Caste-specific gut symbionts contribute to the different adult longevity in the honeybee

Hongfang Wang (whf@sdau.edu.cn)
Shandong Agricultural University

Baohua Xu
Shandong Agricultural University

Keywords: Bombella, fitness, gut microbes, Honeybee, longevity, queen bees, worker bees

DOI: https://doi.org/10.21203/rs.3.rs-119097/v1

License: ☇ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Honeybees are important pollinators, and their health is important to agricultural production and ecosystem. Queen-bees contain same genome as worker-bees, but live longer and healthier than worker-bees; thus, queen and worker pairs are natural biological models for studying longevity. Concerns are increasing regarding the relationship between gut microbes and honeybee health. We compared the hindgut microflora of queen and worker (Apis mellifera carpatica) by sequencing the bacterial 16S DNA, then salvaging the caste-specific microbes using LEfSe analysis and predicting the microbial functions using Tax4Fun, hoping to find potential gut symbionts associated with longevity.

Results

The hindgut microflora of queens differed from those of worker. Queens had higher abundances of Commensalibacter, Lactobacillus and Bifidobacterium than workers. The dominant microflora in the worker hindguts were Gilliamella (29.37%), Lactobacillus (15.28%), Commensalibacter (13.65%), Snodgrassella (11.56%), Bifidobacterium (6.07%) and Frischella (3.51%). The dominant microflora in the queen hindguts were Commensalibacter (44.89%), Lactobacillus (38.42%), Bifidobacterium (6.74%), Gilliamella (2.44%) and Bombella (2.41%). Queen-specific microbe was Bombella genus, and worker-specific microbe included Snodgrassella alvi, Frischella perrara and Gilliamella apicola. Queen and worker hindgut microbes exhibited diverse functions in lipid metabolism, neurodegenerative diseases, endocrine system, nervous system and immune system; those functions were linked to honeybee fitness and longevity. The queen-specific symbiont, Bombella, was predicted to be involved in host endocrine and immune regulation, which may contribute to queens living longer and healthier than worker bees.

Conclusion

The supernal Acetobacteraceae (especially Commensalibacter and Bombella), Lactobacillus and Bifidobacterium in the queen-hindgut help the queen bees live longer and healthier than the worker bees. This study may help determine the mechanisms of queen longevity and enable further understanding the positive roles of gut symbionts in honeybee fitness.

Introduction

Honeybees are highly eusocial insects, and their colonies consist of the queen, workers and drones. Queen and worker bees are both female and have the same genome but differ in reproduction, immunity and other physiological functions [1–3]. Interestingly, queen and worker bee lifespans vary considerably, with queens living up to 10–20 times longer than workers,[4, 5] suggesting that queen bees are healthier than worker bees. Thus, honeybees have long been studied as models of aging [6]. The variations in their lifespans are mostly attributed to different diets. Throughout their lifetime, the queens primarily eat royal jelly, which is functionally analogous to mammalian breast milk and supplies their complete nutrition, including antioxidant, antimicrobial, and immunoregulatory properties. Conversely, worker bees eat bee bread, the fermentation product of honey and pollen, for most of their short lives, except during the larval stage. Feeding royal jelly to worker bees enables them to live longer [7]. The diet regulates bodily health via many mechanisms. However, we believe that food first affects the gut microbes because the digestive tract is where food initially enters the bees’ bodies. Food provides nutrition for the bees as well as a substrate for intestinal bacterial survival. Therefore, honeybees are a natural biological model for studying the relationship between gut bacteria and host health and longevity.

Intestinal bacteria are important to host health. The gut microflora community structure and characteristics of honeybees have been fully and systematically analyzed over the last 15 years. Nine distinctive bacterial phylotypes dominate the guts of honeybee workers: Gilliamella apicola (Gamma-1), Frischella perrara (Gamma-2), Snodgrassella alvi (Beta), Bartonella apis (Alpha-1), Commensalibacter (Alpha 2.1), Parasaccharibacter and Bombella (Alpha 2.2), Bifidobacterium and Lactobacillus (Firm-4, Firm-5)[8–11]. The dominant species and abundances vary among various niches of the digestive tract. Few bacterial phylotypes with low abundances exist in the foregut, but rich phylotypes with high abundances exist in the hindgut, accounting for over 99% of the microbes in the entire gut. However, most of these findings were determined from studies on worker bees. Few studies have examined the composition of the queen bee gut microflora. Queen bee core bacteria include Acetobacteraceae (Alpha 2.1 and Alpha 2.2) and Firm-4 and Firm-5 Lactobacillus; whereas worker guts comprise mostly Proteobacteria (Gamma-1, Gamma-2 and Beta) [12–14]. Our latest study found that sucrose as overwintering feed increased the Acetobacteraceae abundance in worker guts compared with that of honey and fructose syrup, and honeybee colonies with higher Acetobacteraceae abundances exhibited less overwintering loss. These results suggest that increasing the Acetobacteraceae abundance in honeybee guts maybe prolong the life of the bees[15]. In summary, associations between microbial community compositions and longevity remain uncertain.

Determining the caste-specific gut microflora, especially members of Acetobacteraceae, is important. Queen-specific bacteria may be closely related to honeybee health and longevity. To determine the specific bacteria associated with honeybee health and longevity, we systematically compared the hindgut microflora of the mature queen and worker bees (Apis mellifera carpatica, Kaqian black ring strain) and predicted the functions of the different taxa. The Kaqian black ring strain, which exhibits stronger adaptability, less food consumption, higher honey production and better overwintering ability than does Apis mellifera L., was bred from Apis mellifera carpatica by pure breed selection under the ecological conditions of the Changbai Mountain area in China and was thus used in this study.

Materials And Methods
Animals and sampling

Three sister queen colonies (Apis mellifera carpathica, Kazjan black ring strain) were used in our experiments. The queens and worker bees were reared as per the methods of Wang and Begna [16, 17]. Briefly, the spawning queen and an empty wax comb frame were confined to a cage for 12 hours, through which the workers could pass freely, but the queen could not. After the queen laid enough eggs, the frame was transferred to the upper successor box of the colony to incubate for 3 days. Some of the first-instar larvae were transferred from the worker cells to queen cell cups in a queen-rearing frame, then put into a queenless colony for further development. Seven days after emerging from the cells, five queen bees per colony, which had not finished mating but were sexually mature with an established gut microflora community, were collected into 2-mL microcentrifuge tubes. The remaining larvae remained in worker cells, allowing them to develop into worker bees. Worker bees were marked with color after emerging from the cells. The colored 7-day-old worker bees (n = 10/colony), whose gut microflora community was stably established, were collected into 2-mL microcentrifuge tubes. Under aseptic conditions, the hindguts of the 7-day-old virgin queens and 7-day-old worker bees were sampled to extract the gut microbial DNA [15].

Gut microflora genomic DNA extraction and sequencing

Microbial DNA was extracted using HiPure Stool DNA Kits (Magen, Guangzhou, China) per the manufacturer’s protocols. The DNA concentration, purity and integrity were verified using a NanoDrop (Thermo, USA) (1.8 < A260/A280 < 2.0) and 1% agarose gels. The 16S rDNA V3–V4 regions of the ribosomal RNA genes were amplified via PCR using primers 341F: CTCACGGGNGGCWGCAG and 806R: GGACTACHVGGGTATCTAAT. Amplicons were extracted from 2% agarose gels and purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) per the manufacturer’s instructions and quantified using the ABI StepOnePlus Real-Time PCR System (Life Technologies, Foster City, CA, USA). Purified amplicons were pooled in equimolar quantities, then were paired-end sequenced using an Illumina platform to generate 250-bp paired-end reads (PE250).

Bioinformatics analysis of 16S rDNA sequencing data

The raw reads were further filtered to remove reads containing more than 10% unknown nucleotides and reads in which < 50% of the bases had a quality (Q-value) > 20 according to the following rules using FASTP (version 0.18.0)[18]. Paired-end clean reads were merged as raw tags using FLASH (version 1.2.11) [19] with a minimum 10-bp overlap and 2% mismatch error rate. To obtain high-quality clean tags, noisy sequences of raw tags were filtered via the QIIME pipeline (version 1.9.1) [20]. Clean tags were searched against the reference database (version r20110519, http://drive5.com/uchime/uchime_download.html) to perform reference-based chimera checking using the UCHIME algorithm [21]. All chimeric tags were removed, then the resulting effective tags were further analyzed. The effective tags were clustered and classified into operational taxonomic units (OTUs) at an identity threshold of 97% similarity using UPARSE software (version 9.2.64)[22]. The representative OTU sequences were classified into taxonomic categories as per the SILVA database (version 132) [23].

Statistical analysis and software

Statistical comparisons between two measurements were analyzed using unpaired two-tailed Student’s t-tests in SAS 9.1. The stacked bar plot of the community composition was visualized using the R project ggplot2 package (version 2.2.1). A heatmap of the species abundance was plotted using the R project ggplot2 package (version 2.2.1). Multivariate statistical techniques, including principal coordinates analysis (PCoA) of the Bray-Curtis distances and pairwise analysis of similarities (ANOSIM) tests were performed using the R project Vegan package (version 2.5.3) to determine significant differences between the worker and queen gut microbial communities. R values in ANOSIM were used to detect the community overlap [24] (R > 0.75: well-separated; 0.50 < R ≤ 0.75: separated but overlapped; 0.25 < R ≤ 0.50: separated but strongly overlapped; and R ≤ 0.25, barely separated). P-values indicated significant differences between the groups (**P < 0.01, ***P < 0.001). The Kyoto Encyclopedia of Genes and Genomes pathway analysis of the OTUs was inferred using Tax4Fun (version 1.0). Functional differences between groups were calculated via Welch’s t-test in the R project Vegan package (version 2.5.3). Pearson correlation analysis between taxa and functions was calculated in the R project psych package (version 1.8.4). P-values were obtained via Fisher’s Z transformation.

