Supplementary Materials for

“Omics” data unveil early molecular response underlying limb regeneration in the Chinese mitten crab, *Eriocheir sinensis*

Jun Wang *et al.*

Corresponding author: Michael Hofreiter, hofreiter.michael@googlemail.com; Chenhong Li, chli@shou.edu.cn; Chenghui Wang, wangch@shou.edu.cn

Sci. Adv. 8, eabl4642 (2022)
DOI: 10.1126/sciadv.abl4642

The PDF file includes:

Fig. S1 to S34
Tables S1 to S8, S22
Legends for tables S9 to S21
Legend for movie S1

Other Supplementary Material for this manuscript includes the following:

Tables S9 to S21
Movie S1
Fig. S1. Information on Hi-C interactions among 70 pseudochromosomes. The figure shows Hi-C interactions among the 70 chromosomes. Strong and weak interactions were labeled with dark red and light yellow, respectively. The stronger interactions indicate the more accurate scaffold clustering by Hi-C in the final assembly. LG01 to LG70 indicate the 70 pseudochromosomes.
Fig. S2. De novo genome assembly pipeline for *E. sinensis*. We conducted *de novo* assembly using Nanopore long sequencing reads, Illumina short sequencing reads, BioNano optical maps, and Hi-C data. Our assembly pipeline was the following: First, we used Nanopore long reads to get primary contigs. Second, we use Illumina short sequencing reads and Nanopore long sequencing reads to polish the primary contigs. Third, with the assistance of BioNano optical maps, we obtained the preliminary longer scaffolds. Finally, we used Hi-C data to cluster the scaffolds into our final assembly.
Fig. S3. Summary statistics of BUSCO prediction on the assembled *E. sinensis* genome. The number of complete BUSCOs in the *E. sinensis* genome is 1,009 (complete and single-copy BUSCOs: 942, complete and duplicated BUSCOs: 67), that of fragmented BUSCOs is 7, and that of missing BUSCOs is 50. The total number of BUSCOs in the Arthropod lineage of the BUSCO database is 1066 (Table S4).
Fig. S4. Venn diagram of gene annotation information of the *E. sinensis* genome using different databases. Numbers in the figure indicate the numbers of genes annotated with different databases.
Fig. S5. Phylogeny of 18 metazoan species based on 62 one-to-one orthologous genes with regenerative ability labeled on each clade.
Fig. S6. Potential gene loss events that may be associated with limb regeneration of *E. sinensis*. Pink and cyan box indicates absence and presence of genes in the indicated species. Detailed information of the potential gene loss events in *E. sinensis* can be accessed in Table S14. The gene loss events identified in this study maybe overestimated and should be interpreted with caution as further improvements of our genome assembly are still needed (gaps are still existed).
Fig. S7. Cluster dendrogram showing modules based on co-expression topological overlap of genes during the limb regeneration process, identified with WGCNA. Genes in the same module share highly similar expression patterns (co-expression). Different horizontal color bars represent different modules of co-expressed genes. A total of 22 modules were identified in “Merged dynamic” after merging modules with gene expression correlation above 0.75 based on “Dynamic tree cut” by WGCNA. Co-expressed genes in the same module are of biological interest since these genes may be controlled by the same transcriptional regulatory program, be functionally associated, or be in the same signaling pathway.
Fig. S8. Relationships of consensus module eigengenes and limb regeneration stage identified by WGCNA analysis. Through WGCNA analysis, we identified 22 gene co-expression modules in response to temporal changes during the limb regeneration process of *E. sinensis* with specific modules showing strong correlation with different limb regeneration stages (1 dpa, 13 dpa, and 30 dpa). Numbers in the box indicate the correlation coefficient between module and limb regeneration stages and numbers in the brackets indicate *p*-values. Highest correlation coefficients and small *p*-values indicate that the co-expressed genes in the module were strongly associated with the regeneration stages. dpa: days post autotomy.
