Amplified Interactive Toxicity of Chemicals at Nontoxic Levels: Mechanistic Considerations and Implications to Public Health

Harihara M. Mehendale

Division of Pharmacology and Toxicology, College of Pharmacy and Health Sciences, Northeast Louisiana University, Monroe, Louisiana

It is widely recognized that exposure to combinations or mixtures of chemicals may result in highly exaggerated toxicity even though the individual chemicals might not be toxic. Assessment of risk from exposure to combinations of chemicals requires the knowledge of the underlying mechanisms. Dietary exposure to a nontoxic dose of chlordecone (CD; 10 ppm, 15 days) results in a 67-fold increase in lethality of an ordinarily inconsequential dose of CCl₄ (100 μg/kg, ip). Toxicity of closely related CHCl₃ and BrCCl₃ is also enhanced. Phenobarbital (PB, 225 ppm, 15 days) and mirex (10 ppm, 15 days) do not share the propensity of CD in this regard. Exposure to PB + CCl₄ results in enhanced liver injury similar to that observed with CD, but the animals recover and survive in contrast to the greatly amplified lethality of CD + CCl₄. Investigations have revealed that enhanced bioactivation of CCl₄ nor increased lipid peroxidation offers a satisfactory explanation of these findings. Additional studies indicate that exposure to a low dose of CCl₄ (100 μg/kg, ip) results in limited injury, which is accompanied by a biphasic response of hepatocellular regeneration (6 and 36 hr) and tissue repair, which enables the animals to recover from injury. Exposure to CD + CCl₄ results in suppressed tissue repair owing to an energy deficit in hepatocytes as a consequence of excessive intracellular influx of Ca²⁺ leading initially to a precipitous decline in glycogen and ultimately to hypoglycemia. Supplementation of cellular energy results in restoration of the tissue repair and complete recovery from the toxicity of CD + CCl₄ combination. In contrast, only the early-phase hepatic tissue repair (6 hr) is affected in PB + CCl₄ treatment, but this is adequately compensated for by a greater stimulation of tissue repair at 24 and 48 hr resulting in recovery from liver injury and animal survival. A wide variety of additional experimental evidence confirms the central role of stimulated tissue repair as a decisive determinant of the final outcome of liver injury inflicted by CCl₄. For instance, a 35-fold greater CCl₄ sensitivity of gerbils compared to rats is correlated with the very sluggish tissue repair in gerbils. These findings are consistent with a two-stage model of toxicity, where tissue injury is inflicted by the well described "mechanisms of toxicity," but the outcome of this injury is determined by whether or not sustainable tissue repair response accompanies this injury. These findings impact significantly on our ability to predict the ultimate outcome of toxic injury and form a firm basis for additional mechanism-driven investigations into the endogenous tissue repair response evoked by tissue injury. These concepts will enhance our ability to fine-tune the tools of risk assessment such as animal-to-man extrapolation and prediction of ultimate outcome of toxic injury. —Environ Health Perspect 102(Suppl 9):139–149 (1994)

Key words: chlordecone (Kepone), carbon tetrachloride, chloroform, bromotrichloromethane, hormesis, tissue repair, hepatic regeneration, two-stage model of toxicity, amplified toxicity, mechanism, risk assessment

Introduction

From a perspective of public health, a major toxicological issue is the possibility of unusual toxicity due to interaction of two or more toxic chemicals at individually harmless levels upon environmental or occupational exposures. While some laboratory models exist for such interactions involving two chemicals, progress in this area has suffered for want of models where the two interactants are individually nontoxic. Toxicities resulting from exposure to more than two chemicals at individually nontoxic doses are of greater interest since this exposure scenario is most common. One such model is available, where prior exposure to nontoxic levels of the pesticide Kepone (Chlordecone) results in a 67-fold amplification of CCl₄ lethality in rats (Table 1). The mechanism of this remarkable interactive toxicity is of interest in the assessment of risk from exposure to combinations of chemicals.

Amplified Toxicity of CCl₄ by Chlordecone

Prior exposure to a nontoxic level of chlordecone (10 ppm in diet for 15 days) results in a marked amplification of CCl₄ hepatotoxicity (1–3) and lethality (3–5). Neither the close structural analogs of chlordecone, mirex and photomirex, nor phenobarbital (Figure 1), exhibit this property (2,3). Plaa and associates (6,7) have demonstrated the capacity of chlordecone to potentiate CHCl₃ hepatotoxicity in mice. These observations have been extended to demonstrate that, in addition to the hepatotoxic effects, the lethal effect of CHCl₃ is also potentiated by exposure to 10 ppm dietary chlordecone (8) (Table 2) and that this is also associated with suppressed repair of the liver tissue (9). Chlordecone also potentiates the hepatotoxicity and lethality of BrCCl₃ (10,11). While the toxicity of these closely related halomethanes is potentiated by such low levels of chlordecone (Figure 2), the toxicity of structurally and mechanistically dissimilar compounds (Figure 3, Table 3) is not potentiated (12) except after exposure to high levels of chlordecone (13). This remarkable capacity to potentiate halomethane hepatotoxicity does not appear to be related to chlordecone-induced cytochrome P450 or associated
Table 1. Amplification of lethal effects of several halomethanes by dietary exposure of rats to subtoxic contaminants.

Dietary pretreatment	Halomethane	48 hr LD₅₀ m/kg	Increase in toxicity-fold
Male rats			
Control	CCl₄	1.25	--
Chlordecone	CCl₄	1.048^a	26
10 ppm	CCl₄	0.082	--
Male rats			
Control	BrCCl₃	0.119	--
Chlordecone	BrCCl₃	0.17	4.5
10 ppm	BrCCl₃	0.027^a	4.5

^aHighly significant compared to the respective solvent control. ^bNot significant at p ≤ 0.05. Mehendale (1); reproduced by permission of Medical Hypotheses.

Table 2. Amplification of lethal effects of halomethanes by dietary exposure of mice to subtoxic contaminants.

Dietary pretreatment	Halomethane	48 hr LD₅₀ m/kg	Increase in toxicity-fold
Male mice			
Control	CHCl₃	0.67	--
Chlordecone	CHCl₃	0.16^a	4.2
10 ppm	CHCl₃	0.70	No change
Mirex	CHCl₃	0.70	No change
10 ppm	CHCl₃	0.70	No change
Phenobarbital	CHCl₃	0.70	No change

^aSignificantly different at p ≤ 0.05. Mehendale (1); reproduced by permission of Medical Hypotheses.

Figure 1. Structures of chlordecone, mirex, photomirex, and phenobarbital. Chlordecone (Kepone) amplifies the toxicity of halomethanes closely related to CCl₄. Despite being close structural analogues of chlordecone, mirex and photomirex do not possess this propensity. Phenobarbital, a commonly employed drug in interaction studies at high doses, does increase liver injury of CCl₄, but this enhanced liver injury is inconsequential to animal survival and health, since phenobarbital-treated animals are able to recover from liver injury.

Table 3. Specificity of potentiation of halomethane toxicity by chlordecone.

Compound	Potentiation	Reference
CHCl₃	yes	Hewitt et al. (6); Purushotham et al. (8)
CCl₄	yes	Mehendale (2); Curtis et al. (3)
CBrCCl₃	yes	Agarwal and Mehendale (10)
CBr₃	no	Klingensmith and Mehendale (11)
CBr₃	no	Mehendale (12)
CCl₄CHCl	no	Mehendale and Lockhart (12)
Bromobenzene	no	Mehendale and Lockhart (12)
speeding up the process of overall recovery through tissue healing, on the other (Figure 4). By 6 hr over 75% of the administered CCl₄ is eliminated in the expired air (14) leaving less than 25% in the animal (2). At later time points (12 hr and onwards), most of the CCl₄ will have been eliminated by the animal thereby preventing additional infliction of injury. Continued cellular regeneration during this time period and at later time points allows for complete restoration of the hepatolobular architecture during and after the progressive phase of injury (30,31,39,40). Relative resiliency of the newly divided cells at this critical time frame, as the animal continues to exhale the remaining CCl₄, is an added critical defense mechanism easily available through cell division.

