Sterol regulatory element-binding protein (SREBP)-1c is a transcription factor that controls synthesis of fatty acids and triglycerides in the liver and is highly regulated by nutrition and hormones. In the current studies we show that protein kinase A (PKA), a mediator of glucagon/cAMP, a fasting signaling, suppresses SREBP-1c by modulating the activity of liver X receptor α (LXRα), a dominant activator of SREBP-1c expression. Activation of PKA repressed LXR-induced SREBP-1c expression both in rat primary hepatocytes and mouse livers. Promoter analyses revealed that the LXRα-binding site in the SREBP-1c promoter is responsible for PKA inhibitory effect on SREBP-1c transcription. In vitro and in vivo PKA directly phosphorylated LXRα, and the two consensus PKA target sites (195, 196 serines and 290, 291 serines) in its ligand binding/heterodimerization domain were crucial for the inhibition of LXR signaling. PKA phosphorylation of LXRα caused impaired DNA binding activity by preventing LXRα/RXR dimerization and decreased its transcription activity by inhibiting recruitment of coactivator SCR-1 and enhancing recruitment of corepressor NcoR1. These results indicate that LXRα is regulated not only by oxysterol derivatives but also by PKA-mediated phosphorylation, which suggests that nutritional regulation of SREBP-1c and lipogenesis could be regulated at least partially through modulation of LXR.

In mammals, carbohydrates are an essential energy resource. When consumed in excess, carbohydrates are converted to lipids by lipogenic enzymes in preparation for times of energy deficiency. These processes are known to be regulated at the transcription level, and several different transcription factors are known to contribute to this regulation. Sterol regulatory element-binding protein (SREBP), a transcription factor belonging to the basic helix-loop-helix-leucine zipper family, regulates triglyceride synthesis and cholesterol metabolism (1). Three different SREBP isoforms have been identified. SREBP-1c plays a role primarily in triglyceride synthesis (2), whereas SREBP-2 regulates cholesterol metabolism (3). SREBP-1a is expressed in growing cells and activates an entire array of genes involved in both triglyceride and cholesterol synthesis (4). In liver SREBP-1c controls transcription of genes involved in fatty acid and triglyceride synthesis (2, 5). SREBP-1c expression is highly regulated in response to the nutritional condition. Expression of SREBP-1c is undetectable during fasting, whereas its expression is strongly induced in a fed state followed by similar adapted nutritional changes in lipogenic genes (6).

To understand the molecular mechanism of nutritional regulation of SREBP-1c expression, the SREBP-1c gene promoter has been extensively studied. In the proximal region of the mouse SREBP-1c promoter, Sp1, NF-Y, USF, SREBP, and LXR-binding sites have been identified (7–9). It has been observed that insulin (10) and glucose (11, 12) are factors that induce hepatic SREBP-1c in vivo and in vitro, although precise mechanisms are yet to be elucidated. Adenoviral overexpression in rat primary hepatocytes suggested that the signal transducer, Akt, could be a potential regulator of SREBP-1c transcription (13).

Liver X receptors (LXR) belong to a nuclear receptor superfamily. The LXR subfamily consists of two members, LXRα and LXRβ, which are activated by oxysterols (14). The expression pattern of LXRα is restricted mainly to liver, adipocytes, small intestine, and macrophages, whereas LXRβ is expressed ubiquitously. Although early reports revealed involvement of LXRs in cholesterol homeostasis (15, 16), recent studies suggest that LXR negatively regulates gluconeogenesis (17) and inflammatory responses (18, 19). While investigating the pharmacological effect of LXR in rodent models, it has been observed that LXR ligands are protective against the development of atherosclerotic lesions (20) and ameliorates conditions of high blood glucose and impaired glucose tolerance (21). LXRs directly bind the cis element on the SREBP-1c promoter as heterodimers with RXR, leading to transcriptional activation (8). Several studies have established LXRs as dominant activators of SREBP-1c expression. LXRα/β double knock-out mice...
PKA Inhibits LXR Signaling

revealed dramatically reduced expression of SREBP-1c (9). We have used an expression cloning strategy to show that LXRs are the primary activators of the SREBP-1c promoter (8). Polyun-saturated fatty acids are the only known dietary lipid capable of negatively regulating hepatic SREBP-1c expression and lipogenesis (22). A portion of these effects is mediated at the transcriptional level through repression of LXR activity (23).

