A REAL-VARIABLE CONSTRUCTION WITH APPLICATIONS TO BMO-TEICHMÜLLER THEORY

HUAYING WEI AND MICHEL ZINSMEISTER

Abstract. With the use of real-variable techniques, we construct a weight function \(\omega \) on the interval \([0, 2\pi)\) that is doubling and satisfies \(\log \omega \) is a BMO function, but which is not a Muckenhoupt weight \((A_\infty) \). Applications to the BMO-Teichmüller space and the space of chord-arc curves are considered.

1. Introduction

Let \(\Gamma \) be a bounded Jordan curve in the extended complex plane \(\hat{\mathbb{C}} \). We can consider three objects associated to \(\Gamma \): the Riemann mapping \(\Phi \) from the unit disk \(\mathbb{D} \) onto the bounded component \(\Omega \) of \(\hat{\mathbb{C}} \setminus \Gamma \); the Riemann mapping \(\Psi \) from the exterior of the unit disk \(\mathbb{D}^* \) onto the unbounded component \(\Omega^* \) of \(\hat{\mathbb{C}} \setminus \Gamma \); the conformal welding corresponding to \(\Gamma \), \(h = \Psi^{-1} \circ \Phi \), which is a sense-preserving homeomorphism of the unit circle \(S \). Let \(S(\mathbb{D}) \) be the set of all mappings \(\log f'(z) \) where \(f \) is conformal (i.e. holomorphic and injective) in \(\mathbb{D} \). By the Koebe distortion theorem, \(S(\mathbb{D}) \) is a bounded subset of the Bloch space \(B(\mathbb{D}) \) which consists of holomorphic functions \(\varphi \) in \(\mathbb{D} \) with finite norm \(\| \varphi \|_B = \sup_{z \in \mathbb{D}} (1 - |z|^2) |\varphi'(z)| \).

In particular \(\log \Phi' \in S(\mathbb{D}) \) and \(\log \Psi' \in S(\mathbb{D}^*) \), which is defined in a similar way.

A bounded Jordan curve \(\Gamma \) is called quasicircle if there exists a constant \(C > 0 \) such that

\[
\text{diam}(\gamma) \leq C|z - \zeta|
\]

for any \(z, \zeta \in \Gamma \), where \(\gamma \) is the smaller of the two subarcs of \(\Gamma \) joining \(z \) and \(\zeta \). The quasicircle \(\Gamma \) can be characterized from the viewpoint of the universal Teichmüller space in the following equivalent ways (see [1, 12, 13]):

(a) \(\log \Phi' \) belongs to the interior of \(S(\mathbb{D}) \) in Bloch space \(B(\mathbb{D}) \).
(b) \(\log \Psi' \) belongs to the interior of \(S(\mathbb{D}^*) \) in Bloch space \(B(\mathbb{D}^*) \).
(c) \(h \) is a quasisymmetric homeomorphism of \(S \), namely, there exists a constant \(C > 0 \) such that for any adjacent intervals \(I, I^* \subset S \) of length \(|I| = |I^*| \leq \pi \), we have

\[
C^{-1}|h(I)| \leq |h(I^*)| \leq C|h(I)|,
\]

where \(| \cdot | \) denotes the Lebesgue measure. The optimal value of such \(C \) is called the doubling constant for \(h \).

2010 Mathematics Subject Classification. Primary 30C62, 30H35; Secondary 26A46, 37E10.
Key words and phrases. doubling weight, \(A_\infty \)-weight, BMO space, BMO-Teichmüller space, chord-arc curve.
It is well known that a quasisymmetric homeomorphism need not be absolutely continuous, and may be totally singular. If however it is absolutely continuous, we say $|h'|$ is a doubling weight.

There are analogs of the above statements in the setting of the BMO Teichmüller theory, introduced by Astala and Zinsmeister [3], and investigated in depth later by Fefferman, Kenig and Pipher [8], Bishop and Jones [4], Cui and Zinsmeister [6], Shen and Wei [16].

Let Γ be a bounded quasicircle. Then the following three statements are equivalent:

1. $\log \Phi' \in \text{BMOA}(D)$, the space of analytic functions in D of bounded mean oscillation.
2. $\log \Psi' \in \text{BMOA}(D^*)$, the space of analytic functions in D^* of bounded mean oscillation.
3. h is a strongly quasisymmetric homeomorphism of S, namely, for each $\epsilon > 0$ there is a $\delta > 0$ such that

$$|E| \leq \delta |I| \Rightarrow |h(E)| \leq \epsilon |h(I)|$$

whenever $I \subset S$ is an interval and $E \subset I$ a measurable subset: we say that h is absolutely continuous and $|h'|$ is an A_∞-weight (or Muckenhoupt weight).

The set of strongly quasisymmetric homeomorphisms of S is a group; more precisely, it is the group of homeomorphisms h such that $P_h : b \mapsto b \circ h$ is an isomorphism of the BMO space $\text{BMO}(S)$ (see [11]). Naturally an A_∞-weight is doubling. Fefferman and Muckenhoupt [9] gave this a direct computation, and they also provided an example of a function that satisfies the doubling condition but not A_∞.