Administration of the same low dose of CCl₄ to animals maintained on food contain-ined with low doses of chlordecone results in initial injury by the same mechanisms of bioactivation of CCl₄ and lipid peroxidation (Figure 4). The liver injury in this case is slightly greater by virtue of approximately doubled rate of bioactivation of CCl₄ in livers of animals preexposed to chlordecone (2,14,33). The liver injury thus initiated, enters the progressive phase between 6–12 hr and this phase is accelerated in the absence of tissue repair mechanisms (20,21,30,31,39,40). The highly unusual amplification of CCl₄ toxicity relates to the suppression of the initial hepatocellular regeneration, otherwise ordinarily stimulated by CCl₄ within 6 hr (Figure 4).

The mechanism responsible for the abrogation of this hormetic response of stimulated cell division is of significant interest. Substantial experimental observations indicate that a lack of hepatocellular energy leads to failure of cell division. Under conditions of increased hepatocellular injury, mobilization of hepatic glycogen is initiated in order to stimulate hepatocellular division (21–26). Insufficient energy at a time of increased demand for cellular energy (augmented need for extrusion of extracellular Ca²⁺ from the cells, protection against free-radical mediated injury, and so forth), incapacitates the hepatocytes. As a result, stimulation of cell division, which normally occurs after the administration of a low dose of CCl₄, cannot occur. The failure of cell division has two important implications: first, hepatolobular structure cannot be restored; second, unavailability of newly divided, relatively resistant cells predisposes the liver to a permissive continuation of liver injury during the progressive phase (6–12 hr and beyond) (1,2,26,33).

Mechanism	Role in amplification
Enhanced bioactivation of halomethanes	Increased infliction of injury
Increased lipid peroxidation	Only stage I of toxicity is increased
Estrogenic property of chlordecone	Not known or none
Increased Ca²⁺ accumulation	None
Precipitous glycogenolysis and loss of ATP	Perturbed cellular biochemistry and ablation of hormetic mechanisms
Suppressed hepatocellular regeneration and unabated progression to stage II of toxicity	Injury becomes irreversible due to ablation of the early-phase hormesis

Figure 2. Structures of carbon tetrachloride, bromotrichloromethane, and chlorform as examples of halomethane solvents. Hepatotoxicity and lethality of these solvents is remarkably amplified by chlordecone.

Figure 3. Structure of 1,1,2-trichloroethylene, bromobenzene, bromform, and dibromochloromethane. Toxicity of these chemicals is not potentiated by prior dietary exposure to 10 ppm chlordecone.

Figure 4. Proposed mechanism for the highly amplified interactive toxicity of chlordecone + CCl₄. The scheme depicts the concept of suppressed hepatocellular regeneration, simply permitting what is normally limited liver injury caused by a subtoxic dose of CCl₄ to progress in the absence of hepatocellular repair and healing mechanisms stimulated by the limited injury. The limited hepatotoxicity from a low dose of CCl₄ is normally controlled and held in check owing to the hepatocellular regeneration and hepatobular healing. The chlordecone + CCl₄ combination treatment results in unabated progression of injury owing to lack of tissue repair obtunded due to lack of cellular energy. These events lead to complete hepatic failure, culminating in animal death. Ongoing studies indicate that a very similar mechanism is responsible for the amplification of CHCl₃ and BrCCl₃ toxicity by chlordeone. From Mendendale (1); reproduced with permission of Medical Hypotheses.
intracellular Ca\(^{2+}\). Furthermore, chlordecone alone, even at a dose 10-fold higher than used in the interaction studies, does not increase hepatocellular Ca\(^{2+}\) (22,25).

Although *in vitro* studies with cellular organelles have been employed to speculate that the failure of organelle Ca\(^{2+}\) pumps leads to increased cytosolic Ca\(^{2+}\) levels, our studies indicate that at no time-point do these organelles contain decreased Ca\(^{2+}\) (23,33). Indeed, the only significant change observed with regard to organelle Ca\(^{2+}\) is increased Ca\(^{2+}\) in the organelles in association with increased liver injury (33,41). Therefore, there is no *in vitro* evidence for decreased Ca\(^{2+}\) content in the organelles, which is in contradiction to the predictions from the *in vitro* studies in which organelle incubations were employed to study Ca\(^{2+}\) uptake (26,27).

The primary mechanism leading to a highly amplified toxicity is the failure on the part of the biological events leading to hepatocellular division. Increased accumulation of extracellular Ca\(^{2+}\) (23) during the progressive phase of liver injury would be consistent with the significant loss of biochemical homeostasis in hepatocytes (Figure 4). Earlier histomorphometric (21) as well as biochemical studies (28,29,33, 41) have shown that glycogen levels drop very rapidly after CCl\(_4\) administration to chlordecone treated animals. Increased cytosolic Ca\(^{2+}\) (27) would be expected to result in activation of phosphorylase b to phosphorylase a, the enzyme responsible for glycogenolysis. Phosphorylase a activity (26,27) and precipitous glycogenolysis (20,21,23,27) are observations consistent with the rapid depletion of cellular energy (27) on the one hand, and irreversible increase in cytosolic Ca\(^{2+}\) (26) on the other.

An intriguing aspect of the experimental framework leading to the proposed mechanism is the observation that phenobarbital, even at significantly higher doses (225 ppm in the diet for 15 days) does not potentiate the lethal effect of CCl\(_4\). Although histopathological parameters of liver injury such as hepatocellular necrosis and ballooned cell response are indicative of significantly enhanced hepatotoxicity by phenobarbital, if the animals are left alone, this injury does not progress to significantly increased lethality. Hepatic microsomal cytochrome P450 is approximately doubled by prior dietary exposure to 225 ppm PB and the bioactivation of CCl\(_4\) is tripled (2,14), and these indicators are consistent with the enhanced initiation of liver injury (Stage 1 of toxicity) measured by histopathology, elevation of serum transaminases, or hepatic function. Nevertheless, the liver injury neither progresses in an accelerated fashion nor is irreversible, as indicated by the reversal of liver injury accompanied by animal survival (2,4,31).

Figure 5 illustrates the proposed mechanism for phenobarbital-enhanced CCl\(_4\) liver injury, which is not associated with increased lethality. Induction of hepatocellular regeneration and tissue repair processes continue albeit a bit later than normal, these hormetic mechanisms permit tissue restoration resulting in recovery from the enhanced liver injury. This mechanism explains the remarkable recovery from phenobarbital-induced enhancement of CCl\(_4\) liver injury. Despite a remarkably enhanced liver injury by phenobarbital, this is of no real consequence to the animal’s survival because depletion of cellular energy does not occur with this interaction, which permits hormetic mechanisms to restore hepatobular architecture resulting in complete recovery.

Critical Role of the Early-Phase Stimulation of Cell Division and Tissue Repair

Table 5 presents a variety of experimental manipulations that permit a rigorous experimental verification of the existence and the critical role of tissue repair in the final outcome of toxic injury. The experimental evidence for the existence of a hormetic mechanism was derived as a result of efforts to understand the mechanism of chlordecone potentiation of halomethane toxicity.

