Development of Multiplex PCR for Simultaneous Detection of Three Pathogenic \textit{Shigella} Species

Reza RANJBAR1, *Davoud AFSHAR2, Ali MEHRABI TAVANA3, Ali NAJAFI1, Fatemeh POURALI1, Zahra SAFIRI1, Rahim SOROURI ZANJANI1, Nematollah JONAIDI JAFARI4

1. Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
2. Dept. of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
3. Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
4. Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

*Corresponding Author: Email: davoodafshar@yahoo.com
(Received 20 Jun 2014; accepted 10 Oct 2014)

Abstract

Background: \textit{Shigella} species are among the common causes of bacterial diarrhoeal diseases. Traditional detection methods are time-consuming resulting in delay in treatment and control of \textit{Shigella} infections thus there is a need to develop molecular methods for rapid and simultaneous detection of \textit{Shigella} spp. In this study a rapid multiplex PCR were developed for simultaneous detection of three pathogenic \textit{Shigella} species.

Methods: For detection of \textit{Shigella} spp., a pair of primers was used to replicate a chromosomal sequence. Three other sets of primers were also designed to amplify the target genes of three most common species of \textit{Shigella} in Iran including \textit{S. sonnei}, \textit{S. flexneri} and \textit{S. boydii}. The multiplex PCR assay was optimized for simultaneous detection and differentiation of three pathogenic \textit{Shigella} species. The assay specificity was investigated by testing different strains of \textit{Shigella} and other additional strains belonging to non \textit{Shigella} species, but responsible for foodborne diseases.

Results: The \textit{Shigella} genus specific PCR yielded the expected DNA band of 159 bp in all tested strains belonging to four \textit{Shigella} species. The standard and multiplex PCR assays also produced the expected fragments of 248 bp, 503 bp, and 314 bp, for \textit{S. boydii}, \textit{S. sonnei} and \textit{S. flexneri}, respectively. Each species-specific primer pair did not show any cross-reactivity.

Conclusion: Both standard and multiplex PCR protocols had a good specificity. They can provide a valuable tool for the rapid and simultaneous detection and differentiation of three most prevalent \textit{Shigella} species in Iran.

Keywords: Multiplex-PCR, \textit{Shigella} spp., Shigellosis

Introduction

\textit{Shigella} species annually cause an estimated 164.7 million cases of shigellosis worldwide, resulting in 1.1 million deaths (1). Shigellosis as an endemic disease in Iran is one of the major causes of morbidity in children with diarrhea in this country (2-4).

There are many ways for detection of \textit{Shigella} species including conventional culture and molecular methods (5). Conventional methods are usually problematic process and require several days to give results (6). Moreover, these methods are relying on the viable organisms to multiply in media. Taken as a whole, conventional methods have less sensitive because there is not enough number of organisms in some specimen and the numbers of organisms decrease during specimen transport (5). In many studies, molecular methods for detection of \textit{Shigella} spp. and other intestinal pathogens have
been developed (7-11). Multiplex PCR is one of molecular methods that have been used frequently in many studies because of rapidity and its capability for simultaneous detection of several microorganisms in a single sample (12).

The genus of *Shigella* has four species that are able to cause severe disease in humans. *S. sonnei* is the major cause of shigellosis in industrialized countries. Otherwise *S. flexneri* is the most prevalent *Shigella* serotype in developing countries (13-15). *S. dysenteriae* is usually the cause of epidemics of dysentery is detected mostly in South Asia and sub-Saharan Africa and *S. boydii* has been less frequently reported worldwide compared to other *Shigella* serogroups (16). Of four species, three including *S. sonnei*, *S. flexneri* and *S. boydii* are common species in Iran (17-20).

This study aimed to develop a Multiplex-PCR assay for simultaneous detection of three most common *Shigella* species in Iran.

Materials and Methods

Bacterial species

Clinical *Shigella* isolates were recovered from patients with *Shigella* infections admitted to several hospitals including Children Medical Center, Emam Khomeini and Baqatallah hospitals in Tehran, Iran, during 2008-2010. Bacterial positive controls were also used to check the specificity of the assay (Table 1). Subsequently, identification and confirmation of the reference and clinical strains were carried out by culture, biochemical and serological testing.

