Inferring the covariant Θ-exact noncommutative coupling in the top quark pair production at linear colliders

J. Selvaganapathya Partha Konara and Prasanta Kumar Dasb

aTheoretical Physics Group, Physical Research Laboratory, Ahmedabad, 380 009, India
bDepartment of Physics, BITS-Pilani, Goa campus, Goa, 403 726, India

E-mail: jselva@prl.res.in, konar@prl.res.in, pdas@goa.bits-pilani.ac.in

Abstract: A novel non-minimal interaction of neutral right-handed fermion and abelian gauge field in the covariant Θ-exact noncommutative standard model (NCSM) which is invariant under Very Special Relativity (VSR) Lorentz subgroup, opens an avenue to study the top quark pair production at linear colliders. Here the non-minimal coupling is denoted as κ and the noncommutative (NC) scale Λ. In this work, we consider two types of analysis, one is without considering helicity basis technique and another, considering helicity of the initial and final state particles. Further, the realistic electron and positron beam polarization are taken into account to measure the NC parameters. In the first case, when κ is positive and certain values of Λ, we found that a specific threshold value of machine energy (optimal energy in the units of GeV) $\sqrt{s_0} (\simeq 2.52 \Lambda + 39 \Lambda)$ may be quite useful to look for the signature of the spacetime noncommutativity with unpolarized beam. The statistical χ^2 analysis of the azimuthal anisotropy which is due to broken rotational invariance about the beam axis, is quite possible when κ takes negative value $0 > \kappa > -0.596$ which persuade a lower limit on NC scale Λ (1.0 to 2.4 TeV) at $\kappa_{\text{max}} = -0.296$ with 95% C.L according to luminosity ranging from 100 fb\(^{-1}\) to 1000 fb\(^{-1}\) at machine energy $\sqrt{\bar{s}} = 1.4$ TeV and 3.0 TeV. In another case, we perform detailed analysis for the polarized and unpolarized electron-positron beam to probe spacetime noncommutativity in light of following observables like azimuthal anisotropy, helicity correlation, and top quark helicity left-right asymmetry. The polarization of the initial beam $\{p_{e^-}, p_{e^+}\} = \{-0.8, 0.3\}(\{-0.8, 0.6\})$ enhances the ranges of lower limit on Λ, i.e. 1.13 to 2.80 TeV at κ_{max} alongside the κ_{max} enhanced into $-0.5445 (-0.607)$ 95\% C.L accord with luminosity and machine energy. Finally, we studied the intriguing mixing of the UV and the IR by invoking a specific structure of noncommutative antisymmetric tensor $\Theta_{\mu\nu}$ which is invariant under translational $T(2)$ VSR Lorentz subgroup.

Keywords: UV/IR mixing, Very special relativity (VSR), Top quark pair production, Optimal collision energy, Azimuthal anisotropy and Helicity correlation.
1 Introduction

After the discovery of the Higgs boson (the only missing link of the standard model) at the Large Hadron Collider (LHC) at CERN, the Standard Model (SM) of Particle Physics, despite its inability of explaining the higgs hierarchy problem, neutrino mass problem, baryon asymmetry etc, is now widely believed to be a low energy effective field theory. Now if there is physics beyond the standard model (BSM), it is expected to show up at the TeV energy colliders i.e. at the LHC or at the upcoming electron-positron Linear Collider. Among the class of BSM models, supersymmetry, extra dimension, space-time noncommutativity are found to be quite interesting because of their rich phenomenological content. A host of phenomenological investigations have already been made and are available in the literature.

The gravity which becomes strong at the TeV energy scale in large extra dimensional model [1, 2], makes the spacetime noncommutative (i.e. fuzzy) at the TeV scale. The signature of the TeV scale spacetime noncommutativity can be be found at the TeV energy electron-positron linear collider or hadron colliders. Snyder’s pioneering work [3] and the recent advancement in low energy string theory manifests the fact that spacetime can be noncommutative [4–7] and it has generated a lot of enthusiasm about the TeV scale
spacetime noncommutativity among the particle physics community. In 1996, Witten et al., \cite{8,9} has suggested that one can probe the stringy effects by lowering the threshold value of noncommutativity to TeV, a scale which is not so far from present or future collider energy scale.

Now at high energy when gravity becomes strong, the spacetime coordinates become an operator \(\hat{x}_\mu \). They no longer commute, satisfying the algebra

\[
[\hat{x}_\mu, \hat{x}_\nu] = i \Theta_{\mu\nu} = \frac{ic_{\mu\nu}}{\Lambda^2}
\]

Here \(\Theta_{\mu\nu} \) (of mass dimension \(-2\)) is real and antisymmetric tensor. \(c_{\mu\nu} \) is the antisymmetric constant and \(\Lambda \), the noncommutative scale. In the noncommutative space, the ordinary product between fields is replaced by Moyal-Weyl(MW) \cite{10–12} star(\(\ast \)) product defined by

\[
(f \ast g)(x) = \exp \left(\frac{i}{2} \Theta_{\mu\nu} \partial_{x^\mu} \partial_{y^\nu} \right) f(x)g(y) |_{y=x}.
\]

In the theoretical point of view, it is expected that spacetime noncommutative (NC) field theories should reduce into a commutative field theory when \(\Theta \to 0 \) or whenever the momenta of the field quanta are much smaller than \(1/\sqrt{|\Theta|} \). Although such naive expectation is valid at tree level interaction but it suffers by infamous UV/IR mixing phenomenon at the loop level which is shown by Filk and Minwalla in \cite{13,14} respectively. The role of UV/IR mixing in the noncommutative supersymmetric Yang-Mills theory \cite{15–19} and other class of noncommutative theory \cite{20–22} were extensively scrutinized to overcome the divergences which appeared in the field non-point interaction. There are enormous amount of work has been done considering Moyal-Weyl (MW) approach \cite{14,23–28} as well as Seiberg-Witten Map (SWM) approach \cite{29–38} in order to remove the UV/IR mixing.

Using the MW approach, the Moller scattering, Bhabha scattering and electron-photon scattering were first studied in ref \cite{41,42}. The processes \(\gamma\gamma \to e^+ e^- \) and \(\gamma\gamma \to \gamma\gamma \) were investigated in \cite{43,44}. A review on NC phenomenology is available here \cite{45}. On the contrary SWM expansion the matter field \(\psi \), the gauge field \(A^\mu \) etc., are expanded as power series in terms of the noncommutative parameter \(\Theta \) as follows \cite{5,6,8–12}

\[
\hat{\psi}(x, \Theta) = \psi(x) + \Theta \psi^{(1)} + \Theta^2 \psi^{(2)} + \cdots
\]

\[
\hat{A}_\mu(x, \Theta) = A_\mu(x) + \Theta A_\mu^{(1)} + \Theta^2 A_\mu^{(2)} + \cdots
\]

A lot of NC phenomenology using the Seiberg-Witten technique is available. Calmet et al., \cite{46,47} first constructed the standard model in the noncommutative spacetime, which is the minimal version of the Noncommutative Standard Model (mNCSM). There exists another version, called non-minimal version of NCSM i.e. nmNCSM \cite{48} in which besides the usual mNCSM interaction vertices, a host of new vertices e.g. triple neutral gauge boson vertices also arises which are found to be absent in the mNCSM and of course in the SM. These new vertices lead to several interesting decays e.g. \(Z \to \gamma\gamma, \, gg \) which are forbidden in the SM. These were studied in \cite{57–61}. In the SWM approach, ref \cite{49} first investigated the neutral vector boson (\(\gamma, \, z \)) pair production in the noncommutative spacetime at the LHC and they obtained the bound on the noncommutative scale \(\Lambda \geq 1 \text{ TeV} \). The \(W^\pm \) pair production
also studied and found that the azimuthal distribution is oscillatory corresponding to \(\Lambda_{NC} = 0.7 \) TeV, which differs significantly from the flat distribution obtained in the SM. Recently, in [51] the single top quark production at LHC found that the cross section deviates significantly from the standard model for \(\Lambda_{NC} \geq 0.98 \) TeV. We first studied [52] the impact of mNCSM on the top quark pair production in the expanded SWM approach at electron-positron linear collider considering the effect of earth rotation. The impact of mNCSM on Higgstrahlung process in linear collider studied by us using \(\Theta \)-exact SWM in [53]. For the first time, the Drell-Yan process process in the nmNCSM, we investigated the exotic photon-gluon-gluon and Z-boson-gluon-gluon interaction at the LHC and obtained \(\Lambda_{NC} \geq 0.4 \) TeV [54]. In the present work we study the effect of spacetime noncommutativity on the pair production of top quarks production using helicity technique in the TeV energy electron-positron collider within the context of covariant \(\Theta \)-exact NCSM. We predominantly focusing on certain center of mass energy of the electron-positron collision which is future plan of the CLIC[55, 56].

The content of the paper is as follows. In Sec. 2, we briefly describe the covariant \(\Theta \)-exact NCSM and the Light-like noncommutativity from Cohen-Glashow’s Very Special Relativity (VSR) theory. We further obtain the cross-section of the top quark pair production in \(e^- e^+ \) collision in the \(\Theta \)-exact NCSM. In Sec. 3, we construct the NC observable \(\Delta \sigma \) and obtain bound on \(\Lambda \) and \(\kappa \) and obtain the optimal collision energy for a given \(\Lambda \) and \(\kappa \) at which one should look for the signature for spacetime noncommutativity. We also discuss the azimuthal anisotropy and investigate its sensitivity on the NC scale \(\Lambda \) and the non-minimal coupling \(\kappa \). We performed detailed helicity analysis for \(t \bar{t} \) production at Sec. 4. From top quark and anti-top quark helicity correlation and left-tight top asymmetry, we obtain constrain on \(\Lambda \) for different \(\kappa \) values, we also performed the polarized beam analysis to obtain lower bound on \(\Lambda \). In Sec. 5, we summarize and conclude. In appendix, we have shown that the removal of UV/IR mixing and UV divergence free neutrino self energy correction in the \(\Theta \)-exact NCSM by choosing VSR T(2) invariant \(\Theta_{\mu \nu} \). Finally, we have presented the matrix element expressions for top pair production with and without considering the helicity amplitude analysis.

2 Covariant \(\theta \)-exact Noncommutative Standard Model (NCSM)

The construction of NCSM is based on enveloping the \(SU(N) \) Lie algebra via Seiberg-Witten map. The SWM is a map between the NC fields and commutative spacetime fields which satisfies the gauge equivalence principle and gauge consistency principle. There are two types of SWM which are based on power series expansion of the noncommutative tensor (\(\Theta^{\mu \nu} \)) known as \(\Theta \)-expanded SWM and power series expansion of the gauge field (\(V^\mu \)) namely \(\Theta \)-exact SWM. In the \(\Theta \)-expanded SWM approach, the fields are expanded like order by order \(\Theta \) but it perpetuate in all order gauge field. Similarly, in the \(\Theta \)-exact SWM, the fields are expanded order by order gauge field but it accommodate all order \(\Theta \) terms. The \(\Theta \)-exact SWM has few advantages while deriving tree-level SM field interaction by keeping terms up to the order \(O(V^\mu) \) as well as the renormalized field, coupling and mass up to one loop. In the NCSM, the Higgs scalar field \(\hat{\Phi} \) is a functional of two gauge fields.
and it transforms covariantly under gauge transformation. Eventually, Higgs scalar field takes hybrid SWM and hybrid gauge transformation to preserve the gauge covariant Yukawa terms in the Yukawa sector. So the Higgs scalar field can couple with left-handed and right-handed SM fermions via the "left" charge and the "right" charge of the fermion. However, the scalar field is not a different particle, in contrast, it has different NC representation of SWM[62]. Extending this approach to the gauge sector as well as fermion sector, we get the hybrid SWM for fermion fields and gauge fields[63–66]. One can derive the Θ-exact hybrid SWM for NC fields which are given as follows,

Fermion (lepton) hybrid Seiberg-Witten map:

\[
\hat{\Psi}_L = \Psi_L - \frac{\Theta^{\mu\nu}}{2} (g A^a_\mu T^a + Y_L g_Y B_\mu) \cdot \partial_\nu \Psi_L - \Theta^{\mu\nu} \kappa g_Y B_\mu \otimes \partial_\nu \Psi_L + O(V^2)\Psi_L
\]

\[
\hat{l}_R = l_R - \frac{\Theta^{\mu\nu}}{2} (Y_R g_Y B_\mu) \cdot \partial_\nu l_R - \Theta^{\mu\nu} \kappa g_Y B_\mu \otimes \partial_\nu l_R + O(V^2)l_R
\]

\[
\hat{\nu}_R = \nu_R - \Theta^{\mu\nu} \kappa g_Y B_\mu \otimes \partial_\nu \nu_R + O(V^2)\nu_R
\] (2.1)

