Approximate CVP\(_{\infty}\) in time \(2^{0.802n}\)

Friedrich Eisenbrand *
EPFL
Switzerland
friedrich.eisenbrand@epfl.ch

Moritz Venzin
EPFL
Switzerland
moritz.venzin@epfl.ch

May 12, 2020

Abstract

We show that a constant factor approximation of the shortest and closest lattice vector problem w.r.t. \(\ell_{\infty}\) can be computed in time \(2^{(0.802+\epsilon)n}\). This is breaking the kissing number barrier of \(3^n\) that is inherent in the previous best approaches tackling this problem.

We obtain this improvement by incorporating a bound on the number of scaled hypercubes that are necessary to cover the \(\ell_2\)-ball of radius \(\sqrt{n}\). The final procedure is then a modification of the list-sieve algorithm for \(\ell_2\). It is to pick the smallest pairwise difference w.r.t. \(\ell_{\infty}\) of the generated lattice vectors.

1 Introduction

The shortest vector problem (SVP) and the closest vector problem (CVP) are important algorithmic problems in the geometry of numbers. Given a rational lattice

\[\mathcal{L}(B) = \{Bx : x \in \mathbb{Z}^n\} \]

with \(B \in \mathbb{Q}^{n \times n}\) and a target vector \(t \in \mathbb{Q}^n\) the closest vector problem asks for lattice vector \(v \in \mathcal{L}(B)\) minimizing \(\|t - v\|\). The shortest vector problem asks for a nonzero lattice vector \(v \in \mathcal{L}(B)\) of minimal norm. When using the \(\ell_p\) norms for \(1 \leq p \leq \infty\), we denote the problems by SVP\(_p\) resp. CVP\(_p\).

Much attention has been devoted to the hardness of approximating SVP and CVP. In a long sequence of papers, including [vEB81, Ajt98, Mic01, Aro95, DKRS03, Kho05, HR07] it has been shown that SVP and CVP are hard to approximate to within almost polynomial factors under reasonable complexity assumptions. The best polynomial-time approximation algorithms have exponential approximation factors [LLL82, Sch87, AKS01].

The first algorithm to solve CVP for any norm that has exponential running time in the dimension only was given by Lenstra [Len83]. The running time of his procedure is \(2^{O(n^2)}\) times a polynomial in the encoding length. In fact, Lenstra’s algorithm solves the more general integer programming problem. Kannan [Kan87] improved this to \(n^{O(n)}\) time and polynomial space. It took almost 15 years until Ajtai, Kumar and Sivakumar presented a randomized algorithm for SVP\(_2\) with time and space \(2^{O(n)}\) and a \(2^{(1+1/\epsilon)n}\) time and space algorithm for \((1+\epsilon)\)-CVP\(_2\) [AKS01, AKS02]. Here \((1+\epsilon)\)-CVP\(_2\) is the problem of finding a lattice vector, whose distance to the target is at most \(1 + \epsilon\) times the minimal distance. Blömer and Naewe [BN09] extended the randomized sieving algorithm of Ajtai et al. to solve SVP\(_p\) and obtain a \(2^{O(n)}\) time and space exact algorithm for SVP\(_p\) and an \(O(1+1/\epsilon)^{2n}\) time algorithm to compute a \((1+\epsilon)\) approximation for CVP\(_p\). For CVP\(_\infty\), one has a faster approximation algorithm.

*The author acknowledges support from the Swiss National Science Foundation (SNSF) within the project Lattice Algorithms and Integer Programming (Nr. 185030).
Eisenbrand et al. [EHN11] showed how to boost any constant approximation algorithm for \(\text{CVP}_\infty \) to a \((1+\varepsilon)\)-approximation algorithm in time \(O(\log(1+1/\varepsilon)^n) \). Recently, this idea was adapted in [NV19] to all \(\ell_p \) norms, showing that \((1+\varepsilon)\) approximate \(\text{CVP}_p \) can be solved in time \((1+1/\varepsilon)^{n/\min(2,p)} \) by boosting the deterministic CVP algorithm for general (even asymmetric) norms with a running time of \((1+1/\varepsilon)^n \) that was developed by Dadush and Kun [DK16].

