Diagnostic Utility of Optic Nerve Measurements with MRI in Patients with Optic Nerve Atrophy

B. Zhao, N. Torun, M. Elsayed, A.-D. Cheng, A. Brook, Y.-M. Chang, and R.A. Bhadelia

ABSTRACT

BACKGROUND AND PURPOSE: No MR imaging measurement criteria are available for the diagnosis of optic nerve atrophy. We determined a threshold optic nerve area on MR imaging that predicts a clinical diagnosis of optic nerve atrophy and assessed the relationship between optic nerve area and retinal nerve fiber layer thickness measured by optical coherence tomography, an ancillary test used to evaluate optic nerve disorders.

MATERIALS AND METHODS: We evaluated 26 patients with suspected optic nerve atrophy (8 with unilateral, 13 with bilateral and 5 with suspected but not demonstrable optic nerve atrophy) who had both orbital MR imaging and optical coherence tomography examinations. Forty-five patients without optic nerve atrophy served as controls. Coronal inversion recovery images were used to measure optic nerve area on MR imaging. Retinal nerve fiber layer thickness was determined by optical coherence tomography. Individual eyes were treated separately; however, bootstrapping was used to account for clustering when appropriate. Correlation coefficients were used to evaluate relationships; receiver operating characteristic curves, to investigate predictive accuracy.

RESULTS: There was a significant difference in optic nerve area between patients’ affected eyes with optic nerve atrophy (mean, 3.09 ± 1.09 mm²), patients’ unaffected eyes (mean, 5.27 ± 1.39 mm²; P = .008), and control eyes (mean, 6.27 ± 2.64 mm²; P < .001). Optic nerve area ≤ 4.0 mm² had a sensitivity of 0.85 and a specificity of 0.83 in predicting the diagnosis of optic nerve atrophy. A significant relationship was found between optic nerve area and retinal nerve fiber layer thickness (r = 0.68, P < .001).

CONCLUSIONS: MR imaging–measured optic nerve area ≤ 4.0 mm² has moderately high sensitivity and specificity for predicting optic nerve atrophy, making it a potential diagnostic tool for radiologists.

ABBREVIATIONS: OCT = optical coherence tomography; ONA = optic nerve atrophy; ONarea = optic nerve area; RNFL = retinal nerve fiber layer; ROC = receiver operating characteristic

Optic nerve atrophy (ONA) occurs when there is injury to the retinal ganglion cells or their axons and, at present, is primarily diagnosed on a clinical basis. Careful assessment, taking into account the history and demographic profile of the patient and the clinical examination (including visual acuity, color vision, pupils, and the fundus), combined with specific ancillary testing such as computerized visual fields, is necessary to establish the diagnosis and etiology. However, it has been previously shown that the clinical diagnosis of ONA may not be reliable in the hands of clinical practitioners without specialized training in neuro-ophthalmology. Because specialists with such training are usually limited to tertiary care centers, a final diagnosis may require additional referrals to these centers.

The classic clinical presentation of ONA includes decreased visual acuity, visual fields, and color vision. It is our experience that patients with such vision-related symptoms are often referred for orbital MR imaging examinations before they are seen by a neuro-ophthalmologist. This procedure puts radiologists in a unique frontline position of assessing the optic nerves before a final diagnosis of ONA is made. While the diagnosis of ONA can usually be suggested on MR imaging by observing the decreased size of the intraorbital optic nerve, there are no definite measurement criteria currently available to the radiologist. We believe that for MR imaging–based optic nerve measurements to be clinically useful, such measurements need to be validated, with the final diagnosis of ONA made by a neuro-ophthalmologist based on clinical examination and retinal nerve fiber layer (RNFL) thickness measured on optical coherence tomography (OCT), which
correlates with axonal loss and is routinely used in ophthalmologic practice in the initial and follow-up assessment of various optic nerve disorders.

Based on this background information, our purpose was the following: 1) to determine a threshold optic nerve area (ON\(_\text{area}\)) on MR imaging that predicts the clinical diagnosis of ONA in the adult population made by a neuro-ophthalmologist, and 2) to assess the relationship between MR imaging–measured ON\(_\text{area}\) and RNFL thickness measured by OCT.

