Biodegradation of harmful industrial dyes by an extra-cellular bacterial peroxidase

Neelam
Department of Biotech, HPU, Gyan path, Summer Hill, Shimla, India.
Shamsher S Kanwar
Department of Biotech, HPU, Gyan path, Summer Hill, Shimla, India.

Nowadays the treatment of environmental pollutants such as synthetic dyes (used in multiple industries such as paper, textile, food, plastic and pharmaceutical) has received much attention, especially for biotechnological treatments using both native and artificial enzymes. In this context, many enzymes have been reported to efficiently perform dye degradation. Peroxidase is one such enzyme, which causes dye degradation either by precipitation of chemical structure of aromatic dyes or by opening up their aromatic ring structure. In the present study an extra-cellular peroxidase extracted from a bacterial strain Bacillus sp. F31 JX984444.1 was tested for its capability to decolorize 16 different dyes used in various industries. Out of 16 different textile dyes the Bacillus sp. peroxidase efficiently decolorized 5 dyes out of which 4 triphenyl methane dyes (Basic Fuchsin (BF), Rhodamine B (RB), Coomassie Brilliant Blue (CBBG) and Malachite Green (MG) showed decolorization up to 95.5%, 70.8%, 70% and 40%, respectively, while a polymeric heterocyclic dye Methylene Blue (MB) showed 66.2% decolorization. These 5 dyes were studied to further enhance their decolorization by peroxidase after purification by optimizing different reaction conditions (temperature, time, enzyme concentration, buffer pH, dye concentration and effect of various salt ions, \(\text{H}_2\text{O}_2 \) concentration). This study indicates that the extracellular peroxidase (purified) from Bacillus sp. can be used as a useful tool for the treatment (degradation/decolorization) of industrial effluents contaminated with harmful industrial dyes.

Introduction

Industrial pollution refers especially to any contamination caused by industrial activities or industrial waste. Different industrial activities, whether it is the extraction of raw material, processing, manufacturing, or waste disposal, leads to environmental degradation. Industrial pollution is a big issue because, most harmful types of pollutants are produced by industries, making it a significant form of pollution on the planet. The effects of industrial pollution are vast, causing contamination, by release of toxic wastes into water, soil, air, and it is the cause of some of the most significant environmental disasters of all time. Water constitutes more than half of our planet, and it is getting polluted day by day due to different causes including human activities, one of the most limelight is industrial chemicals and wastes. The colored wastewater from various industries is the main cause of water pollution. Effects of industrial water pollution are very harmful to animals, plants, human beings as well as entire environment (Ong et al., 2011; Hynes et al., 2020; Arif, et. al., 2020). The ecological balance is continuously disturbing in whole world every year because, the production of industrial effluents is more than the production of industrial products. The food web/ food chain of organism also severely affected with the toxic pollutants released from industrial effluents in the environment (Sugano et al., 2009; Pal and Vimala, 2012; Ramachandran et al., 2013; Telke et al.,...
The various dyes used by several industries are the main cause of colored wastewater and the most problematic groups of pollutants. Harmful synthetic dyes are mostly used in textile, refining, oil, plastic, tannery, paper/pulp, electroplating and cosmetics production units, in the food and pharmaceutical industries (Huber, P., & Carré, 2012; Chanwun et al., 2013; Guerra et al., 2018; Dhanakhar et al., 2020). Synthetic dyes used in the textile industry represent a class of highly durable environmental pollutants and non-biodegradable, that are released in large amounts in the rivers and other nearby water reservoirs. These dyes are highly resistant to physical and chemical decomposition methods because colour durability is the most important goal of dying process (Zucca et al., 2012; Celebi et al., 2013; Blánquez et al., 2019). Industrial dyes or their degraded products drown in various sources of water cause many human health disorders such as skin diseases, ulcer, kidney damage, reproductive system diseases, disorders of liver, brain and nervous system (Husain, 2010). Dyes are characterized in specific groups on the basis of chemical structure of the chromophoric groups (Mathur and Kumar et al., 2013; Tian et al., 2016). Wastewater from various industries is estimated to contain approximately 15-25% of dyestuff that is used in the dyeing process, many of these dyes are recalcitrant compounds that is highly stable to heat cold, light and microbial attack, making them recalcitrant compounds that is highly stable to heat cold, light and microbial attack, making them less susceptible to chemical and physical decomposition methods. Most experiments on degradation of dyestuffs by microbial peroxidase have been carried out using either whole culture, crude or purified preparations of the peroxidase. Many kids of peroxidases decolorize or degrade the dyes by asymmetric cleavage of bonds present in chromatophoric groups in the dyes (Dawkar et al., 2009; Fujihara et al., 2010; Du et al., 2011; Renugadevi et al., 2011; Saladino et al., 2013; Chen & Li, 2016; Ledakowicz & Pażdzior, 2021). All the currently available techniques for dye removal, such as chemical oxidation, incineration, photo-catalysis or ozonation, reverse osmosis, adsorption are highly efficient but with some disadvantages or limitations (Telke et al., 2010). All these treatments may result in the production of toxic by-products, these are highly costly, limited applicability, high energy input etc. Due to the inherent drawbacks of physical, chemical and photo-chemical approaches (Singh et al., 2010) the use of biocatalytic or biological methods for the degradation/ decolorization and detoxification of wastewaters dyes has proved as a low cost alternative, nature friendly as well as the property of producing a less quantity of by-products (Franciscon et al., 2012; Qin et al., 2018).

A number of extracellular oxidative enzymes extracted from different sources such as bacteria, fungi, yeast as well as plants like laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase, cellobiose dehydrogenase and other oxidoreductases enzymes have been reported on the degradation of industrial dyes (Alam et al., 2010; Joshi et al., 2010; Kurade et al., 2011; Marco-Urrea and Reddy, 2012; Qin et al., 2018; Chang et al., 2021). The oxidoreductase enzymes like peroxidase and laccase have an advantage over other enzymes or chemical processes because of their ability to completely mineralize various dyes to carbon-dioxide and water during degradation/decolorization process (Faraco et al., 2007; Krishnaveni et al., 2011; Ilić Đurđić et al., 2021). Peroxidase is an oxidoreductase enzyme, the bound cofactor essential for its activity is haem. Peroxidase catalyzes the transfer of oxygen from the H2O2 to an appropriate substrate (like dyes) and consequently brings about oxidation of the substrate. Peroxidases can degrade/decolorize a wide range of industrial dyes because of their less specific nature, as well as are able to transform or mineralize many other organo-pollutants (Lauber et al., 2017; Morsy et al., 2020). Hence, the aim of the present research work was to study the biodegradation/bio-decolorization of various industrial dyes using an extra-cellular peroxidase purified from a bacterial isolate Bacillus sp. F31 JX984444.1 which was isolated from onion waste and crude oil-polluted soil samples. Further, the purified bacterial peroxidase showed different specificities and efficiencies toward different industrial dyes.
Material and Methods

Organism
The bacterial isolate Bacillus sp. F31 JX984444.1 was originally isolated by serial dilution plate technique (Dhingra and Sinclair, 1993) using agar medium, from onion waste soil samples from District Mandi (Himachal Pradesh, India).

Preparation of crude enzyme
The seed culture of Bacillus sp. F31 JX984444.1 was raised at 37°C (120 rpm) for 24 h. The 50 ml of production broth [containing beef extract (0.1%), glucose (1.4 %), yeast extract (0.2%), peptone (0.5%), NaCl (0.5), H2O2 (0.06%; v/v) with final pH of 7.5] was used to culture seed (10%, v/v). Then the culture seed was incubated for 2 days (48 h) under shaking conditions at 120 rpm at 37°C. Then the cell-free broth termed as crude peroxidase was extracted from harvesting incubated broth by centrifugation (10,000 X g for 20 min at 4°C; SIGMA 3K30, Germany).

Protein and peroxidase assay
Protein concentration was measured by a standard protein estimation method (Bradford, 1976) using Bovine serum albumin (BSA) as a standard. The assay of peroxidase in the broth or purified enzyme fraction was done by a colorimetric method using o-phenylenediamine (OPD) as a chromogen and H2O2 as a substrate (Bao et. al., 2020). The A492 values were recorded and activity of the peroxidase was determined.

