On the Evaluation of Dialogue Systems with Next Utterance Classification

Ryan Lowe¹, Iulian V. Serban², Mike Noseworthy¹, Laurent Charlin¹, Joelle Pineau¹
¹ School of Computer Science, McGill University
{ryan.lowe, lcharlin, jpineau}@cs.mcgill.ca, michael.noseworthy@mail.mcgill.ca
² DIRO, Université de Montréal
iulian.vlad.serban@umontreal.ca

Abstract

An open challenge in constructing dialogue systems is developing methods for automatically learning dialogue strategies from large amounts of unlabelled data. Recent work has proposed Next-Utterance-Classification (NUC) as a surrogate task for building dialogue systems from text data. In this paper we investigate the performance of humans on this task to validate the relevance of NUC as a method of evaluation. Our results show three main findings: (1) humans are able to correctly classify responses at a rate much better than chance, thus confirming that the task is feasible, (2) human performance levels vary across task domains (we consider 3 datasets) and expertise levels (novice vs experts), thus showing that a range of performance is possible on this type of task, (3) automated dialogue systems built using state-of-the-art machine learning methods have similar performance to the human novices, but worse than the experts, thus confirming the utility of this class of tasks for driving further research in automated dialogue systems.

1 Introduction

Significant efforts have been made in recent years to develop computational methods for learning dialogue strategies offline from large amounts of text data. One of the challenges of this line of work is to develop methods to automatically evaluate, either directly or indirectly, models that are trained in this manner (Galley et al., 2015; Schatzmann et al., 2005), without requiring human labels or human user experiments, which are time consuming and expensive. The use of automatic tasks and metrics is one key issue in scaling the development of dialogue systems from small domain-specific systems, which require significant engineering, to general conversational agents (Pietquin and Hastie, 2013).

In this paper, we consider tasks and evaluation measures for what we call ‘unsupervised’ dialogue systems, such as chatbots. These are in contrast to ‘supervised’ dialogue systems, which we define as those that explicitly incorporate some supervised signal such as task completion or user satisfaction¹. Unsupervised systems can be roughly separated into response generation systems that attempt to produce a likely response given a conversational context, and retrieval-based systems that attempt to select a response from a (possibly large) list of utterances in a corpus. While there has been significant work on building end-to-end response generation systems (Vinyals and Le, 2015; Shang et al., 2015; Serban et al., 2015b), it has recently been shown that many of the automatic evaluation metrics used for such systems correlate poorly or not at all with human judgement of the generated responses (Liu et al., 2016).

Retrieval-based systems are of interest because they admit a natural evaluation metric, namely the recall and precision measures. First introduced for evaluating user simulations by Schatzmann et al. (2005), such a framework has gained recent prominence for the evaluation of end-to-end dialogue systems (Lowe et al., 2015a; Kadlec et al., 2015; Dodge et al., 2015). These models are trained on the task of selecting the correct response from a candidate list, which we call Next-Utterance-Classification (NUC, detailed in Section 2), and are evaluated using the metric of recall. NUC is useful for several reasons: 1) the performance (i.e. loss or error) is easy to com-

¹Metrics for supervised systems include PARADISE (Walker et al., 1997) and MeMo (Moller et al., 2006).
pute automatically, 2) it is simple to adjust the difficulty of the task, 3) the task is interpretable and amenable to comparison with human performance, 4) it is an easier task compared to generative dialogue modeling, which is difficult for end-to-end systems (Sordoni et al., 2015; Serban et al., 2015a), and 5) models trained with NUC can be converted to dialogue systems by retrieving from the full corpus (Liu et al., 2016). In this case, NUC additionally allows for making hard constraints on the allowable outputs of the system (to prevent offensive responses), and guarantees that the responses are fluent (because they were generated by humans). Thus, NUC can be thought of both as an intermediate task that can be used to evaluate the ability of systems to understand natural language conversations, similar to the bAbI tasks for language understanding (Weston et al., 2015), and as a useful framework for building chatbots. With the huge size of current dialogue datasets that contain millions of utterances (Lowe et al., 2015a; Banchs, 2012; Ritter et al., 2010) and the increasing amount of natural language data, it is conceivable that retrieval-based systems will be able to engage in conversations with humans.

