CRystalline Liftings and Weight Part of Serre’s Conjecture

HUI GAO

Abstract. We prove some new cases of weight part of Serre’s conjecture for mod \(p \) Galois representations associated to automorphic representations on unitary groups \(U(d) \), by (partially) generalizing the main local results of Gee-Liu-Savitt to higher dimensions. Namely, let \(p > 2 \) be an odd prime, \(K/\mathbb{Q}_p \) a finite unramified extension, \(\rho : G_K \to \text{GL}(d, \mathbb{Q}_p) \) a crystalline representation with distinct labelled Hodge-Tate weights in the range \([0, p]\), such that the reduction \(\overline{\rho} \) is upper triangular. Under certain technical conditions, we prove that there exists an upper triangular crystalline representation \(\rho' \) such that \(\text{HT}(\rho') = \text{HT}(\rho) \) and \(\overline{\rho'} \sim \overline{\rho} \).

\[\text{Contents} \]

Introduction \hfill 1
1. Kisin modules and \((\varphi, \hat{G})\)-modules with coefficients \hfill 6
2. Shapes of upper triangular torsion Kisin modules-I \hfill 10
3. Models of upper triangular torsion crystalline representations \hfill 12
4. Shapes of upper triangular torsion Kisin modules-II \hfill 13
5. \(\mathcal{O}_E \)-module structure of extension classes \hfill 18
6. Two conditions on upper triangular extensions \hfill 27
7. Main local results: crystalline lifting theorems \hfill 30
8. Application to weight part of Serre’s conjecture \hfill 35
References \hfill 38

Introduction

Let \(p > 2 \) be an odd prime, \(K \) a finite unramified extension over \(\mathbb{Q}_p \) with residue field \(k \), \(\overline{K} \) a fixed algebraic closure, and \(G_K \) the absolute Galois group \(\text{Gal}(\overline{K}/K) \). Let \(\mathcal{S} := \{ \kappa : K \hookrightarrow \overline{K} \} \) be all the embeddings of \(K \) into \(\overline{K} \). Fix one \(\kappa_0 \in \mathcal{S} \), and recursively define \(\kappa_{s+1} \in \mathcal{S} \) to be such that \(\kappa_{p+1}^s \equiv \kappa_s \pmod{p} \). The subscripts are taken mod \(f \), so \(\kappa_f = \kappa_0 \). Fix a system of elements \(\{ \pi_n \}_{n=0}^\infty \) in \(\mathcal{S} \), where \(\pi_0 = \pi \) is a uniformizer of \(\overline{K} \), and \(\pi_{n+1}^p = \pi_n^p \), \(\forall n \). Let \(K_\infty = K_n \), \(K_\infty = \bigcup_{n=0}^\infty K_n \), and \(G_\infty = \text{Gal}(\overline{K}/K_\infty) \).

Let \(E/\mathbb{Q}_p \) be a finite extension that contains the image of every embedding of \(K \) into \(\overline{K} \), \(\mathcal{O}_E \) the ring of integers, \(\omega_E \) a fixed uniformizer, \(k_E = \mathcal{O}_E/\omega_E \mathcal{O}_E \) the 2010 Mathematics Subject Classification. Primary 11F80, 11F33.
Key words and phrases. torsion Kisin modules, crystalline representations.
Let V be a crystalline representation of G_K over an E-vector space of dimension d. Let D be the associated filtered φ-module over $K \otimes_{\mathbb{Q}_p} E$, which decomposes as $D = \prod_{s=0}^{f-1} D_s$, where $D_s = \varepsilon_s D$. Suppose $HT_{s,\iota}(D) = HT(D_s) = \{0 = r_{s,0} < \ldots < r_{s,d} \leq p\}$ (note that we require $\min(HT(D_s)) = 0$ for all s). Let $\rho = T$ be a G_K-stable \mathcal{O}_E-lattice in V, and $\overline{\rho} := T/\omega_E T$ the reduction of T.

Theorem 0.1. Suppose that the reduction $\overline{\rho}$ is upper triangular (i.e., successive extension of d characters). Suppose that

- Condition (C-1) is satisfied, and
- Either (C-2A) or (C-2B) is satisfied.

Then there exists an upper triangular crystalline lifting ρ' of $\overline{\rho}$ such that $HT_s(\rho) = HT_s(\rho')$, $\forall s$.

Here, Conditions (C-1) and (C-2A) (or (C-2B)) are the technical conditions that we have to assume, see Section 3 and Section 6 respectively. We list several cases when these conditions are satisfied.

Corollary 0.2. Suppose that the reduction $\overline{\rho}$ is upper triangular, i.e., there exists an increasing filtration $0 = Fil^0 \overline{\rho} \subset Fil^1 \overline{\rho} \subset \ldots \subset Fil^d \overline{\rho} = \overline{\rho}$ such that $Fil^i \overline{\rho}/Fil^{i-1} \overline{\rho} = \mathbb{F}_{d-i}, \forall 1 \leq i \leq d$, where \mathbb{F}_i are some characters. If one of the following conditions is satisfied, then there exists an upper triangular crystalline lifting ρ' of $\overline{\rho}$ such that $HT_s(\rho) = HT_s(\rho')$ for all $0 \leq s \leq f - 1$.

1. $K = \mathbb{Q}_p$, the differences between two elements in $HT(D_0)$ are never $p - 1$.
 And $\mathbb{F}_i^\prime \mathbb{F}_j^\prime \neq \mathbb{F}_p^\prime, \forall i < j$, where $\mathbb{1}$ is the trivial character, and \mathbb{F}_p^\prime is the reduction of the cyclotomic character.

2. For each s, the differences between two elements in $HT(D_s)$ are never 1.
 And for one s_0, $p - 1 \not\in HT(D_{s_0})$. And $\mathbb{F}_i^\prime \mathbb{F}_j^\prime \neq \mathbb{F}_p^\prime, \forall i < j$.

3. For each s, the differences between two elements in $HT(D_s)$ are never 1.
 For one s_0, $p - 1 \not\in HT(D_{s_0})$. For one $0 \leq s'_0 \leq f - 1$, $p \not\in HT(D_{s'_0})$ (it is possible that $s_0 = s'_0$).

4. For each s, $HT(D_s) \subseteq [0, p - 1]$. And for one s_0, $p - 1 \not\in HT(D_{s_0})$.

Theorem 0.3. Suppose $p > 2$. Let F be an imaginary CM field, with maximal totally real subfield F^+ such that F/F^+ is unramified at all finite places, and all places v in F^+ over p splits completely in F. Furthermore, assume that p is unramified in F.

Suppose $\tau : G_F \to GL_d(\mathbb{F}_p)$ is an irreducible representation such that $\tau \cong \tau_{\rho,p,\iota}(\Pi)$, for an RACSDC automorphic representation Π of $GL_d(\mathbb{A}_F)$ with weights (whose corresponding Hodge-Tate weights are) in the Fontaine-Laffaille range and level prime to p. Suppose furthermore some usual Taylor-Wiles conditions are satisfied.
Now suppose that for each \(w \mid p \in F, \tau \mid_{G_{F_w}} \) is upper triangular. Let

\[
a = (a_w)_{w \mid p} \in (\mathbb{Z}_p^d)^{\prod_{w \mid p} \text{Hom}(k_w, \mathbb{F}_p)}
\]

be a Serre weight, such that

1. \(a_{w, \kappa, 1} - a_{w, \kappa, d} \leq p - d + 1 \), \(\forall w \mid p, \kappa \in \text{Hom}(k_w, \mathbb{F}_p) \), and
2. \(a_w \in W^{\text{cris}}(\tau \mid_{G_{F_w}}), \forall w \mid p \).

Suppose furthermore that for each \(w \mid p \), any one of the listed 4 conditions in Theorem 8.3 is satisfied. (These conditions directly correspond to the listed 4 conditions in Corollary 0.2).

Then, \(\tau \) is automorphic of weight \(a \).

Remarks on some related papers. Our paper gives the first “general” evidence towards the weight part of Serre’s conjectures, with no restriction on the dimension \(d \) or the unramified base field \(K \), and outside the Fontaine-Laffaille range (although of course with many restriction on the Hodge-Tate weights). Here are some remarks on some related papers.

The case when \(d = 2 \) is fully solved (when \(p > 2 \)) by [GLS14] (when \(K \) is unramified) and [GLS15] (when \(K \) is ramified). Our paper is a direct generalization of [GLS14, GLS15]. In loc. cit., many results are proved in an ad hoc way since \(d = 2 \). The key insight in our paper is that we can reprove several theorems in loc. cit. in a way that can be generalized to higher dimensions (e.g., Proposition 4.1 in our paper). Also, with the help and inspiration from the unpublished notes [GLS], we are able to formulate our crystalline lifting theorems in a new way (see Section 5 and Section 7) that can lead to better understanding of (\(\varphi, \hat{\rho} \))-modules.

In particular, we can generalize Theorem 0.1 to the case where \(K \) is ramified (see forthcoming [Gao15a]). We also note that by using some different crystalline lifting techniques, we can strengthen the result in Corollary 0.2(1) (i.e., the \(K = \mathbb{Q}_p \) case) in the forthcoming [Gao15b].

The paper [BLGG14] treated the case when \(K = \mathbb{Q}_p \) and \(\tau \) is semisimple of any dimension \(d \) (see Corollary 4.1.14 of loc. cit.). In particular, when \(d = 3 \), there is a much more explicit and detailed result (Theorem 5.1.4 of loc. cit.), although the detailed calculations for \(d = 3 \) seem quite difficult to generalize to higher dimensions. We are also notified that [EGHS14] has some more work along this line. In the case when \(K = \mathbb{Q}_p, d = 3 \) and \(\overline{\rho} \) is absolutely irreducible, there is also the result of [EGH13], using totally different techniques (the weight cycling). However, the method can only treat \(\overline{\rho} \) absolutely irreducible, and the weight cycling method seems quite difficult to generalize to higher dimensions. We also note that in the preprint [MP14], when \(K = \mathbb{Q}_p, d = 3 \) and \(\overline{\rho} \) is upper triangular, by the method of weight elimination, they have produced a set of possible modular weights. And we are notified that there is the independent work [LMP14] to show that these weights are modular. Finally we want to remark that [BLGG14, EGH13, MP14] can treat (or produce) Serre weights (whose corresponding Hodge-Tate weights are) outside the \([0, p]\) range, whereas our paper can only treat the \([0, p]\) range.

Strategy for the main local results. Now, let us sketch the strategy of the proof of our main local result (Theorem 0.1). The strategy follows closely that of [GLS14] and [GLS15], and uses an induction process.

Let \(\mathfrak{M} \) be the Kisin module attached to \(T \), which is a free module of rank \(d \) over \(W(k)[u] \otimes_{\mathbb{Z}_p, \mathcal{O}_E} \), and decomposes as \(\mathfrak{M} = \prod_{s=0}^{d-1} \mathfrak{M}_s, \) where \(\mathfrak{M}_s = \varepsilon_s \mathfrak{M} \). We regard
M_{l-1} as a $\varphi(\mathcal{O}_E[u])$-submodule of M^*. The first step in our proof is to control the shape the reduction of the Kisin module (i.e., the shape of M) associated to crystalline representations, and we can give an upper bound for the number of these shapes.

Kisin modules only give us information on the G_∞-action on representations. However, when the reduction of T is upper triangular, under certain technical conditions, we can show that the G_∞-action already determines the G_K-action. All these results put restrictions on the possible shapes of reductions of crystalline representations when the reduction is upper triangular. The number of possible shapes of reductions is also bounded by the upper bound we mentioned in the last paragraph.

The next step is to show that upper triangular crystalline representations already give rise to enough upper triangular reductions. We can give a precise number of all these upper triangular reductions coming this way, which happens to be exactly the same as the upper bound we mentioned in the last paragraph. Thus by pigeonhole principle, all upper triangular reductions of crystalline representations can be obtained by reductions of upper triangular crystalline representations, and Theorem 0.1 is proved.

Structure of the paper. We now explain the structure of this paper. In Section 1, we review the theory of Kisin modules and (φ, \hat{G})-modules with \mathcal{O}_E-coefficients. In particular, we review the structure of rank-1 modules. In Section 2, we take the first step in studying the shape of upper triangular torsion Kisin modules (which comes from reduction of crystalline representations). In Section 3, we introduce the Condition (C-1), which helps to avoid certain complication in the shape of upper triangular torsion Kisin modules. Then in Section 4, with the assumption (C-1), we can continue the studies in Section 2, and give an upper bound for the shapes of upper triangular torsion Kisin modules that we study. In Section 5, we show that certain set of extension classes have natural \mathcal{O}_E-module (and sometimes, k_E-vector space) structures, which will be used in the induction process. We also show that these \mathcal{O}_E-module structures are compatible with each other. In Section 6, we introduce the two conditions (C-2A) and (C-2B). When either of the two conditions is satisfied, then roughly speaking, the G_∞-information that Kisin modules carry actually determine the full G_K-information. In Section 7, we prove our main local result, combining everything in the previous sections. It relies on an induction process, where the $d = 2$ case are proved in [GLS14]. Finally in Section 8, we apply our local results to weight part of Serre’s conjecture. The application is straightforward, using automorphy lifting theorems proved by [BLGGT14].

Notations In this paper, we frequently use boldface letters (e.g., e) to mean a sequence of objects (e.g., $e = (e_1, \ldots, e_d)$ a basis of some module). We use Mat(?) to mean the set of matrices with elements in ?. We use notations like $[u^r_1, \ldots, u^r_d]$ to mean a diagonal matrix with the diagonal elements in the bracket. We use Id to mean the identity matrix.

In this paper, upper triangular always means successive extension of rank-1 objects. We use notations like $E(m_d, \ldots, m_1)$ (note the order of objects) to mean the set of all upper triangular extensions of rank-1 objects in certain categories. That is, m is in $E(m_d, \ldots, m_1)$ if there is an increasing filtration $0 = \text{Fil}^0 m \subset \text{Fil}^1 m \subset \ldots \subset \text{Fil}^d m = m$ such that $\text{Fil}^i m/\text{Fil}^{i-1} m = m_i, \forall 1 \leq i \leq d$. Note
that we do not define any equivalence relations between elements in this set. This is in contrast with some other sets which we define in Section 6 (with notations $\text{Ext}(*,*)$).

We normalize the Hodge-Tate weights so that $HT_K(\varepsilon_p) = 1$ for any $\kappa : K \to \overline{K}$, where ε_p is the p-adic cyclotomic character.

(Notations for p-adic Hodge theory rings) We recall some notations in p-adic Hodge theory and integral p-adic Hodge theory. All these notations in fact work for all K/\mathbb{Q}_p with no ramification restriction.

We fix a system of elements $\{\mu_p^n\}_{n=0}^\infty$ in \overline{K}, where $\mu_1 = 1$, μ_p is a primitive p-th root of unity, and $\mu_{p^{n+1}} = \mu_{p^n}$, $\forall n$. Let

$$K_p^\infty = \bigcup_{n=0}^\infty K(\mu_p^n), \quad \tilde{K} = K_{\infty,p}^\infty = \bigcup_{n=0}^\infty K(\pi_n, \mu_p^n).$$

Note that \tilde{K} is the Galois closure of K_{∞}, and let

$$\hat{G} = \text{Gal}(\tilde{K}/K), \quad H = \text{Gal}(\tilde{K}/K_{\infty}), \quad G_p^\infty = \text{Gal}(\tilde{K}/K_{p^\infty}).$$

When $p > 2$, then $\hat{G} \simeq G_p^\infty \rtimes H$ and $G_p^\infty \simeq \mathbb{Z}_p(1)$ by Lemma 5.1.2 of [Liu08], and so we can (and do) fix a topological generator τ of G_{p^∞}. And we can furthermore assume that $\mu_p^n = \overline{\tau^n}$ for all n.

Let $C = \overline{K}$ be the completion of K, with ring of integers \mathcal{O}_C. Let $R := \lim \mathcal{O}_C/p$ where the transition maps are p-th power map. \tilde{R} is a valuation ring with residue field \tilde{k} (\tilde{k} is the residue field of C). \tilde{R} is a perfect ring of characteristic p. Let $W(R)$ be the ring of Witt vectors. Let $\xi := (\mu_p^n)_{n=0}^\infty \in R$, $\pi = (\pi_n)_{n=0}^\infty \in R$, and let $[\xi]$, $[\pi]$ be their Teichm"uller representatives respectively in $W(R)$.

There is a map $\theta : W(R) \to \mathcal{O}_C$ which is the unique universal lift of the map $R \to \mathcal{O}_C/p$ (projection of R onto the its first factor), and $\text{Ker} \theta$ is a principle ideal generated by $\xi = [\pi] + p$, where $[\pi] \in R$ with $\omega^{(0)} = -p$, and $[\pi] \in W(R)$ its Teichm"uller representative. Let $B_{\text{dR}}^+ := \lim_n W(R)[1/p]/(\xi)^n$, and $B_{\text{dR}} := B_{\text{dR}}^+[1]$. Let $t := \log([\xi])$, which is an element in B_{dR}.

Let A_{cris} denote the p-adic completion of the divided power envelope of $W(R)$ with respect to $\text{Ker}(\theta)$. Let $B_{\text{cris}}^+ = A_{\text{cris}}[1/p]$ and $B_{\text{cris}} := B_{\text{cris}}^+[1]$. Let $B_{\text{st}} := B_{\text{cris}}[x]$ where x is an indeterminate. There are natural Frobenius actions, monodromy actions and filtration structures on B_{cris} and B_{st}, which we omit the definition. We have the natural embeddings $B_{\text{cris}} \subset B_{\text{st}} \subset B_{\text{dR}}$.

Let $\mathfrak{S} := W(k)[u]$, $E(u) \in W(k)[u]$ the minimal polynomial of π over $W(k)$, and S the p-adic completion of the PD-envelope of \mathfrak{S} with respect to the ideal $(E(u))$. We can embed the $W(k)$-algebra $W(k)[u]$ into $W(R)$ by mapping u to $[\pi]$. The embedding extends to the embeddings $\mathfrak{S} \hookrightarrow S \hookrightarrow A_{\text{cris}}$.

The projection from R to \overline{K} induces a projection $\nu : W(R) \to W(\overline{K})$, since $\nu(\text{Ker} \theta) = pW(\overline{K})$, the projection extends to $\nu : A_{\text{cris}} \to W(\overline{K})$, and also $\nu : B_{\text{cris}}^+ \to W(\overline{K})[1/p]$. Write

$$I_{\nu}B_{\text{cris}}^+ := \text{Ker}(\nu : B_{\text{cris}}^+ \to W(\overline{K})[1/p]),$$

and for any subring $A \subset B_{\text{cris}}^+$, write $I_{\nu}A = A \cap \text{Ker}(\nu)$. Also, define

$$I[n]B_{\text{cris}}^+ := \{ x \in B_{\text{cris}}^+ : \varphi^k(x) \in \text{Fil}^n B_{\text{cris}}^+ \text{, for all } k > 0 \},$$

and for any subring $A \subset B_{\text{cris}}^+$, write $I[n]A := A \cap I[n]B_{\text{cris}}^+$.

Crystalline liftings and weight part of Serre’s conjecture 5
There exists a nonzero \(t \in W(R) \) such that \(\varphi(t) = c_0^{-1} E(u)t \), where \(c_0p \) is the constant term of \(E(u) \). Such \(t \) is unique up to units in \(\mathbb{Z}_p \), and we can select a such \(t \) such that \(t = \lambda \varphi(t) \) with \(\lambda = \prod_{n=1}^\infty \varphi^n \left(\frac{c_0^{-1} E(u)}{p} \right) \in S^\times \). For all \(n \), \(t^{[n]} W(R) \) is a principle ideal, and by Lemma 3.2.2 in [Liu10], \((\varphi(t))^n \) is a generator of the ideal.

Acknowledgement This paper is a natural generalization of the results of Toby Gee, Tong Liu and David Savitt. It is a great pleasure to acknowledge their beautiful papers. In particular, we would like to thank their great generosity in sharing with us their unpublished notes [GLS], which played an very important role in the later developments of this paper (see Section 5 of our paper). We would like to thank Tong Liu and David Savitt for comments on an earlier draft. This paper is partially supported by China Postdoctoral Science Foundation General Financial Grant 2014M550539.

1. Kisin modules and \((\varphi, \hat{G})\)-modules with coefficients

1.1. **Kisin modules and \((\varphi, \hat{G})\)-modules with coefficients.** In this subsection, we recall useful facts in the theory of Kisin modules and \((\varphi, \hat{G})\)-modules with \(O_E \)-coefficients. All theories we recall in this subsection work for any \(K/\mathbb{Q}_p \) and any \(p \).

Recall that \(\mathcal{S} = W(k)[u] \) with the Frobenius endomorphism \(\varphi_{\mathcal{S}} : \mathcal{S} \to \mathcal{S} \) which acts on \(W(k) \) via arithmetic Frobenius and sends \(u \) to \(u^p \). Denote

\[
\mathcal{S}_{O_E} := \mathcal{S} \otimes_{\mathbb{Z}_p} O_E, \quad \mathcal{S}_{k_E} := \mathcal{S} \otimes_{\mathbb{Z}_p} k_E = k[u] \otimes_{\mathbb{F}_p} k_E,
\]

and extend \(\varphi_{\mathcal{S}} \) to \(\mathcal{S}_{O_E} \) (resp. \(\mathcal{S}_{k_E} \)) by acting on \(O_E \) (resp. \(k_E \)) trivially. Let \(r \) be any nonnegative integer.