Enzyme unit of peroxidase
The amount of enzyme needed to convert 1.0 µM of chromogenic substrate (OPD) to its product (2, 3 diamino-phenazine) per min at pH 5.2 and temperature 37°C is known as one unit (U) of peroxidase enzyme.

Purification
The crude bacterial peroxidase (extracellular) produced from bacterial strain Bacillus sp. F31 JX984444.1 was purified by ammonium sulphate precipitation, dialysis and DEAE-cellulose column chromatography (anion-exchange chromatography). SDS-PAGE was used to determine molecular mass of purified peroxidase.

Application of an extracellular peroxidase (purified) from Bacillus sp. F31 JX984444.1 in degradation of dyes

To test the ability of purified peroxidase to decolorize selected industrial dyes, a total of 16 different dyes namely, Bromophenol Blue (BPB), Reactive Yellow FN2R (RY), Congo Red (CR), Xylidine (XY), Methyl Orange (MO), Rhodamine B (RB), Erichrome Black Y (EB), Bismark Brown R (BBR), Basic Fuchsin (BF), Bismark brown Y (BBY), Direct Violet 21 (DV), Methylene-Blue (MB), Black RL (BRL), Coomassie Brilliant Blue G-250 (CBBG), Direct Black-154 (DB) and Malachite Green (MG) were studied using dye decolorization assay mixture containing 50 µl of different dyes (20 µM), 700 µl (0.1 M) phosphate citrate buffer (pH 5.2), 15 µl H2O2 and 0.75 U purified peroxidase to make the final volume 1 ml in different cuvettes. Decolorization of the test dye was assayed after incubation at 37°C for 30 min, by observing the absorbance (A) at the respective wavelength (λmax) of the dye and decolorization (%) was determined as follows:

\[
\text{Decolorization/Degradation } \% = \frac{\text{Initial absorbance} - \text{observed absorbance}}{\text{Initial absorbance}} \times 100
\]

Reaction conditions optimization for dye degradation by purified peroxidase from Bacillus sp. F31 JX984444.1
Out of 16 dyes tested for decolorization, only 5 dyes (BF, RB, MB, CBBG and MG) that were efficiently decolorized by bacterial peroxidase were selected for further studies. The purified peroxidase was used to evaluate the effect of various reaction conditions (or reaction parameters) such as temperature, reaction time, enzyme quantity, buffer system pH, effect of concentration of dye, effect of salt-ions on degradation of selected dyes and optimized conditions for dye degradation were ascertained.

Optimization of temperature (°C) for degradation of dye with purified peroxidase
To determine optimum temperature for degradation or decolorization of selected dyes (BF, RB, MB, CBBG and MG), the degradation reaction [1 ml reaction mixture containing 15 µl H2O2, 0.75 U purified peroxidase, 50 µl (20 µM) of different dyes and 700 µl (0.1 M) phosphate citrate buffer (pH 5.2)] was carried out at selected temperatures (25, 30, 35, 37, 40 and 45°C) in Eppendorf tubes in a
dry heating block for each dye, separately for 30 min. The decolorization was assayed after incubation of 30 min by measuring the absorbance at the respective wavelength of the dyes, and decolorization % was determined and analyzed.

Optimization of decolorization reaction time for degradation of dye with purified peroxidase

In order to determine the optimum reaction time for degradation or decolorization of few selected dyes (BF, RB and MB, CBBG, MG) the time of dye degradation assay [700 µl (0.1 M) phosphate citrate buffer (pH 5.2), 15 µl H$_2$O$_2$, 0.75 U purified peroxidase and 50 µl (20 µM) of different dyes in 1 ml reaction mixture] was varied from 0 to 40 min for each dye separately. After incubation decolorization (%) of each dye was calculated after incubation at 30°C for RB, 35°C for MB; 40°C for BF, CBBG and MG.

Optimization of peroxidase (biocatalyst) concentration for degradation of dye with purified peroxidase

Purified peroxidase concentration was varied from 0.70 U to 1.1 U in 1 ml final reaction volume to perform the dye degradation assay [700 µl (0.1 M) phosphate citrate buffer (pH 5.2), 15 µl H$_2$O$_2$ and 50 µl (20 µM) of selected dye in 1 ml reaction mixture]. The decolorization (%) of different dyes was calculated after 35 min of incubation in dry bath at 35°C for BF; 45 min at 35°C for MB, 40 min at 40°C for RB; 40 min at 30°C for CBBG and 40 min at 40°C for MG.

Optimization of (buffer system or reaction buffer) pH for degradation of dye with purified peroxidase

Effect of reaction buffer (phosphate citrate buffer) pH on the dye decolouration of selected dyes by purified bacterial peroxidase (extracellular) was studied at different buffer pH values (3-7) of 0.1 M phosphate citrate buffer in (1 ml; containing 15 µl H$_2$O$_2$, 50 µl (20 µM) of selected dye). The decolorization (%) of the dyes was calculated after incubation at 35°C for BF after 35 min, at 40°C for RB after 40 min, at 35°C for MB after 45 min, at 30°C for CBBG after 40 min and for MG after 40 min at 40°C.

Optimization of concentration (mg/ml) of selected dye for degradation of dye with purified peroxidase

The dye concentration of each selected dye was varied from 100 to 1000 mg/l [in dye decolouration assay mixture containing, 15 µl H$_2$O$_2$, 50 µl of different dyes, 700 µl (0.1 M) phosphate citrate buffer of optimised pH and optimized concentration purified peroxidase for each dye]. Optimized temperature, pH and time were used in decolorization assay for respective dyes and decolorization (%) was determined thereof.

Optimization of hydrogen peroxide concentration (mM) for degradation of dye with purified peroxidase

The concentration of H$_2$O$_2$ was varied from 0.25 mM to 3.50 mM in the decolorization reaction mixture [containing 700 µl (0.1 M) phosphate citrate buffer, 50 µl (20 µM) of selected dyes, and optimized concentration of purified peroxidase]. The decolorization (%) was determined in each case by using respective optimized parameters like temperature, pH and time for each of the dye in decolorization assay.

Effect of salt-ions and inhibitors for dye decolorization by purified peroxidase

The decolorization (%) of BF, RB, MB, CBBG and MG with purified peroxidase was determined in the presence of 1 mM (w/v) of selected salt ions and inhibitors (Li$^{+3}$, Mn$^{+2}$, Mg$^{+2}$, K$^{+2}$, Na$^{+}$, Hg$^{+2}$, Cu$^{+2}$, Fe$^{+2}$, Zn$^{+2}$, Ca$^{+2}$, EDTA, SDS, sodium azide and DTT) at optimized conditions. The mixture of enzyme and metal ion/ inhibitors in ratio 1: 1 was pre-incubated at 37°C in a dry heating bath for 30 minutes. Thereafter, the pre-incubated peroxidase was separately incubated with each of the selected dye in decolorization assay. Respective optimized temperature, pH and time for each of the dye were used in decolorization assay and decolorization (%) was determined in each case.