Results

Bacterial sequences and classification

We obtained 641,352 16S rRNA V3-V4 region raw paired-end (PE) reads from the 6 samples (3 queen bee and 3 worker bee samples). After filtering, we retained 626,318 clean PE reads (Table S1). Tag assembly and quality control yielded an average of 85445 effective tags per sample. Of those, an average of 20529 tags (24%) were singletons, and 46993 tags (55%) were unique. The taxon tags averaged 64916 (76%) and were clustered into an average of 669 OTUs per sample (Table S2). Those OTUs were mainly classified into three phyla (Proteobacteria, Firmicutes and Actinobacteria), which accounted for more than 99% of all the gut bacteria (Fig S1A).

Queen and worker bees had different gut microbial profiles

To compare the microflora communities of the workers and queens, the diversity and distances of the samples were analyzed. PCoA based on Bray-Curtis showed differences in gut bacterial compositions between the worker and queen bees with a profound difference along the PC01 axis (reaching 59.47% of overall variation, P = 0.003684). The aggregation of samples within groups and dispersion of samples between groups indicated higher similarity within groups with a clear difference between groups (Fig. 1A). ANOSIM results (Fig. 1B) showed that the intergroup distance between the worker and queen bees was greater than the intragroup distance between the worker and queen bees (R = 0.926, P = 0.028). The distance index between the worker and queen samples was larger than that among samples in either the worker or queen bees (Fig. 1C). Larger distance indexes indicated greater distances between samples. These results confirmed that the worker and queen gut microflora communities differed.
Gut microbial caste-specific patterns

The worker and queen gut microfloras exhibited both differences and commonalities. Venn diagrams were constructed to analyze the common and unique OTUs between worker and queen bees. The worker and queen hindguts contained 339 common OTUs (50.67%); the worker hindguts contained 266 unique OTUs (43%), and the queen hindguts contained 346 unique OTUs (50.51%). The common OTUs were mostly annotated to dominant bacterial taxa in both the worker and queen guts (Table S3). Fewer unique OTUs were found (< 40 for workers, < 20 for queens; Tables S4 and S5).

Queen and worker bees have similar taxonomic types of dominant gut microflora at the phylum level, including Proteobacteria (78.34% for workers, 53.92% for queens), Firmicutes (15.33% for workers, 38.73% for queens) and Actinobacteria (6.08% for workers, 6.81% for queens) (Fig. S1A and Fig. 3A). However, the dominant genera in the worker and queen bee guts differed. The dominant microflora in the worker guts were Gilliamella (29.37%), Lactobacillus (15.28%), Commensalibacter (13.65%), Snodgrassella (11.56%), Bifidobacterium (6.07%) and Frischella (3.51%; Figs S1C and 3B). The dominant microflora in the queen guts were Commensalibacter (44.89%), Lactobacillus (38.42%), Bifidobacterium (6.74%), Gilliamella (2.44%) and Bombella (2.41%; Figs S1D and 3B).

Compared with the worker bees, queens had higher abundances of Alphaproteobacteria Acetobacteriales Actinobacteriaceae (Commensalibacter and Bombella), Firmicutes Bacillales Lactobacillaceae (Lactobacillus) and Actinobacteria Bifidobacteriales Bifidobacteriaceae (Bifidobacterium). However, the abundances of Proteobacteria, Gammaproteobacteria, Orbales, Orbaceae (Gilliamella and Frischella), Betaproteobacteria, Neisseriaceae and Snodgrassella were much richer in the worker guts (Figs S2 and 3AB).

LEFSe analysis (Linear Discriminant Analysis, LDA > 4) was performed to determine the caste-specific biomarker taxa. Queen-specific biomarker taxa included Bombella intestini (Fig. 3C), and the worker-specific biomarker taxa were S. alvi, F. perrara and G. apicola (Figs. 4 and 3C).

Landscape and inter-caste differences in intestinal microbiota functions

The worker hindgut and queen hindgut microfloras differed. To understand the functional changes in these differences in microbial construction, we predicted the functional profiles of the gut microbiome based on 16S RNA sequencing data using Tax4Fun (v1.0). The honeybee gut microbiomes were enriched in six functions at level 1: metabolism, environmental information processing, genetic information processing, cellular processes, human diseases and organismal systems (Fig. 5A). The significant changes (P < 0.05) in hindgut microbiota gene functions at level 2 between workers and queens focused on lipid metabolism, neurodegenerative diseases, the endocrine system, nervous system and immune system. We further compared the more detailed gut microbiota functional differences at level 3 between the worker and queen bees (Fig. 5B). Twenty-seven functions significantly differed at level 3 (P < 0.05), of which, only five functional abundances were higher in queens than in workers: fructose and mannose metabolism, taurine and hypotaurine metabolism, bacterial toxins, alpha-linolenic acid metabolism and the insulin signaling pathway. Seven caste-specific species (Lactobacillus sp SF6D, Lactobacillus kuehnei, Lactobacillus apis, Lactobacillus sp Adhmt19, B. intestini, F. perrara, and S. alvi; Figs. 3C and 4) were targeted to predict their associated functions at level 2 (Fig. 6). Five functions were significantly associated with S. alvi (r > 0.8 and P < 0.05): folding, sorting and degradation; glycan biosynthesis and metabolism; signaling molecules and interaction; endocrine system; and excretory system, of which, folding, sorting and degradation; glycan biosynthesis and metabolism; and endocrine system were positively correlated, while the others were negatively correlated. The endocrine system and excretory system functions were significantly associated with B. intestini (r > 0.8 and P < 0.05). The r between immune system and B. intestini was 0.8015, but P was > 0.05. The most relevant function for L. sp. Adhmt19 was immune system (r = 0.9196 and P = 0.009432). The functional profiles of L. sp. SF6D, L. kuehnei and L. apis were similar, and their more relevant functions (0.5 < r < 0.8) included amino acid metabolism, metabolism of cofactors and vitamins, environmental adaptation, circulatory system and immune system diseases.

To further study the potential functions of the caste-specific taxa, correlations between the caste-specific taxa and the level 3 functions from the significantly related functions at level 2 were analyzed using Pearson correlation analysis. Figure 6B shows the level 3 functions with r > 0.5. Eight tertiary functions were significantly related to B. intestini, 9 were significantly related to L. sp. Adhmt19, 6 were significantly related to F. perrara, and 11 were significantly related to S. alvi (r > 0.8; P < 0.05). The tertiary functions closely related to B. intestini and L. sp. Adhmt19 primarily comprised antigen recognition and innate immunity (RIG-I-like receptor signaling pathway, cell antigens, antigen processing and presentation, and NOD-like receptor signaling pathway), biosynthesis and degradation of polysaccharides (N-glycan biosynthesis, glycosaminoglycan degradation and glycosphingolipid biosynthesis) and endocrine signaling pathways (PPAR signaling and adipocytokine signaling pathways). The functions closely related to S. alvi included ubiquinone and other terpenoid-quione biosynthesis, proximal tubule bicarbonate reclamation, bacterial toxins, alpha-linolenic acid metabolism and the insulin signaling pathway. F. perrara functions mainly included ubiquinone and other terpenoid-quione biosynthesis, alpha-linolenic acid metabolism, insulin signaling pathway, sulfur relay system, ubiquitin system and chaperones, and folding catalysts. These predictive functions of the caste-specific taxa indirectly indicated that the host bees (workers and queens) may differ in physiological functions, substrate metabolism, and immune recognition and helped clarify the differences between workers and queens.

Discussion
Honeybee gut microbiotas are distinct from those of solitary bee species, whose guts mainly include *Burkholderia*, and the pervasive insect associate *Wolbachia* [25, 26]. However, previous studies found that bacteria in honeybee guts are highly conserved despite subspecies differences among hosts [9, 25–28]. Previously characterized results on *Apis mellifera ligustica* showed that the main core phyotypes in worker guts included Gammaproteobacteria (*G. apicola*), Betaproteobacteria (*S. alvi*), Firmicutes (*Lactobacillus Firm-4* and *Lactobacillus Firm-5*) and *Bifidobacterium* spp. (listed in order of highest to lowest abundance). Other studies analyzed the gut microbiomes of other species and *Apis* subspecies, including *A. dorsata*, *A. andreniformis*, *A. mellifera carnica*, *A. mellifera capensis*, and *A. mellifera scutellata* [9, 25, 27]. The results showed that the gut microbes differed only slightly among the various honeybee species and subspecies. Most core bacterial taxa in the *Apis* guts included the nine dominant phyotypes mentioned above; however, some subtle differences were noted: Alpha-2.1, Firm-4 and Firm-5, which were common in *Apis mellifera ligustica* guts, were undetected in *A. dorsata*, while *A. andreniformis* was universally colonized with high abundances of Alpha-1, Beta, Firm-4, and Gamma-1 [25]. *Simonsiella* was detected in *A. mellifera scutellata*, and *Gluconacetobacter*, *Serratia*, and *Simonsiella* were detected in *A. mellifera capensis* [9]. *Gluconacetobacter*, *Curvibacter*, *Comamonas*, *Ralstonia*, *Simonsiella*, *Salmonella* and *Serratia* occurred sporadically in the *A. mellifera carnica* guts [28], but these bacteria were rare in the *A. mellifera ligustica* guts. In the present study, the dominant microflora in the worker guts (*A. mellifera carpathica*, *Kaqian black ring strain*) were *Gilliamella* (Gamma-1; 29.37%), *Lactobacillus* (Firm-5; 15.28%), *Commensalibacter* (Alpha-2.1; 13.65%), *Snodgrassella* (Beta; 11.56%), *Bifidobacterium* (6.07%) and *Frischella* (Gamma-2; 3.51%); no *Lactobacillus Firm-4* was identified. *Apis* species or subspecies taxa, in addition to methodological and environmental factors, may have contributed to these subtle differences.

