Obinutuzumab (GA101) for the Treatment of Chronic Lymphocytic Leukemia and Other B-Cell Non-Hodgkin’s Lymphomas: A Glycoengineered Type II CD20 Antibody

Valentin Goedea Christian Kleinb Stephan Stilgenbauerc

aGerman CLL Study Group, Department I of Internal Medicine, University Hospital Cologne, Germany; bRoche Pharma Research and Early Development, Roche Innovation Center Zurich, Switzerland; cKlinik für Innere Medizin III, Universitätsklinikum Ulm, Germany

Therapeutic Need in CD20-Positive B-Cell Lymphomas

The monoclonal type I antibody rituximab specifically targets the CD20 antigen expressed on the surface of mature and pre-B-cells. Rituximab in combination with chemotherapy prolonged survival times in many B-cell lymphomas, e.g. diffuse large B-cell lymphoma (DLBCL) [1, 2], chronic lymphocytic leukemia (CLL) [3], follicular lymphoma (FL), and mantle cell lymphoma (MCL) [4]. Most patients, however, eventually relapse and may become resistant to therapy [5]. Therefore, the goal of the development of new CD20 antibodies is to obtain improved properties such as a more efficient B-cell depletion to achieve increased clinical activity [6–8]. In this review, we elucidate the mode of action and present the clinical development of obinutuzumab (GA101, GAZYVATM, GAZYVAROTM, F. Hoffmann-La Roche, Basel, Switzerland).

Following approval in the US in 2013, obinutuzumab in combination with chlorambucil has also been licensed in Europe since July 2014 for the treatment of adult patients with previously untreated CLL and with comorbidities making them unsuitable for full-dose fludarabine-based therapy.

Structural Characteristics and Mode of Action

Obinutuzumab Is a Glycoengineered CD20 Antibody

Obinutuzumab is a glycoengineered, humanized, monoclonal type II CD20 antibody modified by glycoengineering. The glycoengineered Fc portion enhances the binding affinity to the FcγRIII receptor on immune effector cells, resulting in increased antibody-dependent cellular cytotoxicity and phagocytosis. In addition, the type II antibody binding characteristics of obinutuzumab to CD20 lead to an efficient induction of direct non-apoptotic cell death. Preclinical data demonstrated more efficient B-cell depletion in whole blood and superior antitumor activity in xenograft models of obinutuzumab as compared to the type I CD20 antibody rituximab. In previously untreated patients with chronic lymphocytic leukemia (CLL) and comorbidities, obinutuzumab plus chlorambucil increased response rates and prolonged progression-free survival compared with rituximab plus chlorambucil. Obinutuzumab had an acceptable and manageable safety profile, with infusion-related reactions during the first infusion as the most common adverse event. Further phase I/II clinical trials have also shown promising activity in other CD20-positive B-cell non-Hodgkin’s lymphomas (NHL). Therefore, several clinical studies are planned or ongoing to investigate obinutuzumab with different combination partners in both untreated and relapsed/refractory patients with different B-cell NHL entities, which in addition to CLL include diffuse large B-cell lymphoma and follicular lymphoma.
production cells enables the generation of an antibody glycovariant lacking fucosylation of the carbohydrate attached to the Fc region [9] (fig 1 A). Indeed, in vitro FcγRIII receptor affinity was shown to be considerably higher for obinutuzumab than for rituximab [9].

ADCC

The enhanced binding of obinutuzumab to FcγRIII results in an increase in ADCC: the in vitro ADCC activity of obinutuzumab was 35–100 times higher than that of rituximab [9] or ofatumumab [10], and in contrast to rituximab, ADCC of obinutuzumab was neither blocked by physiological concentrations of unspecific IgG [9] nor by complement [11]. Notably, obinutuzumab was shown to abrogate inhibitory signals by inhibitory killer cell Ig-like receptor (KIR)/human leukocyte antigen (HLA) interactions [12]. In addition, combination studies with ibrutinib and idelalisib demonstrated that these kinase inhibitors had only minimal inhibitory impact on the immune effector function of obinutuzumab [13, 14].

ADCP

Obinutuzumab recruits phagocytic cells such as monocytes, neutrophils, and dendritic cells via Fc-FcγR interactions. Therefore, the glycoengineered structure of obinutuzumab not only augments ADCC, but also increases the phagocytosis and cytotoxic activity effected by monocytes and macrophages [15] through FcγRIIIa as well as by neutrophils through FcγRIIb [16].

