A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair

Diana van den Heuvel¹, Cornelia G. Spruijt²,³,⁹, Román González-Prieto⁴,⁹, Angela Kragten¹, Michelle T. Paulsen⁵, Di Zhou⁶, Haoyu Wu¹, Katja Apelt¹, Yana van der Weegen¹, Kevin Yang⁵,⁷, Madelon Dijk¹, Lucia Daxinger¹, Jurgen A. Marteijn⁶, Alfred C. O. Vertegaal⁴, Mats Ljungman⁵,⁸, Michiel Vermeulen² & Martijn S. Luijsterburg¹

Bulky DNA lesions in transcribed strands block RNA polymerase II (RNAPII) elongation and induce a genome-wide transcriptional arrest. The transcription-coupled repair (TCR) pathway efficiently removes transcription-blocking DNA lesions, but how transcription is restored in the genome following DNA repair remains unresolved. Here, we find that the TCR-specific CSB protein loads the PAF1 complex (PAF1C) onto RNAPII in promoter-proximal regions in response to DNA damage. Although dispensable for TCR-mediated repair, PAF1C is essential for transcription recovery after UV irradiation. We find that PAF1C promotes RNAPII pause release in promoter-proximal regions and subsequently acts as a processivity factor that stimulates transcription elongation throughout genes. Our findings expose the molecular basis for a non-canonical PAF1C-dependent pathway that restores transcription throughout the human genome after genotoxic stress.
The transcription of protein-coding genes involves RNA polymerase II enzymes (RNAPII), which pull DNA through their active sites and generate nascent transcripts. After initiation at the promoter, the majority of RNAPII molecules in metazoan cells pause at promoter-proximal sites, which is enforced by negative elongation factors DSIF and NELF. The regulation of RNAPII pause release in response to environmental cues involves positive elongation factors, such as p-TEFb and the PAF1 complex (PAF1C). Both PAF1C and DSIF also act beyond pause release by stimulating the acceleration of RNAPII in promoter-proximal regions to ensure processive transcription elongation throughout genes.

The presence of bulky DNA damage in the transcribed strand of active genes is a major complication during transcription. Persistent stalling of RNAPII at DNA lesions is highly toxic and constitutes an efficient trigger for apoptosis. The presence of DNA lesions triggers a genome-wide transcriptional arrest due to stalling of elongating RNAPII at DNA lesions. In addition, UV irradiation also inhibits transcription initiation through the stress-induced transcription repressor ATF3. It is essential that cells overcome this arrest and restore transcription after repair to maintain gene expression.

The transcription-coupled nucleotide excision repair (TCR) pathway efficiently removes transcription-blocking DNA lesions through the sequential and cooperative recruitment of the ATP-dependent chromatin-remodeling factor CSR, the CUL4A-based (CRL4) E3 ubiquitin ligase complex containing CSA, and the UVSSA scaffold protein. Mutations in the CSR and CSA genes cause Cockayne syndrome, which is characterized by severe developmental and neurological dysfunction. In addition to protein–protein interactions, TCR complex assembly is tightly controlled by the CRL4CSA-dependent ubiquitination of RNAPII at a single lysine (K1268) of the largest RPB1 subunit. The concerted action of CSR, CSA, UVSSA, and RPB1-K1268 ubiquitination facilitate the association of the TFIIH complex with DNA damage-stalled RNAPII. The subsequent association of XPA and XPG stimulates the translocase activity of TFIIH, likely resulting in TFIIH-mediated RNAPII displacement, which provides the endonucleases XPG and ERCC1-XPF access to excise the DNA lesion.

Although the TCR-mediated clearing of DNA lesions is essential, the precise mechanisms required for recovery of transcription after DNA repair remain unresolved. Stalled RNAPII molecules may be reactivated following TCR-mediated repair, which would require repositioning of the nascent transcript within the active site through hydrolysis to generate a new 3' end. Alternatively, RNAPII may be released from the DNA template, followed by transcription recovery from the promoter. Both CSA and CSB are essential for transcription recovery, which could be due to their role in clearing transcription-blocking DNA lesions. In addition, the CS proteins also mediate the proteolytic degradation of ATF3 at later timepoints after UV irradiation, thereby eliminating its repressive impact on transcription initiation. Furthermore, the histone chaperones HIRA and FACT play important roles in the recovery of transcription. However, the HIRA-dependent deposition of H3.3 and the FACT-mediated exchange of H2A at sites of local UV damage also occur in TCR-deficient cells. Thus, the precise mechanisms involved in transcription recovery and their coordination with TCR-mediated repair remain to be established.

In this study, we define a new transcription recovery pathway that involves the CSB-dependent association of the PAF1 pausing and elongation complex with RNAPII specifically after UV irradiation. We show that PAF1 is dispensable for TCR-mediated repair, but specifically regulates RNAPII pause release and elongation activation from promoter-proximal regions. These findings identify a post-repair pathway that relies on CSB for the activation of paused RNAPII complexes by PAF1C to restore transcriptional activity and overcome DNA damage-induced silencing throughout the human genome.

Results

Identification of PAF1C as a UV-specific interactor of CSB. To identify DNA damage-specific interactors of CSB, we stably expressed GFP-tagged CSB in SV40-immortalized CS1AN fibroblasts derived from a Cockayne syndrome B patient. Immunoprecipitation of GFP-CSB from the solubilized chromatin fraction of CS1AN-SV fibroblasts followed by SILAC-based mass spectrometry identified 172 proteins that showed at least 2-fold stronger association with chromatin-bound CSB isolated from UV-irradiated cells compared to undamaged cells. Among the top interactors were eight RNA polymerase II (RNAPII) subunits and four polymerase-associated factor 1 complex (PAF1C) subunits. To confirm these interactions in another cell line, we generated a CSB knockout (CSB-KO) in U2OS cells and subsequently re-expressed GFP-CSB in these cells. Expression of GFP-CSB rescued the sensitivity of CSB-KO cells to Illudin S, which causes transcription-blocking DNA lesions, confirming the functionality of the GFP-tagged CSB protein (Supplementary Fig. 1a). Label-free quantification proteomics after GFP-CSB pull-down confirmed a strong UV-induced association of GFP-CSB with RNAPII subunits, the CSA-DBD1-CUL4A complex, and all five PAF1C subunits (PAF1, LE01, CTR9, WDR61, and CDC73; Fig. 1b). Intensity-based absolute quantification (iBAQ) of protein amounts, indicates that at least 60% of the isolated CSB molecules associate with PAF1C and RNAPII subunits after UV (Supplementary Fig. 1b). Co-IP experiments confirmed that CSB associated with RNAPII as well as with PAF1C subunits PAF1, LE01, and CTR9 after UV irradiation (Fig. 1c, d) and treatment with Illudin S (Supplementary Fig. 1c).

PAF1C associates with RNAPII and CSB after UV irradiation. To further explore these interactions, we immunoprecipitated GFP-LE01 from RPE1-hTERT cells and analyzed its interactome by both label-free mass spectrometry and western blot. GFP-LE01 robustly interacted with PAI1, CTR9, WDR61, and CDC73 in both control and UV-exposed cells (Fig. 1e, f, Supplementary Fig. 1d). Both CSB and RNAPII strongly associated with GFP-LE01 (Fig. 1e, f) only after UV irradiation, which was also observed after pull-down of transiently expressed GFP-CTR9 (Supplementary Fig. 1e). Based on the iBAQ values, we estimate that between 1 and 3% of the isolated LE01 proteins associates with CS proteins and RNAPII subunits in response to UV irradiation, which is ~0.2% in unirradiated cells (Supplementary Fig. 1f, g).

Targeted immunoprecipitation and unbiased label-free proteomics on GFP-RPB1 revealed interactions with all eleven other RNAPII subunits and 22 Mediator subunits in unirradiated cells, while only a very weak interaction with PAF1C subunits and no interaction with CSB was detected (Supplementary Fig. 1h). These findings demonstrate that PAF1C is a very low stoichiometric interactor of the RNAPII complex in undamaged cells. However, GFP-tagged RPB1 strongly associated with PAF1C subunits and CSB after UV as shown by label-free quantification proteomics (Fig. 1g) and western blot analysis (Fig. 1h). Based on the iBAQ values, we estimate that UV-induced DNA damage triggers a ~70-fold increase in the association between PAF1C and RNAPII, which is comparable with the UV-induced increase we detect between RNAPII and CSB (Supplementary Fig. 1i, j). Immunoprecipitation of endogenous RNAPII using either a
Ser5-P or a Ser2-P-specific antibody confirmed these interactions (Supplementary Fig. 1k).

