QUANTUM SCHUR SUPERALGEBRAS AND KAZHDAN–LUSZTIG COMBINATORICS

JIE DU AND HEBING RUI

Abstract. We introduce the notion of quantum Schur (or q-Schur) superalgebras. These algebras share certain nice properties with q-Schur algebras such as base change property, existence of canonical $\mathbb{Z}[v, v^{-1}]$-bases, and the duality relation with quantum matrix superalgebra $A(m|n)$. We also construct a cellular $\mathbb{Q}(v)$-basis and determine its associated cells, called super-cells, in terms of a Robinson–Schensted–Knuth super-correspondence. In this way, we classify all irreducible representations over $\mathbb{Q}(v)$ via super-cell modules.

1. Introduction

The quantum Schur (or q-Schur) algebra is the key ingredient of a so-called quantum Schur–Weyl theory. This theory investigates a three-level duality relation which includes: (1) quantum Schur-Weyl reciprocity for the quantum enveloping algebra $U(\mathfrak{gl}_n)$ and Hecke algebras $\mathcal{H}(S_r)$ via the tensor space $V_n^{\otimes r}$ — a $U(\mathfrak{gl}_n)$-$\mathcal{H}(S_r)$-bimodule; (The algebras $S(n, r) := \text{End}_{\mathcal{H}}(V_n^{\otimes r})$ are homomorphic images of $U(\mathfrak{gl}_n)$ and are called quantum Schur algebras.) (2) certain category equivalences between categories of \mathcal{H}-modules and $S(n, r)$-modules; (3) the realization and presentation problems in which quantum \mathfrak{gl}_n is reconstructed via quantum Schur algebras as a vector space together with certain explicit multiplication formulas on basis elements, and quantum Schur algebras are presented by generators and relations. We refer the reader to Parts 3 and 5 of [7] and the reference therein for a full account of the quantum Schur–Weyl theory, and to [6] for the affine version of the theory. Naturally, one expects a super version of the quantum Schur–Weyl theory.

Schur superalgebras and their quantum analogue have been investigated in the context of (quantum) general linear Lie superalgebras or supergroups; see, e.g., [19], [4], [8], [17]. For example, Mitsuhashi [17] has established (for a generic q) the super version of quantum Schur-Weyl reciprocity, and Brundan and Kujawa have investigated representations for Schur superalgebras and provided a surprising application to the proof of Mullineux conjecture. Thus, like quantum Schur algebras, quantum Schur superalgebras will play a decisive role in a super-version of the quantum Schur–Weyl theory.

In this paper, we will investigate quantum Schur superalgebras in the context of Hecke algebras and Kazhdan–Lusztig combinatorics. We will first define a quantum Schur superalgebra as the endomorphism superalgebra of certain signed q-permutation modules for Hecke algebras of type A. By introducing standard and...
canonical bases, we establish a cell theory for quantum Schur superalgebras. Thus, a super version of Robinson-Schensted-Knuth correspondence is developed to get the cell decomposition and the classification of (ordinary) irreducible representations.

We organize the paper as follows. After a brief review of Hecke algebras and their Kazhdan–Lusztig combinatorics, we discuss, as preparation, some combinatorial facts, including a description of super-representatives of double cosets and the Robinson–Schensted–Knuth (RSK) super-correspondence. We introduce in §5 the notion of quantum Schur superalgebra by using the q-analogues of the modules $M^{\lambda,\mu}$ given in [20, 1.2] and prove that this is the same algebra as given in [17] defined by the tensor superspace. We construct an integral standard basis which is used to construct a Kazhdan–Lusztig type (or canonical) basis in §6. In particular, we establish the base change property. In order to understand its representations over the field $\mathbb{Q}(\upsilon)$, we further introduce another basis, a cellular type basis, over the field via the Kazhdan–Lusztig basis of the Hecke algebra. Thus, cell relations can be introduced and cells modules form a complete set of non-isomorphic irreducible modules. This result can be considered as a generalization of Theorem 1.4 in [14] to the super case. Finally, we prove that quantum Schur superalgebras are the linear dual of the homogeneous components of the quantum general linear supergroup introduced by Manin [16].

Throughout the paper, we make the following notational convention.

Let m, n be nonnegative integers, not both zero. Let $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ be the set of integers modulo 2. Fix the map

$$\hat{i} : \{1, 2, \ldots, m, m + 1, \ldots, m + n\} \to \mathbb{Z}_2$$

(1.0.1)

such that $\hat{i} = \begin{cases} 0, & \text{if } 1 \leq i \leq m, \\ 1, & \text{if } m + 1 \leq i \leq m + n. \end{cases}$

Let $\mathcal{Z} = \mathbb{Z}[\upsilon, \upsilon^{-1}]$ be the ring of Laurent polynomials in indeterminate υ. If \mathcal{A} denotes a \mathcal{Z}-algebra, we shall use the same letter of boldface \mathbf{A} to denote the $\mathbb{Q}(\upsilon)$-algebra obtained by base change to $\mathbb{Q}(\upsilon)$. In other words, $\mathbf{A} = \mathcal{A} \otimes \mathbb{Q}(\upsilon)$.

Acknowledgement. The authors would like to thank Weiqiang Wang for making the reference [20] available to us. The paper was written while the first author was taking a sabbatical leave from UNSW. He would like to thank East China Normal University, Universities of Mainz and Virginia for their hospitality and financial support during the writing of the paper.

2. Hecke algebras and their Kazhdan–Lusztig combinatorics

Assume for the moment that $\mathcal{H} = \mathcal{H}(W)$ is the Hecke algebra associated with a Coxeter system (W, S). Thus, \mathcal{H} is an associative \mathcal{Z}-algebra with basis $\{T_w\}_{w \in W}$ subject to the relations (where $q = \upsilon^2$)

$$\begin{cases} T_s^2 = (q - 1)T_s + q, & \text{for } s \in S; \\ T_y T_w = T_{yw}, & l(yw) = l(y) + l(w), \end{cases}$$

(2.0.2)
where \(l \) is the length function relative to \(S \). Clearly, \(\mathcal{H} \) admits an anti-involution \(\tau : \mathcal{H} \to \mathcal{H} \) sending \(T_w \) to \(T_{w^{-1}} \). We first briefly review the construction of the canonical (or Kazhdan–Lusztig) bases of Hecke algebras.

Let \(- : \mathcal{H} \to \mathcal{H} \) be the \(\mathbb{Z} \)-linear involution on \(\mathcal{H} \) such that \(\mathbf{v} = \mathbf{v}^{-1} \) and \(T_w = T_{w^{-1}} \).

In [14], Kazhdan and Lusztig showed that, for any \(w \in W \), there is a unique element \(C_w \in \mathcal{H} \) such that \(C_w = C_w \) and

\[
C_w = \mathbf{v}^{-l(w)} \sum_{y \leq w} P_{y,w} (\mathbf{v}^2) T_y
\]

where \(\leq \) is the Chevalley-Bruhat order on \(W \) and \(P_{y,w} \) is a polynomial in \(q = \mathbf{v}^2 \) with degree less than \(\frac{1}{2}(l(w) - l(y) - 1) \) for \(y < w \) and \(P_{w,w} = 1 \). Moreover, \(\{ C_w \mid w \in W \} \) forms a free \(\mathbb{Z} \)-basis of \(\mathcal{H} \).

Let \(\iota \) be the involution on \(\mathcal{H} \) defined by setting

\[
\iota \left(\sum_{w \in W} a_w T_w \right) = \sum_{w \in W} \varepsilon_w (-1)^{l(w)} T_{\iota w}, \text{ where } \varepsilon_w = (-1)^{l(w)}.
\]

Write \(B_w = \iota (C_w) \). Then \(B_w = \sum_{y \leq w} \varepsilon_y \varepsilon_w \mathbf{v}^{l(w)} \mathbf{v}^{-2l(y)} T_{y,w} \). Both \(\{ C_w \}_{w \in W} \) and \(\{ B_w \}_{w \in W} \) are called canonical or Kazhdan-Lusztig bases for \(\mathcal{H} \).

For \(x, y \in W \), let \(\mu(y, w) \) be the coefficient of \(q^{\frac{1}{2}(l(w) - l(y) - 1)} \) in \(P_{y,w} \). The following formulae are due to Kazhdan and Lusztig [14].

For any \(s \in S \) and \(w \in W \),

\[
C_s C_x = \begin{cases}
(\mathbf{v} + \mathbf{v}^{-1}) C_w, & \text{if } sw < w, \\
C_{sw} + \sum_{y < x, y < g} \mu(y, w) C_y, & \text{if } sw > w.
\end{cases}
\]

Here, \(\leq \) denote the Bruhat ordering of \(W \).

Canonical bases have important applications to representations of Hecke algebras through the notion of cells. Following [14], we define preorder \(\leq_L \) on \(W \) by declaring that \(x \leq_L y \) if there is a sequence \(z_0 = x, z_1, \ldots, z_k = y \) such that \(C_{z_i} \) appears in the expression of \(C_x C_{z_{i+1}} \) with non-zero coefficient for some \(s \in S \). Define \(x \leq_R y \) by declaring that \(x^{-1} \leq_L y^{-1} \). Let \(\leq_{LR} \) be the preorder generated by \(\leq_L \) and \(\leq_R \). The corresponding equivalence relations are denoted by \(\sim_L, \sim_R \) and \(\sim_{LR} \). Call the equivalence classes of \(W \) with respect to \(\sim_L, \sim_R \) and \(\sim_{LR} \), respectively, left cells, right cells and two-sided cells of \(W \).

Let

\[
\mathcal{R}(w) = \{ s \in S \mid ws < w \} \text{ and } \mathcal{L}(w) = \mathcal{R}(w^{-1}).
\]

The following result is well-known. See [14, 2.4(i)].

Lemma 2.1. If \(w_1 \leq_L w_2 \), then \(\mathcal{R}(w_1) \supseteq \mathcal{R}(w_2) \). Hence, \(w_1 \sim_L w_2 \) implies \(\mathcal{R}(w_1) = \mathcal{R}(w_2) \).

Every left cell \(\kappa \) defines a left cell module

\[
E^\kappa := \operatorname{span}\{ C_w \mid w \leq_L \kappa \}/\operatorname{span}\{ C_w \mid w <_L \kappa \}.
\]

\(^1\)In [14], \(C_w \) is denoted by \(C'_w \), while \(B_w \) is denoted by \(C_w \).
where \(w \leq_L \kappa \) means \(w \leq_L y \) for some (equivalently, for all) \(y \in \kappa \), and \(w <_L y \) means \(w \leq_L y \) but \(w \neq_L y \).

It is known from [14] that cells for the symmetric group \(\mathfrak{S}_r \), which is a Coxeter group with \(S = \{(1, 2), (2, 3), \ldots, (r - 1, r)\} \), are completely determined via the Robinson–Schensted map and left cell modules form a complete set of all irreducible \(\mathcal{H}_{Q(w)} \)-modules. We now give a brief description of these facts.

For non-negative integers \(N, r \) with \(N > 0 \), a composition \(\lambda \) of \(r \), denoted by \(\lambda \vdash r \), is a sequence \((\lambda_1, \lambda_2, \ldots, \lambda_N)\) of non-negative integers \(\lambda_i \) with \(N \) parts such that \(|\lambda| = \sum_{i=1}^{N} \lambda_i = r \). If such a sequence decreases weakly, then \(\lambda \) is called a partition of \(r \) (with at most \(N \) parts), denoted by \(\lambda \vdash r \).

The Young diagram \(Y(\lambda) \) for a partition \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_N) \vdash r \) is a collection of boxes arranged in left-justified rows with \(\lambda_i \) boxes in the \(i \)-th row of \(Y(\lambda) \). Thus, if \(\lambda \) has \(N \) parts, we say that \(Y(\lambda) \) has \(N \) rows.

A \(\lambda \)-tableau (or a tableau of shape \(\lambda \)) is obtained by inserting integers into boxes of \(Y(\lambda) \). If the entries of a tableau \(s \) are exactly \(1, 2, \ldots, r \), then \(s \) is called an exact tableau. The symmetric group \(\mathfrak{S}_r \) acts on exact tableaux \(s \) by permuting its entries.

Let \(t^\lambda \) (resp. \(t^s \)) be the \(\lambda \)-tableau obtained from the Young diagram \(Y(\lambda) \) by inserting \(1, 2, \ldots, r \) from left to right (resp. top to bottom) along successive rows (resp. columns). For example, for \(\lambda = (4, 3, 1) \),

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & \\
8 \\
\end{array}, \quad \begin{array}{ccc}
1 & 4 & 6 \\
2 & 5 & 7 \\
3 \\
\end{array}.
\]

Let \(\mathcal{R}_i^\lambda \) be the \(i \)-th of \(t^\lambda \), and let \(\mathfrak{S}_\lambda \) be the row stabilizer subgroup of \(\mathfrak{S}_r \). For an exact tableau \(s \), if \(w(t^\lambda) = s \), write \(w = d(s) \). Note that \(d(s) \) is uniquely determined by \(s \).

A \(\lambda \)-tableau \(t \) is row (resp., column) increasing if the entries in each row (resp. column) of \(t \) strictly increase from left to right (resp., from top to bottom). It is well known that there is a bijection between the set of all row increasing exact \(\lambda \)-tableaux and the set \(\mathcal{D}_\lambda^{-1} \) of shortest left coset representatives of \(\mathfrak{S}_\lambda \). (Thus, \(\mathcal{D}_\nu \) is the set of right \(\mathfrak{S}_\nu \)-coset representatives of minimal length.) In particular, \(s \) is a row increasing exact \(\lambda \)-tableau if and only if \(d(s) \in \mathcal{D}_\lambda^{-1} \).

For a partition \(\lambda \), an exact \(\lambda \)-tableau is standard if it is both row increasing and column increasing. Let \(T^s(\lambda) \) be the set of all standard \(\lambda \)-tableaux.

Standard tableaux are used to describe elements of \(\mathfrak{S}_r \) via the well-known *Robinson-Schensted correspondence*. This map sets up a bijection

\[
\mathfrak{S}_r \rightarrow \bigcup_{\lambda \in \lambda^+(r)} T^s(\lambda) \times T^s(\lambda), \quad w \xrightarrow{\text{RS}} (P(w), Q(w)); \quad (2.1.1)
\]

see, e.g., [7 Cor. 8.9]. Here \(P(w) \) is a standard tableau obtained by applying an insertion algorithm to \((j_1, j_2, \ldots, j_r)\), where \(w(i) = j_i \), and \(Q(w) \) is the recording tableau; see, e.g., [7 (8.2.5)]. Moreover, we have \(Q(w) = P(w^{-1}) \).

One of the important applications of the Robinson-Schensted correspondence is the decomposition of symmetric groups into Kazhdan–Lusztig cells which are defined
above Lemma 2.1. The following result is given in [14, Th. 1.4]; see [7, Th. 8.25] for a purely combinatorial proof.

Theorem 2.2. Suppose \(x, y \in \mathcal{S}_r \). Then

1. \(x \sim_L y \) if and only if \(Q(x) = Q(y) \).
2. \(x \sim_R y \) if and only if \(P(x) = P(y) \).
3. \(x \sim_{LR} y \) if and only if \(P(x) \) and \(P(y) \) have the same shape.

Moreover, let \(\kappa_\lambda \) denote the left cell containing the longest element \(w_{0, \lambda} \) of \(\mathcal{S}_\lambda \) and \(S_\lambda := (E^{\ast \lambda})^{\ast} \) the corresponding dual left cell module. Then \(\{S_{\lambda, Q(\nu)}\}_{\lambda \in \lambda_r} \) is a complete set of non-isomorphic irreducible right \(H_{Q(\nu)} \)-modules and, for any left cell \(\kappa \), \(S_{\lambda, Q(\nu)} \cong (E^{\ast \lambda}_{Q(\nu)})^{\ast} \) if and only if \(\kappa \) lie in the two-sided cell containing \(w_{0, \lambda} \).

This result has a natural generalization to quantum Schur algebras; see [12, (5.3.3)]. We will develop a super version of this result in \$7.8\$.

3. Super-representatives of double cosets

Let \(M(m + n, r) \) be the set of \((m + n) \times (m + n)\) matrices \(A = (a_{i,j}) \) with \(a_{i,j} \in \mathbb{N} \) and \(\sum a_{ij} = r \), and let \(M(m + n) = \bigcup_{r \geq 0} M(m + n, r) \). Let

\[
\begin{align*}
\text{ro}(A) &= (\sum_j a_{1,j}, \sum_j a_{2,j}, \ldots, \sum_j a_{n+m,j}) \\
\text{co}(A) &= (\sum_j a_{j,1}, \sum_j a_{j,2}, \ldots, \sum_j a_{j,n+m}).
\end{align*}
\]

Define

\[
M(m|n, r) = \{(a_{ij}) \in M(m + n, r) : a_{ij} \in \{0, 1\} \text{ if } i + j = 1\},
\]

\[
M(m|n) = \bigcup_{r \geq 0} M(m|n, r). \tag{3.0.1}
\]

Let \(\Lambda(N, r) \) (resp. \(\Lambda^+(N, r) \)) be the set of compositions (resp. partitions) of \(r \) with \(N \) parts. We also write \(\Lambda^+(r, r) \) for \(\Lambda^+(r, r) \), the set of partitions of \(r \), and write \(0 \) for the unique element in \(\Lambda(N, 0) \).

