Relatively bounded operators and the operator E-norms (addition to arXiv:1806.05668)

M.E. Shirokov∗

Abstract

In this brief note we describe relations between the well known notion of a relatively bounded operator and the operator E-norms considered in arXiv:1806.05668.

We show that the set of all \(\sqrt{G} \)-bounded operators equipped with the E-norm induced by a positive operator \(G \) is the Banach space of all operators with finite E-norm and that the \(\sqrt{G} \)-bound is a continuous seminorm on this space.

We also show that the set of all \(\sqrt{G} \)-infinitesimal operators (operators with zero \(\sqrt{G} \)-bound) equipped with the E-norm induced by a positive operator \(G \) is the completion of the algebra \(\mathfrak{B}(\mathcal{H}) \) of bounded operators w.r.t. this norm.

Some properties of \(\sqrt{G} \)-infinitesimal operators are considered.

1 Introduction

A linear operator \(A \) on a Hilbert space \(\mathcal{H} \) is called relatively bounded w.r.t. a linear operator \(B \) (briefly, \(B \)-bounded) if \(D(B) \subseteq D(A) \) and

\[
\| A \varphi \|^2 \leq a^2 \| \varphi \|^2 + b^2 \| B \varphi \|^2 \quad \forall \varphi \in D(B)
\]

for some nonnegative numbers \(a \) and \(b \). The infimum over \(b \) for which (1) holds (with some \(a \)) is called the \(B \)-bound for \(A \). If this \(B \)-bound is equal to zero then \(A \) is called \(B \)-infinitesimal operator (infinitesimally bounded w.r.t. \(B \)). These notions are widely used in the modern operator theory, in particular, in analysis of perturbations of unbounded operators in a Hilbert space [3, 8].

The operator E-norm \(\| A \|_G^E \) of a bounded operator \(A \) on a Hilbert space \(\mathcal{H} \) induced by a positive unbounded operator \(G \) is introduced\(^1\) in [5] as the maximum of \(\sqrt{\text{Tr} \rho A^*} \) over all states (positive operators with unit trace) \(\rho \) such that \(\text{Tr} G \rho \leq E \). This norm was used in [5] to obtain the modification of the Kretschmann-Schlingemann-Werner

\(^{1}\)As far as I know. I would be grateful for any references.

\(^{2}\)The value of \(\text{Tr} G \rho \) (finite or infinite) is defined as \(\sup_n \text{Tr} P_n G \rho \), where \(P_n \) is the spectral projector of \(G \) corresponding to the interval \([0, n] \).
Theorem\footnote{The original Kretschmann-Schlingemann-Werner theorem obtained in [4] quantifies continuity of the Stinespring dilation of CP linear maps w.r.t. the diamond norm (\(cb\)-norm) topology on the set of CP linear maps and the operator norm topology on the set of Stinespring operators.} which quantifies continuity of the Stinespring dilation of a quantum channel w.r.t. the strong convergence topology on the set of channels and the strong operator topology on the set of Stinepring isometries.\footnote{If \(G\) is a unbounded operator with discrete spectrum of finite multiplicity then any of the \(E\)-norms \(\| \cdot \|_E^G, E > 0\), generates the strong operator topology on the unit ball of \(B(\mathcal{H})\) [6, Proposition 2].} These norms are studied in detail in [6], where they are extended to unbounded operators. The extended operator \(E\)-norms and the corresponding Banach spaces of unbounded operators have different applications described in [6, Section 5], [7].

In this note we describe relations between the notion of a relatively bounded operator and the \(E\)-norms extended to unbounded operators.

We show that the set of all \(\sqrt{G}\)-bounded operators equipped with the \(E\)-norm induced by a positive operator \(G\) coincides with the Banach space of all operators with finite \(E\)-norm denoted by \(B^G_G(H)\) in [6] and that the \(\sqrt{G}\)-bound of an operator is a continuous seminorm on \(B^G_G(H)\). We obtain an explicit formula for the \(E\)-norm \(\|A\|_E^G\) in terms of the set of coefficients \((a,b)\) for which (1) holds with \(B = \sqrt{G}\) and the expression for the \(\sqrt{G}\)-bound of an operator \(A\) via \(\|A\|_E^G\).

