Improvement of Hf-based metal/oxide/nitride/oxide/Si nonvolatile memory characteristics by Si surface atomically flattening

Shun-Ichiro Ohmi1*, Yusuke Horiiuchi, and Sohya Kudoh

Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, J2-72, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

1) E-mail: ohmi@ee.e.titech.ac.jp

Received October 2, 2019; revised December 24, 2019; accepted January 23, 2020; published online February 28, 2020

The effect of Si surface atomically flattening (SAF) on the Hf-based metal/oxide/nitride/oxide/Si (MONOS) nonvolatile memory (NVM) characteristics was investigated. The memory window (MW) obtained in the C–V characteristics for the Hf-based MONOS diode was increased from 4.5 to 4.8 V by the Si SAF. The charge centroid (Z_{eff}) was found to be shifted from the center of the HfN_{1.1} charge trapping layer (CTL) to the interface at block layer and CTL for the Hf-based MONOS diode with the Si SAF. Furthermore, the MW of 3.2 V was realized for the Hf-based MONOS NVM with improvement of device characteristics by Si SAF. © 2020 The Japan Society of Applied Physics

1. Introduction

Metal–oxide–nitride–oxide–silicon (MONOS) type nonvolatile memory (NVM) is a promising candidate to replace the conventional floating-gate type NVM in terms of the scaling and high-density integration.1) One of the issues of conventional MONOS type NVM is the high operation voltage such as 20 V because the thinning of ONO layers has been limited for the ONO layers which consist from SiO2 blocking layer (BL)/SiN charge trapping layer (CTL)/SiO2 tunneling layer (TL). Therefore, the replacement of each high-k thin film has been investigated to decrease the equivalent oxide thickness of ONO layers for the operation voltage reduction especially for the BL and CTL.2–6) Generally, each layer is deposited by a different method such as thermal oxidation for SiO2 TL, chemical vapor deposition for SiN CTL, and sputtering for high-k BL. This process would degrade the interface properties during the transfer of the sample to another chamber.

The HfO2 thin film with the relative dielectric constant (ε_r) of 20 has been introduced to the metal-oxide-field-effect transistor (MOSFET) as a high-k gate insulator since the 45 nm technology node.7) The HfN_{x} (x > 1) thin film has also been investigated for high-k gate insulator application, and the ε_r of 26 has been achieved for the HfN_{1.3}/HfN_{1.1}/Si(100) bilayer structures.8–11) We have reported the excellent electrical characteristics of fully in situ formed Hf-based MONOS NVM, which consists from HfN_{0.5} gate electrode/HfO2 BL/HfN_{1.1} CTL/HfO2 TL/Si(100).12–14) The Hf-based MONOS layers were deposited by the electron cyclotron resonance (ECR) plasma sputtering in a chamber with changing the process gas for the deposition of each layer. The relative dielectric constants of HfO2 and HfN are several times higher than those of SiO2 and SiN such as 3.9 and 7, respectively, which would realize the high speed and low voltage operation. The HfO2 TL is effective in improving the efficiency of electron injection and emission compared to the SiO2 TL because of its small barrier height to Si. However, the HfO2 TL becomes as thin as a few nanometers, further improvement of MONOS memory characteristics has been getting difficult.

In order to improve the Hf-based MONOS memory characteristics, Si surface flattening is important as well as the gate insulator of MOSFETs15–23) because of the thinning of HfO2 TL and HfN_{1.1} CTL. We have reported the Si surface atomically flattening (SAF) process for the Si(100) surface by annealing in Ar/H2 ambient.24–32) It has been revealed that the electrical characteristics of Hf-based MONOS diodes was improved by Si SAF as well as the MOSFETs with Hf-based high-k gate insulator.

In this study, the effect of Si SAF on the Hf-based MONOS NVM was investigated.33) Furthermore, the charge centroid in the HfN_{1.1} CTL was extracted.33) The precise device analysis was carried out for the Hf-based MONOS NVM.