However, despite the current work with NUC, there has been no verification of whether machine and human performance differ on this task. This cannot be assumed; it is possible that no significant gap exists between the two, as is the case with many current automatic response generation metrics (Liu et al., 2016). Further, it is important to benchmark human performance on new tasks such as NUC to determine when research has outgrown their use. In this paper, we consider to what extent NUC is achievable by humans, whether human performance varies according to expertise, and whether there is room for machine performance to improve (or has reached human performance already) and we should move to more complex conversational tasks. We performed a user study on three different datasets: the SubTle Corpus of movie dialogues (Banchs, 2012), the Twitter Corpus (Ritter et al., 2010), and the Ubuntu Dialogue Corpus (Lowe et al., 2015a). Since conversations in the Ubuntu Dialogue Corpus are highly technical, we recruit ‘expert’ humans who are adept with the Ubuntu terminology, whom we compare with a state-of-the-art machine learning agent on all datasets. We find that there is indeed a significant separation between machine and expert human performance, suggesting that NUC is a useful intermediate task for measuring progress.

2 Technical Background on NUC

Our long-term goal is the development and deployment of artificial conversational agents. Recent deep neural architectures offer perhaps the most promising framework for tackling this problem. However training such architectures typically requires large amounts of conversation data from the target domain, and a way to automatically assess prediction errors. Next-Utterance-Classification (NUC, see Figure 1) is a task, which is straightforward to evaluate, designed for training and validation of dialogue systems. They are evaluated using the metric of Recall@k, which we define in this section.

In NUC, a model or user, when presented with the context of a conversation and a (usually small) predefined list of responses, must select the most appropriate response from this list. This list includes the actual next response of the conversation, which is the desired prediction of the model. The other entries, which act as false positives, are sampled from elsewhere in the corpus. Note that no assumptions are made regarding the number of utterances in the context: these can be fixed or sampled from arbitrary distributions. Performance on this task is easy to assess by measuring the success rate of picking the correct next response; more specifically, we measure Recall@k (R@k), which is the percentage of correct responses (i.e. the actual response of the conversation) that are found in the top k responses with the highest rankings according to the model. This task has gained some popularity recently for evaluating dialogue performance.
systems (Lowe et al., 2015a; Kadlec et al., 2015).

There are several attractive properties of this approach, as detailed in the introduction: the performance is easy to compute automatically, the task is interpretable and amenable to comparison with human performance, and it is easier than generative dialogue modeling. A particularly nice property is that one can adjust the difficulty of NUC by simply changing the number of false responses (from one response to the full corpus), or by altering the selection criteria of false responses (from randomly sampled to intentionally confusing). Indeed, as the number of false responses grows to encompass all natural language responses, the task becomes identical to response generation.

One potential limitation of the NUC approach is that, since the other candidate answers are sampled from elsewhere in the corpus, these may also represent reasonable responses given the context. Part of the contribution of this work is determining the significance of this limitation.

3 Survey Methodology

3.1 Corpora

We conducted our analysis on three corpora that have gained recent popularity for training dialogue systems. The SubTle Corpus (Banchs, 2012) consists of movie dialogues as extracted from subtitles, and includes turn-taking information indicating when each user has finished their turn. The Twitter Corpus (Ritter et al., 2010) contains a large number of conversations between users on the microblogging platform Twitter. Finally, the Ubuntu Dialogue Corpus contains conversations extracted from IRC chat logs. We focus our attention on these as they cover a range of popular domains, and are among the largest available dialogue datasets, making them good candidates for building data-driven dialogue systems. Note that while the Ubuntu Corpus is most relevant to supervised systems, the NUC task still applies in this domain. Models that take semantic information into account (i.e. to solve the user’s problem) can still be validated with NUC, as in (Lowe et al., 2015b).