Considering that hepatic SREBP-1c expression is dominated by LXRs and eliminated by fasting, it is probable that there is a mechanism by which LXR mediates the repressed SREBP-1c expression during fasting. Consistently, it has been reported that glucagon and its signal mediator, cAMP, suppresses SREBP-1c in rat primary hepatocytes (24). Protein kinase A (PKA) is a cAMP-depend-ent protein kinase that consists of both a catalytic and regulatory subunit and regulates numerous cellular functions in eukaryotic cells by phosphorylating target proteins. In regard to energy metabolism, PKA is subordinated to glucagon and adrenaline and, therefore, is classically recognized as a fasting signal to activate gluconeogenesis and β-oxidation and to oppose triglycerides synthesis and glucose utilization. It is known that several nuclear receptors (e.g. estrogen receptor, retinoic acid receptor, peroxi-some proliferator-activated receptor, and hepatocyte nuclear fac- tor-4α) are phosphorylated by PKA leading to modification of their trans activities via diverse mechanism (25–28). In the current study we investigated effects of cAMP/PKA on the SREBP-1c expression and LXR signaling system.

EXPERIMENTAL PROCEDURES

Materials—Anti-LXRα, anti-RXR, and anti-SREBP-1 anti-bodies were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Anti-CREB and anti-phospho-CREB (Ser-133) antibodies were purchased from Cell Signaling Technol-ogy Inc. (Beverly, MA). Anti-His 5 antibody was purchased from Qiagen Inc. Anti-HA and anti-Myc antibodies were pur-chased from Roche Applied Science. Anti-FLAG antibody was purchased from Promega (Madison, WI). Dibutyryl-cAMP was purchased from WAKO. Anti-LXRα antibodies were purchased from CLEA Japan (Tokyo, Japan). For fasting and refeeding, mice were fasted for 24 h and then fed a high sucrose/low fat diet for 12 h.

Animals—Male mice (C57BL/6J) were obtained from CLEA Japan (Tokyo, Japan). For fasting and refeeding, mice were fasted for 24 h and then fed a high sucrose/low fat diet for 12 h.

Isolation and Culture of Hepatocytes—Primary hepatocytes were isolated from male Sprague-Dawley rats (200–300 g) (CLEA Japan). Cell were resuspended in Dulbecco’s modified Eagle’s medium containing penicillin and streptomycin supplemented with 10% fetal bovine serum at 37 °C in 24-well plate overnight before transfection. Cells were transfected with reporter vector, expression vector using FuGENE 6. Total amounts of DNA were adjusted to 0.5 μg/well using empty vector. After 24 h of incubation, the amounts of firefly luciferase activity in transfectants were measured. Firefly luciferase activity was normalized by the amounts of renilla luciferase activity expressed from CMV or SV40 promoter-linked renilla luciferase unless otherwise indicated.

In Vitro Kinase Assay—Histidine-tagged recombinant mouse LXRs proteins were expressed in Escherichia coli (BL21, DE3) and purified using standard techniques and purification kit Mag Extractor (TOYOBO) according to the manufacturer’s protocol. Briefly, bacterial culture containing kanamycin were grown at 37 °C. After induction of recombinant proteins for 2–3 h, cells were resuspended in lysis buffer (6 μM guanidine hydrochloride, 5 μM NaCl (pH 8.0)) and lysed by sonication. The centrifuged supernatant was mixed for 30 min at room temperature on a rotator with magnetic nickel beads. Protein-absorbed beads were washed with lysis buffer, and recombinant LXRs proteins were eluted with elution buffer. After dialysis to exclude guanidine, the concentration and size of histidine-tagged proteins were estimated by SDS-PAGE followed by Coomassie Blue staining and immunoblotting using a known quantity of molecular weight standards. The purified proteins were stored at −80 °C until experiments were performed.
Bovine purified PKA catalytic subunit was purchased from Promega. PKA c subunit, histidine-tagged LXRα, and [γ-32P]ATP were mixed in PKA buffer (50 mM Tris-HCl (pH 7.5), 10 mM NaCl, 10 mM MgCl2, 1 mM DTT) and incubated for 45 min at 30 °C. Samples were analyzed by SDS-PAGE, and phosphorylation was visualized by autoradiography. Quantity of histidine-tagged protein was confirmed by immunoblotting using anti-His 5 antibody. Histone H1 protein (Calbiochem) was used as positive control in kinase assays.

