Monte Carlo profile confidence intervals

E. L. Ionides, C. Breto, J. Park, R. A. Smith and A. A. King
University of Michigan
February 13, 2017

Abstract

Monte Carlo methods to evaluate and maximize the likelihood function enable the construction of confidence intervals and hypothesis tests, facilitating scientific investigation using models for which the likelihood function is intractable. When Monte Carlo error can be made small, by sufficiently exhaustive computation, then the standard theory and practice of likelihood-based inference applies. As data become larger, and models more complex, situations arise where no reasonable amount of computation can render Monte Carlo error negligible. We develop profile likelihood methodology to provide frequentist inferences that take into account Monte Carlo uncertainty. We investigate the role of this methodology in facilitating inference for computationally challenging dynamic latent variable models. We present three examples arising in the study of infectious disease transmission. These three examples demonstrate our methodology for inference on nonlinear dynamic models using genetic sequence data, panel time series data, and spatiotemporal data. We also discuss applicability to nonlinear time series analysis.

Keywords: likelihood-based inference; sequential Monte Carlo; panel data; spatiotemporal data; phylodynamic inference.

1 Introduction

This paper develops profile likelihood inference methodology for situations where computationally intensive Monte Carlo methods are employed to evaluate and maximize the likelihood function. If the profile log likelihood function can be computed with a Monte Carlo error small compared to one unit, carrying out statistical inference from the Monte Carlo profile as if it were the true profile will have relatively small effects on resulting confidence intervals. Sometimes, no reasonable amount of computation can reduce the Monte Carlo error in evaluating the profile to levels at or below one log unit. This predicament typically arises with large datasets and complex models. However, to investigate large datasets in the context of complex models there is little alternative to the use of Monte Carlo methods. We
develop an approach to effective likelihood-based statistical inference taking into account the non-negligible Monte Carlo error. We choose to focus on Monte Carlo profile likelihood confidence intervals, since their construction gives convenient opportunities to assess Monte Carlo variability and make appropriate compensations.

Our paper is organized as follows. First, we set up mathematical notation to formalize the task of Monte Carlo profile likelihood estimation via a metamodel. Section 2 puts this task in the context of some previous work on likelihood-based inference for intractable models. Section 3 develops our methodological approach. Section 4 presents a dynamic latent variable modeling framework of broad applicability for which the methodology is appropriate. For this class of models, we demonstrate the capabilities of our methodology by solving three inferential challenges, each representing a different data type for which scientific progress is limited by the availability of effective statistical methodology. These examples all arise from the study of transmissible human diseases, a field characterized by extensive and diverse data, indirectly observation of the underlying infection processes, strongly nonlinear stochastic dynamics, and public health importance. Infectious disease data therefore provide many inference opportunities and challenges. Section 4.1 concerns inference on population dynamics from genetic data; Section 4.2 concerns fitting nonlinear partially observed Markov models to panel data; Section 4.3 concerns fitting a nonlinear partially observed spatiotemporal model. Section 4.4 discusses the role of our methodology in nonlinear time series analysis. Section 5 investigates our methodology via a simulation study on a toy example. Section 6 is a concluding discussion which situates our paper within the broader goal of inference for large datasets and complex models.

We consider a general statistical inference framework in which data are a real-valued vector, \(y^* \), modeled as a realization of a random variable \(Y \) having density \(f_Y(y^*; \theta) \), where \(\theta \) is an unknown parameter in \(\mathbb{R}^p \). We are concerned with inference on \(\theta \) in situations where the data analyst cannot directly evaluate \(f_Y(y^*; \theta) \). Instead, we suppose that approximate evaluation of \(f_Y(y^*; \theta) \) is possible through Monte Carlo approaches. One situation in which this arises is when the statistician can simulate draws from the density \(f_Y(y^*; \theta) \) despite being unable to directly evaluate it [Diggle and Gratton 1984]. In addition to a simulator for the full joint distribution of \(Y \), we might also have access to simulators for various marginal and conditional distributions related to \(f_Y(y^*; \theta) \). For example, this can arise if \(Y \) has the structure of a fully or partially observed Markov process [Bretó et al., 2009]. Simulation-based methods are growing in usage, motivated by advances in the availability of complex data and the desire for statistical fitting of complex models to these data. Although we cannot calculate them, we can nevertheless define the log likelihood function,

\[
\ell(\theta; y^*) = \log f_Y(y^*; \theta),
\]

and a maximum likelihood estimate (MLE),

\[
\hat{\theta}^* = \hat{\theta}(y^*) = \arg \max_\theta \ell(\theta; y^*).
\]
obtaining a confidence interval using the data, \(y^* \). By changing the focal parameter, we are equivalently interested in the general problem of obtaining a marginal confidence interval for each component of a parameter vector. The profile log likelihood function for \(\phi \) is defined as
\[
\ell^P(\phi; y^*) = \max_{\psi} \ell\left((\phi, \psi); y^* \right).
\]

The profile log likelihood is maximized at a marginal MLE,
\[
\hat{\phi}^* = \hat{\phi}(y^*) = \arg \max_{\phi} \ell^P(\phi; y^*).
\]

A profile likelihood confidence interval with cutoff \(\delta \) is defined as
\[
\{ \phi : \ell^P(\phi; y^*) > \ell^P(\hat{\phi}^*; y^*) - \delta \}.
\]

Profile likelihood confidence intervals are a widespread inference approach with some favorable properties, including asymptotic efficiency and natural transformation under reparameterization (Pawitan, 2001). Modifications can lead to higher-order asymptotic performance (Barndorff-Nielsen and Cox, 1994) but these are not routinely available. In our context (3), (4) and (5) are not directly accessible to the data analyst. Instead, we work with independent Monte Carlo profile likelihood evaluations at a sequence of points \(\phi_{1:K} = (\phi_1, \ldots, \phi_K) \). We denote the evaluations as \(\hat{\ell}^P_k(y^*), k \in 1:K \), using a breve accent to distinguish Monte Carlo quantities. We write a decomposition,
\[
\hat{\ell}^P_k(y^*) = \ell^P(\phi_k; y^*) + \beta_k(y^*) + \epsilon_k(y^*), \quad k \in 1:K,
\]

where \(\epsilon_{1:K}(Y) \) are Monte Carlo random variables which are, by construction, mean zero and independent conditional on \(Y \). Thus, \(\beta_{1:K}(y^*) \) gives the Monte Carlo bias of each profile log likelihood evaluation. If the amount of information about \(\phi \) in the data is large, the curvature of the profile log likelihood is large and the statistically relevant region of high likelihood is narrow. In that case, it may be reasonable to approximate the Monte Carlo bias and error distribution as constant across the profile, modeling \(\epsilon_{1:K}(y^*) \) as conditionally independent and identically distributed with. We suppose that the conditional variance of \(\epsilon_k \) is \(\sigma^2(y^*) < \infty \), and we write \(\epsilon_k \sim \text{IID}(\sigma^2(y^*)) \). The metamodel becomes,
\[
\hat{\ell}^P_k(y^*) = \ell^P(\phi_k; y^*) + \beta(y^*) + \epsilon_k, \quad k \in 1:K.
\]

