Quantifying the Fragility of Galactic Disks in Minor Mergers

Ian R. Walker, J. Christopher Mihos1,2;
and
Lars Hernquist3

Board of Studies in Astronomy and Astrophysics,
University of California, Santa Cruz, CA 95064
iwalker, hos, lars
@ucolick.org

ABSTRACT

We perform fully self-consistent stellar dynamical simulations of the accretion of a companion ("satellite") galaxy by a large disk galaxy to investigate the interaction between the disk, halo, and satellite components of the system during a merger. Our fiducial encounter begins with a satellite in a prograde, circular orbit inclined thirty degrees with respect to the disk plane at a galactocentric distance of six disk scalelengths. The satellite’s mass is 10% of the disk’s mass and its half-mass radius is about 1.3 kpc. The system is modelled with 500,000 particles, sufficient to mitigate numerical relaxation noise over the merging time. The satellite sinks in only ~ 1 Gyr and a core containing $\sim 45\%$ of its initial mass reaches the centre of the disk. With so much of the satellite’s mass remaining intact, the disk sustains significant damage as the satellite passes through. At the solar circle we find that the disk thickens $\sim 60\%$, the velocity dispersions increase by $\Delta\sigma \simeq (10, 8, 8)$ km/s to $(\sigma_R, \sigma_\phi, \sigma_z) \simeq (48, 42, 38)$ km/s, and the asymmetric drift is unchanged at ~ 18 km/s. Although the disk is not destroyed by these events (hence "minor" mergers), its final state resembles a disk galaxy of earlier Hubble type than its initial state, thicker and hotter, with the satellite’s core enhancing the bulge. Thus minor mergers continue to be a promising mechanism for driving galaxy evolution.

Subject headings: galaxies: evolution — galaxies: interactions — galaxies: structure — Galaxy: evolution — Galaxy: kinematics & dynamics — Galaxy: solar neighbourhood

1Hubble Fellow
2present address: Johns Hopkins University, Department of Physics and Astronomy, Baltimore, MD 21218
3Alfred P. Sloan Foundation Fellow, Presidential Faculty Fellow
1. Introduction

The business of simulating interactions between galaxies originated with Holmberg (1941!) who found that a close encounter could raise impressive and observable tidal distortions and even thermalize enough orbital energy to result in capture. Although he was studying the clustering of galaxies, this work came long before the recognition of large-scale structure and it was revisited only rarely (e.g., by Pfleiderer & Siedentopf (1961); Pfleiderer (1963)) because of the cherished view of galaxies as “island universes” which rarely interact. However, a number of observed galaxies show signs of interaction (Arp 1966) and the subject was reintroduced around 1970, particularly by Toomre & Toomre (1972), who successfully modelled several peculiar galaxies with collisions. The expected frequency of encounters grew with the belief that galaxies are embedded in extensive, massive, dark halos which increase cross-sections for major collisions and enable the orbits of satellite galaxies to decay by dynamical friction (Tremaine 1981). Now, more than fifty years after Holmberg’s illuminating efforts, the prevalence of the hierarchical clustering picture for the formation and evolution of structure makes the study of galaxy interactions a very active field and a wide range of phenomena are thought to be linked to one variety of galaxy interaction or another.

Major mergers between spirals of comparable mass have received the most attention. The intermediate stages of such collisions explain some of the most spectacular objects observed, reproducing their messy profiles and extended tidal tails. Because the stellar component of the remnant relaxes toward a de Vaucouleurs profile, such mergers appear to drive evolution along the Hubble sequence toward elliptical galaxies (Negroponte & White 1983; Barnes 1988, 1992; Hernquist 1992, 1993a). They may also trigger starbursts or nuclear activity when gas is driven to the remnant’s centre as the progenitors coalesce (Mihos & Hernquist 1994a; Barnes & Hernquist 1995). Less spectacular but more common, mergers in which a disk galaxy accretes a smaller object (“minor mergers”) have analogous effects, namely, the stirring-up of disks and the generation of peculiar features (Quinn & Goodman 1986; Quinn, Hernquist & Fullagar 1993), bulge-building (a smaller step along the Hubble sequence toward Sa/S0 (Schweizer 1990)), and enhanced star formation or nuclear activity (Hernquist 1989; Mihos & Hernquist 1994b). Specifically, the early stages of such interactions (or even grazing encounters) can induce spiral arms, bars, warps, or “bridges” and full merging can thicken and dynamically heat disks. The tidal stripping of a satellite can produce features such as long tails or counterstreaming groups and its accretion introduces a new stellar population into the disk. A galactic bulge may be formed or enlarged by any combination of (a) the satellite’s core surviving to the centre of the disk, (b) gas being driven to the centre and converted to stars, or (c) disk stars being stirred up out of the disk plane. Combine this bulge-building with the smoothing of disk features which results from the increased velocity dispersion and the primary galaxy looks more like an S0 than it did before. For a summary of these ideas see the review by Barnes & Hernquist (1992) or any one of a number of conference proceedings (that of Wielen (1990) is comprehensive).

Those classic, messy objects which spark observational interest in major mergers have been known for decades. Interest in minor mergers has mostly developed more recently because the subtler features attract less attention and can be much harder to detect and study. However, considerable observational data has accumulated. The Milky Way has a number of satellite companions, as do most large galaxies. There is evidence that some quasar activity could be associated with minor mergers (Bahcall, Kirhakos, & Schneider 1995). Grand design spiral structure is sometimes associated with small, close companions: M51 is a classic example. A large fraction of disk galaxies are warped (Binney 1992). “Thick disks”, hot, flattened components with kiloparsec scaleheights, have been discovered in our Galaxy (Gilmore & Reid 1983; Gilmore, Wyse, & Kuijken 1989) and others (Burstein 1979; van der Kruit & Searle 1981). The Magellanic Clouds and Stream have been known for a long time, but the discovery of the close, tidally stretched Sagittarius dwarf galaxy (Ibata, Gilmore, & Irwin 1994) and the recognition of a distinct, possibly accreted population of blue, metal-poor stars in the solar neighbourhood (Preston, Beers, & Shectman 1994) have generated recent excitement. Most recently, we have found that the bulge of Hickson 87a very closely matches the bulge produced in one of our simulations (Mihos et al. 1995). The parallel between the observational results listed here and the minor merger effects listed in the previous paragraph drives the current interest in discrete accretion events.

