CP violating anomalous trilinear gauge couplings from

\[B \to K^* \ell^+ \ell^- \]

Nita Sinha and Rahul Sinha *

Institute of Mathematical Sciences, Taramani, Chennai 600113, India.

(22 July 1997)

Abstract

We study the contributions of the CP violating anomalous WWγ interactions to \(b \to s \ell^+ \ell^- \). We obtain cutoff independent results on \(\tilde{\kappa} \) and \(\tilde{\lambda} \), by constructing an asymmetry for the process \(B \to K^* \ell^+ \ell^- \), where the \(B \) and \(\bar{B} \) events are added. We show that a sample of \(10^4 \) \(B \to K^* e^+ e^- \) events can yield a bound, \(|\tilde{\kappa}| < 0.42 \) at 90% C.L., which is much tighter than the recent constraint from D0.

PACS number: 12.60Cn, 13.20.He, 11.30.Er
Two of the aspects of the Standard Model (SM) which remain to be further explored are the gauge nature of the W, Z bosons and CP violation. The vector boson self interactions are uniquely fixed by the $SU(2)_L \times U(1)$ gauge structure of the SM. However, new physics as well as higher order corrections will modify these self interactions. While tests of trilinear gauge couplings are now being done at present colliders, only weak bounds on them exist \cite{1,2}. CP violation on the other hand is only parameterized in the SM via the CKM matrix, and has been seen only in the neutral K mesons. Much effort is now being put into studying CP violation in the B mesons. Large number of B mesons are expected to be produced in the near future, at the new asymmetric colliders and upgraded Tevatron, which would enable study of its rare decay modes. Rare decays of B mesons, occur in the SM only through loops and are thus expected to be very sensitive to new physics. In particular the mode $b \rightarrow s\ell^+\ell^-$ has been extensively studied \cite{3–5} for possible contributions from new physics. New physics that affects the gauge nature of the W, Z bosons, can be parameterized in terms of CP conserving as well as CP violating anomalous trilinear gauge boson couplings. The CP conserving couplings have been considered in the rare modes $b \rightarrow s\gamma$, $b \rightarrow s\ell^+\ell^-$ \cite{6–8}. Since, the origin of CP violation is not understood, any potential source of CP violation should be pursued. Here we focus attention on the CP violating anomalous couplings, by studying the mode $B \rightarrow K^{*}\ell^+\ell^-$.

The couplings of W bosons to the photon and Z can be described by an effective Lagrangian, the most general form of which may be written down with the minimum requirements-- that of Lorentz invariance, global $SU(2)$ and local $U(1)$ symmetry \cite{9} as:

$$
\mathcal{L}_{\text{eff}}^{V} = -g_{V}\left[ig_{1}^{V}\left(W_{\alpha\beta}^{\dagger}W_{\alpha}^{\alpha} - W_{\alpha}^{\dagger\alpha}W_{\beta}\right)V_{\beta} + i\kappa_{V}W_{\alpha}^{\dagger}W_{\beta}V_{\alpha\beta}
 + i\frac{\lambda_{V}}{M_{W}^{2}}W_{\alpha\beta}^{\dagger}W_{\beta}V_{\alpha\beta} + i\frac{\tilde{\lambda}_{V}}{M_{W}^{2}}W_{\alpha\beta}W_{\beta}^{\dagger}V_{\alpha\beta} + i\frac{\tilde{\lambda}_{V}^{2}}{M_{W}^{4}}W_{\alpha\beta}W_{\beta}^{\dagger}V_{\alpha\beta}
 + g_{4}^{V}W_{\alpha}^{\dagger}W_{\beta}\left(\partial^{\alpha}V_{\beta} + \partial^{\beta}V_{\alpha}\right) + g_{5}^{V}\epsilon_{\alpha\beta\mu\nu}W_{\alpha}^{\dagger}W_{\beta}^{\dagger}\partial_{\mu}V_{\nu} \right].
$$

(1)