Empirical evidence for non-constant Monte Carlo variance could motivate the inclusion of heteroskedastic errors in (7). The assumption in (7) of approximately constant Monte Carlo bias is hard to quantify empirically on challenging computational problems, since one cannot readily obtain an estimate with negligible bias. Figure 1 demonstrates pictorially the consequence of linear bias on confidence intervals constructed for a quadratic profile log likelihood function. We see that linear bias, \(\beta_k = c_0 + c_1 k \), affects the location of the maximum of the profile but does not affect the curvature and therefore has no effect on the width of the resulting profile confidence interval. Although the bias on the Monte Carlo profile likelihood estimate may be intractable, the coverage of a constructed confidence interval can be checked by simulation at a specific parameter value such as an MLE, as demonstrated in Section 5.
2 Previous work on likelihood-based inference via simulation

A prescient paper by Diggle and Gratton (1984) developed Monte Carlo maximum likelihood methodology with similar motivation to our current goals. However, Diggle and Gratton (1984) did not work with profile likelihood and did not show how to correct the resulting confidence intervals for Monte Carlo error. Further, Diggle and Gratton (1984) assumed that the Monte Carlo methods would involve simulating from the modeled joint distribution of the entire dataset, whereas modern computationally efficient Monte Carlo algorithms may be based on simulating sequentially from conditional distributions in a carefully crafted decomposition of the entire joint distribution. Bretó et al. (2009) and He et al. (2010) introduced the term plug-and-play to describe statistical methodology for which the model (viewed as an input to an inference algorithm) is specified via a simulator in this broader sense. The term likelihood-free has been used similarly, in the context of Markov chain Monte Carlo (Marjoram et al., 2003) and sequential Monte Carlo (Sisson et al., 2007). The term equation-free has been used for the related concept of simulation-based model investigations in the physical sciences (Kevrekidis et al., 2004). Related terms implicit (Diggle and Gratton, 1984) and doubly intractable (Lyne et al., 2015) have been used to describe models for which only plug-and-play algorithms are practical. From the point of view of categorizing statistical methodology, it is convenient to view the way in which an inference algorithm accesses the
statistical model as a property of the algorithm rather than a property of the model.

Rubio and Johansen (2013) investigated nonparametric estimation of a likelihood surface via approximate Bayesian computing (ABC). Rubio and Johansen (2013) also provided a literature review of previous approaches to carry out statistical inferences in situations where likelihood evaluation and maximization necessarily involve computationally intensive and noisy Monte Carlo procedures. We are not aware of previous work developing Monte Carlo profile likelihood methodology. Profile methodology focuses the computational effort on parameters of key interest—specifically, those for which one computes the profile. The process of constructing a profile requires computation of a relevant feature of the likelihood surface in the region of inferential interest. Studying the likelihood surface on this scale, rather than focusing exclusively on a point estimate such as the maximum likelihood estimate, has some theoretical justification (Ionides 2005). In the general theory of stochastic simulation-based optimization, building metamodels describing the response surface is a standard technique (Barton and Meckesheimer 2006). Our goal is to develop metamodel methodology that takes advantage of the statistical properties of the profile likelihood and constructs confidence intervals correcting properly for Monte Carlo variability.

3 Profile cutoff correction via a local quadratic metamodel

Local asymptotic normality (LAN) provides a general theoretical framework in which the log likelihood function is asymptotically well approximated by a quadratic (Le Cam and Yang 2000). Under sufficient regularity conditions, this quadratic approximation is inherited by the profile log likelihood (Murphy and van der Vaart 2000). Here, we write the marginal ϕ component of the LAN property as a finite sample normal approximation given by

$$ \ell_P(\phi; Y) - \ell_P(\phi_0; Y) \approx Z(\phi - \phi_0)\sqrt{I} - (\phi - \phi_0)^2 I/2, \quad (8) $$

where $Y \sim f_Y(y; \theta_0)$ for $\theta_0 = (\phi_0, \psi_0)$, and $Z \sim N[0,1]$ is a normal random variable with mean 0 and variance 1. In (8), \approx indicates approximate equality in distribution. Under regular asymptotics, the curvature of the quadratic approximation in LAN is the Fisher information, and LAN is therefore a similar property to asymptotic normality of the maximum likelihood estimate. The quantity I in (8) can be interpreted as the marginal Fisher information for ϕ, also known as the ϕ-aspect of the Fisher information (Barndorff-Nielsen and Cox 1994, Section 3.4). Specifically, if we write the inverse of the full Fisher information as

$$ V_\theta = \begin{bmatrix} V_{\phi} & V_{\phi\psi} \\ V_{\psi\phi} & V_{\psi} \end{bmatrix}, $$

then $I = V_\phi^{-1}$. In this article, we focus on developing and demonstrating statistical methodology rather than on presenting theoretical results. Therefore, the formal mathematical representation of the approximations in this paper as asymptotic limit theorems is postponed to subsequent work.
The LAN property suggests that the Monte Carlo profile log likelihood evaluated at $\phi_{1:K}$ can be approximated, in a neighborhood of its maximum, by a quadratic metamodel,
\[
\ell_k^p(y) = -\hat{a}(y)\phi_k^2 + \hat{b}(y)\phi_k + \hat{c}(y) + \epsilon_k, \quad \epsilon_k \sim \text{IID}(\sigma^2(y^*)) , \quad k \in 1:K. \tag{9}
\]
This local quadratic metamodel is a special case of (7). The unknown coefficients $\hat{a}(y^*)$, $\hat{b}(y^*)$ and $\hat{c}(y^*)$, corresponding to equation (9), evaluated at $y = y^*$, describe a quadratic approximation to the numerically intractable likelihood surface. We can use standard linear regression to estimate $\hat{a}(y^*)$, $\hat{b}(y^*)$ and $\hat{c}(y^*)$ from the Monte Carlo profile evaluations. Writing $\epsilon = \epsilon_{1:K}$, we denote the resulting linear regression coefficients as $\hat{a}^* = \hat{a}(y^*, \epsilon)$, $\hat{b}^* = \hat{b}(y^*, \epsilon)$ and $\hat{c}^* = \hat{c}(y^*, \epsilon)$. The Monte Carlo quadratic profile likelihood approximation is
\[
\ell^Q(\phi; y^*) = -\hat{a}^*\phi^2 + \hat{b}^*\phi + \hat{c}^*. \tag{10}
\]
The marginal MLE $\hat{\phi}^*$ can be approximated by the maximum of $\ell^Q(\phi; y^*)$, which is given by
\[
\hat{\phi}^Q(y^*, \epsilon) = \frac{\hat{b}(y^*, \epsilon)}{2\hat{a}(y^*, \epsilon)}. \tag{11}
\]
Now, for $Y \sim f_Y(y; \theta_0)$, we separate the variability in $\hat{\phi}^Q(Y, \epsilon)$ into two components:

1. **Statistical error** is the uncertainty resulting from randomness in the data, if the data were a draw from the statistical model. This is the error in the ideal quadratic profile approximation estimate $\hat{b}(y^*)/2\hat{a}(y^*)$ as an estimate of ϕ_0.

