Estimation of Time Difference Using Cross-Correlation in Underwater Environment

[Abstract]

Recently, underwater acoustic communication (UWAC) has been studied by many scholars and researchers. In order to use UWAC, we need to estimate time difference between the two signals in underwater environment. Typically, there are three methods to estimate the time-difference between the two signals such as estimating the arrival time of the first non-background segment and calculate the temporal difference, calculating the cross-correlation between the two signal to infer the time-lagged, and estimating the phase delay to infer the time difference. In this paper, we present calculating the cross-correlation between the two signals to infer the time-lagged to apply UWAC. We also present the experimental result of estimating the arrival time by using cross-correlation. We get EXCORR = 0.003055 second as the estimation error in mean absolute difference.

Key word : Cross-correlation, Time difference, Underwater acoustic communication, Underwater environment, Hydrophone.

http://dx.doi.org/10.12673/jant.2016.20.2.155

Received 26 February 2016; Revised 22 March 2016
Accepted (Publication) 22 April 2016 (30 April 2016)

*Corresponding Author; Young-Chul Bae
Tel: +82-61-659-7315
E-mail: ycbae@jnu.ac.kr
Ⅰ. Introduction

Because the electromagnetic wave cannot propagate in underwater differ from ground, we use acoustic communication. However, acoustic communication in underwater environment have several problems such as the velocity of sound wave is slow as 1.5km/s, limited frequency bandwidth, time varying multipath according to time, and reflection in sea level and ocean floor. The acoustic signals are reflected, scattered and absorbed by variation of sea level, caused by wind specially. The transmitting signals are also received with large distortion due to media characteristics. Therefore, it is well known that the acoustic communication in underwater environment is very difficult.

Recently, underwater acoustic communication (UWAC) has been studied by many scholars and researchers. Direct-sequence code division multiple access (DS-CDMA) [1]-[4], orthogonal-frequency division multiplexing (OFDM) [1],[5]-[7], and multi-input multi-output (MIMO) [1],[8], modulation and error correction[9], and others [10]-[11], techniques that can transmit high-speed data are used in UWAC.

In order to use UWAC, we need to estimate time difference between the two signals in underwater environment. To do this, we have to acquire two pinger periodically broadcast a signal with stable frequency through hydrophone in underwater environment. Typically, there are several method to estimate the time-difference between the two signals such as estimating as the arrival time of the first non-background segment in both signals and calculate the temporal difference.

In this paper, we present calculating the cross-correlation between the two signals to infer the time-lagged to apply UWAC. We also present the experimental result of estimating the arrival time by using cross-correlation.

Ⅱ. Time Difference Estimation using Cross Correlation

2-1 Data preprocessing

There is an array of N_h hydrophones which record the acoustic signal with sampling frequency F_s. In the example showed in Fig. 1, there are two impulsive segments locating around 0.7755 and 1.8449 second in the data of the first hydrophone.

The problem is to estimate the time-difference between the two signals, three methods can be applied: (1) estimating the arrival time of the first non-background segment in both signals and calculate the temporal difference.

The input signal from each hydrophone is an integer array valued in range $(-2^{16}, 2^{16})$. The purpose of preprocessing is to normalized the value range into (-1,1).

$$z_t = \frac{x_t}{\max|x_t|}, 0 \leq t \leq T-1 \tag{1}$$

where x_t is a data sample and T is the total number of data sample.

2-2 Preliminaries

Given two discrete-time real-valued signal $x_1(n)$ and $x_2(n)$ of duration N and a lag l, the cross-correlation between x_1 and x_2 is given by equation (2).

$$r_{x_1x_2}(l) = \begin{cases} \sum_{n=0}^{N-1-l} x_1(n+l)x_2^*(n) & l \geq 0 \\ r_{x_1x_2}^*(-l) & l < 0 \end{cases} \tag{2}$$

where x^* denotes the complex conjugate of x.