The gauge transformations are defined as

\[
\delta_L \hat{l}_R = i g_Y \left[(Y_L + \kappa)\hat{\Lambda} \right] \left(\hat{l}_R - \kappa \hat{\Lambda} \right)
\]

\[
\delta_R \hat{l}_R = i g_Y \left[(Y_R + \kappa)\hat{\Lambda} \right] \left(\hat{l}_R - \kappa \hat{\Lambda} \right)
\] (2.2)

Here κ is the fermion non-minimal coupling, \(\hat{\Lambda} \) is NC gauge parameter and \(Y_L, Y_R \) are lepton hypercharges and \(g, g_Y \) are the \(SU(2)_L, U(1)_Y \) gauge couplings, respectively. The gauge potential \(V^\mu \), defined by the SM group \(G_{SM} = U(1)_Y \otimes SU(2)_L \otimes SU(3)C \), can be written as

\[
V^\mu(x) = g_Y Y^\mu B^\mu(x) + g \sum_{a=1}^{3} T^a_\mu A^a_\mu(x) + g_s \sum_{b=1}^{8} T^b_\mu G^b_\mu(x).
\]

The products (used above) are defined as

\[
f \star g = f \left(e^x \frac{1}{2} \partial_\mu \Theta^{\mu\nu} \partial_\nu \right) g; \quad f \bullet g = f \left(\frac{1}{2} \partial_\mu \Theta^{\mu\nu} \partial_\nu - 1 \right) g; \quad f \otimes g = f \left(\frac{1}{2} \partial_\mu \Theta^{\mu\nu} \partial_\nu \right) g
\] (2.3)

In the equation(2.3), \(\Theta^{\mu\nu} \) is the constant antisymmetric tensor which can have arbitrary structure. Upon imposing some special spacetime group symmetry such, one can get particular conserved symmetry quantity which may reduce certain degrees of freedom in the choice of representation of \(\Theta^{\mu\nu} \).

2.1 Light-like noncommutativity from Cohen-Glashow VSR theory

The Poincare group symmetry is the fundamental symmetry in high energy particle physics which is postulated by special theory of relativity. At high energies (say over the Planck energy), it is believed that the usual description of the space-time is typically no longer valid, the Lorentz symmetry is violated over the minimal length scale. Hence one cannot
have full Lorentz symmetry group at such minimal length scale, which is required to be extended at such minimal length scale (high energy).

In the minimal Cohen-Glashow Very Special Relativity (VSR) theory [67], the VSR subgroups are defined under certain symmetry with space-time translation and 2-parametric proper subgroup of Lorentz group $SO(3,1)$ whose generators are $K_x + J_y$ and $K_y - J_x$. Here K and J are the generators of boost and rotation, respectively. The representation of the VSR subgroups are the representation of the Lorentz group instinctively but not vice-versa. The VSR subgroups are $T(2), E(2), HOM(2)$ and $SIM(2)$, respectively. Here, $T(2)$ is the 2-parametric translation group on two dimensional plane. The group generators are $T_1 = K_x + J_y$ and $T_2 = K_y - J_x$ which satisfy $[T_1, T_2] = 0$. The subgroup $E(2)$ is the 3-parametric group on two dimensional Euclidean motion with T_1, T_2 and J_z as the group generators. The subgroup $HOM(2)$ is the group of orientation-preserving similarity invariant group or Homotheties group. The generators of $HOM(2)$ group are T_1, T_2 and K_z. Finally, $SIM(2)$ is the 4-parametric isomorphic group of similitude group and the group generators are T_1, T_2, J_z and K_z.

Among the four VSR subgroups, $T(2)$ is the only subgroup which admits Lorentz symmetry on the noncommutative tensor $\Theta^{\mu\nu}$ in the Moyal space. The invariant condition can be written as [68–70]

$$\Lambda^\mu_{\alpha \beta} \Lambda^\nu_{\gamma \delta} \Theta^{\alpha \beta} = \Theta^{\mu \nu} \quad (2.4)$$

where the $T(2)$ subgroup elements are $\Lambda_1 = e^{i \xi T_1}$ and $\Lambda_2 = e^{i \chi T_2}$ and the infinitesimal transformation gives

$$T^\mu_{i \alpha} \Theta^{\alpha \nu} + T^\nu_{i \beta} \Theta^{\mu \beta} = 0 \quad (2.5)$$

One can construct two quantities in the Moyal space which are related to noncommutative scale and smallest volume of the spacetime as follows

$$\zeta^4 = \Theta_{\mu\nu} \Theta^{\mu\nu} \quad L^4 = \epsilon^{\alpha\beta\mu\nu} \Theta_{\mu\nu} \Theta_{\alpha\beta}$$

Depending on the choice of ζ and L, we can classify the noncommutativity. We are interested in which $\zeta^4 = 0$ and $L^4 = 0$ namely, light-like noncommutativity.

$$\zeta^4 = \Theta_{\mu\nu} \Theta^{\mu\nu} \equiv 0; \quad L^4 = \epsilon^{\alpha\beta\mu\nu} \Theta_{\mu\nu} \Theta_{\alpha\beta} \equiv 0; \quad (2.6)$$

Interestingly, the choice of $\zeta^4 = 0$, $\Theta^{\mu\nu}$ removes the UV/IR mixing as well as UV divergences typically in the Θ-exact SWM noncommutative field theory which we showed in the appendix A.1. By imposing the condition (2.5) and $\zeta^4 = 0$, we get the solution

$$\Theta^{0i} = - \Theta^{3i} \quad i = 1, 2. \quad (2.7)$$

The elements of the T_1 and T_2 are $(T_1)^0_1 = (T_1)^1_0 = (T_1)^1_3 = i$, $(T_1)^3_1 = -i$ and $(T_2)^0_2 = (T_2)^2_0 = (T_2)^3_3 = i$, $(T_2)^3_2 = -i$. Finally, we obtain the light-like noncommutative antisymmetric tensor $(\Theta_{\mu\nu} \Theta^{\mu\nu} = 0)$ as follows

$$\Theta^{\mu\nu} = \frac{1}{\Lambda^2} \begin{pmatrix} 0 & -a & -b & 0 \\ a & 0 & 0 & -a \\ b & 0 & 0 & -b \\ 0 & a & b & 0 \end{pmatrix} \quad (2.8)$$
The above $\Theta^{\mu\nu}$ although breaks the rotational invariance but it preserves translation symmetry which is invariant under $T(2)$ subgroup. There are two real free parameters a and b and one can assume $b = 0$ (or $a = 0$) for the sake of simplicity. We have taken the following structure of $\Theta^{\mu\nu}$, which admits azimuthal anisotropy by virtue of broken rotational symmetry. Eventually, it reduces the computational complexity in the removal of UV/IR mixing in the NC field theory as well which shown in the appendix A.1.

$$\Theta^{\mu\nu} = \frac{1}{\Lambda^2} \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$ \tag{2.9}$$

The above mentioned antisymmetric tensor (2.9) is the class of light-like, but we follows $(0, 1, 2, 3)$ basis instead of light-cone basis $(+ ,-, 1, 2)$.

2.2 Top quark pair production in the Covariant θ-exact NCSM

The non-zero commutator of the $U(1)_Y$ abelian gauge field and SM fermion provides the non-minimal interaction in the background antisymmetric tensor field. Such type of background tensor interaction equally acts on the SM fermion field e.g. quarks, leptons or left handed, right handed particle, irrespective of their group representation. In this scenario, although the neutral current interactions get modified, the charged current interaction doesn’t. The electroweak covariant derivative of the θ-exact NCSM can be written as follows

$$D_{\mu L} \tilde{\Psi}_L = \partial_{\mu L} \tilde{\Psi}_L - ig A_{\mu L}^a T^a \tilde{\Psi}_L - i(Y_{\Psi_L} + \kappa) g Y \tilde{B}_\mu \psi_L + i\kappa g Y \tilde{\Psi}_L \tilde{B}_\mu(2.10)$$

$$D_{\mu R} \tilde{\Psi}_R = \partial_{\mu R} \tilde{\Psi}_R - i(Y_{\Psi_R} + \kappa) g Y \tilde{B}_\mu \psi_R + i\kappa g Y \tilde{\Psi}_R \tilde{B}_\mu(2.11)$$

where κ is the non-minimal coupling of the fermion. The equations (2.10,2.11) contain terms that comprises the neutral fermion interaction (gauge-invariant) with the SM photon. A detailed study on the photon-neutrino interaction and its related phenomenology can be found in [38, 64].

One can derive the Feynman rule from the lepton action[63, 71–73] by using equation (2.10,2.11) and equation (2.1) as follows

Photon-Fermion-Fermion interaction:

$$ie Q_f \gamma_\mu + \frac{e}{2} \left\{ iQ_f \tilde{F}_\mu(p_i,p_o) - 2\kappa \tilde{F}_\mu(p_i,p_o) \right\} \left[(p_o \Theta)_{\mu}(\not{p}_o - m) + (\not{p}_o - m)(\Theta p_i)_{\mu} + (p_i \Theta p_o)_{\mu} \right]$$ \tag{2.12}$$

Z boson-Fermion-Fermion interaction:

$$\frac{ie}{\sin 2\theta_w} \gamma_\mu(C_{\mu\nu} - C_{\alpha\nu}\gamma_5) +$$

$$\frac{ie}{\sin 2\theta_w} \left\{ i \tilde{F}_\mu(p_i,p_o) \right\} \left[(p_o \Theta)_{\mu}(\not{p}_o - m) + (\not{p}_o - m)(\Theta p_i)_{\mu} + (p_i \Theta p_o)_{\mu} \right] (C_{\mu\nu} - C_{\alpha\nu}\gamma_5)$$

$$+ \kappa \epsilon \tan \theta_w \tilde{F}_\mu(p_i,p_o) \left[(p_o \Theta)_{\mu}(\not{p}_o - m) + (\not{p}_o - m)(\Theta p_i)_{\mu} + (p_i \Theta p_o)_{\mu} \right]$$ \tag{2.13}$$
Here $\tilde{F}(p_i, p_o) = 2\left(\frac{e^{i(p_i \Theta p_o)/2} - 1}{ip_i \Theta p_o}\right)$ and $\tilde{F}_\circ(p_i, p_o) = 2\left(\frac{\sin((p_i \Theta p_o)/2)}{p_i \Theta p_o}\right)$, p_i and p_o are the ingoing and outgoing fermion momenta towards vertex. Also $p_i \Theta p_o = p_i^\mu \Theta_{\mu\nu} p_o^\nu$ and θ_w is the Weinberg angle.

Let us consider the top-quark pair production process in electron-positron which proceeds via the S-channel exchange of γ and Z bosons i.e. $e^-e^+ \gamma/Z \rightarrow t\bar{t}$. The processes we consider are the tree-level processes and the external particles are on-shell. Applying the equation of motion to the external particles and using $\Theta_{\mu\nu}$ (given in equation 2.9), the Feynman rules are simplified as

\begin{equation}
ie Q e \gamma^\mu
\end{equation}

\begin{equation}
\frac{i e}{\sin 2\theta_w} \gamma^\mu(C_{ve} - C_{ae}\gamma_5)
\end{equation}

for $\gamma - e - e$ and $Z - e - e$ interaction vertices, respectively. Because of the specific choice of $\Theta_{\mu\nu}$ (equation 2.9), we find $p_1 \Theta p_2 = 0$ and other momentum dependent simply vanishes by virtue of the equation of motion and the result turns out to be equivalent to the SM interaction. Here Q_e is the electron charge and C_{ve} and C_{ae} are the vector and the axial-vector coupling of the electron with the Z boson. On the other hand $p_4 \Theta p_3 \neq 0$, and we get

\begin{equation}
ie Q_t \gamma^\mu e^{i\frac{p_4 \Theta p_3}{2}} - 2ke \gamma^\mu \sin\left(\frac{p_4 \Theta p_3}{2}\right)
\end{equation}

\begin{equation}
\frac{i e}{\sin 2\theta_w} \gamma^\mu(C_{vt} - C_{at}\gamma_5) e^{i\frac{p_4 \Theta p_3}{2}} + 2k e \tan \theta_w \gamma^\mu \sin\left(\frac{p_4 \Theta p_3}{2}\right)
\end{equation}

for $\gamma - t - t$ and $Z - t - t$ vertices respectively. Here Q_t is the top quark charge and C_{vt} and C_{at} are the vector and the axial-vector couplings of the top quark with the Z boson. Note that $C_{vf} = T_3f - 2Q_f\sin^2\theta_w$ and $C_{af} = T_3f$, where $f = e, t$.

