Неинвазивное эпи-эндокардиальное электрофизиологическое картирование сердца позволяет проводить реконструкцию электрогрфамм с высоким разрешением. В настоящей работе представлены результаты исследования нового алгоритма решения обратной задачи ЭКГ и верификация точности при использовании новой технологии.

Материал и методы. В исследовании были включены 10 пациентов, которым выполнялось НЭФК (Amycard 01C EP LAB, ООО «Амикард», Россия - EP Solutions SA, Switzerland). Для построения изопотенциальных и вероятностных корреляционных карт на трехмерных полигональных моделях желудочков сердца применялся итеративный алгоритм решения обратной задачи в терминах потенциала простого слоя (ESL-iterative) и новый алгоритм, основанный на комбинации методов векторного анализа и кратчайшего пути нахождения наиболее правдоподобного центра зоны ранней активации фокусных источников (FRA-V). Для оценки точности НЭФК определялось геодезическое расстояние от кончика ПЖ электрода до центра зоны ранней активации.

Результаты. Среднее значение (SD) составило 22 (15) мм при использовании алгоритма ESL-iterative и 12 (7) мм - алгоритма FRA-V, а медиана (25-75% IQR) - 23 (8-29) мм и 10 (8-14) мм, соответственно. Сравнительный анализ результатов использования разных алгоритмов показал наличие статистически значимого различия (p=0,01) в пользу более высокой точности FRA-V по сравнению с ESL-iterative. Подробный визуальный анализ вероятностных корреляционных и изопотенциальных карт показал значительно более точную локализацию зон ранней активации при использовании нового алгоритма FRA-V.

Выводы. Результаты исследования показали возможность НЭФК с достаточной точностью (медиана 10 мм) распознавать зону ранней активации стимулированных эктопий в области перегородки при использовании нового алгоритма FRA-V. Таким образом, его использование значительно повышает диагностическую ценность НЭФК и показывает значительное преимущество данной методики по сравнению с ESL-iterative.

Ключевые слова: неинвазивное эпи-эндокардиальное электрофизиологическое картирование сердца, обратная задача электрокардиографии, стимуляция межжелудочковой перегородки

Конфликт интересов: Чмелевский М.П. и Потягайло Д.А. - специалисты компании EP Solutions SA, Зубарев С.В. и Буданова М.А. - консультанты компании EP Solutions SA; конфликт интересов в остальных случаях не заявлен.

Для цитирования: Чмелевский М.П., Потягайло Д.А., Зубарев С.В., Буданова М.А., Лебедев Д.С. Неинвазивное эпи-эндокардиальное электрофизиологическое картирование стимулированных эктопий из межжелудочковой перегородки // Вестник аритмологии, 2019, Том 26, № 4 (98), с. 5-12; DOI: 10.35336/VA-2019-4-5-12.

NONINVASIVE EPI-ENDOCARDIAL ELECTROCARDIOGRAPHIC IMAGING OF VENTRICULAR SEPTAL PACING

M.P.Chmelevsky1,2, D.A.Potyagaylo1, S.V.Zubarev1, M.A.Budanova1, D.S.Lebedev1
1Almazov National Medical Research Centre, Saint-Petersburg, Russia, 2EP Solutions SA, Yverdon-les-Bains, Switzerland

Noninvasive epicardial ElectroCardioGraphic Imaging (ECGI) allows reconstruction of electrogemms and high-resolution visualization of various isoanotential maps based on multichannel ECG recordings and tomography. This study shows results of ECGI accuracy verification based on septal ventricular pacing in patients with pre-implanted pacemakers using new algorithm for solving the inverse problem of electrocardiography.

Methods. 10 patients in this study underwent epicardial ECGI mapping (Amyocard 01C EP Lab, Amyocard LLC, Russia - EP Solutions SA, Switzerland). An iterative Equal Single Layer algorithm (ESL-iterative) and new Fast Route algorithm in combination with vector approach (FRA-V) were used to reconstruct isopotential and correlation

© Коллектив авторов 2019

ВЕСТНИК АРИТМОЛОГИИ, № 4 (98), 2019
similarity maps. Geodesic distance between noninvasively reconstructed early activate zone and RV reference pacing site were measured to evaluate ECGI accuracy.

