SYNTHESIS, MOLECULAR DOCKING AND ANTITUBERCULAR ACTIVITY OF NEW BI HETEROCYCLIC COMPOUNDS ON BENZIMIDАЗOLE MOIETY

Dhanaja Kotte¹, Kumaraswamy Gullapelli ², Ravichandar Maroju², Ramchander Merugu³, Brahmeshwari Gavaji¹,*

¹Department of Chemistry, Kakatiya University, 506009, Warangal - India
²Department of Chemistry, Mahatma Gandhi Institute of Technology, 500075, Hyderabad -India
³Department of Bio-Chemistry, Mahatma Gandhi University, 508254, Nalgonda- India
*E-mail: gbrahmeshwari@gmail.com

ABSTRACT
A series of new and efficient Benzo [d] imidazole-2-yl -3, 5 substituted diphenyl -3,3a, 5, 6 –Tetrahydro 2H-pyrazole thiazole derivatives (4a-j) were synthesized from Schiff base derivatives of thiazolinediones (3a-j) using hydrazine hydrate. The synthesized compounds were screened for their antitubercular and molecular docking studies. The results of docking studies are supporting antitubercular activity showing high inhibition constant and binding energy. The structures of synthesized compounds were characterized by IR, ¹HNMR, Mass spectroscopic methods.

Keywords: Synthesis, Molecular Docking, Antitubercular Activity, Benzimidazole Derivatives

INTRODUCTION
The quest for synthesis of novel materials for specific applications has become a great challenge for researchers aiming to address urgent real-world demands.¹² To meet this target, significant attention has been paid to design and develop heterocyclic molecules owning desirable properties.³⁻⁴ Heterocyclic chemistry is highly challenging especially in the growing demand for higher efficiency and eco-friendly synthesis.⁵⁻⁶ It always attracts the attention of scientists working in the area of natural products and synthesis of heterocyclic compounds, especially with nitrogen-containing heterocyclic molecules that occupy the key position in the area of drugs and pharmaceuticals.⁷⁻⁹ Majority of the pharmaceutical products are heterocyclic molecules that meet the expectations of biological and industrial requirements.

The present study involves the synthesis of high bioactive compounds like benzimidazole, thiazole and pyrazole which exhibit various biological activities like antitumor¹⁰, analgesic¹¹, antimicrobial¹²⁻¹³, antibacterial¹⁴⁻¹⁵ and anti-inflammatory etc .¹⁶ Hence, in this direction, efforts have been undertaken to introduce most active and biologically versatile molecules containing nitrogen and sulphur triheterocyclic compounds like Benzo [d] imidazole-2-yl -3, 5 substituted diphenyl -3,3a, 5, 6 –Tetrahydro 2H-pyrazole thiazole derivatives which were synthesized from 2-amino-substituted benzimidazole.

EXPERIMENTAL
Materials and Methods
Progress of the reaction was observed by TLC plates. IR Spectra were recorded by Perkin Elmer BX series and ¹H NMR spectra were recorded by Bruker 400 MHz instrument using DMSO as solvent and TMS as an internal standard. Chemical shifts (δ) are expressed in ppm. Mass spectra were measured on a GC/MS-QP1000EX (EI, 70 eV) mass spectrometer. Elemental analysis was performed on PerkinElmer 240 CHN analyzer.

Rasayan J. Chem., 13(1), 585-592(2020)
http://dx.doi.org/10.31788/RJC.2020.1315465
Scheme-1

General Reaction Procedure for Compound 2
A mixture of Benzaldehyde (0.004 mol) and 2-amino benzimidazole (1) (0.004 mol) with few drops of glacial acetic acid was refluxed in ethanol for about 4 hours. Reaction progress was monitored by TLC. After the completion of the reaction, the product was cooled, filtered and dried then recrystallized with methanol to afford the compound Schiff base (2).

