β-FeSe nanorods composited g-C3N4 with enhanced photocatalytic efficiency
Shijie Shen, Wenwu Zhong, Zongpeng Wang, Zhiping Lin and Shangshen Feng

School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, People’s Republic of China

A series of β-FeSe nanorods composited g-C3N4 were prepared. The structure, morphology, chemical state, photocatalytic activity, electrochemical impedance and photoluminescence of β-FeSe/g-C3N4 composites were well characterized. It is found that the decolourization rate of 3 wt% β-FeSe/g-C3N4 composites reaches 4.4 times than that of g-C3N4. The improved photocatalytic properties could be ascribed to the reduced recombination of photogenerated electrons and holes, which is derived from the excellent ability of β-FeSe to capture and transfer electrons. This work provides an alternative co-catalyst for decolourizing organic matter.

1. Introduction

The energy crisis and the increasingly serious environmental pollution problem are the severe challenges facing human survival and development [1–4]. Today, with the depletion of fossil energy, the use of clean solar energy has become an alternative solution. In this regard, photocatalyst plays an important role in harvesting solar energy, which can convert solar energy into chemical energy and use sunlight to degrade organic pollutants. Since the 1970s, TiO2 has been used as a photocatalyst to split water [5–7]. Nowadays, more semiconductor materials, such as ZnO [8], SrTiO3 [9] and CdS [10] were developed as photocatalysts. Among them, g-C3N4 stands out for its wider absorption spectrum and higher efficiency in activating molecular oxygen into superoxide radicals [11–13]. Nevertheless, the performance of g-C3N4 is still insufficient for its bulk structure and the high carrier recombination probability. Based on it, there are usually two approaches to enhance the photocatalytic activity, one of which is nanostructure design with more active sites. As far as we know, various nanostructured g-C3N4, like nanoparticles, nanospheres, nanorods, nanowires and particularly nanosheets have been developed for photocatalysts with higher...
activity [13]. Moreover, g-C3N4 coupled with semiconductors and noble metal nanoparticles can also improve photocatalytic activity [14,15]. In the photocatalytic process, photogenerated electrons and holes undergo two types of reactions, one for driving photocatalytic reactions and the other for recombination. In fact, the latter tends to dominate even though it is harmful to photocatalysis. Therefore, the effective separation of photogenerated carriers to avoid recombination is particularly important. The aforementioned composite materials offer enhanced migration efficiency of photogenerated electrons and holes, and hence suppressed recombination. As for noble metal composites, Au, [16] Ag [17] and Pt [18] have been used to couple with g-C3N4.

FeSe has two crystalline states, a hexagonal phase (α-FeSe) and a tetragonal phase (β-FeSe) [19]. Among them, β-FeSe exhibits metallic behaviour above \(T_c = 8 \) K and becomes a superconductor below that temperature [19]. The room-temperature resistivity of β-FeSe is about 1 mΩ cm [20]. β-FeSe has a layered structure, which consists of a quasi-two-dimensional layer composed of edge-sharing FeSe\(_4\) tetrahedra stacking along the \(c\)-axis. Intercalating metal ions or even neutral molecules into [Fe\(_2\)Se\(_2\)] layers will transfer electrons to [Fe\(_2\)Se\(_2\)] layer, [21–24] which indicates that β-FeSe has excellent ability to capture electrons. Moreover, β-FeSe nanoparticles, [25] nanoflakes [26] and nanorods [27,28] have been synthesized through various preparation methods.

Considering that the recombination of photogenerated carriers is the main reason for hindering the photocatalytic performance of g-C3N4, the composition of co-catalyst such as semiconductors and noble metal nanoparticles can promote the separation of photogenerated carriers and improve the photocatalytic efficiency. β-FeSe does not contain precious metal elements and is a potential electron capturer as mentioned above. It is a fascinating question whether g-C3N4 composites with β-FeSe nanorods has excellent photocatalytic activity. Here, we prepared a series of β-FeSe nanorods composited g-C3N4 and studied their photocatalytic properties for decolourizing Rhodamine B (RhB). The photocatalytic activity of g-C3N4 is greatly improved after the composition. This work provides a promising co-catalyst for photocatalysis.

2. Experimental set-up

2.1. Materials

RhB (analytical grade), H\(_2\)O\(_2\) (30 wt%, analytical grade) and Na\(_2\)SO\(_4\) (99%) were obtained from Innochem. Urea (99.999%) and Nafion solution (5 wt%) were provided by Aladdin. Iron pieces (99.99%) and selenium shots (99.999%) were purchased from Alfa Aesar.

