Abstract. In the standard SIR model, infected vertices infect their neighbors at rate λ independently across each edge. They also recover at rate γ. In this work we consider the SIR-ω model where the graph structure itself co-evolves with the SIR dynamics. Specifically, $S-I$ connections are broken at rate ω. Then, with probability α, S rewires this edge to another uniformly chosen vertex; and with probability $1-\alpha$, this edge is simply dropped. When $\alpha = 1$ the SIR-ω model becomes the evoSIR model. Jiang et al. proved in [7] that the probability of an outbreak in the evoSIR model converges to 0 as λ approaches the critical infection rate λ_c. On the other hand, numerical experiments in [7] revealed that, as $\lambda \to \lambda_c$, (conditionally on an outbreak) the fraction of infected vertices may not converge to 0, which is referred to as a discontinuous phase transition. In [1] Ball and Britton give two (non-matching) conditions for continuous and discontinuous phase transitions for the fraction of infected vertices in the SIR-ω model. In this work, we obtain a necessary and sufficient condition for the emergence of a discontinuous phase transition of the final epidemic size of the SIR-ω model on Erdős-Rényi graphs, thus closing the gap between these two conditions.

1. Introduction

In the SIR model, individuals are in one of three states: $S =$ susceptible, $I =$ infected, $R =$ removed (cannot be infected). Often this epidemic takes place in a homogeneously mixing population. However, in the real world we often have a graph G that gives the social structure of the population; vertices represent individuals and edges connections between them. $S-I$ edges become $I-I$ at rate λ, i.e., after a time with an Exponential(λ) distribution. An individual remains infected for an amount of time which has an Exponential(γ) distribution. Once individuals leave the infected state, they enter the removed state and stay removed forever.

In many real world scenarios, the network structure itself doesn’t remain fixed but rather evolves with time. Britton et al. [2] introduced the SIR-ω model where the graph is allowed to co-evolve with the epidemic. In addition to the dynamics in the standard SIR model, in the SIR-ω model $S-I$ edges are broken at rate ω. With probability $1-\alpha$ the susceptible individual drops this edge, and with probability αS re-connects to another individual chosen uniformly at random from the other $n-2$ individuals in the graph. This model is introduced in [2]. Mathematical analysis for this model has been done in [1,2,8]. When $\alpha = 1$, the SIR-ω model is also called the evoSIR model, where ‘evo’ stands for ‘evolving’. The evoSIR model was studied in [7] and the authors there proved that as the infection rate λ approaches the critical value λ_c, the probability of an outbreak converges to 0, similarly to the case of static graphs. In other words, the transition for the probability of an outbreak is always continuous. However, as discovered by simulations in [7], the evoSIR model exhibits discontinuous phase transitions in terms of the final epidemic size for certain values of parameters of the model. More precisely, when λ approaches λ_c, conditionally on an outbreak the fraction of infected individuals doesn’t converge to 0. This is in sharp contrast with the case of SIR epidemics on static Erdős-Rényi graphs (and the configuration model), where the phase transition for the
fraction of infecteds is always continuous. To avoid potential confusions, when we say ‘phase transition’ below we always refer to the transition for the final epidemic size conditionally on an outbreak.

For the simpler SI epidemic where individuals stay infected forever (i.e., no recoveries), [1] and [2] give an (almost) necessary and sufficient condition for discontinuous phase transitions of the final epidemic size in the SI-ω model on Erdős-Rényi graphs and the evoSI model on the configuration model, respectively. Note that Erdős-Rényi graphs are contiguous to the configuration model with Poisson degree distribution. In fact, [1] found out the limit of scaled final epidemic size, which can be expressed as a solution to certain equation.

However, the situation becomes much more complicated for SIR epidemics on evolving graphs. [1] give two conditions for continuous and discontinuous phase transitions of the SIR-ω model. But there is a gap between these two conditions. In addition, not much is known about the final epidemic size. See Section 1.2.3 for more details.

In this work we give a necessary and sufficient condition for the continuity of the phase transition of the SIR-ω model (Theorem 1.1), resolving a conjecture in [1, Remark 2.4]. For the case of continuous phase transitions we also prove the convergence of (scaled) final epidemic size (Theorem 1.4).

The rest of the introduction is organized as follows. We state our main results in Section 1.1. Section 1.2 is devoted to a quick review of related work. Section 1.3 contains the proof strategies as well and the organization of this paper.

1.1. Main results. We start from some terminologies and definitions. The term final epidemic size, denoted by $T^{(n)}$ when the graph has size n, refers to the total number of individuals that have ever been infected. For SIR epidemics it is the number of vertices that are eventually removed. We say an outbreak occurs if the epidemic infects more than ϵn individuals (n is the size of the total population) for some $\epsilon > 0$ independent of n, i.e., $T^{(n)} \geq \epsilon n$. The critical infection rate λ_c is the smallest infection rate such that an outbreak occurs with probability bounded away from 0 as $n \to \infty$. Mathematically,

$$\lambda_c = \inf \{ \lambda > 0 : \liminf_{n \to \infty} P(T^{(n)} \geq \epsilon n) > 0 \text{ for some } \epsilon > 0 \}.$$ (1.1)

The phase transition for the final epidemic size is said to be continuous if for any $\epsilon > 0$,

$$\lim_{\lambda \to \lambda_c} P(T^{(n)} > n\epsilon \mid \text{an outbreak occurs}) = 0.$$ (1.2)

If (1.2) fails for some $\epsilon_0 > 0$, then the phase transition is said to be discontinuous.

As mentioned in the beginning of this paper, the SIR-ω model has four parameters: γ representing the recovery rate, λ the infection rate, ω the rate of dropping or rewiring and α the probability of rewiring. We focus on the Erdős-Rényi($n, \mu/n$) graph, which is a random graph on n vertices where each pair gets connected with probability μ/n.

It has been proved in [7] for the evoSIR model and [1] for the SIR-ω model that

$$\lambda_c = \frac{\omega + \gamma}{\mu - 1}.$$ (1.3)

Turning to the phase transition of the final epidemic size, Ball and Britton proved in [1, Theorem 2.4] that if

$$\omega(2\alpha - 1) > \gamma \text{ and } \mu > \frac{2\omega\alpha}{\omega(2\alpha - 1) - \gamma},$$ (1.4)
then there exists \(r_0 = r_0(\mu, \gamma, \omega, \alpha) > 0 \) such that
\[
\lim_{n \to \infty} P(T(n) > nr_0 | \text{an outbreak occurs}) = 1 \text{ for all } \lambda > \lambda_c. \tag{1.5}
\]

They also showed that the phase transition is continuous when
\[
\omega(3\alpha - 1) \leq \gamma \text{ or } \mu \leq \frac{2\omega\alpha}{\omega(3\alpha - 1) - \gamma}. \tag{1.6}
\]

Note that there is a gap between (1.4) and (1.6). They conjectured in [1, Remark 2.4] that (1.4) should be both necessary and sufficient for a discontinuous phase transition. The following theorem, which is the main contribution of this paper, confirms this conjecture.

Theorem 1.1. Suppose
\[
\omega(2\alpha - 1) \leq \gamma \text{ or } \mu \leq \frac{2\omega\alpha}{\omega(2\alpha - 1) - \gamma}, \tag{1.7}
\]
then for any \(\epsilon > 0 \), there exists \(\lambda_1 > \lambda_c \) such that
\[
\lim_{n \to \infty} P(T(n) < \epsilon n | \text{an outbreak occurs}) = 1 \text{ for all } \lambda \in (\lambda_c, \lambda_1). \tag{1.8}
\]

Combining (1.8) and (1.5), the phase transition for the final epidemic size of the SIR-\(\omega \) model near \(\lambda_c \) is discontinuous if and only if (1.4) holds.

Theorem [1.1] is proved by showing the convergence of \(T(n)/n \) in the case of (1.7). Our approach is inspired by [1]. We now introduce a few more notations. Suppose the underlying graph has \(n \) vertices, then we set
- \(S(n)(t) \): the number of susceptible vertices at time \(t \),
- \(I(n)(t) \): the number of infected vertices at time \(t \),
- \(I_E^{(n)}(t) \): the number of infectious (i.e., infected–susceptible) edges at time \(t \),
- \(\tau^{(n)} \): the first time when \(I_E^{(n)} \) reaches 0,
- \(W(n)(t) \): the number of susceptible–susceptible edges at time \(t \) that were created by rewirings,
- \(X^{(n)}(t) = (S^{(n)}(t), I^{(n)}(t), I_E^{(n)}(t), W^{(n)}(t)) \).

Note that \(\tau^{(n)} \) can be understood as the terminal time since no more vertices can be infected after \(\tau^{(n)} \). Also, recall that we use \(T^{(n)} \) to denote the final epidemic size, which is equal to \(n - S^{(n)}(\tau^{(n)}) \). As will be clear soon, \(X^{(n)} \) is more amenable to analysis after a random time-transform. Specifically, we multiply all transition rates of the SIR-\(\omega \) process (which is a Markov chain) by \(n/\lambda I_E^{(n)}(t) \). We use a hat to denote the quantities in the time-changed process. For instance, \(\hat{\tau}^{(n)} \) is the terminal time in the time-transformed model. Note that \(X(0) = \hat{X}(0) \). Also, \(\hat{T}^{(n)} \) is the final epidemic size in the time-changed model, which is necessarily equal to \(T^{(n)} \). For the ease of notations we sometimes suppress the dependence on \(n \) when there are no ambiguities. We emphasize that these notations are fixed throughout the paper.
Our goal is to give a deterministic approximation for \(\hat{X}(t) \). Consider the following system of equations

\[
\frac{d\hat{s}}{dt} = -1, \quad (1.9)
\]

\[
\frac{d\hat{i}}{dt} = -\frac{\gamma \hat{i}}{\lambda \hat{E}} + 1, \quad (1.10)
\]

\[
\frac{d\hat{E}}{dt} = -1 - \frac{\gamma}{\lambda} + \mu \hat{s} - \frac{\hat{i}_E}{\hat{s}} + 2 \hat{w} - \frac{\omega}{\lambda} (1 - \alpha + \alpha (1 - \hat{i})), \quad (1.11)
\]

\[
\frac{d\hat{w}}{dt} = \frac{\omega \alpha}{\lambda} \hat{s} - 2 \hat{w}. \quad (1.12)
\]

As will be mentioned later, these equations can be obtained by dividing the right hand sides of equations (1.22)-(1.25) by \(\lambda \hat{E}(t) \). In fact, Ball and Britton also mentioned this system of equations in [1, Section 6.5.1], but they didn’t make use of this to analyze the SIR-\(\omega \) model.

Note that \((\hat{s}(t), \hat{w}(t))\) already forms a closed sub-system, which can be explicitly solved for any initial condition with \(\hat{w}(0) = 0 \) as follows

\[
\hat{s}(t) = \hat{s}(0) - t, \quad (1.13)
\]

\[
\hat{w}(t) = \frac{\omega \alpha}{\lambda} (\hat{s}(0) - t)^2 \log \frac{\hat{s}(0)}{\hat{s}(0) - t}. \quad (1.14)
\]

We will show in Theorem 1.2 below that the system (1.9)-(1.12) admits a unique solution under initial conditions that are relevant to the evolution of the SIR-\(\omega \) model.

- **Positive initial condition:**
 \(\hat{i}(0) \in (0, 1), \hat{s}(0) \in (0, 1 - \hat{i}(0)), \hat{i}_E(0) > 0, \hat{w}(0) = 0. \)

- **Zero initial condition:**
 \(\hat{s}(0) = 1, \hat{i}(0) = \hat{i}_E(0) = 0, \hat{w}(0) = 0. \)

The positive initial condition corresponds to a positive fraction of individuals initially infected while the zero initial condition is useful for analyzing the case of one initially infected node.

We denote the solution to (1.9)-(1.12) by \(\mathbf{\hat{x}}(t) := (\hat{s}(t), \hat{i}(t), \hat{i}_E(t), \hat{w}(t)) \). For any solution \(\mathbf{\hat{x}}(t) \), we let \(t_* \) to be the first time after 0 when \(\hat{i}_E(t) \) hits 0, i.e.,

\[
t_* := \inf \{ 0 < t \leq \hat{s}(0) : \hat{i}_E(t) = 0 \}. \quad (1.15)
\]

Here we use the convention that \(\inf \emptyset = \hat{s}(0) \). We shall show in Section 3.2 that \(t_* < \hat{s}(0) \).

We now state the existence and uniqueness theorem up to time \(t_* \).

Theorem 1.2. For any positive initial condition or zero initial condition (in this case assuming additionally that \(\lambda > \lambda_c \)), there exists a unique solution \(\mathbf{\hat{x}}(t) \) to the system (1.9)-(1.12) up to time \(t_* \).

With Theorem 1.2 established, we can now state the convergence theorem for the stochastic process \(\mathbf{\hat{X}}/n \).

Theorem 1.3. Suppose \(\mathbf{\hat{X}}^{(n)}(0)/n \xrightarrow{p} \mathbf{\hat{x}}(0) \), then

\[
\sup_{t \leq \hat{s}(0) \wedge \hat{z}(0)} \left(\left| \frac{1}{n} \mathbf{\hat{S}}^{(n)}(t) - \hat{s}(t) \right| + \left| \frac{1}{n} \mathbf{\hat{W}}^{(n)}(t) - \hat{w}(t) \right| \right) \xrightarrow{P} 0, \quad (1.16)
\]
and
\[
\sup_{t \leq t_* \wedge \bar{t}(n)} \left\| \frac{1}{n} \hat{X}^{(n)}(t) - \hat{x}(t) \right\|_2 \xrightarrow{P} 0.
\] (1.17)

Theorem 1.3 can be used to derive the convergence of the scaled final epidemic size \(T^{(n)}/n \) under (1.7).

Theorem 1.4. Assume that (1.7) holds. Let \(t_* \) be given by (1.15).

(a) Suppose \(\hat{X}^{(n)}(0)/n \xrightarrow{P} \hat{x}(0) \) where \(\hat{i}(0) > 0 \) and \(\hat{i}_E(0) > 0 \). Then,
\[
\frac{T^{(n)}}{n} \xrightarrow{P} 1 - \hat{s}(0) + t_* \text{ as } n \to \infty.
\] (1.18)

(b) Suppose \(\lambda > \lambda_c \) and for each \(n \) the epidemic starts from one infected vertex with the rest being susceptible. Then conditionally on an outbreak,
\[
\frac{T^{(n)}}{n} \xrightarrow{P} t_* \text{ as } n \to \infty.
\] (1.19)

Remark 1. Note that the right hand sides of (1.18) and (1.19) can be written as \(1 - \hat{s}(t_*) \).

Theorem 1.4 verifies [1, Conjecture 2.1] under the condition (1.7). We conjecture that this condition is not essential, i.e., Theorem 1.4 holds without assuming (1.7).

Theorem 1.1 follows from Theorem 1.4 via a direct computation. See Section 6.

1.2. Previous work.

1.2.1. SIR on static graphs. So far the SIR model on several random graph models (including Erdős-Rényi graphs and the configuration model) has been well understood. For the case of Erdős-Rényi(\(n, \mu/n \)) graphs, consider the function
\[
G_1(z) = \exp \left(-\mu \frac{\lambda}{\lambda + \gamma} (1 - z) \right).
\]

The following theorem is well known. See, e.g., [9].

Theorem 1.5. The critical value for SIR model on static Erdős-Rényi(\(n, \mu/n \)) is given by \(\lambda_c = \gamma/(\mu - 1) \). The probability of an outbreak converges to \(1 - z_0 \) where \(z_0 < 1 \) is the solution to the equation \(G_1(z) = z \), i.e.,
\[
\lim_{n \to \infty} P(T^{(n)} \geq \epsilon n) = 1 - z_0
\]
for all small enough \(\epsilon > 0 \). In addition, conditionally on an outbreak, the scaled final epidemic size \(T^{(n)}/n \) also converges to \(1 - z_0 \).

It follows from this theorem that the phase transition for final epidemic size of the SIR model on static Erdős-Rényi graphs is continuous, since we have \(1 - z_0 \to 0 \) as \(\lambda \to \lambda_c \).