- Let \(\text{Mod}^{\mathcal{S}}_{\mathcal{O}_E} \) (called the category of Kisin modules of height \(r \) with \(O_E \)-coefficients) be the category whose objects are \(\mathcal{S}_{O_E} \)-modules \(\mathfrak{M} \), equipped with \(\varphi : \mathfrak{M} \to \mathfrak{M} \) which is a \(\varphi_{\mathcal{S}_{O_E}} \)-semi-linear morphism such that the span of \(\text{Im}(\varphi) \) contains \(E(u)^r \mathfrak{M} \). The morphisms in the category are \(\mathcal{S}_{O_E} \)-linear maps that commute with \(\varphi \).
- Let \(\text{Mod}^{\mathbb{Z}}_{\mathcal{O}_E} \) be the full subcategory of \(\text{Mod}^{\mathcal{S}}_{\mathcal{O}_E} \) with \(\mathfrak{M} \simeq \bigoplus_{i \in I} \mathcal{S}_{O_E} \) where \(I \) is a finite set.
- Let \(\text{Mod}^{\mathbb{Z}}_{k_E} \) be the full subcategory of \(\text{Mod}^{\mathcal{S}}_{\mathcal{O}_E} \) with \(\mathfrak{M} \simeq \bigoplus_{i \in I} \mathcal{S}_{k_E} \) where \(I \) is a finite set.

For any integer \(n \geq 0 \), write \(n = (p-1)q(n) + r(n) \) with \(q(n) \) and \(r(n) \) the quotient and residue of \(n \) divided by \(p-1 \). Let \(t^{[n]} = (p^{q(n)} \cdot q(n))^{-1} \cdot t^n \), we have \(t^{[n]} \in A_{\text{cris}} \). We define a subring of \(B_{\text{cris}}^\ast \):

\[
\mathcal{R}_{K_0} := \left\{ \sum_{i=0}^{\infty} f_i t^{[i]} : f_i \in S_{K_0}, f_i \to 0 \text{ as } i \to \infty \right\}.
\]
Define $\hat{R} := R_{K_0} \cap W(R)$. Then \hat{R} is a φ-stable subring of $W(R)$, which is also G_K-stable, and the G_K-action factors through \hat{G}. Denote

$$\hat{R}O_E := \hat{R} \otimes_{\mathbb{Z}_p} O_E, \quad W(R)O_E := W(R) \otimes_{\mathbb{Z}_p} O_E,$$

and extend the G_K-action and φ-action on them by acting on O_E trivially. Note that $\mathcal{S}_O \subset \hat{R}O_E$, and let $\varphi : \mathcal{S}_O \to \hat{R}O_E$ be the composite of $\varphi_{\mathcal{S}_O} : \mathcal{S}_O \to \hat{R}O_E$ and the embedding $\mathcal{S}_O \to \hat{R}O_E$.

Definition 1.1. Let $\text{Mod}^{\varphi, \hat{G}}_{\mathcal{S}_O}$ be the category (called the category of (φ, \hat{G})-modules of height r with O_E-coefficients) consisting of triples $(\mathcal{M}, \varphi_{\mathcal{M}}, \hat{G})$ where,

1. $(\mathcal{M}, \varphi_{\mathcal{M}}) \in \text{Mod}^{\varphi}_{\mathcal{S}_O}$ is a Kisin module of height r;
2. \hat{G} is a $\hat{R}O_E$-semi-linear G-action on $\hat{M} := \hat{R}O_E \otimes_{\varphi_{\mathcal{S}_O}} \mathcal{M}$;
3. \hat{G} commutes with $\varphi_{\mathcal{M}} := \varphi_{\hat{R}O_E} \otimes \varphi_{\mathcal{M}}$;
4. Regarding \mathcal{M} as a $\varphi(\mathcal{S}_O)$-submodule of \hat{M}, then $\mathcal{M} \subseteq \hat{M}^{H_K}$;
5. \hat{G} acts on the $\mathcal{M}/(I_\varphi \mathcal{M})$ trivially.

A morphism between two (φ, \hat{G})-modules is a morphism in $\text{Mod}^{\varphi}_{\mathcal{S}_O}$ which commutes with \hat{G}-actions.

In this paper, we are concerned with the following two subcategories.

- Let $\text{Mod}^{\varphi, \hat{G}}_{\mathcal{S}_O}$ be the full subcategory of $\text{Mod}^{\varphi, \hat{G}}_{\mathcal{S}_O}$ where $\mathcal{M} \in \text{Mod}^{\varphi}_{\mathcal{S}_O}$.
- Let $\text{Mod}^{\varphi, \hat{G}}_{\mathcal{S}_{k_E}}$ be the full subcategory of $\text{Mod}^{\varphi, \hat{G}}_{\mathcal{S}_O}$ where $\mathcal{M} \in \text{Mod}^{\varphi}_{\mathcal{S}_{k_E}}$.

We can associate representations to Kisin modules and (φ, \hat{G})-modules.

Theorem 1.2.

1. Suppose $\mathcal{M} \in \text{Mod}^{\varphi}_{\mathcal{S}_O}$ of \mathcal{S}_O-rank d, then

$$T_{\mathcal{S}_O}(\mathcal{M}) := \text{Hom}_{\mathcal{S}_O, \varphi}(\mathcal{M}, W(R))$$

and

$$T_{\mathcal{S}_O}(\mathcal{M}) := \text{Hom}_{\mathcal{S}_O, \varphi}(\mathcal{M}, W(R)O_E)$$

are naturally isomorphic as finite free O_E-representations of G_∞ of rank d.

2. Suppose $\mathcal{M} \in \text{Mod}^{\varphi}_{\mathcal{S}_{k_E}}$ of \mathcal{S}_{k_E}-rank d, then

$$T_{\mathcal{S}_{k_E}}(\mathcal{M}) := \text{Hom}_{\mathcal{S}_{k_E}, \varphi}(\mathcal{M}, W(R) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)$$

and

$$T_{\mathcal{S}_{k_E}}(\mathcal{M}) := \text{Hom}_{\mathcal{S}_{k_E}, \varphi}(\mathcal{M}, W(R)O_E \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)$$

are naturally isomorphic as finite free k_E-representations of G_∞ of dimension d.

3. Suppose $\mathcal{M} \in \text{Mod}^{\varphi, \hat{G}}_{\mathcal{S}_O}$ where \mathcal{M} is of \mathcal{S}_O-rank d, then

$$\hat{T}(\mathcal{M}) := \text{Hom}_{\hat{R}, \varphi}(\mathcal{M}, W(R))$$

and

$$\hat{T}_{\mathcal{S}_O}(\mathcal{M}) := \text{Hom}_{\mathcal{S}_O, \varphi}(\mathcal{M}, W(R)O_E)$$

are naturally isomorphic as finite free O_E-representations of G_K of rank d.

(4) Suppose $\mathcal{M} \in \text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E}$ where \mathcal{M} is of \mathcal{S}_{k_E}-rank d, then
\[
\hat{T}(\mathcal{M}) := \text{Hom}_{R, \varphi}(\mathcal{M}, W(R) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)
\]
and
\[
\hat{T}_{\mathcal{S}_{k_E}}(\mathcal{M}) := \text{Hom}_{\hat{\mathcal{R}}_{\mathcal{O}_E}, \varphi}(\mathcal{M}, W(R)_{\mathcal{O}_E} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)
\]
are naturally isomorphic as finite free k_E-representations of G_K of dimension d.

Proof. These statements are first proved in [Kis06], [Lin10] without considering the \mathcal{O}_E (or k_E)-coefficients. For the proof concerning \mathcal{O}_E (or k_E)-coefficients, and the isomorphisms between the two ways of constructing representations, see Proposition 3.4, Theorem 5.2 of [GLS14], as well as Proposition 9.1.8 of [Lev13].

We summarize some useful results about Kisin modules and (φ, \hat{G})-modules with coefficients.

Theorem 1.3.
1. For $\mathcal{M} \in \text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E}$, we have $T_{\mathcal{S}}(\mathcal{M}/\omega_E \mathcal{M}) \simeq T_{\mathcal{S}}(\mathcal{M})/\omega_E T_{\mathcal{S}}(\mathcal{M})$.
2. The functor $T_{\mathcal{S}} : \text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E} \to \text{Rep}_{\mathcal{O}_E}(G_{\infty})$ is exact and fully faithful.
3. Suppose V is a semi-stable representation of G_K over an E-vector space, with Hodge-Tate weights in $\{0, \ldots, r\}$ when considering V as a \mathbb{Q}_p-vector space. Suppose $L \subset V$ is a G_{∞}-stable \mathcal{O}_E-lattice, then there exists $\mathcal{M} \in \text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E}$, such that $T_{\mathcal{S}}(\mathcal{M}) \simeq L$.

Theorem 1.4.
1. For $\mathcal{M} \in \text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E}$, we have $\hat{T}(\mathcal{M}/\omega_E \mathcal{M}) \simeq \hat{T}(\mathcal{M})/\omega_E \hat{T}(\mathcal{M})$.
2. There is a natural isomorphism $\hat{T}(\mathcal{M}) |_{G_{\infty}} \simeq T_{\mathcal{S}}(\mathcal{M})$ as $\mathcal{O}_E[\hat{G}_{\infty}]$-representations.
3. \hat{T} induces an anti-equivalence between the category $\text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E}$ and the category of G_K-stable \mathcal{O}_E-lattices in semi-stable E-representations of G_K with Hodge-Tate weights in $\{0, \ldots, r\}$ (when considering V as a \mathbb{Q}_p-vector space).

Remark 1.5. The proof of the statements in Theorem 1.3 and Theorem 1.4 can either be found or easily deduced, from Section 3, Subsection 5.1 of [GLS14], and Section 4 of [Lev14]. They are in turn, based on works in [Kis06], [Lin10], [CL11], where they developed the theory without \mathcal{O}_E-coefficients. We also remark that Statement (3) in Theorem 1.4 first appeared in Theorem 4.1.6 of [Lev14].

1.2. (φ, \hat{G})-modules when $p > 2$. When $p > 2$, the theory of (φ, \hat{G})-modules becomes simpler.

Lemma 1.6. Suppose $p > 2$. Let $\mathcal{M} \in \text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E}$. Then \mathcal{M} is uniquely determined up to isomorphism by the following information:

1. A matrix $A_\varphi \in \text{Mat}(\mathcal{S}_{\mathcal{O}_E})$ for the Frobenius $\varphi : \mathcal{M} \to \mathcal{M}$, such that there exist $B \in \text{Mat}(\mathcal{S}_{\mathcal{O}_E})$ with $A_\varphi B = E(U)^\dagger \text{Id}$.
2. A matrix $A_\tau \in \text{Mat}(\hat{\mathcal{R}}_{\mathcal{O}_E})$ (for the τ-action $\tau : \mathcal{M} \to \mathcal{M}$) such that
 - $A_\tau - \text{Id} \in \text{Mat}(\mathcal{I}_+ \hat{\mathcal{R}}_{\mathcal{O}_E})$,
 - $A_\tau (\varphi(A_\varphi)) = \varphi(A_\varphi) \varphi(A_\tau)$, and
 - $g(A_\tau) = \prod_{k=0}^{p-1} \tau^k(A_\tau)$ for all $g \in G_{\infty}$ such that $\varepsilon_p(g) \in \mathbb{Z}^{\geq 0}$.
Proof. This is because when \(p > 2 \), we have \(\hat{G} \simeq G_{p^\infty} \times H_K \), and \(G_{p^\infty} \) is topologically generated by \(\tau \). The last bullet item \((g(A_r) = \prod_{k=0}^{\epsilon(p)-1} \tau^k(A_r)) \) in Condition (2) is needed by Proposition 1.3 of [Car13]. \(\square \)

We can detect \((\varphi, \hat{G})\)-modules that are crystalline, thanks to the following theorem.

Theorem 1.7 ([GLS14], [Oze14]). Suppose \(p > 2 \), and let \(\hat{\mathcal{M}} \in \text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E} \). Then \(\hat{T}(\hat{\mathcal{M}}) \otimes_{\mathcal{O}_E} E \) is a crystalline representation if and only if

\[
(\tau - 1)(\mathcal{M}) \in \hat{\mathcal{M}} \cap (w^p \varphi(t)W(R) \otimes_{\varphi, \mathcal{O}_E} \mathcal{M}) = \hat{\mathcal{M}} \cap (w^p \varphi(t)W(R) \otimes_{\varphi, \mathcal{O}_E} \mathcal{M}).
\]

Proof. Necessity is by Proposition 5.9 of [GLS14], sufficiency is by Theorem 21 of [Oze14]. \(\square \)

Remark 1.8. By Theorem 1.7 and Lemma 1.6, when \(p > 2 \), to give a crystalline \((\varphi, \hat{G})\)-module \(\hat{\mathcal{M}} \in \text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E} \) is the same to give

1. A matrix \(A_\varphi \in \text{Mat}(\mathcal{G}_{\mathcal{O}_E}) \) for the Frobenius, such that there exist \(B \in \text{Mat}(\mathcal{G}_{\mathcal{O}_E}) \) with \(A_\varphi B = E(u)^r \text{Id} \).
2. A matrix \(A_{\tau} \in \text{Mat}(R_{\mathcal{O}_E}) \) (for the \(\tau \)-action) such that
 - \(A_{\tau} - \text{Id} \in \text{Mat}(R_{\mathcal{O}_E} \cap (w^p \varphi(t)W(R) \otimes_{\varphi, \mathcal{O}_E} \mathcal{M})) \),
 - \(A_{\tau} \varphi(A_{\varphi}) = \varphi(A_\varphi) \varphi(A_{\tau}) \).
3. \(\epsilon(p) \geq 0 \).

1.3. Rank 1 Kisin modules and \((\varphi, \hat{G})\)-modules.

Now, we recall some useful facts about rank-1 Kisin modules and \((\varphi, \hat{G})\)-modules with \(\mathcal{O}_E \)-coefficients. See Section 6 of [GLS14] and Section 5 of [GLS15] for more details. In this subsection, we have to assume that \(K/\mathbb{Q}_p \) is unramified and \(p \) any prime number (except Lemma 1.14, where we assume \(p > 2 \)). The ramified case will be developed in [Gao15a].

Definition 1.9. Let \(\mathbf{t} = (t_0, \ldots, t_{f-1}) \) be a sequence of non-negative integers, \(a \in k_E^\times \). Let \(\mathcal{M}(\mathbf{t}; a) := \mathcal{M}(t_0, \ldots, t_{f-1}; a) = \prod_{s=0}^{f-1} \mathcal{M}(\mathbf{t}; a)_s \) be the rank-1 module in \(\text{Mod}^{\varphi, \hat{G}}_{k_E} \) such that

- \(\mathcal{M}(\mathbf{t}; a)_s \) is generated by \(e_s \), and
- \(\varphi(e_{s-1}) = (a)_s u^s e_s \), where \((a)_s = a \) if \(s = 0 \) and \((a)_s = 1 \) otherwise.

Definition 1.10. Let \(\mathbf{t} = (t_0, \ldots, t_{f-1}) \) be a sequence of non-negative integers, \(\hat{a} \in \mathcal{O}_E \). Let \(\mathcal{M}(\mathbf{t}; \hat{a}) := \mathcal{M}(t_0, \ldots, t_{f-1}; \hat{a}) = \prod_{s=0}^{f-1} \mathcal{M}(\mathbf{t}; \hat{a})_s \) be the rank-1 module in \(\text{Mod}^{\varphi, \hat{G}}_{\mathcal{O}_E} \) such that

- \(\mathcal{M}(\mathbf{t}; \hat{a})_s \) is generated by \(\hat{e}_s \), and
- \(\varphi(\hat{e}_{s-1}) = (\hat{a})_s (u - \pi)^s \hat{e}_s \), where \((\hat{a})_s = \hat{a} \) if \(s = 0 \) and \((\hat{a})_s = 1 \) otherwise.

Lemma 1.11. The following statements hold.

1. Any rank 1 module in \(\text{Mod}^{\varphi, \hat{G}}_{k_E} \) is of the form \(\mathcal{M}(\mathbf{t}; a) \) for some \(\mathbf{t} \) and \(a \).
2. When \(\hat{a} \) is a lift of \(a \), \(\mathcal{M}(\mathbf{t}; \hat{a})/\omega_E \mathcal{M}(\mathbf{t}; \hat{a}) \simeq \mathcal{M}(\mathbf{t}; a) \).
3. There is a unique \(\hat{T}(\mathcal{M}(\mathbf{t}; \hat{a})) \) is a crystalline character.
And in fact,
\[\hat{T}(\mathfrak{M}(t; \hat{a})) = \lambda_\hat{a} \prod_{s=0}^{f-1} \psi^t_s, \]
where \(\psi_s \) is certain crystalline character such that \(\text{HT}_i(\psi_s) = 1 \) if \(i = s \), \(\text{HT}_i(\psi_s) = 0 \) if \(i \neq s \), and \(\lambda_\hat{a} \) is the unramified character of \(G_K \) which sends the arithmetic Frobenius to \(\hat{a} \).

(4) There is a unique \(\mathfrak{M}(t; a) \in \text{Mod}_{\mathbb{E}_F}^{\hat{G}} \) such that the ambient Kisin module is \(\mathfrak{M}(t; a) \). Furthermore, \(\hat{T}(\mathfrak{M}(t; a)) \) is the reduction of \(\hat{T}(\mathfrak{M}(t; \hat{a})) \) for any lift \(\hat{a} \in \mathcal{O}_E \) of \(a \).

Proof. See Lemma 6.2, Lemma 6.3, Corollary 6.5 of [GLS14]. \(\square \)

Definition 1.12. Let \(\overline{\mathfrak{M}} = \mathfrak{M}(t; a) \), define \(\alpha_s(\overline{\mathfrak{M}}) = \frac{1}{p^{f-1}} \sum_{j=1}^{f} p^{j-1} t_{j+s} \).

Clearly we have \(\alpha_s(\overline{\mathfrak{M}}) + t_s = p \alpha_{s-1}(\overline{\mathfrak{M}}) \) for any \(s \).

Lemma 1.13. Let \(\overline{\mathfrak{M}} = \mathfrak{M}(t; a) \), \(\overline{\mathfrak{M}} = \mathfrak{M}(t'; a') \), then

(1) \(\hat{T}(\overline{\mathfrak{M}}) \mid_{I_K} \cong \hat{T}(\overline{\mathfrak{M}}) \) as \(G_K \)-representations.

(2) The following are equivalent:

(a) \(\hat{T}(\overline{\mathfrak{M}}) \cong \hat{T}(\overline{\mathfrak{M}}) \) as \(G_K \)-representations.

(b) \(T_{\mathbb{E}}(\overline{\mathfrak{M}}) \cong T_{\mathbb{E}}(\overline{\mathfrak{M}}) \) as \(G_\infty \)-representations.

(c) \(\alpha_s(\overline{\mathfrak{M}}) - \alpha_s(\overline{\mathfrak{M}}) \in \mathbb{Z} \) for some \(s \) (and thus all \(s \)), and \(a = a' \).

(d) \(\sum_{s=0}^{f-1} p^{f-1-s} t_s = \sum_{s=0}^{f-1} p^{f-1-s} t'_{s} \pmod{p^f - 1} \), and \(a = a' \).

(3) There exists nonzero morphism \(\overline{\mathfrak{M}} \rightarrow \overline{\mathfrak{M}} \) if and only if \(\alpha_s(\overline{\mathfrak{M}}) - \alpha_s(\overline{\mathfrak{M}}) \in \mathbb{Z}_{\geq 0} \) for all \(s \), and \(a = a' \).

Proof. See Lemma 5.1.2 of [GLS15] and Proposition 6.7 of [GLS14]. \(\square \)

We recall the following useful lemma.

Lemma 1.14 ([GLS14], Lemma 7.1). Let \(p > 2 \), \(t_0, \ldots, t_{f-1} \in [-p, p] \) such that \(\sum_{s=0}^{f-1} p^{f-1-s} t_s \equiv 0 \pmod{p^f - 1} \). Then one of the following holds:

(1) \((t_0, \ldots, t_{f-1}) = (p-1, \ldots, p-1) \),

(2) \(t_0, \ldots, t_{f-1} \) considered as a cyclic list, can be broken up into strings of the form \(\pm(1, p-1, \ldots, p-1, p) \) (where there might be no occurrence of \(p-1 \)) and strings of the form \((0, \ldots, 0) \).

2. Shapes of upper triangular torsion Kisin modules-I

In this section, we study the shape of torsion Kisin modules coming from reductions of crystalline representations. We will often use the notations listed below.

(CRYS.) Let \(p > 2 \) be an odd prime, \(K/\mathbb{Q}_p \) a finite unramified extension.

- Suppose \(V \) is a crystalline representation of \(E \)-dimension \(d \), such that the labelled Hodge-Tate weights are \(\text{HT}_{\kappa}(D) = \text{HT}(D_s) = r_s = \{0 = r_{s,1} < \ldots < r_{s,d} \leq p\} \).

- Let \(\rho = T \) be a \(G_K \)-stable \(\mathcal{O}_E \)-lattice in \(V \), and \(\mathfrak{M} \in \text{Mod}_{\mathbb{E}_F}^{\hat{G}} \) the \((\varphi, \hat{G})\)-module attached to \(T \). Let \(\overline{\mathfrak{M}} := T/\omega_E T \) be the reduction.
Let $\bar{M} = \bigoplus_{s=0}^{r-1} M_s$ be the decomposition, where $M_s = \varepsilon_s \bar{M}$. And similarly for the ambient Kisin module $M = \bigoplus_{s=0}^{r-1} M_s$.

- Denote \bar{M} the reduction modulo ω_E of M, so it decomposes as $\bar{M} = \bigoplus_{s=0}^{r-1} M_s$. And similarly for the ambient Kisin module $\bar{M} = \bigoplus_{s=0}^{r-1} M_s$.

Theorem 2.1 ([GLS14] Theorem 4.22). With notations from (CRYS). There exists an $\mathcal{O}_E[\mathfrak{u}]$-basis $\{e_{s,d}\}_{0 \leq s \leq f-1, 1 \leq d \leq s}$ of M such that

- $e_s = (e_{s,1}, \ldots, e_{s,d})$ is an $\mathcal{O}_E[\mathfrak{u}]$-basis of M_s for each s.
- We have $\varphi(e_{s-1}) = e_s X_s \Lambda_s Y_s$, where $X_s, Y_s \in \text{GL}_d(\mathcal{O}_E[\mathfrak{u}]), Y_s = \text{Id}(\text{mod } \omega_E)$, and $\Lambda_s = [E(u)^{r_s,i}, \ldots, E(u)^{r_s,d}]$.

