About the stability of the tangent bundle of \mathbb{P}^n restricted to a surface

Chiara Camere

Received: 16 June 2009 / Accepted: 27 February 2011 / Published online: 5 May 2011
© Springer-Verlag 2011

Abstract Let X be a smooth projective surface over \mathbb{C} and let L be a line bundle on X generated by its global sections. Let $\phi_L : X \to \mathbb{P}^r$ be the morphism associated to L; we investigate the μ-stability of $\phi_L^* T_{\mathbb{P}^r}$ with respect to L when X is either a regular surface with $p_g = 0$, a K3 surface or an abelian surface. In particular, we show that $\phi_L^* T_{\mathbb{P}^r}$ is μ-stable when X is K3 and L is ample and when X is abelian and $L^2 \geq 14$.

Keywords Tangent bundle · Stability · Exceptional bundle · Surface

Mathematics Subject Classification (2000) 14J60 · 14F05 · 14D20

1 Introduction

Given a line bundle L generated by its global sections on a smooth projective variety X, one can consider the kernel of the evaluation map

$$0 \longrightarrow M_L \longrightarrow H^0(X, L) \otimes \mathcal{O}_X \longrightarrow L \longrightarrow 0 \quad (1)$$

and its dual $E_L = M_L^*$. The μ-stability of this bundle is equivalent to that of $\phi_L^* T_{\mathbb{P}^r}$, where $\phi_L : X \to \mathbb{P}^r$ is the morphism associated to L. It has been studied in the case of a curve by Paranjape [9] with Ramanan and in his Ph.D. thesis [8]; in particular, the latter contains the statements on which rely all our results contained in a former paper [3] and in this one. Later Ein and Lazarsfeld [4] showed that M_L is stable if $\deg L > 2g$ and Beauville [2] investigated the case of degree $2g$.

The aim of this paper is to study this problem in the case of projective surfaces. Here we consider the μ-stability of a sheaf with respect to a chosen linear series H, which
generalises the definition given in the case of curves: a vector bundle E is said to be $\mu-$stable with respect to H if for each proper torsion-free quotient sheaf F we have $\mu(F) > \mu(E)$, where $\mu(F) = \frac{c_1(F) \cdot H}{rk F}$ is the slope of F (see [5]).

After studying these vector bundles in Sect. 2, we gather some results which hold on curves in Sect. 3 and then in Sect. 4 we obtain some results about regular surfaces, including the following

Theorem 1 Let X be a smooth projective K3 surface over \mathbb{C} and let L be an ample line bundle generated by its global sections on X; then the vector bundle E_L is $\mu-$stable with respect to L.

Finally, in Sect. 5 we study the case of abelian surfaces, showing the following

Theorem 2 Let X be a smooth projective abelian surface over \mathbb{C} and let L be a line bundle on X generated by its global sections such that $L^2 \geq 14$. Then the vector bundle E_L is $\mu-$stable with respect to L.

2 Simplicity and rigidity of E_L

Let us briefly recall the geometric interpretation of E_L: since L is generated by its global sections, the morphism $\phi_L : X \to \mathbb{P}(H^0(L)) \cong \mathbb{P}^r$ is well-defined and we have $L = \phi_L^* O_{\mathbb{P}^r}(1)$; thus, from the dual sequence of (1) and from the well-known Euler exact sequence it follows that $E_L = \phi_L^* T_{\mathbb{P}^r} \otimes L^*$ and the $\mu-$stability of E_L is equivalent to the $\mu-$stability of $\phi_L^* T_{\mathbb{P}^r}$.

In the next sections we will deal with the problem of whether or not these bundles are $\mu-$stable, but let us first of all underline that they satisfy in almost any case a less strong property, the simplicity.

Proposition 1 Let X be a smooth projective complex variety and L be a big line bundle generated by its global sections on X; if $\dim X \geq 2$ then E_L is simple.

