Paleomagnetism and rock magnetism as tools for volcanology

Geoffrey A. Lerner1,2 · Elisa J. Piispa3,4 · Julie A. Bowles5 · Michael H. Ort6

Received: 30 June 2021 / Accepted: 8 January 2022 / Published online: 12 February 2022
© The Author(s) 2022

Abstract
Paleomagnetic and rock magnetic methods for studying volcanoes and their products have been developed since the second half of the twentieth century. These methods have been used to find tephra in sediment cores, date volcanic eruptions and deposits, determine emplacement temperatures of volcanic deposits, and estimate flow directions of dikes, lava flows, and pyroclastic flow deposits. In the twenty-first century, these techniques have steadily improved and expanded, resulting in more probing and precise studies of volcanoes using paleomagnetism. We believe that continual improvement of existing techniques and the increased awareness and interest in paleomagnetic methods should allow more studies to enhance the understanding of volcanic processes.

Keywords Paleomagnetism · Volcano · Lava flow · Pyroclastic density current · Dating · Emplacement temperature

Introduction
Assemblages of magnetic minerals in volcanic rocks typically record Earth’s magnetic field with high fidelity when they cool to ambient temperatures, making them ideal media for paleomagnetic studies (Brunhes 1906; Nakamura and Kikuchi 1912; Chevallier 1925; Cox and Doell 1960; Tauxe et al. 2018). In turn, this record of Earth’s field behavior can be used to place age constraints on volcanic processes, and the composition, grain size, abundance, and orientation of magnetic minerals can provide additional information on volcanic and magmatic processes (Ort et al. 2015b). Many tools that take advantage of the magnetic characteristics of erupted materials have been developed to answer pressing questions about volcanoes and their eruptions. In some cases, these tools are the most effective or the only way to answer such questions. Paleomagnetic techniques were first used for volcanic studies in the 1950s (Hatherton 1954, Hospers et al. 1954, Aramaki and Akimoto 1957), and paleomagnetic and rock magnetic approaches were applied in many ways in volcanology throughout the second half of the twentieth century (Table 1). Some prominent questions in volcanology to which paleomagnetic methods were applied to include the following:

• Is there tephra/cryptotephra in a sediment core? The presence of magnetic minerals in volcanic materials means that they can easily be detected among less-magnetic material through the study of magnetic susceptibility, allowing for the identification of volcanic events, such as eruptions, within a sediment core (Thompson et al. 1980) (Fig. 1a).
• What are the relative ages of volcanic materials? Paleosecular variation (PSV) reflects the continuous changes of the Earth’s magnetic field direction and strength through time before observatory data. Localized or composite records of field change, called PSV reference curves, were created for a variety of locations worldwide (e.g., Thompson and Turner 1979; Turner
Volcano question	Method	What it tells you	Key studies (pre-2000)	Past 20 years	Recent studies
Is there tephra in a sediment core?	Magnetic susceptibility scan of core	Whether there are layers of tephra (high magnetic susceptibility) in a sediment core	Thompson et al. 1980	McCanta et al. 2015; Akulinchev et al. 2016	Kletetschka et al. 2019; Rutledal et al. 2020
Are two volcanic deposits related?	Correlation/differentiation (inter-deposit paleomagnetic vector comparison)	Whether two volcanic deposits are temporally related based on (dis/similarity of paleomagnetic vectors	Hospers 1954; Gardner 1994; Hagstrum and Champion 1994	Speranza et al. 2012; Pinton et al. 2017	Williams-Jones et al. 2020; Downs et al. 2020
When did the volcano erupt?	Relative/numerical dating (comparison of paleomagnetic direction/intensity with regional reference PSV curve)	Relative/numerical age of the rock	Rutten 1960; Coombs et al. 1960	Speranza et al. 2006; Pavón-Carrasco et al. 2011	Morales et. al 2020; Yasuda et al. 2020
What temperature was that mass flow emplaced at?	Emplacement temperature estimation (intra-deposits paleomagnetic direction comparison)	Approximate/numerical emplacement temperature	Aramaki and Akimoto 1957; Hobliit and Kellogg 1979	McClelland et al. 2004; Tanaka et al. 2004; Paterson et al. 2010	Lerner et al. 2019b
Which way was the lava or pyroclastic flow flowing?	Anisotropy of magnetic susceptibility	The likely flow direction of a lava or pyroclastic flow; flow processes in lavas and density currents	Ellwood 1978; Cagnoli and Tarling 1997; Palmer and MacDonald 1999	Caliñon-Tapia 2004; Porreca et al. 2015; Agrò et al. 2015; Ort et al. 2015a	Njanko et al. 2020; Haag et al. 2021
and Lillis 1994; St-Onge et al. 2003). Comparison of paleomagnetic data recorded by volcanic materials to the known regional field variations described by these PSV curves allowed for the relative dating of these materials (Rutten 1960; Coombs et al. 1960) (Fig. 1c). In long lava sequences, the paleomagnetic direction can also be used to identify reversal boundaries, which can be compared to the geomagnetic polarity timescale (GPTS; Ogg 2020) to provide crude age estimates (Kristjansson et al. 1995).

Are adjacent lava flows from the same eruption? Relative dating by comparing the paleomagnetic direction and/or intensity of potentially related lava flows has been used in many instances (e.g., Hoppers 1954; Gardner 1994; Hagstrum and Champion 1994) for temporally correlating or differentiating flows (Fig. 1d). Identification of reversal boundaries can be used to correlate lava sequences on a larger scale, across hillsides and valleys, providing an exceptional aid in geological mapping of volcanic terrains. This can be done either with a fluxgate magnetometer or through classical paleomagnetic methods (e.g., Mankinen and Cox 1988; Herrero-Bervera and Coe, 1999; Kristjansson et al. 1995).

Are volcanic mass flow deposits associated with hot or cold events? Comparison of clasts found within a mass flow deposit can allow for the determination of whether the mass flow was at a high or low temperature upon emplacement (i.e., pyroclastic flow vs. lahar) (Aramaki and Akimoto 1957; Hoblitt and Kellogg 1979) (Fig. 1b). Anisotropy of magnetic susceptibility (AMS) data show the physical alignment of magnetic grains within a rock and can be used to determine the three-dimensional flow direction of a lava flow or dike, as well as to triangulate the vent location of a pyroclastic flow (e.g., Ellwood 1978; MacDonald and Palmer 1990; Cagnoli and Tarling 1997) (Fig. 1e).