In Vivo Kinase Assay—For in vivo kinase assay, COS7 cells prepared in 100-mm collagen-coated dishes at 1 × 106 cells/dish were transfected with control or expression vector for HA-tagged human LXRα vectors. After transfection, the cells were starved in phosphate-deficient medium for 12 h and then incubated for 2 h in the same medium containing 500 μCi/ml [32P]orthophosphate. Cells were treated with PKA activators (forskolin 10 μM, dibutyryl-cAMP 1 mM, isobutylmethylxanthine 1 mM) for 30 min before harvesting.

At the end of the labeling period the cells were washed in cold phosphate-buffered saline, harvested, and lysed on ice. Protein samples were extracted in lysis buffer mentioned elsewhere and centrifuged at 15,000 rpm 4 °C for 10 min. Supernatants were subjected to immunoprecipitation assay used with anti HA antibody (Roche Applied Science) as previously described. The immunocomplex were eluted in sample buffer, resolved by SDS-PAGE (8% gel), visualized with autoradiography. Quantity of histidine 1 mM) for 30 min before harvesting.

Immunoblotting and Immunoprecipitation—COS7 cells were seeded on 100-mm dishes and transfected with the expression vectors. After incubation for 48 h, dbcAMP (100 μM), forskolin (10 μM), and isobutylmethylxanthine (100 μM) were added into medium for 30 min, and then cells were harvested. Protein lysate was extracted in lysis buffer (25 mM HEPES (pH 7.9), 50 mM KCl, 6% glycerol, 5 mM MgCl2, 0.5% Triton X-100, 1 mM DTT, 50 mM NaF, 40 mM β-glycerophosphate, 25 mM sodium pyrophosphate, protease inhibitor mixture (Roche Applied Science) on ice 20 min and centrifuged at 15,000 rpm at 4 °C for 10 min. Supernatants were subjected to immunoprecipitation assay as previously described (29).

GST Pulldown Assay—GST and GST-LXRα proteins were purified by glutathione-Sepharose beads according to the manufacturer’s protocol (Amersham Biosciences). GST fusion proteins were eluted (50 mM Tris-HCl (pH 8.0), 50 mM NaCl, 10 mM glutathione, one bead and 35S-radiolabeled SRC-1 nuclear receptor interaction domain (amino acids 576–779) synthesized in vitro to samples and incubation for 2 h at 4 °C, beads were washed 3 times with ice-cold phosphate-buffered saline containing 0.1% Triton X-100. Proteins bound to beads were eluted with elution buffer (50 mM Tris-HCl (pH 7.5), 10 mM NaCl, 10 mM MgCl2, 1 mM DTT, 50 mM NaF, 20 mM β-glycerophosphate) and incubated for 45 min at 30 °C. After adding glutathione beads and 35S-radiolabeled SRC-1 nuclear receptor interaction domain (amino acids 576–779) synthesized in vitro to samples and incubation for 2 h at 4 °C, beads were washed 3 times with ice-cold phosphate-buffered saline containing 0.1% Triton X-100. Proteins bound to beads were eluted with elution buffer (50 mM Tris-HCl (pH 8.0), 50 mM glutathione), resolved by SDS-PAGE, and visualized autoradiography.

RESULTS

PKA Represses Expression of SREBP-1c in the liver is highly regulated by nutrition; it is suppressed at fasting and induced in a refed state as previously
PKA Inhibits LXR Signaling

A

	Fasted	Refed	PKA
SREBP-1			
PEPCK			
36B4			

FIGURE 1. Effects of PKA activation on expression of mouse hepatic SREBP-1. C57BL/6J mice fasted for 24 h (Fasted) followed by refeeding with a high sucrose high fat diet for 12 h (Refed) were intravenously treated with vehicle or a combination of PKA activators, dbcAMP (35 mg/kg) and theophylline (30 mg/kg) (PKA). Two hours post-injection mice were sacrificed, and total liver RNA and nuclear extracts were prepared. Total RNA (10 µg) and nuclear extracts (40 µg of protein) were subjected to Northern (panel A) and immunoblotting (panel B), respectively.

