Socioeconomic position and childhood-adolescent weight status in rich countries: a systematic review, 1990–2013

Laura Barriuso1, Estrella Miqueleiz2*, Romana Albaladejo3, Rosa Villanueva3, Juana M. Santos3,4 and Enrique Regidor3,4,5

Abstract

Background: Childhood obesity is a major problem in rich countries due to its high prevalence and its harmful health consequences. An exploratory analysis conducted in the PubMed database highlighted that the number of papers published on the relationship between socioeconomic position (SEP) and childhood-adolescent weight status had risen substantially with respect to an earlier review which had covered the period 1990–2005.

Methods: To describe the findings on the relationship between SEP and childhood-adolescent weight status in papers published in rich countries from 1990 through 2013, studies were identified in the following databases: PubMed; Web of Knowledge (WOK); PsycINFO; Global Health; and Embase. We included observational studies from the 27 richest OECD countries, which covered study populations aged 0 to 21 years, and used parental education, income and/or occupation as family SEP indicators. A total of 158 papers met the inclusion criteria and reported 134 bivariable and 90 multivariable analyses.

Results: Examination of the results yielded by the bivariable analyses showed that 60.4 % of studies found an inverse relationship, 18.7 % of studies did not found relationship, and 20.9 % of studies found a relationship that varied depending on another variable, such as age, sex or ethnic group; the corresponding percentages in the multivariable analyses were 51.1, 20.0 and 27.8 %, respectively. Furthermore, 1.1 % found a positive relationship.

Conclusion: The relationship between SEP and childhood-adolescent weight status in rich countries is predominantly inverse and the positive relationship almost has disappeared. The SEP indicator that yields the highest proportion of inverse relationships is parents' education. The proportion of inverse relationships is higher when the weight status is reported by parents instead using objective measurements.

Keywords: Childhood obesity, Socioeconomic position, Systematic review, Rich countries

Background

In rich countries, childhood obesity is a public health problem of the first order due to its high prevalence and short- and long-term health repercussions [1–5]. Childhood obesity is not only an important risk factor for childhood/adolescent diseases, such as diabetes mellitus, sleep apnea, asthma, precocious puberty and psychological disorders [5–7], but because a high percentage of obese children become obese adults. Among the factors that increase the likelihood of childhood obesity are the social determinants such as the SEP [8].

The relationship between SEP and body weight was already suggested in the latter part of the 19th century. In 1889, Veblen considered that slimness was an ideal of feminine beauty, indicative of the social status pertaining to the emerging leisure social class of the age [9]. Several decades had to elapse before the relationship between SEP and weight status came to be examined. Indeed, it was a century later, in 1989, when Sobal and Stunkard published an extensive bibliographic review on the influence exerted by SEP on obesity among children and adults in developed and developing countries [10].
analyzed a total of 144 studies published in the preceding 40 years and concluded that the relationship varied according to subject’s age and sex, and countries’ degree of development. In developed countries, they observed a clear inverse relationship between SEP and obesity in women—in that the highest and lowest proportions of obesity were observed in women of low and high SEP, respectively—and an inconsistent relationship in men, boys and girls. For example, 35 papers published between 1941 and 1986 made reference to the relationship between SEP and obesity in children and adolescents. In boys an inverse relationship was observed in 32% of studies, a positive relationship—the highest and lowest proportions of obesity in high and low SEP, respectively—in 26% and an absence of relationship in 41%; in girls an inverse relationship was observed in 40% of studies, a positive relationship in 25% and an absence of relationship in 35%. In developing countries, however, an intense positive relationship was observed in women, men, boys and girls.

In 2008, Shrewsbury and Wardle published another systematic review focusing exclusively on the relationship between SEP and childhood adiposity in developed countries [11]. It included 45 studies, published from January 1990 through December 2005, which had been conducted on populations aged 5 to 18 years, using family and neighborhood SEP indicators. Again, the relationship found was inconsistent—42% inverse relationship, 27% absence of relationship, 31% inconclusive—only one positive relationship between PES and obesity, in girls in an adjusted analysis, was observed. A comparison with the results of the previous review highlighted a change in the pattern of this relationship, i.e., while studies reporting a positive relationship had disappeared, the percentage of studies displaying an inverse relationship had risen.

Faced with the prospect of new findings, an exploratory bibliographic search was made in The National Library of Medicine’s PubMed to bring the situation up to date, and revealed a sharp rise in scientific activity in this area from 2005. Hence, the idea of updating the systematic review and extending it to other databases was deemed to be of interest. An increase in the percentage of studies whose results show an inverse relationship would support intervention strategies that seek to reduce childhood obesity, directing the focus to the lower socioeconomic groups. Specifically, the aim of this study was to report the findings of a systematic review of epidemiologic evidence of the association between family SEP and weight status in the child-adolescent population in high income countries, across the period 1990–2013.

Methods
The dependent variable used for the purposes of this systematic review was childhood-adolescent weight status, measured either by reference to the presence of excess weight (overweight and/or obesity) or some anthropometric parameter. To identify potentially relevant publications, we conducted a bibliographic search in available databases having the greatest scientific impact on the medical and social fields. Accordingly, the following five databases were analyzed: The National Library of Medicine’s PubMed; Web of Knowledge (WoK); PsycINFO; Global Health; and Excerpta Medica Database (Embase). In the selection of the search strategy we follow the recommendations of Pettigrew and Roberts [12]. Because we used multiple bibliographic databases and the studies in some databases do not have structured abstract and keywords, we decided to use the search terms as major topics in each database, in order that the search be more comprehensive to identify all relevant studies. Previously we got a sample of studies from each database that met the inclusion criteria we discuss below. In this way we get to find out the major topics terms that were used in each database to search for potential relevant articles. The main characteristics of the search strategy used are shown in Table 1.

The inclusion criteria of the papers were: a) published from January 1, 1990 through December 31, 2013; b) in English or Spanish; c) study participants having an age range of 0 to 21 years; d) observational studies; e) use of parental education, income, and/or occupation as the family SEP indicator; and, f) conducted in a “high income country”, defined as any of members of the Organization for Economic Cooperation and Development (OECD) having a gross domestic product per head (US $, current PPPs) higher than 25,000 dollars, according to the International Monetary Fund’s figures for 2010. These countries were Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Holland, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, New Zealand, Norway, Portugal, Slovenia, Spain, Sweden, Switzerland, United Kingdom and the USA.

The exclusion criteria ruled out any paper that: a) reported an intervention study; b) used race-ethnic group as a SEP indicator; or c) only included area-level SEP index. We decided to exclude the SEP of the area due to the heterogeneity of the level of aggregation of the areas—sections census, districts, provinces, regions, countries—, in these studies, the variety of area-level SEP index and the variety of measures of individual SEP used by researchers in these studies to control for residual confounding of the association between area-level SEP index and health outcome [13].

Methods Data extraction and quality assessment
Potentially relevant papers were selected by screening the titles, abstract and the entire articles through the
database searches. Two authors (LB and JMS) independently conducted this screening. Disagreement about eligibility between the reviewers was solved through discussion with a third author (ER). Two authors (LB and EM) extracted the data from the included studies using a pilot data extraction form. Data relating to sample size, sex and age of study subjects, date of the study, weight status outcomes (objectively measured, parent-report, cut-off points), familiar socioeconomic position and findings by familiar socioeconomic position were extracted.

