Factorization of the Shoenfield-like bounded functional interpretation

Jaime Gaspar†
8 September 2010

Abstract

We adapt Streicher and Kohlenbach’s proof of the factorization $S = KD$ of the Shoenfield translation S in terms of Krivine’s negative translation K and the Gödel functional interpretation D, obtaining a proof of the factorization $U = KB$ of Ferreira’s Shoenfield-like bounded functional interpretation U in terms of K and Ferreira and Oliva’s bounded functional interpretation B.

1 Introduction

In 1958, Gödel [5] presented a functional interpretation D of Heyting arithmetic HA^ω into itself (actually, into a quantifier-free theory, for foundational reasons). When composed with a negative translation N of Peano arithmetic PA^ω into HA^ω (Gödel [4]), it results in a two-step functional interpretation ND of PA^ω into HA^ω [5]. Nine years later, Shoenfield [9] presented a one-step functional interpretation S of PA^ω into HA^ω.

In 2007, Streicher and Kohlenbach [10], and independently Avigad [1], proved the factorization $S = KD$ of S in terms of D and a negative translation K due to Streicher and Reus [11], inspired by Krivine [8].

$$\text{PA}^\omega \overset{K}{\rightarrow} \text{HA}^\omega \overset{D}{\rightarrow} \text{HA}^\omega$$

*Reprinted, in part, from the final “Factorization of the Shoenfield-like bounded functional interpretation,” in Notre Dame Journal of Formal Logic, volume 50, number 1, 2009, pages 53–60. Copyright 2008, University of Notre Dame. Used by permission of the publisher, Duke University Press.

2001 Mathematics Subject Classification: 03F03, 03F10. Keywords: functional interpretation, negative translation, majorizability.

†Arbeitsgruppe Logik, Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstrasse 7, 64289 Darmstadt, Germany. mail@jaimegaspar.com, www.jaimegaspar.com.

I am grateful for the suggestions of Ulrich Kohlenbach, Fernando Ferreira, and an anonymous referee. This work was financially supported by the Portuguese Fundação para a Ciência e a Tecnologia, grant SFRH/BD/36358/2007.
In 2005, Ferreira and Oliva [3] presented a functional interpretation \(B \) of Heyting arithmetic with majorizability \(\text{HA}^\omega_2 \) into itself. Like \(D \), when composed with a negative translation \(N \) of Peano arithmetic with majorizability \(\text{PA}^\omega_2 \) into \(\text{HA}^\omega_2 \), it results in a two-step functional interpretation \(NB \) of \(\text{PA}^\omega_2 \) into \(\text{HA}^\omega_2 \) [3]. Two years later, Ferreira [2] presented a one-step functional interpretation \(U \) of \(\text{PA}^\omega_2 \) into \(\text{HA}^\omega_2 \). By adapting Streicher and Kohlenbach’s proof, we obtain the factorization \(U = KB \).

\[
\begin{array}{c}
\text{PA}^\omega_2 \xrightarrow{K} \text{HA}^\omega_2 \\
\text{HA}^\omega_2 \xrightarrow{B} \text{HA}^\omega_2 \\
\text{HA}^\omega_2 \\
\end{array}
\]

2 Framework

Definition 1 ([3][12]). The Heyting arithmetic \(\text{HA}^\omega \) that we consider is the usual Heyting arithmetic in all finite types, but with a minimal treatment of equality and no extensionality, following Anne Troelstra [12].

The Heyting arithmetic with majorizability \(\text{HA}^\omega_2 \) is obtained from \(\text{HA}^\omega \) by

1. adding new atomic formulas \(t \leq_{\rho} q \) for all finite types \(\rho \) (where \(t \) and \(q \) are terms of type \(\rho \));

2. adding syntactically new bounded quantifications \(\forall x \leq_{\rho} tA \) and \(\exists x \leq_{\rho} tA \) (where \(A \) is a formula and the variable \(x \) does not occur in the term \(t \));

3. adding the axioms

\[
\forall x \leq tA \leftrightarrow \forall x(x \leq t \rightarrow A), \quad \exists x \leq tA \leftrightarrow \exists x(x \leq t \land A)
\]

governing the bounded quantifications;

4. adding the axioms and rule

\[
x \leq_0 y \leftrightarrow x \leq y, \quad x \leq y \rightarrow \forall u \leq v(xu \leq yv \land yu \leq yv),
A_b \land u \leq v \rightarrow tu \leqqv \land qu \leqqv
\]

\[
\frac{A_b \rightarrow t \leq q}{A_b \rightarrow t \leq q}
\]

governing the majorizability symbol \(\leq \) (where \(\leq_0 \) is the usual inequality between terms of type 0, \(A_b \) is a bounded formula, that is, a formula with all quantifications bounded, and in the rule the variables \(u \) and \(v \) do not occur free in the formula \(A_b \) neither in the terms \(t \) and \(q \));

5. extending the induction axiom to the new formulas.

