A Comparative Study of Single-Tuned Filter and Detuned Reactor for Improve Power Quality in Microgrid

F A Santoso, M Syai’in, A S Setiyoko
Marine Electrical Engineering Department, Shipbuilding Institute of Polytechnic Surabaya

Abstract. Propose of this study is to analyze the performance of the single-tuned filter and detuned reactor to improve power quality (voltage profile, power factor, and harmonic distortion) in a microgrid. Nowadays power quality becomes the focus of the electrical company as well as commercial customer and industry. The load consists of two types, linear load, and nonlinear load. Both of them cause a reduction of power quality as voltage drop, low power factor, and harmonic distortion. Those problems can make losses of electrical usage, broken on electrical devices and can stop the production process in the industry. Single-tuned filter and the detuned reactor is the type of harmonic filter that commonly used to mitigate harmonic distortion. The harmonic filter also has benefit to improve power factor and voltage profile on the system. All filters will be simulated on ETAP to get the performance of each filter on different condition. The most dominant load in this study is a 6-pulse battery charger.

Keywords: Harmonic distortion, Power factor, Voltage drop, Single-tuned filter, Detuned reactor

1. Introduction

A good assumption for most utilities in the world is that the sine-wave voltage generated in a central power station is very good. Because of that nowadays power quality became quite concerned with utility engineers. Power quality is about compatibility between the quality of the voltage supplied from the electric power system and the proper operation of end-use equipment. There are two categories of power quality that need to be considered steady state (continuous) power quality and disturbances. Steady-state power quality characteristics include voltage regulation, harmonic distortion, unbalance and flicker.

Drop voltage is phenomena defined as the amount of voltage loss that occurs through all or part of a circuit due to impedance. Drop voltage can cause low intensity in a lightning system, miss-operation in control system and decrease motor starting torque. Indonesian Electric Company recommends limiting the voltage drop for low-voltage 4 percent of the circuit voltage.

Power factor is important in the AC system like 3-phase or single-phase. Power factor is the ratio of the real power that is used to do work and the apparent power that is supplied to the circuit. The power factor can get values in the range from 0 to 1.

Harmonic distortion is caused by nonlinear devices in the power system. A nonlinear load device is one in which the current is not proportional to the applied voltage. The most commonly used standard of harmonic distortion is IEEE 519-2014.

The single-tuned filter is a passive filter which consists of inductance, capacitance and resistance element configured and tuned for a harmonic order. They are commonly used and are relatively inexpensive compared with other means for eliminating harmonic distortion.
The use of detuned reactors thus prevents harmonic resonance problems, avoid the risk of overloading capacitors and contributes to reducing harmonic distortion in the network. The tuning frequency can be expressed by the relative impedance of the reactor (in %), or by tuning order, or directly in Hz.

Impedance (%)	Function
5.67%	Is used where the dominant in 5th harmonic
7.00%	Is used where optimal protection to capacitor and harmonic reduction is achieved.
14.00%	Is to be used where system is rich in 3rd harmonics (3, 9, 15)

2. Methodology

2.1 Study Flowchart

The methodologies conducted in this are:
1) Problems identification and literature study: site survey and collect literature.
2) Data collecting: One-line diagram, Plant layout, harmonic spectrum and product catalogue.
3) Simulation and analysis: simulating system and analysis power quality from the simulation.
4) Power quality improvement: if power quality in a bus is low we should install harmonic filter on that bus to improve the power quality.
5) Conclusion and recommendation.

2.2 Study Case

Simulating the system on different study case to get filter design that can work in different condition. For this research selected 5 different condition.
Table 2. Study case.

Condition	Io/Charger (A)	Vo/Charger (V)	P/Rectifier (kW)
1	10.0	288	13
2	15.0	240	17
3	23.0	320	35
4	33.5	256	41
5	46.5	192	41

3. Power System Overview
This microgrid is a automotive battery manufacturer. Supplied by national electrical company with 3.465 kVA rated power as main power supply. Main distribution voltage from main transformers are 20kV step-down to 0.38 kV. The LV 0.38 kV distributed to others bus (LVMDP 1, LVMDP 2 and LVMDP 3). Existing capacitor bank capacity is 1,005 kVAR.

