Research Article

Analytic Normalized Solutions of 2D Fractional Saint-Venant Equations of a Complex Variable

Najla M. Alarifi¹ and Rabha W. Ibrahim²

¹Department of Mathematics, Imam Abdulrahman Bin Faisal University, Dammam 31113, Saudi Arabia
²IEEE: 94086547, Kuala Lumpur 59200, Malaysia

Correspondence should be addressed to Rabha W. Ibrahim; rabhaibrahim@yahoo.com

Received 14 July 2021; Accepted 4 August 2021; Published 10 September 2021

Saint-Venant equations describe the flow below a pressure surface in a fluid. We aim to generalize this class of equations using fractional calculus of a complex variable. We deal with a fractional integral operator type Prabhakar operator in the open unit disk. We formulate the extended operator in a linear convolution operator with a normalized function to study some important geometric behaviors. A class of integral inequalities is investigated involving special functions. The upper bound of the suggested operator is computed by using the Fox-Wright function, for a class of convex functions and univalent functions. Moreover, as an application, we determine the upper bound of the generalized fractional 2-dimensional Saint-Venant equations (2D-SVE) of diffusive wave including the difference of bed slope.

1. Introduction

Newly, fractional calculus has expanded considerable attention primarily appreciations to the growing occurrence of investigation mechanisms in the life sciences, allowing for simulations found by fractional operators [1] including differential and integral formulas. Further, the mathematical investigation of fractional calculus has advanced, chief to connections with other mathematical areas such as probability theory, mathematical physics [2], and mathematical biology [3–7] and the investigation of stochastic processes in real cases. In addition, it appears in studies of complex analysis. Now the literature, several different definitions of fractional integrals and derivatives are presented. Some of them such as the Riemann-Liouville integral, the Caputo, and the Riemann-Liouville differential operators are extensively employed in mathematics and physics and actually utilized in applied structures, modeling systems in real cases. While, in complex analysis, especially the theory of geometric functions, the researchers are focusing on Srivastava-Owa integral and differential operators [8], Tremblay differential operator, and the most recent fractional operator in [9, 10]. A new investigation of the complex ABC-fractional operator is presented to formulate different classes of analytic functions [11]. Some definitions such as the Hilfer and Prabhakar results [12] (differential and integral operators) are essentially the theme of mathematical study.

Our study is aimed to extend the Prabhakar operator [13] to the open unit disk utilizing the class of normalized analytic functions. We formulate this operates in a linear convolution operator to study some important geometric behaviors. A class of integral inequalities is investigated involving special functions. The upper bound of the suggested operator is computed by using the Fox-Wright function, for a class of convex functions and univalent functions, and other studies are illustrated in the sequel.

2. Complex Prabhakar Operator (CPO)

The Prabhakar integral operator is defined for analytic function \(\phi(z) \in \mathcal{H}[0, 1] = \{ \phi \in U : \phi_1 z + \phi_2 z^2 + \cdots \} \) by the
\[p_{a,\beta}^{\nu} \phi(z) = \int_{0}^{z} (z - \zeta)^{\beta - 1} \bar{z} \nu \left[\omega(z - \zeta)^{\nu} \right] \phi(\zeta) d\zeta = (\phi \cdot p_{a,\beta}^{\nu})(z), \]

\[(\alpha, \beta, \gamma, \omega \in \mathbb{C}, z \in \mathbb{U} = \{ z \in \mathbb{C} : |z| < 1 \}, \Re(\alpha), \Re(\beta) > 0, \]

where, [15]

\[\rho_{a,\beta}^{\nu}(z) := z^{\beta - 1} \bar{z} \nu \left[\omega(z - \zeta)^{\nu} \right], \]

\[\bar{z} \nu_{a,\beta}(\lambda) = \sum_{n=0}^{\infty} \frac{\Gamma(y + n)}{\Gamma(y)} \frac{\lambda^{n}}{n!}. \]

For example, let \(\phi(z) = z^{-1} \) then in view of [21] Corollary 2.3, we have

\[p_{a,\beta}^{\nu} z^{-1} = \int_{0}^{z} (z - \zeta)^{\beta - 1} \bar{z} \nu \left[\omega(z - \zeta)^{\nu} \right] \left(z^{-1} \right) d\zeta \]

\[= \Gamma(z) z^{\beta + e^{-1}} \bar{z} \nu_{a,\beta + e} \left[\omega(z)^{\nu} \right]. \]

The Prabhakar derivative can be computed by the formula [13]

\[D_{a,\beta}^{\nu} \phi(z) = \frac{d^{\beta}}{dz^{\beta}} \left(p_{a,\beta}^{\nu} \phi(z) \right), \quad z \in \mathbb{U}. \]

To study the geometric indications of CPO, we introduce the following class of analytic function: a normalized analytic function \(\phi(z) \in \mathbb{U}, z \in \mathbb{U} \) achieving the power series

\[\phi(z) = z + \sum_{n=2}^{\infty} \alpha_{n} z^{n}, \quad z \in \mathbb{U}, \]

Two analytic functions \(f, g \) are called convoluted, denoting by \(f \ast g \) if and only if

\[(f \ast g)(z) = \left(\sum_{n=0}^{\infty} a_{n} z^{n} \right) \ast \left(\sum_{n=0}^{\infty} g_{n} z^{n} \right) = \sum_{n=0}^{\infty} a_{n} g_{n} z^{n}. \]

