New L^2-type exponentiality tests

Marija Cuparić, Bojana Milošević, Marko Obradović
Faculty of Mathematics, University of Belgrade, Studenski trg 16, Belgrade, Serbia

Abstract

We introduce new consistent and scale-free goodness-of-fit tests for the exponential distribution based on Puri-Rubin characterization. For the construction of test statistics we employ weighted L^2 distance between V-empirical Laplace transforms of random variables that appear in the characterization. The resulting test statistics are degenerate V-statistics with estimated parameters. We compare our tests, in terms of the Bahadur efficiency, to the likelihood ratio test, as well as some recent characterization based goodness-of-fit tests for the exponential distribution. We also compare the powers of our tests to the powers of some recent and classical exponentiality tests. In both criteria, our tests are shown to be strong and outperform most of their competitors.

keywords: goodness-of-fit; exponential distribution; Laplace transform; Bahadur efficiency; V-statistics

MSC(2010): 62G10, 62G20

1 Introduction

The exponential distribution is one of most widely studied distributions in theoretical and applied statistics. Many models assume exponentiality of the data. Ensuring that those models can be used is of great importance. For this reason, a great variety of goodness of fit tests for the particular case of the exponential distribution, have been proposed in literature.

Different constructions have been used to build test statistics. They are mainly based on empirical counterparts of some special properties of the exponential distribution. Some of those tests employ properties connected to different integral transforms such as: characteristic functions (see e.g. [9], [10], [12]); Laplace transforms (see e.g. [11], [16], [19]); and other integral transforms (see e.g. [17], [20]). Other properties include maximal correlations (see [7], [8]), entropy (see [4]), etc.

The simple form of the exponential distribution gave rise to many equidistribution type characterizations. The equality in distribution can be expressed in many ways (equality of distribution functions, densities, integral transforms, etc.). This makes them suitable for building different types of test statistics.

*marjar@matf.bg.ac.rs
†bojana@matf.bg.ac.rs
‡marcone@matf.bg.ac.rs
Such tests have become very popular in recent times, as they are proven to be rather efficient. Tests that use U-empirical and V-empirical distribution functions, of integral-type (integrated difference) and supremum-type, can be found in [28], [33], [15], [23], [21], [25]. A class of weighted integral-type tests that uses U-empirical Laplace transforms is presented in [22].

Motivated by the power and efficiency of those tests, here we create a similar test based on an equidistribution characterization. The test statistics measure the distance between two V-empirical Laplace transforms of the random variables that appear in the characterization, but, for the first time, using weighted L^2-distance. This guarantees the consistency of the test against all alternatives.

The paper is organized as follows. In Section 2 we introduce the test statistics and derive their asymptotic properties. In Section 3 we calculate the approximate Bahadur slope of our tests, for different close alternatives, and inspect the impact of the tuning parameter to the efficiencies of the test. We also compare the proposed tests to their recent competitors, via approximate local relative Bahadur efficiency. In Section 4 we conduct a power study. We obtain empirical powers of our tests, against different common alternatives, and compare them to some recent and classical exponentiality tests. We also apply an algorithm for data driven selection of tuning parameter and obtain the corresponding powers in small sample case.

2 Test statistic

Puri and Rubin [30] proved the following characterization theorem.

Characterization 2.1. Let X_1 and X_2 be two independent copies of a random variable X with pdf $f(x)$. Then X and $|X_1 - X_2|$ have the same distribution, if and only if for some $\lambda > 0$, $f(x) = \lambda e^{-\lambda x}$, for $x \geq 0$.

Let X_1, X_2, \ldots, X_n be independent copies of a non-negative random variable X with unknown distribution function F. We consider the transformed sample $Y_i = \hat{\lambda} X_i$, $i = 1, 2, \ldots, n$, where $\hat{\lambda}$ is the reciprocal sample mean. For testing the null hypothesis $H_0 : F(x) = 1 - e^{-\lambda x}$, $\lambda > 0$, in view of the characterization 2.1 we propose the following family of test statistics, depending on the tuning parameter $a > 0$,

$$M_{n,a}(\hat{\lambda}) = \int_0^\infty \left(L_n^{(1)}(t) - L_n^{(2)}(t) \right)^2 e^{-at} dt,$$

where

$$L_n^{(1)}(t) = \frac{1}{n} \sum_{i=1}^n e^{-tY_i}$$

$$L_n^{(2)}(t) = \frac{1}{n^2} \sum_{i_1, i_2=1}^n e^{-t|Y_{i_1} - Y_{i_2}|}$$

are V-empirical Laplace transforms of Y_1 and $|Y_1 - Y_2|$ respectively.
In order to explore the asymptotic properties we rewrite (1) as

\[M_{n,a}(\hat{\lambda}) = \int_0^\infty \left(\frac{1}{n^2} \sum_{i=1}^n e^{-tX_i} \hat{\lambda} - \frac{1}{n^2} \sum_{i_1,i_2=1}^n e^{-t|X_{i_1} - X_{i_2}|\hat{\lambda}} \right)^2 e^{-at} dt \]

\[= \frac{1}{n^4} \int_0^\infty \sum_{i_1,i_2,i_3,i_4} \left(e^{-tX_{i_1}} - e^{-t|X_{i_1} - X_{i_2}|\hat{\lambda}} \right) \left(e^{-tX_{i_3}} - e^{-t|X_{i_3} - X_{i_4}|\hat{\lambda}} \right) e^{-at} dt \]

