A Comparison of The Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan

by Arnita Arnita
A Comparison of The Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan

To cite this article: Arrita et al 2020 J. Phys.: Conf. Ser. 1462 012044

View the article online for updates and enhancements.
A Comparison of The Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan

Arnita1, N Afnisah1 & F Marpaung1

Departement of Mathematics, Universitas Negeri Medan,
Jalan Willem Iskandar Pasar V Medan Estate, Medan, Indonesia

ev-mail: amita@unimed.ac.id

Abstract: Medan has a high rainfall variability. The amount of rainfall affects the welfare of life such as in the fields of health, economy, agriculture, industry, transportation, tourism and so on. To find out changes in rainfall patterns, a prediction of rainfall levels is designed to see and analyze the rainfall patterns that will form in the future. Forecasting is the art and science of predicting future events by taking historical data and projecting it into the future by using some form of mathematical model. One of the methods used to predict an event is the fuzzy time series method. Fuzzy time series is a concept that can be used to predict problems where historical data is formed in linguistic values. While the latest data as a result are in the form of real numbers. The purpose of this research is to implement the fuzzy time series method to predict rainfall in Medan by comparing several developments of the fuzzy time series method, namely Fuzzy Time Series Chen, Markov Chain and Cheng. In determining the interval in the Fuzzy time series, average-based rules are used to get the best results. In this study the result is MAPE value of each method. Chen's method give MAPE = 8.002%, Markov chain's method give MAPE = 39.12% and cheng's method give MAPE = 34.3%. So the best method for forecasting rainfall is Chen Method.

1. Introduction
The importance of weather information today has become an inseparable part of daily activities, as agricultural activities, transportation and others. Rainfall forecasting is an important part of weather information. Weather conditions are always change in a certain period of time, it makes people difficult to determine the pattern of rainfall completely. Generally rainfall patterns influenced by geographical conditions of the region, North Sumatra Province especially Medan City is included in the equatorial type. Equatorial type is an area that has two peak monthly rainfall distribution with two maximum rainy seasons and most of the year is included in the rainy season. Equatorial pattern is characterized by the type of rainfall in the form of binomial (two rainfall peaks) which usually occurs around March and October or during the equinox, with an average rainfall of 2000-3000 mm per year. The high intensity of rain often occurred floods in the city [1].

Forecasting is the activity of predicting future circumstances based on past information with a relatively long period of time. Rainfall forecasting is one of the cases in time series forecasting. Many time series forecasting methods are commonly used, one of which is fuzzy time series. Fuzzy Time Series (FTS) is a method introduced by Song and Chissom (1993) which is a concept to predict the problem where actual data is formed in linguistic values [2]. The fuzzy time series method has several advantages including the calculation process that does not require complex, systems such as genetic

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
algorithms and artificial neural networks, so that it is certainly easier to develop. Besides, this method can also solve the problem of forecast historical data of linguistic values [3].

The development of science today causes the fuzzy time series method to develop rapidly. Many methods show various types of development of forecasting steps to produce the correct prediction value and produce the smallest possible error. Some of the developing fuzzy time series methods that appear today include the Chen method, the Cheng method, Markov chain and others. Each of these methods provides different steps in forecasting a value. The Fuzzy time series Chen model was developed when the FTS model Song and Chisssom gave results with low accuracy [4]. According to [5] FTS forecasting using the Chen method produces a more accurate forecasting value on smaller samples than using larger data samples. However, Chen's method also has weaknesses, that are lack of consideration in determining the universe and the length of the interval, and ignoring the pattern of changes in previous data trends [6]. In [7] forecasting using Markov Chain FTS produces more accurate forecasting with MSE value is 0.216 compared to Chen's FTS method with MSE value is 0.656. Whereas in [8] forecasting using the Cheng method which uses adaptive forecasting has a smaller forecasting error size than the Chen method with MAPE value is 2.179%. Therefore, in this study the performance of the three fuzzy time series methods, namely Chen's FTS, Cheng's, and Markov Chain's methods to compare the accuracy of the three methods in predicting rainfall in the city of Medan.

2. Basic concepts of fuzzy time series

2.1. Time Series

Periodical data (time series) is collection of data arranged based on periodical time or data arranged in chronological order. Chronological order may be arranged based on days, weeks, months, years, and so on. Therefore, periodical data are linked with statistical data which recorded and observed within certain time interval, as for trade, price, supply, labor production, exchange rate, and stock market stock price.