PKA Activation Represses LXR-mediated SREBP-1 Induction—The effect of PKA on LXR activation of SREBP-1c was estimated. In rat primary hepatocytes, the SREBP-1c mRNA level was essentially undetectable but was highly induced by T0901317, an LXR agonist. This induction was substantially suppressed by the addition of dibutyryl-cAMP whereas expression of LXR and RXR was not increased at the mRNA level (Fig. 2). These data suggest that PKA repression of SREBP-1c was mediated not through changes in LXR expression but through modulating the LXR activity. Meanwhile, LXR agonist-induced expression of ABCA1 (ATP binding cassette transporter A1), an LXR target gene, was only slightly affected by PKA activation.

reported (6). One potential mechanism of this suppression at fasting could be mediated through the cAMP/PKA system that mediates the glucagon signal. C57BL/6J mice in a refed state were administrated with dibutyryl-cAMP and theophylline for activation of PKA to mimic fasting signal. The SREBP-1c mRNA that was highly induced by refeeding was robustly repressed by cAMP/theophylline administration (Fig. 1A). Reciprocally, phosphoenolpyruvate carboxykinase, a gene that controls gluconeogenesis and a well known target of the glucagon/cAMP/PKA signal, was suppressed by refeeding but restored by these PKA activators. The reduction of SREBP-1c mRNA level by PKA activation was associated with a robust decrease in active SREBP-1c protein in hepatic nuclear extracts (Fig. 1B). SREBP-1c expression is dominantly controlled by LXR/RXR that binds directly to the two LXREs in the SREBP-1c promoter (8, 9). As shown in Fig. 1B, the expression of LXR/RXR was not affected by the PKA activation. Therefore, SREBP-1c suppression by PKA was not due to reduction in the amounts of LXR/RXR.

LXRE Response Element Is Responsible for PKA Inhibition of SREBP-1c Promoter—To further investigate the PKA effect on SREBP-1c transcription, in vitro reporter assays for SREBP-1c promoter were performed. Luciferase reporters linked to different sizes of SREBP-1c promoter region around the LXRE-binding sites (LXREs) and expression vectors of LXRα and the PKA catalytic subunit for PKA activation were transfected into HepG2 cells (Fig. 3A). PKA expression did not affect the basal level of SREBP-1c promoter activity in HepG2 cells. Meanwhile, PKA co-expression strongly suppressed LXRα-mediated activation of SREBP-1c promoter. This was only observed in LXRE-containing promoters (−2.6 kilobase pairs and −550 bp). The shorter construct lacking LXREs (90 bp) did not show LXR activation or PKA inhibition. Thus, the inhibitory effect of PKA on SREBP-1c promoter was conceivably mediated through LXREs. This was supported by the LXRE enhancer construct assays, demonstrating that endogenous PKA activation by forskolin, an adenylate cyclase activator, dose-dependently inhibited LXRE enhancer activity induced by the LXR ligand, and this inhibitory effect was abolished by co-expression of the PKA regulatory subunit dominant negative form (Fig. 3B). The mechanism against the PKA suppression of LXR activity was further explored using Gal4 DNA binding domain (DBD) protein fused to LXRα LBD in HepG2 (Fig. 3C). LXR-LBD was highly activated in this system by the LXR synthetic ligand as previously reported. This activation was completely abolished by co-transfection of PKA, suggesting that PKA activation inhibits ligand-mediated activation of LXR. PKA-mediated inhibition of LXR transcriptional activity was supported by luciferase assays using the promoter of ABCA1, another LXR target gene. Mouse ABCA1 promoter activity was also dose-dependently inhibited by PKA expression in both basal and LXR-induced conditions (Fig. 3D).
PKA Inhibits LXR Signaling

(Fig. 4A). Functional domains of the LXRα protein were also tested using this in vitro kinase assay (Fig. 4B). Every domain of LXRα was significantly phosphorylated. In the amino acid sequence of PKA, there are two potential PKA target sites (serines 195 and 196; threonine 290 and serine 291) in the LBD/heterodimerization domain. Introduction of mutation in which these serine residues were replaced by alanine caused resistance to PKA inhibition of SREBP-1c promoter activation (Fig. 4C). To assess whether LXRα is phosphorylated by PKA in vivo, COS7 cells were transfected with expression vector for HA-tagged LXRα and subsequently labeled with [32P]orthophosphate. After treatment with PKA activators, the phosphorylation state of LXRα was examined by autoradiography. As evident from autoradiography and immunoblots (Fig. 4D), PKA stimulation induced the phosphorylation state of LXRα. These results indicate that PKA directly phosphorylates LXR protein, which is crucial for PKA inhibition of LXR activity.

