Efficacy of topical vs intravenous tranexamic acid in reducing blood loss and promoting wound healing in bone surgery: A systematic review and meta-analysis

Jian-Wen Xu, Hong Qiang, Ting-Li Li, Yi Wang, Xiao-Xiao Wei, Fei Li

META-ANALYSIS

BACKGROUND
Tranexamic acid (TXA) has been used as an anti-fibrinolytic drug for over half a century and has received much attention in recent decades.

AIM
To evaluate the efficacy of topical vs intravenous TXA in reducing blood loss and promoting wound healing in bone surgery.

METHODS
From the electronic resources, PubMed, Cochrane Library, Embase, ISI, and Scopus were used to perform a literature search over the last 10 years between 2010 and 2020. EndNote™ X8 was used for managing the electronic resource. Searches were performed with mesh terms. The data were retracted blindly by two independent reviewers. Random effects were used to deal with potential heterogeneity and I² showed heterogeneity. Chi-square (I²) tests were used to quantify the extent of heterogeneity (P < 0.01 was considered statistically significant). The efficacy of topical TXA in reducing blood loss and promoting wound healing in bone surgery was compared with intravenous TXA and placebo.

RESULTS
According to the research design, 1360 potentially important research abstracts and titles were discovered in our electronic searches, and 18 papers remained in...
agreement with our inclusion criteria. It was found that TXA reduced 277.51 mL of blood loss compared to placebo, and there was no significant difference between topical TXA and IV TXA in reducing blood loss in bone surgery. Our analyses also showed that TXA significantly reduced blood transfusion compared to placebo and there was no significant difference between topical TXA and IV TXA.

CONCLUSION

The use of both topical and intravenous TXA are equally effective in reducing blood loss in bone surgery, which might be beneficial for wound healing after surgery.

Key Words: Tranexamic acid; Blood loss; Wound healing; Bone surgery; Meta-analysis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Although tranexamic acid (TXA) is regularly used by surgeons, a comprehensive guideline on safe topical doses and methods for TXA administration has remained controversial. This study showed that both topical and intravenous TXA are equally effective in reducing blood loss in bone surgery, which is thus beneficial for wound healing after surgery.

Citation: Xu JW, Qiang H, Li TL, Wang Y, Wei XX, Li F. Efficacy of topical vs intravenous tranexamic acid in reducing blood loss and promoting wound healing in bone surgery: A systematic review and meta-analysis. *World J Clin Cases* 2021; 9(17): 4210-4220

URL: https://www.wjgnet.com/2307-8960/full/v9/i17/4210.htm

DOI: https://dx.doi.org/10.12998/wjcc.v9.i17.4210

INTRODUCTION

Wound healing is a natural biological process, in which all four stages, including homeostasis (stop bleeding), inflammation, proliferation, and maturation, must occur within a time frame for successful wound healing[1,2]. The use of tranexamic acid (TXA) as an anti-fibrinolytic drug has been available for over half a century and has received much attention in recent decades[3]. By binding to plasminogen, TXA prevents the conversion of plasminogen to plasmin, thus preventing fibrinolysis[4]. The use of TXA reduces blood loss and blood transfusion in major orthopedic surgery, and the safety is also well recognized[5-8]. Previous studies have not confirmed any increased risk of thromboembolism after the use of TXA in various surgeries[9-11]. Topical use of TXA is increasingly popular today, but surgeons do not have a comprehensive guideline on safe topical doses and methods of administration, as topical use is still off-label[12]. There have been two meta-analysis studies discussing efficacy of topical vs intravenous TXA in total hip arthroplasty and total knee arthroplasty, respectively[13,14]. However, the efficacy of topical vs intravenous TXA in reducing blood loss and promoting wound healing in bone surgery remains to be systemically reviewed.

Therefore, the aim of this systematic review and meta-analysis was to evaluate the efficacy of topical vs intravenous TXA in reducing blood loss and promoting wound healing in bone surgery.