Tremaine (1981) used the mean radial distribution
of satellite companions of large galaxies and sinking rates derived from dynamical friction in an isothermal halo to estimate the total mass accreted by a large galaxy over a Hubble time. He found that a typical large galaxy can consume 20\%–30\% of its own mass, very roughly, motivating several attempts to quantify the resilience of cold, thin disks to minor mergers: What are the implications of the chunk-wise accretion of so much mass? Quinn & Goodman (1986) measured the effect of the disk on these sinking rates, studying the dynamics of the disk-satellite interaction with analytic and restricted N-body techniques. They noted strong heating of their simulated disks. Quinn, Hernquist, & Fullagar (1993) used N-body experiments to survey orbital parameters, focussing on such observable disk properties as density structure and kinematics. They found that single accretions of about 10\% of the disk's mass could, in the solar neighbourhood, double the disk's thickness and expand the velocity ellipsoid by fifty per cent (more in the radial direction), producing something similar to the Milky Way's thick disk. The analytic work of Tóth & Ostriker (1992) also found disks to be quite fragile. They turned Tremaine's question around by using the observed abundance of undisturbed, cold, thin disk galaxies to limit the mean total mass accreted and, by inference, \(\Omega_0\). They concluded that the Milky Way cannot have accreted more than 4\% of the mass inside the solar circle in the last 5 Gyr. Since \(\Omega = 1\) models predict that accretion continues at late times, they argued that \(\Omega_0 < 1\).

Successes notwithstanding, these studies had the drawback of not being fully self-consistent, modelling the dark matter halo and sometimes also the satellite as rigid bodies. Modelling a component with interacting particles (thus making it responsive, or "live") increases both computational expense and noise and might seem frivolous for the halo which is, after all, invisible. However, rigid representations lack internal degrees of freedom and thus the disk was the only sink for the satellite's energy in earlier investigations. These studies were in some sense measures of the maximum damage that could be done to the disk, not of the typical response. Also, a live halo is able to propagate disturbances into the disk (Weinberg 1995a), a pathway which is cut off when a rigid halo is used.

Confidence in the results of Quinn et al. (1993) is undermined by several other technical limitations and compromises, apart from the use of a rigid halo. Their simulations used 32 768 disk particles and 4096 satellite particles and were thus fairly noisy. Their satellite was initialized with some fraction of its mass not bound because the tidal radius was not taken into account. This mass was left behind at large radii and did not participate in the stirring of the disk. Also, their disk was abruptly truncated at the initial radius of the satellite's orbit, interfering with the disk-satellite coupling. This allowed the satellite to orbit several times at large radii before sinking, making sinking times unreliable but also allowing the satellite to shed even more mass at large radii, further reducing its potency for scattering disk particles.

Advances in computer technology now permit the use of an order of magnitude more particles than used by Quinn et al. (1993). Here we attempt to remedy the shortcomings of earlier studies with fully self-consistent N-body simulations large enough to eliminate numerical relaxation noise over the merging time while including the dynamical interplay of all the components of the system.

2. Models and Methods

2.1. Galaxy Models

Our models consist of exponential disks, truncated isothermal halos, and Hernquist model satellites (Hernquist 1990a) in the mass ratio 10:58:1. The disk and halo each contain 45\% of the simulation particles while the satellite contains the remaining 10\%, an arrangement which provides better sampling of the luminous components. The specific profiles used are:

\[
\rho_{\text{disk}}(R, z) = \rho(0) e^{-R/h} \cosh^{-2}(z/z_0), \quad (1)
\]

\[
\rho_{\text{halo}}(r) = \rho(0) \frac{e^{-r^2/\gamma^2}}{1 + r^2/\gamma^2}, \quad (2)
\]

\[
\rho_{\text{sat}}(r) = \frac{M_A}{2\pi r(r + a)^3}. \quad (3)
\]

The satellite is truncated at its initial tidal radius with respect to the primary. Parameter values are listed in Table 1.

Velocities are initialized from moments of the collisionless Boltzmann equation in a procedure described by Hernquist (1993b). For each dark matter particle, the velocity ellipsoid suitable for its location is calculated from the moment equations and then its velocity components are randomly selected from gaussians corresponding to that ellipsoid. For disk particles,
velocities are constrained to make the radial dispersion proportional to the square root of surface density \((\sigma_R \propto e^{-R/2h}; \text{Freeman 1993})\) and are normalized to a chosen value of \(Q(R_\odot)\). The vertical dispersion is given by \(\sigma_z^2 = \pi G \Sigma(R) z_0\) (the so-called isothermal sheet). The azimuthal dispersion is given by the epicycle approximation \((\sigma_\phi^2 = \sigma_h^2 R^2 / (4 \Omega^2))\) and the azimuthal streaming velocity by the cylindrical moment equations. The initial disk structure is shown in Figure 1.

This approach is not without its drawbacks since it only approximates a distribution function and thus does not initialize the particles in a true equilibrium configuration. When this initial state is allowed to evolve in isolation (i.e., without a satellite) it rapidly shifts to an equilibrium configuration whose subsequent evolution is governed only by numerical relaxation (simulation noise). However, this shift can be large. Figure 2 illustrates this by superposing the initial disk structure on the structure after several time steps. Note in particular that the central dispersions have dropped by about twenty per cent.

For our purposes this technique is adequate because the galaxy is about to be stirred up by an infalling neighbour. As long as we are careful to measure “heating” and “thickening” relative to the coeval isolated disk galaxy rather than the initial state, our analysis will be sound. On the other hand, studies involving isolated disk galaxies (e.g., instability studies) would require better initial conditions, both for tighter control of initial structure and less disturbance from transients. Improvements can be obtained from higher order moments but for future work the semi-analytic distribution functions of Kuijken & Dubinski (1995) may offer a more direct approach.

2.2. Encounter

We choose to focus on an encounter in which the satellite starts on a circular, prograde orbit with a radius of six disk scalelengths inclined 30° with respect to the disk plane. This encounter was found by Quinn et al. (1993) to illustrate most of the important phenomena. Note that the satellite is not grown adiabatically in this orbit; it is simply switched on at \(t = 0\). Although the initialization procedure tries to account for the effect on the satellite by truncating it at its tidal radius, the disk is thrown somewhat out of equilibrium by the sudden change in potential at its edge. However, as described above and demonstrated in Figure 2, the disk is initially out of equilibrium anyway, and the transient behaviour within \(R = 15\) kpc is identical to that for the isolated galaxy shown in Figure 3. Nevertheless, as computers become ever faster, it will be prudent to invest some cpu time in moving the starting radius out farther for the sake of more realistic orbital evolution, tidal stripping, flaring and warping of the disk, et cetera.

For the sake of discussion, units are scaled to the Milky Way such that the disk has scalelength \(h = 3.5\) kpc and mass \(M_d = 5.6 \times 10^{10} M_\odot\) (Bahcall, Schmidt, & Soneira 1983). Other parameters are given in Table 1. The evolution was followed with a treecode (Barnes & Hut 1986; Hernquist 1987, 1990b) using terms up to quadrupole order, a tolerance parameter (“opening angle”) \(\theta = 0.7\), and a timestep \(\Delta t \approx 2\) Myr. Energy was conserved to 0.1% over 1.2 Gyr and to 0.2% over 2.5 Gyr. Simulations which include hydrodynamics have also been studied and are reported separately (Hernquist & Mihos 1995).

