Panorama of the distal myopathies

Marco Savarese1,2, Jaakko Sarparanta1,2, Anna Vihola1,2,3, Per Harald Jonson1,2, Mridul Johari1,2, Salla Rusanen1,2, Peter Hackman1,2, Bjarne Udd1,2,4

1 Folkhälsan Research Center, Helsinki, Finland; 2 Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; 3 Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland; 4 Department of Neurology, Vaasa Central Hospital, Vaasa, Finland

Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia.

 Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases.

Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NL, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1.

The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.

Key words: distal myopathy, rimmed vacuoles, myofibrillar myopathy

Introduction

The term distal myopathy refers to a long list of genetic muscle diseases presenting at the onset with weakness of distal extremities, usually combined with progressive atrophy of the corresponding distal muscles. Other muscles, including proximal muscles and/or cardiac and respiratory muscles, can be affected at a later stage of the disease. The clinical phenotype is extremely variable, ranging from severe forms with earlier onset and loss of ambulation to very mild late adult onset forms. Other muscle
diseases (genetically determined or acquired) may present with a distal phenotype, making the diagnostic process more complex.

Although two patients with weakness in hands and in legs or feet were first described as distal myopathy by Gowers over 100 years ago \(^1\), only in 1998 the first genetic defect underlying a distal myopathy was identified \(^2\). Ten years ago, in 2010, only fourteen causative genes were known. In the last years, massive parallel sequencing has contributed to identify disease-causing variants in novel genes and to elucidate the first example of a di- genic mechanism causing a distal myopathy (Tab. I). At the same time, the number of causative variants, identified in large resequencing projects, has exponentially increased \(^3-7\). Interestingly, most currently known genes are also responsible for separate different clinical entities, confirming the extreme phenotypic divergence observed in the field of genetic myopathies \(^8\).

More advanced histopathological techniques and refined cell and molecular biology studies have resulted in a better understanding of the pathophysiology of distal myopathies. Clinical, histopathological, and imaging features of each form have been partly clarified, addressing the diagnosis, and supporting a proper interpretation in case of novel variants identified in previously known genes.

Adult – late onset distal myopathies

Welander distal myopathy (WDM) – TIA1

WDM was first described in several Swedish families in 1951 as an autosomal dominant late adult-onset (usually over 50 years) disease with a prominent early involvement of fingers and wrist extensors \(^9\). As the disease progresses, weakness involves also finger flexors, toe and ankle extensors. The disease course is usually slowly progressive, and patients remain ambulant. Histopathology features include rimmed vacuoles.

A missense variant (p.E384K) in TIA1 gene causing the disease was identified in 2013 \(^10\). TIA1 encodes an RNA-binding protein involved in the alternative splicing of specific pre-mRNAs \(^11-14\), and is a key molecule in stress granules, regulators of RNA-translation metabolism that show altered dynamics in WDM \(^10\).

Digenic SQSTM1 and TIA1 mediated distal myopathy

Patients with a Welander distal myopathy phenotype but negative for causative rare mutations in TIA1 were discovered to have instead a common polymorphism in the TIA1, which, with a population frequency of 1\%, could not be the cause of the disease. Further gene panel sequencing in these patients showed the presence of SQSTM1 mutations previously known to cause the Paget’s disease of the bone, a dominant disease with reduced penetrance \(^15\). Functional studies showed that the SQSTM1 gene product, p62, interferes with the same stress granule dynamics pathway as TIA1 explaining the background for the digenic mechanism \(^15\). This genetic combination of rare SQSTM1 causative variants and the common TIA1 polymorphism did not result in a Paget disease of the bone but caused the canonical Welander phenotype. On the other hand, a cohort of 50 patients with Paget disease of the bone carrying the same SQSTM1 mutations did not have the TIA1 polymorphism \(^15\).

Tibial muscular dystrophy (Udd myopathy) – the first human titinopathy

Tibial muscular dystrophy (TMD) or Udd myopathy was described in 1993 in Finnish patients \(^16\). Weakness in ankle dorsiflexion and atrophy of anterior lower leg muscles (often asymmetric) start after age of 35 or much later. Progression is slow and walking is usually preserved. Extensor digitorum brevis and hand muscles are normally spared. Serum CK is normal or mildly elevated and muscle imaging shows fatty degeneration in anterior tibial muscles and at later stage in all long toe extensors, hamstring and medial gastrocnemius muscles.

Muscle biopsy shows myopathic changes with acid phosphatase, ubiquitin, p62 and LC3 positive in the affected muscles, but in preserved muscles there is only a slight increase of internal nuclei.

In Finnish TMD patients, a common founder mutation (FINmaj) in the last exon of titin gene (TTN) was identified in 2002 \(^17\). FINmaj is a complex 11-bp insertion–deletion resulting in substitution of four amino acids without any frameshift and preserving the downstream amino acid sequence. Following the FINmaj identification, missense variants in the same exon (364) were also identified in non-Finnish patients \(^17-19\).

TTN gene encodes titin, the third filament system of the sarcomere \(^20\). Titin interacts with several important proteins, including calpain-3 that binds the C-terminal portion of titin \(^21,22\). Through a large number of alternative splicing events, TTN encodes for a large number of different transcripts, developmental-stage or tissue specific \(^23,24\). Reflecting the size and complexity of titin, causative variants result in allelic diseases affecting skeletal muscle, heart or both of them, referred to as ‘titinopathies’ \(^25,26\). Dominant titinopathies include the aforementioned TMD, and the hereditary myopathy with early respiratory failure (HMERF) caused by missense variants in exon 344 \(^17,27-29\). Recessive titinopathies include a wide spectrum of diseases with a prenatal, congenital, childhood or later onset \(^30-31\). A recessive form of early/juvenile onset recessive distal titinopathy is further
discussed below in this review. With the increasing number of reported patients, first insights on the genotype-phenotype correlation are achieved.

TTN variants are also associated with dilated and hypertrophic cardiomyopathy.

Vocal cord and pharyngeal distal myopathy – MATR3

First described in a large North American family, vocal cord and pharyngeal distal myopathy (VCPDM) is characterized by adult-onset (between 35 and 60 years) distal weakness and weakness of vocal cord and pharyngeal muscles. Limb weakness can be asymmetric and the phenotype is highly variable in terms of age of onset, progression and muscle weakness distribution. Most patients develop respiratory failure. CK levels are normal or mildly increased.
elevated. EMG shows myopathic changes and rimmed vacuoles are present in the biopsy. Muscle MRI shows a predominant involvement of the lower legs both anterior and posterior compartment and hamstrings in thighs.

The underlying re-occurring p.S85C mutation was identified in MATR3 gene. MATR3 encodes matrin-3, a protein located in the nuclear matrix where it regulates several processes related to gene expression, RNA splicing and export of RNA and nuclear proteins. Variants in MATR3 have also been identified in patients with amyotrophic lateral sclerosis (ALS).

Distal Actininopathy – ACTN2

Distal actininopathy is an autosomal dominant, adult onset distal myopathy starting usually with foot drop. The disease later progresses to proximal lower limb muscles while upper limbs remain relatively spared. Serum CK levels are mildly elevated and muscle biopsy shows rimmed vacuoles with some myofibrillar disarrays and undulation of the Z-disk on electron microscopy.

The underlying genetic defects in the four families reported so far are heterozygous missense variants in the ACTN2 gene. ACTN2 encodes alpha-actinin2, a structural molecule of the Z-disks that interacts with titin and acts a scaffold of many other Z-disk located proteins such as myotilin.

Variants in ACTN2 also cause congenital myopathy with structured cores and Z-line abnormalities. Moreover, dilated cardiomyopathy and hypertrophic cardiomyopathy have been associated with missense variants in ACTN2.

Distal Myopathy with sarcoplasmic bodies – MB

In 1980 Edström et al. published a Swedish family with this title. Only recently, the genetic cause of the disease was identified with one unique causative variant in Myoglobin (MB), reoccurring in several unrelated families. In these later studied families, the characteristic muscle pathology was evident but the clinical phenotype was more proximo-distal and not particularly distal.

Oculopharyngeal distal myopathy OPDM – CGG and GGC expansions

The peculiar combination of severe adult onset distal atrophies in limb muscles and facial weakness, ptosis and dysphagia can occur both in dominant and recessive families and in sporadic patients. In the studied patients, the muscle pathology is a rimmed vacuolar myopathy. In the two last years the cause of many Asian dominant families have been clarified as caused by triplet repeat expansions, both CGG and GGC, in three different genes NOTCH2NLC, LRP12 and GIPC1.

PLIN4 mutated distal myopathy – PLIN4

A large Italian family with an autosomal dominant adult-onset distal myopathy and histopathological features of rimmed vacuoles was first described in 2004. Linkage analysis suggested that the causative gene could have been localized in the 19p13.3 locus.

Recently, Ruggieri et al. identified the underlying genetic defect in the PLIN4 gene, encoding for perilipin-4. Thirty-one repeats of 99 nucleotides in exon 4 of PLIN4 encode the 31x33 amino acid amphipathic domain of perilipin-4. An expansion of the normal repeat to 40 x 99 bases, resulting in 297 (9 x 33) extra amino acids, has been identified in the affected members of the family.

Perilipin-4 is a member of the perilipin family, a group of proteins that coat the surface of lipid droplets. Perilipin-4 is highly expressed in skeletal muscle with a possible role in lipid metabolism. The identified repeat expansion in patients with PLIN4-related distal myopathy seems to cause a misfolding and leads to protein accumulation in vacuoles disrupting the myofibrillar organization.

VCP distal myopathy – VCP

Initially described by Palmio and colleagues in a large dominant Finnish family, VCP-related distal myopathy has an onset in mid-adulthood mainly affecting anterior leg muscles. After 25 years of disease, the patients became affected by a progressive frontotemporal dementia. None of the patients had signs of Paget disease of the bone. Serum CK levels are normal or slightly elevated. Myopathic changes with rimmed vacuoles are observed in the muscle biopsy. MRI shows degenerative changes of anterior lower leg muscles.

Although a clinical variability has been observed, the most common phenotype of pathogenic VCP variants is proximal myopathy with scapular winging, Paget disease and frontotemporal dementia (IBMPFD).

Myofibrillar distal myopathies

Distal myopathy with myotilin defect – MYOT

A late-onset distal myopathy has been associated with heterozygous variants in MYOT gene. The first symptoms, weakness of ankle dorsiflexion and/or calf muscles, occur after age 50 years but, despite late onset, the further progression can be rapid. Respiratory and cardiac muscles are spared.
Histopathological features are consistent with myofibrillar myopathy and include rimmed and non-rimmed vacuoles, and myofibrillar disorganization with myotilin accumulations. Muscle imaging shows that soleus is typically the first muscle affected followed by tibialis anterior and gastrocnemius medialis muscles.

The most common causative variants in MYOT are missense changes affecting serine and threonine amino acids in the serine rich domain. MYOT gene encodes myotilin, a key component of the Z-disc, directly binding F-actin. Some patients have been described as affected by a dominant limb-girdle muscular dystrophy (previously LGMD1A), but distal myopathy is the main phenotype. A proximal muscle involvement is only observed in later stages or in homozygosity for known dominant variants. The term ‘spheroid body myopathy’ was also used since the protein aggregates in some cases have the corresponding shape.

Late onset distal myopathy (Markesbery-Griggs, Zaspopathy) – LDB3

The dominant LDB3-related distal myopathy usually starts with ankle weakness after the age of 40 years with later involvement of proximal muscles. Cardiomyopathy can occur very late; facial and respiratory muscles are preserved. Muscle biopsy reveals myofibrillar myopathy with rimmed and non-rimmed vacuoles. Myofibrillar protein accumulations are similar with myotilinopathy and desminopathy.

LDB3 encodes the lim domain-binding 3 protein, also called Z-band alternatively spliced PDZ motif-containing protein (ZASP) that interacts with other Z-disk proteins. Hypertrophic and dilated cardiomyopathies (with or without left ventricular noncompaction) are allelic disorders.

Desminopathy – DES

Desmin-related distal myopathy is a myofibrillar myopathy with cytoplasmic accumulation of desmin in cardiac and skeletal muscles. The first family was described in 1943 long before the gene was known. Cardiomyopathy and cardiac conduction defects are frequent, and the weakness/atrophy involves both hands and lower legs with later spread to proximal muscles. MRI shows the early involvement of peroneal muscles followed by tibialis anterior, gastrocnemius and soleus muscles. CK is usually slightly elevated.

