Local distinction, quadratic base change and automorphic induction for GL_n

N. Matringe

October 11, 2022

Abstract

Behind this sophisticated title hides an elementary exercise on Clifford theory for index two subgroups and self-dual/conjugate-dual representations. When applied to semi-simple representations of the Weil-Deligne group W'_F of a non Archimedean local field F, and further translated in terms of representations of $GL_n(F)$ via the local Langlands correspondence when F has characteristic zero, it yields various statements concerning the behaviour of different types of distinction under quadratic base change and automorphic induction. When F has residual characteristic different from 2, combining of one of the simple results that we obtain with the triviality of conjugate-orthogonal root numbers ([GGP12]), we recover without using the LLC a result of Serre on the parity of the Artin conductor of orthogonal representations of W'_F ([Ser71]). On the other hand we discuss its parity for symplectic representations using the LLC and the Prasad and Takloo-Bighash conjecture.

Introduction

Let E/F be a separable quadratic extension of non Archimedean local fields. Then thanks to the known local Langlands correspondence for $GL_n(E)$ and $GL_n(F)$, one has a base change map BC^E_F from the set of isomorphism classes of irreducible representations of $GL_n(F)$ to that of $GL_n(E)$, and an automorphic induction map AI^E_F from the set or isomorphism classes of irreducible representations of $GL_n(E)$ to that of $GL_{2n}(F)$. A typical statement proved in this note (for F of characteristic zero) is that if π is a generic unitary representation of $GL_n(F)$ with orthogonal Langlands parameter (orthogonal in short), then $BC^E_F(\pi)$ is orthogonal and $GL_n(F)$-distinguished, and that the converse holds if π is a discrete series (see Corollary 3.1 for the general statement). Corollary 3.1 is itself a translation via the LLC of our main result which concerns representations of the Weil-Deligne group of F (Proposition 3.1). Another lucky application of Proposition 3.1 is that the result of [Ser71] on the parity of Artin conductors of representations of the Weil-Deligne group of F is a consequence of that in [Del76] on root numbers of orthogonal representations, when F has odd residual characteristic, as we show in Corollary 4.1. We also discuss its parity for symplectic representations using the LLC and the Prasad and Takloo-Bighash conjecture in Corollary 4.2.

Acknowledgement. The motivation for writing this note is a question of Vincent Sécherre, which it answers. We thank him for asking it. We also thank Eyal Kaplan for useful explanations concerning [Kap17] and [Yam17]. We are greatful to the referee for his accurate comments and corrections. This work benefited from hospitality of the Erwin-Schrödinger institute, via the Research in Teams Project: l-modular Langlands Quotient Theorem and Applications.
1 Notation, definitions and basic facts about self-dual and conjugate-dual representations

For K a non Archimedean local field we denote by W_K the Weil group of K (see [Tat79]), and by $W'_K = W_K \times SL_2(\mathbb{C})$ the Weil-Deligne group of K. By a representation of W_K we mean a finite dimensional smooth complex representation of W_K. By a representation of W'_K we mean a representation which is a direct sum of representations of the form $\phi \otimes S$, where ϕ is an irreducible representation of W_K and S is an irreducible algebraic representation of $SL_2(\mathbb{C})$. We sometimes abbreviate "ϕ is a representation of W'_K" as "$\phi \in \text{Rep}(W'_K)$". We denote by $\phi^\vee \in \text{Rep}(W'_K)$ the dual of $\phi \in \text{Rep}(W'_K)$.

For the following facts on self-dual and conjugate-dual representations of W'_K, we refer to [GGP12 Section 3]. We recall that a representation ϕ of W'_K is self-dual if and only if there exists a $\phi \times \phi$ W'_K-invariant bilinear form B which is non degenerate: we will say that B is W'_K-bilinear (which in particular means non degenerate). If moreover B is alternate, we say that B is $(W'_K, -1)$-bilinear in which case we say that ϕ is symplectic or (-1)-self-dual, whereas if B is symmetric, and we say that B is $(W'_K, 1)$-bilinear in which case we say that ϕ is orthogonal or 1-self-dual. If ϕ is irreducible and self-dual, then there is up to nonzero scaling a unique W'_K-bilinear form on $\phi \times \phi$, which is either $(W'_K, -1)$-bilinear or $(W'_K, 1)$-bilinear, but not both.

Now suppose that L/K is a separable quadratic extension so that W_L has index two in W_K, and fix $s \in W_K - W_L$. For ϕ a representation of W'_L, we denote by ϕ^s the representation of W'_L defined as $\phi^s := \phi(s \cdot s^{-1})$. We say that ϕ is L/K-dual or conjugate-dual if $\phi^s \cong \phi^\vee$. The representation $\phi \in \text{Rep}(W'_L)$ is conjugate-dual if and only if there is on $\phi \times \phi$ a non-degenerate bilinear form B such that

$$B(w,x,sws^{-1},y) = B(x,y)$$

for all (w,x,y) in $W'_L \times \phi \times \phi$. We say that such a bilinear form B is L/K-bilinear (this in particular means non degenerate). If moreover there is $\varepsilon \in \{\pm 1\}$ such that B satisfies

$$B(x, s^2y, \varepsilon) = \varepsilon B(y,x)$$

for all (x,y) in $\phi \times \phi$ we say that B is $(L/K, \varepsilon)$-bilinear, in which case we say that ϕ is $(L/K, \varepsilon)$-dual or conjugate-symplectic if $\varepsilon = -1$ and conjugate-orthogonal if $\varepsilon = 1$. All the definitions above do not depend on the choice of s. When ϕ is L/K-dual and also irreducible, then there is up to nonzero scaling a unique L/K-bilinear form on $\phi \times \phi$, which is either $(L/K, -1)$-bilinear or $(L/K, 1)$-bilinear, but not both.

