Self-Similarity, Fractality and Entropy Principle in Collisions of Hadrons and Nuclei at Tevatron, RHIC and LHC

I. Zborovský⋆,♭ and M. Tokarev⋆⋆,♮

(⋆) The Czech Academy of Science, Nuclear Physics Institute, Rež, Czech Republic
(⋆⋆) Joint Institute for Nuclear Research, Dubna, Russia
♭ E-mail: zborovsky@ujf.cas.cz
♮ E-mail: tokarev@jinr.ru

Abstract

z-Scaling of inclusive spectra as a manifestation of self-similarity and fractality of hadron interactions is illustrated. The scaling for negative particle production in $Au + Au$ collisions from BES-I program at RHIC is demonstrated. The scaling variable z depends on the momentum fractions of the colliding objects carried by the interacting constituents, and on the momentum fractions of the fragmenting objects in the scattered and recoil directions carried by the inclusive particle and its counterpart, respectively. Structures of the colliding objects and fragmentation processes in final state are expressed by fractal dimensions. Medium produced in the collisions is described by a specific heat. The scaling function $\psi(z)$ reveals energy, angular, multiplicity, and flavor independence. It has a power behavior at high z (high p_T). Based on the entropy principle and z-scaling, energy loss as a function of the collision energy, centrality and transverse momentum of inclusive particle is estimated. New conservation law including fractal dimensions is found. Quantization of fractal dimensions is discussed.
1 Introduction

The production of particles with high transverse momenta from the collisions of hadrons and nuclei at sufficiently high energies has relevance to constituent interactions at small scales. In this regime, it is interesting to search for new physical phenomena in elementary processes such as quark compositeness [1, 2], extra dimensions [3-7], black holes [8-10], fractal space-time [11-13], fundamental symmetries [14], etc. Other aspects of high energy interactions are connected with small momenta of secondary particles and high multiplicities. In this regime, collective phenomena of particle production take place. Search for new physics in both regions is one of the main goals of investigations at the Relativistic Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN. Processes with high transverse momenta of produced particles are most suitable for a precise test of perturbative Quantum Chromodynamics (QCD). The soft regime is preferred for verification of nonperturbative QCD and investigation of phase transitions in non-Abelian theories. Basic principles which lie in the root of modern physical theories are the principles of relativity (special, general, scale), gauge invariance, locality, spontaneous symmetry breaking and others. The fundamental property of asymptotic freedom and gauge invariance were used for the development of QCD, the theory of strong interactions of quarks and gluons. Due to asymptotic freedom, the perturbative QCD is controlled by higher-order corrections in strong coupling constant. However, there is no universal method to be used in the nonperturbative sector of QCD. This is a big challenge because even at large momentum transfer, some nonperturbative aspects of the theory are still needed to make a comparison with measured physical observables. Moreover, the internal structure of hadrons is not fully understood and remains largely mysterious especially at small scales. In such situation, the principles of self-similarity and fractality can give additional constrains for theories in particle physics. We consider that both mentioned principles reflect general features of hadron interactions at high energies. They are important for verification of symmetries already established, study of their possible violations, and search for new symmetries which govern physical theories.

2 Scaling and universality as general concepts

The idea of self-similarity of hadron interactions is a fruitful concept to study collective phenomena in hadron matter. Important manifestation of such a concept is existence of scaling itself (see [15-17] and references therein). Scaling in general means self-similarity at different scales. The physical content meant behind it can be of different origin. Some of the scaling features constitute pillars of modern critical phenomena. Other category of scaling laws (self-similarity in point explosion, laminar and turbulent fluid flow, superfluidity far from phase boundary and critical point, etc.) reflects features not related to phase transitions.

The notions “scaling” and “universality” have special importance in critical phenomena. The scaling means that the system near the critical point exhibiting self-similar properties is invariant under transformation of a scale. According to universality, quite different systems behave in a remarkably similar way near the respective critical point. The universality hypothesis reduces the great variety of critical phenomena to a small number of equivalence classes, the so-called “universality classes”, which depend only on few fundamental parameters (critical exponents). The universality has its origin in the long range character
of interactions (fluctuations and correlations). Close to the transition point, the behavior of
the cooperative phenomena becomes independent of the microscopic details of the considered
system. The fundamental parameters determining the universality class are the symmetry
of the order parameter and the dimensionality of space.

3 z-Scaling

The z-scaling belongs to the scaling laws with applications not limited to the regions near
a phase transition. The scaling regularity concerns hadron production in the high energy
proton (antiproton) and nucleus collisions (see [18]-[22] and references therein). It manifests
itself in the fact that the inclusive spectra of various types of particles are described with a
universal scaling function $\psi(z)$. The function $\psi(z)$ depends on a single variable z in a wide
range of the transverse momentum, registration angle, collision energy and centrality. The
scaling variable has the form

$$z = z_0 \cdot \Omega^{-1}. \quad (1)$$

The quantity $z_0 = \sqrt{\sqrt{s}/[(dN_{ch}/d\eta)|_0]^c m_N]$ is proportional to the transverse kinetic energy
$\sqrt{s_{\perp}}$ of a selected binary sub-process responsible for production of the inclusive particle with
mass m_a and its partner (antiparticle) with mass m_b. The multiplicity density $dN_{ch}/d\eta|_0$ of
charged particles in the central interaction region, the nucleon mass m_N, and the parameter
c, interpreted as a "specific heat" of the produced medium, completely determine the value
of z_0. The quantity Ω is the maximal relative number of configurations containing binary
sub-processes defined by the momentum fractions x_1 and x_2 of colliding hadrons (nuclei),
which carry interacting constituents, and by the momentum fractions y_a and y_b of objects
created directly in these sub-processes, which carries the inclusive particle and its antiparticle
counterpart, respectively. The relative number of the configurations is given by the function

$$\Omega = (1-x_1)^{\delta_1} (1-x_2)^{\delta_2} (1-y_a)^{\epsilon_a} (1-y_b)^{\epsilon_b}, \quad (2)$$

where δ_1 and δ_2 are fractal dimensions of the colliding objects, and ϵ_a and ϵ_b are fractal
dimensions of the fragmentation process in the scattered and recoil direction, respectively.
The selected binary interaction of the constituents used for calculation of the transverse
kinetic energy $\sqrt{s_{\perp}}$ and z_0, is defined by the maximum of $\Omega(x_1, x_2, y_a, y_b)$ with the kinematic
constraint

$$(x_1 P_1 + x_2 P_2 - p/y_b)^2 = M_X^2. \quad (3)$$

The mass $M_X = x_1 M_1 + x_2 M_2 + m_b/y_b$ of the recoil system in the sub-process is expressed via
momentum fractions and depends implicitly on 4-momenta of the colliding objects and the
inclusive particle, P_1, P_2 and p, respectively. The constraint (3) accounts for the locality of
hadron interaction at the constituent level and sets a restriction on the momentum fractions
via kinematics of the constituent sub-process. The function Ω^{-1} represents a resolution at
which a sub-process defined by the fractions x_1, x_2, y_a, y_b can be singled out of the inclusive
reaction. The scaling variable z has property of a fractal measure. It grows in a power-like
manner with the increasing resolution Ω^{-1}.

