CHARACTERIZING NON-SEPARABLE CONVEX SETS
HOMEOMORPHIC TO $\ell_2^2(\kappa)$ OR $\Gamma^\omega \times \ell_2^2(\kappa)$

IRyna Banakh and Taras Banakh

Abstract. For an infinite cardinal κ let $\ell_2(\kappa)$ be the linear hull of the standard orthonormal base of the Hilbert space $\ell_2(\kappa)$ of density κ. We prove that a non-separable convex subset X of density $\kappa = \text{dens}(X)$ in a locally convex linear metric space if homeomorphic to the space

- $\ell_2^f(\kappa)$ if and only if X can be written as countable union of finite-dimensional locally compact subspaces;
- $\Gamma^\omega \times \ell_2^f(\kappa)$ if and only if X contains a topological copy of the Hilbert cube Γ^ω and X can be written as a countable union of locally compact subspaces.

For an infinite cardinal κ

\begin{align*}
\ell_2(\kappa) &= \{(x_i)_{i \in \kappa} \in \mathbb{R}^\kappa : \sum_{i \in \kappa} |x_i|^2 < +\infty\} \\
\ell_2^f(\kappa) &= \{(x_i)_{i \in \kappa} \in \ell_2(\kappa) : \{|i \in \kappa : x_i \neq 0\} < \infty\}
\end{align*}

be the standard Hilbert space of density κ, endowed with the norm $\|(x_i)_{i \in \kappa}\| = \left(\sum_{i \in \kappa} |x_i|^2\right)^{1/2}$ and be the linear hull of the standard orthonormal basis in $\ell_2(\kappa)$. If $\kappa = \omega$ is the smallest infinite cardinal, then the spaces $\ell_2(\omega)$ and $\ell_2^f(\omega)$ are denoted by ℓ_2 and ℓ_2^f, respectively. By $\mathbb{I} = [0, 1]$ we shall denote the closed unit interval and by \mathbb{I}^ω the Hilbert cube. A closed subset A of a topological space X is called a Z-set in X if the set $\{f \in C(\mathbb{I}^\omega, X) : f(\mathbb{I}^\omega) \cap A = \emptyset\}$ is dense in the function space $C(\mathbb{I}^\omega, X)$ endowed with the compact-open topology. Let $A \subset B$ be two subsets in a linear space L. We shall say that A has infinite codimension in B if the linear hull $\text{lin}(A)$ has infinite codimension in the linear hull $\text{lin}(B)$ of the set B.

The following characterization of convex sets homeomorphic to ℓ_2^f or $\Gamma^\omega \times \ell_2^f$ is obtained due to combined efforts of T. Dobrowolski [6], D. Curtis, T. Dobrowolski, J. Mogilski [5], and T. Banakh [1] (see also Theorem 5.3.12 and 5.3.2 in [3]).

Theorem 1. A convex subset X of a locally convex linear metric space is homeomorphic to the space

- ℓ_2^f if and only if X is infinite-dimensional and X can be written as a countable union of finite-dimensional compact sets;
- $\Gamma^\omega \times \ell_2^f$ if X can be written as a countable union of compact Z-sets and X contains a subset Q which is homeomorphic to the Hilbert cube and has infinite dimension in X.

In this paper we shall prove a non-separable counterpart of Theorem 1. For a topological space X its density $\text{dens}(X)$ is the smallest cardinality $|D|$ of a dense subset $D \subset X$.

Theorem 2. A non-separable convex subset X of density $\kappa = \text{dens}(X)$ in a locally convex linear metric space is homeomorphic to the space

- $\ell_2^f(\kappa)$ if and only if X can be written as a countable union of finite-dimensional locally compact spaces;
- $\Gamma^\omega \times \ell_2^f(\kappa)$ if and only if X contains a subspace homeomorphic to the Hilbert cube Γ^ω and X can be written as a countable union of locally compact spaces.

In fact, Theorem 2 follows from a more general Theorem 3 characterizing pairs of convex sets homeomorphic to the pairs $(\ell_2(\kappa), \ell_2^f(\kappa))$ or $(\Gamma^\omega \times \ell_2(\kappa), \Gamma^\omega \times \ell_2^f(\kappa))$. We say that for topological spaces $A \subset X$ and $B \subset Y$ the pairs (X, A) and (Y, B) are homeomorphic if there is a homeomorphism $h : X \to Y$ such that $h(A) = B$. By a Fréchet space we understand a locally convex linear complete metric space.

