A Note on S-Noetherian Domains

JUNG WOOK LIM
Department of Mathematics, Kyungpook National University, Daegu, 702-701, Republic of Korea
e-mail: jwlim@knu.ac.kr

Abstract. Let D be an integral domain, t be the so-called t-operation on D, and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also investigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring $D[X]_N$ is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring $D[X]$ is a t-locally S-Noetherian domain, if and only if the t-Nagata ring $D[X]_{N_v}$ is a t-locally S-Noetherian domain.

1. Introduction

1.1 Star-operations

To help readers better understanding this paper, we briefly review some definitions and notation related to star-operations. Let D be an integral domain with quotient field K, and let $\mathcal{F}(D)$ be the set of nonzero fractional ideals of D. For an $I \in \mathcal{F}(D)$, set $I^{-1} := \{ x \in K \mid xI \subseteq D \}$. The mapping on $\mathcal{F}(D)$ defined by $I \mapsto I_v := (I^{-1})^{-1}$ is called the v-operation on D, and the mapping on $\mathcal{F}(D)$ defined by $I \mapsto I_t := \bigcup \{ J_v \mid J$ is a nonzero finitely generated fractional subideal of $I \}$ is called the t-operation on D; and the mapping on $\mathcal{F}(D)$ defined by $I \mapsto I_w := \{ a \in K \mid Ja \subseteq I$ for some finitely generated ideal J of D with $J_v = D \}$ is called the w-operation on D. It is easy to see that $I \subseteq I_w \subseteq I_t \subseteq I_v$ for all $I \in \mathcal{F}(D)$; and if an $I \in \mathcal{F}(D)$ is finitely generated, then $I_v = I_t$. An $I \in \mathcal{F}(D)$ is called a t-ideal (respectively, w-ideal) of D if $I_t = I$ (respectively, $I_w = I$). A
maximal t-ideal means a t-ideal which is maximal among proper integral t-ideals. It is well known that a maximal t-ideal of D always exists if D is not a field. We say that D is of finite character (respectively, of finite t-character) if each nonzero nonunit in D belongs to only finitely many maximal ideals (respectively, maximal t-ideals) of D.

1.2 S-Noetherian domains

Let D be an integral domain and S a (not necessarily saturated) multiplicative subset of D. In [4], the authors introduced the concept of “almost finitely generated” to study Querre’s characterization of divisorial ideals in integrally closed polynomial rings. Later, the authors in [2] generalized the concept of (almost) finitely generatedness and defined a general notion of Noetherian domains. (Recall that D is a Noetherian domain if it satisfies the ascending chain condition on integral ideals of D, or equivalently, every (prime) ideal of D is finitely generated.) To do this, they first built the notion of S-finiteness. Let I be an ideal of D. Then I is said to be S-finite if there exist an element $s \in S$ and a finitely generated ideal J of D such that $sI \subseteq J \subseteq I$. Also, D is called an S-Noetherian domain if each ideal of D is S-finite. As mentioned above, the concept of S-Noetherian domains can be regarded as a slight generalization of that of Noetherian domains, because two notions precisely coincide when S consists of units. Hence the results on S-Noetherian domains can recover known facts for Noetherian domains.

Among other results in [2], Anderson and Dumitrescu proved the Hilbert basis theorem for S-Noetherian domains, which states that if S is an anti-archimedean subset of an S-Noetherian domain D, then the polynomial ring $D[X]$ is also an S-Noetherian domain [2, Proposition 9]. (Recall that a multiplicative subset S of D is anti-archimedean if $\bigcap_{n \geq 1} s^n D \cap S \neq \emptyset$ for all $s \in S$. For example, if V is a valuation domain with no height-one prime ideals, then $V \setminus \{0\}$ is an anti-archimedean subset of V [3, Proposition 2.1].) After the paper by Anderson and Dumitrescu, more properties of S-Noetherian domains have been studied further. In [14], Liu found an equivalent condition for the generalized power series ring to be an S-Noetherian domain. In [12], the authors studied the S-Noetherian properties in special pullbacks which are the so-called composite ring extensions $D + E[T^+]$ and $D + E^\times \{\leq\}$. As a continuation of [12], the same authors investigated when the amalgamated algebra along an ideal has the S-Noetherian property [13]. For more results, the readers can refer to [2, 12, 13, 14].