Noting that $h = \Psi^{-1} \circ \Phi$, we conclude that

$$\log h' = \log \Phi' - \log \Psi' \circ h.$$

If one of the above three characterizations is true, then it holds that

4. h is absolutely continuous and $\log h' \in \text{BMO}(S)$.

Recall that an integrable function u on S is said to have bounded mean oscillation, i.e. $u \in \text{BMO}(S)$, if

$$\|u\|_* = \sup_{I \subset S} \frac{1}{|I|} \int_I |u(z) - u_I| dz < \infty,$$

where the supremum is taken over all bounded intervals I on S and u_I denotes the integral mean of u over I. This is regarded as a Banach space with norm $\| \cdot \|_*$ modulo constants since obviously constant functions have norm zero. An integrable function u on S is said to have vanishing mean oscillation, i.e. $u \in \text{VMO}(S)$, if $\|u\|_* < \infty$ and moreover

$$\lim_{|I| \to 0} \frac{1}{|I|} \int_I |u(z) - u_I| dz = 0.$$

This is a closed subspace of $\text{BMO}(S)$, actually the closure of the space of all continuous functions on S under the norm $\| \cdot \|_*$. If $\log h' \in \text{BMO}(S)$ with a small norm, or if $\log h' \in \text{VMO}(S)$, then it can be checked easily that $|h'|$ is an A_∞-weight by the John-Nirenberg inequality (see [10])(see also [17, Proposition 5.4] for a proof).
In the present paper, in section 2 we will construct an example of a weight function with the use of real-variable techniques that shows (4) \(\not\Rightarrow \) (3) in the premise of \(\Gamma \) being a bounded quasicircle. Besides that, this construction implies more. More precisely, we will prove the followings in sections 3, 4, 5, respectively.

Theorem 1. There exists a sense-preserving homeomorphism \(h \) of \(S \) such that \(h \) is absolutely continuous, \(|h'| \) is a doubling weight, \(\log h' \in \text{BMO}(S) \), but \(|h'| \) is not an \(A_\infty \)-weight.

Corollary 2. There exist a sequence \(\{\Gamma_t\} \) \((0 \leq t \leq 1) \) of quasicircles and a constant \(C > 0 \) such that \(\| \log h'_t \|_* \leq C \) for any \(0 \leq t \leq 1 \), \(\log \Phi'_t \in \text{BMOA}(D) \) for any \(0 \leq t < 1 \), but \(\| \log \Phi'_t \|_* \to \infty \) as \(t \to 1 \).

Theorem 3. For any \(\epsilon > 0 \) there exists a rectifiable quasicircle \(\hat{\Gamma} \) for which \(\log \hat{\Phi}' \in \text{BMOA}(D) \) with \(\| \log \hat{\Phi}' \|_B < \epsilon \) such that \(\hat{\Gamma} \) is not a chord-arc curve.

2. A “real-variable” construction

For \(0 < \epsilon < 1 \), set

\[
P_n(t) = \prod_{j=0}^{n-1} (1 + \epsilon \cos(3^j t)), \quad t \in [0, 2\pi).
\]

This is a trigonometric polynomial, and it is known that \(P_n(t) \geq 0 \) and \(\int_0^{2\pi} P_n(t)dt = 2\pi \). Set \(\mu_n(x) = \int_0^x P_n(t)dt \) so that \(d\mu_n(x) = P_n(x)dx \). Here, \(P_n(x) \) and \(\mu_n(x) \) can also be defined for \(x \in \mathbb{R} \) by the periodic extension \(P_n(x + 2\pi) = P_n(x) \) and by the condition \(\mu_n(x + 2\pi) - \mu_n(x) = 2\pi \). The sequence \(\{\mu_n\} \) converges to a non-decreasing limit function \(\mu \), singular with respect to the Lebesgue measure on \([0, 2\pi)\) (see [19, Vol. I, Theorem 7.6]), which implies that the corresponding Lebesgue-Stieltjes measure sequence \(\{d\mu_n\} \) converges weakly to a measure \(d\mu \) of total mass \(2\pi \). A direct proof of this fact was given in [18, P. 125]. We recall that this means convergence in the following sense:

\[
\int_0^{2\pi} \varphi(x)d\mu_n(x) \to \int_0^{2\pi} \varphi(x)d\mu(x), \quad n \to \infty
\]

for any \(\varphi \in C_b([0, 2\pi)) \), the set of continuous and bounded functions on \([0, 2\pi)\). The Riesz product

\[
P(t) = \prod_{j=0}^{\infty} (1 + \epsilon \cos(3^j t)), \quad t \in [0, 2\pi)
\]

may then be expanded as a well-defined trigonometric series, which is the Fourier series of the measure \(d\mu \) (also called the Fourier-Stieltjes series of the function \(\mu \) in the literature).