2 Preliminary results

2.1 Clifford-Mackey theory for index two subgroups

We refer to [OSSST09 Section 3] for the following standard results.

Theorem 2.1. Let G be a finite group, H a finite subgroup of index 2, $s \in G - H$, and let $\eta: G \to \{\pm 1\}$ be the nontrivial character of G trivial on H.

- For ϕ a (finite dimensional complex) representation of H which is irreducible, the representation $\text{Ind}_H^G(\phi)$ is irreducible if and only if $\phi^s \neq \phi$, which is also equivalent to the fact that ϕ does not extend to G. If it is reducible then ϕ extends to G, and if $\tilde{\phi}$ is such an extension, then $\eta \otimes \tilde{\phi}$ is the only other extension different from ϕ, and $\text{Ind}_H^G(\phi) \cong \tilde{\phi} \otimes (\eta \otimes \tilde{\phi})$.

2
• An irreducible representation ϕ' of G restricts to H either irreducibly, or breaks into two irreducible pieces, and the second case occurs if and only if $\phi' \simeq \eta \otimes \phi'$, which is also equivalent to $\phi' = \text{Ind}^G_H(\phi)$ for ϕ an irreducible representation of H such that $\phi^* \simeq \phi$.

For E/F a separable quadratic extension of non Archimedean local fields, we denote by $\eta_{E/F}: W'_F \to \{\pm 1\}$ the nontrivial character of W'_F trivial on W'_E. Theorem 2.1 has the following corollary.

Corollary 2.1. Let E/F be a separable quadratic extension of non Archimedean local fields, and fix $s \in W_F - W_E$.

• For $\phi_E \in \text{Rep}(W'_E)$ an irreducible representation, the representation $\text{Ind}^{W'_F}_{W'_E}(\phi_E)$ is irreducible if and only if $\phi'_E \neq \phi_E$, which is also equivalent to the fact that ϕ_E does not extend to W'_F. If it is reducible then ϕ_E extends to W'_F, and if ϕ_F is such an extension, then $\eta_{E/F} \otimes \phi_F$ is the only other extension different from ϕ_F, and $\text{Ind}^{W'_F}_{W'_E}(\phi_E) \simeq \phi_F \otimes (\eta_{E/F} \otimes \phi_F)$.

• An irreducible representation ϕ_F of W'_F restricts to W'_E either irreducibly, or breaks into two irreducible pieces, and the second case occurs if and only if $\phi_F = \eta_{E/F} \otimes \phi_F$, which is also equivalent to $\phi_F \simeq \text{Ind}^{W'_F}_{W'_E}(\phi_E)$ for ϕ_E and irreducible representation of W'_E such that $\phi_E^* \simeq \phi_E$.

Proof. We recall that by [BH06, 28.6], if α_K is an irreducible representation of W_K for K local and non Archimedean, then there exists an unramified character χ_K of W_K such that $\chi_K \otimes \alpha_K$ has co-finite kernel.

For the first part of the first point, write $\phi_E = \alpha_E \otimes S$, and suppose first that $\text{Ind}^{W'_F}_{W'_E}(\phi_E)$ is irreducible. Twist $\text{Ind}^{W'_F}_{W'_E}(\alpha_E)$ by an unramified character χ_F so that $\text{Ind}^{W'_F}_{W'_E}(\phi_E) \otimes \chi_F$ has a co-finite kernel (hence $\text{Res}^{W'_F}_{W'_E}(\chi_F) \otimes \alpha_E$ has co-finite kernel as well, as it has to be trivial on $W_E \cap \text{Ker}(\text{Ind}^{W'_F}_{W'_E}((\text{Res}^{W'_F}_{W'_E}(\chi_E) \otimes \alpha_E))))$. Because $\text{Res}^{W'_F}_{W'_E}(\chi_F)^* = \text{Res}^{W'_F}_{W'_E}(\chi_F)$, one deduces from Theorem 2.1 applied to $\text{Res}^{W'_F}_{W'_E}(\chi_E) \otimes \alpha_E = \alpha'_E$ and that $\alpha'_E \neq \alpha_E$ and that α_E does not extend. This implies the same statements for ϕ_E. Conversely if $\phi'_E \neq \phi_E$, then the same holds for α_E. Take χ'_E unramified such that $\chi'_E \otimes \alpha_E$ has co-finite kernel, and χ_F any unramified extension of χ_E to W_F. Then $\text{Ind}^{W'_F}_{W'_E}(\alpha_E) = \chi_F^{-1} \otimes \text{Ind}^{W'_F}_{W'_E}(\chi_E \otimes \alpha_E)$ is irreducible by Theorem 2.1 and so is $\text{Ind}^{W'_F}_{W'_E}(\phi_E) = \text{Ind}^{W'_F}_{W'_E}(\alpha_E) \otimes S$. The second part of the first point is similar, using an unramified character χ_F of W_F such that $\chi_E \otimes \phi_E$ has cofinite kernel (just take such a χ_E and extend it to an unramified character of W_F).

The proof of the second point is similar. □

We will tacitly use the above corollary from now on.

