Modulation of nongenomic activation of PI3K signalling by tetramerization of N-terminally-cleaved RXRα

Liqun Chen1,2,3,*, Alexander E. Aleshin3,*, Gulimiran Alitongbieke1, Yuqi Zhou1, Xindao Zhang1, Xiaohong Ye1, Mengjie Hu1, Gaoang Ren1, Ziwen Chen1, Yue Ma1, Duo Zhang1, Shuai Liu1, Weiwei Gao1, Lijun Cai1, Lingjuan Wu2, Zhiping Zeng1, Fuquan Jiang3, Jie Liu1, Hu Zhou1, Gregory Cadwell3, Robert C. Liddington3, Ying Su1,3 & Xiao-kun Zhang1,3

Retinoid X receptor-alpha (RXRα) binds to DNA either as homodimers or heterodimers, but it also forms homotetramers whose function is poorly defined. We previously discovered that an N-terminally-cleaved form of RXRα (tRXRα), produced in tumour cells, activates phosphoinositide 3-kinase (PI3K) signalling by binding to the p85α subunit of PI3K and that K-80003, an anti-cancer agent, inhibits this process. Here, we report through crystallographic and biochemical studies that K-80003 binds to and stabilizes tRXRα tetramers via a ‘three-pronged’ combination of canonical and non-canonical mechanisms. K-80003 binding has no effect on tetramerization of RXRα, owing to the head–tail interaction that is absent in tRXRα. We also identify an LxxLL motif in p85α, which binds to the coactivator-binding groove on tRXRα and dissociates from tRXRα upon tRXRα tetramerization. These results identify conformational selection as the mechanism for inhibiting the nongenomic action of tRXRα and provide molecular insights into the development of RXRα cancer therapeutics.
Many therapeutic target proteins including nuclear receptors exist in equilibrium between different oligomeric states that control their biological functions. Retinoid X receptor α (RXRα), a member of the nuclear receptor superfamily and a validated drug target, exists in different oligomeric forms that regulate a broad spectrum of cellular processes under both physiological and pathophysiological conditions. Like other nuclear receptors, RXRα comprises an intrinsically disordered N-terminal A/B domain with poorly defined functions, a central DNA-binding domain (DBD), and a ligand-binding domain (LBD) in which α-helices are arranged around a central hydrophobic ligand-binding pocket (LBP). Helix 12 (H12), at the C terminus of RXRα, undergoes large movements in response to ligand binding. For example, agonist binding induces H12 to adopt an active conformation that, together with elements of helices H3 and H4, create a groove for binding coactivators that leads to transactivation.

In contrast, in the absence of agonist or in the presence of antagonist, H12 adopts an inactive conformation that favors the binding of corepressors, which serve to inhibit target gene transcription. Coactivators contain interaction domains with an LxxLL motif (NR box), while corepressors utilize a variant of this motif, L/xxL/V (co-repressor NR box, CoRNR).

In addition to acting as heteromERIC partners of some nuclear receptors, RXRα can form homodimers that trigger signalling pathways. A unique property of RXRα is an auto-repressive mechanism involving homotetramerization, in which a ‘dimer-of-dimers’ pack in a bottom-to-bottom manner, with H12 from each monomer invading (and invaded by) a neighbouring domain across the tetramer interface. This pairwise ‘exchange of arms’ enables each monomer to bind to and occlude the coregulator-binding groove of its neighbour. Some molecules have been shown to promote the auto-repressed state and repress gene transcription. The equilibrium between inactive homotetramers and active homodimers is tightly regulated by ligand binding. Thus, binding of agonists such as 9-cis-retinoic acid (9-cis-RA) results in dissociation of homotetramers into homodimers, which has been proposed as a regulatory mechanism for RXRα transactivation. However, compounds that act to promote RXRα homotetramerization remain to be identified and characterized.

Recent advances have revealed important nongenomic functions of RXRα and its non-canonical modulators. We previously found that RXRα is abnormally cleaved in many cancer cells, resulting in a truncated RXRα (tRXRα) that lacks a portion of its C-terminal A/B domain. Unlike the wild-type RXRα, which normally resides in the nucleus, tRXRα is cytoplasmic, and we showed that it interacts with the p85α regulatory subunit of the phosphatidylinositol 3-kinase (PI3K), a critical player in a wide range of cellular processes including cell growth, proliferation, survival, motility, metabolism, protein synthesis and migration. The interaction with p85α promotes PI3K/AKT activation and enhances tumour cell growth, revealing an oncogenic effect of tRXRα in tumour cells. We also reported that K-80003, a promising anti-cancer agent derived from the non-steroidal anti-inflammatory drug (NSAID) Sulindac, binds to tRXRα and inhibits its interaction with p85α and activation of PI3K signalling. However, the molecular mechanism of this potent inhibition remained to be determined.

Here, we report the crystal structure of RXRα-LBD in complex with K-80003, and the characterization of the role of K-80003-mediated tRXRα tetramerization in regulating its interaction with p85α and the nongenomic activation of PI3K signalling. Our results reveal a previously unrecognized role of RXRα tetrers in modulating subcellular localization and nongenomic interaction with cytoplasmic signalling proteins. Moreover, we show that K-80003 inhibits tRXRα interaction with p85α by stabilizing a tetrameric form of tRXRα through a ‘three-pronged’ mechanism involving both canonical and non-canonical binding. This work opens up new avenues for developing novel RXRα-based therapeutics, by selectively stabilizing a particular oligomeric state.

Results

Crystal structure of K-80003-bound RXRα-LBD. To understand how K-80003 (Supplementary Fig. 1a) modulates the biological activity of tRXRα, we determined the crystal structure of RXRα-LBD in complex with K-80003 to a resolution of 2.6 Å (Table 1). We found that the RXRα-LBD/K-80003 complex adopts a tetrameric structure, similar to those observed in crystals of apo-RXRα or RXRα-LBD/ttRA-isomer complex (Supplementary Fig. 1b), in which two RXRα-LBD canonical homodimers (labelled A1/B1 and A2/B2) pack in a bottom-to-bottom manner (Fig. 1a) with point group symmetry D2. Besides the canonical dimer interface, there are two symmetry-related interfaces involving subunits A1/B2 and B1/A2. These ‘tetramer’ interfaces comprise three sub-regions: parallel packing between symmetry-related H3 helices; ‘end-to-end’ packing between H11 that reduces their length by two helical turns (compared with the agonist-bound structure); and the invasion of each H12 helix into its apopposing domain, where it binds to the coregulator-binding groove, consisting of elements of H3 and H4 (Fig. 1a). The apopposing domain reciprocates the process in a pairwise ‘exchange of C-terminal arms’. An LMEML motif near the C terminus of H12 binds to the coregulator groove by mimicking the LxxIL/LxxLL motif of coregulators (Supplementary Fig. 2). The tetramer interfaces create two substantial symmetry-related interfacial cavities that are readily accessible to solvent and small molecules.