Definition 1. Define a new function \(\Omega : \mathbb{U} \rightarrow \mathbb{U} \), such that

\[\Omega_{a,\beta}^{\nu}(z) := \left(\frac{\Gamma(\alpha + \beta)}{\gamma \omega^{1/\alpha}} \right) z^{1-\beta} \rho_{a,\beta}^{\nu} \left(z^{1} \right) \]

\[= \left(\frac{\Gamma(\alpha + \beta)}{\gamma \omega^{1/\alpha}} \right) \zeta_{a,\beta}^{\nu} \left(\omega^{1/\alpha} \zeta^{n} \right) \]

\[= \left(\frac{\Gamma(\alpha + \beta)}{\gamma \omega^{1/\alpha}} \right) \sum_{n=0}^{\infty} \frac{\Gamma(y + n)}{\Gamma(y) \Gamma(\alpha + \beta)} \left(\omega^{1/\alpha} z^{n} \right) \]

\[= \left(\frac{\Gamma(\alpha + \beta)}{\gamma \omega^{1/\alpha}} \right) \sum_{n=0}^{\infty} \frac{\Gamma(y + n)}{\Gamma(y) \Gamma(\alpha + \beta)} \left(\omega^{1/\alpha} \right) \frac{z^{n}}{n!}, \quad (\alpha, \beta, \gamma, \omega \in \mathbb{C}, z \in \mathbb{U}, \Re(\alpha), \Re(\beta) > 0). \]

Note that,

\[(\Omega_{a,\beta}^{\nu})(z) = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = e^{z}, \]

where \(e^{z} \) is a transcendental function. Utilizing the functional \(\Omega_{a,\beta}^{\nu} \), we define the modified complex linear Prabhakar operator

\[D_{a,\beta}^{\nu} \phi(z) = \Omega_{a,\beta}^{\nu} \ast \phi(z), \quad \phi \in \mathbb{U}. \]

We have the following result.

Proposition 2. If \(\phi \in \mathbb{U} \), then \(D_{a,\beta}^{\nu} \phi(z) = \left(\Omega_{a,\beta}^{\nu} \ast \phi \right)(z) \in \mathbb{U} \), where \(\ast \) indicates the convolution product.

Proof. Let \(\phi \in \mathbb{U} \), then we have

\[\left(\Omega_{a,\beta}^{\nu} \ast \phi \right)(z) = \sum_{n=0}^{\infty} \frac{\Gamma(y + n)}{\Gamma(y) \Gamma(\alpha + \beta)} \frac{\phi_{n}}{n!} \]

\[= \sum_{n=0}^{\infty} \frac{\Gamma(\alpha + \beta)}{\gamma \omega^{1/\alpha}} \frac{\phi_{n}}{n!} \frac{\Gamma(y + n)}{\Gamma(y) \Gamma(\alpha + \beta)} \frac{\omega^{n}}{n!} \]

\[= \sum_{n=0}^{\infty} \frac{\Gamma(\alpha + \beta)}{\gamma \omega^{1/\alpha} \Gamma(y) \Gamma(\alpha + \beta)} \frac{\phi_{n}}{n!} \frac{\omega^{n}}{n!} \]

\[= \sum_{n=0}^{\infty} \frac{\Gamma(\alpha + \beta)}{\gamma \omega^{1/\alpha} \Gamma(y) \Gamma(\alpha + \beta)} \frac{\phi_{n}}{n!} \frac{\omega^{n}}{n!} \]

\[= \sum_{n=0}^{\infty} \frac{\Gamma(\alpha + \beta)}{\gamma \omega^{1/\alpha} \Gamma(y) \Gamma(\alpha + \beta)} \frac{\phi_{n}}{n!} \frac{\omega^{n}}{n!}. \]

where

\[\phi_{n} = \frac{\Gamma(\alpha + \beta)}{\gamma \omega^{1/\alpha} \Gamma(y) \Gamma(\alpha + \beta)} \frac{\phi_{n}}{n!} \frac{\omega^{n}}{n!}. \]

\[\Omega_{a,\beta}^{\nu} \phi(z) = \left(\Omega_{a,\beta}^{\nu} \ast \phi \right)(z) \in \mathbb{U}. \]

We need the following concepts to study the \(D_{a,\beta}^{\nu} \phi(z) \) geometrically.

Definition 3. A function \(\phi \in \mathbb{U} \) is indicated to be starlike including the origin of the linear slice contains the origin to all further point of \(\phi \) in \(\phi(z) \in \mathbb{U} \). A univalent function (one-one) \(\phi \) is indicated to be convex in \(\mathbb{U} \) if the linear slice relating every two points of \(\phi(z) \) lies completely in \(\phi(z) \in \mathbb{U} \). We indicate these classes by \(\Delta^{*} \) and \(\mathcal{C} \) for starlike and convex consistently. Consider the class \(\mathcal{F} \) includes all mappings \(\phi \) smooth in \(\mathbb{U} \) with a positive real part in \(\mathbb{U} \) realizing \(\phi(0) = 1 \).
an analytic function \(\phi(z)\), is formulated by convexity.

Lemma 4. Let \(h \in \mathbb{C}\). Then,

1. \(h(z) + az^h(z) < (1 + a)z + az^2 \Rightarrow h(z) < z\), when \(a \in (0, 1/3]\)
2. \(zh'(z)[1 + h(z)] + ah^2(z) < z + (1 + a)z^2 \Rightarrow h(z) < z\), when \(|1 + a| \leq 1/4\)
3. \([zh'(z) - h(z)]e^{\theta(z)} + e^h(z) < e^z \Rightarrow h(z) < z\), when \(|a - 1| \leq \pi/2\)
4. \(zh'(z)(1 + ah(z)) + h(z) < 2z + az^2 \Rightarrow h(z) < z\), when \(|a| \leq 1/2\)
5. \(zh'(z)e^{h(z)} + h(z) < z(1 + az^2) \Rightarrow h(z) < z\), when \(|a| \leq 1\)
6. \(h(z) + zh'(z)/1 + ah(z) < z \Rightarrow h(z) < z\), when \(|a| \leq 1\)

and the solution is sharp.

