УДК 613.955: 612.821
DOI: 10.21668/health.risk/2021.4.08

Научная статья

ВОЗРАСТНЫЕ АСПЕКТЫ РИСКА РАЗВИТИЯ ПАТОЛОГИИ НЕРВНОЙ СИСТЕМЫ У УЧАЩИХСЯ ГИМНАЗИИ

О.А. Маклакова1,2, С.Л. Валина1, И.Е. Штина1, Д.А. Эйсфельд1

1 Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения, Россия, 614045, г. Пермь, ул. Монастырская, 82
2 Пермский государственный национальный исследовательский университет, Россия, 614990, г. Пермь, Букреева, 15

На современном этапе одной из особенностей состояния здоровья школьников является рост нерво-психических нарушений на фоне интенсификации образовательного процесса. В связи с этим изучены возрастные особенности развития патологии нервной системы у учащихся гимназии.

У 94 младших школьников (группа А) и 36 учащихся средних классов гимназии (группа Б) проведено клиническое обследование, включающее исследование содержания в крови нейромедиаторов и нейротропных факторов, нейропсихологическое компьютерное тестирование (реакция на тесты, STROOP-тест). Образовательная деятельность оценивалась на соответствие режима учебного процесса гигиеническим требованиям. Статистическая обработка данных содержала определение относительного риска, отношения шансов, установление причинно-следственных связей.

Гигиеническая оценка образовательной деятельности показала, что неблагоприятными факторами школьной среды, способствующими формированию нарушений нервной системы, являются увеличение недельной учебной нагрузки, нерациональное распределение предметов в расписании уроков, неорганизованная продолжительность использования интерактивной доски на занятиях. Выявлено, что у 62,8 % младших школьников и 42,9 % гимназистов средних классов регистрируется патология нервной системы. Установлено, что вероятность развития астено-невротического и невротравматического синдромов выше в 5,2 раза у детей начальной школы, а вестигиальной дисфункции — в 1,6 раза у учащихся средних классов. У младших школьников астено-невротический синдром сопровождался снижением в 41,9 % случаев уровня NOTCH-1, в 66,7 % — актефагиины; в 29,2 % — повышенением содержания серотонина в крови и проявления повышенной утомляемостью, слабостью, плааксивостью, перепадами настроения. Риск снижения нейробиологических факторов нервной системы, в 3,1–6,4 раза выше у гимназистов средней школы, развитие у них вестигиальных состояний сопровождалось нарушением сна, головной болью, учащенным сердцебиением. Установлено, что для младших школьников характерно снижение скорости восприятия визуально-звукового раздражителя, развитие утомляемости афферентной реакции, а также снижение когнитивного контроля и слабая автоматизация познавательных функций.

Ключевые слова: учащиеся, гимназия, образовательная деятельность, патология нервной системы, нейропсихологическое компьютерное тестирование.

Современные научные данные свидетельствуют о сохраняющихся негативных тенденциях в состоянии здоровья школьников: увеличение частоты встречаемости патологии органов зрения, патологии органов нервной системы, эндокринных заболеваний, нарушений нервно-психического развития [1–6]. За период получения среднего образования количество здоровых детей снижается в 4–10 раз, и к оконча-
Проведенные исследования показывают, что на здоровье современных школьников, в том числе развитие нервно-психических нарушений, существенное негативное влияние оказывают такие факторы образовательной среды, как увеличение и интенсификация учебной нагрузки, гигиенически неоптимальный режим обучения, нерациональное применение информационных ресурсов, расширение спектра дополнительного образования, низкая двигательная активность и т. п. [10–14]. Согласно данным ряда авторов [15–17], информатизация учебного процесса, особенно у младших школьников, приводит к снижению умственной работоспособности, способствует выраженному угнетению, повышает уровень тревожности, замедляет интеллектуальное развитие.

