RELATIVE SUBCOPURE-INJECTIVE MODULES

YUSUF ALAGÖZ

Abstract. In this paper, copure-injective modules are examined from an alternative perspective. For two modules A and B, A is called B-subcopure-injective if for every copure monomorphism $f : B \rightarrow C$ and homomorphism $g : B \rightarrow A$, there exists a homomorphism $h : C \rightarrow A$ such that $hf = g$. The class $\mathbb{CP}^{-1}(A) = \{B : A$ is B-subcopure-injective$\}$ is called the subcopure-injectivity domain of A. We obtain characterizations of copure-injective modules, right CDS rings and right V-rings with the help of subcopure-injectivity domains. Since subcopure-injectivity domains clearly contains all copure-injective modules, studying the notion of modules which are subcopure-injective only with respect to the class of copure-injective modules is reasonable. We refer to these modules as sc-indigent. We studied the properties of subcopure-injectivity domains and of sc-indigent modules and investigated these modules over some certain rings.

1. Introduction and preliminaries

Throughout this paper, R will denote an associative ring with identity, and modules will be unital right R-modules, unless otherwise stated. As usual, the category of right R-modules is denoted by $\text{Mod} - R$.

Some new studies in module theory have focused on to approach to the injectivity from the point of relative notions. The injectivity domain $\mathbb{In}^{-1}(A)$ for a module A, is the class of all modules B such that A is B-injective [1]. Given A and B modules, A is called B-subinjective if for every monomorphism $f : B \rightarrow C$ and homomorphism $g : B \rightarrow A$, there exists a homomorphism $h : C \rightarrow A$ such that $hf = g$. Instead of using the injectivity domain, in latest articles, authors have proposed to consider an alternative sight so-called subinjectivity domain $\mathbb{In}^{-1}(A)$, contains of modules B such that A is B-subinjective (2). It is clear that injectivity of A is equivalent to that $\mathbb{In}^{-1}(A) = \text{Mod} - R$. If B is injective, then A is exactly B-subinjective. So by [2] Proposition 2.3), the class of injective modules is the smallest...
possible subinjectivity domain. The recent studies of non-injective modules have been made to figure out the notion of modules that are subinjective only with respect to the class of injective modules. This kind of non-injective modules are called indigent in [2]. So far, it is not known whether the existence of indigent modules for an arbitrary ring, but a positive answer is known for some rings, such as Noetherian rings ([3, Proposition 3.4]).

A submodule A of a right R-module B is said to be pure if for every left R-module K the natural induced map $i \otimes 1_K : A \otimes K \to B \otimes K$ is a monomorphism. Recall that a module A is said to be B-pure-injective if for every pure monomorphism $f : C \to B$ and every homomorphism $g : C \to A$, there exists a homomorphism $h : B \to A$ such that $hf = g$. A module A is said to be pure-injective if it is B-pure-injective for every module B. As an analogue to the injectivity profile of [12], the pure-injectivity profile of a ring is introduced in [5]. The pure-injectivity domain $\mathcal{PI}^{-1}(A)$ of a module A, consists of those modules B such that A is B-pure-injective. Inspired by the notion of subinjectivity, the notion of pure-subinjectivity introduced in [11]. A module A is called B-pure-subinjective if for every pure monomorphism $f : B \to C$ and homomorphism $g : B \to A$, there exists a homomorphism $h : C \to A$ such that $hf = g$. The pure-subinjectivity domain of a module A is the class $\mathcal{PSI}^{-1}(A) = \{ B : A$ is B-pure-subinjective $\}$. If B is pure-injective, then A is exactly B-pure-subinjective. So by [11, Theorem 2.4], for a module A, the class $\mathcal{PSI}^{-1}(A)$ must contain the class of pure-injective modules at least. In [11], modules whose pure-subinjectivity domain consists of only pure-injective modules is called pure-subinjectively poor (ps-poor for short).

An R-module A is said to be finitely embedded (or cofinitely generated) if $E(A) = E(S_1) \oplus E(S_2) \oplus \ldots \oplus E(S_n)$, where S_1, S_2, \ldots, S_n are simple R-modules (see [16]). If an R-module A is isomorphic to $\prod_{i \in I} E(S_\alpha_i)$, where I is some index set, then A is called a cofree module (see [6]). A right R-module A is said to be cofinitely related if there is an exact sequence $0 \to A \to B \to C \to 0$ of R-modules with B finitely embedded, cofree and C finitely embedded (see [6]). As a dual notion of purity, by using cofinitely related modules, the notion of copurity is introduced in [7]. An exact sequence of R-modules $0 \to A \to B \to C \to 0$ is called a copure exact sequence if every cofinitely related right R-module is injective relative to this sequence.

Following idea on pure-injectivity profile of [6], in [15], the copure-injectivity profile of a ring is introduced. For two modules A and B, A is called B-copure-injective if for every copure monomorphism $f : C \to B$ and a homomorphism $g : C \to A$, there exists a homomorphism $h : B \to A$ such that $hf = g$. A is copure-injective if it is injective with respect to every copure exact sequences (see [8]). The copure-injectivity domain $\mathcal{CPI}^{-1}(A)$ of A is the class of modules B such that A is B-copure-injective. In [15], copure-injectively-poor (shortly copi-poor) modules introduced as modules with minimal copure-injectivity domain and studied properties of copi-poor modules. The existence of copi-poor modules are
studied and investigated over some certain rings, but we do not know whether copi-poor modules exist over arbitrary rings (see [15]).

Inspired by the notion of pure-subinjectivity from [11], in this paper we initiate the study of an alternative perspective on the analysis of the copure-injectivity of a module, as we introduce the notions of relative subcopure-injectivity and assign to every module its subcopure-injectivity domain. The aim of this paper is to investigate the viability of obtaining valuable information about a ring R from the perspective of subcopure-injectivity domain.