The UV-induced interaction between PAF1C and RNAPII is mediated by CSB. The association of PAF1C with RNAPII during the transcription cycle is fully dependent on the activity of CDK9 in the p-TEFb kinase complex. To assess if the UV-induced interaction between PAF1C and RNAPII requires CDK9 activity, we treated cells with the selective CDK9 inhibitor LDC00067, which strongly reduced transcription (~70%) measured by incorporation of nucleotide analogue 5-ethynyl-
uridine (5-EU) in nascent transcripts (Fig. 2a). However, treatment with CDK9 inhibitor did not affect the UV-induced association between PAF1C and RNAPII (Fig. 2b), demonstrating that this UV-induced interaction is not mediated by the canonical p-TEFb-dependent pathway.

We next asked whether the interaction between PAF1C and RNAPII was dependent on CSB. While the UV-induced association of CSB, CSA, and RNAPII was detected after immunoprecipitation of GFP-CSB from U2OS CSB-KO cells (Fig. 3a), these interactions were abolished in CSB-KO cells without affecting the constitutive
association of GFP-PAF1 with CTR9 (Fig. 2c). Endogenous PAF1C still associated with RNAPII after UV in cells knockout of CSA, UVSSA14, or XPA (Fig. 2d, Supplementary Fig. 2a) demonstrating that this loss of interaction is not due to a general TCR deficiency. Importantly, all TCR knockout cells were highly sensitive to ILLUDIN S, which was fully rescued by stable expression of GFP-PAF1B. The knockout of these genes was confirmed by sequencing, western blot analysis, and ILLUDIN S survival experiments (Supplementary Fig. 2c, d, e). Immunoprecipitation of GFP-PAF1 confirmed that knockout of CSA, but not other TCR genes, prevented the UV-induced PAF1C–RNAPII interaction (Supplementary Fig. 2e), which was confirmed by label-free proteomics (Supplementary Fig. 2f). Similar results were obtained after pull-down of Ser5-P modified RNAPII (Supplementary Fig. 2g). Re-expression of GFP-CSB fully restored the association between RNAPII and PAF1C in CSB-KO cells after UV (Fig. 2e), establishing that CSB mediates the UV-induced interaction between PAF1C and RNAPII.

The UV-induced interaction between RNAPII and CSB is stabilized by PAF1. To better understand how the interactions between CSB, PAF1C, and RNAPII might be mediated, we first compared available cryo-EM structures for their interactions. The yeast orthologue of CSA, RAD26, is bound behind RNAPII to the upstream DNA that has just been transcribed36 (Fig. 3a). Interestingly, the human PAF1C complex is bound to the outer surface of RNAPII with the central CTR9 subunit docking onto the polymerase funnel, while the C-terminus of the LEO1 subunit contacts the upstream DNA that has just been transcribed36 (Fig. 3a). Based on this comparison, we postulate that LEO1 may have direct protein–protein contacts with CSB. To test this possibility, we stably expressed GFP-PAF1WT and a GFP-tagged mutant of PAF1 lacking five amino acids required for its association with LEO1 (PAF1ΔLEO1)37. While GFP-PAF1WT interacted robustly with both CTR9 and LEO1, we found that GFP-PAF1ΔLEO1 interacted normally with CTR9, but failed to associate with LEO1 (Fig. 3b). Interestingly, PAF1ΔLEO1 interacted much less efficiently with CSB, CSA, and RNAPII after UV irradiation compared to PAF1WT, suggesting that the LEO1 subunit likely anchors the PAF1C complex to CSB and RNAPII after UV (Fig. 3b).

Our interaction experiments revealed that CSB is essential to mediate the association of PAF1C with RNAPII after UV (Fig. 2c–e). We next asked whether the reverse is also true and if PAF1 is required for CSB to associate with RNAPII after UV. To test this, we knocked in an auxin-inducible degron (AID) into the locus in U2OS cells expressing the rice-specific F-box gene TIR138 (Supplementary Fig. 3a). Treatment of knockin cells with auxin led to a strong depletion of PAF1, which was accompanied by reduced protein levels of CTR9 (Fig. 3c, Supplementary Fig. 3b). Pull-down experiments of RNAPII-S2 at multiple timepoints after UV irradiation revealed that CSB still interacted with RNAPII after UV, and that UV-induced ubiquitylation of RPB1 could also be detected in PAF1-depleted cells with similar kinetics as in TIR1 control cells (Supplementary Fig. 3c). However, the amount of CSB and ubiquitylated RNAPII were slightly reduced in PAF1-depleted cells, suggesting that PAF1C is not essential for, but may stabilize the interaction between CSB and RNAPII after UV (Fig. 3c).

PAF1C is not required for clearing DNA lesions by TCR. We next sought to address if PAF1C has a direct role in DNA repair. The majority of UV-induced DNA lesions throughout the genome is removed by global-genome repair (GGR), while a small subset of lesions in actively transcribed strands is eliminated by TCR. To rule out a role of PAF1 in GGR, we measured unscheduled DNA synthesis (UDS) after local UV irradiation by pulse-labeling with the nucleotide analogue 5-ethyl-2-deoxy-uridine (EdU). Robust EdU incorporation could be detected in UV-irradiated TIR1 control cells, which was strongly suppressed by knockdown of XPA (Supplementary Fig. 3c). However, deletion of PAF1 by treatment with auxin did not affect UV-induced EdU incorporation (Supplementary Fig. 3c), ruling out a role of PAF1 in GGR.

To specifically capture TCR-mediated repair, we employed nondividing primary XP-C patient-derived fibroblasts, which are deficient in GGR (Fig. 3d–f). These cells were globally irradiated with UV-C light (8 J/m²) and pulse-labeled for 8 h with EdU. TCR-specific UDS was visualized using Click-It chemistry combined with tyramide-based signal amplification39. Robust incorporation of EdU was detected in UV-irradiated XP-C cells, but not in unirradiated controls (cells (Fig. 3d–f). Knockdown of CSA, CSB and UVSSA in U2OS cells stably expressing GFP-CSB fully restored the association between CSB, CSA, and UVSSA 14, or XPA (Fig. 2d, Supplementary Fig. 2a) demonstrating that this loss of interaction is not due to a general TCR deficiency. Importantly, all TCR knockout cells were highly sensitive to Illudin S, which was fully rescued by stable expression of GFP-PAF1 fully restoring the association between PAF1C and RNAPII. Comparing available cryo-EM structures for their interactions. The interactions between CSB, PAF1C, and RNAPII might be mediated, we first compared available cryo-EM structures for their interactions. The yeast orthologue of CSA, RAD26, is bound behind RNAPII to the upstream DNA that has just been transcribed36 (Fig. 3a). Interestingly, the human PAF1C complex is bound to the outer surface of RNAPII with the central CTR9 subunit docking onto the polymerase funnel, while the C-terminus of the LEO1 subunit contacts the upstream DNA that has just been transcribed36 (Fig. 3a). Based on this comparison, we postulate that LEO1 may have direct protein–protein contacts with CSB. To test this possibility, we stably expressed GFP-PAF1WT and a GFP-tagged mutant of PAF1 lacking five amino acids required for its association with LEO1 (PAF1ΔLEO1)37. While GFP-PAF1WT interacted robustly with both CTR9 and LEO1, we found that GFP-PAF1ΔLEO1 interacted normally with CTR9, but failed to associate with LEO1 (Fig. 3b). Interestingly, PAF1ΔLEO1 interacted much less efficiently with CSB, CSA, and RNAPII after UV irradiation compared to PAF1WT, suggesting that the LEO1 subunit likely anchors the PAF1C complex to CSB and RNAPII after UV (Fig. 3b).

Our interaction experiments revealed that CSB is essential to mediate the association of PAF1C with RNAPII after UV (Fig. 2c–e). We next asked whether the reverse is also true and if PAF1 is required for CSB to associate with RNAPII after UV. To test this, we knocked in an auxin-inducible degron (AID) into both alleles of the endogenous PAF1 locus in U2OS cells expressing the rice-specific F-box gene TIR138 (Supplementary Fig. 3a). Treatment of knockin cells with auxin led to a strong depletion of PAF1, which was accompanied by reduced protein levels of CTR9 (Fig. 3c, Supplementary Fig. 3b). Pull-down experiments of RNAPII-S2 at multiple timepoints after UV irradiation revealed that CSB still interacted with RNAPII after UV, and that UV-induced ubiquitylation of RPB1 could also be detected in PAF1-depleted cells with similar kinetics as in TIR1 control cells (Supplementary Fig. 3c). However, the amount of CSB and ubiquitylated RNAPII were slightly reduced in PAF1-depleted cells, suggesting that PAF1C is not essential for, but may stabilize the interaction between CSB and RNAPII after UV (Fig. 3c).

PAF1C is not required for clearing DNA lesions by TCR. We next sought to address if PAF1C has a direct role in DNA repair. The presence of UV-induced DNA lesions triggers a strong transcription arrest. To address whether PAF1C plays a role in the recovery of transcription after repair, we visualized nascent transcription by 5-ethyl-2-deoxy-uridine labeling following global UV irradiation after knockdown of TCR proteins or PAF1 (Fig. 4a–c). Nascent transcription was strongly inhibited at 3 h after UV irradiation in all conditions (Fig. 4b–e). Significant transcription recovery was detected at 18 h after UV in controls cells, but not in TCR-deficient XPA knockdown cells (Fig. 4b–e), or CSA knock-out cells (Supplementary Fig. 3d). Knockdown of PAF1 with two independent siRNAs significantly impaired the ability of cells to recover transcription following UV irradiation (Fig. 4b, d, e), which could be reversed by re-expression of siRNA-resistant GFP-PAF1 (Fig. 4c, d, e).