Top pair differential cross section

The top pair production proceeds via the s channel exchange of photon(γ) and Z boson and the tree level Feynman diagrams are shown in the Fig.1. The total noncommutative differential cross section can be written as

\[
\frac{d\sigma^{NC}}{d\Omega} = \frac{d\sigma^\gamma}{d\Omega} + \frac{d\sigma^Z}{d\Omega} + \frac{d\sigma^{\gamma Z}}{d\Omega}.
\]
The detailed calculations of NC differential cross section are given in the appendix A.2. The signature of the noncommutativity arises due to the term \(\frac{\kappa_3 \Theta p_3}{2} = \left(\frac{s}{4\Lambda} \right) \sin \theta \cos \phi \). Here \(\theta \) is the polar angle which is defined with respect to the electron beam axis i.e along the \(z \)-axis and \(\phi \) is the azimuthal angle. Since \(\frac{d\sigma NC}{dt} \) is proportional to the momentum \(\Theta \) weighted product \(p_3 \Theta p_3 \), the azimuthal distribution possibly throw some light for probing the fermion non-minimal coupling \(\kappa \) as a noncommutative signal.

3 Inferring the \(\theta \)-exact NC coupling \(\kappa \) and NC scale \(\Lambda \)

The \(\Theta \)-exact covariant non-minimal coupling \(\kappa \) appears linearly in the differential cross section expressions from equations A.10-A.16, while the NC scale (\(\Lambda \)) arises in the argument of the oscillatory function. In fact, there is no correlation between the non-minimal coupling \(\kappa \) and the NC scale \(\Lambda \). To see this, let us consider the photon mediated process, the differential cross section of which is given in equation A.10. It has the term \(4 \kappa (\kappa + Q_t) \). Notice that, the NC contribution will vanish either for \(\kappa = 0 \) or \(\kappa = -Q_t \) for all values of \(\Lambda \). In the \(V - A \) vertex, direct and interference terms of the differential cross-section, the coupling \(\kappa \) appears as a linear function. To analyze the noncommutative effect, we next construct the NC correction observable

\[
\Delta \sigma = \sigma^{NC} - \sigma^{SM}
\]

In Fig. 2, we have made the contour plot in the plane of \(\kappa \) and \(\Lambda \) corresponding to different \(\Delta \sigma \) values which ranges from 10\% to 30\% correction with respect to SM cross section

Figure 2. The figure depicts the correction in NC cross-section (\(\Delta \sigma \) in fb) with respect to the standard model (\(\sigma_{SM}^{1.4} = 87.833 \text{ fb} \), \(\sigma_{SM}^{3.0} = 19.402 \text{ fb} \)) in the presence of non-vanishing covariant \(\theta \)-exact coupling \(\kappa \) at CLIC for \(\sqrt{s} = 1.4 \text{ TeV} \) (Left plot) and for \(\sqrt{s} = 3.0 \text{ TeV} \) (Right plot) respectively. Also shown the percentage of corresponding correction with respect to SM within the brackets.

corresponding to the machine energy \(\sqrt{s} = 1.4 \text{ TeV} \) and \(\sqrt{s} = 3.0 \text{ TeV} \), respectively. We
see that the lower bound on Λ increases with κ as long as κ is positive. From the plot, we find that the NC contribution vanishes at $\kappa = 0$ and $\kappa \simeq -0.596$. This behaviour can be understood from the photon mediated process whose contribution is the predominant one. Here, specific domain of negative κ, exhibits the negative residual NC effects ($\Delta \sigma = -ve$), null effects i.e. $\Delta \sigma = 0$ and positive residual NC effects ($\Delta \sigma = +ve$) as shown in Fig.2 for distinctive range of Λ corresponding to the machine energy $\sqrt{s} = 1.4$ TeV and $\sqrt{s} = 3.0$ TeV, respectively. The negative residual cross section tells that the SM cross section is greater than the NC cross section. So we can classify the κ parameter region as the region where the coupling (κ) is positive, the residual cross section is positive and the region where the coupling (κ) is negative, the residual cross section can be either negative, zero or positive. The negative residual effect, bounded by the region $\kappa \in [0, -0.596]$, gives rise a lower bound on the NC scale Λ. In the negative κ region, as κ increases from 0 to κ_{max}, for a given $\Delta \sigma$, the lower bound on Λ increases, and it then start decreases as κ varies from κ_{max} up to -0.596 it decreases the lower bound on Λ. For $\kappa_{\text{max}} = -0.298$, one finds the lower bound on NC scale as $\Lambda \geq 780(1680)$ GeV (at the machine energy $\sqrt{s} = 1.4(3.0)$ TeV) corresponding to $\Delta \sigma \sim -10\%$. On the other hand the positive residual effects are monotonically increasing (decreasing) effects in the region where $\kappa \geq 0$ ($\kappa \leq -0.596$).

3.1 Optimal collision energy

The positive residual region in the Fig.2 illustrates the monotonic behaviour of the coupling κ with respect to the NC scale Λ, but it does not pinpoint where one can look for the NC signature. In contrast, it is not easier to locate the NC signature by arbitrarily scanning over the wide range of the collision energy. In Fig.3 (Left plot), the positive Kurtosis distribution exhibits that the NC contribution in the top pair production cross section first increases with the machine energy and then starts decreasing after a certain threshold machine energy for a specific value of Λ at a fixed coupling κ. It is true for all value of Λ and κ. This machine threshold energy (also called the optimal machine energy) may be quite useful to look for the signature of the spacetime noncommutativity. One can obtain

![Figure 3](image)

Figure 3. The left figure shows that the difference between NC total cross section and SM cross section ($\Delta \sigma = \sigma_{\text{NC,SM}} - \sigma_{\text{SM}}$) as of a function of machine energy \sqrt{s} and right figure shows probe of NC effects at optimum collision energy respectively.
the linear relation by connecting all optimal collision energy (say $\sqrt{s_0}$) for respective value of the NC scale Λ for a given κ. The optimal collision energy expressions for different κ value can be written as

$$\sqrt{s_0} = 2.52151 \Lambda + 39.067 \quad (\kappa = 0.1)$$

$$\sqrt{s_0} = 2.52105 \Lambda + 39.443 \quad (\kappa = 0.3)$$

$$\sqrt{s_0} = 2.52107 \Lambda + 39.428 \quad (\kappa = 0.5)$$

Here the NC scale Λ and the optimum collision energy $\sqrt{s_0}$ are in units of GeV. Notice that the optimal collision energy abruptly follows 2.5 times (approx) the NC scale Λ. The Fig.3 (Right plot) shows that the allowed region (below line) of optimum lower limit of the NC scale which is obtained by optimum condition. These optimum region are not necessarily lower limit of the NC scale because the amount of NC cross section correction ($\Delta \sigma$) is not taken into account. Further, Fig.3 (Left plot) attains optimum point at certain value of machine energy (\sqrt{s}) for each NC scale which is known as optimum lower limit. This is the evident of the TeV scale spacetime noncommutativity which is residing under the line 2.5Λ (approx). The positive value of κ doesn’t affect the optimal collision energy relation but it plays an important role in the magnitude of the excess total cross section (see Fig.2). We see that one requires the collision energy to be greater that the NC scale in order to probe the spacetime noncommutativity at the future collider.

3.2 Inferring κ in the light of azimuthal anisotropy

The azimuthal angular distribution of the top quarks pair (after reconstructing the p_T of the top quark) can be an useful tool to probe the beyond the standard model (BSM) physics. Since $\Theta^{0i} \neq 0$ in our $\Theta^{\mu\nu}$ structure which is invariant under VSR Lorentz group symmetry, it makes NC theory as a non unitary and rotationally non invariant. Here the non zero

![Figure 4](image)

Figure 4. The figure shows normalized azimuthal anisotropy when $\kappa = -0.3$ at $\sqrt{s} = 1.4$TeV. Inset shows that the normalized azimuthal anisotropy for $\kappa < 0$ and the azimuthal angle ϕ taken between π and 3π.
Θ^0 produces the azimuthal anisotropy through momentum weighted Θ product which is $p_i\Theta p_j$. The amplitude of the anisotropy is gradually decreases by $f(1/\Lambda^2)$. Depending up on the values of κ, the normalized azimuthal distribution has two different behaviour which is $\cos^2(f(1/\Lambda^2)\cos[\phi])$ for $0 > \kappa > -0.596$ in Fig.4 and $\sin^2(f(1/\Lambda^2)\cos[\phi])$ for $\kappa > 0$ and $\kappa < -0.596$ in Fig.5. This behaviour dominantly coming from equation A.10 in the

domain $0 > \kappa > -0.596$ and $\kappa > 0$ and $\kappa < -0.596$ respectively. However, the prediction of the signature of spacetime noncommutativity in these two domain are quite different. The domain $\kappa > 0$ has discussed in the above Sec.3.1 and the allowed region of the optimum lower bound on Λ are shown in Fig.3 (Right plot). The statistical analysis is the prominent way to find the signature of the spacetime noncommutativity which can be considered in the domain where $0 > \kappa > -0.596$. So one can choose the azimuthal anisotropy as an observable to do statistical analysis namely χ^2 analysis. The azimuthal asymmetry would give the fluctuated (excess or less) number of events around standard model flat value from $\phi = 0$ to $\phi = 2\pi$. Here we have taken twelve bins, each has $\phi = \pi/6$ and totally eleven d.o.f in the χ^2 value. The χ^2 has defined as

$$\chi^2(\Lambda) = \sum_{i=1}^{12} \frac{(N_{i}^{NCSM} - N_{i}^{SM})^2}{N_{i}^{SM}}; \quad N_{i} = \mathcal{L} \int d\sigma_{i} d\phi$$

The Fig.6 depicts the statistical value of $\chi^2_{0.050} = 19.675$ for both $\sqrt{s} = 1.4$ TeV and $\sqrt{s} = 3.0$ TeV for given integrated luminosity \mathcal{L}. Thus the luminosity contours excludes the lower bound at 95% confidence level in the $\kappa - \Lambda$ plane. The lower limit on the NC scale Λ (95% C.L) at $\kappa_{max} = -0.296$ is given below in table.1. Here one can notice that the noncommutative scale is sensitive to the integrated luminosity \mathcal{L}. The lower limit on the NC scale Λ (95% C.L) at $\kappa_{max} = -0.296$ is given below in table.1. Here one can notice that the noncommutative scale is sensitive to the integrated luminosity \mathcal{L} which is more clearly given in the Fig.13. The slope of the luminosity curve in the Fig.13 (red curve) is smaller in the higher luminosity region than the lower luminosity region. Such type of luminosity sensitivity has noticed in [74, 75]. In [75], authors considered profile likelihood ratio for two
\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure6.png}
\caption{The left (right) figure depicts χ^2 statistical test (95\%C.L) of the noncommutative signal event arises due to azimuthal anisotropy at $\sqrt{s} = 1.4$ TeV ($\sqrt{s} = 3.0$ TeV).}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Integrated luminosity (\mathcal{L}) & 100 fb$^{-1}$ & 500 fb$^{-1}$ & 750 fb$^{-1}$ & 1000 fb$^{-1}$ \\
\hline
Lower limit on Λ: $\sqrt{s} = 1.4$ TeV & 1.011 TeV & 1.235 TeV & 1.306 TeV & 1.352 TeV \\
Lower limit on Λ: $\sqrt{s} = 3.0$ TeV & 1.775 TeV & 2.20 TeV & 2.318 TeV & 2.406 TeV \\
\hline
\end{tabular}
\caption{The lower bound on noncommutative scale Λ (95\%C.L) obtained by χ^2 analysis at $\kappa_{\text{max}} = -0.296$ for four different integrated luminosity.}
\end{table}

hypothesis test which is \textit{signal}+\textit{background} and \textit{background}. We consider the background events as a SM $t\bar{t}$ pair events, thus our analysis simply boils down in to χ^2. So one can compare the behaviour of Λ from those two different approaches which are quite same results though they are different final production states too.

