A NONLOCAL TRANSPORT EQUATION MODELING COMPLEX ROOTS OF POLYNOMIALS UNDER DIFFERENTIATION

SEAN O’ROURKE AND STEFAN STEINERBERGER

Abstract. Let $p_n : \mathbb{C} \to \mathbb{C}$ be a random complex polynomial whose roots are sampled i.i.d. from a radial distribution $u(r)rdr$ in the complex plane. A natural question is how the distribution of roots evolves under repeated (say $n/2$-times) differentiation of the polynomial. We derive a mean-field expansion for the evolution of $\psi(s) = u(s)s$

$$\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(\frac{1}{x} \int_0^x \psi(s)ds \right)^{-1} \psi(x).$$

The evolution of $\psi(s) \equiv 1$ corresponds to the evolution of random Taylor polynomials

$$p_n(z) = \sum_{k=0}^{n} \gamma_k \frac{z^k}{k!} \text{ where } \gamma_n \sim \mathcal{N}_C(0,1).$$

We discuss some numerical examples suggesting that this particular solution may be stable. We prove that the solution is linearly stable. The linear stability analysis reduces to the classical Hardy integral inequality. Many open problems are discussed.

1. Introduction

1.1. Introduction. We ask a very simple question; a simple special case is as follows: suppose $p_n : \mathbb{C} \to \mathbb{C}$ is a random polynomial given by

$$p_n(z) = \prod_{k=1}^{n} (z - z_k) \text{ where the roots } z_k \sim \mathcal{N}_C(0,1)$$

are independently and identically distributed following a standard (complex) Gaussian. What can be said about the roots of the polynomial $p_n^{(n/2)}$? Are these roots still distributed like a Gaussian or do they follow another distribution? What if we replace the Gaussian by another distribution? To the best of our knowledge, there is only one example where rigorous results are available: define random Taylor polynomials via

$$p_n(z) = \sum_{k=0}^{n} \gamma_k \frac{z^k}{k!} \text{ where } \gamma_n \sim \mathcal{N}_C(0,1).$$

2010 Mathematics Subject Classification. 35Q70, 35Q82, 44A15, 82C70 (primary), 26C10, 31A99, 37F10 (secondary).

Key words and phrases. Roots, polynomials, zeros, differentiation, transport.

The first author has been supported in part by NSF grants ECCS-1610003 and DMS-1810500. The second author is partially supported by the NSF (DMS-1763179) and the Alfred P. Sloan Foundation. Part of the work was carried out while the first author was visiting Yale University, he is grateful for the hospitality.
Clearly, the k–th derivative of a random Taylor polynomial is a random Taylor polynomial of degree $n - k$. In particular, if their roots happen to have a nice limiting distribution, then this would give us an insight into the possible evolution. A result of Kabluchko & Zaporozhets [35] shows that the roots are asymptotically contained in a disk of size $\sim n$ and the renormalized roots converge in distribution

$$\frac{1}{n} \sum_{k=1}^{n} \delta_{2n^{-1}} \to \frac{\chi_{|z| \leq 1}}{2\pi|z|} \quad \text{as } n \to \infty.$$

Rescaling shows that the roots of

$$p_n(z) = \sum_{k=0}^{n} \gamma_k \frac{z^k}{k!}$$

follow the same distribution (up to dilation) in the disk $\{z \in \mathbb{C} : |z| \leq n\}$. The purpose of this short paper is to pose the question and to derive a mean field approximation that might answer the question (and is intrinsically interesting).

![Figure 1. Roots of a Random Taylor polynomial of degree 1000 in the complex plane (left). Distances of the roots to the origin as a plot (right); it is approximately linear as predicted by the limiting measure $1/(2\pi|z|)$.](image)

1.2. Related results. The detailed study of the distribution of roots of p'_n depending on p_n is an active field [4] [5] [13] [17] [27] [30] [44] [40] [41] [45] [49] [50] [54] [57] [58] [59]. There are less results for the case of repeated differentiation. If p_n is a polynomial of degree n having n distinct roots on the real line, then the k–th derivative has all of its $n - k$ roots also on the real line and one could wonder about their evolution. A result commonly attributed to Riesz [56] implies that the minimum gap between consecutive roots of p'_n is bigger than that of p_n: zeroes even out and become more regular. We refer to results of Farmer & Rhoades [24], Farmer & Yerrington [25], Feng & Yao [26] and Pemantle & Subramnian [49]. Our result is inspired by a one-dimensional investigation due to the second author [55]:

