Endocrine and Growth Abnormalities in 4H Leukodystrophy Caused by Variants in \textit{POLR3A}, \textit{POLR3B}, and \textit{POLR1C}

Félix Pelletier MD1,2,3,4,5,6, Stefanie Perrier HBSc1,4, Ferdy K. Cayami MD PhD1,7,8, Amytce Mirchi MD1,2,3,4,5, Stephan Saikali MD PhD9, Luan T. Tran MSc1,2,3,4, Nicole Ulrick BA10, Kether Guerrero MSc1,2,3,4, Emmanouil Rampakakis PhD2, Rosalina M.L. van Spaendonk PhD11, Sakkubai Naidu MD12, Daniela Pohl MD PhD13, William T. Gibson MD PhD14, Michelle Demos MD15, Cyril Goizet MD PhD16, Ingrid Tejera-Martin MD17, Ana Potic MD18, Brent L. Fogel MD PhD19, Bernard Brais MD PhD1,3,20, Michel Sylvain MD21, Guillaume Sebire MD PhD2,22, Charles Marques Lourenço MD PhD23, Joshua L. Bonkowsky MD PhD24, Coriene Catsman-Berrevoets MD PhD25, Pedro S. Pinto MD26, Sandya Tirupathi MD27, Petter Strømme MD28, Ton de Grauw MD PhD29, Dorota Gieruszczak-Bialek MD30,31, Ingeborg Krägeloh-Mann MD32, Hanna Mierzewska MD PhD33, Heike Philipp MD34, Julia Rankin MD PhD35, Tahir Atik MD36, Brenda Banwell MD37, William S. Benko MD38, Astrid Blaschk M39, Annette Bley MD40, Eugen Boltshauser MD41, Drago Bratkovic MBBS FRACP42, Klara Brozova MD43, Icíar Cimas MD44, Christopher Clough MD45, Bernard Corenblum MD46, Argirios Dinopoulos MD PhD47, Gail Dolan MD48, Flavio Faletra MD49, Raymond Fernandez MD50, Janice Fletcher MD51, Maria Eugenia Garcia Garcia MD52, Paolo Gasparini MD53, Janina Gburek-Augustat MD54, Dolores Gonzalez Moron MD55, Aline Hamati MD56, Inga Harting MD57, Christoph Hertzberg MD58, Alan Hill MD PhD FRCP59, Grace M. Hobson PhD60, A. Michele Innes MD61, Marcelo Kauffman MD62, Susan M. Kirwin BS63, Gerhard Kluger MD64, Petra Kolditz MD65, Urania Kotzaeridou MD66, Roberta La Piana MD PhD67, Eriskay Liston MSc68, William McClintock MD69, Meriel McEntagart MD70, Fiona McKenzie MD71, Serge Melançon MD72, Anjum Misbahuddin FRCP PhD73, Mohnish Suri MD FRCP74, Fernando I. Monton MD PhD17, Sebastien Moutton MD75, Raymond P.J. Murphy MD76, Miriam Nickel MD77, Hüseyin Onay MD PhD78, Simona Orcesi MD79, Ferda Özkinay MD80, Steffi Patzer MD81, Helio Pedro MD82, Sandra Pekic MD83, Pauline Perrot MD PhD84, Samuel D. Perret MD PhD85, and Patricia Perret MD PhD86.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Endocrine Society. jc.2020-01518 See https://academic.oup.com/endocrinesociety/pages/Author_Guidelines for Accepted Manuscript disclaimer and additional information. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
MD PhD, Mercedes Pineda Marfa PhD, Amy Pizzino MS CGC LGC, Barbara Plecko MD, Bwee Tien Poll-The MD PhD, Vera Popovic MD PhD FRCP, Dietz Rating MD, Marie-France Rioux MD, Norberto Rodriguez Espinosa MD, Anne Ronan MB BCh FRACp, John R. Ostergaard MD DMSci, Elsa Rossignol MD MSc FRCP, Rocio Sanchez-Carpintero MD PhD, Anna Schossig MD, Nesrin Senbil MD, Laura K. Sønderberg Roos MD PhD, Cathy A. Stevens MD, Matthis Synofzik MD, László Sztriha MD, Daniel Tibussek MD MSc, Dagmar Timmann MD, Davide Tonduti MD, Bart P. van de Warrenburg, MD PhD, Maria Vázquez-López MD, Sunita Venkateswaran MD FRCPc, Pontus Wasling MD, Evangeline Wassmer MD, Richard I. Webster MD, Gert Wiegand MD, Grace Yoon MD, Joost Rotteveel MD PhD, Raphael Schiffmann MD MHS, Marjo van der Knaap MD PhD, Adeline Vanderver MD, Gabriel A. Martos-Moreno MD, Constantin Polychronakos MD FRCPc FRSC, Nicole I. Wolf MD PhD, Geneviève Bernard MD MSc FRCPc.
9 Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec City, QC, Canada.

10 Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.

11 Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

12 Department of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA.

13 Division of Neurology, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.

14 Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, BC, Canada.

15 Division of Neurology, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC, Canada.

16 Centre de Référence Neurogénétique, Service de Génétique Médicale, Bordeaux University Hospital, and Laboratoire MRGM, INSERM U1211, Université de Bordeaux, Bordeaux, France.

17 Department of Neurology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Canary Islands, Spain.

18 Department of Neurology, Clinic for Child Neurology and Psychiatry, Medical Faculty University of Belgrade, Belgrade, Serbia.

19 Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

20 Montreal Neurological Institute, Montreal, QC, Canada.

21 Centre Mère Enfant, CHU de Québec, Québec City, QC, Canada.

22 Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada.

23 Faculdade de Medicina, Centro Universitario Estácio de Ribeirão Preto, Ribeirão Preto, SP, Brazil.

24 Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
25 Department of Paediatric Neurology, Erasmus University Hospital - Sophia Children’s Hospital, Rotterdam, The Netherlands.

26 Neuroradiology Department, Centro Hospitalar do Porto, Porto, Portugal.

27 Department of Paediatric Neurology, Royal Belfast Hospital for Sick Children, Belfast, UK.

28 Division of Pediatrics and Adolescent Medicine, Oslo University Hospital, Ullevål, and University of Oslo, Oslo, Norway.

29 Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA.

30 Department of Medical Genetics, Children’s Memorial Health Institute, Warsaw, Poland.

31 Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland.

32 Department of Child Neurology, University Children’s Hospital Tübingen, Tübingen, Germany.

33 Department of Child and Adolescent Neurology, Institute of Mother and Child, Warsaw, Poland.

34 Center of Developmental Neurology (SPZ Frankfurt Mitte), Frankfurt, Germany.

35 Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.

36 Division of Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey.

37 Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

38 Division of Pediatric Neurology, Department of Neurology, UC Davis Health System, Sacramento, CA, USA.

39 Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.

40 University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

41 Department of Child Neurology, University Children’s Hospital Zurich, Zurich, Switzerland.

42 Metabolic Clinic, Women's and Children's Hospital, North Adelaide, South Australia, Australia.

43 Department of Child Neurology, Thomayer’s Hospital, Prague, Czech Republic.

44 Department of Neurology, Povisa Hospital, Vigo, Spain.

45 Department of Neurology, King’s College Hospital, London, UK.
Division of Endocrinology & Metabolism, Department of Medicine, University of Calgary, Calgary, AB, Canada.

Third Department of Pediatrics, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece.

Bristow Pediatrics, Bristow, VA, USA.

Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.

Pediatric Neurology Associates, Tampa, FL, USA.

