Transcription Profiles of Genes Encoding Catalase and Ascorbate Peroxidase in the Rice Leaf Tissues under Salinity

Koji Yamane, Shiro Mitsuya, Mitsutaka Taniguchi and Hiroshi Miyake

(Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan)

Abstract: We analyzed the response of transcripts corresponding to ascorbate peroxidase (APX) and catalase (CAT) under salinity in the basal region of the rice leaf, which is tolerant to salinity compared with the apical region. In the NaCl treated plants, the transcript levels of CATB, CATC, APX1, APX4, APX6 and APX7 increased. The transcript level of APX2 was comparable to that of the control, but the transcript level of APX8 was slightly decreased by salinity. The activity of dehydroascorbate reductase decreased by salinity. These results suggest that the increase in CAT activity observed in our previous study is due to the enhancement of transcript levels of CATB and CATC, and the increase in the transcript level of APX1, APX4, APX6 and APX7 may contribute to maintain APX activity under salinity. The enhancement of the enzyme activities involved in regeneration of ascorbate under salinity is needed to increase APX activity and salinity tolerance in rice plants.

Key words: Ascorbate peroxidase, Catalase, Gene expression, NaCl, Reactive oxygen species, Rice.

The accumulation of excess hydrogen peroxide (H$_2$O$_2$) and H$_2$O$_2$-derived hydroxyl radical (•OH) are responsible for the deleterious effects of salinity on cellular damage in rice (Yamane et al., 2004). The decrease in the activity of catalase (CAT) by salinity is responsible for the excess generation of H$_2$O$_2$ (Yamane et al., 2004). The decrease in CAT activity by salinity is often observed in many kinds of salt-sensitive plants (Corpas et al., 1993; Streb and Feierabend, 1996; Shim et al., 2003). However, we previously showed in a salt-sensitive rice cultivar that CAT activity in the basal region of leaves was increased by salinity, and the activity maintained during the experimental period (Yamane et al., 2009). In addition, the activity of ascorbate peroxidase (APX) in the basal region maintained higher constitutive level under salinity compared with that of the apical region (Yamane et al., 2009). These results suggest that in the basal region of rice leaf, APX and CAT act cooperatively to scavenge H$_2$O$_2$ effectively under salinity. However, the gene expression responsible for the increase in CAT activity and the maintenance of APX activity has not been investigated.

Some studies were conducted with rice, focusing on the response to antioxidant enzymes (Shim et al., 2003; Vaidyanathan et al., 2003) and cellular damage (Yamane et al., 2008). However, few studies were conducted on the regulation of antioxidant enzymes at mRNA level. Because, in our previous study, the excess H$_2$O$_2$ was responsible for cellular damage of rice leaves (Yamane et al., 2004) and the basal region of the leaf in a salt-sensitive rice cultivar had the ability to remove H$_2$O$_2$ effectively (Yamane et al., 2009), we analyzed the transcripts of genes encoding CAT and APX in the basal region of the leaf under salinity. Analysis of the transcripts in the basal region of the leaf could give better insight into the defense mechanisms against salt stress in rice.

Materials and Methods

1. Plant materials and stress treatment

Seeds of rice (Oryza sativa L. cv. Nipponbare) were grown hydroponically for 3 wk according to Yamane et al. (2009). The plants were cultured in a growth chamber with 14-hr photoperiod (0800–2200) at 400–500 μmol m$^{-2}$.s$^{-1}$ and 28/20°C (day/night). The 3 wk-old plants were transferred to 200 mM NaCl in hydroponic culture at 1000. After exposure to NaCl for 0, 24, 48 and 72 hr, 6 cm long segments were sampled from the apical and basal regions of the fully expanded uppermost leaves (6th leaf blades). The leaf segments were immediately frozen with liquid N$_2$ and preserved at −80°C until use.
Yamane et al. — Responses of APX and CAT to Salinity 165

Gene expression
Total RNA was isolated according to Taniguchi et al. (2002) to examine the transcript levels of CAT and APX. The RNA samples (10 μg) were electrophoresed in a 1.2% agarose gel containing formaldehyde, blotted on a nylon membrane (Hybond-N+, GE Healthcare), and hybridized with 32P-labeled probes generated from 3'-untranslated region of the full length cDNA clones by polymerase chain reaction and by digesting with restriction enzymes (Teixeira et al., 2006) (Table 1). Equal loading of RNA amount was checked by hybridization with a full-size insert of rice 18S rRNA (AK059783)(Takaiwa et al., 1984).

Activities of dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR)
For the assays, 0.1 g of the leaf segments was homogenated and used. DHAR activity was assayed according to Nakano and Asada (1981) and MDHAR activity according to Hossain et al. (1984). Protein in the supernatant was quantified according to Bradford (1976).

Ascorbate content
For the assays, 0.5 g of the leaf segments was homogenated and used. Ascorbate content was measured by the method of Mukherjee and Choudhuri (1983).

Statistical analysis
Data were statistically analyzed using ANOVA followed by Tukey’s HSD test (SPSS 14.0; SPSS Chicago, IL, USA).

