Application of the Prague C and M criteria for endoscopic description of columnar-lined esophagus in South Korea

Jung Wan Choe, Young Choon Kim, Moon Kyung Joo, Hyo Jung Kim, Beom Jae Lee, Ji Hoon Kim, Jong Eun Yeon, Jong-Jae Park, Jae Seon Kim, Kwan Soo Byun, Young-Tae Bak

AIM: To ascertain whether the Prague circumferential (C) length and maximal (M) length criteria for grading the extent of Barrett’s esophagus can be applied prior to its widespread application in South Korea.

METHODS: Two hundred and thirteen consecutive cases with endoscopic columnar-lined esophagus (CLE) were included and classified according to the Prague C and M criteria.

RESULTS: Of 213 cases with CLE, the distribution of maximum CLE lengths was: 0.5-0.9 cm in 99 cases (46.5%); 1.0-1.4 cm in 63 cases (29.6%); 1.5-1.9 cm in 15 cases (7.0%); 2.0-2.4 cm in 14 cases (6.6%); 2.5-2.9 cm in 1 case (0.5%); and 7.0 cm in 1 case (0.5%). Twenty cases (9.4%) had columnar islands alone. Two hundred and eight cases (97.7%) lacked the circumferential CLE component (C0Mx). Columnar islands were found in 70 cases (32.9%), of which 20 cases (9.4%) had columnar islands alone.

CONCLUSION: In regions where most CLE patients display short or ultrashort tongue-like appearance, more detailed descriptions of CLE’s in < 1.0 cm lengths and...
cylindrical islands, as well as avoidance of repeating the suffix "C0" need to be considered in parallel with the widespread application of the Prague system in South Korea.

Key words: Barrett’s esophagus; Endoscopy; Columnar-lined esophagus; Prague criteria

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This was a prospective study to assess the feasibility of the Prague circumferential length and maximal length criteria for the endoscopic description of columnar-lined esophagus in South Korea. In regions like South Korea where the prevalence and endoscopic features of this condition are quite different from the West, we suggest possible modifications that may fit the characteristics of the South Korean source population more properly.

Choe JW, Kim YC, Joo MK, Kim HJ, Lee BJ, Kim JH, Yeon JE, Park JJ, Kim JS, Byun KS, Bak YT. Application of the Prague C and M criteria for endoscopic description of columnar-lined esophagus in South Korea. World J Gastrointest Endosc 2016; 8(8): 357-361 Available from: URL: http://www.wjgnet.com/1948-5190/full/v8/i8/357.htm DOI: http://dx.doi.org/10.4253/wjge.v8.i8.357

INTRODUCTION

Barrett’s esophagus (BE) is defined as a histological change of the distal tubular esophagus, from squamous to columnar epithelium, which displays an intestinal metaplasia containing goblet cells[1,2]. Because BE is characterized by an upward shift of the squamocolumnar junction (SCJ) proximal to the gastroesophageal junction (GEJ), the resulting columnar-lined mucosa of the distal esophagus can be identified by its salmon-pink color during endoscopic examination[3,4]. Moreover, multiple endoscopic biopsies at the extended columnar-lined epithelium are needed to confirm BE diagnosis.

BE is associated with gastroesophageal reflux disease (GERD) and is considered a premalignant lesion for esophageal adenocarcinoma[5,6], the incidence of which is steadily rising in the United States and Europe[7,8]. Increasing GERD incidence in South Korea is considered to result from more consumption of westernized foods[9,10]. As patients with chronic GERD are at a higher risk of developing BE[11,12], the expected increase in BE and esophageal cancer incidence rates in the future is a matter of potential concern in South Korea.

Various studies have examined BE length as a risk factor for esophageal adenocarcinoma[13-15]. Results from a study showed that a doubling in BE length resulted in a 1.7-fold increase in the risk of developing esophageal adenocarcinoma[14], and others revealed that a significantly increased risk of dysplasia or adenocarcinoma was related to greater lengths of BE[13,14]. Therefore, accurate measuring of columnar-lined esophagus (CLE) lengths and describing in well-defined clinical terms are important in appropriate risk assessment and surveillance. Although previous diagnostic criteria for BE were based on the 3-cm length threshold of columnar-lined esophagus (CLE), by which BE was divided into 2 types, long (> 3 cm) and short (< 3 cm), this simple classification of variable endoscopic findings of CLE was a rather crude approach in describing BE. Furthermore, as considerable inter- and intra-observer variability in detecting and describing the CLE are common, the establishment of an accurate BE diagnosis and surveillance may be tricky[16-18].

