Label-free quantitative proteomics of *Sorghum bicolor* reveals the proteins strengthening plant defense against insect pest *Chilo partellus*

Vaijayanti A. Tamhane1*, Surhud S. Sant1,2†, Abhilash R. Jadhav1†, Abdul R. War3,4, Hari C. Sharma3,5, Abdul Jaleel6 and Akanksha S. Kashikar7

Abstract

Background: Spotted stem borer- *Chilo partellus* - a Lepidopteran insect pest of *Sorghum bicolor* is responsible for major economic losses. It is an oligophagous pest, which bores through the plant stem, causing 'deadheart' and hampering the development of the main cob. We applied a label-free quantitative proteomics approach on three genotypes of *S. bicolor* with differential resistance/susceptibility to insect pests, intending to identify the *S. bicolor*'s systemic protein complement contributing to *C. partellus* tolerance.

Methods: The proteomes of *S. bicolor* with variable resistance to insect pests, ICSV700, IS2205 (resistant) and Swarna (susceptible) were investigated and compared using label-free quantitative proteomics to identify putative leaf proteins contributing to resistance to *C. partellus*.

Results: The multivariate analysis on a total of 967 proteins led to the identification of proteins correlating with insect resistance/susceptibility of *S. bicolor*. Upon *C. partellus* infestation *S. bicolor* responded by suppression of protein and amino acid biosynthesis, and induction of proteins involved in maintaining photosynthesis and responding to stresses. The gene ontology analysis revealed that *C. partellus*-responsive proteins in resistant *S. bicolor* genotypes were mainly involved in stress and defense, small molecule biosynthesis, amino acid metabolism, catalytic and translation regulation activities. At steady-state, the resistant *S. bicolor* genotypes displayed at least two-fold higher numbers of unique proteins than the susceptible genotype Swarna, mostly involved in catalytic activities. Gene expression analysis of selected candidates was performed on *S. bicolor* by artificial induction to mimic *C. partellus* infestation.

Conclusion: The collection of identified proteins differentially expressed in resistant *S. bicolor*, are interesting candidates for further elucidation of their role in defense against insect pests.

Keywords: *Chilo partellus*, Insect pests, in-solution proteomics, Plant defense, Label-free quantitative proteomics

* Correspondence: vatamhane@unipune.ac.in; vatamhane@gmail.com
† Surhud S. Sant and Abhilash R. Jadhav contributed equally to this work.
1Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Ganeshkhind Road, Pune, Maharashtra 411 007, India
Full list of author information is available at the end of the article

© The Author(s). 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background

S. bicolor (L.) Moench is an important food, forage and biofuel Saccharinae crop cultivated world over, and recognized for its high yield and stress tolerance. It is the fifth most important cereal crop in the world after rice, wheat, maize and barley and it is the third important cereal crop after rice and wheat in India [1]. The molecular, biochemical and biotechnological investigations in *S. bicolor* are vital for its sustainable supply and it has been recognized as a model plant system for stress proteomics and genomics research [2, 3]. Over 150 insect species are known to cause damage to *S. bicolor* crops, of which, shoot fly (*Atherigona soccata*), spotted stem borer (*Chilo partellus*), midge (*Contarinia sorghicola*) and head bugs (*Calocoris angustatus, Eurtystylus* spp.) are the major pests. The lepidopteran insect pest *C. partellus* is an oligophagous pest, which feeds on cereals like maize, *S. bicolor*, or other wild grasses and is predominant in the warmer regions of the tropics [4]. Of the 58 species in the *Chilo* genus, *C. partellus* is recognized as a major pest causing estimated global losses of over $300 million annually [5, 6]. *C. partellus* neonates feed on tender leaves, causing leaf-scarification, shot-holes and later bore into the stem, causing deadheart [7], destruction of the meristem, and disruption of flowering/seed set [8, 9].

Crop plants have lost the evolutionarily acquired defense mechanisms, due to domestication and repeated selections for agronomic traits [10]; while insects have expanded their geographical horizons to emerge as pests [11]. In *S. bicolor* breeding programs, studies have emphasized the importance of wild germplasm and host plant resistance as a source of insect defense traits for selection breeding [12, 13]. ‘Omnics’ approaches have accelerated the elucidation of regulatory processes, novel molecular mechanisms and adaptations in plant-insect interactions, the findings from which have great potential to steer biotic and abiotic stress tolerance in crop plants [14]. Proteome regulates plant phenotype, its responses to stresses and is intricately linked to its transcriptome and metabolome [15]. Proteomics, with the advances in mass spectrometry, has the promise to provide a snapshot into the molecular and functional networks operating within plants and displays a ‘plant molecular phenotype’ [16].

Proteomic studies in *S. bicolor* are swiftly increasing and are focused mainly on osmotic stress [17], grain development and nutritional quality [18], seed storage protein kafirin accumulation [19], salt tolerance [20], heavy metal tolerance [21, 22], albino mutant [23, 24] and drought tolerance [25, 26]. However, the global proteome analysis of *S. bicolor* insect-resistant genotypes and the genetic, biochemical and molecular mechanisms involved in plant defense against pests is not well elucidated. *S. bicolor* like many cereal crops is heavily sprayed with pesticides during its growth to maintain yields /grain quality [27]. Insights from plant-insect interaction studies will be valuable to envisage and employ the much desired sustainable and environmentally gracious cultivation of *S. bicolor*. *S. bicolor* is known to induce cyanogenic glucoside- dhurrin, toxic cyanides and other secondary metabolites such as triterpenols upon insect infestation [28]. Genes like NBS LRR and disease resistance phloem protein 2 were identified as contributors of defense against the sugarcane aphid *Melanaphis sacchari* [29], however, omics and molecular studies on lepidopteran pests of *S. bicolor* are scarce.

* S. bicolor— lepidopteran insect pest interaction proteomics has been attempted in this study to identify the proteins contributing to insect defense in three sorghum genotypes with varied susceptibility to the spotted stem borer infestation. *S. bicolor* genotypes ICSV700 and IS2205 are known to have variable degree of resistance to *C. partellus* respectively [1, 30] while the cultivated variety (Swarna) is susceptible. The genotypes were evaluated for insect resistance based on percentage of a ‘deadheart’ formation, the extent of leaf damage, stem tunneling, panicle damage and recovery [30].

The proteomics of leaves of *S. bicolor* genotypes at steady-state and upon infestation by the stem borer *C. partellus* has been performed with an objective to (i) elucidate the important proteins contributing to *S. bicolor* insect resistance/susceptibility (ii) proteome complement specific to *S. bicolor* genotype and *C. partellus* treatment. Thorough multivariate statistical analyses for simultaneous comparisons across more than two groups were performed on the proteomics data using the opensource statistical software R. The identified proteins need to be evaluated for potential to enhance plant defense against insect pests and will be useful to engineer these traits to improve sustainable insect tolerance in *S. bicolor*.

Materials and methods

Plant material and treatments

Three *S. bicolor* genotypes, two resistant (ICSV700, IS2205) and one cultivated, susceptible (Swarna) to infestation by insect pest *C. partellus* were grown in the fields at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India (Table 1). Plants were grown in a randomized complete block design (RBD) (Fig. 1) containing 4-row plots of 2 m length, with ridges 75 cm apart. The seedlings were thinned and the planting was maintained at 20 seedlings per 2 m row. The infestation with *C. partellus* was carried out in fields 18 days after germination with the help of the Bazooka applicator [5]. Un-infested rows were maintained as a control. Young leaves (5–8 g)
Fig. 1 (See legend on next page.)
from insect-infested and the un-infested (control) plants were collected 5 days post infestation and flash-frozen in liquid nitrogen. It has been reported that plants signal defense against insect pests at a local level, in plant tissue damaged by the insect as well as at the systemic level, in an undamaged part of the plant [31–33]. Leaves represent a systemic tissue of *C. partellus* infested *S. bicolor* plants as the actual feeding by insect happens at the leaf bases and in the stem. Leaves collected from five plants were pooled and considered as a biological replicate, and two such replicates were collected per treatment. This was done for all the three *S. bicolor* genotypes with *C. partellus* infestation (A, C, E) and control (steady-state) (B, D, F) treatments as abbreviated and detailed in Table 2.

Insect rearing and artificial infestation

C. partellus larvae were obtained from the insect rearing laboratory at the ICRISAT, Patancheru, India. The insects were reared on *S. bicolor*-based semi-synthetic artificial diet under controlled conditions (16:8 h L: D at 25 ± 1 °C and 65 ± 5% RH) as reported [5]. Newly emerged larvae were mixed with poppy seeds and released onto the leaf whorls of 18–20 days old plants by the Bazooka applicator [5]. About 10 larvae were released on each plant using two strokes of the Bazooka.

Protein extraction, LC-MS/MS and data analysis

Total protein extraction was done using a phenol extraction method as described earlier [34]. In short, *S. bicolor* leaf tissues stored at −80 °C were ground to a fine powder in liquid nitrogen with mortar and pestle. The total proteins were extracted from the frozen leaf powder (~1.5 g) using the phenol extraction method and they were isolated from leaves and subjected to *in-solution* digestion. The MS-MS analysis was performed with SYNAPT HDMS™ and *S. bicolor* proteome was used for protein identification. Proteins were analyzed using non-parametric multivariate tests using R. Further, gene ontology and gene expression analysis of proteins were performed to obtain three technical replicates corresponding to each biological replicate (Table 1). The instrument was operated and controlled by MassLynx4.1 SCN781 software. The peptide resolution conditions were as detailed by Sharan et al [34]. SYNAPT™ G2 High Definition MS System (HDMS™ System) (Waters Corporation, Milford, USA) was used to carry out mass spectrometry analysis of eluting peptides with instrument settings as; nano-ESI capillary voltage − 3.4 kV, sample cone - 40 V, extraction cone - 4 V, IMS gas (N₂) flow - 90 (ml/min). All analyses were performed using positive mode ESI using a Nano-LockSpray™ source as detailed in [34]. Protein identification and label-free relative protein quantification were done by analyzing LC-MS/MS data using ProteinLynx Global Server™ v2.5.3 (PLGS, Waters Corporation) for each technical replicate. Noise reduction thresholds for low energy scan ion, high-energy scan ion, and peptide intensity were set at 150, 50 and 500 counts, respectively as suggested by the manufacturer. A peptide was required to have at least two assigned fragments, and a protein was required to have at least 2 assigned peptides and 3 assigned fragments for identification. *S. bicolor* database downloaded from the UniProt database (http://www.uniprot.org/proteomes/UP000000768; the number of sequences 41,380) was searched for protein identification and the protein false positive rate was set to 4%. A ratio of > 1.5 represented over-represented proteins and < 0.65 represents under-represented proteins (Fig. 3, Supplementary Data 1). The number of proteins identified in each of the biological and technical replicates of the *S. bicolor* genotypes is reported in Table 1.