To validate these findings, we also performed these experiments in the PAF-AID knockin cells following auxin treatment. Single knockin clones showed strong auxin-induced depletion of PAF1 within 5 h (Fig. 4f). Visualizing nascent transcription in two independent PAF1-AID clones revealed a failure to restore transcription after UV, while TIR1 control cells showed full transcription recovery (Fig. 4g, h). These findings uncover an important role of PAF1C in transcription recovery following genotoxic insult. Importantly, knockdown of XPA in either TIR1 control cells or PAF1-depleted cells impaired transcription recovery to the same extent (Supplementary Fig. 3d), suggesting that TCR and PAF1-mediated transcription restart operate in the same pathway. Considering that PAF1 is not directly involved in TCR (Fig. 3f), our findings suggest that PAF1-mediated transcription restart occurs after the elimination of transcription-blocking DNA lesions by TCR.

Genome-wide repositioning of PAF1 at the TSS after UV irradiation. Transcription recovery after repair may involve the activation of paused RNAPII from promoter-proximal regions in a PAF1-stimulated manner3,5,33,40,41. To address this possibility, we mapped PAF1 chromatin-binding sites in the genome using ChIP sequencing (ChIP-seq)42 in the absence of DNA damage and 8 h after UV irradiation, when transcription starts to recover and CSB–RNAPII–PAF1C interactions still take place (Fig. 5a). PAF1 was bound predominantly to transcription start sites (TSSs)
and downstream from transcription termination sites (TTSs) (Fig. 5b, c, Supplementary Fig. 4a, b). Heatmaps of the distribution of reads around TSS sites revealed a large degree of overlap between our and recently published PAF1 ChIP-seq data41. From the set of 8811 genes, we detect robust binding of PAF1 to the TSS and downstream from the TTS in a subset of ~3000 genes (Fig. 5d, Supplementary Fig. 4b, c). The top 3000 genes from our analysis were also bound by CSB and became most strongly bound by CSA and ATF3 after UV (Supplementary Fig. 4d), suggesting that these interactions might all take place at the TSS, and that these genes are subjected to ATF3-mediated transcriptional repression after UV11.

PAF1 became more restricted to the TSS region and showed substantially reduced binding in gene bodies and downstream of
the TTS at 8 h after UV irradiation with both 6 J/m² and 9 J/m² (Supplementary Fig. 4a, b, e). At this time-point, cells already start to resume transcription, but have not yet fully completed transcription recovery. Immunoprecipitation of RNAPII indeed showed a strong interaction with PAF1C subunits at 8 h after UV, which was lost at 24 h after UV when cells have fully recovered transcription (Fig. 5a). Strikingly, we detected a marked shift in PAF1 binding by ChIP-seq away from the promoter into the first ~1 kb downstream of the TSS at 8 h after UV, which was no longer observed at 26 h after UV (Fig. 5c). Interestingly, since PAF1C is an important regulator of RNAPII pause release, our data might suggest a role for PAF1C in releasing RNAPII from pause sites in a CSB-dependent mechanism to restore transcription after UV irradiation.

A genome-wide shift of RNAPII into gene bodies after UV irradiation. To explore this possibility further, we mapped...
RNAPII-binding sites by ChIP-seq. RNAPII most strongly associated with the TSS as well as downstream of the TTS in the same subset of 3000 genes that were also bound by PAF1 with a high degree of overlap with published RNAPII ChIP-seq data (Fig. 5c, f, Supplementary Fig. 5a)\(^1\). UV irradiation triggered a dose-dependent release of RNAPII into the first ~2 kb downstream of the TSS at 8 h after UV irradiation (Fig. 5g), which coincided with the region to which a UV-induced shift in PAF1 binding was also observed (Fig. 5e). The shift in RNAPII binding was no longer detected at 26 hrs after UV irradiation (Fig. 5g, Supplementary Fig. 5b), coinciding with the loss of PAF1C binding to RNAPII (Fig. 5a), and near complete transcription recovery (Fig. 4e, h). Representative examples of short (ARF6, 5 kb), intermediate (NDUFS5, 10 kb) and longer genes (PSMD3, 24 kb) all show the UV-induced redistribution of both PAF1 and RNAPII within the first 2 kb of the gene (Supplementary Fig. 5c).
To further quantify the release of RNAPII after UV, we calculated the traveling ratio for each gene, which was defined as the density of RNAPII reads within the first 3 kb of the gene body relative to the density in the promoter-proximal region (Fig. 5h). An increased traveling ratio indicates that more RNAPII molecules have shifted into the gene body. This approach revealed a dose-dependent increase of the normalized traveling ratio after UV (Fig. 5h). Importantly, independent repeats of these different genome-wide ChIP-seq conditions showed a highly similar shift (Fig. 5h, Supplementary Fig. 6, Supplementary Table 6), suggesting that these changes in RNAPII binding across the genome reflect a very robust cellular response.

The release of RNAPII after UV irradiation is dependent on PAF1. We next quantified the UV-induced repositioning of PAF1 binding in individual genes by calculating the ratio of reads in the first 1 kb of genes relative to the 750 bp upstream of the TSS in wild-type cells (Fig. 6a, b see the POLG2 and SLC40A1 genes in Fig. 6c). Strong and consistent UV-induced repositioning of PAF1 was detected in 478 of the 3000 genes at 8 h after UV in all 6 J/m² and 9 J/m² replicates in wild-type cells (Fig. 6d). The remaining 2522 of the 3000 genes showed no repositioning of PAF1 downstream of the TSS in at least one of the replicates in wild-type cells (Fig. 6d). Notably, we observed a stronger RNAPII shift into gene bodies after UV in the set of 478 genes that displayed consistent PAF1 repositioning compared to the set of 2522 genes without PAF1 repositioning (Fig. 6e). Thus, the release of RNAPII after UV irradiation correlates strongly with the repositioning of PAF1.

To further address whether PAF1 is needed for the UV-induced release of RNAPII, we performed ChIP sequencing in TIR1 control cells and PAF1-AID knockin cells. The RNAPII ChIP-seq profiles in PAF1-depleted human cells were very similar to published data in mouse cells (see our reanalysis of these data in Supplementary Fig. 7a, b). TIR1 control cells showed a dose-dependent shift of RNAPII after UV irradiation in the top 3,000 genes (Fig. 6f), similar to our data in U2OS cells (Fig. 5h). Auxin-induced depletion of PAF1 strongly prevented the shift of RNAPII in many of the 3,000 genes (Fig. 6f). Even when we selected the 902 genes with the strongest shift in RNAPII in the TIR1 control cells, we could not detect an appreciable shift in PAF1-depleted cells (Fig. 6g). These findings show that PAF1 stimulates the UV-induced repositioning of RNAPII around promoters.

CSB stimulates PAF1 release and Ub-H2B deposition in a subset of genes after UV. We next asked whether the repositioning of PAF1 away from TSS sites is dependent on CSB. To address this, we mapped chromatin-binding sites of PAF1 by ChIP-seq in CSB knockout (KO) cells (Fig. 7a, b). In unirradiated cells, we did not detect major differences in PAF1 binding to promoter regions in the genomes of wild-type or CSB-KO cells (compare Fig. 5d, e to Fig. 7a, c).

Importantly, the UV-induced repositioning of PAF1 after UV in the top 3,000 genes in wild-type cells (Fig. 5e) was less prominent in CSB-KO cells (Fig. 7b, c). A subsequent analysis focusing on a subset of 478 genes with a consistent UV-induced repositioning of PAF1 in wild-type cells (Fig. 6b), revealed that 306 of these genes no longer showed a UV-induced shift of PAF1 in CSB-KO cells (Fig. 7d, e). These findings reveal that CSB stimulates the UV-induced repositioning of PAF1 in a subset of genes.

To investigate how the inability to reposition PAF1 affects the UV-induced release of RNAPII, we also mapped chromatin-binding sites of RNAPII by ChIP-seq in CSB-KO cells (Fig. 7f). While loss of CSB did not appreciably affect the binding of RNAPII to TSS sites compared to wild-type cells without irradiation (compare mock in Fig. 7f to Fig. 5f), we detected strongly reduced binding of RNAPII at 8 hrs after UV in CSB-KO cells (Fig. 7f, g), which was not observed under similar conditions in wild-type cells (Fig. 7h). These findings suggest that CSB-KO cells show a strong transcriptional repression at 8 hrs after UV irradiation, through a combination of defective TCR, and their inability to activate PAF1 and remove repressor ATF3 from TSS sites.

