TORSAL OR NON LOCALLY CONNECTED MINIMAL SETS FOR
R-CLOSED SURFACE HOMEOMORPHISMS

TOMOO YOKOYAMA

Abstract. Let M be an orientable connected closed surface and f be an R-
closed homeomorphism on M which is isotopic to identity. Then the suspension
of f satisfies one of the following condition: 1) the closure of each element of it
is toral. 2) there is a minimal set which is not locally connected. Moreover, we
show that any positive iteration of an R-closed homeomorphism on a compact
metrizable space is R-closed.

1. Preliminaries

In this paper, we will show that if f is a nontrivial R-closed homeomorphism on
M which is not periodic but isotopic to identity, then either a) f is “an irrational
rotation” or b) there is a minimal set which is not locally connected. Moreover if
M has genus ≥ 2, then b) holds. Taking suspensions, we show that a) implies that
each orbit closure is a torus. In addition, we show that any positive iteration of an
R-closed homeomorphism on a compact metrizable space is R-closed.

For a subset U of a topological space, U is locally connected if every point of U
admits a neighborhood basis consisting of open connected subsets. For a (binary)
relation E on a set X (i.e. a subset of $X \times X$), let $E(x) := \{ y \in X \mid (x,y) \in E \}$
for an element x of X. For a subset A of X, we say that A is E-saturated if
$A = \cup_{x \in A} E(x)$. Also E define the relation \bar{E} on X with $\bar{E}(x) = \overline{E(x)}$. Recall that
E is pointwise almost periodic if \bar{E} is an equivalence relation and E is R-
closed if \bar{E} is closed. Note that f on a locally compact Hausdorff
space is pointwise almost periodic if and only if \bar{E}_f is an equivalence relation (cf.
Theorem 4.10 [GH]). We call that an equivalence relation E is L-stable if for an
element x of X and for any open neighborhood U of $\bar{E}(x)$ contained in U. In [ES], they show the following: If a
continuous mapping f of a topological space X itself is either pointwise recurrent
or pointwise almost periodic, then so is f^k for each positive integer k. In general
cases, see Theorem 2.24, 4.04, and 7.04 [GH]. We show the following key lemma
which is an R-closed version of this fact on a compact metrizable space.
Lemma 1.1. Let f an homeomorphism on a compact metrizable space X. If f is R-closed, then so is f^n for any $n \in \mathbb{Z}_{>0}$.

Proof. Put $E := E_f$ and $E^n := E_{f^n}$. By Corollary 1.5 [?], we have that \hat{E} is an equivalence relation and so f is pointwise almost periodic. Since f is pointwise almost periodic, by Theorem 1[ES], we have that f^n is also pointwise almost periodic. Then $\hat{E^n}$ is an equivalence relation. By Corollary 3.6[?], E is L-stable and it suffices to show that $\hat{E^n}$ is L-stable. Note that $\hat{E^n}(x) \subseteq E(x)$ and so $\hat{E^n}(x) \subseteq \hat{E}(x)$. For $x \in X$ with $\hat{E^n}(x) = \hat{E}(x)$ and for any open neighborhood U of $\hat{E}(x) = \hat{E^n}(x)$, since E is L-stable, there is a E-saturated open neighborhood V of $\hat{E}(x)$ contained in U. Since $\hat{E^n}(x) \subseteq E(x)$, we have that V is also a E^n-saturated open neighborhood V of $\hat{E}(x)$. Fix any $x \in X$ with $\hat{E}(x) \neq \hat{E^n}(x)$.

Put $\{\hat{E}_1, \ldots, \hat{E}_k\} := \{\hat{E}(f^k(x)) \mid k = 0, 1, \ldots, n - 1\}$ such that $\hat{E}_1 = \hat{E^n}(x)$ and $\hat{E}_i \cap \hat{E}_j = \emptyset$ for any $i \neq j \in \{1, \ldots, k\}$. Then \hat{E}_1 and $\hat{E}' = \hat{E}_2 \sqcup \cdots \sqcup \hat{E}_k$. Then \hat{E}_1 and \hat{E}' are closed and $\hat{E} = \hat{E}_1 \sqcup \cdots \sqcup \hat{E}_k = \hat{E}_1 \sqcup \hat{E}'$. For any sufficiently small $\varepsilon > 0$, let $U_{1, \varepsilon} = B_\varepsilon(\hat{E}_1)$ (resp. $U'_{\varepsilon} = B_\varepsilon(\hat{E}')$) be the open ε-ball of \hat{E}_1 (resp. \hat{E}'). Since ε is small and X is normal, we obtain $U_{1, \varepsilon} \cap U'_{\varepsilon} = \emptyset$, $U_{\varepsilon/2} \subseteq U_{1, \varepsilon}$, and $U'_{\varepsilon/2} \subseteq U'_{\varepsilon}$. Since E is L-stable, there are neighborhoods $V_{1, \varepsilon} \subseteq U_{1, \varepsilon/2}$ (resp. $V'_{\varepsilon} \subseteq U'_{\varepsilon/2}$) of \hat{E}_1 (resp. \hat{E}') such that $V_{1, \varepsilon} \sqcup V'_{\varepsilon}$ is an E-saturated neighborhood of $\hat{E}(x)$. Since \hat{E}_1 and \hat{E}' are f^n-invariant and compact, there is a small $\delta > 0$ such that $f^n(V_{1, \delta}) \subseteq V_{1, \varepsilon}$ and $f^n(V'_{\delta}) \subseteq V'_{\varepsilon}$. Since $V_{1, \delta} \sqcup V'_{\delta}$ is f^n-invariant and $U_{1, \varepsilon} \cap U'_{\varepsilon} = \emptyset$, we obtain $V_{1, \delta} \sqcup V'_{\delta} = f^n(V_{1, \delta} \sqcup V'_{\delta}) = f^n(V_{1, \delta}) \sqcup f^n(V'_{\delta})$, $f^n(V_{1, \delta}) \cap V'_{\varepsilon} = \emptyset$, and $f^n(V'_{\delta}) \cap V_{1, \varepsilon} = \emptyset$. Hence $V_{1, \delta} = f^n(V_{1, \delta})$ and $V'_{\delta} = f^n(V'_{\delta})$. This implies that $V_{1, \delta}$ is an E^n-saturated neighborhood of $\hat{E}_1 = \hat{E^n}(x)$ with $V_{1, \delta} \subseteq U_{1, \varepsilon} = B_\varepsilon(\hat{E}_1) = B_\varepsilon(\hat{E^n}(x))$. □