Fig. S9. GO enrichment analysis for co-expressed genes in Module 1 (A) and Module 2 (B) from Fig. 3 by WGCNA analysis.
Fig. S10. GO enrichment analysis for co-expressed genes in Module 3 (A) and Module 4 (B) from Fig. 3 by WGCNA analysis.
Fig. S11. GO enrichment analysis for co-expressed genes in Module 5 (A) and Module 7 (B) from Fig. 3 by WGCNA analysis.
Fig. S12. Differentially expressed genes in *E. sinensis* during the limb regeneration process.
(A) Expression heatmap of differentially expressed genes during the limb regeneration process.
(B) GO enrichment analysis on representative biological process categories of upregulated genes at 1 dpa, 13 dpa and 30 dpa during the limb regeneration process. dpa: days post autotomy. Rich Factor indicates the ratio of the number of genes in the differential expressed gene list to the number of genes in the whole gene set (background) annotated in specific GO terms. Larger rich factors indicate higher enrichment level. The differential expressed genes with detailed information can be accessed in Table S16.
Fig. S13. Volcano map of differentially expressed genes between 0 dpa and 1 dpa (fold change >2, \(p < 0.05\)). Red dots indicate significantly upregulated genes, green dots indicate significantly downregulated genes at 1 dpa, and blue dots indicate genes that were not significantly differentially expressed. Upregulated *Innexin* gene IDs at 1 dpa were labeled with red color. The *Innexin* gene IDs that were not differential expressed were labeled with blue color. One *Innexin* gene (Esin.LG37.0153) that was not expressed (TPM = 0) was not labeled in the figure. dpa: days post autotomy. Detailed information of other differentially expressed genes can be accessed in Table S16.
Fig. S14. Volcano map of differentially expressed genes between 13 dpa and 1 dpa (fold change >2, p <0.05). Red dots indicate significantly upregulated genes, green dots indicate significantly downregulated genes at 1 dpa, and blue dots indicate genes that were not significantly differentially expressed. Upregulated gene IDs at 13 dpa with log2FC >3 associated with cell cycle process were labeled with red color. dpa: days post autotomy. Detailed information of other differentially expressed cell cycle related genes can be accessed in Table S16.
Fig. S15. Volcano map of differentially expressed genes between 30 dpa and 13 dpa (fold change >2, $p < 0.05$). Red dots indicate significantly upregulated genes, green dots indicate significantly downregulated genes at 1 dpa, and blue dots indicate genes that were not significantly differentially expressed. Upregulated and downregulated gene IDs at 30 dpa annotated to be associated with cuticle development were labeled with red and green color, respectively. dpa: days post autotomy. Detailed information of other differentially expressed genes can be accessed in Table S16.
Fig. S16. Expression of arthropod-specific genes in *E. sinensis* during the limb regeneration process. The proportion of arthropod-specific genes in DEGs was significantly higher than that of arthropod-specific genes in non-DEGs (*p* < 0.001, Chi-squared test).
Fig. S17. GO enrichment analysis on differentially expressed arthropod-specific (A) and crustacean-specific (B) genes at biological process level during the limb regeneration process.
Fig. S18. Information on 16 Innexin genes identified in the E. sinensis genome. (A) Gene structure of the 16 identified Innexin genes. (B) Chromosomal distribution of Innexin genes in the E. sinensis genome.
Fig. S19. Conserved motifs of the *Innexin* genes identified by the MEME software.
*indicates the motif sequences were annotated to be *Innexin* domain by PFAM search.
Fig. S20. Phylogenetic analysis of *Innexin* genes in the arthropod lineage. Dpu: *D. pulex*; Dme: *D. melanogaster*; Dma: *D. magna*; Esin: *E. sinensis*; Ham: *H. americanus*; Haz: *H. azteca*; Lva: *L. vannamei*; Pha: *P. hawaiensis*; Spa: *S. paramamosain*. *Innexin* genes of *E. sinensis* and *D. melanogaster* are labeled with red color and yellow color, respectively.
A

