Comparative Assessment of Phytochemicals, Antioxidant, and Antimicrobial Potential of Stem Bark and Small Branches of *Buchanania cochinchinensis* (Lour.) MR Almeida for Substitution in Ayurvedic Drugs

Amit K Dixit¹, Vijay Kumar², Neha Maloni³, Mrinmoy Sarkar⁴, Bhavana Shrivastava⁵, Parvathy G Nair⁶, Dara S Rotwar⁷, Pallavi Mundada⁸

Abstract

Aim: Present study was intended to investigate the physicochemical parameters, phytochemical constituents, and biochemical studies of the stem bark (STB) and small branches (SBs) of *Buchanania cochinchinensis* (Lour.) MR Almeida.

Materials and methods: The parameters were checked in different solvent systems, viz., petroleum ether, acetone, and methanol.

Results: Significant antioxidant (10–85%) and antimicrobial (5–20 mm) activities were observed in acetone and methanolic extracts of STB and SB as compared to the controls. In acetone and methanolic extracts, the observed values for total phenol content (TPC) ranged from 10 mg to 93 mg of gallic acid equivalent per gram of extract and the total flavonoid content (TFC) ranged from 30 mg to 87 mg of quercetin equivalent (QE) per gram of extract. Bovine serum albumin (BSA) protein interaction studies of all the extracts were performed and the observed values for binding constant ranged from 22 to 62 × 10⁻⁵ μM⁻¹.

Conclusion: Overall, acetone and methanolic extracts of STB and SB of plant have shown significant results in medicinal aspects mentioned above.

Clinical significance: These comparative findings of STB and SB of *Buchanania cochinchinensis* (Lour.) MR Almeida provide undeniable systematic facts of its beneficial prospective as an Ayurvedic drug.

Keywords: Antimicrobial, Antioxidant, *Buchanania*, Medicinal plants, Natural products, Phytochemicals.

Journal of Drug Research in Ayurvedic Sciences (2019): 10.5005/jp-journals-10059-0069

Introduction

Nature and natural products are the major source of medicines especially in the developing countries. These herbal drugs are valuable in diverse treatments. Plants remain an imperative feature in healthcare as the developing and underdeveloped countries mostly rely on plants and natural products for their traditional medicines.¹ The diverse applications of herbal drugs or natural products are due to the presence of a wide class bioactive organic compounds.¹–³ In recent past, important organic compounds have been isolated from the natural product, and these natural products and their derivatives have been introduced in market as active drugs even in allopathic system.²–⁴ Several species of flora belonging to different families have been investigated regarding the presence of any possible beneficial properties for medicinal use.

Buchanania cochinchinensis (Lour.) MR Almeida (BC) is commonly known as Chironji belongs to Anacardiaceae family and contains multiple class of phytochemicals such as terpenoids, saponins, and tannins.⁵ Tannins, alkaloids, saponins, reducing sugars, triterpenoids, and flavonoids are the major chemical constituents of BC. The reported phytochemical constituents of BC are linoleic acid, β-amyrin, palmitoleic acid, myricetin 3-rhamnoside-3-rhamnopyranoside, as expectorant, aphrodisiac, purgative, blood purifier, and thirst-quencher.⁸–¹² The fruit kernels of BC are used as ointment in skin diseases and as antioxidants.⁵ ⁶

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Recent studies revealed that BC is an important plant as it helps in wound-healing, gastric ulcer treatment and has antistress, anti-diarrheal, anti-venom, antimicrobial, antioxidant anti-inflammatory, analgesic, and anti-Alzheimer properties. During the course of our study of the biologically active constituents of BC, we examined the chemical constituents of the small branches (SBs) and stem bark (STB) in various extracts. In the current study, we investigated the phytochemical, antioxidant, and antimicrobial properties of the extracts (petroleum ether, acetone, and methanol) of SB and STB obtained from BC.

MATERIALS AND METHODS

Plant Material Collection
The STB and SB of BC were collected from Gwalior, Madhya Pradesh, India. The STB and SB were dried in shade and their dried powder was stored in airtight jars for further study.

Preparation of Plant Extracts
Three solvents, viz., petroleum ether, acetone, and methanol, were used to extract the phytochemicals. To extract the phytochemicals, approximate 25 g of the dried powder (STB or SB) was soaked in the screw tight glass jar for 48 hours. The extracts were filtered and evaporated, and the yield percentages were calculated as:

\[
\text{Percentage of extract yield} = \frac{R}{S} \times 100
\]

where \(R \) = wt. of the dry residues of the extract; \(S \) = wt. of the dry powder of STB or SB i.e., 25 g.

Physicochemical and Phytochemical Analysis
Physicochemical parameters, viz., the pH, loss on drying (LOD), ash values, and extractive values were investigated as per the Ayurvedic Pharmacopoeia of India (API) protocols. The qualitative analysis of phytochemicals, viz., phenols, tannins, carbohydrates, saponins, alkaloids, flavonoids, furanoids, quinone, proteins, coumarins, steroids, and triterpenoids was done as per recent studies. Quantitative analysis of phytochemicals was done by using direct mass study.

