Statistical Analysis of the $N_{DW} = 1$ QCD Axion Mass Window from Topological Defects

Sebastian Hoof, Jana Riess, and David J. E. Marsh

1 Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
2 Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom

(Dated: August 2021)

We review results from QCD axion string and domain wall simulations and propagate the associated uncertainties into the calculation of the axion relic density. This allows us to compare different results in the literature and, using cosmological constraints, to perform statistical inference on the axion mass window in the post-inflationary Peccei–Quinn symmetry breaking scenario. For dark matter axions, this leads to a median dark matter axion mass of 0.50meV, while the 95% credible interval at highest posterior density is between 0.48 and 0.52meV. For simulations including string-domain wall decays, these numbers are 0.22meV and [0.16, 0.27]meV. Relaxing the condition that axions are all of the dark matter, the axion mass window is completed by an upper bound of around 80meV, which comes from hot dark matter constraints. This demonstrates, at least from the statistical perspective, that the axion mass can be constrained rather precisely once it is possible to overcome the much larger systematic uncertainties.

CONTENTS

I. Introduction 1
II. QCD axion properties 2
III. The QCD axion relic density 3
 A. Realignment 3
 B. Axion emission from string scaling 3
 C. Nonlinear transient 6
 D. String-domain wall decays 6
 E. Assumptions and limitations 7
IV. Parameter estimates 7
 A. QCD axion properties 7
 B. String spectrum: GHV-II 8
 C. String spectrum: HKSYY 9
 D. Nonlinear transient: GHV-II 10
 E. String and domain wall decays: (H)KSS 11
V. Constraints and likelihood 11
VI. Results 12
VII. Conclusions 13
 Acknowledgments 14
 A. Interpolation scheme for the number of effective relativistic degrees of freedom 15
 B. Solving the Klein–Gordon equation 15
 References 16

QCD axions [1–4] are a well-known solution to the Strong CP problem of the Standard Model (SM) and excellent dark matter (DM) candidates [5–9]. If the associated Peccei–Quinn (PQ) symmetry breaks after the end of inflation, and is never restored, the value of the axion relic density can be in principle be calculated from a single unknown model parameter: the axion decay constant f_a (assuming the PQ field quartic coupling to be $\lambda_r \sim 1$). In this scenario, the total axion relic density consists of axions from the so-called realignment mechanism and from topologically nontrivial field configurations, known as cosmic strings and domain walls (DWs). Such defects form dynamically during the PQ phase transition [10] and emit axions during their subsequent evolution [11–14].

Accurately predicting the axion relic density in the post-inflation PQ breaking scenario allows to set a lower limit on the axion mass from the observed amount of DM in the Universe, or even to predict the axion mass assuming it is all the DM. There has been a debate on the behavior of the string network and, consequently, on the significance of the string contribution to the axion relic density for almost three decades. A complete numerical simulation of the strings to the physically relevant regime is currently not possible due of the large separation of scales in the problem of order $e^{70} \sim 10^{30}$, set by the ratio of the size of the string core (near the PQ scale) to the Hubble scale when the axion field becomes dynamical (near the axion mass scale). State-of-the-art simulation can only access separations of up to about $e^8 \approx 3000$ [15], and one therefore has to rely on extrapolations over many orders of magnitude. While the extrapolation will introduce sizeable systematic uncertainties, it is not a hopeless endeavor due to the conjectured existence of an attractor solution for the string scaling.
One crucial quantity in this extrapolation is the shape of the instantaneous axion emission spectrum, which is still a subject of debate [11–24] (see in particular Ref. [21] for a recent summary and discussion of the literature). Some studies found that the spectrum is UV-dominated, i.e., by larger energies, leading to a sub-dominant contribution to the relic density from strings, expressed by the spectral parameter $q < 1$. However, other authors found an IR-dominated spectrum, which would make the contribution from axion string decay more important than the realignment mechanism, expressed by the spectral parameter $q > 1$.

So far, there has been a focus on mostly qualitative aspects the behavior of the strings, the existence of a scaling solution, and the shape of the spectrum. While these also rely on the quantitative nature of the related parameters, no extensive statistical analysis of the existing findings has been put forward. References [15, 20] both find an IR string spectrum, $q > 1$, while each treats different aspects of the nonlinear axion evolution after string decay, leading to sightly different values for the axion mass. References [18, 22, 23] find UV spectra with $q < 1$, and our method could in principle also be used on these results to allow for additional uncertainties not included in those analyses.1

The goal of the present work is to consider numerical results from simulations of cosmic strings and DWs in a common framework, and to compute the energy density in axions from realignment and topological defects, propagate the relevant uncertainties and perform a likelihood analysis of cosmological constraints. In this sense, our work is in the spirit of e.g. Ref. [25, 26] but extended by the formalism and findings of Refs. [15, 21]. This allows us to identify a minimal set of parameters for characterizing e.g. the string spectrum and for considering the various sources of measurable uncertainties. Doing so allows us to estimate the axion mass window as informed by the amount of DM and the number of relativistic species in the Universe from Planck’s measurement of the cosmic microwave background (CMB) anisotropies [27].

This paper is structured as follows. In Sec. II we outline the relevant properties of the QCD axion. In Sec. III, we summarize the relevant equations for computing the realignment and string decay contributions to the axion energy density today. Section IV provides details on how we extract the numerical input for our analysis, including both estimates for the parameters and constraints. Section VI is to present and discuss our findings before we conclude in Sec. VII.

II. QCD AXION PROPERTIES

For our considerations, we only need to know a few of the calculated QCD axion properties. One is the QCD axion mass, which (at zero temperature) can be derived from chiral perturbation theory (ChPT). The zero-temperature mass follows from the Gell-Mann–Oakes–Renner [28] relation:

$$f_a^2 m_{a,0}^2 = \chi_0,$$

where χ_0 is the zero-temperature QCD topological susceptibility, $f_a = v_{QCD}/N_{DW}$ is the axion decay constant, v_{QCD} is the PQ field vacuum expectation value, and $N_{DW} = 2N$ is the domain wall number, given by twice the color anomaly coefficient N.2

Reference [3] first used χ_0 to estimate the axion mass, and the calculation has been refined over the years [e.g. 30, 31]. The most recent study finds that [31]

$$\chi_0 = \chi_0^0 (1 + \delta_{NLO} + \delta_{NNLO} + \delta^*),$$

$$m_{a,0} = \frac{\sqrt{\chi_0}}{f_a} = (5.69 \pm 0.05) \text{meV} \left(\frac{10^{12} \text{GeV}}{f_a}\right),$$

where the corrections in Eq. (2) are given in Ref. [31], and lead to the quoted uncertainty in Eq. (3), which we discuss further in Sec. IV.A.

The QCD axion mass exhibits a temperature dependence, which can be parameterized as

$$m_a(T) = \frac{\sqrt{\chi(T)}}{f_a} = \frac{\sqrt{\chi_0}}{f_a} \left\{ \begin{array}{ll} 1 & \text{if } T \leq T_\chi \\ \left(\frac{T}{T_\chi}\right)^{p/2} & \text{otherwise} \end{array} \right. ,$$

From the dilute instanton gas approximation [32], we know that $p \approx 8$ [5–7, 9], and T_χ should be the same order as e.g. the QCD crossover temperature, which is $T_{QCD,c} \approx 157 \text{ MeV}$ [33, 34]. In the following we fit the temperature dependence of $\chi(T)$ to the lattice QCD results of Ref. [35], as described in Sec. IV.A.

QCD axions can have interactions with several other particles. While the most useful coupling for axion searches is that to photons, we will only need the axion coupling to gluons and pions. The gluon coupling is given by

$$\mathcal{L} = -\frac{\alpha_s}{8\pi f_a} \phi G_{\mu\nu} \tilde{G}^{\mu\nu},$$

where ϕ is the axion field, $G_{\mu\nu}$ is the gluon field strength tensor and $\tilde{G}^{\mu\nu}$ its dual, and α_s is the strong-force

1 While this work was in preparation, Ref. [24] appeared which supersedes Ref. [23] and finds $q \sim 1$. We therefore do not include the results of Ref. [23] here.

2 In what follows we assume $N_{DW} = 1$, and consider only strings and unstable DWs. With $N_{DW} > 1$, DWs are stable and an arbitrary biasing potential must be introduced such that DWs do not produce more DM than the observed amount. This additional freedom makes a statistical analysis of the case $N_{DW} > 1$ redundant. The axion mass prediction in this scenario is controlled by the choice of biasing, and a fine tuning measure for the neutron electric dipole moment (see Refs. [26, 29]).
fine-structure constant. In turn, we define the model-independent part of the axion-pion coupling in the effective Lagrangian as [36]

$$\mathcal{L}_{\text{eff}} \supset \frac{C_{a\pi}}{f_a} \partial_\mu a \left[2 (\partial^\mu \pi^0) \pi^+ \pi^- - \pi^0 (\partial^\mu \pi^+) \pi^- - \pi^0 (\partial^\mu \pi^-) \right]$$

with the coupling constant

$$g_{a\pi} \equiv C_{a\pi} \frac{m_\pi}{f_a} = \frac{1}{3} \left(\frac{1 - z}{1 + z} \right) \frac{m_\pi}{f_a},$$

where m_π is the neutral pion mass, and $z = m_a / m_d$ is the ratio of the up and down quark masses. We do not consider additional, model-dependent terms that would arise in non-hadronic axion models (see e.g. Ref. [36] for details).