Proof If we tensor with E_L the short exact sequence (1) in cohomology we get an exact sequence

$$
0 \rightarrow H^0(M_L \otimes E_L) \rightarrow H^0(L) \otimes H^0(E_L) \xrightarrow{\alpha} H^0(L \otimes E_L) \rightarrow \cdots
$$

Since $H^0(L^*) \cong H^1(L^*) \cong 0$ by Ramanujam-Kodaira vanishing theorem (see [7]), we also have $H^0(L)^* \cong H^0(E_L)$. Now, by tensoring the dual sequence of (1) with L we obtain in cohomology the following exact sequence

$$
0 \rightarrow H^0(\mathcal{O}_X) \rightarrow H^0(L) \otimes H^0(L)^* \xrightarrow{\alpha} H^0(L \otimes E_L) \rightarrow H^1(\mathcal{O}_X) \rightarrow \cdots
$$

where the morphism α is the same morphism as in (2). Hence $H^0(M_L \otimes E_L) \cong H^0(\mathcal{O}_X) \cong \mathbb{C}$, i.e. E_L is simple. \square

In the case of regular surfaces, under mild assumptions, which hold for example if X is a K3 surface, these bundles are also rigid.
Proposition 2 Let X be a smooth projective regular surface and L as above; if the multiplication map $H^0(K_X) \otimes H^0(L) \to H^0(K_X \otimes L)$ is surjective, then E_L is rigid.

Proof The morphism α in sequence (3) is surjective because X is regular. Let us show that $H^1(E_L) \cong 0$: indeed, by tensoring (1) with K_X in cohomology we get an exact sequence

$$0 \to H^0(M_L \otimes K_X) \to H^0(L \otimes H^0(K_X) \to H^0(L \otimes K_X) \to H^1(M_L \otimes K_X) \to H^0(L) \otimes H^1(K_X) = 0$$

Since we assumed φ surjective, we have $H^1(E_L) \cong H^1(M_L \otimes K_X)^* \cong 0$ by the Serre’s duality theorem. Then from the exact sequence (2) it follows that $\text{Ext}^1(E_L, E_L) \cong H^1(M_L \otimes E_L) = 0$, i.e. E_L is rigid. \qed

Remark 1 The cohomology sequence associated to (1) shows that $H^0(M_L) = 0$, hence for all subsheaves N of M_L we have $H^0(N) = 0$; in particular O_X cannot be a subbundle of M_L.

3 Some results on vector bundles on curves

Let us briefly recall some facts about vector bundles on curves.

Given C a smooth projective curve of genus $g \geq 2$, the Clifford index of a line bundle L on C is defined as $c(L) = \deg L - 2(h^0(L) - 1)$ and the Clifford index of the curve C is $c(C) = \min\{c(L) \mid h^0(L) > 1, h^1(L) > 1\}$.

In a former paper [3, p. 424] we showed the following

Theorem 3 Let C be a smooth projective curve of genus $g \geq 2$ over an algebraically closed field k and let L be a line bundle on C generated by its global sections such that $\deg L \geq 2g - c(C)$. Then:

1. E_L is semi-stable;
2. E_L is stable except when $\deg L = 2g$ and either C is hyperelliptic or $L \cong K(p + q)$ with $p, q \in C$.

In the case $L = K_C$ more was already known: in [9, Corollary 3.5 p. 509] Paranjape and Ramanan showed the following

Theorem 4 Let C be a smooth projective curve of genus $g \geq 2$ over \mathbb{C}; E_{K_C} is always semistable and it is also stable if C is not hyperelliptic.

The proof of Theorem 3 was essentially based on the following lemma, shown by Paranjape [8, pp. 1–17].

Lemma 1 Let F be a vector bundle on C generated by its global sections and such that $H^0(C, F^*) = 0$; then $\deg F \geq \text{rk } F + g - h^1(C, \det F)$. Moreover, if $h^1(C, \det F) \geq 2$ then $\deg F \geq 2\text{rk } F + c(\det F) \geq 2\text{rk } F + c(C)$.