In house statistical analysis of the proteomics data

Proteomics data from the *S. bicolor* genotypes at steady state and upon in field *C. partellus* infestation (consisting of two biological replicates per treatment with three technical replicates each) was analyzed using multiple non-parametric statistical tests. The pipeline used for analysis was developed in-house using R (https://www.R-project.org/) for comparing multiple treatments simultaneously. Considering the biological and technical runs samples (A-F) was represented by six replicates each. Proteins found in at least two technical replicates were considered as truly present and were used for further analysis. The protein data along with the intensity values were log-transformed with base 2 and median
normalization was carried out to remove the effect of outliers. Kruskal-Wallis test (for multiple groups) was used instead of ANOVA to compare the results among the samples as it is more robust, can handle an unequal number of observations and non-parametric method that works better for small sample sizes. The p-values were adjusted to control the false discovery rate at 5%. Multivariate statistical techniques viz. Cluster Analysis, Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) were used to study the similarities and differences among protein expression patterns from different samples (Fig. 2). An average of all technical and biological replicates was used to avoid the problem of missing values during cluster analysis. As a result, for each protein, we had only six readings, one corresponding to each treatment.

In PCA, proteins identified from each technical replicate were used independently. The missing values were replaced by zeros. Proteins showing significantly different abundance from both ends of the S-plot were identified (in all 68 proteins) and studied separately to examine their behavior in each of the six groups (Table 3). The proteins commonly found in all treatments were subjected to pair-wise comparisons using the Mann-Whitney test (a non-parametric equivalent of the t-test, which can handle an unequal number of observations), to identify the proteins which were differentially expressed in either susceptible/resistant or induced/un-induced samples. Proteins not commonly found across samples (A-F) were further studied in the following ways: (i) proteins uniquely present in an individual sample, (ii) proteins common in Chilo partellus induced S. bicolor were studied as ACE comparison group and (iii) proteins common in the steady-state samples were studied as (iii) BDF comparison group represented in (Fig. 4). In the case of the infested group (ACE) and un-infested group (BDF), averaged out log-transformed data for each protein from all technical replicates was used to generate a normalized (across comparison groups) heat map using MeV 4.9.0 Multiple Experiment Viewer [36].

GO classification, pathway enrichment analysis
The functional classification of identified proteins was carried out using the UniProt database [37]. Further, gene ontology (GO) analysis of identified differentially expressed proteins was carried out using the PANTHER tool [38]. Common proteins, unique proteins, proteins from infested and un-infested samples were analyzed for molecular function, biological process and cellular component using accession number as an ID and S. bicolor as an organism in the PANTHER tool. Analysis type was selected as functional classification viewed in a pie chart. The pathway enrichment analysis of differentially expressed proteins identified from ProteinLynx Global Server™ v2.5.3 (PLGS, Waters Corporation), was done using g:Profiler web server (Fig. 3C) [39].

Relative expression profiles of candidates from proteomics data
Poly-house grown, 3 weeks old S. bicolor seedlings of - Swarna (susceptible) & ICSV700, IS2205 (resistant) were used for gene expression analysis. C. partellus extract prepared in water was applied to mechanically wounded leaves to mimic the insect infestation (W + E). In control samples, wounding was followed by the application of water (W + W) to the leaf. Leaf samples were collected 3 h and 24 h post-treatment. Total RNA was extracted using the Macherey-Nagel NucleoSpin Plant II kit (Macherey Nagel Co., Duren, Germany) according to the manufacturer’s instructions. The concentration of RNA was measured using Nano-Drop (Eppendorf, Biophotometer plus,

Table 1 Characteristics of S. bicolor genotypes used in the proteomics study

Characteristics	S. bicolor genotypes	ICSV700	IS2205	Swarna
Panicle	Fully exerted, compact, elliptic and presence of awns.	Semi-compact and elliptic. Panicle weight of 53 g.	Fully exerted, loose, erect and absence of awns.	
Flowering	It takes 80–85 days to flower and matures in 120–125 days.	Takes about 80 days to flowering, and matures in about 90–100 days.	Flowering takes place after 65 days.	
Grains	Lustrous, small-sized grains and 55% grain covered with glumes. 100 seeds weigh around 2.3 g.	White, lustrous. 100 seed weight of 2.6 g.	Lustrous and around 25% grains are covered with glumes. Mass of 100 seeds is around 3.5 g.	
Plant height	250 cm	250 cm	up to 166 cm	
Insect Resistant/Susceptible	Moderately Resistant	Resistant	Susceptible	

Morphological, growth, seed features and Chilo partellus susceptibility of the three S. bicolor genotypes used [30]
Fig. 2 (See legend on next page.)
Hamburg, Germany). The integrity of RNA samples was checked by agarose gel electrophoresis and 2 μg RNA was used for cDNA synthesis using a cDNA synthesis kit (High capacity cDNA Reverse Transcription kit, Applied Biosystems, Foster City, California, United States) as per the manufacturer’s guidelines. Real-time quantitative PCR (7500 Fast real-time PCR systems, Applied Biosystems, Foster City, California, United States) was used to check expression levels of the candidates identified from proteomics analysis using gene-specific primers synthesized at IDT (Coralville, Iowa, United States) (Supplementary Table 3), with the help of GoTaq® qPCR Master Mix (Promega Corporation, Madison, USA). Tubulin was used as a reference house-keeping gene for analysis. The data from 3 biological replicates of leaves were analyzed with 4 technical replicates each. Threshold cycle values (Ct) were used to calculate ΔCt = CtGene of interest - CtTubulin and represented as fold change 2ΔΔCt in the graphs (Fig. 5). The uninduced control sets for all the 3 genotypes were compared and analyzed using Tukey’s HSD test and indicated by different letters showing significant difference in expression values (Fig. 5). The water treatment (W + W) and insect extract-treated samples (W + E) were compared to the respective controls with the help of a two-tailed Student’s t-test with unequal variance with the threshold of p < 0.05.

Results

C. partellus infestation induces differential shifts in leaf proteomes of three different S. bicolor genotypes

The selected S. bicolor genotypes namely ICSV700, IS2205 and Swarna varied for their insect susceptibility/resistance and other agronomic traits like plant height, panicle, flowering time, grain characters and grain mass (Table 3). The earlier studies had indicated that ICSV700 and IS2205 were having moderate to good resistance to insect pests respectively, while Swarna was insect susceptible, but displayed desirable agronomic traits namely early flowering, lower plant height and higher seed mass [30]. The leaf proteomics of these three S. bicolor genotypes at steady-state (uninduced) and induced with the insect pest C. partellus was carried out to identify the S. bicolor proteins responsible for insect resistance (Fig. 1). The proteome data consisted of 967 characterized proteins, of which 232 were commonly detected in all treatments, 93 were differentially abundant across treatments, proteins common to a subset of treatments namely -induced A, C, E and steady-state B, D, F were 72 and 80 respectively, while the sum of proteins uniquely detected in each treatment (A-F) were 617. Multivariate analysis of the proteomics data in the form of PCA (Supplementary Fig. 1) and OPLS-DA was performed on all proteins identified in the study. The results indicated the overall distribution of the samples (A-F) and closeness of the biological and technical replicates (except C, D of the S. bicolor IS2205) (Fig. 2A). Based on their separation along the X-axis of OPLS-DA (T score) the resistant S. bicolor genotype ICSV700 in the uninduced state (B) was strikingly different from the rest of the two. Moreover, upon C. partellus induction both the resistant genotypes ICSV700 (A) and IS2205 (C) showed a remarkable proteomic alteration as compared to their corresponding uninduced states (B, D) as indicated by the difference in the T score (Fig. 2A).

The S-plot helped demarcate the overall significantly differential proteins from the S. bicolor proteome (Fig. 2B) as detailed in (Table 2). Twenty two proteins from the upper end and 46 from the lower end of the S-plot were identified as significantly differential. Their gene ontology indicated that they were involved in defense and immunity, calcium-binding and signaling, cell wall modifications and catalytic activities; whereas the proteins with less abundance were mostly involved in translation, signaling, and different catalytic activities (Table 2). These proteins may positively or negatively regulate S. bicolor’s interaction with C. partellus through their involvement in defense, biotic and abiotic stress tolerance, detoxification, enzyme inhibition, hydrolysis activities and signaling.

Cluster analysis was performed on the proteins commonly detected in all the treatments (A-F) (Fig. 2C). The
analysis indicated that the proteins from the uninduced *S. bicolor* samples (B, D, F) clustered separately from the *C. partellus* induced samples (A, C, E). Moreover, the insect-resistant *S. bicolor* genotypes namely ICSV700 and IS2205 (represented by A, B and C, D) clustered separately from the insect susceptible *S. bicolor* Swarna (E, F).