2. **Monte Carlo error** is the uncertainty resulting from implementing a Monte Carlo estimator. This is the error in $\hat{b}(y^*, \epsilon)/2\hat{a}(y^*, \epsilon)$ as a Monte Carlo estimate of $\hat{b}(y^*)/2\hat{a}(y^*)$.

The LAN approximation in (8) suggests a normal approximation for the distribution of the marginal MLE $\hat{\phi}^*$ which we write as
\[
\hat{\phi}(Y) \approx N[\phi_0, \text{SE}_{\text{stat}}^2]. \tag{11}
\]
The usual statistical standard error, $1/\sqrt{2\hat{a}(y^*)}$, is not available to us, but we can instead use its Monte Carlo estimate,
\[
\text{SE}_{\text{stat}} = \frac{1}{\sqrt{2\hat{a}(y^*, \epsilon)}}. \tag{12}
\]
To quantify the Monte Carlo error, we first note that standard linear model methodology provides variance and covariance estimates $\text{Var}[\hat{a}(y^*, \epsilon)]$, $\text{Var}[\hat{b}(y^*, \epsilon)]$ and $\text{Cov}[\hat{a}(y^*, \epsilon), \hat{b}(y^*, \epsilon)]$. The regression errors representing only Monte Carlo variability conditional on $Y = y^*$, i.e., $\text{Var}[\hat{a}(y^*, \epsilon)] = \text{Var}[\hat{a}(Y, \epsilon)|Y = y^*]$. A standard central limit approximation for regression coefficient estimates is
\[
\begin{pmatrix}
\hat{a}(y^*, \epsilon) \\
\hat{b}(y^*, \epsilon)
\end{pmatrix} \approx N\left[
\begin{pmatrix}
\hat{a}(y^*) \\
\hat{b}(y^*)
\end{pmatrix},
\begin{pmatrix}
\text{Var}[\hat{a}(y^*, \epsilon)] & \text{Cov}[\hat{a}(y^*, \epsilon), \hat{b}(y^*, \epsilon)] \\
\text{Cov}[\hat{a}(y^*, \epsilon), \hat{b}(y^*, \epsilon)] & \text{Var}[\hat{b}(y^*, \epsilon)]
\end{pmatrix}
\right].
\]
An application of the delta method gives a central limit approximation for the maximum, conditional on \(Y = y^* \), given by

\[
\frac{\hat{b}(y^*, \epsilon)}{2\hat{a}(y^*, \epsilon)} \approx N \left(\frac{\hat{b}(y^*)}{2\hat{a}(y^*)}, SE_{mc}^2 \right),
\]

where

\[
SE_{mc}^2 = \text{Var} \left(\frac{\hat{b}(y^*, \epsilon)}{2\hat{a}(y^*, \epsilon)} \right) \approx \frac{1}{4\hat{a}^2(y^*, \epsilon)} \left\{ \text{Var} \left[\hat{b}(y^*, \epsilon) \right] - \frac{2\hat{b}(y^*, \epsilon)}{\hat{a}(y^*, \epsilon)} \text{Cov} \left[\hat{a}(y^*, \epsilon), \hat{b}(y^*, \epsilon) \right] + \frac{\hat{b}^2(y^*, \epsilon)}{\hat{a}^2(y^*, \epsilon)} \text{Var} \left[\hat{a}(y^*, \epsilon) \right] \right\}.
\]

To obtain the combined statistical and Monte Carlo error, we write

\[
\text{Var} \left(\frac{\hat{b}(Y, \epsilon)}{2\hat{a}(Y, \epsilon)} \right) = \mathbb{E} \left\{ \text{Var} \left(\frac{\hat{b}(Y, \epsilon)}{2\hat{a}(Y, \epsilon)} \right| Y \right\} + \text{Var} \left\{ \mathbb{E} \left(\frac{\hat{b}(Y, \epsilon)}{2\hat{a}(Y, \epsilon)} \right| Y \right\}.
\]

Now, from (8), the curvature of the profile log likelihood is approximately constant, independent of \(Y \). We suppose that the profile points used to obtain \(\hat{\phi}^Q(Y, \epsilon) \) are approximately centered on \(\hat{\phi}^Q(Y, \epsilon) \) regardless of the value of \(Y \). This assumption can be satisfied by construction, for example by fitting the quadratic metamodel in (9) using local weights (as in the MCAP algorithm below). Further, we suppose that \(\text{Var} \left[\epsilon_k(Y) \right] \approx \text{Var} \left[\epsilon_k(y^*) \right] \). Together, these approximations imply

\[
\text{Var} \left(\frac{\hat{b}(Y, \epsilon)}{2\hat{a}(Y, \epsilon)} \right) \approx \text{Var} \left(\frac{\hat{b}(y^*, \epsilon)}{2\hat{a}(y^*, \epsilon)} \right).
\]

Also, from the central limit approximation in (13), we have

\[
\mathbb{E} \left(\frac{\hat{b}(Y, \epsilon)}{2\hat{a}(Y, \epsilon)} \right| Y \right) \approx \hat{\phi}(Y).
\]

Putting (16) and (17) into (15), and using the approximations in (11) and (13), we get

\[
\frac{\hat{b}(Y, \epsilon)}{2\hat{a}(Y, \epsilon)} \approx N \left(\phi, SE_{\text{total}}^2 \right),
\]

where

\[
SE_{\text{total}}^2 = \sqrt{SE_{mc}^2 + SE_{\text{stat}}^2}.
\]

The usual asymptotic profile likelihood confidence interval cutoff value can be obtained by converting the standard error of the MLE into an equivalent cutoff on a quadratic approximation to the profile log likelihood. In our setting, the asymptotic \((1 - \alpha)\) confidence interval,
\[\hat{\phi}^Q = z_\alpha \times \text{SE}_{\text{total}} \] where \(P[Z > z_\alpha] = \alpha/2 \), is equivalent to a Monte Carlo adjusted profile cutoff for the quadratic approximation \(\hat{\ell}^Q(\phi; y^*) \) of

\[\delta = \hat{a}^* \times (z_\alpha \times \text{SE}_{\text{total}})^2 = z_\alpha^2 \left(\hat{a}^* \times \text{SE}_{\text{mc}}^2 + \frac{1}{2} \right). \] (18)

Note that, if \(\text{SE}_{\text{mc}} = 0 \), the calculation in (18) for \(\alpha = 0.05 \) reduces to

\[\delta = 1.96^2/2 = 1.92, \]

the usual cutoff to construct a 95% confidence interval for an exact profile likelihood.