Refinement of the structure and careful inspection of difference Fourier maps revealed six molecules of K-80003 bound per tetramer, with three molecules per A1/B2 or A2/B1 interfacial cavity (Fig. 1a; Supplementary Fig. 3). This stoichiometry is

Table 1	Data collection and refinement statistics.				
RXRα-LBD/K-80003	**RXRα-LBD/K-80003**	**RXRα-LBD/K-80003**	**RXRα-LBD/K-80003**	**RXRα-LBD/K-80003**	**RXRα-LBD/K-80003**
Data collection	**Space group**	 	P2₁	 	
Cell dimensions	α, β (A), β (°)	46.6, 99.4, 109.9, 99.2	34-2.6 (2.7-2.6)*	 	
Resolution (Å)	34-2.6	0.080 (0.96)	 	 	
I/σI	6.1 (1.2)	100 (100)	3.7 (3.5)	 	
Completeness (%)	100 (100)	 	 	 	
Redundancy	66.4	 	 	 	
Rmerge	30.186 (1.341)	 	 	 	
No. of reflections work set (RFREE set)	1.95/0.242	 	 	 	
No. of atoms	Protein, 6,618	 	 	 	
Ligands	194	 	 	 	
Water	134	 	 	 	
B-factors (Å²)	Protein, 66.4	 	 	 	
Ligands	85	 	 	 	
Water	53	 	 	 	
R.m.s. deviations	Bond lengths (Å), 0.002	 	 	 	
	Bond angles (°), 0.61	 	 	 	

Highest-resolution shell is shown in parentheses.
consistent with values derived by isothermal titration calorimetry (ITC) (Supplementary Fig. 5a). The 2 A1/B2 and A2/B1 interfacial cavities are symmetry-related and the three bound molecules in each cavity (K-80003A, K-80003B and K-80003C, respectively, Fig. 1b) appear to play distinct but complementary roles in stabilizing the tetramer. Thus, K-80003A and K-80003B are arranged about the A1/B2 pseudo-dyad, making similar but distinct interactions (Figs 1b and 2b). They bind in a region where the H12 is located in the agonist-bound RXR-LBD structure (Fig. 2a) and thus distinct from the canonical ligand-binding region. The indene ring of K-80003A makes many interactions with monomer B2, including parallel aromatic stacking with W305, and hydrophobic binding with L276 and L309, and R302. Its isopropylphenyl ring contacts K-80003C. On the other face of K-80003A, there are several hydrophobic/aromatic interactions, including with the side-chains of F439, I447 and L451 from the A1 monomer (Fig. 2b). On the fourth side, to complete the ‘cage’ around K-80003C, there are numbers of polar and ionic interactions. Notably, the carboxylate of K-80003A makes a bifurcated salt-bridge with K440 from A1 and R302 from B2, as well as an H-bond with the indole N-H of W305 (B2) (Fig. 2b). Thus, K-80003A is firmly encased on all sides at a unique location: by side-chains from A1 and B2 at the top and bottom, by molecule K-80003C on one side, and by elements of the invading H11–H12 turn and H12 helix on the other.

For K-80003B, the symmetry-related packing is similar but distinct with fewer interactions. The ionic interactions with R302 of A1 and K440 of B2 are much weaker, which may explain why K-80003B is less ordered than K-80003A, and with less well-defined electron density. Nevertheless, it makes similar aromatic stacking interactions—in this case, parallel with F439, but a less-optimal (45° stacking angle) with W305 (Fig. 2), as well as hydrophobic interactions with L433 of A1 and L436 of B2.

K-80003C binds in the pocket of monomer B2, in a mode that resembles a canonical ligand (Fig. 2a). Unlike K-80003A and K-80003B, it makes strong contacts only with the B2 subunit (Fig. 2b). Its carboxyl motif makes a salt-bridge with R316, while the indene ring sits in a broad hydrophobic cavity, and both are well-defined in the electron density map. However, the isopropylbenzene moiety sticks out of the pocket and into the cavity, making only weak contacts with other residues; it presumably adopts multiple conformations, consistent with the weak electron density (Supplementary Fig. 3).

Taken together, the interactions between the three bound K-80003 molecules and the protein suggest that K-80003 stabilizes RXR-LBD tetramer by a unique combination of distinct and canonical-binding mechanisms acting like a ‘3-pronged’ binding mode: K-80003A is tightly packed in a hydrophobic, aromatic and polar cage that strengthens the tetramer and provides additional glue to hold H12 in its place to prevent coregulator binding. K-80003B also contributes to tetramer stabilization, but appears less tightly packed; significantly, however, it blocks the entrance to the unoccupied pocket in monomer A1, which might be otherwise favored by ligands such as 9-cis-RA. K-80003C binds in the pocket in monomer B2 interacting with K-80003A and B2.
To understand why K-80003 binds asymmetrically to the tetramer, we closely examined the shape of the tetramer’s interfacial cavity. Superposition of A1/B2 subunit on to itself reveals that A1/B2 is asymmetric (Supplementary Fig. 4a) with a smaller pocket in monomer A1 than in the B2 monomer (Supplementary Fig. 4b). This asymmetry seems to be resulted from the shifts of H3 and H11 into the pocket in A1 (Supplementary Fig. 4c) and provides an explanation for why small molecules bind asymmetrically to the tetramer. tRA-isomer binds to the narrower pocket in monomer A1 where presumably selects the wider LBP pocket of the A1/B2 dimer. RA-induced homodimerization as RXR-A/B domain to bind to the full-length RXRz, demonstrating their interaction. The tetramerization was inhibited by 9-cis-RA in a dose-dependent manner (Fig. 3e), and was confirmed by immunostaining showing extensive colocalization of transfected RXR-A/B with RXR-LBD but not RXRz in the cytoplasm of cells (Supplementary Fig. 6a). Cotransfection of the RXR A/B domain completely suppressed the effect of K-80003 on promoting tRXRz tetramerization (Fig. 3f). These data reveal an extensive intramolecular interaction between the N terminus and the C terminus (N/C) in RXRz and its critical role in regulating RXRz tetramerization, and also provides a molecular explanation for the differential effect of K-80003 on the tetramerization of tRXRz and RXRz.

To further study the N/C interaction, we first conducted deletion analysis of the N-terminal A/B region to narrow down the region required for the interaction. Deletion of either the N-terminal 40 or 60 amino acids could not confer the ability of the resulting mutants to interact with the A/B domain (Fig. 3g). Deletion of additional 20 amino acids resulted in a mutant (tRXRz), which strongly interacted with the RXRz-A/B protein. RXRz-Δ60, like tRXRz, interacted strongly with RARy (Supplementary Fig. 6b), demonstrating that RXRz-Δ60 is still active in heterodimerization with RARy. These results suggested that amino acids from 60 to 80 are critical for the N/C interaction. We next determined region in RXRz-LBD required for binding A/B domain. RXRz-A/B could interact with RXRz mutants lacking N-terminal sequences (tRXRz, RXRz-Δ100 and RXRz-LBD) but not with mutant lacking C-terminal LBD (RXRz-Δ1-235) or mutants lacking AF2/H12 region (RXRz-ΔAF2 and RXRz-ΔA/BAF2) (Fig. 3h). tRXRz without AF2/ H12 also failed to interact with RXRz-A/B (Supplementary Fig. 6c). Thus, the N/C intramolecular interaction involves the N-terminal A/B domain and the C-terminal AF2/H12. The conclusion was supported by data showing the inability of the A/B domain to bind to the full-length RXRz, likely due to the unavailability of the C-terminal binding site masked by its own N-terminal A/B domain. The AF2/H12 is involved in the formation of the hydrophobic coactivator-binding groove that was shown to mediate the N/C interaction of some nuclear receptors. To determine whether the N/C interaction involves the coactivator-binding groove, we tested whether W305, which is located in H5 and was shown to play a critical role in the formation of the coactivator-binding groove, was involved in the N/C interaction. Our results showed that RXRz-LBD/W305Q with W305 mutated to Q, which failed to bind to an LxxLL-containing protein (see below), could still bind to the RXRz-A/B domain.

