COFINITENESS OF WEAKLY LASKERIAN LOCAL COHOMOLOGY MODULES

MOHARRAM AGHAPOURNAHR∗ AND KAMAL BAHMANPOUR

DEDICATED TO PROFESSOR LEIF MELKERSSON

Abstract. Let I be an ideal of a Noetherian ring R and M be a finitely generated R-module. We introduce the class of extension modules of finitely generated modules by the class of all modules T with $\dim T \leq n$ and we show it by $\text{FD} \leq n$ where $n \geq -1$ is an integer. We prove that for any $\text{FD} \leq 0$ (or minimax) submodule N of $H^t_I(M)$ the R-modules $\text{Hom}_R(R/I, H^j_I(M)/N)$ and $\text{Ext}_R^1(R/I, H^j_I(M)/N)$ are finitely generated, whenever the modules $H^0_I(M)$, $H^1_I(M)$, ..., $H^{t-1}_I(M)$ are $\text{FD} \leq 1$ (or weakly Laskerian). As a consequence, it follows that the associated primes of $H^t_I(M)/N$ are finite. This generalizes the main results of Bahmanpour and Naghipour [4] and [5], Brodmann and Lashgari [7], Khashyarmanesh and Salarian [21] and Hong Quy [18]. We also show that the category $\mathcal{FD}_{\leq 1}(R, I)$ of I-cofinite $\text{FD} \leq 1 R$-modules forms an Abelian subcategory of the category of all R-modules.

1. Introduction

The following conjecture was made by Grothendieck in [15]:

Conjecture: For any ideal I of a Noetherian ring R and any finite R-module M, the module $\text{Hom}_R(R/I, H^j_I(M))$ is finitely generated for all $j \geq 0$.

Here, $H^j_I(M)$ denotes the j^{th} local cohomology module of M with support in I. Although the conjecture is not true in general as was shown by Hartshorne in [16], there are some attempts to show that under some conditions, for some number t, the module $\text{Hom}_R(R/I, H^j_I(M))$ is finite, see [2, Theorem 3.3], [11, Theorem 6.3.9], [13, Theorem 2.1], [4, Theorem 2.6] and [5, Theorem 2.3].

In [16], Hartshorne defined an R-module L to be I-cofinite, if $\text{Supp}(L) \subseteq V(I)$ and $\text{Ext}_R^i(R/I, L)$ is finitely generated module for all i. He asked:

If I is an ideal of R and M is a finitely generated R-module, when is $H^i_I(M)$ I-cofinite for all i ?

Key words and phrases. Local cohomology module, cofinite module, Weakly Laskerian modules.

2000 Mathematics Subject Classification: 13D45, 14B15, 13E05.

∗Corresponding author: e-mail: m-aghapour@araku.ac.ir (Moharram Aghapournahr).
In this direction in section 3 we generalize [2, Theorem 3.3], [4, Theorem 2.6] and [5, Theorem 2.3] to the class of extension modules of finitely generated modules by the class of all modules T with $ \dim T \leq 1$ (FD ≤ 1). Note that the class of weakly Laskerian modules is contained in the class of FD ≤ 1 modules. More precisely, we shall show that:

Theorem 1.1. Let R be a Noetherian ring and I an ideal of R. Let M be a finitely generated R-module and $t \geq 1$ be a positive integer such that the R-modules $H^i_I(M)$ are FD ≤ 1 modules (or weakly Laskerian) for all $i < t$. Then, the following conditions hold:

(i) The R-modules $H^i_I(M)$ are I-cofinite for all $i < t$.

(ii) For all FD ≤ 0 (or minimax) submodule N of $H^t_I(M)$, the R-modules

$$\text{Hom}_R(R/I, H^t_I(M)/N) \text{ and } \text{Ext}^1_R(R/I, H^t_I(M)/N)$$

are finitely generated.

As an immediate consequence we prove the following corollary that is a generalization of Bahmanpour-Naghipour’s results in [4] and also the Delfino-Marley’s result in [10] and Yoshida’s result in [27] for an arbitrary Noetherian ring.