Confidence intervals based on a quadratic approximation to the exact log likelihood are asymptotically equivalent to using the same cutoff \(\delta \) with a smoothed version of the likelihood, so long as an appropriate smoother is used [Ionides 2005]. An appropriate smoother should return a quadratic when the points do indeed lie on a quadratic, a property satisfied, for example, by local quadratic smoothing such as the R function \texttt{loess}. We therefore propose using \(\delta \) as an appropriate cutoff on a profile likelihood estimate obtained by applying a suitable smoother to the Monte Carlo evaluations in (6).

A resulting maximum smoothed Monte Carlo profile likelihood estimate is

\[\hat{\phi}^S = \arg \max_{\phi} S(\phi; \phi_{1:K}, \hat{\ell}_{1:K}^P, \lambda). \] (19)

A corresponding Monte Carlo profile likelihood confidence interval for a cutoff \(\delta \) is

\[\{ \phi : S(\phi; \phi_{1:K}, \hat{\ell}_{1:K}^P, \lambda) > S(\hat{\phi}^S; \phi_{1:K}, \hat{\ell}_{1:K}^P, \lambda) - \delta \}. \] (20)

Here, we suppose that \(S(\phi; \phi_{1:K}, \hat{\ell}_{1:K}^P, \lambda) \) is evaluated at \(\phi \) via local quadratic regression with weight \(w_k(\phi) \) on the point \((\phi_k, \hat{\ell}_k^P) \), where \(w_k(\phi) \) depends on the proximity of \(\phi \) to \(\phi_k \). Specifically, we take \(S \) to be the widely used local quadratic smoother of Cleveland et al. [1993] as implemented in the R function \texttt{loess}. In this case, \(\lambda \) is the span of the smoother, defined as the fraction of the data used to construct the weights in the local regression at any point \(\phi \). In practice, the statistician needs to specify \(\lambda \). While automated choices of smoothing parameter have been proposed, it remains standard practice to choose the smoothing parameter based on some experimentation and looking at the resulting fit. In our experience, the default \texttt{loess} choice of \(\lambda = 0.75 \) has been appropriate in most cases. However, a larger value of \(\lambda \) is needed when the profile is evaluated at very few points (as demonstrated in Section 4.3). When the exact profile is not far from quadratic, one can expect local quadratic smoothing of the Monte Carlo profile likelihood to be insensitive to the choice of \(\lambda \).

Just as the local quadratic regression smoother has weights \(w_{1:K}(\phi) \), the quadratic meta-model in (9) can be fitted using regression weights. A natural choice of these weights for obtaining a profile confidence interval cutoff for \(S(\phi; \phi_{1:K}, \hat{\ell}_{1:K}^P, \lambda) \) is \(\hat{w}_{1:K}(\hat{\phi}^S) \). This choice is used for the MCAP algorithm below. For our numerical results, we used the implementation of this MCAP algorithm given in a supplement (Section S1).
Algorithm MCAP (Monte Carlo adjusted profile)

input:
Monte Carlo profile $\ell_{1:K}$ evaluated at $\phi_{1:K}$
Local quadratic regression smoother, S
Smoothing parameter, λ
confidence level, $1 - \alpha$

output:
Cutoff, δ, for a Monte Carlo profile likelihood confidence interval

Fit a local quadratic smoother, $\ell^S(\phi) = S(\phi; \phi_{1:K}, \ell_{1:K}, \lambda)$
Obtain $\hat{\phi}^S$ = arg max $\ell^S(\phi)$
Obtain regression weights $w_{1:K}$ for the evaluation of $S(\phi_{1:K}, \ell_{1:K}, \lambda)$ at $\phi = \hat{\phi}^S$
Fit a linear regression model, $\ell^P_k = -a\phi_k^2 + b\phi_k + c + \epsilon_k$, with weights $w_{1:K}$
Obtain regression estimates \hat{a} and \hat{b}
Obtain regression covariances $\hat{\text{Var}}[\hat{a}], \hat{\text{Var}}[\hat{b}], \hat{\text{Cov}}[\hat{a}, \hat{b}]$
Let $\text{SE}_{mc}^2 = \frac{1}{\hat{a}^2} \left\{ \text{Var}[\hat{b}] - \frac{\hat{b}^2}{\hat{a}} \text{Cov}[\hat{a}, \hat{b}] + \frac{\hat{b}^2}{\hat{a}^2} \text{Var}[\hat{a}] \right\}$
Let χ_α be the $(1 - \alpha)$ quantile of the chi-square distribution on one degree of freedom
Let $\delta = \chi_\alpha \left(\hat{a} \times \text{SE}_{mc}^2 + 1/2 \right)$

4 Example: inference for partially observed dynamic systems

Many dynamic systems with indirectly observed latent processes can be modeled within the partially observed Markov process (POMP) framework. A general POMP model, also known as a hidden Markov model or a state space model, consists of a latent Markov process $\{X(t)\}$, with $X(t)$ taking values in a space \mathbb{X}, together with a sequence of observable random variables Y_1, \ldots, Y_N. We suppose Y_n occurs at a time t_n, and the observations are conditionally independent of each other and of $\{X(t)\}$ given $X(t_1), \ldots, X(t_N)$. For example, we may have $\mathbb{Y} = \mathbb{R}^d$, the space of d-dimensional real vectors. When $d = 1$ (or d is small) Y_1, \ldots, Y_N is called a univariate (or multivariate) time series model. The POMP framework provides a fundamental approach for nonlinear time series analysis, with innumerable applications (Bretó et al., 2009). When d becomes large, the POMP framework allows for nonlinear panel data and spatiotemporal data, as well as other complex data structures. Unless the POMP model is linear and Gaussian, or \mathbb{X} is a sufficiently small finite set, Monte Carlo techniques such as sequential Monte Carlo (SMC) are required to evaluate the likelihood function. For our examples, we focus on likelihood maximization by iterated filtering (Ionides et al., 2015). Similar issues arise with alternative computational approaches, including Monte Carlo Expectation-Maximization algorithms (Cappé et al., 2005, Chapter 11). Even for the relatively simple case of time series POMP models (discussed further in Section 4.4) numerical issues can be computationally demanding for currently available methodology, giving opportunity for MCAP methodology to facilitate data analysis. However, to demonstrate
the capabilities of our methodology, we present three high-dimensional POMP inference challenges that become computationally tractable using MCAP.