Let P denote one of the properties “Noetherian” or “S-Noetherian”. We say that D is locally P (respectively, t-locally P) if D_M is P for all maximal ideals (respectively, maximal t-ideals) M of D.

The purpose of this paper is to study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains, and to investigate the t-Nagata ring of t-locally S-Noetherian domains. (The concepts of Nagata rings and t-Nagata rings will be reviewed in Section .) More precisely, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring $D[X]_N$ is an S-Noetherian domain (respec-
A Note on \textit{s}-Noetherian Domains

509

tively, locally \textit{s}-Noetherian domain); a locally \textit{s}-Noetherian domain with finite character is an \textit{s}-Noetherian domain; and if \(S \) is an anti-archimedean subset of \(D \), then \(D \) is a \(t \)-locally \textit{s}-Noetherian domain if and only if the polynomial ring \(D[X] \) is a \(t \)-locally \textit{s}-Noetherian domain, if and only if the \(t \)-Nagata ring \(D[X]_{N_a} \) is a \(t \)-locally \textit{s}-Noetherian domain.

2. Main Results

We start this section with a simple result for a quotient ring of \textit{s}-Noetherian domains. This also recovers the fact that any quotient ring of a Noetherian domain is Noetherian [5, Proposition 7.3].

Lemma 1. Let \(D \) be an integral domain and \(S \) a (not necessarily saturated) multiplicative subset of \(D \). If \(D \) is an \textit{s}-Noetherian domain and \(T \) is a (not necessarily saturated) multiplicative subset of \(D \), then \(D_T \) is an \textit{s}-Noetherian domain.

Proof. Let \(A \) be an ideal of \(D_T \). Then \(A = sD_T \) for some ideal \(I \) of \(D \). Since \(D \) is an \textit{s}-Noetherian domain, there exist an element \(s \in S \) and a finitely generated ideal \(J \) of \(D \) such that \(sI \subseteq J \subseteq I \). Therefore we obtain

\[
sA = sID_T \subseteq JD_T \subseteq ID_T = A,
\]

and hence \(A \) is \textit{s}-finite. Thus \(D_T \) is an \textit{s}-Noetherian domain. \(\square \)

The next result is an \textit{s}-Noetherian version of well-known facts that a Noetherian domain is locally Noetherian; and a locally Noetherian domain with finite character is Noetherian [5, Section 7, Exercise 9].

Theorem 2. The following statements hold.

1. An \textit{s}-Noetherian domain is locally \textit{s}-Noetherian.

2. A locally \textit{s}-Noetherian domain with finite character is \textit{s}-Noetherian.

Proof. (1) This is an immediate consequence of Lemma 1.

(2) Assume that \(D \) is a locally \textit{s}-Noetherian domain which is of finite character, and let \(I \) be an ideal of \(D \). If \(I \cap S \neq \emptyset \), then for any \(s \in I \cap S \), \(sI \subseteq (s) \subseteq I \); so \(I \) is \textit{s}-finite. Next, we consider the case when \(I \) does not intersect \(S \). Choose any \(0 \neq a \in I \). Since \(D \) has finite character, \(a \) belongs to only a finite number of maximal ideals of \(D \), say \(M_1, \ldots, M_n \). Fix an \(i \in \{1, \ldots, n \} \). Since \(D_M \) is \textit{s}-Noetherian, there exist an element \(s_i \in S \) and a finitely generated subideal \(F_i \) of \(I \) such that \(s_i ID_M \subseteq F_i D_M \). By letting \(s = s_1 \cdots s_n \) and setting \(C = (a) + F_1 + \cdots + F_n \), we obtain that \(sID_M \subseteq CD_M \). Let \(M' \) be a maximal ideal of \(D \) which is distinct from \(M_1, \ldots, M_n \). Then \(a \) is a unit in \(D_{M'} \); so \(ID_{M'} = D_{M'} = CD_{M'} \). Therefore
\[sID_M \subseteq CD_M \] for all maximal ideals \(M \) of \(D \). Hence we have

