Emerging roles of nucleotide metabolism in cancer development: progress and prospect

Jingsong Ma1,2, Mengya Zhong1,2, Yubo Xiong1,2, Zhi Gao3, Zhengxin Wu4, Yu Liu5, Xuehui Hong1,2

1Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Fujian, Xiamen 361000, China
2Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Fujian, Xiamen 361000, China
3National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Guangxi, Nanning 53000, China
4Medical College of Guangxi University, Guangxi, Nanning 530000, China
5General Surgery Center, Bazhong Central Hospital, Sichuan, Bazhong 636000, China

Correspondence to: Xuehui Hong; email: hongxu@xmu.edu.cn

Keywords: nucleotide metabolism, tumor immunity, key metabolic enzyme, signaling pathway, oncogene-induced senescence

Received: August 12, 2020 Accepted: March 29, 2021 Published: May 5, 2021

ABSTRACT

Abnormal cancer metabolism occurs throughout the development of tumors. Recent studies have shown that abnormal nucleotide metabolism not only accelerates the development of tumors but also inhibits the normal immune response in the tumor microenvironment. Although few relevant experiments and reports are available, study of the interaction between nucleotide metabolism and cancer development is rapidly developing. The intervention, alteration or regulation of molecular mechanisms related to abnormal nucleotide metabolism in tumor cells has become a new idea and strategy for the treatment of tumors and prevention of recurrence and metastasis. Determining how nucleotide metabolism regulates the occurrence and progression of tumors still needs long-term and extensive research and exploration.

INTRODUCTION

Cancer cells utilized altered cellular metabolism to provide energy and biomacromolecules for self-renew and survival. Multiple metabolic processes have been proved to participate in cancer occurrence and progression [1, 2], among which nucleotide metabolism and the factors that influence this process are receiving increasing attention [3]. An in-depth understanding of this field is a prerequisite for the effective prevention and treatment of tumors, which is of great importance. The tumor incidence, detection rate and death rate are constantly increasing, and malignant tumors have become a common disease that seriously threatens human health [4]. The relationship between nucleotide metabolism and tumors has become a key studied issue [5, 6], but the specific molecular mechanism and function remain unclear. This review summarizes and discusses the above related research findings.

Nucleotide metabolism

Metabolism of purine nucleotides

The de novo synthesis of purine nucleotides is the main source of nucleotides in vivo, and the body mainly regulates the nucleotide synthesis rate through negative feedback [7]. Moreover, studies have shown that unlike nonproliferating cells, proliferating cells, such as immune cells and cancer cells, tend to use the de novo nucleotide synthesis pathway [3, 8]. Different tumor subtypes also differ in their choice of nucleotide synthesis pathway. For example, Martin et al. found that
papillary breast cancer tends to utilize the de novo nucleotide synthesis pathway, while breast cancer with epithelial-mesenchymal transition characteristically preferentially use the salvage nucleotide synthesis pathway [9].

Yamaoka et al. suggested that the formation of 5′-phosphoribose-1′-pyrophosphate (PRPP) and 5′-phosphoribosamine (PRA) is the main regulatory process in this pathway and that 5′-phosphoribosyl-1′-pyrophosphate synthetase (PRS) and glutamine phosphoribosylpyrophosphate amidotransferase (GPRATase), which catalyze the two reactions, are the key enzymes that are regulated in the pathway [10, 11].

In addition, during the synthesis of AMP and CMP from IMP, hypoxanthine nucleotide dehydrogenase (IMPDH) and adenylosuccinate synthetase (ADSS) are the key enzymes in each synthetic route [12, 13].

The purine nucleotide salvage pathway is simpler and less energy-consuming than the de novo synthetic approach [14, 15], and its relative importance depends on the synthesis conditions and specific tissue type. Some tissues and organs in the body, such as the brain and bone marrow, lack the enzyme system necessary to synthesize purine nucleotides from scratch, so they can utilize only the salvage approach to synthesize purines [16–18].

Metabolism of pyrimidine nucleotides

The synthesis of pyrimidine nucleotides, like that of purine nucleotides, takes simple substances such as CO₂ and glutamine as raw materials and is also divided into de novo synthesis and salvage pathways [19]. PRPP is at the intersection of two synthetic pathways and involved in both [20].

In mammalian cells, the key enzymes in the synthesis of pyrimidine nucleotides are carbamyl phosphate synthetase II (CPSII) and dihydroorotate dehydrogenase (DHODH), which are regulated by a UMP negative feedback mechanism [21, 22].

