In the present paper we describe the distribution of brachiopods in the proposed Toarcian GSSP (Global Boundary Stratotype Section and Point) at Peniche. We differentiated four assemblages in the stratigraphic interval from the upper Emaciatum Zone of the Pliensbachian to the Levisoni Zone of the Toarcian. Assemblage 1 clearly presents Northwestern European affinities, with many species that are also present in Southern England. In the last levels of the Pliensbachian and in the Mirabile Subzone (the first level of the Toarcian), Assemblage 2 contains taxa that still present Northwestern European affinities, but with a more restricted, even endemic, distribution. The majority of the species in these levels are known from the Iberian Range in Spain and other neighboring basins. An important faunal change takes place in the Semicelatum Subzone, coinciding with the base of the Cabo Carvoeiro Formation, giving rise to Assemblage 3. In this assemblage we observed a clear decrease in the size of the specimens, coinciding with the establishment of the “Koninckella Fauna”; this fauna is found in several localities in both Northwestern European and Mediterranean areas where the paleoenvironment is relatively deep or poorly oxygenated. Brachiopods disappear in Peniche just above the Polymorphum – Levisoni zonal boundary, as has been observed in several other localities in Western Tethys. Their renewal is marked by the presence of Soaresirhychia bouchardi several meters above the extinction level, constituting Assemblage 4.

Introduction

The GSSP for the base of the Toarcian Stage has been proposed at Ponta do Trovão in the Peniche section (Lusitanian Basin, Portugal, Fig. 1) (e.g. Elmi, 2006; Rocha, 2007; Rocha et al., 2013). Stratigraphically, it comprises the upper part of the Lemedele Formation (Fm.) and the lower part of the Cabo Carvoeiro Fm., generally characterised by marl-limestone alternations, with an increase in siliciclastic sediments in the Levisoni Zone. In this sector of the Lusitanian Basin, the Pliensbachian-Toarcian boundary is recorded in the uppermost part of the Lemedele Fm., included in a continuous succession from the Sinemurian to the Aalenian (e.g. Mouterde, 1955; Duarte and Soares, 2002; Duarte, 2007; Duarte et al., 2010) (Figs. 1 and 2).

Brachiopods are frequent in the Peniche section, which has been referred to and described by several authors since the XIX century (Choffat, 1880, 1947; Alméras et al., 1988, 1995; Alméras, 1996) but never described in detail. Exhaustive sampling in the last few years has enabled identification of 25 species belonging to four orders of brachiopods in this section, ranging from the Emaciatum Zone (Elisa Subzone) of the Pliensbachian to the Levisoni Zone of the Toarcian (Fig. 2). The aim of this paper involves describing the brachiopod assemblages recorded in Peniche and discussing their paleobiogeographic affinities in order to assist in the correlation of the GSSP with other sections containing brachiopods. The detailed systematic paleontology of the brachiopods from this and other sections of the Lusitanian Basin will be treated separately in a forthcoming paper.

Brachiopod assemblages

Four brachiopod assemblages have been distinguished in the relevant interval of the Peniche section. Their stratigraphic distribution is shown in Fig. 2, and some representative specimens are illustrated in Fig. 3:

1 The levels with Tauromeniceras elisa (Fucini) contain the following species: Liospiriferina cf. rostrata (Schlotheim),...
Liospiriferina aff. nicklesi (Corroy), Prionorhynchia serrata (Sowerby), Gibbirhynchia northamptonensis (Davidson) and Lobothyris punctata (Sowerby). In the levels with Emaciaticeras-Canavaria-Taumomeniceras sp. var., L. cf. rostrata and L. aff. nicklesi persist, accompanied by the appearance of Quadratirhynchia quadrata Buckman, Homoeorhynchia acuta (Sowerby), Lobothyris subpunctata (Davidson) and Zeilleria quadrifida (Lamarck). All these taxa have been grouped in Assemblage 1.