III. THE QCD AXION RELIC DENSITY

Here, we provide the equations used in this work to calculate the different contributions to the axion energy density. They form the basis of our framework for recasting and comparing the findings of different works on the string spectrum. A graphical overview of the different mechanisms that we consider, and the associated time scales, is presented in Fig. 1.

The axion energy density today, $\rho_a (T_0)$, at temperature $T_0 = 2.7255(6) \text{ K}$ [37] is usually expressed relative to the critical density $\rho_{\text{crit}} = 3 m_\pi^2 H_0^2$, i.e. as $\Omega_a = \rho_a / \rho_{\text{crit}}$, where $H_0 = 100 h \text{ km s}^{-1} \text{ Mpc}^{-1}$ with the relative Hubble constant h and $m_\pi \approx 2.435 \times 10^{-8} \text{ GeV}$ is the reduced Planck mass. Under the assumption of (approximate) entropy conservation, the comoving number density of axions is conserved, and we can use this fact to scale the axion number densities between physical times, or in our case also temperatures T and T_0:

$$\rho_a (T_0) = \rho_a (T) \frac{m_a (0)}{m_a (T)} \frac{g_{*,s} (T_0)}{g_{*,s} (T)} \left(\frac{T_0}{T} \right)^3,$$

where $g_{*,s}$ is the number of effective relativistic degrees of freedom for the energy density. In what follows, we will quote the axion energy densities and temperatures from where the scaling to today’s energy density is possible. Note that we ignore the small uncertainty on T_0 in what follows and use the temperature-dependent values of $g_{*,s}$ and $g_{*,s}$ from Ref. [35] (also without uncertainties; see Appendix A for details on our implementation).

A. Realignment

The realignment contribution to the relic density comes from the zero-mode of the axion field ϕ. Its evolution is given by the Klein–Gordon equation on a Friedmann–Lemaître–Robertson–Walker background

$$\ddot{\phi} + 3H \dot{\phi} + V'(\phi) = 0,$$

where $V'(\phi)$ is the derivative of the effective axion potential V with respect to the axion field ϕ. We use the simple one-instanton potential for Eq. (9),

$$V(\phi) = f_a^2 m_a^2 (T) \left[1 - \cos (\phi / f_a) \right],$$

where $m_a (T)$ is the temperature-dependent axion mass from Eq. (4). The time evolution of the temperature during radiation domination can be obtained from the Friedmann equation

$$3 m_{\text{Pl}}^2 H^2 = \rho_{\text{rad}} = \frac{\pi^2}{30} g_{*,s} (T) T^4,$$

where $g_{*,s}$ are the effective relativistic degrees of freedom for the energy density, and the usual initial conditions $\phi (t = 0) = f_a \theta_i$ and $\phi (t = 0) = 0$ [38, 39], where $\theta_i \in (-\pi, \pi]$ is the so-called misalignment angle.

At early times, the Hubble friction in Eq. (9) dominates, and the field remains constant. At some time t_{osc}, approximately defined via

$$3 H (t_{\text{osc}}) = m_a (T_{\text{osc}}),$$

where T_{osc} is the corresponding temperature, the axion field starts to oscillate. At later times $t \gtrsim t_{\text{osc}}$ (and temperatures $T \lesssim T_{\text{osc}}$), when $m_a (T) \gg H (T)$, the comoving number of axions is conserved and, under the assumption of entropy conservation, we can scale the energy density in axions,

$$\rho_a = \frac{1}{2} \dot{\phi}^2 + V(\phi),$$

to its value today via Eq. (8). Details on how we solve Eq. (9) numerically can be found in Appendix B.

In the post-inflation PQ symmetry breaking scenario that we consider, the axion field takes on random values in the large number of causally-disconnected patches in the early Universe [9]. If the potential is initially close to zero, and switched on sufficiently fast, θ_i follows a uniform distribution $\theta_i \sim \mathcal{U} (-\pi, \pi]$.

As a consequence, the axion energy density on cosmological scales today can be calculated as the average over the huge number of causally-disconnected patches. This average can be calculated conveniently via the integral

$$\langle \rho_a \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \rho_a (f_a, \theta_i; \sqrt{\lambda_c} T_X, p) \, d\theta_i.$$

We show the realignment energy density from Eq. (14) as a function of f_a in Fig. 2.

B. Axion emission from string scaling

The axion field ϕ arises as the phase of a complex scalar field Φ, whose potential for $N_{\text{DW}} = 1$ can be written as

$$V(\Phi) = \lambda_c \left(|\Phi|^2 - \frac{f_a^2}{2} \right)^2.$$
Note that this potential respects the U(1) PQ symmetry and that the quartic coupling λ_r is a free model parameter. We may re-write the potential in terms of the radial mode and ϕ is the dynamical axion field (as used before). The randomness of the axion field after symmetry breaking leads to the formation of cosmic strings \cite{10, 41, 42}. The strings are characterized by their tension (energy per unit length), which for isolated, infinitely long strings at late times can be estimated as \cite{42}

$$\mu \sim \pi f_a^2 \log \left(\frac{m_r}{H}\right),$$ \hspace{2cm} (17)

Early simulations of cosmic strings (e.g. Refs. \cite{43, 44}) already suggested that strings enter a scaling regime, where the number of strings per Hubble volume stays constant. The existence of this scaling solution is a crucial ingredient for making the prediction of the axion energy density today independent from the system’s initial conditions.

However, computing the exact evolution of and interactions between the strings at earlier times is rather involved tasks, such that numerical simulations of the full axion field equations are needed for a more precise prediction of e.g. the string tension compared to Eq. (17).

For the remaining part of this section, we follow the approach and parameterization developed in Refs. \cite{15, 21} (hereafter also referred to as GHV-I and GHV-II, and collectively as GHV). The authors capture the non-trivial evolution of the string network by defining the average number of strings per Hubble patch ξ and the effective string tension as

$$\mu_{\text{eff}}(t) = \frac{\rho_s(t) t^2}{\xi(t)},$$ \hspace{2cm} (18)

with \hspace{2cm} (19)

$$\xi(t) \equiv \lim_{V \to \infty} \frac{L_{\text{tot}}(V) t^2}{V},$$

where $L_{\text{tot}}(V)$ is the total length of all strings in volume V and ρ_s is the energy density of strings. The initial time dependence of μ_{eff} can be determined from numerical simulations. GHV point out that a useful way to parameterize this dependence is, in analogy to Eq. (17),

$$\mu_{\text{eff}}(t) = \gamma_1(t) \pi f_a^2 \log \left(\frac{\gamma_2(t) m_r}{H \sqrt{\epsilon(t)}}\right),$$ \hspace{2cm} (20)

where $\gamma_1(t)$ and $\gamma_2(t)$ are \textit{a priori} unknown function and $\gamma_2(t)/\sqrt{\epsilon(t)}$ is supposed to capture the time dependence of μ_{eff}. The γ_1 factor accounts for the finite distance
between the strings (i.e., acts as an IR cutoff), the nontrivial shape of the strings, and possibly other effects. The γ_2 factor implements another IR cutoff, accounting for the average distance between straight uniformly distributed strings (compared to a single string where the cutoff would be the size of the simulation volume).