Biochemical Assays
Biochemical assays, viz., the TPC and TFC were analyzed by following the recent protocols. Antioxidant assays, viz., nitric oxide scavenging activity, ferric-reducing power estimation, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, ferric-reducing antioxidant power (FRAP) assay, metal-chelating activity assay, scavenging activity of superoxide anion assay, and phosphomolybdenate antioxidant assay of various extracts were performed per our recent reports. Also, bovine serum albumin (BSA) protein-binding ability of various extracts was assessed per our recent reports.

Determination of Antimicrobial Activities
Antimicrobial activities were determined on three fungal and three bacterial strains. The antimicrobial studies of various extracts were performed per the recent reports.

Statistics Analysis
Studies were executed in triplicates and the results were presented as ± mean. Excel (window 8), analysis of variance, and Tukey’s test were used for statistical analysis. \(p \leq 0.05 \) was considered statistically significant.

RESULTS AND DISCUSSIONS

Physicochemical Parameters
The observed pH values for SB and STB of BC were 5.63 ± 0.09 and 5.52 ± 0.11, respectively. The pH range was similar in both the SB and STB of BC, indicating the presence of similar kind of phytochemicals in SB and STB. It is well-documented that the pH plays a significant role in the medicinal activities of phytochemicals. Furthermore, the pH values ranging from 4 to 7 exhibited a relatively high antioxidant activity. In line with this, the concerned plant sample, in this context, is supposed to correlate well in terms of its antioxidant activities.

Total ash value determined for the SB and STB of BC was 8.80 ± 0.65% and 8.01 ± 0.33%, respectively. However, the total ash of STB was slightly less than that of SB which means the mineral content of SB is higher than that of STB. The total ash value represents the diagnostic purity index. The observed acid-insoluble ash values for SB and STB were 78.66 ± 2.22% and 81.61 ± 2.44%, respectively.

Table 1: Qualitative analysis of phytochemicals present in the various extracts of stem bark and branches of *Buchanania cochinchinensis* (Lour.) MR Almeida (++++, excellent; ++, good; +, present; −, not present)

Phytochemical	Petroleum ether	Acetone	Methanol			
	STB	Branches (SB)	STB	Branches (SB)	STB	Branches (SB)
Glycosides	+++	++	+++	+	+++	+
Terpenoids	++++	++++	++++	+	++++	+++
Proteins	−	−	−	−	−	−
Amino acids	−	−	−	−	−	−
Alkaloids	−	−	+	−	+	−
Carbohydrates	+	+	−	−	+	+
Flavonoids	−	−	+++	+++	+	+
Phenols	−	−	−	−	−	−
Saponins	−	−	−	−	−	−
Steroid	−	−	+	−	−	−
Tannins	−	−	+++	+++	+	+

Journal of Drug Research in Ayurvedic Sciences, Volume 4 Issue 2 (April–June 2019) 73
Similarly, steroids, derived from plants, also have been reported to possess antibacterial and insecticidal properties besides having cardiotoxic effect. Saponins are reported to have antidiabetic and hypocholesterolemic properties, while triterpenoids display antancer and analgesic properties. Secondary metabolites play a potent role in pharmacological industrial sector. Dissimilarities were identified between previous and current studies. The variances might include changes in divergences in the genetic structural, geographic location, and environmental effects of the plants and their extraction method used. In our study, acetone and methanol offer better solvent systems for the extraction of various metabolites from such plants.

Quantitative phytochemical tests were used to ensure the occurrence of phytochemicals in various extracts of STB and SB (Tables 2 to 4). Direct mass analysis of the extracted metabolite was performed and compared with the National Institute of Advanced Industrial Science and Technology, Natural Product library, and National Institute of Standards and Technology.

Table 2: Quantitative analysis of phytochemicals present in the petroleum ether extracts of stem bark and small branch of *Buchanania cochinchinensis* (Lour.) MR Almeida

Mass (m/z)	Name of compound
102	N-Methoxy-N-methylacetamide
113	4-Imidazolecarboxylic acid
124	2-Pyrazinecarboxylic acid
141	4-Hydroxy-3,6-dimethylpyran-2-one
144	Methyl 3-Hydroxyisoxazole-5-carboxylate
152	8-Azaguanine
157	4-Hydroxy-3,5,6-trimethylpyran-2-one
167	m-Phenylenediboronic acid
186	7-Hydroxy-6-methoxychromen-2-one
198	3-Acetyl-5-sec-butyl-4-hydroxy-1,5-dihydro-2H-pyrrol-2-one
220	Diethyl bis (hydroxymethyl) malonate
227	7,8-Dihydroxy-6-methoxychromen-2-one
253	Methyl 5-bromo-5-deoxy-β-D-idofuranosiduronic acid gamma-lactone
256	p-Nitrophenylphosphorodichloridate
263	Diheptyl disulfide
274	N-[2-(1H-Indol-3-yl)ethyl] acetamide
279	6-Acetyl-1-bromo-2-methoxynaphthalene
282	9-Octadecanamide
337	Ibogamine-18-carboxylic acid, 3,4-dehydro-, methyl ester
356	8-Hydroxy-8-(3-octoxiran-2-yl) octanoic acid
375	2-Chloro-10-(3-(4-methyl-1-piperazinyl)propyl)phenothiazine dimaleate
485	2(3H)-Furanone, 4-[2-{16-O-[[2E]-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]-β-D-glucopyranosyl]oxy]-1-methylethyl[dihydro-4-hydroxy
537	5-Cholestene-3β,4β-diol 3-mono[p-anisate)
569	10-Methyl-6-(3-furyl)-15,18-dihydroxy-1,5,16-trimethyl-8,14-dioxo-7,11-dioxahexacyclonadec-19-yl](hydroxy)acetate

The observed water-soluble ash values for SB and STB were 0.76 ± 0.08% and 0.78 ± 0.04%, respectively. The observed LOD for SB and STB was 0.302 ± 0.06% and 0.292 ± 0.05%, respectively.