General Reaction Procedure for Compound 3:
An equimolar mixture of compound 2 (0.01), mercaptoacetic acid (0.01) and aromatic aldehyde (0.01) in 1,4-dioxane (30 ml) containing a small amount of ZnCl$_2$ was refluxed for about 6 hours. The resulting product was filtered and cooled in an ice bath to attain room temperature. The solid product was filtered and washed with 10% sodium bicarbonate and recrystallized with alcohol.

The remaining compounds (3b-3h) were prepared by similar procedure with minor changes as per the reaction conditions.

(Z)-3-(1H-benzo[d]imidazole-2-yl)-5-benzylidene-2-phenylthiazolidin-4-one (3a)
IR (KBr, cm$^{-1}$): 3328 (N-H), 1548 (C=N), 1230 (C=S), 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 5.92 (s, 1H CH-Ar), 7.12-7.22 (m, 4H, Ar-H), 7.26-7.48 (m, 5H, Ar-H) , 7.56-7.74 (m, 5H, Ar-H), 9.85 (br, 1H, NH). MS, m/z (%), 383 (M$^+$); Anal. calcd for C$_{23}$H$_{17}$N$_3$O$_2$: C, 72.08; H, 4.47; N, 10.97%. Found C, 71.45; H, 4.24; N, 10.23%.

(Z)-3-(1H-benzo[d]imidazole-2-yl)-5-(4-methylbenzylidene)-2-phenylthiazolidin-4-one (3b)
IR (KBr, cm$^{-1}$): 3337 (N-H), 2960 (C-H), 1561 (C=N), 1672 (C=O), 1249 (C=S); 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 2.85 (s, 3H, CH$_3$), 5.86 (s, 1H, N-CH-Ar), 7.15-7.24 (m, 4H, Ar-H), 7.28-7.38 (m, 4H, Ar-H) , 7.54-7.64 (m, 4H, Ar-H) , 9.96 (br, 1H, NH). MS, m/z (%), 397 (M$^+$); Anal. calcd for C$_{24}$H$_{19}$N$_3$O$_2$: C, 72.52; H, 4.82; N, 10.57%. Found C, 71.81; H, 4.63; N, 10.24%.

(Z)-3-(1H-benzo[d]imidazole-2-yl)-5-(4-methoxybenzylidene)-2-phenylthiazolidin-4-one (3c)
IR (KBr, cm$^{-1}$): 3341 (N-H), 3046 (C-H), 1560 (C=N), 1678 (C=O), 1239 (C=S); 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 3.45 (s, 3H, OCH$_3$), 5.72 (s, 1H, N-CH-Ar), 7.18-7.25 (m, 4H, Ar-H), 7.26-7.51 (m, 5H, Ar-H) , 7.65-7.84 (m, 4H, Ar-H), 10.05 (br, 1H, NH). MS, m/z (%), 413 (M$^+$); Anal. calcd for C$_{24}$H$_{19}$N$_3$O$_3$: C, 69.71; H, 6.62; N, 10.16%. Found C, 69.02; H, 4.36; N, 10.02%.

(Z)-3-(1H-benzo[d]imidazole-2-yl)-5-(4-hydroxybenzylidene)-2-phenylthiazolidin-4-one (3d)
IR (KBr, cm$^{-1}$): 3514 (OH), 3346 (C-N), 1560 (C=N), 1678 (C=O), 1239 (C=S); 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 3.45 (s, 3H, OCH$_3$), 5.72 (s, 1H, N-CH-Ar), 7.18-7.25 (m, 4H, Ar-H), 7.26-7.51 (m, 5H, Ar-H) , 7.65-7.84 (m, 4H, Ar-H), 10.05 (br, 1H, NH). MS, m/z (%), 413 (M$^+$); Anal. calcd for C$_{24}$H$_{19}$N$_3$O$_3$: C, 69.71; H, 6.62; N, 10.16%. Found C, 69.02; H, 4.36; N, 10.02%.
(Z)-3-(1H-benzo[d]imidazole-2-yl)-5-(4-nitrobenzylidene)-2-phenylthiazolidin-4-one (3e)

IR (KBr, cm$^{-1}$): 3340 (N-H), 1572 (C=N), 1522 (-NO$_2$), 1684 (C=O), 1236 (C=S), 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 5.85 (s, 1HCH-Ar), 7.13-7.27 (m, 4H, Ar-H), 7.30-7.48 (m, 5H, Ar-H), 8.12-8.34 (m, 4H, Ar-H), 10.18 (br, 1H, NH); MS, m/z (%), 428 (M$^+$); Anal. calcd for C$_{23}$H$_{16}$N$_4$O$_3$S: C, 64.47; H, 3.76; N, 13.08 %. Found C, 64.23; H, 3.84; N, 12.81%.