Nucleotides and tumors

As a kind of biological information macromolecule, nucleotides mainly function as the raw materials for nucleic acid synthesis to support cell proliferation [23, 24]. With continuous in-depth study of purines and pyrimidines, our understanding of nucleotides in tumors has revealed their nonproliferative effect beyond their effect on cell growth [25, 26]. The role of purine molecules as purinergic signaling ligands has been fully recognized [27, 28]. Recently, great progress has been made in understanding the nonproliferative role of pyrimidine molecules. Araf et al. found in a breast cancer model that after the thymidylate synthase (TS) gene was knocked out, a gene characteristic of epithelial-mesenchymal transition (EMT) in tumors was inhibited, and TS-deficient cells showed decreased invasion and metastasis in vivo [29]. Many researchers are committed to providing pioneering ideas for increased understanding and the prevention of tumors.

Nucleotide metabolism and tumor immunity

The immune microenvironment is an important part of the tumor microenvironment [30], and the relationship between nucleotide metabolism in tumor cells and immune cells is emerging [31]. Cancer cells, virus-infected cells, cells that undergo rapid proliferation and other abnormal cell types express the cell-surface glycoprotein MHC class I polypeptide-related sequence A (MICA), which can be identified by Natural killer group 2D (NKG2D), allowing immune identification and the removal of potential pathological cells [32]. The Michael team found that glucose transport to cells and active glycolytic metabolism are necessary to increase the expression of MICA, and purine synthesis is necessary to support this effect of glucose. An increase in purine nucleotide levels is sufficient to induce the expression of MICA and acts as the core component of MICA induction [33].

In the pathogenic process of tumors, under metabolic stress or hypoxia, tumors and immune cells produce adenosine, which decomposes into precursor purine nucleotides [34, 35]. Adenosine receptors (A1, A2A, A2B and A3) are found on the surface of various immune cells [36–39]. Studies have shown that adenosine acts as a reporter, reducing inflammatory immune signals by binding adenosine receptors [40–42]. In 1999, Xaus et al. found that macrophages express all four adenosine receptors. Adenosine prevents monocytes from dividing into macrophages and inhibits the proliferation of murine bone marrow-derived macrophages, which relies on macrophage colony stimulating factor (M-CSF) [43]. With further exploration, researchers found that adenosine interacts to varying degrees with different types of immune cells in tumor tissues; in fully mature dendritic cells, adenosine strongly inhibits the release of Interleukin-12 (IL-12) induced by Toll-like receptors (TLRs) by binding A2A receptors and inhibits the antitumor immune response. IL-12 is a strong antitumor cytokine, and the inhibitory effect of adenosine on IL-12 release promotes tumor growth [44]. Furthermore, an increase in adenosine levels in the tumor environment inhibits the lytic activity of natural killer cells by the binding of adenosine to A2A receptors [45]. Adenosine also
inhibits the release of various immunomodulatory cytokines in the T cell-mediated adaptive immune response by binding the A2A and A2B receptors [46]. Recent reports indicate that adenosine also plays an equally important role in the immune suppression of regulatory T cells [47–49]. The relationship between nucleotide metabolism and tumor immunity is shown in Table 1.

As mentioned above, nucleosides are decomposed from nucleotide acids [50], and nucleotide acids and their decomposition products, nucleosides, have diverse effects. For example, ATP and ADP have immunostimulatory functions and can stimulate natural killer cells in the spleen to absorb antigens [51]. The immunosuppressive function of nucleosides, including adenosine, is very extensive. All immune cells express receptors for extracellular nucleosides and nucleotide acids (such as adenosine and ATP) [52]. Pyrimidine nucleotides show selective affinity for certain receptor subtypes; therefore, blocking extracellular nucleotide metabolism to restore tumor immunotherapy interventions has provided new ideas and insight into the development of new antitumor small-molecule drugs targeting nucleotide metabolism [53, 54].

Late potential for the development of new antitumor drugs targeting organ-specific nucleotide metabolases in tumors

Nucleotide metabolism is the final and most critical link in tumor cell replication [55]. Tumor cells synthesize DNA and RNA through nucleotide metabolism to achieve uncontrolled self-proliferation [2].

In recent years, although nucleotide synthesis metabolic pathways, especially their importance and function, have attracted increasing attention, the key molecules and regulatory mechanisms involved in nucleotide metabolism are not very clear. All classical antitumor drugs, such as methotrexate and 5-fluourouracil [56, 57], are based on analogs of tumor nucleotide metabolites. However, due to their lack of specificity for tumor cell nucleotide metabolism, these drugs also inhibit the metabolic processes of normal cells, causing serious side effects [58–60]. Therefore, more in-depth study of the regulatory processes of nucleotide metabolism has very important theoretical and clinical significance.