In Section 2, relative subcopure-injectivity and subcopure-injectivity domains of modules introduced. We investigate the properties of the notion of subcopure-injectivity and we compare subcopure-injectivity domains with (copure-)injectivity domains. We obtain characterizations of copure-injective modules, right CDS rings and right V-rings with the help of subcopure-injectivity domains.

In section 3, we introduced and studied the concept of cc-injective modules in terms of relative subcopure-injective modules. We give examples of cc-injective modules and compare cc-injective modules with cotorsion modules in Example [19]. We prove that R is a right V-ring if and only if every cc-injective right R-module is injective. We investigate when the class of B-subcopure-injective modules is closed under extensions.

An R-module is copure-injective if and only if its subcopure-injectivity domain consists of $Mod - R$. Since subcopure-injectivity domains clearly contain all copure-injective modules, it is reasonable to investigate modules which are subcopure-injective only with respect to the class of copure-injective modules. It is thus to keep in line with [11], we refer to these modules as sc-indigent. In Section 4 of this paper, we studied and investigated sc-indigent modules over some certain rings. We compared sc-indigent modules with indigent modules and ps-poor modules.

2. Relative subcopure-injective modules

In this section, we study the B-subcopure-injective modules for a module B and examine its fundamental properties.

Definition 1. For two modules A and B, A is called B-subcopure-injective if for every copure monomorphism $f : B \to C$ and homomorphism $g : B \to A$, there exists a homomorphism $h : C \to A$ such that $hf = g$. The class $\mathbb{CPI}^{-1}(A) = \{B : A$ is B-subcopure-injective$\}$ is called the subcopure-injectivity domain of A.

Hiremath proved in [8, Theorem 7] that every module can be embedded as a copure submodule in a direct product of cofinitely related modules. By [8, Proposition 3], every cofinitely related module is copure-injective and every direct product of copure-injective modules is copure-injective. This gives the below result that we use frequently in the sequel.

Lemma 2. For every module A, there exists a copure monomorphism $\alpha : A \to C$ with C is copure-injective.
Our next Lemma gives a characterization of the B-subcopure-injective modules for a module B.

Lemma 3. Let A and B be two modules. The following conditions are equivalent:

1. A is B-subcopure-injective.
2. For every homomorphism \(g : B \rightarrow A \) and every copure monomorphism \(\alpha : B \rightarrow C \) with C copure-injective, there exists \(h : C \rightarrow A \) such that \(h\alpha = g \).
3. For every homomorphism \(g : B \rightarrow A \) and every copure monomorphism \(\alpha : B \rightarrow C \) with \(C \) direct product of cofinitely related modules, there exists \(h : C \rightarrow A \) such that \(h\alpha = g \).
4. For every \(g : B \rightarrow A \) there exist a copure monomorphism \(\alpha : B \rightarrow C \) with C copure-injective and \(h : C \rightarrow A \) such that \(h\alpha = g \).

Proof. (1) \(\Rightarrow \) (2) Obvious. (2) \(\Rightarrow \) (3) It follows from [8, Proposition 3].

(3) \(\Rightarrow \) (4) Let \(g : B \rightarrow A \) be a homomorphism. By Lemma 2, there exists a copure monomorphism \(\alpha : B \rightarrow C \) with C copure-injective, whence \(C \) is a direct summand of \(F \) where \(F = \prod_{i \in I} F_i \) with each \(F_i \) cofinitely related by [8, Theorem 8]. So \(i\alpha : B \rightarrow F \) is copure monomorphism where \(i : C \rightarrow F \). By (3), there exists \(h : F \rightarrow A \) such that \((hi)\alpha = h(i\alpha) = g \), where \(i\alpha : B \rightarrow F \).

(4) \(\Rightarrow \) (1) Let \(g : B \rightarrow A \) be a homomorphism and \(\tilde{\alpha} : B \rightarrow D \) a copure monomorphism. By (4), there exists a monic copure map \(\alpha : B \rightarrow C \) with \(C \) copure-injective and a homomorphism \(h : C \rightarrow A \) such that \(h\alpha = g \). So by the copure-injectivity of \(C \), there exists a homomorphism \(h : D \rightarrow C \) such that \(\alpha = \tilde{\alpha} h \). Then \(hh : D \rightarrow A \) and \(hh\tilde{\alpha} = h\alpha = g \). Hence, \(A \) is B-subcopure-injective.

Proposition 4. Let \(A \) be an R-module. The following conditions are equivalent:

1. \(A \) is copure-injective.
2. \(\text{CPI}^{-1}(A) = \text{Mod} - R \).
3. \(A \) is A-subcopure-injective.

Proof. (1) \(\Rightarrow \) (2) For any R-module \(B \) and any copure-injective module \(A \), every copure monomorphism \(\alpha : B \rightarrow D \) and a homomorphism \(g : B \rightarrow A \), there exists a homomorphism \(h : D \rightarrow A \) such that \(h\alpha = g \). Hence, \(A \) is B-subcopure-injective and so \(B \in \text{CPI}^{-1}(A) \). Consequently, \(\text{CPI}^{-1}(A) = \text{Mod} - R \).

(2) \(\Rightarrow \) (3) Obvious.

(3) \(\Rightarrow \) (1) Assume that \(A \) is A-subcopure-injective. For any copure monomorphism \(\alpha : A \rightarrow B \) with \(B \) copure-injective and \(1_A : A \rightarrow A \), there exists a homomorphism \(g : B \rightarrow A \) such that \(g\alpha = 1_A \). Thus \(\alpha \) splits. This means that \(A \) is copure-injective.

The next result asserts that subcopure-injectivity domain \(\text{CPI}^{-1}(A) \) of \(A \) how small can be. It should contain the copure-injective modules at least.