Ninety three proteins were found to be differentially expressed in the *S. bicolor* genotypes (A-F), of which 57 proteins displayed similar abundance patterns in the three *S. bicolor* genotypes (Supplementary Fig. 2), representing a fraction of defense response commonly induced by the genotypes upon *C. partellus* infestation. These protein species were further categorized into two

Table 2 Summary of *in solution* proteomics study of leaves of three *S. bicolor* genotypes at steady-state & upon *C. partellus* infestation

Genotype	Sample code	Treatments	Tech. replicates	No. of proteins
ICSV700 (Resistant)	A	Infested	1	384
			2	291
			3	347
		Infested	1	396
			2	392
			3	388
	B	Steady-state	1	538
			2	450
			3	448
		Steady-state	1	367
			2	313
			3	355
IS2205 (Resistant)	C	Infested	1	426
			2	368
			3	378
		Infested	1	380
			2	359
			3	338
	D	Steady-state	1	483
			2	421
			3	425
		Steady-state	1	440
			2	364
			3	312
Swarna (Susceptible)	E	Infested	1	324
			2	290
			3	298
		Infested	1	370
			2	306
			3	257
	F	Steady-state	1	313
			2	332
			3	340
		Steady-state	1	347
			2	327
			3	289
patterns- Pattern1 with 38 proteins downregulated upon *C. partellus* infestation and Pattern2 with 19 proteins upregulated upon *C. partellus* infestation in *S. bicolor* genotypes compared to the steady-state (Supplementary Fig. 2). The remaining 36 proteins were important as they were differentially abundant in the resistant and susceptible *S. bicolor* genotypes. They were further grouped into Pattern3 (11 proteins) and Pattern4 (25 proteins) representing under-represented and over-represented proteins in *C. partellus* induced *S. bicolor* respectively, with contrast in protein expression displayed by one of the *S. bicolor* genotypes (Fig. 2D; Supplementary Fig. 3). Pattern3 proteins indicated that the biological process of translation was contrastingly upregulated in resistant *S. bicolor* genotypes. Proteins like Photosystem II subunit, germin-like protein, serine hydroxyl methyltransferase and ATPase alpha subunit were prominent in *C. partellus* induced susceptible Swarna (E) whereas they were under-represented in corresponding treatments of resistant genotypes, ICSV700 (A) and IS2205 (C). In the Pattern4 insect susceptible *S. bicolor* Swarna displayed an under-representation of the proteins which were involved in the biosynthetic process, cellular nitrogen compound process and cellular amino acid metabolism, represented by proteins like glycine-rich protein 2, NAD(P)H-quinone oxidoreductase subunit, profilin-4, Co-chaperone CGE1 isoform b, cysteine synthase, non-specific lipid transfer protein and superoxide dismutase. Ribulose bisphosphate carboxylase, ATP synthase subunit beta, extracellular calcium-sensing receptor and elongation factor 1- delta were upregulated in the *C. partellus* induced resistant *S. bicolor* genotype IS2205 (C) whereas they were under-represented in the other genotypes.

Analysis of differential proteins identified in a pairwise comparison of *S. bicolor* genotypes upon *C. partellus* infestation and at steady-state using ProteinLynx global server™ v2.5.3 (PLGS, waters corporation)

Leaf proteomes of *C. partellus* induced and steady states of genotypes of *S. bicolor* were compared with the help of ProteinLynx Global Server™ v2.5.3 (PLGS, Waters Corporation) to identify over-represented (fold change > 1.5) and under-represented (fold change < 0.65) proteins. These proteins were compared to identify proteome similarities/differences amongst the genotypes (Fig. 3, Supplementary Data 1). Most of the differential proteins identified in the pair-wise comparisons were not shared...
Status	Key	Accession No.	Name of Protein/Similar Protein	Function/GO
Up	372	CSX1U2	Calmodulin	Calcium ion binding (GO:0005509), calcium-mediated signaling (GO:0019722)
Up	656	CSYSK7	similar to Pathogenesis related protein S	Defense response (GO:0006952)
Up	1292	CSYBE9	Chitin-binding type-1 domain-containing protein	Chitinase activity (GO:0004568)
Up	1510	CSYSK6	similar to Thaumatin like pathogenesis related protein 1	Defense response (GO:0006952)
Up	5767	CSZON8	Peroxidase	2 phenolic donor + H2O2 = 2 phenolic radical donor + 2 H2
Up	6674	CSXHS1	similar to β-1,3-glucanase	Hydrolysis of O-glycosyl compounds, Carbohydrate metabolic process
Up	9254	CSXCE2	similar to Zeamatin-like protein	Inhibition of trypsin and α-amylases, Defense response (GO:0006952)
Up	9604	CSZ469	Peroxidase	2 phenolic donor + H2O2 = 2 phenolic radical donor + 2 H2O
Up	13,645	CSZ3A0	SCP domain-containing protein	similar to pathogenesis-related protein
Up	14,437	CSWWX5	similar to Histone2A	Photosystem II repair (GO:0010206)
Up	17,199	CSZ9A2	similar to Thylakoid luminal 16.5 kDa protein	
Up	19,206	CSWT31	similar to DPP6 N-terminal domain-like protein	
Up	23,877	CSYLY5	similar to Ribosome-recycling factor	Peptidase activity
Up	26,193	CSY817	similar to Carboxyl terminal peptidase precursor	
Up	26,971	CSX8S2	SCP domain-containing protein	Cysteine rich secretory protein, allergen V5/Tpx-1
Up	28,788	CSWQE1	similar to α-amylase/trypsin inhibitor	
Up	30,151	CSZ8N5	Expansin-like EG45 domain-containing protein	Chitinase activity
Up	31,567	CSYE3	similar to Abscisic acid stress ripening 3	
Up	31,569	CSYSD6	Barwin domain-containing protein	Defense response to bacterium (GO:0042742) or fungus (GO:0050832)
Down	34	A1E9V4	Cytochrome b6	Component of the cytochrome b6-f complex
Down	102	A1E9W6	30S ribosomal protein L2, chloroplastic	Mitochondrial translation (GO:0032543)
Down	121	A1E9W0	30S ribosomal protein S8, chloroplastic	Translation (GO:0006412)
Down	260	CSYH12	Caffeic acid O-methyltransferase	Flavonol biosynthetic process (GO:0051555)
Down	353	CSXYX5	similar to 60S ribosomal protein L11-1	Translation (GO:0006412)
Down	1163	CSX1Q1	similar to Hydroxyproline-rich glycoprotein family protein	
Down	1442	CSY065	Lipase_3 domain-containing protein	Lipid metabolic process (GO:0006629)
Down	1979	CSYIF8	Obg-like ATPase 1	ATPase activity (GO:00016887), Negative regulation of response to salt stress (GO:1901001)& defense response to bacterium (GO:1900425)
Down	3699	CSYRK9	similar to Pentatricopeptide repeat-containing protein	RNA modification (GO:0009451)
Status Key	Protein Accession No.	Name of protein/similar protein	Function/ GO	
------------	----------------------	-------------------------------	-------------	
Down 4242	C5XW30	similar to Phorphobilinogen deaminase	It catalyzes head to tail condensation of four porphobilinogen molecules releasing 4 ammonia molecules	
Down 5841	C5YRL0	Non-specific lipid transfer protein	Bifunctional protease and alpha amylase inhibitor inhibitor, lipid binding (GO:0008289), lipid transfer (GO:0006869) protein	
Down 6172	C5XYT6	FAD_binding_3 domain-containing protein	FAD binding (GO:00719494), Geranylgeranyl reductase activity (GO:0045550)	
Down 10,362	C5YL07	Aldehyde domain-containing protein	Beteain-aldehyde dehydrogenase activity (GO:0008802), Response to anoxia (GO:0071454)	
Down 11,647	C5WTC9	Ribosomal_L16 domain-containing protein	Translation (GO:0006412)	
Down 12,657	C5Z267	similar to 60S ribosomal protein L9	Cytoplasmic translation (GO:0002181)	
Down 14,425	C5YAD0	similar to 60S ribosomal protein L6	Cytoplasmic translation (GO:0002181)	
Down 15,418	C5SEA1	similar to Fructose-bisphosphate aldolase 1, chloroplastic isoform X1		
Down 15,466	C5YHF2	similar to Rubredoxin family protein		
Down 15,661	C5X284	40S ribosomal protein S8	Translation (GO:0006412)	
Down 15,716	C5WZ25	Tubulin beta chain	GTPase activity (GO:0003924), microtubule cytoskeletal organization (GO:000226)	
Down 16,668	C5YA8	Pyruvate kinase	ATP + pyruvate = ADP + H+ + phosphoenolpyruvate, Glycolytic process (GO:0006036)	
Down 17,564	C5YCD5	PhKB domain-containing protein	Adenosine kinase activity (GO:0004001), Purine ribonucleoside salvage (GO:0006166)	
Down 18,075	C5YXW7	Guanosine nucleotide diphosphate dissociation inhibitor	Rab GTPase binding (GO:0017137), small GTPase mediated signal transduction (GO:0007264)	
Down 19,332	C5X6V0	similar to Extracellular ribonuclease LE	RNA catabolic process (GO:0006401)	
Down 19,346	C5YG66	Aminomethyltransferase	Aminomethyltransferase activity (GO:0004047), Glycine decarboxylation via glycine cleavage system (GO:0019464)	
Down 21,133	C5YG29	similar to 60S ribosomal protein	Translation (GO:0006412)	
Down 22,396	C5YCD6	Phenylalanine ammonia-lyase	L-phenylalanine = NH4+ + trans-cinnamate, Cinnamic acid biosynthetic process (GO:0009800), L-phenylalanine catabolic process (GO:0006559)	
Down 22,977	C5WTZ6	40S ribosomal protein S4	Translation (GO:0006412)	
Down 23,733	C5YXS7	40S ribosomal protein S4	Translation (GO:0006412)	
Down 23,995	C5YU66	similar to Heat shock 70 kDa protein 4	Stress response	
Down 24,630	C5YJP1	HATPase_c domain-containing protein	Unfolded protein binding (GO:0051082), Response to chlorate (GO:0010157), heat (GO:0009408), salt stress (GO:0009651), water deprivation (GO:0009414)	
Down 25,743	C5XZ55	similar to Formate tetrahydrofolate ligase		
Down 25,986	C5WXD2	similar to Protein TIC110, chloroplastic		
Down 26,465	C5XTT8	Phenylalanine ammonia-lyase	L-phenylalanine = NH4+ + trans-cinnamate, Cinnamic acid biosynthetic process (GO:0009800), L-phenylalanine catabolic process (GO:0006559)	
Down 28,031	C5XIT6	Pectinesterase	[(1 \rightarrow 4)-α-D-galacturonic methyl ester(n) + n H2O = [(1 \rightarrow 4)-α-D-galacturonic acid](n) + n H+ + n methanol, cell wall modification (GO:0042545)	
Down 28,874	C5YMU8	similar to Puromycin-sensitive aminopeptidase		
Down 29,216	C5YPW8	similar to ATP-citrate synthase	ATP binding (GO:0005524)	
Down 30,018	C5WZ87	similar to Ribosomal protein S9	Translation (GO:0006412)	
Down 30,990	C5X118	S-adenosylmethionine synthase	ATP + H2O + L-methionine = diphosphate + phosphate + S-adenosyl-L-	
between the 3 genotypes, signifying unique ways of each genotype to deal with the *C. partellus* induction (Fig. 3A & 3B). The enrichment analysis of over-represented proteins from Swarna and ICSV700 is involved in photosynthesis or carbon fixation. Under-represented proteins were enriched for the ribosome, protein processing in the endoplasmic reticulum, biosynthesis of amino acids (Fig. 3C). The gene ontology analysis of these proteins indicated that the majority of them were involved in cellular and metabolic processes related to binding and catalytic activities. It is important to note that *S. bicolor* upon *C. partellus* infestation suppresses the accumulation of several proteins from these GO categories and initiates the accumulation of other proteins representing the same categories (Fig. 3D). Under-representation of proteins related to response to stimulus in Swarna was one interesting find from this analysis. To maximize the useful information derived from the data, the induced and un-induced states were compared separately in further analysis.

