Research on the relationship between environmental contamination level and economic development standard—Based on the perspective of law and economics

L N Fa
Shanghai University of Political Science and Law (SHUPL), School of Economics and Management, Shanghai, China
E-mail: falina12@163.com

Abstract. Carbon emissions and fossil fuel are two causes of environmental pollution. Based on China’s carbon emissions according to the Ministry of Ecology and Environment of the People’s Republic of China from 1990 to 2014 and GDP data analysis using multiple linear regression methods in economics. Excessive emissions of carbon can be an obstacle to impede the economic development. Therefore, the countries should protect the environment to sustain long-term economic growth.

1. Introduction
With the improvement of the level of productivity development, the means to achieve rapid economic growth through the high consumption and high pollution generating mode and the concept of post-pollution treatment have become unsuitable for the present and future development requirements. Seeking a path to sustainable development cannot be delayed.

Environmental pollution is caused by many factors, which can cause great damage to the atmosphere, land and water resources. In the "Belt and Road" economic belt, due to the construction of railway routes and new factories, it brings about even more pollution and destruction [1]. The following will introduce two specific factors that cause environmental pollution.

Carbon emissions, or greenhouse gas emissions, have received much public attention in recent years. The so-called carbon emissions, mainly refers to the carbonaceous material pollution caused by the atmosphere, its main component is carbon dioxide. In addition, there are other hydrocarbons such as natural gas, methane ethane and so on [2]. Exhaust fumes from factories, exhaust fuels from aircraft, trains and ships, and pesticides and fertilizers for agricultural irrigation are the major sources of carbon emissions in the Belt and Road economic zone [3]. In the Vision and Action for Promoting the Building of the Silk Road Economic Belt and the 21st Century Maritime Silk Road issued by the National Development and Reform Commission, the Ministry of Foreign Affairs and the Ministry of Commerce in 2015, we specifically mentioned how to reduce carbon emissions in the countries along the Belt and Road problem. This shows that the pollution caused by carbon emissions has great influence on the construction and development of the economic belt.

Fossil fuel is also one of the causes of pollution. It is a mixture of hydrocarbons or hydrocarbon derivatives consisting of the substances mentioned above that cause carbon emissions and some toxic substances such as sulfides. Because fossil fuels are a world class energy source, the damage it causes is worldwide. The first destruction of land during the exploitation of fuels resulted in a global warming
of the dioxide released during combustion and the subsequent discharge into the oceanic rivers after combustion, resulting in increased pollution. Its impact on environmental pollution is even worse than carbon emissions [4].

2. Methods and analysis
Environmental problems do have some impact on economic development, but the extent of their impact is hard to measure. In order to understand the economic impact of the above factors, the following will be China's 35-year carbon emissions and gross domestic product (GDP) and nearly 25 years of fossil fuel use as the data and using multiple linear regression to measure Impact of Environmental Pollution on China's Economic Development [5,6].

First introduce the current very popular carbon emissions as a variable as an explanatory variable, the model is set to:

\[Y_t = \beta_1 + \beta_2 X_t + u_t \]

Where, \(X_t \) is gross domestic product (GDP); \(Y_t \) is carbon emissions; \(u_t \) is a random error term.

Table 1. China's carbon emissions and GDP data (1980–2014).

years	Carbon emissions \(Y_t \) (million tons)	GDP \(X_t \) (100 million)
1980	1440.0	4545.6
1981	1424.8	4889.5
1982	1483.5	5330.5
1983	1559.8	5958.6
1984	1689.8	7243.8
1985	1746.5	9040.7
1986	1852.3	10274.4
1987	1992.8	12050.6
1988	2142.9	15036.8
1989	2223.6	17000.9
1990	2277.7	18718.3
1991	2389.4	21826.2
1992	2502.2	26937.3
1993	2703.5	35260.0
1994	2811.0	48108.5
1995	3057.6	59810.5
1996	3125.4	70142.5
1997	3095.1	78060.9
1998	3180.1	83024.3
1999	3084.3	88479.2
2000	3350.3	98000.5
2001	3437.4	108068.2
2002	3654.4	119095.7
2003	4219.1	134977.0
2004	4878.1	159453.6
2005	5444.3	183617.4
2006	5955.7	215904.4
2007	6360.4	266422.0
2008	6532.7	316030.2
2009	6839.1	340320.0
2010	7294.9	399769.5
2011	8000.4	468562.4
2012	8250.8	518214.7
2013	8872.5	588018.8
2014	8880.0	635910.0
Based on the data in Table 1, using the general least-squares method to estimate the model yields the following data and regression equation (1):

\[Y_t = 2073.788 + 0.0126X_t \]

\[t = (17.9452)(25.2576) \]

\[R^2 = 0.9508 \quad F = 637.9551 \quad DW = 0.1569 \]

\[(1) \]

The regression equation (1) higher coefficient of determination, the regression coefficients were significant. For the model with 35 samples and only one explanatory variable, a significant level of 5% is obtained. Table 2 shows that dL = 1.402 and dU = 1.519, and DW < dL in the model. Obviously there is autocorrelation in this model [7].