For \((\lambda, \mu) \in \Lambda(m, r_1) \times \Lambda(n, r_2)\), let

\[\lambda \vee \mu = (\lambda_1, \ldots, \lambda_m, \mu_1, \ldots, \mu_n) \in \Lambda(m + n, r_1 + r_2).\]

Every element in \(\Lambda(m + n, r) \) has the form \(\lambda \vee \mu \) for some \((\lambda, \mu) \in \Lambda(m, r_1) \times \Lambda(n, r_2)\) with \(r_1 + r_2 = r \). Let

\[
\begin{align*}
\Lambda(m|n, r) &= \{\lambda|\mu : \lambda \in \Lambda(m, r_1), \mu \in \Lambda(n, r_2), \lambda \vee \mu \in \Lambda(m + n, r)\} \\
\Lambda^+(m|n, r) &= \{\lambda|\mu \in \Lambda(m|n, r) : \lambda_1 \geq \cdots \geq \lambda_m, \mu_1 \geq \cdots \geq \mu_n\}. \tag{3.0.2}
\end{align*}
\]

Thus, we may identify \(\Lambda(m|n, r) \) with \(\Lambda(m + n, r) \) via the map \(\lambda|\mu \mapsto \lambda \vee \mu \). Hence,

\[
\mathcal{S}_{\lambda|\mu} := \mathcal{S}_{\lambda \vee \mu} \cong \mathcal{S}_\lambda \times \mathcal{S}_\mu
\]

is well-defined. We will write \(x|y \in \mathcal{S}_{\lambda|\mu} \) to mean that \(x \in \mathcal{S}_\lambda \) and \(y \in \mathcal{S}_\mu \), where

\[
\lambda^* = \lambda \vee (1^r-|\lambda|) \quad \text{and} \quad \mu^* = (1^r-|\mu|) \vee \mu.
\]

In this notation, \(\mathcal{S}_{\lambda|\mu} = \mathcal{S}_\lambda \times \mathcal{S}_{\mu} \). We will also write, for any \(A \in M(m|n, r) \), \(\text{ro}(A) = \lambda|\mu \) or \(\text{co}(A) = \xi|\eta \) as elements in \(\Lambda(m|n, r) \).
For notational simplicity, we will identify \(\nu \) with the set \(S_\nu \cap S \). Let \(D_\nu \) (resp. \(D^+_\nu \)) be the set of right \(S_\nu \)-coset representatives of minimal (resp., maximal) length. Thus, for \(\rho \models r \), the set
\[
D_{\nu, \rho} = D_\nu \cap D_\rho^{-1} \quad \text{(resp., } D^+_{\nu, \rho} = D^+_\nu \cap D^+_\rho \text{)}
\]
consists of minimal (resp. maximal) double coset representatives of double cosets in \(D_\nu \backslash S_r \backslash D_\rho \). In particular, for \(\lambda | \mu \in \Lambda(m|n, r) \), \(D_{\lambda | \mu} \), \(D^+_{\lambda | \mu} \) and \(D^-_{\lambda | \mu, \xi | \eta} \) are defined.

For \(\lambda | \mu \in \Lambda(m|n, r) \), and \(\xi | \eta \in \Lambda(m'|n', r) \), define
\[
D^+_{\lambda | \mu} = D^+_{\lambda} \cap D^*_\mu \quad \text{resp. } D^-_{\lambda | \mu} = D^-_{\lambda} \cap D^*_{\mu},
\]
and
\[
D_{\lambda | \mu, \xi | \eta} = D^+_{\lambda, \xi} \cap D^*_{\mu, \eta} \quad \text{resp. } D^-_{\lambda | \mu, \xi | \eta} = D^-_{\lambda, \xi} \cap (D^*_{\xi | \eta})^{-1}.
\]

It is clear that we have
\[
D^+_{\lambda | \mu, \xi | \eta} = D^+_{\lambda, \xi} \cap D^*_{\mu, \eta} = \begin{cases}
 & \{x \in S_r : sx < x, tx > x, \forall s \in \lambda, t \in \mu, \\
 & xs < x, xt > x, \forall s \in \xi, t \in \eta \},
\end{cases}
\]
\[
D^-_{\lambda | \mu, \xi | \eta} = D^-_{\lambda, \xi} \cap D^*_{\mu, \eta} = \begin{cases}
 & \{x \in S_r : sx > x, tx < x, \forall s \in \lambda, t \in \mu, \\
 & xs > x, xt < x, \forall s \in \xi, t \in \eta \}.
\end{cases}
\]

Moreover, if \(\emptyset \) denotes the empty subset of \(S \) associated with those \(\xi | \eta \) whose components are 0 or 1, then \(D^+_{\lambda | \mu, \emptyset} = D^+_{\lambda | \mu} \).

The following result links the above sets with certain trivial intersection property.

Lemma 3.1. Let \(\lambda | \mu, \xi | \eta \in \Lambda(m|n, r) \). For any \(d \in D^+_{\lambda | \mu, \xi | \eta} \), the following are equivalent.

1. \(D^+_{\lambda | \mu, \xi | \eta} \cap \mathcal{S}_{\lambda, \mu} d \mathcal{S}_{\xi, \eta} \neq \emptyset \);
2. \(D^-_{\lambda | \mu, \xi | \eta} \cap \mathcal{S}_{\lambda, \mu} d \mathcal{S}_{\xi, \eta} \neq \emptyset \);
3. \(\mathcal{S}_{\lambda, \mu} \cap d \mathcal{S}_{\xi, \eta} d^{-1} = \{1\} \) and \(\mathcal{S}_{\mu, \eta} \cap d \mathcal{S}_{\xi, \eta} d^{-1} = \{1\} \).

Moreover, if one of the conditions holds, then

1'. \(D^+_{\lambda | \mu, \xi | \eta} \cap \mathcal{S}_{\lambda, \mu} d \mathcal{S}_{\xi, \eta} = D^+_{\lambda, \xi} \cap \mathcal{S}_{\lambda} d \mathcal{S}_{\xi} = \{d^*\} \);
2'. \(D^-_{\lambda | \mu, \xi | \eta} \cap \mathcal{S}_{\lambda, \mu} d \mathcal{S}_{\xi, \eta} = D^-_{\mu, \eta} \cap \mathcal{S}_{\mu} d \mathcal{S}_{\eta} = \{d^*\} \).

Proof. Let \(d^* \) be the unique element in \(D^+_{\lambda, \xi} \cap \mathcal{S}_{\lambda} d \mathcal{S}_{\xi} \). Thus, \(D^+_{\lambda | \mu, \xi | \eta} \cap \mathcal{S}_{\lambda, \mu} d \mathcal{S}_{\xi, \eta} \neq \emptyset \) is equivalent to the condition \(d^* \in D^*_{\mu, \eta} \). However,
\[
\mathcal{S}_{\lambda, \mu} \cap d \mathcal{S}_{\xi, \eta} d^{-1} \neq \{1\} \quad \text{(resp., } \mathcal{S}_{\mu, \eta} \cap d \mathcal{S}_{\xi, \eta} d^{-1} \neq \{1\})
\]
\[
\iff \exists s \in \eta \text{ satisfying } t = s d s^{-1} \in \lambda \quad \text{(resp., } \exists s \in \xi \text{ satisfying } t = s d s^{-1} \in \mu)
\]
\[
\iff d^* s < d^* \quad \text{(resp., } t d^* < d^*)
\]
\[
\iff d^* \notin D^*_{\mu, \eta}.
\]

So (1) and (3) are equivalent. A similar argument shows that (2) is equivalent to the conditions \(d^{-1} \mathcal{S}_{\lambda} d \cap \mathcal{S}_{\eta} = \{1\} \) and \(d^{-1} \mathcal{S}_{\mu} d \cap \mathcal{S}_{\tau} = \{1\} \). Hence, (2) and (3) are equivalent. The last assertion follows from definition. \(\square \)
It is well-known that double cosets of the symmetric group can be described in terms of matrices. More precisely, there is a bijection

$$j : \mathfrak{J}(N, r) := \{(\nu, w, \rho) \mid \nu, \rho \in \Lambda(N, r), w \in \mathfrak{D}_{\nu, \rho}\} \rightarrow M(N, r)$$ \hspace{1cm} (3.1.1)

such that if $j(\nu, w, \rho) = A = (a_{ij})$ then $a_{ij} = |R^i_k \cap wR^j_k|$, where R^k_j is the k-th row of t^λ. In other words, for $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_N)$ and $1 \leq k \leq N$,

$$R^k_j = \{\lambda_1 + \cdots + \lambda_{k-1} + 1, \lambda_1 + \cdots + \lambda_{k-1} + 2, \ldots, \lambda_1 + \cdots + \lambda_{k-1} + \lambda_k\}.$$

Moreover, if $j(\nu, w, \rho) = A$, then $j(\rho, w^{-1}, \nu) = A^t$, the transpose of A. We now describe a “super” version of j.

Proposition 3.2. Let

$$\mathfrak{J}(m|n, r) = \bigcup_{\lambda|\mu, \xi|\eta \in \Lambda(m|n, r)} \{(\lambda|\mu, d, \xi|\eta) : d \in \mathfrak{D}_{\lambda|\mu, \xi|\eta}, \mathfrak{D}^\prime_{\lambda|\mu, \xi|\eta} \cap \mathfrak{S}_{\lambda|\mu}d\mathfrak{S}_{\xi|\eta} \neq \emptyset\}.$$

By restriction, the map j given in (3.1.1) induces a bijection

$$j : \mathfrak{J}(m|n, r) \rightarrow M(m|n, r).$$ \hspace{1cm} (3.2.1)

Proof. For $w, y \in \mathfrak{S}_r$, it is well-known that

$$a_{ij} := |R^\lambda_{ij} \cap wR^\xi_{ij}| = |R^\lambda_{ij} \cap yR^\xi_{ij}|$$

whenever $\mathfrak{S}_{\lambda|\mu}w\mathfrak{S}_{\xi|\eta} = \mathfrak{S}_{\lambda|\mu}y\mathfrak{S}_{\xi|\eta}$.

For $\lambda|\mu \in \Lambda(m|n, r)$, if we put $R^\lambda_i = R^\lambda_{ij} \cap wR^\xi_j$ for $1 \leq i \leq m$ and $R^\mu_j = R^\mu_{ij} \cap wR^\xi_j$ for $1 \leq j \leq n$, then

$$a_{ij} = \begin{cases} |R^\lambda_i \cap wR^\xi_j|, & \text{if } i \leq m, j \leq m, \\
|R^\lambda_i \cap wR^\xi_{j-1}|, & \text{if } i \leq m, j \geq m + 1, \\
|R^\mu_{i-m} \cap wR^\xi_j|, & \text{if } i \geq m + 1, j \leq m, \\
|R^\mu_{i-m} \cap wR^\xi_{j-1}|, & \text{if } i \geq m + 1, j \geq m + 1. \\
\end{cases}$$

Now, $w \in \mathfrak{D}^\lambda_{\lambda|\mu, \xi|\eta}$ if and only if both $\mathfrak{S}_{\lambda|\mu}w\mathfrak{S}_{\xi|\eta} \cdot w^{-1} = \{1\}$ and $\mathfrak{S}_{\mu}w\mathfrak{S}_{\xi} \cdot w^{-1} = \{1\}$. This is equivalent to $|R^\lambda_i \cap wR^\xi_j| \leq 1$ and $|R^\mu_{i-m} \cap wR^\xi_j| \leq 1$ for all $1 \leq i \leq m, m+1 \leq j \leq m+n$, or $m+1 \leq i \leq m+n, 1 \leq j \leq m$. Hence, regarding $\mathfrak{J}(m|n, r)$ as a subset of $\mathfrak{J}(m+n, r)$, j sends $\mathfrak{J}(m|n, r)$ into $M(m|n, r)$. So the restriction is well-defined. The bijectivity follows from that of j and the argument above. (One may also use Proposition 3.6 below to see the surjectivity.) \hfill \Box

Let

$$\mathfrak{J}(m|n, r)^{\prime \prime} = \bigcup_{\lambda|\mu, \xi|\eta \in \Lambda(m|n, r)} \{(\lambda|\mu, w, \xi|\eta) : w \in \mathfrak{D}^\prime_{\lambda|\mu, \xi|\eta}\},$$

and define $\mathfrak{J}(m|n, r)^{-\prime \prime}$ similarly. The following can be seen easily from Lemma 3.1 and Proposition 3.2.

Corollary 3.3. There are bijections

$$j^{\prime \prime} : \mathfrak{J}(m|n, r)^{\prime \prime} \rightarrow M(m|n, r)$$

and

$$j^{-\prime \prime} : \mathfrak{J}(m|n, r)^{-\prime \prime} \rightarrow M(m|n, r)$$ \hspace{1cm} (3.3.1)

such that, if $A = j^{\prime \prime}(\lambda|\mu, w, \xi|\eta) = j^{-\prime \prime}(\lambda|\mu, w', \xi|\eta)$, then $\text{ro}(A) = \lambda|\mu$, $\text{co}(A) = \xi|\eta$.

The map \(j^{+,-} \) will be used to introduce cell relations on \(M(m|n, r) \) in \(\S 7 \).

The map \(j \) can be used to explicitly describe the shortest and longest elements in the double coset corresponding to a matrix \(A \in M(N, r) \). Write \(w_A^- \) for \(w \) if \(j(\nu, w, \rho) = A \). Then \(w_A^- \) is the shortest element in the double coset \(\mathfrak{S}_\nu w\mathfrak{S}_\rho \). Let \(w_A^+ \) be the longest element in \(\mathfrak{S}_\nu w\mathfrak{S}_\rho \). By [10] (or [7] Exer. 8.2), \(w_A^- \) (resp. \(w_A^+ \)) can be computed as follows: construct a pseudo-matrix \(A_- \) associated with \(A \) by replacing \(a_{1,1} \) by the sequence consisting of the first \(a_{1,1} \) integers of \(\{1, 2, \ldots, r\} \), \(a_{1,2} \) by the sequence of the next \(a_{1,2} \) integers, etc., from left to right down successive rows, and then form the permutation \(w_A^- \) which is obtained by reading \(A_- \) from left to right inside the sequences and from top to bottom, and followed by left to right along successive columns.

Example 3.4. If \(A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix} \), then \(A_- = \begin{pmatrix} (1, 2) & \emptyset & 3 \\ 4 & (5, 6) & \emptyset \\ 7 & (8, 9) & 10 \end{pmatrix} \) and \(w_A^- = (1, 2, 4, 7, 5, 6, 8, 9, 3, 10) \).

By reversing the integers in each row of \(A_- \) and form a pseudo-matrix \(A_+ \), the permutation \(w_A^+ \) is obtained by reading \(A_+ \) from left to right inside the sequences and from bottom to top, and followed by left to right along successive columns. For the example above, we have

\[
A_+ = \begin{pmatrix} 3 & 2 & \emptyset & 1 \\ 6 & (5, 4) & \emptyset \\ 10 & (9, 8) & 7 \end{pmatrix} \quad \text{and} \quad w_A^+ = (10, 6, 3, 2, 9, 8, 5, 4, 7, 1)
\]

We now generalize this construction to the elements in \(\mathfrak{S}(m|n, r)^{+,-} \) and \(\mathfrak{S}(m|\mu, r)^{+,-} \). Write \(w_A^{+,-} \) for \(w \) if \(j^{+,-}(\nu, w, \rho) = A \) and \(w_A^{-+} \) for \(w' \) if \(j^{-+}(\nu, w', \rho) = A \). Suppose \(A = (a_{ij}) \in M(m|n, r) \). By regarding \(A \) as an element in \(M(m + n, r) \), construct a pseudo-matrix \(A_{+, -} \) (resp., \(A_{-, +} \)) by reversing the integers in each row of \(A_- \) for the first \(m \) rows (resp. last \(n \) rows).

Now, define the permutation \(w_A^{+, -} \) (resp., \(w_A^{-+, +} \)) by reading \(A_{+, -} \) (resp., \(A_{-, +} \)) from left to right inside the sequences and from bottom to top (resp., top to bottom), followed by left to right along the first \(m \) successive columns, and then from top to bottom (resp., bottom to top) for the next \(n \) successive columns.

Example 3.5. If \(A \) is the matrix as given in Example 3.4 then \(A \in M(m|n, 10) \) for \(m = 1 \) and \(n = 2 \), \(\text{ro}(A) = \lambda|\mu = (3)|(3, 4) \), \(\text{co}(A) = \xi|\eta = (4)|(4, 2) \), and

\[
A_{+, -} = \begin{pmatrix} (3, 2) & \emptyset & 1 \\ 4 & (5, 6) & \emptyset \\ 7 & (8, 9) & 10 \end{pmatrix}, \quad A_{-, +} = \begin{pmatrix} (1, 2) & \emptyset & 3 \\ 6 & (5, 4) & \emptyset \\ 10 & (9, 8) & 7 \end{pmatrix}
\]

Hence, \(w_A^{+,-} = (7, 4, 3, 2, 5, 6, 8, 9, 1, 10) \) and \(w_A^{-+, +} = (1, 2, 6, 10, 9, 8, 5, 4, 7, 3) \).

Proposition 3.6. Maintain the notation introduced above. If \(A \in M(m|n, r) \) with \(\text{co}(A) = \xi|\eta \) and \(\text{ro}(A) = \lambda|\mu \) then \(w_A^{+,-} \in \mathfrak{D}^{+,-}_{\lambda|\mu, \xi|\eta} \) and \(w_A^{-+, +} \in \mathfrak{D}^{-+, +}_{\lambda|\mu, \xi|\eta} \).
it follows that

Since

\[l(w) = \sum_{j=1}^{r} \#\{(j,k) \mid j < k, i_j > i_k\} \]

(3.6.1)

it follows that \(l(ws_k) = l(w) + 1 \) if and only if \(i_k < i_{k+1} \), while \(l(s_kw) = l(w) + 1 \) if and only if \(\{k, k+1\} \) is a subsequence of \(\{i_1, i_2, \ldots, i_r\} \). Now, the result follows immediately by taking \(w = w_{A}^{1,0} \) of \(w_{A}^{1,0} \).

\[\square \]

4. Young supertableaux and RSK super-correspondence

Before generalizing 2.2, we need some combinatorial preparations.