In the above equation V represents the neutral gauge bosons either the photon or the Z, $V_{a\beta} = \partial_{\alpha}V_{\beta} - \partial_{\beta}V_{\alpha}$, $W_{a\beta} = \partial_{\alpha}W_{\beta} - \partial_{\beta}W_{\alpha}$, $\tilde{V}_{a\beta} = \frac{1}{2}\epsilon_{a\beta\rho\sigma}V_{\rho\sigma}$ and g_{V} is the WWV coupling.
strength in the SM with $g_\gamma = e$ and $g_Z = ec/s$, where $c^2 \equiv 1 - s^2 \equiv M_W^2/M_Z^2$. In the SM, the couplings g_1^Y, κ_V are unity and all others are zero. New physics may result in a modification of these couplings. The deviation from the SM, the so called anomalous couplings, need to be constrained experimentally. We shall here concentrate on the CP violating couplings $\tilde{\kappa}$ and $\tilde{\lambda}$. While many theoretical and experimental studies of anomalous triple gauge boson couplings have been done, few bounds exist on the anomalous CP violating couplings. Direct bounds have recently been obtained \cite{1} on $\tilde{\kappa}$ and $\tilde{\lambda}$ from $p\bar{p} \to W\gamma X$ at the tevatron. Stringent indirect constraints \cite{10} on these couplings come from electric dipole moment (EDM) of the neutron and electron. However, these constraints assume naturalness and are cutoff dependent. Hence, bounds from CP violating asymmetries that we pursue here, would be complementary to the EDM bounds. Possible contributions of the couplings $\tilde{\kappa}$ and $\tilde{\lambda}$ to processes at colliders have also been examined for LEPII \cite{9}, upgraded tevatron \cite{11} as well as future linear colliders \cite{12}. In the chiral Lagrangian approach the dimension 6 operator with coefficient, $\tilde{\lambda}$, is ignored. For ‘b’ penguin modes such as $b \to s\gamma$ or $b \to s\ell^+\ell^-$, unitarity of the CKM, results in cutoff independence for contributions from $\tilde{\kappa}$ and $\tilde{\lambda}$. Since both $\tilde{\kappa}$ and $\tilde{\lambda}$ contributions are finite, requiring no cutoff, we do not neglect $\tilde{\lambda}$. However, the constraints on $\tilde{\lambda}$ are expected to be weaker.

The effective short distance Hamiltonian relevant to the decay $b \to s\ell^+\ell^-$ \cite{13–15} leads to the QCD corrected matrix element,

$$\mathcal{M}(b \to s\ell^+\ell^-) = \frac{\alpha G_F}{\sqrt{2}\pi}v_t\{-2iC_7m_b \frac{q^\nu}{q^2} \bar{s}\sigma_{\mu\nu}b_R \bar{\ell}\gamma^\mu\ell + C_8 \bar{s}\gamma_\mu b_L \bar{\ell}\gamma^\mu\ell + C_9 \bar{s}\gamma_\mu b_L \bar{\ell}\gamma^\mu_5\ell\},$$

(2)

where only the dominant top quark contribution to the loop is retained. C_j ($j = 7, 8, 9$) are the Wilson coefficients given in Ref. \cite{13,14}, m_b is the mass of the b quark, q^2 is the invariant lepton mass squared, $b_{L,R} = (1 \mp \gamma_5)/2$ and $v_t = V_{ts}^* V_{tb}$ is the product of the CKM matrix elements. The anomalous WWV couplings, result in a shift in the values of the short distance coefficients C_j’s at $\mu = M_W$,

$$C_j = C_j^{SM} + i \kappa C_j^\kappa + i \lambda C_j^\lambda,$$

(3)

where C_j^{SM} are the SM values of C_j, κ and λ are the anomalous couplings, and C_j^κ and C_j^λ are the coefficients of the anomalous couplings. The anomalous couplings result in a shift in the values of the short distance coefficients C_j’s at $\mu = M_W$,\n
$$C_j = C_j^{SM} + i \kappa C_j^\kappa + i \lambda C_j^\lambda,$$
where, C_j^{SM} are the SM coefficients and C_j^κ, C_j^λ are the contributions from the anomalous couplings. These shifted values of C_j’s are then evolved down to the b quark scale. The anomalous $WW\gamma$ coupling coefficients have been evaluated to be,

$$C^\kappa_8 = C^\lambda_8 = \frac{m_t^2}{M_W^2} \frac{x_t}{12} \left(\frac{2 + 37 x_t + 10 x_t^2 - x_t^3}{6 (1 - x_t)^4} + \frac{x_t (3 + 5 x_t) \ln x_t}{(1 - x_t)^5} \right),$$

$$C^\kappa_7 = \frac{x_t}{2} \left(\frac{1}{(1 - x_t)^2} + \frac{x_t (3 - x_t) \ln x_t}{2 (1 - x_t)^3} \right),$$

$$C^\lambda_7 = \frac{x_t}{2} \left(\frac{1 - x_t^2 + 2 x_t \ln x_t}{2 (1 - x_t)^3} \right),$$