Quantity	Value
Disk	
Mass \(M_d\)	\(5.6 \times 10^{10} M_\odot\)
Scalelength \(h\)	3.5 kpc
Scaleheight \(z_0\)	700 pc
Softening \(\epsilon_d\)	140 pc
Toomre \(Q(R_\odot)\)	1.5
\(N_d\)	0.45N^a
Halo	
Mass \(M_h\)	\(3.25 \times 10^{11} M_\odot\)
Scalelength \(\gamma\)	3.5 kpc
Cutoff Scale \(r_c\)	35 kpc
Softening \(\epsilon_h\)	700 pc
\(N_h\)	0.45N^a
Satellite	
Mass \(M_s\)	\(5.6 \times 10^9 M_\odot\)
Characteristic Radius \(a^b\)	525 pc
Softening \(\epsilon_s\)	70 pc
\(N_s\)	0.1N^a
Orbit \(R_{init}\)	21 kpc

Table 1: Simulation Parameters

\(^a N = 500 000\) particles for the largest simulation.
\(^b\)The half-mass radius is \((1 + \sqrt{2})a\).

2.3. Quality Control

Modelling a halo (or any other component) with particles does have a disadvantage in that the potential is less smooth than a rigid, analytic halo’s
and scattering is thus enhanced. Compared with real galaxies, simulated galaxies have a relatively small number of relatively massive particles whose wide, deep potential wells are able to deflect one another even if they pass at a significant distance. This excess scattering, called 2-body relaxation noise, is to some extent suppressed by “softening”, artificially reducing the force between close particles to prevent strong collisions. However, random clumping (“shot noise”) creates potential fluctuations on all scales and softening does not help with scattering off large clumps. The contrast between random clumps and the background is reduced as more particles are used; if we are to detect small but legitimate structural and kinematic effects in our simulations, we must reduce the excess scattering as much as possible. To quantify this, we ran several simulations of the disk galaxy in isolation (i.e., without the satellite). Figure 2 shows the evolution of the disk thickness and velocity ellipsoid at the solar radius in simulations with \(N = 45\,000 \), which is roughly the size of the Quinn et al. (1993) simulations, \(N = 90\,000, N = 225\,000 \), and \(N = 450\,000 \). The largest run experienced very little change over the sinking time (\(\sim 1 \) Gyr) so we expect any evolution we observe in our satellite encounters to be signal rather than noise.

Shot noise has also been observed to have a global manifestation. Disk models with realistic profiles and velocity dispersions tend to be quite lively in that they amplify density perturbations which can then feed into instabilities and produce spiral or bar features (Toomre 1981; Binney & Tremaine 1987; Sellwood 1989; Hernquist 1993b; Weinberg 1995b). This is exacerbated in models with live halos because clumps of massive particles create wakes in the disk. Since the halo dominates the potential and is the most poorly-sampled component, it is the principal source of shot noise. This is apparent in Figure 3, which shows the evolution of the bar \((m = 2) \) mode in our isolated galaxies and in a run with 45 000 disk particles and a rigid (noiseless) halo whose bar mode seems not to grow at all. Because the contrast between the random clumps and the underlying smooth distribution is smaller when \(N \) is larger, the instability is seeded at a lower amplitude and thus sets in at later times in larger simulations. Again, it is apparent that noise has been suppressed for the relevant timescale in the largest simulation and that any significant bar growth in our satellite encounter can be assumed to be induced by the satellite.

Thus we use the 450 000-particle disk galaxy with a 50 000-particle satellite to model our chosen encounter. Figure 2 and Figure 3 demonstrate the need for large \(N \) to beat down noise over long timescales: \(1 \)-million particles is only adequate for about two billion years. Many more halo particles must be used for examining phenomena with timescales longer than a few gigayears, such as retrograde encounters.

3. Results

The basic sequence of events is illustrated in Figure 4 which shows both face-on and edge-on views of the disk and satellite at regular intervals of about 125 Myr. The satellite loses most of its vertical motion while completing only \(\sim 1.5 \) orbits, settling into an orbit coplanar with the disk. This orbit then decays quite rapidly. The satellite sheds mass all along its orbit but its core survives and arrives at the centre of the disk.

In this paper we discuss the decay of the satellite orbit and the satellite’s effect on the disk. However, the disturbance continues to evolve for some time after the merger is complete. The evolution of the central regions at late times is presented in a separate paper (Mihos et al. 1995), but here we give a brief description. Figure 5 illustrates the disk’s global response to the satellite. After the merger (Fig. 5 last frame), full axisymmetry is not restored: a bar has been induced and it drives further evolution in the disk’s inner two scalelengths. Note that this bar is induced by the satellite, not by amplified noise. Because the bar is unstable to vertical bending (Raha et al. 1991), it flexes and eventually kicks material out of the disk plane, generating a small, flattened bulge with an X-morphology (Mihos et al. 1995). For our purposes, however, it is sufficient to note that, apart from changes associated with the bar, the disk structure does not change much, postmerger.

3.1. Orbital Decay

Figure 6 shows various aspects of the orbital decay. The upper left panel shows cylindrical radius versus time. This quantity does not decrease monotonically because the satellite is initially orbiting in an inclined plane. Once the satellite has settled closer to the disk plane, there is a knee in the \(R \) versus \(t \) curve and the orbit decays very rapidly. The upper right panel shows the orbit from the North galactic pole and reveals that the satellite falls most of the way to
the centre in only two orbits ($R \sim 5$ kpc). The lower left panel shows the altitude versus time and the lower right shows altitude versus radius, demonstrating that the satellite settles most of the way to the disk plane while still at large radii.

In an attempt to quantify the importance of the halo compared with the disk over the course of the encounter we calculate the torque on the satellite due to the disk and halo separately (Fig. 7, upper panel). The two torques are comparable initially but the disk dominates overall. A rough integration of the curves in the upper panel of Figure 7 shows that $\sim 75\%$ of the total time-integrated torque comes from the disk.

This is attributable to a resonant enhancement of dynamical friction which occurs because a satellite on a prograde orbit moves with the nearby disk particles and thus interacts strongly with them. The interaction dynamics were discussed in detail by Quinn & Goodman (1986), but basically leading disk particles are pulled back by the satellite so that they lose angular momentum and drop into lower orbits, clearing a gap in the disk in front of the satellite (Fig. 3). Trailing particles gain angular momentum and move into higher, slower orbits and thus do not overtake the satellite. Once this configuration develops, with the density higher behind the satellite than before it, the disk torque increases dramatically and the satellite quickly sinks to the centre. The lower panel of Figure 8 superposes the bar mode strength, the disk torque, and the orbital decay to show that these coincide. Note that this mechanism transfers most of the satellite’s orbital energy into the potential energy of the disk. If, when the satellite pulls a trailing disk particle forward, promoting it to a higher orbit, the particle were to move from one circular orbit to another and the rotation curve were exactly flat, then the particle’s kinetic energy would not change a bit and all the energy flowing from satellite to disk would appear as potential energy.