For \(\lambda \in \Lambda^{+}(n, r) \) and \(\mu \in \Lambda(n, r) \), a \(\lambda \)-tableau \(S \) of content (or type) \(\mu \mid n \) is the tableau obtained from \(Y(\lambda) \) by inserting each box with numbers \(i, 1 \leq i \leq n \), such that the number \(i \) occurring in \(S \) is \(\mu_i \). If the entries in \(S \) are weakly increasing in each row (resp., column) and strictly increasing in each column (resp., row), \(S \) is called a row (resp., column) semi-standard \(\lambda \)-tableau of content \(\mu \). A \(\lambda \)-semistandard tableau is simply called semistandard tableau sometimes. Let \(T(\lambda, \mu) \) (resp., \(T^{ss}(\lambda, \mu) \)) be the set of all \(\lambda \)-tableaux (resp., semi-standard \(\lambda \)-tableau) of content \(\mu \). If \(T^{ss}(\lambda, \mu) \neq \emptyset \), then \(\lambda \supseteq \mu \).

Fix two non-negative integers \(m, n \) with \(m + n > 0 \), define

\[\Lambda^{+}(r)_{m|n} = \{ \lambda \in \Lambda^{+}(r), \lambda_{m+1} \leq n \} \]

(4.0.2)

If \(\lambda \in \Lambda^{+}(r)_{m|n} \), then \(Y(\lambda) \) is inside a hook of height \(m \) and base \(n \) and is called a \((m, n) \)-hook Young diagram. See, e.g., [2, 2.3] where \(\Lambda^{+}(r)_{m|n} \) is denoted as \(H(m, n; r) \).

The set \(\Lambda^{+}(r)_{m|n} \) is in general not a subset of \(\Lambda(m|n, r) \) or \(\Lambda^{+}(m|n, r) \); see [3.0.2]. However, each partition \(\lambda \in \Lambda^{+}(r)_{m|n} \) uniquely determines a pair of partitions \(\lambda' \) and \(\lambda'' \) with

\[\lambda' = (\lambda_1, \ldots, \lambda_m), \quad \lambda'' = (\lambda_{m+1}, \lambda_{m+2}, \ldots)^t, \]

(4.0.3)

where, for \(\nu \vdash r, \nu^t \) denotes the partition dual to \(\nu \). (In other words, the Young diagram \(Y(\nu^t) \) is the transpose of \(Y(\nu) \).) The condition \(\lambda_{m+1} \leq n \) implies \(\lambda'\lambda'' \in \Lambda^{+}(m|n, r) \). Thus, we obtain an injective map

\[\Lambda^{+}(r)_{m|n} \longrightarrow \Lambda^{+}(m|n, r), \quad \lambda \longmapsto (\lambda', \lambda''). \]

(4.0.4)

The pair \((\lambda', \lambda'') \) is sometimes called a dominant weight in a representation theory of quantum general linear superalgebra \(U_q(\mathfrak{gl}(m|n)) \); see, e.g., [18] and [17]. Note that, for \(\lambda \in \Lambda^{+}(r)_{m|n} \), \(Y(\lambda) \) is called an \((m, n) \)-hook diagram in [11 §4.1].

We now introduce, following [20 §1.2] (cf. [11 Def. 4.1]), the notion of semistandard \(\lambda \)-supertableau of content \(\mu|\nu \).

Let \(\lambda \in \Lambda^{+}(r)_{m|n} \), \(\mu|\nu \in \Lambda(m|n, r) \). A \(\lambda \)-tableau \(S \) of content \(\mu \lor \nu \) is called a semi-standard \(\lambda \)-supertableau of content \(\mu|\nu \) if

a) the entries in \(S \) are weakly increasing in each row and each column of \(S \);

b) the numbers in \(\{1, 2, \ldots, m\} \) are strictly increasing in the columns and the numbers in \(\{m + 1, m + 2, \ldots, m + n\} \) are strictly increasing in the rows.
In other words, a semi-standard \(\lambda \)-supertableau of content \(\mu | \nu \) is a tableau of content \(\mu | \nu \) such that the tableau \(T|_{[1,m]} \) obtained by removing entries \(m+1, \ldots, m+n \) is a (row) semi-standard tableau of content \(\mu \) and the tableau obtained from \(T \) by removing \(T|_{[1,m]} \) is a column semi-standard skew-tableau of content \(\nu \).

Let \(T^{\text{ss}}(\lambda, \mu | \nu) \) be the set of all semi-standard \(\lambda \)-supertableaux of content \(\mu | \nu \). Clearly, \(T^{\text{ss}}(\lambda, \mu | \emptyset) = T^{\text{ss}}(\lambda, \mu) \). Moreover, for \(S \in T^{\text{ss}}(\lambda, \mu | \nu) \), the subtableau obtained by removing all \(i \)-th rows from \(S \) with \(1 \leq i \leq m \) is column semistandard.

Example 4.1. For any \(\lambda \in \Lambda^+(r)_{m,n} \), there is a unique \(\lambda \)-tableau \(T_\lambda \) of content \(\lambda' | \lambda'' \). For example, if \(\lambda = (4, 4, 3, 2, 2, 1) \) and \(m = 2, n = 4 \), then \(\lambda' = (4, 4) \), \(\lambda'' = (4, 3, 1) \) and

\[
T_\lambda = \begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
3 & 4 & 4 & 5 \\
3 & 4 \\
3 & 4 \\
3 \\
\end{array}
\]

The following result is known; see [20, Theorem 2] or [1, Lemma 4.2]. For completeness, we include a proof.

Lemma 4.2. For a partition \(\lambda \in \Lambda^+(r) \), \(T^{\text{ss}}(\lambda, \mu | \nu) \neq \emptyset \) for some \(\mu | \nu \in \Lambda(m | n, r) \) if and only if \(\lambda \in \Lambda^+(r)_{m,n} \).

Proof. If \(\lambda \in \Lambda^+(r)_{m,n} \), then \(T^{\text{ss}}(\lambda, \lambda' | \lambda'') = \{ T_\lambda \} \neq \emptyset \). Conversely, suppose \(T \in T^{\text{ss}}(\lambda, \mu | \nu) \). Then the numbers \(1, 2, \ldots, m \) do not appear in the rows below row \(m \). Let \(T'' \) be the transpose of the tableau obtained by removing the first \(m \) rows from \(T \). Replacing every entry \(x \) in \(T'' \) by \(x - m \) yields a semistandard \(\lambda'' \)-tableau with content \(\nu^{(2)} \) for some \(\nu^{(2)} \in \Lambda(n, r_2) \). Now, \(\lambda'' \geq \nu^{(2)} \) implies that \(\lambda_{m+1} \), which is the number of parts of \(\lambda'' \), is less than or equal to the number of parts of \(\nu^{(2)} \), which is \(\leq n \). Hence, \(\lambda \in \Lambda^+(r) \). \(\square \)

The RSK super-correspondence is about a bijection between \(M(m | n, r) \) and the pairs of semistandard super tableaux of the same shape. Since the correspondence will be used to describe super-cells and associated modules, our construction relies on the relationship between Kazhdan-Lusztig cells of \(\mathfrak{S}_r \) and their combinatorial characterization.

For a fixed \(w \in \mathfrak{S}_r \) and \(T \in T(\lambda, \mu) \). Define \(w_T \in \mathfrak{S}_r \) by letting \(w_T(t^i) \) be the row standard \(\mu \)-tableau such that the integers in the \(i \)-th row of \(w_T(t^i) \) are the entries of \(w(t^i) \) whose positions are the same as those of the \(\mu_i \) entries \(i \) in \(T \). It is easy to see that the map \(T(\lambda, \mu) \rightarrow \mathcal{D}_\mu^{-1}, T \mapsto w_T \) is bijective. The inverse \(T_w^{\lambda | \mu} \) of this map can be defined as follows: for \(x \in \mathcal{D}_\mu^{-1} \), define \(T_w^{\lambda | \mu}(x) \in T(\lambda, \mu) \) by specifying that, for all \(i, j \), if the entry in \((i, j)\) position of \(w(t^i) \) is \(a \), then the entry in the same position in \(T_w^{\lambda | \mu}(x) \) is the row index of \(a \) in the row standard \(\mu \)-tableau \(x(t^i) \).
Example 4.3. If $\lambda = (431)$, $\mu = (3,2,2,1)$, $w = w_{0,\lambda}$ the longest element in $S\lambda$, and $T = \begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 & 3 & 4 & 3 \\
3 & & & \\
4 & & &
\end{array}$, then

$$w_{0,\lambda}(t^i) = \begin{array}{cccc}
4 & 3 & 2 & 1 \\
7 & 6 & 5 & 1 \\
8 & & & 6 \\
5 & & & 8
\end{array} \quad \text{and} \quad (w_{0,\lambda})_T(t^j) = \begin{array}{cccc}
2 & 3 & 4 & \\
1 & 7 & & \\
6 & 8 & & \\
5 & & &
\end{array}$$

If we write μ as $\xi|\eta = (3,2)|(2,1)$, then

$$(w_{0,\lambda})_T w_{0,\xi}(t^{\xi|\eta}) = \begin{array}{cccc}
4 & 3 & 2 & \\
7 & 1 & & \\
6 & 8 & & \\
5 & & &
\end{array}$$

Observe from the example that the tableau $(w_{0,\lambda})_T w_{0,\xi}(t^{\xi|\eta})$, where $\mu = \xi|\eta \in \Lambda(m|n,r)$, is obtained from $(w_{0,\lambda})_T(t^{\xi|\eta})$ by reversing the entries in the ith-rows for each i, $1 \leq i \leq m$.

We say that $i = (i_1, i_2, \ldots, i_k)$ is a subsequence of $j = (j_1, j_2, \ldots, j_l)$ if it is obtained from j by deleting some entries of j.

Lemma 4.4. For $\lambda \vdash r, \mu|\nu \in \Lambda(m|n,r)$, and $T \in T(\lambda, \mu \lor \nu)$, let $(w_{0,\lambda})_T w_{0,\mu} = (j_1, j_2, \ldots, j_r)$ be the permutation sending i to j_i. Then, $T \in T^{ss}(\lambda, \mu|\nu)$ if and only if the rows R_i and columns C_j of $w_{0,\lambda}(t^i)$ are all subsequence of j_1, j_2, \ldots, j_r.

Proof. If $y = (w_{0,\lambda})_T w_{0,\mu} = (j_1, j_2, \ldots, j_r)$, then $(w_{0,\lambda})_T w_{0,\mu}(t^{\nu|\nu})$ has sequence j_1, \ldots, j_{μ_1} in the first row, $j_{\mu_1+1}, \ldots, j_{\mu_1+\mu_2}$ in the second and so on, and the first m rows are obtained by reversing the first m rows of $(w_{0,\lambda})_T(t^{\nu|\nu})$, while the next n rows are the same as the corresponding rows of $(w_{0,\lambda})_T(t^{\nu|\nu})$. In particular, the first m rows are decreasing, while the next n rows are increasing.

A column of T has the form $a_1 a_2 \ldots a_0 a b b \ldots$ (from top to bottom) with p a’s, q b’s and so on for some $l, p, q, \geq 0$, where $a_1 < a_2 \cdots < a_l \leq m < a < b \cdots \leq m+n$. By definition, the first l members of C_j are placed in different rows of $(w_{0,\lambda})_T(t^{\nu|\nu})$ (and hence of $(w_{0,\lambda})_T w_{0,\mu}(t^{\nu|\nu})$) with row indexes a_1, a_2, \ldots, a_l, and then the next p members of C_j are placed (as a whole) in row a and the next q members are in row b, and so on. Note that a, b, \cdots are strictly great than m. Hence, C_j is a subsequence of j_1, j_2, \ldots, j_r. This proves the result for C_j for all j’s.

Likewise, the ith row of T has the form $a a b b \ldots a_1 a_0 a_1 a_2 \ldots a_0 b b \ldots$ (from top to bottom) with p a’s, q b’s and so on for some $l, p, q, \geq 0$, where $a < b \cdots \leq m < a_1 < a_2 < \cdots < a_l \leq m+n$. Thus, the first p members of R_i (as a whole) form part of the row a of $(w_{0,\lambda})_T(t^{\nu|\nu})$ (and hence of $(w_{0,\lambda})_T w_{0,\mu}(t^{\nu|\nu})$ since they are decreasing), the next q members form part of row b, and so on. Then the members of R_i are placed in different rows between row $m+1$ and row $m+n$. Hence, R_i is a subsequences of j_1, j_2, \ldots, j_r.

The argument above shows that if either the ith row or jth column of T is not (weakly) increasing, then either R_i or C_j is not a subsequences of j_1, j_2, \ldots, j_r, proving the lemma.

The following result is the key to the establishment of the RSK super-correspondence.
Proposition 4.5. Suppose $\mu|\nu \in \Lambda(m|n,r)$ and $\lambda \in \Lambda(r)^+$. If ϖ_λ denotes the right cell of \mathfrak{S}_r containing $w_{0,\lambda}$, then

$$\mathfrak{D}^+_{\lambda(0),\mu|\nu} \cap \varpi_\lambda = \{(w_{0,\lambda})^T w_{0,\mu} \mid T \in \mathfrak{T}^{ss}(\lambda,\mu|\nu)\}.$$

Proof. By [9, 3.2] or more precisely, [7, Lem. 8.20], we have

$$\varpi_\lambda = \{(w_{0,\lambda})_t \mid t \in \mathfrak{T}^s(\lambda)\},$$

where $(w_{0,\lambda})_t$ is simply defined by $(w_{0,\lambda})_t(t) = w_{0,\lambda}(t^\lambda)$. Hence,

$$\mathfrak{D}^+_{\lambda(0),\mu|\nu} \cap \varpi_\lambda = \{(w_{0,\lambda})_t \mid t \in \mathfrak{T}^s(\lambda), (w_{0,\lambda})_t \in \mathfrak{D}^+_{\lambda(0),\mu|\nu}\}.$$

We now prove that

$$\{(w_{0,\lambda})_t \mid t \in \mathfrak{T}^s(\lambda), (w_{0,\lambda})_t \in \mathfrak{D}^+_{\lambda(0),\mu|\nu}\} = \{(w_{0,\lambda})^T w_{0,\mu} \mid T \in \mathfrak{T}^{ss}(\lambda,\mu|\nu)\}.$$

If we put $\omega = (1^r)$, then $\mathfrak{T}^s(\lambda) = \mathfrak{T}^s(\lambda,\omega)$. Suppose $t \in \mathfrak{T}^s(\lambda)$ and $(w_{0,\lambda})_t \in \mathfrak{D}^+_{\lambda(0),\mu|\nu}$. Then by definition $x = (w_{0,\lambda})_t w_{0,\mu} \in \mathfrak{D}^+_{\mu|\nu}$ and $T = (w_{0,\lambda})_t w_{0,\mu} \in \mathfrak{T}^s(\lambda,\mu|\nu)$ so that $x = (w_{0,\lambda})^T$ and $(w_{0,\lambda})_t = (w_{0,\lambda})^T w_{0,\mu}$. We claim that $T \in \mathfrak{T}^{ss}(\lambda,\mu|\nu)$. Indeed, suppose $(w_{0,\lambda})_t = (i_1, i_2, \ldots, i_r)$. By applying Lemma [4] to the case where $\mu|\nu = \omega|0$, t is standard implies that the rows R_t and columns C_j of $w_{0,\lambda}(t^\lambda)$ are subsequences of i_1, i_2, \ldots, i_r. Thus, the same lemma (applied to $(w_{0,\lambda})^T w_{0,\mu} = (i_1, i_2, \ldots, i_r)$) implies that $T \in \mathfrak{T}^{ss}(\lambda,\mu|\nu)$.

Conversely, for any $T \in \mathfrak{T}^{ss}(\lambda,\mu|\nu)$, assume $(w_{0,\lambda})^T w_{0,\mu} = (j_1, j_2, \ldots, j_r)$. By Lemma [4], the rows R_t and columns C_j of $w_{0,\lambda}(t^\lambda)$ are subsequences of j_1, j_2, \ldots, j_r. Suppose $R_1 = \{j_1, \ldots, j_{i_1}\}$, $R_2 = \{j_{i_1+1}, \ldots\}$ and so on. Then the λ-tableau t obtained by putting $i_1, \ldots, i_{\lambda_1}, i_{\lambda_1+1}, \ldots$ from left to right down successive rows is standard and $(w_{0,\lambda})_t = (w_{0,\lambda})^T w_{0,\mu}$. \hfill \Box

Corollary 4.6. For $\mu|\nu \in \Lambda(m|n,r)$, $\mathfrak{D}^+_{\theta,\mu|\nu}$ is a union of left cells. For $\lambda \vdash r$, if $K_\lambda \cap \mathfrak{D}^+_{\theta,\mu|\nu}$ is a union of left cells containing $w_{0,\lambda}$, then the number $m_{\lambda,\mu|\nu}$ of left cells in $K_\lambda \cap \mathfrak{D}^+_{\theta,\mu|\nu}$ is $|\mathfrak{T}^{ss}(\lambda,\mu|\nu)|$.

Proof. Since

$$\mathfrak{D}^+_{\theta,\mu|\nu} = \{w \in \mathfrak{S}_r \mid R(w) \supseteq \mu, R(w) \cap \nu = \emptyset\} = \{(\mathfrak{D}^+_{\mu})^{-1} \mid R(w) \cap \nu = \emptyset\},$$

and $(\mathfrak{D}^+_{\mu})^{-1}$ is a union of left cells κ satisfying $R(\kappa) \supseteq \mu$, it follows that $\mathfrak{D}^+_{\theta,\mu|\nu}$ is a union of left cells κ in $(\mathfrak{D}^+_{\mu})^{-1}$ satisfying $R(\kappa) \cap \nu = \emptyset$. Hence, by Proposition 4.5

$$m_{\lambda,\mu|\nu} = |\mathfrak{D}^+_{\theta,\mu|\nu} \cap K_\lambda \cap \varpi_\lambda| = |\mathfrak{D}^+_{\lambda,\mu|\nu} \cap \varpi_\lambda| = |\mathfrak{T}^{ss}(\lambda,\mu|\nu)|,$$

as required. \hfill \Box

Assume $\mu|\nu \in \Lambda(m|n,r)$. For $T \in \mathfrak{T}^{ss}(\lambda,\mu^*)$, replacing ν_1 entries $m+1, \ldots, m+\nu_1$ of T by $m+1$, ν_2 entries $m+\nu_1+1, \ldots, m+\nu_1+1+\nu_2$ by $m+2$, and so on, yields a λ-tableau T° of type $\mu \lor \nu$, which may not be in $\mathfrak{T}^{ss}(\lambda,\mu|\nu)$. Let

$$\mathfrak{T}^{ss}(\lambda,\mu^*)^\circ = \{T \in \mathfrak{T}^{ss}(\lambda,\mu^*) : T^\circ \in \mathfrak{T}^{ss}(\lambda,\mu|\nu)\}.$$

2 A right action was used for the symmetric group \mathfrak{S}_r in [9]. Thus, the left cell containing $w_{0,\lambda}$ was used there.
Thus, we may identify \(T^{ss}(\lambda, \mu|\nu) \) as the subset \(T^{ss}(\lambda, \mu|\nu) \circ \) of \(T^{ss}(\lambda, \mu^*) \). This identification is compatible with the inclusion \(D_{\lambda,\mu|\nu}^+ \cap \varpi_\lambda \subseteq D_{\lambda,\mu^*|\nu}^+ \cap \varpi_\lambda \).