The ubiquitylation of H2B (Ub-H2B) is a co-transcriptionally deposited histone mark that correlates with RNAPII elongation rates and PAFlC activity. We therefore decided to map Ub-H2B deposition by ChIP-seq in wild-type and CSB-KO cells after UV irradiation. We detected clear Ub-H2B levels throughout genes in both unirradiated wild-type and CSB-KO cells (see Fig. 7i for the KANSL1 gene). At 8 h after UV in wild-type cells, Ub-H2B levels were similar throughout early gene bodies (<20 kb), with decreasing levels toward the end of longer genes (>100 kb). This is consistent with ongoing, but incomplete recovery of RNA synthesis particularly in long genes in wild-type cells at this time-point. Strikingly, in UV-irradiated CSB-KO cells, Ub-H2B levels progressively decreased much more rapidly within the first 20 kb of genes (see Fig. 7i for the KANSL1 gene). We confirmed by immunofluorescence that absolute Ub-H2B levels were strongly decreased in CSB-KO cells compared to wild-type controls.

While loss of CSB did not appreciably affect the binding of RNAPII to TSS sites compared to wild-type cells without irradiation (compare mock in Fig. 7f to Fig. 5f), we detected strongly reduced binding of RNAPII at 8 hrs after UV in CSB-KO cells (Fig. 7f, g), which was not observed under similar conditions in wild-type cells (Fig. 7h). These findings suggest that CSB-KO cells show a strong transcriptional repression at 8 hrs after UV irradiation, through a combination of defective TCR, and their inability to activate PAF1 and remove repressor ATF3 from TSS sites.

The ubiquitylation of H2B (Ub-H2B) is a co-transcriptionally deposited histone mark that correlates with RNAPII elongation rates and PAFlC activity. We therefore decided to map Ub-H2B deposition by ChIP-seq in wild-type and CSB-KO cells after UV irradiation. We detected clear Ub-H2B levels throughout genes in both unirradiated wild-type and CSB-KO cells (see Fig. 7i for the KANSL1 gene). At 8 h after UV in wild-type cells, Ub-H2B levels were similar throughout early gene bodies (<20 kb), with decreasing levels toward the end of longer genes (>100 kb). This is consistent with ongoing, but incomplete recovery of RNA synthesis particularly in long genes in wild-type cells at this time-point. Strikingly, in UV-irradiated CSB-KO cells, Ub-H2B levels progressively decreased much more rapidly within the first 20 kb of genes (see Fig. 7i for the KANSL1 gene). We confirmed by immunofluorescence that absolute Ub-H2B levels were strongly
decreased in CSB-KO cells (38%) compared to wild-type cells (63%) at 8 h after UV irradiation (Fig. 7j). Metaplots of Ub-H2B averaged over 820 genes revealed a faster and more progressive loss of Ub-H2B deposition in CSB-KO cells in gene bodies after UV irradiation compared to wild-type cells (Fig. 7k).

PAF1 stimulates processive transcription elongation after UV irradiation. During transcription regulation, PAF1C travels with RNAPII and promotes efficient elongation through chromatin\(^5,6\). To measure transcription elongation after UV, we metabolically pulse-labeled nascent transcripts with bromouridine (BrU) at different timepoints after UV irradiation, followed by capture and sequencing of the BrU-labeled nascent RNAs (Fig. 8a)\(^23\). Nascent transcription was substantially reduced at TSS sites and progressively decreased further into gene bodies at 3 h after UV in control cells (Fig. 8b–d, see Supplementary Fig. 7c for an independent replicate)\(^33,34\). This is
consistent with the distribution of DNA lesions in transcribed strands after UV irradiation with 7 J/m² (1 CPD/16 kb45), and reflects the probability of RNAPII molecules encountering a DNA lesion. A partial restoration of reads at the TSS and from within gene bodies in TIR1 cells could already be detected at 8 h after UV, and this was fully restored at 24 h after UV (Fig. 8b–d, Supplementary Fig. 7c). This restoration was accompanied by the reappearance of both RNAPII and PAF1 at TTS sites detected by ChIP-seq (see the ZFR gene in Fig. 8d). These data suggest that transcription recovery occurs in a wave starting from the promoter-proximal region and ultimately reaching the end of genes.

Unirradiated cells depleted for PAF1 showed normal nascent transcription in the first 50 kb and slightly reduced nascent transcription toward the end of long genes (Fig. 8b, Supplementary Fig. 7c, d). This is in line with a role of PAF1 as elongation factor3,5,33. Our protein interaction data, however, suggests that in unirradiated cells only a small RNAPII pool to +1000 bp; blue) over the reads in the promoter-proximal region (−750bp to TSS; red). b Quantification of the transcription rate (or shift) in PAF1 binding after UV. All replicates and UV doses (6 and 9 J/m², total n = 4) were pooled, which revealed a set of 478 genes that shows a uniform UV-induced shift into promoter-proximal regions in all replicate experiments at 8 h after 6 and 9 J/m² (All Shift) and a set of 2522 genes that show a UV-induced shift only in a subset of the conditions (Mixed Shift). c UCSC genome browser track showing the read density of PAF1 and RNAPII signal across the POLG2 gene (All Shift) and SLC40A1 gene (Mixed Shift) in unirradiated (mock) and UV-irradiated cells. d Averaged metaplots of ChIP-seq around the TSS of the 478 All Shift genes (upper panel) or the 2522 Mixed Shift genes (lower panel) in unirradiated cells (mock, n = 3) and 8 h after UV with 6 J/m² (n = 1) and 9 J/m² (n = 3). e The ratio of the RNAPII transcription rates for the 478 All Shift genes compared to the 2522 Mixed Shift genes at 8 h after UV with 6 J/m² (n = 3) and 9 J/m² (n = 2). f The ratio of the RNAPII transcription rates for 3000 genes relative to the average transcription rate in the unirradiated control (set to 1) shown for TIR1 (upper panel) or PAF1-AID clone 14 (lower panel). Shown are unirradiated cells (mock, n = 2), 8 h after 6 J/m² (6U8h, n = 2), or 9 J/m² (9U8h, n = 2). g Data as in f, but for 902 genes with consistent shift of RNAPII in all replicates at 6 J/m² or 9 J/m² compared to mock in TIR1 cells. The y-axes in panels e–g indicate percent of all genes. Indicated percentages and n indicate genes with a normalized traveling ratio above 1.

Discussion

Under undamaged conditions, PAFIC is known to interact with RNAPII in a P–TEFb-dependent manner to regulate transcription elongation3,5,33. Our protein–protein interaction data, however, suggests that in unirradiated cells only a small RNAPII pool stably interacts with the PAFIC and that UV irradiation strongly increases this pool in a manner that does not require the canonical P–TEFb pathway (Figs. 1–2). Instead this UV-induced PAFIC–RNAPII interaction relies on the TCR-specific CSB protein (Figs. 1–2). The RNAPII–PAFIC interaction still occurred normally in TCR-deficient CSA or UVSSA knockout cells, suggesting that the loss of interaction in CSB-KO cells is not due to a general TCR deficiency (Fig. 2). It is possible that CSB mediates the association of PAFIC to RNAPII through protein–protein interactions with LE01, which is compatible with available structural data33 (Fig. 3a), and supported by our interaction data (Fig. 3b). The fact that we only detect a small RNAPII pool that stably interacts with PAFIC in unirradiated cells (Figs. 1 and 2) could be explained by the presence of a small pool of p–TEFb-modified RNAPII at any given time, or by a transient interaction that is not captured efficiently under our experimental IP conditions. Such a transient interaction may be stabilized by DNA-protein crosslinking applied in ChIP-seq experiments, explaining why we do detect both RNAPII and PAF1 at the TSS of the top 3000 genes in our study (Figs. 5 and 6).

During the canonical transition of paused RNAPII into productive elongation, the association of PAFIC with RNAPII displaces the NELF complex from RNAPII. Interestingly, a p38 MAP kinase pathway releases NELF from chromatin after UV irradiation, which is partially dependent on CSB46. It is therefore possible that CSB could promote efficient NELF displacement by regulating both PAFIC recruitment and activating the p38 pathway in parallel. In addition to NELF release, p38 also activates a p–TEFb pathway that regulates a transcriptional response immediately after DNA damage induction. This pathway ensures the expression of short coding and noncoding RNAs involved in the DNA damage response, including FOS and CDKN1A47. Importantly, many of these short DDR genes are regulated by p53 and do not require CSB for their expression after UV irradiation48. Thus, cells mount an immediate transcriptional response through p–TEFb to ensure expression of short DDR genes and noncoding RNAs while most other genes undergo a transcriptional arrest, which is particularly striking for longer genes23,44,47. We here show that the recovery of those transcriptionally arrested genes following repair by TCR requires the CSB–PAFIC axis for efficient recovery of productive elongation.