4 About regular surfaces

Before restricting to the case of regular surfaces, let us see a few statements which hold for every surface.
Lemma 2 Let F be a vector bundle of rank 2 generated by its global sections on a smooth projective surface X and assume moreover that $h^0(\det F) = 2$. Then there is a short exact sequence

$$0 \longrightarrow \mathcal{O}_X \longrightarrow F \longrightarrow \det F \longrightarrow 0 \quad (4)$$

Proof We cannot have $F = \mathcal{O}_X^2$ because $h^0(\det F) = 2$; then, since F is of rank 2 generated by its global sections, we have $h^0(F) \geq 3$. There is a section $s \in H^0(X, F)$ which is zero only in a finite number of points and we have the following short exact sequence

$$0 \longrightarrow \mathcal{O}_X \longrightarrow F \longrightarrow \mathcal{I}_Z \det F \longrightarrow 0 \quad (5)$$

where Z is the zero locus of s. In cohomology we obtain

$$0 \longrightarrow H^0(X, \mathcal{O}_X) \longrightarrow H^0(X, F) \longrightarrow H^0(X, \mathcal{I}_Z \det F) \longrightarrow \cdots$$

Since $h^0(F) \geq 3$, we get $h^0(\mathcal{I}_Z \det F) \geq 2$, but $h^0(\mathcal{I}_Z \det F) \leq h^0(\det F) = 2$. Since $\det F$ is generated by its global sections, from $h^0(\mathcal{I}_Z \det F) = h^0(\det F) = 2$ it follows that $\mathcal{I}_Z \det F = \det F$ and $Z = \emptyset$. Therefore the sequence (5) becomes (4). \square

Remark 2 Under the assumptions of Lemma 2, we have $F \cong \pi^* \mathcal{O}_{P^1} (1)$ where $\pi : X \to P^1$ is the fibration defined by the global sections of $\det F$.

Proposition 3 Let X be a smooth projective surface over \mathbb{C} and let L be a line bundle on X generated by its global sections. Let C be a smooth irreducible curve on X such that $H^1(L(-C)) = 0$. Then $(E_L)_C = E_{(L|_C)} \oplus \mathcal{O}_C^r$, with $r = h^0(L(-C))$.

Proof Tensoring the exact sequence

$$0 \longrightarrow \mathcal{O}_X(-C) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_C \longrightarrow 0$$

with L, in cohomology we get

$$0 \longrightarrow H^0(X, L(-C)) \longrightarrow H^0(X, L) \longrightarrow H^0(X, L|_C) \longrightarrow 0$$

So we have the following diagram

$$
\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
L^*_{|C} & H^0(X, L|_C)^* \otimes \mathcal{O}_C & E_{(L|_C)} \\
\downarrow & \downarrow & \downarrow \\
0 & H^0(X, L)^* \otimes \mathcal{O}_C & (E_L|_C) \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0 \\
\end{array}
$$

The proof is now straightforward. \square
Corollary 1 Let X be a smooth projective regular surface over C such that $p_g = 0$ and let C be a smooth irreducible curve on X of genus $g \geq 2$ such that $L = \mathcal{O}_X(K_X + C)$ and $\mathcal{O}_X(C)$ are generated by their global sections; then E_L is μ–semistable with respect to c and it is also μ–stable if $c(C) > 0$.

Proof By Proposition 3 $(E_L)|_C \cong E_{(L|_C)}$, since $r = p_g = 0$; on the other hand, $L|_C = K_C$, so the statement follows from Theorem 4.

When $r \neq 0$, the restriction to the curve is no longer semistable, but in the case of K3 surfaces Proposition 3 is enough to prove the μ–stability.

Proof of Theorem 1 Let $C \in |L|$ be a smooth irreducible curve of genus $g \geq 2$. We will consider three cases: $c(C) \geq 2$, $c(C) = 1$ and $c(C) = 0$.

By Proposition 3 we have $(E_L)|_C = E_{K_C} \oplus \mathcal{O}_C$, since $L|_C \cong K_C$; moreover $\mu(E_L) = \frac{2g - 2}{g} < 2$. Let us suppose that $g \geq 3$: if $g = 2$ then C is hyperelliptic and we will deal with the case $c(C) = 0$ later. Let F be a torsion-free quotient sheaf of E_L of rank $0 < \text{rk } F < g$; then $F|_C$ is a quotient of $(E_L)|_C$ and we can suppose that it is a vector bundle on C. There is a diagram of the form

$$
\begin{array}{ccccccccc}
0 & \longrightarrow & \mathcal{O}_C & \longrightarrow & (E_L)|_C & \longrightarrow & E_{K_C} & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & W & \longrightarrow & F|_C & \longrightarrow & G \oplus \tau & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & & 0 & & 0 & & 0 & & 0
\end{array}
$$

where G is a vector bundle generated by its global sections, W is either \mathcal{O}_C or 0 and τ is a torsion sheaf on C, hence $\deg W = 0$ and length $\tau \geq 0$. So we get $\mu(F) = \frac{\deg G + \text{length } \tau}{\text{rk } F}$.

