The simpler the better: a personal philosophy of microvascular decompression surgery

Jun Zhong

Department of Neurosurgery, Xinhua Hospital (The Cranial Nerve Disorder Center of Shanghai), Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.

Microvascular decompression (MVD) has been widely accepted as the most effective remedy for hyperactive cranial rhizopathy, such as hemifacial spasm and trigeminal neuralgia.[1,2] With popularization of this surgery around the world, numerous neurosurgeons have presented their opinions concerning operative skills. For instance, some authors stated that the point of this process is to detach rather than to isolate the neurovascular conflict with Teflon insertion between them.[3] It has been believed that “transposition” is better than “interposition”.[4] In order to achieve an utter separation, “sling technique” has been frequently reported nowadays.[5] Regardless of varied techniques, however, we should always put safety first while performing this functional neurosurgery. It is imaginable that the more complicated technique is employed, the more instruments or foreign bodies invade the surgical field, the more time elapses, and the more chances of postoperative complications incur actually. Eventually, this MVD operation could have been completed in a more easy and simple fashion. After accomplishment of more than 10,000 MVDs in our center,[6,7] we have learned to go through the operation with minimal procedures in less time. In this paper, the author advanced a strategy of “three noes” for a safe and effective MVD.

No complicated technique

We noticed that the sling technique has become fashionable recently in the literature.[8] In such a small surgical field, however, while the surgeon is concentrating on these procedures of passing a thread around the artery and then stitching and knotting, those surrounding delicate structures, such as facial and vestibulocochlear nerves as well as petrosal veins, are actually in jeopardy. Especially, when the needle is penetrating the petrous dura or the tentorium, a burst may be inevitable at the moment—that’s really dangerous.[9] Lately, some authors do have improved the technique, for example, the thread was replaced by Teflon or other materials and no stitching or knotting was needed when glue or clip was adopted.[10,11] Whatever, it still consumes more time to finish these extra procedures while the cerebellum needs to be retracted with a spatula. Actually, a satisfactory exposure could have been achieved by efficient dissection instead of retraction. In our experience, even a dolichoectatic vertebrobasilar complex could be moved away without sling. With the arachnoid being opened thoroughly, the cerebellar hemisphere could be raised enough to expose the brainstem very medially. As this wider exposure is achieved, gelfoams or Teflon waddings can be easily inserted between the vertebral artery and the medulla piece by piece from low towards tentorium. When the rostral facial nerve root is reached, it would be found that the artery has been mobilized laterally and proximally without tension. Compared with a distal pull (sling), this proximal push is easier to keep the arterial transposition without rebound.[12-16] Accordingly, it is worth spending time in dissecting caudal nerves instead ofslinging a tortuous vertebral artery laterally. Especially in most hemifacial spasm (HFS) cases, this caudal and medial dissection is essential to expose the neurovascular conflict.

No unnecessary instrument

The decompression process can be completed merely by means of a microdissector and a microsuction under coordinating control of the operator’s both hands.\textsuperscript{[6] We never use forceps to move arteries for clamping may give rise to vasospasm. Even the Teflon could be advanced to position without forceps. It could be delivered directly by a microdissector with a small ball of soft Teflon sticking on the tip. The placement should be carried out piece by piece for a bulk of Teflon may block the line of sight and inadvertently push the vessel behind towards the nerve
should not be ignored. If you neglected them until you lower nerves until a blocked dissection starting from the VIII root instead of from the tentorium.\(^{124}\) If a good angle is still unavailable in this approach, opening the cerebellar fissures offers a better exposure.\(^{125}\) Besides, those pre-microscopic procedures should not be ignored. If you neglected them until you realize that the patient’s shoulder hampers your arm to access the surgical field or the cranietomy confines lateral exposure, you have to remove the microscope and adjust the position or take out more bone with rongeur again. This halt not only consumes time but also upsets your operation. That is why a Chinese idiom says: “sharpening an axe will not hold up your work of cutting firewood”.

Conclusion

A successful MVD lies in a prompt identification of the neurovascular conflict, which hinges on a good exposure. A satisfactory working space can be achieved by an appropriate positioning of the patient and a proper cranietomy as well as a rational approach (from caudal to rostral). With a thorough dissection of arachnoids, the cerebellum can be raised enough to expose more medially without retracting. In most cases, the offending artery can be pushed away proximally without adoption of complicated techniques. To keep the neurovascular separation, less Teflon is encouraged to place beyond the conflict. Ultimately, the most important thing should be safety, of course. To balance cure versus safety, this process should be completed promptly with minimal interference to the brain—the simpler the better!

Conflicts of interest

None.

References

1. Jannetta PJ, McLaughlin MR, Casey KF. Technique of microvascular decompression. Technical note. Neurosurg Focus 2005;18:E5. doi: 10.1093/neuros/18.1.e5.

2. McLaughlin MR, Jannetta PJ, Clyde BL, Subach BR, Comey CH, Resnick DK. Microvascular decompression of cranial nerves: lessons learned after 4400 operations. J Neurosurg 1999;90:1-8. doi: 10.3171/jns.1999.90.1.0001.

3. Yang XS, Li ST, Zhong J, Zhu J, Du Q, Zhou QM, et al. Microvascular decompression on patients with trigeminal neuralgia caused by ectatic vertebrobasilar artery complex: technique notes. Acta Neurochir (Wien) 2012;154:793–797; discussion 797. doi: 10.1007/s00701-012-1215-6.

4. Nonaka Y, Hayashi N, Matsumae M, Fukushima T. Wedge-technique for transposition of the vertebral artery in microvascular decompression for hemifacial spasm: technical nuances and surgical outcomes. Acta Neurochir (Wien) 2019;161:1435–1442. doi: 10.1007/s00701-019-03793-1.

