On the mean anomaly and the mean longitude in tests of post-Newtonian gravity

Lorenzo Iorio
Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R.)-Istruzione, Viale Unità di Italia 68, 70125 Bari, BA, Italy

Received: 2 July 2019 / Accepted: 21 September 2019 / Published online: 4 October 2019
© The Author(s) 2019

Abstract The distinction between the mean anomaly \(M(t) \) and the mean anomaly at epoch \(\eta \), and the mean longitude \(l(t) \) and the mean longitude at epoch \(\epsilon \) is clarified in the context of a their possible use in post-Keplerian tests of gravity, both Newtonian and post-Newtonian. In particular, the perturbations induced on \(M(t) \), \(\eta \), \(l(t) \), \(\epsilon \) by the post-Newtonian Schwarzschild and Lense–Thirring fields, and the classical accelerations due to the atmospheric drag and the oblateness \(J_2 \) of the central body are calculated for an arbitrary orbital configuration of the test particle and a generic orientation of the primary’s spin axis \(\hat{S} \). They provide us with further observables which could be fruitfully used, e.g., in better characterizing astrophysical binary systems and in more accurate satellite-based tests around major bodies of the Solar System. Some erroneous claims by Ciufolini and Pavlis appeared in the literature are confuted. In particular, it is shown that there are no net perturbations of the Lense–Thirring acceleration on either the semimajor axis \(a \) and the mean motion \(n_b \). Furthermore, the quadratic signatures on \(M(t) \) and \(l(t) \) due to certain disturbing non-gravitational accelerations like the atmospheric drag can be effectively disentangled from the post-Newtonian linear trends of interest provided that a sufficiently long temporal interval for the data analysis is assumed. A possible use of \(\eta \) along with the longitudes of the ascending node /Omega1 in tests of general relativity with the existing LAGEOS and LAGEOS II satellites is suggested.

1 Introduction

In regard to possible tests of post-Newtonian (pN) features of general relativity\(^1\) and of alternative models of gravity with, e.g., Earth’s artificial satellites, Solar system’s planets and other astrophysical binaries, there is a certain confusion in the literature about the possible use of the mean anomaly \(M(t) \) as potential observable in addition to the widely inspected argument of pericentre \(\omega \) and, to a lesser extent, longitude of the ascending node \(\Omega \). Indeed, it is as if some researchers, including the present author, who have tried to compute perturbatively the mean rate of change of the mean anomaly in excess with respect to the Keplerian case due to some pN accelerations were either unaware of the fact that what they, actually, calculated was the secular precession of the mean anomaly at the epoch \(\eta \), or they systematically neglected a potentially non-negligible contribution to the overall change of the mean anomaly induced indirectly by the semimajor axis \(a \) through the mean motion \(n_b \). Such a confusion has produced so far some misunderstandings which led, e.g., to unfounded criticisms about alleged proposals of using the mean anomaly, especially in the case of man-made spacecraft orbiting the Earth, or even incorrect evaluations of the total pN effects sought. An example that sums up well the aforementioned confusion and misunderstanding, even in the peer-reviewed literature, is the following one. Ciufolini and Pavlis [6] wrote “[…] one of the most profound mistakes and misunderstandings of Iorio (2005) is the proposed use of the mean anomaly of a satellite to measure the Lense–Thirring effect […] This is simply a nonsense statement: let us, for example, consider a satellite at the LAGEOS altitude, the Lense–Thirring effect on its mean longitude is of the order of 2 m/year, however, the mean longitude change is about \(1.8 \times 10^{11} \) m/year. Thus, from Kepler’s law, the Lense–Thirring effect corresponds to a change of the LAGEOS semi-major of less than 0.009 cm! Since, even a high altitude satellite such as LAGEOS showed a semimajor axis change of the order of 1 mm/day, due to atmospheric drag and to the Yarkoski–Rubincam effect (because of atmospheric drag, the change of semimajor axis and mean motion is obviously much larger for lower altitude

\(^1\) For a recent overview of the current status and challenges of the Einsteinian theory of gravitation, see, e.g., Debono and Smoot [8], and references therein.

a e-mail: lorenzo.iorio@libero.it
satellites), and since the present day precision of satellite laser ranging is, even in the case of the best SLR stations, of several millimeters, it is a clear nonsense to propose a test of the Lense–Thirring effect based on using the mean anomaly of any satellite, mean anomaly largely affected by non-conservative forces.” It is difficult to understand what anomaly of any test of the Lense–Thirring effect based on using the mean of several millimeters, it is a clear nonsense to propose a laser ranging is, even in the case of the best SLR stations.

The mean anomaly and the mean longitude

2.1 The mean anomaly

In the restricted two-body problem, the mean anomaly \(M(t) \) is one of the three time-dependent fast angular variables which, in celestial mechanics, can be used to characterize the instantaneous position of a test particle along its Keplerian ellipse, being the eccentric anomaly \(E \) and the true anomaly \(f \) the other two anomalies. In the unperturbed Keplerian case, the mean anomaly is defined as

\[
M(t) = \eta + n_b (t - t_0),
\]

where \(\eta \) is the mean anomaly at the reference epoch \(t_0 \), and

\[
n_b = \sqrt{\frac{\mu}{a^3}}
\]

is the Keplerian mean motion. In Eq. (2), \(\mu = GM \) is the gravitational parameter of the primary having mass \(M \), while \(G \) is the Newtonian constant of gravitation; in the following, we will assume \(\mu = \text{const} \). The mean anomaly at epoch \(\eta \) is one of the six Keplerian orbital elements parameterizing the orbit of a test particle in space. In the unperturbed case, \(M(t) \) is a linear function of time \(t \) because both \(a \) and \(n \) are constants of motion. If a relatively small perturbing pK acceleration \(A \) is present, both \(a \) and \(n \) are, in general, affected by it, becoming time-dependent. As a result, also the mean motion is, in general, modified so that

\[
n_b \rightarrow n_b^{\text{pert}} = n_b + \Delta n_b(t).
\]

Thus, the perturbed mean anomaly is the sum of the now time-dependent mean anomaly at epoch \(\eta(t) \) and a function of time \(\varphi(t) \) whose derivative is equal to the (perturbed) mean motion, i.e.,

\[
M^{\text{pert}}(t) = \eta(t) + \varphi(t) = \eta(t) + \int_{t_0}^{t} n_b^{\text{pert}}(t') \, dt' = \eta + \Delta \eta(t) + n_b (t - t_0) + \int_{t_0}^{t} \Delta n_b (t') \, dt'.
\]

The resulting change \(\Delta M \) of the mean anomaly with respect to the unperturbed case is, thus,

\[
\Delta M(t) = M^{\text{pert}}(t) - M(t) = \Delta \eta(t) + \Phi(t),
\]

where we defined

\[
\Phi(t) = \int_{t_0}^{t} \Delta n_b (t') \, dt'.
\]

as a function whose derivative yields the perturbation of the mean motion. In Eq. (6), the instantaneous shift of the mean motion due to the time-varying semimajor axis\(^3\) \(a \) is

\(^2\) The symbol \(\eta \) is used for the mean anomaly at epoch by Milani et al. [15]. In the notation by Brumberg [3], the mean anomaly is \(l \), while the mean anomaly at epoch is \(l_0 \). Kopeikin et al. [9] denote \(\eta \) as \(M_0 \), while Bertotti et al. [2] adopt \(\epsilon' \).