Results and Discussion

Purification

The purification of peroxidase from *Bacillus sp. F31 JX984444.1* was done by ammonium sulphate precipitation, dialysis and anion exchange chromatography (DEAE-cellulose). The protein analysed by the SDS-PAGE and the native-PAGE resulted in a single band of approximately 37 kDa and 95 kDa, respectively. The extracellular bacterial peroxidase was purified with a yield of 12.6 % up to 14.6-fold. The purified peroxidase was further used for dye decolorization experiments.
Application of an extracellular peroxidase (purified) from *Bacillus* sp. F31 JX984444.1 in degradation of industrial dyes

Screening of industrial dyes for decolorization by purified peroxidase

To test the ability of bacterial peroxidase to decolorize a few selected industrial dyes namely BPB, RY, CR, XY, MO, RB, EB, BBR, BF, BBY, DV, DB, MB, BRL, CBBG and MG, each of these dyes was subjected to treatment with purified peroxidase (0.75 U) at 37°C for 30 min in phosphate citrate buffer (pH 5.2). Out of these 16 textile dyes, the purified peroxidase efficiently decolorized 5 dyes, out of which 4 belonging to triphenyl methane group (BF, RB, CBBG and MG) showed decolorization up to (95.5, 70.8, 70.0 and 40.0%, respectively) while a polymeric heterocyclic dye (MB) showed 66.2% decolorization (Table 1 and Table 2). These 5 dyes were selected to further enhance their decolorization by purified peroxidase by optimizing reaction conditions (temperature, time, enzyme concentration, buffer pH, dye concentration and effect of various salt ions). Therefore, it could be stated that the peroxidase of *Bacillus* sp. F31 JX984444.1 has higher affinity for triphenyl methane dyes as substrates. It has been reported by the present studies that different types of peroxidase(s) decolorize specific type of dyes more efficiently as compared to others. The Triphenyl methane dyes were efficiently decolorized as compared to other groups of synthetic dyes by peroxidase from *Hevea brasiliensis* in a previous study (Chanwun et al., 2013; Blánquez et al., 2019). Many factors influence the decolourization of dyes by an enzyme such as their chemical structure, molecular weight (*M*ᵣ), redox potential, molecular weight, complexity of side chains and most importantly the binding site of enzyme (Pereira et al., 2018; Ardila-leal et al., 2021). The dye BF having a simple structure with small functional groups (NH₂; side chains) and a relatively lower *M*ᵣ (337.8 g/mol) was efficiently decolourized as compare to other dyes bearing more complex side chains. The side chains often account for stearic hindrance in binding to the enzyme. This can be possibly the reason for greater decolourization of the BF dye by purified peroxidase of *Bacillus* sp. F31. Many types of peroxidases purified from various microbial sources such as bacterial, fungi, yeast and plants etc. were found efficient to decolorize different industrial dyes (Fetyan et al., 2013; Telke et al., 2015, Pandey et al., 2016; Ilčić Đurđić et al., 2021; Guo et al., 2021). The MnP (manganese-independent peroxidase) purified from *Dictyostelium squalens* was also able to degrade selected azo dyes and anthraquinone dyes (Šušla et al., 2008). Peroxidase isolated from *Ganoderma cupreum* AG-1 (grown on decaying wood) was evaluated for its strong ability to degrade many azo dyes (Gahlout et al., 2013). A newly isolated and purified peroxidase from Sterigmatomyces halophilus (yeast strain), under the optimized conditions, showed a complete degradation efficiency on many azo dyes within 2 days (Al-Tohamy et al., 2021).

Reaction conditions optimization for dye degradation by purified peroxidase from *Bacillus* sp. F31 JX984444.1

Optimization of temperature (°C) for degradation of dye with purified peroxidase

Temperature of decolorization reaction system was varied from 30 to 45°C for decolorization of BF, RB, MB, CBBG and MG separately in the reaction mixture (1 ml) containing 0.75 U of purified peroxidase. The optimum temperature for each of these dye with purified peroxidase was 30°C for RB (72.1%), 35°C for MB (82.0%), 40°C for BF (92.1%), CBBG (90.2%) and MG (65.2%), respectively (Fig. 1). The recorded data showed that purified peroxidase performed efficient decolourisation of chosen common textile dyes at 30-40°C. The previous studies for dye degradation have proved that peroxidase works efficiently at a range of 25-45°C for different dyes, though in some cases free peroxidase retained its activity at a temperature as low as 5°C (Carmen et al., 2012). The decolourization of MG, a constant temperature as low as 5°C (Satapathy et al., 2011) and 30°C for the peroxidase of a fungal strain *Cunninghamellula elegans* was reported (Roushy et al., 2011). The decolourization of different dyes by peroxidase from *Trametes versicolor* was found to be effective at 30°C (Celebi et al., 2013). The peroxidase from *Pleurotus ostreatus* (Shin et al., 1998) efficiently decolorized triphenyl methane dyes as BB and MB.
Table 1: Screening of dyes for decolourization by purified peroxidase.

SN	Name of dye (1 mM)	Type of dye	Dye decolourization (%)
1	BPB Triphenyl methane	3.0	
2	RY	5.0	
3	CR Azo	-	
4	XY Dimethylaniline	-	
5	MO Azo	3.0	
6	RB Triphenyl methane	70.8	
7	EB Azo	-	
8	BBR Diaz	5.0	
9	BF Basic dye	95.5	
10	BBY Diaz	7.0	
11	DV Azo	-	
12	DB Azo	8.0	
13	MB Polymeric heterocyclic	66.2	
14	BRL Azo	4.0	
15	CBBG Triphenyl methane	70.0	
16	MG Triphenyl methane	40.0	

at 25°C, whereas BF was 93% decolorized at 30°C by peroxidase from *Aeromonas hydrophila* (Ogubue *et al*., 2012). The activity of different oxidative enzymes from different microbial sources such as manganese peroxidase, tyrosinase and laccase were evaluated for decolorization of Indanthrene Blue-RS and other industrial dyes, then the optimized temperature for decolorization reaction was found 37°C (Mohanty and Kumar, 2021). In general, peroxidase enzyme tends to lose its dye degradation capability beyond 45°C and retained only about half of its activity at 65°C (Yao *et al*., 2013). This is possibly due to the reason that the higher temperature results in thermal inactivation of proteins (enzymes), which also affects cell structures and activity of enzymes (Shah *et al*., 2013).

Optimization of decolorization reaction time for degradation of dye with purified peroxidase

Reaction time of decolorization for each of the selected dyes (BF, RB, MB, CBBG and MG) was varied from 0 to 45 min. The maximum decolorization by purified peroxidase was observed between 30-45 min for MB (82.1%, 30 min) at 35°C, BF (96.1%, 35 min) at 40°C, RB (76.2%, 40 min) at 30°C, CBBG (90.0%, 40 min) and MG (78.3%, 40 min) at 40°C (Fig. 2). The purified biocatalyst efficiently performed decolourization of selected dyes between 35-45 min at the chosen optimized temperature. The decolorization of the dye enhanced with the increase of reaction time but little increase in decolorization was noticed after 40 min for each dye. In another study, the optimum time for MB decolorization was also found 40 min (Satapathy *et al*., 2011). The effective and eco-friendly biodegradation of Reactive Black dye by peroxidase from *Sterigmatomyces halophilus* within effective reaction time of 1-2 hours has been reported recently. It was also proved effective for textile azo dye wastewater processing and detoxification (Al-Tohamy *et al*., 2020). The chemical structure of dye was reported to have a relation with degradation time. Generally, dyes with low molecular weights and simple structures exhibited higher rates of dye removal than high molecular weight dyes (Chen *et al*., 2003).

Optimization of enzyme (biocatalyst) concentration for degradation of dye with purified peroxidase

The concentration of enzyme (purified peroxidase) used in dye decolorization assay of 5 selected dyes (BF, RB, MB, CBBG and MG) was varied from 0.77 to 1.05 U for purified peroxidase in the 1 ml final volume of reaction mixture. The maximum decolorization was observed with 0.94 U of purified peroxidase for BF (95.1%) at 40°C in 35 min; 1.05 U for RB (82.2%) at 35°C in 40 min, MB (85.1%) at 35°C in 30 min and MG (78.2%) at 35°C in 40 min, and 1.01 U for CBBG (92.1%) at 40°C in 40 min (Fig. 3). The removal of an organic pollutant (that act as a substrate for enzyme catalysis) is dependent on the amount of biocatalyst added and the contact time between enzyme and substrate. Increasing enzyme concentration will speed up the enzymatic reaction, as long as there is substrate available to bind. When all the substrate is bound, there will be no increase in the speed of reaction, since there will be nothing for additional enzymes to bind to. In a previous study, an increase in concentration of the Soyabean peroxidase in reaction mixture from 15 U/ml to 85 U/ml resulted in slow increase in the dye degradation (16-64%) that appeared to be constant at optimized dye concentration 80 U/ml (Kalsoom *et al*., 2013).

