Diverse Interactions of N-Methyl Glycine in Aqueous Paracetamol Solution with the Manifestation of Solvation Consequences

Habibur Rahaman¹, Kalipada Sarkar², Debasmita Das³, Mahendra Nath Roy³,*

¹Department of Chemistry, Pedong Government College, Kalimpong – 734 311, West Bengal, India.
²Department of Chemistry, Islaipur College, Uttar Dinajpur – 733 202, West Bengal, India.
³Department of Chemistry, University of North Bengal, Darjeeling – 734 013, West Bengal, India.

ARTICLE DETAILS

Article history:
Received 30 November 2018
Accepted 18 December 2018
Available online 05 January 2019

Keywords:
N-Methyl Glycine
Solute-Solvent Interactions
Paracetamol

ABSTRACT

The apparent molar volume (ϕ_0-) and viscosity B-coefficient of N-methyl glycine of 0.01 M, 0.02 M and 0.03 M aqueous solutions have been estimated in presence of paracetamol at three temperatures namely 298.15 K, 303.15 K and 308.15 K from physicochemical study such as density (ρ), viscosity (η) and refractive index measurements and 1H NMR spectroscopy. The volumetric study was employed to evaluate limiting apparent molar volumes (ϕ_0-) and experimental slopes (S_η) by using Masson equation for explaining solute–solute and solute–solvent interactions, respectively. The nature of group interactions between the solute, solvent and co-solute have been examined from limiting apparent molar volumes of transfer ($\Delta \phi_0$) values. The viscosity data were employed to determine viscosity A and B coefficients from Jones–Dole equation and the resulting parameters were used to examine the solute–solute and solute–solvent interactions in the solutions. Molar refraction values calculated from refractive indices by applying Lorentz–Lorenz equation were used to depict the intermolecular interactions between N-methyl glycine and paracetamol in their aqueous solution. However, the 1H NMR spectroscopy supports the existence of diverse interactions concretely.

1. Introduction

The native conformations of proteins depend on to several non-covalent interactions such as hydrogen bonding, electrostatic and hydrophobic interactions which may originate from surrounding solute and solvent molecules [1, 2]. So physicochemical properties of the proteins are influenced greatly by the presence of surrounding solute and solvent molecules. Physicochemical study of proteins provides many valuable information like hydration, solubility, stability and enzyme activity which are taking place in biochemical and physiological processes of living organism [3-5]. The nature of interaction of drug molecules with protein may also be understood from Physicochemical measurements.

World’s most popular and most commonly used analgesic and anti-inflammatory medicines from cradle to grave is paracetamol which is readily available and inexpensive also [6-8]. Chemical name of paracetamol is N-par-a-methyl aminophenol. It was introduced into the market by an analgesic and anti-inflammatory medicine by McNeil Laboratories mainly for children. After 1961 it became the most frequently sold analgesic medications. Its use as an analgesic is most tolerable than the other non-steroidal drugs (NSAIDs) which should not be used by the people with bronchial asthma, hemophilia, salicylate-sensitized people, peptic ulcer disease, pregnant or breastfeeding women and children under 12 years of age [9, 10]. Currently the use of aspirin as antipyretic and analgesic has been declined due some adverse effects and parallelly the use of paracetamol has been increased. Paracetamol has now been an appropriate analgesic for all age groups.

In continuance of our earlier works [11-15], we attempted to examine the nature of solute-solvent/co-solute interactions of N-methyl glycine in aqueous solutions of paracetamol at 298.15 K, 303.15 K and 308.15 K. The densities, viscosities and refractive indices of 0.01, 0.02 and 0.03 M aqueous N-methyl glycine solutions at 298.15 K, 303.15 K and 308.15 K are reported in Table 1 and densities, viscosities and refractive indices of aqueous N-methyl glycine solutions in presence of paracetamol at 298.15 K, 303.15 K and 308.15 K are reported in Table 2. From the volumetric measurements we calculated limiting apparent molar volume (ϕ_0-), experimental slopes (S_η), transfer volume ($\Delta \phi_0$) and from the viscometric measurements we calculated viscosity A and B coefficients to analyse the nature of solute-solute/ co-solute interactions. The refractive index data helps to find the molar refraction (Rn) which also helps to elucidate the interaction between solute and co-solute in aqueous medium.

