Molluscan benthic communities at Brijuni Islands (northern Adriatic Sea) shaped by Holocene sea-level rise and recent human eutrophication and pollution

Sara-Maria Schnedl,1 Alexandra Haselmair,1 Ivo Gallmetzer,1 Anna-Katharina Mautner,1 Adam Tomašových2 and Martin Zuschin1

Abstract
The effects of and the interplay between natural and anthropogenic influences on the composition of benthic communities over long time spans are poorly understood. Based on a 160-cm-long sediment core collected at 44 m water depth in the NE Adriatic Sea (Brijuni Islands, Croatia), we document changes in molluscan communities since the Holocene transgression ~11,000 years ago and assess how they were shaped by environmental changes. We find that (1) a transgressive lag deposit with a mixture of terrestrial and marine species contains abundant seagrass-associated gastropods and epifaunal suspension-feeding bivalves, (2) the maximum-flooding phase captures the establishment of epifaunal bivalve-dominated biostromes in the photic zone, and (3) the highstand phase is characterized by increasing infaunal suspension feeders and declining seagrass-dwellers in bryozoan-molluscan muddy sands. Changes in the community composition between the transgressive and the highstand phase can be explained by rising sea level, reduced light penetration, and increase in turbidity, as documented by the gradual up-core shift from coarse molluscan skeletal gravel with seagrass-associated molluscs to bryozoan sandy muds. In the uppermost 20 cm (median age <200 years), however, epifaunal and grazing species decline and deposit-feeding and chemosymbiotic species increase in abundance. These changes concur with rising concentrations of nitrogen and organic pollutants due to the impact of eutrophication, pollution, and trawling in the 20th century. The late highstand benthic assemblages with abundant bryozoans, high molluscan diversity, and abundance of soft-bottom epi- and infaunal filter feeders and herbivores represent the circalittoral baseline community largely unaffected by anthropogenic impacts.

Keywords
benthic community, conservation paleobiology, death assemblage, historical ecology, molluscs, sediment core

Received 18 December 2017; revised manuscript accepted 18 June 2018

Introduction
Investigations on modern marine ecosystem responses to natural and anthropogenic changes are typically limited to annual or decadal time scales. However, marine ecosystems have experienced major human impacts over the past few hundred years (Jackson et al., 2001; Lotze et al., 2006), and consequences of such impacts are difficult to capture using ecological data, which are limited to a few years or decades (Kidwell, 2015). Death assemblages (DAs) of shelly fauna preserved on the seafloor or in sediment cores provide a window to the past (Edgar and Samson, 2004; Gallmetzer et al., 2017). They allow us to reconstruct community composition before and after the onset of human interference, and to assess community responses both to long-term natural environmental changes and human impacts (Gilad et al., 2018; Mautner et al., 2018; Rick et al., 2016). Therefore, the investigation of DAs can identify baseline community states that can serve as a reference point for management and restoration of sensitive, endangered marine areas (Dietl et al., 2015; Jackson et al., 2001; Kidwell, 2013; Rodriguez et al., 2001).

The northern Adriatic Sea is a prime example of an ecosystem strongly affected by centuries of human pressure (Barmawidjaja et al., 1995; Gallmetzer et al., 2017; Huntley and Scarponi, 2015; Kowalewski et al., 2015; Lotze et al., 2011; Mautner et al., 2018; Scarponi et al., 2017a). This semi-enclosed shallow basin with high riverine input, extensive soft bottoms, susceptibility to seasonal water-column stratification, and propensity to eutrophication due to high primary production in its western part is classified as particularly sensitive (Stachowitsch, 1984) and is considered one of the most degraded marine ecosystems worldwide (Lotze et al., 2006). Benthic mortalities caused by oxygen depletion and mucilage events have occurred here periodically for centuries (Crema et al., 1991; Danovaro et al., 2009; Tomašových et al., 2017) but became more frequent and widespread during the last 40 years (Degobbis et al., 2000; Faganeli et al., 1985; Justič, 1991; Stachowitsch, 1991). The increase in the frequency of...
hypoxia was promoted by anthropogenic eutrophication through agriculture and wastewater disposal (Barmawidjaja et al., 1995; Mavrič et al., 2010; Nerlović et al., 2011; N’Siala et al., 2008; Vidović et al., 2016). Overflowing and pollution negatively affected ecosystem functioning, leading to changes in food-web structure and to reduced efficiency of benthic-pelagic coupling (Barausse et al., 2009; Coll et al., 2007). Exploitation by fishermen started early in history in the Neolithic age approx. 4000 BC (European Commission, 2017) as fish, mussels and shellfish were popular trading goods and important food sources for early settlers (Forenbaher and Miracle, 2005; Horvat, 2015; Jackson et al., 2001). Harbour, ship traffic and insufficient waste water management are the main causes for pollutants in the northern Adriatic Sea (Howarth, 2008; Pearson and Rosenberg, 1978). However, in spite of extensive paleoecological research in the northern Adriatic Sea, the Holocene history of shelf-benthic ecosystems of the Istrian peninsula along the NE Adriatic shelf, which are associated with very low sedimentation rate, remains poorly known (Mautner et al., 2018).

In this study, we use molluscan DAs from a sediment core collected at 44 m water depth to reconstruct the history of the north-eastern Adriatic macrobenthic fauna off southern Istria since the Holocene transgression (~11,000 years ago). First, we hypothesize that large-scale environmental processes (i.e. sea level rise and changes in sediment input and turbidity) lead to long-term changes in species composition and diversity of molluscan assemblages, as well as in the sedimentary record of pollutants and organic matter. Second, we assess whether human impacts can be detected in the stratigraphic record, and suggest that the most rapid decrease in diversity and total molluscan abundance occurs in the youngest core layers that correspond to the past few centuries.

Material and methods

Study area

The northern Adriatic was flooded ~11,000 years ago at sites presently located at ~40 m (assuming subsidence of ~0.8 mm/ year, Antonioli et al., 2009) and ~10,000 years ago at sites located at 30–35 m water depth (Antonioli et al., 2007; Storms et al., 2008; Vacchioni et al., 2016), and maximum ingression was attained in the NW Adriatic ~7000–6000 years ago (Amorosi et al., 2016, 2017). Its surface circulation is primarily thermohaline and cyclonic (counterclockwise), with the south-eastward Western Adriatic Current in large part driven by the Po River, the largest river in the area and the main source of freshwater, sediments, and nutrients (McKinney, 2007). The productivity in this shallow sea (average water depth 35 m) is among the highest in the generally oligotrophic Mediterranean (Zavatarelli et al., 1998). The basin is characterized by a west-eastern gradient in nutrients (from eutrophic to oligotrophic) and sediment composition (from fine-grained muds to coarse-grained bioclastic sediments) (Zuschin and Stachowitsch, 2009). Holocene sediment cores from the north-eastern Adriatic show a succession from fluvial to brackish and marine facies (Cattaneo and Trincardi, 1999; Orogelec et al., 1991). High concentrations of Hg, Cu and Zn characterize modern deposits that accumulated during the past thousand years in the Gulf of Trieste (Covelli et al., 2006; Mautner et al., 2018; Vidović et al., 2016). Temporary sediment storage and resuspension mainly occur during the winter storm period caused by north-easterly cold winds (bora), but also during strong summer winds from southeast (sirocco) (Frignani et al., 2005). Sediments are resuspended by bottom trawling and dredging (Kaiser et al., 2002; Thrush and Dayton, 2002), which occurred in the Adriatic Sea for more than a century (De Madron et al., 2005; Palanques et al., 2001). Moreover, due to water column stratification from summer to mid-autumn, short-term hypoxic and anoxic events, frequently coupled with mucilage events, causing mass mortalities of benthic communities occur frequently in the northern Adriatic Sea (Crema et al., 1991; Stachowitsch, 1991; Tomašových et al., 2017). These events tend to occur at almost annual frequency in the NW Adriatic off the Po Delta (Alvisi and Cozzi, 2016). However, they also affect the Gulf of Trieste and NE Adriatic off Istria, although with smaller frequency and less regularly (Djakovac et al., 2015; Harding et al., 1999).

Sampling and sediment analysis

Sampling took place in the waters of the Brijuni Islands National park, which is situated close to the SW coast of the Istrian peninsula in Croatia (Figure 1). The archipelago is spread across a total area of 7.42 km² with two major islands, Mali Brijun and Veliki Brijun (Fatovic-Ferencic, 2006; Šoštarić and Küster, 2001). The first major anthropogenic impact on these islands occurred in the late 19th century when swamps were dewatered to promote tourism (Bralic, 1990; Šoštarić and Küster, 2001). In the 20th century, the area became a presidential residence and was declared a national park in 1983. Thus, its land and waters remained largely excluded from extensive commercial and public use in the late 20th century (Fatovic-Ferencic, 2006).

