Ma, S., Manoj, S., Yu, H., Ren, J. and Weerasekera, R. (2015) A 9.8 Gbps, 6.5 mW forwarded-clock receiver with phase interpolator and equalized current sampler in 65 nm CMOS. *Microwave Symposium (IMS), 2015 IEEE MTT-S International*. pp. 1-4. ISSN 0149-645X Available from: http://eprints.uwe.ac.uk/30491

We recommend you cite the published version.
The publisher’s URL is: http://dx.doi.org/10.1109/MWSYM.2015.7166838

Refereed: Yes

(no note)

Disclaimer

UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

UWE makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

UWE accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.
A 9.8 Gbps, 6.5 mW Forwarded-clock Receiver with Phase Interpolator and Equalized Current Sampler in 65 nm CMOS

Shunli Ma1,2, Sai Manoj P.D.2, Hao Yu2, Junyan Ren1, and Roshan Weerasekera3

1State Key Lab of ASIC and System, Fudan University, Shanghai 200433, China; 2School of EEE, Nanyang Technological University, Singapore 639798; 3Institute of Microelectronics, A*STAR, Singapore

Abstract- A full-rate energy-efficient forwarded-clock (FC) receiver is demonstrated in this paper. A current sampler with continuous-time equalization is realized with 20 GHz bandwidth in sampling for data recovery. Moreover, a phase interpolator is introduced to generate sampling clock withdesk for data recovery. The testing chip was fabricated in 65 nm CMOS process in area of 0.16 mm². Measurement shows that the FC receiver can achieve a data-rate up to 9.8 Gbps and power consumption is 6.5 mW.

Index terms- Forwarded-clock receiver, current-sampling, phase interpolator

I. INTRODUCTION

Source synchronous links with forwarded-clock (FC) architecture [1]-[7] is widely deployed in parallel I/O interface due to its low power consumption, inherent correction of clock and data jitter, and appropriate jitter tracking bandwidth (JTB). In the FC receiver, the static phase offset (SPO) between input data and sampling clock is corrected at start-up; while the dynamic phase error (DPO)/jitter is tracked by forwarded clock with jitter correction.

The model of the FC receiver is shown in Fig.1. The data and the clock are sent to receiver simultaneously. However, due to PCB traces mismatch and frequency dependent delay from the channels, the data and the clock have a time misalignment at receiver side especially for high data rate. As result, the SPO has to be corrected before sampling which is realized by PI in this paper. Due to the appropriate jitter-track-bandwidth (JTB) introduced by FC receiver structure, the DPO can be also well restrained. The phase-interpolator (PI) introduced in this paper can generate the wide-range (0°-360°) of clock deskew which can cover the phase misalignment and make sure the sampling at the center of the data as shown in Fig.1. As a result, the low bit error rate can be achieved and making the FC receiver is insensitive to the jitter.

Moreover, continuous-time linear equalizer (CTLE) is widely utilized in FC receivers [7]-[9] due to its compact structure and better high frequency performances for middle-distance interconnects (such as interposer based memory-logic integration) without decision feedback equalizer (DFE) taps. The CTLE equalizer is usually followed by a sampler in traditional data recovery circuits. But the sampler always has limited bandwidth and speed due to voltage sampling structure that seriously degrades the speed even though the equalizer provides a gain-boost at high frequency to compensate channel loss [9]-[11]. In this paper, we use a current sampling structure sampler merged with the equalized function to realize high speed sampling.

Current sampler is introduced with 20 GHz bandwidth, 10 GSp sampling rate and 18 dB gain-boost at 10 GHz. Fig.2 Signal flow (a) and circuit diagram (b) of data recovery by equalized sampler with inductor load (1.2 nH).
Compared to the conventional voltage sampler after the equalizer, the switched-source-follower (SSF) based current sampler is merged with one active CTLE, whose equalization is realized by inductive loading.

The testing chip was fabricated in 65 nm CMOS process within area of 0.16 mm². The measurements show that: data-rate up to 9.8 Gbps can be achieved with BER below 10^{-12} and energy efficiency of 0.67 mW/Gbps. The rest of the paper is organized as follows. Section II presents the equalized current sampler for data recovery. Section III discusses PI for clock recovery. The FC receiver prototype with measurements results is presented in Section IV and conclusions are drawn in Section V.