In the levels immediately below the Pliensbachian–Toarcian boundary and within the Mirabile Subzone, several species presenting a more restricted geographic distribution appear, such as Liospiriferina cf. falloti (Corroy), Cisnerospira n. sp., Gibbirhynchia aff. reyi Alméras and Fauré, Gibbirhynchia cantabrica García Joral and Goy, Lobothyris edwardsi (Davidson), Lobothyris cf. arcta (Dubar) and Zeilleria culeiformis (Rollier). Assemblage 2 is defined by these taxa.

The most significant renewal episode takes place at the base of the Semicelatum Subzone, coinciding with the contact between the Lemede and the Cabo Carvoeiro formations (Duarte and Soares, 2002; Duarte, 2007). The response of the brachiopod fauna to this change involves a marked decrease in the size of the taxa. Spiriferinids, for example, are all minute, and it is difficult to ascertain whether they are miniaturized specimens of morphologically similar taxa known in neighboring basins, such as Liospiriferina falloti (Corroy), or different species altogether. Assemblage 3 comprises Liospiriferina subquadrata (Seguenza), Aulacothyris n. sp., Cirpa fallax (Deslongchamps), Nannirhynchia pygmaea (Morris), Koninckella liasina (Bouchard) and Pseudokingena deslongchampsi (Davidson), the latter three being typical components of the so-called “Couches à Leptaena” (Choffat, 1880) or “Koninckella Fauna” (Alméras et al., 1988; Alméras and Elmi, 1993; Vörös, 2002, among others). Several taxa from Assemblage 2 coexist with those of Assemblage 3, mostly in the lower part of the Semicelatum Subzone.

Diversity becomes very low at the top of the Semicelatum Subzone and the brachiopod record ceases very close to or just above the Polymorphum – Levisoni zonal boundary, as observed in other neighboring localities (García Joral et al., 2011; Comas-Rengifo et al., 2013). Their reappearance is marked by the scant record of Soaresiriynchia bouchardi (Davidson), several meters above the Polymorphum – Levisoni boundary, defining Assemblage 4. From these levels upwards, brachiopods remain extremely scarce until the uppermost Bifrons Zone is reached.

Paleobiogeographic affinities and correlation

The presence in other basins of the species recorded in Peniche is shown in Fig. 4. This figure omits the species classified as affinis or confer and only includes the taxa classified with certainty. This also entails a critical review of some attributions. For example, K. liasina has been cited in Swabia by Rau (1905), but the figured specimens (plate I, figures 26-54) have a rounded outline that is very different from the typical quadrangular one of this species. It is likely another older species. The affinities of the studied fauna have been related with the paleobiogeographic framework of the Western Tethys summarized for this time interval by Manceñido (2002).

The brachiopods of Assemblage 1 clearly present NW European affinities. All the recorded species are known in England, and many are typical of the European or North African basins outside the Alpine Belt. On the contrary, only scarce records of L. punctata or Z. quadrifida are quoted in the well-known assemblages of the Mediterranean Province from this age (cf. Manceñido, 1993; Alméras et al., 2007; Vörös, 2009; Baeza-Carratalá, 2013, among others). There is a noteworthy presence in Peniche of P. serrata, a species only known previously from Southern England but belonging to a typical Mediterranean genus occurring only occasionally in the NW European Province. P. serrata has been cited in Sicily by Di Stefano (1891), but these forms likely correspond to Prionorhynchia quinqueaplicata.
Figure 2. Stratigraphic distributions of the brachiopods recorded at Ponta do Trovão, Peniche section. Blue: Assemblage 1; red: Assemblage 2; green: Assemblage 3; orange: Assemblage 4. MI= Mirabile Subzone. Stratigraphic log adapted from Duarte (1995).
Assemblage 1 from Peniche is similar to the Assemblage 1 recorded in Northern and Eastern Spain by García Joral et al. (2011) and, to a lesser extent, to the F6 assemblage recorded in Algeria by Alméras et al. (2007). The main particularity of the Peniche assemblage involves the presence of *P. serrata*, *G. northamptonensis* and *H. acuta*, species unknown in the Spanish or North African record.