4 Helicity amplitude techniques in θ-exact NCSM

The study of polarization allows us to probe the chirality of the interactions between the top quark and gauge bosons in the SM as well as NCSM. The top polarization can be clearly analyzed in the e^-e^+ collider from $t\bar{t}$ pair production. We define the spin of the top quark and anti-top quark as shown in the Fig.7 at the production plane, so the transverse momentum of the top quark is zero and the spin four-vectors are back to back in the center of mass frame. Here \hat{s} is the spin vector of the top quark which makes an angle χ with anti-top quark in the recoil direction. In the special case, we take the spin angle $\chi = 0$ or π, which tells that the spin direction is along the direction of the top quark momentum and it defines the helicity states of the top quark in the $t\bar{t}$ rest frame. If the massive top quark
The top quark is the heavier quark in the standard model. It decays weakly into b quark and W boson before hadronization process happens. In fact the lifetime ($\tau_t \approx 5 \times 10^{-25}s$) of the top quark is lesser than hadronization time ($\tau_{QCD} \approx \frac{1}{\Lambda_{QCD}} = (200 \, MeV)^{-1} \approx 3.3 \times 10^{-24}s$) as well as spin-decorrelation time ($\tau_{spin} \approx \frac{m_t}{\Lambda_{QCD}^2} \approx 3 \times 10^{-21}s$) from spin-spin interactions with the light quarks generated in the fragmentation process. If the top quark spins are correlated when they are produced as a pair then their decay

\[M_{\lambda_a\lambda_b;\lambda_c\lambda_d}^2 = \sum_{\lambda_a\lambda_b;\lambda_c\lambda_d} |M_{\lambda_a\lambda_b;\lambda_c\lambda_d}|^2 \]

\[d\sigma \frac{d\Omega_{CM}}{d\Omega_{CM}} = \frac{1}{64\pi^2} \frac{p_f}{p_i} \sum_{\lambda_a\lambda_b;\lambda_c\lambda_d} |M_{\lambda_a\lambda_b;\lambda_c\lambda_d}|^2 \]

The detailed expressions for matrix element squared of all non vanishing helicity states are given in the appendix A.3.
products are correlated with their spin and hence the decay products of the top quarks are correlated by naturally. The $t \bar{t}$ spin correlation reported in the CDF II detector [82, 91] by reconstructing lepton plus jets decay channel from $p \bar{p}$ collisions. The measurement agrees with the SM QCD calculation by adding gluon gluon fusion process. But the decay width of the top quark has deviation from SM calculation [88]. In the case of spacetime noncommutativity, the top decay were studied in the minimal Θ-expanded NCSM [92–94]. However this non-minimal Θ-exact SWM approach will not participate in the tree level top decay, it appears only in the loop level. Since there is no right-handed W boson in the NCSM and we extended non-minimal star product among abelian gauge field and SM fermions with satisfying the gauge transformation which is given in equation.2.2, one cannot have a non-minimal coupling κ with top quark in the charged current. Thus the effect of spacetime noncommutativity on spin correlation can be determined from the top quark pair production.

Figure 8. Helicity correlation between the top and anti-top quark.

Figure 9. Helicity correlation ($|C_{t\bar{t}}|$) between the top and anti-top quark at $\sqrt{s} = 1.4$ TeV in the presence of positive values of non-minimal coupling κ (Left plot) and also negative (Right plot).
Considering the top pair production, the measured spin correlation depends on the choice of the spin basis. There are three types of basis[78], which are i) beam line basis ii) helicity basis and iii) off-diagonal basis. Here we work in the helicity basis (which admits the center of mass frame in which the top spin axis is defined) to find the top quark spin correlation. The helicity correlation factor defined as[78, 79]

\[C_{tt} = \frac{\sigma_{LL} + \sigma_{RR} - \sigma_{LR} - \sigma_{RL}}{\sigma_{LL} + \sigma_{RR} + \sigma_{LR} + \sigma_{RL}} \] (4.4)

Here \(\sigma_{ij} \ (i, j = L, R) \) represents the total cross section of the final state top, anti-top helicity. Notice that \(\sigma_{LL} \equiv \sigma_{RR} = 0 \) when \(\beta = 1 \) i.e \(\sqrt{s} >> m_t \) which is ultra-relativistic limit. In the ultra-relativistic limit, the helicity correlation is \(C_{tt} = -1 \) when LR configuration equals to RL configuration in the \(t \bar{t} \) pair production which are solely due to left-right helicity symmetry at high energy.

![Figure 10. Same as Fig.9 for \(\sqrt{s} = 3.0 \) TeV.](image)

The top quark SM helicity correlation as shown in Fig.8, which are \(C_{tt} = -0.9518(-0.9894) \) at \(\sqrt{s} = 1.4(3.0) \) TeV respectively. Here the negative sign emphasize that the opposite final state helicity cross section are usually dominant over the one with same helicity final state cross section in the \(e^-e^+ \) colliders. In the region where \(\kappa > 0 \) and \(\kappa < -0.596 \), the NC helicity correlation is lesser than the SM helicity correlation for all values of NC scale \(\Lambda \) and when \(\Lambda \to \infty \) one recovers the SM results. The another region \(0 > \kappa > -0.596 \), the value of \(C_{tt} \) reduces gradually when the NC scale increases. But here the NC helicity correlation are greater than the SM correlation.

Notice that the region \(\Lambda < 350 \text{GeV} \) at \(\sqrt{s} = 1.4 \text{TeV} \) and \(\Lambda < 800 \text{GeV} \) at \(\sqrt{s} = 3.0 \text{TeV} \) are excluded because which are arises due to unphysical oscillatory behaviour near lower values of NC scale. The top quark correlations for \(\kappa > 0 \) and \(\kappa < -0.596 \) are given in Fig.9 and Fig.10 which shows that the optimal correlation values than SM value are located at \(\Lambda \approx 520 \text{ GeV} \ (\sqrt{s} = 1.4 \text{ TeV}) \) and \(\Lambda \approx 1150 \text{ GeV} \ (\sqrt{s} = 3.0 \text{ TeV}) \) respectively. Thus one can conclude that if any measured helicity correlation deviates from SM, our result will put a lower bound on NC scale which are \(\Lambda \geq 520 \text{GeV} \ (\sqrt{s} = 1.4 \text{TeV}) \) and \(\Lambda \geq 1150 \text{GeV} \ (\sqrt{s} = 3.0 \text{TeV}) \) respectively. The non-minimal coupling \(\kappa \) can be arbitrary in the positive region which can be restricted by statistical significance of the experimental results but in the negative region it can be taken as \(\kappa_{\text{max}} = -0.296 \).
Top quark left-right asymmetry

In the top quark pair production, we can predict the dominant helicity of the top quark by calculating the top quark left-right asymmetry. The polarized top quark decay produced b quark and longitudinally polarized W boson dominantly. The ratio of the decay rate for polarized top quark and unpolarized top quark ($F_0 = \frac{\Gamma(t \rightarrow bW_L)}{\Gamma^\text{total}(t \rightarrow bW)}$) was measured by CDF\[88\] which is $F_0 = 0.91 \pm 0.37 \pm 0.13$. The SM value is $F_0 = 0.701$.

In the non-minimal model, there is no change in the decay rate, however, it gives an insight about non-minimal coupling κ and NC scale Λ when left handed top quark produced from e^-e^+ annihilation. Thus it is useful to compute top quark left-right asymmetry[89, 90].

$$A_{LR}^t = \frac{\sigma(e^-e^+ \rightarrow t_L\bar{t}) - \sigma(e^-e^+ \rightarrow t_R\bar{t})}{\sigma(e^-e^+ \rightarrow t\bar{t})}$$ \hspace{1cm} (4.5)

In the numerator while obtaining cross section, we have summed over the initial state helicity for electron and positron as well as final state helicity of the anti-top quark except final state top quark helicity, in the denominator, we have summed over all the helicity states on the incoming and outgoing particles. In Fig.11, we have shown the contour plots in the $\kappa - \Lambda$ plane corresponding to different values of left-right asymmetry (A_{LR}^t) of top quark. The standard model A_{LR}^t increases with the increase in the machine energy, as the production cross-section for left handed top quark is higher than the right handed top quark production at high energy limit. In the SM, one finds the top quark left-right asymmetry 20.8%(21.45%) at the machine energy $\sqrt{s} = 1.4(3.0)$ TeV. In the negative κ region, $\kappa_{\text{max}} \simeq -0.43$ we get the asymmetry 25% (approx) corresponding to $\Lambda = 840$ GeV at the machine energy $\sqrt{s} = 1.4$ TeV. Similarly, for $\sqrt{s} = 3.0$ TeV, one find asymmetry upto 28% (approx) for $\Lambda = 1670$ GeV.

![Figure 11. Final state top quark left-right asymmetry](image-url)
4.2 Polarized beam analysis

In general, the electron and positron beams can have two types of polarizations which are transverse and longitudinal polarization. Since we consider the bunch of massless electrons as a beam at linear colliders, the transverse polarizations are negligible, thus one can define the total cross section with arbitrary longitudinal polarization \(P_{e^-}, P_{e^+} \) given by

\[
\sigma_{P_{e^-}P_{e^+}} = \frac{1 - P_{e^-}}{2} \left(1 + \frac{P_{e^+}}{2} \right) \sigma_{LR} + \frac{1 + P_{e^-}}{2} \left(1 - P_{e^+} \right) \sigma_{RL} \tag{4.6}
\]

Where \(\sigma_{LR} \) is the total cross section of the top pair production when the initial left-handed \(e^- \) beams and initial right-handed \(e^+ \) beams are considered if fully polarized at \(P_{e^-} = -1, P_{e^+} = +1 \). The \(\sigma_{RL} \) is defined analogously.

\[
\sigma_{LR} = \sum_{h_t, h_{\tau}} \sigma_{LR h_t h_{\tau}} \quad \sigma_{RL} = \sum_{h_t, h_{\tau}} \sigma_{RL h_t h_{\tau}} \tag{4.7}
\]

Here \(h_t \) and \(h_{\tau} \) correspond to the helicity states of the top and anti-top quarks, which are summed over. The total cross section will enhance when electron and positron beams are polarized and the signs of \(P_{e^-} \) and \(P_{e^+} \) are opposite. This can be realized when the total cross section written in terms of effective polarization as given below[76, 77].

\[
\sigma_{P_{e^-}P_{e^+}} = (1 - P_{e^-}P_{e^+})\sigma_0 (1 - P_{eff} A_{LR})
\]

Here the unpolarized total cross section \(\sigma_0 = (\sigma_{LR} + \sigma_{RL})/4 \), left-right asymmetry \(A_{LR} = \)

![Figure 12](image-url)

Figure 12. The figure depicts \(\chi^2 \) statistical test (95\% C.L.) of polarized the noncommutative signal event arises due to azimuthal anisotropy only considering the \(-\nu_e \) region of the \(\kappa \). The color line corresponds to \(P_{e^-} = -80\%, P_{e^+} = 30\% \) and dot-dashed color line corresponds to \(P_{e^-} = -80\%, P_{e^+} = 60\% \) for various integrated luminosity \(\mathcal{L} dt = 100(\text{blue}), 500(\text{red}), 750(\text{cyan}) \text{fb}^{-1} \) and \(1000(\text{magenta}) \text{fb}^{-1} \) at CLIC \(\sqrt{s} = 1.4 \text{ TeV} \) (left) and \(\sqrt{s} = 3.0 \text{ TeV} \) (right).
\[\kappa_{\text{max}} = -0.5445 \text{ and } P_{(e^-, e^+)} = \{-0.8, 0.3\} \]

Integrated luminosity (\(\mathcal{L}\))	100 fb\(^{-1}\)	500 fb\(^{-1}\)	750 fb\(^{-1}\)	1000 fb\(^{-1}\)
Lower limit on \(\Lambda\): \(\sqrt{s} = 1.4\) TeV	1.131 TeV	1.390 TeV	1.462 TeV	1.517 TeV
Lower limit on \(\Lambda\): \(\sqrt{s} = 3.0\) TeV	2.000 TeV	2.474 TeV	2.606 TeV	2.703 TeV
\(\kappa_{\text{max}} = -0.607\) and \(P_{(e^-, e^+)} = \{-0.8, 0.6\}\)	1.172 TeV	1.440 TeV	1.514 TeV	1.570 TeV
Lower limit on \(\Lambda\): \(\sqrt{s} = 1.4\) TeV	2.075 TeV	2.560 TeV	2.70 TeV	2.80 TeV

Table 2. The lower bound on noncommutative scale \(\Lambda\) (95\%CL) and \(\kappa_{\text{max}}\) obtained by \(\chi^2\) analysis when \(P_{(e^-, e^+)} = \{-0.8, 0.3\}\) and \(P_{(e^-, e^+)} = \{-0.8, 0.6\}\) for four different integrated luminosity.