Clearly, the process is aided by the settling of the satellite toward the disk plane, although the rapid radial decay of the orbit actually begins before the vertical motion has damped out completely (Fig. 8). The process also relies on the approximate circularity of the orbit in order for the velocity of the satellite to match the velocities of the disk particles. The global nature of the response presumably requires an approximately flat rotation curve to make the resonant region extensive. The strength may depend on the ease of excitation of the bar mode; however, a run with a flattened Hernquist model bulge (semi-axes $a = 0.7$, $c = 0.35$ kpc) yielded almost identical sinking time and heating.

The halo, whose particles do not collectively orbit with the satellite, is unable to undergo strong collective interaction and so cannot contribute such a large torque. Of course, in real life the satellite does not start at the edge of the disk. The torque on a satellite at large distance will be dominated by the halo and the satellite will take a long time to sink toward the disk where the process described above can set in. In fact, the disk’s contribution to the torque in the early stages of the decay of a prograde orbit can oppose the halo’s (Quinn & Goodman 1986): the satellite can gain angular momentum from the disk in a manner analogous to the Moon’s gain of angular momentum from the tidal bulge it raises on the Earth. This makes the truncation of the disk by Quinn et al. (1993) problematic. Their Figure 11 shows orbital evolution similar to that seen here but delayed. The knee in their R versus t curve comes at ~ 2 Gyr and the total sinking time is ~ 2.5 Gyr.

We test our simulations for convergence by running four simulations of our encounter with 50000, 100000, 250000, and 500000 particles, respectively. The upper panel of Figure 8 shows the orbital decay curves. They converge well and, since our simulations are fully self-consistent, we conclude that we finally have reliable estimates for the sinking time. It is not very long: at 1 Gyr, it is only $\sim 10\%$ the age of the Milky Way’s disk. (For comparison, we overlay the result from a simulation identical to our largest in every respect but for a rigid halo. The sinking time is some 50%–80% longer (though still much shorter than in Quinn et al. (1993)) which testifies to the importance of a self-consistent treatment.) Even more dramatic is a coplanar ($i = 0^\circ$), prograde encounter in which the satellite sinks from six scalelengths in 0.6 Gyr (Fig. 8 lower panel). Evidently, once a satellite arrives in the disk on a prograde orbit, it has only a short time to live. This is in stark contrast to retrograde and polar orbits. We tried evolving them for $\sim 3\frac{1}{4}$ Gyr and what little was left of the satellite core had just reached the galactic centre (Fig. 8 lower panel). As is apparent from Figures 8 and 1, noise becomes a problem on these timescales.

3.2. Disk Structure

Figure 9 shows the disk thickness and velocity dispersions as functions of cylindrical radius. The solid
lines show the structure at ~ 1.2 Gyr (which allows ~ 200 Myr for things to settle after the satellite reaches the centre) and the dashed lines show the structure of the coeval isolated galaxy. The entire disk thickens with respect to the isolated galaxy but much more so at large radii where the satellite still had significant vertical motion: more than 200% thickening is seen beyond $R \sim 15$ kpc, as opposed to $\sim 50\%$ at $R \sim 5$ kpc and only $\sim 10\%$ at the centre. In contrast, the disk thickens much more uniformly in the coplanar encounter but only by about 20%, or 100 parsecs. The velocity dispersions in Figure 4 increase at least 10 km/s at all radii. At the centre, σ_R increases by 50 km/s and σ_z increases by 30 km/s, which is interesting because the central thickness is essentially unchanged. This reflects the increased depth of the central potential due to the satellite core (see § 3.3). Note that the solid lines in Figure 4 are more extended than the dashed: the disk spreads radially as well as vertically, storing much of the energy it gains as potential energy.

The evolution of these quantities at the solar circle (8.0 kpc) is shown in Figure 11. Recall that these quantities are azimuthally averaged and that the disk is not axisymmetric at intermediate times: the numbers calculated for these times should not be trusted absolutely. However, trends in the disk’s behaviour are more reliable. The figure shows that the satellite’s effect is felt in the radial dispersion first and in the other quantities only when the satellite reaches the solar circle. This pattern occurs in all the simulations and so should be robust. The increase in the radial dispersion is due to azimuthal averaging when there is radial streaming in the bar. It is thus not surprising that σ_R increases early because the bar develops before the satellite reaches the solar circle. The asymmetric drift also responds to the passage of the satellite but settles back to about 18 km/s so that, within the noise, it has hardly changed at all. The other quantities settle but not to their original values. In the end, the disk thickens by about 60%. The radial dispersion goes from about 35 km/s to about 48 km/s, the azimuthal from about 32 to about 42, and the vertical from 28 to 38. Compare these final values with those from the isolated disk: around $t \sim 1.2$ Gyr, it has actually shrunk about 3%, heated to (38, 34, 30) km/s, and has an asymmetric drift of 16 km/s. The net heating attributable to the action of the satellite is thus (10, 8, 8) km/s.

The satellite acts to heat and thicken the disk by scattering disk particles. Because the satellite is concentrated and moving, disk particles on close trajectories can encounter slightly different parts of the satellite potential and can be deflected in slightly different directions. This creates a greater variety of local trajectories, i.e., the velocity dispersion increases. So, while the satellite’s energy is absorbed into the potential energy of the disk (and the stripped satellite material), the heating and thickening of the disk occur more by pure scattering, the conversion of disk orbital energy to disk thermal energy. Figure 11 supports this view by indicating that heating and thickening of the disk at the solar radius occur as the satellite passes through that radius and are thus essentially local processes.

3.3. Satellite Remnant

That the satellite’s core arrives as a distinct lump in the galactic centre is apparent from the integrated mass distribution and surface density of the satellite remnant (Fig. 11). About 45% of the satellite’s mass lies within 2 kpc of the centre at the end, enhancing the peak surface density by a factor of about 2.5 with respect to the disk. Contrast this with the retrograde case in which the satellite barely survives.

