【文献調査】

Dynamic graph metrics: Tutorial, toolbox, and tale

片山 朋香　　廣安 知之　　日和 悟

2017年8月30日

1 タイトル
動的グラフの指標：チュートリアル、ツールボックス、および説明

2 著者
Ann E.Sizemorea and Danielle S.Bassett

3 出典
NeuroImage, Available online 8 July 2017

4 アブストラクト
中枢神経系は、知覚、行動、および認知をサポートする複雑な機能的相互作用のパターンで互いに連絡された、細胞から領域への多くの個々の単位から構成される。このようなシステムの自然かつ簡潔な表現の1つはノード（ユニット）がエッジ（相互作用）によって接続されているグラフである。伝統的なグラフアプローチは、時空間スケール、種、群にわたって適用可能であるが、感情的および認知的状態の理解、タスクスイッチング、適用及び開発、老化および疾患の進行のための非常に重要な時間変化する接続パターンの複雑さに対処することができない。ここでは、動的グラフの特性を明らかにする集団を提供する適用数学のツールセットを調査し、この調査と併せて、既存または未取得のニューロ画像データにこれらの指標を容易に適用できるように、視覚化のための提案と一般入力可能なMATLABツールボックスを提供する。以前に公開された時間変化する機能的グラフのデータセットに適用することでツールボックスを説明するが、ツールは時間変化する構造グラフや他の種類の関係データにツールを適用することもできる。私達の目的は、動的グラフの正確で創造的な分析に頼っている新たな問題に対処するために、ニューロイメージングコミュニティに役立つ一連のツールとその使い方にに関する直観を提供することである。

5 キーワード
Graph, Time-varying connectivity, time-respecting paths, latency, centrality, clustering, characteristic temporal path length, dynamic modular structure

6 参考文献
6.1 哺乳動物の脳は複雑なシステムであり、互いに複雑につながっている多くの個々の単位で構成されていることを示した論文
[1] M. Breakspear Dynamic models of large-scale brain activity Nat. Neurosci., 20 (2017), pp. 340-352

6.2 還元主義と全体主義の両方の観点からの補完的な研究
[2] P. Villoslada, L. Steinman, S.E. Baranzini Systems biology and its application to the understanding of neurological diseases Ann. Neurol., 65 (2009), pp. 124-139

6.3 個々のユニットが他のユニットとどのように機能するかを理解するためには包括的なアプローチが重要であることを示した研究
[3] R.P. Cooper, T. Shallice Cognitive neuroscience: the troubled marriage of cognitive science and neuroscience Top. Cogn. Sci., 2 (2010), pp. 398-406
6.4 相互接続されたユニットのシステムについて

[4] M.E.J. Newman Complex systems: a survey Am. J. Phys., 79 (2011), pp. 800-810

6.5 最近のネットワーク科学の発展について

[5] M.E.J. Newman Networks: an Introduction Oxford University Press (2010)

6.6 脳におけるネットワーク表現について

[6] E.T. Bullmore, D.S. Bassett Brain graphs: graphical models of the human brain connectome Annu. Rev. Clin. Psychol., 7 (2011), pp. 113-140

6.7 空間スケールおよび時間スケールにわたって収集された神経データにネットワーク表現を適用した研究

[7] R.F. Betzel, D.S. Bassett Multi-scale brain networks Neuroimage (2016 Nov 11)

6.8 種にわたってネットワーク表現を適用した研究

[8] M.P. van den Heuvel, E.T. Bullmore, O. Sporns Comparative connectomics Trends Cogn. Sci., 20 (2016), pp. 345-361

6.9 集団にわたってネットワーク表現を適用した研究

[9] C.J. Stam Modern network science of neurological disorders Nat. Rev. Neurosci., 15 (2014), pp. 683-695

6.10 機能的グラフについての研究

[10] S.M. Smith, et al. Functional connectomics from resting-state fMRI Trends Cogn. Sci., 17 (2013), pp. 666-682