At present, research on the related enzymes that regulate nucleotide metabolism in tumor cells is relatively scarce [61]. Hong et al. found that the nucleotide metabolism of digestive tract tumor cells varies in different diseased organs of the digestive tract, showing obvious organ specificity. By conducted more in-depth research using digestive tract tumors from different pathogenic organs as models, a specific key kinase that regulates the rate-limiting enzyme activity of nucleotide metabolism was discovered; in research on nucleotide synthesis and metabolism in gastric cancer, the kinase UHMK1 involved in the nucleotide anabolism of gastric cancer was found to activate the de novo rate-limiting purine anabolism-related enzymes 5′-aminoimidazole-4′-carboxamide ribonucleotide formyltransferase (ATIC) and inosine monophosphate dehydrogenase (IMPDH) by regulating the NCOA3/ATF4 axis, promoting the occurrence and development of gastric cancer [62]. In research on nucleotide anabolism in cholangiocarcinoma, CDC like kinase 3 (CLK3) was found to activate the rate-limiting enzyme in de novo purine anabolism, ATIC, by regulating the USP13/Fbxl14/c-Myc signaling axis, thereby promoting the molecular progression of cholangiocarcinoma. Furthermore, through large-scale small-molecule drug screening, tacrine hydrochloride was found to target CLK3 to treat cholangiocarcinoma, reducing the cholangiocarcinoma tumor formation rate by 85% and reducing the nucleotide level. Further understanding of tumor cell DNA repair is expected to provide a new strategy for the combined treatment of clinical cholangiocarcinoma [63]. In research on nucleotide anabolism in hepatocellular carcinoma, dual-specificity tyrosine phosphorylation-regulated kinase 3 (Dyrk3) was found to limit de novo purine anabolism by regulating the transcriptional activity of ATF4 and inhibiting the rate-limiting de novo purine anabolism-related enzyme 5′-phosphoribosyl pyrophosphate amidotransferase (PPAT), thereby inhibiting the growth and metastasis of hepatocellular
carcinoma [64]. Information on organ-specific nucleotide metabolases in tumors are shown in Table 2.

Smile et al. recently conducted high-throughput drug screening on a Fuji film library containing 10,560 compounds to identify drugs to eradicate glioblastoma-initiating cells (GICs). After screening the library layer by layer, seven compounds displaying 50% growth inhibition at a concentration less than 1 μM were identified, and two compounds with similar structures, 9700 and 10607, were ultimately identified from the seven compounds. Through mass spectrometry and in vitro enzyme activity inhibition experiments, the target protein of the above compounds was confirmed to be DHODH, and the effect of 10607 was obviously stronger than that of 9700, but its stability was lower. The researchers screened compound 10580, which exhibits high stability, based on its chemical type. Both compounds 10607 and 10580 contain 2′-amino-5′-cyclopropyl nicotinic acid and indole structural regions, which are not possessed by traditional DHODH inhibitors such as leflunomide and teriflunomide [65].

These research results have not only greatly enriched understanding of the regulatory mechanism of tumor cell nucleotide metabolism but also provided insights into the clinical development of new specific therapeutic drugs. Large-scale screening of small-molecule compounds targeting the above kinases, in vivo and in vitro antitumor pharmacodynamics experiments and in-depth studies of molecular mechanism are expected to overcome the deficiencies of existing drugs [66, 67].

Oncogenes and tumor-suppressor genes regulate tumor nucleotide metabolism through signaling pathways

Based on the impact of an increasing number of new ideas, such as information on gene mutations and immune escape, the notion that pathological metabolism in tumors occurs through the “Warburg effect” has been gradually disregarded [68–70]. At present, an increasing number of studies have shown that oncogenes and tumor-suppressor genes are key regulatory molecules in de novo nucleotide synthesis and that changes in these genes regulate the growth and metabolism of tumor cells through specific signaling pathways [71].

Karina et al. found that the absence of sirtuin 3 (SIRT3) could enhance mechanical target of rapamycin complex 1 (mTORC1) signal transduction, thus significantly upregulating the transfer of glutamine to the nucleotide metabolism pathway [72]. Naiara et al. found in an experimental model of pancreatic ductal adenocarcinoma (PDAC) that the proto-oncogene K-RAS could activate mitogen-activated protein kinase (MAPK), leading to an increase in the expression of the oncogene MYC and finally increasing the transcriptional activity of ribose 5′-phosphate isomerase A (RPIA), a raw material necessary for nucleotide metabolism, in the nonoxidative pentose phosphate pathway (PPP) [73]. That is, the proto-oncogene K-RAS enhanced the new synthesis of purine and pyrimidine in PDAC by upregulating the transcriptional activation of RPIA mediated by MYC and maintained high nucleotide levels in cells [74].