2.2. Preparation of β-FeSe/g-C3N4 composites

Firstly, g-C3N4 was prepared through high-temperature pyrolysis of urea [29]. About 20 g of urea is contained to the three-quarter height position of the crucible, which was covered by a lid and was sintered at 550°C for 2.5 h. The synthesis of β-FeSe nanorods is described as follows. β-FeSe crystals were synthesized following the method described in [30]. The iron pieces and selenium shots weighed in a nominal ratio were sealed in a quartz tube, which was placed in a muffle furnace at 750°C, kept for 5 days and then heated to 1075°C for 3 days. It was then quickly transferred to a muffle furnace with 420°C, kept for 2 days and then quenched in liquid nitrogen. The obtained β-FeSe crystals were ground into powders using a mortar and then dispersed in absolute ethanol, which was sonicated for 2 h in a high-power ultrasonic instrument. Finally, β-FeSe nanorods were obtained by centrifugal separation. β-FeSe nanorods and g-C3N4 at a ratio of 1, 3, 5 and 10 wt% were dispersed in absolute ethanol. The mixture was sonicated for 2 h to achieve uniform mixing. Then they were dried at 80°C to evaporate the solvent. The obtained sample was further sintered at 150°C for 5 h to get well-joined β-FeSe /g-C3N4 composites.

2.3. Characterization

X-ray diffraction (XRD) data were measured by a PANalytical X’pert Pro diffractometer using Cu target radiation. The morphologies were identified by scanning electron microscopy (SEM, Hitachi S-4800). The X-ray photoelectron spectroscopy (XPS) data were collected on a Thermo ESCALAB 250 Xi system. The photoluminescence spectra (PL) were recorded by a Hitachi F-4600 fluorescence spectrometer. The electrochemical impedance spectroscopy (EIS) was measured as follows. Firstly, 5 mg of the 3 wt%
β-FeSe/g-C3N4 composites and 10 μl of 5 wt% Nafion solution were mixed homogeneously in ethanol with 1 ml. The obtained paste was spread on indium tin oxide conductive glass, which was kept at 200°C for 1 h and then used as the working electrode. Moreover, the counter electrode was made of a platinum foil, the reference electrode was made of a saturated Ag/AgCl electrode, and the electrolyte was 0.5 M Na2SO4 solution. The EIS measurements using the above three-electrode cells were conducted on a CHI 660C electrochemical workstation.

2.4. Photocatalytic properties

The photocatalytic properties were characterized by decolourizing RhB on a Shimadzu UV-2450 spectrophotometer using a Xe lamp of 300 W with a filter having a cut-off wavelength of 420 nm under visible light irradiation. In this experiment, 50 mg of β-FeSe/g-C3N4 composites were added to 50 ml RhB solution, which was stirred continuously for 90 min in dark.

3. Results and discussion

The crystal structure of β-FeSe is shown in figure 1a. It consists of a quasi-two-dimensional layer composed of edge-sharing FeSe4 tetrahedra stacking along the c-axis [19]. The XRD patterns of as-prepared materials are displayed in figure 1b. A strong diffraction peak at 27.6°, which corresponds to the (002) reflection, the typical characteristic of g-C3N4, can be observed [31]. From it, the distance between the stacking layers of the graphitic structure can be derived to be 0.33 nm, which is consistent with the reported g-C3N4 [32]. The diffraction peaks of β-FeSe can be recognized for 10 wt% β-FeSe/g-C3N4 composites, as shown in figure 1b.

SEM characterization was conducted to obtain the morphology features of the samples. Figure 2a displays the SEM image of β-FeSe, from which β-FeSe nanorods could be clearly recognized. The nanorods have diameters of about 30 nm and lengths between 0.3 and 1.2 μm. Figure 2b displays the morphology of g-C3N4. It consists of small pieces of uneven particle size with the order of micrometres (figure 2b). As exhibited in figure 2c,d, β-FeSe nanorods are dispersed on the outer surface and embedded inside of g-C3N4.