Similar results hold for the configuration model. Take any degree sequence \((D_1, \ldots, D_n) \), denoted by \(D_n \), the configuration model \(\mathcal{CM}(n, D_n) \) is constructed by uniformly randomly pairing \(D_1, \ldots, D_n \) half-edges attached to vertices \(1, \ldots, n \), respectively. Two paired half-edges form a single edge. If \(D_i, 1 \leq i \leq n \), are i.i.d. sampled from a distribution \(D \) (with minor adjustment to make sure that the sum \(\sum_{i=1}^n D_i \) is even), then we may write \(\mathcal{CM}(n, D) \) for \(\mathcal{CM}(n, D_n) \). It is known that the local neighborhood of \(\mathcal{CM}(n, D) \) resembles a two-stage Galton-Watson tree where the offspring distribution of the root is \(D \) while the offspring
distribution of later generations is $D^* - 1$ (D^* is the size-biased version of D). See, e.g., [11] Chapter 7 for a detailed introduction to the configuration model. Let z'_0 be the survival probability for this two-stage Galton-Watson tree. Then for the SIR model on $\mathbb{CM}(n, D)$, $\lambda_c = \gamma m_1 / (m_2 - 2m_1)$ where m_i is the i-th moment of D. In addition, both the probability of an outbreak and the scaled final epidemic size (conditionally on an outbreak) converge to z'_0, which goes to 0 as $\lambda \to \lambda_c$. See, e.g., [6] for statements and proofs of these results.

1.2.2. SI on evolving graphs. As mentioned before, in SI type models infected vertices will not recover.

For the SI-ω epidemics on Erdős-Rényi$(n, \mu/n)$ graphs, Ball and Britton [1] found out the limit of $T(n)/n$ (which can be expressed as the solution to an explicit equation) and gave a necessary and sufficient condition for the phase transition to be discontinuous. See [11 Theorem 2.5 and Theorem 2.6]. More precisely, they showed that the phase transition for the fraction of infecteds is discontinuous if and only if $\alpha > 1/3$ and $\mu > 3\alpha/(3\alpha - 1)$.

When $\alpha = 1$, the SI-ω model is also called the evoSI model. Durrett and Yao [4] analyzed the phase transition of final epidemic size in the evoSI model with underlying graph $\mathbb{CM}(n, D)$. Let μ_i be the i-th factorial moment of D, i.e.,

$$\mu_i = \mathbb{E}[D(D-1)\cdots(D-i+1)].$$

Set

$$\Delta = -\frac{\mu_3}{\mu_1} + 3(\mu_2 - \mu_1).$$

They showed that the phase transition is continuous if $\Delta < 0$ and discontinuous if $\Delta > 0$. Note that when $D \sim \text{Poisson}(\mu)$ and $\alpha = 1$, $\Delta = -\mu^2 + 3(\mu^2 - \mu)$. Thus the condition $\Delta > 0$ corresponds to $\mu > 3/2$, which is the condition given by Ball and Britton by setting $\alpha = 1$.

1.2.3. SIR on evolving graphs. Jiang et al. [7] studied the evoSIR model (SIR-ω with $\alpha = 1$) on Erdős-Rényi$(n, \mu/n)$ graphs. They showed in [7, Theorem 1] that the critical infection rate for evoSIR model is given by

$$\lambda_c = \frac{\gamma + \omega}{\mu - 1}.$$ \hspace{1cm} (1.21)

In addition, the probability of an outbreak converges to $1 - z''_0$ where $z''_0 < 1$ is the solution to the equation $G_2(z) = z$ with G_2 defined by

$$G_2(z) = \exp \left(-\frac{\mu}{\lambda + \omega + \gamma}(1 - z) \right).$$

Consequently, as λ approaches λ_c, the probability of an outbreak also converges to 0. The authors there also used numerical experiments to discover that for certain parameters the phase transition for final epidemic size is discontinuous. See Figure[1].

Britton et al. introduced the SIR-ω model in [2]. Ball and Britton [11] analyzed the SIR-ω model on an Erdős-Rényi$(n, \mu/n)$ graph using a novel construction that couples the graph and the epidemic. We will explain the construction in Section 2. Using this construction, they proved the convergence of $X^{(n)}(t)/n$ to a system of ODEs over any finite time horizon. Specifically, let $x(t) = (s(t), i(t), i_E(t), w(t))$ be the solution of the following system of
Figure 1. Simulation of the final epidemic size of the evoSIR model on an Erdős-Rényi graph with $\mu = 5$ and $\omega = 4$. In this case $\lambda_c = 1.25$. The top curve is the simulation of final size of evoSIR. The bottom curve is the final size of the delSIR (SIR-ω with $\alpha = 0$) epidemic with the same parameters. Other two curves are approximations of evoSIR, which are discussed in [7].

Equations

$$\frac{ds}{dt} = -\lambda i_E,$$

$$\frac{di}{dt} = -\gamma i + \lambda i_E,$$

$$\frac{di_E}{dt} = -\lambda i_E - \gamma i_E + \lambda \mu i_ES - \lambda \frac{i_E^2}{s} + 2\lambda i_E \frac{w}{s} - \omega i_E(1 - \alpha + \alpha(1 - i)),$$

$$\frac{dw}{dt} = \omega \alpha i_ES - 2\lambda i_E \frac{w}{s}.$$

Ball and Britton proved the following result in [1, Theorem 2.2].

Theorem 1.6. Suppose $X^{(n)}(0)/n \xrightarrow{P} x(0)$ where $i(0) > 0$ and $i_E(0) > 0$. Then, for any $t_0 > 0$,

$$\sup_{0 \leq t \leq t_0} \left\| \frac{X^{(n)}(t)}{n} - x(t) \right\|_2 \xrightarrow{P} 0 \text{ as } n \to \infty.$$

Note that this theorem doesn’t tell us what happens when the time is ∞, thus we cannot use it to deduce the final epidemic size. Ball and Britton conjectured [1, Conjecture 2.1] that the limit of $n \to \infty$ and $t \to \infty$ can be interchanged so that $T^{(n)}/n \to 1 - s(\infty)$. Our Theorem 1.4 confirms this conjecture under the condition (1.7).

By constructing models that are upper and lower bounds for the SIR-ω model, Ball and Britton proved in [1, Theorem 2.4] that the final epidemic size has a discontinuous phase transition under (1.4) and a continuous transition under (1.6). These two conditions have a gap. We will close this gap by directly analyzing the SIR-ω model itself.

1.3. **Proof strategies and organization of the paper.** Our proof relies on the construction of the SIR-ω model given in [1]. We will give the details in the next section. Using that
As pointed out in [1], a common approach to analyze epidemic models is performing a suitable time-transform so that the system becomes more solvable. In the case of the SIR-ω model, after the time-change, the limiting system of ODEs change from (1.22)-(1.25) to (1.9)-(1.12). Note that the equation for \hat{i}_E' involves the term \hat{i}/\hat{i}_E, which is not Lipschitz for \hat{i}_E near 0. Thus one cannot directly apply classical results (e.g., [3]) to obtain the convergence of the terminal time $\hat{\tau}(n)$ and the fraction of infected vertices $T(n)/n$.

We now give an quick overview of the proof of (1.17) in the case of positive initial condition to illustrate the idea to overcome this barrier. Fix any $\epsilon > 0$, we can divide the interval $[0, t^*]$ into $[0, t^* - \epsilon]$ and $[t^* - \epsilon, t^*]$. We note that \hat{i}_E is bounded away from 0 in $[0, t^* - \epsilon]$. Thus standard arguments (tightness plus the uniqueness of the limit) can be used to derive (1.17) for $t \leq t^* - \epsilon$. To deal with the other time interval $[t^* - \epsilon, t^*]$, we need two observations:

- $\hat{i}(t^* - \epsilon)$ and $\hat{i}_E(t^* - \epsilon)$ can be arbitrarily small by taking ϵ to be small. It follows that $\hat{I}(t^* - \epsilon)/n$ and $\hat{I}_E(t^* - \epsilon)/n$ must also be small with high probability, by the convergence in the interval $[0, t^* - \epsilon]$ that we just proved.
- The evolution equations for \hat{I} and \hat{I}_E, (4.32) and (4.35), imply that the upward drift for \hat{I} and \hat{I}_E is not large.

Combining these two observations, we conclude that \hat{I}/n and \hat{I}_E/n remain small in the time interval $[t^* - \epsilon, t^*]$. Since \hat{i} and \hat{i}_E are also small in this interval, we finish the proof of (1.17).

In order to obtain the convergence of $\hat{\tau}(n)$ and prove Theorem 1.4 it is desirable to know whether the derivative of \hat{i}_E is negative or 0 at t^*. However this seems not trivial. To overcome this issue, we just consider the two cases $i'_E(t^*) < 0$ and $i'_E(t^*) = 0$ separately. The first case is relatively easy. In the second case we need more careful estimates and this is where we need the condition (1.7).

To prove Theorem 1.1 we also need to separate the condition (1.7) into two sub-cases according to whether the equality in (1.7) holds or not.

The rest of the paper is organized as follows. An alternative construction of the SIR-ω model and several consequences of this construction are given in Section 2. We prove the existence and uniqueness of the solution to the system of ODEs (1.9)-(1.12) (Theorem 1.2) in Section 3. The convergence of the time-changed SIR-ω model to differential equations (Theorem 1.3) is proved in Section 4. We then use Theorem 1.3 to prove the limit of the scaled final epidemic size under the condition (1.7) (Theorem 1.4) in Section 5. Finally in Section 6, we use Theorem 1.4 to prove the continuity of the phase transition under the condition (1.7) (Theorem 1.1).
vertex becomes recovered and all edges attached to this infected vertex are no longer infected.

- **Rewiring/dropping Poisson processes for each infected edge with rate** \(\omega \).
 Each infected edge has an independent Poisson process with rate \(\omega \) on it. Whenever the clock rings, this edge is dropped with probability \(1 - \alpha \) and rewired to a uniformly chosen vertex excluding itself with probability \(\alpha \). Suppose at time \(t \) such a clock rings on an edge \(e \) attached to vertex \(x \) and that edge decides to be rewired. Then vertex \(x \) loses \(e \) at time \(t \).
 - If \(e \) is rewired to an infected vertex \(y \), then the number of infected edges of \(y \) increases by 1. This case occurs with probability \((I(t) - 1)/(n - 1) \).
 - If \(e \) is rewired to a susceptible vertex (which we don’t specify at this moment), then \(e \) is added to the pool of rewired susceptible-susceptible edges \(W(n)(t) \) and its cardinality \(W(n)(t) = W(n)(t-) + 1 \).
 - If \(e \) is rewired to a recovered vertex, then the effect is similar to dropping.

- **Infection Poisson processes for each infected edge with rate** \(\lambda \). Each infected edge is connected to a (uniformly chosen) susceptible vertex with rate \(\lambda \). Suppose infected edge \(e \) is connected to susceptible vertex \(y \). Then \(y \) immediately becomes infected. We now attach a random number of edges to \(y \) (which become infected edges immediately) given by

\[
\text{Poisson} \left(\frac{S(n)(t)}{n \mu} \right) + \text{Binomial} \left(W(n)(t-), \frac{2}{S(n)(t-)} \right).
\]

We also delete all infected edges (other than those newly added to \(y \)) with probability \(1/S(n)(t-) \), independently.

To explain the construction, note that we have required infected edges to be paired to susceptible vertices only. The definition of Erdős-Rényi graphs implies that the number of edges originally stemming from \(y \) that connect to susceptible vertices at time \(t \) is close in distribution to \(\text{Poisson}(S(n)(t) \mu/n) \). On the other hand, the number of rewired susceptible edges in the pool \(W(n)(t-) \) that have an endpoint as \(y \) has a \(\text{Binomial}(W(n)(t-), 2/S(n)(t-)) \) distribution. Note that all these operations have to be done immediately after the infection Poisson clock rings.

It has been proved by Ball and Britton in [1, Section 2.3] that the process just constructed (which we temporarily call the coupled SIR-\(\omega \) model) has the same law as the original SIR-\(\omega \) model on Erdős-Rényi(\(n, \mu/n \)) graphs, after conditioning on the event

\[
\Omega_{2.1} := \{ \text{The graph induced from the construction of the coupled SIR-\(\omega \) model is a simple graph} \}.
\]

Then Ball and Britton showed that

\[
\lim_{n \to \infty} \mathbb{P}(\Omega_{2.1}) > 0.
\]

Set

\[
\Omega_{2.3} := \{ \text{An outbreak occurs in the coupled SIR-\(\omega \) model} \}.
\]

Using the techniques in the proof of [6, Theorems 2.7 and 2.10], we can show that

\[
\liminf_{n \to \infty} \mathbb{P}(\{\Omega_{2.3} \cap \Omega_{2.1}\}) > 0.
\]
Equation (2.4) implies that it suffices to prove Theorem 1.1 for the coupled SIR-ω model. To see this, we use a subscript ‘old’ to denote the original SIR-ω model and ‘new’ to denote the couple SIR-ω model. Suppose (1.8) holds for the coupled model, then for \(\lambda < \lambda_1 \),

\[
\lim_{n \to \infty} \mathbb{P}(T_{\text{new}}^{(n)} > \epsilon n) = 0.
\]

By (2.4) and (2.5),

\[
\limsup_{n \to \infty} \mathbb{P}(T_{\text{new}}^{(n)} > \epsilon n | \Omega_{2.3} \cap \Omega_{2.1}) \leq \limsup_{n \to \infty} \mathbb{P}(T_{\text{new}}^{(n)} > \epsilon n | \Omega_{2.3} \cap \Omega_{2.1}) = 0.
\]

Since the original model and the couple model are equivalent upon conditioning on \(\Omega_{2.1} \),

\[
\lim_{n \to \infty} \mathbb{P}(T_{\text{old}}^{(n)} > \epsilon n | \Omega_{2.3} \cap \Omega_{2.1}) = \lim_{n \to \infty} \mathbb{P}(T_{\text{new}}^{(n)} > \epsilon n | \Omega_{2.3} \cap \Omega_{2.1}) = 0.
\]

This proves Theorem 1.1 for the original model. Hence in this paper we will not distinguish between the original SIR-ω model and the coupled SIR-ω model.

In the rest of this section we will state several implications of the construction, which will be used in later proofs.

Lemma 2.1. Let \(A_e \) be the total number of edges appearing in the SIR-ω process. Then exists a constant \(C > 0 \) such that

\[
\mathbb{P}(A_e \geq 2\mu n) \leq \frac{C}{n}.
\]

Proof. From the construction of the SIR-ω model, \(A_e \) is bounded from above the sum of two random variables

\[
I_E(0) + \sum_{i=1}^{n-I(0)} F_i \quad \text{where} \quad F_i \text{ i.i.d. } \sim \text{Poisson}(\mu).
\]

Clearly \(I_E(0) \) is bounded from above by the sum of \(I(0)n \) independent Bernoulli(\(\mu/n \)) variables. Let \(U_1 \) have the distribution Binomial(\(n^2, \mu/n \)) and \(U_2 \) the distribution Binomial(\(n^2/2, \mu/n \)). For the case \(I(0) > n/2 \),

\(A_e \) is stochastically dominated by \(U_1 + \sum_{i=1}^{n/2} F_i \).

For the case \(I(0) \leq n/2 \),

\(A_e \) is stochastically dominated by \(U_2 + \sum_{i=1}^{n} F_i \).

We have

\[
\mathbb{E}(U_1) = \mu n, \quad \text{Var}(U_1) \leq \mu n.
\]

Thus

\[
\mathbb{P}(U_1 \geq 5\mu n/4) = \mathbb{P}(U_1 - \mathbb{E}(U_1) \geq \mu n/4) \leq \frac{\text{Var}(U_1)}{(\mu n/4)^2} \leq \frac{C}{n}.
\]

We also have

\[
\mathbb{P}\left(\sum_{i=1}^{n/2} F_i \geq 3n\mu/4 \right) = \mathbb{P}\left(\sum_{i=1}^{n/2} (F_i - \mu) \geq n\mu/4 \right) \leq \frac{\text{Var}(Y_1)n/2}{(n\mu/4)^2} \leq \frac{C}{n}.
\]
Combining (2.9) and (2.10),

\[
\mathbb{P}(A_e \geq 2\mu n, I(0) \geq n/2) \leq \mathbb{P}\left(U_1 + \sum_{i=1}^{n/2} F_i \geq 2\mu n\right)
\]
\[
\leq \mathbb{P}(U_1 \geq 5\mu n/4) + \mathbb{P}\left(\sum_{i=1}^{n/2} F_i \geq 3n\mu/4\right)
\]
\[
\leq C_n + C_n \leq 2C_n.
\] (2.11)

This proves Lemma 2.1 for the case \(I(0) \geq n/2\). The case \(I(0) \leq n/2\) can be proved similarly. Combining these two cases we deduce Lemma 2.1. \(\square\)

By Lemma 2.1, \(\mathbb{P}(A_e \geq 2\mu n) \to 0\). From now on we work on the event \(\{A_e \leq 2\mu n\}\).