We are now ready to describe RKS super-correspondence. Suppose \(w \in D_{\lambda,\mu|\nu}^+ \). Let \((P(w), Q(w)) = (s, t) \) be the image of \(w \) under the Robinson-Schensted map, i.e., \(w \xrightarrow{RS} (s, t) \). Let \(\nu' \) be the shape of \(s \) where \(\nu' \) is the partition dual to \(\nu \). Define \(x, y \in S_r \) such that \(P(x^{-1}) = s, Q(x^{-1}) = t, P(y) = t, \) and \(Q(y) = t \). Since \(P(w_{0,\nu}) = Q(w_{0,\nu}) = t, \) by Theorem 2.2, \(w_{0,\nu} \sim_L x^{-1} \sim_R w \) and \(w_{0,\nu} \sim_R y \sim_L w \).

Thus, by Lemma 2.1 \(R(x) = L(w), R(y) = L(w) \) and \(L(x) = L(y) = \nu \). This implies that \(x \in D_{\nu,0,\lambda|\nu}^+ \cap \varpi_\nu \) and \(y \in D_{\nu,0,\lambda|\nu}^+ \cap \varpi_\nu \), where \(\varpi_\nu \) is the right cell of \(S_r \) which contains \(w_{0,\nu} \). By Proposition 4.5, there is a pair of semi-standard \(\nu \)-tableaux \((S_w, T_w) \in T^{ss}(\nu, |\lambda, \mu| \times T^{ss}(\nu, |\xi| \eta), \) which are determined uniquely by \(x \) and \(y \), respectively. In particular, \(\nu \in \Lambda^+(r)_{m|n} \). Thus, we obtain a map

\[
\partial = \partial_{\lambda,\mu,\xi|\eta} : D_{\lambda,\mu,\xi|\eta}^+ \rightarrow \bigcup_{\nu \in \Lambda^+(r)_{m|n}} T^{ss}(\nu, |\lambda, \mu| \times T^{ss}(\nu, |\xi| \eta), \ w \mapsto (S_w, T_w). (4.6.1)
\]

The symmetry of the Robinson-Schensted correspondence implies that the map \(\partial \) satisfies a similar property:

\[
\partial(w) = (S_w, T_w) \implies \partial(w^{-1}) = (T_w, S_w).
\]

Theorem 4.7. The maps \(\partial_{\lambda,\mu,\xi|\eta} \) for any \(\lambda|\mu, \xi|\eta \in \Lambda(m|n, r) \), are bijection which induce a bijective correspondence

\[
M(m|n, r) \xrightarrow{\text{RSK}} \bigcup_{\nu \in \Lambda^+(r)_{m|n}} T^{ss}(\nu, |\lambda, \mu| \times T^{ss}(\nu, |\xi| \eta), \ A \xrightarrow{\text{RSK}} (S(A), T(A)).
\]

Moreover, if \(A \xrightarrow{\text{RSK}} (S, T) \) then \(A' \xrightarrow{\text{RSK}} (S, T) \).

Proof. By Proposition 5.2 and (4.6.1), we need only construct the inverse map \(\partial^{-1} \) of \(\partial = \partial_{\lambda,\mu,\xi|\eta} \) for the first assertion. By Proposition 4.5 each pair \((S, T) \in T^{ss}(\nu, |\lambda, \mu| \times T^{ss}(\nu, |\xi| \eta) \) defines two elements \(x = (w_{0,\nu})_s w_{0,\lambda} \in D_{\nu,0,\lambda|\nu}^+ \cap \varpi_\nu \) and \(y = (w_{0,\nu})_t w_{0,\xi} \in D_{\nu,0,\xi|\nu}^+ \cap \varpi_\nu \). By [9, 3.2] (cf. footnote 2), \(P(x) = P(y) = t, \) \(x \sim_L w_{0,\nu} \sim_R y \). Thus, \(L(w) = \mathcal{R}(x) \) and \(\mathcal{R}(w) = \mathcal{R}(y) \). Hence, \(w \in D_{\lambda,\mu,\xi|\eta}^+ \) and \(\partial^{-1}(S, T) = w \). The last assertion is clear.

We give an example to illustrate the proof.

Example 4.8. Let \(\nu = (3, 3, 1) \) and \(m = 1 \) and \(n = 3 \). Then \(\nu' = (3) \), \(\nu'' = (2, 1, 1) \) and \(T^{ss}(\nu, \nu'|\nu'') \) = \(\{T\} \) with

\[
T = \begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 4 \\
2 &
\end{array}
\]
Thus,

\[
\begin{align*}
 w_{0,\nu}(t') & = \begin{pmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ 7 \end{pmatrix}, \\
 (w_{0,\nu})^T(t'' \nu t'') & = \begin{pmatrix} 1 & 2 & 3 \\ 6 & 7 & 4 \\ 5 \end{pmatrix}.
\end{align*}
\]

Hence, \(x = y = (w_{0,\nu})_T w_{0,\nu'} = (3, 2, 1, 6, 7, 5, 4) \in \mathcal{D}^{\nu \nu'}_{\nu' \nu} \) and \(Q(x) = Q(y) = \begin{pmatrix} 1 & 4 & 5 \\ 2 & 6 \\ 3 & 7 \end{pmatrix} \). Hence, \(\partial^{-1}(\mathcal{T}, \mathcal{T}) = w \in \mathcal{D}^{\nu \nu'}_{\nu' \nu} \) where \(w \xrightarrow{RS} (Q(x), Q(y)) \).

This bijective correspondence is called the Robinson–Schensted–Knuth super-correspondence. We will write, for any \(A \in M(m|n, r), A \xrightarrow{\text{RSKs}} (S, T) \) if \(S(A) = T \) and \(T(A) = T \).

Remark 4.9. (1) This correspondence is the super version of the correspondence given in [12, §5.3]; cf. [7, Remark 9.26]. This correspondence is different from the so-called \((m, n)\)-RoSch correspondence described in [2, 2.5].

5. Signed \(q \)-permutation modules and Quantum Schur superalgebras

The Hecke algebra \(\mathcal{H} = \mathcal{H}(r) \) associated to the symmetric group \(\mathfrak{S}_r \) is an associative \(\mathcal{Z} \)-algebra generated by \(T_i, 1 \leq i \leq r-1 \) subject to the relations (where \(q = \nu^2 \))

\[
\begin{cases}
 T_i^2 = (q-1)T_i + q, & \text{for } 1 \leq i \leq r-1, \\
 T_i T_j = T_j T_i, & \text{for } 1 \leq i < j \leq r-1, \\
 T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, & \text{for } 1 \leq i \leq r-2.
\end{cases}
\]

(5.0.1)

For any commutative ring \(R \) which is a \(\mathcal{Z} \)-algebra, let \(\mathcal{H}_R \) be the algebra obtained by base change to \(R \). Let \(v, q \) be the images of \(\nu, q \) in \(R \), respectively.

For each \(\lambda|\mu \in \Lambda(m|n, r) \), define

\[
x_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda^*}} T_w, \quad y_{\mu} = \sum_{w \in \mathfrak{S}_{\mu^*}} (-q)^{-l(w)} T_w
\]

where \(l(w) \) is the length of \(w \). The \(\mathcal{H} \)-module \(x_{\lambda} \mathcal{H} \) is called a \(q \)-permutation module. We call \(x_{\lambda} y_{\mu} \mathcal{H} \) a signed \(q \)-permutation module. These modules share certain nice properties with \(q \)-permutation modules; cf. e.g., [7, §7.6]. We continue to follow the notation used in §3. Thus, a composition \(\lambda|\mu \) is identified with the set \(\mathfrak{S}_\lambda \cap S \).

Lemma 5.1. Let \(\lambda|\mu \in \Lambda(m|n, r) \).

(1) The right \(\mathcal{H}_R \)-module \(x_{\lambda} y_{\mu} \mathcal{H}_R \) is free with basis \(\{ x_{\lambda} y_{\mu} T_d \}_{d \in \mathfrak{S}_{\lambda|\mu}} \).

(2) \(x_{\lambda} y_{\mu} \mathcal{H}_R = \{ h \in \mathcal{H} : T_i h = q h, T_i h = -h, \forall s \in \lambda^*, t \in \mu^* \} \).

(3) \((\mathcal{H}_R x_{\lambda} y_{\mu})^* := \text{Hom}_R(\mathcal{H}_R x_{\lambda} y_{\mu}, R) \cong x_{\lambda} y_{\mu} \mathcal{H}_R \).

Proof. Statement (1) is clear. For \(h = \sum_w f_w T_w \in \mathcal{H}_R, T_i h = q h, T_i h = -h \) imply \(f_w = f_{sw} \) and \(f_{tw} = -q^{-1} f_w \) for all \(s \in \lambda, t \in \mu \) with \(tw > w \), which force

\[
h = \sum_{x \in \mathfrak{S}_{\lambda^*}, y \in \mathfrak{S}_{\mu^*}, d \in \mathfrak{S}_{\lambda|\mu}} (-q)^{-l(y)} f_d T_x T_y T_d = x_{\lambda} y_{\mu} \sum_{d \in \mathfrak{S}_{\lambda|\mu}} f_d T_d.
\]
The converse inclusion is clear, proving (2). For (3), consider the “trace form”
\[
\langle , \rangle : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{Z}, \quad \langle a, b \rangle = \text{tr}(ab),
\]
where \(\text{tr}(\sum_w f_w T_w) = f_1\). A direct computation shows that \(\langle x_\lambda y_{\mu} T_u, T_v x_\lambda y_{\mu} \rangle = \delta_{u,v} - 1) q^{(u)} P_{\lambda, \mu}(q)\), where \(P_{\lambda, \mu}(q)\) is the Poincare Polynomial of \(\mathcal{S}_{\lambda, \mu}\). Thus, we obtain a perfect paring
\[
\langle , \rangle : x_\lambda y_{\mu} \mathcal{H} \times x_\lambda y_{\mu} \rightarrow \mathbb{Z}, \quad (x_\lambda y_{\mu} T_u, T_v x_\lambda y_{\mu}) = \delta_{u,v} - 1) q^{(u)}.
\]
Now base change gives the required perfect paring for the isomorphism. \(\square\)

For a composition \(\mu \vdash r\), let \(\tilde{\mu}\) be the partition obtained by rearranging the parts of \(\mu\). If \(\mu \in \Lambda(m, r_1)\) with \(r_1 \leq r\), define \(\tilde{\mu} = \mu \cup (1^{r-r_1})\). Then \(\tilde{\mu} = \Lambda(m+r-r_1, r)\).

The following result can be considered as the quantum version of [20, Lem 3]. Recall, for \(\lambda \vdash r\), the Specht module \(S_{\lambda}\) of \(\mathcal{H}\) associated with \(\lambda\) defined as a dual cell module in Theorem 2.2.

Proposition 5.2. For any \(\mu, \nu \in \Lambda(m, n, r)\), we have
\[
x_\mu y_\nu \mathcal{H}_{Q(\nu)} \cong \bigoplus_{\lambda \in \Lambda^+(r)_{m,n}, \lambda \supseteq \tilde{\mu}^*} m_{\lambda, \mu} S_{\lambda, Q(\nu)}.
\]

If \(\tilde{\mu}^* \in \Lambda^+(r)_{m,n}\), then \(S_{\mu, Q(\nu)}\) is a direct summand of \(x_\mu y_\nu \mathcal{H}_{Q(\nu)}\) with multiplicity 1.

Proof. Consider the basis \(\{C_w \mid R(w) \supseteq \mu\}\) and a left cell filtration for \(\mathcal{H}_{x_\mu}\):
\[
\mathcal{H}_{x_\mu} = E_{0}^\mu \supseteq E_{1}^\mu \supseteq \cdots \supseteq E_{n-1}^\mu \supseteq E_{n}^\mu = 0.
\]

Since the set \(\{C_w y_\nu \mid R(w) \supseteq \mu\}\) \{0\} forms a basis for \(\mathcal{H}_{x_\mu y_\nu}\), this filtration induces a filtration of \(\mathcal{H}_{x_\mu y_\nu}\):
\[
\mathcal{H}_{x_\mu y_\nu} = E_{0}^{\mu \nu} \supseteq E_{1}^{\mu \nu} \supseteq \cdots \supseteq E_{n}^{\mu \nu} = 0
\]
with subfactors isomorphic to left cell modules. Applying Lemma 5.1 yields a dual left cell filtration for \(x_\mu y_\nu \mathcal{H}\):
\[
0 = F_{0}^{\mu \nu} \subseteq F_{1}^{\mu \nu} \subseteq \cdots \subseteq F_{n}^{\mu \nu} = x_\mu y_\nu \mathcal{H}
\]
where \(F_{j}^{\mu \nu} = (\mathcal{H}_{x_\mu y_\nu} / E_{j}^{\mu \nu})^*\). The required isomorphism follows from base change to \(Q(\nu)\), Corollary 4.6 and Proposition 2.2. The last equality follows from the fact that \(m_{\mu, \nu} = |T^{ass}(\tilde{\mu}^*, \mu, \nu)| = 1\) if \(\tilde{\mu}^* \in \Lambda^+(r)_{m,n}\). \(\square\)

Remark 5.3. When \(\mu, \nu \in \Lambda(m, n, r)\) with \(r - |\mu| > n\), \(S_{\nu}^{\mu} S_{\nu}^{\mu}\) is not a direct summand of \(x_\mu y_\nu \mathcal{H}_{Q(\nu)}\). However, when \(\mu \in \Lambda^+(r)_{m,n}\), \(S_{\nu}^{\mu}\) is a direct summand of \(x_\mu y_\nu \mathcal{H}_{Q(\nu)}\) with multiplicity 1 since \(|T^{ass}(\mu, \nu)| = 1\).

For \(D = \lambda, \mu, d, \xi, \eta) \in M(m, n, r)\) (see (3.3.1)), we identify \(D\) with the double coset \(D = \mathcal{G}_{\mu, \xi} d \mathcal{G}_{\xi, \eta}\). Since \(d \in \mathcal{D}_{\alpha, \beta} \cap D\) is the shortest element in \(D\), every \(w \in D\) can be uniquely written as \(w = x.y.d.u.v\) with \(x \in \mathcal{G}_{\lambda, \mu}\) and \(u | v \in \mathcal{S}_{\xi, \eta} \cap \mathcal{D}_{\alpha, \beta}\), where \(\alpha = \alpha(D), \beta = \beta(D)\) are compositions of \(|\xi|\) and \(|\eta|\), respectively, defined by
\[
\mathcal{G}_{\alpha} = d^{-1} \mathcal{G}_{\lambda, \mu} d \cap \mathcal{G}_{\xi, \eta} \quad \text{and} \quad \mathcal{G}_{\beta} = d^{-1} \mathcal{G}_{\rho} d \cap \mathcal{G}_{\eta}.
\] (5.3.1)
By Lemma 3.1, \(S_{\lambda\mu\xi} = d^{-1}\mathcal{S}_{\lambda\mu}d \cap \mathcal{S}_{\xi\eta} = \mathcal{S}_\alpha \cap \mathcal{S}_\beta \). Define
\[
T_D = \sum_{u[v] \in \mathcal{S}_{\xi\eta} \cap \mathcal{D}_{\alpha\beta}} (-q)^{-l(v)} x_\lambda y_\mu T_d T_u T_v.
\]
(5.3.2)

It is clear from the definition that
\[
T_D = x_\lambda y_\mu h_1 = h_2 x_\xi y_\eta = h'_1 x_\lambda T_d y_\eta h''_1 = h'_2 x_\lambda T_d y_\xi h''_2
\]
for some \(h_1, h_2, h'_1, h''_1, h'_2, h''_2 \in \mathcal{H}_R \).

Remark 5.4. The element \(T_D \) is also defined for any \(D = j(\lambda|\mu, \xi|\eta) \in M(m+n, r) \). However, if \(d \in \mathcal{D}_{\lambda\mu, \xi|\eta} \) does not satisfy the two trivial intersection properties in Lemma 3.2(3), then \(T_D = 0 \).

We will continue to make the following identification in the sequel.
\[
M(m|n, r)_{\lambda|\mu, \xi|\eta} := \{ D \in M(m|n, r) : ro(D) = \lambda|\mu, co(D) = \xi|\eta \}
\]
\[
= \{ D \in \mathcal{S}_{\lambda\mu} \cap \mathcal{S}_{\xi\eta} : D \cap \mathcal{D}_{\lambda\mu, \xi|\eta} \neq \emptyset \}.
\]
(5.4.1)

Proposition 5.5. If \(\mathcal{H}^{+,-}_{\lambda|\mu, \xi|\eta} \) denotes the free \(R \)-submodule of \(\mathcal{H}_R \) spanned by \(T_D \) for all \(D \in M(m|n, r)_{\lambda|\mu, \xi|\eta} \), then
\[
\mathcal{H}^{+,-}_{\lambda|\mu, \xi|\eta} = x_\lambda y_\mu \mathcal{H}_R \cap \mathcal{H}_R x_\xi y_\eta
\]
\[
= \{ h \in \mathcal{H} : T_s h = h T_1 = q h, T_s h = h T_2 = -h, \forall s_1 \in \lambda^*, s_2 \in \mu, t_1 \in \xi^*, t_2 \in \eta \}.
\]

Proof. When \(\mu = \eta = (0) \), it is Curtis’ result in [3]. In general, the proof is similar. We leave the reader to verify \(T_s T_D = T_D T_{11} = q T_D, T_{22} T_D = T_D T_{12} = -T_D \) for all \(s_1 \in \lambda^*, s_2 \in \mu, t_1 \in \xi^*, t_2 \in \eta \). This proves \(\subseteq \) part of the result.