Metamorphosis

- Megalopa
- Larvae

B

Aerial respiration

- Control
- Day 5

C

Molting

- Intermolt
- Premolt
Fig. S21. Expression of the *Innexin* gene family in metamorphosis development (A), aerial respiration (B), and molting process (C) of *E. sinensis*. Illumina raw sequencing reads from different molting stages of hepatopancreas (Intermolt and Premolt), gill from the aerial respiration phase (control versus five days out of water), and whole individual from different developmental stages (megalopa and larvae I stage of *E. sinensis*) were downloaded from the NCBI SRA database (PRJNA271233, PRJNA480555) and National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation (GSA: CRA003690). * indicates fold change >2 and \(p < 0.05 \), ** indicates fold change >2 and \(p < 0.01 \).
Fig. S22. Differentially expressed *Innexin* genes in *Litopenaeus vannamei* (A), *Macrobrachium rosenbergii* (B), and *Macrobrachium nipponensis* (C) after autotomy at 1 dpa compared with 0 dpa. * indicates fold change >2 and $p < 0.05$, ** indicates fold change >2 and $p < 0.01$. All expression values of other *Innexin* genes are presented in Table S19.
Fig. S23. qRT-PCR analysis on related genes and Ca2+ measurement during the limb regeneration process. (A) qRT-PCR analysis of Inx2 gene during the limb regeneration process. Groups labeled with different lowercase letters indicate significant difference at \(p < 0.05 \), using one-way analysis of variance (ANOVA). (B) qRT-PCR analysis of Slc7a5 gene during the limb regeneration process. Groups labeled with different lowercase letters indicate significant difference at \(p < 0.05 \), using one-way analysis of variance (ANOVA). (C) qRT-PCR analysis of Calmodulin (CaM) gene during the limb regeneration process. (D) Measurement of Ca2+ at 0 dpa and 1 dpa. Ca2+ was measured using a Ca2+ detection kit (Nanjing Jiancheng Bioengineering Institute, NanJing, China). hpa: hours post autotomy, dpa: days post autotomy.
Fig. S24. Co-expression network showing interaction of Inx2 with genes annotated as transmembrane transport. The network was visualized with the software Cytoscape with the results of WGCNA as input. The network indicates that Inx2 may interact with the LAT1 protein, which is encoded by the Slc7a5 gene.
Fig. S25. The expression of genes in the mTORC1 signaling pathway after autotomy in *E. sinensis*. (A) Activated mTORC1 signaling pathway at 1 dpa. Red arrow indicates upregulated genes by RNA-seq analysis. (B) qRT-PCR analysis of *Vatb, Rraga, Rragb, Lamtor1, Lamtor2, Lamtor3, Lamtor4*, and *Lamtor5* genes involved in the mTORC1 signaling pathway during the limb regeneration process. hpa: hours post autotomy, dpa: days post autotomy. Groups labeled with different lowercase letters indicate significant difference at $p < 0.05$, using one-way analysis of variance (ANOVA).