Lemma 2.2. The number of times that any given edge is rewired is stochastically dominated by Geometric\((\alpha\omega/\omega + \lambda)\). Consequently, the number of rewired edges that any given vertex receives is stochastically dominated by Binomial\((2\mu n, 2\omega/\lambda n)\).

Proof. The rewiring/dropping Poisson processes and infection Poisson processes occur independently for each edge in the construction of the SIR-\(\omega\) model. By properties of Poisson processes, the probability that rewiring/dropping occurs before infection is \(\omega/\omega + \lambda\). Also note that the probability of rewiring is \(\alpha\) in the rewiring/dropping Poisson processes. As a result, for any given edge \(e\),

\[
\mathbb{P}(\text{edge } e \text{ is rewired when one of the two clocks rings}) \leq \alpha\omega/\omega + \lambda). \tag{2.12}
\]

Since whether each attempt to rewire succeeds or not is independent, the number of times that any given edge is rewired is stochastically dominated by a Geometric distribution with success probability \(\alpha\omega/\omega + \lambda\). On the other hand, when a rewiring occurs, the probability of any given vertex \(x\) being selected to receive the rewired edge is at most \(1/(n-1)\). As a result, the probability that any given edge \(e\) has been rewired to any given vertex \(x\) is bounded from above by

\[
1 - \mathbb{E}\left((1 - \frac{1}{n-1})^Z\right) \text{ where } Z \sim \text{Geometric}(\alpha\omega/\omega + \lambda), \tag{2.13}
\]

which is further bounded by (for large \(n\))

\[
\mathbb{E}\left(\frac{Z}{n-1}\right) = \frac{1}{n-1} \left(\left(1 - \frac{\alpha\omega}{\omega + \lambda}\right)^{-1} - 1\right) \leq \frac{\omega}{(n-1)\lambda} \leq \frac{2\omega}{\lambda n}. \tag{2.14}
\]

Since we are working on the event \(\{A_e \leq 2\mu n\}\), we know that the number of edges that have the potential to be rewired is less than or equal to \(2\mu n\). Since the infection Poisson processes and rewiring/dropping Poisson processes are independent for different edges, the total number of rewired edges that any given vertex receives is stochastically dominated by

\[
\text{Binomial}\left(2\mu n, \frac{2\omega}{\lambda n}\right). \tag{2.15}
\]

\(\square\)
Lemma 2.3. Let N_i be the number of edges added to vertex i when it first becomes infected. Then N_i is stochastically dominated by the independent sum

$$\text{Poisson}(\mu) + \text{Binomial}(2\mu n, \omega/(\lambda n)).$$

Consequently, for some constant $C_{2.15}$ we have

$$\mathbb{E}(N_i^4) \leq C_{2.15}$$

(2.15)

Similarly, setting \hat{N}_i to be the number of edges of vertex i when it becomes recovered, then

$$\mathbb{E}(\hat{N}_i^4) \leq C_{2.15}$$

(2.16)

Proof. We know that N_i is equal to the independent sum

$$\text{Poisson}\left(\frac{S(n)(t)}{n} \mu\right) + \text{Binomial}\left(W(n)(t-), \frac{2}{S(n)(t-)}\right)$$

where the second part in the sum stands for the number of edges rewired to vertex i when i first becomes infected. By Lemma 2.2 we see N_i is stochastically dominated by the independent sum $\text{Poisson}(\mu) + \text{Binomial}(2\mu n, \omega/(\lambda n)))$. Set $V_i \sim \text{Poisson}(\mu)$, $Z_i \sim \text{Binomial}(2\mu n, \omega/(\lambda n))$. Then we have

$$\mathbb{E}(N_i^4) \leq \mathbb{E}((V_i + Z_i)^4).$$

(2.17)

Note that the fourth moment of $\text{Poisson}(\mu)$ is clearly finite, and

$$\mathbb{E}(Z_i^4) \leq \sum_{j=1}^{4} (2\mu n)^j \left(\frac{2\omega}{\lambda n}\right)^j \leq C.$$

(2.18)

Hence for some sufficiently large constant $C_{2.15}$

$$\mathbb{E}((V_i + Z_i)^4) \leq C_{2.15}$$

(2.19)

which then implies $\mathbb{E}(N_i^4) \leq C_{2.15}$ and proves (2.15). Equation (2.16) can be proved in exactly the same way as (2.15) since \hat{N}_i is also dominated by the independent sum of $\text{Poisson}(\mu)$ and $\text{Binomial}(2\mu n, \omega/(\lambda n)))$. \qed

3. Existence and uniqueness of the solution to (1.11)-(1.11)

In this section we prove the existence and uniqueness of the solution to the system (1.9)-(1.12). Note that we have already given closed form expressions for $\hat{s}(t)$ and $\hat{w}(t)$ in (1.14) and (1.14) (which are necessarily unique). Hence it remains to deal with \hat{i} and \hat{i}_E. We treat the case of positive initial condition in Section 3.1 and the case of zero initial condition in Section 3.2.

We now show that, the t_* defined in (1.15) is strictly smaller than $\hat{s}(0)$. To see this, we use an argument by contradiction. Assume that $t_*=\hat{s}(0)$. Then $\hat{i}_E(t) > 0$ for all $0 < t < \hat{s}(0)$. Equations (1.11), (1.13) and (1.14) together imply the existence of an $\epsilon > 0$ so that

$$\frac{d\hat{i}_E(t)}{dt} \leq -1 - \frac{\hat{i}_E(t)}{\hat{s}(t)}$$

(3.1)

holds true for all $t \in (\hat{s}(0) - \epsilon, \hat{s}(0))$. It follows that

$$\frac{d}{dt} \left(\frac{\hat{i}_E(t)}{\hat{s}(t)}\right) = \frac{1}{\hat{s}(t)} \left(\frac{d\hat{i}_E(t)}{dt} + \frac{\hat{i}_E(t)}{\hat{s}(t)}\right) \leq -\frac{1}{\hat{s}(t)}.$$

(3.2)
Integrating (3.2) from $\hat{s}(0) - \epsilon$ to t, we see that
\[
\frac{\hat{i}_E(t)}{\hat{s}(t)} - \frac{\hat{i}_E(\hat{s}(0) - \epsilon)}{\hat{s}(0) - \epsilon} \leq \int_{\hat{s}(0) - \epsilon}^{t} \frac{-1}{\hat{s}(u)} du = \log \left(\frac{\hat{s}(0) - t}{\epsilon} \right),
\] (3.3)
which goes to $-\infty$ as $t \to \hat{s}(0)$. We have thus arrived at a contradiction. Therefore we must have $t_* < \hat{s}(0)$.

3.1. Existence and uniqueness for positive initial condition

In this case the existence and uniqueness for the pair (\hat{i}, \hat{i}_E) follows from standard results in ODE theory. Indeed, the right hand sides of (1.10) and (1.11) are Lipschitz functions of \hat{i} and \hat{i}_E when \hat{i}_E is bounded away from 0. Existence theory for ODE implies that, given any solution (\hat{i}, \hat{i}_E) defined for small $t > 0$, one can extend its domain to t_* where $\lim_{t \to t_*} \hat{i}_E(t) = 0$. We set $\hat{i}_E(t_*) = 0$.

As for the uniqueness, assume that there are two solution $(\hat{i}_1, \hat{i}_{E,1})$ and $(\hat{i}_2, \hat{i}_{E,2})$. Given any $\delta > 0$,
\[
b_{b,1} = \inf \{ t \geq 0 : \hat{i}_{E,1} \leq \delta \},
b_{b,2} = \inf \{ t \geq 0 : \hat{i}_{E,2} \leq \delta \},
b_b = b_{b,1} \land b_{b,2}.
\] (3.4)

We define $t_{*,1}$ and $t_{*,2}$ to be the first time after 0 that $\hat{i}_{E,1}$ and $\hat{i}_{E,2}$ hit 0, respectively. Then $b_{b,1} \leq t_{*,1} < \hat{s}(0)$. Hence $b_b < \hat{s}(0)$. By (1.10) and (1.11), for $t \leq b_b$,
\[
\left| \hat{i}_{E,1}(t) - \hat{i}_{E,2}(t) \right| \leq \int_0^t \frac{\hat{i}_{E,1}(u) - \hat{i}_{E,2}(u)}{\hat{s}(u)} du + \frac{\omega \alpha}{\lambda} \int_0^t \left| \hat{i}_1(u) - \hat{i}_2(u) \right| du
\] (3.5)
and
\[
\left| \hat{i}_1(t) - \hat{i}_2(t) \right| \leq \frac{\gamma}{\lambda} \int_0^t \left| \frac{\hat{i}_1(u) - \hat{i}_2(u)}{\hat{i}_{E,1}(u) - \hat{i}_{E,2}(u)} \right| du
\] (3.6)
\[
\leq \frac{\gamma}{\lambda} \int_0^t \left(\frac{\hat{i}_{E,2}(u) \hat{i}_1(u) - \hat{i}_2(u) \hat{i}_{E,1}(u)}{\hat{i}_{E,1}(u) \hat{i}_{E,2}(u)} \right) du
\] (3.6)
\[
\leq \frac{\gamma}{\lambda} \left(\frac{1}{\delta} + \frac{1}{\delta^2} \right) \int_0^t \left(\left| \frac{\hat{i}_{E,1}(u) - \hat{i}_{E,2}(u)}{\hat{i}_{E,1}(u) \hat{i}_{E,2}(u)} \right| + \left| \frac{\hat{i}_1(u) - \hat{i}_2(u)}{\hat{i}_{E,1}(u) \hat{i}_{E,2}(u)} \right| \right) du.
\]

Combining (3.5) and (3.6), we see that for all $t \leq b_b$ and some constant $C > 0$,
\[
\left| \hat{i}_{E,1}(t) - \hat{i}_{E,2}(t) \right| + \left| \hat{i}_1(t) - \hat{i}_2(t) \right| \leq C \int_0^t \left(\left| \hat{i}_{E,1}(u) - \hat{i}_{E,2}(u) \right| + \left| \hat{i}_1(u) - \hat{i}_2(u) \right| \right) du.
\]

By Gronwall’s inequality we deduce that, for all $t \leq b_b$
\[
\hat{i}_{E,1}(t) = \hat{i}_{E,2}(t) \text{ and } \hat{i}_1(t) = \hat{i}_2(t).
\] (3.7)
Since δ can be taken to be arbitrarily small, we conclude that $t_{*,1} = t_{*,2}$, and for all $t \leq t_{*,1}$,
\[\hat{i}_{E,1}(t) = \hat{i}_{E,2}(t) \quad \text{and} \quad \hat{i}_1(t) = \hat{i}_2(t). \]
(3.8)

This proves the uniqueness part.

3.2. Existence and uniqueness for zero initial condition. We start from the comparison principle for the system (1.10)-(1.11) under positive initial condition.

Lemma 3.1. Suppose that there are two solutions $(\hat{i}_1, \hat{i}_{E,1})$ and $(\hat{i}_2, \hat{i}_{E,2})$ such that $\hat{i}_1(0) \leq \hat{i}_2(0), \hat{i}_{E,1}(0) \leq \hat{i}_{E,2}(0)$ and $\hat{i}_{E,2}(0) > 0$. Then for all $t \leq t_{*,2}$,
\[\hat{i}_1(t) \leq \hat{i}_2(t) \quad \text{and} \quad \hat{i}_{E,1}(t) \leq \hat{i}_{E,2}(t). \]
(3.9)

Proof. Denote the right hand of (1.10) and (1.11) by $F_1(\hat{i}, \hat{i}_E)$ and $F_2(\hat{i}, \hat{i}_E)$, respectively. It is clear that for any (x_1, y_1) and (x_2, y_2) such that $y_1, y_2 > 0$, we have
\[F_1(x_1, y_1) \leq F_1(x_2, y_2) \quad \text{if} \quad x_1 = x_2 \quad \text{and} \quad y_1 \leq y_2, \]
and
\[F_2(x_1, y_1) \leq F_2(x_2, y_2) \quad \text{if} \quad y_1 = y_2 \quad \text{and} \quad x_1 \leq x_2. \]

Thus the system (1.10)-(1.11) satisfies the Kamker-Müller conditions, which in turn implies that this system is monotone with respect to the initial condition. See [10] for general theories of monotone dynamical systems.

Remark 2. In fact, the comparison principle holds true for the time-reversed version of (1.10) and (1.11) as well. In other words, if
\[\hat{i}_1(t) \leq \hat{i}_2(t), \quad \hat{i}_{E,1}(t) \leq \hat{i}_{E,2}(t) \quad \text{and} \quad \hat{i}_{E,1}(u) > 0 \quad \text{for all} \quad u \in (0, t), \]
then for all $u \leq t$,
\[\hat{i}_1(u) \leq \hat{i}_2(u) \quad \text{and} \quad \hat{i}_{E,1}(u) \leq \hat{i}_{E,2}(u). \]

Remark 3. Suppose that there are two solutions $(\hat{i}_1, \hat{i}_{E,1})$ and $(\hat{i}_2, \hat{i}_{E,2})$ such that $\hat{i}_1(t) \leq \hat{i}_2(t)$ for all $t \leq t_{*,1} \land t_{*,2}$. Then one can show that $\hat{i}_{E,1}(t) \leq \hat{i}_{E,2}(t)$ for all $t \leq t_{*,1} \land t_{*,2}$.

Recall that for zero initial condition $\hat{i}(0) = \hat{i}_E(0) = 0$ and $\hat{s}(0) = 1$. Using Lemma 3.1, we can deduce the existence of a solution to (1.10) and (1.11). Indeed, consider the pair of functions $(\hat{i}_\epsilon, \hat{i}_{E,\epsilon})$ given by the solution to (1.10) and (1.11) with the initial condition $\hat{i}_\epsilon(0) = \hat{i}_{E,\epsilon}(0) = \epsilon$. (The existence of $(\hat{i}_\epsilon, \hat{i}_{E,\epsilon})$ is guaranteed by the results proved in Section 3.1.) Set $t_\epsilon := \inf\{t > 0 : \hat{i}_{E,\epsilon}(t) = 0\}$. We claim that
\[\liminf_{\epsilon \to 0} t_\epsilon > 0. \]
(3.10)

Proof of (3.10). Using (1.11), we see that for some $C_{\epsilon,11} > 0$,
\[\left| \frac{\hat{i}_{E,\epsilon}}{\epsilon} \right| \leq C_{\epsilon,11} \quad \forall \epsilon \leq 1, \quad t \leq 1/2. \]
(3.11)

Hence $\hat{i}_{E,\epsilon} \leq \epsilon + C_{\epsilon,11} t$. Hence
\[\frac{d\hat{i}_{E,\epsilon}}{dt} = -1 - \frac{\gamma + \omega}{\lambda} + \mu(1 - t) - \frac{\hat{i}_{E,\epsilon}}{1 - t} + \frac{2\hat{w}}{\hat{s}} + \frac{\omega\alpha - \epsilon}{\lambda}\hat{i}_\epsilon \]
\[\geq \mu - 1 - \frac{\gamma + \omega}{\lambda} - \mu t = \frac{\epsilon + C_{\epsilon,11} t}{1 - t}. \]
(3.12)
Thanks to the assumption \(\lambda < \lambda_c = (\gamma + \omega)/(\mu - 1) \) for zero initial condition,
\[
\mu - 1 - \frac{\gamma + \omega}{\lambda} > \mu - 1 - \frac{\gamma + \omega}{\lambda_c} = \mu - 1 - \frac{\gamma + \omega}{(\omega + \gamma)/(\mu - 1)} = 0.
\]
(3.13)

By (3.11), (3.12) and (3.13),
\[
\bar{\gamma}_{E,\epsilon} \geq 0 \text{ for } t \leq \left(\mu - 1 - \frac{\gamma + \omega}{\lambda} - 2\epsilon \right) \min \left\{ \frac{1}{2\mu} \left(\left(\mu - 1 - \frac{\gamma + \omega}{\lambda} \right) + 2C_{3.11} \right) \right\}.
\]

This implies that \(t_*^\epsilon \) is uniformly bounded from below for all small \(\epsilon \). Hence (3.10) follows. \(\square \)

Define \(t_0^* = \liminf_{\epsilon \to 0} t_*^\epsilon > 0 \). By Lemma 3.1 for each \(t < t_0^* \), \(\hat{i}_{E}(t) \) and \(\hat{i}_{E,\epsilon}(t) \) are both decreasing in \(\epsilon \). By Lemma 3.1, \(t_*^\epsilon \) actually monotonically decreases to \(t_0^* \). Thus we can define
\[
\hat{i}(t) = \lim_{\epsilon \to 0} \hat{i}_{E}(t),
\]
\[
\hat{i}_{E}(t) = \lim_{\epsilon \to 0} \hat{i}_{E,\epsilon}(t). \tag{3.14}
\]

Clearly \((\hat{i}(t), \hat{i}_{E}(t)) \) satisfies (1.10) and (1.11) with \(\hat{i}(0) = \hat{i}_{E}(0) = 0 \). Thus we obtain a nontrivial solution of (1.10)-(1.11) since \(t_0^* > 0 \). To prepare for the proof of uniqueness we need one more ingredient. Suppose that \((\hat{i}(t), \hat{i}_{E}(t)) \) is a solution to (1.10)-(1.11). We claim that
\[
\limsup_{t \to 0} \frac{\hat{i}(t)}{\hat{i}_{E}(t)} < \infty. \tag{3.15}
\]

To see this, note that by (1.10),
\[
\hat{i}(t) \leq t, \forall t \geq 0. \tag{3.16}
\]

Repeating the calculation in (3.12),
\[
\hat{i}_{E}(0) = \lim_{t \to 0} \frac{\hat{i}_{E}(t)}{t} = -1 - \frac{\gamma}{\lambda} + \mu - \frac{\omega}{\lambda} > -\frac{\gamma}{\lambda_c} + \mu - 1 = -\frac{\gamma + \omega}{(\mu - 1)/(\gamma + \omega)} + \mu - 1 = 0. \tag{3.17}
\]

Equation (3.15) follows from (3.16) and (3.17).