2. Experimental Methods

2.1 Source and Purity Samples

The studied N-methyl glycine and co-solute paracetamol of purist grade was purchased from Sigma-Aldrich, Germany and was used as purchased. The mass purity of salts was ±0.9%. The salts were dried from moisture at 353.15 K for 48 h, and then they were cooled and store in a desiccator prior to use.

2.2 Apparatus and Procedure

The density (ρ) measurements were done by vibrating-tube Anton Paar Density-Meter (DMA 4500M) with an accuracy of 0.00001 x 10⁻³ (kgm⁻³). The density meter was calibrated by using double-distilled water and dry air before taking the densities of our studied solutions [16]. The instrument has temperature monitoring system with the precision ±0.01 K.
The viscosity was determined using a Brookfield DV-III Ultra Programmable Rheometer having spindle size 42 fitted. The Rheometer was fitted with Digital Bath TC-500 which has a precision of ±0.0003 x 10⁻⁶ kg.

Mass measurements for preparation of stock solutions were done by Mettler AG-285 electronic balance with a precision of ±0.0003 x 10⁻³ kg.

Acceptable precautions were followed to minimize evaporation losses during the measurements.

Table 1. Experimental values of density (ρ), viscosity (η) and refractive index (n₀) of different molality of N-methyl glycine solution at 298.15 K, 303.15 K and 308.15 K.

Concentration (M)	ρ/10³ (kg/m³)	η/mPas	n₀			
298.15 K	303.15 K	308.15 K				
0.01 M						
0.009756	0.09621	0.09460	0.0956	0.080910	0.6604	1.3319
0.02 M						
0.009782	0.09649	0.09486	0.0984	0.08116	0.6831	1.3325
0.03 M						
0.009817	0.09679	0.09515	0.09016	0.01400	0.6859	1.3327

Table 2. Density (ρ) and viscosity (η) and refractive index (n₀) of different molality of aqueous N-methyl glycine in aqueous paracetamol solution at 298.15 K, 303.15 K and 308.15 K.

Molality (Mol/kg)	ρ/10³ (kg/m³)	η/mPas	n₀				
298.15 K							
0.01 M							
0.9981	0.99666	0.99503	0.9053	0.8179	0.6882	1.3321	
0.02 M							
0.99836	0.99700	0.99538	0.9122	0.9242	0.6947	1.3323	
0.03 M							
0.99965	0.99772	0.99611	0.9264	0.9373	0.7076	1.3327	
0.057	0.99444	0.99811	0.9434	0.9537	0.7231	1.3329	
0.072	0.99998	0.99859	0.9594	0.8703	0.7386	1.3331	
0.02 M							
0.99824	0.996904	0.99527	0.9079	0.8024	0.6909	1.3327	
0.023	0.99859	0.99725	0.99562	0.9148	0.9267	0.6974	1.3328
0.045	0.999295	0.99798	0.99635	0.9292	0.9408	0.7110	1.3313
0.057	0.99967	0.99838	0.99676	0.9464	0.9572	0.7262	1.3327
0.072	0.998014	0.99889	0.97263	0.9632	0.9738	0.7423	1.3345
0.03 M							
0.99858	0.99791	0.99554	0.9111	0.9228	0.6939	1.3331	
0.023	0.99892	0.99754	0.99588	0.9101	0.9297	0.7065	1.3332
0.045	0.99962	0.99829	0.99662	0.9334	0.9442	0.7152	1.3358
0.057	0.99999	0.99869	0.99703	0.9506	0.9608	0.7309	1.3372
0.072	1.00046	0.99921	0.99755	0.9674	0.9782	0.7468	1.3339

3. Results and Discussion

3.1 Density

Apparent molal volumes (φ₀) of N-methyl glycine in aqueous paracetamol solution were determined from the densities of the solution using the following equation [18].

