Study of the Effect of Nickel Nano Particles and pH on the Photo-degradation of Congo Red

Kazi Mohammad Anamoul Haque*

Department of Arts and Sciences, Bangladesh Army University of Science and Technology (BAUST), Saidpur Cantonment, Nilphamary, Bangladesh
*Corresponding author: dkmah@baust.edu.bd

Received January 19, 2021; Revised February 24, 2021; Accepted March 05, 2021

Abstract Nickel nano particles were synthesized by chemical reduction method using nickel chloride as precursor, hydrazine as reducing agent in a basic medium in presence of surfactant sodium dodecylsulphonate (SDS) and polymer polyvinylpyrolidone (PVP). Titanium dioxide conventionally used as a photo-catalyst for the degradation of Congo red – water pollutant largely used as a dye in textile industries. Synthesized nickel nano particles of different sizes were mechanically mixed with titanium dioxide. Measuring the absorbance of congo red solution, congo red solution mixed with titanium dioxide and titanium dioxide with nickel nano particles of different sizes using UV-Vis spectrophotometer, it was found that nickel nano particles accelerate the rate of photo degradation of congo red when it was mixed with titanium dioxide. It was found that with decreasing the size of the nickel nano particles the rate of degradation increases. Experimental results also show that there is an effect of pH of the solution. The rate of degradation is higher in acidic medium (pH 5.7) instead of basic medium (pH 8).

Keywords: Photo catalyst, absorbance, degradation, UV-Vis, Titanium dioxide, Nickel nanoparticles

Cite This Article: Kazi Mohammad Anamoul Haque, “Study of the Effect of Nickel Nano Particles and pH on the Photo-degradation of Congo Red.” American Journal of Water Resources, vol. 9, no. 1 (2021): 8-14. doi: 10.12691/ajwr-9-1-2.

1. Introduction

A versatile class of colored organic compounds that have extensively been used in industrial applications such as textiles, paper, leathers, additives and analytical chemistry are azodyes. From these industries a large quantity of waste water containing dyestuffs with intensive colours and toxicity enter in to the aquatic system but also aquatic biota, geology and also in aquatic environment. So it is necessary to find an effective method of waste water treatment in order to remove color from effluents. Photo degradation of pollutants in textile and other industrial wastewater has been regarded to be one of the main aims in controlling environmental pollution. Physical and chemical techniques such as coagulation, adsorption on activated carbon, ultra filtration, and reverse osmosis are generally used efficiently to remove dyes from textile waste-water. However, these processes are considered as non-destructive since they merely transfer the dye from liquid to solid wastes.

Consequently, the regeneration of the adsorbent material and post-treatment of solid wastes, which are expensive operations, are needed. Advanced oxidation processes (AOPs) are alternative techniques of destruction of dyes and many other organic pollutants in wastewaters and effluents. These processes generally involve UV/H₂O₂, UV/O₃ or UV/Fenton’s reagent for the oxidative degradation of contaminants. Among the various AOPs, semiconductor-mediated photo-catalysis has been given great credit over the past few years due to its potential to destroy the pollutants is not destroy, it may be changed to another form of eco-friendly materials a wide range of organic and inorganic pollutants at ambient temperatures and pressures, with no harmful by-products.

