ON SEMITOPOLOGICAL INTERASSOCIATES OF THE BICYCLIC MONOID

OLEG GUTIK AND KATERYNA MAKSYMYK

ABSTRACT. Semitopological interassociates \(\mathcal{C}_{m,n} \) of the bicyclic semigroup \(\mathcal{C}(p,q) \) are studied. In particular we show that for arbitrary non-negative integers \(m, n \) and every Hausdorff topology \(\tau \) on \(\mathcal{C}_{m,n} \) such that \((\mathcal{C}_{m,n}, \tau)\) is a semitopological semigroup, is discrete and hence \(\mathcal{C}_{m,n} \) is a discrete subspace of any topological semigroup containing it. Also, we prove that if \(\mathcal{C}_{m,n} \) is any interassociate of the bicyclic monoid such that \(\mathcal{C}_{m,n} \) is a dense subsemigroup of a Hausdorff semitopological semigroup \((S, \cdot)\) and \(I = S \setminus \mathcal{C}_{m,n} \neq \emptyset \) then \(I \) is a two-sided ideal of the semigroup \(S \) and show that for arbitrary non-negative integers \(m, n \) and any Hausdorff locally compact topology \(\tau \) on the interassociate \(\mathcal{C}_{m,n} \) with an adjoined zero \(0 \) of the bicyclic monoid \(\mathcal{C}_{0,0} \) such that \((\mathcal{C}_{0,0}, \tau)\) is a semitopological semigroup, is either discrete or compact.

We shall follow the terminology of \[9\] \[10\] \[14\] \[27\]. By \(N \) and \(\mathbb{N} \) we denote the sets of non-negative integers and positive integers, respectively. If \(A \) is a subset of a topological space \(X \) then by \(\text{cl}_X(A) \) and \(\text{int}_X(A) \) we denote the topological closure and interior of \(A \) in \(X \), respectively.

A **semigroup** is a non-empty set with a binary associative operation.

The **bicyclic semigroup** (or the **bicyclic monoid**) \(\mathcal{C}(p,q) \) is the semigroup with the identity \(1 \) generated by two elements \(p \) and \(q \) subjected only to the condition \(pq = 1 \). The bicyclic monoid \(\mathcal{C}(p,q) \) is a combinatorial bisimple \(F \)-inverse semigroup (see \[23\]) and it plays an important role in the algebraic theory of semigroups and in the theory of topological semigroups. For example the well-known O. Andersen’s result \[11\] states that a \((0-)\)simple semigroup is completely \((0-)\)simple if and only if it does not contain the bicyclic semigroup. The bicyclic semigroup does not embed into stable semigroups \[22\].

An interassociate of a semigroup \((S, \cdot)\) is a semigroup \((S, \ast)\) such that for all \(a, b, c \in S \), \(a \ast (b \ast c) = (a \ast b) \ast c \) and \(a \ast (b \cdot c) = (a \cdot b) \cdot c \). This definition of interassociativity was studied extensively in 1996 by Boyd et al \[8\]. Certain classes of semigroups are known to give rise to interassociates with various properties. For example, it is very easy to show that if \(S \) is a monoid, every interassociate must satisfy the condition \(a \ast b = acb \) for some fixed element \(c \in S \) (see \[8\]). This type of interassociate was called a variant by Hickey \[20\]. In addition, every interassociate of a completely simple semigroup is completely simple \[8\]. Finally, it is relatively easy to show that every interassociate of a group is isomorphic to that group.

In the paper \[10\] the bicyclic semigroup \(\mathcal{C}(p,q) \) and its interassociates are investigated. In particular, if \(p \) and \(q \) are the generators of the bicyclic semigroup \(\mathcal{C}(p,q) \) and \(m \) and \(n \) are fixed nonnegative integers, the operation \(a \ast_{m,n} b = aq^mp^n b \) is known to be an interassociate. There was shown that for distinct pairs \((m,n)\) and \((s,t)\), the interassociates \((\mathcal{C}(p,q), \ast_{m,n})\) and \((\mathcal{C}(p,q), \ast_{s,t})\) are not isomorphic. Also in \[10\] the authors generalized a result regarding homomorphisms on \(\mathcal{C}(p,q) \) to homomorphisms on its interassociates.

Later for fixed non-negative integers \(m \) and \(n \) the interassociate \((\mathcal{C}(p,q), \ast_{m,n})\) of the bicyclic monoid \(\mathcal{C}(p,q) \) we shall denote by \(\mathcal{C}_{m,n} \).

A **(semi)topological semigroup** is a topological space with a (separately) continuous semigroup operation.