Therefore, the Prague classification system that measures the circumferential (C) and maximal (M) extents for endoscopic standardization of BE lengths was developed and finally introduced by the International Working Group for the Classification of Oesophagitis (IWGCO) in 2004[19]. However, the overall reliability and validity of the Prague C and M criteria for BE diagnosis continues to be challenged[20-22]. Moreover, its performance in South Korea where the incidence of BE is low and the short-segment BE is the predominant type remains unclear.

In the present study, we aimed to assess the feasibility of the Prague C and M criteria for the endoscopic description of CLE in South Korea where the prevalence and endoscopic features of this condition are quite different from the West and to suggest possible modifications that may fit the characteristics of the South Korean source population more properly.

MATERIALS AND METHODS

This prospective study was conducted from the endoscopy data of consecutive CLE patients who underwent esophagogastroduodenoscopy (EGD) at Endoscopy Center of the Korea University Guro Hospital, Seoul, South Korea. Exclusion criteria included the presence of esophageal varices, acute upper gastrointestinal bleeding, malignancy near GEJ, and history of gastric surgery. Before each EGD, written informed consent was obtained. All endoscopic procedures were performed by an experienced endoscopist.

GEJ and SCJ were carefully assessed during the insertion of the endoscope. The distal margin of the palisade blood vessels of the lower esophagus was used as a marker of GEJ[23]. If the palisade vessels could not be seen adequately, the proximal margins of the gastric folds were used to identify GEJ. SCJ was used as a marker for upper border of CLE. The length of CLE, that is the distance from GEJ to SCJ, was measured by the insertion depths with the centimeter markings on the endoscope. CLE’s shorter than 0.5 cm in length were ignored to avoid possible observation errors that may lead to overdiagnosis. Careful observation was done to look for any presence of islands of columnar mucosa.

The C and M extents of CLE were recorded accord-
The Prague C and M criteria, suggested by IWGCO[13], M lengths were divided into long (≥3 cm), short (1-2.9 cm), and ultrashort (<1 cm) segments.

RESULTS

Patient demographic characteristics

A total of 213 CLE patients consisting of 154 men and 59 women, with 53.8 ± 12.3 years in age (mean ± SD) were enrolled.

Distribution of CLE lengths and application of the Prague C and M criteria

Analysis of cases with CLE’s excluding ultrashort CLE’s: Distribution of CLE’s according to their M values among those excluding ultrashort CLE’s is shown in Table 2. Among 139 cases, 63 (45.3%), 15 (10.8%), 14 (10.1%), 1 (0.7%), and 1 (0.7%) had CLE’s of 1.0-1.4 cm, 1.5-1.9 cm, 2.0-2.4 cm, 2.5-2.9 cm and ≥3.0 cm in lengths, respectively. Therefore, 138 (99.3%) out of all 139 cases had short CLE’s, and only one showed an exceptionally long CLE.

When 139 cases were classified by the Prague criteria, 134 (96.4%) had CLE’s without C component (COMx). Two cases had C1M1 and the remaining three patients had either C1M1.5, C1M1, or C1.5M2. Columnar islands were found in 70 (50.4%) cases, of which 45 (32.4%) showing columnar islands alone.