DNA Binding Activity of LXR/RXR Heterodimer Was Decreased by PKA Phosphorylation of LXRα—The effect of LXRα phosphorylation by PKA on DNA binding was tested by EMSA assays (Fig. 5A). Recombinant LXRα protein requires RXR for its binding to LXRE. The signal of LXR/RXR bound to LXRE was partially decreased by PKA treatment of LXR. This effect required the incubation of LXR with PKA at 30 °C, indicating the PKA inhibition of LXR activity was mediated through its kinase activity. To confirm this effect in vivo, nuclear extracts of livers from dibutyryl-cAMP/theophylline-administered mice were prepared and subjected to EMSA assay (Fig. 5B). PKA activation in these nuclear extracts was confirmed by phosphorylation of CREB, a well known PKA target in mouse livers, as shown by immunoblot analysis. EMSAs of these nuclear extracts demonstrated that the signal of LXRE binding mainly from LXR/RXR, as confirmed by supershift with LXR and RXR antibodies, was partially decreased by PKA treatment of LXR. This effect required the incubation of LXR with PKA at 30 °C, indicating the PKA inhibition of LXR activity was mediated through its kinase activity. To confirm this effect in vivo, nuclear extracts of livers from dibutyryl-cAMP/theophylline-administered mice were prepared and subjected to EMSA assay (Fig. 5B). PKA activation in these nuclear extracts was confirmed by phosphorylation of CREB, a well known PKA target in mouse livers, as shown by immunoblot analysis. EMSAs of these nuclear extracts demonstrated that the signal of LXRE binding mainly from LXR/RXR, as confirmed by supershift with LXR and RXR antibodies, was partially decreased by PKA treatment of LXR. This effect required the incubation of LXR with PKA at 30 °C, indicating the PKA inhibition of LXR activity was mediated through its kinase activity. To confirm this effect in vivo, nuclear extracts of livers from dibutyryl-cAMP/theophylline-administered mice were prepared and subjected to EMSA assay (Fig. 5B). PKA activation in these nuclear extracts was confirmed by phosphorylation of CREB, a well known PKA target in mouse livers, as shown by immunoblot analysis. EMSAs of these nuclear extracts demonstrated that the signal of LXRE binding mainly from LXR/RXR, as confirmed by supershift with LXR and RXR antibodies, was partially decreased by PKA treatment of LXR. This effect required the incubation of LXR with PKA at 30 °C, indicating the PKA inhibition of LXR activity was mediated through its kinase activity. To confirm this effect in vivo, nuclear extracts of livers from dibutyryl-cAMP/theophylline-administered mice were prepared and subjected to EMSA assay (Fig. 5B). PKA activation in these nuclear extracts was confirmed by phosphorylation of CREB, a well known PKA target in mouse livers, as shown by immunoblot analysis. EMSAs of these nuclear extracts demonstrated that the signal of LXRE binding mainly from LXR/RXR, as confirmed by supershift with LXR and RXR antibodies, was partially decreased by PKA treatment of LXR. This effect required the incubation of LXR with PKA at 30 °C, indicating the PKA inhibition of LXR activity was mediated through its kinase activity.

LXRα Is Phosphorylated by PKA in Vitro—These data led us to speculate that PKA modulates LXR activity, most likely through direct phosphorylation of LXRα. To test this hypothesis, in vitro kinase assays of LXRα were performed. Purified recombinant protein of histidine-tagged LXRα was incubated with the PKA catalytic subunit. LXRα protein was phosphorylated by PKA as well as PKA autophosphorylation and histone H1 phosphorylation as positive controls of PKA target protein phosphorylation state of LXRα was assessed by PKA in vitro kinase assays (Fig. 4A). Functional domains of the LXRα protein were also tested using this in vitro kinase assay (Fig. 4B). Every domain of LXRα was significantly phosphorylated. In the amino acid sequence of PKA, there are two potential PKA target sites (serines 195 and 196; threonine 290 and serine 291) in the LBD/heterodimerization domain. Introduction of mutation in which these serine residues were replaced by alanine caused resistance to PKA inhibition of SREBP-1c promoter activation (Fig. 4C). To assess whether LXRα is phosphorylated by PKA in vivo, COS7 cells were transfected with expression vector for HA-tagged LXRα and subsequently labeled with [32P]orthophosphate. After treatment with PKA activators, the phosphorylation state of LXRα was examined by autoradiography. As evident from autoradiography and immunoblots (Fig. 4D), PKA stimulation induced the phosphorylation state of LXRα. These results indicate that PKA directly phosphorylates LXR protein, which is crucial for PKA inhibition of LXR activity.