MATERIALS AND METHODS

Search strategy techniques

From the electronic resources, PubMed, Cochrane Library, Embase, ISI, and Scopus were used to perform a literature search over the last 10 years between 2010 and 2020. EndNote™ X8 was used for managing the electronic resources. Searches were performed with mesh terms: (“Tranexamic Acid/administration and dosage”[Mesh]
OR "Tranexamic Acid/adverse effects"[Mesh] OR "Tranexamic Acid/blood"[Mesh] OR "Tranexamic Acid/standards"[Mesh] OR "Tranexamic Acid/toxicity"[Mesh]) AND ("Wound Healing/blood"[Mesh] OR "Wound Healing/blood supply"[Mesh] OR "Wound Healing/ complications"[Mesh] OR "Wound Healing/drug effects"[Mesh] OR "Wound Healing/innervation"[Mesh] OR "Wound Healing/pharmacology"[Mesh] OR "Wound Healing/surgery"[Mesh] OR “Wound Healing/therapy”[Mesh])) OR (“Blood Loss, Surgical”[Mesh] OR “Hemorrhage”[Mesh] OR “Postoperative Hemorrhage”[Mesh]) OR “Homeostasis”[Mesh]) OR “Bleeding Time”[Mesh]) OR “Inflammation”[Mesh]) OR “Cell Proliferation”[Mesh].

The present systematic review and meta-analysis protocol was prepared by PRISMA checklist[15], and Population/Patient, Exposure/Intervention, Comparison, and Outcome strategy (Table 1).

Selection criteria

Inclusion criteria: Randomized controlled trials, controlled clinical trials, and prospective and retrospective cohort studies; human; topical TXA or intravenously administered TXA; adults; bone surgery trials; and in English.

Exclusion criteria: In vitro studies, case studies, case reports, and reviews; animal studies; oral TXA; and studies without a control group.

Data extraction and method of analysis: The data were extracted from the related studies including years, study design, number of patients, mean/range of age, interventions group, control group, and clinical endpoints. The quality of studies included was assessed using the Cochrane Collaboration’s tool [16]. The scale score for low risk was 1 and that for high and unclear risk was 0. Scale scores ranged from 0 to 6. A higher score indicated higher quality.

Two reviewers blindly and independently extracted the data. Odds ratio (OR) with 95% confidence interval (CI), fixed effects model and Mantel-Haenszel method and mean difference with 95%CI, random effect model and restricted maximum likelihood method were calculated. Random effects were used to deal with potential heterogeneity and I^2 showed heterogeneity. Chi-square (P) tests were performed to quantify the extent of heterogeneity (P value < 0.01 was considered statistically significant). I^2 values > 50% indicated moderate-to-high heterogeneity. Software Stata/MP v.16 (fastest version of Stata) was used for statistical analysis.

RESULTS

According to the research design, 1360 potentially important research abstracts and titles were discovered in our electronic searches. In the first phase of the study selection, 1312 studies were left after removing copies. Then 1247 in vitro studies, case studies, case reports, and reviews or those that did not meet the eligibility criteria were excluded. Therefore, we fully assessed the complete full-text papers of the remaining 65 studies in the second stage, and 47 publications were excluded due to the lack of the defined inclusion criteria. Finally, 18 papers remained in agreement with our inclusion criteria required (Figure 1).

Characteristics

Eighteen studies (randomized controlled trials) were included. The total sample size was 1994. All of the studies evaluated the efficacy of TXA in bone surgical patients. In detail, nine studies evaluated the efficacy of TXA in total knee arthroplasty, two evaluated the efficacy of TXA in trochanteric fracture surgery, one evaluated the efficacy of TXA in intertrochanteric fractures, two evaluated the efficacy of TXA in total shoulder arthroplasty, two evaluated the efficacy of TXA in total hip replacement and one evaluated the efficacy of TXA in orthognathic surgery (Table 2)[17-34].

Transfusion rate

The effects of TXA and placebo were compared in 10 studies about bone surgery. The OR was -1.56 (95%CI: -1.96 to -1.17; $P = 0.00$), and moderate heterogeneity was found ($P = 35.63%$). Our results showed that TXA significantly reduced blood transfusion compared to placebo (Figure 2).