In **Biochemical Assays**

In vitro Antioxidant Activity

Under DPPH assay, the observed value for control (ascorbic acid) was 91.30 ± 2.78%. Under the same experimental conditions, the observed LOD for SB and STB was 0.302 ± 0.06% and 0.292 ± 0.05%, respectively.

The observed water-soluble ash values for SB and STB were 0.76 ± 0.08% and 0.78 ± 0.04%, respectively. The observed LOD for SB and STB in petroleum ether were 0.66% and 0.49%, respectively. In acetone, these were 2.08% and 4.37%, respectively. The observed extractive values for SB and STB in methanol were 79.98% and 18.34%, respectively. As compared to petroleum ether extract, excellent yield was observed with solvents acetone and methanol (methanol >> acetone). It highlights the presence of polar compounds in the plant.
Comparative Biochemical and Antimicrobial Assessment of Stem Bark and Small Branches of *Buchanania Cochinchinensis*

Table 3: Quantitative analysis of phytochemicals present in the acetone extracts of STB and SB of *Buchanania cochinchinensis* (Lour.) MR Almeida

Mass	m/z²	Name of compound
656	356, 198, 152, 91	p-Octylphenyl 2-chloro-4-(p-heptylbenzoyloxy)benzoate
680	566, 356, 157, 141	5-Cholestone-3β,4β-diol bis(p-chlorobenzoate)
736	225, 124, 87, 53	Trihexadecyl borate
Petroleum ether extract of STB		
102	75, 57, 45	N-Methoxy-N-methylacetamide
131	89, 47, 43	N-Methoxydiacetamide
134	102, 89, 71, 59	3-Methyl-1,3,5-pentanetriol
144	131, 102	Methyl 3-hydroxyisoxazole-5-carboxylate
155	44, 43, 42	6-Amino-2,4,5(3H)-pyrimidinetrione 5-oxide
157	150, 125, 113, 102	4-Hydroxy-3,5,6-trimethylpyran-2-one
164	131, 103, 85, 74	2-Deoxy-D-galactose
220	127, 141, 113, 98, 27	Diethyl bis(hydroxymethyl)malonate
227	193, 186, 152, 131	7,8-Dihydroxy-6-methoxychromen-2-one
242	169, 155, 151, 141, 127, 113	1-Bromo-2-methylhexadecane
256	253, 124, 75, 63	p-Nitrophenylphosphoridichloridate
267	220, 192, 166, 102	2-(2-(5-Nitro-2-furyl)vinyl)quinoxaline
274	253, 225, 198, 157, 124	N-[2-(1H-indol-3-yl)ethyl]acetamide
295	220, 198, 166, 103	Ethyl(5-methoxy-2-nitrobenzoyl)pyruvate
305	257, 228, 198, 76	N-(2-Iodobenzoyl)glycine
314	267, 258, 152, 134	5,7-Dihydroxy-2-(p-methoxyphenyl)-6,8-dimethyl-4-chromanone
318	295, 220, 164	2-Benzyl-1-methyl-5-nonylpyrrolidin-3-ol
371	267, 102, 91, 77	N-Benzyl-N-(1-benzoyl-1-methylpropyl)benzamide
373	305, 273, 228	1,3,6,8-Tetrahydroxy-2-(1-hydroxyhexyl)anthracene-9,10-dione
383	255, 174, 144	Methyl tetracosanoate
433	231, 157, 134, 102	Ethyl 3,5-dicyano-2,4-bis(p-methoxyphenyl)-6-oxo-3-piperidinecarboxylate
447	273, 150	3,4,5-Trihydroxy-6-[5-hydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl]oxyoxane-2-carboxylic acid
485	167, 144, 131	2(3H)-Furanone, 4-[[6-O-[[2E]-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]-β-Dglucopyranosyl]oxy]-1-methylethyl[dihydro-4-hydroxy
502	383, 157, 114, 102	N(2)-Tosyl-L-glutamic acid bis(p-vinylanilide)
562	243, 164, 141, 43	Methyl 2,3,4-Tri-O-acetyl-6-O-triphenylmethyl-β-D-galactopyranoside
625	383, 341, 267, 152	Glycerol 1,2-diarteate
680	566, 356, 157, 141	5-Cholestone-3-β,4β-diol bis(p-chlorobenzoate)
736	225, 124, 87, 53	Trihexadecyl borate
757	599, 438, 383, 178, 164	2,2′-Bis(dibromomethyl)-1,1′-bianthaquinone
887	267, 152, 134, 55	1,2,3-Propanetriyl tris(trans-9-octadecenoate)

Contd…
Comparative Biochemical and Antimicrobial Assessment of Stem Bark and Small Branches of *Buchanania Cochinchinensis*