Proposition 2.2. Let $\mathfrak{m}_i = \mathfrak{m}(t_i; a_i) = \mathfrak{m}(t_i, a_i)$ for $1 \leq i \leq d$. Suppose $\mathfrak{m} \in \text{Mod}^{\mathfrak{m}}_{\mathcal{O}_E}$ such that $\mathfrak{m} \in \mathcal{E}(\mathfrak{m}_d, \ldots, \mathfrak{m}_1)$ is an upper triangular extension. Then there exists basis $e_s = (e_{s,1}, \ldots, e_{s,d})$ of \mathfrak{m}_s, such that

$$\varphi(e_{s-1}) = e_s A_s = (e_s) \begin{pmatrix} (a_1)_s u^{t_1,s} & \cdots & x_{s,i,j} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & x_{s,i,j} & \cdots & (a_d)_s u^{t_d,s} \end{pmatrix}$$

Where A_s is an upper triangular matrix such that:

1. The diagonal entries in the matrix are $(a_i)_s u^{t_i,s}$.
2. The entries on the upper right $x_{s,i,j} \in k_E[u]$ are polynomials for $j > i$, and $\deg(x_{s,i,j}) < t_{j,s}$.
3. Unless if \exists nonzero $\mathfrak{m}_j \to \mathfrak{m}_i$ for $j > i$, then for any one choice of s_0, $x_{s_0,i,j}$ can have an extra term of degree $t_{j,s_0} + \alpha_{s_0}^j - \alpha_{s_0}^j$.

Proof. This is easy generalization of Proposition 7.4 of [GLS14], by induction on the dimension d.

Proposition 2.3. With notations from (CRYS). Suppose that \mathfrak{p} is upper triangular. Then \mathfrak{m} is upper triangular, i.e., $\mathfrak{m} \in \mathcal{E}(\mathfrak{m}_d, \ldots, \mathfrak{m}_1)$ where $\mathfrak{m}_i = \mathfrak{m}(t_i, a_i)$ are some rank-1 torsion Kisin modules. Furthermore, for any s, we have $\{t_{1,s}, \ldots, t_{d,s}\} = \{r_{s,1}, \ldots, r_{s,d}\}$ as sets.

Proof. \mathfrak{m} is upper triangular by Lemma 4.4 of [Oze13]. By Theorem 2.1, there exists basis e_s of \mathfrak{m}_s such that $\varphi(e_{s-1}) = e_s X_s [u^{r_s,1}, \ldots, u^{r_s,d}]$, where $r_{s,1} < \cdots < r_{s,d}$.

Since $\mathfrak{m} \in \mathcal{E}(\mathfrak{m}_d, \ldots, \mathfrak{m}_1)$, by Proposition 2.2, there exists another basis $f_s = (f_{s,i})$ of \mathfrak{m}_s such that $\varphi(f_{s-1}) = f_s A_s$ where A_s is upper triangular with diagonal elements being $(a_1)_s u^{t_1,s}, \ldots, (a_d)_s u^{t_d,s}$.

Suppose $e_s = f_s T_s$ for all s, then we will have $A_s = T_s X_s [u^{r_s,1}, \ldots, u^{r_s,d}] \varphi(T_{s-1}^{-1})$.

Then we can apply the following lemma to conclude (let $M = A_s, B = T_s X_s, D = [u^{r_s,1}, \ldots, u^{r_s,d}]$, and $A = \varphi(T_{s-1}^{-1})$ in the following lemma).

Lemma 2.4. If we have $M = BDA$, where
• \(M \in \text{Mat}(k_E[u])\) which is upper triangular with diagonal elements being \(c_1 u^1, \ldots, c_d u^d\), where \(c_i \in k_E[u]^\times, \forall i;\)
• \(B \in \text{GL}_d(k_E[u]), D = [u^{r_1}, \ldots, u^{r_d}]\) with \(0 \leq r_1 \leq \cdots \leq r_d \leq p\), and \(A \in \text{GL}_d(k_E[u^p])\) (note here that we do not need \(r_i\) to be distinct);
then \(\{t_1, \ldots, t_d\} = \{r_1, \ldots, r_d\}\) as sets.

Proof. Write \(A = (a_{i,j})\), and suppose that \(a_{k_i,1}\) is the top most element in \(\text{col}_1(A)\) that is a unit (which exists because \(A\) is invertible). Then multiply both sides of \(M = B[u^{r_1}, \ldots, u^{r_d}]A\) by the following invertible upper triangular matrix

\[
C = \begin{pmatrix}
1 & \frac{-a_{k_1,2}}{a_{k_1,1}} & \cdots & \frac{-a_{k_1,d}}{a_{k_1,1}} \\
& 1 & \quad 0 & \quad 0 \\
& & \ddots & \quad 0 \\
& & & 1
\end{pmatrix}
\]

Let \((a'_{i,j}) = A' = AC\) (which is still in \(\text{Mat}(k_E[u^p])\)), then \(\text{col}_1(A') = \text{col}_1(A)\), and \(a'_{k_i,1} = 0\) for \(j > 1\). And \(M' = MC\) has the same diagonal of \(M\). So we can and do assume that we already have \(a_{k_1,1}\) is the top most unit in \(\text{col}_1(A)\), and \(a_{k_1,j} = 0\) for \(j > 1\). Now, do the same procedure for the second column of \(A\). That is, suppose \(a_{k_2,2}\) is the top most element in \(\text{col}_2(A)\) that is a unit, then make \(a_{k_2,j} = 0\) for \(j > 2\). In the end, we can assume that \(a_{k_i,j}\) is the top most unit in \(\text{col}_i(A)\), and \(a_{k_i,j} = 0\) for \(j > i\). Clearly we have \(\{k_1, \ldots, k_d\} = \{1, \ldots, d\}\) as sets.

Then it is clear that \(u^{r_{k_i}} | \text{col}_i(DA)\) (using the fact that non-units in \(k_E[u^p]\) are divisible by \(u^p\), and \(0 \leq r_1 \leq \cdots \leq r_d \leq p\)). So \(u^{r_{k_i}} | \text{col}_i(BDA)\), and we will have \(u^{r_{k_i}} | u^{t_i}, \forall i\). However, by a determinant argument, \(\sum_{i=1}^{d} r_{k_i} = \sum_{i=1}^{d} r_i = \sum_{i=1}^{d} t_i\), so we must have \(u^{r_{k_i}} \parallel u^{t_i}, \forall i\), that is \(t_i = r_{k_i}, \forall i\).

3. MODELS OF UPPER TRIANGULAR TORSION CRISTALLINE REPRESENTATIONS

Before we can proceed further with the study of shape of upper triangular torsion Kisin modules, we need to introduce the condition (C-1). The aim is to make sure that when \(\mathfrak{M} \in \mathcal{E}(\mathfrak{M}_d, \ldots, \mathfrak{M}_1)\), there does not exist \(1 \leq i < j \leq d\), such that there is nonzero morphism \(\mathfrak{M}_j \rightarrow \mathfrak{M}_i\) (i.e., so that the situation in the Statement (3) of Proposition 2.2 does not happen).

Definition 3.1. (1) For a rank-1 module \(\mathfrak{W} = \mathfrak{W}(t_0, \ldots, t_{f-1}; a) \in \text{Mod}_{\kappa_E}^\mathfrak{M}\), define \(\text{WT}(\mathfrak{W})\) as the ordered set \(\{t_0, \ldots, t_{f-1}\}\).

(2) For an upper triangular module \(\mathfrak{W} \in \mathcal{E}(\mathfrak{W}_d, \ldots, \mathfrak{W}_1)\), define \(\text{WT}(\mathfrak{W})\) to be the \(d \times f\)-matrix, where \(\text{row}_{i}(\text{WT}(\mathfrak{W})) = \text{WT}(\mathfrak{W}_i)\), \(\forall 1 \leq i \leq d\).

Definition 3.2. Let
• \(\overline{\zeta}_1, \ldots, \overline{\zeta}_d : G_K \rightarrow k_E^\times\) be \(d\) characters.
• \(h_0, \ldots, h_{f-1}\) be \(f\) sets, where \(h_s\) is a set of \(d\) distinct integers in \([0, p]\), for each \(0 \leq s \leq f - 1\).

A model of the ordered sequence \(\{\overline{\zeta}_1, \ldots, \overline{\zeta}_d\}\) with respect to the ordered sequence \(\{h_0, \ldots, h_{f-1}\}\) is a \(d \times f\)-matrix

\[N = (n_{i,s})_{1 \leq i \leq d, 0 \leq s \leq f-1},\]

such that
• \(\text{col}_s(N) = h_s\) as sets of numbers, for \(0 \leq s \leq f - 1\);
For each $1 \leq i \leq d$, there exists a rank-1 torsion Kisin module defined by $\mathfrak{M}(n_{i,0}, \ldots, n_{i,f-1}; a_i)$ for some $a_i \in k_E^\times$ such that

$$T_\mathfrak{E}(\mathfrak{M}(n_{i,0}, \ldots, n_{i,f-1}; a_i)) = \zeta_i |_{G_\infty}$$

With notations from (CRYS$_*$), suppose \mathcal{P} is upper triangular, that is, $\mathcal{P} \in \mathcal{E}(\chi_1, \ldots, \chi_d)$ for some characters. By Proposition 2.3, there exists some rank-1 torsion Kisin modules $\mathfrak{M}_1, \ldots, \mathfrak{M}_d$, such that $\mathfrak{M} \in \mathcal{E}(\mathfrak{M}_d, \ldots, \mathfrak{M}_1)$ and $T_\mathfrak{E}(\mathfrak{M}) = \mathcal{P} |_{G_\infty}$. Suppose $\mathfrak{M}_0 = \mathfrak{M}(t_{i,0}, \ldots, t_{i,f-1}; a_i)$. Then a_i are uniquely determined, and $\text{col}_s(WT(\mathfrak{M})) = \{t_{1,s}, \ldots, t_{d,s}\}$ is equal to $\text{HT}(D_s)$ as sets of numbers. So, the matrix $WT(\mathfrak{M})$ is a model of $\{\chi_1, \ldots, \chi_d\}$ with respect to $\{\text{HT}_0(D), \ldots, \text{HT}_{f-1}(D)\}$. For many theorems in our paper, we will need to have the following condition.

Condition (C-1): Suppose $\mathcal{P} \in \mathcal{E}(\chi_1, \ldots, \chi_d)$, then $\{\chi_1, \ldots, \chi_d\}$ has a unique model with respect to $\{\text{HT}_0(D), \ldots, \text{HT}_{f-1}(D)\}$.

Remark 3.3. It is clear that when condition (C-1) is satisfied, $\chi_i \neq \chi_j, \forall i \neq j$. So in particular, the situation in Statement (3) of Proposition 2.2 will not happen.

Here are some examples when the condition is satisfied.

Lemma 3.4. The condition (C-1) is satisfied if one of the following is true,

1. $K = \mathbb{Q}_p$, i.e., $f = 1$, and the differences between any two elements in $\text{HT}(D_0)$ are never $p - 1$.
2. For each s, the differences between two elements in $\text{HT}(D_s)$ are never 1. And for one s_0, $p - 1 \notin \text{HT}(D_{s_0})$.
3. For each s, $\text{HT}(D_s) \subseteq [0, p - 1]$. And for one s_0, $p - 1 \notin \text{HT}(D_{s_0})$.

Proof. If N is another model other than $WT(\mathfrak{M})$, then by Lemma 1.13, for each i, $\text{row}_i(N) - \text{row}_i(T)$ will satisfy the solutions in Lemma 1.14. □

The naming of the concept of model reflects our initial intention to generalize results in Subsection 8.2 of [GLS14] and Subsection 5.3 of [GLS15]. In particular, we wanted to find some maximal model, which will help us to prove an analogue of Proposition 5.3.4 of [GLS15]. Unfortunately, we are not able to achieve this.

4. Shapes of upper triangular torsion Kisin modules-II

Proposition 4.1. With notations from (CRYS) and Proposition 2.3. Suppose that \mathcal{P} is upper triangular, and there does not exist $1 \leq i < j \leq d$, such that there is nonzero morphism $\mathfrak{M}_j \rightarrow \mathfrak{M}_i$ (e.g., when Condition (C-1) is satisfied).

- Let $\mathfrak{M} \in \mathcal{E}(\mathfrak{M}_d, \ldots, \mathfrak{M}_1)$ where $\mathfrak{M}_i = \mathfrak{M}(t_{i,0}, \ldots, t_{i,f-1}, a_i)$ as in Proposition 2.3.
- Let e_s be a basis of \mathfrak{M}_s as in Proposition 2.2, such that $\varphi(e_{s-1}) = (e_s)A_s$ where A_s satisfies the statements of Proposition 2.2. (Statement (3) of Proposition 2.2 will not happen, because of Remark 3.3).

1. In an earlier version of the current paper posted on ArXiv, we presented some interesting results on the study of these models. Since these studies have no application in the paper, and the proof uses quite lengthy combinatorics, we choose not to publish them. We hope these results will be useful in the future.
Then we must have
\[x_{s,i,j} = u^{t_i} y_{s,i,j}. \]

Where
- \(y_{s,i,j} = 0 \) if \(t_{j,s} < t_{i,s} \).
- \(y_{s,i,j} \in k_E \) if \(t_{j,s} > t_{i,s} \).

Remark 4.2. We remark that Proposition 4.1 effectively gives an “upper bound” for the shape of upper triangular torsion Kisin modules that we are studying (we mentioned about this “upper bound” in the Introduction of this paper). This is because for the matrices \(A_s \), the elements that can vary are those \(y_{s,i,j} \) when \(t_{j,s} > t_{i,s} \), and they can only vary in \(k_E \). We will need Section 5 to give precise meaning for the “upper bound”, see Proposition 5.9.

Proof. From the proof of Proposition 2.3, we have
\[A_s \varphi(T_{s-1}) = T_s X_s[u^{r_{s,1}}, \ldots, u^{r_{s,d}}]. \]

Let \(R_s \in \text{GL}_d(k_E) \) such that
\[R_s^{-1}[u^{r_{s,1}}, \ldots, u^{r_{s,d}}] R_s = [u^{t_{1,s}}, \ldots, u^{t_{d,s}}], \]
and consider the equality
\[A_s \varphi(T_{s-1}) R_s = T_s X_s R_s[u^{t_{1,s}}, \ldots, u^{t_{d,s}}]. \]

The \(i \)-th column on the right hand side is divisible exactly by \(u^{t_{i,s}} \). Let \(\varphi(T_{s-1}) = P_{s-1} + u^p Q_{s-1} \) where \(P_{s-1} \in \text{GL}_d(k_E) \), \(Q_{s-1} \in \text{Mat}_d(k_E[u^p]) \), so we will have \(u^{t_{i,s}} \parallel \text{col}_i(A_s P_{s-1} R_s) \), unless if \(t_{i,s} = p \), then we only have \(u^p \parallel \text{col}_i(A_s P_{s-1} R_s) \).

However in fact, we still have \(u^p \parallel \text{col}_i(A_s P_{s-1} R_s) \) by an easy determinant argument. Then we can apply the following lemma (let \(X = A_s[(a_1)^{-1}, \ldots, (a_d)^{-1}] \), \(A = [(a_1), \ldots, (a_d)] P_{s-1} R_s \) in the lemma) to conclude.

Lemma 4.3. Suppose \(t_1, \ldots, t_d \) are distinct integers in \([0, p]\). Suppose
\[X = \begin{pmatrix} u^{t_1} & x_{i,j} \\ \cdots & \cdots \\ u^{t_d} \end{pmatrix}, A \in \text{GL}_d(k_E), \]

where \(X \) is an upper triangular matrix with coefficients in \(k_E[u] \), such that
- \(\deg(x_{i,j}) < t_j \), and
- \(u^{t_i} \parallel \text{col}_i(XA) \).

Then we must have
\[x_{i,j} = u^{t_i} y_{i,j}, \]

where
- \(y_{i,j} = 0 \) if \(t_j < t_i \), and
- \(y_{i,j} \in k_E \) if \(t_j > t_i \).

Proof. We prove the lemma by induction on the dimension \(d \).
- We say that an upper triangular matrix \(X \in \text{Mat}(k_E[u]) \) of the shape
\[\begin{pmatrix} u^{t_1} & x_{i,j} \\ \cdots & \cdots \\ u^{t_d} \end{pmatrix} \]

...
satisfies the property (DEG) if \(\deg(x_{i,j}) < t_j, \forall i < j \).

- If the conclusion of the lemma is satisfied, we say that \(X \) satisfies property \((P)\). We also call \(x_{i,j} \) satisfies \((P)\) for a single index \((i, j)\) if \(x_{i,j} \) satisfies the conclusion of the lemma.

The lemma is trivially true when \(d = 1 \). We want to remark here that when \(d = 2 \), the lemma is true by arguments in Theorem 7.9 of [GLS14]. However, here we give a general argument, which will work for all \(d \). So now suppose the lemma is true when the dimension is less than \(d \). We now prove it when the dimension becomes \(d \). In order to do so, we first prove two sublemmas (Sublemma 4.5 and Sublemma 4.6), which are indeed special cases when the dimension becomes \(d \). The reason that we are writing these two special cases first, is because they will make the general process much more transparent. □

Notations. We will use \(\text{Mat}(x_{i,j}) \) to mean the matrix where the only nonzero element is its \(i \)-th row, \(j \)-th column element, and the element is precisely \(x_{i,j} \). We hope this does not cause confusion. For a matrix \(A \), we use \(A_{i,j} \) to mean the co-matrix of \(a_{i,j} \), that is, the matrix after deleting \(i \)-th row and \(j \)-th column of \(A \).

Before we prove the sublemmas, we make a useful definition. Let \(X \) satisfy \((\text{DEG})\). We call the following procedure an **allowable procedure** for \(X \):

\[
X \sim X' = X(Id - \text{Mat}(c_{i,j}))
\]

where

- \(1 \leq i < j \leq d \) are two numbers such that \(t_i < t_j \), and
- \(c_{i,j} \in k_E \).

It is easy to see that if we let \(A' = (Id - \text{Mat}(c_{i,j}))^{-1}A \), then we have the following (note that the only change is the \(j \)-th column of \(X \), and using that \(t_i < t_j \))

- \(X' \) still satisfies property \((\text{DEG})\).
- \(X'A' = XA \) (so in particular \(u^{t_i} | \text{col}_i(X'A') \) if and only if \(u^{t_i} | \text{col}_i(XA) \) for each \(i \)).
- \(X \) satisfies \((P)\) if and only if \(X' \) satisfies \((P)\).

Remark 4.4. A very useful remark is that, when \(X \) satisfies \((P)\), one can apply finite times of allowable procedures to change \(X \) to the diagonal matrix \([u^{t_1}, \ldots, u^{t_d}]\). One can start by making \(x_{d-1,d} = 0 \) by letting

\[
X \sim X(Id - \text{Mat}(y_{d-1,d})).
\]

And then, one can consecutively make \(x_{d-2,d} = 0, \ldots, x_{1,d} = 0 \). Then one can change \(x_{d-2,d-1} \) to 0, and so on.

Sublemma 4.5. If \(t_d \) is maximal in \(\{t_1, \ldots, t_d\} \), then \(X \) satisfies \((P)\).

Proof. Because

\[
u^{t_d} \mid X \begin{pmatrix} a_{1,d} \\ \vdots \\ a_{d,d} \end{pmatrix},
\]

So we have

\[
u^{t_d} \mid u^{t_d-1}a_{d-1,d} + x_{d-1,d}a_{d,d}.
\]
Because $\deg(u^{d_{i-1}}a_{d-1,d} + x_{d-1,d}a_{d,d}) < t_d$, so $u^{t_{d-1}}a_{d-1,d} + x_{d-1,d}a_{d,d} = 0$. We claim that $a_{d,d} \neq 0$. Suppose otherwise, then $a_{d-1,d} = 0$. Since

\[u^{t_d} | u^{t_{d-2}}a_{d-2,d} + x_{d-2,d-1}a_{d-1,d} + x_{d-2,d}a_{d,d}, \]

so $a_{d-2,d} = 0$. And similarly we will find $a_{i,d} = 0, \forall 1 \leq i \leq d$, which is impossible since A is invertible.

So, now $a_{d, d} \neq 0$, we must have

\[x_{d-1,d} = u^{t_{d-1}}y_{d-1,d} \text{ for some } y_{d-1,d} \in k_E. \]

Let

\[X' = X(Id - \text{Mat}(y_{d-1,d})), \quad A' = (Id - \text{Mat}(y_{d-1,d}))^{-1}A, \]

so $x_{d-1,d}' = 0$. Note that the above procedure is an allowable procedure, so we can and do assume our X already satisfies that $x_{d-1,d} = 0$. Then we have $a_{d-1,d} = 0$.

Since

\[u^{t_d} | u^{t_{d-2}}a_{d-2,d} + x_{d-2,d-1}a_{d-1,d} + x_{d-2,d}a_{d,d} = u^{t_{d-2}}a_{d-2,d} + x_{d-2,d}a_{d,d}, \]

By similar argument as above, $x_{d-2,d} = u^{t_{2-d}}y_{d-2,d}$. And then we can change X to $X' = X(Id - \text{Mat}(y_{d-2,d}))$, and argue similarly as above.

So in the end, we can actually assume that $x_{i,d} = 0, a_{i,d} = 0$ for $1 \leq i \leq d - 1$. So we have

\[XA = \begin{pmatrix} X_{d,d} & 0 & 0 \\ 0 & u^{t_d} & 0 \\ a_{d,d} & |_{1 \leq j \leq d-1} & a_{d,d} \end{pmatrix} = \begin{pmatrix} X_{d,d}A_{d,d} & 0 \\ u^{t_i}a_{d,j} & |_{1 \leq j \leq d-1} & u^{t_i}a_{d,d} \end{pmatrix} \]

So we will have that $u^{t_i} | \text{col}_k(X_{d,d}a_{d,d})$ for $1 \leq k \leq d - 1$. By induction hypothesis, $X_{d,d}$ satisfies (P), so X satisfies (P), and we are done.

\[\square \]

Sublemma 4.6. If t_1 is maximal in $\{t_1, \ldots, t_d\}$, then X satisfies (P).