Школьный возраст характеризуется напряженностью процессов роста и развития ребенка, особенно адаптационно-приспособительных систем организма, ведущая роль среди которых принадлежит центральной нервной системе [14, 17–21]. По данным психофизиологических исследований для детей школьного возраста характерна пластичность регуляции, когнитивных функций, напряжению адаптационных механизмов, что проявляется особенностями сенсорного реагирования на психоэмоциональные нагрузки [21–24]. Известно, что в 7–10 лет происходит интенсивное развитие многих эффекторных механизмов высокоспециализированных движений, произвольного управления информационными процессами [23, 25–26]. С началом полового созревания совершенствуется интеграция афферентных и эфферентных сигналов в центральных структурах мозга, возрастает познавательная активность, формируется абстрактное мышление [27–29]. Современная психофизиологическая структура, возрастает познавательная активность, формирование высокоспециализированных двигательных навыков, произвольного управления информационными процессами [23, 25–26]. С началом полового созревания совершенствуется интеграция афферентных и эфферентных сигналов в центральных структурах мозга, возрастает познавательная активность, формируется абстрактное мышление [27–29]. Современная организация учебного процесса, не соответствующая психофизиологическим возможностям организма ребенка, способствует развитию нарушений нервной регуляции, когнитивных функций, напряжению адаптационных механизмов, что приводит к повышенной тревожности и утомляемости, снижению работоспособности, падению успеваемости и формированию психосоматической патологии [21, 22, 30–32].

Таким образом, изучение развития нарушений со стороны нервной системы в период школьного возраста является актуальным, особенно в общеобразовательных учреждениях, специализированных учебными программами.

Цель исследования – изучить возрастные особенности развития патологии нервной системы у учащихся гимназии.

Материалы и методы. Для изучения особенностей формирования патологии нервной системы школьников проведено клиническое обследование 150 детей (43,4 % мальчиков и 56,6 % девочек), обучающихся в МАОУ «Гимназия № 6» г. Перми, из них в группу А вошли 94 ученика начальной школы (средний возраст 8,85 ± 0,34 г.), группа Б включала 56 учащихся средних классов (средний возраст 12,82 ± 0,26 г.). Группы исследования формировались методом случайной выборки и были сопоставимы по социальным показателям и половому составу (p = 0,17–0,89). Критерием исключения из исследования было наличие на момент осмотра у ребенка острого респираторного заболевания, обострения хронической соматической патологии или органической патологии нервной системы.

Проведенное клиническое обследование соответствовало этическим принципам Хельсинской декларации (с изменениями и дополнениями 2008 г.) и Национальному стандарту РФ ГОСТ-Р 52379-2005 «Надлежащая клиническая практика» (ИСН Е6 ГСР) и было одобрено этическим комитетом ФБУН «ФНЦ медико-профилактических технологий управления рисками здоровья населения» (протокол № 3, 2020 г.). Добровольное информированное согласие законных представителей детей было получено перед началом исследования.

Для изучения образовательной деятельности гимназии выполнена гигиеническая оценка режима учебного процесса на соответствие требованиям (учебные программы, расписание уроков одной типовой рабочей недели и перерывы, используемые при обучении детей).

Всем детям проведено медико-социальное анкетирование, клиническое обследование врачами-специалистами (педиатр, невролог) с анализом медицинской карты ребенка для образовательных учреждений (форма № 026/у-2000), лабораторная диагностика (общеклинический и биохимический анализ крови, исследование содержания в крови нейромедиаторов – кортизола; нейротропных факторов – цилиарномезамазина, серотонина, ацетилхолина; гормона стресса – кортизоль; нейротропных факторов – цитокинов, глюкагона, мелатонина; гормона стресса – кортизоль; нейротропных факторов – цитокинов, глюкагона, мелатонина; фактора некроза опухоли, трансмембранных рецепторов, протеолитических факторов). Измерение периферического роста и развития организма производилось в течение 7–10 лет, начиная с момента начала обучения в гимназии.

Для изучения особенности рефлекторной реакции у детей использован реакционный тест (RT) с оценкой времени реакции и времени моторной реакции, выполненный на компьютерной системе Vienna Test System. При проведении теста ребенку предъявляли световые и / или звуковые раздражите-
ли. При представлении конкретного раздражителя респондент должен был нажимать клавишу и возвратить палец на клавишу покоя. Интерпретация данных проводилась по среднему времени реакции (время с момента представления раздражителя до начала ответного механического движения, мс), показателя дисперсии времени реакции (стандартное отклонение времени реакции, мс), среднему времени моторной реакции (время с момента начала ответного механического движения до нажатия на клавишу реакции, мс), показателю дисперсии времени моторной реакции (стандартное отклонение времени моторной реакции, мс).

Для исследования исполнительных психических функций проведен STROOP-тест на компьютерной системе Vienna Test System. Вначале оценивались базовые линии чтения и наименования путем нажатия соответствующей цветной клавиши. Затем выполнялись задания «сужение интерференции чтения» (нажатие на клавишу цвета, которое обозначает слово) и «сужение интерференции наименования» (нажатие на клавишу цвета, которым написано слово). Интерпретация результатов теста проводилась по следующим переменным: склонность к интерференции при чтении и при наименовании (разность времени реакции базовой линии и времени реакции в условиях интерференции, с), а также медианам времени реакций (с) и количеству неверных реакций.