φ₀ = M / ρ - 1000 (ρ - ρ₀) / (m/ρ₀)

where M is the molar mass of N-methyl glycine, ρ₀ and ρ is the density of solvent and solution respectively and M is the molality of the solution. The φ₀ values of N-methyl glycine in aqueous paracetamol solution at 298.15 K, 303.15 K and 308.15 K are shown in Tables 3-5 respectively.

Fig. 3. Molecular interactions between N-methyl glycine with paracetamol in aqueous medium.

The tendency indicates the presence of strong solute-solute interactions which increase with molarity of N-methyl glycine and temperatures. The interaction arises from the hydrophilic-hydrophilic group interaction between solute and co-solute molecules. The interaction of N-methyl glycine with paracetamol in aqueous medium is displayed in Fig. 3. With increasing temperature the secondary solvation layer is released into the bulk solvent leading to the expansion of solution. As a result, the φ₀ values of N-methyl glycine in aqueous paracetamol solutions increase with increase in temperature.

The parameter Sₚ defines the pair-wise interaction of solvated species in solution [20]. The Sₚ values of N-methyl glycine in aqueous paracetamol solution at different temperatures are reported in Table 4. The Sₚ values in our present study is least at 0.03 M N-methyl glycine at 308 K and highest in 0.01 M N-methyl glycine at 298 K. So, Sₚ values decrease with increasing temperature and molarity. This trend is exactly reverse than the φ₀ values explained earlier where φ₀ values increased with increasing temperature and molarity.

Fig. 4. Variation of limiting apparent molar volumes (φ₀) of N-methyl glycine solution in paracetamol solution at different temperatures.

https://doi.org/10.30799/jacs.199.18040403
with increasing concentrations of N-methyl glycine and temperatures. This weakening of S_m^* values signify the presence of poor solute-solute interactions. The smaller S_m^* values than the corresponding ϕ_0 signifies that the solute-solute interaction is stronger than the solute-solute interaction.

Table 4 Limiting apparent molar volumes (ϕ_0), experimental slopes (S_m^*), viscosity A, B-coefficients of aqueous N-methyl glycin solution in paracetamol at different temperatures

Temp. [K]	$\phi_0 \times 10^3$	$\Delta \phi_0 \times 10^3$	$S_m^* \times 10^3$	B	A
298.15 K	0.00114	0.0021	0.00114	0.00114	0.00114
303.15 K	0.00154	0.0025	0.00154	0.00154	0.00154
308.15 K	0.00194	0.0030	0.00194	0.00194	0.00194

The limiting apparent molar volume of transfer, $\Delta\phi_0$ for N-methyl glycin in paracetamol solution may be expressed as follows:

$\Delta\phi_0 = (\phi_0^\text{paracetamol}) - (\phi_0^\text{aqueous nicotinic acid solution})$

The variation of ϕ_0 with temperature of N-methyl glycin in paracetamol solution follows the polynomial [21].

$\phi_0 = a_0 + a_1T + a_2T^2$

where T is the temperature in K and a_0, a_1, and a_2 are the coefficients. Values of the coefficients of the above equation for N-methyl glycin in paracetamol solution are reported in Table 5.

The limiting apparent molar expansibilities (ϕ_0^E) can be determined by the following equation [22].

$\phi_0^E = \frac{\Delta\phi_0}{S_m^*}$

The values of ϕ_0^E of N-methyl glycin in paracetamol solution at 298.15 K, 303.15 K and 308.15 K are evaluated and reported in Table 5.

The S_m^* is not the only parameter for estimating the structure-making or breaking nature of any solute [30]. Hepler proposed a different technique to inspect the structure-making and breaking ability of the solute in aqueous solution from the following thermodynamic expression [23].