All studies were quality assessed by one author (RA) and checked by another (RV). Since there are a variety of checklist and scales to evaluate the quality of observational studies and they differ by content, format, validity and applicability to different studies [14, 15], none of the proposed instruments was used. In any case, each study was assessed using the following item: clear definition of the objective and the study population, justification of the sample size and representativeness of the same, clear definition of the independent and dependent variables, measuring variables in all study subjects or absence of information from these variables in a proportion of subjects and assessment of potential confounders in multivariate analysis. Also, we followed PRISMA guidelines to report the systematic review.

Data analysis

We have not performed formal meta-analysis as the necessary conditions of comparability of exposures, together with homogeneity of association direction and strength [16], are not met. Results are presented as a narrative synthesis. This paper reports the results of bivariate and multivariable analyses. Whereas the bivariate analyses show the results for the SEP/weight status relationship obtained on the basis of crude analyses or analyses adjusted for age and/or sex, the multivariable analyses show the results of analyses that included other variables of adjustment. Results were classified into “inverse relationship”, “positive relationship” or “absence of relationship”. A relationship was defined as “inverse” when the measure of weight status displayed the highest and lowest magnitudes in participants of low and high SEP, respectively, and in addition, when there was a statistically significant difference between them, and/or the p-value for linear trend across the different SEP categories was statistically significant. A relationship was defined as “positive” when the measure of weight status displayed the lowest and highest magnitudes in participants of low and high SEP, respectively, and in addition, when there was a statistically significant difference between them, and/or the p-value for linear trend across the different SEP categories was statistically significant. In all cases, a p-value of less than 0.05 was taken as the criterion of statistical significance. An “absence of relationship” was deemed to exist when there was no statistically significant relationship between the indicator of weight status and SEP. In any case when a paper reported different results in different population groups analyzed, in different study periods, or according to the type of dependent variable analyzed, this was described as a relationship that “varies depending on another variable”. In order to render the presentation of the findings as uniform as possible, we calculated the odds ratios in those cases in which the articles only showed frequency measures, either by taking the highest
SEP category as reference, or alternatively by re-
estimating the measure of association shown if the refer-
ence category used was the lowest SEP. In cases where
papers showed no results tables, we included those that
the authors cited literally in the text.

Results
The electronic search produced 6215 references. After
removing duplicate references titles and abstract were
screened. One thousand and one hundred twenty full-
text outputs were assessed; 158 outputs were included
and 962 were excluded (Fig. 1):671 because they did not
meet some of the inclusion criteria, 204 because they were intervention studies, 204 because they used race-
etnic and 58 because they only used area-level SEP
index. The 158 papers that fulfilled the inclusion criteria
are shown in Additional file 1: Table S1. The studies
came from the following countries: 48 from the USA
[17–64]; 22 from the United Kingdom [65–86]; 18 from
Germany [87–104]; 11 from Australia [105–115]; eight
from France [116–123]; seven from Spain [124–130]; six
from Canada [131–136]; five from Sweden [137–141],
Greece [142–146] and Holland [147–151]; four from
Belgium [152–155] and Italy [156–159]; two from
Finland [160, 161], Portugal [162, 163], Denmark [164,
165] and Ireland [166, 167]; one from several countries
[168] and one each from the Czech Republic [169],
Iceland [170], Israel [171], Korea [172], Norway [173]
and Switzerland [174].

The studies analyzed samples of boys and girls, except in
two cases in which only girls were included [41, 48, 57].
Sample size varied widely, ranging from 77 to 90,808 par-
ticipants. All the studies analyzed participants aged 0 to
21 years, except one in which the age range was 2 to
24 years: this was nonetheless included in our review
because it did not present the data broken down by age
[126]. Twenty one studies examined individuals of a single
age [20, 42, 51, 65, 69, 70, 72, 73, 80, 88, 106, 131, 132,
137–140, 149, 154, 166, 170]. Four cases [25–27, 134] did
not mention the individuals’ ages but referred instead
to their current school grade. In three instances, papers
reported the same results but, seeing as the authors’
objectives were different [46, 60, 61], they were ana-
alyzed separately.

Table 2 shows the number of papers according to
period of publication, region of origin, SEP indicator,
method for collecting anthropometric data, and criterion
used for defining weight status. The earliest paper ana-
yzed had been published in 1992 [82], and over half of
the papers appeared in the period 2006–2013. All were
published in English, except two which were published
in Spanish [126, 130]. Just over half the papers came
from Europe and one third from North America. While
28.5 % of the papers used the father’s and/or mother’s

![Fig. 1 PRISMA flow diagram](image-url)
education as the SEP indicator, nearly half the papers used various SEP indicators. The measurement of weight most frequently used was Body Mass Index (BMI), with weight and height being measured by the researchers themselves in 78.5 % of the papers. In 63.3 % of papers the references used for the definition of excess weight were tables or cut-off points of a national or supra-national nature. In 37 % of the studies it was used internationally accepted cut-off points defined by the International Obesity Task Force (IOTF) [175], and from 2001 onwards, almost half the papers published used this definition of excess weight. In 20 % of the studies it was used the CDC cut-off points, although most of these studies come from USA.

In terms of type of analysis, 68 studies solely performed bivariable analyses, 66 performed bivariable and multivariable analyses, and 24 solely performed multivariable analyses. In all, the papers reviewed provided 134 bivariable and 90 multivariable analyses. Diverse multivariable models were used, in terms both of the number (from two to more than 10) and types of variables of adjustment contained. These variables mainly referred to study participants’ ethnicity or birth weight, various behaviours (breastfeeding, physical activity, sedentarism, consumption of some type of food), parents’ BMI, mother’s characteristics (smoking, age, civil status, depressive symptoms linked to pregnancy) and characteristics of the area of residence (facilities, rurality).

The bivariable analyses showed the presence of an inverse relationship between family SEP and weight status in 60.4 % of cases, an absence of relationship in 18.7 % of cases and a relationship that varied when according to another variable (generally age, sex, ethnicity) in 20.9 % of cases. The multivariable analyses showed an inverse relationship in 51.1 %, an absence of relationship in 20.7 %, a changing relationship according to the breakdown variable in 27.8 %, and a positive relationship in 1.1 % of cases. In some papers, the magnitude of the inverse relationship between SEP and the weight-status indicator was higher for girls than for boys [40, 60, 122, 124, 173]. Similarly, there were 17 studies in which the magnitude of the inverse relationship was greater with obesity than with overweight [61, 64, 87–91, 97, 99, 101, 102, 120, 121, 135, 149, 150, 159] and was likewise greater with severe overweight than with overweight [171] and with morbid obesity than with obesity [47] among the four studies that examined both measures of overweight or obesity [47, 153, 154, 171]. Among the studies in which the relationship varied depending on another variable, mention should be made of some that displayed an inverse relationship in girls but no relationship in boys [30–32, 44, 85, 137, 147, 154], others that displayed an inverse relationship in boys and no relationship in girls [40, 125, 174], and still others that displayed an inverse relationship in white but not in African American participants [30, 31, 41, 50, 57, 65].