Статистический анализ результатов исследования осуществлялся стандартными методами описательной статистики. Проведен расчет относительного риска (RR) формирования патологии нервной системы, отношения шансов (OR) и их 95%-ных доверительных интервалов (CI), достоверность нижней границы которых превышала 1,0. Установление причинно-следственных связей выполнено путем математического моделирования методом однофакторного дисперсионного анализа с оценкой критерия Фишера (F), коэффициента детерминации (R²) и критерия Стьюдента при уровне статистической значимости р ≤ 0,05 [30].

Результаты и их обсуждение. Гигиеническая оценка режима образовательной деятельности показала, что обучение детей в гимназии осуществлялось в первую смену, при этом академический час составлял 45 мин, в том числе в первых классах (требование – не более 40 мин). Длительность малых перемен соответствовала гигиеническим нормативам (10–15 мин), кроме последней перемены между седьмым и восьмым уроками, которая была сокращена до 5 мин. Продолжительность больших перемен составила 20 мин в соответствии с гигиеническими нормативами (п. 3.4.16 СП 2.4.3648-20²).

Анализ учебного расписания гимназии показал, что недельная аудиторная нагрузка в начальных классах включала 22–26 академических часов. При этом в первых классах при пятидневной учебной неделе она превышала на один час максимальную допустимую нагрузку согласно санитарным требованиям (п. 3.4.16 СП 2.4.3648-20³). В основной школе недельная аудиторная нагрузка достигала максимальной допустимой при шестидневной учебной неделе в 7-х классах (35 академических часов), в 8-х классах была выше регламентированных 37 академических часов. В то же время количество изучаемых предметов в течение дня в средних классах соответствовало гигиеническим требованиям и не превышало семь уроков (п. 3.4.16 СП 2.4.3648-20⁴).

Следует отметить, что в гимназии не всегда соблюдалось чередование и время проведения различных по сложности предметов в течение учебного дня, а также в течение недели. В средней школе допускалось проведение сдвоенных уроков по изучению одного предмета, что способствовало быстрому утомлению школьников. Оценка шкалы трудности школьных предметов показала, что наибольший объем учебной нагрузки в начальных классах приходился на среду (29–31 балл), а облегченными днями являлись либо понедельник (19 балл), либо вторник (21 балл) вме сто четверга или пятницы, когда происходит снижение работоспособности учащихся. В 6–7-х классах недельная учебная нагрузка также не соответствовала оптимальному уровню умственной работоспособности: максимальный объем нагрузки приходился на четверг—пятницу (в 8-х классах – 51–56 баллов), а облегченным днем была суббота (18–20 баллов). Уроки физической культуры в гимназии проводились в объеме максимальной допустимой недельной нагрузки, однако допускалось наличие занятия в начале учебного дня, после которого следовали уроки с письменными заданиями (п. 3.4.16 СП 2.4.3648-20⁵).

Изучение времени использования технических средств обучения в гимназии показало, что интерактивная доска (SMART Board SBD600 series) применялась на всех предметах, кроме физической культуры. Продолжительность обучения с использованием SMART Board SBD600 series соответствовала гигиеническим нормативам и составляла в начальной школе от 3 до 20 мин (медианное значение – 11,75 мин), в основной школе от 5 до 20 мин (медианное значение – 12,5 мин). Однако на уроке изобразительного искусства интерактивная доска была задействована на протяжении всего занятия, превышая нормативы.
нную продолжительность использования в 1,5–1,8 раза в разных классах (СанПиН 1.2.3685-21).

При проведении анкетирования выявлено, что учреждения дополнительного образования посещали практически все младшие школьники (95,9 %), в отличие от гимназистов средних классов (60,7 %, \(p = 0,0001 \)), при этом каждый второй гимназист в исследуемых группах ходил в спортивную секцию (54 % в группе А и 50 % в группе Б, \(p = 0,72 \)). В художественной школе занимались 19,2 % детей начальной школы (против 3,6 % в группе Б, \(p = 0,046 \)), а секцию шахмат посещали только дети 1–4-х классов (16,4 %). Следует отметить, что дополнительные домашние задания выполняли в 1,3 раза чаще учащиеся начальных классов (41,1 против 32,1 % в группах А и Б соответственно, \(p = 0,41 \)).