if the roots of \(p_n \) are all real and follow a nice distribution \(u(0, x) \), what can be said about the distribution \(u(t, x) \) of the \((t \cdot n)\)–th derivative of \(p_n \) where \(0 < t < 1 \)? In [55] it is proposed that the limiting dynamics exists and is given by the partial differential equation

\[
 u_t + \frac{1}{\pi} \left(\arctan \left(\frac{H u}{u} \right) \right)_x = 0
\]

where the equation is valid on the support \(\text{supp} u = \{ x : u(x) > 0 \} \) and \(H \) is the Hilbert transform. The equation has been shown to give the correct predictions for Hermite polynomials and Laguerre polynomials. One interesting aspect is that the equation has similarities to one-dimensional transport equations that are studied in fluid dynamics, see e.g. [9, 10, 11, 12, 14, 18, 20, 38, 39, 51]. Granero-Belinchon [29] studied an analogue of the equation on the one-dimensional torus.

2. Results

2.1. The Equation. Let us assume that \(p_n : \mathbb{C} \to \mathbb{C} \) is a polynomial of degree \(n \) whose roots are distributed according to a radial density function \(u(|z|)dz \). Then the density of roots at distance \(r \) from the origin is given by \(\psi(r) = u(r)rdr \). We will, throughout the paper, understand \(u \) as the probability density of the measure of roots at time \(t = 0 \). Assuming radial structure, understanding \(u \) and its evolution in time, is equivalent to understanding \(\psi(r) = u(r)rdr \) and its evolution in time (one can be understood as the representation of the other in polar coordinates). Again, we understand \(\psi(r) \) as the initial distribution and write \(\psi(t, r) \) as the distribution of roots after we differentiated \(t \cdot n \)-times.

We are now interested in studying the process of differentiation and its effect on the distribution of the roots. We derive a mean field equation that models the density of roots at distance \(x \) at time \(t \) via the nonlocal transport equation

\[
 \frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(\frac{1}{x} \int_0^x \psi(y)dy \right)^{-1} \psi(x).
\] (1)

We believe that this equation may be interesting in its own right and will give some supporting evidence of this belief. There is a scaling symmetry for \(\lambda > 0 \)

\[
 u(t, x) \to \lambda \cdot u(t, \lambda x).
\]

This scaling symmetry is a reflection of the chain rule: if we rescale the roots of the polynomial, then all the derivatives obey the same rescaling as well since

\[
 \frac{d}{dz^k} p_n(\lambda z) = \lambda^k \left(\frac{d}{dz^k} p_n \right)(\lambda z).
\]

Needless to say, the factor \(\lambda^k \) does not impact the presence or absence of roots and we recover a scale-invariance of the system. There is one more property that can be predicted from the behavior of polynomials: the \((t \cdot n)\)–th derivative of a polynomial \(p_n \) has \((1 - t)n\) roots. In particular, what one would then expect from any such equation is that there is a constant loss of mass that is independent of the function and independent of time. This loss would also imply that the function vanishes at time \(t = 1 \). This is indeed the case: if we assume the solutions are
continuous, there is a constant loss of mass on $(0, \infty)$:

$$\frac{\partial}{\partial t} \int_0^\infty \psi(t, x) dx = \int_0^\infty \frac{\partial}{\partial t} \psi(t, x) dx$$

$$= \int_0^\infty \frac{\partial}{\partial x} \left(\frac{1}{x} \int_0^x \psi(y) dy \right)^{-1} \psi(x) dx$$

$$= - \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^\varepsilon \psi(y) dy$$

$$= -1.$$

2.2. **Linear Stability.** We note that there is an explicit solution (when properly interpreted) given by

$$\psi(t, x) = \chi_{0 \leq x \leq 1-t}$$

which corresponds to the random Taylor polynomials and respects their evolution (as implied by the result of Kabluchko & Zaporozhets [35]).

![Figure 2](image_url)

Figure 2. Roots of a random polynomial $p_{1000}(z) = \sum_{k=1}^{1000} \gamma_k \cdot z^k (k!)^{-1/4}$ (left) and the roots of the polynomial arising from differentiating 250 times (right).

One natural question is now whether the dynamics that can be observed for random Taylor polynomials is in any way universal. We refer to Figure 2 for an example: after differentiating a random polynomial of a particular type 250 times, we observe a clustering of roots around the origin that is quite similar to that of random Taylor polynomials (or, in any case, seems to have a similar scaling).