Mass and Name of Compound

Mass	m/z	Name of compound
219	127, 141, 113, 98, 27	Diethyl bis(hydroxymethyl)malonate
245	242, 169, 155, 141, 127, 113	1-Bromo-2-methylhexadecane
256	213, 185, 171, 157, 113	Hexadecanoic acid
264	262, 166, 53, 43	Diheptyl disulfide
274	253, 225, 198, 157, 124	N-[2-((1H-Indol-3-yl)ethyl]acetamide
279	263, 220, 193, 113	6-Acetyl-1-bromo-2-methoxynaphthalene
281	141, 128, 113	9-Octadecanamide
304	245, 243, 185, 141, 102	n-Hexanoyl-L-leucineanilide
311	181, 152, 136, 83	(3,4-Dimethoxyphenethylaminomethyl)methylmalonic acid
319	243, 157, 143, 43	1,2,3,5-Tetra-O-acetylated 3-Galactopyranosyl-β-D-ribofuranose
327	340, 169, 144, 113	5-(3-Chloro-4-hydroxyphenyl)isoxazole-3-quinolinol
363	319, 169, 152, 113, 102	1-Acetyl-2-morpholin-5,5-diphenyl-2-imidazolin-4-one
373	372, 272, 246, 141, 113	2-Chloro-10-(3-(4-methyl-1-piperazinyl)propyl)phenothiazine dimaleate
396	396, 363, 184, 155, 103	1-Acetyl-2-morpholin-5,5-diphenyl-2-imidazolin-4-one
443	281, 267, 185, 113	L-Ascorbic acid 6-stearate
469	304, 256, 178, 157, 136, 103	Glycyrhretinic acid
572	199, 103, 77	1-(3-Benzamido-5-o-benzoyl-2-benzoylthio-2,3-dideoxy-β-D-ribofuranosyl)-2,4(1H,3H)-pyrimidinedione
610	304, 256, 178, 157, 136	Hesperedin
672	219, 199, 178, 157, 141	4-((1E)-3-((2-((3-Bromo-2-methylimidazo(1,2-a)pyridin-8-yl)oxy)methyl)-2,4-dichlorophenyl)methylamino)-2-oxoethyl)amino)-3-oxo-1-propenyl-N,N-dimethylbenzamide monomethanesulfonate
680	566, 356, 157, 141	5-Cholestene-3β,4β-diol bis(p-chlorobenzoate)
822	373, 311, 219, 155	[3,4-Dihydroxy-6-[5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxyan-2-yl]oxychromen-3-yl]oxy-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]methyl acetate
896	610, 373, 264, 136	Pentopyranoside, (3β,5ξ,9ξ,16β,18ξ,22β)-22-(benzoyloxy)-16,28-dihydroxyolean-12-en-3-yl-3-O-hexopyranosyl

Acetone extract of STB

Mass	m/z	Name of compound
102	75, 57, 45	N-Methoxy-N-methylacetamide
113	112, 94, 68, 44	4-Imidazolecarboxylic acid
121	80, 53, 44	2-Pyrazinecarboxylic acid
134	102, 89, 71, 59	3-Methyl-1,3,5-pentanetriol
137	136, 102, 89, 71, 59	3-Methyl-1,3,5-pentanetriol
141	138, 124, 105	4-Hydroxy-3,6-dimethylpyran-2-one
150	103, 91, 77	4-(3-Hydroxybutyl)phenol
154	44, 43, 42	6-Amino-2,4,5(3H)-pyrimidinetrione 5-oxime
157	150, 125, 113, 102	4-Hydroxy-3,5,6-trimethylpyran-2-one
164	131, 103, 85, 74	2-Deoxy-D-galactose
178	177, 144, 141, 113, 102	5-Amino-4,6-dichloro-2-methylpyrimidine
185	157, 155, 126, 102	2,3-Naphthalenedialdehyde
199	152, 124	3-Acetyl-5-sec-butyl-4-hydroxy-1,5-dihydro-2H-pyrrol-2-one
219	127, 141, 113, 98, 27	Diethyl bis(hydroxymethyl)malonate
227	193, 186, 152, 131	7,8-Dihydroxy-6-methoxychromen-2-one
236	236, 219, 178, 141, 121	6,7,8-Trmethoxychromen-2-one
243	169, 155, 151, 141, 127, 113	1-Bromo-2-methylhexadecane
250	236, 199, 141, 134, 102	2-Amino-3-[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]propanoic acid
253	236, 219, 199, 141	5,6,7-Trmethoxychromen-2-one
255	253, 124, 75, 63	p-Nitrophenylphosphorodichloridate
273	253, 225, 198, 157, 124	N-[2-((1H-Indol-3-yl)ethyl]acetamide
288	185, 129, 115	Tetradecanoic acid
Table 4: Quantitative analysis of phytochemicals present in the methanolic extracts of STB and SB of *Buchanania cochinchinensis* (Lour.) MR Almeida

