Adversarial Evaluation for Open-Domain Dialogue Generation

Bruni, E.; Fernández, R.

Published in:
18th Annual Meeting of the Special Interest Group on Discourse and Dialogue

DOI:
10.18653/v1/W17-5534

License
CC BY

Citation for published version (APA):
Bruni, E., & Fernández, R. (2017). Adversarial Evaluation for Open-Domain Dialogue Generation. In K. Jokinen, M. Stede, D. DeVault, & A. Louis (Eds.), 18th Annual Meeting of the Special Interest Group on Discourse and Dialogue: proceedings of the conference : 15-17 August 2017, Saarbrücken, Germany : SIGDIAL 2017 (pp. 284-288). Association for Computational Linguistics. https://doi.org/10.18653/v1/W17-5534

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Adversarial Evaluation for Open-Domain Dialogue Generation

Elia Bruni and Raquel Fernández
Institute for Logic, Language and Computation
University of Amsterdam
elia.bruni@gmail.com raquel.fernandez@uva.nl

Abstract

We investigate the potential of adversarial evaluation methods for open-domain dialogue generation systems, comparing the performance of a discriminative agent to that of humans on the same task. Our results show that the task is hard, both for automated models and humans, but that a discriminative agent can learn patterns that lead to above-chance performance.

1 Introduction

End-to-end dialogue response generation systems trained to produce a plausible utterance given some limited dialogue context are receiving increased attention (Vinyals and Le, 2015; Sordoni et al., 2015; Serban et al., 2016; Li et al., 2016). However, for systems dealing with chatbot-style open-dialogue, where task completion is not applicable, evaluating the quality of their responses remains a challenge. Most current models are evaluated with measures such as perplexity and overlap-based metrics like BLEU, that compare the generated response to the ground-truth response in an actual dialogue. This kind of measures, however, correlate very weakly or not at all with human judgements on response quality (Liu et al., 2016).

In this paper, we explore a different approach to evaluating open-domain dialogue response generation systems, inspired by the classic Turing Test (Turing, 1950): measuring the quality of the generated responses on their indistinguishability from human output. This approach has been preliminary explored in recent work under the heading of adversarial evaluation (Kannan and Vinyals, 2016; Li et al., 2017), drawing a parallel with generative adversarial learning (Goodfellow et al., 2014). Here we concentrate on exploring the potential and the limits of such an adversarial evaluation approach by conducting an in-depth analysis. We implement a discriminative model and train it on the task of distinguishing between actual and “fake” dialogue excerpts and evaluate its performance, as well as the feasibility of the task more generally, by conducting an experiment with human judgements. Results show that the task is hard not only for the discriminative model, but also for human judges. We then implement a simple chatbot agent for dialogue generation and test the discriminator on this data, again comparing its performance to that of humans on this task. We show that both humans and the discriminative model can be fooled by the generator in a significant amount of cases.

2 The Discriminative Agent

Our discriminative agent is a binary classifier which takes as input a sequence of dialogue utterances and predicts whether the dialogue is real or fake. The agent treats as positive examples of coherent dialogue actual dialogue passages and as negative examples passages where the last utterance has been randomly replaced. Random replacement has been used in the past to study discourse coherence (Li and Hovy, 2014).

2.1 Model

The classifier is modelled as an attention-based bidirectional LSTM. LSTMs are indeed very effective to model word sequences, and are especially suited for learning on data with long distance dependencies (Hochreiter and Schmidhuber, 1997) such as multi-turn dialogues. The bidirectional LSTM includes both a forward function (LSTM, which reads the sentence s_t from w_{i1} to w_{iT}) and a backward function (LSTM, which reads the sentence s_t from w_{iT} to w_{i1}):

$$x_{it} = W_{c}w_{it}, t \in [1, T]$$

[1]
The words of a dialogue turn do not always contribute equally to determine coherence. We thus use an attention mechanism to extract words that are important to detect plausibility or coherence of a dialogue passage and parametrize their aggregation accordingly. Having an aggregated vector representation which is adaptive to the content of each time step allows the classifier to assign large weights to the most “discriminative” words. Contemporarily, the attention should also have an advantage in modelling long sequences by considering different word locations in the dialogue in a relatively even manner:

\[
\begin{align*}
\mathbf{h}_{it} &= \text{LSTM}(x_{it}), t \in [1, T] & [2] \\
\mathbf{\overline{h}}_{it} &= \text{LSTM}(x_{it}), t \in [T, 1] & [3]
\end{align*}
\]

We first compute the hidden representation of \(h_{it}\) through a one-layer MLP \(u_{it}\); we then weight the importance of \(u_{it}\) by computing its similarity to a word-level context vector, normalized via a softmax function. The context vector is learned end-to-end by the classifier and is meant to represent a general query about the level of “discriminability” of a word (see, e.g., Sukhbaatar et al. 2015 or Yang et al. 2016). The output of the attention is then fed to a sigmoid function, which returns the probability of the input being real or fake:

\[
\begin{align*}
\mathbf{u}_{it} &= \text{tanh}(W_u h_{it} + b_u) & [4] \\
\alpha_{it} &= \frac{\exp(u_{it}^T u_{iw})}{\sum_{i} \exp(u_{it}^T u_{iw})}, \quad \sum_{i} \alpha_i h_i & [5]
\end{align*}
\]