Queen bee guts contained more Acetobacteraceae, Lactobacillus and Bifidobacterium, differing from the worker bee guts

In eusocial insects, there were many different phenotypes between queen and worker, including morphology, genitalia and longevity. Studies of the differences in longevity between castes are valuable because individual longevity is often closely associated with physical fitness. Recent studies regarding how microbial communities in bee guts are involved in pathogen protection and nutrition metabolism have drawn attention to the impact of the microbiota on bee fitness. Thus, we examined which differences in the gut microbial communities of the queen and worker bees would contribute to differences in their lifespans. Previous studies of the gut microbial communities of queen and worker bees showed that queens lack the stable core microbiotas that are associated with the workers, although these studies used queens of different ages and reproductive stages (i.e., 4–6-month-old, 16–18-month-old, 4-day-old virgin, 14-day-old spawning and 7-day-old virgin queens) (Kapheim et al. 2015; Anderson et al. 2018; Powell et al. 2018). Our study of caste-specific microbiotas in *A. mellifera carpathica* (*Kaqian black ring strain*) reconfirms the clear distinctions between castes. The same phenomenon was found in termites, which are also social insects (Poulsen et al. 2014; Otani et al. 2019). Diverse gut microbial communities between infertile and royal termite castes were thought to be associated with caste-specific diets and lifestyles (Otani et al. 2019). The same also applies to honeybees. Compared with the worker gut microbial data reported by Kwong & Moran (2016), Anderson et al. (2018) found that the queen-specific microflora of *A. mellifera ligustica* included *Parasaccharibacter apium* (Alpha-2.2) and *Lactobacillus kunkeei* (Firm-5); worker-specific microflora included *Bartonella apis*, *F. perrara*, *S. alvi* and *G. apicola*, and shared core microflora were *Lactobacillus* Firm-4, *Lactobacillus* Firm-5, *Bifidobacterium* asteroids and *Acetobacteraceae* Alpha 2.1. Our results showed that the queen-specific taxon was *B. intestini* (Alpha 2.2; Fig. 3C), the worker-specific taxa were *S. alvi*, *F. perrara* and *G. apicola* (Figs. 4 and 3C), and queens had higher abundances of *Commensalibacter*, *Lactobacillus* and *Bifidobacterium* than worker bees (Fig. 3B). However, *B. intestini* was not the most abundant bacterium in the queens, but the fifth most abundant, with *Commensalibacter* (44.89%; Alpha 2.1), *Lactobacillus* (38.42%), *Bifidobacterium* (5.44%), and *Gilliamella* (2.44%) ranking before it (2.41%). Powell et al. (2018) showed that *Acetobacteraceae* (Alpha-2.1 and Alpha-2.2) and *Lactobacillus* Firm-5 dominated queen *Apis mellifera* guts. Kapheim (2015) reported similar results in that the top four most abundant bacteria were *P. apium*, Alpha-2.1, *Lactobacillus* Firm-4 and *Lactobacillus* Firm-5. These studies collectively suggest that queen guts harbor more abundant *Acetobacteraceae*, especially Alpha-2.2, than do worker guts, likely related to the honeybee diets. Previous research concluded that *Acetobacteraceae* Alpha 2.2 were prolific in the crops, hypopharyngeal glands of nurse bee, royal jelly and larva fed on royal jelly, but were negligible in the nurse and forager midguts and hindguts (Anderson et al. 2013; Vojvodic, Rehan & Anderson 2013; Corby-Harris et al. 2014). Some niches were characterized by the availability of royal jelly, which is the main food of queen bees and differs from the bee bread and honey eaten by the workers. Thus, queen bee guts are a niche accessible to royal jelly, suggesting that royal jelly may promote *Acetobacteraceae* Alpha 2.2 proliferation. The widespread distribution of Alpha 2.2 in many niches of honeybee indicates some specialized biological functions in the hosts. Our latest study found that overwintering honeybee colonies with higher abundances of *Acetobacteraceae* exhibited a lower rate of overwintering loss (Wang et al. 2020a), suggesting that *Acetobacteraceae* plays a positive role in honeybee fitness. One Alpha 2.2 isolate was shown to increase honeybee larval survival in vitro (Corby-Harris et al. 2014). *Acetobacteraceae* are symbionts of various insects. Studies on *Anopheles* and *Drosophila* indicated that *Acetobacteraceae* provided nutrition to the host (Crotti et al. 2010), benefited host growth and development [29–31], and modulated host immunity (Ryu et al. 2008). So it was inferred that the abundant *Acetobacteraceae*, including *Commensalibacter* and *Bombella*, in queen bee guts might be another important beneficial bacteria enabling queen bees to live healthier and longer lives than worker bees, except for the well-known beneficial symbiotic bacteria *Lactobacillus* and *Bifidobacterium*.

Gut microbial functions in queen bees differed from those of worker bees

Regarding the integral functions of gut microbes, the microbiota gene functions that differed between workers and queens at level 2 included lipid metabolism, neurodegenerative diseases, and the endocrine, nervous and immune systems (Fig. 5). Of these, lipid metabolism and the endocrine and immune systems are correlated with honeybee longevity. Regarding lipid metabolism, the fatty acid composition of the phospholipid membrane affects bee longevity [32]. The membrane phospholipids of adult worker bees include richer polyunsaturated fatty acids (PUFAs) and increase with age. However, the membrane phospholipids in adult queens remain highly monounsatuated throughout the bees adult life [32, 33]. PUFAs are 1,000 times more likely to oxidize than are monounsaturated fatty acids [34]. Accumulation of lipid oxidative damage over a lifetime is one main cause of aging [35, 36]. Studies in mice have shown that gut bacteria can alter the saturation and length of host fatty acids [37]. Therefore, gut microbes likely influence the lifespans of queens and workers by regulating lipid metabolism.
Regarding the endocrine system, the insulin pathway was shown to be associated with caste differentiation in female honeybees [38]. In the present study, the honeybee gut microbes were predicted to be functionally associated with host insulin signaling, consistent with previous studies [31, 39]. Reducing insulin/insulin-like growth factor signaling (IIS) activity inhibits juvenile hormone secretion, thereby increasing vitellogenin expression [40, 41]. Upregulating vitellogenin expression can prolong bee longevity [42]. Studies have shown that older queen bees have lower IIS activity than do older worker bees [40], and the insulin signaling abundance associated with gut microbes was predicted to be lower in queens than in worker bees. Thus, queen bees live longer than do worker bees. Studies of model organisms have shown that reducing IIS activity increases longevity [43–45]. Thus, bee gut microbes likely affect host longevity via endocrine pathways, particularly insulin signaling.

Regarding the immune system, a common characteristic among aging animals is reduced immunity [46], which also occurs in aging bees [3, 47, 48]. That is, factors that affect bee immune performance tend to affect their longevity. Studies on insects have shown that gut microbes play key roles in establishing and regulating the host immune system [49–52], suggesting that gut microbes may affect host longevity via immunoregulation. Differences in lipid metabolism and endocrine and immune function abundance in gut microbes between queen and worker bees indicate that gut microbes contribute to the differences in longevity between queen and worker bees.

Another gut microbial function predicted to differ between female castes is folate biosynthesis. Folic acid functions as a one-carbon unit carrier involved in substance metabolism and synthesis. The nitrogen 5-trimethyl-tetrahydrofolic acid (N5-CH3-FH4) of the one-carbon units provides methyl for homocysteine to produce methionine. Methionine is activated into S-adenosylmethionine, which is the methyl donor in DNA methylation [53, 54]. DNA methylation is one of the main molecular mechanisms for female bee castes differentiation [55, 56]. Methionine as a methyl donor also plays a regulatory role in differentiating female honeybee castes [57]. Thus, gut microbes may be involved in regulating the ontogenetic trajectory of female bees.

Bombella positively affected honeybee fitness

The functions of the caste-specific taxa, *L. sp. SF60, L. kullabergensis, L. apis, L. sp. Adhmto19, B. intestini, F. perrara, and S. alvi*, were predicted using Tax4Fun. As worker bee-specific taxa, the functions of *F. perrara* and *S. alvi* were previously investigated [58, 59]; these microbes are involved in immunity [60], defense [61] and maintaining the anaerobic fermentation environment [39]. However, less is known about the microbial functions associated with queen bees. In this study, five queen-specific taxa were found, including four species of *Lactobacillus* and *B. intestini*. The benefits of *Lactobacillus* on animal fitness have been well documented. However, little is known about *B. intestini* originating from honeybees. In the present study, *B. intestini* appeared as a queen-specific gut microbe; thus, it received our attention. *B. intestini*, which was first isolated from bumblebee crops [62], is part of a clade of acetic acid bacteria (a group within the family Acetobacteraceae). To date, *B. intestini* from honeybees is unreported. However, *Bombella apis*, another member of the genus *Bombella* with 98% sequence similarity to *B. intestini*, was detected from honeybee midguts [63]. However, little is known about the role of *genus Bombella* in honeybee fitness. Whole-genome sequencing of *B. intestini* and *B. apis* disclosed the general genomic features and functional annotations of the coding gene [64, 65]. Fusaric acid resistance (FUSC) genes were found in the *B. apis* genome. Several fungal species produce fusaric acid [66]. FUSC genes in the *B. apis* genome indicate that *B. apis* in honeybees may protect honeybees from fungal infection [67]. In this study, *B. intestini* was predicted to be associated with immune and endocrine functions, including the RIG-I-like receptor signaling pathway, cell antigens, antigen processing and presentation, the NOD-like receptor signaling pathway, N-glycan biosynthesis, glycosaminoglycan degradation and glycosphingolipid biosynthesis, the PPAR signaling pathway and the adipocytokine signaling pathway. Of these, RIG-I-like and NOD-like receptors are members of pattern-recognition receptor families that sense nucleic acids derived from viruses and trigger antiviral innate immune responses [68, 69]. Therefore, honeybee symbiotic bacteria belonging to *Bombella* may function by resisting pathogen infection and play important roles in maintaining honeybee health. Further studies and more direct evidence are required.

