P416 Diagnostic allele-specific PCR for the identification of Candida auris clades and common resistance mutations

Hans Carolus1,2, Siel Jacobs1, Celia Lobo Romerio1,2, Guinevere Depenarie1,2, Christine A. Cuomo1,2, Jacques F. Mekas1,2, Patrick Van Dijck1,2
1 Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
2 VIB-KU Leuven Center for Microbiology, Leuven, Belgium
3 Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
4 Centre of Expertise in Mycology Radboudumc/ZN, Nijmegen, The Netherlands

Poster session 3, September 23, 2022, 3:30 PM - 4:30 PM

Candida auris (C. auris) is an opportunistic pathogenic yeast that emerged worldwide during the past decade. This fungal pathogen poses a significant public health threat due to common multidrug resistance (MDR), alarming hospital outbreaks, and frequent misidentification. Genomic analyses have identified five distinct clades that are linked to five geographic areas of origin and characterized by differences in several phenotypic traits such as virulence and drug resistance.

Typing of C. auris strains and the identification of clades can be a powerful tool in molecular epidemiology and might be of clinical importance by estimating outbreak and MDR potential. C. auris has caused global outbreaks, including in low-income countries, typifying C. auris strains quickly and inexpensively is highly valuable. We report five allele-specific multiplex polymerase chain reaction (AS-multiplex PCR) assays for the identification of C. auris and each of the five described clades of C. auris based on conserved mutations in the internal transcribed spacer (ITS) rDNA region and a clade-specific gene cluster. Additionally, we developed AS-PCR assays for the identification of SNPs in FKS1 and ERG11 that are commonly linked to echinocandins and azole resistance, respectively.

This PCR method provides a fast, cheap, sequencing-free diagnostic tool for the identification of C. auris, C. auris clades, and common resistance mutations.

P415 High positive and rapid detection of clinical urine samples of fungal infection based on modified calcium fluorescence

Biao Chen, Dongmei Shi
Jining No. 1 People’s Hospital, Jining, China

Poster session 3, September 23, 2022, 12:30 PM - 1:30 PM

Successful management of urinary fungal infection depends upon the detection positive and efficiency. The aim of this study was to evaluate the detection positive and efficiency of modified calcium fluorescence when (mc-CFP) staining to detect detection of Candida spp. in urine samples of patients with suspected fungal infection. We collected 150 clinical urine samples from different departments and analyzed the detection positive rate of the methods of culture, KOHL sequence, and modified CFP. The results indicated that the positive rate of the methods was 32%, 8%, 14%, and 15%, respectively. The positive rate of modified CFP staining was significantly higher than that of ordinary microscopic examination and fungal culture (P < .05). Modified CFP in the detection of fungi in urine can significantly improve the positive rate of fungi in clinical urine samples and shorten the detection time. It has a certain reference value for clinical diagnosis and medication.