MATERIALS AND METHODS

Patients

Institutional review board approval was obtained for this Health Insurance Portability and Accountability Act–compliant retrospective study with a waiver of informed consent. Patients diagnosed with optic nerve atrophy by a neuro-ophthalmologist at a single institution between June 2009 and December 2016 were identified. Twenty-six adult patients who had both clinical and OCT examinations and an orbital MR imaging within 1 month of each other were included. The diagnostic criteria used for optic nerve atrophy were the following: 1) clinical examination unequivocally consistent with optic nerve atrophy, and 2) RNFL thickness <85 \(\mu\)m. Among these 52 patient eyes, a total of 34 “affected” eyes with an unequivocal clinical diagnosis of ONA and 18 “unaffected” eyes were used for analysis. The patient population consisted of 14 women and 12 men. The mean age was 58.2 ± 14.9 years (range, 32–89 years).

Controls

The controls were collected in the following manner: 1) 18 unaffected eyes of the patients, and 2) 90 “healthy” eyes from 35 consecutive patients undergoing imaging for seizures, which included coronal inversion recovery images that provided details of optic nerves, and 10 patients evaluated for suspected orbital abnormalities but had no findings suggestive of ONA on neuro-ophthalmologic examination. The healthy eye population consisted of 20 women and 25 men. The mean age was 55.2 ± 11.9 years (range, 27–77 years).

MR Imaging

MR imaging examinations were performed on 1 of two 1.5T Signa HDx MR imaging scanners (GE Healthcare Milwaukee, Wisconsin). The MR imaging parameters for patients and controls with visual symptoms not related to ONA were the following: TR = 6600 ms, TE = 85 ms, TI = 50 ms, slice thickness = 3 mm, FOV = 18, matrix = 320 × 320. The MR imaging parameters for controls belonging in the seizure cohort were the following: TR = 6000 ms, TE = 80 ms, TI = 50 ms, slice thickness = 2.5 mm, FOV = 22, matrix = 320 × 320.

For both patients and controls, images from a coronal inversion recovery sequence were used to measure ON\(_\text{area}\) (excluding the optic nerve sheath) at an image slice along the intraorbital portion of the optic nerve. The image was chosen on the basis of where the optic nerves appeared most round and most perpendicular to the coronal plane based on visual inspection, approximately halfway between the optic nerve–globe junction and the orbital apex. Measurements were obtained from the same image slice by 2 of the coauthors (radiology residents who received training in ON\(_\text{area}\) measurements from the senior author with >25 years’ experience) independently and blinded to whether the study belonged to a patient or a control.

A freeform ROI measurement tool on the PACS was used to outline and measure the cross-sectional optic nerve areas (Fig 1). The optic nerve area measurement process involved zooming in on each nerve separately to facilitate precise and accurate outlining of the nerve contours.

OCT

RNFL thickness was determined on a Spectralis SD OCT machine (Heidelberg Engineering, Heidelberg, Germany), and an average RNFL thickness was calculated for each eye. RNFL thickness measurements were available for the entire patient population of 26 individuals for both diseased and nondiseased eyes. The control population did not have any RNFL thickness measurements because they did not have clinical concerns to warrant OCT.

Statistical Analyses

Individual eyes were treated separately; however, bootstrapping was used to account for clustering when appropriate. The average of ON\(_\text{area}\) measurements between the 2 readers was used for all analyses and comparisons, except for the discussion of interreader variability. Correlation coefficients were used to evaluate relationships; ANOVA with a Tukey post hoc procedure or \(t\) test, to compare measurements; a \(\chi^2\) test, to compare sex distribution; and a receiver operating characteristic (ROC) curve, to investigate predictive accuracy. Calculations were performed using Matlab 9.3 (MathWorks, Natick, Massachusetts). \(P\) values ≤ .05 were used to determine statistical significance.
tic nerves and control optic nerves; clinically significant relationship between MR imaging–measured measurement of ONarea by MR imaging can be used clinically unaffected eyes, and healthy eyes. Our analysis also showed that between eyes in the same individual was observed, as reported previously. Nonetheless, a statistically significant difference in ONarea was observed between patients’ diseased eyes, patients’ unaffected eyes, and healthy eyes of controls and being very good diagnostic accuracy. We also observed a statistically significant relationship between MR imaging–measured

RESULTS
There was no statistically significant difference in sex (P = .44) or age (P = .35) between the patient and control groups. No statistically significant relationship was found between ONarea and age in the adult population of this study (r = −.01, P = .23). There was a high correlation (r = .87) between the 2 readers in measuring the ONarea. The mean difference in ONarea between the 2 observers was 0.93 mm² with a within-subject SD of 1.2 mm².