Figure 3. 6-pulse battery charger on the system.

Figure 4. Overall single line diagram.
4. Result and Discussion

4.1 Parameter Analysis

Software simulation using ETAP conducted in this study to find performance of single-tuned filter and detuned reactor to find the performance of both filter in 5 different load conditions.

![Figure 5. Harmonic spectrum on charger.](image)

Figure 5 shows the harmonic spectrum based on measurement. The most dominant orde is 5th.

Bus	CM Limit <11th (%)	CM 3rd (%)	CM 5th (%)	CM 7th (%)	CM Limit >11th (%)	CM 11th (%)
Charger 1-3	7	1	30	3	3.5	7

Yellow = exceeding limit, CM = Current Magnitude

From table 3 and with IEEE 519-2014 standard about harmonics, harmonic on bus charger 1–3 which exceeding the limit are 5th harmonic and 11th harmonic.

Table 4. Bus with undervoltage condition.

Bus	% Voltage on Condition	Standard (%)		
Ball Mill	95.93	95.78	95.72	96–104
Grid Casting	96.00	95.85	95.79	96–104

Yellow = exceeding limit

From table 4 bus where happens undervoltage are Ball Mill and Grid Casting in condition 3, 4 and 5.

4.2 Filter Specification

Table 5. Single-tuned filter specification.

Bus	Condition	Orde	ΔQ (kVAR)	C (µf)	L (mH)
Charger 1-3	1	5	2.023	44.623	9.091
	11		1.759	38.789	2.160
	2	5	2.646	58.354	6.952
	11		2.138	47.101	1.779
	3	5	5.447	120.140	1.060
	11		4.397	96.973	0.271
	4 and 5	5	7.529	166.050	2.440
	11		5.151	113.600	0.737

Table 6. Detuned reactor specification.

Qs Detuned Reactor (kVAR)	L (mH)	P (%)	Qs Kapasitor (kVAR)	Capacitor Rating (Volt)	Condition
50	0.61	5.57	60	415	
75	0.41	5.57	85	415	
100	0.31	5.57	115	415	
4.3 Case Studies

4.3.1 Case 1. The experiment, in this case, aims to identify the level of harmonics, voltage profile and power factor if charger set to condition 1.

Table 7. Current harmonic in condition 1.

Bus Order	CM Limit (%)	CM Without Filter (%)	CM Installed Single-Tuned Filter (%)	CM Installed Detuned Reactor (%)
Charger 1-3	7.0	0	2.15207	0.304147
3	7.0	2	5.92453	2.986630
5	7.0	30	3.21645	0.338990
7	7.0	3	1.90088	0.840195
11	3.5	7		

Figure 6. Current harmonics spectrum on condition 1.

Figure 7. Current waveform on condition 1.

Figure 6 shows the spectrum on each different filter. From the figure, it can be seen that the current harmonic decreased and all harmonic can meet IEEE 519-2014 standard (written on Table 7). Figure 7 shows the waveform on each different filter. Both of harmonic filter can maintain the current waveform to be pure sine wave. But on detuned reactor happen phase shifting 90°.

Table 8. Capacitor needed on condition 1.

Filter	Power (kW)	Early PF (%)	Target PF (%)	Capacitor Needed (kVAR)
Without filter	1381	74.0	95	816.347
Single-Tuned Filter	1381	74.0	95	816.347
Detuned Reactor 50 kVAR	1408	93.4	95	75.800

Table 8 shows the capacitor capacity needed for supplying reactive power on the system. If without the filter and using filter need 816.347 kVAR, but if using Detuned reactor only need 75.8 kVAR to gain 95% PF on the kVARH meter. Voltage profile and THDv still meet standard on condition 1.
4.3.2 Case 2. The experiment, in this case, aims to identify the level of harmonics, voltage profile and power factor if Charger set to condition 2.

Table 9. Current harmonic in condition 2.

Bus	Order	Limit (%)	CM Without Filter (%)	CM Installed Single-Tuned Filter (%)	CM Installed Detuned Reactor (%)
Charger 1-3	1	7.0	0	0	0
	3	7.0	2	2.15340	0.531834
	5	7.0	30	4.70940	5.608200
	7	7.0	3	3.21850	0.626469
	11	3.5	7	1.46996	1.538540

Figure 8. Current harmonics spectrum on condition 2.

