Original article

Scand J Work Environ Health 1985;11(4):257-264

doi:10.5271/sjweh.2222

Mortality among retired fur workers. Dyers, dressers (tanners) and service workers.
by Sweeney MH, Walrath J, Waxweiler RJ

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/4059889
Mortality among retired fur workers
Dyers, dressers (tanners) and service workers
by Marie H Sweeney, MPH,1 Judy Walrath, PhD,2 Richard J Waxweiler, PhD1

SWEENEY MH, WALRATH J, WAXWEILER RJ. Mortality among retired fur workers: Dyers, dressers (tanners) and service workers. Scand J Work Environ Health 11 (1985) 257-264. A retrospective cohort mortality study was conducted on 807 fur dyers, fur dressers (tanners), and fur service workers who were pensioned between 1952 and 1977 by the Fur, Leather and Machine Workers Union of New York City. Workplace exposures of fur workers varied with job category. Dyers were exposed to oxidative dyes used in commercial hair dyes; dressers and service workers were exposed to tanning chemicals. In a comparison with the New York City population, no significant increases in mortality were observed among the fur dyers. Among fur dressers, mortality from all malignant neoplasms [standardized mortality ratio (SMR) 151] and lung cancer (SMR 232) was significantly elevated, as was mortality from cardiovascular disease (SMR 126) among fur service workers. When examined by ethnic origin, the elevated SMR values and directly age-adjusted rate ratios suggested that foreign-born fur dressers and eastern European-born fur workers experienced the highest risks for lung and colorectal cancers, respectively. These data support previous findings of increased mortality from colorectal cancer in the foreign-born population of the United States and suggest a possible occupational etiology for the observed lung cancer excess.

Key terms: cardiovascular disease, dyes, ethnic groups, leather tanning, lung cancer, occupational exposures, retrospective study.

In 1975 Ames observed that certain constituents of permanent or oxidative dyes were mutagenic (1). Since then there has been concern about the safety of hair care products containing dyes or tints. Of particular interest were the phenylenediamines which had been the primary ingredients of dark, permanent hair dyes since the turn of this century. Subsequent animal studies have confirmed the carcinogenicity of a few compounds in the phenylenediamine family (also known as substituted aniline and azo dyes) (table I) (3, 17, 23, 24, 25, 26, 27, 28, 30, 45).

In terms of the epidemiologic evidence, hair dye use or hairdressing as an occupation (which includes beauticians and cosmetologists) has been associated with multiple disease outcomes (table 2) (2, 4, 9, 15, 19, 28, 36, 37, 38, 39, 40, 43). Unfortunately, these data lack sufficient specificity to relate cause-specific mortality or morbidity to a certain dye product or chemical. This limitation is partly a result of the absence of reliable information on the extent of personal exposure to hair dyes, eg, length of use and type(s) of dye applied, and on the presence of possible confounding exposures. It may also be related to the inadequacy of current information on the metabolism, target organ specificity, and implications of long-term exposure to oxidative dyes.

In an effort to clarify the relationship between oxidative dye exposure and certain diseases, we examined the mortality experience of workers exposed to oxidative dyes in a retrospective cohort mortality study of union-pensioned fur dyers, fur dressers, and fur service workers.

Fur dyers have a long history of exposure to oxidative dyes, particularly para-phenylenediamine (14, 18, 35, 42). From the late 1890s, when phenylenediamines were first synthesized, to the mid-1970s, para-phenylenediamine was almost exclusively used to dye furs to shades of black and brown. During that period it was considered a principal occupational exposure of fur dyers (20, 35, 42).

The current workforce employed by the fur industry in the United States (US) is less than 10,000, of which less than one quarter are fur dyers. Yet prior to World War II, the fur industry in the New York City area employed approximately 20,000 individuals annually (20). At the same time, the fur industry flourished in the Chicago area, as well as in the eastern provinces of Canada.