K-80003 promotes tetramerization of tRXRz but not RXRz. The unique binding of K-80003 observed in the tetrameric form of K-80003-bound RXRz-LBD crystal structure prompted us to determine whether K-80003 binding could promote RXRz-LBD tetramerization. In non-denaturing polyacrylamide gel electrophoresis, purified RXRz-LBD protein existed as two distinct bands corresponding to homodimer and homotetramer, respectively (Fig. 3a). As expected, incubation of RXRz with 9-cis-RA known to induce homodimerization resulted in a shift of RXRz-LBD from tetramers to dimers. In contrast, incubation with K-80003 induced an accumulation of tetramers. L433 near the C terminus of H10 packs directly against the indene ring of K-80003B, and its mutation to D would destabilize key interactions with K-80003 due to loss of existing hydrophobic interaction and introduction of repulsive charge-charge interaction with the carboxyl motif of K-80003B. Indeed, K-80003 failed to bind to RXRz-LBD/L433D (Supplementary Fig. 5a) and promote its tetramerization (Fig. 3a). Substitution of Q275 in H3 with E, or F439 in H11 with A, which are involved in the binding of K-80003 (Fig. 2), impaired the tetramerization of respective mutants by K-80003, confirming the role of H3 and H11 in the K-80003-induced stabilization of RXRz-LBD tetramers. Interestingly, mutating R316 in LBP, which is essential for 9-cis-RA binding and involved in K-80003C binding (Fig. 2b), with E, resulted in a mutant (RXRz-LBD/R316E) that exhibited mainly as a tetramer independent of the presence of either 9-cis-RA or K-80003, in agreement with a previous report. The effect of K-80003 on stabilizing RXRz-LBD tetramers appeared overpowered the 9-cis-RA-induced homodimerization as RXRz-LBD was mainly found as a tetramer in the presence of both K-80003 and 9-cis-RA (Fig. 3a).

The ability of K-80003 to stabilize RXRz-LBD tetramer was also illustrated by gel filtration chromatography showing that purified RXRz-LBD protein mainly existed as a tetramer in the presence of K-80003, while it displayed predominantly as a homodimeric complex in the presence of 9-cis-RA (Fig. 3b). Evaluation of a panel of chemical crosslinkers identified homobifunctional N-hydroxysuccinimide-based chemical crosslinker BS3 as the most efficient one to crosslink the RXRz-LBD tetramer (Supplementary Fig. 5b). Thus, BS3 was subsequently used to study the effect of K-80003 on RXRz tetramerization. Extracts from cells transfected with RXRz-LBD and treated with either K-80003 or 9-cis-RA were prepared and subsequently incubated with BS3. Figure 3c showed that the treatment of cells with K-80003 produced crosslinked species on SDS-PAGE gels of 25, 50 and 100 kDa, corresponding to monomer, dimer and tetramer of RXRz-LBD, respectively. For comparison, treatment with 9-cis-RA resulted in only monomer and homodimer. Interestingly, RXRz or mutants expressed in cells mainly existed as a monomer even after crosslinking, which is different from purified RXRz proteins. Examination of the effect of K-80003 on tetramerization of tRXRz and RXRz revealed that K-80003 effectively promoted the formation of tRXRz tetramers. Unexpectedly, K-80003 failed to promote the tetramerization of the full-length RXRz, indicating that the N-terminal A/B domain interferes with its tetramerization.

The RXRz N/C interaction inhibits its tetramerization. The above observation prompted us to determine how the N-terminal A/B domain of RXRz inhibited its tetramerization (Fig. 1). Thus, the interaction between RXRz-A/B domain and RXRz-LBD (Fig. 3d) was studied by cell-based communoprecipitation (coIP) assays. Immunoprecipitation of the RXRz-A/B protein resulted in a strong coIP of the RXRz-LBD protein, demonstrating their interaction. The interaction was inhibited by 9-cis-RA in a dose-dependent manner (Fig. 3e), and was confirmed by immunostaining showing extensive colocalization of transfected RXRz-A/B with RXRz-LBD but not RXRz in the cytoplasm of cells (Supplementary Fig. 6a). Cotransfection of the RXRz A/B domain completely suppressed the effect of K-80003 on promoting tRXRz tetramerization (Fig. 3f). These data reveal an extensive intramolecular interaction between the N terminus and the C terminus (N/C) in RXRz and its critical role in regulating RXRz tetramerization, and also provides a molecular explanation for the differential effect of K-80003 on the tetramerization of tRXRz and RXRz.
protein in a 9-cis-RA sensitive manner similar to the wild-type RXRα-LBD (Fig. 3i). These results preclude the involvement of the coactivator-binding groove in the N/C interaction.

An LxxLL motif in p85α mediates p85α interaction with RXRα.

tRXRα differs from RXRα in its ability to reside in the cytoplasm and interact with cytoplasmic p85α protein, an event that is inhibited by K-80003 (ref. 29). To address the role of tetramerization in modulating tRXRα interaction with p85α, we first determined how p85α binds to tRXRα. Thus, several p85α mutants (Fig. 4a) were constructed and analysed for their interaction with tRXRα. CoIP experiments showed that the N-terminal region of p85α, including the N-terminal SH3 and BCR domains, is sufficient for interacting with tRXRα, whereas the C-terminal region including NSH2, iSH2 and CSH2 domains was dispensable (Fig. 4b). We further observed that a p85α mutant encompassing only the BCR domain could interact with tRXRα and RXRα-LBD but not RXRα-A/B (Fig. 4c).

In an effort to understand the molecular basis for BCR interaction with tRXRα, we noticed the presence of two LxxLL motifs, 161-LRQLLI165 and 249-LQYLL254, in BCR, which are

Table: Tetramerization assays

	RXRα-LBD	L433D	R316E	Q275E	F439A
K-80003	- + + + +	- + +	+ + +	+ + +	+ + +
9-cis-RA	- + + + +	- + +	+ + +	+ + +	+ + +

	Tetramer (%)	Dimer (%)
58 83 13 69	54 29 57 41	89 89 94 47 7 58 47 33 55
42 17 87 31	46 71 43 59	11 11 6 53 93 42 53 67 45

a.

An LxxLL motif in p85α mediates p85α interaction with RXRα. tRXRα differs from RXRα in its ability to reside in the cytoplasm and interact with cytoplasmic p85α protein, an event that is inhibited by K-80003 (ref. 29).

b.

UV Time (min)

- **Control:** 50, 60, 70, 80
- **BS3:** 50, 60, 70, 80

c.

MW (kDa)

- 100 kDa
- 50 kDa
- 25 kDa

d.

Time (min)

- 50, 60, 70, 80
- **D:** 50, 60, 70, 80
- **T:** 50, 60, 70, 80

e.

Input:

- 9-cis-RA (-LgM)
- HA-RXRα-A/B
- Myc-RXRα-LBD

IP: HA

- IgG
- Myc-RXRα-LBD
- HA-RXRα-A/B

f.