4.1 Inferring population dynamics from genetic sequence data

Genetic sequence data on a sample of individuals in an ecological system has potential to reveal population dynamics. Extraction of this information has been termed *phylodynamics* (Grenfell et al., 2004). Likelihood-based inference for joint models of the molecular evolution process, population dynamics, and measurement process is a challenging computational problem. The bulk of extant phylodynamic methodology has therefore focused on inference for population dynamics conditional on an estimated phylogeny and replacing the population dynamic model with an approximation, called a *coalescent model* that is convenient for calculations backwards in time (Karcher et al., 2016). Working with the full joint likelihood is not entirely beyond modern computational capabilities; in particular it can be done using the `genPomp` algorithm of Smith et al. (2016). The `genPomp` algorithm is an application of iterated filtering methodology (Ionides et al., 2015) to phylodynamic models and data. To the best of our knowledge, `genPomp` is the first algorithm capable of carrying out full joint likelihood-based inference for population-level phylodynamic inference. However, the `genPomp` algorithm leads to estimators with high Monte Carlo variance, indeed, too high for reasonable amounts of computation resources to reduce Monte Carlo variability to negligibility. This, therefore, provides a useful scenario to demonstrate our methodology.

Figure 2 presents a Monte Carlo profile computed by Smith et al. (2016), with confidence intervals constructed by applying the MCAP algorithm implemented by the `mcap` procedure (Section S1) with default smoothing parameter. The model and data concern HIV transmission in Southeast Michigan, but details of the model and computations are not of immediate interest since all we need to consider are the estimated profile likelihood points. The profiled parameter quantifies HIV transmission from recently infected, diagnosed individuals—it is ε_{J_0} in the notation of Smith et al. (2016) but we rename it as ϕ for the current paper. The computations for Figure 2 took approximately 10 days using 500 cores on a Linux cluster. To scale this methodology to increasingly large datasets and more complex models, it is apparent that one may be limited by the computational effort required to control Monte Carlo error. The MCAP procedure gives a Monte Carlo standard error of $SE_{mc} = 0.151$ on the value maximizing the smoothed Monte Carlo profile, based on the quadratic approximation at the maximum. The statistical error is $SE_{stat} = 0.32$. Combining these sources of uncertainty gives a total standard error of $SE_{total} = 0.354$. From (18), the resulting 95% confidence profile cutoff is $\delta = 2.35$. We see in Figure 2 that the smoothed profile is close to its quadratic approximation in the neighborhood of the maximum statistically supported by the data. We also see that the Monte Carlo uncertainty in the profile confidence interval is rather small, leading to a profile cutoff not much bigger than the value of 1.92 for zero Monte Carlo error, despite the large Monte Carlo variability in the evaluation of any one point on the profile.
Figure 2: Profile likelihood for an infectious disease transmission parameter inferred from genetic data on pathogens. The smoothed profile likelihood and corresponding MCAP 95% confidence interval are shown as solid red lines. The quadratic approximation in a neighborhood of the maximum is shown as a blue dotted line.
4.2 Panel time series analysis

Panel data consists of a collection of time series which have some shared parameters, but negligible dynamic dependence. We consider inference using mechanistic models for panel data, i.e., equations for how the process progresses through time derived from scientific principles about the system under investigation. In principle, statistical methods for mechanistic time series analysis (Bretó et al., 2009) extend to the panel situation (Bretó et al., 2016). However, extensive data add computational challenges to Monte Carlo inference schemes. In particular, with increasing amounts of data, it must eventually become infeasible to calculate the likelihood with an error as small as one log unit. The MCAP procedure nevertheless succeeds so long as the signal-to-noise ratio in the Monte Carlo profile is adequate. In a simple situation, where each time series is modeled as independent and identically distributed and each time series model contains the same parameters, we can check how this ratio scales. The Fisher information scales linearly with the number of time series in the panel, and therefore the curvature of the log likelihood profile also scales linearly. The Monte Carlo standard error on the likelihood scales at a square-root rate. In this case, we therefore expect the MCAP methodology to scale successfully with the number of time series in the panel.

Investigations of population-level infectious disease transmission lead to highly nonlinear, stochastic, partially observed dynamic models. The great majority of disease transmission is local, despite the importance of spatial transmission to seed the local epidemics (Bjornstad and Grenfell, 2008). Fitting models to panels of epidemiological time series data, such as incidence data for collections of cities or states, offers potential to elucidate the similarities and differences between these local epidemics.

We demonstrate the MCAP procedure on a panel estimate of the reporting rate of paralytic polio in the pre-vaccination era United States. Reporting rate has important consequences for understanding the system: conditional on observed incidence data, reporting rate determines the extent of the unreported epidemic. Yet, in the presence of many uncertainties about this complex disease transmission system, a single disease incidence time series often cannot conclusively pin down this epidemiological parameter. The profile evaluations in Figure 3 were obtained by Bretó et al. (2016) in an extension of the analysis of Martinez-Bakker et al. (2015). Martinez-Bakker et al. (2015) analyzed state level paralytic polio incidence data in order to study the role of unobserved asymptomatic polio infections in disease persistence. Here, the reporting rate parameter \(\log(\rho) \) in the terminology of Bretó et al. (2016) is denoted by \(\phi \). The MCAP procedure gives a Monte Carlo standard error of \(SE_{\text{mc}} = 0.033 \) and a statistical error of \(SE_{\text{stat}} = 0.013 \). Combining them gives a total standard error of \(SE_{\text{total}} = 0.035 \). The resulting profile cutoff is \(\delta = 13.6 \). The profile decreases slowly to the right of the MLE, since higher reporting rates can be compensated for by lower transmission intensities. The model struggles to explain reporting rates much lower than the MLE, since the reporting rate must be sufficient to explain the observed number of cases in a situation where almost all individuals acquire non-paralytic polio infections. This asymmetrical tradeoff may explain why the profile log likelihood shows some noticeable deviation from its quadratic approximation in a neighborhood of the maximum.

