The complete chloroplast genome of *Mahonia eurybracteata* subsp. *Ganpinensis* (H.Lév.) T. S. Ying & Boufford (Berberidaceae)

Ruoqi Huang a,b, Calhong Wang a, Qiong Liang a, Ying Wang c,d, Tae-Jin Yang e and Yanjun Zhang a

aKey Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; bUniversity of Chinese Academy of Sciences, Beijing, China; cKey Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; dGuangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; eDepartment of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea

ABSTRACT

Mahonia eurybracteata subsp. *ganpinensis* (H.Lév.) T.S.Ying & Boufford. is an evergreen shrub of Berberidaceae and has the potentials for horticultural and medicinal development. In the present paper, the complete chloroplast genome of *Mahonia eurybracteata* subsp. *ganpinensis* (H.Lév.) T.S.Ying & Boufford was sequenced. The complete chloroplast genome was 165,562 bp in length, containing a large single copy region (73,394 bp), a small single copy region (18,698 bp) and two inverted repeat regions (36,735 bp). The genome consisted of 113 genes, including 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis showed that *M. eurybracteata* subsp. *ganpinensis* and *M. bealei* were firstly clustered into a branch and the two *Mahonia* species were most closely related to the genus *Berberis* of Berberidaceae.

ARTICLE HISTORY

Received 11 September 2019 Accepted 27 October 2019

KEYWORDS

Chloroplast; genome sequence; *Mahonia eurybracteata* subsp. *ganpinensis*; phylogenetic relationships

Mahonia eurybracteata subsp. *ganpinensis* (H.Lév.) T.S.Ying & Boufford. is an evergreen shrub of Berberidaceae. The subsp. species is mainly distributed in Guizhou, Sichuan, and Hubei of China (Zhang 1998; Ying et al. 2011). As evergreen shrubs or small trees, the plants of the genus *Mahonia* often used as horticultural ornamental plant (Jiang et al. 2007). Furthermore, the leaves, roots, stems, and barks of the plants of *Mahonia* have been reported with antibacterial, antifungal, anticancer, and anti-inflammatory effects (Ji et al. 2000; Ouyang et al. 2012; Latha et al. 2019). *Mahonia eurybracteata* subsp. *ganpinensis* has the potentials for horticultural and medicinal development.

The genus *Mahonia* comprises about 60 species of which about 30 are distributed in China. Although the researchers conducted molecular phylogenetic studies on *Mahonia* using ITS (Kim, Kim, Landrum 2004), there are quite a few questions on the infra-genera relationships of the genus. The chloroplast genome could provide valuable information for botanic taxonomy and phylogeny (Ma et al. 2013; Zhang et al. 2016), also basic genetic resource which are of implication for the phylogenetic studies.

The chloroplast DNA of *M. eurybracteata* subsp. *ganpinensis* was extracted from its fresh leaves which were sampled in Wuhan (N30°32'38", E114°24'51") . The voucher herbarium specimen was deposited at the Herbaria of Wuhan Botanical Garden, Chinese Academy of Sciences (HIB) and the specimen accession number is Yanjun Zhang 555 (HIB). A chloroplast genomic library was constructed with PCR technology and sequenced with Illumina Hiseq 2000 (Kim et al. 2017). Raw reads were screened with NGS QC toolkit software (Cai et al. 2015) to obtain high-quality reads which were spliced with CLC-quality genome assembler (ver 4.06beta) and MUMmer (Kurtz et al. 2004) by referring to the chloroplast genome of *Mahonia bealei* (Fort.) Carr. (KF176554). Gene annotation was done by using DOGMA (http://phylocluster.biosci.utexas.edu/dogma/) combined with the online alignment tool Blastx and ORF Finder (http://www.ncbi.nlm.nih.gov/). The tRNA genes were predicted by using DOGMA and the online sites tRNA-scan, ARAGORN (Laslett and Canback 2004). The circular cp genome map was finished by using the Orgnellar Genome DRAW (http://ogdraw.mpimp-golm.mpg.de/) (Lohse et al. 2007).