The first deterministic singly-exponential time and space algorithm for exact \(\text{CVP}_2 \) (and \(\text{SVP}_2 \)) was developed by [MV10a]. The fastest exact algorithms for \(\text{CVP}_2 \) and \(\text{CVP}_p \) run in time and space \(2^{n+o(n)} \) [ADRS15, ADS15, AS18b]. Single exponential time and space algorithms for exact \(\text{CVP} \) are only known for \(\ell_2 \). Whether \(\text{CVP} \) and the more general integer programming problem can be solved in time \(2^{O(n)} \) is a prominent mystery in algorithms.

Recently there has been exciting progress in understanding the fine grained complexity of exact and constant approximation algorithms for \(\text{CVP} \) [ABGS19, BGS17, AS18a]. Under the assumption of a strong exponential time hypothesis (SETH) and for \(p \neq 0 \) (mod 2), exact \(\text{CVP}_p \) cannot be solved in time \(2^{(1-\varepsilon)d} \). Here \(d \) is the ambient dimension of the lattice, which is the number of vectors in a basis of the lattice. Under the assumption of a gap-version of the strong exponential time hypothesis (gap-SETH) these lower bounds also hold for the approximate versions of \(\text{CVP}_p \). More precisely, for each \(\varepsilon > 0 \) there exists a constant \(\gamma_\varepsilon > 1 \) such that there exists no \(2^{(1-\varepsilon)d} \) algorithm that computes a \(\gamma_\varepsilon \)-approximation of \(\text{CVP}_p \).

In the case of \(\ell_\infty \), the current best constant approximation algorithms for \(\text{CVP}_\infty \) run in time \(3^n \) [AM18, Muk19]. This is related to the kissing number for \(\ell_\infty \) which is the maximum number of unit boxes that can be arranged in such a way that they touch another given unit box. The kissing number for \(\ell_\infty \) is \(3^n - 1 \). Aggarwal et al. [ABGS19] raise the question whether the kissing number is a natural running time for a constant approximation algorithm for \(\text{CVP}_\infty \).

Our main result is the following theorem.

Theorem. For each \(\varepsilon > 0 \), there exists a constant \(\gamma_\varepsilon \) such that a \(\gamma_\varepsilon \)-approximate solution to \(\text{CVP}_\infty \), as well as to \(\text{SVP}_\infty \), can be found in time \(2^{O(0.802+\varepsilon)n} \).

This shows in particular that the kissing number is not a lower bound for the running time of a constant factor approximation algorithm. The main idea of our approach is to establish a direct link between approximation algorithms for \(\ell_2 \) and \(\ell_\infty \) via a covering argument.

2 Covering balls with boxes

We now outline the main idea for an approximate \(\text{SVP}_\infty \) algorithm that runs in time \(2^{0.802n} \). This matches the currently fastest constant approximation for their respective counterparts w.r.t. \(\ell_2 \), see [LWXZ11, PS09]. Let us assume that the shortest vector of \(\mathcal{L} \) w.r.t. \(\ell_\infty \) is \(s \in \mathcal{L} \setminus \{0\} \). We can assume that the lattice is scaled such that \(\|s\|_\infty = 1 \) holds. The euclidean norm of \(s \) is then bounded by \(\sqrt{n} \). Suppose now that there is a procedure that, for some constant \(\gamma > 1 \) independent of \(n \), generates distinct lattice vectors \(v_1,\ldots,v_n \in \mathcal{L} \) of length at most \(\|v_i\|_2 \leq \gamma \sqrt{n} \).

How large does the number of vectors \(N \) have to be such that we can guarantee that there exists two indices \(i \neq j \) with

\[
\|v_i - v_j\|_\infty \leq \alpha, \tag{1}
\]