Definition 5. The Fox-Wright function \(\zeta_p^\omega q\) (the extension function of hypergeometric function) is formulated by

\[
\zeta_p^\omega q \equiv \frac{\left[(x_1, X_1) \ (x_2, X_2) \ \cdots \ (x_p, X_p) \right]}{\left[(y_1, Y_1) \ (y_2, Y_2) \ \cdots \ (y_q, Y_q) \right] \ } \ z^n = \sum_{n=0}^{\infty} \frac{\Gamma(x_1 + \chi n) \cdots \Gamma(x_p + x_p n)}{\Gamma(y_1 + \chi n) \cdots \Gamma(y_q + y_q n)} \ z^n/n!.
\]

And it normalized by

\[
\zeta_p^\omega q \equiv \frac{\left[(x_1, X_1) \ (x_2, X_2) \ \cdots \ (x_p, X_p) \right]}{\left[(y_1, Y_1) \ (y_2, Y_2) \ \cdots \ (y_q, Y_q) \right] \ } \ z^n = \frac{\Gamma(y_1) \cdots \Gamma(y_q) \sum_{n=0}^{\infty} \Gamma(x_1 + \chi n) \cdots \Gamma(x_p + x_p n) \ z^n}{\Gamma(x_1) \cdots \Gamma(x_p) \sum_{n=0}^{\infty} \Gamma(y_1 + \chi n) \cdots \Gamma(y_q + y_q n)} \ z^n/n!.
\]

Note that the series is converged when

\[
\beta = \sum_{j=1}^{d} \omega_j - \sum_{i=1}^{p} \omega_i \geq -1.
\]

Moreover, it converges for all finite values of \(z\) to the entire function provided \(\beta < -1\). In addition, at the boundary \(|z| = 1\), it has the convergence value (see [23])

\[
\Re(\zeta) := \Re \left(\sum_{j=1}^{d} \omega_j - \sum_{i=1}^{p} \omega_i + \frac{p - q - 1}{2} \right) > 0.
\]

The significance of the Fox-Wright function arises regularly from its part in fractional calculus (see [1]). Further fascinating applications correspondingly occur. Wright’s original attentiveness in this function was connected to the asymptotic theory of partitions [24]. The formula \(\zeta\) is generated in [23] by adding a positive parameter \(\theta > 0\) as follows:

\[
\zeta_{\theta} = \sum_{j=1}^{d} \omega_j - \sum_{i=1}^{p} \omega_i + \frac{p - q - 1}{2}.
\]

Based on this generalization, the authors in [24] introduced the following lemma.

Lemma 6. Assume that \(\beta = -1, \theta > 0 \) and \(\Re(\zeta_{\theta}) > 0\). Then,

\[
p^\omega q(z) = \Gamma(\theta)^{\frac{1}{t}} \frac{H(\rho^{-1}) dt}{t(1 - tz^{-1})^\theta}, \ |z| < \rho,
\]

where

\[
H := \frac{1}{2\pi i} \int_{\gamma}^\omega \frac{1}{\Gamma(\zeta)\zeta^{-\gamma}\Gamma(\zeta + \theta) d\zeta} < \infty,
\]

is the delta-neutral \(H\) function and \(\Pi\) indicates the Fox-Wright coefficients.

Proposition 7. Let \(\phi \in \mathbb{C}\) (convex in the open unit disk), then

\[
|\Omega_{\alpha, \beta}^{\omega} \ast \phi(z)| \leq \frac{1}{\zeta_p^\omega q} \left(\frac{1 + \gamma \alpha}{(\alpha + \beta, \alpha) \omega^{\alpha}} \right).
\]

(\(\alpha > 0, \ \beta > 0, \ |z| = r < 1, \ \gamma, \omega \in \mathbb{R}_+\)).

Proof. Since \(\phi \in \mathbb{C}\), then for each \(n \geq 2\), we have \(|\phi_n| \leq 1\).
Then, a computation implies that

\[
\left| (\Omega_{a,\beta}^w \ast \phi)(z) \right| \leq \left(\Gamma(1+n)\Gamma(1+y+n) \right) \left(\frac{\Gamma(y+n)\omega_{an}(\alpha) \Gamma(\alpha + \beta)}{\Gamma(1+y)\Gamma(2+n) \Gamma(\alpha + \beta)} \right) n! z^{n-1} \times \frac{1}{n!} r^n
\]

Moreover, the upper bound of \((\Omega_{a,\beta}^w \ast \phi)(z) \) converges when

\[
\Re(\alpha) = \Re \left(\sum_{j=0}^{q} \gamma_j - \frac{p \gamma_j - q - 1}{2} \right) > 0 \quad \alpha + \beta - y - 3/2 > 0 \quad \alpha + \beta > y + 3/2.
\]

(ii) For special case: by Proposition 7 and Lemma 6, we have

\[
\left| (\Omega_{a,\beta}^w \ast \phi)(z) \right| \leq r \left[\frac{\Gamma(2)\Gamma(2+\beta)}{\Gamma(1+y)\Gamma(1+\beta)} \right] (1, 1, 1 + y, 1 ; \omega_{1+\beta}^w)
\]

provided that \(5/2 + \beta > y \) and \(\theta = 1 \).

Proposition 9. Let \(\phi \) be univalent in the open unit disk. Then,

\[
\left| (\Omega_{a,\beta}^w \ast \phi)(z) \right| \leq r \left[\frac{1+y, 1}{\alpha + \beta, \alpha} ; \omega_{1+\beta}^w \right],
\]

\[
\left| (\Omega_{a,\beta}^w \ast \phi)(z) \right| \leq r \left[\frac{1+y, 1}{\alpha + \beta, \alpha} ; \omega_{1+\beta}^w \right],
\]

for \(r > 0, \alpha + \beta > 1, \beta, y \in \mathbb{R}_+ \).