This system is presented in detail in [3].

We will need the following notation.
Notation 2 ([3]). An underlined letter \(t \) means a tuple (possibly empty) of terms \(t_1, \ldots, t_n \). We use the abbreviations
\[
\begin{align*}
\forall \underline{t} A & : \equiv \forall x_1 \cdots \forall x_n A, \\
\exists \underline{t} A & : \equiv \exists x_1 \cdots \exists x_n A,
\end{align*}
\]
\[
\begin{align*}
\forall \underline{t} A & : \equiv \forall x_1 \leq t_1 \cdots \forall x_n \leq t_n A, \\
\exists \underline{t} A & : \equiv \exists x_1 \leq t_1 \cdots \exists x_n \leq t_n A,
\end{align*}
\]
\[
\begin{align*}
\forall \underline{t} A & : \equiv \forall x (x \leq t \rightarrow A), \\
\exists \underline{t} A & : \equiv \exists x (x \leq t \land A), \\
\forall \underline{t} A & : \equiv \forall x \leq t (x \leq x \rightarrow A), \\
\exists \underline{t} A & : \equiv \exists x \leq t (x \leq x \land A).
\end{align*}
\]

We consider two logical principles.

Definition 3. The law of excluded middle for bounded formulas \(\text{B-LEM} \) is the principle
\[
A_b \lor \neg A_b,
\]
where \(A_b \) is a bounded formula.

Definition 4 ([2]). The monotone bounded choice \(\text{B-mAC} \) is the principle
\[
\forall \underline{t} A \equiv \forall x \leq t \forall Y \exists \underline{t} A(x, y) \rightarrow \exists Y \forall \underline{t} A(x, y),
\]
where \(A_b \) is a bounded formula.

3 Negative translation and bounded functional interpretations

For the convenience of the reader, we recall the definitions of \(K \), \(B \) and \(U \).

Definition 5 ([1][8][13][14]). Krivine’s negative translation (extended to arithmetic with majorizability\(^1\)) of a formula \(A \) of \(\text{PA}_\omega^\omega \) based on \(\neg, \lor, \forall \leq, \forall \) is \(A^K : \equiv \neg A_K \), where \(A_K \) is defined by induction on the complexity of formulas.

1. If \(A \) is an atomic formula, then \(A_K : \equiv \neg A \).
2. \((\neg A)_K : \equiv \neg A_K \).
3. \((A \lor B)_K : \equiv A_K \land B_K \).
4. \((\forall x \leq t A)_K : \equiv \exists x \leq t A_K \).
5. \((\forall x A)_K : \equiv \exists x A_K \).

If we consider \(\land \) a primitive symbol, then:

6. \((A \land B)_K : \equiv A_K \lor B_K \).

\(^1\)It still holds a soundness theorem \(\text{PA}_\omega^\omega \vdash A \Rightarrow A^K \) and a characterization theorem \(\text{PA}_\omega^\omega \vdash A \leftrightarrow A^K \).

3
Definition 6 ([3]). The bounded functional interpretation \(A^B \) of a formula \(A \) of \(\text{HA}^\omega \) based on \(\bot, \land, \lor, \rightarrow, \forall \exists, \exists \exists, \forall, \exists \) is defined by induction on the complexity of formulas.

1. If \(A \) is an atomic formula, then \(A^B \defeq \exists x y A_B(x, y) \defeq A \), where \(x \) and \(y \) are empty tuples.

If \(A^B \equiv \exists x y A_B(x, y) \) and \(B^B \equiv \exists x' y' B_B(x', y') \), then:

2. \((A \land B)^B \equiv \exists x y, x' y' (A \land B)_B(x, y, x', y') \equiv \exists x, x' y y'[A_B(x, y) \land B_B(x', y')];

3. \((A \lor B)^B \equiv \exists x y, x' y' (A \lor B)_B(x, y, x', y') \equiv \exists x, x' y y'[A_B(x, y) \lor B_B(x', y')];

4. \((A \rightarrow B)^B \equiv \exists x y, x' y' (A \rightarrow B)_B(x, y, x', y') \equiv \exists x', x y y'[A_B(x, y) \rightarrow B_B(x', y')];

5. \((\forall z \leq t A)^B \equiv \exists x y (\forall z \leq t A)_B(x, y) \equiv \exists x y A_B(x, y);

6. \((\exists z \leq t A)^B \equiv \exists x y (\exists z \leq t A)_B(x, y) \equiv \exists x y \exists z \leq t y A_B(x, y);

7. \((\forall z A)^B \equiv \exists x y, w (\forall z A)_B(x, y, w) \equiv \exists x y, w A_B(x, y, w);

8. \((\exists z A)^B \equiv \exists x y, w (\exists z A)_B(x, y, w) \equiv \exists x, w y A_B(x, y).