where, $x_t = \frac{m_t^2}{M_W^2}$, m_t is the mass of the top quark. The WWZ coefficients can be related to the corresponding $WW\gamma$ coefficients listed above, by modifying the couplings and propagator. C^κ_9, C^λ_9 also contributes to the WWZ vertex, with a functional form in x_t, identical to that of C^κ_8, C^λ_8. However, the anomalous contributions from the WWZ vertex may be neglected in comparison to that of the photon. Our results for C^κ_7 are in agreement with those of refs. [6] and [8] but we disagree with ref. [8] on C^λ_7 and on C^λ_8. C^κ_8 has been evaluated for the first time. Note that C^κ_8 turns out to be exactly equal to C^λ_8, perhaps indicating that for the contact term C_8, the derivatives from dimension 6 operator and the gauge part of the propagators contributing in case of the dimension 4 operator, behave similarly. Another interesting feature is that C_8 is doubly chirally suppressed for the CP violating couplings $\tilde{\kappa}, \tilde{\lambda}$.

Previous studies [6, 8] of CP violating anomalous gauge boson couplings in rare B decays, have used the mode $b \rightarrow s\gamma$, to constrain $\tilde{\kappa}$ and $\tilde{\lambda}$ separately, disallowing any possible cancellations between them. They also used only the decay rate of $b \rightarrow s\gamma$ and hence depended quadratically on these couplings. In order to achieve maximum sensitivity to CP violating couplings and to have a clear signal of CP violation, we need to estimate observables that are explicitly CP odd and must therefore depend linearly on the CP violating anomalous couplings. CP violating asymmetries have also been considered in $b \rightarrow s\gamma$, in SM and two
Higgs doublet model. However, such asymmetries rely on the presence of a large strong phase arising out of final state interactions. CP violating asymmetries in rare modes that require flavour tagging are going to be very difficult to detect. We therefore prefer to use a technique that neither needs flavour nor time tagging. Such an asymmetry has been considered in ref. [19]. We adopt this technique and construct asymmetries for the mode $B \rightarrow K^{\ast} \ell^+ \ell^-$ ($\ell^+ \ell^-$ non resonant), to obtain simultaneous bounds on $\bar{\kappa}$ and $\bar{\lambda}$. The mode $B \rightarrow K^{\ast} \ell^+ \ell^-$ is theoretically clean and can provide additional information due to its richer kinematics. We present here only the case of charged B’s. For neutral B’s, after time integration, the asymmetries that we construct, have exactly the same form as that for the charged B’s [19].

The transition matrix element for the exclusive process $B(p) \rightarrow K^{\ast}(k) \ell^+ \ell^- \rightarrow K(k_1)\pi(k_2)\ell^+(q_1)\ell^-(q_2)$ can be written for each of the operators in Eq.(2) as,

$$\langle K\pi|\bar{s}i\sigma_{\mu\nu}(1 \pm \gamma_5)q^\nu b|B \rangle = iA\epsilon_{\mu\nu\alpha\beta}K^\nu k^\alpha q^\beta \pm BK_\mu \pm Ck_\mu,$$

$$\langle K\pi|\bar{s}\gamma_{\mu}(1 \mp \gamma_5)b|B \rangle = iD\epsilon_{\mu\nu\alpha\beta}K^\nu k^\alpha q^\beta \pm EK_\mu \pm Fk_\mu. \quad (5)$$

The form-factors A, \cdots, F are unknown functions of $q^2 = (p - k)^2$ and other dot products involving momentum, $k = k_1 + k_2$ and $K = k_1 - k_2$ and can be related to those used in [4], as given in the Table. The variable σ, in the table, arises due to the decay of $K^{\ast} \rightarrow K\pi$, evaluated in the zero width approximation. They can be similarly related to those in heavy quark effective theory (HQET) [5]. The HQET form factors cannot currently be reliably predicted over the entire dilepton mass range. The results that we shall obtain, do depend on the numerical values of the form factors. In future, with large number of B’s available, the form factors can be determined experimentally. The current proportional to q_μ does not contribute as it couples to light leptons. In our notation M_B, m_{K^\ast}, m_K and m_π are the masses of the B, K^\ast, K mesons and the pion respectively. The matrix element for the process $B \rightarrow K^{\ast} \ell^+ \ell^- \rightarrow K\pi \ell^+ \ell^-$ can be written as

$$\mathcal{M}(B \rightarrow K\pi \ell^+ \ell^-) = \frac{\alpha G_F}{\sqrt{2\pi}} \left\{ (i\alpha_L \epsilon_{\mu\nu\alpha\beta} K^\nu k^\alpha q^\beta + \beta_L K_\mu + \rho_L k_\mu) \bar{\ell}\gamma^\mu L \ell + L \rightarrow R \right\}, \quad (6)$$
where $L, R = \frac{(1 \mp \gamma_5)}{2}$, $q = q_1 + q_2$ and $Q = q_1 - q_2$, and the coefficients $\alpha_{L,R}$, $\beta_{L,R}$ and $\rho_{L,R}$ are given by