Table 3 shows the results for the type of relationship found between family SEP and childhood-adolescent weight status, according to the studies’ period of publication and region of origin. Until 1997 a consistent inverse relationship between socioeconomic status and childhood obesity was not observed. On the basis of the bivariable analyses, the percentage of papers reporting an inverse relationship was 0 % in the period 1990–1997, 62.3 % in the period 1998–2005, and 64.0 % in the period 2006–2013, while the corresponding percentages in the case of the multivariable analyses were 0, 53.6 and 54.4 %, respectively. When viewed by region of origin, the bivariable analyses showed around 60.0 % of papers reported an inverse relationship in all regions; in the multivariable analyses, these percentages were 58.8, 51.1

Table 2: Number of papers found on the relationship between family socioeconomic position and weight status in the child-adolescent population, according to different classification criteria: period 1990–2013

Criterion for defining weight status	Number	Percent
IOTF cut-off pointy	58	36.7
CDC cut-off points	32	20.3
WHO cut-off points	4	2.5
Other/s criteria/s	64	40.5

* IOTF: International Obesity Task Force
* Remaining countries included Australia, Israel and Korea
and 22.2% in North America, Europe and other regions, respectively.

One of the main findings in this review is the heterogeneity of age groups analyzed in the included studies. Therefore it is not possible to show the relationship between socioeconomic position and childhood obesity -and/or the magnitude in specific age groups. The exception is the few studies in children under five years, since in some of them the multivariate analysis showed no relationship between maternal education with childhood obesity [114, 132, 139].

Table 4 shows the results for the type of relationship found between family SEP and weight status, according to the SEP indicator and weight-status definition used. The number of analyses carried out with income was small. In the bivariable analyses an inverse relationship was observed in 37.5% of studies that used family income, in 65.8% of studies that used the father's and/or mother’s education, and in 41.7% of studies that used the father’s and/or mother’s occupation. In the multivariable analyses, the corresponding percentages were 75.0, 62.5 and 41.7%, respectively. In general, when the education of the mother and father’s education were analyzed, the magnitude of the association was stronger with the education of the mother. For example, in two studies [97, 104] the magnitude of the odds ratios of obesity in the category with lower levels of education with respect to the category with the highest educational level was, respectively, 5.26 and 4.38 with the mother’s education and 4.58 and 2.22 with the father’s education.

With some exception, the higher magnitude of the association was observed with income in those studies that analyzed the family income and other measures of income socioeconomic status [19, 33, 57, 58, 61, 62, 122, 131, 136]. Specifically, in these studies, the odds ratio for overweight and obesity in the category of lower family income with respect to the category of higher family incomes ranged between 1.52 [19] and 2.91 [58].

When measurements of weight and height were conducted by researchers an inverse relationship was observed in 54.1% of studies. However, when weight status was derived from self-reported height and weight, an inverse relationship was observed in 87.0% of studies. In studies in which overweight and obesity were analyzed separately, the magnitude of the association was higher with obesity. For example, the odds ratios in the category with lower education with respect the category with higher parental education in different studies were 1.89 and 2.08 [102], 1.49 and 1.92 [99], 1.43 and 2.10 [86], 1.17 and 2.10 [89], 1.57 and 4.39 [97], 2.16 and 4.10 [149], and 1.42 and 2.82 [150] for overweight and obesity, respectively. One study estimated the magnitude of the association with weight and height measured by researchers and weight and height reported by the research subjects [121]. The odds ratio in the children of manual workers with regard to the children of professionals and managers was 1.50 for overweight and 2.67 for obesity when weight and height were measured and 1.36 and 3.67, respectively, when weight and height were self-reported.

In the studies that used the IOFT cut-off points to define weight status, an inverse relationship was found in 66.0% of the bivariable analyses and in 44.4% of the

Table 3	Type of relationship observed in the papers according to period of publication and region of origin			
Type of relationship	Bivariate analysis (n: 134)	Multivariate analysis (n: 90)		
PERIOD OF PUBLICATION	n	%	n	%
1990–1997	6	100.0	5	100.0
Inverse relationship	0	0.0	0	0.0
Absence of relationship	2	33.3	2	40.0
Varies depending on another variable	4	66.7	3	60.0
1998–2005	53	100.0	28	100.0
Inverse relationship	33	62.3	15	53.6
Absence of relationship	10	18.9	5	17.9
Varies depending on another variable	10	18.9	7	25.0
Direct relationship	0	0.0	1	3.6
2006–2013	75	100.0	57	100.0
Inverse relationship	48	64.0	31	54.4
Absence of relationship	13	17.3	11	19.3
Varies depending on another variable	14	18.7	15	26.3
REGION				
North America	44	100.0	34	100.0
Inverse relationship	27	61.4	20	58.8
Absence of relationship	4	9.1	5	14.7
Varies depending on another variable	13	29.5	9	26.5
Europe	77	100.0	47	100.0
Inverse relationship	46	59.7	24	51.1
Absence of relationship	18	23.4	9	19.1
Varies depending on another variable	13	16.9	13	27.7
Direct relationship	0	0.0	1	2.1
Other*	13	100.0	9	100.0
Inverse relationship	8	61.5	2	22.2
Absence of relationship	3	23.1	4	44.4
Varies depending on another variable	2	15.4	3	33.3

*Remaining countries
Type of relationship	Bivariate analysis (n: 134)	Multivariate analysis (n: 90)		
INDICATOR OF SOCIOECONOMIC POSITION				
Family income	8	100.0	4	100.0
Inverse relationship	3	37.5	3	75.0
Absence of relationship	2	25.0	1	25.0
Varies depending on another variable	3	37.5	0	0.0
Mother’s and/or father’s education	38	100.0	24	100.0
Inverse relationship	25	65.8	15	62.5
Absence of relationship	7	18.4	4	16.7
Varies depending on another variable	6	15.8	5	20.8
Mother’s and/or father’s occupation	24	100.0	12	100.0
Inverse relationship	10	41.7	5	41.7
Absence of relationship	9	37.5	5	41.7
Varies depending on another variable	5	20.8	2	16.7
Various indicators^a	64	100.0	50	100.0
Inverse relationship	43	67.2	23	46.0
Absence of relationship	7	10.9	8	16.0
Varies depending on another variable	14	21.9	18	36.0
Direct	0	0.0	1	2.0
METHOD FOR COLLECTING ANTHROPOMETRIC DATA				
Measured	109	100.0	64	100.0
Inverse relationship	59	54.1	29	45.3
Absence of relationship	24	22.0	13	20.3
Varies depending on another variable	26	23.9	21	32.8
Direct	0	0.0	1	1.6
Reported	23	100.0	24	100.0
Inverse relationship	20	87.0	16	66.7
Absence of relationship	1	4.3	4	16.7
Varies depending on another variable	2	8.7	4	16.7
CRITERION FOR ESTABLISHING WEIGHT STATUS				
IOTF^b cut-off points only	50	100.0	36	100.0
Inverse relationship	33	66.0	16	44.4
Absence of relationship	11	22.0	8	22.2
Varies depending on another variable	6	12.0	11	30.6
Direct relationship	0	0.0	1	2.8
Other/s criteria/s	84	100.0	54	100.0
Inverse relationship	48	57.1	30	55.6
Absence of relationship	14	16.7	10	18.5
Varies depending on another variable	22	26.2	14	25.9

^aTwo or three of the above indicators of socioeconomic position were used
^bIOTF: International Obesity Task Force
Discussion
This review covered 158 studies undertaken in high-income countries and reported from 1990 through 2013. More than half were published in the last 8 years. A total of 60.4% of papers that performed bivariable analyses observed an inverse relationship between weight status and family SEP, i.e. the measure of weight status registered the highest and lowest magnitudes in participants of low and high SEP, respectively. In contrast, no positive relationship was observed by the papers that performed a bivariable analysis. In the case of papers that conducted multivariable analyses, however, inverse and positive relationships were observed in 51.1 and 1.1% of cases, respectively.