Proposition 5. \(\bigcap_{A \in \text{Mod} - R} \text{CPI}^{-1}(A) = \{ C \in \text{Mod} - R \mid C \text{ is copure-injective} \} \).
Proof. Suppose that each R-module is B-subcopure-injective for an R-module B. Then, by Proposition 4, B is copure-injective. Conversely, let A be any R-module and B a copure-injective module. Let $g : B \rightarrow A$ be a homomorphism and $\alpha : B \rightarrow C$ a copure monomorphism. Since B is copure-injective, the splitting map $\beta : C \rightarrow B$ gives the homomorphism $\beta \alpha = 1_B$. So $\beta (\alpha g) = (\beta \alpha) g = g$. Hence $B \in \mathcal{CPI}^{-1}(A)$ for any R-module A. □

Clearly, $\mathcal{CPI}^{-1}(A)$ contains $\mathcal{In}^{-1}(A)$ for any module A. The following example shows that equality need not hold.

Example 6. Let $G = \mathbb{Z}(n)$ be a cyclic group of order n. Since G is finite it is cofinitely related and so it is copure-injective \mathbb{Z}-module [8, Proposition 3]. So $G \in \mathcal{CPI}^{-1}(G)$ by Proposition 4. But $G \notin 2\mathcal{In}^{-1}(G)$, otherwise G would be an injective \mathbb{Z}-module.

It is natural to investigate conditions to get the coincidence of the injectivity, and subcopure-injectivity domains, either for a certain class of modules or all the modules in $\text{Mod} - R$. We start by proving that, for all modules, subcopure-injectivity domains are the same as their subinjectivity domains over a right V-ring. Recall that a ring R is a right V-ring if and only if all exact sequences in $\text{Mod} - R$ are copure if and only if all copure-injective modules are injective (see [8, Proposition 5]).

Corollary 7. Let R be a ring. The following conditions are equivalent:

1. R is a right V-ring.
2. $\mathcal{CPI}^{-1}(A) = \mathcal{In}^{-1}(A)$ for each R-module A.
3. $\mathcal{CPI}^{-1}(A) \subseteq \mathcal{In}^{-1}(A)$ for each R-module A.

Proof. (1) \Rightarrow (2) It is easy since for any module A, over a right V-ring its extension is copure.
(2) \Rightarrow (3) It is obvious.
(3) \Rightarrow (1) For a copure injective right R-module A, by Proposition 4, $A \in \mathcal{CPI}^{-1}(A)$. By (3), $A \in 2\mathcal{In}^{-1}(A)$. This says that A is injective, and so R is a right V-ring by [8, Proposition 5]. □

Proposition 8. Let A be a module. The following conditions are equivalent:

1. A is copure-injective.
2. $\mathcal{CPI}^{-1}(A)$ is closed under copure submodules.
3. $\mathcal{CPI}^{-1}(A) = \mathcal{CPI}^{-1}(A)$.
4. $\mathcal{CPI}^{-1}(A) \subseteq \mathcal{CPI}^{-1}(A)$.

Proof. The implications (1) \Rightarrow (2) and (1) \Rightarrow (3) are clear since $\mathcal{CPI}^{-1}(A) = \mathcal{CPI}^{-1}(A) = \text{Mod} - R$.

836 YUSUF ALAGÖZ
For a copure-injective extension C of A, $C \in \mathfrak{CPI}^{-1}(A)$, so A is also in $\mathfrak{CPI}^{-1}(A)$ by (2). Then by Proposition 4, A is copure-injective.

(3) \Rightarrow (4) It is clear.

(4) \Rightarrow (1) For a copure-injective extension C of A, $C \in \mathfrak{CPI}^{-1}(A)$. This implies that A is C-copure-injective i.e. $C = A \oplus B$ for some submodule B of A, whence A is copure-injective.

The rings for which every right R-module is copure-injective are called right CDS, [8, Corollary 18]. As a result of Proposition 8, we get the following Corollary.

Corollary 9. Let R be a ring. The following conditions are equivalent:

1. R is right CDS.
2. $\mathfrak{CPI}^{-1}(A) = \mathfrak{In}^{-1}(A)$ for each R-module A.
3. $\mathfrak{CPI}^{-1}(A) \subseteq \mathfrak{In}^{-1}(A)$ for each R-module A.

Proof. (2) \Rightarrow (3) It is clear.

(1) \Rightarrow (2) Let A be an R-module. Since R is a right CDS ring, A is copure-injective. The rest follows from Proposition 8.

(3) \Rightarrow (1) For any right R-module A, $\mathfrak{CPI}^{-1}(A) \subseteq \mathfrak{In}^{-1}(A)$ by the hypothesis. Thus every right R-module A is copure-injective by Proposition 8 whence R is right CDS.

Remark 10. If A is R-subcopure-injective, for a ring R and a module A, then $\mathfrak{CPI}^{-1}(A)$ and Mod_R need not be equal. For example if R is copure-injective ring that is not CDS, then for every module A, A is R-subcopure-injective by Proposition 8. But by the definition of right CDS ring, we can find a module A that is not copure-injective.

Proposition 11. Let A be a module. The following conditions are equivalent:

1. A is injective.
2. $\mathfrak{CPI}^{-1}(A) = \mathfrak{In}^{-1}(A)$.
3. $\mathfrak{CPI}^{-1}(A) \subseteq \mathfrak{In}^{-1}(A)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) It is clear.

(3) \Rightarrow (1) By the copure-injectivity of $E(A)$, $E(A) \in \mathfrak{CPI}^{-1}(A)$. By (3), $E(A) \in \mathfrak{In}^{-1}(A)$, and hence A is injective.

Corollary 12. Let R be a ring. The following conditions are equivalent:

1. R is semisimple.
2. $\mathfrak{CPI}^{-1}(A) = \mathfrak{In}^{-1}(A)$ for each R-module A.
3. $\mathfrak{CPI}^{-1}(A) \subseteq \mathfrak{In}^{-1}(A)$ for each R-module A.

Proof. (2) \Rightarrow (3) It is clear.

