of contagion higher than expected. In our opinion, there is very little warning regarding this subject from public-health experts.

In fact, it has been shown that MP could be colonized by microorganisms, including bacteria, fungi, and even RNA viruses, as it could be the case with the SARS-CoV-2 which is also an RNA virus. Some authors have proposed that MP had amplified previous virus outbreaks like Ebola. SARS-CoV-2 is not an exception. In fact, it has been shown that this new virus can persist on inanimate surfaces like metal, glass, or plastic for up to 9 days. Due to their excessive use, added to the fact that they are rarely cleaned after handling, MP could become a source of virus transmission through repetitive cyclic hand-face contamination. In addition, health care professionals do frequently use MP during their shifts, searching for medical information that could help them in their daily work. This could also be a source of nosocomial infection even in intensive care units. To our knowledge, no study has yet addressed the issue related to SARS-CoV-2 transmission through MP. It could indeed explain an important part in the transmission of the infection to patients who claim adopting recommended safety measures.

Hence, several measures should be endorsed to tackle the MP-related SARS-CoV-2 transmission risk. Disinfection with bactericidal wipes adapted to MP could not be completely effective, and specific sanitization protocols should be developed especially for health care workers. Until then, it is crucial during the deconfinement phase to educate the population to limit the use of MP as much as possible, especially in public places and health care institutions. To our opinion, this procedure should be included in the recommended safety measures that are widely broadcasted through the media and science information thread.

To the Editor,

Given the practical importance of microbicides having efficacy against SARS-CoV-2 in home, community, and health care settings, we report evidence of the virucidal efficacy of a number of formulated microbicidal actives against SARS-CoV-2, as evaluated per ASTM International and EN standards.

Dissemination of SARS-CoV-2 from infected to susceptible individuals is believed to occur directly, via respiratory droplets and droplet nuclei/aerosols, and indirectly through contaminated high-touch environmental surfaces (HITES). SARS-CoV-2 has been reported to remain infectious on contaminated HITES for hours to days, allowing for onward self-infection of new individuals when contaminated hands come into contact with susceptible tissues (mucous membranes of the nose, eyes, and mouth). This Droplets-HITES nexus is central to the chain of infection with SARS-CoV-2, and highlights the critical role that targeted application of effective microbicides against potentially contaminated HITES and hands plays in infection prevention and control during the ongoing COVID-19 pandemic.

Fortunately, enveloped viruses such as SARS-CoV-2 are among the most susceptible to formulated microbicidal actives and detergents (including personal care soaps and liquid hand washes). Inactivation of such viruses by formulated microbicidal actives and detergents is believed to occur as a result of disruption of the virally modified, host-cell-derived, phospholipid bilayer glycoproteinaceous envelope, and the associated spike glycoproteins that interact with the angiotensin-converting enzyme receptor required for infection of host cells.

Virucidal efficacy of a selection of formulated microbicidal actives against SARS-CoV-2 has, to date, been assessed based on in vitro efficacy data obtained using other coronaviruses, as reported recently, based on nonstandardized methods of assessing viral inactivation (ie, log_{10} reduction in infectious titer) in suspension without details of the testing method used including appropriate controls. To date, virucidal activity against SARS-CoV-2 has not been demonstrated definitively through testing conducted per standardized surface and suspension methodologies. In Table 1, we provide definitive evidence of efficacy for inactivation of SARS-CoV-2, on contaminated prototypic HITES and suspensions, of products formulated with the following microbicidal actives: ethyl alcohol, para-chloro-meta-xylene, salicylic acid, and quaternary ammonium compounds. All of the microbicidal actives were effective for inactivating SARS-CoV-2, demonstrating ≥3.0 to ≥4.7 log_{10} reduction of infectious virus within the tested 1 to 5 minutes contact time in virucidal efficacy testing conducted per applicable ASTM International and EN standards.

To our knowledge, this is the first report of the virucidal efficacy of formulated microbicidal actives, determined using industry/regulatory-relevant global standardized (ASTM International, EN) methodologies, for inactivating SARS-CoV-2. Products formulated with the microbicidal actives studied here should be useful for healthcare workers, researchers, and the public at large as critical interventions for infection prevention and control of SARS-CoV-2 and the ongoing COVID-19 pandemic.

Microbicidal actives with virucidal efficacy against SARS-CoV-2

References

1. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020; 104:246–251.
2. Amanah A, Apriyanto DR, Fitriani H. Isolation of surveillance pathogenic fungal organisms, including bacteria, fungi and even RNA viruses, as it could be the case with the SARS-CoV-2 which is also an RNA virus. Some authors have proposed that MP had amplified previous virus outbreaks like Ebola. SARS-CoV-2 is not an exception. In fact, it has been shown that this new virus can persist on inanimate surfaces like metal, glass, or plastic for up to 9 days. Due to their excessive use, added to the fact that they are rarely cleaned after handling, MP could become a source of virus transmission through repetitive cyclic hand-face contamination. In addition, health care professionals do frequently use MP during their shifts, searching for medical information that could help them in their daily work. This could also be a source of nosocomial infection even in intensive care units. To our knowledge, no study has yet addressed the issue related to SARS-CoV-2 transmission through MP. It could indeed explain an important part in the transmission of the infection to patients who claim adopting recommended safety measures.