In summer 2013, at a water depth of 44 m (coordinates: 44.8856767 N and 13.74747 E), four sediment cores (length 160 cm, diameter 9 cm) were extracted with the Slovenian research vessel *Manta Bianca* using an UWITEC piston corer with hammer action (Gallmetzer et al., 2016). The core M44 selected for the mollusc community investigation was sliced directly on board into 38 subsamples (2 cm for the uppermost 20 cm and 5 cm for the remaining 140 cm). For the purpose of this study, the data gained from the ten 2-cm slices were merged into five 4-cm slices. Grain size distribution and the concentrations of several heavy metals, nutrients and organic pollutants were measured in the second and third core (cores M45 and M46). Grain size analysis was performed by means of a sedigraph (Sedigraph III 5120 Particle Size Analyzer) for the small fractions (<63 µm) and by dry sieving for fractions from 63 µm to > 1 mm. Four sediment types were defined: clay (<2 µm), silt (2–63 µm), sand (63 µm–2 mm), and the fraction > 2 mm, which mostly consisted of biogenic material. Elemental concentrations (Hg, Cu, Cr, Ni, Pb, As, Cd, Zn, Mn, Fe) were estimated with inductively coupled plasma atomic emission spectrometry (ICP-AES), organic pollutants (PCBs, PAHs) with liquid chromatography, and nutrients (N, C, TOC) with the elemental analyzer CHN 2400, according to the protocol in Vidović et al. (2016). They were determined in the core layers: 1 cm, 5 cm, 9 cm, 24 cm, 46 cm, 69 cm, 85 cm, 105 cm, 126 cm and 151 cm. In order to compare and classify the measured concentrations, we used screening levels developed by the National Oceanic and Atmospheric Administration (NOAA) of the US Department of Commerce, which represent different toxicity gradients of marine sediments. Threshold Effects Levels (TEL), Effects Range Low (LERL), Probable Effects Levels (PEL) and Effects Range Median (ERM) (ordered by increasing toxicity) are benchmarks based on databases of marine sediment chemistry and sediment toxicity bioassay data that define toxic effects (Buchmann, 2008).

Dating of shells

Core chronology was based on the 14C-calibrated amino acid racemization (AAR) of 305 specimens of the bivalve *Timoclea ovata* collected in the core M44. Out of 305 specimens, 13 dead shells were selected for AMS 14C dating. Up to 30 specimens (complete valves or fragments with umbo preserved) of *T. ovata* were randomly selected from each of 13 more or less evenly spaced, 4- or 5-cm-thick intervals covering the whole core. *T. ovata* does not occur in the shallowest habitats and thus may not accurately date the onset of the shelf flooding at Brijuni. Therefore, four additional shells of large-sized bivalves (*Arca noae,*...
Glycymeris sp., Pecten sp., and Ostrea sp.) from a shell bed at 95–120 cm in the core M44 were dated with 14C. Dark grey, organic-rich muds with plant remains immediately underlie the molluscan gravels in the core M40, which are comparable to the lowermost part of the M44 core. A single plant remnant from this core was dated with 14C to geochronologically constrain the onset of marine sedimentation at the station Brijuni. The stratigraphic succession in our cores is subdivided into several units primarily on the basis of sedimentological and geochemical criteria. Age of these units is then determined on the basis of the 25th and 75th age percentiles of T. ovata and on the basis of ages of four shells of other species in the shell bed. Owing to slow sedimentation rates and mixing, age ranges assigned to the units are overlapping to some degree. We use the sequence-stratigraphic terminology of model III of Catuneanu et al. (2009) where the highstand phase terminates prior to the base-level fall (Hunt and Tucker, 1992).

In total, 17 bivalves and the single plant remnant were analysed for 14C at the AMS facility at the Poznan Radiocarbon Laboratory (Table 1). To avoid contamination, 30% of the outer shell mass was removed prior to AMS analysis in an ultrasonic bath and in 0.5M HCl, and treated in 15% H$_2$O$_2$ for 10 min in an ultrasonic bath. The remaining carbonate was dissolved with concentrated H$_3$PO$_4$ in a vacuum line. 14C was measured with a ‘Compact Carbon AMS’ (Goslar et al., 2004). Conventional 14C ages were calculated using correction for isotopic fractionation (Stuiver and Polach, 1977), on the basis of ratio 13C/12C measured in the AMS spectrometer simultaneously with the ratio 14C/12C. Conventional ages of bivalves were converted to calendar years using Calib7.1 (Stuiver and Reimer, 1993), the Marine13 calibration curve (Reimer et al., 2013), and a regional marine reservoir correction (ΔR) in the NE Adriatic (Rovinj) equal to $= -61$ years (standard deviation $= 50$ years) (Siani et al., 2000). Conventional ages of the plant remnant were converted to calendar years with the IntCal13 calibration curve.

Small portions of 305 dead shells of T. ovata were analysed for the extent of AAR at Northern Arizona University using reverse-phase high-pressure liquid chromatography (RP-HPLC, Kaufman and Manley, 1998). Specimens were leached 20% by weight with a dilute solution of HCl and the resulting solutions were hydrolysed at 110°C for 6 h to release amino acids from their peptide chains. Concentrations and D/L values of aspartic acid (Asp), glutamic acid (Glu), serine (Ser), alanine (Ala) were measured. Asp and Glu were used in age calibrations. Five specimens were flagged as outliers described by Kosnik and Kaufman (2008) and removed from analyses.

We calibrated the rate of AAR in T. ovata on the basis of 13 dead shells and three live-collected shells using the Bayesian model fitting procedures according to Allen et al. (2013). Asp and Glu D/L values were fit using four mathematical functions to model the relation between age and D/L values, and two uncertainty models (lognormal and gamma) using R language (R Core...
Table 1. Numerical ages of 13 dead-collected and three live-collected specimens of *Timoclea ovata* used in AMS-AAR calibration with D/L of the aspartic acid (Asp) and glutamic acid (Glu), and shells of four other bivalve species collected from the shell bed in the middle part of the core, and one plant remnant (organic-rich mud collected below the basis of the core M40) dated with 14C only. The specimen ID corresponds to the unique specimen identification number, Poznan ID is the unique identification number for the radiocarbon analyses from the Poznan Radiocarbon Laboratory. Calibrated age (yr) is relative to 2013 AD (the year of sampling).

Species	Specimen ID	Poznan ID	Calibration curve	Conventional 14C age	Conventional 14C age error (2 s.d.)	Calibrated age (median probability) BC/AD	Lower 95% conf. bound on calibrated age BC/AD	Upper 95% conf. bound on calibrated age BC/AD	Calibrated age (to 2013 AD)	Lower 95% conf. bound on calibrated age	Upper 95% conf. bound on calibrated age	Asp D/L	Glu D/L
Timoclea ovata Piran-live collected (PII-G4–2)	1 2	0.1	0.034	0.018									
Timoclea ovata Piran-live collected (PII-G4–3)	1 2	0.1	0.036	0.021									
Timoclea ovata Piran-live collected (PII-G4–7)	1 2	0.1	0.037	0.022									
Timoclea ovata Bri M44–0–2–001	Poz-69868	Marine13	585 58	1656	1521	1815	357	492	198 0.110	0.045			
Timoclea ovata Bri M44–12–14–001	Poz-69869	Marine13	570 58	1675	1525	1831	338	488	182 0.130	0.035			
Timoclea ovata Bri M44–12–14–002	Poz-69870	Marine13	3370 58	-1350	-1493	-1200	3363	3506	3213 0.230	0.087			
Timoclea ovata Bri M44–20–25–001	Poz-69872	Marine13	835 58	1440	1328	1527	573	685	486 0.155	0.041			
Timoclea ovata Bri M44–20–25–004	Poz-69873	Marine13	815 58	1455	1332	1554	558	681	459 0.160	0.042			
Timoclea ovata Bri M44–20–25–005	Poz-69874	Marine13	2325 58	-67	-223	91	2080	2236	1922 0.206	0.064			
Timoclea ovata Bri M44–30–35–012	Poz-69875	Marine13	1900 58	436	277	578	1577	1736	1435 0.206	0.063			
Timoclea ovata Bri M44–50–55–029	Poz-69876	Marine13	2480 58	-261	-388	-106	2274	2481	2119 0.240	0.070			
Timoclea ovata Bri M44–130–135–002	Poz-69877	Marine13	5470 61	-3968	-4139	-3797	5981	6152	5810 0.272	0.097			
Timoclea ovata Bri M44–130–135–012	Poz-69878	Marine13	8360 71	-7079	-7295	-6841	9092	9308	8854 0.359	0.152			
Timoclea ovata Bri M44–130–135–015	Poz-69879	Marine13	5890 64	-4415	-4569	-4292	6428	6582	6305 0.289	0.110			
Timoclea ovata Bri M44–150–155–004	Poz-69880	Marine13	7220 64	-5794	-5941	-5662	7807	7954	7675 0.316	0.118			
Timoclea ovata Bri M44–150–155–006	Poz-69882	Marine13	8160 78	-6794	-7023	-6590	8807	9036	8603 0.334	0.137			
Arca noae Bri M44 115–120 A1	Poz-9839	Marine13	4990 58	-3453	-3603	-3339	5466	5616	5352 NA NA				
Glycymeris sp. Bri M44 110–115 G1	Poz-97840	Marine13	7220 64	-5794	-5941	-5662	7807	7954	7675 NA NA				
Pecten sp. Bri M44 110–115 P1	Poz-97841	Marine13	5520 61	-4027	-4213	-3905	6040	6226	5918 NA NA				
Ostrea sp. Bri M44 105–110 O1	Poz-97842	Marine13	5710 64	-4240	-4356	-4050	6253	6369	6063 NA NA				
Plant	Brijuni M40 115–120 P	Poz-99289	IntCal13	9900 40	-9341.5	-9450	-9271	11355	11463	11284 NA NA			
The four mathematical functions include time-dependent rate kinetics (TDK), constrained power-law kinetics (CPK), simple power-law kinetics (SPK), with and without fitting a non-zero initial D/L. The combination of two amino acids, two uncertainty models, and eight fitting functions gives 32 different age models. The time-dependent reaction kinetic model (TDK, Allen et al., 2013) for Asp D/L was the best model with the smallest Bayesian information criterion (BIC) (Figure 2, Table 2), with the initial D/L value estimated from data (TDK1). This model was used in the final calibration. The calibration equation is \(a \cdot \text{arctanh} \left(\frac{DL - DL0}{1 - DL \cdot DL0} \right) ^ b \), where DL is Asp D/L, DL0 is Asp D/L at 0 years (here, 0.02071817), and \(a = 257268.1 \) and \(b = 2.9614 \). The uncertainty is defined by the log-normal distribution, with the mean equal to age estimate and the variance equal to 0.0605. AAR-calibrated calendar ages are set relative to the year of the collection (2013 AD = year zero). Age and amino acid data are available in Supplementary Table 1, available online.