Trend in the association between socioeconomic position and weight status
On the basis of these results and the findings reported by the two earlier reviews published in 1989 and 2008 [10, 11], there is evidence of a change in the pattern of the relationship between SEP and childhood-adolescent weight status in developed countries. Specifically, there has been an increase in the proportion of studies reporting an inverse relationship because in the two earlier reviews, the percentage of papers that observed an inverse relationship stood at around 40%. Sobal [10] observed a positive relationship in a quarter of the papers included. Accordingly, the presence of positive relationship in only one analysis in the studies included in Shrewsbury and Wardle’s review [11] and in 1.1% of the multivariable analyses included in our current review, would support the almost disappearance of this relationship.

The increase in the proportion of studies registering an inverse relationship is highlighted when the results are observed by period: while none of the bivariable analyses published in the period 1990–1997 showed an inverse relationship, the number rose to 62.3% in analyses published in the period 1998–2005 and to 64.0% in analyses published in the period 2006–2013. More than half of the bivariable analyses were published in the period 2006–2013, which may explain the higher percentage of studies reporting an inverse relationship in our review as compared with the two earlier reviews.

The increase of studies showing inverse relationship between SEP and child obesity reflects increased socioeconomic differences in the prevalence of overweight and obesity among adolescents [176]. We can not rule out that this increase may be due to increased economic inequality, since in the last thirty years there was an increase in income inequality in most rich countries [177]. However, it has also been observed an increase in socioeconomic differences in childhood obesity in countries where economic inequality has remained stable. Therefore we should not rule out the influence of other factors, such as the built environment related to physical activity and diet, on the observed results. For example, the availability of supermarkets and stores selling healthy foods has been reported to be lower in areas with lower income than in higher income areas [178], and as result the price of such foods is higher [179]. Likewise, it has been shown that there are fewer sports facilities in lower- than in higher-income areas, so that the probability of engaging in physical activity is also lower [178].

The implications of these findings are very important for health policy and for future research in this area. Although many political interventions warn of the importance of physical activity and healthy diet to prevent childhood obesity, the growing social disparities in child obesity observed in this review reveals the difficulties to reach and communicate health messages to families from lower socioeconomic groups. Some authors have suggested that higher socioeconomic groups tend to follow recommendations for health behaviours and respond more actively to health-related media messages than lower socioeconomic groups [79]. It is also possible that the built environment may create difficulties for the lower socioeconomic groups to adopt healthy behaviours. Future research in this area should be directed to identify why the lower socioeconomic groups do not follow healthy behaviours and evaluate interventions that can be implemented in order to reduce the prevalence of obesity in lower socioeconomic groups.

Association varies depending on the measurement of outcome and exposure
The relationship between SEP and adiposity differs according to measured or reported weight status. In most of the bivariable analyses based on reported weight status an inverse relationship was found, while this inverse relationship was only found in the half of the bivariable analyses based on measured weight status. The criterion chosen for establishing the weight status cut-off point also influence the type of relationship found, since a higher percentage of performed bivariable analyses found an inverse relationship when internationally accepted cut-off point were used. The same percentage of an inverse relationship was reported in bivariable analyses of studies from North America, Europe and rest of countries. In contrast, the percentage of studies reporting an inverse relationship varied, depending on the SEP indicator used: whereas 65.8% of studies that performed bivariable analyses using one of the parents’ educational level displayed an inverse relationship, this percentage...
fell to 41.7 % when the occupation of one of the parents was used to 37.5 % when family household income was used. This finding is of great relevance when it comes to intervention strategies because it may possibly be factors related with parents’ education rather than those related with occupation or household income that are accountable for the inverse relationship between SEP and childhood-adolescent weight status. An unexpected finding with the use of income was the difference in the percentage of inverse relationship in the case of bivariate or multivariable analyses: 37.5 % versus 75.0 %. Probably this inconsistency is due to the number of bivariate and multivariate analysis performed only with family income is very low, 8 and 4 respectively. The increase in the number of studies will confirm or refute this finding.

Shrewsbury and Wardle’s review [11] also found a high percentage of inverse relationship between parents’ education and childhood-adolescent weight status (specifically, in 75 % of studies that used this SEP indicator). The mechanisms whereby the different family SEP indicators influence children’s and adolescents’ weight status are probably different. For instance, parents’ education is associated - to a larger extent than is either occupation or income - with a series of healthy lifestyles that influence children’s and adolescents’ weight status. In the adult population, a strong relationship is observed between education and the prevalence of healthy lifestyles [180–187]. Similarly, a number of studies have pointed that in homes where the parents have a higher educational level, the children are far more likely to follow a healthy diet and be more physically active [188–192]. Something that, at least in part, would be accounted by the influence of the parents’ educational level on attitudes to health and by the exemplary nature of their lifestyles [193–196].

The importance of other variables in the association
Close on 1 of every 5 papers analyzed shows that the presence and/or type of relationship varies according to other variables, generally age, sex, race and year of study. In any given study, an inverse relationship was seen to appear in the latter years [79, 84, 118] or in the oldest children [94, 105, 113]. In other cases, its magnitude increases with age [25, 116, 153] or is greater in girls than in boys [17, 60, 124, 173] and sometimes this inverse relationship is observed in girls but is absent in boys [30, 32, 44, 72, 78, 83, 137, 147, 153, 154, 173] or is observed only in white participants [18, 30–32, 41, 50, 57, 65]. Similarly, the few positive relationships described affect social minorities [18, 39, 50, 103], i.e. immigrants in Germany, and African Americans and Mexicans in the USA.

In most of the studies, it is difficult to know why the researchers chose to disaggregate the data by social minorities. Perhaps this is due to the acquisition of patterns of risk behaviors. Such habits often first appear among the socioeconomically most privileged and/or indigenous population groups before subsequently appearing among the underprivileged and/or immigrant groups. This might account for the fact that, in developed countries, the inverse relationship between SEP and childhood-adolescent weight status is gradually growing and the positive relationship (peculiar to developing countries) is disappearing. It might also explain why the positive relationship in the case of developed countries is now essentially limited to minorities (certain ethnic groups and the immigrant population). Some authors noted that consumption of calorie-dense foods have increased in developing nations [197]. And it has been observed declines in habitual physical activity, and increases in sedentary behaviour. Traditional practices such as walking long distances, and habitual physical labour have been replaced by motorized transport, and sedentary activities, particularly in urban settings. These factors are now leading to increases in the occurrence of overweight/obesity in developing countries.

Like Shrewsbury and Wardle [11], our review also shows that the inverse relationship displays a greater magnitude with the most severe forms of excess weight (i.e. obesity vs. overweight, or morbid obesity vs. obesity) [47, 61, 64, 87, 88, 90, 91, 97, 99, 101, 102, 135, 159, 171]. This may be due to a mathematical artifact. As a rule, the less frequent the health problem, the greater the magnitude of the relative differences in health among different population groups [196, 198]. The rarer an outcome, the greater tends to be the relative socioeconomic difference in experiencing it. For example, a similar absolute difference in the prevalence of overweight and obesity in two groups - 30 % vs 25 % overweight, and 10 % versus 5 % in obesity- is a relative difference of 1.2 in the first case and 2.0 in the second.

Strengths and limitations
One aspect to be considered in this review - and indeed one which was also observed by Shrewsbury and Wardle [11] - is that most of the papers reviewed did not designate the relationship between SEP and childhood-adolescent weight status as their main study objective. This was either set a secondary goal, or the authors of the review deduced it from the results reported in the papers. This fact may have led to an underestimate of the number of papers with a statistically significant relationship, since the SEP measures in these cases do not tend to be defined in great detail. Furthermore, the bibliographic review conducted by Shrewsbury and Wardle [11] only used the PubMed database to search for papers. A strength of our review is its comprehensiveness, since the search was made in a number of databases. A further strength is that over half of the papers reviewed
were published from 2006 through 2013, a period not covered by the earlier review.