Proof. Now

\[u^{t_1} | X \begin{pmatrix} a_{1,1} \\ \vdots \\ a_{d,1} \end{pmatrix} \]

so we have $u^{t_1} | u^{t_d}a_{d,1}$, and so $a_{d,1} = 0$. Then similarly we have $a_{i,1} = 0$ for $2 \leq i \leq d$.

So

\[XA = \begin{pmatrix} u^{t_1} & (x_{1,1})_{2 \leq j \leq d} \\ 0 & X_{1,1} \end{pmatrix} \begin{pmatrix} a_{1,1} & (a_{1,j})_{2 \leq j \leq d} \\ 0 & A_{1,1} \end{pmatrix} = \begin{pmatrix} u^{t_1}a_{1,1} & u^{t_1}(a_{1,j}) + (x_{1,j})A_{1,1} \\ 0 & X_{1,1}A_{1,1} \end{pmatrix}. \]

Then we will have that $u^{t_{k+i}} | \text{col}_k(X_{1,1}A_{1,1})$ for $1 \leq k \leq d - 1$. So we can use induction hypothesis to see that $X_{1,1}$ satisfies (P). What is left is to show that $x_{1,j} = 0$ for $2 \leq j \leq d$.

Since now $X_{1,1}$ satisfies (P), by Remark 4.4, we can apply finite steps of allowable procedures on X (these procedures do not involve the first column of X), so that $X_{1,1}$ becomes a diagonal matrix. That is

\[X_{1,1} = [u^{t_2}, \ldots, u^{t_d}]. \]
Suppose $t_{k_1} = \max\{t_2, \ldots, t_d\}$, so we have

$$u^{t_{k_1}} \mid X \begin{pmatrix} a_{1,k_1} \\ \vdots \\ a_{d,k_1} \end{pmatrix}.$$

Because $X_{1,1}$ is diagonal, it is easy to see that we must have $a_{i,k_1} = 0$, for $i \neq 1, k_1$. So we now have

$$u^{t_{k_1}} \mid X\text{col}_{k_1}(A) = \begin{pmatrix} u^{t_1} & (x_{1,j}) \\ 0 & X_{1,1} \end{pmatrix} \begin{pmatrix} a_{1,k_1} \\ \vdots \\ a_{k_1,k_1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} u^{t_1}a_{1,k_1} + x_{1,k_1}a_{k_1,k_1} \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}.$$

Since $\text{col}_1(A) = (1, 0, \ldots, 0)^T$ and A is invertible, we must have $a_{k_1,k_1} \neq 0$, and so $x_{1,k_1} = 0$.

Now, suppose $t_{k_2} = \max\{\{t_1, \ldots, t_d\} - \{t_1, t_{k_1}\}\}$. Then similarly we can see that $a_{i,k_2} = 0$ for $i \neq 1, k_1, k_2$. We must have $a_{k_2,k_2} \neq 0$ because A is invertible. We have

$$u^{t_{k_2}} \mid u^{t_1}a_{1,k_2} + x_{1,k_1}a_{k_1,k_2} + x_{1,k_2}a_{k_2,k_2} = u^{t_1}a_{1,k_2} + x_{1,k_2}a_{k_2,k_2},$$

and we can conclude that $x_{1,k_2} = 0$. Argue similarly with consecutive next maximal elements in $\{t_1, \ldots, t_d\}$ will show that $x_{1,j} = 0$ for $2 \leq j \leq d$.

□

Proof of Lemma 4.3, continued. So now, let us prove the general lemma. Assume $t_k = \max\{t_1, \ldots, t_d\}$, by Sublemma 4.5 and Sublemma 4.6, we can assume $1 < k < d$. So we have

$$u^{t_k} \mid X \begin{pmatrix} a_{1,k} \\ \vdots \\ a_{d,k} \end{pmatrix}.$$

Then $a_{i,k} = 0$ for $k < i \leq d$. So we have that

$$u^{t_k} \mid \begin{pmatrix} u^{t_1} & x_{i,j} \\ \vdots \\ u^{t_k} & a_{k,k} \end{pmatrix} \begin{pmatrix} a_{1,k} \\ \vdots \end{pmatrix}.$$

Apply similar allowable procedures as in Sublemma 4.5, we can make $x_{i,k} = 0, a_{i,k} = 0$ for $1 \leq i \leq k - 1$. So,

$$XA = \begin{pmatrix} X_1 & 0 & X_2 \\ 0 & u^{t_k} & X_3 \\ 0 & 0 & X_4 \end{pmatrix} \begin{pmatrix} A_1 & 0 & A_2 \\ A_3 & a_{k,k} & A_4 \\ A_5 & 0 & A_6 \end{pmatrix} = \begin{pmatrix} X_1A_1 + X_2A_5 & 0 & X_1A_2 + X_2A_6 \\ u^{t_k}A_3 + X_3A_5 & u^{t_k}a_{k,k} & u^{t_k}A_4 + X_3A_6 \\ X_4A_5 & 0 & X_4A_6 \end{pmatrix}.$$

So now, clearly we have that $u^{t_i} \mid \text{col}_i(X_{k,k}A_{k,k})$ for $1 \leq i < k$, and $u^{t_i} \mid \text{col}_{i-1}(X_{k,k}A_{k,k})$ for $k < i \leq d$. By induction hypothesis, $X_{k,k}$ satisfies (P).
What is left is to show that $x_{k,j} = 0$ for $j > k$. It can be done similarly as in Sublemma 4.6.

5. \mathcal{O}_E-module structure of extension classes

In this section, we prove that certain sets of extension classes have natural \mathcal{O}_E-module structures, and that these structures are compatible with each other. Many results in this section are clearly valid for general K/\mathbb{Q}_p and any prime number p. But for our purpose, we assume throughout that K/\mathbb{Q}_p is unramified and $p > 2$. However, sometimes we specifically point out the assumption $p > 2$, just to emphasize the necessity.

We want to remark here that this section is heavily influenced by the unpublished notes of Gee-Liu-Savitt ([GLS]). In fact, practically all the major definitions and results (in particular, Proposition 5.4, Proposition 5.13 and Proposition 5.15) are taken directly from [GLS] (including the proofs). We want to heartily thank their generosity again. The notes [GLS] played a great and essential role in shaping the style of the main local results in Section 7, and in fact has corrected a quite serious mistake in an earlier draft of our paper.

5.1. Extension of Kisin modules and (φ, \hat{G})-modules.

Definition 5.1. (1) A sequence of morphisms in $\text{Mod}_{\mathcal{O}}^{\varphi} E$:

$$0 \to \mathcal{L} \to \mathcal{N} \to \mathcal{L}' \to 0,$$

is called short exact, if it is short exact as a sequence of \mathcal{O}_E-modules.

(2) A sequence of morphisms in $\text{Mod}_{\mathcal{O}}^{\varphi, \hat{G}} E$:

$$0 \to \hat{\mathcal{L}} \to \hat{\mathcal{N}} \to \hat{\mathcal{L}}' \to 0,$$

is called short exact, if it is short exact as a sequence of \mathcal{O}_E-modules.

(3) We can also define short exact sequences in $\text{Mod}_{\mathcal{O}}^{\varphi} k_E$ and $\text{Mod}_{\mathcal{O}}^{\varphi, \hat{G}} k_E$ analogously.

Definition 5.2. (1) Suppose $\mathcal{L}, \mathcal{L}' \in \text{Mod}_{\mathcal{O}}^{\varphi} E$. Let $\text{Ext}(\mathcal{L}', \mathcal{L})$ be the set of short exact sequences $0 \to \mathcal{L} \to \mathcal{N} \to \mathcal{L}' \to 0$ in the category $\text{Mod}_{\mathcal{O}}^{\varphi} E$, modulo the equivalence relation as follows. Call

$$0 \to \mathcal{L} \to \mathcal{N}^{(1)} \to \mathcal{L}' \to 0$$

and

$$0 \to \mathcal{L} \to \mathcal{N}^{(2)} \to \mathcal{L}' \to 0$$

equivalent, if there exists $\xi : \mathcal{N}^{(1)} \to \mathcal{N}^{(2)}$ such that the following diagram commutes:

$$
\begin{array}{cccccc}
0 & \longrightarrow & \mathcal{L} & \longrightarrow & \mathcal{N}^{(1)} & \longrightarrow & \mathcal{L}' & \longrightarrow & 0 \\
\| & & \| & & \| & & \| \\
0 & \longrightarrow & \mathcal{L} & \longrightarrow & \mathcal{N}^{(2)} & \longrightarrow & \mathcal{L}' & \longrightarrow & 0 \\
\end{array}
$$

(2) We can define similar Ext’s for pairs of objects in categories $\text{Mod}_{\mathcal{O}}^{\varphi, \hat{G}} E$, $\text{Mod}_{k_E}^{\varphi} E$, and $\text{Mod}_{k_E}^{\varphi, \hat{G}} E$.
Remark 5.3. Indeed, when we define Ext’s in various categories, we should have added certain subscripts to distinguish the situation. However, in our paper, the category where we are taking Ext are mostly clear from the context. We do sometimes add some subscripts (whose meaning will be obvious) to avoid ambiguity.

Proposition 5.4 ([GLS]). The following statements hold.

1. Suppose $\mathcal{L}', \mathcal{L} \in \text{Mod}_{\mathcal{O}_E}^{\varphi}$, then $\text{Ext}(\mathcal{L}', \mathcal{L})$ has an \mathcal{O}_E-module structure.
2. Suppose $\hat{\mathcal{L}}', \hat{\mathcal{L}} \in \text{Mod}_{\mathcal{O}_E}^{\varphi, G}$, then $\text{Ext}(\hat{\mathcal{L}}', \hat{\mathcal{L}})$ has an \mathcal{O}_E-module structure.
3. Suppose $p > 2$, and both $\hat{\mathcal{L}}', \hat{\mathcal{L}} \in \text{Mod}_{\mathcal{O}_E}^{\varphi, G}$ are crystalline, then $\text{Ext}_{\text{cris}}(\hat{\mathcal{L}}', \hat{\mathcal{L}})$ has an \mathcal{O}_E-module structure. Here, $\text{Ext}_{\text{cris}}(\hat{\mathcal{L}}', \hat{\mathcal{L}})$ consists of equivalence classes of short exact sequences where the central object is crystalline.
4. Suppose $\overline{\mathcal{L}}, \overline{\mathcal{L}} \in \text{Mod}_{\mathcal{O}_E}^{\varphi}$, then $\text{Ext}(\overline{\mathcal{L}}, \mathcal{L})$ has a k_E-vector space structure.
5. Suppose $\overline{\mathcal{L}}, \overline{\mathcal{L}} \in \text{Mod}_{\mathcal{O}_E}^{\varphi, G}$, then $\text{Ext}(\overline{\mathcal{L}}, \overline{\mathcal{L}})$ has a k_E-vector space structure.
6. Suppose $\overline{\mathcal{L}}, \overline{\mathcal{L}} \in \text{Mod}_{\mathcal{O}_E}^{\varphi}$, then the following natural map

$$\text{Ext}(\overline{\mathcal{L}}, \mathcal{L})/\omega_E \text{Ext}(\mathcal{L}, \mathcal{L}) \to \text{Ext}(\overline{\mathcal{L}}, \overline{\mathcal{L}})$$

is an injective homomorphism of k_E-vector spaces.
7. Suppose $\overline{\mathcal{L}}, \overline{\mathcal{L}} \in \text{Mod}_{\mathcal{O}_E}^{\varphi, G}$, then the following natural map

$$\text{Ext}(\overline{\mathcal{L}}, \mathcal{L})/\omega_E \text{Ext}(\mathcal{L}, \mathcal{L}) \to \text{Ext}(\overline{\mathcal{L}}, \overline{\mathcal{L}})$$

is an injective homomorphism of k_E-vector spaces.

Proof. Proof of (1). Let $d = \text{rk}_{\mathcal{O}_E}^{\varphi} \mathcal{L}, d' = \text{rk}_{\mathcal{O}_E}^{\varphi} \mathcal{L}'$. Let $e = (e_1, \ldots, e_d)$ be a fixed \mathcal{O}_E-basis of \mathcal{L}, and let $e' = (e_1', \ldots, e_{d'})$ be a fixed \mathcal{O}_E-basis of \mathcal{L}'.

For brevity, in the following, we simply use e, e' to denote the bases. Suppose $\varphi(e) = eA, \varphi(e') = e'A'$, where $A, A' \in \text{Mat}(\mathcal{O}_E)$, and let $B, B' \in \text{Mat}(\mathcal{O}_E)$ such that $AB = (E(u))^r \text{Id}, A'B' = (E(u))^r \text{Id}$.

Let M be the set of matrices in $\text{Mat}(\mathcal{O}_E)$ with the shape

$$\begin{pmatrix} A & C \\ 0 & A' \end{pmatrix}$$

such that there exits

$$\begin{pmatrix} B & D \\ 0 & B' \end{pmatrix} \in \text{Mat}(\mathcal{O}_E)$$

such that

$$\begin{pmatrix} A & C \\ 0 & A' \end{pmatrix} \begin{pmatrix} B & D \\ 0 & B' \end{pmatrix} = \begin{pmatrix} (E(u))^r & 0 \\ 0 & (E(u))^r \end{pmatrix}.$$

M has a natural \mathcal{O}_E-module structure where

$$a \begin{pmatrix} A & C_1 \\ 0 & A' \end{pmatrix} + b \begin{pmatrix} A & C_2 \\ 0 & A' \end{pmatrix} = \begin{pmatrix} A & aC_1 + bC_2 \\ 0 & A' \end{pmatrix}, \forall a, b \in \mathcal{O}_E.$$

Define an equivalence relation in M such that $\begin{pmatrix} A & C_1 \\ 0 & A' \end{pmatrix}$ and $\begin{pmatrix} A & C_2 \\ 0 & A' \end{pmatrix}$ are equivalent if there exists a matrix W, such that $C_1 - C_2 = WA' - A\varphi(W)$.

Let M_0 be the subset of M consisting of elements equivalent to $\begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix}$. One can easily check that M_0 is a submodule of M. Let $\bar{M} = M/M_0$. One can easily check that if we change e, e' to some other bases, we will get isomorphic \bar{M}.

Crystalline liftings and weight part of Serre’s conjecture 19
Now for \(\tilde{x} \in \text{Ext}(\mathcal{L}', \mathcal{L}) \), choose a representative: \(0 \to \mathcal{L} \to \mathcal{R} \to \mathcal{L}' \to 0 \). Take a section (of \(\mathcal{S}_{\mathcal{O}_E} \)-modules) \(s_\tilde{x} : \mathcal{L}' \to \mathcal{R} \), then \((e, s_\tilde{x}(e'))\) forms a basis for \(\mathcal{R} \).

Then
\[
\varphi(e, s_\tilde{x}(e')) = (e, s_\tilde{x}(e')) \begin{pmatrix} A & 0 \\ 0 & C_{\tilde{x}, s_\tilde{x}} \end{pmatrix}
\]
for some matrix \(C_{\tilde{x}, s_\tilde{x}} \).

We define a map of sets \(F : \text{Ext}(\mathcal{L}', \mathcal{L}) \to \hat{M} \) by mapping \(\tilde{x} \) above to \(\begin{pmatrix} A & C_{\tilde{x}, s_\tilde{x}} \\ 0 & A' \end{pmatrix} \).

One can easily check that this map is well-defined, in particular, it does not depend on the choice of the short exact sequence for \(\tilde{x} \), or the choice of the section \(s_\tilde{x} \). One can also easily check that this map is a bijection. So we can equip \(\text{Ext}(\mathcal{L}', \mathcal{L}) \) with an \(\mathcal{O}_E \)-structure via that on \(\hat{M} \).

Proof of (2). The proof is very similar to (1). We will give a sketch, since the ideas will be used later.

Again, let \(e, e' \) be a basis of \(\mathcal{L}, \mathcal{L}' \) respectively, and suppose \(\varphi(e) = eA, \varphi(e') = e'A' \), \(g(1 \otimes _ve) = (1 \otimes _ve)X_g \), \(g(1 \otimes _ve') = (1 \otimes _ve')X'_g \), where \(X_g, X'_g \in \text{Mat}(\hat{\mathcal{R}}_{\mathcal{O}_E}), \forall g \in \hat{G} \).

Let \(M \) be the set where an element \(m \in M \) is a set of matrices
\[
m_\varphi = \begin{pmatrix} A & C \\ 0 & A' \end{pmatrix}, m_g = \begin{pmatrix} X_g & Y_g \\ 0 & X'_g \end{pmatrix}
g \in \hat{G},
\]
where \(C \in \text{Mat}(\mathcal{S}_{\mathcal{O}_E}), Y_g \in \text{Mat}(\hat{\mathcal{R}}_{\mathcal{O}_E}), \) which satisfy the following conditions:

1. There exists \(\begin{pmatrix} B & D \\ 0 & B' \end{pmatrix} \in \text{Mat}(\mathcal{S}_{\mathcal{O}_E}) \) such that
\[
\begin{pmatrix} A & C \\ 0 & A' \end{pmatrix} \begin{pmatrix} B & D \\ 0 & B' \end{pmatrix} = \begin{pmatrix} (E(u))^r & 0 \\ 0 & (E(u))^r \end{pmatrix}.
\]
2. \(m_{g_1g_2} = g_1(m_{g_2})m_{g_1}, \forall g_1, g_2 \in \hat{G} \).
3. \(m_{g}g(\varphi(m_\varphi)) = \varphi(m_\varphi)g(m_{g}), \forall g \in \hat{G} \).
4. \(m_h = \begin{pmatrix} Id & 0 \\ 0 & Id \end{pmatrix}, \forall h \in H_K \).
5. \(Y_g \in \text{Mat}((\hat{\mathcal{L}}_{\mathcal{O}_E}), \forall g \in \hat{G} \).

\(M \) has a natural \(\mathcal{O}_E \)-module structure, where if \(m^{(i)} \in M, i = 1, 2 \) such that
\[
m_\varphi^{(i)} = \begin{pmatrix} A & C^{(i)} \\ 0 & A' \end{pmatrix}, m_g^{(i)} = \begin{pmatrix} X_g & Y_g^{(i)} \\ 0 & X'_g \end{pmatrix}
g \in \hat{G},
\]
and if \(a, b \in \mathcal{O}_E \), then define \(m = an^{(1)} + bm^{(2)} \) to be such that
\[
m_\varphi = \begin{pmatrix} A & aC^{(1)} + bC^{(2)} \\ 0 & A' \end{pmatrix}, m_g = \begin{pmatrix} X_g & aY_g^{(1)} + bY_g^{(2)} \\ 0 & X'_g \end{pmatrix}
g \in \hat{G}.
\]

Define an equivalence relation on \(M \), where \(m^{(1)} \) and \(m^{(2)} \) are equivalent, if there exists a matrix \(W \in \text{Mat}(\mathcal{S}_{\mathcal{O}_E}) \), such that

- \(C^{(1)} - C^{(2)} = WA' - A\varphi(W) \).
- \(Y_g^{(1)} - Y_g^{(2)} = WX_g - X_gg(W), \forall g \in \hat{G}. \)

Then let \(M_0 \) be the submodule of \(M \) consisting of elements equivalent to \(m_0 \), where
\[m_{0, \varphi} = \begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix}, m_{0, g} = \begin{pmatrix} X_g & 0 \\ 0 & X'_g \end{pmatrix} \in \mathcal{G}. \]

Let $\widetilde{M} = M/M_0$. One can show similarly as in the proof of statement (1) that there is a bijection between $\text{Ext}(\hat{\mathcal{L}}, \hat{\mathcal{L}})$ and \widetilde{M}, and so one can equip an \mathcal{O}_E-module structure on $\text{Ext}(\hat{\mathcal{L}}, \hat{\mathcal{L}})$.

Proof of (3). Similarly as in the proof of (2), let e, e' be a basis of $\mathcal{L}, \mathcal{L}'$ respectively, and suppose $\varphi(e) = eA, \varphi(e') = e'A'$, $\tau(1 \otimes \varphi) = (1 \otimes \varphi) X_\tau, \tau(1 \otimes \varphi) e' = (1 \otimes \varphi) X'_\tau$, where (by Theorem 1.7 and Remark 1.8)

\[X_\tau - \text{Id}, X'_\tau - \text{Id} \in \text{Mat}(\hat{\mathcal{R}}_{\mathcal{O}_E} \cap (u^p \varphi(t) W(\mathcal{R})_{\mathcal{O}_E})). \]

Let M be the set where an element $m \in M$ is a set of two matrices

\[m_{\varphi} = \begin{pmatrix} A & C \\ 0 & A' \end{pmatrix}, m_\tau = \begin{pmatrix} X_\tau & Y_\tau \\ 0 & X'_\tau \end{pmatrix}, \]

where $C \in \text{Mat}(\mathcal{G}_{\mathcal{O}_E}), Y_\tau \in \text{Mat}(\hat{\mathcal{R}}_{\mathcal{O}_E})$, which satisfy the following conditions:

1. There exists $\begin{pmatrix} B & D \\ 0 & B' \end{pmatrix}$ such that
 \[\begin{pmatrix} A & C \\ 0 & A' \end{pmatrix} \begin{pmatrix} B & D \\ 0 & B' \end{pmatrix} = \begin{pmatrix} (E(u))^r & 0 \\ 0 & (E(u))^r \end{pmatrix}. \]

2. $m_\tau \varphi(m_{\varphi}) = \varphi(m_\varphi) \varphi(m_\tau)$.

3. $Y_\tau \in \text{Mat}(\hat{\mathcal{R}}_{\mathcal{O}_E} \cap (u^p \varphi(t) W(\mathcal{R})_{\mathcal{O}_E}))$.

4. $g(m_\tau) = \prod_{k=0}^{r_p(g)-1} \epsilon_k(m_\tau)$ for all $g \in G_\infty$ such that $\epsilon_p(g) \in \mathbb{Z}_{\geq 0}$.