2.2. Fuzzy Time Series

Fuzzy time series is a concept that can be used to predict problem or case where historical data are formed in linguistic values, which also means that the previous data in fuzzy time series is linguistic data, while the actual data as the result is real numbers [5].

2.2.1. Fuzzy Time Series Chen

According to [5] [9] Stages in prediction using Method Fuzzy Time Series (FTS) Chen Model are as written below:

[Step 1] forming the universe of discourse (U)

\[U = \{ D_1, D_2, \ldots, D_n \} \]

Definition

\(D_1 \) and \(D_2 \) are the constant defined by the researcher, \(D_{\min} \) is the smallest data from data histories and \(D_{\max} \) is the biggest data from data histories.

[Step 2] forming the interval

Divide universe of discourse into several intervals with the same length. To discover how many intervals are needed can be done with the use of Sturge's formula as written below:

\[\text{sum of intervals} = 1 + 3.322 \log(n) \] (2)

After sum of intervals are found, the next step is to decide the length of interval using the following formula.

\[\text{interval length} = \frac{D_{\max} - D_{\min}}{\text{sum of intervals}} \] (3)

Until it forms certain amount of linguistic values to presented a fuzzy set on the intervals that comes from the universe of discourse (U)
\[U = \{ u_1, u_2, \ldots, u_n \} \]

[Step 3] Defining fuzzy sets and fuzzification of historical data

[Step 4] Determining Fuzzy Logic Relations (FLR) and Fuzzy Logic Relations Group (FLRG).

Determining FLR and grouping based on time. FLR \(A_i \rightarrow A_j \), determined by the value of \(A_i \) which already been determined in the previous step, where \(A_i \) is year \(n \) and \(A_j \) year \(n+1 \) in the time series data. For example, if FLR formed is \(A_1 \rightarrow A_2, A_1 \rightarrow A_3, A_1 \rightarrow A_4, A_1 \rightarrow A_5 \), then the best FLRG formed is \(A_1 \rightarrow A_2, A_2 \rightarrow A_3 \).

[Step 6] Defuzzification

For example, \(F(t) = A_1, A_2, \ldots, A_n \), then the equation to find the final prediction value is as written below

\[y(t) = \frac{\sum_{i=1}^{n} m_i}{k} \]

Definition \(y(t) \) is defuzzification and \(m_i \) is the median of \(A_i \).

2.2.2. Fuzzy Time Series Markov Chain

According to [10] [11] [12] Stages of prediction using Fuzzy Time Series Markov Chain methods is as written below:

1. Determine the universe of discourse as mentioned in step 1.
2. The universe of discourse (\(u \)) divided into several intervals with the same length as mentioned in step 2.
3. Define fuzzy step on \(u \) and fuzzificate the observed historical data.
4. Determine the relation of fuzzy logic based on historical data.
5. Determine groups from fuzzy logic relation into groups of fuzzy logic relation.
6. Determine transition probability matrix \(P \) based on fuzzy logic relation group as mentioned in previous step. Markov transition probability matrix is in \(p \times p \) dimension, with \(p \) as the sum of fuzzy sets. State transition probability is formulated as written below

\[P_{ij} = \frac{r_{ij}}{r_i} \]

definition,

\(P_{ij} \) = transition probability from state \(A_i \) to \(A_j \)
\(r_{ij} \) = number of transition from state \(A_i \) to \(A_j \)
\(r_i \) = number of data included in state \(A_i \)

7. Counting prediction value

Law 1

If there are fuzzy sets which don’t have fuzzy logic relation, for example \(A_i \rightarrow \emptyset \), and then there are data in the (t-1) period included in \(A_i \), the prediction value \(F_i \) is \(m_{\text{interval}} \) is the median of \(u_i \) interval on fuzzy logic relation group which formed in the (t-1) data.

Law 2

If fuzzy logic relation group \(A_i \) is one to one relation (for example \(A_i \rightarrow A_j \), where \(P_{ij} = 1 \) and \(P_{ji} = 0, j \neq i \), where the collected data is \(Y_{i,j} \) in (t-1) time included in state \(A_i \), then the prediction value of \(F_i \) is \(m_{p(t-i)} \) with \(m_{p(t-i)} \) is the median of \(u_i \) in fuzzy logic relation group which formed on the (t-1) data.