The results of GHV-II imply that both γ_1 and γ_2 can be taken as constants, where we set $\gamma_1 = 1.3$ and $\gamma_2 = 1/\sqrt{4\pi}$ following appendix E.1 of GHV-II. While GHV find that e.g. $\gamma_1 \sim 1.3-1.4$, we expect that the systematic uncertainties associated with this choice of parameters will be re-absorbed through the definition of the energy density. This is because it is possible to estimate the energy density in strings directly via simulations. Doing so, the energy density in strings is trivially given by

$$\rho_s(t) = \frac{\mu_{\text{eff}}(t) \xi(t)}{t^2}. \quad (21)$$

The crucial point is now that maintaining the scaling solution requires that the strings radiate energy at a rate Γ, which happens in the form of axions and radial modes. To leading order, the continuity equations for strings during the scaling regime is

$$\dot{\rho}_s + 2H \rho_s = -\Gamma. \quad (22)$$

The rate Γ can be found by comparing the derivatives of the energy density of the radiating string network to that of a “free” network. While the total emission rate is in principle given by the sum of emission rates into axions and radial modes, $\Gamma = \Gamma_a + \Gamma_r$, it turns out that the emission of axions is dominant i.e. $\Gamma \approx \Gamma_a$. It can be shown that $[21]$

$$\Gamma_a \approx \Gamma \approx 2H \rho_s = \frac{\mu_{\text{eff}}(t) \xi(t)}{t^2}, \quad (23)$$

where the last equality is valid as long as the Universe is still radiation-dominated (since $\mathcal{H} = 2/t$ from solution of the Friedmann equation). The number density of axions, at times when they are still effectively massless, can be calculated from

$$\rho_a^{\text{str}}(t) = \int dt' \left(\frac{R(t')}{H(t')} \right)^4 \Gamma_a(t'), \quad (24)$$

where R is the cosmological scale factor. More generally, the rate in Eq. (23) should be understood to be derived from $\Gamma(t) = \int dk \partial \Gamma(k,t)/\partial k$ since one needs to take the axion momentum into account. It turns out that a useful way to parameterize this dependence is via $[21]$

$$\frac{\partial \Gamma_a(t,k)}{\partial k} = \frac{\Gamma_a(t)}{H(t)} F \left[\frac{k}{H(t)}, \frac{m_r}{H(t)} \right], \quad (25)$$

where the instantaneous emission spectrum F, with $\int dx F[x, m_r/H] = 1$, characterizes the spectrum and $\Gamma_a(t)$ is given by Eq. (23). This allows us to calculate the axion number density from string scaling as

$$n_a^{\text{str}} = \int \frac{dk}{k} \frac{\partial \rho_a^{\text{str}}}{\partial k} = \int dt' \left(\frac{R(t')}{R(t)} \right)^3 \frac{\Gamma_a(t')}{H(t')} \int dx \frac{F[x, m_r/H]}{x}. \quad (26)$$

Since the dynamics of the string network is governed by two energy scales only, namely the Hubble scale H and the string mass m_r (the inverse of the string core size), it is reasonable to assume that $F[x, y]$ is a power law in $x \equiv k/H$ between $x_0 < x \lesssim y \equiv m_r/H$ with some cutoff x_0 that falls off outside of this peak region $[21]$: $$F[x, y] = \frac{1}{x_0} \frac{q-1}{1-(x_0/y)^q} \left(\frac{x_0}{x} \right)^q. \quad (27)$$

This leads to the result $[21]$

$$n_a^{\text{str}} \simeq \frac{8}{x_0} \frac{\mu_{\text{eff}} \xi}{1 - q^{-1}} \left(\frac{m_r}{x_0} \right)^q \frac{1 - q^{-1}}{1 - (2q - 1)e^{-\left(1-q\right)\log\left(\frac{m_r}{x_0}\right)}} \quad (28)$$

for large values of $\ell \equiv \log(m_r/H)$ such as the physically relevant scale around $\ell \sim 70$.

In summary, one only need to extrapolate the values of the spectral cutoff x_0, index q, and the scaling parameter ξ from numerical simulations of the string network. The single most important parameter out of these is q. For $q > 1$, the contribution from strings to the axion relic
density tends to dominate over the realignment contribution, while for \(q < 1 \), the opposite is true (cf. left panel of Fig. 3).

Since the number of axions from strings should be conserved after the decay of the strings, the relic density from strings today can be obtained from Eqs. (28) and (8). The result is shown in Fig. 2, and the dependence of \(\Omega_{a}^{\text{str}} \) on \(q \) and \(\xi \) is shown in Fig. 3.

C. Nonlinear transient

GHV-II point out that, at \(t_{s} \) defined via \(m_{a}(t_{s}) = H(t_{s}) \), the axion potential is still not relevant for the field evolution as long as the gradient term in the full axion field equation dominates. This delay suppresses the comoving axion number density (when gradients dominate the energy density redshifts like radiation), while the axion mass, and hence the energy required to produce axions, grows in the meantime. Ignoring the decaying strings and DWs, the spectrum is thus effectively redshifted as relativistic radiation, until some time \(t_{\text{nl}} \), when the potential becomes effective, and non-linear evolution ends. This time is implicitly given by the condition [15]

\[
\int_{0}^{c_{m} m_{a}(t_{\text{nl}})} dk \frac{\partial \rho_{a}(t_{\text{nl}})}{\partial k} = c_{V} f_{a}^{2} m_{a}^{2}(t_{\text{nl}}),
\]

where the numerical constants \(c_{m} \) and \(c_{V} \) can be determined from numerical simulations. Following Ref. [15], Eq. (29) can be further expanded, and we solve it numerically via root-finding for \(m_{a}(t_{\text{nl}})/H_{s} \), where the initial guess is given by

\[
m_{a}(t_{\text{nl}}) = \left[\frac{c_{V}(1+\frac{m_{a}}{m_{a}^{*}})}{4\pi \xi \log(z)} \right] \frac{2(1+\frac{m_{a}}{m_{a}^{*}}) \sqrt{\pi}}{\sqrt{2t_{\text{nl}}}},
\]

where \(W_{-1} \) is the Lambert \(W \) function on branch \(-1\). The corrected number density at \(t_{\text{nl}} \) is then given by

\[
\Omega_{a}^{\text{str}}(T_{\text{nl}}) = c_{n} c_{V} f_{a}^{2} m_{a}(T_{\text{nl}}),
\]

where \(c_{n} \) is another numerical constant, which captures all remaining matching effects of the nonlinear transient. Equation (31) can thus be viewed as a correction to the axion energy density from strings, the effect of which can be seen in Figs. 2 and 3.

D. String-domain wall decays

Domain walls form when the axion mass switches on around the QCD phase transition. Once the DW tension is of order the string tension, the unstable system of strings and DWs with \(N_{\text{DW}} = 1 \) starts decaying whilst emitting axions. The corresponding condition

\[
\sigma_{\text{dw}}(t_{\text{decay}}) = \mu_{\text{eff}}(t_{\text{decay}})/t_{\text{decay}},
\]

implicitly defines the timescale \(t_{\text{decay}} > t_{\text{osc}} \). The DW tension \(\sigma_{\text{dw}} \) can found from [30]

\[
\sigma_{\text{dw}}(t) = \mathcal{I} f_{a}^{2} m_{a}(t),
\]

with

\[
\mathcal{I} = \frac{2\sqrt{2}}{f_{a} m_{a}} \int_{0}^{\pi} d\theta \sqrt{\frac{V(\theta) - V(0)}{2 - \sqrt{2}}},
\]

where \(V \) is the axion potential. Reference [45] used the full LO potential for axions, such that

\[
\mathcal{I} = \mathcal{I}(\xi) = 4 \sqrt{\frac{2}{\zeta}} \int_{0}^{\pi} d\alpha \sqrt{1 - \frac{1}{\zeta} - 1 - \zeta \sin^{2}(\alpha)},
\]

where \(\zeta \equiv 4z/(1+z)^{2} \) and \(z \equiv m_{a}/m_{d} \) is again the ratio of the up and down quark masses. The numerical factor \(\mathcal{I}(\xi) \) takes values between 8 and \(16 \times (2 - \sqrt{2}) \approx 9.37 \) for \(\xi \in [0,1] \), with \(\mathcal{I}(0.87) \approx 8.9 \) corresponding to the SM value. Reference [30] found that the result for the NLO potential is only 0.1% larger.

However, the axion potential at temperatures \(T > T_{X} \) cannot be obtained from ChPT and we should, in line with Eq. (10), use the simple cosine (dilute instanton gas) potential instead, for which

\[
\mathcal{I}(\xi) \approx \rho_{\text{dw}}(t) t / \sigma_{\text{dw}}(t),
\]

which can be obtained from simulations and allows for a trivial computation of the axion energy density. When the string-DW network starts decaying around time \(t_{\text{decay}} \), the energy density of the network is given by

\[
\rho_{a}(t_{\text{decay}}) = \rho_{a}(t_{\text{osc}}) + \frac{A_{\text{decay}} \sigma_{\text{dw}}(t_{\text{decay}})}{t_{\text{decay}}},
\]

where \(A_{\text{decay}} \equiv A(t_{\text{decay}}) \) and \(\rho_{a} \) is given by Eq. (21).

The decay of strings and DWs into axions ends at some time \(t_{\text{end}} \). However, it is not straightforward to determine – or rather define – precisely when this happens. For example, Ref. [25] proposes to define \(t_{\text{end}} \) as the time when \(A(t_{\text{end}}) = 0.01 \) i.e. from when on the domain wall area is less than one percent of the Hubble scale (a 10% criterion has also been examined in Ref. [26]). Typically, one finds that \(t_{\text{end}} \approx t_{\text{decay}} \approx 25,26 \), such that one may simply take \(R(t_{\text{decay}}) \approx R(t_{\text{end}}) \) and \(m_{a}(t_{\text{end}}) \approx m_{a}(t_{\text{end}}) \).