\(^3\) It should be recalled that we kept \(\mu \) constant.
$\Delta n_b(t) = -\frac{3}{2} \frac{n_b}{a} \Delta a(t)$

$$= -\frac{3}{2} \frac{n_b}{a} \int_{f_0}^{f} \frac{da}{dr} \frac{dr}{df'} df'$$

$$= -\frac{3}{2} \frac{n_b}{a} \Delta a (f_0, f),$$

(7)

so that

$$\Phi(t) = -\frac{3}{2} \frac{n_b}{a} \int_{f_0}^{f} \Delta a \left(f_0, f' \right) \frac{dr}{df'} df' = \Phi \left(f_0, f \right).$$

(8)

The shifts $\Delta a(t)$ and $\Delta \eta(t)$ can be perturbatively calculated by evaluating the right-hand-sides of the Gauss equations for their rates of change [2]

$$\frac{da}{dt} = \frac{1}{n_b \sqrt{1 - e^2}} \left[e A_R \sin f + \left(\frac{p}{r} \right) A_T \right],$$

(9)

$$\frac{d\eta}{dt} = -\frac{2}{n_b a} A_R \left(\frac{r}{a} \right)$$

$$- \frac{(1 - e^2)}{n_b a e} \left[-A_R \cos f + A_T \left(1 + \frac{r}{p} \right) \sin f \right],$$

(10)

onto the unperturbed Keplerian ellipse. In Eqs. (9) and (10), e is the eccentricity, $p \equiv a (1 - e^2)$ is the semilatus rectum, $r = p / (1 + e \cos f)$ is the (unperturbed) distance of the test particle from the primary, and A_R, A_T are the projections of the perturbing pK acceleration A onto the radial and transverse directions, respectively. The derivative of t with respect to f entering Eqs. (7) and (8) is, up to terms of the first order in the perturbing acceleration A,

$$\frac{dt}{df} \simeq \frac{r^2}{\sqrt{\mu p}} + \mathcal{O} (A).$$

(11)

Depending on the disturbing acceleration, $\Phi(t)$ is linear in time if the average over an orbital period P_b of its rate of change

$$\Phi(t) = -\frac{3}{4} \pi \frac{n_b^2}{a} \int_{f_0}^{f_0 + 2\pi} \Delta a \left(f_0, f' \right) \frac{dr}{df'} df'$$

is constant. Otherwise, it may exhibit a more complex temporal pattern, as when the semimajor axis a undergoes a secular change due to, e.g., some non-gravitational perturbing accelerations as in artificial satellites’ dynamics. In general, the calculation of $\Phi(t)$ is rather cumbersome since it involves two integrations. Moreover, it depends on f_0.

From such considerations it follows that, at first sight, using the mean anomaly $M(t)$ may not be a wise choice because of the disturbances introduced by $\Phi(t)$, especially in non-trivial scenarios in which several perturbing accelerations of different nature act simultaneously on the test particle inducing non-vanishing long-term effects on the semimajor axis a. Actually, we will show that it may not be the case in practical satellite data reductions if certain conditions are fulfilled. On the contrary, the mean anomaly at the epoch η, which is one of the six osculating Keplerian orbital elements in the perturbed restricted two-body problem, is not affected by such drawbacks. As such, it can be safely used, at least in principle, as an additional piece of information to improve some tests of pN gravity on the same foot of ω and Ω. This fact seems to have gone unnoticed so far in the literature, as in the case of Ciufolini and Pavlis [6].

2.2 The mean longitude

Similar considerations hold for the mean longitude l defined as

$$l(t) \equiv \sigma + M(t),$$

(13)

where

$$\sigma \equiv \Omega + \omega$$

(14)

is the longitude of pericentre. If a disturbing acceleration A is present, it can be expressed in terms of the mean longitude at epoch ϵ [2,3,15,19] as

$$l_{\text{pert}}(t) = \epsilon(t) + \int_{f_0}^{f} \Delta n_b \left(t' \right) dt'$$

$$= \epsilon + \Delta \epsilon(t) + \int_{f_0}^{f} \Delta n_b \left(t' \right) dt',$$

(15)

so that its shift is

$$\Delta l(t) = \Delta \epsilon(t) + \Phi(t).$$

(16)

The shift $\Delta \epsilon(t)$ of the mean longitude at epoch can be worked out by means of the Gauss equation for its variation [2]

$$\frac{d\epsilon}{dt} = -\frac{2}{n_b a} A_R \left(\frac{r}{a} \right)$$

$$+ \frac{e^2}{1 + \sqrt{1 - e^2}} \frac{d\sigma}{dt}$$

$$+ 2 \sqrt{1 - e^2} \sin \left(\frac{t}{2} \right) \frac{d\Omega}{dt},$$

(17)

where Bertotti et al. [2]

4 It is more suited than η at low orbital inclinations [2].
\[
\frac{d\Omega}{dr} = \frac{1}{n_b v_a \sqrt{1 - e^2 \sin l}} A_N \left(\frac{r}{a} \right) \sin u, \quad (18)
\]
\[
\frac{d\sigma}{dr} = \frac{\sqrt{1 - e^2}}{n_b \alpha e^2} \left[-\mu R \cos f + A_T \left(1 + \frac{r}{p} \right) \sin f \right] \\
+ 2 \sin^2 \left(\frac{f}{2} \right) \frac{d\Omega}{dr} \quad (19)
\]

In Eq. (18), \(A_N \) is the projection of the perturbing acceleration \(A \) onto the out-of-plane direction, while
\[
u = \omega + f \quad (20)
\]
is the argument of latitude.

3 The secular rates of change of \(\eta(t) \), \(\epsilon(t) \), \(\Phi(t) \) for some pN accelerations

Here, we will preliminarily look at the effects due to the standard general relativistic pN accelerations induced by the static, gravitoelectric (Schwarzschild, Sect. 3.1) and stationary, gravitomagnetic (Lense–Thirring, Sect. 3.2) components of the spacetime of an isolated rotating body. We will not restrict to almost circular orbits; furthermore, we will allow the primary’s spin axis \(\hat{S} \), entering the Lense–Thirring acceleration, to assume any orientation in space.

3.1 The 1pN gravitoelectric Schwarzschild-like acceleration

To the first pN order (1pN), the relative acceleration for two pointlike bodies of masses \(m_A \), \(m_B \) separated by a distance \(r \) and moving with relative velocity \(v \) is [7, 19]
\[
A^{1pN} = \frac{\mu_{\text{tot}}}{c^2 r^2} \left\{ \left[(4 + 2 \xi) \frac{\mu_{\text{tot}}}{r} - (1 + 3 \xi) v^2 + \frac{3}{2} \xi \nu^2 \right] \frac{\hat{r}}{r} \\
+ (4 - 2 \xi) \nu_r \nu \right\} , \quad (21)
\]
where \(c \) is the speed of light in vacuum,
\[
\mu_{\text{tot}} = G \left(m_A + m_B \right) \quad (22)
\]
is the total gravitational parameter of the binary system,
\[
\nu_r \equiv \nu \cdot \hat{r} \quad (23)
\]
is the the radial velocity of the relative orbital motion, and
\[
\xi \equiv \frac{m_A m_B}{(m_A + m_B)^2} \cdot 0 \leq \xi \leq \frac{1}{4}. \quad (24)
\]

In Sects. 3.1.1 and 3.1.2, we will work out the effect of Eq. (21) on \(\Phi \), and \(\eta \) and \(\epsilon \), respectively.