$S_m^* = \frac{\eta_0}{\rho_0} - \frac{\eta_2}{\rho_2} - \frac{\eta_3}{\rho_3} + \frac{\eta_4}{\rho_4}$

Table 5 Values of empirical coefficients (a_0, a_1, and a_2) of 0.01 M, 0.02 M and 0.03 M N-methyl glycin in paracetamol solution at 298.15 K, 303.15 K and 308.15 K

Molality of N-methyl glycin	$a_0 \times 10^3$	$a_1 \times 10^3$	$a_2 \times 10^3$	ϕ_0^E
0.01 M	2.1618	14.59	-0.2037	-0.0474
0.02 M	-1951	13.19	-0.2014	-0.0428
0.03 M	-1473.2	9.266	-0.1518	-0.0316

The limiting apparent molar volume of transfer, $\Delta\phi_0$ for N-methyl glycin in paracetamol solution may be expressed as follows:

$\Delta\phi_0 = N\text{-methyl glycin} - N\text{-methyl glycin in paracetamol} - \phi_0^E$ [in water]

$\Delta\phi_0$ value provide the idea about the nature solute–solvent interactions. The limiting apparent molar volume of transfer may be analyzed in the light of co-sphere overlap model given by Friedman and Krishnan [26]. According to the model positive $\Delta\phi_0$ value signifies the existence of hydrophilic–hydrophilic, ion–ion and ion–ion interactions, whereas the negative $\Delta\phi_0$ value signifies the hydrophobic–hydrophobic interactions [27, 28]. The interactions between N-methyl glycine and paracetamol in aqueous medium may be of following categories.

1. Ionic–ionic interaction of the H+ ion of water and N-methyl glycin with the -COO ion of N-methyl glycin
2. H-bond between -COOH (N-methyl glycin) and -OH (paracetamol) and also with water.
3. Hydrophilic–hydrophilic interaction of polar end of water with -COO ion of N-methyl glycin and -OH group of paracetamol.
4. Ionic–hydrophilic interactions of -COOH (N-methyl glycin) and -OH (paracetamol) with the H+ and OH ion of water.
5. Hydrophobic–hydrophobic interaction of non-polar part of N-methyl glycin and paracetamol.

The interactions of categories (i), (ii), (iii) and (iv) have positive contributions to ϕ_0^E values while interaction of type (v) has negative contribution to ϕ_0^E values [29-31]. The positive ϕ_0^E value indicates that the hydrophilic–hydrophilic and ion–ion interactions are in domination over hydrophobic–hydrophobic and ion–ionic interactions. It is also seen that $\Delta\phi_0$ values are increasing with increase in molality of N-methyl glycin. The intermolecular distance between N-methyl glycin and paracetamol decreases with increasing concentration of N-methyl glycin as a result the hydrophobic–hydrophobic and ion–ionic interactions increase with mobility. Similar result can also be obtained from the following expression given by Franks et al [32].

$\phi_0 = \phi_0^E + \phi_0^E - 4S$

where ϕ_0^E is correlated with Von Der Waals volume, ψ_0 is the volume correlated with voids or empty space and ψ_0 is correlated with shrinkage volume due to electrostriction. The value ϕ_0^E and ψ_0 will remain same for the same class of solutes in aqueous solutions and only the volume due to electrostriction will vary. The hydrophilic–hydrophilic, ion–ion and ion–ionic interactions will increase with increasing mobility of N-methyl glycin and as a result ϕ_0 value will decrease [33]. For this reason, ϕ_0 values increase with increasing mobility of N-methyl glycin.

The volumetric pair wise and triple ion interactions may be estimated from the following equation given by McMillan–Mayer [34].

$\phi_0^E = 2\psi_{vym} + 3Y_{vym}^2$

where Y_{vym} is the volume of transfer respectively and X and Y represent N-methyl glycin and paracetamol respectively. The coefficients Y_{vym} are estimated by putting the $\Delta\phi_0^E$ values at diverse molalities of N-methyl glycin in presence of paracetamol in the above expression and mentioned in Table 6. It is observed that ψ_{vym} values are positive whereas Y_{vym} values are negative for N-methyl glycin in presence of paracetamol in aqueous medium at different temperatures. The positive values of Y_{vym} suggest that existing interactions in our studied solutions are mostly pair wise which arises from hydrophilic–hydrophilic and ion–ionic interactions between solute and co-solute in aqueous medium [35].