We also show that the set of all \(\sqrt{G}\)-infinitesimal operators (operators with zero \(\sqrt{G}\)-bound) equipped with the \(E\)-norm \(\| \cdot \|_E^G\) coincides with the completion of the algebra \(\mathcal{B}(\mathcal{H})\) of bounded operators w.r.t. this norm denoted by \(B^0_G(H)\) in [6].

\section{Definitions and the main result}

Let \(\mathcal{H}\) be a separable infinite-dimensional Hilbert space, \(\mathcal{B}(\mathcal{H})\) – the algebra of all bounded operators on \(\mathcal{H}\) with the operator norm \(\| \cdot \|\) and \(\mathfrak{T}(\mathcal{H})\) – the Banach space of all trace-class operators on \(\mathcal{H}\) with the trace norm \(\| \cdot \|_1\) (the Schatten class of order 1) [3, 8]. Let \(\mathfrak{S}(\mathcal{H})\) be the set of quantum states – positive operators in \(\mathfrak{T}(\mathcal{H})\) with unit trace [2].

Let \(G\) be a positive (semidefinite) operator on \(\mathcal{H}\) with a dense domain \(\mathcal{D}(G)\) such that
\[
\inf \{ \|G\varphi\| \mid \varphi \in \mathcal{D}(G), \|\varphi\| = 1\} = 0.
\]
For a given linear (bounded or unbounded) operator \(A\) such that \(\mathcal{D}(\sqrt{G}) \subseteq \mathcal{D}(A)\) the operator \(E\)-norm induced by \(G\) is defined in [6] as
\[
\|A\|_E^G = \sup \left\{ \sqrt{\text{Tr}A\rho A^*} \mid \rho \in \mathfrak{S}(\mathcal{H}), \text{Tr}G\rho \leq E, \text{rank}\rho < +\infty \right\}
\]
where we assume that\footnote{This assumption is made to avoid the notion of adjoint operator.}
\[
A\rho A^* = \sum_i |\alpha_i\rangle\langle\alpha_i|, \quad |\alpha_i\rangle = A|\varphi_i\rangle,
\]
provided that ρ = ∑n ∣ψn⟩⟨ψn⟩ (by using Schrodinger’s mixture theorem (see [1] Ch. 8))

it is easy to show that the r.h.s. of (11) does not depend on this decomposition of ρ)

By using purification of a state it is easy to see that

\[\|A\|_E^G = \sup_n \{ \|A \otimes I_{H_n} \varphi\| : \varphi \in \mathcal{H} \otimes H_n, \|\varphi\| = 1, \|\sqrt{G} \otimes I_{H_n} \varphi\| \leq \sqrt{E} \} , \quad (5) \]

where \(\mathcal{H}_n \) and \(I_{H_n} \) denote, respectively, a \(n \)-dimensional Hilbert space and the unit operator in this space.

For any given operator \(A \) the nonnegative nondecreasing function \(E \mapsto [\|A\|_E^G]^2 \) is concave on \(\mathbb{R}_+ \) and tends to \(\|A\| \leq +\infty \) as \(E \to +\infty \) [6]. This implies that

\[\|A\|_{E_1}^G \leq \|A\|_{E_2}^G \leq \sqrt{E_2/E_1} \|A\|_{E_1}^G \quad \text{for any} \quad E_2 > E_1 > 0. \quad (6) \]

So, for given \(G \) all the norms \(\|A\|_E^G \) are equivalent. In particular, if \(\|A\|_E^G \) is finite for some \(E > 0 \) then \(\|A\|_E^G \) is finite for all \(E > 0 \).

It is shown in [6] that the set of all operators \(A \) with finite \(\|A\|_E^G \) equipped with the norm \(\| \cdot \|_E^G \) and naturally defined linear operations is a nonseparable Banach space denoted therein by \(\mathcal{B}_G(\mathcal{H}) \). The completion \(\mathcal{B}_G(\mathcal{H})^0 \) of the algebra \(\mathcal{B}(\mathcal{H}) \) w.r.t. to the norm \(\| \cdot \|_E^G \) is a proper subspace of \(\mathcal{B}_G(\mathcal{H}) \) determined by the condition

\[\|A\|_E^G = o(\sqrt{E}) \quad \text{as} \quad E \to +\infty. \quad (7) \]