Figure 13. The figure depicts \(\chi^2\) statistical test (95\%CL) of polarized noncommutative signal event arises due to azimuthal anisotropy.

\[
\frac{\sigma_{\text{LR}} - \sigma_{\text{RL}}}{\sigma_{\text{LR}} + \sigma_{\text{RL}}} \text{ and effective polarization } P_{\text{eff}} = \frac{(P_{e^-} - P_{e^+})}{(1 - P_{e^-}P_{e^+})}. \text{ The } P_{\text{eff}} \text{ can be achieved } -1 \text{ when } P_{e^-} = -1.0, P_{e^+} = 0.0 \text{ and } P_{e^-} = -1.0, P_{e^+} = 1.0. \text{ So that the total cross section enhanced by } \sigma_{\{-1,0\}} = \sigma_0 + \sigma_0 A_{\text{LR}} \text{ and } \sigma_{\{-1,1\}} = 2(\sigma_0 + \sigma_0 A_{\text{LR}}) = 2\sigma_{\{-1,0\}} \text{ respectively. } \text{In the future linear colliders, the polarization can be studied with } P_{e^-} = -0.8, P_{e^+} = 0.3 \text{ and } P_{e^-} = -0.8, P_{e^+} = 0.6 \text{ which will enhance the total cross section significantly by following expressions}
\]

\[
\sigma_{\{-0.8,0.3\}} = 1.24 \sigma_0 + 1.1 \sigma_0 A_{\text{LR}} \tag{4.8}
\]
\[
\sigma_{\{-0.8,0.6\}} = 1.48 \sigma_0 + 1.4 \sigma_0 A_{\text{LR}} \tag{4.9}
\]
Note that the above set of equations are same for all new physics as well as for the standard model. The beam polarization enhances the new physics signal \(S \) and suppresses the background \((B) \) rates by significant increment of \(S/B \) or \(S/\sqrt{B} \).

In our analysis \(\sigma_0 \) and \(A_{LR} \) are function of \(\Lambda \). We made \(\chi^2 \) test for polarized beam analysis by keeping the azimuthal anisotropy as an observable. The polarization enhances the lower limit on NC scale and non minimal coupling \(\kappa_{\text{max}} \) also. The lower bound on noncommutative scale is given in the table 2 for four values of integrated luminosity.

The sensitivity of the NC scale \(\Lambda \) on integrated luminosity of the polarized electron positron beam has given in the Fig.13. In the above Fig.12 we have seen that the polarization has pushed \(\kappa_{\text{max}} = -0.296 \) into \(\kappa_{\text{max}} = -0.607 \) when \(P_{\{e^-, e^+\}} = \{-0.8, 0.6\} \). But one can compare the lower bound on NC scale with the unpolarized beam and partially polarized beam luminosity for fixed value of \(\kappa_{\text{max}} \) at \(-0.296\) which is shown in the Fig.13. There are significant enhancement in the lower limit of the NC scale. If any one of the beam fully polarized and another one has unpolarized (fully polarized) which gives \(P_{\text{eff}} = 100\% \) and one can get two (four) times enhancement in the total cross section.

5 Summary and conclusion

We study the top quark pair production \(e^+e^- \rightarrow Zt\bar{t} \) at the TeV energy linear collider in the non-minimal NCSM within the framework of covariant \(\Theta \)-exact Seiberg-Witten approach. Although the NC tensor \(\Theta_{\mu\nu} \) breaks the rotational invariance due to \(\Theta_{\theta i} \neq 0 \), however, it preserves the translational symmetry which is invariant under the \(T(2) \) subgroup of VSR. We study the NC cross section correction observable \(\Delta \sigma = \sigma_{\text{NC}} - \sigma_{\text{SM}} \) corresponding to the machine energy \(\sqrt{s} = 1.4 \) TeV as well as \(\sqrt{s} = 3.0 \) TeV, and presented our result in terms of the non-minimal coupling \(\kappa \) and the NC scale \(\Lambda \) corresponding to positive and negative \(\Delta \sigma \). For \(\kappa_{\text{max}} = -0.296 \), we find the lower bound on the NC scale \(\Lambda \geq 780(1680) \) GeV corresponding to \(\Delta \sigma \sim 10\% \) at the machine energy \(\sqrt{s} = 1.4(3.0) \) TeV. For a specific value of \(\Lambda \) at a fixed positive coupling \(\kappa \), we found a specific optimal collision energy relation which is \(\sqrt{s_0} = 2.52105 \Lambda + 39.443 \), may be quite useful to look for the signature of the spacetime noncommutativity. The normalized azimuthal distribution is found to vary according to \(\cos^2[f(1/\Lambda^2)\sin\theta\cos\phi] \) for \(0 > \kappa > -0.596 \) and \(\sin^2[f(1/\Lambda^2)\sin\theta\cos\phi] \) for \(\kappa > 0 \) and \(\kappa < -0.596 \). A statistical \(\chi^2 \) analysis of the azimuthal anisotropy gives rise a lower bound on \(\Lambda = 1.0, 1.2, 1.3, 1.35 \) TeV corresponding to linear collider luminosity \(\mathcal{L} = 100, 500, 750, 1000 \) fb\(^{-1}\) for \(\kappa_{\text{max}} = -0.296 \) at the machine energy \(\sqrt{s} = 1.4 \) TeV.

We perform a detailed helicity analysis of the \(t\bar{t} \) production. We present the helicity correlation \(C_{\ell\ell} \) of the final state top quark and anti-top quark produced with a certain helicity and found that such a correlation which is constant at \(\sqrt{s} = 1.4(3.0) \) TeV i.e. \(C_{\ell\ell}^{\text{SM}} = -0.9518, \ (-0.9894) \) respectively, varies with the NC scale \(\Lambda \) for different coupling constant \(\kappa \) in the NCSM. We investigate the sensitivities of the top quark left-right asymmetry \(A_{LR} \) on the non-minimal coupling \(\kappa \) and the NC scale \(\Lambda \) and find that the asymmetry is about 25\% in the non-minimal NCSM with \(\kappa_{\text{max}} = -0.43 \) corresponding to \(\Lambda = 840 \) GeV at the machine energy \(\sqrt{s} = 1.4 \) TeV. Further, we perform a detailed \(\chi^2 \) analysis for the polarized electron-polarized beam with \(P_{e^-} = -80\% \) and \(P_{e^+} = 60\% \) corresponding to the
machine energy $\sqrt{s} = 1.4 \ (3.0) \text{ TeV}$ for different machine luminosities. We obtain the lower bound on $\Lambda = 1.17(2.08), \ 1.44(2.56), \ 1.51(2.70), \ 1.57(2.80)$ corresponding to the machine luminosity $\mathcal{L} = 100, \ 500, \ 750, \ 1000 \text{ fb}^{-1}$ for $\kappa_{\max} = -0.607$. Finally, we studied the intriguing mixing of the UV and the IR by invoking a specific structure of noncommutative anti-symmetric tensor $\Theta_{\mu \nu}$ which is invariant under translational $T(2)$ VSR Lorentz sub group given in the appendix A.1.

A Appendix

A.1 Removal of UV/IR mixing in the one loop calculation

There are several attempts has been made to solve/remove the UV/IR mixing which are appears as phase factor due to Moyal product between NC fields in the spacetime non-commutative field theory. In the $\Theta-$expanded Seiberg-Witten map approach, the UV/IR mixing disappears [23, 33] and the renormalibility has under control up to one loop $\mathcal{O}(\Theta)$. But in the case of $\Theta-$exact Seiberg-Witten map approach, the UV/IR mixing are present until the noncommutative tensor $\Theta^{\mu \nu}$ takes the special structure. The specific structure of the $\Theta^{\mu \nu}$ removes the both singularity in the $\Theta-$exact as well as covariant $\Theta-$exact non-commutative field theory which is given in [36–38]. But those structure of $\Theta^{\mu \nu}$ given in [36, 37] violates the VSR $T(2)$ translation property.

Here, we have shown that our choice of $\Theta^{\mu \nu}$ removes the UV/IR mixing which satisfy the translational invariant under VSR group. Since $\Theta^{\theta \theta} \neq 0$ in our case, thus the azimuthal anisotropy play an unique feature to probe the spacetime noncommutativity at particle colliders.

In order to remove the UV/IR mixing at one-loop self energy correction, R. Horvat et.al.,[37, 38] introduced non-minimal fermion coupling (κ) in the $U(1)$ gauge theory following manner

$$S_f^{U(1)} = \int \frac{-1}{4} f_{\mu \nu} f^{\mu \nu} + i \bar{\psi} \gamma^\mu \psi \left(\frac{1}{2} \Theta_{ij} \partial^i \partial^j \psi \right)$$

(A.1)

Where $f_{\mu \nu} = \partial^\mu a_\nu - \partial^\nu a_\mu$. Eventually, we get following feyman rule for massless neutral fermion-fermion- photon interaction

$$-e \tilde{F}_{\phi}(p, q) \left[\kappa \left(\Theta (p) - (q \Theta) \right) - (\Theta q)^\mu p \right]$$

(A.2)

Here p is the fermion momentum which flows towards vertex and q is the photon incoming momentum. Note that

$$[f, g]_* = i \Theta^{ij} \partial_i f \partial_j g$$

In principle,

$$\left[A_\mu, \psi \right]_* = A_\mu \star \psi - \psi \star A_\mu$$

Thus the covariant derivative for neutral fermion can be written as

$$D_\mu \psi = \partial_\mu \psi - i \kappa \left[A_\mu, \psi \right]_*$$

When $\kappa = 0$, we get the commutative interaction which is not consider in eqn. A.2. We can realize that κ is the non-minimal NC coupling, the strength of the neutral fermion and
abelian gauge field interaction is proportional to κe, which is shown in eqn.2.12. We follow the $SU_\star(2)_L \otimes U_\star(1)_Y$ fermion action which is given in [38, 63], allows the interaction between neutral right handed fermion and abelian gauge field in the constant anti-symmetric background field. Let us consider the massless neutral fermion one-loop self energy correction in the covariant Θ–exact NCSM as follows

$$
\Sigma_1 = -(\kappa e)^2 \mu^{4-D} \int \frac{d^D q}{(2\pi)^D} \left(-\frac{i\eta_{\mu\nu}}{q^2} \tilde{F}_\phi(p, q) \left[(q\Theta p)\gamma^\mu + \not{p}(\Theta q)^\mu - \not{q}(\Theta p)^\mu \right] \frac{i\not{p} + \not{q}}{(p + q)^2} + \frac{\tilde{F}_3(p, q)}{(p + q)^2} \right]
$$

Where $\tilde{F}_3(p, q) = 2 \left(\frac{\sin((q\Theta p)/2)}{q\Theta p} \right)$. Our results and ref [38] results are differs only by multiplication factor which is κ^2. Apart from bubble diagram other tadpole one-loop diagrams (Σ_3, Σ_4) vanishes due to charge conjugation symmetry ($\Theta_{\mu\nu} = -\Theta_{\nu\mu}$) as shown in ref [38]. The four field tadpole (2-fermion 2-photon) one-loop (Σ_2) vanishes which can be easily viewed when $\eta_{\mu\nu}V^\mu\nu(p, -p, q, q) = 0$, the four field interaction $V^\mu\nu(p, -p, q, q)$ can get from eqn (2.10) in ref[38]. Eventually, the non-vanishing bubble diagram (as shown in fig.14) has to be evaluate. We follow

- presence of $q\Theta p$ dimensionless scalar quantity in the denominator, we use HQET parametrization [95] to combine all quadratic and linear denominator.
- we use Schwinger technique to turn the denominator into Gaussian integrals and absorb NC phase factor into that.
- we calculate all the integrals which are presented in the numerator by using [96].

In field theory, if the Hamiltonian has positivity properties then we can analytically continue to imaginary values of time along adopting the Weyl’s unitarity trick which leads Euclidean field theory of causal propagation with positive energies. The analytic continuation is defined by the rotation of the vector in the complex plane an angle of $\pi/2$ about the origin namely Wick rotation. Therefore one can go from Minkowski spacetime to Euclidean spacetime by replacing the time t by it and the energy p^0 by ip^0. In our NCQFT, the analytic continuation demands that the noncommutative space-time (NCST) component Θ^{0i} undergo $\Theta^{0i} \rightarrow -i\Theta^{0i}$ and leaves invariant Moyal phase ($q\Theta p$) under Wick rotation [39, 40]. Here the time component of four momenta undergo $q^0 \rightarrow iq^0$ and $p^0 \rightarrow ip^0$ by

![Figure 14. Neutral fermion (Neutrino) one-loop self energy Feynman diagram (Σ_1).](image-url)
Wick rotation, \(q \) is loop momenta and \(p \) is external momenta. The noncommutative space-space (NCSS) component remains same like three-momenta \((p)\) by Wick rotation. After Schwinger parametrization, we get the same Euclidean integrals which is shown in ref \[38\]. The integrals \(I_{123} \) equation (A.1), \(I_{456} \) equation (A.7) and \(I_{789} \) equation (A.8) in ref \[38\] has to satisfy the important unitarity condition thereby the Euclidean term \((\tilde{p})^2(= (\Theta p)^2)\) should be positive. Such term arises from the Schwinger parametrization and redefined loop momenta \(l\). The loop momenta \(l\) is still invariant by Wick rotation using the dual property of VSR NC tensor i.e duality of NCST \((\Theta^0)\) and NCSS \((\Theta^3)\). We can back to Euclidean to Minkowski by analytic continuation. In order to do that, we have to prove \((\tilde{p})^2\) is positive in Minkowski spacetime, otherwise the integral would not converge and can’t achieve unitarity \[39, 40\].

