phagocytosis and cell-in-cell structure formation

Dorian Gottwald†, Florian Putz†, Nora Hohmann, Maike Büttner-Herold, Markus Hecht, Rainer Fietkau and Luitpold Distel*

1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany

2 Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg

* Correspondence: Luitpold.Distel@uk-erlangen.de; Tel.: +49-9131-853-2312; Fax: +49-9131-853-9335

† These authors contributed equally
Abstract:

Background: Non-professional phagocytosis is usually triggered by stimuli such as necrotic cell death. In tumor therapy, the tumors often disappear slowly and only long time after the end of therapy. Here, tumor therapy inactivates the cells by inducing senescence. Therefore, study focused whether senescence is a stimulus for non-professional phagocytosis or whether senescent cells themselves phagocytize non-professionally.

Results: Senescence was induced in cell lines by camptothecin and a phagocytosis assay was performed. In tissue of a cohort of 192 rectal cancer patients senescence and non-professional phagocytosis was studied by anti-histone H3K9me3 and anti-E-cadherin staining. Senescent fibroblasts and pancreas carcinoma cells phagocytize necrotic cells but are not phagocytized. In the tissue of rectal carcinoma, senescent cells can phagocytize and can be phagocytized. A high number of senescent cells and, at the same time, high numbers of non-professional phagocytizing cells in the rectal carcinoma tissue lead to an extremely unfavorable prognosis regarding overall survival.

Conclusion: Senescent cells can be non-professionally phagocytized and at the same time they can non-professionally phagocytize in vivo. In vitro experiments indicate that it is unlikely that senescence is a strong trigger for non-professional phagocytosis. Combined high rates of non-professional phagocytosis and high rates of senescence are an extremely poor prognostic factor for overall survival.

Keywords: cell-in-cell, non-professional phagocytosis, senescence, cannibalism, entosis, rectal cancer, camptothecin, prognostic factor and survival.
Introduction

Radiation therapy of cancer achieves its therapeutic effect through the induction of different types of cell death. The predominant types of cell death are apoptosis and necrosis, which are also the most widely discussed types of cell death recognized in current morphological nomenclature (1). Apoptotic and necrotic cell death as well as most other kinds of cell death mostly lead to a rapid elimination of cell remnants. In striking contrast, however, it is well known from radiotherapy that most malignancies do not resolve during multi-week fractionated radiation treatment. Indeed, most malignancies require several weeks after the end of treatment to show volumetric tumor regression in clinical and imaging assessment (2, 3). In rectal cancer for example, Habr-Gama et al. found a median time interval of 18.7 weeks from completion of radiotherapy to complete endoscopic clinical response (4). An alternative pathway to tumor reduction is not inducing cell death but non-proliferative cells by induction of so called premature senescence (5). It means that cancer cells initiate a programmed sequence of events leading to a phenotype of a stable and long-term loss of proliferative capacity, despite continued viability and metabolic activity (6). Changes observed in senescent cells include the activation of the tumor suppressor network, morphological changes, altered chromatin structure and an altered spectrum of secreted factors (7, 8). Cancer therapy and especially radiochemotherapy usually causes senescence (9-11).

Senescent cells thus could be the reason for the delayed removal of cancer cells after RT. Senescent cells cause a pro-inflammatory response known as senescence-associated secretory phenotype (SASP) (12, 13). This inflammation may clear the senescent cells by immune-mediated phagocytosis (14, 15). Another option to clear cells is the phagocytosis by non-professional phagocytes. It was shown that various normal tissue cells (16-19) and cancer cells (20-25) have the capability to engulf apoptotic, autophagic or necrotic cells. This leads to a cell-in-cell (CIC) phenotype and a subsequent digestion of the phagocytized cells. In cancers the frequently observed phenomenon of cell-in-cell structures by non-professional phagocytosis has also been referred to as “cell cannibalism” and describes the uptake and elimination of malignant cells by other cancer cells. Cell cannibalism is a very frequent finding in cancer (22, 26). A so far not resolved question is whether senescent cells are cleared by non-professional phagocytes and if the increase of cell-in-cell structures and senescence in pathologic specimens are somehow related.

This study investigated the ability of a pancreatic carcinoma cell line and two primary fibroblast cell lines to act as non-professional phagocytes. It was studied whether senescent cells are preferred targets of non-professional phagocytosis or entotic cell death. In addition, using histologic samples from rectal cancer patients obtained prior to and after radiochemotherapy, the prevalence and prognostic significance of non-professional phagocytosis in rectal cancer as well as the association between tumor cell senescence and cell-in-cell structure formation were studied.
Results

Non-professional phagocytosis

Dead cells induced by heat were non-professionally phagocytized by living BEAS2B cells. Cell death was induced by overheating to 56°C for 45 min (Figure 1 A). The living cells adhered to the dead cells and phagocytized them within two to 10 hours (Figure 1 B). Phagocytic rates ranged from less than 0.65% to 11.5%. Normal tissue cell lines (mean value 5.6%) phagocytized more than tumor cell lines (1.2%) (p=0.001) (Figure 1 C). In the process of phagocytosis, the overheated cell was completely engulfed by the living cell (Figure 1 D, E).