If \(G \) is a unbounded operator with discrete spectrum of finite multiplicity then the Banach space \(\mathcal{B}_G^0(\mathcal{H}) \) is separable and for any \(A \in \mathcal{B}_G^0(\mathcal{H}) \) its \(E \)-norm can be defined by the simple formula

\[\|A\|_E^G = \sup \{ \|A\varphi\| : \varphi \in \mathcal{H}, \|\varphi\| = 1, \|\sqrt{G} \varphi\| \leq \sqrt{E} \} , \quad (8) \]

which means that the first supremum in (5) is achieved at \(n = 1 \) and the supremum in (3) can be taken over pure states [6, Theorem 3F]. Due to the assumption (2) the condition \(\|\varphi\| = 1 \) in (5) and (8) can be replaced by \(\|\varphi\| \leq 1 \) [6, Proposition 3A] [8].

According to the general definition mentioned in the Introduction an operator \(A \) is called relatively bounded w.r.t. the operator \(\sqrt{G} \) (briefly, \(\sqrt{G} \)-bounded) if \(D(\sqrt{G}) \subseteq D(A) \) and

\[\|A\varphi\|^2 \leq a^2 \|\varphi\|^2 + b^2 \|\sqrt{G} \varphi\|^2, \quad \forall \varphi \in D(\sqrt{G}) \quad (9) \]

for some nonnegative numbers \(a \) and \(b \). Denote by \(\Gamma_{\sqrt{G}}(A) \) the set of all pairs \((a, b) \) for which (9) holds. It is easy to see that \(\Gamma_{\sqrt{G}}(A) \) is a closed subset of \(\mathbb{R}_+^2 \). The \(\sqrt{G} \)-bound of \(A \) (denoted by \(b_{\sqrt{G}}(A) \) in what follows) is defined as

\[b_{\sqrt{G}}(A) = \inf \{ b \mid (a, b) \in \Gamma_{\sqrt{G}}(A) \} . \]

6For any vector \(|\alpha\rangle \) the symbol \(|\alpha\rangle\langle\alpha| \) denotes the 1-rank operator mapping a vector \(|\beta\rangle \) to \(\langle\alpha|\beta\rangle|\alpha\rangle \).

7We identify operators coinciding on the set \(D(\sqrt{G}) \).

8The question about coincidence of (5) and (6) for any positive operator \(G \) is open. It is easy to show that this coincidence is equivalent to concavity of the r.h.s. of (8) as a function of \(E \).
Lemma 1. A pair \((a, b)\) belongs to the set \(\Gamma_{\sqrt{G}}(A)\) if and only if \(\|A\|_E^{G} \leq \sqrt{a^2 + b^2 E}\) for all \(E > 0\).

Proof. If \(\|A\|_E^{G} \leq \sqrt{a^2 + b^2 E}\) then definition (5) implies that

\[
\|A\varphi\| \leq \|A\|_E^{G} \|\varphi\|^2 \leq \sqrt{a^2 + b^2} \|\varphi\|^2
\]

for any unit vector \(\varphi\) in \(\mathcal{D}(\sqrt{G})\). Hence \((a, b) \in \Gamma_{\sqrt{G}}(A)\).

If \((a, b) \in \Gamma_{\sqrt{G}}(A)\) then it is easy to show that \((a, b) \in \Gamma_{\sqrt{G} \otimes I_{\mathcal{H}_n}}(A \otimes I_{\mathcal{H}_n})\), where \(\mathcal{H}_n\) is a \(n\)-dimensional Hilbert space, for any \(n\) [8, Theorem 7.1.20]. Hence

\[
\sup \left\{ \|A \otimes I_{\mathcal{H}_n}\varphi\| \mid \varphi \in \mathcal{H} \otimes \mathcal{H}_n, \|\varphi\| = 1, \|\sqrt{G} \otimes I_{\mathcal{H}_n}\varphi\| \leq \sqrt{E} \right\} \leq \sqrt{a^2 + b^2 E}
\]

for any \(n\) and \(E > 0\). So, definition (5) implies that \(\|A\|_E^{G} \leq \sqrt{a^2 + b^2 E}\). \(\Box\)

Proposition 1. A) The Banach space \(\mathfrak{B}_G(\mathcal{H})\) coincides (as a set) with the set of all \(\sqrt{G}\)-bounded operators. If \(A \in \mathfrak{B}_G(\mathcal{H})\) and \(E > 0\) then

\[
\|A\|_E^{G} = \inf \left\{ \sqrt{a^2 + b^2 E} \mid (a, b) \in \Gamma_{\sqrt{G}}(A) \right\} \quad \text{and} \quad b_{\sqrt{G}}(A) = \lim_{E \to +\infty} \|A\|_E^{G}/\sqrt{E}.
\]

The limit in the last formula can be replaced by the infimum over all \(E > 0\).