Our case we get,

\[
\tilde{p}^2 = (a^2 + b^2).(p_0 - p_3)^2 \Rightarrow \text{Always positive}
\]

Here \(a\) and \(b\) are real and the Light like spacetime VSR noncommutativity obeys the unitarity property perturbatively. After long calculation we get simplified equation A.3 for \(D = 4 - \epsilon\) and in \(\epsilon \to 0\) limit,

\[
\Sigma_1 = - (\kappa e)^2 \gamma_{\mu} \left[p^\mu A + (\Theta \Theta p)^\mu - \frac{p^2}{(\Theta p)^2} B \right] \quad (A.4)
\]

Here

\[
A = \frac{1}{(4\pi)^2} [(S_1 + 2S_2)A_1 + (1 + S_1 + S_2)A_2] \quad (A.5)
\]

\[
B = - \frac{2}{(4\pi)^2} A_2 \quad (A.6)
\]

\[
A_1 = \frac{2}{\epsilon} \ln (\pi e \gamma_{\mu}^2 (\Theta p)^2) + \frac{1}{2} \sum_{k=1}^{\infty} \frac{\sqrt{\pi}}{\Gamma(k + 1) \Gamma(k + \frac{3}{2})} \left(\frac{p^2(\Theta p)^2}{16} \right) A_3
\]

\[
A_2 = - \frac{1}{2} \sum_{k=0}^{\infty} \frac{\sqrt{\pi}}{\Gamma(k + 1) \Gamma(k + \frac{3}{2}) \Gamma(k + \frac{5}{2})} \left(\frac{p^2(\Theta p)^2}{16} \right)^{k+1} \left(A_3 + \psi_0 \left(k + \frac{1}{2} \right) - \psi_0 \left(k + \frac{5}{2} \right) \right)
\]

\[
A_3 = \ln \left(\frac{p^2(\Theta p)^2}{16} \right) - \psi_0 \left(k + 1 \right) - \psi_0 \left(k + \frac{3}{2} \right) \quad (A.7)
\]

Where \(\psi_0(z)\) are di-gamma functions and \(\gamma_{\mu} \approx -0.577215\) is Euler-Mascheroni constant.

Further \(S_1\) and \(S_2\) are scale independent \(\Theta\) ratios. We get the scalar quantity \(\Theta_{\mu\nu} \Theta_{\mu\nu}\) in \(S_1\) which arises after integrating the loop momenta.

\[
S_1 = p^2 \Theta_{\mu\nu} \Theta_{\mu\nu} ; \quad S_2 = p^2 \frac{(\Theta \Theta p)^2}{(\Theta p)^2}; \quad (A.8)
\]

By looking at the equation 2.6, one can conclude that \(S_1 = 0\) and by using equation 2.9, we get \((\Theta \Theta p)^2 \neq 0\) for all value of \(p\). The UV/IR mixing and hard \(1/\epsilon\) UV divergence vanishes but IR divergence still present in the NC theory.

\[
\Sigma_1 = - (\kappa e)^2 \frac{1}{(4\pi)^2} \left[\tilde{p} - 2\tilde{p} \frac{p^2}{(\Theta p)^2} \right] A_2 \quad (A.9)
\]
Here $\tilde{p}^\mu = (\Theta \Theta p)^\mu = \Theta^\mu_\nu \Theta_{\nu p} p^\nu$. The IR divergence pay the attention on motion of the particle inside noncommutative plane which results that the spatial extension Θp cannot be reduced to zero [36]. Thus the light-like noncommutativity resolves UV/IR mixing in the Θ-exact NCSM.

A.2 NC differential cross section

Here we present the covariant Θ-exact NCSM differential calculation by using VSR T(2) invariant antisymmetric tensor $\Theta_{\mu \nu}$. One can calculate the differential cross section by using the Feynman rule given in (2.14,2.15,2.16,2.17).

For the photon mediated process, one finds

$$\frac{d\sigma^\gamma}{d\Omega} = \left(\frac{\alpha^2 \beta A_f Q^2}{16s} \right) \left(1 + \cos^2 \theta + \left(\frac{4m^2}{s} \right) \sin^2 \theta \right) \left(Q_t^2 + f_\gamma(\kappa, \Lambda, \sqrt{s}) \right) \quad (A.10)$$

where the NC contribution stems from

$$f_\gamma(\kappa, \Lambda, \sqrt{s}) = 4\kappa(\kappa + Q_t) \sin^2 \left(\frac{p_4 \Theta p_3}{2} \right) \quad (A.11)$$

The signature of the noncommutativity arises from the term $p_4 \Theta p_3 = \left(\frac{s \beta}{4\sqrt{s}} \right) \sin \theta \cos \phi$. Here θ is the polar angle which is defined w.r.t the electron beam axis i.e along the z-axis and ϕ is the azimuthal angle. The factor $\beta = \sqrt{1 - \frac{4m^2}{s}}$ and s is the squared c.o.m. energy. Similarly, the differential cross section for the Z boson mediated s channel process can be written as

$$\frac{d\sigma^Z}{d\Omega} = \left(\frac{\alpha^2 \beta A_f}{16 \sin^4 2\theta_w((s - m_Z)^2 + (\Gamma Z m_z)^2)} \right) \left\{ f^Z_{SM} + f_Z(\kappa, \Lambda, \sqrt{s}) \right\} \quad (A.12)$$

where

$$f^Z_{SM} = s(\beta \cos \theta)^2(C_{ae}^2 + C_{ve}^2)(C_{at}^2 + C_{ct}^2) + 8s \beta \cos \theta C_{ae} C_{ve} C_{at} C_{ct}$$

$$+ (C_{ae}^2 + C_{ve}^2)((s - 4m^2)C_{at}^2 + (s + 4m^2)C_{ct}^2), \quad (A.13)$$

$$f_Z(\kappa, \Lambda, \sqrt{s}) = (s - 4m^2) \cos^2 \theta(2 \sin \theta_w)^2 \left((C_{at}^2 + C_{ct}^2) 2\kappa C_{ve} \right.$$

$$- 8\kappa s \beta \cos \theta C_{at} C_{ve} (2 \sin \theta_w)^2 \sin^2 \left(\frac{p_4 \Theta p_3}{2} \right)$$

$$+ (C_{ae}^2 + C_{ve}^2)((2 \kappa \sin \theta_w)^2 \sin^2 \left(\frac{p_4 \Theta p_3}{2} \right) + 2\kappa C_{vt}) \right\} \quad (A.14)$$

The photon and the Z boson mediated diagrams interfere and contributes to the differential cross section given by

$$\frac{d\sigma^{\gamma Z}}{d\Omega} = \left(\frac{\alpha^2 \beta A_f}{16 \sin^2 2\theta_w((s - m_Z)^2 + (\Gamma Z m_z)^2)} \right)$$

$$\left\{ 2(s - m_Z)^2 Q_e Q_t \left(2s \beta \cos \theta C_{ae} C_{at} + \left(1 + \cos^2 \theta \right) + \left(\frac{4m^2}{s} \right) \sin^2 \theta \right) C_{ve} C_{vt} \right.$$$$+ f_\gamma Z(\kappa, \Lambda, \sqrt{s}) \right\} \quad (A.15)$$
The term which contains the noncommutative correction is given by

\[f_{\gamma Z}(\kappa, \Lambda, \sqrt{s}) = 4Q_e \kappa \beta \cos \theta C_{ae} C_{at} \sin \left(\frac{p_4 \Theta p_3}{2} \right) \left\{ 2(s - m_Z)^2 \sin \left(\frac{p_4 \Theta p_3}{2} \right) \\
-2(m_Z \Gamma_Z) \cos \left(\frac{p_4 \Theta p_3}{2} \right) \right\} + \sin \frac{\pi}{4} \Theta \sin \frac{\pi}{2} \Theta \left(1 + \cos^2 \theta \right) + \left(\frac{4m_Z^2}{s} \right) \sin^2 \theta \right\} C_{ve} Q_e \sin \left(\frac{p_4 \Theta p_3}{2} \right) \]

\[\left\{ 2(s - m_Z)^2 \sin \left(\frac{p_4 \Theta p_3}{2} \right) \left[2 \kappa C_{vt} - \kappa(2 \sin \theta_w)^2 (2 \kappa + Q_t) \right] \right\} + \sin \frac{\pi}{4} \Theta \sin \frac{\pi}{2} \Theta \left(1 + \cos^2 \theta \right) \left(\frac{4m_Z^2 s}{s} \right) \sin^2 \theta \cdot \sin \left(\frac{p_4 \Theta p_3}{2} \right) \left[2 \kappa C_{vt} - \kappa(2 \sin \theta_w)^2 (2 \kappa + Q_t) \right] \}

(A.16)

Here \(m \) is the top quark mass and \(A_f = C_f \times 4 \times 0.389 \times 10^9 \). The factor \(C_f(= 3) \) is the quark color factor and other one is a GeV\(^{-2} \) to pb conversion factor.

A.3 NC matrix elements square in the helicity amplitude technique

Here we present the NC matrix elements square in the helicity amplitude analysis. We can calculate the helicity differential cross section by using the Feynman rule 2.12 and 2.13. For the photon \((\gamma)\) mediated \(t \bar{t} \) process, the differential cross section

\[\frac{d\sigma^\gamma}{d\Omega} = \frac{\beta A_f}{64\pi^2 s} \sum_{h_e, h_t, h_\tau} |M_{\gamma}|^2 \]

\[h_e, h_t, h_\tau \]

(A.17)

Here \(A_f = C_f \times 1 \times 0.389 \times 10^9 \). \(h_f (= \lambda) \) is the helicity of the fermions \(f = e^\pm \) and \(t, \bar{t} \).

The amplitude square \(|M_{\gamma}|^2 \) for different helicity combination of the initial and final state particles are given by,

\[|M_{\gamma}|^2_{LRLL} = |M_{\gamma}|^2_{LRRR} = |M_{\gamma}|^2_{RLLL} = |M_{\gamma}|^2_{RLRR} = F \sin^2 \theta \]

(A.18)

\[|M_{\gamma}|^2_{LRLR} = |M_{\gamma}|^2_{RLLR} = F \left(\frac{1 + \cos \theta}{2} \right)^2 \]

(A.19)

\[|M_{\gamma}|^2_{LRRL} = |M_{\gamma}|^2_{RLRL} = F \left(\frac{1 - \cos \theta}{2} \right)^2 \]

(A.20)

Here \(F = 64\pi^2 \alpha^2 m^2 Q_e^2 (Q_t^2 + f_{\gamma Z}(\kappa, \Lambda, s)) \), \(L \) and \(R \) represents the left-handed and the right-handed helicity of the scattering particles (i.e. initial and final state particles). For the \(Z \) boson mediated \(t \bar{t} \) process, the differential cross section

\[\frac{d\sigma^Z}{d\Omega} = \frac{\beta A_f}{64\pi^2 s \sin^4 2\theta_w [(s - m_Z^2)^2 + (m_Z \Gamma_Z)^2]} \sum_{h_e, h_t, h_\tau} |M_{\gamma}|^2 \]

(A.16)
The amplitude square $|M|_{h^{-b}h_{+}h_{\tau}}^2$ for different helicity combination of the initial and final state particles are given by,

$$|M|_{LRL}^2 = |M|_{LRR}^2 = 64\pi^2 \alpha^2 m^2 (4\pi) g_{\text{ez}}^2 \left(C_{\chi}^2 + f \beta_0^2(\kappa, \Lambda, \sqrt{s}) \right) \sin^2 \theta (A.21)$$

$$|M|_{RL}^2 = 64\pi^2 \alpha^2 (s) g_{\text{ez}}^2 (1 + \cos \theta)^2 \left\{ C_{\chi}(C_{\chi} - 4m^2) + C_{\chi} s \beta \right\} + s C_{\chi}(C_{\chi} + C_{\chi} \beta) + f \beta_0^2(\kappa, \Lambda, \sqrt{s}) \sin \theta (A.23)$$

$$|M|_{RL}^2 = 64\pi^2 (s) g_{\text{ez}}^2 (1 - \cos \theta)^2 \left\{ C_{\chi}(C_{\chi} - 4m^2) - C_{\chi} s \beta \right\} + s C_{\chi}(C_{\chi} - C_{\chi} \beta) + f \beta_0^2(\kappa, \Lambda, \sqrt{s}) \sin \theta (A.24)$$

$$|M|_{LRL}^2 = 64\pi^2 (s) g_{\text{ez}}^2 (1 - \cos \theta)^2 \left\{ C_{\chi}(C_{\chi} - 4m^2) - C_{\chi} s \beta \right\} + s C_{\chi}(C_{\chi} - C_{\chi} \beta) + f \beta_0^2(\kappa, \Lambda, \sqrt{s}) \sin \theta (A.25)$$

