Unusual echocardiographic evidence of hypercoagulation in usual left atrium appendage as the first and only sign of COVID-19

Authors: M. Świątczak, R. Nowak, A. Faran, E. Wabich, G. Raczak, M. Klimkiewicz, L. Daniłowicz-Szymanowicz

DOI: 10.5603/FM.a2021.0059

Article type: Case report

Submitted: 2021-04-14

Accepted: 2021-05-20

Published online: 2021-05-25

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Unusual echocardiographic evidence of hypercoagulation in usual left atrium appendage as the first and only sign of COVID-19

M. Świątczak et al., Unusual echocardiographic evidence of hypercoagulation in COVID-19

M. Świątczak, R. Nowak, A. Faran, E. Wabich, G. Raczań, M. Klimkiewicz, L. Daniłowicz-Szymanowicz
Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Poland

Address for correspondence: Ludmiła Danilo-wicz-Szymanowicz, MD, PhD, Department of Cardiology and Electrotherapy, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland, tel: 58 349 39 10, fax: 58 349 39 20, e-mail: ludwik@gumed.edu.pl

Abstract
Coronavirus disease (COVID-19) is a condition caused by a novel virus, SARS-CoV-2. The disease's course ranges from entirely asymptomatic to severely ill patients. Hypercoagulation is often a complication of this disease, worsening the prognosis, which is extremely important in patients at higher risk of thromboembolic events, such as atrial fibrillation (AF), where thrombus formation in the left atrial appendage (LAA) is frequent. LAA could be of various sizes, volumes, and shapes, distinguish several morphologies, from which the WindSock LAA is the most frequent. In contrast, thromboembolic complications occur most frequently in patients with AF and the Cactus LAA. We present a clinical case of a 70-year-old woman with an initial negative RT-PCR test for SARS-CoV-2, suspicion of device-related infection after dual pacemaker implantation, AF, and LAA without thrombus in the initial transoesophageal echocardiography (TEE). Despite apixaban treatment, spontaneous restoration of sinus rhythm, and WindSock LAA morphology, the sludge in LAA was diagnosed in control TEE. The patient did not present any typical clinical COVID-19 symptoms but re-checked the RT-PCR test for SARS-CoV-2 infection was positive. The described case presents echocardiographic evidence of hypercoagulation as the first and only feature of SARS-CoV-2 condition besides the usual morphological presentation of the WindSock LAA.

Key words: COVID-19, SARS-CoV-2, coronavirus, atrial fibrillation, left atrial appendage
INTRODUCTION

Coronavirus disease (COVID-19) is a condition caused by a novel virus SARS-CoV-2 [1]. The real-time PCR (RT-PCR) test is the most reliable in diagnosing COVID-19. The disease's course ranges from entirely asymptomatic to severely ill patients. Hypercoagulation is often a complication of this disease, worsening the prognosis [2]. This complication seems to be aggravated in patients at higher risk of thromboembolic events, such as patients with atrial fibrillation (AF), in whom a thrombus formation in the left atrial appendage (LAA) is frequent. Additional factors that increase the risk of formation of thrombus in the LAA are the specific anatomy of the LAA and the low left ventricular ejection fraction. We present a clinical case that presents SARS-CoV-2 infection as an additional cause of LAA thrombus formation.

CASE PRESENTATION

A 70-year-old woman with AF and negative RT-PCR test for SARS-CoV-2 was transferred from the district hospital to the Cardiology Department with suspicion of device-related infection after dual pacemaker implantation, performed one week before the admission. Additionally, the urinary tract infection was diagnosed, and empirical antimicrobial therapy was initiated, leading to a quick reduction in inflammatory markers. There were no pathologies connected with ventricle lead; however, in transesophageal echocardiography (TEE), using two- and three-dimensional techniques, linear echoes associated with the atrial electrode were visualized (Fig. 1A). Due to the short time after the implantation and negative blood culture results, the thrombus was anticipated, not bacterial vegetation. LAA had typical morphology and sizes, as presented in Figure 1. Despite AF, there was no sludge or thrombus in the LAA (Fig. 1B). The spontaneous restoration of sinus rhythm was observed. The treatment with apixaban (5 mg BID) was initiated, and empirical antibiotic therapy was continued. After one week of the treatment, TEE was repeated with no linear echoes within the atrial electrode. Interestingly, despite permanent sinus rhythm and anticoagulation therapy with apixaban, the left atrium was filled with highly hyperechogenic blood (Fig. 1C) and the LAA with a sludge (Fig. 1D). Moreover, the long persistence of the bubbles of midazolam in the right atrium has been observed (Fig. 1E). The patient did not present any typical clinical COVID-19 symptoms [3], but had neutropenia, lymphopenia, low procalcitonin, hypoalbuminemia, and increased C-reactive protein. We re-checked the RT-PCR test for SARS-CoV-2 infection, and the result was positive.
DISCUSSION