Which way was a prehistoric feeder dike, lava flow, or pyroclastic density current (PDC) flowing? Anisotropy of magnetic susceptibility (AMS) data show the physical alignment of magnetic grains within a rock and can be used to determine the three-dimensional flow direction of a lava flow or dike, as well as to triangulate the vent location of a pyroclastic flow (e.g., Ellwood 1978; MacDonald and Palmer 1990; Cagnoli and Tarling 1997) (Fig. 1e).

The past 20 years in paleomagnetic study of volcanoes

In the past two decades, advances in the understanding of paleomagnetism and rock magnetism, new study topics, and improved paleomagnetic and rock magnetic instrumentation and measurement methods have all contributed to more expansive and precise paleomagnetic investigations of volcanologic topics. This has included improvements to already existing techniques, as well as the development of new ones (Table 1).

From relative to numerical dating

Whereas twentieth century paleomagnetic dating studies of volcanic deposits typically involved relative dating outcomes, more recent studies have been able to produce numerical age estimates (discrete ages or age ranges) for the studied volcanic materials. This advance can be attributed to both an increase in high-precision data defining local PSV reference curves and new algorithms for assessing paleomagnetic results. PSV dating depends on comparing the results of studied samples to a pre-existing reference curve for the general study area in order to assess the best fit for age results. This technique is most effective when using a local, rather than composite, reference curve (Merrill et al. 1996; Pérez-Rodríguez et al. 2021).

It is worth noting that numerical dating using paleomagnetism is still limited not just by the location of available PSV curves but also by the temporal range of those curves, which typically span at least 1 kyr, up to 10–20 kyr BP in local curves (e.g., Stanton et al. 2011; Lund et al. 2017; Sheng et al. 2019), and up to~ 100,000 years BP in global models (Panovska et al. 2018). Global field models have been developed that allow for extrapolation to low-data-density regions that lack reference curves, but these are accompanied by greater uncertainty (e.g., Korte and Constable 2005; Korte et al. 2011; Pavón-Carrasco et al. 2014; Constable et al. 2016). The increasing number of high-resolution regional reference curves and better-constrained global models that have emerged in the past decades, as well as increased study of global paleointensity records, has opened a wide geographic range of volcanoes for numerical PSV dating (e.g., Panovska et al. 2018; Di Chiara 2020; Béguin et al. 2021; Mochizuki et al. 2021). The development of PSV dating tools (Pavón-Carrasco et al. 2011; Hnatyshin and Kravchinsky 2014) that use Bayesian statistics to compare the results of volcanic samples to the reference curve has allowed recent studies to obtain one or multiple discrete age ranges for a specific result, allowing for more precise dating of historic and prehistoric eruptions (Roperch et al. 2015; Yasuda et al. 2020).

Although most PSV dating studies still rely primarily on directional data, a more thorough catalog of paleointensity data has also resulted in better inputs for dating studies and extends analysis to non-oriented samples. This has resulted in an increase in the availability of paleointensity records to supplement directional data in dating studies (e.g., Carlutz et al. 2004; Bowles et al. 2006; Yu 2012; Morales et al. 2020).

With the rise in numerical dating, correlation and differentiation of volcanic units can also move toward temporally correlating lava flows using statistically obtained age estimates (Speranza et al. 2012; Pinton et al. 2017). PSV dating
b) Were the deposits hot and how hot?

a) Is there tephra in a sediment core?

Digital imager

X-radiography

Magnetic susceptibility

Lake or ocean sediment drill core

Depth (cm)

60

100

150

200

250

300

350

-1

0

1

Ash-rich layers

e) What direction did the lava or ignimbrite flow?

Southeast directed lava flow

Normal magnetic fabric where the susceptibility (K) maximum is aligned with the flow direction

Lower hemisphere stereonet

SE

SE

N

N

Kmax

Kmin

Kint

Kmag

Volcanic deposit III

Volcanic deposit II

Volcanic deposit I

Earth's magnetic field direction

Mean paleomagnetic directions and/or their 95% level of confidence cones overlapping can indicate relatedness in time.

c) How old is the volcanic unit?

d) Are two units related?
Volcanic materials, such as millimeter-sized lithic fragments, can be used to detect tephra, even cryptic tephra, from lake and ocean sediment cores due to their higher susceptibility values. Emplacement temperature estimates of PDCs. If volcanic clasts in a PDC are hot during emplacement, they acquire a paleomagnetic vector parallel to the ambient magnetic field. This direction will be recorded on the clasts’ magnetic vector up to the temperature (T) at which they were emplaced. Depending on how hot the PDC was, clasts will carry a single coherent component (left), two components with the lower temperature component recording the emplacement temperature (middle) or randomly oriented components (right) if the clasts were cold. Stereonets show the magnetic vector obtained during cooling within the deposit (red dots) and earlier in the clast’s history (blue dots). Numerical dating of volcanic deposits. The Earth’s magnetic field direction (described by two angles, declination and inclination) and intensity recorded during cooling of a volcanic unit can be used for dating. This is done by comparing the components against known variations of Earth’s magnetic field over relatively short time periods, called a paleovarian curve. The best age estimate is obtained through overlapping probability densities. Other constraints such as minimum and maximum ages or additional carbon dating can also be included. Correlation of volcanic units. Rock magnetic and paleomagnetic properties can be used to correlate or differentiate different units of a volcano. In this example, statistically identical directional data for units I and II implies temporal closeness. Flow direction determination. Magnetic susceptibility (K) is an anisotropic property and its tensor of second rank, for which one can determine its maximum, minimum, and intermediate values. These reflect the orientation/alignment of magnetic grains within the rock, which are affected, among other factors, by the flow of the material during emplacement. Therefore, the magnetic susceptibility can be used to determine the lava or PDC flow or dome growth direction shows particular usefulness in young volcanic deposits when geomagnetic field behavior is well constrained and isotopic age dating techniques may either be non-viable or return high uncertainties (e.g., 40Ar/39Ar, 14C).

