NMR probing of the spin polarization of the $\nu = 5/2$ quantum Hall state

M. Stern1 B. A. Piot2, Y. Vardi1, V. Umansky1, P. Plochocka2, D. K. Maude2, and I. Bar-Joseph1

1 Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, Israel and 2 Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble, France

(Dated: December 21, 2013)

Resistively detected nuclear magnetic resonance is used to measure the Knight shift of the 75As nuclei and determine the electron spin polarization of the fractional quantum Hall states of the second Landau level. We show that the $5/2$ state is fully polarized within experimental error, thus confirming a fundamental assumption of the Moore-Read theory. We measure the electron heating under radio frequency excitation, and show that we are able to detect NMR at electron temperatures down to 30 mK.

PACS numbers: 73.43.Fj

The physics of interacting electrons at half integer filling factor has intrigued researchers over the past two decades. It was found that the behavior at the first Landau level can be understood in terms of non-interacting composite fermions (CF) at zero magnetic field [1]. Numerous experimental findings confirm this picture, and establish the formation of a non-gaped state at $\nu = 1/2$. The behavior in the second Landau level is, however, fundamentally different. Early experiments, dating back to the late eighties, show the formation of a fractional quantum Hall (FQH) state at $\nu = 5/2$ [2,3]. This observation has challenged the CF theory and triggered an intense theoretical effort. Early on Moore and Read (MR) have suggested that a weak residual attractive interaction in the second Landau level gives rise to pairing of the CFs, and to the formation of a gaped state [4]. One of the exciting aspects of MR theory is the predicted excitation spectrum of the $\nu = 5/2$ state, which should consist of quasiparticles that obey non-Abelian braiding statistics. It was shown that this property may turn the $5/2$ state into a platform for quantum computing by means of topological manipulations [5].

The examination of MR theory has become the focus of intensive experimental effort in recent years. A major support for its validity has been provided by the measurement of the quasiparticle charge, found to be $e/4$, in agreement with the prediction of the MR theory [6,7]. However, this finding is also consistent with other competing theories [1], and further experimental support is needed. The determination of the electron spin polarization can provide this needed support. A central assumption of the MR theory is that the electrons in the second Landau level are fully-polarized, and can therefore form pairs with p-type symmetry. Hence, confirming this point would provide a strong experimental evidence for the validity of the MR theory. Unfortunately, the experiments realized so far to probe the polarization at $\nu = 5/2$ have led to ambiguous results: Tilted field experiments have shown that the $\nu = 5/2$ gap decreases with tilt angle [8,9], which could be interpreted in favor of a spin depolarized ground state. However, this behavior may also originate from the destruction of the $5/2$ state induced by the orbital coupling to the parallel magnetic field [10,12]. Optical measurements also provided indications, which supported an unpolarized ground state. Raman experiments have shown diminishing of the spin flip mode, and were interpreted as an evidence for a partially polarized second Landau level [13]. Recently, we reported the results of photoluminescence (PL) measurements [14] that show a dip in the Zeeman splitting in the vicinity of $\nu = 5/2$, and can be interpreted as due to a spin unpolarized ground state. However, a possible complication in the interpretation of the optical data could arise from the role of the positively charged valence band hole that is introduced by laser illumination. The effect of this valence hole is not fully understood and could, in principle, affect the observed results. All these experimental findings are in clear contrast with the results of numerical simulations which clearly show that the ground state should be spin polarized [10]. There are also transport data which support a spin polarized state: e.g. the observation of $\nu = 5/2$ at high magnetic fields [15] and resistively detected NMR measurements performed at a relatively high excitation power [16]. This controversy calls for further experimental work using a different experimental technique [17].

In this work we use resistively detected nuclear magnetic resonance (NMR) to measure the Knight shift of the 75As nuclei and determine the electron spin polarization of the FQH states of the second Landau level. We monitor the electron heating under radio frequency (RF) excitation, and show that we are able to detect an NMR signal at electron temperatures down to 30 mK. We find that the FQH states in the second Landau level, and in particular the $5/2$ state, are preserved under RF excitation. We show that the $5/2$ state is fully polarized, thus confirming a fundamental assumption of the MR theory. Note that throughout this paper polarization refers to the polarization of the partially occupied Landau level at the Fermi energy.