To the Editor,

Given the practical importance of microbicides having efficacy against SARS-CoV-2 in home, community, and health care settings, we report evidence of the virucidal efficacy of a number of formulated microbicidal actives against SARS-CoV-2, as evaluated per ASTM International and EN standards.

Dissemination of SARS-CoV-2 from infected to susceptible individuals is believed to occur directly, via respiratory droplets and droplet nuclei/aerosols, and indirectly through contaminated high-touch environmental surfaces (HITES). SARS-CoV-2 has been reported to remain infectious on contaminated HITES for hours to days, allowing for onward self-infection of new individuals when contaminated hands come into contact with susceptible tissues (mucous membranes of the nose, eyes, and mouth). This Droplets-HITES nexus is central to the chain of infection with SARS-CoV-2, and highlights the critical role that targeted application of effective microbicides against potentially contaminated HITES and hands plays in infection prevention and control during the ongoing COVID-19 pandemic.

Fortunately, enveloped viruses such as SARS-CoV-2 are among the most susceptible to formulated microbicidal actives and detergents (including personal care soaps and liquid hand washes). Inactivation of such viruses by formulated microbicidal actives and detergents is believed to occur as a result of disruption of the virally modified, host-cell-derived, phospholipid bilayer glycoproteinaceous envelope, and the associated spike glycoproteins that interact with the angiotensin-converting enzyme receptor required for infection of host cells.

Virucidal efficacy of a selection of formulated microbicidal actives against SARS-CoV-2 has, to date, been assessed based on in vitro efficacy data obtained using other coronaviruses, as reported recently, based on nonstandardized methods of assessing viral inactivation (ie, log_{10} reduction in infectious titer) in suspension without details of the testing method used including appropriate controls. To date, virucidal activity against SARS-CoV-2 has not been demonstrated definitively through testing conducted per standardized surface and suspension methodologies. In Table 1, we provide definitive evidence of efficacy for inactivation of SARS-CoV-2, on contaminated prototypic HITES and suspensions, of products formulated with the following microbicidal actives: ethyl alcohol, para-chloro-meta-xylene, salicylic acid, and quaternary ammonium compounds. All of the microbicidal actives were effective for inactivating SARS-CoV-2, demonstrating ≥3.0 to ≥4.7 log_{10} reduction of infectious virus within the tested 1 to 5 minutes contact time in virucidal efficacy testing conducted per applicable ASTM International and EN standards.

To the Editor,

Given the practical importance of microbicides having efficacy against SARS-CoV-2 in home, community, and health care settings, we report evidence of the virucidal efficacy of a number of formulated microbicidal actives against SARS-CoV-2, as evaluated per ASTM International and EN standards.

Dissemination of SARS-CoV-2 from infected to susceptible individuals is believed to occur directly, via respiratory droplets and droplet nuclei/aerosols, and indirectly through contaminated high-touch environmental surfaces (HITES). SARS-CoV-2 has been reported to remain infectious on contaminated HITES for hours to days, allowing for onward self-infection of new individuals when contaminated hands come into contact with susceptible tissues (mucous membranes of the nose, eyes, and mouth). This Droplets-HITES nexus is central to the chain of infection with SARS-CoV-2, and highlights the critical role that targeted application of effective microbicides against potentially contaminated HITES and hands plays in infection prevention and control during the ongoing COVID-19 pandemic.

Fortunately, enveloped viruses such as SARS-CoV-2 are among the most susceptible to formulated microbicidal actives and detergents (including personal care soaps and liquid hand washes). Inactivation of such viruses by formulated microbicidal actives and detergents is believed to occur as a result of disruption of the virally modified, host-cell-derived, phospholipid bilayer glycoproteinaceous envelope, and the associated spike glycoproteins that interact with the angiotensin-converting enzyme receptor required for infection of host cells.

Virucidal efficacy of a selection of formulated microbicidal actives against SARS-CoV-2 has, to date, been assessed based on in vitro efficacy data obtained using other coronaviruses, as reported recently, based on nonstandardized methods of assessing viral inactivation (ie, log_{10} reduction in infectious titer) in suspension without details of the testing method used including appropriate controls. To date, virucidal activity against SARS-CoV-2 has not been demonstrated definitively through testing conducted per standardized surface and suspension methodologies. In Table 1, we provide definitive evidence of efficacy for inactivation of SARS-CoV-2, on contaminated prototypic HITES and suspensions, of products formulated with the following microbicidal actives: ethyl alcohol, para-chloro-meta-xylene, salicylic acid, and quaternary ammonium compounds. All of the microbicidal actives were effective for inactivating SARS-CoV-2, demonstrating ≥3.0 to ≥4.7 log_{10} reduction of infectious virus within the tested 1 to 5 minutes contact time in virucidal efficacy testing conducted per applicable ASTM International and EN standards.