3.1.1 The shift \(\Phi(t) \) due to the variation of the mean motion

By using Eq. (21) in Eq. (7) yields
\[
\Delta n_b (f_0, f) = -\frac{3 e \mu n_b (\cos f - \cos f_0)}{4 c^2 a (1 - e^2)^2} \\
 \times \left\{ 4 \left[-7 + 3 \xi + e^2 (-3 + 4 \xi) \right] \\
+ e \left[e \xi \cos 2 f + 4 (-5 + 4 \xi) \cos f_0 \right. \\
+ 2 \cos f (-10 + 8 \xi + e \xi \cos f_0) \\
\left. + e \xi \cos 2 f_0 \right] \right\}. \quad (25)
\]

From it, the rate of change of \(\Phi(t) \) averaged over one orbital period \(P_b \) can be straightforwardly worked out as
\[
\left\{ \frac{d\Phi(t)}{df} \right\} = \frac{1}{P_b} \int_{t_0}^{t_0 + P_b} \frac{d\Phi(t)}{dt} \frac{dt}{df} \\
= \frac{n_b}{2\pi} \int_{f_0}^{f_0 + 2\pi} \Delta n_b (f_0, f) \frac{df}{df} \cdot df, \quad (26)
\]
where
\[
\frac{n_b}{2\pi} \Delta n_b \frac{df}{df} = \frac{n_b}{2\pi} \frac{d\Phi}{df} \frac{df}{df} = \frac{1}{P_b} \frac{d\Phi}{df} \\
= -\frac{3 e \mu n_b (\cos f - \cos f_0)}{8 \pi c^2 a \sqrt{1 - e^2} (1 + e \cos f)^2} \\
\times \left\{ 4 \left[-7 + 3 \xi + e^2 (-3 + 4 \xi) \right] \\
+ e \left[e \xi \cos 2 f + 4 (-5 + 4 \xi) \cos f_0 \right. \\
+ 2 \cos f (-10 + 8 \xi + e \xi \cos f_0) \\
\left. + e \xi \cos 2 f_0 \right] \right\}. \quad (27)
\]

From the analytical expression of the right-hand-side of Eq. (27), it turns out that the true anomaly \(f \), and, thus, also the time \(t \), appears only in trigonometric functions. This implies that, in this case, \(\Phi(t) \) does not exhibit a polynomial temporal pattern, being, at most, linear in \(t \) provided that Eq. (26) is not vanishing. Note also the dependence of Eq. (27) on \(f_0 \). We are not able to analytically calculate Eq. (26) unless a power expansion in \(e \) of Eq. (27) is made. Nonetheless, it is possible to perform a numerical integration of Eq. (26) for given values of the physical and orbital parameters entering it without any restriction on \(e \). We successfully tested it for a fictitious cannonball geodetic satellite moving along an eccentric orbit, whose arbitrarily chosen physical and orbital parameters are displayed in Table 1, by numerically integrating its equations of motion in rectangular Cartesian coordinates, and by numerically performing the integral of Eq. (26) with Eq. (27). Figure 1 displays the plot of Eq. (27), in milliarcseconds per year \((\text{mas year}^{-1}) \), for the orbital param-
Table 1 Orbital and physical configuration of a fictitious terrestrial geodetic satellite. Since it is $\rho_{LARES} = 5.96 \times 10^{-16}$ kg m$^{-3}$ [16], and $\rho_{LAGEOS} = 6.579 \times 10^{-18}$ kg m$^{-3}$ [14], we, first, used them in $\rho(h) = \rho_0 \exp\left[-(h - h_0) \Lambda^{-1}\right]$, where ρ_0 and h_0 are, in general, referred to some reference height, to determine Λ in the case $h_0 = h_{LARES}, h = h_{LAGEOS}$. Then, we used the so obtained characteristic length $\Lambda_{LR/LAGEOS} = 999.51$ km, valid in the range $h_{LARES} = 1,442.06$ km < $h < h_{LAGEOS} = 5,891.96$ km, to calculate ρ_{max} for our orbital geometry. Instead, the value ρ_{min} is just a guess which may be even conservative. The values of the satellite’s physical parameters were taken from [16] (m, Σ, C_D).

Parameter	Numerical value	Units
Mass ($LARES$)	386.8	kg
Area-to-mass ratio Σ	2.69×10^{-4}	m2 kg$^{-1}$
Neutral drag coefficient C_D	3.5	–
Semimajor axis a	12,500	km
Orbital period P_b	3.86	h
Orbital eccentricity e	0.36	–
Perigee height h_{min}	1,621.86	km
Apoapogee height h_{max}	10,621.9	km
Orbital inclination I	63.43	$^\circ$
Argument of perigee ω	0	$^\circ$
Period of the node P_η	-1.76	year
Period of the perigee P_ν	-2903.62	year
Neutral atmospheric density at perigee ρ_{max}	4.71×10^{-16}	kg m$^{-3}$
Neutral atmospheric density at apocentre ρ_{min}	1×10^{-20}	kg m$^{-3}$
Characteristic atmospheric length scale Λ	836.34	km

![Graph](image-url)

Fig. 1 Upper panel: plot of Eq. (27), computed for the orbital configuration of Table 1 and with $f_0 = 228^\circ$, over a full orbital cycle of the true anomaly f. Its area, giving Eq. (26) in mas year$^{-1}$, amounts to 2,326.6 mas year$^{-1}$. Lower panel: numerically produced time series, in mas, of $\dot{\Phi}(t)$ over 1 year obtained by integrating the equations of motion in rectangular Cartesian coordinates for the fictitious Earth’s satellite of Table 1. The 1pN gravitoelectric Schwarzschild-like acceleration was added to the Newtonian monopole. As initial value for the true anomaly, $f_0 = 228^\circ$ was adopted. The slope of the linear trend amounts just to the area under the curve in the upper panel.

ters of Table 1, and the numerically produced time series of $\Phi(t)$, in mas, over 1 year for the same orbital configuration; the agreement between the slope of $\Phi(t)$ and the area under the curve of Eq. (27) is remarkable. From Fig. 1, it can be noted that, as expected, the 1pN Schwarzschild-like acceleration induces a secular variation on $\Phi(t)$ which has to be added to those affecting η and ϵ displayed in Sect. 3.1.2.