\[
\begin{align*}
 sI &= \bigcap_{M \in \text{Max}(D)} sID_M \\
 &\subseteq \bigcap_{M \in \text{Max}(D)} CD_M \\
 &= C,
\end{align*}
\]

where \(\text{Max}(D) \) denotes the set of maximal ideals of \(D \) and the equalities follow from [9, Proposition 2.8(3)]. Note that \(C \) is a finitely generated subideal of \(I \). Therefore \(I \) is \(S \)-finite, and thus \(D \) is an \(S \)-Noetherian domain. \(\Box \)

Recall that an integral domain \(D \) is an \textit{almost Dedekind domain} if \(D_M \) is a Noetherian valuation domain for all maximal ideals \(M \) of \(D \).

Remark 3. The converse of Theorem 2(1) does not generally hold. (This also indicates that the condition being finite character in Theorem 2(2) is essential.) For example, if \(D \) is an almost Dedekind domain which is not Noetherian, then \(D \) is a locally \(S \)-Noetherian domain which is not \(S \)-Noetherian. (This is the case when \(S \) consists of units in \(D \).) For a concrete illustration, see [8, Example 42.6].

Let \(D \) be an integral domain and \(D[X] \) be the polynomial ring over \(D \). For an \(f \in D[X] \), \(c(f) \) denotes the content ideal of \(f \), i.e., the ideal of \(D \) generated by the coefficients of \(f \), and for an ideal \(I \) of \(D[X] \), \(c(I) \) stands for the ideal of \(D \) generated by the coefficients of polynomials in \(I \), i.e., \(c(I) = \sum_{f \in I} c(f) \). Let \(N = \{ f \in D[X] \mid c(f) = D \} \). Then \(N \) is a saturated multiplicative subset of \(D[X] \) and the quotient ring \(D[X]_N \) is called the \textit{Nagata ring} of \(D \). It was shown that \(D \) is a Noetherian domain if and only if \(D[X]_N \) is a Noetherian domain (cf. [1, Theorem 2.2(2)]). We now give the \(S \)-Noetherian analogue of these equivalences.

Theorem 4. Let \(D \) be an integral domain, \(S \) an anti-archimedean subset of \(D \), and \(N := \{ f \in D[X] \mid c(f) = D \} \). Then the following statements are equivalent.

1. \(D \) is an \(S \)-Noetherian domain.
2. \(D[X] \) is an \(S \)-Noetherian domain.
3. \(D[X]_N \) is an \(S \)-Noetherian domain.

Proof.

(1) \(\Rightarrow \) (2) This implication appears in [2, Proposition 9].

(2) \(\Rightarrow \) (3) This was shown in Lemma 1.

(3) \(\Rightarrow \) (1) Let \(I \) be an ideal of \(D \). Then \(ID[X]_N \) is an ideal of \(D[X]_N \). Since \(D[X]_N \) is an \(S \)-Noetherian domain, we can find an element \(s \in S \) and a finitely generated subideal \(J \) of \(ID[X] \) such that \(sID[X]_N \subseteq JD[X]_N \); so \(sID[X]_N \subseteq c(J)D[X]_N \). Let \(a \in I \). Then \(saa \in c(J)D[X] \) for some \(g \in N \); so \(sa \in c(J) \).