Note this lemma is not true for compact T_1 spaces. (e.g. a homeomorphism f on a non-Hausdorff 1-manifold $X = \{0, \ldots, 0_+\} \cup [0, 1]$ by $f(0_+) = 0_+$ and $f([0, 1]) = \text{id}$).

2. Main results

From now on, let M be an orientable connected closed surface and f a nontrivial R-closed homeomorphism on M which is not periodic but isotopic to identity. We call that f on S^2 is a topological irrational rotation if there is an irrational number $\theta_0 \in \mathbb{R} - \mathbb{Q}$ such that f is topologically conjugate to a map on a unit sphere in \mathbb{R}^3 with the Cylindrical Polar Coordinates by $(\rho, \theta, z) \mapsto (\rho, \theta + \theta_0, z) \in \mathbb{R}_{>0} \times S^1 \times \mathbb{R}$. Also f on T^2 is a topological irrational rotation if there is an irrational number $\theta_0 \in \mathbb{R} - \mathbb{Q}$ such that some positive iteration of f is topologically conjugate to a map $S^1 \times S^1 \to S^1 \times S^1$ by $(\theta, \varphi) \mapsto (\theta + \theta_0, \varphi)$.

Lemma 2.1. If every minimal set is locally connected, then f is a topological irrational rotation on $M = S^2$ or T^2.

Proof. By Theorem 1 and Theorem 2 [BNW], since f is pointwise almost periodic, every orbit closure is a finite subset or a finite disjoint union of simple closed curves. We will show that there is a finite disjoint union of simple closed curves. Otherwise f is pointwise periodic. By [M], we have f is periodic, which contradicts. By Lemma 1.1 we have that f^n is also R-closed for any $n \in \mathbb{Z}_{>0}$. Hence there is an positive integer n such that f^n has a simple closed curve as a minimal set. Then Theorem 2A [Y2] implies that M is either T^2 or S^2. By Corollary 2.5 [Y2], if $M = S^2$, then
f has a null homotopic circle and so $n = 1$. Suppose $M = \mathbb{T}^2$ (resp. S^2). By Theorem 2.4 \cite{Y2}, the set $\mathcal{F}_{E_f^n}$ of orbits closures consists of essential circles (resp. two singular points and other circles). Fix any $x \in M$. Then $A := \mathbb{T}^2 - \mathring{E}_{f^n}(x)$ (resp. $A := S^2 - \text{Sing}(f^n)$) is an open annulus. By Lemma 1.5 (resp. the proof of Lemma 2.1) \cite{Y2}, we have that the restriction $f^n|_A$ to the open annulus A is an irrational rotation. \hfill \square

This implies our main results.

Theorem 2.2. Let M be an orientable connected closed surface and f be a nontrivial R-closed homeomorphism on M which is not periodic but isotopic to identity. Then one of the following holds:

1) f is a topological irrational rotation.
2) there is a minimal set which is not locally connected.

Moreover 2) holds when M has genus ≥ 2.

Taking a suspension, we have a following corollary.

Corollary 2.3. Let M be an orientable connected closed surface and f be an R-closed homeomorphism on M which is isotopic to identity. Then the suspension of f satisfies one of the following condition:

1) the closure of each element of it is toral.
2) there is a minimal set which is not locally connected.

References

[BNW] A. Biš, H. Nakayama, P. Walczak, *Locally connected exceptional minimal sets of surface homeomorphisms* Ann. Inst. Fourier, vol. 54 (2004), 711–732.

[ES] Erdős, P., Stone, A. H., *Some remarks on almost periodic transformations* Bull. Amer. Math. Soc. 51, (1945). 126–130.

[GH] W. Gottschalk, G. Hedlund, *Topological Dynamics* Amer. Math. Soc. Publ., vol. 36, American Mathematical Society, Providence, RI, 1955

[M] D. Montgomery, *Pointwise periodic homeomorphisms* Amer. J. Math. 59 (1937), 118–120.

Yokoyama, T., *Recurrence, pointwise almost periodicity and orbit closure relation for flows and foliations* arXiv:1205.3635.

Yokoyama, T., *R-closed homeomorphisms on surfaces* arXiv:1205.3634.

E-mail address: yokoyama@math.sci.hokudai.ac.jp