Bacterial DNA extraction

Bacterial strains were grown on LB broth and incubated at 37°C for 24 hr. The culture of each *Shigella* isolate was centrifuged at 6000 RPM for 10 min. Genomic DNA of the *Shigella* strains was extracted using a DNA extraction Kit (Cat. No. 11 814 770 001, Roche, Germany) according to the manufacturer’s instruction.

Genomic PCR targets and primers

We designed four sets of primers to amplify the target genes of *Shigella* spp. (Putative Integrase) and of three *Shigella* species including *S. sonnei* (Putative Restriction Endonuclease), *S. flexneri* (Putative Bacteriophage Protein) and *S. boydii* (Conserved Hypothetical Protein). The list of the primers and their sequences are presented in Table 2.

To avoid cross-reactivity with *Shigella* related bacteria and within each other *Shigella* species, genus and species-specific regions of the *Shigella* genome were considered to design the primers, respectively.

Table 1: Primers used in this study

Primers	Sequence	Locus	Species	Band size(bp)
GF	TCCGTCA TGCTGGATGAACGATGT	NC_004337: 559294-559452	*Shigella* spp.	159
GR	ACAGTTCA GAGATTGCCGAGACACA	NC_004741: 555187-555345		
		NC_007384: 759977-760135		
		NC_007613: 642360-642518		
		NC_008258: 602392-602550		
		NC_010658: 652993-653151		
BF	TCTGATGTC ACTTTGCGAAGT	NC_007613: 1360607-1360854	*S. boydii*	248
BR	GAATCCGGTTACCCGTAAGGT	NC_010658: 1782921-1783168		
SF	AATGCCGTA AGGAATGCAACCT	NC_007384: 1665725-1666227	*S. sonnei*	503
SR	GAAGGAGATCCGCTGCT			
FF	ACCGGTTATGAAACCTCCAT	NC_004337: 1412593-1412906	*S. flexneri*	314
FR	TGGTGCTTTGAGCAACTC	NC_004741: 1898025-1898338		
		NC_008258: 1883992-1884305		
		NC_010658: 652993-653151		
Table 2: *Shigella* species and non-*Shigella* microorganisms included in this study

Bacterial strains	*Shigella* spp. PCR results	*S. flexneri* specific-PCR results	*S. boydii* specific-PCR results	*S. sonnei* specific-PCR results	Reference
Shigella spp.					
S. flexneri	+	+	-	-	ATTC9290
S. boydii	+	-	+	-	ATTC 9207
S. sonnei	+	-	-	+	ATTC 12022
S. dysenteriae	+	-	-	-	17 clinical isolates
S. flexneri	+	+	-	-	3 clinical isolates
S. boydii	+	-	+	-	6 clinical isolates
S. sonnei	+	-	-	+	4 clinical isolates
Non-*Shigella* organisms					
Salmonella enteritidis	-	-	-	-	ATCC 4931
Salmonella typhimurium	-	-	-	-	ATCC 14028
Campylobacter jejuni	-	-	-	-	ATCC 33560
Escherichia coli	-	-	-	-	ATCC 25922
Vibrio cholerae	-	-	-	-	PTCC 1611
Escherichia coli	-	-	-	-	ATCC 35150

PCR assay

First, a standard PCR assay was performed using standard (*Shigella* and non-*Shigella* strains) and 30 clinical strains (17 *S. sonnei*, 6 *S. flexneri*, 4 *S. boydii* and 3 *S. dysenteriae*). The PCR was carried out using a total volume of 25 μL containing 1× PCR buffer, 1 mM MgCl2, 1 U Taq DNA polymerase, 200 μM dNTP, 0.5 μM of each primers and 2.5 μL of DNA template. The PCR condition consisted of 5 min at 95 °C, followed by 30 cycles of 60 s at 95 °C of denaturing temperature, 60s at 60 °C of annealing temperature, and 1 min at 72 °C of extension temperature. At the end of the 30 cycles, a final extension of 10 minutes at 72 °C was used.