Proof. Since \(\phi \) is univalent, then for each \(n \geq 2 \), we have \(|\phi_n| \leq n! \). Then a calculation indicates that

\[
\left| (\Omega_{a,\beta}^w \ast \phi)(z) \right| \leq \left(\frac{\Gamma(1+n)\Gamma(1+y+n) \Gamma(y+n)\omega_{an}(\alpha) \Gamma(\alpha + \beta)}{\Gamma(1+y)\Gamma(2+n) \Gamma(\alpha + \beta)} \right) n! z^{n-1} \times \frac{1}{n!} r^n
\]

This completes the proof.

Remark 8.

(i) It is clear that the above upper bound of \((\Omega_{a,\beta}^w \ast \phi)(z) \), \(|z| \rightarrow 1, \omega = 1 \) converges at

\[
\Re(\alpha) = \Re \left(\sum_{j=0}^{q} \gamma_j - \frac{p \gamma_j - q - 1}{2} \right) > 0 \quad \alpha + \beta - y - 1/2 > 0 \quad \alpha + \beta > y + 1/2.
\]
Now, we return to the upper bound of the derivative

$$
|\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z)| \leq \sum_{n=1}^{\infty} \left(\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha + \beta + 1)}\right) \left(\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha + \beta + 1)}\right) \left(\frac{1}{n!}\right) n \| \phi_n \| \| \omega^{1/n} \| -1
$$

Consequently, we obtain the upper bound inequality

$$
\left|\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z)\right| < 1, \quad z \in \mathbb{U}.
$$

The function $e^{\varepsilon z}$ achieves the real inequality

$$
\Re \left(e^{\varepsilon z}\right) > \Re(\sigma z + 2) > 0,
$$

provided that $|\sigma| < 2$. Moreover, we have superior inequality

$$
\chi = \sup_{|\sigma| < 1} \left\{ \frac{|e^{\varepsilon z}|}{|e^{\sigma z}| + 2e^{\varepsilon z}} \right\} = \sup_{|\sigma| < 1} \left\{ \frac{|e^{\varepsilon z}|}{|e^{\sigma z}| + 2e^{\varepsilon z}} \right\}
$$

$$
\leq \frac{1}{2 - |\sigma|} < \infty, \quad |\sigma| < 2.
$$

Hence, in view of [22] [Corollary 4.3a.2, P210], we conclude that

$$
\left|\sum_{n=1}^{\infty} \left(\frac{\Omega_{\alpha,\beta}^{\omega,\phi}}{\sigma^2}\right)(\zeta)e^{\alpha z}d\zeta\right| \leq \frac{|z|^2}{2 - |\sigma|}, \quad |\sigma| < 2,
$$

which yields

$$
\left|\sum_{n=1}^{\infty} \left(\frac{\Omega_{\alpha,\beta}^{\omega,\phi}}{\sigma^2}\right)(\zeta)e^{\alpha z}d\zeta\right| < \frac{1}{2 - |\sigma|},
$$

hence the proof. ?

Now, we investigate another integral inequality involving the operator $\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)$ where $\phi \in \Lambda$.

Theorem 11. Consider $\phi \in \Lambda$ and the operator $\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z)$, where $\alpha \neq 0, z \in \mathbb{U}, \beta, \gamma \in \mathbb{R}_+$. If one of the following subordination inequalities hold

$$
\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) + z\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) + \eta\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) < \sigma z + 2z, \quad |\sigma| \leq \frac{1}{2},
$$

$$
\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) + z\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) + \eta\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) < (i + \sigma z)e^{\varepsilon z}, \quad |\sigma| \leq 1,
$$

$$
\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) + \frac{z\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) + \eta\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) < (i + \sigma z)e^{\varepsilon z}, \quad |\sigma| \leq 1,
$$

$$
\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) + \sigma z\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) < (i + \sigma z)e^{\varepsilon z}, \quad 0 < |\sigma| \leq \frac{1}{2},
$$

$$
\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) + \frac{z\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) + \eta\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) < 2z,
$$

then \(\Psi(z) = 1/e^{\varepsilon z}\int_0^z \left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(\zeta)e^{\alpha z}d\zeta \in \mathbb{H}[0, 1] \) and

$$
\left|\sum_{n=1}^{\infty} \left(\frac{\Omega_{\alpha,\beta}^{\omega,\phi}}{\sigma^2}\right)(\zeta)e^{\alpha z}d\zeta\right| < \frac{1}{2 - |\sigma|}, \quad |\sigma| < 2.
$$

Proof. Suppose that the operator $\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)$ achieves one of the subordination inequalities (a)-(h) then, in view of Proposition 2, we have

$$
\left(\Omega_{\alpha,\beta}^{\omega,\phi}\right)(z) < z, \quad z \in \mathbb{U},
$$

(38)
which implies that
\[|\left(\Omega_{a,b}^{\omega*} \phi \right)(z)| < 1, \quad z \in \mathbb{U}. \]

(39)

As in Theorem 10, the function \(e^{\varepsilon z} \) admits the real inequality
\[\Re \left(\frac{z(e^{\varepsilon z})'}{e^{\varepsilon z}} + 1 \right) = \Re(\sigma z + 1) > 0, \]

(40)

provided that \(|\sigma| < 1 \). Moreover, we have superior inequality
\[
v = \sup_{|z| < 1} \left\{ \frac{|g(z)|}{|z(e^{\varepsilon z})' + (1 + \sigma) e^{\varepsilon z}|} \right\} = \sup_{|z| < 1} \left\{ \frac{|g(z)|}{|z\sigma e^{\varepsilon z} + e^{\varepsilon z}|} \right\} = \sup_{|z| < 1} \left\{ \frac{|g(z)|}{1 - |\sigma|} \right\}, \quad |\sigma| < 1 < \infty, \]

(41)

Thus, in view of [22] [Theorem 4.3a, P207], we indicate that then \(G(z) \in \mathcal{H}[0, 1] \) and
\[
\left| \frac{1}{e^{\varepsilon z}} \int_0^z \left(\Omega_{a,b}^{\omega*} \phi \right)(\zeta) g(\zeta) d\zeta \right| < \frac{|g(z)|}{1 - |\sigma|}, \quad |\sigma| < 1, \]

(42)

where \(g \in \mathcal{H}[1, 1], g \neq 0 \), hence the proof. ?