II. DATA RECOVERY: CURRENT SAMPLER WITH CONTINUOUS-TIME EQUALIZATION

As shown in Fig.2 (a)-(b), the proposed current-sampler is merged with the active CTLE equalizer as follows. It consists of input buffer with inductive loading L_1 for active equalization and switched source follower (SSF) which is a current sampling structure. The merging principle of the sampler is that when CLK=1, I_1 will flow through path-I and the input buffer can boost the high frequency part of the data to realize equalization function as shown in Fig.2(a); when CLKB=1, the current I_1 will flow through path-II and M_2 will be turned off to hold the data. As such, the equalization function and the sampling function are realized by proposed circuit simultaneously. Meanwhile, the input matching of FC receiver is realized by shunt resistor R_{match}.

A. CTLE Equalization

For middle-distance interconnects (<10 cm) such as interposers for memory-logic integration at inter-die level, a continuous-time linear equalizer (CTLE) is sufficient enough for data recovery [7]-[9] without decision feedback equalizer (DFE) taps. As shown in Fig.2 (b), when the input data with channel loss arrives at input (VIN, VIP) of the input buffer, the compensation at high frequency can be achieved by the inductive load L_1 with gain-boosting. The gain of the input buffer is targeted to have peak at 10 GHz for the compensation. As such, the value of its inductor load L_1 must be optimized. As shown in Fig.3 (a), L_1 is 1.2 nH obtained by sweeping from 0.3 nH to 2.7 nH, and is realized within a compact area of 50 μm × 50 μm. Moreover, the current source I_2 can be tuned from 0.6 mA

![Fig.3 Simulation results of CTLE equalization of sampler: (a) gain-peaking is above18 dB at 10 GHz; (b) tunable gain-boost at high-frequency from 0.6 mA to 3 mA](image)

B. Current Sampling

Compared to the voltage sampling, the current sampling can achieve superior sampling speed [11]-[12]. To implement the current sampling, the SSF structure is commonly utilized.

As shown in Fig. 2(a), the equalized data can be recognized as “0” or “1” at point X and will be further sampled by SSF. Note that the input buffer transfers the input data from voltage domain to current domain by the transconductance of M_8. When CLK=1, the current I_1 flows through M_2 by path-I, and the sampler tracks the equalized data at track-mode; when CLKB=1, the current I_1 flows through M_4 and R_1 by path-II, and the sampler holds the input data due to the low voltage of the node X that turns off transistor M_4 at hold mode. Moreover, the bandwidth of the SSF is also improved because the inductor L_1 can absorb part of parasitic capacitor C at the node X [12].

As a result, the equalized current sampler can realize both of the sampling and equalization functions at the same time with the low power and high energy efficiency.

III. CLOCK RECOVERY: PHASE INTERPOLATOR

In the conventional clock recovery design, the clock deskew is realized by a single ILO and the deskew is highly dependent on the offset frequency between the injected frequency and the ILO’s free running frequency. What is worse, it can only provide a 90° phase deskew. In order to achieve a larger phase deskew to cover the phase misalignment between data and clock, a phase interpolator (PI) is applied in this paper to generate clock deskew, instead of utilizing the single ILO.

As shown in Fig.4, the ILO-I with quadrature voltage controlled oscillator (QVCO) structure is firstly locked to...
Table 1: Comparison with State-of-Art Forward-Clock I/O Receivers

Technology	[1]	[2]	[3]	[4]	This work
Supply (V)	1	1	1	1	1/0.8*
Architecture	MSSC	ILO+DJM	ILO	DCA+ILO	ILO+PI
Data rate	5.6 Gb/s	9.6 Gb/s	7.4 Gb/s	12 Gb/s	9.8 Gb/s
Clocking	1/2 rate	1/2 rate	1/2 rate	1/4 rate	Full rate
Power(mW)	13.5	11.8	6.8	11	5–6.5
FoM(mW/Gbps)	2.4	1.22	0.92	0.917	0.65

*Supply voltages: 1V for sampler and buffer, and 0.8V for ILOs.