The LAA lies within the pericardium, in the left atrioventricular sulcus atop the left circumflex artery's proximal part and extends between the anterior and the lateral walls of the LA near the left pulmonary veins [4]. The LAA could be of various sizes, volumes, and shapes and often has several lobes [4, 5, 6]. Veinot et al. found that the most common is the presence of two lobes (54%), the second most frequent are an LAA with three lobes (23%), then with one lobe (20%) and the least frequent is the presence of four lobes (3%) [4]. The orifice of the LAA leads through the neck to the central appendage cavity, which can have a different shape depending on the type of an LAA. According to Wang et al., the most frequent LAA anatomy is the WindSock LAA (Fig. 2A), which has no obvious bands, and one dominant lobe of sufficient length is the basic structure [7]. Variations of this type of LAA appear with the different locations and number of secondary lobes descending downward from the dominant lobe. The second most frequent anatomy is the Cauliflower LAA (Fig. 2C), which, like the previous type, does not have obvious bands; an LAA characterizes by a limited overall length and more complex internal features. Its varieties are described by a more irregular shape of the orifice of the LAA, the number of significant lobes, and the lack of the dominant lobe. The ChickenWing LAA (Fig. 2B) is the third most common type; the main feature of that type of LAA is an obvious band in the proximal or middle part of the dominant lobe or a backward fold of the LAA at some distance from the orifice of the LAA. This type may differ in the presence or absence of additional lobes or twigs, with a different measured distance to this bend, and with different orientations of the bends to the main lobe. The last most common type is the Cactus LAA (Fig. 2D); its main feature is the dominant lobe with secondary lobes extending from the dominant lobe to the superior and inferior directions [7].

According to the literature, thromboembolic complications occur most frequently in patients with AF and the Cactus LAA [8]. Additionally, the small size of LAA, the presence of secondary lobes, the narrow orifice of the LAA, and excessive trabeculations resulting in low LAA peak flow velocities could significantly increase the risk of thrombus formation LAA [9]. It should also be emphasized that the large size of the left atrium and the reduced left ventricular ejection fraction are additional risk factors for the development of thromboembolic complications.

In the described case, we presented echocardiographic evidence of hypercoagulation as the first and only feature of SARS-CoV-2 infection in the usual morphological presentation
of the WindSock LAA (Fig. 1F). Despite the use of apixaban treatment, the lack of features promoting thrombus formation in LAA (Fig. 1D), such as excessive trabeculations, a narrow junction of the proximal lobe of LAA, a narrow junction between the distal lobe of LAA and its proximal lobe, or the presence of additional LAA lobes, there has been a sludge in the LAA. The coagulation abnormalities in COVID-19 are postulated to result from acute inflammation in the organism and increased activity of inflammatory mediators [10]. The urinary tract infection could additionally attenuate the hypercoagulation status in our patient.

CONCLUSIONS

The connection between hypercoagulation features and COVID-19 in a patient without other typical infection indicators seems to be particularly difficult, as in the presented case. Based on the available literature about COVID-19 management, low-molecular-weight heparin should be considered for thrombo-embolic complications prophylaxis [11]. In contrast, oral anticoagulant therapy is not recommended due to its limited effectiveness, confirmed in our patient. The LAA in the case presented above did not show any features predisposing to thrombus formation; the LAA was of standard size and not narrow. Besides, a thrombus developed despite the patient's persistent sinus rhythm and anticoagulant treatment, which suggests a hypercoagulability state in the course of COVID-19. The presented case additionally shows that a negative test for SARS-CoV-2 infection does not always give a full guarantee that the patient is not infected, and the patient's clinical manifestation should be taken into account in further clinical decisions. It is worth emphasizing that modern echocardiography, including three-dimensional techniques, can be recognized as a part of comprehensive imaging technology that could be helpful in COVID-19 diagnosis [12].