Partial Hepatectomy. If the basic premise is valid that suppression of the early-phase (6 hr) stimulation of cell division and tissue repair is the mechanism of chlordecone potentiation of CCl\(_4\) injury, then a preplacement of cell division in the liver should result in protection against the interactive toxicity of chlordecone + CCl\(_4\). When CCl\(_4\) was administered 2 days after partial hepatectomy at a time of maximally stimulated hepatocellular division, a remarkable protection was observed (43). At 7 days after partial hepatectomy, when the stimulated cell division phases out, the interactive toxicity becomes fully manifested again (43). In these studies, micro-

Figure 5. Proposed mechanism for phenobarbital-induced potentiation of CCl\(_4\)-hepatotoxicity in the absence of increased lethality. Normal liver response to a low-dose CCl\(_4\) injury is not abrogated by phenobarbital + CCl\(_4\) interaction. Instead, the early phase of cell division is postponed from the normal 6 to 24 hr. Enhanced putative mechanisms such as increased bioactivation of CCl\(_4\) and resultant increased lipid peroxidation are responsible for the increased infliction of stage 1 injury. Because hepatocellular regeneration and tissue repair processes continue albeit a bit later than normal, these hormetic mechanisms permit tissue restoration resulting in recovery from the enhanced liver injury. This mechanism explains the remarkable recovery from phenobarbital-induced enhancement of CCl\(_4\) liver injury. Despite a remarkably enhanced liver injury by phenobarbital, this is of no real consequence to the animal’s survival because depletion of cellular energy does not occur with this interaction, which permits hormetic mechanisms to restore hepatobular architecture resulting in complete recovery.
Ablation

Moreover, overall phase dose 7.

Table 5. Experimental evidence supporting the proposed mechanism.

Experimental manipulation	Findings	References
1. Preplaced cell division and tissue repair by partial hepatectomy.	Protection from chlordecone + CCl4	Kodavanti et al. (30,39,40); Mehendale (41)
2. Toxicity of a large dose of CCl4.	Early-phase stimulation of tissue repair is ablated.	Kodavanti et al. (40); Rao and Mehendale (45)
3. Hepatocytes isolated from chlordecone treated rats incubated with CCl4 (isolated hepatocytes do not divide in vitro)	No potentiation in contrast to in vivo.	Mehendale et al. (46)
4. Developing young rats have growing livers.	Chlordecone does not potentiate toxicity.	Cai and Mehendale (15,16)
5. a. Gerbils lack the early-phase tissue repair.	a. Low dose of CCl4 is highly toxic	Cai and Mehendale (15,16)
5. b. Do not have early-phase tissue repair to suppress.	b. Resilient to chlordecone potentiation of CCl4 toxicity.	Cai and Mehendale (15,16)
5. c. Preplaced tissue repair by partial hepatectomy.	c. Resiliency to CCl4 toxicity.	Cai and Mehendale (48)
6. CCl4 autoprotection. Phase tissue repair by the protective dose.	Due to prestimulation of early-	Thakore and Mehendale (49)
7. a. Selective ablation of the early-phase hormesis by colchicine. Ensues to overcome injury.	a. Prolongation of hepatotoxicity of a low dose of CCl4 by 24 hr (until the second phase of cell division at 48 hr)	Rao and Mehendale (50,51)
7. b. Colchicine given 2 hr before the protective dose of CCl4.	b. Abolishes CCl4 autoprotection entirely.	Rao and Mehendale (52)

From Mehendale (44); reproduced with permission of Lewis Publishers.

somal cytochrome P450 content is decreased by partial hepatectomy, but remains at the decreased level even 7 days later when protection is no longer evident. Moreover, actual in vivo bioactivation, and overall disposition of 14CCl4 is unaltered by partial hepatectomy (18).

Large Dose Is Toxic Owing to the Ablation of the Hormetic Response. An implication of these findings is that the toxic effect of a large dose of CCl4 might be a consequence of suppressed early-phase cell division and tissue repair. When a large dose of CCl4 was administered, the early-phase cell division normally stimulated by a low dose of CCl4 (20,21,31,40) was ablated entirely (40,45,49). These findings indicate that the real difference between a low and a high dose of CCl4 is the presence or absence of hormetic response in the form of stimulated early-phase cell division and tissue repair. The higher dose clearly prevents the hormetic response, thus permissively allowing toxicity to progress unabatedly.

Interactive Toxicity of Chlordecone + CCl4 Does Not Occur under In Vitro Conditions Where Tissue Hormesis Cannot be Expressed. Yet another line of experimental validation of the critical role of suppressed cell division and tissue repair comes from in vitro incubation of hepatocytes isolated from chlordecone pretreated rats with CCl4 (46). Isolated hepatocytes do not divide under in vitro conditions. Therefore, if suppression of cell division and tissue repair ordinarily stimulated by a low dose of CCl4 is the mechanism of chlordecone-amplified CCl4 toxicity, one should not observe highly amplified toxicity when hepatocytes from chlordecone treated rats are incubated with CCl4 in vitro. Since prior exposure to phenobarbital is known to result in increased CCl4 toxicity in vitro, incubation of hepatocytes obtained from phenobarbital treated rats with CCl4 should result in a measurable level of increased toxicity. Such experiments revealed no significant increase in cytotoxicity in chlordecone-pretreated isolated hepatocyte incubations (46). Cells from phenobarbital pretreated rats exhibited highest CCl4 toxicity indicating that the in vitro paradigm was working as expected. These findings are consistent with the hypothesis that suppression of hepatocellular division and tissue repair is the primary mechanism of chlordecone-potentiated CCl4 toxicity, and provide substantial evidence against any significant role for chlordecone-enhanced bioactivation of CCl4 (46).

Resiliency of Newborn and Developing Rats. Newborn and young developing rats have actively growing livers. Since livers during active growth will be expected to have ongoing cell division, these developing rats would be expected to be resilient during their early development. When rat pups at 2, 5, 20, 35, 45, and 60 days were tested, rats were completely resilient to chlordecone potentiation of CCl4 toxicity up to 35 days of age (38,47). At 45 days, young rats were sensitive to the interactive toxicity of chlordecone + CCl4 and by 60 days the rats were just as sensitive as adults (47). The hepatic microsomal cytochrome P450 levels in the livers of 35-, 45- and 60-day-old rats exposed to chlordecone were not different from each other suggesting that any differences in cytochrome P450 levels are unlikely to explain the observed differences in toxicities. Moreover, recent studies indicate that bioactivation of 14CCl4 in 35-day-old rats is not less than that observed in 60-day-old rats (47). Therefore, the resiliency of younger rats to chlordecone-potentiation of CCl4 toxicity is more likely related to the ongoing hepatocellular regeneration during early development rather than due to differences in the bioactivation of CCl4.

Gerbils Lack the Early-Phase Hormesis and Are Most Sensitive to Halomethane Toxicity. While administration of a low dose of CCl4 to rats results in a prompt stimulation of early-phase hepatocellular regeneration at 6 hr (30,31,39,40,43), in Mongolian gerbils this early-phase cell division is not observed (16). The stimulation of cell division which does occur at 42 hr (analogous to the second
phase of cell division which occurs at 48 hr in rats) appears to be too little and too late to be of any help in overcoming liver injury (15,16). If the early-phase cell division is critical for recovery from liver injury, then owing to a lack of this important hormetic mechanism in gerbils, they should be extremely sensitive to halomethane toxicity. When tested, gerbils were found to be approximately 35-fold more sensitive to the toxicity of CCl₄ (15). Likewise, gerbils show several-fold greater sensitivity to the lethal effects of BrCCl₃ and CHCl₃ (Tables 5,6). It follows that gerbils should not be susceptible to chlороdecone-potentiation of CCl₄ toxicity (Table 6) since they lack the early phase of hepatocellular regeneration, the target of that interaction (16). Studies have shown that a preplacement of hepatocellular regeneration by partial hepa-
tectomy results in significant protection against CCl₄ toxicity (48), underscoring the importance of stimulated hepatocellular regeneration in determining the final outcome of liver injury. These studies also reveal another important difference between species. While rats respond by maximal stimulation of hepatocellular regeneration within 2 days after partial hepa-
tectomy, in gerbils the maximal stimulation was many-fold lower and it occurs not before 5 days after partial hepatectomy (48). These findings indicate that gerbils are much more sluggish in their hormetic response to a noxious challenge of a hepato-
toxic chemical agent. Each of these find-
ings points to the critical importance of the early-phase stimulation of cell division as a decisive target of inhibition in chlороdecone-potentiation of CCl₄ toxicity (Table 4). Secondly, these findings also underscore the importance of the biological hormetic response in determining the resiliency to the toxic action of halomethanes.