P53 is an important tumor suppressor gene. Mutant P53 (mtP53) has been proven to promote the occurrence and development of tumors [75–78]. Martinez et al. confirmed that mtP53 is related to the promoters of numerous nucleotide metabolism genes (NMGs), which promote the biosynthesis of nucleotides by upregulating NMGs at the transcriptional level. Experiments have shown that an ETS-binding site is present in the NMG promoter and that ETS proto-oncogene 2 (ETS2) can recruit mtP53 to the promoter region containing the ETS-binding site [79]; furthermore, the synergistic stimulation of both increased the expression of NMG, thus exerting metabolic activity to drive and maintain tumor occurrence and development [80].

An increasingly deep understanding of how oncogenes and tumor-suppressor genes regulate tumor nucleotide metabolism through signaling pathways provides hope for reasonable, metabolism-oriented cancer therapy, which must be based on a comprehensive understanding of host and tumor metabolism.

Table 2. Organ-specific nucleotide metabolases in tumors.

Tumor/cell type	Kinase	Signaling axis	Enzymes
Gastric cancer	UHMK1	NCOA3/ATF4	ATIC, IMPDH
Cholangiocarcinoma	CLK3	USP13/Fbx114/c-Myc	ATIC
Hepatocellular carcinoma	Dyrk3	NCOA3/ATF4	PPAT
Glioblastoma-initiating cells			DHODH

www.aging-us.com 13352 AGING
Nucleotide metabolism and oncogene-induced senescence

The Katherine team proved that senescence is a form of stable cell growth arrest. When activated oncogenes (RAS, BRAF, etc.) are expressed in normal cells, the cells produce abnormal proliferation signals, placing the cells in a state of growth arrest and inhibiting proliferation of the cells [5, 81]. Senescence induced by oncogenes has been recognized as a true anticancer mechanism [82–85]. Studies have shown that in the process of oncogene-induced senescence, nucleotide metabolism pathways are generally downregulated. The occurrence of OIS requires almost all deoxyribonucleoside triphosphates to be exhausted and DNA replication to be activated [86].

As discussed above, nucleotide metabolism plays an important role in tumor formation and progression. Moreover, the expression of ribonucleotide reductase regulatory subunit M2 (RRM2) is tumorigenic [87], and the nucleotide-metabolizing enzyme thymine synthase (TS) can independently transform cells in the body and cause tumor formation [88]. Thus, we can use components of the nucleotide metabolism pathways, such as RRM2 or TS, as diagnostic and prognostic biomarkers for a variety of tumors [89].

Summary

With increasingly in-depth research, the relationship between nucleotide metabolism, tumor occurrence and development and the immune microenvironment has become increasingly clear [90]. Accordingly, determining how tumor progression can be inhibited by interfering with nucleotide metabolism has received increasing attention. We need to fully understand that nucleotide metabolism is a complex process involving multiple catalytic enzymes, and an accurate understanding of this process will be beneficial to the research and development of tumor-specific drugs, improving the survival and prognosis of tumor patients. At present, there has been relatively little research in this field, and further research is needed to reveal the relationship between nucleotide metabolism and tumors. Exploring and clarifying this complex mechanism will become a hot research direction in the future.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest related to this study.

FUNDING

This work was supported by Fujian Provincial Funds for Distinguished Young Scientists (No. 2018D0016).

REFERENCES

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646–74. https://doi.org/10.1016/j.cell.2011.02.013 PMID:21376230
2. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016; 23:27–47. https://doi.org/10.1016/j.cmet.2015.12.006 PMID:26771115
3. Lane AN, Fan TW. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015; 43:2466–85. https://doi.org/10.1093/nar/gkv047 PMID:25628363
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68:394–424. https://doi.org/10.3322/caac.21492 PMID:30207593
5. Aird KM, Zhang R. Nucleotide metabolism, oncogene-induced senescence and cancer. Cancer Lett. 2015; 356:204–10. https://doi.org/10.1016/j.canlet.2014.01.017 PMID:24486217
6. Halbrook CJ, Wahl DR, Lyssiotis CA. Running the Light: Nucleotide Metabolism Drives Bypass of Senescence in Cancer. Trends Biochem Sci. 2019; 44:991–93. https://doi.org/10.1016/j.tibs.2019.10.007 PMID:31699584
7. Cinquin O, Demongeot J. Roles of positive and negative feedback in biological systems. C R Biol. 2002; 325:1085–95. https://doi.org/10.1016/s1631-0691(02)01533-0 PMID:12506722
8. Tong X, Zhao F, Thompson CB. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev. 2009; 19:32–37. https://doi.org/10.1016/j.gde.2009.01.002 PMID:19201187
9. Ogrodzinski MP, Teoh ST, Lunt SY. Targeting Subtype-Specific Metabolic Preferences in Nucleotide Biosynthesis Inhibits Tumor Growth in a Breast Cancer Model. Cancer Res. 2021; 81:303–14. https://doi.org/10.1158/0008-5472.CAN-20-1666 PMID:33115804
10. Tang W, Li X, Zhu Z, Tong S, Li X, Zhang X, Teng M, Niu L. Expression, purification, crystallization and preliminary X-ray diffraction analysis of human phosphoribosyl pyrophosphate synthetase 1 (PRS1).
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; 62:432–34.
https://doi.org/10.1107/S1744309106009067
PMID: 16682768