In addition, we have the following result by replacing \(e^{\varepsilon z} \) by \(z e^{\varepsilon z} \):

Theorem 12. Consider \(\phi \in \mathcal{A} \) and the operator \((\Omega_{a,b}^{\omega*} \phi)(z) \), where \(\alpha \neq 0, z \in \mathbb{U} \), \(\gamma \in \mathbb{R}_+ \). If one of the subordination inequalities in Theorem 10 holds, then
\[
L(z) = \left. \frac{1}{e^{\varepsilon z}} \int_0^z \left(\Omega_{a,b}^{\omega*} \phi \right)(\zeta) (1 + \sigma \zeta) e^{\varepsilon \zeta} \zeta^{k-1} d\zeta \right|_{\mathcal{H}[0, 1]},
\]
\[
\left| \frac{1}{e^{\varepsilon z}} \int_0^z \left(\Omega_{a,b}^{\omega*} \phi \right)(\zeta) (1 + \sigma \zeta) e^{\varepsilon \zeta - \zeta^{k-1}} d\zeta \right|
\]
\[
< \left\{ \frac{1 + |\sigma|}{1 - |\sigma| + \kappa} \right\}, \quad \kappa > 0, |\sigma| \leq 1.
\]

(43)

Proof. Suppose that the operator \((\Omega_{a,b}^{\omega*} \phi)\) has one of the subordination inequalities (a)-(h) then, in view of Proposition 2 and results in [22], P138-140, we have
\[
\left(\Omega_{a,b}^{\omega*} \phi \right)(z) < z, \quad z \in \mathbb{U},
\]

(44)

which leads to
\[
|\left(\Omega_{a,b}^{\omega*} \phi \right)(z)| < 1, \quad z \in \mathbb{U}.
\]

(45)

The function \(z e^{\varepsilon z} \) admits the following properties
\[
\left(z e^{\varepsilon z} \right)' = e^{\varepsilon z} + z e^{\varepsilon z} \neq 0, \quad |\sigma| \leq 1;
\]

(46)

\[
\Re \left(\frac{(z e^{\varepsilon z})'}{z e^{\varepsilon z}} + \kappa \right) = \Re(1 + \sigma z + \kappa) > 0.
\]

Moreover, we have superior inequality
\[
S = \sup_{|z| < 1} \left\{ \frac{|z(z e^{\varepsilon z})'|}{|z e^{\varepsilon z}| + \kappa (z e^{\varepsilon z})|} \right\} = \sup_{|z| < 1} \left\{ \frac{1 + |\sigma|}{1 - |\sigma| + \kappa} \right\} = \sup_{|\sigma| < 1, \kappa > 0 < \infty}.
\]

(47)

Thus, in view of [22]-[Corollary 4.3a.1, P208], \(L(z) \in \mathcal{H} [0, 1] \) and
\[
\left| \frac{1}{z e^{\varepsilon z}} \int_0^z \left(\Omega_{a,b}^{\omega*} \phi \right)(\zeta) (1 + \sigma \zeta) e^{\varepsilon \zeta - \zeta^{k-1}} d\zeta \right|
\]
\[
< \left\{ \frac{1 + |\sigma|}{1 - |\sigma| + \kappa} \right\}, \quad \kappa > 0, |\sigma| \leq 1, \quad z \in \mathbb{U} \phi \in \mathcal{A}.
\]

(48)

This completes the proof. ?

Theorem 13. Consider that \(\phi \) is convex univalent function in the open unit disk and the operator \((\Omega_{a,b}^{\omega*} \phi)(z) \), where \(\alpha \neq 0, z \in \mathbb{U}, \beta, \gamma \in \mathbb{R}_+ \). Then,
\[
\Psi(z) \in \mathcal{H}[0, 1],
\]

(49)

with
\[
\left| \frac{1}{e^{\varepsilon z}} \int_0^z \left(\Omega_{a,b}^{\omega*} \phi \right)(\zeta) g(\zeta) d\zeta \right|
\]
\[
< \frac{(1, 1) (1 + \gamma, 1)}{2 - |\sigma|} \omega_{1/2}^{1/2}, \quad |\sigma| < 2.
\]

(50)

\(G(z) \in \mathcal{H}[0, 1] \) with
\[
\left| \frac{1}{e^{\varepsilon z}} \int_0^z \left(\Omega_{a,b}^{\omega*} \phi \right)(\zeta) g(\zeta) d\zeta \right|
\]
\[
< \frac{(1, 1) (1 + \gamma, 1)}{1 - |\sigma|} \omega_{1/2}^{1/2}, \quad |\sigma| < 1,
\]

(51)

where \(g \in \mathcal{H}[1, 1], g \neq 0 \).
\[L(z) \in \mathcal{H}[0, 1] \text{ with} \]
\[
\left| \frac{1}{2\pi i} \int_{0}^{\infty} \left(\Omega_{\alpha, \beta}^{\omega} \ast \phi \right) (\zeta) e^{i\zeta} \zeta^{-1} d\zeta \right| \leq \frac{1}{2} \Gamma_{2} \left[(1, 1) \begin{pmatrix} 1 + \gamma, 1 \\ (1 + \alpha, \alpha) \end{pmatrix} ; \omega^{1/\alpha} \right]
\leq \frac{1}{2} \left(\frac{1}{1 + |\sigma|} \right) \frac{1 + |\sigma| + \kappa}{1 + |\sigma| + \kappa} = \frac{1}{2} \left(\frac{1}{1 + |\sigma|} \right) \frac{1 + |\sigma| + \kappa}{1 + |\sigma| + \kappa} \cdot \left(\kappa > 0, |\sigma| \leq 1, z \in \mathbb{U}. \right)
\]