Let us recall once more that E_L and all its quotients are globally generated.

1. If $\text{rk } G = 0$, then $\text{rk } (F) = 1$ and we always have $\mu(F) \geq 2$. Indeed, we cannot have $F = \mathcal{O}_X$, since this would imply the existence of a non-zero section $\mathcal{O}_X \hookrightarrow M_L$, in contradiction with $H^0(X, M_L) = 0.$ Hence $F = \mathcal{O}_X(D)$ with $D > 0$ an effective base-point free divisor such that $D.C \geq 1$ because C is ample; since $\mathcal{O}_C(D)$ is globally generated we have then $D.C \geq 2$.

2. If $\text{rk } G > 0$, then G is generated by its global sections such that $H^0(C, G^*) = 0$, because G^* is a subbundle of M_{K_C} and $H^0(C, M_{K_C}) = 0$; the hypotheses of Lemma 1 then hold and, since $\mu(F) \geq \frac{\deg G}{\text{rk } F}$, we have:

(a) if $h^1(\text{det } G) < 2$, since $g \geq 3$, then by Lemma 1

$$\mu(F) \geq 1 + \frac{g - 2}{\text{rk } G + 1} > 1 + \frac{g - 2}{g} = \mu(E_L).$$

(b) If $h^1(\text{det } G) \geq 2$, then by Lemma 1

$$\mu(F) \geq 2 + \frac{\text{c(det } G) + \deg \tau - 2}{\text{rk } G + 1} \geq 2 > \mu(E_L)$$

if $c(\text{det } G) \geq 2$, in particular if $c(C) \geq 2$, but also if $c(\text{det } G) = 1$ and $\deg \tau > 0$.

This shows that $\mu(F) > \mu(E_L)$ in the case $c(C) \geq 2$.

\[\text{Springer} \]
We now deal with the case \(c(C) = 1 \). We can repeat the above proof by applying Lemma 1 and it does not work only if \(h^1(\det G) \geq 2 \), \(\deg \tau = 0 \) and \(c(\det G) = 1 \). If \(g = 3 \) then \(\mu(E_L) = \frac{4}{3} \) and we always have \(\mu(F) > \frac{4}{3} \).

From now on we assume \(g \geq 4 \); then either the curve is trigonal or a smooth plane quintic of genus \(g = 6 \) (see [6]).

1. If there is a \(g_3^1 \) on \(C \), the only line bundles which compute the Clifford index are \(O_C(g_3^1) \) and \(O_C(K_C - g_3^1) \).

 (a) If \(\det G = O_C(g_3^1) \), since \(h^1(\det G) \geq 2 \), by Lemma 1 we have \(\deg G \geq 2 \rk G + 1 \), hence in this case \(\rk G = 1 \). Then \(\rk F = 2 \) and \(\det F_C = O_C(g_3^1) \); it follows that \(\det F = O_X(D) \) with \(D.C = 3 \). By the Hodge index theorem then, since \(g \geq 4 \), we have \(D^2 \leq \frac{9}{2g-2} < 2 \), so \(D^2 = 0 \) and \(D = kE \) with \(k \geq 1 \) and \(E \) an elliptic curve; since \(D.C = 3 \) and \(C.E \geq 2 \), this implies \(k = 1 \) and \(h^0(O_X(D)) = 2 \); by Lemma 2, it follows from \(h^1(\det F^*) = 0 = \text{Ext}^1(O_X, \det F) \) that \(F = O_X \oplus \det F \), hence \(h^0(F^*) > 0 \), which is impossible.