Genetics and Molecular Pathology, Women's and Children's Hospital, Adelaide, South Australia, Australia.

Department of Neurology, The Royal London Hospital, London, UK.

Institute for Maternal and Child Health, IRCCS Burlo Garofolo, and University of Trieste, Trieste, Italy.

Division of Neuropaediatrics, Hospital for Children and Adolescents, University Leipzig, Leipzig, Germany.

Neurogenetics Unit, Department of Neurology, Hospital JM Ramos Mejia, Buenos Aires, Argentina.

Indiana University, Department of Child Neurology, Indianapolis, IN, USA.

Department of Neuroradiology, University Hospital Heidelberg, Germany.

Department of Child Neurology, Vivantes Klinikum, Berlin, Germany.

Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.

Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.

Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.

Neurogenetics Unit, Department of Neurology, Hospital JM Ramos Mejia and CONICET, Buenos Aires, Argentina.
Molecular Diagnostics Laboratory, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.

PMU Salzburg, Salzburg, Austria; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Vogtareuth, Germany.

Department of Child Neurology, Kantonsspital Luzern, Luzern, Switzerland.

Department of Child Neurology, University Children’s Hospital Heidelberg, Heidelberg, Germany.

Department of Neuroradiology, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.

Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.

Pediatric Specialists of Virginia, Fairfax, VA, USA; Department of Neurology, Children's National Medical Center, Washington, DC, USA.

South West Thames Regional Genetics Service, St. George’s Hospital, London, UK.

Genetic Services of Western Australia, Subiaco, WA, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia.

Department of Medical Genetics, McGill University Health Centre, Montreal Children’s Hospital, Montreal, QC, Canada.

Essex Centre for Neurological Sciences, Queen’s Hospital, Romford, UK.

Nottingham Clinical Genetics Service, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK.

Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France.

Department of Neurology, Tallaght University Hospital, Tallaght, Ireland.

Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Department of Medical Genetics, Ege University, Izmir, Turkey.

Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.

Department of Pediatrics, Subdivision of Pediatric Genetics, Faculty of Medicine, Ege University, Izmir, Turkey.
81 Children’s Hospital St. Elisabeth and St. Barbara, Halle (Saale), Germany.

82 Department of Pediatrics, The Joseph M. Sanzari Children’s Hospital, Hackensack University Medical Center, Hackensack, NJ, USA.

83 Clinic for Endocrinology, Diabetes and Diseases of Metabolism, University Clinical Center, Belgrade & School of Medicine, University of Belgrade, Belgrade, Serbia.

84 Hospital Sant Joan de Deu, Passeig de Sant Joan de Deu nº2, Barcelona, Spain.

85 Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, MetroHealth Hospital, Cleveland, OH, USA.

86 Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria.

87 Department of Pediatric Neurology, Emma Children’s Hospital Amsterdam, The Netherlands.

88 Medical Faculty, University of Belgrade, Belgrade, Serbia.

89 Department of Paediatric Neurology, University Children’s Hospital, Heidelberg, Germany.

90 Centre Hospitalier Universitaire de Sherbrooke - Hôpital Fleurimont, Sherbrooke, QC, Canada.

91 Hunter New England LHD, University of Newcastle, NSW, Australia.

92 Centre for Rare Diseases, Aarhus University Hospital. Aarhus, Denmark.

93 Departments of Neurosciences and Pediatrics, CHU-Sainte-Justine, Université de Montréal, Montreal, QC, Canada.

94 Pediatric Neurology Unit, Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Spain.

95 Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria.

96 Department of Child Neurology, Kirikkale University Medical Faculty, Kirikkale, Turkey.

97 Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.

98 Department of Pediatrics, Division of Medical Genetics, University of Tennessee College of Medicine, Chattanooga, TN, USA.
Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, German Research Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany.

Department of Paediatrics, University of Szeged, Szeged, Hungary.

Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Heinrich-Heine-University, Düsseldorf, Germany.

Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.

Child Neurology Unit, V. Buzzi Children’s Hospital, Milano, Italy.

Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.

Sección Neuropediatría. Hospital Maternoinfantil Gregorio Marañón, Madrid, Spain.

Division of Neurology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada.

Department of Neuroscience and Rehabilitation, The Sahlgrenska Academy, University of Gothenburg, Sweden.

Paediatric Neurology, Birmingham Children’s Hospital, UK.

T. Y. Nelson Department of Neurology and Neurosurgery and the Institute for Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia.

Department of Pediatric Neurology, University Hospital Kiel, Germany; Neuropediatrics Section of the Department of Pediatrics, Asklepios Clinic Hamburg Nord-Heidberg, Hamburg, Germany.

Division of Clinical and Metabolic Genetics, Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.

Emma Children’s Hospital, Amsterdam UMC, Pediatric Endocrinology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA.
Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands.

Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.

Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.

Division of Endocrinology, Montreal Children’s Hospital and the Endocrine Genetics Lab, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.

* These authors contributed equally (co-first authorship).

** These authors contributed equally (co-senior authorship).

Corresponding Author:

Dr. Geneviève Bernard

Research Institute of the McGill University Health Centre

1001 boul Décarie, EM02224 (CHHD Mail Drop Point #EM03211 (Cubicle C))

Montréal, QC H4A 3J1, Canada

Tel: +1 514-934-1934 ext. 23380; Fax: +1 514-933-4149

Email: genevieve.bernard@mcgill.ca

*Reprint requests can be addressed to Dr. Geneviève Bernard.
Disclosure Summary:

A.V. receives grant and in-kind funding from Ionis, Illumina, Eli Lilly, Gilead, Biogen, Takeda, and Homology. B.P.v.d.W. receives research support from Radboud University Medical Centre, ZonMW, Hersenstichting, and Gossweiler Foundation. G.B. has received compensation for traveling to meetings and advisory boards from Ionis, Shire/Takeda, Children’s Hospital of Philadelphia, and Actelion Pharmaceuticals. G.B. also served on the scientific advisory board for Ionis (2019) and has received research grants from Shire/Takeda and Bluebird Bio. G.M.H. received compensation for consulting with Kinetics. G.W. has received honoraria for speaking engagements from Desitin (Hamburg, Germany) and Novartis (Nuremberg, Germany), and gave scientific advice to PTC Therapeutics (Frankfurt, Germany). I.K.M. has received a travel grant from Shire/Takeda for an unrelated study. M.S.v.D.K. served on the scientific advisory board for Ionis (2019) and has received compensation for traveling to advisory boards from Ionis. M. Sylvain has received financial compensation for medical education conferences and/or has participated in advisory board for various pharmaceutical companies including Shire/Takeda, Janssen, Purdue and Sunovion. N.I.W. has served on the scientific advisory board for Orchard and has received travel compensation. A. Blaschek, A. Bley, A. Hamati, A. Hill, A. Mirchi, A. Misbahuddin, A. Pizzino, A.D., A.M.I., A. Potic, A.R., A.S., B. Banwell, B. Brais, B.C., B.L.F., B.P., B.P.v.d.W., B.T.P.T., C. Tibussek, C.A.S., C.C., C.C.B., C.G., C.H., C.M.L., C.P., D. Timmann, D. Tonduti, D.B., D.G.B., D.G.M., D.P., D.R., E. Rampakakis, E. Rossignol, E.B., E.L., E.W., F.F., F.F.O., F.I.M., F.K.C., F.M., F.P., G.A.M.M., G.D., G.K., G.S., G.Y., H. Pedro, H. Philipp, H.M., H.O., I.C., I.H., I.T.M., J. Rankin, J. Rotteveel, J.F., J.G.A., J.L.B., J.R.O., K.B., K.G., L.K.S.R., L.S., L.T.T., M. Suri, M. Synofzik, M.D., M.E.G.G., M.F.R., M.K., M.M., M.N., M.P.M., M.V.L., N.R.E., N.S., N.U., P.G., P.K., P.S., P.S.P., P.W., R.F., R.I.W., R.L.P., R.M.L.v.S., R.P.J.M., R.S., R.S.C., S. Melançon, S. Moutton, S. Patzer, S. Pekic, S. Perrier, S. Saikali, S.M.K., S.N., S.O., S.T., S.V., T.A., T.d.G., U.K., V.P., W.B., W.M., and W.T.G. have nothing to declare.
Funding and Research Support:

This study was supported by grants from the Canadian Institutes of Health Research (201610PJT-377869, MOP-G2-341146-159133-BRIDG), Fondation Les Amis d’Élloït, Leuco-Action, Fondation Lueur d’Espoir pour Ayden, Fondation le Tout pour Loo, and Réseau de Médecine Génétique Appliquée du Fonds de Recherche du Québec - Santé. This research was enabled in part by support provided by Compute Canada (www.computecanada.ca). S. Perrier is supported by the Fonds de Recherche du Québec en Santé (FRQS) Doctoral Scholarship, the Fondation du Grand défi Pierre Lavoie Doctoral Scholarship, the McGill Faculty of Medicine F.S.B. Miller Fellowship, and the Research Institute of the McGill University Health Centre Desjardins Studentship in Child Health Research. F.K. Cayami is a recipient of the Directorate of Higher Education Overseas Scholarship-Dikti Scholarship, Ministry of National Education, Republic of Indonesia. W.T. Gibson received funding from the CIHR (201603PJT-148695) and is supported by the BC Children’s Hospital Foundation through its intramural Investigator Grant Award Program (IGAP). B.L. Fogel was supported by the National Institute for Neurological Disorders and Stroke (R01NS082094). A. Vanderver receives funding from the Jakob Kamens Chair in Translational Neurotherapeutics. G. Bernard has received a Research Scholar Junior 1 award from the Fonds de Recherche du Québec - Santé (FRQS) (2012-2016) and the New Investigator Salary Award from the Canadian Institutes of Health Research (2017-2022).

Précis: International cross-sectional study of 4H patients’ growth and endocrine abnormalities, revealing delayed puberty and short stature are most common; however, many aspects are under-investigated.

Keywords: POLR3-related leukodystrophy, 4H leukodystrophy, hypomyelination, hypogonadotropic hypogonadism
Abstract

Context: 4H or POLR3-related leukodystrophy is an autosomal recessive disorder typically characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism, caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C and POLR3K. The endocrine and growth abnormalities associated with this disorder have not been thoroughly investigated to date.

Objective: To systematically characterize endocrine abnormalities of patients with 4H leukodystrophy.

Design: An international cross-sectional study was performed on 150 patients with genetically confirmed 4H leukodystrophy between 2015-2016. Endocrine and growth abnormalities were evaluated, and neurological and other non-neurological features were reviewed. Potential genotype/phenotype associations were also investigated.

Setting: This was a multicenter retrospective study using information collected from three predominant centers.

Patients: 150 patients with 4H leukodystrophy and pathogenic variants in POLR3A, POLR3B, or POLR1C were included.

Main Outcome Measures: Variables used to evaluate endocrine and growth abnormalities included pubertal history, hormone levels (estradiol, testosterone, stimulated LH and FSH, stimulated GH, IGF-1, prolactin, ACTH, cortisol, TSH, and T4), height and head circumference charts.
Results: The most common endocrine abnormalities were delayed puberty (57/74; 77% overall, 64% in males, 89% in females) and short stature (57/93; 61%), when evaluated according to physician assessment. Abnormal thyroid function was reported in 22% (13/59) of patients.

Conclusions: Our results confirm pubertal abnormalities and short stature are the most common endocrine features seen in 4H leukodystrophy. However, we noted that endocrine abnormalities are typically under-investigated in this patient population. A prospective study is required to formulate evidence-based recommendations for management of the endocrine manifestations of this disorder.
Introduction

Leukodystrophies are a group of rare genetic diseases characterized by abnormal white matter in the central nervous system (CNS), which often result in progressive neurodegeneration and premature death.(1,2) Based on whether the white matter abnormalities seen on brain MRI are caused by insufficient initial myelin deposition or altered myelin homeostasis, leukodystrophies can be classified as hypomyelinating or non-hypomyelinating, respectively.(3-5) 4H leukodystrophy, also known as RNA polymerase III (POLR3)-related leukodystrophy, is an autosomal recessive hypomyelinating leukodystrophy associated with several characteristic neurological and non-neurological clinical features, primarily including hypomyelination, hypodontia, and hypogonadotropic hypogonadism.(6) Commonly presenting neurological signs include cerebellar manifestations, such as ataxia and dysmetria, as well as pyramidal, extrapyramidal, and cognitive features.(5,7) Non-neurological manifestations can include myopia and endocrine features such as growth hormone deficiency and short stature.(7-12) 4H leukodystrophy is also typically associated with a unique MRI phenotype, including cerebellar atrophy, progressive thinning of the corpus callosum, and diffuse hypomyelination with relative preservation of specific structures, namely the dentate nucleus, optic radiation, anterolateral nucleus of the thalamus, globus pallidus, and corticospinal tracts at the level of the internal capsule.(13,14) 4H leukodystrophy has been found to be caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C, and POLR3K, each of which encode subunits of the POLR3 complex.(15-18)

As this class of leukodystrophies has been discovered relatively recently, secondary features that are typically associated with this phenotype have not been comprehensively described. This study presents a thorough investigation of the endocrine and growth abnormalities associated with 4H leukodystrophy through an international cross-sectional retrospective study of 150 patients with a molecular confirmation of the diagnosis. Moreover, this study provides insight on the endocrine disorders associated with this disease, and how some endocrine abnormalities may have an impact
on patients’ quality of life, thus highlighting the importance of considering endocrine therapeutic options, with the associated impact on medical care.

Materials and Methods

Patients and Study Design

An international cross-sectional study was performed between 2015 and 2016 on a cohort of 150 patients (76 females, 74 males) with biallelic pathogenic variants in POLR3A, POLR3B, or POLR1C and hypomyelination on brain MRI. Chart review focused on endocrine data, including any available hormonal investigations and pubertal history information, as well as growth data, including height and head circumference. Other clinical features, including age at disease onset, genotype, and both neurological and non-neurological features were reviewed. This project was approved by the research ethics committee of the Montreal Children’s Hospital (11-105-PED), Canada; the Children’s Hospital of Philadelphia, USA; and the VU University Medical Center in Amsterdam, Netherlands. Informed written consent was obtained from all participants or their legal guardians. Several patients have been previously published in studies describing the genetic basis of the disease, or in the delineation of other clinical features.

Pubertal Status

In females, to evaluate abnormalities in pubertal development, we primarily assessed age at menarche, and considered puberty delayed if menarche had not occurred by the 16th birthday. We lacked information on breast development for most patients, however, for those that had information available, we evaluated Tanner stage of breast development at age 13 (persistence of Tanner stage 1). Of note, we considered menarche as the main criteria for evaluating abnormal puberty (i.e. if patients had delayed or absent menarche, this feature took priority over breast development stage). In males, we assessed Tanner staging for testicular growth, and considered puberty delayed if Tanner stage 1 for testicular growth persisted at age 14.
Growth Data

Data sets of patients’ height and head circumference at all available times from birth to their latest available visit were reviewed and standardized according to the appropriate sex and age references.