Fig. S26. Rapamycin injection experiment after autotomy (n=9). The length of regenerated papillae was measured at 9 dpa. The length of the regenerated papillae in the experimental group (injected with rapamycin) was significantly smaller than that in the control group (injected with DMSO) at 9 dpa. dpa: days post autotomy.
Fig. S27. Hemocyanin gene family in the arthropod lineage and expression pattern during limb regeneration of *E. sinensis*. (A) Number of genes in the hemocyanin, cryptocyanin, and phenoloxidases families in 12 species that show that hemocyanin is present only in the arthropod lineage. (B) Expression patterns of 22 hemocyanin genes during the limb regeneration process of *E. sinensis* with most of the genes showing upregulation trend at 1 dpa. dpa: days post autotomy.
Fig. S28. Expression patterns of LGBP (A), ALPS (B), CFB (C), PCE (D) genes during the limb regeneration process. dpa: days post autotomy. * indicates fold change >2 and $p < 0.05$, ** indicates fold change >2 and $p < 0.01$ between 0 dpa and 1 dpa.
Fig. S29. Enhanced and effective crustacean specific pro-phenoloxidase system (ProPo-AS) during the limb regeneration process of *E. sinensis*. Red arrows indicate related gene families/genes that are upregulated at 1 dpa compared to 0 dpa during the limb regeneration process.
Fig. S30. Expression patterns of all the identified SMYDA genes in the regeneration process of regenerated limb bud tissue of *E. sinensis*. dpa: days post autotomy. * indicates fold change >2 and *p* < 0.05, ** indicates fold change >2 and *p* < 0.01 between 0 dpa and 1 dpa.
Fig. S31. Expression patterns of all the identified SMYDA genes in *Litopenaeus vannamei* (A), *Macrobrachium rosenbergii* (B), and *Macrobrachium nipponensis* (C) at 1 dpa compared with 0 dpa. dpa: days post autotomy. * indicates $p < 0.05$, ** indicates $p < 0.01$. Detailed information on the annotation and expression values of the Smyda genes are presented in Table S19.
Fig. S32. Fluorescence in situ hybridization of the SMYDA1 (Esin.LG14.0065) gene at 0 dpa and 1 dpa. Autotomy membrane (AM), muscle cell (MC), epidermal cell (Ep), melanized scab (S). The white arrow indicates the positive signal of the SMYDA1 gene. The yellow box indicates the magnified region of the white box.
Fig. S33. Maximum-likelihood phylogenetic tree reconstructed using SMYD4 protein sequences identified from 18 metazoan species. EsinLG52.0105 and Esin.LG18.0008 labeled with red color are two SMYD4 genes of *E. sinensis* that showed dynamic expression in the limb regeneration process and clustered in the arthropod lineage. Hvu: *H. vulgaris*; Cel: *C. elegans*; Cbr: *C. briggsae*; Lva: *L. vannamei*; Dpu: *D. pulex*; Dml: *D. melanogaster*; Cte: *C. teleta*; Hro: *H. robusta*; Cvi: *C. virginica*; Osi: *O. sinensis*; Aja: *A. japonicus*; Aru: *A. rubens*; Dre: *D. rerio*; Xla: *X. laevis*; Gga: *G. gallus*; Aca: *A. carolinensis*; Hsa: *H. sapiens*
Fig. S34. Overview of the limb regeneration process of *E. sinensis*.
Table S1. Genome sequencing information for *E. sinensis*.