Our main result deals with linear stability for perturbations around the solution for random Taylor polynomials. More precisely, we will consider a small perturbation around the constant function $\psi(t, x) = 1 + w(t, x)$, where we assume that
\[\|w(t,x)\|_{L^\infty} \ll 1. \] The linearized evolution can be derived from
\[
\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left(\left(\frac{1}{x} \int_0^x \psi(y)dy \right)^{-1} \psi(x) \right)
= \frac{\partial}{\partial x} \left(\left(1 + \frac{1}{x} \int_0^x w(y)dy \right)^{-1} (1 + w(x)) \right)
= \frac{\partial}{\partial x} \left(\left(1 - \frac{1}{x} \int_0^x w(y)dy \right) (1 + w(x)) \right) + \text{l.o.t.}
= \frac{\partial w}{\partial x} - \frac{\partial}{\partial x} \frac{1}{x} \int_0^x w(y)dy + \text{l.o.t.}
\]
and is thus given by
\[
\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} - \frac{\partial}{\partial x} \frac{1}{x} \int_0^x w(y)dy.
\tag{2}
\]
Our main result is that the constant solution
\[
\psi(t,x) = \chi_{0 \leq x \leq 1-t}
\]
(the dynamics of random Taylor polynomials) has linear stability for small perturbations close to the origin.

Theorem. If the perturbation \(w(0,x)\) is compactly supported and has mean value 0, then the linearized evolution (2) is an \(L^2\)-contraction, i.e.
\[
\frac{\partial}{\partial t} \int_0^\infty w(t,x)^2 dx \leq 0.
\]
One interesting aspect of this result is that it follows from a variation of a classical Hardy inequality: if \(f : (0,\infty) \to \mathbb{R}\) is measurable, then
\[
\int_0^\infty \frac{f(x)}{x^2} \left(\int_0^x f(y)dy \right) dx \leq \int_0^\infty \frac{f(x)^2}{x} dx,
\]
where the inequality is strict unless \(f \equiv 0\). (We interpret the inequality in the usual sense: if the right-hand side is finite, then so is the left-hand side and it is smaller.) Inequalities of this flavor have been studied intensively in their own right.

2.3. **Open Problems.** There are many open problems, we mention a few.

1. **Rigorous derivation.** Our derivation is not fully rigorous insofar as we assume the existence of an underlying limiting dynamics. This is also true for the one-dimensional limiting equation derived in [55]. A rigorous derivation requires a more detailed understanding of the local behavior in time. In the one-dimensional case, this is an old problem: do the roots of polynomials (all of whose roots are on the real line) become more regularly distributed under differentiation? In particular, do they obey a regular spacing at a local scale? We refer to [24, 25, 26, 49] and references therein.

2. **Qualitative behavior.** Certainly one of the most appealing aspects of having a partial differential equation describing the limiting behavior is the ability to understand and analyze the asymptotic behavior of polynomials with a large number of roots. What can be said about typical solutions? Is there a way to move between the partial differential equation and families of polynomials in a way where they
mutually inform each other?

3. Breakdown of symmetry. Something that we intrinsically assume in our derivation is that radial distributions stay radial under differentiation; however, slight deviations from radial symmetry stemming from the fact that we only have finitely many points might get amplified. Radial stability is a question that might already be interesting and accessible from a mean field perspective.

4. Special cases. Are there families of polynomials with radial roots whose roots exhibit particularly interesting dynamical behavior under differentiation? We explicitly mention the random Taylor polynomials: are there others?

5. Mixed Real/Complex Behavior. One question one could ask is to understand the behavior of the real roots in the presence of complex roots (which, naturally, also evolve). Is the corresponding equation simpler?

6. Attractors. Do generic distributions converge to the behavior of random Taylor polynomials in some weak sense (say, in a neighborhood of the origin)? Can the stability analysis of Random Taylor polynomials be further refined?

We emphasize the question 7. the Non-Radial Case. The ‘Lagrangian perspective’ (following an individual fluid particle, here that would be a single root) is easy enough to describe: if we are given a density of roots μ, then locally at a point z, the roots can be thought of as moving in a direction given by the

$$\text{Cauchy-Stieltjes transform} \quad -\left(\int_{\mathbb{C}} \frac{d\mu(y)}{z-y} \right)^{-1}.$$

Our equation can be understood as a simplification of the Cauchy-Stieltjes transform in the radial setting. Can this intuition be made precise? What can be said about the dynamics of this more general equation? We conclude with an interesting question that becomes only relevant in the non-radial setting.