9-cis-RA

- - - - - - - -
- - - - - - - -

K-80003

- - + - - - -
- + - - - - - -

Input:

- Myc-RXRα-Δ40
- Myc-RXRα-Δ60
- Myc-RXRα
- Myc-RXRα-Δ1100
- HA-RXRα-A/B

RXRα mutants

- IgG
- RXRα-A/B

g.

Input:

- Myc-RXRα-LBD
- Myc-RXRα-LBD/W305Q
- HA-RXRα-A/B

IP: HA

- 9-cis-RA
- RXRα mutants
- IgG
- RXRα-A/B

h.

Input:

- RXRα
- tRXRα
- RXRα-Δ40
- RXRα-Δ60
- RXRα-ΔAF2
- RXRα-ΔABΔAF2
- RXRα-LBD
- RXRα-1-235
- RXRα-A/B

IP: HA

- WB: Myc
- IgG
- RXRα-A/B

WB: HA RXRα-A/B

i.

Input:

- Myc-RXRα-LBD
- Myc-RXRα-LBD/W305Q
- HA-RXRα-A/B

9-cis-RA

- + + + + + + + +
- + + + + + + + +

RXRα mutants

- IgG
- RXRα-A/B

WB: Myc

- IgG
- RXRα-A/B
commonly found in coactivators that mediates the transactivation of nuclear receptors\(^\text{10,13-16}\). Inspection of both motifs in the published BCR structure\(^\text{26}\) revealed that the \(\text{L}^\text{240/241QYLL}^\text{244}\) motif is buried in the central core of the BCR domain, while the \(\text{L}^\text{161/162RQL}^\text{165}\) motif is located in a separate helix within a loop region. The \(\text{L}^\text{161/162RQL}^\text{165}\) motif docks well to the coactivator-binding groove of RXR\(_\alpha\) (Fig. 4d), suggesting that the motif might be critical for RXR\(_\alpha\) binding. A peptide (BCR peptide) that encompasses the \(\text{L}^\text{161/162RQL}^\text{165}\) motif (Fig. 4a) was therefore synthesized and examined for its binding to RXR\(_\alpha\)-LBD by Biacore assay. The peptide binds strongly to RXR\(_\alpha\) in the presence of \(\text{9-cis-RA}\) with a \(K_d\) of \(320\ \text{nM}\) (Fig. 4e), which is in the range of coregulator peptide binding to nuclear receptor\(^\text{37}\). The role of the \(\text{L}^\text{161/162RQL}^\text{165}\) motif was also illustrated by the enhancing effect of \(\text{9-cis-RA}\) on p85\(_\alpha\)-BCR interaction with either RXR\(_\alpha\)-LBD or tRXR\(_\alpha\) (Fig. 4f). Furthermore, \(\text{9-cis-RA}\)-induced RXR\(_\alpha\)-LBD interaction with p85\(_\alpha\)-BCR was inhibited by the LxxLL-containing BCR peptide conjugated with the cell-penetrating peptide derived from trans-activator of transcription (TAT), similar to the effect of K-80003, but not by the corresponding mutant peptide (Fig. 4g). Substitution of L164 and L165 in \(\text{L}^\text{161/162RQL}^\text{165}\) motif with A also abolished the interaction of BCR with RXR\(_\alpha\)-LBD (Fig. 4h). Mutating W305 critical for the formation of the coactivator-binding groove\(^\text{12}\) to Q impaired the binding of RXR\(_\alpha\)-LBD with p85\(_\alpha\)-BCR either in the presence or absence of \(\text{9-cis-RA}\) (Fig. 4i), even though the same mutation had no effect on RXR\(_\alpha\)-LBD interaction with RXR\(_\alpha\)-A/B (Fig. 3i). The interaction of the LxxLL-like motif in p85\(_\alpha\) with the coactivator-binding groove of tRXR\(_\alpha\) is biologically relevant as TNF\(_\alpha\)-induced activation of AKT in cells transfected with tRXR\(_\alpha\) and p85\(_\alpha\) was inhibited by cotransfection of BCR but not BCR mutant, similar to the inhibitory effect of K-80003 (Supplementary Fig. 7a). Exposure of cells to BCR peptide also resulted in a similar inhibition (Supplementary Fig. 7b). Altogether, these results demonstrate that the LxxLL motif in p85\(_\alpha\) can bind to the coactivator-binding groove of RXR\(_\alpha\) in analogy to the binding of transcriptional coactivators.

Tetramerization prevents tRXR\(_\alpha\) from interacting with p85\(_\alpha\). To further characterize the ‘coactivator-like’ binding of p85\(_\alpha\), we studied the requirement of AF2/H12 in tRXR\(_\alpha\), which is essential for the formation of the coactivator-binding groove\(^\text{12,38}\), for tRXR\(_\alpha\) interaction with p85\(_\alpha\). As previously reported\(^\text{29}\), tRXR\(_\alpha\) interacted with the full-length p85\(_\alpha\) in the presence of TNF\(_\alpha\). Removing AF2/H12 from tRXR\(_\alpha\) (tRXR/tRXR/ΔAF2) abolished its interaction with p85\(_\alpha\) (Fig. 5a). Interfering AF2/H12 activity by transfecting RXR\(_\alpha\)-A/B capable of binding AF2/HD2 also inhibited \(\text{9-cis-RA}\)-induced interaction of tRXR\(_\alpha\) with p85\(_\alpha\)-ΔISh2 (Fig. 5b). These results further support the ‘coactivator-like’ binding of p85\(_\alpha\).

Because the coactivator-binding groove of RXR\(_\alpha\) was shielded in the tetrameric form of RXR\(_\alpha\)-LBD (Fig. 1), our observation that the LxxLL-like motif in p85\(_\alpha\) interacted with the coactivator-binding groove of RXR\(_\alpha\) implied that the p85\(_\alpha\)-binding activity of tRXR\(_\alpha\) is impaired in its tetrameric form. To address this, we evaluated the binding of p85\(_\alpha\) by two tRXR\(_\alpha\) mutants, tRXR\(_\alpha\)/F313A and tRXR\(_\alpha\)/R316E, which exist in different oligomeric forms\(^\text{25}\). RXR\(_\alpha\)/F313A is a transcriptionally constitutively active mutant receptor with H12 adopting an active conformation to form the coactivator-binding groove\(^\text{38}\). The mutant does not exist as a tetramer as its H12 is not available to contribute to the formation of tetramers\(^\text{25}\). In contrast, tRXR\(_\alpha\)/R316E, a transcriptionally inactive mutant, exhibited predominantly as a tetramer\(^\text{25}\). In agreement with previous observations\(^\text{25}\), our cross-link experiments detected a strong tetrameric species of tRXR\(_\alpha\) compared to tRXR\(_\alpha\) by coIP experiments, we found that tRXR\(_\alpha\)/R316E could not bind to p85\(_\alpha\) in either the absence or presence of TNF\(_\alpha\) or \(\text{9-cis-RA}\), whereas tRXR\(_\alpha\)/F313A showed a constitutive and \(\text{9-cis-RA}\)-independent interaction with p85\(_\alpha\) compared to tRXR\(_\alpha\) (Fig. 5d). K-80003 also failed to modulate the interaction of both mutants with p85\(_\alpha\) (Fig. 5e). Immunostaining revealed lack of colocalization of the tRXR\(_\alpha\)/R316E mutant with p85\(_\alpha\) in the absence or presence of TNF\(_\alpha\) (Fig. 5f). To further determine the inhibitory effect of tRXR\(_\alpha\) tetramerization, we examined the interaction of p85\(_\alpha\)-ΔISh2 with tRXR\(_\alpha\) tetramers crosslinked by BS3. Cells transfected with HA-p85\(_\alpha\)-ΔISh2 and Myc-tRXR\(_\alpha\) were treated with \(\text{9-cis-RA}\) and/or K-80003, and subsequently exposed to BS3. tRXR\(_\alpha\)-induced interaction with p85\(_\alpha\)-ΔISh2 was potently inhibited by BS3 that stabilized tRXR\(_\alpha\) (Fig. 5d). K-80003 also failed to modulate the interaction of both mutants with p85\(_\alpha\) (Fig. 5e).