Our findings suggest a dual role for CSB. Firstly, CSB is an essential DNA repair factor in TCR that associates with DNA damage-stalled RNAPII and subsequently facilitates the recruitment of downstream TCR factors to initiate repair14,15. Secondly, CSB regulates transcription recovery from promoter-proximal sites, which involves the CSB-mediated association of PAFIC with RNAPII (Figs. 1 and 2). Knockdown of CDK9 was previously shown to not impair transcription recovery at late time-points after UV49, in line with the notion that is process is driven in a P–TEFb-independent manner. We show that PAFIC is dispensable for the repair of transcription-blocking DNA lesions, suggesting that the PAFIC-CSB interaction plays a unique role in transcription recovery (Figs. 3 and 4).

Both PAF1 and RNAPII shift into the first ~2 kb of gene bodies at 8 h after UV irradiation (Figs. 5 and 6). These changes could be
triggered by the strong UV-induced interaction between PAF1C and RNAPII, which is facilitated by CSB. In agreement with this model, we find that CSB-deficient cells fail to reposition PAF1 after UV. We propose that these changes reflect increased elongation from promoter-proximal sites, resulting in an increased number of RNAPII molecules within this region (Figs. 5 and 6). Consistent with this model, we find that genes that do not show a shift in PAF1 binding also do not release RNAPII, and that depletion of PAF1 prevents the UV-induced release of RNAPII from TSS sites (Fig. 6). Together, our findings suggest the following model (Fig. 9): (I) CSB recruits PAF1C after UV and loads this complex onto RNAPII paused at TSS sites, (II) CSB recruits CSA to TSS sites after UV irradiation resulting in the ubiquitylation of ATF3, which is also bound near the TSS sites to repress transcription, (III) the activation of RNAPII by PAF1C promotes pause release and elongation activation that drives transcription recovery. Our findings suggest that PAF1 that is loaded onto RNAPII by CSB at promoter-proximal sites travels with RNAPII and facilitates efficient and productive elongation throughout the gene. Supporting this notion, we find that PAF1 at
TTs sites is strongly reduced shortly after UV, but reappears at 26 h after UV irradiation (Supplementary Fig. 4e). At this time, we also detect that RNA synthesis is restored near the end of genes in wild-type cells, but not in PAF1-depleted cells (Fig. 8). The precise mechanisms by which PAF1C stimulates transcription remain to be elucidated, but these likely involve modulating chromatin structure through histone marks, such as H2B ubiquitylation, H3K79 methylation, and H3K4 methylation, which have been associated with PAF1C activity. In line with this possibility, we find that H2B ubiquitylation is strongly reduced toward the end of long genes in CSB-deficient cells after UV irradiation (Fig. 8). Additionally, both H3K79 methylation and H3K4 methylation have been linked to transcription restart after UV in mouse cells27, and C. elegans28. Whether these histone marks are deposited in a PAF1-dependent manner remains to be addressed. An intriguing possibility is that PAF1C is needed to stimulate transcription through former repair sites, which may have a chromatin signature that is suboptimal for transcription, such as H2A ubiquitylation52.

Methods

Cell lines. All cell lines are listed in Supplementary Table 1. All human RPE1-hTERT-Flp-In/T-Rex (RPE1-hTERT(FRT)), U2OS, U2OS-Flp-Int/T-Rex (U2OS (FRT)) cells were cultured at 37 °C in an atmosphere of 5% CO2, in DMEM supplemented with antibiotics, 10% fetal calf serum and glutamax (Gibco). Primary XP-C patient fibroblasts XP168LV were cultured at 37 °C in an atmosphere of 3% CO2 in Ham’s F10 medium without thymidine (Lonza) supplemented with 20% fetal calf serum and antibiotics.

FIP-Int/T-Rex cells (either RPE1-hTERT(FRT) or U2OS (FRT)) were used to stably express inducible versions of GFP-tagged proteins by co-transfecting pCDNA5/FRT/TO-Puro plasmid encoding GFP-tagged fusion proteins (5 µg), together with pPG4 plasmid encoding the Flp recombinase (0.5 µg). After selection on 1 µg/mL puromycin, single clones were isolated and expanded. RPE1-hTERT(FRT) cells were generated expressing either GFP-NS5 or GFP-LEO1. U2OS-Flp-Int/T-Rex (knockout for specific TCR genes; see below) were generated stably expressing CASA-GFP, GFP-NS5, UVSSA-GFP, or GFP-XPA in the corresponding KO line. In addition, U2OS-Flp-Int/T-Rex were generated expressing a GFP-PAP1 lacking six amino acids for its association with LE01 (PAF1-ΔLE01). Stable U2OS-Flp-Int/T-Rex or RPE1-hTERT(FRT)-FLP-Int/T-Rex clones were incubated with 2 µg/mL Doxycycline, followed by treatment with 500 µM auxin (3-Iodoleacetic acid; Sigma) for 5–6 h.

Transfections. Cells were transfected with plasmid DNA using Lipofectamine 2000 according to the manufacturer’s instructions. Cells were typically imaged 24 h after transfection. All siRNA transfections (see list of siRNA sequences in Supplementary Table 4) were performed with 40 nM siRNA duplexes using Lipofectamine RNAiMAX (Invitrogen). Cells were transfected twice with siRNAs at 0 and 36 h and were typically analyzed 60 h after the first transfection.

Western blotting. Cell extracts were generated by cell lysis and boiled in sample buffer. Proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to PVDF membranes (EMD Millipore). Protein expression was analyzed by immunoblotting with the indicated primary antibodies (Supplementary Table 3) and secondary CF680 Goat Anti-Rabbit IgG (antibody at 1:1000 or CF770 Goat Anti-Mouse IgG antibody at 1:100,000, followed by detection using the Odyssey infrared imaging scanning system (LI-COR biosciences, Lincoln, Nebraska USA). Uncropped western blot figures are available in the source data file provided with this paper.

Clonogenic survival assays. Cells were plated in low density in culture dishes, allowed to attach and treated with Illudin S at different concentrations for 72 h. Illudin S was removed and cells were allowed to form clones for 7–10 days. To visualize clones, cells were subjected to NaCl fixation and methylene blue staining. Cell survival after Illudin S treatment was defined as the percentage of cells able to form clones, relative to the untreated condition.

Immunoprecipitation for Co-IP. Except where indicated otherwise, all co-IP experiments were performed 1 h after UV irradiation. For endogenous RNAPII immunoprecipitation, cells were subjected to chromatin fractionation prior to immunoprecipitation. Cells were lysed in EBC-150 buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.5% NP-40, 2 mM MgCl2 supplemented with protease and...
phosphatase inhibitor cocktails (Roche)) for 20 min at 4 °C, followed by centrifugation to remove cytoplasmic proteins. Subsequently, the chromatin fraction was solubilized in EBC-150 buffer with 500 U/mL Benzonase (Novagen) and 2 μg of antibody recognizing elongating RNAPII-S2 (Abcam; ab5095) or RNAPII-S5 (Abcam; ab5408) for 1 h at 4 °C under rotation. Next, the NaCl concentration of the lysis buffer was increased to 300 mM by adding concentrated (5 M) NaCl, and lysates were incubated for another 30 min at 4 °C. The lysates were cleared from insoluble chromatin and were subjected to immunoprecipitation with protein A agarose beads (Millipore) for 1.5 h at 4 °C. The beads were then washed 4–6 times with EBC-300 buffer (50 mM Tris, pH 7.5, 300 mM NaCl, 0.5% NP-40, 1 mM EDTA) and boiled in sample buffer. Bound proteins were resolved by SDS-PAGE and immunoblotted with the indicated antibodies.

Immunoprecipitation of GFP-tagged proteins was performed using a similar protocol with the following exceptions: Cell pellets were directly solubilized in EBC-150 buffer with 500 U/mL Benzonase (Novagen) and 2 μg of antibody recognizing elongating RNAPII-S2 (Abcam; ab5095) or RNAPII-S5 (Abcam; ab5408) for 1 h at 4 °C under rotation. Next, the NaCl concentration of the lysis buffer was increased to 300 mM by adding concentrated (5 M) NaCl, and lysates were incubated for another 30 min at 4 °C. The lysates were cleared from insoluble chromatin and were subjected to immunoprecipitation with protein A agarose beads (Millipore) for 1.5 h at 4 °C. The beads were then washed 4–6 times with EBC-300 buffer (50 mM Tris, pH 7.5, 300 mM NaCl, 0.5% NP-40, 1 mM EDTA) and boiled in sample buffer. Bound proteins were resolved by SDS-PAGE and immunoblotted with the indicated antibodies.

Immunoprecipitation of GFP-tagged proteins was performed using a similar protocol with the following exceptions: Cell pellets were directly solubilized in EBC-150 buffer with 500 U/mL Benzonase (Novagen) and 2 μg of antibody recognizing elongating RNAPII-S2 (Abcam; ab5095) or RNAPII-S5 (Abcam; ab5408) for 1 h at 4 °C under rotation. Next, the NaCl concentration of the lysis buffer was increased to 300 mM by adding concentrated (5 M) NaCl, and lysates were incubated for another 30 min at 4 °C. The lysates were cleared from insoluble chromatin and were subjected to immunoprecipitation with protein A agarose beads (Millipore) for 1.5 h at 4 °C. The beads were then washed 4–6 times with EBC-300 buffer (50 mM Tris, pH 7.5, 300 mM NaCl, 0.5% NP-40, 1 mM EDTA) and boiled in sample buffer. Bound proteins were resolved by SDS-PAGE and immunoblotted with the indicated antibodies.