Law 3
If fuzzy logic relation group \(A_j \) is one to many relation (for example \(A_j \rightarrow A_{i1}, A_{i2}, \ldots, A_{iq}, j = 1, 2, \ldots, q \)), where the collected data is \(Y_{i,j} \) in \((t-1)\) time included in state \(A_j \), then the prediction value of \(F_t \) is
\[
F_t = m_{j(t-1)}P_{j1} + m_{j(t-1)}P_{j2} + \ldots + m_{j(t-1)}P_{jj} + Y_{t-1}P_{jj} + m_{j(t-1)}P_{j(j+1)} + \ldots + m_{q(t-1)}P_{qq}.
\]
(7)

8. Applying for payment of forecasting value

Law 1
If state \(A_i \) is related to \(A_i \), starting from state \(A_i \) at time \(t-1 \) as \(F_{t-1} = A_i \) and making an ascending transition to state \(A_i \) at time \(t \) where \(i < j \), then the adjustment value of \(D_t \) is defined as
\[
D_{t+1} = \left(\frac{i}{2}\right)
\]
(8)

Definition \(l \) is the length of the interval

Law 2
If state \(A_i \) is related to \(A_i \), starting from state \(A_i \) at time \(t-1 \) as \(F_{t-1} = A_i \) and making a downward transition to state \(A_i \) at time \(t \) where \(i > j \), then the adjustment value of \(D_t \) is defined as
\[
D_{t+1} = -\left(\frac{i}{2}\right)
\]
(9)

Law 3
If the transition starts from state \(A_i \) at time \(t-1 \) as \(F_{t-1} = A_i \) and makes the transition jump forward to state \(A_i \) at time \(t \) where \(1 \leq s \leq p-1 \) then the trend adjustment value of \(D_t \) is defined as
\[
D_{t+1} = \left(\frac{i}{2}\right)s
\]
(10)

With \(s \) is the number of jumps ahead.

Law 4
If the process is defined to state \(A_i \) at time \(t-1 \) as \(F_{t-1} = A_i \) and makes the transition jump back to state \(A_i \) at time \(t \) where \(1 \leq v \leq i \), then the trend adjustment value of \(D_t \) is defined as
\[
D_{t+1} = -\left(\frac{i}{2}\right)v
\]
(11)

With \(v \) is a lot of backward jumps.

9. Determine the results of forecasting by adjusting the predictive value of forecasting.

If the fuzzy logic relation group \(A_i \) is one to many and state \(A_i \rightarrow A_i \) can be accessed from \(A_i \), where state \(A_i \) is related to \(A_i \), the result of forecasting becomes
\[
F'_t = F_t + D_{t+1}
\]
(12)

2.2.3. Fuzzy Time Series Cheng

According to [13] [14] Stages in prediction using method Fuzzy Time Series (FTS) Model Cheng methods are as written below:

1. Define the universe of speech (universe of discourse) then divide it into several intervals with the same distance. If there is an amount of data in an interval greater than the average value of the amount of data in each interval, then the interval can be subdivided into smaller intervals by dividing 2.

2. Define the fuzzy set in the universe of speech and fuzzify the observed historical data.

3. Establish fuzzy logic relations based on historical data. In data that has been fuzzified two sets of fuzzy sequences \(A_i \rightarrow A_j \) and \(A_j \rightarrow A_i \) can be expressed as FLR \(A_i \rightarrow A_j \).
4. Classifying fuzzy logic relations with all relationships. FLR that have the same LHS can be grouped into group FLR. For example, \(A_1 \rightarrow A_j, A_i \rightarrow A_k, A_i \rightarrow A_m \) can be grouped \(A_1 \rightarrow A_j, A_k, A_m \) become. All FLR groups with the same LHS can be expressed in matrix form.

5. Establish weights in the fuzzy logic relations group. Missal has the same FLR sequence

\[
\begin{align*}
(t=1) & \quad A_1 \rightarrow A_1, \text{given weight 1} \\
(t=2) & \quad A_2 \rightarrow A_1, \text{given weight 1} \\
(t=3) & \quad A_1 \rightarrow A_1, \text{given weight 2} \\
(t=4) & \quad A_1 \rightarrow A_1, \text{given weight 3} \\
(t=5) & \quad A_1 \rightarrow A_1, \text{given weight 4}
\end{align*}
\]

where \(t \) states time.