However, the subtle difference between the time scales is relevant for determining the average energy of axions. This is because the axion number density depends on how relativistic the average energy of axions at the time of emission, \(\bar{\epsilon}_{\omega} \), which may be defined as a multiple of the axion mass via \(\tilde{\omega} \equiv \epsilon_{\omega} m_{a} \) with a new parameter \(\tilde{\epsilon}_{\omega} \).
Following Ref. [26], one may then write

$$n_{a,\text{decay}}(t_0) \approx \frac{\rho_{a,\text{DW}}(t_{\text{end}})}{\omega(\tilde{t}_{\text{end}})} \left(\frac{R(t_{\text{decay}})}{R(t_0)} \right)^3.$$ \hspace{1cm} (39)

This leaves A_{decay} and $\tilde{\epsilon}_\omega$ to be determined from simulations. The relic density from the string-domain wall decays today can thus be obtained from Eq. (39), which we show in Fig. 2.

E. Assumptions and limitations

Let us comment on the underlying assumptions and limitations of this work.

For both the axion emission from string or DWs, the overall uncertainty is dominated by possibly large systematic effects related to the underlying simulations and analysis applied to the results. In particular, the fitting formulae for the extrapolation over many order of magnitude might turn out to not be appropriate. This also prevents us from making more concrete statements of the size of the systematic effects. However, it should not come as a surprise if these can induce changes by an order of magnitude.

The use of fitting formulae can be avoided by performing simulations up to the physical scales. However, such simulations do not seem feasible for the foreseeable future, and the fitting formulae might still be useful for comparing different simulations and propagating uncertainties. Nonetheless, it would be re-assuring to run a longer simulation, showing the scaling violation in q observed in GHV-II over a longer period, and crossing explicitly (rather than by extrapolation) into the quark-gluon plasma dominated regime. Again, it should be noted that the result from a recent preprint [24] contradict the existence of a scaling violation in q out to $\log q \sim 9$ (although they support the existence of scaling violation in ξ).

Systematic uncertainties are further introduced by the fact that the derivation of the string and DW parameters cannot be done self-consistently since the computational cost of the simulations makes it difficult to perform the simulations for a number of QCD axion parameters. For example, Ref. [25] set $p = 6.68$ based on results from the interacting instanton liquid model [46], but then choose $\chi_0^{1/4}, T_X \gtrsim 5 \times 10^{15}$ GeV for their simulations. This was done so that $T_{\text{osc}} \sim T_X$ for their adopted value of $f_a = 1.23 \times 10^{17}$ GeV, which simplifies the numerical simulations. These values are not even marginally consistent with realistic QCD axion parameters (cf. Section IV A). It would hence be desirable to perform string and DW simulations for a more realistic, and consistent set of parameters for the string scaling and string-DW decay regimes.

More generally, a statistical analysis requires simulations for different initial conditions if one cannot go deep into the scaling regime.

Further note that we assume the Universe to be radiation-dominated until we can apply Eq. (8). This assumption may be violated if the Universe becomes matter-dominated earlier than in standard cosmology (e.g. due to moduli, see Refs. [47, 48]). Furthermore, Eq. (8) is only valid if entropy is (approximately) conserved in the later evolution. Significant entropy injection or other processes can spoil this assumption.

It should also be noted that some authors have estimated the uncertainties on g_{*s} and g_{*s} [49] and their derivatives, which are between 7–12% in the relevant temperature range. There is no unique way to include such uncertainties, but we do not need to since we estimate their effect on on the (subdominant) realignment energy density to be only between 3–4%. We also neglect the contribution of thermal axions to g_{*s} and g_{*s} when solving the axion field equation in Eq. (9). Even if axions would always fully contribute (i.e. be thermalised), the systematic increase of the effective degrees of freedom themselves would only be between 1–5%, which is smaller than the 7–12% uncertainty on g_{*s} and g_{*s} mentioned above, and thus also negligible.

Finally, we only consider axion models with DW number $N_{\text{DW}} = 1$. For axion models with $N_{\text{DW}} > 1$, such as some (see e.g. Refs. [36, 50, 51]) of the so-called KSVZ models [52, 53], the definition of the decay constant has to be modified, $f_a \rightarrow N_{\text{DW}} f_a$, leading to multiple minima in the axion potential and creating different kinds of stable DWs. As mentioned before, stable DWs can easily produce more than the observed amount of DM, such that additional mechanisms are required to make this scenario viable.

IV. PARAMETER ESTIMATES

Apart from the values of f_a and λ_γ, we can use or derive estimates for the other parameters from experiment, theory, or simulations. Here, we discuss how we estimate these nuisance parameters from the literature.

A. QCD axion properties

To estimate the QCD axion parameters $\chi_0^{1/4}$, T_X, p, and z, we follow the strategy of Ref. [31] and vary all quantities that enter the computation of Eq. (2), in particular z, while fixing $f_\pi = 92.3$ MeV and $m_a = m_{a0} = 134.98$ MeV. This allows us to draw 10^5 samples for χ_0 and z, which we then use to fit the remaining parameters (T_X and p) to the latest results lattice QCD results for temperatures $T > 0.3$.

3 We use the data provided in Table S7 of Ref. [35].
FIG. 3. The axion relic density as a function of the spectral index \(q \) (right; \(\xi = 1 \)) and scaling parameter \(\xi \) (left; \(q = 1.5 \)) for \(f_\alpha = 5 \times 10^{10} \) GeV and \(x_0 = 10 \). We show the result with (dashed blue) and without (solid blue) taking into account the nonlinear transient. We also indicate the observed dark matter density (dotted black) and the corresponding realignment density (dashed-dotted red).

FIG. 4. Fit to lattice QCD data. Top: We show the fit of the power-law axion mass model (blue line and shading) to the lattice QCD data (black dots and error bars). Bottom: Residuals (in log space) relative to the fitted model. Note that we only show the lattice QCD data, but simultaneously also fit \(\chi_0 \) from NNLO chiral perturbation theory.

same size as the original data set but with (possibly multiple) random occurrences of the original data in each step, we obtain estimates for the parameters and uncertainties via the mean and covariance matrix from the sample of best-fitting points:

\[
\chi_0^{1/4} = (75.43 \pm 0.34) \text{ MeV}, \quad p = 7.75 \pm 0.11, \quad T_\chi = (143.7 \pm 2.9) \text{ MeV}, \quad z = 0.472 \pm 0.011, \quad (40)
\]

where we only quote the diagonal errors of the covariance matrix for simplicity, while we use the full covariance matrix in this work; the most sizable relative correlation coefficients \(\rho \) are found between \(T_\chi \) and \(p \) (\(\rho \approx 0.95 \)) and \(p \) and \(z \) (\(\rho \approx 0.44 \)). We show the agreement with the high-temperature lattice QCD data in Fig. 4.

B. String spectrum: GHV-II

GHV-II is our preferred work for estimating the parameters relevant for string spectrum, viz. \(\xi \), \(x_0 \), and \(q \). Their results present some of the most realistic simulations to-date, with results presented in a way to allow us to infer the time dependence of the parameters through the instantaneous emission spectra \(F[x, y] \), as defined in Eq. (25) and discussed in Section III.B.

First, consider the string scaling parameter \(\xi \). As mentioned before, there is evidence that \(\xi \) has an attractor solution such that, independent of the initial conditions, its value will asymptotically tend towards a function linear in \(\ell \). GHV demonstrate this by generating different initial conditions and computing \(\xi \) as a function of time. In particular, GHV-II proposed to describe the resulting, initial deviations from the scaling behavior by using an ansatz of the form

\[
\xi = \xi_{-2} \ell^{-2} + \xi_{-1} \ell^{-1} + \xi_0 + \xi_1 \ell, \quad (41)
\]
where \(\xi_{-2}, \xi_{-1}, \xi_0,\) and \(\xi_1\) are the fitting parameters, and where we again defined \(\ell \equiv \log(m_{\ell}/H).\) Following GHV-II, we only consider data with \(\ell \geq 4\) (except for one data set where \(\ell \geq 5.5\)) to reduce the impact of the initial conditions and we take \(\xi_1\) as a universal parameter for the fit. Unlike GHV-II, however, we assign one \(\xi_0^{(d)}\) parameter to each data set \(d\) instead of using it as a universal parameter. We then perform a bootstrapping approach, where we calculate the parameter \(\tilde{\xi}_0 = \text{median}(\xi_0^{(d)})\) as a proxy for the “global” \(\xi_0\) parameter. Doing so for the data displayed in Fig. 1 of GHV-II, we estimate

\[\xi_0 = -1.618 \pm 0.038, \quad \xi_1 = 0.2428 \pm 0.0025,\]

and find to be essentially perfectly anti-correlated (\(\rho \approx -1\)). The values of \(\xi_{-2}\) and \(\xi_{-1}\) are not relevant for determining the axion energy density since the asymptotic linear behavior of \(\xi\) dominates in the physical regime \(\ell \gg 10\). We also consider the constant term since, at \(\ell = 70\), it adds a contribution to \(\xi\) at the 9% level.