Immunoprecipitation of GFP-tagged proteins was performed using a similar protocol with the following exceptions: Cell pellets were directly solubilized in EBC-150 buffer with 500 U/mL Benzonase (Novagen) and 2 μg of antibody recognizing elongating RNAPII-S2 (Abcam; ab5095) or RNAPII-S5 (Abcam; ab5408) for 1 h at 4 °C under rotation. Next, the NaCl concentration of the lysis buffer was increased to 300 mM by adding concentrated (5 M) NaCl, and lysates were incubated for another 30 min at 4 °C. The lysates were cleared from insoluble chromatin and were subjected to immunoprecipitation with protein A agarose beads (Millipore) for 1.5 h at 4 °C. The beads were then washed 4–6 times with EBC-300 buffer (50 mM Tris, pH 7.5, 300 mM NaCl, 0.5% NP-40, 1 mM EDTA) and boiled in sample buffer. Bound proteins were resolved by SDS-PAGE and immunoblotted with the indicated antibodies.
EBC-150 supplemented with 500 U Benzonase, without chromatin fractionation, and pull-down was not dependent on antibody-mediated pull-down, but was performed using GFP Trap beads (Chromotek).

Generation of mass spectrometry samples. For stable isotope labeling by amino acids in cell culture (SILAC), CS1AN-SV expressing GFP-CSB were cultured for 14 days in media containing heavy (H) and light (L) labeled forms of the amino acids arginine and lysine respectively. SILAC-labeled cells were mock-treated (L) or exposed to 20 J/m² UV-C light and allowed to recover for 1 h (H). Label-free mass spectrometry samples were also either kept untreated or exposed to 20 J/m² UV-C light and allowed to recover for 1 h. A pool of equal amounts of H- and L-labeled cells (SILAC) or individual label-free mass spectrometry samples, were subsequently subjected to immunoprecipitation using GFP Trap beads as described above. After pull-down, the beads were washed two times with EBC-300 buffer and two times with 50 mM (NH₄)₂CO₃ followed by overnight digestion using 2.5 µg Fig. 8 PAF1C activates RNAPII pause release and transcription elongation after UV irradiation. a Outline of the BrU-seq approach to measure nascent transcription across the genome. b Metaplots of nascent transcription in genes of >100 kb, between 50 and 100 kb, or between 25 and 50 kb in one replicate of either TIR1 cells (upper panels) or PAF1-AID cells (lower panels) that were either mock-treated, or UV-irradiated (7 J/m²) and analyzed at the indicated timepoints (3, 8, or 24 h). The relative distribution of nascent transcript read density (in reads per thousand base-pairs per million reads) was normalized to the absolute nascent transcript intensities measured in parallel to the BrU-seq experiments using the same cells and timepoints (see Fig. 4g, h). A replicate experiment is shown in Supplementary Fig. 7c. c Heatmaps of BrU-seq data from the first replicate of unirradiated (mock) or UV-irradiated (3 or 24 h after 7 J/m²) TIR1 control or PAF1-AID cells. Data was mapped and processed as for ChIP-seq and data is presented for the top 3000 genes with PAF1 binding at the TSS followed by ranking according to gene length. d UCSC genome browser track showing the nascent transcript read density across the ZFR gene in unirradiated and UV-irradiated TIR1 and PAF1-AID cells. Also shown are the PAF1, RNAPII, and Ub-H2B read densities for the same gene for comparison.

Fig. 9 Model of the role of PAF1C in restoring transcription across the genome after genotoxic stress. (Top panel) Within the first 3 h after UV irradiation, RNAPII molecules stall at sites of DNA damages, inducing DNA repair through CSB. At the same time, the expression of transcriptional repressor ATF3 is strongly upregulated resulting in decreased transcription initiation at promoters. (Middle panel) CSB recruits the PAF1C to RNAPI paused around TSS sites and stimulates CSA-mediated degradation of ATF3. (Bottom panel) PAF1C binding to RNAPII around the TSS pause site subsequently promotes RNAPII pause release and stimulates productive elongation throughout genes.
trypsin at 37 °C under constant shaking. Peptides of the H and L precipitates were mixed in a 1:1 ratio and all samples were desalted using a Sep-Pak tC18 cartridge by wash with 80% acetonitrile. Finally, peptides were eluted with 0.1% formic acid/60% acetonitrile and lyophilized according to33.

Mass spectrometry data acquisition. Mass spectrometry was performed essentially as previously described34. Samples were analyzed on a Q-Exactive Orbitrap mass spectrometer (Thermo Fisher, Germany) coupled to an EASY-nanoLC 1000 system (Proxeon, Odense, Denmark). For the SILAC samples, digested peptides were separated using a 13 cm fused silica capillary (ID: 75 µm, OD: 375 µm, Polymeric Technologies, California, US) in-house packed with 1.8 µm C18 beads (Reprospher-DE, Pur, Dr. Maisch, Ammerburgen-Entinningen, Germany). Peptides were separated by liquid chromatography using a gradient from 2 to 95% acetonitrile with 0.1% formic acid at a flow rate of 200 nl/min for 2 h. The mass spectrometer was operated in positive-ion mode at 1.8 kV with the capillary heated to 250 °C. Data-dependent acquisition mode was used to automatically switch between full scan MS and MS/MS scans, employing a top 10 method. Full scan MS spectra were obtained with a resolution of 70,000, a target value of 3 × 106 and a scan range from 400 to 2000 m/z. Higher-Collisional Dissociation (HCD) tandem mass spectra (MS/MS) were recorded with a resolution of 35,000, a target value of 1 × 105 and a normalized collision energy of 25%. Maximum injection times for MS and MS/MS were 50 and 120 ms, respectively. For all samples, the precursor ion masses selected for MS/MS analysis were subsequently dynamically excluded from MS/MS analysis for 30 sec. Precursor ions with a charge state of 1 or greater than 6 were excluded from triggering MS/MS events.

Mass spectrometry data analysis. Raw mass spectrometry data were further analysed in MaxQuant v 1.5.3.30 according to Tyanova et al.35 using standard settings with the following modifications. For the SILAC-labeled GFP-C8B samples, multiplicity was set to 2, marking Arg10 and Lys8 as heavy labels. Maximum missed cleavages by trypsin was set to 4. Label-free samples, digested peptides were separated using a 15 cm fused silica capillary (ID: 75 µm, OD: 375 µm, Polymeric Technologies, California, US) in-house packed with 1.9 µm C18-AQ beads (Reprospher-DE, Pur, Dr. Maisch, Ammerburgen-Entinningen, Germany). Peptides were separated by liquid chromatography using a gradient from 2% to 95% acetonitrile with 0.1% formic acid at a flow rate of 200 nl/min for 90 min. The mass spectrometer was operated in positive-ion mode at 2.8 kV with the capillary heated to 250 °C. Data-dependent acquisition mode was used to automatically switch between full scan MS and MS/MS scans, employing a top seven method. Full scan MS spectra were obtained with a resolution of 70,000, a target value of 3 × 106 and a scan range from 400 to 2000 m/z. Higher-Collisional Dissociation (HCD) tandem mass spectra (MS/MS) were recorded with a resolution of 35,000, a target value of 1 × 106 and a normalized collision energy of 25%. Maximum injection times for MS and MS/MS were 50 and 120 ms, respectively. For all samples, the precursor ion masses selected for MS/MS analysis were subsequently dynamically excluded from MS/MS analysis for 30 sec. Precursor ions with a charge state of 1 or greater than 6 were excluded from triggering MS/MS events.

Nascent transcript level measurements. Cells were plated in DMEM supplemented with 10% Fetal CalF Serum (FCS) and, if needed, transfected with siRNAs as described above. Subsequently, cells were plated in DMEM supplemented with 1% FCS for at least 24 h prior to the nascent transcript measurement to avoid the excess of available uridine in the culture medium. Cells were UV irradiated, allowed to recover for the indicated time periods, and pulse-labeled with 400 µM 5-ethyluridine (EU; AxoBio) for 1 h. After medium-chase with DMEM containing 10 µM Thymidine for 30 min, cells were fixed with 3.7% formaldehyde in PBS at 15 min at room temperature and stored in PBS. Next, cells were permeabilized for 20 min with 0.5% Triton-X100 and blocked with 3% BSA (Thermo Fisher) in PBS. The incorporated Edu was visualized by click-it chemistry, labeling the cells for 1 h with a mix of 60 µM atto-Alexa-647 (Atto Tec), 4 mM copper sulfate (Sigma) and 10 mM ascorbic acid (Sigma) in a 50 mM Tris-buffers. After this, the cells were postfixed with 2% PFA for 10 min and blocked with 100 mM Glyine. Cells were washed extensively with PBS, DNA was denatured with 0.5 M NaOH for 5 min, blocked with 10% BSA (Thermo Fisher) in PBS for 15 min and equilibrated in 0.5%BSA and 0.05% TritonX100 in PBS (WB-buffers). Damaged areas were visualized by labeling the cells for 2 h with mouse anti-CFP (Cosmo Bio; CAC-NM-DND-001; 1:1000 in WB-buffer). After primary antibody incubation, cells were washed extensively with WB-buffer, stained with goat anti-rabbit IgG-Alexa 555 (Thermo Fisher; A-21424; 1:1000 in WB-buffer) for 1 h, again washed extensively with WB-buffer, counterstained with 0.1 µg/mL DAPI, washed extensively with PBS and mounted in PolyMount (Brunschwig).