Obinutuzumab Is a Type II CD20 Antibody

Antibodies against CD20 can be grouped into 2 major classes referred to as type I and type II CD20 antibodies [8] (table 1). In in vitro assays, homotypic aggregation associated with direct cell death is a characteristic feature of type II antibodies. Rituximab and ofatumumab belong to the group of type I antibodies, while obinutuzumab is a type II antibody derived by humanization of the murine B-Ly1 antibody, which induces homotypic cell aggregation to a certain extent [9]. Obinutuzumab was identified in in vitro assays as an antibody variant that effectively induced direct cell death of B-cells [9]. Compared with the murine sequence, leucine 11 was substituted by valine in obinutuzumab, resulting in an elbow angle between the antigen-binding arms (Fab) that is nearly 30° wider than in type I antibodies [17]. In addition, obinutuzumab binds CD20 in a different orientation than type I antibodies, i.e. rotated by 90° around its middle axis and also tilted 70° towards the CD20 epitope [17]. Another typical feature of type II antibodies is that only half as many antibodies bind per B-cell compared with type I antibodies. Presumably, the different binding topology of type II antibodies causes the 2 Fab arms to bind within a single CD20 trimer, while type I antibodies are assumed to bind different CD20 trimers with each Fab arm [8]. Upon binding of rituximab, the CD20 antibody complex can be internalized and degraded, resulting in reduced effector cell recruitment and antibody half-life [18]. Type I CD20antibody-mediated CD20 internalization appears to be dependent on binding to the inhibitory FcyRIIB receptor expressed on B-cells in a cis fashion [19]. In contrast, type II CD20 antibodies show only minimal CD20 internalization [20]. Figure 1 B depicts a model in which the special binding properties of type II antibodies prevent interaction with FcyRIIB, thus also preventing the accumulation of CD20 in lipid rafts and downregulation of CD20 surface expression, as compared to type I antibodies.

Table 1. Differences between type I and type II CD20 antibodies and examples (adapted from [7, 8, 51])

Type I CD20 antibodies	Type II CD20 antibodies
CD20 accumulation in lipid rafts	no CD20 accumulation in lipid rafts
High CDC	low/no CDC
ADCC	ADCC
ADCP	ADCP
Full CD20 binding capacity	half maximal CD20 binding capacity
CD20 downregulation (FcγRIIB-mediated)	no CD20 downregulation
Weak/no homotypic cell aggregation	homotypic cell aggregation
Direct cell death	stronger induction of direct cell death, caspase-independent
Rituximab, ocrelizumab, ofatumumab, veltuzumab, ublituximab	obinutuzumab, tositumomab

CDC = Complement-dependent cytotoxicity; ADCC = antibody-dependent cellular cytotoxicity; ADCP = antibody-dependent cellular phagocytosis.
Direct Non-Apoptotic Cell Death

As a consequence of homotypic cell aggregation, obinutuzumab triggers direct non-apoptotic cell death [21, 22] which is associated with actin rearrangement, lysosomal cathepsin release, and the generation of reactive oxygen species via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Because of the absence of characteristic hallmarks of apoptosis such as caspase dependency or BCL2 expression, this type of cell death could bypass mechanisms of apoptotic resistance [23]. Furthermore, direct cell death is induced independently of Fc-FcγR interaction. Therefore, obinutuzumab could also be an improved therapy option for patients with impaired Fc function, e.g. patients with low-affinity FcyRIIIa variants [24], as well as patients with effector cell saturation, exhaustion, or depletion.

Complement-Dependent Cytotoxicity

Since obinutuzumab does not accumulate CD20 molecules in lipid rafts, no Fc clustering in lipid rafts occurs, which leads to decreased activation of complement-dependent cytotoxicity (CDC) via C1q. Accordingly, obinutuzumab demonstrated a > 10–1,000-fold lower CDC activity than rituximab and ofatumumab [10]. CDC is thus not considered a relevant clinical mechanism of obinutuzumab activity.

Superior Antitumor Activity of Obinutuzumab in Preclinical Models

In vitro and in vivo studies, obinutuzumab was shown to be superior to rituximab regarding both direct as well as effector cell-mediated cytotoxicity: obinutuzumab demonstrated a more efficient B-cell depletion in whole blood in vitro/ex vivo [9, 10], and superior antitumor activity in xenograft models, even in rituximab-refractory tumors [9, 10, 25, 26]. In particular, clinically relevant doses of obinutuzumab induced complete remission of SU-DHL4 DLBCL tumors, while an identical dose of rituximab merely inhibited tumor progression [9, 10]. In primates, obinutuzumab achieved B-cell depletion superior to rituximab in lymphoid tissue, including lymph nodes and spleen [9]. Combination studies showed that obinutuzumab demonstrates enhanced activity in combination with chemotherapies such as chlorambucil, fludarabine, and bendamustine, resulting in superior antitumor efficacy compared with the respective combination with rituximab [26]. Furthermore, antitumor efficacy can be enhanced by combining obinutuzumab with the Bcl-2-selective inhibitor GDC-199 [27] or the MDM2-selective inhibitor RG7388 [28].

