G-CORKS & HEEGAARD FLOER HOMOLOGY

BIJI WONG

ABSTRACT. In [6], Auckly-Kim-Melvin-Ruberman showed that for any finite subgroup \(G \) of \(SO(4) \) there exists a contractible smooth 4-manifold with an effective \(G \)-action on its boundary so that the twists associated to the non-trivial elements of \(G \) don’t extend to diffeomorphisms of the entire manifold. We give a different proof of this phenomenon using the Heegaard Floer theoretic argument in [3].

1. Introduction

A cork is a contractible smooth 4-manifold with an involution on its boundary that does not extend to a diffeomorphism of the entire manifold. The first example of a cork was given by Akbulut in [1]. Since then, other examples have been constructed by Akbulut-Yasui in [4], Akbulut-Yasui in [5], and Tange in [14, 15]. Corks can be used to detect exotic structures, see [1, 4, 5, 6, 7, 14, 15]. In fact, any two smooth structures on a closed simply-connected 4-manifold differ by a single cork twist, see [8, 12]. A cork twist removes an embedded cork and reglues it using the involution. The involution on the boundary of a cork can be regarded as a \(\mathbb{Z}_2 \)-action, so it is natural to ask if contractible smooth 4-manifolds with other kinds of effective group actions on the boundaries can also be used to detect exotic structures. A number of recent papers have answered this in the affirmative, constructing examples of \(G \)-corks, \(G \neq \mathbb{Z}_2 \), that embed inside closed smooth 4-manifolds so that removing and regluing using the \(|G| \) twists produces \(|G| \) distinct smooth structures, see [6, 10, 11, 2, 15]. A \(G \)-cork is a contractible smooth 4-manifold with an effective \(G \)-action on its boundary so that the twists associated to the non-trivial elements of \(G \) do not extend to diffeomorphisms of the entire manifold.

The purpose of this paper is to use the Heegaard Floer theoretic argument in [3] to give a different proof that the examples in [6] are in fact \(G \)-corks. These examples are defined as follows. Fix a finite subgroup \(G \) of \(SO(4) \). Let \(n = |G| \). Let \(\mathcal{W} \) be the Akbulut cork from [1] shown in Figure 1.

![Figure 1. The Akbulut cork](image)

There is an isotopy of \(S^3 \) that interchanges the two link components on the right side of Figure 1. This gives an involution \(\tau \) of \(\partial \mathcal{W} \). Let \(\mathcal{S} \) denote the boundary sum \(\sharp_n \mathcal{W} \). Note that its boundary \(\partial \mathcal{S} \) inherits an involution \(\sigma \). Define \(\mathcal{T} \) to be the boundary sum of \(B^4 \) with \(n \) copies of \(\mathcal{S} \), namely \(\mathcal{T} = B^4 \sharp (G \times \mathcal{S}) \). So that we get a well-defined action of \(G \) on \(\partial \mathcal{T} \), we assume that the \(n \) copies of \(\mathcal{S} \) are attached along 3-balls in \(\partial B^4 \) that form a principal orbit under the linear action of \(G \) on \(\partial B^4 \). Then we define the action of \(G \) on \(\partial \mathcal{T} \) to be the linear action on \(\partial B^4 \) and left multiplication
on the copies of \(\partial S \). To get the \(G \)-cork, we twist a copy \(S' \) of \(S \) in the interior of \(1 \times S \subset \overline{T} \) by the involution \(\sigma \). Let \(T \) denote the resulting 4-manifold \(B^4 \cong \left(S' \cup_{\sigma} \left((1 \times S) - S' \right) \right) \# ((G - 1) \times \Sigma) \).

Note that the action of \(G \) on \(\partial T \) descends to an action of \(G \) on \(\partial \overline{T} \). Then we have the following:

Theorem 1. \(T \) is a \(G \)-cork.

The Heegaard Floer theoretic argument also yields the following easy consequence:

Theorem 2. The \(G \)-action on \(\partial T \) induces an effective \(G \)-action on \(HF^+(-\partial T, s) \), where \(HF^+ \) is the plus version of Heegaard Floer homology and \(s \) is the unique \(\text{Spin}^c \) structure on \(\partial T \).

We assume the reader is familiar with the basics of Heegaard Floer homology for 3 and 4-manifolds, contact geometry, Stein structures, and Lefschetz fibrations. We use \(\mathbb{Z}_2 \) coefficients throughout to avoid ambiguity in sign.

Acknowledgements. The author would like to thank Danny Ruberman for helpful conversations. A part of this work was supported by an NSF IGERT fellowship under grant number DGE-1068620.

2. Proofs of Theorems 1 & 2

We prove Theorem 1 first. We start by equipping \(T \) with the handle decomposition in Figure 2.