Mass (m/z)	Name of compound
291	2-(4,5-Dihydroxy-2-methylphenyl)-6-hydroxy-4-methoxybenzoic acid
299	2-(3-Hexyl-4-methyl-2,5-dioxopyrrol-1-yl)-3-hydroxybutanoic acid
315	5,7-Dihydroxy-2-(p-methoxyphenyl)-6,8-dimethyl-4-chromanone
321	2-Benzy1-1-methyl-5-nonylpyrrolin-3-ol
325	(35,62)-3-Methyl-6-[[2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl][methylidene] Piperazine-2,5-dione
371	1,3,6,8-tetrahydroxy-2-(1-hydroxyhexyl)anthracene-9,10-dione
391	β-D-Galactopyranosepentacetate
401	(5-Benzyloxy-1,2,6-trihydroxycyclohex-3-en-1-yl)methyl benzoate
419	6-Benzyl-2-(p-methoxyphenyl)-5-phenyl-5,6-dihydro-2H-1,2-thiazine,1,1-dioxide
537	5-Cholestan-3β,4β-diol 3-mono(p-anisate)
578	3-[5-(3,5-Dihydroxydecanoyloxy)-3-hydroxydecanoyloxy-5-hydroxydecanoyl acid
484	2(3H)-Furanone, 4-[[6-O-[[2E]-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]-β-D-glucopyranosyl]oxy]-1-methyl(ethyl)dihydro-4-hydroxy
597	(25)-7-[[25,3R,4S,5R,6R]-4,5-Dihydroxy-6-(hydroxymethyl)-3-[[25,3R,4S,5R,6S]-3,4,5-tri hydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-2-(3,4-dihydroxyphenyl)-5-hydroxy-2,3-dihydrochromen-4-one
612	Hesperidin
993	Pentopyranoside, (3β,5ξ,9ξ,16β,18ξ,22β)-22-(benzyloxy)-16,28-dihydroxyolean-12- en-3-yl 3-O-hexopyranosyl

Contd...
Comparative Biochemical and Antimicrobial Assessment of Stem Bark and Small Branches of *Buchanania Cochinchinensis*

Journal of Drug Research in Ayurvedic Sciences, Volume 4 Issue 2 (April–June 2019)

Mass	m/z	Name of compound
443	281, 267, 185, 113	L-Ascorbic acid 6-stearate
479	173, 143, 91	2,7-Dibenzyll-1,8-diphenyl-2,7-octanediol
576	199, 103, 77	1-(3-Benzamido-5-o-benzoyl-2-benzoylthio-2,3-dideoxy-β-D-ribofuranosyl)-2,4(1H,3H)-pyrimidinedione
640	304, 256, 178, 157, 136	Hesperidin
686	338, 320, 113, 97	Cis,cis-N,N'-methylenebis(13-docosenamide)
712	360, 279, 214, 149, 102	1-Hydroxy-2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-9H-xanthene-3,6,7-triy triacetate
757	338, 178, 149, 133	3-Hydroxy-1-[3-hydroxy-1-oxo-1(2,3,4,5,6-pentahydroxyhexoxy)decan-5-yl]oxy-1-oxodecan-5-yl 3,5-dihydroxydecanoate

Methanolic extract of STB

Mass	m/z	Name of compound
102	75, 57, 45	N-Methoxy-N-methylacetamide
113	112, 94, 68, 44	4-Imidazolecarboxylic acid
125	124, 80, 53, 44	2-Pyrinecarboxylic acid
131	113, 84, 53, 43	3-Guanidinopropionic acid
137	136, 102, 89, 71, 59	3-Methyl-1,3,5-pentanetriol
142	138, 124, 105	4-Hydroxy-3,6-dimethylpyran-2-one
144	131, 102	Methyl 3-hydroxyisoxazole-5-carboxylate
157	150, 125, 113, 102	4-Hydroxy-3,5,6-trimethylpyran-2-one
164	131, 103, 85, 74	2-Deoxy-D-galactose
171	170, 153, 125, 103	Gallic acid
178	177, 144, 141, 113, 102	5-Amino-4,6-dichloro-2-methylpyrimidine
192	127, 141, 113, 98, 27	Diethyl bis(hydroxymethyl)malonate
227	193, 186, 152, 131	7,8-Dihydroxy-6-methoxychromen-2-one
236	236, 219, 178, 141, 121	6,7,8-Trimethoxychromen-2-one
243	169, 155, 151, 141, 127, 113	1-Bromo-2-methylhexadecane
256	253, 124, 75, 63	p-Nitrophenyl phosphorodichloridate
269	220, 192, 166, 102	2-(2-(5-Nitro-2-furyl)vinyl)quinoline
280	180, 128, 114, 112	9-Octadecenamide
283	184, 148, 137, 124, 114, 111	12-Hydroxy-9-octadecenoic acid
299	253, 236, 134	2-(3-Hexyl-4-methyl-2,5-dioxopyrrol-1-yl)-3-hydroxybutanoic acid
313	267, 258, 152, 134	5,7-Dihydroxy-2-(p-methoxyphenyl)-6,8-dimethyl-4-chromanone
321	295, 220, 164	2-Benzyl-1-methyl-5-nonylpyrolidin-3-ol
341	340, 169, 144, 113	5-(3-Chloro-4-thiocyanatophenylazo)-8-quino linol
366	363, 319, 169 152, 113, 102	1-Acetyl-2-morpholin-5,5-diphenyl-2-imidazolin-4-one
375	305, 273, 228	1,3,6,8-Tetrahydroxy-2-(1-hydroxyhexyl)anthracene-9,10-dione
391	243, 199, 157, 141, 103	β-D-Galactopyranosepentaacetate
437	391, 236, 171, 166, 144, 131	Dimethyl 5′,6′-bis(methylthio)-p-terphenyl-2′,3′-dicarboxylate
443	281, 267, 185, 113	L-Ascorbic acid 6-stearate
462	420, 303, 283, 256, 236	(1α,2α,3α)-1,2,3,5,8-Pentahydroxy-6-methoxy-3-methyl-1,2,3,4-tetrahydroanthraquinone 1,2,8-triacetate
477	304, 256, 178, 157, 136, 103	Glycyrhrinetinic acid
487	485, 167, 144, 131	2(3H)-Furanone, 4-[2-{6-O-(3E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]-β-D-glucopyranosyl(oxy)-1-methyl(ethyl)dihydro-4-hydroxy
536	356, 274, 152, 135, 124	5-Cholestene-3β,4β-diol 3-monoo-p-anisate
662	373, 178, 134, 102	3-[5-(3,5-Dihydroxydecanoxyloxy)-3-hydroxydecanoxyloxy-5-hydroxydecanoic acid