We now prove the uniqueness part. Suppose that \((\hat{i}_{1}(t), \hat{i}_{E,1}(t)) \) and \((\hat{i}_{2}(t), \hat{i}_{E,2}(t)) \) are two solutions that satisfy (1.10)-(1.11). We divide the proof into two steps.

Step 1: We first show that either
\[
\hat{i}_{1}(t) \leq \hat{i}_{2}(t), \hat{i}_{E,1}(t) \leq \hat{i}_{E,2}(t), \forall t \leq t_{*,1} \land t_{*,2}, \tag{3.18}
\]
or
\[
\hat{i}_{1}(t) \geq \hat{i}_{2}(t), \hat{i}_{E,1}(t) \geq \hat{i}_{E,2}(t), \forall t \leq t_{*,1} \land t_{*,2}. \tag{3.19}
\]

To see this, we consider two cases.

- **Case 1:** there exists \(t_1 \in (0, t_{*,1} \land t_{*,2}) \) such that \(\hat{i}_{1}(t_1) = \hat{i}_{2}(t_1) \). Without loss of generality let us assume that \(\hat{i}_{1}(t_1) = \hat{i}_{2}(t_1) \) and \(\hat{i}_{E,1}(t_1) \leq \hat{i}_{E,2}(t_1) \). Then by the comparison principle for the system (1.10)-(1.11) and its backward-in-time version (Remark 2),
\[
\hat{i}_{1}(t) \leq \hat{i}_{2}(t), \hat{i}_{E,1}(t) \leq \hat{i}_{E,2}(t), \forall t \leq t_{*,1} \land t_{*,2}.
\]

This proves (3.18).
Case ②: the opposite of Case ①. In this case, we must have either
\[\hat{i}_1(t) \leq \hat{i}_2(t), \forall t \in (0, t_{*,1} \wedge t_{*,2}), \]
or
\[\hat{i}_1(t) \geq \hat{i}_2(t), \forall t \in (0, t_{*,1} \wedge t_{*,2}). \]

Using Remark 3 we see that either (3.18) or (3.19) holds true.

Step 2: Without loss of generality we assume that (3.18) holds true. Using (1.11),
\[\hat{i}_{E,2}(t) - \hat{i}_{E,1}(t) \leq \int_0^t \frac{\omega_\alpha}{\lambda} (\hat{i}_2(u) - \hat{i}_1(u)) du. \]
(3.20)

Define the function
\[H(t) := \sup_{0 \leq u \leq t} \left| \hat{i}_1(u) - \hat{i}_2(u) \right|. \]

For \(t \) small, using (1.10), (3.17), (3.15) and (3.20),
\[\hat{i}_2(t) - \hat{i}_1(t) = \frac{\gamma}{\lambda} \int_0^t \left(\frac{\hat{i}_1(u)}{i_{E,1}(u)} - \frac{\hat{i}_2(u)}{i_{E,2}(u)} \right) du \]
\[\leq \frac{\gamma}{\lambda} \int_0^t \left(\frac{\hat{i}_1(u)}{i_{E,1}(u)} - \frac{\hat{i}_1(u)}{i_{E,2}(u)} \right) du \]
\[= \frac{\gamma}{\lambda} \int_0^t \frac{\hat{i}_1(u) (i_{E,2}(u) - \hat{i}_{E,1}(u))}{i_{E,1}(u) i_{E,2}(u)} du \]
\[\leq C \int_0^t \frac{1}{u} \left(\int_0^u (\hat{i}_2(r) - \hat{i}_1(r)) dr \right) du. \]
(3.21)

It follows that
\[H(t) \leq C \int_0^t \frac{1}{u} u H(u) du \leq C \int_0^t H(u) du. \]
(3.22)

Since \(H(0) = 0 \), applying the Gronwall’s inequality we deduce that \(H(t) = 0 \) for all \(t \) small. This implies that \(\hat{i}_{E,1}(t) = \hat{i}_{E,2}(t) \) for all \(t \) small enough (say, for \(t \leq \epsilon_0 \)). From the proof of the results in Section 3.1 and the fact that \(\hat{i}_{E,1}(\epsilon_0) = \hat{i}_{E,2}(\epsilon_0) > 0 \), we see that \(\hat{i}_{E,1}(t) = \hat{i}_{E,2}(t) \) for all \(\epsilon_0 \leq t \leq t_{*,1} \wedge t_{*,2} \). Hence \(t_{*,1} = t_{*,2} \) and \(\hat{i}_1(t), \hat{i}_{E,1}(t) = \hat{i}_2(t), \hat{i}_{E,2}(t) \) for all \(t \leq t_{*,1} \).

4. Approximations of the SIR-\(\omega \) process by differential equations

The proof of Theorem 1.3 is based on Dykin’s formula applied to the construction of the SIR-\(\omega \) model using Poisson processes in Section 2. Dykin’s formula says that, if \(V(t) \) is a Markov chain, then for any function \(f \) in the domain of \(L \),
\[f(V(t)) - \int_0^t Lf(V(s)) ds \]
is a martingale, where \(L \) is the Markov generator for \(V(t) \).

This section is divided into three subsections. We first prove (1.16). Then we establish (1.17) for the case of positive initial condition where \(\hat{i}_E(0) \) and \(\hat{\lambda}(0) \) are positive. Finally, we prove (1.17) for zero initial condition case where \(\hat{i}(0) = \hat{i}_E(0) = 0 \).
4.1. Proof of (1.16). We start from the analysis of $\hat{S}(t)$. Corresponding to the three types of Poisson processes, we can divide the change of $\hat{S}(t)$ into three categories.

- Change of $\hat{S}(t)$ due to recovery Poisson processes: 0.
- Change of $\hat{S}(t)$ due to rewiring/dropping Poisson processes: 0.
- Change of $\hat{S}(t)$ due to infection Poisson Processes: decreases by 1. The rate for this to occur is
 \[\lambda \hat{I}_E(t) \times \frac{n}{\lambda I_E(t)} = n. \]

Here the factor $\frac{n}{\lambda I_E(t)}$ comes from the fact that we are considering the time-changed dynamics.

Collecting these three types of changes and applying Dykin’s formula, we see that

\[\hat{S}(t) = \hat{S}(0) + \int_0^t (-n)du + M_1(t), \quad (4.1) \]

where $M_1(t)$ is a martingale. Note that we can also define $M_1(t)$ for $t \geq \hat{\tau}$ ($\hat{\tau}$ is the first time that \hat{I}_E reaches 0) by simply setting $M_1(t) = M_1(\hat{\tau})$. Then $M_1(t)$ is a martingale defined for all $t \geq 0$.

By (4.1), the quadratic variation process of $M_1(t)$, $\langle M_1(t), M_1(t) \rangle$, is equal to the quadratic variation process of $\hat{S}(t)$. The quadratic variation process of $\hat{S}(t)$ can be bounded using previous analysis for the change of $\hat{S}(t)$. In particular, since the clocks in infection Poisson processes can effectively ring at most n times, we have

\[\langle \hat{S}(t), \hat{S}(t) \rangle \leq n \times 1^2 = n, \forall t \leq \hat{\tau}. \]

Consequently,

\[\sup_{t \geq 0} \mathbb{E}(M_1(t)^2) \leq n. \quad (4.2) \]

By L^2 maximal inequality applied to the martingale $M_1(t)$, we have

\[\mathbb{E} \left(\sup_{0 \leq t \leq \hat{\tau}} M_1(t)^2 \right) \leq 4n. \quad (4.3) \]

Markov inequality then implies that

\[\mathbb{P} \left(\sup_{t \leq \hat{\tau}} |M_1(t)| > n^{2/3} \right) \leq \frac{4n}{n^{4/3}} \leq 4n^{-1/3}. \quad (4.4) \]

Dividing both sides of (4.1), we get

\[\frac{\hat{S}(t)}{n} = \frac{\hat{S}(0)}{n} - t + \frac{M_1(t)}{n}. \quad (4.5) \]

Recall that we have assumed that $\hat{S}(0)/n \xrightarrow{p} \hat{s}(0)$. Combining (4.4) and (4.5),

\[\sup_{t \leq \hat{\tau}} \left| \frac{\hat{S}(t)}{n} - (\hat{s}(0) - t) \right| \xrightarrow{p} 0, \quad (4.6) \]

as desired.

Now we analyze $\hat{W}(t)$.

- Change of $\hat{W}(t)$ due to recovery Poisson processes: 0.
• Change of $\hat{W}(t)$ due to rewiring/dropping Poisson processes: increases by 1 with probability $\alpha \hat{S}(t)/n$, otherwise stays the same. Thus the mean of the change is $\alpha \hat{S}(t)/n$. The rate for such an event to occur is

$$\omega \hat{I}_E(t) \times \frac{n}{\lambda \hat{I}_E(t)} = \frac{n\omega}{\lambda}.$$

• Change of $\hat{W}(t)$ due to infection Poisson processes: decreases by Binomial($\hat{W}(t), 2/\hat{S}(t)$).

The mean of the change is $2\hat{W}(t)/\hat{S}(t)$. The rate for such an event to occur is

$$\lambda \hat{I}_E(t) \times \frac{n}{\lambda \hat{I}_E(t)} = n.$$

Hence we can write

$$\hat{W}(t) = \hat{W}(0) + \int_0^t \left(\frac{\alpha \hat{S}(u) n\omega}{n} - n \frac{2\hat{W}(u)}{\hat{S}(u)} \right) du + M_2(t). \quad (4.7)$$

We first control the martingale $M_2(t)$. Using our analysis for the change of $\hat{W}(t)$,

$$\langle M_2(t), M_2(t) \rangle = \langle \hat{W}(t), \hat{W}(t) \rangle \leq \sum_{i=1}^n N_i^2 + Q(t), \quad (4.8)$$

where $Q(t)$ is the number of arrivals of rewiring/dropping Poisson processes by time t and N_i is the number of edges added to vertex i when vertex i first becomes infected. Since $Q(t)$ has total rate $\omega n/\lambda$,

$$\mathbb{E}(Q(t)) \leq \frac{\omega nt}{\lambda}. \quad (4.9)$$

By Lemma 2.3 we see

$$\mathbb{E} \left(\sum_{i=1}^n N_i^2 \right) \leq Cn. \quad (4.10)$$

Combining (4.9) and (4.10) we see that there exists some constant C such that for all $t \leq 2$,

$$\mathbb{E}\langle M_2(t), M_2(t) \rangle \leq Cn. \quad (4.11)$$

Similarly to (4.4) we deduce that

$$\mathbb{P} \left(\sup_{t \leq \hat{s}(0) \wedge 2} |M_2(t)| > n^{2/3} \right) \leq \frac{Cn}{n^{1/3}} \leq Cn^{-1/3}. \quad (4.12)$$

To finish the proof of (1.16), we need to show

$$\sup_{t \leq \hat{s}(0) \wedge \hat{\tau}} \left| \frac{\hat{W}(t)}{n} - \hat{w}(t) \right| \overset{\mathbb{P}}{\to} 0. \quad (4.13)$$

We first prove a weaker version of (4.13). Fix any $\epsilon > 0$. We now prove

$$\sup_{0 \leq t \leq (\hat{s}(0) - \epsilon) \wedge \hat{\tau}} \left| \frac{\hat{W}(t)}{n} - \hat{w}(t) \right| \overset{\mathbb{P}}{\to} 0. \quad (4.14)$$
Proof of [4.14]. We prove [4.14] in two steps. First we show that $\hat{W}(t)/n$ is a tight sequence in $D[0,\bar{s}(0) - \epsilon]$, the space of RCLL functions on the interval $[0,\bar{s}(0) - \epsilon]$. Then we show the uniqueness of possible sequential limit.

Since $\hat{W}(0) \to \hat{w}(0)$, we know $\{\hat{W}(0)/n\}_{n \geq 1}$ is a tight sequence of random variables. To establish tightness of $\{\hat{W}(t)/n, 0 \leq t \leq 1 - \epsilon\}_{n \geq 1}$, we need to show that for any fixed $\epsilon', \delta > 0$, there exist $\theta > 0$ and an integer n_0 so that for all $n \geq n_0$,

$$\mathbb{P}\left(\sup_{|t_1 - t_2| \leq \theta, t_1 < t_2 \leq \bar{s}(0) - \epsilon} \left| \frac{\hat{W}(t_1)}{n} - \frac{\hat{W}(t_2)}{n} \right| \geq \delta \right) \leq \epsilon'.$$

(4.15)

Assuming (4.15) for the moment, we see that $\{\hat{W}(t)/n, 0 \leq t \leq \bar{s}(0) - \epsilon\}$, as an element of $D[0,\bar{s}(0) - \epsilon]$, satisfies condition (ii) of Proposition 3.26 in [5]. Consequently, $\{\hat{W}(t)/n, 0 \leq t \leq \bar{s}(0) - \epsilon\}_{n \geq 1}$ is a tight sequence.

Now we show that any sequential limit of $\hat{W}(t)/n$ coincides with $\hat{w}(t)$. By the tightness of $\{\hat{W}(t)/n, t \geq 0\}_{n \geq 1}$, we see for any subsequence of $\hat{W}(t)/n$ we can extract a further subsequence that converges in distribution to a process $\hat{w}(t)$ with continuous sample path. By the Skorokhod representation theorem we can assume the convergence is actually in the almost sure sense, and we can also assume that $\hat{S}(t)$ converges to $\hat{s}(t)$ in the interval $[0,\bar{s}(0) - \epsilon]$ and $M_2(t)/n$ converges to 0 a.s. It remains to prove that the limit point $\hat{w}(t)$ coincides with $\hat{w}(t)$, which is then necessarily independent of the subsequence. But this is clearly the case. Indeed, by dividing both sides of (4.7) by n and then sending $n \to \infty$, we obtain that

$$\hat{w}(t) = \hat{w}(0) + \int_0^t \frac{\omega}{\lambda} \alpha \hat{s}(u) du - \int_0^t 2 \frac{\hat{w}(u)}{\hat{s}(u)} du,$$

(4.16)

for $t \leq \bar{s}(0) - \epsilon$. This equation has a unique solution $\hat{w}(t) = \hat{w}(t)$.