As against an earlier review which only included objective measurements of weight status, ours also included measurements of weight status based on data reported by the study participants themselves, or by their parents or minders. Some authors have stated that reported weight-status data are reasonably valid for classifying children and adolescents as obese or non-obese in epidemiologic studies [199, 200]. Even so, errors of measurement and, by extension, an underestimation or an overestimation of the association cannot be excluded in such studies, if this information bias is different with respect to variables that reflected family SEP. Our findings suggest that a differential bias exists with respect to the SEP when the weight status is reported as almost 90 % of the bivariable analyses found inverse relationship. Publication bias should therefore not be ruled out either. The influence of this bias was probably greater in this than in previous reviews, since our review included a time period during which there was considerable scientific consensus about the inverse relationship between SEP and childhood-adolescent obesity, thereby entailing greater difficulty in publishing results contrary to those expected.

Moreover, one should not lose sight of the limitations attributable to the restrictions imposed in the search, such as language and setting. Studies with languages other than English and Spanish have not been included in this review and have not been included studies from low-income countries. And one may wonder if the search terms in different databases may not have been sufficiently comprehensive. For example, in the PubMed search the term “education” was not included. Likewise, the search in other databases did not include terms like adolescent obesity or overweight or synonyms of social class.

According Petticrew and Roberts [12] one can run a simple check on the effectiveness of a search strategy by listing the key studies that one would expect to identify. These studies can be identified from existing literature reviews. In this sense, this search has found all studies that appear in the review of Shrewsbury and Wardle [11], whose search terms included, among others, education. Likewise, we verified that key articles from our personal database about socioeconomic position and obesity in adolescent appeared among articles that actually retrieved. Our search strategy was not very specific -proportion of retrieved studies that were relevant-, but the search terms and the wide range of databases used probably have enabled high levels of sensitivity to retrieve relevant articles.

In Europe the findings show one or two studies from some countries, such as the Czech Republic, Denmark or Switzerland. Nevertheless, inspection of the results in the countries where several studies have been carried out reveals that in most the observed relationship follows the general pattern, although the social and economic structure of the countries differs between them. However, it should be mentioned Greece, since majority of the studies from that country do not show relationship between SEP and childhood obesity, whereas in southern European countries like Italy or Spain, the observed relationship is mostly inverse.

Conclusion

The results of this review would seem to confirm the change in pattern which the two previous reviews had already hinted at, and points to the practical disappearance of the positive relationship between SEP and childhood-adolescent obesity in high income countries. Also, this review has shown that the SEP indicator that yields the highest proportion of inverse relationships is parents’ education and that analyses based on the information of height and weight reported by parents obtain higher proportion of inverse relationships that analyses based on objective measurements.

Additional file

Additional file 1: Table S1. Studies that fulfilled the inclusion criteria. (DOC 460 kb)

Abbreviations
SEP: Socioeconomic position; WOK: Web of knowledge; Embase: Excerpta Medica Database; OECD: Organization for Economic Cooperation and Development; BMI: Body Mass Index; IOTF: International Obesity Task Force.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LB and EM conceived and designed the study and led drafting of the paper. RA, RV and JMS collected, analysed and interpreted data. ER informed study design and execution, as well as interpreted data. All authors revised the drafted paper critically for important intellectual content and all authors gave final approval of the version to be published.

Acknowledgements
To Biblioteca Nacional de Ciencias de la Salud’s documentalists and Mónica Ruiz. To Laura Laubach for her suggestions. This study was conducted thanks to support from the Research Project PI11/00784 “Socioeconomic context of residence area and overweight and obesity childhood” financed by the Ministry of Science and Innovation.

Author details
1Instituto de Salud Pública y Laboral de Navarra, Pamplona, Spain. 2Department of Sociology, Universidad Pública de Navarra, Campus de Arrosadía, s/n, 31006 Pamplona, Spain. 3Department of Preventive Medicine and Public Health, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain. 4Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IDISSC), Madrid, Spain. 5CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.

Received: 27 April 2015 Accepted: 4 September 2015
Published online: 21 September 2015
74. de Pinot MA, Power C, Li L. Changing influences on childhood obesity: a population-based sample. Am J Clin Nutr. 2010;91(6):1560–7.

75. Apfelbacher CJ, Loebrooks A, Cains J, Behrendt H, Ring J, Kramer U. Predictors of overweight and obesity in five to seven-year-old children in Germany: results from cross-sectional studies. BMC Public Health. 2008;8:171.

76. Bergman NE, Bergmann RI, von Kries R, Böhm O, Richter R, Dudenhausen JW, et al. Early determinants of childhood overweight and adiposity in a birth cohort study: role of breastfeeding. Int J Obes Relat Metab Disord. 2003;27(2):162–72.

77. Daniëls S, Czerninski-Mast M, Langnæs K, Dijkstra B, Müller MJ. Parental overweight, socioeconomic status and high birth weight are the major determinants of overweight and obesity in 5–7-year-old children: baseline data of the KiGGS Prevention Study (WOPS). Int J Obes Relat Metab Disord. 2004;28(11):1494–502.

78. Frye C, Heinrich J. Trends and predictors of overweight and obesity in East German children. Int J Obes Relat Metab Disord. 2003;27(8):963–9.

79. Kleiser C, Schaffrath RA, Mensink GB, Prinz-Langenohl R, Kuth BM. Potential determinants of obesity among children and adolescents in Germany: results from the cross-sectional KIGGS Study. BMC Public Health. 2009;9:46.

80. Kromeyer-Hauschild K, Zellner K, Jaeger U, Hoyer H. Prevalence of overweight and obesity among school children in Jena (Germany). Int J Obes Relat Metab Disord. 1999;23(11):1143–50.

81. Langnæs K, Mast M, Müller MJ. Social class differences in overweight of prepubertal children in northwest Germany. Int J Obes Relat Metab Disord. 2002;26(4):566–72.

82. Langnæs K, Mast M, Daniëls S, Spenichmann C, Müller MJ. Socioeconomic gradients in body weight of German children reverse direction between the ages of 2 and 6 years. J Nutr. 2003;133(3):789–96.

83. Mikolajczyk RT, Richter M. Associations of behavioural, psychosocial and socioeconomic factors with over- and underweight among German adolescents. Int J Public Health. 2008;53(4):214–20.

84. Müller MJ, Koertinger J, Mast M, Langnæs K, Grund A. Physical activity and diet in 5 to 7 years old children. Public Health Nutr. 1999;2(3A):443–4.

85. Nagel G, Wabitsch M, Galm C, Berg S, Brandtstetter S, Fritz M, et al. Determinants of obesity in the Ulm Research on Metabolism, Exercise and Lifestyle in Children (URMEL-ICE). Eur J Pediatr. 2009;168(10):1299–67.

86. Plachta-Danielsz S, Landsberg B, Johannsen M, Lange D, Müller MJ. Determinants of the prevalence and incidence of overweight in children and adolescents. Public Health Nutr. 2010;13(11):1870–81.

54. Khullar D, Oreskovic NM, Penin JM, Goodman E. Optimism and the socioeconomic status gradient in adolescent adiposity. J Adolesc Health. 2011;49(5):553–5.