A group of 145 paid participants were recruited through Amazon Mechanical Turk (AMT), a crowdsourcing platform for obtaining human participants for various studies. Demographic statistics of the participants are shown in Table 1. An additional 8 volunteers were recruited from the student population in the computer science department at the author’s institution.\(^2\) This second group, referred to as “Lab experts”, had significant exposure to technical terms prominent in the Ubuntu dataset; we hypothesized that this was an advantage in selecting responses for that corpus.

3.2 Task description

Each participant was asked to answer either 30 or 40 questions (mean=31.9). To ensure a sufficient diversity of questions from each dataset, four versions of the survey with different questions were given to participants. For AMT respondents, the questions were approximately evenly distributed across the three datasets, while for the lab experts, half of the questions were related to Ubuntu and the remainder evenly split across Twitter and movies. Each question had 1 correct response, and 4 false responses drawn uniformly at random from elsewhere in the (same) corpus. Participants had a time limit of 40 minutes.

Conversations were extracted to form NUC conversation-response pairs as described in Sec. 2. The number of utterances in the context were sampled according to the procedure in (Lowe et al., 2015a), with a maximum context length of 6 turns — this was done for both the human trials and ANN model. All conversations were preprocessed in order to anonymize the utterances.

\(^2\)None were directly involved with the project.

What is your gender?	Male	Female
	56.5%	44.5%

What is your age?
18-20
21-30
31-40
41-55
55+

How would you rate your fluency in English?
Beginner
Intermediate
Advanced
Fluent

What is your current level of education?
High school or less
Bachelor’s
Master’s
Doctorate or higher

How would you rate your knowledge of Ubuntu?
I’ve never used it
Basic
Intermediate
Expert

Table 1: Data on the 145 AMT participants.
Table 2: Average results on each corpus. ‘Number of Users’ indicates the number of respondents for each category. ‘AMT experts’ and ‘AMT non-experts’ are combined for the Movie and Twitter corpora. 95% confidence intervals are calculated using the normal approximation, which assumes subjects answer each question independently of other examples and subjects. Starred (*) results indicate a poor approximation due to high scores with small sample size, according to the rule of thumb by Brown et al. (2001).

4 Results

As we can see from Table 1, the AMT participants are mostly young adults, fluent in English with some undergraduate education. The split across genders is approximately equal, and the majority of respondents had never used Ubuntu before.

Table 2 shows the NUC results on each corpus. The human results are separated into AMT non-experts, consisting of paid respondents who have ‘Beginner’ or no knowledge of Ubuntu terminology; AMT experts, who claimed to have ‘Intermediate’ or ‘Advanced’ knowledge of Ubuntu; and Lab experts. We also presents results on the same task for a state-of-the-art artificial neural network (ANN) dialogue model (see (Lowe et al., 2015a) for implementation details).

We first observe that subjects perform above chance level (20% for R@1) on all domains, thus the task is doable for humans. Second we observe difference in performances between the three domains. The Twitter dataset appears to have the best predictability, with a Recall@1 approximately 8% points higher than for the movie dialogues for AMT workers, and 18% higher for lab experts. Rather than attributing this to greater familiarity with Twitter than movies, it seems more likely that it is because movie utterances are often short, generic (e.g. contain few topic-related words), and lack proper context (e.g., video cues and the movie’s story). Conversely, tweets are typically more specific, and successive tweets may have common hashtags.

As expected, untrained respondents scored lowest on the Ubuntu dataset, as it contains the most difficult language with often unfamiliar terminology. Further, since the domain is narrow, randomly drawn false responses could be more likely to resemble the actual next response, especially to someone unfamiliar with Ubuntu terminology. We also observe that the ANN model achieves similar performance to the paid human respondents from AMT. However, the model is still significantly behind the lab experts for Recall@1.