In general, fur processing involves the activities of three categories of workers. Fur dressers flesh and tan all skins before the furs are dyed. Fur service workers grade, match, and bale raw and dressed furs; and fur dyers color or tint the furs with natural or synthetic dyes. Of these categories, both fur dyers and fur dressers are believed to have had considerable exposure to potential carcinogens (table 3). Fur dyers are exposed to oxidative dyes, and fur dressers...
Table 1. Tumors found in animal studies evaluating the carcinogenicity of monoaromatic diamines in hair and fur dyes.

Tumor site	2,4 Toluenediamine	Phenylenediamines			
		4-Methoxy meta	2-Nitro para	4-Chloro ortho	4-Chloro meta
Liver	Yes (17, 45)	No	Yes (27)	Yes (24)	Yes (23)
Bladder	Yes (45)	No	No	Yes (24)	No
Lymph	Yes (26)	No	No	No	No
Foregut	No	No	No	Yes (24)	No
Lung	No (26)	No	No	No	No
Skin	No	Yes (25)	No	No	No
Mammary glands	Yes (26)	Yes (25)	No	No	No
Thyroid	No	No	No	No	No
Adrenal	No	No	No	No	Yes (23)

a Reference numbers in parentheses.
b Also known as 2,4 diaminoanisole.

citation or other union records, we used the fur worker category (local union number) from the pension application as the best indicator of usual occupation.

Retirees for whom race was not available and those with Hispanic surnames were classified as white. Nonwhite male retirees (N = 59) and female retirees (N = 74) were excluded from further evaluation due to the small number of deaths. Twenty-five males who retired outside the US were also excluded because their emigration date was not available. Eight of these were deceased. The final study cohort was composed of 807 white male pensioned fur workers, of whom 432 were dyers, 168 were fur dressers, and 207 were fur service workers. Of the total cohort, 25 fur dyers, 1 fur dresser, and 17 service workers were disability retirees.

Vital status for cohort members as of 31 December 1977 was determined through union records, the Social Security Administration, the Internal Revenue Service, the New York State Bureau of Motor Vehicles, and state and city bureaus of vital statistics. Underlying cause of death was coded by a nosologist using the International Classification of Diseases revision in effect at the time of death. Cause of death for individuals known to be deceased but for whom no death certificate could be obtained was coded as cause of death unknown and included in the total number of deaths.

With the use of the modified life-table analysis system of the National Institute for Occupational Safety and Health (44), person-years at risk were accumulated for each retiree beginning with his 62nd birthday. If the individual retired after age 62, the person-years at risk began on his date of retirement and ended on the date of death, or, if the retiree was alive at the end of the study, 31 December 1977. Expected numbers of deaths were calculated for five-year age groups and five-year calendar time periods based on the cause-specific mortality rates of white males in both the US (44) and NYC (obtained from the American Cancer Society). For each cause, standardized mortality ratio (SMR) values were calculated as the ratio of the observed to the expected number of deaths, multiplied by 100. The statistical significance of elevated
Table 3. Job descriptions and exposures common to fur processing operations.

Occupation	Job descriptiona	Job exposures
Dyers	Tint or color furs using a semiautomated vat process or brush-dyeing	p-Toluidinediamine; nitro, chloro phenylenediamines; lead acetate; potassium permanganate; sodium dichromate; wood and vegetable dyes; wood dust
Dressers	Remove excess flesh/fat from the skin with knives; tan leather component of the skin	Sodium arsenate; chromium acetate; formaldehyde; potassium dichromate; sodium dichromate; sulfuric, lactic, and formic acids; wood dust; antimony; sand
Service workers	Clean, grade, match, and bale raw and dressed furs	Possible residual tanning chemicals

a Description taken from Kirk & Othmer (18) and Schwartz et al (35).

Table 4. Distribution of pensioned members by birthplace and occupational category.

Occupational category	Birthplace	Dyers		Dressers		Service workers		Total	
		N	%	N	%	N	%	N	%
United States		73	17	12	7	75	36	160	19.8
Eastern Europe		101	23	68	41	60	29	229	28.4
Italy		171	40	68	41	15	7	254	31.4
All other countries		87	20	20	12	57	28	164	20.3
Total		432	53	168	21	207	26	807	100

SMR values was tested with the Fisher's exact test, assuming an underlying Poisson distribution (34). Two-sided confidence limits at the 95 % level were computed to determine the variability of calculated point estimates.