Figure 1: Heat-treated cells (56°C, 45min) were engulfed by non-professional phagocytes. Heat-treated cells stained red with CTFR and living cells stained green with CTOG. Nuclei stained blue with DAPI. (A) Normal lung tissue fibroblasts BEAS2B. (B) Different phases of cell attachment during phagocytosis in BEAS2B lung fibroblasts. (C) Cell-in-cell rates in different primary fibroblasts and tumor cell lines. Z-stack images were acquired by optical sectioning of 60 images. Image planes of the X, Y and Z plane are included. (D) BEAS2B lung fibroblasts and (E) SBLF-4 primary fibroblast. Instead of the CTOG staining the α-tubulin staining was used. Scale bars: 10μm.

Senescence in tumor and normal-tissue cell lines

The aim was to study whether senescence is a trigger for non-professional phagocytosis observed for heat-induced cell death and whether senescent cells are being phagocytized by non-senescent cells. The chemotherapeutic agent camptothecin (CPT) was used to trigger senescence in BxPc3 cells. After three days of incubation with 120nM or 200nM CPT cells were assessed for senescence induction by detection of HMGA2 and H3K9me3 heterochromatic foci formation, flow cytometric β-galactosidase staining as well as the estimation of the nuclear size in both axes. A clear change of the staining pattern (Figure 2A) and a distinct increase in nuclear size in both axes (Figure 2 B) was detected.
Figure 2: (A) Immunofluorescence staining of the senescence markers HMGA2 and H3K9me3 in red without and after treatment with camptothecin (CPT) 120 nM and 200 nM for senescence induction in pancreas carcinoma cells. The cell nuclei were stained with DAPI (blue). Scale bar 10 μm. (B) Cell nucleus length and width of BxPc3 cells after CPT treatment. (C) C12FDG β-galactosidase activity in untreated and 120nM treated BxPc3 cells. (D) Activity of the acidic β-galactosidase in pancreas carcinoma cells after CPT treatment on days 5, 6 and 7 using flow cytometry. The graphs represent the mean values from three independent experiments ± standard deviation, p-values: *<0.05, **<0.01, ***<0.001. (E) Flow cytometric determination of the amount of Annexin-/7AAD- (living cells) compared to all others (dead cells) 7 days after 120nM camptothecin treatment. p-values: **<0.01, ***<0.001

Additional the β-galactosidase activity was analyzed and a distinct increase up to day six by 120nM CPT was found (p<0.05) (Figure 2C, D). Thus the 120nM CPT was used for further experiments. Cells
with a high percentage of senescent cells on day 7 also had increased levels of Annexin 7AAD positivity (Figure 2 E).

Association of cell-in-cell structure formation and senescence in tumor and normal-tissue cell lines

Immunostaining was used to study non-professional phagocytosis of the three cell lines. Cells were either stained green or red by fluorescent live-cell probes (Figure 3 A-C).

Figure 3: Representative microscopic images of typical cell-in-cell structures in phagocytosis experiments with (A, D) pancreas carcinoma cell line (BxPC-3) and fibroblast cell lines (B, E) (SBLF-7) and (C, F) (SBLF-4). Viable CTOG-stained (green) cell, which completely encloses a hyperthermia-damaged, CTFR-stained (red) cell (A-C). Senescent H3K9me3-stained (red) cells that completely enclose a hyperthermia-damaged CTOG-stained (green) cell (D-F). Cell nuclei were stained with DAPI (blue). Scale bars 10 μm (40x objective). In bar charts (G), (H) and (J) the cell-in-cell rates occurring in the respective cell lines on the left were shown for different combinations of senescent, living and heat-treated dead cells as indicated.
Red stained cells were heated to 56°C to induce necrotic cell death. After co-cultivating both viable green and dead red cells, the viable cells phagocytized the necrotic cells at an average rate of 1.1% (Figure 3 G-J). If both red cells and viable cells were not heated these events were very rare (<0.06%). Next, vital green cells were co-incubated with CPT treated senescent cells. To identify senescent cells, H3K9me3 antibodies were used and only positive cells were analyzed (Figure 3 D-F). No events were observed suggesting that cells with signs of premature senescence are not phagocytized by viable cells in vivo. Then senescent cells were co-incubated with necrotic cells and a similar high frequency of phagocytic event as for the viable cells (0.95%) was found (Figure 3 G-J).

Cell-in-cell structures in clinical rectal cancer tissue samples

The frequency and prognostic relevance of cell-in-cell structures and senescent cells was studied in a rectal cancer cohort that was treated with neoadjuvant radiochemotherapy (RCT). A total of 96 patients with Tissue Micro Array (TMA) samples of tumor biopsy (“biopsy”), obtained during pretreatment endoscopy, were analyzed. In addition, TMA samples from the resected tumor at 6 weeks post-RCT were used for analysis. TMAs from these surgical specimens were available in 146 patients from the tumor core “central tumor”, in 97 patients in the tumor invasion zone (“invasive front”) and in 167 patients in surrounding normal tissue (“normal tissue”). The clinical and histological characteristics of the cohort are given in Table 1. Patients having pre-RCT biopsies, had a 5-year overall survival of 69.8%, a metastasis-free survival of 64.5% and a local recurrence-free survival of 70.1%, respectively (Figure 4A). Post-RCT patients had a 5-year overall survival of 67.8%, a metastasis-free survival of 57.8% and a local recurrence-free survival of 61.1%, respectively (Figure 4B). All TMAs were stained by antibodies, for anti-H3K9me3 (blue, nuclear) to detect senescent cells and for anti-E-Cadherin (red, membranous) to detect cell-in-cell structures (Figure 4C, D).