(Z)-3-(1H-benzo[d]imidazole-2-yl)-5-(4-(dimethylamino)benzylidene)-2-phenylthiazolidin-4-one (3f)

IR (KBr, cm$^{-1}$): 3328 (N-H), 1562 (C=N), 1675 (C=O), 1315 (3°amine) 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 3.22 (s, 3H,OCH$_3$), 5.72  (s, 1H, N-CH-Ar), 7.17-7.28 (m, 4H, Ar-H), 7.26-7.50 (m, 4H, Ar-H), 7.55 -7.82 (m, 4H, Ar-H), 10.14 (br, 1H, NH). MS, m/z (%), 426 (M$^+$); Anal. calcd for C$_{25}$H$_{24}$N$_4$OS: C, 70.40; H, 5.20; N, 13.14 %. Found C, 69.82; H, 4.96; N, 12.62%.

(Z)-3-(1H-benzo[d]imidazol-2-yl)-5-(4-chlorobenzylidene)-2-phenylthiazolidin-4-one (3g)

IR (KBr, cm$^{-1}$); 3366 (N-H), 1561 (C=N), 1694 (C=O), 875 (C-Cl); 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 5.84 (s, 1H, N-CH-Ar), 7.14-7.26 (m, 4H, Ar-H), 7.25-7.48 (m, 4H, Ar-H), 7.51 -7.82 ( m, 4H, Ar-H), 10.04 (br, 1H, NH). MS , m/z (%), 433 (M$^+$); Anal. calcd for C$_{23}$H$_{16}$ClN$_3$OS: C, 66.10; H, 3.85; N, 10.04 %. Found C, 65.82; H, 3.13; N, 9.82%.

(Z)-5-(4-aminobenzylidene)-3-(1H-benzo[d]imidazol-2-yl)- 2-phenylthiazolidin-4-one (3h)

IR (KBr, cm$^{-1}$); 3365 (N-H), 1563 (C=N), 1697 (C=O); 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 5.85 (s, 1H, N-CH-Ar), 6.22 (s, 2H,NH$_2$), 7.15-7.26 (m, 4H, Ar-H), 7.31-7.49 (m, 5H, Ar-H), 7.58 -7.82 ( m, 4H, Ar-H), 10.08 (br, 1H, NH). MS, m/z (%), 398 (M$^+$); Anal. calcd for C$_{23}$H$_{18}$N$_4$OS: C, 69.32; H, 4.55; N, 10.04 %. Found C, 68.82; H, 4.13; N, 12.82%.

General Reaction Procedure for Compound 4a

Equimolar mixture of 3a (0.03 mol), hydrazine hydrate (0.03mol) and anhydrous CH$_3$COONa (0.001 mol) in glacial acetic acid (30ml) were heated under reflux for about 6.5 hours, the resulting compound was cooled at room temperature and poured in to crushed ice. The product was filtered, washed with water and recrystallized with ethanol to afford the pure compound. The remaining compound (4b-4h) was prepared by similar procedure with minor changes as per the reaction conditions.

6-(1H-benzo[d]imidazole-2-yl)-3,5-diphenyl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazole (4a)

IR (KBr, cm$^{-1}$): 3348 (N-H) , 3078 (C-H), 1564 (C=N), 1671 (C=O), 1238 (C=S), 1042 (N-N); 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 4.42(d, 1H, CH-S),  4.85 (d, 1H, CH-N), 5.90 (s, 1H, N-CH-Ar), 7.10-7.22 (m, 4H, Ar-H), 7.26-7.45 (m, 5H, Ar-H), 7.55-7.78 (m, 5H, Ar-H), 9.75 (br, 1H,NH); MS, m/z (%), 397 (M$^+$); Anal. Calcd for C$_{23}$H$_{19}$N$_5$S: C, 69.92; H, 4.87; N, 17.97%. Found: C, 69.50; H, 4.52; N, 17.62%.