Higher precision emplacement temperature estimates

Paleomagnetic determination of emplacement temperatures of volcanic deposits has emerged as a more frequently used tool for distinguishing between hot and cold volcanic mass flow deposits (Paterson et al. 2010). Originally used simply to distinguish between a deposit that was emplaced above or below the Curie temperature of its principal magnetic minerals (Aramaki and Akimoto 1957), a more detailed technique now uses the analysis of paleomagnetic vector components to isolate different parts of the deposit’s cooling history. In some cases, this method can be used to obtain numerical deposit temperature estimates (e.g., Sulpizio et al. 2008; Roperch et al. 2014; Trolese et al. 2017).

Studies have refined these emplacement temperature estimates in recent years with application to a wider variety of volcanic materials, such as millimeter-sized lithic fragments, ignimbrites of different degrees of welding, and unconsolidated matrix of PDC deposits (e.g., Cioni et al 2004; McClelland et al. 2004; Lerner et al. 2019b). New studies have also addressed temporal and spatial heterogeneity of peak temperature within a hot PDC deposit (Bowles et al. 2018) and the relation between juvenile and lithic clast and matrix temperatures within PDC deposits (Nakaoka and Suzuki-Kamata 2015). Paleomagnetic techniques have also been combined with other emplacement temperature techniques, like charcoal reflectance, to produce more precise temperature estimates (Pensa et al. 2018).

More detailed flow fabric studies through AMS

Prior to the twenty-first century, AMS techniques were used on lava flows and dikes to determine flow directions (Knight et al. 1986) and on ignimbrites to determine source vents and to study flow processes (e.g., MacDonald and Palmer 1990; Fisher et al. 1993; Ort 1993; Baer et al. 1997). More recent studies have seen an increase in the application of AMS for understanding flow directions and processes in lava flows and dikes, from basaltic to rhyolitic (e.g., Cañón-Tapia 2004; Porreca et al. 2015; Eriksson et al. 2015; Soriano et al. 2016; Njanko et al. 2020) and also flow and depositional processes in ignimbrites (e.g., Ort et al. 2003, 2015a; Geissman et al. 2010; Gountié Dedzo et al 2013; Agrò et al. 2015; Haag et al. 2021). These studies are taking us past the evaluation of simple flow directions to an understanding of how the currents flow and deposit freeze. They reveal previously unknown complexities of flow and the separation of depositional from transport regimes in pyroclastic density currents, the processes by which dikes form and propagate as well as how magma moves through them, and how the flow of lava varies depending on extrinsic and intrinsic factors, such as slope, mass eruption rate, and effective viscosity.

Magmatic and volcanic conditions reflected in magnetic mineralogy

Beyond the recorded magnetization vector or the physical alignment of magnetic minerals, the composition, concentration, and grain size of magnetic mineral populations commonly reflect magmatic conditions and magmatic or volcanic processes. Magnetic property measurements have the advantage of being both rapid and sensitive to micro- and nano-crystals that can be difficult to fully characterize using standard optical microscopy or even SEM. It has long been known that iron oxide assemblages are sensitive to magma composition, temperature, and oxidation state (Buddington and Lindsay 1964), as well as oxidative conditions during cooling (Tucker and O’Reilly 1980). This means that magnetic property measurements can sometimes be used to assess pre- and syn-eruptive conditions (Saito and Ishikawa...
2007, 2012) and oxidative conditions during dome growth (Saito et al. 2007) or post-eruptive cooling (Furukawa et al. 2010) and hydrothermal alteration (Vahle et al. 2007). Magnetic mineralogy can be further modified by frictional heating and deformation, leading to the use of magnetic property measurements in understanding processes within volcanic conduits (Kendrick et al. 2012; Wallace et al. 2019).

Support for improved techniques from improved technology, methods, and interdisciplinarity

Many of the abovementioned applications assume the timing of magnetization acquisition or of the growth of magnetic mineralogy coincides with the eruptive event and is not related to subsequent processes. If a rock contains mixtures of distinct magnetic populations, only some of which are faithful paleomagnetic recorders, it can be challenging to isolate the desired magnetic signal. New experimental techniques allow for the magnetic “unmixing” and identification of different populations of magnetic phases (e.g., Robertson and France 1994; Heslop 2015; Lascu et al. 2015; Maxbauer et al. 2016). New, high-resolution magnetic microscopy technologies (Weiss et al. 2007; Uehara et al. 2010; Glenn et al. 2017)—sometimes combined with X-ray computed tomography (de Groot et al. 2018)—hold promise for isolating information held by individual magnetic mineral populations. These techniques may allow for the extraction of volcanologically relevant information from rocks with complex magnetization histories.

Other technological improvements increase the precision of paleomagnetic measurements and the sizes of data sets. Improved automation in superconducting rock magnetometers greatly increases the volume of samples that can be measured for a study (Kirschvink et al. 2008). This has been vital for measurement-intensive studies, like those used for creating paleomagnetic and paleointensity reference curves needed for PSV dating studies.

Recent decades have also seen an increase in the use of paleomagnetic studies as methods complementary or supplementary to other techniques in order to address questions related to volcanic processes more holistically. In particular, paleomagnetic dating techniques have been used in concert with isotopic and other dating methods to better constrain eruption ages through the dating of lava flows and PDC deposits (e.g., Bergmanis et al. 2007; Greve et al. 2016; Lerner et al. 2019a; Downs et al. 2020). Geochemical data have also been incorporated more thoroughly into paleomagnetic studies of volcanoes in order to improve spatiotemporal models of volcanic fields (Downs et al. 2018). Several magnetic techniques can be combined to resolve volcanic hazards. For example, workers have combined AMS-derived flow fabric information in PDC deposits with the temperature of emplacement to model the interaction of PDCs with urban built environments at Pompeii and Herculaneum near Vesuvius in Italy (Gurioli et al. 2007; Zanella et al. 2007; Giordano et al. 2018).