DISCUSSION

BE is a very well known risk factor for the development of dysplasia and esophageal adenocarcinoma[24-26]. The risk of dysplasia and adenocarcinoma in metaplasic epithelium reportedly increases in parallel to the lengths of BE[13-15]. A recent multicenter study conducted by Gaddam et al[13] revealed that for every 1-cm extension in BE length, the risk of high-grade dysplasia and esophageal adenocarcinoma increased by 21%. The study demonstrated that the increase in BE lengths significantly widens the area of metaplasia, which is associated with the progression to high-grade dysplasia/esophageal adenocarcinoma[13]. Although a novel technique using a computer software program to create a two-dimensional image map of the esophagus has been introduced to accurately and reproducibly measure the extent of CLE[27], such a complicated approach is not suitable for a daily clinical practice. Therefore, assessment of BE extent by simple measurement of the height of metaplastic CLE remains as the most commonly used procedure to distinguish short- from long-segment BE[13-15]. However, the study of the clinical course and therapeutic response of BE has been limited because this classic method only provides gross estimates of the area. This system does not measure the surface areas of metaplastic mucosa, which may be more important than the endoscopic lengths[19]. The presence of an irregular border of columnar tissue or interspersed metaplastic mucosal islands can hamper the precise measurement of the extent of CLE[20].

The Prague C and M criteria, suggested by IWGCO, not only allows a more detailed description of the length of the endoscopically recognized CLE, using “C” and “M” values above the GEJ, but can also assist the objective calculation of the actual surface area, which may be more important in the risk assessment of the neoplastic transformation[19-21]. These advances in CLE description have facilitated the depiction and reporting of various
circumferential and tongue-like longitudinal CLE lengths by using a method that can be understood easily and comprehensively. Importantly, high inter-observer reliability in the grading of endoscopically suspected CLE was demonstrated among gastroenterology experts and trainees[22].

In recent years, accelerated life style changes have increased the prevalence of GERD in Asian populations, including South Koreans[9,10,26,29], and BE incidence is also expected to increase[12]. BE prevalence in South Korea was 0.2%-3.6% in the year 2000[11,12,30], lower than in Western countries. Lengths and shapes of CLE’s as well as their prevalence in South Korea are quite different from those of the Western countries. Long-segment BE is more common in Western countries, wherein 14%-31% of BE patients show this type[31,32]. However, most cases of BE are short-segment type in South Korea, where long-segment type BE’s are extremely rare[11]. In our study, with the exception of the only one case, 212 (99.5%) out of 213 CLE cases were short-segment type (< 3 cm); and from these, 99 cases (46.5%) had ultrashort CLE (< 1 cm). Lee et al[33] reported that the reliability coefficients of the C and M values in the endoscopic recognition of short-segment type CLE were 0.90 (95%CI: 0.80%-1.00%) and 0.92 (95%CI: 0.87%-0.98%), respectively. However, the reliability of such coefficients for the recognition of the ultrashort (< 1 cm) CLE extent type was very low, with C and M coefficients of 0.18 (95%CI: 0.03%-0.32%) and 0.21 (95%CI: 0.00%-0.51%), respectively[33]. Therefore, the routine applicability of the Prague C and M criteria as a standardized validated method for the detailed endoscopic description of ultrashort BE and short-segment BE, the most dominant BE types in South Korea, requires further analysis. As our study showed, all ultrashort CLE and almost all short-segment CLE cases lacked the C component and were classified as C0Mx. Therefore, it appears appropriate for us to propose to omit of the prefix “C0” from all C0Mx cases in order to avoid needless repetitions when describing most cases in regions like South Korea. Because the presence of columnar islands is a frequent finding as we have observed in this study and they also may change to dysplasia[34], we propose to add i component to describe the presence of columnar islands which also may have a potential to be dysplastic.

In summary, the Prague C and M system is simple and useful in daily description of endoscopic feature of BE’s. But, the overall reliability and validity of the Prague C and M criteria for BE diagnosis continues to be challenged. In this study, there are some suggestions of possible modifications that may fit the characteristics of the South Korean source population more properly.

Applications
This study serves as additional evidence supporting the investigation in parallel with the widespread application of the Prague system in South Korea.

Innovations and breakthroughs
In regions like South Korea where most cases with columnar-lined esophagus display only short or ultrashort types without C component, the authors propose to omit the needless repetition of “C0” prefix from C0Mx and to add i component to describe the presence of columnar islands which also may have a potential to be dysplastic.