6-(1H-benzo[d]imidazole-2-yl)-5-phenyl-3-(p-tolyl)-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazole (4b)

IR (KBr, cm-1): 3348 (N-H) , 3078 (C-H), 1564 (C=N), 1671 (C=O), 1238 (C=S), 1042 (N-N); 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 2.85(d, 1H, CH-S), 4.60 (d, 1H, CH-N), 7.10-7.22 (m, 4H,Ar-H),7.26-7.45 (m,5H, Ar-H),7.55-7.78 (m,5H,Ar-H), 9.75 (br, 1H,NH); MS, m/z (%) 397 (M$^+$) ; Anal. Calcd for C$_{23}$H$_{20}$N$_5$S: C, 69.92; H, 4.87; N, 17.97%. Found: C, 69.50; H, 4.52; N, 17.62%.

6-(1H-benzo[d]imidazol-2-yl)-5-phenyl-3-(p-tolyl)-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazole (4b)

IR (KBr, cm-1): 3348 (N-H) , 3078 (C-H), 1564 (C=N), 1671 (C=O), 1238 (C=S), 1042 (N-N); 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 2.85 (s, 3H,CH$_3$), 4.60 (d, 1H, CH-S), 4.83 (d,1H, N-CH-Ar), 7.18-7.26 (m,4H,Ar-H), 7.26-7.38 (m,4H,Ar-H),7.45-7.68(m,4H,Ar-H), 9.95 (br, 1H,NH); MS, m/z (%) 411 (M$^+$) ; Anal. Calcd for C$_{24}$H$_{21}$N$_5$S: C, 70.15; H, 5.17; N, 17.07%. Found: C, 69.81; H, 4.92; N, 16.82%.

6-(1H-benzo[d]imidazole-2-yl)-3-(4-methoxyphenyl)-5-phenyl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d] thiazole (4c)

IR (KBr, cm-1): 3343 (N-H) , 3085 (C-H), 1567 (C=N), 1675 (C=O), 1245 ( C=S), 1048 (N-N); 1HNMR (DMSO-d$_6$, 400MHz, δ in ppm): 3.48 (s, 3H,OCH$_3$), 4.62 (d, 1H, CH-S), 4.83 (d,1H, N-CH-Ar),5.74(s,1H,N-CH-Ar), 7.21-7.28 (m,4H,Ar-H), 7.31-7.58 (m,4H,Ar-H),7.68-7.87 (m,4H,Ar-H), 10.06

ANTITUBERCULAR ACTIVITY OF NEW BI HETEROCYCLIC

Dhanaja Kotte et al.

587
**RESULTS AND DISCUSSION**

The present study reports the synthesis of thiazolo-pyrazole derivatives linked with benzimidazole with an appreciable yield. The compound 2 (Schiff base) is synthesized using 2-aminobenzimidazole with Benzaldehyde under simple conditions. The compound 3 (Chalcone derivatives of thiazolidinone) is synthesized by one-pot three-component cyclization using compound 2, mercaptoacetic acid and aromatic aldehyde using anhydrous ZnCl₂. Later, the Chalcone derivative of thiazolidinone (3) undergoes cyclization with hydrazine hydrate in the presence of anhydrous acetic acid to afford the compound 4. The structures of synthesized compounds were established based on spectral and analytical data. The compounds showed IR absorption bands at 3366 cm⁻¹ (NH), 1568 cm⁻¹ (C=N), 1241 cm⁻¹ (C=S), 1680 cm⁻¹ (C=O) respectively. ¹HNMR spectra of test compounds displayed singlet signals at 5.58 for N-CH-Ar, doublet signals at 4.62 CH-S, 4.82 CH-N, and 9.82 ppm for NH protons and also phenylic protons as
In response to nitrate, *Mycobacterium* which causes tuberculosis produces nitrate reductase by NarL. NarL is a cytoplasmic response regulator that is involved in regulating gene expression of this bacterium. NarL has been identified as a potential drug target due to its role in nitrate respiration. The Docking studies were conducted on NarL similar to that reported by Prashantha et al using docking server software. The protein structure was downloaded from the Protein data bank and was docked to the ligand. The estimated free energy of binding was found to be -7.16 kcal/mol while the inhibition constant was found to be 5.60 uM and ARG63 was involved in polar bond formation with the ligand (Tables-2, 3 and 4). The docking pose of the ligand with NarL is shown in Fig.-1.