This leaves the parameters \(x_0\) and \(q\) to be determined. To do so, we extend the ansatz given in Eq. (27) to also include the regions of \(x < x_0\) and \(x > y\). This is because we need to identify the cutoff \(x_0\) in the context of the surrounding spectrum. We therefore use a generalized form of the spectrum for fitting, which is given by [21]

\[F[x, y] \propto \left(\frac{x}{x_0}\right)^q \left[1 + \Theta(x - x'') \left(\left(\frac{x''}{x'}\right)^{q'' - q} - 1\right)\right],\]

where \(\Theta(\cdot)\) is the Heaviside function and \(x'' \sim y, q',\) and \(q''\) are additional fitting parameters. Since the parameters \(q\) and \(x_0\) are the only relevant parameters for computing axion number density in Eq. (28), the additional fitting parameters can be ignored. The extended form in Eq. (43) also includes information on lower and higher momenta and makes the procedure less sensitive to cuts on the simulation data.

In GHV-I, the authors speculated about a time dependence of \(q\), for which further evidence was found in GHV-II. The authors found that a linear model seems to provide a good fit to the data, such that

\[q = q_0 + q_1 \ell,\]

where \(q_0\) and \(q_1\) are fitting constants.

We fit the spectra for physical strings from Figure 14 in GHV-II simultaneously, such that \(x_0, q_0,\) and \(q_1\) are universal parameters and the additional parameters in Eq. (43) are specific for each spectrum. We apply smoothing to the spectra and interpolate them to obtain data at equally spaced \(x\)-values in log space. This is done to avoid over-weighting parts of the spectra compared to others. The results are shown in Fig. 5 and we estimate the fitting parameters to be

\[
\begin{align*}
q_0 &= 0.154 \pm 0.057, & q_1 &= 0.1030 \pm 0.0071, \\
x_0 &= 8.22 \pm 0.83,
\end{align*}
\]

where we only quote the diagonal errors of the covariance matrix while, in reality, we use full correlations in our analysis.

C. String spectrum: HKSYY

While GHV-II is our preferred reference for the string contributions, the authors do not consider the contribution from string-DW decay. For the latter, we use Refs. [25, 26], referred to as HKS and KSS hereafter. It would be desirable to also use the string parameters from the string-DW simulations to be consistent. However, HKS point out that, unlike the DW parameters, the string parameters from their study are not expected to be reliable. Instead, one should use the results from their earlier studies [20, 54], of which we choose Ref. [20] (HKSYY hereafter; HKSSYY refers to Refs. [20, 25, 26] collectively).

HKSYY find that the string scaling parameter \(\xi\) approaches a constant value, which is why we set \(\xi_1 = 0\) and

\[\xi_0 = 0.87 \pm 0.14, \quad \xi_1 = 0.\]

Note that this value is much smaller than the value found in GHV-II, whose results translate to \(\xi \sim 15\) in the physical regime \(\ell \sim 70\).

While HKSYY do not use the same formalism as GHV, i.e. the instantaneous emission spectrum \(F[x, y]\). They do, however, show power spectra \(P\), defined via the number density as \(n = \frac{1}{k^3} \int \rho(k, t) / k.\) Comparing this definition to Eq. (26), one cannot directly infer \(F[x, y]\) since we require the “free” spectrum at different times, which is why HKSYY provide the difference spectrum

\[\Delta P(k, t', t'') \equiv R^2(t'') P(k, t'') - R^2(t') P(k, t'),\]

where \(t' = 12.25 t_c,\) and \(t'' = 25 t_c,\) with \(t_c\) being the time of PQ symmetry breaking and where \(P\) is only the “free” part of the spectrum. This is indeed proportional to a finite difference approximation of the instantaneous spectrum \(F[x, y]\). However, since the separation between the two times \(t'\) and \(t''\) is relatively large \((\Delta t \sim 0.7),\) we do not use this finite difference as an approximation to \(F[x, y]\) but construct our fitting function in the following way:

First, we compute the total spectra \(P(t')\) and \(P(t'')\) from the instantaneous spectrum \(F[x, y]\) by numerically evaluating the time integral in Eq. (24). The emission rate \(\Gamma(t)\) is then computed via numerical integration of the momentum integral of \(\partial \Gamma/\partial k,\) which is related to \(F[x, y]\) via Eq. (25). We again assume \(F[x, y]\) to have the form given in Eq. (43). This allows us to compute \(\Delta P(k, t', t'')\) from a given set of parameters for \(F[x, y]\) and, finally, a least-squares fit with bootstrapping gives

\[
\begin{align*}
q_0 &= 1.44 \pm 0.16, & q_1 &= 0, \\
x_0 &= 2.2 \pm 1.2,
\end{align*}
\]
D. Nonlinear transient: GHV-II

GHV-II estimate the numerical values constants for the nonlinear transient as $c_n = 1.35$, $c_m = 2.08$, and $c_V = 0.13$, and we implement them as fixed values without uncertainties. This clearly requires a justification.

By digitizing the data in Figure 3 of GHV-II and fitting the three quantities above, we find that the assumption of these being indeed constant to be justified. However, there is some residual dependence on the other model parameters, which we cannot fully incorporate as the the information is only provided for specific parameters. To estimate the size of the effect, we fit the curve for $x_0 = 10$ (which is consistent with the estimated x_0) and $p = 8$ (which consistent with our estimate for this parameter) and find that $c_n = 1.48 \pm 0.24$, $c_m = 2.21 \pm 0.39$, and $c_V = 0.114 \pm 0.039$ from the fit. Using Eq. (36) in GHV-II, we estimate that this introduces an error on ρ^{str}_a of the order of 1.4%. Had we done an inconsistent, simultaneous fit to the curves with $x_0 = 5$ and $x_0 = 10$ (which bracket the estimated x_0), the error would be around 2.2%.

In either case, this error is somewhat smaller than the estimated size of the other statistical effects, which we estimate to be around 8% for the relevant values of f_a. In fact, since we cannot determine these parameters as a function of the other model parameters due to fitting to two inconsistent values for x_0 simultaneously, the error estimates are not fully statistical but also of systematic nature. The actual effect would therefore be smaller. In conclusion, we think it is reasonable to use the values provided in the reference and ignore the associated uncertainties.

where $q_1 = 0$ was set to zero in line with the findings of HKSYY, and q_0 and x_0 have a relative correlation coefficient of $\rho \approx 0.75$.
E. String and domain wall decays: (H)KSS

The parameters for the string and DW decay can be inferred from the string parameters estimated in the previous parts on the one hand, and from the works of HKSS and the updates from KSS on the other hand. In particular, we only require estimates for A_{decay} and ϵ_ω.

The authors perform multiple simulation for each of the chosen values of their κ parameter, which effectively determines the value of $\chi_0^{1/4} \propto \kappa f_a$ w.r.t. their adopted $f_a = 1.23 \times 10^{17}$ GeV. While none of their choices are realistic for QCD axions, we determine the parameters for $\kappa = 0.275$ (corresponding to $\chi_0^{1/4} \approx 9 \times 10^{16}$ GeV) since this is the lowest value of κ for which we can self-consistently determine the parameters. We estimate directly from KSS a value for ϵ_ω, while we need to average the results for $\kappa = 0.25$ and $\kappa = 0.3$ from HKSS to estimate A_{decay}:

$$A_{\text{decay}} = 0.465 \pm 0.043, \quad \epsilon_\omega = 3.23 \pm 0.18. \quad (49)$$

Three comments on these estimates are in order. The first is that we do not include a possible correlation between the uncertainties as we cannot directly obtain it from the figures. However, by comparing the values for the data points for $\kappa \in \{0.3, 0.35, 0.4\}$, there seems to be a hint of a correlation coefficient of about $\rho \sim -0.5$ between ϵ_ω and A_{decay}. Unfortunately, three data points do not allow us to establish reliable estimate, even though we expect that a correlation exists.

Further note that (H)KSS adopt a value of $I = 9.23$ in Eq. (33). As a consequence, the value for the A_{decay} needs to be rescaled by a factor of 9.23/8 \approx 1.15 to be self-consistent with the calculated energy density.

Finally, (H)KSS guess an uncertainty of $A_{\text{decay}} = 0.50 \pm 0.25$ for their estimates of the energy density in axions. This guess seems to include the sizeable systematics that exist, and which cannot be estimated well. In the spirit of this work, we only include the statistical uncertainties as present in the data and quoted in Eq. (49).