Claim 1. For any \(p > 1 \), it holds that

\[
\lim_{n \to \infty} \|P_n\|_p = \infty.
\]
Proof. Assuming that there exists a positive constant \(C \) and a subsequence \(\{n_k\} \) such that
\[
\|P_{n_k}\|_p \leq C
\]
for any \(k \), then, by the Banach-Alaoglu theorem, the sequence \(\{P_{n_k}\} \) has a weak-star convergent subsequence \(\{P_{n'_k}\} \), converging to some \(\hat{P} \in L^p([0, 2\pi]) \), namely,
\[
\int_0^{2\pi} \varphi(x)P_{n'_k}(x)dx \to \int_0^{2\pi} \varphi(x)\hat{P}(x)dx, \quad k \to \infty
\]
(2)
for any \(\varphi \in L^q([0, 2\pi]) \). In particular, taking \(\varphi \in C_b([0, 2\pi]) \), we conclude by (1) and (2) that \(d\mu(x) = \hat{P}(x)dx \), which contradicts the fact that \(d\mu \) is singular with respect to the Lebesgue measure on \([0, 2\pi]) \). □

Set \(p_n = 1 + 1/n \) so that \(p_n \to 1 \) as \(n \to \infty \). By Claim 1, for any \(n \geq 1 \) there exists an integer \(N_n \) such that
\[
\|P_{N_n}\|_{p_n} \geq 4^n.
\]
(3)
Set
\[
\tilde{f}(x) = \sum_{n \geq 1} 2^{-n} \frac{P_{N_n}}{\|P_{N_n}\|_{L\log L}}, \quad x \in [0, 2\pi).
\]
Here, \(\|g\|_{L\log L} = \int_I |g(x)| \log(e + |g(x)|)dx \) for any integrable function \(g \) on the bounded interval \(I \), and we say that \(g \in L \log L(I) \) if \(\|g\|_{L\log L} < \infty \). Set
\[
\omega(x) = M\tilde{f}(x), \quad x \in [0, 2\pi).
\]
Here, \(M\tilde{f} \) is the Hardy-Littlewood maximal function of \(\tilde{f} \). For any \(t \in [0, 1] \), set \(h_t(e^{ix}) = e^{igt(x)} \) by
\[
g_t(x) = \int_0^x \omega^t(s)ds, \quad x \in [0, 2\pi).
\]
Then, \(|h'_t(e^{ix})| = \omega^t(x) \) and
\[
\log h'_t(e^{ix}) = \log g'_t(x) + i(g_t(x) - x)
\]
whose imaginary part is clearly a continuous function, and in particular a BMO function on the interval \([0, 2\pi]) \). Let \(\Gamma_t \) be the bounded Jordan curve whose conformal welding is \(h_t \), and \(\Phi_t, \Psi_t \) the Riemann mappings associated to the two components \(\Omega_t \) and \(\Omega'_t \) of \(\mathbb{C} \setminus \Gamma_t \), respectively. We will denote \(h_1 \) by \(h \) for simplicity in the following.

3. Proof of Theorem 1

In this section, we prove the function \(h \) above is a desired one for Theorem 1. Before that, We need to show that \(\tilde{f} \notin L^p([0, 2\pi]) \) for any \(p > 1 \) (see Claim 2), but \(\tilde{f} \in L \log L([0, 2\pi]) \) (see Claim 3). For this purpose we first recall some well-known facts.

Let \(f \) be a measurable function on a measure space \((X, \nu)\). The distribution function
\[
m(t) = \nu(\{x \in X : |f(x)| > t\})
\]
defined for \(t > 0 \) is a decreasing function of \(t \), and it determines the \(L^p \) norms of \(f \). If \(f \in L^\infty \) then \(\| f \|_\infty = \sup\{ t : m(t) > 0 \} \), and if \(f \in L^p \) (\(0 < p < \infty \)) then the Chebychev inequality says

\[
m(t) \leq \frac{1}{t^p} \int_{|f| \geq t} |f|^p \, d\nu,
\]

(4)

and in particular \(m(t) \leq \| f \|_p^p / t^p \).

Lemma 4. Let \(\psi : [0, \infty) \to [0, \infty) \) be an increasing differentiable function such that \(\psi(0) = 0 \). If \(f(x) \) is a non-negative measurable function in a measure space \((X, \nu) \), then

\[
\int_X \psi(f(x)) \, d\nu = \int_0^\infty \psi'(x) m(t) \, dt.
\]

(5)

Proof. We may assume \(f \) vanishes except on a set of \(\sigma \)-finite measure because otherwise both sides of (5) are infinite. Then the Fubini theorem shows that both sides of (5) equal the product measure of the ordinate set \(\{ (x, t) : 0 < t < \psi(f(x)) \} \). That is,

\[
\int_X \psi(f(x)) \, d\nu = \int_X \int_0^{f(x)} \psi'(t) \, dt \, d\nu = \int_0^\infty \psi'(t) \nu(\{ f > t \}) \, dt
\]

and

\[
= \int_0^\infty \psi'(t) m(t) \, dt.
\]

\(\square \)