1991 Mathematics Subject Classification. 57N17, 52A07.
Key words and phrases. Convex set, pre-Hilbert space, homeomorphic.
Theorem 3. Let X be a non-separable convex set of density $\kappa = \text{dens}(X)$ in a Fréchet space L and \bar{X} be the closure of X in L. The pair (\bar{X}, X) is homeomorphic to the pair

1. $(\ell_2(\kappa), \ell_2^I(\kappa))$ if and only if X can be written as a countable union of finite-dimensional locally compact spaces;

2. $(\ell^w \times \ell_2(\kappa), \ell^w \times \ell_2^I(\kappa))$ if and only if X contains a topological copy of the Hilbert cube ℓ^w and X can be written as a countable union of locally compact spaces.

Theorem 4 will be derived from the following two results, first of which is due to T. Banakh and R. Cauty [2].

Theorem 4 (Banakh, Cauty). Each non-separable closed convex set X in a Fréchet space is homeomorphic to the Hilbert space $\ell_2(\kappa)$ of density $\kappa = \text{dens}(X)$.

The other result used in the proof of Theorem 4 is a topological characterization of the pairs $(\ell_2(\kappa), \ell_2^I(\kappa))$ and $(\ell^w \times \ell_2(\kappa), \ell^w \times \ell_2^I(\kappa))$ due to J. West [9] (see also [8] and [7]).

Theorem 5 (West). A pair (X, Y) of topological spaces $Y \subset X$ is homeomorphic to the pair $(\ell^w \times \ell_2(\kappa), \ell^w \times \ell_2^I(\kappa))$ (resp. $(\ell_2(\kappa), \ell_2^I(\kappa))$) for an infinite cardinal κ if and only if

1. the space X is homeomorphic to $\ell_2(\kappa)$;
2. the space Y can be written as a countable union of (finite-dimensional) locally compact spaces, and
3. the space Y absorbs (finite-dimensional) compact subsets of X in the sense that for each compact (finite-dimensional) subset $K \subset X$, a compact subset $B \subset K \cap Y$, and an open cover U of X there is a topological embedding $h : K \to Y$ such that $h|B = \text{id}|B$ and h is U-near to the identity embedding $\text{id} : K \to X$.

Given a cover U of a topological space X, we say that two maps $f, g : Z \to X$ are U-near and denote this writing $(f, g) \prec U$ if for each point $z \in Z$ the doubleton $\{f(z), g(z)\}$ is contained in some set $U \in U$.

Proof of Theorem 4. The “only if” part in the both statements of Theorem 4 are trivial. To prove the “if” parts, assume that X is a non-separable convex subset of a Fréchet space L and let \bar{X} be the closure of X in L. By Theorem 4 the space \bar{X} is homeomorphic to the Hilbert space $\ell_2(\kappa)$ of density $\kappa = \text{dens}(\bar{X}) = \text{dens}(X)$. Now we consider two cases:

1) Assume that the convex set X can be written as a countable union of finite-dimensional locally compact spaces. By Theorem 5 the homeomorphism of the pairs (\bar{X}, X) and $(\ell_2(\kappa), \ell_2^I(\kappa))$ will follow as soon as we check that the set X absorbs finite-dimensional compact subsets of \bar{X}. Fix a finite-dimensional compact subset $K \subset \bar{X}$, a compact subset $B \subset K \cap X$, and an open cover U of \bar{X}. By the density of X in \bar{X} and the separability of K, there is a separable convex subset $Y \subset X$ of X such that $B \subset Y$ and $K \subset \bar{Y}$. Moreover, using the fact that X is not separable, we can choose Y so that the closure \bar{Y} is not locally compact. By Theorem 4.4 of [5], the pair $(\bar{Y}, \bar{Y} \cap X)$ is homeomorphic to the pair (ℓ_2, ℓ_2^I), and by Theorem 5 the set $\bar{Y} \cap X$ absorbs finite-dimensional compact subsets of \bar{Y}. Consequently, for the finite-dimensional compact subset $K \subset \bar{Y} \subset X$ there is a topological embedding $f : K \to \bar{Y} \cap X \subset X$ such that $f|B = \text{id}|B$ and f is U-near to the identity embedding $\text{id} : K \to X$. This means that X absorbs finite-dimensional compact subsets of \bar{X}. By Theorem 4 the pair (\bar{X}, X) is homeomorphic to $(\ell_2(\kappa), \ell_2^I(\kappa))$.