It remains to prove (4.15). We have

$$\frac{\hat{W}(t_2)}{n} - \frac{\hat{W}(t_1)}{n} = \int_{t_1}^{t_2} \left(\frac{\alpha \omega \hat{s}(u)}{\lambda n} - \frac{2 \hat{W}(u)}{\hat{s}(u)} \right) du + \frac{M_2(t_2) - M_2(t_1)}{n}.$$

(4.17)

We define the event

$$\Omega_{1.18} := \{ \hat{S}^n(t) \geq \epsilon n/2, \forall t \leq (\bar{s}(0) - \epsilon) \land \hat{\tau} \land \Omega_{1.18} \} \cap \{ \sup_{t \leq \hat{\tau} \land \Omega_{1.18}} |M_2(t)| \leq n^{2/3} \}.$$

(4.18)

By (4.6) and (4.12), $\mathbb{P}(\Omega_{1.18}) \to 1$ as $n \to \infty$. On $\Omega_{1.18}$, for $t_1 < t_2 < \bar{s}(0) - \epsilon$, using (4.17),

$$\left| \frac{\hat{W}(t_2)}{n} - \frac{\hat{W}(t_1)}{n} \right| \leq (t_2 - t_1) \left(\frac{\alpha \omega}{\lambda} + \frac{2 \mu n}{\epsilon n/2} \right) + \frac{2}{n} \sup_{t \leq \hat{\tau} \land \Omega_{1.18}} |M_2(t)|$$

$$\leq C \left((t_2 - t_1) + n^{-1/3} \right).$$

(4.19)

This proves (4.15) and thus also completes the proof of (4.14).
Having proved (4.14), we now use it to show the original statement (1.16). In other words, given any $\epsilon' > 0$, we need to show
\[
\lim_{n \to \infty} \mathbb{P}\left(\sup_{0 \leq t \leq \tilde{s}(0) \wedge \tilde{\tau}} \left| \frac{n}{\tilde{W}(t)} - \tilde{w}(t) \right| > \epsilon' \right) = 0.
\]
(4.20)

Denote the oscillation of a function $h(t)$ in any given interval $[a, b]$ by
\[
\text{Osc} [h(t), [a, b]] := \sup_{a \leq u \leq v \leq b} |h(u) - h(v)|.
\]
(4.21)

Observe that
\[
\sup_{0 \leq t \leq \tilde{s}(0) \wedge \tilde{\tau}} \left| \frac{n}{\tilde{W}(t)} - \tilde{w}(t) \right| \leq \sup_{0 \leq t \leq \tilde{s}(0) - \epsilon \wedge \tilde{\tau}} \left| \frac{n}{\tilde{W}(t)} - \tilde{w}(t) \right| + \text{Osc} [\tilde{w}(t), [\tilde{s}(0) - \epsilon, \tilde{s}(0)]]
\]
\[
:= I_1 + I_2 + I_3.
\]
(4.22)

Fix any $\epsilon' > 0$, we need to find ϵ so that
\[
\lim_{n \to \infty} \mathbb{P}(I_1 > \epsilon'/3) = \lim_{n \to \infty} \mathbb{P}(I_2 > \epsilon'/3) = 0 \quad \text{and} \quad I_3 \leq \epsilon'/3.
\]
(4.23)

Once (4.23) is proved, (4.20) follows from the union bound.

Equation (1.14) already implies that $\mathbb{P}(I_1 > \epsilon'/3) \to 0$ for any fixed ϵ and ϵ', so we only need to estimate I_2 and I_3. From (1.14) we have the explicit expression for $\tilde{w}(t)$:
\[
\tilde{w}(t) = \frac{\omega \alpha}{\lambda} (\tilde{s}(0) - t)^2 \log \frac{\tilde{s}(0)}{\tilde{s}(0) - t}.
\]

We can compute its derivative
\[
\tilde{w}'(t) = \frac{\omega \alpha}{\lambda} \left(2(t - \tilde{s}) \log \frac{\tilde{s}(0)}{\tilde{s}(0) - t} + (\tilde{s}(0) - t) \right).
\]
(4.24)

From this we see that the derivative of $\tilde{w}(t)$ is uniformly bounded.
\[
\sup_{0 \leq t \leq \tilde{s}(0)} |\tilde{w}'(t)| \leq C.
\]
(4.25)

It follows that
\[
I_3 = \text{Osc} [\tilde{w}, [\tilde{s}(0) - \epsilon, \tilde{s}(0)]] \leq C \epsilon.
\]
(4.26)

Also note that
\[
\tilde{w}(\tilde{s}(0) - \epsilon) = \frac{\omega \alpha}{\lambda} \epsilon^2 \log(\tilde{s}(0)/\epsilon) \leq C \epsilon.
\]

Hence by choosing ϵ small enough we can make
\[
I_3 \leq \epsilon'/3 \quad \text{and} \quad \tilde{w}(\tilde{s}(0) - \epsilon) \leq \epsilon'/3.
\]
(4.27)

It remains to control I_2. Note that
\[
I_2 \begin{cases}
0, & \text{if } \tilde{\tau} < \tilde{s}(0) - \epsilon; \\
\leq \sup_{\tilde{s}(0) - \epsilon \leq t \leq \tilde{s}(0) \wedge \tilde{\tau}} \frac{n}{\tilde{W}(t)} / n, & \text{if } \tilde{\tau} \geq \tilde{s}(0) - \epsilon.
\end{cases}
\]
Define the event
\[\Omega_{\text{4.28}} = \{ \hat{\tau} < \hat{s}(0) - \epsilon \} \cup \{ \hat{\tau} \geq \hat{s}(0) - \epsilon, \hat{W}(\hat{s}(0) - \epsilon) > \epsilon n/12 \}. \] (4.28)

By (4.14),
\[\lim_{n \to \infty} P(\Omega_{\text{4.28}}) = 1. \] (4.29)

By (4.17), on \(\Omega_{\text{4.18}} \cap \Omega_{\text{4.28}} \cap \{ \hat{\tau} \geq \hat{s}(0) - \epsilon \}, \) for all \(\hat{s}(0) - \epsilon \leq t \leq \hat{s}(0) \wedge \hat{\tau}, \)
\[\frac{\hat{W}(t)}{n} \leq \frac{\hat{W}(\hat{s}(0) - \epsilon)}{n} + \frac{\alpha \omega}{\lambda} \epsilon + \frac{2 \sup_{t} |M_{2}(t)|}{n} \]
\[\leq \frac{\epsilon'}{12} + \frac{\alpha \omega}{\lambda} \epsilon + \frac{2 n^{2/3}}{n}, \] (4.30)

which is smaller than \(\epsilon'/3 \) for \(\epsilon \) small enough and \(n \) large enough.

Consequently, on \(\Omega_{\text{4.18}} \cap \Omega_{\text{4.28}} \),
\[I_{2} \leq \frac{\epsilon'}{3}. \]

It follows that
\[\lim_{n \to \infty} P(I_{2} > \epsilon'/3) \leq \lim_{n \to \infty} P((\Omega_{\text{4.18}} \cap \Omega_{\text{4.28}})^{c}) = 0, \] (4.31)
since both \(P(\Omega_{\text{4.18}}) \) and \(P(\Omega_{\text{4.28}}) \) tend to 1 as \(n \to \infty \). Equation (4.23) now follows from (4.27) and (4.31). This completes the proof of (1.16).

4.2. Proof of (1.17) for positive initial condition. We first analyze \(\hat{I}(t) \).

- Change of \(\hat{I}(t) \) due to recovery Poisson processes: decreases by 1. The rate for such an event to occur is
 \[\gamma \hat{I}(t) \times \frac{n}{\lambda \hat{I}_{E}(t)} = \frac{\gamma \hat{I}(t)n}{\lambda \hat{I}_{E}(t)}. \]

- Change of \(\hat{I}(t) \) due to rewiring/dropping Poisson processes: 0.

- Change of \(\hat{I}(t) \) due to infection Poisson processes: increases by 1. The rate for such an event to occur is
 \[\lambda \hat{I}_{E}(t) \times \frac{n}{\lambda \hat{I}_{E}(t)} = n. \]

Thus we can decompose \(\hat{I}(t) \) as follows:
\[\hat{I}(t) = \hat{I}(0) + \int_{0}^{t} \left(-\frac{\gamma \hat{I}(t)n}{\lambda \hat{I}_{E}(t)} + n \right) du + M_{3}(t). \] (4.32)

The quadratic variation of the martingale \(M_{3}(t) \) can be bounded in the similar way to \(M_{1}(t) \):
\[\langle M_{3}(t), M_{3}(t) \rangle = \langle \hat{I}(t), \hat{I}(t) \rangle \leq \sum_{i=1}^{n} 1^{2} + \sum_{i=1}^{n} 1^{2} = 2n. \] (4.33)

Similarly to (4.4),
\[P \left(\sup_{t \leq \hat{\tau}} |M_{3}(t)| > n^{2/3} \right) \leq \frac{8n}{n^{1/3}} \leq 8n^{-1/3}. \] (4.34)

Now we turn to \(\hat{I}_{E}(t) \). Let \(\hat{I}_{E}(i, t) \) be the infected edges of vertex \(i \) at time \(t \). If \(i \) is not infected at time \(t \) then \(\hat{I}_{E}(i, t) = 0 \). We can classify the change of \(\hat{I}_{E}(t) \) as follows.
• Change of $\hat{I}_E(t)$ due to recovery Poisson processes: decreases by $\hat{I}_E(i,t)$ if vertex i recovers. The total rate of change is equal to

$$-\frac{n}{\lambda \hat{I}_E(t)} \sum_{i=1}^{n} \gamma \hat{I}_E(i,t) = -\frac{n\gamma}{\lambda}.$$

(The minus sign means that the change is negative.)

• Change of $\hat{I}_E(t)$ due to rewiring/dropping Poisson processes: decreases by 1 with probability $1 - \alpha + \alpha(1 - \hat{I}(t)/n)$, otherwise stays the same. Thus the mean of the change is $-(1 - \alpha + \alpha(1 - \hat{I}(t)/n))$. The rate for such an event to occur is

$$\omega \hat{I}_E(t) \times \frac{n}{\lambda \hat{I}_E(t)} = \frac{n\omega}{\lambda}.$$

• Change of $\hat{I}_E(t)$ due to Infection Poisson processes: increases by

$$-1 + \text{Poisson} \left(\frac{(S(t) - 1)\mu}{n} \right) + \text{Binomial} \left(\hat{W}(t), 2/S(t) \right) - \text{Binomial} \left(\hat{I}_E(t), \frac{1}{S(t)} \right).$$

The mean of the change is

$$-1 + \frac{(S(t) - 1)\mu}{n} + \frac{2\hat{W}(t)}{S(t)} - \hat{I}_E(t).$$

The rate for such an event to occur is

$$\lambda \hat{I}_E(t) \times \frac{n}{\lambda \hat{I}_E(t)} = n.$$

We now decompose $\hat{I}_E(t)$ into the drift part and martingale part.

$$\hat{I}_E(t) = \hat{I}_E(0) + \int_0^t \left(-\frac{n\gamma}{\lambda} \right) du + \int_0^t \frac{n\omega}{\lambda} \left(-\left(1 - \alpha + \alpha \left(1 - \frac{\hat{I}(t)}{n} \right) \right) \right) du$$

$$+ \int_0^t n \left(-1 + \frac{(S(u) - 1)\mu}{n} + \frac{2\hat{W}(u)}{S(u)} - \frac{\hat{I}_E(u)}{S(u)} \right) du + M_4(t).$$

Let N_i be the number of edges added to vertex i when i first becomes infected and \hat{N}_i be the number of infected edges of i just before it becomes recovered. The quadratic variation of $M_4(t)$ can be bounded by

$$\langle M_4(t), M_4(t) \rangle = \langle \hat{I}_E(t), \hat{I}_E(t) \rangle \leq \sum_{i=1}^{n} (\hat{N}_i^2 + (N_i + 1)^2) + Q(t),$$

where $Q(t)$ is the number of arrivals of rewiring/dropping Poisson processes by time t. By (4.9),

$$\mathbb{E}(Q(t)) \leq \frac{\gamma nt}{\lambda}. \quad (4.37)$$

By Lemma 2.3, for some constant $C > 0$,

$$\mathbb{E} \left(\sum_{i=1}^{n} (\hat{N}_i^2 + (N_i + 1)^2) \right) \leq Cn. \quad (4.38)$$
Similarly to the proof of (4.4), using (4.36), (4.37) and (4.36), there exists some constant C' such that
\[\mathbb{P} \left(\sup_{t \leq \tau \wedge 2} |M_4(t)| > n^{2/3} \right) \leq C' n^{-1/3}. \] (4.39)

For any $\delta > 0$, we can define τ_δ by
\[\hat{\tau}_\delta = \inf \{ t \geq 0 : \hat{I}_E(t) \leq \delta n \}. \] (4.40)

Let
\[\hat{Y}(t) := (\hat{I}(t), \hat{I}_E(t)); \] (4.41)
\[\hat{y}(t) := (\hat{i}(t), \hat{i}_E(t)). \] (4.42)

In order to prove (1.17), we first prove the following weaker version of it:
\[\sup_{0 \leq t \leq t_* \wedge \hat{\tau}_\delta} \left| \frac{\hat{Y}(t)}{n} - \hat{y}(t) \right| \xrightarrow{\mathbb{P}} 0. \] (4.43)

Proof of (4.43). Similarly to the proof of (1.16), we divide the proof of (4.43) into two steps. For $t \geq \tau_\delta$ we set $\hat{Y}(t)$ to be $\hat{Y}(\tau_\delta)$. We first show that $\hat{Y}(t)/n$ is a tight sequence in $D[0, t_*]$. Since $\hat{Y}(0)/n \to \hat{y}(0)/n$, we know $\{\hat{Y}(0)/n\}_{n \geq 1}$ is a tight sequence of random variables. To establish tightness of $\{\hat{Y}(t)/n, 0 \leq t \leq t_*\}_{n \geq 1}$ we need to show that for any fixed $\epsilon_1, \epsilon_2 > 0$, there exist $\theta > 0$ and $n_0 > 0$ so that for $n \geq n_0$,
\[\mathbb{P} \left(\sup_{|t_1 - t_2| \leq \theta, t_1 < t_2 \leq t_* \wedge \tau_\delta} \left\| \frac{\hat{Y}(t_1)}{n} - \frac{\hat{Y}(t_2)}{n} \right\|_2 \geq \epsilon_2 \right) \leq \epsilon_1. \] (4.44)

Note that $\hat{Y}(t)/n$ is tight if and only if both $I(t)/n$ and $I_E(t)/n$ are tight. This follows from the inequality
\[\left\| \hat{Y}(t_2) - \hat{Y}(t_1) \right\|_2 = \left\| (\hat{I}(t_2) - \hat{I}(t_1), \hat{I}_E(t_2) - \hat{I}_E(t_1)) \right\|_2 \]
\[= \sqrt{\left| \hat{I}(t_2) - \hat{I}(t_1) \right|^2 + \left| \hat{I}_E(t_2) - \hat{I}_E(t_1) \right|^2} \]
\[\leq \left| \hat{I}(t_2) - \hat{I}(t_1) \right| + \left| \hat{I}_E(t_2) - \hat{I}_E(t_1) \right|. \] (4.45)

Assuming (4.44) for the moment, we show that the limit of $\hat{Y}(t)/n$ coincides with $\hat{y}(t)$. Similarly to the proof that the limit of $\hat{W}(t)/n$ coincides with $\hat{w}(t)$, we would like to show that any sequential limit point $\hat{y}(t)$ coincides with $\hat{y}(t)$, which is then necessarily unique. This is clearly the case since, after dividing both sides of (4.32), (4.35) by n and then sending n to ∞, we obtain that
\[\tilde{i}(t) = \hat{i}(0) - \int_0^t \frac{\gamma \hat{i}(u)}{\lambda \hat{i}_E(u)} \, du + t, \] (4.46)
\[\tilde{i}_E(t) = \hat{i}_E(0) + \int_0^t \left(\mu \hat{s}(u) + \frac{2 \hat{w}(u)}{\hat{s}(u)} - \frac{\hat{i}_E(u)}{\hat{s}(u)} + \frac{\omega \alpha}{\lambda} \hat{i}(u) \right) \, du - \frac{\lambda + \omega + \gamma t}{\lambda}. \] (4.47)

For $t \leq t_*$, this equation has a unique solution $\tilde{y}(t) = \hat{y}(t)$, as proved in Theorem 1.2.
It remains to establish (4.44). Using (4.32) and (4.35),
\[
\frac{\hat{I}(t_2)}{n} - \frac{\hat{I}(t_1)}{n} = \int_{t_1}^{t_2} \left(1 - \frac{\gamma \hat{I}(u)}{\lambda \hat{I}(u)} \right) du + \frac{M_3(t_2) - M_3(t_1)}{n},
\]
and
\[
\frac{\hat{I}_E(t_2)}{n} - \frac{\hat{I}_E(t_1)}{n} = \int_{t_1}^{t_2} \left(\frac{\tilde{S}(u) - t_*}{2} \right) du + \frac{M_4(t_2) - M_4(t_1)}{n}.
\]

We define the event
\[
\Omega_{4.50} = \{ \tilde{S}(t) \geq \frac{\hat{s}(0) - t_*}{2}, \forall t \leq t_* \} \cap \{ \sup_{t \leq \tau \wedge 2} |M_3(t)| \leq n^{2/3} \} \cap \{ \sup_{t \leq \tau \wedge 2} |M_4(t)| \leq n^{2/3} \}.
\]

By (4.6), (4.34) and (4.39),
\[
\lim_{n \to \infty} \mathbb{P}(\Omega_{4.50}) = 1.
\]

On \(\Omega_{4.50}\) for \(t_1 < t_2 \leq \hat{\tau}_\delta \wedge t_*\),
\[
\left| \frac{\hat{I}(t_2)}{n} - \frac{\hat{I}(t_1)}{n} \right| \leq (t_2 - t_1) \left(1 + \frac{2\gamma}{\lambda \hat{S}(0)} \right) + \frac{2n^{2/3}}{n} \leq C(t_2 - t_1) + 2n^{-1/3},
\]
and
\[
\frac{\hat{I}_E(t_2)}{n} - \frac{\hat{I}_E(t_1)}{n} \leq (t_2 - t_1) \left(\mu + \frac{4\mu}{\hat{s}(0) - t_*} + \frac{4\mu}{\hat{s}(0) - t_*} + \frac{\omega \alpha}{\lambda} + \frac{\lambda + \omega + \lambda}{\lambda} \right) + \frac{2n^{2/3}}{n}
\]
\[
\leq C(t_2 - t_1) + 2n^{-1/3}.
\]

Equation (4.44) now follows from (4.45), (4.52) and (4.53). This also completes the proof of (4.43). \(\square\)

Having proved the weaker version (4.43), we now turn to the original version (1.17). We need the following two lemmas to prepare for its proof.