Proposition 5. Let \(f \) be a non-negative measurable function in a measure space \((X, \nu) \) with norm \(\| f \|_1 = 1 \). If \(\| f \|_p \geq 2 \) for some \(p > 1 \), then there is a positive constant \(C \) depending only on \(p \) such that

\[
\int_X f(x) \log(e + f(x)) \, d\nu \leq \frac{C}{(p-1)^2} \log \| f \|_p.
\]

Proof. By Lemma 4 and taking \(\psi(t) = t \log(e + t) \) we have

\[
\int_X f(x) \log(e + f(x)) \, d\nu = \int_0^\infty \psi'(t) m(t) \, dt < 2 \int_0^\infty \log(e + t) m(t) \, dt.
\]

(6)

Let now \(T > 0 \) to be determined later. We divide the right integral of the above inequality by \(T \) into two parts and then estimate them respectively:

\[
\int_0^\infty \log(e + t) m(t) \, dt = \int_0^T \log(e + t) m(t) \, dt + \int_T^\infty \log(e + t) m(t) \, dt.
\]

By Lemma 4 and \(\| f \|_1 = 1 \) we have

\[
\int_0^T \log(e + t) m(t) \, dt \leq \log(e + T) \int_0^T m(t) \, dt
\]

\[
\leq \log(e + T) \int_X f(x) \, d\nu \leq \log(e + T).
\]
By the Chebychev inequality we have
\[
\int_T^\infty \log(e + t)m(t)dt \leq \|f\|_p^p \int_T^\infty \frac{\log(e + t)}{t^p} dt < \frac{\|f\|_p^p}{(p - 1)^2 T^{p-1}} ((p - 1) \log(e + T) + 1).
\]

Then, by choosing \(T = \|f\|_p^\frac{p}{p-1} \) and substituting what have obtained into (6), it follows from \(\|f\|_p \geq 2 \) that
\[
\int_X f(x) \log(e + f(x))d\nu \leq C(p - 1)^2 \log \|f\|_p.
\]

\[\boxed{}\]

Claim 2. For any \(p > 1 \), \(\tilde{f} \) is not in \(L^p([0, 2\pi]) \).

Proof. It follows from Proposition [5] and (3) that
\[
\|\tilde{f}\|_{p_n} > \frac{\|P_{N_n}\|_{p_n}}{2^n \|P_{N_n}\|_{L_{\log L}}} \geq C^{-1}(p_n - 1)^2 \frac{\|P_{N_n}\|_{p_n}}{2^n \log(\|P_{N_n}\|_{p_n})} > \left(\frac{3}{2} \right)^n
\]
as \(n \) is sufficiently large.

Assuming \(\tilde{f} \in L^p([0, 2\pi]) \) for some \(p > 1 \) with \(\|\tilde{f}\|_p \) being a constant \(C_1 \). Then, \(\tilde{f} \in L^q([0, 2\pi]) \) for any \(1 < q < p \) and \(\|\tilde{f}\|_q \leq C_1 \). However, taking some integer \(n \) so that \(\left(\frac{3}{2} \right)^n > C_1 \) and \(p_n < p \), we then have \(\|\tilde{f}\|_{p_n} > C_1 \). This leads to a contradiction. \(\boxed{} \)

Claim 3. It holds that
\[
\tilde{f}(x) \log(e + \tilde{f}(x)) \leq \sum_{n \geq 1} 2^{-n} \frac{P_{N_n}(x) \log(e + P_{N_n}(x))}{\|P_{N_n}\|_{L_{\log L}}},
\]
and moreover \(\|\tilde{f}\|_{L_{\log L}} \leq 1 \).

Proof. Since \(\psi(t) = t \log(e + t) \) is convex on \(\mathbb{R}^+ \), we have
\[
\tilde{f}(x) \log(e + \tilde{f}(x)) = \psi \circ \tilde{f}(x) = \psi \left(\frac{\sum_{n \geq 1} 2^{-n} P_{N_n}(x)}{\sum_{n \geq 1} 2^{-n} \|P_{N_n}\|_{L_{\log L}}} \right)
\leq \sum_{n \geq 1} 2^{-n} \frac{1}{\|P_{N_n}\|_{L_{\log L}}} P_{N_n}(x) \log \left(e + \left(\frac{P_{N_n}(x)}{\|P_{N_n}\|_{L_{\log L}}} \right) \right).
\]
Then,
\[
\tilde{f}(x) \log(e + \tilde{f}(x)) \leq \sum_{n \geq 1} 2^{-n} \frac{P_{N_n}(x) \log(e + P_{N_n}(x))}{\|P_{N_n}\|_{L_{\log L}}}
\]
and thus \(\|\tilde{f}\|_{L_{\log L}} \leq 1 \). \(\boxed{} \)
The Hardy-Littlewood maximal function M_ν of the signed measure ν is defined as

$$M_\nu(x) = \sup_{x \in I} \frac{1}{|I|} |\nu|(I),$$

where the supremum is taken over all bounded intervals. In particular, for the signed measure of the form $d\nu(x) = g(x)dx$, M_ν is usually denoted by Mg and called the Hardy-Littlewood maximal function of the function g in the literature. This is a quantitation of the Lebesgue theorem which says that if $g(x)$ is locally integrable on \mathbb{R} then