Declarations

Acknowledgements

The authors thank Genedenovo company (Guangzhou, China) for assistance and comments in bioinformatics analysis. This study was supported by Shandong Province Agricultural Fine Varieties Breeding Projects (2017LZN006) and the earmarked fund for the China Agriculture Research System (No. CARS-44).

Author contributions

Hongfang Wang and Baohua Xu participated in the conception and design of the study. Hongfang Wang drafted the manuscript and performed the experiments. Hongfang Wang, Zhenguo Liu, Xuepeng Chi and Kai Han collecting the samples. Ying Wang, Lanting Ma and Baohua Xu revised the paper. All authors read and approved the final manuscript.

Declaration of conflict of interests

All the authors declare no conflict of interests.

Availability of data and materials

The dataset supporting the conclusions of this article is available in the NCBI Sequence Read Archive database (Accession Number: SUB8289109).

References
1. Hartfelder K, Engels W. Social Insect Polymorphism: Hormonal Regulation of Plasticity in Development and Reproduction in the Honeybee. In: Curr Top Dev Biol. Edited by Pedersen RA, Schatten GP; vol. 40. Academic Press, 1998: 45-77.

2. Toth AL, Robinson GE. Worker nutrition and division of labour in honeybees. Anim Behav 2005, 69(2):427-435.

3. Schmid MR, Brockmann A, Pirk CWW, Stanley DW, Tautz J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J Insect Physiol 2008, 54(2):439-444.

4. Amdam GV, Page REJ. Intergenerational transfers may have decoupled physiological and chronological age in a eusocial insect. Ageing Research Reviews 2005, 4:398–408.

5. Sammataro D, Avitabile A. The Beekeeper's Handbook, third ed. Cornell University Press; 1998.

6. Page RE, Peng CY. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol 2001, 36(4):695-711.

7. Yang W, Tian Y, Han M, Miao X. Longevity extension of worker honey bees (Apis mellifera) by royal jelly: optimal dose and active ingredient. PeerJ 2017, 5:e1118.

8. Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 2007, 59(3):600-610.

9. Jayaprakash A, Hoy MA, Allsopp MH. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol 2003, 84(2):96-103.

10. Moran NA, Hansen AK, Powell JE, Sabree ZL. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE 2012, 7(4):e36393.

11. Sabree ZL, Hansen Ak Fau - Moran NA, Moran NA. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees. PLoS ONE 2015, 10(4):e0123911.

12. Anderson KE, Rigidiano VA, Mott BM, Copeland DC, Floyd AS, Maes P. The queen’s gut refines with age: longevity phenotypes in a social insect model. Microbiome 2018, 6(1):108.

13. Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA, Goldenfeld N, Robinson GE. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE 2015, 10(4):e0123911.

14. Powell JE, Eiri D, Moran NA, Rangel J. Modulation of the honey bee queen microbiota: Effects of early social contact. PLoS ONE 2018, 13(7):e0200527.

15. Wang H, Liu C, Liu Z, Wang Y, Ma L, Xu B. The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiol 2020, 20(1):61.

16. Begna D, Han B, Feng M, Fang Y, Li J. Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) Queen and Worker Larvae: a deep insight into caste pathway decisions. Journal of Proteome Research 2012, 11(2):1317-1329.

17. Wang Y, Ma L-T, Xu B-H. Diversity in life history of queen and worker honey bees, Apis mellifera L. J Asia-Pacif Entomol 2015, 18(2):145-149.

18. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34(17):i884-i890.

19. Magoć T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27(21):2957-2963.

20. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010, 7(5):335-336.

21. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27(16):2194-2200.

22. Edgar RC. UPARSE: highly accurate OTU sequences from microbial ampilon reads. Nat Methods 2013, 10(10):996-998.

23. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007, 35(21):7188-7196.

24. Buttigieg PL, Ramette A. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiol Ecol 2014, 90(3):543-550.

25. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2011, 20(3):619-628.

26. Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 2014, 80(17):5254-5264.

27. Elleegaard KM, Engel P. Genomic diversity landscape of the honey bee gut microbiota. Nature Communications 2019, 10(1):446.

28. Mohr KI, Tebbe CC. Diversity and phylogtype consistency of bacteria in the guts of three bee species (Apoidae) at an oilseed rape field. Environ Microbiol 2006, 8(2):258-272.

29. Chouaia B, Rossi P, Epis S, Mosca M, Ricci C, Damiani C, Ulissi U, Crotti E, Daffonchio D, Bandi C et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol 2012, 12 Suppl 1(Suppl 1):S2.

30. Mitraka E, Stathopoulos S, Siden-Kiamos I, Christophides GK, Louis C. Asaia accelerates larval development of Anopheles gambiae. Pathog Glob Health 2013, 107(6):305-311.

31. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011, 334:670-674.

32. Martin N, Hulbert AJ, Brenner GC, Brown SHJ, Mitchell TW, Else PL. Honey bee caste lipidomics in relation to life-history stage and the long life of the queen. J Exp Biol 2019, 222(1):2418-2422.
33. Haddad LS, Kelbert L, Hulbert AJ: Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. *Exp Gerontol* 2007, 42(7):601-609.
34. Else PL, Kraffe E: Docosahexaenoic and arachidonic acid peroxidation: It’s a within molecule cascade. *Biochim Biophys Acta* 2015, 1848(2):417-421.
35. Beckman KB, Ames BN: The free radical theory of aging matures. *Physiol Rev* 1998, 78(2):547-581.
36. Harman D: *Aging: a theory based on free radical and radiation chemistry*. *J Gerontol* 1956, 11(3):298-300.
37. Kindt A, Liebisch G, Clavel T, Haller D, Hörmannsperger G, Yoon H, Kolmeder D, Sigruener A, Krautbauer S, Seeliger C et al: The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. *Nature Communications* 2018, 9(1):3760.
38. Wolschin F, Mutti NS, Amdam GV: Insulin receptor substrate influences female caste development in honeybees. *Biol Lett* 2011, 7(1):112-115.
39. Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA: *Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling*. *Proc Natl Acad Sci U S A* 2017, 114(18):4775-4780.
40. Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, Robinson GE: Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. *Proceedings of the National Academy of Science of the Unite States of America* 2007, 104(17):7128-7133.
41. Guiducci KR, Nascimento AM, Amdam GV, Barchuk AR, Ommolt S, Simões ZL, Hartfelder K: Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. *FEBS Lett* 2005, 579(22):4961-4965.
42. Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV: Reproductive protein protects functionally sterile honey bee workers from oxidative stress. *Proc Natl Acad Sci U S A* 2006, 103(4):962-967.
43. Guarente L, Kenyon C: Genetic pathways that regulate ageing in model organisms. *Nature* 2000, 408(6809):255-262.
44. Tatar M, Bartke A, Antebi A: The endocrine regulation of aging by insulin-like signals. *Science* 2003, 299(5611):1346-1351.
45. Westfall S, Lomis N, Prakash S: Longevity extension in Drosophila through gut-brain communication. *Scientific Reports* 2018, 8(1):8362.
46. Solana R, Pawelec G: Molecular and cellular basis of immunosenescence. *Mech Ageing Dev* 1998, 102(2-3):115-129.
47. Amdam GV, Aase AL, Seehuus SC, Kim Fondrk M, Norberg K, Hartfelder K: Social reversal of immunosenescence in honey bee workers. *Exp Gerontol* 2005, 40(12):939-947.
48. Doums C, Moret Y, Benelli E, Schmid-Hempel P: Senescence of immune defence in Bombus workers. *Ecol Entomol* 2002, 27(2):138-144.
49. Buchon N, Broderick NA, Lemaître B: Gut homeostasis in a microbial world: insights from Drosophila melanogaster. *Nature Reviews Microbiology* 2013, 11(9):615-626.
50. Cariveau DP, Elijah Powell J, Koch H, Winfree R, Moran NA: Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). *The ISME Journal* 2014, 8(12):2369-2379.
51. Fan X, Gaur U, Yang M: Intestinal Homeostasis and Longevity: Drosophila Gut Feeling. *Adv Exp Med Biol* 2018, 1086:157-168.
52. Koch H, Schmid-Hempel P: Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. *Proc Natl Acad Sci U S A* 2011, 108(48):19288-19292.
53. Finkelstein JD: *The metabolism of homocysteine: pathways and regulation*. *Eur J Pediatr* 1998, 157 Suppl 2:S40-44.
54. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG: Maternal methyl supplements increase offspring DNA methylation at Axin Fused. *Genesis* 2006, 44(9):401-406.
55. Kucharski R, Maelsza J, Foret S, Maelska R: Nutritional control of reproductive status in honeybees via DNA methylation. *Science* 2008, 319(5871):1827-1830.
56. Wang H, Liu Z, Wang Y, Ma L, Zhang W, Xu B: Genome-Wide Differential DNA Methylation in Reproductive, Morphological, and Visual System Differences Between Queen Bee and Worker Bee (Apis mellifera). *Frontiers in Genetics* 2020, 11:770.
57. Chen WF, Wang Y, Zhang WX, Liu ZG, Xu BH, Wang HF: Methionine as a methyl donor regulates caste differentiation in the European honey bee (Apis mellifera). *Insect Sci* 2020.
58. Kwong WK, Moran NA: Gut microbial communities of social bees. *Nat Rev Microbiol* 2016, 14(6):374-384.
59. Raymann K, Moran NA: The role of the gut microbiome in health and disease of adult honey bee workers. *Current Opinion in Insect Science* 2018, 26:97-104.
60. Engel P, Bartlett KD, Moran NA: *The Bacterium Frischella perrara Causes Scab Formation in the Gut of its Honeybee Host*. *mBio* 2015, 6(3):e00193-00115.
61. Schwarz RS, Moran NA, Evans JD: Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. *Proc Natl Acad Sci U S A* 2016, 113(33):9345-9350.
62. Li L, Pretz J, Borremans W, Nunes OC, Manaia CM, Cleenwerck I, Meeus I, Smagghe G, De Vuyst L, Vandamme P: Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. *Int J Syst Evol Microbiol* 2015, 65(Pt 1):267-273.
63. Yun JH, Lee JY, Hyun DW, Jung MJ, Bae JW: *Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee*. *Int J Syst Evol Microbiol* 2017, 67(7):2184-2188.
64. Li L, Illegems K, Van Kerrebroeck S, Borremans W, Cleenwerck I, Smagghe G, De Vuyst L, Vandamme P: Whole-Genome Sequence Analysis of Bombella intestini LMG 28161T, a Novel Acetic Acid Bacterium Isolated from the Crop of a Red-Tailed Bumble Bee, Bombus lapidarius. *PLoS ONE* 2016, 11(11):e0165611.
65. Smith EA, Martin-Eberhardt SA, Miller DL, Parish AJ, Newton ILG: Draft Genome Sequence of a Bombella apis Strain Isolated from Honey Bees. *Microbiol Resour Announc* 2019, 8(47).
66. Crutcher FK, Puckhaber LS, Stipanovic RD, Bell AA, Nichols RL, Lawrence KS, Liu J: Microbial Resistance Mechanisms to the Antibiotic and Phytotoxin Fusaric Acid. *J Chem Ecol* 2017, 43(10):996-1006.