6. Then transfer the weight to the normalized weighting matrix \((W_n(t)) \) whose equation is written as follows.

\[
(W_n(t)) = \left[W^{'}_1, W^{'}_2, ..., W^{'}_k \right]
\]

\[
= \left[\frac{w_1}{\sum_{i=1}^{k} w_i}, \frac{w_2}{\sum_{i=1}^{k} w_i}, ..., \frac{w_k}{\sum_{i=1}^{k} w_i} \right]
\]

(13)

7. Calculating forecast results. To produce the forecast value, the weighting matrix \((W(t)) \) which has been normalized to \((W_n(t)) \) is then multiplied by the defuzzification matrix, which is

\[
L_n = [m_1, m_2, ..., m_k]
\]

where \(m_k \) is the middle value of each interval. The way to calculate the forecast is

\[
F_t = L_n(t-1)W_n(t-1)
\]

(14)

8. Modify forecasting by adaptive forecasting using the formula:

Adaptive forecasting

\[
(t) = Y(t-1) + h \times (F_t - Y(t-1))
\]

(15)

3. Analysis of Data

3.1 Research Data

The data used in this study is rainfall data in Medan, period January 2009 to June 2019. Rainfall data used is monthly data in millimeters (mm), with 84 data as training data and 42 as testing data. Data obtained through the site www.bmkg.go.id.

The initial step taken in forecasting this fuzzy time series is plot the rainfall time series data in Medan, period January 2009 to June 2015 as shown in Figure 1 below.
Figure 1. Plot Rainfall Data in Medan Period January 2009 - December 2015.

The time series plot in Figure 1 shows that the rainfall data does not show a certain pattern. This can be caused by unexpected factors such as wind direction, humidity, air pressure, etc., and did not become observations in this study. From Figure 1 it can be seen that the lowest rainfall occurred in July 2014 amounted to 10.5 mm and the highest rainfall occurred in March 2009 amounted to 509 mm.

3.2. Fuzzy Time Series

3.2.1. Universe of Discourse (U)

After sorting historical rainfall data, the minimum and maximum values obtained from the data are Xmin = 10.5 mm and Xmax = 509 mm. And the values of D1 = 0.5 and D2 = 1, where D1 and D2 are arbitrary positive numbers. Then the universe of conversation is

\[U = [D_{min} - D1; D_{max} + D2] \]

\[= [10.5 - 0.5; 509 + 1] \]

\[= [10; 510] \]

3.2.2. Interval length with Average Based

Process of forming intervals in the Chen and Markov chain methods is same, so many intervals and the length of the intervals in both methods are the same. Following are the intervals formed based on average based on Chen and Markov Chain methods

No	Interval	Fuzzification	Middle value
1	10	A1	42.5
2	76	A2	108
3	141	A3	173.5
4	207	A4	239.5
5	273	A5	305.5
6	339	A6	371.5
7	405	A7	437.5
8	471	A8	503.5
Likewise in the Chen method, initial process of forming interval is same. But at intervals that have frequencies exceeding the middle value the interval will be halved. If the chen and markov chain intervals formed are as many as 8, the cheng method of the intervals formed becomes 13. This happens because there are two intervals that have frequencies exceeding the middle value, so the interval is broken into two parts.

No	F	Interval	Fuzzification	Middle Value	
1	5	10	42,5	A1	26.25
2	6	42,5	75	A2	58.75
3	8	75	107,5	A3	91.25
4	6	107,5	140	A4	123.75
5	10	140	172,5	A5	156.25
6	13	172,5	205	A6	188.75
7	9	205	237,5	A7	221.25
8	5	237,5	270	A8	253.75
9	6	270	302,5	A9	286.25
10	5	302,5	335	A10	318.75
11	3	338	404	A11	371
12	5	404	470	A12	437
13	3	470	536	A13	503

Based on the calculation interval length with average based on Chen dan Markov Chain Model, 65 is the effective interval length. With the set of universes obtained namely U = [10,510]. The universe U set will be divided into several intervals with an interval length equal to 65, so that the number of intervals is 8.