It is known that pH affects the surface charge property of semi-conductors and the nature of dye molecules. The term semi-conductor is change to metal nano-particle? It is known that pH affects the surface charge property of semi-conductors and the nature of dye molecules. In most cases titanium oxide TiO₂ was used as photo catalyst. It shows great photo degradation.
activity toward many pollutants like organic dyes. UV irradiation is found to be necessary to achieve such decomposition. Many experiments have been carried out to improve the catalyst in order to substitute the UV irradiation by visible light. Titania (TiO₂) [please check] doped with various metals as well as non-metals were found to be active in visible light [12,13,14]. In general, TiO₂ activity depends on many factors: (1) Crystalline phase, anatase was found to be photo catalytically active over the two other forms rutile and brookite [15]. (2) The purity of the phase - commercialized mixture of anatase and rutile (Degussa P25) exhibited much superior photo catalytic activity compared to pure-anatase and rutile [16,17]. (3) The size of the particles, which were very fine particles (a few nanometers in width) showed decrease in photocatalytic activity although the surface area was higher; this is explained by recombination of e⁻/h⁺ (electron–hole pairs), which could be high in extremely small particles [18]. (4) The shape of titanium oxide particles: for instance, nanorod shape anatase was found to be less active for Congo red photo degradation than dot shape anatase [19]. In general, titanium oxide, TiO₂, can be prepared by several methods. Many of them require special apparatus, or they are using highly costly starting required especially if it leads to a reactive material. Recently, the interest has grown to improve the optical response of TiO₂ from UV spectrum to the visible range to increase photo-catalysis efficiency for TiO₂. Since the treatment costs can be further reduced by efficiently utilizing solar light as the source of excitation, extensive efforts are currently underway to develop TiO₂ based photo-catalysts that are not only capable of supporting visible light activated photodegradation, but also possess improved photo catalytic reactivity as compared to that of the pure material. The band gap of titanium dioxide would be decreased and visible light absorption would be increased owing to the incorporation of metals into the dioxide structure [20,21,22]. Various studies reported that doped TiO₂ with transition metal ions such as V, Cr, Mn, Fe, Ni or Au extends light absorption into the visible region. The role of loaded metal is trapping and subsequently transferring of photo- excited electron onto the photo-catalyst surface and decreasing the recombination of hole-electron pairs [23]. But very little information is available in the literature related to the effect of metals such as Ni, Cu and Zn depositing on the surface of TiO₂ by means of photo reduction on optical absorption capability [24]. The loaded metals on TiO₂ should be chemically stable during the photo catalytic oxidation reaction or storage in atmospheric condition. Dopage with metals is one of the most efficient strategies to change the intrinsic structure of the gap of TiO₂, which can promote the photocatalytic activity increasing solar light sensitivity. Doping TiO₂ structure modified its crystalline size and/or surface due the presence of metallic nano-compounds deposited over the surface. Several methods such as sol-gel, impregnation (organo-metallic complex, commercial materials, etc.), co-precipitation, implantation, photo deposition, etc. are used for catalyst dopaging. The aim of this study is to evaluate the effects of doping of TiO₂ with Ni, Cu and Zn via mechanical procedure and wet impregnation during CR photo catalytic de-colorization at acidic (pH=5.7) and alkaline (pH=8.0) conditions.

2. Materials and Method

2.1. Materials

Congo red (M.W.696.67 g mol/l, C₃₂H₂₂N₆O₆Na₂S₂), sodium hydroxide, hydrochloric acid, titanium dioxide (TiO₂), nickel nanoparticles (particles prepared in this research). Solutions were prepared by using deionized and distilled water.

2.2. Equipment

Computer controlled photoreactor (CCP-4V) supplied by Luzchem [reference number is needed here], Canada, which uses four set of lamps has been used for the photocatalytic degradation of congo red. Photoreactor enclose irradiation chambers that are about 32 cm (w) x 33 cm (D) x 21 cm (H). Lamps are located at the top and sides. There are different kinds of lamps used in this instrument- UVA lamp, UVB lamp and UVC lamp. CE2041 UV/Vis spectrophotometer was used for optical characterization of the congo red solution titanium dioxide and nanoo nickel particles before and after irradiation UV-Vis using Computer controlled photoreactor (CCP-4V). The working rang of this instrument was 190-1000 nm wavelength range with a narrow 1.8 nm optical bandwidth. With straylight of 0.01%, wavelength precision of 0.1nm required especially if it leads to a reactive material. Recently, the interest has grown to improve the optical response of TiO₂ from UV spectrum to the visible range to increase photo-catalysis efficiency for TiO₂. Since the treatment costs can be further reduced by efficiently utilizing solar light as the source of excitation, extensive efforts are currently underway to develop TiO₂ based photo-catalysts that are not only capable of supporting visible light activated photodegradation, but also possess improved photo catalytic reactivity as compared to that of the pure material. The band gap of titanium dioxide would be decreased and visible light absorption would be increased owing to the incorporation of metals into the dioxide structure [20,21,22]. Various studies reported that doped TiO₂ with transition metal ions such as V, Cr, Mn, Fe, Ni or Au extends light absorption into the visible region. The role of loaded metal is trapping and subsequently transferring of photo- excited electron onto the photo-catalyst surface and decreasing the recombination of hole-electron pairs [23]. But very little information is available in the literature related to the effect of metals such as Ni, Cu and Zn depositing on the surface of TiO₂ by means of photo reduction on optical absorption capability [24]. The loaded metals on TiO₂ should be chemically stable during the photo catalytic oxidation reaction or storage in atmospheric condition. Dopage with metals is one of the most efficient strategies to change the intrinsic structure of the gap of TiO₂, which can promote the photocatalytic activity increasing solar light sensitivity. Doping TiO₂ structure modified its crystalline size and/or surface due the presence of metallic nano-compounds deposited over the surface. Several methods such as sol-gel, impregnation (organo-metallic complex, commercial materials, etc.), co-precipitation, implantation, photo deposition, etc. are used for catalyst dopaging. The aim of this study is to evaluate the effects of doping of TiO₂ with Ni, Cu and Zn via mechanical procedure and wet impregnation during CR photo catalytic de-colorization at acidic (pH=5.7) and alkaline (pH=8.0) conditions.