The first causative variants in DES were identified in 1998. DES encodes desmin, a protein of the intermediate filament connecting Z-band with the plasmalemma and the nucleus. As suggested by a recent study, desmin forms seeding-competent amyloid that is toxic to myofibers and disease-causing mutations enhance the amyloid formation. Most patients have a dominant disease with onset in early adulthood but a later onset is possible. Rare cases with a recessive, more severe, form have been reported. Dominant cardiomyopathy without skeletal muscle disease, scapuloperoneal and other phenotypes, due to the increasing number of causative variants identified, are also reported.

Alpha-B crystallin-mutated distal myopathy – CRYAB

In 1998, Vicart and colleagues identified the first causative variant in the CRYAB gene causing a myopathy with accumulation of aggregates of desmin. In 2003, Selcen et al described patients with a generalized proximal and distal myopathy affecting also the cardiac and respiratory function and carrying mutations in CRYAB. In 2010 and in 2012, two studies identified patients with CRYAB mutations and a distal adult-onset myofibrillar myopathy. CRYAB-related distal myopathy mainly involves the anterior part of the distal leg at the early stage and progresses with a milder proximal weakness. Cataracts are the hallmark and dysphagia, dysphonia, respiratory failure, and cardiomyopathy may be associated. Muscle MRI shows fatty degenerative changes in tibialis anterior, gastrocnemius medialis muscles and vastus muscles.

CRYAB encodes alpha-B-crystallin, also called HSPB5, a member of the small heat-shock protein family, a molecular chaperone that interacts with desmin in the assembly of intermediate filaments.

Causative CRYAB variants also cause a dominant dilated cardiomyopathy, congenital cataract (dominant and recessive) and a more severe, usually recessive myopathy (fetal infantile hypertonic myofibrillar myopathy).

Early adult onset distal myopathies

Miyoshi myopathy – DYSF

Miyoshi and colleagues first described patients in the sixties with early adult-onset weakness, myalgia and atrophy in calf muscles. Serum creatine kinase (CK) is highly elevated already in the early stages of the disease or even in presymptomatic patients. Muscle imaging shows marked involvement of posterior lower legs. Muscle biopsy shows myopathic changes with necrotic fibers in the calf muscles and inflammation is a common finding.

Dysferlin (DYSF) as causative gene with biallelic recessive mutations was identified in 1998. Dysferlin is a ubiquitous transmembrane protein with a high skeletal muscle expression. The protein most probably acts...
in calcium-mediated sarcolemmal fusion events and resealing 129-131. Dysferlin expression by immunostaining or western blot (even from blood leucocytes) is useful in the diagnostic process, although the protein can be also secondarily reduced 132,133.

Myositis myopathy and LGMDR2 Dysferlin-related (previously LGMD2B), one of the most common LGMD form in several countries 134,135, are allelic diseases with overlapping symptoms and signs 136,137. LGMD patients have a more proximal involvement at the onset but, after 20 years of disease progression, the two phenotypes usually merge as dysferlinopathies 138-140.

Recessive distal titinopathy – TTN

Some nonsense, small indels causing a frameshift or splice site variants in the last and second last exons of TTN, initially also thought to cause dominant TMD because of dominant-looking pedigrees, later proved to be recessive 141-145. The presence of second causative variants in trans explains the novel entity of early/juvenile onset recessive distal titinopathy, a more severe condition than the late onset TMD 141-143. In some families, multiple second causative variants segregating with the disease would mimic the presence of a dominant inheritance, making the diagnosis even more complex 141,142,146.

The complexity of TTN gene may result in elusive variants not identified on DNA by the traditional pipelines 147. Second tier tests, such as copy number variant (CNV) analysis and RNA sequencing, contribute to identify unrecognized pathogenic variants 148-152.

Distal myopathy with rimmed vacuoles (Nonaka or GNE myopathy) – GNE

Independently described by Nonaka et al. and by Argov and Yarom, the GNE distal myopathy is a rimmed vacuolar recessive myopathy with an early adult onset 153,154. It first affects the anterior compartment of lower legs and thigh hamstring muscles with sparing of the quadriceps, but the progression is rather severe, and half of the patients lose ambulation within 10 years. Serum creatine kinase is mildly elevated and muscle histopathology is characterized by rimmed vacuoles.

The causative gene (GNE) was identified in 2001 155 and, since then, patients have been reported worldwide. GNE encodes an epimerase-kinase enzyme involved in the sialic acid biosynthesis. Glycoproteins and glycolipids located in the membrane often undergo a sialic acid modification that seems to be crucial for their function 136. Nevertheless, in a recent study, no consistent major change in sialylation has been observed comparing patients and matched control samples, suggesting that the pathophysiology of the disease is still unclear 157.

More than 180 variants are currently known and founder mutations first reported from Middle East and Japan have been described in many populations 158-160. GNE is susceptible to Alu-mediated recombination, and copy number variants (CNV) have been reported suggesting the utility of second-tier tests in case of an uninformative sequencing analysis aiming at the identification of single nucleotide variants 164-167. Moreover, a vast clinical heterogeneity, only partly explained by the GNE genotype, is observed in families with GNE mutations 160,168-170.

Sialuria is an allelic dominant metabolic disease characterized by the accumulation of N-acetylneuraminic acid (NeuAc) due to missense variants in GNE 171.

Distal ABD-filaminopathy – FLNC

A large Australian family with a dominant, adult-onset, slowly progressive distal myopathy was described in 2005 by Williams and colleagues 172. In a second Italian family with otherwise similar phenotype reported by Duff et al. cardiac involvement was also present 173. Weakness of handgrip is the usual presentation followed by calf muscle plantar flexion weakness. The progression is slow, and patients remain ambulant. CK is normal or mildly elevated, and muscle MRI shows fatty replacement in posterior compartment of lower legs. Histopathology is unspecific myopathic without vacuoles or myofibrillar abnormalities.

Combining linkage data and resequencing of candidate genes in these two families, two different missense changes in the N-terminal actin-binding domain (ADB) of FLNC were identified 173. The FLNC gene encodes filamin, an actin ligand that plays an important role in mechanical stabilization, mechanosensation and intracellular signaling through a large network of interactors 174,175. Mutations in other parts of the gene may cause late onset myofibrillar myopathy with generalized weakness and cardiomyopathy 176-178. After the gene identification in 2011, novel FLNC causative variants have been identified, expanding the spectrum of FLNC-related myopathies 179-181.

Recent findings suggest a more complex genotype-phenotype correlation. A missense variant, p.M222V, in the N-terminal actin-binding domain, causing a distal myofibrillar myopathy, has been reported 182. Another missense change, p.C203Y, has been recently found to cause an upper limb distal myopathy with nemaline bodies 183.

DNAJB6 distal myopathy – DNAJB6

The disease was originally reported by Servidei and colleagues in a large Italian family with onset of ankle weakness between the second and sixth decades of life 184, and usually progressing to proximal muscles and upper
The disease is due to bi-allelic causative variants in the **ANO5** gene, encoding for anoctamin-5, a putative cytoplasmic calcium-activated chloride channel, with a possible role in membrane fusion and repair. The more common phenotype of bi-allelic variants in **ANO5** is late onset proximal (<i>LGMDR12</i>). Variants causing **ANO5**-related recessive anoctaminopathies mostly result in a reduced protein expression and missense changes likely destabilize the protein, causing its degradation. We still lack a clear genotype-phenotype correlation explaining the high intrafamilial and interfamilial clinical variability observed, also considering that female patients often have a milder disease than males.

**AYR1 mutated calf predominant distal myopathy – **<i>RYR1</i>

A very mild dominant distal myopathy with preferential fatty degeneration of medial gastrocnemius, clearly shown by muscle MRI, has been recently reported in one Italian and two Finnish families. Some patients exhibit toe walking in the childhood with spontaneous remission. In adulthood, patients complain of exercise myalgia in the calves, and show 5-10 fold elevated CK. No limitation of walking was present even in elderly patients. Muscle biopsy reveals core pathology. Three different **RYR1** mutations were identified in different parts of the gene, which encodes ryanodine receptor 1, a calcium release channel of the sarcoplasmic reticulum that, together with sarcosomal voltage-gated calcium channels (DHPR), is responsible for the excitation-contraction coupling.

Dominant and recessive mutations in the **RYR1** gene present with a multitude of phenotypes including malignant hyperthermia (MH) susceptibility and congenital central core disease (CCD), centronuclear myopathy, multiminicore myopathy, congenital fibre type disproportion, axonal myopathy, King-Denborough syndrome, atypical periodic paralysis and exertional rhabdomyolysis/myalgia. A childhood-onset distal myopathy presenting with hand stiffness and facial weakness has been associated to bi-allelic **RYR1** variants.

Early-childhood onset distal myopathies

**Early onset distal myopathy (Laing myopathy) – **<i>MYH7</i>

Laing myopathy was the first distal myopathy with established genetic linkage. The onset is in early child-
hood with the ankle dorsiflexor and toe extensor (hanging big toe) weakness and the disease has a slow progression. Severe forms develop scoliosis and involves proximal, neck and facial muscles. CK levels are normal or mildly elevated. The most consistent histopathology is hypertrophy of type 1 slow fibers, often combined with core/minicore lesions. Muscle MRI shows the involvement of anterior compartment lower leg muscles and, eventually, of the sartorius, with relative sparing of the lateral gastrocnemius muscle and rectus femoris.

In 2004 the causative variant was identified in the MYH7 gene encoding the beta heavy chain of myosin. Since then, a large number of causative variants in the tail of the protein were reported, with a large proportion (30%) of re-occurring de novo mutations masking the dominant effect of the variants. Causative variants in the head and neck domains at the N-terminal of the protein have been mainly associated with hypertrophic cardiomyopathy (without skeletal muscle involvement). Variants in the ultimate C-terminal region most often result in other skeletal myopathies (hyaline body myopathy) with or without cardiac involvement. Rare recessive forms of MYH7-related myopathy have been reported.

Early onset distal myopathies with nebulin defect – NEB

Bi-allelic, mainly missense, variants in NEB gene may result in an early-onset distal myopathy with a predominantly weakness of extensor muscles of feet and later hands. The progression is very slow and adult patients do not have major disability. Muscle imaging shows a selective fatty degeneration in the anterior tibial muscles, EMG is myopathic and CK is normal or mildly elevated. Scattered and grouped atrophic fibers (that can be misinterpreted as neurogenic changes) are detectable in the biopsy of affected muscle atrophic fibers (that can be misinterpreted as neurogenic changes) are detectable in the biopsy of affected muscle atrophic fibers (that can be misinterpreted as neurogenic changes) are detectable in the biopsy of affected muscle.

A large in-frame deletion, dominantly inherited in a three-generation family with a distal nemaline rod/cap myopathy, was recently described. The in-frame deletion results in a protein of reduced size with a dominant-negative effect. Patients present with foot drop in childhood and the disease progresses with the involvement of distal upper limbs. CK can be slightly elevated. EMG is myopathic and muscle MRI shows fatty degeneration of the anterior compartment lower leg muscles. A large heterozygous de novo deletion in young patient with asymmetric distal and facial weakness has just been identified confirming the dominant effect of an abnormal protein.

The 183-exon NEB gene encodes nebulin, a protein of 600-900 kDa that regulates the length of actin fila-

ments. Causative variants in NEB (mainly nonsense, out-of-frame indels or copy number variants, and splicing variants) are the most common cause of congenital nemaline myopathy. Additional allelic diseases are core rod myopathy, and fetal akinesia/lethal multiple pterygium syndrome.

Copy number variant (CNV) analysis and RNA sequencing are essential to identify possible elusive pathogenic NEB variants.

Early onset ADSSL distal myopathy – ADSSL

In 2016, Park and colleagues reported two unrelated Korean families with an autosomal recessive adolescent-onset distal myopathy with facial muscle weakness, mild CK elevation and rimmed vacuoles in the muscular biopsy. Two different variants in the ADSSL gene were identified by exome sequencing. The ADSSL gene encodes the muscle isoform of adenylosuccinate synthase, the enzyme catalysing the initial reaction in the conversion of inosine monophosphate (IMP) to adenosine monophosphate (AMP). Two following studies identified novel Korean and non-Korean (Turkish and Indian) patients, confirming the gene-disease association. Most patients presented with a distal myopathy with onset in childhood or adolescence progressing to involve weakness of proximal muscles in early adulthood. However, one patient, homozygous for a missense variant, shows a proximal myopathy with contractures and muscle atrophy, expanding the ADSSL-related spectrum of phenotypes.