Results. The mean (SD) geodesic distance between noninvasively reconstructed and reference pacing site was 22 (15) mm for ESL-iterative and 12 (7) for FRA-V algorithm, median (25-75% IQR) - 23 (8-29) mm and 10 (8-14) mm respectively. Accuracy of ECGI mapping based on FRA-V algorithm was significantly better than ESL-iterative algorithm (p=0.01). Detailed visual analysis of correlation similarity and isopotential maps showed significantly more accurate localization of early activation zones using new FRA-V algorithm.

Conclusions. These results showed a possibility of novel epi-endocardial ECGI mapping to detect early activation zone during septal ventricular pacing with sufficient accuracy (median 10 mm) using new FRA-V algorithm. Therefore, FRA-V algorithm is significantly better for epi-endocardial ECGI mapping and shows a significant advantage of this technique compared to other non-invasive methods of topical diagnostics. Moreover, simultaneous beat-to-beat mapping of entire ventricular septum allows using of this technique for preoperative topical diagnosis of complex unstable and polymorphic ventricular arrhythmias.

Key words: noninvasive epi-endocardial electrocardiographic imaging, inverse ECG problem, ventricular septal pacing.

Conflict of Interest: Mikhail Chmelevsky and Danila Potyagaylo are specialists at EP Solutions SA, Stepan Zubarev and Margarita Budanova are consultants at EP Solutions SA; in other cases nothing to declare.

Received: 27.12.2019 **Revision Received:** 10.01.2020 **Accepted:** 23.01.2020

Corresponding author: Chmelevsky Mikhail, E-mail: boxmch@gmail.com

For citation: Chmelevsky M.P., Potyagaylo D.A., Zubarev S.V., Budanova M.A., Lebedev D.S. Noninvasive epi-endocardial electrocardiographic imaging of ventricular septal pacing // Journal of arrhythmology, 2019, Vol. 26, 3 (97), p. 5-12; DOI: 10.35336/VA-2019-4-5-12.
ной задачи ЭКГ. Кроме того, необходимо учитывать положение МЖП, фактически скрытой свободными стенками желудочков сердца. Используемые в настоящем время алгоритмы были подробно описаны ранее и протестированы на различных данных, однако они не позволяли решить данную проблему [5, 6].

Предложенные в ряде недавних работ новые математические способы решения обратной задачи ЭКГ позволяют предположить значительное улучшение решающей способности НЭФК в области МЖП [7, 8]. Первые результаты выглядели многообещающими и позволили улучшить точность НЭФК в области МЖП до 10 мм [8]. В связи с этим целью данной работы явилось исследование нового алгоритма решения обратной задачи ЭКГ и верификация точности НЭФК при стимуляции МЖП у пациентов с электрокардиостимуляторами.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

В исследование были включены 10 пациентов с ранее имплантированными электрокардиостимуляторами, где правожелудочковый (ПЖ) электрод располагался в разных отделах МЖП. Предварительно все больные были обследованы на наличие противопоказаний к мультиспиральной компьютерной томографии МСКТ и дали письменное согласие на участие в исследовании. Всем пациентам проводилась НЭФК с использованием системы «Amycard 01С» (ООО «Амикард», Россия - EP Solutions SA, Switzerland). Данное клиническое исследование было проведено в соответствии со стандартами надлежащей клинической практики (Good Clinical Practice) и принципами Хельсинской Декларации и одобрено этическим комитетом при ФГБУ «НИИЦ им В.А.Алмазова» МЗ РФ.

При регистрации многоканальной ЭКГ кардиостимуляторы с помощью программатора переводились на 10 с. в режим изолированной моно- или биполярной стимуляции с кончика ПЖ электрода (RV tip) с частотой 90 в 1 мин. с последующим восстановлением исходных параметров. Для анализа брался типичный стимулированный комплекс. Все остальные этапы регистрации многоканальной поверхности ЭКГ, МСКТ и обработки данных неинвазивного картирования были идентичны опубликованным ранее в предыдущих работах [3, 4]. Для дальнейших расчетов проводился экспорт трехмерных полигональных моделей в формате VTK и исходных записей многоканальной ЭКГ в специальном текстовом формате из программного обеспечения «Amycard 01С».

Вначале применялся итеративный алгоритм решения обратной задачи в терминах потенциала простого слоя (ESL-iterative) с последующей визуализацией изопотенциальных карт [5]. Затем для расчета исходных данных использовался новый алгоритм, основанный на комбинации методов векторного анализа и кратчайшего пути нахождения наиболее правдоподобного центра зоны ранней активации фокусных источников (FRA-V) с последующей визуализацией вероятностных корреляционных карт [8].