Сравнительный анализ частоты встречаемости жалоб показал, что у гимназистов 1–4-х классов достоверно чаще отмечались повышенная утомляемость (24,7 против 7,1 % в группах А и Б, \(p = 0,046 \)), слабость (24,7 против 7,1 % в группах А и Б, \(p = 0,046 \)), плаксивость, перепады настроения (47,9 % в группе А и 25 % соответственно, \(p = 0,037 \)). Школьники средних классов жаловались на нарушение сна (39,3 против 19,2 % в группе А, \(p = 0,034 \)), головные боли (39,3 и 13,7 % соответственно, \(p = 0,004 \)), учащенное сердцебиение (32,1 и 9,6 % соответственно, \(p = 0,005 \)).

Клиническое обследование гимназистов показало, что патология нервной системы встречалась в 1,5 раза чаще у младших школьников (62,8 против 42,9 % в средних классах, \(p = 0,017 \)). В структуре этого класса болезней у гимназистов 1–4-х классов в 55,4 % случаев диагностировался астеноневротический, невропсихопатический синдром (против 25 % в средней школе, \(p = 0,012 \)), в средней школе в 1,6 раза чаще регистрировалось расстройство вегетативной нервной системы (66,7 и 42,9 % – в начальной школе, \(p = 0,03 \)). Установлено, что вероятность возникновения астеноневротического и неврозоподобного синдрома в 2,2 раза выше у младших школьников гимназии \((RR = 2,21; CI: 1,06–4,60) \).

Анализ уровня кортизола в крови, являющегося гормоном стресса, не выявил значимых различий между показателями сравниваемых групп (табл. 1).

Среднее содержание нейромедиаторов в крови обследованных детей находилось в физиологических пределах, за исключением уровня ацетилхолина и норадреналина, и не имело различий между сравниваемыми группами (\(p = 0,06–0,97 \)). Средние показатели ацетилхолина в группах были в 1,4 раза достоверно выше физиологического норматива (\(p < 0,05 \)). Сниженные значения ацетилхолина регистрировались в 1,4 раза чаще у школьников группы Б (92 против 66,7 % в группе А, \(p = 0,05 \)). Следует отметить, что повышенное содержание в крови серотонина, являющегося биологическим индикатором стресса, отмечалось у 29,2 % младших школьников, что было в 1,6 раза чаще, чем в группе Б (18,5 %, \(p = 0,31 \)). Получена достоверная причинно-следственная связь развития астеноневротического синдрома при повышении содержания серотонина в крови (\(b_0 = -2,47; b_1 = 0,009; R^2 = 0,51; F = 62,37; p = 0,0001 \)).

Оценка нейротропных факторов (см. табл. 1) показала, что уровень цилиарного нейротрофического фактора (CNTF), способствующего дифференцировке развивающихся нейронов и глиальных клеток, находился в пределах нормативных значений и был в 1,2 раза выше у детей группы А (\(p = 0,046 \)). Среднее значение нейротрогина-Iβ (NGF-Iβ), белка, участвующего в процессах нейронального развития и создания нервно-мышечных связей, у школьников средних классов было в 1,2 раза выше физиологического норматива (\(p = 0,31 \)) и в 1,8 раза – показателя группе детей А (\(p = 0,017 \)). При этом низкие значения NGF-Iβ регистрировались у 58,3 % школьников группы Б, что в 1,9 раза чаще, чем в группе А (31,2 %, \(p = 0,02 \)). Установлено, что шансы снижения уровня нейротрогина-Iβ были в 3,1 раза выше у детей средних классов (OR = 3,08; CI: 1,17–8,11).

Показатель	Нормативные значения	Группа А	Группа Б	Достоверность различий между группами
Кортизол, нмоль/см³	140–600	207,41 ± 21,86	199,09 ± 21,86	0,59
Серотонин, пг/мл	70–270	222,83 ± 31,02	179,96 ± 34,39	0,06
Допамин, пг/см³	10–100	53,93 ± 5,49	50,30 ± 6,91	0,32
Норадреналин, пг/см³	70–600	298,08 ± 45,65	334,41 ± 42,12	0,25
Адреналин, пг/см³	10–100	54,34 ± 4,37	54,31 ± 5,92	0,97
Ацетилхолин, пг/мл	28,43–57,49	19,67 ± 5,93*	20,00 ± 8,84*	0,94
CNTF, пг/мл	0–27	0,26 ± 0,04	0,21 ± 0,02	0,046
NRG-1β, пг/мл	32–432	49,94 ± 10,84	27,43 ± 8,24	0,017
TWEAK, пг/мл	425–925	564,64 ± 35,79	481,19 ± 54,77	0,0001
NOTCH-1, пг/мл	50–130	69,92 ± 19,55	72,22 ± 18,44	0,68

Примечание: * – достоверность различий с нормативными значениями (\(p < 0,05 \)).