The chloroplast genome sequence of the *M. eurybracteata* subsp. *ganpinensis* was submitted to NCBI, and the accession number is MN417307. The genome sequence has a total length of 165,562 bp and the structure is a typical quadripartite, including a large single-copy region or LSC (73,394 bp), a small single copy region or SSC (18,698 bp) and two inverted repeat regions or IRs (36,735 bp). The GC contents were 38.07%. The chloroplast genome of *M. eurybracteata* subsp. *ganpinensis* consists of 113 genes, including 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes.
The phylogenetic analyses were carried out using the complete chloroplast genome sequences of *M. eurybracteata* subsp. *ganpinensis*, 17 reported species of Berberidaceae, and one reported species *Akebia quinata* of Lardizabalaceae as the outgroup. Before constructing the phylogenetic tree, sequence alignment of all the species was performed with the multiple alignment tool MAFFT (Katoh and Standley 2013). With a certain manual correction and gap deletion processing, conserved sequences for constructing phylogenetic analysis were prepared. Maximum Likelihood (ML) tree was constructed using MEGA7.0 (Nguyen et al. 2015). The results showed that *M. eurybracteata* subsp. *ganpinensis* and *M. bealei* were firstly clustered into a branch and the two *Mahonia* species were most closely related to the genus *Berberis* of Berberidaceae. Furthermore, Berberidaceae was grouped into a monophyletic branch and the family could be divided into four groups based on chromosome base number, which was consistent with previous molecular phylogenetic studies on Berberidaceae (Kim, Kim, Kim et al. 2004; Wang et al. 2007; Sun et al. 2018). The herbaceous genera with *x* = 6, *Diphylleia*, *Diosma*, *Epimedium*, *Sinopodophyllum*, and *Plagiorhegma*, formed into a branch, while *Mahonia* and *Berberis*, which are shrubs or small trees, had chromosome base number with *x* = 7 and were clustered into a branch. The herbaceous genera with *x* = 8, *Gymnospermium* and *Leontice*, formed into a branch and were firstly clustered with the monotypic and shrubby gene *Nandina* with *x* = 10 (Figure 1).

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Funding

This research was supported by the National Natural Science Foundation of China under Grant 31673046, the National Science and Technology Infrastructure program of China-Compilation of Ex Situ Cultivated Flora of Botanical Garden under Grant 2015FY210100, the Key Scientific Research Talents Project of Wuhan Botanical Garden, Chinese Academy of Sciences under Grant Y855281A05.

References

Cai J, Ma PF, Li HT, Li DZ. 2015. Complete plastid genome sequencing of four Tilia species (Malvaceae): a comparative analysis and phylogenetic implications. PLoS One. 10(11):e0142705.

Ji XH, Li Y, Liu HW, Yan YN, Li JS. 2000. Determination of alkaloids in rhizome of some Mahonia plants by HPCE. Acta Pharm Sin. 35(3):220–223.

Jiang YL, Chen JY, Gao YP, Yang CH. 2007. Scenic values and utilization in gardening of wild Berberidaceae in Guizhou. Chin Wild Plant Resources. 26(4):37–40.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.
Kim SH, Cho CH, Yang M, Kim SC. 2017. The complete chloroplast genome sequence of the Japanese Camellia (Camellia japonica L.). Mitochondrial DNA Part B. 2(2):583–584.
Kim YD, Kim SH, Kim CH, Jansen RK. 2004. Phylogeny of Berberidaceae based on sequences of the chloroplast gene ndhF. Biochem Syst Ecol. 32(3):291–301.
Kim YD, Kim SH, Landrum LR. 2004. Taxonomic and phytogeographic implications from its Phylogeny in Berberis (Berberidaceae). J Plant Res. 117(3):175–182.
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5(2):R12.
Laslett D, Canback B. 2004. ARAGORN, a program for the detection of transfer RNA and transfer-messenger RNA genes. Nucleic Acids Res. 32(1):11–16.
Latha R, Chozhavel Rajanathan TMC, Khusro A, Chidambaranathan N, Agastian P, Sankaranarayanan N. 2019. Anticancer activity of Mahonia leschenaultia methanolic root extract and berberine on Dalton’s asctic lymphoma in mice. Asian Pac J Trop Med. 12(6):246–271.
Lohse M, Drechsel O, Bock R. 2007. Organellar Genome DRAW(OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 52(5–6):267–274.
Ma J, Yang BX, Zhu W, Sun LL, Tian JK, Wang XM. 2013. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms. Gene. 528(2):120–131.
Nguyen LT, Schmidt HA, Haeseler A, Minh BQ. 2015. IQ-TREE: a fastand effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274.
Ouyang PY, Zhu CX, Chen GX, Mo DF. 2012. Preliminary research of antimicrobial activity of extract from Mahonia eurybracteata Fedde. J Cent South Univ Forestry Technol. 32(3):166–179, 185.
Sun YX, Moore MJ, Landis JB, Lin N, Chen L, Deng T, Zhang JW, Meng AP, Zhang SJ, Tojibaev KS, et al. 2018. Plastome phylogenomics of the early-diverging eudicot family Berberidaceae. Mol Phylogenet Evol. 128(2018):203–211.
Wang W, Chen ZD, Liu Y, Li RQ, Li JH. 2007. Phylogenetic and biogeographic diversification of Berberidaceae in the northern hemisphere. Syst Bot. 32(4):731–742.
Ying TS, Boufford DE, Brach AR. 2011. Berberidaceae. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China. Beijing: Science Press; St. Louis, MO: Missouri Botanical Garden Press; p. 772–782.
Zhang H. 1998. Geographical distribution of medicinal plants of the genus Mahonia in Sichuan. J SW Agr Univ. 20(6):635–638.
Zhang YJ, Du LW, Liu A, Chen JJ, Wu L, Hu WM, Zhang W, Kim K, Lee SC, Yang T, Wang Y. 2016. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses. Front Plant Sci. 7:306.