Tetramerization regulates tRXR\(_\alpha\) subcellular localization. The interaction of tRXR\(_\alpha\) with p85\(_\alpha\) occurs in the cytoplasm\(^\text{25}\). We next determined whether K-80003-induced stabilization of tRXR\(_\alpha\) tetramers could modulate its subcellular localization. When transfected into cells, both tRXR\(_\alpha\) and RXR\(_\alpha\) resided mainly (>80%) in the nucleus. However, upon TNF\(_\alpha\) treatment...
Figure 4 | Identification of an LxxLL-like motif in p85α and its interaction with the coactivator-binding groove in tRXRa.

(a) Schematic representations of p85α and mutants. SH3, BCR, nSH2, iSH2, cSH2 domains in p85α and the location of the BCR-LxxLL motif are indicated. BCR and mutant peptides are shown. (b) Interaction of tRXRa with p85α mutants. Myc-tRXRa expression vector was transfected into HEK293T cells along or together with p85α mutant tagged with HA epitope, and their interaction was analysed by coIP using anti-Myc antibody. (c) BCR domain interaction with tRXRa. HA-p85α-BCR was cotransfected with Myc-tagged RXRa mutants into HEK293T cells, and their interaction was analysed by coIP using anti-HA antibody. (d) The BCR-LxxLL peptide (structure was extracted from the BCR crystal structure of PDB code 1PBW) docks to the coactivator-binding groove on RXRa (PDB code 3FUG). (e) SPR analysis of BCR-peptide binding to RXRa-LBD in the presence of 9-cis-RA. (f) Enhancing effect of 9-cis-RA on p85α-BCR interaction with RXRa-LBD and tRXRa. Cells transfected with Myc-tRXRa or Myc-RXRa-LBD together with HA-p85α-BCR were treated with 9-cis-RA (10⁻⁷ M), and analysed by coIP. One of two similar experiments is shown. (g) Inhibitory effect of LxxLL-containing BCR peptide on RXRa-LBD interaction with p85α-BCR. HEK293T cells transfected with HA-p85α-LBD with Myc-RXRa-LBD were exposed to the indicated peptide and compound for 12 h. Cell lysates were prepared and analysed by coIP. (h) Mutation of the LxxLL motif in BCR impairs its interaction with RXRa-LBD. BCR and BCR-LxxLL mutant were tagged with Flag epitope and transfected into HEK293 cells with Myc-RXRa-LBD. Cell lysates were prepared and analysed for interaction of BCR and its mutant with RXRa-LBD by coIP. (i) Trp305 is essential for RXRa-LBD binding to p85α-BCR. Myc-tagged RXRa-LBD or RXRa-LBD/W305Q was transfected together with HA-p85α-BCR into HEK293T cells in the presence or absence of 9-cis-RA (10⁻⁷ M). Cell lysates were prepared and analysed by coIP. For western blotting, one of three or four similar experiments is shown.
tRXRα was found in the cytoplasm of cells (>65%), colocalizing extensively with p85α. In contrast, TNFα had no effect on the nuclear localization of tRXRα. When cells were cotreated with K-80003, TNFα-induced colocalization of tRXRα with p85α in the cytoplasm was inhibited, resulting in tRXRα nuclear localization (Fig. 6a). The effect of K-80003 was likely due to its binding to tRXRα as the cytoplasmic colocalization of p85α with tRXRα/L433D mutant defective in K-80003 binding was not affected by K-80003. Thus, TNFα-induced cytoplasmic localization of tRXRα was likely due to its cytoplasmic retention by TNFα-activated p85α through protein/protein interaction, suggesting that tRXRα tetramers incapable of binding p85α might reside in the nucleus. To address this, extracts prepared from cells transfected with tRXRα were subjected to crosslinking by BS3. Nuclear and cytoplasmic fractions were then prepared and analysed. Western blotting showed that K-80003-stabilized tetrameric form of tRXRα was found exclusively in the nuclear fraction, while tRXRα monomer was distributed both in the nuclear and cytoplasmic fractions (Fig. 6b). Thus, K-80003-stabilized tRXRα tetramer is mainly...
Figure 5 | Tetramerization of tRXRα prevents its interaction with p85α. (a) AF2/H12 is required for binding p85α. HEK293T cells transfected with HA-p85α and Myc-tRXRα or mutants were treated with TNFα (10 ng ml
1) for 1 h, and analysed by coIP assay using anti-Myc antibody. (b) Regulation of tRXRα interaction with p85α by ligand and RXRα-A/B region. HEK293T cells transfected with the indicated HA-p85α-ΔSH2, Myc-tRXRα and RXRα-A/B were treated with or without 9-cis-RA (10−7 M) for 6 h, and analysed by coIP assay using anti-Myc antibody. (c) Tetramerization of tRXRα/R316E and tRXRα/F313A was analysed in MCF-7 cells transfected with tRXRα/R316E or tRXRα/F313A, which were then treated with 9-cis-RA (10−7 M) or K-80003 (5 x 10−6 M) for 6 h. Cell lysates were subjected to B53 crosslinking and analysed by western blotting using Δ197 anti-RXRα antibody. (d) Interaction of tRXRα/R316E and tRXRα/F313A with p85α. HEK293T cells transfected with the indicated expression plasmids were treated with TNFα (10 ng ml
1) or 9-cis-RA (10−7 M) for 1 h, and analysed by coIP assay using anti-Myc antibody. (e) Characterization of p85α interaction with tRXRα/R316E or tRXRα/F313A. HEK293T cells transfected with the indicated plasmids were treated with 9-cis-RA (10−7 M) or K-80003 (5 x 10−6 M) for 6 h, and analysed by coIP assay using anti-HA antibody. (f) Mutation of R316 impairs tRXRα cytoplasmic localization. HEK293T cells cotransfected with Myc-tRXRα/R316E and HA-p85α were pretreated with K-80003 (5 x 10−6 M) for 3 h before exposed to TNFα (10 ng ml
1) for 30 min. Cells were immunostained with anti-Myc and anti-p85α antibody, and visualized by confocal microscopy. Scale bar, 10 μm. (g) Tetramerization of tRXRα impairs its interaction with p85α. HepG2 cells transfected with Myc-tRXRα together with HA-p85α-ΔSH2 were treated with K-80003 and or 9-cis-RA. Cell lysates were then subjected to B53 crosslinking, and analysed by western blotting using anti-Myc antibody. (h) Tetramerization of RXRα-LBD impairs its interaction with p85α-BCR. HEK293T cells transfected with Myc-RXRα-LBD together with HA-p85α-BCR were treated with K-80003. Cell lysates were subjected to B53 crosslinking, and analysed by western blotting using anti-HA antibody. For western blotting, one of three or four similar experiments is shown.