where \(\alpha \geq 1 \) is the approximation guarantee for \(\text{SVP}_\infty \) that we want to achieve? Suppose that \(N \) is larger than the minimal number of copies of the box \((\alpha/2)b_\infty^n \) that are required to cover the ball \(\sqrt{n}b_\infty^n \). Here \(b_\infty^n = \{x \in \mathbb{R}^n : \|x\|_p \leq 1\} \) denotes the unit ball w.r.t. the \(\ell_p \)-norm. Then, by the pigeon-hole principle, two different vectors \(v_i \) and \(v_j \) must be in the same box. Their difference satisfies (1) and thus is an \(\alpha \)-approximate shortest vector w.r.t. \(\ell_\infty \), see Figure 1.
Thus we are interested in the translative covering number $N(\sqrt{n}B_2^n, aB_\infty^n)$, which is the number of translated copies of the box aB_∞^n that are needed to cover the ℓ_2-ball of radius \sqrt{n}. In the setting above, a is the constant $\alpha/(2\gamma)$. Covering problems like these have received considerable attention in the field of convex geometry, see [AAS15, Nas14]. These techniques rely on the classical set-cover problem and the logarithmic integrality gap of its standard LP-relaxation, see, e.g. [Vaz13, Chv79]. To keep this paper self-contained, we briefly explain how this can be applied to our setting.

If we cover the finite set $(1/n)Z^n \cap \sqrt{n}B_2^n$ with cubes whose centers are on the grid $(1/n)Z^n$, then by increasing the side-length of those cubes by an additive $1/n$, one obtains a full covering of $\sqrt{n}B_2^n$. This is a set-covering problem with ground set $U = (1/n)Z^n \cap \sqrt{n}B_2^n$ and sets

$$S_t = U \cap aB_\infty^n + t, \; t \in (1/n)Z^n,$$

ignoring empty sets. An element of the ground set is contained in exactly $|(1/n)Z^n \cap aB_\infty^n|$ many sets. Therefore, by assigning each element of the ground set the fractional value $1/|(1/n)Z^n \cap aB_\infty^n|$, one obtains a feasible fractional covering. The weight of this fractional covering is

$$\frac{T}{|(1/n)Z^n \cap aB_\infty^n|}$$

where T is the number of sets. Clearly, if a cube intersects $\sqrt{n}B_2^n$, then its center is contained in the Minkowski sum $\sqrt{n}B_2^n + aB_\infty^n$ and thus the weight of the fractional covering is

$$\frac{|(\sqrt{n}B_2^n + aB_\infty^n) \cap \frac{1}{n}Z^n|}{|\frac{1}{n}Z^n \cap aB_\infty^n|} = O\left(\frac{\text{vol}(\sqrt{n}B_2^n + aB_\infty^n)}{\text{vol}(aB_\infty^n)}\right)$$

Since the size of the ground-set is bounded by $n^{O(n)}$ and since the integrality gap of the set-cover LP is at most the logarithm of this size, one obtains

$$N(\sqrt{n}B_2^n, aB_\infty^n) \leq \text{poly}(n)\frac{\text{vol}(\sqrt{n}B_2^n + aB_\infty^n)}{\text{vol}(aB_\infty^n)}\quad(2)$$

By Steiner’s formula, see [Gru07, Sch13, HRGZ97], the volume of $K + tB_2^n$ is a polynomial in t, with coefficients $V_j(K)$ only depending on the convex body K:

$$\text{vol}(K + tB_2^n) = \sum_{j=0}^{n} V_j(K) \text{vol}(B_2^{n-j}) t^{n-j}$$

For $K = aB_\infty^n$, $V_j(K) = (2a)^j \binom{n}{j}$. Setting $t = \sqrt{n}$, the resulting expression has been evaluated in [JA15, Theorem 7.1].
Theorem 2.1 ([JA15]). Denote by H the binary entropy function and let $\phi \in (0, 1)$ the unique solution to
\[
\frac{1 - \phi^2}{\phi^3} = \frac{2a^2}{\pi}.
\]
Then
\[
\text{vol}(aB_2^n + \sqrt{n}B_2^n) = O(2^{n[H(\phi) + (1 - \phi)\log(2a) + \frac{\phi}{2}\log(\frac{2\pi}{\phi})]})
\]
Using this bound in inequality (2) and simplifying, we find
\[
N(\sqrt{n}B_2^n, aB_\infty^n) \leq \text{poly}(n)2^{n[H(\phi) + \phi^2\log(\frac{2\pi}{\phi})]}
\]
Both $H(\phi)$ and $\frac{\phi}{2}\log(\frac{2\pi}{\phi})$ decrease to 0 as ϕ decreases to 0. Since ϕ, the unique solution to (3), satisfies $\phi \leq \frac{\sqrt{15\pi}}{3n}$, we obtain the following bound.