The bicyclic semigroup admits only the discrete semigroup topology and if a topological semigroup \(S \) contains it as a dense subsemigroup then \(\mathcal{C}(p,q) \) is an open subset of \(S \) \[13\]. Bertman and West in \[7\] extend this result for the case of Hausdorff semitopological semigroups. Stable and \(\Gamma \)-compact

\[\text{Date: September 27, 2016.}\]

\[2010 \text{ Mathematics Subject Classification.} \quad 20M10, 22A15, 54D40, 54D45, 54H10.\]

\[\text{Key words and phrases.} \quad \text{Semigroup, interassociate of a semigroup, semitopological semigroup, topological semigroup, bicyclic extension, locally compact space, discrete space, remainder.}\]
topological semigroups do not contain the bicyclic semigroup \([2, 21]\). The problem of an embedding of the bicyclic monoid into compact-like topological semigroups studied in \([5, 6, 19]\). Also in the paper \([15]\) proved that the discrete topology is the unique topology on the extended bicyclic semigroup \(C_0\) such that the semigroup operation on \(C_0\) is separately continuous. Amazing dichotomy for the bicyclic monoid with adjoined zero \(C^0 = C(p, q) \cup \{0\}\) was proved in \([18]\): every Hausdorff locally compact semitopological bicyclic semigroup with adjoined zero \(C^0\) is either compact or discrete.

In this paper we study semitopological interassociates \((C(p, q), \ast_{m,n})\) of the bicyclic monoid \(C(p, q)\) for arbitrary non-negative integers \(m\) and \(n\). Some results from \([7, 13, 18]\) obtained for the bicyclic semigroup are extended to its interassociate \((C(p, q), \ast_{m,n})\). In particular we show that for arbitrary non-negative integers \(m, n\) every Hausdorff topology \(\tau\) on \(C_{m,n}\) such that \((C_{m,n}, \tau)\) is a semitopological semigroup, is discrete and hence \(C_{m,n}\) is a discrete subspace of any semitopological semigroup containing it. Also, we prove that if \(C_{m,n}\) is any interassociate of the bicyclic monoid such that \(C_{m,n}\) is a dense subsemigroup of a Hausdorff semitopological semigroup \((S, \cdot)\) and \(I = S \setminus C_{m,n} \neq \emptyset\) then \(I\) is a two-sided ideal of the semigroup \(S\) and show that for arbitrary non-negative integers \(m\) and \(n\) any Hausdorff locally compact topology \(\tau\) on the interassociate \(C_{m,n}\) with an adjoined zero \(0\) of the bicyclic monoid \(C^0_{m,n}\) such that \((C_{m,n}, \tau)\) is a semitopological semigroup, is either discrete or compact.

For arbitrary \(i, j \in N\) we denote
\[C_{m,n}^* = \left\{ q^{n+k}p^{m+l} : k, l \in N \right\}. \]

The semigroup operation \(\ast_{m,n}\) of \(C_{m,n}\) implies that \(C_{m,n}^*\) is a subsemigroup of \(C_{m,n}\).

We need the following trivial lemma.

Lemma 1. For arbitrary non-negative integers \(m\) and \(n\) the subsemigroup \(C_{m,n}^*\) of \(C_{m,n}\) is isomorphic to the bicyclic semigroup \(C(p, q)\) under the map \(\iota : C(p, q) \rightarrow C_{m,n}^* : q^ip^j \mapsto q^{i+j+k}p^{m+l}, \ i, j \in N\).

Proof. It is sufficient to show that so defined above map \(\iota : C(p, q) \rightarrow C_{m,n}^*\) is a homomorphism, because \(\iota\) is bijective. Then for arbitrary \(i, j, k, l \in N\) we have that
\[
\iota(q^i p^j \ast q^k p^l) = \begin{cases}
\iota(q^{i+j+k} p^{m+l}), & \text{if } j < k; \\
\iota(q^{i+j+k} p^{m+l}), & \text{if } j \geq k
\end{cases}
\]
and
\[
\iota(q^i p^j) \ast_{m,n} \iota(q^k p^l) = q^{n+i+p^{m+l}} \ast_{m,n} q^{n+k+p^{m+l}} = q^{n+i+p^{m+l}} \ast q^{n+k+p^{m+l}} = q^{n+i+p^{m+l}} \ast q^{n+k+p^{m+l}} = q^{n+i+p^{m+l}} \ast q^{n+k+p^{m+l}} = \begin{cases}
q^{n+i+j+k+p^{m+l}}, & \text{if } j < k; \\
q^{n+i+j+k+p^{m+l}}, & \text{if } j \geq k,
\end{cases}
\]
which completes the proof of the lemma. \(\square\)

Lemma 2. For arbitrary non-negative integers \(m\) and \(n\) and for each elements \(a, b \in C_{m,n}\) the both sets
\[\{ x \in C_{m,n} : a \ast_{m,n} x = b \} \quad \text{and} \quad \{ x \in C_{m,n} : x \ast_{m,n} a = b \} \]
are finite; that is, left translation by \(a\) and right translation by \(a\) are finite-to-one maps.