Endocrine Investigations

For patients whose information was available, we retrospectively reviewed levels of estradiol, testosterone, stimulated LH and FSH, stimulated GH, IGF-I, prolactin, ACTH, cortisol, TSH, and free T4.

Statistical Analysis

Descriptive statistics were produced for all studied parameters, including the median and minimum/maximum values for continuous variables and the count and percentage for categorical variables. For the latter, 95% confidence intervals (95%CI) were also produced using the normal approximation method.

For the growth analysis, the percentiles for each measure were determined using the World Health Organization (WHO) growth charts. In order to compare height data accounting for age and sex, Z-scores were calculated using values and standard deviations from the WHO child growth standards. As 95% of the normal population is within two standard deviations from the mean, short stature was defined as a height value below two standard deviations for that corresponding age and sex. Similarly, for head circumference data, microcephaly was defined as a head circumference that was two standard deviations or more below the mean for that corresponding age and sex, while macrocephaly was defined as greater than two standard deviations above the mean.
The association between genotype and phenotype was assessed for exploratory purposes with the Chi-square test. Analyses were conducted using SPSS software version 24 (Armonk, NY: IBM Corp.).

Pituitary Gland Pathology

Pituitary gland pathology of one 4H patient with pathogenic variants in *POLR3A*, who had died of respiratory complications at age 19, was investigated via immunohistochemical staining of the adenohypophysis. Five micrometer thick vertico-frontal sections of the hypophysis were analyzed with immunostaining for FSH (Agilent Cat# M3504, RRID: AB_2079146, dilution 1/400), LH (Agilent Cat# M3502, RRID: AB_2135325, dilution 1/400), prolactin (Cell Marque Cat# 210A-18, RRID: AB_1516984, dilution 1/250), ACTH (Agilent Cat# M3501, RRID: AB_2166039, dilution 1/1000), TSH (Agilent Cat# M3503, RRID:AB_2287785, dilution 1/300), and HGH (Agilent Cat# A0570, RRID:AB_2617170, dilution 1/3000).

Results

Molecular Genetics and Clinical Features

Within our cohort of 150 patients, 56 had pathogenic variants in *POLR3A*, 81 in *POLR3B*, and 13 in *POLR1C*. 76 patients were females, and 74 were males (Table 1). Both neurological and non-neurological features were noted in the patient cohort. Many patients demonstrated ataxia (94%; 49/52), dysarthria (85%; 34/40), and dystonia (84%; 26/31). Other features can be seen in Table 1. Non-neurological features were also evident, including myopia (87%; 90/103), and teeth abnormalities (85%; 99/117).
Reproductive Hormones and Pubertal Development

Female Patients

Delayed puberty was reported in 89% (34/38; 95%CI, 80-99%) of female patients based on the clinical judgement of the treating physician. In analyzing our cohort based on the clinical information that was available for menarche and breast development, 21/25 patients (84%; 95%CI, 70-98%) were considered to have absent, delayed, or arrested puberty. Therefore, most females in our cohort presented with abnormal puberty, and differing severities of early-onset hypogonadism.

Of the female patients tested for specific hormone levels, 13/19 (68%; 95%CI, 48-89%) had low levels of estradiol. LHRH stimulation tests were performed on 13 female patients, of whom 8 (62%; 95%CI, 35-88%) had abnormally low levels of both LH and FSH. In regard to sex steroid treatment, information was available for 29 patients, of whom 20 patients (69%) received treatment and 9 (31%) did not. Sex steroid medications induced menstruation and/or puberty in 9/20 (45%; 95%CI, 23-67%) of female patients. In one patient, treatment was clearly ineffective, and in several cases, sex steroids were not well tolerated and caused adverse reactions. Of the untreated patients, 6/9 (67%) had abnormally low sex steroid levels, and of the 2/9 (22%) patients with normal levels, one had a clinical diagnosis of delayed puberty. Only four out of thirteen patients who had menarche experienced it spontaneously with no need for sex hormone treatment, at a median age of 12 years (min age 11 years, max age 13 years; n=4). In patients who were treated with sex hormones, menarche occurred at a median age of 18 years (min age 16 years, max age 32 years; n=9). For those who experienced treatment-induced menarche, information on spontaneous breast development was only available for two patients, who reached onset of breast development at ages 12 and 19 years old. Of the patients for which menarche did not yet occur, 3/4 (75%) were treated with sex hormones, one of which was only 16 years old at the time of data collection. The remaining patient who did not experience menarche had not been treated with sex hormones (1/4; 25%). Summarized results are shown in Figure 1.
Male Patients

Overall, less information was available regarding puberty of males compared to females. Based on the physician’s clinical judgement, 23/36 (64%; 95%CI, 48-80%) of male patients had delayed puberty. In analyzing our cohort based on the definition of delayed puberty (persistence of Tanner stage 1 for testicular growth at age 14), 6/7 (86%; 95%CI, 60-100%) were considered to have delayed puberty. Many patients lacked information on Tanner staging in adolescence, and therefore could not be assessed for early pubertal abnormalities.

Out of the male patients in our cohort tested for sex steroid levels, 11/14 (79%; 95%CI, 57-100%) had abnormally low testosterone levels. All patients with low testosterone also presented with delayed puberty (7/7, 100%). LHRH stimulation tests revealed abnormally low levels of LH in all patients that were tested (5/5, 100%). Information regarding sex steroid treatment was available for 23 male patients; approximately half of the patients (11/23; 48%) were treated, while 12/23 (52%) were not. Nearly all of the males who received sex steroid medication were treated with testosterone (10/11, 91%), with the exception of one who was treated with chorionic gonadotropin (1/11, 9%). Treatment, however, was only effective in five patients (5/11; 45%; 95%CI, 16-75%), including four patients who received testosterone and the single patient who received chorionic gonadotropin treatment. Results are summarized in Figure 1.

Growth Analysis

Linear growth data were obtained for 115 patients and analyzed using Z-scores. The Z-score for all ages ranged from -4.76 to 1.70 (median -1.48). To determine whether growth was more severely impacted in participants of certain ages, median Z-scores for heights of different age groups of patients were evaluated. For each age group range, an average Z-score was calculated for each patient based on all height data if multiple records were available. Some participants are represented in multiple age groups if records were available spanning different ranges. Z-scores for
ages <5 years (n=42), 5-9 years (n=37), 10-14 years (n=28), and ≥15 years (n=57) were found to be -0.56, -1.86, -1.83 and -1.16, respectively. Figure 2 shows boxplots of height Z-scores for all patients, and for each age group. Across age groups, patients <5 years of age had a median Z-score closest to that of the general population (0). Additionally, the <5 years age group had a positive Z-score for the third quartile (0.31), whereas the other age groups (5-9 years, 10-14 years, and ≥15 years) each had negative third quartile values (-0.89, -0.57 and -0.62, respectively). Moreover, the maximum Z-score for the height of the <5 years group (3.16) corresponds to the maximum value of the entire cohort, and the minimum Z-score for the <5 years group (-3.23) is closest to zero when comparing minimum values between all groups. These results suggest that the <5 years age group seems to be least affected in regard to stature. In contrast, the 5-9 age group is most affected, as it has the lowest values for the maximum and median Z-score values of all groups. Moreover, within the 5-9 years age group, the median height Z-score was -1.86 and the Z-score of the first quartile was -2.76, where more than a quarter of these patients had a short stature.