Corollary 1.2. Let R be a Noetherian ring and I an ideal of R. Let M be a finitely generated R-module such that the R-modules $H^i_I(M)$ are FD ≤ 1 (or weakly Laskerian) R-modules for all i. Then,

(i) the R-modules $H^i_I(M)$ are I-cofinite for all i.

(ii) For any $i \geq 0$ and for any FD ≤ 0 (or minimax) submodule N of $H^i_I(M)$, the R-module $H^i_I(M)/N$ is I-cofinite.

Abazari and Bahmanpour in [1] studied cofiniteness of extension functors of cofinite modules as a generalization of Huneke-Koh’s results in [17]. In Corollary 3.8 we generalise the results of Abazari and Bahmanpour.

Hartshorn also posed the following question:

Whether the category $\mathcal{M}(R, I)_{cof}$ of I-cofinite modules forms an Abelian subcategory of the category of all R-modules? That is, if $f : M \to N$ is an R-module homomorphism of I-cofinite modules, are $\ker f$ and $\coker f$ I-cofinite?

Hartshorne proved that if I is a prime ideal of dimension one in a complete regular local ring R, then the answer to his question is yes. On the other hand, in [10], Delfino and Marley extended this result to arbitrary complete local rings. Recently, Kawasaki [20] generalized the Delfino and Marley’s result for an arbitrary ideal I of dimension one in a local ring R. Finally, more recently, Sedghi, Bahmanpour and Naghipour in [6] completely have removed local assumption on R. One of the main results of this section is to prove that the class of I-cofinite FD ≤ 1 modules compose an Abelian category (see Theorem 3.7).

Let R denote a commutative Noetherian ring, and let I be an ideal of R. Throughout this paper, R will always be a commutative Noetherian ring with non-zero identity and I will be an ideal of R. We denote $\{p \in \text{Spec } R : p \supseteq a\}$ by $V(a)$. For any unexplained notation and terminology we refer the reader to [9] and [24].
2. Preliminaries

Yoshizawa in [28, Definition 2.1] defined classes of extension modules of Serre subcategory by another one as below.

Definition 2.1. Let S_1 and S_2 be Serre subcategories of the category of all R-modules. We denote by (S_1, S_2) the class of all R-modules M with some R-modules $S_1 \in S_1$ and $S_2 \in S_2$ such that a sequence $0 \rightarrow S_1 \rightarrow M \rightarrow S_2 \rightarrow 0$ is exact.

We will denote the class of all modules M with $\text{dim} M \le n$ by $D_{\le n}$ and the class of extension modules of finitely generated modules by the class of $D_{\le n}$ modules by $FD_{\le n}$ where $n \ge -1$ is an integer. Note that the class of $FD_{\le -1}$ is the same as finitely generated R-modules. Recall that a module M is a minimax module if there is a finitely generated submodule N of M such that the quotient module M/N is artinian. Thus the class of minimax modules is the class of extension modules of finitely generated modules by the class of Artinian modules. Minimax modules have been studied by Zink in [29] and Zöschinger in [30, 31]. See also [26]. Recall too that an R-module M is called weakly Laskerian if $\text{Ass}(M/N)$ is a finite set for each submodule N of M. The class of weakly Laskerian modules introduced in [14], by Divaani-Aazar and Mafi. Recently, Hung Quy [18], introduced the class of extension modules of finitely generated modules by the class of all modules of finite support and named it FSF modules. By the following theorem over a Noetherian ring R an R-module M is weakly Laskerian if and only if is FSF.

Theorem 2.2. Let R be a Noetherian ring and M a nonzero R-module. The following statements are equivalent:

1. M is a weakly Laskerian module;
2. M is an FSF module.

Proof. See [3, Theorem 3.3]. □

Lemma 2.3. Let R be a Noetherian ring. Then the following conditions hold:

(i) Any finitely generated R-module and any $D_{\le n}$ R-module are $FD_{\le n}$.
(ii) The class of $FD_{\le n-1}$ modules is contained in the class of $FD_{\le n}$ modules for all $n \ge 0$.
(iii) The class of minimax modules is contained in the class of $FD_{\le 0}$ that is the class of extension modules of finitely generated modules by semiar tinian modules.
(iv) The class of weakly Laskerian modules is contained in the class of $FD_{\le 1}$.
(v) The class of $FD_{\le n}$ R-modules forms a Serre subcategory of the category of all R-modules.