1 СанПиН 1.2.3685-21. Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания // утв. главным государственным санитарным врачом Российской Федерации 28.01.2021 [Электронный ресурс] // КОДЕКС: электронный фонд правовых и нормативно-технических документов. – URL: https://docs.cntd.ru/document/573500115 (дата обращения: 23.08.2021).
Несмотря на то что среднее содержание TWEAK, активирующего рост клеток и антигениз, в обследованных группах находилось в пределах физиологических нормативов, у 45,8 % детей группы Б были выявлены сниженные значения TWEAK, что в 1,8 раза чаще соответствовало данным детей на 3,7 раза чаще соответствовали данных детей начальных классов (12,5 %, p = 0,001). При этом отношение шансов низких уровней TWEAK у учеников средней школы было в 6,4 раза выше (OR = 6,42; CI: 2,13–19,35). Получена достоверная причинноследственная связь развития заболеваний нервной системы с повышением содержания TWEAK в сыроватке крови и сыворотке крови (OR = 0,0007). При сравнении значений базовых линий при назывании и чтении выявлено снижение в 1,2 раза показателей у обучающихся в средних классах (p = 0,0004–0,014), что может быть связано с быстрым и автоматизацией процесса обработки соответствующей информации.

Установлено, что интерференционная склонность при чтении была в 1,8 раза выше у детей начальной школы (p = 0,06), что обусловлено снижением скорости переработки информации в ситуации когнитивного конфликта. Высокая склонность к интерференции при назывании у гимназистов групп А, в отличие от учеников группы Б (0,23 ± 0,08 и 0,09 ± 0,06 соответственно, p = 0,022), свидетельствовала о трудностях в переходе от вербальных функций к сенсорно-перцептивным в силу низкой степени их автоматизации. Полученные данные характеризуют ригидность когнитивного контроля и слабую автоматизацию познавательных функций у младших школьников, что может быть связано с физиологическими особенностями превращения нервных процессов в этом возрасте.

Выводы:
1. Неблагоприятными факторами, способствующими формированию патологии нервной системы у гимназистов, являются увеличение недельной учебной нагрузки, нерациональное распределение предметов при недельной и дневной аудиторной нагрузке в расписании уроков, продолжительное время использования интерактивной доски на занятиях.
2. Патология нервной системы встречается у большинства детей начальной школы и у 42,9 % гимназистов средних классов, при этом риск развития астено-невротического и неврозоподобного синдрома выше в 2,2 раза у младших школьников.

Показатель	Группа А	Группа Б	Достоверность различий между группами
Среднее время реакции, мс	581,42 ± 38,97	473,4 ± 56,31	0,0017
Степень рассеивания времени реакции, мс	106,79 ± 19,42	71,1 ± 11,97	0,0023
Среднее моторное время, мс	251,87 ± 25,27	217,4 ± 60,11	0,25
Степень рассеивания моторного времени, мс	42,33 ± 8,18	35,3 ± 11,71	0,29

Таблица 2

Показатель	Группа А	Группа Б	Достоверность различий между группами
Время обработки всех частей текста, с	10,29 ± 0,99	7,59 ± 0,39	0,0007
Интерференционная склонность при назывании, с	0,23 ± 0,08	0,09 ± 0,06	0,022
Интерференционная склонность при чтении, с	0,34 ± 0,09	0,19 ± 0,13	0,06
Медиана времени реакции при назывании 1, с	0,88 ± 0,06	0,70 ± 0,06	0,0004
Медиана времени реакции при назывании 2, с	1,11 ± 0,13	0,79 ± 0,07	0,0017
Медиана времени реакции при чтении 1, с	0,94 ± 0,07	0,79 ± 0,08	0,014
Медиана времени реакции при чтении 2, с	1,29 ± 0,13	0,98 ± 0,08	0,0048

Таблица 3

Анализ результатов исследования исполнившихся когнитивных функций показал, что скорость чтения и распознавания цвета в целом была в 1,4 раза выше у гимназистов средних классов (p = 0,0007).
Возрастные аспекты риска развития патологии нервной системы у учащихся гимназии

а вегетативной дисфункции – в 1,6 раза у обучающихся в средней школе.