The following theorem generalises the Eberhart–Selden result about semigroup topologization of the bicyclic semigroup (see \([13, \text{Corollary I.1}]\) and corresponding statement for the case semitopological semigroups in \([7]\).

Theorem 3. For arbitrary non-negative integers \(m, n\) and every Hausdorff topology \(\tau\) on \(C_{m,n}\) such that \((C_{m,n}, \tau)\) is a semitopological semigroup, is discrete. Thus \(C_{m,n}\) is a discrete subspace of any topological semigroup containing it.
Proof. By Proposition 1 of [2] every Hausdorff topology \(\tau_{\epsilon} \) on the bicyclic semigroup \(\mathcal{C}(p, q) \) such that \((\mathcal{C}(p, q), \tau_{\epsilon}) \) is a semitopological semigroup, is discrete. Hence Lemma 1 implies that for any element \(x \in \mathcal{C}_{m,n}^* \) there exists an open neighbourhood \(U(x) \) of the point \(x \) in \((\mathcal{C}_{m,n}, \tau) \) such that \(U(x) \cap \mathcal{C}_{m,n}^* = \{x\} \). Fix an arbitrary open neighbourhood \(U(q^n p^m) \) of the point \(q^n p^m \) in \((\mathcal{C}_{m,n}, \tau) \) such that \(U(q^n p^m) \cap \mathcal{C}_{m,n}^* = \{q^n p^m\} \). Then the separate continuity of the semigroup operation in \((\mathcal{C}_{m,n}, \tau) \) implies that there exists an open neighbourhood \(V(q^n p^m) \subseteq U(q^n p^m) \) of the point \(q^n p^m \) in the space \((\mathcal{C}_{m,n}, \tau) \) such that

\[
V(q^n p^m) *_{m,n} q^n p^m \subseteq U(q^n p^m) \quad \text{and} \quad q^n p^m *_{m,n} V(q^n p^m) \subseteq U(q^n p^m).
\]

Suppose to the contrary that the neighbourhood \(V(q^n p^m) \) is an infinite set. Then at least one of the following conditions holds:

(i) there exists a non-negative integer \(i_0 < n \) such that the set \(A = \{q^{i_0}p^l : l \in \mathbb{N}\} \cap V(q^n p^m) \) is infinite;

(ii) there exists a non-negative integer \(j_0 < m \) such that the set \(B = \{q^l p^{j_0} : l \in \mathbb{N}\} \cap V(q^n p^m) \) is infinite.

In case (i) for arbitrary \(q^{i_0}p^l \in A \) we have that

\[
q^n p^m *_{m,n} q^{i_0}p^l = q^n p^m q^{i_0}p^l = q^n q^{i_0}p^{l+1} \notin U(q^n p^m);
\]

and similar in case (ii) we obtain that

\[
q^l p^{j_0} *_{m,n} q^n p^m = q^l p^{j_0} q^n p^m = q^l q^j p^{m+1} \notin U(q^n p^m),
\]

for each \(q^l p^{j_0} \in B \), which contradicts the separate continuity of the semigroup operation in \((\mathcal{C}_{m,n}, \tau) \). The obtained contradiction implies that \(q^n p^m \) is an isolated point in the space \((\mathcal{C}_{m,n}, \tau) \).

Now, since the semigroup \(\mathcal{C}_{m,n} \) is simple (see [16, Section 2]) Lemma 2 implies that the topology \(\tau \) on \(\mathcal{C}_{m,n} \) is discrete. \(\square \)

Theorem 4. If \(m \) and \(n \) are arbitrary non-negative integers, the interassociate \(\mathcal{C}_{m,n} \) of the bicyclic monoid \(\mathcal{C}(p, q) \) is a dense subsemigroup of a Hausdorff semitopological semigroup \((S, \cdot) \) and \(I = S \setminus \mathcal{C}_{m,n} \neq \emptyset \) then \(I \) is a two-sided ideal of the semigroup \(S \).

Proof. Fix an arbitrary element \(y \in I \). If \(x \cdot y = z \notin I \) for some \(x \in \mathcal{C}_{m,n} \) then there exists an open neighbourhood \(U(y) \) of the point \(y \) in the space \(S \) such that \(\{x\} \cdot U(y) = \{z\} \subseteq \mathcal{C}_{m,n} \). The neighbourhood \(U(y) \) contains infinitely many elements of the semigroup \(\mathcal{C}_{m,n} \) which contradicts Lemma 2. The obtained contradiction implies that \(x \cdot y \in I \) for all \(x \in \mathcal{C}_{m,n} \) and \(y \in I \). The proof of the statement that \(y \cdot x \in I \) for all \(x \in \mathcal{C}_{m,n} \) and \(y \in I \) is similar.