![Handle decomposition of \(T \): There are \(n \) rows. The first row represents \(S' \cup_{\sigma} \left((1 \times S) - S' \right) \). Each row after represents a copy of \(S \).](image)

By [4, Lemma 5.3], \(T \) can be given a Stein structure that extends the standard Stein structure on \(B^4 \). Then \(\partial T \) inherits a contact structure \(\xi \). Now fix \(g \in G, g \neq 1 \); by abuse of notation we view this as a diffeomorphism of \(\partial T \). We want to show that \(g \) does not extend to a diffeomorphism of \(T \). Let \(s \) denote the unique \(\text{Spin}^c \) structure on \(T \); we also write \(s \) for its restriction to \(\partial T \). By puncturing \(T \) in the interior we can view \(T \) as a cobordism from \(-\partial T \) to \(S^3 \). Then we get the cobordism map \(F_{T,s}^+: HF^+(-\partial T, s) \to HF^+(S^3) \), see [13] for details. The twist \(g \) induces a second cobordism map
Let \(c^+(\xi) \in HF^+(\partial T, s) \) denote the contact invariant associated to \(\xi \). Then \(F^+_{\pi,s}(c^+(\xi)) \neq 0 \), but \(F^+_{T,s} \circ g^*(c^+(\xi)) = 0 \).

Proof. First attach a 2-handle to \(\partial T \) along a trefoil with framing 1 as in Figure 3.

If we replace the dotted 1-handle linking the trefoil with a pair of 3-balls and put the trefoil in Legendrian position, then we see that the Thurston-Bennequin number of the tangle is 2, which is 1 more than the framing we started with. By Eliashberg’s criterion [9, Proposition 2.3], the Stein structure on \(T \) can be extended over the 2-handle. Let \(M \) denote the cobordism on \(\partial T \) induced by the 2-handle attachment. Then \(M \) inherits a Stein structure. By [3, Lemma 3.6], we can extend \(M \) to a concave symplectic filling \(V \) of \((\partial T, \xi) \) so that the closed smooth 4-manifold \(X := T \cup V \) has \(b_2^+ > 1 \) and admits the structure of a relatively minimal Lefschetz fibration over \(S^2 \) with generic fiber of genus \(> 1 \). Furthermore, if \(t \) denotes the canonical \(\text{Spin}^c \) structure on \(X \) (and also its restriction to \(V \)), then by [3, Theorem 3.2 & Lemma 3.6],

\[
F_{X,t}^{\text{mix}}(\theta_{(-2)}) = \theta_{(0)}^+,
\]

\[
F_{V,t}^{\text{mix}}(\theta_{(-2)}) = c^+(\xi).
\]

Here \(F_{X,t}^{\text{mix}} \) is the mixed homomorphism \(HF^-(S^3) \to HF^+(S^3) \) obtained by puncturing \(X \) twice, with one puncture in the interior of \(V \) and the other puncture equal to the above puncture of \(T \), \(F_{V,t}^{\text{mix}} \) is the mixed homomorphism \(HF^-(S^3) \to HF^+(\partial T, s) \) obtained by puncturing \(V \) in the same location as above, \(\theta_{(-2)} \) is the generator of \(HF^-(S^3) \) with absolute grading \(-2\), and \(\theta_{(0)}^+ \) is the generator of \(HF^+(S^3) \) with absolute grading 0, see [13] for details. Putting this together, we get

\[
0 \neq \theta_{(0)}^+ = F_{X,t}^{\text{mix}}(\theta_{(-2)}) = F_{T,s}^+(\theta_{(-2)}) \circ F_{V,t}^{\text{mix}}(\theta_{(-2)}) = F_{T,s}^+(c^+(\xi)).
\]
All that remains to show is that $F^+_{\overline{\pi},\overline{s}} \circ g^* (c^+(\xi)) = 0$. Let X' denote $T \cup gV$ obtained from $X = T \cup V$ by removing T and regluing it with the diffeomorphism $g : \partial T \to \partial T$. In X' we have $T \cup gV$ which admits the following handle decomposition:

![Handle Decomposition Diagram](image)

Figure 4. $T \cup gM$, where the second row represents $(\{g\} \times S) \cup 2$-handle

Note that the trefoil, thought of in X', gives rise to an embedded torus of self-intersection 1. By [3, Theorem 3.1], X' does not have any basic classes, so for every Spinc structure t' on X', the mixed homomorphism $F^{\text{mix}}_{X',t'} : HF^-(S^3) \to HF^+(S^3)$ is identically zero. Separately, we have a homeomorphism $X \to X'$ that is the identity on V. Let t' denote the Spinc structure on X' that corresponds to the canonical Spinc structure t on X. Note that t' restricted to V is the Spinc structure t. Then we have

$$0 = F^{\text{mix}}_{X',t'}(\theta_{(-2)}) = F^+_{\overline{\pi},\overline{s}} \circ g^* \circ F^{\text{mix}}_{V,t}(\theta_{(-2)}) = F^+_{\overline{\pi},\overline{s}} \circ g^* (c^+(\xi)).$$