An interesting note is that there is very little difference between the paid AMT non-experts and AMT experts on Ubuntu. This suggests that the participants do not provide accurate self-rating of expertise, either intentionally or not. We also found that lab experts took on average approximately 50% more time to complete the survey than paid testers; this is reflected in the results, where the lab experts score 30% higher on the Ubuntu Corpus, and even 5-10% higher on the non-technical Movie and Twitter corpora. While we included attention check questions to ensure the quality of responses, this reflects poorly on the ability of crowdsourced workers to answer technical questions, even if they self-identify as being adept with the technology.

5 Discussion

Our results demonstrate that humans outperform current dialogue models on the task of Next-Utterance-Classification, indicating that there is plenty of room for improvement for these models to better understand the nature of human dialogue. While our results suggest that NUC is a useful task, it is by no means sufficient; we strongly advocate for automatically evaluating dialogue systems with as many relevant metrics as possible.
References

R. E. Banchs. 2012. Movie-dic: A movie dialogue corpus for research and development. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2.

Lawrence D Brown, T Tony Cai, and Anirban Das-Gupta. 2001. Interval estimation for a binomial proportion. Statistical science, pages 101–117.

J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Chopra, A. Miller, A. Szlam, and J. Weston. 2015. Evaluating prerequisite qualities for learning end-to-end dialog systems. arXiv preprint arXiv:1511.06931.

Michel Galley, Chris Brockett, Alessandro Sordoni, Yangfeng Ji, Michael Auli, Chris Quirk, Margaret Mitchell, Jianfeng Gao, and Bill Dolan. 2015. deltaBLEU: A discriminative metric for generation tasks with intrinsically diverse targets. In Proceedings of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (Short Papers).

R. Kadlec, M. Schmid, and J. Kleindienst. 2015. Improved deep learning baselines for ubuntu corpus dialogs. Neural Information Processing Systems Workshop on Machine Learning for Spoken Language Understanding.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How not to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. arXiv preprint arXiv:1603.08023.

R. Lowe, N. Pow, I. Serban, and J. Pineau. 2015a. The ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dialogue systems. In SIGDIAL.

Ryan Lowe, Nissan Pow, Iulian Serban, Laurent Charlin, and Joelle Pineau. 2015b. Incorporating unstructured textual knowledge sources into neural dialogue systems. In NIPS Workshop on Machine Learning for Spoken Language Understanding.

Sebastian Möller, Roman Englert, Klaus-Peter Engelbrecht, Verena Vanessa Hafner, Anthony Jameson, Antti Oulasvirta, Alexander Raake, and Norbert Reithinger. 2006. Memo: towards automatic usability evaluation of spoken dialogue services by user error simulations. In INTERSPEECH.

Olivier Pietquin and Helen Hastie. 2013. A survey on metrics for the evaluation of user simulations. The Knowledge Engineering Review.

A. Ritter, C. Cherry, and B. Dolan. 2010. Unsupervised modeling of twitter conversations. In North American Chapter of the Association for Computational Linguistics (NAACL).

J. Schatzmann, K. Georgila, and S. Young. 2005. Quantitative evaluation of user simulation techniques for spoken dialogue systems. In 6th Special Interest Group on Discourse and Dialogue (SIGDIAL).

I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau. 2015a. Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Networks. In AAAI Conference on Artificial Intelligence. In press.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2015b. Hierarchical neural network generative models for movie dialogues. arXiv preprint arXiv:1507.04808.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversation. arXiv preprint arXiv:1503.02364.

A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J. Nie, J. Gao, and B. Dolan. 2015. A neural network approach to context-sensitive generation of conversational responses. In Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT 2015).

Oriol Vinyals and Quoc Le. 2015. A neural conversational model. arXiv preprint arXiv:1506.05869.

Marilyn A Walker, Diane J Litman, Candace A Kamm, and Alicia Abella. 1997. Paradise: A framework for evaluating spoken dialogue agents. In Proceedings of the eighth conference on European chapter of the Association for Computational Linguistics, pages 271–280. Association for Computational Linguistics.

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. 2015. Towards ai-complete question answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.