Proof. Let \(\phi \) be convex univalent in \(\mathbb{U} \). Then, in view of Proposition 7, we have
\[
\left| \left(\Omega_{\alpha, \beta}^{\omega} \ast \phi \right) (z) \right| < r_{2} \mathcal{H}_{2} \left[(1, 1) \begin{pmatrix} 1 + \gamma, 1 \\ (1 + \alpha, \alpha) \end{pmatrix} ; \omega^{1/\alpha} \right].
\]

Consequently, by assuming \(r \to 1 \), we obtain
\[
\left| \left(\Omega_{\alpha, \beta}^{\omega} \ast \phi \right) (z) \right| < 2 \mathcal{H}_{2} \left[(1, 1) \begin{pmatrix} 1 + \gamma, 1 \\ (1 + \alpha, \alpha) \end{pmatrix} ; \omega^{1/\alpha} \right].
\]

By the proof of Theorem 10, we conclude that (A). Similarly, by using the proof in Theorems 11 and 12, we have (B) and (C), respectively. This ends the proof.

Theorem 14. Consider that \(\phi \) is univalent function in the open unit disk and the operator \((\Omega_{\alpha, \beta}^{\omega} \ast \phi)(z) \), where \(\alpha \neq 0, z \in \mathbb{U}, \beta, \gamma \in \mathbb{R} \). Then
\[
\Psi(z) \in \mathcal{H}[0, 1] \text{ with} \]
\[
\left| \frac{1}{2\pi i} \int_{0}^{\infty} \left(\Omega_{\alpha, \beta}^{\omega} \ast \phi \right) (\zeta) e^{i\zeta} \zeta^{-1} d\zeta \right| < \frac{1}{2 - |\sigma|} \mathcal{H}_{2} \left[(1 + \gamma, 1) \begin{pmatrix} 1 + \alpha, \alpha \end{pmatrix} ; \omega^{1/\alpha} \right], |\sigma| < 2.
\]

Theorem 15. Consider the operator \((\Omega_{\alpha, \beta}^{\omega} \ast \phi), \phi \in \Lambda. \)

(A) If \(|(\Omega_{\alpha, \beta}^{\omega} \ast \phi)(z)| / e^{\text{arc}(\sigma z + 1) - 1} < 0.04, \) where \(|\sigma| < 1/2(\sqrt{13} - 3) \approx 0.3027 \) then \((\Omega_{\alpha, \beta}^{\omega} \ast \phi) \in \Delta^{*}. \)

(B) If \(|z\phi'(z)| / (\phi(z) - 1) < 0.374 \) and sup \(\{ |(\Omega_{\alpha, \beta}^{\omega} \ast \phi)(z)| / (\Omega_{\alpha, \beta}^{\omega} \ast \phi)(z) \} \} \) is \(|\sigma|, |\sigma| < 1 \) then
\[
\int_{0}^{\infty} \left| \left(\Omega_{\alpha, \beta}^{\omega} \ast \phi \right) (z) \right| dz \in \Delta^{*}.
\]

(C) If \(|(\Omega_{\alpha, \beta}^{\omega} \ast \phi)(z)| < 2/\sqrt{5} \) then \((\Omega_{\alpha, \beta}^{\omega} \ast \phi)(z) \in \Delta^{*}. \)

Proof. For part (A), assume that \(g(z) = ze^{\text{arc}} \) then
\[
\sup \left\{ \left| \frac{g'(z)}{g(z)} \right| \right\} = \sup \left\{ \left| \frac{2\sigma + z\sigma^{2}}{1 + 2\sigma} \right| \right\}. \]

Consequently, we have
\[
\sup \left\{ \left| \frac{2\sigma + z\sigma^{2}}{1 + 2\sigma} \right| \right\} \leq \frac{2 + |\sigma|^{2}}{1 - |\sigma|} < 1, |\sigma| < 1. \]

The value \(|\sigma| < 1/2(\sqrt{13} - 3) \approx 0.3027 \) implies that \(2 + |\sigma|^{2}/1 - |\sigma| = 0.98 < 1. \) Since
\[
\left| \Omega_{\alpha, \beta}^{\omega} \ast \phi \right| (z) / e^{\text{arc}(\sigma z + 1) - 1} < 0.04,
\]
then in view of [22], we conclude that \((\Omega_{\alpha, \beta}^{\omega} \ast \phi) \in \Delta^{*}. \)
For part (B), since

$$\left| \frac{z\phi'(z)}{\phi(z)} - 1 \right| < 0.374,$$ \hspace{1cm} (64)

where the number 0.374 is a solution of the equation \((1 + x)e^x = 2\) then by [22] [Theorem 5.5d, P299], we have \(|\phi'(z) - 1| < 1\). Moreover, in terms of \(|\sigma|\), we have

$$|\phi'(z) - 1| < \frac{(2 - |\sigma|) \sqrt{2(2 - |\sigma|)} + 1 - |\sigma|}{(2 - |\sigma|)^2 + 1} \bigg|_{\sigma \rightarrow -1},$$

$$\lim_{|\sigma| \rightarrow -1} \frac{(2 - |\sigma|) \sqrt{2(2 - |\sigma|)} + 1 - |\sigma|}{(2 - |\sigma|)^2 + 1} \approx 0.$$ \hspace{1cm} (65)

by [22] [Theorem 5.5d, P298] then

$$\int_0^\infty \left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z) \phi'(z) dz < 0.$$ \hspace{1cm} (66)

The last part immediately comes from [22] [Corollary 5.5.a,P294]. This ends the proof. ?