Table 6. High sensitivity of Mongolian gerbils to halomethane toxicity contrasted with their resiliency to poten-
tiation by exposure to other chemicals.

Halomethane	Normal diet	15-Day dietary pretreatment		
	Chlordecone, 10 ppm	Phenobarbital, 225 ppm	Mirex, 10 ppm	
CCl₄	80	100	100	
(34–180)	(78–128)	(28–354)	(28–354)	
CHCl₃	20	20	20	16.8
(8.6–36.5)	(16.4–24.4)	(10.4–38.4)	(9.9–28.6)	
CHCl₃	400	565	400	400
(208–769)	(346–923)	(260–597)	(260–597)	

4μg/kg, 95% confidence intervals. From Cai and Mehendale (16); reproduced with permission of Archives of Toxicology.

Autoprotection. CCl₄ autoprotection is a phenomenon, whereby administration of a single low dose of CCl₄ 24 hr prior to the administration of a killing dose of the same compound results in an abolition of the killing effect of the large dose (49–57). The widely accepted mechanism of this phenomenon is the destruction of liver microsomal cytochrome P450 by the pro-
tective dose such that subsequently admin-
istered large dose is insufficiently bioactivated (32,58–62). Since bioactiva-
tion of CCl₄ is an obligatory step for its necrogenic action, it was suggested that massive liver injury ordinarily expected from a large dose of CCl₄ never occurs in the autoprotected animal (32). Although this mechanism has been widely accepted, a closer examination of the evidence suggests that the mechanism was largely derived by association (53–58) rather than actual experimental evidence of less than expected liver injury in the autoprotected animal.

Additionally, several lines of evidence indi-
cate that even after the significant destruc-
tion of cytochrome P450, the availability of the P450 isozyme responsible for the bioactivation of CCl₄ is not limiting (18,43,47,48,63,64). For instance, even after a 60% decrease in the constitutive liver microsomal cytochrome P450 by CoCl₂ treatment, CCl₄ toxicity was undi-
minished regardless of whether the rats were pretreated with chlороdecone (43). More direct evidence was obtained from studies in which *in vivo* metabolism and bioactivation of ¹⁴CCl₄ were examined in rats pretreated with CoCl₂ (18). The uptake, metabolism, and bioactivation of CCl₄ were not significantly altered in CoCl₂ treated rats known to have highly decreased liver microsomal cytochrome P450 content.

Additional experimental evidence indic-
ating that actual liver injury observed in rats receiving a high dose of CCl₄ was ident-
tical regardless of whether prior protective dose was administered led to a reexamination of the mechanism underlying CCl₄ autoprotection (49). A systematic time-
course study in which biochemical, histopathological parameters as well as ani-
mal survival were examined revealed a critical role for the hormetic response of the liver in the form of stimulated early-phase cell division and tissue repair (49). The protective dose-stimulated tissue repair results in augmented and sustained hepatocellu-
lar regeneration and tissue repair, which enable the autoprotected rats to overcome the same level of massive injury, which is ordinarily irreversible and leads to hepatic failure followed by animal death (49,52).

Selective Ablation of the Early-Phase Hormetic Response by Colchicine. Finally, the pivotal importance of the early-phase stimulation of hepatocellular division and tissue repair was tested with an elegant experimental rool, colchicine. With a care-
fully selected dose of colchicine, it was pos-
sible to selectively ablate the early-phase stimulation of mitosis associated with the administra-
tion of a low dose of CCl₄ (51,52). One single administration of colchicine at 1 mg/kg results in ablation of mitotic activity, the effect lasting only up to 12 hr, such that the second phase of cell division at 48 hr after the administration of CCl₄ is unperperturbed (50). At this dose colchicine does not cause any detectable liver injury nor does it cause any adverse perturbation of hepatobiliary function (51). Therefore use of colchicine permits a very important experimental paradigm in which the early-phase hormesis in response to a low dose of CCl₄ can be selectively ablated. The selective ablation of the early-
phase response of cell division resulted in a proliferation of limited liver injury associated with a low dose of CCl₄ (50). Ordinarily, ip administration of 100 μL CCl₄/kg results in very limited liver injury, which is overcome by stimulated cell divi-
sion and tissue repair (20,21,30,31,39,40,43), within 24 hr. The prolongation of this limited injury lasts only for an additional 24 hr (up to 48 hr after CCl₄ injec-
tion) at which time the unperturbed second phase of cell division permits com-
plete recovery to occur within the next 24 hr (by 72 hr after CCl₄ injection). This increased and prolonged CCl₄ injury is not accompanied by enhanced bioactivation of CCl₄ (50,52). Indeed, actual liver injury
assessed by morphometric analysis or hepato-cellular necrosis and ballooned cells is not enhanced during the first 12 hr in colchicine treated rats, further indicating that enhancement of the mechanisms responsible for infliction of injury was not responsible (50,52). These findings underscore the pivotal role of the early-phase stimulation of hormesis in the final outcome of toxicity associated with a low dose of CCl₄.

Another experimental paradigm permits a further test of how critical the early-phase hormetic response is in the final outcome of injury. In the above described experiments, the preservation of the second phase of cell division permits complete recovery by 72 hr. Administration of a large dose of CCl₄ permits one to experimentally interfere with this second phase of cell division. In such an experiment, the animals should not survive because of continued progression of toxicity. In other words, selective ablation of the early-phase hormetic response in an autoprotection protocol should result in a denial of autoprotection. Indeed, 100% survival observed in an experimental protocol (100 μl CCl₄/kg administered 24 hr prior to the injection of 2.5 ml CCl₄/kg) is completely denied by colchicine antimitosis (52). This observation also provides very substantial and convincing experimental evidence for the newly proposed mechanism for the autoprotection phenomenon (49,52). The mechanism underlying the autoprotection phenomenon is the ability of the liver tissue to respond by augmentation of tissue repair through hormesis induced by the protective dose (49).

Two-Stage Model of Toxicity

An intriguing outcome of the work on the interactive toxicity of chlordecone + CCl₄ is the emergence of a concept which permits the separation of the early events responsible for infliction of injury from subsequent events which determine the final outcome of that injury (Figure 6). Hormetic mechanisms (65) are activated upon exposure to low levels of halomethanes (9,20,21,30,31,39,66–68). Although the mechanisms responsible for triggering a dramatic mobilization of biochemical events leading to cellular proliferation within 6 hr after exposure to a subtoxic dose of CCl₄ (9,22,30,31,39) are not understood, it is clear that these early events are the critical determinants of the final outcome of injury (1,33,41,42). When this early phase of hepatocellular division is suppressed, as has been observed in animals pretreated with chlordecone (20,30,31,39), a permissive and unabated progression of liver injury leading to massive coagulative hepatic necrosis is observed (1,33,41,42). Likewise, experimentally, it has been demonstrated that restoring the tissue hormesis (Figure 7) results in an attenuation of the progressive phase of injury, permitting the tissue to overcome injury.

The central role of hormetic mechanisms in the final outcome of tissue injury becomes self-evident from the following lines of experimental evidence. Prior exposure to 225 ppm phenobarbital results in the potentiation of liver injury by the same subtoxic dose of CCl₄ employed in the chlordecone + CCl₄ interaction (1,2,4,31). The quantitative measures of liver injury at 24 hr after the administration of CCl₄ indicate that the tissue injury is either equivalent to or slightly greater than that seen in chlordecone + CCl₄ interaction (2). Left alone, the animals undergoing the toxicity of phenobarbital + CCl₄ combination recover, while those experiencing the chlordecone + CCl₄ combination do not (1,4,33,33,41,42). While the enhanced liver injury observed with the toxicity of phenobarbital + CCl₄ is consistent with the increased bioactivation of CCl₄ (2,14), recovery from this injury is consistent with the unablated hepatocellular proliferation and tissue repair (31,39). Delayed hepato-

![Two - Stage Model Of Toxicity](image-url)

Figure 6. Scheme illustrating the proposed two-stage model of toxicity. Stage I involves infliction of cellular and/or tissue injury by intoxication mechanisms, which are understood for many chemical and physical agents. When injury is inflicted by a low dose of the offending agent (stage II), hormetic mechanisms are stimulated (such as cellular regeneration and tissue repair targeted for restoration of tissue structure) and complete recovery from injury follows with no additional toxic consequence. If hormetic mechanisms are suppressed or ablated, the limited injury associated with exposure to a low dose of the offending toxic agent would continue unabated resulting in progressive injury. High doses of toxic agents can cause ablation of the hormetic mechanism, as in the case of high dose of CCl₄, which results in ablation of the early-phase hormetic response (40). Another example is the ablation of the early-phase hormesis exemplified by the interactive toxicity of chlordecone and the halomethane solvents. From Mehlawde (42), reproduced with permission of Lewis Publishers.