11. Yamaoka T, Itakura M. [Metabolism of purine nucleotides and the production of uric acid]. Nihon Rinsho. 1996; 54:3188–94.
PMID: 8976090

12. Gorrell A, Wang W, Underbakke E, Hou Z, Honzatko RB, Fromm HJ. Determinants of L-aspartate and IMP recognition in Escherichia coli adenylsuccinate synthetase. J Biol Chem. 2002; 277:8817–21.
https://doi.org/10.1074/jbc.M111810200
PMID: 11781326

13. Sarwono AEY, Mitsuhashi S, Kabir MHB, Sgetomi K, Okada T, Ohsaka F, Otsuguro S, Maenaka K, Igarashi M, Kato K, Ubukata M. Repurposing existing drugs: identification of irreversible IMPDH inhibitors by high-throughput screening. J Enzyme Inhib Med Chem. 2019; 34:171–78.
https://doi.org/10.1080/15257770.2018.1540474
PMID: 30451014

14. Camici M, Garcia-Gil M, Pesi R, Allegrini S, Tozzi MG. Purine-Metabolising Enzymes and Apoptosis in Cancer. Cancers (Basel). 2019; 11:354.
https://doi.org/10.3390/cancers11091354
PMID: 31547393

15. Wang L. Mitochondrial purine and pyrimidine metabolism and beyond. Nucleosides Nucleotides Nucleic Acids. 2016; 35:578–94.
https://doi.org/10.1080/15257770.2015.1125001
PMID: 27906631

16. Harris JC. Lesch-Nyhan syndrome and its variants: examining the behavioral and neurocognitive phenotype. Curr Opin Psychiatry. 2018; 31:96–102.
https://doi.org/10.1097/YCO.0000000000000388
PMID: 29227296

17. Torres RJ, Puig JG. Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis. 2007; 2:48.
https://doi.org/10.1186/1750-1172-2-48
PMID: 18067674

18. Vanella A, Barcellona ML, Serra I, Ragusa N, Avola R, Avitabile M, Giuffrida AM. Effect of undernutrition on some enzymes involved in the salvage pathway of purine nucleotides in different regions of developing rat brain. Neurochem Res. 1983; 8:151–58.
https://doi.org/10.1007/BF00963915
PMID: 6856022

19. Welin M, Nordlund P. Understanding specificity in metabolic pathways--structural biology of human nucleotide metabolism. Biochem Biophys Res Commun. 2010; 396:157–63.
https://doi.org/10.1016/j.bbrc.2010.04.054
PMID: 20494131

20. Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willems M. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev. 2016; 81:e00040–16.
https://doi.org/10.11128/MMBR.00040-16
PMID: 28031352

21. Christian S, Merz C, Evans L, Gradl S, Seidel H, Friberg A, Eheim A, Lejeune P, Brzezinka K, Zimmermann K, Ferrara S, Meyer H, Lesche R, et al. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia. 2019; 33:2403–15.
https://doi.org/10.1038/s41375-019-0461-5
PMID: 30940908

22. Fang H, Liu H, Chen N, Zhang C, Xie X, Xu Q. Site-directed mutagenesis studies on the uridine monophosphate binding sites of feedback inhibition in carbamoyl phosphate synthetase and effects on cytidine production by Bacillus amyloliquefaciens. Can J Microbiol. 2013; 59:374–79.
https://doi.org/10.1139/cjm-2012-0758
PMID: 23750951

23. Rathbone MP, Middlemiss PJ, Gysbers JW, DeForge S, Costello P, Del Maestro RF. Purine nucleosides and nucleotides stimulate proliferation of a wide range of cell types. In Vitro Cell Dev Biol. 1992; 28A:529–36.
https://doi.org/10.1007/BF02634137
PMID: 15220464

24. Rathbone MP, Middlemiss PJ, Kim JK, Gysbers JW, DeForge SP, Smith RW, Hughes DW. Adenosine and its nucleotides stimulate proliferation of chick astrocytes and human astrocytoma cells. Neurosci Res. 1992; 13:1–17.
https://doi.org/10.1016/0168-0102(92)90030-t
PMID: 1314349