Figure 4: Kaplan Meier plots for overall survival, metastasis free survival and local recurrence-free survival for the cohort of patients (A) of which tissue micro arrays from pretherapeutic biopsies and (B) of post-RCT tumor
resection were available. (C) Example of a micro array spot of rectal carcinoma tissue with a diameter of 2 mm that was immunohistochemically double stained by nuclear anti-H3K9me3 (blue, senescent) and anti-E-Cadherin (red membranous). Arrows indicating cell-in-cell events. (D) Individual cell-in-cell events. (E) Frequency of counted intraepithelial senescent cells/mm² of patients in pre-RCT biopsy and post-RCT central tumor, invasive tumor front and normal tissue. (F) Frequency of counted intraepithelial cell-in-cell phenomena/mm² in patients in pre-RCT biopsy and post-RCT central tumor, invasive tumor front and normal tissue area.

Prevalence of senescence and cell-in-cell structures in different tumor compartments

The median number of epithelial senescent cells/mm² was highest in the central tumor area (560 cells/mm²) followed by normal tissue (494 cells/mm²). In the biopsies and invasive front numbers of senescent cells were similar (360 cells/mm² vs. 369 cells/mm²), respectively (Figure 4E). The mean numbers of epithelial cell-in-cell structures/mm² were most frequent in the invasive front (1.0 cell-in-cell/mm²) followed by the central tumor region (0.72 cell-in-cell/mm²) and biopsies (0.56 cell-in-cell/mm²). In normal tissue cell-in-cell phenomena were least common (0.08 cell-in-cell/mm²) (Figure 4F).

Prognostic significance of cell-in-cell and senescence rates in clinical rectal carcinoma tissue samples

The prognostic relevance of senescent cells and cell-in-cell structures for the following outcomes was analyzed: overall survival, metastasis-free survival, local recurrence-free survival and tumor-specific survival. For each outcome the cut-off values were determined by ROC analysis. Overall survival was clearly favorable for patients with a low number of senescent cells in pretreatment biopsies (5-year overall survival, 78.5% v. 61.2%, p=0.045) (Figure 5A) as well as central tumor areas (80% v. 76.8%, p=0.043) (Figure 5B).
Figure 5: Prognostic significance of intraepithelial senescent cell density/mm² and cell-in-cell phenomena density/mm² in Kaplan Meier plots for overall survival. The cut off was set by ROC-Curve analysis. Five-year survival rates are given in brackets after the designation of the corresponding cut-off values. (A) Senescent cell density in tissue micro arrays of biopsies, (B) central tumor (C) invasive tumor front and (D) normal tissue from tumor resection. (E) Cell-in-cell density in tissue micro arrays of biopsies, (F) central tumor (G) invasive tumor front and (H) normal tissue from tumor resection.
Senescent cells in the invasive tumor front or normal tissue had no prognostic relevance, however (Figure 5 C, D). Cell-in-cell in biopsies were not significantly associated with prognosis. Patients having less than three cell-in-cell structures/mm² in the central tumor had a clearly improved overall survival (73.3% v. 46.9%, p=0.001) (Figure 5F). Patients having less than 0.2 cell-in-cell structure/mm² in their normal tissue (Figure 5H) also had a distinctly improved prognosis (71.8% v. 56.0%, p=0.042).

Moreover, low numbers of senescent cells in the biopsies (86.3% v. 74.4%, p=0.046) and low numbers of cell-in-cell structures (80.4% v. 65.7%, p=0.015) and senescent cells (89.0% v. 70.6%, p=0.014) in the central tumor area were associated with improved tumor-specific survival (Supplementary Figure 1). High numbers of senescent cells in the invasive tumor front were a predictor of a favorable local recurrence-free survival (73.3% v. 49.3%, p=0.024, Supplementary Figure 2). Patients with high senescent cell rates in biopsies (53.7% v. 75.6%, p =0.021) and central tumor (50.3% v. 73.7%, p=0.013) developed metastatic disease significantly more frequently than patients with low rates (Supplementary Figure 3).

Association of senescence with cell-in-cell structures in rectal cancer tissue samples

Each observed cell-in-cell structure (n=670) was photographed and was analyzed according to whether the engulfed and/or phagocytic cell was senescent (Figure 6A-E).

Figure 6: (A) Part of a TMA immunohistochemical double stained for senescence by nuclear anti-H3K9me3 (blue) and membranous anti-E-Cadherin (red) in rectal cancer. Arrows indicating cell-in-cell events. Zoomed images of the tissue micro array, (B) a cell-in-cell event in which both involved cells are senescent, asterisk marks the cell in the tissue micro array, (C) a cell-in-cell event in which both involved cells are not senescent, (D) engulfed cell is senescent and (E) a cell-in-cell event in which only the engulfing cell is senescent. (F) Distribution of senescence in the engulfing and in the engulfed cell in all observed cell-in-cell events.