The calculation of cross-correlation is similar to convolution and thus is can be calculated by using the discrete Fourier transform(DFT). Of course there are many ways to calculate convolution but the calculation of Fourier transform is the fastest. After the cross-correlation is computed, the time difference is calculated as $\Delta_l = \frac{l_0}{F_s}$, where

$$l_0 = \arg \max_l |r_{x_1x_2}(l)|.$$
2-3 Algorithm

An algorithm for calculating sample cross-correlation function is following as:

Input: Real-valued signal \(x_1(n), \ x_2(n) \) of duration \(N \), sampling frequency \(F_s \), number of lags \(N_l \)

Output: Time difference \(\Delta_t \) between \(x_2(n) \) and \(x_1(n) \)

1. Find \(n_{FFT} \) is the smallest power of 2 which larger than or equal to \(2N-1 \);
2. Compute the discrete-time Fourier transform \(X_1(k), \ X_2(k) \);
3. Calculate the Cross Power Spectrum:
 \[
 P_{x_1x_2}(k) = X_1(k) \cdot \overline{X_2(k)}
 \]
 where \(X^* \) denotes the conjugate of \(X \);
4. Compute the inverse DFT \(\hat{x}(n) \) from \(P_{x_1x_2}(k) \);
5. Normalization:
 \[
 \hat{x}(n) = \frac{\hat{x}(n)}{A_0}
 \]
 where \(A_0 = \sqrt{\left(\sum_{n=0}^{N-1} (x_1(n))^2\right)\left(\sum_{n=0}^{N-1} (x_2(n))^2\right)} \)
6. Shift the array \(\hat{x} \) such that the maximum value is aligned at the middle of the array;
7. Create \(r \) of length \(2N_l+1 \) from \(\hat{x} \) from \((n_{FFT} / 2 - N_l) \) to \((n_{FFT} / 2 + N_l) \) corresponding to lags \(N_l, N_l-1, ..., 0, ..., N_l-1, N_l \)
8. \(\hat{l}_0 = \arg \max | \hat{r}(l) | \) \(0 \leq l \leq 2N_l + 1 \) - \(N_l \)
9. \(\Delta_t = \frac{\hat{l}_0}{F_s} \)

We take a half of 1st and 2nd hydrophone data for demonstration. The first step is to compute the DFT of the two signals. The 1st and 2nd hydrophone data and their corresponding magnitude of the DFT is showed in Fig. 2 and 3.

We compute the cross power spectrum and it shows in Fig. 4. Next, we compute the inverse DFT, normalize and shift the result as shown in Fig. 5.

Then, we find in the cross-correlation the peak which corresponds to the time-lagged between 2nd hydrophone data and 1st hydrophone data as shown in Fig. 6.

| Table 1. Referenced time difference of four hydrophones’ data. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | \(H_1 \) | \(H_2 \) | \(H_3 \) | \(H_4 \) |
| \(H_1 \) | 0 | -0.000357 | 0.002877 | 0.000733 |
| \(H_2 \) | 0.000357 | 0 | 0.003233 | 0.00109 |
| \(H_3 \) | -0.002877 | -0.003233 | 0 | -0.002143 |
| \(H_4 \) | -0.000733 | -0.00109 | 0.002143 | 0 |

The lag value is 466 corresponding to 0.001553 second. The estimation error is \(\Delta_E = ||0.001553 - (0.000357)|| = 0.00191 \) second (the number -0.000357 comes from table 1).

Where the data in row \(x \) and column \(y \) is the time difference between \(y \)th and \(x \)th hydrophone data. For example, in the equation (4).

For example, with \(N_H = 4 \), \(\Delta_E[l,l2] \) is given in table 2 and \(\Delta_E[l,l2] \) is the estimated time difference.

For example, with \(N_H = 4 \), we can calculate following equation (4).

\[
\Delta_E = \frac{1}{6} (|\Delta_E[1,2] - \Delta_E[1,2]| + |\Delta_E[1,2] - \Delta_E[1,3]| +
|\Delta_E[1,4] - \Delta_E[1,4]| + |\Delta_E[1,2] - \Delta_E[2,3]| +
|\Delta_E[2,4] - \Delta_E[2,4]| + |\Delta_E[3,4] - \Delta_E[3,4]|)
\]

We use a half of 1st hydrophone data for demonstration. The first step is to compute the DFT of the two signals. The 1st and 2nd hydrophone data and their corresponding magnitude of the DFT is showed in Fig. 2 and 3.
III. Evaluation of method for cross-correlation

In this evaluation, we first use the Matlab function xcorr to calculate the sample cross-correlation function in order to infer the time difference. Fig. 7 shows the cross-correlation result of 1st hydrophone data with the others including the autocorrelation with itself. We then translate those Matlab source code into C programming language with using the FFTW library [2] (http://fftw.org) for FFT computation.