2.2 Distinction and LLC for GL_n

Let F be a non Archimedean local field, we denote by LLC the local Langlands correspondence ([LRS93], [HT02], [Hen00]). For any $n \geq 1$, it restricts as a bijection from the set of isomorphism classes of n-dimensional representations of W'_F, to that of (smooth and complex) irreducible representations of $GL_n(F)$. If E/F is a quadratic extension, and $\pi = \text{LLC}(\phi_F)$ for ϕ_F a representation of W'_F, we set $B_{E/F}(\pi) = \text{LLC}(\text{Res}_{W'_E}(\phi_F))$ (the quadratic base change of π), whereas if $\pi = \text{LLC}(\phi_E)$ for ϕ_E a representation of W'_E, we set $A_{E}(\pi) = \text{LLC}(\text{Ind}_{W'_E}(\phi_E))$ (the quadratic
Theorem 2.2. Suppose that \(\tau \) is irreducible, we call it a discrete series representation if it has a matrix coefficient \(c \) such that \(|c| \neq 0\). A representation \(\phi \) of \(\mathrm{GL}_n(F) \) is irreducible if and only if \(\mathrm{LLC}(\phi) \) is a discrete series.

Let \(N_0(F) \) be the subgroup of \(\mathrm{GL}_n(F) \) of upper triangular unipotent matrices, and let \(\psi \) be a non trivial character of \(F \), which in turn defines a character \(\tilde{\psi} : u \mapsto \psi(u_1,2+\ldots+u_{n-1},n)^{\frac{1}{2}} \) of \(N_0(F) \).

We say that an irreducible representation \(\pi \) of \(\mathrm{GL}_n(F) \) is generic if \(\mathrm{Hom}_{N_0(F)}(\pi, \tilde{\psi}) \neq \{0\} \) and this does not depend on the choice of \(\psi \). Genericity can be read on the Langlands parameter \([\mathrm{Zel10}] \) (one way to state it is that \(\mathrm{LLC}(\phi) \) is generic if and only if the adjoint L factor of \(\phi \) is holomorphic at \(s = 1 \)). From this one easily deduces the direct implications of the following proposition, the converse implications being special cases of \([\mathrm{MS20}] \) Theorem 9.1.

Proposition 2.1.

- Let \(\pi \) be an irreducible representation of \(\mathrm{GL}_n(F) \). If \(\mathrm{BC}_F(\pi) \) is generic, then \(\pi \) is generic, and conversely if \(\pi \) is generic unitary, then \(\mathrm{BC}_F(\pi) \) is generic (unitary).

- Let \(\tau \) be an irreducible representation of \(\mathrm{GL}_n(E) \). If \(\mathrm{AI}_E(\tau) \) is generic, then \(\tau \) is generic, and conversely if \(\tau \) is generic unitary, then \(\mathrm{AI}_E(\tau) \) is generic (unitary).

We denote by \(\mathrm{GL}_n(F) \) the double cover of \(\mathrm{GL}_n(F) \) defined for example in \([\mathrm{Kap17}] \) Section 2.1. Following \([\mathrm{Kap17}] \) we call a map \(\gamma : F^\times \to \mathbb{C}^\times \) a pseudo-character if it satisfies \(\gamma(xy) = \gamma(x)\gamma(y)(x, y)_2 \) for all \(x \) and \(y \) in \(F^\times \), where \((\ldots)_2 \) is the Hilbert symbol of \(F^\times \). For \(\gamma \) a pseudo-character of \(F^\times \) we denote by \(\theta_{1,\gamma} \) the corresponding Kazhdan-Patterson exceptional representation of \(\mathrm{GL}_n(F) \) as in \([\mathrm{Kap17}] \) Section 2.5. We say that an irreducible representation \(\pi \) of \(\mathrm{GL}_n(F) \) is \(\Theta_F \)-distinguished if there exist pseudo-characters \(\gamma \) and \(\gamma' \) of \(F^\times \) such that \(\mathrm{Hom}_{\mathrm{GL}_n(F)}(\theta_{1,\gamma} \otimes \theta_{1,\gamma'}, \pi^\vee) \neq \{0\} \) (where \(\theta_{1,\gamma} \otimes \theta_{1,\gamma'} \) indeed factors through \(\mathrm{GL}_n(F) \) so that the definition makes sense).

When \(n \) is even, we denote by \(S_n(F) \) the Shalika subgroup of \(\mathrm{GL}_n(F) \) consisting of matrices of the form \(s(g, x) = \text{diag}(g, g) \begin{pmatrix} I_{n/2} & x \\ I_{n/2} & \end{pmatrix} \) for \(g \in \text{GL}_{n/2}(F) \) and \(x \in M_{n/2}(F) \), and for \(\psi \) a non trivial character of \(F \), we denote by \(\Psi \) the character of \(S_n(F) \) defined by \(\Psi(s(g, x)) = \psi(\text{tr}(x)) \).

We say that an irreducible representation \(\pi \) of \(\mathrm{GL}_n(F) \) is \(\Psi_F \)-distinguished if \(n \) is even and \(\mathrm{Hom}_{S_n(F)}(\pi, \Psi) \neq \{0\} \) for some non trivial character \(\psi \) of \(F \). This does not depend on the choice of \(\psi \).

Finally if \(E/F \) is quadratic separable, identifying \(\eta_{E/F} \) to the character of \(F^\times \) trivial on \(N_{E/F}(E^\times) \) via local class field theory, we say that an irreducible representation \(\tau \) of \(\mathrm{GL}_n(E) \) is \(1_{E/F} \)-distinguished if \(\mathrm{Hom}_{\mathrm{GL}_n(E)}(\tau, 1) \neq \{0\} \) and \(\eta_{E/F} \)-distinguished if \(\mathrm{Hom}_{\mathrm{GL}_n(E)}(\tau, \eta_{E/F} \circ \det) \neq \{0\} \).

The following theorem follows from \([\mathrm{Hen10}] \), \([\mathrm{Kab04}] \), \([\mathrm{AKT04}] \), \([\mathrm{AR05}] \), \([\mathrm{Mat11}] \), \([\mathrm{KR12}] \), \([\mathrm{Jo20}] \), \([\mathrm{Mat17}] \), \([\mathrm{Yam17}] \), \([\mathrm{Kap17}] \). Parts of it are known to hold when \(E \) is of positive characteristic and odd residual characteristic \([\mathrm{AKM+21}] \) Appendix A).