Estimating mass loss with a simple density criterion based on the “tidal radius” for a body in orbit about another (Binney & Tremaine 1987) is inadequate for the process we are studying. Obviously, any treatment which approximates the disk as a point mass when the satellite is orbiting within the disk is inappropriate, but such estimates have been used (e.g., by Tóth & Ostriker (1992)) to relate mass loss to orbital radius. To see the potential for error, consider that the density ratio criterion does not make use of the spin of either body, hence cannot distinguish between prograde and retrograde events, and thus predicts the same mass loss for both. Although our retrograde simulation is unreliable for its fine structure because of the growth of noise over the long sinking time, its bulk properties are sound. The initial configuration is identical to that of our main simulation except for the sign of the orbital angular momentum; the mass loss history is quite different. By the end of the simulation, the satellite core has been pared down to only 10% of the initial satellite mass (Fig. 11, upper panel). If half the satellite survives to the centre in the prograde case while the satellite is almost entirely disrupted in the retrograde case then a mass loss estimator which does not distinguish these cases is all
but useless. Since it takes into account neither the angular momentum of the objects nor the timescale of interaction, the density criterion does not capture the physics involved and is misapplied in this problem. Given that a satellite’s mass loss determines its potency for scattering disk particles, any study relying on simple analytic estimates of the mass loss must be interpreted very carefully.

As for the material which is stripped from the satellite, it is distributed in a thickened, flared disk, similar to the final distribution of disk material but thicker. Because of its low surface density, this material would not stand out in an external galaxy; only the core, visible as a central brightness enhancement or small bulge (the peak in the dotted curve in the second panel of Figure 1), would be conspicuous. We note here that Hickson 87a, a galaxy whose luminosity structure matches our model quite closely, has such a peak (Mihos et al. 1995). Figure 12 shows the structure of the satellite remnant and disk combined, along with the disk and satellite separately for comparison. Here again the core stands out as a distinct component. Otherwise, the satellite remnant is structurally and kinematically like a thick, flared, hot disk. There is little difference between the disk structure and the combined structure (except at very large radii) because the surface density of the remnant is just too small. Near the solar circle, the satellite remnant is somewhat thicker and hotter than the disk material but it does not lag in its rotation (within the noise).

Since the satellite material does not alter the combined structure much, especially at R_\odot, it is not clear that it could be distinguished from a spectral signature (e.g., the blue, metal-poor population discussed by Preston et al. (1994)). At intermediate stages in an accretion event, however, a satellite would be more noticeable (e.g., the Sagittarius dwarf galaxy (Ibata et al. 1994)) and streams and moving groups can persist for more than a gigayear (Johnston, Spergel, & Hernquist 1995). Of course, the counter-streaming material left by a retrograde encounter would be easily distinguished, as would something resembling the counterrotating cores studied by Balcells & Quinn (1990).

4. Discussion

4.1. Is our puffed up disk a “thick disk”?

The Milky Way’s thick disk is observed to be about twice as thick as our model’s at the solar circle. Morrison (1993) quotes for the (metal-strong) thick disk a scaleheight of about 1 kpc, $\sigma_z \sim 40$ km/s, and an asymmetric drift of about 30 km/s. The velocity ellipsoid is observed to be $(\sigma_R, \sigma_\phi, \sigma_z) = (63 \pm 7, 42 \pm 4, 38 \pm 4)$ km/s by Beers & Sommer-Larsen (1995). Our simulated disk has a smaller asymmetric drift although a more eccentric satellite orbit might induce more lag. Its dispersions are $(48, 42, 38)$ km/s, plus or minus a few kilometres per second, a bit cool radially but otherwise in good agreement. It is important not to overinterpret this comparison, however. The exact values we obtain depend sensitively on the choice of scaling (Table 5). Moreover, our simulation starts with a fully formed galaxy and thickens its entire disk, whereas the Milky Way has a low-mass thick disk with an embedded high-mass thin disk. Thus the thick disks in the model and Milky Way are not strictly dynamically equivalent and so not directly comparable. The Milky Way’s thick disk is, after all, ancient, so while simulations of this sort help us study particular processes with few competing effects, honest comparison with observations ultimately requires that they be studied in the context of the formation and evolution of the galaxy as a whole.

The discreteness of the Milky Way’s thick disk with respect to the thin disk argues for at least one significant ancient merger event. A tantalizing hint for another is the suggested substructure in the age–velocity dispersion relation discussed by Freeman (1993), analyzing a figure from Edvardsson et al. (1993). Freeman proposes that the relation contains these three domains: stars younger than 3 Gyr with $\sigma_z \sim 10$ km/s, stars between 3 and 10 Gyr with $\sigma_z \sim 20$ km/s, and stars older than 10 Gyr with $\sigma_z \sim 40$ km/s (the thick disk). Whether the transition between the first two domains is really discrete is not clear but the figure (Figure 2 in Freeman (1993), Figure 16b in Edvardsson et al. (1993)) at least hints at the possibility of a second, smaller, accretion event about 3 Gyr ago.

The thickness of our simulated disk increases at large radii because of the inclined satellite orbit but is essentially uniform near the solar circle. At late times, however, the bar’s vertical instability causes additional thickening (to $|\langle z \rangle| \sim 1.1$ kpc) at radii around 1 scalelength. Interestingly, an increase in the Milky Way’s thick disk scaleheight inside the solar circle is one interpretation Morrison (1993) discusses for her data, though it is not strongly supported. Any detection of scaleheight varying with radius is likely
to come from external galaxies, but observers face the obstacle (which we do not) of having to subtract thin disk and bulge profiles before searching for thick disks in noisy residuals. In most instances, the issue is whether or not a thick disk has been detected, not what its detailed structure is, so the data is generally fit with a single thick disk scaleheight (van Dokkum et al. 1994; Morrison, Boroson, & Harding 1994). The new generation of large telescopes and large CCDs is expected to bring the study of thick disk profiles within reach.

Given the number of parameters available for twiddling (e.g., satellite mass, density, orbital inclination, and orbital eccentricity) it seems plausible that we could arrange a suitable thick disk by satellite accretion. Of course, there is no thin disk left, a result which motivates the study of models which include gas (Mihos & Hernquist 1994b; Hernquist & Mihos 1995). The satellite can puff up both the gas and the existing stellar component but the gas can radiate away its energy and resettle to form a new thin disk, leaving a thick disk composed of a necessarily older stellar population. The degree to which the thick and thin disks would be distinct depends on the timescale for resettling and the ability of the gas to form stars as it resettles.

4.2. Is satellite accretion a good way to form bulges?

Certainly small nuclear concentrations can be produced if the satellite core reaches the centre. As pointed out in § 3.3, Hickson 87a sports such a feature. There will also be a contribution from that part of the gas which is driven to the centre (Mihos & Hernquist 1994b; Hernquist & Mihos 1995). It is not so clear that anything extended could be produced. A more extended satellite would simply be stripped. A much more massive or dense satellite would be too destructive for the disk. The bar’s vertical instability kicks disk material up out of the disk plane to produce a modest extended bulge (Mihos et al. 1995), though depending on viewing angle it may be a peculiar one (boxy, peanut-, or X-shaped). That our initially bulgeless simulation ends up looking very much like Hickson 87a (an S0 pec) is encouraging but gas inflow may interfere with the bar process because steepening of the rotation curve tends to dissipate bars (Hasan & Norman 1990). Even without gas inflow, a more bar-stable model might have quickly returned to axisymmetry instead of retaining a bar. The exact significance of this mechanism is thus unclear but its effectiveness here is suggestive. In any case, it seems unlikely that it could produce a large bulge like that of, say, NGC 5866 (Sandage & Bedke 1994).

