Non-divisibility of LCM Matrices by GCD Matrices on GCD-closed Sets

Ercan Altınışık*a, Mehmet Yıldıza, Ali Keskind

Department of Mathematics, Faculty of Sciences, Gazi University
06500 Teknikokullar - Ankara, Turkey

Abstract

In this paper, we consider the divisibility problem of LCM matrices by GCD matrices in the ring $M_n(\mathbb{Z})$ proposed by Hong in 2002 and in particular a conjecture concerning the divisibility problem raised by Zhao in 2014. We present some certain gcd-closed sets on which the LCM matrix is not divisible by the GCD matrix in the ring $M_n(\mathbb{Z})$. This could be the first theoretical evidence that Zhao’s conjecture might be true. Furthermore, we give the necessary and sufficient conditions on the gcd-closed set S with $|S| \leq 8$ such that the GCD matrix divides the LCM matrix in the ring $M_n(\mathbb{Z})$ and hence we partially solve Hong’s problem. Finally, we conclude with a new conjecture that can be thought as a generalization of Zhao’s conjecture.

Keywords: GCD matrix, LCM matrix, divisibility, greatest-type divisor, divisor chain, Möbius function

2010 MSC: 11C20, 11A25, 15B36

1. Introduction

Let $S = \{x_1, x_2, \ldots, x_n\}$ be a set of distinct positive integers and f be an arithmetical function. We denote by $(f(S))$ and $(f[S])$ the $n \times n$ matrices on S having f evaluated at the greatest common divisor (x_i, x_j) and the least common multiple $[x_i, x_j]$ of x_i and x_j as their ij-entries, respectively. If $f = I$, the identity function, the matrix $(I(S))$ is called the GCD matrix on S and denoted by (S). The LCM matrix $[S]$ is defined similarly. Given any positive real number e, let ξ_e be the e-th power function. If $f = \xi_e$, then the matrices $(\xi_e(S))$ and $(\xi_e[S])$ are called the power GCD matrix and the power LCM matrix and we simply denote them by (S^e) and $[S^e]$, respectively. In 1876, Smith [26] proved that if $S = \{1, 2, \ldots, n\}$, then $\det(S) = \prod_{k=1}^{n}(f*\mu)(k)$, where $f*\mu$ is the Dirichlet convolution of f and the Möbius function μ. Since then, many results

*aCorresponding author. Tel.: +90 312 202 1070
Email addresses: ealtinisik@gazi.edu.tr (Ercan Altınışık), yildizm78@mynet.com (Mehmet Yıldız), akeskin1729@gmail.com (Ali Keskin)
on these matrices have been published in the literature. For general accounts see e.g. [1, 2, 3, 4, 10, 18, 20, 24, 25].

Let A and B be in $M_n(\mathbb{Z})$. We say that A divides B or B is divisible by A in the ring $M_n(\mathbb{Z})$ if there exists a matrix C in $M_n(\mathbb{Z})$ such that $B = AC$ or $B = CA$, equivalently, $A^{-1}B \in M_n(\mathbb{Z})$ or $BA^{-1} \in M_n(\mathbb{Z})$. We simply write $A \mid B$ if A divides B in the ring $M_n(\mathbb{Z})$ and $A \nmid B$ otherwise. Divisibility is an interesting topic in the study of GCD and LCM matrices and the first result on the subject belongs to Bourque and Ligh. In 1992, they [4] showed that if $S = \{x_1, x_2, \ldots, x_n\}$ is factor closed then $(S) \mid |S|$. A set S is factor closed if it contains all divisors of x for any $x \in S$. Then, in [6], they also proved that if S is factor closed, f is multiplicative and $(f \ast \mu)(x_i) \neq 0$ for all $x_i \in S$ then $(f(S)) \mid (f|S)|$. A set S is said to be gcd-closed if (x_i, x_j) is in S for all $1 \leq i, j \leq n$. Hong [13] showed that for any gcd-closed set S with $|S| \geq 3$, $(S) \mid |S|$; however, for any integer $n \geq 4$, there is a gcd-closed set S with $|S| = n$ such that $(S) \nmid |S|$. Along with the aforementioned results, Hong raised the following open problem in the same paper.

Problem 1.1 [13]. Let $n \geq 4$. Find necessary and sufficient conditions on the gcd-closed set S with $|S| = n$ such that $(S) \mid |S|$.

Problem [13] was solved in particular cases $n = 4$ and $n = 5$ by Zhao [34] and Zhao-Zhao [35], respectively. Providing a complete solution of Problem 1.1 is a hard task because there is no general method to construct all possible gcd-closed sets with n-elements. In [12], Hong used greatest-type divisors of the elements in S to overcome this difficulty. Actually, the concept of greatest-type divisor was introduced by Hong in [12] to prove the Bourque-Ligh conjecture [4]. For $x, y \in S$ and $x < y$, if $x \mid y$ and the conditions $x \mid z \mid y$ and $z \in S$ imply that $z \in \{x, y\}$, then we say that x is a greatest-type divisor of y in S. For $x \in S$, we denote by $G_S(x)$ the set of all greatest-type divisors of x in S. In this frame, in [10], Hong conjectured that if S is a gcd-closed set with $\max_{x \in S}\{|G_S(x)|\} = 1$, then $(S) \mid |S|$. Hong, Zhao and Yin [10] proved Hong’s conjecture and they solved Problem 1.1 for the particular case $\max_{x \in S}\{|G_S(x)|\} = 1$. Then, in [7], Feng, Hong and Zhao introduced a new method to investigate Problem 1.1 for the case $\max_{x \in S}\{|G_S(x)|\} \leq 2$. They gave a new and elegant proof of Hong’s conjecture. Let e be a positive integer. Indeed, they proved that if S is a gcd-closed set satisfying $\max_{x \in S}\{|G_S(x)|\} \leq 2$, then $(S^e) \mid |S^e|$ if and only if $\max_{x \in S}\{|G_S(x)|\} = 1$ or $\max_{x \in S}\{|G_S(x)|\} = 2$ with S satisfying the condition \mathcal{C}. We say that an element $x \in S$ with $|G_S(x)| = 2$ satisfies the condition \mathcal{C} if $(y_1, y_2) = x$ and $(y_1, y_2) \in G_S(y_1) \cap G_S(y_2)$, where $G_S(x) = \{y_1, y_2\}$. We say that the set S satisfies the condition \mathcal{C} if each element $x \in S$ with $|G_S(x)| = 2$ satisfies the condition \mathcal{C}.

In addition to the aforementioned results, in [8], Haukkanen and Korkee investigated the divisibility of unitary analogues of GCD and LCM matrices in the ring $M_n(\mathbb{Z})$ and also, in [21], they considered Problem 1.1 for meet and join matrices when $n \leq 5$. On the other hand, Hong [14] proved that $(f(S)) \mid (f|S)|$ if f is completely multiplicative and S is a divisor chain or a multiple closed set, namely we have $y \in S$ if $x \mid y \mid \text{lcm}(S)$ for any $x \in S$, where
lcm(S) denotes the least common multiple of all the elements in S. Moreover, in a different point of view, many results on the divisibility of GCD and LCM matrices defined on particular sets have been published in the literature, see e.g. [11, 17, 22, 23, 27, 28, 31, 32, 33, 37].

Recently, in [36], Zhao solved Problem 1.1 when $5 \leq |S| \leq 7$. Indeed, he proved that $(S^e) | [S^e]$ if and only if $\max_{x \in S}\{|G_S(x)|\} = 1$, or $\max_{x \in S}\{|G_S(x)|\} = 2$ and S satisfies the condition C. Thus, Problem 1.1 was solved for the case $|S| \leq 7$. In the same paper, Zhao raised the following conjecture.

Conjecture 1.1. Let $S = \{x_1, x_2, \ldots, x_n\}$ be a gcd-closed set with $\max_{x \in S}\{|G_S(x)|\} = m \geq 4$. If $n < \left(\frac{n}{2}\right) + m + 2$ then $(S^e) \nmid [S^e]$.