![Two-Stage Model of Toxicity](image-url)

Figure 7. Scheme illustrating the concept of separating those mechanisms which are responsible for the infliction of cellular and tissue injury from those which come to follow these events. Intoxication mechanisms result in infliction of injury during stage I of toxicity. During this stage tissue hormetic mechanisms are stimulated in an attempt to overcome injury. If these hormetic mechanisms are unperturbed, recovery occurs. Interference with these mechanisms results in uncontrollable progression of injury, resulting in stage II of toxicity.
cellular regeneration and tissue repair from the normal 6 hr to 24 to 36 hr (1,31) is the only consequence on stage II of CCl₄ toxicity. Nevertheless, the highly stimulated early phase of tissue repair at 24 hr enables the restoration of hepatolobular structure and function (1,33,41,42,44), and thereby animal survival. These observations provide additional support for the concept of two distinct stages of chemical toxicity (Figure 7).

Induction of liver regeneration 36 to 48 hr after the administration of a toxic dose of CCl₄ is well established (69-71). The existence of an early phase of cell division (6 hr) was revealed only through experiments with a low, subtoxic dose of CCl₄ (20,21,30,31). In fact, administration of a large, toxic dose of CCl₄ (2.5 ml/kg) results in complete suppression of this early phase of cell division (40,45,49), indicating that the toxicity associated with a large dose is due to the abolition of this critical early phase stimulation of tissue repair (1,33,41,42). Therefore, it is possible to ablate the early phase of hepatocellular regeneration and tissue repair ordinarily stimulated by a low dose of CCl₄, making it in essence a toxic dose. Administration of the same dose to animals pretreated by partial hepatectomy so that they have the ongoing hepatocellular proliferation and tissue repair, results in a remarkable and substantial protection from liver injury and lethality (45). Likewise, administration of a large lethal dose of CCl₄ to animals receiving a smaller dose to stimulate cell division and tissue repair results in complete protection (49,52). Such protection is not due to decreased bioactivation of CCl₄ (18,50).

The importance of the stimulation of tissue repair as an event independent of stage I of chemical toxicity can be illustrated by other elegant experimental approaches. Experimental interference with the early phase of hepatocellular proliferation leads to prolonged and enhanced liver injury of an ordinarily subtoxic dose of CCl₄. Studies with colchicine antimitosis (50-52), wherein colchicine dose administered selectively ablates the early phase of hepatocellular division (6 hr) without interfering with the second phase of hepatocellular regeneration (48 hr), have shown a prolongation of liver injury. Neither liver injury measured through serum enzyme elevations nor that measured by morphometric analysis of necrosis was increased at 6 or 12 hr in colchicine treated rats, findings consistent with the lack of colchicine-enhanced bioactivation of CCl₄ (50,52). Moreover, colchicine ablation of the early phase hormetic response after the protective dose of CCl₄ in an autoprotection protocol leads to complete denial of autoprotection.

The critical role played by the capacity to respond to CCl₄-hepatotoxicity by stimulation of tissue repair mechanisms at an early time point is illustrated by examining species and strain differences in susceptibility to CCl₄ injury. Mongolian gerbils are extremely sensitive to halomethane hepatotoxicity (15,16,48,72). Gerbils are approximately 35-fold more sensitive to CCl₄ toxicity than Sprague-Dawley rats (15,16). This difference in CCl₄ toxicity can be seemingly explained on the basis of a 3.5-fold greater bioactivation of CCl₄ in gerbils (15). However, the remarkable and substantial sensitivity does not appear to be due to 3.5-fold greater bioactivation of CCl₄, since CCl₄ toxicity is not at all increased in gerbils by prior exposure to phenobarbital in spite of a 5-fold greater bioactivation of CCl₄ (15,16). The time-course studies on the ability of gerbils to respond to a subtoxic dose of CCl₄ by stimulation of hepatocellular regeneration and tissue repair reveal an important difference in the biology of the hormetic mechanisms between gerbils and rats (16). The early-phase stimulation of tissue repair in the liver does not manifest itself in gerbils and the second phase occurs approximately 40 hr after the administration of CCl₄ (16,48). In the absence of the biological mechanism to arrest the progression of liver injury (Figure 7), the liver injury might be expected to permissively progress much like an unquenched bruise.

Evidence in support of the concept that species differences in chemical toxicity might depend on the differences in the promptness in initiating tissue repair mechanisms among various species comes from another aspect of the interactive toxicity of chlordcone + CCl₄. While gerbils are extremely sensitive to CCl₄, this sensitivity cannot be further increased by prior exposure to chlordcone (15,16,48,72). Since substantial evidence supports the concept that suppression of the early phase of hepatocellular regeneration and tissue repair is the mechanism for the permissive progression of liver injury in the chlordcone + CCl₄ interaction (1,33,41,42,44), lack of this early phase response in the gerbil would be consistent with extremely high sensitivity of gerbils to CCl₄ on the one hand, and a lack of potentiation of CCl₄ toxicity by prior exposure to chlordcone on the other (15,16). This concept has received additional support through partial hepatectomy experiments (48).

The toxicity of chlordcone + CHCl₃ combination has been demonstrated in murine species (6-9). Stimulation of hepatocellular regeneration and tissue repair after a subtoxic dose of CHCl₃ allows the mice to overcome the liver injury associated with that dose of CHCl₃ (9). By lowering the dose of CHCl₃ used in the chlordcone + CHCl₃ studies (8), it is possible to demonstrate potentiation of liver injury, but without the lethality (9). Such an experimental protocol vividly reveals a decisive role played by the stimulated tissue repair mechanisms in overcoming liver injury (9) and the separation of these mechanisms (stage II) from the inflicitive phase (stage I) of chemical injury (Figure 7).

The importance of stimulated tissue repair mechanisms in overcoming liver injury has also been demonstrated through examination of the mechanistic basis for significant strain differences in mice (73,74). An SJL strain of mice, known to be least susceptible to CCl₄ toxicity, was shown to possess more prompt and efficient tissue repair mechanisms, which permit augmented recovery, while the BALB/C strain, known to be more susceptible, was shown to possess less efficient tissue repair mechanisms resulting in slow recovery (73). The F₁ cross between these two strains was shown to be intermediate in susceptibility (74). A careful histopathological evaluation revealed that while the time course of the appearance of injury was quite similar (stage I, Figure 6), significant differences in tissue repair mechanisms between these strains could account for the strain differences in CCl₄ toxicity (73,74). While the time course of the inflicitive phase of injury in the F₁ (SJL/J x BALB/C) was similar to the two parent strains, the tissue repair was at the intermediate level of augmented (SJL/J) and retarded (BALB/C) recovery.