Table 2. Calibration statistics for the rate of amino acid racemization (AAR) based on paired AAR and radiometric analyses of *Corbula gibba* and two models of uncertainty, showing models with Bayes information criterion (BIC) values less than 6 units relative to the model with minimum BIC. Explanations: APK = apparent parabolic kinetics; CPK = constrained power-law kinetics; SPK = simple power-law kinetics; TDK = time-dependent reaction kinetics; 0 = the initial D/L value is fixed at zero; 1 = the initial D/L value is estimated from data. α-δ-model parameters: R0 - the D/L value at time 0.

Amino acid	Model	ln(a)	ln(b)	c	R0	ln(d)	BIC	ΔBIC
Asp	TDK0	12.333	1.052	NA	0.000	4.620	224.19	0.00
Asp	TDK1	12.305	0.052	NA	0.000	4.722	225.53	1.34
Glu	TDKK	12.731	0.542	1.089	0.0155	4.963	225.96	1.77
Glu	APKK	13.305	0.302	0.092	0.0117	4.963	225.96	1.77
Asp	SPK0	12.341	0.955	–17.697	0.0000	4.611	227.00	2.81
Asp	SPK1	12.094	0.555	–15.839	0.0000	4.627	227.22	3.03
Glu	SPK0	12.206	0.720	1.551	0.0169	5.201	229.03	4.84
Glu	SPK1	12.321	1.300	1.381	0.0312	5.201	229.03	4.84

Sorting, identification, and counting of shells

For the investigation of the molluscan shell record, the sediment samples were washed through a 1-mm sieve and dried. The retained material was sorted under a stereomicroscope, and molluscs were identified to species level using taxonomic literature (Cossignani and Ardovini, 2011; Cossignani et al., 1992; Gofas et al., 2011a, 2011b; Huber, 2010). The final number of bivalve individuals was computed by summing up the number of double-valved specimens with the higher number of either right or left valves. Gastropod shells were counted as individuals if at least the apex was preserved, and polyplacophorans were counted as the number of plates divided by eight.

Functional groups

Molluscan species were categorized according to (1) feeding guild, (2) organism-substrate relation, (3) host association, and (4) weed association (Table 3). The categories and subcategories were treated separately in the analyses. Categorization follows Cachia et al. (1996), Chemello and Milazzo (2002), Morton and Dinesen (2011), Oporto et al. (2012), Rinaldi (2012), Rueda et al. (2009), Werner (1953, 1959), Beesly et al. (1998), Borja et al. (2000), Gofas et al. (2011a, 2011b), Haydar (2010a, 2010b), Huber (2010), Koulouri et al. (2006), and Oliver et al. (2016).

Statistical analysis

Species diversity is expressed as raw number of species and as the effective species richness, that is, the exponential of Shannon’s H (exp(H)). All values reported are means with 95% confidence intervals (1000 resampling iterations, randomly drawn without
replacing). Differences in diversity between the six stratigraphic units defined on the basis of lithologic and geochemical composition were tested by a Wilcoxon rank test. PERMANOVA was used to assess differences in community structure between the six stratigraphic units on the basis of species composition and on the basis of functional composition related to (1) feeding guilds, (2) organism-substrate relation, (3) weed-, and (4) host-association. The uppermost unit (0–8 cm, last 200 years) was excluded from analyses due to insufficient sample size (minimum N = 50). Sample size of other molluscan assemblages varies between 133 and 1515 specimens. To analyse gradients in community composition, we performed a non-metric multidimensional scaling (NMDS) based on Bray-Curtis distances and square-root-transformed relative abundances. The influence of environmental variables on the composition of molluscan assemblages was explored by redundancy analysis (RDA) using a forward-model-selection approach. Clay, gravel, water depth, total nitrogen, as well as the heavy metals Hg, Pb, As, and Cd were used for the analysis. The variable with the highest adjusted R^2 is added at each step of the model selection and its significance calculated using a permutation test (10,000 permutations) (Blanchet et al., 2008). This allows identifying the subset of environmental variables with the strongest influence. All statistical analyses were performed in R 3.2.1 (R Core Team, 2014) using the vegan package (Oksanen et al., 2015).

Results

Stratigraphic section and geochronology

The lowestmost part of the core M40 directly overlies an organic-rich clay rich in plant debris, indicating the transition from terrestrial to marine conditions. The age of the plant remains (Table 1) is in accord with sea-level curves estimated for this region (Antonioli et al., 2007), indicating that the flooding occurred about 11,000 years ago. We distinguish six stratigraphic units that differ in sediment grain size, sediment and geochemical composition, and preservation (in terms of dominant components such as molluscs, bryozoans, and coralline algae). They include unit 1 formed by coarse-grained, loosely packed and moderately sorted molluscan sands at 120–160 cm, unit 2 formed by densely packed and poorly sorted molluscan gravel (shell bed) at 90–120 cm, sharply delimited by an abrupt increase in abundance of large molluscs on the bottom and by an abrupt decline in their abundance on the top, unit 3 formed by poorly sorted and loosely packed bryozoan-molluscan muddy sand at 50–90 cm, unit 4 formed by poorly sorted and loosely packed bryozoan-molluscan sandy mud at 20–50 cm, unit 5 formed by sandy mud with dispersed bioclasts at 8–20 cm with high concentrations of pollutants (PCB and PAH), and unit 6 formed by sandy mud with coralline algae and dispersed larger shells with high concentrations of total nitrogen at 0–8 cm.

In terms of the 25th and 75th age percentiles, shell ages are younger than 370 years in unit 6, range between 200–1700 years in unit 5, 1500–3600 years in unit 4, 2900–4600 years in unit 3, 4500–7500 years in unit 2, and 4800–7500 years in unit 1. Median ages of *T. ovata* in two age quartile equal to 7180 years and maximum age equal to 140–160 years in the upper part (sediment depth 0–8 cm) to 6100 years in the deepest part at 150–155 cm, with the upper age quartile equal to 7180 years and maximum age equal to 10,600 years (Figure 3). The median age of *T. ovata* in two increments in the shell bed (unit 2) is 5000–5100 years. However, bivalve shells of four large-sized species that represent the bulk of the shell bed at 95–120 cm are older (5500–7800 years) and together indicate that the shell bed was formed ~5000–8000 years ago.

| Table 3. Functional categorization used to characterize the ecology of mollusc species. Subcategories may not appear in figures but are listed here to illustrate the spread of the main categories. |
feeding guild	subcategories	comments
carnivore	browsing	feeding on immobile animals such as bryozoans
	micro-carnivore	feeding on protozoans
	macro-carnivore	predators
chemosymbiotic	parasitic	living as parasites in or attached to other animals
detritivore	on the surface	feeding on metabolic products of endochemosymbiotic bacteria
	sub-surface	feeding on particles at the sediment surface
grazing	filter-feeding	feeding on detritus and micro-epigrowth (microalgae, foraminiferans)
	herbivore	feeding on suspended particles
	micro-herbivore	feeding on microalgae
	macro-herbivore	feeding on seagrass and macroalgae
scavenging	organism-substrate relation	feeding on decaying organic matter
epifauna on vegetation	epifauna	living on the substrate (either on soft or hard bottoms)
	infauna	living on seagrass or algae
	semi-infauna	living in the substrate (either in soft or hard bottoms)
	epibionts and ectoparasites	semi-burrowed species
	nestler	living in a symbiotic or parasitic relationship, using their hosts as ‘substrate’
	terrestrial and freshwater	living in a byssus nest in soft, gravelly or hard substrate
	host association	living on land or in freshwater
	free-living	no association
	associated with host	associated with one or several hosts belonging to the following taxa: sponges, crustaceans, echinoderms, ascidians, molluscs, polychaetes, cnidarians; or host(s) unknown
	weed association	living on other substrates
	no weed association	strictly seagrass
	living on weeds	living exclusively on seagrass (eg Posidonia oceanica, Cymodocea nodosa)
	seagrass and algae	living on algae and/or seagrass
	mainly seagrass	frequently associated with seagrass and its rhizome layer, but also found on other substrates
when the sea-level was stabilized ~2000 years ago (0–20 cm). The transition between the late transgressive and early highstand phase (20–85 cm), and units 5–6 with the late highstand phase 5500 years ago (90–120 cm). Unit 2 approximately coincides with the transition between the late transgressive and early highstand phase (maximum-ingression zone) that occurred ~7500–6500 years ago (120–155 cm). Unit 1 largely corresponds to the transgressive phase prior to the earliest transgression (155 cm to 1600–4500 years ago) (Figure 6). Apart from molluscs, the sediment core was also rich in calcareous skeletal remains, mostly of bryozoans, echinoderms, and crustaceans (Piñeras, 2017). Layer 95–120 cm was characterized by a high abundance of heavily bioeroded shells with thick calcareous encrustations, mainly by bryozoans. The six units differ significantly in species composition and abundance (Figure 7 and Table 4; unit 6 was excluded due to small sample size).