(1) \Rightarrow (2) Let A be an R-module. Since R is semisimple, A is injective. The rest follows from Proposition 11.
(3) \(\Rightarrow\) (1) For any right \(R\)-module \(A\), \(\text{CPI}^{-1}(A) \subseteq \mathfrak{m}^{-1}(A)\) by the hypothesis. Thus every right \(R\)-module \(A\) is injective by Proposition 11, whence \(R\) is semisimple.

In general, factors of copure-injective modules need not be copure-injective (see, [S, Remark 24]). But if \(R\) is a Dedekind domain, every copure factor of copure-injective module is copure-injective by [S, Corollary 28]. Hence, by the following Proposition, \(\text{CPI}^{-1}(A)\) is closed under copure homomorphic images over Dedekind domains for a module \(A\).

Proposition 13. \(\text{CPI}^{-1}(A)\) is closed under copure quotients for any module \(A\) if and only if every copure homomorphic image of a copure-injective module is copure-injective.

Proof. Let \(B\) be a copure submodule of copure-injective module \(A\). Since \(A \in \text{CPI}^{-1}(\frac{A}{B})\), by the hypothesis \(\frac{A}{B} \in \text{CPI}^{-1}(\frac{A}{B})\), and so \(\frac{A}{B}\) is copure-injective. Conversely, let \(A\) be a module and \(C\) a copure submodule of \(B\) with \(B \in \text{CPI}^{-1}(A)\). By Lemma 3 there exists a copure monomorphism \(\alpha : B \to D\) with \(D\) copure-injective. Let \(f : \frac{B}{C} \to A\) be any homomorphism. Consider the following pushout diagram:

\[
\begin{array}{ccc}
0 & \to & B & \xrightarrow{\alpha} & D & \xrightarrow{\pi} & \frac{D}{D} & \to & 0 \\
\pi & \downarrow & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \frac{B}{C} & \xrightarrow{\alpha'} & \frac{D}{C} & \xrightarrow{\pi'} & \frac{
\ast}{\ast} & \to & 0 \\
\end{array}
\]

where \(\pi : B \to \frac{B}{C}\) is the natural epimorphism. By commutativity of the following diagram:

\[
\begin{array}{ccc}
B & \xrightarrow{\alpha} & D \\
\downarrow & & \downarrow \pi'' \\
\frac{B}{C} & \xrightarrow{\alpha''} & \frac{D}{C}
\end{array}
\]

and the pushout diagram property, there exists a map \(\phi : E \to \frac{D}{C}\) such that \(\phi\pi' = \pi''\) and \(\phi\alpha' = \alpha''\). Since \(A\) is \(B\)-subcopure-injective, there exists a homomorphism \(\varphi : D \to A\) such that \(\varphi\alpha = f\pi\). Then, \(\varphi(C) = \varphi\alpha(C) = f\pi(C) = f(0) = 0\). Hence, \(\text{Ker}(\varphi\pi') \subseteq \text{Ker}\varphi\), and so there exists \(\psi : \frac{D}{C} \to A\) such that \(\psi\pi'' = \varphi\). For every \(x \in B\), \(\psi(x + C) = \psi\pi''(x) = \varphi(x) = f\pi(x) = f(x + C)\). Thus \(\psi\) extends \(f\). Then by the hypothesis, \(\frac{B}{C}\) is copure-injective, so by Lemma 3, \(\frac{B}{C} \in \text{CPI}^{-1}(A)\). \qed
Proposition 14. $\mathcal{P}\mathcal{P}^{-1}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} \mathcal{P}\mathcal{P}^{-1}(A_i)$ for any set of modules $\{A_i\}_{i \in I}$.

Proof. Let $B \in \mathcal{P}\mathcal{P}^{-1}(\bigcap_{i \in I} A_i)$, $i \in I$ and $f : B \to A_i$ be a homomorphism. Then there exists a homomorphism $g : C \to \bigcap_{i \in I} A_i$ such that $g\alpha = i_{A_i}f$, where $\alpha : C \to A$ is the monic map with C copure-injective and $i_{A_i} : A_i \to \bigcap_{i \in I} A_i$ is the inclusion map. Let $\pi_{A_i} : \bigcap_{i \in I} A_i \to A_i$ denote the natural projection. Since $\pi_{A_i}g\alpha = \pi_{A_i}i_{A_i}f = f$, f is extended to $\pi_{A_i}g$. Therefore $B \in \mathcal{P}\mathcal{P}^{-1}(A_i)$ for any $i \in I$. Conversely, let $B \in \mathcal{P}\mathcal{P}^{-1}(A_i)$ for all $i \in I$ and $f : B \to \bigcap_{i \in I} A_i$. Hence for each $i \in I$, there exists $g_i : C \to A_i$ with $g_i\alpha = \pi_{A_i}f$. Now define $g : C \to \bigcap_{i \in I} A_i$ by $x \mapsto g_i(x)$. Since $g\alpha = f$, g extends f. Thus, $B \in \mathcal{P}\mathcal{P}^{-1}(\bigcap_{i \in I} A_i)$. \hfill \Box

Corollary 15. Let B be a module. Then B-subcopure-injective modules are closed under direct summands and finite direct sums.

Proof. Let A be a module with decomposition $A = \oplus_{i=1}^n A_i$. By Proposition 14, $B \in \mathcal{P}\mathcal{P}^{-1}(A)$ if and only if $B \in \bigcap_{i=1}^n \mathcal{P}\mathcal{P}^{-1}(A_i)$. Now the result follows. \hfill \Box

The following shows that Proposition 14 do not hold for infinite direct sums.

Example 16. Let $K_i = \mathbb{Z}_{p_i}$ and $G = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}_{p_i}$, where p_i is a prime integer for all $i \in \mathbb{N}$. Since every \mathbb{Z}_{p_i} is pure-injective, every \mathbb{Z}_{p_i} is copure-injective by Proposition 9. So $G \in \mathcal{P}\mathcal{P}^{-1}(\mathbb{Z}_{p_i})$ for all $i \in \mathbb{N}$. But $G \notin \mathcal{P}\mathcal{P}^{-1}(G)$ since G is not copure-injective by Examples-(ii)]).