Based on the clinical judgement of the treating physician, 57/93 patients (61%; 95%CI, 51-71%) were considered to have short stature. When analyzing the Z-scores of patients' heights, 53/115 patients (46%; 95%CI, 37-55%) had values lower than two standard deviations and thus by clinical definition had short stature. Out of 115 patients, 67 (58%; 95%CI, 49-67%) were also reported to have a height > -1.5 standard deviation below the mean. Additionally, 68% of these patients (78/115; 95%CI, 59-76%) had a height lower than one standard deviation below the mean. Thus, even if some patients did not meet the criteria for the clinical definition of short stature, our cohort seems to be smaller than the general population.

Head circumference data were analyzed using Z-scores in patients aged 0 to 5 years (n=35). The Z-scores ranged from -2.93 to 2.44 (median -0.04). Twenty patients (20/35, 57%; 95%CI, 41-74%) presented with a head circumference within one standard deviation from the mean, while 31 patients (31/35, 89%; 95%CI, 78-99%) were within two standard deviations from the mean. Three
patients (3/35, 9%; 95%CI, 0-18%) had values lower than two standard deviations below the mean and thus by clinical definition had microcephaly. Additionally, 14% of patients (5/35; 95%CI, 3-26%) were reported to have a head circumference lower than 1.5 standard deviations below the mean, and 34% (12/35; 95%CI, 19-50%) had a head circumference lower than one standard deviation below the mean. One patient (1/35, 3%; 95%CI, 0-8%) met the criteria for macrocephaly, with a head circumference greater than two standard deviations above the mean.

Of our cohort of 150 patients, data regarding growth hormones were available for 12 patients, where seven had a diagnosis of GH deficiency based on the clinical judgement of the treating physician (7/12, 58%; 95%CI, 30-86%). Of these seven patients who were diagnosed with a GH deficiency, only two had a GH stimulation test, where one had a decreased response and the other one presented with a normal response. Many patients only had a single measurement of GH, however these results could not be analyzed as GH is secreted in a pulsatile manner, and therefore non-stimulated levels do not provide useful information for analysis. In total, five patients in our cohort had a GH stimulation test, where three exhibited a decreased response (3/5, 60%; 95%CI, 17-100%), and the remaining two a normal response. Additionally, only two patients were treated with GH, which was ineffective in both cases. IGF-I values were only available for 27 patients, of which 19% presented with a low value (5/27, 19%; 95%CI, 4-33%). For those that had both a GH stimulation test and IGF-I levels measured, two patients had low levels of both tests, one had normal results for both, one had a normal GH stimulation test and low IGF-I levels, and one had a low GH stimulation test and normal IGF-I levels.

Other Endocrine Abnormalities

In patients with abnormal prolactin levels (9/22, 41%; 95%CI, 20-61%), values were found to vary in both high and low ranges. Of these patients, four had high levels of prolactin (4/22, 18%; 95%CI, 2-34%), wherein three had levels at least 50% higher than normal (3/22, 14%; 95%CI, 0-28%).
In contrast, five patients had low prolactin levels (5/22, 23%; 95%CI, 5-40%), of whom one had levels at least 50% lower than normal (1/22, 4.5%; 95%CI, 0-13%).

Nearly all patients who were tested for cortisol levels had results within the normal range (20/21, 95%; 95%CI, 86-100%). Additionally, most patients who were tested for ACTH levels displayed normal results (8/9, 89%; 95%CI, 68-100%). The single patient with abnormal cortisol levels presented with an elevated level (1/21, 5%; 95%CI, 0-14%), though his ACTH level was not tested. The single patient who displayed high ACTH levels (1/9, 11%; 95%CI, 0-32%) had normal cortisol levels.

Thyroid function was tested in 59 patients, and 13 showed abnormal results (13/59, 22%; 95%CI, 11-33%). Approximately 10% of patients (6/59, 95%CI, 2-18%) had abnormal TSH levels, including two patients with low TSH levels (2/59, 3%; 95%CI, 0-8%), and four patients with high TSH levels (4/59, 7%; 95%CI, 0.4-13%). Of the 47 patients tested for free T4 levels, five showed abnormal results (5/47, 11%; 95%CI, 2-19%), including three with high levels (3/47, 6%; 95%CI, 0-13%), and two with low levels (2/47, 4%; 95%CI, 0-10%).

One patient with low TSH levels, but normal T4 levels, was diagnosed with subclinical hyperthyroidism. One patient had low T4 levels and high TSH levels, which is consistent with hypothyroidism. Additionally, one patient with an unknown TSH level, and a low free T4 level was diagnosed with hypothyroidism. Only one patient was treated with thyroid hormones, but no data were available regarding his hormonal levels. A summary of hormone levels is presented in Table 2.

Relationship Between Genotype and Endocrine Abnormalities

According to different genotypes (i.e. whether pathogenic variants were present in POLR3A, POLR3B, or POLR1C), the presence of delayed puberty and short stature in patients was analyzed, as these features were most prevalent in our patient cohort. In terms of delayed puberty, significant differences were observed between genotypes (p<0.001), with the highest incidence observed in
patients with pathogenic variants in POLR3A (27/32, 84%; 95%CI, 72-97%), followed by those with variants in POLR3B (30/38, 79%; 95%CI, 66-92%). None of the patients with pathogenic variants in POLR1C (0/4; 0%) who had reached the appropriate age exhibited delayed puberty. Of patients with pathogenic variants in POLR3A, 71% (22/31; 95% CI, 55-87%) had short stature, compared to 54% (32/59; 95%CI, 42-67%) with variants in POLR3B, and 100% (3/3) with variants in POLR1C (p=0.113). Data on specific hormone measurements were limited, however an analysis of levels of stimulated GH, prolactin, TSH, and free T4 between genotypes is also presented in Table 2.

Pituitary Gland Pathology

Pathological investigations were performed following autopsy of a 19-year-old patient who was homozygous for the POLR3A pathogenic variant c.2015G>A (p.G672E). Clinically, the patient did not show signs of puberty, and was reported to have hypogonadotropic hypogonadism, however results of specific hormone levels were not available. He also had short stature, falling in the 5th percentile for height at age 18. The patient demonstrated typical neurological features associated with 4H leukodystrophy, including ataxia with abnormal gait, tremor, dystonia, spasticity and dysarthria. MRI revealed diffuse hypomyelination with cerebellar atrophy and a thin corpus callosum, consistent with the pattern for 4H leukodystrophy. He also had epilepsy, with complex partial seizures. Dentition was abnormal, with notable hypodontia. Ocular abnormalities included myopia, mild optic nerve atrophy, and esotropia. With age, chronic progressive decline in neurological function was evident, along with decline in motor ability. He was wheelchair bound at age 8, eventually becoming quadriplegic with increased tone in all extremities. He had dysphagia, with frequent choking episodes, and progressively lost the ability to eat unaided, further requiring a gastrostomy. The patient had recurrent aspiration pneumonias and died at the age of 19 from complications due to bilateral pneumonia. Immunohistochemical analysis of the anterior pituitary gland revealed an absence of immunostaining of anti-FSH and anti-LH antibodies (Figure 3) and normal immunostaining for anti-GH, anti-TSH, anti-prolactin and anti-ACTH antibodies. This
demonstrates an absence of secretion of gonadotropic hormones (FSH and LH) by the pituitary gland.