Remark 7 ([3]). From 1 and 4 we conclude that if \(A^B \equiv \exists x y A_B(x, y) \), then \((\neg A)^B \equiv \exists x y (\neg A)_B(x, y) \equiv \exists x y \neg A(x, y) \).

Remark 8 ([3]). We can prove by induction on the complexity of formulas that \(A_B(x, y) \) is a bounded formula.

Definition 9 ([2]). The Shoenfield-like bounded functional interpretation \(A^U \) of a formula \(A \) of \(\text{PA}^\omega \) based on \(\neg, \lor, \forall \exists, \forall \) is defined by induction on the complexity of formulas.

1. If \(A \) is an atomic formula, then \(A^U \defeq \exists x y A_U(x, y) \defeq A \), where \(x \) and \(y \) are empty tuples.

If \(A^U \equiv \exists x y A_U(x, y) \) and \(B^U \equiv \exists x' y' B_U(x', y') \), then:

2. \((\neg A)^U \equiv \exists x y (\neg A)_U(x, y) \equiv \exists x y \neg A_U(x, y);

3. \((A \land B)^U \equiv \exists x y, x' y' (A \land B)_U(x, y, x', y') \equiv \exists x, x' y y'[A_U(x, y) \land B_U(x', y')];

4. \((\forall z \leq t A)^U \equiv \exists x y (\forall z \leq t A)_U(x, y) \equiv \exists x y A_U(x, y).
5. $(\forall zA)^U := \forall w, \exists y (\forall z A)_U(w, x, y) := \forall w, \exists y \forall z \leq w A_U(x, y)$.

If we consider \land a primitive symbol, then:

6. $(A \land B)^U := \forall x, x' \exists y, y'(A \land B)_U(x, x', y, y') := \forall x, x' \exists y, y' [A_U(x, y) \land B_U(x', y')].$

Remark 10 ([2]). We can also prove by induction on the complexity of formulas that $A_U(x, y)$ is a bounded formula.

U is monotone on the second tuple of the variables, in the following sense.

Lemma 11 (monotonicity of U [2]). $\text{HA}^*_2 \vdash \forall x \forall y \forall \tilde{y} \leq y [A_U(x, \tilde{y}) \rightarrow A_U(x, y)].$

4 Factorization

We want to prove $A^U \leftrightarrow (A^K)^B$ by induction on the complexity of formulas. Because it isn’t A^K but A_K that is defined by induction on the complexity of formulas, it would be better to write $A^U \leftrightarrow (-A_K)^B$. If $A^U := \forall x \exists y A_U(x, y)$ and $(A^K)^B := \exists x' \forall y' (A_K)_B(x', y')$, then using B-mAC in the first equivalence and the monotonicity of U in the second equivalence, we have

$$
A^U \equiv \forall x \exists y A_U(x, y)
\leftrightarrow \exists y \forall x \exists y \leq y_x A_U(x, y)
\leftrightarrow \exists y \forall x A_U(x, Y_x),
(1)
\quad (-A_K)^B \equiv \exists x' \forall y' \neg \forall y' \leq y_x A_U(x', y').
(2)
$$

The comparison of formulas (1) and (2) suggests that we first prove $A_U(x, Y_x) \leftrightarrow \neg \forall y \leq Y_x (A_K)_B(x, y)$, or even better, $A_U(x, y) \leftrightarrow \neg \forall \tilde{y} \leq y (A_K)_B(x, \tilde{y})$. Then, by the above argument, we would have $A^U \leftrightarrow (A^K)^B$.

The factorization proof is almost the straightforward adaptation of Streicher and Kohlenbach’s proof but with two tweaks.

1. Instead of proving $A_U(x, y) \leftrightarrow \neg (A_K)_B(x, y)$, along the lines of Streicher and Kohlenbach’s proof, we prove $A_U(x, y) \leftrightarrow \neg \forall \tilde{y} \leq y (A_K)_B(x, \tilde{y})$, where the appearance of the quantification $\forall \tilde{y} \leq y$ is explained by the above argument.

2. In proving $A_U(x, y) \leftrightarrow \neg \forall \tilde{y} \leq y (A_K)_B(x, \tilde{y})$ we need the hypothesis $x \leq x \land y \leq y$ for technical reasons explained in footnotes.