Figure 3 displays the XPS spectra of 3 wt% β-FeSe/g-C3N4 composites. The survey spectrum in figure 3a displays that there are C, Se, N, O and Fe in the composites. The signals of Fe and Se are weak because of their extremely low content. The peaks of 284.64 and 287.98 eV belong to C 1s. Among them, the former is ascribable to graphitic carbon [33–35] and the peak located at 287.98 eV is derived from sp2-hybridized carbon (N–C=N) [29]. The spectrum of N 1s in figure 3c can be fitted with three peaks. Among them, the peak of 398.22 eV is due to C=N–C, [36] the peak of 398.80 eV is ascribed to N-(C)3 bond, [36] and the peak located at 400.24 eV corresponds to N-H bond [37]. The Se 3d spectrum (figure 3d) consists of two peaks at 55.22 and 59.61 eV for Se 3d5/2 and 3d3/2, respectively [27]. The Fe 2p spectrum (figure 3e) can be fitted with the peaks at 710.11 and 723.77 eV, which is consistent with the results of Fe 2p in the literature [28,38].

![Figure 1](https://example.com/fig1.png)
Figure 1. (a) Schematic diagram of the crystal structure of β-FeSe. (b) XRD patterns of as-prepared materials.
The photocatalytic properties of as-prepared materials were evaluated by degrading RhB dyes. Figure 4a shows the dark adsorption of RhB on g-C3N4 and 3 wt% β-FeSe/g-C3N4 composites. It can be seen that RhB is greatly adsorbed by the samples. As shown in figure 4b, after exposure to visible light for 180 min, the concentration of RhB was still 90% of the original for g-C3N4, while the decolourization efficiency is greatly enhanced for β-FeSe/g-C3N4 composites. The optimized ratio is 3 wt% β-FeSe/g-C3N4 composites. Further increase in the β-FeSe content leads to a lower decolourization efficiency, which is due to excess β-FeSe shielding the light that reaches the g-C3N4 surface and thus affecting the absorption of light. Moreover, the reaction kinetics of RhB
decolourization can be fitted by the first-order reaction kinetics \(\ln \left(\frac{C_0}{C} \right) = kt \) when \(C_0 \) is of the order of millimolar, where \(C_0 \) is the concentration at which RhB reaches the equilibrium of absorption and desorption in the dark, \(C \) is the concentration under visible light and \(k \) is the first-order reaction rate constant. The results of photocatalytic kinetics are shown in figure 4c. The \(k \)-value is calculated to be 0.00077, 0.0022, 0.0034 and 0.0029 \(\text{min}^{-1} \) for g-C\(_3\)N\(_4\), 1, 3 and 5 wt% \(\beta \)-FeSe/g-C\(_3\)N\(_4\) composites. So the decolourization rate of 3 wt% \(\beta \)-FeSe/g-C\(_3\)N\(_4\) composites reaches 4.4 times than that of g-C\(_3\)N\(_4\).

To further improve the photocatalytic efficiency, a low concentration of H\(_2\)O\(_2\) (103 \(\mu \)l /100 ml) was used as an efficient scavenger adding in the solution. It can be seen from figure 5a that the photocatalytic efficiency of 3 wt% \(\beta \)-FeSe/g-C\(_3\)N\(_4\) composites with H\(_2\)O\(_2\) is greatly improved. The RhB in solution is completely decomposed in 60 min. The improved photocatalytic performance can be

![Figure 4](image1.png)

Figure 4. (a) The dark adsorption of RhB on g-C\(_3\)N\(_4\) and 3 wt% \(\beta \)-FeSe/g-C\(_3\)N\(_4\) composites. (b,c) Visible light irradiation photocatalytic activities of as-prepared materials for degrading RhB.

![Figure 5](image2.png)

Figure 5. (a) Photocatalytic activities of decolourization of RhB under visible light for as-prepared materials. (b) Cyclic performance of 3 wt% \(\beta \)-FeSe/g-C\(_3\)N\(_4\) composites with H\(_2\)O\(_2\).
explained as follows. On the one hand, H₂O₂ may undergo photolysis by visible light and generate \(\cdot \text{OH} \) radicals, on the other hand, H₂O₂ can capture the photogenerated electrons to form \(\cdot \text{OH} \) radicals, which are the main contributors to the photocatalytic process [39–41], thus further enhancing photocatalytic activity. The cyclic performance of 3 wt% \(\beta \)-FeSe/g-C₃N₄ composites is shown in figure 5b. The photodecolourization rate is almost unchanged after four cycles, manifesting the stability of this photocatalyst.