Discussion

Our study confirms that endocrine impairment is frequent in patients with 4H leukodystrophy and although limited data were available for the entire cohort of patients, our results reveal notable information regarding abnormalities in the pituitary-gonadotrophic axis. Delayed puberty was a common finding in our patient population. However, LHRH stimulation tests were only performed on a small percentage of patients to confirm hypogonadotropic hypogonadism. It should be noted that baseline FSH and LH levels are not useful for the diagnosis of hypogonadotropic hypogonadism, and stimulation tests should be performed for an accurate result. There are currently no guidelines for the introduction of sex steroid treatment in patients with 4H leukodystrophy. Still, we would recommend LHRH stimulation tests to confirm the diagnosis prior to initiating treatment. Thus, a pediatric endocrinologist should be included in the multidisciplinary team assessing patients with 4H leukodystrophy.

Treatment of hypogonadotropic hypogonadism remains controversial in this patient population; although there are significant benefits, there are also associated risks. One significant treatment advantage is the promotion of bone health by influencing bone remodelling. Another potential benefit is the physical appearance in a period of life where being similar to his/her peers is important. Such factor is typically not a consideration for severely neurologically impaired children. Treating hypogonadotropic hypogonadism would allow the development of secondary sexual characteristics associated with normal pubertal development, and also induce a growth spurt, which might enhance motor difficulties and behavioural problems. Currently, little information is available in the literature regarding this treatment and its effects on this patient group. It was previously suggested that the same principles of hormone replacement therapy used in patients with other forms of hypogonadotropic hypogonadism should be applied to patients with 4H...
leukodystrophy.\(^{(10)}\) To induce puberty, sex steroids (testosterone for boys and estrogen/progesterone for girls) are the first line of therapy for patients with hypogonadotropic hypogonadism. If fertility induction is intended, pulsatile GnRH therapy could be tried, however, may not be effective, as some individuals with hypogonadotropic hypogonadism respond poorly to short-term stimulation.\(^{(19)}\) In this case, treatment with recombinant gonadotrophins could provide an alternative option. In this cohort, sex steroid treatment did not appear to be effective in all cases, however, it could not be established by what criteria response was judged, how long treatment was pursued, and/or by what dose. Collecting additional prospective data on sex hormone treatment for delayed puberty would allow better ascertainment of these situations and provide further informed recommendations. In the meantime, we recommend that the decision to initiate sex steroid treatment is approached on an individual basis, while weighing the benefits (e.g. bone health) and disadvantages (e.g. rapid growth spurt with motor regression), together with the overall health of the patient (e.g. well vs. severely impaired) and only after measure of abnormal sex hormone levels confirms the diagnosis.

Pathological investigations of an affected patient confirmed dysfunction in the sex steroid axis, as an absence of FSH and LH secretion was observed in the anterior pituitary gland. Low response to LHRH stimulation tests, observed in 72% of our patients, also supports the hypophyseal origin.\(^{(20)}\) Thus, it is likely that abnormal levels of FSH and LH are a result of pituitary gland malfunction, resulting in central hypogonadism.

Little data were available regarding stimulated GH levels in our cohort of patients. Based on our results, decreased GH secretion could be frequent in patients with 4H leukodystrophy; however, very few regularly had levels of stimulated GH measured. Moreover, a GH stimulation test is necessary for the diagnosis of GH deficiency; random measurements of GH are not diagnostic if low and can only by useful to rule out a deficiency if high. Therefore, it is recommended that every patient with an abnormally low growth velocity should be tested with a GH stimulation test. As a
whole, our data are insufficient to conclude which percentage of patients with 4H leukodystrophy would need a GH stimulation test. Before we can make a general recommendation, further analysis of a larger cohort is required. As with any other child, height should be recorded and plotted at least once a year. GH treatment was reported to be ineffective in two patients who were treated in our cohort, however, it can be difficult to form conclusions based on these findings. GH treatment can often fail due to extraneous factors, such as nutrition, psychological aspects, and general state of health. Additionally, it should be noted that limitations of testing have been reported in establishing a firm diagnosis of GH deficiency, with a high rate of false positive diagnoses reported in the literature.(21) Additionally, it is possible that late sex steroid therapy could contribute to an impaired pubertal growth spurt, and mislead the conclusion of an eventual lack of efficacy of GH treatment. Our findings support the early consultation and regular follow-ups with an endocrinologist, especially in patients with short stature.

When analyzing growth data according to age group, it was found that young patients <5 years of age were least affected by abnormal growth. This finding is expected given that the typical age of disease onset is during the second year of life. Growth was most affected in children 5-9 years of age, followed by children 10-14 years of age. We initially hypothesized that growth would be most affected in patients ≥15 years of age due to the frequent occurrence of delayed puberty. As per the recommendations for treatment, patients with delayed puberty are not usually treated before age 14; it is therefore possible that our cohort of patients age 5-9 years are most affected by growth abnormalities as older patients may have received sex steroids to stimulate puberty and growth, thereby compensating for the deficit caused by this disease. Indeed, in our cohort of patients ≥15 years of age, 22 patients received treatment of sex steroids and/or growth hormones. These treatments may have stimulated their growth and puberty. Therefore, the growth data of 22/57 patients may have been affected by a treatment that helped in compensating their short stature. It is clear that as a whole, patients with 4H leukodystrophy are smaller compared to the general population within each analyzed age group. Thus, growth and height data should be collected by
treating physicians so that abnormalities can be clearly identified, thereby facilitating more rapid treatment interventions. If growth anomalies are observed, GH stimulation tests should be considered. In future studies, it would be interesting to systematically follow growth and perform comparisons to bone age in individual patients in order to identify the subgroups of patients who would benefit most from GH replacement.

When analyzing head circumference data in our cohort of patients <5 years of age, microcephaly seems to be more prevalent (9%) compared to the general population, in which there is a prevalence of 2%.(22,23) However, it should be noted that head circumference data were collected only for a limited number of patients. Microcephaly is typically not observed in the context of 4H leukodystrophy; only one case report describes this condition in two female siblings with a novel phenotype of 4H leukodystrophy with polymicrogyria and cataracts, who were also included in this study but not analyzed for head circumference due to lack of head circumference measurements.(24) As our results show an increased prevalence of small head size in the young age group <5 years old, it would be interesting to further analyze additional data on head circumference to better characterize head size in 4H leukodystrophy.

A high percentage (41%) of patients with 4H leukodystrophy were found to have abnormal prolactin levels, where variability was seen in elevated (18%), or deficient (23%) levels. Limited information is available on the typical prolactin levels in patients with 4H leukodystrophy; two case reports have previously reported low prolactin levels in two patients, who were also included in this study.(11,12) Notably, prolactin values should be interpreted with the consideration of current treatments, as some medications are known to cause hyperprolactinemia (e.g. psychoactive drugs). As the full medication records of all patients in our cohort were not available, the interpretation of elevated results should be approached with caution. However, hypoprolactinemia does not commonly result from medications. It is known that the two previously published patients in our cohort with hypoprolactinemia (11,12) were not under any treatments that could have interfered
with testing, and their prolactin deficiency could not be explained by any known causes. Therefore, this finding provides foundation for the attribution of abnormal prolactin levels to 4H leukodystrophy itself.

Most patients in our cohort presented with normal random cortisol levels (20/21; 95%), with the exception of one whose were elevated. ACTH levels were also normal for most patients tested (8/9, 89%). This suggests that adrenal dysfunction is not a common feature in our cohort, however, stimulation tests would be needed to fully conclude normal adrenal function in this patient population. Of note, random cortisol levels should be interpreted with caution, as cortisol secretion follows a circadian rhythm.