The future of paleomagnetism and its applications in volcanology

Paleomagnetism remains an underutilized tool for volcanology. As more volcanologists incorporate these methods into their toolkit, we expect that current methods will be further refined and new methods developed, allowing new questions to be posed.

The development of new or improved regional PSV reference curves is an ongoing effort that should continue to be supported by paleomagnetists and volcanologists alike. Numerical PSV dating is currently limited by the available regional curves necessary for obtaining accurate age estimates. The sediment core sampling and laboratory work necessary for defining PSV reference curves are labor intensive and costly, but it is in the interests of the volcanology community to aggressively support these studies. The integration of diverse data sources for creating new PSV curves will be critical. The combination of high-resolution lake and marine sediment records with archeomagnetic studies and alternative sources like speleothems will be vital for improving PSV records, particularly in the Southern Hemisphere (Korte et al. 2019; Brown et al. 2021).

Recent increased focus on ethical sampling techniques recognizes that paleomagnetic coring is a destructive and often noticeable sampling technique. On occasions, it has been done in a way that damages sites that are sacred or of public interest. Future studies must strive to sample in less obtrusive ways (e.g., away from publicly visited areas), and consultation with local groups is required to avoid sampling that is disrespectful to important sites or traditions.

The rise in better data-sharing practices and archiving provides for improved sharing of paleomagnetic information. The Magnetics Information Consortium (MagIC) database accommodates both study-level directional and intensity averages as well as individual measurement data, while the GOMAGIASO database contains paleomagnetic (direction and intensity) and chronologic data from archeological and volcanic materials and sediments covering the past 50 ka (Brown et al. 2015a,b). Continued cataloging of these data, especially if it will be combined in the future with detailed rock magnetic data, will allow for the application of modern data analytical techniques like machine learning and numerical modeling to volcanological questions. When cross-referenced with geochemical databases, new avenues in comparative studies are opened, such as to look at similarities and differences in the evolution of magmatic provinces and settings through time, space, and composition, or to search for patterns in eruption cycles and activity within global whole Earth models.
As paleomagnetic techniques become better understood and more widely used by non-paleomagnetists, these techniques can become better integrated into multidisciplinary volcanic studies, rather than exist solely as stand-alone publications. This is evident in recent studies, in which the paleomagnetic method was used to answer an important but partial component of a broader volcanic study (Leonard et al. 2017; Stelten et al. 2018; Larrea et al. 2019). A future in which paleomagnetism is seen as a tool that can easily be used as needed to support other volcanologic approaches will produce higher quality studies aimed at addressing questions in volcanology.

Acknowledgements The authors are grateful to John Geissman and an anonymous reviewer for their constructive comments that helped us improve the manuscript. The authors thank Associate Editor Freysteinn Sigmundsson for his handling of the manuscript.

Author contribution GAL wrote the first draft. GAL, EJP, JB, and MHO contributed to and edited the manuscript. EJP made Fig. 1.

Funding GAL acknowledges funding from AXA and Singapore National Research Foundation (NRF2018NRF-NSFC003ES-010). This research was supported by the Earth Observatory of Singapore via its funding from the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative. This work comprises EOS contribution number 380.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agrò A, Zanella E, Le Pennec J-L, Temel A (2015) Magnetic fabric of ignimbrites: a case study from the Central Anatolian Volcanic Province. Geol Soc Lond, Spec Pub 396:159–175. https://doi.org/10.1144/SP396.9

Akulichev VA, Astakhov AS, Malakhov MI et al (2016) The first discovery of cryptodunites of the catastrophic eruptions of the Baitoushan volcano in the tenth century A.D. in the shelf deposits of the Sea of Japan. Dokl Earth Sc 469:887–891. https://doi.org/10.1134/S1028334X16080201

Aramaki S, Akimoto S (1957) Temperature estimation of pyroclastic deposits by natural remanent magnetism. Am J Sci 255:619–627. https://doi.org/10.2475/ajs.255.9.619

Baer EM, Fisher RV, Fuller M, Valentine G (1997) Turbulent transport and deposition of the Ito pyroclastic flow: determinations using anisotropy of magnetic susceptibility. J Geophys Res: Sol. Earth 102:22565–22586. https://doi.org/10.1029/96JB01277

Béguin A, Pimentel A, de Groot LV (2021) Full-vector paleosecular variation curve for the Azores: enabling reliable paleomagnetic dating for the past 2 kyr. J Geophys Res Solid Earth 126https://doi.org/10.1029/2020JB019745

Bergmanis EC, Sinton J, Rubin KH (2007) Recent eruptive history and magma reservoir dynamics on the southern East Pacific Rise at 17°30’S: EPR Eruptive History Dynamics. Geochem Geophys Geosyst 8/a-n/a. https://doi.org/10.1029/2007GC0011742

Bowles J, Gee JS, Kent DV, et al (2006) Paleointensities applied to timing and extent of eruptive activity, 9°-10°N East Pacific Rise, 9°-10°N. Geochem Geophys Geosyst 7/a-n/a. https://doi.org/10.1029/2005GC001141

Bowles JA, Gerzich DM, Jackson MJ (2018) Assessing new and old methods in paleomagnetic paleothermometry: a test case at Mt. St. Helens, USA. Geochim Geophys Geosyst 19:1714–1730. https://doi.org/10.1029/2018GC007435

Brown MC, Donadini F, Korte M et al (2015) GEOMAGIA50.v3: 1. general structure and modifications to the archeological and volcanic database. Earth PlanetSp 67:83. https://doi.org/10.1186/s40623-015-0232-0

Brown MC, Donadini F, Nilsson A et al (2015) GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments. Earth Planet Sp 67:70. https://doi.org/10.1186/s40623-015-0233-z

Brown MC, Hervé G, Korte M, Genevey A (2021) Global archaeomagnetic data: the state of the art and future challenges. Phys Eart Plan Int 318:106766. https://doi.org/10.1016/j.pepi.2021.106766

Brunhes B (1906) Recherches sur la direction d’aimantation des roches volcaniques. J Phys Theor Appl 5:705–724. https://doi.org/10.1051/physstat:019060050070500

Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Pet 5:310–357. https://doi.org/10.1093/petrology/5.2.310