Types	Method	Library size	Raw data	Clean data	Average Length
Genome	Illumina	400 bp	91.0 Gb	81.2 Gb	150 bp
	Hiseq				
Genome	Oxford	>20kb	99.1 Gb	81.7 Gb	20.0 kb
	Nanopore				
Genome	Hi-C	300-600 bp	321 Gb	300.5 Gb	150 bp
Genome	BioNano	/	480 Gb	442 Gb	/
Table S2. Genome assembly statistics by different sequencing methods.

Assembly	Contigs	Scaffolds	Contig N50	Scaffold N50	Assembly size (contigs)
Oxford Nanopore (ONT)	1712	NA	1,664,518	NA	1,669,425,693
BioNano Optical Map	NA	515	NA	9,062,000	1,644,499,000
ONT+BioNano	4796	2752	739,031	8,569,554	1,669,425,693
ONT+Bionano+HiC	4808	2160	717,335	16,975,517	1,667,381,268

NA: Not Applicable
Table S3. Scaffold cluster results of 70 pseudochromosomes by Hi-C scaffolding.

Chr	Length	Scaffold Numbers
LG01	45,379,147	86
LG02	31,954,432	29
LG03	29,173,192	26
LG04	29,084,662	44
LG05	28,108,396	30
LG06	27,314,786	73
LG07	27,014,105	49
LG08	25,820,439	17
LG09	25,704,940	40
LG10	24,916,309	15
LG11	24,776,463	48
LG12	24,411,283	16
LG13	23,812,216	22
LG14	22,909,581	16
LG15	22,682,036	2
LG16	22,092,210	32
LG17	21,810,268	7
LG18	21,593,893	8
LG19	21,385,840	41
LG20	21,245,621	52
LG21	20,632,807	16
LG22	20,595,259	24
LG23	20,502,797	50
LG24	20,108,279	23
LG25	19,885,966	12
LG26	19,743,373	27
LG27	19,727,531	12
LG28	19,593,204	7
LG29	18,884,131	29
LG30	18,566,567	20
LG31	18,276,216	5
LG32	18,177,313	19
LG33	18,109,958	10
LG34	18,105,521	13
LG35	18,098,480	9
LG36	17,730,161	23
LG37	17,516,247	6
LG38	17,374,747	10
LG39	17,195,986	5
LG40	16,975,517	11
LG41	16,949,729	17
LG42	15,414,004	46
LG43	15,377,322	16
LG44	15,200,582	12
LG45	14,719,648	19
LG46	14,298,206	14
LG47	13,895,859	19
LG48	13,203,802	13
LG49	13,078,750	19
LG50	12,993,234	13
LG51	12,937,974	19
LG52	12,750,814	12
LG53	12,567,781	32
LG54	12,250,771	17
LG55	12,242,209	1
LG56	12,201,330	10
LG57	12,024,539	24
LG58	11,946,249	11
LG59	11,757,766	11
LG60	11,648,666	11
LG61	11,596,831	18
LG62	11,439,990	16
LG63	11,336,473	16
LG64	10,710,421	24
LG65	10,428,594	18
LG66	10,309,680	16
LG67	10,233,791	8
LG68	8,892,716	13
LG69	8,632,099	26
LG70	7,952,464	18
Table S4. Summary statistics of BUSCO prediction on the assembled *E. sinensis* genome.

Type	Number	Percent (%)
Complete BUSCOs (C)	1,009	94.65
Complete and single-copy BUSCOs (S)	942	88.37
Complete and duplicated BUSCOs (D)	67	6.29
Fragmented BUSCOs (F)	7	0.66
Missing BUSCOs (M)	50	4.69
Total BUSCO groups searched	1,066	100
Table S5. Summary statistics of repeat sequences in the genome of *E. sinensis* and comparison with three other malacostracans with high-quality genome assemblies.

Type	*Eriocheir sinensis*	*Litopenaeus vannamei*	*Homarus americanus*	*Scylla paramamosain*								
	Number	Length	Percent*									
SINEs	120,507	16,430,316	0.93	2,934	1,021,571	0.06	50,455	9,820,586	0.43	13,693	1,291,564	0.08
LINE	1,146,379	281,910,139	15.95	126,578	46,932,128	2.82	398,238	234,140,880	10.22	358,994	137,134,826	8.87
LTR	805,343	127,473,128	7.21	36,163	10,259,678	0.62	198,624	103,793,034	4.53	240,204	93,304,374	6.04
DNA elements	2,694,297	361,789,213	20.46	932,683	155,145,405	9.33	366,009	111,029,823	4.84	303,586	40,153,253	2.60
RC	99,504	5,566,745	0.31	/	/	/	9,534	2,333,674	0.10	/	/	/
Unclassified	289,926	97,612,770	5.52	216,901	55,650,866	3.35	1,460,061	597,162,181	26.05	176,777	97,385,157	6.3
Satellites	855,345	104,688,182	5.92	13,527	1,550,312	0.09	11,142	3,840,580	0.17	6,345	724,855	0.05
Simple repeats	220,406	32,340,540	1.83	5,515,074	398,243,493	23.93	1,709,134	143,273,836	6.25	2,293,823	163,133,947	10.55
Low complexity	36,764	7,113,224	0.40	1,103,699	154,532,775	9.29	/	/	/	256,787	19,597,723	1.27
Other	234,203	26,010,794	1.47	/	/	/	22,442	7,826,535	0.34	1,258	412,430	0.03
Total	6,502,674	1,060,935,051	60.01	7,947,559	823,336,228	49.48	4,225,639	1,213,221,129	52.93	3,651,467	55,313,8129	35.79

*indicates percent of the assembled genome, “/” indicates no data available.
Table S6. Comparison of statistics of four assembled *E. sinensis* genomes.