observed values for various extracts, viz., petroleum ether, acetone, and methanol extracts of SB and STB were 9.04 ± 0.91%, 8.22 ± 0.88%, 90.83 ± 3.02%, 88.83 ± 3.77%, 90.48 ± 2.55%, and 89.18 ± 2.91% respectively. In present study, polar solvent extracts, i.e., acetone and methanol extracts of SB and STB of BC under study demonstrated almost similar antioxidant properties to that of ascorbic acid (Fig. 1A). Clearly, the DPPH properties are similar in both STB and SB.

Under metal-chelating assay, EDTA was used as a control and the observed value for the assay was 89.17 ± 2.84%. Under similar experimental conditions, the observed value for petroleum ether,
The acetone and methanol extracts of SB and STB were evaluated for their antioxidant activities. The DPPH radical scavenging activity of the extracts was measured, and the values were as follows: acetone and methanol extracts of SB and STB were 73.61 ± 2.14%, 88.05 ± 3.65%, 81.93 ± 2.89%, 82.23 ± 3.12%, 84.24 ± 2.54%, and 93.62 ± 3.53%, respectively (Fig. 1B). Clearly, the STB demonstrated a higher activity as compared to that of SB in petroleum ether and methanolic extract (Fig. 1B).

In other antioxidant assay, i.e., FRAP, the observed values for control (ferrous sulfate) were 82.73 ± 2.42%; and under the same conditions, the value for acetone and methanol extracts of SB and STB was 52.34 ± 1.93%, 61.71 ± 2.19%, 45.29 ± 2.21%, and 57.01 ± 2.11%, respectively (Fig. 1C). It was noticed that...
petroleum ether extracts of SB and STB have no FRAP antioxidant activities but polar solvents showed significant activities under the FRAP assay.

The percentage of antioxidant activity for ascorbic acid (control) was 33.23 ± 1.44 and for petroleum ether, acetone, and methanol extracts of SB and STB was 2.66 ± 0.037, 2.41 ± 0.12, 20.31 ± 1.07, 28.92 ± 1.28, 15.48 ± 1.31, 27.43 ± 1.83, respectively. Clearly, the antioxidant properties of acetone and methanol extracts are almost similar to that of ascorbic acid (Fig. 1D). Low activities were observed for petroleum ether extracts (2.4–2.7% only). The STB's acetone and methanolic extracts have low activities (15.40–20.30% only) as compared to the control.

The percentage of radical scavenging activity (antioxidant superoxide) against NO, for ascorbic acid (control) was 64.98 ± 2.38 and for petroleum ether, acetone, and methanol extracts of SB and STB was 26.81 ± 1.11, 25.65 ± 1.19, 40.26 ± 1.96, 61.41 ± 2.58, 55.75 ± 2.12, and 45.99 ± 2.22, respectively. Clearly, acetone and methanol extracts have better antioxidant properties compared to that of petroleum ether, but all less than that of ascorbic acid (Fig. 1E). Here petroleum ether and methanolic extracts of SB demonstrated more superoxide radical scavenging activity compared to that of STB.

Table 5: Total phenolic and flavonoid contents of various extracts of SB and STB of Buchanania cochinchinensis (Lour.) MR Almeida. Code: A = STB, B = SB. Solvents: petroleum ether (1), acetone (2), and methanol (3). Values are expressed as mean ± SD (n = 3).

Table 6: Quantitative analysis of rate constants of the various extracts of STB and SB of Buchanania cochinchinensis (Lour.) MR Almeida observed in bovine serum albumin study.

Table 7: Antibacterial activities of various extracts of Buchanania cochinchinensis (Lour.) MR Almeida of SB and STB. Code: A = SB, B = STB. Solvents: petroleum ether (1), acetone (2), and methanol (3). Values are expressed as mean ± SD (n = 3).
extracts. Acetone extracts of STB showed more activity compared to that of SB extracts.

The percentage of radical scavenging activity (antioxidant superoxide) against NO, for ascorbic acid (control) was observed 29.21 ± 1.58 and for petroleum ether, acetone, and methanol extracts of SB and STB was 21.65 ± 1.12, 21.76 ± 1.22, 16.34 ± 1.61, 14.59 ± 1.45, 18.61 ± 1.08, and 20.51 ± 1.24, respectively. Clearly, petroleum ether and methanolic extracts have better antioxidant property compared to that of acetone extracts of SB and STB as compared with ascorbic acid; it highlights STB and SB as useful drugs (Fig. 1F). Here we noticed that both STB and SB have almost the same activities.