REFERENCES

1. Sławiński G, Lewicka E. What should a cardiologist know about coronavirus disease 2019?. Kardiol Pol. 2020;78(4):278-283. doi:10.33963/KP.15302
2. Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020;18(7):1559-1561. doi:10.1111/jth.14849
3. Carfì A, Bernabei R, Landi F; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324(6):603-605. doi:10.1001/jama.2020.12603
4. Veinot JP, Harrity PJ, Gentile F, et al. Anatomy of the normal left atrial appendage: a quantitative study of age-related changes in 500 autopsy hearts: implications for
echocardiographic examination. *Circulation*. 1997;96(9):3112-3115. doi:10.1161/01.cir.96.9.3112

5. Kamiński R, Kosiński A, Brala M, et al. Variability of the Left Atrial Appendage in Human Hearts. *PLoS One*. 2015;10(11):e0141901. Published 2015 Nov 6. doi:10.1371/journal.pone.0141901

6. Panyawongkhanti M, Fuktongphan P, Chentanez V. Morphometric study of the left atrial appendage related to closure device deployment: a cadaveric study in Thai population. *Folia Morphol (Warsz)*. 2020;79(1):79-85. doi:10.5603/FM.a2019.0066

7. Wang Y, Di Biase L, Horton RP, Nguyen T, Morhanty P, Natale A. Left atrial appendage studied by computed tomography to help planning for appendage closure device placement. *J Cardiovasc Electrophysiol*. 2010;21(9):973-982. doi:10.1111/j.1540-8167.2010.01814.x

8. Di Biase L, Santangeli P, Anselmino M, et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. *J Am Coll Cardiol*. 2012;60(6):531-538. doi:10.1016/j.jacc.2012.04.032

9. Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: structure, function, and role in thromboembolism. *Heart*. 1999;82(5):547-554. doi:10.1136/hrt.82.5.547

10. Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. *J Thromb Haemost*. 2020;18(7):1738-1742. doi:10.1111/jth.14850

11. Marietta M, Vandelli P, Mighali P, et al. Randomised controlled trial comparing efficacy and safety of high versus low Low-Molecular Weight Heparin dosages in hospitalized patients with severe COVID-19 pneumonia and coagulopathy not requiring invasive mechanical ventilation (COVID-19 HD): a structured summary of a study protocol. *Trials*. 2020;21(1):574. Published 2020 Jun 26. doi:10.1186/s13063-020-04475-z

12. Rozwadowska K, Racząk G, Sikorska K, Fijałkowski M, Kozłowski D, Danilowicz-Szymanowicz L. Influence of hereditary haemochromatosis on left ventricular wall thickness: does iron overload exacerbate cardiac hypertrophy?. *Folia Morphol (Warsz)*. 2019;78(4):746-753.
Figure 1. The figures visualize the image in transesophageal echocardiography performed twice in the described patient. On admission to the Cardiology Department, the patient had linear echoes on the atrial electrode (Fig. 1A – arrows) and a clean left atrial appendage (Fig. 1B – arrow). In a follow-up study after the spontaneous return of sinus rhythm and a week of apixaban (5 mg BID) therapy, the linear echoes on the atrial lead disappeared, while the left atrium filled with highly hyperechogenic blood (Fig. 1C – arrow) and left atrial appendage with the sludge (Fig. 1D – arrow) were visualized. Additionally, the long persistence of the bubbles of midazolam in the right atrium was observed (Fig. 1E – arrows). Figure 1F presents the dimensions of the LAA in the described patient; 1 - 1.7 cm, 2 - 0.8 cm, 3 - 2.4 cm.
Figure 2. General scheme showing the four most common types of the left atrial appendage. A - The WindSock LAA; B - The ChickenWing LAA; C - The Cauliflower LAA; D - The Cactus LAA.