2. Materials and Method

2.1. Materials

Congo red (M.W.696.67 g mol/l, C₃₂H₂₂N₆O₆Na₂S₂), sodium hydroxide, hydrochloric acid, titanium dioxide (TiO₂), nickel nanoparticles (particles prepared in this research). Solutions were prepared by using deionized and distilled water.

2.2. Equipment

Computer controlled photoreactor (CCP-4V) supplied by Luzchem [reference number is needed here], Canada, which uses four set of lamps has been used for the photocatalytic degradation of congo red. Photoreactor enclose irradiation chambers that are about 32 cm (w) x 33 cm (D) x 21 cm (H). Lamps are located at the top and sides. There are different kinds of lamps used in this instrument- UVA lamp, UVB lamp and UVC lamp. CE2041 UV/Vis spectrophotometer was used for optical characterization of the congo red solution titanium dioxide and nanoo nickel particles before and after irradiation UV-Vis using Computer controlled photoreactor (CCP-4V). The working rang of this instrument was 190-1000 nm wavelength range with a narrow 1.8 nm optical bandwidth. With straylight of 0.01%, wavelength precision of 0.1nm required especially if it leads to a reactive material. Recently, the interest has grown to improve the optical response of TiO₂ from UV spectrum to the visible range to increase photo-catalysis efficiency for TiO₂. Since the treatment costs can be further reduced by efficiently utilizing solar light as the source of excitation, extensive efforts are currently underway to develop TiO₂ based photo-catalysts that are not only capable of supporting visible light activated photodegradation, but also possess improved photo catalytic reactivity as compared to that of the pure material. The band gap of titanium dioxide would be decreased and visible light absorption would be increased owing to the incorporation of metals into the dioxide structure [20,21,22]. Various studies reported that doped TiO₂ with transition metal ions such as V, Cr, Mn, Fe, Ni or Au extends light absorption into the visible region. The role of loaded metal is trapping and subsequently transferring of photo-excited electron onto the photo-catalyst surface and decreasing the recombination of hole-electron pairs [23]. But very little information is available in the literature related to the effect of metals such as Ni, Cu and Zn depositing on the surface of TiO₂ by means of photo reduction on optical absorption capability [24]. The loaded metals on TiO₂ should be chemically stable during the photo catalytic oxidation reaction or storage in atmospheric condition. Dopage with metals is one of the most efficient strategies to change the intrinsic structure of the gap of TiO₂, which can promote the photocatalytic activity increasing solar light sensitivity. Doping TiO₂ structure modified its crystalline size and/or surface due the presence of metallic nano-compounds deposited over the surface. Several methods such as sol-gel, impregnation (organo-metallic complex, commercial materials, etc.), co-precipitation, implantation, photo deposition, etc. are used for catalyst dopaging. The aim of this study is to evaluate the effects of doping of TiO₂ with Ni, Cu and Zn via mechanical procedure and wet impregnation during CR photo catalytic de-colorization at acidic (pH=5.7) and alkaline (pH=8.0) conditions.