Finally, the interference term arising from the γ and Z boson mediated diagrams, is

$$\frac{d\sigma_{\gamma Z}}{d\Omega} = \frac{\beta A_f}{64\pi^2 s \sin^2 \theta_w (s - m_Z^2) + (m_Z \Gamma_Z)^2} \sum_{h_{-}^{-b}h_{+}h_{\tau}} |M|_{\gamma Z}_{h_{-}^{-b}h_{+}h_{\tau}}^2 (A.27)$$

The amplitude square $|M_{\gamma Z}_{h_{-}^{-b}h_{+}h_{\tau}}^2$ for different helicity combination of the initial and final state particles are given by,

$$|M|_{\gamma Z}_{LRL}^2 = |M|_{\gamma Z}_{LRRR}^2 = 64\pi^2 \alpha^2 m^2 Q_{\text{ez}} g_{\text{ez}}^2 \sin^2 \theta \left\{ (s - m_Z^2)Q_{\chi} C_{\chi} + f \beta_0^2(\kappa, \Lambda, \sqrt{s}) \right\} (A.28)$$

$$|M|_{\gamma Z}^{2RLLR} = |M|_{\gamma Z}^{2LRR} = 64\pi^2 \alpha^2 m^2 Q_{\text{ez}} g_{\text{ez}}^2 \sin^2 \theta \left\{ (s - m_Z^2)Q_{\chi} C_{\chi} + f \beta_0^2(\kappa, \Lambda, \sqrt{s}) \right\} (A.29)$$
\[|M_{\gamma Z}|^2_{RLRL} = 64\pi^2 \alpha^2 (s) Q_e g_{rez} (1 + \cos \theta)^2 \left\{ (s - m_Z^2) Q_t (C_v t + C_{at} \beta) - f_{hZ}^+ (\kappa, \Lambda, \sqrt{s}) \right\} \]
\[|M_{\gamma Z}|^2_{RLLR} = 64\pi^2 \alpha^2 (s) Q_e g_{rez} (1 + \cos \theta)^2 \left\{ (s - m_Z^2) Q_t (C_v t + C_{at} \beta) - f_{hZ}^- (\kappa, \Lambda, \sqrt{s}) \right\} \]
\[|M_{\gamma Z}|^2_{LRRL} = 64\pi^2 \alpha^2 (s) Q_e g_{rez} (1 - \cos \theta)^2 \left\{ (s - m_Z^2) Q_t (C_v t - C_{at} \beta) - f_{hZ}^- (\kappa, \Lambda, \sqrt{s}) \right\} \]
\[|M_{\gamma Z}|^2_{RLRL} = 64\pi^2 \alpha^2 (s) Q_e g_{rez} (1 - \cos \theta)^2 \left\{ (s - m_Z^2) Q_t (C_v t - C_{at} \beta) - f_{hZ}^- (\kappa, \Lambda, \sqrt{s}) \right\} \]

We see that the noncommutative contribution for the top pair production at the linear collider as calculated by using the helicity amplitude techniques, solely depends on the following VSR sub-group \(T(2) \) invariant functions \(f^h_{\gamma}, f^h_{Z0}, f^h_{Z \pm}, f^h_{\gamma Z} \), which are defined below:

\[
f^h_{\gamma} (\kappa, \Lambda, \sqrt{s}) = 2(2\kappa)(\kappa + Q_t) \sin^2 \left(\frac{p_4 \Theta p_3}{2} \right) \tag{A.34}
\]

\[
f^h_{Z0} (\kappa, \Lambda, \sqrt{s}) = (2 \sin \theta_w)^2 \sin^2 \left(\frac{p_4 \Theta p_3}{2} \right) \left[(2\kappa \sin^2 \theta_w)^2 + 2\kappa C_v t \right] \tag{A.35}
\]

\[
f^h_{Z \pm} (\kappa, \Lambda, \sqrt{s}) = s(2\sin \theta_w)^2 \sin \left(\frac{p_4 \Theta p_3}{2} \right) \left\{ \kappa C_v t + \sin \left(\frac{p_4 \Theta p_3}{2} \right) \left[(2\kappa \sin \theta_w)^2 + 2\kappa C_{at} \right] \right\} \tag{A.36}
\]

\[
f^h_{\gamma Z0} (\kappa, \Lambda, \sqrt{s}) = (s - m_Z^2) \sin \left(\frac{p_4 \Theta p_3}{2} \right) \left\{ 2\sin \left(\frac{p_4 \Theta p_3}{2} \right) (2\kappa \sin \theta_w)^2 + \kappa \cos \left(\frac{p_4 \Theta p_3}{2} \right) [2 C_v t + Q_t (2 \sin \theta_w)^2] \right\} + (m_Z \Gamma_Z) \kappa \sin^2 \left(\frac{p_4 \Theta p_3}{2} \right) [2 C_v t - Q_t (2 \sin \theta_w)^2] \tag{A.37}
\]
\[f_{\gamma Z}^\pm (\kappa, \Lambda, \sqrt{s}) = (s - m_Z^2) \sin^2 \left(\frac{p_4 \cdot p_3}{2} \right) \left[2(2\kappa \sin \theta_w)^2 + Q_t \kappa (2 \sin \theta_w)^2 \right. \]

\[+ 2\kappa (C_{vt} \pm C_{at} \beta) \left] + (m_Z \Gamma_Z) \sin \left(\frac{p_4 \cdot p_3}{2} \right) \cos \left(\frac{p_4 \cdot p_3}{2} \right) \right) \]

\[\left[2\kappa (C_{vt} \pm C_{at} \beta) + \kappa Q_t (2 \sin \theta_w)^2 \right] \quad (A.38) \]

It is worthwhile to note that the set of equations from A.18 to A.38 are, in principle, applicable to any generic fermion pair production \(e^- e^+ \frac{\gamma}{Z} \rightarrow f \) at the Linear Collider. In case the final particles are leptons, one need to replace \(C_{vt}, C_{at}, Q_t \) and \(m \) by \(C_{vl}, C_{al}, Q_l, m_l \) and \(C_f = 1 \), respectively. Similarly, for quarks, one can substitute charge, mass and couplings of the quarks accordingly. Furthermore, these equations can easily be extended to partonic level pair production at the LHC as well. For gluon calculation, one has to compute proper polarization contribution. Assuming the partons to be massless, we can substitute \(Q_e = Q_{quark}, g_{lez} = g_{lqz} \) and \(g_{rez} = g_{rqz} \) in above equations (A.18-A.38). Here we take

\[g_{lfz} = T_3^f - Q_f \sin^2 \theta_w \quad g_{rfz} = -Q_f \sin^2 \theta_w \]

Finally, one needs to substitute the proper average color factor as well.

Acknowledgments

The work of SJ and PK is supported by Physical Research Laboratory (PRL), Department of Space, Government of India and also acknowledge the computational support from Vikram-100 HPC at PRL. Authors would like to thank Prof. Josip Trampetic, The Ruder Boskovic Institute, Zagreb, Croatia for useful discussions and various comments on UV/IR mixing. Further SJ would like to thank Prof.V. Ravindran, Institute of Mathematical Sciences, Chennai, India for fruitful discussions about HQET parametrization and UV/IR mixing. PKD thanks the Department of Physics and Astronomy, University of Kansas, USA for providing the local hospitality where a part of the work was completed. The work of PKD is partly supported by the SERB Grant No. EMR/2016/002651.

References

[1] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B429, 263 (1998).
[2] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a fermi and superstrings at a TeV, Phys. Lett. B436, 257 (1998).
[3] H.S. Snyder, Quantized Space-Time, Phys. Rev. 71, 38 (1947).
[4] A. Connes, M. R. Douglas and A. Schwarz, Noncommutative geometry and Matrix theory:compactification on tori, JHEP 02, 003 (1998).
[5] M. R. Douglas and C. Hull, D-branes and the noncommutative torus, JHEP 02, 008 (1998).
[6] N. Seiberg and E. Witten, *String Theory and Noncommutative Geometry*, JHEP 09, 032 (1999).

[7] N. Seiberg, L. Suskind and N. Toumbas, *Strings in Background Electric Field, Space/Time Noncommutativity and A New Noncritical String Theory*, JHEP 06, 021 (2000).

[8] E. Witten, *Strong Coupling Expansion Of Calabi-Yau Compactification*, Nucl. Phys. B471, 135 (1996).

[9] P. Horava and E. Witten, *Heterotic and Type I String Dynamics from Eleven Dimensions*, Nucl. Phys. B460, 506 (1996).

[10] M. R. Douglas and N. Nekrasov, *Noncommutative field theory*, Rev. Mod. Phys. 73, 977 (2001).

[11] I. F. Riad and M. M. Sheikh-Jabbari, *Noncommutative QED and Anomalous Dipole Moments*, JHEP 08, 45 (2000).

[12] B. Jurco and P. Schupp, *Noncommutative Yang-Mills from equivalence of star products*, Eur. Phys. J. C 14, 367 (2000).

[13] T. Filk, *Divergencies in a field theory on quantum space*, Phys. Lett. B376, 53 (1996)

[14] Shiraz Minwalla, Mark Van Raamsdonk, Nathan Seiberg, *Noncommutative perturbative dynamics*, JHEP 02, 020 (2000).

[15] A. F. Ferrari, H. O. Girotti, M. Gomes, A. Yu. Petrov, A. A. Ribeiro, V. O. Rivelles, A. J. da Silva, *Superfield covariant analysis of the divergence structure of noncommutative supersymmetric QED*, Phys. Rev. D 69, 025008 (2004).

[16] A. F. Ferrari, H. O. Girotti, M. Gomes, A. Yu. Petrov, A. A. Ribeiro, V. O. Rivelles, A. J. da Silva, *Towards a consistent noncommutative supersymmetric Yang-Mills theory: Superfield covariant analysis*, Phys. Rev. D 70, 085012 (2004).

[17] Carmelo P. Martin, Josip Trampetic, Jiangyang You, *Equivalence of quantum field theories related by the θ-exact Seiberg-Witten map*, Phys. Rev. D 94, 041703(R) (2016).

[18] Carmelo P. Martin, Josip Trampetic, Jiangyang You, *Quantum duality under the θ-exact Seiberg-Witten map*, JHEP 09, 052 (2016).

[19] Carmelo P. Martin, Josip Trampetic, Jiangyang You, *Quantum noncommutative ABJM theory: first steps*, JHEP 04, 070 (2018).

[20] Harald Grosse, Michael Wohlgenannt, *On κ-deformation and UV/IR mixing*, Nucl. Phys. B748, 473 (2006).

[21] S. Meljanac, A. Samsarov, J. Trampetic, M. Wohlgenannt, *Scalar field propagation in the φ4 κ-Minkowski model*, JHEP 12, 010 (2011).

[22] Stjepan Meljanac, Salvatore Mignemi, Josip Trampetic, Jiangyang You, *Nonassociative Snyder φ4 Quantum Field Theory*, Phys. Rev. D 96, 045021 (2017).

[23] A. Matusis, L. Susskind, N. Toumbas, *The IR/UV connection in the non-commutative gauge theories*, JHEP 12, 002 (2000).

[24] A. P. Balachandran, T. R. Govindarajan, G. Mangano, A. Pinzul, B. A. Qureshi, S. Vaidya, *Statistics and UV-IR mixing with twisted Poincare invariance*, Phys. Rev. D 75, 045009 (2007).
[25] Daniel N. Blaschke, Francois Gieres, Erwin Kronberger, Thomas Reis, Manfred Schweda, Rene I.P. Sedmik, \textit{Quantum corrections for translation-invariant renormalizable non-commutative ϕ^4 theory}, JHEP 11, 074 (2008).

[26] Harald Grosse, Raimar Wulkenhaar, \textit{Renormalization of ϕ^4 theory on noncommutative \mathbb{R}^4 in the matrix base}, JHEP 12, 019 (2003).

[27] H. Grosse, F. Vignes-Tourneret, \textit{Minimalist translation-invariant non-commutative scalar field theory}, J. Noncommut. Geom. 4, 555 (2010).