GO analysis of differential proteins in *C. partellus* induced *S. bicolor* (A, C, E) and *S. bicolor* at steady state (B, D, F)

Comparing the insect-induced (A, C, E) or steady-state (B, D, F) treatments across *S. bicolor* genotypes helped to widen the analysis by maximizing the information obtained (Fig. 4). The comparison amongst the three treatments led to the identification of a higher number of differential proteins and also account for the intrinsic differences amongst the varieties. The analysis was done on 72 and 80 proteins differentially abundant in *C. partellus* induced *S. bicolor* genotypes (A, C, E) or at steady state (B, D, F) respectively (Supplementary Table 2 and Fig. 4). Of the set, a large number of protein species were significantly differentially abundant in the susceptible genotype Swarna than resistant genotypes. It represented the protein species through which both the resistant *S. bicolor* genotypes responded similarly to the *C. partellus* infestation. Intriguingly, protein species that were found to be differentially abundant in both the resistant *S. bicolor* genotypes either at steady state or upon *C. partellus* infestation were found to be involved in cellular metabolic processes, organic substance metabolic process, nitrogen compound and small molecule metabolic process, oxidation-reduction and response to abiotic stimuli (Fig. 4C). These proteins had the molecular function (MF) of binding and catalytic activity though these were represented by different proteins in A, C, E or B, D, F comparisons (Supplementary Table 2).

The *S. bicolor* resistant genotypes are rich in unique proteins

The resistant genotype ICSV700 was found to contain the highest number of unique proteins at steady-state - (B) (180) followed by the other resistant *S. bicolor* IS2205 - (D) (135) while the *C. partellus* induced ICSV700 (A) also displayed around 105 unique proteins (Fig. 5). The GO analysis of the unique proteins identified in each indicated that the molecular functions such as catalytic activity, binding, structural molecular activity were represented predominantly from un-induced resistant genotypes, ICSV700 (B) and IS2205 (D) whereas these functions were very low in the susceptible variety, Swarna. The biological processes like cellular process, metabolic process, cellular component, localization, response to stimulus and cellular components like membrane, macromolecular complex, cell part, organelle
Fig. 4 (See legend on next page.)

(A)

(B)

(C)

Signal transduction
Cell communication
Regulation of biological process
Cellular comp. organization
Regulation of biological quality
Response to chemical
ATP metabolic process
Cellular component biogenesis
Catabolic process
Response to stress
Cellular response to stimulus
Protein folding
Response to abiotic stimulus
Oxidation-reduction process
Biosynthetic process
Small mol. metabolic process
Nitrogen comp. met. process
Primary metabolic process
Organic substance met. proc.
Cellular metabolic process
Guanyl-nucleo. ex. wt. activity
Transferase activity
Ligase activity
Cofactor binding
Amide binding
Translation regulator activity
Lyase activity
Small molecular binding
Drug binding
Carbohydrate deriv. binding
Oxidoreductase activity
Hydrolyase activity
Protein binding
Ion binding
Structural const. of ribosome
Organic cyclic comp. binding
Heterocyclic comp. binding

Biological processes

Molecular function

No. of proteins
were also higher in unique proteins found in un-induced S. bicolor resistant genotypes, ICSV700 and IS2205.

The top 10 most abundant unique proteins from each sample (A-F) are listed in Table 4. The C. partellus induced ICSV700 (A) showed the presence of proteins like β-caryophyllene synthase involved in indirect defense; RPP-13 like protein, Ankyrin repeat domain-containing protein 2, adenylyl cyclase associated protein which plays an important defense role in plants; proteins involved in protein turnover DNA repair, wound healing was also detected. Some interesting proteins like ATP synthase CF1 alpha subunit involved in inducing changes in plant surface structures like spines were also seen. The other resistant genotype of S. bicolor IS2205 (C) upon C. partellus infestation showed the unique presence of plant defense proteins like chitinase, RPP-13 like; biotic and abiotic stress-related proteins like monogalactosyldiacyl glycerol synthase, zinc finger CCH domain-containing protein 55, thiazole synthase; and proteins involved in protein turnover over. The susceptible S. bicolor upon C. partellus induction (E), however, showed the expression of proteins like kinases, proteins involved in growth, turnover and homeostasis like adenylate isopentyl transferase, ubiquitin E3-protein ligase, triacylglycerol lipase and UDP-d-glucuronate decarboxylase.

The resistant S. bicolor genotypes ICSV700 and IS2205, at the steady-state level (B, D) and upon C. partellus infestation (A, C) had a far high number of unique proteins while susceptible S. bicolor Swarna displayed strikingly smaller number of unique proteins. The susceptible S. bicolor variety Swarna lacks the proteins involved in metabolic processes related to nitrogenous compounds, sulfur compounds, secondary metabolites and biosynthetic processes and after infestation by C. partellus, it is inefficient in the upregulation of nitrogen compound biosynthesis.

Relative expression profiles of genes corresponding to protein candidates identified in S. bicolor-C. partellus interaction proteomics
Serine hydroxymethyltransferase, germins, cyanate hydratase, β-glucanases, lipid transfer proteins (LTP), zeamatin like proteins, endochitinases, superoxide dismutase (SOD), chaperonins and 14–3-3 like proteins were selected for gene expression analysis based on their protein expression pattern in non-targeted S. bicolor proteomics study as well as their function. We set up an independent experiment (methods section 2.6) to study the candidate gene expression kinetics at early time points (3 h, 24 h) after mimicking insect infestation.

The gene expression studies were carried out in the three genotypes of S. bicolor (ICSV700, IS2205 and Swarna) under treatments namely (i) steady-state, (ii) wounding + C. partellus extract application (W + E) and (iii) wounding + water application (W + W) at 3 h and 24 h post-treatment. Distinct gene expression patterns were noted amongst the S. bicolor genotypes at steady state. Additionally, the W + E and W + W treatments also displayed differential gene expression patterns at 3 h and 24 h post-treatment across the S. bicolor genotypes. ICSV700 showed over-expression of germins, cyanate hydratase, LTP, zeamatin, endochitinase, chaperonins in W + E; whereas serine hydroxymethyltransferases, β- glucanase, SOD, 14–3-3 like proteins were under-expressed in W + E. In W + E, IS2205 genotype showed over-expression of serine hydroxymethyltransferases, germins, SOD, chaperonins and downregulation of cyanate hydratase, β- glucanase, 14–3-3 like proteins. While the susceptible genotype showed over-expression of LTP, chaperonins, and downregulation of cyanate hydratase, endochitinase, zeamatin and 14–3-3 like protein in W + E.

Over-expression of LTP and chaperonins and under-expression of 14–3-3 like proteins upon insect extract treatment were commonly observed across resistant and susceptible genotypes in W + E. Germins were differentially over-expressed in resistant genotypes in W + E treatment. Over-expression of zeamatin, endochitinase, cyanate hydratase was observed in ICSV700 while serine hydroxymethyltransferases, SOD were abundant in IS2205 in W + E treatment. The differences in over-expressed proteins in W + E in resistant genotypes suggest that they have different mechanisms to confer the resistance to the insect pest. Except for LTP and chaperonins, the susceptible genotype Swarna is not able to overexpress the genes which have a putative role in defense against the insect. The relative expression
Fig. 5 (See legend on next page.)
pattern of genes in early time points (3 h and 24 h) post treatment was correlated to the late (20 days after initiating *C. partellus* infestation) expression profile of proteins identified from non-targeted proteomic studies. Proteins like zeamatin, endochitinase showed a correlation in early gene expression and late protein expression pattern whereas, serine hydroxymethyltransferase, SOD, chaperonins, 14–3–3 like proteins showed a partial correlation across timepoints and genotypes. LTP and β-glucanase showed no correlation between the early gene expression and the late protein expression profile.

Discussion

Our study originated from the observations that the two genotypes of *S. bicolor*, ICSV700 and IS2205 are resistant to insect pests while the genotype Swarna is susceptible [1]. Proteins being one of the direct effector molecules against the insects, proteomic study on these genotypes would reveal many secrets about the plant defense [41]. We carried out a comparative proteomic analysis of *S. bicolor* – *C. partellus* interaction to identify the major protein components from *S. bicolor* genotypes responsible for resistance to *C. partellus* (Fig. 1). The study was focused on 967 characterized proteins from the *S. bicolor* proteome, their analysis which allowed us to investigate the intrinsic differences in the three genotypes of *S. bicolor* and analyze their proteomic response when induced by the pest *C. partellus*. This led to the identification of several proteins that strongly supported the insect resistance traits in *S. bicolor* genotypes, and will be important for further studies.