Seventy-nine percent of the cohort was determined to be foreign-born. Place of birth was unknown for less than 1 % of the cohort. Because of previously demonstrated associations between country of birth and increased risk of death from certain malignancies, mortality trends were also examined by ethnicity as determined by birthplace. Within each fur worker category, the cohort was stratified into the following four ethnic/birthplace categories: United States, Eastern Europe, Italy, and other countries (table 4). The classification of Eastern Europe included individuals born in Russia, Poland, Rumania, Hungary, Lithuania, Yugoslavia, and Czechoslovakia; the classification other countries included persons from countries not previously specified or whose place of birth was unknown.

For selected malignancies, both the SMR and the directly age-adjusted rate ratios were calculated based on NYC rates. For rate ratios, age-specific mortality rates for NYC white males for 1965 to 1969 (the midperiod of the distribution of person-years at risk of the retiree cohort) were used for comparison and were standardized by the total number of person-years at risk of the entire retiree cohort. Rate ratios specific for cause, occupation, and birthplace were then calculated by dividing the directly age-adjusted rates for the cohort by the age-adjusted rates for NYC.

Results

Vital status was ascertained as of 31 December 1977 for all cohort members. A total of 225 fur dyers, 139 fur dressers, and 104 fur service workers were deceased. Death certificates were obtained for 448 (96 %) of the 468 decedents. Many of the pensioners retired after age 65 (table 5), and, on the average, subjects lived for 7.8 years after retirement.

SMR values based on both the US and NYC white male population comparisons are reported in tables 6, 7, 8. However, discussion of the results is limited to those findings based on the NYC comparison group because regional death rates, rather than death rates for the US, were thought to control better for variations in mortality patterns due to population composition, geographic location, and urban residence.

Total mortality among the fur dyers (table 6) was approximately 20 % lower than expected. This overall

Table 5. Characteristics of the white male pensioners by occupational category.

Occupational category	Dyers	Dressers	Service workers
(N = 432)	(N = 168)	(N = 207)	
Average age at retirement (years)	68.0	69.9	68.1
Average length of retirement (years)	8.3	8.7	6.4
Average year of retirement	1965	1959	1967
Total person-years at risk	3 552	1 468	1 308
Table 6. Observed and expected deaths with standardized mortality ratios by cause of death among the retired fur dyers.

Causes of death	United States	New York Cityb				
	Observed	**Expected**	**Standardized mortality ratio**	**Expected**	**Standardized mortality ratio**	**Confidence limits (95%)**
All causes	225	262.18	86	276.80	81	71—93
Malignant neoplasms	53	43.51	122	51.79	102	77—134
Esophagus	1	0.93	108	1.30	77	2—429
Stomach	8	3.12	256*	4.47	179	77—353
Colon and rectum	12	6.65	180*	9.93	121	62—211
Liver	1	1.24	81			
Trachea, bronchus, lung	16	10.18	157	11.71	137	78—222
Genital organs	2	6.57	30	5.58	36	4—129
Urinary organs	4	2.98	135	3.81	111	100—261
Lymphatic	2	3.81	55	3.63	55	7—199
Other malignancies	10	18.44	184**	22.53	151*	104—211
Vascular lesions of the central nervous system	19	32.43	59	20.71	92	55—143
Cardiovascular disease	111	133.87	83	152.03	73	60—88
Nonmalignant respiratory diseases	13	18.78	69	19.40	67	36—115
All other causes	29	34.66	84			

a International Classification of Diseases, seventh revision.

b . . = rates not available.

*p < 0.05.

Reduction was due to the decreased risks of death from almost all causes, including heart disease and nonmalignant respiratory diseases. There were, however, statistically nonsignificant increases in the risk of mortality from stomach, lung, and colorectal malignancies.