Organization of the paper is as follows. In Section 2, we present some well-known lemmas such as Lemmas 2.1, 2.2, and 2.4 and some novel lemmas which concern the inverse of the GCD matrix on gcd-closed sets and are important tools in the proof of our main results. In Section 3, firstly we give some results, in which we find some certain gcd-closed sets on which (S) does not divide $[S]$. Secondly, using these results, which support the truth of Conjecture 1.1, we give the necessary and sufficient conditions on the gcd-closed set S with $|S| \leq 8$ such that $(S) \mid [S]$ in the ring $M_n(\mathbb{Z})$, and hence a particular solution to Problem 1.1 when $|S| \leq 8$. In the last section, we present a new conjecture that can be thought as a generalization of Conjecture 1.1.

2. Preliminaries

We begin with a result of Bourque and Ligh [4] providing a formula for the entries of the inverse of (S^e) when S is gcd-closed. Throughout this section, we always assume that $S = \{x_1, x_2, \ldots, x_n\}$ and S is gcd-closed.

Lemma 2.1 ([5]). The inverse of the power GCD matrix (S^e) on S is the matrix $W = (w_{ij})$, where

$$w_{ij} = \sum_{\substack{x_i | x_k \\ x_j | x_k}} \frac{c_{ik}c_{jk}}{\alpha_{e,k}}$$

with

$$c_{ij} = \sum_{\substack{d \mid x_i \\ x_j < x_i}} \mu(d)$$ \hspace{1cm} (2.1)

and

$$\alpha_{e,k} = \sum_{\substack{d \mid x_k \\ d \nmid x_i, x_j < x_k}} (\xi_e * \mu)(d)$$ \hspace{1cm} (2.2)

and $\xi_e(x) = x^e$.

The following lemma, which was presented by Hong [15], provides a simple way to calculate $\alpha_{e,k}$, and the proof follows from the inclusion-exclusion principle.
Lemma 2.2 ([15]). Let $G_S(x_k) = \{y_{k,1}, \ldots, y_{k,m}\}$ be the set of the greatest type divisors of x_k in S ($1 \leq k \leq n$). Then

$$\alpha_{c,k} = x_k^e + \sum_{t=1}^{m} (-1)^t \sum_{1 \leq t_1 < \cdots < t_r \leq m} (x_k, y_{k,t_1}, \ldots, y_{k,t_r})^r$$

(2.3)

with $\alpha_{c,k}$ defined as in (2.2).

Similarly, using the inclusion-exclusion principle, we obtain the following lemma for the values of c_{ij} and $\alpha_{1,j}$.

Lemma 2.3. Let $G_S(x_j) = \{y_{j,1}, \ldots, y_{j,m}\}$ be the set of the greatest type divisors of x_j in S ($1 \leq j \leq n$). Then

$$c_{ij} = \sum_{d \mid x_j} \mu(d) + \sum_{r=1}^{m} (-1)^r \sum_{1 \leq t_1 < \cdots < t_r \leq m} \sum_{d \mid (y_{j,t_1}, \ldots, y_{j,t_r})} \mu(d)$$

(2.4)

and

$$\alpha_j := \alpha_{1,j} = \sum_{x_i \mid x_j} x_i c_{ij}.$$

(2.5)

The values of c_{ij} play an important role to determine the divisibility of LCM matrices by GCD matrices on gcd-closed sets. Therefore, we calculate the value of c_{ij} in some particular cases. The first lemma belongs to Zhao [30].

Lemma 2.4 ([30]). If $x_i \in G_S(x_j)$ then $c_{ij} = -1$ and $c_{jj} = 1$.

Now, we introduce a new type subset of S. Let $G_S(x_k) = \{y_{k,1}, \ldots, y_{k,m}\}$ for $x_k \in S$. We define $D_S(x_k)$ as follows:

$$D_S(x_k) := \{(y_{k,i_1}, \ldots, y_{k,i_r}) : 2 \leq r \leq m \text{ and } 1 \leq i_1 < \cdots < i_r \leq m\}.$$

In other words, $D_S(x_k)$ is the set of all possible greatest common divisors of different greatest-type divisors of x_k. Moreover, we recall the set $D_x = \{x \in S : x \mid x \text{ and } x > x_r\}$ for x_r in S which was defined by Feng, Hong and Zhao in [7].

We give the second lemma for the value of c_{ij}, which is, in fact, a generalization of Lemma 2.7 in [30].

Lemma 2.5. If $x_i \in D_S(x_j)$ and $D_S(x_j) \cap D_i = \emptyset$, then $c_{ij} = l_i - 1$, where $l_i = |D_i \cap G_S(x_j)|$.

Proof. Let $G_S(x_j) = \{y_{j,1}, \ldots, y_{j,m}\}$. Since $x_i \in D_S(x_j)$ it is obvious that $D_i \cap G_S(x_j) \neq \emptyset$. Without loss of generality, we can assume that $D_i \cap G_S(x_j) = \{y_{j,1}, \ldots, y_{j,l_i}\}$. Now, suppose that $G_S(x_j) - D_i = \emptyset$. Then, clearly $G_S(x_j) \subset D_i$. Since $D_i \cap D_S(x_j) = \emptyset$, $D_S(x_j)$ must consist of only x_i. In this case, it is clear that $|D_i \cap G_S(x_j)| = m$, and hence $l_i = m$. Then, by (2.4), we have

$$c_{ij} = (-1)^2 \binom{m}{2} + (-1)^3 \binom{m}{3} + \cdots + (-1)^m \binom{m}{m} = m - 1.$$

4
Now, consider the case \(G_S(x_j) - D_i \neq \emptyset \). Let \(y_{j,k} \in G_S(x_j) - D_i \). If \(y_{j,k} \in \{y_{j,i_1}, \ldots, y_{j,i_r}\} \) \((2 \leq r \leq m) \), then, by the definition of \(D_i \), we have \(x_i \nmid y_{j,k} \), and hence \(x_i \nmid (y_{j,i_1}, \ldots, y_{j,i_r}) \). So, we have \(\frac{(y_{j,i_1}, \ldots, y_{j,i_r})}{x_i} \notin \mathbb{Z} \). Then, we can write \(c_{ij} \) as follows:

\[
c_{ij} = \sum_{d \mid i} \mu(d) + \sum_{r=1}^{l_i} (-1)^r \sum_{1 \leq i_1 < \cdots < i_r \leq l_i} \sum_{d \mid i} \mu(d). \tag{2.6}
\]

Since \(x_i \in D_S(x_j) \), we have \(x_i \notin G_S(x_j) \). So, by a well-known property of the Möbius function, \(\sum_{d \mid y_{i,t}} \mu(d) = 0 \) for \(1 \leq i \leq l_i \). Thus, we can rewrite (2.6) as follows:

\[
c_{ij} = \sum_{r=2}^{l_i} (-1)^r \sum_{1 \leq i_1 < \cdots < i_r \leq l_i} \sum_{d \mid i} \mu(d). \tag{2.7}
\]

Since \(D_i \cap D_S(x_j) = \emptyset \) and \(\{y_{j,i_1}, \ldots, y_{j,i_r}\} \subset D_i \), we have \((y_{j,i_1}, \ldots, y_{j,i_r}) = x_i \) for every \(2 \leq r \leq l_i \) \((1 \leq i_1 < \cdots < i_r \leq l_i)\). Then, by (2.7), we have \(c_{ij} = l_i - 1 \).

When \(x_i \in D_S(x_j) \) and \(D_i \cap D_S(x_j) \neq \emptyset \), it is really a hard task to calculate the values of \(c_{ij} \) on all possible gcd-closed sets; however, by making some restrictions on the set \(S \), we can obtain a formula for the values of \(c_{ij} \). In order to do this, we denote by \(\text{Min}(D_i \cap D_S(x_j)) \) the set of all the minimal elements in \(D_i \cap D_S(x_j) \) with respect to the divisibility relation on \(S \).