$$
\alpha_{R,L} = v_t \left\{ \frac{(C_8 + C_9)}{2} D - \frac{m_b}{q^2} C_7 A \right\} = |a_{R,L}| \exp \left(i \delta_{R,L}^\alpha \right) \exp \left(i \phi_{R,L}^\alpha \right)
$$

$$
\beta_{R,L} = v_t \left\{ \frac{(C_8 + C_9)}{2} E - \frac{m_b}{q^2} C_7 B \right\} = |b_{R,L}| \exp \left(i \delta_{R,L}^\beta \right) \exp \left(i \phi_{R,L}^\beta \right)
$$

$$
\rho_{R,L} = v_t \left\{ \frac{(C_8 + C_9)}{2} F - \frac{m_b}{q^2} C_7 C \right\} = |r_{R,L}| \exp \left(i \delta_{R,L}^\rho \right) \exp \left(i \phi_{R,L}^\rho \right)
$$

In the above equation α, β and ρ are recast in terms of a, b and r so as to identify the strong phases δ and the weak phases ϕ. Using CPT invariance, the matrix element for the decay $\bar{B} \to \bar{K}\pi \ell^+ \ell^-$ can be obtained from the $B \to K\pi \ell^+ \ell^-$ by replacing $\alpha_{L,R} \to -\bar{\alpha}_{L,R}$, $\beta_{L,R} \to -\bar{\beta}_{L,R}$, $\rho_{L,R} \to \bar{\rho}_{L,R}$ [20,21], where

$$
\bar{\alpha}_{R,L} = |a_{R,L}| \exp \left(i \delta_{R,L}^\alpha \right) \exp \left(-i \phi_{R,L}^\alpha \right)
$$

and similar relations hold for $\bar{\beta}$ and $\bar{\rho}$. The matrix element mod. squared for the process $B \to K^* \ell^+ \ell^- \to K\pi \ell^+ \ell^-$ is worked out retaining the imaginary parts in α, β and ρ to be,

$$
|\mathcal{M}(B(p) \to K(k_1)\pi(k_2)\ell^+(q_1)\ell^-(q_2))|^2 = \frac{\alpha^2 G_F^2}{2\pi^2} \left\{ 2 \epsilon_{\mu \nu \rho \sigma} k^\mu K^\nu q^\rho Q^\sigma (K \cdot Q \text{Im}(\alpha_L \beta_L^* + \alpha_R \beta_R^*) + \text{Im}(\rho_L \beta_L^* - \rho_R \beta_R^*)) \\
- k \cdot Q \text{Im}(\rho_L \alpha_L^* + \rho_R \alpha_R^*) + 2 \text{Re}(\rho_L \alpha_L^* - \rho_R \alpha_R^*) \\
- (k \cdot K q^2 k \cdot Q + k \cdot q k \cdot Q K \cdot q + m_K^2 q^2 K \cdot Q - k \cdot Q K \cdot Q) \\
+ 2 \text{Re}(\rho_L \beta_L^* + \rho_R \beta_R^*) (k^2 q^2 k \cdot Q - k \cdot Q K^2 q^2 K \cdot Q) \\
+ 2 \text{Re}(\alpha_R \beta_R^* - \alpha_L \beta_L^*) (k^2 q^2 k \cdot Q - k \cdot Q K^2 q^2 K \cdot Q) \\
+ k \cdot q K \cdot Q + (\rho_L^2 + \rho_R^2) (m_K^2 q^2 + k \cdot q^2 - k \cdot Q^2) \\
+ (\alpha_L^2 + \alpha_R^2) (-k^2 q^2 k \cdot Q^2 + k \cdot Q^2 K \cdot q^2 + 2 k \cdot K q^2 k \cdot Q K \cdot Q) \\
- 2 k \cdot q k \cdot Q K \cdot Q - m_K^2 q^2 K \cdot Q^2 + k \cdot q^2 K \cdot Q^2) \\
+ (\beta_L^2 + \beta_R^2) (-k^2 q^2 + K \cdot q^2 - K \cdot Q^2) \right\}
$$

where

$$
k \cdot K = m_K^2 - m_\pi^2 \cdot q \cdot Q = 0
$$
\[k \cdot q = \frac{1}{2}(M_B^2 - m_{K^*}^2 - q^2) \]
\[k \cdot Q = X M_B \cos \theta_e \]
\[K \cdot q = \lambda_K X M_B \cos \theta_{K^*} + \frac{m_{K^*}^2 - m_{\pi}^2}{m_{K^*}^2} k \cdot q \]
\[K \cdot Q = k \cdot Q \frac{m_{K^*}^2 - m_{\pi}^2}{m_{K^*}^2} + \lambda_K (k \cdot q \cos \theta_K - \sqrt{q^2 m_{K^*}^2} \sin \theta_l \sin \theta_K \cos \varphi). \]