Among the fur dressers (table 7), the slightly elevated total mortality (SMR 111) and the significantly increased risk of death from all malignancies combined (SMR 151, p < 0.05) reflected the significantly higher than expected risk from lung cancer (SMR 232, p < 0.05). Mortality from colorectal cancer, as well as from nonmalignant respiratory diseases, was also slightly elevated. The fur service workers (table 8) experienced an overall mortality pattern slightly higher than expected compared to NYC white males. In this group, only risk of death from cardiovascular disease was significantly increased. Mortality from cancer of the colon and rectum was approximately 50% above the expected level.
Table 8. Observed and expected deaths with standardized mortality ratios by cause of death among the retired fur service workers.

Causes of death	ICD*	United States	New York Cityb				
		Observed	Expected	Standardized mortality ratio	Expected	Standardized mortality ratio	Confidence limits (95 %)
All causes	000-999	104	88.60	117	92.96	112	91—136
Malignant neoplasms	140-205	21	15.32	137	17.91	117	73—179
Esophagus	150	1	0.33	303	0.46	217	6—1211
Stomach	151	2	1.03	194	1.48	135	16—488
Colon and rectum	152—154	5	2.27	220	3.36	149	48—347
Pancreas	157	1	0.87	115	1.01	99	3—552
Larynx	161	1	0.20	500	0.27	370	9—2064
Trachea, bronchus, lung	162—163	4	3.88	103	4.26	94	26—240
Genital organs	177—179	2	2.16	93	1.85	108	13—397
Bladder	181	2	0.71	282	0.57	230	28—830
Lymphatic	200—205	2	1.25	160	1.26	159	19—573
Vascular lesion of the central nervous system	300—334, 345	5	10.50	48	6.73	74	24—173
Cardiovascular disease	400—468	64	44.96	142**	50.75	126*	101—161
Nonmalignant respiratory diseases	470—527	2	6.37	31	6.42	31	04—113
Other conditions	470—479, 494—527	2	3.37	59	2.23	90	11—324
All other causes	.	12	11.45	105	.	.	.

a International Classification of Diseases, seventh revision.
b . . = rates not available.
• p < 0.05, •• P < 0.01.

Table 9. Observed and expected deaths and rate ratios for lung cancer by birthplace and occupational category.

Birthplace	Observed : expected	Standardized mortality ratio	Rate ratioa	Standardized mortality ratio	Rate ratioa		
	Dressers	Dyers	Service workers		Dressers	Service workers	
United States	0 : 0.3	1 : 1.2	2 : 1.0	—	—	136	1.1
Eastern Europe	5 : 1.6	4 : 2.8	1 : 1.4	314	2.8	120	1.2
Italy	4 : 2.3	9 : 5.6	0 : 0.4	172	1.6	148	1.5
Other countries	2 : 0.5	2 : 2.1	1 : 1.4	400	0.8	85	0.7
Total	10 : 5.7	16 : 11.7	4 : 4.2	234	2.2	126	1.2

* Based on the age-adjusted mortality rate for lung cancer among white males in New York City (338 deaths per 10000 annually).

Table 10. Observed and expected deaths and rate ratios for colorectal cancer by birthplace and occupational category.

Birthplace	Observed : expected	Standardized mortality ratio	Rate ratioa	Standardized mortality ratio	Rate ratioa					
	Eastern Europe	United States	Italy	Other countries		Eastern Europe	United States	Italy	Other countries	
Dyers	5 : 2.6	1 : 0.7	5 : 5.0	1 : 1.6	189	1.7	96	0.9		
Dressers	3 : 1.5	0 : 0.2	3 : 2.2	0 : 0.5	205	2.1	101	1.1		
Service workers	2 : 1.2	2 : 0.7	0 : 0.4	1 : 1.1	166	1.1	137	1.6		
Total	10 : 5.3	3 : 1.6	8 : 7.6	2 : 3.2	190	1.8	104	1.0		

* Based on the age-adjusted mortality rate for colorectal cancer among males in New York City (289 deaths per 10000 annually).