Results

1. Expression of CAT genes
No expression of CATA was detected in the basal region of the leaf in either the control or NaCl-treated plants (data not shown). Although the expression of CATB was not detected in the control plant, the transcript was accumulated after 24 hr of NaCl treatment (Fig. 1A). CATC expression in the basal region of the leaf reached a maximum after 48 hr, and was slightly higher in NaCl-treated plants than in the control plants at each harvesting time (Fig. 1B).

No expression of CATA was detected in the apical region of the leaf in either the control or NaCl-treated plants (data not shown). While no expression of CATB was detected in either the control or NaCl-treated plants, expression of CATC transcripts was maximum at 24 hr in the apical region of the leaf in the control (Fig. 1C). The expression of CATC decreased after 24 hr of NaCl treatment, and was not detected after 48 hr (Fig. 1C).

2. Expression of APX genes
No transcripts of either APX3 or APX5 were detected in the basal region of the leaf in either the control or NaCl-treated plants (data not shown). The transcript levels of APX1, APX4, APX6 and APX7 were more than 1.5-fold those in the control after the onset of NaCl treatment (Fig. 2A, C, D, E). Especially, the transcript level of APX7 drastically increased after 24 hr of NaCl treatment (Fig. 2E). The transcripts of APX2 and APX8 were differently modulated under salinity; the transcript level of APX2 was

Table 1. Primers and probes for detection of CAT and APX mRNA levels.	Acc. No.	
Primer	5'-3'	
CATA forward	TGATCCTGTGAATTATAATTGGATCTAC	AK099923
CATA reverse	GAAGTGATTTAATTTAATTAATTAAT	
CATB forward	CCGATGGTGCTTGGTTGAGAGATGAAA	AK100019
CATB reverse	AAGACGTTCAACCATGATGACACTG	
CATC forward	GAAGATGTCAGGTTGGAACTGCTTCTCA	AK063578
CATC reverse	CTTCAGGTTACATTATACATGTGTGTCA	
APX3 forward	AGGCTTCTGAGCTGCGGTTCATC	AS82617
APX3 reverse	GCCTGTCGACTGACTCGAC	
APX5 forward	TCAGCTGCGATGAACTG	AK073910
APX5 reverse	TGAGTGATGTCATCTAATT	

Gene Fragment Acc. No.

APX2	Pst I	AK001841
APX2	Pst I /Rfl II	AK003715
APX4	Hind III /BamH I	AK070842
APX6	Bgl II /SnaB I	AK061107
APX7	BamH I	AK103414
APX8	Pst I /BamH II	AK100016
comparable to that in the control (Fig. 2B), while that of APX8 slightly decreased by salinity (Fig. 2F).

No transcripts of either APX3 or APX5 were detected in the apical region of the leaf in either the control or NaCl-treated plants (data not shown). The transcript levels of APX1, 2, 4 and 7 drastically decreased by NaCl treatment (Fig. 2G, H). The transcripts of APX6 and APX8 in the apical region of the leaf in the NaCl-treated plants were comparable to that of the control during salt stress (Fig. 2H).

3. DHAR and MDHAR activities and ascorbate content

Because APX is labile in the absence of ascorbate, the system for regeneration of ascorbate constituted by DHAR and MDHAR is essential (Asada, 1999). MDHAR activity in the basal region of the leaf in NaCl-treated plants was comparable to that in the control during the experimental period (Fig. 3B). The activity of DHAR decreased immediately by salinity in both apical and basal regions of the leaf compared with that of the control after NaCl treatment (Fig. 3C). Especially, no ascorbate was detected in the apical region of NaCl-treated plants after 48 hr of NaCl treatment (Fig. 3C).

Discussion

Rice contains three CAT genes (CATA, CATB and CATC). In rice plants, the expression of CATB has been detected in roots but not in leaves (Iwamoto et al., 2000). In the present study, however, the transcript was detected in
leaves under salinity (Fig. 1A). The expression of *Nicotiana plumbaginifolia* CAT2, which is homolog to rice CATB, is also induced by salinity (Savouré et al., 1999). Iwamoto et al. (2004) reported that the CATB promoter region between -80 and -73 corresponds to a putative abscisic acid response element in rice. Adaptation of plants to salinity is to a greater extent under transcriptional control - some processes are regulated by ABA (Zhang et al., 2004). These results and the present data suggested that CATB is critical for salinity tolerance. In addition, the expression of CATC in the apical region was immediately decreased by salinity, and the transcript of CATB was not detected (Fig. 1C). Thus, the apical region of the leaf suffers severer damage than the basal region, and the transcript accumulations of CATB and CATC under salinity are dependent on tissue age.