67. Miller DL SE, Newton ILG: A bacterial symbiont protects honey bees from fungal disease. *bioRxiv* 2020.

68. Kawai T, Akira S: Toll-like Receptor and RIG-1-like Receptor Signaling. *Ann N Y Acad Sci* 2008, 1143(1):1-20.

69. Motta V, Soares F, Sun T, Philpott DJ: NOD-like receptors: versatile cytosolic sentinels. *Physiol Rev* 2015, 95(1):149-178.

Tables

Table S1
Data preprocessing statistics and quality control

Sample ID	Raw PE	Clean PE	Raw Tags	Clean Tags	Effective Tags	Effective Ratio (%)
W1	103476	101069	91686	90820	84863	82.01
W2	107307	104395	93183	91580	81020	75.5
W3	112197	109653	99427	97833	81654	72.78
Q1	101310	98798	89335	87254	84261	83.17
Q2	110332	108004	98695	97394	92397	83.74
Q3	106730	104399	95001	93649	88479	82.9

Note: PE, paired-end; W, worker; Q, queen

Table S2
Numbers of tags and OTUs

Sample ID	Total Tags	Unique Tags	Taxon Tags	Unclassified Tags	Singleton Tags	OTUs
W1	84863	52552	61387	0	23476	667
W2	81020	50489	59019	0	22001	694
W3	81654	47897	63612	0	18042	632
Q1	84261	37079	71120	0	13141	615
Q2	92397	47327	70363	0	22034	732
Q3	88479	46614	63998	0	24481	679
Avg	85445	46993	64916	0	20529	669