DNA Binding Activity of LXR/RXR Heterodimer Was Decreased by PKA Phosphorylation of LXRα—The effect of LXRα phosphorylation by PKA on DNA binding was tested by EMSA assays (Fig. 5A). Recombinant LXRα protein requires RXR for its binding to LXRE. The signal of LXR/RXR bound to LXRE was partially decreased by PKA treatment of LXR. This effect required the incubation of LXR with PKA at 30 °C, indicating the PKA inhibition of LXR activity was mediated through its kinase activity. To confirm this effect in vivo, nuclear extracts of livers from dibutyryl-cAMP/theophylline-administered mice were prepared and subjected to EMSA assay (Fig. 5B). PKA activation in these nuclear extracts was confirmed by phosphorylation of CREB, a well known PKA target in mouse livers, as shown by immunoblot analysis. EMSAs of these nuclear extracts demonstrated that the signal of LXRE binding mainly from LXR/RXR, as confirmed by supershift with LXR and RXR antibodies, was partially decreased by PKA treatment of LXR. This effect required the incubation of LXR with PKA at 30 °C, indicating the PKA inhibition of LXR activity was mediated through its kinase activity.

LXRα Is Phosphorylated by PKA in Vitro—These data led us to speculate that PKA modulates LXR activity, most likely through direct phosphorylation of LXRα. To test this hypothesis, in vitro kinase assays of LXRα were performed. Purified recombinant protein of histidine-tagged LXRα was incubated with the PKA catalytic subunit. LXRα protein was phosphorylated by PKA as well as PKA autophosphorylation and histone H1 phosphorylation as positive controls of PKA target protein phosphorylation state of LXRα was assessed by PKA in vitro kinase assays (Fig. 4A). Functional domains of the LXRα protein were also tested using this in vitro kinase assay (Fig. 4B). Every domain of LXRα was significantly phosphorylated. In the amino acid sequence of PKA, there are two potential PKA target sites (serines 195 and 196; threonine 290 and serine 291) in the LBD/heterodimerization domain. Introduction of mutation in which these serine residues were replaced by alanine caused resistance to PKA inhibition of SREBP-1c promoter activation (Fig. 4C). To assess whether LXRα is phosphorylated by PKA in vivo, COS7 cells were transfected with expression vector for HA-tagged LXRα and subsequently labeled with [32P]orthophosphate. After treatment with PKA activators, the phosphorylation state of LXRα was examined by autoradiography. As evident from autoradiography and immunoblots (Fig. 4D), PKA stimulation induced the phosphorylation state of LXRα. These results indicate that PKA directly phosphorylates LXR protein, which is crucial for PKA inhibition of LXR activity.

DNA Binding Activity of LXR/RXR Heterodimer Was Decreased by PKA Phosphorylation of LXRα—The effect of LXRα phosphorylation by PKA on DNA binding was tested by EMSA assays (Fig. 5A). Recombinant LXRα protein requires RXR for its binding to LXRE. The signal of LXR/RXR bound to LXRE was partially decreased by PKA treatment of LXR. This effect required the incubation of LXR with PKA at 30 °C, indicating the PKA inhibition of LXR activity was mediated through its kinase activity. To confirm this effect in vivo, nuclear extracts of livers from dibutyryl-cAMP/theophylline-administered mice were prepared and subjected to EMSA assay (Fig. 5B). PKA activation in these nuclear extracts was confirmed by phosphorylation of CREB, a well known PKA target in mouse livers, as shown by immunoblot analysis. EMSAs of these nuclear extracts demonstrated that the signal of LXRE binding mainly from LXR/RXR, as confirmed by supershift with LXR and RXR antibodies, was dose-dependently diminished by PKA administration. Next, to determine whether PKA activation reduced DNA binding activity of LXR/RXR heterodimer, ChIP assay analysis on
PKA Inhibits LXR Signaling

extracts from H2.35 cells, a mouse hepatocyte-derived cell line, was conducted. Anti-RXR antibody for immunoprecipitation of LXR/RXR heterodimer, and primers to detect LXR on SREBP-1c promoter for PCR were used. As shown in Fig. 5C, the interaction of LXR/RXR heterodimer with LXR was decreased upon PKA activation in vivo. These data suggest that the modification of LXR activity by PKA is attributed to reduction of DNA binding activity of LXR/RXR heterodimer via PKA phosphorylation of LXRα.