The NMR technique is a powerful tool to measure the electron spin polarization. It is based on the coupling
of the electron and nuclei spins via the hyperfine interaction. In the presence of an external magnetic field, the nuclei acquire an average polarization \langle I \rangle and create a local magnetic field \(B_N \propto \langle I \rangle \) (Overhauser effect). \(B_N \) acts exclusively on the electronic spin and has no influence on the orbital motion of the electrons, so that the filling factor remains unchanged. The polarized electrons also create a local magnetic field \(B_e \) acting on the nuclear spins. This field reduces the Larmor resonance frequency of the nuclei by \(K_S \propto n_e P \), an effect known as the Knight shift, where \(n_e \) is the local electron density and \(P \) is the electron spin polarization. Obtaining the signal from a 2D electron gas is however an experimental challenge, since the number of nuclei in a single quantum well is much smaller than the total number of nuclei in the bulk of the sample. Several techniques have been implemented to overcome this difficulty; increasing the effective thickness by using multiple quantum wells [18], increasing the nuclei polarization in the quantum well using optical pumping [19], or using a selective detecting scheme, which is specific to the electrons in the well, known as resistively detected NMR [20, 21]. This technique relies on the dependence of the longitudinal resistance \(R_{xx} \) on the Zeeman energy gap, which can be written as \(E_Z = g \mu_B (B + B_N) \). By applying a radio frequency at the Larmor resonance frequency, it is possible to depolarize the nuclear spins and reduce the amplitude of \(B_N \), and consequently decrease \(E_Z \). This, in turn, results in a slight change of \(R_{xx} \), typically of the order of a few percent.

Attempts to directly implement this technique to measure the electron spin polarization at \(\nu = 5/2 \) have failed; no detectable change of \(R_{xx} \) was measured throughout the quantum Hall plateau. Indeed, tilted field measurements show that the longitudinal resistance at this filling factor has a very weak dependence on \(E_Z \) [9]. One can, however, measure the Knight shift at \(5/2 \) by quickly switching to another filling factor at which \(R_{xx} \) exhibits a strong dependence on \(E_Z \). This idea relies on the long relaxation time of the nuclei which decay back to their original polarization on a timescale from a few tens of seconds to many minutes. It was implemented in Ref. [16] by applying short RF pulses when the system is at \(\nu = 5/2 \). We noticed, however, that applying these RF pulses causes a non resonant transient response due to the heating of the electronic system and greatly degrades the signal to noise ratio for the detection. For this reason, we have developed a technique where a low RF power is continuously applied. The improved signal to noise ratio allows us to work at much lower RF power, and therefore lower electronic temperature than the pulsed NMR technique of Ref. [16]. As will be shown this reduction in the RF power is critical for the measurement.

The exact sequence used is shown in Fig. 1(a). The detection of the signal is always performed under off resonance RF at the detection filling factor \(\nu = 2.16 \) (see Fig. 1(b)). To excite the system, the filling factor is set to the excitation point (e.g. \(\nu = 5/2 \)). After a short waiting time (\(\simeq 30\text{ms} \)), the radio frequency is abruptly changed during the excitation time \(\tau_{exc} \) without changing the RF power. Then, the filling factor and the radio frequency are returned to their original values and \(R_{xx} \) is measured at the detection point for a time interval of \(\tau_{det} \). This sequence is repeated many times while varying the excitation radio frequency so as to sweep through the resonance. A few important considerations should be mentioned here:

(i) The quick change of the filling factor between the excitation and detection point can only be achieved by applying a gate voltage. The sample used is the same we used in our previous work, in which we measured the PL [14], and has a 4 nm PdAu gate.

(ii) The detection point should be close enough to the filling factor under consideration, to avoid irreversible deterioration of the quality of the FQH states that occurs under strong gating. We have selected to work at the high end of the \(\nu = 2 \) plateau, at \(\nu \simeq 2.16 \). In this region \(R_{xx} \) exhibits a significant dependence on the Zeeman energy and the NMR signal can be easily observed in a standard continuous wave experiment.

(iii) The RF power couples also to the electronic system...
and heats it up. Thus, one should conduct in parallel a measurement of the electron temperature and confirm that the quantum Hall state is not destroyed.

(iv) The long time for full thermalization of the nuclei, which at 5 T can be days, may inhibit performing sequential frequency scans. Thus, one should provide means for fast nuclear repolarization between frequency scans. This is effectively done by ramping the magnetic field to ~11 T, at the end of each scan.

(v) We found that the ramping of the field can induce a change of the value of the Larmor frequency of a \(\tilde{\nu} \simeq 1 \) kHz. Hence, it is essential to always have a point to which each scan can be compared. This is done by performing a measurement at the detection point at the end of each scan. This procedure sets a limit on the precision of measuring the Knight shift to be 300 Hz.