Assemblage 2 also shows NW-European affinities at the generic level, but with a more restricted or even endemic distribution at species level; none of the species classified with certainty been found in the African basins. This is the same as observed in Assemblage 2 of García Joral et al. (2011), which contains three species in common with Peniche (*G. cantabrica*, *L. edwardsi* and *Z. culeiformis*). Similar to the above mentioned case of *Prionorhynchia serrata*, *Cisnerospira* n. sp. exhibits the particularity of belonging to a genus known in the Spanish or North African record.

The brachiopod record ceases in the uppermost *Polymorphum Zone*. The next recorded assemblage consists of a single species, *S. bouchardi*, appearing above the extinction level after a long stratigraphic interval without brachiopods. Similar monospecific assemblages of *S. bouchardi* are known in many other basins in the Western Tethys, both in Northwestern European and Mediterranean areas (see García Joral et al., 2011 and Baeza-Carratalá et al., 2011 for a review). The wide distribution and the morphological features of *S. bouchardi* is well illustrated by its distribution within the Lusitanian Basin, where Assemblage 3 is associated with the more western, deeper localities (cf. Alméras et al., 1988; Alméras and Elmi, 1993).
of *S. bouchardi* ("juvenile" shape, high variability and normally dense populations) correspond to an opportunistic species that colonizes environments without brachiopods following an extinction event (García Joral and Goy, 2000; Gahr, 2005; García Joral et al., 2011). As explained for Assemblage 3, this behavior oversteps provincial boundaries, thus enabling wide correlation.

Conclusions

Brachiopods are abundant and diverse in the proposed GSSP section of Peniche. Below the Pliensbachian – Toarcian boundary the recorded taxa are very similar to the Southern England Faunas and enable correlation with the basins of Western Europe and North Africa outside the Alpine Belt. In the first level of the Toarcian (Mirable Subzone), taxa are more restricted in their paleobiographical distribution, allowing correlation with several neighboring European basins. At the base of the Semelcalatum Subzone, an important environmental change takes place, leading to the establishment of the so-called “Konincckela Fauna”. Correlation based on this brachiopod assemblage does not depend upon provincialism as in the previous assemblages, but rather on the presence of specific environmental conditions recognized in certain localities in the basins both of the Northwestern European and the Mediterranean Provinces. Brachiopods cease to appear close to the Polymerom–Lesioni zonal boundary, as observed in many other Western Tethys basins. The reappearance of the group takes place well above this boundary and is marked by the presence of the widely distributed species *Soaresthirynchia bouchardi*.

Acknowledgements

This research was funded by project PTDC/CTE-GIX/098968/2008 (FCT-Portugal and COMPETE-FEDER) and CGL2011-25894, CGL2011-23947 (Ministry of Science and Innovation, Government of Spain). We thank M.O. Manceño and A. Dulai for their useful comments that improved the final version of this manuscript.

References

Ager, D.V., 1956-67, A monograph of the British Liassic Rhychonellidae: Part I. (1956). Palaeontographical Society Monography, v. 110, pp. 1-50; Part II (1958) Palaeontographical Society Monography, v. 112, pp. 51-84; Part III. (1962) Palaeontographical Society Monography, v. 116, pp. 85-136; Part IV (1967) Palaeontographical Society Monography, v. 121, pp. 137-172.

Ager, D.V., 1990, British Liassic Terebratulidae (Brachiopoda). Part I: Monographs of the Palaeontographical Society, v. 582, no.143, pp. 1-39.

Alméras, Y., 1996, The genus *Pseudogibbirhynchia* (Brachiopoda, Rhychonellacea) from the Toarcian of Portugal, in Copper P., and Jin C., eds, Brachiopods: Proceedings of the 4th International Brachiopod Congress. Rotterdam, A.A. Balkema, pp. 7-12.

Alméras, Y., Becaud, M., and Cougnon, M., 2010, Brachiopodes liasiques de la bordure sud du Massif Armoricain: Bulletin de la Société des Sciences Naturelles de l’Ouest de la France. Supplément hors-série, pp. 1-131.