Here \(X \) is the three momentum of the \(\ell^+ \ell^- \) or \(K\pi \) invariant system in the \(B \) meson rest frame and is given by

\[X = \left(\frac{k \cdot q^2 - q^2 m_{K^*}^2}{M_B} \right)^{\frac{1}{2}} \]

\(\lambda_K \) is related to the \(K \) three momentum in the \(K^* \) rest frame and is defined as

\[\lambda_K = \left(1 - \frac{(m_K + m_{\pi})^2}{m_{K^*}^2} \right)^{\frac{1}{2}} \left(1 - \frac{(m_K - m_{\pi})^2}{m_{K^*}^2} \right)^{\frac{1}{2}} \]

and similarly, \(\lambda_e \) is related to the lepton momentum in the \(\ell^+ \ell^- \) rest frame and is given by,

\[\lambda_e = \sqrt{1 - \frac{4 m_e^2}{q^2}} \]

\[\epsilon_{\mu \nu \rho \sigma} k^\mu K^\nu q^\rho Q^\sigma = -X M_B \lambda_K \sqrt{q^2 m_{K^*}^2} \sin \theta_l \sin \theta_K \sin \varphi, \]

\(\theta_l (\theta_k) \) is the angle between the \(\ell^- (K) \) three-momentum vector in the \(\ell^+ \ell^- (K\pi) \) rest frame and the direction of total \(\ell^+ \ell^- (K^*) \) three-momentum vector defined in the \(B \) rest frame. \(\varphi \) is the angle between the normals to the planes defined by \(\ell^+ \ell^- \) and the \(K\pi \), in the \(B \) rest frame. The differential decay rate is then given by

\[d\Gamma = \frac{1}{2^{14} \pi^6 M_B^2} \int |\mathcal{M}|^2 X \lambda_K \lambda_e dq^2 dq \cos \theta_K d\cos \theta_l d\varphi, \quad (10) \]

assuming a narrow width approximation for the decay \(K^* \to K\pi \).

It can easily be seen from eq. (9) that, the only terms proportional to \(\sin(\varphi) \) or \(\sin(2\varphi) \) are those that depend on the imaginary parts of the products any two of \(\alpha, \beta \) or \(\rho \). For instance only the coefficient of \(\text{Im}(\alpha_L \beta_L^* + \alpha_R \beta_R^*) \) is proportional to \(\sin(2\varphi) \). Hence we can
isolate this term by considering the following asymmetric width in terms of the differential decay rates of the B meson with respect to φ,

$$\Delta \Gamma_1 = \left(\int_0^{\pi/2} - \int_{\pi/4}^{3\pi/4} + \int_{3\pi/4}^{\pi/2} \right) \frac{d\Gamma}{d\varphi} d\varphi .$$ \hfill (11)

The imaginary part in the term under consideration can be due to either a strong phase or a weak phase. Such CP violating asymmetries can be obtained not by considering the difference of differential rates for B and \bar{B}, but the sum of these rates. It follows trivially from eqns.\((7\ and \ 8)\) that the asymmetric width for $B(\bar{B})$ is,

$$\Delta \Gamma_1(\Delta \bar{\Gamma}_1) \propto \pm \sum_{j,k} \{ |a_j^L| |b_k^L| \sin((\delta_{L}^{jk}) \pm (\phi_{L}^{jk})) + L \to R \},$$ \hfill (12)

where $\delta_{L}^{jk} \equiv (\delta_{L}^{ij} - \delta_{L}^{ij})$ and $\phi_{L}^{jk} \equiv (\phi_{L}^{ij} - \delta_{L}^{ij})$. We define the asymmetry A_1 as the sum of the asymmetric widths, normalized to the total widths, $A_1 = \frac{\Delta \Gamma_1 + \Delta \bar{\Gamma}_1}{\Gamma + \bar{\Gamma}}$ and from eq.\((12)\), we have,

$$A_1 \propto \sum_{j,k} \{ |a_j^L| |b_k^L| \cos(\delta_{L}^{jk}) \sin(\phi_{L}^{jk}) + L \to R \},$$ \hfill (13)

which is nonzero if and only if there is CP violation represented by non-zero phases ϕ \cite{19,20,22}. δ can arise from electromagnetic final state interactions, which are negligible and ignored. For top quark in the penguin loop, the case of δ being nonzero due to intermediate quark on shell, does not arise.

