Diagnosis of *Helicobacter pylori* Infection in Children: Comparison of a Salivary Immunoglobulin G Antibody Test with the 13C-Urea Breath Test

G. Bode,1*, P. Marchildon,2 J. Peacock,2 H. Brenner,3 and D. Rothenbacher3

Department of Epidemiology, University of Ulm, Ulm,1 and Department of Epidemiology, German Centre for Research on Ageing, University of Heidelberg, Heidelberg,2 Germany, and Enteric Products, Inc., Stony Brook, New York2

Received 10 September 2001/Returned for modification 11 October 2001/Accepted 20 November 2001

The prevalence of *Helicobacter pylori* infection in a population-based sample of 477 children (mean age ± standard deviation, 5.8 ± 0.5 years) determined by the 13C-urea breath test (13C-UBT) was 10.7% (95% confidence interval [CI], 8.1 to 13.8%), and that determined by salivary enzyme-linked immunosorbent assay (ELISA) was 11.9% (95% CI, 9.2 to 15.2%). Compared to the 13C-UBT, the sensitivity and specificity of the salivary ELISA were 80.9% (95% CI, 66.3 to 90.4%) and 95.3% (95% CI, 92.7 to 97.1%), respectively.

For the diagnosis of *Helicobacter pylori* infection in children, endoscopy is not clinically indicated and is not feasible in most studies. Noninvasive diagnosis of *H. pylori* infection can be done by measuring specific anti-*H. pylori* immunoglobulin G (IgG) antibodies in serum or saliva with an enzyme-linked immunosorbent assay (IgG-ELISA), with the 13C-urea breath test (13CUBT), and with an enzyme immunoassay (HpSA) for antigens in stools (3, 12–14, 16–18, 21–25). Whole saliva as a test sample is easily accessible, and despite some less encouraging results with 13CUBT testing (9, 19, 23), some studies seem to be promising (1, 6, 10, 11, 15).

The 13CUBT has been shown to be an extremely accurate method of detecting *H. pylori* infection because it has the advantage of evaluating the gastric mucosa as a whole, thereby avoiding the sampling errors inherent in biopsy (4, 5, 7). Furthermore, as previously shown, the 13CUBT is an excellent diagnostic test in children 5 years of age and older and can be considered another “gold standard,” especially if endoscopy is not indicated (5, 7, 8).

In this study, we investigated the salivary anti-*H. pylori* IgG immune response in a population-based sample of school-age children. The performance of the salivary assay was assessed against the 13CUBT as the gold standard for establishing *H. pylori* infection.

Study subjects were 477 randomly selected children 5 to 7 years old (mean age ± standard deviation, 5.8 ± 0.5 years) (Table 1) living in Ulm, Germany, who were examined for school fitness by the Public Health Service in 1998. A total of 71.7% of the children were of German nationality, 13.0% were of Turkish nationality, and 15.3% were of other than German or Turkish nationality. Participation in the study was voluntary, and informed consent of parents was obtained for each child. The study was approved by the Ethics Board of the University of Ulm.

The 13CUBT was performed as described previously (2, 20). Sixty milligrams of 13C-urea (99.5% C; Mass Trace, Woburn, Mass.) was dissolved in 200 ml of apple juice (pH 2.2 to 2.4). Breath samples were collected into plastic bags before and 30 min after intake of the apple juice and were analyzed with an isotope-selective nondispersive infrared spectrometer (Wagner Analytical Systems, Bremen, Germany). A test was regarded to be *H. pylori* positive if the difference between the baseline 13CO$_2$/12CO$_2$ ratio and the 30-min 13CO$_2$/12CO$_2$ ratio exceeded 4‰.

To minimize the possibility of false-negative 13CUBT results, children who had received antibiotic treatment within the previous 4 weeks, which could influence the 13CUBT, were excluded from the analysis. None of the children had received proton pump inhibitors, H$_2$ blockers, bismuth salts, or antacids within 48 h after the breath test.