The transcript level of APX4, which is a putative peroxisomal isoform, increased under salinity (Fig. 2C). The transcript levels of CATB and CATC also increased under salinity (Fig. 1A, B). Salinity enhances the photorespiration rate, and increases the production of H$_2$O$_2$ in peroxisomes (Corpas et al., 1993). APX has much higher affinity for H$_2$O$_2$ than CAT (Van Breusegem et al., 2001). The overexpression of peroxisomal isoform APX3 in tobacco could protect leaves from oxidative stress caused by aminotriazole, which inhibits CAT activity (Wang et al., 1999). These results suggest that APX and CAT act co-operatively to remove H$_2$O$_2$ generated in peroxisomes under salinity, and peroxisomal APX could be critical for salt tolerance as well as CAT. On the other hand, the
expressions of CATB, CATC and APX4 in the apical region of the leaf were not detected after 48 hr of NaCl treatment (Figs. 1C, 2G). These results suggest that H$_2$O$_2$ generated in peroxisome during photosynthesis under salinity cannot be scavenged effectively. The decrease in the expression of genes encoding H$_2$O$_2$ scavenging enzymes in peroxisome could be one of the reasons why the apical region of the leaf suffers severer damage than the basal region.

The H$_2$O$_2$ produced in chloroplasts is scavenged by APX using ascorbate as an electron donor (Asada, 1999). The transcript levels of stromal APX genes (APX6 and APX7) increased during NaCl treatment (Fig. 2D, E). An increase in the stromal APX activity could contribute to the adaptation of pea plants to NaCl (Gómez et al., 2004). These results suggest that stromal APX6 and APX7 could play a role in the defense mechanism against salt-induced oxidative stress in chloroplasts in rice. Although the transcript accumulations of APX6 and APX8 in the apical region of the leaf were comparable to those of the control under salinity (Fig. 2H), the expression of APX7 was not detected after 48 hr of NaCl treatment (Fig. 2H). In the basal region of the leaf, the transcript level of APX7 was 10 to 50 times higher as compared with other APX genes (Fig. 2E). Thus, APX7 is most important iso-enzyme to prevent from salt-induced oxidative damage in chloroplasts.

In our previous study, APX activity in the basal region of the leaf under salinity was not enhanced under salinity compared with that of the control (Yamane et al., 2009), however, the transcript level of APX genes (APX1, APX4, APX6 and APX7) increased in the present study. APX, especially its chloroplastic isozyme, is labile in the absence of ascorbate (Asada, 1999). Therefore, the system for the regeneration of ascorbate constituted by DHAR and MDHAR is essential in order to enhance APX activity (Asada, 1999). MDHAR activity in the basal region of the leaf was comparable to that of the control (Fig. 3B), but DHAR activity was immediately decreased under salinity (Fig. 3A). In addition, the ascorbate content in the basal region of the leaf decreased considerably compared with that in the control under salinity (Fig. 3C). These results suggest that the decreases in DHAR activity and ascorbate content suppress the increase in APX activity in the basal region of the leaf under salinity, though the transcript levels of APX1, APX4, APX6 and APX7 increased.

In conclusion, the transcript levels of CATB, CATC, APX1, APX4, APX6 and APX7 in the basal region of the leaf increased under salinity. An increase in CAT activity observed in our previous study is due to the enhancement of the transcript levels of CATB and CATC, and the increase in the transcript levels of APX1, 4, 6 and 7 may contribute to maintain APX activity under salinity. The enhancement of DHAR and MDHAR activities and ascorbate content under salinity is needed to enhance the activity of APX and salinity tolerance in rice.

References
Asada, K. 1999. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601-639.
Bradford, M.M. 1976. Anal. Biochem. 72: 248-254.
Corpas, F.J. et al. 1993. J. Plant Physiol. 141: 169-165.
Gómez, J.M. et al. 2004. J. Exp. Bot. 55: 119-130.
Hossain, M.A. et al. 1984. Plant Cell Physiol. 25: 385-395.
Iwamoto, M. et al. 2000. Plant Sci. 151: 39-46.
Iwamoto, M. et al. 2004. Plant Physiol. Biochem. 42: 241-249.
Kozuki, A. and Takeba, G. 1996. Natur 384: 557-560.
Mukherjee, S.P. and Choudhuri, M.A. 1983. Physiol. Plant. 58: 160-170.
Nakano, Y. and Asada, K. 1981. Plant Cell Physiol. 22: 867-880.
Savouré, A. et al. 1999. Plant Cell Environ. 22: 387-396.
Shim, I.S. et al. 2003. Plant Growth Regul. 39: 285-292.
Streb, P. and Feierabend, J. 1996. Bot. Acta 109: 125-132.
Takawa, F. et al. 1984. Nucleic Acids Res. 12: 5411-5448.
Taniguchi, M. et al. 2002. Plant Cell Physiol. 43: 706-717.
Teneica, F.K. et al. 2006. Plants 224: 3093-314.
Vaidyanathan, H. et al. 2003. Plant Sci. 165: 1411-1418.
Van Breusegem, F. et al. 2001. Plant Sci. 161: 405-414.
Wang, J. et al. 1999. Plant Cell Physiol. 40: 725-732.
Yamane, K. et al. 2004. Plant Prod. Sci. 7: 292-300.
Yamane, K. et al. 2008. Plant Prod. Sci. 11: 139-145.
Yamane, K. et al. 2009. Plant Prod. Sci. 12: 519-526.
Zhang, J.Z. et al. 2004. Plant Physiol. 135: 615-621.