Notes on Loewy series of centers of p-blocks

Yoshihiro Otokita*

Abstract

The present paper describes some results on the Loewy series of the center of a modular group algebra in order to solve a problem on the number of irreducible ordinary characters. For instance, we prove that a p-block of a finite group has at least $p+2$ characters if its defect group contains non-elementary center.

1 Introduction

In this paper we consider a problem on the number of irreducible ordinary characters of a finite group through some studies of the center of a modular group algebra.

Let G be a finite group and F an algebraically closed field of characteristic $p > 0$. For a p-block B of the group algebra FG with defect d, we denote by $k(B)$ the number of associated irreducible ordinary characters. In [4] Héthelyi and Külshammer conjectured that:

$$2\sqrt{p - 1} \leq k(B) \text{ unless } d = 0?$$

This is a refinement of a result by Maróti [10] (see also [9]) and is still unsolved in general. In modular representation theory it is known that $k(B)$ is equal to the dimension of the center ZB of B. We accordingly examine the algebraic structure of ZB in order to solve the problem above.

In the next section we prove the following results.

We first determine the Loewy structure of ZB for cyclic defect groups. More precisely, it is shown that each codimension of the Loewy series of ZB is equal to 1 or the inertial index of B. Moreover we refer to a remark on ZB related to the problem above.

*Department of Mathematics and Informatics, Chiba University, Chiba–shi 263–8522, Japan. E–mail: otokita@chiba-u.jp
The second subsection deals with bounds for the Loewy length \(LL(ZB) \), that is, the nilpotency index of the Jacobson radical of \(ZB \). Some papers [7, 8, 11, 12] have discussed its upper bounds: for example, Okuyama has stated \(LL(ZB) \leq p^d \). The main purpose of this section is to give a lower bound for \(LL(ZB) \). As an immediate corollary to this bound, we conclude that \(B \) has at least \(p + 2 \) characters provided its defect group contains non-elementary center.

Throughout this paper we use the following notations.

We fix a defect group \(D \) of order \(p^d \). Let \(N_{G}(D, b) \) be the inertial subgroup of a root \(b \) of \(B \) in \(N_{G}(D) \). Then the inertial index of \(B \) is \(e(B) = |N_{G}(D, b) : DC_{G}(D)| \). As usual \(l(B) \) denotes the number of irreducible Brauer characters associated to \(B \). For a finite-dimensional algebra \(A \) over \(F \) with Jacobson radical \(J(A) \), its Loewy length \(LL(A) \) is defined to be the smallest positive integer \(t \) such that \(J(A)^t = 0 \). For an integer \(n \geq 1 \) we define \(c(n) \) as the codimension of \(J(A)^n \) in \(J(A)^{n-1} \). Then \(c(n) \neq 0 \) for any \(1 \leq n \leq LL(A) \).

2 Results

2.1 Cyclic defect groups

In this section we study \(c(n) \) for \(ZB \). It always holds \(c(1) = 1 \) as \(ZB \) is local. Moreover it is clear that \(c(2) = 0 \) if and only if \(d = 0 \). We next see the case of \(c(2) = 1 \) in the proposition below. This is a corollary to [7, Proposition 8] since it is easy to check \(c(n) \leq 1 \) for all \(3 \leq n \).

Proposition 1. If \(d > 0 \), then the following are equivalent:

1. \(c(2) = 1 \);
2. \(ZB \) is uniserial;
3. \(B \) is nilpotent and \(D \) is cyclic.

In the next theorem we determine all the codimensions \(c(n) \) for cyclic defect groups. In the proof below we use the algebra of fixed points associated to \(B \). As \(N_{G}(D, b) \) acts on \(Z(D) \) we define

\[
F[Z(D)]^{N_{G}(D, b)} = \{ a \in F[Z(D)] : t^{-1}at = a \text{ for } t \in N_{G}(D, b) \}.
\]

The last part of this theorem is due to [5, Corollary 2.8].
Theorem 2. If D is cyclic, then

$$c(n) = \begin{cases} 1 & (n = 1) \\ e(B) & (n = 2) \\ 1 & (3 \leq n \leq LL(ZB)) \end{cases}$$

and

$$LL(ZB) = \frac{p^d - 1}{e(B)} + 1.$$

Proof. Put $I = N_G(D, b)/C_G(D)$. Since B is perfectly isometric to its Brauer correspondent in $N_G(D)$ we may assume $B = FH$ where $H = D \times I$ by [6]. Let Γ be the ideal of $ZF H$ spanned by all class sums of defect 0. Then $ZF H = F D N_G(D, b) \oplus \Gamma$ (cf. [3, Theorem 1.1]). Since Γ is contained in the socle of $F H$ we have $\Gamma^2 = 0$. Thus $J(ZFH) = J(FD^{N_G(D, b)}) \oplus \Gamma$ and $J(ZFH)^2 = J(FD^{N_G(D, b)})^2$. As $FD^{N_G(D, b)}$ is uniserial (see the proof of [5, Corollary 2.8]), it follows that $c(n) = 1$ for $3 \leq n \leq LL(ZB)$. Therefore $c(2) = k(B) - 1 - \{LL(ZB) - 2\} = e(B)$ by Dade’s theory.