Proof. (i), (ii), (iii) are trivial.
(iv) Use Theorem [2, 2].
(v) See [28, Corollary 4.3 or 4.5]. □
Lemma 3.2. Let f be finitely generated. Therefore, in view of Proposition 2.5, the R-module N is \ast-cofinite. Now it follows from the exact sequence (Ext) that $\dim R/N = 0$.

Now it follows from the exact sequence (Ext) that $\dim R/N = 0$.

Proposition 2.5. Let I be an ideal of a Noetherian ring R and M be an $D_{\leq 1}$ module such that $\hom R(R/I, M)$ and $\text{Ext}_1^R(R/I, M)$ are finitely generated.

Proof. See [13, Theorem 2.1] and [12, Theorem A].

3. Cofiniteness of local cohomology

In what follows the next theorem plays an important role.

Theorem 3.1. Let I be an ideal of a Noetherian ring R and M be an $FD_{\leq 1}$ R-module such that $\text{Supp } M \subseteq V(I)$. Then the following statements are equivalent:

(i) M is I-cofinite,

(ii) The R-modules $\hom R(R/I, M)$ and $\text{Ext}_1^R(R/I, M)$ are finitely generated.

Proof. $(i) \Rightarrow (ii)$ is clear. In order to prove $(ii) \Rightarrow (i)$, by Definition there is a finitely generated submodule N of M such that the R-module $\dim (M/N) \leq 1$ and $\text{Supp } M/N \subseteq V(I)$. Also, the exact sequence

$$0 \to N \to M \to M/N \to 0, \quad (*)$$

induces the following exact sequence

$$0 \to \hom R(R/I, N) \to \hom R(R/I, M) \to \hom R(R/I, M/N) \to \text{Ext}_1^R(R/I, N) \to \text{Ext}_1^R(R/I, M) \to \text{Ext}_1^R(R/I, M/N) \to \text{Ext}_2^R(R/I, N).$$

Whence, it follows that the R-modules $\hom R(R/I, M/N)$ and $\text{Ext}_1^R(R/I, M/N)$ are finitely generated. Therefore, in view of Proposition 2.5, the R-module M/N is I-cofinite. Now it follows from the exact sequence $(*)$ that M is I-cofinite.

Lemma 3.2. Let I be an ideal of Noetherian ring R, M a non-zero R-module and $t \in \mathbb{N}_0$. Suppose that the R-module $H^i_I(M)$ is I-cofinite for all $i = 0, ..., t - 1$, and the R-modules $\text{Ext}_1^R(R/I, M)$ and $\text{Ext}_1^{t+1}_R(R/I, M)$ are finitely generated. Then the R-modules $\hom R(R/I, H^i_I(M))$ and $\text{Ext}_1^R(R/I, H^i_I(M))$ are finitely generated.

Proof. See [13, Theorem 2.1] and [12, Theorem A].

Lemma 3.3. Let I be an ideal of a Noetherian ring R and M be an $FD_{\leq 0}$ R-module such that $\text{Supp } M \subseteq V(I)$. Then the following statements are equivalent:

(i) M is I-cofinite,

(ii) The R-module $\hom R(R/I, M)$ is finitely generated.
Proof. The proof is similar to the proof of [25, Proposition 4.3].

We are now ready to state and prove the following main results (Theorem 3.4 and the Corollaries 3.5 and 3.6) which are extension of Bahmanpour-Naghipour’s results in [4] and [5], Brodmann-Lashgari’s result in [7], Khashyarmanesh-Salarian’s result in [21], Hong Quy’s result in [18], and also the Delfno-Marley’s result in [10] and Yoshida’s result in [27] for an arbitrary Noetherian ring.