It is also possible to construct a different asymmetry that isolates another combination of the imaginary terms. Such an asymmetry \cite{23} considers the difference distribution of the same hemisphere and opposite hemisphere events, and the asymmetric width in this case can be defined by,

$$\Delta \Gamma_2 = \left(\int_0^{\pi} - \int_{\pi/2}^{3\pi/2} \right) d\varphi \int_D d\cos \theta_l \int_D d\cos \theta_K \frac{d\Gamma}{d\cos \theta_l d\cos \theta_K} ,$$ \hfill (14)

where $\int_D \equiv \int_0^0 - \int_1^1$. Analogous to A_1, we define the asymmetry A_2, $A_2 = \frac{\Delta \Gamma_2 + \Delta \bar{\Gamma}_2}{\Gamma + \bar{\Gamma}}$. The asymmetries A_1 and A_2 are evaluated to be,

$$A_1 = -2x \Delta \int dq^2 C (a_0 V - A_0 g) X^2 , \ A_2 = x \int dq^2 C F \frac{1}{m_{K^*} \sqrt{q^2}} X^2 ,$$ \hfill (15)
where,
\[x = \frac{v^2 \alpha^2 G_F^2 m_b}{24 \pi^6 M_B (\Gamma + \bar{\Gamma})(M_B + m_{K^*})}, \]
\[C = (\bar{\kappa} C_7^6 + \bar{\lambda} C_7^8) C_{SM}^{8}, \]
\[\Delta = M_B^2 - m_{K^*}^2, \]
\[F = \left\{ 2X^2 M_B^2 (a_+ V - A_+ g) + (a_0 V - A_0 g) \Delta k \cdot q \right\}. \]

Note that these asymmetries are independent of \(C_{SM}^{9} \). Since, \(\bar{\kappa}, \bar{\lambda} \) terms are suppressed in comparison with \(C_{SM}^{6,8} \), for all our estimations, we ignore them.

For a rate asymmetry \(A \) to provide a \(n \) standard deviation signal of \(CP \) violation, we require that \(A = \frac{n}{\sqrt{N}} \), where \(N \) is the total number of events in the channel. Thus for \(A_2 \), at 1\(\sigma \) (1.64 \(\sigma \)) level, it is possible to place the bounds, \(|\bar{\kappa}| < 0.34 \) (0.92) for \(\bar{\lambda} = 0 \) and \(|\bar{\lambda}| < 1.02 \) (2.75) for \(\bar{\kappa} = 0 \), using 10,000 \((B \to K^*e^+e^-) \) events. This corresponds to 2x10^9 \(B \)'s, however, by adding the \((B \to K^*\mu^+\mu^-) \) mode, 10^9 \(B \)'s will be required. Much weaker bounds would be obtained from \(A_1 \).

However, we can improve the statistical significance, by looking at the \(q^2 \) distributions, shown in Fig. 1. We bin the asymmetry \(A_2 \) (\(A_1 \) being small is ignored, and we shall drop the subscript 2 hereafter) and use a \(\chi^2 \) fit to obtain bounds on the parameters \(\bar{\kappa} \) and \(\bar{\lambda} \). The asymmetry as a function of \(q^2 \) is given by,
\[
A(q^2) = \frac{\left(\int_0^\pi - \int_{2\pi} \right) d\varphi \int_{\Delta} d\cos \theta_t \int_{D} d\cos \theta_K \Gamma_{sum}(q^2)}{\left(\int_{0}^\pi + \int_{2\pi} \right) d\varphi \int_{-1}^1 d\cos \theta_t \int_{-1}^1 d\cos \theta_K \Gamma_{sum}(q^2)},
\]
where \(\Gamma_{sum}(q^2) = \frac{d(\Gamma + \bar{\Gamma})}{dq^2 d\cos \theta_t d\cos \theta_K d\varphi} \), \(d(\Gamma + \bar{\Gamma}) \) is the sum of the differential widths of \(B \) and \(\bar{B} \). The average value of asymmetry in the \(i^{th} \) bin is then,
\[
A_i = \frac{N_B}{\Gamma_B N_i} \int_{q_{i_{min}}^{max}} dq^2 A(q^2) \frac{d(\Gamma + \bar{\Gamma})}{dq^2},
\]
where, \(N_B \) is the total number of \(B \)'s, \(\Gamma_B \) is the total \(B \) width and \(q_{i_{min}}^{max} \) are the minimum and maximum \(q^2 \) values in the bin; the number of events in the \(i^{th} \) bin are,
\[
N_i = \frac{N_B}{\Gamma_B} \int_{q_{i_{min}}^{max}} dq^2 \frac{d(\Gamma + \bar{\Gamma})}{dq^2}.
\]
The value of the asymmetry, in the i^{th} q^2 bin, coming from $\tilde{\kappa}$ and $\tilde{\lambda}$ contributions, is of the form