Each multiplex PCR mixture in was prepared using a total volume of 25 μL containing 0.5 μM of each primer (four pairs), 2.5 μL PCR buffer 10X, 2 U Taq DNA polymerase, 1 mM MgCl2, 200 μM dNTPs and 1 μL DNA template. The multiplex PCR was carried out through 30 cycles following a pre-heat step at 95 °C for 5min. Each cycle consisted of denaturation at 95 °C for 60 s, annealing at 60 °C for 1min, and extension at 72 °C for 1min. After the 30 cycles, samples were maintained at 72°C for 10 min. Sterile distilled water was included in each PCR assay as a negative control. The amplified DNA was separated by 1% agarose gel electrophoresis, stained with ethidium bromide, and visualized by UV transillumination.

Results

The *Shigella* genus specific PCR produced the expected amplified DNA band in all *Shigella* species strains tested. Figure 1 shows the specific band of 159 bp obtained from standard and clinical isolates belonging to four *Shigella* species. Any positive reaction with non-*Shigella* strains including *Salmonella* and *Escherichia coli* was detected. Standard PCR assays also produced the expected fragments of 248 bp, 503 bp, and 314 bp, for *S. boydii*, *S. sonnei* and *S. flexneri*, respectively. While *S. dysenteriae* was used as negative control for detection assay of three pathogenic *Shigella* species, any DNA band was not amplified using specific *Shigella* species primers (Fig. 1).
As shown in Table 2, the standard PCR showed the same results on 30 clinical Shigella isolates. These isolates were recently recovered from pediatric patients in Tehran, Iran.

Multiplex PCR was successfully optimized for rapid and simultaneous detection of three pathogenic Shigella species.

Multiplex PCR was able produced the expected DNA bands for standard and clinical isolates of S. boydii, S. sonnei and S. flexneri in a single reaction. No non specific amplification products were observed with S. dysenteriae (as negative control) and non Shigella strains. Figure 2 shows the specific amplified bands obtained by multiplex PCR on the three pathogenic Shigella species.

Discussion

A specific PCR using Putative Integrase locus was evaluated for the rapid and specific detection of Shigella species. The results showed that this locus is an appropriate target for this purpose. This locus is conserved in all Shigella species and has not been studied previously.

A new multiplex PCR was also designed using four sets of primers to identify common Shigella species in our country. Accordingly, the designed method was successfully able to detect S. boydii, S. flexneri and S. sonnei. No nonspecific amplification was observed, confirming that this assay is specific for detection of these three most common pathogenic Shigella species in Iran.

Several previous studies have used standard PCR for rapid detection of bacterial pathogens such as Shigella species. However, multiplex PCR deserves special interest because of the possibility to rapid and simultaneous detection and identification of several target genes in a single reaction (21-26). Optimization of annealing temperature is very important in this technique. The annealing temperature of 60°C proved to be optimal for detection and differentiation of the three Shigella species under study. Analysis of quality assessment results of standard strains in combination with clinical samples indicated that the multiplex PCR was reliable and suitable method for the simultaneous detection of different Shigella strains. PCR results ob-
tained from the clinical samples were consistent with results from the standard strains. Previously some researchers have applied the multiplex PCR for rapid detection and differentiation of prevalent Shigella species. The primers used in many studies have been designed for detection of plasmid genes encoding virulence factors (27). Vantarakis et al. designed a multiplex PCR using two sets of primers which targeted invA and virA genes for simultaneous detection of Salmonella s and Shigella species, respectively (28). Aranda et al. evaluated two multiplex PCR assays for simultaneous detection of typical and atypical E. coli pathovars and Shigella species. (29). Their results showed that the multiplex PCR was a potentially valuable tool for rapid diagnosis of Shigella species and E. coli pathovars.

Thong et al. designed a multiplex PCR assay for simultaneous detection of chromosomal-and plasmid-encoded virulence genes (set1A, set1B, iap and ipaH) in Shigella species. Unlike our study, the limitation of their Multiplex PCR assay was its inability to differentiate Shigella species (30). This problem may be resulted from losing of virulence genes in some strains owing to plasmid-curing or hot spot regions for deletion (31). The described assay showed to be specific for detection and differentiation of the three Shigella species tested. No false positive and negative results occurred during the assay indicating that target loci used in the study were specific for Shigella species. One of Shigella Multiplex PCR limitations is its inability to discriminate Shigella isolates from EIEC (32). However, this problem was resolved by using specific primers so we found any cross reaction with EIEC, bioinformatically.