Similarly as in the proof of Statement (2), M has a natural \mathcal{O}_E-module structure. Then we can similarly define an equivalence relation, and take the quotient \widetilde{M}. Combining with Proposition 1.7 and Remark 1.8, we can show that there is a bijection between $\text{Ext}_{\text{cris}}(\mathcal{L}', \hat{\mathcal{L}})$ and \widetilde{M}, and so $\text{Ext}_{\text{cris}}(\mathcal{L}', \hat{\mathcal{L}})$ has an \mathcal{O}_E-module structure.

Proof of (4) (resp. (5)) is very similar to that of (1) (resp. (2)).

Proof of (6). To prove Statement(6), we use notations in the proof of Statement (1). Suppose $\tilde{x} \in \text{Ext}(\mathcal{L}', \mathcal{L})$ maps to 0 in $\text{Ext}(\underline{\mathcal{L}}, \underline{\mathcal{L}})$, then it suffices to show that $\tilde{x} \in \omega_E \text{Ext}(\mathcal{L}', \underline{\mathcal{L}})$.

Suppose \tilde{x} corresponds to $\begin{pmatrix} A & C \\ 0 & A' \end{pmatrix}$, then $\begin{pmatrix} \overline{A} & \overline{C} \\ 0 & \overline{A'} \end{pmatrix}$ is equivalent to the trivial extension in $\text{Ext}(\underline{\mathcal{L}}, \underline{\mathcal{L}})$. So there exists $W \in \text{Mat}(\mathcal{G}_{\mathcal{O}_E})$ such that $\overline{C} = \overline{WA'} - \overline{A'} \varphi(\overline{W})$. Take any lift $W' \in \text{Mat}(\mathcal{G}_{\mathcal{O}_E})$ of W. Then we have $C - WA' - A' \varphi(W) = \omega_E P$ for some $P \in \text{Mat}(\mathcal{G}_{\mathcal{O}_E})$. So $\begin{pmatrix} A & C \\ 0 & A' \end{pmatrix}$ is in fact equivalent to $\begin{pmatrix} A & \omega_E P \\ 0 & A' \end{pmatrix}$. So now it suffices to show that $\begin{pmatrix} A & P \\ 0 & A' \end{pmatrix}$ is an element in $\text{Ext}(\mathcal{L}', \mathcal{L})$. Suppose

\[\begin{pmatrix} A & \omega_E P \\ 0 & A' \end{pmatrix} \begin{pmatrix} B & D \\ 0 & B' \end{pmatrix} = \begin{pmatrix} (E(u))^r & 0 \\ 0 & (E(u))^r \end{pmatrix}. \]
then $AD + \omega_E PB' = 0$. We have $\omega_E \mid AD$, so $\omega_E \mid A'AD = (E(u))^rD$. Thus $\omega_E \mid D$ because $\omega_E \mid E(u)x$ in $\mathcal{S}_{\mathbb{S}E}$ if and only if $\omega_E \mid x$. So now, we have

$$
\begin{pmatrix}
A & P \\
0 & A'
\end{pmatrix}
\begin{pmatrix}
B & D/\omega_E \\
0 & B'
\end{pmatrix}
= \begin{pmatrix}
(E(u))^r & 0 \\
0 & (E(u))^r
\end{pmatrix}.
$$

And so $\hat{x} \in \omega_E \text{Ext}({\mathcal{L}'}, {\mathcal{L}})$.

Proof of (7) is similar to that of Statement (6).

Remark 5.5.

1. Let $\mathcal{S}_E = \mathcal{S} \otimes \mathbb{Z}_p E$, then we can define a category $\text{Mod}_{\mathcal{S}_E}^\varphi$ similarly as $\text{Mod}_{\mathcal{S}_{\mathbb{S}E}}^\varphi$. It is clear that if $\mathfrak{M} \in \text{Mod}_{\mathcal{S}_{\mathbb{S}E}}^\varphi$, then $\mathfrak{M}[\frac{1}{p}] \in \text{Mod}_{\mathcal{S}_E}^\varphi$.

2. Given two modules $\mathcal{L}', \mathcal{L} \in \text{Mod}_{\mathcal{S}_E}^\varphi$, we can define the set $\text{Ext}({\mathcal{L}'}, {\mathcal{L}})$ similarly as in the category $\text{Mod}_{\mathcal{S}_{\mathbb{S}E}}^\varphi$, and we can similarly show that $\text{Ext}({\mathcal{L}'}, {\mathcal{L}})$ is an E-vector space.

3. We can also similarly define a category $\text{Mod}_{\mathcal{S}_E}^{\varphi, \tilde{G}}$ and Ext in it.

Lemma 5.6. Let $\zeta \in R \otimes \mathbb{F}_p k_E$, and write it as $\zeta = \sum_{i=1}^n y_i \otimes a_i$ where $y_i \in R$, and $a_i \in k_E$ are independent over \mathbb{F}_p. Let

$$v_R(\zeta) := \min\{v_R(y_i)\}.$$

Then v_R is a well-defined valuation on $R \otimes \mathbb{F}_p k_E$ (so in particular, it does not depend on the sum representing ζ).

Proof. This is extracted from the proof of Lemma 8.1 of [GLS14].

Lemma 5.7. With notations in (CRYS), and suppose $\overline{\Pi}$ is upper triangular. Then $\overline{\Pi}$ is upper triangular, and there exists a basis $\{e_{s,i}\}$ for $\overline{\Pi}$, such that $\tau(e_s) = e_s Z_s$, and for each s, the matrix Z_s satisfies:

- $Z_s = (z_{s,i,j}) \in \text{Mat}(R/p \mathbb{R} \otimes \mathbb{Z}_p k_E) \subset \text{Mat}(R \otimes \mathbb{F}_p k_E)$ is upper triangular.
- The diagonal elements satisfy $v_R(z_{s,i,i} - 1) \geq \frac{p^2}{p-1}, \forall i$.
- The elements on the upper right corner satisfy $v_R(z_{s,i,j}) \geq \frac{p^2}{p-1}, \forall i < j$.

Proof. This is again extracted from the proof of Lemma 8.1 of [GLS14].

Definition 5.8. Suppose $\overline{\Pi}_i, \overline{\Pi}_j$ (resp. $\overline{\Pi}_i, \overline{\Pi}_j$) are rank 1 modules in $\text{Mod}_{\mathcal{S}_{k_E}}^{\varphi}$ (resp. $\text{Mod}_{\mathcal{S}_{k_E}}^{\varphi, \tilde{G}}$) for $1 \leq i \leq d, 1 \leq j \leq d'$.

1. Let $\mathcal{E}_{\varphi, \text{shape}}(\overline{\Pi}_d, \ldots, \overline{\Pi}_1) \subset \mathcal{E}(\overline{\Pi}_d, \ldots, \overline{\Pi}_1)$ be the subset consisting of elements $\overline{\Pi}$ such that there exists a basis e_s of $\overline{\Pi}_s$, $\varphi(e_{s-1}) = e_s A_s$, and A_s is of the shape in Proposition 4.1 for each s.

2. Suppose $\overline{\Pi} \in \mathcal{E}_{\varphi, \text{shape}}(\overline{\Pi}_d, \ldots, \overline{\Pi}_1), \overline{\Pi}' \in \mathcal{E}_{\varphi, \text{shape}}(\overline{\Pi}_d', \ldots, \overline{\Pi}_1')$. Define $\text{Ext}_{\varphi, \text{shape}}(\overline{\Pi}, \overline{\Pi}') \subseteq \text{Ext}(\overline{\Pi}, \overline{\Pi}')$, where $\hat{x} \in \text{Ext}(\overline{\Pi}, \overline{\Pi}')$ is in $\text{Ext}_{\varphi, \text{shape}}(\overline{\Pi}, \overline{\Pi}')$ if there exists a representative of \hat{x}: $0 \to \overline{\Pi} \to \overline{\Pi} \to \overline{\Pi} \to 0$, such that $\overline{\Pi} \in \mathcal{E}_{\varphi, \text{shape}}(\overline{\Pi}_d, \ldots, \overline{\Pi}_1, \overline{\Pi}_d', \ldots, \overline{\Pi}_1)$.

3. Let $\mathcal{E}_{(\varphi, \tau) \text{-shape}}(\overline{\Pi}_d, \ldots, \overline{\Pi}_1) \subset \mathcal{E}(\overline{\Pi}_d, \ldots, \overline{\Pi}_1)$ be the subset consisting of elements $\overline{\Pi}$ such that there exists a basis e_s of $\overline{\Pi}_s$ such that

- $\varphi(e_{s-1}) = e_s A_s$, where $A_s, \forall s$ is of the shape in Proposition 4.1.
- $\tau(1 \otimes \varphi e_s) = (1 \otimes \varphi e_s) Z_s$, where $Z_s, \forall s$ is of the shape in Lemma 5.7.
(4) Define $\text{Ext}_{(\varphi, \tau)}(\mathcal{M}, \mathcal{M}')$ similarly as (2).

Proposition 5.9. With notations in Definition 5.8, we have the following.

(1) $\text{Ext}_{\varphi}(\mathcal{M}, \mathcal{M}')$ is a sub-vector space of $\text{Ext}(\mathcal{M}, \mathcal{M}')$.

(2) $\text{Ext}_{(\varphi, \tau)}(\mathcal{M}, \mathcal{M}')$ is a sub-vector space of $\text{Ext}(\mathcal{M}, \mathcal{M}')$.

Proof. For (1), from the proof of Proposition 5.4, $\text{Ext}(\mathcal{M}, \mathcal{M}')$ is bijective with some vector space M (the definition of M is obvious, which we omit), and $\text{Ext}_{\varphi}(\mathcal{M}, \mathcal{M}')$ correspond to the subset of M consisting of elements $\tilde{x} \in M$ which has a representative of the shape in Proposition 4.1, and these elements clearly form a sub-vector space. Note that the existence of the representative is not necessarily unique, but it does not affect our result.

The proof of (2) is similar. \qed

5.2. Extension of representations.

Now we consider extension of representations.

Let H be a topological group, and let A be a topological ring with trivial H-action. Let L_1, L_2 be two finite free A-modules with continuous A-linear H-action. Define $\text{Ext}_H(L_2, L_1)$ to be the set of short exact sequences of finite free continuous H-representations over A, $0 \to L_1 \to N \to L_2 \to 0$, modulo the obvious equivalence relation. Then $\text{Ext}_H(L_2, L_1)$ is in bijection with the continuous group cohomology $H^1(H, \text{Hom}_A(L_2, L_1))$, which has a natural A-module structure because $\text{Hom}_A(L_2, L_1)$ is an A-module.

Now let T be an \mathcal{O}_E-representation of the Galois group G_K. Let $V = T \otimes_{\mathcal{O}_E} E$, and $\overline{T} = T/\omega_E T$. We have the natural \mathcal{O}_E-linear maps:

$$\eta : H^1(G_K, T) \to H^1(G_K, V), \quad \theta : H^1(G_K, T) \to H^1(G_K, \overline{T}).$$

Also note that the map $H^1(G_K, T)/\omega_E H^1(G_K, T) \to H^1(G_K, \overline{T})$ is injective (by using the long exact sequence of Galois cohomologies associated to the short exact sequence $0 \to T \xrightarrow{\omega_E} T \to \overline{T} \to 0$).

Lemma 5.10.

(1) The kernel of $\eta : H^1(G_K, T) \to H^1(G_K, V)$ is $H^1(G_K, T)_{\text{tor}}$, which is the submodule consisting of elements killed by a power of ω_E.

(2) $H^1(G_K, T) \otimes_{\mathcal{O}_E} E \simeq (H^1(G_K, T)/H^1(G_K, T)_{\text{tor}}) \otimes_{\mathcal{O}_E} E \simeq H^1(G_K, V)$

(3) When \overline{T} is upper triangular, i.e., $\overline{T} \in E(\overline{\chi}_1, \ldots, \overline{\chi}_d)$, where $\overline{\chi}_i$ are characters, and $\overline{\chi}_i \neq 1$, then $H^1(G_K, T)_{\text{tor}} = \{0\}$.

Proof. (1). If $\sigma \in H^1(G_K, T)$ maps to 0 in $H^1(G_K, V)$, then $\sigma(g) = gm - m$ for some $m \in V$. If $\omega_E^p m \in T$, then $\omega_E^p \sigma = 0$ in $H^1(G_K, T)$.

(2). Any cocycle in $H^1(G_K, V)$, multiplied by ω_E^n for n big enough (using that G_K is finitely generated), will be in $H^1(G_K, T)$.

(3). Suppose otherwise, namely, there is ω_E-torsion. Suppose $\sigma \in H^1(G_K, T)$ is killed by ω_E, then $\omega_E \sigma(g) = gm - m$ for some $m \in T$ such that $m \notin \omega_E T$. So $gm - m \in \omega_E T, \forall g$. This is equivalent to say that $(g - 1)m = 0, \forall g$. But this is impossible, since \overline{T} is upper triangular and has no trivial character on its diagonal. \qed

Definition 5.11. (1) Suppose V is a crystalline representation, then let

$$H^1_f(G_K, V) := \text{Ker}(H^1(G_K, V) \to H^1(G_K, V \otimes_{\mathcal{O}_E} B_{\text{cris}})),$$
which is an E-vector space that classifies crystalline extension classes (see e.g., 1.12 of [Nek93]).

(2) Suppose V is a semi-stable representation, then let

$$H^1_p(G_K, V) := \text{Ker}(H^1(G_K, V) \to H^1(G_K, V \otimes \mathbb{Q}_p B_{st})).$$

which is an E-vector space that classifies semistable extension classes (see e.g., 1.12 of [Nek93]).

(3) Let $H^1_f(G_K, T) := \eta^{-1}(H^1_p(G_K, V))$, which is an \mathcal{O}_E-module.

(4) Let $H^1_f(G_K, T) := \eta^{-1}(H^1_p(G_K, V))$, which is an \mathcal{O}_E-module.

By the above definition, we can define

Definition 5.12.

(1) Let V_1, V_2 be two crystalline E-representations of G_K, then define

$$\text{Ext}_{\text{cris}}(V_2, V_1) := H^1_f(G_K, \text{Hom}_E(V_2, V_1)).$$

(2) Let T_1, T_2 be two crystalline \mathcal{O}_E-representations of G_K, then define

$$\text{Ext}_{\text{cris}}(T_2, T_1) := H^1_f(G_K, \text{Hom}_{\mathcal{O}_E}(T_2, T_1)).$$

(3) Define $\text{Ext}_{\text{st}}(V_2, V_1)$ and $\text{Ext}_{\text{st}}(T_2, T_1)$ similarly.

5.3. From extension of modules to extension of representations.

In this subsection, we establish the relation between the extensions studied in the previous two subsections.

Proposition 5.13 ([GLS]).

(1) For $\mathcal{L}', \mathcal{L} \in \text{Mod}_{\mathcal{O}_E}^G$, $\text{Ext}(\mathcal{L}', \mathcal{L}) \to \text{Ext}_{G_{\infty}}(T_{\mathcal{O}}(\mathcal{L}), T_{\mathcal{O}}(\mathcal{L}'))$ is a homomorphism of \mathcal{O}_E-modules.

(2) For $\hat{\mathcal{L}}', \hat{\mathcal{L}} \in \text{Mod}_{\mathcal{O}_E}^{\hat{G}}$, $\text{Ext}(\hat{\mathcal{L}}', \hat{\mathcal{L}}) \to \text{Ext}_{\hat{G}_K}(\hat{T}(\hat{\mathcal{L}}), \hat{T}(\hat{\mathcal{L}}'))$ is a homomorphism of \mathcal{O}_E-modules.

(3) Suppose $p > 2$, and both $\hat{\mathcal{L}}', \hat{\mathcal{L}} \in \text{Mod}_{\mathcal{O}_E}^{\hat{G}}$ are crystalline, then $\text{Ext}_{\text{cris}}(\hat{\mathcal{L}}', \hat{\mathcal{L}}) \to \text{Ext}_{\hat{G}_K}(\hat{T}(\hat{\mathcal{L}}), \hat{T}(\hat{\mathcal{L}}'))$ is a homomorphism of \mathcal{O}_E-modules.

(4) For $\overline{\mathcal{L}}', \overline{\mathcal{L}} \in \text{Mod}_{\overline{\mathcal{O}}_E}^G$, $\text{Ext}(\overline{\mathcal{L}}', \overline{\mathcal{L}}) \to \text{Ext}_{G_{\infty}}(T_{\overline{\mathcal{O}}}(\overline{\mathcal{L}}), T_{\overline{\mathcal{O}}}(\overline{\mathcal{L}}'))$ is a homomorphism of k_E-vector spaces.

(5) For $\overline{\mathcal{L}}', \overline{\mathcal{L}} \in \text{Mod}_{\overline{\mathcal{O}}_E}^G$, $\text{Ext}(\overline{\mathcal{L}}', \overline{\mathcal{L}}) \to \text{Ext}_{G_K}(\overline{T}(\overline{\mathcal{L}}), \overline{T}(\overline{\mathcal{L}}'))$ is a homomorphism of k_E-vector spaces.

Proof. We only prove (1), the other statements can be proved similarly. We will freely use notations in the proof of Statement (1) of Proposition 5.4. Let c, c' be a fixed basis of $\mathcal{L}, \mathcal{L}'$ respectively. Suppose $\tilde{x} \in \text{Ext}(\mathcal{L}', \mathcal{L})$, take a representative of short exact sequence, $0 \to \mathcal{L} \to \mathfrak{M} \to \mathcal{L}' \to 0$, and take a representative

$$\left(\begin{array}{cc} A & C \\ 0 & A' \end{array} \right) \in \hat{\mathfrak{M}},$$

which corresponds to a section $s_C : \mathcal{L}' \to \mathfrak{M}$. We also get the corresponding short exact sequence $T_{\mathcal{O}}(\tilde{x}) : 0 \to L' \to N \to L \to 0$.

Let $h \in L$, and set up the following matrix equation in $W(R)$, with $\alpha_{h, C}$ a row of indeterminates (in total d' indeterminates, where $d' = \text{rk}(\mathcal{L}'))$:

$$\varphi(\alpha_{h, C}) = h(e)C + \alpha_{h, C}A'.$$

The equation is always solvable by Lemma 2.7 of [Car13], although the solution is not necessarily unique. However, since L is finite free over \mathcal{O}_E, we can always fix a system of solutions which is linear with respect to h, i.e.,

$$\alpha_{ah_1 + bh_2, C} = a\alpha_{h_1, C} + b\alpha_{h_2, C}, \forall a, b \in \mathcal{O}_E, h_1, h_2 \in L.$$
Now define an element $F(h, C) \in N$ such that

$$F(h, C) : \begin{cases}
e \mapsto h(e) \\ s_{C}(e') \mapsto \alpha_{h,C} \end{cases}$$

The map $h \mapsto F(h, C)$ defines a section $L \to N$. Now define $c : G_{\infty} \to \text{Hom}_{\mathcal{O}_{E}}(L, L')$ by

$$g \mapsto \{ h \mapsto g \circ [F(h, C)] - F(g \circ h, C) \},$$

where $h \in L$, $g \circ h$ is the Galois action (on L or N). It is precisely the cocycle associated to the extension $0 \to L' \to N \to L \to 0$.

Now, take two extensions $\tilde{x}_1, \tilde{x}_2 \in \text{Ext}(L', \mathcal{O}_{L})$, which correspond to $\left(\begin{array}{cc} A & C_1 \\ 0 & A' \end{array} \right)$ and $\left(\begin{array}{cc} A & C_2 \\ 0 & A' \end{array} \right)$ respectively. As above, we can fix $\alpha_{h,C}$, which are each linear with respect to h. And now define

$$\alpha_{h, aC_1 + bC_2} = a\alpha_{h, C_1} + b\alpha_{h, C_2}.$$

We need to verify that the cocycle c is “additive” with respect to C, that is

$$ag \circ [F(h, C_1)] - aF(g \circ h, C_1) + bg \circ [F(h, C_2)] - bF(g \circ h, C_2)$$

$$= g \circ [F(h, aC_1 + bC_2)] - F(g \circ h, aC_1 + bC_2).$$

Since both sides of the above formula are in L', it suffices to verify their values on liftings of e'.

$F(g \circ h, aC_1 + bC_2)$ is linear by our definition of $\alpha_{h, aC_1 + bC_2}$. That is,

$$F(g \circ h, aC_1 + bC_2)_{sac_{1} + bC_{2}(e')} = aF(g \circ h, C_1)_{sac_{1}(e')} + bF(g \circ h, C_2)_{sac_{2}(e')}.$$

To verify on $\{ g \circ [F(h, aC_1 + bC_2)]_{sac_{1} + bC_{2}(e')} \}$, just note that L' is an G_{∞}-invariant subspace in N, and so

$$\{ g \circ [F(h, aC_1 + bC_2)]_{sac_{1} + bC_{2}(e')} \} = g \circ \{ [F(h, aC_1 + bC_2)]_{sac_{1} + bC_{2}(e')} \}.$$

In order to prove our next proposition, we need to briefly recall some notations. Let $S_{K_0} := S \otimes_{W(k)} K_0$ and let Fil$^i S_{K_0} := \text{Fil}^i S \otimes_{W(k)} K_0$. Let $MF(\varphi, N)$ be the category whose objects are finite free S_{K_0}-modules D with:

(1) a $\varphi_{S_{K_0}}$-semi-linear morphism $\varphi_D : D \to D$ such that the determinant of φ_D is invertible in S_{K_0};

(2) a decreasing filtration $\{ \text{Fil}^i D \}_{i \in \mathbb{Z}}$ of S_{K_0}-submodules of D such that $\text{Fil}^0 D = D$ and $\text{Fil}^i S_{K_0} \text{Fil}^j D \subseteq \text{Fil}^{i+j} D$;

(3) a K_0-linear map $N : D \to D$ such that $N(fm) = N(f)m + fN(m)$ for all $f \in S_{K_0}$ and $m \in D$, $N \varphi = p\varphi N$ and $N(\text{Fil}^i D) \subseteq \text{Fil}^{i-1} D$.

Morphisms in the category are S_{K_0}-linear maps preserving filtrations and commuting with φ and N. And we can naturally define short exact sequences in the category.