Coactivator or Corepressor Recruitments of LXRα Are Reciprocally Modified by LXRα Phosphorylation by PKA—It was reported that in LXRα or β-mediated transcription of SREBP-1c; SRC-1 works as a coactivator, and NcoR1 works as a corepressor (33). To test the possibility of involvement of these cofactors in PKA inhibition of LXR activity, mammalian two-
PKA Inhibits LXR Signaling

FIGURE 6. PKA modulates recruitment of coactivator and corepressor for LXRα. A, inhibition of recruitment of SRC-1 to LXRα by PKA in the mammalian two-hybrid system. 293 cells were transfected with GAL4 RE Luc vector, CMV Renilla luciferase vector (2.5 ng/well), and expression vectors for VP-16-LXRα (amino acids 1–445), Gal4-DBD-SRC-1, DBD of Gal4 fused to NID of SRC-1 and PKA. Four hours after transfection the cells were further incubated with medium containing vehicle or T901317 (1 μM) for 20 h. AD, activation domain. B, activation of recruitment of NcoR1 to LXRα by PKA. 293 cells were transfected with Gal4 RE Luc vector, SV40 Renilla luciferase vector (25 ng/well), and expression vectors for VP-16 LXRα (amino acid 1–445), Gal4-DBD-NcoR1, and PKA. 4 h after transfection the cells were further incubated with medium containing vehicle or T901317 (1 μM) for 20 h. C, PKA treatment inhibited the interaction of LXRα with SRC-1 in vitro. Recombinant GST-LXRα fusion protein was treated with PKA or bovine serum albumin (used as nonspecific control protein) at 30 °C and then incubated with 35S-radiolabeled SRC-1-NID synthesized in vitro and glutathione-Sepharose beads. Pulled-down proteins were resolved by SDS-PAGE (12% gel) as described under “Experimental Procedures.”

The **FIGURE 7. PKA inhibits interaction between LXRα and RXR in vivo.** A, PKA inhibition of co-immunoprecipitation of LXRα and RXR. B, PKA activation of co-immunoprecipitation of CREB and CBP. Cos7 cells were transfected with expression vector for Myc-tagged LXRα and RXR (A) or for FLAG-tagged CBP and HA-tagged CREB (B). After incubation for 48 h, cells were treated with medium containing PKA activators (100 μM dbcAMP, 10 μM forskolin, 100 μM isobutylmethylxanthine) for 30 min and harvested. Immunoprecipitation (IP) and immunoblotting (WB) with the indicated antibodies (ab) were performed as described under “Experimental Procedures.” Proteins were extracted by lysis buffer and resolved by SDS-PAGE (8% gel for LXR and RXR, 4% gel for CBP, and 10% gel for CREB). There is different exposure time between lysate and immunoprecipitation samples for detection of FLAG-tagged CBP because intensity of protein amount of FLAG-tagged CBP in lysate was too strong.

DISCUSSION

Our current studies demonstrate that PKA directly phosphorylates LXRα protein and inhibits its signaling, resulting in sup-
PKA Inhibits LXR Signaling

FIGURE 8. PKA modifies RXR activity induced by RXR ligand on LXRE in SREBP-1c promoter. 293T cells were transfected with LXRE enhancer Luc vector (300 ng/well), CMV Renilla luciferase vector (2.5 ng/well), and expression vector for wild type RXRα or mutant RXR (400 ng/well). After transfection cells were incubated for 20 h in medium containing vehicle or T0901317 (1 μM), LG268 (30 nM), or dbcAMP (0, 3, 10, 30, 100 μM) and subjected to luciferase and Renilla reporter assays. RLU, relative light units.

Preservation of SREBP-1c transcription both *in vitro* and *in vivo*. Phosphorylation of LXRα, presumably through its conformational change, causes two consequences; suppression of RXR dimerization leading to decreased binding to LXRE and suppression of the ligand activation followed by decreased recruitment of coactivator SRC-1 and increased recruitment of corepressor NcoR1. Both events lead to repression of LXR transactivation for SREBP-1c. PKA inhibition was more prominent for LBD activation of LXR than for its binding to LXRE.