Clinical Trials in B-Cell NHL

Phase I/II

In the phase I part of the GAUGUIN study (BO20999) [29, 30], 21 patients with relapsed/refractory indolent NHL received escalating doses of obinutuzumab monotherapy over 8 21-day cycles [29]. The phase I part of the GAUSS trial (BO21003) was conducted with 22 patients with relapsed NHL, including 5 patients with CLL [31]. Patients were given escalating doses of obinutuzumab once weekly over 4 weeks. These 2 phase I trials reported overall response rates (ORR) of 32–43%. No dose-limiting toxicity was observed, and infusion-related reactions (IRR) were the most common adverse events (AE) [29, 31]. Similarly, neither an obinutuzumab-associated dose-limiting toxicity nor any unexpected AE were seen in the phase Ib GAUDI study (BO21000), in which patients with relapsed/refractory FL were treated with obinutuzumab in combination with either CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) or FC (fludarabine, cyclophosphamide) [32]; also no unexpected AE were reported, including in previously untreated patients with FL, who were given obinutuzumab plus either CHOP or bendamustine [33].

The phase II stage of the GAUGUIN study included 40 patients with relapsed/refractory indolent NHL [34] and 40 patients with relapsed/refractory DLBCL or MCL [35]. Among the 2 dose groups that were tested, particularly the higher dose group (1,600/800 mg obinutuzumab) showed promising efficacy results and an acceptable safety profile. The randomized controlled phase II GAUSS trial compared obinutuzumab or rituximab monotherapies followed by maintenance therapies in 175 patients with relapsed indolent NHL, including 149 patients with FL [36]. Based on investigator assessment, higher ORR were achieved with obinutuzumab than with rituximab (43.2 vs. 35.6% in the overall population, 43.2 vs. 38.7% in patients with FL). No difference was found regarding the secondary end point progression-free survival (DFS); however, the trial was not powered to detect a difference in DFS. Obinutuzumab was well tolerated, although IRR occurred more frequently in the obinutuzumab arm.

Dose-finding studies such as GAUGUIN demonstrated that upon administration of a 1,600/800 mg dose of obinutuzumab, plasma concentrations increased more rapidly than with lower doses, leading to an early steady state indicative of CD20 target saturation [35]. Based on both clinical data and pharmacokinetic simulations, a fixed dose of 1,000 mg obinutuzumab on days 1, 8, and 15 of the first 21-day cycle and on day 1 of subsequent cycles was selected as the dose to achieve adequate exposure levels in a similarly rapid manner with less interindividual variability in phase III trials [37].

In the phase II GATHER study (GAO4915g), 80 untreated patients with advanced DLBCL were treated with 6 cycles of a CHOP regimen, plus 8 cycles of obinutuzumab dosed as described above [38].

Details on treatment regimens and results of the clinical studies described in this section are listed in table 2.

Clinical Trials in CLL

Phase I/II

For the 13 patients with relapsed/refractory CLL in the phase I part of the GAUGUIN study, an ORR of 62% was reported at the end of treatment [30]. For the 20 patients in the phase II part of GAUGUIN, a lower ORR of 30% was reached, which may be due to a higher baseline tumor burden resulting in lower exposure to
Table 2. Selection of published clinical phase I/II trials with obinutuzumab in B-cell non-Hodgkin’s lymphoma (NHL)