Senescent cells were observed in 67% of all cell-in-cell structures. Most frequently senescent cells were engulfed by a non-senescent cell (39.4% of all cell-in-cell structures, Figure 6 B, F), followed by both participating cells not being senescent (33%, Figure 6C, F) and both cells being senescent (18.4%, Figure 6D, F). Non-senescent cells only rarely were engulfed by senescent host cells (9.3%, Figure 6E, F). This
association was highly significant: Senescent cells were significantly more frequently internalized in cell-in-cell structures than constituting the external host cell (57.8% vs. 27.6%, p<0.001 Fisher’s exact test).

Combination of cell-in-cell and senescence rates as prognostic factors

In addition, the prognostic relevance of combined rates of senescence and cell-in-cell phenomena was studied. The combined group having high numbers of senescent cells and high cell-in-cell/mm² rates was associated with a poor overall survival (Figure 7A-D).

Therefore, high cell-in-cell and high senescent cell rates were compared to all others (Figure 7E-F). Patients with high senescent and cell-in-cell rates in the central tumor had a particularly unfavorable prognosis (73.3% v. 46.9%) (p<0.001, Figure 7F). Similarly, in the normal tissue patients with “high-high” rates showed an unfavorable prognosis (71.7% v. 46.7%) (p=0.011) (Figure 7H). Univariate and multivariate Cox’s regression analyses for overall survival were performed including clinical prognosticators and TNM stage. M stage (p<0.001) and combined high cell-in-cell/mm² with high senescence/mm² in the tumor post RCT (p=0.001) were independent prognostic factors for overall survival in multivariate analysis (Table 2).
Figure 7: Kaplan Meier plots for overall survival of intraepithelial senescent cell density/mm² and cell-in-cell phenomena density/mm². The cut off was set by ROC-Curve analysis. The five-year survival rate is given in brackets after the designation of the corresponding cut-off values. All graphs in the left column show high and/or low rates of senescent cells combined with high and/or low cell-in-cell events. (A) biopsies. (B) central tumor, (C) invasive tumor front and (D) normal tissue from the tumor resection. The graphs in the right column compare high senescence and high cell-in-cell rates to all other combinations. (E) biopsies. (F) central tumor, (G) invasive front and (H) the normal tissue from the tumor resection. Five-year survival rate is shown in brackets (F) and (H).
Table 2: Univariate and multivariate analysis of overall survival according to Cox’s proportional hazards model

Variable	Univariate analysis	Multivariate analysis				
	Hazard ratio	95% C.I.	p	Hazard ratio	95% C.I.	p
T stage (T4 [n = 21] v. T1/T2/T3 [n = 121])	0.596	0.272 - 1.306	0.196	0.555	0.254 - 1.213	0.140
N stage (N+ [n = 101] v. N0 [n = 41])	0.732	0.4 - 1.337	0.309	0.777	0.433 - 1.395	0.398
M stage (M+ [n = 23] v. M0 [n = 119])	5.233	2.682 - 10.208	<0.001	4.495	2.469 - 8.183	<0.001
Grading (3 + 4 [n = 27] v. 1 + 2 [n = 115])	1.329	0.674 - 2.619	0.411	---	---	---
Gender (female [n = 34] v. male [n = 108])	0.796	0.416 - 1.522	0.491	---	---	---
Age (> 58 years [n = 72] v. < 58 years [n = 70])	1.772	1.002 - 3.132	0.049	1.635	0.942 - 2.839	0.081
Cell-in-cell > 3/mm² [n = 31] v. ≤ 3/mm² [n = 111]	1.237	0.617 - 2.477	0.549	---	---	---
Senescence > 328/mm² [n = 89] v. ≤ 328/mm² [n = 53]	0.895	0.116 - 6.928	0.915	---	---	---
Cell-in-cell > 3/mm² and senescence > 328/mm² [n = 26] v. others [n = 116]	2.849	0.332 - 24.434	0.340	2.623	1.46 - 4.713	0.001

Discussion

Cell lines with induced senescence were not phagocytized in vitro, but were able to phagocytise other cells very effectively. In contrast, naturally occurring senescent cells in rectal cancer tissue samples were phagocytized. Only 27.6% of phagocytic cells were senescent, whereas 57.8% of phagocytized cells presented a senescent state. Low cell-in-cell rates were associated with favorable overall survival. A high number of senescent cells and at the same time a high number of cell-in-cell structures in the tissue lead to an extremely unfavourable prognosis regarding overall survival.

The question whether senescent cells are a stimulus for phagocytosis has been answered contradictory. However, the results of the cellular in vitro investigations were unmistakable. In all three studied cell lines absolutely no senescent cells had been phagocytized. Since clear experimental conditions are given and a high percentage of senescent cells were available and no phagocytosis occurred at all, this strongly suggests that senescence is not a trigger for phagocytosis. In tissue, the properties of the cells are not so definite. Even if the cells have a senescent phenotype, they may have suffered a necrotic death afterwards. In particular, radiochemotherapy involves daily radiation for about 6 weeks and additional chemotherapy. In this way cells can be driven into senescence (27) and then these cells can be damaged even further so that they die as a consequence (28). Death of senescent cells is mainly necrotic or other non programmed death (29, 30). Therefore, the phagocytized cells could also be necrotically dead senescent cells. Since necrosis is a strong trigger for phagocytosis (19, 31), it can lead to subsequent engulfment of the senescent cells that have died necrotically. Necrotic cells cannot actively penetrate living cells but are actively ingested by living cells. An alternative explanation could be entosis, in which one cell actively penetrates another cell and causes its own uptake in the recipient cell (32).
that the observed cell-in-cell structures were formed by entosis and that this mechanism is applied preferentially by senescent cells. However, the experimental setup did not allow to assess this.