Suppose to the contrary that \(x \cdot y = w \notin I \) for some \(x, y \in I \). Then \(w \in \mathcal{C}_{m,n} \) and the separate continuity of the semigroup operation in \(S \) implies that there exist open neighbourhoods \(U(x) \) and \(U(y) \) of the points \(x \) and \(y \) in \(S \), respectively, such that \(\{x\} \cdot U(y) = \{w\} \) and \(U(x) \cdot \{y\} = \{w\} \). Since both neighbourhoods \(U(x) \) and \(U(y) \) contain infinitely many elements of the semigroup \(\mathcal{C}_{m,n} \), both equalities \(\{x\} \cdot U(y) = \{w\} \) and \(U(x) \cdot \{y\} = \{w\} \) contradict mentioned above Lemma 2. The obtained contradiction implies that \(x \cdot y \in I \). \(\square \)

We recall that a topological space \(X \) is said to be:

- **compact** if every open cover of \(X \) contains a finite subcover;
- **countably compact** if each closed discrete subspace of \(X \) is finite;
- **finitely compact** if each locally finite open cover of \(X \) is finite;
- **pseudocompact** if \(X \) is Tychonoff and each continuous real-valued function on \(X \) is bounded;
- **locally compact** if every point \(x \) of \(X \) has an open neighbourhood \(U(x) \) with the compact closure \(\text{cl}_X(U(x)) \);
- **\(\check{\text{C}} \)ech-complete** if \(X \) is Tychonoff and there exists a compactification \(cX \) of \(X \) such that the remainder of \(X \) is an \(F_\sigma \)-set in \(cX \).
According to Theorem 3.10.22 of [14], a Tychonoff topological space X is feebly compact if and only if X is pseudocompact. Also, a Hausdorff topological space X is feebly compact if and only if every locally finite family of non-empty open subsets of X is finite. Every compact space and every sequentially compact space are countably compact, every countably compact space is feebly compact (see [4]).

A topological semigroup S is called Γ-compact if for every $x \in S$ the closure of the set $\{x, x^2, x^3, \ldots\}$ is a compactum in S (see [21]). Since by Lemma 1 the semigroup $\mathcal{C}_{m,n}$ contains the bicyclic semigroup as a subsemigroup the results obtained in [2], [5], [6], [19], [21] imply the following corollary

Corollary 5. Let m and n be arbitrary non-negative integers. If a Hausdorff topological semigroup S satisfies one of the following conditions:

(i) S is compact;
(ii) S is Γ-compact;
(iii) the square $S \times S$ is countably compact; or
(iv) the square $S \times S$ is a Tychonoff pseudocompact space,
then S does not contain the semigroup $\mathcal{C}_{m,n}$.

Proposition 6. Let m and n be arbitrary non-negative integers. Let S be a Hausdorff topological semigroup which contains a dense subsemigroup $\mathcal{C}_{m,n}$. Then for every $c \in \mathcal{C}_{m,n}$ the set

$$D_c(A) = \{(x, y) \in \mathcal{C}_{m,n} \times \mathcal{C}_{m,n} : x \ast_{m,n} y = c\}$$

is an open-and-closed subset of $S \times S$.

Proof. By Theorem 3 $\mathcal{C}_{m,n}$ is a discrete subspace of S and hence we have that $D_c(A)$ is an open subset of $S \times S$.

Suppose that there exists $c \in \mathcal{C}_{m,n}$ such that $D_c(A)$ is a non-closed subset of $S \times S$. Then there exists an accumulation point $(a, b) \in S \times S$ of the set $D_c(A)$. The continuity of the semigroup operation in S implies that $a \cdot b = c$. But $\mathcal{C}_{m,n} \times \mathcal{C}_{m,n}$ is a discrete subspace of $S \times S$ and hence by Theorem 3 the points a and b belong to the two-sided ideal $I = S \setminus \mathcal{C}_{m,n}$ and hence $a \cdot b \in S \setminus \mathcal{C}_{m,n}$ cannot be equal to the element c. \hfill \Box

Theorem 7. Let m and n be arbitrary non-negative integers. If a Hausdorff topological semigroup S contains $\mathcal{C}_{m,n}$ as a dense subsemigroup then the square $S \times S$ is not feebly compact.

Proof. Since the square $S \times S$ contains an infinite open-and-closed discrete subspace $D_c(A)$, we conclude that $S \times S$ fails to be feebly compact (see [14, Ex. 3.10.F(d)] or [11]). \hfill \Box

The following proposition generalizes Theorem I.3 from [13].