Hence \(sI \subseteq c(J) \). Note that \(c(J) \) is a finitely generated subideal of \(I \). Therefore \(I \) is \(S \)-finite, and thus \(D \) is an \(S \)-Noetherian domain. \(\Box \)
A Note on s-Noetherian Domains

Let D be an integral domain and let $N_v = \{ f \in D[X] \mid c(f)_v = D\}$. Then N_v is a saturated multiplicative subset of $D[X]$ and the quotient ring $D[X]_{N_v}$ is called the t-Nagata ring of D. It was shown that D is t-locally Noetherian if and only if $D[X]$ is t-locally Noetherian, if and only if $D[X]_{N_v}$ is t-locally Noetherian [6, Theorem 1.4]. To investigate the (t)-Nagata ring of (t)-locally S-Noetherian domains, we need the following lemma.

Lemma 5. Let D be a quasi-local domain with unique maximal ideal M, S a (not necessarily saturated) multiplicative subset of D, and I an ideal of D. Then I is S-finite if and only if $ID[X]_{MD[X]}$ is S-finite.

Proof. If I is S-finite, then there exist an element $s \in S$ and a finitely generated subideal J of I such that $sI \subseteq J$; so we obtain

$$sID[X]_{MD[X]} \subseteq JD[X]_{MD[X]} \subseteq ID[X]_{MD[X]}.$$

Thus $ID[X]_{MD[X]}$ is S-finite. Conversely, if $ID[X]_{MD[X]}$ is S-finite, then there exist suitable elements $s \in S$ and $f_1, \ldots, f_n \in ID[X]$ such that $sID[X]_{MD[X]} \subseteq (f_1, \ldots, f_n)D[X]_{MD[X]}$; so we obtain

$$sID[X]_{MD[X]} \subseteq (c(f_1) + \cdots + c(f_n))D[X]_{MD[X]}.$$

Note that $JD[X]_{MD[X]} \cap D = J$ for all ideals J of D, because D is quasi-local. Hence we obtain

$$sI = sID[X]_{MD[X]} \cap D \leq (c(f_1) + \cdots + c(f_n))D[X]_{MD[X]} \cap D = c(f_1) + \cdots + c(f_n).$$

Note that $c(f_1) + \cdots + c(f_n)$ is a finitely generated subideal of I. Thus I is S-finite. \square

We are ready to study the polynomial extension and the t-Nagata ring of t-locally S-Noetherian domains.

Theorem 6. Let D be an integral domain, S an anti-archimedean subset of D, and $N_v := \{ f \in D[X] \mid c(f)_v = D\}$. Then the following statements are equivalent.

1. D is a t-locally S-Noetherian domain.
2. $D[X]$ is a t-locally S-Noetherian domain.
3. $D[X]_{N_v}$ is a locally S-Noetherian domain.
4. $D[X]_{N_v}$ is a t-locally S-Noetherian domain.

Proof. (1) \Rightarrow (2) Let M be a maximal t-ideal of $D[X]$ and let K be the quotient field of D. If $M \cap D = (0)$, then $D[X]_M$ is a quotient ring of $K[X]$; so $D[X]_M$ is a principal ideal domain. Hence $D[X]_M$ is an S-Noetherian domain. Next, we assume that $M \cap D \neq (0)$, and let $P = M \cap D$. Then $M = PD[X]$ and P is a
maximal t-ideal of D [7, Proposition 2.2]. Since D is t-locally S-Noetherian, D_P is S-Noetherian. Also, since S is an anti-archimedean subset of D_P, $D_P[X]$ is S-Noetherian [2, Proposition 9]; so by Lemma 1, $D_P[X]_{|PD_P[X]}$ is S-Noetherian. Note that $D[X]_M = D_P[X]_{|PD_P[X]}$; so $D[X]_M$ is an S-Noetherian domain. From both cases, we conclude that $D[X]$ is a t-locally S-Noetherian domain.