Another interesting issue is that heat-induced necrosis is a very strong trigger of non-professional phagocytosis. 60% of cells treated with camptothecin were identified as dead in the Annexin/7AAD assay. Astonishingly, however, in contrast to the cells killed at 56°C Celsius, they were not phagocytized. This indicates that a difference exists that inhibits cells killed by camptothecin to be non-professionally phagocytized and thus prevents cell-in-cell phenomena. Additionally, this observation indicates that senescence per se is not a distinct trigger of non-professional phagocytosis.

In general cell-in-cell structures are found both in normal tissue (31) and in tumor tissue (33). A high rate of cell-in-cell structures in tumor tissue is a negative prognostic factor for example in breast carcinoma (20, 34), metastasis of melanoma (24), cytology of bladder cancer (35), head and neck cancer (25, 36), rectal cancer (25), oral squamous cell carcinoma (37) and lung adenocarcinoma (38). In contrast, an increased incidence of homotypic cell cannibalism in ductal adenocarcinoma of the pancreas was associated with decreased metastatic potential and consequently was a positive prognostic factor (21). Additionally, adherent wild-type cells can act efficiently as entotic hosts, suggesting that normal epithelia may engulf and kill aberrantly dividing neighboring cells (39). High cell-in-cell rates and high senescence rates are prognostically unfavorable markers for rectal cancer patients in this study. Senescence occurred more frequently after RCT in the central tumor tissue. Cell-in-cell structures were also found more frequently in the central tumor. This study shows that high cell-in-cell rates in rectal carcinomas can be considered as an adverse prognostic marker for survival. A reason might be that the phagocytosis leads to an increased supply of substances to the tumor cells (40-42). In addition, selection of particularly malignant tumor cells is likely to occur by competition, in which the ability to engulf neighboring cells could constitute a distinct advantage (43). The poorer survival for patients with high senescence values could be explained by the senescence-associated secretory phenotype (44-47). There could be an association between cell-in-cell structures and senescence. Hints for this are that senescent cell lines like fibroblasts and pancreas carcinoma cells phagocytize in vitro and that in vivo in 67% of cell-in-cell structures in rectal cancer TMAs senescent cells are involved. In the tissue of rectal cancer mainly senescent cells are phagocytized, but they can also phagocytize. The extremely poor survival of the subgroup with combined high senescence rates and high cell-in-cell rates is impressive. It was an independent marker for dramatically worse overall survival in rectal cancer patients. Prognostic markers are important for accurately individualizing therapies for rectal cancer patients, thereby reducing long-term costs and patient suffering (48, 49). Given the strong prognostic significance in this investigation for rectal cancer patients, additional studies on cell-in-cell structures and senescence are clearly warranted.

Conclusion

Senescent cells can be non-professionally phagocytized and at the same time they can non-professionally phagocytize in vivo. In vitro experiments indicate that it is unlikely that senescence is a strong trigger for non-professional phagocytosis. Combined high rates of non-professional phagocytosis and high rates of senescence are an extremely poor prognostic factor for overall survival.
Material and Methods

Cell cultures

Three different cell lines were studied in vitro for senescence and sixteen cell lines for cell-in-cell structures. Cancer cells were pancreatic adenocarcinoma cells BxPC-3, glioblastoma cells U87, U138, U251 and T98G (American Type Culture Collection) and head and neck cancer cells HN-p26. Primary fibroblast cell lines p26F, SBLF-4, -7, -9, -10, -11, -12, -13, -22, -23 were each derived from young Caucasians. Human bronchial epithelial cells (BEAS-2B) were obtained from the British Sigma/Public Health Consortium. BxPC-3 cells were cultured in RPMI-1640 medium (Life Technologies GmbH, Darmstadt, Germany) and fibroblast cell lines in F12 medium (Life Technologies GmbH, Darmstadt, Germany). Fetal calf serum, penicillin/streptomycin, glutamine and non-essential amino acids were added in different concentrations for each culture. The cells were cultured in at 37°C, 5% CO₂ and 95% humidity.

Staining and immunofluorescence

Senescence was determined either by flow cytometry or immunostaining as two independent methods. For the flow cytometric analysis, cells were incubated for 30 minutes in Bafilomycin A1 and afterwards C3;FDG (Invitrogen, Auckland, New Zealand) was added for 60 min at 37°C. For senescence analysis by immunostaining anti-H3K9me3 (Millipore, Darmstadt, Germany) and anti-HMGA2 (Cell Signaling, Leiden, Netherlands) antibodies were used. Cytoskeleton was stained by α-tubulin (Abcam, Cambridge, UK). Secondary antibodies were Alexa 488 chicken anti mouse or Alexa 594 chicken anti rabbit (Molecular Probes, Darmstadt, Germany). Phagocytosis experiments were performed using CellTrace Oregon Green (Invitrogen, Auckland New Zealand) for the living cells and CellTrace Far Red (Invitrogen, Auckland, New Zealand) for heat (56°C) for camptothecin treated cells. Cell nuclei were stained by DAPI (Roche, Grenzach-Wyhlen, Germany) and slides were mounted using Vectashield (Vector Laboratories Inc, Burlingame, USA). Cell images were acquired by a Zeiss Axio Plan 2 fluorescence microscope (Zeiss, Göttingen, Germany). Nuclear size was analyzed with Biomas software (MSAB, Erlangen, Germany).