Throughout the core, epifaunal and infaunal life habits dominate, and filter-feeders are the most important feeding guild. Epibionts and ectoparasites are more abundant in deeper sediment layers. The relative (and absolute) abundance of detritivores increases up-core while the abundance of seagrass-associated species decreases (Figure 8). The bivalves T. ovata (infaunal filter feeder), Anomia ephippium and Saccaria lactea (epifaunal filter-feeders), and the herbivorous gastropods Alvania geryonia and Jujubinus montagui dominate in the three lowermost units of the core from 155 cm to 50 cm core depth. With the exception of T. ovata, these species experience a strong up-core decrease in abundance. The grazing gastropod Bittium submamillatum, on the other hand, peaks in abundance between 20 and 50 cm. In general, molluscs specialized on coarse-grained hard substrates (e.g. Haliotis tuberculata, Ruditapes philippinarum, Mytilus edulis) were more abundant than bivalves in most of the core, but are absent in the uppermost 8 cm (last 200 years, Figure 6). Total abundance of individuals peaks in unit 1 at 130 cm (3500 years ago) and strongly decreases up-core. Diversity changes are best illustrated by the effective number of species, which peaks between 35 and 90 cm core depth (2000–4500 years ago) (Figure 6).

The units 3–6 contain abundant bryozoans and molluscs and show a fining-upward trend, leading to a high proportion of clay and silt (~80%) in surface sediments (Figure 5). The heavy metals Hg, Pb and Zn attain maxima in the upper 20 cm, while Cd peaks at 50 cm at the boundary between units 3 and 4. Only Hg exceeds NOAA ERM levels during unit 2. The trend of Cr, Cu and Ni is closely correlated with the fine sediment fraction (silt and clay), while no correlation is evident for the other metals. Fe and Al show opposite trends: Fe concentration reaches 19.5 g/kg in the deepest subsample (150–152 cm), while Al concentration peaks at a depth of 23–25 cm (17.6 g/kg). High concentrations of polycyclic aromatic hydrocarbons (PAHs) occur in the uppermost 12 cm, with a maximum of 475 ng/gr at 5 cm. Polychlorinated biphenyls (PCBs) also reach their maximum (6 ng/gr) at 5 cm core depth. In the rest of the core, their concentrations are very low, in the case of PAHs close to zero. TOC and total nitrogen increase up-core (Figure 5).

Molluscan assemblages

Throughout the core, 23,012 individuals representing 229 mollusc species from 106 families were identified, including 24 non-marine gastropod species, which are very abundant in the deeper parts until 70 cm depth. Gastropods account for 149, bivalves for 69, polychaetans for 48, and scaphopods for 3 species. Gastropods are more abundant than bivalves in most of the core, but are absent in the uppermost 8 cm (last 200 years, Figure 6). Total abundance of individuals peaks in unit 1 at 130 cm (~3500 years ago) and strongly decreases up-core. Diversity changes are best illustrated by the effective number of species, which peaks between 35 and 90 cm core depth (2000–4500 years ago) (Figure 6). Apart from molluscan shells, the sediment core was also rich in calcareous skeletal remains, mostly of bryozoans, echinoderms, and crustaceans (Piñeras, 2017). Layer 95–120 cm was characterized by a high abundance of heavily bioeroded shells with thick calcareous encrustations, mainly by bryozoans. The six units differ significantly in species composition and abundance (Figure 7 and Table 4; unit 6 was excluded due to small sample size).

At the bottom of the core, dark grey, organic-rich clays with frequent plant remains mark the transgression from a paralic to a marine environment (Figure 4). Unit 1 is formed by molluscan muddy sand with a mixture of stained and pristine bioclasts. Higher up, the skeletal gravel and sand fraction increase steeply and reach a maximum of ~80% in unit 2 at 100 cm. This peak corresponds to a ~25-cm-thick, densely packed and poorly sorted bivalve shell bed with high abundance of encrusting organisms. The units 3–6 contain abundant bryozoans and mollusks and show a fining-upward trend, leading to a high proportion of clay and silt (~80%) in surface sediments (Figure 5). The heavy metals Hg, Pb and Zn attain maxima in the upper 20 cm, while Cd peaks at 50 cm at the boundary between units 3 and 4. Only Hg exceeds NOAA ERM levels during unit 2. The trend of Cr, Cu and Ni is closely correlated with the fine sediment fraction (silt and clay), while no correlation is evident for the other metals. Fe and Al show opposite trends: Fe concentration reaches 19.5 g/kg in the deepest subsample (150–152 cm), while Al concentration peaks at a depth of 23–25 cm (17.6 g/kg). High concentrations of polycyclic aromatic hydrocarbons (PAHs) occur in the uppermost 12 cm, with a maximum of 475 ng/gr at 5 cm. Polychlorinated biphenyls (PCBs) also reach their maximum (6 ng/gr) at 5 cm core depth. In the rest of the core, their concentrations are very low, in the case of PAHs close to zero. TOC and total nitrogen increase up-core (Figure 5).
data set). In all ordinations, assemblages are arranged into six relatively distinct groups along the first axis, corresponding to the six units (Figure 9a).

Unit 1 (120–160 cm, 4800–10,500 years)

A relatively rapid shift in grain size occurred in this unit, from 80% clay and silt at 165 cm to 80% sand (mostly consisting of molluscs), at 120 cm (Figure 5). Total abundance of mollusc shells is low in the deepest layers, but increases steadily towards the upper unit boundary. This unit contains the sample with the highest abundance (1557 specimens at 125–130 cm) of molluscs in the entire core. The raw number of species shows an up-core increase, whereas the effective number of species remains more or less stable (Figure 6). The most dominant species are *S. lactea* and *T. ovata*. The two grazing gastropods *A. geryonia* and *J. montagui* as well as the pulmonate land snail *Oxyloma elegans* are also abundant (Figure 7). Land- and freshwater species are numerous together with a wide range of marine epifaunal filter-feeders and grazers. A strong increase in the abundance of epifaunal filter-feeders and grazers is observed in this unit, from zero to >500 individuals. A similar trend is documented for algae- and seagrass-related species (Figure 8).

Shell bed (90–120 cm, 4500–7500 years)

This unit corresponds to a marked shell bed with large-sized, randomly oriented bivalves. Grain size composition shifts from 80% sand and gravel to 50% silt and clay. Total abundance and species richness peak in this unit (Figure 6). *T. ovata* is the most abundant species, followed by *S. lactea*, *A. geryonia*, *J. montagui* and the epifaunal grazer *B. submamillatum*. The effective number of species increases suddenly at 100 cm sediment depth and the entire unit has significantly lower diversity than unit 1 (Wilcoxon rank test: p = 0.002). The assemblage consists mainly of epifaunal species, and grazing is the most important feeding strategy in gastropods.

Unit 2 (90–120 cm, 4500–7500 years)

The sediment composition in this unit formed primarily by bryozoan-mollusc gravel shifts towards higher proportions of silt and clay (60%), accompanied by a decrease in total molluscan abundance. Diversity (exp(H)) remains high (Figure 6) but is still significantly lower than in unit 2 (Wilcoxon rank test: p = 0.02). Although *T. ovata* is the bivalve species with the highest abundance (relative and absolute), epifauna (*S. lactea*, *A. ephippium*, *J. montagui*, *B. submamillatum*) is dominant (Figure 7). Filter-feeders still represent the most important feeding guild, but show a slight proportional decrease towards the upper boundary while detritivores slowly increase. Molluscs with a strong association to seagrasses are replaced by taxa with no specific weed preference (Figure 8).

Unit 3 (50–90 cm, 2900–4600 years)

The sediments in this unit formed primarily by bryozoan muddy sand shifts towards higher proportions of silt and clay (60%), accompanied by a decrease in total molluscan abundance. Diversity (exp(H)) remains high (Figure 6) but is still significantly lower than in unit 2 (Wilcoxon rank test: p = 0.02). Although *T. ovata* is the bivalve species with the highest abundance (relative and absolute), epifauna (*S. lactea*, *A. ephippium*, *J. montagui*, *B. submamillatum*) is dominant (Figure 7). Filter-feeders still represent the most important feeding guild, but show a slight proportional decrease towards the upper boundary while detritivores slowly increase. Molluscs with a strong association to seagrasses are replaced by taxa with no specific weed preference (Figure 8).

Unit 4 (20–50 cm, 1500–3600 years)

The fining-upwards trend in sediment grain size (from 21% to 27% of clay) persists within this unit formed by bryozoan-molluscan sandy mud and characterized by a marked community shift in both species composition and functional groups. Total abundance and diversity (exp(H)) strongly decrease (Wilcoxon rank test: p = 0.02). This change occurs abruptly at about 30 cm (~2000 years ago, Figure 6). Concomitantly, epifauna proportionally decreases in favour of infauna, and relative abundances of detritus feeders and grazers rise (Figure 8). The most abundant species is *B. submamillatum*, closely followed by the soft bottom infaunal filter- and detritus feeder *N. cf. nucleus*. Abundances of other species also change markedly, with *T. ovata* decreasing and *Alvania beani* and the filter-feeder *Glycymeris glycymeris* increasing upwards (Figure 7).