The opportunity offered by the exact expression of Eq. (27) to calculate $\langle \dot{\Phi}(t) \rangle$ as per Eq. (26) is important also in astronomical and astrophysical scenarios, like the almost circular orbital motions of the major bodies of our solar system and the much more eccentric ones of various types of binary systems (extrasolar planets, binary stars, binary pulsars hosting at least one emitting neutron star, stellar systems revolving around supermassive galactic black holes, etc.), in which secular variations of the semimajor axis a–or even of the masses involved—are absent or negligible with respect to either the duration of the typical data analyses or to the observational accuracy. Indeed, in all such cases, the perturbed evolution of the mean anomaly can, in principle, be monitored as well, and $\langle \dot{\Phi}(t) \rangle$ may represent an important contribution to the overall long-term rate of change of $\mathcal{M}(t)$. Suffice it to say that, in the case of Mercury and the Sun, it is

$$\langle \dot{\Phi} \rangle = 210.3 \text{ arcsec cty}^{-1}. \quad (28)$$

3.1.2 The mean anomaly at epoch η and the mean longitude at epoch ϵ

The Gauss equations for the variation of η and ϵ (Eqs. (10) and (17)) allow to straightforwardly work out their secular rates of change which turn out to be
\begin{equation}
\langle \eta \rangle = \frac{\mu n_b \left[-15 + 6\sqrt{1 - e^2} + \left(9 - 7\sqrt{1 - e^2} \right) \zeta \right]}{c^2 a \sqrt{1 - e^2}},
\end{equation}
\begin{equation}
\langle \epsilon \rangle = -\frac{\mu n_b \left[-9 + 15\sqrt{1 - e^2} + e^2 (6 - 7 \zeta) + \left(7 - 9\sqrt{1 - e^2} \right) \zeta \right]}{c^2 a (1 - e^2)}.
\end{equation}

They were confirmed by a numerical integration of the equations of motion in the case of the satellite’s orbital configuration of Table 1 which returned linear times series whose slopes agree with Eqs. (29) and (30). In the case of Mercury and the Sun, Eqs. (29) and (30) yield

\begin{equation}
\langle \eta \rangle = -127.986 \text{ arcsec cty}^{-1},
\end{equation}
\begin{equation}
\langle \epsilon \rangle = -85.004 \text{ arcsec cty}^{-1}.
\end{equation}

3.2 The 1pN gravitomagnetic Lense–Thirring acceleration

In the case of the 1pN gravitomagnetic Lense–Thirring acceleration [19] induced by the spin dipole moment of the central mass, i.e. its proper angular momentum \(\mathbf{S} \), on a test particle orbiting it with velocity \(\mathbf{v} \)

\begin{equation}
A_{LT} = \frac{2 G S}{c^2 r^3} \left[3 \xi \hat{r} \times \mathbf{v} + \mathbf{v} \times \hat{S} \right],
\end{equation}

it turns out that

\begin{equation}
\Delta n_b (f_0, f) = 0
\end{equation}

for an arbitrary orientation of the body’s spin axis \(\hat{S} \) in space. Thus, it is

\begin{equation}
\Phi(t) = 0.
\end{equation}

It implies that the claims by Ciufolini and Pavlis [6] about an alleged non-vanishing perturbing effect of the gravitomagnetic field of the Earth on both the semimajor axis \(a \) and the mean motion \(n_b \) of a satellite are, in fact, erroneous for any spacecraft.

Moreover, it is also

\begin{equation}
\langle \eta \rangle = 0,
\end{equation}
\begin{equation}
\langle \epsilon \rangle = \frac{2 G S \left[-2 \hat{h} + (\csc l - \cot l) \hat{m} \right]}{c^2 a^3 (1 - e^2)^{3/2}}.
\end{equation}

for any \(\hat{S} \) as well. In Eq. (36),

\begin{equation}
\hat{h} = \{ \sin l \sin \Omega, - \sin l \cos \Omega, \cos l \}
\end{equation}

is the unit vector directed along the out-of-plane direction, while

\begin{equation}
\hat{m} = \{- \cos l \sin \Omega, \cos l \cos \Omega, \sin l \}
\end{equation}

is the unit vector directed transversely to the line of the nodes in the orbital plane. In the case of an Earth’s satellite, by assuming, as usual, an equatorial coordinate system with its reference \(z \) axis directed along \(\hat{S} \), Eq. (36) reduces to

\begin{equation}
\langle \epsilon \rangle = \frac{2 GS (1 - 3 \cos l)}{c^2 a^3 (1 - e^2)^{3/2}}.
\end{equation}

Equations (35) and (40) show that the claim by Ciufolini and Pavlis [6] “[…] let us, for example, consider a satellite at the LAGEOS altitude, the Lense–Thirring effect on its mean longitude is of the order of 2 m/year, […]” is wrong. Indeed, the gravitomagnetic linear shift corresponding to Eq. (40) amounts to 3.68 m year\(^{-1}\) for LAGEOS; it is an enormous discrepancy with respect to the statement by Ciufolini and Pavlis [6] since the present-day accuracy in reconstructing the orbits of the laser-ranged satellites of the LAGEOS type is notoriously at the \(\pm 1 - 0.5 \) cm level.

4 The secular rates of change of \(\eta(t) \), \(\epsilon(t) \), \(\Phi(t) \) for some Newtonian perturbing accelerations

Here, we will deal with the impact of the oblateness of the primary (Sect. 4.1), whose spin axis \(\hat{S} \) is assumed arbitrarily oriented in space, and of the atmospheric drag (Sect. 4.2). The small eccentricity approximation for the satellite’s orbit will not be adopted. Such classical accelerations represent two of the most important sources of systematic errors in accurate tests of pN gravity with artificial satellites. On the other hand, they can be considered interesting in themselves if one is interested in better characterizing the shape and the inner mass distribution of the primary like, e.g., a star, at hand, and the properties of the atmosphere of the orbited planet.

4.1 The quadrupole mass moment \(J_2 \)

To the Newtonian level, the external potential of an oblate body at the outside position \(r \) is

\begin{equation}
U (r) = U_0 + \Delta U_2 = -\frac{\mu}{r} \left[1 - \left(\frac{R_0}{r} \right)^2 J_2 P_2 (\xi) \right],
\end{equation}

where \(J_2 \) is the first even zonal harmonic coefficient of the multipolar expansion of its classical gravitational potential,

\begin{equation}
\xi \equiv \hat{S} \cdot \hat{r}
\end{equation}
is the cosine of the angle between the primary’s spin axis and the particle’s position, and

$$\mathcal{P}_2(\xi) = \frac{3\xi^2 - 1}{2}$$ \hspace{1cm} (43)

is the Legendre polynomial of degree 2. The Newtonian acceleration due to J_2 experienced by a test particle orbiting the distorted axisymmetric primary is

$$A^{N_{J_2}} = -\nabla \Delta U_{J_2}$$

$$= \frac{3\mu R^2}{2r^4} \left[(5\xi^2 - 1) \hat{r} - 2\xi \hat{S} \right]. \hspace{1cm} (44)$$

In Sects. 4.1.1 and 4.1.2, we will work out its impact on $\Phi(t)$, and η and ϵ, respectively.