6.11 ニューロンスケールでは、機能的エッジは発火パターンの類似性の推定値であることを示した研究

[11] S. Feldt, J. Waddell, V.L. Hetrick, J.D. Berke, M. Zochowski Functional clustering algorithm for the analysis of dynamic network data Phys. Rev. E Stat. Nonlin Soft Matter Phys., 79 (2009), p. 056104

6.12 大規模では BOLD 時系列における類似性の推定値であることを示した研究

[12] S. Achard, R. Salvador, B. Whitcher, J. Suckling, E. Bullmore A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs J. Neurosci., 26 (2006), pp. 63-72

6.13 大規模では ECOG 信号は時系列における類似性の推定値であることを示した研究

[13] M.A. Kramer, et al. Emergence of persistent networks in long-term intracranial EEG recordings J. Neurosci., 31 (2011), pp. 15757-15767

6.14 機能的ネットワークの研究

[14] C.J. Stam, B.F. Jones, G. Nolte, M. Breakspear, P. Scheltens Small-world networks and functional connectivity in Alzheimer's disease Cereb. Cortex, 17 (2007), pp. 92-99

[15] J.D. Medaglia, M.E. Lynall, D.S. Bassett Cognitive network neuroscience J. cognitive Neurosci., 27 (8) (2015 Aug), pp. 1471-1491

6.15 動物の感情的もしくは認知的スケールの研究

[16] R.F. Betzel, T.D. Satterthwaite, J.I. Gold, D.S. Bassett Positive affect, surprise, and fatigue are correlates of network flexibility Sci. Rep., 7 (1) (2017 Mar 31), p. 520

6.16 発達の機能的ネットワークアーキテクチャの変化

[17] D.A. Fair, et al. Functional brain networks develop from a “local to distributed” organization PLoS Comput. Biol., 5 (2009), p. e1000381

6.17 老いのネットワークアーキテクチャの変化

[18] D. Meunier, S. Achard, A. Morcom, E. Bullmore Age-related changes in modular organization of human brain functional networks Neuroimage, 44 (2009), pp. 715-723
6.18 病気進行のネットワークアーキテクチャの進化
[19] A. Raj, E. LoCastro, A. Kuceyeski, D. Tosun, N. Relkin, M. Weiner, for the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s disease Cell Rep. (2015 Jan 14)

6.19 時間的に変化する機能的接続生のパターンの定量化
[20] R.F. Betzel, D.S. Bassett Multi-scale brain networks Neuroimage (2016 Nov 11)

6.20 独立成分分析, 機械学習を用いたdynamic connectivityに関する研究
[21] Y. Du, et al. Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach Schizophr. Res., 170 (2016), pp. 55-65
[22] H. Eavani, T.D. Satterthwaite, R.E. Gur, R.C. Gur, C. Davatzikos Unsupervised learning of functional network dynamics in resting state fMRI Inf. Process Med. Imaging, 23 (2013), pp. 426-437

6.21 グラフ理論を用いた研究
[23] B. Bollobas Modern Graph Theory Springer (2013)

6.22 因果推論を用いた研究
[24] M.A. Kramer, U.T. Eden, S.S. Cash, E.D. Kolaczyk Network inference with confidence from multivariate time series Phys. Rev. E Stat. Nonlin Soft Matter Phys., 79 (2009), p. 061916

6.23 モデルベースとモデルフリーの2つのタイプの違いを示した研究
[25] N.D. Daw, P. Dayan The algorithmic anatomy of model-based evaluation Philos. Trans. R. Soc. Lond. B Biol. Sci., 369 (2014), p. 20130478

6.24 グラフベースのアプローチ
[26] P. Holme, J. Saramski Temporal networks Phys. Rep., 519 (2012), pp. 97-125

6.25 公開可能なMATLABのツールボックス
[27] Sizemore, A. E. Bassett, D. S. https://github.com/asizemore/Dynamic-Graph-Metrics (2017).