2) Next, assume that X contains a subspace $A \subset X$ homeomorphic to the Hilbert cube and X can be written as a countable union of locally compact subsets. By Theorem 5 the homeomorphism of the pairs (\bar{X}, X) and $(\ell^w \times \ell_2(\kappa), \ell^w \times \ell_2^I(\kappa))$ will follow as soon as we check that the set X absorbs compact subsets of \bar{X}. Fix a compact subset $K \subset \bar{X}$, a compact subset $B \subset K \cap X$, and an open cover U of \bar{X}. By the density of X in \bar{X} and the separability of the compact set $K \cup A$, we can find a separable convex subset $Y \subset X$ of X such that $A \cup B \subset Y$ and $K \subset \bar{Y}$. We can assume that $Y = \bar{Y} \cap X$. Since X is not separable, the compact set A has infinite codimension in X. So we can choose Y to be so large that A has infinite codimension in Y and \bar{Y} is not locally compact. By Proposition 3.1 of [5], each closed locally compact subset of \bar{Y} is a Z-set in \bar{Y}. It follows that the separable convex set $Y = \bar{Y} \cap X$ is a countable union of compact Z-sets. Since the topological copy A of the Hilbert cube has infinite codimension in Y, the convex set Y is homeomorphic to $\ell^w \times \ell_2^I$ by Theorem 112. By the Uniqueness Theorem for Skeletoids [4, Theorem 2.1], the pair (\bar{Y}, Y) is homeomorphic to the pair $(\ell^w \times \ell_2, \ell^w \times \ell_2^I)$ and by Theorem 5 the space Y absorbs compact subsets of \bar{Y}. In particular,
for the compact subset $K \subset \bar{Y}$ there is a topological embedding $f : K \to Y \subset X$ such that $f|B = \text{id}|B$ and $(f, \text{id}) \prec \mathcal{U}$. This means that X absorbs compact subsets of \bar{X} and the pair (\bar{X}, X) is homeomorphic to the pair $(I^\omega \times \ell_2(\kappa), I^\omega \times \ell_2(\kappa))$ according to Theorem 5. This completes the proof of Theorem 3.

We do not know if the condition on Q to have infinite codimension in X in Theorem 12) can be omitted.

Problem 1. Assume that a subset A of a Fréchet space is homeomorphic to the Hilbert cube I^ω. Does A contains a subset B, which is homeomorphic to the Hilbert cube and has infinite codimension in A?

References

[1] T. Banakh, *The strongly universal property in closed convex sets*, Mat. Stud. **10**:2 (1998), 203–218.

[2] T. Banakh, R. Cauty, *Topological classification of convex sets in Fréchet spaces*, Studia Math. **205** (2011), 1–11.

[3] T. Banakh, T. Radul, M. Zarichnyi, *Absorbing sets in infinite-dimensional manifolds*, VNTL Publishers, Lviv, 1996. 240p.

[4] C. Bessaga, A. Pelczyński, *Selected topics in infinite-dimensional topology*, PWN, Warsaw, 1975.

[5] D. Curtis, T. Dobrowolski, J. Mogilski, *Some applications of the topological characterizations of the sigma-compact spaces I^ω and Σ*, Trans. Amer. Math. Soc. **284**:2 (1984), 837–846.

[6] T. Dobrowolski, *The compact Z-set property in convex sets*, Topology Appl. **23**:2 (1986), 163–172.

[7] K. Koshino, *Characterizing non-separable sigma-locally compact infinite-dimensional manifolds and its applications*, Jour. Math. Soc. Japan (to appear).

[8] K. Sakai, M. Yaguchi, *Characterizing manifolds modeled on certain dense subspaces of non-separable Hilbert spaces*, Tsukuba J. Math. **27**:1 (2003), 143–159.

[9] J. West, *The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces*, Pacific J. Math. **34** (1970) 257–267.

I. BANAKH: INSTITUTE FOR APPLIED PROBLEMS OF MECHANICS AND MATHEMATICS OF UKRAINIAN ACADEMY OF SCIENCES, NAUKOVA 3b, LVIV, UKRAINE

E-mail address: ibanakh@yahoo.com

T. BANAKH: IVAN FRANKO NATIONAL UNIVERSITY OF LVIV (UKRAINE) AND JAN KOCIANOWSKI UNIVERSITY IN KIELCE (POLAND)

E-mail address: t.o.banakh@gmail.com