Degradation In Insulating Oil Gases Due To Stresses

Jashandeep Singh, Yog Raj Sood, Piush Verma

Abstract: This paper represents the experimental investigation on power transformer insulation based on accelerated electrical & thermal stresses. In this paper, effect of accelerated thermal and electrical stresses on dissolved gas analysis has been experimentally investigated. A new terminology accelerated electrical aging factor (AEAF) and accelerated thermal aging factor (ATAF) is introduced which is mathematically correlated with dissolved gas analysis (DGA). DGA were determined experimentally for fresh and stressed oil samples.

Keywords: Power Transformer, insulation oil, dissolved gas analysis (DGA), accelerated thermal aging factor (ATAF), accelerated electrical aging factor (AEAF).

I. INTRODUCTION

The condition of oil & paper insulation is responsible to check the reliability of power transformer. During the working operation of the transformer, the combination of thermal, electrical, chemical, mechanical and environmental stresses plays a crucial role in its degradation. These stresses increase the failure probability by reducing its dielectric capabilities. From the above stresses, most influential stresses are thermal and electrical, which results in degradation of insulation. So, we are working in this crucial research field to understand the individual effect of electrical & thermal stresses, so that designing & modification in this field will be done accordingly. Some researchers are also working on the combined effect of thermal and electrical stresses. In this paper, the results of dissolved gas analysis (DGA) performed under individual thermal and electrical stresses are presented. The degradation in the dielectric properties at initial stage is detected by DGA, thereby it provides the useful information about the insulation quality [1]. The other causes of stresses are partial discharge, working under high temperature environments, due to poor thermal designs etc.

II. EXPERIMENTATION FOR ACCELERATED STRESSES

Power Transformer degradation process is very complicated process. To understand its degradation process, it needs to pass through series of tests which may not be possible on actual working transformers due to its cost effectiveness, service discontinuity, require long time experimentation to acquire credible failure data & also due to destructive nature.

The best alternative to perform these tests are on prorated or scaled-down models of actual power transformers. These models are used to perform accelerated aging experiments to predict the insulation behavior under different operating conditions [2]. Under normal operating stress conditions, it require long time to acquired credible failure data but in order to obtain the failure data in much shorter time, magnitude of stress applied during the aging experiment should be carefully designed and controlled so that the laboratory scale experiments can cause the premature failure. This is another benefit of using scaled down model. In this paper, test cell model was specially designed, fabricated and used as scaled down model for experimentation in order to investigate the effect of accelerated stresses on oil insulation as shown in figure 1.

![Fig. 1. Test cell setup](image)

The description of test cell is detailed in table 1.

- It is having oil capacity of 03 liters.
- 05 mm thick mild steel plate is used.
- High temperature resistant enameled paint is used to paint the cell from inner surface.

Description	Material	Dimension/ Thickness
Cover plate	Mica sheet	5 mm
Sealing ring	Silicone rubber	5 mm
Tank	Mild steel (Coated with enamel paint)	235 mm x 100 mm x 150 mm
Round stud & nut	Copper	
Bolt	Mild steel	
Transformer oil	As per IS: 335-1993 (2005)	3 liter/cell
Copper strip without paper wrapped	Copper	205 mm x 12.5 mm x 1.96 mm
Insulating paper	Electrical grade paper, as per IS 9335-1993 (0.056 mm/layer)x6 layers=0.336 mm	

The description of test cell is detailed in table 1.
Leakage of gases can be prevented at high temperature and at high voltage by using silicon sealing between the top cover plates.

Two joined copper strips wrapped with paper were placed in the cell. To remove the moisture from tested oil, the insulating oil was heated in air circulating oven at 110°C for 12 hours in test cell. For experimental investigation of individual thermal and electrical stresses on transformer insulating oil, the fabricated test cell was kept in the air circulating oven for 0, 150, 300, 450, 600 and 750 hours at 190°C, 200°C and 210°C for thermal stresses and at 2 kV/mm, 4 kV/mm and 6 kV/mm for electrical stresses. The test cells were applied electrical stresses by connecting them to HV electrical source.

III. ACCELERATED AGING FACTORS

The magnitude and duration of thermal or electrical stresses can cause the aging of insulation. The accelerated thermal aging factor (ATAF) is defined as

\[\text{ATAF} = \frac{T \times D}{D \times C} \]

(1)

Where \(T \) is temperature in °C of thermal stresses, \(D \) is the of thermal stress duration. The unit of ATAF becomes degree C-hours (0C-hr).