Trial	Patients	Therapeutic regimen	Results
BO20999 (GAUGUIN; phase I/II): dose escalation study in patients with CD20-positive malignant disease [29, 34, 35] NCT00517530	included relapsed/ refractory indolent NHL; relapsed/refractory DLBCL or MCL	phase I: dose escalation from 50/100 mg to 1,200/2,000 mg obinutuzumab for 8 21-day cycles phase II: 400 mg obinutuzumab on days 1 and 8 of cycle 1, and on day 1 of cycles 2–8, or 1,600 mg on days 1 and 8 of cycle 1 and 800 mg on day 1 of cycles 2–8	phase I: 5 CR and 4 PR (n = 21), 2 remissions among the 9 rituximab-refractory patients; no DLT, IRR most common AE [29]. phase II: DLBCL and MCL patients (15 and 4 patients, respectively) of the 1,600/800 mg dose group: 37% ORR, 4 of 12 rituximab–refractory patients responded [35]; indolent NHL, 1,600/800 mg dose group (n = 22, 91% FL): 55% ORR, among these 5 of 10 rituximab–refractory patients [34]; IRR most common AE, acceptable safety profile
BO21003 (GAUSS; phase I/II): obinutuzumab in patients with indolent NHL [31, 36] NCT00576758	relapsed NHL (including 5 patients with CLL)	phase I: 100–2,000 mg obinutuzumab once weekly for 4 weeks phase II: either 1,000 mg obinutuzumab or 375 mg/m² rituximab on days 1, 8, 15, 22; patients without progression received the same doses of obinutuzumab or rituximab, respectively, every 2 months for up to 2 further years	phase I: 6 PR and 1 CR (n = 22), among the 13 rituximab-refractory patients 1 PR and 1 CR, no DLT; IRR most common AE, followed by infection, pyrexia, and neutropenia [31] phase II ORR (investigator assessment, n = 175) with obinutuzumab 43.2 vs. 35.6% with rituximab FL (n = 149): ORR 43.2% with obinutuzumab vs. 38.7% with rituximab obinutuzumab was well tolerated, higher rate of IRR, particularly during the first infusion [36]
BO21000 (GAUDI; phase Ib): obinutuzumab in combination with chemotherapy in CD20 positive, follicular B-cell NHL [32, 33, 52] NCT00825149	relapsed/refractory FL, untreated FL	pretreated FL: 2 obinutuzumab dose regimens (1,600 mg on days 1 and 8 of cycle 1, 800 mg on day 1 of subsequent cycles, or all doses 400 mg), in combination with CHOP (every 3 weeks for 6–8 cycles) or FC (every 4 weeks for 4–6 cycles); obinutuzumab maintenance therapy for responders (every 3 months for up to 2 years) untreated FL: 1,000 mg obinutuzumab on days 1 and 8 of cycle 1 and day 1 of subsequent cycles, in combination with CHOP (every 3 weeks for 6–8 cycles) or bendamustine (90 mg/m² on days 1 and 2 every 4 weeks for 4–6 cycles); in the case of PR/CR, maintenance with 1,000 mg obinutuzumab every 3 months for up to 2 years	pretreated FL: obinutuzumab plus CHOP (n = 28): 96% ORR, 39% CR; obinutuzumab plus FC (n = 28): 93% ORR, 50% CR; no unexpected AE, IRR most common AE, more AE with FC than with CHOP chemotherapy [32] untreated FL: obinutuzumab plus CHOP (n = 40): 95% ORR, 35% CR; obinutuzumab plus bendamustine (n = 41): 93% ORR, 39% CR; manageable safety profile, IRR most common AE [33] maintenance: obinutuzumab plus CHOP induction arm (n = 36): 70% CR; obinutuzumab plus bendamustine induction arm (n = 36): 61% CR; most patients had AEs, clinically relevant neutropenia in 14% of obinutuzumab/CHOP patients [52] 83% ORR and 55% CR (n = 80), favorable safety profile [38]
GAO4915g (GATHER; phase II): obinutuzumab in combination with CHOP chemotherapy in previously untreated, advanced DLBCL [38] NCT01414855	untreated DLBCL	8 21-day cycles obinutuzumab (1,000 mg on days 1, 8 and 15 of cycle 1, and on day 1 of subsequent cycles), 6 cycles of CHOP	83% ORR and 55% CR (n = 80), favorable safety profile [38]

DLBCL = Diffuse large B-cell lymphoma; MCL = mantle cell lymphoma; CR = complete remission; PR = partial remission; DLT = dose-limiting toxicity; IRR = infusion-related reaction; AE = adverse event; ORR = overall response rate; FL = follicular lymphoma; CLL = chronic lymphocytic leukemia; CHOP = cyclophosphamide, doxorubicine, vincristine, prednisone; FC = fludarabine, cyclophosphamide.
Obinutuzumab (GA101) for the Treatment of CLL and other B-Cell NHL

In another phase II study called GAGE (GAO4768g), which included 80 patients with previously untreated CLL and compared 2 dosing regimens of obinutuzumab monotherapy, a higher ORR was demonstrated in the 2,000 mg group (67 vs. 49%) compared with the 1,000 mg group [39].

In the GALTON trial (GAO4779g; phase Ib), 41 patients with previously untreated CLL received obinutuzumab in combination with either FC or bendamustine [40]. The data showed that these combinations have clinical activity, with grade 3/4 neutropenia and infections in 29 and 19% of the patients in the obinutuzumab plus FC arm and in 50 and 5% of the patients in the obinutuzumab plus bendamustine arm, respectively.

Table 3 provides an overview of the published trials in CLL, as discussed in this section.

Phase III Study: CLL11

The randomized controlled phase III study CLL11 (BO21004) [41] enrolled 781 patients with previously untreated CLL (median age 73 years) and relevant comorbidity indicated by a Cumulative Illness Rating Scale (CIRS) score > 6 and/or creatinine clearance of 30–69 ml/min. The study compared obinutuzumab plus chlorambucil with rituximab plus chlorambucil and chlorambucil alone. Patients received 6 28-day cycles of either chlorambucil (0.5 mg/kg on days 1 and 15), obinutuzumab (1,000 mg on days 1, 8, and 15 of cycle 1, and on day 1 of cycles 2–6) plus chlorambucil or rituximab (375 mg/m² on day 1 of cycle 1, 500 mg/m² on days 1 of cycles 2–6) plus chlorambucil. In the arms comparing obinutuzumab plus chlorambucil vs. rituximab plus chlorambucil, the administered median cumulative doses of antibodies were 8,000 mg of obinutuzumab and 5,106 mg of rituximab, respectively.