Early onset distal myopathy with KLHL9 mutations – KLHL9

Cirak and colleagues described a German family with an autosomal distal weakness caused by a heterozygous variant in the KLHL9 gene. Despite extensive later studies, this gene has not been confirmed in any other myopathy families.

Other myopathies and dystrophies with distal weakness

Distal myopathy with caveolin defect – CAV3

In 2002, Tateyama and colleagues described a form of sporadic distal myopathy caused by an heterozygous missense variant in CAV3 gene. Since then, additional patients and further causative variants have been reported. Onset is in early adulthood, muscle atrophy and weakness are often limited to the small muscles of the hands and feet. Other features included calf hypertrophy, pes cavus, myalgias, slightly increased serum CK. EMG studies show a myopathic pattern and histological find-
ings include nonspecific myopathic changes. 278,279 \textit{CAV3} expression can be reduced.

Variants in \textit{CAV3} can also cause an isolated hyperkalemia or a rippling muscle disease 280-285 and even cardiac phenotypes (hypertrophic cardiomyopathy and long QT syndrome) 286,287. Some patients with \textit{CAV3} related myopathy have been previously described as LGMD1C patients.288

\textbf{DNM2 related distal myopathy – DNM2}

\textit{DNM2}-related myopathy is an autosomal dominant slowly progressive centronuclear myopathy characterized by the presence of centrally located nuclei in a several muscle fibres. 289 The clinical onset is usually in childhood or early adulthood. 290 The distal muscle weakness is marked although facial weakness is the clinical lead to diagnosis 291-300. More severe forms, clinically resembling myotubular myopathy, have been described.301 MRI studies shows fatty infiltration of the calf muscles.302 Electromyography may show a mix pattern with myopathic and neuropathic changes.

\textit{DNM2} encodes dynamin 2, a ubiquitously expressed GTPase that is involved in endocytosis and intracellular trafficking.303-306 Dynamin 2 interacts with actin and has an active role in regulating microtubule networks and in centrosome function.307 \textit{DNM2} mutations can also cause an intermediate or axonal CMT disease with and without cataracts.308 A lethal congenital syndrome associating akinesia, joint contractures, hypotonia, skeletal abnormalities, and brain and retinal haemorrhages has been observed in three consanguineous families with a missense variant (p.Phe379Val) in homozygosity.309

\section*{Conclusions}

Despite the huge developments in the last 20 years to uncover the genetic cause of distal myopathy, some families and patients still remain without a final diagnosis. The introduction of long read sequencing and RNA sequencing in clinical care and the constitution of large international consortia will most probably further increase the diagnostic rate.310-316

The reason for some genetic defects to have preference for the distal limb muscles in causing loss of muscle tissue is unclear and understanding the molecular background for this preference may also harbour insight for therapeutic opportunities.

Considering the crucial advancements in the last decade, we can look forward optimistically to the upcoming decade. We will most probably identify an increasing number of digenic diseases and of genetic and non-genetic modifiers influencing the phenotype. The next challenge is to translate the genetic and molecular advancements in clinics, thereby contributing to the development of a personalized medicine aiming at providing a tailored approach to each patient with a distal myopathy.317,318

\section*{References}

1. Gowers WR. A lecture on myopathy and a distal form: delivered at the National Hospital for the Paralysed and Epileptic. Br Med J 1902;2:89-92. https://doi.org/10.1136/bmj.2.2167.89

2. Liu J, Aoki M, Illa I, et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998;20:31-6. https://doi.org/10.1038/1682

3. Evila A, Arumilli M, Udd B, et al. Targeted next-generation sequencing assay for detection of mutations in primary myopathies. Neuromuscul Disord 2016;26:7-15. https://doi.org/10.1016/j.nmd.2015.10.003

4. Nallamilli BRR, Chakravorty S, Kesari A, et al. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann Clin Transl Neurol 2018;5:1574-87. https://doi.org/10.1002/acn3.649

5. Savarese M, Di Fruscio G, Torella A, et al. The genetic basis of undiagnosed muscular dystrophies and myopathies: results from 504 patients. Neurology 2016;86:71-6. https://doi.org/10.1212/WNL.0000000000002800

6. Ankala A, da Silva C, Guandalini F, et al. A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann Neurol 2015;77:206-14. https://doi.org/10.1002/ana.24303

7. Ghaou R, Cooper ST, Lek M, et al. Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: outcomes and lessons learned. JAMA Neurol 2015;72:1424-32. https://doi.org/10.1001/jamaneurol.2015.2274

8. Benarroch L, Bonne G, Rivier F, et al. The 2020 version of the...
gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord 2019;29:980-1018. https://doi.org/10.1016/j.nmd.2019.10.010

9 Welander L. Myopathy distalis tarda hereditaria; 249 examined cases in 72 pedigrees. Acta Med Scand 1951(Suppl):265:1-124 (https://www.ncbi.nlm.nih.gov/pubmed/14894174. Published 1951/01/01).

10 Hackman P, Sarparanta J, Lehtinen S, et al. Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann Neurol 2013;73:500-9. https://doi.org/10.1002/ana.23831

11 Klar J, Sobol M, Melberg A, et al. Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum Mut 2013;34:572-7. https://doi.org/10.1002/humu.22282

12 Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P. A polyadenylate-binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 1991;67:629-39. https://doi.org/10.1016/0092-8674(91)90536-8

13 Eisinger-Mathason TS, Andrade J, Groehler AL, et al. Codependent functions of RS2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. Mol Cell 2008;31:722-36. https://doi.org/10.1016/j.molcel.2008.06.025

14 Forch P, Puig O, Kedersha N, et al. The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol Cell 2000;6:1089-98. https://doi.org/10.1016/s0959-8049(00)00107-6

15 Lee Y, Jonson PH, Sarparanta J, et al. TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. J Clin Invest 2018;128:1164-77. https://doi.org/10.1172/JCI97103

16 Udd B, Hakamies L, Partanen J, et al. Tibial muscular dystrophy: late adult-onset distal myopathy in 66 Finnish patients. Arch Neurol 1993;50:604-8. https://doi.org/10.1001/archneur.1993.0054006004015

17 Hackman P, Vihola A, Haravuori H, et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTNA, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 2002;71:492-500. https://doi.org/10.1086/342380

18 Pollazzon M, Suominen T, Pentilla S, et al. The first Italian family with tibial muscular dystrophy caused by a novel titin mutation. J Neurol 2010;257:575-9. https://doi.org/10.1007/s00415-009-5372-3

19 Van den Bergh PYK, Bouquiaux O, Verellen C, et al. Tibial muscular dystrophy in a Belgian family. Ann Neurol 2003;54:248-51. https://doi.org/10.1002/ana.10647

20 Bang ML, Centner T, Forntoff F, et al. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 2001;89:1065-72. https://doi.org/10.1161/01.116.106572

21 Charton K, Sarparanta J, Vihola A, et al. CAPN3-mediated processing of C-terminal titin replaced by pathological cleavage in titinopathy. Hum Mol Genet 2015;24:3718-31. https://doi.org/10.1093/hmg/ddv116

22 Sarparanta J, Blandin G, Charton K, et al. Interactions with M-band titin and calpain 3 link myospryn (CMYSA) to tibial and limb-girdle muscular dystrophies. J Biol Che 2010;285:30304-15. https://doi.org/10.1074/jbc.M110.108720

23 Savarese M, Jonson PH, Huovinen S, et al. The complexity of titin splicing pattern in human adult skeletal muscles. Skelet Muscle 2018;8:11. https://doi.org/10.1186/s13395-018-0156-z

24 Uapinyoying P, Goecks J, Knoblauch SM, et al. A long-read RNA-seq approach to identify novel transcripts of very large genes. Genome Res 2020;30:885-97. https://doi.org/10.1101/gr.25903.119

25 Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing role of titin mutations in neuromuscular disorders. J Neuromuscul Dis 2016;3:293-308. https://doi.org/10.3233/JND-160158

26 Hackman P, Udd B, Bonnemann CG, et al. Titinopathy database C. 219th ENMC International Workshop Titinopathies International database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April-1 May 2016. Neuromuscul Disord 2017;27:396-407. https://doi.org/10.1016/j.nmd.2017.01.009

27 Palmio J, Evila A, Chapon F, et al. Hereditary myopathy with early respiratory failure: occurrence in various populations. J Neurol Neurosurg Psychiatry 2014;85:345-53. https://doi.org/10.1136/jnnp-2013-304965

28 Palmio J, Leonard-Louis S, Sacconi S, et al. Expanding the importance of HMERF titinopathy: new mutations and clinical aspects. J Neurol 2019;266:680-90. https://doi.org/10.1007/s00415-019-09187-2

29 Tasca G, Udd B. Hereditary myopathy with early respiratory failure (HMERF): still rare, but common enough. Neuromuscul Disord 2018;28:268-76. https://doi.org/10.1016/j.nmd.2017.12.002

30 Savarese M, Vihola A, Oates EC, et al. Genotype-phenotype correlations in recessive titinopathies. Genet Med 2020;Aug 11. https://doi.org/10.1038/s41436-020-0914-2

31 Oates EC, Jones KJ, Donkerovoort S, et al. Congenital titinopathy: comprehensive characterization and pathogenic insights. Ann Neurol 2018;83:1105-24. https://doi.org/10.1002/ana.25241

32 Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med 2012;366:619-28. https://doi.org/10.1056/NEJMoa1110186

33 Itoh-Satoh M, Hayashi T, Nishi H, et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 2002;291:385-93. https://doi.org/10.1016/s0006-291x(02)01116-7

34 Feit H, Silbergleit A, Schneider LB, et al. V ocal cord and pharyngeal weakness with autosomal dominant distal myopathy: clinical description and gene localization to 5q31. Am J Hum Genet 1998;63:1732-42. https://doi.org/10.1086/308930

35 Senderek J, Garvey SM, Krieger M, et al. Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrix 3. Am J Hum Genet 2009;84:511-8. https://doi.org/10.1016/j.ajhg.2009.03.006
Muller TJ, Kraya T, Stoltenburg-Didinger G, et al. Phenotype of matrin-3-related distal myopathy in 16 German patients. Ann Neurol 2014;76:669-80. https://doi.org/10.1002/ana.24235

Barp A, Malfatti E, Metay C, et al. The first French case of MATR3-related distal myopathy: clinical, radiological and histopathological characterization. Rev Neurol (Paris) 2018;174:752-5. https://doi.org/10.1016/j.neurol.2017.08.004

Kraya T, Schmidt B, Muller T, et al. Impairment of respiratory function in late-onset distal myopathy due to MATR3 Mutation. Muscle Nerve 2015;51:916-8. https://doi.org/10.1002/mus.24603

Mensch A, Kraya T, Koester F, et al. Whole-body muscle MRI of patients with MATR3-associated distal myopathy reveals a distinct pattern of muscular involvement and highlights the value of whole-body examination. J Neurol 2020;267:2408-20. https://doi.org/10.1007/s00415-020-09862-9

Belgrader P, Dey R, Bereznay R. Molecular cloning of matrin 3. A 125-kilodalton protein of the nuclear matrix contains an extensive acidic domain. J Biol Chem 1991;266:9893-9. https://www.ncbi.nlm.nih.gov/pubmed/2033075. Published 1991/05/25.