$$A_i = \frac{a_i \tilde{\kappa} + b_i \tilde{\lambda}}{X_i}.$$ \hfill (19)

In X_i, terms quadratic in $\tilde{\kappa}$ and $\tilde{\lambda}$ are ignored, which is a reasonable approximation as long as $\tilde{\kappa}$, $\tilde{\lambda}$ are small. The observed asymmetry A_i^{obs} in the i^{th} bin is assumed to be chosen from a Gaussian distribution with mean equal to the theoretical asymmetry A_i^{th} and variance σ_i^2. Then, the method of least squares gives,

$$\chi^2 = \sum_{i=1}^{n_{\text{bin}}} \left(\frac{A_i^{\text{obs}} - A_i^{\text{th}}}{\sigma_i} \right)^2.$$ \hfill (20)

The statistical errors are taken to be $\sigma_i = \sqrt{1/N}$. We evaluate the difference, $\Delta \chi^2 = \chi^2_{\text{SM}} - \chi^2_{\text{min}}$, where χ^2_{SM} is the χ^2 corresponding to the SM values of the parameters i.e. $(0,0)$ and χ^2_{min} is evaluated from the values $(\tilde{\kappa}, \tilde{\lambda})$ that minimize χ^2. The linear dependence on the parameters $\tilde{\kappa}, \tilde{\lambda}$ results in the simple form,

$$\Delta \chi^2 = \sum_{i=1}^{n_{\text{bin}}} \left(\frac{\tilde{\kappa}a_i X_i}{\sigma_i^2} \right)^2 + \left(\frac{\tilde{\lambda}b_i X_i^2}{\sigma_i^2} \right)^2.$$ \hfill (21)

Now, $\Delta \chi^2 = n^2$ will give the n-standard deviation bounds for $\tilde{\kappa}$ and $\tilde{\lambda}$.

For 20 bins, for 10,000 ($B \to K^* e^+ e^-$) events, it is possible to obtain the improved individual bounds,

$$|\tilde{\kappa}| < 0.25(0.42) \quad \text{at} \quad 68.3(90)\% \text{ C.L.}$$

$$|\tilde{\lambda}| < 0.76(1.25) \quad \text{at} \quad 68.3(90)\% \text{ C.L.}$$ \hfill (22)

The possible combined bounds on $\tilde{\kappa}$ and $\tilde{\lambda}$ are shown in Fig. 2.

To conclude, we have studied CP violating anomalous couplings $\tilde{\kappa}$ and $\tilde{\lambda}$ contributing to the process $B \to K^* \ell^+ \ell^-$, $K \pi \ell^+ \ell^-$. These anomalous couplings can be constrained by constructing an asymmetry, requiring the addition of B and \bar{B} events. No strong phases, nor any flavour/time tagging are required for this technique. Although, EDM of neutron
places strong bounds on the couplings $\tilde{\kappa}$ and $\tilde{\lambda}$, the CP odd asymmetries studied here, depend on a different combination of these anomalous couplings and thus provide useful additional information. $\tilde{\lambda}$ being the coefficient of a higher dimensional operator, is expected to be better constrained by high energy collider events than from rare B decays. The recent results of D0 provide good bounds on $\tilde{\lambda}$, but for $\tilde{\kappa}$ the approach discussed here can provide a much tighter constraint.

We would like to thank G.Date and G.Rajasekaran for discussions.
REFERENCES

[1] D0 Collaboration, S. Abachi et al., Phys. Rev. Lett. 78, 3634 (1997); 75, 1034 (1995); CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 74, 1936 (1995).

[2] D0 Collaboration, S. Abachi et al., Phys. Rev. Lett. 75, 1023 (1995); 77, 3303 (1996); CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 75, 1017 (1995); CLEO Collaboration, M.S. Alam et al., Phys. Rev. Lett. 74, 2885 (1995); UA2 Collaboration, J. Alitti et al., Phys. Lett. B277, 194 (1992); M. Samuel et al., Phys. Lett. B280, 124 (1992).