Obinutuzumab plus chlorambucil was superior to rituximab plus chlorambucil in terms of PFS (median PFS 26.7 vs. 15.2 months; hazard ratio (HR) 0.66; 95% CI 0.49–0.82; p = 0.001), complete response (20.7 vs. 7.0%), and rate of negative testing for minimal residual disease, both in peripheral blood (37.7 vs. 33.3%) and bone marrow (19.5 vs. 26.0%) (fig 2). After a median observation time of 19 months, no significant difference in overall survival was observed (HR for death 0.66; 95% CI 0.41–1.06; p = 0.08). Obinutuzumab plus chlorambucil did prolong overall survival, however, when compared to chlorambucil alone.
obinutuzumab with subsequent cytokine release may possibly explain the more frequent and severe IRR during the first infusion with obinutuzumab [41]. Of note, preliminary data indicate a correlation between CD20 surface expression on CLL cells as well as FcγRIII polymorphisms and the risk of developing any grade of IRR with the first infusion of rituximab or obinutuzumab [43].

Based on these data, obinutuzumab has recently been granted approval in Europe in combination with chlorambucil chemotherapy for the treatment of adult patients with previously untreated CLL and comorbidities making them unsuitable for full-dose fludarabine-based therapy.

Perspectives

Ongoing phase III studies investigate obinutuzumab as compared with rituximab in B-cell NHL entities other than CLL and in combination with other chemotherapy regimens. The phase III trial GOYA (BO21005, NCT01287741) compares the combination of CHOP plus obinutuzumab with CHOP plus rituximab in previously untreated DLBCL, and GALLIUM (BO21223, NCT01329608; phase III) tests obinutuzumab vs. rituximab in combination with different chemotherapies, i.e. CHOP, CVP (cyclophosphamide, vincristine, prednisone), and bendamustine, followed by maintenance with obinutuzumab/rituximab, in patients with untreated indolent NHL (FL or marginal zone lymphoma). Rituximab-refractory patients with indolent NHL were treated with obinutuzumab plus bendamustine or bendamustine alone in the phase III GADOLIN study (GAO4753g, NCT01059630). Due to superiority of the obinutuzumab/bendamustine combination at the preplanned interim analysis, the study was terminated prior to the protocol-specified final analysis [44]. The phase IIIb safety trial GREEN (MO28543, NCT01905943) investigates obinutuzumab alone or in combination with FC, bendamustine, or chlorambucil both in previously untreated and relapsed/refractory CLL; preliminary data were in line with the known safety profile of obinutuzumab [45].

Furthermore, obinutuzumab is an especially interesting option for the assessment of chemotherapy-free combination therapies due to its optimized effector functions. Preclinical data suggest that effective combinations with targeted anticancer agents are possible and that synergistic effects can be expected, e.g. with the Bcl-2 inhibitor venetoclax (ABT-199/GDC-0199) [27], MDM2 inhibitors RG7112 and RG7388 [28], as well as the proteasome inhibitor bortezomib [46]. Preclinical data demonstrated that the kinase inhibitor ibrutinib interferes with the ADCC-related effector function of rituximab through inhibition of interleukin-2 inducible tyrosine kinase [47]. However, minimal interference of ibrutinib and ibrutinib was observed with the immune effector function of obinutuzumab compared with rituximab most likely due to the direct cell death induction and stronger FcγR signaling, supporting the clinical testing of these combinations [13, 14, 48]. First safety data from a phase 1b trial investigating obinutuzumab plus venetoclax in CLL was encouraging [49]. Corresponding clinical studies exploring
Obinutuzumab (GA101) for the Treatment of CLL and other B-Cell NHL

Acknowledgement

The authors would like to thank Physicians World Europe for providing medical writing assistance for the preparation of this manuscript, supported by Roche Pharma AG, Grenzach-Wyhlen, Germany.

Disclosure Statement

Valentin Goede: Roche: speaker honoraria, advisory board, research funding, travel grants; Mundipharma: speaker honoraria, advisory board, research funding, GSK: speaker honoraria. Christian Klein: Roche: employment, equity. Stephan Silgenbauer: honoraria and research funding from AbbVie, Celgene, Genentech, Gilead, GSK, Janssen, Mundipharma, Roche.