3. У каждого второго учителя начальной школы формируется астеноэнергетический синдром, проявляющийся повышенной утомляемостью, слабостью, пластика, перепадами настроения и обусловленный уровнем напряжения и конфликтности межличностных отношений учащихся. Нельзя не учесть ещё и тот факт, что на обучение учащихся оказывают влияние и другие внешние факторы, такие как социальные, психологические и физические. В целом, можно сказать, что напряженность учебного процесса усугубляется факторами риска, которые влияют на здоровье детей в начальной школе.

4. Рассмотрим вопрос о влиянии путей реализации патологических процессов на здоровье детей. Важность этой проблемы обусловлена тем, что они могут сказаться на развитии умственных способностей, уровня здоровья, сформированности навыков саморегуляции. Поэтому необходимо проводить исследования в этой области, чтобы выявить факторы риска для здоровья детей в начальной школе.

5. К возрастным особенностям риска развития патологии нервной системы у младших школьников относятся возрастные особенности нервной системы, возможности адаптации к изменяющимся условиям обучения, уровень развития навыков саморегуляции и др. Эти факторы могут существенно влиять на состояние здоровья детей в начальной школе.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Список литературы

1. Зайцева Н.В., Устинова О.Ю. Риск-ориентированные нарушения здоровья детей и подростков: оценка, профилактика, коррекция // Вопросы школьной и университетской медицины и здоровья. – 2016. – № 1. – С. 20–31.
2. Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

ISSN (Print) 2308-1155 ISSN (Online) 2308-1163 ISSN (Eng-online) 2542-2308
Growing neuropsychic disorders caused by intensified educational process are a peculiar feature of schoolchildren’s health at present.

Our research aim was to examine age-related peculiarities in risks of developing nervous system pathology in schoolchildren attending a gymnasium.

We performed clinical examination of 94 children in primary school (Group A) and 56 children in middle school (Group B) who attended a gymnasium. The examination included determining contents of neuromediators and neurotrophic factors in blood, neuro-psychological computer testing (reaction test and STROOP-test). Educational activities were evaluated to determine whether the educational process conformed to hygienic standards. Statistical data analysis involved determining relative risk and odds ratio as well as establishing cause–effect relations.

Hygienic assessment of educational activities revealed several adverse factors that made for developing disorders of the nervous system. They included growing weekly educational loads, irrational distribution of school subjects in schedules, and too long use of interactive whiteboards during lessons. We established that nervous system pathology was already developing in 62.8 % children in primary school and 42.9 % children in middle school. We also revealed that asthenoneurotic syndrome and neurosis-like syndrome were by 2.2 times more probable among primary schoolchildren whereas vegetative dysfunction was by 1.6 times more probable among middle school children. Asthenoneurotic syndrome in primary school children was accompanied with lower NOTCH-1 levels in 41.9 % cases; lower acetylcholine content in blood, in 66.7 %; greater serotonin content in blood, in 29.2 %. The disorder became apparent through increased fatigability and weakness, as well as children being too whiny and moody. Middle school children had by 3.1–6.4 times higher risks of lower neuregulin-1 contents in blood, in 29.2 %. The disorder became apparent through increased fatigability and weakness, as well as children being too whiny and moody.

Key words: schoolchildren, gymnasium, educational activities, nervous system pathology, neuromediators, neurotrophic factors, neuro-psychological testing.

© Maklakova O.A., Valina S.L., Shtina I.E., Eisfeld D.A., 2021

O.А. Маклакова – Доктор Медицинских наук, Заведующий Поликлиническим отделением; кандидат биологических наук (e-mail: olga_mcl@fcrisk.ru; tel.: +7 (342) 236-80-98; ORCID: http://orcid.org/0000-0001-9574-9353).

Svetlana L. Valina – Кандидат Медицинских наук, Заведующая Поликлиническим отделением (e-mail: valina@fcrisk.ru; tel.: +7 (342) 237-27-92; ORCID: https://orcid.org/0000-0003-1719-1598).

Irina E. Shtina – Кандидат медицинских наук, Заведующая Лабораторией комплексных исследований детей (e-mail: shtina_irina@mail.ru; tel.: +7 (342) 237-27-92; ORCID: http://orcid.org/0000-0002-5017-8232).

Eisfeld Darja - Директор по распространению информационных материалов (e-mail: eisfeld@fcrisk.ru; tel.: +7 (342) 236-77-06; ORCID: https://orcid.org/0000-0002-0442-9010).