Unit 5 (8–20 cm, 200–1700 years)

Clay and silt constitute 78% of the sediment in this unit formed by rhodolith-molluscan-bryozoan-sandy mud with higher concentrations of pollutants. Total abundances of molluscs are low in comparison to former units. Species richness and effective
number of species reverse and increase again (Figure 6). Infaunal bivalves and epifaunal gastropods characterize this unit. *N. cf. nucleus* is the most abundant species in the uppermost 20 cm, including unit 6 (Figure 7). Filter-feeders and detritivores increase in abundance while grazers strongly decrease. The epifaunal grazers *B. submamillatum* and *A. beanii* are still important, but infaunal filter-feeders such as *T. ovata*, *Parvicardium minimum* and *G. glycymeris* become more abundant (Figures 7 and 8).
The sediment in this unit, whose assemblage is strongly segregated from the rest of the core in ordination space, is formed by rhodolithic–molluscan–bryozoan sandy mud with organic enrichment and consists mainly of pelitic material (Figure 5). Abundances and diversity ($\exp(H)$) drop to minimum values (Figure 6). Soft bottom filter-feeding and detritivore bivalves are dominant. *N. cf. nucleus* is by far the most common species and other infaunal or semi-infaunal species such as *T. ovata*, *Papillicardium papillosum*, *P. minimum*, and *G. glycymeris* are also relatively frequent (Figures 7 and 8).

Discussion

Our analyses show that the sediment cores collected at 44 m water depth from the Brijuni Islands reach back to the Holocene transgression about 11,000 years ago. They capture the transgressive phase coupled with shoreface erosion and reworking, followed by the establishment of epifaunal bivalve-dominated biostromes during the late transgressive/early highstand transition (maximum-flooding zone), by the shift to low-energy bryozoan-dominated biostromes during the highstand phase, and finally by strong environmental changes triggered by human impact mainly during the last century. Although molluscan assemblages are time-averaged at multi-centennial to millennial scales (Figure 3), the changing species composition gives insight into the environmental shifts occurring over longer, Holocene time-scales. The emergence of epifaunal molluscs associated with seagrasses or algae point to a habitat with marine vegetation during the transgressional phase. During highstand, bryozoans began to dominate and shape the benthic community at the expense of epifaunal molluscs. Finally, the up-core increase of fine sediments led to a dominance of infaunal molluscs.

Transgressive phase (unit 1): Mixing of freshwater and marine assemblages during the Holocene transgression

We infer that the molluscan assemblages during this phase largely formed since the flooding ~11,000 up to 7000–8000 years ago. The Holocene boundary with the underlying plant-rich muddy layer (Figure 4a) and the high abundance of land and freshwater gastropod species in the deepest increments are indicative of the terrestrial, freshwater-dominated environments (marshlands, swamps, and estuaries) occurring on the northern Adriatic coastal plains prior to the formation of barrier-lagoon systems during the marine transgression (Bortolami et al., 1977; Correggiari et al., 1996b; Trincardi et al., 1994). The mixture of land and freshwater snails and marine molluscs in unit 1 documents the transition from a terrestrial to a shallow, nearshore to upper shoreface environments on a sandy, high-energy seafloor (Figure 7). Lithologic changes and paleoecological and taphonomic attributes of assemblages in unit 1 in the lowermost core part are closely related to the flooding, initial deposition in nearshore barrier-lagoon system (comparable to similar systems located at 42 m water depth and flooded ~10,500 years ago, Storms et al., 2008) and subsequent reworking and cannibalization of nearshore deposits due to high-energy shoreface erosion. These processes led to a mixture of freshwater, brackish, and marine species in molluscan gravels preserved in unit 1 (i.e. transgressive lags or transgressive sand sheet, Cattaneo and Steel, 2003). The transgressive lag deposits consisting of molluscan shell hash, frequently with worn and stained preservation, indicates long residence times and repeated reworking (as indicated by mixing of freshwater and marine species and by interquartile age range of *T. ovata* ages, Figure 3).

Unit 6 (0–8 cm, < 370 years)

The sediment in this unit, whose assemblage is strongly segregated from the rest of the core in ordination space, is formed by rhodolithic–molluscan–bryozoan sandy mud with organic enrichment and consists mainly of pelitic material (Figure 5). Abundances and diversity ($\exp(H)$) drop to minimum values (Figure 6). Soft bottom filter-feeding and detritivore bivalves are dominant. *N. cf. nucleus* is by far the most common species and other infaunal or semi-infaunal species such as *T. ovata*,
and preserved during the shoreface retreat in some portions of the northern Adriatic Sea (Storms et al., 2008), this system was probably reworked and cannibalized into molluscan lag deposits at Brijuni. The high abundance of grazing gastropods and a dominance of epifaunal species such as *Striarca lactea* and species associated with seagrass and algae such as *Bittium latreilli*, *Bittium reticulatum*, *Alvania* spp., *Rissoa* spp., *Tricolia pullus* and *Jujubinus striatus*, point to abundant seafloor vegetation and clear water conditions, with the development of seagrass meadows and macroalgal stocks.

Maximum-flooding zone (unit 2): Establishment of diverse epifaunal biostromes

The sediment is predominantly formed of gravel and sand-sized shells and shell fragments of large-sized scallops, glycymeridids, arcids, and oysters. The effective number of species peaks in this unit (Figure 6) indicating the establishment of a highly diverse marine fauna. In the late phase of sea level rise, the habitat changed from macrophyte-dominated towards biogenic hard bottoms either in the form of extensive bivalve biostromes (similar to some degree to an extinct, oyster-dominated shell bed documented by Mautner et al. (2018) in the southern Gulf of Trieste) or in the form of isolated multi-species clumps as present today in some parts of the northern Adriatic (Fedra et al., 1976). High abundances of epifaunal carnivorous molluscs (*Mangeliidae*, *Conidae*, *Raphitomidae*) as well as parasites on sponges (*Triphoridae*) and sea anemones (*Epitoniidae*) further demonstrate the presence of habitat-forming aggregations of large suspension-feeding invertebrates. Most molluscan shells (oysters, pectinids, arcids, and glycymeridids) are heavily bored and encrusted by bryozoans (Figure 4d), indicating low sedimentation rates and substrate stability, providing ideal conditions for settlement of epibionts and encrusters. The temporal coincidence of this shell bed with the timing of fastest sea level rise ~7000–6000 years ago and high degree of encrustation and bioerosion indicates the connection between shoreline retrogradation, reduced sediment supply, and shell-bed formation, with potential for taphonomic feedback. Similar examples were described from maximum-flooding zones of cores collected in offshore locations off the Po Delta (Scarponi et al., 2017b). However, grazing species (*B. submamillatum*, a

Table 4. Differences in species composition and functional groups between age units (tested with PERMANOVA, except for exp(H), where a Wilcoxon-rank test was applied). Significant results in bold. The 0–8 cm unit was not tested because of an insufficient number of individuals.

	8-20 vs 20-50 cm	20-50 vs 50-90 cm	50-90 vs 90-120 cm	90-120 vs 120-160 cm	8-50 vs 120-160 cm
species	F				
	Pr(>F)				
feeding guild	F				
	Pr(>F)				
organism-substrate relation	F				
	Pr(>F)				
host association	F				
	Pr(>F)				
weed association	F				
	Pr(>F)				
exp(H)	p-value				

Figure 8. Up-core shifts in the dominant substrate relations, feeding types, and weed associations since the Holocene transgression, plotted for relative (a-c) and absolute abundances (d-f). Dotted lines mark unit boundaries.
gastropod feeding preferentially on micro-epigrowth of various substrates) and macro-herbivores (A. geryonia, Smaragdia sp.) are still numerous and hint at the mixture of epifaunal biostromes and patches of marine vegetation. Thus, the maximum-flooding phase was still characterized by high water clarity, with high light penetration as suggested by the presence of species depending on marine vegetation (Gacia et al., 1999; Ruiz and Romero, 2003).

Early highstand (unit 3): Algal-bryozoan meadows

The community in this section is characterized by an increasing importance of bryozoans, which make up a large part of the death assemblage (Figure 4b) (Pifeas, 2017), demonstrating a shift from vegetation-dominated communities and bivalve shell beds to bryozoan meadows. Together with the increasing siltation and sediment trapping, the shift in species composition towards higher abundance of infaunal suspension- and deposit-feeders and towards a decline of seagrass-related molluscs suggests that seagrass meadows vanished with increasing water depth, reduced light penetration and higher turbidity (Figure 8) (Abal and Denison, 1996; Duarte, 1991). However, species associated with algae (Pusillina spp., Bittium spp., Vexillum ebenus, Mangelia stosiciana, Haminoea hydatis) increase in relative abundance (Figure 8). Although this change from a vegetation- to a bryozoan-dominated seafloor coincides with the beginning of human settlements, limited agriculture, and early fishing activities in this region in the mid-Neolithic (Bralic, 1990; Horvat, 2015; Šoštarić and Küster, 2001), benthic assemblages and sediment composition are still largely unaffected by human impacts. Community changes can rather be ascribed to natural long-term environmental shifts resulting from deepening (Asioli et al., 1996; McKinney, 2007).