References

9 Mössner E, Brunner P, Moser S, Puntener U, Schmidt C, Herter S, Grau R, Gerdes C, Nopora A, van Puimwrange F, Ferrara C, Sondermann P, Jager C, Strein P, Fertig G, Friess T, Schull C, Bauer S, Dowski P, Dujon J, Del Nago C, Dabbagh K, Dyer MJ, Pompema S, Klein C, Umpana P. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 2010; 115:4393–4402.
10 Herter S, Herting F, Mundigl O, Waidhauer I, Weinzierl T, Faust T, Muth G, Ziegler-Landesberger D, Van Puimwrange F, Lang S, Dongu MN, Reisam L, Gerdes CA, Friess T, Baer U, Burtcher H, Weidner M, DuMonct C, Umpana P, Niederfellner G, Bacac M, Klein C. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther 2013;12:2031–2042.
11 Kern DJ, James BR, Blackwell S, Gassner C, Klein C, Weiner GI. GA101 induces NK-cell activation and anti-body-dependent cellular cytotoxicity more effectively than rituximab when complement is present. Leuk Lymphoma 2013;54:2500–2505.
12 Terszowski G, Klein C, Stemm M, KIR/HLA interactions negatively affect rituximab but not GA101 (obinutuzumab)-induced antibody-dependent cellular cytotoxicity. J Immunol 2014;192:5618–5624.
13 Herter S, Palazzo A, Bacac M, Grossaire L, Frey C, Pflahe S, Liu J, Tannehimer S, Umpana P, Klein C, Queva C. The PI3K delta selective inhibitor idelalisib minimally interferes with immune effector function and B cell depletion mediated by obinutuzumab (GA101) and rituximab. Blood (ASH Ann Meet Abstr) 2014;124:3342.
14 Herter S, Sagiv-Barfi I, Chester C, Sadaran M, Hebb J, Czerwinski DK, Rajasekaran N, Bacac M, Umpana P, Levy R, Klein C, Koh K, Houe E. Obtuzumab (GA101) is less prone to antagonism of immune effector function by brutinib than rituximab in vitro and in vivo. Blood (ASH Ann Meet Abstr) 2014;124:1763.
15 Herter S, Birk MC, Klein C, Gerdes C, Umpana P, Bacac M. Glycoengineering of therapeutic antibodies enhances monocoy/macrophage-mediated phagocytosis and cytotoxicity. J Immunol 2014;192:2252–2260.
16 Golay J, Da Roit F, Bologna L, Ferrara C, Leusen JH, Rambaldi A, Klein C, Introna M, Gleys M. CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD168 more efficiently than rituximab. Blood 2013;122:3482–3491.
17 Niederfellner G, Lammens A, Mundigl O, Georges GJ, Schaefer W, Schwaiger M, Franke A, Wiechmann K, Jenewein S, Mootearta JW, TAnimal M, Brannston A, Lindström F, Mössner E, Umpana P, Hopfer KP, Klein C. Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type III distinction of CD20 antibodies. Blood 2011;118:358–368.
18 Beers SA, French RR, Chan HT, Lim SJ, Izett RC, Vidal RM, Wijayawisesa SS, Dixon SV, Kim H, Cox KL, Kerr JP, Johnston DA, Johnson PW, Veerk JP, Brannston M, Cripps GC, Niederfellner G, Mij, Cragg MS. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 2010;115:5191–5201.
19 Lim SH, Vaughan AT, Ashton-Keay M, Williams EL, Dixon SV, Chan HT, Beers SA, French RR, Cox KL, Davies AJ, Potter FN, McCracke C, Osger DG, Johnson PW, Cragg MS, Mij CN. FC-gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 2011;118:2530–2540.
20 Beers SA, Chan CH, French RR, Cragg MS, Mij CN. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 2010;47:107–114.
21 Ivanov A, Beers SA, Walshe CA, Honeychurch J, Albaiwui C, Cox KL, Potter FN, Murray S, Chan CH, Klymenko T, Erdinise F, Gennem ML, Illdge TM, Cragg MS. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J Clin Invest 2009;119:2143–2159.
22 Alldaiw W, Ivanov A, Honeychurch J, Cheadle EG, Pari J, Louri S, Lim SH, Shimada K, Chan CH, Tutt A, Beers SA, Glennie MJ. Cragg MS, Illdge TM. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and active lysis, lysosome-mediated cell death in B-cell malignancies. Blood 2011;117:4519–4529.
23 Alldaiw W, Cheadle EJ, Donaghy C, Honeychurch J. Up-date on obinutuzumab in the treatment of B-cell malignancies. Expert Opin Biol Ther 2014;14:1507–1517.
24 Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bar- dos P, Colombat P, Wainer H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and poly-morphism in IgG Fc receptor FegamallRNA gene. Blood 2002;99:754–758.
25 Dalle S, Reisam L, Besseury de Horts T, Hervease S, Hert- ing F, Pisa A, Fries T, Umpana P, Klein C, Dumontet C. Preclinical studies on the mechanism of action and the anti-lymphoma activity of the novel anti-CD20 anti-body GA101. Mol Cancer Ther 2010;11:178–185.

