65	67.67222	30	4140477

Figure 6. Dependence of dimension r_2 on the load and manufacturing material of hydraulic prop support
Table 2. Dependence of the sphericity coefficient of lead inclusions and average sizes of bronze lead inclusions on the modifier concentration

P, Tons	$[\sigma]$, MPa	Q, Tons	r_1, mm	r_2, mm	r_{pt}, mm	V_{min}, mm3
36	600	44.17302	65	68.01856	30	4257535
37	600	44.27302	65	68.10888	30	4287018
38	600	44.27302	65	68.18286	30	4316591
39	600	44.37302	65	68.27478	30	4346252
40	600	44.47302	65	68.36146	30	4376002

4. Conclusion

From applying the equivalent stress standard Von-Mises to Tresca stress and combining with the critical load, it is possible to minimize the cylinder wall thickness, minimize the weight of hydraulic prop support while ensuring its durability and stability. That helps to install, remove and move more smoothly, contributing to reducing product costs. The research results can be referenced to calculate and select some reasonable parameters for self-advancing hydraulic roof support for underground coal mining with different critical loads, made of different materials.

The results of the research can also be used as a reference for the mining design consultancy and mining equipment, for managers to document related teaching in universities, colleges and techniques.

References

[1] Spearing S July 2008 Proceedings of the 27th International Conference on Ground Control in Mining (United States) 366–373
[2] Gao M S, Yang Q S, Zhao Y C, Cheng Z C and Quan X C 2016 Journal of Mining and Safety Engineering 33(1) 7-11
[3] Le Quang, P, Zubov V P, Duc T P 2020 E3S Web of Conferences 174 01043 DOI: 10.1051/e3sconf/202017401043
[4] Lagerev A V, Lagerev I A and Petrovskiy I G 2018 Journal of Mining Institute 232 413-420 DOI: 10.31897/pmi.2018.4.413
[5] Sorin V, Niculina V June 2011 Proceedings of the Manufacturing Science and Education 449–452
[6] Babyr N V, Korolev A I, Neupokoeva T V 2018 IOP Conference Series: Earth and Environmental Science 194(3) 032004 DOI: 10.1088/1755-1315/194/3/032004
[7] Alehossein H and Poulsen B A 2010 International Journal of Rock Mechanics & Mining Sciences 47 30-41
[8] Smirnyakov V V, F’en N M 2018 Journal of Mining Institute 230 197-204 DOI: 10.25515/pmi.2018.2.197
[9] Yao Q L, Cao S G and Wang F H 2010 Journal of Mining & Safety Engineering 27 185-189
[10] Karasev M A, Buslova M A, Vilner M A, Nguyen T T 2019 Journal of Mining Institute 240 628-637
[11] Wang J C, Wang L and Guo Y 2014 Journal of China Coal Society 39 1619-1624
[12] Nasonov M Yu, Lykov Yu V and Do Duc Trong 2020 Ygol’- Russian Coal Journal 2 13-17
[13] Oblak M, Harl B and Butinar B 2000 Struct Multidisc Optim. 20 76-82
[14] Korzeniowski W, Skrzypkowski K and Herezy Ł 2015 Archives of Mining Sciences 60(1) 209-224
[15] Sidorov D V 2017 Journal of Mining Institute 223 58-69 DOI: 10.18454/pmi.2017.1.58