The effects of topical TXA and IV TXA were compared in five studies about bone surgery. The OR was 0.20 (95%CI: -0.50 to 0.89; $P = 0.58$), and there was mild hetero-
Table 1: Population/Patient, Exposure/Intervention, Comparison, and Outcome strategy

PICO or PECO strategy	Description
P	Population/Patient: Adult patients
E	Exposure/Intervention: Tranexamic acid
C	Comparison: Placebo or standard care
O	Outcome: Blood loss

PECO: Population/Patient, Exposure, Comparison, and Outcome; PICO: Population/Patient, Intervention, Comparison, and Outcome.

Table 2: Studies selected for systematic review and meta-analysis

Ref.	Study design	Sample size	Procedure	Intervention group and control group	
1	Lei et al[17], 2020	RCT	132	Total knee arthroplasty	IV TXA, placebo
2	Luo et al[18], 2019	RCT	90	Trochanteric fracture surgery	IV TXA, placebo
3	Chen et al[19], 2019	RCT	166	Trochanteric fracture surgery	IV TXA, placebo
4	Zhang et al[20], 2019	RCT	50	Total knee arthroplasty	Topical TXA, IV TXA
5	Zhou et al[21], 2019	RCT	100	Intertrochanteric fractures	Topical TXA (1 g), placebo
6	Cvetanovich et al[22], 2018	RCT	110	Total shoulder arthroplasty	TXA, placebo
7	Huang et al[23], 2017	RCT	150	Total knee arthroplasty	Topical TXA (1 g), IV TXA, placebo
8	Vara et al[24], 2017	RCT	102	Total shoulder arthroplasty	Topical TXA, placebo
9	Goyal et al[25], 2017	RCT	168	Total knee arthroplasty	TXA, IV TXA
10	Chen et al[26], 2016	RCT	100	Total knee arthroplasty	Topical TXA, IV TXA
11	Drosos et al[27], 2016	RCT	90	Total knee arthroplasty	Topical TXA: 1 g, placebo, IV TXA
12	Keyhan et al[28], 2016	RCT	120	Total knee arthroplasty	Topical TXA: 3 g, placebo, IV TXA (500 g)
13	North et al[29], 2016	RCT	139	Total hip replacement	Topical TXA: 2 g, IV TXA (2 g)
14	Aguilera et al[30], 2015	RCT	150	Total knee arthroplasty	Topical TXA: 1 g, IV TXA (2 g), placebo
15	Eftekharian et al[31], 2015	RCT	56	Orthognathic surgery	Topical TXA: 1 g, placebo
16	Gillespie et al[32], 2015	RCT	111	Total shoulder arthroplasty	Topical TXA: 2 g, placebo
17	Taheriazam et al[33], 2015	RCT	80	Total hip replacement	Topical TXA, IV TXA
18	Yang et al[34], 2015	RCT	80	Total knee arthroplasty	Topical TXA, placebo

RCT: Randomized Controlled Trial; TXA: Tranexamic acid.

Our results showed there was no significant difference between topical TXA and IV TXA in reducing blood transfusion in bone surgery (Figure 3).

Blood loss

The blood loss after topical TXA vs IV TXA was compared among six studies about bone surgery, and the mean difference was 74.06 mL (mean difference [MD]: 74.06, 95%CI: -8.17 to 156.39; \(P = 0.08 \)), with high heterogeneity found (\(I^2 = 88.98 \% \)). Our results showed there was no significant difference between topical TXA and IV TXA in reducing blood loss in bone surgery (Figure 4).

The blood loss after TXA vs placebo administration was compared among 12 studies about bone surgery, and the mean difference was -277.51 mL (MD: -277.51, 95%CI: -410.47 to -144.5; \(P = 0.00 \)), with high heterogeneity (\(I^2 = 97.94 \% \)). The results showed that TXA reduced 277.51 mL of blood loss compared to placebo (Figure 5).
Xu JW et al. Efficacy of topical vs intravenous TXA in bone surgery

Figure 1 Study attrition. Eighteen papers were finally included in the meta-analysis.