The computations for Figure 3 required approximately 24 hours on 300 cores. At this
Figure 3: Profile likelihood for a nonlinear partially observed Markov process model for a panel of time series of historical state-level polio incidence in the United States. The smoothed profile likelihood and corresponding MCAP 95% confidence interval are shown as solid red lines. The quadratic approximation in a neighborhood of the maximum is shown as a dotted blue line.
Figure 4: Profile likelihood for a spatiotemporal measles transmission model with twenty metapopulations. The profile parameter describes the contact rate within each metapopulation. For this figure, the data were simulated from a fitted model, and so the true parameter can be shown (dashed black vertical line). The smoothed profile likelihood and corresponding MCAP 95% confidence interval are shown as solid red lines. The quadratic approximation in a neighborhood of the maximum is shown as a dotted blue line.

level of computational intensity, we see that the majority of uncertainty about the parameter ϕ is due to Monte Carlo error rather than statistical error. For this large panel dataset, in the context of the fitted model, the parameter ϕ would be identified very accurately by the data if we had access to the actual likelihood surface. Additional computation could, therefore, reduce the uncertainty on our estimate of ϕ by a factor of three. However, the data analyst may decide the available computational effort is better used exploring other parameters or alternative model specifications.

4.3 Inference for nonlinear partially observed spatiotemporal systems

Spatiotemporal data consists of time series collected at various locations. Spatiotemporal models extend panel models by allowing for dynamic dependence between locations. We consider statistical inference for a mechanistic spatiotemporal model, meaning a collection of nonlinear partially observed spatially coupled Markov process. SMC methods, that provide
a foundation for much likelihood-based inference relating POMP models to time series data, struggle with spatiotemporal data since they scale poorly with spatial dimension (Bengtsson et al., 2008). Theoretically, SMC methods with sub-exponential scaling can be developed for weakly coupled spatiotemporal systems (Rebeschini and van Handel, 2015). In practice, appropriately designed SMC schemes can successfully carry out Monte Carlo likelihood evaluation for general partially observed spatiotemporal processes of modest dimension (Park and Ionides, 2016). Park and Ionides (2016) then employed iterated filtering methodology (Ionides et al., 2015) which modifies an SMC algorithm to maximize the likelihood. Figure 4 shows an estimated likelihood profile for a parameter φ corresponding to the contact rate between individuals (denoted as β by Park and Ionides, 2016) when fitting a ten parameter model to pre-vaccination measles incidence in 20 cities in the United Kingdom. This profile corresponds to a simulation test of the methodology of Park and Ionides (2016) in which the true parameter is known. Here, we are not immediately concerned with the details of the model and the Monte Carlo methodology (described by Park and Ionides, 2016) but rather with showing another example of how a computationally demanding inference problem can give rise to noisy Monte Carlo points estimating a profile likelihood. For this computation, only five distinct parameter values were used when computing the profile. The default smoothing parameter λ = 0.75 was too small in this case, since the local quadratic fit by the smoother at the maximum placed almost all its weights on only three distinct parameter values. The resulting numerical instability was avoided by taking λ = 1. For this analysis, the profile cutoff adjusted for Monte Carlo uncertainty is δ = 61.6, and we see that the Monte Carlo variability SE_{mc} = 1.00 in the parameter estimate greatly exceeds the statistical variability SE_{stat} = 0.18. Evidently, the simulated spatiotemporal data have a considerable amount of information about the parameter φ, but extracting that information in a statistically efficient way is complicated by the computational challenge of working with the likelihood of a nonlinear partially observed spatiotemporal process.

4.4 Applications to time series analysis via mechanistic models

The examples in Sections 4.1, 4.2 and 4.3 demonstrate applications which were computationally intractable without MCAP. Applications of the POMP framework to nonlinear time series analysis typically involve smaller data sets, and a relatively simple dependence structure, and are therefore less computationally demanding. This consideration has facilitated the utilization of Monte Carlo profile likelihood, without the benefits of MCAP, as a technique at the cutting edge of nonlinear time series analysis. In the context of infectious disease dynamics, Dobson (2014) wrote, “Powerful new inferential fitting methods (Ionides et al., 2006) considerably increase the accuracy of outbreak predictions while also allowing models whose structure reflects different underlying assumptions to be compared. These approaches move well beyond time series and statistical regression analyses as they include mechanistic details as mathematical functions that define rates of loss of immunity and the response of vector abundance to climate.” Examples showing a central role for Monte Carlo profile likelihood in such analyses are given by King et al. (2008, Fig. 2), Camacho et al. (2011, Figs. S3 and S8A), Blackwood et al. (2013, Fig. 3A), Shrestha et al. (2013, Figs. 2B-2G and
We have shown that our methodology can both quantify and dramatically reduce the Monte Carlo error in computationally intensive inferences for POMP models. The MCAP procedure therefore improves the accessibility and scalability of inference for nonlinear time series models.

5 A simulation study of the MCAP procedure

We look for a numerically convenient toy scenario that generates Monte Carlo profiles resembling Figures 2, 3 and 4. Our simulated data are an independent, identically distributed log normal sample \(Y_{1:N} \) where \(\log(Y_n) \sim N[\phi, 2\sigma^2] \) for \(n \in 1:N \). We consider a profile likelihood confidence interval for the log mean parameter, \(\phi \). The log normal distribution leads to log likelihood profiles that deviate from quadratic. To set up a situation with Monte Carlo error in evaluating and maximizing the likelihood, we supposed that the likelihood is accessed via Monte Carlo integration of a latent variable. Specifically, we write \(Y_n | X_n \sim \text{lognormal}(X_n, \sigma^2) \) with \(X_n \sim N[\phi, \sigma^2] \).

Our Monte Carlo profile is calculated at \(\phi \in \Phi_{1:K} \). We maximize the likelihood numerically, at a fixed seed, to give a corresponding estimate of \(\sigma \) given by

\[
\hat{\sigma}_k^P(y_{1:N}, s, J) = \arg \max_{\sigma} \ell(\phi_k, \sigma; y_{1:N}, s + N(k - 1), J).
\]
Figure 5: Profile construction for the toy model. The exact profile and its asymptotic 95% confidence interval are constructed with black dashed lines. Points show Monte Carlo profile evaluations. The MCAP is constructed in solid red lines, using the default $\lambda = 0.75$ smoothing parameter. The quadratic approximation used to calculate the MCAP profile cutoff is shown as a dotted blue line.

In this toy example, by increasing the sample size, N, and decreasing the Monte Carlo effort, J. The Monte Carlo variance of the log likelihood estimate increases linearly with N, but at the same time the curvature of the log likelihood increases and, within the inferentially relevant region, the profile log likelihood becomes increasingly close to quadratic. Thus, in the context of our methodology, increasing N actually makes inference easier despite the increasing Monte Carlo noise. This avoids a paradoxical difficulty of Monte Carlo inference for big data: more data should be a help for a statistician, not a hindrance! Decreasing J represents a situation where Monte Carlo variability increases without increasing information about the parameter of interest. In this case, the Monte Carlo variability and the Monte Carlo bias on the log likelihood due to Jensen’s inequality both increase. Also, likelihood maximization becomes more erratic for small J since the maximization error due to the fixed seed becomes more important. However, Figure 5 shows that, even when there is considerable bias and variance in the Monte Carlo profile evaluations, the Monte Carlo profile confidence intervals can be little wider than the exact interval.