	Assembled genome in this study	Previously published genome by Cui et al*	Previously Published genome by Tang et al*	Previously published genome by Song et al*
Total assembled genome size (bp)	1,767,846,446	1,567,615,418	1,270,960,592	1,118,179,523
Total number of scaffolds	2,160	101,205	4,311	1,768,649
No. of scaffolds ≥1000 bp	2,158	63,883	4,310	51,121
No. of scaffolds ≥5000 bp	2,107	13,440	4,097	5,610
Longest length (bp)	45,379,147	50,864,308	31,480,327	2,002,076
Scaffold N50 (bp) / No. of N50	16,975,517 / 40	17,127,685 / 30	17,608,299 / 30	111,755 / 2,066
Contig N50 (bp) / No. of Contig N50	717,335 / 434	26,045 / 12,717	3,161,423 / 96	2,873 / 67,473
Scaffold N75 (bp) / No. of N75	1,296,936 / 106	9,971,905 / 60	11,039,611 / 52	625 / 114,142
Contig N75 (bp) / No. of N75	296,290 / 1383	10,845 / 31,987	521,706 / 352	409 / 311,430
GC (%)	41.21	42.43	41.96	41.87
Total length anchored on pseudochromosomes (bp)	1,265,982,173	1,267,002,578	1,131,993,911	NA

* The genome assembly data from the other papers were obtained from http://www.genedatabase.cn/esi_genome.html (17), NCBI database https://www.ncbi.nlm.nih.gov/assembly/GCA_013436485.1 (19), and Gigadb http://gigadb.org/dataset/100186 (18).
NA: Not applicable.
Table S7. Summary statistics of annotated protein-coding genes.

Gene set	Total number of genes	Average gene length (bp)	Average CDS length (bp)	Average exon number per gene	Average exon length (bp)	Average intron length (bp)
De novo	43,791	5,163.90	895.25	3.93	227.55	1,454.73
Homology	25,122	27,240.96	1,117.34	4.86	230.13	6,776.23
RNA-seq	15,568	28,598.60	4,176.12	20.99	199.0	1,221.98
Final set	20,286	14,504.96	1,283.93	5.61	229.05	2,870.68
Table S8. Information on gene function annotation of the *E. sinensis* genome.

Type	Number	Percent (%)
Annotation		
Swissprot	13,276	65.44
KEGG	7,800	38.45
KOG	11,529	56.83
GO	9,716	47.90
NR	18,119	89.32
Total		
Annotated genes	18,507	91.23
Genes	20,286	-
Table S9. Annotation information of 20,286 predicted genes in *E. sinensis*.

Table S10. Identification of arthropod-specific, crustacean-specific, and *E. sinensis*-specific gene families in *E. sinensis*.

Table S11. Information on expanded and contracted gene families in *E. sinensis*.

Table S12. List of 104 differential expressed genes annotated to be Zinc finger proteins during the limb regeneration process of *E. sinensis*.

Table S13. Expanded gene families associated with cuticle development and their expression data during limb regeneration in *E. sinensis*.

Table S14. Identification of potential gene loss events in the *E. sinensis* lineage.

Table S15. Annotation and expression of co-expressed genes in module 1 to module 8 through WGCNA analysis.

Table S16. Differential expressed genes identified during the limb regeneration process of *E. sinensis*.

Table S17. Information on *Innexin* genes identified in the *E. sinensis* genome.

Table S18. Expression patterns of *Innexin* genes in *E. sinensis* during the limb regeneration process.

Table S19. Expression patterns of *Innexin* and *Smyda* genes in *Litopenaeus vannamei*, *Macrobrachium nipponensis*, and *Macrobrachium rosenbergii* after autotomy at 1 dpa.