Death rates for cancer and cardiovascular disease in the foreign-born population residing in the US are differentially distributed according to country of origin (11). In our study, the elevated SMR values and directly age-adjusted rate ratios suggested that risk of death from lung cancer was highest among the foreign-born fur dressers, particularly among those from Eastern Europe (table 9). The slightly elevated mortality from colorectal cancer observed in all the fur worker categories appeared to occur the most often in Eastern European fur workers, regardless of job category (table 10), and this finding suggests that ethnic factors rather than occupational factors contributed to this observed increase (11, 22).
Discussion

The objective of this study was to examine the effects of long-term exposure to oxidative dyes on the mortality experience of an exposed worker population. Retired fur dyers were selected for study because of their long history of exposure to para-phenylenediamine and other dye components. Although objective quantitative measurements of dye exposure were not available from either the union or the dye shops, historical accounts of workplace conditions imply that worker contact with the dyes and the dyed furs was commonplace (35).

The findings of this study suggest that retired fur dyers are somewhat healthier than expected compared to men of NYC in general, particularly for cardiovascular disease and nonmalignant respiratory disease. This absence of increased overall mortality is consistent with the results of several previous studies of nondisabled retirees in other industries (6, 13, 29).

Due to the small number of deaths among the fur dyers in our study, the slight excesses in mortality from cancer of the stomach, colon and rectum, lung, and urinary organs do not provide clear evidence that oxidative dyes, and specifically para-phenylenediamine, are human carcinogens. However, they provide a lead for further follow-up and for studies of other fur dyer groups that also control for smoking and other potentially confounding factors.

One concern about retiree studies is that an occupational carcinogen might selectively manifest itself only at preretirement ages. Studies of coke oven workers (5, 31) and gas workers (6, 7) found this selection bias to be minimal. Significantly increased risks from lung cancer occurred in both retiree and nonretiree groups. The limitations of existing data on fur workers who left the industry before retiring do not permit evaluation of the magnitude of this potential bias in our study.

The significantly increased mortality from cardiovascular disease among fur service workers was an unexpected finding. SMR values for cardiovascular disease in other occupational cohorts of normal retirees are typically not elevated (5, 6, 12, 29). Furthermore, occupational exposures usually associated with increased risk of cardiovascular disease or sudden deaths due to cardiac failure, such as carbon disulfide (41), carbon monoxide (16), nitroglycerin (21), fluorocarbon aerosol propellants, freon, and halogenated hydrocarbons (33), are not suspected of being present to any great extent in the work environment of the fur service worker. The primary personal risk factors of cardiovascular disease, obesity, hypertension, diabetes, cigarette smoking, and family history of cardiovascular disease could not be evaluated with these data. If this excess risk is confirmed by further follow-up, then both previously unrecognized occupational risk factors and known personal risk factors should be investigated.

The etiology of the significantly elevated lung cancer mortality among the fur dressers may be a result of two presently unquantified factors, occupational exposures and cigarette smoking. During the early part of this century and through the late 1950s, chrome (hexavalent) tans were used extensively in the preparation of animal skins and hides (18). Neither intensity nor duration of exposure to chrome tans is documented; however, as little as 10—14 years of exposure to chromates by chromium ore reduction workers was responsible for a manifold excess of respiratory cancer (18). In addition, previous surveys have found elevated risks of lung cancer among furriers and tailors (10) and among shoemakers, leather workers, and leather tanners (32). However, none of these studies have considered smoking histories. Smoking histories for the fur dressers were also not available but would be a crucial component of any prospective follow-up of this cohort.

Conclusions

The primary purpose of this study was to assess the carcinogenicity of oxidative dyes in an occupationally exposed population. From historical accounts, fur dyers experienced considerable exposure to oxidative dyes, particularly the phenylenediamines which were also used in permanent hair dyes. Yet, when we compared the death rates for fur dyers to those of NYC males, we found no statistically significant increases in mortality for any cause.

Fur dressers were reported to have been exposed to hexavalent chromium and arsenic tans, and they experienced a significant increase in deaths from lung cancer. The significance of these findings and of the excess cardiovascular disease among service workers could be evaluated more thoroughly by a prospective follow-up of this cohort that assesses cigarette smoking and other risk factors of cardiovascular disease.

Acknowledgments

The authors wish to extend special thanks to Ms R McGrath, Ms C Battaglia, Ms E Dodd, Ms JB Edelson, Ms C McGrath, and Ms TF Lee, Ms D White, and their respective group members for their contributions to this study. We also gratefully acknowledge the assistance of the members of the Fur, Leather and Machine Workers Union, and the thoughtful comments and guidance of Mr J Beaumont, Mr W Halperin, Mr P Decoufle, and Mr A Blair.