8. Which roots vanishes? Suppose we are given a polynomial $p_n : \mathbb{C} \rightarrow \mathbb{C}$ of degree n. It has n roots, its derivative p'_n has $n-1$ roots. We like to think of the roots of the derivative p'_n has the roots of p_n being moved a little bit in a direction prescribed by the Cauchy-Stieltjes transform. This line of reasoning has been pursued and made rigorous by Williams and the first author [46 47] who showed various types of pairing results between the roots of p_n and p'_n. However, one of the roots ‘vanishes’ (or, put differently, will be unpaired). It has been empirically observed that the root that vanishes seems to be close to a root of the Cauchy-Stieltjes transform. The converse is fairly easy to establish: if the Cauchy-Stieltjes transform is large in a point where we have an isolated root, then the derivative has a root nearby (at scale roughly $\sim n^{-1}$). In our radial setting, the Cauchy-Stieltjes transform vanishes at the origin which is consistent with numerics. However, a rigorous argument in that direction is missing.

3. Derivation of the Equation

In this section we will derive the mean-field limit equation

$$\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(\left(\frac{1}{x} \int_{0}^{x} \psi(y) dy \right)^{-1} \psi(x) \right)$$
under the assumptions that the limiting evolution exists and is continuous. Another assumption is that radial measures remain radial under the evolution (this is clearly the case in the limit but not necessarily clear for large values of n, we refer to §2.3). The key ingredient is the identity

$$\frac{p_n'(z)}{p_n(z)} = \sum_{k=1}^{n} \frac{1}{z - z_k},$$

where z_1, \ldots, z_n are the roots of $p_n(z)$. We will now fix the root z_ℓ and are interested whether there is a root of p_n' nearby and whether that nearby root can be written in terms of z_ℓ. In case of a nice limiting distribution, we can assume that the n roots are spread out over area ~ 1, this means that the distance from a root and its nearby neighbors is $\sim n^{-1/2}$. Rotational symmetry allows us to assume $z_\ell \in \mathbb{R}$. Roots of p_n' nearby satisfy the equation

$$z_\ell - z = \left(\sum_{\substack{k=1 \ \text{k}\neq\ell}}^{n} \frac{1}{z - z_k} \right)^{-1}.$$

It remains to estimate the size of the sum under the assumption that the roots are distributed according to a density $\psi(t,x)$. To this end, we consider the following integral for two parameters $r, s > 0$

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{r - se^{it}} dt = \begin{cases} 0 & \text{if } r < s \\ 1/r & \text{if } r > s. \end{cases}$$

If the number of roots at distance x from the origin is given by $\psi(t,x)$, then this integral (see Fig. 2) suggests that

$$z_\ell - z \sim \left(\sum_{\substack{k=1 \ \text{k}\neq\ell}}^{n} \frac{1}{z_\ell - z_k} \right)^{-1} \sim n^{-1} \left(\int_0^{x} \frac{\psi(t,x)}{z_\ell} dx \right)^{-1}.$$

This suggests that the root moves to the left by a factor only determined by this integral over roots with smaller norm.

Figure 3. Only the inner circles contribute to the integral.
Phrased differently, roots at distance x from the origin (whose total density is given by $\psi(t, x)$) move to slightly smaller distance with a speed determined by

$$\text{the nonlocal vectorfield } \sim -\left(\frac{1}{x} \int_0^x \psi(t, y) dy\right)^{-1}$$

and this results in the desired equation.

4. Proof of Linear Stability

We conclude the paper by establishing linear stability. We start with a dual version of the generalized Hardy inequality. Given the substantial literature, it is presumably stated somewhere in the literature, however, it is also rather easy to deduce from the generalized form of the Hardy inequality.

Lemma (A Hardy-type inequality). Let $f : (0, \infty) \to \mathbb{R}$ be measurable. Then

$$\int_0^\infty \frac{f(x)}{x^2} \left(\int_0^x f(y) dy \right) dx \leq \int_0^\infty \frac{f(x)^2}{x} dx,$$ \hspace{1cm} (3)

where the inequality is strict unless $f \equiv 0$.

We understand the inequality in the usual sense (i.e. if the right-hand side is finite, then so is the left-hand side which is then also bounded by the right-hand side).