The estimated results are showed in table 2 and 3. In table 2, time lag is the lag at which the cross-correlation yields maximum. Given lag t_l, the estimated time is given by $\Delta = \frac{t_l}{F_s}$ (seconds). Those result are showed in table 3.

Table 2. Time lag from cross-correlation.

	H_1	H_2	H_3	H_4
H_1	0	466	-1271	-99
H_2	-466	0	-104	324
H_3	1271	104	0	1208
H_4	99	-324	-1208	0

Table 3. Time difference estimated(in second) using cross-correlation.

	H_1	H_2	H_3	H_4
H_1	0	-0.001553	0.004237	-0.00033
H_2	-0.001553	0	0.000347	0.00108
H_3	0.004237	-0.000347	0	0.004027
H_4	0.00033	-0.00108	-0.004027	0
The estimation error in mean absolute difference is EXCORR = 0.003055 second. It means that this algorithm with the cross correlation can apply in the underwater system.

IV. Conclusion

In order to use UWAC, we need to estimate time difference between the two signals in underwater environment. To do this, we have to acquire two pinger periodically broadcast a signal with stable frequency through hydrophone in underwater environments.

In this paper, we presented calculating the cross-correlation between the two signal to infer the time-lagged. We also presented the experimental result of estimating the arrival time by using cross-correlation. We get EXCORR = 0.003055 second as the estimation error in mean absolute difference. In the future, we need to apply into real underwater environments including river and ocean.

Acknowledgement

This research was a part of the project titled ‘R&D center for underwater construction robotics’, funded by the Ministry of Oceans and Fisheries(MOF) and Korea Institute of Marine Science &Technology Promotion(KIMST), Korea.

References

[1] A. Ranjan, “Underwater wireless communication network,” Advance in Electronic and Electric Engineering, Vol. 3, No.1, pp. 41-46, 2013.
[2] H. W. Kang and W.O. Han, “Performance analysis of variable rate multi-carrier CDMA under an underwater acoustic,” Journal of the Korea Institute of Electronics Communications Sciences, Vol. 7, No. 1, pp. 33-38, 2012.
[3] Y. P. Lee, Y. S. Moon, N. Y. Ko, H.T. Choi, L. Huang, and Y. C. Bae, “Measurement of DS-CDMA propagation distance in underwater acoustic communication considering attenuation and noise,” International Journal of Fuzzy Logic and Intelligent Systems, Vol.15, No.1, pp.20-26, 2015.
[4] Y. P. Lee, Y. S. Moon, N. Y. Ko, H. T. Choi, L. Huang, and Y. C. Bae, “DSSS-based channel access technique DS-CDMA for underwater acoustic transmission,” International Journal of Fuzzy Logic and Intelligent Systems, Vol.15, No.1, pp. 53-59, 2015.
[5] P. J. Gendron, “Orthogonal frequency division multiplexing with on-off keying: Noncoherent performance bounds, receiver design and experimental results,” U.S. Navy Journal of Underwater Acoustics, Vol. 56, No. 2, pp. 267-300, 2006.
[6] M. Stojanovic, “Low complexity OFDM detector for underwater channels,” in Proceedings of MTS/IEEE OCEANS Conference, Boston: MA, pp. 18-21, Sept. 2006.
[7] Y. W. Im and H. W. Kang, “Performance analysis of an adaptive OFDM over an underwater acoustic channel,” Journal of the Korea Institute of Electronics Communications Sciences, Vol. 5, No. 5, pp. 509-515, 2010.
[8] B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE Journal of Oceanic Engineering, Vol. 33, No. 2, pp. 198-209, Apr. 2008.
[9] Y. Labrador, Masoumeh Karimi, Deng Pan, and Jerry Miller, “Modulation and Error Correction in the Underwater Acoustic Communication Channel,” International J. of Computer Science and Network Security, Vol. 9, No.7, pp. 123-130, July 2009.
[7] D. H. Lee and Y. M. Yang, “Two-dimensional localization problem under non-Gaussian noise in underwater acoustic sensor networks,” Journal of the Korean Institute of Intelligent Systems, Vol. 23, No.5, pp. 418-422, 2013.
[8] S. H. Noh, N. Y. Ko and H. T. Choi, “Implementation and performance comparison for an underwater robot localization methods using seabed terrain information”, Journal of the Korean Institute of Intelligent Systems, Vol. 25, No.1, pp.70-77, 2015.
[9] H. S. Son, J. B. Park, and Y. H. Joo, “Intelligent range decision method for figure of merit of sonar equation,” Journal of the Korean Institute of Intelligent Systems, Vol. 23, No.4, pp. 304-309, 2013.
[10] D. J. Shin, S. Y. Na, and J. Y. Kim, “Fuzzy distance estimation for a fish robot,” International Journal of Fuzzy Logic and Intelligent Systems, Vol.5, No.4, pp. 316-321, 2005.
[11] Y. W. Im, P. S. Lim, J. G. Lee, and C. S. Kim, “Interface effect analysis between undersea fiber optic cable and underwater acoustic channel,” Journal of the Korea Institute of Electronics Communications Sciences, Vol. 10, No. 9, pp. 979-986, 2015.
이영필 (Youngpil Lee)
2006년 2월 : 순천대학교 전자공학과 (공학사)
2008년 2월 : 순천대학교 전자공학과 (공학석사)
2008년 ~ 현재 : 레드원테크놀러지(주) 연구원
※ 관심분야 : 로봇 제어, 모터 제어, 산업통신망