Cagnoli B, Tarling DH (1997) The reliability of anisotropy of magnetic susceptibility (AMS) data as flow direction indicators in friable base surge and ignimbrite deposits: Italian examples. JVolcan Geotherm Res 75:309–320. https://doi.org/10.1016/S0377-0273(96)00038-8

Cañón-Tapia E (2004) Anisotropy of magnetic susceptibility of lava flows and dykes: a historical account. Geol Soc Lond Spec Pub 238:205–225. https://doi.org/10.1144/GSL.SP.2004.238.01.14

Carlut J, Cormier M-H, Kent DV, et al (2004) Timing of volcanism along the northern East Pacific Rise based on paleointensity experiments on basaltic glasses: paleointensities along the northern EPR. J Geophys Res 109. https://doi.org/10.1029/2003JBO02672

Chevallier R (1925) L’aimantation des laves de l’Etna et l’orientation du champ terrestre en Sicile du XIIe au XIIe siècle. Bull Volcanol 2:234–244. https://doi.org/10.1007/BF02719509

Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of the Dunedin volcanic complex and some paleogeographic implications—Part II. N Z J Geol Geophys 3:572–579. https://doi.org/10.1080/002873304108000016

Constable C, Korte M, Panovska S (2016) Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years. Eart Plan Sci Lett 453:78–86. https://doi.org/10.1016/j.epsl.2016.08.015

Coombs DS, White AJR, Hamilton D, Couper RA (1960) Age relations of the Dunedin volcanic complex and some paleogeographic implications.—Part II. N Z J Geol Geophys 3:572–579. https://doi.org/10.1080/002873306.1960.10420145

Cox A, Doell RR (1960) Review of paleomagnetism. Geol Soc America Bull 71:1645. https://doi.org/10.1130/0016-7606(1960)71[1645:ROP2.CO;2]

de Groot LV, Fabian K, Béguin A et al (2018) Determining individual particle magnetizations in assemblages of micrograins. Geophys Res Lett 45:2995–3000. https://doi.org/10.1002/2017GL076634
Di Chiara A (2020) Palaeosecular variations of the geomagnetic field in Africa during the Holocene: a review. Geol Soc Lond Spec Pub 497:127–141. https://doi.org/10.1144/SP497-2019-51

Downs DT, Clynne MA, Champion DE, Muffler LJP (2020) Eruption age and duration of the ~9 km3 Burney Mountain dacite dome complex, northern California, USA. Geol Soc Am Bull 132:1150–1164. https://doi.org/10.1130/B35240.1

Downs DT, Steten ME, Champion DE et al (2018) Volcanic history of the northernmost part of the Harrat Rahat volcanic field, Saudi Arabia. Geosphere 14:1253–1282. https://doi.org/10.1130/GES01625.1

Ellwood BB (1978) Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements. Eart Plan Sci Lett 41:254–264. https://doi.org/10.1016/0012-821X(78)90182-6

Eriksson PI, Riihhuus MS, Elming S-Å (2015) Magma flow and stress deduced from magnetic fabric analysis of the Álfafjörður dyke swarm: implications for shallow crustal magma transport in Icelandic volcanic systems. Geol Soc Lond Spec Pub 396:107–132. https://doi.org/10.1144/SP396.6

Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow — emplacement of the Campamakan ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220. https://doi.org/10.1016/0377-0273(93)90017-L

Furukawa K, Uno K, Miyagi I (2010) Mechanisms of oxidation and degassing in the Takanoobane rhyolite lava of Aso Volcano, Japan. J Volcanol Geotherm Res 198:348–354. https://doi.org/10.1016/j.jvolgeores.2010.09.015

Gardner CA (1994) Temporal, spatial and petrologic variations of lava flows from the Mount Bachelor volcanic chain, central Oregon High Cascades, U.S. Geological Survey, OFR 94–261, 100 pp.

Geissman J, Holm D, Harlan S, Embree G (2010) Rapid, high-temperature formation of large-scale rhyolitic morphologic structures in the 2.06 Ma Huckleberry Ridge Tuff, Idaho, USA. Geology 38:263–266. https://doi.org/10.1130/G30492.1

Giordano G, Zanella E, Trolese M, et al (2018) Thermal interactions of the AD79 Vesuvius pyroclastic density currents and their deposits at Villa dei Papiri (Herculaneum archaeological site, Italy). Earth Plan Sci Lett 490:180–192. https://doi.org/10.1016/j.epsl.2018.03.023

Glenn DR, Fu RR, Kehayas P et al (2017) Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope. Geochem Geophys Geosyst 18:3254–3267. https://doi.org/10.1002/2017GC006946

Goutte Dedzo M, Kamgang P, Njonfang E et al (2013) Mapping and assessment of volcanic hazards related to the ignimbritic eruption by AMS in Bambouto Volcano (Cameroon Volcanic Line). TOGEOJ 7:1–13. https://doi.org/10.2174/1874269201307010001

Greve A, Turner GM, Conway CE et al (2016) Paleomagnetic refinement of the eruption ages of Holocene lava flows, and implications for the eruptive history of the Tongariro Volcanic Centre, New Zealand. Geophys J Int 207:702–718. https://doi.org/10.1093/gji/ggw296

Gurrola L, Zanella E, Fareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition. J Geophys Res: Solid Earth 112. https://doi.org/10.1029/2006JB004444

Haag MB, Sommer CA, Savian JF et al (2021) AMS and rock magnetism in the Caviabue-Copahue Volcanic Complex (Southern Andes): emission center, flow dynamics, and implications to the emplacement of non-welded PDCs. JVolcanol Geotherm Res 416:107283. https://doi.org/10.1016/j.jvolgeores.2021.107283

Hagstrum JT, Champion DE (1994) Paleomagnetic correlation of Late Quaternary lava flows in the lower east rift zone of Kilauea Volcano. Hawaii. J Geophys Res: Sol Ear 99:21679–21690. https://doi.org/10.1029/94JB01852

Hatherton T (1954) The magnetic properties of the Whakamaru ignimbrites, NZ J Sci Tech B 35:421–432