Necrosis, senescence induction and non-professional phagocytosis

Senescence was induced in cells by 120nM and 200nM camptothecin for up to 7 days. Necrosis was induced by heating cells in a hyperthermic bath at 56°C for 45 minutes. Cell death was analyzed by flow cytometry using the Annexin APC and 7AAD staining. The portion of β-galactosidase positive, living and necrotic cells were analyzed by flow cytometry (Gallios Flow Cytometer, Beckman Coulter, Fullerton, USA). Non-professional phagocytosis was studied by coincubating the same number of red and green cells for 4 hours. For the phagocytosis trials the following cell mixtures were used: Vital green cells/heat-treated red cells, vital green cells/senescent red cells, senescent red cells/heat-treated green cells, vital green cells/vital red cells. Slides were scanned with a fluorescence microscope at 400x magnification (Carl Zeiss Microscopy, Göttingen, Germany) and Metafer4 as software (Metasystems, Altlußheim, Germany). At least 1000 vital cells were counted to calculate the cell-in-cell rates. In case of cell-in-cell rates of less than 1% a total of 3000 viable cells were counted.

Human specimens, Tissue micro arrays and immunohistochemical staining
The frequency and prognostic relevance of cell-in-cell structures and senescent cells were studied in a cohort of 192 rectal cancer patients that received neoadjuvant radiochemotherapy (RCT). All samples were processed into tissue microarrays (TMAs) of 2 mm core diameter. Clinical data were obtained from the Erlangen Tumor Centre Database and from patient’s records (Table 1).

Table 1: Clinical characteristics of rectal cancer patients

Variable	pre RCT n (%)	post RCT n (%)
Gender	All patients	
	male	female
	63 (65.6)	33 (34.4)
	110 (75.3)	36 (24.7)
Age at diagnosis	mean	
	64 y (35 - 84)	63 y (33 - 84)
UICC stage	I	II
	7 (7.3)	24 (25)
	8 (5.5)	34 (23.3)
	52 (54.2)	81 (55.5)
	13 (13.5)	23 (15.8)
Grading	G1	G2
	4 (4.2)	77 (80.2)
	3 (2.1)	116 (79.5)
	15 (15.6)	27 (18.5)
T stage	T1	T2
	4 (4.2)	13 (13.5)
	3 (2.1)	18 (12.3)
	7 (7.6)	105 (71.9)
	20 (13.7)	
N stage	N0	N1
	32 (33.3)	64 (66.7)
	48 (32.9)	98 (67.1)
	0 (0)	0 (0)
	0 (0)	0 (0)
M stage	M0	M1
	83 (86.5)	123 (84.2)
	13 (13.5)	23 (15.8)
Chemotherapy	5-FU mono	Oxaliplatin - 5-FU
	38 (39.6)	42 (43.8)
	53 (36.3)	76 (52.1)
	7 (7.3)	5 (3.4)
	9 (9.4)	12 (8.2)
	others	
	0 (1)	1 (1)
	3 (2.1)	
	1 (8.3)	9 (6.2)
	22 (22.9)	55 (37.7)
	53 (55.2)	79 (54.1)
	12 (12.5)	0 (0)

The average age was 64 and 63 years for pre-RCT and post-RCT specimens, respectively. The samples named “biopsies” (n=96) were collected 6 weeks prior to RCT. Concurrent chemotherapy most frequently consisted of 5-fluorouracil/oxaliplatin. A post-treatment Dworak tumor regression score of
grade 3 was achieved in most cases (n = 54.1%). 6 weeks after the end of neoadjuvant RCT, patients had surgical tumor resection as part of routine clinical treatment (n=146). The neoadjuvant radiochemotherapy and the time intervals correspond to the standard of treatments. Samples from the surgical specimen were taken from the “central tumor” region, the “invasive front” as well as surrounding “normal tissue”. All patients signed a consent form, permitting the analysis of routinely obtained pathologic samples and clinical data for research purposes. The use of formalin-fixed paraffin-embedded material from the Archive of the Institute of Pathology was approved by the Ethics Committee of the Friedrich-Alexander-University of Erlangen-Nuremberg on 24 January 2005. Immunohistochemical staining were performed on formaldehyde-fixed paraffin embedded tissue microarrays. Tissue sections were dewaxed. The antigens were damasked using target removal solutions pH6 (TRS6, Dako Cytomation) in a steam cooker. Anti-E-cadherin (BD, Heidelberg, Germany) was used to visualize cell membranes by an alkaline-phosphatase-labeled polymer kit (Zytochem-Plus AP-PolymerKit, Zytomed Systems, Berlin, Germany) and a fast-red color reaction (Sigma-Aldrich, Deisenhofen, Germany). Senescent cells were detected by anti-H3K9Me3 antibodies and a fast-blue color reaction (Sigma-Aldrich, Deisenhofen, Germany).