With the advent of the finding that a low dose of CCl₄ is not toxic, not so much because it does not initiate tissue injury, but because of the stimulated tissue repair mechanisms (44), it became apparent that the stimulation of the early phase of hepatocellular regeneration is in essence an endogenous hormetic mechanism, recruited to overcome tissue injury. One implication of this finding is its possible role in the phenomenon of CCl₄ autoprotection (53-55,60). Circumstantial evidence, wherein hepatic microsomal cytochrome P450 was decreased by CoCl₂ administration to 40% of the normal level did not result in decreased CCl₄ liver injury (43), suggested the possibility that
MECHANISM AND IMPLICATIONS OF AMPLIFIED CHEMICAL TOXICITY

mechanism(s) other than decreased cytochrome P450 might be involved in \(\text{CCl}_4 \) autoprotection. Recent studies reveal a critical role for the hepatocellular regeneration and tissue repair stimulated by the low protective dose administration (49). Essentially, the protective dose serves to stimulate tissue repair mechanisms (18,20,21,30,39) so that even before the large dose known to abolish the early phase stimulation of tissue repair (40) is administered, the tissue repair mechanisms are already in place, resulting in augmentation of tissue repair sufficient to tip the balance between injury and recovery in favor of the latter (49). This experimental model represents another example wherein a selective augmentation of the tissue hormetic mechanism (stage II, Figure 6) independent of the inflictive phase of toxicity (stage I, Figure 6), one can dramatically alter the ultimate outcome of toxic injury (Figure 7).

Another line of evidence to implicate the importance of the hormetic mechanisms in determining the final outcome of chemical toxicity comes from experiments designed to understand the mechanisms responsible for the failure of the tissue regenerative and repair mechanism in the interactive toxicity of chlordecone + \(\text{CCl}_4 \). Much evidence is available to implicate insufficient availability of cellular energy at a time when cell division should have taken place (20,21,75). A remarkable and irrevocably precipitous decline in glycogen levels in the liver (21,26), a rise in hepatocellular Ca\(^{++}\) (22–25), a consequent stimulation of phosphorylase a activity, leading to an equally precipitous decline in hepatic ATP (26,27), are events consistent with the failure of hepatocellular regeneration in the chlordecone + \(\text{CCl}_4 \) interaction. Only marginal and transient decline in ATP levels in the interactive hepatotoxicity of phenobarbital + \(\text{CCl}_4 \) and minex + \(\text{CCl}_4 \) (28) are consistent with only a postponement of hepatocellular regeneration leading to transiently increased liver injury followed by complete recovery (31). The concept of insufficient hepatocellular energy being linked to failure of hepatocellular regeneration and tissue repair has gained support from experiments in which the administration of external source of energy resulted in augmented ATP levels and significant protection (28,29,45). Catechin (cyanidanol), known to increase hepatic ATP levels, protects against the lethal effect of chlordecone + \(\text{CCl}_4 \) (28,29). Protection by catechin is accompanied by a restored stimulation of hepatolobular repair and tissue healing (29). The most interesting aspect of catechin protection against the interactive toxicity of chlordecone + \(\text{CCl}_4 \) is that protection does not appear to be the result of decreased infliction of hepatic injury (28,29), as evidenced by a lack of difference in injury up to 24 hr after \(\text{CCl}_4 \) administration (29). These observations provide substantial evidence for the separation of stage I of toxicity responsible for the infliction of tissue injury from the stage II events responsible for the final outcome of tissue injury (42).

| Table 7. Chemicals reported to cause nonneoplastic hepatocellular proliferation. |
|---------------------------------|----------------|
| Chemicals | References |
| 1. Acetaminophen | Zieve et al. (76) |
| 2. Allyl alcohol | Zieve et al. (76,77) |
| 3. \(\alpha \)-Naphthyl isothiocyanate | McClean and Rees (78) |
| 4. Bromotrichloromethane | Faroon and Mehdendale (66) |
| 5. Carbon tetrachloride | Lockhart et al. (20.21) |
| 6. Chloroform | Condie et al. (80) |
| 7. Ethylene dibromide | Natchome and Farber (81) |
| 8. Galactosamine | Lesch et al. (82) |
| 9. Thioacetamide | Gupta (84) |

Abundant opportunities are available to test the two-stage model of toxicity. Many chemicals have been reported to induce hepatocellular regeneration at relatively modest doses, some of which are listed in Table 7. Opportunities to test the conceptual framework being put forth here are available through additional investigations with these models of tissue injury as well as scores of other models in other tissues and organs.

Implications for Assessment of Risk to Public Health

Establishing that the initial toxic or injurious events, regardless of how they are caused, can be separated from the subsequent events that determine the ultimate outcome of injury, offers promising opportunities for developing new avenues for therapeutic intervention with the aim of restoring the hormetic tissue repair mechanisms. Such a development will open up avenues for two types of measures to protect public health. The presently used principle is to decrease injury by interfering with stage I of toxicity by treatment with an antidote, which either prevents further injury or decreases already inflicted injury. The second, wherein tissue repair and healing mechanisms could be enhanced not only to obtund the progression of injury, but also to simultaneously augment recovery from that injury, is a novel approach.

In addition to these opportunities, the two-stage concept of chemical toxicity also embodies implications of significant interest in the assessment of risk from exposure to toxic chemicals. The existence of a threshold for chemical toxicity is evident as indicated by the stimulation of tissue repair mechanism directed to tissue healing and recovery observed after the administration of subtoxic levels of toxic chemicals, when exposure involves singular chemicals. The existence of a two-level or two-stage threshold is apparent from the two-tier hormetic response: one threshold for each stage of the two-stage model. Generally speaking, the threshold for stage I of toxicity must lie in the cytoprotective mechanisms (cellular hormesis). The threshold for stage II of toxicity appears to be in the tissue’s ability to respond promptly by augmenting tissue healing mechanisms. These thresholds may be quantitatively the same or different.

From a public health perspective, exposure to singular chemicals is seldom involved. Multiple exposures to chemical combinations and solidus or singular components simultaneously, intermittently, or sequentially are almost always the rule. In this regard, antagonistic interactive toxicity or inconsequential interactions are also of interest. Of greater interest from a public health perspective, is the finding that the hormetic mechanisms which constitute the threshold for physical or chemical toxicity can be mitigated by other chemical and physical agents, resulting in highly accentuated toxicity.

Of significantly greater interest is the need to take into account the hormetic mechanisms operating particularly at the low levels of exposure to chemicals, in the assessment of risk from exposures to combinations of chemicals at low doses. The recognition of the existence of cellular and tissue hormesis provides a mechanistic basis to recognize thresholds for toxic effects, thereby permitting us to take into consideration the lack of recognizable adverse health effects at low levels of exposure to chemicals in our environment.
REFERENCES

1. Mehendale HM. Potentiation of halomethane hepatotoxicity by chlordecone: a hypothesis for the mechanism. Med Hypotheses 33:289—299 (1990).

2. Mehendale HM. Potentiation of halomethane hepatotoxicity: Chlordecone and carbon tetrachloride. Fundam Appl Toxicol 4:295—308 (1984).

3. Curtis LR, Williams WL, Mehendale HM. Potentiation of the hepatotoxicity of carbon tetrachloride following pre-exposure to chlordecone (Kepone®) in the male rat. Toxicol Appl Pharmacol 51:283—293 (1979).

4. Klingensmith JS, Mehendale HM. Potentiation of CCl₄ lethality by chlordecone. Toxicol Lett 11:149—154 (1982).

5. Agarwal AK, Mehendale HM. Potentiation of CCl₄ hepatotoxicity and lethality by chlordecone in female rats. Toxicology 26:231—242 (1983).

6. Hewitt WR, Miyajima H, Cote MG, Plaa GL. Acute alteration of chloroform-induced hepato- and nephrotoxicity by mirex and kepone. Toxicol Appl Pharmacol 48:509—517 (1979).

7. Hewitt LA, Palmason C, Masson S, Plaa GL. Evidence for the involvement of organelles in the mechanism of ketone-potenti- ated chloroform-induced hepatotoxicity. Liver 10:35—48 (1990).

8. Purushotham KR, Lockard VG, Mehendale HM. Amplification of chloroform hepatotoxicity and lethality by dietary chlordecone in mice. Toxicol Pathol 16:27—34 (1988).