DISCUSSION

The present meta-analysis showed that TXA reduced 277.51 mL of blood loss compared to placebo in bone surgery, and there was no significant difference between topical TXA and IV TXA in reducing blood loss. Moreover, TXA significantly reduced blood transfusion compared to placebo in bone surgery and there was no significant difference between topical TXA and IV TXA. In a systematic review and meta-analysis study with a sample size of 10488 patients, regardless of the type of TXA administration, it was shown that 30% of patients only needed an injection. These results were consistent with our study. If a theoretical comparison is made between the topical TXA and IV TXA, the topical TXA would result in a 90% reduction in plasma concentrations. Also, a study with regression analysis showed no significant relationship between topical TXA and reduced dose-dependent risk of transmission, and topical TXA also has the advantage of lower doses and medical costs. Moreover, previous studies have shown that there is no significant advantage of systemic TXA in various surgical and non-surgical procedures compared to topical TXA. Taken together, these findings indicate that topical TXA is recommended to reduce blood loss and transfusion at least in bone surgery.

Much blood loss is common in bone surgery, which is a major source of mortality, and blood transfusions are often required during the perioperative period. However, blood transfusions may lead to increased length of hospital stay, a raised risk of infection, and an increased medical cost. TXA prevents the conversion of plasminogen to plasmin, thus preventing fibrinolysis and blood loss. Thus, it is clinically significant to use TXA to reduce blood loss and transfusion in bone surgery, which might be beneficial for wound healing.

However, our study also had some limitations. First, the optimal dose and timing of the topical TXA were not evaluated in our study due to lack of clinical guideline for TXA and inconsistency in dose and timing of TXA across studies, which remain to be evaluated in the further research. Second, significant heterogeneity was detected in blood loss and our findings remain to be further verified by more well-designed studies.

CONCLUSION

We found that the use of both topical and intravenous TXA are effective in reducing blood loss and might be beneficial for wound healing in bone surgery. Given the consideration of smaller dose and less medical cost, topical TXA is recommended for bone surgery. However, more studies are needed to further verify our findings in the future.
Risk of bias assessment

Ref.	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome Assessment	Incomplete outcome data	Selective reporting	Total score
Lei et al[17], 2020	+	+	+	+	+	+	6
Luo et al[18], 2019	+	+	+	+	+	+	6
Chen et al[19], 2019	?	+	+	+	+	+	5
Zhang et al[20], 2019	+	+	+	+	+	+	6
Zhou et al[21], 2019	+	?	?	+	+	+	4
Ovetanovich et al[22], 2018	+	+	?	+	+	+	5
Huang et al[23], 2017	+	+	+	+	+	+	5
Vara et al[24], 2017	+	+	+	+	+	+	5
Goyal et al[25], 2017	+	?	?	+	+	+	4
Chen et al[26], 2016	+	+	+	+	+	+	5
Drosos et al[27], 2016	+	+	+	+	+	+	4
Keyhan et al[28], 2016	+	+	+	+	+	+	5
North et al[29], 2016	+	+	+	?	+	+	4
Aguilera et al[30], 2015	+	+	+	+	+	+	5
Eftekharian et al[31], 2015	+	+	?	+	+	+	4
Gillespie et al[32], 2015	+	+	+	+	+	+	4
Taheriazam et al[33], 2015	+	+	?	+	+	+	5
Yang et al[34], 2015	+	+	?	+	+	+	4

(+) Low; (?) Unclear; (-) High.

Figure 2 Risk of bias assessment. (+): Low; (?) Unclear; (-): High.
Xu JW et al. Efficacy of topical vs intravenous TXA in bone surgery

Figure 3 Forest plot showed odds ratio (95% confidence interval) for risk of blood transfusion between tranexamic acid and placebo in bone surgery. CI: Confidence interval.

Figure 4 Forest plot showed odds ratio for risk of blood transfusion between topical tranexamic acid and IV tranexamic acid in bone surgery. CI: Confidence interval; TXA: Tranexamic acid.