Conversely, Suppose \(h \in \mathcal{H}_R \) with \(T_s h = q h \) for all \(s \in \lambda^* \). By [3] 1.9, we have \(a_w = a_{sw} \) for any \(s \in \lambda^* \). Similarly, we have \(a_w = a_{ws} \) for any \(s \in \xi^* \). Therefore, \(a_w = a_{y_1, y_2} \) if \(w = x_1 \cdot x_2 \cdot d \cdot y_1 \cdot y_2 \) with \(x_1 \in \mathcal{S}_{\lambda^*}, x_2 \in \mathcal{S}_\mu, y_1 \in \mathcal{S}_\xi, \) and \(y_2 \in \mathcal{S}_\eta \). Similarly, we have \(a_w = -q a_{tw} \) (resp., \(a_w = -q a_{wt} \)) if \(tw > w \) and \(t \in \mu \) (resp., \(wt > w \) and \(t \in \eta \)). Consequently, for \(w = x_1 \cdot x_2 \cdot d \cdot y_1 \cdot y_2 \) as given above, \(a_w = (-q)^{-l(x_2)} a_{d, y_2} = a_d(-q)^{-l(x_2)+l(y_2)} \). Hence, \(h \in \mathcal{H}^{+,-}_{\lambda|\mu, \xi|\eta} \).

Definition 5.6. Let \(\mathcal{T}(m|n, r, \mathcal{R}) = \oplus_{\lambda|\mu, \xi|\eta} \mathcal{S}_{\lambda\mu} \mathcal{S}_{\xi\eta} \mathcal{H}_R \) and
\[
\mathcal{S}(m|n, r, \mathcal{R}) := \text{End}_{\mathcal{H}_R}(\mathcal{T}(m|n, r, \mathcal{R}))
\]
and define a \(\mathbb{Z}_2 \)-grading by setting, for \(i = 0, 1 \),
\[
\mathcal{S}(m|n, r)_i = \bigoplus_{\lambda|\mu, \xi|\eta \in M(m|n, r)_{\lambda|\mu, \xi|\eta}} \text{Hom}_{\mathcal{H}_R}(x_\xi y_\eta \mathcal{H}_R, x_\lambda y_\mu \mathcal{H}_R).
\]
(5.6.1)

We call the \(\mathcal{R} \)-algebra \(\mathcal{S}(m|n, r, \mathcal{R}) \) with supermultiplication (see (5.8.1) below) the **quantum Schur superalgebra** (or \(q \)-Schur superalgebras) over \(\mathcal{R} \). We will simply write \(\mathcal{S}(m|n, r) \) for \(\mathcal{S}(m|n, r, \mathcal{R}) \) and \(\mathcal{T}(m|n, r) \) for \(\mathcal{T}(m|n, r, \mathcal{R}) \).
Note that there is also a \mathbb{Z}_2-grading on $\mathfrak{T}(m|n; r; R)$ with
\[
\mathfrak{T}(m|n; r; R)_0 = \bigoplus_{\lambda|\mu \equiv 0(\text{mod } 2)} x\lambda y_\mu \mathcal{H}_R, \quad \mathfrak{T}(m|n; r; R)_1 = \bigoplus_{\lambda|\mu \equiv 1(\text{mod } 2)} x\lambda y_\mu \mathcal{H}_R.
\]

Remark 5.7. For the convenience of later use, our definition of $S(m|n; r)$ is taken over
the ring $\mathcal{Z} = \mathbb{Z}[v, v^{-1}]$. However, it is clear that the quantum Schur superalgebras
is well defined over $\mathbb{Z}[q, q^{-1}]$, where $q = v^2$. Thus, specializing q to $q \in R$
yields the quantum Schur superalgebras over R (without assuming \sqrt{q} exists in R).

The quantum Schur superalgebras share some nice properties with the quantum Schur algebras.

Recall the bijection introduced in (3.2.1). For $A = j(\lambda|\mu, d, \xi|\eta) \in M(m|n; r)$, define $\phi_A = \phi_{\lambda|\mu, \xi|\eta} \in S(m|n; r; R)$ by
\[
\phi_{\lambda|\mu, \xi|\eta}^d(x_\alpha y_\beta h) = \delta_{\xi|\eta|\alpha|\beta} T_{\lambda|\mu} \delta_{\xi|\eta} h,
\]
for all $\alpha|\beta \in \Lambda(m|n; r)$ and $h \in \mathcal{H}_R$. Clearly, $\phi_{\lambda|\mu, \xi|\eta} \in S(m|n; r; R)$ if $|\mu| + |\eta| \equiv i(\text{mod } 2)$.

Theorem 5.8. For any commutative ring R which is a \mathbb{Z}-module, the set \{\phi_A \mid A \in M(m|n; r)\} forms an R-basis for $S(m|n; r; R)$. In particular, $S(m|n; r; R) \cong S(m|n; r) \otimes R$ has rank
\[
|M(m|n; r)| = \sum_{k=0}^{r} \binom{m^2 + n^2 + k - 1}{k} \binom{2mn}{r - k}.
\]
Moreover, there is an algebra anti-involution $\tau : S(m|n; r; R) \rightarrow S(m|n; r; R)$ satisfying $\tau(\phi_A) = \phi_A^{T}$, where A^T denotes the transpose of A.

Proof. Since $S(m|n; r) = \bigoplus_{\lambda|\mu, \xi|\eta} \text{Hom}_{\mathcal{H}_R}(x_\xi y_\eta \mathcal{H}_R, x\lambda y_\mu \mathcal{H}_R)$, and
\[
\text{Hom}_{\mathcal{H}_R}(x_\xi y_\eta \mathcal{H}_R, x\lambda y_\mu \mathcal{H}_R) \cong x\lambda y_\mu \mathcal{H}_R \cap \mathcal{H}_R x_\xi y_\eta
\]
as R-modules, the first assertion follows from Proposition 5.5. The rank assertion
follows from a base change to a field by specializing v to 1 and [2 Th.4.18]. The rest
of the proof is clear.

For $A = j(\lambda|\mu, d, \xi|\eta)$, by the \mathbb{Z}_2-grading (5.6.1), set $\hat{A} = |\mu| + |\eta|(\text{mod } 2)$. Then
the supermultiplication is given by
\[
\phi_A \phi_B = (-1)^{\hat{A}\hat{B}} \phi_A \circ \phi_B, \quad \text{for all } A, B \in M(m|n; r).
\]
It is clear that the associativity holds with respect to the supermultiplication. Moreover, it is clear $\phi_A T(m|n; r; R)_i \subseteq T(m|n; r; R)_{\hat{A}+i}$ for all A. Hence, $T(m|n; r; R)$ is an $S(m|n; r; R)$-supermodule.
6. Canonical bases for quantum Schur superalgebras

We now introduce canonical bases for quantum Schur superalgebras. Recall the Kashiwara–Lusztig bases \(\{ C_w \} \) and \(\{ B_w \} \) for the Hecke algebra \(\mathcal{H} = \mathcal{H}(\mathfrak{S}_r) \).

For \(D, D' \in M(m|n, r)_{\lambda|\mu, \xi|\eta} \) regarded as double cosets as in (5.4.1), let \(w^+_D \) (resp. \(w^-_D \)) be the longest (resp., shortest) element in \(D \) and define
\[
D \leq D' \text{ if and only if } w^+_D \leq w^-_{D'},
\]
which is equivalent to \(w^+_D \leq w^-_{D'} \); see, e.g., [7, Lem. 4.35]. Clearly,
\[
l(w^+_D) = l(w_{0, \lambda}) + l(w_{0, \mu}) + l(d) + l(w_{0, \xi}) - l(w_{0, \alpha}) + l(w_{0, \eta}) - l(w_{0, \beta}),
\]
where \(d \in D \cap D_{\lambda|\mu, \xi|\eta} \), and \(\alpha, \beta \) are defined as in (5.3.1). For \(d \in D_{\lambda|\mu, \xi|\eta} \), let \(d^\ast, \ast d \) be defined as in Lemma 3.1 and
\[
\mathcal{T}_D = \mathbf{v}^{-l(d^\ast)} \mathbf{v}^{l(d^\ast) - l(d)} T_D.
\]
(6.0.2)

If \(D = \mathfrak{S}_{\lambda|\mu} \), then \(\mathcal{T}_D = \mathbf{v}^{-l(w_{0, \lambda})} \mathbf{v}^{l(w_{0, \mu})} T_{\mathfrak{S}_{\lambda|\mu}} = (-1)^{l(w_{0, \mu})} C_{w_{0, \lambda}, w_{0, \mu}} B_{w_{0, \mu}} \). Note that
\[
l(w^+_D) = l(d^\ast) + l(d) - l(d).
\]

Lemma 6.1. The restriction of the bar involution \(\cdot \) on \(\mathcal{H} \) induces a bar involution \(\cdot \) on \(\mathcal{H}^+_{\lambda|\mu, \xi|\eta} \). Moreover, for \(D, C \in M(m|n, r)_{\lambda|\mu, \xi|\eta} \), there exist \(r_{C, D} \in \mathcal{Z} \) such that \(r_{D, D} = 1 \) and
\[
\overline{\mathcal{T}}_D = \sum_{C \in M(m|n, r)_{\lambda|\mu, \xi|\eta} \subseteq D} r_{C, D} T_C.
\]
(6.1.1)

Proof. Since \(\overline{\pi}_\lambda = q^{-l(w_{0, \lambda})} x_\lambda \) and \(\overline{\pi}_\mu = q^{l(w_{0, \mu})} y_\mu \), it follows that \(\overline{\mathcal{T}}_D \in \mathcal{H}^+_{\lambda|\mu, \xi|\eta} \). By Proposition 5.5 the restriction yields a bar involution on \(\mathcal{H}^+_{\lambda|\mu, \xi|\eta} \). On the other hand, since
\[
\mathcal{T}_D = \mathbf{v}^{l(d^\ast)} \mathbf{v}^{-l(d^\ast) + l(d)} \sum_{u|v \in \mathfrak{S}_{\xi|\eta} \cap \mathfrak{S}_{\alpha|\beta}} (-q)^{l(u)} \overline{\pi}_\lambda \overline{\pi}_\mu \mathcal{T}_D \mathcal{T}_u \mathcal{T}_v,
\]
and \(T^{-1}_s = q^{-1} T_s + (q^{-1} - 1) \). Proposition 5.5 implies that \(\overline{\mathcal{T}}_D \) can be written as in (6.1.1). It remains to prove that \(r_{D, D} = 1 \). We write \(\overline{\mathcal{T}}_D \) as a linear combination of \(x_\lambda y_\mu T_z, z \in \mathfrak{S}_{\lambda|\mu} \). By (6.1.1), as the leading term of \(\mathcal{T}_D \), \(x_\lambda y_\mu T_{T_{w_{0, \xi}w_{0, \alpha}} T_{w_{0, \eta}w_{0, \beta}}} \) has coefficient \(r_{D, D} \mathbf{v}^{l(d^\ast)} \mathbf{v}^{-l(d^\ast) + l(d)} (-q)^{l(w_{0, \eta}w_{0, \beta})} \). On the other hand, since
\[
(-q)^{l(w_{0, \eta}w_{0, \beta})} \overline{\pi}_\lambda \overline{\pi}_\mu \mathcal{T}_{T_{w_{0, \xi}w_{0, \alpha}} T_{w_{0, \eta}w_{0, \beta}}}
=q^{-l(d^\ast)} q^{l(d^\ast) - l(d)} (-q)^{-l(w_{0, \eta}w_{0, \beta})} x_\lambda y_\mu T_{T_{w_{0, \xi}w_{0, \alpha}} T_{w_{0, \eta}w_{0, \beta}}} + \text{lower terms},
\]
the same coefficient is equal by (6.1.2) to \(\mathbf{v}^{l(d^\ast)} \mathbf{v}^{-l(d^\ast) + l(d)} q^{-l(d^\ast)} q^{l(d^\ast) - l(d)} (-q)^{l(w_{0, \eta}w_{0, \beta})} \). Hence, \(r_{D, D} = 1 \). \(\square \)

By this lemma, a standard construction (see, e.g., [7, §0.5]) gives the following.

Proposition 6.2. There exists a unique \(\mathcal{Z} \)-basis \(\{ C_D \} \) for \(\mathcal{H}^+_{\lambda|\mu, \xi|\eta} \) such that \(\mathcal{C}_D = C_D \) and \(C_D = \sum_{C \subseteq D} p_{C, D} \mathcal{T}_C \), where \(p_{D, D} = 1 \) and \(p_{C, D} \in \mathbf{v}^{-1} \mathbb{Z} \mathbf{v}^{-1} \) if \(C < D \). Moreover, if \(D = \mathfrak{S}_{\lambda|\mu} \), then \(C_D = \mathcal{T}_{\mathfrak{S}_{\lambda|\mu}} \).
For any $D \in M(m|n, r)$, if we put
\[\varphi_D = \sum_{C} r_{C,D} \varphi_C, \]
where $\co(D) = \xi|\eta$ and φ_D is defined in (6.7), then
\[\varphi_D(\mathcal{T}_{\psi_{\alpha|\beta}}) = \delta_{\co(D),\alpha|\beta} \mathcal{T}_D; \]
cf. (6.0). We now have the following.

Theorem 6.3. The bar involution $\bar{\cdot} : \mathcal{Z} \to \mathcal{Z}$ can be extended to a ring homomorphism $\bar{\cdot} : \mathcal{S}(m|n, r) \to \mathcal{S}(m|n, r)$ defined by linearly extending the action:
\[\Theta = \sum_{C,D} r_{C,D} \Theta_{\alpha|\beta}, \]
where the scalars $r_{C,D}$ are defined in (6.0). In particular, there is a unique basis $\{\Theta_{D}\}_{D \in M(m|n, r)}$ satisfying
\[\bar{\Theta}_D = \Theta_D, \quad \Theta_D - \varphi_D \in \sum_{C < D} \varphi^{-1} \mathbb{Z}[\varphi^{-1}] \varphi_C. \]

Proof. We first observe that $\varphi_D(\mathcal{T}_{\psi_{\alpha|\beta}}) = \varphi_D(\mathcal{T}_{\psi_{\alpha|\beta}}^{\omega})$ and the bar involution preserves the \mathbb{Z}_2-grading. Thus, for $C, D \in M(m|n, r)$, $\varphi_C \varphi_D = (-1)^{C_{D}} \varphi_C \circ \varphi_D$ and $\varphi_C \bar{\varphi}_D = (-1)^{C_{D}} \bar{\varphi}_C \circ \bar{\varphi}_D$. Hence, to prove that the bar involution is a ring homomorphism, it suffices to prove that $\varphi_C \circ \varphi_D = \varphi_C \circ \bar{\varphi}_D$, for all C, D with $\co(C) = \ro(D)$. This is clear since
\[
\varphi_C \circ \bar{\varphi}_D(\mathcal{T}_{\psi_{\alpha|\beta}}) = \bar{\varphi}_C(\mathcal{T}_{\psi_{\alpha|\beta}}) = \bar{\varphi}_C(\mathcal{T}_{\psi_{\alpha|\beta}}^{h_D}) \quad \text{where} \quad \mathcal{T}_D = \mathcal{T}_{\psi_{\alpha|\beta}}^{h_D},
\]
proving the first assertion. For the last assertion, the construction of the basis is standard; see, e.g., [7] §0.5.

Note that Θ_D is the element satisfying $\Theta_D(\mathcal{T}_{\psi_{\alpha|\beta}}) = C_D$ and, if $D = j(\lambda|\mu, 1, \lambda|\mu)$, then $\Theta_D = \varphi_D$ is an idempotent.

The basis $\{\Theta_D\}$ does not seem to have a direct connection with the canonical bases $\{C_{w}\}$ for Hecke algebras. However, there is a $\mathbb{Q}(\varphi)$-basis which is defined via the C-basis.

Let $y'_{\mu} = \varphi^{l(\omega_0, \mu)} y_{\mu} = (-1)^{l(\omega_0, \mu)} B_{\omega_0, \mu}$ so that $\tau_{\mu} = y'_{\mu}$. For $D = j(\lambda|\mu, d, \xi|\eta)$, let
\[\mathcal{T}_D' = y'_{\mu} \mathcal{T}_D y'_{\eta}; \]
where $D^* = \mathfrak{S}_{\lambda} \cdot d \mathfrak{S}_{\tau}$ and $\mathcal{T}_{D^*} = \varphi^{-l(d')} \sum_{x \in D^*} T_x$. Clearly,
\[\mathcal{T}_D = \varphi^{l(\omega_0, \mu)} P_{\psi_{\alpha|\beta}}(q^{-1}) \mathcal{T}_D, \quad (6.3.1) \]
where $P_{\mathcal{S}_{\beta}}(q)$ is the Poincaré polynomial of \mathcal{S}_{β}; see (5.3.1) for the definition of $\beta = \beta(D)$. This is because, by the definitions of (5.3.2) and (6.0.2) of T_D and \mathcal{T}_D,

$$\mathcal{T}_D = \sum_{v \in \mathcal{E}_{\eta^*} \cap \mathcal{D}_{\alpha^*}} v^{l(\nu) - l(d)} y_\nu \mathcal{T}_{D^*}(-q)^{-l(v)} \mathcal{T}_v = \frac{v^{l(\nu) - l(d)}}{P_{\mathcal{S}_{\beta}}(q^{-1})} y_\nu \mathcal{T}_{D^*} y_\eta,$$

and $l(\nu) = l(w_{0,\nu}) + l(w_{0,\beta})$.