\[= \frac{1}{n^4} \sum_{i_1,i_2,i_3,i_4} \int_0^\infty g(X_{i_1}, X_{i_2}, t; \hat{\lambda}) g(X_{i_3}, X_{i_4}, t; \hat{\lambda}) e^{-at} dt \]

\[= \frac{1}{n^4} \sum_{i_1,i_2,i_3,i_4} h(X_{i_1}, X_{i_2}, X_{i_3}, X_{i_4}, a; \hat{\lambda}), \]

where \(\hat{\lambda} = \bar{X}^{-1} \) is a consistent estimator of \(\lambda \).

Let’s focus, for a moment, on \(M_{n,a}(\lambda) \), for a fixed \(\lambda > 0 \). Notice that \(M_{n,a}(\lambda) \) is a \(V \)-statistic with kernel \(h \). Moreover, under the null hypothesis its distribution does not depend on \(\lambda \), so we may assume \(\lambda = 1 \). It is easy to show that its first projection on a basic observation is equal to zero. After some calculations, one can obtain its second projection given by

\[\tilde{h}_2(x, y, a) = E(h(X_1, X_2, X_3, X_4, a|X_1 = x, X_2 = y) \]

\[= -\frac{1}{2} + \frac{1}{3}(e^{-x} + e^{-y}) + \frac{1}{6}e^{a-x-y}\text{Ei}(-a)(a(e^x - 2)(e^y - 2) - e^x - e^y + 4) \]

\[+ \frac{1}{6} e^{a-x-y} \left(\text{Ei}(a)(4a + e^x + e^y - 4) - (\text{Ei}(a + x)(4a + x - 1) + e^y) \right) + \frac{1}{6}(a + x + y), \]

where \(\text{Ei}(x) = -\int_x^\infty \frac{e^{-t}}{t} dt \) is the exponential integral. The function \(\tilde{h}_2 \) is non-constant for any \(a > 0 \). Its plot, for \(a = 1 \), is shown in Figure 1. Hence, the kernel \(h \) is degenerate with degree 2.

Figure 1: Second projection \(\tilde{h}_2(x, y, 1) \)

The asymptotic distribution of \(M_{n,a}(\hat{\lambda}) \) is given in the following theorem.
Theorem 2.2. Let X_1, \ldots, X_n be i.i.d. sample with distribution function $F(x) = 1 - e^{\lambda x}$ for some $\lambda > 0$. Then
\[nM_{n,a}(\hat{\lambda}) \xrightarrow{d} 6 \sum_{k=1}^{\infty} \delta_k W_k, \]
where $\{\delta_k\}$ are the eigenvalues of the integral operator M_a defined by
\[M_a q(x) = \int_0^{+\infty} h_2(x, y, a)q(y)dF(y) \]
and $\{W_k\}$ is the sequence of i.i.d standard Gaussian random variables.

Proof. Since the kernel h is bounded and degenerate, from the theorem for the asymptotic distribution of U-statistics with degenerate kernels [13, Corollary 4.4.2], and the Hoeffding representation of V-statistics, we get that, $M_{n,a}(1)$, being a V-statistic of degree 2, has the asymptotic distribution from (2). Hence, it suffices to show that $M_{n,a}(\hat{\lambda})$ and $M_{n,a}(1)$ have the same distribution.

Our statistic $M_{n,a}(\hat{\lambda})$ can be rewritten as
\[M_{n,a}(\hat{\lambda}) = \int_0^{\infty} \left(\frac{1}{n^2} \sum_{i_1, i_2=1}^n g(X_{i_1}, X_{i_2}, t; \hat{\lambda}) \right)^2 e^{-at} dt \]
\[= \int_0^{\infty} V_n(\hat{\lambda})^2 e^{-at} dt. \]

Here $V_n(\hat{\lambda})$ is a V-statistic of order 2 with estimated parameter, and kernel $g(X_{i_1}, X_{i_2}, t; \hat{\lambda})$.

Since the function $g(x_1, x_2, t; \gamma)$ is continuously differentiable with respect to γ at the point $\gamma = \lambda$, the mean-value theorem gives us
\[V_n(\hat{\lambda}) = V_n(\lambda) + (\hat{\lambda} - \lambda) \frac{\partial V_n(\gamma)}{\partial \gamma} |_{\gamma = \lambda^*}, \]
for some λ^* is between λ and $\hat{\lambda}$.

Using the Law of large numbers for V-statistics [32, 6.4.2.], we have that $\frac{\partial V_n(\gamma)}{\partial \gamma}$ converges to
\[E \left(t|X_1 - X_2| e^{-t|X_1 - X_2|} - tX_1 e^{-tX_1} \right) = 0. \]

Since $\sqrt{n}(\hat{\lambda} - \lambda)$ is stochastically bounded, we conclude that statistics $\sqrt{n}V_n(\hat{\lambda})$ and $\sqrt{n}V_n(1)$ are asymptotically equally distributed. Therefore, $nM_{n,a}(\hat{\lambda})$ and $nM_{n,a}(1)$ will have the same limiting distribution, which completes the proof. \qed
3 Local Approximate Bahadur efficiency

One way to compare tests is to calculate their relative Bahadur efficiency. We briefly present it here. For more details we refer to [4] and [26].