We denote $MF(\varphi, N)$ the category of filtered (φ, N)-modules, and $MF(\varphi, N)_{-w.a.}$ the subcategory of weakly admissible modules. The definitions of these categories are omitted, and can be found, e.g., in Subsection 6.1 of [Bre97].

Theorem 5.14 ([Bre97] Theorem 6.1.1, [Liu08] Corollary 3.2.3).
(1) There is a functor: \(D : MF(\varphi, N) \to MF(\varphi, N), \) which is an equivalence of categories. And the equivalence and its inverse are both exact.

(2) Let \(MF(\varphi, N) - w.a. \) denote the essential image of the functor \(D \) restricted to \(MF(\varphi, N) - w.a., \) then \(D \) induces an equivalence of categories:

\[
D : MF(\varphi, N) - w.a. \to MF(\varphi, N) - w.a.,
\]

and the equivalence and its inverse are both exact.

(3) With notations in Statement (3) of Theorem 1.3, suppose \(D \) is the filtered \((\varphi, N) \)-module associated to \(V, \) then there is a canonical isomorphism

\[
S_{K_0} \otimes_{\varphi, E} \mathcal{M} \simeq S_{K_0} \otimes K_0 D \simeq D(D),
\]

which is compatible with \(\varphi, N \) and filtrations on both sides (we omit the definitions of these filtrations).

Proposition 5.15 ([GLS]). Suppose \(p > 2. \) Let \(\hat{\mathcal{L}}, \hat{\mathcal{L}}' \in \text{Mod}_{\mathcal{O}_E}^{\varphi, \hat{G}}, L = \hat{T}(\hat{\mathcal{L}}), L' = \hat{T}(\hat{\mathcal{L}}'), \) and \(V = L \otimes_{\mathcal{O}_E} E, V' = L' \otimes_{\mathcal{O}_E} E. \) Then the following hold.

1. We have the following isomorphisms of \(E \)-vector spaces:

\[
E \otimes_{\mathcal{O}_E} \text{Ext}(\hat{\mathcal{L}}', \hat{\mathcal{L}}) \simeq E \otimes_{\mathcal{O}_E} \text{Ext}_{st}(L, L') \simeq \text{Ext}_{st}(V, V').
\]

2. If both \(V, V' \) are furthermore crystalline, then we have

\[
E \otimes_{\mathcal{O}_E} \text{Ext}_{cris}(\hat{\mathcal{L}}', \hat{\mathcal{L}}) \simeq E \otimes_{\mathcal{O}_E} \text{Ext}_{cris}(L, L') \simeq \text{Ext}_{cris}(V, V').
\]

Proof. Clearly we have \(E \otimes_{\mathcal{O}_E} \text{Ext}(L, L') = \text{Ext}(V, V'). \) Now \(\text{Ext}_{st}(L, L') \) is the preimage of \(\text{Ext}_{st}(V, V') \) in the map \(\text{Ext}(L, L') \to \text{Ext}(V, V'), \) so we have \(E \otimes_{\mathcal{O}_E} \text{Ext}_{st}(L, L') = \text{Ext}_{st}(V, V'). \)

Now we claim that the map \(\text{Ext}(\hat{\mathcal{L}}', \hat{\mathcal{L}}) \to \text{Ext}_{st}(L, L') \) is injective. To prove the claim, suppose \(\bar{x} \in \text{Ext}(\hat{\mathcal{L}}', \hat{\mathcal{L}}) \) maps to \(0. \) Take a representative of \(\bar{x} : 0 \to \hat{\mathcal{L}} \to \hat{\mathcal{M}} \to \hat{\mathcal{L}}' \to 0, \) and suppose that it maps to \(0 \to L' \to N \to L \to 0. \) Since \(\bar{x} \) maps to \(0, \) so we have the following equivalence of extensions:

\[
\begin{array}{cccccc}
0 & \longrightarrow & L' & \longrightarrow & N & \longrightarrow & L & \longrightarrow & 0 \\
\| & & \alpha & \downarrow & & \| & & , \\
0 & \longrightarrow & L' & \longrightarrow & L' \oplus L & \longrightarrow & L & \longrightarrow & 0
\end{array}
\]

where the bottom sequence is the split exact sequence. Since \(\hat{T} \) is fully faithful, there exists \(\beta \) such that the following diagram is commutative.

\[
\begin{array}{cccccc}
0 & \longrightarrow & \hat{\mathcal{L}} & \longrightarrow & \hat{\mathcal{M}} & \longrightarrow & \hat{\mathcal{L}}' & \longrightarrow & 0 \\
\| & & \beta & \downarrow & & \| & & , \\
0 & \longrightarrow & \hat{\mathcal{L}} & \longrightarrow & \hat{\mathcal{L}} \oplus \hat{\mathcal{L}}' & \longrightarrow & \hat{\mathcal{L}}' & \longrightarrow & 0
\end{array}
\]

where the bottom sequence is the split exact sequence, and so \(\bar{x} = 0 \) in \(\text{Ext}(\hat{\mathcal{L}}', \hat{\mathcal{L}}). \)

So, in order to prove \(E \otimes_{\mathcal{O}_E} \text{Ext}(\hat{\mathcal{L}}', \hat{\mathcal{L}}) = E \otimes_{\mathcal{O}_E} \text{Ext}_{st}(L, L'), \) it suffice to show that for any \(x \in \text{Ext}_{st}(L, L'), \) there exists some positive integer \(m, \) such that \(\overline{p^m x} \in \bar{T}(\text{Ext}(\hat{\mathcal{L}}', \hat{\mathcal{L}})). \) Take a representative in \(x, \)

\[
0 \to L' \to N \to L \to 0.
\]
By full faithfulness of \hat{T}, we will have a sequence
\[\hat{x} : 0 \to \hat{\mathcal{L}} \to \hat{\mathfrak{M}} \to \hat{\mathcal{L}}' \to 0. \]

The sequence \hat{x} is exact by Lemma 2.19 of [Liu12], but it is not necessarily exact (i.e., \hat{x} is not necessarily in $\text{Ext}(\hat{\mathcal{L}}', \hat{\mathcal{L}})$), because the inverse of \hat{T} is not exact.

However, we claim that the following sequence is exact (note that the following sequence is by tensoring over \hat{E}, i.e., we are treating the modules $\hat{\mathcal{L}}, \hat{\mathfrak{M}}, \hat{\mathcal{L}}'$ in $\text{Mod}_{\hat{\mathcal{E}} \hat{\otimes}_{\hat{E}}}^G$ as modules in $\text{Mod}_{\hat{\mathcal{E}} \hat{\otimes}_{\hat{E}}}^G$, but it does not affect our result):
\[0 \to S[\frac{1}{\rho}] \otimes_{\hat{\mathcal{E}}, \hat{\varphi}} \hat{\mathcal{L}} \to S[\frac{1}{\rho}] \otimes_{\hat{\mathcal{E}}, \hat{\varphi}} \hat{\mathfrak{M}} \to S[\frac{1}{\rho}] \otimes_{\hat{\mathcal{E}}, \hat{\varphi}} \hat{\mathcal{L}}' \to 0. \]

This is because of the exact equivalences in Theorem 5.14, and the above sequence corresponds to the short exact sequence of semi-stable representations
\[0 \to \mathcal{L} \otimes \mathfrak{M} \otimes_{\mathcal{O}_{\hat{E}}} \to \mathcal{L} \otimes \mathfrak{M} \otimes_{\mathcal{O}_{\hat{E}}} \to \mathcal{L}' \otimes \mathfrak{M} \otimes_{\mathcal{O}_{\hat{E}}} \to 0. \]

Now, since $\hat{\mathcal{E}}[\frac{1}{\rho}] \cap (S[\frac{1}{\rho}])^{\times} = (\mathcal{E}[\frac{1}{\rho}])^{\times}$, one can easily deduce that $\hat{x}[\frac{1}{\rho}] : 0 \to \mathcal{L}[\frac{1}{\rho}] \to \mathfrak{M}[\frac{1}{\rho}] \to \mathcal{L}'[\frac{1}{\rho}] \to 0$ is short exact.

The above short exact sequence is an element in $\text{Ext}(\hat{\mathcal{L}}'[\frac{1}{\rho}], \hat{\mathcal{L}}[\frac{1}{\rho}])$ (see Remark 5.5). Note that we have $p > 2$, by Lemma 1.6, this element in $\text{Ext}(\hat{\mathcal{L}}'[\frac{1}{\rho}], \hat{\mathcal{L}}[\frac{1}{\rho}])$ is determined by two matrices $M_{\varphi} \in \text{Mat}(\mathcal{E} \otimes_{\mathbb{Z}_p} E)$ and $M_{\tau} \in \text{Mat}(\hat{R} \otimes_{\mathbb{Z}_p} E)$. Both M_{φ} and M_{τ} are block upper-triangular. So for m big enough, p^m times the upper right corner of M_{φ} will fall in $\mathcal{O}_{\hat{E}}$, and p^m times the upper right corner of M_{τ} will fall in $\hat{R}_{\mathcal{O}_{E}}$. Which is the same to say that $p^m \hat{x} \in \text{Ext}(\hat{\mathcal{L}}'[\frac{1}{\rho}], \hat{\mathcal{L}}[\frac{1}{\rho}])$. And we are done for the proof of Statement (1).

The proof of Statement (2) (the crystalline case) is similar to Statement (1). \qed

6. TWO CONDITIONS ON UPPER TRIANGULAR EXTENSIONS

In this section, we prove two useful propositions, which will be used in our crystalline lifting theorems. The first one is about restricting group cohomology from G_K to G_{∞}, the second one is about equip τ-actions to modules in $\text{Mod}_{\mathcal{E} \hat{\otimes}_{\hat{E}}}^G$.

The results in this section are valid for any finite extension K/\mathbb{Q}_p with $p > 2$.

Proposition 6.1. Let $\zeta_i : G_K \to k_{E_i}^\times, 1 \leq i \leq d$ be characters, such that $\zeta_i \neq 1$ or $\bar{\pi}_p$, where 1 is the trivial character and $\bar{\pi}_p$ is the reduction of the cyclotomic character. Suppose $W \in \mathcal{E}_{G_{\infty}}(\zeta_1, \ldots, \zeta_d)$, then the restriction map
\[H^1(G_K, W) \to H^1(G_{\infty}, W) \]
is injective.

Proof. The proof imitates that of Lemma 7.4.3 of [EGS14]. We write it out in more detail, for the reader’s convenience. Recall that $\hat{K} = K_{p, \infty}, G_{\hat{K}} = \text{Gal}(\hat{K}/\hat{K})$, $\hat{G} = \text{Gal}(\hat{K}/K)$ and $G_{p, \infty} = \text{Gal}(\hat{K}/K_{p, \infty})$. To prove that $H^1(G_K, W) \to H^1(G_{\infty}, W)$ is injective, it suffices to show that the composite
\[H^1(G_K, W) \to H^1(G_{\infty}, W) \to H^1(G_{\hat{K}}, W) \]
is injective. By inflation-restriction, it suffices to show that $H^1(\hat{G}, W^G)$ = 0. Denote $W_1 = W^G$, by inflation-restriction, we have

$$0 \to H^1(\text{Gal}(K_\propto/K), W_2) \to H^1(\hat{G}, W_1) \to H^1(G_\propto, W_1)^{\text{Gal}(K_\propto/K)}.$$

Where $W_2 = W_1^{\text{Gal}(K/K_\propto)} = W^{\text{Gal}(K/K_\propto)}$. Again by inflation-restriction,

$$0 \to H^1(\text{Gal}(K(\mu_p)/K), W_3) \to H^1(\text{Gal}(K_\propto/K), W_2) \to H^1(\text{Gal}(K(\mu_p)/K), W_2)^{\text{Gal}(K(\mu_p)/K)}.$$

Where $W_3 = W_2^{\text{Gal}(K_\propto/K(\mu_p))} = W^{\text{Gal}(K/K(\mu_p))}$. So now, it suffices to prove that $H^1(\text{Gal}(K_\propto/K(\mu_p)), W_2)^{\text{Gal}(K(\mu_p)/K)} = 0$, $H^1(\text{Gal}(K(\mu_p)/K), W_3) = 0$ and $H^1(G_\propto, W_1)^{\text{Gal}(K_\propto/K)} = 0$.

(1). To show that $H^1(\text{Gal}(K_\propto/K(\mu_p)), W_2)^{\text{Gal}(K(\mu_p)/K)} = 0$, note that $\text{Gal}(K_\propto/K(\mu_p)) \simeq \mathbb{Z}_p$ is abelian, so the action of $\text{Gal}(K_\propto/K(\mu_p))$ on W_2 is via a sum of characters. For $\theta : \mathbb{Z}_p \to k_E^\times$ a character, $H^1(\mathbb{Z}_p, \theta) = 0$ unless θ is the trivial character. So $H^1(\text{Gal}(K_\propto/K(\mu_p)), W_2)^{\text{Gal}(K(\mu_p)/K)} \neq 0$ only if there exists $0 \neq v \in W^G$, which is impossible, since we can easily show that $W^G = 0$.

(2). It is easy to show that $H^1(\text{Gal}(K(\mu_p)/K), W_3) = 0$, using that $\text{Gal}(K(\mu_p)/K)$ is a subgroup of \mathbb{F}_p.

(3). To show $H^1(G_\propto, W_1)^{\text{Gal}(K_\propto/K)} = 0$, note that $G_\propto \simeq \mathbb{Z}_p$, so the action on W_1 is abelian. For $\theta : \mathbb{Z}_p \to k_E^\times$ a character, $H^1(\mathbb{Z}_p, \theta) \neq 0$ only if θ is the trivial character. So if $H^1(G_\propto, W_1)^{\text{Gal}(K_\propto/K)} = 0$, there exists $0 \neq v \in W_1$ which generates a trivial character of G_\propto, i.e., $e \in W^{\text{Gal}(K/K_\propto)}$, and such that $\text{Gal}(K_\propto/K)$ acts on $k_E^\times e$ via the cyclotomic character. That is to say, $\mathfrak{v}_p \subset W$, contradiction. \hfill \square

Condition (C-2A) Let $\overline{\xi}_i : G_K \to k_E^\times, 1 \leq i \leq d$ be characters. We call that the ordered sequence $(\overline{\xi}_1, \ldots, \overline{\xi}_d)$ satisfies Condition (C-2A) if $\overline{\xi}_i^{-1} \overline{\xi}_j \neq \mathbb{1}$ or \mathfrak{v}_p, for all $i < j$. When $(\overline{\xi}_1, \ldots, \overline{\xi}_d)$ satisfies (C-2A), for any $\overline{\nu} \in \mathcal{E}(\overline{\xi}_1, \ldots, \overline{\xi}_d)$, we also call $\overline{\nu}$ satisfies (C-2A). By Proposition 6.1, when $(\overline{\xi}_1, \ldots, \overline{\xi}_d)$ satisfies (C-2A), then for any $1 \leq i < d$, and any $W \in \mathcal{E}(\overline{\xi}_i^{-1} \overline{\xi}_{i+1}, \ldots, \overline{\xi}_d)$, the map $H^1(G_K, W) \to H^1(G_\propto, W)$ is injective.

We define another condition for our next proposition, which is a direct generalization of Lemma 8.1 of [GLS14].

Condition (C-2B) Let $(\overline{\mathfrak{m}}_1, \ldots, \overline{\mathfrak{m}}_d)$ be an ordered sequence of rank-1 modules in $\text{Mod}_{\mathfrak{m}E}^r$. We call $(\overline{\mathfrak{m}}_1, \ldots, \overline{\mathfrak{m}}_d)$ satisfies Condition (C-2B), if there does not exist $i < j$, such that the Kisin modules

$$\overline{\mathfrak{m}}_i = \overline{\mathfrak{m}}(0, \ldots, 0; a_i), \quad \overline{\mathfrak{m}}_j = \overline{\mathfrak{m}}(p, \ldots, p; a_j)$$

for some $a_i, a_j \in k_E^\times$. When $(\overline{\mathfrak{m}}_1, \ldots, \overline{\mathfrak{m}}_d)$ satisfies (C-2B), then for any $\overline{\mathfrak{m}} \in \mathcal{E}(\overline{\mathfrak{m}}_d, \ldots, \overline{\mathfrak{m}}_1)$, we also call $\overline{\mathfrak{m}}$ satisfies (C-2B).

Proposition 6.2. Suppose

$$\overline{\xi} \in \mathcal{E}(\varphi, \tau) - \text{shape}(\overline{\mathfrak{m}}_r, \ldots, \overline{\mathfrak{m}}_1), \quad \overline{\xi} \in \mathcal{E}(\varphi, \tau) - \text{shape}(\overline{\mathfrak{m}}_d, \ldots, \overline{\mathfrak{m}}_{d+1}),$$
where \(\mathfrak{M}_{i}, 1 \leq i \leq d \) are rank-1 modules in \(\text{Mod}^{\phi_{\mathfrak{M}}}_{k, E} \) such that the ordered sequence \((\mathfrak{M}_{1}, \ldots, \mathfrak{M}_{d}) \) satisfies Condition (C-2B). Then the following map (forgetting the \(\tau \)-action)

\[
\text{Ext}_{(\phi, \tau)}(\mathfrak{L}, \mathfrak{G}) \to \text{Ext}_{\phi}(\mathfrak{L}, \mathfrak{G})
\]

is a \(k_{E} \)-linear homomorphism, and it is injective.

\textbf{Proof.} The map is clearly \(k_{E} \)-linear. To prove injectivity, suppose given two elements in \(\text{Ext}_{(\phi, \tau)}(\mathfrak{L}, \mathfrak{G}) \): \(0 \to \mathfrak{L} \to \mathfrak{M}(1) \to \mathfrak{L} \to 0 \) and \(0 \to \mathfrak{L} \to \mathfrak{M}(2) \to \mathfrak{L} \to 0 \), such that there exists \(\xi \), and the following diagram is commutative

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \mathfrak{L} & \longrightarrow & \mathfrak{M}(1) & \longrightarrow & \mathfrak{L} & \longrightarrow & 0 \\
\| & & \| & \downarrow \xi & & \| & & \downarrow & \\
0 & \longrightarrow & \mathfrak{L} & \longrightarrow & \mathfrak{M}(2) & \longrightarrow & \mathfrak{L} & \longrightarrow & 0 \\
\end{array}
\]

then we need to show that the following diagram is commutative:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \mathfrak{L} & \longrightarrow & \mathfrak{M}(1) & \longrightarrow & \mathfrak{L} & \longrightarrow & 0 \\
\| & & \| & \downarrow \hat{\xi} & & \| & & \downarrow & \\
0 & \longrightarrow & \mathfrak{L} & \longrightarrow & \mathfrak{M}(2) & \longrightarrow & \mathfrak{L} & \longrightarrow & 0 \\
\end{array}
\]

where \(\hat{\xi} \) is the natural extension of \(\xi \).

One can easily check that it suffices to prove the following lemma to conclude. \(\square \)

\textbf{Lemma 6.3.} Let \(\mathfrak{M} \in \mathcal{E}_{\phi}(\mathfrak{M}_{d}, \ldots, \mathfrak{M}_{1}) \), such that the ordered sequence \((\mathfrak{M}_{1}, \ldots, \mathfrak{M}_{d}) \) satisfies Condition (C-2B). Let

- \(A_{s} \in \text{Mat}(k_{E}[u]), 0 \leq s \leq f - 1 \) be a set of matrices for \(\phi_{\mathfrak{M}_{s}} \) of the shape in Proposition 4.1, and
- \(Z_{s}, Z'_{s} \in \text{Mat}(R \otimes_{E} k_{E}) \) be a set of matrices of the shape in Lemma 5.7.

If we have

- \(Z_{s+1}(\phi(A_{s})) = \phi(A_{s})\phi(Z_{s}), \forall s, \) and
- \(Z'_{s+1}(\phi(A_{s})) = \phi(A_{s})\phi(Z'_{s}), \forall s. \)

Then \(Z_{s} = Z'_{s}, \forall s. \)

\textbf{Proof.} The proof is a straightforward generalization of Lemma 8.1 of [GLS14]. For the reader’s convenience, we sketch the proof.

Just as in the proof of loc. cit., we can expand out the matrix equation

\[
Z_{s+1}(\phi(A_{s})) = \phi(A_{s})\phi(Z_{s}),
\]

and then one can easily see that the diagonal elements \(Z_{s,i,i} \) are uniquely determined. Then, one can argue as in the same fashion as in loc. cit., that \(z_{s,i,i+1} \) are uniquely determined (so long that Condition (C-2B) is satisfied). Then similarly, we can show that \(z_{s,i,i+2} \) are uniquely determined, and so on for all elements in \(Z_{s}. \)

\(\square \)
7. Main local results: crystalline lifting theorems

Before proving our crystalline lifting theorems, we introduce some useful definitions.