Nakayasu H, Bereznay R. Nuclear matrices: identification of the major nuclear matrix proteins. PNAS 1991;88:10312-6. https://doi.org/10.1073/pnas.88.22.10312

Johnson JO, Pioro EP, Boehringer A, et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurose 2014;17:664-6. https://doi.org/10.1038/nn.3688

Savarese M, Palmio J, Poza JJ, et al. Actininopathy: a new muscular dystrophy caused by ACTN2 dominant mutations. Ann Neurol 2019;85:899-906. https://doi.org/10.1002/ana.25470

Tiso N, Majetti M, Stanchi F, et al. Fine mapping and genomic structure of ACTN2, the human gene coding for the sarcomeric isoform of alpha-actinin-2, expressed in skeletal and cardiac muscle. Biochem Biophys Res Commun 1999;265:256-9. https://doi.org/10.1006/bbrc.1999.1661

Young P, Ferguson C, Banuelos S, et al. Molecular structure of the sarcomeric Z-disc: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J 1998;17:1614-24. https://doi.org/10.1093/embj/17.6.1614

Gupta V, Discenza M, Guyon JR, et al. alpha-Actinin-2 deficiency results in sarcomeric defects in zebrafish that cannot be rescued by alpha-actinin-3 revealing functional differences between sarcomeric isoforms. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 2012;26:1892-908. https://doi.org/10.1096/fj.11-194548

Ribeiro Ede A, Jr., Pinotis N, Ghisleni A, et al. The structure and regulation of human muscle alpha-actinin. Cell 2014;159:1447-60. https://doi.org/10.1016/j.cell.2014.05.056

Lornage X, Romero NB, Grosogoeat CA, et al. ACTN2 mutations cause “Multiple structured Core Disease” (MCsCD). Acta Neuropathol 2019;137:501-19. https://doi.org/10.1007/s00401-019-01963-8

Haywood NJ, Wolny M, Rogers B, et al. Hypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporation. Biochem J 2016;473:2485-93. https://doi.org/10.1042/BCJ20160421

Mohapatra B, Jimenez S, Lin JH, et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 2003;8:207-15. https://doi.org/10.1016/s1096-7192(03)00142-2

Chiu C, Bagnall RD, Ingles J, et al. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis. J Am Coll Cardiol 2010;55:1127-35. https://doi.org/10.1016/j.jacc.2009.11.016

Girolami F, Iascone M, Tomberli B, et al. Novel alpha-actinin 2 variant associated with familial hypertrophic cardiomyopathy and juvenile atrial arrhythmias: a massively parallel sequencing study. Circ Cardiovasc Genet 2014;7:741-50. https://doi.org/10.1161/CIRCGENETICS.113.000486

Bagnall RD, Molloy LK, Kalman JM, et al. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Med Genet 2014;15:99. https://doi.org/10.1186/12881-014-0099-0

Edstrom L, Thornell LE, Eriksson A. A new type of hereditary distal myopathy with characteristic sarcomplasmic bodies and intermediate (skeletin) filaments. J Neurol Sci 1980;47:171-90. https://doi.org/10.1016/0022-510x(80)90002-7

Olive M, Engvall M, Ravenscroft G, et al. Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcomplasmic inclusions. Nat Commun 2019;10:1396. https://doi.org/10.1038/s41467-019-09111-2

Durmus H, Laval SH, Deymeer F, et al. Oculopharyngodistal myopathy is a distinct entity: Clinical and genetic features of 47 patients. Neurology 2011;76:227-35. https://doi.org/10.1212/WNL.0b013e318207b043

Lu H, Luan X, Yuan Y, et al. The clinical and myopathological features of oculopharyngodistal myopathy in a Chinese family. Neuropathology 2008;28:599-603. https://doi.org/10.1111/j.1440-1789.2008.00924.x

Ishiiha H, Shibata S, Yoshimura J, et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet 2019;51:1222-32. https://doi.org/10.1038/s41588-019-0458-z

Saito R, Shimizu H, Miura T, et al. Oculopharyngodistal myopathy with coexisting history of systemic neuronal intranuclear inclusion disease: clinicopathologic features of an autopsied patient harboring CGG repeat expansions in neuronal intranuclear inclusion disease. J Neurol 2016;225:2485-93. https://doi.org/10.1007/s00401-016-19454-8

Sone J, Mitsuhashi S, Fujita A, et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NL associated with neuronal intranuclear inclusion disease. Nat Genet 2019;51:1215-21. https://doi.org/10.1038/s41588-019-0459-y
61 Deng J, Yu J, Li P, et al. Expansion of GGC repeat in GIPC1 is associated with oculopharyngodistal myopathy. Am J Hum Genet 2020;106:793-804. https://doi.org/10.1016/j.ajhg.2020.04.011

62 Di Blasi C, Moghadaszadeh B, Ciano C, et al. Abnormal lysosomal and ubiquitin-proteasome pathways in 1p13.3 distal myopathy. Ann Neurol 2004;56:133-8. https://doi.org/10.1002/ana.20158

63 Ruggieri A, Naumenko S, Smith MA, et al. Multimiciation of a coding 99-mer repeat-expansion skeletal muscle disease. Acta Neuropathol 2020;140:231-5. https://doi.org/10.1007/s00401-020-02164-4

64 Pourteymour S, Lee S, Langleite TM, et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep 2015;3. https://doi.org/10.1484/phy2.12481

65 Palmio J, Sandell S, Suominen T, et al. Distinct distal myopathy phenotype caused by VCP gene mutation in a Finnish family. Neuromuscul Disord 2011;21:551-5. https://doi.org/10.1016/j.nmd.2011.05.008

66 Ikennaga C, Findlay AR, Seiffert M, et al. Phenotypic diversity in an international Cure VCP Disease registry. Orphanet J Rare Dis 2020;15:267. https://doi.org/10.1186/s13023-020-01551-0

67 Guo X, Zhao Z, Shen H, et al. VCP myopathy: A family with unusual clinical manifestations. Muscle Nerve 2019;59:365-9. https://doi.org/10.1002/mus.26389

68 Al-Tahan S, Al-Obeidi E, Yoshioka H, et al. Novel valosin-containing protein mutations associated with multisystem proteinopathy. Neuromuscul Disord 2018;28:91-501. https://doi.org/10.1016/j.nmd.2018.04.007

69 Boland-Freitas R, Graham J, Davis M, et al. Late-onset distal myopathy of the upper limbs due to PHe151Val mutation in the valosin-containing protein. Muscle Nerve 2016;54:165-6. https://doi.org/10.1002/mus.25073

70 Karamel M, Sorenson EJ, McEvoy KM, et al. Clinical spectrum of valosin containing protein (VCP)-opathy. Muscle Nerve 2016;54:949-9. https://doi.org/10.1002/mus.24980

71 Liewluck T, Milone M, Mauermann ML, et al. A novel VCP mutation underlies scapuloperoneal muscular dystrophy and dropped head syndrome featuring lobulated fibers. Muscle Nerve 2014;50:295-9. https://doi.org/10.1002/mus.22490

72 Shi Z, Hayashi YK, Mitsushashi S, et al. Characterization of the Asian myopathy patients with VCP mutations. Eur J Neurol 2012;19:501-9. https://doi.org/10.1111/j.1468-1331.2011.03575.x

73 Papadopoulos C, Malfatti E, Anagnostou E, et al. Valosin-containing protein-related myopathy and Meige syndrome: Just a coincidence or not? Muscle Nerve 2019;60:e43-5. https://doi.org/10.1002/mus.26704

74 Watts GDJ, Wymer J, Kovach MJ, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature Genetics 2004;36:377-81. https://doi.org/10.1038/ng1332

75 Kimonis VE, Mehta SG, Fulchiero EC, et al. Clinical studies in familial VCP myopathy associated with paget disease of bone and frontotemporal dementia. Am J Med Genet, Part A. 2008;146:745-57. https://doi.org/10.1002/ajmg.a.31862

76 Stojkovic T, Hammouda EH, Richard P, et al. Clinical outcome in 19 French and Spanish patients with valosin-containing protein myopathy associated with Paget’s disease of bone and frontotemporal dementia. Neuromuscul Disord 2009;19:316-23. https://doi.org/10.1016/j.nmd.2009.02.012

77 Olivé M, Goldfarb LG, Shatunov A, et al. Refining the clinical and myopathological phenotype. Brain 2005;128:2315-26. https://doi.org/10.1093/brain/awh576

78 Pénisson-Bessier I, Talvinen K, Dumez C, et al. Myotilinopathy in a family with late onset myopathy. Neuromuscular Disorder 2006;16:427-31. https://doi.org/10.1016/j.nmd.2006.04.009

79 Selcen D, Engel AG. Mutations in myotilin cause myofibrillar myopathy. Neurology 2004;62:1363-71. https://doi.org/10.1212/01.wnl.0000123576.74801.75

80 Maerkens A, Olive M, Schreiner A, et al. New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses. Acta Neuropathol Commun 2016;4:8. https://doi.org/10.1186/s40478-016-0280-0

81 Fischer D, Kley RA, Strach K, et al. Distinct muscle imaging patterns in myofibrillar myopathies. Neurology 2008;71:758-65. https://doi.org/10.1212/01.wnl.0000324927.28817.9b

82 Bagiardini E, Morrow JM, Shah S, et al. The diagnostic value of MRI pattern recognition in distal myopathies. Front Neurol 2018;9:456. https://doi.org/10.3389/fneur.2018.00456

83 Salmikangas P, van der Ven PF, Lalowski M, et al. Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum Mol Genet 2003;12:189-203. https://doi.org/10.1093/hmg/ddg020

84 Hauser MA, Horrigan SK, Salmikangas P, et al. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet 2000;9:2141-7. https://doi.org/10.1093/hmg/9.14.2141

85 Hauser MA, Conde CB, Kowaljow V, et al. Myotilin Mutation found in second pedigree with LGMD1A. Am J Hum Genet 2002;71:1428-32. https://doi.org/10.1086/344532

86 Rudolf G, Suominen T, Penttila S, et al. Homozygosity of the dominant myotilin c.179C>T (p.Ser60Phe) mutation causes a more severe and proximal muscular dystrophy. J Neuromuscul Disord 2016;3:275-81. https://doi.org/10.3233/JND-150143

87 Schessl J, Bach E, Rost S, et al. Novel recessive myotilin mutation causes severe myofibrillar myopathy. Neurogenetics 2014;15:151-6. https://doi.org/10.1007/s10048-014-0410-4

88 Foroud T, Pankratz N, Batchman AP, et al. A mutation in myotilin causes spheroid body myopathy. Neurology 2005;65:1936-40. https://doi.org/10.1212/01.wnl.0000188872.28149.9a
Distal myopathies

Goebel HH, Muller J, Gillen HW, et al. Autosomal dominant "spheroid body myopathy". Muscle Nerve 1978;1:14-26. https://doi.org/10.1002/mus.88010104

Griggs R, Vihola A, Hackman P, et al. Zasopathy in a large classic late-onset distal myopathy family. Brain 2007;130(Pt 6):1477-84. https://doi.org/10.1093/brain/awm006

Newby R, Jamieson S, Udd B, et al. When myopathy breaks the rules: a late-onset distal presentation. BMJ Case Rep 2015:2015. https://doi.org/10.1136/bcr-2015-209436

Zheng J, Chen S, Chen Y, et al. A novel mutation in the PDZ-like motif of ZASP causes distal ZASP-related myofibrillar myopathy. Neuropathology 2017;37:45-51. https://doi.org/10.1111/neup.12328

Strach K, Reimann J, Thomas D, et al. ZASopathy with childhood-onset distal myopathy. J Neurol 2012;259:1494-6. https://doi.org/10.1007/s00415-012-6543-1

Behin A, Salort-Campana E, Wabhi K, et al. Myofibrillar myopathies: state of the art, present and future challenges. Rev Neurol (Paris) 2015;171:715-29. https://doi.org/10.1016/j.neurol.2015.06.002

Claeys KG, Fardeau M, Schröder R, et al. Electron microscopy in myofibrillar myopathies reveals clues to the mutated gene. Neuromuscul Disord 2008;18:656-66. https://doi.org/10.1016/j.nmd.2008.06.367

Lin X, Ruiz J, Bajraktari I, et al. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP) mutations in the actin-binding domain cause disruption of skeletal muscle actin filaments in myofibrillar myopathy. J Biol Chem 2014;289:13615-26. https://doi.org/10.1074/jbc.M114.550418

Martinelli VC, Kyle WB, Kojic S, et al. ZASP interacts with the mechanosensing protein Ankrd2 and p53 in the signalling network of striated muscle. PLoS One 2014;9:e92259. https://doi.org/10.1371/journal.pone.0092259

Vatta M, Mohapatra B, Jimenez S, et al. Mutations in Cypher/ ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 2003;42:2014-27. https://doi.org/10.1016/j.jacc.2003.10.021

Xing Y, Ichida F, Matsuoka T, et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 2006;88:71-7. https://doi.org/10.1016/j.ymge.2005.11.009

Milhorat AT, Wolff HG. Studies in diseases of muscle: XIII. Progressive muscular dystrophy of atrophic distal type; report on a family; report of autopsy. Arch Neurol Psychiatry 1943;49:655-64.10.1001/archneurpsyc.1943.02290100250002

Van Spaendonck-Zwarts KY, Van Hessem L, Jongbloed JDH, et al. Desmin-related myopathy. Clin Genet 2011;80:354-66. https://doi.org/10.1111/j.1399-0004.2010.01512.x

Goldfarb LG, Park KY, Cervenáková L, et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nature Genet 1998;19:402-3. https://doi.org/10.1038/1300

Kouloumenta A, Mavroidis M, Capetanaki Y. Proper perinuclear localization of the TRIM-like protein myospryn requires its binding partner desmin. J Biol Chem 2007;28:35211-21. https://doi.org/10.1074/jbc.M704733200

Kedia N, Arhzaouy K, Pittman SK, et al. Desmin forms toxic, seeding-competent amyloid aggregates that persist in muscle fibers. PNAS 2019;116:16835-40. https://doi.org/10.1073/pnas.1908263116

Palmio J, Penttilä S, Huovinen S, Haapasalo H, Udd B. An unusual phenotype of late-onset desminopathy. Neuromuscul Disord 2013;23:922-3. https://doi.org/10.1016/j.nmd.2013.06.374

Riley LG, Waddell LB, Ghaoui R, et al. Recessive DES cardiomyopathy without myofibrillar aggregates: intronic splice variant silences one allele leaving only missense L190P-desmin. Eur J Hum Genet 2019;27:1267-73. https://doi.org/10.1038/s41431-019-0393-6

Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Investig 2009;119:1806-13. https://doi.org/10.1172/JCI38027

Goldfarb LG, Olivé M, Vicart P, et al. Intermediate filament diseases: desminopathy. Adv Exp Med Biol 2008;642:131-64. https://doi.org/10.1007/978-0-387-84847-1_11

Walter M, Reichlich P, Hübner A. Identification of a desmin gene mutation in scapuloperoneal syndrome type Kaeser. Neuromuscul Disord 2006;16:708-9.