For cyclic defect groups $l(B) = e(B)$ and

$$k(B) = \frac{p^d - 1}{e(B)} + e(B) \geq 2\sqrt{p^d - 1}.$$

In general the relations between $c(n), l(B)$ and $e(B)$ are as yet unknown. However it is possible to answer the question in Introduction under the conditions below inspired by Theorem 2.

We now assume $d > 0$ and one of the following holds:

(i) $e(B) \leq c(n)$ for some $2 \leq n \leq LL(ZB)$;

(ii) $e(B) \leq l(B)$.

Then we obtain $2\sqrt{\lambda - 1} \leq k(B)$ where $\lambda = LL(F[Z(D)])$ as follows:

By [5, Corollary 2.7],

$$\frac{\lambda - 1}{e(B)} + 1 \leq LL(F[Z(D)])^{N_G(D, b)} \leq LL(ZB).$$

It is known that $l(B)$ is equal to the dimension of the Reynolds ideal of ZB. Since it is contained in the socle of ZB,

$$k(B) \geq 1 + e(B) + \{(\lambda - 1)/e(B) - 1\} \geq 2\sqrt{\lambda - 1}$$

in either case.

If $Z(D)$ has type $(p^{a_1}, \ldots, p^{a_r})$, then $\lambda = p^{a_1} + \cdots + p^{a_r} - r + 1$. Therefore we deduce $2\sqrt{p - 1} \leq k(B)$ in the assumptions.
2.2 Lower bounds

In this subsection we consider a lower bound for $LL(ZB)$. By a result of Broué [1, Proposition (III) 1.1] there exists an ideal K of ZB such that ZB/K is isomorphic to $F[Z(D)]^{N_G(D,b)}$. Thereby $LL(F[Z(D)]^{N_G(D,b)}) \leq LL(ZB)$.

In the next theorem we give a different lower bound for the left side from [5, Corollary 2.7].

Theorem 3. Let p^m be the exponent of $Z(D)$. Then

$$\frac{p^m + p - 2}{p - 1} \leq LL(F[Z(D)]^{N_G(D,b)}) \leq LL(ZB).$$

Proof. We fix an orbit O of an element in $Z(D)$ with maximal order by the action of $N_G(D, b)$. Remark that $|O|$ divides $e(B)$ since $DC_G(D)$ acts trivially on $Z(D)$, namely $|O| ̸= 0$ in F. We put $a = |O| - \sum_{u \in O} u$ where 1 is the unit in G. As a is contained in $J(F[Z(D)]^{N_G(D,b)})$ it suffices to prove that $a^t ̸= 0$ where

$$t = 1 + p + \cdots + p^{m-1}.$$

For $0 \leq i \leq m-1$,

$$a^p = |O|^p 1 - \sum_{u \in O} u^p = |O| 1 - \sum_{u \in O} u^p$$

by Fermat’s theorem. Hence each term of $a^t = a \cdot a^p \cdots a^{p^{m-1}}$ has the form

$$(-1)^{|I||O|^{m-|I|}} \prod_{i \in I} (u_i)^{p^i}$$

where $I \subseteq \{0, 1, \ldots, m - 1\}$ and $u_i \in O$. Suppose now that $\prod_{i \in I} (u_i)^{p^i} = 1$ for some $I ̸= \emptyset$. Since the order of u_i is p^m for any $i \in I$, we may assume $|I| \geq 2$. If $r = \min\{I\}$ and $s = \min\{I - \{r\}\}$, we obtain

$$1 = (1)^{p^{m-s}} \cdot \prod_{i \in I} (u_i)^{p^i} = \prod_{i \in I} (u_i)^{p^{m-s+i}} = (u_r)^{p^{m-s+s}} ̸= 1,$$

a contradiction. Thus the coefficient of 1 in a^t is $|O|^m ̸= 0$. Therefore $a^t ̸= 0$ as claimed.

In Theorem 3 it seems that $Z(D)$ is generally not replaced with D itself. Suppose that B is a p-block with defect group

$$M_{p^d} = \langle x, y ; x^{p^{d-1}} = y^p = 1, y^{-1}xy = x^{1+p^{d-2}} \rangle$$

where $d \geq 4$. As is well known, M_{p^d} has exponent p^{d-1} and has cyclic center of order p^{d-2}. By [8, Proposition 10],

$$LL(ZB) = \frac{p^{d-2} - 1}{l(B)} + 1 \leq p^{d-2} < \frac{p^{d-1} + p - 2}{p - 1}. $$
Furthermore we note that Theorem 3 is clear in this case since $l(B) \leq p - 1$ (cf. [13, Theorem 8.1, 8.8]).