Figure 9. Current waveform on condition 2.

Figure 8 shown the spectrum on each different filter. From the figure can be seen that the current harmonic decreased and all harmonic can meet IEEE 519-2014 standard (written on Table 9). Figure 9 shown the waveform on each different filter. Both of harmonic filter can maintain the current waveform to be pure sine wave. But on detuned reactor happen phase shifting 90°.

Table 10. Capacitor needed on condition 2.

Filter	Power (kW)	Early PF (%)	Target PF (%)	Capacitor Needed (kVAR)
Without filter	1402	73.3	95	840.25
Single-Tuned Filter	1417	85.2	95	405.00
Detuned Reactor 50 kVAR	1530	88.5	95	302.30

Table 10 shown capacitor capacity needed for supplying reactive power on the system. If without filter 840 kVAR, if using Single-Tuned Reactor need 405 kVAR and if using Detuned reactor only need 302.3 kVAR to gain 95% PF on the kVARH meter. Voltage profile and THDv still meet standard on condition 2.
4.3.3 Case 3. The experiment, in this case, aims to identify the level of harmonics, voltage profile and power factor if charger set to condition 3.

Table 11. Current harmonic in condition 3.

Bus Order	Limit (%)	CM Without Filter (%)	CM Installed Single-Tuned Filter (%)	CM Installed Detuned Reactor (%)
Charger 1-3	7.0	0	0	0
3	7.0	2	2.15	0.700
5	7.0	30	4.14	6.900
7	7.0	3	3.30	0.810
11	3.5	7	0.17	2.023

Figure 10. Current harmonics spectrum on condition 3.

Table 12. Capacitor needed on condition 3.

Filter	Power (kW)	Early PF (%)	Target PF (%)	Capacitor Needed (kVAR)
Without filter	1505	74.4	95	857.0
Single-Tuned Filter	1506	75.8	95	800.0
Detuned Reactor 50 kVAR	1531	93.9	95	57.5

Table 12 shown capacitor capacity needed for supplying reactive power on the system. If without filter 857 kVAR, if using Single-Tuned Reactor need 800 kVAR and if using Detuned reactor only need 57.5 kVAR to gain 95% PF on the kVARH meter.
Table 13. Voltage profile on condition 3.

Bus	%V Without Filter	%V Installed Single-Tuned Filter	%V Installed Detuned Reactor 75kVAR
Ball Mill	95.93	96.01	96.06
G Casting	96.00	96.03	96.08

From table 13 shown voltage profile increased after installing harmonic filters. But detuned only detuned reactor can increase voltage profile to meet the standard. THDv still meets the standard IEEE 519-2014 on condition 3.

4.3.4 Case 4. The experiment, in this case, aims to identify the level of harmonics, voltage profile and power factor if charger set to condition 4.

Table 14. Current harmonic in condition 4.

Bus	Orde	Limit (%)	CM Without Filter (%)	CM Installed Single-Tuned Filter (%)	CM Installed Detuned Reactor (%)
Charger 1-3	1	7.0	0	0	0
	3	7.0	2	2.160	0.6500
	5	7.0	30	2.020	5.2300
	7	7.0	3	3.266	0.6234
	11	3.5	4	0.420	1.5700

Figure 12. Current harmonics spectrum on condition 4.

Figure 13. Current waveform on condition 4.

Figure 12 shown the spectrum on each different filter. From the figure can be seen that the current harmonic decreased and all harmonic can meet IEEE 519-2014 standard (written on Table 14). Figure 13 shown the waveform on each different filter. Both of harmonic filter can maintain the current waveform to be pure sine wave. But on detuned reactor happen phase shifting 90°.

Table 15. Capacitor needed on condition 4.