(2) \Rightarrow (3) Let Q be a maximal ideal of $D[X]_{|N_0}$. Then $Q = MD[X]_{|N_0}$ for some maximal t-ideal M of D [9, Proposition 2.1(2)]. Note that $(D[X]_{|N_0})_Q = (D[X]_{|N_0})_{MD[X]_{|N_0}} = D[X]_{MD[X]}$ and $MD[X]$ is a maximal t-ideal of $D[X]$ [7, Proposition 2.2]. Since $D[X]$ is t-locally S-Noetherian, $D[X]_{|MD[X]}$; and hence $(D[X]_{|N_0})_Q$ is S-Noetherian. Thus $D[X]_{|N_0}$ is a locally S-Noetherian domain.

(3) \Leftrightarrow (4) This equivalence follows directly from the fact that the set of maximal t-ideals of $D[X]_{|N_0}$ is precisely the same as that of maximal ideals of $D[X]_{|N_0}$ (cf. [9, Propositions 2.1(2) and 2.2(3)]).

We next study locally S-Noetherian domains in terms of the Nagata ring.

Theorem 7. Let D be an integral domain, S an anti-archimedean subset of D, and $N := \{f \in D[X] \mid c(f) = D\}$. Then the following statements are equivalent.

(1) D is a locally S-Noetherian domain.

(2) $D[X]_N$ is a locally S-Noetherian domain.

Proof. (1) \Rightarrow (2) Let Q be a maximal ideal of $D[X]_N$. Then $Q = MD[X]_N$ for some maximal ideal M of D [9, Proposition 2.1(2)]. Since D is locally S-Noetherian, D_M is S-Noetherian. Also, since S is an anti-archimedean subset of D_M, $D_M[X]$ is S-Noetherian [2, Proposition 9]. Hence by Lemma 1, $D_M[X]_{|MD_M[X]}$ is an S-Noetherian domain. Note that $(D[X]_N)_Q = D[X]_{MD[X]} = D_M[X]_{MD_M[X]}$; so $(D[X]_N)_Q$ is S-Noetherian. Thus $D[X]_N$ is a locally S-Noetherian domain.

(2) \Rightarrow (1) Let M be a maximal ideal of D. Then $MD[X]_N$ is a maximal ideal of $D[X]_N$ [9, Proposition 2.1(2)]. Since $D[X]_N$ is locally S-Noetherian, $(D[X]_N)_{MD[X]_N} = MD[X]_{MD_M[X]}$; so $(D[X]_N)_{MD[X]_N}$ is S-Noetherian. Note that $(D[X]_N)_{MD[X]_N} = D[X]_{MD[X]} = D_M[X]_{MD_M[X]}$; so $D_M[X]_{MD_M[X]}$ is S-Noetherian. Let I be an ideal of D_M. Then $ID_M[X]_{|MD_M[X]}$ is S-finite. Since D_M is quasi-local, I is S-finite by Lemma 5. Hence D_M is S-Noetherian, and thus D is a locally S-Noetherian domain.

We are closing this article by comparing our results with recent researches related to S-Noetherian domains. In [11], the authors defined an integral domain D to be an S-strong Mori domain (S-SM-domain) if for each nonzero ideal I of D, there exist an element $s \in S$ and a finitely generated ideal J of D such that
A Note on s-Noetherian Domains

$sI \subseteq J_w \subseteq I_w$. This concept generalizes the notions of both S-Noetherian domains and strong Mori domains. (Recall from [15, Definition 4] that D is a **strong Mori domain** (SM-domain) if it satisfies the ascending chain condition on integral w-ideals of D, or equivalently, for each (prime) w-ideal I of D, $I = J_w$ for some finitely generated ideal J of D [15, Theorem 4.3].) It was shown that if D is a t-locally S-Noetherian domain with finite t-character, then D is an S-SM-domain [11, Proposition 2.1(2)]; and that if S is an anti-archimedean subset of D, then D is an S-SM-domain if and only if $D[X]_{N_v}$ is an S-SM-domain [11, Theorem 2.10].