9. Mehendale HM, Purushotham KR, Lockard VG. The time-course of liver injury and ³H-thymidine incorporation in chlordecone-potentiated CHCl₃ hepatotoxicity. Exp Mol Pathol 51:31—47 (1989).

10. Agarwal AK, Mehendale HM. Potentiation of bromo-trichloromethane hepatotoxicity and lethality by chlorde- cone pre-exposure in the rat. Fundam Appl Toxicol 2:161—167 (1982).

11. Klingensmith JS, Mehendale HM. Potentiation of brominated halomethane hepatotoxicity by chlordecone in the male rat. Toxicol Appl Pharmacol 61:429—440 (1981).

12. Mehendale HM, Lockard VG. Effect of chlordecone on the hepatotoxicity of 1,1,2-trichloroethane and bromobenzene. Toxicologist 2:37 (1982).

13. Fouse BL, Hodgson E. Effect of chlordecone and mirex on the acute hepatotoxicity of acetaminophen in mice. Gen Pharmacol 18:623—630 (1987).

14. Mehendale HM, Klingensmith JS. In vivo metabolism of CCl₄ by rats pretreated with chlordecone, mirex or phenobarbital. Toxicol Appl Pharmacol 93:247—256 (1988).

15. Cai Z, Mehendale HM. Lethal effects of CCl₄ and its metabo- lism by gerbils pretreated with chlordecone, phenobarbital and mirex. Toxicol Appl Pharmacol 104:511—520 (1990).

16. Cai Z, Mehendale HM. Hepatotoxicity and lethality of halomethanes in mongolian gerbils pretreated with chlorde- cone, phenobarbital or mirex. Arch Toxicol 65:204—212 (1991).

17. Harris RN, Anders MW. 2-Propanol treatment induces selec- tively the metabolism of carbon tetrachloride to phosgene: implications for carbon tetrachloride hepatotoxicity. Drug Metab Dispos 9:551—556 (1981).

18. Young RA, Mehendale HM. Carbon tetrachloride metabolism in partially hepatectomized and sham operated rats pre-exposed to chlordecone. J Biochem Toxicol 4:211—219 (1989).

19. Davis ME, Mehendale HM. Functional and biochemical corre- lates of chlordecone exposure and its enhancement of CCl₄ hepatotoxicity. Toxicology 15:91—103 (1980).

20. Lockard VG, Mehendale HM, O’Neal RM. Chlordecone- induced potentiation of carbon tetrachloride hepatotoxicity: light and electron microscopic study. Exp Mol Pathol 39:230—245 (1983).

21. Lockard VG, Mehendale HM, O’Neal RM. Chlordecone- induced potentiation of carbon tetrachloride hepatotoxicity: morphometric and biochemical study. Exp Mol Pathol 39:246—256 (1983).

22. Agarwal AK, Mehendale HM. CCl₄-induced alterations in Ca²⁺ homeostasis in chlordecone and phenobarbital pretreated animals. Life Sci 34:141—148 (1984).

23. Agarwal AK, Mehendale HM. Excessive hepatic accumulation of intracellular Ca²⁺ in chlordecone potentiated CCl₄ toxicity. Toxicology 30:17—24 (1984).

24. Carmines EL, Carchman RA, Borzelleca JF. Kepone®: Cellular sites of action. Toxicol Appl Pharmacol 49:543—550 (1979).

25. Agarwal AK, Mehendale HM. Effect of chlordecone on carbon tetrachloride-induced increase in calcium uptake in isolated perfused rat liver. Toxicol Appl Pharmacol 83:342—348 (1986).

26. Kodavanti PRS, Kodavanti UP, Mehendale HM. CCl₄-induced alterations in hepatic calmodulin and free calcium levels in rats pretreated with chlordecone. Hepatology 13:230—238 (1991).

27. Kodavanti PRS, Kodavanti UP, Mehendale HM. Altered hepatic energy status in chlordecone (Kepone®)-potentiated CCl₄ hepatotoxicity. Biochem Pharmacol 40:859—866 (1990).

28. Soni MG, Mehendale HM. Protection from chlordecone- amplified carbon tetrachloride toxicity by cyanidanol- Biochemical and histological studies. Toxicol Appl Pharmacol 108:46—57 (1991).

29. Soni MG, Mehendale HM. Protection from chlordecone- amplified carbon tetrachloride toxicity by cyanidanol: Regeneration studies. Toxicol Appl Pharmacol 108:58—66 (1991).

30. Kodavanti PRS, Joshi UM, Young RA, Bell AN, Mehendale HM. Role of hepato-cellular regeneration in chlordecone-poten- tiated hepatotoxicity of carbon tetrachloride. Arch Toxicol 63:367—375 (1989).

31. Kodavanti PRS, Kodavanti UP, Faroum OM, Mehendale HM. Correlation of hepato-cellular regeneration and CCl₄-induced hepatotoxicity in chlordecone, mirex or phenobarbital pre- treated rats. Toxicol Pathol (in press).

32. Slater RF. Free radicals and tissue injury: fact and fiction. Br J Cancer (Suppl) 8:5—10 (1987).

33. Mehendale HM. Mechanism of the lethal interaction of chlordecone and CCl₄ at nontoxic doses. Toxicol Lett 49:215—241 (1989).

34. Ruch RJ, Klaunig JE, Schultz NE, Askari AB, Lacher DA, Pereira MA, Goldblatt PJ. Mechanisms of chlorof orm and carbon tetrachloride toxicity in primary cultured mouse hepatocytes. Environ Health Perspect 69:301—305 (1986).

35. Roberts E, Alahuwalia BM, Lee G, Chan C, Sarma DSR, Farber E. Resistance to hepatotoxins acquired by hepatocytes during liver regeneration. Cancer Res 43:28—34 (1983).

36. Chang LW, Pereira MA, Klaunig JE. Cytoxicity of halo- genated alkanes in primary cultures of rat hepatocytes from normal partial hepatectomized and preneoplastic/neoplastic liver. Toxicol Appl Pharmacol 80:274—280 (1985).

37. Ruch RJ, Klaunig JE, Pereira MA. Selective resistance to cyto- toxic agents in hepatocytes isolated from partially hepatec- tomized and neoplastic mouse liver. Cancer Lett 26:295 (1985).

38. Mehendale HM, Cai Z. Role of ongoing versus stimulated hepato-cellular regeneration in resiliency to amplification of CCl₄ toxicity by chlordecone. FASEB J 5: A1248, 1991.

39. Kodavanti PRS, Joshi UM, Lockard VG, Mehendale HM. Chlordecone (Kepone®)-potentiated carbon tetrachloride hepa- toxicity in partially hepatectomized rats. A histomorphometric study. J Appl Toxicol 9:367—375 (1989).

40. Kodavanti PRS, Joshi UM, Young RA, Meydreech EF, Mehendale HM. Protection of hepatotoxic and lethal effects of CCl₄ by partial hepatectomy. Toxicol Pathol 17:494—506 (1989).

41. Mehendale HM. Amplification of hepatotoxicity and lethality of CCl₄ and CHCl₃ by chlordecone. Rev Biochem Toxicol 10:91—138 (1989).

42. Mehendale HM. Role of hepato-cellular regeneration and hepa-
tolobular healing in the final outcome of liver injury: two-stage model of toxicity. Biochem Pharmacol 42:1155–1162 (1991).

43. Bell AN, Young RA, Lockard VG, Mehendale HM. Protection of chlordecone-potentiated carbon tetrachloride hepatotoxicity and lethality by partial hepatectomy. Arch Toxicol 61:392–405 (1988).

44. Mehendale HM. Biochemical mechanisms of biphasic dose-response relationships: Role of hormesis. In: Biological Effects of Low Level Exposures to Chemicals and Radiation, (Calabrese EJ, ed), Chelsea, MI:Lewis Publishers, 1992;59–94.

45. Rao SB, Mehendale HM. Protective role of fructose 1,6-bisphosphate during CCl₄ hepatotoxicity in rats. Biochem J 262:721–725 (1989).