Theorem 2.2. Suppose that \(F \) has characteristic zero.

- Let \(\pi = \mathrm{LLC}(\phi_F) \) be a generic representation of \(\mathrm{GL}_n(F) \), then \(\phi_F \) is symplectic if and only \(\pi \) is \(\Psi_F \)-distinguished, whereas \(\phi_F \) is orthogonal if and only \(\pi \) is \(\Theta_F \)-distinguished.
• Let $\tau = \text{LLC}(\phi_E)$ be a generic representation of $\text{GL}_n(E)$, then ϕ_E is conjugate-symplectic if and only τ is $\eta_{E/F}$-distinguished, whereas ϕ_E is conjugate-orthogonal if and only τ is $1_{E/F}$-distinguished.

2.3 A reminder on epsilon factors

Let K'/K be a finite separable extension of non Archimedean local fields. We denote by ϖ_K a uniformizer of K and by P_K the maximal ideal of the ring of integers O_K of K. If ψ is a non trivial character of K, we denote by ψ_K the character $\psi \circ \text{Tr}_{K'/K}$. We call the conductor of ψ and write $d(\psi)$ for the smallest integer d such that ψ is trivial on P_K^d. When K'/K is unramified, it follows from [Wei74, Chapter 8, Corollary 3] that

$$d(\psi_K) = d(\psi).$$

Similarly if χ is a character of W_K' identified by local class field theory with a character of K^*, we call the Artin conductor of χ the integer $a(\chi)$ equal to zero if χ is unramified, or equal to the smallest integer a such that χ is trivial on $1 + P_K^a$ if χ is ramified. More generally one can define the Artin conductor $a(\phi)$ (which is an integer) of any representation ϕ of W_K', see [Tat79, 3.4.5] when ϕ is a representation of W_K and [GR10, Section 2.2] in general. The Artin conductor is additive:

$$a(\phi \otimes \phi') = a(\phi) + a(\phi')$$

for ϕ and ϕ' in $\text{Rep}(W_K')$. If ϕ is a representation of W_K', and ψ is a non trivial character of K, we refer to [Tat79, 3.6.4] and [BH06, 31.3] or [GR10, Section 2.2] for the definition of the root number $\epsilon(1/2, \phi, \psi)$. One then defines the Langlands λ-constant:

$$\lambda(K'/K, \psi) = \frac{\epsilon(1/2, \text{Ind}_{W_K'}^W(1_{W_K'}), \psi)}{\epsilon(1/2, 1_{W_K'}, \psi_{K'})}.$$

For $a \in K^*$, we set $\psi_a = \psi(a \cdot)$. These constants enjoy the following list of properties, which we will freely use later in the paper.

1. $\epsilon(1/2, \phi \circ \phi', \psi) = \epsilon(1/2, \phi, \psi)\epsilon(1/2, \phi', \psi)$ where ϕ' is another representation of W_K' ([Tat79, 3.4.2]).

2. $\epsilon(1/2, \phi, \psi_a) = \det(\phi(a)) \epsilon(1/2, \phi, \psi)$ ([Tat79, 3.6.6]).

3. $\epsilon(1/2, \phi, \psi)^2 = \det(\phi)(-1)$ when ϕ is self-dual ([GR10, Section 2.3, (11)]).

4. If $d(\psi) = 0$ and μ is an unramified character of K^*, it follows from [GR10, Section 2.3, (9)] that:

$$\epsilon(1/2, \mu \circ \phi, \psi) = \mu(\varpi_K^a(\phi)) \epsilon(1/2, \phi, \psi).$$

5. If K'/K is quadratic with K of characteristic not 2, $\delta \in \ker(\text{Tr}_{K'/K}) - \{0\}$, and ϕ is a K'/K-orthogonal representation of W_K', then by [GGP12, Proposition 5.2] (generalizing [FQ73, Theorem 3]):

$$\epsilon(1/2, \phi, \psi_{K'}) = \det(\phi)(\delta).$$

6. If $\phi_{K'}$ is an r-dimensional representation of W_K', then

$$\epsilon(1/2, \text{Ind}_{W_K'}^{W_{K'}}(\phi_{K'}), \psi) = \lambda(K'/K, \psi)^r \epsilon(1/2, \phi_{K'}, \psi_{K'}).$$
Proposition 3.1. When applied to a K'/K quadratic and $\phi_{K'} = \text{Res}_{W_{K'}'}^W(\phi)$ for ϕ a representation of $W_{K'}'$, one gets

$$\varepsilon(1/2, \psi)\varepsilon(1/2, \eta_{K'/K} \otimes \phi, \psi) = \lambda(K'/K, \psi)^\vee \varepsilon(1/2, \text{Res}_{W_{K'}'}^W(\phi), \psi_{K'})$$

7. If K'/K is unramified with $[K'/K] = n$:

$$\lambda(K'/K, \psi) = (-1)^{d(\psi)(n-1)}$$

(for example [Moy86] and [2], together with Equation (1)). In particular if $d(\psi) = 0$ then

$$\lambda(K'/K, \psi) = 1.$$

3 Distinction, base change, and automorphic induction

From now on E/F is a separable quadratic extension of non Archimedean local fields. Our main result is the following proposition, and we notice that half of its first point is [GGPT12] Lemma 3.5, (i).

Proposition 3.1. 1. Let ϕ_E be a semi-simple representation of W_E' which is either ε-self-dual or $(E/F, \varepsilon)$-dual, then $\text{Ind}_{W_E'}^{W_E}(\phi_E)$ is ε-selfdual.

