A. Detailed Structure of a Compact Network

We show a detailed structure of a compact VGGNet on CIFAR-10 dataset in Table 1. The compact model used is from the multi-pass scheme experiment ("Iter 5 Trained" from Table 1 (a) in the paper). We observe that deeper layers tend to have more channels pruned.

Layer	Width Width* Pruned	P/F Pruned
1	64 22 65.6%	34.4%
2	64 62 3.1%	66.7%
3	128 83 35.2%	37.2%
4	128 119 7.0%	39.7%
5	256 193 24.6%	29.9%
6	256 168 34.4%	50.5%
7	256 85 66.8%	78.2%
8	256 40 84.4%	94.8%
9	512 32 93.8%	99.0%
10	512 32 93.8%	99.6%
11	512 32 93.8%	99.6%
12	512 32 93.8%	99.6%
13	512 32 93.8%	99.6%
14	512 32 93.8%	99.6%
15	512 32 93.8%	99.6%
16	512 38 92.6%	99.6%
Total	5504 1034 81.2%	95.6%/77.2%

Table 1: Detailed structure of a compact VGGNet. “Width” and “Width*” denote each layer’s number of channels in the original VGGNet (test error 6.34%) and a compact VGGNet (test error 5.96%) respectively. “P/F Pruned” denotes the parameter/FLOP pruned ratio at each layer.

B. Wall-clock Time and Run-time Memory Savings

We test the wall-clock speed and memory footprint of a “70% pruned” VGGNet (from Table 1 (a) in the paper) on CIFAR-10 during inference time. The experiment is conducted using Torch [1] on a NVIDIA GeForce 1080 GPU with batch size 64. The result is shown in Table 2.

Model	Test Error (%)	Params Pruned
Baseline	6.34	-
Pruned ([2])	6.88	88.5%
Pruned (ours)	6.20	88.5%

Table 2: Wall-clock time and run-time memory savings of a compact VGGNet.

C. Comparison with [2]

On CIFAR-10 and CIFAR-100 datasets, we compare our method with a previous channel pruning technique [2]. Unlike network slimming which prunes channels with a global pruning threshold, [2] prunes different pre-defined portion of channels at different layers. To make a comparison, we adopt the pruning criterion introduced in [2] and closely follow the per-layer pruning strategy of [2] on VGGNet [3]. The result is shown in Table 3. Compared with [2], network slimming yields significantly lower test error with a similar compression rate.

Model	Test Error (%)	Params Pruned
Baseline	26.74	-
Pruned ([2])	28.36	76.0%
Pruned (ours)	26.52	75.1%

Table 3: Comparison between our method and [2].

References

[1] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.
[2] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.
[3] S. Zagoruyko. 92.5% on cifar-10 in torch. https://github.com/szagoruyko/cifar.torch