Post-translational modification of transcription factors by phosphorylation provides a rapid cellular response to environmental changes. We now show that the ligand-induced transactivation of LXR can be regulated *in vivo*, *ex vivo*, and *in vitro* by PKA-dependent phosphorylation. The catalytic subunit of PKA has been identified in the nucleus and phosphorylates numerous transcription factors, modulating their transcriptional activities positively such as hepatocyte nuclear factor-4α and negatively such as L-type PK (28). Now, LXR can be added to the list of PKA-modulating factors. Although PKA-dependent phosphorylation sites (RXRα-β(S/T)) lie within all domains of LXR, the 195–196 serines and 290–291 threonine and serine residues might be crucial for ligand-induced conformational change since these sites in human LXRxα completely match the most preferable consensus sequence (R(R/K)X(S/T)). It is also possible that phosphorylation states of these critical sites control other potential phosphorylation sites. LXR/RXR also transactivate other genes such as the ABCA1 (36) and the ABCG family (37, 38). The LXRα-induced activity of the ABCA1 promoter containing LXRE was also repressed by PKA similarly to the SREBP-1c promoter. However, the inhibitory effect of PKA on the ABCA1 mRNA level was minimal in our sets of experiments in livers and hepatic cells. Conversely, expression of ABCA1 in murine macrophage cell line RAW 264 cells was reported to be up-regulated by dbcAMP (39, 40), although its responsible regulatory motif in the ABCA1 promoter has not been identified. This undetermined CAMP-dependent activation mechanism might unmask LXR-mediated suppression of ABCA1 promoter by PKA in the liver.

It has been reported that the glucagon/cAMP signal suppresses the expression of SREBP-1c in rat primary hepatocytes (24). Our current data clarify its molecular mechanism. The hypothesis that PKA suppresses SREBP-1c through LXR signal is supported by the following observations. 1) LXR/RXR is a dominant activator for SREBP-1c. 2) PKA inhibition of SREBP-1c promoter activity was more prominent in its activation by the LXR agonist than in the basal level. 3) Deletion studies with SREBP-1c promoter luciferase constructs revealed that LXRE is responsible for PKA inhibition. Based upon our findings the glucagon/cAMP/PKA signal could at least partially explain fasting suppression of SREBP-1c through LXRxRXR and LXRE. In support, it was reported that the effect of insulin on SREBP-1c expression could be mediated by LXR and LXRE (41). Further studies are needed to fully determine the extent to which the glucagon/cAMP/PKA signal contributes to fasting regulation of hepatic metabolic genes including SREBP-1c.

In a recent report it is observed that LXRα and β are phosphorylated in HEK293 cells by an unknown kinase(s) (42). In their data basal and ligand-stimulated LXRα activity to induce ABCA1 promoter were not altered by substitution of phosphorylation residue to alanine. However, the response of mutant LXRα to potential kinases remains to be tested. Our study for the first time suggests the possibility that LXR mediates a nutritional signal via phosphorylation by PKA. Further study is needed to more precisely identify the physiological function in LXR phosphorylation.

In summary, transcriptional activity of LXRα on SREBP-1c promoter was decreased by PKA. Direct phosphorylation of LXRα by PKA resulted in a decrease of DNA binding and coactivator recruitment of LXR. This first demonstration of modification of LXR activity by phosphorylation suggests that reduction of mRNA level of SREBP-1c in fasting conditions might be mechanistically at least in part through LXRXR phosphorylation.

Acknowledgments—We are grateful to Alyssa H. Hasty for critical reading of this manuscript and Drs. Tomoaki Morioka and Hidenori Koyama for help in generation of expression plasmid of mutated (dominant negative) form of the regulatory type 1 subunit of cyclic AMP-dependent protein kinase.

REFERENCES

1. Brown, M. S., and Goldstein, J. L. (1997) *Cell* **89**, 331–340
2. Shimano, H., Horton, J. D., Shimomura, I., Hammer, R. E., Brown, M. S., and Goldstein, J. L. (1997) *J. Clin. Investig.* **99**, 846–854
3. Horton, J. D., Shimomura, I., Brown, M. S., Hammer, R. E., Goldstein, J. L., and Shimano, H. (1998) *J. Clin. Investig.* **101**, 2331–2339
4. Shimano, H., Horton, J. D., Hammer, R. E., Shimomura, I., Brown, M. S., and Goldstein, J. L. (1996) *J. Clin. Investig.* **98**, 1575–1584