Published studies showed that degradation of an
Table 2: Efficient degradation of selected dyes with purified peroxidase.

Dye	Structure of dye λ_{max}/ Molecular weight (g/mol)	Type of dye	Decolorization (%)
BF	$\text{NH}_2\text{C}_6\text{H}_4\text{NCl}$, $\lambda_{\text{max}}=545\text{nm}$, molecular weight = 337.85	Triphenyl methane dye	95.5
MB	$\text{CH}_3\text{N}\text{CH}_3\text{NCH}_3\text{CH}_3$, $\lambda_{\text{max}}=664\text{nm}$, molecular weight = 319.85	Triphenyl methane dye	66.2
RB	$\text{CH}_3\text{N}^+\text{Cl}^-\text{NCH}_3\text{CH}_3\text{CH}_3\text{CH}_3$, $\lambda_{\text{max}}=555\text{nm}$, molecular weight = 479.01	Polymeric/heterocyclic dye	70.8
CBBG	CTCl_{12}, $\lambda_{\text{max}}=610\text{nm}$, molecular weight = 854.02	Triphenyl methane dye	70.0
MG	$\text{NCH}_3\text{NCH}_3\text{NCH}_3\text{Cl}^-$, $\lambda_{\text{max}}=550\text{nm}$, molecular weight = 364	Triphenyl methane dye	40.0
Table 3: Effect of salt-ions and inhibitors on degradation of dyes with purified peroxidase

Metal ion/Inhibitor (1 mM)	Relative decolourization (%) at stated λ_{max}				
	BF (A₅₄₅)	RB (A₅₅₅)	MB (A₆₆₄)	CBBG (A₆₁₀)	MG (A₅₅₀)
None	100.0	100.0	100.0	100.0	100.0
Li⁺	97.8	88.4	97.6	98.5	95.0
Zn²⁺	100.5	101.2	101.1	101.1	101.2
Mg²⁺	101.6	101.2	100.5	101.6	102.5
K⁺	98.9	98.7	98.8	95.5	92.5
Na⁺	97.8	80.7	84.1	93.3	87.5
Hg²⁺	63.8	62.8	47.0	38.8	31.2
Ca²⁺	94.6	98.7	97.6	97.7	93.7
Cu²⁺	96.8	96.1	97.6	97.7	93.7
Fe²⁺	95.7	93.5	98.8	96.6	96.2
Mn²⁺	100.0	100.6	99.4	99.3	100.2
EDTA	88.9	80.9	78.9	74.5	72.0
SDS	62.5	56.5	60.7	58.4	54.2
Sodium azide	45.8	42.3	35.7	50.4	41.5
DTT	58.9	64.5	62.1	60.4	67.0

Azo dye required a much higher amount (15-times higher concentration) of enzyme than in the case of the anthraquinonic dyes (Mohan et al., 2005). Researchers found out that 3.3 μg/ml of peroxidase enzyme helped in the efficient removal of an anthraquinonic dye, the Reactive Blue 19 (Celebi et al., 2013).

Optimization of reaction buffer (phosphate citrate buffer) pH for degradation of dye with purified peroxidase

The optimum pH of the assay buffer system for efficient decolorization of each selected dye (BF, RB, MB, CBBG and MG) with purified peroxidase was determined by varying buffer pH (phosphate citrate buffer) from 3-7. The optimum pH of reaction buffer for each of the selected dyes was 5.0 for RB (81.2% at 35°C for 40 min with 1.05 U of purified peroxidase); pH 5.5 for BF (96.1% at 40°C for 35 min with 0.94 U peroxidase) and also for MB (83.5% at 35°C for 30 min with 1.05 U of peroxidase) and MG (78.3% at 40°C for 40 min with 1.05 U of peroxidase); pH 6.0 for CBBG (92.2% at 40°C for 40 min with 1.01 U of peroxidase) (Fig. 4). All the selected dyes were effectively decolorized in pH range 5.0-6.0 and at the higher values, the dyes showed less degradation. These results seem similar to what other researchers have reported (Marchis et al., 2011; Zhang et al., 2012; Tian et al., 2016) and suggested the usefulness of this enzyme to degrade industrial effluents or decolorize various industrial dyes which might be very acidic in nature. In another study, it was observed that strong to moderate acidic pH (pH 2-6) of buffer system is suitable for decolorization of most of the dyes including MG (Zucca et al., 2012). In the catalytic cycle of peroxidase all the reactions steps are pH dependent so enzyme was appeared to do decolorization best under acidic pH range (Kalsoom et al., 2011; Zhang et al., 2012; Tian et al., 2016). In addition, HRP was reported to catalyze degradation of Remazol Blue at a pH of 2.5 (Šekuljica et al., 2020). The reaction steps of the catalytic cycle of peroxidase were pH-dependent and appeared to work best at an acidic pH. On checking pH, optimum researchers have obtained a bell-i shaped curve with an optimum at pH 5-5.5 (Kinnunen et al., 2017). Another study showed the lignin-peroxidase to work at an optimum pH of 3, where it was used to degrade azure B dye (Silva et al., 2013).

Each enzyme has an optimum pH range. Changing the pH beyond of this range will slow enzyme activity. Extreme pH values can cause denaturation of enzymes. At native state an enzyme is a combination of both cationic and anionic groups at any given pH. These groups are part of the active site of an enzyme (Gomare et al. 2008). The rate of enzymatic reaction varies with the changes in the pH of the reaction medium because the ionic state of active site in enzyme changes hence, activity of enzyme is also changed (Hossain and
Anantharaman. 2006). Moreover, these organic dyes have different redox potentials, which may also affect the decolorization activity of the designed heme enzyme (Jenkins et al., 2021).

Optimization of selected dye concentration (mg/ml) for degradation of dye with purified peroxidase

In the present work, the maximum decolorization was found in case of BF (97.1%) at concentration 800 mg/l at 40°C in 35 min at pH 5.5, for RB (86.2%) at 600 mg/l at 30°C in 40 min at pH 5.0, MB (84.2%) at 35°C in 30 min at pH 5.5 and MG (78.1%) at 400 mg/l at 40°C in 40 min at pH 5.5 and CBBG (92.1%) at 40°C in 40 min with 200 mg/l at pH 6.0 (Fig. 5). In the present work, the maximum decolorization was found in case of dye BF (97.1%) The results were in accordance with a previous study, which showed that dye-degradation efficiency of enzyme peroxidase decreased with increasing concentration of dye, then eventually resulted in an inhibition effect, thus presenting less degradation (Boucherit et al., 2013). Other microbial peroxidase showed similar results where the degradation rate decreased with an increase in dye concentration (Silva et al., 2012). Enzyme-catalysed reactions were affected by the concentration of the substrate present in the aqueous phase (Robinson et al., 2015). It is appeared quite possible due to the reason that if the substrate concentration is slowly increased and the concentration of enzyme is kept constant the reaction rate would continue to increase until it reaches equilibrium state. At equilibrium, there will be maximum rate of reaction after that any further addition of the substrate would not increase the rate of reaction. The effect of dye concentration in reaction mixture is an important consideration for its application in industrial dye removal or decolorization. In effluent from textile printing house, the dye concentration is approximately 100-800 mg/l (Zhao and Hardin, 2007). According to a study, with increase in dye concentration, the decolorization efficiency of dye decreased and a marked inhibition was exhibited when the dye (Remazol Brilliant Blue R) concentrations were above 100 mg/l (Silva et al., 2013). The FTIR spectroscopy, NMR and GC-MS of several dye degradation products using purified peroxidase by Bacillus cereus, the results confirmed that decolorization of various industrial dyes was due to breakdown of dyes into unknown colourless products (Feyan et al., 2013).