Similarly accelerated electrical aging factor (AEAF) is defined as \(\text{AEAF} = \frac{E \times D}{D \times kV} \)

(2)

Where \(E \) is electrical stress in kV/mm, \(D \) is electrical stresses duration. The unit of AEAF is kV hour/mm (kV hr/mm).

Based on equation 1 & 2, table 2 & 3 are presented which represents ATAF and AEAF.

Temperature (°C)	Aging (hours)	ATAF (°C·hr)
190	150	ATAF=28500
200	150	ATAF=30000
210	150	ATAF=31500
190	300	ATAF=57000
200	300	ATAF=60000
210	300	ATAF=63000
190	450	ATAF=85500
200	450	ATAF=90000
210	450	ATAF=84500
190	600	ATAF=114000
200	600	ATAF=120000
210	600	ATAF=126000
190	750	ATAF=142500
200	750	ATAF=150000
210	750	ATAF=157500

Electrical stress (kV/mm)	Aging (hours)	AEAF (kV hr/mm)
2	150	AEAF=300
2	300	AEAF=600
4	150	AEAF=900
6	150	AEAF=1200
2	600	AEAF=1080
4	300	AEAF=1200

IV. DISSOLVED GAS ANALYSIS

Due to electrical & thermal stresses on power transformer, hydrocarbon gases are generated which get dissolved in transformer insulating oil. This happened due to deterioration in cellulosic paper & mineral oil which changes the oil & paper properties. The generated gases are hydrogen (H₂), carbon dioxide (CO₂), carbon monoxide (CO), ethane (C₂H₆), methane (CH₄), acetylene (C₂H₂), ethylene (C₂H₄), etc. [3, 4]. Gases due to incipient faults get detected in oil-filled electrical equipment by DGA. When the magnitude of fault is small, the generated gases get dissolved in the mineral oil, but when its magnitude increases, the gases get collected in the Buchholz relay. The quantity of gases varies with fault severity. Health of transformer is revealed by these gases. Gases also provide useful information if regular monitored [5]. Overheating, corona & arcing are faults which produce different quantity of gases. DGA results are interpreted by analysis of characteristic key gases, gas ratio & regression analysis. Key gas diagnostic criterion indicates the nature of fault in transformer. It is of qualitative nature. A semi-quantitative technique of DGA is gas ratio which identify the faults more specifically than the characteristic gases. Several ratio methods i.e. Dornenberg ratio, IEEE gas methods, Rogers ratio, Duval triangle are available for DGA analysis. The ratio method is generally applied to common conservator type transformer with expansion tank. In case of non-conservator type transformer with gas space, due to adjustment necessary ratio codes and fault classification could be affected [7, 8, 9]. Oil sampling from bottom drain valve was suggested by ASTM standard D3613-98. The apparatus used for measuring the DGA is portable dissolved gas analysis set model TRANSPORT X of Kelman make [10]. Gases in transformer also generated from rusting, uncoated surfaces, internal protective paints such as alkyd resins, chemical reactions using steel, modified polyurethanes containing fatty acids etc. Hydrogen is generated by reaction of moisture & steel. In literature, it has been recorded that some energized transformers also produced large quantity of hydrogen. Internal transformer paints, and [11].

In our experimentation, the dissolved gas analysis was carried out at individual thermal stress of 190°C, 200°C and 210°C and at electric stress of 2, 4 & 6 kV/mm respectively and samples taken out periodically after 0, 150, 300, 450, 600 and 750 hours of aging. The results of gases are discussed below:

A. Carbon di Oxide (CO₂)

The figure 2 to 5, CO₂ varies under individual electrical & thermal stresses.
Figure 2 shows the variation in CO$_2$ with aging at 190°C, 200°C & 210°C. From the graphs, it is clear that the CO$_2$ contents are increasing with aging. At 210°C, CO$_2$ contents have higher values as compared with 200°C and 190°C. The CO$_2$ from virgin oil was 501 ppm. CO$_2$ increases to 1222 ppm at 190°C, 8720 ppm at 200°C, and 24210 ppm at 210°C. It indicates that with an increase in thermal stresses, CO$_2$ increases from 501 to 24210 ppm. The maximum value of CO$_2$ is at 210°C after 750 hours of aging. Figure 3 shows the scattered results of CO$_2$ with ATAF with polynomial effective prediction model; the R2 value of ATAF is 86.1%. The generated mathematical equation between CO$_2$ and ATAF is as follows:

$$CO_2 = (2 \times 10^{-6}) \text{ATAF}^2 - 0.123 \text{ATAF} + 2179 \text{ ppm} \quad (3)$$