Table 6 Pair, ψ_{vym}, and Triple, Y_{vym} interaction coefficients of N-methyl glycin in aqueous solution of paracetamol at 298.15 K, 303.15 K and 308.15 K temperatures

Molarity of N-methyl glycin	ψ_{vym} (m mol/kg)	Y_{vym} (m mol/kg)
0.01 M	78.0000	-372.23
0.02 M	99.3100	221.1200
0.03 M	308.15 K	102.3700

3.2 Viscosity Calculation

The viscosity data was fit into Jones–Dole equation [36],

$\eta/\eta_0 = 1 / \sqrt{m} = A + B / \sqrt{m}$

where, η_0 and η are the viscosities of the solvent and solution respectively. A plot of $(\eta/\eta_0 - 1) / \sqrt{m}$ against \sqrt{m} gives a straight line with an intercept A and a slope of B. The $(\eta/\eta_0 - 1) / \sqrt{m}$ values of N-methyl glycin of different molalities in aqueous paracetamol solution are reported in Table 3. The viscosity coefficients A and B values are reported in Table 4 and the variation of B with temperature of N-methyl glycin is shown in Fig. 4. The viscosity B-coefficient signifies solute-solvent interaction and provides valuable information concerning the solvation of the solute in solution [37, 38]. A close inspection reveals that B-value is higher for 0.03 M N-methyl glycin solution at 308.15 K and lowest at 0.01 M solution at 298.15 K. So, solute–solute interactions increase with increasing molarity and temperature. Viscosity A coefficient denotes solute-solute interaction. It is reflected from the Table 4 that the values of A coefficient decrease with the increase in molarity and temperature of N-methyl glycin in aqueous solution of paracetamol. Hence solute–solvent interaction diminishes with molarity of N-methyl glycin and also with temperature in K.
3.3 Refractive Index Calculation

The molar refraction, R_m for any compound in its aqueous solution may be determined from the Lorentz–Lorenz relation [39]:

$$R_m = \frac{(nD^2 - 1)}{(nD^2 + 2)} \left[\frac{M}{\rho} \right]$$

where, R_m, ρ, M and n are the molar refraction, density of solution, molar mass and refractive index, respectively. The refractive index of a material is defined as c_2/c_1, where c_1 is the speed of light in any medium and c_2 the speed of light in vacuum. The light is refracted more for the substance of higher refractive index [40]. According to Deetles et al. [41] the molar refraction of a substance will be higher when the molecules in any solution are more tightly packed. The values of R_m are shown in Table 3. The increase in molar refraction values with increase in molarity of N-methyl glycine in aqueous paracetamol solution indicates close packing of molecules in the mixture resulting in maximum solute–solvent interactions.

3.4 1H NMR Spectroscopy

Various spectroscopy may be employed to examine the diverse interaction playing in solution of any compound [42–46]. 1H NMR Spectroscopy of pure N-methyl glycine, paracetamol and their solution are recorded in D2O at 298.15 K and shown in Fig. 5.

4. Conclusion

The limiting apparent molar volume (Φ_V) and viscosity B-coefficient and molar refraction (R_m) values indicate the existence of strong solute–solvent interactions between N-methyl glycine and paracetamol in aqueous medium. The solute–solvent interactions enhances with increasing molarity of N-methyl glycine and temperature. On the other hand, the solute-solute interactions diminish with increasing molarity of N-methyl glycine and temperature. The nature of solute–solute interactions was evaluated from the limiting apparent molar volume of N-methyl glycine and paracetamol.

The authors are grateful to the UGC supported Major research project, SAP, DRS-III for financial support in order to continue this research work. One of the authors, Prof. M.N. Roy is thankful to University Grant Commission, New Delhi, Government of India for being awarded extra-time grant under Basic Scientific Research via the grant-in-Aid No. F.4–10/2010 (BSR) regarding his active service for augmenting of research facilities to facilitate further research work.