4.1.1 The shift $\Phi(t)$ due to the variation of the mean motion

It turns out that

$$\langle \Phi \rangle \neq 0,$$ \hspace{1cm} (45)

so that $\Phi(t)$, which depends on f_0, is linear in time. It is not possible to explicitly display the analytical expression which we obtained for $(1/P_b) \, d\Phi/df$ in the case of an arbitrary orientation of \hat{S} in space because of its cumbersomeness. However, it can be fruitfully used with, e.g., any astronomical binary systems since, in general, their spin axes are not aligned with the line of sight which, usually, is assumed as reference z axis of the coordinate systems adopted. In regard to an Earth’s satellite, whose motion is customarily studied in an equatorial coordinate system whose reference z axis is aligned with \hat{S}, we have

$$\frac{n_b}{2\pi} \Delta n_b \frac{dr}{df} = \frac{n_b}{2\pi} \frac{d\Phi}{df} = \frac{1}{P_b} \frac{d\Phi}{df}$$

$$- \frac{3n_b R^2}{64\pi a^2 (1 - e^2)^{3/2} (1 + e \cos f)^2} J,$$ \hspace{1cm} (46)

with

$$J = -e \left[12 \cos f_0 + e(-6 \cos 2f - e \cos 3f) + 4e \cos^3 f_0 + 6 \cos 2f_0 \right] (1 + 3 \cos 2I)$$

$$- 3 \left(-4 + 3 e^2 \right) \cos 2f + 8 \cos 2f_0$$

$$+ e \left[12 (\cos f_0 + \cos 3f_0) + 6 \cos 4f_0 + 4 (3 + 2 \cos^3 f_0) \cos 2f_0 + 6 \cos 4f_0 \right] \sin^2 I \cos 2\omega$$

$$+ 24 e^3 \cos^3 f \cos 2u \sin^2 I$$

$$+ 3 \cos f \left[e \left(4 + e^2 \right) (1 + 3 \cos 2I) \right.\right.$$

$$+ 24 e \sin^2 I \cos 2u]$$

$$+ 3 \left[-4 + 3 e^2 + 3 e^2 \cos 2f \right] \sin 2f$$

$$+ 8 (1 + e \cos f_0^3 \sin 2f_0) \sin^2 I \sin 2\omega. \hspace{1cm} (47)$$

The numerical value of the area under the plot of Eq. (46), depicted in the upper panel of Fig. 2, is confirmed by the time series for $\Phi(t)$ produced by numerically integrating the equations of motion of the fictitious satellite of Table 1, and displayed in the lower panel of Fig. 2.
4.1.2 The mean anomaly at epoch η and the mean longitude at epoch ϵ

The Gauss equations for the variations of η and ϵ (Eqs. (10) and (17)) allow to straightforwardly obtain

\[
\begin{align*}
\dot{\eta} &= \frac{3 n_b R_s^2 J_2}{4 a^2 (1 - e^2)^{3/2}} \left[2 - 3 \left(\hat{S} \cdot \hat{I} \right)^2 + \left(\hat{S} \cdot \hat{m} \right)^2 \right], \\
\dot{\epsilon} &= \frac{3 n_b R_s^2 J_2}{4 a^2} \left[2 - 3 \left(\hat{S} \cdot \hat{I} \right)^2 + \left(\hat{S} \cdot \hat{m} \right)^2 \right] \\
&\quad + \frac{2 - 3 \left(\hat{S} \cdot \hat{I} \right)^2 + \left(\hat{S} \cdot \hat{m} \right)^2}{a^2 (1 - e^2)^2} \cos 2\bar{I} \left(\hat{S} \cdot \hat{h} \right) \left(\hat{S} \cdot \hat{m} \right) (1 - \cot I) \nonumber
\end{align*}
\]

where \(\hat{I} = \{ \cos \Omega, \sin \Omega, 0 \} \) is the unit vector directed along the line of the nodes such that \(\hat{I} \times \hat{m} = \hat{h} \). Also Eqs. (48) and (49) can be used with any astronomical binary system in view of their generality. In the case of a coordinate system with its reference z axis aligned with the body’s spin axis, as in the case of an Earth’s satellite referred to an equatorial coordinate system, Eqs. (48) and (49) reduce to

\[
\begin{align*}
\dot{\eta} &= \frac{3 n_b R_s^2 J_2}{8 a^2 (1 - e^2)^{3/2}} \left[1 + 3 \cos 2I \right], \\
\dot{\epsilon} &= \frac{3 n_b R_s^2 J_2}{8 a^2 (1 - e^2)^2} \left[3 + \sqrt{1 - e^2} - 4 \cos I + \left(5 + 3 \sqrt{1 - e^2} \right) \cos 2I \right].
\end{align*}
\]

4.2 The atmospheric drag

The atmospheric drag induces, among other things, a secular decrease of the semimajor axis \(a \) which, in turn, has an impact on \(n_b(t) \) and \(\Phi(t) \).

For a cannonball geodetic satellite, the drag acceleration can be expressed as

\[
A_D = -\frac{1}{2} C_D \Sigma \rho \ V \ V.
\]

In Eq. (52), \(C_D, \Sigma, \rho, \ V \) are the dimensionless drag coefficient of the satellite, its area-to-mass ratio, the atmospheric density at its height, and its velocity with respect to the atmosphere, respectively. In the following, we will assume that the atmosphere co-rotates with the Earth. Thus, \(V \) is

\[
V = \nu - \Psi \times r,
\]

where \(\Psi \) is the Earth’s angular velocity. We will model the atmospheric density as

\[
\rho(r) = \rho_0 \exp \left[-\frac{(r - r_0)}{\Lambda} \right],
\]

where \(\rho_0 \) refers to some reference distance \(r_0 \), while \(\Lambda \) is the characteristic scale length. By assuming

\[
r_0 = r_{\text{min}} = a (1 - e),
\]

\(\Lambda \) can be determined as

\[
\Lambda = -\frac{2 a e}{\ln (\rho_{\text{min}} / \rho_{\text{max}})},
\]

where

\[
\rho_{\text{min}} = \rho(r_{\text{max}}),
\]

\[
\rho_{\text{max}} = \rho(r_{\text{min}})
\]

are the values of the atmospheric density at the apogee and perigee heights, respectively. Table 1 shows the neutral atmospheric density at the perigee height chosen as inferred from existing data on LAGEOS and LARES. On the other hand, the values reported for the apogee are purely speculative and should be regarded as subjected to huge uncertainties. Actually, even the density at a given height may not be regarded as truly constant because of a variety of geophysical phenomena characterized by quite different time scales. Anyway, in order to have an order-of-magnitude evaluation of the perturbing action of Eq. (52) on the motion of the fictitious satellite of Table 1, we will make our calculation by keeping \(\rho_0 \) fixed during one orbital period \(P_b \). An exact analytical calculation without recurring to any approximation in both \(e \) and \(\nu = \Psi / n_b \) is difficult.

In Sects. 4.2.1 and 4.2.2, we will calculate the impact of Eq. (52) on \(\Phi(t) \), and \(\eta \) and \(\epsilon \), respectively.