Figure 3. Variation of CO$_2$ with ATAF

Figure 4 indicates the variation of CO$_2$ with aging at 2, 4 & 6 kV/mm. The CO$_2$ changes to 467 ppm for 2 kV/mm, 561 ppm at 4 kV/mm, and 1429 ppm at 6 kV/mm. It indicates that 6 kV/mm has a countable effect on the generation of CO$_2$. The CO$_2$ increases from 501 to 1429 ppm at 6 kV/mm after aging of 750 hours. The presence of higher CO$_2$ is mainly due to the decomposition of cellulosic paper. The variation of CO$_2$ with AEAF is shown in Figure 5, which has R2 value of 91.1%. The mathematical equation between CO$_2$ and AEAF is as follows:

$$CO_2 = (8 \times 10^{-5}) \text{AEAF}^2 - 0.169 \text{AEAF} + 525.2 \text{ ppm} \quad (4)$$

B. Carbon mono Oxide (CO)

Figure 6 shows the variation of CO with aging at 190°C, 200°C & 210°C. From the graph, it is clear that the CO contents are increasing with aging & thermal stresses. The CO of virgin oil sample was 01 ppm. It increases to 156 ppm at 190°C, 1382 ppm at 200°C, and 2168 ppm at 210°C. It indicates that after 750 hours of aging CO increases from 01 to 2168 ppm with increase in thermal stresses. As clear from the figure 6, CO contents increases with increase in stresses at all aging (300h, 450h, 600h and 750h), except at 150 hours, which may be due to some experimental error.
The R^2 value of CO with ATAF is 91.8% as shown in figure 7. The mathematical equation between CO and ATAF is as follows:

$$CO = (1 \times 10^{-7}) \text{ATAF}^2 - 0.011 \text{ATAF} + 206.4 \text{ppm} \quad (5)$$

Fig. 7. Variation of CO with ATAF

In figure 8, the variation of CO with aging at 2, 4 & 6 kV/mm is indicated. The CO increase to 1 ppm at 2 kV/mm, 5 ppm at 4 kV/mm and 111 ppm at 6 kV/mm. It indicates that with increase in electrical stresses, CO increases from 01 to 111 ppm at 6 kV/mm after aging of 750 hours. The most effective prediction model for CO with AEAF is polynomial with R^2 value 87.2% as shown in figure 9. The mathematical equation between CO and AEAF is as follows:

$$CO = (9 \times 10^{-6}) \text{AEAF}^2 - 0.019 \text{AEAF} + 9.891 \text{ppm} \quad (6)$$

Fig. 8. Variation of CO with aging at 2, 4 & 6 kV/mm

Fig. 9. Variation of CO with AEAF

C. Ethylene (C_2H_4)

Figure 10 shows the variation of C_2H_4 with aging at 190°C, 200°C & 210°C. The C_2H_4 of virgin oil sample was 02ppm. It increases to 61ppm at 190°C, 111ppm at 200°C and 226ppm at 210°C. It indicates that after 750 hours of aging C_2H_4 increases from 02 to 226 ppm with increase in thermal stresses. The R^2 value of C_2H_4 with ATAF is 81.4% as shown in figure 11. The mathematical equation between C_2H_4 and ATAF is as follows:

$$C_2H_4 = (8 \times 10^{-9}) \text{ATAF}^2 - 0.0001 \text{ATAF} + 22.16 \text{ppm} \quad (7)$$

Fig. 10. Variation of C_2H_4 with aging at 190°C, 200°C & 210°C

Fig. 11. Variation of C_2H_4 with ATAF

Fig. 12. Variation of C_2H_4 with aging at 2, 4 & 6 kV/mm
These gases are generated mainly due to overheating. Its mathematical equation becomes:

\[
C_{2}H_{4} = (5 \times 10^{-7}) AEA F^2 + 0.00016 AEA F + .663 \text{ ppm} \quad (8)
\]

Figure 12 indicates the variation of aging with C2H4 at 2, 4, & 6 kV/mm. It increases to 03 ppm at 2 kV/mm, 03 ppm at 4 kV/mm and 13 ppm at 6 kV/mm. For 2 kV/mm and 4 kV/mm, the figure shows the marginal change in C2H4 which is negligibly small, but in case of 6 kV/mm it increases up to small extent with aging. In case of electrical stresses, the C2H4 increases from 02 to 13 ppm which is very small as compared to thermal stresses. It indicates that electrical stress in not much responsible for the generation of C2H4.