Let $\mathcal{S}_{\lambda\mu,\xi\eta}^+\mathcal{J}^-\mathcal{S}_{\lambda\mu,\xi\eta}^+$ be the Z-span of \mathcal{T}_D, $D \in M(m|n, r)_{\lambda\mu,\xi\eta}$. This is a Z-submodule of $\mathcal{H}_{\lambda\mu,\xi\eta}$ satisfying

$$\mathcal{S}_{\lambda\mu,\xi\eta}^+\mathcal{J}^-\mathcal{S}_{\lambda\mu,\xi\eta}^+ \otimes \mathbb{Q}(v) = \mathcal{H}_{\lambda\mu,\xi\eta}^+ \otimes \mathbb{Q}(v).$$

Proposition 6.4. For any $C, D \in M(m|n, r)_{\lambda\mu,\xi\eta}$, there exist $r_{C,D} \in Z$ such that $r_{D,D}^* = 1$ and

$$\mathcal{T}_D = \sum_{C \in M(m|n, r)_{\lambda\mu,\xi\eta}} r_{C,D}^* \mathcal{T}_C.$$

Moreover, if $\{C_D\}_{D \in M(m|n, r)_{\lambda\mu,\xi\eta}}$ denotes the associated canonical basis for $\mathcal{S}_{\lambda\mu,\xi\eta}^+\mathcal{J}^-\mathcal{S}_{\lambda\mu,\xi\eta}^+$, then $C_D := y'_D C^* D^* y'_D$, where d^* is the longest element in D^*.

Proof. Let $D = f(\lambda|\mu, d, \xi|\eta)$. Since $\mathcal{T}_{D^*} = \sum_{B^* \in \mathcal{E}_{\alpha}\mathcal{S}_{\lambda\mu,\xi\eta}} r_{B^*,D^*}^* \mathcal{T}_{B^*}$, it follows that

$$\mathcal{T}_D = y'_D \mathcal{T}_{D^*} y'_D = \sum_{B^* \in \mathcal{E}_{\alpha}\mathcal{S}_{\lambda\mu,\xi\eta}} r_{B^*,D^*}^* y'_D \mathcal{T}_{B^*} y'_D.$$

Here, $B^* \leq D^*$. In other words, if d_{B^*} denotes the shortest element in B^*, then $d_{B^*} \leq d$. By Remark 5.4, $y'_D \mathcal{T}_{B^*} y'_D \neq 0$ implies that $f(B^*) := \mathcal{S}_{\lambda\mu,\xi\eta}^+ B^* \mathcal{S}_{\lambda\mu,\xi\eta}^+$ for some $d_B \in \mathcal{D}_{\lambda\mu,\xi\eta}^+$ and $d_B \leq d_{B^*} \leq d$, and hence, $f(B^*) \in M(m|n, r)_{\lambda\mu,\xi\eta}$ and $f(B^*) \leq D$. Thus, if $C \in M(m|n, r)_{\lambda\mu,\xi\eta}$ and define $r_{C,D}^* = \sum_{B^* \in \mathcal{E}_{\alpha}|f(B^*) = C} r_{B^*,D^*}^*$, then $r_{D,D}^* = r_{D^*,D^*}^* = 1$. This proves the first assertion.

On the other hand, $C_{D^*} = \mathcal{T}_{D^*} = \sum_{C \in \mathcal{E}_{\alpha}|f(B^*) = C} r_{C,D^*}^* \mathcal{T}_{C^*}$ for some $p_{C,D^*} \in \mathbb{V}^{-1} \mathbb{Z}[\mathbb{V}^{-1}]$. Putting $b_D = y'_D C^* D^* y'_D$, we have $b_D = b_{D^*}$, and a similar argument shows that $b_D = \sum_{C \in \mathcal{E}_{\alpha}} c_{D,C}^* \mathcal{T}_D$ where $C \in M(m|n, r)_{\lambda\mu,\xi\eta}$ with $p_{C,D} = 1$ and $C_{C,D} = \mathbb{V}^{-1} \mathbb{Z}[\mathbb{V}^{-1}]$ for $C < D$. Now, the uniqueness of the canonical basis forces $C_D = b_D = y'_D C^* D^* y'_D$, proving the last statement. \hfill \square

Taking bar involution on both sides of (6.3.1), we obtain the following relation on the entries of “R-matrices” $(r_{C,D})$ and (r_{C^*,D^*}):

$$r_{C,D}^* = r_{C,D} \frac{v^{l(w_{0,\beta}(D))} P_{\mathcal{S}_{\alpha}(D)}(q)}{v^{l(w_0,\alpha(C))} P_{\mathcal{S}_{\beta}(C)}(q^{-1})} \quad \text{for all } C, D \in M(m|n, r).$$

Thus, no obvious relation between the C-basis and C^*-basis is seen. However, when restrict to the tensor space, the two bases coincide.

Remark 6.5. If $m + n \geq r$, then there exist unique $\omega_1 \omega_2 \in \Lambda(m|n, r)$ such that

$$\omega_1 \vee \omega_2 = \omega := (1, \ldots, 1, 0, \ldots).$$
Thus, if $\xi|\eta = \omega_1|\omega_2$, then $\mathcal{S}_\beta = \{1\}$ and hence, $\mathfrak{h}_{\lambda|\mu,\omega_1|\omega_2}^\pm = \mathcal{H}_{\lambda|\mu,\omega_1|\omega_2}^\pm$ and $r_{C,D} = r_{C,D}$. Consequently, $\mathcal{C}_D = \mathcal{C}_D'$ in this case. Thus, if we put

$$M(m|n,r)_{\text{tsp}} = \begin{cases} \{A \in M(m|n,r) \mid \text{co}(A) = \omega_1|\omega_2\}, & \text{if } m+n \geq r, \\ \{A \in M(m'|n',r) \mid \text{ro}(A) \in \Lambda(m|n,r), \text{co}(A) = \omega_1|\omega_2\}, & \text{if } m+n < r, \end{cases}$$

where $m \leq m'$, $n \leq n'$ and $m' + n' \geq r$, then

$$\{\mathcal{C}_D \mid D \in M(m|n,r)_{\text{tsp}}\} = \{\mathcal{C}_D' \mid D \in M(m|n,r)_{\text{tsp}}\}$$

forms a basis for $\mathfrak{T}(m|n,r)$. Call it the canonical basis of $\mathfrak{T}(m|n,r)$.

Let $\mathcal{S}(m|n,r) = \mathcal{S}(m|n,r) \otimes \mathbb{Q}(x)$. For every $D = j(\lambda|\mu,\xi|\eta) \in M(m|n,r)$, define $\Theta_D' \in \mathcal{S}(m|n,r)$ by setting

$$\Theta_D'(x_\xi^\prime y_\eta^\prime) = C_D' = y_\mu^\prime C_D y_\eta^\prime,$$

where $x_\xi = C_{w_0,\xi} = v^{-l(\omega_0,\xi)}x_\xi$.

Corollary 6.6. The set $\{\Theta_D'\}_{D \in M(m|n,r)}$ forms a $\mathbb{Q}(x)$-basis for $\mathcal{S}(m|n,r)$.

We will prove by using cell theory that this basis gives rise to all simple modules of $\mathcal{S}(m|n,r)$ in Section 7. Such a result can be considered as a generalization of [14, Theorem 1.4].

7. **Supercells and their associated cell representations**

We now use the basis $\{\Theta_D'\}_{D}$ given at the end of §6 to construct irreducible representations of $\mathcal{S}(m|n,r)$. Recall the map defined in (4.4.1). We also write $\lambda|\mu = \xi|\eta$ if $\lambda = \xi$ and $\mu = \eta$.

Definition 7.1. For $A, B \in M(m|n,r)$ with $A = j^{\pm-}(\alpha|\beta, y, \gamma|\delta)$ and $B = j^{\pm-}(\lambda|\mu, w, \xi|\eta)$, define

$$A \leq_L B \iff y \leq_L w \text{ and } \xi|\eta = \gamma|\delta \text{ (or } \text{co}(A) = \text{co}(B)).$$

Define $A \leq_R B$ if $A^T \leq_L B^T$. Let \leq_{LR} be the preorder generated by \leq_L and \leq_R. The relations give rise to three equivalence relations \sim_L, \sim_R and \sim_{LR}. Thus, $A \sim_B B$ if and only if $A \leq_X B \leq_X A$ for all $X \in \{L, R, LR\}$. The corresponding equivalence classes in $M(m|n,r)$ with respect to \sim_L, \sim_R and \sim_{LR} are called left cells, right cells and two-sided cells, respectively.

In particular, for A, B as above, we have

1. $A \sim_L B \iff y \sim_L w$ and $\xi|\eta = \gamma|\delta$;
2. $A \sim_R B \iff y \sim_R w$ and $\lambda|\mu = \alpha|\beta$;
3. $A \leq_L B$ and $A \sim_{LR} B \iff A \sim_L B$;
4. $A \leq_R B$ and $A \sim_{LR} B \iff A \sim_R B$;

Statements (3) and (4) follows from the fact that if $y \leq_L w$ and $y \sim_{LR} w$ then $y \sim_L w$; see [15, Cor. 6.3(c)].

Lemma 7.2. For $A, B \in M(m|n,r)$, if $\Theta_A' \Theta_B' = \sum_{C \in M(m|n,r)} f_{A,B,C} \Theta_C$, then $f_{A,B,C} \neq 0$ implies $C \leq_L B$ and $C \leq_R A$.

Proof. Let \(A = j^{+,-}(\alpha|\beta, y, \gamma|\delta) \) and \(B = j^{+,-}(\lambda|\mu, w, \xi|\eta) \). If \(\lambda|\mu \neq \gamma|\delta \), then \(f_{A,B,C} = 0 \) for all \(C \). Suppose \(\lambda|\mu = \gamma|\delta \) and let \(h_\lambda \in \mathbb{Z}[v, v^{-1}] \) be defined by \(x'_\lambda x'_\lambda = h_\lambda x'_\lambda \). We have by \((5.3.2)\)

\[
\Theta'_A \Theta'_B (x'_\lambda y'_n) = \Theta'_A (y'_\mu C_w y'_n) = h_\lambda^{-1} \Theta'_A (x'_\lambda y'_\mu) C_w y'_n = h_\lambda^{-1} y'_\beta C_y y'_\mu C_w y'_n = \sum_{z \in D_{\alpha|\beta, \xi|\eta}^{+,-}} h_\lambda^{-1} h_{y,w,z} y'_\beta C_z y'_n = \sum_{z \in D_{\alpha|\beta, \xi|\eta}^{+,-}} h_\lambda^{-1} h_{y,w,z} \Theta'_C (x'_\xi y'_n),
\]

where \(h_{y,w,z} \in \mathbb{Z}[v, v^{-1}] \) satisfy \(C_y y'_\beta C_w = \sum_z h_{y,w,z} C_z \), and \(C = j^{+,-}(\alpha|\beta, z, \xi|\eta) \). Here we have used the fact that \(y'_\beta C_z y'_n \neq 0 \implies z \in D_{\alpha|\beta, \xi|\eta}^{+,-} \) (see Remark 5.4). Hence,

\[
f_{A,B,C} = \begin{cases} h_\lambda^{-1} h_{y,w,z}, & \text{if } y'_\beta C_z y'_n \neq 0, \\ 0, & \text{otherwise.} \end{cases}
\]

Since \(h_{y,w,z} \neq 0 \) implies \(z \leq_L w \), it follows that \(f_{A,B,C} \neq 0 \) implies \(z \leq_L w, co(C) = co(B) \), proving the first assertion. The second assertion follows from the anti-involution \(\tau \) given in Theorem 5.8. \(\square \)

For each \(A \in M(m|n, r) \), let \((S(A), T(A))\) be the image of \(A \) under the RSK super-correspondence in Theorem 4.7. The following result can be considered as a generalization of Theorem 2.2(1)–(3).

Lemma 7.3. Suppose \(A, B \in M(m|n, r) \). Then

1. \(A \sim_L B \) if and only if \(T(A) = T(B) \).
2. \(A \sim_R B \) if and only if \(S(A) = S(B) \).
3. \(A \sim_{LR} B \) if and only if \(T(A), T(B) \) have the same shape.

Proof. Suppose \(w_1 \in D_{\alpha|\beta, \xi|\eta}^{+,-} \) and \(w_2 \in D_{\alpha|\beta, \gamma|\delta}^{+,-} \) which have images \((S_{w_1}, T_{w_1})\) and \((S_{w_2}, T_{w_2})\) under the map \(\partial \) defined in \((4.6.1)\). By the constructions of \(\partial \) and its inverse (see proof of Theorem 4.7), we see easily the following:

1. \(w_1 \sim_L w_2 \) and \(\xi|\eta = \gamma|\delta \) if and only if \(T_{w_1} = T_{w_2} \).
2. \(w_1 \sim_R w_2 \) and \(\lambda|\mu = \alpha|\beta \) if and only if \(S_{w_1} = S_{w_2} \).
3. \(w_1 \sim_{LR} w_2 \) if and only if \(T_{w_1} = T_{w_2} \) have the same shape.

Now the assertions follow immediately. \(\square \)

For \(\nu \in \Lambda^+(r)_{m|n} \), let

\[
I(\nu) = \bigcup_{\lambda|\mu \in \Lambda(m|n, r)} T^{ess}(\nu, \lambda|\mu).
\]

By the RSK super-correspondence, if \(A \xrightarrow{RSK} (S, T) \in I(\nu) \), we relabel the basis element \(\Theta'_A \) as

\[
\Theta'_S, T := \Theta'_A.
\]

Proposition 7.4. The \(\mathbb{Q}(\nu) \)-basis for \(S(m|n, r) \)

\[
\{ \Theta'_S, T | \nu \in \Lambda^+(r)_{m|n}, S, T \in I(\nu) \} = \{ \Theta'_A | A \in M(m|n, r) \}
\]

is a cellular basis in the sense of [13].
Proof. Recall from [13] the ingredients for a cellular basis. We have a poset \(\Lambda^+(r)_{m|n} \) together with the dominance order \(\triangleright \), index sets \(I(\nu) \) of the basis, and an anti-involution \(\tau \) satisfying \(\tau(\Theta^\nu_{S,T}) = \Theta^\nu_{T,S} \) by Theorems 5.8 and 5.7. It remains to check the triangular relations.

Let \(S(m|n,r)^{\nu} \) be the \(\mathbb{Q}(v) \)-subspace spanned by \(\Theta^\alpha_{S_1,T_1} \) for all \(\alpha \triangleright \nu \) and \(S_1,T_1 \in I(\alpha) \). For \(\lambda, \nu \in \Lambda^+(r)_{m|n} \) and \(S,T \in I(\lambda), S',T' \in I(\nu) \), Lemmas 7.2 and 7.3(3) imply that:

\[
\Theta^\lambda_{S,T} \Theta^\nu_{S',T'} = \sum_{C \in M(m|n,r), C \sim L B} f_{A,B,C} \Theta^\nu_C \mod S(m|n,r)^{\nu},
\]

where \(A \xrightarrow{\text{RSK}} (S,T), B \xrightarrow{\text{RSK}} (S',T') \) and \(C \xrightarrow{\text{RSK}} (S'',T'') \). Since \(C \sim L B \), it follows from 7.3(1), \(T'' = T' \). If \(\lambda \triangleright \nu \), then all \(f_{A,B,C} = 0 \). If \(\lambda = \nu \) and \(f_{A,B,C} \neq 0 \), then \(C \sim_R A \). Hence, \(S'' = S \) and \(f_{A,B,C} = f(T,S') \) is independent of \(T' \). Finally, if \(\lambda \triangleleft \nu \) and \(f_{A,B,C} \neq 0 \), then \(f_{A,B,C} = f(S,T,S') \) is also independent of \(T' \), as required. \(\square \)

For each \(\nu \in \Lambda^+(r)_{m|n} \) and \(T \in I(\nu) \), let

\[
L(\nu)_T = S(m|n,r)^{\nu,T} / S(m|n,r)^{\nu},
\]

where \(S(m|n,r)^{\nu,T} \) is the \(\mathbb{Q}(v) \)-space spanned by \(S(m|n,r)^{\nu} \) and \(\Theta^\nu_{S,T} \). These are called left cell modules. Let \(T_\nu \) be the unique element in \(T^{ssss}(\nu,\nu'|\nu'') \) as described in Example 11 and let \(L(\nu) = L(\nu)_{T_\nu} \). The following result generalizes the second part of Theorem 2.2.

Theorem 7.5. For each \(\nu \in \Lambda^+(r)_{m|n} \) and \(T \in I(\nu) \), we have \(L(\nu)_{T} \cong L(\nu) \) as \(S(m|n,r) \)-supermodules. Moreover, the set \(\{ L(\nu) \mid \nu \in \Lambda^+(r)_{m|n} \} \) is a complete set of pair-wise non-isomorphic irreducible \(S(m|n,r) \)-supermodules.

Proof. The first assertion follows from the cellular property. Thus, Proposition 7.3 implies \(\dim S(m|n,r) = \sum_{\nu \in \Lambda^+(r)_{m|n}} (\dim L(\nu))^2 \). Since \(v \) is an indeterminate, \(\mathcal{H} \) is semisimple. Hence, \(S(m|n,r) \) is also semisimple as the super product does not change the radical of the endomorphism algebra with a usual product. By the Wedderburn-Artin Theorem, \(\{ L(\nu) \mid \nu \in \Lambda^+(r)_{m|n} \} \) is a complete set of pair-wise non-isomorphic irreducible \(S(m|n,r) \)-modules. Finally, it is routine to check that \(L(\nu) \)'s are \(S(m|n,r) \)-supermodules. In fact, they are the absolute irreducible supermodules in the sense of [3, 2.8]. \(\square \)

We end this section with a second look at the canonical basis for \(\mathfrak{S}(m|n,r) \) described in Remark 6.5. Recall the \(\phi \)-basis defined in (5.7.1).}

Lemma 7.6. If \(m + n \geq r \), then there is an \(S(m|n,r) \)-\(\mathcal{H} \)-bimodule isomorphism between \(S(m|n,r) \phi_{\omega_1|\omega_2} \) and \(\mathfrak{S}(m|n,r) \), where \(\omega_1, \omega_2 \) are defined in 6.5 and \(\phi_{\omega_1|\omega_2} := \phi_{\omega_1|\omega_2,\omega_2|\omega_2} \).