V. CONSTRAINTS AND LIKELIHOOD

The relevant constraints for this work come from the measurement of relic DM density, $\Omega_\chi h^2$, and the effective number of neutrino species, N_{eff}, defined via

$$\rho_{\text{rad}} = \frac{\pi^2}{15} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{5/2} N_{\text{eff}} \right] T^4, \quad (50)$$

where ρ_{rad} is the energy density in relativistic degrees of freedom. The SM prediction of N_{eff} today, $N_{\text{eff}}^{\text{SM}} = 3.045$ [55], then allows us to define the difference

$$\Delta N_{\text{eff}} = N_{\text{eff}} - 3.045. \quad (51)$$

For a new particle beyond the SM that decouples from the thermal bath at a temperature of T_{dec}, ΔN_{eff} is given by

$$\Delta N_{\text{eff}} = 0.027 \left(\frac{106.76}{g_{*s}(T_{\text{dec}})} \right)^{4/3}. \quad (52)$$

The main processes for decoupling of the QCD axion model are, at low temperatures, axion-pion and, at high temperatures, the axion-gluon interactions. The decoupling temperature from gluons is implicitly given by [36]

$$T_{\text{dec, g}} = 2.50 \sqrt{\frac{g_{*s}(T_{\text{dec, g}})}{\alpha_s^2(T_{\text{dec, g}})}} \frac{f_a^2}{m_{\pi}^2}, \quad (53)$$

where α_s is the strong fine structure constant, which is computed using the standard one-loop extrapolation from the Z boson mass, as discussed in Ref. [56, Sec. 9] but ignoring threshold effects from the quark masses. We use results of the OPAL collaboration at LEP, namely $M_Z = 91.187(7)$ GeV [57] and $\alpha_s(m_Z^2) = 0.1189(43)$ [58] as inputs for the calculation. Using these results is preferable since the measurements from lepton colliders do not depend on complicated parton distribution functions.\footnote{We thank Enrico Bothmann for pointing this out.}

The typical uncertainty on α_s due to the experimental errors on M_Z is about 2%. This is irrelevant for large f_a as the resulting error on $T_{\text{dec, g}}$ has no influence due to constant $g_{*s}(T_{\text{dec, g}})$. However, for lowest allowed values of $f_a \sim 10^{9}$ GeV, we find an error of around 3% on ΔN_{eff} (compared to an uncertainty of 6% on the measured value of N_{eff}).

The decoupling temperature from pions is implicitly given by [36]

$$H(T_{\text{dec, p}}) = 0.215 g_{a\pi}^2 T_{\text{dec, p}}^5 \frac{T_{\text{dec, p}}^5}{m_{\pi}^2} G \left(\frac{m_{\pi}}{T_{\text{dec, p}}} \right), \quad (54)$$

where $f_\pi = 92.3$ MeV and $m_\pi = m_{\pi^0} = 134.98$ MeV are again the pion decay constant and mass, respectively. The function G encodes the suppression of the interaction at higher pion masses, with $G(x) \approx 1$ when $x \ll 1$, and can be computed numerically [59].

Note that Eqs. (53) and (54) are not valid for temperatures around the QCD crossover, $T \sim T_{\text{QCD,c}}$, as neither ChPT nor gluons are good descriptions in this regime. To provide an approximation, we interpolate the decoupling temperature linearly in $\log_{10}(f_a/\text{GeV})$. The resulting prediction for ΔN_{eff}, highlighting the region where we had to interpolate the resulting decoupling temperature, can be found in Fig. 7. However, we also highlight a recent work that points out that the ChPT approach for calculating ΔN_{eff} from axion-pion interactions needs to be revised even for $f_a \gtrsim 5 \times 10^6$ GeV [60]. The assumptions made about the range of validity of ChPT are hence potentially somewhat optimistic. Nonetheless, recent preprints show that efforts are underway to clarify
this issue, and that a smooth interpolation such as ours may be justified [61, 62].

Further note that decoupling from the SM bath of course requires that the new degrees of freedom have been in thermal equilibrium before that point. In particular, the reheating temperature at the end of inflation should be higher than the expected decoupling temperature, $T_{\text{reh}} > T_{\text{dec}}$. Requiring that this be the case for the axion-gluon interactions (relevant at higher temperatures), one finds that (see e.g. Ref. [63])

$$f_a < 2 \times 10^{11} \text{ GeV} \left(\frac{\alpha_s(T_{\text{dec,g}})}{0.03} \right) \left(\frac{T_{\text{reh}}}{10^{10} \text{ GeV}} \right)^{1/2}. \quad (55)$$

This means that it is indeed possible that the constraints from ΔN_{eff} do not apply when both f_a and T_{reh} are sufficiently low. However, we do not consider a model or constraints for inflation, and may therefore always apply the ΔN_{eff} constraints but keeping in mind that this implicitly assumes a sufficiently high value of T_{reh}.

Given the prediction for $\Omega_c h^2$, which is calculated as the sum of the realignment contribution and all topological defect contributions under consideration in a setup, and N_{eff} from Eq. (52), we could perform a full cosmological analysis as e.g. conducted by the Planck Collaboration. However, to simplify our setup and to allow us to easily relax the requirement for axions to match the dark matter density, we re-interpret the posterior from the analysis of Ref. [27] as a likelihood,

$$\log(L) = -\frac{1}{2} \mu_{\text{CMB}} \Sigma_{\text{CMB}}^{-1} \mu_{\text{CMB}}^T, \quad (56)$$

where $\mu_{\text{CMB}} \equiv (\Omega_a h^2 - \hat{\Omega}_c h^2, N_{\text{eff}} - \hat{N}_{\text{eff}})$ when QCD axions are all of the dark matter and $\mu_{\text{CMB}} \equiv (\max[0, \Omega_a h^2 - \hat{\Omega}_c h^2], N_{\text{eff}} - \hat{N}_{\text{eff}})$ when we allow them to constitute only a fraction of the dark matter. Of course, this is not fully consistent with either Bayesian or frequentist philosophy but arguably acceptable due to the fairly well-constrained nature of these parameters. Using the latest Planck data, we find:

$$\hat{\Omega}_c h^2 = 0.118, \quad \hat{N}_{\text{eff}} = 2.985, \quad (57)$$

$$\hat{\Sigma}_{\text{CMB}} = \begin{pmatrix} 8.22 \times 10^{-6} & 4.68 \times 10^{-4} \\ 4.68 \times 10^{-4} & 2.98 \times 10^{-2} \end{pmatrix}. \quad (58)$$

The correlation between $\hat{\Omega}_c h^2$ and N_{eff} in Eq. (58) also visible in Fig. 8, where show the two choices of likelihood as used in our analysis.

VI. RESULTS

We use the ensemble MCMC algorithm emcee [67] to sample our 12- or 13-dimensional parameter space, depending on whether we use the results of GHV or HKSSYY. The latter has three more parameters related

5 We use the Planck 2018 chains (base_nnu_plikHM_TTTEEE_ lowl_lowE_BAO_post_lensing) from the Planck Legacy Archive, available at https://www.cosmos.esa.int/web/planck/pla. We make use of the cosmomc [64, 65] and getdist [66] packages to extract the posterior and to estimate the covariance matrix.
FIG. 9. Relative marginal posterior densities for the dark matter QCD axion mass. We show the results for the GHV (blue) and HKSSYY (dashed orange) simulations, where the KDE normalized to their maximum values, of the DM QCD axion mass. We show the results for the GHV (blue) and HKSSYY (dashed orange) simulations, where the KDE normalized to their maximum values, of the DM QCD axion mass. The log-uniform prior encodes our ignorance to the scale of new physics, i.e. its order of magnitude, while the range approximately encompasses the possible range constrained by cosmological probes. Since the Planck data is fairly restrictive, the results for our credible regions for the axion window will only very mildly depend on the exact location of the prior bounds; this is because the low likelihood outside of the axion window essentially results in zero posterior weight regardless of the prior.

While the string and DW parameters are potentially afflicted with large systematic uncertainties related to the validity of the underlying models and extrapolations, the appeal of this framework is that – except for the choice of prior in f_a and f_* – the prediction of the QCD axion mass window is entirely based on physical information. Furthermore, since the physical priors constrain the model parameters rather well and independently of cosmological data, the only non-trivial posterior distributions are the ones on the axion decay constant f_a or, equivalently, on the axions mass $m_{a,0} = \sqrt{\lambda_0}/f_a$.

In Fig. 9, we show the relative marginal posteriors, i.e. normalized to their maximum values, of the DM QCD axion mass. Both distributions point to the mass range between 0.1 and 1 meV and are hence only constrained by the measured value of $\Omega_c h^2$ and not by N_{eff}. That being said, the predicted value of $\Delta N_{\text{eff}} \approx 0.027$ in both cases is only slightly worse than the SM prediction, when compared to the measured uncertainty on N_{eff} of about 0.173. The predicted value is also close to the sensitivity of future CMB missions (see e.g. Refs. [63, 68]).