In Figure 13 shows most effective prediction model for C2H4 with AEA F is polynomial with R2 value is 96.5%. The thermal and electrical stresses have significant effect on the C2H4 of oil, but as shown in figures it indicates that the thermal stresses contributes much more as compared to electrical stresses for the generation of C2H4 gas. Due to overheating, these gases are generated. The mathematical equation generated between C2H4 and AEA F is as follows:

\[
C_{2}H_{4} = (5 \times 10^{-7}) AEA F^2 + 0.00016 AEA F + .663 \text{ ppm} \quad (8)
\]

D. Ethane (C2H6)

In figure 14 to 17, the variation of C2H6 under individual electrical & thermal stresses. Figure 14 shows the variation of C2H6 with aging at 190°C, 200°C & 210°C. The C2H6 of virgin oil sample was 06 ppm. The C2H6 increases to 333 ppm at 190°C, 467 ppm at 200°C and 1344 ppm at 210°C. With aging after 750 hours, it increases from 06 to 1344 ppm with increase in thermal stresses. The R2 value of C2H6 with ATAF is 94.8% as shown in figure 15. The equation generated between ATAF & C2H6 is as follows:

\[
C_{2}H_{6} = (4 \times 10^{-8}) ATA F^2 + 0.002 ATA F + 31.27 \text{ ppm} \quad (9)
\]

Figure 16 indicates the variation of C2H6 with aging at 2, 4 & 6 kV/mm. The C2H6 increases to 16 ppm at 2 kV/mm, 28 ppm at 4 kV/mm and 99 ppm at 6 kV/mm. In case of electrical stresses, the C2H6 is increased from 06 to 99 ppm. It indicates that electrical stress in not much responsible for the production of C2H6 as compared to thermal stresses. In figure 17, C2H6 very with AEA F with R2 value of 94.7%. The thermal and electrical stresses have significant effect on the C2H6 of oil, but as shown in figures it indicates that the thermal stresses contributes much more as compared to electrical stresses for the generation of C2H6 gas. These gases are generated mainly due to overheating. Its mathematical equation becomes:

\[
C_{2}H_{6} = (3 \times 10^{-6}) AEA F^2 + 0.009 AEA F + .672 \text{ ppm} \quad (10)
\]
E. Methane (CH₄)

In figure 18, the variation in aging with CH₄ at different thermal stresses is graphically represented. The CH₄ of virgin oil was 01 ppm. The CH₄ increases to 190 ppm at 190°C, 1109 ppm at 200°C and 3196 ppm at 210°C. The CH₄ increases from 01 to 3196 ppm with thermal stresses and aging. The test results are very much scattered with R² value of CH₄ with ATAF is 70.9% as shown in figure 19. Its mathematical equation becomes:

\[\text{CH}_4 = (2 \times 10^{-7}) \text{ATAF}^2 - 0.015 \text{ATAF} + 318.8 \text{ ppm} \] (11)

In figure 20, the CH₄ is 02 ppm at 2 kV/mm, 08 ppm at 4 kV/mm & 67 ppm at 6 kV/mm. CH₄ increases from 06 to 67 ppm with increase in electrical stresses and aging, which is quite low as compared to thermal stresses. Figure 21 represents the variation of CH₄ with AEAFF with R² value of 93.3%. Its mathematical equation becomes:

\[\text{CH}_4 = (6 \times 10^{-6}) \text{AEAF}^2 - 0.010 \text{AEAF} + 4.698 \text{ ppm} \] (12)

F. Acetylene (C₂H₂)

In case of C₂H₂, only electrical stress at 6 kV/mm is presented (in figure 22) because value of C₂H₂ at thermal stress of 190°C, 200°C and 210°C and at electrical stress of 2 and 4 kV/mm is 0.5. At 6 kV/mm, the C₂H₂ increases from 0.5 to 1.5 ppm. It indicates that electrical stress can contribute in the production of C₂H₂ gas. These gases are generated mainly due to arcing. Figure 23, indicates the variation of C₂H₂ with AEAFF.