55. Cardel M, Willig AL, Dulin-Keita A, Casaza K, Beasley TM, Fernandez JR. Parental feeding practices and socioeconomic status are associated with child adiposity in a multi-ethnic sample of children. Appetite. 2012;58(1):53–9.

56. Pardo-Crespo MR, Narla NP, Williams AR, Beebe TJ, Sloan J, Yawn BP, et al. Comparison of individual-level versus area-level socioeconomic measures in assessing health outcomes of children in Olmsted County, Minnesota. J Epidemiol Community Health. 2013;67(4):305–10.

57. Kimm SY, Obazar Z, Santos B, Anton C, Similu SL, Morrison JA, et al. Race, socioeconomic status, and obesity in 9- to 10-year-old girls: the NLHBLI Growth and Health Study. Ann Epidemiol. 2015;25(6):266–75.

58. Strauss RS, Knight J. Influence of the home environment on the development of obesity in children. Pediatrics. 1999;103(6):e685.

59. Lumeng JC, Cannon K, Cabral HJ, Frank DA, Zuckererman B. Association between clinically meaningful behavior problems and overweight in children. Pediatrics. 2003;112(5):138–45.

60. Singh GK, Kogan MD, van Dyck PC, Sahpush M. Racial/ethnic, socioeconomic, and behavioral determinants of childhood and adolescent obesity in the United States: analyzing independent and joint associations. Ann Epidemiol. 2008;18(10):682–95.

61. Singh GK, Kogan MD, Yu SM. Disparities in obesity and overweight prevalence among US immigrant children and adolescents by generational status. J Community Health. 2009;34(1):271–81.

62. Liu J, Bennett KL, Harun N, Probst JC. Urbanización de población en áreas rurales en diferentes regiones de México. Salud Publica Mex. 2004;46(2):321.

63. Fletcher ES, Rugg-Gunn AJ, Matthews JN, Hackett A, Moynihan PJ, Matthews JM, et al. Changes over 20 years in macronutrient intake and body mass index in 11- to 12-year-old adolescents living in Northumberland. Br J Nutr. 2004;92(2):321–33.

64. Brophy S, Cooksey R, Gravenor MB, Mistry R, Thomas N, Lyons RA, et al. Risk factors for childhood obesity at age 5: analysis of the millennium cohort study. BMC Public Health. 2009;9:467.

65. Duran-Tauleria E, Ronca RJ, Chinn S. Factors associated with weight for height and skinfold thickness in British children. J Epidemiol Community Health. 1995;49(5):466–73.

66. Heath AC, Chinn S, Atkinson RL. Genetic and environmental influences on body mass index in 5- to 7-year-old children. Public Health Nutr. 1999;2(3A):443–8.

67. Cardel M, Willig AL, Dulin-Keita A, Casaza K, Beasley TM, Fernandez JR. Parental feeding practices and socioeconomic status are associated with child adiposity in a multi-ethnic sample of children. Appetite. 2012;58(1):53–9.

68. Fletcher ES, Rugg-Gunn AJ, Matthews JN, Hackett A, Moynihan PJ, Matthews JM, et al. Changes over 20 years in macronutrient intake and body mass index in 11- to 12-year-old adolescents living in Northumberland. Br J Nutr. 2004;92(2):321–33.

69. Gray-L, Leyland AH. Overweight status and psychological well-being in adolescent boys and girls: a multilevel analysis. Eur J Public Health. 2008;18(6):616–21.

70. Hawks MS, Cole TJ, Law C. Maternal employment and early childhood overweight: findings from the UK Millennium Cohort Study. Int J Obes (Lond). 2008;32(1):130–8.

71. Hawks MS, Cole TJ, Law C. An ecological systems approach to examining risk factors for early childhood overweight: findings from the UK Millennium Cohort Study. J Epidemiol Community Health. 2009;63(2):147–55.

72. Jebb SA, Rennie KL, Cole TJ. Prevalence of overweight and obesity among young people in Great Britain. Public Health Nutr. 2004;7(3):461–5.

73. Matjašević A, Víctor CA, Goldberg J, Baros FC, Menezes AM, de Araújo ML, et al. Socioeconomic position and overweight among adolescents: data from birth cohort studies in Brazil and the UK. BMC Public Health. 2009;9:101.

74. Ness AR, Leary S, Reilly J, Wells J, Tobias J, Clark E, et al. The social patterning of fat and lean mass in a contemporary cohort of children. Int J Pediatr Obes. 2006;1(1):59–61.

75. de Pinot MA, Power C, Li L. Changing influences on childhood obesity: a study of 2 generations of the 1958 British birth cohort. Am J Epidemiol. 2011;173(12):1384–90.

76. Saxena S, Ambler G, Cole TJ, Majed A. Ethnic group differences in overweight and obese children and young people in England: cross sectional survey. Arch Dis Child. 2004;89(1):30–6.

77. Semmler C, Ashcroft J, van Jaarsveld CH, Cannell S, Wardle J. Development of overweight in children in relation to parental weight and socioeconomic status. Obesity (Silver Spring). 2009;17(4):814–20.
99. Toschke AM, Montgomery SM, Pfeiffer U, Von Kries R. Early intratheatrue exposure to tobacco-inhaled products and obesity. Am J Epidemiol. 2003;158(11):1068–74.

100. Beyerlein A, Toschke AM, Schaffrath RA, Von KR. Risk factors for obesity: further evidence for stronger effects on overweight children and adolescents compared to normal-weight subjects. PLoS One. 2011;6(11):e15739.

101. Von Kries R, Koletzko B, Sauwald T, von Mutius E, Barnett D, Grunert V, et al. Breastfeeding and obesity: cross sectional study. BMJ. 1999;319(7203):147–50.

102. Von Kries R, Toschke AM, Koletzko B, Slikker JW. Maternal smoking during pregnancy and childhood obesity. Am J Epidemiol. 2002;156(10):954–61.

103. Will B, Zeib H, Raune BT. Overweight and obesity at school entry among migrant and German children: a cross-sectional study. BMC Public Health. 2005;5:45.

104. Lameer A, Kuepper-Nybelin J, Wehle C, Bruning N, Trost-Briinkhues G, Brenner H, et al. Social class, parental education, and obesity prevalence in a study of six-year-old children in Germany. J Int Obes (Lond). 2005;29(4):373–80.

105. Hesketh K, Crawford D, Salmon J, Jackson M, Campbell K. Associations between family circumstance and weight status of Australian children. Int J Pediatr Obes. 2007;2(2):86–96.

106. Mamun AA, Lawlor DA, O’Callaghan MJ, Williams GM, Najman JM. Positive maternal attitude to the family eating together decreases the risk of adolescent overweight. Obes Res. 2005;13(8):1422–30.

107. Sanigorski AM, Bell AC, Kremer PJ, Swinburn BA. High childhood obesity in an Australian population. Obesity (Silver Spring). 2007;15(9):1988–12.

108. Wang Z, Patterson CM, Hills AP. Association between overweight or obesity and household income and parental body mass index in Australian youth: analysis of the Australian National Nutrition Survey, 1995. Asia Pac J Clin Nutr. 2002;11(3):200–5.

109. Wake M, Hesketh K, Waters E. Television, computer use and body mass index index in Australian primary school children. J Paediatr Child Health. 2003;39(2):130–4.

110. Jansen PW, Mensah FK, Nicholson JM, Wake M. Family and neighbourhood socioeconomic inequalities in childhood trajectories of BMI and overweight: longitudinal study of Australian children. PLoS One. 2013;8(7):e69676.