Optimization of hydrogen peroxide concentration (mM) for degradation of dye with purified peroxidase

H₂O₂ reacts with the native enzyme (purified peroxidase from Bacillus sp. F31 JX984444.1) to form an enzyme intermediate, which easily combine with an aromatic compound such as dyes to carry out its oxidation and produce a free radical form. To figure out an appropriate concentration of H₂O₂ is definitely a key factor in obtaining a higher rate of dye degradation (Yao et al., 2013). In this regard, in present study experiments were done to decolouration/ degradation of the selected textile dyes (BF, RB, MB, CBBG and MG) the H₂O₂ concentration varied while keeping the other reaction conditions of degradation reaction constant. The concentration of H₂O₂ was varied from 0.25 mM to 3.5 mM in dye decolorization assay, the optimized concentration of H₂O₂ for decolorization of all selected dyes (BF, RB, MB, CBBG and MG) using purified peroxidase was found between 1 to 1.5 mM with a decolorization of 97.1% for BF at 40°C in 35 min, 86.2% for RB at 30°C in 40 min, 84.1% for MB at 35°C in 30 min, 92.3% for CBBG at 40°C in 40 min and 78.1% for MG at 40°C in 40 min (Fig. 6). Activity of Peroxidase is known to change considerably with change in the concentration of the presence of H₂O₂ (Gholami-Borujeni et al., 2011). Many harmful organic compounds including industrial dyes can be oxidised and degrade/ decolourize by using H₂O₂ alone or in conjunction with other materials. The addition of a small amount H₂O₂ in the reaction mixture may lead to the generation of free radicals like •OH that facilitates faster degradation of many organic compounds. On the other hand, higher concentration of H₂O₂ was detrimental to the reaction process, most likely due to the damage to the enzyme being a protein itself. So, it becomes necessary to optimize the H₂O₂ concentrations in the enzyme-based dye degradation approaches (Zhang et al., 2012). For the decolourization of MB by HRP, 0.15 mM H₂O₂ concentration in the reaction mixture was found to be the optimum (Satapathy et al., 2012). In case of Soya bean peroxidase, increase in H₂O₂ concentration in
Figure 1: Optimization of temperature (°C) for degradation of dye with purified peroxidase.

Figure 2: Optimization of reaction time for degradation of dye with purified peroxidase.

Figure 3: Optimization of biocatalyst (Enzyme) concentration for degradation of dye with purified peroxidase.

Figure 4: Optimization of reaction buffer (phosphate citrate buffer) pH for degradation of dye with purified peroxidase.

Figure 5: Optimization of dye concentration (mg/ml) for degradation of dye with purified peroxidase.

Figure 6: Optimization of hydrogen peroxide concentration (mM) for dye degradation with purified peroxidase.

reaction mixture led to an increased dye decolourization. At 64μM concentration of H$_2$O$_2$ maximum dye decolourisation was observed, any further increase in H$_2$O$_2$ concentration did not cause any additional effect (increase /decrease) on dye decolorization (Kalsoom et al., 2012).

Effect of salt-ions and inhibitors on dye decolorization by purified peroxidase

The decolorization (%) of BF, RB, MB, CBBG and MG with purified peroxidase was also determined in the presence of selected salt ions and inhibitors under optimized conditions. The decolorization of all the five dyes with purified peroxidase was inhibited by the presence of Hg$^{2+}$, EDTA, sodium azide, DTT and SDS. However, the decolorization was found to be slightly stimulated by purified peroxidase in the presence of Zn$^{2+}$ (BF 100.5%, RB 101.2%, MB 101.1%, CBBG 101.1% and MG 101.2%), Mg$^{2+}$ (BF 101.6%, RB 101.2%, MB 100.5%, CBBG 101.6% and MG 102.5%) and Mn$^{2+}$ (RB 100.6% and MG 100.2%), (Table 3). As in previous study, the decolourization was slightly stimulated for extracellular purified peroxidase in the presence of some bivalent metal ions such as
Mg2+, Zn2+ and Co2+, so the use of such ions could be considered in dye decolourization experiments as additives for efficient dye decolourization (Dawkar et al., 2009; Irshad and Asgher, 2011; Si and Cui, 2013). In another study, decolorization of MG by peroxidase from *Pseudomonas* sp. was observed to significantly enhanced in the presence of Mg2+ and Mn2+ (1-2 mM) ions (Du et al., 2011). Different industries like textile, food, pharmaceuticals, cosmetics etc., release a huge amount of the effluents daily in the form of wastewater into rivers and other water reservoirs causing serious health issues. That leads to enhanced biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of water and affect the ecosystem drastically. Therefore, it is very difficult to treat textile industry effluents because of their high BOD, COD, heat, color, pH and the presence of metal ions (Anjali et al., 2007). Treatment of various industrial effluents discharged with harmful compounds like synthetic dyes becomes necessary before their final discharge into the environment and different water sources. There are many conventional methods for the effective removal of dyes such as degradation of dye by anaerobic reaction, adsorption of dye by activated carbon, silica, functional polymer granules, biomaterials, nanofiltration, oxidation and precipitation by Fenton’s reagent, bleaching with chloride, ozone photo degradation and membrane filtration (Robinson et al., 2001). These methods have been outdated because of many drawbacks such as low efficiency, high cost and inapplicability to a wide variety of complex hazardous dyes. In recent years a number of studies have focused on some microorganisms capable of degrading and absorbing dyes from wastewater. A wide variety of microorganisms are reported to be capable of decolonization of dyes (Shah et al., 2013; Šekuljica et al., 2020; Chauhan & Kanwar 2020; Barathi et al., 2020). Many types of peroxidases purified from various sources were reported to decolorize different industrial dyes (Shin et al., 1998; Hong et al., 2012; Celebi et al., 2013, Salvachúa et al., 2013; Chen & Li, 2016). The MnP purified from *Dichomitus squalens* was also able to degrade selected azo and anthraquinone dyes (Šušla et al., 2008). A thermostable peroxidase from *Bacillus stearothermophilus* and peroxidase sourced from *Auricularia auricula-judae* has been found to be stable in decolourization of the many complex structured industrial dyes such as Reactive Black-5 and Reactive Blue-5 (Loprasert et al., 1988; Liers et al., 2010). Peroxidase isolated from *Ganoderma cupreum* AG-1 was evaluated for its ability to decolorize many industrial azo dyes Gahlout et al., (2013). In some another previous studies, bacterial and fungal peroxidase(s) have been found to be very efficient biological decolourization tools (Zucca et al., 2012; Saladino et al., 2013, Lauber et al., 2017, Morsy et al., 2020). The decolorization or degradation of industrial dyes by using biocatalysts or enzymes from various sources like bacteria, fungi, yeast and even plants is an eco-friendly and low-cost process. Biocatalytic methods of decolorization also produce a low quantity of by-products as compare to physical, chemical and photochemical approaches. Present results suggested that the extracellular peroxidase (purified) from *Bacillus* sp. F31 JX984444.1 was effective in discoloration of many common textile dyes. The purified bacterial peroxidase assisted dye-degradation parameter(s) optimization resulted in increased dye degradation. The optimized dye-degradation process was most successful for BF, where 97.1% of dye decolorization was achieved and minimum decolorization 78.1% was found in case of MG. The selected dyes for decolorization experiments i.e., BF, RB and MG are basic triphenyl methane dyes mostly used in textile, pharmaceutical and chemical industries; while RB is a cationic triphenylmethane dye used in textile industries for dying, wool, silk, nylon and cotton. Sometimes it is also used in medicine, paper, leather, food, cosmetics industries. On other hand, MB is a polymeric/ heterocyclic dye used in textile dyeing, pharmaceuticals, paper industry and also as a biological strain. The great potential of peroxidase produced by *Bacillus* sp. F31 could offer a cheaper and efficient alternative treatment of wastewaters contaminated heavily with industrial dyes. Further extension of work shall comprise the study of the combination of the extracted enzyme(s) with other established methods for wastewater management to see if enzyme alone or in combination with other methods may be helpful as an industrially efficient treatment procedure for efficient dye-degradation.
Conclusion
In present study the purified peroxidase from Bacillus sp. F31 was found to be highly effective in decolourisation/degradation of 5 different industrial dyes (BF, RB, CBBG, MG and MB). This approach will provide an effective application of peroxidase in managing industrial effluents containing dyes. Proper management of industrial effluents by using peroxidase can give environmental and economic benefits.

