Research article

Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia

Nurul AMN Hazalin¹, Kalavathy Ramasamy*¹, Siong Meng Lim¹, Ibtisam Abdul Wahab², Anthony LJ Cole³ and Abu Bakar Abdul Majeed⁴

Address: ¹Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia, ²Institute for the Study of Natural Remedies (iKUS), Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia, ³School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand and ⁴Brain Research Laboratory, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

Email: Nurul AMN Hazalin - nurulyai@yahoo.com; Kalavathy Ramasamy* - kalav922@salam.uitm.edu.my; Siong Meng Lim - stevenlim79@yahoo.com; Ibtisam Abdul Wahab - ibtisam@salam.uitm.edu.my; Anthony LJ Cole - tony.cole@canterbury.ac.nz; Abu Bakar Abdul Majeed - abubakar@salam.uitm.edu.my

* Corresponding author

Abstract

Background: Endophytes, microorganisms which reside in plant tissues, have potential in producing novel metabolites for exploitation in medicine. Cytotoxic and antibacterial activities of a total of 300 endophytic fungi were investigated.

Methods: Endophytic fungi were isolated from various parts of 43 plants from the National Park Pahang, Malaysia. Extracts from solid state culture were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antibacterial activity was determined using the disc diffusion method.

Results: A total of 300 endophytes were isolated from various parts of plants from the National Park, Pahang. 3.3% of extracts showed potent (IC₅₀ < 0.01 μg/ml) cytotoxic activity against the murine leukemic P388 cell line and 1.7% against a human chronic myeloid leukemic cell line K562. Sporothrix sp. (KK29FL1) isolated from Costus speciosus showed strong cytotoxicity against colorectal carcinoma (HCT116) and human breast adenocarcinoma (MCF7) cell lines with IC₅₀ values of 0.05 μg/ml and 0.02 μg/ml, respectively. Antibacterial activity was demonstrated for 8% of the extracts.

Conclusion: Results indicate the potential for production of bioactive agents from endophytes of the tropical rainforest flora.

Background

Endophytes are microbial entities that live within living tissues of plants without apparently any deleterious consequences [1]. Their biological diversity, especially in temperate and tropical rainforests, is large. Each plant species may be host to a number of endophytes [2]. Since the discovery of the world's first billion-dollar anticancer compound - paclitaxel (Taxol) - could be biosyn-
thesized by Pestalotiopsis microspora, a fungus that colonizes the Himalayan yew tree, interest in studying such endophytes for their medicinal potential has grown tremendously [3]. To date, endophytes have been most extensively studied for their ability to produce antibacterial, antiviral, anticancer, antioxidants, antidiabetic and immunosuppressive compounds [1]. Their study is expected to become an important component in the production of new natural bioactive products.

Only a few studies on endophytic fungi from Malaysian plant species have been conducted so far. The current study was undertaken to investigate this biodiversity and to isolate and screen endophytic fungi with cytotoxic and antibacterial activities from medicinal plants collected from two locations in the National Park, Pahang, Malaysia.

Methods

Source of endophytic fungi

Plant materials were obtained from the National Park, Pahang, Malaysia in June, 2007. Two different locations, Kuala Keniam (KK) and Kuala Trenggan (KT), where medicinal plants could be found in abundance were selected for sampling. Chosen parts from individual plants were collected and stored at 4°C until used. All plant samples were identified by Kamaruddin Saleh of the Forest Research Institute of Malaysia (FRIM) and were deposited in the herbarium at the Faculty of Pharmacy, Universiti Teknologi MARA, Shah Alam, Malaysia.

Isolation of endophytic fungi

Isolation of endophytes from the 43 plant samples was carried out as described by Strobel et al., [4] but with minor modifications. Plant samples, which included leaves, stems, roots, rhizomes, flowers, fruits and bark, were washed under running tap water for 10 min followed by immersion in 70% EtOH for 1 min and in NaOCl (2.5% - 5.25%) for 3 min, drained and immersed in 70% EtOH again for 30 sec. Finally, the samples were rinsed with sterile dH2O. Each plant sample was cut aseptically into 1 cm long segments. The cut surfaces of the segments were placed on petri dishes containing potato dextrose agar (PDA) (Oxoid) supplemented with chlorotetracycline HCl (50 μg/ml, Sigma) and streptomycin sulphate (250 μg/ml, Sigma) at 28°C. Pure cultures were then transferred to PDA plates free of antibiotics and maintained in the culture collection of the Collaborative Drug Discovery Research (CDDR) Group, UiTM, Malaysia. For investigations of biological activity, the endophytes were cultivated for 14 days on PDA plates at 28°C.