Before the 13CUBT was conducted, whole saliva was collected with a special saliva sampling device (Salivette; Sarstedt, Nürnberg, Germany) according to the manufacturer’s instructions. Children were asked to chew thoroughly a cotton wool swab for 1 min. The cotton wool swab was then placed into the suspended insert of the sampling device, and the saliva was

TABLE 1. Various demographic characteristics of the study population

Variable	n	%
Age (yr)		
5	124	26.0
6	330	69.2
7	23	4.8
Sex		
Male	225	47.2
Female	252	52.8
Nationality		
German	342	71.7
Turkish	62	13.0
Other	73	15.3
Total	477	100

* Corresponding author. Mailing address: Department of Epidemiology, University of Ulm, Helmholtzstr. 22, D-89081 Ulm, Germany. Phone: 0049 731 5031072. Fax: 0049 731 5031069. E-mail: guenter.bode@medizin.uni-ulm.de.
TABLE 2. Performance of salivary ELISA versus 13CUBT in 477 children

Salivary ELISA result	No. with the following 13CUBT result:	Total	
	Positive	Negative	
Positive	38	19	57
Indeterminate	4	20	24
Negative	9	387	396
Total	51	426	477

TABLE 3. Salivary IgG-ELISA compared to 13CUBT

Parameter	Result* for children of the following nationality:	
	German	Other
$H. \text{pylori}$ prevalence according to 13CUBT	3.2 (1.6–5.7)	29.6 (22.1–38.1)
Sensitivity	72.7 (39.3–92.7)	83.3 (66.5–93.0)
Specificity	96.2 (93.2–97.9)	92.4 (84.3–96.6)
PPV	40.0 (20.0–63.6)	81.1 (64.3–91.4)
NPV	99.0 (96.9–99.7)	93.4 (85.7–97.3)