EIS measurement was performed to obtain the reason for the improvement of photocatalytic performance for 3 wt% \(\beta \)-FeSe/g-C₃N₄ composites. As shown in figure 6a, the 3 wt% \(\beta \)-FeSe/g-C₃N₄ composites show smaller arc radius than that of g-C₃N₄, indicating the former has a smaller charge-transfer resistance than g-C₃N₄ and has faster interfacial charge-transfer process [42]. Moreover, photoluminescence spectrum, which is often conducted to understand the charge separation efficiency, [43] was performed. As shown in figure 6b, the intensity of photoluminescence decreases for 3 wt% \(\beta \)-FeSe/g-C₃N₄ composites. It manifests that the recombination of photogenerated carriers decreases for the former.

As discussed above, a possible mechanism of improved photocatalytic efficiency for \(\beta \)-FeSe/g-C₃N₄ composites is given as shown in figure 7. Under visible light, electrons of g-C₃N₄ are excited, which are rapidly transferred to \(\beta \)-FeSe for its excellent ability to capture electrons. The photogenerated electrons then react with \(\text{O}_2 \) to produce superoxide radical anion \(\text{O}_2^- \). The \(\text{O}_2^- \) react with water and generate \(\cdot \text{OH} \), which degrade RhB to be \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) [39–41]. Moreover, photogenerated holes directly capture the electrons of RhB and discolor it. Since the photogenerated electrons are entrapped and transferred by \(\beta \)-FeSe nanorods, the recombination of the electrons and holes are improved, which was confirmed by the EIS and PL spectra. In other words, the photogenerated electrons and holes involved in the discoloration reaction of RhB are increased. Thus, the photocatalytic efficiency is enhanced for \(\beta \)-FeSe/g-C₃N₄ composites.

Figure 6. (a) EIS at 0.6 V (versus Ag/AgCl) in 0.5 M Na₂SO₄ solution under visible light irradiation. (b) PL under 330 nm excitation at 298 K.

Figure 7. Proposed photocatalysis mechanism diagrams of decolourization of RhB for \(\beta \)-FeSe/g-C₃N₄ composites.
4. Conclusion

In summary, β-FeSe nanorods were used as co-catalyst composed with g-C$_3$N$_4$. The photocatalytic efficiency is remarkably enhanced for β-FeSe/g-C$_3$N$_4$ composites. The decolourization rate of 3 wt% β-FeSe/g-C$_3$N$_4$ composites reaches 4.4 times that of g-C$_3$N$_4$. The RhB in solution is completely decomposed within 60 min for 3 wt% β-FeSe/g-C$_3$N$_4$ composites with H$_2$O$_2$. The photogenerated electrons can be entrapped and transferred by β-FeSe nanorods, which reduces the recombination of the electrons and holes and improves the photocatalytic efficiency. This work provides a promising co-catalyst for photocatalytic discolorization of organic matter.

Data accessibility. Our data are deposited at Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.3310h18 [44]. Authors’ contributions. W.Z. and S.F. designed this work; S.S. and W.Z. performed the experiments; Z.W. and Z.L. analysed the data; S.S. wrote this paper. All authors gave final approval for publication.

Competing interests. The authors declare no competing interests.

Funding. Financial support came from National Natural Science Foundation of China (51802211 and 51572183) and Natural Science Foundation of Zhejiang Province, China (LY15E010002).

Acknowledgements. We thank the assistance from Y.C.C. during the experiment.