Li D, Tapscott T, Gonzalez O, et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 1999;100:461-4. https://doi.org/10.1161/01.cir.100.5.461

Taylor MR, Slavov D, Ku L, et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 2007;115:1244-51. https://doi.org/10.1161/circulationaha.106.106.646778

Vicart P, Caron A, Guicheney P, et al. A missense mutation in the αβ-crystallin chaperone gene causes a desmin-related myopathy. Nature Genet 1998;20:92-5. https://doi.org/10.1038/1765

Selcen D, Engel AG. Myofibrillar myopathy caused by novel dominant negative αB-crystallin mutations. Ann Neurol 2003;54:804-10. https://doi.org/10.1002/ana.10767

Reilich P, Schoser B, Schramm N, et al. The p.G154S mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Neuromuscul Disord 2010;20(4):255-9. https://doi.org/10.1016/j.nmd.2010.01.012

Sacconi S, Feasson T, Antoine JC, et al. A novel CRYAB mutation resulting in multisystemic disease. Neuromuscul Disord 2010;20:420-5. https://doi.org/10.1016/j.nmd.2010.01.012

Carvalho AAS, Lacene E, Brochier G, et al. Genetic mutations and demographic, clinical, and morphological aspects of myofibrillar myopathy in a French cohort. Genet Test Mol Biomarkers 2018;22:374-83. https://doi.org/10.1089/gtmb.2018.0004
D’Agostino M, Scerra G, Cannata Serio M, et al. Unconventional secretion of alpha-crystallin B requires the autopagic pathway and is controlled by phosphorylation of its serine 59 residue. Sci Rep 2019;9:16892. https://doi.org/10.1038/s41598-019-53226-x

Ciano M, Allocca S, Ciardulli MC, et al. Differential phosphorylation-based regulation of alphaB-crystallin chaperone activity for multipass transmembrane proteins. Biochem Biophys Res Comm 2016;479:325-30. https://doi.org/10.1016/j.bbrc.2016.09.071

D’Agostino M, Lemma V, Chesi G, et al. The cytosolic chaperone alpha-crystallin B rescues folding and compartmentalization of misfolded multispans transmembrane proteins. J Cell Sci 2013;126(Pt 18):4160-72. https://doi.org/10.1242/jcs.125443

Del Bigio MR, Chudley AE, Sarnat HB, et al. Infantile muscular dystrophy in Canadian aboriginals is an alphaB-crystallinopathy. Ann Neurol 2011;69:866-71. https://doi.org/10.1002/ana.22331

Inagaki N, Hayashi T, Arimura T, et al. Alpha B-crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Comm 2006;342:379-86. https://doi.org/10.1016/j.bbrc.2006.01.154

Berry V, Francis P, Reddy MA, et al. Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am J Hum Genet 2001;69:1141-5. https://doi.org/10.1086/324158

Ma K, Luo D, Tian T, et al. A novel homozygous initiation codon variant associated with infantile alpha-B-crystallinopathy in a Chinese family. Mol Genet Genomic Med 2019;7:e825. https://doi.org/10.1002/mgg3.825

Marcos AT, Amoros D, Munoz-Cabello B, et al. A novel dominant mutation in CRYAB gene leading to a severe phenotype with childhood onset. Mol Genet Genomic Med 2020;8:e1290. https://doi.org/10.1002/mgg3.1290

Miyoshi K, Tada Y, Iwasa M. Autosomal recessive distal myopathy observed characteristically in Japan. Jpn J Hum Genet 1975;20:62-63.

Bansal D, Campbell KP. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends in Cell Biology 2004;14:206-13. https://doi.org/10.1016/j.tcb.2004.03.001

Glover L, Brown RH, Jr. Dysferlin in membrane trafficking and patch repair. Traffic 2007;8:785-94. https://doi.org/10.1111/j.1600-0854.2007.00573.x

Klinge L, Harris J, Sewry C, et al. Dysferlin associates with the developing T-tubule system in rodent and human skeletal muscle. Muscle Nerve 2010;41:166-73. https://doi.org/10.1002/mus.21166

Cacciottolo M, Numitone G, Aurino S, et al. Muscular dystrophy with marked dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur J Hum Genet 2011;19:974-80. https://doi.org/10.1038/ejhg.2011.70

Cox D, Henderson M, Straub V, et al. A simple and rapid immunoassay predicts dysferlinopathies in peripheral blood film. Neuromuscul Disord 2019;29:874-80. https://doi.org/10.1016/j.nmd.2019.09.008

Maggi F, Nigro V, Angelini C, et al. The Italian limb girdle muscular dystrophy registry: Relative frequency, clinical features, and differential diagnosis. Muscle Nerve 2017;55:55-68. https://doi.org/10.1002/mus.25192

Wang L, Zhang VW, Li S, et al. The clinical spectrum and genetic variability of limb-girdle muscular dystrophy in a cohort of Chinese patients. Orphanet J Rare Dis 2018;13:133. https://doi.org/10.1186/s13023-018-0859-6

Izumi R, Takahashi T, Suzuki N, et al. The genetic profile of dysferlinopathy in a cohort of 209 cases: genotype-phenotype relationship and a hotspot on the inner DysF domain. Hum Mutat 2020;41:1540-54. https://doi.org/10.1002/humu.24036

Fatehi F, Nafissi S, Urtizberea JA, et al. Dysferlinopathy in Iran: clinical and genetic report. J Neurol Sci 2015;359:256-9. https://doi.org/10.1016/j.jns.2015.11.009

Bushby KM. The limb-girdle muscular dystrophies—multiple genotypes, multiple mechanisms. Hum Mol Genet 1999;8:1875-82. https://doi.org/10.1093/hmg/8.10.1875

Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol 2014;33:1-12. PMID 24843229.

Klinge L, Dean AF, Kress W, et al. Late onset in dysferlinopathy widens the clinical spectrum. Neuromuscul Disord 2008;18:288-90. https://doi.org/10.1016/j.nmd.2008.01.004

Evila A, Palmio J, Vihola A, et al. Targeted next-generation sequencing reveals novel TTN mutations causing recessive distal titinopathy. Mol Neurobiol 2017;54:7212-23. https://doi.org/10.1007/s12035-016-0242-3

Evila A, Vihola A, Sarparanta J, et al. Atypical phenotypes in titinopathies explained by second titin mutations. Ann Neurol 2018;75:230-40. https://doi.org/10.1002/ana.24102

Hackman P, Marchand S, Sarparanta J, et al. Truncating mutations in C-terminal titin may cause more severe tibial muscular dystrophy (TMD). Neuromuscul Disord 2008;18:922-8. https://doi.org/10.1016/j.nmd.2008.07.010

Savarese M, Maggi L, Vihola A, et al. Interpreting genetic variants in titinopathies explained by second titin mutations. Ann Neurol 2019;75:230-40. https://doi.org/10.1002/ana.24102

Penisson-Besnier I, Hackman P, Suominen T, et al. Myopathies caused by homozygous titin mutations: limb-girdle muscular dystrophy 2j and variations of phenotype. J Neurol Neurosurg Psychiatry 2010;81:1200-2. https://doi.org/10.1136/jnnp.2009.178434

Savarese M, Johari M, Johnson K, et al. Improved criteria for the classification of titin variants in inherited skeletal myopathies. J Neuromuscul Dis 2020;7:153-66. https://doi.org/10.3233/JND-190423

Savarese M, Valipakka S, Johari M, et al. Is gene-size an issue for
the diagnosis of skeletal muscle disorders? J Neuromuscul Dis 2020;7:203-16. https://doi.org/10.3233/JND-190459

Valipakka S, Savarese M, Johari M, et al. Copy number variation analysis increases the diagnostic yield in muscle diseases. Neurol Genet 2017;3. https://doi.org/10.1212/nxg.0000000000000204

Sagath L, Lehtokari VL, Valipakka S, et al. An extended targeted copy number variation detection array including 187 genes for the diagnostics of neuromuscular disorders. J Neuromuscul Dis 2018;5:307-14. https://doi.org/10.3233/JND-170298

Valipakka S, Savarese M, Sagath L, et al. Improving copy number variant detection from sequencing data with a combination of programs and a predictive model. J Mol Diagn 2020;22:40-9. https://doi.org/10.1016/j.jmoldx.2019.08.009

Bryen SJ, Ewans LJ, Pinner J, et al. Recurrent TTN metatranscript-only c.39974-11T>G splice variant associated with autosomal recessive arthrogryposis multiplex congenita and myopathy. Hum Mutat 2020;41:403-11. https://doi.org/10.1002/humu.23938

Garland J, Stephen J, Class B, et al. Identification of an Alu element-mediated deletion in the promoter region of GNE in siblings with GNE myopathy. Mol Genet Genomic Med 2017;5:410-7. https://doi.org/10.1002/mg3.300

Valipakka S, Savarese M, Sagath L, et al. Characterization of splicing defects by single-molecule real-time sequencing technology (PacBio). J Neuromuscul Dis 2020;7:477-81. https://doi.org/10.3233/JND-200523

Nonaka I, Sunohara N, Ishiura S, et al. Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J Neurol Sci 1981;51:141-5. https://doi.org/10.1016/0022-510X(81)90067-8

Argov Z, Yarom R. “Rimmed vacuole myopathy” sparing the quadriceps. J Neurol Sci 1984;64:33-43. https://doi.org/10.1016/0022-510X(84)90053-4

Keppler OT, Hinderlich S, Langner J, et al. The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 2001;29:83-7. https://doi.org/10.1038/ng718

Keppler OT, Hinderlich S, Langner J, et al. UDP-GlcNac 2-epimerase: a regulator of cell surface sialylation. Science 1999;284:1372-6. https://doi.org/10.1126/science.284.5418.1372

Sela I, Goss V, Becker-Cohen M, et al. The glycomic sialylation profile of GNE Myopathy muscle cells does not point to consistent hyposialylation of individual glycoconjugates. Neuromuscul Disord 2020;30:621-30. https://doi.org/10.1016/j.nmd.2020.05.008

Chen Y, Xi J, Zhu W, et al. GNE myopathy in Chinese population: hotspot and novel mutations. J Hum Genet 2019;64:11-6. https://doi.org/10.1038/s10038-018-01525-9

Bhattacharya S, Khadilkar SV, Nalini A, et al. Mutation Spectrum of GNE Myopathy in the Indian Sub-Continent. J Neuromuscul Dis 2018;5:85-92. https://doi.org/10.3233/JND-170270

Papadimas GK, Evila A, Papadopoulos C, et al. GNE-myopathy in a Greek Romani family with unusual calf phenotype and protein aggregation pathology. J Neuromuscul Dis 2016;3:283-8. https://doi.org/10.3233/JND-160154

Alrohaif H, Pogoryelova O, Al-Ajmi A, et al. GNE myopathy in the bedouin population of Kuwait: genetics, prevalence, and clinical description. Muscle Nerve 2018;58:700-7. https://doi.org/10.1002/mus.26337

