d-wave pairing symmetry in cuprate superconductors

C.C. Tsuei and J.R. Kirtley

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

Phase-sensitive tests of pairing symmetry have provided strong evidence for predominantly \(d\)-wave pairing symmetry in both the hole- and electron-doped high-\(T_c\) cuprate superconductors. Temperature dependent measurements in \(\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}\) (YBCO) indicate that the \(d\)-wave pairing dominates, with little if any imaginary component, at all temperatures from 0.5K through \(T_c\). In this article we review some of this evidence and discuss the implications of the universal \(d\)-wave pairing symmetry in the cuprates.

1. INTRODUCTION

Pairing symmetry in the cuprate superconductors was a subject of intense debate for many years after the discovery of high-temperature superconductivity [1], primarily because the interpretation of many conventional techniques, such as quasiparticle tunneling, NMR, angle-resolved photoemission, and penetration depth measurements, was model-dependent. Nevertheless, these phase-insensitive techniques have produced a large body of evidence for \(d\)-wave pairing in the cuprates. The recent development of phase-sensitive pairing symmetry test [2–7], has yielded compelling evidence for predominantly \(d\)-wave pairing symmetry in a number of optimally doped cuprates [8]. A question naturally arises: How universal is the \(d_{x^2-y^2}\) pairing in cuprate superconductors?

There are numerous theoretical studies suggesting the stability of the \(d\)-wave pair state depends on the details of band structure and the pairing potential [9–11]. There has also been considerable theoretical studies indicating [12–17] that a pure \(d_{x^2-y^2}\) pair state is not stable against the formation of time reversal symmetry breaking states such as \(d_{x^2-y^2} + id_{xy}\) or \(d_{x^2-y^2} + is\), at surfaces, interfaces, near impurities, or below a certain characteristic temperature. On the experimental side, Raman data on \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\) and \(\text{Tl}_2\text{Ba}_2\text{CuO}_{8+\delta}\) systems as a function of oxygen content indicate that the order parameter has \(d\)-wave symmetry near optimal doping and isotropic pairing in the over-doped regime [18]. There are additional indirect experimental evidences for the fragility of the pure \(d\)-wave state [19,20]. The following will examine the universality issues based mainly on the results of phase sensitive pairing symmetry experiments. We will conclude with a brief discussion on implications of \(d\)-wave superconductivity in the cuprates.

2. PHASE-SENSITIVE PAIRING SYMMETRY TESTS

The sign and magnitude of the pair tunneling critical current \(I_c\) across a Josephson junction made with at least one superconductor with unconventional pairing symmetry depends sensitively on the gap function symmetry and relative orientation of the junction electrodes. The ground state of a superconducting loop with an odd number of negative critical currents (termed a “frustrated” or “\(\pi\)” loop) is doubly degenerate and shows spontaneous magnetization of one-half flux quantum (\(\Phi_0/2 = \hbar c/4e = 1.035 \times 10^{-7}\text{G cm}^2\)), provided that \(L \mid I_c \mid \gg \Phi_0\), where \(L\) is the self-inductance of the ring and \(I_c\) is the critical current of the weakest junction in the loop [21–23]. By varying the loop geometry, the presence or absence of the half-integer flux quantum effect can be used for a definitive determination of the pairing symmetry.

The tricrystal pairing symmetry tests use a ring consisting of three crystals with controlled orientation (see Fig. 1) to define the direction of the pair wavefunction. The magnetic flux threading through the tricrystal ring is measured with...
a scanning SQUID microscope for different tricrystal configurations to differentiate between various pairing symmetries. The $\Phi_0/2$ effect is intrinsic in a frustrated geometry, and is observed in ring, disk, and blanket film samples at the tricrystal point.

3. UNIVERSALITY of the d-WAVE PAIR STATE

The establishment of d-wave pairing in some of the cuprates has imposed well defined constraints on possible models of high-temperature superconductivity, but it does not specify the high-T_c mechanism. To gain further insight into the origin of high-temperature superconductivity, it is important to determine whether the $d_{x^2-y^2}$ pairing symmetry is universal. One can investigate the universality issues from the following aspects.