Having proved the main technical lemma, we now finish off the proof of Theorem. Suppose to the contrary the diffeomorphism $g : \partial T \to \partial T$ extends to a diffeomorphism $\overline{g} : T \to T$. Then the diffeomorphism $g^{-1} : \partial T \to \partial T$ extends to the diffeomorphism $\overline{g}^{-1} : T \to T$. Note that \overline{g}^{-1} is orientation-preserving. Let C denote the cobordism from $-\partial T$ to S^3 obtained by stacking the cobordism $(-\partial T \times [0,\frac{1}{2}]) \cup_g (-\partial T \times [\frac{1}{2},1])$ from $-\partial T$ to $-\partial T$ on top of the punctured T (with puncture denoted by $*$). Let C' denote the cobordism from $-\partial T$ to S^3 obtained by stacking the identity cobordism $(-\partial T \times [0,\frac{1}{2}]) \cup_{id} (-\partial T \times [\frac{1}{2},1])$ from $-\partial T$ to $-\partial T$ on top of T punctured at $\overline{g}^{-1}(\ast)$. The orientation-preserving diffeomorphism $\overline{g}^{-1} : T \to T$ gives us the following orientation-preserving diffeomorphism $\Theta : C \to C'$: on $-\partial T \times [0,\frac{1}{2}]$, we take Θ to be the identity; on $-\partial T \times [\frac{1}{2},1]$, we take Θ to be $g^{-1} \times id$; and on the punctured T, we take Θ to be \overline{g}^{-1}. Let s_C denote the unique Spinc structure on C and let $s_{C'}$ denote the unique Spinc structure on C'. We then get this commutative diagram:
\[\begin{align*}
HF^+(-\partial T, s) & \xrightarrow{F^+_{C, SC}} HF^+(S^3) \\
& \downarrow (\Theta|_{\partial T})_* \\
HF^+(-\partial T', s) & \xrightarrow{F^+_{C', SC'}} HF^+(S^3).
\end{align*} \]

Note that
\[F^+_{C, SC} = F^+_{C, SC} \circ g^*, \]
\[F^+_{C', SC'} = F^+_{C', SC'} \]
\[(\Theta|_{\partial T})_* = id. \]

From the lemma, \(F^+_{C, SC} (c^+ (\xi)) = 0 \) and \(F^+_{C', SC'} (c^+ (\xi)) \neq 0 \), but this contradicts the commutativity of the diagram. This concludes the proof of Theorem 1.

Remark. The above argument can also be used to show that the smooth 4-manifold \(T' \) obtained by starting with \(B^4 \natural (G \times W) \) and twisting a copy of \(W \) in \(1 \times W \) is a \(G \)-cork. However it is not yet known if \(T' \) admits an embedding into a closed smooth 4-manifold so that removing and regluing using the \(|G|\) twists produces \(|G|\) distinct smooth structures.

We now prove Theorem 2. Define the action of \(G \) on \(HF^+(-\partial T, s) \) by: \(g \cdot x = g^*(x) \). To see that this is effective, we need to show that for any \(g \neq 1 \) there is an \(x \in HF^+(-\partial T, s) \) so that \(g^*(x) \neq x \). So fix \(g \neq 1 \). The above lemma implies that \(g^* (c^+ (\xi)) \neq c^+ (\xi) \). Hence we can take our \(x \) to be \(c^+ (\xi) \). This concludes the proof of Theorem 2.

References

[1] S. Akbulut, A fake compact contractible 4-manifold, J. Differential Geom. 33 (1991) no. 2, 335-356.
[2] S. Akbulut, On infinite order corks, arXiv:1605.09348v4, 2016.
[3] S. Akbulut and C. Karakurt, Action of the cork twist on Floer homology, Proceedings of the Gökova Geometry-Topology Conference 2011, 42-52, Int. Press, Somerville, MA, 2012.
[4] S. Akbulut and K. Yasui, Corks, plugs, and exotic structures, J. Gökova Geom. Topol. GGT 2 (2008) 40-82.
[5] S. Akbulut and K. Yasui, Knotting corks, J. Topol. 2 (2009), no. 4, 823-839.
[6] D. Auckly, H. Kim, P. Melvin, and D. Ruberman, Equivariant corks, arXiv:1602.0765ov1, 2016.
[7] Z. Bizaca and R. E. Gompf, Elliptic surfaces and some simple exotic \(\mathbb{R}^4 \)'s, J. Differential Geom. 43 (1996) no. 3, 458-504.
[8] C. L. Curtis, M. H. Freedman, W. C. Hsiang, and R. Stong, A decomposition theorem for \(h \)-cobordant smooth simply-connected compact 4-manifolds, Invent. Math. 123 (1996), no. 2, 343-348.
[9] R. E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693.
[10] R. E. Gompf, Infinite order corks, arXiv:1603.05090v2, 2016.
[11] R. E. Gompf Infinite order corks via handle diagrams, arXiv:1607.04354v2, 2016.
[12] R. Matveyev, A decomposition of smooth simply-connected \(h \)-cobordant 4-manifolds, J. Differential Geom. 44 (1996), no. 3, 571-582.
[13] P. Ozsváth and Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2, 326-400.
[14] M. Tange, Finite order corks, arXiv:1601.07589v2, 2016.
[15] M. Tange, *Notes on Gompf’s infinite order cork*, arXiv:1609.04345v1, 2016.

Department of Mathematics, Brandeis University, MS 050, 415 South Street, Waltham, MA 02453

E-mail address: wongb@brandeis.edu

URL: https://sites.google.com/a/brandeis.edu/bijiwong