Early highstand (unit 4): Siltation and the growing importance of deposit feeders

The drop in mollusc abundance and the relative increase in abundance of infaunal deposit-feeders and infaunal suspension-feeders such as G. glycymeris (Gofas et al., 2011b) and of species without seagrass association (Figure 8) reflects the final demise of seagrass meadows. The substitution of Alvania geryonia, a rissoid gastropod associated with seagrass and one of the most common species in units 1–3, by its sister species A. beanii, a detritus-feeder and grazer (Gofas et al., 2011b), is in accord with the demise of vegetational cover on soft bottoms. Several detritivore species increase in

![Figure 9. (a) NMDS plot of all determined marine mollusc species and (b) redundancy analysis, with Pb and total nitrogen (TN) identified as the main environmental drivers of molluscan community change.](image-url)
abundance and mark a shift in functional community composition, illustrating the growing importance of detritus as food source in a more nutrient-enriched, siltier environment, as also suggested by increasing concentrations of TN (Figure 5). Nucula cf. nucleus, a sub-surface filter- and detritus feeder (Gofas et al., 2011a; Wood and Turner, 2012) becomes the second-most abundant species in this unit, while the infaunal filter feeder T. ovata decreases markedly. The most abundant gastropod, B. submamillatum, is a grazer on both soft and hard substrates and was therefore probably less affected by the switch from coarser to finer sediment. During this period, human settlements were growing rapidly. Fishery efforts and inland deforestation carried out by the Celts and Romans represented new impacts on the coastal environment and may have contributed to the observed species and functional turnover by enhancing sediment loads and nutrient input (Airoldi and Beck, 2007; Boero, 2001).

Early and late anthropogenic impact (units 5 and 6): Pollution and eutrophication

The concentrations of pollutants and nitrogen content in these two units trace a growing anthropogenic impact on the sea, deriving from expanding coastal settlements, land use, industrialization, and concomitant pollution and eutrophication (Lotze et al., 2006).

This impact is documented by the abrupt and steep increase in the concentrations of heavy metals (Hg, Pb, and Zn) and organic pollutants (PAHs and PCBs) (Figure 5). The most probable sources of this pollution are the adjacent port of Pula with its dockyard, and the use of the area as a naval port during the late 19th and most of the 20th century (Fabjanović Matijašec, 1971, 2008). The presence of these elements and organic compounds, which are unequivocally of industrial origin (Covelli et al., 2006; Rios et al., 2007; Vane et al., 2007), in sediment layers that are several centuries old is probably a consequence of sediment mixing. However, all mentioned pollutants recede again in the uppermost 5–10 cm of sediment, illustrating a trend-reversal after the late-20th century efforts to reduce environmental pollution (Lotze et al., 2011). In contrast to heavy metals and organic pollutants, the concentration of total nitrogen increases steeply and steadily up to the surface, indicating that wastewater discharge and agriculture represent the main sources for an ongoing eutrophication process in this coastal area (Howarth, 2008).

Our analyses indicate that compositional variability of molluscan assemblages is primarily related to changes in nitrogen and Pb concentration, which both correlate closely with clay content (Figures 5 and 9b). While increasing sediment siltation on the transition from the transgressive to the highstand phase can be mainly seen as a consequence of deepening and changes in circulation patterns and current regimes (Artegiani et al., 1997; Boldrini et al., 2009), during the deposition of the uppermost two core units (0–1000 years) this process was further augmented by human activities such as coastal deforestation (Kranjc, 2009) and intensified bottom trawling. Although the Brijuni archipelago is protected since 1983 (Fatovic-Ferencic, 2006), this fishing method has been widely used in the northern Adriatic since the 20th century (Botje et al., 2014) and can be responsible for high rates of sediment resuspension (Kaiser et al., 2002; Korpinen et al., 2013; Zuschin and Stachowitsch, 2009).

The selective loss of epifaunal species is reminiscent of the loss of epifaunal communities in the southern Gulf of Trieste in the 20th century as documented for a sampling station at 20 m water depth (Mautner et al., 2018). However, on one hand, the shell bed at Brijuni was naturally replaced by bryozoan meadows owing to deepening, reduced light penetration, and increased sediment trapping. On the other hand, at the deeper Brijuni station (44 m), bryozoans and other epifaunal molluscs were also severely affected by eutrophication and pollution. At times of sampling, the sea-floor was largely formed by dead skeletal debris and isolated epifaunal clumps. Bryozoan meadows, which are still preserved at some other places off Istria (McKinney and Jaklin, 2001), were degraded and not represented by living colonies (Figure 4c). Under increasing anthropogenic pressure, the molluscan community shifted towards high abundances of infaunal deposit feeders such as Nuculidae (N. nucleus). Epifaunal filter-feeding species disappeared together with many carnivores, hinting at decreased water quality and changes in sediment composition (Nerlovic et al., 2011). Gastropods are extremely rare in surficial sediment layers, and infaunal bivalve species sensitive to organic enrichment and pollution such as Clasianella fasciata (Borja et al., 2000) are also absent.

In contrast to the decline of suspension feeders, chemosymbiotic bivalves (mainly the lucinid Myrtea spinifera), a species not associated with seagrass meadows but adapted to life in low-sulfide sediments (Dando et al., 1985), although present only in small numbers, were completely absent in the oldest core sections, appeared for the first time in unit 3 and then increased in unit 6. This trend can be linked to the organic enrichment of the sediment and to increasing frequency of hypoxic and anoxic events in the northern Adriatic during the last century (Djakovac et al., 2015; Giani et al., 2012; Justic, 1987). Organisms living in symbiosis with chemosymbiotic bacteria (that require anoxic conditions within the sediment) are better adapted to conditions with low concentrations of dissolved oxygen (Dubilier et al., 2008; Stewart et al., 2005) and might benefit from the disappearance of other benthic species from affected areas.

Conclusion

The core sampled at Brijuni exemplifies the environmental transition from a terrestrial to a marine soft- and mixed-bottom habitat in the south-eastern part of the northern Adriatic Sea. Natural processes caused by sea level rise during the Holocene transgression explain changes in the composition and diversity of molluscan assemblages during the deposition of the first four units. Seagrasses and macroalgae probably characterized benthic habitats during the early transgressional phase, together with the formation of biostromes with epifaunal bivalves. Seagrass habitats disappeared with increasing water depth due to sediment siltation and reduced light penetration. Bryozoan meadows developed during the highstand phase, and molluscan community was dominated by infaunal suspension-feeders and deposit feeders, mostly bivalves. Grazing gastropods, which were deprived of their main food source, decreased strongly in abundance up-core. First human settlements appeared and small-scale deforestation and agriculture during the latest highstand phase further contributed to seafloor siltation. In contrast to the earlier core units, which were defined by large-scale oceanographic events such as sea level rise and changing current patterns, the effects of pollution and eutrophication dominate in the units 5 and 6. Therefore, humans have re-shaped the environment during the past centuries with increasing speed. The late highstand benthic assemblages with abundant bryozoans, high molluscan diversity, and abundant associated species emerge as the last baseline community largely unaffected by anthropogenic impacts and could thus be a reference point for any management or conservation efforts aiming to restore pre-impact conditions.

Acknowledgements

We are grateful to Graham Oliver for sharing his profound knowledge on marine bivalves and to Thomas Neubauer for his help in identifying terrestrial gastropod shells. Lukas Landler provided helpful comments on an earlier version of this manuscript. We thank Jernej Sedmak, captain of the research and working vessel.
Manta Bianca, with which we conducted the coring campaign in the northern Adriatic Sea. Daniele Cassin and Roberto Zonta from the Institute of Marine Sciences in Venice, Italy, carried out the geochronological analyses. Vlasta Cosovic organized the permits and helped with fieldwork. We thank two reviewers for comments.

Funding

This study was financially supported by the project ‘Historical ecology of the Northern Adriatic Sea’ funded by the Austrian Science Fund FWF: P24901. A.T. was supported by the Slovak Scientific Grant Agency (VEGA 0136/15).

ORCID iD

Martin Zuschin https://orcid.org/0000-0002-5235-0198

References

Abal EG and Dennison WC (1996) Seagrass depth range and water quality in Southern Moreton Bay, Queensland, Australia. *Marine and Freshwater Research* 47: 763–771.

Airoldi L and Beck M (2007) Loss, status and trends for coastal marine habitats of Europe. *Oceanography and Marine Biology: An Annual Review* 45: 345–405.

Allen AP, Kosnik MA and Kaufman DS (2013) Characterizing the dynamics of amino acid racemization using time-dependent reaction kinetics: A Bayesian approach to fitting age-calibration models. *Quaternary Geochronology* 18: 63–77.

Alvisi F and Cozzi S (2016) Seasonal dynamics and long-term trend of hypoxia in the coastal zone of Emilia Romagna (NW Adriatic Sea, Italy). *Science of the Total Environment* 541: 1448–1462.

Amorosi A, Maselli V and Trincardi F (2016) Onshore to offshore anatomy of a late Quaternary source-to-sink system (Po Plain–Adriatic Sea, Italy). *Earth-Science Reviews* 153: 212–237.

Amorosi A, Bruno L, Campo B et al. (2017) Global sea-level control on local parasquence architecture from the Holocene record of the Po Plain, Italy. *Marine and Petroleum Geology* 27: 1107–1123.

Antonioli F, Anzidei M, Lambeck K et al. (2007) Sea-level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. *Quaternary Science Reviews* 26: 2463–2486.

Antonioli F, Ferranti L, Fontana A et al. (2009) Holocene relative sea-level changes and vertical movements along the Italian and Istrimian coastlines. *Quaternary International* 206: 102–133.