Figure 5 Forest plot showed mean difference (95% confidence interval) of blood loss between topical tranexamic acid and IV tranexamic acid in bone surgery. CI: Confidence interval; SD: Standard deviation; TXA: Tranexamic acid.
Tranexamic acid (TXA) as an anti-fibrinolytic drug has been available for over half a century and Topical use of TXA is more and more popular today.

Although TXA is regularly used in surgeons, a comprehensive guideline on safe topical doses and methods for TXA administration has remained controversial.

This study evaluated the efficacy of topical vs intravenous TXA in reducing blood loss and promoting wound healing in bone surgery.

From the electronic resources, PubMed, Cochrane Library, Embase, ISI, and Scopus were used to perform a literature search over the last 10 years between 2010 and 2020. EndNote™ X8 was used for managing the electronic resource. Searches were performed with mesh terms. The data were retracted blindly by two independent reviewers. Random effects were used to deal with potential heterogeneity and I² showed heterogeneity. Chi-square (I²) tests were used to quantify the extent of heterogeneity (P < 0.01 was considered statistically significant). The efficacy of topical TXA in reducing blood loss and promoting wound healing in bone surgery was compared with intravenous TXA and placebo.

According to the research design, 1360 potentially important research abstracts and titles were discovered in our electronic searches, and eighteen papers remained in agreement with our inclusion criteria required. It was found that TXA reduced 277.51 mL of blood loss compared to placebo, and there was no significant difference between topical TXA and IV TXA in reducing blood loss in bone surgery. Our analysis also showed that TXA significantly reduced blood transfusion compared to placebo and there was no significant difference between topical TXA and IV TXA.

This meta-analysis showed that both topical and intravenous TXA are effective in reducing blood loss and might be beneficial for wound healing in bone surgery. Given the consideration of smaller dose and less medical cost, topical TXA is recommended.
for bone surgery.

Research perspectives

Both topical and intravenous TXA are effective in reducing blood loss and might be beneficial for wound healing in bone surgery.

REFERENCES

1. Guo S, Dipietro LA. Factors affecting wound healing. *J Dent Res* 2010; 89: 219-229 [PMID: 20139336 DOI: 10.1177/0022034509359125]

2. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. *Physiol Rev* 2019; 99: 665-706 [PMID: 30476566 DOI: 10.1152/physrev.00067.2017]

3. Tengborn L, Blombäck M, Berntorp E. Tranexamic acid—an old drug still going strong and making a revival. *Thromb Res* 2015; 135: 231-242 [PMID: 25559460 DOI: 10.1016/j.thromres.2014.11.012]

4. Björlin G, Nilsson IM. The effect of antifibrinolytic agents on wound healing. *Int J Oral Maxillofac Surg* 1988; 17: 275-276 [PMID: 3139802 DOI: 10.1016/0901-5027(88)80356-0]

5. Huang F, Wu D, Ma G, Yin Z, Wang Q. The use of tranexamic acid to reduce blood loss and transfusion in major orthopedic surgery: a meta-analysis. *J Surg Res* 2014; 186: 318-327 [PMID: 24075404 DOI: 10.1016/j.jsrs.2013.08.020]

6. Hu M, Liu ZB, Bi G. Efficacy and safety of tranexamic acid in orthopaedic trauma surgery: a meta-analysis. *Eur Rev Med Pharmacol Sci* 2019; 23: 11025-11031 [PMID: 31858574 DOI: 10.26355/eurrev_201912_19810]

7. Amer KM, Rehman S, Amer K, Haydel C. Efficacy and Safety of Tranexamic Acid in Orthopaedic Fracture Surgery: A Meta-Analysis and Systematic Literature Review. *J Orthop Trauma* 2017; 31: 520-525 [PMID: 28928282 DOI: 10.1097/BOT.0000000000000919]

8. Nishiwaki T, Oya A, Fukuda S, Nakamura S, Nakamura M, Matsumoto M, Kanaji A. Curved periacetabular osteotomy via a novel intermuscular approach between the sartorius and iliac muscles. *Hip Int* 2018; 28: 642-648 [PMID: 29739254 DOI: 10.1177/1120700018772047]