The prevalence of thyroid dysfunction appears to be increased in the 4H leukodystrophy population compared to the unaffected population. However, diverse abnormal variations of TSH and T4 hormones levels were observed in our cohort, suggesting that it is not associated with a typical disease phenotype. In the general pediatric population, hypothyroidism is the most common dysfunction with a prevalence of 0.135% in young people (<22 years of age).(25) Compared to this, in our cohort, 4% of patients had hormone levels consistent with hypothyroidism.

Our results do not suggest a strong genotype-phenotype correlation between patients with biallelic pathogenic variants in the different genes associated with 4H leukodystrophy and short stature. However, a significant difference was observed between genotypes when considering delayed puberty. Patients with variants in POLR3A had the highest incidence of delayed puberty, followed by those with variants in POLR3B. Although no patients in our cohort with pathogenic variants in POLR1C demonstrated delayed puberty, it should be noted that only data on four patients were available, and further analysis is required before definitive conclusions are formed. Additionally, as most patients in our cohort were compound heterozygous for different variants in each gene, and variants are located across different protein domains, it is difficult to make detailed phenotype-genotype correlations between specific pathogenic variants and clinical features.
It is important to note that patients with 4H leukodystrophy are at risk for endocrine abnormalities, most commonly hypogonadotropic hypogonadism and GH deficiency. Thus, the treating physician should have a high index of suspicion when signs or clinical symptoms appear. Measurements of relevant hormone levels and stimulation tests when necessary should be made to confirm the diagnosis. Finally, the decision of whether or not to treat should be evaluated on an individual basis while considering the advantages and disadvantages, as no definitive recommendations currently exist.

In summary, endocrine abnormalities are under-investigated in patients with 4H leukodystrophy. A future study is required to investigate the full extent and severity of typical endocrine abnormalities. Additional data on the evolution of growth, evaluated by regular height measurements, are necessary. As hypodontia and teeth abnormalities are commonly seen in 4H leukodystrophy, it is also important to continue to monitor dental growth and the development of permanent tooth sets. An additional interesting aspect for future assessment could involve bone age and density, and their correlations with growth development and puberty. In order to fully determine the prevalence of delayed puberty, clear information about the stage of puberty, age of menarche and breast development, level of testicular growth, and Tanner stage of development is needed. Additional data on endocrine hormone levels would also allow a more comprehensive evaluation of the prevalence of endocrine anomalies. In this study, data to evaluate the described growth and pubertal measures were only available for a limited number of patients. This presents a limitation and raises difficulty in drawing precise conclusions. In this sense, it is also possible that puberty and growth anomalies could have been recorded more commonly in patients with abnormal clinical findings, thus raising the frequency of these alterations in our cohort. With an expanded data set, a future objective would be to formulate evidence-based recommendations regarding the management of the endocrine manifestations of 4H leukodystrophy. In conclusion, this is the first study to systematically analyze endocrine abnormalities in a large cohort of 4H leukodystrophy patients and provides the foundation for future comprehensive studies.
Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Acknowledgements

The authors wish to thank the patients and their families for their participation. We also wish to thank the clinicians who referred patients to this study. Additionally, the authors wish to acknowledge the McGill University and Genome Quebec Innovation Center.
References

1. Vanderver A, Prust M, Tonduti D, Mochel F, Hussey HM, Helman G, Garbern J, Eichler F, Labauge P, Aubourg P, Rodriguez D, Patterson MC, Van Hove JL, Schmidt J, Wolf NI, Boespflug-Tanguy O, Schiffmann R, van der Knaap MS, Consortium G. Case definition and classification of leukodystrophies and leukoencephalopathies. *Mol Genet Metab*. 2015;114(4):494-500.

2. van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. *Acta Neuropathol*. 2017;134(3):351-382.

3. Schiffmann R, van der Knaap MS. Invited article: an MRI-based approach to the diagnosis of white matter disorders. *Neurology*. 2009;72(8):750-759.

4. Steenweg ME, Vanderver A, Blaser S, Bizzi A, de Koning TJ, Mancini GM, van Wieringen WN, Barkhof F, Wolf NI, van der Knaap MS. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. *Brain*. 2010;133(10):2971-2982.

5. Parikh S, Bernard G, Leventer RJ, van der Knaap MS, van Hove J, Pizzino A, McNeill NH, Helman G, Simons C, Schmidt JL, Rizzo WB, Patterson MC, Taft RJ, Vanderver A, Consortium G. A clinical approach to the diagnosis of patients with...
leukodystrophies and genetic leukoencephalopathies. *Mol Genet Metab.* 2015;114(4):501-515.

6. Bernard G, Vanderver A. POLR3-Related Leukodystrophy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC, Stephens K, Amemiya A, Ledbetter N, editors. GeneReviews. Seattle, WA: University of Washington Seattle. 2017.

7. Wolf NI, Vanderver A, van Spaendonk RM, Schiffmann R, Brais B, Bugiani M, Sistermans E, Catsman-Berrevoets C, Kros JM, Pinto PS, Pohl D, Tirupathi S, Strømme P, de Grauw T, Fribourg S, Demos M, Pizzino A, Naidu S, Guerrero K, van der Knaap MS, Bernard G, Group HR. Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations. *Neurology.* 2014;83(21):1898-1905.

8. La Piana R, Cayami FK, Tran LT, Guerrero K, van Spaendonk R, Ounap K, Pajusalu S, Haack T, Wassmer E, Timmann D, Mierzewska H, Poll-The BT, Patel C, Cox H, Atik T, Onay H, Ozkinay F, Vanderver A, van der Knaap MS, Wolf NI, Bernard G. Diffuse hypomyelination is not obligate for POLR3-related disorders. *Neurology.* 2016;86(17):1622-1626.

9. Vanderver A, Tonduti D, Bernard G, Lai J, Rossi C, Carosso G, Quezado M, Wong K, Schiffmann R. More than hypomyelination in Pol-III disorder. *J Neuropathol Exp Neurol.* 2013;72(1):67-75.

10. Billington E, Bernard G, Gibson W, Corenblum B. Endocrine Aspects of 4H Leukodystrophy: A Case Report and Review of the Literature. *Case Rep Endocrinol.* 2015;2015:314594.
11. Potic A, Brais B, Choquet K, Schiffmann R, Bernard G. 4H syndrome with late-onset growth hormone deficiency caused by POLR3A mutations. *Arch Neurol.* 2012;69(7):920-923.

12. Potic A, Popovic V, Ostojic J, Pekic S, Kozic D, Guerrero K, Schiffmann R, Bernard G. Neurogenic bladder and neuroendocrine abnormalities in Pol III-related leukodystrophy. *BMC Neurol.* 2015;15:22.

13. La Piana R, Tonduti D, Gordish Dressman H, Schmidt JL, Murnick J, Brais B, Bernard G, Vanderver A. Brain magnetic resonance imaging (MRI) pattern recognition in Pol III-related leukodystrophies. *J Child Neurol.* 2014;29(2):214-220.

14. Vrij-van den Bos S, Hol JA, La Piana R, Harting I, Vanderver A, Barkhof F, Cayami F, van Wieringen WN, Pouvels PJW, van der Knaap MS, Bernard G, Wolf NI. 4H Leukodystrophy: A Brain Magnetic Resonance Imaging Scoring System. *Neuropediatrics.* 2017;48(3):152-160.

15. Bernard G, Chouery E, Putorti ML, Tétreault M, Takanohashi A, Carosso G, Clément I, Boespflug-Tanguy O, Rodriguez D, Delague V, Abou Ghoch J, Jalkh N, Dorboz I, Fribourg S, Teichmann M, Megarbane A, Schiffmann R, Vanderver A, Brais B. Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. *Am J Hum Genet.* 2011;89(3):415-423.