TCR-specific unscheduled DNA synthesis. Detection of TCR-specific unscheduled DNA synthesis was performed essentially as previously described36. Primary GFP-LEO1 (TCR-expressing) patient cells (XP-C patient cells) were transfected with silencing RNAs and subsequently serum starved for at least 24 h in F10 medium (Lonza) supplemented with 0.5% FCS and antibiotics. Cells with subsequently irradiated with 8 pJ/fm2 UV-C, and pulse-labeled with 20 µM 5-ethyl-nicotinamide deoxy-uridine (EdU; Invitrogen) and 1 µM FuDR (Sigma–Aldrich) for 8 h. After labeling, cells were chased with F10 medium supplemented with 0.5% FCS and 10 µM thymidine for 15 min, and fixed for 15 min with 3.6% formaldehyde and 0.5% Triton-X100 in PBS. Next, cells were permeabilized for 20 min in PBS with 0.5% Triton-X100 and washed and stored in 3% bovine serum albumin (BSA, Thermo Fisher) in PBS. The incorporated EdU was visualized by click-it chemistry-mediated binding of Biotin (Azide-PEG2-Biotin Conjugate; Jena Biosciences) using the protocol and reagents from the Invitrogen Click-IT EdU Cell Proliferation Kit for Imaging, and signals were amplified using protocol and reagents of the Alexa Fluor–488 Tyramide streptavidin SuperBoos Kit (Thermo Fisher). After click-it and amplification, cells were counterstained with 0.1 µg/mL DAPI, washed extensively with 0.1% Triton-X100 in PBS and mounted in PolyMount (Brunschwig).

Immunostaining of ubiquitylated H2B levels. Cells were plated in DMEM supplemented with 10% Fetal CalF Serum (FCS). Subsequently, cells were UV irradiated with 9 J/cm2, or kept unirradiated. At 8 h after UV irradiation, cells were washed with cold PBS, fixed with 100% methanol on ice for 10 min, extensively washed and stored in PBS. From here all steps were performed at room temperature. Cells were further permeabilized by incubation with 0.5% Triton-X100 for 5 min. Then nuclei were fixed with 2% PFA for 10 min and blocked with 0.5% BSA and 0.05% Tween20 in PBS (WB-buffer) for 10 min. Ub-H2B was visualized by labeling the cells for 2 h with rabbit anti-ub-H2B (K120) (Cell signaling (mAb#5546, D11); 1:200 in WB-buffer). After primary antibody incubation, cells were washed extensively with PBS, stained with goat anti-rabbit IgG-Alexa 555 (Thermo Fisher; A-21429; 1:1000 in WB-buffer) for 1 h, again washed extensively with WB-buffer, counterstained with 0.1 µg/mL DAPI, washed extensively with PBS and mounted in PolyMount (Brunschwig).

Microscopic analysis of fixed cells. Images of fixed cells were acquired on a Zeiss AxioImager M2 or D2 widefield fluorescence microscope equipped with ≥63 p×1.4 NA oil-immersion objectives (Zeiss) and an HXP 120 120 µW halide lamp used for excitation. Fluorescent probes were detected using the following filters: DAPI (excitation filter: 350/50 nm, dichroic mirror: 400 nm, emission filter: 460/50 nm), Alexa 555 (excitation filter: 545/25 nm, dichroic mirror: 565 nm, emission filter: 605/70 nm), Alexa 647 (excitation filter: 640/30 nm, dichroic mirror: 670 nm, emission filter: 690/50 nm), and imaged using ZEN 2012 (blue edition, version 1.1.0.0) software and analyzed in Image J (1.48 v).

ChIP sequencing. Cells were plated and grown to ~90% confluency and cross-linked with 0.5 mg/mL disuccinimidyl glutarate (DSG; Thermo Fisher) in PBS for 45 min at room temperature. Cells were washed with PBS and crosslinked with 1% PFA for 20 min at room temperature. Fixation was stopped by adding 1.25 M Glyine for 1 h and a final 1:1 dilution in storage buffer. Cells were washed with cold PBS and lysed and collected in a buffer containing 0.25% Triton X-100, 10 mM EDTA (pH 8.0), 0.5 mM EGTA (pH 8.0), and 20 mM
Hepes (pH 7.6). Chromatin was pelleted in 5 min at 400 × g and resuspended in CHIP buffer (0.15 % SDS, 1 % Triton X-100, 150 mM NaCl, 1 mM EDTA (pH 8.0), 0.5 mM EGTa (pH 8.0) and 50 mM Heps (pH 7.6)) to a final concentration of 15 × 10⁶ cells/ml. Chromatin was sonicated to approximately one nucleosome using a Bioruptor water bath sonicator (Diagenode). Chromatin of ~5 × 10⁶ cells was incubated with 3-μg antibody (RNAPII, rabbit polyclonal, Bethyl laboratories, A304-405A; PAF1, rabbit polyclonal, Bethyl laboratories, A300-172A; Ub-H2B(Lys120), rabbit monoclonal (D11), Cell signaling, #5546) overnight at 4 °C, followed by a 1.5 h protein-chromatin pull-down with a ~1 μg of protein A (Thermo Fisher scientific #200010D) and ~100 μl of mCherry + mCherry (Thermo Fisher scientific #10003D). ChIP samples were washed extensively, followed by decrosslinking for 4 h at 65 °C in the presence of proteinase K. DNA was purified using a Qiagen MinElute kit. Sample libraries were prepared using HiFi Kapa sample prep kit and A+T mediated ligation of Nextflex adapters or xGen UMI adapters. Samples were sequenced using an Illumina NexSeq500 or HiSeq X, using paired-end sequencing with 42 or 151 bp from each end.

ChIP-seq analyses. A sequencing quality profile was generated using FastQC (Version 0.11.2). Reads were aligned to the Human Genome 38 (Hg38) (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/000/105/GCA_00000105.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_00000105.15_GRCh38 no_alt_analysis_set.fna). Alignments were indexed using bowtaidx tools (BWA (Version 0.7.16a) [50]. Only high-quality reads (> q0) were included in the analyses and duplicates were removed using Samtools (Version 1.6) with fixmate -m and markdup -r settings (Supplementary Table 6). Bedgraph UCSC genome tracks were generated and FAI binding peaks were identified using the callpeaks tool of MACS2 (Version 2.1) [51], correlating each ChIP-seq sample with its UV-dose-associated input, with standard tool-settings. Example genome tracks were generated in IGV (Version 2.4.3). Bam files were converted into TagDirectories using HOMER tools [52].

A list of 49,948 transcription start sites was obtained from the UCSC genome database (https://genome.ucsc.edu/cgi-bin/hgTables) selecting the knownCanonical table containing the canonical transcription start sites per gene. For PAF1 and RNAPII, only genes of 3–100 kb were included in the analyses to prevent the inclusion of extremely small genes that might not be damaged under our experimental conditions, or genes that likely will acquire multiple DNA damages and might therefore not represent repaired genes in the timeframe of our experiments. To prevent contamination of binding profiles, genes should be nonoverlapping with at least 2 kb between genes. Binding profiles within selected areas of individual genes (e.g., around TSS or TTS), were defined using the AnnotatePeaks.pl tool of HOMER using the default normalization to 1Mln reads. Metagene profiles were defined using the makeMetaGeneProfile.pl tool of HOMER (Version 4.8.2), using default settings. Individual datasets were subsequently processed in R (Version 3.5.3) and RStudio (Version 1.1.423) [53]. First, read densities in input samples were subtracted from individual ChIP-seq datasets to background-correct our data in which negative values were converted to 0, to prevent inclusion of immediate negative readings in further analyses. ChIP profiles were averaged per sets of genes. PAF1 and RNAPII profiles were normalized to area under the curve to allow proper comparison of the profiles without effects of overall differences in read density. Traveling ratios were defined per gene over ranges indicated in individual analyses, with infinite ratios removed. Ub-H2B ChIP profiles were first background-subtracted (background at 200 bp before the TSS), and subsequently area under the curve of the plots were normalized to Ub-H2B levels defined by microscopy (as described above). Original ChIP-seq data files for RNAPII, ATF3, CSA, and CSB, were also obtained from Epanchintsev and colleagues [54] (GSE87562) and Hou and colleagues [55] (GSE116169), and data for PAF1 was obtained from Chen and colleagues [41] (GSE97527) (GEO) (https://www.ncbi.nlm.nih.gov/geo/). These files were subsequently converted into FASTQ files using NCBI sratoolkit.2.9.6-1-win64 and processed as described above, but without subtraction of Input reads.