4.2.1 The shift \(\Phi(t) \) due to the variation of the mean motion

Let us, now, start to look at \(\Delta n_b(t) \) by means of Eq. (7). We will show that it is linear in time because \(\left\{ \Delta n_b \right\} \neq 0 \). The analytical expression of \(1/P_b \, d\Delta n_b / df \) is

\[
\left(\frac{n_b}{2\pi} \right) \left(-\frac{3}{2} \frac{n_b}{a} \frac{da}{df} \right) = \frac{3 C_D \Sigma \rho(f)}{4\pi (1 + e \cos f)^2} \sqrt{1 - e^2} \nu (f)
\]

\[
\times \left[1 + 2 e \cos f + e^2 - \nu \left(1 - e^2 \right)^{3/2} \cos f \right],
\]

where

\[
\nu = \frac{\Psi}{n_b} \times r.
\]
anomaly, was added to the Newtonian monopole. As initial value for the true anomaly of Table 1 and with $f_0 = 228^\circ$, over a full orbital cycle of the true anomaly f. Its area, giving Δn_b in mas year$^{-2}$, turns out to be equal to 107, 217 mas year$^{-2}$. Lower panel: numerically produced time series, in mas year$^{-1}$, of $\Delta n_b(t)$ over 1 year obtained by integrating the equations of motion in rectangular Cartesian coordinates for the fictitious Earth’s satellite of Table 1. The drag acceleration of Eq. (52) was added to the Newtonian monopole. As initial value for the true anomaly, $f_0 = 228^\circ$ was adopted. The linear trend is apparent, and its slope amounts just to the area under the curve in the upper panel (Δn_b was adopted. The quadratic signature is apparent, and its final value is in agreement with what expected from Fig. 3.

$$\frac{1}{P_b} \Delta n_b(t)/df = \frac{f^2}{1 + e^2 + 2 e \cos f} \cos I \quad \text{or} \quad \frac{f^2}{1 + e \cos f} \left(1 - e^2 \right)^{3/2} \cos I,$$

$$+ \nu^2 \left(1 - e^2 \right)^{3/2} \left(3 + \cos 2I + 2 \sin^2 I \cos 2u\right) \left(1 + e^2 + 2 e \cos f\right).$$

Since it is not possible to analytically integrate Eq. (59) with Eq. (60) in the most general case without recurring to approximations in e and v, we will plot it as a function of f over a full orbital cycle and integrate it numerically for the physical and orbital parameters of Table 1. The upper panel of Fig. 3 depicts Eq. (59), while the lower panel displays the time series for $\Delta n_b(t)$ calculated from a numerical integration of the satellite’s equations of motion in rectangular Cartesian coordinates over 1 year.

The fact that $\Delta n_b \neq 0$ implies that Δn_b is linear in time and, thus, $\Phi(t)$ is quadratic. It is explicitly shown in Fig. 4 by the time series calculated for Eq. (8) from the same integration of the satellite’s equations of motion.

It is an important feature because it allows to accurately separate the unwanted parabolic signature due to the atmospheric drag from the relativistic trend of interest affecting the time series of $\mathcal{M}(t)$ or $l(t)$, provided that a sufficiently long time span is chosen for the data analysis. The same holds, in principle, also for any other perturbing acceleration of non-gravitational origin inducing a secular trend in the satellite’s semimajor axis like, e.g., the Yarkovsky-Rubincam thermal effect. We numerically confirmed that by integrating the equations of motion of the fictitious satellite of Table 1 including the 1pN Schwarzschild-like and the atmospheric drag accelerations, and fitting a linear plus quadratic model to the resulting time series of $\Phi(t)$ over, say, 5 year for a given value of f_0. As a result, we were able to accurately recover the slope of the relativistic secular signal. We successfully repeated it for different values of f_0 as well. It turns out that the longer the data span is, the more accurate the recovery of the linear signal. This suggests that, actually, also the mean anomaly $M(t)$ and the mean longitude $l(t)$ may be fruitfully used in tests of pN gravity in the field of the Earth even with passive artificial satellites, contrary to the claims by Ciufolini and Pavlis [6]. The dependence of $\Phi(t)$ on f_0 may even represent an advantage to enhance the signal-to-noise ratio since, in principle, one can choose f_0 in order to maximize the rel-

5 Strictly speaking, it is, in general, true only for fast satellites orbiting in much less than a day, so that the term proportional to v^2 in Eq. (60), which contains ω, can be neglected. However, in the particular case of the fictitious satellite of Table 1, ω stays essentially constant because of the frozen perigee configuration.
ativistic rate for $\langle \Phi \rangle$ to be added to the further contribution
due to $\langle \eta \rangle, \langle \epsilon \rangle$.

4.2.2 The mean anomaly at epoch η and the mean longitude at epoch ϵ

About the secular rates of η and ϵ, the Gauss equations for
their variations allow to obtain

$$\frac{n_b}{2\pi} \frac{d\eta}{df} = C_D \rho (f) \Sigma n_b V (f) (1 - e^2)^2 \sin f$$

$$\times \left[\frac{2 + 3e^2 + 2e (2 + e^2) \cos f + e^2 \cos 2f}{4\pi e (1 + e \cos f)^4} \right.$$

$$\left. - v \left(1 - e^2 \right)^{3/2} (2 + e \cos f) \cos I \right] . \tag{61}$$

$$\frac{n_b}{2\pi} \frac{d\epsilon}{df} = - \frac{C_D \rho (f) \Sigma n_b V (f) (1 - e^2)}{8\pi (1 + \sqrt{1 - e^2}) (1 + e \cos f)^4}$$

$$\times \left[4e (1 + e \cos f) \left[-1 + e^2 \left(1 + \sqrt{1 - e^2} \right) \right. \right.$$ \nonumber

$$\left. + e \sqrt{1 - e^2} \cos f \right] \sin f$$

$$\left. - v \left(1 - e^2 \right)^2 \left[(1 + \sqrt{1 - e^2}) (1 - \cos I) \sin 2u \right. \right.$$ \nonumber

$$\left. - 2e \cos I (2 + e \cos f) \sin f \right] . \tag{62}$$

Since it is not possible to analytically integrate Eqs. (61) and
(62) in an exact form, we, first, plot them as functions of f
over a full orbital cycle in Fig. 5 for the orbital configuration
of Table 1, and, then, numerically calculate the areas under
their curves in order to obtain $\langle \eta \rangle, \langle \epsilon \rangle$.

Also in this case, a numerical integration of the satellite’s
equations of motion turns out to confirm such results.

5 Some possible uses with the LAGEOS and LAGEOS II satellites

As an illustrative example, here we will look at the possibility
of using the nodes Ω and the mean anomalies at epoch η of,
say, the existing satellites LAGEOS and LAGEOS II in order
to propose an accurate test of the 1pN Lense–Thirring effect
exploiting their multidecadal data records.