Figure 2(c) demonstrates the implementation of this technique. The red curve shows the \(R_{xx} \) signal under excitation at 5/2 and detection at 2.16. It is seen that a well resolved dip with an amplitude of 4 \(\Omega \) appears at 36.24 MHz. The blue curve is a scan obtained by performing a regular resistively detected NMR measurement at the detection point (\(\nu = 2.16 \)). The fact that the 5/2 dip appears at lower frequency than the signal at \(\nu = 2.16 \) is significant and a qualitative conclusion can already be drawn. Since the electron polarization can only reduce the Larmor frequency \((K_S \leq 0) \) it follows that the \(\nu = 5/2 \) FQH state cannot be fully depolarized, in contrast with the results of the PL measurements. Note that all our measurements are shifted compared to the accepted value of the gyromagnetic ratio for 75As in bulk GaAs (7.29) due to the remanent field (-27 mT) of the magnet which reduces the effective magnetic field to 4.973 T.

Before presenting a quantitative analysis of the shift and its implications, one should verify that the observed polarization is not due to heating of the electrons by the RF power and that the FQH state still exists. Figure 2(a) shows the longitudinal resistance of the sample as the RF power is reduced, from 1 dBm down to -14 dBm. It is seen that the resistance at 7/3 and 5/2 increases as the RF power is increased until the minima become barely visible at 1 dBm. To obtain a calibration of the electron temperature we measured the dependence of \(\rho_{xx} \) on the bath temperature at several filling factors without RF excitation. We show in Fig. 2(b) the behavior at \(\nu = 5/2 \). This allows to obtain a calibration curve of the electron temperature as a function of the RF power (Fig. 2(c)). It is seen that at 0 dBm the electrons are heated up to 100 mK. At the lowest RF powers the curve deviates from a linear dependence (solid line). At this regime the electron temperature is limited by the applied current (30 nA), and reducing it to 5 nA allows us to bring the electron temperature down to 33 mK. The residual heating by the RF power is demonstrated in Fig. 2(a): the lowest curve is taken without RF power and it is seen that its resistance is only slightly below that measured at -14 dBm.

To evaluate the effect of the residual heating of the electrons one needs to estimate the 5/2 gap. The dotted line in Fig. 2(b) is a fit to \(\rho_{xx} = \rho_0 + \rho_1 \exp [-\Delta/(2T)] \). Here \(\rho_0 = 22 \Omega \) is the lowest value of \(\rho_{xx} \) at zero temperature which is different than zero for this sample, \(\rho_1 = 120 \Omega \), and \(\Delta \simeq 300 \) mK. We can therefore conclude that the region below -5 dBm corresponds to the activation region, and by reducing the RF power we can determine the behavior of the spin polarization down to \(T/\Delta \simeq 0.1 \).

Figure 2 shows the change in resistance, \(\Delta R \), as a function of radio frequency \(f - f_0 \) at four filling factors, 5/3, 7/3, 5/2, and 8/3, where \(f_0 \) is the resonance frequency at \(\nu = 2 \). Since the \(\nu = 2 \) state is clearly depolarized, it will have a resonance frequency \(f_0 \) i.e the bare (unshifted) Larmor frequency. On the other hand, the fractional quantum Hall state at \(\nu = 5/3 \) is the electron-hole symmetric state of \(\nu = 1/3 \) and is known to be fully spin polarized \(^{22} \). As we were unable to measure a convincing signal at \(\nu = 2 \) with our technique at low power a lengthy series of calibration measurements were performed at higher RF power using a pulsed NMR method similar to Ref. \(^{16} \). During the calibration procedure we simultaneously measured the signal at \(\nu = 5/3 \) to obtain a calibration of the maximum possible Knight shift corresponding to a full degree of polarization. As \(\nu = 5/3 \)
is also detected in the low power measurements this provides a direct calibration for f_0 in our measurements. Additionally, this calibration was confirmed by measurements at $\nu = 2/3$ which can serve as a reference for both fully polarized and unpolarized states due to the formation of domains [23].

From our measurements we obtain a different K_S equal to 5650 ± 75 Hz, 7750 ± 175 Hz and 10175 ± 175 Hz for $\nu = 7/3$, $5/2$ and $8/3$, respectively. In the inset of Fig. 3 we plot K_S as a function of ν; remarkably, we find that they reside on a straight line, implying the same degree of spin polarization. The red line corresponds to the extrapolated value of the Knight shift for a fully polarized state according to its value at $\nu = 5/3$. We can, therefore, conclude that the electrons at the second Landau level are fully polarized at the three filling factors $7/3$, $5/2$ and $8/3$.