Semipolar extraction of fungal cultures

Crude endophytic extracts were prepared as described by Lang et al., [5] but with slight modifications. Endophytic cultures (five plates per fungus) were homogenized and transferred to a 500 ml conical flask filled with 250 ml EtOAc (Merck) and left to stir overnight at room temperature. The mixture was filtered through Whatman No.1 filter paper, after which Na2SO4 (40 μg/ml, Merck) was added to further remove the aqueous layer within the mixture. The mixture was then transferred to a round bottom flask and dried using a rotary evaporator. The resultant extract was dissolved in 1 ml of dimethyl-sulfoxide (DMSO) (Sigma) and kept at 4°C as stock solution.

Cytotoxic activity

Human chronic myeloid leukemic, K562 (ATCC CCL - 243), murine leukemic, P388 (ATCC TIB 63), human colorectal carcinoma, HCT116 (ATCC CCL - 247) and human breast adenocarcinoma, MCF7 (ATCC HTB - 22) cell lines were purchased from the American Type Culture Collection (ATCC), Manassas, VA, USA. All cell lines were cultured in RPMI 1640 (Sigma) supplemented with 10% fetal bovine serum (FBS) (PAA Laboratories) and 1% penicillin/streptomycin (PAA Laboratories). Cultures were maintained in a humidified incubator at 37°C in an atmosphere of 5% CO₂.

Cytotoxicity of extracts at various concentrations (0.01 - 100 μg/ml) was assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) (Sigma) assay, as described by Mosmann, 1983 [6] but with minor modification, following 72 h of incubation. Assay plates were read using a spectrophotometer at 520 nm. Data generated were used to plot a dose-response curve of which the concentration of extract required to kill 50% of cell population (IC₅₀) was determined. Cisplatin (Mayne Pharma) and tamoxifen (Dynapharm), which are both established chemotherapeutics, were used for comparison. Cytotoxic activity was expressed as the mean IC₅₀ (± standard deviation) of three independent experiments.

Antibacterial activity

The crude extracts of the 300 endophytic fungi were tested against Bacillus subtilis (ATCC 6633), Micrococcus luteus (ATCC 10240), Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). Antibacterial activity was determined using the disc diffusion method according to the National Committee for Clinical Laboratory Standards (NCCCLS) [7]. Pre-warmed Mueller-Hinton agar (MHA) (Oxoid) plates were seeded with 10⁷ - 10⁸ cfu suspension of test bacteria. Endophytic extracts (10 μl) dissolved in DMSO (1 mg/ml) were pipetted (10 μl) onto sterile paper discs (6 mm diameter, Oxoid) and placed onto the surface of inoculated agar plates. Gentamicin sulphate (10 μg, Oxoid) was used as the positive control. Plates were incubated at 37°C for 48 h. Antibacterial activity was expressed as the
diameter of the inhibition zone (mm) produced by the extracts.

Results and discussion
A total of 300 endophytes were isolated from 43 plants found at two different locations (Kuala Keniam and Kuala Trenggan) within the National Park, Pahang, Malaysia (Table 1). Of the total endophytes obtained, 70.0% were isolated from plants at Kuala Keniam, and the remaining from Kuala Trenggan. Relatively greater distribution of endophytes was found within leaf (48.7%), stem (25.7%) and root (16.3%) samples compared to other segments (9.3%, including flower, fruit, rhizome and bark) of the plants. *Ardisia colorata* (laloh, local name) was found to

