Original Research Article

Survey for the Assessment of Groundnut Collar Rot Disease Incidence in Major Groundnut Growing Areas of Jodhpur, Rajasthan, India

Mahendra Kumar Saran1*, Dama Ram1, J. R. Verma1, M. M. Kumawat2 and L. Netajit3

1Department of Plant Pathology, 2Department of Entomology, 3Department of Agricultural Statistics, CoA, Mandor, Agriculture University, Jodhpur, Rajasthan - 342304, India

*Corresponding author

ABSTRACT

A survey was conducted in major groundnut growing areas of different tehsil of Jodhpur district, Rajasthan during kharif 2019 to assess the distribution and the incidence of collar rot diseases. The highest incidences of collar rot were observed in Phalodi (15.31 %). Whereas, least collar rot incidence was observed (10.0%) in Tewari. The overall average disease incidence of the Jodhpur district was (12.43%) based on 125 fields surveyed in cropping season 2019.

Keywords: Survey, Groundnut, Collar rot, Disease incidence

Introduction

Groundnut (Arachis hypogaea L.) is an important and most widely grown food legume crop of both tropics and sub-tropics of the world, belonging the family leguminosae and sixth most important oilseed crop in the world. Groundnut kernals contain 48-50% of edible oil and 26-28% protein, along with rich dietary fibre, minerals and vitamins (Ntare et al., 2008). China is the largest producer as well as consumer of groundnut in the world with 16.62 mt followed by India (6.7 mt), Nigeria (3.02 mt) and United States (2.57 mt) annually. India is first position in term of area and second in production. The Major groundnut growing states of India are Gujarat, Andhra Pradesh, Rajasthan, Tamil Nadu and Punjab.

The groundnut was cultivated in 4.8 m ha area with 6.7 mt production having 1395 kg/ha productivity. (Directorate of Economics and Statistics, Department of Agricultural, Cooperation and Welfare 2018-19).

In Rajasthan the area, production and productivity of groundnut was 0.73 m ha, 1.56 mt and 2131 kg/ha, respectively. The major groundnut growing districts in Rajasthan are Bikaner, Jaipur, Sikar, Churu, Dausa, Udaipur and Nagaur.
(Commissionerate of Agriculture, Rajasthan – Jaipur, 2019). The crop suffers from more than 50 pathogens including fungi, bacteria, viruses and nematodes (Grover, 1981). However, only a few are economically important in India, such as early and late leaf spot (Cercospora arachidicola & C. personata), collar rot (Aspergillus niger van Teighem), rust (Puccinia arichidis), stem rot (Sclerotium rolfsii Sacc.), afla root (Aspergillus flavus), root rot (Macrophomina phaseolina) diseases.

Nematode diseases like root knot and viral diseases like peanut bud necrosis, peanut stem necrosis, groundnut mottle and clump (Ghewande et al., 1986).

Aspergillus niger van Tieghem causing collar rot disease on groundnut seedlings was first reported by Jochem (1926) and in India it was reported by Jain and Nema (1952) as Aspergillus blight.

The annual yield losses due to collar rot alone are approximately 5%, the disease has a potential to damage the crop with 40% losses (Bakhetia, 1983). Losses due to pre-emergence phase of the disease are up to 15%, whereas post-emergence phase accounts to 2% losses (Rasheed et al., 2004).

In India, the losses may account to 40 to 50% in terms of seedling mortality due to A. niger (Ghewande et al., 2002). Many seed dressing fungicides are effective against collar rot of groundnut (Gangopadhayay and Bhatia, 1996; Karthikeyan, 1996). Trichoderma spp. also used as biological control agent against most of soil-borne plant pathogenic fungi (Kucuk and Kivank, 2003).

Materials and Methods

Weekly survey of ground nut collar rot was carried out at five Tahsil viz. Balesar, Tewari, Lohawat, Phalodi and Osian of Jodhpur district to study the incidence of collar rots, from second week of July to fourth week of October during Kharif 2019 (Table 1). At each Tahsil five villages situated in different geographical directions and five fields per village were selected.

The each village/field selected for disease incidence, an area of $1 \times 1 \text{m}^2$ was marked diagonally across the field at five spots on each farmer’s field and percent disease incidence (PDI) was calculated by counting the diseased and the total number plant per spot.

The plant showing collar rot symptoms was considered as a diseased plant. During survey, personal discussions were also held with the cultivators regarding occurrence and severity of the disease, agronomic practices and field history.

The percent disease incidence was calculated by using the following formula:

$$\text{Percent disease incidence} = \frac{\text{Number of infected plant}}{\text{Total number of plant}} \times 100$$

Results and Discussion

The average collar rot incidence in different Tahsil of Jodhpur district varied from (10.0 to 15.31%). In Phalodi disease incidence was maximum (15.31%) followed by Osian (13.43%), Lohawat (12.90%) followed by Balesar (10.55%) and least collar rot incidence was observed (10.0%) in Tewari.