TMA Slides were scanned with a microscope at 200x magnification (Carl Zeiss Microscopy, Göttingen, Germany) using Metafer4 software (Metasystems, Altlußheim, Germany). Intraepithelial and stromal areas of each TMA spot were identified by the image processing software Biomas. The senescent cells and cell-in-cell structures were manually selected. Biomas software recorded the counts in the intraepithelial area per mm². Every cell-in-cell structure was photographed and stored. Cells were regarded as senescent, when their nuclei stained positive for H3K9Me3. Cell-in-cell structures were defined as complete enclosure of an inner cell by the membrane of an outer cell, a round nucleus of the inner cell and a semilunar enclosing by the nucleus of the outer cell.

Survival data were censored to 72 months to avoid dilution of data by untraceable drop-out of individual study participants. A corresponding cut-off was determined by a ROC curve analysis. Local failure-free survival, metastasis-free-survival, tumor-specific survival and overall survival were determined using the Kaplan Meier method and the log rank test. Univariate and multivariate Cox regression analysis for overall survival was performed. Age, gender, TNM stage, grading, high cell-in-cell counts/mm², high senescence counts/mm² and the combination of high cell-in-cell and high senescence counts/mm² were evaluated.

Statistical analysis

IBM SPSS Statistics version 21 (IBM Corp, Armonk, NY, USA) was used for statistical analysis. P-values below 0.05 were considered significant.
Declarations

Ethics approval and consent to participate
The use of formalin-fixed paraffin-embedded material from the Archive of the Institute of Pathology was approved by the Ethics Committee of the Friedrich-Alexander-University of Erlangen-Nuremberg on 24 January 2005.

Consent for publication
Not applicable

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare no conflict of interest.

Funding
This research received no external funding.

Authors' contributions
Conceptualization, Distel L., Gottwald D. and Hohmann N.; data curation, Distel L., Gottwald D., Putz F. and Hohmann N.; formal analysis, Distel L., Gottwald D., Putz F. and Hohmann N.; funding acquisition, Fietkau R. and Distel L.; Investigation, Distel L., Gottwald D., Putz F. and Hohmann N.; Methodology, Distel L., Gottwald D., Putz F. and Hohmann N.; project administration, Fietkau R. and Distel L.; Resources, Fietkau R. and Distel L.; Software, Distel L.; supervision Distel L.; Validation, Distel L., Gottwald D., Putz F. and Hohmann N.; visualization, Distel L., Gottwald D. and Hohmann N.; writing - original draft, Distel L., Gottwald D., Hecht M.; writing - review & editing Distel L., Fietkau R., Gottwald D., Putz F., Büttner-Herold M., Hecht M. and Hohmann N.

Acknowledgements
The authors would like to thank Doris Mehler and Elisabeth Müller for excellent technical support during the experiments. The present work was performed in fulfilment of the requirements for obtaining the degree “Dr. med.”
1. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annichiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernasolla S, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, et al. 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486-541.

2. Appelt AL, Ploen J, Vogelius IR, Bentzen SM, Jakobsen A. 2013. Radiation dose-response model for locally advanced rectal cancer after preoperative chemoradiation therapy. Int J Radiat Oncol Biol Phys 85:74-80.

3. Bulens P, Couwenberg A, Haustermans K, Vandeaveye V, Philippens M, Zhou M, Gevaert O, Intven M. 2018. Development and validation of an MRI-based model to predict response to chemoradiotherapy for rectal cancer. Radiother Oncol 126:437-442.

4. Habr-Gama A, São Julião GP, Fernandez LM, Vailati BB, Andrade A, Araújo SEA, Gama-Rodrigues J, Perez RO. 2019. Achieving a Complete Clinical Response After Neoadjuvant Chemoradiation That Does Not Require Surgical Resection. Diseases of the Colon & Rectum 62:802-808.

5. Prieur A, Peeper DS. 2008. Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 20:150-155.

6. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. 2010. The essence of senescence. Genes Dev 24:2463-2479.

7. Herranz N, Gil J. 2018. Mechanisms and functions of cellular senescence. J Clin Invest 128:1238-1246.

8. Rodier F, Campisi J. 2011. Four faces of cellular senescence. J Cell Biol 192:547-556.

9. Chen Z, Cao K, Xia Y, Li Y, Hou Y, Wang L, Li L, Chang L, Li W. 2019. Cellular senescence in ionizing radiation (Review). Oncol Rep 42:883-894.

10. Ewald JA, Desotelle JA, Wilding G, Jarrard DF. 2010. Therapy-induced senescence and its effects on responses to treatment. Clinical Oncology 31:283-289.

11. Coppe JP, Desprez PY, Krtolica A, Campisi J. 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99-118.

12. Munoz-Espin D, Serrano M. 2014. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482-496.

13. Hoenicke L, Zender L. 2012. Immune surveillance of senescent cells—biological significance in cancer and non-cancer pathologies. Carcinogenesis 33:1123-1126.

14. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. 2007. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656-660.

15. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. 2008. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 118:1657-1668.

16. Kolb S, Vranckx R, Huisse MG, Michel JB, Meilhac O. 2007. The phosphatidylserine receptor mediates phagocytosis by vascular smooth muscle cells. J Pathol 212:249-259.

17. Petrovski G, Zahuczky G, Katona K, Vereb G, Martinet W, Nemes Z, Bursch W, Fesus L. 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Differ 14:1117-1128.