2. Conversely if ϕ_E is irreducible and $\text{Ind}_{W_E'}^{W_E}(\phi_E)$ is ε-self-dual:

(a) if $\text{Ind}_{W_E'}^{W_E}(\phi_E)$ is irreducible, i.e. $\phi_E^s \not= \phi_E$, then either ϕ_E is ε-self-dual or $(E/F, \varepsilon)$-dual, but not both together,

(b) if $\text{Ind}_{W_E'}^{W_E}(\phi_E)$ is reducible, i.e. $\phi_E^s = \phi_E$, then ϕ_E is both ε-self-dual and $(E/F, \varepsilon)$-dual.

3. Let ϕ_F be a semi-simple representation of W_F' which is ε-self-dual, then $\text{Res}_{W_E'}^{W_E}(\phi_F)$ is ε-self-dual and $(E/F, \varepsilon)$-dual.

4. Conversely, if ϕ_F is irreducible and $\text{Res}_{W_E'}^{W_E}(\phi_F)$ is ε-self-dual and $(E/F, \varepsilon)$-dual then ϕ_F is ε-self-dual.

Proof. 1. First suppose that B_E is a $(E/F, \varepsilon)$-bilinear form on ϕ_E. Write an element v (resp. v') in $\text{Ind}_{W_E'}^{W_E}(\phi_E)$ under the form $v = x + s^{-1}y$ (resp. $v' = x' + s^{-1}.y'$) for x, x', y, y' in ϕ_E, and set

$$B_F(v, v') = B_E(x, y') + \varepsilon B_E(x', y).$$

Then B_F is W_E'-invariant because B_E is (W_E', ε)-conjugate (it is non-degenerate because so is B_E). Finally

$$B_F(s.v, s.x') = B_E(y, s^2.x') + \varepsilon B_E(y', s^2.x) = \varepsilon B_E(x', y) + B_E(x, y') = B_F(v, v').$$

Similarly if B_E is (W_E', ε)-bilinear, then one checks that

$$B_F(x + s^{11}y, x' + s^{1}.y') = B_E(x, x') + B_E(y, y')$$

defines a (W_E', ε)-bilinear form on ϕ_F.

6
2. Suppose that ϕ_E is irreducible and that $\text{Ind}_{W_E}^{W_F}(\phi_E)$ is ε-self-dual with (W_F, ε)-bilinear form B_F.

(a) If $\phi_E^s \neq \phi_E$, because $\text{Ind}_{W_E}^{W_F}(\phi_E)$ is self-dual then either ϕ_E is self-dual, or $\phi_E^s = \phi_E'$ but not both together. In the first case, say that ϕ_E is ε'-self-dual, then so is $\text{Ind}_{W_E}^{W_F}(\phi_E)$ by \[\Box\] but then $\varepsilon' = \varepsilon$ by irreducibility of $\text{Ind}_{W_E}^{W_F}(\phi_E)$. If $\phi_E^s = \phi_E'$ we conclude in a similar manner.

(b) If $\phi_E^s = \phi_E$ then $\text{Ind}_{W_E}^{W_F}(\phi_E) = B \phi \otimes \eta_{E/F} \otimes \phi$ for ϕ extending ϕ_E, and $\phi \neq \eta_{E/F} \otimes \phi$. Because $\phi \neq \eta_{E/F} \otimes \phi$ there are two disjoint cases. The first is when ϕ is self-dual, in which case $\phi \leq \eta_{E/F} \otimes \phi$ and B_F restricts non trivially to $\phi \otimes \phi$ (and $\eta_{E/F} \otimes \phi = \phi \otimes \phi$). Then ϕ_E is ε-dual and (ε, s)-dual by \[\Box\] Otherwise $\phi' = \eta_{E/F} \otimes \phi$ and B_F is zero on $\phi \otimes \phi$ and $\eta_{E/F} \otimes \phi \otimes \eta_{E/F} \otimes \phi$. In this case there is up to scaling a unique W_F-invariant bilinear form on $\text{Ind}_{W_E}^{W_F}(\phi_E)$, namely B_F. Because $\phi_E = \phi_E$ (by restricting the relation $\phi' = \eta_{E/F} \otimes \phi$ to W_F), ϕ_E must be ε'-self-dual, hence $\text{Ind}_{W_E}^{W_F}(\phi_E)$ as well by \[\Box\] but then we have $\varepsilon' = \varepsilon$ by multiplicity one of W_F-invariant bilinear form on $\text{Ind}_{W_E}^{W_F}(\phi_E)$. Moreover because $\phi_E = \phi_E$ the parameter ϕ_E is also (ε'', s)-self-dual and by \[\Box\] again we deduce that $\varepsilon'' = \varepsilon$.

3. Let B_F be a (W_F, ε)-bilinear form on ϕ_F, then it remains a (W_F, ε)-bilinear on $\text{Res}_{W_E}^{W_F}(\phi_F)$, and on the other hand

$$B_E(x, y) = B_F(x, s^{-1}y)$$

is an $(E/F, \varepsilon)$-bilinear form on $\text{Res}_{W_E}^{W_F}(\phi_F)$.

4. We suppose that ϕ_E is irreducible and that $\text{Res}_{W_E}^{W_F}(\phi_F)$ is ε-self-dual and also $(E/F, \varepsilon)$-dual. There are two cases to consider.