Table I shows the comparison of recently published FC receivers. The proposed FC receiver achieves the data rate of 9.8 Gbps and the highest energy efficiency of 0.65 mW/Gbps with the full-rate architecture.

V. CONCLUSION

This paper presents a FC receiver by equalized current sampler for data recovery and phase-interpolation for clock recovery implemented in 65 nm CMOS. The current sampler has merged CTLE function with 18 dB gain at 10 GHz and 10 GSPs sampling speed with 20 GHz bandwidth. Moreover, the PI can provide 0–360° clock deskew. The measurement results show that the data rate is up to 9.8 Gbps with the energy efficiency of 0.65 mW/Gbps.

Acknowledgement

The authors acknowledge the support from MediaTek for the UMC 65 nm CMOS tape-out.

References

[1] J. Zerbe, et al., “A 5.6 Gb/s 2.4 mW/Gb/s Bidirectional Link With8ns Power-On,” VLSI-Symp Circuits, pp. 82-83, Jun. 2011.
[2] S. H. Chung, et al., “1.22 mW/Gb/s 9.6 Gb/s data jitter mixing forwarded-clock receiver robust against power noise with 1.92 ns latency mismatch between data and clock in 65 nm CMOS,” VLSI-Symp Circuits, pp. 144-145, Jun. 2011.
[3] M. Hossain, et al., “A 6.8 mW 7.4 Gb/s Clock-Forwarded Receiver with up to 300 MHz Jitter Tracking in 65 nm CMOS,” ISCC Dig. Tech. Papers, pp. 158-159, Feb. 2010.
[4] Y. J. Kim, “A 12 Gb/s 0.92 mW/Gb/s forwarded clock receiver based on ILO with 60 MHz jitter tracking bandwidth variation using duty cycle adjuster in 65 nm CMOS,” VLSI-Symp Circuits, pp. 236-237, Jun. 2013.
[5] K. Hu et al., “A 0.6 mW/Gb/s, 6.4–7.2 Gb/s serial link receiver using local injection-locked ring oscillators in 90 nm CMOS,” IEEE J. Solid State Circuits, vol. 45, no. 4, pp. 899–908, Apr. 2010.
[6] K. Hu et al., “0.16–0.25 pJ/bit, 8 Gb/s Near-Threshold Serial Link Receiver With Super-Harmonic Injection-Locking,” IEEE J. Solid State Circuits, vol. 47, no. 8, pp. 619–728, Aug. 2010.
[7] B. Casper and F. O’Mahony, “Clocking analysis, implementation and measurement techniques for high-speed data links—A tutorial,” IEEE TCAS-I, vol. 56, no. 1, pp. 17–39, Jan. 2009.

[8] M. Meghelli, et al., “A 10 Gb/s 5-Tap-DFE/4-Tap-FFE transceiver in 90 nm CMOS,” ISSCC Dig. Tech. Papers, pp. 80–81, Feb. 2006.

[9] S. Gondi, J. Lee, and B. Razavi, “A 10 Gb/s CMOS adaptive equalizer for backplane applications,” ISSCC Dig. Tech. Papers, pp. 328–329, Feb. 2005.

[10] Lee J, Weiner J, Chen Y K, “A 20-GS/s 5-b SiGe ADC for 40-Gb/s coherent optical links,” IEEE Trans. Circuits and Systems I, vol. 57, pp. 65–74, Oct. 2010.

[11] S. Yamanaka, K. Sano, and K. Murata, “A 20-GS/s Track-and-hold Amplifier in InP HBT Technology”, IEEE Trans. Microwave Theory & Tech., vol. 58, pp. 2334-2339, Sept 2010.

[12] S. L. Ma, J. C. Wang, H. Yu, and J. Y. Ren., “A 32.5-GS/s two-channel time-interleaved CMOS sampler with switched-source follower based track-and-hold amplifier,” in Int. Microw. Symp. Dig., Jun 2014, vol. 10, pp. 1-3.