Lemma 2.6. Let \(x_i \in D_S(x_j) \). \(D_i \cap D_S(x_j) \neq \emptyset \) and \(\text{Min}(D_i \cap D_S(x_j)) = \{x_{i_1}, \ldots, x_{i_k}\} \). Let \(|D_{i,t} \cap G_S(x_j)| \leq 1 \) for all \(1 \leq r < t \leq k \) when \(k \geq 2 \). Then \(c_{ij} = l_i - \sum_{t=1}^{k} l_{i,t} + (k - 1) \), where \(l_{i,t} = |D_{i,t} \cap G_S(x_j)| \).

Proof. Let \(D_i \cap G_S(x_j) = \{y_{j,i_1}, \ldots, y_{j,i_k}\} \) without loss of generality. Since \(x_i \in D_S(x_j) \), we can calculate \(c_{ij} \) by (2.7). Now, we consider the summand for \(r = 2 \) in (2.7). We want to find the number of terms such that \((y_{j,i_1}, y_{j,i_2}) = x_i \) or equivalently \((y_{j,i_1}, y_{j,i_2})/x_i = 1 \) for \(1 \leq i_1 < i_2 \leq l_i \). Since \(|D_{i,t} \cap G_S(x_j)| \leq 1 \), \((y_{j,i_1}, y_{j,i_2}) \) is equal to \(x_i \) or a multiple of only one element in \(\text{Min}(D_{i,t} \cap G_S(x_j)) \). So, there exist \(\binom{l_{i,t}}{2} \) terms such that \((y_{j,i_1}, y_{j,i_2}) \) is a multiple of \(x_{i,t} \). By the same argument, the number of 2-tuples of \(y_{j,i_1} \) and \(y_{j,i_2} \) \((i_1 < i_2)\) such that \((y_{j,i_1}, y_{j,i_2}) \notin x_i \) is \(\sum_{t=1}^{k} \binom{l_{i,t}}{2} \). Here, it should be noted that there is no common subsets of \(D_{i,t} \cap G_S(x_j) \) and \(D_{i,t} \cap G_S(x_j) \) with two or more elements for \(1 \leq r < t \leq k \) by the hypothesis of the theorem. If we continue in this manner for \(r = 3, \ldots, l_i \) we obtain that

\[
c_{ij} = (-1)^2 \left[\binom{l_{i}}{2} - \sum_{t=1}^{k} \binom{l_{i,t}}{2} \right] + \cdots + (-1)^l_i \left[\binom{l_{i}}{l_i} - \sum_{t=1}^{k} \binom{l_{i,t}}{l_i} \right]. \tag{2.8}
\]
Here, for convenience, we can assume \(\binom{n}{m} = 0 \) whenever \(n < m \). Thus, we obtain
\[
c_{ij} = \sum_{r=2}^{l_i} \left(-1 \right)^r \left(\frac{l_i}{r} - \sum_{t=1}^{k} \frac{l_i}{r} \right)
\]
\[
= (l_i - 1) - \sum_{t=1}^{k} (l_i,t - 1)
\]
\[
= l_i - \sum_{t=1}^{k} l_i,t + (k - 1),
\]
which concludes the proof.

Let \((L, \leq)\) be a finite meet semilattice. Haukkanen, Mattila and Mäntysalo determined the zeros of the Möbius function of \(L\), see [9, Lemma 3.1]. If we take \((L, \leq) = (S, |)\), where \(S\) is a gcd-closed set of distinct positive integers and | is the divisibility relation on \(\mathbb{Z}\), we can restate their claim as follows:
\[
\mu_S(x) = 0 \text{ unless } \gcd(G_S(x)) \mid z \mid x.
\]

The following lemma is a generalization of the above result in the number theoretical setting and by using it, we can determine the zeros of \(c_{ij}\) on a gcd-closed set.

Lemma 2.7. Let \(1 \leq i < j \leq n\). If \(x_i \not\mid x_j\) and \(x_i \not\in D_S(x_j)\), then \(c_{ij} = 0\).

Proof. If \(x_i \not\mid x_j\), then it is clear that \(c_{ij} = 0\). Now, let \(x_i \mid x_j\) and \(G_S(x_j) = \{y_{j,1}, \ldots, y_{j,m}\}\). Since \(\sum_{d \mid x_j} \mu(d) = 0\) whenever \(x_i \neq x_j\), by (2.4), we have
\[
c_{ij} = \sum_{r=1}^{m} (-1)^{r} \sum_{1 \leq i_1 < \cdots < i_r \leq m} \sum_{d \mid y_{j,i_1, \ldots, y_{j,i_r}}} \mu(d).
\]

Now, consider the sum \(\sum_{d \mid y_{j,i_1, \ldots, y_{j,i_r}}} \mu(d)\) for \(1 \leq r \leq m\). Since \(x_i \not\in G_S(x_j)\) and \(x_i \not\in D_S(x_j)\), we always have \((y_{j,i_1}, \ldots, y_{j,i_r}) \neq x_i\). Therefore, by a well-known property of the Möbius function, \(\sum_{d \mid y_{j,i_1, \ldots, y_{j,i_r}}} \mu(d) = 0\) for all \(1 \leq r \leq m\). This completes the proof.

Lemma 2.8. For \(j > 1\), we have \(\sum_{i=1}^{n} c_{ij} = 0\) or equivalently \(\sum_{x_i \mid x_j} c_{ij} = 0\).

Proof. Since \(c_{jj} = 1\) we have to prove that \(\sum_{x_i \mid x_j} c_{ij} = -1\). Let \(G_S(x_j) = \{y_{j,1}, \ldots, y_{j,m}\}\). Then, by (2.4), we have
\[
\sum_{x_i \mid x_j} c_{ij} = \sum_{r=1}^{m} (-1)^{r} \sum_{1 \leq i_1 < \cdots < i_r \leq m} \sum_{d \mid y_{j,i_1, \ldots, y_{j,i_r}}} \mu(d). \quad (2.9)
\]
Then, we have denote the largest integer such that $p^n \leq m$. For convenience, we assume our claim, we have

Proof. Firstly we claim that for positive integers m, $T_2 T_4 \ldots T_m = T_1 T_3 \ldots T_{m-1}$ if m is even

$$[a_1, \ldots, a_m] = \frac{T_1 T_3 \ldots T_{m-1}}{T_2 T_4 \ldots T_m}$$

otherwise. Here $T_1 = \prod_{i=1}^m a_i$ and $T_k = \prod_{i<j} a_i a_j$ for $2 \leq k \leq m$. We will prove the claim when m is even. It is sufficient to prove that $[a_1, \ldots, a_m] T_2 \ldots T_m = T_1 T_3 \ldots T_{m-1}$.

Consider a prime number p such that $p \nmid [a_1, \ldots, a_m]$. For $a \in \mathbb{Z}^+$, let $\nu_p(a)$ denote the largest integer such that $p^{\nu_p(a)}$ divides a. Without loss of generality, we can assume that $\nu_p(a_1) \leq \cdots \leq \nu_p(a_m)$. Then, we have

$$\nu_p ([a_1, \ldots, a_m] T_2 T_4 \ldots T_m) = \nu_p (a_m) + \sum_{i=1}^{m-1} \left(\sum_{j=1}^{m/2} \binom{m-i}{2j-1} \right) \nu_p (a_i)$$

$$= \nu_p (a_m) + \sum_{i=1}^{m-1} \left(\sum_{j=1}^{m/2} \binom{m-i}{2j} \right) \nu_p (a_i)$$

$$= \nu_p (T_1 T_3 \ldots T_{m-1}).$$

Here, for convenience, we assume $\binom{i}{j} = 0$ whenever $j > i$. Thus,

$$[a_1, \ldots, a_m] T_2 T_4 \ldots T_m = T_1 T_3 \ldots T_{m-1}.$$

We can similarly prove the case that m is odd. Assuming that m is even, by our claim, we have

$$[y_{n,1}, \ldots, y_{n,m}] = \prod_{i=1}^m \frac{y_{n,i} T_3 T_5 \ldots T_{m-1}}{T_1 T_3 \ldots T_m}$$
where $T_k = \prod_{1 \leq i_1 < \cdots < i_k \leq m} (y_{n,i_1}, \ldots, y_{n,i_k})$. Since every $(y_{n,i_1}, \ldots, y_{n,i_k})$ is in $D_S(x_n)$ for $k \geq 2$, we can write $T_k = \beta_{n_1} \cdots \beta_{n_t}$, where each β_{n_r} is a nonnegative integer for $1 \leq r \leq t$. Indeed,

$$\beta_{n_r} = |\{(y_{n,i_1}, \ldots, y_{n,i_k}) : (y_{n,i_1}, \ldots, y_{n,i_k}) = x_{n_r}, 1 \leq i_1 < \cdots < i_k \leq m\}|.$$