References

1. Wang H et al. 2018 Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2, 337 – 348. (doi:10.1016/j.joule.2017.11.016)
2. Langford C, Iadared M, Radwan E, Achari G. 2014 Some observations on the development of superior photocatalytic systems for application to water purification by the ‘adsorb and shuttle’ or the interphase charge transfer mechanisms. Molecules 19, 19557 – 19572. (doi:10.3390/ molecules191219557)
3. El-Naggar ME, Radwan EK, El-Wakeel ST, Kafafy R. 2018 Impact of support characteristics and preparation method on photocatalytic activity of TiO$_2$/ZSM-5. Appl. Catal. B 238, 37 – 48. (doi:10.1016/j.apcatb.2018.06.016)
4. Yang HJ, Geng L, Zhang YT, Chang G, Zhang ZL, Liu X, Lei M, He YB. 2019 Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell. Appl. Surf. Sci. 466, 385 – 392. (doi:10.1016/j.apsusc.2018.09.050)
5. Fujishima A, Honda K. 1972 Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 – 38. (doi:10.1038/ 238037a0)
6. Liu HJ, Li PY, Bai HK, Du CW, Wei DQ, Su YZ, Wang YQ, Yang L. 2018 Incorporation of reduced graphene oxide into faceted flower-like {001} TiO$_2$ for enhanced photocatalytic activity. R. Soc. open sci. 5, 180613. (doi:10.1098/roso613)
7. Radwan EK, Langford CH, Achari G. 2018 Impact of support characteristics and preparation method on photocatalytic activity of TiO$_2$/25M-Silica gel composite photocatalyst. R. Soc. open sci. 5, 180918. (doi:10.1098/roso613)
8. Lee KM, Lai CW, Ngai KS, Juan JCC. 2016 Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428 – 448. (doi:10.1016/j.watres.2015. 09.045)
9. Kato H, Kudo A. 2002 Visible-light-response and photocatalytic activities of TiO$_2$ and SrTiO$_3$ photocatalysts copped with antimony and chromium. J. Phys. Chem. B 106, 5029 – 5034. (doi:10.1021/jp0255482)
10. Jing D, Guo L. 2006 A novel method for the preparation of a highly stable and active GdS photocatalyst with a special surface nanostructure. J. Phys. Chem. B 110, 11 139 – 11 145. (doi:10.1021/jp060905k)
11. Murcia JJ, Navio JA, Hidalgo MC. 2012 Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO$_2$, by platinisation. Appl. Catal. B 126, 76 – 85. (doi:10.1016/j.apcata.2012.07.013)
12. Li TT, Zhao LH, He YM, Cai J, Luo MF, Lin JJ. 2015 Synthesis of g-C$_3$N$_4$/SmVO$_4$ composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B 129, 225 – 265. (doi:10.1016/j.apcata.2012.09.031)
13. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P. 2012 Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO$_2$, by platinisation. Appl. Catal. B 126, 76 – 85. (doi:10.1016/j.apcata.2012.07.013)
14. Qi YR, Liang QH, Lv RT, Shen WC, Kang FY, Huang JH. 2018 Synthesis and photocatalytic activity of mesoporous g-C$_3$N$_4$/MoS$_2$ hybrid catalysts. R. Soc. open sci. 5, 180107. (doi:10.1098/roso613)
15. Wang C, Hu LY, Wang MY, Yue B, He HY. 2018 Genium promoted V-p-g-C$_3$N$_4$ as highly efficient heterogeneous catalyst for the direct benzene hydroxylation. R. Soc. open sci. 5, 180371. (doi:10.1098/roso613)
16. Datta KK, Reddy BV, Ariga K, Vinu A. 2010 Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew. Chem. Int. Ed. 49, 5961 – 5965. (doi:10.1002/ ane.201001699)
17. Gu L, Han C, Liu J, Li Y. 2011 Enhanced visible light photocatalytic activity of novel polymeric g-C$_3$N$_4$ loaded with Ag nanoparticles. Appl. Catal. A 409 – 410, 215 – 222. (doi:10.1016/j. apcata.2010.11.006)
18. Liu JH, Zhang YW, Lu LH, Wu G, Chen W. 2012 Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chem. Commun. 48, 8826 – 8828. (doi:10.1039/ c2cc3364b)
19. Hou FC et al. 2008 Superconductivity in the PdO-type structure-FeSe. Proc. Natl Acad. Sci. USA 105, 14 262 – 14 264. (doi:10.1073/pnas. 0807321105)
20. Mizuguchi Y, Tomikara F, Touda S, Yamaguchi T, Takano Y. 2009 Substitution effects in FeSe superconductor. J. Phys. Soc. Jpn. 78, 074712. (doi:10.1143/JPSJ.78.074712)
21. Guo JG, Jin SF, Wang G, Wang SX, Zhu XX, Zhou TT, He M, Chen XL. 2010 Superconductivity in the iron selenide K$_x$Fe$_2$Se$_2$ (0 ≤ x ≤ 1.0). Phys. Rev. B 82, 180520. (doi:10.1103/PhysRevB.82. 180520)
22. Ying TP, Chen XL, Wang G, Jin SF, Zhou TT, Lai XF, Zhang H, Wang WY. 2012 Observation of superconductivity at 30 – 46 K in A$_x$Fe$_2$Se$_2$ (A = Li, Na, Sr, Ca, Yb and Eu). Sci. Rep. 2, 426. (doi:10.1038/srep00426)
23. Shen SJ, Ying TP, Wang G, Jin SF, Zhang H, Lin ZP, Chen XL. 2015 Photocatalytic synthesis of alkali-intercalated iron selenide superconductors. Chin. Phys. B. 24, 117406. (doi:10.1088/1674-1056/24/ 11/117406)
24. Jin SF, Fan X, Wu XZ, Sun RJ, Wu H, Huang QZ, Shi CL, Xi XQ, Li ZL. 2017 High-T, superconducting phases in organic molecular intercalated iron selenide syntheses: synthesis and crystal structures. Chem. Commun. 53, 9729 – 9732. (doi:10.1039/C7CC05242A)
25. Li CS, Zhang SN, Yu ZM, Ma XB, Liu JX, Zhang PX. 2015 Room-temperature chemical synthesis of PdO-Type FeSe superconducting
30. McQueen TM et al. 2015 Thermal Hall effect in a paramagnet. Phys. Rev. B 91, 125413. (doi:10.1103/PhysRevB.91.125413)