Plant code*	Plant species	No. of isolates obtained from:	Total
KK1	Donax grandis Ridl.	2 2 1 5	
KK2	Angiopteris evecta (G. Forst.) Hoffm.	2 2 1 5	
KK3	Clidemia hirta (L.) D. Don	5 3 3 11	
KK4	Palmae sp.	3 2	
KK5	Anisochotolype mollisima Hassk.	4 2 1 2	9
KK6	Cnestis palola (Lour.) Merr.	3 4 1	8
KK7	Sindora coriacea (Baker) Prain.	5	2 7
KK8	Antias toxicaria (Pers.) Lesch	6	6
KK9	Phylogenath rotundifolios (Jack) Blume	3 6 3 12	
KK10	Catunaregam spinosa (Thunb.) Tirveng	3 2 2 7	
KK11	Unidentified	3	3
KK12	Tacca integrifolios Ker Gawl.	4 2 3	9
KK13	Ixora grandiflora Zoll. & Mor.	2	1 3
KK14	Ampelocissus cinnamomea Planch.	3 5 1	9
KK15	Unidentified	3	1
KK16	Tetracera indica Merr.	3 2	5
KK17	Chroesthes longifolia (Wight) B. Hansen	4 2	6
KK18	Ancistroclados tecktorius (Lour.) Merr.	3 2	5
KK19	Ardisia colorata Wall. Ex Roxb.	5 4 1	14
KK20	Dendropanax laurifolius (E. March.) Dcne. & Planch. ex R. C. Schneid.	2 2 1	5
KK21	Zingerberaceae sp.	2	2
KK22	Clerodendrum deflexum Wall.	3	5 1
KK23	Cleistanthus sp.	3	1
KK24	Koompasia excelsa (Becc.) Taub	5	2 7
KK26	Anacolosa frutescens (Blume) Blume	4 3	7
KK27	Justicia sp.	3	4 7
KK28	Psychotria condensa King & Gamble	3	2 5
KK29	Costus speciosus (J. Konig) Sm	3 2 2 3 10	
KK30	Zingerberaceae sp.	3	1 2 8
KK31	Brassaiopsis polyacantha (Wallic) Banerjee	4 3	7
KK32	Eurycoma longifolia Jack	5	1 6
KT33	Leptonychica caudata (Wall. ex G.Don) Burrett	3 1 1	5
KT34	Araceae sp.	4	2 2 8
KT35	Dioscorea hispida Denstn.	2	3
KT36	Phyllanthus pulcher Wall. ex Mull. Arg.	3 1 1	5
KT37	Mimosa sp.	3	2 1 6
KT38	Thottea sp.	4	4 3 11
KT39	Molineria latifolia (Dryand. ex W.T.Aiton) Herb. ex Kurz	8 2 3 13	
KT40	Coeselipinia parviflora Prain	3	3 6
KT41	Strychnos ignatii P. J. Bergius.	4	1 5
KT42	Centotheca lappacea (L.) Desv.	2	1 3
KT43	Zingerberaceae sp.	6	4 3 13
KT44	Rotheca serrata (L.) Steane & Mabb.	4 4 2	10

*KK - Kuala Keniam; KT - Kuala Trenggan
host the highest number of endophytes (14 isolates), followed by *Molineria latifolia* (13 isolates) and *Zingiberaceae* sp., KT43 (13 isolates).

Cytotoxicity of the extracts against P388 and K562 cell lines is shown in Table 2. Generally, the extracts were found to be more effective against P388 than the K562 cell line. Nearly half (47.6%) of the extracts showed activity (IC₅₀ of < 10 μg/ml) against P388 compared with 25% active against K562. These values were within the cutoff point of the National Cancer Institute criteria for cytotoxicity (IC₅₀ < 20 μg/ml) in the screening of crude plant extracts [8].

At IC₅₀ levels ≤ 1 μg/ml, 15.3% of extracts were active against P388 and 9.7% against K562 cell line. Very potent cytotoxicity (defined as IC₅₀ < 0.01 μg/ml) against P388 was shown by 3.3% of the extracts and 1.7% against K562. The ten endophytic extracts that showed very potent cytotoxic activity (IC₅₀ < 0.01 μg/ml) against P388 showed greater cytotoxicity than the pure compounds paecilosetin (IC₅₀ = 3.2 μg/ml) and farinosone (IC₅₀ = 1.1 μg/ml) isolated from an entomopathogenic fungi, *Paecilomyces farinosus* [9] and penicillenol (IC₅₀ = 2.6 μg/ml) from *Penicillium* sp. GQ-7, an endophytic fungi [10]. When compared with reported activity of compounds from marine organisms, 46 of the extracts (IC₅₀ < 1 μg/ml) showed greater potency than kulokekahilide-1, a cytotoxic depsipeptide from Chepalaspidean mollusk *Philinopsis speciosa* (IC₅₀ = 2.1 μg/ml) when tested against P388 [11]. The five extracts with IC₅₀ < 0.01 μg/ml against K562 were found to be more potent than the crude extract of *Aspergillus* sp. B-F-2 (IC₅₀ = 50 μg/ml) when tested against the same cell line [12]. However, these extracts were found to be less cytotoxic than chaetominine, a cytotoxic alkaloid produced by an endophyte *Chaetomium* sp. IFB-E015 which had an IC₅₀ of 0.008 μg/ml against K562 [13].

