Narrow-band imaging thoracoscopy in pleural amyloidosis

Yuki Kanno1, Naoki Furuya1, Mariko Okamoto1, Akira Noguchi2, Takeo Inoue1 & Masamichi Mineshita1

1Department of Internal Medicine, Division of Respiratory Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
2Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan.

Keywords
Amyloid, amyloidosis, narrow-band imaging, pleural effusion, thoracoscopy.

Correspondence
Yuki Kanno, School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa 216-8511, Japan.
E-mail: y2kanno@marianna-u.ac.jp

Received: 11 November 2017; Revised: 13 December 2017; Accepted: 24 January 2018; Associate Editor: Fraser Brims.

Abstract
We report the case of a 68-year-old male non-smoker suffering from shortness of breath for 1 year. He was referred to our institution for a definitive diagnosis. Both chest X-ray and computed tomography scans showed bilateral hydrothorax with no pleural thickening. We performed flexi-rigid thoracosopic pleural biopsy on the right side with a single port under local anaesthesia. Multiple white nodules were seen in parietal and visceral pleura, and these nodules were small and flat under white light. Narrow-band imaging demonstrated pathognostic findings on parietal pleura. Irregular dilative vessels were seen around these nodules. Subsequently, we performed parietal pleural biopsy for these nodules. Pathological examination with haematoxylin and eosin staining revealed eosinophilic matrix depositions present in the pleural parenchyma and the vessel wall. These depositions were positive for Congo red stain and showed apple-green birefringence under polarized light. These findings were compatible with pleural amyloidosis.

Introduction
About 6% of primary systemic amyloidosis is complicated with persistent pleural effusions [1]. Histopathological evaluations are essential for definitive diagnosis of pleural amyloidosis. Conventional thoracoscopy is a useful procedure to obtain pathological specimens, but it is an invasive procedure compared with thoracentesis. We have been using flexi-rigid thoracoscopy under local anaesthesia for patients with undiagnosed pleural effusions for many years [2]. We present a novel case of diagnosed pleural amyloidosis by flexi-rigid thoracoscope under local anaesthesia.

Case Report
A 68-year-old male non-smoker was suffering from shortness of breath for 1 year. Chest X-ray revealed bilateral pleural effusions diagnosed at a previous clinic. He was treated with diuretics for 3 months; however, the bilateral pleural effusions remained. He was referred to our institution for a definitive diagnosis. Both chest X-ray and computed tomography scans showed bilateral hydrothorax with no pleural thickening. We performed flexi-rigid thoracosopic pleural biopsy on the right side with a single port under local anaesthesia. Multiple white nodules were seen in parietal and visceral pleura, and these nodules were small and flat under white light. Narrow-band imaging demonstrated pathognostic findings on parietal pleura. Irregular dilative vessels were seen around these nodules. Subsequently, we performed parietal pleural biopsy for these nodules. Pathological examination with haematoxylin and eosin staining revealed eosinophilic matrix depositions present in the pleural parenchyma and the vessel wall. These depositions were positive for Congo red stain and showed apple-green birefringence under polarized light. These findings were compatible with pleural amyloidosis.
(ADA) and exudative effusion (lymphocytes accounted for 75%). The pleural fluid cytology did not reveal any malignant cells. Multiple acid-fast bacilli smears and cultures of pleural fluid were also negative. We performed flexi-rigid thoracoscopic pleural biopsy on the right side with a single port under local anaesthesia. Multiple white nodules were seen in parietal and visceral pleura, and these nodules were small and flat under white light (WL) (Fig. 1B, C). Narrow-band imaging (NBI) demonstrated pathognostic findings on parietal pleura (Fig. 1D). Irregular dilative vessels were seen around these nodules. We performed parietal pleural biopsy for these nodules.

Pathological examination was performed using haematoxylin and eosin staining, and eosinophilic matrix material depositions were present in the pleural parenchyma and the vessel wall (Fig. 2A). These depositions were positive for Congo red stain (Fig. 2B) and also showed apple-green birefringence under polarized light (Fig. 2C). These findings were compatible with pleural amyloidosis. Bone marrow revealed amyloid deposition and a mild plasmacytosis with under 10% of plasma cells. Biopsy tissue from the stomach and duodenum revealed amyloid deposition. His case was diagnosed as systemic AL amyloidosis.

Discussion

This is the first report to describe detailed thoracoscopic findings of pleural amyloidosis using pleuroscopy with NBI. Pleuroscopy under local anaesthesia is a useful procedure to obtain pathological specimens with minimal invasiveness, but it is difficult to determine the optimal biopsy site [2]. We previously reported that NBI was useful in the selection of optimal biopsy sites by assessing vascular patterns in malignant lesions [3]. Irregular vascularity on NBI is often seen in malignant disease. NBI has been mainly employed for detecting pre-neoplastic and neoplastic lesions as it provides more detailed images of the microvasculature and angiogenesis processes.

Serrano-Fernández ML et al. [4] reported a case of bronchial amyloidosis. Using NBI, they assessed bronchoscopic findings of intrabronchial lesions in detail. NBI examination showed complex vascular networks, capillary loops, and abrupt-ending vessels of a large calibre in bronchial amyloidosis.

In our present case, NBI was useful to assess irregular vascularity around small pleural nodules. For pathological examination, amyloid depositions were present in the pleural vessel wall, but these vessels had maintained their

![Figure 1. (A) Chest computed tomography (CT) showed bilateral hydrothorax with no pleural thickening. (B, C) Multiple white nodules were seen in visceral pleura with white light (WL). (D) Narrow-band imaging (NBI) demonstrated dilative vessels that were seen around nodules.](image-url)
patency. The findings of dilative vessels and vascularity in NBI might reflect amyloid depositions in pleural vessels.

In patients with undiagnosed pleural effusions, pleural amyloidosis should be considered a differential diagnosis. Moreover, thoracoscopy with NBI was a useful procedure to assess the findings of pleural amyloidosis in detail.

Disclosure Statement

Appropriate written informed consent was obtained for publication of this case report and accompanying images.

Acknowledgments

The authors thank Drs. Akira Noguchi and Masayuki Takagi of the Pathology Department at St. Marianna University School of Medicine. The authors also thank Mr. Jason Tonge from St. Marianna University School of Medicine for reviewing the language of this article.

References

1. Berk JL, Keane J, Seldin DC, et al. 2003. Persistent pleural effusions in primary systemic amyloidosis: etiology and prognosis. Chest 124:969–977.
2. Ishida A, Miyazawa T, Miyazu Y, et al. 2005. Medical thoracoscopy using a flexirigid thoracoscope in the diagnosis of pleural effusion of unknown cause. Chest 128(4):320S–321S.
3. Ishida A, Ishikawa F, Nakamura M, et al. 2009. Narrow band imaging applied to pleuroscopy for the assessment of vascular patterns of the pleura. Respiration 78:432–439.
4. Serrano-Fernández ML, Alvarez-Maldonado P, Aristi-Urista G, et al. 2014. Narrow-band imaging bronchoscopy in tracheobronchial amyloidosis. J Bronchology Interv Pulmonol 21(3):267–270.