Our results also showed that the multiplex PCR using four primers sets was able to detect Shigella species and to differentiate three species of Shigella simultaneously in a single reaction by the combinations of the different-size amplicons without any cross-reactivity.

Conclusion

The method presented here showed a good specificity and proved to be able to offer an important diagnostic tool for the rapid and simultaneous detection of the three most prevalent species of Shigella in Iran.

Ethical Considerations

All ethical issues including plagiarism, Informed Consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc. have been completely observed by the author.

Acknowledgements

The authors would like to thank Dr. Hagher-Ashtiani and Mrs. Mina Abedini from Microbiology Laboratory of the Children’s Medical Center for their kind cooperation. The authors declare that there are no conflicts of interest.

Reference

1. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, et al. (1999). Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ, 77:651-66.
2. Ranjab R, Pourshafie MR, Soltan-Dallal MM, Rahbar M, Farshad S, Parvaneh N, et al. (2010). Fatality due to shigellosis with special reference to molecular analysis of Shigella sonnei strains isolated from the fatal cases. Iran J Clin Infect Dis, 5:36 – 39.
3. Hosseini MJ, Ranjab R, Ghasemi H, Jalalian HR (2007). The prevalence and antibiotic resistance of Shigella spp. recovered from patients admitted to Bouali Hospital, Tehran, Iran during 1999 – 2000. Pak J Biol Sci, 10: 2778 – 2780.
4. Ranjab R, Soltan-Dallal, MM, Pourshafie MR (2009). Antibiotic resistance among Shigella serogroups isolated in Tehran, Iran (2002-2004). J Infect Dev Ctries, 3: 647-648.
5. Vu DT, Sethabutr O, Von SL, Tran VT, Do GC, Bui TC, et al. (2004). Detection of Shigella by a PCR assay targeting the ipaH gene suggests
6. Villalobo E, Torres A (1998). PCR for detection of *Shigella* spp. in mayonnaise. *Appl Environ Microbiol*, 64:1242.

7. Wang L, Li Y, Mustaphai A (2007). Rapid and simultaneous quantitation of *Escherichia coli* O157:H7, *Salmonella*, and *Shigella* in ground beef by multiplex real-time PCR and immunomagnetic separation. *J Food Prot*, 70:1366-72.

8. Vantarakis A, Komninou G, Venieri D, Papapetropoulou M (2000). Development of a multiplex PCR detection of *Salmonella* spp. and *Shigella* spp. in mussels. *Lett Appl Microbiol*, 31:105-9.

9. Brandal LT, Lindstedt BA, Aas I, Stavnes TL, Lassen J, Kapperud G (2007). Octaplex PCR and fluorescence-based capillary electrophoresis for identification of human diarrheagenic *Escherichia coli* and *Shigella* spp. *J Microbiol Methods*, 68:331-41.

10. Lindqvist R (1999). Detection of *Shigella* spp. in food with a nested PCR method-sensitivity and performance compared with a conventional culture method. *J Appl Microbiol*, 86:971-8.

11. Dutta S, Chatterjee A, Dutta P, Rajendran K, Roy S, Pramanik KC, et al. (2001). Sensitivity and performance characteristics of a direct PCR with stool samples in comparison to conventional techniques for diagnosis of *Shigella* and enteroinvasive *Escherichia coli* infection in children with acute diarrhoea in Calcutta, India. *J Med Microbiol*, 50:667-74.

12. Tarr CI, Patel JS, Pühr ND, Sowers EG, Bopp CA, Strockbine NA (2007). Identification of *Vibrio* isolates by a multiplex PCR assay and rpoB sequence determination. *J Clin Microbiol*, 45:134-40.

13. Filliol-Toutain I, Chiou CS, Mammina C, Gerner-Smidt P, Thong KL, Phung DC, et al. (2011). Global distribution of *Shigella sonnei* clones. *Emerg Infect Dis*, 17:1910-1912.

14. Soltan-Dallal MM, Ranjbar R, Pourshafie MR (2011). The study of antimicrobial resistance among *Shigella flexneri* strains isolated in Tehran, Iran. *J Pediatr Infect Dis*, 6:125-129.

15. Ranjbar R, Hosseini MJ, Kaffashian AR, Farshad S (2010). An outbreak of shigellosis due to *Shigella flexneri* serotype 3a in a prison in Iran. *Arch Iran Med*, 13:413-416.