Definition 7.1.
(1) Suppose $\mathcal{L}, \mathcal{L}' \in \text{Mod}^{\varphi}_{\text{Gal}_E}$, where $\text{rk}(\mathcal{L}') = 1$, $\text{rk}(\mathcal{L}) = d - 1$, and $\mathcal{L} \in \mathcal{E}(\mathfrak{M}_d, \ldots, \mathfrak{M}_1)$. Suppose $\mathcal{L}' = \mathfrak{M}(t_{1,0}, \ldots, t_{i,f-1}; a_i)$, $\mathfrak{M}_i = \mathfrak{M}(t_{i,0}, \ldots, t_{i,f-1}; a_i), \forall 2 \leq i \leq d$ are rank-1 modules as in Definition 1.10. Then define
\[
\text{d}_{\text{cris}}(\mathcal{L}, \mathcal{L}') = \text{card}\{(i, s) \mid 2 \leq i \leq d, 0 \leq s \leq f - 1, t_{i,s} > t_{1,s}\}.
\]
(2) Define d_{cris} for similar pairs in $\text{Mod}^{\varphi}_{\text{Gal}_E}$, $\text{Mod}^{\varphi \hat{G}}_{\text{Gal}_E}$ analogously.
(3) Suppose ρ, ρ' crystalline E-representation of G_K, with $\dim_E \rho = d - 1, \dim_E \rho' = 1$, and $\rho \in \mathcal{E}(\chi_2, \ldots, \chi_d)$. Suppose $\text{HT}_s(\rho') = t_{1,s}, \text{HT}_s(\chi_i) = t_{i,s}$. Then define
\[
\text{d}_{\text{cris}}(\rho', \rho) = \text{card}\{(i, s) \mid 2 \leq i \leq d, 0 \leq s \leq f - 1, t_{i,s} > t_{1,s}\}.
\]

Remark 7.2. It is clear that these definition of d_{cris} are compatible with each other, i.e., the following statements holds:
(1) Suppose $\mathcal{L}, \mathcal{L}' \in \text{Mod}^{\varphi}_{\text{Gal}_E}$ as in Statement (1) of Definition 7.1, then $d_{\text{cris}}(\mathcal{L}, \mathcal{L}') = d_{\text{cris}}(\mathfrak{M}, \mathfrak{M}')$.
(2) Suppose $\mathfrak{L}, \mathfrak{L}' \in \text{Mod}^{\varphi \hat{G}}_{\text{Gal}_E}$ are crystalline, where $\text{rk}(\mathfrak{L}') = 1, \text{rk}(\mathfrak{L}) = d - 1$ and \mathfrak{L} is upper triangular. Let $\rho = \hat{T}(\mathfrak{L}) \otimes_{\text{Gal}_E} E, \rho' = \hat{T}(\mathfrak{L}') \otimes_{\text{Gal}_E} E$ be the associated crystalline representations. Then $d_{\text{cris}}(\rho', \rho) = d_{\text{cris}}(\mathfrak{L}, \mathfrak{L}')$.

Remark 7.3. With notations in Statement (3) of Definition 7.1, we have $d_{\text{cris}}(\rho', \rho) = \dim_E \text{Ext}_{\text{cris}}(\rho', \rho)$. See e.g., Proposition 1.24 of [Nek93].

7.1. First crystalline lifting theorem.

Theorem 7.4. Suppose $\overline{\mathfrak{M}} \in \mathcal{E}(\varphi, \tau)_{\text{shape}}(\mathfrak{M}_d, \ldots, \mathfrak{M}_1)$, where $\mathfrak{M}_i = \overline{\mathfrak{M}}(t_{i,0}, \ldots, t_{i,f-1}; a_i)$ are rank-1 modules with $t_{i,s} \in [0, p], \forall 1 \leq i \leq d, 0 \leq s \leq f - 1, a_i = 0, t_{i,s} \neq t_{j,s}, \forall i \neq j$. Suppose the following assumptions are satisfied:
(1) For any $1 \leq i < j \leq d$, there is no nonzero morphism $\mathfrak{M}_j \rightarrow \mathfrak{M}_i$.
(2) $\overline{\mathfrak{M}}$ satisfies Condition C-2(B).

Then $\overline{\mathfrak{M}}$ has a lift $\overline{\mathfrak{M}} \in \text{Mod}^{\varphi \hat{G}}_{\text{Gal}_E}$ which is crystalline and upper triangular.

Proof. We prove by induction on d. The case $d = 1$ is trivial from Proposition 1.11. Suppose the theorem is true for $d - 1$, and we now prove it for d.

Suppose $\overline{\mathfrak{M}} \in \text{Ext}(\varphi, \tau)_{\text{shape}}(\overline{\mathfrak{M}}_2, \overline{\mathfrak{M}}_1)$, where $\overline{\mathfrak{M}}_2 \in \mathcal{E}(\varphi, \tau)_{\text{shape}}(\mathfrak{M}_d, \ldots, \mathfrak{M}_2)$ is of rank $d - 1$, and $\overline{\mathfrak{M}}_1$ is of rank 1. We denote
\[
d_{\text{cris}} := d_{\text{cris}}(\overline{\mathfrak{M}}_2, \overline{\mathfrak{M}}_1).
\]

Because of assumption (2), by Proposition 6.2, we have the injective homomorphism
\[
\text{Ext}(\varphi, \tau)_{\text{shape}}(\overline{\mathfrak{M}}_2, \overline{\mathfrak{M}}_1) \rightarrow \text{Ext}_{\text{cris}}(\overline{\mathfrak{M}}_2, \overline{\mathfrak{M}}_1).
\]
And because of assumption (1), by Proposition 5.9 and the definition of $\text{Ext}_{\varphi} - \text{shape}$, $\text{Ext}_{\varphi} - \text{shape}(\overline{\mathfrak{M}}_2, \overline{\mathfrak{M}}_1)$ is a k_E-vector space of dimension at most d_{cris}. So we have that $\text{Ext}(\varphi, \tau)_{\text{shape}}(\overline{\mathfrak{M}}_2, \overline{\mathfrak{M}}_1)$ is a k_E-vector space of dimension at most d_{cris}.

By the induction hypothesis (for \mathcal{M}_2) and Proposition 1.11 (for \mathcal{M}_1), we can take upper triangular crystalline lifts $\mathcal{M}_1, \mathcal{M}_2$ of $\mathfrak{M}_1, \mathfrak{M}_2$ respectively. So we have the natural map by Proposition 5.13: $\text{Ext}_{\text{cris}}(\mathcal{M}_2, \mathcal{M}_1) \to \text{Ext}_{\text{cris}}(\hat{T}(\mathcal{M}_1), \hat{T}(\mathcal{M}_2))$, which, by Proposition 5.15, becomes an isomorphism after tensoring with E,

$$\text{Ext}_{\text{cris}}(\mathcal{M}_2, \mathcal{M}_1) \otimes_{\mathcal{O}_E} E \cong \text{Ext}_{\text{cris}}(\hat{T}(\mathcal{M}_1), \hat{T}(\mathcal{M}_2)) \otimes_{\mathcal{O}_E} E \cong \text{Ext}_{\text{cris}}(\hat{T}(\mathfrak{M}_1) \otimes_{\mathcal{O}_E} E, \hat{T}(\mathfrak{M}_2) \otimes_{\mathcal{O}_E} E).$$

By Remark 7.3, we have

$$\dim_E \text{Ext}_{\text{cris}}(\hat{T}(\mathfrak{M}_1) \otimes_{\mathcal{O}_E} E, \hat{T}(\mathfrak{M}_2) \otimes_{\mathcal{O}_E} E) = d_{\text{cris}}(\hat{T}(\mathfrak{M}_1) \otimes_{\mathcal{O}_E} E, \hat{T}(\mathfrak{M}_2) \otimes_{\mathcal{O}_E} E).$$

Which, by Remark 7.2, equals to $d_{\text{cris}}(\mathfrak{M}_2, \mathfrak{M}_1) = d_{\text{cris}}$. So $\dim_E \text{Ext}_{\text{cris}}(\mathfrak{M}_2, \mathfrak{M}_1) \otimes_{\mathcal{O}_E} E = d_{\text{cris}}$. Thus the \mathcal{O}_E-free part of $\text{Ext}_{\text{cris}}(\mathfrak{M}_2, \mathfrak{M}_1)$ has rank equal to d_{cris}.

Now the image of the following injective homomorphism

$$\text{Ext}_{\text{cris}}(\mathfrak{M}_2, \mathfrak{M}_1)/\omega_E \to \text{Ext}(\mathfrak{M}_2, \mathfrak{M}_1)$$

falls into $\text{Ext}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_2, \mathfrak{M}_1)$ by Corollary 5.10 of [GLS14]. So we have the following injective homomorphism

$$\text{Ext}_{\text{cris}}(\mathfrak{M}_2, \mathfrak{M}_1)/\omega_E \to \text{Ext}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_2, \mathfrak{M}_1)$$

Now, the left hand side has k_E-dimension at least d_{cris}, and the right hand side has k_E-dimension at most d_{cris}. So in fact, the above homomorphism is an isomorphism, which means that every extension in $\text{Ext}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_2, \mathfrak{M}_1)$ has an upper triangular crystalline lift. And we finish the proof for d.

\[\square\]

7.2. Second crystalline lifting theorem. In order to prove our second crystalline lifting theorem, we need to introduce some definitions. We could have defined them earlier, but we did not need them until now.

Definition 7.5. Let $\mathfrak{M}_0 \in \text{Mod}_{\mathfrak{B}_E}$ be rank 1 modules. Let

$$\mathcal{E}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_d, \ldots, \mathfrak{M}_1)$$

be the set consisting of sequences $\mathfrak{M} = (\mathfrak{M}_1, 2, \mathfrak{M}_1, 2, 3, \ldots, \mathfrak{M}_1, \ldots, d)$, where

- $\mathfrak{M}_{1, 2} \in \text{Ext}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_2, \mathfrak{M}_1)$, and
- inductively, $\mathfrak{M}_{1, 2, \ldots, i+1} \in \text{Ext}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_{i+1}, \mathfrak{M}_{1, 2, \ldots, i}), \forall 2 \leq i \leq d - 1$.

Denote $\mathfrak{M} = \mathfrak{M}_1, \ldots, d \in \mathcal{E}(\mathfrak{M}_d, \ldots, \mathfrak{M}_1)$. We say that $\mathfrak{M} = (\mathfrak{M}_1, 2, \mathfrak{M}_1, 2, 3, \ldots, \mathfrak{M}_1, \ldots, d)$ gives a “successive Ext structure” to \mathfrak{M}.

Remark 7.6.

- (1) There is a natural “forgetful” map of sets:

 $$\mathcal{E}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_d, \ldots, \mathfrak{M}_1) \to \mathcal{E}(\mathfrak{M}_d, \ldots, \mathfrak{M}_1),$$

 where $\mathfrak{M} \mapsto \mathfrak{M}$. The map is clearly surjective.

- (2) It is easy to see that when $d = 2$, we have the following natural bijection

 $$\mathcal{E}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_2, \mathfrak{M}_1) = \text{Ext}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_2, \mathfrak{M}_1).$$

In particular, $\mathcal{E}_{(\varphi, \tau)\text{-shape}}(\mathfrak{M}_2, \mathfrak{M}_1)$ is endowed with a natural k_E-vector space structure. But when $d \geq 3$, we no longer have similar result.
Definition 7.7. Suppose $\mathbf{\overline{m}}^{\Box} = (\mathbf{\overline{m}}_{1,2}, \mathbf{\overline{m}}_{1,2,3}, \ldots, \mathbf{\overline{m}}_{1,\ldots,d}) \in \mathcal{E}_{\varphi \text{-shape}}(\mathbf{\overline{m}}_{d}, \ldots, \mathbf{\overline{m}}_{1})$ as in Definition 7.5, $\mathbf{\overline{m}} \in \text{Mod}_{E_{kE}}$ a rank 1 module.

Let $\text{Ext}_{\varphi \text{-shape}}(\mathbf{\overline{m}}, \mathbf{\overline{m}}) = \mathbf{\overline{m}}$ be the set consisting of $(\mathbf{\overline{m}}_{1,2}, \mathbf{\overline{m}}_{1,2,3}, \ldots, \mathbf{\overline{m}}_{1,\ldots,d}, \mathbf{\overline{m}})$, where $\mathbf{\overline{m}} \in \text{Ext}_{\varphi \text{-shape}}(\mathbf{\overline{m}}_{d}, \mathbf{\overline{m}}_{1,\ldots,d})$.

Remark 7.8. (1) It is clear that there is a natural bijective map:

$$\text{Ext}_{\varphi \text{-shape}}(\mathbf{\overline{m}}, \mathbf{\overline{m}}) \rightarrow \text{Ext}_{\varphi \text{-shape}}(\mathbf{\overline{m}}, \mathbf{\overline{m}}),$$

by sending $(\mathbf{\overline{m}}_{1,2}, \mathbf{\overline{m}}_{1,2,3}, \mathbf{\overline{m}}_{1,\ldots,d})$ to $\mathbf{\overline{m}}$. So in particular, $\text{Ext}_{\varphi \text{-shape}}(\mathbf{\overline{m}}, \mathbf{\overline{m}})$ has a k_E-vector space structure.

(2) In the category $\text{Mod}_{E_{kE}}$, we can define similar sets $\mathcal{E}_{(\varphi, \tau) \text{-shape}}(\mathbf{\overline{m}}_{d}, \ldots, \mathbf{\overline{m}}_{1})$ and $\text{Ext}_{(\varphi, \tau) \text{-shape}}(\mathbf{\overline{m}}, \mathbf{\overline{m}})$.

We can define similar \Box-extensions for representations, but we need to reverse the orders, so that it will be compatible with the \Box-extensions for modules.

Definition 7.9. Let $\varphi = G_K$ or G_{∞}, let χ, $1 \leq i \leq d$ be some (k_E or O_E)-characters of $\mathbf{\overline{m}}$.

(1) Let $\mathcal{E}_{\Box}(\chi_1, \ldots, \chi_d)$ be the set of sequences $\rho_{\Box} = (\rho_{1,2}, \rho_{1,2,3}, \ldots, \rho_{1,\ldots,d})$ where

- $\rho_{1,2} \in \text{Ext}_{\Box}(\chi_1, \chi_2)$, and
- inductively, $\rho_{1,\ldots,i+1} \in \text{Ext}_{\Box}(\chi_1, \ldots, \chi_{i+1})$.

(2) Suppose $\rho_{\Box} = (\rho_{1,2}, \rho_{1,2,3}, \ldots, \rho_{1,\ldots,d})$ as above, and ρ' a character of φ, then let $\text{Ext}_{\Box}(\rho', \rho_{\Box})$ be the set consisting of $(\rho'_{1,2}, \rho'_{1,2,3}, \ldots, \rho'_{1,\ldots,d}, r)$, where $r \in \text{Ext}_{\Box}(\rho', \rho_{1,\ldots,d})$.

Theorem 7.10. Let $\mathbf{\overline{m}} \in \mathcal{E}_{(\varphi, \tau) \text{-shape}}(\mathbf{\overline{m}}_{d}, \ldots, \mathbf{\overline{m}}_{1})$ where $\mathbf{\overline{m}}_{i} = \mathbf{\overline{m}}(t_{i,0}, \ldots, t_{i,f-1}; a_{i})$ with $t_{i,s}, 0 \leq i \leq d, 0 \leq s \leq f-1$ such that $t_{i,s} \neq t_{j,s}, \forall i \neq j$. Let $\chi_i = \hat{T}(\mathbf{\overline{m}}_{i})$, and fix χ_i a crystalline character which lifts χ_i and $\text{HT}_s(\chi_i) = \{t_{i,s}\}$.

Suppose the following assumptions are satisfied:

(1) $\{\chi_1, \ldots, \chi_d\}$ has a unique model with respect to $\{\text{col}_0(\text{WT}(\mathbf{\overline{m}})), \ldots, \text{col}_{f-1}(\text{WT}(\mathbf{\overline{m}}))\}$, where we regard $\text{col}_s(\text{WT}(\mathbf{\overline{m}}))$ as an (unordered) set of numbers for all s.

(2) $\mathbf{\overline{m}} \vDash \hat{T}(\mathbf{\overline{m}})$ satisfies Condition $C \cdot 2(A)$.

Then there exists a $\rho_{\Box} \in \mathcal{E}_{\Box,\text{cris}}(\chi_1, \ldots, \chi_d)$ such that

- $\rho_{\Box} = \rho_{\Box}$ as elements in $\mathcal{E}_{\Box}(\chi_1, \ldots, \chi_d)$ (not just $\rho' \simeq \rho$), and
- $\text{HT}_s(\rho') = \text{col}_s(\text{WT}(\mathbf{\overline{m}}))$ as sets of numbers.

Proof. We call (S1) is true if the statement in the theorem is true. We call (S2) is true if the following natural map of sets is injective (note that here injective means same image implies same preimage).

(Map-S2) $T_{\Box} : \mathcal{E}_{\varphi \text{-shape}}(\mathbf{\overline{m}}_{d}, \ldots, \mathbf{\overline{m}}_{1}) \rightarrow \mathcal{E}_{\varphi \text{-shape}}(\mathbf{\overline{m}}_{d}, \ldots, \mathbf{\overline{m}}_{1})$.

where for brevity, we write $\mathcal{E}_{\Box}(\chi_1, \ldots, \chi_d)$ to mean $\mathcal{E}_{\Box}(\chi_1 | G_{\infty}, \ldots, \chi_d | G_{\infty})$.

We prove (S1) and (S2) at the same time by induction on d. We first prove for
$d = 2$. Note that in this case, since $E^1_2(\ast, \ast) = \text{Ext}_k(\ast, \ast)$, we actually do not need \Box.

Suppose $\overline{\mathbb{M}} \in E(\varphi, \tau)-{\text{shape}}(\overline{\mathbb{M}}_2, \overline{\mathbb{M}}_1)$, $\overline{\mathfrak{m}} \in \text{Ext}_{G_k}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)$, and denote ρ_1, ρ_2 the crystalline liftings of $\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2$ respectively. (The change of notations from \mathfrak{m}_i to $\overline{\mathfrak{m}}_i$, and from χ_i to ρ_i is convenient for the induction process.) Denote $d_{\text{cris}} = d_{\text{cris}}(\overline{\mathfrak{m}}_2, \overline{\mathfrak{m}}_1)$.

Consider the following composite of homomorphisms:

$$f : \text{Ext}_{\text{cris}}(\rho_1, \rho_2) \rightarrow \text{Ext}_{\text{cris}}(\rho_1, \rho_2)/\omega_E \hookrightarrow \text{Ext}_{G_k}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2) \hookrightarrow \text{Ext}_{G_\infty}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2).$$

Where the last map is injective because of assumption (2) and Proposition 6.1.

By Proposition 5.15, $\text{Ext}_{\text{cris}}(\rho_1, \rho_2) \otimes_{\mathcal{O}_E} E = \text{Ext}_{\text{cris}}(\rho_1 \otimes_{\mathcal{O}_E} E, \rho_2 \otimes_{\mathcal{O}_E} E)$, and $\text{Ext}_{\text{cris}}(\rho_1 \otimes_{\mathcal{O}_E} E, \rho_2 \otimes_{\mathcal{O}_E} E)$ has E-dimension equal to $d_{\text{cris}}(\rho_1, \rho_2) = d_{\text{cris}}$. So the \mathcal{O}_E-free part of $\text{Ext}_{\text{cris}}(\rho_1, \rho_2)$ is of rank d_{cris}. So we have

$$\dim_{k_E}(\text{Im}(f)) \geq d_{\text{cris}}.$$

Now let $\text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})]$ be the subset of $\text{Ext}_{G_\infty}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)$ where $0 \rightarrow \overline{\mathfrak{m}}_2 \rightarrow \overline{\mathfrak{m}}_1 \rightarrow 0$ is in $\text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})]$, if there exits W crystalline such that

- $\text{HT}_s(W) = \text{col}_s(\text{WT}(\overline{\mathfrak{m}}))$ as sets for all s, and
- $\overline{\mathcal{W}}|_{G_\infty} \simeq \overline{\mathfrak{m}}$.

Remark that it is not clear from the definition if $\text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})]$ is a sub-vector space of $\text{Ext}_{G_\infty}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)$. We have $\text{Im}(f) \subseteq \text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})]$, and so we have

(lower bound) \quad $\text{card}(\text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})]) \geq |k_E|^{d_{\text{cris}}}$. \[\]

Now consider the homomorphism

$$g : \text{Ext}_G^{\varphi-{\text{shape}}}(\overline{\mathfrak{m}}_2, \overline{\mathfrak{m}}_1) \rightarrow \text{Ext}_{G_\infty}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2).$$

Suppose $x_\varphi : 0 \rightarrow \overline{\mathfrak{m}}_2 \rightarrow \overline{\mathfrak{m}} \rightarrow \overline{\mathfrak{m}}_1 \rightarrow 0$ is an element in $\text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})]$, then there exists crystalline W such that $\overline{\mathcal{W}}|_{G_\infty} \simeq \overline{\mathfrak{m}}$. Let $\overline{\Delta}$ be the associated module in $\text{Mod}_{G_\infty}^{\varphi}$, then by Lemma 4.4 of [Oze13], there exists a sequence $x_\varphi : 0 \rightarrow \overline{\mathfrak{m}}_1 \rightarrow \overline{\mathfrak{m}} \rightarrow \overline{\mathfrak{m}}_2 \rightarrow 0$, such that $T_\varphi(x_\varphi) = x_\varphi$. Note that we have $\overline{\mathfrak{m}} \in \text{Ext}_G^{\varphi-{\text{shape}}}(\overline{\mathfrak{m}}_2, \overline{\mathfrak{m}}_1)$ by Proposition 4.1. However, because of assumption (1), we must have $\overline{\mathfrak{m}} = \overline{\mathfrak{m}}_i, i = 1, 2$, and so $\overline{\mathfrak{m}} \in \text{Ext}_\varphi-{\text{shape}}(\overline{\mathfrak{m}}_2, \overline{\mathfrak{m}}_1)$.

The above argument means that we must have $\text{Im}(g) \supseteq \text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})]$, and so,

(upper bound) \quad $\text{card}(\text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})]) \leq |k_E|^{d_{\text{cris}}}$. \[\]

Combining the lower bound and upper bound we obtained above, we must have

$$\text{card}(\text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})]) = |k_E|^{d_{\text{cris}}},$$

and so

$$\text{Im}(f) = \text{Ext}_{G_\infty}^{\text{cris}}(\overline{\mathfrak{m}}_1, \overline{\mathfrak{m}}_2)[\text{WT}(\overline{\mathfrak{m}})] = \text{Im}(g).$$

Now, we can prove (S1) for $d = 2$. Since $\overline{\mathfrak{m}}|_{G_\infty} \in \text{Im}(g)$, so $\overline{\mathfrak{m}}|_{G_\infty} \in \text{Im}(f)$, i.e., there is an upper triangular crystalline lifting $\rho' \in \text{Ext}_{\text{cris}}(\rho_1, \rho_2)$ such that
However, we must have $\mathcal{P}' = \mathcal{P}$ as elements in $\text{Ext}_{G_K}(\mathcal{P}_1, \mathcal{P}_2)$, because the map

$$\text{Ext}_{G_K}(\mathcal{P}_1, \mathcal{P}_2) \to \text{Ext}_{G_\infty}(\mathcal{P}_1, \mathcal{P}_2)$$

is injective. And this proves (S1). Note that since φ is injective, so the map Map-2 is injective, and so (S2) is also true.