Lemma 2.2. For each $\varepsilon > 0$, there exists $a_\varepsilon \in \mathbb{R}_{>0}$ independent of n, such that
\[
N(\sqrt{n}B_2^n, a_\varepsilon B_\infty^n) \leq 2^{\varepsilon n}.
\]

3 Approximate SVP$_\infty$ and CVP$_\infty$

We now describe our main contribution. As we mentioned already, SVP$_2$ can be approximated up to a constant factor in time $2^{O(0.802 + \varepsilon)n}$ for each $\varepsilon > 0$. This follows from a careful analysis of the list sieve algorithm of Micciancio and Voulgaris [MV10b], see [LWXZ11, PS09]. The running time and space of this algorithm is directly related to the kissing number of the l_2-norm. The running time is the square of the best known upper bound by Kabatiansky and Levenshtein [KL78]. The kissing number of the l_∞-norm is $3^n - 1$. In light of this, Aggarwal et al. [ABGS19] raised the question whether 3^n is a natural bound on the running time of CVP$_\infty$.

The main insight of our paper is that the current list-sieve variants can be used to approximate SVP$_\infty$ and CVP$_\infty$ by testing all pairwise differences of the generated lattice vectors. We note that straightforward adaption of the algorithm then also gives an approximation for l_p ($p \geq 2$) with same running time.

3.1 List sieve

We begin by describing the list-sieve method [MV10b] to a level of detail that is necessary to understand our main result. Our exposition follows closely the one given in [PS09]. Let $\mathcal{L}(B)$ be a given lattice and $s \in \mathcal{L}$ be an unknown lattice vector. This unknown lattice vector s is typically the shortest, respectively closest vector in $\mathcal{L}(B)$.

The list-sieve algorithm has two stages. The input to the first stage of the algorithm is an LLL-reduced lattice basis B of $\mathcal{L}(B)$, a constant $\varepsilon > 0$ and a guess μ on the length of s that satisfies
\[
\|s\|_2 \leq \mu \leq (1 + 1/n)\|s\|_2.
\]
The first stage then constructs a list of lattice vectors $L \subseteq \mathcal{L}(B)$ that is random. This list of lattice vectors is then passed on to the second stage of the algorithm.

The second stage of the algorithm proceeds by sampling points y_1, \ldots, y_N uniformly and independently at random from the ball
\[
(\xi \cdot \mu)B_2^n.
\]
where \(\xi_\varepsilon \) is an explicit constant depending on \(\varepsilon \) only. It then transforms these points via a deterministic algorithm \(\text{ListRed}_L \) into lattice points

\[
\text{ListRed}_L(y_1), \ldots, \text{ListRed}_L(y_N) \in \mathcal{L}(B).
\]

The deterministic algorithm \(\text{ListRed}_L \) uses the list \(L \subseteq \mathcal{L}(B) \) from the first stage.

As we mentioned above, the list \(L \subseteq \mathcal{L}(B) \) that is used by the deterministic algorithm \(\text{ListRed}_L \) is random. We will show the following theorem in the next section. The novelty compared to the literature is the reasoning about pairwise differences lying in centrally symmetric sets. In this theorem, \(\varepsilon > 0 \) is an arbitrary constant, \(\xi_\varepsilon \) as well as \(c_\varepsilon \) are explicit constants and \(K \) is some centrally symmetric set. Furthermore, we assume that \(\mu \) satisfies (4).

The theorem reasons about an area \(I_s \) that is often referred as the \textit{lens}, see Figure 2. The lens was introduced by Regev as a conceptual modification to facilitate the proof of the original AKS algorithm [Reg04].

\[
I_s = (\xi_\varepsilon \cdot \mu B^n_2) \cap \left(-s + (\xi_\varepsilon \cdot \mu B^n_2) \right)
\]

\(\text{(5)} \)

Theorem 3.1. With probability at least 1/2, the list \(L \) that was generated in the first stage satisfies the following. If \(y_1, \ldots, y_N \) are chosen independently and uniformly at random within \(B^n(0, \xi_\varepsilon \mu) \) then

i) The probability of the event that two different samples \(y_i, y_j \) satisfy

\[
y_i, y_j \in I_s \text{ and } \text{ListRed}_L(y_i) - \text{ListRed}_L(y_j) \in K
\]

is at most twice the probability of the event that two different samples \(y_i, y_j \) satisfy

\[
\text{ListRed}_L(y_i) - \text{ListRed}_L(y_j) \in K + s
\]

ii) For each sample \(y_i \) the probability of the event

\[
\|\text{ListRed}_L(y_i)\|_2 \leq c_\varepsilon \|s\|_2 \text{ and } y_i \in I_s
\]

is at least \(2^{-\varepsilon n} \).