25. Garavito MF, Narváez-Ortiz HY, Zimmermann BH. Pyrimidine Metabolism: Dynamic and Versatile Pathways in Pathogens and Cellular Development. J Genet Genomics. 2015; 42:195–205.
https://doi.org/10.1016/j.jgg.2015.04.004
PMID: 26059768

26. Siddiqui A, Ceppi P. A non-proliferative role of pyrimidine metabolism in cancer. Mol Metab. 2020; 35:100962.
https://doi.org/10.1016/j.molmet.2020.02.005
PMID: 32244187
27. Burnstock G. Purinergic signalling: pathophysiology and therapeutic potential. Keio J Med. 2013; 62:63–73.
https://doi.org/10.2302/kjm.2013-0003-re
PMID: 24067872
28. Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci. 2018; 19:3837.
https://doi.org/10.3390/ijms19123837
PMID: 30513816
29. Siddiqui A, Gollavilli PN, Schwab A, Vazakidou ME, Ersan PG, Ramakrishnan M, Pluim D, Coggins S, Saatci O, Annaratone L, Hm Schellens J, Kim B, Asangani IA, et al. Thymidylate synthase maintains the dedifferentiated state of triple negative breast cancers. Cell Death Differ. 2019; 26:2223–36.
https://doi.org/10.1038/s41418-019-0289-6
PMID: 30734777
30. Neagu M, Constantin C, Popescu ID, Zipeto D, Tzanakakis G, Nikitovic D, Fenga C, Stratakis CA, Spandidos DA, Tsatsakis AM. Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Front Oncol. 2019; 9:348.
https://doi.org/10.3389/fonc.2019.00348
PMID: 31139559
31. Han T, Kang D, Ji D, Wang X, Zhan W, Fu M, Xin HB, Wang JB. How does cancer cell metabolism affect tumor migration and invasion? Cell Adh Migr. 2013; 7:395–403.
https://doi.org/10.4161/cam.26345
PMID: 24131935
32. Lanier LL. NKG2D Receptor and Its Ligands in Host Defense. Cancer Immunol Res. 2015; 3:575–82.
https://doi.org/10.1158/2326-6066.CIR-15-0098
PMID: 26041808
33. McCarthy MT, Moncayo G, Hiron TK, Jakobsen NA, Valli A, Soga T, Adam J, O’Callaghan CA. Purine nucleotide metabolism regulates expression of the human immune ligand MICA. J Biol Chem. 2018; 293:3913–24.
https://doi.org/10.1074/jbc.M117.809459
PMID: 29279329
34. Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer. 2018; 6:57.
https://doi.org/10.1186/s40425-018-0360-8
PMID: 29914571
35. Vigano S, Alatzoglou D, Irving M, Ménétrier-Caux C, Caux C, Romero P, Coukos G. Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Front Immunol. 2019; 10:925.
https://doi.org/10.3389/fimmu.2019.00925
PMID: 31244820
101:3985–90.
https://doi.org/10.1182/blood-2002-07-2113
PMID:12446452

45. Lokshin A, Raskovalova T, Huang X, Zacharia LC, Jackson EK, Gorelik E. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. Cancer Res. 2006; 66:7758–65.
https://doi.org/10.1158/0008-5472.CAN-06-0478
PMID:16885379

46. Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997; 90:1600–10.
PMID:9269779

47. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007; 204:1257–65.
https://doi.org/10.1084/jem.20062512
PMID:17502665

48. Shi L, Feng M, Du S, Wei X, Song H, Yixin X, Song J, Wenxian G. Adenosine Generated by Regulatory T Cells Induces CD8+ T Cell Exhaustion in Gastric Cancer through A2aR Pathway. Biomed Res Int. 2019; 2019:4093214.
https://doi.org/10.1155/2019/4093214
PMID:31930120

49. Sundström P, Stenstad H, Langenes V, Ahlmaner F, Theander L, Ndah TG, Fredin K, Börjesson L, Gustavsson B, Bastid J, Quiding-Järbrink M. Regulatory T Cells from Colon Cancer Patients Inhibit Effector T-cell Migration through an Adenosine-Dependent Mechanism. Cancer Immunol Res. 2016; 4:183–93.
https://doi.org/10.1158/2326-6066.CIR-15-0050
PMID:26787824

50. Parkinson FE, Damaraju VL, Graham K, Yao SY, Baldwin SA, Cass CE, Young JD. Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem. 2011; 11:948–72.
https://doi.org/10.2174/156802611795347582
PMID:21401500