9. CRASH-2 collaborators, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, Gando S, Guyatt G, Hunt BJ, Morales C, Perel P, Prieto-Merino D, Woolley T. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. *Lancet* 2011; 377: 1096-1101, 1101.e1-1101.e2 [PMID: 21439633 DOI: 10.1016/S0140-6736(11)60278-X]

10. Roberts I, Belli A, Brenner A, Chaudhri R, Fawole B, Harris T, Jooma R, Mahmood A, Shokunbi T, Shurkani T, CRASH-3 trial collaborators. Tranexamic acid for significant traumatic brain injury (The CRASH-3 trial): Statistical analysis plan for an international, randomised, double-blind, placebo-controlled trial. *Welcome Open Res* 2018; 3: 86 [PMID: 30175246 DOI: 10.12688/wellcomeopenres.14700.2]

11. WOMAN Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. *Lancet* 2017; 389: 2105-2116 [PMID: 28456509 DOI: 10.1016/S0140-6736(17)30638-4]

12. Eikebrokk TA, Vassmyr BS, Aussen K, Gravasrand C, Spigset O, Pukstad B. Cytotoxicity and effect on wound re-epithelialization after topical administration of tranexamic acid. *BJIS Open* 2019; 3: 840-851 [PMID: 31832591 DOI: 10.1002/bjis.50192]

13. Lin C, Qi Y, Jia L, Li HB, Zhao XC, Qin L, Jiang XQ, Zhang ZH, Ma L. Is combined topical with intravenous tranexamic acid superior than topical, intravenous tranexamic acid alone and control groups for blood loss controlling after total knee arthroplasty: A meta-analysis. *Medicine (Baltimore)* 2016; 95: e5344 [PMID: 28002321 DOI: 10.1097/MD.0000000000005344]

14. Tuttle JR, Feltman PR, Ritterman SA, Ehrlich MG. Effects of Tranexamic Acid Cytotoxicity on *In Vitro* Chondrocytes. *Am J Orthop (Belle Mead NJ)* 2015; 44: E497-E502 [PMID: 26665251]

15. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 2009; 339: b2535 [PMID: 19622551 DOI: 10.1136/bmj.b2535]

16. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA. Cochrane bias methods group; cochrane statistical methods group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. *BMJ* 2011; 343: 5928 [PMID: 22006217 DOI: 10.1136/bmj.d5928]

17. Lei YT, Xie JW, Huang Q, Huang W, Pei FX. The antifibrinolytic and anti-inflammatory effects of a high initial-dose tranexamic acid in total knee arthroplasty: a randomised controlled trial. *Int Orthop* 2020; 44: 477-486 [PMID: 31378812 DOI: 10.1007/s00264-019-04469-w]

18. Luo X, He S, Lin Z, Li Z, Huang C, Li Q. Efficacy and Safety of Tranexamic Acid for Controlling Bleeding During Surgical Treatment of Intertrochanteric Fragility Fracture with Proximal Femoral Nail Anti-rotation: A Randomized Controlled Trial. *Indian J Orthop* 2019; 53: 263-269 [PMID: 30967695 DOI: 10.4103/ortho.IJOrtho.40117]

19. Chen F, Jiang Z, Li M, Zhu X. Efficacy and safety of perioperative tranexamic acid in elderly patients undergoing trochanteric fracture surgery: a randomised controlled trial. *Hong Kong Med J*
Zhang YM, Yang B, Sun XD, Zhang Z. Combined intravenous and intra-articular tranexamic acid administration in total knee arthroplasty for preventing blood loss and hyperfibrinolysis: A randomized controlled trial. *Medicine (Baltimore)* 2019; 98: e14458 [PMID: 30762760 DOI: 10.1097/MD.00000000000014458]

Zhou XD, Zhang Y, Jiang LF, Zhang JJ, Zhou D, Wu LD, Huang Y, Xu NW. Efficacy and Safety of Tranexamic Acid in Intertrochanteric Fractures: A Single-Blind Randomized Controlled Trial. *Orthop Surg* 2019; 11: 635-642 [PMID: 31419080 DOI: 10.1111/os.12511]