$$\lim_{h,k \to 0^+} \frac{1}{h+k} \int_{x-h}^{x+k} g(t)dt = g(x)$$

for almost every $x \in \mathbb{R}$. If $g \in L^p(\mathbb{R})$ for $p \in [1, \infty]$, then $Mg(x)$ is finite almost everywhere. Moreover, $Mg \in L^p(\mathbb{R})$ if $g \in L^p(\mathbb{R})$ for $p \in (1, \infty)$, while Mg is weak L^1 if $g \in L^1(\mathbb{R})$ (see [10] Page 23). On the other hand, Stein [15] and Zygmund [19] proved that if g is supported on a finite interval I then $Mg \in L^1(I)$ if and only if $g \in L \log L(I)$.

Proof of Theorem 1. Recall that

$$\omega(x) = M\tilde{f}(x), \quad x \in [0, 2\pi).$$

Then, we have that ω is finite almost everywhere, $\omega \in L^1([0, 2\pi))$ by Claim 3 and $\omega \notin L^p([0, 2\pi))$ for any $p > 1$ by Claim 2 since it holds that $\omega(x) \geq \tilde{f}(x)$ from the Lebesgue theorem, and thus ω is not an A_∞-weight. Indeed, if ω were an A_∞-weight, then the reverse Hölder inequality holds for ω (see [10]), namely, there are $\delta > 0$ and $C > 0$ such that

$$\left(\frac{1}{|I|} \int_I \omega(x)^{1+\delta} dx \right)^{1/(1+\delta)} \leq C \int_I \omega(x)dx$$

for any interval $I \subset [0, 2\pi)$. This contradicts that $\omega \notin L^p([0, 2\pi))$ for any $p > 1$.

Furthermore, we note that the claim $\log \omega \in \text{BMO}([0, 2\pi))$ follows from a result by Coifman and Rochberg [5]: assuming ν is a locally finite signed Borel measure on \mathbb{R} for which the maximal function $M_\nu(x)$ is finite almost everywhere we have $\log M_\nu \in \text{BMO}(\mathbb{R})$. Thus, by taking $\nu(x) = \tilde{f}(x)dx$ we get the claim $\log \omega = \log Mg \in \text{BMO}([0, 2\pi))$.

It remains to show that ω is a doubling weight on $[0, 2\pi)$. It is sufficient to check the doubling condition $\int_I \omega(x)dx \approx \int_I, \omega(x)dx$ holds when I and I^* are two adjacent intervals of length $\frac{2\pi}{3\pi}$.

We cut the sum giving \tilde{f} into two parts, each term in the first part with the subscript N_k such that $N_k \leq n - 1$. Then we can write

$$\tilde{f}(x) = g_n(x) + f_n(x)h_n(x).$$

Here, we split the second part into the product of f_n and h_n, f_n with the subscript N_k’s such that $N_k \leq n - 1$, and h_n being $\frac{2\pi}{3\pi}$ periodic. Then,

$$\exp\left(-\frac{\pi\epsilon}{1 - \epsilon} \right) f_n(x) \leq f_n(x + \frac{2\pi}{3\nu}) \leq \exp\left(\frac{\pi\epsilon}{1 - \epsilon} \right) f_n(x)$$
and
\[
\exp \left(-\frac{\pi \epsilon}{1 - \epsilon} \right) g_n(x) \leq g_n(x + \frac{2\pi}{3^n}) \leq \exp \left(\frac{\pi \epsilon}{1 - \epsilon} \right) g_n(x).
\]

It follows that
\[
\exp \left(-\frac{\pi \epsilon}{1 - \epsilon} \right) \tilde{f}(x) \leq \tilde{f}(x + \frac{2\pi}{3^n}) \leq \exp \left(\frac{\pi \epsilon}{1 - \epsilon} \right) \tilde{f}(x). \tag{7}
\]

Indeed, for any \(k \leq n - 1 \), we write
\[
P_k(x) = \prod_{j=1}^{k} (1 + \epsilon \cos(3^j x)) = \prod_{j=1}^{k} \varphi_j(x),
\]
so that
\[
\log P_k(x) = \sum_{j=1}^{k} \log \varphi_j(x).
\]

By using the finite increment theorem we get
\[
| \log P_k(x + \frac{2\pi}{3^n}) - \log P_k(x) | \leq \sum_{j=1}^{k} | \log \varphi_j(x + \frac{2\pi}{3^n}) - \log \varphi_j(x) |
\]
\[
\leq \sum_{j=1}^{k} \| \frac{d}{dx} \log \varphi_j(x) \|_\infty \frac{2\pi}{3^n}
\]
\[
\leq \frac{2\pi \epsilon}{1 - \epsilon} \sum_{j=1}^{k} 3^{j-n} \leq \frac{\pi \epsilon}{1 - \epsilon},
\]

which implies
\[
\exp \left(-\frac{\pi \epsilon}{1 - \epsilon} \right) P_k(x) \leq P_k(x + \frac{2\pi}{3^n}) \leq \exp \left(\frac{\pi \epsilon}{1 - \epsilon} \right) P_k(x).
\]