To the Editor,

Given the practical importance of microbicides having efficacy against SARS-CoV-2 in home, community, and health care settings, we report evidence of the virucidal efficacy of a number of formulated microbicidal actives against SARS-CoV-2, as evaluated per ASTM International and EN standards.

Dissemination of SARS-CoV-2 from infected to susceptible individuals is believed to occur directly, via respiratory droplets and droplet nuclei/aerosols, and indirectly through contaminated high-touch environmental surfaces (HITES). SARS-CoV-2 has been reported to remain infectious on contaminated HITES for hours to days, allowing for onward self-infection of new individuals when contaminated hands come into contact with susceptible tissues (mucous membranes of the nose, eyes, and mouth). This Droplets-HITES nexus is central to the chain of infection with SARS-CoV-2, and highlights the critical role that targeted application of effective microbicides against potentially contaminated HITES and hands plays in infection prevention and control during the ongoing COVID-19 pandemic.
Table 1
Virucidal efficacy of formulated microbical actives against SARS-CoV-2\(^*\)

| Product type          | Active ingredient concentration             | Temperature (°C) | Contact time (minutes) | Log\(_{10}\) reduction in infectious SARS-CoV-2 titer achieved |
|-----------------------|---------------------------------------------|------------------|------------------------|-------------------------------------------------------------|
|                       | In product        | Tested                   |                        |                                                             |
| Antiseptic liquid\(^1\) | 4.7% w/v         | 0.094% w/v PCMX (tested at 1:50 of supplied) | 21                     | 5                                                           | ≥4.7 |
| Hand sanitizer gel\(^1\) | 61% w/w         | 49% w/w ethanol (tested at 1:1.25 of supplied) | 21                     | 1                                                           | ≥4.2 |
| Liquid handwash\(^1\)   | 0.1% w/w         | 0.0135% w/w salicylic acid (tested at 1:4 of supplied) | 37                     | 1                                                           | ≥3.1 |
| Bar soap\(^1\)          | 0.11% w/w       | 0.018% w/w PCMX (tested at 1:6.25 of supplied)  | 38                     | 1                                                           | ≥3.0 |
| Surface cleanser\(^1\)   | 0.096% w/w      | 0.077% w/w QAC\(^1\) (tested at 1:1.25 of supplied) | 21                     | 5                                                           | ≥4.1 |

*Virucidal efficacy testing was conducted by Microbac Laboratories, Inc (Sterling, VA). The test cells were Vero E6, an African green monkey kidney cell obtained from American Type Culture Collection (ATCC CRL-1586). The growth medium was minimal essential medium supplemented with 5% FBS, L-glutamine, and antibiotics.

\(^1\)Tested using ASTM E1052-20 methodology.

\(^2\)Tested using EN 14476:2013+A2:2019 methodology.

\(^3\)Where multiple values are displayed, this reflects the testing of multiple independent lots of the formulated microbicidal actives.

\(^4\)Alkyl (50% C14, 40% C12, 10% C16) dimethyl benzyl ammonium chloride.

\(^5\)Alkyl (50% C14, 40% C12, 10% C16) dimethyl benzyl ammonium succarinate.

References

1. ASTM International. ASTM E1052-20. Standard practice to assess the activity of microbicidal actives against viruses in suspension using in vitro model systems. Available at: https://www.astm.org/Standards/E1052.htm. Accessed May 7, 2020.

2. ASTM International. ASTM E1053-20. Standard practice to assess the activity of microbicidal actives against microorganisms in suspension using in vitro model systems. Available at: https://www.astm.org/Standards/E1053.htm. Accessed May 7, 2020.

3. British Standards Institute. BS EN 14476:2013+A2:2019. Chemical disinfectants and antiseptics. Quantitative suspension test for the evaluation of virucidal activity in the medical area. Test method and requirements (Phase 2/Step 1). 2019; Available at: https://infostore.saiglobal.com/en-us/Standards/BS-EN-14476-2013-A2-2019-1039420100. Accessed May 7, 2020.

4. World Health Organization. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. 2020; Available at: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations. Accessed May 7, 2020.

Conflicts of interest: None to report.

M. Khalid Ijaz, DVM, MSc(Honors), PhD, FRSPH*
Kelly Whitehead, BS
Vanita Srinivasan, MS
Julie McKinney, PhD
Joseph R. Rubin, BA, MA
Mark Ripley, PhD
Chris Jones, PhD
Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
Raymond W. Nims, PhD
RMC Pharmaceutical Solutions, Inc., Longmont, CO, USA
Bruce Charlesworth, MD
Global Medical Science, Reckitt Benckiser Health, Hull, United Kingdom

* Address correspondence to M. Khalid Ijaz, DVM, MSc(Honors), PhD, FRSPH, Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, One Philips Parkway, Montvale, NJ 07645

E-mail address: Khalid.Ijaz@rb.com (M.K. Ijaz).

https://doi.org/10.1016/j.ajic.2020.05.015