...nuclear, likely resulted from tRXRα dissociation from p85α or other cytoplasmic proteins. To study whether the anti-tumour effect of K-80003 could be attributed to its effect on the subcellular localization of tRXRα in vivo, we stably transfected tRXRα or RXRα into MCF-7 cells, and the resulting stable clones (Supplementary Fig. 8a) were inoculated into nude mice. Overexpression of tRXRα but not RXRα in MCF-7 breast cancer cells enhanced AKT activation in vitro (Supplementary Fig. 8b) and promoted the growth of MCF-7 tumour in animals, which was suppressed when animal were treated with K-80003 (Fig. 6c; Supplementary Fig. 8c). Inhibition of the growth of MCF-7/tRXRα tumour by K-80003 was accompanied with reduced AKT activation and enhanced PARP cleavage (Fig. 6d). To determine whether the anti-cancer activity of K-80003 was associated with its modulation of tRXRα subcellular localization, tumour specimens from nude mice were analysed by RXRα immunostaining (Fig. 6e). While RXRα was nuclear, tRXRα was predominantly cytoplasmic. However, a significant amount of tRXRα was found in the nucleus when animals were administered with K-80003. We also used polymavirus middle T antigen (PyMT) transgenic mice to study the anti-cancer effect of K-80003 and its modulation of the subcellular localization of tRXRα, which was highly expressed in PyMT mammary tumour developed in these mice (Supplementary Fig. 9a). K-80003 potently inhibited the growth of PyMT mammary tumour in this animal model (Fig. 6f), accompanied with induction of PARP cleavage and inhibition of cyclin D expression (Fig. 6g) as well as inhibition of tumour cell proliferation (Supplementary Fig. 9b). Immunostaining of PyMT tumour specimens using Δ197 anti-RXRα antibody that recognizes both tRXRα and RXRα revealed a predominant cytoplasmic RXRα staining (Fig. 6h). In contrast, RXRα staining was mainly found in the nucleus when mice were dosed with K-80003. Thus, K-80003 induction of tRXRα nuclear localization through its modulation of tRXRα tetramerization likely represents a major mechanism by which the compound exerts its potent therapeutic effect.

Discussion

RXRα is unique in that it can form not only homodimers and heterodimers but also homotetramers, suggesting that the equilibrium between these different oligomeric states plays a role in regulating RXRα functions. While the function and mechanism of RXRα homodimer and heterodimers are well documented, the role of RXRα homotetramers and its regulation remains poorly defined. We report here that K-80003 represents a unique RXRα ligand capable of shifting the oligomeric equilibrium by selectively binding to and stabilizing the tetrameric conformation. Our crystal structure of RXRα-LBD in complex with K-80003 shows that six molecules of K-80003 bind in a tetramer by a unique combination of distinct and canonical binding mechanisms acting like a ‘3-pronged’ binding mode. The comprehensive interactions between the bound K-80003 molecules and the protein provide a plausible explanation for how K-80003 binding can stabilize the tRXRα tetrameric state. Biochemical studies confirmed that K-80003 binding could promote tetramerization of tRXRα but not full-length RXRα. K-80003-induced stabilization of tRXRα tetramer was associated with inhibition of its interaction with p85α and activation of tRXRα-dependent PI3K/AKT signalling. The tetramerization also represents a crucial event in determining the subcellular localization of tRXRα. Collectively, these results unravel a critical role of tRXRα tetramerization in regulating its subcellular localization and nongenomic interaction with cytoplasmic signalling proteins.

Although how tRXRα binds to p85α remains to be precisely defined, our data demonstrated that an LxxLL motif in p85α and the amino acid residues at the coregulator-binding groove of RXRα are critical for their interaction (Fig. 4). These data in combination with information from comparing the RXRα-LBD dimer and RXRα-LBD/K-80003 tetramer crystal structures demonstrate that the potential p85α-binding site on tRXRα resides in the coregulator-binding groove. In the K-80003-stabilized RXRα-LBD tetramer, H12 protrudes into the coregulator-binding groove of the neighbouring monomer (Fig. 1), making the groove inaccessible for p85α binding (Supplementary Fig. 2). Modulation of gene transcription by nuclear receptors is mediated through their interaction with coactivators or corepressors via the LxxLL motif and the I/lexl/I VI motif, respectively. Thus, our identification of a functional LxxLL motif in p85α suggests that p85α may serve as a nongenomic coregulator of tRXRα in analogy with the regulation of nuclear receptor transactivation by coregulators in the nucleus. The genomic and nongenomic coregulators of RXRα may act coordinately to mediate the crosstalk between RXRα nuclear and cytoplasmic signalings. It is noteworthy that several nuclear receptors, including oestrogen receptor, glucocorticoid receptor, peroxisome proliferator-activated receptors, thyroid receptor and retinoic acid receptor could interact with p85α. Whether p85α serves as a common coregulator for different nuclear receptors to modulate PI3K signalling remains to be seen.
advantages. Although the N-terminal A/B domains of nuclear receptors are intrinsically disordered, studies have now shown that they are capable of undergoing a disorder-to-order transition upon binding specific target molecules. Thus far, the N/C intramolecular interaction has been described for several nuclear receptors, including oestrogen receptor, progesterone receptor, peroxisome proliferator-activated receptors and androgen receptor. We report here that N/C interaction also occurs in RXRα and acts to mediate RXRα interaction with p85α, defining a regulatory paradigm for RXRα action. Although how the N/C interaction in RXRα is mediated remains unclear, our inspection of the sequences at the N-terminal A/B domain of RXRα (Fig. 3g) revealed the existence of potential polyproline II (PPII) domain characterized by a PxxP core motif known to bind to SH3, WW and EVH1 domain. This is reminiscent of previous reports that proline-rich nuclear receptor co-regulatory protein 2 (PNRC2) uses a SH3 domain-binding motif (SEPPSPS) to interact with the LBDs of different nuclear receptors.
Figure 6 | Effect of tetramerization on the subcellular localization of tRXRα. (a) Effect of TNFα and K-80003. MCF-7 cells cotransfected with Myc-RXRα, Myc-tRXRα, tRXRα/L433D and p85α were pretreated with or without K-80003 (5 × 10⁻⁶ M) for 3 h before exposure to TNFα (10 ng ml⁻¹) for 30 min. Cells were immunostained with anti-Myc and anti-p85α antibody, and their subcellular localization revealed by confocal microscopy. (b) Tetrameric tRXRα resides in the nucleus. HEK293T cells cotransfected with Myc-tRXRα were treated with or without K-80003 (5 × 10⁻⁶ M) for 6 h. Nuclear (N) and cytoplasmic (C) fractions were prepared, subjected to B53 crosslinking, and analysed by western blotting using anti-Myc antibody. The purity of fractions was examined by analysing the expression of PARP and α-tubulin in non-crosslinked fractions. One of three similar experiments is shown. (c) Effect of K-80003 on the growth of MCF-7 cells in mice. Nude mice injected with MCF-7 cells stably transfected with control vector, Myc-RXRα, or Myc-tRXRα were administered with K-80003 (20 mg kg⁻¹) for 12 days. **P < 0.01. (d) Effect of K-80003 on PARP cleavage and AKT activation in MCF-7 xenograft tumours. Lysates prepared from tumours from nude mice treated with vehicle or K-80003 were analysed by western blotting. (e) K-80003 alters the subcellular localization of tRXRα in MCF-7 xenograft tumour cells. Tumour sections prepared from nude mice treated with vehicle or K-80003 were immunostained with anti-Myc antibody. (f) Effect of K-80003 on the growth of MMTV-PyMT mammary tumour. Four-week-old MMTV-PyMT mice were fed with or without diet containing K-80003 (100 mg kg⁻¹) for 4 weeks, and the appearance of tumour was determined. ***P < 0.01. (g) Effect of K-80003 on PARP cleavage and cyclin D1 expression in MMTV-PyMT mammary tumour cells. Lysates prepared from tumours from MMTV-PyMT mice fed with vehicle or K-80003 were analysed by western blotting. (h) K-80003 induces RXRα nuclear localization in MMTV-PyMT tumour cells. Tumour sections from MMTV-PyMT mice fed with or without K-80003 (100 mg kg⁻¹) for 4 weeks were immunostained with ΔN197 anti-RXRα antibody. Scale bar, 10 μm.