Herrero-Bervera E, Coe RS (1999) Transitional field behavior during the Gilbert-Gauss and Lower Mammoth reversals recorded in lavas from the Wai’anae volcano, O‘ahu, Hawaii. J Geophys Res: SolEar 104(B12):29157–29173. https://doi.org/10.1029/1999JB900208

Heslop D (2015) Numerical strategies for magnetic mineral unmixing. Eart-Sci Rev 150:256–284. https://doi.org/10.1016/j.earsrev.2015.07.007

Hnatyshin D, Krvachinsky VA (2014) Paleomagnetic dating: Methods, MATLAB software, example. Tectonophysics 630:103–112. https://doi.org/10.1016/j.tecto.2014.05.013

Hoblit RP, Kellogg KS (1979) Emplacement temperatures of unsorted and unstratified deposits of volcanic rock debris as determined by paleomagnetic techniques. Geol Soc Am Bull 90:633–642. https://doi.org/10.1130/0016-7606(1979)90<363:ETUA%3E2.0.CO;2

Hospers J (1954) Magnetic correlation in volcanic districts. Geol Mag 91:352–360. https://doi.org/10.1017/S0016070700065730

Kendrick JE, Lavallée Y, Ferk A et al (2012) Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004–2008 eruption. J Struct Geol 38:61–76. https://doi.org/10.1016/j.jsg.2011.10.003

Kirschvink JL, Kopp RE, Raub TD, et al (2008) Rapid, precise, and high-sensitivity acquisition of paleomagnetic and rock-magnetic data: development of a low-noise automatic sample changing system for superconducting rock magnetometers. Geochim Cosmochim Acta 72:2499–2510. https://doi.org/10.1016/j.gca.2007.11.013

Kletetschka G, Vondrák D, Hruba J et al (2019) Laacher See tephra deposits at Villa dei Papiri (Herculaneum archaeological site, Italy). J Geophys Res: SolEar 99:21679–21690. https://doi.org/10.1029/94JB01852

Korte M, Brown MC, Gunnarson SR et al (2019) Refining Holocene geomagnetic field. Earth Planet Sci Lett 490:180–192. https://doi.org/10.1016/j.epsl.2017.11.013

Korte M, Constable CG (2005) Geomagnetic field models for the past 7 millennia: 2. CALS7K: Geomagnetic Field Models, 2. Geochem Geophys Geosyst 6. https://doi.org/10.1029/2004GC000801

Kristjansson L, Gudmundsson A, Haraldsson H (1995) Stratigraphy and paleomagnetism of a 3-km-thick Miocene lava pile in the Mjoíljóður area, eastern Iceland. Geol Rundsch 84:813–830. https://doi.org/10.1007/BF00240570

Larrea P, Siebe C, Juárez-Arriaga E et al (2019) The ~ AD 500–700 (Late Classic) El Astillero and El Pedregal volcanoes (Michoacán, Mexico): a new monogenetic cluster in the making? Bull Volcanol 81:1–19. https://doi.org/10.1007/s00445-019-1318-5

Lascu I, Harrison RJ, Li Y et al (2015) Magnetic unmixing of first-order reversal curve diagrams using principal component analysis. Geochim Cosmochim Acta 160:2900–2915. https://doi.org/10.1016/j.gca.2015.07.007

Leonard GS, Calvert AT, Hopkins JL et al (2017) High-precision 40Ar/39Ar dating of Quaternary basaltic flows from Auckland Volcanic Field, New Zealand, with implications for eruption rates and paleomagnetic correlations. J Volcanol Geoth Res 343:60–74. https://doi.org/10.1016/j.jvolgeores.2017.05.033
Lerner GA, Cronin SJ, Bebbington MS, Platz T (2019) The characteristics of a multi-episode volcanic regime: the post-AD 960 Maero Eruptive Period of Mt. Taranaki (New Zealand). Bull Volcanol 81:61. https://doi.org/10.1007/s00445-019-1327-4

Lerner GA, Cronin SJ, Turner GM, Piispa EJ (2019) Recognizing long-runout pyroclastic flow deposits using paleomagnetism of ash. Geol Soc Am Bull 131:1783–1793. https://doi.org/10.1130/B35029.1

Lund S, Oppo D, Curry W (2017) Late Quaternary paleomagnetic secular variation recorded in deep-sea sediments from the Demerara Rise, equatorial west Atlantic Ocean. Phys Ear Plan Int 272:17–26. https://doi.org/10.1016/j.pepi.2017.04.010

MacDonald WD, Palmer HC (1990) Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles caldera, New Mexico, USA. Bull Volcanol 53:45–59. https://doi.org/10.1007/BF00680319

Mankinen EA, Cox A (1988) Paleomagnetic investigation of some volcanic rocks from the McMurdo volcanic province, Antarctica. J Geophys Res: Sol Ear 93(B10):11599–11612. https://doi.org/10.1029/JB093iB10p11599

Maxbauer DP, Feinberg JM, Fox DL (2016) MAX UnMix: a web application for unmixing magnetic coercivity distributions. Comput & Geosci 95:140–145. https://doi.org/10.1016/j.cageo.2016.07.009

McCanta MC, Hatfield RG, Thomson BJ et al (2015) Identifying cryptotephra units using correlated rapid, nondestructive methods: VSWIR spectroscopy, X-ray fluorescence, and magnetic susceptibility. Geochim Geophys Geosys 16:4029–4056. https://doi.org/10.1002/2015GC005913

McClelland E, Wilson CIN, Bardot L (2004) Palaeotemperature determinations for the 1.8-ka Taupo ignimbrite, New Zealand, and implications for the emplacement history of a high-velocity pyroclastic flow. Bull Volcanol 66:492–513. https://doi.org/10.1007/s00445-003-0335-5

Merrill RT, McElhinny MW, McFadden PL (1996) The magnetic field of the Earth. Academic Press, San Diego

Mochizuki N, Fujii S, Hasegawa T et al (2021) A tephra-based approach to calibrating relative geomagnetic paleointensity of the Zindeng phonolitic lava flow (West-Cameroon) in the Earth’s magnetic field and application to paleomagnetic dating. J Volcanol Geotherm Res 388:98–109. https://doi.org/10.1016/j.jvolgeores.2020.1144.008