Thus, by (2.4), it is clear that the exponent of x_{n_r} in the fraction $\frac{\prod_{1 \leq i_1 < \cdots < i_k \leq m} (y_{n,i_1}, \ldots, y_{n,i_k})}{T_k T_{k+1} \cdots T_{m-1}}$ is equal to $c_{n_r,n}$. Furthermore, by Lemma 2.8 we obtain that $\sum_{k=1}^{m} c_{n_k n} = m - 1$.

3. Main Results

In this section, we give main results of our paper. For the proof of the first three results, we use Zhao’s approach [36], that is, we will prove that an entry of the product S^{-1} is in the interval $(0, 1)$. Throughout this section, we denote S^{-1} by U, where $[S]$ is the LCM matrix and (S) is the GCD matrix, and we assume that S is gcd-closed.

Theorem 3.1. Let $S = \{x_1, x_2, \ldots, x_n\}$ with $m > 5$. Let $x_n \in S$ such that $n \geq 5$, $G_S(x_n) = \{x_2, \ldots, x_{n-1}\}$ and $\gcd(G_S(x_n)) = x_1$. If $x_i \mid x_n$ and $x_i \notin D_S(x_n)$ for all $n < i \leq m$, then $(S) \nmid [S]$.

Proof. We have to prove that $U \notin M_m(\mathbb{Z})$. To perform this, it is sufficient to show that $U_{2n} \notin \mathbb{Z}$. By Lemmas 2.1 and 2.4 we have

$$U_{2n} = \frac{x_n - \sum_{i=2}^{n-1} [x_2, x_i] + \sum_{i=n+1}^{m} [x_2, x_i] c_{in} + [x_2, x_1] c_{1n}}{\alpha_n}.$$

By Lemma 2.7 we have $c_{in} = 0$ for $n + 1 \leq i \leq m$ since x_i is neither in $G_S(x_n)$ nor in $D_S(x_n)$ whenever $i > n$. In addition to this, $c_{in} = n - 3$ by Lemma 2.5. Then, we have $U_{2n} = \frac{x_n - \sum_{i=2}^{n-1} [x_2, x_i] + x_2(n-3)}{\alpha_n}$. Also, by Lemma 2.3 $\alpha_n = x_n - \sum_{i=2}^{n-1} x_i + x_1(n-3)$. Letting

$$\beta_n := x_n - \sum_{i=2}^{n-1} [x_2, x_i] + x_2(n-3),$$

we can write U_{2n} as $U_{2n} = \frac{\beta_n}{\alpha_n}$. Here, one can show that $\beta_n > 0$ and $\alpha_n > \beta_n$ using Zhao’s approach as in the proof of Lemma 2.9 in [36]. So, we have $0 < U_{2n} < 1$ which means that $U_{2n} \notin \mathbb{Z}$.

Theorem 3.2. Let $S = \{x_1, x_2, \ldots, x_t\}$ with $t > 5$. Let $x_n \in S$ such that $n \geq 5$, $G_S(x_n) = \{x_2, \ldots, x_{n-1}\}$, $\gcd(G_S(x_n)) = x_1$ and $D_S(x_n) = \{x_1, x_{n+1}, \ldots, x_m\}$ ($m < t$). If $x_i \mid x_n$ for all $n < i \leq t$ and $D_S(x_n)$ is a divisor chain, then $(S) \nmid [S]$.

8
Proof. Since $D_S(x_n)$ is a divisor chain and $G_S(x_n) = \{x_2, \ldots, x_{n-1}\}$, we can assume that $x_1 \mid x_{n+1} \mid x_{n+2} \mid \cdots \mid x_m$ and $x_m \mid x_2$ without loss of generality. By Lemma 2.1, we have

$$U_{2n} = \frac{\sum_{i=1}^{t} [x_2, x_i]c_{sn}}{\alpha_n}.$$

By Lemmas 2.4-2.7, we have $c_{sn} = \begin{cases} 0 & \text{if } s > m, \\ l_s - l_{s+1} & \text{if } n + 1 \leq s \leq m - 1, \\ l_m - 1 & \text{if } s = m, \\ 1 & \text{if } s = n, \\ -(n - 2) - l_{n+1} & \text{if } s = 1, \end{cases}$

and hence

$$U_{2n} = \frac{x_n - \sum_{i=2}^{n-1} [x_2, x_i] + \sum_{i=n+1}^{m-1} (l_i - l_{i+1})x_2 + (l_m - 1)x_2 + [(n - 2) - l_{n+1}]x_2}{\alpha_n}.$$

Then, we have

$$U_{2n} = \frac{x_n - \sum_{i=2}^{n-1} [x_2, x_i] + x_2(n - 3)}{\alpha_n}.$$

In what follows we let $\gamma_n := x_n - \sum_{i=2}^{n-1} [x_2, x_i] + x_2(n - 3)$. Since $n \geq 5$, we have

$$\gamma_n > [x_2, \ldots, x_{n-1}] - \sum_{i=3}^{n-1} [x_2, x_i].$$

By Lemma 2.9 we know that

$$[x_2, \ldots, x_{n-1}] = \frac{\prod_{i=2}^{n-1} x_i}{x_1^{c_{1n}} x_{n+1}^{c_{n+1,n}} \cdots x_m^{c_{mn}}},$$

where $c_{1n} + c_{n+1,n} + \cdots + c_{mn} = n - 3$ and $c_{in} > 0$ for $i = 1$ and $n + 1 \leq i \leq m$.

Suppose that $\max([x_2, x_i] : 3 \leq i \leq n - 1) = [x_2, x_r]$. By the definition of $D_S(x_n)$, it is clear that $(x_2, x_r) \in D_S(x_n)$. Without loss of generality, we can assume that $(x_2, x_r) = x_1$. Then

$$\gamma_n \geq \frac{x_2x_r}{x_1} \left(\frac{\prod_{i=2}^{n-1} x_i}{x_1^{c_{1n}} x_{n+1}^{c_{n+1,n}} \cdots x_m^{c_{mn}}} - (n - 3) \right) \geq \frac{x_2x_r}{x_1} \left(2^{n-4} - (n - 3) \right) \geq 0.$$

On the other hand, by Lemma 2.3 we have

$$\alpha_n = x_n - \sum_{i=2}^{n-1} x_i + \sum_{i=n+1}^{m-1} (l_i - l_{i+1})x_i + (l_m - 1)x_m + [(n - 2) - l_{n+1}]x_1.$$
Now, we show that α_n is greater than γ_n.

\[
\alpha_n - \gamma_n = \sum_{i=3}^{n-1} ([x_2, x_i] - x_i) + (x_1 - x_2)(n - 2 - l_{n+1}) + (x_m - x_2)(l_m - 1) \\
+ \sum_{i=n+1}^{m-1} (x_i - x_2)(l_i - l_{i+1}).
\]

