Elevated levels of whole blood nickel in a group of Sri Lankan women with endometriosis: a case control study

Nalinda Silva1*, Hemantha Senanayake2 and Vajira Waduge3

Abstract

Background: Endometriosis is characterized by the persistence of endometrial tissue in ectopic sites outside the uterine cavity. Presence of nickel, cadmium and lead in ectopic endometrial tissue has been reported previously. While any association between blood levels of nickel and endometriosis is yet to be described in literature, conflicting reports are available with regards to cadmium and lead levels in blood and urine.

Findings: In fifty patients with endometriosis and fifty age-matched controls confirmed by laparoscopy or laparotomy, whole blood samples were collected and digested using supra pure 65% HNO3. Whole blood levels of nickel and lead were measured using Total Reflection X-ray Fluorescence (TXRF) while cadmium levels were evaluated using graphite furnace atomic absorption spectroscopy (GFAAS). Women with endometriosis had significantly higher (P=0.016) geometric mean (95% CI) whole blood nickel levels [2.6(1.9-3.3) μg/L] as compared to women without endometriosis [0.8 (0.7-0.9) μg/L]. Whole blood levels of cadmium and lead were similar between the two groups.

Conclusions: Although women with endometriosis in this study population had higher levels of nickel in whole blood compared to controls, whether nickel could be considered as an aetiological factor in endometriosis remains inconclusive in view of the smaller sample that was evaluated.

Keywords: Endometriosis, Metalloestrogens, Nickel
the hematogenous route (blood) as a possible source of metals in the ectopic endometrial tissue.

The present study was conducted with the objective of exploring further the association between endometriosis and whole blood levels of cadmium, lead and nickel in the same group of women with endometriosis who were previously studied. We compared the whole blood levels of the cadmium, lead and nickel in women having endometriosis (in whom these metals were detected in ectopic endometrial tissue -cases) with the blood levels of same metals in women who had no evidence of endometriosis (controls).

Methods

This case control study was conducted among women of the reproductive age group, at the Professorial Gynecology Unit of the National Hospital, Colombo, Sri Lanka. Patients awaiting elective laparotomy or laparoscopy for diagnostic and/or treatment purposes were included. Those who were diagnosed visually as having endometriosis subsequent to laparotomy or laparoscopy were selected as cases (n=50). Apart from the ectopic endometrial tissue sample that was collected as described in the previous study [11], simultaneous venous blood sample was collected from each case. Women matched for age in whom endometriosis had been excluded by laparoscopy or laparotomy were recruited as controls (n=50). Indications for laparoscopy or laparotomy in controls were subfertility, dysmenorrhea, chronic pelvic pain or detection of an ovarian mass in ultrasound scan.

A sample of venous blood was collected from all participants during intravenous cannulation at the time of induction of anesthesia into polypropylene tubes containing ethylene diamine tetraacetic acid (EDTA). Pre-operatively, informed written consent was obtained from all the participants. All the blood samples were stored in a −20°C freezer until analysis.

Whole blood samples were digested using a protocol described previously [14] with some modifications. Briefly, matched blood of cases and controls were allowed to reach the room temperature. Then whole blood samples were transferred to pre-treated, acid washed glass beakers. The wet weight of each sample was determined using a chemical balance. Each sample was prepared in duplicate. All the blood samples were digested using 65% supra pure Nitric acid (HNO₃, Merck, USA) while maintaining a uniform temperature. The final solution was made in 2mL of 5% HNO₃ that was prepared by diluting the 65% supra pure HNO₃ with double distilled deionized water.

The total-reflection X-ray fluorescence (TXRF) machine available at the Atomic Energy Authority (AEA) of Sri Lanka was utilized to measure metals apart from cadmium. TXRF is a multi element analysis technique [15] capable of detecting an array of elements at detection levels of picograms per liter (pg/L) [15]. An internal standard, Gallium, allows quantification of metals using the Axil software. However, the TXRF that was used had an inherent weakness in measuring cadmium since it had a Molybdenum x-ray tube. Therefore, we used atomic absorption spectroscopy (model GBC 933AA) together with a graphite furnace (model GBC GF 3000) available at the Institute of Fundamental Studies (IFS), Kandy, Sri Lanka to estimate cadmium levels as described elsewhere[16]. Both AEA and IFS [16] are national level apex institutions in Sri Lanka that have international certifications for trace element analysis where regular quality assurance programs are conducted.

Quality control and validation were performed using reference material supplied by the International Atomic Energy Authority (IAEA-A-13), Seronorm™ trace elements in whole blood levels 1 (MR 4210) and National Institute of Standards & Technology (NIST) Gaithersburg, USA water sample with trace elements (SRM 1643e). For 96% of the determinations, repeatability error did not exceed 10%. The detection limits for nickel, lead and cadmium in whole blood were as follows 0.05, 1.0, 0.01 μg/L. The precision for nickel, lead and cadmium in the range of the samples analyzed in this study was + 2, 3 and 6%, respectively.