nuclear receptors including oestrogen receptor, glucocorticoid receptor, progesterone receptor, thyroid receptor, retinoic acid receptor and RXRα,53 and that a unique interaction motif exists in the ligand-binding domain of oestrogen receptor for binding PPII-like motif.46 Although AF2/H12 at the C-terminal end of RXRα is required for the N/C interaction (Fig. 3h), the coactivator-binding groove involving the AF2/H12 was not implicated in the regulation of nuclear receptor activity, ligand sensitivity and subcellular localization.34,35,51–53, Our results show that RXRα is often overproduced in cancer cells.29. We showed that the tetramerization of RXRα but not RXRα could be regulated by several mechanisms including ligand binding, intra-domain–domain interaction and nongenomic interaction with cytoplasmic signalling proteins. This study opens an opportunity to develop novel RXRα-based therapeutics by selectively stabilizing a particular oligomeric state. The selective induction by K-80003 of the tetramerization of tRXRα but not RXRα suggests that this class of compounds may preferentially affect tRXRα activity, which is therapeutically desirable since tRXRα is often overproduced in cancer cells.29.

Methods

Protein expression and purification. The human RXRα LBD (residues Thr223 to Thr642) cloned as an N-terminal histidine-tagged fusion protein in PET15b expression vector was expressed in Escherichia coli BL21 strain (Stratagene). After sonication, cell extract was incubated with the His60 Ni Superflow resin, and His-tagged RXRα-LBD-resin complexes were washed, eluted and concentrated to 5 mg ml⁻¹ for subsequent trials.54,55. For crystallization experiment, bovine thrombin (Sigma) was used to cleave the His tag from the purified His-tagged RXRα-LBD. The resulting His tag was removed on the Resource-Q column (GE) using 0.1–1 M NaCl gradient and the Tris–Cl pH 8 buffer. RXRα-LBD was further purified using gel filtration on a Superdex 200 2660 column (GE) pre-equilibrated with the 75 mM NaCl, 20 mM Tris-Cl buffer (pH 8).

Crystalization and structure solution. Crystalization conditions were initially determined using the sitting-drop vapor-diffusion method and the crystallization screens index and PEG-Ion solutions from Hampton Research. Final crystals were obtained by socrystallizing the protein and the ligand. The protein-ligand complex containing 0.35 mM of RXRα-LBD, 0.5–0.7 mM of a ligand. 1% DMSO, 100 mM NaCl and 20 mM Tris–Cl buffer (pH 7.6). 0.2 μl of the protein-ligand complex was mixed with 0.2 μl of the well solution (20% PEG3330 and 0.2 M Na Acetate) and incubated at 20 °C. Crystals appeared in 5–10 days and grew into 0.2 × 0.1 × 0.1 mm prisms. The crystals were flash-cooled in mother liquor containing 1.5 mM of K-8003 and 20% glycerol as a cryoprotectant. Diffraction data was collected from the cryo-cooled crystal (100 K) on an in-house diffractometer (Rigaku X-ray generator with a rotating anode, Varimax optic and R-AXIS HTC detector). Data was processed using the programme iMOSFLM, part of the CCP4 suite.56. The b-factor of the data set according to the Wilson plot was 60 Å².

Crystal structures were determined using the molecular replacement program Phaser with pdb entry 4N8R as an initial model. Coor57 and the program suite Phenix were used for the model rebuilding and refinement. Parameter files and initial models for the ligands were generated by eLBOW of Phenix. The data collection and refinement statistics are summarized in Table 1. Overall, 96.5% of residues in the refined structure are in favored regions of the Ramachandran plot, and no residues fall into disallowed regions. Coordinates error, as estimated by Phenix, is 0.37 Å.57.

Plasmid constructions. Expression plasmids Myc-RXRα, Myc-RXRα-A40, Myc-RXRα-G60, Myc-tRXRα, Myc-RXRα-A100, Myc-RXRα-A4A, Myc-RXRα-A44, Myc-RXRα-A44, Myc-RXRα-A44. Myc-tRXRα was constructed in PET15b by Gibson ligation. All peptides were acetylated on their N termini, and all were amidated on their C termini. Standard sequences).

Peptide synthesis. Peptides were synthesized on MBHA resin using Fmoc synthesis and DIC/HOBt coupling with an Advanced Chem Tech 350 and 396 multiple peptide synthesizer.58. Cell-penetrating peptide derived from TAT (GRKKRRQRRRPQ) was conjugated with p85α-peptide.59. All peptides were acetylated on their N termini, and all were amidated on their C termini. Standard deprotection conditions were used for all peptides. Peptides were purified by HPLC on C18 columns and confirmed by MALDI mass analysis.

Gel filtration. Gel filtration was carried out using an AKTA FPLC system with HiLoad 16/600 Superdex 200 pg (GE Healthcare Life) pre-equilibrated with Binding buffer (50 mM Tris-Cl (pH 7.4), 200 mM NaCl) at a flow rate of 1 ml min⁻¹. Purified RXRα-LBD incubated with K-80003 or 9-cis-RXRA for 2 h was
then subject to gel filtration chromatogram assay. Elutes of RXR-LBD protein were separated by 8% non-denaturing PAGE followed by silver staining.

Chemical crosslinking. Cells were transfected with RXRs or mutant expression vectors for 24 h and then exposed to 9-cis-RA (10−7 M) or K-80003 (5×10−9 M) for 6 h. Cell lysates were then prepared and incubated with bis[sulfocongminidyl] suberate (BS3, Pierce) dissolved in dimethyl sulfoxide to a final concentration of 1 mM. The reactions were stopped with protein gel loading buffer. Samples were resolved by SDS/PAGE in 8% acrylamide gels and protein bands were visualized by western blotting.

Non-denaturing gel electrophoresis. Purified RXRs-LBD protein (0.2 μg μl−1) was incubated with DMSO, 9-cis-RA (0.5 μM), and/or K-80003 (20 μM) for 3 h at 4°C in a total volume of 20 μl, and proteins were separated by 8% non-denaturing PAGE followed by Coomassie Blue Bright staining.