### Table-1: Physical Data of Synthesized Compounds (3a-3h) and (4a-4h)

| Compounds | 3a | 3b | 3c | 3d | 3e | 3f | 3g | 3h |
|-----------|----|----|----|----|----|----|----|----|
| R         | Ar | 4-CH<sub>3</sub>-Ar | 4-OCH<sub>3</sub>-Ar | 4-OH- Ar | 4-NO<sub>2</sub>- Ar | 4- Ni(CH<sub>3</sub>)<sub>2</sub>-Ar | 4-Cl-Ar | 4-NH<sub>2</sub>-Ar |
| M.P (°C)  | 208-12 | 215-17 | 220-22 | 213-14 | 221-23 | 225-28 | 215-17 | 210-12 |
| Yield (%) | 80 | 82 | 78 | 81 | 76 | 75 | 76 | 80 |

| Compounds | 4a | 4b | 4c | 4d | 4e | 4f | 4g | 4h |
|-----------|----|----|----|----|----|----|----|----|
| R         | Ar | 4-CH<sub>3</sub>-Ar | 4-OCH<sub>3</sub>-Ar | 4-OH- Ar | 4-NO<sub>2</sub>- Ar | 4- Ni(CH<sub>3</sub>)<sub>2</sub>-Ar | 4-Cl-Ar | 4-NH<sub>2</sub>-Ar |
| M.P (°C)  | 238-40 | 245-47 | 250-52 | 243-46 | 250-52 | 255-57 | 246-48 | 241-42 |
| Yield (%) | 82 | 80 | 75 | 72 | 74 | 76 | 73 | 72 |

**Fig.-1: Docking Pose between the Ligand and the Protein**
Table-2: Free Energy of Binding between the Ligand and the Protein

| Estt. Free Energy Binding | Estt. Inhibition Constant , Ki | vdW + H Bond + Desolv. Energy | Electrostatic Energy | Total Intermolecular. Energy | Frequency | Interact Surface |
|---------------------------|--------------------------------|-----------------------------|---------------------|-----------------------------|----------|-----------------|
| -7.16 kcal/mol            | 5.60 uM                        | -7.73 kcal/mol              | -0.07 kcal/mol      | -7.79 kcal/mol              | 50%      | 809.37          |

Table-3: Decomposed Interaction Energies in Kcal/mole

| Polar       | Hydrophobic       | Other       |
|-------------|-------------------|-------------|
| ARG63 (0)   | PRO65 (0)         | ARG115 (0)  |
| VAL119 (0)  | ASP68 (0)         |            |
|             | GLU117 (0)        | LYS120 (0)  |
|             | THR116 (0)        |             |

Table-4: Interaction Showing the Various Bonds between the Ligand and the Protein