Alméras, Y., Boullier, A. and Laurin, B., 1997, Brachiopodes, in Cariou, E., and Hantzpergue, P., eds, Biostratigraphie du Jurassique ouest-européen et méditerranéen: zonations parallèles et distribution des invertébrés et microfossiles: Bulletin des Centres de Recherches Exploration-Production ELF-Aquitaine, v. 17, pp. 169-195.

Alméras, Y., and Elmi, S., 1987, Évolution des peuplements de brachiopodes en fonction de l’environnement dans le Lias Ardéchois: Cahiers de l’Institut Catholique de Lyon, Sciences, v. 1, pp. 21-56.

Alméras, Y., and Elmi, S., 1993, Palaeoecology, physiography, palaeoenvironments and brachiopod communities. Example of the Liassic brachiopods in the Western Tethys: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 100, pp. 95-108.

Alméras, Y., Elmi, S., and Fauré, P., 2007, Les Brachiopodes Liassiques d’Algérie Occidentale: Documents des Laboratoires de Géologie Lyon, v. 163, pp. 3-241.

Alméras, Y., Elmi, S., Mouterde, R., Ruget, C., and Rocha, R., 1988, Évolution Paléogéographique du Toarcien et influence sur les peuplements, in Rocha, R.B. and Soares, A.F., eds, International Symposium on Jurassic Stratigraphy 2nd, Lisboa, pp. 687-698.

Alméras, Y., and Fauré, P., 2000, Les Brachiopodes liassiques des Pyrénées. Paléontologie, Biostratigraphie, Paléobiogéographie et
Alméras, Y., Mouterde, R., Elmi, S., and Rocha, R., 1995, Le genre *Nanninhynchia* (Brachiopoda, Rhynchonellacea, Norellidae) dans le Toarcien portugais: Palaeontographica Abteilunghen A, v.237, pp. 237-38.

Baeza-Carratalá, J.F., García Joral, F., and Tent-Manclús, J.E., 2011, Los brinqueidos del Toarciense Inferior (Jurásico) en el área de Rabaçal-Condeixa (Portugal): distribución estratigráfica y paleobiogeografía: Comunicaciones Geológicas, v.10 especial 1, pp. 37-42.

Choffat, P., 1880, Étude stratigraphique et paléontologique des terrains jurassiques du Portugal. Ière livr.: Le Lias et le Dogger au Nord du Tage: Mémoire du Service des Travaux Géologiques de Portugal, pp. 1-72.

Choffat, P., 1947, Description de la faune jurassique du Portugal. Brachiopodes: (Ouvrage posthume): Memórias Services Géologiques du Portugal, pp. 1-46.

Comas-Rengifo, M.J., Duarte, L.V., García Joral, F., and Goy, A., 2013, Los brinqueidos del Toarciense Inferior (Jurásico) en el área de Rabaçal-Condeixa (Portugal): distribución estratigráfica y paleobiogeografía: Comunicaciones Geológicas, v. 10 especial 1, pp. 37-42.

Davidson, T., 1852-1884, British Fossil Brachiopoda. Vol. 1, part 3 (1851). Oolitic and Liassic species: Palaeontographical Society (Monographs), v. 4, pp. 1-64; Vol. 4, part 2 (1876-78). Supplement to the British Jurassic and Triassic Brachiopoda: Palaeontographical Society (Monographs), pp. 30, pp. 73-144 (1876), pp. 145-242 (1878); Vol. 5, part 3 (1884). Appendix to the Supplements and General Summary: Palaeontographical Society (Monographs), v. 38, pp. 243-399.

Deslongchamps, E.E., 1859, Mémoire sur la Couche à Leptaena du Lias: Bulletin de la Société Linnéenne de Normandie, v. 3, pp. 132-195.

Di Stefano, G., 1891, Il Lias medio del Monte San Giuliano (Erice) presso Trapani: Atti della Accademia di Scienze Naturali in Catania, v. 3, pp. 121-270.