18. Schweger M, Wirsing AM, Dollinger AJ, Abendroth B, Putz F, Fietkau R, Distel LV. 2015. Clearance of primary necrotic cells by non-professional phagocytes. Biol Cell 107:372-387.
20. Abodief, T. W, Dey P, Al-Hattab O. 2006. Cell cannibalism in ductal carcinoma of breast. Cytopathology 17:304-305.
21. Cano CE, Sandi MJ, Hamidi T, Calvo EL, Turrini O, Bartholin L, Loncle C, Secq V, Garcia S, Lomberk G, Kroemer G, Urrutia R, Iovanna JL. 2012. Homotypic cell cannibalism, a cell-death process regulated by the nuclear protein 1, opposes to metastasis in pancreatic cancer. EMBO Mol Med 4:964-979.
22. Fais S, Overholtzer M. 2018. Cell-in-cell phenomena in cancer. Nat Rev Cancer 18:758-766.
23. Gupta K, Dey P. 2003. Cell cannibalism: diagnostic marker of malignancy. Diagn Cytopathol 28:86-87.
24. Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Lessi E, Gentile M, Luciani F, Parmiani G, Rivoltini L, Malorni W, Fais S. 2006. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res 66:3629-3638.
25. Schwegler M, Wirsing AM, Schenker HM, Ott L, Ries JM, Buttner-Herold M, Fietkau R, Putz F, Distel LV. 2015. Prognostic Value of Homotypic Cell Internalization by Nonprofessional Phagocytic Cancer Cells. Biomed Res Int 2015:359392.
26. Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, Cibas ES, Brugge JS. 2007. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131:966-979.
27. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. 2019. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 99:1047-1078.
28. Li M, You L, Yue J, Lu Y. 2018. Ionizing Radiation-Induced Cellular Senescence in Normal, Non-transformed Cells and the Involved DNA Damage Response: A Mini Review. Front Pharmacol 9:522.
29. Yosef R, Pilpel N, Papismadov N, Gal H, Ovadya Y, Vadai E, Miller S, Porat Z, Ben-Dor S, Krizhanovsky V. 2017. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J 36:2280-2295.
30. Jain M, Saawarn S, Gupta A, Ashok S, Mhaske S, Khan S. 2017. Assessment of Tumor Cell Cannibalism as a Predictor of Oral Squamous Cell Carcinoma - A Histopathologic Correlation. Gulf J Oncolog 23:52-56.
31. Mackay HL, Moore D, Hall C, Birkbak NJ, Jamal-Hanjani M, Karim SA, Phatak VM, Pinon L, Morton JP, Swanton C, Le Quesne J, Muller PAJ. 2018. Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nat Commun 9:3070.
32. Soto-Gamez A, Quax WJ, Demaria M. 2019. Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions. J Mol Biol 431:2629-2643.
33. Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, Cibas ES, Brugge JS. 2007. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131:966-979.
34. Alok M, Singh S, Swarn K, al. e. 2013. cell cannibalism as an indicator of anaplasia and tumor aggressiveness in carcinoma breast. J Adv Res Biol Sci 5:286-289.
35. Kojima S, Sekine H, Fukui I, Ohshima H. 1998. Clinical significance of cannibalism in urinary cytology of bladder cancer. Acta Cytol 42:1365-1369.
36. Schenker H, Buttner-Herold M, Fietkau R, Distel LV. 2017. Cell-in-cell structures are more potent predictors of outcome than senescence or apoptosis in head and neck squamous cell carcinomas. Radiat Oncol 12:21.
37. Jain M, Saawarn S, Gupta A, Ashok S, Mhaske S, Khan S. 2017. Assessment of Tumor Cell Cannibalism as a Predictor of Oral Squamous Cell Carcinoma - A Histopathologic Correlation. Gulf J Oncolog 23:52-56.
38. Mackay HL, Moore D, Hall C, Birkbak NJ, Jamal-Hanjani M, Karim SA, Phatak VM, Pinon L, Morton JP, Swanton C, Le Quesne J, Muller PAJ. 2018. Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nat Commun 9:3070.
39. Durgan J, Florey O. 2018. Cancer cell cannibalism: Multiple triggers emerge for entosis. Biochim Biophys Acta Mol Cell Res 1865:831-841.
41. Krajcovic M, Krishna S, Akkari L, Joyce JA, Overholtzer M. 2013. mTOR regulates phagosome and entotic vacuole fission. Mol Biol Cell 24:3736-3745.

42. Krishna S, Overholtzer M. 2016. Mechanisms and consequences of entosis. Cell Mol Life Sci 73:2379-2386.

43. Li W, Baker NE. 2007. Engulfment is required for cell competition. Cell 129:1215-1225.

44. Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS. 2006. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66:794-802.

45. Coppe JP, Kaurer K, Campisi J, Beausejour CM. 2006. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 281:29568-29574.

46. Parrinello S, Coppe JP, Krtolica A, Campisi J. 2005. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118:485-496.

47. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. 2001. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072-12077.

48. Gani C, Zips D. 2017. [Time interval between neoadjuvant radiochemotherapy and surgery in rectal cancer : No impact on the pathologic complete response rate?]. Strahlenther Onkol 193:91-92.

49. Jager T, Neureiter D, Fallaha M, Schredl P, Kiesslich T, Urban S, Klieser E, Holzinger J, Sedlmayer F, Emmanuel K, Dinnewitzer A. 2018. The potential predictive value of tumor budding for neoadjuvant chemoradiotherapy response in locally advanced rectal cancer. Strahlenther Onkol 194:991-1006.