The availability of η in addition to Ω may be particularly
important in view of the fact that the competing classical secular
precessions due to the even zonals of low degree, which
have just the same time signature of the gravitomagnetic ones
of interest, are nominally several orders of magnitude larger
than them; thus, the signal-to-noise ratio must be somehow
enhanced. The present-day level of actual mismodeling in
the geopotential coefficients, which should be considered as
(much) worse than the mere formal, statistical sigmas of the
various global gravity field solutions releasing the experimentally estimated values of the geopotential’s parameters,
does not yet allow to use the residuals of a single orbital element separately. To circumvent such an issue, some strategies
involving the simultaneous use of more than one orbital element have been devised so far over the years: for a general
overview, see, e.g., Renzetti [17], and references therein. To
the benefit of the reader, we review here the linear combination approach, which is an extension of the one proposed
by Ciufolini [5] to test the gravitomagnetic field of the Earth
with artificial satellites of the LAGEOS family. In turn, it is
a generalization of the strategy put forth, for the first time,
by I.I. Shapiro [18] who, at that time, wanted to separate the
Sun-induced 1pN gravitoelectric perihelion precession from
that due to the solar quadrupole mass moment J_2 by using
other planets or highly eccentric asteroids.

By looking at N orbital elements $\kappa^{(i)}, i = 1, 2, \ldots N$
experiencing, among other things, classical secular precess-

6 They are freely available on the Internet at the webpage of the International Centre for Global Earth Models (ICGEM), currently located at http://icgem.gfz-potsdam.de/tom_longtime.

7 At least one of them must be affected also by the 1pN effect one is looking for. The N orbital elements $\kappa^{(i)}$ may be different from one

 Springer
sions due to the even zonals of the geopotential, the following N linear combinations can be written down

$$\mu_{1pN} \left\{ \kappa \right\}_{1pN}^{(i)} + \sum_{s=1}^{N-1} \frac{\partial \left\{ \kappa \right\}_{1pN}^{(i)}}{\partial J_{2s}} \delta J_{2s}, \ i = 1, 2, \ldots, N. \quad (63)$$

They involve the 1pN averaged precessions $\left\{ \kappa \right\}_{1pN}^{(i)}$ as predicted by General Relativity and scaled by a multiplicative parameter μ_{1pN}, and the errors in the computed secular node precessions due to the uncertainties in the first $N - 1$ even zonals J_{2s}, $s = 1, 2, \ldots, N - 1$, assumed as mismodeled through δJ_{2s}, $s = 1, 2, \ldots, N - 1$. In the following and in Appendix A, we will use the shorthand

$$\kappa_{\ell} = \frac{\partial \left\{ \kappa \right\}_{J_{\ell}}}{\partial J_{\ell}} \quad (64)$$

for the partial derivative of the classical averaged precession $\left\{ \kappa \right\}_{J_{\ell}}$ with respect to the generic even zonal J_{ℓ} of degree ℓ. Then, the N combinations of Eq. (63) are posed equal to the experimental residuals $\delta \kappa_{\ell}^{(i)}$, $i = 1, 2, \ldots, N$ of each of the N orbital elements considered getting

$$\delta \kappa_{\ell}^{(i)} = \mu_{1pN} \left\{ \kappa \right\}_{1pN}^{(i)} + \sum_{s=1}^{N-1} \kappa_{i,2s}^{(i)} \delta J_{2s}, \ i = 1, 2, \ldots, N. \quad (65)$$

It should be recalled that, in principle, the residuals $\delta \kappa_{\ell}^{(i)}$ account for the purposely unmodelled 1pN effect, the mismodelling of the static and time-varying parts of the geopotential, and the non-gravitational forces. If we look at the 1pN scaling parameter μ_{1pN} and the mismodeling in the even zonals δJ_{2s}, $s = 1, 2, \ldots, N - 1$ as unknowns, we can interpret Eq. (65) as an inhomogenous linear system of N algebraic equations in the unknowns

$$\mu_{1pN}, \delta J_{2}, \delta J_{4} \ldots \delta J_{2(N-1)}, \quad (66)$$

whose coefficients are

$$\left\{ \kappa \right\}_{1pN}^{(i)}, \kappa_{i,2s}^{(i)}, \ i = 1, 2, \ldots, N, \ s = 1, 2, \ldots, N - 1, \quad (67)$$

another belonging to the same satellite, or some of them may be identical belonging to different spacecraft (e.g., the nodes of two different vehicles).

8 It is equal to 1 in the Einstein’s theory of gravitation, and 0 in the Newtonian one. In general, μ_{1pN} is not necessarily one of the parameters of the parameterized post-Newtonian (PPN) formalism, being possibly a combination of some of them.

while the constant terms are the N orbital residuals

$$\delta \kappa_{\ell}^{(i)}, \ i = 1, 2, \ldots, N. \quad (68)$$

It turns out that, after some algebraic manipulations, the dimensionless 1pN scaling parameter can be expressed as

$$\mu_{1pN} = \frac{C_{\delta}}{C_{1pN}}. \quad (69)$$

In Eq. (69), the combination of the N orbital residuals

$$C_{\delta} = \delta \kappa_{\ell}^{(1)} + \sum_{j=1}^{N-1} c_{j} \delta \kappa_{\ell}^{(j+1)} \quad (70)$$

is, by construction, independent of the first $N - 1$ even zonals, being, instead, impacted by the other ones of degree $\ell > 2(N - 1)$ along with the non-gravitational perturbations and other possible orbital perturbations which cannot be reduced to the same formal expressions of the first $N - 1$ even zonal rates. On the other hand,

$$C_{1pN} = \left\{ \kappa \right\}_{1pN}^{(1)} + \sum_{j=1}^{N-1} c_{j} \left\{ \kappa \right\}_{1pN}^{(j+1)} \quad (71)$$

combines the N 1pN orbital precessions as predicted by General Relativity. The dimensionless coefficients c_{j}, $j = 1, 2, \ldots, N - 1$ in Eqs. (70) and (71) depend only on some of the orbital parameters of the satellite(s) involved in such a way that, by construction, $C_{\delta} = 0$ if Eq. (70) is calculated by posing

$$\delta \kappa_{\ell}^{(i)} = \kappa_{\ell}^{(i)} \delta J_{\ell}, \ i = 1, 2, \ldots, N \quad (72)$$

for any of the first $N - 1$ even zonals, independently of the value assumed for its uncertainty δJ_{ℓ}.