 (b) If \(\det G = O_C(K_C - g_3^1) \) we have \(\deg G = 2g - 5 \) and \(\rk G \leq g - 3 \) by Lemma 1, hence

 \[
 \mu(F) \geq \frac{2g - 5}{\rk G + 1} \geq \frac{2g - 5}{g - 2} = 2 - \frac{1}{g - 2} > \mu(E_L)
 \]

 if \(g > 4 \). If \(g = 4 \) we have \(\deg G = 3 \) and we fall in the former case.

2. If there is a \(g_3^2 \) on \(C \), the genus is \(g = 6 \) and the only line bundle which computes the Clifford index is \(O_C(g_3^2) \cong O_C(K_C - g_3^2) \).

 If \(\det G = O_C(g_3^2) \), since \(h^1(\det G) \geq 2 \), by Lemma 1 \(\deg G \geq 2 \rk G + 1 \), hence \(\rk G \leq 2 \) and \(\rk F \leq 3 \). Therefore we get

 \[
 \mu(F) = \frac{5}{\rk G + 1} \geq \frac{5}{3} = \mu(E_L)
 \]

 Let us investigate whether equality can hold or not; suppose that \(\rk F = 3 \). Since \(F \) is of rank \(> 2 \) generated by its global sections, there is a short exact sequence

 \[
 0 \longrightarrow O_X \longrightarrow F \longrightarrow V \longrightarrow 0
 \]

 with \(V \) of rank \(2 \) generated by its global sections such that \(\det V = \det F = O_X(D) \) with \(D.C = 5 \). By the Hodge index theorem then \(D^2 \leq 2 \); however the case \(D^2 = 2 \) cannot occur, since otherwise \((C - 2D)^2 = -2 \) and by Riemann-Roch theorem at least one between \(C - 2D \) and \(2D - C \) would be effective, contradicting \((C - 2D).C = 0 \) and the ampleness of \(C \). If \(D^2 = 0 \), then \(D = kE \) with \(k \geq 1 \) and \(E \) an elliptic curve; since \(D.C = 5 \) and \(C.E \geq 2 \), this implies \(k = 1 \) and \(h^0(O_X(D)) = 2 \), so by Lemma 2 there is a short exact sequence

 \[
 0 \longrightarrow O_X \longrightarrow V \longrightarrow \det V \longrightarrow 0
 \]

 and in cohomology we obtain \(h^1(V^*) = h^1(V) = 0 \). As a consequence we have \(\text{Ext}^1(O_X, V) = 0 \) and \(F = O_X \oplus V \), impossible since it would imply \(h^0(F^*) > 0 \).

 Then \(\mu(F) > \mu(E_L) \) also if \(c(C) = 1 \).

 Suppose now that \(C \) is a hyperelliptic curve; then the morphism \(\phi_L : X \longrightarrow P^8 \) induces a double covering \(\pi : X \longrightarrow F \) where \(F \subset P^8 \) is a rational surface of degree \(g - 1 \) which is either smooth or a cone over a rational normal curve (see [1, p. 129]). let \(i : F \hookrightarrow P^8 \) be
the embedding and \(H = i^*O_{\mathbb{P}^d}(1) \) the ample hyperplane section of \(F \) such that \(\pi^*H = L \); whenever \(E_H \) is \(\mu \)-stable with respect to \(H \), this yields the \(\mu \)-stability of \(E_L \) with respect to \(L \), because \(\pi \) is a finite covering (see [5], Lemma 3.2.2).

If \(g = 2 \) then \(F = \mathbb{P}^2 \) (see [1, p. 129]) and it is well-known that its tangent bundle is \(\mu \)-stable with respect to \(O_{\mathbb{P}^2}(1) \) (see [5, Section 1.4]).

If \(g \geq 3 \), we have \(H^2 = g - 1 \). On the surface \(F \) we have the short exact sequence

\[
0 \longrightarrow H^* \longrightarrow H^0(F, H)^* \otimes \mathcal{O}_F \longrightarrow E_H \longrightarrow 0
\]

We know that the curve \(H \) is rational, so \(p_a(H) = 0 \); we consider a smooth curve \(\Gamma \in |2H| \).