The scaling function $\psi(z)$ is expressed in terms of the experimentally measured inclusive
invariant cross section $E d^3 \sigma/dp^3$, the multiplicity density $dN/d\eta$ and the total inelastic cross
section σ_{in} as follows [20]

$$\psi(z) = \frac{\pi}{(dN/d\eta) \sigma_{in} J^{-1}} E d^3 \sigma/dp^3. \quad (4)$$
Here J is the Jacobian for the transformation from $\{p_T^2, y\}$ to $\{z, \eta\}$. The Jacobian depends on kinematic variables characterizing the inclusive reaction. The multiplicity density in the expression (4) concerns particular hadrons species. The function $\psi(z)$ is normalized to unity
\[
\int_0^\infty \psi(z) dz = 1
\]
and interpreted as a probability density to produce an inclusive particle with the corresponding value of the self-similarity variable z. The flavor independence of z-presentation of inclusive spectra means that the shape of the scaling function $\psi(z)$ is the same for hadrons with different flavor content over a wide range of z [19, 20]. The scale transformation
\[
z \rightarrow \alpha_F z, \quad \psi \rightarrow \alpha_F^{-1} \psi
\]
is used for the comparison of the shapes of the scaling function for different hadron species. The scale parameter α_F depends on type (F) of the produced particles. The transformation preserves the normalization (5) and does not destroy the energy, angular, and multiplicity independence of the z-presentation of particle spectra.

3.1 Identified hadrons in $p + p$ collisions at RHIC

Let us remind the properties of z-presentation of experimental data already found in proton-(anti)proton collisions at high energies. These are the energy, angular, and multiplicity independence of scaling function $\psi(z)$ for different types of hadrons, direct photons, and jets confirmed by numerous data obtained at U70, ISR, SppS, Tevatron, and RHIC. The energy independence of the z-presentation of inclusive spectra means that the shape of the scaling function is independent on the collision energy \sqrt{s} over a wide range of the transverse momentum p_T of produced inclusive particle. Some results on the energy independence of the z-scaling for hadron production in proton-proton collisions were presented in [19]. The analyzed data include negative pions, kaons, and antiprotons measured at FNAL, ISR, and RHIC energies. The spectra were measured over a wide transverse momentum range $p_T = 0.1 - 10$ GeV/c. The cross sections decrease from 10^{2} to 10^{-10} mb/GeV2 in this range. The strong dependence of the spectra on the collision energy \sqrt{s} increases with transverse momentum.

Figure 1(a) shows the z-presentation of the spectra of π^-, K^-, \bar{p}, and Λ's produced in $p + p$ collisions over the range $\sqrt{s} = 19 - 200$ GeV and $\theta_{\text{cms}} = 3^0 - 90^0$. The symbols correspond to the data on differential cross sections measured in the central [24-33] and fragmentation [23] regions, respectively. The analysis comprises the inclusive spectra of particles [26, 27] measured up to very small transverse momenta ($p_T \approx 45$ MeV/c for pions and $p_T \approx 120$ MeV/c for kaons or antiprotons). One can see that the distributions of different hadrons are sufficiently well described by a single curve over a wide range of $z = 0.01 - 30$. The scaling function $\psi(z)$ changes more than ten orders of magnitude. The solid lines represent the same curve shifted by multiplicative factors for reasons of clarity. The same holds for the corresponding data shown with the different symbols.

The z-presentation of the transverse momentum distributions in proton-proton collisions was obtained for $\delta_1 = \delta_2 = \delta$. We assume that main features of the fragmentation processes in the scattered and recoil directions can be described by the same parameter $c_F = \epsilon_F \equiv \epsilon_F$ which depends on type (F) of the inclusive particle. The independence of the scaling function $\psi(z)$ on multiplicity and energy was found for the constant values of the parameters $c = 0.25$
Figure 1: The inclusive spectra of π^-, K^-, \bar{p}, and Λ hadrons produced in $p + p$ collisions in z-presentation (a). Data are taken from [23]-[33]. The solid lines represent the same curve shifted by multiplicative factors for reasons of clarity. The dependence of the fraction y_a on the transverse momentum p_T (b) for π^-, K^-, and \bar{p} produced in the $p + p$ collisions at $\sqrt{s} = 19$, 53, and 200 GeV in the central rapidity region.

and $\delta = 0.5$. The angular independence of $\psi(z)$ at small angles is sensitive to the values of $m_b = m(\pi^+)$, $m_b = m(K^+)$, and $m_b = m(p)$, for the inclusive production of π^-, K^-, and antiprotons, respectively. The parameter ϵ_F ($\epsilon_\pi = 0.2, \epsilon_K \simeq 0.3, \epsilon_\bar{p} \simeq 0.35, \epsilon_\Lambda \simeq 0.4$) increases with the mass of the produced hadron. The indicated values of the parameters are consistent with the energy, angular, and multiplicity independence of the z-presentation of spectra for all types of the analyzed inclusive particles (π, K, \bar{p}, Λ). The parameters were found to be independent of kinematic variables (\sqrt{s}, p_T, and θ_{cms}). The scale factors α_F are constants which allow us to describe the z-presentation of inclusive spectra for different hadron species by a single curve. Based on the obtained results [19] we conclude that RHIC data on $p + p$ collisions confirm the flavor independence of the z-scaling including production of particles with very small p_T.

The method of construction of the scaling variable z fixes values of the corresponding momentum fractions. The dependence of the fractions y_a and y_b on the kinematic variables ($p_T, \theta_{\text{cms}}, \sqrt{s}$) describes features of the fragmentation processes. The fraction y_a characterizes dissipation of the energy and momentum of the object produced by the underlying constituent interaction into the near side of the inclusive particle. This effectively includes energy loss of the scattered secondary partons moving in the direction of the registered particle as well as feed down processes from prompt resonances out of which the inclusive particle may be created.

Figure 1(b) shows the dependence of the fraction y_a on the transverse momentum p_T of π^-, K^-, \bar{p} particles produced in $p + p$ collisions at the energy $\sqrt{s} = 19, 53, 200$ GeV and $\theta_{\text{cms}} = 90^0$. All curves demonstrate a non-linear monotonic growth with p_T. It means that the relative energy dissipation associated with the production of a high p_T particle is smaller than for the inclusive processes with lower transverse momenta. This feature is similar for all inclusive reactions at all energies. The decrease of the fractions y_a with the increasing
collision energy is another property of the considered mechanism. It corresponds to more energy dissipation at higher energies. This can be due to the larger energy losses and/or due to the heavy prompt resonances. The third characteristic is a slight decrease of y_a with the mass of the inclusive particle. It implies more energy dissipation for creation of heavier hadrons compared to hadrons with smaller masses.