Chemotherapy-free or -reduced treatments in CLL are currently being initiated including several trials of the German CLL Study Group (GCLLSG). A series of phase II GCLLSG studies (all-comers, i.e. both untreated and treated, and both fit and comorbid patients) will sequentially evaluate bendamustine, obinutuzumab, and either ibrutinib (BIG), venetoclax (BAG), or idelalisib (BCG). Furthermore, following the recently published phase IIb data of the GALEN study, which showed that oral lenalidomide plus obinutuzumab was well tolerated and effective in patients with relapsed or refractory FL [50], the ongoing phase II part of the study will assess obinutuzumab in combination with lenalidomide in patients with relapsed/refractory follicular and aggressive B-cell lymphomas (DLBCL and MCL).

Malignancy: monocular antibodies and vaccines. J Clin Oncol 2005;23:6421–6428.

Aclagon GA101: a novel glycoengineered type II CD20 anti-body for the treatment of chronic lymphocytic leukae-mia and non-Hodgkin’s lymphoma. In: Dübél S, Reichert JM (eds): Handbook of Therapeutic Antibodies. Weinhein, Wiley-VCH Verlag GmbH & Co. KGaA, 2014.

Beers SA, Lammens A, Schaffer W, Georges G, Schwaiger M, Mössner E, Hopfer KP, Unsworth P, Niederfellner G. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MABS 2013;5:22–33.
Herting F, Friess T, Bader S, Muther G, Holzwimmer G, Sehn LH, Assouline SE, Stewart DA, Mangel J, Gaspari R, Birkett J, Pisa P, Cartroom G. Phase I study results of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in B-cell lymphoma patients. Blood 2012;119:5126–5132.

30 Cartroom G, de Guibert S, Dillhoyd MS, Morschhauser F, Leblond V, Dupuis J, Mahe B, Bouabdallah R, Lei G, Wenger M, Wassen-Fritsch E, Hallek M. Obinutuzumab (GA101) in relapsed/refractory chronic lymphocytic leukemia: final data from the phase 1/2 GAU-GUIN study. Blood 2014;124:2196–2202.

31 Sehn LH, Assouline SE, Stewart DA, Mangel J, Gaspari R, Birkett J, Pisa P, Cartroom G. Phase I study results of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in B-cell lymphoma patients. Blood 2012;119:5126–5132.

32 Radford J, Davies A, Cartroom G, Morschhauser F, Salles G, Marcus R, Wenger M, Lei G, Wassen-Fritsch E, Vitolo U. Obinutuzumab (GA101) plus CHOP or FC in relapsed/refractory follicular lymphoma: results of the GAUDI study (BO21000). Blood 2013;122:1137–1143.

33 Dyer MJS, Grigg A, González M, Dreyling M, Rule SA, Lei G, Wassen-Fritsch E, Wenger MK, Marlon P. Obinutuzumab (GA101) in combination with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) or bendamustine in patients with previously untreated follicular lymphoma (FL): results of the phase Ib GAUDI study (BO21080). Blood (ASH Ann Meet Abstr) 2012;120:3686.

34 Salles G, Morschhauser F, Solal-Celigny P, Theilmann C, Lamy T, Tilloy H, Gyan E, Lei G, Wenger M, Wassen-Fritsch E, Cartroom G. Obinutuzumab (GA101) in patients with relapsed/refractory indolent non-Hodgkin lymphoma: results from the phase II GAUGUIN study. J Clin Oncol 2013;31:2920–2926.

35 Morschhauser FA, Cartroom G, Thielhembont C, Solal-Celigny P, Haioun C, Bouabdallah R, Feugier P, Bouabdallah K, AsIanuks E, Lei G, Wenger M, Wassner-Fritsch E, Salles GA. Obinutuzumab (GA101) mono- therapy in relapsed/refractory diffuse large B-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. J Clin Oncol 2013;31:2921–2919.

36 Sehn LH, Goy A, Offner FC, Martinelli G, Friedman J, Lasserre SF, Fine G, Press OW. Randomized phase II trial comparing GA101 (obinutuzumab) with rituxi- mab in patients with relapsed CD20+ indolent B-cell non-Hodgkin lymphoma: preliminary analysis of the GAUSS study. Blood 2011;118:124–1124.

37 Morschhauser F, Salles G, Cartroom G, Crump M, Birkett J, Carlile D, Sehn L. Dose selection for phase III studies of the monoclonal anti-CD20 antibody obinu- zumab (GA101): a rational approach. Haematologica 2011;96:390, abstr 0935.

38 Zelenetz AD, Mobasher M, Costa LJ, Flinn I, Clower CR, Kaminski MS, Sandmann T, Trunzer K, Vignal C, Forero-Torres A. Safety and efficacy of obinutuzumab (GA101) plus CHOP chemotherapy in first-line advanced diffuse large B-cell lymphoma: results from the phase 2 GATHER study (GA04915G). Blood (ASH Ann Meet Abstr) 2013;122:1820.

39 Hynm JM, Byrd JC, Kipps TJ, Boxer M, Kolibaba KS, Tyson N, Hira J, Sharman JP. Obinutuzumab (GA101) 1000 mg vs. 2000 mg in patients with chronic lymphocytic leukemia (CLL): results from the phase 2 GAGE (GA04767G) trial. J Clin Oncol 2013;31:2920–2926.