We computed intervals with nominal coverage of 95%. The MCAP coverage here was 93.4%, compared to 94.3% for the asymptotically exact profile (with a simulation study
Monte Carlo standard error of 0.2%). The MCAP intervals were, on average, 12.5% larger than the corresponding exact profile interval, with the increased width accounting for the additional Monte Carlo uncertainty.

6 Discussion

This paper has focused on likelihood-based confidence intervals. An alternative to likelihood-based inference is to compare the data with simulations using some summary statistic. Various plug-and-play methodologies of this kind have been proposed, such as synthetic likelihood (Wood, 2010) and nonlinear forecasting (Ellner et al., 1998). For large nonlinear systems, it can be hard to find low-dimensional summary statistics that capture a good fraction of the information in the data. Even summary statistics derived by careful scientific or statistical reasoning have been found surprisingly uninformative compared to the whole data likelihood in both scientific investigations (Shrestha et al., 2011) and simulation experiments (Fasiolo et al., 2016).

Much attention has been given to scaling Bayesian computation to complex models and large data. Bayesian computation is closely related to likelihood inference for stochastic dynamic models: the random variables generating a dynamic system are typically not directly observed, and these latent random variables are therefore similar to Bayesian parameters. We refer to these latent random variables as random effects since they have a similar role as linear model random effects. To carry out inference on the structural parameters of the model (i.e., the vector θ in this article) the Bayesian approach looks for the marginal posterior of θ, which involves integration over the random effects. Likelihood-based inference for θ similarly involves integrating out the random effects. Numerical methods such as expectation propagation (EP) (Gelman et al., 2014) and variational Bayes (Hoffman et al., 2013) are effective for some model classes. Another approach is to combine Markov chain Monte Carlo (MCMC) computations on subsets of the data, as in the posterior interval estimation (PIE) method of Li et al. (2016). The above approaches (EP, VB and PIE) all emphasize situations where the joint density of the data and latent variables can be conveniently split up into conditionally independent chunks, such as a hierarchical model structure. Our methodology has no such requirement. The panel model example above does have a natural hierarchical structure, with individual panels being independent (in the frequentist model sense) or conditionally independent given the shared parameters (in the Bayesian model sense). Our spatiotemporal and genetic examples do not have such a representation.

Some simulation-based Bayesian computation methodologies have built on the observation that unbiased Monte Carlo likelihood computations can be used inside an MCMC algorithm (Andrieu and Roberts, 2009). For large systems, high Monte Carlo variability of likelihood estimates is a concern, in this context, since it slows down MCMC convergence (Bardenet et al., 2015). Doucet et al. (2015) found that, for a given computational budget, the optimal balance between number of MCMC iterations and time spent on each likelihood evaluation occurs at a Monte Carlo likelihood standard deviation of one log unit. For the
systems we demonstrate, Monte Carlo errors that small are not computationally feasible.

Our simple and general approach permits inference when the signal-to-noise ratio in the Monte Carlo profile log likelihood is sufficient to uncover the main features of this function, up to an unimportant vertical shift. For large datasets in which the signal (quantified as the curvature of the log likelihood) is large, the methodology can be effective even when the Monte Carlo noise is far too big to carry out standard MCMC techniques. Although the frequentist motivation for likelihood-based inference differs from the goal of Bayesian posterior inference, both approaches can be used for deductive scientific reasoning (Gelman and Shalizi 2013; Ionides et al. 2016).

Acknowledgements

This research was supported by National Science Foundation grant DMS-1308919 and National Institutes of Health grants 1-U54-GM111274 and 1-U01-GM110712.

References

Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient computation. *Annals of Statistics*, 37:697–725.

Bardenet, R., Doucet, A., and Holmes, C. (2015). On Markov chain Monte Carlo methods for tall data. *arXiv:1505.02827*.

Barndorff-Nielsen, O. E. and Cox, D. R. (1994). *Inference and Asymptotics*. Chapman and Hall, London.

Barton, R. R. and Meckesheimer, M. (2006). Metamodel-based simulation optimization. *Handbooks in Operations Research and Management Science*, 13:535–574.

Bengtsson, T., Bickel, P., and Li, B. (2008). Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. In Speed, T. and Nolan, D., editors, *Probability and Statistics: Essays in Honor of David A. Freedman*, pages 316–334. Institute of Mathematical Statistics, Beachwood, OH.

Bjornstad, O. and Grenfell, B. (2008). Hazards, spatial transmission and timing of outbreaks in epidemic metapopulations. *Environmental and Ecological Statistics*, 15:265–277.

Blackwood, J. C., Cummings, D. A. T., Broutin, H., Iamsirithaworn, S., and Rohani, P. (2013). Deciphering the impacts of vaccination and immunity on pertussis epidemiology in Thailand. *Proceedings of the National Academy of Sciences of the USA*, 110:9595–9600.

Blake, I. M., Martin, R., Goel, A., Khetsuriani, N., Everts, J., Wolff, C., Wassilak, S., Aylward, R. B., and Grassly, N. C. (2014). The role of older children and adults in wild poliovirus transmission. *Proceedings of the National Academy of Sciences of the USA*, 111(29):10604–10609.
Bretó, C., He, D., Ionides, E. L., and King, A. A. (2009). Time series analysis via mechanistic models. *Annals of Applied Statistics*, 3:319–348.

Bretó, C., Ionides, E. L., and King, A. A. (2016). Panel data analysis via mechanistic models. *In preparation*.

Camacho, A., Ballesteros, S., Graham, A. L., Carrat, F., Ratmann, O., and Cazelles, B. (2011). Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study. *Proceedings of the Royal Society of London, Series B*, 278(1725):3635–3643.

Cappé, O., Moulines, E., and Rydén, T. (2005). *Inference in Hidden Markov Models*. Springer, New York.

Cleveland, W. S., Grosse, E., and Shyu, W. M. (1993). Local regression models. In Chambers, J. M. and Hastie, T. J., editors, *Statistical Models in S*, pages 309–376. Chapman and Hall, London.

Diggle, P. J. and Gratton, R. J. (1984). Monte Carlo methods of inference for implicit statistical models. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 46:193–227.

Dobson, A. (2014). Mathematical models for emerging disease. *Science*, 346:1294–1295.

Doucet, A., Pitt, M. K., Deligiannidis, G., and Kohn, R. (2015). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. *Biometrika*, 102:295–313.

Ellner, S. P., Bailey, B. A., Bobashev, G. V., Gallant, A. R., Grenfell, B. T., and Nychka, D. W. (1998). Noise and nonlinearity in measles epidemics: Combining mechanistic and statistical approaches to population modeling. *American Naturalist*, 151:425–440.