3.2 Strangeness production in $p + p$ collisions at RHIC

The strange particles represent a special interest as they contain strange quarks which are the lightest quarks absent in the net amount in the initial state. At the same time, the strange quarks created in the constituent sub-processes are substantially heavier than the valence quarks in the colliding protons. The self-similarity of such interactions, expressed by the same form of the scaling function, results in different properties of the constituent collisions and fragmentation processes as compared to those which underlay the production of the non-strange particles. The scaling behavior of $\psi(z)$ for strange particles could give more evidence in support of unique description of $p + p$ interaction at a constituent level and could provide a good basis for study of peculiarities of the strangeness production in nuclear collisions, as well as for study of the origin of the strangeness itself.

The self-similarity of strange hadron production was studied [20] using data [37]-[39] on inclusive cross-sections of K^0_S, K^-, K^{*0}, ϕ mesons measured in proton collisions at RHIC. The data on strange particle spectra [24], [41]-[48] obtained by the BS, CCRS, CDHW, AFS, NA61/SHINE, and NA49 Collaborations were used in the analysis as well.

Figure 2(a) shows z-presentation of the transverse momentum spectra [33]-[39] of strange mesons and baryons measured in $p + p$ collisions at the energy $\sqrt{s} = 200$ GeV in the central rapidity region at RHIC. The symbols representing data on differential inclusive cross sections include baryons which consist of one, two and three strange valence quarks. The multiplicative factors $10^0, 10^{-1},$ and 10^{-2} are used to show the data z-presentation separately for mesons, single-strange ($\Lambda, \Lambda^*, \Sigma^*$) and multi-strange ($\Xi^-, \Omega$) baryons, respectively. The symbols for different particles are shown for the indicated values of the parameters ϵ_F and α_F. They are reasonably well described by the solid curve representing a reference line ($\alpha_\pi = 1$) for π^- mesons obtained from analysis [19] of pion spectra. It is consistent with the energy, angular and multiplicity independence of the scaling function for different hadrons. The fragmentation dimension ϵ_F for strange mesons is larger than for pions ($\epsilon_\pi = 0.20 \pm 0.01$). It suggests larger energy loss by production of mesons with strangeness content. The fragmentation dimension for strange baryons grows with the number of the strange valence quarks.

Figure 2(b) demonstrates the p_T-dependence of the momentum fraction y_a of strange hadrons and π^- mesons produced in $p + p$ collisions at $\sqrt{s} = 200$ GeV. The fraction y_a increases with the transverse momentum for all particles. The energy loss $\Delta E_q/E_q = (1 - y_a)$ depends on value of the fragmentation dimension ϵ_F. As one can see, the relative energy loss decreases with the increasing p_T for all particles. For a given $p_T > 1$ GeV/c, the energy loss is larger for strange baryons than for strange mesons. The growth indicates increasing tendency with larger number of strange valence quarks inside the strange baryon, $(\Delta E/E)_\Omega > (\Delta E/E)_{\Xi^-} > (\Delta E/E)_{\Lambda} \simeq (\Delta E/E)_{\Lambda^*} \simeq (\Delta E/E)_{\Sigma^*}$.

6
3.3 Top-quark production at LHC and Tevatron

The top quark is the heaviest known elementary particle. It was discovered at the Tevatron in 1995 by the CDF and DØ Collaborations [49, 50] at a mass of around 170 GeV. The first measurements of the differential cross section as a function of the transverse momentum of the top quark were presented by the DØ Collaboration [51]. It is expected that top physics is extremely important in the search for new and for the study of known symmetries in high-\(p_T\) region.

Figure 3 shows the \(z\)-presentation [22] of the spectra of top-quark production obtained in \(p + p\) collisions at the LHC energies \(\sqrt{s} = 7, 8,\) and \(13\) TeV in the central rapidity region. The measurements of the inclusive cross sections were performed by the CMS [52]-[55] and ATLAS [56]-[59] Collaborations in the dilepton and jet channels. The data include measurements over a wide range of the transverse momentum \(30 < p_T < 1000\) GeV/c. The \(z\)-scaling of \(\pi^-\)meson spectra shown by the solid line serves as a reference curve. The values of the fractal dimension \(\delta = 0.5\) and the parameter \(c = 0.25\) are the same as used in our previous analyses [19, 20] for other hadrons. We have set \(\epsilon_{top} = 0\), as negligible energy loss is assumed in the elementary \(t\bar{t}\) production process. The scale parameter \(\alpha_F\) in the transformation (6) is found to be \(\alpha_{top} \simeq 0.0045\). The data on the top-quark production [60] in \(p + p\) collisions obtained by the DØ Collaboration at the Tevatron energy \(\sqrt{s} = 1.96\) TeV are compatible with the LHC data in \(z\)-presentation. The scaling function \(\psi(z)\) demonstrates energy independence over a wide range of the self-similarity parameter \(z\).

Based on the above comparison we conclude that the LHC and Tevatron data on inclusive spectra of the top quark support the flavor independence of the scaling function \(\psi(z)\) over the interval of \(z = 0.01 - 8\). This result gives us indication on the self-similarity of top-quark production in \(p + p\) and \(p + p\) interactions up to the top-quark transverse momentum \(p_T = 1\) TeV/c and for a wide range of the collision energy \(\sqrt{s} = 1.96, 7, 8\) and \(13\) TeV.
Figure 3: The scaling function \(\psi(z) \) of the top-quark production in \(p+p \) and \(p+\bar{p} \) collisions at the LHC energies \(\sqrt{s} = 7, 8, 13 \) TeV and at the Tevatron energy \(\sqrt{s} = 1.96 \) TeV. The symbols denote the experimental data obtained by the CMS [52]-[55], ATLAS [56]-[59], and DØ [60] Collaborations. The solid line is a reference curve corresponding to \(\pi^- \)-meson production in \(p+p \) collisions.

3.4 Jet production at LHC and Tevatron

Jets are traditionally considered as best probes of constituent interactions at high energies. They are of interest both for study of jet properties itself and in search for new particles identified by the jets. In hadron collisions, jet is a direct evidence of hard interaction of hadron constituents (quarks and gluons). The data on inclusive cross sections of jet production in \(p+p \) collisions at the LHC energies \(\sqrt{s} = 2760, 7000, \) and 8000 GeV [61]-[66] were analysed [22] in the framework of \(z \)-scaling. We used the parameter values \(c = 1, \delta = 1, \epsilon_{\text{jet}} = 0, \) and \(m_a = m_b = 0 \) for the analysis. The results are compared with \(z \)-presentation of jet spectra in \(\bar{p}+p \) collisions at the Tevatron energies \(\sqrt{s} = 630, 1800, 1960 \) GeV [67]-[78].