Artegiani A, Paschini E and Russo A (1997) The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. *American Meteorological Society* 27: 1515–1532.

Asioli A, Trincardi F, Correggari A et al. (1996) The late-Quaternary deglaciation in the Central Adriatic basin. *Il Quaternario* 9: 763–769.

Barrausse A, Duci A, Mazzoldi C et al. (2009) Trophic network model of the Northern Adriatic Sea: Analysis of an exploited and eutrophic ecosystem. *Estuarine, Coastal and Shelf Science* 83(4): 577–590.

Barmawidjaja DM, Van der Zwaan GJ, Jorissen FJ et al. (1995) 150 years of eutrophication in the northern Adriatic Sea: Evidence from a benthic foraminiferal record. *Marine Geology* 122(4): 367–384.

Beesley PL, Ross GJ, Wells A et al. (1998) *Mollusca: The Southern Synthesis. Fauna of Australia*, vol. 5. Melbourne: CSIRO Publishing.

Blanchet FG, Legendre P and Borcard D (2008) Forward selection of explanatory variables. *Ecology* 89(9): 2623–2632.

Boero F (2001) Adriatic ecological history: A link between jelly outbreaks, red tides, mass mortalities, overfishing, mucilages, and thalassic plankton? *ICESM Workshop Series* 14: 44–46.

Bolodrin A, Carniel S, Giani M et al. (2009) Effects of bora wind on physical and biogeochemical properties of stratified waters in the northern Adriatic. *Journal of Geophysical Research* 114: 1–19.

Bolje A, Marčeta B and Blejec A (2014) *Fisheries Statistics*. Ljubljana: BiosWeb, Fisheries Research Institute of Slovenia. Available at: http://www.biosweb.org/?task=stat (accessed 12 February 2017).

Boldt G, Franz J and Perez V (2000) A Marine Biotic Index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. *Marine Pollution Bulletin* 40(12): 1100–1114.

Bortolami GC, Fontes JCH, Markgraf V et al. (1977) Land, Sea and climate in the northern Adriatic region during late Pleistocene and Holocene. *Paleogeography, Paleoclimatology, Paleocology* 21(5): 139–156.

Bralic I (1990) *Nacionalni Parkovi Hrvatske, Nacionalni Park Brijuni [The National Parks of Croatia, the National Park of Brijuni Islands]*. Zagreb: Skolska knjiga.

Buchmann MF (2008) NOAA Screening Quick Reference Tables. NOAA OR & R Report 08-1. Seattle, WA: National Oceanic and Atmospheric Administration.

Cachia C, Misfud C and Sammut P (1996) The Marine Mollusca of the Maltese Islands – Part 2: Neotaenioglossa. Leiden: Backhuys Publishers.

Cattaneo A and Steel RJ (2003) Transgressive deposits: A review of their variability. *Earth-Science Reviews* 62(3–4): 187–228.

Cattaneo A and Trincardi F (1999) The late Quaternary transgressive record in the Adriatic epicontinental sea: Basin widening and facies partitioning. In: Bergman K and Snedden J (eds) *Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation* (SEPM Special Publications 64), pp. 127–146.

Catuneanu O, Abreu V, Bhattacharya JP et al. (2009) Towards the standardization of sequence stratigraphy. *Earth-Science Reviews* 92(1–2): 1–33.

Chemello R and Milazzo M (2002) Effect of algal architecture on associated fauna: Some evidence from phythal mussels. *Marine Biology* 140(5): 981–990.

Coll M, Santojianni A, Palomera I et al. (2007) An ecological model of the Northern and Central Adriatic Sea: Analysis of ecosystem structure and fishing impacts. *Journal of Marine Systems* 67(1): 119–154.

Correggari A, Roveri M and Trincardi F (1996b) Late Pleistocene and Holocene evolution of the North Adriatic Sea. *Il Quaternario* 9: 697–704.

Cossignani T and Ardovini R (2011) *Malacologia Mediterranea: Atlante Delle Conchiglie Del Mediterraneo: 7500 Foto a Colori*. Ancona: L’informatore Piceno.

Cossignani T, Cossignani V, Di Nisto A et al. (1992) *Atlante Delle Conchiglie Del Medio Adriatico [Atlas of Shells from the Central Adriatic Sea]*. Ancona: L’informatore Piceno.

Covelli S, Fontolan G, Fagnani J et al. (2006) Anthropogenic markers in the Holocene stratigraphic sequence of the Gulf of Trieste (northern Adriatic Sea). *Marine Geology* 230: 29–51.

Crema R, Castelli A and Presvedelli D (1991) Long term eutrophication effects on macrofaunal communities in northern Adriatic Sea. *Marine Pollution Bulletin* 22(10): 503–508.

Dando PR, Southward AJ, Southward EG et al. (1985) Sulphur-oxidising bacteria and haemoglobin in gills of the bivalve mollusc *Myrtea spinifera*. *Marine Ecology* 23: 85–98.

Danovaro R, Umami SF and Pusceddu A (2009) Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. *PLoS ONE* 4(9): e7006.
De Madron X, Ferre B, Le Corre G et al. (2005) Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Continental Shelf Research 25: 2387–2409.

Degobbis D, Precali R, Ivaničić I et al. (2000) Long-term changes in the northern Adriatic ecosystem related to anthropogenic eutrophication. International Journal of Environment and Pollution 13(1–6): 495–533.

Dietl GP, Kidwell SM, Brenner MDA et al. (2015) Conservation paleobiology: Leveraging knowledge of the past to inform conservation and restoration. Annual Review of Earth and Planetary Sciences 43: 79–103.

Djakovac T, Supić N, Bernardi Aubry F et al. (2015) Mechanisms of hypoxia frequency changes in the northern Adriatic Sea during the period 1972–2012. Journal of Marine Systems 141: 179–189.

Dominguez JGMA, Kosnik AP, Allen Q et al. (2016) Time-averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour’s molluscan record. Palaios 31: 563–574.

Duarte CM (1991) Seagrass depth limits. Aquatic Botany 40: 363–377.

Dubilier N, Bergin C and Lott C (2008) Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nature Reviews Microbiology 6(10): 725–740.

Edgar GL and Samson CR (2004) Catastrophic decline in molluscan death assemblages: Historic baseline shift in tropical Gulf of Aqaba, Red Sea. Marine Ecology Progress Series 259: 73–83.

Gofs S, Moreno D and Salas C (2011a) Moluscos Marinos De Andalucia, Volume 1. Malaga: Servicio de Publicaciones e intercambio Cientifico, Universidad de Malaga.

Gofs S, Moreno D and Salas C (2011b) Moluscos Marinos De Andalucia, Volume 2. Malaga: Servicio de Publicaciones e intercambio Cientifico, Universidad de Malaga.

Goslar T, Czernik J and Goslar E (2004) Low-energy 14C AMS in Poznañ radiocarbon laboratory, Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223–224: 5–11.

Harding LW, Degobbis D and Precali R (1999) Production and fate of phytoplankton: Annual cycles and interannual variability. In: Malone TC, Malej A, Harding LW et al. (eds) Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. Washington, DC: American Geophysical Union, pp. 131–172.

Haydar D (2010a) Appendix I to Chapter 4: The scale of cryptogenesis. In: Haydar D (ed.) What is natural? The scale and consequences of marine bioinvasions in the North Atlantic Ocean. PhD Dissertation, University of Groningen, 184 pp.

Haydar D (2010b) Appendix III to Chapter 4: The scale of cryptogenesis. In: Haydar D (ed.) What is natural? The scale and consequences of marine bioinvasions in the North Atlantic Ocean. PhD Dissertation, University of Groningen, 184 pp.

Henderson K (2015) Neolithic ceramic spoons – Indicators of dietary distinctiveness in the eastern Adriatic Neolithic. Documenta Praehistorica XXII: 251–260.

Howarth RW (2008) Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 8: 14–20.

Huber M (2010) Compendium of Bivalves. A Full-Color Guide to 3,300 of the World’s Marine Bivalves. A Status on Bivalvia After 250 Years of Research. 13/2. M. M. Sci. ed. Hackenheim: ConchBooks.

Hunt D and Tucker ME (1992) Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sedimentary Geology 81: 1–9.

Huntley JW and Scarponi D (2015) Geographical variation of parasitic and predatory traces on mollusks in the northern Adriatic Sea, Italy: Implications for the stratigraphic paleobiology of biotic interactions. Paleobiology 41: 134–153.

Jackson JBC, Kirby MX, Berger WH et al. (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530): 629–637.

Justic D (1987) Long term eutrophication of the Northern Adriatic Sea. Marine Pollution Bulletin 18: 281–283.

Justic D (1991) Hypoxic conditions in the northern Adriatic Sea: Historical development and ecological significance. Geological Society, London, Special Publications 58(1): 95–105.

Kaiser MJ, Collie JS, Hall SJ et al. (2002) Modifications of marine habitats by trawling activities: Prognosis and solutions. Fish and Fisheries 3: 114–136.

Kaufman DS and Manley WF (1998) A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews 17: 987–1000.

Kidwell SM (2013) Time-averaging and fidelity of modern death assemblages: Building a taphonomic foundation for Conservation Palaeobiology. Palaeontology 56(3): 487–522.

Kidwell SM (2015) Biology in the Anthropocene: Challenges and insights from young fossil records. Proceedings of the National Academy of Sciences of the United States of America 112(16): 4922–4929.