111. Gopinath B, Baur LA, Butler J, Radesi D, Mitchell P. Socio-economic, familial and perinatal factors associated with obesity in Sydney schoolchildren. J Paediatr Child Health. 2012;48(1):44–51.

112. Taylor AW, Winefield H, Kettler L, Roberts R, Gill TK. A population study of 5

113. Dubois L, Girard M, Potvin KM. Breakfast eating and overweight in a pre

114. Dubois L, Girard M. Early determinants of overweight at 4.5 years in a population-based longitudinal study. Int J Obes (Lond). 2006;30(4):610–7.

115. Willms JD, Tremblay MS, Katzmarzyk PT. Geographical and demographic variation in the prevalence of overweight Canadian children. Obes Res. 2003;11(5):688–73.

116. Serra ML, Ribas BL, Aranceta BJ, Perez RC, Saavedra SP, Pena QL. Childhood overweight. Pediatr Obes. 2007;2(2):86–95.

117. Callaghan MJ, Williams GM, Najman JM. Positive physical activity and weight status in children and adolescents: refusals and validity, and the possible role of socioeconomic and health-related factors. BMC Public Health. 2013;13:815.

118. Klein-Platcat C, Wagner A, Haan MC, Arveiler D, Schlienger JL, Simon C. Prevalence and sociodemographic determinants of overweight in young French adolescents. Diabetes Metab Res Rev. 2003;19(2):153–8.

119. Thibault H, Contrand B, Sauv Ebuse B, Eaine M, Maurice-Tison S. Risk factors for overweight and obesity in French adolescents: physical activity, sedentary behavior and parental characteristics. Nutrition. 2010;26:2192–200.

120. Biloboni MM, Martinez E, Lill M, Jurado MD, Pons A, Tur JA. Risk factors for obesity in Baleic islands adolescents. Br J Nutr. 2010;103(1):99–106.

121. Moreno LA, Tomas C, Gonzalez-Gross M, Bueno G, Perez-Gonzalez JM, Bueno M. Micro-environmental and socio-demographic determinants of childhood obesity. Int J Obes Relat Metab Disord. 2004;28 Suppl 3:S16–20.

122. Serra ML, Ribas BL, Aranceta BJ, Perez RC, Saavedra SP, Pena QL. Childhood and adolescent obesity in Spain. Results of the enki study (1998–2000). Med Clin (Barc). 2003;121(19):725–32.

123. Vicente-Rodriguez G, Rey-Lopez JP, Martin-Tabillas M, Moreno LA, Wäntem J, Redondo C, et al. Television watching, videogames, and excess of body fat in Spanish adolescents: the AVENA study. Nutrition. 2006;24(7–8):654–62.

124. Costa-Font J, Gil J. Intergenerational and socioeconomic gradients of childhood obesity. Soc Sci Med. 2013;93:29–37.

125. Navalpoto L, Regidor E, Ortega P, Martinez D, Villanueva R, Astasio P. Area-based socioeconomic environment, obesity risk behaviours, area facilities and childhood overweight and obesity: socioeconomic environment and health. Int J Behav Nutr Phys Act. 2011;8(1):7.

126. Cantallops J, Pons O, Vidal J, Borras PA, Palou P. Adolescence, physical inactivity and overweight: analysis based on socio-personal variables of the parents and the type of sport practiced by the children. Retos. Nuevas tendencias en Educación Física. Deporte y Recreación. 2012;1:5–8.

127. Dubois L, Girard M. Potvin KM. Breakfast eating and overweight in a preschool population: is there a link? Public Health Nutr. 2006;9(4):436–42.

128. Dubois L, Girard M. Early determinants of overweight at 4.5 years in a population-based longitudinal study. Int J Obes (Lond). 2006;30(4):610–7.

129. Willms JD, Tremblay MS, Katzmarzyk PT. Geographic and demographic variation in the prevalence of overweight Canadian children. Obes Res. 2003;11(5):688–73.

130. Vinanueve A, Veugelers PJ. Socio-economic gradients in health behaviours and overweight among children in distinct economic settings. Can J Public Health. 2010;101 Suppl 3:32–6.

131. Tremblay MS, Willms JD. Is the Canadian childhood obesity epidemic related to physical inactivity? Int J Obes Relat Metab Disord. 2003;27(9):1100–5.

132. Veugelers PJ, Fitzgerald AL. Prevalence of and risk factors for childhood overweight and obesity. CAMJ. 2005;173(6):607–13.

133. Ekfeld U, Neovius M, Slag M, Brage S, Wareham NJ, Rosner B. Associations between physical activity and fat mass in adolescents: the Stockholm Weight Development Study. Am J Clin Nutr. 2005;81(2):355–60.

134. Ekfeld U, Ong K, Linne Y, Brage S, Dunger DB, et al. Upward weight percentile crossing in infancy and early childhood independently predicts fat mass in young adults: the Stockholm Weight Development Study (SWEDES). Am J Clin Nutr. 2006;83(2):324–30.

135. Huus K, Ludvigson JF, Enskar K, Ludvigsson J. Risk factors in childhood obesity-findings from the All Babies In Southeast Sweden (ABIS) cohort. Acta Paediatr. 2007;96(9):1321–5.

136. Huus K, Ludvigson JF, Enskar K, Ludvigsson J. Exclusive breastfeeding of Swedish children and its possible influence on the development of obesity: a prospective cohort study. BMC Pediatr. 2008;8:42.

137. Khanolkar AR, Byberg L, Koop L. Parental influences on cardiovascular risk factors in Swedish children aged 5–14 years. Eur J Public Health. 2012;22(2):840–7.

138. Panagiotakos DB, Antonogeorgos G, Papadimitriou A, Anthracopoulos MB, Papadopoulos M, Konstantinou M, et al. Breakfast cereal is associated with area-level physical activity and meal patterns: the GENDAI Study. Obesity (Silver Spring). 2008;16(6):1382–7.

139. Yannakoulia M, Papankolou K, Zaptoulohu I, Efstatiohu E, Papoutsakis C, Dedousis GV. Association between family divorce and children’s BMI and meal patterns: the GENDAI Study. Obesity (Silver Spring). 2008;16(6):1382–7.

140. Moschonis G, Tanaga S, Vandrourou A, Kyriakou AE, Dede V, Siatitsa PE, et al. Social, economic and demographic correlates of overweight and obesity in
primary-school children: preliminary data from the Healthy Growth Study. Public Health Nutr. 2010;13(10A):1693–700.

145. Farajian P, Panagiotakos DB, Rivas G, Karasoulou K, Bountziouka V, Voutzourakis N, et al. Socio-economic and demographic determinants of childhood obesity prevalence in Greece: the GRECO (Greek Childhood Obesity) study. Public Health Nutr. 2013;16(2):240–7.

146. Casimiro S, Sá-Cabral H, Batzios S, Balodima V, Christoforidis A. Socio-demographic and dietary risk factors for excess weight in a Greek pediatric population living in Kavala, Northern Greece. Nutr Clin Pract. 2011;26(2):186–91.

147. Boot AM, Bouquet J, de Riddere MA, Krenning EP, de Muinck Keizer-Schrama SM. Determinants of body composition measured by dual-energy X-ray absorptiometry in Dutch children and adolescents. Am J Clin Nutr. 1997;66(2):232–8.

148. Fredriks AM, van Buuren S, Wit JM, Verloove-Vanhorick SP. Body index measurements in 1996–7 compared with 1980. Arch Dis Child. 2000;82(2):107–12.