Acknowledgement
This research work was supported by the supporting fund of CSIR, Delhi, India under CSIR-NET-JRF/SC [File number 09/237(0139)/2010-EMR-I] awarded to (Neelam) one of the authors. This work would not have been possible without the financial and infrastructure support of Department of Biotechnology, Himachal Pradesh University, Shimla. Both the authors are thankful to the Department of Biotechnology, HPU, Shimla and CSIR, New Delhi. Both the authors have read and agreed to the published version. The authors declare no conflict of interest.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Alam, M., & Pathak, J. K. (2010). Rapid assessment of water quality index of Ramganga 318 River, Western Uttar Pradesh (India) using a computer programme. Nature and Science, 8(11), 1–8.

Al-Tohamy, R., Kenawy, E. R., Sun, J., & Ali, S. S. (2021). Performance of a newly isolated salt-tolerant yeast strain Sterigmatomyces halophilus SSA-1575 for azo dye decolorization and detoxification. Frontiers in Microbiology, 11, 1163. https://doi.org/10.3389/fmicb.2020.01163

Anjali, P., Poonam S., & Leela, I. (2007). Bacterial decolorization and degradation of azo dyes, International Biodeterioration and Biodegradation, 59, 73–84.

Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodriguez, A. M., & Quevedo-Hidalgo, B. E. (2021). A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules, 26(13), 3813. https://doi.org/10.3390/molecules26133813

Arif, A., Malik, M. F., Liaoat, S., Aslam, A., Mumtaz, K., Mahmood, Ch., Nisa, K., Khurshid, F., Arif, F., & Zaib, Kh. M. S. (2020). Water pollution and industries. Pure and Applied Biology, 9(4), 2214. https://doi.org/10.19045/bspab.2020.90237

Bao, J., Xu, S., Zhao, L., Peng, G., & Lu, H. (2020). Colorimetric and fluorescent dual-mode strategy for sensitive detection of sulfide: Target-induced horseradish peroxidase deactivation. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 236(236), 118296. https://doi.org/10.1016/j.saa.2020.118296

Barath, S., Aruljothi, K. N., Karthik, C., & Padikasam, I. A. (2020). Optimization for enhanced ecofriendly decolorization and detoxification of Reactive Blue160 textile dye by Bacillus subtilis. Biotechnology Reports, 28, e00522. http://creativecommons.org/licenses/by/4.0/. https://doi.org/10.1016/j.btre.2020.e00522

Blánquez, A., Rodriguez, J., Brissos, V., Mendes, S., Martins, L. O., Ball, A. S., Arias, M. E., & Hernández, M. (2019). Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi Journal of Biological Sciences, 26(5), 913–920. https://doi.org/10.1016/j.sjbs.2018.05.020

Bouchere, N., Abouseoud, M., & Adour, L. (2013). Degradation of direct azo dye by Cucurbita pepo free and immobilized peroxidase. Journal of Environmental Sciences (China), 25(6), 1235–1244. https://doi.org/10.1016/s1001-0742(12)60102-8

Bovaird, J. H., Ngo, T. T., & Lenhoff, H. M. (1982). Optimizing the o-phenylenediamine assay for horseradish peroxidase: Effects of phosphate and pH, substrate and enzyme concentrations, and stopping reagents. Clinical Chemistry, 28(12), 2423–2426. https://doi.org/10.1093/clinchem/28.12.2423

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999

Carmen, Z., & Daniela, S. (2012). Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents- A Critical Overview, organic pollutants, Ten years after the Stockholm convention - Environmental and Analytical Update, Dr.
Tomasz Puzyn (Ed.), ISBN: 978-953-307-917-2, InTech, Available from: http://www.intechopen.com/books/organic-pollutants-ten-years after-the-stockholm-convention-environmental-and-analytical-update/textile-organic-dyes characteristics polluting-effects-and-separation-elimination-procedures-from-in, 3, 55-86.

Celebi, M., Alitikatoglu, M., Mustaæeva Akdeste, Z., & Yildirim, H. (2013). Determination of decolorization properties of Reactive Blue 19 dye using Horseradish Peroxidase enzyme. *Turkish Journal of Biochemistry*, 38(2), 200–206. https://doi.org/10.5505/tjb.2013.96636

Chang, Y., Yang, D., Li, R., Wang, T., & Zhu, Y. (2021). Textile dye biodecolorization by manganese peroxidase: A review. *Molecules*, 26(15), 4403. https://doi.org/10.3390/molecules26154403

Chanwun, T., Muhamad, N., Chirapongsatonkul, N., & Churngchow, N. (2013). *Hevea brasiliensis* cell suspension peroxidase: Purification, characterization and application for dye decolorization. *Applied Microbiology and Biotechnology Express*, 3(1), 14. https://doi.org/10.1007/s12191-019-0855-3-14

Chauhan, V., & Kanwar, S. S. (2020). Impact of industrial dyes on the environment and bacterial peroxidase isolated from *Bacillus* sp. BTS-P5 as a possible solution. *Current Biotechnology*, 9(1), 45–56. https://doi.org/10.2174/2211550109666200303110926

Chen, C., & Li, T. (2016). Bacterial dye-decolorizing peroxidases: Biochemical properties and biotechnological opportunities. *Physical Sciences Reviews*, 1(9). https://doi.org/10.1515/psr-2016-0051

Chen, K. C., Wu, J. Y., Liou, D. J., & Hwang, S. C. J. (2003). Decolorization of the textile dyes by newly isolated bacterial strains. *Journal of Biotechnology*, 101(1), 57–68. https://doi.org/10.1016/s0168-1656(02)00303-6

Dawkar, V. V., Jadhav, U. U., Telke, A. A., & Govindwar, S. P. (2009). Peroxidase from *Bacillus* sp. VUS and its role in the decolorization of textile dyes. *Biotechnology and Bioprocess Engineering*, 14(3), 361–368. https://doi.org/10.1007/s12257-008-0242-x

Dhankhar, P., Dalal, V., Mahto, J. K., Gurjar, B. R., Tomar, S., Sharma, A. K., & Kumar, P. (2020). Characterization of dye-decolorizing peroxidase from *Bacillus subtilis*. *Archives of Biochemistry and Biophysics*, 693, 108590. https://doi.org/10.1016/j.abb.2020.108590

Dhingra, O. D., & Sinclair, J. B. (1993). *Basic Plant Pathology method*, 1993 (pp. 179–180). CBS Publishers.

Du, L. N., Wang, S., Li, G., Wang, B., Jia, X. M., Zhao, Y. H., & Chen, Y. L. (2011). Biodegradation of malachite green by *Pseudomonas* sp. strain DY1 under aerobic condition: Characteristics, degradation products, enzyme analysis and phytotoxicity. *Ecotoxicology*, 20(2), 438–446. https://doi.org/10.1007/s10646-011-0595-3

Faraco, V., Piscitelli, A., Sanna, G., & Giardina, P. (2007). Identification of a new member of the dye-decolorizing peroxidase family from *Pleurotus ostreatus*. *World Journal of Microbiology and Biotechnology*, 23(6), 889–893. https://doi.org/10.1007/s11274-006-9303-5

Fetyan, N. A., Ali, M. M., & Break, L. M. (2013). Biodegradation of a textile mono azo dye: Reactive violet 5 by a novel isolated bacterial strain. *Life Science Journal*, 10, 397–403.