Note: W, worker; Q, queen

Table S3 The common OTUs in queen bees and worker bees hindguts
Otu	Worker	Queen	taxonomy			
Otu00001	1947	9371	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Commensalibacter			
Otu00002	2745	8555	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Commensalibacter			
Otu00003	10326	931	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Orbales;f__Orbaceae;g__Gilliamella			
Otu00004	4398	616	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiaceae			
Otu00005	843	4103	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Commensalibacter			
Otu00006	2501	2421	Rootk_Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00007	1896	2178	Rootk_Bacteria;p__Proteobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium			
Otu00008	3672	327	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Beta proteobacteriales;f__Neisseriaceae;g__Snodgrassella			
Otu00009	3268	377	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiaceae			
Otu00010	306	3053	Rootk_Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00011	1170	1897	Rootk_Bacteria;p__Proteobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium			
Otu00012	646	2418	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00013	1040	1266	Rootk_Bacteria;p__Proteobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium			
Otu00014	416	1859	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Orbales;f__Orbaceae;g__Gilliamella			
Otu00015	1985	192	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Orbales;f__Orbaceae;g__Gilliamella			
Otu00016	1833	303	Rootk_Bacteria;p__Proteobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium			
Otu00017	593	1311	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Orbales;f__Orbaceae;g__Frischella;h__Frischella_perrara			
Otu00018	662	923	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00019	1245	282	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Commensalibacter			
Otu00020	89	1437	Rootk_Bacteria;p__Proteobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium			
Otu00021	61	1382	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Bombella			
Otu00022	1252	132	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Beta proteobacteriales;f__Neisseriaceae;g__Snodgrassella			
Otu00023	139	1178	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00024	136	1179	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00025	224	1050	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00026	245	989	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Commensalibacter			
Otu00027	93	1128	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00028	269	924	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00029	480	684	Rootk_Bacteria;p__Proteobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium			
Otu00030	1005	101	Rootk_Bacteria;p__Proteobacteria;c__Gamma proteobacteria;o__Orbales;f__Orbaceae;g__Gilliamella			
Otu00031	971	90	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Orbales;f__Orbaceae;g__Gilliamella			
Otu00032	966	77	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Orbales;f__Orbaceae;g__Gilliamella			
Otu00033	156	852	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Commensalibacter			
Otu00034	616	378	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Commensalibacter			
Otu00035	900	61	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Orbales;f__Orbaceae;g__Gilliamella			
Otu00036	817	85	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Orbales;f__Orbaceae;g__Gilliamella			
Otu00037	408	485	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00038	92	742	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00039	649	167	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Orbales;f__Orbaceae;g__Gilliamella			
Otu00040	121	689	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Commensalibacter			
Otu00041	121	647	Rootk_Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetobacteriales;f__Acetobacteraceae;g__Commensalibacter			
Otu00042	134	611	Rootk_Bacteria;p__Proteobacteria;c__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus			
Otu00043	686	52	Rootk_Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Beta proteobacteriales;f__Neisseriaceae;g__Snodgrassella			
OTU	Rank	Taxonomy				
---------	--------------	---				
Otu000088	6	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000089	5	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000090	91	Root_k_Bacteria;p_Proteobacteria;c_Gamma proteobacteria				
Otu000091	2	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000092	13	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000093	86	Root_k_Bacteria;p_Proteobacteria;c_Gamma proteobacteria				
Otu000094	2	Root_k_Bacteria;p_Firmicutes;c_Alphaproteobacteria;o_Acetobacteralesf_Acetobacteraceae_g_Bombella				
Otu000095	4	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000096	60	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000097	3	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000098	68	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000099	12	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000100	2	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000101	15	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000102	65	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000103	29	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000104	15	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000105	28	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000106	12	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000107	10	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000108	3	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000109	61	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000110	58	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000111	55	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000112	11	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000113	7	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000114	38	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000115	8	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000116	48	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000117	46	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000118	44	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000119	46	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000120	39	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000121	42	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000122	44	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000123	5	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000124	39	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000125	10	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000126	10	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000127	5	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000128	29	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000130	37	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000131	35	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
Otu000132	5	Root_k_Bacteria;p_Firmicutes;c_Bacillio_Lactobacillalesf_Lactobacillaceae_g_Lactobacillus				
OTU	Percentage	Taxonomy				
-----	------------	----------				
Otu000133	18	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, Escherichia-Shigella				
Otu000134	26	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Bacteroidales, Bacteroidaceae, Parabacteroides				
Otu000135	33	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Betaproteobacteria, Neisseriaceae, Neisseria				
Otu000136	4	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Acidobacteriales, Acidobacteriaceae, Acidobacterium				
Otu000137	20	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Actinobacteria, Actinobacteriales, Actinobacteriaceae, Actinomyces				
Otu000138	3	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium				
Otu000139	14	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, Escherichia-Shigella				
Otu000140	15	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Entero bacteriales, Entero bacteriaceae, Escherichia-Shigella				
Otu000141	25	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium				
Otu000142	4	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, Escherichia-Shigella				
Otu000143	29	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, Escherichia-Shigella				
Otu000144	29	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, Escherichia-Shigella				
Otu000145	28	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium				
Otu000146	1	29	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, Escherichia-Shigella			
Otu000147	1	29	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, Escherichia-Shigella			
Otu000148	24	6	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000149	27	2	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, Escherichia-Shigella			
Otu000150	5	24	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000151	24	5	Root, Bacteria, Proteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000152	21	7	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000153	17	11	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000154	19	9	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000155	27	1	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000156	2	25	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000157	5	22	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000158	10	17	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000159	23	3	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000160	18	8	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000161	6	19	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000162	23	1	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000163	18	5	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000164	18	5	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000165	22	1	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000166	13	3	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000167	22	1	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000168	19	4	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000169	8	13	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000170	20	1	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000171	19	2	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000172	6	15	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000173	4	16	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000174	3	17	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000175	8	11	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000176	5	15	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000177	8	11	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000178	5	15	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000179	8	11	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu000180	2	25	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiaceae, Rhizobium			
Otu	Rank	Description				
---------	---------	---				
Otu000184	10 9	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Lactobacillus, Lactobacillus_sp_SFT				
Otu000185	18 1	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Gilliamella				
Otu000186	14 4	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Pantoehaeae				
Otu000187	7 11	Root, Bacteria, Actinobacteria, Bifidobacteriaceae, Bifidobacterium				
Otu000188	16 2	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Gilliamella				
Otu000189	2 16	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000190	2 15	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000192	14 3	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiales				
Otu000193	7 10	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000195	7 9	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000196	1 15	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Acetobacteraceae, Commensalibacte				
Otu000197	3 13	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Acetobacteraceae, Commensalibacte				
Otu000199	6 10	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000200	1 15	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000201	15 1	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacteriaceae				
Otu000205	3 12	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Acetobacteraceae, Commensalibacte				
Otu000206	5 10	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Acetobacteraceae, Commensalibacte				
Otu000211	1 13	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Acetobacteraceae, Commensalibacte				
Otu000212	1 13	Root, Bacteria, Firmicutes, Clostridia, Lachnospiraceae, Blautia, Lachnospiraceae, Blautia				
Otu000213	1 13	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus, Lactobacillus_kullab				
Otu000214	2 12	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000215	13 1	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Orbaeae, Frischella, Frischella_perrara				
Otu000216	6 8	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000217	13 1	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Orbaeae, Gilliamella				
Otu000218	1 13	Root, Bacteria, Bacteroidetes, Bacteroidia, Prevotellaceae, Prevotella_9s				
Otu000219	6 8	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000220	9 4	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000221	1 12	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000222	6 7	Root, Bacteria, Actinobacteria, Actinobacteria, Bifidobacteriaceae, Bifidobacterium				
Otu000223	2 11	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Acetobacteraceae, Commensalibacte				
Otu000224	10 3	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Orbaeae, Frischella, Frischella_perrara				
Otu000228	12 1	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Orbaeae, Gilliamella				
Otu000229	12 1	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Orbaeae, Gilliamella				
Otu000230	3 9	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Acetobacteraceae, Commensalibacte				
Otu000231	6 6	Root, Bacteria, Actinobacteria, Bifidobacteriaceae, Bifidobacterium				
Otu000233	11 1	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Betaproteobacteria, Neisseriaceae, Snodgrassella				
Otu000234	4 8	Root, Bacteria				
Otu000235	10 2	Root, Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiales				
Otu000236	10 2	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Orbaeae, Gilliamella				
Otu000237	3 9	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
Otu000239	10 1	Root, Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacteriaceae				
Otu000240	1 11	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus, Lactobacillus_sp_Aatl				
Otu000241	3 9	Root, Bacteria, Actinobacteria, Bifidobacteriaceae, Bifidobacteriaceae, Bifidobacterium				
Otu000242	8 3	Root, Bacteria, Firmicutes, Bacilli, Lactobacillaceae, Lactobacillus				
OTU ID	Rank	Category	Description			
--------	----------	---------------------------------	--			
Otu000244	3	9	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	s_Lactobacillus
Otu000245	1	10	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	s_Lactobacillus
Otu000246	2	9	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	s_Lactobacillus
Otu000247	1	10	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	s_Lactobacillus
Otu000248	1	10	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000250	3	7	Root_k_Bacteria;p_Actinobacteria;c_Acinetobacteriales	f_Bifidobacteriaceae	g_Bifidobacterium	
Otu000251	3	8	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000252	3	8	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	s_Lactobacillus
Otu000253	2	8	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	s_Lactobacillus
Otu000255	10	1	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Betaproteobacteriales	f_Neisseriaaceae	g_Snodgrassella	
Otu000256	3	8	Root_k_Bacteria;p_Firmicutes;c_Negativicutes	o_Selenomonadales	f_Vellionellaceae	g_Megaphera
Otu000257	4	6	Root_k_Bacteria;p_Actinobacteria;c_Acinetobacteriales	f_Bifidobacteriaceae	g_Bifidobacterium	
Otu000259	6	4	Root_k_Bacteria			
Otu000260	2	8	Root_k_Bacteria;p_Actinobacteria;c_Acinetobacteriales	f_Bifidobacteriaceae	g_Bifidobacterium	
Otu000262	3	6	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000268	4	6	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000269	4	5	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000271	1	8	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000278	1	8	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	
Otu000279	8	1	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Orbales	f_Orbaceae	g_Gilliamella	
Otu000280	7	2	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Orbales	f_Orbaceae	g_Frischella	
Otu000282	3	5	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000287	3	5	Root_k_Bacteria;p_Actinobacteria;c_Acinetobacteriales	f_Bifidobacteriaceae	g_Bifidobacterium	
Otu000289	7	1	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Betaproteobacteriales	f_Neisseriaaceae	g_Snodgrassella	
Otu000292	7	1	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Orbales	f_Orbaceae	g_Gilliamella	
Otu000293	1	7	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000294	7	1	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Orbales	f_Orbaceae	g_Gilliamella	
Otu000297	1	7	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000298	2	6	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000302	7	1	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Streptococcaecae	g_Streptococcus	s_Gallis
Otu000303	6	2	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000304	2	5	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000308	4	3	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	
Otu000309	2	6	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000311	5	2	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Orbales	f_Orbaceae	g_Frischella	
Otu000313	2	6	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	
Otu000318	1	6	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000320	1	6	Root_k_Bacteria;p_Epsilonbacteriota;c_Campylobacteriota;c_Campylobacteriota	f_Campylobacteraceae	g_Campylobacteriota	
Otu000322	2	5	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000324	3	4	Root_k_Bacteria;p_Firmicutes;c_Bacillio_lactobacillales	f_Lactobacillaceae	g_Lactobacillus	
Otu000326	2	5	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	
Otu000327	1	5	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	
Otu000328	4	2	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales	f_Acetobacteraceae	g_Caenobacterales	
Otu000329	4	2	Root_k_Bacteria			
Otu000330	1	5	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus_s_Lactobacillus_sp_SF6			
Otu000331	1	5	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000337	1	5	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus_s_Lactobacillus_apis			
Otu000338	1	5	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000342	5	1	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000344	1	4	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000346	3	3	Root_k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales:f_Bifidobacteriaceae_g_Bifidobacterium			
Otu000347	3	3	Root_k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales:f_Bifidobacteriaceae_g_Bifidobacterium			
Otu000348	3	3	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000351	1	4	Root_k_Bacteria;p_Proteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000354	4	1	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Orbales:f_Orbaceae_g_Gilliamella_s_Gilliamella_apicola			
Otu000356	4	1	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000357	2	3	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000363	1	4	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000365	1	4	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000366	2	3	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000367	4	1	Root_k_Bacteria			
Otu000375	1	4	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus_s_Lactobacillus_sp_SF6			
Otu000376	1	4	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000382	1	3	Root_k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Micrococcales:f_Intrasporangiaceae			
Otu000383	1	3	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Orbales:f_Orbaceae			
Otu000385	1	3	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus_s_Lactobacillus_sp_SF6			
Otu000389	1	3	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000391	1	3	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000395	1	3	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000398	1	3	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000400	3	1	Root_k_Bacteria			
Otu000401	3	1	Root_k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Orbales:f_Orbaceae_g_Gilliamella			
Otu000402	3	1	Root_k_Bacteria;p_Proteobacteria			
Otu000403	3	1	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales:f_Rhizobiacae			
Otu000405	2	2	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000407	1	2	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000408	1	3	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000411	1	3	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000415	1	3	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000426	3	1	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000428	1	3	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus_s_Lactobacillus_sp_SF6			
Otu000433	3	1	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus			
Otu000434	1	2	Root_k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales:f_Lactobacillaceae_g_Lactobacillus_s_Lactobacillus_sp_SF6			
Otu000435	1	3	Root_k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales:f_Lachnospiraceae			
Otu000436	1	3	Root_k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales:f_Acetobacteraceae_g_Consensalbacte			
Otu000437	2	1	Root_k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales:f_Bifidobacteriaceae_g_Bifidobacterium_s_Bifi			
Otu000438	1	3	Root_k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales:f_Bifidobacteriaceae_g_Bifidobacterium			
Otu000439	1	2	Root_k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales:f_Bifidobacteriaceae_g_Bifidobacterium			
OTU	Value	Taxonomy				
-------------	-------	--				
OTu000444	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000445	1	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000447	2	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000450	1	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000451	2	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000452	1	Rootk_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Betaproteobacteria;f_Bifidobacteriales;g_Bifidobacterium				
OTu000456	2	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000462	2	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000464	1	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000465	2	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000472	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000478	2	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000480	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000481	2	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000490	2	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000491	2	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000496	2	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000504	1	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000509	2	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000514	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000521	1	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000525	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000527	1	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000538	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000542	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000543	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000545	1	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000557	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000568	1	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000570	1	Rootk_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales;f_Bifidobacteriaceae;g_Bifidobacterium				
OTu000588	1	Rootk_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Clostridium				
OTu000617	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				
OTu000618	1	Rootk_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;sp_SF6				

Table S4 The worker bee-specific OTUs
Otu	Worker	taxonomy	
Otu000128	38	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales;	f_Orbaceae
Otu000161	25	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales;	f_Orbaceae
Otu000164	23	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae	
Otu000170	22	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria	
Otu000171	21	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria	
Otu000173	21	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales	
Otu000180	20	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae	
Otu000183	19	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria	
Otu000194	17	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae; g_Snodgrassella	
Otu000198	16	Root_K_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; f_Rhizobiaceae	
Otu000203	15	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae	
Otu000204	15	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae	
Otu000208	14	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Frischella; s_Frischella_perrara	
Otu000210	15	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria	
Otu000225	13	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae; g_Snodgrassella; s_Snodg	
Otu000226	13	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria	
Otu000238	12	Root_K_Bacteria	
Otu000243	11	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Gilliamella; s_	
Otu000249	10	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae	
Otu000258	10	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria	
Otu000265	9	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Gilliamella; s_	
Otu000266	9	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae; g_Snodgrassella; s_Snodg	
Otu000267	10	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae; g_Snodgrassella; s_Snodg	
Otu000270	9	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Gilliamella; s_	
Otu000271	9	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Frischella; s_Frischella_perrara	
Otu000272	9	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Gilliamella	
Otu000274	9	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Gilliamella	
Otu000276	8	Root_K_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; f_Rhizobiaceae	
Otu000283	8	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Gilliamella	
Otu000286	8	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae; g_Snodgrassella; s_Snodg	
Otu000291	8	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria	
Otu000296	8	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae; g_Snodgrassella; s_Snodg	
Otu000301	8	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Gilliamella	
Otu000305	7	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Frischella; s_Frischella_perrara	
Otu000307	7	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae; g_Snodgrassella; s_Snodg	
Otu000310	7	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Gilliamella	
Otu000312	7	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae	
Otu000314	7	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Betaproteobacteriales; f_Neisseriaceae	
Otu000315	7	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria	
Otu000316	7	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae; g_Gilliamella	
Otu000319	7	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Orbales; f_Orbaceae	
Otu000321	7	Root_K_Bacteria; p_Proteobacteria; c_Gammaproteobacteria	
Otu000323	7	Root_K_Bacteria	
OTU	Identified Taxonomy		
---------------	---		
Otu000992	Root; k__Bacteria		
Otu001000	Root; k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Orbales; f__Orbaceae; g__Frischella; s__Frischella_perrara		
Otu001001	Root; k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Orbales; f__Orbaceae		