3.2.3. Fuzzification

Fuzzification stage based on the effective interval that obtained can be determined linguistic values according to the number of intervals formed. The results of the fuzzification of Chen, Markov Chain and Cheng Model translated into linguistic numbers that can be seen in Table 3.

Month/Year	Rainfall (mm)	Chen Fuzzification	Markov Chain Fuzzification	Cheng Fuzzification
Jan/2009	254	A4	A4	A8
Feb/2009	194	A3	A3	A6
Mar/2009	509	A8	A8	A13
April/2009	268	A4	A4	A8
May/2009	386	A6	A6	A11
Aug/2015	180.7	A3	A3	A6
Sept/2015	176.4	A3	A3	A6
3.2.4. Fuzzy Logical Relationship Group (FLRG)

FLRG is done by grouping fuzzy sets that have the same current state and then grouped into one group in the next state based on Table 4, Table 5, and Table 6.

Table 4. Fuzzy Logical Relationship Group (FLRG) in Chen Model

Fuzzification	FLRG	Number of relations
A1	A1, A2, A3, A4, A6	5
A2	A3, A2, A3, A4, A5	5
A3	A1, A2, A3, A4, A5, A7, A8	7
A4	A1, A2, A3, A4, A5, A6, A7	7
A5	A1, A2, A3, A4, A5, A7	6
A6	A1, A3, A5	3
A7	A1, A2, A3, A4, A5	5
A8	A4	1

Table 5. Fuzzy Logical Relationship Group (FLRG) in Markov Chain Model

Fuzzification	FLRG	Number of relations
A1	4A1, 3A2, 1A3, 2A4, A6	11
A2	2A1, 1A2, 5A3, A4, 4A5	13
A3	A1, 4A2, 8A3, 3A4, 3A5, A7	23
A4	A1, 3A2, 4A3, 3A4, A5, 2A6, A7	15
A5	A1, A2, 3A3, 2A4, A5, 3A7	11
A6	A1, A3, A5	3
A7	A1, A2, A3, A4, A5	5
A8	A2, 2A4	3

Table 6. Fuzzy Logical Relationship Group (FLRG) in Cheng Model

Fuzzification	FLRG	Number of relations
A1	2A1, A2, A4, A6	5
A2	A1, A3, A4, A7, A8, A11	6
A3	A2, A5, 2A6, A8, 2A9, A10	8
A4	A2, A4, A5, A6, A10	5
A5	5A6, A7, 2A13	6
A6	A2, 4A3, A5, A6, 2A7, A9, 2A10, A12, A13	14
A7	A1, A3, A4, 2A5, A6, 2A7, A10, A12	10
A8	2A5, A6, 2A8, 2A11	6
A9	A4, A5, 2A7, A9, A12	6
Each method has a different way of forming Fuzzy Logical Relationship Group (FLRG). Chen methods form (FLRG) based on the appearance of different linguistic values, while in the markov chain method, (FLRG) is formed based on all existing linguistic values even though the value is repeated.

3.2. Defuzzification

There are two stages in defuzzifying forecasting value, first, finding the middle value for each interval, then calculating forecasting value based on 3 defuzzification rules. For each method defuzzification rules is different, according equation (5), (12) and (15). Thus, defuzzification results from FLRG are obtained in Table 7.

Table 7. Defuzzification to Forecasting Rainfall Data in Medan
Forecasting
month/Year

January/2016
February/2016
March/2016
April/2016
May/2016
April/2019
May/2019
June/2019

Plot comparison of actual and forecasting data of rainfall with Chen, Markov Chain and Cheng Model show in Figure 2.
Figure 2. Plot comparison of actual and forecast rainfall data in Medan

Based on Figure 2, actual data can be compared with forecasting of Chen, Markov Chain and Cheng Model. The form of forecasting plot results for each period has a value that is not much different from the actual data for Chen Method. However, the difference between the actual value and forecasting in the Markov Chain and Cheng Method is large enough. The possibility that caused this to happen is on Chen Method interval that is formed is not so much, so the variation in linguistic value is not too much. In addition to forecasting the Chen method is also not influenced by previous data, forecasting is only controlled by the middle value.