Lemma 4.1. Consider the case of positive initial condition. For any \(\epsilon > 0\), there exists an \(\delta_* \in (0, \hat{i}_E(0))\), s.t. for any \(\delta < \delta_*\), we have
\[
\lim_{n \to \infty} \mathbb{P}(\hat{\tau}_\delta \geq t_* - \epsilon) = 1.
\]

Proof of Lemma 4.58. Observe that for any \(\epsilon > 0\), we have
\[
a := \inf_{0 \leq t \leq t_* - \epsilon} \hat{i}_E(t) > 0.
\]

We now set
\[
\delta < \delta_* := \min \left\{ \frac{a}{2}, \frac{\hat{i}_E(0)}{2} \right\}.
\]

Note that, if \(\hat{\tau}_\delta \leq t_* - \epsilon\), then
\[
\hat{\tau}_\delta \wedge t_* = \hat{\tau}_\delta.
\]
Hence by (4.43),
\[
\lim_{n \to \infty} \mathbb{P} \left(\hat{\tau}_\delta \leq t_* - \epsilon, \left| \frac{\hat{I}_E(\hat{\tau}_\delta)}{n} - \hat{i}_E(\hat{\tau}_\delta) \right| \geq \frac{a}{2} \right) = 0. \tag{4.57}
\]

On the other hand, we claim that the event
\[
\Omega_{\text{LS}} = \left\{ \hat{\tau}_\delta \leq t_* - \epsilon, \left| \frac{\hat{I}_E(\hat{\tau}_\delta)}{n} - \hat{i}_E(\hat{\tau}_\delta) \right| < \frac{a}{2} \right\} \tag{4.58}
\]
is empty. Indeed, by (4.55) and the definition of \(\hat{\tau}_\delta \) and \(\delta_* \), on \(\Omega_{\text{LS}} \),
\[
\frac{\hat{I}_E(\hat{\tau}_\delta)}{n} \leq \delta \leq \frac{a}{2} \quad \text{and} \quad \hat{i}_E(\hat{\tau}_\delta) \geq a. \tag{4.59}
\]
Consequently,
\[
\left| \frac{\hat{I}_E(\hat{\tau}_\delta)}{n} - \hat{i}_E(\hat{\tau}_\delta) \right| \geq a - \frac{a}{2} = \frac{a}{2}.
\]
Hence
\[
\Omega_{\text{LS}} = \emptyset. \tag{4.60}
\]
Combining (4.57) and (4.60),
\[
\lim_{n \to \infty} \mathbb{P} \left(\hat{\tau}_\delta \leq t_* - \epsilon \right) = \lim_{n \to \infty} \mathbb{P} \left(\hat{\tau}_\delta \leq t_* - \epsilon, \left| \frac{\hat{I}_E(\hat{\tau}_\delta)}{n} - \hat{i}_E(\hat{\tau}_\delta) \right| \geq \frac{a}{2} \right) = 0, \tag{4.61}
\]
as desired. \(\square \)

Lemma 4.2. We have the convergence
\[
\lim_{t \to t_*} \hat{i}(t) = 0. \tag{4.62}
\]

Proof of Lemma 4.2. By (1.11), we see that \(|\hat{i}_E(t)| \) is uniformly bounded. Hence there exists a constant \(C \) such that
\[
\hat{i}_E(t) \leq C(t_* - t) \tag{4.63}
\]
for all \(t \leq t_* \). Assuming \(\limsup_{t \to t_*} \hat{i}(t) = a > 0 \), then by the fact that \(\hat{i}'(t) \leq 1 \), there exists an \(\epsilon > 0 \) such that \(\hat{i}(t) > a/2 \) for \(t \in (t_* - \epsilon, t_*) \). By (1.10) and (4.63),
\[
\hat{i}(t) - \hat{i}(t_* - \epsilon) = - \int_{t_* - \epsilon}^{t} \frac{\hat{i}(u)}{\hat{i}_E(u)} \, du + (t - t_* + \epsilon) \leq - \int_{t_* - \epsilon}^{t} \frac{a/2}{C(t_* - u)} \, du + (t - t_* + \epsilon),
\]
which goes to \(-\infty\) as \(t \to t_* \). This is a contradiction. Hence we must have \(\lim_{t \to t_*} \hat{i}(t) = 0 \), proving Lemma 4.2. \(\square \)

We now come back to the proof of (1.17). Given any \(\epsilon' > 0 \), we need to prove
\[
\lim_{n \to \infty} \mathbb{P} \left(\sup_{0 \leq t \leq t_* \wedge \hat{\tau}} \left| \frac{\hat{I}(t)}{n} - \hat{i}(t) \right| > \epsilon' \right) = 0, \tag{4.64}
\]
and
\[
\lim_{n \to \infty} \mathbb{P} \left(\sup_{0 \leq t \leq t_* \wedge \hat{\tau}} \left| \frac{\hat{I}_E(t)}{n} - \hat{i}_E(t) \right| > \epsilon' \right) = 0. \tag{4.65}
\]
Proof. Given the $\epsilon' > 0$, we let $\epsilon > 0$ be some number to be determined. By Lemma 4.1, there exists a $\delta > 0$ such that the event $\{\hat{\tau}_\delta \geq t_* - \epsilon\}$ holds with high probability. On this event,

$$[0, t_* \wedge \hat{\tau}] = [0, t_* \wedge \hat{\tau}_\delta] \cup [t_* - \epsilon, t_* \wedge \hat{\tau}].$$

(4.66)

Consequently,

$$\sup_{0 \leq t \leq t_* \wedge \hat{\tau}} \left| \frac{\hat{I}(t)}{n} - \hat{i}(t) \right| \leq \sup_{0 \leq t \leq t_* \wedge \hat{\tau}_\delta} \left| \frac{\hat{I}(t)}{n} - \hat{i}(t) \right| + \text{Osc} \left[\frac{\hat{I}(t)}{n}, [t_* - \epsilon, t_* \wedge \hat{\tau}] \right]$$

(4.67)

Here Osc stands for the oscillation of a function, as defined in (4.21).

Our goal is to find an $\epsilon > 0$ so that

$$\lim_{n \to \infty} P(J_1 > \epsilon'/3) = \lim_{n \to \infty} P(J_2 > \epsilon'/3) = 0 \text{ and } J_3 \leq \epsilon'/3,$$

(4.68)

Once (4.68) is proved, (4.64) follows by the union bound. Equation (4.44) already implies $P(J_1 > \epsilon'/3) \to 0$ for any fixed ϵ, ϵ'. By Lemma 4.2, $J_3 \leq \epsilon'/3$ provided that ϵ is small enough. Therefore, to prove (4.68), it remains need to estimate J_2. For $t_1 < t_2 \leq t_* \wedge \hat{\tau}$,

$$\frac{\hat{I}(t_2)}{n} - \frac{\hat{I}(t_1)}{n} \leq \int_{t_1}^{t_2} \left(1 - \frac{\gamma \hat{I}(u)}{\lambda \hat{I}_E(u)} \right) du + \frac{2 \sup_{t \leq \hat{\tau}_\delta} |M_3(t)|}{n}.$$

(4.69)

Thus for any $t \in [t_* - \epsilon, t_* \wedge \hat{\tau}]$,

$$\frac{\hat{I}(t)}{n} \leq \epsilon + 2n^{-1} \sup_{t \leq \hat{\tau}_\delta} |M_3(t)| + \left| \frac{\hat{I}(t_* - \epsilon)}{n} \right|.$$

(4.70)

Repeating the derivation of (4.30), one can show that the right hand side of (4.70) is smaller than $\epsilon'/3$ with high probability for large n and small ϵ. This implies that $\lim_{n \to \infty} P(J_2 > \epsilon'/3) = 0$ for ϵ small and completes the proof of (4.64). Equation (4.65) can be proved similarly. Equation (1.17) now follows from (4.64) and (4.65).

□

For future references we record the following corollary of Lemma 4.1.

Corollary 1. Suppose $\hat{i}(0) > 0$ and $\hat{I}_E(0) > 0$. For any $\epsilon > 0$,

$$\lim_{n \to \infty} P(\hat{\tau} \geq t_* - \epsilon) = 1.$$

(4.71)

Consequently, for any $\epsilon > 0$, we have

$$P(T^{(n)} \geq (1 - \bar{s}(0) + t_* - \epsilon)n) = 1.$$

(4.72)

Proof of Corollary 7. From the definition of $\hat{\tau}$, we see that $\hat{\tau} \geq \hat{\tau}_\delta$, $\forall \delta > 0$.

By Lemma 4.1, for any $\epsilon > 0$, we can find a $\delta > 0$, so that
\[
\lim_{n \to \infty} \mathbb{P}(\hat{\tau}_\delta \geq t_* - \epsilon) = 1.
\]
It follows that
\[
\lim_{n \to \infty} \mathbb{P}(\hat{\tau} \geq t_* - \epsilon) \geq \lim_{n \to \infty} \mathbb{P}(\hat{\tau}_\delta \geq t_* - \epsilon) = 1.
\]
Equation (4.72) follows from the convergence of $\hat{S}(t) / n$ to $\text{hats}(t)(= \text{hats}(0) - t)$. Indeed, by (4.71) and (1.9) we have
\[
\mathbb{P}(\hat{S}(t_* - \epsilon) \leq \hat{s}(t_* - \epsilon) + \epsilon, \hat{\tau} > t_* - \epsilon) = 1.
\] (4.73)
Since
\[
\hat{s}(t_* - \epsilon) + \epsilon = \hat{s}(0) - (t_* - \epsilon) + \epsilon = \hat{s}(0) - t_* + 2\epsilon, \text{ and } T^{(n)} = n - \hat{S}(\hat{\tau}) \geq n - \hat{S}(t_* - \epsilon),
\]
we obtain that
\[
\lim_{n \to \infty} \mathbb{P}(T^{(n)} \geq (1 - \hat{s}(0) + t_* - 2\epsilon)n) = 1.
\] (4.74)
Equation (4.72) then follows since $\epsilon > 0$ is arbitrary. \square

4.3. Proof of (1.17) for zero initial condition. Conditionally on the event that an outbreak occurs, we may assume that for some $\epsilon_0 > 0$, $T^{(n)} > 2\epsilon_0 n$. We claim that, with high probability, $\hat{\tau} \geq \epsilon_0$. Indeed, by (1.9),
\[
\lim_{n \to \infty} \mathbb{P}(T^{(n)} > 2\epsilon_0 n, \hat{\tau} < \epsilon_0) \leq \lim_{n \to \infty} \mathbb{P}(\hat{S}(\hat{\tau}) < (1 - 2\epsilon)n, \hat{\tau} < \epsilon_0) \leq \lim_{n \to \infty} \mathbb{P}\left(\left|\hat{S}(\hat{\tau}) - (1 - \hat{\tau})n\right| \geq \epsilon n\right) = 0.
\] (4.75)
We need the following rough bounds for $\hat{I}(t)$ and $\hat{I}_E(t)$.

Lemma 4.3. By lowering the value of ϵ_0 if needed, we can find two constants C_{76} and C_{77} such that the following two equations hold for any $\epsilon > 0$.
\[
\lim_{n \to \infty} \mathbb{P}\left(\hat{I}(t) + \hat{I}_E(t) \leq (C_{\text{76}} + \epsilon)n, \forall t \leq \epsilon_0 \wedge \hat{\tau}\right) = 1.
\] (4.76)
\[
\lim_{n \to \infty} \mathbb{P}\left(\hat{I}_E(t) \geq (C_{\text{77}} - \epsilon)n, \forall t \leq \epsilon_0 \wedge \hat{\tau}\right) = 1.
\] (4.77)

Proof. Define the events
\[
\Omega_{\text{78}} = \left\{ \sup_{0 \leq t \leq 2\wedge \hat{\tau}} \left(\lvert M_3(t)\rvert + \lvert M_4(t)\rvert\right) \leq \epsilon n / 4 \right\},
\] (4.78)
and
\[
\Omega_{\text{79}} = \left\{ \hat{S}(t) \geq (1 - \epsilon - t)n, \forall t \leq 1 \wedge \hat{\tau} \right\}.
\] (4.79)
Using (4.34), (4.39) and the assumption
\[
\frac{\hat{r}(0)}{n} \to \hat{r}(0) = 0, \quad \frac{\hat{I}(0)}{n} \to \hat{I}(0) = 0,
\]
we see that
\[
\lim_{n \to \infty} \mathbb{P}(\Omega_{\text{78}}) = \lim_{n \to \infty} \mathbb{P}(\Omega_{\text{79}}) = 1.
\]
Define
\[
\Omega_{\text{80}} = \Omega_{\text{78}} \cap \Omega_{\text{79}}
\] (4.80)
Then we have $\mathbb{P}(\Omega_{4.80}) \to 1$. On $\Omega_{4.80}$, using (4.32), we get

$$\hat{I}(t) \leq \hat{I}(0) + t + M_3(t) \leq t + en,$$

and

$$\hat{I}_E(t) \leq \hat{I}_E(0) + n \int_0^t \left(\mu + \frac{2 \hat{W}(u)}{\hat{S}(u)} \right) du + M_4(t)$$

$$\leq en + n \int_0^t \left(\mu + \frac{4\mu}{1-u-\epsilon} \right) du$$

$$\leq en + 9\mu nt,$$

provided that ϵ and t are both smaller than $1/4$. This proves (4.76). To show (4.77), note that

$$\hat{I}_E(t) \geq n \int_0^t \left(-\frac{\gamma}{\lambda} - \frac{\omega}{\lambda} - 1 + \mu\frac{\hat{S}(u) - 1}{n} - \frac{\hat{I}_E(u)}{\hat{S}(u)} \right) du + M_4(t).$$

(4.81)

On $\Omega_{4.80}$, $\hat{S}(u) \geq (1-\epsilon-t)n$. In addition, $\hat{I}_E(t) \leq (9\mu t + \epsilon)n$, as we have just shown. Hence, for sufficiently small ϵ and t,

$$\hat{I}_E(t) \geq n \left(\left(-\frac{\gamma + \omega + \lambda}{\lambda} + \mu - \mu \epsilon \right) t - \frac{\mu t^2}{2} - \int_0^t \frac{9\mu t + \epsilon}{1/2} du \right) - en$$

$$\geq n \left(-\frac{\gamma + \omega + \lambda}{\lambda} + \mu \right) t/2 - 2en,$$

which proves (4.77). \hfill \Box

Let ϵ_0 be small enough so that Lemma 4.3 holds. Define

$$\hat{\tau}_{\delta,\epsilon_0} := \inf \{ t \geq \epsilon_0 : \hat{I}_E(t) \leq \delta n \}.$$