Lemma 8. Let D be an integral domain, $N := \{f \in D[X] \mid c(f) = D\}$, and $N_v := \{f \in D[X] \mid c(f)_v = D\}$. Then the following assertions hold.

1. D is of finite character if and only if $D[X]_N$ is of finite character.
2. D is of finite t-character if and only if $D[X]_{N_v}$ is of finite character.

Proof. The equivalence is an immediate consequence of the fact that $\{MD[X]_N \mid M$ is a maximal ideal of $D\}$ (respectively, $\{MD[X]_{N_v} \mid M$ is a maximal t-ideal of $D\}$) is the set of maximal ideals of $D[X]_N$ (respectively, $D[X]_{N_v}$) [9, Proposition 2.1(2)].

By Theorems 6 and 7 and Lemma 8, we obtain

Corollary 9. Let D be an integral domain, S an anti-archimedean subset of D, $N := \{f \in D[X] \mid c(f) = D\}$, and $N_v := \{f \in D[X] \mid c(f)_v = D\}$. Then the following assertions hold.

1. D is a locally S-Noetherian domain with finite character if and only if $D[X]_N$ is a locally S-Noetherian domain with finite character.
2. D is a t-locally S-Noetherian domain with finite t-character if and only if $D[X]_{N_v}$ is a locally S-Noetherian domain with finite character.

Acknowledgments. The author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014R1A1A1002478).

References

[1] D. D. Anderson, D. F. Anderson, and R. Markanda, *The ring $R(X)$ and $R(X)$*, J. Algebra, 95(1985), 96-115.

[2] D. D. Anderson and T. Dumitrescu, *S-Noetherian rings*, Comm. Algebra, 30(2002), 4407-4416.

[3] D. D. Anderson, B. G. Kang, and M. H. Park, *Anti-archimedean rings and power series rings*, Comm. Algebra, 26(1998), 3223-3238.
[4] D. D. Anderson, D. J. Kwak, and M. Zafrullah, *Agreeable domains*, Comm. Algebra, 23(1995), 4861-4883.

[5] M. F. Atiyah and I. G. MacDonald, *Introduction to Commutative Algebra*, Addison-Wesley Publishing Company, 1969.

[6] G. W. Chang, *Strong Mori domains and the ring $D[X]_{N_v}$*, J. Pure Appl. Algebra, 197(2005), 293-304.

[7] M. Fontana, S. Gabelli, and E. Houston, *UMT-domains and domains with Prüfer integral closure*, Comm. Algebra, 26(1998), 1017-1039.

[8] R. Gilmer, *Multiplicative Ideal Theory*, Queen’s Papers in Pure Appl. Math., 90, Queen’s University, Kingston, Ontario, 1992.

[9] B. G. Kang, *Prüfer v-multiplication domains and the ring $R[X]_{N_v}$*, J. Algebra, 123(1989), 151-179.

[10] I. Kaplansky, *Commutative Rings*, Polygonal Publishing House, Washington, New Jersey, 1994.

[11] H. Kim, M. O. Kim, and J. W. Lim, *On S-strong Mori domains*, J. Algebra, 416(2014), 314-332.

[12] J. W. Lim and D. Y. Oh, *S-Noetherian properties of composite ring extensions*, Comm. Algebra, 43(2015), 2820-2829.

[13] J. W. Lim and D. Y. Oh, *S-Noetherian properties on amalgamated algebras along an ideal*, J. Pure Appl. Algebra, 218(2014), 1075-1080.

[14] Z. Liu, *On S-Noetherian rings*, Arch. Math. (Brno), 43(2007), 55-60.

[15] F. Wang and R. L. McCasland, *On w-modules over strong Mori domains*, Comm. Algebra, 25(1997), 1285-1306.