Now, we can use induction to proceed from $d - 1$ to d. Suppose both (S1) and (S2) are true when the dimension is less or equal to $d - 1$, and we will show that they are still both true when the dimension becomes d. Now we have $\hat{M} \square \in \text{Ext}_{\square}^{\square}(\varphi, \tau) - \text{shape}(\hat{M}_2, \hat{M}_1)$, where $\hat{M}_2 \in \mathcal{E}_{\square}(\varphi, \tau) - \text{shape}(\hat{N}_d, \ldots, \hat{N}_2)$ is of rank $d - 1$, and \hat{M}_1 is of rank 1. So $\mathcal{P}' \in \text{Ext}_{\square}^{\square}(\mathcal{P}_1, \mathcal{P}_2)$. Then we can apply the induction hypothesis to \mathcal{P}'_2 to find an upper triangular crystalline lift ρ'. And now the proof is almost verbatim as the $d = 2$ case, by using the \square variants of above maps, i.e., let

$$f : \text{Ext}_{\square}^{\square}(\rho_1, \rho'_2) \to \text{Ext}_{\square}^{\square}(\rho_1, \rho_2') / \omega_E \hookrightarrow \text{Ext}_{\square}^{\square}(\mathcal{P}_1, \mathcal{P}_2) \to \text{Ext}_{G_\infty}(\mathcal{P}_1, \mathcal{P}_2).$$

And then

$$\text{Im}(f) \subseteq \text{Ext}_{\square}^{\square}(\mathcal{P}_1, \mathcal{P}_2)[\text{WT}(\hat{M})].$$

Then consider

$$g : \text{Ext}_{\varphi - \text{shape}}(\mathcal{M}_2, \mathcal{M}_1) \to \text{Ext}_{G_\infty}(\mathcal{P}_1, \mathcal{P}_2),$$

Suppose $\bar{r} \in \text{Ext}_{\square}^{\square}(\mathcal{P}_1, \mathcal{P}_2)[\text{WT}(\hat{M})]$, then by Lemma 4.4 of [Oze13], we know that there exists some $\hat{\Sigma} \in \text{Ext}_{\varphi - \text{shape}}(\Sigma_2, \Sigma_1)$ such that $T_{\text{cris}}(\hat{\Sigma}) = \bar{r}$. Using our assumption (1), we know that $\Sigma_1 = \mathcal{M}_1$ and $\Sigma_2 \in \mathcal{E}_{\varphi - \text{shape}}(\mathcal{M}_d, \ldots, \mathcal{M}_2)$. But with only Lemma 4.4 of [Oze13], we do not know if Σ_2 and \mathcal{M}_2 are the same! The key point here is that we can apply our induction hypothesis on the statement (S2) to conclude $\Sigma_2 = \mathcal{M}_2$! And this is the whole point that we have introduced all these \square notations (when $d = 2$, we do not need them).

So with above argument, we still have

$$\text{Im}(g) \supseteq \text{Ext}_{\square}^{\square}(\mathcal{P}_1, \mathcal{P}_2)[\text{WT}(\hat{M})].$$

And then we can use similar argument as in the $d = 2$ case to conclude that both (S1) and (S2) are true.

7.3. Main local theorem.

Theorem 7.11. With notations in (CRYS), and suppose that the reduction $\overline{\rho}$ is upper triangular. Suppose that

- Condition (C-1) is satisfied; and
- Either (C-2A) or (C-2B) is satisfied.

Then there exists an upper triangular crystalline lifting ρ' of $\overline{\rho}$ such that $\text{HT}_s(\rho) = \text{HT}_s(\rho'), \forall s$.

\[\square\]
Proof. By Corollary 5.10 of [GLS14], we have $\overline{\mathfrak{M}} \in \mathcal{E}(\wp, \tau)_{\text{shape}}(\overline{\mathfrak{M}}_d, \ldots, \overline{\mathfrak{M}}_1)$. When (C-2B) is satisfied, we can apply Theorem 7.4. When (C-2A) is satisfied, we can equip $\overline{\mathfrak{M}}$ with a successive Ext structure: $\overline{\mathfrak{M}} \in \mathcal{E}(\wp, \tau)_{\text{shape}}(\overline{\mathfrak{M}}_d, \ldots, \overline{\mathfrak{M}}_1)$, and then apply Theorem 7.10. □

Corollary 7.12. With notations in (CRYS), and suppose that the reduction $\overline{\rho} \in \mathcal{E}(\overline{\chi}_1, \ldots, \overline{\chi}_d)$ is upper triangular. Suppose one of the following conditions is satisfied:

1. $K = \mathbb{Q}_p$, the differences between two elements in $HT(D_0)$ are never $p - 1$. And $\overline{\chi}_i \nmid \overline{\chi}_j$, $\forall i < j$.
2. For each s, the differences between two elements in $HT(D_s)$ are never 1. And for one s_0, $p - 1 \not\in HT(D_{s_0})$. And $\overline{\chi}_i \nmid \overline{\chi}_j$, $\forall i < j$.
3. For each s, the differences between two elements in $HT(D_s)$ are never 1. For one s_0, $p - 1 \not\in HT(D_{s_0})$. For one $0 \leq s'_0 < f - 1$, $p \not\in HT(D_{s'_0})$ (it is possible that $s_0 = s'_0$).
4. For each s, $HT(D_s) \subseteq [0, p - 1]$. And for one s_0, $p - 1 \not\in HT(D_{s_0})$.

Then there exists an upper triangular crystalline lifting ρ' of $\overline{\rho}$ such that $HT_s(\rho) = HT_s(\rho')$, $\forall s$.

Proof. (C-1) is satisfied in all the 4 listed conditions. (C-2A) is satisfied in (1) and (2). (C-2B) is satisfied in (3) and (4). □

By using Fontaine-Laffaille theory, we can also prove some results along the line of our main theorem.

Theorem 7.13 ([BLGGT14], [GL14]). Let K/\mathbb{Q}_p be a finite unramified extension (we can allow $p = 2$ here), $\rho : G_K \to GL_d(\mathcal{O}_E)$ a crystalline representation such that $\overline{\rho}$ is upper triangular. Suppose either of the following is true:

1. $HT_s(\rho) \subseteq [0, p - 2]$ for all s (the Hodge-Tate weights need not be distinct).
2. $HT_s(\rho) \subseteq [0, p - 1]$ for all s (the Hodge-Tate weights need not be distinct), and ρ is unipotent.

Then there exists an upper triangular crystalline representation ρ' such that $HT_s(\rho') = HT_s(\rho')$ for all s and $\overline{\rho'} \simeq \overline{\rho}$.

Proof. For (1), see Lemma 1.4.2 of [BLGGT14]. For (2), see Theorem 3.0.3 of [GL14]. □

Remark 7.14. It is clear that our Corollary 7.12 can completely cover Case (1) in Theorem 7.13, but not Case (2). However, our result proves new cases that are not covered in Theorem 7.13. For example, in Corollary 7.12(2), it is possible we have $p \in HT(D_{s'_0})$ for some s'_0 (even when $K = \mathbb{Q}_p$). Also in Corollary 7.12(3), we do not need to assume that ρ is unipotent (although we have restriction on the Hodge-Tate weights). More importantly, our methods can be used to prove similar results when K is ramified, where Fontaine-Laffaille theory is not available, see forthcoming [Gao15a].

8. Application to weight part of Serre’s conjecture

The local results proved in Section 7 have direct application to the weight part of Serre’s conjecture for mod p Galois representations associated to automorphic representations on unitary groups of rank d, as outlined in [BLGG14]. We will
only introduce necessary notations for our purposes, and the reader should refer to [BLGG14] for any unfamiliar terms and more details. Note that our convention of Hodge-Tate weights are the opposite of loc. cit., and we use p for their ℓ, so we change the notations accordingly in our paper.

Throughout this section, we suppose $p > 2$. Let F be an imaginary CM field, with maximal totally real subfield F^+, and denote $c \in \text{Gal}(F/F^+)$ the nontrivial element. Suppose that any place v in F^+ over p splits completely in F, that is, $v = \tilde{v} \tilde{v}$ in F for a fixed choice of \tilde{v}. Let $\tilde{S}_{\tilde{v}} = \{\tilde{v}\}_{\ell \in F^+}$. For each place $w | p$ of F, denote the completion as \tilde{F}_w, with residue field k_w.

Definition 8.1.

1. Let $\mathbb{Z}_+^d := \{(a_1, \ldots, a_d) \in \mathbb{Z}^d \mid a_1 \geq \ldots \geq a_d\}$.
2. Define the subset

$$\mathbb{Z}_+^d \cap \bigoplus_{w | p} \text{Hom}(k_w, \mathbb{F}_p) \subset (\mathbb{Z}_+^d)^{\bigoplus_{w | p} \text{Hom}(k_w, \mathbb{F}_p)}$$

(here all the subscripts $w | p$ means all places in F over p), where

$$a = \prod_{w | p} \prod_{\kappa \in \text{Hom}(k_w, \mathbb{F}_p)} (a_{w, \kappa, 1}, \ldots, a_{w, \kappa, d})$$

is in the subset, if for each $w | p$, each $\kappa \in \text{Hom}(k_w, \mathbb{F}_p)$ and each $1 \leq i \leq d$, we have

$$a_{w, \kappa, i} + a_{w, \kappa, d+1-i} = 0.$$

Definition 8.2.

1. $a \in \mathbb{Z}_+^d$ is called a Serre weight if $a_i - a_{i+1} \leq p - 1, \forall i$.
2. $a = (a_\kappa)_{\kappa \in \text{Hom}(k_w, \mathbb{F}_p)} \in (\mathbb{Z}_+^d)^{\text{Hom}(k_w, \mathbb{F}_p)}$ is called a Serre weight if each a_κ is a Serre weight as in item (1).
3. $a = (a_w)_{w | p} \in (\mathbb{Z}_+^d)^{\bigoplus_{w | p} \text{Hom}(k_w, \mathbb{F}_p)}$ is called a Serre weight if each a_w is a Serre weight as in item (2).

Now, fix any \mathbb{F}/\mathbb{F}_p a finite extension, then given any $a \in \mathbb{Z}_+^d$ a Serre weight, we define $P_{a, \mathbb{F}}$ as the \mathbb{F}-representation of $\text{GL}_d(\mathbb{F})$ obtained by evaluating $\text{Ind}_{B_\mathbb{F}}^{\text{GL}_d}(w_0 a)_{\mathbb{F}}$ on \mathbb{F}, where w_0 is the longest element of the Weyl group. Let $N_{a, \mathbb{F}}$ be the irreducible sub-\mathbb{F}-representation of $P_{a, \mathbb{F}}$ generated by the highest weight vector.

Now, for $a = (a_\kappa)_{\kappa \in \text{Hom}(k_w, \mathbb{F}_p)}$ a Serre weight, define

$$F_a = \bigotimes_{\kappa \in \text{Hom}(k_w, \mathbb{F}_p)} N_{a_\kappa} \otimes_{k_w, \kappa} \mathbb{F}_p,$$

which is an irreducible \mathbb{F}_p-representation of $\text{GL}_d(k_w)$.

Finally, for $a = (a_w)_{w | p} \in (\mathbb{Z}_+^d)^{\bigoplus_{w | p} \text{Hom}(k_w, \mathbb{F}_p)}$ a Serre weight, define

$$F_a := \bigotimes_{\tilde{v} \in \tilde{S}_p} F_{a_{\tilde{v}}},$$

which is an irreducible \mathbb{F}_p-representation of $\Pi_{\tilde{v} \in \tilde{S}_p} \text{GL}_d(k_{\tilde{v}})$. Also, we define

$$P_a := \bigotimes_{\tilde{v} \in \tilde{S}_p} P_{a_{\tilde{v}}},$$

which is an \mathbb{F}_p-representation of $\Pi_{\tilde{v} \in \tilde{S}_p} \text{GL}_d(k_{\tilde{v}})$.

Now for any K/\mathbb{Q}_p unramified with residue field k, we can and do naturally identify $\text{Hom}(K, \overline{K})$ with $\text{Hom}(k, \mathbb{F}_p)$ (i.e., identify κ with its reduction $\overline{\kappa}$). Let
a ∈ (ℤ_p^d)_{\text{Hom}(K,\overline{K})} = (ℤ_p^d)_{\text{Hom}(k,\overline{F}_p)}$, we call a de Rham representation $\rho : G_K \to \text{GL}_d(\overline{F}_p)$ of Hodge type a, if

$$\text{HT}_K(\rho) = \{a,1 + d - 1, a,2 + d - 2, \ldots, a,d\}, \forall K.$$

For a residue representation $\overline{\rho} : G_K \to \text{GL}_d(\overline{F}_p)$, let $W^{\text{cris}}(\overline{\rho})$ be the set of Serre weights a, such that $\overline{\rho}$ has a crystalline lift of Hodge type a. Also, let $W^{\text{diag}}(\overline{\rho})$ be the set of Serre weights a, such that $\overline{\rho}$ has a potentially diagonalizable crystalline lift of Hodge type a. Here, potential diagonalizability is in the sense of [BLGGT14], and the precise definition can be found in Subsection 1.4 of loc. cit., which we omit. But we remark that all upper triangular crystalline representations are potentially diagonalizable, which is an easy conclusion from the definition.

Now, we state our main result (see [BLGG14] for any unfamiliar terms).

Theorem 8.3. Suppose $p > 2$. Let F be an imaginary CM field, with maximal totally real subfield F^+ such that

- F/F^+ is unramified at all finite places.
- Any place v in F^+ over p splits completely in F.
- Furthermore, p is unramified in F.

Suppose $\overline{T} : G_F \to \text{GL}_d(\overline{F}_p)$ is an irreducible representation with split ramification. Assume that there is a RACSDC automorphic representation Π of $\text{GL}_d(k_F)$ of weight $\mu \in (ℤ_p^d)_{\text{Hom}(F,C)}$ and level prime to p such that:

- $\overline{T} \simeq \Pi_{\mu}(\Pi)$ (that is, \overline{T} is automorphic).
- For each $\tau \in \text{Hom}(F,C)$, $\mu_{\tau,1} - \mu_{\tau,d} \leq p - d$.
- $\Pi(G_F(\xi_p))$ is adequate.

Suppose furthermore that for each $w | p$, $\overline{T} \mid_{G_{F_w}}$ is upper triangular, that is $\overline{T} \mid_{G_{F_w}} \in \mathcal{E}_{G_{F_w}}(\chi_{w,1}, \ldots, \chi_{w,d})$.

Now let

$$a = (a_w)_{w | p} \in (ℤ_p^d)_{\text{Hom}(k_w,\overline{F}_p)}$$

be a Serre weight, such that

- $a_{w,1} - a_{w,d} \leq p - d + 1$, $\forall w, \kappa$, and
- $a_w \in W^{\text{cris}}(\overline{T} \mid_{G_{F_w}}), \forall w | p$.

And for each $w | p$, any one of the following listed 4 conditions is satisfied. Before we proceed to list the conditions, we make the following conventions on notations. Since we are fixing one w each time, so for the brevity of notations, we can omit w from all the subscripts. So we let $[k_w : F_p] = f_w = f$, and write $a_w = a = \Pi_{s=0}^{f-1}(a_{s,1}, \ldots, a_{s,d})$. Also simply write $\overline{T} \mid_{G_{F_w}} \in \mathcal{E}(\chi_{1}, \ldots, \chi_{d})$.

1. $f = 1$, i.e., $F_w = \mathbb{Q}_p$, $a_{0,i} + (d - i) - a_{0,j} - (d - j) \neq p - 1, \forall i < j$. And $\chi_{1}^{a_{0,1}}, \chi_j^{a_{0,j}} \neq 1, \forall p, \forall i < j$.
2. $a_{s,i} \neq a_{s,j}, \forall s, \forall i \neq j$. For one s_0, $a_{s_0,1} + (d - i) - a_{s_0,j} - (d - j) \neq p - 1, \forall i < j$. And $\chi_{s_0}^{a_{s_0,1}} \neq 1, \forall p, \forall i < j$.
3. $a_{s,i} \neq a_{s,j}, \forall s, \forall i \neq j$. For one s_0, $a_{s_0,1} + (d - i) - a_{s_0,j} - (d - j) \neq p - 1, \forall i < j$. And for one s_0, $a_{s_0,1} + (d - 1) - a_{s_0,d} \neq p$ (it is possible that $s_0 = 0$).
4. $a_{s,1} + d - 1 - a_{s,d} \leq p - 1, \forall s$. And for one s_0, $a_{s_0,1} + d - 1 - a_{s_0,d} \leq p - 2$.

Then, \overline{T} is automorphic of weight a. 2

2In order to save space, we did not recall what it means for \overline{T} to be automorphic of some Serre weight a. Roughly speaking, it means that there exists a degree 0 cohomology class on some unitary group with coefficients in a certain local system corresponding to a, whose Hecke
Proof. For each $w | p$, the listed 4 conditions on a_w are precisely translated from those of Corollary 7.12. Since $a_w \in W^{\text{cris}}(\mathfrak{p} | G_{F_w})$, so if any one of the listed 4 conditions is satisfied, then by Corollary 7.12, $\mathfrak{p} | G_{F_w}$ has an upper triangular crystalline lift with Hodge type a_w. That is to say, $a_w \in W^{\text{diag}}(\mathfrak{p} | G_{F_w})$. And then we can apply Corollary 4.1.10 of [BLGG14] to conclude. Note that in our case, $P_a = F_a$ is irreducible because our Serre weight lies in the closure of the lowest alcove, see e.g., Proposition 3.18 of [Her09] for the $d = 3$ case. □

References

[BLGG14] Thomas Barnet-Lamb, Toby Gee, and David Geraghty. Serre weights for $U(n)$. J. Reine Angew. Math., to appear, 2014. http://arxiv.org/abs/1405.3014.
[BLGGT14] Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor. Potential automorphy and change of weight. Ann. of Math. (2), 179(2):501–609, 2014.
[Bre97] Christophe Breuil. Repr´esentations p-adiques semi-stables et transversalit´e de Griffiths. Math. Ann., 307(2):191–224, 1997.
[Car13] Xavier Caruso. Repr´esentations galoisiennes p-adiques et (φ, τ)-modules. Duke Math. J., 162(13):2525–2607, 2013.
[CL11] Xavier Caruso and Tong Liu. Some bounds for ramification of p^α-torsion semi-stable representations. J. Algebra, 325:70–96, 2011.
[EGH13] Matthew Emerton, Toby Gee, and Florian Herzig. Weight cycling and Serre-type conjectures for unitary groups. Duke Math. J., 162(9):1649–1722, 2013.
[EGHS14] Matthew Emerton, Toby Gee, Florian Herzig, and David Savitt. Explicit Serre weight conjectures. in preparation, 2014.
[EGS14] Matthew Emerton, Toby Gee, and David Savitt. Lattices in the cohomology of Shimura curves. Invent. Math., to appear, 2014.
[Gao15a] Hui Gao. Crystalline liftings and serre weight conjectures in the ramified case. in preparation, 2015.
[Gao15b] Hui Gao. A note on crystalline liftings in the \mathbb{Q}_p case. in preparation, 2015.
[GL14] Hui Gao and Tong Liu. A note on potential diagonalizability of crystalline representations. Math. Ann., 360(1-2):481–487, 2014.
[GLS] Toby Gee, Tong Liu, and David Savitt. Unpublished notes.
[GLS14] Toby Gee, Tong Liu, and David Savitt. The Buzzard-Diamond-Jarvis conjecture for unitary groups. J. Amer. Math. Soc., 27(2):389–435, 2014.
[GLS15] Toby Gee, Tong Liu, and David Savitt. The weight part of Serre’s conjecture for $GL(2)$, Forum Math. Pi, 3:e2 (52 pages), 2015.
[Her09] Florian Herzig. The weight in a Serre-type conjecture for tame n-dimensional Galois representations. Duke Math. J., 149(1):37–116, 2009.
[Kis06] Mark Kisin. Crystalline representations and F-crystals. In Algebraic geometry and number theory, volume 253 of Progr. Math., pages 459–496. Birkhäuser Boston, Boston, MA, 2006.
[Lev13] Brandon Levin. G-valued flat deformations and local models. Ph.D. thesis, Stanford University, 2013. available: http://math.uchicago.edu/~blevin/.
[Lev14] Brandon Levin. G-valued crystalline representations with minuscule p-adic Hodge type. preprint, 2014. http://arxiv.org/abs/1403.0553.
[Liu08] Tong Liu. On lattices in semi-stable representations: a proof of a conjecture of Breuil. Compos. Math., 144(1):61–88, 2008.
[Liu10] Tong Liu. A note on lattices in semi-stable representations. Math. Ann., 346(1):117–138, 2010.
[Liu12] Tong Liu. Lattices in filtered (ϕ, N)-modules. J. Inst. Math. Jussieu, 11(3):659–693, 2012.
[LMP14] Daniel Le, Stefano Morra, and Chol Park. in preparation. 2014.
[MP14] Stefano Morra and Chol Park. Serre weights for three dimensional ordinary galois representations. preprint, 2014. available: http://www.math.univ-montp2.fr/~morra/.

Eigenvectors are determined by the characteristic polynomials of \mathfrak{p} at Frobenius elements. See Definition 2.1.9 of [BLGG14].
[Nek93] Jan Nekovář. On p-adic height pairings. In Séminaire de Théorie des Nombres, Paris, 1990–91, volume 108 of Progr. Math., pages 127–202. Birkhäuser Boston, Boston, MA, 1993.

[Oze13] Yoshiyasu Ozeki. Torsion representations arising from $(\varphi, \hat{\Gamma})$-modules. J. Number Theory, 133(11):3810–3861, 2013.

[Oze14] Yoshiyasu Ozeki. Full faithfulness theorem for torsion crystalline representations. New York J. Math., 20:1043–1061, 2014.

Beijing Internpational Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China

E-mail address: gaohui@math.pku.edu.cn