References

1. Ames BN, Kammen HO, Yamasaki E. Hair dyes are mutagenic: Identification of a variety of mutagenic
ingredients. Proc Natl Acad Sci 72 (1975) 2423—2427.

2. Anthony HM. Industrial exposure in patients with carcinoma of the bladder. J Soc Occup Med 24 (1974) 110—116.

3. Benedict WF. Morphological transformation and chromosome aberrations produced by two hair dye components. Nature 260 (1976) 369—369.

4. Bomford RR, Rhoads CP. Refractory anaemia: I Clinical and pathological aspects. Br Med J 10 (1941) 175—281.

5. Collins JF, Redmond CK. The use of retirees to evaluate occupational hazards. J Occup Med 18 (1976) 595—602.

6. Doll R. The causes of death among gas-workers with special reference to cancer of the lung. Br J Ind Med 9 (1952) 180—185.

7. Doll R, Fisher REW, Gammon EJ, Gunn W, Hughes GO, Tyrer FH, Wilson W. Mortality of gasworkers with special reference to cancers of the lung and bladder, chronic bronchitis and pneumoconiosis. Br J Ind Med 22 (1965) 1—12.

8. Gatewood WM. Health of workers in chromate producing industry. Department of Health, Education and Welfare, Washington, DC 1953. (United States public health report no 192).

9. Guidotti S, Wright WE, Peters JM. Multiple myeloma in cosmetologists. Am J Ind Med 3 (1982) 169—171.

10. Guralnick L. Mortality by occupation and cause of death among men 20 to 64 years of age: United States, 1950. J Natl Cancer Inst 23 (1960) 175—281.

11. Haenszel W. Cancer mortality among the foreign-born in the United States. J Natl Cancer Inst 26 (1961) 37—132.

12. Haynes SG, McMichael AJ, Tyrold HA. The relationship of normal, involuntary retirement to early mortality among US rubber workers. Soc Sci Med 11 (1977) 309—317.

13. Haynes SG, McMichael AJ, Tyrold HA. Survival after early retirement. J Gerontol 33 (1978) 269—278.

14. Heimann H. Health hazards in the fur industry. J Ind Hyg Toxicol 24 (1942) 322—331.

15. Hennekens CH, Speizer FE, Rosner B, Bain CJ, Belanger C, Peto R. Use of permanent hair dyes and cancer among registered nurses. Lancet 1 (1979) 1390—1393.

16. Hemberg S, Kärävä R, Koskela R-S, Luoma K. Angina pectoris, ECG findings and blood pressure of foundry workers in relation to carbon monoxide exposure. Scand J Work Environ Health 2 (1976): suppl 1, 54—63.

17. Ito N, Hiasa Y, Konishi Y, Marugami M. The development of carcinoma in liver of rats treated with m-toluidinediamine and the synergistic and antagonistic effects with other chemicals. Cancer Res 29 (1969) 1137—1145.

18. Kirk RE, Othmer DF. Encyclopedia of chemical technology. Volume 10. Wiley, New York, NY 1966, pp 294—310.

19. Kono S, Tokudome S, Ikeda M, Yoshimura T, Kurasawa M. Cancer and other causes of death among female beauticians. J Natl Cancer Inst 70 (1983) 443—446.

20. McMahon MM. Health hazards in the fur industry. Ind Bull NY State Dept Labor 20 (1940) 54—57.

21. Morton WE. Occupational habituation to aliphatic nitrates and the withdrawal hazards of coronary diseases and hypertension. J Occup Med 19 (1977) 197—200.

22. Nasca PC, Greenwald P, Burnett WS, Chorost C, Schmidt W. Cancer among the foreign-born in New York State. Cancer 48 (1981) 2323—2328.

23. National Cancer Institute. Bioassay of 4-chloro-m-phenylenediamine for possible carcinogenicity. Bethesda, MD 1978. (Technical report series no 85, DHEW (NIH) publication no 78-1335).