Different from the Markov Chain and Cheng methods, where forecasting is influenced by previous observational data. Even though the number of intervals in the Markov Chain method is the same as Chen, there is a correction factor in the form of an adjustment value in forecasting.

While in Chen, besides the area the interval is more well-ventilated, this causes variations in linguistic values also become more. So that forecasting is strongly influenced by the linguistic values that emerge and the observed values in previous observations. Besides that, in the Cheng method there is a weighting value called an additive value, the magnitude is between 0 - 1. But in this study an adaptive value is 0.9 used because that value that provides quite good forecasting.

3.2.6. Measurement of the Accuracy of Forecasting Results

According to [8] the model has a very good performance if the MAPE value is below 10%, and has a good performance if the MAPE value is between 10% and 20%. In this case the MAPE in Chen Model = 8.002%, while MAPE for Markov Chain and Cheng Model each other is 30.12% and 34.5%. FTS Chen forecasting performance was very good.

4. Conclusion

In this study Chen’s method give MAPE = 8.002%, Markov Chain’s method give MAPE = 30.12% and Cheng’s method give MAPE = 34.5%. So the best method for forecasting rainfall is Chen Method. The differences in the three methods are found in the interval formation stage and the forecast value calculation stage.

5. References

[1] Aldrian, E. 2001. Pembagian Iklim Indonesia Berdasarkan Pola Curah Hujan Dengan Metoda “Double Correlation”. Jurnal Sains & Teknologi Modifikasi Cuaca, Vol.2, No. 1, 2001:11-18 12
[2] Kusumadewi, S., dan Purnomo, H. (2013). Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu.
[3] Nugroho, K., 2016. Model Analisis Prediksi Menggunakan Metode Fuzzy Time Series. Infokam Nomor I Th. XII/MARET/16.
[4] Song, Q. dan Chissem, B. S. “Forecasting enrollments with fuzzy time series-Part II”. Fuzzy Sets and Systems, 62: 1-8, 1994.
[5] Fauziah, N., Sri, W., Yuki, K. N. (2016). Peramalan Menggunakan Fuzzy Time Series Chen (Studi Kasus: Curah Hujan Kota Samarinda), Jurnal Statistika. Vol. 4, No. 2
[6] Ujiianto, Y., Irawan. M. Isk. 2015. Perbandingan Performansi Metode Peramalan Fuzzy Time Series yang Dimodifikasi dan Jaringan Syaraf Tiruan Backpropagation (Studi Kasus: Penutupan Harga IHSG). JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print).
[7] Nurkhasanah. L. A., Suparti, Sudarno, 2015. Perbandingan Metode Runtun Waktu Fuzzy-Chen Dan Fuzzy-Markov Chainuntuk Meramalkan Data Inflasi Di Indonesia. Gaussian Issn: 2339-2541 Jurnal Gaussian, Volume 4, Nomor 4, Tahun 2015, Halaman 917-926 Online di: http://ejournal-s1.unind.ac.id/index.php/
[8] Raharja. A., Angraeni, W., dan Vinarti, R. A., 2010. Penerapan Metode Exponential Smoothing untuk Peramalan Penggunaan Waktu Telepon di PT. Telkomsel DIVRE3 Surabaya. Jurnal Sistem Informasi, Surabaya: Institut Teknologi Sepuluh Nopember.
[9] Handayani, Lestari., dan Darni Angriani., (2015): Perbandingan Model Chen dan Model Lee pada Metode Fuzzy Time Series untuk Prediksi Harga Emas, vol 2, No 1
[10] Djapaningrum, Maria Titah. (2016): Peramalan Data Produk Domestic Bruto dengan Fuzzy Time Series Markov Chain, Jurnal Statistika, Vol 9, No. 1
[11] Rukhansah, Nurnahla, dkk., (2016): Peramalan Harga Emas Menggunakan Fuzzy Time Series Markov Chain Model, vol 1, No. 1
[12] Safitri, Yenny, dkk., (2018): Peramalan Dengan Metode Fuzzy Time Series Markov Chain (Studi Kasus : Harga Penutupan Saham PT. Radiant Utama Interinsco Tbk. Periode Januari 2011- Maret 2017), Jurnal Ekspansionis, Vol 9, No. 1
[13] Tauryawati, M. L., dan Irawan, M. Isk. (2014): Perbandingan Metode Fuzzy Time Series Cheng Dan Metode Box-Jenkins Untuk Menprediksi HSG, Jurnal Sains dan Seni Pomatis, Vol 3, No 2
[14] Sumartini, dkk., (2017): Peramalan Menggunakan Metode Fuzzy Time Series Cheng, Jurnal Ekspansionis, Vol 8, No 1.