2. Experimental procedure

Figure 1 shows the experimental procedure for the fabrication of Hf-based MONOS NVM and diode. The in situ formed Hf-based MONOS NVM was fabricated on p-Si(100) substrate using the typical gate-last process.14) After the channel stop implantation and local oxidation of silicon (LOCOS) isolation, Si(100) SAF process by annealing at 1050 °C/60 min in Ar/4%H2 ambient was carried out. Then, the HfN_{0.5}/HfO2/HfN_{1.1}/HfO2 (MONO) structure was in situ deposited on p-Si(100) by the ECR plasma sputtering (AFTEX 3400) at room temperature (RT). The designed thickness of HfO2 TL was 3.2 nm. A 2.1 nm TL was also investigated for the comparison. The HfN_{1.1} CTL thickness was 2.3 nm. The thickness of HfO2 BL and HfN_{0.5} gate electrode was 8 nm each. The Ar/O2 flow rate for HfO2 TL and BL was 23/4.6 sccm, while the Ar/N2 flow rates for HfN_{1.1} CTL and HfN_{0.5} gate electrode were 8/6 sccm and 10/0.2 sccm, respectively. Then, the post-deposition annealing (PDA) was carried out at 600 °C/1 min in N2. After the contact hole formation and metallization, the post metallization annealing (PMA) was carried out at 300 °C/10 min in N2/4.9%H2. The gate length (L) and width (W) of the fabricated device was L/W = 10/90 μm. The inset of Fig. 1 shows the plane-view of the fabricated Hf-based MONOS diode and NVM.

The fabricated Hf-based MONOS diodes and NVMs were evaluated by C–V, density of interface states (D_{it}), I_{Dy}–V_{Dy},
and $I_{D} - V_{G}$ at RT using LCR meter (HEWLETT PACKARD 4284A) and semiconductor parameter analyzer (Agilent 4156C). The operation conditions were set as the program voltage/time (V_{PGM}/t_{PGM}) of 10 V/1 s, the erase voltage/time (V_{ERS}/t_{ERS}) of -10 V/1 s, and V_{DS} of 1.5 V. The charge centroid (Z_{eff}) was extracted utilizing the following equation

$$Z_{eff} = \frac{\varepsilon_{ox} \Delta V_{FB}}{\int_0^{V_{FB}} C(V) dV + Q_m},$$

where Q_m is the measured charge, ε_{ox} is the dielectric constant of HfO$_2$ BL, and V_{FB} is the flat-band voltage.

Figure 2 shows the schematic measurement system for Z_{eff} evaluation. The input pulse was applied by pulse generator (HEWLETT PACKARD 8110A), and the pulse was observed by the oscilloscope (LeCroy LC534AM). The charge was measured by the electrometer (KEITHLEY 6517A). The pulse input, charge and $C-V$ measurements were controlled by the switch (KEYSIGHT DAQ970A). All measurements were carried out at RT.

3. Results and discussion

3.1. Effect of Si SAF on the Hf-based MONOS diode characteristics

Figure 3 shows the effect of Si SAF on the $C-V$ measured at 1 MHz and memory window (MW) for Hf-based MONOS diodes extracted from the difference of flat-band voltage (V_{FB}) after the program and erase (P/E) operation at $+10$ V/1 s and -10 V/1 s, respectively. From Fig. 3(a), it was found that the charge-injection type hysteresis width was decreased from 40 to 10 mV by the Si SAF for the Hf-based MONOS diodes with the 3.2 nm thick HfO$_2$ TL. This improvement of interface property was also confirmed by the reduction of D_{it} from 5.7×10^{10} to 3.5×10^{10} cm$^{-2}$ eV$^{-1}$ by the Si SAF as we have reported. The ideal V_{FB} for HfN$_{0.5}$ gate electrode and p-Si(100) was -0.2 V so that the V_{FB} shift was decreased from -1.1 to -0.9 V by the Si SAF. This is probably due to the reduction of fixed-oxide charge in the HfO$_2$ TL with improving the film quality by the Si SAF. The rough Si surface would form the thicker SiO$_x$ layer, and it would be suppressed by the Si SAF. Figure 3(b) shows the effect of
3.2. Improvement of Hf-based MONOS NVM characteristics by Si SAF