Fasiolo, M., Pya, N., and Wood, S. N. (2016). A comparison of inferential methods for highly nonlinear state space models in ecology and epidemiology. *Statistical Science*, 31:96–118.

Gelman, A. and Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics. *British Journal of Mathematical and Statistical Psychology*, 66:8–38.

Gelman, A., Vehtari, A., Jylänki, P., Robert, C., Chopin, N., and Cunningham, J. P. (2014). Expectation propagation as a way of life. [arXiv:1412.4869](https://arxiv.org/abs/1412.4869).

Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L. N., Daly, J. M., Mumford, J. A., and Holmes, E. C. (2004). Unifying the epidemiological and evolutionary dynamics of pathogens. *Science*, 303:327–332.

He, D., Ionides, E. L., and King, A. A. (2010). Plug-and-play inference for disease dynamics: Measles in large and small towns as a case study. *Journal of the Royal Society Interface*, 7:271–283.
Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. W. (2013). Stochastic variational inference. *Journal of Machine Learning Research*, 14:1303–1347.

Ionides, E. L. (2005). Maximum smoothed likelihood estimation. *Statistica Sinica*, 15:1003–1014.

Ionides, E. L., Bretó, C., and King, A. A. (2006). Inference for nonlinear dynamical systems. *Proceedings of the National Academy of Sciences of the USA*, 103:18438–18443.

Ionides, E. L., Giessing, A., Ritov, Y., and Page, S. E. (2016). Response to the ASA’s statement on p-values: Context, process, and purpose. *The American Statistician*, To appear.

Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S., and King, A. A. (2015). Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. *Proceedings of the National Academy of Sciences of the USA*, 112:719–724.

Karcher, M. D., Palacios, J. A., Lan, S., and Minin, V. N. (2016). phylodyn: an R package for phylodynamic simulation and inference. *Molecular Ecology Resources*, 17:96–100.

Kevrekidis, I. G., Gear, C. W., and Hummer, G. (2004). Equation-free: The computer-assisted analysis of complex, multiscale systems. *American Institute of Chemical Engineers Journal*, 50:1346–1354.

King, A. A., Ionides, E. L., Pascual, M., and Bouma, M. J. (2008). Inapparent infections and cholera dynamics. *Nature*, 454:877–880.

Le Cam, L. and Yang, G. L. (2000). *Asymptotics in Statistics*. Springer, New York, 2nd edition.

Li, C., Srivastava, S., and Dunson, D. B. (2016). Simple, scalable and accurate posterior interval estimation. *arXiv:1605.04029*

Lyne, A.-M., Girolami, M., Atchade, Y., Strathmann, H., Simpson, D., et al. (2015). On Russian roulette estimates for Bayesian inference with doubly-intractable likelihoods. *Statistical Science*, 30:443–467.

Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods. *Proceedings of the National Academy of Sciences of the USA*, 100:15324–15328.

Martinez-Bakker, M., King, A. A., and Rohani, P. (2015). Unraveling the transmission ecology of polio. *PLoS Biology*, 13:e1002172.

Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood. *Journal of the American Statistical Association*, 95:449–465.
Park, J. and Ionides, E. L. (2016). Particle filter for continuous time partially observed Markov processes in high dimension via intermediate resampling. In preparation.

Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Clarendon Press, Oxford.

Rebeschini, P. and van Handel, R. (2015). Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, 25:2809–2866.

Rubio, F. J. and Johansen, A. M. (2013). A simple approach to maximum intractable likelihood estimation. Electronic Journal of Statistics, 7:1632–1654.

Shrestha, S., Foxman, B., Weinberger, D. M., Steiner, C., Viboud, C., and Rohani, P. (2013). Identifying the interaction between influenza and pneumococcal pneumonia using incidence data. Science Translational Medicine, 5(191):191ra84.

Shrestha, S., King, A. A., and Rohani, P. (2011). Statistical inference for multi-pathogen systems. PLoS Computational Biology, 7:e1002135.

Sisson, S. A., Fan, Y., and Tanaka, M. M. (2007). Sequential Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences of the USA, 104:1760–1765.

Smith, R. A., Ionides, E. L., and King, A. A. (2016). Infectious disease dynamics inferred from genetic data via sequential Monte Carlo. BioRxiv:096396.

Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466:1102–1104.
S1 Supplement: Implementation of the MCAP algorithm in R

The following R code carries out the MCAP algorithm, as used for the results in this paper.

```r
mcap <- function(lp, parameter, confidence=0.95, lambda=0.75, Ngrid=1000)
{
    smooth_fit <- loess(lp ~ parameter, span=lambda)
    parameter_grid <- seq(min(parameter), max(parameter), length.out = Ngrid)
    smoothed_loglik <- predict(smooth_fit, newdata=parameter_grid)
    smooth_arg_max <- parameter_grid[which.max(smoothed_loglik)]
    dist <- abs(parameter-smooth_arg_max)
    included <- dist < sort(dist)[trunc(lambda*length(dist))]
    maxdist <- max(dist[included])
    weight <- rep(0,length(parameter))
    weight[included] <- (1-(dist[included]/maxdist)^3)^3
    quadratic_fit <- lm(lp ~ a + b, weight=weight, 
        data = data.frame(lp=lp,b=parameter,a=-parameter^2)
    )
    b <- unname(coef(quadratic_fit)["b"] )
    a <- unname(coef(quadratic_fit)["a"] )
    m <- vcov(quadratic_fit)
    var_b <- m["b","b"]
    var_a <- m["a","a"]
    cov_ab <- m["a","b"]
    se_mc_squared <- (1 / (4 * a^2)) * (var_b - (2 * b/a) * cov_ab + (b^2 / a^2) * var_a)
    se_stat_squared <- 1/(2*a)
    se_total_squared <- se_mc_squared + se_stat_squared
    delta <- qchisq(confidence,df=1) * ( a * se_mc_squared + 0.5)
    loglik_diff <- max(smoothed_loglik) - smoothed_loglik
    ci <- range(parameter_grid[loglik_diff < delta])
    list(lp=lp,parameter=parameter,confidence=confidence, 
        quadratic_fit=quadratic_fit, quadratic_max=b/(2*a),
        smooth_fit=smooth_fit,
        fit=data.frame(
            parameter=parameter_grid,
            smoothed=smoothed_loglik,
            quadratic=predict(quadratic_fit, list(b = parameter_grid, a = -parameter_grid^2))
        ),
        mle=smooth_arg_max, ci=ci, delta=delta,
        se_stat=sqrt(se_stat_squared), se_mc=sqrt(se_mc_squared), se=sqrt(se_total_squared)
    )
}
```