Proposition 17. If $B \in \mathcal{P}\mathcal{P}^{-1}(A)$, then every direct summand of B is in $\mathcal{P}\mathcal{P}^{-1}(A)$.

Proof. Suppose C is a direct summand of B, and let $f : C \to A$ be a homomorphism. By Lemma 2, there exist copure monomorphisms $i : B \to D$ and $j : C \to E$ with D and E copure-injective. Consider the following diagram:

\[
\begin{array}{ccc}
0 & \longrightarrow & C \\
& & \downarrow j \\
& & E \\
& & \downarrow i \\
& & D
\end{array}
\]

where $i_C : C \to B$ the inclusion map. Since D is copure-injective, there exists $h : E \to D$ such that $hj = ii_C$. Let $\pi_C : B \to C$ be the projection map. Since A is B-subcopure-injective, there exists a homomorphism $g : D \to A$ such that $gi = f\pi_C$. Then, $(gh)j = g(hj) = gii_C = f\pi_Ci_C = f$, and so by Lemma 3, A is C-subcopure-injective. \hfill \Box
3. CC-INJECTIVE MODULES

In this section, we introduced and studied the concept of cc-injective modules in terms of relative subcopure-injective modules.

A module \(C \) is said to be co-absolutely co-pure (c.c. in short) if every exact sequence of modules ending with \(C \) is copure, equivalently \(\text{Ext}^1_R(C, A) = 0 \) for every co-finitely related module \(A \). Clearly every projective module is c.c. But the converse need not be true, for instance, the additive group \(\mathbb{Q} \) is a c.c. \(\mathbb{Z} \)-module but \(\mathbb{Q} \) is not projective as a \(\mathbb{Z} \)-module (see, [9, Example on page 290]).

Definition 18. A right module \(A \) is called cc-injective if \(\text{Ext}^1_R(B, A) = 0 \) for any c.c. module \(B \).

Recall that a module \(A \) is called cotorsion if \(\text{Ext}^1_R(B, A) = 0 \) for every flat module \(B \). A module \(A \) is called linearly compact if any family of cosets having the finite intersection property has a nonempty intersection. A commutative ring is called classical if the injective hull \(E(S) \) of all simple modules \(S \) are linearly compact (see [17, §3]).

Example 19. (1) By definition, any cofinitely related module is cc-injective.
(2) By [9, Remark 15], c.c. modules need not be flat in general. By [9, Corollary 14] c.c. modules are flat over a commutative ring. So, in this case every cotorsion module is cc-injective.
(3) By [9, Remark 12], flat modules need not be c.c. Over a commutative classical ring flat modules are c.c. by [9, Proposition 11]. So, in this case every cc-injective module is cotorsion.

Remark 20. Over a commutative ring \(\mathbb{R} \) every simple \(\mathbb{R} \)-module is cotorsion by [13, Lemma 2.14]. So by Example 19(2), every simple \(\mathbb{R} \)-module is cc-injective.

Lemma 21. Every copure-injective module is cc-injective.

Proof. Let \(A \) be a copure-injective module and \(B \) a c.c. module. By [9, Proposition 5], there exists a copure exact sequence \(0 \rightarrow D \rightarrow P \rightarrow B \rightarrow 0 \) with \(P \) projective. If we apply \(\text{Hom}(_ , A) \) to this sequence, we have \(\text{Hom}(P, A) \rightarrow \text{Hom}(D, A) \rightarrow \text{Ext}^1_R(B, A) \rightarrow \text{Ext}^1_R(P, A) = 0 \). Since \(A \) is copure-injective, \(\text{Hom}(P, A) \rightarrow \text{Hom}(D, A) \) is epic, and so \(\text{Ext}^1_R(B, A) = 0 \) for any c.c. module \(B \). Hence \(A \) is cc-injective. \(\square \)

Proposition 22. For a ring \(\mathbb{R} \), the following conditions are equivalent:

(1) \(\mathbb{R} \) is a right \(V \)-ring.
(2) Every copure-injective right \(\mathbb{R} \)-module is injective.
(3) Every cc-injective right \(\mathbb{R} \)-module is injective.

Proof. (1) \(\Leftrightarrow \) (2) It follows by [8, Proposition 5].
(3) \(\Rightarrow \) (2) It immediately from Lemma 21.
(1) \(\Rightarrow\) (3) Let \(A\) be a cc-injective \(R\)-module and \(B\) any \(R\)-module. Since \(R\) is right \(V\), \(B\) is a c.c. module by [9, Proposition 4]. Thus \(\text{Ext}^1_R(B, A) = 0\) for any \(R\)-module \(B\), and so \(A\) is injective.

Proposition 23. Let \(B\) be an \(R\)-module and \(\alpha : B \rightarrow C\) a copure monomorphism with \(C\) copure-injective. If \(C/\text{im}(\alpha)\) is c.c., then every cc-injective module is \(B\)-subcopure-injective.

Proof. Let \(A\) be a cc-injective module and \(C/\text{im}(\alpha)\) a c.c. module. Applying functor \(\text{Hom}(-, A)\) to the exact sequence \(0 \rightarrow B \rightarrow C \rightarrow C/\text{im}(\alpha) \rightarrow 0\), we have \(\text{Hom}(C, A) \rightarrow \text{Hom}(B, A) \rightarrow \text{Ext}^1_R(C/\text{im}(\alpha), A)\). Since \(C/\text{im}(\alpha)\) is c.c., \(\text{Ext}^1_R(C/\text{im}(\alpha), A) = 0\) and so \(\text{Hom}(C, A) \rightarrow \text{Hom}(B, A)\) is epic. Hence \(A\) is \(B\)-subcopure-injective by Lemma [3].