40 Brown JR, O’Brien S, Kingsley CD, Erdhat H, Pagel JM, Lymp J, Hira J, Kipps TJ: Safety and efficacy of obinu- zumab (GA101) with fludarabine/cyclophosphamide (F-FC) or bendamustine (G-B) in the initial therapy of patients with chronic lymphocytic leukemia (CLL): results from the phase 1b GALTON trial (GA04779G). Blood (ASH Ann Meet Abstr) 2013;122:523.

41 Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chapalova T, de la Serna J, Dillhoyd MS, Illmer T, Opat S, Owen CJ, Samoylova O, Kreuzer KA, Stilgenbauer S, Dohner H, Langerak AW, Riten M, Kneba M, Asikanis E, Humphrey K, Wenger M, Hallek M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 2014;370:1101–1110.

42 Goede V, Fischer K, Engelke A, Schlag R, Lepretre S, Casado Montero LF, Montillo M, Fegan C, Asikanis E, Humphrey K, Fingerle-Weston G, Hallek M. Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: Updated results of the CLL11 study-Leukemia 2015 [Epub ahead of print].

43 Freeman CL, Dixon M, Houghton R, Humphrey K, Fingerle-Weston G, Kreuzer K-A, Engelke A, Hallek M, Goede V: Risk factors associated with the development of infusion-related reactions in patients with chronic lymphocytic leukemia treated with anti-CD20 monoclonal antibodies: analysis of the CLL11 study dataset. Blood (ASH Ann Meet Abstr) 2014;124:3339.

44 Roche media release: Roche’s phase III study of Ga- zrya/Gazyva showed significant benefit in refractory indolent non-Hodgkin’s lymphoma, Basel, 4 February 2015 (www.Roche.com/media/store/releases/med-car-2015–02–04.Htm, accessed 2 March 2015).

45 Bosch F, Illmer T, Turgut M, Cortelezzi A, Lasserre SF, Truppel-Hartmann A, Leblond V, Foa R, Stilgenbauer S: Preliminary safety results from the phase IIb green study of obinutuzumab (GA101) alone or in combina- tion with chemotherapy for previously untreated or relapsed/refractory chronic lymphocytic leukemia (CLL) Blood (ASH Ann Meet Abstr) 2014;124:3345.

46 Jak M, van Bochove GG, Reits EA, Kallemeijn WW, Tromp JM, Umana P, Klein C, van Lier RA, van Oers MH, Eldering E. CD40 stimulation sensitizes CLL cells to lymosynical cell death induction by type II anti-CD20 mAb GA101. Blood 2011;118:5178–5188.

47 Kohrt HE, Sagi-Barfi L, Rafiq S, Herman SE, Butcher JP, Cheney C, Zhang X, Buggy J, Mutshamus N, Levy R, Johnson AJ, Byrd JC: Ibrutinib antagonizes rituxi- mab-dependent NK cell-mediated cytotoxicity. Blood (ASH Ann Meet Abstr) 2014;123:1957–1960.

48 Davis C, Stephancich E, Syed K, Axel A, Hall B, Sasser K, Balasubramanian S: Effects of ibrutinib on rituxi- mab and GA101 induced antibody-dependent cell cytocytotoxicity (ADCC) in lymphoma cells in vitro. Blood (ASH Ann Meet Abstr) 2014;124:3117.

49 Flinn I, Brunvand M, Dyer MJS, Hillmen P, Jones J, Lymp J, Elamy M, Vasgianan G, Huang I, Kipps TJ: Preliminary results of a phase 1b study (P28331) comparing GDC0199 (ABT199) and obinutuzumab in patients with relapsed/refractory or previously un- treated chronic lymphocytic leukemia. Blood (ASH Ann Meet Abstr) 2014;124:4607.

50 Morschhauser F, Salles G, Le Goulil S, Tilloy H, Theib- lemont C, Bouabdallah K, Cartroom G, Houot R: A phase IIb study of obinutuzumab combined with lena- lidomide for relapsed/refractory follicular B-cell lymphoma. Blood (ASH Ann Meet Abstr) 2014;124:4458.

51 Lagez AL, Cartroom G. Obinutuzumab: a new class of anti-CD20 monoclonal antibody. Curr Opin Oncol 2014;26:484–491.

52 Dyer M, Grigg A, Gonzalez Diaz M, Dreyling M, Rule S, Lei G, Wassner-Fritsch E, Fingerle-Weston G, Marlon P. Obinutuzumab (GA101) in combination with CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) or bendamustine for the first-line treatment of follicular non-Hodgkin lymphoma: final results from the maintenance phase of the phase IIb GAUDI study. Blood (ASH Ann Meet Abstr) 2014;124:1743.

192 Oncol Res Treat 2015;38:185–192 Goede/Klein/Stilgenbauer