Acknowledgments
Thanks are conveyed to Universitas Negeri Medan through the Research Institute UNIMED which has funded this research. Thanks also to the Dean of MIPA UNIMED for the support of facilities and infrastructure during this research. Thank you also to Badan Meteorologi Klimatologi Geofisika (BMKG) North Sumatera Province for the services provided during data collection.
A Comparison of The Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan

Originality Report

Similarity Index	Internet Sources	Publications	Student Papers
19%	12%	14%	8%

Primary Sources

Source	Title	Percentage
1	ejournal.iainbengkulu.ac.id	2%
	Shahidah Othman, Rosnalini Mansor. "A comparison of chen and cheng fuzzy time series methods in energy-water efficiency forecasting at water treatment plant", AIP Publishing, 2022	1%
3	Nor Syazwina Binti Mohd Hanafiah, Nor Hayati Binti Shafii, Nur Fatihah Binti Fauzi, Diana Sirmayunie Mohd Nasir et al. "Comparison of Fuzzy Time Series and ARIMA Model for Predicting Stock Prices", Journal of Computing Research and Innovation, 2022	1%
4	Submitted to Universiti Teknologi MARA	1%
5	bestjournal.untad.ac.id	1%

Index	Source	Title	Authors	Details
6	iopscience.iop.org	unpublished	Arif Ridho Lubis, Santi Prayudani, Al-Khowarizmi	Optimization of MSE Accuracy Value Measurement Applying False Alarm Rate in Forecasting on Fuzzy Time Series based on Percentage Change, 2020 8th International Conference on Cyber and IT Service Management (CITSM), 2020 Publication
9	ijistech.org	unpublished	I Made Wirawan, Ilham Ari Elbaith Zaeni, Unggul Achmad Mujaddid, Abdul Syukor Bin Mohamad Jaya	Fuzzy Time Series Method
Comparison of Chen and Cheng Models to Predict Chili Prices", 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), 2021

No.	Source Details
15	Submitted to Syiah Kuala University
	Student Paper
16	kursorjournal.org
	Internet Source
17	Cheng, C.H.. "Forecasting innovation diffusion of products using trend-weighted fuzzy time-series model", Expert Systems With Applications, 200903
	Publication
18	core.ac.uk
	Internet Source
19	Submitted to Universiti Teknologi Malaysia
	Student Paper
20	Rasna, I Wayan Sudarsana, Desy Lusiyanti. "Forecasting Of Crude Palm Oil By Using Fuzzy Time Series Method (Study Case : PT. Buana Mudantara Plantation)", Parameter: Journal of Statistics, 2021
	Publication
21	Wang-Kun Chen. "Environmental Applications of Granular Computing and Intelligent
#	Reference
----	--
22	Singh, S.R. "A robust method of forecasting based on fuzzy time series", Applied Mathematics and Computation, 20070501
23	Submitted to Sriwijaya University
24	eprints.intimal.edu.my
25	Hao-Tien Liu. "An improved fuzzy time series forecasting method using trapezoidal fuzzy numbers", Fuzzy Optimization and Decision Making, 2007
26	docplayer.info
27	ejurnal.itats.ac.id
28	repository.unmul.ac.id
29	Truong, T.K. "Fast, prime factor, discrete Fourier transform algorithms over GF(2^m) for 8"
Fang-Mei Tseng, Gwo-Hshiung Tzeng, Hsiao-Cheng Yu. "Fuzzy Seasonal Time Series for Forecasting the Production Value of the Mechanical Industry in Taiwan", Technological Forecasting and Social Change, 1999

Suryono Suryono, Ragil Saputra, Bayu Surarso, Hanifudin Sukri. "Web-based fuzzy time series for environmental temperature and relative humidity prediction", 2017 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), 2017

Yousif Alyousifi, Mahmod Othman, Abdullah Husin, Upaka Rathnayake. "A new hybrid fuzzy time series model with an application to predict PM10 concentration", Ecotoxicology and Environmental Safety, 2021