Figure 4(a) shows \(p_T \)-dependence of jet spectra measured in the central pseudorapidity window \(|\eta| < 0.5 \) by the ATLAS [61, 62, 63], CMS [64, 65], and ALICE [66] Collaborations at the LHC and the spectra obtained in the mid-rapidity region by the DØ [67]-[72] and CDF [73]-[78] Collaborations at the Tevatron. The data collected by the CMS Collaboration at \(\sqrt{s} = 8000 \) GeV correspond to the integrated luminosity of 19.7 fb\(^{-1}\). The spectra were measured up to the transverse momentum \(p_T = 2500 \) GeV/c. The measurement based on the data collected with the ATLAS detector at \(\sqrt{s} = 8000 \) GeV corresponds to an integrated luminosity of 20.2 fb\(^{-1}\). The ATLAS data cover the range 70 < \(p_T < 2500 \) GeV/c. The distributions change by many orders of magnitude within the analyzed \(p_T \)-range. As can be seen from Fig. 4(a), the strong dependence of the spectra on the collision energy \(\sqrt{s} \) increases with the transverse momentum.

Figure 4(b) demonstrates the energy independence of \(\psi(z) \) for jet production and its power behavior over the range \(\sqrt{s} = 630-8000 \) GeV at \(\eta \simeq 0 \). The scaling function changes more than twelve orders of magnitude and can be described by a power law \(\psi(z) \sim z^{-\beta} \) over a wide \(z \)-range. The slope parameter \(\beta \) is energy independent in the large region of \(\sqrt{s} \). The dashed line corresponds to the asymptotic behavior of \(\psi(z) \). The data obtained at
Figure 4: The inclusive spectra of jet production in $p + p$ and $\bar{p} + p$ collisions in p_T (a) and z-presentation (b) measured at $\theta \simeq 90^\circ$. The symbols denote the ATLAS [61, 62, 63], CMS [64, 65] and ALICE [66] data obtained in $p + p$ collisions at $\sqrt{s} = 2760, 7000, 8000$ GeV, and the DØ [67]-[72] and CDF [73]-[78] data obtained in $\bar{p} + p$ collisions at $\sqrt{s} = 630, 1800, 1960$ GeV.

3.5 BES-I program in $Au + Au$ collisions at RHIC

Experimental results from RHIC and LHC support the hypothesis that a new state of nuclear matter is created in the collisions of heavy ions at high energy. The created matter with quark and gluon degrees of freedom, the Quark-Gluon Plasma, reveals features of a strongly-coupled medium. It is assumed that the medium produced in heavy-ion collisions is thermalized. The phase diagram of nuclear matter is usually presented in the temperature-baryon chemical potential plane $\{T, \mu_B\}$. Both quantities can be varied by changing the energy and centrality of the nuclear collisions and the type and momentum of the produced particles. The idea of the Beam Energy Scan (BES) program at RHIC is to scan the phase diagram of nuclear matter from the top RHIC energy to the lowest possible energy achievable on this collider and compare it with the phase diagram predicted by QCD theory [80, 81]. The program is aimed to perform systematic investigation and data analysis of particle production in the heavy-ion interactions over a wide range of collision energy and centrality. The systematic measurements performed with heavy-ions are of great interest to search for critical phenomena in a broad range of kinematic variables.

We extend the applicability of the self-similarity principle to the description of hadron production in nucleus-nucleus collisions. The self-similarity concerns fractal structure of the colliding objects, interaction of their constituents and fractal character of fragmentation processes in the final state. This physical principle is assumed to be valid also in the high-density and high-temperature phase in which quark and gluon degrees of freedom dominate.

Figure 5(a) shows the scaling function $\psi(z)$ for negative hadrons [21] produced in the
Figure 5: Scaling function $\psi(z)$ (a) and the momentum fraction y_a in dependence on the transverse momentum p_T (b) for negative hadrons produced in (0−5)% central $Au + Au$ collisions at $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39, 62.4$ and 200 GeV [21]. The symbols correspond to experimental data [82] measured by the STAR Collaboration at RHIC.

(0−5)% central $Au+Au$ collisions at different energies $\sqrt{s_{NN}} = 7.7 − 200$ GeV. The symbols correspond to the spectra [82] measured by the STAR Collaboration in the pseudorapidity window $|\eta| < 0.5$. The z-presentation of the spectra demonstrates energy independence of the function $\psi(z)$ over the analyzed kinematic range. Moreover, the symbols representing the nuclear data are in reasonable agreement with the solid curve which depicts the z-scaling of h^- particles produced in $p+p$ collisions over the range $\sqrt{s} = 11.5 − 200$ GeV. The same energy independence of $\psi(z)$ is valid [21] for different centrality classes of $Au+Au$ collisions.

The z-scaling of negative hadron production in $Au + Au$ collisions was found in the environment with different multiplicity densities. The multiplicity scan of particle yields in nucleus-nucleus collisions at different energies gives complementary information on the production mechanisms in nuclear medium. The scaling can be interpreted as a result of a self-similar modification of elementary sub-processes by the created medium. We assume that verification of the scaling behavior of $\psi(z)$ at even higher (lower) z at high multiplicities could give new restrictions on the model parameters. Based on the self-similarity arguments, one can search for changes of the scaling parameters in the nuclear systems relative to ones established in $p + p$ interactions. A discontinuity or abrupt change of the structural (δ_A) and fragmentation (ϵ_{AA}) fractal dimensions and the "specific heat" (ϵ_{AA}) may indicate to a signature of a phase transition or a critical point in the matter produced in nuclei collisions.
Therefore quest for irregularities in the behavior of the \(z \)-scaling parameters is inspired by searching of the location of a phase boundary and a critical point, which is of great interest.

The increase of \(\epsilon_{AuAu} \) with multiplicity density is connected with a decrease of the momentum fraction \(y_a \), representing larger energy loss in final state for large centralities (multiplicities). The value of \(y_a \) is a characteristic which describes relative energy dissipation \(\Delta E_q/E_q = (1 - y_a) \) in the final state by production of an inclusive particle. The energy losses depend on the traversed medium which converts them into the multiplicity of the produced particles. This leads to the fact that the more produced multiplicity \(N_{ch}^{AA} \approx 2N_{neg}^{AA} \) per unit of (pseudo)rapidity, the larger energy loss of the secondary particles. The multiplicity density characterizes the produced medium and is connected in this way to the energy loss in this medium.