Cvetanovich GL, Fillingham YA, O’Brien M, Forsythe B, Cole BJ, Verma NN, Romeo AA, Nicholson GP. Tranexamic acid reduces blood loss after primary shoulder arthroplasty: a double-blind, placebo-controlled, prospective, randomized controlled trial. *JSES Open Access* 2018; 2: 23-27 [PMID: 30675563 DOI: 10.1016/j.jeso.2018.01.002]

Huang Z, Xie X, Li L, Huang Q, Ma J, Shen B, Kraus VB, Pei F. Intraoperative and Topical Tranexamic Acid Alone Are Superior to Tourniquet Use for Primary Total Knee Arthroplasty: A Prospective, Randomized Controlled Trial. *J Bone Joint Surg Am* 2017; 99: 2053-2061 [PMID: 29257010 DOI: 10.1099/jbjs.16.01525]

Vara AD, Koueiter DM, Pinkas DE, Gowda A, Wiater BP, Wiater JM. Intravenous tranexamic acid reduces total blood loss in reverse total shoulder arthroplasty: a prospective, double-blinded, randomized, controlled trial. *J Shoulder Elbow Surg* 2017; 26: 1383-1389 [PMID: 28162887 DOI: 10.1016/j.jse.2017.01.005]

Goyal N, Chen DB, Harris IA, Rowden NJ, Kirsh G, MacDessi SJ. Intravenous vs Intra-Articular Tranexamic Acid in Total Knee Arthroplasty: A Randomized, Double-Blind Trial. *J Arthroplasty* 2017; 32: 28-32 [PMID: 27567057 DOI: 10.1016/j.arth.2016.07.004]

Chen JY, Qin PL, Mou HH, Peng HN, Tay DK, Chia SL, Lo NN, Yeo SJ. Intravenous versus intra-articular tranexamic acid in total knee arthroplasty: A double-blinded randomised controlled noninferiority trial. *Knee* 2016; 23: 152-156 [PMID: 26746044 DOI: 10.1016/j.knee.2015.09.004]

Drosos GI, Ververidis A, Valkanis C, Tripsianis G, Stavroulakis E, Vogiatzaki T, Kazakos K. A randomized comparative study of topical versus intravenous tranexamic acid administration in enhanced recovery after surgery (ERAS) total knee replacement. *J Orthop* 2016; 13: 127-131 [PMID: 27222617 DOI: 10.1016/j.jor.2016.03.007]

Keyhani S, Esmaeilieh AA, Abbasian MR, Safdari F. Which Route of Tranexamic Acid Administration is More Effective to Reduce Blood Loss Following Total Knee Arthroplasty? *Arch Bone Jt Surg* 2016; 4: 65-69 [PMID: 26894222]

North WT, Mehran N, Davis JJ, Silverton CD, Weir RM, Laker MW. Topical vs Intravenous Tranexamic Acid in Primary Total Hip Arthroplasty: A Double-Blind, Randomized Controlled Trial. *J Arthroplasty* 2016; 31: 928-929 [PMID: 26783121 DOI: 10.1016/j.arth.2015.12.001]

Aguilera X, Martinez-Zapata MJ, Hinarcejos P, Jordán M, Leal J, González JC, Monllau JC, Celaya F, Rodríguez-Arias A, Fernández JA, Pelfort X, Puig-Verdié LL. Topical and intravenous tranexamic acid reduce blood loss compared to routine hemostasis in total knee arthroplasty: a multicenter, randomized, controlled trial. *Arch Orthop Trauma Surg* 2015; 135: 1017-1025 [PMID: 25944156 DOI: 10.1007/s00402-015-2232-8]

Eftekharian H, Vahedi R, Karagah T, Tabrizi R. Effect of tranexamic acid irrigation on perioperative blood loss during orthopaedic surgery: a double-blind, randomized controlled clinical trial. *J Oral Maxillofac Surg* 2015; 73: 129-133 [PMID: 25443384 DOI: 10.1016/j.joms.2014.07.033]