As loss function we then use the negative log likelihood of the correct labels:

\[
L = - \sum_d \log p_{dj} & [7]
\]

2.2 Training Details

We trained the discriminator with a combination of three different datasets: MovieTriples, SubTle and Switchboard. MovieTriples (Serban et al., 2016) has been created from the Movie-Dic corpus of film transcripts (Banchs, 2012) and contains 3-utterance passages between two interlocutors who alternate in the conversation. SubTle (Ameixa et al., 2014) is made of 2-utterance passages extracted from movie subtitles. To discourage the pairing of utterances coming from different movie scenes, we selected only those pairs with a maximum difference of 1 second between the first and the second turn. Switchboard (Godfrey et al., 1992) is a corpus of transcribed telephone conversations. We ignored utterances that consist only of non-verbal acts such as laughter, and selected sequences of three consecutive utterances. In all cases, we consider the last utterance of a passage the target response, and the previous utterances, the context. For the three datasets, we restrict ourselves to dialogue passages where the context and the response have a length of 3 to 25 tokens each. We concatenated the three datasets, obtaining a total of 3,289,835 dialogue passages (46,499 from MovieTriples, 3,211,899 from SubTle, and 77,936 from Switchboard).

For training, we limit the vocabulary size to the top 25K most frequent words.\(^1\) We used mini-batch stochastic gradient descent, shuffling the batches each epoch. We use a bidirectional layer, with 500 cells, and 500-dimensional embeddings (we tried with more layers and higher number of cells without significant improvements). All model parameters are uniformly initialized in \([-0.1, 0.1]\) and as optimizer we used Adam with an initial learning rate of 0.001. Dropout with probability 0.3 was applied to the LSTMs.

3 Human Evaluation

To assess the performance of our discriminative model, we conduct an experiment with human annotators. To our knowledge, this is the first study of its kind ever conducted. Previous human evaluation experiments of dialogue generation systems have mostly consisted in asking participants to choose the better response between two options generated by different models or to rate a generated dialogue along several dimensions (Vinyals and Le, 2015; Lowe et al., 2017; Li et al., 2017). In contrast, here we present humans with the same task faced by the discriminator: We show them a dialogue passage and ask them to decide whether, given the first one or two utterances of context, the shown continuation is the actual follow-up utterance in the original dialogue or a random response.

The data for this experiment consists of 900 pas-

\(^1\) All remaining words are converted into the universal token <unk>.

285
sages: 300 randomly selected per dataset, with 50% real and 50% fake dialogues. We use the CrowdFlower platform to recruit annotators, restricting the pool to English native speakers. Each item is classified as real or random by three different annotators. A total of 137 annotators participated in the experiment, with each of them annotating between 10 and 150 items.

We test the discriminator on the same data and compare its performance to the human judgements. Chance level accuracy for both humans and the discriminator is 50%, namely when real and fake passages are indistinguishable from each other. The results are summarised in Table 1. Let us first consider the performance of humans on the task. We compute inter-annotator agreement using Fleiss π (Fleiss, 1971), suitable for assessing multi-coder annotation tasks. Agreement is low: $\pi = 0.30$ across the 3 corpora, indicating that the task is challenging for humans (there is limited consensus on whether the shown dialogue passages are plausible or not). Looking into the human performance with respect to the ground truth, we see similar accuracy scores for Switchboard and MovieTriples, while accuracy is lower for SubTle, where the context consists of one utterance only. Across the three datasets, we observe slightly higher F-score for positive instances (real) than negative instances (random). For the positive instances, recall is higher than precision, while the opposite is true for negative instances. Arguably, this indicates that humans tend to accommodate responses that in fact are random as possible coherent continuations of a dialogue, and will only flag them as fake if they are utterly surprising.

We compute the agreement of the discriminator’s predictions and the human majority class over 3 annotators. For Switchboard, agreement is at chance level ($\pi = .07$), while for the other two datasets it is on a par with agreement among humans. As for the discriminator’s performance with respect to the ground truth, not surprisingly we obtain low accuracy on Switchboard, but slightly higher accuracy than humans in the other datasets, in particular SubTle, possibly due to the larger amount of training data from this corpus. In what follows, we investigate what information the discriminator may be exploiting to make its predictions.