REFERENCES
1 Spechler SJ, Goyal RK. Barrett’s esophagus. N Engl J Med 1986; 315: 362-371 [PMID: 2874485 DOI: 10.1056/NEJM198608073150605]
2 Wang KK, Sampliner RE. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol 2008; 103: 788-797 [PMID: 18341497 DOI: 10.1111/j.1572-0241.2008.01835.x]
3 Barrett NR. Chronic peptic ulcer of the oesophagus and ‘oesophagitis’. Br J Surg 1950; 38: 175-182 [PMID: 14791960]
4 Sharma P, McCuaid K, Dent J, Fennerty MB, Sampliner R, Spechler S, Cameron A, Corley D, Fark G, Goldblum J, Hunter J, Jankowski J, Lundell L, Reid B, Shaheen NJ, Sonnenberg A, Wang K, Weinstein W. A critical review of the diagnosis and management of Barrett’s esophagus: the AGA Chicago Workshop. Gastroenterology 2004; 127: 310-330 [PMID: 15236196]
5 Mann NS, Tsi ME, Nair PK. Barrett’s esophagus in patients with symptomatic reflux esophagitis. Am J Gastroenterol 1989; 84: 1494-1496 [PMID: 2596449]
6 Winters C, Spurling TJ, Chobanian SJ, Curtis DJ, Esposito RL, Hacker JF, Johnson DA, Cress D, Cotelingam JD, Gurney MS. Barrett’s esophagus. A prevalent, occult complication of gastro-esophageal reflux disease. Gastroenterology 1987; 92: 118-124 [PMID: 3781178]
7 Botterweck AA, Schouten LJ, Voldovics A, Dorant E, van Den Brandt PA. Trends in incidence of adenocarcinoma of the oesophagus and gastric cardia in ten European countries. Int J
Epidemiol 2000; 29: 645-654 [PMID: 10922340]

Powell J, McConkey CC, Gillison EW, Spychal RT. Continuing rising trend in oesophageal adenocarcinoma. Int J Cancer 2002; 102: 422-427 [PMID: 12402314 DOI: 10.1002/ijc.10721]

Lee SJ, Song CW, Jeon YT, Chun HJ, Lee HS, Lim SH, Lee SW, Choi JH, Kim CD, Ryu HS, Hyun JH. Prevalence of endoscopic reflux esophagitis among Koreans. J Gastroenterol Hepatol 2001; 16: 373-376 [PMID: 11354273]

Yoo SS, Lee WH, Ha J, Choi SP, Kim HJ, Kim TH, Lee OJ. [The prevalence of esophageal disorders in the subjects examined for health screening]. Korean J Gastroenterology 2007; 50: 306-312 [PMID: 18159162]

Kim JY, Kim YS, Jung MK, Park JI, Kang DH, Kim JS, Song CW, Lee SW, Bak YT. Prevalence of Barrett’s esophagus in Korea. J Gastroenterol Hepatol 2005; 20: 633-636 [PMID: 15836715 DOI: 10.1111/j.1440-1746.2005.03749.x]

Deek R, Wakslein DE, Wendel C, Green C, Sampliner RE, Garavel H, Martinez P, Fass R. Progression or regression of Barrett’s esophagus—is it all in the eye of the beholder? Am J Gastroenterol 2003; 98: 2612-2615 [PMID: 14687805 DOI: 10.1111/j.1572-0241.2003.007680.x]

Kim SL, Waring JP, Spechler SJ, Sampliner RE, Doos WG, Krol GH, Nah BK, Nam SY, Seo KS, Ko BS, Jang JY, Kim BG, Choi DW. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology 2006; 131: 1392-1399 [PMID: 17101315 DOI: 10.1053/j.gastro.2006.08.032]

Anand O, Wani S, Sharma P. When and how to grade Barrett’s columnar metaplasia: the Prague system. Best Pract Res Clin Gastroenterol 2008; 22: 661-669 [PMID: 18656823]

Chang CY, Lee VC, Lee CT, Tu CH, Huang JC, Chiang H, Tai CM, Chiang TH, Wu MS, Lin JT. The application of Prague C and M criteria in the diagnosis of Barrett’s esophagus in an ethnic Chinese population. Am J Gastroenterol 2009; 104: 13-20 [PMID: 19099843 DOI: 10.1038/ajg.2008.43]