24. National Cancer Institute. Bioassay of 4-chloro-o-phenylenediamine for possible carcinogenicity. Bethesda, MD 1978. (Technical report series no 63, DHEW (NIH) publication no 78-1313).

25. National Cancer Institute. Bioassay of 2,4-diaminoanisole sulfate for possible carcinogenicity. Bethesda, MD 1978. (Technical report series no 84, DHEW (NIH) publication no 78-1334).

26. National Cancer Institute. Bioassay of 2,4-diamino-toluene for possible carcinogenicity. Bethesda, MD 1979. (Technical report series no 162 DHEW (NIH) publication no 79-1718).

27. National Cancer Institute. Bioassy of 2-nitro-p-phenylenediamine for possible carcinogenicity. Bethesda, MD 1979. (Technical report series no 169, DHEW (NIH) publication no 79-1725).

28. National Institute for Occupational Safety and Health. Occupational mortality in Washington State 1950—1979. Cincinnati, OH 1983. (DHHS (NIOSH) publication no 83-116).

29. Olsen J, Sabroe S. A follow-up study of non-retired and retired members of the Danish carpenters/cabinet makers Trade Union. Int J Epidemiol 8 (1979) 375—382.

30. Palmer KA, Denuzzo A, Green S. The mutagenic assay of some hair dye components using the thymidine kinase locus of L5178Y mouse lymphoma cells. J Environ Pathol Toxicol 1 (1977) 87—94.

31. Redmond CK, Ciocco A, Lloyd JW, Rush HW. Long-term mortality study of steelworkers: VI Mortality from malignant neoplasms among coke ovenworkers. J Occup Med 14 (1972) 621—629.

32. Registrar General, Great Britain. Decennial supplement for England and Wales, 1970—72. Her Majesty's Stationery Office, London 1978.

33. Reinhard CF, Mullin LS, Maxfield ME. Epinephrine induces cardiac arrhythmia potential of some common industrial solvents. J Occup Med 15 (1973) 953—955.

34. Rothman KJ, Boice JD. Epidemiologic analysis with a programmable calculator. National Institutes of Health, Bethesda, MD 1979. (Publication no 79-1649).

35. Schwartz L, Tulipan L, Peck SM. Occupational diseases of the skin. Lea and Febiger, Philadelphia, PA 1947.

36. Shore RE, Pasternack BS, Thiessen EU, Sadow M, Forbes R, Albert RE. A case-control study of hair dye use and breast cancer. J Natl Cancer Inst 62 (1979) 277—283.

37. Social Security Administration. Occupational characteristics of disabled workers, by disabling condition: Disability insurance benefits awards made in 1959—1962 to men under age 65. Washington, DC 1967. (Public Health Service publication no 1531).

38. Spinelli JJ, Gallagher RP, Band PR, Threlfall WJ. Multiple myeloma, leukemia, and cancer of the ovary in cosmetologists and hairdressers. Am J Ind Med 6 (1984) 97—102.

39. Teta ML, Walrath J, Meigs JW, Flannery JT. Cancer incidence among cosmetologists. J Natl Cancer Inst 72 (1984) 1051—1057.

40. Toghill PL, Wilcox RG. Aplastic anaemia and hair dye. Br Med J (1976) 502—503.

41. Tolonen M, Nurminen M, Hernberg S. Ten-year coronary mortality of workers exposed to carbon disulfide. Scand J Work Environ Health 5 (1979) 109—114.

42. Wall FE. Fifty years of para-phenylenediamine. J Tech Assoc Fur Ind 5 (1934) 118—126.

43. Walrath J. Cancer incidence amongst cosmetologists. Yale University, New Haven, CT 1977. (Doctoral dissertation).

44. Waxweiler RJ, Beaumont JJ, Henry JA, Brown DP, Robinson CF, Ness GO, Wagoner JK, Lemen RA. A modified life-table analysis system for cohort studies.
45. Weisburger EK, Russfield AB, Hamburger F, Weisburger JH, Boger E, VonDongen CC, Chu KC. Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity. J Occup Med 25 (1983) 115—124. Environ Pathol Toxicol 2 (1978) 325—356. Received for publication: 25 April 1984