Table S20. Identified genes annotated to be C-lectin and their expression during the limb regeneration process of *E. sinensis*.

Table S21. Genome assembly information of species used in this study.
Primers	Sequences (5'-3')	Usage
Inx2-F	CTGTTCCCGCGGATGACCAA	qPCR for Inx2
Inx2-R	GCTGTCGGCAACAAACACA	qPCR for Inx2
S1c7a5-F	GTCCCCGCTGGCACCGTTGTTG	qPCR for S1c7a5
S1c7a5-R	GGGCCGTGTCACCGTTGACA	qPCR for S1c7a5
S27-F	GGTCGATGACAAATTGCAAGA	qPCR for S27
S27-R	CCACAGTACTGCCTGACTCAA	qPCR for S27
CaM-F	GGCAACATCAACACCAAGGA	qPCR for CaM
CaM-R	ACCGCCATCATCGTAAGGA	qPCR for CaM
Vatb-F	TCTTCCCTGAACCTGGCAAT	qPCR for Vatb
Vatb-R	GGACGTCCTTCCACACTGG	qPCR for Vatb
Lamtor1-F	AGCACACAGCCAGTAGTATCAT	qPCR for Lamtor1
Lamtor1-R	TCTACAGCTGCTGCTGATCTA	qPCR for Lamtor1
Lamtor2-F	CAATCTGCTGCTGATCTCT	qPCR for Lamtor2
Lamtor2-R	GCAGAGGTCCATCAAGGTAG	qPCR for Lamtor2
Lamtor3-F	TGGCCGAGGAATGAAGAAG	qPCR for Lamtor3
Lamtor3-R	CCTCCTTCTCCGAGACTTTC	qPCR for Lamtor3
Lamtor4-F	CCAAGTGAGCCATCAAGATAC	qPCR for Lamtor4
Lamtor4-R	ATGGGCTCTGCTGAGAACAAA	qPCR for Lamtor4
Lamtor5-F	CAGCCTTGGACCGATCATCT	qPCR for Lamtor5
Lamtor5-R	TGGAGACTTGTAGACGGCAA	qPCR for Lamtor5
Rragd-F	TCCGACGACCAACAGATTGA	qPCR for Rragd
Rragd-R	GTTCGTAGATGGAGGTAGG	qPCR for Rragd
RragA-F	ATCTCCCCACTACTGACATCCG	qPCR for RragA
RragA-R	TGCAAGAGAGCTTGAACCTGCG	qPCR for RragA
Inx2-dsRNA-F	taatacgactcataagggAGAAACGCGAGACAGCC	dsRNA for Inx2
Inx2-dsRNA-R	taatacgactcataagggTCCTGCGATTCCTCCTT	dsRNA for Inx2
GFP-dsRNA-F	taatacgactcataagggCAGTGCTTCAGCCGCTACC	dsRNA for GFP
Probe	Sequence	Description
----------------	--	---------------------------------------
GFP-dsRNA-R	taatacgactcatactagggAGTTCACTTTAGCCGTTCTT	dsRNA for GFP
Probe-Inx2	FAM-CAGTGTGGGATGAAGTTGAGAATCTCGCAGAAGCAGAATCTTCATGG	In situ hybridization probe for Inx2, 5’-FAM labeled
Probe-Slc7a5	Cy3-CGTATGATTACCACGTTGACCCATAGCGTGAGGAAGGGCAGGAAGG	In situ hybridization probe for Slc7a5, 5’-Cy3 labeled
Probe-SMYDA1	FAM-CGTCATCGTGTGGTGCTGTGTTGGTCAGAAGTGAGGAGAAGTGGGCCAAGAAGTGGAAGG	In situ hybridization probe for SMYDA1, 5’-FAM labeled
Probe-Control	FAM-TTGACTACAAAAAGTACTG	In situ hybridization probe for Scrambled control, 5’-FAM labeled
Movie S1. The limb regeneration process of *E. sinensis* during molting. The video recorded that the new limb was fully regenerated after molting of *E. sinensis*.