For two tests with the same null and alternative hypotheses, $H_0 : \theta \in \Theta_0$ and $H_1 : \theta \in \Theta_1$, the asymptotic relative Bahadur efficiency is defined as the ratio of sample sizes needed to reach the same test power, when the level of significance approaches zero. For two sequences of test statistics, it can be expressed as the ratio of Bahadur exact slopes, functions proportional to exponential rates of decrease of their sizes, for the increasing number of observations and a fixed alternative. The calculation of these slopes depends on large deviation functions which are often hard to obtain. For this reason, in many situations, the tests are compared using the approximate Bahadur efficiency, which is shown to be a good approximation in the local case (when $\theta \to \partial \Theta_0$).

Suppose that $T_n = T_n(X_1, ..., X_n)$ is a test statistic with its large values being significant. Let the limiting distribution function of T_n, under H_0, be F_{T_n}, whose tail behavior is given by $\log(1 - F_{T_n}(t)) = -\frac{a_T t^2}{2} (1 + o(1))$, where a_T is positive real number, and $o(1) \to 0$ as $t \to \infty$. Suppose also that the limit in probability $\lim_{n \to \infty} T_n / \sqrt{n} = b_T(\theta) > 0$ exists for $\theta \in \Theta_1$. Then the relative approximate Bahadur efficiency of T_n, with respect to another test statistic V_n (whose large values are significant), is

$$e_{V,T}^*(\theta) = \frac{c_T^*(\theta)}{c_V^*(\theta)},$$

where $c_T^*(\theta) = a_T b_T^2(\theta)$ and $c_V^*(\theta) = a_V b_V^2(\theta)$ are approximate Bahadur slopes of T_n and V_n, respectively.

We may suppose, without loss of generality, that $\Theta_0 = \{0\}$. Consequently, the approximate local relative Bahadur efficiency is given by

$$e_{V,T}^* = \lim_{\theta \to 0} e_{V,T}^*(\theta).$$

Let $\mathcal{G} = \{G(x, \theta), \theta > 0\}$ be a family of alternative distribution functions such that $G(x, \theta) = 1 - e^{-\lambda x}$, for some $\lambda > 0$, if and only if $\theta = 0$, and the regularity conditions for V-statistics with weakly degenerate kernels from [27] Assumptions WD are satisfied.

The logarithmic tail behaviour of the limiting distribution of $M_{n,a}(\hat{\lambda})$, under the null hypothesis, is derived in the following lemma.

Lemma 3.1. For the statistic $M_{n,a}(\lambda)$ and the given alternative density $g(x, \theta)$ from \mathcal{G}, the Bahadur approximate slope satisfies the relation $c_{M}(\theta) \sim \frac{b_M(\theta)}{b_M(\theta)}$.

where $b_M(\theta)$ is the limit in P_θ probability of $M_{n,a}(\lambda)$, and δ_1 is the largest eigenvalue of the sequence $\{\delta_k\}$ from [27].

Proof. Using the result of Zolotarev [35], we have that the logarithmic tail behavior of limiting distribution function of $M_{n,a}(\lambda)$ is

$$\log(1 - F_M(t)) = -\frac{\lambda^2}{12\delta_1} + o(t^2), \quad t \to \infty.$$
Therefore, we obtain that \(a_{\lambda_{\theta}} = \frac{1}{\delta} \). The limit in probability \(P_\theta \) of \(M_{n,a}(\lambda)/\sqrt{n} \) is

\[
b_{\lambda_{\theta}} = \sqrt{b_M(\theta)}.
\]

Inserting this into the expression for Bahadur slope, we complete the proof. \(\square \)

The limit in probability of our test statistic, under a close alternative, can be derived using the following Lemma.

Lemma 3.2. For a given alternative density \(g(x; \theta) \) whose distribution belongs to \(\mathcal{G} \), we have that the limit in probability of the statistic \(M_{n,a}(\lambda) \) is

\[
b_M(\theta) = 6 \int_{0}^{\infty} \int_{0}^{\infty} \tilde{h}_2(x, y)f(x)f(y)dx dy \cdot \theta^2 + o(\theta^2), \theta \rightarrow 0,
\]

where \(f(x) = \frac{\partial g(x; \theta)}{\partial \theta}\bigg|_{\theta=0} \).

Proof. For brevity, let us denote \(x = (x_1, x_2, x_3, x_4) \) and \(G(x; \theta) = \prod_{i=1}^{4} G(x_i; \theta) \). Since \(X \) converges almost surely to its expected value \(\mu(\theta) \), using the Law of large numbers for \(V \)-statistics with estimated parameters (see [13]), we have that \(\lambda_{n,a}(\hat{\lambda}) \) converges to

\[
b_M(\theta) = E_\theta(h(X, a; \mu(\theta)))
\]

\[
= \int_{(R^+)^4} \mu(\theta) \left(\frac{x_1 + x_3 + a \mu(\theta)}{x_3 + |x_1 - x_2| + a \mu(\theta)} - \mu(\theta) \right) dG(x; \theta).
\]

We may assume that \(\mu(0) = 1 \) due to the scale freeness of test statistic under the null hypothesis. After some calculations we get that \(b_M'(0) = 0 \). Next, we obtain that

\[
b''(0) = \int_{(R^+)^4} h(x, a; 1) \frac{\partial^2}{\partial \theta^2} dG(x; 0) = 6 \int_{(R^+)^2} \tilde{h}_2(x, y)f(x)f(y)dx dy.
\]

Expanding \(b_M(\theta) \) into the Maclaurin series we complete the proof. \(\square \)

To calculate the efficiency one needs to find \(\delta_1 \), the largest eigenvalue. Since we cannot obtain it analytically, we use the following approximation, introduced in [6].