51. Zhang X, Qin J, Zou J, Lv Z, Tan B, Shi J, Zhao Y, Ren H, Liu M, Qian M, Du B. Extracellular ADP facilitates monocyte recruitment in bacterial infection via ERK signaling. Cell Mol Immunol. 2018; 15:58–73.
https://doi.org/10.1038/cmi.2016.56
PMID:27867196

52. Weiler M, Schmetzer H, Braeu M, Buhmann R. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation. Exp Cell Res. 2016; 349:1–14.
https://doi.org/10.1016/j.yexcr.2016.05.017
PMID:27233214

53. Kepp O, Loos F, Liu P, Kroemer G. Extracellular nucleosides and nucleotides as immunomodulators. Immunol Rev. 2017; 280:83–92.
https://doi.org/10.1111/imr.12571
PMID:29027229

54. Kumar V. Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal. 2013; 9:145–65.
https://doi.org/10.1007/s11302-012-9349-9
PMID:23271562

55. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between Metabolism and Cancer Biology. Cell. 2017; 168:657–69.
https://doi.org/10.1016/j.cell.2016.12.039
PMID:28187287

56. Lee JJ, Beumer JH, Chu E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol. 2016; 78:447–64.
https://doi.org/10.1007/s00280-016-3054-2
PMID:27217046

57. Luengo A, Gui DY, Vander Heiden MG. Targeting Metabolism for Cancer Therapy. Cell Chem Biol. 2017; 24:1161–80.
https://doi.org/10.1016/j.chembiol.2017.08.028
PMID:28938091

58. Baldo P, Fornasier G, Ciolfi L, Sartor I, Francescon S. Pharmacovigilance in oncology. Int J Clin Pharm. 2018; 40:832–41.
https://doi.org/10.1007/s11096-018-0706-9
PMID:30069667

59. Beaver CC, Magnan MA. Managing Chemotherapy Side Effects: Achieving Reliable and Equitable Outcomes. Clin J Oncol Nurs. 2016; 20:589–91.
https://doi.org/10.1186/186.CJON.589-591
PMID:27857268

60. Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, Schellongowski P, and Intensive Care in Hematological and Oncological Patients (iCHOP) Collaborative Group. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017; 21:89.
https://doi.org/10.1186/s13054-017-1678-1
PMID:28407743

61. Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer Cells Tune the Signaling Pathways to Empower de Novo
Synthesis of Nucleotides. Cancers (Basel). 2019; 11:688.
https://doi.org/10.3390/cancers11050688
PMDI: 31108873

62. Feng X, Ma D, Zhao J, Song Y, Zhu Y, Zhou Q, Ma F, Liu X, Zhong M, Liu Y, Xiong Y, Qiu X, Zhang Z, et al. UHM1K1 promotes gastric cancer progression through reprogramming nucleotide metabolism. EMBO J. 2020; 39:e102541.
https://doi.org/10.15252/embj.2019102541
PMDI: 31975428

63. Zhou Q, Lin M, Feng X, Ma F, Zhu Y, Liu X, Qu C, Sui H, Sun B, Zhu A, Zhang H, Huang H, Gao Z, et al. Targeting CLK3 inhibits the progression of cholangiocarcinoma by reprogramming nucleotide metabolism. J Exp Med. 2020; 217:e20191779.
https://doi.org/10.1084/jem.20191779
PMDI: 32453420

64. Ma F, Zhu Y, Liu X, Zhou Q, Hong X, Qu C, Feng X, Zhang Y, Ding Q, Zhao J, Hou J, Zhong M, Zhuo H, et al. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 3 Loss Activates Purine Metabolism and Promotes Hepatocellular Carcinoma Progression. Hepatology. 2019; 70:1785–803.
https://doi.org/10.1002/hep.30703
PMDI: 31066068

65. Echizenya S, Ishii Y, Kitazawa S, Tanaka T, Matsuda S, Watanabe E, Umekawa M, Terasaka S, Houkin K, Hatta T, Natsume T, Maeda Y, Watanabe SI, et al. Discovery of a new pyrimidine synthesis inhibitor eradicating glioblastoma-initiating cells. Neuro Oncol. 2020; 22:229–39.
https://doi.org/10.1093/neuonc/noz170
PMDI: 31499527

66. Zhang J, Wang G, Zhou Y, Chen Y, Ouyang L, Liu B. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell Mol Life Sci. 2018; 75:1803–26.
https://doi.org/10.1007/s00018-018-2759-2
PMDI: 29417176

67. Zhou M, Wang R. Small-molecule regulators of autophagy and their potential therapeutic applications. ChemMedChem. 2013; 8:694–707.
https://doi.org/10.1002/cmdc.201200560
PMDI: 23568434

68. Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci. 2016; 41:211–218.
https://doi.org/10.1016/j.tibs.2015.12.001
PMDI: 26778478

69. Schwartz L, Supuran CT, Alfarouk KO. The Warburg Effect and the Hallmarks of Cancer. Anticancer Agents Med Chem. 2017; 17:164–70.
https://doi.org/10.2174/1871520616666161031143301
PMDI: 27804847

70. Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019; 95:912–19.
https://doi.org/10.1080/09553002.2019.1589653
PMDI: 30822194

71. DeBerardinis RJ. Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med. 2008; 10:767–77.
https://doi.org/10.1097/GIM.0b013e31818b0d9b
PMDI: 18941420

72. Gonzalez Herrera KN, Zaganjor E, Ishikawa Y, Spinelli JB, Yoon H, Lin JR, Satterstrom FK, Ringel A, Mulei S, Souza A, Gorham JM, Benson CC, Seidman JG, et al. Small-Molecule Screen Identifies De Novo Nucleotide Synthesis as a Vulnerability of Cells Lacking SIRT3. Cell Rep. 2018; 22:1945–55.
https://doi.org/10.1016/j.celrep.2018.01.076
PMDI: 29466723

73. Ciou SC, Chou YT, Liu YL, Nieh YC, Lu JW, Huang SF, Chou YT, Cheng LH, Lo JF, Chen MJ, Yang MC, Yuh CH, Wang HD. Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. Int J Cancer. 2015; 137:104–15.
https://doi.org/10.1002/ijc.29361
PMDI: 25429733

74. Santana-Codina N, Roeth AA, Zhang Y, Yang A, Mashadova O, Asara JM, Wang X, Bronson RT, Lyssiotis CA, Ying H, Kimmelman AC. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun. 2018; 9:4945.
https://doi.org/10.1038/s41467-018-07472-8
PMDI: 30470748

75. Kaur RP, Vasudeva K, Kumar R, Munshi A. Role of p53 Gene in Breast Cancer: Focus on Mutation Spectrum and Therapeutic Strategies. Curr Pharm Des. 2018; 24:3566–75.
https://doi.org/10.1080/09298673.2018.1589653
PMDI: 30822194

76. Martinez LA. Mutant p53 and ETS2, a Tale of Reciprocity. Front Oncol. 2016; 6:35.
https://doi.org/10.3389/fonc.2016.00035
PMDI: 26925389

77. Román-Rosas A, García-Villa E, Herrera LA, Gariglio P, Díaz-Chávez J. Mutant p53 gain of function induces HER2 over-expression in cancer cells. BMC Cancer. 2018; 18:709.
https://doi.org/10.1186/s12885-018-4613-1
PMDI: 29970031
Tang X, Li Y, Liu L, Guo R, Zhang P, Zhang Y, Zhang Y, Zhao J, Su J, Sun L, Liu Y. Sirtuin 3 induces apoptosis and necroptosis by regulating mutant p53 expression in small-cell lung cancer. Oncol Rep. 2020; 43:591–600. https://doi.org/10.3892/or.2019.7439 PMID: 31894331

Do PM, Varanasi L, Fan S, Li C, Kubacka I, Newman V, Chauhan K, Daniels SR, Bocchetta M, Garrett MR, Li R, Martinez LA. Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev. 2012; 26:830–45. https://doi.org/10.1101/gad.181685.111 PMID: 22508727

Kollareddy M, Dimitrova E, Vallabhaneni KC, Chan A, Le T, Chauhan KM, Carrero ZI, Ramakrishnan G, Watabe K, Haupt Y, Haupt S, Pochampally R, Boss GR, et al. Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nat Commun. 2015; 6:7389. https://doi.org/10.1038/ncomms8389 PMID: 26067754

Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007; 8:729–40. https://doi.org/10.1038/nrm2233 PMID: 17667954

Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dörken B, Schmitt CA. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005; 436:660–65. https://doi.org/10.1038/nature03841 PMID: 16079837

Carnero A. Markers of cellular senescence. Methods Mol Biol. 2013; 965:63–81. https://doi.org/10.1007/978-1-62703-239-1_4 PMID: 23296651

Sulli G, Rommel A, Wang X, Kolar MJ, Puca F, Saghatelian A, Plikus MV, Verma IM, Panda S. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature. 2018; 553:351–55. https://doi.org/10.1038/nature25170 PMID: 29320480

Zhao Y, Tyshkovskiy A, Muñoz-Espín D, Tian X, Serrano M, de Magalhaes JP, Nevo E, Gladyshev VN, Seluanov A, Gorbunova V. Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proc Natl Acad Sci U S A. 2018; 115:1801–06. https://doi.org/10.1073/pnas.1721160115 PMID: 29432174