First if $\text{Res}_{W_E}^{W_F}(\phi_F)$ is irreducible, then denote by B_E the (W_E, ε)-bilinear form on $\text{Res}_{W_E}^{W_F}(\phi_F)$. Now set $D_E(x, y) = B_E(x, s^{-1}y)$ for $x, y \in \text{Res}_{W_E}^{W_F}(\phi_F)$. Clearly D_E is E/F-bilinear, but by irreducibility $\text{Res}_{W_E}^{W_F}(\phi_F)$ affords at most one such form up to scalar, hence D_E must be $(E/F, \varepsilon)$-bilinear. This implies that for x and y in $\text{Res}_{W_E}^{W_F}(\phi_F)$ one has

$$B_E(sx, sy) = D_E(sx, s^2y) = \varepsilon D_E(y, sx) = \varepsilon B_E(y, x) = B_E(x, y).$$

All in all, when $\text{Res}_{W_E}^{W_F}(\phi_F)$ is irreducible we deduce that B_E is in fact W_F-invariant hence that ϕ_F is ε-self-dual.

It remains to treat the case where $\text{Res}_{W_E}^{W_F}(\phi_F)$ is reducible. In this case it is of the form $\phi_E \oplus s^{-1} \phi_E$ where ϕ_E is an irreducible of W_E such that $\phi_E^s \neq \phi_E$ and $\phi_E = \text{Ind}_{W_E}^{W_F}(\phi_E)$.

First because $\text{Res}_{W_E}^{W_F}(\phi_F)$ is ε-self-dual, then the (W_E, ε)-bilinear form B_E on $\text{Res}_{W_E}^{W_F}(\phi_F)$ either induces an isomorphism $\phi_E^s \cong \phi_E'$ or $\phi_E \perp s^{-1} \phi_E$ for B_E. Similarly the $(E/F, \varepsilon)$-bilinear form C_E on $\text{Res}_{W_E}^{W_F}(\phi_F)$ either induces an isomorphism $(\phi_E')' \cong \phi_E'$ or $\phi_E \perp s^{-1} \phi_E$ for C_E. Suppose that B_E induces an isomorphism $\phi_E^s \cong \phi_E'$, then one
must have $\phi_E \perp s^{-1}\phi_E$ for C_E because $\phi_E \not\equiv \phi_E' \equiv \phi_E$. This implies that C_E induces an $(E/F, \varepsilon)$-bilinear form on ϕ_E and by point 1 we deduce that ϕ_F is ε-self-dual. On the other hand if $\phi_E \perp s^{-1}\phi_E$ for B_E then B_E induces an (W_E', ε)-bilinear form on ϕ_E and ϕ_E is ε-self-dual again by point 2.

\[\square\]

Supposing that F has characteristic zero, we translate Proposition 3.1 via the LLC, in view of the results recalled in Section 2.2. For this we denote by σ the Galois conjugation of E/F and its extension to $\text{GL}_n(E)$, and set $\tau^\sigma = \tau \circ \sigma$ for any representation of $\text{GL}_n(E)$.

Corollary 3.1.

1. Let τ be an irreducible representation of $\text{GL}_n(E)$ such that $\text{AI}_E^F(\tau)$ is generic (for example τ generic unitary). If τ is either θ_E-distinguished or $1_{E/F}$-distinguished, then $\text{AI}_E^F(\tau)$ is θ_F-distinguished, whereas if τ is either ψ_E-distinguished or $\eta_{E/F}$-distinguished, then $\text{AI}_E^F(\tau)$ is ψ_F-distinguished.

2. Conversely if τ is a discrete series representation of $\text{GL}_n(E)$.
 (a) Suppose that $\text{AI}_E^F(\tau)$ is ψ_F-distinguished:
 i. if $\text{AI}_E^F(\tau)$ is a discrete series, i.e. if $\tau^\sigma \not\equiv \tau$, then either τ is ψ_E-distinguished or $\eta_{E/F}$-distinguished, but not both together,
 ii. if $\text{AI}_E^F(\tau)$ is not a discrete series, i.e. $\tau^\sigma \equiv \tau$, then τ is both ψ_E-distinguished and $\eta_{E/F}$-distinguished.

 (b) Suppose that $\text{AI}_E^F(\tau)$ is θ_F-distinguished:
 i. if $\text{AI}_E^F(\tau)$ is a discrete series, i.e. $\tau^\sigma \not\equiv \tau$, then either τ is θ_E-distinguished or $1_{E/F}$-distinguished, but not both together,
 ii. if $\text{AI}_E^F(\tau)$ is not a discrete series, i.e. $\tau^\sigma \equiv \tau$, then τ is both θ_E-distinguished and $1_{E/F}$-distinguished.

3. Let π be an irreducible representation of $\text{GL}_n(F)$ such that $\text{BC}_E^F(\pi)$ is generic (for example π generic unitary). If π is θ_F-distinguished, then $\text{BC}_E^F(\pi)$ is θ_E-distinguished and $1_{E/F}$-distinguished, whereas if π is ψ_F-distinguished, then $\text{BC}_E^F(\pi)$ is ψ_E-distinguished and $\eta_{E/F}$-distinguished.

4. Conversely suppose that π is a discrete series. If $\text{BC}_E^F(\pi)$ is θ_E-distinguished and $1_{E/F}$-distinguished, then π is θ_F-distinguished, whereas if $\text{BC}_E^F(\pi)$ is ψ_E-distinguished and $\eta_{E/F}$-distinguished, then π is ψ_F-distinguished.

4 Parity of the Artin conductor of self-dual representations

In this section F is again a non Archimedean local field. First, using [GGPT12, Proposition 5.2] (which is itself a quick but non trivial consequence of a difficult result of Deligne [Del76] on root numbers of orthogonal representations), we quickly recover in odd residual characteristic from Proposition 3.1 the following result due to Serre [Ser71] (the result in question also holds in even residual characteristic by [Ser71]). In other words we show that the result of [Del76] implies that of [Ser71] for non Archimedean local fields of odd residual characteristic.