Gillespie R, Shishany Y, Joseph S, Streit JJ, Gobezie R, Neer Award 2015: A randomized, prospective evaluation on the effectiveness of tranexamic acid in reducing blood loss after total shoulder arthroplasty. *J Shoulder Elbow Surg* 2015; 24: 1679-1684 [PMID: 26480877 DOI: 10.1016/j.jse.2015.07.029]

Lacko M, Cellar R, Schreierova D, Vasko G. Comparison of intravenous and intra-articular tranexamic acid in reducing blood loss in primary total knee replacement. *Eklem Hastalik Cerrahisi* 2017; 28: 64-71 [PMID: 28760121 DOI: 10.5606/ehc.2017.54914]

Yang Y, Lv YM, Ding PJ, Li J, Ying-Ze Z. The reduction in blood loss with intra-articular injection of tranexamic acid in unilateral total knee arthroplasty without operative drains: a randomized controlled trial. *Eur J Orthop Surg Traumatol* 2015; 25: 135-139 [PMID: 24816760 DOI: 10.1007/s00590-014-1461-9]

Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: a systematic review and cumulative meta-analysis. *BMJ* 2012; 344: e3054 [PMID: 22611164 DOI: 10.1136/bmj.e3054]

Abrishtami A, Wong J, El-Beheiry H, Hasan S, Chung F. Intra-articular application of tranexamic acid for perioperative blood loss in total knee arthroplasty: a randomized controlled trial. *Can J Anesth* 2009; 56: 138

McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. *Drugs* 2012; 72: 585-617 [PMID: 22397329 DOI: 10.2165/11209070-0000000000000000]

Pabinger I, Fries D, Schöchl H, Streif W, Toller W. Tranexamic acid for treatment and prophylaxis of bleeding and hyperfibrinolysis. *Wien Klin Wochenschr* 2017; 129: 303-316 [PMID: 28432428 DOI: 10.1007/s00508-017-1194-y]

Montroy J, Hutton B, Moodley P, Fergusson NA, Cheng W, Tinmouth A, Lavallée LT, Fergusson DA, Breau RH. The efficacy and safety of topical tranexamic acid: A systematic review and meta-analysis. *Transfus Med Rev* 2018; Online ahead of print [PMID: 29567052 DOI:]
Xu JW et al. Efficacy of topical vs intravenous TXA in bone surgery

Drakos A, Raoulis V, Karatzios K, Doxariotis N, Kontogeorgakos V, Malizos K, Varitimidis SE. Efficacy of Local Administration of Tranexamic Acid for Blood Salvage in Patients Undergoing Intertrochanteric Fracture Surgery. *J Orthop Trauma* 2016; **30**:409-414 [PMID: 26978136 DOI: 10.1097/BOT.0000000000000577]

Barie D, Une D, Rudez I, Bacic-Vrca V, Planine M, Jonije D. Systemic usage of tranexamic acid is superior to topical: Randomized placebo-controlled trial. *Interact Cardiovasc Thorac Surg* 2011; **12**:S92

Baric D, Unic D, Rudez I, Bacic-Vrca V, Planinc M, Jonjic D. Systemic usage of tranexamic acid is superior to topical: Randomized placebo-controlled trial. *Interact Cardiovasc Thorac Surg* 2011; **12**:S92

Hill GE, Frawley WH, Griffith KE, Minei JP. Allogeneic blood transfusion increases the risk of postoperative bacterial infection: a meta-analysis. *J Trauma* 2003; **54**:908-914 [PMID: 12777903 DOI: 10.1097/01.TA.0000022460.21283.53]

Saleh A, Small T, Chandran Pillai AL, Schiltz NK, Klika AK, Barsoum WK. Allogenic blood transfusion following total hip arthroplasty: results from the nationwide inpatient sample, 2000 to 2009. *J Bone Joint Surg Am* 2014; **96**:e155 [PMID: 25232085 DOI: 10.2106/JBJS.M.00825]

Shokoohi A, Stanworth S, Mistry D, Lamb S, Staves J, Murphy MF. The risks of red cell transfusion for hip fracture surgery in the elderly. *Vox Sang* 2012; **103**:223-230 [PMID: 22540265 DOI: 10.1111/j.1423-0410.2012.01606.x]