By the adjunction formula we have \(0 = p_a(H) = 1 + \frac{1}{2}(H^2 + H.K_F) \), so we get \(H.K_F = -H^2 - 2 = -g - 1 \); using the adjunction formula once more we then obtain

\[
p_a(\Gamma) = 1 + \frac{1}{2}(\Gamma^2 + \Gamma.K_F) = 1 + 2H^2 + H.K_F = g - 2.
\]

Since \(g \geq 3 \) we have \(p_a(\Gamma) \geq 1 \). Since \(H \) is ample, we deduce \(H^0(F, \mathcal{O}_F(-H)) = H^1(F, \mathcal{O}_F(-H)) = 0 \) (see [7]). Then from the short exact sequence

\[
0 \longrightarrow \mathcal{O}_F(H - \Gamma) \longrightarrow \mathcal{O}_F(H) \longrightarrow \mathcal{O}_\Gamma(H) \longrightarrow 0
\]

and from the associated cohomology sequence it follows that \(H^0(F, \mathcal{O}_F(H)) \cong H^0(F, \mathcal{O}_\Gamma(H)) \), hence \((E_H)|_{\Gamma} = E_{\mathcal{O}_\Gamma(H)} \).

Moreover, \(\deg \mathcal{O}_\Gamma(H) = H.\Gamma = 2g - 2 > 2p_a(\Gamma) = 2g - 4 \). Since \(\mathcal{O}_\Gamma(H) \) is a line bundle on a smooth projective curve \(\Gamma \) of genus \(\geq 1 \) of degree \(> 2p_a(\Gamma) \), \((E_H)|_{\Gamma} \) is stable (see [4]).

Since \(E_H \) is \(\mu \)-stable with respect to \(2H \), it is also \(\mu \)-stable with respect to \(H \) and this ends the proof. \(\square \)

Remark 3 Throughout the proof the ampleness of \(L \) is needed only when \(C \) is a smooth plane quintic of genus \(g = 6 \) to show that we cannot have equality between slopes. Indeed, if we only assume that \(L \) is generated by its global sections and \(L^2 \geq 2 \) then \(E_L \) is still \(\mu \)-semistable with respect to \(L \) and also \(\mu \)-stable unless \(C \) is a smooth plane quintic of genus \(g = 6 \).

5 About abelian surfaces

In this section we study the same problem when \(X \) is an abelian surface over \(\mathbb{C} \) and we give the proof of Theorem 2.

Proposition 4 Let \(X \) be an abelian surface over \(\mathbb{C} \); then there is no irreducible hyperelliptic curve of genus \(g \geq 6 \) and no irreducible trigonal curve of genus \(g \geq 8 \) on \(X \).

Proof Take \(d = 2 \) or 3 and suppose that there is a \(d \)-gonal irreducible curve \(C \) of genus \(g \geq 2d + 2 \) on \(X \). Then there is an exact sequence of sheaves on \(X \)

\[
0 \longrightarrow F^* \longrightarrow H^0(g_d^1) \otimes \mathcal{O}_X \longrightarrow \mathcal{O}_C(g_d^1) \longrightarrow 0
\]

where \(F \) is a vector bundle of rank 2 such that \(c_1(F) = C \) and \(c_2(F) = d \). Dualising the above exact sequence we get

\[
0 \longrightarrow \mathcal{O}_X^2 \longrightarrow F \longrightarrow \mathcal{O}_C(K_C - g_d^1) \longrightarrow 0
\]
It follows from the assumption on the genus that $c_1(F)^2 - 4c_2(F) = 2g - 2 - 4d > 0$, so F is Bogomolov unstable (see [10]). Therefore, there exists a line bundle $\mathcal{O}_X(A)$ on X such that $\mu(\mathcal{O}_X(A)) > \mu(F)$, i.e. $2A.C > C^2$, and we have an exact sequence

$$0 \longrightarrow \mathcal{O}_X(A) \longrightarrow F \longrightarrow \mathcal{I}_2 \otimes \mathcal{O}_X(B) \longrightarrow 0$$

with $A + B = C$, $A.B + \deg \mathcal{I}_2 = d$ and $(A - B)^2 > 0$ (see [10]). Hence we can construct the following diagram

Since i is an isomorphism outside C, $\mathcal{O}_C(K_C - g_d^1) > 0$ and B is effective. By the Hodge index theorem $A^2B^2 \leq (A.B)^2 \leq d^2$. Since $K_X = 0$, A^2 and B^2 are even numbers and $A^2 > B^2$ because $2A.C > C^2$, hence we must have $B^2 \leq 2$.