It can be shown that \(\delta_1 \) is the limit of the sequence of the largest eigenvalues of linear operators defined by \((m+1) \times (m+1) \) matrices \(M^{(m)} = |m^{(m)}_{i,j}| \), \(0 \leq i \leq m, 0 \leq j \leq m \), where

\[
m^{(m)}_{i,j} = \tilde{h}_2 \left(B_{i} \left(\frac{B_{i}}{m} \right) + B_{j} \left(\frac{B_{j}}{m} \right) \right) \sqrt{e^{\frac{m}{2}} - e^{\frac{m+1}{2}}} \cdot \sqrt{e^{\frac{m}{2}} - e^{\frac{m+1}{2}}} \cdot \frac{1}{1 - e^{-B_{i}}}, \quad (4)
\]

when \(m \) tends to infinity and \(F(B) \) approaches 1.

In Table [4] we present the largest eigenvalues for \(a = 0.5, 1, 2 \) and 5, obtained using [4] with \(m = 4500 \) and \(B = 10 \).
Table 1: Approximate eigenvalues of M_a

a	0.5	1	2	5
δ_1	$1.32 \cdot 10^{-2}$	$5.32 \cdot 10^{-3}$	$1.73 \cdot 10^{-3}$	$2.80 \cdot 10^{-4}$

3.1 Efficiencies with respect to LRT

Lacking a theoretical upper bound, the approximate Bahadur slopes are often compared (see e.g. [19]) to the approximate Bahadur slopes of the likelihood ratio tests (LRT), which are known to be optimal parametric tests in terms of Bahadur efficiency. Hence, we may consider the approximate relative Bahadur efficiencies against the LRT as a sort of "absolute" local approximate Bahadur efficiencies. We calculate it for the following alternatives:

- a Weibull distribution with density
 \[g(x, \theta) = e^{-x^{\theta+1}}(1 + \theta)x^\theta, \theta > 0, x \geq 0; \]

- a Gamma distribution with density
 \[g(x, \theta) = \frac{x^\theta e^{-x}}{\Gamma(\theta + 1)}, \theta > 0, x \geq 0; \]

- a Linear failure rate distribution with density
 \[g(x, \theta) = e^{-x^2(1 + \theta x)}(1 + \theta x), \theta > 0, x \geq 0; \]

- a mixture of exponential distributions with negative weights (EMNW(β)) with density (see [14])
 \[g(x, \theta) = (1 + \theta)e^{-x} - \theta e^{-\beta x}, \theta \in \left(0, \frac{1}{\beta - 1}\right], x \geq 0; \]

It is easy to show that all densities given above belong to family \mathcal{G}.

The efficiencies, as functions of the tuning parameter a, are shown on Figures 2–5.

We can notice that the local efficiencies range from reasonable to high, and for some values of a they are very high. Also, their behaviour with respect to the tuning parameter a is very different. In the cases of Weibull and Linear failure rate alternatives (Figures 2 and 4), they are increasing functions of a, while in the Gamma case (Figure 3), the function is decreasing. In the case of EMNW(3) (Figure 5), the efficiencies increase up to a certain point and then decrease.

3.2 Comparison of efficiencies

In this section, we calculate the local approximate Bahadur relative efficiency of our tests against some recent, characterization based integral-type tests, for the previously mentioned alternatives.
Figure 2: Local approximate Bahadur efficiencies w.r.t. LRT for a Weibull alternative

Figure 3: Local approximate Bahadur efficiencies w.r.t. LRT for a gamma alternative

Figure 4: Local approximate Bahadur efficiencies w.r.t. LRT for a linear failure rate alternative

The characterizations are of the equidistribution type and take the following form.
Let $X_1, \ldots, X_{\max(m,p)}$ be i.i.d with d.f. F, $\omega_1 : R^m \mapsto R^1$ and $\omega_2 : R^p \mapsto R^1$ two sample functions. Then the following relation holds

$$\omega_1(X_1, \ldots, X_m) \overset{d}{=} \omega_2(X_1, \ldots, X_p)$$

if and only if $F(x) = 1 - e^{-\lambda x}$, for some $\lambda > 0$.

Notice that the Puri-Rubin characterization is an example of such characterizations.

The first class of competitor tests consists of the integral-type tests with test statistic

$$I_n = \int_0^\infty \left(G_n^{(1)}(t) - G_n^{(2)}(t) \right) dF_n(t),$$

where $G_n^{(1)}(t)$ and $G_n^{(2)}(t)$ are V-empirical distribution functions of ω_1 and ω_2, respectively.