Duarte, L. V., 1995, O Toarciano da Bacia Lusitânia. Estratigrafia e Evolução Sedimentogenética. Tese de Doutoramento (não publicada), Centro de Geoécologies, Departamento de Ciências da Terra, Universidade de Coimbra, 349p. + 14 ests.

Duarte, L. V., 2007, Litoestratigraphy, sequence stratigraphy and depositional setting of the Piensbachian and Toarcian series in the Lusitanian Basin (Portugal), in Rocha R.B., ed., The Peniche section (Portugal). Contributions to the definition of the Toarcian GSSP: International Subcommission on Jurassic Stratigraphy, pp. 17-23.

Duarte, L. V., Silva, R.L., Oliveira, L.C.V., Comas-Rengifo, M.J., Silva, F., 2010, Organic-rich facies in the Sinemurian and Pliensbachian of the Lusitanian Basin, Portugal: Total Organic Carbon distribution and relation to transgressive-regressive facies cycles: Geologica Acta, v.8, pp. 325-340.

Duarte, L.V., and Soares, A.F., 2002, Litotestratigrafia das séries margocáricas do Jurássico inferior da Bacia Lusitânia (Portugal): Comunicações do Instituto Geológico e Mineiro, v. 89, pp. 135-154.

Elmi, S., 2006. Pliensbachian/Toarcian boundary: the proposed GSSP of Peniche (Portugal): Volumina Jurassica, v.4, pp. 5-16.

Gahr, M., 2005, Response of Lower Toarcian (Lower Jurassic) macrobenthos of the Iberian Peninsula to sea level changes and mass extinction: Journal of Iberian Geology, v. 31, pp. 197-215.

García Joral, F., Gómez, J. J., and Goy, A., 2011, Mass extinction and recovery of the Early Toarcian (Early Jurassic) brachiopods linked to climate change in northern and central Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 302, pp. 367-380.

García Joral, F., and Goy, A., 2000, Stratigraphic distribution of Toarcian brachiopods from the Iberian Range (Spain) and its relation to depositional sequences, in Hall, R.L., and Smith, P.L., eds, Advances in Jurassic Research 2000. Proceedings of the Fifth International Symposium on the Jurassic System: Georesearch Forum, v. 6, pp. 381-386.

García Joral, F., and Goy, A., 2009, Toarcian (Lower Jurassic) brachiopods in Asturias (Northern Spain): stratigraphic distribution, critical events and palaeobiogeography: Geobios, v. 42, pp. 255-264.

Graziano, R., Buono, G. and Tedde Ruggiero, E., 2006. Lower Toarcian (Jurassic) brachiopod-rich carbonate facies of the Gran Sasso range (central Apennines, Italy): Bolletino della Società Paleontologica Italiana, 45(1): 61-74. Modena.

Manceñido, M.O., 1993. Early Jurassic Brachiopods from Greece: a review, in Pályi, J., and Vörös, A., eds, Mesozoic Brachiopods of Alpine Europe: Hungarian Geological Society, pp. 79-100, Budapest.

Manceñido, M.O., 2002. Paleobiogeography of Mesozoic brachiopod faunas from Andean-Patagonian areas in a global context, In: Monegatti, P., Cecca, F. & Raffi, S., eds., Proceedings of the International Conference “Paleobiogeography & Palaeocology 2001”. Piacenza & Castell’Arquato 2001. Geobios 35, Mémoire Speciale 24 : 176-192. Lyon.

Mouterde, R., 1955. Le Lias de Peniche: Comunicações dos Serviços Geológicos de Portugal, v. 36, pp. 87-115.

Pozza, G.C., and Bagaglia, A., 2001, A *Koninckella* fauna recorded from the s.s. type-locality of the Marne di M. Serrone Formation (Umbria, Central Italy, Northern Apennine). 1 Part: Revue de Paléobiologie, v. 20, no. 1, pp. 19-29.

Quenstedt, F.A., 1868-1871, Petrefactenkunde Deutschlands, 2, Brachiopoden, pp. 1-748. Tubingen.