If $B^2 = 2$, then $d = 3$ and $A^2 = 4$ and we would have $6 - 2A.B > 0$, so $A.B \leq 2$ in contradiction with $A^2B^2 = 8$. Therefore $B^2 = 0$, which means that $B = kE$ where E is an elliptic curve and $k \geq 1$; on the other hand we know that $0 \leq A.B \leq d$. In fact $A.B > 0$, otherwise by the Hodge index theorem it would follow $B = 0$ against the fact that $\mathcal{O}_C(K_C - g_d^1) > 0$; hence $1 \leq kA.E \leq d$. Since $A.E = 1$ would imply that A itself is elliptic, the only possibility is $k = 1$ and $A.B > 1$. In this case we have $\mathcal{O}_C(K_C - g_d^1) = 1$, hence by the snake lemma we have the following diagram
where τ and τ' are two torsion sheaves with support respectively on the zero-locus of s and σ. Hence the exactness of the third line implies that C is reducible, against our assumptions.

\square

Proof of Theorem 2 Since L is generated by its global sections such that $L^2 \geq 14$, the general member of $|L|$ is a smooth irreducible curve of genus $g \geq 8$. Given a nontrivial $\alpha \in \text{Pic}^0(X)$, we can find $C \in |L \otimes \alpha^{-1}|$ smooth irreducible of genus $g \geq 8$. The $\mu-$stability of E_L with respect to L is equivalent to the $\mu-$stability of E_L with respect to C. Since we have $H^0(\alpha) = H^1(\alpha) = 0$, it follows from Proposition 3 that $(E_L)|_C \cong E_L(C)$. Moreover, $L(C) \cong K_C \otimes \alpha_C$, so by Theorem 3 E_L is $\mu-$stable with respect to C if $c(C) \geq 2$. By the hypothesis on the genus of C and by Proposition 4 the cases $c(C) = 0, 1$ cannot occur, so there is nothing more to prove.

\square

Remark 4 In the case $g(C) \leq 7$ the same proof shows the $\mu-$stability of E_L if $c(C) \geq 2$. Moreover, it is possible to show that E_L is $\mu-$stable with respect to L also if either C is a smooth plane quintic of genus $g = 6$ or if C is a trigonal curve of genus $g = 4$.

Acknowledgments I want to express my gratitude to my advisor Prof. Arnaud Beauville for all the help he gave me throughout this year and for patiently reading all the drafts of this paper.

References

1. Beauville, A.: Surfaces algébriques complexes, Astérisque, vol. 54. Société Mathématique de France, Paris (1978)
2. Beauville, A.: Some stable vector bundles with reducible theta divisors. Manuscr. Math. 110, 343–349 (2003)
3. Camere, C.: About the stability of the tangent bundle restricted to a curve. C. R. Math. Acad. Sci. Paris 346(7–8), 421–426 (2008)
4. Ein, L., Lazarsfeld, R.: Stability and Restrictions of Picard Bundles, with an Application to the Normal Bundles of Elliptic Curves, London Math. Soc. Lecture Note Ser., vol. 179, pp. 149–156. Cambridge University Press, Cambridge (1992)
5. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, Aspects of Math. E31. Vieweg, Braunschweig (1997)
6. Martens, H.H.: Varieties of special divisors on a curve. II. J. Reine Angew. Math 233, 89–100 (1968)
7. Mumford, D.: Pathologies III. Am. J. Math. 89, 94–104 (1967)
8. Paranjape, K.: Ph.D. Thesis. http://www.imsc.res.in/~kapil/papers/chap1djvu/index.djvu
9. Paranjape, K., Ramanan, S.: On the Canonical Ring of a Curve. In: Algebraic Geometry and Commutative algebra, vol. II, pp. 503–516. Kinokuniya, Tokyo (1988)
10. Raynaud, M.: Fibrés vectoriels instables—applications aux surfaces (d’après Bogomolov). In: Algebraic Surfaces (Orsay, 1976–78), Lecture Notes in Mathematics, vol. 868, pp. 293–314. Springer, Berlin (1981)