For any \(x \in [0, 2\pi) \) and any interval \(I = [a, b] \) with \(a \leq x \leq b \), set \(J = [a + \frac{2\pi}{3^n}, b + \frac{2\pi}{3^n}] \) so that \(x + \frac{2\pi}{3^n} \in J \). This gives
\[
\int_I \tilde{f}(t) dt = \int_J \tilde{f}(t + \frac{2\pi}{3^n}) dt.
\]

Combined with (7), it implies
\[
\exp \left(-\frac{\pi \epsilon}{1 - \epsilon} \right) \frac{1}{|I|} \int_I \tilde{f}(t) dt \leq \frac{1}{|J|} \int_J \tilde{f}(t) dt \leq \exp \left(\frac{\pi \epsilon}{1 - \epsilon} \right) \frac{1}{|I|} \int_I \tilde{f}(t) dt,
\]

and then by taking the supremum over the interval \(I \) containing \(x \) we pass (7) to the maximal function \(\omega(x) \), namely,
\[
\exp \left(-\frac{\pi \epsilon}{1 - \epsilon} \right) \omega(x) \leq \omega(x + \frac{2\pi}{3^n}) \leq \exp \left(\frac{\pi \epsilon}{1 - \epsilon} \right) \omega(x). \tag{8}
\]

For any two adjacent intervals \(I \) and \(I^* \) of length \(\frac{2\pi}{3^n} \), we have
\[
\int_{I^*} \omega(x) dx = \int_I \omega(x + \frac{2\pi}{3^n}) dx.
\]
By combining this with (8) we conclude that
\[\exp \left(-\frac{\pi \epsilon}{1 - \epsilon} \right) \int_I \omega(x) dx \leq \int_{I^*} \omega(x) dx \leq \exp \left(\frac{\pi \epsilon}{1 - \epsilon} \right) \int_I \omega(x) dx. \]
This completes the proof of the doubling condition. □

Remark. We see from the above arguments that
\[\exp \left(-\frac{\pi \epsilon t}{1 - \epsilon} \right) \int_I \omega^t(x) dx \leq \int_{I^*} \omega^t(x) dx \leq \exp \left(\frac{\pi \epsilon t}{1 - \epsilon} \right) \int_I \omega^t(x) dx, \]
which implies \(\omega^t \) is also a doubling weight for any \(0 \leq t \leq 1 \). Since \(\epsilon \in (0, 1) \) may be arbitrarily small, we may moreover assume that the doubling constant of the weight \(\omega^t \) is as close to 1 as we like.

4. Proof of Corollary 2

A locally integrable function \(\omega \geq 0 \) on the real line \(\mathbb{R} \) is called an \(A_p \)-weight for \(1 < p < \infty \) if
\[\sup_I \left(\frac{1}{|I|} \int_I \omega(x) dx \right) \left(\frac{1}{|I|} \int_I \left(\frac{1}{\omega(x)} \right)^{\frac{1}{p-1}} dx \right)^{p-1} < \infty, \]
where the supremum is taken over all bounded intervals. It is known that \(A_p \subset A_q \) if \(p < q \) and \(A_\infty = \bigcup_{p>1} A_p \). A locally integrable function \(\omega \geq 0 \) on the real line \(\mathbb{R} \) is called an \(A_1 \)-weight, if there is a constant \(C > 0 \) such that for all bounded intervals \(I \)
\[\omega_I \leq C \inf_I \omega, \]
or equivalently, there is a constant \(C > 0 \) such that
\[M\omega(x) \leq C \omega(x) \]
almost everywhere on \(\mathbb{R} \). If \(\omega(x) \) satisfies \(A_1 \), then \(\omega(x) \) satisfies \(A_p \) for any \(p > 1 \).

The following result by Coifman and Rochberg [5] establishes the relationship between \(A_1 \)-weights and Hardy-Littlewood maximal functions.

Proposition 6. If \(\nu \) is a locally finite signed Borel measure with \(M\nu(x) < \infty \) almost everywhere, then \((M\nu)^t \) is an \(A_1 \)-weight for any \(0 \leq t < 1 \).

As was observed in [5], this construction yields essentially all the elements of \(A_1 \)-weights and in fact essentially all of \(A_1 \)-weights are obtained using only signed measures of the form \(g(x)dx \).