Theorem 24. Let \(A\) and \(B\) be two modules. Consider the following conditions:

1. \(A\) is \(B\)-subcopure-injective.
2. For every homomorphism \(g : B \rightarrow A\), there exist a monomorphism \(\alpha : B \rightarrow C\) with \(C\) copure-injective and a homomorphism \(h : C \rightarrow A\) such that \(h\alpha = g\).
3. For every homomorphism \(g : B \rightarrow A\), there exist a monomorphism \(\alpha : B \rightarrow C\) with \(C\) cc-injective and a homomorphism \(h : C \rightarrow A\) such that \(h\alpha = g\).
4. For every homomorphism \(g : B \rightarrow A\) and for any extension \(\alpha : B \hookrightarrow C\) with \(C/B\) is c.c., there exists \(h : C \rightarrow A\) such that \(h\alpha = g\).

Then (1) \(\Leftrightarrow\) (2) \(\Rightarrow\) (3) \(\Rightarrow\) (4). Also, if \(D/\text{im}(\alpha)\) is c.c. for a copure monomorphism \(\alpha : B \rightarrow D\) with \(D\) copure-injective, then (4) \(\Rightarrow\) (1).

Proof. (1) \(\Rightarrow\) (2) Obvious by Lemma [3].

(2) \(\Rightarrow\) (3) It follows from Lemma [21] since every copure-injective module is cc-injective.

(2) \(\Rightarrow\) (1) Let \(\alpha : B \rightarrow C\) be a copure-monomorphism and \(g : B \rightarrow A\) a homomorphism. By (2), exists a monomorphism \(\beta : B \rightarrow D\) with \(D\) copure-injective and a homomorphism \(h : D \rightarrow A\) such that \(h\beta = g\). Since \(D\) is copure-injective, there exists a homomorphism \(f : C \rightarrow D\) such that \(f\alpha = \beta\). Hence, \((hf)\alpha = h\beta = g\), and so (1) follows.

(3) \(\Rightarrow\) (4) Let \(C\) be an extension of \(B\) with \(C/B\) is c.c. and \(g : B \rightarrow A\) a homomorphism. So, \(0 \rightarrow B \xrightarrow{g} C \rightarrow C/B \rightarrow 0\) is copure exact. Then consider the exact sequence with \(E\) cc-injective:

\[
0 \rightarrow \text{Hom}_R(C/B, E) \rightarrow \text{Hom}_R(C, E) \xrightarrow{\alpha^*} \text{Hom}_R(B, E) \rightarrow \text{Ext}^1_R(C/B, E) = 0
\]

Since, \(\alpha^*\) is surjective, by (3), there exists a monomorphism \(f : B \rightarrow E\) and a homomorphism \(h : E \rightarrow A\) such that \(hf = g\). Since \(\alpha^*\) is surjective, there exists a homomorphism \(\beta : C \rightarrow E\) such that \(\beta\alpha = f\). Hence, \(h(\beta\alpha) = hf = g\), and so (4) follows.
Let $\alpha : B \to D$ be a copure monomorphism with D copure-injective and $D/\text{im}(\alpha)$ is c.c. So, by (4), for any homomorphism $g : B \to A$ there exists $h : D \to A$ such that $h\alpha = g$. Thus A is B-subcopure-injective by Lemma 3.

Now we investigate when the class of B-subcopure-injective modules is closed under extensions.

Proposition 25. Let B be an R-module and $\alpha : B \to C$ a copure monomorphism with C copure-injective. The class of B-subcopure-injective modules is closed under extensions if and only if for every exact sequence $0 \to A' \to A \to C \to 0$ with A' B-subcopure-injective, A is B-subcopure-injective.

Proof. Let $0 \to A' \to A \to C \to 0$ be an exact sequence with A' B-subcopure-injective. Since C is copure-injective, it is B-subcopure-injective. By the hypothesis, A is B-subcopure-injective. Conversely, let $0 \to A' \to A \overset{\pi}{\to} A'' \to 0$ be an exact sequence with A' and A'' B-subcopure-injective. Then by Lemma 3 for every map $g : B \to A$, there exists a map $h : C \to A''$ such that $\pi g = h\alpha$ where $\alpha : B \to C$ is the copure monomorphism with C copure-injective. If we consider the pullback diagram:

$$
\begin{array}{ccc}
0 & \longrightarrow & A' \\
\downarrow & & \downarrow \\
0 & \longrightarrow & A'
\end{array}
\begin{array}{ccc}
A' & \overset{\pi}{\longrightarrow} & A'' \\
& & h \downarrow \\
D & \overset{f}{\longrightarrow} & C & \overset{h}{\longrightarrow} & 0
\end{array}
$$

there exists a homomorphism $\gamma : B \to D$ such that $f\gamma = g$ and $\beta\gamma = \alpha$. By hypothesis, D is B-subcopure-injective, so by Lemma 3 there exists a homomorphism $h' : C \to D$ such that $h'\alpha = \gamma$. Thus, $fh'\alpha = f\gamma = g$ and so, A is B-subcopure-injective by Lemma 3.

A ring R is said to be right co-noetherian if every homomorphic image of a finitely embedded R-module is finitely embedded, equivalently for each simple right R-module S the injective hull $E(S)$ is Artinian (see [10, Theorem]). Over a commutative noetherian ring, the injective hull of each simple right R-module is Artinian by [14, Exercise 4.17]. Thus every commutative Noetherian ring is co-noetherian. In the following, for an ideal I, we deal with an R-module structure of an R/I-module.

Proposition 26. Let R be a right co-noetherian ring and $f : R \to S$ a ring epimorphism. If A is cc-injective S-module, then A is cc-injective R-module.