Corollary 4.1 (of Proposition 3.1 [Ser71]). Let ϕ be an orthogonal representation of W'_E. We have the following congruence of Artin conductors: $a(\phi) = a(\text{det}(\phi))[2]$.
Proof. As we said the result is true for F of any residual characteristic, and we recover it in this proof for F of residual characteristic different from 2. Let E be the unramified quadratic extension of F, and take ψ a character of F of conductor zero. We have according to Section 2.3 Points 6 and 7

$$\epsilon(1/2, \text{Res}_{W_E}^F(\phi), \psi_E) = \epsilon(1/2, \phi, \psi)\epsilon(1/2, \eta_{E/F} \otimes \phi, \psi).$$

(2)

Now denoting by q the residual cardinality of F, let u be an element of order $q^2 - 1$ in E^*, so that $\delta := u^{(q+1)/2}$ does not belong to F but $\Delta := \delta^2$ belongs to F. Note that the image of Δ generates $O_F^*/1 + P_F$. Then $\epsilon(1/2, \text{Res}_{W_E}^F(\phi), \psi_E^{-1}) = 1$ by Proposition \[Xue21\], \[Sé20\], \[SX20\] and Section 2.3 Point 5, hence

$$\epsilon(1/2, \text{Res}_{W_E}^F(\phi), \psi_E) = \det(\text{Res}_{W_E}^F(\phi))(\delta) = \det(\phi)(N_{E/F}(\delta)) = \det(\phi)(-\Delta)$$

thanks to Section 2.3 Point 2. Now observe that $\det(\phi)$ is a quadratic as ψ is self-dual, but because q is odd it is trivial on $1 + P_F$, hence it has conductor 0 or 1, and it is of conductor zero if and only if $\det(\phi)(\Delta) = 1$, hence $\det(\phi)(\Delta) = (-1)^{a(\det(\phi))}$, so

$$\epsilon(1/2, \text{Res}_{W_E}^F(\phi), \psi_E) = (-1)^{a(\det(\phi))}\det(\phi)(-1).$$

Now $\epsilon(1/2, \eta_{E/F} \otimes \phi, \psi) = (-1)^{\epsilon(\phi)}\epsilon(1/2, \phi, \psi)$ thanks to Section 2.3 Point 1 hence Section 2.3 Point 3 implies the following:

$$\epsilon(1/2, \phi, \psi)\epsilon(1/2, \eta_{E/F} \otimes \phi, \psi) = (-1)^{\epsilon(\phi)}\epsilon(1/2, \phi, \psi)^2 = (-1)^{\epsilon(\phi)}\det(\phi)(-1).$$

The result now follows from Equation (2). \[\square\]

One can legitimately ask about the parity of the Artin conductor of symplectic representations of W_F. The answer seems much more complicated, and one way to address it is via the LLC, using the so-called Prasad and Takloo-Bighash conjecture, which is now a theorem when F has characteristic zero and residual characteristic different from 2 (\[Xue21\], \[Sé20\], \[Su21\], \[SX20\]). To this end we recall that for E/F a separable quadratic extension, then the matrix algebra $\mathcal{M}_n(E)$ embeds uniquely up to $GL_{2n}(F)$-conjugacy into $\mathcal{M}_{2n}(F)$ as an F-subalgebra by the Skolem-Noether theorem. We fix such an embedding, which in turn gives rise to an embedding of $GL_n(E)$ into $GL_{2n}(F)$. We then say that an irreducible representation τ of $GL_{2n}(F)$ is $1^{E/F}$-distinguished if and only if $\text{Hom}_{\mathcal{M}_n}(\tau, \pi) \neq \{0\}$. We recall the following theorem, which is a consequence of one part of the Prasad and Takloo-Bighash conjecture.

Theorem 4.1 (\[Xue21\], \[Sé20\], \[SX20\]). Suppose that F has characteristic zero and residual characteristic different from 2. If ϕ is an irreducible symplectic representation of W_F of dimension $2n$, then

$$\epsilon(1/2, \phi \otimes \text{Ind}_{W_E}^F(1)) = \eta_{E/F}(-1)^n$$

if LLC(ϕ) is $1^{E/F}$-distinguished and

$$\epsilon(1/2, \phi \otimes \text{Ind}_{W_E}^F(1)) = -\eta_{E/F}(-1)^n$$

otherwise.

Remark 4.1. In the statement above, as the determinant of a symplectic representation is equal to 1, we suppressed the dependence of the root number $\epsilon(1/2, \phi \otimes \text{Ind}_{W_E}^F(1), \psi)$ on the non-trivial additive character ψ of F.

9
As an immediate corollary we obtain the following result on the parity of Artin conductors of symplectic representations.

Corollary 4.2. Suppose that F has characteristic zero and residual characteristic different from 2, denote by E the unramified quadratic extension of F, and let ϕ be an irreducible symplectic representation of W'_F. Then $a(\phi)$ is even if and only if $\text{LLC}(\phi)$ is $1^E/F$-distinguished.

Proof. It easily follows, along the lines of the proof of Corollary 4.1, from Theorem 4.1, noting that $\eta_{E/F}(-1) = 1$.

Remark 4.2. A general symplectic representation ϕ of W'_F being a direct sum of the form $\bigoplus_{i=1}^r \phi_i \oplus \bigoplus_{j=1}^s (\phi_j' \oplus \phi_j'^\vee)$ for ϕ_i irreducible symplectic and ϕ_j' irreducible, we deduce the parity of $a(\phi)$ from Corollary 4.2 and such a decomposition. Namely, by Corollary 4.1 $a(\phi'_i \oplus \phi'^i_j) \equiv 0[2]$. Hence setting $\epsilon_i \in \{\pm 1\}$ being equal to 1 if and only if $\text{LLC}(\phi_i)$ is $1^E/F$-distinguished, we deduce by additivity of the Artin conductor that $(-1)^{a(\phi)} = \prod_{i=1}^r \epsilon_i$.