In figure 21, the variation of CH₄ with AEAFF is shown. The CH₄ increases from 01 ppm at 0°C to 3196 ppm at 210°C. The CH₄ increases from 01 ppm to 3196 ppm with thermal stresses and aging. The test results are very much scattered with R² value of CH₄ with ATAF is 70.9% as shown in figure 19. Its mathematical equation becomes:

\[\text{CH}_4 = (2 \times 10^{-7}) \text{ATAF}^2 - 0.015 \text{ATAF} + 318.8 \text{ ppm} \] (11)

In figure 20, the CH₄ is 02 ppm at 2 kV/mm, 08 ppm at 4 kV/mm & 67 ppm at 6 kV/mm. CH₄ increases from 06 to 67 ppm with increase in electrical stresses and aging, which is quite low as compared to thermal stresses. Figure 21 represents the variation of CH₄ with AEAFF with R² value of 93.3%. Its mathematical equation becomes:

\[\text{CH}_4 = (6 \times 10^{-6}) \text{AEAF}^2 - 0.010 \text{AEAF} + 4.698 \text{ ppm} \] (12)
G. Total Dissolved Combustible Gases (TDCG)

A sum of all combustible gas components is represented as Total dissolved combustible gases (TDCG), i.e. H$_2$, C$_2$H$_6$, CO, CH$_4$, C$_2$H$_2$ & C$_2$H$_4$. TDCG is an important degradation indicator of danger signal. As per experience, a particular type of fault is suggested by revealed hydrocarbon gases.

$$TDCG = (2 \times 10^{-5})AEAF^2 - 0.048AEAF + 42.35 \text{ ppm (14)}$$

Figure 24 shows the variation of TDCG with aging at 190°C, 200°C & 210°C. The TDCG of virgin oil was 16 ppm. The TDCG increases to 595 ppm at 190°C, 1922 ppm at 200°C and 5910 ppm at 210°C. In case of thermal stresses, the TDCG increases from 16 to 5910 ppm after aging of 750 hours. The variation in TDCG & ATAF is shown in figure 25, its R$_2$ value is 85.2%. Its mathematical equation becomes:

$$TDCG = (3 \times 10^{-7})ATAF^2 - 0.014ATAF + 382.7 \text{ ppm (13)}$$

Figure 26 indicates the variation in aging with TDCG at 2, 4 & 6 kV/mm. The TDCG increases to 52 ppm at 2 kV/mm, 67 ppm at 4 kV/mm and 291 ppm at 6 kV/mm. The TDCG increases polynomially with aging. In case of electrical stresses, the TDCG increases from 16 to 291 ppm, which is quite low as compared to thermal stresses. Figure 27 represents the variation of TDCG with AEAF. The effective prediction model for TDCG is polynomial with R$_2$ value 95.1%. It indicates that the thermal stresses contribute much more as compared to electrical stresses for the TDCG. Its mathematical equation becomes:

$$y = 2E-05x^2 - 0.048x + 42.35 \text{ R}^2 = 0.951$$

V. CONCLUSION

In this paper, the effect of individual accelerated electrical & thermal stresses on dissolved gas analysis (DGA) of insulating oil of transformer has been experimentally investigated. In order to understand the insulating degradation process, test cell model have been fabricated. Due to insulation deterioration, the hydrogen, carbon dioxide, carbon monoxide, ethane, methane, acetylene ethylene gases are generated. These gases are detected by portable dissolved gas analysis set model Transport X of Kelman make. In order to quantify the electrical & thermal stresses, accelerated electrical aging factor (AEAF) & accelerated thermal aging factor (ATAF) is introduced. In the experimental work, DGA was carried out at individual thermal stresses of 190°C, 200°C and 210°C & electrical stresses of 2, 4, & 6 kV/mm. The samples were taken out periodically after 0, 150, 300, 450, 600 and 750 hours of aging. The graphically representation between the above mentioned gases with AEAF and ATAF have been presented, further it is concluded that these gases increases polynomially with ATAF and AEAF. It is also concluded that all gases except C$_2$H$_2$ the effect of electrical stresses is less in comparison with thermal stresses. In the paper, it is experimentally seen that both thermal & electrical stresses contributed in degradation of insulation and follow same pattern in property.
Degradation In Insulating Oil Gases Due To Stresses

change. But the degradation in thermal stresses is comparatively more as compared with electrical stresses.