Proof. Let A be a cc-injective S-module. Since $f : R \to S$ is a ring epimorphism, $S \cong R/I$ for some ideal I of R and so A can be considered as R/I-module. Let C be an extension of A by a c.c. module F as R-modules. Since F is c.c., the exact sequence $0 \to A \to C \to F \to 0$ is copure. Then $A \cap CI = AI$ for each right ideal I by [7, proposition 16]. Since A is an R/I-module, $A \cap CI = AI = 0$, and so $\frac{A+CI}{CI} \cong A$. Thus we have the following commutative diagram.
Since $C \otimes_A \frac{R}{I} \cong \frac{C \otimes_A \frac{R}{I}}{C \otimes_\frac{R}{I} I}$ is c.c. as an R/I-module, so the second exact sequence splits and so does the first. Hence $\text{Ext}^1_R(F, A) = 0$, and A is cc-injective R-module.

4. SC-INDIGENT MODULES

Indigent (resp. ps-poor) modules were introduced and some results about them were obtained in [2] (resp. [11]). Proposition 5 says that subcopure-injectivity domain of any module A contains all copure-injective modules, so studying the notion of modules which are subcopure-injective only with respect to the class of copure-injective modules is reasonable. It is thus to keep in line with [2], we refer to these modules as subcopure-injectively indigent (sc-indigent for short). In this section, sc-indigent modules investigated over certain rings and compared these modules with indigent modules and ps-poor modules.

Definition 27. A module A is said to be subcopure-injectively indigent (sc-indigent for short), if $\text{CPI}(A)$ consists of only copure-injective modules.

Remark 28. Let A be a module with decomposition $A = B \oplus C$. If B is sc-indigent, then so is A, by Proposition [4]

Proposition 29. For a ring R, the following conditions are equivalent:

1. R is right CDS.
2. Every R-module is sc-indigent.
3. There exists a copure-injective sc-indigent R-module.
4. 0 is an sc-indigent R-module.
5. R has an sc-indigent module and every sc-indigent R-module is copure-injective.
6. R has an sc-indigent module and every factor of an sc-indigent R-module is sc-indigent.
7. R has an sc-indigent module and every summand of an sc-indigent R-module is sc-indigent.

Proof. The implications (1) \Rightarrow (2) and (1) \Rightarrow (5) are clear since every R-module is copure-injective.
The implications (2) \Rightarrow (4) and (2) \Rightarrow (6) \Rightarrow (7) are clear.
(4) \Rightarrow (2) It immediately from Remark [28].
(2) \Rightarrow (3) The copure-injective extension C of any module A is sc-indigent.
(3) \Rightarrow (1) Let C be a copure-injective sc-indigent module and A a module. Since C is A-subcopure-injective, A is copure-injective. Then R is a right CDS ring.
(5) ⇒ (1) By (5), there exist an sc-indigent module B. Then $A \oplus B$ is also sc-indigent for any module A by Remark 28. So A is copure-injective by (5). Also A is copure-injective. Thus R is a right CDS ring.

(7) ⇒ (2) Let A be an R-module. Then $A \oplus B$ is an sc-indigent module for some sc-indigent module B. Hence, A is sc-indigent by the hypothesis.

Remark 30. Over a commutative uniserial ring R, every R-module is sc-indigent since such rings are CDS by [4, Theorem 10.4].

Remark 31. An sc-indigent module need not be indigent. Consider the ring $R = \mathbb{Z}/p^2\mathbb{Z}$, for some prime integer p. R is an artinian principal ideal ring. Hence it is a CDS-ring by [4, Theorem 10.4]. So every R-module is sc-indigent. Since $\mathbb{Z}/p^2\mathbb{Z}$ is injective $\mathbb{Z}/p^2\mathbb{Z}$-module, $\mathbb{Z}/p^2\mathbb{Z} = \text{Mod} \ R$. But since R is not a semisimple ring, $\mathbb{Z}/p^2\mathbb{Z}$ is not an indigent R-module.

Remark 32. An indigent module need not be sc-indigent. Let R be a commutative Noetherian ring which is not CDS and Γ a complete set of representatives of finitely presented right R-modules. Set $F := \bigoplus_{S_i \in \Gamma} S_i$. Thus the character module F^+ of F is a pure-injective indigent R-module by [3, Proposition 3.4]. Since R is commutative, F^+ is copure-injective by [8, Proposition 9], and so $\text{CPI}^{-1}(F^+) = \text{Mod} \ R$. But since R is not a CDS-ring, F^+ is not an sc-indigent R-module.

Proposition 33. Indigent modules and sc-indigent modules coincide over a right V-ring R.

Proof. Let R be a right V-ring. Then by Corollary 7, $\text{CPI}^{-1}(A) = \mathfrak{n}^{-1}(A)$ for any R-module A. Hence A is indigent if and only if A is sc-indigent by [8, Proposition 5].

Proposition 34. A module A is sc-indigent if and only if $\prod_{i \in I} A_i$ is sc-indigent where $A_i = A$ for all $i \in I$.

Proof. Clear by Proposition 14.

By Remark 28 and Proposition 34, sc-indigent rings are characterized as follows:

Corollary 35. For a ring R, the following are equivalent:

1. R_R is sc-indigent.
2. Any direct product of copies of R is sc-indigent.
3. Every free R-module is sc-indigent.
4. There exists a cyclic projective sc-indigent R-module.

Theorem 36. Let R be a ring, B an R-module and A an R/I-module for any ideal I of R. If $B/BI \in \text{CPI}^{-1}(A_{R/I})$, then $B \in \text{CPI}^{-1}(A_R)$.