In particular, we consider the following integral-type test statistics:

- $I_{n,k}^{(1)}$, proposed in [15], based on the Arnold and Villasenor characterization, where $\omega_1(X_1, \ldots, X_k) = \max(X_1, \ldots, X_k)$ and $\omega_2(X_1, \ldots, X_k) = X_1 + \frac{X_2}{2} + \cdots + \frac{X_k}{k}$ (see [3], [24]);

- $I_n^{(2)}$, proposed in [23], based on the Milošević-Obradović characterization, where $\omega_1(X_1, X_2) = \max(X_1, X_2)$ and $\omega_2(X_1, X_2, X_3) = \min(X_1, X_2) + X_3$ (see [24]);

- $I_n^{(3)}$, proposed in [21], based on the Obradović characterization, where $\omega_1(X_1, X_2, X_3) = \max(X_1, X_2, X_3)$ and $\omega_2(X_1, X_2, X_3, X_4) = X_1 + \text{med}(X_2, X_3, X_4)$ (see [29]);

- $I_n^{(4)}$, proposed in [33], based on the Yanev-Chakraborty characterization, where $\omega_1(X_1, X_2, X_3) = \max(X_1, X_2, X_3)$ and $\omega_2(X_1, X_2, X_3) = \frac{X_1}{3} + \max(X_2, X_3)$ (see [34]).

We also consider integral-type tests of the form

$$J_{n,a} = \int_0^\infty \left(L_n^{(1)}(t) - L_n^{(2)}(t) \right) X e^{-at} dt,$$

where $L_n^{(1)}(t)$ and $L_n^{(2)}(t)$ are V-empirical distribution functions of ω_1 and ω_2, respectively.
where \(L^{(1)}_n(t) \) and \(L^{(2)}_n(t) \) are \(V \)-empirical Laplace transforms of \(\omega_1 \) and \(\omega_2 \), respectively. This approach has been originally proposed in [22]. There, particular cases of Desu characterization, with \(\omega_1(X_1) = X_1 \) and \(\omega_2 = 2 \min(X_1, X_2) \), and Puri-Rubin characterization were examined. We denote the corresponding tests statistics with \(J_{n,a}^P \) and \(J_{n,a}^D \), respectively. The results are presented in Table 2. We can notice that in most cases tests that employ \(V \)-empirical Laplace transforms are more efficient than those based on \(V \)-empirical distribution functions. On the other hand, new tests are comparable with \(J_{n,a}^P \) and more efficient than \(J_{n,a}^D \).

Table 2: Relative Bahadur efficiency of \(M_{n,a} \) with respect to its competitors

\(a \)	0.5	1	2	5	
\(I^{(1)}_{n,2} \)	Weibull	1.27	1.33	1.37	1.42
	Gamma	1.14	1.13	1.10	1.06
	LFR	2.44	3.13	3.93	5.08
	EMNW(3)	1.25	1.34	1.40	1.42
\(I^{(1)}_{n,3} \)	Weibull	1.19	1.24	1.28	1.32
	Gamma	1.17	1.15	1.12	1.09
	LFR	1.59	2.04	2.56	3.31
	EMNW(3)	1.08	1.17	1.22	1.23
\(I^{(2)}_n \)	Weibull	1.05	1.10	1.14	1.17
	Gamma	1.04	1.02	1.00	0.97
	LFR	1.22	1.56	1.96	2.53
	EMNW(3)	1.02	1.10	1.15	1.17
\(I^{(3)}_n \)	Weibull	1.06	1.10	1.14	1.18
	Gamma	1.18	1.16	1.14	1.10
	LFR	0.82	1.05	1.32	1.71
	EMNW(3)	0.94	1.02	1.06	1.08
\(I^{(4)}_n \)	Weibull	1.21	1.27	1.31	1.35
	Gamma	1.30	1.28	1.25	1.21
	LFR	1.23	1.57	1.98	2.56
	EMNW(3)	1.04	1.12	1.16	1.18
\(J_{n,a}^P \)	Weibull	0.97	0.97	1.01	1.00
	Gamma	0.98	0.99	1.00	1.02
	LFR	0.97	0.93	0.91	0.93
	EMNW(3)	0.97	0.98	0.99	1.00
\(J_{n,a}^D \)	Weibull	1.00	0.95	0.93	0.95
	Gamma	2.16	1.64	1.33	1.13
	LFR	1.17	1.07	1.01	0.99
	EMNW(3)	1.42	1.18	1.06	0.99
4 Power study

In this section we compare the empirical powers of our tests with those of some common competitors, listed in [12] and [22]. The Monte Carlo study is done for small sample size $n = 20$ and the moderate sample size $n = 50$, with $N = 10000$ replicates, for level of significance $\alpha = 0.05$.

The powers are presented in Tables 3 and 4. The labels used are identical to the ones in [12] and [22].