The Table summarizes the ONarea and RNFL thickness in patients’ affected and unaffected eyes and ONarea measurements in healthy eyes. There was a statistically significant difference in RNFL thickness between the patients’ affected and unaffected eyes (P < .001).

There was a statistically significant difference in ONarea among patients’ eyes with ONA (mean, 3.09 ± 1.09 mm²), patients’ unaffected eyes (mean, 5.27 ± 1.39 mm²; P = .008), and control eyes (mean, 6.27 ± 2.64 mm²; P < .001). No significant difference in ONarea was observed between patients’ unaffected eyes and control eyes (P = .21).

An ROC curve was created to test the ability of ONarea to predict the diagnosis of optic nerve atrophy, namely its ability to separate 34 affected eyes from 90 healthy eyes (Fig 2). The area under the curve was 0.91. Selecting a threshold MR imaging–measured ONarea ≤ 4.0 mm² yielded a sensitivity of 0.85 and a specificity of 0.83 in predicting the presence of ONA by clinical diagnosis.

A statistically significant positive relationship was found (Fig 3) between MR imaging–measured ONarea and OCT-measured RNFL thickness measured by OCT (r = 0.68, P < .001).

DISCUSSION
In our investigation of optic nerve area measured by MR imaging, a considerable variability between patients and controls and between eyes in the same individual was observed, as reported previously. Nonetheless, a statistically significant difference in ONarea was observed between patients’ diseased eyes, patients’ unaffected eyes, and healthy eyes. Our analysis also showed that measurement of ONarea by MR imaging can be used clinically with very good diagnostic accuracy. We also observed a statistically significant relationship between MR imaging–measured ONarea and RNFL thickness measured by OCT. This is consistent with the understanding of the pathophysiology of optic nerve atrophy—that is, the damage to retinal ganglion cells can cause anterograde (Wallerian) degeneration of the optic nerve or direct damage to the optic nerve can cause retrograde degeneration of the retinal ganglion cells.

The optic nerve comprises the coalesced, myelinated axons of retinal ganglion cells. These axons are unmyelinated as they tra-
verse within the retina toward the optic disc, comprising the reti-
inal nerve fiber layer. Optic nerve atrophy occurs when there is
injury to these ganglion cells or their axons. This process can
result from various underlying etiologies, which include optic
neuritis commonly associated with multiple sclerosis and various
other optic neuropathies, such as ischemic (hypertension, dia-
betes, giant-cell arteritis); compressive (orbital or intracranial
mass); and inflammatory, toxic, traumatic, or hereditary (mito-
chondrial disease) causes.1,4 Irrespective of the mechanism, loss of reti-
nal ganglion cells or their axons results in irreversibly atro-
phy, which manifests clinically in the form of vision impairment.2
The degree of optic atrophy depends entirely on the extent of
damage to the optic nerve and is independent of the underlying
etiologic.

As previously mentioned, optic nerve atrophy remains pri-
marily a clinical diagnosis. Specific vision testing and RNFL mea-
surements via OCT have been used as adjunctive tools to establish
the diagnosis and monitor disease progression.4,7,9-11 The results
of this study suggest that optic nerve area measurements made on
orbital MR imaging can also play a role in detecting and poten-
tially diagnosing optic nerve atrophy and provide radiologists a
role in identifying these patients and referring their care to an
appropriate specialist.

The measurement of optic nerve area is a manual process,
which raises concerns for interobserver variability. One element
of variability depends on where the optic nerve is measured along
its intraorbital segment. It has previously been demonstrated that
optic nerve size significantly decreases from the globe to the or-
bital apex.12 To minimize this feature, we measured the optic
nerve area at the same intraorbital location (approximately half-
way between the optic nerve–globe junction and the orbital apex)
in both patients and controls. The difference between the mea-
surements of the 2 independent observers was noteworthy with a
mean difference of 0.93 mm2 and a within-subject SD of 1.2 mm2.
However, it can be reasonably expected that interobserver vari-
ability can be minimized by adhering to basic guidelines for the
measurement technique. Furthermore, we also believe that in-
creasing the resolution of images from 1 mm2 used in this study
can also improve detection of optic nerve margins.