The complete procedure, i.e. the construction of the list \(L \) in stage one and applying \(\text{ListRed}_L \) to the \(N \) samples \(y_1, \ldots, y_N \) in stage two takes time \(N(2^{0.401+\varepsilon}n + 2^{0.802+\varepsilon}n) \) and space \(N + 2^{(0.401+\varepsilon)n} \).

The proof of Theorem 3.1 follows verbatim from Pujol and Stehlé [PS09], see also [LWXZ11]. In [PS09], \(s \) is a shortest vector w.r.t. \(\ell_2 \). But this fact is never used in the proof and in the analysis. Part ii) follows from Lemma 5 and Lemma 6 in [PS09]. Their probability of a sample being in the lens \(I_s \subseteq \xi \|s\|_2 B^n_2 \) depends only on \(\varepsilon \) (corresponding to our \(\xi_\varepsilon \)). By choosing \(\xi \) large enough, this
happens with probability at least 2^{-cn}. Their Lemma 6 then guarantees that the list L, with probability 1/2, when $y_i \sim I_s$ is sampled uniformly, returns a lattice vector of length at most $r_0 \|s\|_2$ (r_0 corresponds to our c_2). This corresponds to part ii) in our setting. The size of their list (denoted by N_T) is bounded above by $2^{0.401+\delta)n}$ where $\delta > 0$ decreases to 0 as the ratio r_0/ξ increases, this is their Lemma 4.

Finally, part i) also follows from Pujol and Stelhe [PS09]. It is in their proof of correctness, Lemma 7, involving the lens I_s. We briefly comment on our general viewpoint. Given $y \sim (\xi, \mu)B_2^n$, the algorithm computes the linear combination w.r.t. to the lattice basis b_1, \ldots, b_n

$$y = \sum_{i=1}^{n} \lambda_i b_i$$

and then the remainder

$$y \pmod{\Lambda} = \sum_{i=1}^{n} |\lambda_i| b_i.$$

The important observation is that this remainder is the same for all vectors $y + v$, $v \in \Lambda$. Next, it keeps reducing the remainder w.r.t. the list, as long as the length decreases. This results in a vector of the form

$$y \pmod{\Lambda} = v_1 - \cdots - v_k, \text{ for some } v_i \in L.$$

The output $\text{ListRed}_L(y)$ is then

$$y \pmod{\Lambda} = v_1 - \cdots - v_k + y \in \Lambda.$$

The algorithm bases its decisions on $y \pmod{\Lambda}$ and not on y directly. This is why one can imagine that, after $y \pmod{\Lambda}$ has been created, one applies a bijection τ of the ball $\tau(y) = \xi \mu B_2^n$ on y with probability 1/2. For $y \in I_s$ one has $\tau(y) = y + s$. We refer to [PS09] for the definition of τ. Since τ is a bijection, the result of applying $\tau(y)$ with probability 1/2 is distributed uniformly. This means that for $y \in I_s$ this modified but equivalent procedure outputs $\text{ListRed}_L(y)$ or $\text{ListRed}_L(y) + s$, both with probability 1/2. If $\text{ListRed}_L(y_i) - \text{ListRed}_L(y_j) \in K$, we toss a for i and j each. With probability 1/2, their difference is in $\pm K + s$.

With Theorem 3.1 at hand we can now prove our main result.

Theorem 3.2. There is a randomized algorithm that computes with constant probability a constant factor approximation to SVP$_\infty$ and CVP$_\infty$ respectively. The algorithm runs in time $2^{0.802+\epsilon}n$ and it requires space $2^{2(0.401+\epsilon)n}$.

In short, the algorithm is the standard list-sieve algorithm with a slight twist: Check all pairwise differences.