BrU-sequencing and data analysis. U2OS TIR1 or PAF1-AID cells were induced with doxycycline for 24 hrs, and subsequently with arixin for 5h. After this treatment, cells were either mock-treated or irradiated with UV-C light (7 μJ/cm²). Cells were then placed in conditioned media or in further experiments. ChIP profiles were averaged per sets of genes. PAF1 and RNAPII profiles were normalized to area under the curve to allow proper comparison of the profiles without effects of overall differences in read density. Traveling ratios were defined per gene over ranges indicated in individual analyses, with infinite ratios removed. Ub-H2B ChIP profiles were first background-subtracted (background at 200 bp before the TSS), and subsequently area under the curve of the plots were normalized to Ub-H2B levels defined by microscopy (as described above). Original ChIP-seq data files for RNAPII, ATF3, CSA, and CSB, were also obtained from Epanchintsev and colleagues [54] (GSE87562) and Hou and colleagues [55] (GSE116169), and data for PAF1 was obtained from Chen and colleagues [41] (GSE97527) (GEO) (https://www.ncbi.nlm.nih.gov/geo/). These files were subsequently converted into FASTQ files using NCBI sratoolkit.2.9.6-1-win64 and processed as described above, but without subtraction of Input reads.

References
1. Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).
2. Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused RNA polymerase II. Science 330, 1383–1386 (2015).
3. Fritz, J., Neumann, T. & Pavri, R. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation. EMBO J. 37, 9976–9985 (2018).
4. Hou, L. et al. PaPiC regulates RNA polymerase II progression by modulating elongation rate. Proc. Natl. Acad. Sci. USA 116, 14583–14592 (2019).
5. Kim, J., Guermah, M. & Roeder, R. G. The human PaPiC complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 140, 491–503 (2010).
6. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates transcription inhibition. Proc. Natl. Acad. Sci. USA 105, 1066–1071 (2008).
7. Brueckner, F., Hennecke, U., Carell, T. & Cramer, P. CDP damage recognition by transcribing RNA polymerase II. Science 315, 859–862 (2007).
8. Moné, M. J. et al. Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep. 2, 1013–1017 (2001).
9. Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene 13, 823–831 (1996).
10. Epanchintsev, A. et al. Cockayne syndrome A and B proteins regulate transcription arrest after genotoxic stress by promoting ATF3 degradation. Mol. Cell 68, 1054–1066 (2017).
11. Kristensen, U. et al. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Proc. Natl. Acad. Sci. USA 110, E2261–E2270 (2013).
12. Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell Biol. 20, 7643–7653 (2000).
13. Brueckner, F., Hennecke, U., Carell, T. & Cramer, P. CDP damage recognition by transcribing RNA polymerase II. Science 315, 859–862 (2007).
14. Moné, M. J. et al. Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep. 2, 1013–1017 (2001).
15. Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene 13, 823–831 (1996).
16. Epanchintsev, A. et al. Cockayne’s syndrome A and B proteins regulate transcription arrest after genotoxic stress by promoting ATF3 degradation. Mol. Cell 68, 1054–1066 (2017).
17. Kristensen, U. et al. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Proc. Natl. Acad. Sci. USA 110, E2261–E2270 (2013).
18. Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell Biol. 20, 7643–7653 (2000).

Received: 28 April 2020; Accepted: 28 January 2021; Published online: 26 February 2021
14. van der Weegen, Y. et al. The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nat. Commun. 11, 2104 (2020).
15. Nakazawa, Y. et al. Ubiquitination of DNA damage-stalled RNA polymerase II. Nat. Commun. 6, 6193 (2015).
16. Laugel, V. et al. Mutation update for the CSA/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum. Mutat. 31, 113–126 (2010).
17. Leong, A. R. & De-Santis, L. Damage, P. & Egly, J. M. Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J. 25, 1915–1923 (2006).
18. Borkovec, M. et al. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nat. Commun. 9, 1017 (2018).
19. Bugai, A. et al. P-TEFb activation by RBM7 shapes a pro-survival transcriptional response to genotoxic stress. Mol. Cell. 74, 254–267 (2019).
20. Liu, J. & De-Santis, L. Damage, P. & Egly, J. M. Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J. 25, 1915–1923 (2006).
21. Donahue, B. A., Yin, S., Taylor, J. S., Reines, D. & Hanawalt, P. C. Transcript cleavage by DNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl Acad. Sci. USA 91, 8592–8596 (1994).
22. Chiov, Y. Y., Hu, J., Sancar, A. & Selby, C. P. DNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. J. Biol. Chem. 293, 2476–2486 (2018).
23. Andrade-Lima, L. C., Veloso, A., Paulsen, M. T., Menck, C. F. & Ljungman, M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res. 34, 2587–2596 (2005).
24. Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).
25. Adam, S., Polo, S. E. & Almouzni, G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIIR. Cell 155, 94–105 (2013).
26. Dinant, C. et al. Enhanced chromatin dynamics in fact promotes transcriptional restart after UV-induced DNA damage. Mol. Cell 51, 469–479 (2013).
27. Oksemey, V. et al. Histone methytransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet. 9, e1003611 (2013).
28. Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–143 (2015).
29. Zhu, B. et al. The human PAF complex coordinates transcription with events in solar mutagenesis. Nature 171, 456–461 (2014).
30. Donahue, B. A., Yin, S., Taylor, J. S., Reines, D. & Hanawalt, P. C. Transcript cleavage by DNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl Acad. Sci. USA 91, 8592–8596 (1994).
31. Chiov, Y. Y., Hu, J., Sancar, A. & Selby, C. P. DNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. J. Biol. Chem. 293, 2476–2486 (2018).
32. Andrade-Lima, L. C., Veloso, A., Paulsen, M. T., Menck, C. F. & Ljungman, M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res. 34, 2587–2596 (2005).
33. Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).
34. Adam, S., Polo, S. E. & Almouzni, G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIIR. Cell 155, 94–105 (2013).
35. Dinant, C. et al. Enhanced chromatin dynamics in fact promotes transcriptional restart after UV-induced DNA damage. Mol. Cell 51, 469–479 (2013).
36. Oksemey, V. et al. Histone methytransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet. 9, e1003611 (2013).
37. Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–143 (2015).
38. Zhu, B. et al. The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev. 19, 1688–1673 (2005).
39. Jaspers, N. G. et al. Anti-tumour compounds illudin S and Irofulven induce DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 85, 1101–1111 (2003).
40. Kocik, G. et al. Structural basis of TFIIH activation for nucleotide excision repair. Nat. Commun. 10, 2885 (2019).
41. Sarker, A. H. et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSA, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol. Cell 20, 187–198 (2005).
42. Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).
43. Donahue, B. A., Yin, S., Taylor, J. S., Reines, D. & Hanawalt, P. C. Transcript cleavage by DNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl Acad. Sci. USA 91, 8592–8596 (1994).
44. Chiov, Y. Y., Hu, J., Sancar, A. & Selby, C. P. DNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. J. Biol. Chem. 293, 2476–2486 (2018).
45. Andrade-Lima, L. C., Veloso, A., Paulsen, M. T., Menck, C. F. & Ljungman, M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res. 34, 2587–2596 (2005).
46. Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).
47. Adam, S., Polo, S. E. & Almouzni, G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIIR. Cell 155, 94–105 (2013).
48. Dinant, C. et al. Enhanced chromatin dynamics in fact promotes transcriptional restart after UV-induced DNA damage. Mol. Cell 51, 469–479 (2013).
49. Oksemey, V. et al. Histone methytransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet. 9, e1003611 (2013).
50. Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–143 (2015).
51. Zhu, B. et al. The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev. 19, 1688–1673 (2005).
52. Jaspers, N. G. et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair (Amst.) 1, 1027–1038 (2002).
53. Schwanhauser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
54. Soutourina, I. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 19, 262–274 (2018).
55. Vos, S. M. et al. Structure of activated transcription complex Pol II–DSIF–PAF–SPT6. Nature 560, 607–612 (2018).
56. Albert, T. K. et al. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor. Br. J. Pharmacol. 171, 55–68 (2014).
57. Garriga, J. & Grana, X. Cdk9 inhibition strategy de...
and J.A.F.M. performed and analyzed TCR-UDS experiments. H.W. and L.D. provided tools for ChIP-seq analyses. M.S.L. conceived and supervised the project and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-21520-w.

Correspondence and requests for materials should be addressed to M.S.L.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021