Theorem 3.4. Let R be a Noetherian ring and I an ideal of R. Let M be a finitely generated R-module and $t \geq 1$ be a positive integer such that the R-modules $H^i_I(M)$ are FD$_{\leq 1}$ R-modules for all $i < t$. Then, the following conditions hold:

(i) The R-modules $H^i_I(M)$ are I-cofinite for all $i < t$.

(ii) For all FD$_{\leq 0}$ (or minimax) submodule N of $H^i_I(M)$, the R-modules

$$\text{Hom}_R(R/I, H^i_I(M)/N)$$

are finitely generated. In particular the set $\text{Ass}_R(H^i_I(M)/N)$ is a finite set.

Proof. (i) We proceed by induction on t. By Lemma 3.2 the case $t = 1$ is obvious since $H^0_I(M)$ is finitely generated. So, let $t > 1$ and the result has been proved for smaller values of t. By the inductive assumption, $H^i_I(M)$ is I-cofinite for $i = 0, 1, ..., t - 2$. Hence by Lemma 3.2 and assumption, $\text{Hom}_R(R/I, H^{t-1}_I(M))$ and $\text{Ext}^1_R(R/I, H^{t-1}_I(M))$ are finitely generated. Therefore by Corollary 3.1, $H^i_I(M)$ is I-cofinite for all $i < t$. This completes the inductive step.

(ii) In view of (i) and lemma 3.2, $\text{Hom}_R(R/I, H^i_I(M))$ and $\text{Ext}^1_R(R/I, H^i_I(M))$ are finitely generated. On the other hand, according to Lemma 3.3 or Melkersson’s result [25, Proposition 4.3], N is I-cofinite. Now, the exact sequence

$$0 \longrightarrow N \longrightarrow H^i_I(M) \longrightarrow H^i_I(M)/N \longrightarrow 0$$

induces the following exact sequence,

$$\text{Hom}_R(R/I, H^i_I(M)) \longrightarrow \text{Hom}_R(R/I, H^i_I(M)/N) \longrightarrow \text{Ext}^1_R(R/I, N) \longrightarrow$$

$$\text{Ext}^1_R(R/I, H^i_I(M)) \longrightarrow \text{Ext}^2_R(R/I, H^i_I(M)/N) \longrightarrow \text{Ext}^2_R(R/I, N).$$

Consequently

$$\text{Hom}_R(R/I, H^i_I(M)/N)$$

are finitely generated, as required. □

Corollary 3.5. Let R be a Noetherian ring and I an ideal of R. Let M be a finitely generated R-module such that the R-modules $H^i_I(M)$ are FD$_{\leq 1}$ (or weakly Laskerian) R-modules for all i. Then, the

(i) The R-modules $H^i_I(M)$ are I-cofinite for all i.

(ii) For any $i \geq 0$ and for any FD$_{\leq 0}$ (or minimax) submodule N of $H^i_I(M)$, the R-module $H^i_I(M)/N$ is I-cofinite.
Proof. (i) Clear.
(ii) In view of (i) the R-module $H^i_I(M)$ is I-cofinite for all i. Hence the R-module $\text{Hom}_R(R/I, N)$ is finitely generated, and so it follows from Lemma 3.3 or [25, Proposition 4.3] that N is I-cofinite. Now, the exact sequence

$$0 \to N \to H^i_I(M) \to H^i_I(M)/N \to 0,$$

implies that the R-module $H^i_I(M)/N$ is I-cofinite. \qed

Corollary 3.6. Let R be a Noetherian ring and I an ideal of R. Let M be a finitely generated R-module and $t \geq 1$ be a positive integer such that the R-modules $H^i_I(M)$ are weakly Laskerian for all $i < t$. Then, the following conditions hold:

(i) The R-modules $H^i_I(M)$ are I-cofinite for all $i < t$.
(ii) For all $\text{FD}_{\leq 0}$ (or minimax) submodule N of $H^t_I(M)$, the R-modules $\text{Hom}_R(R/I, H^t_I(M)/N)$ and $\text{Ext}^1_R(R/I, H^t_I(M)/N)$ are finitely generated. In particular the set $\text{Ass}_R(H^t_I(M)/N)$ is a finite set.