The amount of the relative energy loss, expressed by \(y_a \) and its dependence on \(\sqrt{s_{NN}} \), multiplicity, and transverse momentum of produced particle, has relevance to the evolution of the matter created in nuclei collisions. The energy and multiplicity characteristics of the energy loss can be sensitive to the nature of the medium and can reflect changes in the fragmentation process which may occur by production of inclusive particles. Figure 5(b) shows the dependence of the fraction \(y_a \) on the transverse momentum \(p_T \) for \(h^- \) hadrons produced in the \((0−5)\% \) central \(Au + Au \) collisions for different energies. A monotonic growth of \(y_a \) with the momentum \(p_T \) is found for all energies. This means that the relative energy dissipation associated with the production of a high-\(p_T \) particle is smaller than for the inclusive process with lower transverse momenta. At given \(p_T \), the decrease of \(y_a \) with \(\sqrt{s_{NN}} \) shows considerable growth of the relative energy loss, as the collision energy increases.

4 \(z \)-Scaling and entropy

The parameters used in the \(z \)-scaling scheme can be interpreted in terms of some thermodynamic quantities (entropy, specific heat, chemical potential) of a multiple particle system. There exists a profound connection between the variable \(z \) and entropy \([18, 19]\). The scaling variable is proportional to the ratio

\[
z \sim \frac{\sqrt{s_{\perp}}}{W}
\]

of the transverse kinetic energy \(\sqrt{s_{\perp}} \) and the maximal value of the function

\[
W(x_1, x_2, y_a, y_b) = (dN_{ch}/d\eta|_0)^c \cdot \Omega(x_1, x_2, y_a, y_b)
\]

in the space of the momentum fractions, constrained by the condition \(|x_i| < 1 \). The function \(W \) is proportional to the number of all parton and hadron configurations of the colliding system which contain the constituent configuration defined by particular values of the momentum fractions \(x_1, x_2, y_a \) and \(y_b \).

According to statistical physics, entropy of a system is given by a number \(W_S \) of its statistical states as follows

\[
S = \ln W_S.
\]

The most likely configuration of the system is given by the maximal value of \(S \). For the inclusive reactions, the quantity \(W_S \) is the number of all parton and hadron configurations in the initial and final state of the colliding system which can contribute to the production of inclusive particle. The configurations comprise all constituent configurations that are mutually connected by independent sub-processes. The binary sub-processes corresponding to
the production of the inclusive particle with the 4-momentum p are subject to the condition (3). The underlying sub-process, which defines the variable z, is singled out from these sub-processes by the principle of maximal entropy S. The absolute number of the configurations, $W_S = W \cdot W_0$, is given up to a multiplicative constant W_0. Its value is restricted by the positiveness of entropy above some scale characterized by a maximal resolution $(\Omega^{-1})_{\text{max}}$. For the infinite resolution at fractal limit, W_0 is classically infinity. Denoting $S_0 = \ln W_0$ and using relations (2), (8) and (9), we write the entropy of system of the considered configurations as follows

\[S = c \cdot \ln(dN_{ch}/d\eta|_0) + \ln(1 - x_1)^{\delta_1}(1 - x_2)^{\delta_2}(1 - y_a)^{\epsilon_a}(1 - y_b)^{\epsilon_b} + S_0. \]

(10)

In thermodynamics, the entropy for an ideal gas is given by the formula

\[S = c_V \cdot \ln T + R \cdot \ln V + S_0. \]

(11)

Here R is an universal constant. The specific heat c_V, temperature T and volume V characterize a state of the system.

There is an analogy between expressions (10) and (11). The analogy is supported by the plausible idea that interactions of the extended objects like hadrons and nuclei can be treated at sufficiently high energies as a set of independent collisions of their constituents. Such concept justifies a division of the system into the part comprising a binary sub-process which can contribute to production of the inclusive particle with 4-momentum p, and the remaining part containing all other microscopic configurations which lead to the produced multiplicity. Maximization of the entropy (10), constrained by the condition (3), corresponds to the maximal entropy of the remaining part of the system. The multiplicity density of particles produced in the central interaction region characterizes a "temperature" created in the system. Provided the system is in a local equilibrium, there exists a simple relation $dN_{ch}/d\eta|_0 \sim T^3$ for high temperatures and small chemical potentials. Using the mentioned analogy, the model parameter c plays a role of a "specific heat" of the produced matter. The second term in (10) depends on the volume of the rest of the system in the space of the momentum fractions $\{x_1, x_2, y_a, y_b\}$. The volume is a product of the complements of the fractions with exponents which are generally fractional numbers, $V = l_1^{\delta_1} \cdot l_2^{\delta_2} \cdot l_0^{\epsilon_a} \cdot l_b^{\epsilon_b}$. This analogy emphasizes once more the interpretation of the model parameters $\delta_1, \delta_2, \epsilon_a$ and ϵ_b as fractal dimensions.

The entropy (10) increases with the multiplicity density $dN_{ch}/d\eta|_0$ and decreases with the increasing resolution Ω^{-1}. The minimal resolution with respect to all binary sub-processes satisfying the condition (3), which singles out the corresponding sub-process, is equivalent to the principle of the maximal entropy S of the rest of the system.

4.1 Maximum entropy principle and conservation of fractal cumulativity

According to the assumption of fractal self-similarity of hadron structure and fragmentation process and due to the locality of binary interactions of hadron constituents, there exists a conservation law of a scale dependent quantity characterizing hadron interactions at a constituent level. The quantification of such a statement is based on the maximum entropy principle. The conservation law reflects a symmetry of transformation of one fractal structure into another one at all scales. The corresponding symmetry is encoded in the functional form of the fractions x_1, x_2, y_a, y_b which follows from the requirement of the maximal entropy (10). The conditions for the maximization of the entropy with the constraint (3) determine specific
dependences of the fractions on the kinematics of the inclusive reaction. As shown in [83], the momentum fractions satisfy the following equality

\[\delta_1 \frac{x_1}{1 - x_1} + \delta_2 \frac{x_2}{1 - x_2} = \epsilon_a \frac{y_a}{1 - y_a} + \epsilon_b \frac{y_b}{1 - y_b}. \] (12)

This equation represents a conservation law for the quantity

\[C(D, \zeta) = D \cdot g(\zeta), \quad g(\zeta) = \frac{\zeta}{1 - \zeta}. \] (13)

The symbol \(D \) means a fractal dimension and \(\zeta \) is the corresponding momentum fraction. The conservation law (12) holds for any inclusive reaction with arbitrary momenta \(P_1, P_2 \) and \(p \) of the colliding and inclusive particles which determine corresponding level of resolution. We name the quantity \(C(D, \zeta) \) as the "fractal cumulativity" of a fractal-like structure with the dimension \(D \) carried by its constituent with the momentum fraction \(\zeta \). The conservation law for this quantity is formulated as follows:

The fractal cumulativity before a constituent interaction is equal to the fractal cumulativity after the constituent interaction for any binary constituent sub-process,

\[\sum_{i}^{in} C(D_i, \zeta_i) = \sum_{j}^{out} C(D_j, \zeta_j). \] (14)

The quantity \(C(D, \zeta) \) characterizes the property of a fractal-like object or a fractal-like process with the dimension \(D \) to form a structural aggregate with certain degree of local compactness, which carries its momentum fraction \(\zeta \). The value of the fractal cumulativity is a measure of the ability of the fractal systems to create the aggregated sub-structures. This cumulative feature of the internal structure of hadrons and nuclei is connected with formation of hadron constituents interacting in the underlying sub-processes locally. It is in agreement with the Heisenberg uncertainty principle. The aggregation property in the final state concerns formation of the produced particles in the fractal-like fragmentation process.

