Chromaticity of structural color in polymer thin film photonic crystals
Rosetta, Giselle; An, Tong; Zhao, Qibin; Baumberg, Jeremy J.; Tomes, John J.; Gunn, Matt; Finlayson, Chris

Published in:
Optics Express
DOI:
10.1364/OE.410338
Publication date:
2020
Citation for published version (APA):
Rosetta, G., An, T., Zhao, Q., Baumberg, J. J., Tomes, J. J., Gunn, M., & Finlayson, C. (2020). Chromaticity of structural color in polymer thin film photonic crystals. Optics Express, 28(24), 36219-36228. [410338]. https://doi.org/10.1364/OE.410338
Chromaticity of structural color in polymer thin film photonic crystals: supplement

Giselle Rosetta,1 Tong An,2 Qibin Zhao,2 Jeremy J. Baumberg,3 John J. Tomes,1 Matt D. Gunn,1 and Chris E. Finlayson1,*

1Department of Physics, Prifysgol Aberystwyth University, SY23 3BZ, UK
2School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
3Cavendish Laboratory, University of Cambridge, CB3 0HE, UK
*cef2@aber.ac.uk

This supplement published with The Optical Society on 13 November 2020 by The Authors under the terms of the Creative Commons Attribution 4.0 License in the format provided by the authors and unedited. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.13107905

Parent Article DOI: https://doi.org/10.1364/OE.410338
Chromaticity of structural color in polymer thin film photonic crystals: supplemental document

Fig. S1. a) Simulated reflectance spectra of opal films, based on a corresponding non-absorbing $\lambda/4$ multilayer quasi-model [1], with parameters 100 layer-pairs, distributed layer-disorder of 4% (Gaussian), index contrast $\Delta n \approx 0.025$ (as inferred from Zhao et al. [2]), and peak wavelength at normal incidence set to 560 nm. The reflectivity spectra of this model structure is calculated as a function of incidence angle, using a transfer-matrix method averaged over many iterations, shown in b) is a corresponding light-field intensity vs. depth plot for the normal incident ($\theta = 0^\circ$) case, with an exponential decay trendline ($\lambda_{Bragg} \approx 10 \mu m$) added for clarity.
Fig. S2. Rescaled data from figures 3b)-d), showing the reflectivity response of polymer opal films as a function of viewing angle θ_m for $\phi_m = 90^\circ$, $\theta_l = 15^\circ$ parallel to the BIOS direction \hat{g}; data is shown for a) pre-BIOS, b) 5 BIOS and c) 40 BIOS samples. All scattering cone plots are set to the same intensity scale as the pre-BIOS sample in order to accentuate detail at the short-λ regime.
Table S1. The average saturation (%) of structural color (±0.5%) for polymer opals of 0 - 40 cycles of BIOS ordering, where $\theta_I = 15^\circ$ both parallel and perpendicular to the shear direction. Underlining of maximum saturation values for each value of φ_m indicates how this maximum is reached at 10 BIOS cycles in all planes aside from that perpendicular to incidence.

φ_m (°)	Plane of incidence ǁ to BIOS	Plane of incidence to BIOS								
	0	5	10	20	40	0	5	10	20	40
90	4	40	51	47	43	3	40	52	49	48
60	-	32	47	41	38	-	32	44	39	37
30	-	34	41	37	35	-	34	44	42	36
0	3	13	25	23	20	4	40	11	50	44

Table S2. The dominant wavelengths (nm) for structural color for polymer opals of 0 - 40 cycles of BIOS ordering, where $\theta_I = 15^\circ$ both parallel and perpendicular to the shear direction. Underlining of longest dominant wavelength for each φ_m indicates the general result shifted to longer wavelength as opal ordering increases with the BIOS process.

φ_m (°)	Plane of incidence ǁ to BIOS	Plane of incidence to BIOS								
	0	5	10	20	40	494	582	582	584	584
90	494	580	581	584	586	584	584	584	584	584
60	-	581	580	577	580	-	584	583	584	595
30	-	580	584	587	592	-	584	585	585	597
0	494	581	587	585	594	492	582	609	586	596

Table S3. The calculated Voigt profile full-width half maxima (°) for the intensity profiles of polymer opals of 0 - 40 BIOS cycles, where $\theta_I = 15^\circ$ both parallel and perpendicular to the shear direction. Greatest values for each φ_m are shown in bold, and increased BIOS ordering is demonstrated to result in a broadened scattering cone, with structural color visible over a larger solid angle.

φ_m (°)	Plane of incidence ǁ to BIOS	Plane of incidence to BIOS								
	0	5	10	20	40	0	5	10	20	40
90	17.1	19.1	19.9	24.6	-	40.5	43.0	39.3	43.3	43.3
	±2.3	±2.3	±2.4	±3.6	±29.2	±24.4	±17.6	±21.8		
60	22.6	23.2	23.0	28.3	-	36.4	32.1	29.7	35.7	35.7
	±4.4	±3.8	±4.6	±5.5	±11.2	±9.0	±7.7	±11.9		
30	31.2	29.2	26.2	34.7	-	21.6	20.2	19.6	24.9	24.9
	±7.6	±6.1	±6.6	±12.3	±4.1	±3.1	±4.1	±5.2		
0	27.1	28.6	22.2	33.6	-	14.2	16.2	19.6	24.9	24.9
	±27.1	±19.0	±12.9	±14.1	±2.0	±1.7	±4.1	±5.2		
References

1. D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E 81 020401 (2010).

2. Q. Zhao, C. E. Finlayson, D. R. E. Snoswell, A. Haines, C. Schäfer, P. Spahn, G. P. Hellmann, A. V. Petukhov, L. Herrmann, P. Burdet, P. A. Midgley, S. Butler, M. Mackley, Q. Guo, J. J. Baumberg, “Large-scale ordering of nanoparticles using viscoelastic shear processing,” Nat. Commun. 7, 11661 (2016).

3. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1964).