We claim that $\{x_i \in G_S(x_n) : (x_2, x_i) = x_s\} = c_{sn}$ for $s = 1$ or $n + 1 \leq s \leq m$. For $s = 1$,

\[
(x_2, x_i) = x_1 \Leftrightarrow x_{n+1} \nmid x_i \\
\Leftrightarrow x_i \notin D_{n+1} \\
\Leftrightarrow x_i \in (G_S(x_n) \cap D_1) - (G_S(x_n) \cap D_{n+1})
\]

and for $n + 1 \leq s \leq m - 1$,

\[
(x_2, x_i) = x_s \Leftrightarrow x_{s+1} \nmid x_i \\
\Leftrightarrow x_i \notin D_{s+1} \\
\Leftrightarrow x_i \in (G_S(x_n) \cap D_s) - (G_S(x_n) \cap D_{s+1}).
\]

Also, our claim for $s = m$ is a direct consequence of Lemma 2.5. Now, we can rewrite $\alpha_n - \gamma_n$ according to (x_2, x_i) for $3 \leq i \leq n - 1$.

\[
\alpha_n - \gamma_n = \sum_{(x_2, x_i) = x_1} ([x_2, x_i] - x_i + x_1 - x_2) + \sum_{k=n+1}^{m} \sum_{(x_2, x_i) = x_k} ([x_2, x_i] - x_i + x_1 - x_2).
\]

It is clear that in the first sum

\[
[x_2, x_i] - x_i + x_1 - x_2 = \frac{x_2}{x_1} - 1)(x_i - x_1) > 0
\]

and in the second sum

\[
[x_2, x_i] - x_i + x_k - x_2 = \frac{x_2}{x_k} - 1)(x_i - x_k) > 0.
\]

Thus, $\alpha_n - \gamma_n > 0$, and hence $U_{2n} = \frac{2n}{\alpha_n}$ is not an integer. \qed

Theorem 3.3. Let $S = \{x_1, x_2, \ldots, x_m\}$ with $m > 5$. Let $x_n \in S$ such that $G_S(x_n) = \{x_2, \ldots, x_{n-1}\}$, $gcd(G_S(x_n)) = x_1$ and $D_S(x_n) = \{x_1, x_{n+1}, x_{n+2}\}$. If $x_i \mid x_n$ for all $n < i \leq m$, then $(S) \not| [S]$.

Proof. If $D_S(x_n)$ is a divisor chain then the proof is a direct consequence of Theorem 3.2. Now, let $D_S(x_n)$ be a x_1-set, namely $(x_{n+1}, x_{n+2}) = x_1$. We will prove the claim of the theorem in two cases as the set $(G_S(x_n) \cap D_{n+1}) \cap (G_S(x_n) \cap D_{n+2})$ can be empty or a singleton subset of $G_S(x_n)$.

Now, let $G_S(x_n) \cap D_{n+1} \cap D_{n+2} \neq \emptyset$. The set $G_S(x_n) \cap D_{n+1} \cap D_{n+2}$ cannot have more than one element. Suppose the contrary, that is, $x_i, x_j \in
$G_S(x_n) \cap D_{n+1} \cap D_{n+2}$. Since S is gcd-closed and $D_S(x_n) = \{x_1, x_{n+1}, x_{n+2}\}$, we have $(x_i, x_j) = x_{n+1}$ or x_{n+2}. Now, assume that $(x_i, x_j) = x_{n+1}$. On the other hand, $x_{n+2} \mid (x_i, x_j)$ since $x_i, x_j \in D_{n+2}$. Then, we have $x_{n+2} \mid x_{n+1}$, a contradiction. Thus, we can assume that $G_S(x_n) \cap D_{n+1} \cap D_{n+2} = \{x_2\}$ without loss of generality. We will show that $U_{2n} \notin \mathbb{Z}$. By Lemmas 2.4-2.7, it is clear that

$$c_{s,n} = \begin{cases} n - l_{n+1} - l_{n+2} - 1 & \text{if } s = 1, \\
-1 & \text{if } 2 \leq s \leq n - 1, \\
1 & \text{if } s = n, \\
l_{n+1} - 1 & \text{if } s = n + 1, \\
l_{n+2} - 1 & \text{if } s = n + 2, \\
0 & \text{if } s > n + 2. \end{cases}$$

Thus, by Lemma 2.1, we have

$$U_{2n} = \frac{1}{\alpha_n} \left(x_n - \sum_{i=2}^{n-1} [x_2, x_i] + [x_2, x_{n+1}](l_{n+1} - 1) + [x_2, x_{n+2}](l_{n+2} - 1) + [x_2, x_1](n - l_{n+1} - l_{n+2} - 1) \right)$$

Since x_2 is a multiple of lcm($D_S(x_n)$), by Lemma 2.8 we have

$$U_{2n} = \frac{x_n - \sum_{i=2}^{n-1} [x_2, x_i] + x_2(n - 3)}{\alpha_n},$$

where

$$\alpha_n = x_n - \sum_{i=2}^{n-1} x_i + x_{n+1}(l_{n+1} - 1) + x_{n+2}(l_{n+2} - 1) + x_1(n - l_{n+1} - l_{n+2} - 1).$$

Let

$$\gamma_n = x_n - \sum_{i=2}^{n-1} [x_2, x_i] + x_2(n - 3).$$

Using the same method as in the proof of Theorem 3.2, one can easily show that γ_n is positive and $|\{x_k \in G_S(x_n) : x_k = (x_2, x_i)\}| = c_{k,n}$ for $k = 1, n + 1, n + 2$. So, it is sufficient to show that $\alpha_n - \gamma_n$ is positive. To do this, we write $\alpha_n - \gamma_n$
as follows:

\[\alpha_n - \gamma_n = \sum_{(x_2, x_i) = x_{n+1}, \ x_i \in G_S(x_n)} ([x_2, x_i] - x_i + (x_{n+1} - x_2)) + \sum_{(x_2, x_i) = x_{n+2}, \ x_i \in G_S(x_n)} ([x_2, x_i] - x_i + (x_{n+2} - x_2)) + \sum_{(x_2, x_i) = x_1, \ x_i \in G_S(x_n)} ([x_2, x_i] - x_i + (1 - x_2))\]

\[= \sum_{(x_2, x_i) = x_{n+1}, \ x_i \in G_S(x_n)} \left(\frac{x_2}{x_{n+1}} - 1 \right)(x_i - x_{n+1}) + \sum_{(x_2, x_i) = x_{n+2}, \ x_i \in G_S(x_n)} \left(\frac{x_2}{x_{n+2}} - 1 \right)(x_i - x_{n+2}) + \sum_{(x_2, x_i) = x_1, \ x_i \in G_S(x_n)} \left(\frac{x_2}{x_1} - 1 \right)(x_i - x_1).\]

Then, it is clear that \(\alpha_n - \gamma_n > 0\).

Now, we investigate the case \([D_{n+1} \cap D_{n+2}] \cap G_S(x_n) = \emptyset\). Without loss of generality, we can assume that \(D_{n+1} \cap G_S(x_n) = \{x_2, \ldots, x_k\}\) and \(D_{n+2} \cap G_S(x_n) = \{x_{k+2}, \ldots, x_{k+s+1}\}\). In this case, by Lemmas 2.1, 2.4 - 2.7, we have

\[U_{2n} = \frac{1}{\alpha_n} \left(x_n - \sum_{i=2}^{n-1} [x_2, x_i] + [x_2, x_{n+1}](k-1) + [x_2, x_{n+2}](s-1) + [x_2, x_1](n-k-s-1) \right).\]

Also, by Lemma 2.8

\[\alpha_n = x_n - \sum_{i=2}^{n-1} x_i + (k-1)(x_{n+1}) + (s-1)x_{n+2} + (n-k-s-1)x_1.\]

Let

\[\gamma_n := x_n - \sum_{i=2}^{n-1} [x_2, x_i] + [x_2, x_{n+1}](k-1) + [x_2, x_{n+2}](s-1) + [x_2, x_1](n-k-s-1).\]