[28] Gurau, Magnen, Rivasseau, Tanasa, \textit{A translation-invariant renormalizable non-commutative scalar model}, Commun. Math. Phys. 287, 275 (2009).

[29] A. Bichl, J. Grimstrup, H. Grosse, L. Popp, M. Schweda, R. Wulkenhaar, \textit{Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map}, JHEP 06, 13 (2001).

[30] C. P. Martin, \textit{The gauge anomaly and the Seiberg-Witten map}, Nucl. Phys. B652, 72 (2003).

[31] Alvarez-Gaume L., Vazquez-Mozo M. A., \textit{General properties of non-commutative field theories}, Nucl. Phys. B668, 293 (2003).

[32] F. Brandt, C. P. Martin, F. Ruiz Ruiz, \textit{Anomaly freedom in Seiberg-Witten noncommutative gauge theories}, JHEP 07, 068 (2003).

[33] M. Buric, V. Radovanovic, J. Trampetic, \textit{The one-loop renormalization of the gauge sector in the θ-expanded noncommutative standard model}, JHEP 03, 030 (2007).

[34] Schupp P, You J, \textit{UV/IR mixing in noncommutative QED defined by Seiberg-Witten map}, JHEP 08, 107 (2008).

[35] Horvat R, Trampetic J, \textit{Constraining noncommutative field theories with holography}, JHEP 01, 112 (2011).

[36] R. Horvat, A. Ilakovac, J. Trampetic, J. You, \textit{On UV/IR mixing in noncommutative gauge field theories}, JHEP 12, 081 (2011).

[37] R. Horvat, A. Ilakovac, J. Trampetic, J. You, \textit{Self-energies on deformed spacetimes}, JHEP 11, 071 (2013).

[38] Raul Horvat, Amon Ilakovac, Peter Schupp, Josip Trampetic, Jiangyang You, \textit{Neutrino propagation in noncommutative spacetimes}, JHEP 04, 108 (2012).

[39] Jaume Gomis, Thomas Mehen, \textit{Space-time noncommutative field theories and unitarity}, Nucl. Phys. B591, 265 (2000).

[40] Ofer Aharony, Jaume Gomis, Thomas Mehen, \textit{On theories with light-like noncommutativity}, JHEP 09, 023 (2000).

[41] J. Hewett, F. J. Petriello, T. G. Rizzo, \textit{Signals for Noncommutative QED at High Energy e^+e^- colliders}, eConf C010630, E3064 (2001).

[42] J. Hewett, Frank J. Petriello, Thomas G. Rizzo, \textit{Signals for noncommutative interactions at linear colliders}, Phys. Rev. D 64, 075012 (2001), \textit{Noncommutativity and unitarity violation in gauge boson scattering}, Phys. Rev. D 66, 036001 (2002).

[43] P. Mathews, \textit{Compton scattering in noncommutative space-time at the Next Linear Collider}, Phys. Rev. D 63, 075007 (2001).
[44] T. G. Rizzo, *Signals for Noncommutative QED at Future e^+e^- Colliders*, Int. J. Mod. Phys. A18, 2797 (2003).

[45] I. Hinchliffe, N. Kersting, Y. L. Ma, *Review of the phenomenology of noncommutative geometry*, Int. J. Mod. Phys. A19, 179 (2004).

[46] X. Calmet, B. Jurco, P. Schupp, J. Wess and M. Wohlgenannt, *The standard model on non-commutative spacetime*, Eur. Phys. J. C 23, 363 (2002).

[47] X. Calmet and M. Wohlgenannt *Effective field theories on noncommutative space-time*, Phys. Rev. D 68, 025016 (2003).

[48] B. Melic, K. Passek-Kumericki, J. Trampetic, *Quarkonia decays into two photons induced by the space-time non-commutativity*, Phys. Rev. D 72, 054004 (2005).

[49] Ana Alboteanu, Thorsten Ohl and Reinhold Ruckl, *Probing the Noncommutative Standard Model at Hadron Colliders*, Phys. Rev. D 74, 096004 (2006).

[50] T. Ohl and C. Speckner, *The Noncommutative Standard Model and Polarization in Charged Gauge Boson Production at the LHC*, Phys. Rev. D 82, 116011 (2010).

[51] S. Y. Ayazi, S. Esmaeili and M. M. Najafabadj, *Single top quark production in t-channel at the LHC in Noncommutative Space-Time*, Phys. Lett. B712, 93 (2012).

[52] Ravi S. Manohar, Selvaganapathy. J and P. K. Das, *Probing space time noncommutativity in the top quark pair production at e^+e^- collider*, Int. J. Mod. Phys. A29, 1450156 (2014).

[53] Selvaganapathy. J, P. K. Das and P. Konar, *Search for associated production of Higgs boson with Z boson in the NCSM at linear colliders*, Int. J. Mod. Phys. A30, 1550159 (2015).

[54] Selvaganapathy. J, P. K. Das and P. Konar, *Drell-Yan as an avenue to test noncommutative standard model at large hadron collider*, Phys. Rev. D 93, 116003 (2016).

[55] CLICdp collaboration, *Higgs physics at the CLIC electron-positron linear collider*, Eur. Phys. J. C 77, 475 (2017).

[56] CLICdp collaboration, *Top-Quark Physics at the CLIC Electron-Positron Linear Collider*, ArXiv:1807.02441[hep-ex].

[57] W. Behr, N. G. Deshpande, G. Duplancic, P. Schupp, J. Trampetic and J. Wess, *The $Z \to \gamma\gamma$, gg decays in the noncommutative standard model*, Eur. Phys. J. C 29, 441 (2003).

[58] P. Aschieri, B. Jurco, P. Schupp and J. Wess *Noncommutative GUTs, standard model and C,P,T*, Nucl. Phys. B651, 45 (2003).

[59] G. Duplancic, P. Schupp and J. Trampetic, *Comment on triple gauge boson interactions in the noncommutative electroweak sector*, Eur. Phys. J. C 32, 141 (2003).

[60] M. Buric, D. Latas, V. Radovanovic and J. Trampetic, *Non zero $Z \to \gamma\gamma$ decay in the renormalizable gauge sector of the noncommutative standard model*, Phys. Rev. D 75, 097701 (2007).

[61] M. M. Ettefaghi, M. Haghighat, *Lorentz conserving noncommutative standard model*, Phys. Rev. D 75, 125002 (2007).

[62] B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp, M. Wohlgenannt, *The Standard Model on Non-Commutative Space-Time: Electroweak Currents and Higgs Sector*, Eur. Phys. J. C 42, 483 (2005).
[63] Raul Horvat, Amon Ilakovac, Peter Schupp, Josip Trampetic, Jiangyang You, Yukawa couplings and seesaw neutrino masses in noncommutative gauge theory, Phys. Lett. B715, 340 (2012).

[64] P. Schupp, J. Trampetic, J. Wess and G. Raffelt, The Photon neutrino interaction in noncommutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36, 405 (2004).

[65] R. Horvat and J. Trampetic, Constraining spacetime noncommutativity with primordial nucleosynthesis, Phys. Rev. D 79, 087701 (2009).

[66] R. Horvat, D. Kekez and J. Trampetic, Spacetime noncommutativity and ultra-high energy cosmic ray experiments, Phys. Rev. D 83, 065013 (2011).

[67] Andrew G. Cohen and Sheldon L. Glashow, Very Special Relativity, Phys. Rev. Lett. 97, 021601 (2006).

[68] Xavier Calmet, Space-time symmetries of noncommutative spaces, Phys. Rev. D 71, 085012 (2005).

[69] Xavier Calmet, Symmetries, Microcausality and Physics on Canonical Noncommutative Spacetime, Proceedings of 40th Rencontres de Moriond, arXiv:hep-th/0605033.

[70] M. M. Sheikh-Jabbari and A. Tureanu, Realization of Cohen-Glashow Very Special Relativity on Noncommutative Space-Time, Phys. Rev. Lett. 101, 261601 (2008).

[71] Weijian Wang, Feichao Tian, and Zheng-Mao Sheng, Higgs-strahlung and pair production in the e^+e^- collision in the noncommutative standard model, Phys. Rev. D 84, 045012 (2011).

[72] Weijian Wang, Jia-Hui Huang, Zheng-Mao Sheng, TeV scale phenomenology of $e^+e^- \rightarrow \mu^+\mu^-$ scattering in the noncommutative standard model with hybrid gauge transformation, Phys. Rev. D 86, 025003 (2012).

[73] Weijian Wang, Jia-Hui Huang, Zheng-Mao Sheng, Bound on noncommutative standard model with hybrid gauge transformation via lepton flavor conserving Z decay, Phys. Rev. D 88, 025031 (2013).

[74] Zahra Rezaei, Saed Paktinat Mehdiabadi, The LHC Drell-Yan Measurements as a Constraint for the Noncommutative Space-Time, arXiv:1809.04502v1 [hep-ph].

[75] M. Ghasemkhani, R. Goldouzian, H. Khanpour, M. Khatiri Yanehsari, M. Mohammadi Najafabadi, Higgs production in e^-e^+ collisions as a probe of noncommutativity, PTEP B01, 081(2014)

[76] Howard E. Haber, Spin Formalism and Applications to New Physics Searches, arXiv:hep-ph/9405376v1

[77] G. Moortgat-Pick, et.al., Polarized positrons and electrons at the linear collider, Phys. Rep. 460, 131 (2008).

[78] Jiro Kodaira, Takashi Nasuno, Stephen Parke, QCD corrections to spin correlations in top quark production at lepton colliders, Phys. Rev. D 59, 014023 (1998).

[79] Gregory Mahlon, Stephen Parke, Spin correlation effects in top quark pair production at the LHC, Phys. Rev. D 81, 074024 (2010).

[80] Adam F. Falk, Michael E. Peskin, Production, decay, and polarization of excited heavy hadrons, Phys. Rev. D 49, 3320 (1994).

[81] I. Bigi, Y. Dokshitzer, V. Khoze, P. Zerwas, Production and decay properties of ultra-heavy quarks, Phys. Lett. B181, 157 (1986).
D0 Collaboration, *Measurement of spin correlation between top and antitop quarks produced in p p collisions at $\sqrt{s} = 1.96$ TeV*, Phys. Lett. B03, 053 (2016).

Yuval Grossman and Itay Nachshon, *Hadronization, spin and lifetimes*, JHEP 07, 016 (2008).

S. Willenbrock, *The standard model and the top quark*, NATO Sci. Ser. II 123,1 (2003).

G. L. Kane, G. A. Ladinsky, C. P. Yuan, *Using the top quark for testing standard-model polarization and CP predictions*, Phys. Rev. D 45, 124 (1992).

Gregory Mahlon, Stephen Parke, *Angular correlations in top quark pair production and decay at hadron colliders*, Phys. Rev. D 53, 4886 (1996).

Stephen Parke, Yael Shadmi, *Spin correlations in top-quark pair production at e^+e^- colliders*, Phys. Lett. B387, 199 (1996).

T. Affolder et al. (CDF Collaboration), *Measurement of the Helicity of W Bosons in Top Quark Decays*, Phys. Rev. Lett. 84, 216 (2000).

G. J. Gounaris, F. M. Renard, *Supersimple analysis of $e^+e^- \to t\bar{t}$ at high energy*, Phys. Rev. D 86, 013003 (2012).

J. Baglio, M. Beccaria, A. Djouadi, G. Macorini, E. Mirabella, N. Orlando, F.M. Renard, C. Verzegnassi, *The left-right asymmetry of top quarks in associated top-charged Higgs bosons at the LHC as a probe of the $\tan\beta$ parameter*, Phys. Lett. B705, 212 (2011).

T. Aaltonen et al. (CDF Collaboration), *Measurement of $t\bar{t}$ spin correlation in p p collisions using the CDF II detector at the Tevatron*, Phys. Rev. D 83, 031104(R) (2011).

Namit Mahajan, *$t \to bW$ in the noncommutative standard model*, Phys. Rev. D 68, 095001 (2003).

M. Mohammadi Najafabadi, *Semileptonic decay of a polarized top quark in the noncommutative standard model*, Phys. Rev. D 74, 025021 (2006).

Z. Rezaei, R. Salehi, *Azimuthal polarization of polarized top quark in noncommutative standard model*, arXiv:1804.07688v1[hep-ph].

A.G.Grozin, *Lectures on perturbative HQET 1*, arXiv:hep-ph/0008300v1. *Lectures on QED and QCD*, arXiv:hep-ph/0508242v1

I.S. Gradsteyn and I.M. Ryzhik, *Table of integrals, series and products, 7th edition*, Academic Press, U.S.A. (2007).