In order to solve the problem of carbon emissions - the autocorrelation in the GDP model, we use the generalized difference method. The residual sequence et is obtained from the regression of \(Y_t = 2073.788 + 0.0126X_t \). Let the autocorrelation coefficient be \(\rho \), the lag of et autoregressive regression is available regression equation (2):

\[e_t = 0.9698e_{t-1} \quad \rho = 0.9698 \]

\[(2) \]

Generalized differential regression on regression equation (1), where vt is a new random error term, yields:

\[Y_{t-1} - 0.9698Y_{t-1} = \beta_1(1-0.9698) + \beta_2(X_{t-1} - 0.9698X_{t-1}) + v_t \]

Get the following generalized differential regression output and regression equation (3), see Table 3.

Table 2. Carbon emissions-GDP regression equation (1).

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	2073.788	115.5622	17.94521	0.0000
X	0.012595	0.000499	25.25777	0.0000
R-squared	0.950816	Mean dependent var	3935.783	
Adjusted R-squared	0.949326	S.D. dependent var	2338.862	
S.E. of regression	526.4988	Akaike info criterion	15.42582	
Sum squared resid	9147633.	Schwarz criterion	15.51470	
Log likelihood	-267.9519	Hannan-Quinn criter	15.45650	
F-statistic	637.9551	Durbin-Watson stat	0.156927	
Prob(F-statistic)	0.000000			

Table 3. Generalized differential regression equation.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	159.9251	37.92967	4.216359	0.0002
X-0.9698*X(-1)	0.007671	0.001110	6.910124	0.0000
R-squared	0.598745	Mean dependent var	333.2925	
Adjusted R-squared	0.586206	S.D. dependent var	257.8559	
S.E. of regression	165.8705	Akaike info criterion	13.11731	
Sum squared resid	880416.9	Schwarz criterion	13.20710	
Log likelihood	-220.9943	Hannan-Quinn criter	13.14793	
F-statistic	47.74981	Durbin-Watson stat	1.149087	
Prob(F-statistic)	0.000000			
Yt = 159.9251 + 0.0077Xt

Se = (37.9297) (0.0011)
t = (4.2163) (6.9101)

R^2 = 0.5987 F = 47.7498 DW = 1.1491

When the sample size becomes 34, at a significant level of 5%, dL = 1.393, dU = 1.514 and DW is still less than dL, indicating autocorrelation still exists. This shows that no matter what circumstances, the interference of other environmental pollution factors always exist. Therefore, from the carbon-emission-GDP generalized difference model, we know that for every unit GDP increase, it will increase 0.0077 million tons of carbon emissions, that is, there is a positive correlation between GDP and carbon emissions.

In order to be able to influence the impact of total environmental pollution factors on gross domestic product (GDP), we introduce another explanatory variable below: chemical fuel use. Create a new model:

Yt = β1 + β2 X2 + β3 X3

Where, Y is the gross domestic product (100 million); X2 is the carbon emissions (million tons); X3 is the fossil fuel consumption (10,000 tons of standard coal). X2, X3 as explanatory variables, Y as explained variables [8,9], see Table 4.

Table 4. China’s carbon emissions, fossil fuel use and GDP data (1990~2014).

years	Carbon emissions X2 (million tons)	Fossil fuels X3 (Tons)	GDP Y (100 million)
1990	2277.7	103922.0	18718.3
1991	2389.4	104844.0	21826.2
1992	2502.2	107256.0	26937.3
1993	2703.5	111059.0	35260.0
1994	2811.0	118729.0	48108.5
1995	3057.6	129034.0	59810.5
1996	3125.4	133032.0	70142.5
1997	3095.1	133460.0	78060.9
1998	3180.1	129834.0	83024.3
1999	3084.3	131935.0	88479.2
2000	3350.3	138570.0	98000.5
2001	3437.4	147425.0	108068.2
2002	3654.4	156277.0	119095.7
2003	4219.1	178299.0	134977.0
2004	4878.1	206108.0	159453.6
2005	5444.3	229037.0	183617.4
2006	5955.7	244763.0	215904.4
2007	6360.4	264173.0	266422.0
2008	6532.7	277419.0	316030.2
2009	6839.1	286092.0	340320.0
2010	7294.9	312125.0	399769.5
2011	8000.4	340178.0	468562.4
2012	8250.8	351041.0	518214.7
2013	8872.5	358784.0	588018.8
2014	8880.0	360000.0	635910.0

Source: National Bureau of Statistics of the People’s Republic of China.
http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm

Multiple linear regression on the above data yields the following regression equation:
Table 5. Multiple linear regression equation.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-184422.6	21280.06	-8.666451	0.0000
X2	156.3668	72.08286	2.169265	0.0411
X3	-1.801052	1.756091	-1.025603	0.3162
R-squared	0.958484	Mean dependent var	203309.3	
Adjusted R-squared	0.954710	S.D. dependent var	187664.5	
S.E. of regression	39937.86	Akaike info criterion	24.14020	
Sum squared resid	3.51E+10	Schwarz criterion	24.28647	
Log likelihood	-298.7525	Hannan-Quinn criter.	24.18077	
F-statistic	253.9572	Durbin-Watson stat	0.359144	
Prob(F-statistic)	0.000000			

\[
Y = -184422.6 + 156.3668X_2 - 1.8011X_3
\]

\[
\text{Se} = (21280.06) \quad (72.0829) \quad (1.7561)
\]

\[
t = (-8.6665) \quad (2.1693) \quad (-1.0256)
\]

\[
R^2 = 0.9585 \quad R_1^2 = 0.9547 \quad F = 253.9572 \quad n = 25
\]

Statistical test:
- Goodness of fit: As can be seen from table 5, \(R^2 = 0.9585 \), the correction coefficient is equal to 0.9547, indicating that the model fitting well to the sample.
- 2.F test: Suppose \(H_0: \beta_2 = \beta_3 = 0 \). At a significant level of \(\alpha = 0.05 \), a degree of freedom \(F(0.05, (2,22)) = 3.05 \) was found from the F distribution table. As can be seen from table 5 \(F = 253.9572 > F(0.05, (2,22)) = 3.05 \). The null hypothesis \(H_0: \beta_2 = \beta_3 = 0 \) should be rejected, indicating that the regression equation is significant. That is, carbon emissions and fossil fuel consumption do have a significant impact on China's GDP [10].
- 3.t test: respectively for the \(H_0: \beta_j = 0 \) \((j = 1,2,3)\), given a significant level of \(\alpha = 0.05 \), check t distribution table for the degree of freedom of 22 critical value \(t_{0.025}(22) = 2.074 \). As can be seen from table 6, the t statistic corresponding to \(\beta_2 \) is 2.1693, which is greater than \(t_{0.025}(22) = 2.074 \), rejecting the null hypothesis \(H_0: \beta_j = 0 \) \((j = 1,2,3)\). This shows that in the case of constant use of fossil fuels, the explanatory variable carbon emissions \(X2 \) have a significant impact on China's GDP. At the same time \(\beta_3 \) corresponding t statistic is -1.0256 less than \(t_{0.025}(22) = 2.074 \), that accept the null hypothesis. That is, fossil fuels have no significant effect on GDP.

The final result of this model is that GNP will increase by 156.3668 billion yuan for every one million tons of carbon emissions assuming that other variables will not change; for every 10,000 tons of fossil fuels, GNP will Reduce 1.8011 billion [11].

3. Conclusion
Based on the above data analysis, it shows that fossil fuels must have a great negative impact on economic development. In the short term, carbon emissions can boost GDP growth. However, in the long run, excessive emissions of carbon substances will certainly hinder the economic development [12]. It is just this long-term development that has been seen in various countries. Therefore, many environmental laws and international mechanisms have been promulgated, including the birth of Transactions of Carbon Emissions Rights and Interim Measures for the Management of Transactions of Carbon Emissions Rights in China.

Acknowledgments
This article is funded by “China National Institute for SCO International Exchange and Judicial
Cooperation Research Fund Project” and “2017 Shanghai University of Political Science and Law (SHUPL) Youth Science Fund Program” (2017XQN21).

References
[1] Shannon Tiezzi 2014 The new silk road: China’s marshall plan The Diplomat
[2] Gu D J and Kang S Y 2009 Basic law of Indian environment and judicial initiative in its implementation Earth Science
[3] Li M M and Liu Y 2012 A comparative study of environmental protection regulations between China and Russia Heilongjiang Environmental News 2012-08 5-8
[4] 1989 The Environment Protection Law of the People's Republic of China
[5] Nicholas A R 1998 Comparative environmental law perspective on legal regimes for sustainable development 3 Widener L Symposia
[6] Sun Y L and Chen G S 2003 Demand and supply of environmental law - A perspective of law and economics Journal of SGU 59(3) 1-2
[7] Zhu J 2002 Economic analysis of environmental law (Chongqing: SWUPL)
[8] Bo Y 2011 Study on the effectiveness of international environmental protection mechanism (Shanghai: FDU)
[9] Zhang H B 2007 Influence of international environmental protection on national sovereignty European Studies 36(4) 64-65
[10] Ma C W and Su J 2009 From the perspective of economics: Innovation and perfection of environmental law system Exploration of Economic Problems No. 10 142
[11] Haibo C, Ayamba E C, Agyemang A O, Afriyie S O and Anaba A O 2019 Economic development and environmental sustainability - the case of foreign direct investment effect on environmental pollution in China Environmental Science and Pollution Research 2019-03 7235-6
[12] Tracy E F, Shvarts E, Simonov E and Babenko M 2017 China’s new Eurasian ambitions: The environmental risks of the silk road economic belt Eurasian Geography and Economics 2017-11 73-5