[3] M. Gronau and D. London, Phys. Rev. D55, 2845 (1997); J.L. Hewett and J.D. Wells, Phys. Rev. D55, 5549 (1997); J.L. Hewett, Phys. Rev. D53, 4964 (1996); N. G. Deshpande, K. Panose and J. Trampetic, Phys. Lett. B308, 322 (1993).

[4] C. Greub, A. Ioannisian and D. Wyler, Phys. Lett. B346, 149 (1995).

[5] G. Burdman, Phys. Rev. D52, 6400 (1995).

[6] Xiao-Gang He and Bruce Mc Kellar, Phys. Lett. B320, 165 (1994).

[7] K.A. Peterson, Phys. Lett. B282, 207 (1992); T.G. Rizzo, Phys. Lett. B315, 471 (1993).

[8] K. Numata Z. Phys. C52, 691 (1991).

[9] K. Hagiwara, R.D. Peccei and D. Zeppenfeld, Nucl. Phys. B282, 253 (1987).

[10] W. Marciano and A. Queijeiro, Phys. Rev. D 33, 3449 (1986); F. Boudjema et al., Phys. Rev. D 43, 2223 (1991).

[11] S. Dawson, Xiao-Gang He and G. Valencia, Phys. Lett. B390, 431 (1997).

[12] P. Kalyniak, P. Madsen, N. Sinha and R. Sinha, Phys. Rev. D52, 3826 (1995); G. Belanger and G. Couture, Phys. Rev. D 49, 5720 (1994).

[13] M. Misiak, Nucl. Phys. B393, 23 (1993); A. J. Buras and M. Münz, Phys. Rev D 52, 186 (1995).
[14] B. Grinstein, M. J. Savage and M. B. Wise, Nucl. Phys. B319, 271 (1989).

[15] R. Grigjains, P. J. O'Donnell, M. Sutherland and N. Navelet, Phys. Rep. 228, 93 (1993).

[16] J. M. Soares, Nucl. Phys. B367, 575 (1991).

[17] L. Wolfenstein and Y. L. Wu, Phys. Rev. Lett. 73, 2809 (1994); Y. L. Wu and L. Wolfenstein, Phys. Rev. Lett. 73, 1762 (1994).

[18] Dong-Sheng Du and Mao-Zhi Yang, Phys. Rev. D54, 882 (1996); T. M. Aliev, D. A. Demir, E. Iltan and N. K. Pak, hep-ph/9511352.

[19] R. Sinha, hep-ph/9608314.

[20] G. Valencia, Phys. Rev. D39, 3339 (1989).

[21] S. Okubo, in “A gift of prophecy”– essays in celebration of R. E. Marshak, edited by E. C. G. Sudarshan, World Scientific (1995).

[22] G. Burdman and J. F. Donoghue, Phys. Rev. D45, 187b (1992).

[23] G. Kramer and W. F. Palmer, Phys. Lett. B279, 181 (1992).
FIGURES

FIG. 1. (a) The differential branching fraction as a function of q^2. (b) The asymmetry $A_2(q^2)$ as a function of q^2. The solid line is for $\tilde{\kappa} = 1(\tilde{\lambda} = 0)$ and the dashed for $\tilde{\lambda} = 1(\tilde{\kappa} = 0)$.

FIG. 2. Limits on the CP-violating anomalous coupling parameters $\tilde{\kappa}$ and $\tilde{\lambda}$. The region inside the solid (dashed) lines represents the 68.3(90)% C.L. limits.
TABLE I. Relations between the form factors used in this paper, a quark model (QM) that reproduces heavy quark limit. \(W_\mu = (K_\mu - \zeta k_\mu) \), \(\sigma^2 = \frac{96\pi^2}{\left(m_{K^*}^2 \lambda_{K^*}^3 \right)} \), \(\zeta = \frac{k \cdot K}{m_{K^*}^2} \), \(\lambda_K \) and \(\Delta \) are defined in the text.

	QM
\(A \)	\(-2g_\sigma\)
\(B \)	\(a_0 \Delta \sigma\)
\(C \)	\(2a_+ W \cdot q \sigma - \zeta B\)
\(D \)	\(-2 \frac{V}{M_B + m_{K^*}} \sigma\)
\(E \)	\(\frac{A_0}{M_B + m_{K^*}} \Delta \sigma\)
\(F \)	\(2 \frac{A_+}{M_B + m_{K^*}} W \cdot q \sigma - \zeta E\)
Fig 1