The full polarization at $5/2$ is robust and persists throughout the temperature range that we have studied, and throughout the Hall plateau, as demonstrated in Fig. 4. Figure 4(a) shows ΔR as a function of frequency for three RF powers, 1 dBm, -8 dBm and -14 dBm, which correspond to electron temperatures of 110, 65, and 35 mK, respectively. It is readily seen that the resonance frequency does not change and the spin polarization remains constant at $0.1 < T/\Delta < 0.35$ (Fig. 4b). Figure 4(c-d) show a measurement at -14 dBm in the vicinity of $\nu = 5/2$; no depolarization is observed within the 5% precision of our measurement.

Our results confirm the assumption of the MR theory that the electrons are fully polarized in the ground state. However, they seem to be in stark contradiction with the results of the photoluminescence measurements [14], which were conducted on the same sample. We note that the two measurements probe different aspects of the FQH state. The NMR measurement probes the spin polarization through its effect on the longitudinal resistance. Since the change in R_{xx} are related to tunneling through saddle points between edges at the two sides of the sample [24, 25] - the effect is global and is related to the average spin polarization of the whole sample. The PL measurement, on the other hand, is local in nature, and samples the immediate neighborhood of the valence hole. The results of the PL measurement imply that this local environment is depolarized. Recently, it was suggested that at $\nu = 5/2$ Skyrmions, which consist of two quasiparticles with opposite spin, tend to form in local minima of the disordered potential (formed by well width disorder or remote impurities) [26]. One can therefore imagine two possible scenarios that might explain the origin of the observed depolarization. The first is that the holes are attracted to the same local minima at which Skyrmions are formed. The second is that the potential of the valence band hole, which induces a potential minima, could help forming a Skyrmion, essentially playing the same role as the disorder in Ref. [26]. In both cases the immediate environment of the valence hole is unpolarized. We note that this is a unique property of the $5/2$ state, and in
this sense the optical measurement probes the Skyrmion formation.

We thank A. Stern, A. Wojs and S. Simon for fruitful discussions, and L. Sepunaru for his help in the first characterization of the samples. This research was supported by the Israeli Science Foundation.

Electronic address: mstern@weizmann.ac.il

[1] B. I. Halperin, P.A. Lee and N. Read, Phys. Rev. B, 47, 7312 (1993).
[2] R. Willett et al., Phys. Rev. Lett., 59, 1776 (1987).
[3] W. Pan et al. Phys. Rev. Lett. 83, 3530 (1999).
[4] G. Moore, N. Read, Nucl. Phys. B, 360, 362 (1991).
[5] S. Das Sarma, M. Freedman & C. Nayak, Phys. Rev. Lett., 94, 166802 (2005).
[6] M. Dolev et al., Nature, 452, 829 (2008).
[7] I. P. Radu et al., Science, 320, 899 (2008).
[8] J.P. Eisenstein et al., Phys. Rev. Lett., 61, 997 (1988).
[9] C. Dean et al., Phys. Rev. Lett., 101, 186806 (2008).
[10] R. H. Morf, Phys. Rev. Lett., 80, 1505 (1998).
[11] E. H. Rezayi and F. D. M. Haldane, Phys. Rev. Lett. 84, 4685 (2000).
[12] M. R. Peterson, T. Jolicoeur, S. DasSarma, Phys. Rev. Lett. 101, 016807 (2008).
[13] T. D. Rhone et al., Phys. Rev. Lett., 106, 196805 (2011).
[14] M. Stern et al., Phys. Rev. Lett., 105, 096801 (2010).
[15] C. Zhang et al. Phys. Rev. Lett. 104, 166801 (2010).
[16] L. Tiemann, G. Gamez, N. Kumada, and K. Muraki, Meeting abstracts of the Physical Society of Japan, 65, 649 (2010).
[17] J.K. Jain, Physics, 3, 71 (2010).
[18] S. Melinte et al., Phys. Rev. Lett., 84, 354 (2000).
[19] S.E. Barrett, R. Tycko, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett., 72, 1368 (1994).
[20] M. Dobers, K. v. Klitzing, J. Schneider, G. Weimann and K. Ploog, Phys. Rev. Lett., 61, 1650 (1988).
[21] W. Desrat et al., Phys. Rev. Lett., 88, 256807 (2002).
[22] R. G. Clark et al., Phys. Rev. Lett., 62, 1536 (1989).
[23] O. Stern et al. Phys. Rev. B 70, 075318 (2004).
[24] J. Nuebler et al., Phys. Rev. B, 81,035316 (2010).
[25] N. d’Ambrumenil, B. I. Halperin and R. H. Morf, Phys. Rev. Lett., 106, 126804 (2011).
[26] A. Wojs, G. Moller, S. H. Simon, and N. R. Cooper, Phys. Rev. Lett., 104, 086801 (2010).