4 Analysis

To inspect the discriminator’s internal representation of the dialogue turns, at testing time we run two extra forward passes, inputting context and target separately, and compute the cosine similarity between the respective LSTM hidden states. We find some clear patterns: The context and response of the dialogue passages classified as coherent by the discriminator (true and false positives) have significantly higher cosine similarity than the passages classified as fake (true and false negatives). This holds across the 3 datasets ($p < .001$ on a two-sample Wilcoxon rank sum test) and indicates that the discriminator is exploiting this information to make its predictions. We also observe that, while there is a tendency to higher cosine similarity in the ground-truth positive instances than in the negative ones in Switchboard ($p = .05$) and MovieTriples ($p = .03$), the effect is highly significant in SubTle ($p < .001$), which is in line with the higher performance of the discriminator on this corpus. Since accuracy is higher than humans in this case, presumably the discriminator is sensitive to patterns that may not be apparent to humans. Whether this capacity is useful for developing generative models that interact with humans, however, is an open question.

We find another interesting pattern within the attention mass distribution between context and target: For true and false positives, higher attention is concentrated on the response ($\approx 90\%$),
while for true and false negatives the attention is more balanced between the two (≈ 50%). Figure 1 shows three sample dialogue passages with word-level attention weights displayed in different color intensities. The token \(<s>\) separates the context from the target response. The sample at the top is a passage from SubTle that humans judged to be incoherent, but that was rightly classified by the discriminator as a positive instance (the passage is real). The sample in the middle (a passage from MovieTriples where the target is random) illustrates how attention weights are more balanced in negative instances. Finally, the sample at the bottom shows a passage from MovieTriples rightly classified as coherent by human annotators and by the discriminative agent. As can be seen, attention is more prominent on the target response, with particular focus on the pronoun ‘she’ whose antecedent ‘her’ in the context also receives some attention mass. In all cases the token \(<s>\) receives high attention, suggesting that the discriminative agent is keeping track of turn alternations.

5 Discriminating Generated Responses

We implement a baseline generative agent to test the extent to which the discriminator’s ability to distinguish between generated and actual responses is comparable to humans.

5.1 The Generator Agent

The generator directly models the conditional probability \(p(y|x)\) of outputting the subsequent dialogue turn \(y_1, \ldots, y_m\) given some previous context \(x_1, \ldots, x_n\). The model consists of a \(\text{SEQ2SEQ}\) model, divided into two components: an encoder which computes a representation for the dialogue context and a decoder which generates the subsequent dialogue turn one word at a time. A natural choice for implementing both the encoder and the decoder is to use an LSTM (see Section 2). The decoder is also equipped with an attention system.

We train the generator to predict the next dialogue turn given the preceding dialogue history on the OpenSubtitles dataset (Tiedemann, 2009). We considered each line in the dataset as a target to be predicted by the model and the concatenation of the two foregoing lines as the source context. We opt for OpenSubtitles rather than for the cleaner datasets used for training the discriminative agent, because the \(\text{SEQ2SEQ}\) model requires a very large amount of data to converge, and with more than 80 million triples, OpenSubtitles is one of the largest dialogue dataset available.

During training, we filtered out passages with context or target longer than 25 words. We used mini-batch stochastic gradient descent, shuffling the batches each epoch. We use stacking LSTM with 2 bidirectional layers, each with 2048 cells, and 500-dimensional embeddings. All model parameters are uniformly initialized in \([-0.1, 0.1]\); we train using SGD, with a start learning rate of 1, and after 5 epochs we start halving the learning rate at each epoch; the mini-batch size is set to 64 and we rescale the normalized gradients whenever the norm exceeds 5. We also apply dropout with probability 0.3 on the LSTMs.

5.2 Results

We test our discriminative agent on the task of distinguishing passages with real responses versus generated responses and, as before, compare its performance to human performance. For this evaluation, we selected a random sample of 30 generated instances per corpus, avoiding repeated generated responses and responses with \(<\text{unk}>\) tokens since these would make the human judgements trivial. A summary of results is shown in Table 2. We can see that human accuracy is at chance level, while the discriminator’s is above chance, again suggesting that the discriminator may pick up on patterns that are not discernible to humans. The higher performance on SubTle may again be explained by the larger amount of training data from this dataset. We also observe very low inter-annotator agreement, with even negative \(\pi\) for the discriminator with respect to humans in the case of Switchboard.

6 Conclusions

In this paper, we investigated the use of an adversarial setting for open domain dialogue eval-

Figure 1: Attention visualization.
Table 2: Performance of discriminator and humans against ground-truth for generator experiment. Inter-annotator agreement among humans and between the discriminator and the human majority class.

Data	Discriminator	Humans	Agreement												
	real	generated													
SWB	0.607	0.538	0.933	0.780	0.200	0.316	0.517	0.517	0.760	0.610	0.382	0.277	0.365	0.194	0.130
MOV	0.633	0.618	0.700	0.654	0.567	0.607	0.467	0.478	0.733	0.579	0.428	0.200	0.273	0.177	0.062
SUB	0.700	0.773	0.567	0.658	0.833	0.736	0.511	0.508	0.678	0.581	0.517	0.344	0.413	0.258	0.129

Table 2: Performance of discriminator and humans against ground-truth for generator experiment. Inter-annotator agreement among humans and between the discriminator and the human majority class.