For arbitrary non-positive integers m and n by $\mathcal{C}_{m,n}^0$ we denote the interassociate $\mathcal{C}_{m,n}$ with an adjoined zero 0 of the bicyclic monoid $\mathcal{C}(p, q)$, i.e., $\mathcal{C}_{m,n}^0 = \mathcal{C}_{m,n} \sqcup \{0\}$.

Example 8. On the semigroup $\mathcal{C}_{m,n}^0$ we define a topology τ_{Ac} in the following way:

(i) every element of the semigroup $\mathcal{C}_{m,n}$ is an isolated point in the space $(\mathcal{C}_{m,n}^0, \tau_{\text{Ac}})$;
(ii) the family $\mathcal{B}(0) = \{U \subseteq \mathcal{C}_{m,n}^0 : U \ni 0 \text{ and } \mathcal{C}_{m,n} \setminus U \text{ is finite}\}$ determines a base of the topology τ_{Ac} at zero $0 \in \mathcal{C}_{m,n}^0$.

i.e., τ_{Ac} is the topology of the Alexandroff one-point compactification of the discrete space $\mathcal{C}_{m,n}$ with the remainder $\{0\}$. The semigroup operation in $(\mathcal{C}_{m,n}^0, \tau_{\text{Ac}})$ is separately continuous, because all elements of the interassociate $\mathcal{C}_{m,n}$ of the bicyclic semigroup $\mathcal{C}(p, q)$ are isolated points in the space $(\mathcal{C}_{m,n}^0, \tau_{\text{Ac}})$ and left and right translations in the semigroup $\mathcal{C}_{m,n}$ are finite-to-one maps (see Lemma 2).

Remark 9. By Theorem 3 the discrete topology τ_d is a unique Hausdorff topology on the interassociate $\mathcal{C}_{m,n}$ of the bicyclic monoid $\mathcal{C}(p, q)$, $m, n \in N$, such that $\mathcal{C}_{m,n}$ is a semitopological semigroup. So τ_{Ac} is the unique compact topology on $\mathcal{C}_{m,n}^0$ such that $(\mathcal{C}_{m,n}^0, \tau_{\text{Ac}})$ is a Hausdorff compact semitopological semigroup for any non-negative integers m and n.

The following theorem generalized Theorem 1 from [18].
Theorem 10. Let m and n be arbitrary non-negative integers. If \(C_{m,n}^0 \) is a Hausdorff locally compact semitopological semigroup, then either \(C_{m,n}^0 \) is discrete or \(C_{m,n}^0 \) is topologically isomorphic to \((C_{m,n}^0, \tau_{Ac}) \).

Proof. Fix an arbitrary Hausdorff locally compact topology \(\tau \) on \(C_{m,n}^0 \) such that \((C_{m,n}^0, \tau) \) is a semitopological semigroup and the zero \(0 \) of \(C_{m,n}^0 \) is not an isolated point of the space \((C_{m,n}^0, \tau) \). By Lemma 1 the subsemigroup \(C_{m,n}^* \) of \(C_{m,n} \) is isomorphic to the bicyclic semigroup \(C(p,q) \) and hence the sub-semigroup \((C_{m,n}^*)^0 = C_{m,n}^* \cup \{0\} \) of \(C_{m,n}^0 \) is isomorphic to the bicyclic semigroup with adjoined zero \(C^0 = C(p,q) \cup \{0\} \). Then Theorem 1 implies that \(C_{m,n} \) is a dense discrete subspace of \(C_{m,n}^0 \), and hence by Corollary 3.3.10 of [14] the subspace \((C_{m,n}^*)^0 \) of \(C_{m,n}^0 \) is locally compact. Now by Theorem 1 from [18] we obtain that \((C_{m,n}^*)^0 \) is compact. Then for every open neighbourhood \(U(0) \) of the zero \(0 \) in \((C_{m,n}^*, \tau) \) we have that the set \((C_{m,n}^*)^0 \setminus U(0) \) is finite. The semigroup operation of \(C_{m,n}^0 \) implies that the set \(C_{m,n}^0 \setminus \left(p^m \ast_{m,n} (C_{m,n}^*)^0 \cup (C_{m,n}^*)^0 \ast_{m,n} q_{n}^1 \right) \) is finite, and hence the above arguments imply that every open neighbourhood \(U(0) \) of the zero \(0 \) in \((C_{m,n}^0, \tau) \) has a finite complement in the space \((C_{m,n}^0, \tau) \). Thus the space \((C_{m,n}^0, \tau) \) is compact and by Remark 9 the semitopological semigroup \(C_{m,n}^0 \) is topologically isomorphic to \((C_{m,n}^0, \tau_{Ac}) \).