We now prove the tightness of $\{ (\hat{I}(t)/n, \hat{I}_E(t)/n), t \leq \hat{\tau}_{\delta,\epsilon_0} \}$. To this end, we need to show that, for any fixed $\epsilon', \delta_1 > 0$, there exist $\theta > 0$ and $n_0 > 0$ so that for $n \geq n_0$,

$$\mathbb{P} \left(\sup_{|t_1 - t_2| \leq \theta, t_1 < t_2 \leq \hat{\tau}_{\delta,\epsilon_0}} \left| \frac{\hat{I}(t_1)}{n} - \frac{\hat{I}(t_2)}{n} \right| \geq \delta_1 \right) \leq \epsilon',$$

(4.83)

and

$$\mathbb{P} \left(\sup_{|t_1 - t_2| \leq \theta, t_1 < t_2 \leq \hat{\tau}_{\delta,\epsilon_0}} \left| \frac{\hat{I}_E(t_1)}{n} - \frac{\hat{I}_E(t_2)}{n} \right| \geq \delta_1 \right) \leq \epsilon'.$$

(4.84)

To prove (4.83), we assume that $\delta_1 < \min \{ \epsilon_0, C_{4.70} \}$ and take

$$\epsilon_1 = \theta_1 = \frac{\delta_1}{4G_{4.70}}.$$

(4.85)

We divide $[0, \hat{\tau}_{\delta,\epsilon_0}]$ into two sub-intervals: $B_1 = [0, \epsilon_1]$ and $B_2 = [\epsilon_1, \hat{\tau}_{\delta,\epsilon_0}]$. Observe that if $t_1 \in B_1$ and $|t_1 - t_2| \leq \theta$, then both t_1 and t_2 lie in the interval $[0, \epsilon_0]$. For $\epsilon = \delta_1/4$, we have

$$C_{4.70}(\epsilon_1 + \theta_1) + \epsilon = \frac{3\delta_1}{4}.$$

(4.86)
Using (4.76) (with $\epsilon = \delta_1/4$) and (4.80), we see that, for some n_1 large enough and all $n \geq n_1$,
\[
\mathbb{P} \left(\sup_{0 < t_2 - t_1 \leq \theta_1, t_1 \in B_1} \left| \frac{\hat{I}(t_1)}{n} - \frac{\hat{I}(t_2)}{n} \right| \geq \delta_1 \right) \leq \mathbb{P} \left(\sup_{t \leq \epsilon_1 + \theta_1} \frac{\hat{I}(t)}{n} \geq \frac{3\delta_1}{4} n \right) \leq \frac{\epsilon'}{2}. \tag{4.87}
\]
On the other hand, if both t_1 and t_2 are in the interval B_2, then
\[
\lim_{n \to \infty} \mathbb{P} \left(\hat{I}_E(t) \geq \min \left\{ \frac{\left| \hat{I}(t_1) - \hat{I}(t_2) \right|}{n}, \forall t \in (\epsilon_1, \hat{\tau}_{\delta, \epsilon_0}) | \hat{\tau} > \epsilon_0 \right\} \right) = 1. \tag{4.88}
\]
Indeed, by (4.77) with $\epsilon = C_{1.72} 1/2$,
\[
\lim_{n \to \infty} \mathbb{P} \left(\hat{I}_E(t) \geq (C_{1.72} - 1 - C_{1.72} 1/2) n, \forall \epsilon_1 \leq t \leq \epsilon_0 | \hat{\tau} > \epsilon_0 \right) = 1. \tag{4.89}
\]
Thus (4.88) follows from (4.89) and the definition of $\hat{\tau}_{\delta, \epsilon_0}$.

By repeating the proof of (4.44), one can show that (4.88) implies that the sequence
\[
\{ (\hat{I}/n, \hat{I}_E(t)/n), \epsilon_1 \leq t \leq \hat{\tau}_{\delta, \epsilon_0} \}_{n \geq 1}
\]
is a tight. Thus we can find some θ_2 and $n_2 > 0$ such that for all $n \geq n_2$,
\[
\mathbb{P} \left(\sup_{0 < t_2 - t_1 \leq \theta_2, t_2 \geq n^2} \left| \frac{\hat{I}(t_1)}{n} - \frac{\hat{I}(t_2)}{n} \right| \geq \delta_1 \right) \leq \frac{\epsilon'}{2}. \tag{4.90}
\]
Equation (4.83) now follows from (4.87), (4.90) and the union bound by setting
\[
\theta = \min \{ \theta_1, \theta_2 \} \quad \text{and} \quad n_0 = \max \{ n_1, n_2 \}.
\]
Equation (4.84) can be proved in the same way. Hence we have shown the tightness of the sequence
\[
\{ (\hat{I}(t)/n, \hat{I}_E(t)/n), 0 \leq t \leq \hat{\tau}_{\delta, \epsilon_0} \}.
\]

With the tightness established, we can proceed in the same way as in Section 4.2 to prove the uniform convergence of $(\hat{I}(t)/n, \hat{I}_E(t)/n)$ to $(\hat{i}(t), \hat{i}_E(t))$ for $t \leq t^* \wedge \hat{\tau}$. This completes the proof of (1.17) for the case of $\hat{\tau}(0) = \hat{I}_E(0) = 0$.

Remark 4. Using the same proofs one can show that Lemma 4.2 and Lemma 11 also hold for the case of zero initial condition (for Corollary 1 we need to condition on a large outbreak).

5. Final epidemic size of the SIR-ω model

In this section we prove Theorem 1.4. We only give a detailed proof for part (a), equation (1.18), since the proof for part (b) is identical. By Corollary 1 for any $\epsilon > 0$, with high probability $T(n) \geq (1 - \hat{S}(0) + t_*) - \epsilon n$. In order to prove Theorem 1.4 it remains to prove the other direction:
\[
\lim_{n \to \infty} \mathbb{P}(T(n) > (1 - \hat{S}(0) + t_* + \epsilon) n) = 0. \tag{5.1}
\]
Define the event
\[
\Omega_{t_*, \epsilon} := \{ \hat{\tau} > t_* + \epsilon \}.
\]
Using (1.9) and equality $T(n) = \hat{T}(n) = n - \hat{S}(\hat{\tau})$, in order to prove (5.1) it suffices to prove
\[
\lim_{n \to \infty} \mathbb{P}(\Omega_{t_*, \epsilon}) = 0. \tag{5.2}
\]
Indeed, (5.1) follows from (5.2), (1.13) and (1.16). For the rest of this section we fix a small $\epsilon > 0$. Our goal is to prove (5.2).
Using equation (4.32) of \hat{I}_E, for $t \geq t_*$,

$$\hat{I}_E(t) = \hat{I}_E(t_*) + \int_{t_*}^{t} n \left(-1 - \frac{\gamma}{\lambda} - \frac{\omega}{\lambda} + \frac{\mu}{n} \frac{S(u) - 1}{S(u)} + \frac{2\hat{W}(u)}{S(u)} \right) du + \int_{t_*}^{t} n \left(\omega \hat{I}(u) \frac{\hat{I}(u)}{\lambda} - \frac{\hat{I}_E(u)}{S(u)} \right) du + M_4(t) - M_4(t_*).$$ (5.3)

We also have, by (4.32), for $t \geq t_*$,

$$\hat{I}(t) = \hat{I}(t_*) + \int_{t_*}^{t} n \left(-\frac{\gamma}{\lambda} \hat{I}(u) + 1 \right) du + M_3(t) - M_3(t_*).$$ (5.4)

Define

$$F(t) = -1 - \frac{\gamma}{\lambda} - \frac{\omega}{\lambda} + \frac{\mu}{n} \hat{s}(t) + 2 \frac{\hat{w}(t)}{s(t)},$$

$$F_n(t) = -1 - \frac{\gamma}{\lambda} - \frac{\omega}{\lambda} + \frac{\hat{s}(t) - 1}{n} + \frac{2\hat{W}(t)}{S(t)}.$$ (5.5)

Clearly F is a continuous function of t. Given any $\delta > 0$, we can define an event

$$\Omega_{\text{step}}(\delta) := \{ |F_n(t) - F(t)| \leq \delta, \forall t \in [\hat{\tau} - n \wedge (t_* + \epsilon)] \}.$$ (5.6)

Using (1.16), for any $\delta > 0$,

$$\lim_{n \to \infty} \mathbb{P}(\Omega_{\text{step}}(\delta)) = 1.$$ (5.7)

We define a random function $E(t)$ by setting $E(t) = 0$ for $t \leq t_*$, and for $t \geq t_*$,

$$E(t) = \int_{t_*}^{t} n (F_n(u) - F(u)) du + \hat{I}_E(t_*) + \int_{t_*}^{t} n \left(\frac{\omega \hat{I}(u)}{\lambda} - \frac{\hat{I}_E(u)}{S(u)} \right) du + M_4(t) - M_4(t_*).$$ (5.8)

Then on the event Ω_{step}, for $t \geq t_*$,

$$\hat{I}_E(t) = \int_{t_*}^{t} F(u) du + E(t).$$ (5.9)

We claim that

$$F(t_*) \leq 0.$$ (5.10)

To see this, recall that that we have shown $\hat{\gamma}(t_*) = 0$ in Lemma 4.2. We also have $\hat{\gamma}_E(t_*) = 0$ by the definition of t_*. Thus

$$\hat{\gamma}'_E(t_*) = -1 - \frac{\gamma}{\lambda} + \hat{\mu}(t_*) + 2 \frac{\hat{w}(t_*)}{s(t_*)} - \frac{\omega}{\lambda} = F(t_*).$$ (5.11)

On the other hand

$$\hat{\gamma}'_E(t_*) = \lim_{t \to t_*} \frac{\hat{\gamma}(t) - \hat{\gamma}(t_*)}{t_* - t} \leq 0.$$ (5.12)

Equation (5.10) thus follows from (5.10) and (5.11).

We now divide the proof of (5.2) into two subsections, according to $F(t_*) < 0$ or $F(t_*) = 0$.

5.1. **Proof of (5.2)** for \(F(t_*) < 0 \). By the continuity of \(F \) around \(t_* \),

\[
F(t) \leq -\frac{3F(t_*)}{4}, \quad \forall t \in [t_*, t_* + \epsilon].
\] (5.12)

provided \(\epsilon \) is small. Define the event

\[
\Omega_{5.13} = \{ \hat{\tau} \leq t_* + \epsilon \} \cup \{ \hat{\tau} > t_* + \epsilon, \hat{I}(t) \leq \left(t - t_* - \frac{F(t_*) \lambda}{8\omega} \right) n, \forall t_* \leq t \leq \hat{\tau} \}.
\] (5.13)

By (4.34) and (4.32),

\[
\lim_{n \to \infty} \mathbb{P}(\Omega_{5.13}) = 1.
\] (5.14)

On \(\Omega_{5.13} \cap \{ \hat{\tau} \geq t_* + \epsilon \} \), we have

\[
\int_{t_*}^{t_* + \epsilon} \hat{I}(t) dt \leq \frac{\epsilon^2}{2} - \frac{F(t_*) \lambda}{8\omega} \epsilon.
\] (5.15)

We set

\[
\Omega_{5.16} = \{ \hat{\tau} \leq t_* + \epsilon \} \cup \{ \hat{\tau} > t_* + \epsilon, \left| \hat{I}_E(t_*) \right| \leq \frac{-F(t_*) \epsilon n}{8}, \sup_{t \leq 2 \wedge \hat{\tau}} |M_4(t)| \leq \frac{-F(t_*) \epsilon n}{8} \}.
\] (5.16)

By (1.17) (applied to \(t = t_* \)), the fact that \(\hat{I}_E(t_*) = 0 \) and (4.39),

\[
\lim_{n \to \infty} \mathbb{P}(\Omega_{5.16}) = 1.
\] (5.17)

On the event \(\Omega_{5.13} \cap \Omega_{5.14} \cap \Omega_{5.10} \cap (-F(t_*)/8) \cap \{ \hat{\tau} > t_* + \epsilon \} \), by (5.12) and (5.15),

\[
\hat{I}_E(t + \epsilon) \leq (t_* + \epsilon - t_*) \frac{3F(t_*) n}{4} + E(t_* + \epsilon)
\leq \frac{3\epsilon F(t_*) n}{4} - \frac{F(t_*) \epsilon n}{8} - \frac{E(t_*) \epsilon n}{8} + \frac{n \omega \alpha}{\lambda} \left(\frac{\epsilon^2}{2} - \frac{F(t_*) \lambda}{8\omega} \epsilon \right) - \frac{\epsilon F(t_*)}{8} - \frac{\epsilon F(t_*)}{8}
= n \left(\frac{F(t_*)}{8} \epsilon + \frac{\omega \alpha \epsilon^2}{2\lambda} \right),
\] (5.18)

which is smaller than 0 if \(\epsilon \) is small. Thus on \(\Omega_{5.13} \cap \Omega_{5.14} \cap \Omega_{5.10} \cap (-F(t_*)/8) \cap \{ \hat{\tau} > t_* + \epsilon \} \), we necessarily have \(\hat{\tau}^{(n)} \leq t_* + \epsilon \), which is a contradiction. Hence

\[
\Omega_{5.13} \cap \Omega_{5.14} \cap \Omega_{5.10} \cap (-F(t_*)/8) \cap \{ \hat{\tau} > t_* + \epsilon \} = \emptyset.
\] (5.19)

Combining (5.6), (5.19), (5.14) and (5.17), we get

\[
\lim_{n \to \infty} \mathbb{P}(\hat{\tau} > t_* + \epsilon) = 0,
\] (5.20)

as desired.
5.2. **Proof of** (5.2) **for** $F(t_*) = 0$. By (5.5) and the assumption $\lambda > \lambda_c$,

$$F'(t) = -\mu + \frac{2\omega \alpha}{\lambda} \left(1 - \log \frac{\tilde{s}(0)}{s(t)}\right) \leq -\mu + \frac{2\omega \alpha}{\lambda} < -\mu + \frac{2\omega \alpha}{\lambda_c}. \quad (5.21)$$

Recall that $\lambda_c = \frac{\gamma + \omega}{(\mu - 1)}$. Thus we have

$$-\mu + \frac{2\omega \alpha}{\lambda_c} = -\mu + \frac{2\omega \alpha (\mu - 1)}{\gamma + \omega} = \left(\frac{2\omega \alpha}{\gamma + \omega} - 1\right)\mu - \frac{2\omega \alpha}{\gamma + \omega} \quad (5.22)$$

If the condition (1.7) is satisfied, then either

$$\frac{2\omega \alpha}{\gamma + \omega} - 1 \leq \frac{2\omega \alpha}{\omega (2\alpha - 1) + \omega} - 1 = 0,$$

or

$$\frac{2\omega \alpha}{\gamma + \omega} - 1 > 0 \text{ and } \mu \leq \frac{2\omega \alpha}{\omega \alpha - \omega - \gamma}.$$

By (5.22), in both cases

$$-\mu + \frac{2\omega \alpha}{\lambda_c} \leq 0. \quad (5.23)$$

Hence we can set

$$C_{5.24} := -\left(-\mu + \frac{2\omega \alpha}{\lambda}\right) > 0. \quad (5.24)$$

It follows from (5.21) that, for $t \geq t_*$,

$$F(t) \leq -C_{5.24} (t - t_*) \quad (5.25)$$

Consequently, we have

$$\int_{t_*}^t F(u)du \leq -\int_{t_*}^t C_{5.24} (u - t_*)du = -\frac{C_{5.24}}{2} (t - t_*)^2. \quad (5.25)$$

Let ϵ_1 be some number to be determined and define the events

$$\Omega_{5.26} = \left\{ \sup_{0 \leq t \leq 1} |M_3(t)| \leq \epsilon_1 n \right\}, \quad (5.26)$$

and

$$\Omega_{5.27} = \{ \tilde{\tau} \leq t_* + \epsilon \} \cup \{ \tilde{\tau} > t_* + \epsilon, \tilde{T}(t) \leq (t - t_* + \epsilon_1)n, \forall t_* \leq t \leq \tilde{\tau} \}. \quad (5.27)$$

Similarly to (5.14),

$$\lim_{n \to \infty} P(\Omega_{5.26}) = \lim_{n \to \infty} P(\Omega_{5.27}) = 1. \quad (5.28)$$