Proof of Corollary 2. We come back to our constructions of the function \(\tilde{f} \) and the weight function \(\omega = M\tilde{f} \) in section 2. Set the measure \(\nu(x) = \tilde{f}(x)dx \) so that \(M\nu = \omega \). We conclude by Proposition 6 that \(|h'_t| = \omega^t \) is an \(A_1 \)-weight, and thus \(A_\infty \)-weight for any \(0 \leq t < 1 \). On the other hand, it follows from Theorem 1 that \(|h'_t| = \omega \) is not an \(A_\infty \)-weight. Moreover, \(|h'_t| = \omega^t \) is a doubling weight for any \(0 \leq t \leq 1 \).
It is observed that
\[\| \log |h'|_* \| \leq t \log |h'|_* \leq \| \log |h'|_* \| \leq C, \]
where \(C > 0 \) is some constant. By the equivalences of (1), (2) and (3) in section 1, we have \(\log \Phi_t' \in \text{BMO}(\mathbb{D}) \) and \(\log \Psi_t' \in \text{BMO}(\mathbb{D}^*) \) for any \(0 \leq t < 1 \), but \(\log \Phi_t' \notin \text{BMO}(\mathbb{D}) \) and \(\log \Psi_t' \notin \text{BMO}(\mathbb{D}^*). \)

It remains to show that \(\| \log \Phi_t' \| \rightarrow \infty \) as \(t \rightarrow 1 \). We suppose that there exists a subsequence \(\{t_n\} \) converging to 1 such that \(\| \log \Phi_{t_n}' \| \) is bounded and we argue toward a contradiction. Since \(\text{BMO}(\mathbb{D}) = H^2 \cap \text{BMO}(\mathbb{S}) \) is the dual of the classical space \(H^1 \), the sequence \(\{\log \Phi_{t_n}'\} \) has a weak-star convergent subsequence \(\{\log \Phi_{t_{n_k}}'\} \) converging to some function \(\varphi \in \text{BMOA} \) in the following sense:
\[\frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \log \Phi_{t_{n_k}}'(e^{i\theta}) d\theta \rightarrow \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \varphi(e^{i\theta}) d\theta \]
as \(k \rightarrow \infty \) for any \(f \in H^1 \). In particular, by taking \(f \equiv 1 \) we get \(\log \Phi_{t_{n_k}}' \rightarrow \varphi \) almost everywhere on \(\mathbb{S} \), and then by taking the Poisson integral we have \(\log \Phi_{t_{n_k}}' \rightarrow \varphi \) almost everywhere on \(\mathbb{D} \). On the other hand, this subsequence \(\{\log \Phi_{t_{n_k}}'\} \) converges in the universal Teichmüller space in \(\mathbb{D} \) to \(\log \Phi' \), namely, \(\| \log \Phi_{t_{n_k}}' - \log \Phi' \|_B \rightarrow 0 \). Thus, we conclude that \(\log \Phi_t' = \varphi \in \text{BMOA}(\mathbb{D}) \). This leads to a contradiction. \(\square \)

Question. Let \(\mathcal{C} = \{\log |h'|, |h'| \in A_\infty(\mathbb{S})\} \). It is an open convex subset of the real Banach space \(\text{BMOR}(\mathbb{S}) \), the space of all real-valued BMO functions on \(\mathbb{S} \). A paraphrase of our results (Theorem 1 and Corollary 2) is that there exists a quasisymmetric homeomorphism \(h \) of \(\mathbb{S} \) which is absolutely continuous with \(\log |h'| \in \text{BMOR}(\mathbb{S}) \), and moreover \(\log |h'| \in \mathcal{C} \setminus \mathcal{C} \), the boundary of \(\mathcal{C} \) for the BMO topology. We thus address the question: Does there exist a quasisymmetric homeomorphism of \(\mathbb{S} \) which is absolutely continuous with \(\log |h'| \in \text{BMOR}(\mathbb{S}) \) such that \(\log |h'| \notin \mathcal{C} \)?

5. **Proof of Theorem 3**

Proof of Theorem 3. Recall that \(|h'(e^{i\theta})| = \omega(\theta) \). We use \(\omega(\theta) \) to denote \(|h'(e^{i\theta})| \) for simplicity. Here, \(\omega \) is the weight function constructed in section 2. Since \(\log \omega \in \text{BMO}(\mathbb{S}) \), it is in particular integrable on the unit circle \(\mathbb{S} \). If \(z = re^{i\phi} \), then the Poisson integral of \(\log \omega \),
\[u(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\varphi - \theta) \log \omega(\theta) d\theta = P_r(\log \omega)(\varphi), \]
is harmonic on \(\mathbb{D} \). We let
\[\log \Phi' = u(z) + iv(z), \]
where \(v(z) \) is the harmonic conjugate function of \(u(z) \), normalized so that \(v(0) = 0 \). By \(\log \omega \in \text{BMO}(\mathbb{S}) \) again, we have that \(v(z) \) has nontangential limit almost everywhere on \(\mathbb{S} \) which we denote by \(b(\theta) \), \(b \in \text{BMO}(\mathbb{S}) \), and thus \(\log \Phi' \in \text{BMOA}(\mathbb{D}) \). By the univalence criterion of Ahlfors-Weill \([2]\), \(\Phi \) is a conformal map onto a quasidisk and we
call \(\hat{\Gamma} \) its boundary whenever the doubling constant of \(\omega \) is sufficiently small. By the Jensen inequality we have

\[
|\hat{\Phi}'(z)| = \exp(u(z)) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} P_r(\varphi - \theta) \log \omega(\theta) d\theta \right) \leq \frac{1}{2\pi} \int_0^{2\pi} P_r(\varphi - \theta) \omega(\theta) d\theta = P_r * \omega(\varphi).
\]