Using the GHV data, we find in agreement with that work a median QCD axion mass of 0.50 meV, while the 95% credible interval at highest posterior density (HPD) is [0.48, 0.52] meV. For HKSSYY these numbers are 0.22 meV and [0.16, 0.27] meV, respectively.

Naïvely one would expect that, by adding the string-DW decay contribution, the DM QCD axion mass should be higher for HKSSYY. However, we remind the reader that the scaling violation is absent in the HKSSYY simulation, leading to a noticeably reduced contribution from the string scaling component. In this context, we also point out that the HKSSYY results imply that the number of axions from the decays is a factor of about 1.7 higher than that from string scaling (or even more similar in magnitude when nonlinear transient effects are ignored). When adding a string-DW decay component to GHV, the estimated axion mass might therefore be even larger.

Finally, Fig. 9 also illustrates how the systematic uncertainties attached to the topological defect computations (in this case different simulation codes and strategies) exceed the – in principle – rather small statistical uncertainties. If other systematic effects were to be taken into account as uncertainties on the same footing as statistical effects, we expect that these would dominate the total error budget.

In the next step we drop the requirement that QCD axions make up all of the DM in the Universe. In this case, higher axion masses are possible, but only to the extent allowed by the constraint on N_{eff}. Together with the dark matter constraints, the two fairly robust constraints from cosmology alone are sufficient to delimit the axion mass window in the post-inflationary PQ breaking scenario, as shown in Fig. 10. The 95% HPD credible region encloses axion masses between 0.49 meV < $m_a < 84$ meV for GHV and 0.23 meV < $m_a < 82$ meV for HKSSYY.

Note that, for axion masses $\gtrsim 100$ meV, the posteriors in Fig. 10 overlap as the differences in the GHV vs HKSSYY analyses do not manifest themselves for the ΔN_{eff} prediction, i.e. for higher masses.

VII. CONCLUSIONS

While some recent simulations suggest that the QCD axion energy density is dominated by topological defect scaling and decay, the debate surrounding this topic is not yet completely settled. Despite the differences in simulation results, one can use a common, parametric framework to infer the relevant model parameters as well as the associated (correlated) statistical uncertainties.
Despite these issues, finding that a rather precise determination of the QCD axion window is possible from the statistical point of view is very encouraging. In particular, we summarized how the simulation data can be fitted consistently to infer the parameters of interest, which we argue is more useful than using benchmark points.

To further increase our conviction in the results of simulations, and to reduce systematic errors, domain wall decay simulations could be done with more physical parameter choices, which comes at the price of a reduced range of the simulation. Furthermore, it would be highly desirable to run string simulations for longer times in comparative studies with different algorithms, and to quantitatively compare results from different groups. This might solve the underlying issues and provide further evidence for the (non-)existence of the scaling violation, as well as explicitly demonstrate if $q > 1$ towards the end of the simulation or not. In this sense, our study is a first step in this direction to more generally compare the outcome of different analyses and identify systematic differences. Such a study seems necessary in light of findings contradicting GHV, such as the recent Ref. [24].

As for the upper end of the axion mass window, N_{eff} has the potential to severely constrain the axion mass if the axion prediction for N_{eff} can be made more robust [60–62] and if future CMB surveys will improve the sensitivity to this observable [68]. There is hence a potential to probe the the PQ phase transition (via the axions from strings prediction) and the inflationary reheating temperature (via N_{eff}) [63], offering a new window onto the early Universe.

A more precise determination of the lower end of axion mass window might also have important experimental consequences. If axions from topological defects dominate, the lower limit on the QCD axion mass is higher than what would be expected from the realignment contribution alone. If future studies confirm this picture, the case for the recent expansion of experiments such as e.g. the TOORAD proposal [74, 75], BRASS [76],6 or BREAD7 that explore the meV region of parameter space will be strengthened. On the other hand, a lower limit in the 0.1 meV range favors experiments such as MADMAX [77] or ALPHA [78].

ACKNOWLEDGMENTS

We thank Marco Gorghetto for helpful discussions. SH and DJEM were supported by the Alexander von Humboldt Foundation and the German Federal Ministry of Education and Research. DJEM is now supported by the UK STFC on an Ernest Rutherford Fel-

6 http://wwiexp.desy.de/groups/astroparticle/brass/brassweb.htm
7 https://agenda.infn.it/event/20431/contributions/137666/
followship. We acknowledge use of the Scientific Computing Cluster at GWDG, the joint data centre of Max Planck Society for the Advancement of Science (MPG) and the University of Göttingen as well as computing resources of the North-German Supercomputing Alliance (HLRN). We acknowledge use of the Python packages emcee [67], matplotlib [79], mpi4py [80–82], numpy [83], pymc3 [84], schwimmbad, and scipy [85] as well as the WebPlotDigitizer tool [86].

Appendix A: Interpolation scheme for the number of effective relativistic degrees of freedom

For calculating the axion energy density from the realignment mechanism (see Appendix B), we need the values and derivatives of the effective relativistic degrees of freedom w.r.t. the energy density \(g_{s,\rho} \) and entropy \(g_{s,s} \).

We use the values computed in Ref. [35] and then interpolate them in \(\tau \equiv \log_{10}(T/\text{MeV}) \). Since the given values are log-spaced, and separated by quite large steps, the derivatives cannot reliably be obtained from the interpolation, as can be seen in Fig. 11. Instead, we fit the result using the ansatz

\[
g_{s,i}(\tau) = \exp \left[a^i + \sum_{j=1}^{5} b_j^i \left(1 + \tanh \left(\frac{\tau - c_j^i}{d_j^i} \right) \right) \right],
\]

for \(i = s, \rho \), which has previously been proposed in Ref. [46]. This allows us to evaluate the analytical derivatives of \(g_{s,\rho} \) and \(g_{s,s} \), which we then tabulate and interpolate on a fine grid of \(\tau \) values for better computational performance.

The numerical values of \(g_{s,\rho} \) and \(g_{s,s} \) and their relevant derivatives are shown in Fig. 11, together with the derivatives one would obtain from spline interpolations the raw data (using default scipy interpolation routines). It becomes clear that the derivatives from the interpolating polynomials are not reliable due to the rather large oscillating deviations seen in Fig. 11. This is in particular problematic for the second derivative of \(g_{s,\rho} \) as e.g. a more reliable linear interpolation cannot be used here. While the tabulated data for \(g_{s,\rho} \) and \(g_{s,s} \) was rather sparse, we anticipate that this problem might even occur for more densely tabulated data.

Appendix B: Solving the Klein–Gordon equation

Let us discuss the numerical solution of the Klein–Gordon equation (9)

\[
\ddot{\phi} + 3H \dot{\phi} + V'(\phi) = 0,
\]

where we can ignore the spatial gradient term. First, we re-scale the axion field \(\phi \) to the misalignment angle \(\theta \equiv \phi/f_a \). Since the axion potential, and hence the axion mass, is temperature-dependent, we need to track the temperature evolution as a function of time. Alternatively, we may simply change variables from physical time \(t \) to the temperature of the photon bath \(T \), and obtain (see also e.g. Ref. [35])

\[
\frac{d^2 \theta}{dT^2} + \left(3H \frac{dt}{dT} - \frac{d^2 t}{dT^2} \right) \frac{d \theta}{dT} + V'(\theta) \left(\frac{dt}{dT} \right)^2 = 0,
\]

where

\[
\frac{dt}{dT} = -M_{\text{pl}} \sqrt{\frac{45}{64\pi^2}} \frac{T g_{s,\rho}(T) + 4g_{s,\rho}(T)}{T^3 g_{s,s}(T) \sqrt{g_{s,\rho}(T)}}.
\]

We solve Eq. (B2) numerically using the vode algorithm from scipy. The integration starts at \(T = 5T_{\text{osc}} \), as already suggested in [35]. We continue integrating Eq. (B2) until the first sign change of \(\theta \) i.e. the start of the oscillations.

To ensure that we obtain an accurate result, we average the ratio of number and entropy densities, \(n(T)/s(T) \), over a fixed number of oscillations, \(N_{\text{osc}} = 3 \), using \(\Delta T/N \).
have enough points within the integration interval. For this we assume that $g_{s,0}$ and $g_{s,s}$ are constant and, using the Friedmann equation, we find that when we start the averaging at T_1, then the interval with N_{osc} oscillations is given by
\[\Delta T = \left(\frac{\Delta t}{C} + \frac{1}{T_1^2} \right)^{-1/2} - T_1, \] (B4)
where
\[C = \sqrt{\frac{90 M_{pl}^2}{4 \pi^2 g_{s,0}(T_1)}} \] (B5)
with $M_{pl} = 8 \pi \hbar c$ and, from the frequency of the axion field in the WKB approximation,
\[\Delta t = \frac{2 \pi N_{osc}}{m_a(T_1)}. \] (B6)

The above procedure is repeated until the relative change in the obtained n/A values between two consecutive intervals is below the required precision of $\epsilon = 10^{-4}$.