B) The completion \(\mathfrak{B}_{G}^0(\mathcal{H})\) of \(\mathfrak{B}(\mathcal{H})\) w.r.t. the norm \(\| \cdot \|_E^{G}\) coincides (as a set) with the set of all \(\sqrt{G}\)-infinitesimal operators, i.e. operators with the \(\sqrt{G}\)-bound equal to 0.

C) The function \(b_{\sqrt{G}}(\cdot)\) is a continuous seminorm on \(\mathfrak{B}_G(\mathcal{H})\) s.t. \(b_{\sqrt{G}}^{-1}(0) = \mathfrak{B}_{G}^0(\mathcal{H})\).

Quantitatively,

\[
|b_{\sqrt{G}}(A) - b_{\sqrt{G}}(B)| \leq b_{\sqrt{G}}(A - B) \leq \|A - B\|_E^{G}/\sqrt{E} \tag{10}
\]

for arbitrary \(A, B\) in \(\mathfrak{B}_G(\mathcal{H})\) and any \(E > 0\).

Proof. Since \(E \mapsto \|A\|_E^{G}/2\) is a concave nonnegative function on \(\mathbb{R}_+\), it coincides with the infimum of all linear functions \(E \mapsto a^2 + b^2 E\) such that \(\|A\|_E^{G}/2 \leq a^2 + b^2 E\) for all \(E > 0\) and the function \(E \mapsto \|A\|_E^{G}/2\) is non-increasing. So, the assertions A and B can be easily derived from Lemma 1.

To prove C note first that the seminorm properites of \(b_{\sqrt{G}}(\cdot)\) follow from the second formula in A, while B implies \(b_{\sqrt{G}}^{-1}(0) = \mathfrak{B}_{G}^0(\mathcal{H})\). So, since the function \(E \mapsto \|A\|_E^{G}/2\) is non-increasing for any given \(A\), the inequality (10) follows from the triangle inequality for \(b_{\sqrt{G}}(\cdot)\). \(\Box\)

Due to Proposition 1 one can reformulate the results in Section 4 in [6] using the notions of \(\sqrt{G}\)-bounded and \(\sqrt{G}\)-infinitesimal operators. In particular, Theorem 3 in [6] implies the following characterization of \(\sqrt{G}\)-infinitesimal operators.

Corollary 1. An operator \(A\) defined on \(\mathcal{D}(\sqrt{G})\) is \(\sqrt{G}\)-infinitesimal if and only if for any separable Hilbert space \(\mathcal{K}\) the operator \(A \otimes I_{\mathcal{K}}\) (naturally defined on the set \(\mathcal{D}(\sqrt{G}) \otimes \mathcal{K}\)) has a continuous linear extension to the set

\[
\mathcal{V}_{\sqrt{G} \otimes I_{\mathcal{K}}, E} = \left\{ \varphi \in \mathcal{H} \otimes \mathcal{K} \mid \|\sqrt{G} \otimes I_{\mathcal{K}}\varphi\|^2 \leq E \right\}
\]
for any $E > 0$. If A is a \sqrt{G}-infinitesimal operator then
\[\| A \otimes I_K(\varphi - \psi) \| \leq \varepsilon \| A \|_{G_{4E/\varepsilon^2}} \]
(11)
for any φ and ψ in $\mathcal{V}_{G \otimes I_K} \subseteq \mathcal{V}$ such that $\| \varphi - \psi \| \leq \varepsilon$. The r.h.s. of (11) tends to zero as $\varepsilon \to 0^+$ by condition (7).

Proposition 6 in [6] and Proposition 1B imply that any 2-positive linear map $\Phi : \mathfrak{B}(\mathcal{H}) \to \mathfrak{B}(\mathcal{H})$ such that $\Phi(I_{\mathcal{H}}) \leq I_{\mathcal{H}}$ having the predual map $\Phi^* : \mathfrak{T}(\mathcal{H}) \to \mathfrak{T}(\mathcal{H})$ with finite
\[Y_{\Phi}(E) \doteq \sup \{ \text{Tr} G\Phi_*(\rho) \mid \rho \in \mathfrak{S}(\mathcal{H}), \text{Tr} G\rho \leq E \} \]
is uniquely extended to a linear transformation of the set of all \sqrt{G}-infinitesimal operators bounded w.r.t. the norm $\| \cdot \|_{G_{E}}$.