16. Tétreault M, Choquet K, Orcesi S, Tonduti D, Balottin U, Teichmann M, Fribourg S, Schiffmann R, Brais B, Vanderver A, Bernard G. Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. *Am J Hum Genet.* 2011;89(5):652-655.
17. Thiffault I, Wolf NI, Forget D, Guerrero K, Tran LT, Choquet K, Lavallée-Adam M, Poitras C, Brais B, Yoon G, Sztriha L, Webster RI, Timmann D, van de Warrenburg BP, Seeger J, Zimmermann A, Máté A, Goizet C, Fung E, van der Knaap MS, Fribourg S, Vanderver A, Simons C, Taft RJ, Yates JR, Coulombe B, Bernard G. Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. *Nat Commun.* 2015;6:7623.

18. Dorboz I, Dumay-Odelot H, Boussaid K, Bouyacoub Y, Barreau P, Samaan S, Jmel H, Eymard-Pierre E, Cances C, Bar C, Poulat A-L, Rousselle C, Renaud F, Elmaleh-Bergès M, Teichmann M, Boespflug-Tanguy O. Mutation in POLR3K causes hypomyelinating leukodystrophy and abnormal ribosomal RNA regulation. *Neurol Genet.* 2018;4(6):e289.

19. Delemarre-van de Waal HA. Application of gonadotropin releasing hormone in hypogonadotropic hypogonadism--diagnostic and therapeutic aspects. *Eur J Endocrinol.* 2004;151 Suppl 3:U89-94.

20. Orcesi S, Tonduti D, Uggetti C, Larizza D, Fazzi E, Balottin U. New case of 4H syndrome and a review of the literature. *Pediatr Neurol.* 2010;42(5):359-364.

21. Grimberg A, DiVall SA, Polychronakos C, Allen DB, Cohen LE, Quintos JB, Rossi WC, Feudtner C, Murad MH, Drug and Therapeutics Committee and Ethics Committee of the Pediatric Endocrine Society. Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. *Horm Res Paediatr.* 2016;86(6):361-397.

22. Abuelo D. Microcephaly syndromes. *Semin Pediatr Neurol.* 2007;14(3):118-127.
23. Sells CJ. Microcephaly in a normal school population. *Pediatrics*. 1977;59(2):262-265.

24. Jurkiewicz E, Dunin-Wasowicz D, Gieruszczyk-Bialek D, Malczyk K, Guerrero K, Gutierrez M, Tran L, Bernard G. Recessive Mutations in POLR3B Encoding RNA Polymerase III Subunit Causing Diffuse Hypomyelination in Patients with 4H Leukodystrophy with Polymicrogyria and Cataracts. *Clin Neuroradiol*. 2017;27(2):213-220.

25. Hunter I, Greene SA, MacDonald TM, Morris AD. Prevalence and aetiology of hypothyroidism in the young. *Arch Dis Child*. 2000;83(3):207-210.
Figures Legends

Figure 1. Summary of endocrine abnormalities in this cohort of patients with 4H leukodystrophy, according to the available clinical information on growth and endocrine features.

Figure 2. Box plots for Z-scores obtained for the mean height in different age categories. The height z-score for the general population (mean value) is considered to be zero (0), and the clinical definition for short stature is two standard deviations below the mean (-2).

Figure 3. Immunohistochemical analysis of the anterior pituitary gland. Total lack of cytoplasmic expression of LH (A; left) and FSH (B; right) is seen relative to the external control (insert). Magnification x400.
Table 1. Patient demographic characteristics, molecular diagnosis, clinical and endocrine features.

Characteristic	n (N)	Percentage
Gender		
Male	74 (150)	49.3%
Female	76 (150)	50.7%
Molecular Diagnosis:		
POLR3A	56 (150)	37.3%
POLR3B	81 (150)	54.0%
POLR1C	13 (150)	8.7%
Clinical Featuresa:**		
Neurological		
Ataxia	49 (52)	94.2%
Tremor	48 (66)	72.7%
Dystonia	26 (31)	83.9%
Dysarthria	34 (40)	85.0%
Dysphagia	18 (37)	48.7%
Sialorrhea	12 (25)	48.0%
Seizures	17 (61)	27.9%
Non-neurological		
Myopia	90 (103)	87.4%
Teeth abnormality	99 (117)	84.6%
Endocrine Features:		
Short stature		
Clinical impression	57 (93)	61.3%
Growth data	53 (115)	46.1%
Delayed puberty		
Clinical impression	57 (74)	77.0%
Tanner stage	27 (32)	84.3%
Abnormal thyroid function	13 (59)	22.0%

n: number of identified patients per data sample. N: total number of patients in the data sample.

a: N values vary as clinical data were not available for all 150 patients in the cohort.
Table 2. Summary of hormonal levels according to mutated gene.

Hormone Levels	Genotype (Number of Patients)	All Patients			
		POLR3A	POLR3B	POLR1C	TOTAL
GH (stimulation test)					
Low	2	0	1	3	
Normal	2	0	0	2	
% Abnormal	50.0%	0.0%	100.0%	60.0%	
Prolactin					
Low	3	2	0	5	
High	1	1	2	4	
Normal	8	3	2	13	
% Abnormal	33.3%	50.0%	50.0%	40.9%	
TSH					
Low	2	0	0	2	
High	1	2	1	4	
Normal	22	24	7	53	
% Abnormal	12.0%	7.7%	12.5%	10.2%	
Free T4					
Low	2	1	1	2	
High	0	2	1	3	
Normal	21	15	6	42	
% Abnormal	8.7%	16.7%	25.0%	10.6%	
Figure 1

Cohort of 150 Patients with 4H Leukodystrophy

- **Delayed Puberty**
 - Evaluated by Clinical Impression: 57/74 (77%)
 - Evaluated by Tanner Stage: 27/32 (84%)
 - Females
 - Evaluated by Clinical Impression: 34/38 (89%)
 - Evaluated by Menarche/Tanner Stage: 21/25 (84%)
 - Low Estradiol Levels: 13/19 (68%)
 - Abnormal LHRH Stimulation Test: 8/13 (62%)
 - Males
 - Evaluated by Clinical Impression: 23/36 (64%)
 - Evaluated by Tanner Stage: 6/7 (86%)
 - Low Testosterone Levels: 11/14 (79%)
 - Abnormal LHRH Stimulation Test: 5/5 (100%)

- **Short Stature**
 - Evaluated by Clinical Impression: 57/93 (61%)
 - Evaluated by Growth Data: 53/115 (46%)
 - Diagnosis of GH Deficiency: 7/12 (58%)
 - Abnormal GH Stimulation Test Results: 3/5 (60%)
 - Low IGF-I Levels: 5/27 (19%)

- **Abnormal Prolactin Levels**: 9/22 (41%)
 - High Prolactin: 4/22 (18%)
 - Low Prolactin: 5/22 (23%)

- **High Cortisol Levels**: 1/21 (4.8%)
- **High ACTH Levels**: 1/9 (11%)

- **Abnormal Thyroid Function**: 13/89 (22%)
 - Abnormal TSH: 6/89 (10%)
 - High TSH: 4/89 (7%)
 - Low TSH: 2/89 (3%)
 - Abnormal Free T4: 5/47 (11%)
 - High Free T4: 3/47 (6%)
 - Low Free T4: 2/47 (4%)
Figure 3