Raman random lasing in Ba(NO$_3$)$_2$ powder

M A Shevchenko1, A N Baranov2, A D Kudryavtseva1, A N Maresev1, N V Tcherniega1, S F Umanskaya1, A I Vodchits3 and K I Zemskov1

1P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskii pr., 53, Moscow, 119991, Russia
2M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie gory, Moscow, 119991
3B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue 68, Minsk 220072, Belarus

E-mail: akudr@sci.lebedev.ru

Abstract. Random lasing in Raman active material – barium nitrate powder – has been registered in two temporal regimes: nanosecond and picosecond. Stimulated Raman scattering (SRS) in Ba(NO$_3$)$_2$ for picosecond excitation has been shown to have much lower threshold and spectrum containing more components than for nanosecond excitation opposite to the case of a bulk medium. In picosecond regime SRS intensity increased with temperature decreasing and redistributed in favor of the higher order components. SRS pulse duration in picosecond regime was estimated to be in the range 16.5-22 ps. High conversion efficiency of SRS in barium nitrate powder in picosecond regime and its larger stability under laser impact than for bulk samples gives possibility to use it as an active material in Raman converters.

1. Introduction

Random lasing (RL) effect was for the first time described by Letokhov [1] in 1968. Random lasers are systems using highly disordered materials to obtain laser action. In these systems optical path is much longer than in bulk material and optical gain provides amplification that starts lasing. Random lasers continue to attract attention due to numerical practical applications and are actively studied till now [2–4]. Random lasing has been realized and investigated in a lot of different materials: powders of rare earths and semiconductors [5, 6], biological tissues [4], nanocomposites including nano or submicron particles [8]. Raman random laser is a special case of random laser, which uses stimulated Raman scattering (SRS) as a gain source [9, 10]. In Raman random laser stimulated inelastic scattering plays the role of a gain source while elastic scattering returns the radiation back into the media. The efficiency of the SRS process in dispersive media can be significantly increased due to the increasing of the interaction length in the process of the light diffusive propagation in such media. In addition, the local field effect in such media can also lead to a significant increase in efficiency of the SRS process. Taking into account all of the above, as well as the ease of production and high radiation resistance, disordered Raman active media are of great interest for various fields of photonics.

In our work we studied SRS in random material – barium nitrate Ba(NO$_3$)$_2$ powder. Spectrum of this material contains line, corresponding to the "breathing" mode with wavenumber $\nu(A_g) = 1047$ cm$^{-1}$, linewidth equal to 1.5 cm$^{-1}$, high gain coefficient ($g = 47\pm5$ cm/GW) and low SRS threshold. Due to slow relaxation of the vibrational excitations in Ba(NO$_3$)$_2$ (~30 ns) in the case of nanosecond excitation...
in barium nitrate crystals the SRS threshold is an order of magnitude less than for excitation by picosecond pulses [11]. Using excitation sources with different pulse duration we could study both steady-state and transient modes for the random media case.

2. Experimental

Ba(NO$_3$)$_2$ is characterized by a low moisture resistance and poor heat conductivity. Moderate mechanical properties of Ba(NO$_3$)$_2$ crystals can lead to its destruction in the process of pumping so using of this material in powder form could solve such problems. SRS spectra in barium nitrate powder for the first time were obtained in 1967 [12]. Later Ba(NO$_3$)$_2$ powder was used as disordered material for Raman random lasing effect study [13, 14].

In the SRS process two temporal regimes are possible: the first one is a steady state regime, when the pump pulse duration is much longer than the vibronic Raman mode dephasing time. The second case is a transient regime, when the pump pulse duration is smaller than the dephasing time and spectral width of pump laser is much broader than the Raman line homogeneous broadening.

To study SRS in barium nitrate powder in both temporal regimes we used two pumping sources: second harmonic of Q-switched Nd:YAG laser ($\lambda = 532$ nm, $\tau = 11$ ns, $E = 0.2$ J, frequency 10 Hz) and second harmonic of Nd:YAG mode-locked laser ($\lambda = 532$nm, $\tau = 30$ ps $E = 25$ mJ, frequency 10 Hz). The Ba(NO$_3$)$_2$ powder of micron-sized particles was placed in the cell. Thickness of the sample was 3 mm. Exciting laser beam was focused on the sample by the lenses with different focuses. Changing focus length and using filters we could change the power density of the exciting light on the sample. Stimulated scattering processes can depend on the sample temperature; therefore, we studied the effect of temperature on the SRS in random material. For temperature control a thermocouple was installed into the cell with a sample. Liquid nitrogen was used for cooling. A portable spectrometer has been used for SRS registration. When the pump energy overcomes the threshold value the random Raman lasing starts due to the excess of a gain over losses in disordered media. Both in picosecond and in nanosecond excitation we registered SRS in barium nitrate powder corresponding to the SRS-active mode at 1047 cm$^{-1}$ due to the internal totally symmetric vibrations of the quasi molecular NO$_3$ group.

At room temperature for picosecond pulses excitation we registered two Stokes and one anti-Stokes components. Thresholds of the components observation were 0.065 GW/cm2, 3.5 GW/cm2 and 14 GW/cm2 for 1st Stokes, 2nd Stokes and anti-Stokes components correspondingly. For nanosecond pulses excitation at room temperature we registered only one Stokes component. Its observation threshold was 4 GW/cm2.

The first Stokes component’s intensity dependence on the pump energy at room temperature for both temporal regimes is shown in figure 1.