Proof. We start with an application of Cauchy-Schwarz

$$\int_0^\infty \frac{f(x)}{x^2} \left(\int_0^x f(y) dy \right) dx = \int_0^\infty \frac{f(x)}{\sqrt{x}} \frac{1}{x^{3/2}} \left(\int_0^x f(y) dy \right) dx \leq \left(\int_0^\infty \frac{f(x)^2}{x} dx \right)^{1/2} \cdot \left(\int_0^\infty \frac{1}{x} \left(\frac{1}{x} \int_0^x f(y) dy \right)^2 dx \right)^{1/2}.$$

It thus suffices to prove the inequality

$$\int_0^\infty \frac{1}{x} \left(\frac{1}{x} \int_0^x f(y) dy \right)^2 dx \leq \int_0^\infty \frac{f(x)^2}{x} dx.$$

This inequality, however, is known as the generalized Hardy inequality (see [2]). Indeed, a more general result is given by Theorem 330 in the book of Hardy-Littlewood-Polya [33] implying for $p > 1$ and $r > 1$ that

$$\int_0^\infty x^{-r} \left(\int_0^x f(y) dy \right)^p dx \leq \left(\frac{p}{r - 1} \right)^p \int_0^\infty x^{-r}(xf(x))^p dx.$$

Our case is merely $(p, r) = (2, 3)$. \hfill \Box

Proof of the Stability Statement. The linearized equation is given by

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} - \frac{\partial}{\partial x} \frac{1}{x} \int_0^x w(y) dy.$$
We try to understand the evolution of
\[
\frac{\partial}{\partial t} \frac{1}{2} \int_0^\infty w(t,x)^2 \, dx = \int_0^\infty w(t,x) \frac{\partial w(t,x)}{\partial x} \, dx - w(t,x) \frac{\partial}{\partial x} \frac{1}{2} \int_0^x w(t,y) \, dy \, dx
\]
\[
= \frac{1}{2} \int_0^\infty \left(\frac{\partial}{\partial x} w(t,x)^2 \right) \, dx - \int_0^\infty w(t,x) \left(\frac{\partial}{\partial x} \frac{1}{2} \int_0^x w(t,y) \, dy \right) \, dx.
\]
However, since \(w\) is compactly supported, the first term reduces to
\[
\frac{1}{2} \int_0^\infty \left(\frac{\partial}{\partial x} w(t,x)^2 \right) \, dx = -\frac{w(t,0)^2}{2} \leq 0.
\]
We will disregard this quantity and focus on the second term. We differentiate in \(x\) and obtain
\[
\frac{\partial}{\partial x} \frac{1}{2} \int_0^x w(t,y) \, dy = -\frac{1}{x^2} \int_0^x w(t,y) \, dy + \frac{w(t,x)}{x}.
\]
It thus remains to understand the sign of the integral which, due to the Hardy inequality proven above, is given by
\[
\int_0^\infty \left(\frac{w(t,x)^2}{x} - \frac{w(t,x)}{x^2} \int_0^x w(t,y) \, dy \right) \, dx \geq 0.
\]

\[\square\]

References

[1] P. Balodis and A. Cordoba, An inequality for Riesz transforms implying blow-up for some nonlinear and nonlocal transport equations. Adv. Math. 214 (2007), no. 1, 1–39.
[2] P. Beesack, Hardy’s inequality and its extensions. Pacific J. Math. 11 (1961), 39–61.
[3] G. Blower, Random matrices: high dimensional phenomena. London Mathematical Society Lecture Note Series, 367. Cambridge University Press, Cambridge, 2009.
[4] S. Bochner: Book review of Gesammelte Schriften by Gustav Herglotz, Bulletin Amer. Math. Soc. 1 (1979), 1020–1022.
[5] C.Bosbach and W.Gawronski, Strong asymptotics for Laguerre polynomials with varying weights, J.Comput.Appl.Math.99 (1-2) (1998) 77–89.
[6] J. S. Bradley, Hardy inequalities with mixed norms. Canad. Math. Bull. 21 (1978), no. 4, 405–408.
[7] N. G. de Bruijn. On the zeros of a polynomial and of its derivative. Nederl. Akad. Wetensch., Proc., 49:1037–1044 = Indagationes Math. 8, 635–642 (1946), 1946.
[8] N. G. de Bruijn and T. A. Springer. On the zeros of a polynomial and of its derivative. II. Nederl. Akad. Wetensch., Proc., 50:264–270=Indagationes Math. 9, 458–464 (1947), 1947.
[9] J. Carrillo, L. Ferreira and J. Precioso, A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity. Adv. Math. 231 (2012), no. 3, 306–327.
[10] A. Castro and D. Cordoba, Global existence, singularities and ill-posedness for a nonlocal flux. Adv. Math. 219 (2008), no. 6, 1916–1936.
[11] D. Chae, A. Cordoba, D. Cordoba and M. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophic equation. Adv. Math. 194 (2005), no. 1, 203–223.
[12] P. Constantin, P. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation. Comm. Pure Appl. Math. 38 (1985), no. 6, 715–724.
[13] A. Cordoba, D. Cordoba and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity. Ann. of Math. (2) 162 (2005), no. 3, 1377–1389.
[14] A. Cordoba, D. Cordoba and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity. Ann. of Math. (2) 162 (2005), no. 3, 1377–1389.
[15] B. Curgus and V. Mascioni, A Contraction of the Lucas Polygon, Proc.Amer.Math.Soc. 132, 2004, 2973–2981.
[16] H. Dette and W. J. Studden, Some new asymptotic properties for the zeros of Jacobi, Laguerre, and Hermite polynomials, Constr. Approx. 11 (1995) 227–238.