The study revealed that the three *S. bicolor* genotypes differentially responded to the induced infestation by *C. partellus* and also had intrinsically different proteomes at steady state levels (Fig. 2A, C). Plant domestication has led to changes in the crop plant defense pathways leading to their susceptibility (as seen in the genotype Swarna) to pests and pathogens [42], while their wild relatives and improved lines (like *S. bicolor* genotypes - ICSV700, IS2205) possess the molecular components contributing to their defense [43, 44]; the proteomic analysis of these genotypes helped in discovering the protein networks involved in strengthening plant defense to insect pests.

The differential protein complements from *S. bicolor* genotypes in response to *C. partellus*

Sixty eight proteins with differential abundance across *S. bicolor* genotypes at steady state and upon *C. partellus* infestation were identified and they were classified as significantly high or low abundance proteins (Fig. 2B; Table 2). The catalytic activities of abundant proteins were endochitinases, peroxidases and glutathione S-transferase like, all involved in promoting defense against insect pests; whereas the catalytic activities of less abundant proteins were flavone/caffeic acid 3-O-methyltransferase, ATP citrate synthase and betaine aldehyde dehydrogenase involved in the biosynthesis of a multitude of small molecules and methylated flavonoids useful in herbivore deterrence and abiotic stress [45, 46].

Cellular signaling machinery like Calmodulin-related proteins or G-protein and G protein modulators, various kinases, heat shock proteins, phenylalanine ammonia-lyase, were identified and need functional characterization to determine their contribution to *S. bicolor* pest resistance [47, 48]. Additionally, the known defense proteins like PR-5, alpha-amylase/trypsin inhibitor, osmotin, non-specific lipid transfer protein were also amongst the candidates identified, reinforcing their role in plant defense against insect pests [49, 50].

Enrichment analysis of over-represented and under-represented proteins have helped to gain a bird’s eye view of the proteome remodeling upon *C. partellus* infestation in *S. bicolor* genotypes (Fig. 3). Overall, there is more protein suppression; and selective protein accumulation as represented by the higher number of proteins in ‘response to stress’ category. The under-representation of proteins involved in translation and amino acid biosynthesis was conspicuous and as expected; but the accumulation of proteins involved in the protection and maintenance of photosynthesis upon *C. partellus* infestation, is a feature that contrasts other reports [51].

C. partellus resistant *S. bicolor* genotypes have commonalities in their proteome which are not detected in the susceptible *S. bicolor* Swarna

S. bicolor Swarna had less abundance of proteins involved in defense, signaling and protein remodeling which might negatively influence its defense against the invading lepidopteran pest (Fig. 2D; Supplementary Fig. 3; Supplementary Table 1). Swarna was seen to have high levels of PR proteins which are generally directed to deter pathogen attack, while the resistant *S. bicolor* genotypes are seen respond by signaling the activation of certain proteins having broad-spectrum activity against
Table 4 Top 10 of the uniquely represented proteins from *S. bicolor* genotypes at steady-state and upon *C. partellus* infestation

Key	Protein Accession No.	Protein Name	Function
A - *S. bicolor* ICSV700 infested by *C. partellus**			
23, 819	C5Y8S3	similar to ATP synthase CF1 alpha subunit	Chloroplastic, correlation with spiny-ness
1056	C5WWL7	similar to Beta-caryophyllene synthase	Indirect defense against Lepidoptera by attracting predators
38	C5YUK3	Flap endonuclease 1-A	Catalysis of the cleavage of a 5' flap structure in DNA, but not other DNA structures; processes the 5' ends of Okazaki fragments in lagging strand DNA synthesis, Acts as a genome stabilization factor
107	A1E9R4	DNA-directed RNA polymerase subunit beta	DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates, Nucleoside triphosphate + RNA(n) = diphosphate + RNA(n + 1)
9314	C5XSB2	similar to ADP-ribosylation factor GTPase-activating protein AGD3	Binds to and increases the activity of a GTPase, plasma membrane remodeling
19, 695	C5Y746	similar to disease resistance RPP13-like protein 3 isoform X3	Disease resistance against pathogens
28, 942	C5YHK1	similar to Ankyrin repeat domain-containing protein 2	Chloroplast targeting sequence binding
1890	C5XAM0	similar to ubiquitin-like	Protein turnover
20, 222	C5X7K7	similar to RNA polymerase beta subunit	RNA polymerization
4393	C5YLQ0	Adenylyl cyclase-associated protein	Cyclase-associated protein 1-like, cytoskeleton organization, response to pathogen

| **B** - *S. bicolor* ICSV700 at steady state |
3162	C5YWCS	similar to Proliferation-associated protein 2G4	Change in state or activity of a cell or an organism as a result of a cytokinin stimulus
28, 629	C5Z4X4	similar to reverse transcriptase, Brassinosteroid insensitive-1 like	Plant architecture
7943	C5XJS0	similar to Retrotransposon protein	Probable member of endonuclease, exonuclease, phosphatase family
13, 397	C5WSY0	similar to Arginine decarboxylase	Drought tolerance, defense
27, 809	C5XAT9	Histone H2A	DNA binding, chromatin silencing
2862	C5XCT6	Nitrate reductase	Cell signaling & survival under stress
11, 807	C5WU06	similar to FACT complex subunit SPT16	Histone binding and remodeling outside the context of DNA replication
25, 101	C5X9S7	Ribosomal protein L15	Structural constituent of ribosome, Cytoplasmic translation
14, 173	C5WQ44	similar to enolase	Phosphopyruvate hydratase activity
16, 161	C5YDVS	similar to putative quinone oxidoreductase	Oxidoreductase activity, chloroplastic

| **C** - *S. bicolor* IS2205 infested by *C. partellus** |
29, 614	C5YI1	similar to Monogalactosyldiacyl glycerol synthase 2	Thylakoid membrane biogenesis under stress
13, 788	C5YMZ5	similar to Zinc finger CCCH domain-containing protein 5S-like	ABA biosynthesis, drought, post-transcriptional regulation of gene expression
9243	C5WNH3	similar to ATP binding protein	Protein kinase activity, Serine/Threonine protein kinase STY46 like
5008	C5GY94	similar to thiazole synthase	ADP binding, Cell wall integrity, and stress response component 1-like
25,	C5YJ73	similar to Ubiquitin and WLM domain-containing	Ubiquitin and WLM domain-containing metalloprotease
Table 4 Top 10 of the uniquely represented proteins from *S. bicolor* genotypes at steady-state and upon *C. partellus* infestation (Continued)

Key	Protein Accession No.	Protein Name	Function
363	protein		
5014	CSXXC0 similar to Protein kinase domain-containing protein	Triggered in response to the presence of a foreign body or the occurrence of an injury, Introducing a phosphate group on to a protein, ATP binding, Cysteine-rich receptor-like protein kinase 26	
702	CSX8K4 similar to disease-resistant protein RPP-13 like 1	Disease resistance protein against pathogen	
17	CSZ5B4 similar to 26S protease regulatory subunit 6A-like protein	ATP binding, Interacting selectively and non-covalently with a member of the class of TATA-binding proteins (TBP), including any of the TBP-related factors (TRFs), 26S protease regulatory subunit 6A homolog	
19	CSYVH3 60S acidic ribosomal protein P0	Ribosomal subunit tRNA binding, Cytoplasmic translation	
21	C6JSV0 similar to Chitinase Catalysis of the hydrolysis of (1->4)-beta linkages of N-acetyl-D-glucosamine (GlcNAc) polymers of chitin and chitodextrins		
125	C5Y227 similar to Indole-3-acetic acid-amido synthetase GH3.3	Synthesis of IAA-conjugates, a mechanism to cope up with excess auxin	
22	CSX8X8 similar to AT-hook motif-containing protein, Helicase	NTP + H2O = NDP + phosphate, to drive the unwinding of a DNA helix, Process of restoring DNA after damage, Telomere maintenance, ATP-dependent DNA helicase PIF1-like	
125	CSXNN6 Thiamine thiazole synthase 1, chloroplastic	Involved in the biosynthesis of the thiamine precursor thiazole, Suicide enzyme, Additional roles in adaptation to various stress conditions and DNA damage tolerance	
6474	C5WWV5 similar to Inactive ubiquitin carboxyl-terminal hydrolase S3	Thiol-dependent ubiquitinyl hydrolase activity, protein deubiquitination, inactive ubiquitin carboxyl-terminal hydrolase S3	
16	CSYS29 similar to Diaminopimelate decarboxylase	Diaminopimelate decarboxylase activity, meso-2,6-diaminopimelate + H(+) = L-lysine + CO2, systemic acquires resistance	
31	CSXSW5 Glutaredoxin-like protein	Photooxidative stress, antioxidant activity	
19	CSZ949 similar to RING zinc finger domain superfamily protein	Ubiquitin specific protease binding, ERAD-associated E3 ubiquitin-protein ligase HRD1-like isoform X1	
2715	CSX0X0 similar to NEFA-interacting nuclear protein NIP30	Protein FAM192A isoform X1	
23	CSY1Y1 Peroxidase	2 phenolic donor + H2O2 = 2 phenoxyl radical of the donor + 2 H2O	
29	CSZ7K8 Pyruvate dehydrogenase E1 component subunit alpha	Catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2	

D - *S. bicolor* IS2205 at steady state

Key	Protein Accession No.	Protein Name	Function
28	CSY227 similar to Indole-3-acetic acid-amido synthetase GH3.3	Synthesis of IAA-conjugates, a mechanism to cope up with excess auxin	
22	CSX8X8 similar to AT-hook motif-containing protein, Helicase	NTP + H2O = NDP + phosphate, to drive the unwinding of a DNA helix, Process of restoring DNA after damage, Telomere maintenance, ATP-dependent DNA helicase PIF1-like	
125	CSXNN6 Thiamine thiazole synthase 1, chloroplastic	Involved in the biosynthesis of the thiamine precursor thiazole, Suicide enzyme, Additional roles in adaptation to various stress conditions and DNA damage tolerance	
6474	C5WWV5 similar to Inactive ubiquitin carboxyl-terminal hydrolase S3	Thiol-dependent ubiquitinyl hydrolase activity, protein deubiquitination, inactive ubiquitin carboxyl-terminal hydrolase S3	
16	CSYS29 similar to Diaminopimelate decarboxylase	Diaminopimelate decarboxylase activity, meso-2,6-diaminopimelate + H(+) = L-lysine + CO2, systemic acquires resistance	
31	CSXSW5 Glutaredoxin-like protein	Photooxidative stress, antioxidant activity	
19	CSZ949 similar to RING zinc finger domain superfamily protein	Ubiquitin specific protease binding, ERAD-associated E3 ubiquitin-protein ligase HRD1-like isoform X1	
2715	CSX0X0 similar to NEFA-interacting nuclear protein NIP30	Protein FAM192A isoform X1	
23	CSY1Y1 Peroxidase	2 phenolic donor + H2O2 = 2 phenoxyl radical of the donor + 2 H2O	
29	CSZ7K8 Pyruvate dehydrogenase E1 component subunit alpha	Catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2	