Rau, K., 1905, Die Brachiopoden des mittleren Lias Schwabens mit Bezug auf die Schichten der Liasunterkohle des Vorderen Rinns in der Schichten der Liasunterkohle des Vorderen Rinns: (Brachiopoda, Rhynchonellacea, Norellidae) dans le Toarcien portugais: Palaeontographica Abteilunghen A, v. 237, pp. 237-38.

Vörös, A., 2002, Víctimas de the Early Toarcian anoxic event: the radiation of Jurassic Koninckinidae (Brachiopoda) from Andean-Patagonian areas in a global context, In: Monegatti, P., Cecca, F. & Raffi, S., eds., Proceedings of the International Conference “Paleobiogeography & Palaeocology 2001”. Piacenza & Castell’Arquato 2001. Geobios 35, Mémoire Speciale 24 : 176-192. Lyon.

Rocha R.B., ed., The Peniche section (Portugal).

Rocha, R. B. (Coord.), 2007, The Peniche section (Portugal). Contributions to the definition of the Toarcian Global Stratotype Section and Point (GSSP). Intern. Subcomm. Jurassic Stratigraphy, Lisboa, 66 p.

Rocha, R. B., Duarte, L. V., Matioli, E., Elmi, S., Mouterde, R., Cabral, M. C., Comas-Rengifo, M. J., Gómez, J. J., Goy, A., Hesselbo, S. P., Jenkyns, H. C., Littler, K., Mailiot, S., Oliveira, L. C. V., Osete, M. L., Perilli, N., Pinto, S., Pittet, B., Ruget, CH. and Suan, G., 2013 - Formal proposal for the Global Boundary Stratotype Section and Point (GSSP) of the Toarcian Stage, at the base of the Pormorphum Zone in the Peniche section (Portugal). International Subcommission on Jurassic Stratigraphy, Tuybingen.

Seguenza, G. 1885, Le Spiriferina dei vari Piani del Lias messinese: Bolletino della Società Geologica Italiana, v. 4, pp. 377-497.

Vörös, A., 2003, Early Jurassic koninckinids (Athyridida, Brachiopoda) from Tivoli near Rome, Italy: Geologica Romana, v. 36, pp. 169-197.

Vörös, A., 2009, The Pliensbachian brachiopods of the Bakony Mountains (Hungary): Geologica Hungarica, series Paleontologica, v. 58, pp. 1-300.
María José Comas-Rengifo is Full Professor of Palaeontology at the University Complutense of Madrid. She teaches Invertebrate Palaeontology at the Paleontology Department of the Faculty of Geological Sciences. She was Vice-dean of Research and Postgraduate and Doctorate studies of Faculty of Geological Sciences and is currently Director of the Summer Courses of the Complutense University of Madrid. Her research has concentrated on ammonite and brachiopod taxonomy, biostratigraphy and biochronology of the Sinemurian and Pliensbachian.

Fernando García Joral obtained his PhD in Geology in 1986. He specialised on Jurassic Brachiopods and has published numerous scientific publications on this subject, mainly about systematics, paleobiogeography and evolution of Lower and Middle Jurassic brachiopods of Western Tethys. He is currently the Head of the Department of Palaeontology of the Complutense University of Madrid (Spain).

Luís V. Duarte is Associate Professor at the University of Coimbra. The research activity, developed at the MARE - Marine and Environmental Sciences Centre, is mainly focused in integrated stratigraphy analysis, sedimentology and geochemistry of marine carbonate deposits. In the last years he coordinated and participated in scientific projects concerning the Jurassic and Cretaceous of several North (Portugal and Spain) and South Atlantic (Brazil and Angola) basins.

Rogério Bordalo da Rocha is Emeritus Professor (since 2011) of Geology of Sedimentary Basins at the Faculty of Sciences and Technology in the New University of Lisbon, Portugal. His research focuses on the stratigraphy of the Triassic and Jurassic formations and the biochronology and palaeobiology of Invertebrates, especially Lower and Middle Jurassic ammonites of the Lusitanian and Algarve basins. He has been the President of the Portuguese Geological Society (2010-2014).