Quinn et al. (1993) noted that subsequent accretions by already thickened disks produced much smaller changes in thickness and dispersion than the initial accretion, so perhaps a bulge could be built up piecewise without damaging the disk excessively. Presumably this process would thicken any thin disk that had reformed after the previous encounter and the gas would gradually be depleted as some portion of it was driven to the centre each time. This leads to a picture in which a large disk galaxy, if it suffered several mergers with companions of non-negligible mass, might represent a nightmare scenario for anyone attempting to sort out its evolutionary history. It would have a thick disk composed of several populations of disk stars and stripped satellite stars. The disk would be relatively gas-poor with little present-day star formation and relatively hot with little present-day spiral structure. It would also likely have a dense nucleus composed of populations from several satellites and star formation episodes. S0 galaxies are defined by their lack of spiral structure and they typically also have thicker disks, larger bulges, and less star formation than other disk galaxies (Sandage 1961; Sandage & Bedke 1994). S0 galaxies are defined by their tightly wrapped spiral structure, like that visible in the last frame of Figure 3. Thus mergers seem to help in all respects to push a spiral galaxy along the Hubble sequence toward Sa/S0, a contribution to galaxy evolution analogous to, but suitably scaled down from, the process of two spiral galaxies merging to form an elliptical.

4.3. Is there a constraint on cosmology?

Unfortunately, our results do not say much about the cosmological implications of companion accretion beyond the fact that disks are rather fragile. Because our satellites start at the edge of the disk (to save CPU time and beat the growth of noise), we do not really address sinking times from a cosmological perspective. We find very short sinking times but a satellite at some distance out in the halo would slowly orbit many times before reaching the disk (Fig. 13). That is to say, the satellite is “accreted” by the halo long before it is accreted by the disk, which tells us that accretion rates derived from cosmology need to be interpreted carefully if they are to be constrained by...
disk structure arguments.

Figure 13 gives sinking times as a function of satellite mass and initial orbital radius for circular orbits decaying by dynamical friction in an isothermal halo (Binney & Tremaine 1987). At a glance one can see which kinds of objects will hit the disk within a Hubble time or, more importantly, within the age of the disk. Note that, while the full ranges of masses and orbital radii are realistic for satellite galaxies, only a small region of the diagram has any relevance: not just any satellite can participate in the processes discussed in this paper. Distant, low mass satellites take longer than the age of the disk to spiral in. The calculation is not applicable when the satellite is in the disk and any satellite there now must have started in the shaded region. Satellites whose mass is comparable to the disk’s mass do not qualify as “minor” mergers. Evidently there is a roughly triangular region in R_{init} versus M_{sat} which we might call the “Zone of Interesting Parameters”, where satellites must originate to be important. (There must also be a density limit below which a satellite will be disrupted before reaching the disk.) For illustration, the zone is bounded here by a 10 Gyr disk age, a 20 kpc disk radius, and a 0.25M_{disk} mass threshold for severe destruction, but naturally the zone is much more nebulous. In any case, the sinking times are merely rough estimates which will be improved only with better knowledge of the outer regions of galactic halos. Good galaxy-formation/cosmology simulations would be useful in this regard and would also help us determine the expected space, energy, and angular momentum distributions of satellites around large galaxies.

Specific comparison with the work of Tóth & Ostriker (1992) is very difficult. In a vague way, the fact that the damage done to our disk is significant strengthens their result. However, their results are averaged over all possible orbital inclinations, making it impossible to directly relate our numbers to theirs. This averaging does not account for the fact that prograde orbits are more likely to merge within a Hubble time, nor does it account for the tendency of these orbits to settle to low inclinations, depositing most of the vertical energy at large radii and favouring $i \sim 0$ at smaller radii. Another difficulty is that their analysis assumes the satellite’s energy is deposited locally and its orbit decays slowly. These assumptions might be reasonably accurate for retrograde orbits but Figures 3 and 4 which illustrate the global response of the disk and the rapid orbital decay respectively, show that our prograde mergers violate them.

Tóth & Ostriker set a limit on accretion by starting with an absolutely cold disk and heating it with giant molecular clouds, which gives $Q = 0.90$ and a scaleheight $h = 218$ pc. They then attribute the difference between these values and the present thin disk values to accretion. The assumptions that total heating and thickening scale with total accreted mass and that they are the same regardless of the initial heat and thickness are not strictly correct. Quinn et al. (1993) found that a second satellite impact on an already heated disk had a much less dramatic effect than the first: two satellites of 0.05M_{disk} do not equal one satellite of 0.1M_{disk}. In fact, in the limit where the satellite merger is finely subdivided into smaller events, this goes over to an adiabatic process of slow, continuous accretion or is shut off altogether if the objects are too distant to sink within a Hubble time (Fig. 4). Also the assumption of a low pre-merger Q means that the disk is unstable to global structure formation and will experience additional “initial” (non-merger) heating. Finally, when Tóth & Ostriker take account of mass loss by the satellite (which they otherwise treat as rigid), they use the density ratio approximation, which we have found to be inadequate (§ 3.3). Some of these assumptions and approximations actually lead Tóth & Ostriker to underestimate their damage; the implications of others are less clear. Overall, it is not clear that they have succeeded in placing a limit on accretion, nor that our results strengthen any of their conclusions.

The bottom line is that two things are needed for a limit on Ω_0: a limit on accretion and a connection between accretion and cosmology. It is not certain that we have either, yet. Meanwhile, it is worth noting that if gas can reform a thin disk after an encounter, then the presence of a thin disk does not necessarily mean there have been no encounters.

5. Conclusions

Our fully self-consistent simulations of the accretion of a companion galaxy by a large disk galaxy allow us to examine the full interaction between the satellite, disk, and dark matter halo. We find that 500 000 particles is sufficient to eliminate numerical relaxation over the timescale of the prograde merger, but mergers not strongly coupled to the disk (retro-
grade, polar) still face competition from noise.

That the disk should dominate the interaction could have been predicted from the coupling between the satellite’s orbit and the orbits of disk stars. The strong global response of the disk depends on a satellite orbit which is both prograde and circular. Either high inclination or high eccentricity would curtail the resonance considerably. It remains to be seen whether the “typical” satellite orbit becomes circular by the time it reaches the optical disk, but our initial conditions ought to be viewed as a somewhat special case. Future stellar dynamical studies of satellite accretion should examine retrograde and eccentric orbits. We expect them to find that the halo contributes a larger fraction of the torque and that less of the satellite survives to the galactic centre.