Since \(\omega \in L^1 \) on \(S \), we conclude that \(P_r * \omega \in L^1 \) on \(S \) for any \(0 \leq r < 1 \) and the sequence \(\| P_r * \omega \|_1 \) increases to \(\| \omega \|_1 \) as \(r \to 1 \). Then,

\[
\| \hat{\Phi}' \|_{H^1} = \sup_r \frac{1}{2\pi} \int_0^{2\pi} |\hat{\Phi}'(re^{i\varphi})| d\varphi < \infty,
\]

which implies that \(\hat{\Phi}' \in H^1(\mathbb{D}) \), actually \(\hat{\Phi}' \) is an outer function, and thus \(\hat{\Gamma} \) is rectifiable. Moreover, since the boundary function \(\omega \) of \(|\hat{\Phi}'| \) is not an \(A_\infty \)-weight, \(\hat{\Gamma} \) is not a chord-arc curve ([14, Theorem 7.11][18]).

Question. For any \(0 \leq t < 1 \), if we replace \(\omega \) with \(\omega^t \), set

\[
\hat{\Phi}_t(z) = \hat{\Phi}_t(0) + \int_0^z (\hat{\Phi}')^t(\zeta) d\zeta
\]

and denote the curve \(\partial \hat{\Phi}_t(\mathbb{D}) \) by \(\hat{\Gamma}_t \). Then, by the same arguments as the above we have that \(\hat{\Gamma}_t \) is a chord-arc curve since \(\omega^t \) is an \(A_\infty \)-weight. According to these observations, the conformal map \(\hat{\Phi} \) lies in the closure of chord-arc domain maps in the sense that \(\hat{\Phi}_t \) is a conformal map onto a chord-arc domain for any \(t \in [0, 1) \). Must every map satisfying the conclusions of Theorem 3 be such?

Remark. Let \(z(s) \) denote the arc-length parametrization of the chord-arc curve. Then, the set of all \(\arg z'(s) \) forms an open subset of real-valued BMO functions (see [7]).

We see from the above Question that the rectifiable curve \(\hat{\Gamma} \) is on the boundary of the closure of the space of chord-arc curves. Set

\[
z(s) = z(0) + \int_0^s e^{i\beta(x)} dx
\]

is an arc-length parametrization of \(\hat{\Gamma} \). Noting that the curve \(\hat{\Gamma} \) has a parametrization \(\gamma \) such that \(\gamma'(t) = \omega(t)e^{ib(t)} \), we conclude that

\[
z'(s) = e^{i\beta(s)} = e^{ib\alpha(s)}
\]

where \(\alpha(s) \) is the inverse of the function

\[
s(t) = \int_0^t |\gamma'(x)| dx = \int_0^t \omega(x) dx.
\]
Recall that \(b \in \text{BMO}(\mathbb{S}) \) and \(\omega \) is a positive \(L^1 \) function, but not an \(A_{\infty} \) weight. Thus, we cannot conclude that \(\beta \) is a BMO function, nor can we conclude that \(z'(s) \) is not of this form!

References

[1] L.V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, AMS Chelsea Publishing, 2010.

[2] L.V. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equation, Proc. Amer. Math. Soc. 13 (1962), 975–978.

[3] K. Astala and M. Zinsmeister, Teichmüller spaces and BMOA, Math. Ann. 289 (1991), 613–625.

[4] C. Bishop and P. Jones, Harmonic measure, \(L^2 \) estimates and the Schwarzian derivative, J. Anal. Math. 62 (1994), 77-113.

[5] R.R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), 249-254.

[6] G. Cui and M. Zinsmeister, BMO-Teichmüller spaces, Illinois J. Math. 48 (2004), 1223-1233.

[7] G. David, Thèse de troisième cycle, Université de Paris XI, Orsay, France.

[8] R.A. Fefferman, C.E. Kenig and J. Pipher, The theory of weights and the Dirichlet problems for elliptic equations, Ann. of Math. 134 (1991), 65–124.

[9] C. Fefferman and B. Muckenhoupt, Two nonequivalent conditions for weight functions, Proc. Amer. Math. Soc. 45 (1974), 99-104.

[10] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

[11] P.W. Jones, Homeomorphisms of the line which preserve BMO, Ark. Mat. 21 (1983), 229-231.

[12] O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Texts in Math. 109, Springer, 1987.

[13] S. Nag, The Complex Analytic Theory of Teichmüller Spaces, Wiley-Interscience, 1988.

[14] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992.

[15] E.M. Stein, Note on the class \(L \log L \), studia Math. 32 (1969), 305-310.

[16] Y. Shen and H. Wei, Universal Teichmüller space and BMO, Adv. Math. 234 (2013), 129-148.

[17] H. Wei and K. Matsuzaki, Strongly symmetric homeomorphisms on the real line with uniform continuity, preprint.

[18] M. Zinsmeister, Domaines de Lavrentiev, Publi. Math. Orsay, 1985.

[19] A. Zygmund, Trigonometric Series, Vols. I and II, 2nd ed., Cambridge University Press, London, 1959.