Consider the event

$$\Omega_{5.29} = \left\{ \sup_{0 \leq t \leq 2\tilde{\tau}(n)} |M_4(t)| \leq \epsilon_1 n \right\} \cap \Omega_{5.26}(\epsilon_1) \cap \left(\{ \tilde{\tau} \leq t_* + \epsilon \} \cup \{ \tilde{\tau} > t_* + \epsilon, \tilde{T}_E(t_*) \leq \epsilon_1 n, \tilde{T}(t) \leq (t - t_* + \epsilon_1)n, \forall t_* \leq t \leq \tilde{\tau} \} \right) \quad (5.29)$$
By the fact that \(\hat{\tau}_E(t_*) = 0 \), (5.28), (5.6) (with the \(\delta \) there set to be \(\epsilon_1 \)) and (4.39),

\[
\lim_{n \to \infty} \mathbb{P}(\Omega_{5.29}) = 1.
\]

On \(\Omega_{5.29} \) using the definition of \(E(t) \) in (5.7),

\[
E(t) \leq \int_{t_*}^{t} (n\epsilon_1)du + \epsilon_1 n + \int_{t_*}^{t} n \frac{\omega \alpha}{\lambda} (u - t_*)du + 2\epsilon_1 n \\
\leq \left(\frac{\omega \alpha}{2\lambda} (t - t_*)^2 + \left(1 + \frac{\omega \alpha}{\lambda} \right) \epsilon_1 (t - t_*) + 3\epsilon_1 \right) n.
\]

(5.30)

If both \(\epsilon \) and \(\epsilon_1 \) are small enough, then

\[
\frac{\omega \alpha}{2\lambda} (t - t_*)^2 + \left(1 + \frac{\omega \alpha}{\lambda} \right) \epsilon_1 (t - t_*) \leq \frac{C_{5.24}}{4\omega \alpha} (t - t_*), \ \forall t_* \leq t \leq t_* + \epsilon.
\]

(5.31)

It follows from (5.30), (5.31), (5.8) and (5.25) that, on \(\Omega_{5.29} \) for \(t_* \leq t \leq t_* + \epsilon,

\[
\hat{I}_E(t) \leq E(t) \leq \frac{C_{5.24}}{4\omega \alpha} (t - t_*) n + 3\epsilon_1 n.
\]

(5.32)

Define

\[
\Omega_{5.33} := \Omega_{5.29} \cap \Omega_{5.29}
\]

(5.33)

Using (5.4) and (5.32), on \(\Omega_{5.33} \)

\[
0 \leq \hat{I}(t) \leq \int_{t_*}^{t} n \left(-\frac{\gamma}{\lambda} \frac{\hat{I}(u)}{\hat{I}_E(u)} + 1 \right) du + 3\epsilon_1 n \\
\leq n \left(-\frac{\gamma}{\lambda} \int_{t_*}^{t} \frac{\hat{I}(u)}{C_{5.24}(u - t_*)n/(4\omega \alpha) + 3\epsilon_1 n} du + t - t_* + 3\epsilon_1 \right).
\]

Hence we deduce that on \(\Omega_{5.33} \), for \(\epsilon_1 \) small enough,

\[
\int_{t_*}^{t} \hat{I}(u)du \leq \left(\frac{C_{5.24}}{4\omega \alpha} (t - t_*) + 3\epsilon_1 n \right) \int_{t_*}^{t} \frac{\hat{I}(u)}{C_{5.24}(u - t_*)/(4\omega \alpha) + 3\epsilon_1 n} du \\
\leq \left(\frac{C_{5.24}}{4\omega \alpha} (t - t_*) + 3\epsilon_1 n \right) \frac{\lambda}{\gamma} (t - t_* + 3\epsilon_1)n \\
\leq n \left(\frac{C_{5.24}}{4\omega \alpha} (t - t_*)^2 + \epsilon_1 \right).
\]

(5.34)

Apply (5.34) to (5.7), on \(\Omega_{5.33} \)

\[
\hat{I}_E(t) \leq \left(\int_{t_*}^{t} F(u)du + \frac{\omega \alpha}{\lambda} \left(n \frac{C_{5.24}}{4\omega \alpha} (t - t_*)^2 + \epsilon_1 n \right) + \epsilon_1 n(t - t_*) + 3\epsilon_1 n \right).
\]

(5.35)

Using (5.25),

\[
\hat{I}_E(t) \leq -\frac{C_{5.24}}{4} (t - t_*)^2 + \left(\frac{\omega \alpha}{\lambda} + 4 \right) \epsilon_1 n.
\]

(5.36)

Using (5.36), by choosing \(\epsilon_1 \) small enough so that

\[
\epsilon_1 < \frac{C_{5.24}}{4} \left(\frac{\omega \alpha}{\lambda} + 4 \right)^{-1} \epsilon^2,
\]

we can achieve \(\hat{I}_E(t_* + \epsilon) \leq 0 \) on \(\Omega_{5.33} \), which then implies that \(\hat{\tau} < t_* + \epsilon \) on this event. Since \(\mathbb{P}(\Omega_{5.33}) \to 1 \) as \(n \to \infty \), (5.2) follows. Hence we have completed the proof of (5.2) in
Case 2 \((F(t_\ast) = 0) \) and also the proof of part (a) of Theorem 1.4. As we mentioned in the beginning of this section, part (b) can be proved in the same way. We omit the details.

6. Continuity of Phase transitions of the SIR-\(\omega \) model

By Theorem 1.4, it suffices to prove that \(t_\ast \to 0 \) as \(\lambda \to \lambda_c = (\gamma + \omega)/(\mu - 1) \). Recall the definition of the function \(F(t) \) in (5.5). Using the expression of \(F \) we can write

\[
\frac{d\hat{i}}{dt} = -\gamma \frac{\hat{i}}{\lambda \hat{i}_E} + 1, \\
\frac{d\hat{i}_E}{dt} = F - \frac{i_E}{s} + \frac{\omega \alpha}{\lambda} \hat{i}.
\]

Using the equation for \(\hat{i}'(t) \) and the fact \(\hat{i}(0) = 0 \) (initially only one vertex is infected),

\[
\hat{i}(t) = -\int_0^t \frac{\gamma \hat{i}(u)}{\lambda \hat{i}_E(u)} du + t \geq 0.
\]

Hence we have, for \(t \leq t_\ast \),

\[
\int_0^t \frac{\hat{i}(u)}{\hat{i}_E(u)} du \leq \frac{\lambda}{\gamma} t.
\]

Since \(|\hat{i}_E| \) and \(|F'(t)| \) are uniformly bounded for all \(\lambda \) in a neighborhood of \(\lambda_c \) and \(t \leq t_\ast \), for some constant \(C \), \(\hat{i}_E(t) \leq Ct \) and \(F(t) \leq F(0) + Ct \). Using this fact together with (6.1) and (6.3), we see that for some constant \(C \)

\[
\hat{i}_E(t) \leq \int_0^t F(u) du + \int_0^t \frac{\omega \alpha}{\lambda} \hat{i}(u) du,
\]

\[
\leq \int_0^t (F(0) + Cu) du + \frac{\omega \alpha}{\lambda} \int_0^t \frac{\hat{i}(u)}{\hat{i}_E(u)} C du,
\]

\[
\leq F(0)t + C \hat{i}_E^2.
\]

Using the expression of \(F(t) \) and (5.21),

\[
F(0) = -\frac{1 + \gamma + \omega}{\lambda} + \mu,
\]

\[
F'(0) = -\mu + 2 \frac{\omega \alpha}{\lambda},
\]

\[
F''(t) = -\frac{2 \omega \alpha}{\lambda(1 - t)}.
\]

Note that \(F(0) \to 0 \) as \(\lambda \to \lambda_c \), while \(F''(t) \) is bounded from above by \(-2 \omega \alpha/\lambda \).

We now divide the proof of Theorem 1.1 into two cases.

6.1. Proofs of Case (1). Suppose either \(\omega(2\alpha - 1) \leq \gamma \) or \(\omega(2\alpha - 1) > \gamma \) and \(\mu < 2 \omega \alpha/(\omega(2\alpha - 1) - \gamma) \).

Then by (5.22),

\[
-\mu + \frac{2 \omega \alpha}{\lambda_c} = -\mu + \frac{2 \omega \alpha (\mu - 1)}{\gamma + \omega} < 0.
\]
By (6.5) and (5.22),
\[
\lim_{\lambda \to \lambda_c} F'(0) = -\mu + \frac{2\omega \alpha}{\lambda_c} < 0.
\] (6.6)

Hence there exists \(\epsilon_0, \delta_0 > 0\), such that for \(\lambda - \lambda_c < \epsilon_0\) and \(t < \delta_0\),
\[
F(t) \leq F(0) - C_{6.7} t^2
\] (6.7)

for some \(C_{6.7} > 0\). By (6.3), (6.4) and (6.7), for \(t \leq \delta_0\),
\[
\hat{i}_E(t) \leq \int_0^t F(u)du + \int_0^t \frac{\omega \alpha}{\lambda} \hat{i}(u)du
\]
\[
\leq \int_0^t (F(0) - C_{6.7} u^2)du + \frac{\omega \alpha}{\lambda} \int_0^t \hat{i}(u)(F(0)u + C_{6.3} u^2)du
\]
\[
\leq F(0)t - \frac{C_{6.7}}{2} t^2 + \frac{\omega \alpha}{\lambda} (F(0)t + C_{6.3} t^2) \frac{\lambda}{\gamma} t
\]
\[
= F(0)t - \left(\frac{C_{6.7}}{2} - \frac{\omega \alpha}{\gamma} F(0)\right) t^2 + \frac{\omega \alpha}{\gamma} t^3,
\]

where we have used \(\hat{i}(u) = (\hat{i}(u)/\hat{i}_E(u))\hat{i}_E(u)\) in the second inequality. Note that
\[
\lim_{\lambda \to \lambda_c} F(0) = 0 \quad \text{and} \quad \lim_{\lambda \to \lambda_c} \left(\frac{C_{6.7}}{2} - \frac{\omega \alpha}{\gamma} F(0)\right) = \frac{C_{6.7}}{2} > 0.
\]

Hence there exist \(\delta_1 < \delta_0\) and \(\epsilon_1 < \epsilon_0\) such that for \(t \leq \delta_1\) and \(\lambda < \lambda_c + \epsilon_1\),
\[
\hat{i}_E(t) \leq F(0)t - \left(\frac{C_{6.7}}{2} - \frac{\omega \alpha}{\gamma} F(0)\right) t^2 + \frac{\omega \alpha}{\gamma} t^3 \leq F(0)t - \frac{C_{6.7}}{4} t^2.
\] (6.9)

From this we obtain that
\[
t_* = \inf \{0 < t \leq \tilde{s}(0) : \hat{i}_E(t) = 0\} \leq \frac{4F(0)}{C_{6.7}},
\]

which converges to 0 as \(\lambda \to \lambda_c\) since \(F(0) \to 0\).

6.2. **Proof of Case 2.** Suppose \(\omega(2\alpha - 1) > \gamma\) and \(\mu = 2\omega \alpha/(\omega(2\alpha - 1) - \gamma)\). By (6.5) and (5.22), we have
\[
F'(0) < 0 \quad \text{and} \quad \lim_{\lambda \to \lambda_c} F'(0) = -\mu + \frac{2\omega \alpha}{\lambda_c} = 0.
\] (6.10)

Hence by the third equation in (6.5),
\[
F(t) \leq F(0) - \frac{\omega \alpha}{\lambda} t^2.
\]

Using (6.4), for some constant \(C_{6.14}\) (independent of \(\lambda - \lambda_c\)),
\[
\hat{i}_E(t) \leq \int_0^t F(u)du + \int_0^t \frac{\omega \alpha}{\lambda} \hat{i}(u)du
\]
\[
\leq \int_0^t \left(F(0) - \frac{\omega \alpha}{\lambda} u^2\right)du + \frac{\omega \alpha}{\lambda} \int_0^t \frac{\hat{i}(u)}{\hat{i}_E(u)}(F(0)u + C_{6.3} u^2)du
\]
\[
\leq F(0)t + C_{6.14}(F(0)t^2 + t^3),
\] (6.11)
where we have again used \(\hat{i}(u) = (\hat{i}(u)/\hat{i}(E(u))\hat{i}(E(u)) \) in the second inequality. Substituting this bound into (6.11) again, we see that

\[
\hat{i}_E(t) \leq \int_0^t \left(F(0) - \frac{\omega \alpha}{\lambda} u^2 \right) du + \frac{\omega \alpha}{\gamma} t \left(F(0) t + C_6.11 \right) F(0) t^2 + t^3 \]

\[
= F(0) t + \frac{\omega \alpha}{\gamma} F(0) t^2 + \left(-\frac{\omega \alpha}{3 \lambda} + \frac{\omega \alpha}{\gamma} C_6.11 F(0) \right) t^3 + \frac{\omega \alpha}{\gamma} C_6.11 t^4.
\]

(6.12)

Since

\[
\lim_{\lambda \to \lambda_c} F(0) = 0 \quad \text{and} \quad \lim_{\lambda \to \lambda_c} \left(-\frac{\omega \alpha}{3 \lambda} + \frac{\omega \alpha}{\lambda} C_6.11 F(0) \right) = -\frac{\omega \alpha}{3 \lambda_c} < 0,
\]

we see that there exist \(\epsilon_2 > 0 \) and \(\delta_2 > 0 \) such that for \(\lambda < \lambda_c + \epsilon_2 \) and \(t \leq \delta_2 \),

\[
\hat{i}_E(t) \leq 2 F(0) t - \frac{\omega \alpha}{6 \lambda_c} t^3.
\]

(6.13)

It follows from (6.13) that

\[
t^* = \inf \left\{ 0 < t \leq \hat{s}(0) : \hat{i}_E(t) = 0 \right\} \leq \sqrt{\frac{12 F(0) \lambda_c}{\omega \alpha}},
\]

which converges to 0 as \(\lambda \to \lambda_c \) since \(F(0) \to 0 \).

Acknowledgements

We thank Rick Durrett for many helpful discussions. Wenze Chen and Yuewen Hou thank their advisor Yingchao Xie for encouraging them to join this project.

References

1. Frank Ball and Tom Britton, *Epidemics on networks with preventive rewiring*, Random Structures Algorithms 61 (2022), no. 2, 250–297. MR 4456028
2. Tom Britton, David Juher, and Joan Saldanha, *A network epidemic model with preventive rewiring: comparative analysis of the initial phase*, Bull. Math. Biol. 78 (2016), no. 12, 2427–2454. MR 3571300
3. R. W. R. Darling and J. R. Norris, *Differential equation approximations for Markov chains*, Probab. Surv. 5 (2008), 37–79. MR 2395153
4. Rick Durrett and Dong Yao, *Susceptible–infected epidemics on evolving graphs*, Electron. J. Probab. (To appear).
5. Jean Jacod and Albert N. Shiryaev, *Limit theorems for stochastic processes*, second ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, Springer-Verlag, Berlin, 2003. MR 1943877
6. Svante Janson, Malwina Luczak, and Peter Windridge, *Law of large numbers for the SIR epidemic on a random graph with given degrees*, Random Structures Algorithms 45 (2014), no. 4, 726–763, [Paging previously given as 724–761]. MR 3275704
7. Yufeng Jiang, Remy Kassem, Grayson York, Mathew Junge, and Rick Durrett, *SIR epidemics on evolving graphs*, arXiv preprint arXiv: 1901.06568 (2019).
8. Ka Yin Leung, Frank Ball, Sirl David, and Tom Britton, *Individual preventive social distancing during an epidemic may have negative population-level outcomes*, Journal of the Royal Society Interface 15 (2018), no. 145.
9. Peter Neal, *SIR epidemics on a Bernoulli random graph*, J. Appl. Probab. 40 (2003), no. 3, 779–782. MR 1993267
10. Hal L. Smith, *Monotone dynamical systems*, Mathematical Surveys and Monographs, vol. 41, American Mathematical Society, Providence, RI, 1995, An introduction to the theory of competitive and cooperative systems. MR 1319817
11. Remco van der Hofstad, *Random graphs and complex networks. Vol. 1*, Cambridge Series in Statistical and Probabilistic Mathematics, [43], Cambridge University Press, Cambridge, 2017. MR 3617364
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, China, 221116. Email address: 2020201067@jsnu.edu.cn

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, China, 221116. Email address: 2020201063@jsnu.edu.cn

Research Institute of Mathematics, Jiangsu Normal University, Xuzhou, China, 221116. Email address: wonderspiritfall@gmail.com