Only 24 isolates (8%) displayed antibacterial activity against at least one test microorganism with inhibition zones of 7 to 8 mm as shown in Table 3. Approximately

Table 3: Antibacterial activity of extracts

Endophytes	Antibacterial activity (mm)				
	Ec	Sa	Pa	Mi	Bs
KK1L2	7	-	-	-	-
KK3R3	7	-	-	-	-
KK4L1	7	-	-	-	-
KK5L1	7	-	-	-	-
KK5L4	7	-	-	-	-
KK5R1	7	-	-	-	-
KK6L3	7	-	-	-	-
KK9L2	7	-	-	-	-
KK9S3	7	7	-	-	-
KK9S5	7	-	7	-	-
KK9R1	7	-	-	7	-
KK11S2	7	-	-	7	-
KK12R2	7	-	7	-	-
KK16L1	7	8	7	-	-
KK16L2	7	-	-	7	-
KK18S1	7	-	7	-	-
KK19S3	7	-	-	-	-
KK27R1	7	-	-	-	-
KK30S1	7	-	-	-	-
KK30RH1	7	-	-	-	-
KT33L1	7	-	-	-	-
KT34L3	7	-	-	-	-
KT34S1	7	-	-	-	-
KT43L4	7	-	-	-	-
Gentamycin	25	11	15	30	25

KK - Kuala Keniam; KT - Kuala Trenggan; L - Leaf; S - Stem; R - Root; RH - Rhizome Test microorganisms; Ec - Escherichia coli; Sa - Staphylococcus aureus; Pa - Pseudomonas aeruginosa; Mi - Micrococcus luteus; Bs - Bacillus subtilis. - : None detected.

Not able to obtain IC₅₀ after three independent tests.
half of the active isolates displayed inhibitory activity against *E. coli*, however, none of the isolates were as potent as gentamicin sulphate. In contrast, other studies have shown that endophytes are a good source of antibacterial agents. Guimaraes et al. [16] screened extracts from 39 endophytic fungi isolated from *Viguiera arenaria* and *Tithonia diversifolia*, resulting in 5.1% active extracts against *S. aureus* and 25.6% active extracts against *E. coli*. An extract of *Streptomyces* sp. (SU9 06) isolated from the stem of a Malaysian plant was found to be as effective as oxacillin against *B. subtilis* [17]. Kakadumycin from *Streptomyces* sp. NRRL 30566 isolated from *Grevillea pteridifolia* was effective against *S. aureus* [18]. Munumbicin B and D that was isolated from *Streptomyces* sp. NRRL 30562, an endophytic fungus of *Kennedia nigriscans*, possessed antibacterial activity as effective as vancomycin against *S. aureus* [19].

Conclusion

In conclusion, this preliminary screening of rainforest fungal endophytes revealed their potential to yield potent bioactive compounds for drug discovery programmes. Extract KK29FL1, a *Sporothrix* sp., showed very potent cytotoxic effect indicating its possible potential for development as an anti-cancer drug and warrants further investigation.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KR was the principal investigator who participated in the designing of the study, plant collection and writing of the manuscript. NAMNH participated in the plant collection, overall conduction of experiments and writing the manuscript. LSM and ALJC participated in the planning of the study, plant collection and writing the manuscript. IAW and ABAM participated in the planning of the study.

Acknowledgements

This work was financially supported by the Ministry of Science, Technology and Innovation, Malaysia under the Fundamental Research Grant Scheme (Num 5.3.1). Prof. Murray Munro and Prof. John Blunt, University of Canterbury, New Zealand are thanked for their help and advice. Pharmacology and Toxicology Research Laboratory, Universiti Teknologi MARA (UiTM), Malaysia is thanked for the cell lines provided.