3. Results and Discussion

Congo red solution of different concentration were prepared. Sodium hydroxide was used to maintain the pH at 5.7 and 8 respectively. Absorbance of the congo red solution of different concentration i.e. 30 ppm, 40 ppm, 50 ppm, 60 ppm, 70 ppm, 80 ppm, 90 ppm, 100 ppm were measured using a UV-Visible spectrophotometer. A plot
of absorbance versus wavelength is shown in Figure 1 for the congo red solution at pH 5.7. Another plot of absorbance versus wavelength is shown in Figure 2 for the congo red solutions at pH 8. Maximum absorbance for the congo red solution determined using the plots shown in Figure 1 and Figure 2, was found to be at 500 nm. This finding is agreement with previous authors [25,26,27] who have also found this to be 500 nm.

Figure 3 shows the standard curve for blank in which absorbance versus concentration of the congo red solution are plotted. The graph shows that the absorbance increases in a linear fashion as the concentration was increased from 30-90 ppm. By using different catalysts for example TiO₂, TiO₂ mechanically mixed with nano nickel, changes in the concentration of congo red after irradiation of UVC could be found using a similar plot as shown in Figure 3. The absorbance of the congo red solution after irradiation with UVC for different time with titanium oxide photo catalyst and titanium oxide with mechanically mixed nickel nanoparticles was determined.

Figure 1. Absorbance versus wavelength for different concentration of congo red solution at pH 5.7

Figure 2. Absorbance versus wavelength for different concentration of congo red solution at pH 8

Figure 3. Standard curve (Concentration versus absorption) for blank i.e. after irradiation of UVC on 30ppm congo red solution at pH 8
Figure 4 shows the changes in absorbance of the congo red dye with time of exposure to UVC on 30 ppm congo red solution containing 0.5 g/l TiO$_2$ photocatalyst at pH 8. Figure 5 shows the change in absorbance of the congo red solution with time of exposure of UVC on 30 ppm congo red solution containing 0.5g/l TiO$_2$ with mechanically mixed nickel nanoparticles (1) photo catalyst at pH 8. Figure 6 shows the change in absorbance of the congo red solution with time of exposure of UVC on 30 ppm congo red solution containing 0.5g/l TiO$_2$ with mechanically mixed nickel nanoparticles (2) photo catalyst at pH 8. Figure 4, Figure 5 and Figure 6 shows that the photocatalytic activity of TiO$_2$ for the photo degradation of congo red is higher than that of the mechanical mixture of TiO$_2$ with nickel nano particles in the basic medium i.e. at pH 8. Figure 7 shows the comparative study of the degradation using TiO$_2$, TiO$_2$ with MNT1 and TiO$_2$ with MNT2 which also similar to the earlier statement.

Figure 8 shows absorbance at different time after irradiation with UVC on 30 ppm congo red solution at pH 5.7 without any TiO$_2$ or TiO$_2$ mixed with nickel nanoparticles. Figure 9 shows the change in absorbance of congo red solution with time of exposure of UVC on 30 ppm congo red solution containing 0.5g/l TiO$_2$ with photo catalyst at pH 5.7. Figure 10 shows the change in absorbance of the congo red dye with time of exposure of UVC on 30 ppm congo red solution containing 0.5 g/l TiO$_2$ mixed with nickel nano particles (1) as photo catalyst at pH5.7. Figure 11 shows the change in absorbance of the congo red solution with time of exposure to UVC for the 30 ppm congo red solution containing 0.5g/l TiO$_2$ mixed with nickel nano particles (2) as photo catalyst at pH-5.7. Figure 12 shows the comparative study of these three sample at pH 5.9. The experimental plots show that the photocatalytic activity of nickel nano particles mechanically mixed with TiO$_2$ is higher than that of the TiO$_2$ only in an acidic medium with pH5.7. From these experimental results it can be stated that nickel nano particles are very efficient in removing congo red from the industrial waste water at pH5.7. The rate of decomposition of congo red increase with decrease in the size of the nano nickel particles. Hence, the application of nickel nano particles in the removal of congo red is much better than those conventionally used photo catalyst. Congo red is itself an acidic compound, based on the experimental results obtained in this research it can be recommended that this dye should be removed from industrial waste water in acidic medium using nickel nano particles. Using the same procedure it would be possible to remove other organic dyes from the industrial waste water by using nickel nano particles as a photo catalyst with titanium di oxide which will help to keep water safer for human consumption and other living creatures that depend on the environment for water.
Figure 6. Plot of absorbance versus time in minutes for the TiO$_2$ mechanically mixed nickel nanoparticles (2) at pH 8. (MNT2)