27. Zhong WW, Tu WG, Xu Y, Zhan BS, Jin SF, Xu R. 2017 Conductive FeSe nanorods: a novel and efficient co-catalyst deposited on BiVO4 for enhanced photocatalytic activity under visible light. J. Environ. Chem. Eng. 5, 4206 – 4211. (doi:10.1016/j.jece.2017.08.016)

28. Zhong WW, Tu WG, Feng SS, Xu AJ. 2019 Photocatalytic H2 evolution on CdS nanoparticles by loading FeSe nanorods as co-catalyst under visible light irradiation. J. Alloys Compd. 772, 669 – 674. (doi:10.1016/j.jallcom.2018.09.145)

29. Liu J, Zhang T, Wang Z, Dawson G, Chen W. 2012 Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and separation of superconducting and nonsuperconducting KFe2–xSe2 revealed by X-ray photoemission spectroscopy. Phys. Rev. B 88, 224517. (doi:10.1103/PhysRevB.88.224517)

31. Zhang G, Zhang J, Zhang M, Wang X. 2012 Electrical properties of novel and stable g-C3N4–Bi2WO6 hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation. R. Soc. open sci. 5, 171419. (doi:10.1098/rsos.171419)

34. Lin X, Zhao R, Ji Y, Li XY, Shi JY, Yan N. 2018 Metal-free C60/CNTs/g-C3N4 ternary heterostructures: synthesis and enhanced visible-light-driven photocatalytic performance. R. Soc. open sci. 5, 172290. (doi:10.1098/rsos.172290)

36. Chai B, Peng TV, Mao J, Li K, Zan L. 2012 Graphitic carbon nitride (g-C3N4)–Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys. Chem. Chem. Phys. 14, 16 745 – 16 752. (doi:10.1039/c2cp42484c)

38. Dong F, Wu L, Sun Y, Fu M, Wu Z, Lee SC. 2011 Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 21, 15 171 – 15 174. (doi:10.1039/c1jm12844b)

39. Zhong WW, Shen SJ, Feng SS, Lin ZP, Wang ZP, Fang BZ. 2018 Facile fabrication of alvealate CuO–sCe microsheets as a new visible-light photocatalyst for decoloration of Rhodamine B. CrystEngcomm 20, 7851 – 7856. (doi:10.1039/C8CE01534A)

40. Cui YJ, Ding ZX, Liu P, Antonietti M, Fu XZ, Wang XC. 2012 Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys. 14, 1455 – 1462. (doi:10.1039/C1CP22820D)

41. Zhang C, Ai L, Jiang J. 2015 Solvothermal synthesis of MIL–53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. J. Mater. Chem. A 3, 3074 – 3081. (doi:10.1039/C4TA04622F)

42. Huang QW, Tian SQ, Zeng OW, Wang XX, Song WL, Li YX, Xiao W, Xie CS. 2013 Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond. ACS Catal. 3, 1487 – 1485. (doi:10.1021/cs400080w)

43. Gao W, Zhao Y, Mao Z, Bi D, Chen J, Wang D. 2018 Enhanced visible light photocatalytic activity for g-C3N4/SnO2:5b composites induced by Sb doping. J. Mater. Sci. 53, 9473 – 9485. (doi:10.1007/s10853-018-2259-7)

44. Shen S, Zhong W, Wang Z, Lin Z, Feng S. 2019 Data from: β-FeSe nanoparticles composited g-C3N4 with enhanced photocatalytic efficiency. Dryad Digital Repository. (doi:10.5061/dryad.3110h8)