Proof. Use Theorem 2.2 and note that the category of weakly Laskerian modules is contained in the category of $\text{FD}_{\leq 1}$ modules. \qed

One of the main result of this section is to prove that for an arbitrary ideal I of a Noetherian ring R, the Category of I-cofinite $\text{FD}_{\leq 1}$ modules compose an Abelian category.

Theorem 3.7. Let I be an ideal of a Noetherian ring R. Let $\mathcal{F} \mathcal{D}^1(R, I)_{\text{cof}}$ denote the category of I-cofinite $\text{FD}_{\leq 1}$ R-modules. Then $\mathcal{F} \mathcal{D}^1(R, I)_{\text{cof}}$ is an Abelian category.

Proof. Let $M, N \in \mathcal{F} \mathcal{D}^1(R, I)_{\text{cof}}$ and let $f : M \to N$ be an R-homomorphism. It is enough that to show that the R-modules $\ker f$ and $\coker f$ are I-cofinite.

To this end, the exact sequence

$$0 \to \ker f \to M \to \text{im} f \to 0,$$

induces an exact sequence

$$0 \to \text{Hom}_R(R/I, \ker f) \to \text{Hom}_R(R/I, M) \to \text{Hom}_R(R/I, \text{im} f) \to \text{Ext}^1_R(R/I, \ker f) \to \text{Ext}^1_R(R/I, M),$$

that implies the R-modules $\text{Hom}_R(R/I, \ker f)$ and $\text{Ext}^1_R(R/I, \ker f)$ are finitely generated. Therefore it follows from Theorem 3.1 that $\ker f$ is I-cofinite. Now, the assertion follows from the following exact sequences

$$0 \to \ker f \to M \to \text{im} f \to 0,$$

and

$$0 \to \text{im} f \to N \to \coker f \to 0.$$

\qed

The following corollary is a generalization of [1, Theorem 2.7].
Corollary 3.8. Let I be an ideal of a Noetherian ring R. Let M be an FD_1 I-cofinite R-module. Then, the R-modules $\text{Ext}_R^i(N, M)$ and $\text{Tor}_R^i(N, M)$ are I-cofinite and FD_1 modules, for all finitely generated R-modules N and all integers $i \geq 0$.

Proof. Since N is finitely generated it follows that N has a free resolution of finitely generated free modules. Now the assertion follows using Theorem 3.7 and computing the modules $\text{Tor}_R^i(N, M)$ and $\text{Ext}_R^i(N, M)$, by this free resolution. □

Corollary 3.9. Let I be an ideal of a Noetherian ring R, M a non-zero finite R-module such that $\dim M/IM \leq 1$ (e.g., $\dim R/I \leq 1$). Then for each finite R-module N, the R-modules $\text{Ext}_R^i(N, H^j_I(M))$ and $\text{Tor}_R^j(N, H^i_I(M))$ are I-cofinite for all $i \geq 0$ and $j \geq 0$.

Proof. Note that $\dim \text{Supp} H^i_I(M) \leq \dim M/IM \leq 1$ thus it is an FD_1 module for all $i \geq 0$, now use Corollary 3.8. □

Lemma 3.10. Let R be a Noetherian ring, I a proper ideal of R and M a non-zero $\text{D}_{\leq 1}$ and I-cofinite R-module. Then for each non-zero finitely generated R-module N with support in $V(I)$, the R-modules $\text{Ext}_R^i(M, N)$ are finitely generated, for all integers $i \geq 0$.

Proof. See [19, Theorem 2.8]. □

Corollary 3.11. Let R be a Noetherian ring and I be an ideal of R. Let M be an $\text{FD}_{\leq 1}$ and I-cofinite R-module. Then, the R-modules $\text{Ext}_R^i(M, N)$ and $\text{Tor}_R^i(M, N)$ are finitely generated, for all finitely generated R-modules N with $\text{Supp}(N) \subseteq V(I)$ and all integers $i \geq 0$.