Theorem 12 (factorization $U = KB$). We have

$$
\text{HA}^*_2 + \text{B-LEM} \vdash \forall x, x' [A_U(x, y) \leftrightarrow (A^K)_B(y, x)],
(3)
\text{HA}^*_2 + \text{B-LEM} + \text{B-mAC} \vdash A^U \leftrightarrow (A^K)^B.
(4)
$$
Proof. Step 1. First we prove

$$\text{HA}_0^+ + \text{B-LEM} \vdash \forall x, y[A_U(x, y) \leftrightarrow \neg \forall \tilde{y} \leq y(A_K)_B(x, \tilde{y})]$$ \hspace{1cm} (5)$$

by induction on the complexity of formulas.

Let us consider the case of atomic formulas \(A\). Using \text{B-LEM} in the equivalence, we have

\[
A_U \equiv A
\]

\[
\leftrightarrow \neg A
\]

\[
\equiv \neg (A_K)_B.
\]

Let us now consider the case of negation \(\neg A\). Assume \(Y \subseteq Y\) and \(x \subseteq x\). Using the induction hypothesis in the first equivalence and \text{B-LEM} in the second equivalence, we have

\[
(-A)_U(Y, \hat{x}) \equiv \exists \hat{x} \leq \hat{x} \neg A_U(\hat{x}, Y, \hat{x})
\]

\[
\leftrightarrow \exists \hat{x} \leq \hat{x} \neg \forall \tilde{y} \leq \tilde{y}(A_K)_B(\hat{x}, \tilde{y})
\]

\[
\leftrightarrow \neg \forall \tilde{y} \leq x \neg \forall \tilde{y} \leq \tilde{y}(A_K)_B(\hat{x}, \tilde{y})
\]

\[
\equiv \neg \forall \tilde{y} \leq \hat{x}[(-A)_K]_B(Y, \hat{x}).
\]

Let us now consider the case of disjunction \(A \lor B\). Assume \(x \subseteq x, x' \subseteq x', y \subseteq y,\) and \(y' \subseteq y'\). Using the induction hypothesis in the first equivalence, \text{B-LEM} in the second equivalence, and intuitionistic logic in the third equivalence\(^2\) we have

\[
(A \lor B)_U(x, x', y, y') \equiv A_U(x, y) \lor B_U(x', y')
\]

\[
\leftrightarrow \neg \forall \tilde{y} \leq y(A_K)_B(x, \tilde{y}) \lor \neg \forall \tilde{y} \leq y'(B_K)_B(x', \tilde{y}')
\]

\[
\leftrightarrow \neg [\forall \tilde{y} \leq y(A_K)_B(x, \tilde{y}) \lor \forall \tilde{y} \leq y'(B_K)_B(x', \tilde{y}')]\]

\[
\equiv \neg \forall \tilde{y}, \tilde{y}' \leq y, y'[A \lor B]_K]_B(x, x', \tilde{y}, \tilde{y}').
\]

Let us now consider the case of bounded universal quantification \(\forall z \leq tA\). Assume \(x \subseteq x\) and \(y \subseteq y\). Using the induction hypothesis in the first equivalence and

\[^2\text{The rule for conversion to prenex normal form } \forall u \leq v(C \land D) \rightarrow \forall u \leq v C \land D \text{ (where the variable } u \text{ does not occur free in the formula } D), \text{ despite its innocuous look, does not hold without the hypothesis } v \leq v. \text{ So we need to use the hypothesis } x \leq \hat{x} \land y \leq \hat{y} \text{ in the proof.}\]
intuitionistic logic in the second and third\footnote{Probably the easiest way to prove the third equivalence is to prove}
equivalences, we have
\[(\forall z \leq tA)_U(x, y) \equiv \forall z \leq tA_U(x, y)\]
\[\iff \forall z \leq t \neg \exists \tilde{y} \leq y(A_K)_B(x, \tilde{y})\]
\[\iff \neg \exists z \leq t \tilde{v}y \leq y(A_K)_B(x, \tilde{y})\]
\[\iff \neg \exists y \leq \tilde{y} \exists z \leq t \tilde{v}y \leq y(A_K)_B(x, \tilde{y})\]
\[\equiv \neg \exists y \leq y[(\forall z \leq tA)_K]_B(x, \tilde{y}).\]