Since by Corollary 5 the interassociate \(C_{m,n} \) of the bicyclic monoid \(C(p,q) \) does not embeds into any Hausdorff compact topological semigroup, Theorem 10 implies the following corollary.

Corollary 11. If m and n are arbitrary non-negative integers and \(C_{m,n}^0 \) is a Hausdorff locally compact topological semigroup, then \(C_{m,n}^0 \) is discrete.

The following example shows that a counterpart of the statement of Corollary 11 does not hold when \(C_{m,n}^0 \) is a Čech-complete metrizable topological semigroup for any non-negative integers m and n.

Example 12. Fix an arbitrary non-negative integers m and n. On the semigroup \(C_{m,n}^0 \) we define a topology \(\tau_1 \) in the following way:

(i) every element of the interassociate \(C_{m,n} \) of the bicyclic monoid is an isolated point in the space \((C_{m,n}^0, \tau_1) \);

(ii) the family \(\mathcal{B}_1(0) = \{U_s : s \in \mathbb{N}\} \), where

\[
U_s = \{0\} \cup \{q^{n+i} p^{m+j} \in C_{m,n}^0 : i, j > s\},
\]

determines a base of the topology \(\tau_1 \) at zero \(0 \in C_{m,n}^0 \).

It is obvious that \((C_{m,n}^0, \tau_1) \) is first countable space. Then the definition of the semigroup operation of \(C_{m,n}^0 \) and the arguments presented in [17], p. 68 show that \((C_{m,n}^0, \tau_1) \) is a Hausdorff topological semigroup.

First we observe that each element of the family \(\mathcal{B}_1(0) \) is an open-and-closed subset of \((C_{m,n}^0, \tau_1) \), and hence the space \((C_{m,n}^0, \tau_1) \) is regular. Since the set \(C_{m,n}^0 \) is countable, the definition of the topology \(\tau_1 \) implies that \((C_{m,n}^0, \tau_1) \) is second countable, and hence by Theorem 4.2.9 from [14] the space \((C_{m,n}^0, \tau_1) \) is metrizable. Also, it is obvious that the space \((C_{m,n}^0, \tau_1) \) is Čech-complete, as a union two Čech-complete spaces: that are the discrete space \(C_{m,n} \) and the singleton space \{0\}.

Also the following example shows that a counterpart of the statement of Theorem 10 (and hence of Corollary 11) does not hold for any interassociate of the bicyclic semigroup with adjoined zero \(C^0 = C(p,q) \cup \{0\} \).

Example 13. It is obvious that the interassociate of the bicyclic semigroup with adjoined zero \(C^0 \) with the following operation \(a \ast b = a \cdot 0 \cdot b \) is isomorphic to an arbitrary infinite countable semigroup with zero-multiplication, i.e., it is zero semigroup. It is well known that zero semigroup with any topology is a topology is a topological semigroup (see [9], Vol. 1, Chapter 1]).
Later we need the following notions. A continuous map \(f : X \to Y \) from a topological space \(X \) into a topological space \(Y \) is called:

- **quotient** if the set \(f^{-1}(U) \) is open in \(X \) if and only if \(U \) is open in \(Y \) (see [26] and [14] Section 2.4);
- **hereditarily quotient** or **pseudoopen** if for every \(B \subseteq Y \) the restriction \(f|_B : f^{-1}(B) \to B \) of \(f \) is a quotient map (see [24, 25, 3] and [14] Section 2.4);
- **closed** if \(f(F) \) is closed in \(Y \) for every closed subset \(F \) in \(X \);
- **perfect** if \(X \) is Hausdorff, \(f \) is a closed map and all fibers \(f^{-1}(y) \) are compact subsets of \(X \) [28].

Every closed map and every hereditarily quotient map are quotient [14]. Moreover, a continuous map \(f : X \to Y \) from a topological space \(X \) onto a topological space \(Y \) is hereditarily quotient if and only if for every \(y \in Y \) and every open subset \(U \) in \(X \) which contains \(f^{-1}(y) \) we have that \(y \in \text{int}_Y(f(U)) \) (see [14] 2.4.F).

Later we need the following trivial lemma, which follows from separate continuity of the semigroup operation in semitopological semigroups.

Lemma 14. Let \(S \) be a Hausdorff semitopological semigroup and \(I \) be a compact ideal in \(S \). Then the Rees-quotient semigroup \(S/I \) with the quotient topology is a Hausdorff semitopological semigroup.

The following theorem generalized Theorem 2 from [18].