Filter	Power (kW)	Early PF (%)	Target PF (%)	Capacitor Needed (kVAR)
Without filter	1631	75.5%	95%	880.5
Single-Tuned Filter	1632	77.2%	95%	807.3
Detuned Reactor 50 kVAR	1662	93.4%	95%	89.5
Table 15 shown capacitor capacity needed for supplying reactive power on the system. If without filter 880.5 kVAR, if using Single-Tuned Reactor need 807 kVAR and if using Detuned reactor only need 89.5 kVAR to gain 95% PF on the kVARH meter.

Table 16. Voltage profile on condition 4.

Bus	%V Without Filter	%V Installed Single-Tuned Filter	%V Installed Detuned Reactor 75kVAR
Ball Mill	95.78	95.79	96.01
G Casting	95.85	95.86	96.08

From table 16 shown voltage profile increased after installing harmonic filters. But detuned only detuned reactor can increase voltage profile to meet the standard. THDv still meets the standard IEEE 519-2014 on condition 4.

4.3.5 Case 5. The experiment, in this case, aims to identify the level of harmonics, voltage profile and power factor if charger set to condition 5.

Table 17. Current harmonic in condition 5.

Bus	Orde	Limit (%)	CM Without Filter (%)	CM Installed Single-Tuned Filter (%)	CM Installed Detuned Reactor 100 kVAR (%)
Charger 1-3	1	7.0	2	2.160	0.680
	3	7.0	30	2.015	5.531
	5	7.0	3	3.260	0.660
	7	3.5	7	0.400	1.680

Figure 14. Current harmonics spectrum on condition 5.

Figure 15. Current waveform on condition 5.

Figure 14 shown the spectrum on each different filter. From the figure can be seen that the current harmonic decreased and all harmonic can meet IEEE 519-2014 standard (written on Table 17). Figure 15 shown the waveform on each different filter. Both of harmonic filter can maintain the current waveform to be pure sine wave. But on detuned reactor happen phase shifting 90°.
Table 18. Capacitor needed on condition 5.

Filter	Power (kW)	Early PF (%)	Target PF (%)	Capacitor Needed (kVAR) (%)
Without filter	1546	74.8%	95%	863.6
Single-Tuned Filter	1548	76.6%	95%	790.3
Detuned Reactor 50 kVAR	1585	98.4%	-	-

Table 18 shown capacitor capacity needed for supplying reactive power on the system. If without filter 863.6 kVAR, if using Single-Tuned Reactor need 790.3 kVAR and if using Detuned reactor only do not need the capacitor to gain 95% PF on the kVARH meter. Because power factor on the system is up to > 95%.

Table 19. Voltage profile on condition 5.

Bus	% V Without Filter	% V Installed Single-Tuned Filter	% V Installed Detuned Reactor 75kVAR
Ball Mill	95.72	95.90	96.49
G Casting	95.79	95.97	96.55

From table 19 shown voltage profile increased after installing harmonic filters. But detuned only detuned reactor can increase voltage profile to meet the standard. THDv still meets the standard IEEE 519-2014 on condition 5.

Conclusion

Based on the five study cases that have been done can be concluded:
1) Installation single-tuned filter and the detuned reactor can improve power quality on the system (voltage profile, capacitor load [PF] and harmonic distortion).
2) Electrical disturbances those happen on this microgrid is under voltage and current harmonic distortion. Voltage harmonic still meet IEEE 519 standard.
3) Installation detuned reactor needs autotransformer to maintain 90° leading condition effected by the detuned reactor.

Reference

[1] Syai’in M, Rohiem N H, Tobing R K, Adiatmoko M F, Soeprijanto A and Hatta A M 2017 Harmonics monitoring of car’s inverter using discrete fourier transformation Information Technology, Computer, and Electrical Engineering (ICITACEE), 4th International Conference on 2017 Oct 18 (pp. 102-107). IEEE.
[2] Husnayain F, Purnomo N D, Anwar R and Garmiwa I 2014 Harmonics mitigation for offshore platform using active filter and line reactor methods Electrical Engineering and Computer Science (ICEECS), 2014 International Conference on 2014 Nov 24 (pp. 331-336). IEEE.
[3] Simpson J I, et al. 2008 Requirement and Evaluation of an active filter in an catual industrial installation IEEE.
[4] Akagi H 2006 Modern active filters and traditional passive filters. Bulletin of the polish academy of sciences technical sciences 54.