For phosphomolybdenum antioxidant assay, the percentage of antioxidant activity for ascorbic acid (without treatment) was 85.31 ± 2.11 and for petroleum ether, acetone, and methanol extracts of SB and STB was 1.63 ± 0.19, 0.69 ± 0.05, 31.26 ± 1.94, 37.66 ± 2.12, 25.73 ± 1.55, and 32.21 ± 2.29, respectively. Evidently, petroleum ether extracts have poor antioxidant property than acetone and methanol extracts of SB and STB, as compared with ascorbic acid. Here SB extracts have fewer activities than STB extracts.

Total Flavonoid and Phenol Contents

The outcomes of the total phenolics were estimated in equivalents of gallic acid and the total flavonoids in QEs (Table 5). Like the antioxidant properties, the polar solvents, i.e., acetone and methanolic extracts demonstrated higher phenolic and flavonoid content, indicating the linear relationship between these two values. In acetone and methanol extracts, the observed values for total phenolic content ranged from 10 to 93 mg of gallic acid and TFC ranged from 30 to 87 mg of quercetin (Table 5).

Anti-inflammatory and Protein-binding Assay

Denaturation of proteins causes inflammation. In this study, all extracts showed good inhibition (95–98%) against BSA protein. In the second experiment of BSA protein, the behavior of extracts and acetylsalicylic acid were determined by combining it with the BSA protein. The BSA protein binds to acetylsalicylic acid and various extracts of SB and STB were performed. The mean values of protein-binding constants are observed to be 2.31 ± 0.05 × 10⁻⁵ μM⁻¹ for acetylsalicylic acid (ASA) and 61.5 ± 2.45 × 10⁻⁵ μM⁻¹, 39.5 ± 1.11 × 10⁻⁵ μM⁻¹, 22.4 ± 1.01 × 10⁻⁵ μM⁻¹, 31.3 ± 1.16 × 10⁻⁵ μM⁻¹, 32.7 ± 1.14 × 10⁻⁵ μM⁻¹ and 33.3 ± 1.15 × 10⁻⁵ μM⁻¹ for various extracts (Fig. 2 and Table 6).

This study confirms the weak interaction of BSA complex with extracts which is used as drug delivery systems in the present world.

Antimicrobial Activities

Antibacterial Activity

Tables 7 and 8 exhibited the antimicrobial activities, and various extracts showed mild effects against the selected bacterial and fungal strains. Like the antioxidant assays and TPC and TFC, polar solvents, i.e., acetone and methanolic extracts showed good inhibition against the selected strains. Table 7 exhibited that acetone and methanol extracts are more effective as compared to the petroleum ether for bacterial strains under study. Acetone extracts have reportedly and significantly repressed the growth of all the strains studied, whereas the methanolic extract could significantly inhibit the growth of Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa. Table 8 exhibited the antifungal results of selected strains. It was noticed that all the extracted compounds inhibit the growth of Aspergillus parasiticus. But petroleum ether and acetone extracts were found to be inactive against Candida albicans and Aspergillus niger. Methanolic extracts were found to be positive against C. albicans and A. niger as well as A. parasiticus.

To understand the antibacterial potential against various gram-positive and gram-negative bacteria, several extracts including ether, ethyl acetate, aqueous, and methanol extracts of plants tested in previously documented studies were reviewed. Methanolic extracts displayed significant activity against Bacillus subtilis (8 ± 0.4 mm), Bacillus cereus (12 ± 0.8 mm), P. aeruginosa (9 ± 0.5 mm), Proteus vulgaris (7 ± 0.4 mm), Salmonella sp. (12 ± 1.5 mm), Trichoderma viride (10 ± 0.9 mm), Penicillium sp. (8 ± 0.3 mm), and A. niger (6 ± 0.9 mm). Furthermore, no activity of methanolic extract of bark of Buchanania cochinchinensis (Lour.) against S. aureus and Escherichia coli was found.²⁻⁶

Plant-derived natural products having poor antimicrobial and antifungal activities are reported to represent synergism against microbial pathogens when combined with various chemotherapeutic compounds.

Conclusion

In conclusion, the findings of STB and SB of BC provide undeniable systematic facts of its beneficial prospective as an Ayurvedic drug. The major outcomes of the current study are the following:

- Under physicochemical parameters, significant difference was found between the extractive values of SB and STB under various solvents. A nonsignificant difference was found for pH and ash values.
Under phytochemical studies, in acetone and methanolic extracts, the observed values for TPC ranged from 10 to 93 mg of GAE/g of extract and TFC it ranged from 30 to 87 mg of QE/g of extract.

Under biochemical assay, in antioxidant assays, as compared to control(s), acetone and methanol extracts of SB and STB were more potent compared to petroleum ether extracts of SB and STB.

Overall, based upon the physicochemical, photochemical, and biochemical studies, polar solvents (acetone and methanol) are the best solvent system to extract the maximum phytochemical constituents with significant biochemical activities. Hence, the present study provides a scientific evidence to substitute stem bark and small branches in place of roots, which can protect the plant from destruction.