149. Weldhaus U, Vogel I, van Rossem L, Renders CM, Hirsing RA, Mackenbach JP, et al. Influence of maternal and child lifestyle-related characteristics on the socioeconomic inequality in overweight and obesity among 5-year-old children; the “Be Active, Eat Right” Study. Int J Environ Res Public Health. 2013;10(6):2366–47.

150. Ruijsbroek A, Wija HA, Kerkhof M, Koppelman GH, Smit HA, Droomers M. The development of socio-economic health differences in childhood: results of the Dutch longitudinal PAMI birth cohort. BMC Public Health. 2011;11:225.

151. Van der Berg C, van Epden M, Vrijikotte TG, Gemke RJ. BMI may underestimate the socioeconomic gradient in true obesity. Pediatr Obes. 2013;8(3):e37–40.

152. De S, Dramai M, Hennart P. Socio-economic status and changes in body mass from 3 to 5 years. Arch Dis Child. 1998;78(3):477–8.

153. De S, Dramai M, Hennart P. The influence of socio-economic status on the incidence and evolution of obesity during early adolescence. Int J Obes Relat Metab Disord. 1998/23(4):668–74.

154. De S, Dramai M, Hennart P. Social class and obesity in 12-year-old children in Brussels: influence of gender and ethnic origin. Eur J Pediatr. 1998;157(S):452–5.

155. Moens E, Baert C, Bosmans G, Rosseel Y. Unfavorable family characteristics and their associations with childhood obesity: a cross-sectional study. Eur J Disord Rev. 2009;17(4):315–23.

156. Cell F, Bini V, De Giorgi M, Molinari D, Faraon F, Di Stefano G, et al. Epidemiology of overweight and obesity among school children and adolescents in three provinces of central Italy, 1993–2001: study of potential influencing variables. Eur J Clin Nutr. 2003;57(9):1045–51.

157. De V, La Torre G, Langiano E, Berardi D, Ricciardi G. Overweight and Obesity among secondary school children in central Italy. Eur J Epidemiol. 1999;13(5):539–54.

158. Giampietro O, Virgone E, Carneglia L, Griesi E, Calvi D, Matteucci E. Anthropometric indices of school children and familiar risk factors. Pediatr Obes. 2002;35(5):492–8.

159. Gnawi R, Spagnoli TD, Galotto C, Pugliese E, Carta A, Cesari L. Socio-economic status, overweight and obesity in prepuberal children: a study in an area of Northern Italy. Eur J Epidemiol. 2000;16(9):797–803.

160. Kautiainen S, Koivisto AM, Koivusilta L, Lintonen T, Virtanen SM, Rimpela A. Anthropometric indices of children and their parents of overweight status. Eur J Clin Nutr. 2000;54(3):436–40.

161. Mikkila V, Lahti-Koski M, Pietinen P, Virtanen SM, Rimpela M. Associates of SES, obesity, sport activity, and perceived neighborhood environment: is there a model of environmental injustice penalizing Portuguese children? Am J Hum Biol. 2011;23(3):434–6.

162. Morgan CS, Norsten L, Rasmussen M, Andersen AM, Sorensen TD, Due P. Parental socioeconomic position and development of overweight in adolescence: longitudinal study of Danish adolescents. BMC Public Health. 2010;10:520.

163. Rasmussen M, Holstein BE, Due P. Tracking of overweight from mid-adolescence into adulthood: consistent patterns across socio-economic groups. Eur J Publ Health. 2012;22(3):885–7.

164. Morgen CS, Sohnsten LS, Rasmussen M, Andersen AM, Sorensen TD, Due P. Socioeconomic factors and childhood overweight in Europe: results from the multi-centre IDEFICS study. Pediatr Obes. 2013;8(1):11–12.

165. Toschke AM, Vigneron J, Ichotka I, Osancova K, Koletzko B, Von Kries R. Overweight and obesity in 6- to 14-year-old Czech children in 1991: protective effect of breast-feeding. J Pediatr. 2002;141(6):764–9.

166. Keane E, Layte R, Harrington J, Kearney PM, Perry L. Measured parental weight status and familial socio-economic status correlates with childhood overweight and obesity at age 9. PLoS One. 2012;7(8):e43503.

167. Griffin AC, Younger KM, Flynn MA. Assessment of obesity and fear of fatness among inner-city Dublin schoolchildren in a one-year follow-up study. Public Health Nutr. 2004;7(6):729–35.

168. Rasmussen K, Gwozdz W, Lanfer A, Barba G, De Henauw S, Eiben G, et al. Socioeconomic factors and childhood overweight in Europe: results from the multi-centre IDEFICS study. Pediatr Obes. 2013;8(1):1–12.
composition: mediation effects of energy balance-related behaviors within the ENERGY-project. Int J Behav Nutr Phys Act. 2013;10:80.

189. Hendricks K, Briefel R, Novak T, Ziegler P. Maternal and child characteristics associated with infant and toddler feeding practices. J Am Diet Assoc. 2006;106(1 Suppl):S35–48.

190. Kant AK, Graubard BI. Family income and education were related with 30-year time trends in dietary and meal behaviors of American children and adolescents. J Nutr. 2013;143(5):690–700.

191. Kristiansen H, Juliusson PB, Eide GE, Roelants M, Bjerknes R. TV viewing and obesity among Norwegian children: the importance of parental education. Acta Paediatr. 2013;102(2):199–205.

192. Bozorgmehr E, Haji zamani A, Malek MT. Oral health behavior of parents as a predictor of oral health status of their children. GSN Dent. 2013;2013:741:783.

193. Can G, Topbas M, Oztuna F, Ozgun S, Can E, Yavuzilmaz A. Factors contributing to regular smoking in adolescents in Turkey. J Sch Health. 2009;79(3):93–7.

194. Ozawa M, Washio M, Kiyohara C. Factors related to starting and continuing smoking among senior high school boys in Fukuoka, Japan. Asian Pac J Cancer Prev. 2008;9(2):339–45.

195. Rodenburg G, Oenema A, Kremers SP, van de Mheen D. Parental and child fruit consumption in the context of general parenting, parental education and ethnic background. Appetite. 2012;58(1):364–72.

196. Harper S, Lynch J. Methods for measuring cancer disparities: Using data relevant to Healthy People 2010. Cancer related objectives, NCI Cancer Surveillance Monograph Series, Number 6. Bethesda, MD: National Cancer Institute; 2005. NIH Publication No. 05–5777.

197. Muthuri SK, Francis CE, Wachira L-JM, LeBlanc AG, Sampson M, Onyweria DO, et al. Evidence of an Overweight/Obesity Transition among School-Aged Children and Youth in Sub-Saharan Africa: A Systematic Review. PLoS ONE. 2014;9(9):e102846.

198. Scalan JP. Can we actually measure health disparities? Chance. 2006;19:47–51.

199. Garcia-Marcos L, Valverde-Molina J, Sanchez-Solis M, Soriano-Pérez MJ, Baeza-Alcaraz A, Martinez-Torres A, et al. Validity of parent-reported height and weight for defining obesity among asthmatic and nonasthmatic schoolchildren. Int Arch Allergy Immunol. 2006;139(2):139–45.

200. Sekine M, Yamagami T, Hamamishi S, Kagamimori S. Accuracy of the estimated prevalence of childhood obesity from height and weight values reported by parents: results of the Toyama Birth Cohort study. J Epidemiol. 2002;12(1):9–13.