Khadilkar SV, Nalamilyl BRR, Bhutada A, et al. A report on GNE myopathy: individuals of Rajasthan ancestry share the Romane myopathy. J Neurol Sci 2017;375:239-40. https://doi.org/10.1016/j.jns.2017.02.005

Pogoryelova O, Urtizberea JA, Argov Z, et al. 237th ENMC International Workshop: GNE myopathy – current and future research. Hoofddorp, The Netherlands, 14-16 September 2018. Neuromuscul Disord 2019;29:401-10. https://doi.org/10.1016/j.nmd.2019.02.010

Chakravorty S, Berger K, Arafat D, et al. Clinical utility of RNA sequencing to resolve unusual GNE myopathy with a novel promoter deletion. Muscle Nerve 2019;60:98-103. https://doi.org/10.1002/mus.26486

Garland J, Stephen J, Class B, et al. Identification of an Alu element-mediated deletion in the promoter region of GNE in siblings with GNE myopathy. Mol Genet Genomic Med 2017;5:410-7. https://doi.org/10.1002/mg3.300

Miao J, Wei XJ, Wang X, et al. A case report: identification of a novel exon 1 deletion mutation in the GNE gene in a Chinese patient with GNE myopathy. Medicine (Baltimore) 2020;99:e22663.10.1097/MD.0000000000022663

Zhu W, Eto M, Mitsushashi S, et al. GNE myopathy caused by a synonymous mutation leading to aberrant mRNA splicing. Neuromuscul Disord 2018;28:154-7. https://doi.org/10.1016/j.nmd.2017.11.003

Pogoryelova O, Cammish P, Mansbach H, et al. Phenotypic stratification and genotype-phenotype correlation in a heterogeneous, international cohort of GNE myopathy patients: first report from the GNE myopathy Disease Monitoring Program, registry portion. Neuromuscul Disord 2018;28:158-68. https://doi.org/10.1016/j.nmd.2017.11.001

Pogoryelova O, Wilson JJ, Mansbach H, et al. GNE genotype explains 20% of phenotypic variability in GNE myopathy. Neurol Genet 2019;5:e308. https://doi.org/10.1212/NXG.0000000000000308

Soule T, Phan C, White C, et al. GNE myopathy with novel mutations and pronounced paraspinal muscle atrophy. Front Neurol 2018;9:942. https://doi.org/10.3389/fneur.2018.00942

Seppala R, Lehto VP, Gahl WA. Mutations in the human UDP-N-acetylgalcosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am J Hum Genet 1999;64:1563-9. https://doi.org/10.1086/302411

Williams DR, Reardon K, Roberts L, et al. A new dominant distal myopathy affecting posterior leg and anterior upper limb muscles. Neurology 2005;64:1245-54. https://doi.org/10.1212/01.WNL.0000156524.95261.B9

Duff RM, Tay V, Hackman P, et al. Mutations in the N-terminal actin-binding domain of filamin C cause a distal myopathy. Am J Hum Genet 2011;88:729-40. https://doi.org/10.1016/j.ajhg.2011.04.021
Tasca G, Odgerel Z, Monforte M, et al. Novel FLNC mutation in a patient with myofibrillar myopathy in combination with late-onset cerebellar ataxia. Muscle Nerve 2012;46:275-82. https://doi.org/10.1002/mus.22349

Verdonschot JAJ, Vanhoutte EK, Claes GRF, et al. A mutation in the dimerization domain of filamin C causes a novel type of autosomal dominant myofibrillar myopathy, Am J Hum Gen 2005;77:297-304. https://doi.org/10.1086/431959

van den Bogaart FJ, Claes KG, Kley RA, et al. Widening the spectrum of filamin-C myopathy: predominantly proximal myopathy due to the p.A193T mutation in the action-binding domain of FLNC. Neuronmusc Disord 2017;27:73-7. https://doi.org/10.1016/j.nmd.2016.09.017

Verdonschot JAJ, Vanhoutte EK, Claes GRF, et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat 2020;41:1091-111. https://doi.org/10.1002/humu.24004

Rossi D, Palmio J, Evila A, et al. A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. PLoS One 2017;12:e0186642. https://doi.org/10.1371/journal.pone.0186642

Gemelli C, Prada V, Fiorillo C, et al. A novel mutation in the N-terminal acting-binding domain of filamin C protein causing a distal myofibrillar myopathy. J Neurol Sci 2019;398:75-8. https://doi.org/10.1016/j.jns.2019.01.019

Evangelista T, Lornage X, Carlier PG, et al. A heterozygous mutation in the filamin C gene causes an unusual nemaline myopathy with ring fibers. J Neuropathol Exp Neurol 2020;79:908-14. https://doi.org/10.1016/j.jnnp.2020.02.015

Servidei S, Capon F, Spinazzola A, et al. A distinctive autosomal dominant vacuolar neuromyopathy linked to 19p13. Neurology 1999;53:830-7. https://doi.org/10.1212/wnl.53.4.830

Ruggieri A, Brancati F, Zanotti S, et al. Complete loss of the DNAJB6 G/F domain and novel missense mutations cause distal-onset DNAJB6 myopathy. Acta Neuropathol Commun 2015;3:44. https://doi.org/10.1186/s40478-015-0224-0

Hageman J, Rujano MA, van Waarde MA, et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 2010;37:355-69. https://doi.org/10.1016/j.molcel.2010.01.001

Harms MB, Sommerville RB, Allred P, et al. Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol 2012;71:407-16. https://doi.org/10.1002/ana.22683

Sarpapanta J, Jonson PH, Golzio C, et al. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 2012;44:450-5, S451-452. https://doi.org/10.1038/ng.1103

Palmio J, Jonson PH, Evila A, et al. Novel mutations in DNAJB6 gene cause a very severe early-onset limb-girdle muscular dystrophy 1D disease. Neuromuscul Disor 2015;25:835-42. https://doi.org/10.1016/j.nmd.2015.07.014

Bohlega SA, Alfawaz S, Abou-Al-Shaar H, et al. LGMD1D myopathy with cytoplasmic and nuclear inclusions in a Saudi family due to DNAJB6 mutation. Acta Myol 2018;37:221-6. PMID 3083052.

Zima J, Eaton A, Pal E, et al. Intrafamilial variability of limb-girdle muscular dystrophy, LGMD1D type. Eur J Med Genet 2020;63:103655. https://doi.org/10.1016/j.ejmg.2019.04.012

Jonson PH, Palmio J, Johari M, et al. Novel mutations in DNAJB6 cause LGMD1D and distal myopathy in French families. Eur J Neurol 2018;25:790-4. https://doi.org/10.1111/ene.13598

Sandell S, Huovinen S, Palmio J, et al. Diagnostically important muscle pathology in DNAJB6 mutated LGMD1D. Acta Neuropathol Commun 2016;4:9. https://doi.org/10.1186/s40478-016-0276-9

Palmio J, Jonson PH, Inoue M, et al. Mutations in the J domain of DNAJB6 cause dominant distal myopathy. Neuromuscul Disord 2020;30:38-46. https://doi.org/10.1016/j.nmd.2019.11.005

Ghaoui R, Palmio J, Brewer J, et al. Mutations in HSPB8 causing a new phenotype of distal myopathy and motor neuropathy. Neurology 2016;86:391-8. https://doi.org/10.1212/WNL.0000000000002324

Carra S, Seguin SJ, Lambert H, et al. HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 2008;283:1437-44. https://doi.org/10.1074/jbc.M706304200

Nakho Sacke, Kim YJ, et al. A novel Lys141Thr mutation in the dimerization domain of filamin-C myopathy: predominantly proximal myopathy due to mutations in small heat shock proteins: clinical, genetic, and functional insights into novel mutations. Hum Mutat 2017;40:1038-45. https://doi.org/10.1002/humu.25762

Zima J, Eaton A, Pal E, et al. Intrafamilial variability of limb-girdle muscular dystrophy, LGMD1D type. Eur J Med Genet 2017;63:103655. https://doi.org/10.1016/j.ejmg.2019.04.012

Irobi J, Van Impe K, Seeman P, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 2017;49:1038-45. https://doi.org/10.1038/ng.13598

Tang BS, Zhao GH, Luo W, et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Mol Cardiogr 2017;6:944-50. https://doi.org/10.1002/mcn.201706304200

Bag3, a stimulator of macroautophagy. J Biol Chem 2008;283:1437-44. https://doi.org/10.1074/jbc.M706304200

Nakho Sacke, Kim YJ, et al. A novel Lys141Thr mutation in the dimerization domain of filamin-C myopathy: predominantly proximal myopathy due to mutations in small heat shock proteins: clinical, genetic, and functional insights into novel mutations. Hum Mutat 2017;40:1038-45. https://doi.org/10.1002/humu.25762

Rusmini P, Cristofani R, Galbiati M, et al. The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases Front Mol Neurosci 2017;10:176. https://doi.org/10.3389/fnmol.2017.00176

Echaniz-Laguna A, Geuens T, Petiot P, et al. The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases Front Mol Neurosci 2017;10:176. https://doi.org/10.3389/fnmol.2017.00176

Echaniz-Laguna A, Geuens T, Petiot P, et al. Axonal neuropathies due to mutations in small heat shock proteins: clinical, genetic, and functional insights into novel mutations. Hum Mutat 2017;38:556-68. https://doi.org/10.1002/humu.23189

Irobi J, Van Impe K, Seeman P, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 2004;36:597-601. https://doi.org/10.1038/ng.1328

260
Distal myopathies

201 Al-Tahan S, Weiss L, Yu H, et al. New family with HSPB8-associated autosomal dominant rimmed vacuolar myopathy. Neurol Genet 2019;5:e349. https://doi.org/10.1212/NXG.0000000000000349

202 Echaniz-Laguna A, Lornage X, Lannes B, et al. HSPB8 haploinsufficiency causes dominant adult-onset axial and distal myopathy. Acta Neuropathol 2017;134:163-5. https://doi.org/10.1007/s00401-017-1724-8

203 Cortese A, Laura M, Casali C, et al. Altered TDP-43-dependent splicing in distal HSPB8-related distal hereditary motor neuropathy and myofibrillar myopathy. Eur J Neurol 2018;25:154-63. https://doi.org/10.1111/ene.13478

204 Nicolau S, Liewluck T, Elliott JL, et al. A novel heterozygous mutation in the C-terminal region of HSPB8 leads to limb-girdle rimmed vacuolar myopathy. Neuromuscul Disord 2020;30:236-40. https://doi.org/10.1016/j.nmd.2020.02.005

205 Bolduc V, Marlow G, Boycott KM, et al. Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet 2010;86:213-21. https://doi.org/10.1016/j.ajhg.2009.12.013

206 Savarese M, Di Fruscio G, Tasca G, et al. Next generation sequencing on patients with LGMD and nonspecific myopathies: molecular findings in a cohort of ANO5-related myopathy. Ann Clin Transl Neuro 2019;6:1225-38. https://doi.org/10.1002/acn3.50801

207 Penttila S, Palmio J, Suominen T, et al. Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5. Neurology 2012;78:897-903. https://doi.org/10.1212/WNL.0b013e31824c4682

208 Sarkozy A, Deschauer M, Carlier RY, et al. Muscle MRI findings in limb girdle muscular dystrophy type 2L. Neuromuscul Disord 2012;22(Suppl 2):S122-9. https://doi.org/10.1016/j.nmd.2012.05.012

209 Whitchok JM, Yu K, Cui YY, et al. Anoctamin 5/TMEM16E facilitates muscle precursor cell fusion. J Gen Physiol 2018;150:1498-509. https://doi.org/10.1085/jgp.201812097

210 Griffin DA, Johnson RW, Whitlock JM, et al. Defective membrane fusion and repair in Anoctamin5-deficient muscular dystrophy. Hum Mol Genet 2016;25:1900-11. https://doi.org/10.1093/hmg/ddw063

211 Topf A, Johnson K, Bates A, et al. Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness. Genet Med 2020;22:1478-88. https://doi.org/10.1038/s41436-020-0840-3

212 Savarese M, Di Fruscio G, Tasca G, et al. Next generation sequencing on patients with LGMD and nonspecific myopathies: Findings associated with ANO5 mutations. Neuromuscul Disord 2015;25:533-41. https://doi.org/10.1016/j.nmd.2015.03.011

213 van der Kooi AJ, Ten Dam L, Frankhuizen WS, et al. ANO5 mutations in the Dutch limb girdle muscular dystrophy population. Neuromuscul Disord 2013;23:456-60. https://doi.org/10.1016/j.nmd.2013.03.012

214 Schneider I, Stoltenburg G, Deschauer M, et al. Limb girdle muscular dystrophy type 2L presenting as necrotizing myopathy. Acta Myol 2014;33:19-21. PMID 24843231.