The scale dependence of the conserved quantity \(C(D, \zeta) \) is given by the function \(g(\zeta) \). Due to the general way of its derivation, the form of \(g(\zeta) \) is the same for arbitrary fractal objects (different hadrons, nuclei, hadron constituents, jets, quarks, gluons, etc.) participating in the high energy interactions. The dimension \(D \) is considered to be a new and unique characteristic of the related fractal structures such as mass, charge and spin. The fractal cumulativity corresponding to different momentum fractions satisfy the following relations

\[C(D, \zeta^*) = C(D, \zeta) + C(D, \zeta') + D^{-1} \cdot C(D, \zeta) \cdot C(D, \zeta'), \] (15)

\[\zeta^* = \zeta + \zeta' - \zeta \cdot \zeta'. \] (16)

This is a composition rule connecting the values of the cumulativity \(C(D, \zeta) \) of the same fractal structure at different levels of its aggregation.

We would like to note that (12) was derived by the formulae expressed in terms of the Lorentz invariant quantities. It means that the conservation law for the fractal cumulativity holds in any motion inertial frame in the unchanged form. The cumulativity \(C(D, \zeta) \) is therefore a relativistic invariant with respect to motion. The quantity manifests itself in hadron interactions at a constituent level. Large values of the fractal cumulativity of the interacting hadron structures can be obtained by increasing the resolution or compactness of the system. The state of resolution revealed in measurements of the inclusive particles depends on fractal dimensions of the interacting objects and fractal dimensions of the fragmentation processes in the final state.
4.2 Entropy decomposition and quantization of fractal dimensions

The fractality of hadron structure and fragmentation process manifests itself most prominently near the kinematic limit \((x_1, x_2, y_a, y_b) \to 1\) of the inclusive reaction. The entropy of the constituent configurations in this region bears information on fractal characteristics of hadron interactions at small scales. In the vicinity of the kinematic limit (i.e. near the fractal limit \(\Omega^{-1} \to \infty\)), the momentum dependent part

\[
S_\Omega = \delta_1 \ln (1-x_1) + \delta_2 \ln (1-x_2) + \varepsilon_a \ln (1-y_a) + \varepsilon_b \ln (1-y_b) + \ln \Omega_0
\]

(17)

of the entropy [10] can be expressed in the form that admit physical interpretation of quantization of the fractal dimensions \(\delta_1, \delta_2, \varepsilon_a\) and \(\varepsilon_b\).

The maximization of \(S_\Omega\) constrained by condition [3] gives the asymptotic formulae [8]

\[
1 - x_1 = h_1(p) \frac{\delta_1}{\delta + \varepsilon}, \quad 1 - x_2 = h_2(p) \frac{\delta_2}{\delta + \varepsilon},
\]

(18)

\[
1 - y_a = h_a(p) \frac{\varepsilon_a}{\delta + \varepsilon}, \quad 1 - y_b = h_b(p) \frac{\varepsilon_b}{\delta + \varepsilon},
\]

(19)

valid near the kinematic boundary. The functions \(h_1(p), h_2(p), h_a(p), h_b(p)\) depend explicitly on the momentum \(p\) of the inclusive particle, \(\delta \equiv \delta_1 + \delta_2\) and \(\epsilon \equiv \varepsilon_a + \varepsilon_b\). Using expressions [18] and [19], the entropy (17) can be decomposed as follows

\[
S_\Omega = S_T - S_\Gamma + \ln \Omega_0.
\]

(20)

The first term, \(S_T\), describes the dependence of the entropy on the momenta and masses of the colliding and inclusive particles, the second term,

\[
S_\Gamma = (\delta + \epsilon) \ln(\delta + \epsilon) - \delta_1 \ln \delta_1 - \delta_2 \ln \delta_2 - \varepsilon_a \ln \varepsilon_a - \varepsilon_b \ln \varepsilon_b,
\]

(21)

depends solely on fractal dimensions, and the third one is a constant that guaranties normalization. The formula (21) allows us to derive physical consequences provided that the fractal dimensions are expressed as integer multiples of the same constant \(d\),

\[
\delta_1 = n_{\delta_1} \cdot d, \quad \delta_2 = n_{\delta_2} \cdot d, \quad \varepsilon_a = n_{\varepsilon_a} \cdot d, \quad \varepsilon_b = n_{\varepsilon_b} \cdot d.
\]

(22)

In that case, the entropy \(S_T\) can be interpreted within a statistical ensemble of fractal configurations of the internal structures of the colliding hadrons (or nuclei) and fractal configurations corresponding to the fragmentation processes in the final state. The statistical ensemble is considered as a collection of \(n_{\delta_1}\) fractals with random configurations but with the same fractal dimension \(\delta_1\), together with an analogous set of \(n_{\delta_2}\) interacting fractals with the fractal dimension \(\delta_2\), which are combined via binary sub-processes with the collection of \(n_{\varepsilon_a}\) fractals with random configurations but with the same fractal dimension \(\varepsilon_a\) in the final state, and the corresponding set of \(n_{\varepsilon_b}\) fractals with the fractal dimension \(\varepsilon_b\). For large numbers of the configurations, \(S_T\) can be rewritten as follows

\[
S_T = d \cdot \ln(\Gamma_{\delta_1, \delta_2, \varepsilon_a, \varepsilon_b}),
\]

(23)

where

\[
\Gamma_{\delta_1, \delta_2, \varepsilon_a, \varepsilon_b} = \left(\frac{n_{\delta_1} + n_{\delta_2} + n_{\varepsilon_a} + n_{\varepsilon_b}}{n_{\delta_1}! \cdot n_{\delta_2}! \cdot n_{\varepsilon_a}! \cdot n_{\varepsilon_b}!}\right) = \Gamma_{\delta, \varepsilon} \cdot \Gamma_{\delta_1, \delta_2} \cdot \Gamma_{\varepsilon_a, \varepsilon_b}
\]

(24)
and

\[\Gamma_{\delta,\epsilon} = \frac{(n_{\delta} + n_{\epsilon})!}{n_{\delta}! \cdot n_{\epsilon}!}, \quad \Gamma_{\delta_1,\delta_2} = \frac{(n_{\delta_1} + n_{\delta_2})!}{n_{\delta_1}! \cdot n_{\delta_2}!}, \quad \Gamma_{\epsilon_a,\epsilon_b} = \frac{(n_{\epsilon_a} + n_{\epsilon_b})!}{n_{\epsilon_a}! \cdot n_{\epsilon_b}!}, \]