Theorem 16. Consider the operator \((\Omega_{a,\beta}^{\alpha} \ast \phi), \phi \in \Lambda\). Let

(A) If the following inequality holds

$$\frac{z \left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z)}{\Omega_{a,\beta}^{\alpha} \ast \phi(z)} < e^z - 1, \quad z \in U,$$ \hspace{1cm} (67)

then

$$\left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z) \leq \exp \left(\int_0^z \left(e^\zeta - 1 \right) d\zeta \right), \quad z \in U.$$ \hspace{1cm} (68)

(B) If the subordination occurs

$$\frac{z \left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z)}{\Omega_{a,\beta}^{\alpha} \ast \phi(z)} - 1 < e^z - 1, \quad z \in U,$$ \hspace{1cm} (69)

then

$$\frac{\left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z)}{z} \leq \exp \left(\int_0^z \left(e^\zeta - 1 \right) d\zeta \right), \quad z \in U.$$ \hspace{1cm} (70)

(C) If the next relation exists

$$z \left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z) < e^z - 1, \quad z \in U,$$ \hspace{1cm} (71)

then

$$\left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z) \leq \int_0^z \left(e^\zeta - 1 \right) d\zeta.$$ \hspace{1cm} (72)

Proof. It is clear that the function

$$f(z) = e^z - 1 = z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + O(z^6),$$ \hspace{1cm} (73)

satisfies \(f(0) = 0\) and it is convex in the open unit disk. Consequently, it is starlike. By Proposition 2, the operator \((\Omega_{a,\beta}^{\alpha} \ast \phi)(z) \in \Lambda\) and hence \((\Omega_{a,\beta}^{\alpha} \ast \phi)(0) = 1\) that is \((\Omega_{a,\beta}^{\alpha} \ast \phi)(z) \in \mathcal{H}[0, 1]\). Similarly for the function

$$\frac{\left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z)}{z} \in \mathcal{H}[1, 1].$$ \hspace{1cm} (74)

Thus, in view of [22]-[Corollary 3.1d, P76], we have the desire results.

For the last part (C), \(z(\Omega_{a,\beta}^{\alpha} \ast \phi)(z) \in \mathcal{H}[0, 1]\); thus, in virtue of [22]-[Theorem 3.1d, P76], where \(a = 0\), we conclude the last subordination. ?

2.1. Fractional Saint-Venant Equations. By using the fractional calculus of the construction, we formulate the fractional 2D-Saint-Venant equations utilizing the functional convolution operator \(\Omega_{a,\beta}^{\alpha} \ast \phi, \phi \in \Lambda, z \in U\).

Example 1. We investigate the upper bound of the 2-dimensional Saint-Venant equations (2D-SVE) of diffusive wave (this equation has measured the level of the water). This equation simply presents the formula

$$\frac{d\Theta(z)}{dz} - \Delta(z) = 0,$$ \hspace{1cm} (75)

where \(\Theta\) is the height deviation of the horizontal pressure surface at two-dimensional position \(z = x + iy\) and \(\Delta(z)\) represents the difference of bed slope. By using the convolution operator, we generalize 2D-SVE into the form

$$\left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z) - \Delta(z) = 0, \quad z \in U.$$ \hspace{1cm} (76)

Multiplying both sides of Eq. (76) by \(z\) and let

$$\Delta(z) = \frac{e^z - 1}{z} = 1 + \frac{z}{2} + \frac{z^2}{6} + \frac{z^3}{24} + \frac{z^4}{120} + \frac{z^5}{720} + O(z^6),$$ \hspace{1cm} (77)

we have

$$z \left(\Omega_{a,\beta}^{\alpha} \ast \phi \right)(z) = e^z - 1, \quad z \in U.$$ \hspace{1cm} (78)
\[
\text{Re}(e^{z^2-1}) \quad \text{Im}(e^{z^2-1})
\]

where
\[z = x + iy\]

\[
\text{Re}(\text{Ei}(z) - \log(z)) \quad \text{Im}(\text{Ei}(z) - \log(z))
\]

where
\[z = x + iy\]

(a) The first row represents the function \(f(z) = (e^z) - 1\) and the second row indicates the solution (79) of the extended 2D-SVE.

(b) The solution \(f(z) = (P_{a,b} * \phi)(z)\)

Figure 1: Saint-Venant equations (2D-SVE) of diffusive wave.
Thus, in view of Theorem 16-(C), we conclude the upper solution of Eq. (78) is given by (see Figure 1, second row)

\[
\left(\Omega_{a,b} \phi \right)(z) < \int_0^z \left(e^z - 1 \right) \zeta^{-1} d\zeta. \tag{79}
\]

Hence, we obtain

\[
\left(\Omega_{a,b} \phi \right)(z) = c + Ei(z) - \log (z) = c + 0.577 + \frac{z^2}{4} + \frac{z^4}{96} + \frac{z^5}{600} + \frac{z^6}{4320} + O(z^7)
\]

\[
- \log \left(\frac{\arg (z) + \pi}{2\pi} \right),
\]

(80)

where \(c \) is a constant and

\[
Ei(z) = 0.577 + \ln (z) + z + \ldots,
\]

(81)

indicates the exponential integral. Assuming that

\[
c = \text{in} \left(\frac{\arg (z) + \pi}{2\pi} \right) - 0.577,
\]

(82)

we get

\[
\left(\Omega_{a,b} \phi \right)(z) = z + \frac{z^2}{4} + \frac{z^4}{96} + \frac{z^5}{600} + \frac{z^6}{4320} + O(z^7) \in \bigcup.
\]

(83)

By the convexity of \(e^z \) (see [22]-P139), we confirm that the solution is normalized analytic convex in \(\bigcup \). Note that the term \(\left(\Omega_{a,b} \phi \right)(z) \) is called the convective acceleration term. Figure 1 shows the behavior of solutions of 2D-SVE of diffusive wave.