Franciscon, E., Grossman, M. J., Paschoal, J. A. R., Reyes, F. G. R., & Durrant, L. R. (2012). Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated *Brevibacillus* sp. strain VN-15. *SpringerPlus*, 1(1), 37. https://doi.org/10.1186/2193-1801-1-37

Fujihara, S., Hatashita, M., Sakurai, A., & Sakakibara, M. (2010). Production of manganese peroxidase by white rot fungi from potato-processing wastewater: Role of amino acids on biosynthesis. *African Journal of Biotechnology*, 9(5), 725–731

Gahlout, M., Gupte, S., & Gupte, A. (2013). Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by *Ganoderma cupreum* AG-1. *Journal of Biotechnology*, 3(2), 143–152. https://doi.org/10.1007/s13205-012-0079-z

Gholami-Borujeni, F., Mahvi, A. H., Nasseri, S., Faramarzi, M. A., Nabizadeh, R., & Alimohammadi, M. (2011). Enzymatic treatment and detoxification of acid orange 7 from textile wastewater. *Applied Biochemistry and Biotechnology*, 165(5–6), 1274–1284. https://doi.org/10.1007/s12010-011-9345-5

Gomare, S. S., Jadhav, J. P., & Govindwar, S. P. (2008). Degradation of sulfonated azo dyes by the purified lignin peroxidase from *Brevibacillus laterosporus* MTCC 2298. *Biotechnology and Bioprocess Engineering*, 13(2), 136–143. https://doi.org/10.1007/s12257-008-0008-5

Guerra, E., Llompart, M., & Garcia-Jares, C. (2018). Analysis of dyes in cosmetics: Challenges and recent developments. *Cosmetics*, 5(3), 47. https://doi.org/10.3390/cosmetics5030047

Guo, W. J., Xu, J. K., Wu, S. T., Gao, S. Q., Wen, G. B., Tan, X., & Lin, Y. W. (2021). Design and engineering of an efficient peroxidase using myoglobin for dye decolorization and lignin bioconversion. *International Journal of Molecular Sciences*, 22(1). https://doi.org/10.3390/ijms22010413
Hong, Y., Dashtban, M., Chen, S., Song, R., & Qin, W. (2012). Enzyme production and lignin degradation by four basidiomycetous fungi in submerged fermentation of peat containing medium. *International Journal of Biology*, 4(1), 172. https://doi.org/10.5539/ijb.v4n1p172

Hossain, S. M., & Anantharaman, N. (2006). Activity enhancement of ligninolytic enzymes of *Trametes versicolor* with bagasse powder. *African Journal of Biotechnology*, 5(2), 189–194.

Huber, P., & Carré, B. (2012). Decolorization of process waters in deinking mills and similar applications: A review. *BioResources*, 7(1), 1366–1382.

Husain, Q. (2010). Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: A review. *Reviews in Environmental Science and Biotechnology*, 9(2), 117–140. https://doi.org/10.1007/s11157-009-9184-9

Hynes, N. R. J., Kumar, J. S., Kamya, H., Sujana, J. A. J., Al-Khashman, O. A., Kuslu, Y., Ene, A., & Suresh Kumar, B. (2020). Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector - A comprehensive review. *Journal of Cleaner Production*, 272. https://doi.org/10.1016/j.jclepro.2020.122636 PubMed: 122636

Ilić Đurđić, K., Ostafe, R., Prodanović, O., Đurđević Đelmaš, A., Popović, N., Fischer, R., Schillberg, S., & Prodanović, R. (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. *Frontiers of Environmental Science and Engineering*, 15(2), 1–10. https://doi.org/10.1007/s11783-020-1311-4

Irshad, M., & Asgher, M. (2011). Production and optimization of ligninolytic enzymes by white rot fungus *Schizophyllum commune* IBL-06 in solid state medium banana stalks. *African Journal of Biotechnology*, 10(79), 18234–18242.

Jenkins, J. M. X., Noble, C. E. M., Grayson, K. J., Mulholand, A. J., & Anderson, J. L. R. (2021). Substrate promiscuity of a de novo designed peroxidase. *Journal of Inorganic Biochemistry*, 217, 111370. https://doi.org/10.1016/j.jinorgbio.2021.111370

Joshi, S. M., Inamdar, S. A., Telke, A. A., Tamboli, D. P., & Govindwar, S. P. (2010). Exploring the potential of natural bacterial consortium to degrade mixture of dyes and textile effluent. *International Biodeterioration and Biodegradation*, 64(7), 622–628. https://doi.org/10.1016/j.ibiod.2010.07.001

Kalsoom, U., Ashraf, S. S., Meetani, M. A., Rauf, M. A., & Bhatti, H. N. (2012). Degradation and kinetics of H2O2 assisted photochemical oxidation of Remazol Turquoise Blue. *Chemical Engineering Journal*, 200–202, 373–379. https://doi.org/10.1016/j.cej.2012.06.058

Kalsoom, U., Ashraf, S. S., Meetani, M. A., Rauf, M. A., & Bhatti, H. N. (2013). Mechanistic study of a diazo dye degradation by Soybean peroxidase. *Chemistry Central Journal*, 7(1), 93. https://doi.org/10.1186/1752-153X-7-93

Kinnunen, A., Maji, J., Jarvinen, P., & Hatakka, A. (2017). Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. *Current Biotechnology*, 6(2), 105–115. https://doi.org/10.2174/2211550105666160330205138

Krishnaveni, M., & Kowasalya R. (2011). Characterization and decolorization of dye and textile effluent by laccase from *Pleurotus florida*-a white-rot fungi. *International Journal of Pharmacy and Biological Sciences*, 2(1), 117-123.

Kurade, M. B., Waghmode, T. R., & Govindwar, S. P. (2011). Preferential biodegradation of structurally dissimilar dyes from a mixture by *Brevibacillus laterosporus*. *Journal of Hazardous Materials*, 192(3), 1746–1755. https://doi.org/10.1016/j.jhazmat.2011.07.004

Lauber, C., Schwarz, T., Nguyen, Q. K., Lorenz, P., Lochnit, G., & Zorn, H. (2017). Identification, heterologous expression and characterization of a dye-decolorizing peroxidase of *Pleurotus sapidus*. *AMB Express*, 7(1), 164. https://doi.org/10.1186/s13568-017-0463-5

Ledakowicz, S., & Paździior, K. (2021). Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. *Molecules*, 26(4), 870. https://doi.org/10.3390/molecules26040870

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. *Biotechnology Research and Innovation*, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001

Liers, C., Bobeth, C., Pecyna, M., Ullrich, R., & Hofrichter, M. (2010). DyP-like peroxidases of the jelly fungus * Auricularia auricula-judae* oxidize nonphenolic lignin model compounds and high-redox potential dyes. *Applied Microbiology and Biotechnology*, 85(6), 1869–1879. https://doi.org/10.1007/s00253-009-1737-7

Loprasert, S., Negoro, S., & Okada, H. (1988). Thermostable peroxidase from *Bacillus steatorrhophilus*. *Journal of General Microbiology*, 134(7), 1971–1976. https://doi.org/10.1099/00221287-134-7-1971

Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. *Journal of Inorganic Biochemistry*, 105(2), 321–327. https://doi.org/10.1016/j.jinorgbio.2010.11.009
Marco-Urrea, E., & Reddy, C. A. (2012). Degradation of chloro-organic pollutants by white rot fungi. In *Environmental Science and Engineering*. Springer, (31–66). https://doi.org/10.1007/978-3-642-23789-8_2

Mathur, N., & Kumar, A. (2013). Decolorization of methyl red by an isolated *Pseudomonas putida* strain MR1. *African Journal of Microbiology Research*, 7(12), 983–989.

Mohan, S. V., Prasad, K. K., Rao, N. C., & Sarma, P. N. (2005). Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. *Chemosphere*, 58(8), 1097–1105. https://doi.org/10.1016/j.chemosphere.2004.09.070

Mohanty, S. S., & Kumar, A. (2021). Enhanced degradation of anthraquinone dyes by microbial monoculture and developed consortium through the production of specific enzymes. *Scientific Reports*, 11(1), 7678. https://doi.org/10.1038/s41598-021-87227-6

Morsy, S. A. G. Z., Ahmad Tajudin, A., Ali, M., Mohamad, S., & Shariff, F. M. (2020). Current development in decolorization of synthetic dyes by immobilized laccase-mini review. *Frontiers in microbiology*, 11, 2350. doi: 10.3389/fmicb.2020.572309

Ogube, C. J., & Sawidis, T. (2012). Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by *Aeromonas hydrophila* isolated from industrial effluent. *Biotechnology Research International*, PubMed: 967925. https://doi.org/10.4061/2011/967925

Ong, S. T., Keng, P. S., Lee, W. N., Ha, S. T., & Hung, Y. T. (2011). Dye waste treatment. *Water*, 3(1), 157–176. https://doi.org/10.3390/w3010157

Pal, S., & Vimala, Y. (2012). Bioremediation and decolorization of distillery effluent by novel microbial consortium. *European Journal of Experimental Biology*, 2(3), 496–504.