При использовании алгоритма ESL-iterative зона ранней активации миокарда определялась визуально одним врачом-исследователем на изопотенциальных картах с точностью до 1 мс как область наиболее раннего устойчивого отрицательного потенциала, концентрически распространяющаяся по эндокардиальной поверхности сердца. При использовании нового алгоритма FRA-V зона ранней активации определялась автоматически.
на трехмерной полигональной модели желудочков как точка с наивысшим значением коэффициента корреляции вероятностных карт (рис. 1, 2). Так же, как и в предыдущих работах, точная позиция электрода в МЖП определялась по данным МСКТ. Для оценки точности определялось геодезическое расстояние (по поверхности) от кончика ПЖ электрода до центра зоны ранней активации, которые отмечались маркерами [3, 4]. Измерения проводились только на эндокарде эпи-эндокардальной трехмерной полигональной модели (endo epi-endocardial model) каждого пациента.

Полученные значения экспортировались для дальнейшего статистического анализа. Для интерактивной визуализации изопотенциальных и вероятностных корреляционных карт на трехмерных полигональных моделях желудочков сердца использовалось специальное программное обеспечение на базе открытого графического кроссплатформенного программного пакета Paraview v.5.6.0 (Kitware Inc., USA).

Статистический анализ
В данной работе использовалась методика статистического анализа, подробно описанная в предыдущих публикациях [3]. Аналогично проводился детальный анализ клинических данных пациентов и значений, характеризующих точность НЭФК. Для сравнения значений точности, полученных разными алгоритмами, использовался тест знаковых рангов Уилкоксона. Дополнительно для оценки характера изменчивости, проверки стабильности и надежности рассчитанных статистик относительно исходно наблюдаемых данных, а также обеспечения большого доверия к полученным результатам исследования использовался анализ значений точности НЭФК при генерации 1000 случайных повторных выборок. В качестве метода численного ресэмплинга (resampling) использовался ускоренный непараметрический бутстрэп анализ с расчетом 95% доверительных интервалов (ДИ) соответствующих статистик [9]. Визуальная оценка статистик полученных выборок значений точности для разных алгоритмов решения обратной задачи проводилась с использованием скриптовых диаграмм (violin plot) [10].

В связи с относительно небольшим числом пациентов в исследованной выборке и соответственно необходимостью оценки ошибки вычисления уровней значимости в данной работе значения p≤0,01 принимались статистически значимыми с учетом поправки Бонферрони для коррекции полученных значений на множественное тестирование. Полный статистический анализ был проведен с использованием статистических программ Statistica v.12 (Statsoft Inc., US), SPSS v.23 (IBM Corp., USA) и Statgraphics Centurion v.18.1.11 (Statgraphics Technologies, Inc., US).

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ
Клинические характеристики исследованной группы пациентов и параметры стимуляции имплантированных СРТ устройств
В изученной группе возраст исследуемых составил от 27 до 78 лет (медиана 61; 25-75% квартильные значения, далее - IQR 54-66), из них 5 мужчин (50%). У 5 (50%) больных регистрировалась ЭКГ с паттерном в виде полной блокады левой ножки пучка Гиса (ЛНПГ), 7 (70%) были с ИБС; 2 (20%) - после перенесенного инфаркта миокарда (ИМ); 2 (20%) - с хронической сердечной недостаточностью III функционального класса.
Влияние клинических характеристик исследуемой группы на точность

Все основные клинические характеристики исследуемой группы были проанализированы и сопоставлены с точностью НЭФК, при этом значимых взаимосвязей между ними обнаружено не было. Кроме того, было проанализировано количество поверхностных ЭКГ электродов на торсе и длительность выбранных для анализа фрагментов ЭКГ. Данные параметры представлены в табл. 1. В результате значимых взаимосвязей между ними и точностью НЭФК также не было обнаружено.

Оценка данных точки НЭФК на основе бутстрэп анализа

При оценке точки НЭФК на основе данных бутстрэп анализа 95% ДИ медиан (25-75% IQR) составили 8-30 (5-25-22-53) мм при использовании алгоритма ESL-iterative и 8-14 (6-10-9-28) мм - алгоритма FRA-V. Данные значение также представлены в табл. 2. Визуальное распределение полученных показателей показано на рис. 5. Сравнительный анализ результатов использования разных алгоритмов на основе данных бутстрэп анализа также показал наличие статистически значимого различия (p <0,001).