215 Vihola A, Luque H, Savarese M, et al. Diagnostic anoctamin-5 protein defect in patients with ANOS5-mutated muscular dystrophy. Neuropathol Appl Neurobiol 2018;44:441-8. https://doi.org/10.10111/nnan.20140

216 Jarmula A, Lusakowska A, Fichna JP, et al. ANO5 mutations in the Polish limb girdle muscular dystrophy patients: effects on the protein structure. Sci Rep 2019;9:11533. https://doi.org/10.1038/s41598-019-47849-3

217 Vazquez J, Lefevre C, Escobar RE, et al. Phenotypic spectrum of myopathies with recessive anoctamin-5 mutations. J Neuromuscul Di 2020;7:443-51. https://doi.org/10.3233/JND-200515

218 Panades-de Oliveira L, Bermejo-Guerrero L, de Fuenmayor-Fernandez de la Hoz CP, et al. Persistent asymptomatic or mild symptomatic hyperCKemia due to mutations in ANO5: the mildest end of the anoctaminopathies spectrum. J Neurol 2020;267:2546-55. https://doi.org/10.1007/s00415-020-09872-7

219 Silva AMS, Coimbra-Neto AR, Souza PVS, et al. Clinical and molecular findings in a cohort of ANO5-related myopathy. Ann Clin Transl Neuro 2019;6:1225-38. https://doi.org/10.1002/acn3.50801

220 Cai S, Gao M, Xi J, et al. Clinical spectrum and gene mutations in a Chinese cohort with anoctaminopathy. Neuromuscul Disord 2019;29:628-33. https://doi.org/10.1016/j.nmd.2019.06.005

221 Papadopoulos C, LaforEt P, Nectoux J, et al. HyperCKemia and myalgia are common presentations of anoctamin-5-related myopathy in French patients. Muscle Nerve 2017;56:1096-100. https://doi.org/10.1002/mus.25608

222 Tsutsumi S, Kamata N, Vokes TJ, et al. The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD). Am J Hum Genet 2004;74:1255-61. https://doi.org/10.1086/421527

223 Jin L, Liu Y, Sun F, et al. Three novel ANOS5 missense mutations in Caucasian and Chinese families and sporadic cases with gnathodiaphyseal dysplasia. Sci Rep 2017;7:40935. https://doi.org/10.1038/s41598-019-47849-3

224 Jokela M, Tasca G, Vihola A, et al. An unusual ryanodine receptor 1 (RYR1) phenotype: Mild calf-predominant myopathy. Neurology 2019;92:e1600-9. https://doi.org/10.1212/WNL.0000000000007246

225 Dlamini N, Voermans NC, Lillis S, et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord 2013;23:540-8. https://doi.org/10.1016/j.nmd.2013.03.008

226 Jungbluth H, Muller CR, Halliger-Keller B, et al. Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores. Neurology 2002;59:284-7. https://doi.org/10.1212/WNL.59.2.284

227 Mathews KD, Moore SA. Multiminicore myopathy, central core disease, malignant hyperthermia susceptibility, and RYR1 muta-

261
tions: one disease with many faces? Arch Neurol 2004;61:27-9. https://doi.org/10.1001/archneur.61.1.27

228 Monnier N, Ferreiro A, Marty I, et al. A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet 2003;12:1171-8. https://doi.org/10.1093/hmg/ddg121

229 Matthews E, Neuwirth C, Jaffer F, et al. Atypical periodic paralysis and myalgia: a novel RYR1 phenotype. Neurology 2018;90:e412-8. https://doi.org/10.1212/WNL.0000000000004894

230 Jungbluth H, Zhou H, Sewry CA, et al. Centronuclear myopathy due to a de novo dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2007;17:338-45. https://doi.org/10.1016/j.nmd.2007.01.016

231 Jungbluth H, Dowling JJ, Ferreiro A, Muntoni F, Consortium RYRM. 217th ENMC International Workshop: RYR1-related myopathies, Naarden, The Netherlands, 29-31 January 2016. Neuromuscul Disord 2016;26:624-33. https://doi.org/10.1016/j.nmd.2016.06.001

232 Clarke NF, Waddell LB, Cooper ST, et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mut 2010;31:e1544-550. https://doi.org/10.1002/humu.21278

233 Loseth S, Voermans NC, Torbergsen T, et al. A novel late-onset axial myopathy associated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene. J Neurol 2013;260:1504-10. https://doi.org/10.1007/s00415-012-6817-7

234 Dowling JJ, Lillis S, Amburgey K, et al. King-Denborough syndrome with and without mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2011;21:420-7. https://doi.org/10.1016/j.nmd.2011.03.006

235 Kossugue PM, Paim JF, Navarro MM, et al. Central core disease due to recessive mutations in RYR1 gene: is it more common than described? Muscle Nerve 2007;35:670-4. https://doi.org/10.1002/mus.20715

236 Laughlin RS, Niu Z, Wieben E, et al. RYR1 causing distal myopathy. Mol Genet Genomic Med 2017;5:800-4. https://doi.org/10.1010/mgg3.338

237 Laing NG, Laing BA, Meredith C, et al. Autosomal dominant distal myopathy: linkage to chromosome 14. Am J Hum Genet 1995;56:422-7. PMID 7847377

238 Lamont PJ, Udd B, Mastaglia FL, et al. Laing early onset distal myopathy: slow myosin defect with variable abnormalities on muscle biopsy. J Neurol Neurosurg Psychiatry 2006;77:208-15. https://doi.org/10.1136/jnnp.2005.073825

239 Tasca G, Ricci E, Pentilia S, et al. New phenotype and pathology features in MYH7-related distal myopathy. Neuromuscul Disord 2012;22:640-7. https://doi.org/10.1016/j.nmd.2012.03.003

240 Quijano-Roy S, Carlier Ry, Fischer D. Muscle imaging in congenital myopathies. Seminars in pediatric neurology. 2011;18:221-9. https://doi.org/10.1016/j.spen.2011.10.003

241 Daub I, Carlier Ry, Gomez-Andres D, et al. Clinical and imaging hallmarks of the MYH7-related myopathy with severe axial involvement. Muscle Nerve 2018;58:224-34. https://doi.org/10.1002/mus.26137

242 Astrea G, Petrucci A, Cassandrini D, et al. Myoimaging in the NGS era: the discovery of a novel mutation in MYH7 in a family with distal myopathy and core-like features – a case report. BMC Med Genet 2016;17:25. https://doi.org/10.1186/s12881-016-0288-0

243 Meredith C, Herrmann R, Parry C, et al. Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause Laing early-onset distal myopathy (MPD1). Am J Hum Genet 2004;75:703-8. https://doi.org/10.1086/424760

244 Fiorillo C, Astrea G, Savarese M, et al. MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis 2016;11:91. https://doi.org/10.1186/s13023-016-0476-1

245 Carbonell-Corvillo P, Tristan-Clavijo E, Cabrera-Serrano M, et al. A novel MYH7 founder mutation causing Laing distal myopathy in Southern Spain. Neuromuscul Disord 2018;28:828-36. https://doi.org/10.1016/j.nmd.2018.07.006

246 Banfai Z, Hadzisie D, Pal E, et al. Novel pathogenic variant in the MYH7 spectrum without a stop-loss mutation in the C-terminal region: a case report. BMC Med Genet 2017;18:105. https://doi.org/10.1186/s12881-017-0463-y

247 Feinstein-Linial M, Buvoli M, Buvoli A, et al. Two novel MYH7 proline substitutions cause Laing Distal Myopathy-like phenotypes with variable expressivity and neck extensor contracture. BMC Med Genet 2016;17:57. https://doi.org/10.1186/s12881-016-0315-1

248 Surikova Y, Bilalova A, Polyak M, et al. Common pathogenic mechanism in patients with dropped head syndrome caused by different mutations in the MYH7 gene. Gene 2019;697:159-64. https://doi.org/10.1016/j.gene.2019.02.011

249 Das KI, Ingles J, Bagnall RD, et al. Determining pathogenicity of genetic variants in hypertrophic cardiomyopathy: importance of periodic reassessment. Genet Med 2014;16:286-93. https://doi.org/10.1038/gim.2013.138

250 Morales A, Kinnamon DD, Jordan E, et al. Variant interpretation for dilated cardiomyopathy: refinement of the American College of Medical Genetics and Genomics/ClinGen Guidelines for the DCM Precision Medicine Study. Circ Genom Precis Med 2020;13:e002480. https://doi.org/10.1161/CIRCGEN.119.002480

251 Motivis CL, Bos JM, Bagnall RD, et al. Clinical utility of a phenotype-enhanced MYH7-specific variant classification framework in hypertrophic cardiomyopathy genetic testing. Circ Genom Precis Med 2020;13:e002480. https://doi.org/10.1161/CIRCGEN.120.003039

252 Muelas N, Hackman P, Luque H, et al. MYH7 gene tail mutation causing myopathic profiles beyond Laing distal myopathy. Neurology 2010;75:732-41. https://doi.org/10.1212/WNL.0b013e3181e3e4d5
Distal myopathies

Negrao L, Machado R, Lourenco M, et al. Laing early-onset distal myopathy with subsarcolemmal hyaline bodies caused by a novel variant in the MYH7 gene. Acta Myol 2020;39:24-8. https://doi.org/10.368152532-1900-004

Beecroft SJ, van de Locht M, de Winter JM, et al. Recessive MYH7-related myopathy in two families. Neuromusc Disord 2019;29:456-67. https://doi.org/10.1016/j.nmd.2019.04.002

Tajsharghi H, Oldfors A, Macleod DP, et al. Homozygous mutation in MYH7 in MYO5B storage myopathy and cardiomyopathy. Neurology 2007;68:962. https://doi.org/10.1212/01.wnl.0000257131.14338.2c

Yukeya N, Ayan O, Karaso Y, et al. Homozygous MYH7 R1820W mutation results in recessive myosin storage myopathy: scapuloperoneal and respiratory weakness with diluted cardiomyopathy. Neuromusc Disord 2015;25:340-4. https://doi.org/10.1016/j.nmd.2015.01.007

Lehtokari VL, Pelin K, Herceg Zafi A, et al. Nemaline myopathy caused by mutations in the nebulin gene may present as a distal myopathy. Neuromusc Disord 2011;21:556-62. https://doi.org/10.1016/j.nmd.2011.05.012

Wallgren-Pettersson C, Lehtokari VL, Kalimo H, et al. Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain 2007;130(Pt 6):1465-76. https://doi.org/10.1093/brain/awn094

Romero NB, Lehtokari VL, Quijano-Roy S, et al. Core-rod myopathy caused by mutations in the nebulin gene. Neurology 2009;73:1159-61. https://doi.org/10.1212/01.wnl.0b013181bacf45

Kiiski KJ, Lehtokari VL, Vihola AK, et al. Dominantly inherited distal nemaline/cap myopathy caused by a large deletion in the nebulin gene. Neuromusc Disord 2019;29:97-107. https://doi.org/10.1016/j.nmd.2018.12.007

Kontogianni-Konstantopoulos A, Ackermann MA, Bowman AL, et al. Muscle giants: molecular scaffolds in sarcomereogenesis. Physiol Rev 2009;89:1217-67. https://doi.org/10.1152/physrev.00017.2009

Bang ML, Caremani M, Brunello E, et al. Neulin plays a direct role in promoting strong actin-myosin interactions. FASEB J 2009;23:4117-25. https://doi.org/10.1096/fj.09-137729

Wallgren-Pettersson C, Pelin K, Nowak KJ, et al. Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle α-actin. Neuromuscular Disorders. 2004;14:461-70. https://doi.org/10.1016/j.nmd.2004.03.006

Lehtokari VL, Kiiski K, Sandaradura SA, et al. Mutation update: the spectra of nebulin variants and associated myopathies. Hum Mut 2014;35:1418-26. https://doi.org/10.1002/humu.22693

Feingold-Zadok M, Chitayat D, Chong K, et al. Mutations in the NEB gene cause fetal akinesia/arthrogryposis multiplex congenita. Prenat Diagn 2017;37:144-50. https://doi.org/10.1002/pd.4977