With its high density and the rapid decay of its prograde orbit, our satellite easily survives the encounter. Half of its mass arrives in the central few kiloparsecs of the disk, causing significant heating there. After the merger, the satellite core is a small, bulge-like entity in the galactic centre while the galactic disk is rather like the thick disk component of the Milky Way. Our particular encounter produced only about 60% thickening at the solar circle but enough heating so that the final \((\sigma_R, \sigma_\phi, \sigma_z)_\odot \simeq (48, 42, 38)\) km/s, very close to the observed values for \(\sigma_\phi\) and \(\sigma_z\). Our \(\sigma_R\) and asymmetric drift are lower than those observed but a more eccentric satellite orbit might boost them a bit. Eventually, these effects all leave the galaxy looking like an earlier Hubble type (Sa in this case, since there is spiral structure), supporting the picture of merger-induced galaxy evolution.

We would like to thank Heather Morrison for helpful discussions, George Blumenthal, Caryl Gronwall, Kathryn Johnston, and Kim Supulver for critical readings of the manuscript, and the referee, James Binney. This work was supported in part by the San Diego Supercomputing Center, the Pittsburgh Supercomputing Center, the Alfred P. Sloan Foundation, NASA Theory Grant NAGW–2422, the NSF under Grants AST 90-18526 and ASC 93-18185, and the Presidential Faculty Fellows Program.

REFERENCES

Arp, H. 1966, ApJS, 14, 1
Bahcall, J. N., Kirhakos, S., & Schneider, D. P. 1995, ApJ, 447, L1
Bahcall, J. N., Schmidt, M., & Soneira, R. M. 1983, ApJ, 265, 730
Balsells, M. & Quinn, P. J. 1990, ApJ, 361, 381
Barnes, J. E. 1988, ApJ, 331, 699
Barnes, J. E. 1992, ApJ, 393, 484
Barnes, J. E. & Hernquist, L. 1992, ARA&A, 30, 705
Barnes, J. E. & Hernquist, L. 1995, ApJ, in press
Barnes, J. E. & Hut, P. 1986, Nature, 324, 446
Beers, T. C. & Sommer-Larsen, J. 1995, ApJS, 96, 175
Binney, J. J. 1992, ARA&A, 30, 51
Binney, J. J. & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton University Press)
Burstein, D. 1979, ApJ, 234, 829
Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., & Tomkin, J. 1993, A&A, 275, 101
Freeman, K. C. 1993, in Galaxy Evolution: The Milky Way Perspective, ed. Majewski, S., ASP Conference Series 49, 125
Gilmore, G., & Reid, I. N. 1983, MNRAS, 202, 1025
Gilmore, G., Wyse, R. F. G., & Kuijken, K. 1989, ARA&A, 27, 555
Hasan, H. & Norman, C. 1990, ApJ, 361, 69
Hernquist, L. 1987, ApJS, 64, 715
Hernquist, L. 1989, Nature, 340, 687
Hernquist, L. 1990a, ApJ, 356, 359
Hernquist, L. 1990b, J. Comput. Phys., 87, 137
Hernquist, L. 1992, ApJ, 400, 460
Hernquist, L. 1993a, ApJ, 409, 548
Hernquist, L. 1993b, ApJS, 86, 389
Hernquist, L. & Mihos, J. C. 1995, ApJ, 448, 41
Holmberg, E. 1941, ApJ, 94, 385
Ibata, R. A., Gilmore, G. F., & Irwin, M. J. 1994, Nature, 370, 194
Johnston, K. V., Spergel, D.N., & Hernquist, L. 1995, ApJ, 451, 598
Kuijken, K., & Dubinski, J. 1995, MNRAS, in press
Mihos, J. C. & Hernquist, L. 1994a, ApJ, 431, L9
Mihos, J. C. & Hernquist, L. 1994b, ApJ, 425, L13
Mihos, J. C., Walker, I. R., Hernquist, L., Mendes de Oliveira, C., & Bolte, M. 1995, ApJ, 447, L87
Morrison, H. L. 1993, AJ, 105, 539
Morrison, H. L., Boroson, T. A., & Harding, P. 1994, AJ, 108, 1191
Negroponte, J. & White, S. D. M. 1983, MNRAS, 205, 1009
Pfleiderer, J. 1963, ZAp, 58, 12
Pfleiderer, J. & Siedentopf, H. 1961, ZAp, 51, 201
Preston, G. W., Beers, T. C., & Shectman, S. A. 1994, AJ, 108, 538
Quinn, P. J., & Goodman, J. 1986, ApJ, 309, 472
Quinn, P. J., Hernquist, L., & Fullagar, D. P. 1993, ApJ, 403, 74
Raha, N., Sellwood, J. A., James, R. A., & Kahn, F. D. 1991, Nature, 352, 411
Sandage, A. 1961, The Hubble Atlas of Galaxies (Washington: Carnegie Institution of Washington)
Sandage, A. & Bedke, J. 1994, The Carnegie Atlas of Galaxies (Washington: Carnegie Institution of Washington)
Schweizer, F. 1990, in Dynamics and Interactions of Galaxies, ed. Wielen, R. (Berlin: Springer-Verlag), 60
Sellwood, J. A. 1989, MNRAS, 238, 115
Toomre, A. 1981, in The Structure and Evolution of Normal Galaxies, ed. Fall, S. M. & Lynden-Bell, D. (Cambridge: Cambridge University Press), 111
Toomre, A. & Toomre, J. 1972, ApJ, 178, 623
Tóth, G., & Ostriker, J. P. 1992, ApJ, 389, 5
Tremaine, S. 1981, in The Structure and Evolution of Normal Galaxies, ed. Fall, S. M. & Lynden-Bell, D. (Cambridge: Cambridge University Press), 67
van der Kruit, P. C. & Searle, L. 1981, A&A, 95, 105
van Dokkum, P. G., Peletier, R. F., de Grijs, R., & Balcells, M. 1994, A&A, 286, 415
Weinberg, M. D. 1995a, preprint
Weinberg, M. D. 1995b, private communication
Wielen, R., ed. 1990, Dynamics and Interactions of Galaxies (Berlin: Springer-Verlag)

Fig. 1.— Initial radial disk structure. Particles were evenly binned into 100 cylindrical shells and quantities are thus averaged over azimuth. Clockwise from the upper left, the panels display surface density, disk thickness, rotation speed and asymmetric drift, and velocity ellipsoid. Disk thickness is represented by \((|z|)\) which is related to \(z_0\) (where \(z_0\) is approximately twice the exponential scaleheight; see eq. [1]) by \((|z|) = z_0 \ln 2\), but only to the extent that this transformation is applicable. Scaleheights are only meaningful insofar as the particle distribution fits the relevant functional form. \((|z|)\) is unambiguous because no quality-of-fit indicator is needed for its interpretation.