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Особенности результатов

Сравнительный анализ точности НЭФК показал, что наименьшие ошибки локализации ранней зоны наблюдаются при использовании нового алгоритма FRA-V (медиана 10 мм) по сравнению с алгоритмом ESL-iterative (медиана 23 мм). Оценка линейных графиков подтвердила, что в 80% случаев алгоритм FRA-V показал более точные значения. Кроме того, данное наблюдение было подтверждено наличием статистически значимой разницы при сравнении ошибок локализации в пользу более высокой точности нового алгоритма. Подробный визуальный анализ вероятностных корреляционных и изопотенциальных карт показал значительно более точную локализацию зон ранней активации при использовании нового алгоритма FRA-V на примере стимуляции в области передне-срединного отдела МЖП (рис. 1) и в области нижне-срединного отдела МЖП (рис. 2). Таким образом, его использование значительно повышает диагностическую ценность НЭФК.

Необходимо также отметить, что использование нового алгоритма FRA-V дает значительно меньший разброс ошибок локализации (6-28 мм) по сравнению с алгоритмом ESL-iterative (5-53 мм), что показывает его более высокую робастность в решении обратной задачи ЭКГ. Все вышеперечисленные факты указывают на то, что комбинация методов векторного анализа и кратчайшего пути нахождения наиболее правоподобного центра зоны ранней активации фокусных источников дает значительно лучшие результаты по сравнению с алгоритмами решения обратной задачи ЭКГ.

Таблица 2.

Характеристика точности, мм	Алгоритм решения обратной задачи ЭКГ	
	ESL-iterative	FRA-V
Значение 95% ДИ	Значение 95% ДИ	
% случаев <5	10	0
% случаев <10	30	60
Среднее, m	22	14-31
CO, SD	15	8-20
Медиана, M	23	8-30
НК (25%)	8	5-25
BK (75%)	29	22-53
Минимум (min)	5	6
Максимум (max)	53	28

Примечание. Где, CO - стандартное отклонение, НК и BK - нижний и верхний квартиль.
Соответственно, применение НЭФК с использованием нового алгоритма FRA-V показывает значительное преимущество данной методики по сравнению с другими неинвазивными методами топической диагностики. Более того, одновременное картирование всей поверхности МЖП за один сердечный цикл открывает возможность использовать данную методику для предоперационной топической диагностики таких сложных нарушений ритма как неустойчивые и полиморфные желудочковые аритмии.

Оценка характера распределения данных и влияние на точность НЭФК

Подобный анализ гистограмм точности НЭФК показал значительное отличие от нормального распределения (рис. 3а, 3в). Это подтверждает необходимость использования непараметрических методов сравнения результатов в связи с тем, что эти методы не зависят от какого-либо конкретного распределения и не используют его свойства. Более того, предсказать характер распределения данных в подобном исследовании практически невозможно в связи с тем, что изучаемая выборка обычно представляет собой сложную систему, состоящую из большого числа неоднородных компонент. В таком случае любые выводы, основанные на предположениях о нормальности даже в случае увеличения размера исследования, не будут являться корректными и фактически окажутся бесполезными для подведения итогов исследования и формирования выводов. Таким образом, в данной работе с учетом малой выборки использование непараметрических методов являлось единственным методом, позволяющим сделать корректные заключения. Кроме этого, анализ линейных графиков точности НЭФК также указывает на высокую гетерогенность исходных данных (рис. 4б). Последнее может объясняться не только особенностями использования конкретных алгоритмов решения обратной задачи ЭКГ, но и высокой вариабельностью значений электропроводности различных тканей у разных пациентов. При этом необходимо учитывать высокую степень разнородности относительно небольшой выборки пациентов, включенных в данное исследование. Вместе с тем, это косвенно указывает на более высо
сокую робастность нового алгоритма FRA-V по сравнению с ESL-iterative. Кроме того, полученные результаты показывают, что разные алгоритмы в значительной степени могут изменять точность НЭФК. В свою очередь, это свидетельствует в пользу необходимости более подробного изучения алгоритмов решения обратной задачи ЭКГ и дальнейшего совершенствования методики НЭФК.