Theorem 15. Let \((C^I_{m,n}, \tau) \) be a Hausdorff locally compact semitopological semigroup, \(C^I_{m,n} = C_{m,n} \sqcup I \) and \(I \) is a compact ideal of \(C^I_{m,n} \). Then either \((C^I_{m,n}, \tau) \) is a compact semitopological semigroup or the ideal \(I \) is open.

Proof. Suppose that \(I \) is not open. By Lemma 14 the Rees-quotient semigroup \(C^I_{m,n}/I \) with the quotient topology \(\tau_q \) is a semitopological semigroup. Let \(\pi : C^I_{m,n} \to C^I_{m,n}/I \) be the natural homomorphism which is a quotient map. It is obvious that the Rees-quotient semigroup \(C^I_{m,n}/I \) is isomorphic to the semigroup \(C^0_{m,n} \) and the image \(\pi(I) \) is zero of \(C^0_{m,n} \). Now we shall show that the natural homomorphism \(\pi : C^I_{m,n} \to C^I_{m,n}/I \) is a hereditarily quotient map. Since \(\pi(C_{m,n}) \) is a discrete subspace of \((C^I_{m,n}/I, \tau_q) \), it is sufficient to show that for every open neighbourhood \(U(I) \) of the ideal \(I \) in the space \((C^I_{m,n}, \tau) \) we have that the image \(\pi(U(I)) \) is an open neighbourhood of the zero 0 in the space \((C^I_{m,n}/I, \tau_q) \). Indeed, \(C^I_{m,n} \setminus U(I) \) is an open-and-closed subset of \(C^I_{m,n}, \tau \), because the elements of the semigroup \(C_{m,n} \) are isolated points of the space \((C^I_{m,n}, \tau) \). Also, since the restriction \(\pi|_{C_{m,n}} : C_{m,n} \to \pi(C_{m,n}) \) of the natural homomorphism \(\pi : C_{m,n} \to C^I_{m,n}/I \) is one-to-one, \(\pi(C^I_{m,n} \setminus U(I)) \) is an open-and-closed subset of \((C^I_{m,n}/I, \tau_q) \). So \(\pi(U(I)) \) is an open neighbourhood of the zero 0 of the semigroup \((C^I_{m,n}/I, \tau_q) \), and hence the natural homomorphism \(\pi : C^I_{m,n} \to C^I_{m,n}/I \) is a hereditarily quotient map. Since \(I \) is a compact ideal of the semitopological semigroup \((C^I_{m,n}, \tau) \), \(\pi^{-1}(y) \) is a compact subset of \((C^I_{m,n}, \tau) \) for every \(y \in C^I_{m,n}/I \). By Din’ N’e T’ong’s Theorem (see [12] or [14, 3.7.E]), \((C^I_{m,n}/I, \tau_q) \) is a Hausdorff locally compact space. If \(I \) is not open then by Theorem 10 the semitopological semigroup \((C^I_{m,n}/I, \tau_q) \) is topologically isomorphic to \((C^0_{m,n}, \tau_{Ac}) \) and hence it is compact. Next we shall prove that the space \((C^I_{m,n}, \tau) \) is compact. Let \(\mathcal{U} = \{U_\alpha : \alpha \in \mathcal{F}\} \) be an arbitrary open cover of the topological space \((C^I_{m,n}, \tau) \). Since \(I \) is compact, there exist \(U_{\alpha_1}, \ldots, U_{\alpha_n} \in \mathcal{U} \) such that \(I \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} \). Put \(U = U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} \). Then \(C^I_{m,n} \setminus U \) is a closed-and-open subset of \((C^I_{m,n}, \tau) \). Also, since the restriction \(\pi|_{C_{m,n}} : C_{m,n} \to \pi(C_{m,n}) \) of the natural homomorphism \(\pi : C_{m,n} \to C^I_{m,n}/I \) is one-to-one, \(\pi(C^I_{m,n} \setminus U(I)) \) is an open-and-closed subset of \((C^I_{m,n}/I, \tau_q) \), and hence the image \(\pi(C^I_{m,n} \setminus U(I)) \) is finite, because the semigroup \((C^I_{m,n}/I, \tau_q) \) is compact. Thus, the set \(C^I_{m,n} \setminus U \) is finite and hence the space \((C^I_{m,n}, \tau) \) is compact as well. \(\square \)

Corollary 16. If \((C^I_{m,n}, \tau) \) is a Hausdorff locally compact topological semigroup, \(C^I_{m,n} = C_{m,n} \sqcup I \) and \(I \) is a compact ideal of \(C^I_{m,n} \), then the ideal \(I \) is open.
References

[1] O. Andersen, *Ein Bericht über die Struktur abstrakter Halbgruppen*, PhD Thesis, Hamburg, 1952.

[2] L. W. Anderson, R. P. Hunter, and R. J. Koch, *Some results on stability in semigroups*, Trans. Amer. Math. Soc. **117** (1965), 521–529.