VI. ACKNOWLEDGMENT

The authors are thankful to Dr. R. K. Jarial, Associate Professor, EED, NIT Hamirpur & TIFAC-CORE on Power Transformer Diagnostics to provide necessary facilities for research work to be carried out.

REFERENCES

1. A.M. Emsley and G.C. Stevens, “A Reassessment of the Low Temperature Thermal Degradation of Cellulose”, Proc. 6th Intern. Conf. on Dielectr. Materials, Measurements and Applications, pp. 229-232, 1992.
2. T. K. Saha, M. Darveniza, D.J.T. Hill and T.T. Le, “Electrical and chemical diagnostics of transformers insulation. B. Accelerated aged insulation samples”, IEEE Trans. on Power Del., Vol. 12, No 4, pp. 1555-1561, 1997.
3. Zhang Limin, Li Zheng, Ma Hongzhong and P. Ju, “Power transformer fault diagnosis based on extension theory”, 8th Intern. Conf. on Electrical Machines and Systems, (ICEMS 2005), Vol. 3, pp. 1763-1766, 2005.
4. P.M. Mitchinson, I.L. Hosier, P.L. Lewin, A.S. Vaughan, G.C. Chen and P. Jarman, “An Experiment to Evaluate the Benefits of Processing Aged Transformer Oil”, IEEE Intern. Sympos. on Electrical Insul., pp. 89 – 92, 2006.
5. A. Mollmann and B. Pahlavanpour, “New guidelines for interpretation of dissolved gas analysis in oil filled transformers”, Electra, no.186, 30-51, 1999.
6. S.D. Myers, J.J. Kelly and R.H. Parrish, Guide to transformer maintenance, Transformer Maintenance Institute, Akron, Ohio, USA.
7. G.R. Cardwell, “Oil testing and dissolved gas analysis for identifying faults in power transformers”, Electron, 12-17, 1989.
8. G.R Allan, C. Jones, and B. Sharp, “Studies of the condition of insulation in aged power transformers”, Conf. on Properties and Applications of Dielectr. Materials”, Tokyo, Japan, pp. 1116-1119, 1991.
9. M. Darvenzia, Le. Tri, D. Hill and T.K. Saha, “Studies of the Condition of Insulation in Aged Power Transformers, Part 2-Fundamental Electrical and Chemical considerations”, Conf. on Properties and Applications of Dielectr. Materials”, Tokyo, Japan, 1120-1123, 1991.
10. M.K. Pradhan, “Assessment of the Status of Insulation during Thermal Stress Accelerated Experiments on Transformer Prototypes”, IEEE Trans. on Dielectr. and Electrical Insul., Vol. 13, No.1, pp. 227-237, 2006.
11. P. Verma, “Condition monitoring of transformer oil and paper”, Phd Thesis from Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering & Technology, (Deemed University), Patiala, India, January 2005.

AUTHORS PROFILE

Dr. Jashandeep Singh received his Ph.D from EED, NIT Hamirpur (HP) in 2011. He is working as Professor, Bhai Gurdas Group of Institutes, Patiala Campus, Punjab (India). During his 14 years of experience, he authored more than 50 papers in various reputed journals & conferences including IEEE, Taylor & Francis & Springer. His research interests are transformer diagnosis, electrical machines and energy management.

Dr. Yog Raj Sood obtained his Ph.D. from IIT Roorkee in 2003. He is working as Professor, EED, NIT, Hamirpur (H.P.), India. He has more than 25 years teaching and research experience. He has published a number of research papers. He is recipient of several commendations, appreciation letters & awards for his excellent educational and research work. His research interests are in the area of condition monitoring of power transformer, deregulation of power sector, AI application to power systems, power system optimization, high voltage engineering and non-conventional sources of energy.

Dr. Piush Verma got his Ph. D. in Electrical & Instrumentation Engineering from Thapar University, Patiala, Punjab (India) in 2005. He has over 22 years of experience in Research, Industry and Academia. He is working as Vice Chancellor, BU Shimla. His research interests are in the area of Transformer Diagnostics study and Non-Conventional Sources of Energy.