Влияние различных характеристик исследованной группы на точность

Отсутствие значимых различий между точностью НЭФК и остальными факторами неинвазивного картирования (клиническими характеристиками, параметрами стимуляции, количеством поверхностных ЭКГ электродов на торсе и др.) в исследованной группе частично говорит о независимости полученных значений от этих параметров при использовании разных алгоритмов решения обратной задачи ЭКГ. Вместе с тем, необходимо учитывать относительно небольшую выборку пациентов, поэтому данное наблюдение требует дополнительной проверки.

Оценка результатов использования бутстрэп анализа

При проведении исследований на малых выборках, несмотря на использование непараметрических методов, регистрация даже одного аномального наблюдения может приводить к смещенным оценкам. Более того, в условиях отсутствия априорных данных о возможных характеристиках точности НЭФК в исследуемой группе пациентов практически невозможно оценить наличие выбросов и ошибки при сборе исходной информации во время проведения исследования. В таком случае еще более вырастают вероятность некорректности и неустойчивости рассчитываемых статистик, а также становится практически невозможно оценить репрезентативность исследования, поэтому необходимо обеспечивать его повторение на других выборках. Из-за трудоемкости проведения процедуры НЭФК, а также необходимости использования компьютерной томографии с контрастированием у пациентов с исходной низкой фракцией выброса сердца увеличение размеров изучаемой группы становится практически невозможным. В связи с этим, в данном исследовании авторы посчитали необходимым использовать методы генерации случайных повторных выборок [11]. Необходимость использования метода ускоренного непараметрического бутстрэп анализа с расчетом 95% доверительных интервалов (ДИ) соответствующих статистик также объясняется фактической невозможностью иметь априорную информацию об исходном виде распределения изучаемых значений. В результате при использовании бутстрэп анализа происходит своеобразное моделирование эмпирического распределения изучаемых значений при использовании разных алгоритмов решения обратной задачи, что значительно повышает степень устойчивости и снижает степень неопределенности рассчитываемых статистик относительно исходно наблюдаемых данных [12]. Кроме того, показано, что при достаточном количестве повторных итераций (более 1000) данный метод дает более точные результаты, чем стандартные непараметрические критерии сравнения [9].

По результатам бутстрэп анализа было подтверждено, что наименьшие ошибки локализации ранней зоны наблюдаются при использовании нового алгоритма FRA-V по сравнению с алгоритмом ESL-iterative. Кроме того, рассчитанные 95% ДИ были значительно меньше в случае использования нового алгоритма. Визуализация результатов в виде скрипичной диаграммы для каждого метода решения обратной задачи ЭКГ также наглядно демонстрирует, что в случае использования алгоритма ESL-iterative наблюдается значительный разброс рассчитанных значений, в то время как алгоритм FRA-V характеризуется компактностью распределения и отсутствием значительных выбросов. Кроме того, при использовании алгоритма ESL-iterative характер распределения получаемых значений имеет выраженный бимодальный характер, что косвенно говорит о его меньшей устойчивости и стабильности. Все вышеуказанные обнаруженные особенности наглядно демонстрируют преимущество использования алгоритма FRA-V для использования НЭФК в клинической практике.

Оценка репрезентативности результатов и сравнение с другими исследованиями

В проведенном исследовании была изучена относительно небольшая группа пациентов, что, несомненно, уменьшает степень репрезентативности. Вместе с тем, использование методов численного ресэмплинга уменьшает вероятность смещенной оценки и позволяет предположить, что рассчитанные статистики и сделанные оценки являются достаточно устойчивыми при повторении исследования. Однако необходимо подчеркнуть, что более точная оценка обоснованности и робастности полученных результатов возможна только после проведения отдельного крупного систематического исследования точности НЭФК.

Вместе с тем, необходимо отметить, что в доступных нам опубликованных данных отсутствуют резуль-
таты исследования точности НЭФК при использовании разных алгоритмов на клинических данных [13]. Это подчеркивает важность использования полученных результатов для дальнейшего изучения алгоритмов решения обратной задачи ЭКГ и развития методики НЭФК.

Ограничения данного исследования

К ограничениям проведенного исследования, в основном, необходимо отнести относительно небольшую выборку пациентов. Данное ограничение частично нивелируется использованием методов численного резэмплинга в виде ускоренного бутстреп анализа. Вместе с тем, необходимо отметить, что никакие сверхнинтенсивные методы не могут являться гарантией от влияний неучтенных факторов или систематических погрешностей. Остальные ограничения были подробно описаны и опубликованы в предыдущей работе по верификации НЭФК [3].