[17] D. Dimitrov, A Refinement of the Gauss-Lucas Theorem, Proc. Amer. Math. Soc. 126, 1998, 2065–2070.

[18] T. Do, V. Hoang, M. Radosz and X. Xu, One-dimensional model equations for hyperbolic fluid flow. Nonlinear Anal. 140 (2016), 1–11.

[19] H. Dong, Well-posedness for a transport equation with nonlocal velocity. J. Funct. Anal. 255 (2008), no. 11, 3070–3097.

[20] H. Dong and D. Li, On a one-dimensional α—patch model with nonlocal drift and fractional dissipation. Trans. Amer. Math. Soc. 366 (2014), no. 4, 2041–2061.

[21] J. Elstrodt: Partialbruchzerlegung des Kotangens, Herglotz-Trick und die Weierstrasssche stetige, nirgends differenzierbare Funktion, Math. Semesterberichte 45 (1998), 207–220

[22] P. Erdős and P. Turán, On interpolation. III. Interpolatory theory of polynomials. Ann. of Math. (2) 41, (1940). 510–553.

[23] P. Erdős and G. Freud, On orthogonal polynomials with regularly distributed zeros. Proc. London Math. Soc. (3) 29 (1974), 521–537.

[24] D. Farmer and R. Rhoades, Differentiation evens out zero spacings. Trans. Amer. Math. Soc. 357 (2005), no. 9, 3789–3811.

[25] D. Farmer and M. Yerrington, Crystallization of random trigonometric polynomials. J. Stat. Phys. 123 (2006), no. 6, 1219–1230.

[26] R. Feng and D. Yao, Zeros of repeated derivatives of random polynomials. Anal. PDE 12 (2019), no. 6, 1489–1512.

[27] C.F. Gauss: Werke, Band 3, Göttingen 1866, S. 120:112

[28] W. Gawronski, Strong asymptotics and the asymptotic zero distributions of Laguerre polynomials $L_n^{(\alpha+\beta)}$ and Hermite polynomials $H_n^{(\alpha+\beta)}$, Analysis 13 (1-2) (1993) 29–67.

[29] R. Granero-Belinchon, On a nonlocal differential equation describing roots of polynomials under differentiation, arXiv:1812.00082

[30] B. Hanin, Pairing of zeros and critical points for random polynomials, Ann. Inst. H. Poincaré, Probab. Statist. 53(2017), 1498–1511.

[31] G. H. Hardy, Notes on some points in the integral calculus, LI. On Hilbert’s double-series theorem and some connected Theorems concerning the Convergence of Infinite series and Integrals, Messenger of Math. 48(1919) 107-112.

[32] G. H. Hardy, Note on a theorem of Hilbert. Mathematische Zeitschrift. 6 (1920): 314–317.

[33] G. H. Hardy, J. E. Littlewood and G. Polya, G. Inequalities. 2d ed. Cambridge, at the University Press, 1952.

[34] Z. Kabluchko, Critical points of random polynomials with independent identically distributed roots. Proc. Amer. Math. Soc. 143 (2015), no. 2, 695–702.