(25)

According to statistical physics, the formulae (23) - (25) give us the possibility to interpret the entropy \(S_\Gamma \), expressed in units of the dimensional quantum \(d \), as the logarithm of the number of different ways, \(\Gamma_{\delta,\epsilon} \), in which the fractal dimensions of the interacting fractal structures can be composed from the identical dimensional quanta, each of the size \(d \). The symbol \(\Gamma_{\delta,\epsilon} \) represents the number of ways how the overall number \(n = n_{\delta} + n_{\epsilon} \) of the dimensional quanta can be shared among \(n_{\delta} \) portions pertaining to the fractal dimensions of the colliding objects and \(n_{\epsilon} \) portions belonging to the fractal dimensions characterizing fractal structures of the fragmentation processes. The symbols \(\Gamma_{\delta_1,\delta_2} \) and \(\Gamma_{\epsilon_a,\epsilon_b} \) represent the numbers of ways in which the corresponding numbers \(n_{\delta} = n_{\delta_1} + n_{\delta_2} \) and \(n_{\epsilon} = n_{\epsilon_a} + n_{\epsilon_b} \) of the dimensional quanta can be distributed between the fractal dimensions of the single fractals in the initial and final states, respectively.

The statistical interpretation of the entropy (21) is only possible under the quantization of fractal dimensions (22), where \(d \) is an elementary dimensional quantum. The quantization is a kind of ordering that diminishes the total entropy (\(S_\Gamma \) enters with minus sign into Eq.(20)).

4.3 Conservation of the number of cumulativity quanta

The quantization of the fractal dimension, \(D = n_D \cdot d \), is connected with quantum character of the fractal cumulativity \(C(D, \zeta) \). Using expression (13), we can write this quantity in the form

\[C = n_C \cdot d, \quad n_C(n_D, \zeta) = n_D \cdot \frac{\zeta}{1 - \zeta}, \]

(26)

where \(n_C(n_D, \zeta) \) represents the number of quanta of the fractal cumulativity expressed in units of the dimensional quantum \(d \). The quantum character of the fractal dimensions has profound impact on the physical content of the conservation law for the fractal cumulativity. According to (12), the number of the cumulativity quanta is conserved at any resolution given by arbitrary momenta \(P_1, P_2 \) and \(p \) of the colliding and inclusive particles. The conservation law can be formulated as follows:

The number of quanta of fractal cumulativity before a constituent interaction is equal to the number of quanta of fractal cumulativity after the constituent interaction for any binary sub-process,

\[\sum_{i}^{in} n_C(n_{D_i}, \zeta_i) = \sum_{j}^{out} n_C(n_{D_j}, \zeta_j). \]

(27)

The quantization of the dimension \(D \) and cumulativity \(C(D, \zeta) \) is based on the assumptions of the fractal self-similarity of internal hadron structure, fractal nature of fragmentation process, and locality of hadron interactions at a constituent level up to the kinematic limit.

The conservation law for the quanta of the fractal cumulativity follows from general physical principles. According to the Noether’s theorem, for every conservation law of a continuous quantity there must be a continuous symmetry. In our case, the corresponding symmetry is a scale-dependent translation symmetry which guaranties the conservation law for the fractal cumulativity at any scale fixed by the minimal necessary level of resolution.
5 Conclusions

In summary we conclude that z-scaling is a specific feature of high-p_T particle production established in $p + p$ and $\bar{p} + p$ collisions at the U70, ISR, Sp\bar{p}S, Tevatron, RHIC and LHC. It reflects the self-similarity, locality, and fractality of hadron interactions at a constituent level. The scaling behavior was confirmed for inclusive production of different hadrons, jets, heavy quarkonia and top quark. The hypothesis of the self-similarity and fractality was tested in $Au + Au$ collisions at RHIC using z-presentation of spectra of negative hadrons. The analysis of the STAR BES-I data indicates energy and multiplicity independence of the scaling function $\psi(z)$. The variable z depends on the multiplicity density, "heat capacity", and entropy of constituent configurations of the interacting system. The constituent energy loss as a function of the energy and centrality of collisions and the transverse momentum of inclusive particles was estimated.

We have shown that z-scaling, containing the principle of maximum entropy, includes a conservation law of the "fractal cumulativity" $C(D, \zeta)$. This quantity reflects the ability of the fractal systems to create structural constituents with certain degree of local compactness. The cumulativity of a fractal object or a fractal-like process with fractal dimension D carried by its constituent with the momentum fraction ζ is proportional to the dimension D and represents a simple function of ζ. It was shown that a composition rule for $C(D, \zeta)$ connects the fractal cumulativity at different scales. The fractal dimension D is interpreted as a quantity which has quantum nature. The quantization of fractal dimensions results in preservation of the number of the cumulativity quanta $n_C(n_D, \zeta)$ in binary sub-processes at any resolution.

Acknowledgements

The investigation of (I.Z.) was supported by the RVO61389005 institutional support and by the MEYS of the Czech Republic under the contracts LTT18021 and LTT17018.