Using a similar method as in the proof of Theorem 3.2, one can show that \(\gamma_n > 0\). Now, we will prove that \(\alpha_n - \gamma_n\) is positive.
\[\alpha_n - \gamma_n = (k - 1)(x_{n+1} - x_2) + \sum_{i=3}^{k+1} ([x_2, x_i] - x_i) \]

\[+ (s - 1)(x_{n+2} - [x_2, x_{n+2}]) + \sum_{i=k+2}^{k+s+1} ([x_2, x_i] - x_i) \]

\[+ (n - k - s - 1)(x_1 - x_2) + \sum_{i=k+s+2}^{n-1} ([x_2, x_i] - x_i) \]

\[= \sum_{i=3}^{k+1} ([x_2, x_i] - x_i + (x_{n+1} - x_2)) \]

\[+ \sum_{i=k+2}^{k+s+1} ([x_2, x_i] - x_i + (x_{n+2} - x_2)) \]

\[+ \sum_{i=k+s+2}^{n-1} ([x_2, x_i] - x_i + (x_1 - x_2)) \]

\[+ [x_2, x_{n+2}] - x_{n+2} + x_1 - x_2 \]

\[= \sum_{i=3}^{k+1} \left(\frac{x_2}{x_{n+1}} - 1 \right)(x_i - x_{n+1}) + \sum_{i=k+2}^{k+s+1} \left(\frac{x_2}{x_1} - 1 \right)(x_i - x_{n+2}) \]

\[+ \sum_{i=k+s+2}^{n-1} \left(\frac{x_2}{x_1} - 1 \right)(x_i - x_1) + \left(\frac{x_2}{x_1} - 1 \right)(x_{n+2} - x_1) \]

\[> 0. \]

This completes the proof. \(\square \)

After the proof of Theorems 3.1-3.3 we can say that Zhao’s approach works when \(x_n \) is a maximal element of \(S \) with respect to the divisibility relation. Does the same method work if \(S \) contains some multiples of \(x_n \)? It appears to be difficult to answer this question without the following lemma.

Lemma 3.1. Let \(S = \{x_1, x_2, \ldots, x_m\} \) such that \(i \leq j \) whenever \(x_i \mid x_j \). Also, let \(x_n \in S \) and \(D_n \cup \{x_n\} = \{x_n = x_{n_1}, \ldots, x_{n_t}\} \). Then, for each \(1 \leq q \leq m \),

\[\sum_{i=1}^{t} U_{qn_i} = \sum_{s=1}^{m} [x_q, x_s] C_{sn} \theta_n. \]
we can write (3.1) as follows

\[
\sum_{i=1}^{t} U_{qn_i} = \sum_{i=1}^{t} \left[\sum_{s=1}^{m} [x_q, x_s] \sum_{x_i \in x_k} c_{nk} \frac{c_{nk}}{\alpha_k} \right]
\]

\[
= \sum_{s=1}^{m} [x_q, x_s] \sum_{k=1}^{m} k \sum_{i=1}^{t} c_{nk} \frac{c_{nk}}{\alpha_k}
\]

\[
= \sum_{k=1}^{m} \sum_{s=1}^{m} [x_q, x_s] \frac{c_{nk}}{\alpha_k} \sum_{i=1}^{t} c_{nk}
\]

Here \(\sum_{i=1}^{t} c_{nk} = c_{nn} = 1 \) and \(\sum_{i=1}^{t} c_{nk} = \sum_{x_i \in x_k} c_{nk} \). The last sum is over \(x_n \in D_n \cup \{x_n\} \) dividing the fixed \(x_k \in D_n \). Since \(S \) is gcd-closed, \(D_n \cup \{x_n\} \) is also gcd-closed. Now, let \((c_{ij})_A \) denote \(c_{ij} \) for a gcd-closed set \(A \), as defined in Lemma 2.1. We want to show that \((c_{nk})_S = (c_{nk})_{D_n \cup \{x_n\}} \). Let \(G_S(x_n) = \{y_j, \ldots, y_j, k\} \). By Lemma 2.3

\[
(c_{nk})_S = \sum_{d | x_n} \mu(d) + \sum_{r=1}^{k} (-1)^r \sum_{1 \leq i_1 < \ldots < i_r \leq k} \sum_{d | (y_j, i_1, \ldots, y_j, i_r)} \mu(d).
\]

(3.1)

Without loss of generality, let \(x_n \uparrow y_k \). Then \(x_n \uparrow (y_j, i_1, \ldots, y_j, i_r, y_k) \), and hence \((y_j, i_1, \ldots, y_j, i_r, y_k) / x_n \notin \mathbb{Z} \). So, if \(y_j, k \in \{y_j, i_1, \ldots, y_j, i_r\} \), then the summation \(\sum_{d | (y_j, i_1, \ldots, y_j, i_r) / x_n} \mu(d) \) is empty, and hence it is equal to zero. Thus, letting \(G_S(x_n) \cap (D_n \cup \{x_n\}) = \{y_j, 1, \ldots, y_j, u\} \) without loss of generality, we can write (3.1) as follows

\[
(c_{nk})_S = \sum_{d | x_n} \mu(d) + \sum_{r=1}^{u} (-1)^r \sum_{1 \leq i_1 < \ldots < i_r \leq u} \sum_{d | (y_j, i_1, \ldots, y_j, i_r)} \mu(d).
\]

On the other hand, it is clear that \(G_S(x_n) \cap (D_n \cup \{x_n\}) \subset G_S(x_n) \cap (D_n \cup \{x_n\}) \) and \(G_{D_n \cup \{x_n\}}(x_n) = G_S(x_n) \cap (D_n \cup \{x_n\}) \). Thus, we obtain \((c_{nk})_S = (c_{nk})_{D_n \cup \{x_n\}} \).

Now, since \(D_n \cup \{x_n\} \) is a gcd-closed set and \((c_{nk})_{D_n \cup \{x_n\}} = (c_{nk})_S \), we have \(\sum_{i=1}^{t} c_{nk} = 0 \) by Lemma 2.8 for \(x_k \in D_n \). Thus,

\[
\sum_{i=1}^{t} U_{qn_i} = \sum_{s=1}^{m} [x_q, x_s] \frac{c_{nn}}{\alpha_n}.
\]
Putting Theorems 3.1-3.3 and Lemma 3.1 together, we have the following result.

Theorem 3.4. Let \(S = \{ x_1, x_2, \ldots, x_m \} \) and let \(S \) have an element \(x \) with \(|G_S(x)| \geq 3 \). If \(D_S(x) \) is a divisor chain or \(|D_S(x)| \leq 3 \), then \((S) \mid [S] \).

Proof. Without loss of generality, we can assume that \(x_n \in S \) such that \(5 \leq n \leq m \), \(G_S(x_n) = \{ x_2, \ldots, x_{n-1} \} \), and \(\gcd(G_S(x_n)) = x_1 \). Also, let \(D_n \cup \{ x_n \} = \{ x_n = x_n_1, \ldots, x_n_t \} \). By Lemma 3.1, we have

\[
\sum_{i=1}^{t} U_{2n_i} = \sum_{s=1}^{m} [x_2, x_s] \frac{c_{2n_i}}{\alpha_n}.
\]

We have two cases that \(D_S(x_n) \) could be a divisor chain or not. In both cases, one can show that \(\sum_{i=1}^{m} [x_2, x_s] \frac{c_{2n_i}}{\alpha_n} \notin \mathbb{Z} \) by similar methods to the proofs of Theorems 3.2 and 3.3, respectively. \(\square \)

So far, we have proven that if \(S \) has an element \(x \) such that \(|G_S(x)| \geq 3 \), and \(|D_S(x)| \leq 3 \) or \(D_S(x) \) is a divisor chain, then the divisibility does not hold. On the other hand, for the complete solution of Problem 1.1 for \(|S| \leq 8 \), whether the divisibility holds when \(S \) has an element \(x \) such that \(|G_S(x)| = 3 \) and \(|D_S(x)| = 4 \) remains unsolved. The following condition is a key to the divisibility for this case. For \(x \in S \), we say that \(x \) satisfies the condition \(\mathcal{M} \) if \([x_i, x_j] = x \) for all different \(x_i, x_j \in G_S(x) \) when \(|G_S(x)| \geq 2 \). Also, we say that the set \(S \) satisfies the condition \(\mathcal{M} \) if each element \(x \in S \) with \(|G_S(x)| \geq 2 \) satisfies the condition \(\mathcal{M} \). Recall that the condition \(\mathcal{C} \) is defined for the elements with only two greatest-type divisors. If \(x \in S \) satisfies the condition \(\mathcal{C} \), then it clearly satisfies the condition \(\mathcal{M} \). On the other hand, an element satisfying the condition \(\mathcal{M} \) need not satisfy the condition \(\mathcal{C} \).