E - *S. bicolor* Swarna infested by *C. partellus*

Key	Protein Accession No.	Protein Name	Function
2587	CSXAW9 Serine/threonine-protein kinase	ATP + a protein = ADP + a phosphoprotein, reactions triggered in prevention/recovery from the infection caused by the attack	
21	CSXLE9 similar to Photosystem II CP47 reaction center protein	Chlorophyll-binding, Photosynthetic ETS, Similar to Photosystem II CP47 chlorophyll apoprotein	
21	CSXXY1 similar to Serine-threonine kinase receptor-associated protein	Inolved in defense	
13	CSYV23 similar to Adenylyl isopentenyl transferase-like	Cytokinin biosynthesis	
23	CSWW05 similar to Triacylglycerol lipase SDP1	Hydrolase activity, Catalysis of the reaction: triacylglycerol + H2O = diacylglycerol + a carboxylate, membrane protein homeostasis	
17	CSYTB0 similar to Inosine-5′-monophosphate dehydrogenase, Serine/Threonine Kinase activity		
pathogens and pests or specifically directed against the pest. These are represented by proteins like chitinases, polyphenol oxidases and zeamatin.

The analysis of Pattern3 and Pattern4 proteins led to commonly expressed yet differentially abundant proteins across treatments. Serine hydroxymethyltransferase, from Pattern3, known for constitutive expression of salicylic acid-inducible genes and H$_2$O$_2$ detoxification genes [52] responsible for reducing the endogenous oxidative stress, was over-represented in the susceptible $S. \text{bicolor}$ unlike resistant ICSV700 & IS2205 genotypes (Fig. 2D; Supplementary Table 1). It was observed in previous studies that conditions favoring oxidative stress lead to redox signaling and hormonal crosstalk responsible for fine-tuning, enhancing the defense responses in plants [53]. Further, Swarna could not accumulate proteins involved in maintaining photosynthesis upon infestation by $C. \text{partellus}$ like the resistant genotypes of $S. \text{bicolor}$ as represented by Pattern4. In the pair wise comparison of proteins expressed before and after infestation by $C. \text{partellus}$ in the $S. \text{bicolor}$ genotypes, a number of distinct proteins were identified (Fig. 3, Supplementary Data 1). Photosynthesis related proteins were strongly upregulated in ICSV700 and Swarna upon $C. \text{partellus}$ infestation, however IS2205 was seen to show least perturbations as indicated by the pathway analysis (Fig. 3C). Susceptible Swarna genotype may lack networks for fine-tuning of defense responses manifested by the absence or less abundance of several proteins detected in resistant genotypes.

The insect-resistant $S. \text{bicolor}$ genotypes were enriched with elongation factors and chaperons, represented by proteins 14–3-3 like proteins, calmodulins, heat shock proteins and glutamine synthetase signifying an accelerated protein synthesis, downstream signaling and refolding activity upon infestation (Fig. 4A, C; Supplementary Table 2). Similar proteomic turnover has been demonstrated recently in wheat plants as a response to the pest infestation [54].

Table 4: Top 10 of the uniquely represented proteins from $S. \text{bicolor}$ genotypes at steady-state and upon $C. \text{partellus}$ infestation (Continued)

Key	Protein Accession No.	Protein Name	Function
550	CSYW3	similar to UDP-D-glucuronate decarboxylase	Oxidoreductase activity, sorbitol metabolism, development
6258	CSX3	NADP-dependent D-sorbitol-6-phosphate dehydrogenase	Oxidoreductase activity, sorbitol metabolism, development
349	CSX3U1	similar to BOI-related E3 ubiquitin-protein ligase 1	Abiotic stress tolerance, protein turnover
28,758	CSYH55	similar to 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase 2	Catalytic activity, nucleoside metabolic process

Many proteins were found to be uniquely accumulated in specific genotypes and treatments. The top 10 of these unique proteins were selected based on their intensity values obtained from the in solution proteomics. The table provides the details of the proteins and their functional significance.
Fig. 6 (See legend on next page.)

(A) Serine hydroxymethyl transferase

(B) Germin

(C) Cyanate hydratase

(D) β-glucanases

(E) Lipid transfer protein

(F) Zeamatin

(G) Endochitinase

(H) Superoxide dismutase

(I) Chaperonin

(J) 14-3-3 like protein

Treatments
wheat stem sawfly [54]. 14–3-3 isoforms are differentially regulated by hormonal treatments, biotic and abiotic stress [55]; and in turn signal defense response to stresses in plants. Another protein specifically accumulated in resistant genotypes of S. bicolor was the superoxide dismutase (SOD), a radical quenching enzyme. High SOD activity has been noted in aphid-infested wheat plants [56], upon mite infestation in cassava [57] and has been strongly correlated to enhanced resistance to the invading pest. Differential SOD levels and isoform diversity are found to play a role in maintaining the cytosolic redox state which in turn regulates response to a variety of pathogens [58] and is probably important in mediating defense against Lepidopteran pests as well. Further, our proteomic analysis on insect-resistant S. bicolor indicated abundance of polyphenol oxidases (PPO) upon C. partellus infestation, unlike that in the susceptible genotype Swarna. Apart from its role in defense against pests and pathogens, our data supports the co-upregulation/co-expression of PPO with PSII and other photosynthesis proteins, signifying its function in protecting the photosynthetic apparatus and eventually in maintaining plant viability and growth [59]. Both the resistant genotypes at steady state (B, D) were rich in proteins involved in primary metabolic processes, efficient protein synthesis, regulation and nitrogen compound biosynthesis contributing to the insect resistance characters.

At steady-state both of the resistant S. bicolor genotypes were found to have a higher abundance of more than 50 proteins as compared to the susceptible genotype Swarna (Fig. 4B; C; Supplementary Table 2). These proteins were involved in maintaining a strong primary metabolism, efficient generation of energy, proficient cell communication and cell cycle in the resistant genotypes. These were represented by proteins like malate dehydrogenase which performs a key role in plant metabolism, chlorophyll a-b binding protein in photosynthesis, magnesium chelatases to regulate ascorbic acid (ABA) signaling [60, 61], Glutathione S-transferases (GST) involved abiotic stress tolerance [62]. An interesting protein namely the F-box associated LRR protein was also detected only in the resistant S. bicolor genotypes at steady-state and may be looked upon as an important contributor to defense against insects. Recent studies have highlighted the importance of rice LRR protein as a component of plant exocyst, majorly contributing resistance to the insect pest - brown planthopper (BPH) [63].

At steady-state, ICSV700 was found to have higher levels of S-adenosyl methionine synthase (SAM synthase), subtilisin, pectinesterase, PPO, ascorbate peroxidase. Enhanced plant defense against insect pests has been demonstrated by SAM synthase through its role in polyamine synthesis [64], subtilisin, pectin esterases [65], polyphenol oxidases [66] and ascorbate peroxidase [67] showing them to be interesting candidates for reverse genetic studies and further elucidation of their mechanisms in defense (Fig. 4B and Supplementary Table 2).

Distinctive proteomic features of S. bicolor genotypes

A high number of unique proteins in resistant S. bicolor, even at steady-state, indicated that they may act synergistically to maintain the resistance against pests, thereby, reducing the chances of infestation (Fig. 5; Table 4). Some of the high expressing unique proteins from S. bicolor ICSV700 at steady-state are involved in the development, maintenance of plant architecture, defense and drought tolerance represented by proliferation-associated protein 2G4, FACT complex subunit SPT16, brassinosteroid insensitive-1 like protein [68], arginine decarboxylase and nitrate reductase [69] respectively. While upon infestation by C. partellus, S. bicolor ICSV700 uniquely expressed several transcription factors and enzymes which were involved in defense against pathogens, indirect defense to herbivorous pests, development of defensive structures, wound healing /cell proliferation and showed high protein remodeling and turnover. Notable amongst them were the ATP synthase CFI alpha subunit, β-caryophyllene synthase, and Ankyrin repeats domain-containing protein. β-Caryophyllene synthase is known to enhance the volatile emission from S. bicolor attracting C. partellus’s larval parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae) [70]. It is exciting to detect it in infested resistant variety ICSV700 and it also explains different strategies taken by the genotypes to deter the pest. When cultivated maize varieties were not able to express β-Caryophyllene synthase upon C. partellus infestation, it rendered them susceptible to insect pests [71, 72]. Ankyrin repeat
domain-containing proteins are involved in growth, development, protein-protein interactions and have a potential role in plant defense [73].

The other resistant variety IS2205 at steady-state uniquely expressed proteins involved in mediating stress tolerance, conferring antioxidant property and plant resistance represented by peroxidases, thiamine thiazole synthase 1, glutaredoxin and IAA amido synthase GH3, diaminopimelate decarboxylase respectively (Fig. 5; Table 4). While upon C. partellus infestation it uniquely expressed proteins involved in signaling stress tolerance like monogalactosyldiacyl glycerol synthase, zinc finger CCCH domain-containing protein, thiazole synthase; and proteins involved in direct defense signaling like RPP-13 like and chitinase. Maintaining thylakoid membrane biogenesis and stomata opening for retention of photosynthetic capacities in plants under stress is a prominently noted process in IS2205 S. bicolor genotype mediated by monogalactosyldiacyl glycerol synthase and thiazole synthase [74, 75]. Further, NBS-LRR family protein RPP-13 is an important contributor to disease, insect herbivore resistance and also abiotic stress tolerance in plants [63, 76].