As a corollary to this bound and [12, Proposition 2.2], we deduce:

Corollary 4. Let p^m be the exponent of $Z(D)$. Then

$$\frac{p^m + p - 2}{p - 1} \leq k(B) - l(B) + 1 \leq k(B).$$

In particular, $p + 2 \leq k(B)$ provided $m \geq 2$.

At the end of this section we reconsider the previous remark. Here assume $d > 0$ and one of the following holds:

(iii) $Z(D)$ is not elementary abelian;

(iv) $e(B) \leq mr \cdot c(n)$ for some $2 \leq n \leq LL(ZB)$;

(v) $e(B) \leq mr \cdot l(B)$

where p^m and r are the exponent and the rank of $Z(D)$, respectively. Then $2\sqrt{p - 1} \leq k(B)$ by Corollary 4 and the methods in (i) and (ii).

3 Examples

We introduce two examples by Brough-Schwabrow [2] and Héthelyi-Külshammer [4] in order to understand our theorems. In the following let P be a Sylow p-subgroup of G.

1. Assume $p = 3$ and $G = 3^2G_2(q)$ is the simple Ree group where q is a power of 3 at least 27. Then FG decomposes into two 3-blocks: the principal block B_0 with $q + 7$ characters and simple block B_1 with the Steinberg character. By [2, Theorem 1.1], we have $LL(ZB_0) = 3$. In this case Theorem 3 indicates that $Z(P)$ has exponent 3. In fact

$$Z(P) = \{x(0,0,v) ; v \in \mathbb{F}_q\}$$

by the notations [2, page 59] and

$$x(0,0,v)^3 = x(0,0,3v) = x(0,0,0).$$

2. We denote by $k(G)$ and $l(G)$ the numbers of irreducible ordinary and Brauer characters of G, respectively and apply Corollary 4 to P as a defect group of the principal block. Then it follows that $p + 2 \leq k(G)$
when \(Z(P) \) is non-elementary, otherwise it is likely that \(k(G) - l(G) + 1 \) is "small". Now assume \(p \equiv 23 \mod 264 \). Let \(X \) be a cyclic group of order \(x = (p - 1)/22 \) and \(H \) the unique 2-fold covering group of the four-degree symmetric group. Then \(H \times X \) acts freely on an elementary abelian group \(P \) of order \(p^2 \) and the Frobenius group \(G = P \rtimes (H \times X) \) satisfies

\[
k(G) = \frac{p^2 - 1}{48x} + 8x = \frac{217}{264}p + \frac{25}{264}
\]

as mentioned in [4, Remark (iii)]. Since \(P \) is a normal Sylow \(p \)-subgroup of \(G \),

\[
l(G) = k(H \times X) = 8x = \frac{4}{11}p - \frac{4}{11}
\]

and

\[
k(G) - l(G) + 1 = \frac{11}{24}p + \frac{35}{24}.
\]

References

[1] M. Broué, *Brauer coefficients of \(p \)-subgroups associated with a \(p \)-block of a finite group*, J. Algebra 56 (1979), 365–383.

[2] J. Brough and I. Schwabrow, *On centres of \(3 \)-blocks of the Ree groups \(2^{2G_2(q)} \)*, J. Algebra 492 (2017), 57–73.

[3] J. Brough and I. Schwabrow, *On the Loewy length of the center of a block with elementary abelian defect groups*, Comm. Algebra 46 (2018), 829–833.

[4] L. Héthelyi and B. Külshammer, *On the number of conjugacy classes of a finite solvable group*, Bull. London Math. Soc. 32 (2000), 668–672.

[5] S. Koshitani, B. Külshammer and B. Sambale, *On Loewy lengths of blocks*, Math. Proc. Cambridge Philos. Soc. 156 (2014), 555–570.

[6] B. Külshammer, *Crossed products and blocks with normal defect groups*, Comm. Algebra 13 (1985), 147–168.

[7] B. Külshammer, Y. Otokita and B. Sambale, *Loewy lengths of centers of blocks II*, to appear in Nagoya Math. J.

[8] B. Külshammer and B. Sambale, *Loewy lengths of centers of blocks*, to appear in Q. J. Math.
[9] G. Malle and A. Maróti, *On the number of p'-degree characters in a finite group*, Int. Math. Res. Not. IMRN 2016, 6118–6132.

[10] A. Maróti, *A lower bound for the number of conjugacy classes of a finite group*, Adv. Math. 290 (2016), 1062–1078.

[11] T. Okuyama, *On the radical of the center of a group algebra*, Hokkaido Math. J. 10 (1981), 406–408.

[12] Y. Otokita, *Characterizations of blocks by Loewy lengths of their centers*, Proc. Amer. Math. Soc. 145 (2017), 3323–3329.

[13] B. Sambale, *Blocks of finite groups and their invariants*, Springer Lecture Notes in Math. Vol. 2127, Springer–Verlag, Cham, 2014.