Next, we have investigated the effect of Si SAF on the device characteristics of Hf-based MONOS NVM with 2.3 nm thick HfN_{1.1} CTL and 3.2 nm HfO_2 TL. Figure 5 shows the I_D–V_D characteristics for the fabricated Hf-based MONOS NVM at fresh state. The threshold voltage (V_{TH}) was extracted from the I_D–V_G characteristics as shown in Fig. 6, and the MW was defined as the V_{TH} difference of program and erase states. As shown in Fig. 5, the good saturation characteristics were observed for the Hf-based MONOS NVM both with and without (w/o) Si SAF. This result suggested that the device fabrication process was successfully carried out especially for the S/D contact hole formation and gate patterning for the Hf-based MONOS stacked structures. The current drivability was found to be improved by Si SAF with the linear mobility of 150 cm^2 V^{-1} s^{-1}.

Figure 6 shows the effect of Si SAF on the I_D–V_G characteristics of Hf-based MONOS NVM utilizing P/E pulses of ±10 V/1 s. The read operation condition was set as V_D = 1.5 V and V_S = 0 V, respectively. The V_{TH} was defined as the voltage when the I_D became 10^{-2} A \mu m^{-1} in this
Fig. 6. (Color online) I_D-V_D of Hf-based MONOS NVM (a) without and (b) with Si SAF. The L/W was 10/90 μm. The ON/OFF ratio was extracted from the fresh characteristics.

research. The extracted V_{TH} results were indicated by an arrow in each graph. The obtained I_D-V_D characteristics showed negligible hysteresis both for the devices with and w/o Si SAF. As shown in Fig. 6(a), the initial V_{TH} was -0.9 V, while it shifted to 1.7 V after the program operation. The V_{TH} of 0.6 V was obtained after the erase operation. Although the erase operation was not completed by this condition, the MW of 1.1 V was obtained for the Hf-based MONOS NVM w/o Si SAF.

The device characteristics were markedly improved by the Si SAF as shown in Fig. 6(b). The initial V_{TH} was -0.4 V, while it shifted to 3.3 V after the program operation. Interestingly, the erase operation was significantly improved by the Si SAF, and the V_{TH} shifted to 0.1 V which was close to the initial state. The MW of 3.2 V was obtained for the Hf-based MONOS NVM with Si SAF. Furthermore, the extracted ON/OFF ratio form the fresh characteristics was increased from 6.5×10^7 to 2.9×10^8, and subthreshold swing was reduced from 106 to 101 mVdec$^{-1}$ with decreasing the off current by the Si SAF. The Si SAF improves the uniformity of HfO$_2$ TL and HfN$_{1.1}$ CTL which led to the decrease of off leakage current. Furthermore, we speculated that the deep trap level was formed in the HfN$_{1.1}$ CTL in case of the Hf-based MONOS NVM w/o Si SAF which caused the incomplete erase operation. The deep trap formation would be suppressed by the Si SAF with improving the film quality of HfN$_{1.1}$ CTL so that the erase operation was successfully carried out. Therefore, the Si SAF improved not only the quality of each layer but the property of each interface, and it is promising for precise control of the V_{TH} to realize the multi-bit NVM with reducing the operation voltage. We have reported that the improvement of memory characteristics such as retention and endurance by the Si SAF for the Hf-based MONOS diodes. The retention and endurance characteristics for the Hf-based MONOS transistors would be discussed in another paper.

4. Conclusions

The effect of Si SAF on the Hf-based MONOS characteristics was investigated. The MW of 4.8 V was obtained, and Z_{eff} was found to be located at BL/CTL interface for the Hf-based MONOS diode with the Si SAF. Furthermore, the MW of 3.2 V was realized for the Hf-based MONOS NVM with improvement of the device characteristics by the Si SAF. In conclusion, the Si SAF is effective to improve the Hf-based MONOS NVM characteristics for high speed and low voltage operation.