Table S5 The queen bee-specific OTUs
Otu	Queen taxonomy
Otu000191	17 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidiales,f_Bacteroidaceae,g_Bacteroides
Otu000202	15 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacterales,f_Acetobacteraceae
Otu000207	14 Rootk_Bacteria,p_Proteobacteria,c_Gammaproteobacteria,o_Betaproteobacterales,f_Burkholderiaceae,g_Curvibacter
Otu000209	15 Rootk_Bacteria,p_Cyanobacteria,c_Oxyphotobacteria,o_Chloroplast,f_Selaginella_moellendorfii,g_s_
Otu000227	13 Rootk_Bacteria,p_Firmicutes,c_Cacillio_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus,s_Lactobacillus_kunkeei
Otu000232	12 Rootk_Bacteria,p_Cyanobacteria,c_Oxyphotobacteria,o_Chloroplast
Otu000254	11 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidiales,f_Bacteroidaceae,g_Bacteroides,s_
Otu000261	10 Rootk_Bacteria,p_Firmicutes,c_Bacillio_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus
Otu000263	10 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidiales,f_Bacteroidaceae,g_Bacteroides,s_Bacteroides_stercoris_ATCC,
Otu000264	9 Rootk_Bacteria,p_Proteobacteria,c_Gammaproteobacteria,o_Pseudomonadales,f_Moraxellaceae,g_Acinetobacter,s_
Otu000273	9 Rootk_Bacteria,p_Proteobacteria,c_Gammaproteobacteria,o_Pseudomonadales,f_Pseudomonadaceae,g_Pseudomonas
Otu000276	9 Rootk_Bacteria,p_Firmicutes,c_Bacillio_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus
Otu000277	9 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidiales,f_Bacteroidaceae,g_Bacteroides,s_Bacteroides_massiliensis
Otu000284	9 Rootk_Bacteria,p_Gemmationadetes,c_Gemmationadetes,c_Gemmationadates,o_Gemmationadales,f_Gemmationadaceae,g_s_
Otu000285	8 Rootk_Bacteria,p_Firmicutes,c_Negativicutes,o_Selenomondales,f_Acidaminococcaceae,g_Phascolarctobacterium
Otu000288	8 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacterales,f_Acetobacteraceae,g_Combinsalibacter,s_
Otu000290	8 Rootk_Bacteria,p_Planctomycetes,c_Planctomycetacia,o_Gemmatales,f_Gemmataceae,g_s_
Otu000295	8 Rootk_Bacteria,p_Acidobacteria,c_Subgroup_60,f_g_s_
Otu000299	8 Rootk_Bacteria,p_Proteobacteria,c_Gammaproteobacteria,o_Pseudomonadales,f_Moraxellaceae,g_Enhydrobacter,s_
Otu000300	8 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidiales,f_Bacteroidaceae,g_Bacteroides
Otu000306	8 Rootk_Bacteria,p_Firmicutes,c_Clostridio_o_Clostridiales,f_Ruminococcaceae,g_Subdoligranulum,s_
Otu000317	7 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidiales,f_Prevotellaceae_g_Prevotella_9a_
Otu000332	6 Rootk_Bacteria,p_Proteobacteria,c_Gammaproteobacteria,o_Pseudomonadales,f_Pseudomonadaceae
Otu000333	6 Rootk_Bacteria,p_Actinobacteria,c_Actinobacteria,o_Micrococcales,f_Micrococcaceae
Otu000335	6 Rootk_Bacteria,p_Chloroflexi,c_Anaerolineae_g_Anaerolineales,f_Anaerolineaceae,g_s_
Otu000343	5 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacterales,f_Acetobacteraceae,g_Combinsalibacter,s_
Otu000352	5 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacterales,f_Acetobacteraceae,g_Combinsalibacter,s_
Otu000358	5 Rootk_Bacteria,p_Planctomycetes,c_Physicisthea,o_Physicistheales,f_Physicistheaeae,g_s_
Otu000360	5 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidiales,f_Bacteroidaceae,g_Bacteroides
Otu000361	5 Rootk_Bacteria,p_Firmicutes,c_Bacillio_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus
Otu000364	5 Rootk_Bacteria,p_Firmicutes,c_Bacillio_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus
Otu000377	4 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacterales,f_Acetobacteraceae,g_Combinsalibacter,s_
Otu000378	5 Rootk_Bacteria,p_Proteobacteria,c_Deltaproteobacteria,o_Desulfuromondales,f_Geobacterales,g_Geobacter
Otu000379	5 Rootk_Bacteria,p_Actinobacteria,c_Coriobacteria,o_Coriobacteriaeae,g_Collinsella,s_
Otu000380	5 Rootk_Bacteria,p_Firmicutes,c_Clostridio_o_Clostridiales,f_Lachnospiraceae,g_Eubacterium_hallii,g_s_
Otu000381	5 Rootk_Bacteria,p_Firmicutes,c_Clostridio_o_Clostridiales,f_Lachnospiraceae,g_Blautia
Otu000386	4 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Caulobacterales,f_Caulobacteraceae,g_Brevundimonas
Otu000387	5 Rootk_Bacteria,p_Actinobacteria,c_Actinobacteria,o_Proponibacterales,f_Nocardiaoidaceae,g_Nocardioides
Otu000390	4 Rootk_Bacteria,p_Firmicutes,c_Bacillio_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus
Otu000392	4 Rootk_Bacteria,p_Firmicutes,c_Bacillio_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus,s_Lactobacillus_sp_SF6D
Otu000396	4 Rootk_Bacteria,p_Firmicutes,c_Clostridio_o_Clostridiales,f_Lachnospiraceae,g_Ruminococcus_torques_group
Otu000399	4 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacterales,f_Acetobacteraceae,g_Combinsalibacter,s_
Otu000409	3 Rootk_Bacteria,p_Firmicutes,c_Bacillio_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus
Root_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_Bacteroides_caccae

Root_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Betaproteobacteriales;f_Burkholderiaceae;g_Parasutterella;s__

Root_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcaceae_UCG-005;s__

Root_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Commensalibacter;s__

Root_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_Bacteroides_fragilis

Root_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus

Root_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Commensalibacter;s__

Root_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Commensalibacter;s__

Root_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Commensalibacter;s__

Root_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Commensalibacter;s__
Otu000602 2 Rootk_Bacteria,p_Firmicutes,c_Clostridia,o_Clostridiales,f_Lachnospiraceae

Otu000603 1 Rootk_Bacteria,p_Actinobacteria,c_Actinobacteria,o_Bifidobacteriales,f_Bifidobacteriaceae,g_Bifidobacterium

Otu000606 1 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriales,f_Acetobacteriaceae,g_Commensalibacter,s_

Otu000607 2 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus

Otu000608 2 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidales,f_Prevotellaceae

Otu000610 2 Rootk_Bacteria,p_Proteobacteria,c_Gamma proteobacteria,o_Pseudomonadales,f_Moraxellaceae,g_Acinetobacter,s_Acinetobacter

Otu000611 2 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Flavobacteriales,f_Flavobacteriaceae,g_Flavobacterium

Otu000612 2 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriales,f_Acetobacteriaceae,g_Commensalibacter,s_

Otu000613 2 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriales,f_Acetobacteriaceae,g_Commensalibacter,s_

Otu000615 1 Rootk_Bacteria,p_Firmicutes,c_Clostridia,o_Clostridiales,f_Lachnospiraceae

Otu000616 1 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus apis

Otu000622 2 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriales,f_Acetobacteriaceae,g_Commensalibacter,s_

Otu000623 1 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidales,f_Bacteroidaceae,g_Bacteroides,s_Bacteroides coprophilus_DS

Otu000624 2 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus

Otu000627 2 Rootk_Bacteria,p_Firmicutes,c_Clostridia,o_Clostridiales,f_Lachnospiraceae,g_Lachnospiraceae_NK4A136_group,s_

Otu000628 2 Rootk_Bacteria,p_Actinobacteria,c_Actinobacteria,o_Micrococcales,f_Intrasporangiae

Otu000629 2 Rootk_Bacteria,p_Clostridia,o_Clostridiales,f_Christensenellaceae,g_Christensenellaceae_R-7_group,s_

Otu000630 2 Rootk_Bacteria,p_Planctomycetes,c_Planctomycetacia,o_Gemmatales,f_Gemmataceae,g_Gemmata,s_

Otu000631 1 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriaceae,f_Acetobacteraceae,g_Commensalibacter,s_

Otu000632 2 Rootk_Bacteria,p_Proteobacteria,c_Deltaproteobacteria,o_Myxococcales,f_Blii41,g_s_

Otu000633 2 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus apis

Otu000634 1 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus

Otu000635 1 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus apis

Otu000636 1 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriales,f_Acetobacteraceae,g_Commensalibacter

Otu000638 1 Rootk_Bacteria,p_Bacteroidetes,c_Bacteroidia,o_Bacteroidales,f_Rikenellaceae,g_Alistipes

Otu000639 1 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus

Otu000640 1 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus

Otu000643 1 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriaceae,f_Acetobacteraceae,g_Commensalibacter,s_