Proof. Consider the evaluation map

\[
ev : S(m|n,r) \phi_{\omega_1|\omega_2} \xrightarrow{\sim} \mathfrak{S}(m|n,r), \phi \mapsto \phi(1),
\]

which is clearly an \(S(m|n,r) \)-\(\mathcal{H} \)-bimodule isomorphism. \(\square \)
If \(m + n < r \), we choose \(m', n' \) with \(m \leq m' \), \(n \leq n' \) and \(m' + n' \geq r \). Then \(\Lambda(m|n, r) \) can be regarded as a subset of \(\Lambda(m'|n', r) \). Let \(e = \sum_{\lambda|\mu \in \Lambda(m|n, r)} \phi_{\text{diag}}(\lambda|\mu) \).

Then \(S(m|n, r) \cong eS(m'|n', r)e \) is a centralizer subalgebra of \(S(m'|n', r) \), and the map \(ev \) above induces \(S(m|n, r) - H \)-bimodule isomorphism \(eS(m'|n', r)e \phi_{\omega_1|\omega_2} \cong \mathcal{T}(m|n, r) \).

Let

\[
\mathcal{E}(m|n, r) = \begin{cases}
S(m|n, r) \phi_{\omega_1|\omega_2}, & \text{if } m + n \geq r, \\
eS(m'|n', r) \phi_{\omega_1|\omega_2}, & \text{if } m + n < r,
\end{cases}
\]

where \(m \leq m' \), \(n \leq n' \) and \(m' + n' \geq r \). By the lemma and Remark 6.3, we have the following.

Proposition 7.7. By identifying \(\mathcal{E}(m|n, r) \) with \(\mathcal{T}(m|n, r) \), the basis \(6.5.1 \) for \(\mathcal{T}(m|n, r) \) identifies the basis

\[
\{ \Theta_D = \Theta_D' \mid A \in M(m|n, r) \}_{\mathcal{E}} \}
\]

(for \(\mathcal{E}(m|n, r) \)), which is canonically related (in the sense of Theorem 6.3) to the standard basis \(\{ \varphi_A \mid A \in M(m|n, r) \}_{\mathcal{E}} \) for \(\mathcal{E}(m|n, r) \).

By definition, \(T^{\text{ess}}(\nu, \omega_1|\omega_2) = T^s(\nu) \). Thus, by 4.7 restriction gives a bijection:

\[
M(m|n, r) \rightarrow \bigcup_{\lambda|\mu \in \Lambda^+(m|n, r)} T^{\text{ess}}(\nu, \lambda|\mu) \times T^s(\nu).
\]

Fix a linear ordering on \(\Lambda^+(m|n, r) = \{ \nu^{(1)}, \nu^{(2)}, \ldots, \nu^{(N)} \} \) which refines the opposite dominance ordering \(\succeq \), i.e., \(\nu^{(i)} \succeq \nu^{(j)} \) implies \(i < j \). For each \(1 \leq i \leq N \), let \(\mathcal{E}_i \) denote the \(\mathcal{Z} \)-free submodule of \(\mathcal{E}(m|n, r) \) spanned by all \(\Theta^{(i)}_{\mathcal{E},\mathcal{E}} \) with \((S, t) \in T^{\text{ess}}(\nu^{(i)}, \lambda|\mu) \times T^s(\nu^{(i)}) \). Then we obtain a filtration by \(S(m|n, r) - H \)-subbimodules:

\[
0 = \mathcal{E}_0 \subseteq \mathcal{E}_1 \subseteq \cdots \subseteq \mathcal{E}_N = \mathcal{E}(m|n, r).
\]

Let \(\mathcal{E}_i = \mathcal{E}_i \otimes \mathbb{Q}(\nu) \). By the cellular property established in Proposition 7.4, each section \(\mathcal{E}_i/\mathcal{E}_{i-1} \) is isomorphic to a direct sum of \(|T^s(\nu^{(i)})| \) copies of left cell modules \(L(\nu^{(i)}) \) and to a direct sum of \(|I(\nu^{(i)})| \) copies of right \(\mathcal{H} \)-modules \(S_{\mathbb{Q}(\nu)}^{(i)} \). Hence, \(\mathcal{E}_i/\mathcal{E}_{i-1} \cong L(\nu^{(i)}) \otimes S_{\mathbb{Q}(\nu)}^{(i)} \) as \(S(m|n, r) - H \)-bimodules.

Corollary 7.8. There is an \(S(m|n, r) - H \)-bimodule decomposition:

\[
\mathcal{E}(m|n, r) \cong \bigoplus_{\nu \in \Lambda^+(m|n, r)} L(\nu) \otimes S_{\mathbb{Q}(\nu)}^{(i)}.
\]

Remark 7.9. For \(\nu = \nu^{(i)} \), let \(L(\nu) \) be the submodule of \(\mathcal{E}_i/\mathcal{E}_{i-1} \) spanned by all \(\Theta^{(i)}\mathcal{E}_i\mathcal{E} \). Since \(\Theta^{\nu}_{\mathcal{E},\mathcal{E}} = \Theta^{\nu^{(i)}}_{\mathcal{E},\mathcal{E}} \) by Remark 6.3, one checks directly that \(L(\nu) \) is an \(S(m|n, r) \)-module. In other words, \(L(\nu) \) is closed under the action of the canonical basis \(\Theta_A \). Base change allows us to investigate representations at roots of unity. We hope to classify the irreducible \(S(m|n, r)_R \)-supermodules elsewhere when \(\nu^2 \) is specialized to a root of unity in a field \(R \).

Note that the right cell module \(S^\lambda \) defined by the right cell containing \(w_{0, \lambda} \) is a homomorphic image of \(x_{\lambda} \mathcal{H} \), while the dual left cell module \(S^\lambda \) defined in 2.2 is a submodule of \(x_{\lambda} \mathcal{H} \).
8. A super analogue of the quantum Schur–Weyl reciprocity

In this section, we first establish a double centralizer property. Then we prove that the algebra \(\mathcal{S}(m|n,r) \) is isomorphic to the endomorphism algebra of a tensor space considered in [17]. Thus, we reproduced the super analogue of the quantum Schur–Weyl reciprocity established in [17].

Let \(\mathfrak{T}(m|n,r) = \mathfrak{T}(m|n,r) \otimes \mathcal{Q}(\mathfrak{v}) \).

Theorem 8.1. The \(\mathcal{S}(m|n,r) \)-mod structure \(\mathfrak{T}(m|n,r) \) satisfies the following double centralizer property

\[
\mathcal{S} = \text{End}_{\mathfrak{H}}(\mathfrak{T}(m|n,r)) \text{ and } \overline{\mathcal{H}} = \text{End}_{\mathcal{S}}(\mathfrak{T}(m|n,r)),
\]

where \(\overline{\mathcal{H}} \) is the image of \(\mathcal{H} \) in \(\text{End}_{\mathcal{Q}(\mathfrak{v})}(\mathfrak{T}(m|n,r)) \) and \(\mathcal{S} = \mathcal{S}(m|n,r) \). Moreover, there is a category equivalence

\[
\text{Hom}_{\mathfrak{H}}(-, \mathfrak{T}(m|n,r)) : \text{mod-}\mathfrak{H} \to \mathcal{S}-\text{mod}.
\]

Proof. First, as a quotient of a semisimple algebra, \(\overline{\mathcal{H}} \) is semisimple. By Corollary 7.8, \(\mathcal{S}_{\mathcal{Q}(\mathfrak{v})}^\rho \), \(\rho \in \Lambda^+(r)_{m|n} \), are non-isomorphic irreducible \(\overline{\mathcal{H}} \)-modules. Thus, \(\dim \overline{\mathcal{H}} \geq d := \sum_{\rho \in \Lambda^+(r)_{m|n}} (\dim \mathcal{S}_{\mathcal{Q}(\mathfrak{v})}^\rho)^2 \). On the other hand, Corollary 7.8 implies that \(\dim \text{End}_{\mathcal{S}}(\mathfrak{T}(m|n,r)) = d \). Hence, a dimensional comparison forces \(\overline{\mathcal{H}} = \text{End}_{\mathcal{S}}(\mathfrak{T}(m|n,r)) \). The rest of the proof is clear by noting that the inverse functor of \(\text{Hom}_{\mathfrak{H}}(-, \mathfrak{T}(m|n,r)) \) is \(\text{Hom}_{\mathcal{S}}(-, \mathfrak{T}(m|n,r)) \). \(\square \)

We now relate the quantum Schur superalgebras with the quantum enveloping superalgebra \(U^\rho_{\mathfrak{q}}(\mathfrak{gl}(m|n)) \). We use the quantum superspace \(V(m|n) \) considered in [16] and [17].

Let \(V(m|n) \) be a free \(\mathbb{Z} \)-module of rank \(m + n \) with basis \(e_1, e_2, \ldots, e_{m+n} \). The map by setting \(\hat{i} = 0 \) if \(1 \leq i \leq m \), and \(\hat{i} = 1 \) otherwise, as given in (1.1.1) yields a \(\mathbb{Z}_2 \)-grading on \(V(m|n) = V_0 \oplus V_1 \) where \(V_0 \) is spanned by \(e_1, e_2, \ldots, e_m \) and \(V_1 \) by \(e_{m+1}, e_{m+2}, \ldots, e_{m+n} \). Thus, \(V(m|n) \) becomes a “superspace”.

Let \(\overline{\mathcal{R}} : V(m|n)^{\otimes 2} \to V(m|n)^{\otimes 2} \) be defined by

\[
(e_c \otimes e_d)\overline{\mathcal{R}} = \begin{cases} ce_c \otimes e_c, & \text{if } c = d \leq m, \\
-v^{-1}e_c \otimes e_c, & \text{if } m + 1 \leq c = d, \\
(-1)^{d-1}e_d \otimes e_c + (v - v^{-1})e_c \otimes e_d, & \text{if } c > d, \\
(-1)^{c-1}e_d \otimes e_c, & \text{if } c < d. \end{cases} \tag{8.1.1}
\]

The following result is proved in [17], Th2.1.

Lemma 8.2. If we define linear operator

\[
\overline{\mathcal{R}}_i = \text{id}^{\otimes i-1} \otimes \overline{\mathcal{R}} \otimes \text{id}^{\otimes r-i-1} : V(m|n)^{\otimes r} \to V(m|n)^{\otimes r},
\]

then

1. \((\overline{\mathcal{R}}_i - v)(\overline{\mathcal{R}}_i + v^{-1}) = 0. \)
2. \(\overline{\mathcal{R}}_i \overline{\mathcal{R}}_j = \overline{\mathcal{R}}_j \overline{\mathcal{R}}_i \) if \(1 \leq i < j \leq r - 1. \)
3. \(\overline{\mathcal{R}}_i \overline{\mathcal{R}}_{i+1} \overline{\mathcal{R}}_i = \overline{\mathcal{R}}_{i+1} \overline{\mathcal{R}}_i \overline{\mathcal{R}}_{i+1} \) for any \(1 \leq i \leq r - 2. \)
Consider a new basis for H by setting $T_w = v^{-l(w)}T_w$. Then, H is an associative Z-algebra generated by $T_i = \nu^{-1}T_i$, $1 \leq i \leq r - 1$ subject to the relations
\[
\begin{align*}
(T_i - v)(T_i + v^{-1}) &= 0, \\
T_j T_i &= T_i T_j, \\
T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1},
\end{align*}
\] (8.2.1)

Let
\[
I(m|n, r) = \{i = (i_1, i_2, \cdots, i_r) \in \mathbb{N}^r \mid 1 \leq i_j \leq m + n \forall j\},
\] (8.2.2)

and, for $i \in I(m|n, r)$, let
\[
e_1 = e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_r}.
\]

Clearly, the set $\{e_i\}_{i \in I(m|n, r)}$ form a basis for $V(m|n)^{\otimes r}$.

For each $i \in I(m|n, r)$, define $\lambda|\mu \in \Lambda(m|n, r)$ to be the weight $\text{wt}(i)$ by setting
\[
\begin{align*}
\lambda_k &= \#\{k: i_j = k, 1 \leq j \leq r\}, \\
\mu_k &= \#\{m + k: i_j = m + k, 1 \leq j \leq r\}, \forall 1 \leq k \leq n.
\end{align*}
\]

For each $\lambda|\mu \in \Lambda(m|n, r)$, define $i_{\lambda|\mu} \in I(m|n, r)$ by
\[
i_{\lambda|\mu} = (1, \cdots, 1, \cdots, m, \cdots, m, m + 1, \cdots, m + n, \cdots, m + n)
\]

The symmetric group \mathfrak{S}_r acts on $I(m|n, r)$ by place permutation:
\[
i_{i}w = (i_{w(1)}, i_{w(2)}, \cdots, i_{w(r)}).
\] (8.2.3)

Clearly, the weight function wt induces a bijection between the \mathfrak{S}_r-orbits and $\Lambda(m|n, r)$.

Proposition 8.3. The tensor superspace $V(m|n)^{\otimes r}$ is a right H-module, and is isomorphic to the H-module $\mathfrak{T}(m|n, r) = \bigoplus_{\lambda|\mu \in \Lambda} x_{\lambda|\mu} H$.

Proof. By defining an action of T_i on $V(m|n)^{\otimes r}$ via \mathcal{R}_i, the first assertion follows from Lemma 8.2.

For any $i \in I(m|n, r)$ with $\text{wt}(i) = \lambda|\mu$, we have $i = i_{\lambda|\mu} d$ where d is the unique element in $D_{\lambda|\mu}$. Write $i = (i_1, i_2, \cdots, i_r)$ and $(j_1, j_2, \cdots, j_r) = i_{\lambda|\mu}$. Then $i_k = j_{d(k)}$ for all k. By definition, we have $\hat{j}_k = 0$ if $k \leq |\lambda|$ and $\hat{j}_k = 1$ if $k > |\lambda|$. Also, $j_k \leq j_l$ whenever $k \leq l$. For any $d \in D_{\lambda|\mu}$ with $i = i_{\lambda|\mu} d$, define
\[
d = \sum_{k=1}^{r} \sum_{1 \leq k < l_{d(i_k)}} \hat{i}_{k} \hat{j}_{l_k}.
\] (8.3.1)

Thus, (8.1.1) implies
\[
(-1)^d e_i T_k = \begin{cases}
(-1)^d(-1)^{\hat{j}_{k}+1} e_{i_k}, & \text{if } i_k < i_{k+1}; \\
v(-1)^d e_i, & \text{if } i_k = i_{k+1} \leq m; \\
-v^{-1}(-1)^d e_i, & \text{if } i_k = i_{k+1} \geq m + 1; \\
(-1)^d e_{i_k} + (v - v^{-1})(-1)^d e_i, & \text{if } i_k > i_{k+1},
\end{cases}
\] (8.3.2)
where \(s_k = (k, k + 1) \). On the other hand,

\[
x_{\lambda\mu} T_d T_k = \begin{cases}
 x_{\lambda\mu} T_{d s_k}, & \text{if } d s_k \in \mathcal{O}_{\lambda\mu}, \\
 v x_{\lambda\mu} T_d, & \text{if } d s_k = s_d, s_l \in \mathcal{S}_\lambda, \\
 -v^{-1} x_{\lambda\mu} T_{d k}, & \text{if } d s_k = s_d, s_l \in \mathcal{S}_\mu, \\
 x_{\lambda\mu} T_{d s_k} + (v - v^{-1}) x_{\lambda\mu} T_d, & \text{if } d s_k < d.
\end{cases}
\] (8.3.3)

Since \((-1)^d(-1)^{k+1} = \tilde{d}s_k\) in the first and last case of (8.3.2), it follows that the \(\mathbb{Z} \)-linear map

\[
f : V(m|n)^{\otimes r} \to \bigoplus_{(\lambda,\mu) \in \Lambda} x_{\lambda\mu} \mathcal{H}_R : (-1)^d e_{i_{\lambda\mu} d} \mapsto x_{\lambda\mu} T_d
\] (8.3.4)

is a right \(\mathcal{H} \)-module homomorphism. \(\square \)

Corollary 8.4. There is a superalgebra isomorphism

\[
\mathcal{S}(m|n, r) \cong \text{End}_{\mathcal{H}}(V(m|n)^{\otimes r}).
\]

Hence, the quantum Schur superalgebra defined in [8.1.3] is the same algebra considered in [17].

Remark 8.5. Let \(U(m|n) = U_q^e(gl(m, n)) \) be the quantum enveloping superalgebra defined in [17] §3. Then \(U(m|n) \) acts naturally on \(V(m|n)^{\otimes r} \), where \(V(m|n)^{\otimes r} = V(m|n)^{\otimes r} \otimes \mathbb{Q}(v) \). By [17] Th. 4.4, \(U(m|n) \) maps onto the algebra \(\text{End}_{\mathcal{H}}(V(m|n)^{\otimes r}) \). Now, Corollary 8.4 and Theorem 8.1 implies the Schur–Weyl reciprocity between \(U(m|n) \) and \(\mathcal{H} \) as described in [17] Th. 4.4].

9. Relation with Quantum Matrix Superalgebras

Like quantum Schur algebras, quantum Schur superalgebras \(\mathcal{S}(m|n, r) \) can also be interpreted as the dual algebra of the \(r \)th homogeneous component \(\mathcal{A}(m|n, r) \) of the quantum matrix superalgebra \(\mathcal{A}(m|n) \). We first recall the following definition which is a special case of quantum superalgebras with multiparameters defined by Manin [10] 1.2. For simplicity, we assume throughout the section that \(F \) is a field of characteristic \(\text{char}(F) \neq 2 \) and \(v \in F \).