However, the disease incidence was recorded (10.0 to 15.31%) in Tahsil of Jodhpur district, respectively (Table 1 and Fig. 1–3). The overall average disease incidence of the Jodhpur district was (12.43%) based on 125 fields surveyed in cropping season 2019.
Table 1 Incidence of groundnut collar rot disease, Jodhpur, Rajasthan in Kharif 2019

Sample No.	Isolate No.	Districts	Tahsil	Village	% Disease Incidence	Average
1.	JU-01	Jodhpur	Balesar	Sukhmadla	12.71	10.55
				Lorta	11.45	
				Belwa	11.45	
				Dewasu	10.57	
				Bastawa	6.59	
2.	JU-02	Jodhpur	Tewari	Mathania	6.42	10.0
				Gewada	10.78	
				Indroka	8.51	
				Narwa	12.69	
				Manaklav	11.57	
3.	JU-03	Jodhpur	Lohawat	Pilawa	16.92	12.90
				Sadri	13.91	
				Dechu	10.84	
				Kushlawa	5.93	
				Sagra	16.92	
4.	JU-04	Jodhpur	Phalodi	Mukeri	21.92	15.31
				Mandala kala	16.15	
				Sawrij	15.96	
				Aeka Sageri	11.86	
				Bengti	10.67	
5.	JU-05	Jodhpur	Osian	Bhikamkhor	9.87	13.43
				Hanuman Sagar	10.87	
				Harlaya	18.43	
				Padasala	13.34	
				Bhad	14.65	

Fig. 1 View of groundnut collar rot infected field
In conclusion the field surveys were made on the status of collar rot in the major groundnut growing areas of Jodhpur district of Rajasthan the average collar rot incidence in different tehsil of district varied from 10.0 to 15.31 per cent.

References

Anonymous, 2019. Commissionerate of Agriculture, Rajasthan –Jaipur.
Anonymous, 2018-19. Directorate of Economics and Statistics, Department of Agricultural, Cooperation and Welfare.

Bakhetia, D. R. C. 1983. Control of white grub (*Holotrichia consenguinea*) and collar rot (*Aspergillus niger*) of groundnut sown in different dates in Punjab. *Indian J. Agric. Sci.* 53(9): 846-850.

Gangopadhyay, S. and Bhatia, J. N., 1996. Sources of resistance to collar rot and leaf spots of groundnut in Rajasthan. *Indian J. Mycol. Pl. pathol.* 26(1): 108-109.

Ghewande, M. P., Desai, S. and Basu, M. S., 2002. Diagnosis and management of
major diseases of groundnut. *NRCG Bull.* pp. 8-12.

Ghewande M.P., Reddy P.S. 1986. Strategy for the management of major diseases of groundnut. Pesticides 20: 57–61.

Grover R.K., 1981. Present state of research and future trends in controlling diseases of oilseeds and pulses. In: PAI National Seminar on Increasing of Pulses and Oilseeds Production Through Plant Protection. Vigyan Bhavan, New Delhi, 13–14 November, 1981, 315 pp.

Jain, A. C. and Nema, K. G., 1952. *Aspergillus* blight of groundnut seedlings. *Sci. Cult.* 17: 348-349.

Jochem, S. C. J., 1926. *Aspergillus niger* on groundnut. *Indisch Culturen* (Teysmannia). 11: 325-326.

Karthikeyan, A., 1996. Effect of organic amendments antagonist *Trichoderma viride* and fungicides on seed and collar rot of groundnut. *Pl. Dis. Res.* 11(1): 72-74.

Kucuk, C. and Kivank, M., 2003. Isolation of *Trichoderma* spp. and determination of their antifungal, biochemical and physiological features. *Turkey J. Bio.*, 27: 247-253.

Ntare, B.R., Diallo, A.T., Ndjeunga, J and Waliyar, F. 2008. *Groundnut Seed Production Manual*. Patancheru, 502324. Andhra Pradesh, India. International Crops Research International for the Semi-Arid Tropics (ICRISAT). 20.

Rasheed, S., Dawarand, S and Ghafrar, A. 2004. Location of fungi in groundnut seed. *Pakistan Journal of Botany*. 36(3): 663-668.

How to cite this article:

Mahendra Kumar Saran, Dama Ram, J. R. Verma, M. M. Kumawat and Netajit, L. 2020. Survey for the Assessment of Groundnut Collar Rot Disease Incidence in Major Groundnut Growing Areas of Jodhpur, Rajasthan, India. *Int.J.Curr.Microbiol.App.Sci.* 9(09): 1162-1166.

doi: https://doi.org/10.20546/ijcmas.2020.909.144