Finally, consider application of the formula for the \sqrt{G}-bound in Proposition 1A.

Example. Let $\mathcal{H} = L^2(\mathbb{R})$ and $S(\mathbb{R})$ be the set of infinitely differentiable rapidly decreasing functions with all the derivatives tending to zero quicker than any degree of $|x|$ when $|x| \to +\infty$. Consider the operators q and p defined on the set $S(\mathbb{R})$ by setting
\[(q\varphi)(x) = x\varphi(x) \quad \text{and} \quad (p\varphi)(x) = \frac{1}{i} \frac{d}{dx}\varphi(x). \]
These operators are essentially self-adjoint. They represent (sharp) real observables of position and momentum of a quantum particle in the system of units where Planck’s constant \hbar is equal to 1 [2, Ch.12]. For given $\omega > 0$ consider the operators
\[a = (\omega q + ip)/\sqrt{2\omega} \quad \text{and} \quad a^\dagger = (\omega q - ip)/\sqrt{2\omega} \]
(12)
defined on $S(\mathbb{R})$. The operator $N = a^\dagger a = aa^\dagger - I_{\mathcal{H}}$ is positive and essentially self-adjoint. It represents (sharp) real observable of the number of quanta of the harmonic oscillator with frequency ω. In [6, Section 5] the following estimates are obtained
\[\sqrt{2E + 1/2} \omega^{-1} < \| q \|_E^N \leq \sqrt{2E + 1} \omega^{-1}, \quad \sqrt{2E + 1/2} \omega < \| p \|_E^N \leq \sqrt{2E + 1} \omega \]
(13)
(the E-norms of q and p depend on ω, since the operator N depends on ω). Thus, the second formula in Proposition 1A implies that $b_{\sqrt{\mathfrak{T}}}(p) = \sqrt{2/\omega}$ and $b_{\sqrt{\mathfrak{T}}}(q) = \sqrt{2\omega}$. □

I am grateful to T.V. Shulman for the help and useful discussion.

9 It is easy to see that $E \mapsto Y_{\Phi}(E)$ is a concave function. So, finiteness of $Y_{\Phi}(E)$ for some $E > 0$ implies finiteness of $Y_{\Phi}(E)$ for all $E > 0$ and boundedness of the function $E \mapsto Y_{\Phi}(E)/E$.

10 If G is a Hamiltonian of a quantum system then the quantity $Y_{\Phi}(E)/E$ can be treated as an energy amplification factor of Φ. Quantum channels Φ with finite $Y_{\Phi}(E)$ called energy-limited in [9] naturally appear as realistic quantum dynamical maps.
References

[1] I.Bengtsson, K.Zyczkowski, ”Geometry of Quantum States: An Introduction to Quantum Entanglement”, 2nd edition. Cambridge: Cambridge University Press, 2017.

[2] A.S.Holevo, ”Quantum systems, channels, information. A mathematical introduction”, Berlin, DeGruyter, 2012.

[3] T.Kato, ”Perturbation Theory for Linear Operators”, Springer-Verlag, New York-Heidelberg-Berlin, 1980.

[4] D.Kretschmann, D.Schlingemann, R.F.Werner, ”A Continuity Theorem for Stinespring’s Dilation”, J. Funct. Anal. V.255, N.8, 1889-1904 (2008); [arXiv:0710.2495].

[5] M.E.Shirokov, ”Strong convergence of quantum channels: continuity of the Stinespring dilation and discontinuity of the unitary dilation”, [arXiv:1712.03219].

[6] M.E.Shirokov, ”Operator E-norms and their use”, [arXiv:1806.05668].

[7] M.E.Shirokov, ”On completion of the cone of CP linear maps with respect to the energy-constrained diamond norm”, [arXiv:1810.10922].

[8] B.Simon, ”Operator Theory: A Comprehensive Course in Analysis”, Part IV American Mathematical Society, 2015.

[9] A.Winter, ”Energy-constrained diamond norm with applications to the uniform continuity of continuous variable channel capacities”, [arXiv:1712.10267].