Korpinen S, Meidinger M and Laamanen M (2013) Cumulative loss of seagrass communities based on molluscan death assemblages: Historic baseline shift in tropical Gulf of Aqaba, Red Sea. Marine Ecology Progress Series 589: 73–83.
Kosnik MA and Kaufman DS (2008) Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: II. Data screening. *Quaternary Geochronology* 3(4): 328–341.

Koulouri P, Doumas C, Arvanitidis C et al. (2006) Molluscan diversity along a Mediterranean soft bottom sublittoral eco-tone. *Scientia Marina* 70: 573–583.

Kowalewski M, Wittmer JM, Dexter TA et al. (2015) Differential responses of marine communities to natural and anthropogenic changes. *Proceedings Royal Society London B* 282: 20142990.

Kranjc A (2009) History of deforestation and reforestation in the Dinaric Karst. *Geographical Research* 47(1): 15–23.

Lotze HK, Coll M, Magera AM et al. (2011) Recovery of marine animal populations and ecosystems. *Trends in Ecology & Evolution* 26(11): 598–608.

Lotze HK, Lenihan HS, Bourque BJ et al. (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. *Science* 312: 1806–1809.

McKinney FK (2007) *The Northern Adriatic Ecosystem: Deep Time in a Shallow Sea*. New York: Columbia University Press.

McKinney FK and Jaklin A (2001) Sediment accumulation in a shallow-water meadow carpeted by a small erect bryozoan. *Sedimentary Geology* 145(3–4): 397–410.

Mautner AK, Gallmetzer J, Haselmair A et al. (2018) Holocene ecosystem shifts and human-induced loss of Arca and Ostrea shell beds in the north-eastern Adriatic Sea. *Marine Pollution Bulletin* 126: 19–30.

Mavrić B, Orlando-Bonaca M, Bettoso N et al. (2010) Soft-bottom macrozoobenthos of the southern part of the Gulf of Trieste: Faunistic, biocoenotic and ecological survey. *Acta Adriatica* 51: 203–216.

Mlakar S (1971) *Brioni. Pula: Uprava Brioniških Otoka*.

Morton B and Dinesen GE (2011) Biological and functional morphology of Modiolarca subpicta (Bivalvia: Mytilidae: Musculinae), epizoically symbiotic with Ascidiella aspersa (Urochordata: Ascidiae), from the Kattegat, northern Jutland, Denmark. *Journal of the Marine Biological Association of the United Kingdom* 91(8): 1637–1649.

Nerlovč V, Doğan A and Hrs-Brenko M (2011) Response to oxygen deficiency (depletion): Bivalve assemblages as an indicator of ecosystem instability in the northern Adriatic Sea. *Biologia* 66(6): 1114–1126.

N’siali GM, Grandi V, Lotti M et al. (2008) Responses of a North-eastern Adriatic Ampelisca-Corbula community to seasonality of the Gulf of Trieste: Faunistic, biocoenotic and ecological survey. *Acta Adriatica* 51: 203–216.

Oksanen J, Blanchet FG, Friendly M et al. (2015) *Community Ecology Package*. R Package 958 version 2.3.283–2. Available at: http://CRAN.R-project.org/package=vegan.

Oliver PG, Holmes AM, Killeen IJ et al. (2016) Marine bivalve shells of the British isles. *Angueldiá Cymru – National Museum Wales*. Available at: http://naturalhistory.museum-wales.ac.uk/britishbivalves (accessed 8 November 2017).

Oporto T, Marina P, López FJ et al. (2012) Caracterización sedimentológica y faunística de las cimas de volcanes de fango del margen español (Golfo de Cádiz). In: *7o Simpósio sobre a Margem Ibérica Atlântica - MIA12*, Lisboa, 16 December.

Orogele B, Misić M and Faganeli J (1991) Marine geology of the Gulf of Trieste (northern Adriatic): Sedimentological aspects. *Marine Geology* 99: 79–92.

Palanques A, Guille J and Puig P (2001) Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. *Limnology & Oceanography* 46(5): 1100–1110.

Pearson TH and Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. *Oceanography and Marine Biology: An Annual Review* 16: 229–311.

Pfeiàs I (2017) Going back in time to predict the future: Changes in benthic communities during the Holocene transgression in the northern Adriatic Sea. Unpublished Master Thesis, University of Vienna, Vienna.

R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org.

Reimer PJ, Bard E, Bayliss A et al. (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. *Radiocarbon* 55(4): 1869–1887.

Rick TC, Reeder-Myers LA, Hofman CA et al. (2016) Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery. *Proceedings of the National Academy of Sciences* 113(23): 6568–6573.

Rinaldi A (2012) *Atlante della fauna e flora marina dell’Adriatico nord-occidentale: Il Mare, Le Lagune E Le Dune Costiere*. Imola: La Mandragora s.r.l.

Rios LM, Moore C and Jones PR (2007) Persistent organic pollutants carried by synthetic polymers in the ocean environment. *Marine Pollution Bulletin* 54(8): 1230–1237.

Rodríguez CA, Flessa KW and Dettman DL (2001) Effects of upstream diversion of Colorado River water on the estuarine bivalve mollusc *Mulinia coloradoensis*. *Conservation Biology* 15(1): 249–258.

Rueda JL, Gofas S, Urrea J et al. (2009) A highly diverse molluscan assemblage associated with eelgrass beds (Zostera marina L) in the Alboran Sea: Micro-habitat preference, feeding guilds and biogeographical distribution. *Scientia Marina* 73(4): 679–700.

Ruiz JM and Romero J (2003) Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica. *Marine Pollution Bulletin* 46: 1523–1533.

Scarponi D, Azzarone M, Kowalewski M et al. (2017a) Surges in trentemate prevalence linked to centennial-scale flooding events in the Adriatic. *Scientific Reports* 7(1): 5732.

Scarponi D, Azzarone M, Kusnerik K et al. (2017b) Systematic vertical and lateral changes in quality and time resolution of the macrofossil record: Insights from Holocene transgressive deposits, Po coastal plain, Italy. *Marine and Petroleum Geology* 87: 128–136.

Siani G, Paterne M, Michel E et al. (2000) Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum. *Science* 294: 1917–1920.

Šoštarić R and Küster H (2001) Roman plant remains from Veli Brijun (Island of Brioni), Croatia. *Vegetation History and Archaeobotany* 10(4): 227–233.

Stachowitsch M (1984) Mass mortality in the Gulf of Trieste: The course of community destruction. *Marine Ecology Progress Series* 5(3): 243–264.

Stachowitsch M (1991) Anoxia in the Northern Adriatic Sea: Rapid death, slow recovery. In: Tyson RV and Pearson TH (eds) *Modern and Ancient Continental Shelf Anoxia*. London: Geological Society of London (Special Publications 58), pp. 119–129.

Stewart FJ, Newton ILG and Cavanaugh CM (2005) Chemosynthetic endosymbioses: Adaptations to oxic-anoxic interfaces. *Trends in Microbiology* 13(9): 439–448.

Storms JEA, Weltje GJ, Terra GJ et al. (2008) Coastal dynamics under conditions of rapid sea-level rise: Late Pleistocene to Early Holocene evolution of barrier – Lagoon systems on the northern Adriatic shelf (Italy). *Quaternary Science Reviews* 27: 1107–1123.
Stuiver M and Polach HA (1977) Discussion reporting of 14C data. *Radiocarbon* 19: 355–363.

Stuiver M and Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. *Radiocarbon* 35: 215–230.

Thrush S and Dayton P (2002) Disturbance to marine benthic habitats by trawling and dredging: Implications for biodiversity. *Annual Review of Ecology and Systematics* 33: 449–473.

Tomašových A, Gallmetzer I, Haselmair A et al. (2017) Stratigraphic unmixing reveals repeated hypoxia events over the past 500 yr in the northern Adriatic Sea. *Geology* 45: 363–366.

Trincardi F, Correggiari A and Roveri M (1994) Late Quaternary transgressive erosion and deposition in a modern epicontinental shelf: The Adriatic semi-enclosed basin. *Geo-Marine Letters* 14: 41–51.

Vacchi M, Marriner N, Morhange Ch Spada G et al. (2016) Multiproxy assessment of Holocene relative Sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. *Earth Science Reviews* 155(2): 172–197.

Vane CH, Harrison I and Kim AW (2007) Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, U.K. *The Science of the Total Environment* 374(1): 112–126.

Vidović J, Nawrot R, Gallmetzer I et al. (2016) Anthropogenically induced environmental changes in the northeastern Adriatic Sea in the last 400 years (Panzano Bay, Gulf of Trieste). *Biogeosciences* 13: 5965–5981.

Werner B (1953) Über den Nahrungserwerb der Calyptraeidae (Gastropoda Proobranchia). *Helgoländer Wissenschaftliche Meeresuntersuchungen* 4(3): 260–315.

Werner B (1959) Das Prinzip des endlosen Schleimfilters beim Nahrungserwerb wirbelloser Meereistiere. *Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie* 44: 181–216.

Wood H and Turner JA (2012) *Mollusca Types Catalogue*. Amgueddfa Cymru – National Museum Wales. Available at: http://naturalhistory.museumwales.ac.uk/molluscetypes (accessed 15 August 2017)

Zavatarelli M, Raicich F, Bregant D et al. (1998) Climatological biogeochemical characteristics of the Adriatic Sea. *Journal of Marine Systems* 18: 227–263.

Zuschin M and Stachowitsch M (2009) Epifauna-dominated benthic shelf assemblages: Lessons from the modern Adriatic Sea. *Palaios* 24: 211–221.