46. Mehendale HM, Cai Z, Ray SD. Paradoxical toxicity of CCl₄ in isolated hepatocytes from chlordecone, phenobarbital and mirex pretreated rats. In Vito Toxicol 4:187–196 (1991).

47. Cai Z, Mehendale HM. Resiliency to amplification of carbon tetrachloride hepatotoxicity by chlordecone during postnatal development in rats. Pediatr Res 33:225–232, 1993.

48. Cai Z, Mehendale HM. Premutation of hepatic cellular regeneration by partial hepatectomy decreases toxicity of CCl₄ in gerbils. Biochem Pharmacol 42:633–644 (1991).

49. Thakore KN, Mehendale HM. Role of hepatic regeneration in carbon tetrachloride autoprotection. Toxicol Pathol 19:57–59 (1991).

50. Rao CV, Mehendale HM. Prolongation of carbon tetrachloride toxicity by colchicine antagonism. Toxicol Pathol 23:322–232 (1991).

51. Rao CV, Mehendale HM. Effect of colchicine on hepatobiliary function in CCl₄ treated rats. Biochem Pharmacol 42:2223–2232 (1991).

52. Rao CV, Mehendale HM. Colchicine antagonism abolishes CCl₄ autoprotection. Toxicol Pathol 19:597–606 (1991).

53. Glende EA Jr. Carbon tetrachloride-induced protection against carbon tetrachloride toxicity: the role of the liver microsomal drug-metabolizing system. Biochem Pharmacol 21:1697–1702 (1972).

54. Dambrauska T, Cornish HH. Effect of pretreatment of rats with carbon tetrachloride in tolerance development. Toxicol Appl Pharmacol 17:83–97 (1970).

55. Ugasio G, Koch RR, Recknagel RO. Mechanism of protection against carbon tetrachloride by prior carbon tetrachloride administration. Exp Mol Pathol 16:281–285 (1973).

56. Gerhard HJ, Schultz B, Maurer W. Wirkung einor zweiten CCl₂-intoxikation aufdie CCl₂-geschadigte Leber de Mams. Virchows Ab B Zellerpath 10:184–199 (1972).

57. Pound AW, Lawson TA. Reduction of carbon tetrachloride toxicity by prior administration of a single small dose in mice and rats. Br J Exp Pathol 56:172–179 (1975).

58. Recknagel RO, Glende EA Jr. Lipid peroxidation: a specific form of cellular injury. In: Handbook of Physiology, Section 9 (Lee DHK, ed), American Physiological Society, Bethesda, MD; Baltimore:Williams and Wilkins, 1977; 591-601.

59. Sipes IG, Krishna G, Gillette JR. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: role of cytochrome P450. Life Sci 20:1541–1548 (1974).

60. Lindstrom LD, Anders MW. Studies on the mechanism of carbon tetrachloride autoprotection: effect of protective dose of carbon tetrachloride on lipid peroxidation and glutathione peroxidase. Toxicol Lett 1:109–114 (1977).

61. Tomasi A., Albano E, Lott KAK, Slater TR. Spin trapping of free radical products of CCl₄ activation using pulse radiolysis and high energy radiation procedures. FEBS Lett 122:303–306 (1981).

62. Rosen GM, Rauschman EJ. Carbon tetrachloride-induced lipid peroxidation: a spin trapping study. Toxicol Lett 10:337–344 (1982).

63. Klingensmith SJ, Mehendale HM. Destruction of hepatic mixed function oxygenase parameters by CCl₄ in rats following acute treatment with chlordecone, mirex and phenobarbital. Life Sci 33:2339–2348 (1984).

64. Klingensmith SJ. Metabolism of CCl₄ in rats pretreated with chlordecone, mirex and phenobarbital. Ph.D. Dissertation University of Mississippi Medical Center, 1982.

65. Sagan L. On radiation, paradigms, and hormesis, Science 245:574,621 (1989).

66. Faroon OM, Mehendale HM. Bromotrichloromethane hepatotoxicity. Role of hepatocellular regeneration in recovery. Biochemical and histopathological studies in control and chlordecone pretreated male rats. Toxicol Pathol 18:667–677 (1990).

67. Faroon OM, Henry RW, Soni MG, Mehendale HM. Potentiation of Br₃CCl₃ hepatotoxicity by chlordecone: biochemical and ultrastructural study. Toxicol Appl Pharmacol 110:185–197 (1991).

68. Thakore KN, Gargas ML, Andersen ME, Mehendale HM. PB-PK derived metabolism constants, hepatotoxicity, and lethality of Br₃CCl₃ in rats pretreated with chlordecone, phenobarbital and mirex. Toxicol Appl Pharmacol 109:514–528 (1991).

69. Levey CM, Hollister RM, Schmid R, MacDonald RA, Davidson CS. Liver regeneration in experimental CCl₄ intoxication. Proc Soc Exp Biol Med 102:672–675 (1959).

70. Smuckler EA, Koplitz M, Sell S. A-fetoprotein in toxic liver injury. Cancer Res 36:4558–4561 (1976).

71. Nakata R, Tsukamoto I, Miyoshi M, Kojo S. Liver regeneration after CCl₄ intoxication in the rat. Biochem Pharmacol 34:586–588 (1985).

72. Ebel RE, McGrath EA. CCl₄-hepatotoxicity in the mongolian gerbil: influence of monooxygenase induction. Toxicol Lett 22:205–210 (1984).

73. Bhatyal PS, Rose NR, Mackay IR, Whittingham S. Strain differences in mice in carbon tetrachloride-induced liver injury. Br J Exp Pathol 64:524–533 (1983).

74. Biedel KW, Ehrnpreis MN, Bhatyal PS, Mackay IR, Rose NR. Genetics of carbon tetrachloride-induced liver injury in mice. II. Multigenic regulation. Br J Exp Pathol 65:125–131 (1984).

75. Rao SB, Mehendale HM. Protection from chlordecone-potentiated CCl₄ hepatotoxicity in rats by fructose 1,6-diphosphate. Int J Biochem 21:949–954 (1989).

76. Zieve L, Anderson WR, Lyftogt C, Draves K. Hepatic regenerative enzyme activity after pericentral and periportal lobular toxic injury. Toxicol Appl Pharmacol 86:147–158 (1986).

77. Zieve L, Anderson WR, Lafontaine D. Hepatic failure toxins depress liver regenerative enzymes after periporal injury with alcohol in the rat. J Lab Clin Med 111:725–730 (1988).

78. McLean MR, Rees KR. Hyperplasia of bile-ducks induced by alpha-naphthyl-isothiocyanate: experimental biliary cirrhosis free from obstruction. J Pathol Bacteriol 76:175–188 (1958).

79. Ungar H, Moran E, Eisner M, Eliaikm M. Rat intraperitoneal biliary tract lesions from alpha-naphthyl-isothiocyanate. Arch Pathol 73:427–435 (1962).

80. Condie LW, Smallwood CL, Laurie RD. Comparative renal and hepatotoxicity of halomethanes: bromochloromethane, bromoform, chloroform, dibromochloromethane and methylene chloride. Drug Chem Toxicol 6:563–578 (1983).

81. Natchtomi E, Farber E. Ethylene dibromide as a mitogen for liver. Lab Invest 38:279–283 (1978).

82. Lesch R, Reutter W, Keppler D, Decker K. Liver restitution after galactosamine hepatitis: autoradiographic and biochemical studies in rats. Exp Mol Pathol 12:58–69 (1970).

83. Kuhlmann WD, Wurster KL. Correlation of histology and alpha-fetoprotein surge in rat liver regeneration after experimental injury by galactosamine. Virchows Arch Histopathol 387:47–57 (1980).

84. Gupta DN. Acute changes in the liver after administration of Thioacetamide. J Pathol Bacteriol 72:183–192 (1956).

85. Reddy JK, Chiga M, Svoboda D. Initiation of division of cycle of rat hepatocytes following a single injection of thioacetamide. Lab Invest 20:405–411 (1969).