Remark 4.3. Looking at it from another angle, one sees that a symplectic discrete series representation of $\text{GL}_{2n}(F)$ is $1^E/F$-distinguished (E/F unramified) if and only if it has even conductor.

References

[AKM*21] U. K. Anandavardhanan, R. Kurinczuk, N. Matringe, V. Sécherre, and S. Stevens. Galois self-dual cuspidal types and Asai local factors. *J. Eur. Math. Soc. (JEMS)*, 23(9):3129–3191, 2021.

[AKT04] U. K. Anandavardhanan, Anthony C. Kable, and R. Tandon. Distinguished representations and poles of twisted tensor L-functions. *Proc. Amer. Math. Soc.*, 132(10):2875–2883, 2004.

[AR05] U. K. Anandavardhanan and C. S. Rajan. Distinguished representations, base change, and reducibility for unitary groups. *Int. Math. Res. Not.*, (14):841–854, 2005.

[BH06] Colin J. Bushnell and Guy Henniart. *The local Langlands conjecture for GL(2)*, volume 335 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 2006.

[CSST09] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli. Clifford theory and applications. volume 156, pages 29–43. 2009. Functional analysis.

[Del76] Pierre Deligne. Les constantes locales de l’équation fonctionnelle de la fonction L d’Artin d’une représentation orthogonale. *Invent. Math.*, 35:299–316, 1976.

[FQ73] A. Fröhlich and J. Queyrut. On the functional equation of the Artin L-function for characters of real representations. *Invent. Math.*, 20:125–138, 1973.

[GGP12] Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad. Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups. Number 346, pages 1–109. 2012. Sur les conjectures de Gross et Prasad. I.

[GR10] Benedict H. Gross and Mark Reeder. Arithmetic invariants of discrete Langlands parameters. *Duke Math. J.*, 154(3):431–508, 2010.
[Hen00] Guy Henniart. Une preuve simple des conjectures de Langlands pour $GL(n)$ sur un corps p-adique. *Invent. Math.*, 139(2):439–455, 2000.

[Hen10] Guy Henniart. Correspondance de Langlands et fonctions L des carrés extérieur et symétrique. *Int. Math. Res. Not. IMRN*, (4):633–673, 2010.

[HT02] Michael Harris and Richard Taylor. Regular models of certain Shimura varieties. *Asian J. Math.*, 6(1):61–94, 2002.

[Jo20] Yeongseong Jo. Derivatives and exceptional poles of the local exterior square L-function for GL_m. *Math. Z.*, 294(3-4):1687–1725, 2020.

[Kab04] Anthony C. Kable. Asai L-functions and Jacquet’s conjecture. *Amer. J. Math.*, 126(4):789–820, 2004.

[Kap17] Eyal Kaplan. The characterization of theta-distinguished representations of $GL(n)$. *Israel J. Math.*, 222(2):551–598, 2017.

[KR12] Pramod Kumar Kewat and Ravi Raghunathan. On the local and global exterior square L-functions of GL_n. *Math. Res. Lett.*, 19(4):785–804, 2012.

[LRS93] G. Laumon, M. Rapoport, and U. Stuhler. D-elliptic sheaves and the Langlands correspondence. *Invent. Math.*, 113(2):217–338, 1993.

[Mat11] Nadir Matringe. Distinguished generic representations of $GL(n)$ over p-adic fields. *Int. Math. Res. Not. IMRN*, 2011:1, 2011.

[Mat17] Nadir Matringe. Shalika periods and parabolic induction for $GL(n)$ over a non-archimedean local field. *Bull. Lond. Math. Soc.*, 49(3):417–427, 2017.

[Moy86] Allen Moy. Local constants and the tame Langlands correspondence. *Amer. J. Math.*, 108(4):863–930, 1986.

[MS20] Arnab Mitra and Eitan Sayag. Models of representations and Langlands functoriality. *Canad. J. Math.*, 72(3):676–707, 2020.

[Ser71] Jean-Pierre Serre. Conducteurs d’Artin des caractères réels. *Invent. Math.*, 14:173–183, 1971.

[Suz21] Miyu Suzuki. Classification of standard modules with linear periods. *J. Number Theory*, 218:302–310, 2021.

[SX20] Miyu Suzuki and Hang Xue. Linear intertwining periods and epsilon dichotomy for linear models. *Preprint*, 2020.

[Sé20] Vincent Sécherre. Représentations cuspidales de $gl(r,d)$ distinguées par une involution intérieure. *Preprint*, 2020.

[Tat79] J. Tate. Number theoretic background. In *Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2*, Proc. Sympos. Pure Math., XXXIII, pages 3–26. Amer. Math. Soc., Providence, R.I., 1979.

[Wei74] André Weil. *Basic number theory*. Springer-Verlag, New York-Berlin, third edition, 1974. Die Grundlehren der Mathematischen Wissenschaften, Band 144.
[Xue21] Hang Xue. Epsilon dichotomy for linear models. *Algebra Number Theory*, 15(1):173–215, 2021.

[Yam17] Shunsuke Yamana. Local symmetric square L-factors of representations of general linear groups. *Pacific J. Math.*, 286(1):215–256, 2017.

[Zel80] A. V. Zelevinsky. Induced representations of reductive p-adic groups. II. On irreducible representations of $GL(n)$. *Ann. Sci. École Norm. Sup. (4)*, 13(2):165–210, 1980.