![Figure 1. 1st Stokes component energy dependence on the pump pulse energy for picosecond and nanosecond excitation. 1 – picosecond excitation 2 – nanosecond excitation](image-url)
The threshold value for picosecond (transient) mode is lower than for nanosecond one opposite to the case of a bulk medium. The reason of this behaviour is the fact that virtual states involved in Raman transitions are much faster than electronic transitions connected with real atomic or molecular levels. Besides that, stay of photons in the dispersed medium due to multiple scattering is longer than in bulk material. These effects lead to the slow relaxation of the vibrational excitation in Ba(NO₃)₂ powder.

In the case of picosecond pumping pulse duration we studied temporal dynamics of SRS with the help of Fabry-Perot (F-P) interferometer with a variable distance between the mirrors. If pulse duration \(\tau_p \) is shorter than the delay time of the F-P \(\tau = 2d \cos \theta / c \) (\(d \)-separation between the mirrors), there is no overlapping and hence no interference effect, otherwise \((\tau_p > \tau) \) we can see an interference (figure 2) [15]. So, varying the distance between mirrors it is possible to estimate the pulse duration. Interferograms, obtained at room temperature and at liquid nitrogen temperature with different distance between the mirrors in the case of picosecond excitation are presented in figure 2.

Duration of SRS pulse is estimated to be in the range 16.5÷22 ps. The case when the duration of the radiation pulse is shorter than the pump pulse for the picosecond regime is confirmed by the Monte Carlo method for conventional random lasers [16]. When \(d = 4 \) mm the interference pattern was absent at room temperature and appeared at the temperature of liquid nitrogen. So, increasing duration with temperature decreasing was observed.

Temperature investigations of the SRS in barium nitrate showed that SRS threshold do not depends significantly on the sample temperature. SRS intensity increased with temperature decreasing and redistributed in favor of higher order components. Temperature dependence of SRS components intensity is shown in figure 3.

![Figure 2. Fabry-Perot interferograms for pump and 1st Stokes component.](image)

![Figure 3. Temperature dependences for all the SRS components in Ba(NO₃)₂ for nano- and picosecond excitation.](image)
Similar temperature dependence of the SRS components intensity has been observed in calcite [17]. Investigations of the spatial distribution of emission on the sample surface for pump radiation elastic scattering, and for the 1st Stokes component showed that above the threshold speckle structure appeared in the SRS beam which is typical for random lasing effect and is characteristic of the source coherence [18, 19].

3. Conclusions
In our work we showed that SRS in Ba(NO$_3$)$_2$ powder can be excited both by nanosecond and picosecond laser pulses. SRS corresponding to the transient mode (picosecond regime) is much more effective than in steady-state mode (nanosecond regime). SRS threshold for picosecond regime is much lower than in nanosecond and more SRS components can be excited. SRS intensity dependence on the exciting light intensity is sharper in picosecond regime than in nanosecond. Temperature decreasing leads to the SRS intensity increasing especially in picosecond mode. We also observed SRS properties characteristic for random lasing. Thus, our experiments showed that disordered materials can be successfully used in Raman converters.

Acknowledgements
The reported study was funded by Russian Foundation for Basic Research (Grants 19-02-00750-a, 19-02-00440-a and 20-52-00002-Bel_a) and Belarus Foundation for Basic Research (Grant F20R-013).

References
[1] Letokhov V S 1968 Generation of light by a scattering medium with negative resonance absorption Sov. Phys. JETP. 26 835
[2] Consoli A and Lopez C 2016 Emission regimes of random lasers with spatially localized feedback Opt. Express 24 10912
[3] Shu-Wei Chang et al 2018 A White Random Laser Scientific Reports 8 2720
[4] Pichler K et al 2019 Random anti-lasing through coherent perfect absorption in a disordered medium Nature 567 351
[5] Williams G, Rand S C, Hinklin T and Laine R M 1999 Ultraviolet laser action in strongly scattering Ce:alumina nanopowders in Conference on Lasers and Electro-Optics, C. Chang-Hasnain, W. Knox, J. Kafka, and K. Vahala, eds., OSA Technical Digest (Optical Society of America, 1999) CTuG5 p 90
[6] Cao H et al 1999 Random Laser Action in Semiconductor Powder Phys. Rev. Lett. 82 2278
[7] Polson R C and Vardeny Z V 2004 Random lasing in human tissues Appl. Phys. Lett. 85 1289
[8] Anglos D et al 2004 Random Laser Action in Organic—Inorganic Nanocomposites JOSA B. 21 208
[9] Anglos D et al 2004 Random Laser Action in Organic—Inorganic Nanocomposites JOSA B. 21 208
[10] Enciso E et al 2010 Conventional unidirectional laser action enhanced by dye confined in nanoparticle scatters Langmuir. 26 6154
[11] Basiev T T and Osiko V V 2006 New materials for SRS lasers Russian chemical reviews 75 847
[12] Zubov V A et al 1967 Observation of Stimulated Raman Scattering of Light in Crystalline Powders JETP Lett. 5 150
[13] Gorelik V S and Sverbil P P 2019 Stimulated raman scattering in microcrystalline powder of barium nitrate Journal of Russian Laser Research 40 590
[14] Selden A C 2011 Albedo and gain threshold of a diffusive Raman random laser Opt. Comm. 284 4642
[15] Roychoudhuri C 1975 Response of Fabry–Perot interferometers to light pulses of very short duration JOSA 65 1418
[16] Siddique M et al 1996 Time-resolved studies of stimulated emission from colloidal dye solutions Opt. Let. 21 450
[17] Sokolovskaya A I, Kudryavtseva A D, Brekhovskikh G L and Sushchinskii M M 1970 Effect of temperature on stimulated Raman scattering of light in substances with various Kerr constants Soviet Physics JETP 30 633

[18] Van Soest G, Poelwijk F J and Lagendijk A 2002 Speckle experiments in random lasers Phys. Rev. E 65 (4 Pt 2B):046603

[19] Gouedard C et al 1993 Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders JOSA B. 10 2358