References

[1] P.H. Von Hippel, T. Schleich, Ion effects on the solution structure of biological macromolecules, Acc. Chem. Res. 2 (1969) 257–265.
[2] F. Franks, Protein stability: the value of old literature, Biophys. Chem. 96 (2000) 121–127.
[3] Taravati, M. Sholkrzadeh, A.G. Ebadi, P. Valipour, A.T.M. Hassan, F. Farrokhhi, Various effects of sugar and polyls on the protein structure-function role as osmolyte on protein stability, World Appl. Sci. J. 2 (2007) 353–362.
[4] K. Gekko, Mechanism of polyol-induced protein stabilization: solubility of amino acids and diglycerine in aqueous polyol solutions, J. Biochem. 90 (1981) 1633–1641.
[5] F.J. Millero, A. Lo Surdo, C. Shin, The apparent molar volumes and adiabatic compressibilities of aqueous amino acids at 25 °C, J. Phys. Chem. B 82 (1978) 784–792.
[6] E.D. Beale, J.S. Bresse, R.C. Holman, A.S. Khan, A. Shahriari, L.B. Schonberger, Rey's syndrome in the United States from1981 through 1997, N. Engl. J. Med. 340 (1999) 1377–1382.
[7] J.R. Vane, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs, Nat. New Bli. 231 (1971) 232–235.
[8] L.F. Prescott, G.C. Speirs, J.A. Critchley, R.M. Temple, R.J. Winn, Paracetamol disposition and metabolite kinetics in patients with chronic renal failure, Eur. J. Clin. Pharmacol. 36 (1989) 291–297.
[9] L.A. Pini, G. Vitale, A. Ottani, M. Sandrini, Naloxone-reversible antinociception by paracetamol in the rat, J. Pharmacol. Exp. Ther. 280 (1997) 934–940.
[10] B.H. Rumack, Aspirin versus acetaminophen: a comparative view, Pediatrics 62(5 Pt 2 Suppl) (1978) 943–946.
[11] M.J. Earle, K.R. Seddon, Green solvents for the future, Pure Appl. Chem. 72 (2000) 1391–1398.
[12] F.A. Robinson, The Vitamin B-complexes, Chapman & Hall Publication, London, 1951.
[13] C.A. Elvehjem, L. Teply, The structure and estimation of natural products functionally related to nicotinic acid, J. Chem. Rev. 33(3) (1943) 185–208.
[14] A.N. Nesmeyanov, Fundamentals of organic chemistry, Mir Publication, Moscow, 1981.
[15] A.S. Fauci, E. Braunwald, K.J. Isselbacher, J.B. Wilson, et al., Harrison's principles of internal medicine, McGraw-Hill, New York, 1998.
[16] J. Block, Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, NJ, 1996.
[17] L.A. Carlson, Nicotinic acid: The broad-spectrum lipid drug. A 50th Anniversary review, Jour. Int. Med. 282(6) (2005) 94–114.
[18] D. Eika, M.N. Roy, Quantitative and qualitative analysis of ionic solution of individual ions of imidazolium based ionic liquids in significant solution system by conductance and FT-IR spectroscopy, RSC Adv. 4(38) (2014) 201118–201145.
[19] T. Welton, Room temperature ionic liquids, Solvents for synthesis and catalysis, Chem. Rev. 99(8) (1999) 2071–2048.
[20] M.J. Earle, K.R. Seddon, Green solvents for the future, Pure Appl. Chem. 72 (2000) 1391–1398.
[21] J. Dupont, R.F. Desouza, P.A. Suarez, Ionic liquid (melted salt) phase organometallic catalysis, Chem. Rev. 102(10) (2002) 3667–3692.
volume data ammonium and common ions in N₄R₄(107)M₄M₄D₄binaries solvation behavior of an ionic liquid (tetrabutylphosphonium dimethylformamide probed by a conductometric study for mamide solution, Jour. Chem. Soc. Farad. Trans. 1 (1974) 1862-1868.

M.R. Deck, K.J. Bird, Solvation of ions, Partial molar volumes of single ions in proctic and dipolar aprotic solvents, Aust. Jour. Chem. 20(5) (1975) 955-963.

M.N. Roy, B. Sinha, R. Dey, A. Sinha, Solute–solvent and solute–solute interactions of resorcinal in mixed 1, 4-dioxane–water systems at different temperatures, Int. J. Thermophys. 26(5) (2005) 1549-1563.