Definition 9.1. Let \(\mathcal{A}(m|n) \) be the associative superalgebra over \(F \) generated by \(x_{ij} \), \(1 \leq i, j \leq m + n \) subject to the following relations:

1. \(x_{ii, j}^2 = 0 \), for \(i + j = 1 \);
2. \(x_{ij} x_{ik} = (-1)^{(i+j)(i+k)} v^{(i+1)} x_{ik} x_{ij} \), for \(j < k \);
3. \(x_{ij} x_{kj} = (-1)^{(i+j)(k+j)} v^{(i+1)} x_{kj} x_{ij} \), for \(i < k \);
4. \(x_{ij} x_{kl} = (-1)^{(i+j)(k+l)} x_{kl} x_{ij} \), for \(i < k \) and \(j > l \);
5. \(x_{ij} x_{kl} = (-1)^{(i+j)(k+l)} x_{kl} x_{ij} + (-1)^{(k+j)(i+l)} (v^{-1} - v) x_{il} x_{kj} \), for \(i < k \) and \(j < l \).

Manin [10] proved that \(\mathcal{A}(m|n) \) has also a supercoalgebra structure with co-multiplication \(\Delta : \mathcal{A}(m|n) \to \mathcal{A}(m|n) \otimes \mathcal{A}(m|n) \) and co-unit \(\varepsilon : \mathcal{A}(m|n) \to F \) defined by

\[
\Delta(x_{ik}) = \sum_{j=1}^{m+n} x_{ij} \otimes x_{jk}, \text{ and } \varepsilon(x_{ij}) = \delta_{ij}, \forall i, j, k \leq m + n. \] (9.1.1)
Further, the \mathbb{Z}_2 grading degree of x_{ij} is $\hat{i} + \hat{j} \in \mathbb{Z}_2$. The following result is a special case of [16, Th. 1.14].

Theorem 9.2. Suppose $v^2 \neq -1$ in F. Then $\mathcal{A}(m|n)$ has basis

$$B = \left\{ \prod_{i,j} x_{i,j}^{a_{i,j}} : a_{i,j} \in \mathbb{N}, \text{ and } a_{i,j} \in \{0,1\} \text{ whenever } \hat{i} + \hat{j} = 1 \right\},$$

where the order of $x_{i,j}$ is arranged such that $x_{i,j}$ is the left to $x_{k,l}$ if either $i < k$ or $i = k$ and $j < l$.

For each $A = (a_{i,j}) \in M(m+n)$, define

$$x^A = x_{1,1}^{a_{1,1}} x_{1,2}^{a_{1,2}} \cdots x_{m,n+1}^{a_{m,n+1}} x_{m+1,1}^{a_{m+1,1}} \cdots x_{m+n,m+n}^{a_{m+n,m+n}} \quad (9.2.1)$$

By Definition [9.1](a) and Theorem [9.2], $x^A \neq 0$ if and only if $A \in M(m|n)$. Thus, $B = \{ x^A \mid A \in M(m|n) \}$.

The bialgebra $\mathcal{A}(m|n)$ is an \mathbb{N}-graded algebra such that each x_{ij} has degree 1. Let $\mathcal{A}(m|n,r)$ be the subspace of $\mathcal{A}(m|n)$ spanned by monomials of degree r. The following result follows immediately.

Corollary 9.3. Suppose $v^2 \neq -1$ in F. The set $\mathcal{B}_r = \{ x^A : A \in M(m|n,r) \}$ forms an F-basis for the coalgebra $\mathcal{A}(m|n,r)$.

We will realize the linear dual $\mathcal{A}(m|n,r)^*$ of $\mathcal{A}(m|n,r)$ as the endomorphism algebra of the tensor space over the Hecke algebra \mathcal{H}_F associated to the symmetric group \mathfrak{S}_r. We start by recalling some notations.

Let $I(m|n,r)$ be the set defined in [8.2.2]. The group \mathfrak{S}_r acts on $I(m|n,r) \times I(m|n,r)$ diagonally by $(i,j)w = (iw,jw)$ for any $w \in \mathfrak{S}_r$ and $(i,j) \in I(m|n,r) \times I(m|n,r)$. Then there is a bijection between the set of \mathfrak{S}_r-orbits and $M(m+n,r)$. This is seen easily from the map j defined in [8.2.3]: if $j(\lambda|\mu,w,\xi|\mu) = A$, where $w \in \mathcal{D}_{\lambda|\mu,\xi|\mu}$, then A is mapped to the orbit containing $(i_{\lambda|\mu}w, i_{\xi|\mu})$ or $(i_{\lambda|\mu}w, i_{\xi|\mu}w^{-1})$.

Let $x_{i,j} = x_{i_{1,1}} x_{i_{1,2}} \cdots x_{r,j_r}$. Since $x_{i,j}$ and $x_{k,l}$ do not commute each other, we do not have $x_{i,j} = x_{i_{1,k}} x_{i_{2,l}}$ for $w \in \mathfrak{S}_r$, in general. However, by [7, 8.6.9.6] or a direct argument, we have the following.

Lemma 9.4. If $A = (a_{i,j}) = j(\lambda|\mu,w,\xi|\eta) \in M(m|n,r)$, then

$$x^w_{i_{\lambda|\mu}, i_{\xi|\eta}} := x_{i_{\lambda|\mu}, i_{\xi|\eta}w^{-1}} = x^A.$$

Moreover, $x_{i_{\xi|\eta}w^{-1}, i_{\lambda|\mu}} = (-1)^{w^{-1}} x^A$, where w^{-1} is defined in [8.3.1].

Proof. To see the last assertion, note that, if $A = (a_{i,j})$, then

$$x_{i_{\xi|\eta}w^{-1}, i_{\lambda|\mu}} = x_{1,1}^{a_{1,1}} x_{1,2}^{a_{1,2}} \cdots x_{m,n+1}^{a_{m,n+1}} x_{m+1,1}^{a_{m+1,1}} \cdots x_{m+n,m+n}^{a_{m+n,m+n}}.$$

The assertion follows from the relation [9.1](4). \qed

Recall from §3 that we wrote w^-_A for w if $j(\lambda|\mu,w,\xi|\mu) = A$. For notational simplicity, we will write w_A for w^-_A in the rest of the section. Note that $A \in M(m|n,r)$ if and only if w_A satisfies the trivial intersection property [3.1](3):

$$\mathfrak{S}_r \cap w_A \mathfrak{S}_\eta w_A^{-1} = \{1\}, \text{ and } \mathfrak{S}_n \cap w_A \mathfrak{S}_\xi w_A^{-1} = \{1\}.$$
Let $\mathcal{A}(m|n, r)^*$ be the dual space of $\mathcal{A}(m|n, r)$. It is well-known that $\mathcal{A}(m|n, r)^*$ is a superalgebra with multiplication given by the following rule
\[
(fg)(v) = (f \otimes g)\Delta(v), \text{ for all } v \in \mathcal{A}(m|n, r)^*.
\]
Note that the action of $f \otimes g$ on $\Delta(v) = \sum v(1) \otimes v(2)$ is given by
\[
(f \otimes g)(v(1) \otimes v(2)) = (-1)^{ij}f(v(1)) \otimes g(v(2))
\]
if the degree of g (resp. $v(1)$) is i (resp. j).

For $A \in M(m|n, r)$, let $f_A \in \mathcal{A}(m|n, r)^*$ be defined by $f_A(x_B) = \delta_{AB}$, for $B \in M(m|n, r)$. Then \(\{f_A\}_{A \in M(m|n, r)}\) is the dual basis of \mathcal{B}_r.

Since the \mathbb{Z}_2-grading degree of the monomial $x_{i,j}m_{k,l}$ is $\sum_{k=1}^{r}(i_k + j_k) \in \mathbb{Z}_2$, it is natural to set the \mathbb{Z}_2-grading degree \hat{f}_A of f_A to be
\[
\hat{f}_A = \sum_{k=1}^{r}(i_k + j_k) = |\mu| + |\eta|(\text{mod } 2) = \hat{A},
\]
where $i = i_{\mu|\nu}$, $j = j_{\xi|\mu}$, and $A = j(\lambda|\mu, w, \xi|\mu)$.

Manin [10] proved that the F-space $V(m|n)_F$, regarded as the specialization of the \mathbb{Z}-free module $V(m|n)$ in §8, is a (right) $\mathcal{A}(m|n)$-comodule with structure map
\[
\delta : V(m|n)_F \to V(m|n)_F \otimes \mathcal{A}(m|n), \quad e_i \mapsto \sum_{j} e_j \otimes x_{j,i}
\]
Since $\mathcal{A}(m|n)$ is a superbialgebra, $V(m|n)^{\otimes r}_F$ is also an $\mathcal{A}(m|n)$-comodule and the structure map is induced by the structure map δ on $V(m|n)_F$. By abuse of notation, we still use δ to denote the structure map. Thus, for any $e_i = e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_r}$ with $i \in I(m|n)$, r
\[
\delta(e_i) = \sum_{j \in I(m|n)} (-1)^{\sum_{k \leq l \leq r} j_k(i_k + i_l)} e_j \otimes x_{j,i}.
\]
Restriction makes $V(m|n)^{\otimes r}_F$ into an $\mathcal{A}(m|n, r)$-comodule, and hence a left $\mathcal{A}(m|n, r)^*$-module with the action given by
\[
f \cdot e = (\text{id}_{V(m|n)^{\otimes r}_F} \otimes f)\delta(e), \quad \forall f \in \mathcal{A}(m|n, r)^*, e \in V(m|n)^{\otimes r}_F.
\]

Lemma 9.5. The action of $\mathcal{A}(m|n, r)^*$ on $V(m|n)^{\otimes r}_F$ is faithful.

Proof. Suppose $f \cdot e_i = 0$ for all $i \in I(m|n, r)$. By (9.4.2), $f(x_{j,i}) = 0$ for all $i, j \in I(m|n, r)$. In particular, $f(x_{j,1_{\xi|\mu}}) = 0$ for all $\lambda|\mu \in \Lambda(m|n, r)$ and all $j \in I(m|n, r)$. By Corollary 9.3 and Lemma 9.4, $f = 0$. \qed

With the definition of \hat{f}_A, it would be possible to explicitly describe the action $f_A \cdot e_{i_{\xi|\mu}}$, and hence, to make a comparison between bases $\{f_A\}$ and $\{\phi_A\}$ under the isomorphism in Theorem 9.7.

Proposition 9.6. The linear map $\mathcal{R} : V(m|n)^{\otimes 2}_F \to V(m|n)^{\otimes 2}_F$ defined in (8.1.1) is an $\mathcal{A}(m|n, r)$-comodule homomorphism. Moreover, the actions of $\mathcal{A}(m|n, r)^*$ and \mathcal{H}_F on $V(m|n)^{\otimes r}_F$ commute.
Proof. We need verify
\[\delta \circ \bar{\mathcal{R}} = (\text{id}_{\mathcal{A}(m|n,r)} \otimes \bar{\mathcal{R}}) \circ \delta \quad (9.6.1) \]
where \(\delta \) is the comodule structure map on \(V(m|n)_{\bar{\mathcal{F}}}^{\otimes 2} \). We verify the case \(e_i \otimes e_j \) with \(i > j \). One can verify the other cases similarly. We have
\[
(\text{id}_{\mathcal{A}(m|n,r)} \otimes \bar{\mathcal{R}})\delta(e_i \otimes e_j) = v \sum_{k \leq m} x_{i,k} x_{j,k} \otimes e_k \otimes e_k \\
+ (-1)^i v^{-1} \sum_{k \geq m+1} x_{i,k} x_{j,k} \otimes e_k \otimes e_k + \sum_{l < k} (-1)^j x_{ik} x_{jl} \otimes e_l \otimes e_k \\
+ \sum_{l > k} \left\{ (-1)^j x_{ik} x_{jl} + (-1)^{j+l} (v - v^{-1}) x_{il} x_{jk} \right\} \otimes e_l \otimes e_k
\]
On the other hand,
\[
\delta \circ \bar{\mathcal{R}}(e_i \otimes e_j) = \delta((-1)^i e_j \otimes e_i + (v - v^{-1}) e_i \otimes e_j) = \]
\[= (-1)^i \sum_{k,l} (-1)^{j+l} x_{jk} x_{il} e_k \otimes e_l \\
+ (v - v^{-1}) \sum_{k,l} x_{ik} x_{jl} (-1)^{j+l} e_k \otimes e_l
\]
Comparing the coefficients of \(e_k \otimes e_l \) via Definition \[9.1\] yields \(\delta \circ \bar{\mathcal{R}}(e_i \otimes e_j) = (\text{id}_{\mathcal{A}(m|n,r)} \otimes \bar{\mathcal{R}})\delta(e_i \otimes e_j) \). This proves \(9.6.1\). Further, it implies that the actions of \(\mathcal{A}(m|n,r)^* \) and \(\mathcal{H}_{\bar{F}} \) on \(V(m|n)_{\bar{\mathcal{F}}}^{\otimes r} \) commute. (One can also verify it by the definition of the action of the linear dual of a cosuperalgebra \(\mathcal{A} \) on an \(\mathcal{A} \)-cosuperalgebra. See the definition given in [3, p.45].)

The following result is the quantum version of [4, Th. 5.2].

Theorem 9.7. The quantum Schur superalgebra \(\mathcal{S}(m|n,r)_{\bar{F}} \) is isomorphic to the algebra \(\mathcal{A}(m|n,r)^* \). In other words, we have an algebra isomorphism

\[\mathcal{A}(m|n,r)^* \cong \text{End}_{\mathcal{H}_{\bar{F}}}(\oplus_{\lambda \mu \in \Lambda(m|n,r)} x_{\lambda y_{\mu}} \mathcal{H}_{\bar{F}}) \]

Proof. We have already proved that \(\mathcal{A}(m|n,r)^* \) acts faithfully on \(V(m|n)_{\bar{\mathcal{F}}}^{\otimes r} \). So, \(\mathcal{A}(m|n,r)^* \) is a subalgebra of \(\text{End}_{\mathcal{F}}(V(m|n)_{\bar{\mathcal{F}}}^{\otimes r}) \). By Proposition \[9.6\], \(\mathcal{A}(m|n,r)^* \) is a subalgebra of \(\text{End}_{\mathcal{H}_{\bar{F}}}(V(m|n)_{\bar{\mathcal{F}}}^{\otimes r}) \). A dimensional comparison (see Theorem 5.8 and Corollary 9.3) gives the required isomorphism.

References

[1] G. Benkart, S.J. Kang and M. Kashiwara, “Crystal bases for the quantum superalgebra \(U_q(\mathfrak{gl}(m,n)) \)”, J. Amer. math. Soc. 13, (2000), 295-331.
[2] A. Berele and A. Regev, “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras”, Adv. Math. 64, (1987), 118–175.
[3] J. Brundan and A. Kleshchev, “Projective representations of symmetric groups via Sergeev duality”, Math. Zeit. 239, (2002), 27–68.
[4] J. Brundan and J. Kujawa, “A new proof of Mullineux conjecture”, J. Alg. Comb., 18 (2003) 13-39.
[5] C. W. Curtis, “On the Lusztig’s isomorphism theorem for Hecke algebras”, J. Algebra, 92 (1985) 348-365.

[6] B. Deng, J. Du, and Q. Fu, “A Double Hall Algebra Approach to Affine Quantum Schur–Weyl Theory”, preprint.

[7] B. Deng, J. Du, B. Parshall and J. Wang, “Finite Dimensional Algebras and Quantum Groups”, Mathematical Surveys and Monographs Volume 150, Amer. Math. Soc., Providence 2008.

[8] S. Donkin, “Symmetric and Exterior powers, Linear Source Modules and Representations of Schur Superalgebras”, Proc. London Math. Soc. (3) 83 (2001) 647–680.

[9] J. Du, “Canonical basis for irreducible representations of quantum GL_n”, J. London Math. Soc. (2) 51 (1995) 461-4703.

[10] J. Du, “Cells in certain sets of matrices, Tôhoku Math J. 48 (1996) 417–427.

[11] J. Du, B. Parshall and L.L. Scott, “Quantum Weyl Reciprocity and Tilting modules”, Comm. Math. Physics, 195 (1998) 321-352.

[12] J. Du and H. Rui, “Based algebras and standard basis for quasi-hereditary algebras”, Trans. Amer. Math. Soc., 350 (1998) 3207-3235.

[13] J. J. Graham and G. I. Lehrer, “Cellular algebras”, Invent. Math. 123, 1–34, (1996).

[14] D. Kazhdan and G. Lusztig, “Representations of Coxeter groups and Hecke algebras”, Invent. Math. 53 (1979), 155-174.

[15] G. Lusztig, “Cells in affine Weyl groups”, in: Algebraic Groups and Related Topics, R. Hotta (ed.), Advanced Studies in Pure Mathematics, no. 6, Mathematical Society of Japan, Tokyo, 1985, pp. 255–287.

[16] Yu. I. Manin, “Multiparametric Quantum Deformation of the General Linear Supergroup”, Comm. Math. Physics, 123 (1989), 163-175.

[17] H. Mitsuhashi, “Schur–Weyl reciprocity between the quantum superalgebra and the Iwahori–Hecke algebra”, Algebr Represent Theory 9 (2006), 309-322.

[18] D. Moon, “Highest weight vectors of irreducible Representations of the quantum superalgebra $U_q(gl(m,n))$”, J. Korean Math. Soc. 40 (2003), 1–28.

[19] N. Muir, “Polynomial representations of the general linear Lie superalgebras,” PhD thesis, University of London, 1991.

[20] A.N. Sergeev, “The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak{g}(n,m)$ and $Q(n)$”, Math. USSR Sbornik 51 (1985), 419–427.

J.D. School of Mathematics and Statistics, The University of New South Wales, Sydney NSW 2052, Australia
E-mail address: j.du@unsw.edu.au

H.R. Department of Mathematics, East China Normal University, Shanghai, 200062, China
E-mail address: hbrui@math.ecnu.edu.cn