SPSS version 13 for Windows was used for statistical analysis. Log transformation of metal levels was done and means were compared using t-test.

Ethical clearance was obtained from the Ethical Review Committees of the Faculty of Medical Sciences, University of Sri Jayewardenepura and the National Hospital of Sri Lanka.

Results and discussion

Mean (±SD) age in cases and controls were 33.0 (±5.4) and 32.7 (±5.4) years respectively. Cases and controls were similar in body mass index while none of the women who participated in the study were current smokers. Other demographic, biological and dietary characteristics of this group of women with endometriosis have been described previously [17].

Cadmium, lead and nickel were detected in whole blood of all the participants. The whole blood nickel levels in cases were significantly higher compared to controls. Cases had lower whole blood cadmium levels and higher

Metalloestrogen	Cases (n=50)	Controls (n=50)	P value†
Nickel	2.6 (1.9-3.3)	0.8 (0.7-0.9)	0.016
Lead	11.0 (8.6-13.3)	6.9 (5.7-8.0)	0.389
Cadmium	0.7 (0.7-0.9)	0.8 (0.6-1.0)	0.423

Data expressed as geometric mean (95% CI).
† t-test between blood levels of cases and controls.
the available scientific evidence for occupational and environmental exposure of women to metals including nickel, future research would prove to be invaluable in further exploring the association between nickel and endometriosis.

Abbreviations

AEA: Atomic Energy Authority; EDTA: Ethylene diamine tetracetic acid; IFS: Institute of Fundamental Studies; IAEA: International Atomic Energy Authority; NIST: National Institute of Standards & Technology; TXRF: Total-reflection X-ray fluorescence.

Competing interests

Authors declare that they have no competing interests.

Authors’ contributions

NS carried out the sample collection, analysis and drafted the manuscript. HS identified the study participants and carried out the surgical procedures. VW assisted in the TXRF analysis of the samples and interpreted the data. All authors read and approved the final manuscript.

Acknowledgements

We wish to acknowledge the staff at the Operating Theater, National Hospital, Sri Lanka for the support in sample collection. Dr. M.S.M Iqbal and Ms. D Aluthpatabendi at the Institute of Fundamental Studies, Kandy, Sri Lanka are kindly acknowledged for assistance in cadmium analysis. This study was supported by the University of Sri Jayewardenepura (grant APS/16/Re/2009/06), National Coordinating Committee on Reproductive Health Research of Sri Lanka and by the University of Alabama at Birmingham International Training and Research in Environmental and Occupational Health program, Grant Number 5 D43 TW05750, from the National Institute of Health-Fogarty International Center (NIH-FIC). The content is solely the responsibility of the authors and do not necessarily represent the official views of the NIH-FIC.

Author details

1. Lecturer in Physiology, Faculty of Medical Sciences University of Sri Jayewardenepura, Nugegoda, Sri Lanka. 2. Professor in Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka. 3. Head of Life Sciences Division, Atomic Energy Authority, Colombo, Sri Lanka.

Received: 21 November 2012 Accepted: 11 January 2013 Published: 14 January 2013

References

1. Donnez J: Endometriosis: enigmatic in the pathogenesis and controversy in its therapy. Fertil Steril 2012, 98(3):509–510.
2. Markovic M, Manderson L, Warren N: Endurance and contest: women’s narratives of endometriosis. Health (London) 2008, 12:349–367.
3. Garai J, Molnar V, Varga T, Koppam M, Tokor A, Bodis J: Endometriosis: harmful survival of an ectopic tissue. Front Biosci 2006, 11:659–619.
4. Stoica A, Katzenellenbogen BS, Martin MB: Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol Endocrinol 2008, 14:545–553.
5. Garcia-Morales P, Aceda M, Kenney N, Kims N, Salomon D, Gottardis MM, Solomon HB, Sholler PF, Jordan C, Martin MB: Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem 1994, 269(24):16986–16991.
6. Johnson ND, Kenny N, Stoica A, Hilaire-Claire L, Singh B, Chepko G, Clarke R, Sholler PF, Lijio AA, Foss C: Cadmium mimics the in vivo effects of estrogen in the uterus and mammary glands. Nat Med 2003, 9(8):1081–1084.
7. Safe S: Cadmium d Purpose the estrogen receptors. Nat Med 2003, 9(8):1000–1001.
8. Dutore PD: Metalloestrogens: an emerging class of inorganic xenosterogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol 2006, 26(191):1197.
9. Auino NB, Sevgny MB, Sabangan J, Louie MC: The role of cadmium and nickel in estrogen receptor signaling and breast cancer:metalloestrogens or not? J Environ Health C Environ Carcinog Ecotoxicol Rev 2012, 30(2):189–224.
10. Krugner-Higby L, Rosenstein A, Handichke L, Luck M, Laughlin NK, Mahvi D, Gendron A. Inginal hernias, endometriosis, and other adverse outcomes in rhesus monkeys following lead exposure. Neurotoxicol Teratol 2003, 25:561–570.