Cell culture and transfection. MCF-7 breast cancer cells, HepG2 liver cancer cells, A549 lung cancer cells, and HEK293T human embryonic kidney cells (from ATCC) were cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum. The cells were maintained at 5% CO2 at 37°C. Subconfluent cells with exponential growth were used throughout the experiments. Cell transfections were carried out by using Lipofectamine 2000 (Invitrogen) according to the instructions of the manufacturer.

Compound binding. Binding of compounds to RXR-LBD or mutant was studied in phosphate buffer at 25°C using isothermal titration calorimetry (ITC) assay that measures the heat either released or absorbed during binding. The purified His-tagged RXR-LBD or mutant protein (50 μM) in 25 mM Tris-HCl (pH 7.5, 150 mM NaCl, 0.1% DMSO) was placed in the sample cell of MicroCal VP-ITC titration calorimeter. The compounds to be studied were diluted to a concentration of 1 mM in the same buffer. All solutions were degassed before the titrations. Titrations were carried out using a 2-μl compound with injection time 4 s and a 20 s delay between each injection. The heat of dilution was obtained by injecting compounds into the same buffer and subtracted from the reaction before the fitting process. Calorimetric data were analysed using MicroCal Origin software (version 7.0).

Peptide binding. Binding of BCR peptide to His-tagged RXR-LBD was analysed at 25°C by surface plasmon resonance (SPR) using a BIAcore T200 machine with CM5 chips (GE Healthcare). The purified His-tagged RXR-LBD protein (20 μg μl−1 in 10 mM sodium acetate, pH 5) in the presence of 9-cis-RA was immobilized on the CM5 chip via amine coupling of RXR-LBD’s –NH2 groups according to the manufacturer’s instructions. BCR peptide with different concentrations was injected into the chip. The sensor surface was regenerated with Glycine-HCl (10 mM, pH 2.3) when the data collection was finished in each cycle. Sensorgrams were fit globally with BIAcore T200 analysis using 1:1 Langmuir binding mode. The equilibrium dissociation constant (Kd) was determined using BIAcore’s evaluation software provided by the manufacturer.

Western blotting. Proteins or cell lysates were electrophoresed by SDS-PAGE gel and transferred to polyvinylidene difluoride (PVDF) membrane. The membranes were blocked with 5% skimmed milk in TBST (30 mM Tris-HCl (pH 7.4), 150 mM NaCl and 0.1% Tween20) for 1 h, then incubated with primary antibodies and secondary antibodies and detected using ECL system (Thermo). The dilutions of the primary antibodies were anti-RXRα (AN197, Santa Cruz) in 1:1,000, anti-PARP (H-250, Santa Cruz) in 1:3,000, anti-p85α-actin (Sigma) in 1:5,000, anti-c-myc (9E10, Santa Cruz) in 1:3,000, anti-Flag (F-7, Sigma) in 1:3,000, anti-HA (F-7, Santa Cruz) in 1:3,000, anti-Flag (F-7, Santa Cruz) in 1:3,000, anti-Flag (F-7, Sigma) in 1:3,000, anti-HA (F-7, Santa Cruz) in 1:3,000, anti-Flag (F-7, Sigma) in 1:3,000. Images of all uncropped western blots can be found in Supplementary Figs 10–14.

Data analyses. Data were expressed as means ± s.d. from three or more experiments. Statistical analysis was performed using Student’s t-test. Differences were considered statistically significant with P<0.05.

References

1. Changeux, J. P. & Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell 166, 1084–1102 (2016).
2. Gabizon, R. & Friedler, A. Allosteric modulation of protein oligomerization: an emerging approach to drug design. Front. Chem. 2, 9 (2014).
3. Simons, J. R. S., Edwards, D. P. & Kumar, R. Minireview: dynamic structures of nuclear receptor-LBDs: new promising and challenges. Mol. Endocrinol. 28, 173–182 (2014).
4. Szanto, A. et al. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ. 11, 5125–5143 (2004).
5. Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors and RXR, and the Big Bang. Cell 157, 255–266 (2014).
6. Lefebvre, P., Benomar, Y. & Staels, B. Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol. Metab. 21, 676–683 (2010).
7. Su, Y. et al. Recent progress in the design and discovery of RXR modulators targeting alternate binding sites of the receptor. Curr. Top. Med. Chem. 17, 663–675 (2017).
8. Rochette-Egly, C. Retinoid acid signaling and mouse embryonic stem cell differentiation: cross talk between genomic and non-genomic effects of RA. Biochim. Biophys. Acta 1851, 65–75 (2015).
9. Gilardi, F. & Desvergne, B. RXR's: collegial partners. Subcell. Biochem. 70, 75–102 (2014).
10. Wei, L. N. Retinoid receptors and their coregulators. Annu. Rev. Pharmacol. Toxicol. 43, 47–72 (2003).
11. Germain, P. et al. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev. 58, 760–772 (2006).
12. Egea, P. F. et al. Crystal structure of the human RXRα ligand-binding domain bound to its natural ligand: 9-cis-retinoic acid. EMBO J. 19, 2592–2601 (2000).
13. Hermanson, O., Glass, C. K. & Rosenfeld, M. G. Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol. Metab. 13, 55–60 (2002).
14. Hu, X. & Lazar, M. A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402, 93–96 (1999).
15. Lorand, D. M. & O’Malley, B. W. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat. Rev. Endocrinol. 8, 598–604 (2012).
16. Privalsky, M. L. The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu. Rev. Physiol. 66, 315–360 (2004).
17. de Lera, A. R., Bourguet, W., Altmüller, L. & Gronemeyer, H. Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nat. Rev. Drug Discov. 6, 811–820 (2007).
18. Zhang, X.-K. et al. Homodimer formation of retinoid X receptor inhibited by 9-cis retinoic acid. Nature 358, 587–591 (1992).
Acknowledgements
This study was supported by grants from the National Natural Science Foundation (91429306, 81672749, U1405229, 31271453, 31471318, 31500616, 91129302), Regional Demonstration of Marine Economy Innovative Development Project (14PY051SF04 and 12PY001SF08), Fujian Provincial Science & Technology Department (2017YZ0002), Xiamen Science and Technology Project (3502ZZ20123015), Ministry of Education (313050) of China, the US Army Medical Research and Material Command (W81XWH-11-1-0677), the National Institutes of Health (CA179379), and the California Breast Cancer Research Program (20IB-0138). Cell lines used were authenticated by Genetic Testing Biotechnology Corporation (Suzhou, China) using short tandem repeat (STR) markers.

Author contributions
X.-k.Z. and Y.S. designed and supervised the project, analysed data and wrote the manuscript; R.C.L. analysed structural data and wrote the manuscript; L.C., G.L., Y.Z., X.Z., X.Y., M.H., M.H., S.L., G.R., W.G., Y.M., L.C. and L.W. performed molecular and cellular experiments; A.E.A. determined the crystal structure and wrote the manuscript. Y.S., Z.C., Z.Z. and G.C. performed structural analysis; F.J., J.L. and H.Z. helped collecting and analysing biological data.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Chen, L. et al. Modulation of nongenomic activation of PI3K signalling by tetramerization of N-terminally-cleaved RXRα. Nat. Commun. 8, 16066 doi: 10.1038/ncomms16066 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017