Литература

1. Ramanathan C, Ghanem RN, Jia P et al. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med. 2004;10(4):422-8. doi:10.1038/nm1011.
2. Wissner E, Revishvili A, Metzner A. et al. Noninvasive epicardial and endocardial mapping of premature ventricular contractions. Europace. 2017;19(5):843-9. doi:10.1093/europace/euw103.
3. Чмелевский МП, Зубарев СВ, Буданова МА и др. Верификация точности неинвазивного электрофизиологического картирования сердца при правожелудочковой эпикардиальной стимулированной эктопии. Вестник аритмологии. 2019;95(1):5-16 (In Russ.); DOI: 10.25760/VA-2019-95-5-16.
4. Чмелевский МП, Зубарев СВ, Буданова МА и др. Верификация точности неинвазивного эпикардиального электрофизиологического картирования сердца при правожелудочковой эпикардиальной стимулированной эктопии. Вестник аритмологии. 2019;96(2):19-28 [Chmelevsky M., Zubarev S., Budanova M. et al. Validation of noninvasive epicardial electrocardiographic imaging accuracy using right ventricular epicardial pacing // Journal of arrhythmology, 2019, Vol. 26, 2, p. 19-28 (In Russ.)]; DOI: 10.35336/VA-2019-95-5-16.
5. Kalin A, Potyagaylo D, Kalinin V. Solving the Inverse Problem of Electrocadiography on the Endocardium Using a Single Layer Source. Front. Physiol. 2019;10:39. doi:10.3389/fphys.2019.00058
6. Potyagaylo D, Chmelevsky M, Kalinin A. Single-Layer Based Algorithms for Solving the Inverse Problem of ECG. In: 2019 Computing in Cardiology Conference (CinC): Computing in Cardiology; 2019. 7. Potyagaylo D, Chmelevsky M, van Dam PM et al. ECG Adapted Fastest Route Algorithm to Localize the Ectopic Excitation Origin in CRT Patients. Front. Physiol. 2019;10:1058. doi:10.3389/fphys.2019.00183
8. Potyagaylo D, Chmelevsky M, Budanova M et al. Combination of lead-field theory with cardiac vector direction: ECG imaging of septal ventricular activation. J Electrocardiol. 2019;57SS40-S44. doi:10.1016/j.jelectrocard.2019.08.003
9. Шитиков ВК, Розенберг ГС. Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. Институт экологии Волжского бассейна РАН. Тольятти: Кассандра; 2013. 314 p. [Shitikov V, Rosenberg G. Randomization and bootstrap: statistical analysis in biology and ecology using R (In Russ.).
10. Hintze JL, Nelson RD. Violin Plots: A Box Plot-Density Trace Synergism. The American Statistician. 1998;52(2):181-4. doi:10.1080/00031305.1998.10480559
11. Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. 4th ed. Oxford: Blackwell Science; 2002.
12. Гожий АП, Коваленко ИИ. Системное использование робастных и бутстреп методов в задачах анализа данных. Адаптивные системы автоматического управления: междисциплинарный научно-технический зборник. 2006;29(9):38-49 [Godgy A, Kovalenko I. System use of robust and bootstrap methods for data analysis (In Russ)].
13. van Dam PM, Tung R, Shivkumar K, Laks M. Quantitative localization of premature ventricular contractions using myocardial activation ECGI from the standard 12-lead electrocardiogram. J Electrocardiol. 2013;46(6):574-9. doi:10.1016/j.jelectrocard.2013.08.005

Авторы выражают благодарность заведующей НИЛ электрокардиологии Татьяне Васильевне Трешкур, сотрудникам отделения компьютерной томографии и заведующему НИО физиологии кардиоваскулярной ФГБУ «НМИЦ им. В.А.Алмазова» Андрею Валерьевичу Козленку за помощь в организации и проведении исследований, а также Владиславу Николаевичу Солнцеву за ценные замечания и рекомендации при подготовке данной публикации.

The authors express deep gratitude and sincere acknowledgments to the head of electrocardiology lab Dr.Tatjana Treshkur, radiology department staff and the head of Cardiac Physiology department of Almazov National Medical Research centre Dr. Andrey Kozlenok for their support in this study as well as to Vladislav Solntsev for essential comments and recommendations in this publication.

ВЕСТНИК АРИТМОЛОГИИ, № 4 (98), 2019