Acknowledgments

The authors would like to thank Mr. M. Suzuki of Tokyo Institute of Technology, the late Prof. Emeritus T. Ohmi, Prof. T. Goto, and Prof. T. Suwa of Tohoku University, Dr. M. Shimada and Mr. M. Hirohara of JSW-AFTY for their support and useful discussions for this research. This research was partially supported by JSPS KAKENHI Grant Nos. 19H00758, JP17J10752 and Toshiba Electronic Devices & Storage Corporation.

References

1) C. Zhao, C. Z. Zhao, S. Taylor, and P. R. Chalker, Materials 7, 5117 (2014).
2) G. Zhang, X.-P. Wang, W. J. Yoo, and M.-F. Li, IEEE Trans. Electron Devices 54, 3317 (2007).
3) C.-Y. Lu, K.-Y. Hsieh, and R. Liu, Microelectron. Eng. 86, 283 (2009).
4) C. Z. Zhao, J. F. Zhang, M. B. Zahidhi, G. Groesekens, R. Degrave, and S. De Gendt, Appl. Phys. Lett. 89, 023507 (2006).
5) S. Lee, Y. W. Jeon, T.-J. K. Liu, D. H. Kim, and D. M. Kim, IEEE Trans. Electron Devices 57, 1728 (2010).
6) M. Kadoshima, M. Inoue, T. Maruyama, and M. Matsuda, Jpn. J. Appl. Phys. 58, SBBA10 (2019).
7) https://ieeexplore.ieee.org/. 10
8) H. S. Han and S. Ohmi, IEEE Electron. Lett. 49, 500 (2013).
9) N. Athih, D.-H. Han, and S. Ohmi, MRS Online Proc. Library, (2014) Vol. 1588, January 2014, jasmpnr13-1587-6607.
10) N. Athih and S. Ohmi, IEEE Electron. Device Lett. 32, 1471 (2011).
11) N. Athih and S. Ohmi, Jpn. J. Appl. Phys. 50, 04DC03 (2011).
12) R. Kuroda, T. Suwa, A. Teramoto, R. Hasebe, S. Sugawa, and T. Ohmi, IEEE Trans. Electron Devices 56, 291 (2009).
13) K. Izumine, Y. Saito, and H. Kubota, Jpn. J. Appl. Phys. 30, L1277 (1992).
14) L. Zhong, R. Takeda, K. Izumine, Y. Matsushita, Y. Aiba, J. Matushita, J. Yoshikawa, K. Hayashi, H. Shirai, and H. Saito, Appl. Phys. Lett. 68, 2349 (1996).
15) Y. Matsushita, H. Nagahama, R. Takeda, and M. Hirasawa, ECS Trans. 3, 159 (2006).
23) Y. Morita, T. Maeda, H. Ota, W. Mizubayashi, S. O’uchi, M. Masahara, T. Matsukawa, and K. Endo., IEEE Int. Electron Devices Meet., Tech. Dig., 2015, p. 390.
24) S. Kudoh and S. Ohmi, 75th Device Research Conf., Conf. Digest, 2017, p. 119.
25) S. Kudoh and S. Ohmi, 76th Device Research Conf., Conf. Digest, 2018, p. 157.
26) S. Kudoh and S. Ohmi, 60th Electronic Materials Conf., Conf. Digest, 2018, p. 121.
27) S. Kudoh and S. Ohmi, J. Electron. Mater. 47, 961 (2018).
28) S. Ohmi, IEICE Electron. Exp. 11, 20142006 (2014).
29) S. Ohmi, S. Kudoh, and N. Atthi, IEEE Trans. Semicond. Manuf. 28, 266 (2015).
30) D. H. Han, H. S. Han, and S. Ohmi, IEICE Electron. Exp. 10, 1 (2013).
31) D. H. Han and S. Ohmi, IEICE Trans. Electron. E96-C, 669 (2013).
32) D. H. Han, S. Ohmi, T. Suwa, P. Gaubert, and T. Ohmi, IEICE Trans. Electron. E97-C, 413 (2014).
33) S. Ohmi, Y. Horiuchi, and S. Kudoh, Int. Conf. Solid State Dev. Mater., 2019, p. 687.
34) S. Fujii, N. Yasuda, J. Fujiki, and K. Muraoaka, Jpn. J. Appl. Phys. 49, 04DD06 (2010).