문응선 (Yong-seon Moon)
1983년 2월 : 조선대학교 전자공학과 (공학사)
1989년 2월 : 조선대학교 대학원 전자공학과 (공학박사)
1992년 ~ 현재 : 소상게이자재 제어계측공학과 교수
※ 관심분야 : 산업통신망 및 로봇, 실시간 모션 제어

고낙용 (Nak Yong Ko)
1985년 2월 : 서울대학교 제어계측공학과 (공학사)
1987년 2월 : 서울대학교 대학원 제어계측공학과 (공학석사)
1993년 2월 : 서울대학교 대학원 제어계측공학과 (공학박사)
1997~1998, 2004~2005 미국 Carnegie Mellon Univ. Visiting research scientist
1992년~현재 조선대학교 제어계측로봇공학과 교수
※ 관심분야 : 지상로봇과 수중로봇의 자율주행

최현택 (Hyun-Taek Choi)
1991년 : 한양대학교 전자공학과 (공학사), 1993년 : 한양대학교 대학원 전자공학과 (공학석사)
2000년 : 한양대학교 대학원 전자공학과(제어 및 로봇공학) (공학박사), 1993년~1995년 : KT 연구개발원 S/W 연구소 책임연구원
2000년~2003년 : 하와이 주립대학교 기계공학과 Post-Doc.
2003년~현재 : 한국해양과학기술원, 산학협력판매업무소 책임 연구원
※ 관심분야 : 수중로봇, 해양시스템, 감인제어

이정구 (Jeong-Gu Lee)
1989년 충북대학교 전기공학과 (공학사), 1991년 충북대학교 대학원 전기공학과 졸업(공학석사)
2008년 충북대학교 대학원 전기공학과 졸업(공학박사), 1991년~2000년 산업기술평가책임연구원
2015년~한국과학기술정보연구원 책임연구원
※ 관심분야 : 디스플레이, 태양전지, 정보 통신, 정보 분석, 기술 사업화

배영철 (Young-Chul Bae)
1984년 광운대학교 전기공학과 (공학사), 1988년 광운대학교 대학원 전기공학과 (공학석사)
1997년 광운대학교 대학원 전기공학과 (공학박사), 1988년~1991년 한국전력공사
1991년~1997년 산업기술정보연구원 책임연구원, 1997년~현재 전남대학교 전기전자통신공학부 교수
2002년~2002년 Brigham Young University 방문교수,
※ 관심분야 : 카오스 제어, 카오스 로봇, 로봇 제어