To enable a comparison with our algorithm, we show the required value of the initial misalignment angle θ_i such that axions are all of the DM with $\Omega_a h^2 = \Omega_c h^2 = 0.12$ in Fig. 12.

FIG. 12. Values of the initial misalignment angle θ_i, for which the energy density from the realignment mechanism matches the dark matter density as a function of the axion decay constant f_a.

separated points with the \texttt{simps} method of \texttt{scipy}. Since the frequency of the oscillations does not become constant in T but only in t, we need to adapt the step size that we use for the integration to ensure that we always

\begin{itemize}
 \item [1] R.D. Peccei and H.R. Quinn, \textit{CP conservation in the presence of pseudoparticles}, Phys. Rev. Lett. \textbf{38} (1977) 1440.
 \item [2] R.D. Peccei and H.R. Quinn, \textit{Constraints imposed by CP conservation in the presence of pseudoparticles}, Phys. Rev. D \textbf{16} (1977) 1791.
 \item [3] S. Weinberg, \textit{A New Light Boson?}, Phys. Rev. Lett. \textbf{40} (1978) 223.
 \item [4] F. Wilczek, \textit{Problem of Strong P and T Invariance in the Presence of Instantons}, Phys. Rev. Lett. \textbf{40} (1978) 279.
 \item [5] J. Preskill, M.B. Wise and F. Wilczek, \textit{Cosmology of the invisible axion}, Physics Letters B \textbf{120} (1983) 127.
 \item [6] L.F. Abbott and P. Sikivie, \textit{A cosmological bound on the invisible axion}, Physics Letters B \textbf{120} (1983) 133.
 \item [7] M. Dine and W. Fischler, \textit{The not-so-harmless axion}, Physics Letters B \textbf{120} (1983) 137.
 \item [8] M.S. Turner, \textit{Coherent scalar-field oscillations in an expanding universe}, Phys. Rev. D \textbf{28} (1983) 1243.
 \item [9] M.S. Turner, \textit{Cosmic and local mass density of “invisible” axions}, Physical Review D \textbf{33} (1986) 889.
 \item [10] T.W.B. Kibble, \textit{Topology of cosmic domains and strings}, Journal of Physics A Mathematical General \textbf{9} (1976) 1387.
 \item [11] R. Davis, \textit{Cosmic axions from cosmic strings}, Physics Letters B \textbf{180} (1986) 225.
 \item [12] D. Harari and P. Sikivie, \textit{On the evolution of global strings in the early universe}, Physics Letters B \textbf{195} (1987) 361.
 \item [13] R.L. Davis, \textit{Goldstone bosons in string models of galaxy formation}, Phys. Rev. D \textbf{32} (1985) 3172.
 \item [14] R.A. Battye and E.P.S. Shellard, \textit{Global string radiation}, Nucl. Phys. B\textbf{423} (1994) 260 [astro-ph/9311017].
 \item [15] M. Gorghetto, E. Hardy and G. Villadoro, \textit{More Axions from Strings}, SciPost Physics \textbf{10} (2021) 050 [2007.04990].
 \item [16] R.A. Battye and E.P.S. Shellard, \textit{Axion string constraints}, Phys. Rev. Lett. \textbf{73} (1994) 2954 [astro-ph/9403018].
 \item [17] C. Hagmann, S. Chang and P. Sikivie, \textit{Axions from string decay}, Nucl. Phys. Proc. Suppl. \textbf{72} (1999) 81 [hep-ph/9807428].
 \item [18] G.D. Moore and V.B. Klaer, \textit{The dark-matter axion mass}, JCAP \textbf{1711} (2017) [hep-ph/1708.07521].
 \item [19] G.D. Moore and V.B. Klaer, \textit{How to simulate global cosmic strings with large string tension}, JCAP \textbf{1710} (2017) [hep-ph/1707.05566].
 \item [20] T. Hiramsu, M. Kawasaki, T. Sekiguchi, M. Yamaguchi and J. Yokoyama, \textit{Improved estimation of radiated axions from cosmological axionic strings}, Phys. Rev. D \textbf{83} (2011) 123511 [1012.5502].
 \item [21] M. Gorghetto, E. Hardy and G. Villadoro, \textit{Axions from strings: the attractive solution}, Journal of High Energy Physics \textbf{7} (2018) 151 [1806.04677].
 \item [22] A. Vaquero, J. Redondo and J. Stadler, \textit{Early seeds of axion miniclusters}, JCAP \textbf{2019} (2019) 012 [1809.09241].
 \item [23] M. Buschmann, J.W. Foster and B.R. Safdi, \textit{Early-Universe Simulations of the Cosmological Axion}, Phys. Rev. Lett. \textbf{124} (2020) 161103 [1906.00967].
\end{itemize}
[64] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66 (2002) 103511 [astro-ph/0205436].

[65] A. Lewis, Efficient sampling of fast and slow cosmological parameters, Phys. Rev. D 87 (2013) 103529 [1304.4473].

[66] A. Lewis, GetDist: a Python package for analysing Monte Carlo samples, arXiv e-prints (2019) arXiv:1910.13970 [1910.13970].

[67] D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: The MCMC Hammer, PASP 125 (2013) 306 [1202.3665].

[68] CMB-S4 collaboration, CMB-S4 Science Book, First Edition, 1610.02743.

[69] P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martinez-Pinedo and A. Mirizzi, Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung, JCAP 2019 (2019) 016 [1906.11844].

[70] R. Hlozek, D. Grin, D.J.E. Marsh and P.G. Ferreira, A search for ultralight axions using precision cosmological data, Phys. Rev. D 91 (2015) 103512 [1410.2896].

[71] M. Giannotti, I.G. Irastorza, J. Redondo, A. Ringwald and K. Saikawa, Stellar recipes for axion hunters, JCAP 10 (2017) 010 [1708.02111].

[72] L. Visinelli and S. Vagnozzi, Cosmological window onto the string axiverse and the supersymmetry breaking scale, Phys. Rev. D 99 (2019) 063517 [1809.06382].

[73] S. Hoof, F. Kahlhoefer, P. Scott, C. Weniger and M. White, Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT, JHEP 3 (2019) 191 [1810.07192].

[74] D.J.E. Marsh, K.C. Fong, E.W. Lentz, L. Šmejkal and M.N. Ali, Proposal to Detect Dark Matter using Axionic Topological Antiferromagnets, Phys. Rev. Lett. 123 (2019) 121601 [1807.08810].

[75] J. Schütte-Engel, D.J.E. Marsh, A.J. Millar, A. Sekine, F. Chadha-Day, S. Hoof et al., Axion Quasiparticles for Axion Dark Matter Detection, arXiv e-prints (2021) arXiv:2102.05366 [2102.05366].

[76] D. Horns, J. Jaeckel, A. Lindner, A. Lobanov, J. Redondo and A. Ringwald, Searching for WISPy cold dark matter with a dish antenna, JCAP 4 (2013) 016 [1212.2970].

[77] MADMAX WORKING GROUP collaboration, Dielectric Haloscopes: A New Way to Detect Axion Dark Matter, Phys. Rev. Lett. 118 (2017) 091801 [1611.05865].

[78] M. Lawson, A.J. Millar, M. Pancaldi, E. Vitagliano and F. Wilczek, Tunable axion plasma haloscopes, Phys. Rev. Lett. 123 (2019) 141802 [1904.11872].

[79] J.D. Hunter, Matplotlib: A 2d graphics environment, Computing in Science & Engineering 9 (2007) 90.

[80] L. Dalcín, R. Paz and M. Storti, Mpi for python, Journal of Parallel and Distributed Computing 65 (2005) 1108.

[81] L. Dalcín, R. Paz, M. Storti and J. D’Elía, Mpi for python: Performance improvements and mpi-2 extensions, Journal of Parallel and Distributed Computing 68 (2008) 655.

[82] L.D. Dalcín, R.R. Paz, P.A. Kler and A. Cosimo, Parallel distributed computing using python, Advances in Water Resources 34 (2011) 1124.

[83] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau et al., Array programming with NumPy, Nature 585 (2020) 357.

[84] J. Salvatier, T.V. Wiecki and C. Fonnesbeck, Probabilistic programming in Python using PyMC3, PeerJ Computer Science (2016) [1507.08050].

[85] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17 (2020) 261.

[86] A. Rohatgi, “Webplotdigitizer: Version 4.4.” Available at: https://automeris.io/WebPlotDigitizer, 2020.