Proof. The assertion follows from the definition using Lemma 3.9 and [25, Theorem 2.1]. □

References

[1] R. Abazari, K. Bahmanpour, Cofiniteness of extension functors of cofinite modules, J. Algebra, 330 (2011), 507–516.
[2] J. Asadollahi, K. Khashyarmanesh, Sh. Salarian, A generalization of the cofiniteness problem in local cohomology modules, J. Aust. Math. Soc. 75 (2003), 313–324
[3] K. Bahmanpour, On the category of weakly Laskarian cofinite modules, Preprint.
[4] K. Bahmanpour, R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra, 321 (2009), 1997–2011.
[5] K. Bahmanpour, R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc., 136(2008), 2359-2363.
[6] K. Bahmanpour, R. Naghipour and M. Sedghi, On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc., in press.
[7] M. P. Brodmann, A. Lashgari, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc., 128(10) (2000), 2851–2853.
[8] M. P. Brodmann and R. Y. Sharp: Local cohomology-An algebraic introduction with geometric applications, Cambridge. Univ. Press, 1998.
[9] W. Bruns and J. Herzog, Cohen Macaulay Rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge Univ. Press, Cambridge, UK, 1993.
[10] D. Delfino, T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra, 121(1) (1997), 45–52.
[11] M.T. Dibaei, S. Yassemi, Associated primes of the local cohomology modules. Abelian groups, rings, modules, and homological algebra, 49–56, Chapman and Hall/CRC, 2006.
[12] M. T. Dibaei, S. Yassemi, Finiteness of extension functors of local cohomology modules. Comm. Algebra, 34 (2006), 3097–3101.
[13] M. T. Dibaei, S. Yassemi, Associated primes and cofiniteness of local cohomology modules, manuscripta math., 117(2005), 199-205.
[14] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (2005), 655-660.
[15] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), North-Holland, Amsterdam, 1968.
[16] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9(1970), 145-164.
[17] C. Huneke, J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110(1991), 421–429.
[18] P. Hung Quy, On the finiteness of associated primes of local cohomology modules, Proc. Amer. Math. Soc. 138(2010), 1965-1968.
[19] Y. Irani, G. Ghasemi and K. Bahmanpour, Finiteness properties of extension functors of cofinite modules, Bull. Korean Math. Soc., in press.
[20] K.-I. Kawasaki, On a category of cofinite modules which is Abelian, Math. Z. 269(2011), 587-608.
[21] K. Khashyarmanesh, Sh. Salarian, On the associated primes of local cohomology modules, Comm. Algebra, 27 (1999), 6191–6198.
[22] T. Marley, The associated primes of local cohomology modules over rings of small dimension, manuscripta math. 104(2001), 519–525.
[23] T. Marley and J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra 256(1) (2002), 180-193.
[24] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge, UK, 1986.
[25] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra, 285 (2005), 649–668.
[26] P. Rudlof, On minimax and related modules, Can. J. Math. 44 (1992), 154–166.
[27] K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147(1997), 179–191.
[28] T. Yoshizawa, Subcategories of extension modules by subcategories, Proc. Amer. Math. Soc. 140 (2012), 2293-2305.
[29] T. Zink, Endlichkeitssbedingungen für Module über einem Noetherschen Ring, Math. Nachr. 164 (1974), 239–252.
[30] H. Zöschinger, Minimax Moduln, J. Algebra. 102(1986), 1–32.
[31] H. Zöschinger, Über die Maximalbedingung für radikalvolle Untermoduln, Hokkaido Math. J. 17 (1988), 101–116.

DEPARTMENT OF MATHEMATICAL, FACULTY OF SCIENCE, ARAK UNIVERSITY, ARAK, 38156-8-8349, IRAN.
E-mail address: m-aghapour@araku.ac.ir

DEPARTMENT OF MATHEMATICS, ISLAMIC AZAD UNIVERSITY-ARDABIL BRANCH, P.O. BOX 5614633167, ARDABIL, IRAN.
E-mail address: bahmanpour.k@gmail.com