Theorem 3.5. Let \(S = \{ x_1, x_2, \ldots, x_8 \} \), \(|G_S(x_8)| = 3 \) and \(|D_S(x_8)| = 4 \). Then, \((S) \mid [S] \) if and only if \(S \) satisfies the condition \(\mathcal{M} \).

Proof. Under the hypothesis of the theorem we can assume that the Hasse diagram of \(S \) with respect to the divisibility relation is as follows:

15
If \([x_{k,i}, x_{k,j}] = x_k\) for all different \(x_{k,i}, x_{k,j} \in G_S(x_k)\) when \(|G_S(x_k)| \geq 2\), then by a direct computation, one can obtain that

\[
U_{ij} = \begin{cases} \frac{x_i}{x_1} & \text{if } [x_i, x_j] = x_8 \text{ and } (x_i, x_j) = x_1, \\ 0 & \text{otherwise.} \end{cases}
\]

We will show non-divisibility of the LCM matrix by the GCD matrix on \(S\) in two cases.

Case 1. Let \(S\) have an element \(x_k\) such that \(G_S(x_k) = \{x_{k,1}, x_{k,2}\}\) and \([x_{k,1}, x_{k,2}] < x_k\). Without loss of generality, we can take \(x_k = x_5\). Then, it is clear that \([x_2, x_3] < x_5\). By Lemmas 2.1, 2.4-2.6, and 3.1, we have

\[
U_{25} + U_{28} = \alpha_5 = \sum_{s=1}^{8} \frac{[x_2, x_s]}{c_{s,5}} = \frac{x_5 - [x_2, x_3]}{\alpha_5}.
\]

By Lemma 5.3, we have \(\alpha_5 = x_5 - x_2 - x_3 + x_1\). Since \([x_2, x_3] < x_5\), we have \(x_5 - [x_2, x_3] > 0\) and

\[
\alpha_5 - (x_5 - [x_2, x_3]) = \left(\frac{x_3}{x_1} - 1\right)(x_2 - x_1) > 0.
\]

Thus, \(0 < U_{25} + U_{28} < 1\). That is \(U \notin M_8(\mathbb{Z})\).

Case 2. Let \([x_5, x_6] < x_8\) without loss of generality. Now, we must have \([x_2, x_3] = x_5\), \([x_2, x_4] = x_6\) and \([x_3, x_4] = x_7\) otherwise the proof is obvious by Case 1. Under these assumptions, we have

\([x_5, x_6, x_7] = [x_5, x_6] < x_8\).

We will show that \(U_{58} \notin \mathbb{Z}\). By Lemmas 2.1, 2.4-2.6, we have

\[
U_{58} = \frac{x_8 - [x_5, x_6] - [x_5, x_7] + [x_4, x_5]}{\alpha_8}.
\]

16
Let \(\gamma_8 = x_8 - [x_5, x_6] - [x_5, x_7] + [x_4, x_5] \). Since \([x_5, x_6, x_7] < x_8\) and clearly \([x_5, x_6, x_7] | x_8\), we have \(x_8 \geq 2 \cdot [x_5, x_6, x_7] \), and hence
\[
\gamma_8 > x_8 - [x_5, x_6] - [x_5, x_7] \geq 2 \cdot [x_5, x_6, x_7] - [x_5, x_6] - [x_5, x_7] \geq 0.
\]
By Lemma 2.3 we have \(\alpha_8 = x_8 - x_5 - x_6 - x_7 + x_2 + x_3 + x_4 - x_1 \). Then,
\[
\alpha_8 - \gamma_8 = ([x_5, x_6] - x_6 - x_5 + x_2) + ([x_5, x_7] - x_7 - x_5 + x_3)
\]
\[
+ (-[x_4, x_5] - x_1 + x_5 + x_4)
\]
\[
= \left(\frac{x_5}{x_1} - 1 \right) (x_6 - x_2) + \left(\frac{x_5}{x_3} - 1 \right) (x_7 - x_3) + \left(\frac{x_4}{x_1} - 1 \right) (x_1 - x_5)
\]
\[
= \left(\frac{x_4}{x_1} - 1 \right) (x_5 - x_2 + x_1 - x_3)
\]
\[
= \left(\frac{x_4}{x_1} - 1 \right) \frac{x_3}{x_1} - 1 \right) (x_2 - x_1) > 0.
\]
This completes the proof. \(\Box \)

Corollary 3.1. Let \(S \) be a gcd-closed set with \(|S| \leq 8\). \((S) \ | \ [S]\) if and only if
i) \(\max_{x \in S} \{|G_S(x)|\} = 1 \) or
ii) \(\max_{x \in S} \{|G_S(x)|\} = 2 \) and \(S \) satisfies the condition \(C \) or
iii) \(\max_{x \in S} \{|G_S(x)|\} = 3 \) and \(S \) satisfies the condition \(M \).

Proof. If (i) or (ii) holds then by Theorems 3.4 and 4.7 in [1] we know \((S) \ | \ [S]\).
Now, let (iii) hold. Let \(|S| = n \) with \(n \leq 8 \), \(G_S(x_n) = \{x_{n,1}, x_{n,2}, x_{n,3}\} \) and let \(S \) satisfy the condition \(M \). Then we claim that \(|D_S(x_n)| = 4 \) and \(|S| = 8\). Since \(S \) satisfies the condition \(M \), we must have
\[
[x_{n,1}, x_{n,2}] = [x_{n,1}, x_{n,3}] = [x_{n,2}, x_{n,3}]
\]
and hence \((x_{n,1}, x_{n,2}), (x_{n,1}, x_{n,3})\) and \((x_{n,2}, x_{n,3})\) must be different elements in \(S \). This means that \(|D_S(x_n)| = 4\), and hence \(|S| = 8\). So, we must investigate the case that \(|S| = 8\) and \(|D_S(x_8)| = 4\). Thus, by Theorem 3.5 we have \((S) \ | \ [S]\).

Now, we prove the necessary part of the theorem by contrapositive. If \(\max_{x \in S} \{|G_S(x)|\} = 2 \) and \(S \) does not satisfy the condition \(C \), then by Theorems 4.7 in [1] we know \((S) \notin [S]\). Consider the case that \(\max_{x \in S} \{|G_S(x)|\} = 3 \) and \(S \) does not satisfy the condition \(M \). If \(|D_S(x)| \leq 3\) for the element \(x \) with three greatest-type divisors, then we have \((S) \notin [S]\) by Theorem 3.4. If \(|D_S(x)| = 4\), then we have \((S) \notin [S]\) by Theorem 3.5. Since \(|S| \leq 8\), \(D_S(x) \leq 3 \) if \(\max_{x \in S} \{|G_S(x)|\} \geq 4 \). Thus, by Theorem 3.4 we have \((S) \notin [S]\). This completes the proof of the necessary part.