Alt.	W(1.4)	T(2)	HN	U	CH(0.5)	CH(1)	CH(1.5)	LF(2)	LF(4)	EW(1.5)
EP	36	48	21	66	63	15	84	28	42	45
KS	35	46	24	72	47	18	79	32	44	48
CM	32	47	21	66	61	16	83	30	43	47
ω^2	34	47	21	66	61	14	79	28	41	43
KS	28	40	18	52	56	13	67	24	34	35
KL	29	44	16	61	77	11	76	23	34	37
S	35	46	21	70	63	15	84	29	42	46
CO	37	54	19	50	80	13	81	25	37	37
$J_{n,1}^D$	42	64	20	45	15	15	15	29	40	36
$J_{n,2}^D$	47	66	25	59	18	19	18	33	48	46
$J_{n,3}^D$	48	64	28	70	20	21	21	36	52	53
$J_{n,1}^P$	49	65	29	73	21	22	21	38	51	54
$J_{n,2}^P$	50	64	31	77	21	21	23	40	54	57
$J_{n,3}^P$	48	62	32	79	23	23	23	41	56	58
$M_{n,0,5}$	46	66	25	64	19	18	19	35	49	46
$M_{n,1}$	49	66	28	72	21	21	21	38	52	53
$M_{n,2}$	50	67	31	75	22	23	23	40	55	56
$M_{n,5}$	48	62	32	80	22	23	24	40	56	58

It can be noticed that in the majority of cases the tests based on V-empirical Laplace transforms are most powerful. Among them, those tests that are based on same characterization have more or less the same empirical powers, and the similar sensibility to the change of tuning parameter, for each considered alternative.

4.1 On a data-dependent choice of tuning parameter

The powers of proposed tests depend on the values of tuning parameter a, and the well-chosen value of a would help us make the right decision. However, since the "right" value of a is rather different for different alternatives, a general conclusion, which a is most suitable in practice, can not be made. Hence, in what follows, we present an algorithm for data driven selection of tuning parameter, proposed initially by Allison and Santana [2]:

1. fix a grid of positive values of a, $(a_1, ..., a_k)$;
2. obtain a bootstrap sample X_n^* from empirical distribution function of X_n;
3. determine the value of test statistic $M_{n,a_i}, i = 1, ..., k$, for the obtained sample;
Table 4: Percentage of rejected hypotheses for $n = 50$

Alt.	$W(1.4)$	$T(2)$	HN	U	$CH(0.5)$	$CH(1)$	$CH(1.5)$	$LF(2)$	$LF(4)$	$EW(1.5)$
EP	80	91	54	98	94	38	100	69	87	90
KS	71	86	50	99	90	36	100	65	82	88
CM	77	90	53	99	94	37	100	69	87	90
ω^2	75	90	48	95	32	100	64	83	86	
KS	64	83	39	93	92	26	98	53	72	75
KL	72	93	37	97	99	23	100	54	75	79
S	79	90	54	99	94	38	100	69	87	90
CO	82	96	45	91	99	30	100	60	80	78
$j_{n,1}^D$	78	96	36	76	23	24	23	51	71	64
$j_{n,2}^D$	83	97	46	90	31	30	31	62	83	79
$j_{n,5}^D$	86	97	55	97	41	40	40	72	89	89
$j_{n,1}^P$	85	96	54	97	38	38	38	70	87	87
$j_{n,2}^P$	86	96	59	98	41	42	42	73	89	90
$j_{n,5}^P$	86	96	63	99	46	46	45	77	91	93
$M_{n,1}$	85	97	54	97	38	38	38	69	87	86
$M_{n,2}$	86	96	57	98	41	41	41	73	89	90
$M_{n,5}$	87	96	63	99	45	45	45	76	91	93

4. repeat steps 2 and 3 B times and obtain series of values of test statistics for every a, $M_{j,a,i}^*, i = 1, \ldots, k, j = 1, \ldots, B$;

5. determine the empirical power of the test for every a, i.e.

$$\hat{P}_a = \frac{1}{B} \sum_{j=1}^{B} I\{M_{j,a_i} \geq \hat{C}_{n,a_i}(\alpha)\}, i = 1, \ldots, k;$$

6. for the next calculation $\hat{a} = \arg\max_{a \in \{a_1, \ldots, a_k\}} \hat{P}_a$ will be used.

The critical value $\hat{C}_{n,\hat{a}}$ is determined using the Monte Carlo procedure with N_1 replicates. Then, the empirical power of the test is determined based on the new sample from the alternative distribution

$$p = \frac{1}{N_1} \sum_{i=1}^{N_1} I\{M_{n,\hat{a}} \geq \hat{C}_{n,\hat{a}}(\alpha)\}.$$

The previously described procedure is being repeated n times and the average value is taken as the estimated power:

$$\hat{P} = \frac{1}{N} \sum_{i=1}^{N} p_i.$$

The results are presented in Table 5 and 6. The numbers in the parentheses represent the percentage of times that each value of a equaled the estimated optimal one. It is important to note that this bootstrap powers are comparable to the maximum achievable power for the tests calculated over a grid of values of the tuning parameter.
Table 5: Percentage of rejected samples for different value of a, $n = 20$, $\alpha = 0.05$

	0.5	1	2	5	\hat{a}
$W(1.4)$	46 (50)	49 (12)	50 (15)	48 (23)	48
$\Gamma(2)$	66 (63)	65 (12)	65 (10)	63 (15)	65
HN	25 (35)	28 (14)	30 (17)	32 (34)	29
U	64 (20)	72 (9)	75 (21)	80 (50)	75
$CH(0.5)$	19 (37)	21 (15)	22 (17)	22 (31)	21
$CH(1)$	18 (35)	21 (15)	23 (16)	23 (34)	21
$CH(1.5)$	19 (35)	20 (11)	20 (20)	24 (34)	21
$LF(2)$	35 (33)	37 (12)	38 (20)	41 (35)	38
$LF(4)$	49 (35)	53 (14)	54 (16)	54 (35)	52
$EW(1.5)$	46 (24)	53 (12)	56 (20)	58 (44)	54