| Polar       | Hydrophobic       | Other       |
|-------------|-------------------|-------------|
| N4 (15)     | ARG63 (CZ, NE, NH2) | C16 (22) [3.38] - ARG115 5 (CG, NE) |
| H8 (37)     | ARG63 (CZ, NE, NH2) | C17 (23) [3.48] - ARG115 5 (CG) |
| H8 (37)     | ARG63 (CZ, NE, NH2) | C16 (22) [3.38] - ARG115 5 (CG) |
|             | C10 (14) [3.40] - PRO65 (CB) | S1 (13) [3.16] - THR116 (CB, CG) |
|             | C19 (25) [2.93] - THR116 (CB, OG1) | |
|             | C20 (26) [3.13] - THR116 (CB, OG1) | |
|             | C18 (24) [3.33] - THR116 (CB, CG2) | |
|             | C13 (19) [3.52] - THR116 (CG) | |
|             | C17 (23) [3.75] - THR116 (CG2) | |
|             | C20 (26) [3.74] - GLU117 (CG) | |
| H8 (37)     | ARG115 5 (CG, NE) | VAL119 (CB, CG) |
The experimental results conclude that a new series of thiazolo-pyrazole containing benzimidazole nucleus and its derivatives are successfully synthesized. It has been reported in the present work that the title compounds (i.e., tri heterocyclic compounds) are exhibiting antitubercular activity based on In silico studies.
ACKNOWLEDGMENT

The authors are thankful to the Department of Chemistry, Kakatiya University for its constant support during the work and also thankful to the Department of Bio-Chemistry, Mahatma Gandhi University-Nalgonda, India.

REFERENCES

1. A.C. Valery, V. Fokin, *Chemical Reviews*, 109(2), 725 (2009), DOI: 10.1021/cr800448q
2. B. Jiang, T. Rajale, W. Wever, S. Jiang, *Chemistry An Asian Journal*, 5 (11), 2318 (2010), DOI: 10.1002/asia.201000310.
3. S. Hassan, Thamson. J. J. Müller, *Advanced Synthesis & Catalysis*, 357(4), 617 (2015), DOI: 10.1002/adsc.201400904.
4. A.F. Sherif Rostam, I.M. EI – Ashmawy, A. Heba. Abd El Razik, Mona H. Badr, M.A. Hayam Ashour, *Bioorganic and Medicinal Chemistry.*, 17 (2), 882 (2009), DOI: 10.1016/j.bmc.2008.11.035.
5. Y. Shiraishi, Y. Sugano, S. Tanaka, *Angew. Chemie international Edition*, 49 (9), 1656 (2010), DOI: 10.1002/anie.200906573.
6. A. Ziarati, A. Badiei, G. M. Ziarani, H. Eskandarloo, *Catalysis Communications*, 95, 77 (2017), DOI: 10.1016/j.catcom.2017.02.023.
7. K. Gullapelli, G. Brahmeshwari, M. Ravichander, Uma Kusuma, *Egyptian Journal of Basic and Applied Sciences*, 4 (4), 303 (2017), DOI: 10.1002/adsc.201400904.
8. S. Dixit, P. Kumar Sharma, N. Kaushik, *Medicinal Chemistry Research*, 22(2), 900 (2013), DOI: 10.1007/S00044-012-0083-1.
9. R. Cavicchioli, I. Schroder, M. Constanti, and R. P. Gunsalus, *Journal of Bacteriology*, 177(9), 2416 (1995), DOI: 10.1128/jb.177.9.2416-2424.1995.
10. H. Wang, R. P. Gunsalus, *Journal of Bacteriology*, 185 (17), 5076 (2003), DOI: 10.1128/ JB. 185. 17. 5076-5085. 2003.
11. L. G. Yu, T. FengNi, W. Gao, YuanHe, Y. Y. Wang, H. Wei cui, C. G. Yang, W. Wei Qiu, *European Journal of Medicinal Chemistry, 90(27)*, 10 (2014), DOI: 10.1016/j.ejmech.2014.11.015.
12. K. Pradeep, G. Shashikant, L. Tukaram, S. K. Abdul, S. Babasaheb, P. Choudhari, B. Madhusudhan, *Rasayan Journal of Chemistry, 11(14)*, 1441 (2018), DOI: 10.31/RJC.2018.1143080.
13. Z. Bikadi, L. Demko, E. Hazai, *Archives of Biochemistry and Biophysics*, 461(2), 225 (2007), DOI: 10.1016/j.abb.2007.02.020.
14. K. Ian, McDonald, J. M. Thornton, *Journal of Molecular Biology*, 238(5), 777 (1994), DOI: 10.1006/jmbi.1994.1334.