Vahabzadeh B, Seetharam A, Cook MB, Wani S, Rastogi A, Bansal A, Early DS, Sharma P. Validation of the Prague C & M criteria for the endoscopic grading of Barrett’s esophagus by gastro­enterology trainees: a multicenter study. Gastrointest Endosc 2012; 75: 236-241 [PMID: 22248595 DOI: 10.1016/j.gie.2011.09.017]

Choi DW, Oh SN, Baek SJ, Ahn SH, Chang YJ, Jeong WS, Kim HJ, Yeon JE, Park JI, Kim JS, Byun KS, Bak YT, Lee CH. Endoscopically observed lower esophageal capillary patterns. Korean J Intern Med 2002; 17: 245-248 [PMID: 12647639]

Cameron AJ, Ott BJ, Payne WS. The incidence of adenocarcinoma in columnar-lined (Barrett’s) esophagus. N Engl J Med 1985; 313: 857-859 [PMID: 4033716 DOI: 10.1056/NEJM1985103031404]

Hameeteman W, Tytgat GN, Houthoff HJ, van den Tweel JG. Barrett’s esophagus: development of dysplasia and adenocarcinoma. Gastroenterology 1989; 96: 1249-1256 [PMID: 2703113]

Van der Veen AH, Does I, Blankenstein JD, Van Blankenstein M. Adenocarcinoma in Barrett’s oesophagus: an overrated risk. Gut 1989; 30: 14-18 [PMID: 2920919]

Kim R, Baggott BB, Rose S, Shar AO, Mallory DL, Lasky SS, Kressluff M, Facenda LY, Reynolds JC. Quantitative endoscopic: precise computerized measurement of metaplastic epithelial surface area in Barrett’s esophagus. Gastroenterology 1995; 108: 360-366 [PMID: 7835577]

Rosaida MS, Goh KL. Gastro-oesophageal reflux disease, reflux oesophagitis and non-erosive reflux disease in a multiracial Asian population: a prospective, endoscopy based study. Eur J Gastroenterol Hepatol 2004; 16: 495-501 [PMID: 15097043]

Wong WM, Lam SK, Hui WM, Lai KC, Chan CK, Hu WK, Xia HH, Hui CK, Yuen MF, Chan AO, Wong BC. Long-term prospective follow-up of endoscopic oesophagitis in southern Chinese -prevalence and spectrum of the disease. Aliment Pharmacol Ther 2002; 16: 2037-2042 [PMID: 12452935 DOI: 10.1046/j.1440-1746.2002.01373.x]

Kim JH, Rhe J, Lee JH, Lee H, Choi YS, Son HJ, Kim JH, Rhe JC. Prevalence and risk factors of Barrett’s esophagus in Korea. J Gastroenterol Hepatol 2007; 22: 908-912 [PMID: 17565647 DOI: 10.1111/j.1440-1746.2006.04448.x]

Ronkainen J, Aro P, Storskrubb T, Johansson SE, Lind T, Bolling­Sternvall E, Vieth M, Stolte M, Talley NJ, Agréus L. Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology 2005; 129: 1825-1831 [PMID: 16344051 DOI: 10.1053/j.gastro.2005.08.053]

Csendes A, Smok G, Burdiles P, Korn O, Gradiz M, Rojas J, Recio M. Prevalence of intestinal metaplasia according to the length of the specialized columnar epithelium lining the distal esophagus in patients with gastroesophageal reflux. Dis Esophagus 2003; 16: 24-28 [PMID: 12581250]

Lee YC, Cook MB, Bhatia S, Chow WH, El-Omar EM, Goto H, Lin JT, Li YQ, Rhee PL, Sharma P, Sung JJ, Wong JY, Wu JC, Ho KY. Interobserver reliability in the endoscopic diagnosis and grading of Barrett’s esophagus: an Asian multinational study. Endoscopy 2010; 42: 699-704 [PMID: 20806154 DOI: 10.1055/s-0030-1255629]

Dunbar KB, Okolo P, Montgomery E, Canto MI. Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically apparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial. Gastrointest Endosc 2009; 70: 645-654 [PMID: 19559419 DOI: 10.1016/j.gie.2009.02.009]