5. Khoo HM, Yoshimine T, Taki T. A “sling swing transposition” technique with pedicled dural flap for microvascular decompression in hemifacial spasm. Neurosurgery 2012;71:2530; discussion 30-31. doi: 10.1093/neo/mjr229.

6. Li ST, Zhong J, Sekula RF. Microvascular Decompression Surgery. Netherlands: Springer; 2016.

7. Steinberg JA, Sack J, Wilson B, Weingarten D, Carter B, Khalossi A, et al. Tentorial sling for microvascular decompression in patients with trigeminal neuralgia: a description of operative technique and clinical outcomes. J Neurosurg 2018;130:1-6. doi: 10.3171/2017.10.JNS17971.

8. Zhong J, An ideal microvascular decompression technique should be simple and safe. Neurosurg Rev 2012;35:137–140; author reply 140. doi: 10.1007/s10143-011-0366-x.

9. Liu J, Chen Z, Feng T, Jiang B, Yuan Y, Yu Y. Biomedical glue sling technique in microvascular decompression for trigeminal neuralgia caused by athroscrotal vertebrobasilar artery: a description of operative technique and clinical outcomes. World Neurosurg 2019;128:e74–e80. doi: 10.1016/j.wneu.2019.03.289.

10. Jha RT, Kumar J, Pressman E, Agazzi S. Arterial sling decompression for hemifacial spasm. World Neurosurg 2019;132:134. doi: 10.1016/j.wneu.2019.08.109.

11. Zhong J, Zhu J, Li ST, Guan RX. Microvascular decompression in patients with coexistent hemifacial spasm and trigeminal neuralgia. Neurosurgery 2011;68:916–920; discussion 920. doi: 10.1227/NEU.0b013e3182068fca.

12. Zhong J, Li ST, Zhu J, Guan RX, Zhou QM, Jiao W, et al. A clinical analysis on microvascular decompression surgery in a series of 3000 cases. Clin Neurol Neurosurg 2012;114:946–951. doi: 10.1016/j.clineuro.2012.01.021.

13. Jiao W, Zhong J, Sun H, Zhu J, Zhou QM, Yang XS, et al. Microvascular decompression for the patient with painful tic convulsif after Bell palsy. J Craniofac Surg 2013;24:e286–e289. doi: 10.1097/SCS.0b013e3182802b39.
15. Wang YN, Dou NN, Zhou QM, Jiao W, Zhu J, Zhong J, et al. Treatment of hemimasticatory spasm with microvascular decompression. J Craniofac Surg 2013;24:1753–1755. doi: 10.1097/SCS.0b013e318295025a.

16. Wang YN, Zhong J, Zhu J, Dou NN, Xia L, Visocchi M, et al. Microvascular decompression in patients with coexistent trigeminal neuralgia, hemifacial spasm and glossopharyngeal neuralgia. Acta Neurochir (Wien) 2014;156:1167–1171. doi: 10.1007/s00701-014-2034-8.

17. Dou NN, Zhong J, Liu MX, Xia L, Sun H, Li B, et al. Tellon might be a factor accounting for a failed microvascular decompression in hemifacial spasm: a technical note. Stereotact Funct Neurosurg 2016;94:154–158. doi: 10.1159/000446192.

18. Zhong J, Zhu J, Li ST, Li XY, Wang XH, Yang M, et al. An analysis of failed microvascular decompression in patients with hemifacial spasm: focused on the early reoperative findings. Acta Neurochir (Wien) 2010;152:2119–2123. doi: 10.1007/s00701-010-0794-3.

19. Kondo A, Akiyama O, Suzuki M, Arai H. Prosthetic material degeneration over time as a possible factor in delayed recurrence of hemifacial spasm after successful microvascular decompression. Surg Neurol Int 2018;9:187. doi: 10.4103/sni.sni_146_18.

20. Zhu J, Li ST, Zhong J, Guan HX, Ying TT, Yang M, et al. Role of arterioles in management of microvascular decompression in patients with hemifacial spasm. J Clin Neurosci 2012;19:375–379. doi: 10.1016/j.jocn.2011.04.046.

21. Zhong J, Xia L, Dou NN, Ying TT, Zhu J, Liu MX, et al. Delayed relief of hemifacial spasm after microvascular decompression: can it be avoided? Acta Neurochir (Wien) 2015;157:93–98; discussion 98–99. doi: 10.1007/s00701-014-2247-x.

22. Xia L, Zhong J, Zhu J, Dou NN, Liu MX, Li ST. Delayed relief of hemifacial spasm after microvascular decompression. J Craniofac Surg 2015;26:408–410. doi: 10.1097/SCS.0000000000001406.

23. Sindou M, Mercier P. Microvascular decompression for hemifacial spasm: surgical techniques and intraoperative monitoring. Neurochirurgie 2018;64:133–143. doi: 10.1016/j.neuchi.2018.04.003.

24. Zhong J, Li ST, Xu SQ, Wan L, Wang X. Management of petrosal veins during microvascular decompression for trigeminal neuralgia. Neurol Res 2008;30:697–700. doi: 10.1179/174313208X228924.

25. Zhu J, Zhong J, Jiao W, Zhou QM, Guan HX, Dou NN, et al. Via-cerebellar-fissures approach for microvascular decompression of trigeminal nerve. J Craniofac Surg 2014;25:1438–1440. doi: 10.1097/SCS.0000000000000780.

How to cite this article: Zhong J. The simpler the better: a personal philosophy of microvascular decompression surgery. Chin Med J 2021;134:410–412. doi: 10.1097/CM9.0000000000001233