Optic nerve area (excluding the optic nerve sheath) was cho-
sen as the main metric of measurement, as opposed to optic nerve
diameter. During the measurement process, it was observed that
many optic nerves and in particular those carrying a clinical dia-
nosis of optic nerve atrophy were not circular when viewed in
cross-section. Many were ellipsoid, thus allowing varying diame-
ter measurements. Thus, it was thought that measuring the total
cross-sectional area would more accurately represent actual optic
nerve size.

Optical coherence tomography is an established tool in op-
thalmology and neurology and is used as an ancillary test to aid
in the diagnosis of many ophthalmic diseases, including ONA.10 OCT uses measurement of the TE delay of backscattered infrared
light via an interferometer and a low-coherence light source and
quantifies RNFL thickness.2,9 The association between measurable
thinning of the RNFL in patients with optic nerve atrophy has
been previously observed.11

The moderately strong positive correlation found between
MR imaging–measured ON\textsubscript{area} and OCT-measured RNFL thick-
ness is consistent with intuitive expectations, because they repre-
sent different regions of the same underlying cellular structures.8
This finding also corroborates the conclusions from prior inves-
tigations into this relationship7 and further establishes orbital MR
imaging as a method of assessing for optic nerve pathology relat-
ing to atrophy.

CONCLUSIONS

Our data suggest that an MR imaging–measured optic nerve area of ≤4.0 mm2 has both strong sensitivity and high specificity for
predicting the presence of optic nerve atrophy, making it a poten-
tial diagnostic tool for radiologists.

REFERENCES

1. Biousse V, Newman NJ. Diagnosis and clinical features of common
optic neuropathies. Lancet Neurol 2016;15:1355–67 CrossRef Medline
2. Trip SA, Schlottmann PG, Jones SJ, et al. Optic nerve atrophy and
retinal nerve fibre layer thinning following optic neuritis: evidence
that axonal loss is a substrate of MRI-detected atrophy. Neuroimage
2006;31:286–93 CrossRef Medline
3. Mackay DD, Garza PS, Bruce BB, et al. The demise of direct
ophthalmoscopy: a modern clinical challenge. Neur CLIN PrACt
2015;5:150–57 CrossRef Medline
4. Behbehani R. Clinical approach to optic neuropathies. Clin Oph-
thalmol 2007;1:233–46 Medline
5. Šimundić AM. Measures of diagnostic accuracy: basic definitions.
EJIFCC 2009;19:203–11 Medline
6. Hobom M, Storch MK, Weissert R, et al. Mechanisms and time
course of neuronal degeneration in experimental autoimmune en-
cephalomyelitis. Brain Pathol 2004;14:148–57 CrossRef Medline
7. Mead B, Tomarev S. Evaluating retinal ganglion cell loss and dys-
function. Exp Eye Res 2016;151:96–106 CrossRef Medline
8. Barrett K, Barman SM, Brooks S, et al. Ganong’s Review of Medical
Physiology. New York: McGraw Hill; 2010
9. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of
the human retina. Arch Ophthalmol 1995;113:325–32 CrossRef Medline
10. Maldonado RS, Mettu P, El-Dairi M, et al. The application of optical
coreherence tomography in neurologic diseases. Neuro Clin PrACt
2015;5:460–69 CrossRef Medline
11. Wang XL, Yu T, Xia DZ, et al. Measurement of retinal nerve fiber
layer thickness in optic atrophy eyes of patients with optic neuritis
using optical coherence tomography. Graefes Arch Clin Exp Op-
thalmol 2010;248:1013–18 CrossRef Medline
12. Karim S, Clark RA, Poukens V, et al. Demonstration of systematic
variation in human intraorbital optic nerve size by quantitative
magnetic resonance imaging and histology. Invest Ophthalmol Vis
Sci 2004;45:1047–51 CrossRef Medline