Otu000644 1 Rootk_Bacteria,p_Actinobacteria,c_Actinobacteria,o_Bifidobacteriales,f_Bifidobacteriaceae,g_Bifidobacterium

Otu000645 1 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus

Otu000646 1 Rootk_Bacteria,p_Actinobacteria,c_MB-A2-108,o_f,g_s_

Otu000648 1 Rootk_Bacteria,p_Proteobacteria,c_Gamma proteobacteria,o_CCD24,f_g_s_

Otu000649 1 Rootk_Bacteria,p_Firmicutes,c_Clostridia,o_Clostridiales,f_Ruminococcaceae,g_Ruminococcaceae_UCG-002,s_

Otu000650 1 Rootk_Bacteria,p_Actinobacteria,c_Actinobacteria,o_Pseudonocardiaceae,f_Pseudonocardiaceae,g_Pseudonocardia

Otu000653 1 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Orbales,f_Orbaceae,g_Gilliamellales,s_Gilliamella apicola

Otu000658 1 Rootk_Bacteria,p_Verrucomicrobia,c_Verrucomicrobiaceae,g_Verrucomicrobiaceae,g_Akkermansiacaeae,g_Akkermansia,s_

Otu000659 1 Rootk_Bacteria,p_Actinobacteria,c_Bifidobacteriaceae,f_Bifidobacteriaceae,g_Bifidobacterium

Otu000660 1 Rootk_Bacteria,p_Actinobacteria,c_Coriobacteria,o_Coriobacteriales,f_Eggerthellaceae,g_Eggerthella,s_

Otu000662 1 Rootk_Bacteria,p_Firmicutes,c_Bacilli,o_Lactobacillales,f_Lactobacillaceae,g_Lactobacillus_sp_Adhirnto19

Otu000664 1 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriales,f_Acetobacteriaceae,g_Commensalibacter,s_

Otu000665 1 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriales,f_Acetobacteriaceae,g_Commensalibacter,s_

Otu000667 1 Rootk_Bacteria,p_Proteobacteria,c_Alphaproteobacteria,o_Acetobacteriales,f_Acetobacteriaceae,g_Commensalibacter,s_

Otu000668 1 Rootk_Bacteria,p_Actinobacteria,c_Actinobacteria,o_Micrococcales,f_Micrococcales,g_Kocuria,s_Kocuria_palustris

Otu000669 1 Rootk_Bacteria,p_Proteobacteria
OTU	Relative Abundance	Taxonomy
Otu000926	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Acetobacterales,f__Acetobacteraceae,g__Commensalibacter
Otu000932	1	Rootk_Bacteria,p__Proteobacteria,c__Rhodobacterales,f__Rhodobacteraceae,g__HIMB11,s__
Otu000933	1	Rootk_Bacteria,p__Proteobacteria,c__Betaproteobacteria,o__Bacteroidiales,f__Burkholderiaceae,g__Pelomonas,s__
Otu000936	1	Rootk_Bacteria,p__Halanaerobacterales,o__Halanaerobiales,f__Halanaerobeae,g__Halanaerobium,s__Halanaerobi
Otu000940	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Acetobacterales,f__Acetobacteraceae,g__Commensalibacter
Otu000941	1	Rootk_Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae,g__Coprococcus_1,s__
Otu000942	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Lactobacillaceae,g__Lactobacillus
Otu000943	1	Rootk_Bacteria,p__Proteobacteria,c__Acetobacterales,f__Acetobacteraceae,g__Commensalibacter,s__
Otu000944	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Lactobacillaceae,g__Lactobacillus
Otu000945	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Lactobacillaceae,g__Lactobacillus
Otu000947	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Acetobacterales,f__Acetobacteraceae,g__Bombella,s__Bombella_intes
Otu000950	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Lactobacillaceae,g__Lactobacillus_sp_SF6D
Otu000951	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Acetobacterales,f__Acetobacteraceae,g__Commensalibacter,s__
Otu000954	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Lactobacillaceae,g__Lactobacillus
Otu000957	1	Rootk_Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae,g__Anaerostipes
Otu000960	1	Rootk_Bacteria,p__Proteobacteria,c__Gammaproteobacteria,o__Pseudomonadales,f__Moraxellaceae,g__Acinetobacter,s__Acinetoba
Otu000967	1	Rootk_Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae,g__Coprococcus_3,s__
Otu000973	1	Rootk_Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Bacteroidiaceae,g__Bacteroides
Otu000974	1	Rootk_Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Lachnospiraceae,g__Eisenbergiella,s__
Otu000976	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Acetobacteraceae,f__Acetobacteraceae
Otu000982	1	Rootk_Bacteria,p__Firmicutes,c__Clostridia,o__Clostridiales,f__Ruminococcaceae,g__Ruminococcus_2
Otu000985	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Acetobacteraceae,f__Acetobacteraceae,g__Commensalibacter,s__
Otu000986	1	Rootk_Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Prevotellaceae,g__Prevotella_1,s__
Otu000987	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Lactobacillaceae,g__Lactobacillus
Otu000988	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Rhizobiales,f__Rhizobiales,g__Ochrobactrum
Otu000989	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Lactobacillaceae,g__Lactobacillus
Otu000990	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Bifidobacteriales,f__Bifidobacteriaceae,g__Bifidobacterium
Otu000991	1	Rootk_Bacteria,p__Proteobacteria,c__Gammaproteobacteria,o__Bacteroidiales,f__Burkholderiaceae,g__Massilia,s__
Otu000993	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Enterococcaceae,g__Enterococcus
Otu000996	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Lactobacillaceae,g__Lactobacillus
Otu000997	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Bacillales,f__Paenibacillaceae,g__Brevibacillus
Otu000998	1	Rootk_Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Prevotellaceae,g__Paraprevotella,s__
Otu000999	1	Rootk_Bacteria,p__Firmicutes,c__Bacillio_Lactobacillales,f__Lactobacillaceae,g__Lactobacillus
Otu001003	1	Rootk_Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Verrucomicrobiae,g__Verrucomicrobiales,f__Akermansia,g__Akermansia,s__
Otu001006	1	Rootk_Bacteria,p__Bacteroidetes,c__Bacteroidia,o__Bacteroidales,f__Rikenellaceae,g__Rikenellaceae_RC9_gut_group,s__
Otu001007	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Elsterales,f__g__s__
Otu001008	1	Rootk_Bacteria,p__Proteobacteria,c__Alphaproteobacteria,o__Acetobacterales,f__Acetobacteraceae,g__Commensalibacter,s__

Figures
Figure 1

Diversity differences in the gut microflora between workers and queens. A. Principal coordinate analysis (PCoA) plot based on Bray-Curtis similarity for the worker and queen samples. B. Analysis of similarities (ANOSIM) testing based on unweighted UniFrac was used to evaluate the intergroup (workers and queens) and intragroup (workers or queens) distances. R, interpretation degree of the different groups in the sample differences. $R=(\text{the between-group variance})/(\text{total variance})$. C. Sample distance analysis based on the Bray-Curtis distance index. Larger indices indicate greater distances between samples.
Figure 1

Diversity differences in the gut microflora between workers and queens. A. Principal coordinate analysis (PCoA) plot based on Bray-Curtis similarity for the worker and queen samples. B. Analysis of similarities (ANOSIM) testing based on unweighted UniFrac was used to evaluate the intergroup (workers and queens) and intragroup (workers or queens) distances. R, interpretation degree of the different groups in the sample differences. R=(the between-group variance)/(total variance) . C. Sample distance analysis based on the Bray-Curtis distance index. Larger indices indicate greater distances between samples.
Figure 2
Numbers of OTUs in the worker and queen guts.
Figure 3

Gut microbial abundance and taxonomic distribution of the workers and queens. A. phylum level; B. genus level; C. species level. Column diagram, relative abundances of microflora. Heatmap, relative abundances normalized by z-score.
Figure 3

Gut microbial abundance and taxonomic distribution of the workers and queens. A. phylum level; B. genus level; C. species level. Column diagram, relative abundances of microflora. Heatmap, relative abundances normalized by z-score.

Figure 4

Main biomarker taxa of the microbiotas in the worker and queen guts. A. LEfSe analysis (taxa with LDA scores >4). B. Cladogram of the biomarker main taxa of the microbiotas based on LEfSe analysis. Yellow (B) represents no significant difference in taxa; green (A and B) represents significantly different taxa with the highest relative abundances in worker guts; red (A and B) represents significantly different taxa, with their highest relative abundances in the queen gut.
Figure 4

Main biomarker taxa of the microbiotas in the worker and queen guts. A. LEfSe analysis (taxa with LDA scores >4). B. Cladogram of the biomarker main taxa of the microbiotas based on LEfSe analysis. Yellow (B) represents no significant difference in taxa; green (A and B) represents significantly different taxa with the highest relative abundances in worker guts; red (A and B) represents significantly different taxa, with their highest relative abundances in the queen gut.

Figure 5

Functional differences between worker and queen intestinal microbial communities predicted using Tax4Fun. A. Levels 1 and 2. * represents significant differences (P<0.05); B. Level 3 (P<0.05).
Figure 5

Functional differences between worker and queen intestinal microbial communities predicted using Tax4Fun. A. Levels 1 and 2. * represents significant differences (P<0.05); B. Level 3 (P<0.05).
Figure 6

Correlation between caste-specific taxa and functions using Pearson correlation analysis. A. Correlation heatmap of caste-specific taxa and functions at level 2. B. Correlation network of caste-specific taxa and functions at level 3 from the functions at level 2, which are significantly correlated with the caste-specific taxa (A). Violet node size indicates the average relative abundances of the microorganisms. Blue node size indicates the average relative abundances of the functions. Lines linked to nodes indicate significant correlations between the nodes (r>0.5), with red dotted and black solid lines showing negative and positive correlations, respectively. * represents a significant correlation (P<0.05), ** represents a significant correlation (P<0.01), *** represents a significant correlation (P<0.001).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FigureS1.tif
- FigureS1.tif