[3] A. V. Arkhangel’skii, *Bicompact sets and the topology of spaces*, Dokl. Akad. Nauk SSSR **150** (1963), 9–12 (in Russian); English version in: Soviet Math. Dokl. **4** (1963), 561–564.

[4] A. V. Arkhangel’skii, *Topological Function Spaces*, Kluwer Publ., Dordrecht, 1992.

[5] T. Banakh, S. Dimitrova, and O. Gutik, *The Rees-Suschkiewitsch Theorem for simple topological semigroups*, Mat. Stud. **31**:2 (2009), 211–218.

[6] T. Banakh, S. Dimitrova, and O. Gutik, *Embedding the bicyclic semigroup into countably compact topological semigroups*, Topology Appl. **157**:18 (2010), 2803–2814.

[7] M. O. Bertman and T. T. West, *Conditionally compact bicyclic semitopological semigroups*, Proc. Roy. Irish Acad. **A76**:21–23 (1976), 219–226.

[8] S. J. Boyd, M. Gould, and A. Nelson, *Interassociativity of semigroups*, Misra, P. R. (ed.) et al., Proceedings of the Tennessee topology conference, Nashville, TN, USA, June 10–11, 1996. Singapore, World Scientific, (1997), pp. 33–51.

[9] J. H. Carruth, J. A. Hildebrant, and R. J. Koch, *The Theory of Topological Semigroups*, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.

[10] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Vols. I and II, Amer. Math. Soc. Surveys **7**, Providence, R.I., 1961 and 1967.

[11] J. Colmez, *Sur les espaces précompacts*, C. R. Acad. Paris **233** (1951), 1552–1553.

[12] Din’ Ne’Tong, *Pre-closed mappings and A. D. Ta˘ ımanov’s theorem*, Dokl. Akad. Nauk SSSR **152** (1963), 525–528 (in Russian); English version in: Soviet Math. Dokl. **4** (1963), 1335–1338.

[13] C. Eberhart and J. Selden, *On the closure of the bicyclic semigroup*, Trans. Amer. Math. Soc. **144** (1969), 115–126.

[14] R. Engelking, *General Topology*, 2nd ed., Heldermann, Berlin, 1989.

[15] I. Fihel and O. Gutik, *On the closure of the extended bicyclic semigroup*, Carpathian Math. Publ. **3**:2 (2011), 131–157.

[16] B. N. Givens, A. Rosin, and K. Linton, *Interassociates of the bicyclic semigroup*, Semigroup Forum (to appear), doi:10.1007/s00233-016-9794-9.

[17] O. V. Gutik, *Any topological semigroup topologically isomorphically embeds into a simple path-connected topological semigroup*, Algebra and Topology, Lviv Univ. Press (1996), 65–73, (in Ukrainian).

[18] O. Gutik, *On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero*, Visn. L’viv. Univ., Ser. Mekh.-Mat. **80** (2015), 33–41.

[19] O. Gutik and D. Repovš, *On countably compact 0-simple topological inverse semigroups*, Semigroup Forum **75**:2 (2007), 464–469.

[20] J. B. Hickey, *Semigroups under a sandwich operation*, Proc. Edinb. Math. Soc., II. Ser. **26** (1983), 371–382.

[21] J. A. Hildebrant and R. J. Koch, *Swelling actions of Γ-compact semigroups*, Semigroup Forum **33** (1986), 65–85.

[22] R. J. Koch and A. D. Wallace, *Stability in semigroups*, Duke Math. J. **24** (1957), 193–195.

[23] M. Lawson, *Inverse Semigroups. The Theory of Partial Symmetries*, World Scientific, Singapore, 1998.

[24] P. McDougle, *A theorem on quasi-compact mappings*, Proc. Amer. Math. Soc. **9**:3 (1958), 474–477.

[25] P. McDougle, *Mapping and space relations*, Proc. Amer. Math. Soc. **10**:2 (1959), 320–323.

[26] R. L. Moore, *Concerning upper semi-continuous collections of continua*, Trans. Amer. Math. Soc. **27** (1925), 416–428.

[27] W. Ruppert, *Compact Semitopological Semigroups: An Intrinsic Theory*, Lect. Notes Math., **1079**, Springer, Berlin, 1984.

[28] I. A. Vaǐnštein, *On closed mappings of metric spaces*, Dokl. Akad. Nauk SSSR **57** (1947), 319–321 (in Russian).

Faculty of Mathematics, National University of Lviv, Universytetska 1, LVIV, 79000, UKRAINE
E-mail address: o_gutik@franko.lviv.ua, ovgutik@yahoo.com, kate.maksymyk15@gmail.com