Finally, let us consider the case of unbounded universal quantification \(\forall zA\). Assume \(w \leq w, x \leq x,\) and \(y \leq y\). Using the induction hypothesis in the first equivalence and intuitionistic logic in the second and third equivalences, we have
\[(\forall zA)_U(w, x, y) \equiv \forall z \leq wA_U(x, y)\]
\[\iff \forall z \leq w \neg \exists \tilde{y} \leq y(A_K)_B(x, \tilde{y})\]
\[\iff \neg \exists z \leq w \tilde{y} \leq y(A_K)_B(x, \tilde{y})\]
\[\iff \neg \exists \tilde{y} \leq y \exists z \leq w \tilde{y} \leq y(A_K)_B(x, \tilde{y})\]
\[\equiv \neg \exists \tilde{y} \leq y[(\forall zA)_K]_B(w, x, \tilde{y}).\]

In case we consider \(\wedge\) a primitive symbol, let us now see the case of conjunction \(A \wedge B\). Assume \(x \leq x, x' \leq x', y \leq y,\) and \(y' \leq y'\). Using the induction hypothesis in the first equivalence and intuitionistic logic in the second and third equivalences, we have
\[(A \wedge B)_U(x, x', y, y') \equiv A_U(x, y) \wedge B_U(x', y')\]
\[\iff \neg \exist \tilde{y} \leq y(A_K)_B(x, \tilde{y}) \wedge \neg \exist \tilde{y}' \leq y'(B_K)_B(x', \tilde{y}')\]
\[\iff \neg [\neg \exist \tilde{y} \leq y(A_K)_B(x, \tilde{y}) \lor \neg \exist \tilde{y}' \leq y'(B_K)_B(x', \tilde{y}')]\]
\[\iff \neg \exist \tilde{y}, \tilde{y}' \leq y, y'[\exist \tilde{y} \leq \tilde{y}(A_K)_B(x, \tilde{y}) \lor
\neg \exist \tilde{y}' \leq y'(B_K)_B(x', \tilde{y}')]\]
\[\equiv \neg \exist \tilde{y}, \tilde{y}' \leq y, y'[\neg A \wedge B)_K]_B(x, x', \tilde{y}, \tilde{y}').\]

Step 2. Now we prove \(\exists\). Assume \(Y \leq Y\) and \(x \leq x\). Using \(\exists\) in the equivalence, we have
\[A_U(x, Yx) \iff \neg \exist y \leq Yx(A_K)_B(x, y)\]
\[\equiv (\neg A_K)_B(Y, x)\]
\[\equiv (A_K)_B(Y, x).\]
Step 3. Finally, we prove (4). Using B-mAC in the first equivalence, the monotonicity of U in the second equivalence and (3) in the third equivalence, we have

$$A^U \equiv \forall x \exists y A_U(x, y)$$

$$\leftrightarrow \exists Y \forall x \exists y \leq Y x A_U(x, y)$$

$$\leftrightarrow \exists Y \forall x A_U(x, Y x)$$

$$\leftrightarrow \exists Y \forall x (A^K)_B(Y x)$$

$$\equiv (A^K)_B.$$

\[\square\]

References

[1] Jeremy Avigad. A variant of the double-negation translation. Carnegie Mellon Technical Report, CMU-PHIL-179:1–3, 2006.

[2] Fernando Ferreira. Injecting uniformities into Peano arithmetic. Annals of Pure and Applied Logic, 157(2-3):122–129, 2009.

[3] Fernando Ferreira and Paulo Oliva. Bounded functional interpretation. Annals of Pure and Applied Logic, 135(1-3):73–112, 2005.

[4] Kurt Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathematischen Kolloquiums, 4:34–38, 1933. Translation to English: “On intuitionistic arithmetic and number theory,” in [6], 286–295.

[5] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica, 12:280–287, 1958. Translation to English: “On a hitherto unutilized extension of the finitary standpoint,” in [7], 240–251.

[6] Kurt Gödel. Collected Works, volume 1. Edited by Solomon Feferman et al., Oxford University Press, New York, 1986.

[7] Kurt Gödel. Collected Works, volume 2. Edited by Solomon Feferman et al., Oxford University Press, New York, 1990.

[8] Jean-Louis Krivine. Opérateurs de mise en mémoire et traduction de Gödel. Archive for Mathematical Logic, 30(4):241–267, 1990.

[9] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley Publishing Company, Reading, 1967.

[10] Thomas Streicher and Ulrich Kohlenbach. Shoenfield is Gödel after Krivine. Mathematical Logic Quarterly, 53(2):176–179, 2007.

[11] Thomas Streicher and Bernhard Reus. Classical logic, continuation semantics and abstract machines. Journal of functional programming, 8(6):543–572, 1998.
[12] Anne S. Troelstra. *Introductory note to 1958 and 1972*. Introductory note in [7] to [5], 217–241, 1990.