Table 6: Percentage of rejected samples for different value of a, $n = 50$, $\alpha = 0.05$

	0.5	1	2	5	\hat{a}
$W(1.4)$	84 (43)	86(19)	86(16)	87(22)	85
$\Gamma(2)$	97 (68)	97(15)	96(11)	95(6)	97
HN	48(21)	53(13)	57(23)	62(43)	57
U	95(31)	97(12)	98(20)	99(37)	98
$CH(0.5)$	34(19)	37(11)	41(20)	44(50)	41
$CH(1)$	33(18)	37(13)	41(18)	46(51)	41
$CH(1.5)$	33(18)	37(13)	42(19)	44(50)	41
$LF(2)$	65(20)	69(12)	74(24)	76(44)	72
$LF(4)$	83(25)	86(16)	89(20)	91(39)	88
$EW(1.5)$	81(17)	87(13)	89(22)	93(48)	89
5 Real data examples

In this section we apply our tests to two real data examples.

The first data set represents inter-occurrence times of the British scheduled data, measured in number of days and listed in the order of their occurrence in time (see [31]):

\[
\begin{array}{cccccccccccccccccc}
20 & 106 & 14 & 78 & 94 & 20 & 21 & 136 & 56 & 232 & 89 & 33 & 181 & 424 & 14 & 430 & 205 & 117 & 253 & 86 & 260 & 213 & 58 & 276 & 263 & 246 & 341 & 1105 & 50 & 136.
\end{array}
\]

Applying the algorithm for data-driven tuning parameter we get \(\hat{a} = 1 \). The value of the test statistic \(M_{31,1} \) is \(6.07 \times 10^{-4} \), and the corresponding \(p \)-value is 0.49, so we cannot reject exponentiality in this case.

The second data set represents failure times for right rear breaks on D9G-66A Caterpillar tractors (see [5]):

\[
\begin{array}{ccccccccccccccccccccccc}
56 & 83 & 104 & 116 & 244 & 305 & 429 & 452 & 453 & 503 & 552 & 614 & 661 & 673 & 683 & 685 & 753 & 763 & 806 & 834 & 838 & 862 & 897 & 904 & 981 & 1007 & 1008 & 1049 & 1060 & 1107 & 1125 & 1141 & 1153 & 1154 & 1193 & 1201 & 1253 & 1313 & 1329 & 1347 & 1454 & 1464 & 1490 & 1491 & 1532 & 1549 & 1568 & 1574 & 1586 & 1599 & 1608 & 1723 & 1769 & 1795 & 1927 & 1957 & 1975 & 2005 & 2010 & 2016 & 2022 & 2037 & 2065 & 2096 & 2139 & 2150 & 2156 & 2160 & 2190 & 2210 & 2220 & 2248 & 2285 & 2325 & 2353 & 2351 & 2337 & 2364 & 2546 & 2569 & 2584 & 2624 & 2675 & 2701 & 2755 & 2877 & 2879 & 2922 & 2986 & 3092 & 3160 & 3185 & 3191 & 3439 & 3617 & 3685 & 3756 & 3826 & 3995 & 4007 & 4159 & 4300 & 4487 & 5074 & 5579 & 5623 & 6869 & 7739.
\end{array}
\]

Here we get \(\hat{a} = 0.5 \). The value of the test statistic \(M_{107,0.5} \) is 0.0239, and the corresponding \(p \)-value is less than 0.0001, so our test rejects the null exponentiality hypothesis.

6 Conclusion

In this paper we propose new consistent scale-free exponentiality tests based on Puri-Rubin characterization. The proposed tests are shown to be very efficient in Bahadur sense. Moreover, in small sample case, the tests have reasonable to high empirical powers. They also outperform many recent competitor tests in terms of both efficiency and power, which makes them attractive for use in practice.

Acknowledgement

This work was supported by the MNTRS, Serbia under Grant No. 174012 (first and second author).

References

[1] H. Alizadeh Noughabi and N. R. Arghami. Testing exponentiality based on characterizations of the exponential distribution. Journal of Statistical Computation and Simulation, 81(11):1641–1651, 2011.
[2] J. Allison and L. Santana. On a data-dependent choice of the tuning parameter appearing in certain goodness-of-fit tests. *Journal of Statistical Computation and Simulation*, 85(16):3276–3288, 2015.

[3] B. C. Arnold and J. A. Villasenor. Exponential characterizations motivated by the structure of order statistics in samples of size two. *Statistics & Probability Letters*, 83(2):596–601, 2013.

[4] R. R. Bahadur. *Some limit theorems in statistics*. SIAM, Philadelphia, 1971.

[5] R. E. Barlow and R. Campo. Total time on test processes and applications to failure data analysis. In *Reliability and Fault Tree Analysis*, pages 451–481. SIAM, 1975.