Pandey, V. P., Bhagat, P. K., Prajapati, R., Jaiswal, N., Singh, S., Awasthi, M., & Dwivedi, U. N. (2016). A defense associated peroxidase from lemon having dye decolorizing ability and offering resistance to heat, heavy metals and organic solvents. *Journal of Biochemistry & Analytical Biochemistry*, 5(291), 2161-1009. https://doi.org/10.4172/2161-1009.1000291

Pereira, A. R., Sedeno, G. C., Souza, J. C. P., & Crespihlo, F. N. (2018). Advances in enzyme bioelectrochemistry. *Anais da Academia Brasileira de Ciências*, 90(10) Suppl. 1, 825–857. https://doi.org/10.1590/0001-3765201820170514

Qin, X., Luo, H., Zhang, X., Yao, B., Ma, F., & Su, X. (2018). Dye-decolorizing peroxidases in *Irpes lacteus* combining the catalytic properties of heme peroxidases and laccase play important roles in ligninolytic system. *Biotechnology for Biofuels*, 11(1), 302. https://doi.org/10.1186/s13068-018-1303-9

Ramachandran, P., Sundharam, R., Palaniyappan, J., & Munusamy, A. P. (2013). Potential process implicated in bioremediation of textile effluents: A review. *Advances in Applied Science Research*, 4(1), 131–145.

Renuagdevi, R., Ayyappadas, M. P., Preethy, P. H., & Savetha, S. (2011). Isolation, screening and induction of mutation in strain for extra cellular lignin peroxidase producing bacteria from soil and its partial purification. *Journal of Research in Biology*, 4, 312–318.

Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. *Essays in Biochemistry*, 59, 1–41. https://doi.org/10.1042/bse0590001

Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative [Review]. *Bioresource Technology*, 77(3), 247–255. https://doi.org/10.1016/s0960-8524(00)00080-8

Roushdy, M. M., Abdel-Shakour, E. H., & El-Agamy, E. I. (2011). Biotechnological approach for lignin peroxidase (lip) production from agricultural wastes (rice husk) by *Cunninghamamella elegans*. *Journal of American Science*, 7, 6–13.

Saladino, R., Guazzaroni, M., Crestini, C., & Crucianelli, M. (2013). Dye degradation by layer-by-layer immobilised peroxidase/redox mediator systems. *ChemCatChem*, 5(6), 1407–1415. https://doi.org/10.1002/cctc.201200660

Salvachúa, D., Prieto, A., Mattinen, M. I., Tamminen, T., Litiä, T., Lille, M., Willför, S., Martínez, A. T., Martínez, M. J., & Faulds, C. B. (2013). Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking. *Enzyme and Microbial Technology*, 52(6–7), 303–311. https://doi.org/10.1016/j.enzmitec.2013.03.010

Satapathy, P. K., Randhawa, N. S., & Das, N. N. (2012). Oxidative decolorization of methylene blue by leached seadenodule residues generated by the reduction-roasting ammoniacal leaching process. *Environmental Technology*, 33(4–6), 515–522. https://doi.org/10.1080/09593330.2011.584567

Šekuljica, N. Ž, Prlainović, N. Ž, Stefanović, A. B., Žuža, M. G., Čičkarić, D. Z., Mijin, D. Ž, & Knežević-Jugović, Z. D. (2020). Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: Optimization and kinetic study. *The Scientific World Journal*, 2015, 371625. https://doi.org/10.1155/2015/371625

Shah, M. P. (2013). Microbial degradation of textile dye (Remazol Black B) by *Bacillus sp*. ELT. *Journal of Environment Conservation Journal*
Shin, K., Oh, I., & Kim, C. (1998). Production and purification of Remazol brilliant blue R decolourizing peroxidase from the culture filtrate of Pleurotus ostreatus. *Journal of Applied and Environmental Microbiology*, 63, 1744–1748.

Si, J., & Cui, B. K. (2013). A new fungal peroxidase with alkaline-tolerant, chloride-enhancing activity and dye decolorization capacity. *Journal of Molecular Catalysis B: Enzymatic*, 89, 9–14. https://doi.org/10.1016/j.molcatb.2012.12.002

Silva, M. C., Corrêa, A. D., Amorim, M. T. S. P., Parpot, P., Torres, J. A., & Chagas, P. M. B. (2012). Decolorization of the phthalocyanine dye reactive blue 21 by turnip peroxidase and assessment of its oxidation products. *Journal of Molecular Catalysis B: Enzymatic*, 77, 9–14. https://doi.org/10.1016/j.molcatb.2011.12.006

Singh, A. D., Sabaratnam, V., Abdullah, N., Annuar, M. S. M., & Ramachandran, K. B. (2010). Decolorisation of chemically different dyes by enzymes from spent compost of Pleurotus sajor-caju and their kinetics. *African Journal of Biotechnology*, 9(1), 41-45.

Sugano, Y., Matsushima, Y., Tsuchiya, K., Aoki, H., Hirai, M., & Shoda, M. (2009). Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris. *Biodegradation*, 20(3), 433–440. https://doi.org/10.1007/s10532-008-9234-y

Šušla, M., Novotný, C., Erbanová, P., & Svobodová, K. (2008). Implication of Dichomitus squalens manganese-dependent peroxidase in dye decolorization and cooperation of the enzyme with laccase. *Folia microbiologica*, 53(6), 479–485. https://doi.org/10.1007/s12223-008-0075-1

Telke, A. A., Joshi, S. M., Jadhav, S. U., Tamboli, D. P., & Govindwar, S. P. (2010). Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium *Pseudomonas* sp. SU-EBT. *Biodegradation*, 21(2), 283–296. https://doi.org/10.1007/s10532-009-9300-0

Telke, A. A., Kadam, A. A., & Govindwar, S. P. (2015). Bacterial enzymes and their role in decolorization of azo dyes. In *Environmental Science and Engineering*. Springer, (149–168). https://doi.org/10.1007/978-3-319-10942-8_7

Tian, J. H., Pourcher, A. M., Klingelschmitt, F., Le Roux, S., & Peu, P. (2016). Class P dye-decolorizing peroxidase gene: Degenerated primers design and phylogenetic analysis. *Journal of Microbiological Methods*, 130, 148–153. https://doi.org/10.1016/j.mimet.2016.09.016

Verma, R. K., Sankhla, M. S., Rathod, N. V., Sonone, S. S., Parihar, K., & Singh, G. K. (2021). Eradication of fatal textile industrial dyes by wastewater treatment. *Biointerface Research in Applied Chemistry*, 12(1), 567–587. https://doi.org/10.33263/BRIAC121.567587

Yao, J., Jia, R., Zheng, L., & Wang, B. (2013). Rapid decolorization of azo dyes by crude manganese peroxidase from Schizopyllum sp. F17 in solid-state fermentation. *Biotechnology and Bioprocess Engineering*, 18(5), 868–877. https://doi.org/10.1007/s12257-013-0357-6

Zhang, J., Feng, M., Jiang, Y., Hu, M., Li, S., & Zhai, Q. (2012). Efficient decolorization/degradation of aqueous azo dyes using buffered H₂O₂ oxidation catalyzed by a dosage below ppm level of chloroperoxidase. *Chemical Engineering Journal*, 191, 236–242. https://doi.org/10.1016/j.cej.2012.03.009

Zhao, X., & Hardin, I. R. (2007). HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. *Dyes and Pigments*, 73(3), 322–325. https://doi.org/10.1016/j.dyepig.2005.11.014

Zucca, P., Rescigno, A., Pintus, M., Rinaldi, A. C., & Sanjust, E. (2012). Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions. *Chemistry Central Journal*, 6(1), 161. https://doi.org/10.1186/1752-153X-6-161

Publisher's Note: ASEA remains neutral with regard to jurisdictional claims in published maps and figures.