Abdalla E, Ravenscroft G, Zayed L, et al. Lethal multiple pterygium syndrome: a severe phenotype associated with a novel mutation in the nebulin gene. Neuromusc Disord 2017;27:537-41. https://doi.org/10.1016/j.nmd.2017.01.013

Kiiski K, Lehtokari VL, Loytynoja A, et al. A recurrent copy number variation of the NEB tricotate region: only revealed by the targeted nemaline myopathy CGH array. Eur J Hum Genet 2016;24:574-80. https://doi.org/10.1038/ejhg.2015.166

Hamanaka K, Miyatake S, Koshimizu E, et al. RNA sequencing solved the most common but unrecognized NEB pathogenic variant in Japanese nemaline myopathy. Genet Med 2019;21:1629-38. https://doi.org/10.1038/s41436-018-0360-6

Park HJ, Hong YB, Choi YC, et al. ADSSL1 mutation relevant to autosomal recessive adolescent onset distal myopathy. Ann Neurol 2016;79:231-43. https://doi.org/10.1002/ana.24550

Park HJ, Lee JE, Choi GS, et al. Electron microscopy pathology of ADSSL1 myopathy. J Clin Neurol 2017;13:105-6. https://doi.org/10.3988/jcn.2017.13.1.105

Sun H, Li N, Wang X, et al. Molecular cloning and characterization of a novel muscle adenylsuccinate synthetase, ADSSL1, from human bone marrow stromal cells. Mol Cell Biochem 2005;269:85-94. https://doi.org/10.1007/s11010-005-2539-9

Lips G, Krauss G. Adenylsuccinate synthase from Saccharomyces cerevisiae: homologous overexpression, purification and characterization of the recombinant protein. Biochem J 1999;341(Pt 3):537-43 (https://www.ncbi.nlm.nih.gov/pubmed/10417315. Published 1999/07/27).

Park HJ, Shin HY, Kim S, et al. Distal myopathy with ADSSL1 mutations in Korean patients. Neuromusc Disord 2017;27:465-72. https://doi.org/10.1016/j.nmd.2017.02.004

Mroczek M, Durmus H, Bijarnia-Mahay S, et al. Expanding the disease phenotype of ADSSL1-associated myopathy in non-Korean patients. Neuromusc Disord 2020;30:310-4. https://doi.org/10.1016/j.nmd.2020.02.006

Cirak S, Von Deimling F, Sachdev S, et al. Kelch-like homologue 9 mutation is associated with an early onset autosomal dominant distal myopathy. Brain 2010;133:2123-35. https://doi.org/10.1093/brain/awq108

Tateyama M, Aoki M, Nishino I, et al. Mutation in the caveolin-3 gene causes a peculiar form of distal myopathy. Neurolog 2002;58:323-5. https://doi.org/10.1212/01.wnl.58.2.323

Chen J, Zeng W, Han C, et al. Mutation in the caveolin-3 gene causes asymmetrical distal myopathy. Neuropathology 2016;36:485-9. https://doi.org/10.1111/neup.12297

Gonzalez-Perez P, Gallano P, Gonzalez-Quereda L, et al. Phenotypic variability in a Spanish family with a caveolin-3 mutation. J Neurol Sci 2009;276:95-8. https://doi.org/10.1016/j.jns.2008.09.009

Fulizio L, Nascimbeni AC, Fanin M, et al. Molecular and muscle pathology in a series of caveolinopathy patients. Hum Mutat 2005;25:82-9. https://doi.org/10.1002/humu.20119

Carbone I, Bruno C, Sottiga F, et al. Mutation in the CA V3 gene causes partial caveolin-3 deficiency and hyperCKemia. Neurology 2005;65:1373-6. https://doi.org/10.1212/01.wnl.54.6.1373

Vogler D, Bolz H, Patzold T, et al. Phenotypic variability in
rippled muscle disease. Neurology 1999;52:1453-9. https://doi.org/10.1212/wnl.52.7.1453

292 Kubisch C, Schoser BG, von During M, et al. Homozygous mutations in caveolin-3 cause a severe form of rippling muscle disease. Ann Neurol 2000;53:512-20. https://doi.org/10.1002/ana.10501

293 Ishiguro K, Nakayama T, Yoshioka M, et al. Characteristic findings of skeletal muscle MRI in caveolinopathies. Neuromusc Disord 2018;28:857-62. https://doi.org/10.1016/j.nmd.2018.07.010

294 Hanisch F, Muller T, Dietz A, et al. Phenotype variability and histopathological findings in centronuclear myopathy. Neurosci Lett 2016;600:86-9. https://doi.org/10.1016/j.ynsl.2016.06.008

295 Vatta M, Ackerman MJ, Ye B, et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 2006;114:2104-12. https://doi.org/10.1161/CIRCULATIONAHA.106.635268

296 Hayashi T, Arimura T, Ueda K, et al. Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun 2004;313:178-84. https://doi.org/10.1016/j.bbrc.2003.11.101

297 Minetti C, Sotgia F, Bruno C, et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 1998;18:365-8. https://doi.org/10.1038/ng0498-365

298 Bitoun M, Ackerman MJ, Ye B, et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 2006;114:2104-12. https://doi.org/10.1161/CIRCULATIONAHA.106.635268

299 Bitoun M, Maugenre S, Jeannet PY, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005;37:1207-9. https://doi.org/10.1038/ng1657

300 Bitoun M, Bevilacqua JA, Prudhon B, et al. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 2007;62:666-70. https://doi.org/10.1002/ana.21235

301 Fischer D, Herasse M, Bitoun M, et al. Characterization of the muscle involvement in dynamin 2-related centronuclear myopathy. Brain 2006;129(Pt 6):1463-9. https://doi.org/10.1093/brain/awl071

302 Bitoun M, Bevilacqua JA, Eymard B, et al. A new centronuclear myopathy phenotype due to a novel dynamin 2 mutation. Neurology 2009;72:93-5. https://doi.org/10.1212/wnl.0b013e3181ba24a0

303 Bohm J, Biancalana V, Dechene ET, et al. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Hum Mutat 2012;33:949-59. https://doi.org/10.1002/humu.22067

304 Chen S, Huang P, Qiu Y, et al. Phenotype variability and histopathological findings in patients with a novel DNMT2 mutation. Neuropathology 2018;38:34-40. https://doi.org/10.1111/neup.12432

305 Lin P, Liu X, Zhao D, et al. DNMT2 mutations in Chinese Han patients with centronuclear myopathy. Neurol Sci 2016;37:995-8. https://doi.org/10.1007/s10072-016-2513-1

306 Abath Neto O, Martins Cde A, Carvalho M, et al. DNMT2 mutations in a cohort of sporadic patients with centronuclear myopathy. Genet Mol Biol 2015;38:147-1. https://doi.org/10.1590/S1415-47538220140238

307 Casar-Borota O, Jacobsson J, Libelius R, et al. A novel dynamin-2 gene mutation associated with a late-onset centronuclear myopathy with necklase fibres. Neuromuscul Disord 2015;25:345-8. https://doi.org/10.1016/j.nmd.2015.01.001

308 Catteruccia M, Fattori F, Codemo V, et al. Centronuclear myopathy related to dynamin 2 mutations: clinical, morphological, muscle imaging and genetic features of an Italian cohort. Neuromuscul Disord 2013;23:229-38. https://doi.org/10.1016/j.nmd.2012.12.009

309 Mori-Yoshimura M, Okuma A, Oya Y, et al. Clinicopathological features of centronuclear myopathy in Japanese populations harboring mutations in dynamin 2. Clin Neurol Neurosurg 2012;114:678-83. https://doi.org/10.1016/j.clineuro.2011.10.040

310 Hanisch F, Muller T, Dietz A, et al. Phenotype variability and histopathological findings in centronuclear myopathy due to DNMT2 mutations. J Neurol 2011;258:1085-90. https://doi.org/10.1007/s00410-010-5889-5

311 Biancalana V, Romero NB, Thuestad IJ, et al. Some DNMT2 mutations cause extremely severe congenital myopathy and phenocopy myotubular myopathy. Acta Neuropathol Commun 2018;6:93. https://doi.org/10.1186/s40478-018-0593-2

312 Gallardo E, Claeys KG, Nelis E, et al. Magnetic resonance imaging findings of leg musculature in Charcot-Marie-Tooth disease type 2 due to dynamin 2 mutation. J Neuro 2008;255:986-92. https://doi.org/10.1016/j.neuro.2007.00415-008-0808-8

313 Ramachandran R, Schmid SL. The dynamin superfamily. Curr Biol 2018;28:r411-6. https://doi.org/10.1016/j.cub.2017.12.013

314 Lee JS, Ismail AM, Lee JY, et al. Impact of dynamin 2 on adenosine nuclear entry. Virology 2019;529:43-56. https://doi.org/10.1016/j.virol.2019.01.008

315 Zhao M, Maani N, Dowling JJ. Dynamin 2 (DNMT2) as cause of, and modifier for, human neuromuscular disease. Neurotherapeutics 2018;15:966-75. https://doi.org/10.1007/s13311-018-0068-0

316 González-Jamett AM, Baez-Matus X, Olivares MJ, et al. Dynamin-2 mutations cause extremely severe congenital myopathy and phenocopy myotubular myopathy. Acta Neuropathol Commun 2018;6:93. https://doi.org/10.1186/s40478-018-0593-2

317 Durieux AC, Vignaud A, Prudhon B, et al. A novel DNM2 mutation linked to centronuclear myopathy impairs actin-dependent trafficking in muscle cells. Scientific Reports 2017;7. https://doi.org/10.1038/s41598-017-04418-w

318 Solem DE, Gignac J, Connelly G, et al. DNM2 mutations cause extremely severe congenital myopathy and phenocopy myotubular myopathy. Acta Neuropathol Commun 2018;6:93. https://doi.org/10.1186/s40478-018-0593-2

319 Durieux AC, Vignaud A, Prudhon B, et al. A novel DNM2 mutation linked to centronuclear myopathy impairs actin-dependent trafficking in muscle cells. Scientific Reports 2017;7. https://doi.org/10.1038/s41598-017-04418-w

320 Claeys KG, Zuchner S, Kennerson M, et al. Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy. Brain 2009;132(Pt 7):1741-52. https://doi.org/10.1093/brain/awp115

321 Koutroupos OS, Kretz C, Weller CM, et al. Dynamin 2 homoygous mutation in humans with a lethal congenital syndrome. Eur J Hum Genet 2013;21:637-42. https://doi.org/10.1038/ejhg.2012.226

322 Lochmuller H, Badowska DM, Thompson R, et al. RD-Connect, EurOmics and EURenOmics: collaborative European initiative.
for rare diseases. Eur J Hum Genet 2018;26:778-85. https://doi.org/10.1038/s41431-018-0115-5

311 Peterlin B, Gualandi F, Mauer A, et al. Genetic testing offer for inherited neuromuscular diseases within the EURO-NMD reference network: a European survey study. PLoS One 2020;15:e0239329. https://doi.org/10.1371/journal.pone.0239329

312 Austin CP, Cutillo CM, Lau LPL, et al. Future of Rare Diseases Research 2017-2027: an IRDiRC perspective. Clin Transl Sci 2018;11:21-7. https://doi.org/10.1111/cts.12500

313 Gonorazky HD, Naumenko S, Ramani AK, et al. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare mendelian disease. Am J Hum Genet 2019;104:466-83. https://doi.org/10.1016/j.ajhg.2019.01.012

314 Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med 2017;9. https://doi.org/10.1126/scitranslmed.aal5209

315 Matalonga L, Laurie S, Papakonstantinou A, et al. Improved diagnosis of rare disease patients through systematic detection of runs of homozygosity. J Mol Diagn 2020;22:1205-15. https://doi.org/10.1016/j.jmoldx.2020.06.008

316 Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet 2019;10:426. https://doi.org/10.3389/fgen.2019.00426

317 Thompson R, Spendiff S, Roos A, et al. Advances in the diagnosis of inherited neuromuscular diseases and implications for therapy development. Lancet Neurol 2020;19:522-32. https://doi.org/10.1016/S1474-4422(20)30028-4

318 Boycott KM, Hartley T, Biesecker LG, et al. A diagnosis for all rare genetic diseases: the horizon and the next frontiers. Cell 2019;177:32-7. https://doi.org/10.1016/j.cell.2019.02.040