References

[1] E. Eichten, K. Lane and M. Peskin, Phys. Rev. Lett. 50, 811 (1983).
[2] E. Eichten, I. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phys. 56, 4 (1984).
[3] I. Antoniadis, Phys. Lett. B 246, 377 (1990).
[4] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429, 263 (1998).
[5] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 436, 257 (1998).
[6] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).
[7] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).
[8] S. Dimopoulos and G. L. Landsberg, Phys. Rev. Lett. 87, 161602 (2001).
[9] S. B. Giddings and S. D. Thomas, Phys. Rev. D 65, 056010 (2002).
[10] A. Barrau, J. Grain and S. Alexeyev, Phys. Lett. B 584, 114 (2004).
[11] B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
[12] L. Nottale, Fractal Space-Time and Microphysics (World Scientific, Singapore, 1993).
[13] J. Feder, Fractals (Plenum Press, New York, 1988).
[14] L. M. Lederman and C. T. Hill, Symmetry and the Beautiful Universe (Prometheus Books, Amherst, NY, 2004)
[15] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford: Oxford University Press, 1971).
[16] H. E. Stanley, Rev. Mod. Phys. 71, S358, (1999).
[17] C. Domb, The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena (Taylor and Francis, London, 1996).
[18] I. Zborovský, M. V. Tokarev, Phys. Rev. D 75, 094008 (2007).
[19] I. Zborovský, M. V. Tokarev, Int. J. Mod. Phys. A 24, 1417 (2009).
[20] M. V. Tokarev, I. Zborovský, Int. J. Mod. Phys. A 32, 1750029 (2017).
[21] M. Tokarev, A. Kechechyan, I. Zborovský, Nucl. Phys. A 993, 121646 (2020).
[22] M. V. Tokarev, I. Zborovský, A. O. Kechechyan, T. G. Dedovich, Phys. Part. Nucl. 51, 141 (2020).
[23] CHLM Collab. (M. G. Albrow et al.), Nucl. Phys. B56, 333 (1973).
[24] BS Collab. (B. Alper et al.), Nucl. Phys. B100, 237 (1975).
[25] CCRS Collab. (F. W. Büsser et al.), Nucl. Phys. B106, 1 (1976).
[26] BSM Collab. (K. Guettler et al.), Phys. Lett. B 64, 111 (1976).
[27] BSM Collab. (K. Guettler et al.), Nucl. Phys. B 116, 77 (1976).
[28] D. Antreasyan et al., Phys. Rev. D 19, 764 (1979).
[29] CDHW Collab. (D. Drijard et al.), Nucl. Phys. B208, 1 (1982).
[30] D. E. Jaffe et al., Phys. Rev. D 40, 2777 (1989).
[31] STAR Collab. (J. Adams et al.), Phys. Lett. B 616, 8 (2005).
[32] STAR Collab. (J. Adams et al.), Phys. Lett. B 637, 161 (2006).
[33] STAR Collab. (B. I. Abelev et al.), Phys. Rev. C 75, 064901 (2007).
[34] STAR Collab. (J. Adams et al.), Phys. Rev. C 71, 064902 (2005).
[35] STAR Collab. (B. I. Abelev et al.), Phys. Rev. Lett. 97, 132301 (2006).
[36] STAR Collab. (B. I. Abelev et al.), Phys. Rev. C 75, 064901 (2007).
[37] PHENIX Collab. (A. Adare et al.), Phys. Rev. D 83, 052004 (2011).
[38] STAR Collab. (G. Agakishiev et al.), Phys. Rev. Lett. 108, 072302 (2012).
[39] PHENIX Collab. (A. Adare et al.), Phys. Rev. C 90, 054905 (2014).
[40] STAR Collab. (J. Adams et al.), Phys. Lett. B 637, 161 (2006).
[41] CCRS Collab. (F. W. Busser et al.), Phys. Lett. B 61, 309 (1976).
[42] H. Kichimi et al., Phys. Rev. D 20, 37 (1979).
[43] CDHW Collab. (D. Drijard et al.), Z. Phys. C 12, 217 (1982).
[44] AFS Collab. (T. Akesson et al.), Nucl. Phys. B 203, 27 (1982); Erratum Nucl. Phys. B 229, 541 (1983).

[45] STAR Collab. (J. Adams et al.), Phys. Lett. B 612, 181 (2005).

[46] NA61/SHINE Collab. (A. Aduszkiewicz et al.), Eur. Phys. J. C 76, 198 (2016).

[47] NA49 Collab. (S. V. Afanasiev et al.), Phys. Lett. B 491, 59 (2000).

[48] NA49 Collab. (T. Anticic et al.), Phys. Rev. C 84, 064909 (2011).

[49] CDF Collab. (F. Abe et al.), Phys. Rev. Lett. 74, 2626 (1995).

[50] DØ Collab. (S. Abachi et al.), Phys. Rev. Lett. 74, 2632 (1995).

[51] DØ Collab. (V. M. Abazov et al.), Phys. Lett. B 693, 515 (2010).

[52] CMS Collab. (S. Chatrchyan et al.), Eur. Phys. J. C 73, 2339 (2013).

[53] CMS Collab. (V. Khachatryan et al.), Eur. Phys. J. C 75, 542 (2015).

[54] CMS Collab. (V. Khachatryan et al.), Phys. Rev. D 94, 072002 (2016).

[55] CMS Collab., CMS PAS TOP-16-011.

[56] ATLAS Collab. (G. Aad et al.), Phys. Rev. D 90, 072004 (2014).

[57] ATLAS Collab. (G. Aad et al.), J. High Energy Phys. 06, 100 (2015).

[58] ATLAS Collab. (G. Aad et al.), Phys. Rev. D 93, 032009 (2016).

[59] ATLAS Collab. (G. Aad et al.), Eur. Phys. J. C 76, 538 (2016).

[60] DØ Collab. (V. M. Abazov et al.), Phys. Rev. D 90, 092006 (2014).

[61] ATLAS Collab. (G. Aad et al.), Eur. Phys. J. C 73, 2509 (2013).

[62] ATLAS Collab. (G. Aad et al.), Phys. Rev. D 86, 014022 (2012).

[63] ATLAS Collab. (M. Aaboud et al.), JHEP 09, 020 (2017).

[64] CMS Collab., PAS-SMP-12-012.

[65] CMS Collab. (S. Chatrchyan et al.), Phys. Rev. D 87, 112002 (2013).

[66] ALICE Collab. (B. Abelev et al.), Phys. Lett. B 722, 262 (2013).

[67] DØ Collab. (B. Abbott et al.), Phys. Rev. D 64, 032003 (2001).

[68] V. D. Elvira, Measurement of the inclusive jet cross sections at $\sqrt{s} = 1.8$ TeV with the DØ Detector, Ph.D Thesis Universodad de Buenos Aires, Argentina (1995).

[69] DØ Collab. (V. M. Abazov et al.), Phys. Lett. B 525, 211 (2002).

[70] DØ Collab. (V. M. Abazov et al.), Phys. Rev. Lett. 101, 062001 (2008).

[71] M. Begel (for the DØ Collab.), [hep-ex/0305072].

[72] DØ Collab. (V. M. Abazov et al.), Phys. Rev. D 85, 052006 (2012).

[73] CDF Collab. (F. Abe et al.), Phys. Rev. Lett. 77, 438 (1996).

[74] CDF Collab. (T. Affolder et al.), Phys. Rev. D 64, 032001 (2001); Erratum: Phys. Rev. D 65, 039903 (2002).

[75] CDF Collab. (A. Abulencia et al.), Phys. Rev. Lett. 96, 122001 (2006).

[76] CDF Collab. (A. Abulencia et al.), Phys. Rev. D 74, 071103(R) (2006).
[77] CDF Collab. (A. Abulencia et al.), Phys. Rev. D 75, 092006 (2007).

[78] CDF Collab. (T. Aaltonen et al.), Phys. Rev. D 78, 052006 (2008); Erratum Phys. Rev. D 79, 119902 (2009).

[79] M. V. Tokarev, I. Zborovský, T. G. Dedovich, Int. J. Mod. Phys. A 27, 1250115 (2012).

[80] STAR Collab. (M. M. Aggarwal et al.), An experimental exploration of the QCD phase diagram: the search for the critical point and the onset of deconfinement, arXiv:1007.2613

[81] STAR Collab. (B. I. Abelev et al.), Phys. Rev. C 96, 044904 (2017).

[82] M. Tokarev (for the STAR Collab.), Int. J. Mod. Phys. Conf. Ser. 39, 1560103 (2015).

[83] I. Zborovský, Int. J. Mod. Phys. A 33, 1850057 (2018).