Proof. We assume that the list L that was computed in the fist stage satisfies the properties described in Theorem 3.1. Recall that this is the case with probability at least 1/2. We first consider SVP$_\infty$. Choose $a > 0$ such that $N(\sqrt{n}B_2^n, aB_\infty^n) \leq 2^{0.401n}$ and let s be a shortest vector w.r.t. ℓ_∞. Furthermore let $\mu > 0$ such that $\|s\|_2 \leq \mu < (1 + \frac{1}{2}) \|s\|_2$ as above. Since $\|s\|_2 \leq \sqrt{n} \|s\|_\infty$, we have $N(c_2 \|s\|_2 B_2^n, c_2 a \|s\|_\infty B_\infty^n) \leq 2^{0.401n}$. This means that, if $2^{0.401n} + 1$ lattice vectors are contained in the ball $c_2 \|s\|_2 B_2^n$ at least two of them have ℓ_∞-distance bounded by $2c_2 a$ which is a constant.

Set $N = 2 \cdot [2^{0.401n} + 1]$ and $(y_1, \ldots, y_N) \sim \text{i.i.d. } B_2^n(0, \xi, \mu)$ uniformly and independently at random. By Theorem 3.1 ii) and by the Chebychev inequality, see [PS09], the following event has a probability at least 1/2.

(6) (E_A): There is a subset $S \subseteq \{1, \ldots, N\}$ with $S = [2^{0.401n}] + 1$ such that for each $i \in S$

$$y_i \in I_s \text{ and } \|\text{ListRed}_L(y_i)\|_2 \leq c_2 \|s\|_2.$$
This event is the disjoint union of the event $A \cap B$ and $A \cap \overline{B}$, where B denotes the event where the vectors $\text{ListRed}_L(y_i)$, $y_i \in I_s$ are all distinct. Thus
\[
\Pr(A) = \Pr(A \cap B) + \Pr(A \cap \overline{B}).
\]
The probability of at least one of the events $A \cap B$ and $A \cap \overline{B}$ is bounded below by $1/4$. In the event $A \cap B$, there exists $i \neq j$ such that
\[
\|\text{ListRed}_L(y_i) - \text{ListRed}_L(y_j)\|_\infty \leq 2c_e a.
\]
By Theorem 3.1 i) with $K = \{0\}$ one has
\[
\Pr(A \cap \overline{B}) \leq 2\Pr(\exists i \neq j: \text{ListRed}_L(y_i) - \text{ListRed}_L(y_j) = s).
\]
Therefore, with constant probability, there exist $i, j \in \{1, \ldots, N\}$ with
\[
0 < \|\text{ListRed}_L(y_i) - \text{ListRed}_L(y_j)\|_\infty \leq 2c_e a.
\]
We try out all the pairs of N elements, which amounts to $N^2 = 2^{(0.802 + \epsilon)n}$ additional time.
We next describe how list-sieve yields a constant approximation for CVP$_\infty$. Let $w \in \mathcal{L}(B)$ be the closest lattice vector w.r.t. ℓ_∞ to $t \in \mathbb{R}^n$ and let $\mu > 0$ such that $\|t - w\|_2 \leq \mu < (1 + \frac{1}{n}) \|t - w\|_2$. We use Kannan's embedding technique [Kan87] and define a new lattice \mathcal{L}' with basis
\[
\tilde{B} = \begin{pmatrix} B & t \\ 0 & \frac{1}{n} \mu \end{pmatrix} \in Q^{(n+1) \times (n+1)},
\]
Finding the closest vector to t w.r.t. ℓ_∞ in $\mathcal{L}(B)$ amounts to finding the shortest vector w.r.t. ℓ_∞ in $\mathcal{L}'(\tilde{B}) \cap \{x \in \mathbb{R}^{n+1}: x_{n+1} = 1/\mu\}$. The vector $s = (t - w, \frac{1}{n})$ is such a vector and its euclidean length is smaller than $(1 + \frac{1}{n}) \mu$. Let $a > 0$ be such that
\[
N(\sqrt{n} \mathbb{B}_{\mathbb{Z}}^n, a \mathbb{B}_{\infty}^n) \leq 2^{0.401n}.
\]
This means that there is a covering of the n-dimensional ball $(c_\epsilon \|s\|_2) \mathbb{B}_{\infty}^{n+1} \cap \{x \in \mathbb{R}^{n+1}: x_{n+1} = 0\}$ by $2^{0.401n}$ translated copies of K, where
\[
K = (c_\epsilon \cdot a(1 + 1/n)\|s\|_\infty) \mathbb{B}_{\infty}^{n+1} \cap \{x \in \mathbb{R}^{n+1}: x_{n+1} = 0\}.
\]
(The factor $(1 + 1/n)$ is a reminiscent of the embedding trick, s is $n + 1$ dimensional.) Similarly, we may cover $(c_\epsilon \|s\|_2) \mathbb{B}_{\infty}^{n+1} \cap \{x \in \mathbb{R}^{n+1}: x_{n+1} = k \cdot \frac{1}{n}\}$ for all $k \in \mathbb{Z}$ (such that the intersection is not empty) by translates of K. There are only $2c_\epsilon(n + 1) + 1$ such layers to consider and so $(2c_\epsilon(n + 1) + 1)2^{0.401n}$ translates of K suffice. The last component of a lattice vector of \mathcal{L}' is of the form $k \cdot \frac{1}{n}$ and it follows that these translates of K cover all lattice vectors of euclidean norm smaller than $c_\epsilon \|s\|_2$, see Figure 3. Set $N = \lceil (2c_\epsilon(n + 1) + 2)2^{(\epsilon + 0.401)n} \rceil$ and sample again $\{y_1, \ldots, y_N\} \sim \mathbb{B}_{\mathbb{Z}}^n(0, \ell_\epsilon \mu)$ uniformly and independently at random. By Theorem 3.1 ii) and by the Chebychev inequality, see [PS09], the following event has a probability at least $1/2$.