* Values are percentages. Data in parentheses are 95% CIs.
diagnostic method for Helicobacter pylori screening in children. Pediatrics 106:115–117.
4. Chong, S. K. F., Q. Lou, M. A. Assnicar, S. E. Zimmerman, J. M. Croftie, C.-H. Lee, and J. F. Fitzgerald. 1995. Helicobacter pylori infection in recurrent abdominal pain in childhood: comparison of diagnostic tests and therapy. Pediatrics 96:211–215.
5. Corvaglia, L., P. Bontems, J. M. Devaster, P. Heimann, Y. Glucpnczki, E. Keppens, and S. Cadranel. 1999. Accuracy of serology and 13C-urea breath test for detection of Helicobacter pylori in children. Pediatr. Infect. Dis. J. 18:976–979.
6. De Pascalis, R., M. Del Pezzo, G. Nardone, G. Budillon, and A. Lavitola. 1999. Performance characteristics of an enzyme-linked immunosorbent assay for determining salivary immunoglobulin G response to Helicobacter pylori. J. Clin. Microbiol. 37:430–432.
7. Drumm, B., S. Koletzko, and G. Oderda. 2000. Helicobacter pylori infection in children: a consensus statement. J. Pediatr. Gastroenterol. Nutr. 30:207–213.
8. Kindermann, A., H. Demmelmaier, B. Koletzko, S. Krauss-Etschmann, B. Wiebecke, and S. Koletzko. 2000. Influence of age on 13C-urea breath test results in children. J. Pediatr. Gastroenterol. Nutr. 30:85–91.
9. Lanza, F., M. Imeneo, A. Marasco, S. Croatta, E. Ierardi, P. Usai, C. Virgilio, G. Nardone, S. Marchi, G. Sanna, F. Perri, R. M. Zagari, and F. Bazzoli. 2000. Evaluation of a commercial serological kit for detection of salivary immunoglobulin G to Helicobacter pylori: a multicentre study. Eur. J. Gastroenterol. Hepatol. 12:1117–1120.
10. Lanza, F., G. Oderda, M. Mallett, M. Imeneo, L. Mesuraca, E. Chioboli, P. Lerro, S. Guandalini, and F. Pallone. 1997. Salivary immunoglobulin G assay to diagnose Helicobacter pylori infection in children. J. Clin. Microbiol. 35:3358–3360.
11. Lanza, F., M. Mallett, M. Imeneo, P. Doldo, R. Marasco, L. Biancone, and F. Pallone. 1995. Salivary specific IgG is a sensitive indicator of the humoral immune response to Helicobacter pylori. FEMS Immunol. Med. Microbiol. 10:281–284.
12. Malaty, H. M., N. D. Logan, D. Y. Graham, J. E. Ramchutesingh, and S. G. Reddy. 2000. Helicobacter pylori infection in asymptomatic children: comparison of diagnostic tests. Helicobacter 5:155–159.
13. Marchildon, P., D. H. Balaban, M. Sue, C. Charles, R. Doobay, N. Passaratti, J. Peacock, B. J. Marshall, and D. A. Peura. 1999. Usefulness of serological IgG antibody determinations for confirming eradication of Helicobacter pylori infection. Am. J. Gastroenterol. 94:2105–2108.
14. Marchildon, P., L. M. Ciota, F. Z. Zamaniyan, J. Peacock, and D. Y. Graham. 1996. Evaluation of three commercial enzyme immunoassays compared with the 13C-urea breath test for detection of Helicobacter pylori infection. J. Clin. Microbiol. 34:1147–1152.
15. Marshall, B., A. J. Howat, and P. A. Wright. 1999. Oral fluid antibody detection in the diagnosis of Helicobacter pylori infection. J. Med. Microbiol. 48:1043–1046.
16. Oderda, G., A. Rapa, B. Ronchi, P. Lerro, M. Pastore, A. Staiano, G. L. deAngelis, and P. Strisciuglio. 2000. Detection of Helicobacter pylori in stool specimens by non-invasive antigen enzyme immunoassay in children: multicentre Italian study. Br. Med. J. 320:347–348.
17. Oderda, G., A. Rapa, D. Marinello, B. Ronchi, and A. Zavallone. 2001. Usefulness of Helicobacter pylori stool antigen test to monitor response to eradication treatment in children. Aliment. Pharmacol. Ther. 15:203–206.
18. Raymond, J., N. Kalach, M. Bergeret, J. P. Barbet, P. H. Benhamou, D. Gendrel, and C. Dupont. 1996. Evaluation of a serological test for diagnosis of Helicobacter pylori infection in children. Eur. J. Clin. Microbiol. Infect. Dis. 15:415–417.
19. Reilly, T. G., V. Poxon, D. S. A. Sanders, T. S. J. Elliott, and R. P. Wait. 1997. Comparison of serum, salivary, and rapid whole blood diagnostic tests for Helicobacter pylori and their validation against endoscopy based tests. Gut 40:454–458.
20. Rothenbacher, D., G. Bode, G. Berg, R. Gommel, T. Gonser, G. Adler, and H. Brenner. 2000. Diagnosis of Helicobacter pylori infection with a novel stool antigen-based assay in children. Pediatr. Infect. Dis. J. 19:364–366.
21. Rothenbacher, D., G. Bode, and H. Brenner. 2000. Diagnosis of Helicobacter pylori infection with a novel stool antigen-based assay in children. Pediatr. Infect. Dis. J. 19:364–366.
22. Shepherd, A. J., C. L. Williams, C. P. Doherty, M. Hossack, T. Preston, K. E. L. McColl, and L. T. Weaver. 2000. Comparison of an enzyme immunoassay for the detection of Helicobacter pylori antigens in the faeces with the urea breath test. Arch. Dis. Child. 83:266–270.
23. Simon, A. E., E. Lin, F. Saibil, L. Cohen, M. Louie, S. Pearen, and H. A. Donhoffer. 1996. Evaluation of enzyme immunoassay for detection of salivary antibody to Helicobacter pylori. J. Clin. Microbiol. 34:550–553.
24. Sunnerstam, B., T. Kjerstadius, L. Jansson, J. Giesecke, M. Bergström, and J. Ejerhamn. 1999. Detection of Helicobacter pylori antibodies in a pediatric population: comparison of three commercially available serological tests and one in-house enzyme immunoassay. J. Clin. Microbiol. 37:3328–3331.
25. Vincent, P., L. Michaud, E. M. de Lasalle, B. Benon, D. Turck, and F. Gottrand. 1999. 13C-urea breath test and gastric mucosal colonization by Helicobacter pylori in children: quantitative relation and usefulness for diagnosis of infection. Helicobacter 4:233–237.