Figure 7. Plot of absorbance versus time in minutes for the three samples at pH 8

Figure 8. Absorbance at different time after irradiation of UVC on 30ppm congo red solution at pH5.7

Figure 9. Absorbance at different time after irradiation of UVC on 30ppm congo red solution at pH 5.7 in presence of TiO$_2$
4. Conclusion

In this research work nano nickel particles have been synthesized and photo-degradation of congo red by using TiO₂ in presence and absence of nickel nano particles was investigated. Photo degradation dependent on the pH of the congo red solution. Absorbance results shows that presence of nickel nano particles accelerate the rate of photo-degradation of congo red solution. Results also shows that size of the nickel nano particles plays an important rule on the rate of photo-degradation of congo red. Decreasing the particle size of nickel nano particles the rate of photo-degradation of congo red increases [why please explain here].

References

[1] M. Dakiky, I. Nemcova, “Aggregation of o,o’- Dihydroxy azo Dyes III. Effect of cationic, anionic and non-ionic surfactants on the electronic spectra of 2-hydroxy-5-nitrophenylazo-4-[3-methyl-1-(4″-sulfophenyl)-5-pyrazolone]” Dyes Pigments 44, 181, 2000.
[2] M. A. Brown, S. C. De. vito, C. Rev, Predicting azo dye toxicity, Environ. Sc. Technoi. 23, 249, 1993.
[3] D. Rajkumar, J.G. Kim, Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment, J. Hazard. Mater, 136, 203-212, 2003.
[4] S.K. Kang, H. M. Chang, Coagulation of textile secondary effluents with Fenton’s reagent, Water Sci. Technol, 72, 215, 1997.
[5] Vanitha Kathiresan, Jibrail Kanseo, John Lat Sie Yon, “Efficiency of Various Recent Wastewater Dye Removal Methods: A Review” Journal of Environmental Chemical Engineering. 6(4), 2018.
[6] Meenakshisundaram Swaminathan, Manickavachagam Muruganandham, and Mika Sillanpaa, “Advanced Oxidation Processes for Wastewater Treatment”. International Journal of Photoenergy, 2013, 3, 2013.

[7] M.A. Fox, M.T. Dulay, Heterogenous Photocatalysis, Chem. Rev. 93, 341, 1993.

[8] M. Movahedi, A.R. Mahjoub and S. Jantabar-Darzi, Photodegradation of Congo Red in Aqueous Solution on ZnO as an Alternative Catalyst to TiO₂, J. Iran. Chem. Soc., 6(3), 570, 2009.

[9] R. J. Gonzalez, R. Zallen, H. Berger, Infrared reflectivity and lattice fundamentals in anatase TiO₂, Phys. Rev. B 55, 7014, 1997.

[10] A. Pottier, C. Chance, E. Tronc, L. Mazerroles, J. Jolivet, Synthesis of brookite TiO₂ nanoparticles by thermolysis of TiCl₄ in strongly acidic aqueous solution, J. Mater. Chem. 11, 1116, 2001.

[11] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Hermann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl red, Congo red, Methylene blue) in water by UV-irradiated titania, Appl. Catal. B: Environ. 39, 75, 2002.

[12] W. Choi, A. Termin, M.R. Hoffmann, Role of Metal Ion Dopants in Quantum-Sized TiO₂: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem. 98, 13669, 1994.

[13] R. Ashi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen -Doped Titanium Oxide, Science 293, 269, 2001.

[14] A.R. Gandhe, J.B. Fernandes, A Simple Method of Synthesized N-doped rutile titania with enhanced photocatalytic activity in sun light, J. Solid State Chem. 178, 2953, 2005.

[15] R.J. Gonzalez, R. Zallen, H. Berger, Phys. Reov. B 55, 7014, 1997.

[16] T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Preparation of S-doped TiO₂ photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A: Gen. 244, 383, 2003.

[17] B. Sun, P.G. Smirniotis, Interaction of anatase and rutile TiO₂ in aqueous photooxidation Catal. Today 88, 49, 2003.