Let \(e \geq 1 \) be an integer. All the results that we have obtained in this section are valid for the \(e \)th power GCD matrix and the \(e \)th power LCM matrix. In this paper, we have only considered the original version of Problem 1.1 for the sake of brevity.
4. A new conjecture

Let k and i be arbitrary positive integers. Consider the set

$$S_i = \{p, p^2, \ldots, p^k, p^kq_1, p^kq_2, \ldots, p^kq_i, p^kq_1q_2, \ldots q_i\},$$

where q_1, \ldots, q_i and p are different prime numbers. It is clear that

$$\max_{x \in S_i} |G_{S_i}(x)| = i \quad \text{and} \quad |D_{S_i}(p^kq_1q_2 \cdots q_i)| = 1.$$

If $i \geq 3$, then, by a direct consequence of Theorem 3.4, we have $(S_i) \mid [S_i]$. Let $k = 10$ and $i = 4$. We have $\max_{x \in S_i} |G_{S_i}(x)| = 4$ and $|S_i| = 15$. Thus, we have a gcd-closed set, not satisfying the hypothesis of Conjecture 1.1, but the divisibility for this set cannot hold. Moreover, S_4 does not satisfy the condition \mathfrak{M}. Therefore, in the light of our results, we can say that the non-divisibility depends on not only the number $\max_{x \in S} |G_S(x)|$ but also the condition \mathfrak{M}. Indeed, a reason preventing the divisibility is that S does not satisfy the condition \mathfrak{M}.

If a set S satisfies the hypothesis of Zhao’s conjecture, then there must be at least three elements $x_{m,i_1}, x_{m,i_2},$ and x_{m,i_3} such that $(x_{m,i_1}, x_{m,i_2}) = (x_{m,i_2}, x_{m,i_3}) = (x_{m,i_1}, x_{m,i_3})$ where $|G_{S}(x)| = m$ and $x_{m,i_k} \in G_{S}(x)$ for $1 \leq k \leq 3$. Then, we have $x_{m,i_1} < x_{m,i_3}$. This means that if the set S with $|S| = n$ holds the hypothesis of Zhao’s conjecture, then S does not satisfy the condition \mathfrak{M}.

Finally, after the above observations, we conclude our paper with a new conjecture, which is a generalization of Conjecture 1.1.

Conjecture 4.1. Let S be a gcd-closed set with $\max_{x \in S} |G_{S}(x)| \geq 2$. If S does not satisfy the condition \mathfrak{M}, then $(S) \mid [S]$.

References

[1] E. Altınışık, B. E. Sagan, N. Tuğlu, GCD matrices, posets, and nonintersecting paths, Linear and Multilinear Algebra 53(2) (2005) 75-84.

[2] E. Altınışık and Ş. Büyükköse, A proof of a conjecture on monotonic behavior of the smallest and the largest eigenvalue of a number-theoretic matrix, Linear Algebra Appl. 471 (2015) 141-149.

[3] S. Beslin and S. Ligh, Greatest common divisor matrices, Linear Algebra Appl. 118 (1989) 69-76.

[4] K. Bourque, S. Ligh, On GCD and LCM matrices, Linear Algebra Appl. 174 (1992) 65-74.

[5] K. Bourque, S. Ligh, Matrices associated with arithmetical functions, Linear and Multilinear Algebra 34 (1993), no. 3-4, 261-267.

[6] K. Bourque, S. Ligh, Matrices associated with multiplicative functions, Linear Algebra Appl. 216 (1995) 267-275.
[7] W. Feng, S. Hong, J. Zhao, Divisibility properties of power LCM matrices by power GCD matrices on gcd-closed sets. Discrete Math. 309 (2009) no. 9, 2627-2639.

[8] P. Haukkanen, I. Korkee, Notes on the divisibility of GCD and LCM matrices. Int. J. Math. Math. Sci. 6 (2005) 925-935.

[9] P. Haukkanen, M. Mattila, J. Mäntysalo, Studying the singularity of LCM-type matrices via semilattice structures and their Mbius functions. J. Combin. Theory Ser. A 135 (2015) 181200.

[10] P. Haukkanen, J. Wang and J. Sillanpää, On Smith's determinant, Linear Algebra Appl. 258 (1997) 251-269.

[11] C. He, J. Zhao, More on divisibility of determinants of lcm matrices on gcd-closed sets, Southeast Asian Bull. Math. 29 (2005) 887-893.

[12] S. Hong, On the Bourque-Ligh conjecture of least common multiple matrices, J. Algebra 218 (1999) 216-228.

[13] S. Hong, On the factorization of LCM matrices on gcd-closed sets, Linear Algebra Appl. 345 (2002) 225-233.

[14] S. Hong, Factorization of matrices associated with classes of arithmetical functions, Colloq. Math. 98.1 (2003) 113-123.

[15] S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions, J. Algebra 281 (2004) 1-14.

[16] S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions on lcm-closed sets, Linear Algebra Appl. 416(1) (2006) 124-134.

[17] S. Hong, Divisibility properties of power GCD matrices and power LCM matrices, Linear Algebra Appl. 428 (2008) 1001-1008.

[18] S. Hong and R. Loewy, Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasg. Math. J. 46 (2004) 303-308.

[19] S. Hong, J. Zhao, Y. Yin, Divisibility properties of Smith matrices, Acta Arithmetica, 132.2 (2008) 161-175.

[20] I. Korkee and P. Haukkanen, On meet and join matrices associated with incidence functions, Linear Algebra Appl. 372 (2003) 127-153.

[21] I. Korkee, P. Haukkanen, On the divisibility of meet and join matrices, Linear Algebra Appl. 429 (2008) 1929-1943.

[22] M. Li, Q. Tan, Divisibility of matrices associated with multiplicative functions, Discrete Math. 311 (2011), no. 20, 22762282.

[23] Z Lin, Q. Tan, Determinants of Smith matrices on three coprime divisor chains and divisibility, Linear Multilinear Algebra 60 (2012), no. 4, 475486.
[24] M. Mattila, On the eigenvalues of combined meet and join matrices, Linear Algebra Appl. 466 (2015) 1-20.

[25] M. Mattila and P. Haukkanen, On the positive definiteness and eigenvalues of meet and join matrices, Discrete Math. 326 (2014) 9-19.

[26] H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. Ser.1 7 (1876) 208-212.

[27] Q. Tan, Notes on non-divisibility of determinants of power GCD matrices and power LCM matrices, Southeast Asian Bull. Math. 33 (2009) 563-567.

[28] Q. Tan, Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains. Linear Multilinear Algebra 58 (2010), no. 5-6, 659671.

[29] Q. Tan, M. Li, Divisibility among power GCD matrices and among power LCM matrices on finitely many coprime divisor chains, Linear Algebra Appl. 438 (2013), no. 3, 14541466.

[30] Q. Tan, Z. Lin, Divisibility of determinants of power gcd matrices and power lcm matrices on finitely many quasi-coprime divisor chains, Appl. Math. Comput. 217 (2010), no. 8, 39103915.

[31] Q. Tan, Z. Lin, L. Liu, Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains II. Linear Multilinear Algebra 59 (2011), no. 9, 969983.

[32] Q. Tan, M. Luo, Z. Lin, Determinants and divisibility of power GCD and power LCM matrices on finitely many coprime divisor chains, Appl. Math. Comput. 219 (2013), no. 15, 81128120.

[33] J. Xu, M. Li, Divisibility among power GCD matrices and among power LCM matrices on three coprime divisor chains, Linear and Multilinear Algebra (2011) 1-16.

[34] J. Zhao, A characterization of the gcd-closed set S with $|S| = 4$ such that (S^c) divides $[S^c]$, J. Sichuan Univ. Nat. Sci. Ed. 45 (2008) 475-477.

[35] W. Zhao, J. Zhao, A characterization for the gcd-closed set S with $|S| = 5$ such that (S^c) divides $[S^c]$, Southeast Asian Bull. Math. 33 (2009), no. 5, 1023-1028.

[36] W. Zhao, Divisibility of power LCM matrices by power GCD matrices on gcd-closed sets, Linear and Multilinear Algebra 62 (2014) 735-748.

[37] J. Zhao, S. Hong, Q. Liao, K. P. Shum, On the divisibility of power LCM matrices by power GCD matrices, Czechoslovak Math. J. 57(132) (2007), no. 1, 115125.