[35] Z. Kabluchko and D. Zaporozhets Asymptotic distribution of complex zeros of random analytic functions. Ann. Probab. Volume 42, Number 4 (2014), 1374-01395.

[36] M. Kornyik and G. Michaletzky, On the moments of roots of Laguerre-polynomials and the Marchenko-Pastur law. Ann. Univ. Sci. Budapest. Sect. Comput. 46 (2017), 137–151.

[37] A. Kufner, L. Maligranda and L. E. Persson, The Prehistory of the Hardy Inequality, The American Mathematical Monthly 113 (2006), p. 715–732

[38] O. Lazar and P.-G. Lemarié-Rieusset, Infinite energy solutions for a 1D transport equation with nonlocal velocity. Dyn. Partial Differ. Equ. 13 (2016), no. 2, 107–131.

[39] D. Li and J. Rodrigo, On a one-dimensional nonlocal flux with fractional dissipation. SIAM J. Math. Anal. 43 (2011), no. 1, 507–526.

[40] F. Lucas: Sur une application de la Mécanique rationnelle à la théorie des équations. in: Comptes Rendus de l’Académie des Sciences (89), Paris 1979, S. 224–226

[41] S. M. Masmoudi, Inverse spectral problem for normal matrices and the Gauss-Lucas theorem, Trans. Amer. Math. Soc., 357(2005), 4043–4064.

[42] A. Martinez-Finkelshtein, P. Martinez-Gonzalez and R. Orive, On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters. Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), J. Comput. Appl. Math. 133 (2001), no. 1-2, 477–487.

[43] N. Masmoudi, About the Hardy inequality, in: An invitation to mathematics. From competitions to research. Edited by Dierk Schleicher and Malte Lackmann. Springer, Heidelberg, 2011.
[44] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972) pp. 31–38.
[45] S. O'Rourke, Critical points of random polynomials and characteristic polynomials of random matrices, IMRN 18 (2016), pp. 5616–5651.
[46] S. O'Rourke and N. Williams, Pairing between zeros and critical points of random polynomials with independent roots, Trans. Amer. Math. Soc. 371 (2019), pp. 2343–2381.
[47] S. O’Rourke and N. Williams, On the local pairing behavior of critical points and roots of random polynomials, arXiv:1810.06781
[48] R. Pemantle, and I. Rivin. The distribution of the zeroes of the derivative of a random polynomial. Advances in Combinatorics. Springer 2013. pp. 259–273.
[49] R. Pemantle and S. Subramanian, Zeros of a random analytic function approach perfect spacing under repeated differentiation. Trans. Amer. Math. Soc. 369 (2017), no. 12, 8743–8764.
[50] M. Ravichandran, Principal submatrices, restricted invertibility and a quantitative Gauss-Lucas theorem, arXiv:1609.04187
[51] L. Silvestre and V. Vicol, On a transport equation with nonlocal drift. Trans. Amer. Math. Soc. 368 (2016), no. 9, 6159–6188.
[52] G. Sinnamon, V. Stepanov, The weighted Hardy inequality: new proofs and the case $p = 1$. J. London Math. Soc. (2) 54 (1996), no. 1, 89–101.
[53] S. Steinerberger, Electrostatic interpretation of zeros of orthogonal polynomials, Proc. Amer. Math. Soc. 146 (2018), 5323–5331.
[54] S. Steinerberger, A Stability Version of the Gauss-Lucas Theorem and Applications, to appear in J. Austral. Math. Soc.
[55] S. Steinerberger, A Nonlocal Transport Equation Describing Roots of Polynomials Under Differentiation, to appear in Proc. Amer. Math. Soc.
[56] A. Stoyanoff, Sur un Theorem de M. Marcel Riesz, Nouv. Annal. de Mathematique, 1 (1926), 97–99.
[57] V. Totik, The Gauss-Lucas theorem in an asymptotic sense, Bull. London Math. Soc. 48, 2016, p. 848–854.
[58] J. L. Ullman, On the regular behaviour of orthogonal polynomials. Proc. Lond. Math. Soc. 24 (1972), 119–148.
[59] W. Van Asche, Asymptotics for orthogonal polynomials. Lecture Notes in Mathematics, 1265. Springer-Verlag, Berlin, 1987

Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO 80309-0395, USA
E-mail address: sean.d.orourke@colorado.edu

Department of Mathematics, Yale University, New Haven, CT 06511, USA
E-mail address: stefan.steinerberger@yale.edu