[6] V. Božin, B. Milošević, Ya. Yu. Nikitin, and M. Obradović. New characterization based symmetry tests. *Bulletin of the Malaysian Mathematical Sciences Society*, 2018. DOI:10.1007/s40840-018-0680-3.

[7] A. Grăne and J. Fortiana. A location-and scale-free goodness-of-fit statistic for the exponential distribution based on maximum correlations. *Statistics*, 43(1):1–12, 2009.

[8] A. Grăne and J. Fortiana. A directional test of exponentiality based on maximum correlations. *Metrika*, 73(2):255–274, 2011.

[9] N. Henze. A new flexible class of omnibus tests for exponentiality. *Communications in Statistics-Theory and Methods*, 22(1):115–133, 1992.

[10] N. Henze and S. G. Meintanis. Goodness-of-fit tests based on a new characterization of the exponential distribution. *Communications in Statistics-Theory and Methods*, 31(9):1479–1497, 2002.

[11] N. Henze and S. G. Meintanis. Tests of fit for exponentiality based on the empirical Laplace transform. *Statistics: A Journal of Theoretical and Applied Statistics*, 36(2):147–161, 2002.

[12] N. Henze and S. G. Meintanis. Recent and classical tests for exponentiality: a partial review with comparisons. *Metrika*, 61(1):29–45, 2005.

[13] H. Iverson and R. Randles. The effects on convergence of substituting parameter estimates into U-statistics and other families of statistics. *Probability Theory and Related Fields*, 81(3):453–471, 1989.

[14] V. Jevremovic. A note on mixed exponential distribution with negative weights. *Statistics & probability letters*, 11(3):259–265, 1991.

[15] M. Jovanović, B. Milošević, Ya. Yu. Nikitin, M. Obradović, and K. Yu. Volkova. Tests of exponentiality based on Arnold–Villasenor characterization and their efficiencies. *Computational Statistics & Data Analysis*, 90:100–113, 2015.

[16] B. Klar. On a test for exponentiality against Laplace order dominance. *Statistics*, 37(6):505–515, 2003.
[17] B. Klar. Tests for exponentiality against the M and LM-Classes of life distributions. *Test*, 14(2):543–565, 2005.

[18] V. S. Korolyuk and Y. V. Borovskikh. *Theory of U-statistics*. Kluwer, Dordrecht, 1994.

[19] S. Meintanis, Ya. Yu. Nikitin, and A. Tchirina. Testing exponentiality against a class of alternatives which includes the RNBUЕ distributions based on the empirical Laplace transform. *Journal of Mathematical Sciences*, 145(2):4871–4879, 2007.

[20] S. G. Meintanis. Tests for generalized exponential laws based on the empirical Mellin transform. *Journal of Statistical Computation and Simulation*, 78(11):1077–1085, 2008.

[21] B. Milošević. Asymptotic efficiency of new exponentiality tests based on a characterization. *Metrika*, 79(2):221–236, 2016.

[22] B. Milošević and M. Obradović. New class of exponentiality tests based on U-empirical Laplace transform. *Statistical Papers*, 57(4):977–990, 2016.

[23] B. Milošević and M. Obradović. Some characterization based exponentiality tests and their Bahadur efficiencies. *Publications de L’Institut Mathématique*, 100(114):107–117, 2016.

[24] B. Milošević and M. Obradović. Some characterizations of the exponential distribution based on order statistics. *Applicable Analysis and Discrete Mathematics*, 10(2):394–407, 2016.

[25] Y. Y. Nikitin and K. Y. Volkova. Efficiency of exponentiality tests based on a special property of exponential distribution. *Mathematical Methods of Statistics*, 25(1):54–66, 2016.

[26] Ya. Yu. Nikitin. *Asymptotic efficiency of nonparametric tests*. Cambridge University Press, New York, 1995.

[27] Ya. Yu. Nikitin and I. Peaucelle. Efficiency and local optimality of nonparametric tests based on U- and V-statistics. *Metron*, 62(2):185–200, 2004.

[28] Ya. Yu. Nikitin and K. Yu. Volkova. Asymptotic efficiency of exponentiality tests based on order statistics characterization. *Georgian Mathematical Journal*, 17(4):749–763, 2010.

[29] M. Obradović. Three characterizations of exponential distribution involving median of sample of size three. *Journal of Statistical Theory and Applications*, 14(3):257–264, 2015.

[30] P. S. Puri and H. Rubin. A characterization based on the absolute difference of two iid random variables. *The Annals of Mathematical Statistics*, 41(6):2113–2122, 1970.

[31] R. Pyke. Spacings. *Journal of the Royal Statistical Society. Series B (Methodological)*, 27(3):395–449, 1965.
[32] R. Serfling. *Approximation theorems of mathematical statistics*, volume 162. John Wiley & Sons, New York, 2009.

[33] K. Volkova. Goodness-of-fit tests for exponentiality based on Yanev-Chakraborty characterization and their efficiencies. *Proceedings of the 19th European Young Statisticians Meeting, Prague*, pages 156–159, 2015.

[34] G. P. Yanev and S. Chakraborty. Characterizations of exponential distribution based on sample of size three. *Pliska Studia Mathematica Bulgarica*, 22(1):237p–244p, 2013.

[35] V. M. Zolotarev. Concerning a certain probability problem. *Theory of Probability & Its Applications*, 6(2):201–204, 1961.