11. Silva N, Senanayake H, Peris-John R, Wickremasinghe R, Sathikumar N, Waduge V: Presence of metalloestrogens in ectopic endometrial tissue. J Pharmacol Biomed Sci 2012, 24:241–5.

12. Schweinberg F, Von-Karsa L: Heavy metal concentration in humans. Comp Biochem Physiol 1990, 95C(2):117–5.

13. Bridges CC, Zalups RK: Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 2005, 204:274–308.

14. Naslaidek M, Krawczyk T, Sapotol A: Tissue levels of cadmium and trace elements in patients with myoma and uterine cancer. Hum Exp Toxicol 2005, 24:623–630.

15. Wobrauschek P: Total reflection x-ray fluorescence analysis—a review. X Ray Spectrom 2007, 36:289–300.

16. Bandara JMR, Senevirathna DM, Diasanayake DM, Herath V, Bandara JMRF, Abeysinghe T, Rajapaksha RH: Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (Tilapia). Environ Geochem Health 2008, 30:465–478.

17. Silva N, Senanayake H, Peris-John R, Wickremasinghe R: Demographic, biological and dietary characteristics associated with endometriosis in a group of Sri Lankan women. Sri Lanka J Obstet Gynecol 2011, 33:91–97.

18. Heilier JF, Donnez J, Nackers F, Rousseaud R, Verougstraete V, Rosenkranza K, Donnez O, Grandjean F, Lisona D, Tongplet R: Environmental and host-associated risk factors in endometriosis and deep endometriotic nodules: a matched case-control study. Environ Res 2007, 103:121–129.

19. World Health Organization: Cadmium. In Environmental Health Criteria. Volume 134. Geneva: IPCS -International Program on Chemical Safety; 1992.

20. Butter ME: Are women more vulnerable to environmental pollution? J Hum Ecol 2006, 20(3):221–226.

21. Haller M, Akesson A, Lidén C, Cecatteella S, Berglund M: Gender differences in the disposition and toxicity of metals. Environ Res 2007, 104:85–95.

22. Ikeda M, Ohashi F, Fukui Y, Sakuragi S, Moriguchi J: Cadmium, chromium, lead, manganese and nickel concentrations in blood of women in non-polluted areas in Japan, as determined by inductively coupled plasma-sector field mass spectrometry. Int Arch Occup Environ Health Environ Res 2011, 84(2):139–150.

23. Nunes JA, Batista BL, Rodriguesa JL, Cabezas NM, Netob JAG, Barbosa F: Simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, copper, manganese, nickel, lead, and selenium in blood of the Brazilian population. J Toxicol Environ Health A 2010, 73:878–887.

24. Agency for Toxic Substances and Disease Registry (ATSDR): Toxicological profile for Nickel.; 2005.

25. Filon FL, D’Agostin F, Crosera M, Adami G, Bovenzi M, Maina G: In vitro absorption of metal powders through intact and damaged human skin. Int Arch Occup Environ Health 2009, 23:574–579.

26. Martin MB, Reiter R, Pham T, Avellet YR, Carnara J, Lahm M, Pentecost E, Prathap K, Gilmore BA, Diverkar S: Estrogen-like activity of metals in Mcf-7 breast cancer cells. Endocrinology 2003, 144(6):2425–2436.

27. Jackson LW, Zulfa MD, Goldberg JM: The association between heavy metals, endometriosis and uterine myomas among premenopausal women: National Health and Nutrition Examination Survey 1999–2002. Hum Reprod 2008, 23(3):679–687.

28. Heilier JF, Donnez J, Verougstraete V, Donnez O, Grandjean F, Hauflroid V, Nackert F, Lison D: Cadmium, lead and endometriosis. Int Arch Occup Environ Health 2006, 80:149–153.

29. Itoh H, Iwasaki M, Nakajima Y, Endo Y, Hanaoka T, Sasaki H, Tanaka T, Yang B, Tsujiyane S: A case-control study of the association between urinary cadmium concentration and endometriosis in infertile Japanese women. Sci Total Environ 2008, 402:171–175.

doi:10.1186/1756-0500-6-13
Cite this article as: Silva et al.: Elevated levels of whole blood nickel in a group of Sri Lankan women with endometriosis: a case control study. BMC Research Notes 2013 6:13.