Fig. 2.— Early equilibrium disk structure. This figure shows for an isolated galaxy the same quantities as Figure 1 but at time \(t = 63\) Myr, after the galaxy has come into equilibrium. For comparison, the \(t = 0\) structure is superposed with dotted curves. Note in particular the 20% drop in the central velocity dispersions.

Fig. 3.— Structure evolution at the solar radius in isolated galaxy models. These are plotted on the same vertical scales as the corresponding panels in Figures 1 and 2 to facilitate visual comparison. The solid curves represent the 450,000-particle simulation, dotted represent \(N = 225,000\), dot-dashed \(N = 90,000\), and dashed \(N = 45,000\). This figure shows that we have defeated numerical relaxation noise over the gigayear timescale required for our prograde mergers. Note that there is an initial transient because the disk does not start in perfect equilibrium (as shown in Fig. 2 and discussed in § 2.1). Once they have settled, the large runs remain essentially unchanged until their dispersions begin to creep up at \(t \sim 3\) Gyr.

This 2-column preprint was prepared with the AAS \LaTeX{} macros v4.0.
Fig. 4.— Growth of $m = 2$ (bar) mode in isolated galaxy models. This figure displays the growth of bars in the same simulations shown in Figure 3, and also in a run with 45,000 disk particles and a rigid halo. The bars set in at later times in larger simulations because they are seeded by random clumping, the amplitude of which decreases when more particles are used. That the halo is the source of these seeds in the self-consistent simulations is made clear by the lack of growth in the rigid halo case. The largest run suppresses the bar long enough for our prograde mergers to complete, but not our retrograde mergers. This illustrates the necessity of using very large N, particularly in the halo, to smooth out the potential in self-consistent simulations.

Fig. 5.— Face-on and edge-on views of the disk and satellite particles at equal intervals of ~ 125 Myr, starting at $t = 0$. The disk’s global response to the satellite is quite apparent in the face-on panels while the thickening and warping of the disk are apparent in the edge-on view. The global tilt is removed before further analysis by a rotation which aligns the total angular momentum vector of the disk particles with the z-axis. The satellite core arrives at the centre in the penultimate frame.

Fig. 6.— Satellite orbit. Clockwise from the upper left, the panels show the cylindrical radius versus time, y versus x (corresponding to the “face-on” view in Figure 3), altitude versus radius, and altitude versus time. Our satellite completes fewer than two orbits before intersecting the solar circle and our merger is all over by $t = 1$ Gyr. Note in particular that the satellite settles into a low-inclination orbit while it is still at a large radius. (For comparison, the dotted lines in the lower right panel show the initial inclination, $i = 30^\circ$.)

Fig. 7.— The upper panel shows the torques acting on the satellite core due to the disk and halo (in simulation units). The disk is responsible for about 75% of the total torque integrated over the duration of the merger. The lower panel superposes the disk torque on the bar mode and orbital decay curves to make their close relationship clear.

Fig. 8.— The upper panel compares the decay of the satellite orbit in four simulations of the same orbit (our main, prograde encounter) covering an order of magnitude in size to test convergence. The consistency is very encouraging. Also shown is the decay of the same orbit when a rigid halo is used. The qualitative behaviour is the same but, because the satellite has nothing to interact with when it is far from the disk plane, the interval preceding the knee in the curve is longer. Once the satellite has settled into the disk plane, the decay rates in the rapid sinking phase are about the same because the disk dominates. This is also true of the Quinn et al. (1993) simulations except that the truncation of their disk makes the interval before rapid sinking even longer, about 2 Gyr. The lower panel compares the decay of our fiducial orbit with that of other orbits: retrograde with 30° inclination, polar, and coplanar. Clearly, the polar case is not intermediate between the prograde and retrograde cases but is essentially retrograde. This demonstrates the significance of the strong disk coupling for prograde orbits: it leads to a factor of three reduction in the sinking time (note the different scaling of the time axes in the upper and lower panels).

Fig. 9.— Post-merger disk structure. The solid curves show the disk in our encounter and the dashed curves show the disk in the isolated galaxy. (This comparison accommodates both the initial transient and any common numerical relaxation effects.) Both are shown at $t = 1.19$ Gyr, which leaves time for things to settle down, although not much changes between $t = 1.0$ Gyr and $t = 1.2$ Gyr. After this time, the only significant changes are associated with the bar’s vertical instability (see § 3). Note the greater radial extent of the disk which underwent the merger (solid curves), indicating conversion of satellite orbital energy to disk potential energy.

Fig. 10.— Disk structure evolution at the solar circle ($R_\odot = 8.0$ kpc). The top panel illustrates the thickening of the disk while the centre panel shows the velocity ellipsoid and asymmetric drift. The lower panel repeats the orbital decay curve from Figure 3 so that features in the disk structure can be temporally matched up with the satellite’s location. In particular, the dotted, vertical line shows the time when the satellite crosses the solar circle. Note that most quantities rise abruptly when the satellite crosses R_\odot.

Fig. 11.— Integrated mass distribution and surface density of the satellite remnant. That almost half the satellite escapes tidal stripping and forms a compact central element is apparent in both panels. The upper panel also shows the retrograde case (in which the satellite is nearly disrupted) for comparison. The time is 1.19 Gyr. In the lower panel, the satellite’s surface density curve reveals that the core has not quite finished sloshing around the centre of the disk. The curve for the disk and satellite combined shows that the satellite core is significant enough to noticeably enhance the central brightness of the disk.

Fig. 12.— Structure of disk + satellite combined. The solid curves show the mass-weighted average structure of the luminous material (disk+satellite). For comparison, the disk is shown with dashed curves and the satellite remnant with dotted curves. The time is 1.19 Gyr. Only in the inner two kiloparsecs is there a sufficient density of satellite material to cause the combined structure to deviate substantially from the disk structure. Outside the core, the satellite remnant is like a hot, thick, flared disk, although most of its “thickness” at large radii \(R > 15 \) kpc actually represents tilting because that material is still in the original, inclined orbital plane.

Fig. 13.— Sinking isochrones for an isothermal halo (based on eq. 7-27 in Binney & Tremaine (1987)). This figure provides estimates of the sinking time for a satellite of given mass starting in a circular orbit of given radius. The only objects which are significant for the present study are those which originate in the shaded, triangular region and are dense enough to survive disruption and reach the disk. All other satellites either sink too slowly or are already in the disk or are so massive they will destroy the disk. There may also be an upper cutoff if the tidal radius of a typical halo is much smaller than 100 kpc. For reference, our satellites all originate at the position marked with the cross, just above the lower boundary (for computational expedience). That the diagram seems to predict the right sinking time for the prograde encounter is just an accident. All our simulations started at the cross but their sinking times spanned 0.6 Gyr to 3+ Gyr; the uncertainties in the isochrone positions are also quite large.