16. Ranjbar R, Mammina C, Pourshafie MR, Soltan-Dallal MM (2008). Characterization of endemic *Shigella boydii* strains isolated in Iran by serotyping, antimicrobial resistance, plasmid profile, ribotyping and pulsed-field gel electrophoresis. *BMC Res Notes*, 1:74.

17. Ranjbar R, Soltan Dallal MM, Talebi M, Pourshafie MR (2008). Increased isolation and characterization of *Shigella sonnei* obtained from hospitalized children in Tehran, Iran. *J Health Popul Nutr*, 26:426-430.

18. Ranjbar R, Aleo A, Giammanco GM, Dionisi AM, Sadeghifard N, Mammina C (2007). Genetic relatedness among isolates of *Shigella sonnei* carrying class 2 integrons in Tehran, Iran, 2002 – 2003. *BMC Infect Dis*, 22:62.

19. Ranjbar R, Ghazi FM, Farshad S, Giammanco GM, Aleo A, Owlia P, Jonaidi N, Sadeghifard N, Mammina C (2013). The occurrence of extended-spectrum β-lactamase producing *Shigella* spp. in Tehran, Iran. *Iran J Microbiol*, 5:108-112.

20. Ranjbar R, Mirsaleed Ghazi F (2013). Antibiotic sensitivity patterns and molecular typing of *Shigella sonnei* strains using ERIC-PCR. *Iran J Public Health*, 42:1151-1157.

21. Zhao J, Kang L, Hu R, Gao S, Xin W, Chen W, et al. (2013). Rapid Oligonucleotide Suspension Array-Based Multiplex Detection of Bacterial Pathogens. *Foodborne Pathog Dis*, 10:896-903.

22. Fazzeli H, Arabestani MR, Esfahani BN, Khorvash F, Pourshafie MR, Moghim S, et al. (2013). A new multiplex polymerase chain reaction assay for the identification a panel of bacteria involved in bacteremia. *Adv Biomed Res*, 6:27.

23. Bhattacharyya N, Hou A (2013). A pentaplex PCR assay for detection and characterization of *Vibrio vulnificus* and *Vibrio parahaemolyticus* isolates. *Lett Appl Microbiol*, 57:233-40.

24. Wei B, Cha SY, Kang M, Park IJ, Moon OK, Park CK, et al. (2013). Development and application of a multiplex PCR assay for rapid detection of 4 major bacterial pathogens in ducks. *Poult Sci*, 92:1164-70.

25. Kumar A, Grover S, Kumar Batish V (2013). Application of multiplex PCR assay based on uidR and fliCH7 genes for detection of...
26. Dixit S, Bhandari GP, Karmacharya DB, Shrestha S, Manandhar S, Maskey MK (2011). Molecular screening of major bacterial enteropathogens in human stool samples from diarrhoeal outbreak sites. *J Nepal Health Res Coun*, 9:181-5.

27. Johnson TJ, Nolan LK (2009). Pathogenomics of the virulence plasmids of *Escherichia coli*. *Microbiol Mol Biol Rev*, 73: 750-774.

28. Vantarakis A, Komninou G, Venieri D, Papapetropoulou M (2000). Development of a multiplex PCR detection of *Salmonella* spp. and *Shigella* spp. in mussels. *Lett Appl Microbiol*, 31:105-9.

29. Aranda KR, Fagundes-Neto U, Scaletsky IC (2004). Evaluation of multiplex PCRs for diagnosis of infection with diarrheagenic *Escherichia coli* in milk. *J Gen Appl Microbiol*, 59:11-9.

30. Thong KL, Hoe SL, Puthucheary SD, Yasin R (2005). Detection of virulence genes in Malaysian *Shigella* species by multiplex PCR assay. *BMC Infect Dis*, 14;5:8.

31. Sasakawa, C., Kamata, K., Sakai, T., Murayama, S. Y., Makino, S., & Yoshikawa, M. (1986). Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in *Shigella flexneri*. *Infect Immun.*, 51: 470-475.

32. Binet R, Deer DM, Uhlfelder SJ (2014). Rapid detection of *Shigella* and enteroinvasive *Escherichia coli* in produce enrichments by a conventional multiplex PCR assay. *Food Microbiol*, 40:48-54.