In contrast to the S. bicolor resistant varieties the susceptible variety Swarna at steady-state uniquely expressed proteins involved in development and homeostasis and upon C. partellus infestation proteins for development, stress management/defense and homeostasis represented by adenylate isopentenyltransferase, sorbitol-6-phosphate dehydrogenase, serine-threonine kinases, BOI related E3 ubiquitin-protein ligase and triacylglycerol lipase SDP1 respectively were expressed (Fig. 5 and Table 4). Serine/threonine kinases are involved in a wide array of processes ranging from signal transduction, disease resistance, developmental regulation to self- versus non-self-recognition [77] and plant defense response signaling against the pathogen [78, 79]. Ubiquitin/proteasome system (UPS) plays an important role in proteome remodeling in plant-virus interactions, defense against pathogens and survival during environmental stress [80, 81].

The dynamics of gene expression and protein accumulation lead to differences in the correlation of gene vs proteomics profiles in S. bicolor

The gene expression profiles of selected genes thought to be involved in insect defense were studied in S. bicolor upon wounding and/or insect extract-treatment. The analysis confirmed that S. bicolor genotypes responded differently to the insect extract and wounding treatments. The analysis indicated that early gene expression profiles of only some gene candidates correlate with the late proteomic profiles. The differences in proteomic vs gene expression studies in S. bicolor can be attributed to the variation in age of plants used; field-grown vs polyhouse grow plants; actual C. partellus infestation vs mimicking of the infestation and prolonged infestation vs early hours after mimicking infestation in the S. bicolor genotypes respectively. The differences in the proteomic and mRNA expression patterns are noted in many studies and have been attributed to the existence of gene isoforms [82]; feedback regulatory circuits [83] and can be indicative of varied rates of protein translation or post-translational regulations [84].

Conclusions

In conclusion, the proteomic analysis of 967 proteins from S. bicolor genotypes at steady-state and upon infestation by C. partellus was performed. The different statistical comparisons amongst the genotypes and treatments revealed the proteins which would be important for insect defense in S. bicolor. Due to the intrinsic limitations associated with protein annotations, there is a possibility of missing out on some very interesting proteins which are yet to be functionally annotated. However, the present analysis has revealed several proteins that are probably individually or synergistically used by undomesticated S. bicolor genotypes to strengthen its resistance to insect pests. The differentially expressed proteins in resistant vs susceptible S. bicolor genotypes and the uniquely expressed proteins identified, potentially contribute to the build-up of defense against C. partellus using different mechanisms. Further analysis of the protein-protein interactions, pathways and reverse genetic approach would help to identify the different strategies plants may adopt simultaneously to fight against insect pests and to develop agronomically beneficial yet insect-resistant crop plants.

Abbreviations

JA: Jasmonic acid; SA: Salicylic acid; ROS: Reactive oxygen species; RBD: Randomized complete block design; GO: Gene ontology

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12953-021-01173-z.

Additional file 1: Supplementary Figure 1. PCA plot across different treatment groups in S. bicolor - C. partellus interaction proteomic]. The PCA score plot shows the variation amongst different treatments and biological and technical replicates. Supplementary Figure 2. GO analysis of proteins commonly expressed across resistant & susceptible S. bicolor upon C. partellus infestation] Proteins down-regulated in infested samples (highlighted in blue) and up-regulated in control samples are included in Pattern1 whereas Pattern2 indicates proteins that are up-regulated in infested samples (highlighted in red) and down-regulated in control samples. GO of proteins displaying Pattern1 (38) and Pattern2 (19) are indicated molecular function (A) biological processes (B) cellular component (C). Supplementary Figure 3. GO biological process analysis of differentially expressed proteins across treatments in S. bicolor genotypes. Commonly present yet differential abundance proteins were classified into patterns based on their expression across S. bicolor genotypes.
Acknowledgments
This work was supported by the Young Scientist research grant to VT from the Science and Engineering Research Board, Department of Science and Technology, Government of India, India. Grant Number SB/YS/S-132/2013. The authors express great thanks to Dr. Vandana Mhaske for her valuable suggestions and editing of the manuscript. The funding support from the Departmental Research and Development Program (DRDP), Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune is acknowledged.

Conflict of interest
The authors declare no competing financial or non-financial conflict of interest.

Authors’ contributions
VT conceived, planned, supervised and procured funding for the project; AJ performed the field experiment and AJ, SS performed the laboratory experiments; AJ, SS, VT collected and analyzed the data; AW and HS suggested the plant genotypes be used and provided the field experimentation; AJ carried out the MS experiments and analysis; AK and SS carried out the statistical analysis of the data; SS, AK, AJ and VT prepared the figures and illustrations; VT and SS wrote the manuscript with inputs from the other authors. The authors read and approved the final manuscript.

Authors’ information
SS and AJ contributed equally to this work.

Funding
This work was supported by the Young Scientist research grant to VT from the Science and Engineering Research Board, Department of Science and Technology, Government of India, India. Grant Number SB/YS/S-132/2013.

Availability of data and materials
The data in excel sheets has been attached with the manuscript as supplementary files. Any other data set generated in the study will be made available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Ethical approval was not needed for this work. All authors and participating institutes willing participated in the study.

Consent for publication
Not applicable.

Competing interests
Authors declare no competing interests.

Author details
1. Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Ganeshkhind Road, Pune, Maharashtra 411 007, India. 2. Present Address: Indian Institute of Science, Education & Research, Dr. Homi Bhaba Road, NCL Colony, Pune, Maharashtra 411008, India. 3. International Crop Research Institute for the Semi-Arid-Tropics (ICRISAT), Patancheru, Telanganga 502324, India. 4. Present Address: World Vegetable Center, South Asia, ICRISAT campus, Patancheru, Telanganga 502324, India. 5. Present Address: Dr. YSP University of Horticulture and Forestry, Nauni, Solan, HP 173230, India. 6. Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India. 7. Department of Statistics, SPPU, Ganeshkhind Road, Pune, Maharashtra 411 007, India.

Received: 14 September 2020 Accepted: 11 March 2021
Published online: 02 April 2021

References
1. Bantilan MCS, Deb UK, Gowda CLL, Reddy BV SA and ER. Sorghum genetic enhancement: research process, dissemination and impact.Int. Crop. Res. Inst. Semi-Arid Trop; 2004.
2. Ngara R, Ndimba BK. Model plant systems in salinity and drought stress proteomics studies: a perspective on Arabidopsis and sorghum. Plant Biol. 2014;16(6):1029–32. https://doi.org/10.1111/jpb.12247.
3. Labuschagne MT. A review of cereal grain proteomics and its potential for sorghum improvement. J Cereal Sci. 2018;84:151–8. https://doi.org/10.1016/j.jcs.2018.10.010.
4. Harris KM. Bioecology of Chilo species. Insect Sci Appl. 1990;11:467–77.
5. Sharma HC, Taneja SL, Leuschner K, Nwanze KF. Techniques to screen sorghums for resistance insect pests; 1992.
6. Sharma HC, Singh F, Nwanze KF. Plant resistance to insects in sorghum; 1997.
7. Sharma AN, Sharma VK. Studies on the economic injury level in maize, zea mays I. to stem borer, chilo partellus (swinhoe)pyralidae: Lepidoptera in India. Trop Pest Manag. 1987;33(3):144–51. https://doi.org/10.1080/0967087870937114.
8. Chamarti SK, Sharma HC, Sahrawat KL, Narasu LM, Dhillon MK. Physico-chemical mechanisms of resistance to shoot fly, Atherigona soccata in sorghum, Sorghum bicolor. J Appl Entomol. 2011;135(6):446–55. https://doi.org/10.1111/j.1439-0418.2010.01564.x.
9. Singh BU, Sharma HC, Rao KV. Mechanisms and genetic diversity for host plant resistance to spotted stem borer, Chilo partellus in sorghum, Sorghum bicolor. J Appl Entomol. 2012;136(3):386–400. https://doi.org/10.1111/j.1439-0418.2011.01647.x.
10. Rosenthal JP, Dirzo R. Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maize and wild relatives. Evol Ecol. 1997;11(3):337–55. https://doi.org/10.1023/A:1010842050443.
11. Whitehead SR, Turcotte MM, Poveda K. Domestication impacts on plant-herbivore interactions: a meta-analysis. Phil Trans R Soc B. 2016;372:1–9.
12. Kamala V, Sivaraj N, Pandravada SR, Rameesh K, Sharma HC, Babu BS, et al. Potential of wild relatives in sorghum improvement through molecular approaches; 2016. p. 124–5.
13. Padmaja PG, Aruna C. Advances in sorghum insect pest resistance. In: Breed. Sorghum divers. End uses: Elsevier Ltd; 2018. https://doi.org/10.1016/B978-0-08-101879-8.00018-8.
14. Dyer LA, Philippin CS, Ochsenrider KM, Richards LA, Massad TJ, Smilanich AM, et al. Modern approaches to study plant–insect interactions in chemical ecology. Nat Rev Chem. 2018;2(6):50–64. https://doi.org/10.1038/s41570-018-0009-7.
15. Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics. 2017;169:176–88. https://doi.org/10.1016/j.jprot.2017.05.018.

16. Walley JW, Shen Z, Sartor R, Wu KJ, Osborn J, Smith LG, et al. Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc Natl Acad Sci U S A. 2013;110(49):E4808–E4817. https://www.pnas.org/content/110/49/E4808.full

17. Ngara R, Ramulilho E, Movahedi M, Shargie NG, Brown AP, Chivas S. Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress. Sci Rep. 2018;8:1–12.

18. Cremer JE, Liu, Bean SR, Ohm JB, Tilley M, Wilson JD, et al. Impacts of kainin allelic diversity, starch content, and protein digestibility on ethanol conversion efficiency in grain sorghum. Cereal Chem. 2019;91(3):218–27. https://doi.org/10.1009/CHEM.04.13-0068-R.

19. Bennoussa M, Chandrashekar A, Ejeta G, Hamaker BR. Cellular response to the high protein digestibility/high-lysine (Hdhi) sorghum mutation. Plant Sci. 2015;241:70–7. https://doi.org/10.1016/j.plantsci.2015.08.025.

20. Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr Opin Biotechnol. 2014;26:115–24. https://doi.org/10.1016/j.copbiotech.2013.12.004.