3.1. Various cuprate systems

Phase-sensitive SQUID interferometry, tricrystal magnetometry, SQUID magnetometry, and single junction interferometry experiments have demonstrated d-wave pairing symmetry in YBCO single crystals or c-axis oriented epitaxial films. In addition, tricrystal magnetometry experiments have demonstrated d-wave pairing symmetry in various high-T_c hole-doped cuprate systems such as $T_{12}Ba_2CuO_{6+\delta}$, $GdBa_2Cu_3O_{7-\delta}$, and $Bi_2Sr_2CaCu_2O_{8+\delta}$. (For a more complete tabulation of the phase-sensitive experiments see Ref. 8). More recently, the pairing symmetry of the electron-doped cuprate superconductors $Nd_{1.85}Ce_{0.15}CuO_4-\delta$ (NCCO) and $Pr_{1.85}Ce_{0.15}CuO_4-\delta$ (PCCO) has been determined to also be predominantly d-wave by observing the half-flux quantum effect in c-axis thick blanket films ($\sim1\mu m$ thick) epitaxially grown on tricrystal substrates with the configuration of Fig. 1. Samples with two other geometries, designed to be unfrustrated for a d-wave superconductor, do not show the half-flux quantum effect. Shown in Fig. 2a is a scanning SQUID microscope image of a NCCO film deposited on a frustrated tricrystal STO substrate, cooled to 4.2K in nominal zero field. This image was obtained by subtracting an image with an external magnetic field.
nally applied field of -0.15mG, which stabilized the half-quantum magnetic vortex with the flux pointing down, from an image taken with an applied field of 0.15mG, resulting in a half-quantum magnetic vortex pointing up, and dividing by 2. This results in an image of the half-quantum magnetic vortex with effects from surface roughness, a smoothly varying magnetic background, and the mutual inductance between the SQUID and sample subtracted out. Figure 2b shows fitting of cross-sections through the data of Fig. 2a to expressions for the magnetic signals expected from a Josephson vortex centered at the tricrystal point, with a total flux of $\Phi_0/2$ [28]. The height z of the pickup loop was determined by fitting a bulk Abrikosov vortex. The solid lines in Fig. 2b are fits to cross-sectional data for the horizontal and diagonal grain boundaries, assuming a total flux of $\Phi_0/2$ for this vortex, using the Josephson penetration depths λ_f for the two grain boundaries as the sole fitting parameters. The dashed lines, assuming a flux of Φ_0, are much worse fits. These results indicate that the electron-doped superconductors, just as the hole-doped superconductors, have d-wave pairing symmetry.

3.2. Temperature dependence of $\Phi_0/2$

It is of interest to find out whether d-wave pairing will change to s-wave, for example, as a function of temperature. However, the phase-sensitive experiments described above were all performed at liquid helium temperature. With a recently developed variable sample temperature scanning SQUID microscope [27], the temperature dependence of the half-integer flux quantum effect in tricrystal YBCO was studied. It was found that the total flux of the Josephson vortex at the tricrystal point remains constant (i.e. $\Phi_0/2$) from 0.5K through T_c (~90K) [28]. This finding means that the d-wave pair state dominates at all temperatures below T_c, and that there is little, if any, time-reversal symmetry breaking component in the order parameter, over the entire temperature range. This is consistent with earlier studies, which found less than a few percent of time-reversal symmetry breaking component in phase-sensitive measurements at low temperatures [29].

3.3. The effect of doping

Is there any band structure (doping) effect on pairing symmetry? In the competition between s-wave and d-wave channels for high-temperature superconductivity, is there any factor that can stabilize the d-wave pairing? In the literature, there have been some theoretical studies dealing with these issues: for example, based on a next-nearest-neighbor pairing interaction, the symmetry of a BCS condensate is predicted to vary as a function of energy band filling and other band parameters [9–11]. The d-wave pairing channel is energetically favored in a wide range of doping centered around half-filling. The stability of the d-wave pair state may be enhanced by the proximity of the Fermi level to the van Hove singularity in the 2D bands of the CuO$_2$ plane [30]. A series of phase-sensitive pairing symmetry tests as a function of doping in a model system such as Tl$_2$Ba$_2$CuO$_{6+\delta}$, HgBa$_2$CuO$_{4+\delta}$, Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$, or Y$_{1-x}$Ca$_x$Ba$_2$Cu$_3$O$_{7-\delta}$ could test for these effects.

4. CONCLUDING REMARKS

Phase-sensitive experiments have produced strong evidence for predominantly d-wave pairing symmetry in hole- and electron-doped cuprate superconductors. These tests also indicate, within the experimental accuracy (~3% at low temperatures), the absence of pairing with broken time-reversal symmetry. The universality of d-wave pairing symmetry in bulk high-temperature superconductors is thus well-established. The possibility of pair states without time-reversal symmetry invariance (e.g. $d_{x^2-y^2}+id_{xy}$ or $d_{x^2-y^2}+is$) induced at surfaces, interfaces, or around impurities or defects is being actively investigated (see Ref. 5 and references therein). Recent observations of a splitting of the zero-bias conductance peak in quasiparticle tunneling [31] and spontaneous magnetization in c-axis YBCO thin films [32,33] represent possible evidence for such pair states.