Moraes J, Pérez-Rodríguez N, Goguitchaichvili A, Cervantes-Solano M (2020) A multmethod paleointensity approach applied to the historical Xítle lava flows (Central Mexico): towards the accurate paleointensity determination. Earth Planets Space 72:101. https://doi.org/10.1186/s40623-020-01232-z

Nakamura S, Kikuchi S (1912) Remanent magnetism of volcanic rocks. Proc Tokyo Math Soc Phys 6:268–275

Nakaoka R, Suzuki-Kamata K (2015) Rock-magnetic evidence for the low-temperature emplacement of the Habushiri pyroclastic density current, Niijima Island, Japan. Geol Soc Lon Spec Pub 396:51–66. https://doi.org/10.1144/SP396.7

Njanko T, Gountié Dedzo M, Tamen J et al (2020) Emplacement of the Zindeng phonolitic lava flow (West-Cameroon) in the Cameroon volcanic line: constraints from the anisotropy of magnetic susceptibility (AMS). J Afr Eart Sci 162:103728. https://doi.org/10.1016/j.jafrearsci.2019.103728

Ogg JG (2020) Chapter 5 - Geomagnetic polarity time scale. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) Geologic time scale 2020. Elsevier 2019. 159–192. https://doi.org/10.1016/B978-0-12-824360-2.00005-X

Ort MH (1993) Eruptive processes and caldera formation in a nested downsag-collapse caldera: Cerro Panizos, central Andes Mountains. J Volcanol Geotherm Res 56:221–252. https://doi.org/10.1016/0377-0273(93)90018-M

Ort MH, Newkirt TT, Vilas JF, Vazquez JA (2015) Towards the definition of AMS facies in the deposits of pyroclastic density currents. Geol Soc Lon, Spec Pub 396:205–226. https://doi.org/10.1144/SP396.8

Ort MH, Orsi G, Pappalardo L, Fisher RV (2003) Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy. Bull Volcanol 65:55–72. https://doi.org/10.1007/s00445-002-0241-2

Ort MH, Porreca M, Geissman JW (2015) The use of paleomagnetism and rock magnetism to understand volcanic processes: introduction. Geol Soc Lon Spec Pub 396:1–11. https://doi.org/10.1144/SP396.17

Palmer HC, MacDonald WD (1999) Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations. Tectonophysics 307:207–218. https://doi.org/10.1016/S0040-1951(99)00126-2

Panovska S, Constable CG, Brown MC (2018) Global and regional assessments of paleosecular variation activity over the past 100 ka. Geochem Geophys Geosyst 19:1559–1580. https://doi.org/10.1029/2017GC007271

Paterson GA, Roberts AP, Mac Nioicall C et al (2010) Paleomagnetic determination of emplacement temperatures of pyroclastic deposits: an under-utilized tool. Bull Volcanol 72:309–330. https://doi.org/10.1007/s00445-009-0324-4

Pavón-Carrasco FcoJ, Rodriguez-González J, Osote ML, Torta JM (2011) A Matlab tool for archaeomagnetic dating. J Archaeol Sci 38:408–419. https://doi.org/10.1016/j.jas.2010.09.021

Pavón-Carrasco FJ, Osote ML, Torta JM, De Santis A (2014) A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Eart Planet Sci Lett 388:98–109. https://doi.org/10.1016/j.epsl.2013.11.046

Pensa A, Capra L, Giordano G, Corrado S (2018) Emplacement temperature estimation of the 2015 dome collapse of Volcán de Colima as key proxy for flow dynamics of confined and unconfined pyroclastic density currents. J Volcanol Geotherm Res 357:321–338. https://doi.org/10.1016/j.jvolgeores.2018.05.010

Pérez-Rodríguez N, Morales J, Rangel-Campos D, et al (2021) An inter-comparison exercise for the Mexican intensity secular variation curves: case study of the Tingambato archaeological site (central-western Mexico). Quat Geochron 101. https://doi.org/10.1016/j.quageo.2021.101195

Pinton A, Giordano G, Speranza F, Pórhársón B (2017) Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tunngaa lava sequence (Iceland): implications for flow correlation and ages. Bull Volcanol 80:10. https://doi.org/10.1007/s00445-017-1187-5

Porreca M, Cifelli F, Soriano C et al (2015) Magma flow within dykes in submarine hyaloclastite environments: an AMS study of the Miocene Cabo de Gata volcanic units. Geol Soc Lon Spec Pub 396:133–157. https://doi.org/10.1144/SP396.14

Robertson DJ, France DE (1994) Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Phys Eart Plan Int 82:223–234. https://doi.org/10.1016/0313-9201(94)90074-4

Ropperch P, Chauvin A, Lara LE, Moreno H (2015) Secular variation of the Earth’s magnetic field and application to paleomagnetic dating of historical lava flows in Chile. Phys Eart Plan Int 242:65–78. https://doi.org/10.1016/j.epi.2015.03.005

Ropperch P, Chauvin A, Le Pennec J-L, Lara LE (2014) Paleomagnetic study of juvenile basaltic-andesite clasts from Andean pyroclastic density current deposits. Phys Eart Plan Int 227:20–29. https://doi.org/10.1016/j.epi.2013.11.008

Rutledal S, Berben SMP, Dokken TM et al (2020) Tephra horizons identified in the western North Atlantic and Nordic Seas during the Last Glacial Period: extending the marine tephra framework. Quat Sci Rev 240:106247. https://doi.org/10.1016/j.quascirev.2020.106247
Rutten MG (1960) Paleomagnetic dating of younger volcanic series. Geol Rundsch 49:161–167. https://doi.org/10.1007/BF01802403

Saito T, Ishikawa N (2007) Magnetic petrology and its implication for magma mixing of the 1991–1995 dacite at Unzen volcano, Japan. Earth Planet Space 59:863–870. https://doi.org/10.1186/BF03352748

Saito T, Ishikawa N (2012) Pre- and syn-eruptive conditions inferred from the magnetic petrology of Fe–Ti oxides from three historical eruptions of Unzen Volcano, Japan. J Volcanol Geotherm Res 247–248:49–61. https://doi.org/10.1016/j.jvolgeores.2012.07.013