M.N. Roy, R. Dewan, P.K. Roy, D. Biswas, Apparent molar volumes and viscosity b-coefficients of carbohydrates in aqueous trimetaphosphate bromide solutions at (298.15, 308.15, and 318.15)K, Jour. Chem. Eng. Data 55(9) (2010) 3617-3624.

A. Bhattacharjee, M.N. Roy, Ion association and solvation behavior of tetraethylammonium iodides in binary mixtures of dichloromethane +N,N-dimethylformamide probed by a conductometric study, Phys. Chem. Chem. Phys. 12(43) (2010) 14534-14542.

D. Ekka, M.N. Roy, Conductance, a contrivance to explore ion association and solvation behavior of an ionic liquid (tetrabutylammonium tetrafluoroborate) in acetonitrile, tetrahydrofuran, 1, 3-dioxolane and their binaries, Jour. Phys. Chem. B 116(38) (2012) 11687-11694.

D. Ekka, M.N. Roy, Molecular interactions of α-amino acids into aqueous β-cyclodextrin systems, Amino Acids 45(4) (2013) 755-777.

M.N. Roy, D. Ekka, S. Saha, M.C. Roy, Host-guest inclusion complexes of α and β-cyclodextrins with α-amino acids, RSC Adv. 4 (480) (2014) 42383-42390.

M.N. Roy, T. Ray, M.C. Roy, B. Datta, Study of ion-pair and triple-ion origination of an ionic liquid [bmmim] [BF4] predominant in solvent systems, RSC Adv. 4(107) (2014) 62244-62254.

R. Gopal, M.A. Siddique, A study of ion-solvent interactions of some tetraalkylammonium and common ions in N-methyl acetamide from apparent molar volume data, Jour. Phys. Chem. 72 (1969) 1814-1817.

M.N. Roy, A. Jha, A. Choudhury, Densities, viscosities and adiabatic compressibilities of some mineral salts in water at different temperatures, Jour. Chem. Eng. Data 4 (2004) 291-296.

E. Ayaranci, Apparent molar volume and viscosity of compounds with asymmetric carbon atoms, J. Chem. Eng. Data 42(5) (1997) 934-937.

F.J. Miller, J.H. Knox, Apparent molar volumes of aqueous sodium fluoride, sodium sulfate, potassium chloride, potassium sulfate, magnesium chloride and magnesium sulfate solutions at 0 deg. and 50 deg. Jour. Chem. Eng. Data 18 (1973) 607-611.

M.N. Roy, D. Ekka, R. Dewan, Physico-chemical studies of some bio-active solutes in pure methanolic acid, Acta Chim. Slov. 58(4) (2011) 792-796.

D. Deshay, Chemistry Review, University of New York, New York, 1996.

M.N. Roy, I. Banik, Study of solute-solvent interaction of some bio-active solutes prevailing in aqueous acetic acid solution, Jour. Mol. Liq. 169 (2012) 8-14.

G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride, Jour. Am. Chem. Soc. 51 (1929) 2950-2964.

K. Das, M.C. Roy, M.N. Roy, Conjunct beneficial impacts of lithium-ion along with aqueous vitamin in driven rechargeable batteries and also in neurotransmitter drugs, J. Adv. Chem. Sci. 3(1) (2017) 428-433.

T. Ray, M.N. Roy, Study to explore assorted interfaces of an ionic liquid prevailing in solvent systems by physicochemical approach, RSC Adv. 5 (2015) 89431-89440.

J. Poznanski, A. Ejchart, K.L. Wierzchowski, M. Ciurak, 1H- and 13C-NMR investigations on cis-trans isomerization of proline peptide bonds and conformation of aromatic side chains in H-Trp(Frop)Tyr-OH peptides, Biopolym. 33(5) (1993) 781-795.

K. Das, M. Chandra Roy, B. Rajamathi, M.N. Roy, Assorted interactions of amino acids prevailing in aqueous vitamin C solutions probed by physicochemical and ab-initio contrivances, Chem. Phys. Lett. 667 (2017) 209-221.

R.F. Chen, Fluorescence quantum yields of tryptophan and tyrosine, Anal. Lett. 1 (1967) 35-42.