Dominant d-wave pairing symmetry in both the hole- and electron-doped cuprates is expected from single-band models of the CuO$_2$ planes, in which the electron-hole symmetry is an intrin-
sic property (see e.g. Poole et al. 22). From another perspective, the predominance of $d_{x^2-y^2}$ pairing in cuprates underscores the important role of strong electron correlation in determining the superconducting gap symmetry and other properties. It is experimentally and theoretically well established that a strong on-site Coulomb repulsion is present in all cuprates. Such a strong electron correlation causes the universally-seen Mott transition at half-filling. The strong on-site Coulomb repulsion rules out simple s-wave pairing.

In future, a systematic study of pairing symmetry as a function of doping, impurities, ... is important for a better understanding of high-temperature superconductivity.

The authors wish to thank M. Bhushan, C.C. Chi, A. Gupta, Z.Z. Li, M.B. Ketchen, K.A. Moler, D.M. Newns, H. Raffy, Z.F. Ren, J.Z. Sun, G. Trafas, and J.H. Wang for invaluable assistance in the course of our tricrystal experiments.

REFERENCES
1. J.G. Bednorz and K.A. Müller, Z. Phys. B 64 (1986) 189.
2. D.A. Wollman et al., Phys. Rev. Lett. 71 (1993) 2134.
3. C.C. Tsuei et al., Phys. Rev. Lett. 73 (1994) 593.
4. D.A. Brawner and H.R. Ott, Phys. Rev. B 50 (1994) 6530.
5. A. Mathai et al., Phys. Rev. Lett. 74 (1995) 4523.
6. D.A. Wollman, D.J. van Harlingen, J. Giapintzakis, and D.M. Ginsberg, Phys. Rev. Lett. 74 (1995) 796.
7. J.H. Miller, Jr. et al., Phys. Rev. Lett. 74 (1995) 2347.
8. C.C. Tsuei and J.R. Kirtley, ”Pairing symmetry in cuprate superconductors” (to be published in Rev. Mod. Phys.).
9. C. O’Donovan and J.P. Carbotte, Physica C 252 (1995) 87.
10. J. Wheatley and T. Xiang, Solid State Commun. 88 (1993) 593.
11. B.E.C. Koltenbah and R. Joynt, Rep. Prog. Phys. 60 (1997) 23.
12. R.B. Laughlin, Physica C 234 (1994) 280.
13. R.B. Laughlin, Phys. Rev. Lett. 80 (1998) 5188.
14. S.R. Bahcall, Phys. Rev. Lett. 76 (1996) 3634.
15. M.I. Salkola and J.R. Schrieffer, Phys. Rev. B 58 (1998) R5952.
16. A.V. Balatsky, Phys. Rev. Lett. 80 (1998) 1972.
17. M. Sigrist, Prog. Theor. Phys. 99 (1998) 899.
18. C. Kendziora, R.J. Kelly, and M. Onellion, Phys. Rev. Lett. 77 (1996) 727.
19. J. Ma et al., Science 267 (1995) 862.
20. K. Krishana et al., Science 277 (1997) 83.
21. L.N. Bulaevski, V.V. Kuzii, and A.A. Sobyanin, JETP Lett. 25 (1977) 290.
22. V.B. Geshkenbein, A.I. Larkin, and A. Barone, Phys. Rev. B 36 (1987) 235.
23. M. Sigrist and T.M. Rice, J. Phys. Soc. Japan 61 (1992) 4283.
24. J.R. Kirtley et al., Appl. Phys. Lett. 66 (1995) 1138.
25. C.C. Tsuei and J.R. Kirtley, cond-mat/0002341 (2000).
26. J.R. Kirtley et al., Phys. Rev. Lett. 76 (1996) 1336.
27. J.R. Kirtley et al., Appl. Phys. Lett. 74 (1999) 4011.
28. J.R. Kirtley, C.C. Tsuei, and K.A. Moler, Science 285 (1999) 1373.
29. J.R. Kirtley et al., Nature 373 (1995) 225.
30. K. Levin, D.Z. Liu, and J. Maly, in Proceedings of the 10th Anniversary HTS Workshop, ed. B. Batlogg, C.W. Chu, W.K. Chu, D.A. Gubser, and K.A. Müller, World Scientific, Singapore, 1996, p. 467.
31. M. Covington et al., Phys. Rev. Lett. 79 (1997) 277.
32. R. Carmi, E. Polturak, G. Koren, and A. Auerbach, cond-mat/0003108 (2000).
33. F. Tafuri and J.R. Kirtley, cond-mat/0001050 (2000).
34. C.P. Poole, H.A. Farach, and R.J. Creswick, Superconductivity, Academic Press, 1995, p. 224.