References
1. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016;79(3):629–661. DOI: 10.1021/acs.jnatprod.5b01055.
2. Mehta SK, Mukherjee S, Jaiprakash B. Preliminary phytochemical investigation on leaves of Buchanania lanzan (Chironji). Int J Pharm Sci Res 2010;3:55–59.
3. Kodati D, Pareta SK, Patnaik A. Antidiarrhoeal activity of alcoholic extract of Buchanania lanzan Spreng. Roots. Pharmacologyonline 2010;3:720–726.
4. Neelakanth MJ, Bhat MR, Taranalli AD, et al. Effect of Buchanania lanzan seeds on learning and memory in normal and memory deficit rats. J Res Pharm Biomed 2012;22:33–41.
5. Patnaik A, Sarkar R, Sharma A, et al. Pharmacological studies on Buchanania lanzan Spreng. -A focus on wound healing with particular reference to anti-biofilm properties. Asian Pac J Trop Biomed 2013;3(12):967–974. DOI: 10.1016/S2221-1691(13)60187-2.
6. Bhat S, Kumar V, Singh S, et al. Synthesis, biological activities and docking studies of piperazine incorporated 1, 3, 4-oxadiazole derivatives. J Mol Struct 2019;1191:197–205. DOI: 10.1016/j.molstruc.2019.04.106.
7. Kapoor D, Singh S, Kumar V, et al. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). plant Gene 2019;19:100182.
8. Kumar V, Singh S, Srivastava B, et al. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J Environ Chem Eng 2019;7(3):103094. DOI: 10.1016/j.jece.2019.103094.
9. Kumar V, Chawla M, Cavallaro L, et al. Complexation of trichlorosalicylic acid with alkaline and first row transition metals as a switch for their antibacterial activity. Inorganica Chemica Acta 2018;469:379–387. DOI: 10.1016/j.ica.2017.08.064.
10. Kumar V, Upadhyay N, Manhas A. Designing, syntheses, characterization, computational study and biological activities of silver-phenothiazine metal complex. J Mol Struct 2015;1099:135–140. DOI: 10.1016/j.molstruc.2015.06.055.
11. Kumar V, Singh S, Srivastava B, et al. Volatile and semi-volatile compounds of Tephrosia purpurea and its medicinal activities: experimental and computational studies. Biocatal Agric Biotechnol 2019;22:101405.
हिंदी सारांश

आयुर्वैदिक औषधियों के प्रतिलिपि दर्शन हेतु बुधनानिया कोवियाइंगेलिसिस (लौर.) एम.आर. अलमीडा के तने की छाल और छोटी शाखाओं की फाइटोकेमिकल, एंटीऑक्सीडेंट और एंटीमाइक्रोबियल क्षमता का
तुलनात्मक मूल्यांकन

उद्देश्य: वर्तमान अध्ययन का आश्रय बुधनानिया कोवियाइंगेलिसिस (लौर.) एम.आर. अलमीडा के तने की छाल (एसटीबी)
और छोटी शाखाओं (एसबी) के भौतिकरासायनिक मापदंडों, फाइटोकेमिकल घटकों और जैवरासायनिक अध्ययनों की
जांच करना।

सामग्री और विधियां: विभिन्न धुलनशील द्रव्यों यथा पेट्रोलियम ईंधन, एसीटैन और मिथेनोल आदि में मापदंडों की जांच
की गई।

परिणाम: लियेंट्र स्की अपेक्षा पादप के एसटीबी और एसबी के एसीटैन और मिथेनोलिक निष्कास में महत्वपूर्ण
एंटीऑक्सीडेंट (10-85%) और एंटीमाइक्रोबियल (5-20 एमएम) गतिविधियों देखी गई। एसीटैन और मिथेनोलिक
निष्कास में, कुल फिनोल कंटेंट (टीपीसी) निष्कास के प्रति ग्राम थैलिक अम्ल एक्सिलेज की मात्रा 10 मि.ग्र. से 93 मि.
ग्र. है और कुल फलोलिक फॉर्म कंटेंट (टीएफसी) निष्कास के प्रति ग्राम के क्वेरेरिन एक्सिलेज (क्यूड) की मात्रा 30 मि.
ग्र. से 87 मि.ग्र. है। सभी निष्कासों का बोधित सिरम एल्बमिन (बीएए) प्रोटीन इंटरकेशन अध्ययन किया गया और
बाइडिंग कोस्टेंट के लिए ओब्जर्व वेल्यूज 22 से 62*10^{-5} µM^{-1} है।

निष्कास: कुल मिलाकर, पादप के एसटीबी और एसबी के एसीटैन और मिथेनोलिक निष्कास में उपयुक्त औषधीय
पहलुओं पर महत्वपूर्ण परिणाम देखे गए हैं।

नेतृत्विक महत्व: बुधनानिया कोवियाइंगेलिसिस (लौर.) एम.आर. अलमीडा के एसटीबी और एसबी के तुलनात्मक परिणाम
से आयुर्वैदिक औषधि के रूप में इसके लाभकारी पहलुओं के अकार्य व्यवस्थित तर्क को उजागर करता है।

मुख्य शब्द: एंटीमाइक्रोबियल, एंटीऑक्सीडेंट, बुधनानिया, औषधीय पादप, प्राकृतिक उत्पाद, फाइटोकेमिकल।