(5) EVENT A': There is a subset $S \subseteq \{1, \ldots, N\}$ with $S = (2c_\epsilon(n + 1) + 1)2^{0.401n} + 1$ such that for each $i \in S$
\[
y_i \in I_s \text{ and } \|\text{ListRed}_L(y_i)\|_2 \leq c_\epsilon \|s\|_2.
\]
In this case, there exists a translate of K that holds at least two vectors $\text{ListRed}_L(y_i)$ and $\text{ListRed}_L(y_j)$ for different samples y_i and y_j, see Figure 3 with $v_i, v_j \in \mathcal{L}'$ instead. Thus, with probability at least $1/2$, there are $i, j \in \{N\}$ with $y_i, y_j \in I_s$ such that
\[
\text{ListRed}_L(y_i) - \text{ListRed}_L(y_j) \in 2K.
\]
Figure 3: Covering the lattice points with translates of K

Theorem 3.1 i) implies that, with probability at least $1/4$, there exist different samples y_i and y_j such that

$$\text{ListRed}_L(y_i) - \text{ListRed}_L(y_j) \in 2K + s$$

In this case, the first n coordinates of $\text{ListRed}_L(y_i) - \text{ListRed}_L(y_j)$ can be written of the form $t - v$ for $v \in L$ and the first n coordinates on the right hand side are of the form $(t - w) + z$, where $z \in L'$ and $\|z\|_\infty \leq 2c_\epsilon(1 + 1/n)\|s\|_\infty = 2c_\epsilon(1 + 1/n)\|t - w\|_\infty$. In particular, the lattice vector $v \in L$ is a $2ac_\epsilon$ approximation to the closest vector to t. Since we need to try out all pairs of the N elements, this takes time $N^2 = 2^{(0.802 + \epsilon)n}$ and space N.

Remark 3.3.

i) For clarity we have not optimized the approximation factor. There are various ways to do so. We remark that for SVP$_\infty$ we actually get a smaller approximation factor than the one that we describe. Let \tilde{a} be such that $N(\sqrt{n}B_2^n, \tilde{a}B_\infty^n) \leq 2^{0.802n}$, the algorithm described above yields a $2c_\epsilon\tilde{a}$ approximation instead of a $2c_\epsilon a$ approximation to the shortest vector. This follows by applying the birthday paradox in the way that it was used by Pujol and Stehlé [PS09]. The same argument also applies to CVP$_\infty$.

ii) For $p \geq 2$, SVP$_p$ and CVP$_p$ can also be approximated to within a constant factor in time $2^{(0.802 + \epsilon)n}$ and space $2^{(0.401 + \epsilon)n}$: We define s to be shortest (resp. closest) vector w.r.t. ℓ_p, by Hölder's inequality we have $\|s\|_2 \leq n^{1/2 - 1/p} \|s\|_2$. The rest follows immediately from our description of the algorithm described above and the following analogue of Lemma 2.2. It directly follows from Lemma 2.2 since $n^{-1/p}B_2^n \subseteq B_p^n$.