Saito T, Ishikawa N, Kamata H (2007) Magnetic petrology of the 1991–1995 dacite lava of Unzen volcano, Japan: degree of oxidation and implications for the growth of lava domes. J Volcanol Geotherm Res 164:268–283. https://doi.org/10.1016/j.jvolgeores.2007.05.015

Sheng M, Wang X, Dekkers MJ et al (2019) Paleomagnetic secular variation and relative paleointensity during the Holocene in South China—Huguyangtan Maar Lake revisited. Geochem Geophys Geosyst 20:2681–2697. https://doi.org/10.1029/2018GC008106

Soriano C, Beamud E, Garces M, Ort MH (2016) ‘Anomalous’ magnetic fabrics of dikes in the stable single domain/superparamagnetic threshold. Geophys J Int 204:1040–1059. https://doi.org/10.1093/gji/ggv495

Speranza F, Branca S, Coltelli M et al (2006) How accurate is “paleomagnetic dating”? New evidence from historical lavas from Mount Etna. J Geophys Res: Sol Ear 111:B12S33. https://doi.org/10.1029/2006JB004406

Speranza F, Di Chiara A, Rotolo S (2012) Correlation of welded ignimbrites on Pantelleria (Strait of Sicily) using paleomagnetism. Bull Volcanol 74:341–357. https://doi.org/10.1007/s00445-011-0521-9

St-Onge G, Stoner JS, Hillaire-Marcel C (2003) Holocene paleomagnetic records from the St. Lawrence Estuary, eastern Canada: centennial- to millennial-scale geomagnetic modulation of cosmogenic isotopes. Eart Plan Sci Lett 209:113–130. https://doi.org/10.1016/j.epsl.2002.10.003

Stanton T, Nilsson A, Snowball I, Muscheler R (2011) Assessing the reliability of Holocene relative palaeointensity estimates: a case study from Swedish varved lake sediments: Reliability of Holocene RPI estimates. Geophys J Int 187:1195–1214. https://doi.org/10.1111/j.1365-246X.2011.05049.x

Stelten ME, Champion DE, Kuntz MA (2018) The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field. J Volcanol Geotherm Res 350:47–60. https://doi.org/10.1016/j.jvolgeores.2017.12.002

Sulpizio R, Zanella E, Macias JL (2008) Deposition temperature of some PDC deposits from the 1982 eruption of El Chichón volcano (Chiapas, Mexico) inferred from rock-magnetic data. J Volcanol Geotherm Res 175:494–500. https://doi.org/10.1016/j.jvolgeores.2008.02.024

Tanaka H, Hoshizumi H, Iwasaki Y, Shibuya H (2004) Applications of paleomagnetism in the volcanic field: a case study of the Unzen Volcano, Japan. Earth Planet Sp 56:635–647. https://doi.org/10.1186/BF03352526

Tauxe L, Banerjee SK, Butler RF, van der Voo R (2018) Essentials of paleomagnetism. 5th Web Edition, https://earthref.org/MagIC/books/Tauxe/Essentials

Thompson R, Bloemendal J, Dearing JA et al (1980) Environmental applications of magnetic measurements. Science 207:481–486

Thompson R, Turner GM (1979) British geomagnetic master curve 10,000–0 yr B.P. for dating European sediments. Geophys Res Lett 6:249–252. https://doi.org/10.1029/GL006i04p00249

Trolese M, Giordano G, Cifelli F et al (2017) Forced transport of thermal energy in magmatic and phreatomagmatic large volume ignimbrites: paleomagnetic evidence from the Colli Albani volcano, Italy. Earth and Planetary Science Letters 478:179–191. https://doi.org/10.1016/j.epsl.2017.09.004

Tucker P, O’Reilly W (1980) The laboratory simulation of deuteric oxidation of titanomagnetics: effect on magnetic properties and stability of thermoremanence. Phys Earth Planet Inter 23:112–133. https://doi.org/10.1016/0012-1820(80)90007-2

Turner GM, Lillis DA (1994) A palaeomagnetic secular variation record for New Zealand during the past 2500 years. Phys Eart Plan Int 83:265–282. https://doi.org/10.1016/0012-9201(94)90093-0

Uehara M, Beek CJ van der, Gattacceca J, et al (2010) Advances in magneto-optical imaging applied to rock magnetism and paleomagnetism. Geochem Geophys 11. https://doi.org/10.1029/2009GC002653

Vahle C, Kontny A, Gunnlaugsson HP, Kristjansson L. (2007) The Stardalur magnetic anomaly revisited—new insights into a complex cooling and alteration history. Phys Eart Plan Int 164:119–141. https://doi.org/10.1016/j.pepi.2007.06.004

Wallace PA, Kendrick JE, Miwa T et al (2019) Petrological architecture of a magmatic shear zone: a multidisciplinary investigation of strain localisation during magma ascent at Unzen Volcano, Japan. J Pet 60:791–826. https://doi.org/10.1093/petrology/ezg016

Weiss BP, Lima EA, Fong LE, Baudenbacher FJ (2007) Paleomagnetic analysis using SQUID microscopy. J Geophys Res 112:B09105. https://doi.org/10.1029/2007JB004940

Williams-Jones G, Barendregt RW, Russell JK et al (2020) The age of the Tseax volcanic eruption, British Columbia, Canada. Can J Earth Sci 57:1238–1253. https://doi.org/10.1139/cjes-2019-0240

Yasuda Y, Sato E, Suzuki-Kamata K (2020) Paleomagnetic constraints on a time-stratigraphic framework for the evolution of Ohachidaira volcano and the summit caldera, central Hokkaido, Japan. Bull Volcanol 82:71. https://doi.org/10.1007/s00445-020-1403-6

Yu Y (2012) High-fidelity paleointensity determination from historic volcanoes in Japan. J Geophys Res 117:B08101. https://doi.org/10.1029/2012JB009368

Zanella E, Gurioli L, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. Temperature of the deposits and hazard implications. J Geophys Res: Solid Earth 112.https://doi.org/10.1029/2006JB004775