References

1. Strobel GA, Daisy B: Bioprospecting for microbial endophytes and their natural products. *Microbial Mol Biol Rev* 2003, 67:491-502.
2. Strobel GA: Endophytes as sources of bioactive products. *Microbes Infect* 2003, 5:535-544.
3. Bacon CW, White JF, Stone JK: An overview of endophytic microbes: endophytism defined. In *Microbial endophytes* 1st edition. Edited by: Bacon CW, White JF. New York: Marcel Dekker, Inc; 2000:3-29.
4. Strobel GA, Yang XS, Sears J, Kramer R, Sidhu RS, Hess WM: Taxol from *Pestalotiopsis microspera*, an endophytic fungus of *Taxus wallachiana*. *Microbiology* 1996, 142:435-440.
5. Lang G, Blunt JW, Cummings NJ, Cole AJL, Munro MHG: Hirustide, a cyclic tetrapeptide from a spider-derived entomopathogenic fungus, *Hirsutella* sp. *J Nat Prod* 2005, 68:1303-1305.
6. Mosemann F: Rapid cationic assay for cellular growth and survival: application to proliferation and cytotoxicity assay. *J Immunol Methods* 1983, 65:55-63.
7. NCCLS - National Committee for Clinical Laboratory Standards: Performance standards for antimicrobial disc susceptibility tests. 8th edition, Approved Standard, document M2-A8, NCCLS, Wayne, Pennsylvania; 2003.
8. Lee CC, Houghton P: Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. *J Ethnopharmacol* 2005, 100:237-243.
9. Lang G, Blunt JW, Cummings NJ, Cole AJL, Munro MHG: Paecilomycin: a new bioactive fungal metabolite from a New Zealand isolate of *Paecilomyces farinaceus*. *J Nat Prod* 2005, 68:10-211.
10. Lin ZJ, Lu ZY, Zhu TJ, Fang YC, Gu QQ, Zhu WM: Penicillicins from *Penicillium* sp. GQ-7, an endophytic fungus associated with *Aegiceras corniculatum*. *Chem Pharm Bull* 2008, 56:217-221.
11. Kimura J, Takada Y, Inayoshi T, Nakao Y, Goetz G, Yoshida WY, Scheuer PJ: *Kulokekahihide-I*, a cytotoxic depsipeptide from the *Cephalaspidean Mollusk* *Philinus speciosus*. *J Org Chem* 2002, 67:1760-1767.
12. Liu R, Zhu W, Zhang Y, Tianjiao Z, Liu H, Fang Y, Gu Q: A new diphenyl ether from marine-derived fungus *Aspergillus* sp. B-74. *J Antibiot* 2006, 59:362-365.
13. Jiao RH, Xu S, Liu JY, Ge HM, Ding H, Xu C, Zhu HL, Tan RX: *Chaetomine*, a cytotoxic endophytic product from *Chaetomium* sp. IFB-E015. *Org Lett* 2006, 8:5709-5712.
14. Song YC, Li H, Ye YH, Shan CY, Yang YM, Tan RX: Endophytic naphthyrene metabolites are co-inhibitors of xanthine oxidase, *SW116* cell and some microbial growths. *FEMS Microbiol Lett* 2004, 241:67-72.
15. Zhan J, Burns AM, Liu MX, Faeth SH, Leslie GAA: Search for cell motility and angiogenesis inhibitors with potential antican- cer activity: beavericin and other constituents of two endophytic strains of *Fusarium oxysporum*. *J Nat Prod* 2007, 70:227-232.
16. Guimaraes DO, Borges WS, Kawano CY, Ribeiro PH, Goldman GH, Nomizo A, Thiemann OH, Oliva G, Lopes NP, Pupo MT: Biological activities from extracts of endophytic fungi isolated from *Viguiera arenaria* and *Tithonia diversifolia*. *FEMS Immunol Med Microbiol* 2008, 52:134-144.
17. Ghadin H, Zin HM, Sabaratnam V, Baday N, Basri DF, Lian HH, Sidik NM: Isolation and characterization of a novel endophytic *Streptomyces* SUK 06 with antimicrobial activity from Malaysian plant. *Asian J Plant Sci* 2008, 7:189-194.
18. Castillos U, Harper JK, Strobel GA, Sears J, Alaei K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robinson R, Millar D, Hess WM, Condon M, Teplow D: *Kakadumycins*, novel antibiotics from *Streptomyces* sp. *NRRL 3* an endophyte of *Grevillea pteridifolia*. *FEMS Microbiol Lett* 2005, 241:183-190.
19. Castillos UF, Strobel GA, Ford EJ, Hess WM, Conder H, Jensen JB, Albert H, Rosion R, Condon MA, Teplow DB, Stevens D, Yaver D: Munumbicins, wide-spectrum antibiotics produced by *Streptomyces* *NRRL 3* endophytic on *Kennedia nigriscans*. *Microbiol* 2005, 656, 148:2675-2685.

Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1472-6882/9/46/prepub