21. Roy SK, Cho SW, Kwon SJ, Kamal AHM, Kim SW, Oh MW, et al. Morpho-physiological and proteome level responses to cadmium stress in sorghum. PLoS One. 2016;11(1):1–7.

22. Zhou D, Yang Y, Zhang J, Jiang F, Croll E, Thannhauser TW, et al. Quantitative iTRAQ proteomics revealed possible roles for antioxidant proteins in sorghum aluminum tolerance. Front Plant Sci. 2017;1–14.

23. Oliveira FDB, Miranda RDS, Araújo S, Coelho DG, Duarte M, Lobo P, et al. New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition. Plant Physiol BiochemElsevier Masson SAS. 2020. https://doi.org/10.1016/j.plaphy.2020.06.051.

24. Zhu L, Wang D, Sun J, Mu Y, Pu W, Ma B, et al. Phenotypic and proteomic characteristics of sorghum (Sorghum bicolor) albinic lethal mutant b65e-a1. Plant Physiol Biochem. 2019;139:1–10. https://doi.org/10.1016/j.plaphy.2019.04.020.

25. Goche T, Shargie NG, Cummings I, Brown AP, Chivas S, Ngara R. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci Rep. 2020;10:1–18. https://doi.org/10.1038/s41598-020-68735-3.

26. Oláide-Portugal V, Cabrera-Ponce JL, Gasteum-Arellana A, Guerrero-Rangel A, Winkler V, Valdés-Rodríguez S. Proteomic analysis and interactions network in leaves of mycorrhizal and nonmycorrhizal sorghum plants under water deficit. PeerJ. 2020;2020:1–29.

27. Zhu R, Zhao Z, Wang J, Bai B, Wu A, Yan L, et al. A simple sample pretreatment method for multi-mycotoxin determination in eggs by liquid chromatography tandem mass spectrometry. J Chromatogr A. 2015;1471:1–7. https://doi.org/10.1016/j.chroma.2015.09.028.

28. Padmaja PG. Insect Pest resistance in sorghum. In: Biot Stress resist. Millets: Elsevier Inc., 2016. https://doi.org/10.1016/B978-0-12-804549-7.00004-4.

29. Muturi PW, Mgonja M, Rubaihayo P. Gene action conditioning resistance traits to spotted stem borer, Chilo partellus, in grain sorghum. Int J Trop Insect Sci. 2019;39(2):147–55. https://doi.org/10.15406/ijtis.2019.00.020.

30. International Board for Plant Genetic Resources. International crops research – B. 2019. https://doi.org/10.1007/s12042-019-00020-x.

31. Kessler A, Baldwin IT. New insights into plant responses to the attack from insect herbivores. Annu Rev Plant Biol. 2010;61:1–35. https://doi.org/10.1146/annurev-arplant-033009-113631.

32. Kessler A, Baldwin IT. Plant responses to insect herbivory: the emerging network in leaves of mycorrhizal and nonmycorrhizal sorghum plants under water deficit. PeerJ. 2020;2020:1–29.

33. Wu J, Baldwin IT. Gene action conditioning resistance traits to spotted stem borer, Chilo partellus, in grain sorghum. Int J Trop Insect Sci. 2019;39(2):147–55. https://doi.org/10.15406/ijtis.2019.00.020.

34. Gaillard MDP, Glauser G, Robert CAM, Turlings TCJ. Fine-tuning the ‘plant domestication-reduced defense’ hypothesis: specialist vs generalist herbivores. New Phytol. 2018;217(1):355–66. https://doi.org/10.1111/nph.14775.

35. Martinez-Medina A, Fiers V, Heil M, Mauch-Mani B, Pietrozu M, Pozzi M, et al. Recognizing plant defense priming. Trends Plant Sci. 2016;21(10):818–22. https://doi.org/10.1016/j.tplants.2016.07.009.

36. Torp M, Lehrman A, Stenberg JA, Julkunen-Titto R, Björkman C. Performance of an herbivorous leaf beetle (Pharatora vulgarissima) on Saxifraga F2 hybrids: the importance of Phenolics. J Chem Ecol. 2013;39(5):156–24. https://doi.org/10.1007/s10886-013-0266-3.

37. Alseikin S, Perez de Souza L, Benina M, Ferrie AR. The style and substance of plant flavonoid decoration: towards defining both structure and function. Phytochemistry. 2020;174:12347. https://doi.org/10.1016/j.phytochem.2020.12347.

38. Ranty B, Aldous D, Galaud J-P. Plant Calmodulins and Calmodulin-related proteins. Plant Signal Behav. 2011;9:1–104.

39. Trusov Y, Botella JR. Plant G-proteins come of age: breaking the bond with animal models. Front Chem. 2016;4:1–9.

40. Ali S, Canai BA, Kanil AM, Bhat AA, Mir ZA, Bhat JA, et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res. 2018;212:213–29. https://doi.org/10.1016/j.micres.2018.04.028.

41. Rascolleadeh A, Munger A, Goulert MC, Sainsbury F, Cloutier C, Michaud D. Functional proteomics-aided selection of protease inhibitors for herbivore insect control. Sci Rep Nature. 2016;6:1–10.

42. Kumar S, Kanakachari M, Gurumurthy D, Kumar K, Narayanasamy P, Kethireddy F. Priming plant resistance by activation of redox-sensitive grass. Front Chem. 2016;4:1–9.

43. Gaillard MDP, Glauser G, Robert CAM, Turlings TCJ. Fine-tuning the ‘plant domestication-reduced defense’ hypothesis: specialist vs generalist herbivores. New Phytol. 2018;217(1):355–66. https://doi.org/10.1111/nph.14775.

44. Moreno JJ, Martín R, Cressanesa C, Arabidopsis SHM1, a serine hydroxymethyltransferase that functions in the photosynthetic pathway influences resistance to biotic and abiotic stress. Plant J. 2005;43(4):51–63. https://doi.org/10.1038/sj.tpj.7201250.

45. Luz L, Xu H, Li J, Chen Q, Zhang P, et al. Overproduction of superoxide dismutase in barley–pathogen interactions. Mol Plant Pathol. 2017;18(3):323–35. https://doi.org/10.1111/mpp.12399.
59. Boex E, Winters A, Webb KJ, Kingston-Smith AH. Detection of potential chloroplastic substrates for polyphenol oxidase suggests a role in undamaged leaves. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.00237.

60. Pietrzykowska M, Soursa M, Semchonok DA, Tkakanin M, Boekema EJ, Aro EM, et al. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell. 2014;26(9):3646–60. https://doi.org/10.1105/tpc.114.127373.

61. Du SY, Zhang XF, Lu Z, Xin Q, Wu Z, Jiang T, et al. Roles of the different components of magnesium chelatase in ascorbic acid signal transduction. Plant Mol Biol. 2012;80(4-5):519–37. https://doi.org/10.1007/s11103-012-9965-3.

62. Kumar S, Trivedi PK. Glutathione-S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci. 2018;9:1–9.

63. Kaur R, Gupta AK, Taggar GK. Nitrate reductase and nitrite as additional part of the nitrate assimilation pathway in plants. J Sci Food Agric. 2014;94(5):979–90. https://doi.org/10.1002/jsfa.6888.

64. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, et al. Arabidopsis RNS1, a novel member of the RNS family, is required for immunity and development. Plant Cell. 2016;28(4):1226–43. https://doi.org/10.1105/tpc.15.00237.

65. Silva-Sanzana C, Celiz-Balboa J, Garzo E, Marcus SE, Parra-Rojas JP, Rojas B, et al. Polyphenol oxidases modulate oxidative stress response and innate immunity in Arabidopsis. Free Radic Biol Med. 2017;107:289–300. https://doi.org/10.1016/j.freeradbiomed.2017.03.023.

66. Taranto F, Pasqualone A, Mangini G, Tripodi P, Miazzi MM, Pavan S, et al. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Plant. Sci. 2010;181(4):1257–49. https://doi.org/10.1016/j.plantsci.2010.01.010-30.

67. Mai VC, Tran NT, Nguyen DS. The involvement of peroxidases in soybean seedlings’ defense against infestation of cowpea aphid. Aphrodis Plant Interact. 2016;10(4):283–92. https://doi.org/10.1007/s11829-016-9424-1.

68. Nakashita H, Yasuda M, Nitta T, Asami T, Fujikura S, Arai Y, et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 2003;33(3):388–97. https://doi.org/10.1046/j.1365-313X.2003.01675.x.

69. Kaur R, Gupta AK, Taggar GK. Nitrate reductase and nitrite as additional components of defense system in pigeonpea (Cajanus cajan L.) against Helicoverpa armigera herbivory. Pestic Biochem Physiol. 2014;115:39–47. https://doi.org/10.1016/j.pestbp.2014.08.005.

70. Mutyambai DM, Bruce TJA, Midega CAO, Woodcock CM, Caulfield JC, Van Den Berg J, et al. Responses of parasitoids to volatiles induced by Chilo partellus Oviposition on Teosinte, a wild ancestor of maize. J Chem Ecol. 2018;44(2):161–70. https://doi.org/10.1007/s10886-017-1057-0.

71. Körner TG, Held M, Lenk C, Hiltpold I, Turlings TCJ, Gershenzon J, et al. A Ubiquitin-Specific PROTEASES function in plant development and stress responses. Plant Mol Biol. 2017;94(6):565–76. https://doi.org/10.1007/s11103-017-0633-5.

72. Devoto A, Muskett PR. Shiraizu K. Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol. 2003;6(4):307–11. https://doi.org/10.1016/s1369-5266(03)00060-8.

73. Giri AP, Wünsche H, Mitra S, Zavala JA, Muck A, Svatolí A, et al. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphinxidae) and its natural host Nicotiana attenuata. VII. Changes in the plant’s proteome. Plant Physiol. 2006;142(4):1621–41. https://doi.org/10.1104/pp.106.088781.

74. Baginsky S, Hennig L, Zimmermann F, Gruissem W. Gene expression analysis, proteomics, and network discovery. Plant Physiol. 2010;152(2):402–10. https://doi.org/10.1104/pp.109.150433.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.