Proof. Let $B/BI \in \text{CPI}^{-1}(A_{R/I})$, and C be a copure extension of B and $g : B \to A$ an R-homomorphism. Since copure short exact sequences of R-modules form a proper class by [7, Proposition 8], B/BI can be embedded in $C/C I$ as
a copure submodule via \(f : B/BI \to C/CI \) defined by \(f(b + BI) = b + CI \) for any \(b \in B \). Since \(BI \subseteq \text{Ker}(g) \), there exists a homomorphism \(h : B/BI \to A \) such that \(h\pi_B = g \) where \(\pi_B : B \to B/BI \). By assumption, there exists an \(R/I \)-homomorphism \(\tilde{h} : C/CI \to A \) such that \(\tilde{h}f = g \). Since \(h \) is also an \(R \)-homomorphism and \(\tilde{h}\pi_Ci_B = g \) where \(\pi_C : C \to C/CI \) and \(i_B : B \to C \) is the inclusion. Thus \(B \in \mathcal{CPI}^{-1}(A_R) \). \(\square \)

Corollary 37. Let \(I \) be an ideal of a ring \(R \) and \(A \) and \(B \) be \(R/I \)-modules. Then the following statements hold:

1. \(B \in \mathcal{CPI}^{-1}(A_R) \) if and only if \(B \in \mathcal{CPI}^{-1}(A_{R/I}) \).
2. \(A \) is a copure-injective \(R \)-module if and only if \(A \) is a copure-injective \(R/I \)-module.
3. \(A \) is an sc-indigent \(R \)-module if and only if \(A \) is an sc-indigent \(R/I \)-module.

Proof. (1) If \(A_R \) is \(B \)-subcopure-injective, then clearly it is a \(B \)-subcopure-injective \(R/I \)-module. The converse follows by Theorem 36.

(2) By using Proposition 4, (2) follows from (1).

(3) Clear by (1) and (2). \(\square \)

Recall [11] that a module \(A \) is called ps-poor if pure-subinjectivity domain of \(A \) consists of only pure-injective modules. Over a commutative classical ring \(R \), by [8, Corollary 17], pure-injective modules and copure-injective modules coincide. Hence, the following result is immediate.

Proposition 38. Let \(R \) be a commutative classical ring. Then an \(R \)-module \(A \) is sc-indigent if and only if \(A \) is ps-poor.

Since by [16, Theorem 2] and [17, Proposition 4.1], every commutative (co-)noetherian ring is classical, we have the following result.

Corollary 39. Let \(R \) be a commutative (co-)noetherian ring. Then an \(R \)-module \(A \) is sc-indigent if and only if \(A \) is ps-poor.

Remark 40. ps-poor abelian groups and sc-indigent abelian groups coincide by Corollary 39.

Corollary 41. Every finitely embedded \(\mathbb{Z} \)-module is copure-injective but not sc-indigent.

Proof. Let \(A \) be a finitely embedded \(\mathbb{Z} \)-module. Then \(A \) is cofinitely related by [6, Proposition 17]. So \(A \) is copure-injective by [3, Proposition 3]. Since \(\mathbb{Z} \) is not a CDS ring, by Proposition 29, \(A \) is not an sc-indigent module. \(\square \)

Proposition 42. If a ring \(R \) has an sc-indigent cc-injective module \(B \), then every module with its copure injective extension has c.c cokernel is copure-injective.
Proof. Let A be an R-module with the exact sequence $0 \to A \to C \to C/A \to 0$, where $A \to C$ is a copure extension of A with C is copure-injective. Consider the sequence $0 \to \text{Hom}(C/A, B) \to \text{Hom}(C, B) \to \text{Hom}(A, B) \to \text{Ext}^1(C/A, B)$. Since C/A is c.c., $\text{Ext}^1(C/A, B) = 0$. So by Lemma 3, $A \in \mathfrak{CPI}^{-1}(B)$, that is A is copure-injective.

Acknowledgement. The author is very grateful to the anonymous referees for carefully reading the original version of this paper and for providing several very helpful comments and suggestions.

References

[1] Anderson, F. W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1974.
[2] Aydoğdu, P., López-Permouth, S. R., An alternative perspective on injectivity of modules, J. Algebra, 338 (2011) 207-219.
[3] Durgun, Y., An alternative perspective on flatness of modules, J. Algebra Appl., 15(8) (2016) 1650145, 18.
[4] Fieldhouse, D. J., Pure theories, Math. Ann., 184 (1969) 1-18.
[5] Harmanci, A., López-Permouth, S. R., Üngör, B., On the pure-injectivity profile of a ring, Comm. Algebra, 43(11) (2015) 4984-5002.
[6] Hiremath, V. A., Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39 (1982), 1-9.
[7] Hiremath (Madurai), V. A., Copure Submodules, Acta Math. Hung., 44(1-2) (1984) 3-12.
[8] Hiremath (Madurai), V. A., Copure-injective modules, Indian J. Pure Appl. Math., 20(3) (1989) 250-259.
[9] Hiremath (Madurai), V. A., Co-absolutely co-pure modules, Proceedings of the Edinburgh Mathematical Society, 29 (1986), 289-298.
[10] Jans, J. P., On co-noetherian rings, J. London Math. Soc., 1 (1969), 588-590.
[11] López-Permouth, S. R., Mastromatteo, J., Tolooei, Y., Üngör, B., Pure-injectivity from a different perspective, Glasg. Math. J., 60(1) (2018), 135-151.
[12] López-Permouth, S. R., Simental-Rodriguez, J. E., Characterizing rings in terms of the extent of the injectivity and projectivity of their modules, J. Algebra, 362 (2012), 56-69.
[13] Mao, L., Ding, N., Notes On Cotorsion Modules, Comm. Algebra, 33 (2005), 349-360.
[14] Sharpe, D. W., Vamos, P., Injective Modules, (Cambridge Tracts in Mathematics and Mathematical Physics, 62), Cambridge, 1972.
[15] Toksoy, S. E., Modules with minimal copure-injectivity domain, J. Algebra Appl., 18(11) (2019), 195-201.
[16] Vamos, P., The dual of the notion of finitely generated, J. London Math. Soc., 43 (1968), 643-646.
[17] Vamos, P., Classical rings, J. Algebra, 34 (1975), 114-129.

Current address: Yusuf ALAGOZ: Siirt University, Department of Mathematics, Siirt, Turkey.
E-mail address: yusuf.alagoz@siirt.edu.tr
ORCID Address: https://orcid.org/0000-0002-2535-4679