Let $p \geq 2$. For each $\epsilon > 0$, there exists $a_\epsilon \in \mathbb{R}_{>0}$ independent of n, such that

$$N(n^{1/2 - 1/p}B_2^n, a_\epsilon B_p^n) \leq 2^{\epsilon n}.$$

References

[AAS15] Shiri Artstein-Avidan and Boaz A Slomka, On weighted covering numbers and the levi-hadwiger conjecture, Israel Journal of Mathematics 209 (2015), no. 1, 125–155.

[ABGS19] Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz, Fine-grained hardness of cvp (p)—everything that we can prove (and nothing else), arXiv preprint arXiv:1911.02440 (2019).
[Kan87] Ravi Kannan, *Minkowski’s convex body theorem and integer programming*, Math. Oper. Res. **12** (1987), no. 3, 415–440.

[Kho05] Subhash Khot, *Hardness of approximating the shortest vector problem in lattices*, J. ACM **52** (2005), no. 5, 789–808.

[KL78] Grigorii Anatol’evich Kabatiansky and Vladimir Iosifovich Levenshtein, *On bounds for packings on a sphere and in space*, Problemy Peredachi Informatsii **14** (1978), no. 1, 3–25.

[Len83] Hendrik W. Lenstra, *Integer programming with a fixed number of variables*, Math. Oper. Res. **8** (1983), no. 4, 538–548.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász, *Factoring polynomials with rational coefficients*, Mathematische Annalen **261** (1982), no. 4, 515–534.

[LWXZ11] Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng, *Shortest lattice vectors in the presence of gaps*, IACR Cryptology ePrint Archive 2011 (2011), 139.

[Mic01] Daniele Micciancio, *The shortest vector in a lattice is hard to approximate to within some constant*, SIAM journal on Computing **30** (2001), no. 6, 2008–2035.

[Muk19] Priyanka Mukhopadhyay, *Faster provable sieving algorithms for the shortest vector problem and the closest vector problem on lattices in ℓ_p norm*, CoRR abs/1907.04406 (2019).

[MV10a] Daniele Micciancio and Panagiotis Voulgaris, *A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations*, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, 2010, pp. 351–358.

[MV10b] Daniele Micciancio and Panagiotis Voulgaris, *Faster exponential time algorithms for the shortest vector problem*, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (USA), SODA ’10, Society for Industrial and Applied Mathematics, 2010, p. 1468–1480.

[Nas14] Márton Naszódi, *On some covering problems in geometry*, Proceedings of the American Mathematical Society **144** (2014).

[NV19] Márton Naszódi and Moritz Venzin, *Covering convex bodies and the closest vector problem*, arXiv preprint arXiv:1908.08384 (2019).

[PS09] Xavier Pujol and Damien Stehlé, *Solving the shortest lattice vector problem in time $2^{2.465n}$*, IACR Cryptology ePrint Archive **2009** (2009), 605.

[Reg04] Oded Regev, *Lattices in computer science, lecture 8: $2^{O(n)}$ algorithm for svp*, 2004.

[Sch77] Claus-Peter Schnorr, *A hierarchy of polynomial time lattice basis reduction algorithms*, Theoretical computer science **53** (1987), no. 2-3, 201–224.

[Sch13] Rolf Schneider, *Convex bodies: The brunn–minkowski theory*, 2 ed., Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2013.

[Vaz13] Vijay V Vazirani, *Approximation algorithms*, Springer Science & Business Media, 2013.

[vEB81] P. van Emde Boas, *Another NP-complete problem and the complexity of computing short vectors in a lattice*, Technical Report 81-04, Mathematische Instituut, University of Amsterdam (1981).