3. Conclusion

From above, we have extended the Prabhakar operator in the open unit disk. We formulated it in a linear convolution operator with a normalized function. A class of integral inequalities is investigated involving special functions. The upper bound of the suggested operator is computed by using the Fox-Wright function, for a class of convex functions and univalent functions. Moreover, we applied the operator to generalize the 2D-SVE. A solution of the extended 2D-SVE is computed by using recent result (Theorem 16).

For future work, one can consider extra studies in the geometric function theory by considering the operator in different classes of analytic functions, such as normalized functions, harmonic functions, and meromorphic functions.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

All authors contributed equally and significantly to writing this article. All authors read and agreed to the published version of the manuscript.

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and applications of the fractional differential equations,” North-Holland Mathematics Studies, vol. 204, 2006.

[2] H. K. Nashine, R. W. Ibrahim, R. Arab, and M. Rabbani, “Solvability of fractional dynamic systems utilizing measure of non-compactness,” Nonlinear Analysis: Modelling and Control, vol. 25, no. 4, pp. 618–637, 2020.

[3] S. Momani, R. Ibrahim, and S. Hadid, “Susceptible-infected-susceptible epidemic discrete dynamic system based on Tsallis entropy,” Entropy, vol. 22, no. 7, p. 769, 2020.

[4] R. W. Ibrahim and D. Alteulea, “Controlled homeodynamic concept using a conformable calculus in artificial biological systems,” Chaos, Solitons & Fractals, vol. 140, article 110132, 2020.

[5] P. A. Naik, M. Yavuz, S. Qureshi, J. Zu, and S. Townley, “Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan,” Nuovo cimento della Società italiana di fisica B, vol. 135, no. 10, pp. 1–42, 2020.

[6] A. Atangana and S. I. Araz, “A novel Covid-19 model with fractional differential operators with singular and non-singular kernels: analysis and numerical scheme based on Newton polynomial,” Alexandria Engineering Journal, vol. 60, no. 4, pp. 3781–3806, 2021.

[7] A. Atangana and B. T. Alkahtani, “A novel double integral transform and its applications,” Journal of Nonlinear Sciences and Applications, vol. 9, no. 2, pp. 424–434, 2016.

[8] H. M. Srivastava and S. Owa, Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, Wiley, New York, 1989.

[9] R. W. Ibrahim, “On generalized Srivastava-Owa fractional operators in the unit disk,” Advances in Difference Equations, vol. 2011, no. 1, 2011.

[10] R. W. Ibrahim and J. M. Jahangiri, “Boundary fractional differential equation in a complex domain,” Boundary Value Problems, vol. 2014, no. 1, 11 pages, 2014.

[11] R. W. Ibrahim and D. Baleanu, “Symmetry breaking of a time-2D space fractional wave equation in a complex domain,” Axioms, vol. 10, no. 3, p. 141, 2021.

[12] R. Garra, R. Gorenflo, F. Polito, and Ž. Tomovski, “Hilfer-Prabhakar derivatives and some applications,” Applied Mathematics and Computation, vol. 242, pp. 576–589, 2014.

[13] T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel,” Yokohama Mathematical Journal, vol. 19, pp. 7–15, 1971.

[14] R. Garrappa and E. Kaslik, “Stability of fractional-order systems with Prabhakar derivatives,” Nonlinear Dynamics, vol. 102, no. 1, pp. 567–578, 2020.
[15] R. Garra and R. Garrappa, “The Prabhakar or three parameter Mittag-Leffler function: theory and application,” *Communications in Nonlinear Science and Numerical Simulation*, vol. 56, pp. 314–329, 2018.

[16] A. Giusti and I. Colombaro, “Prabhakar-like fractional viscoelasticity,” *Communications in Nonlinear Science and Numerical Simulation*, vol. 56, pp. 138–143, 2018.

[17] M. H. Derakhshan, “New numerical algorithm to solve variable-order fractional integrodifferential equations in the sense of Hilfer-Prabhakar derivative,” *Abstract and Applied Analysis*, vol. 2021, Article ID 8817794, 10 pages, 2021.

[18] S. Eshaghi, A. Ansari, and R. K. Ghaziani, “Generalized Mittag-Leffler stability of nonlinear fractional regularized Prabhakar differential systems,” *International Journal of Nonlinear Analysis and Applications*, vol. 12, no. 2, pp. 665–678, 2021.

[19] N. Eghbali, A. Moharramnia, and J. Rassias, “Mittag-Leffler-Hyers-Ulam stability of Prabhakar fractional integral equation,” *International Journal of Nonlinear Analysis and Applications*, vol. 12, no. 2, pp. 25–33, 2021.

[20] T. M. Michelitsch, F. Polito, and A. P. Riascos, “On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics,” *Physica A: Statistical Mechanics and its Applications*, vol. 565, article 125541, 2021.

[21] A. A. Kilbas, M. Saigo, and R. K. Saxena, “Generalized Mittag-Leffler function and generalized fractional calculus operators,” *Integral Transforms and Special Functions*, vol. 15, no. 1, pp. 31–49, 2004.

[22] S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, CRC Press, 2000.

[23] D. B. Karp and E. G. Prilepkina, “The Fox-Wright function near the singularity and the branch cut,” *Journal of Mathematical Analysis and Applications*, vol. 484, no. 1, article 123664, 2020.

[24] Y. Luchko, “The Wright function and its applications,” in *Handbook of Fractional Calculus with Applications, Volume 1: Basic Theory*, A. Kochubei and Y. Luchko, Eds., pp. 241–268, De Gruyter, 2019.