As far as the Lense–Thirring effect and the satellites LAGEOS and LAGEOS II are concerned, the linear combination of the four experimental residuals $\delta \Omega^{L}, \delta \Omega^{L\ II}, \delta \eta^{L}, \delta \eta^{L\ II}$ of the satellites’s nodes and mean anomalies at epoch suitably designed to cancel out the secular precessions due to the first three even zonal harmonics J_{2}, J_{4}, J_{6} of the geopotential is

$$C_{\delta} = \delta \Omega^{L} + c_{1} \delta \Omega^{L\ II} + c_{2} \delta \eta^{L} + c_{3} \delta \eta^{L\ II} \quad (73)$$
whose coefficients c_1, c_2, c_3 are purposely constructed with the results of Sect. A.1. They turn out to be

$$D \equiv \begin{pmatrix} \Omega_2 \eta_4 \eta_6 \\ \eta_2 \Omega_4 \eta_6 \\ \Omega_2 \eta_4 \eta_6 \\ \Omega_2 \eta_4 \Omega_6 \\ \eta_2 \Omega_4 \eta_6 \\ \Omega_2 \eta_4 \eta_6 \\ \Omega_2 \eta_4 \Omega_6 \\ \eta_2 \Omega_4 \eta_6 \\ \Omega_2 \eta_4 \eta_6 \end{pmatrix} \frac{\Omega_4 \eta_6 - \Omega_2 \eta_4 \eta_6 - \eta_2 \Omega_4 \eta_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6}{\Omega_2 \eta_4 \Omega_6 - \Omega_2 \eta_4 \Omega_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6},$$

$$D = \begin{pmatrix} \Omega_2 \eta_4 \eta_6 \\ \Omega_2 \eta_4 \eta_6 \end{pmatrix} \frac{\Omega_4 \eta_6 - \Omega_2 \eta_4 \eta_6 - \eta_2 \Omega_4 \eta_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6}{\Omega_2 \eta_4 \Omega_6 - \Omega_2 \eta_4 \Omega_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6},$$

$$\Delta \equiv \begin{pmatrix} \Omega_2 \eta_4 \eta_6 \\ \Omega_2 \eta_4 \eta_6 \end{pmatrix} \frac{\Omega_4 \eta_6 - \Omega_2 \eta_4 \eta_6 - \eta_2 \Omega_4 \eta_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6}{\Omega_2 \eta_4 \Omega_6 - \Omega_2 \eta_4 \Omega_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6},$$

where the common denominator is

$$D = \begin{pmatrix} \Omega_2 \eta_4 \eta_6 \\ \Omega_2 \eta_4 \eta_6 \end{pmatrix} \frac{\Omega_4 \eta_6 - \Omega_2 \eta_4 \eta_6 - \eta_2 \Omega_4 \eta_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6}{\Omega_2 \eta_4 \Omega_6 - \Omega_2 \eta_4 \Omega_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6},$$

$$\Delta = \begin{pmatrix} \Omega_2 \eta_4 \eta_6 \\ \Omega_2 \eta_4 \eta_6 \end{pmatrix} \frac{\Omega_4 \eta_6 - \Omega_2 \eta_4 \eta_6 - \eta_2 \Omega_4 \eta_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6}{\Omega_2 \eta_4 \Omega_6 - \Omega_2 \eta_4 \Omega_6 + \eta_2 \Omega_4 \eta_6 - \eta_2 \Omega_4 \eta_6},$$

Their numerical values, computed with the satellites’ orbital elements inserted in Eqs. (A6)–(A11), are

$$c_1 = 2.77536,$$

$$c_2 = -2.46439,$$

$$c_3 = 10.9532.$$

Thus, the predicted combined Lense–Thirring signature is

$$C_L = \Omega_L + c_1 \Omega_T + c_2 \eta_T + c_3 \eta_T = 118.04 \text{ mas year}^{-1}.$$
cession to put to the test general relativity and, say, modified models of gravity, or to better characterize the physical properties of the bodies like, e.g., their oblateness J_2 and their orbital configurations as well. Indeed, the 1pN effects on η are often larger than the corresponding pericenter rates.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

Appendix A Mean orbital precessions of Ω and η due to the even zonal harmonics of the geopotential

Here, we analytically calculate the coefficients

$$\kappa, \ell \equiv \frac{\partial \langle k \rangle}{\partial J_\ell}, \ \ell = 2, 4, 6, 8, \kappa = \Omega, \eta$$ \hspace{1cm} (A1)

of the precessions

$$\langle k \rangle_{J_\ell}, \ \ell = 2, 4, 6, 8, \kappa = \Omega, \eta,$$ \hspace{1cm} (A2)

of the node Ω and of the mean anomaly at epoch η averaged over one full orbital period P_0, induced by the first four even zonal harmonics J_ℓ. To this aim, we use the standard Lagrange planetary equations [2]

$$\langle \Omega \rangle = -\frac{1}{n_b a^2 \sin I \sqrt{1 - e^2}} \frac{\partial \langle \Delta U_\ell \rangle}{\partial I},$$ \hspace{1cm} (A3)

$$\langle \eta \rangle = 2 \frac{\partial \langle \Delta U_\ell \rangle}{\partial a} + \frac{1 - e^2}{n_b a^2 e} \frac{\partial \langle \Delta U_\ell \rangle}{\partial e}.$$ \hspace{1cm} (A4)

In them, the correction of degree ℓ

$$\Delta U_\ell (r) = \frac{\mu}{r} \left(\frac{R_\star}{r} \right)^\ell J_\ell \mathcal{P}_\ell (\xi), \ \ell = 2, 4, \ldots 8$$ \hspace{1cm} (A5)

to the Newtonian monopole is straightforwardly averaged over one full orbital revolution by using the Keplerian ellipse as reference unperturbed orbit. In Eq. (A5), $\mathcal{P}_\ell (\xi)$ is the Legendre polynomial of degree ℓ. As a result, two kind of averaged, long-term effects occur: secular precessions, explicitly displayed in Sect. A.1 and labelled with a superscript “s”, and long-periodic signatures, not shown here, having a harmonic pattern characterized by a frequency which is an integer multiple of that of perigee ω. In the calculation, the Earth’s symmetry axis \hat{S} is assumed to be aligned with the reference z axis; moreover, no a-priori simplifying assumptions concerning the orbital geometry of the satellite were made at all.

A.1 Secular effects

$$\Omega_2^s = -\frac{3 n_b R_\star^2 \cos I}{2 a^2 \left(1 - e^2\right)^{3/2}},$$ \hspace{1cm} (A6)

$$\eta_2^s = \frac{3 n_b R_\star^2 \left(1 + 3 \cos 2I\right)}{8 a^2 \left(1 - e^2\right)^{3/2}},$$ \hspace{1cm} (A7)

$$\Omega_4^s = \frac{15 n_b R_\star^4 \left(2 + 3 e^2\right) \left(9 \cos I + 7 \cos 3I\right)}{128 a^4 \left(1 - e^2\right)^{4}},$$ \hspace{1cm} (A8)

$$\eta_4^s = \frac{45 n_b R_\star^4 e^2 \left(9 + 20 \cos 2I + 35 \cos 4I\right)}{1,024 a^4 \left(1 - e^2\right)^{4}},$$ \hspace{1cm} (A9)

$$\Omega_6^s = -\frac{105 n_b R_\star^6 \left(8 + 40 e^2 + 15 e^4\right) \left(50 \cos I + 45 \cos 3I + 33 \cos 5I\right)}{16,384 a^6 \left(1 - e^2\right)^{6}},$$ \hspace{1cm} (A10)

$$\eta_6^s = \frac{35 n_b R_\star^6}{65,536 a^6 \left(1 - e^2\right)^{15/2}} \left(-8 + 20 e^2 + 15 e^4\right) \times \left(50 + 105 \cos 2I + 126 \cos 4I + 231 \cos 6I\right),$$ \hspace{1cm} (A11)

$$\Omega_8^s = \frac{315 n_b R_\star^8}{2,097,152 a^8 \left(1 - e^2\right)^{27/2}} \times \left[16 + 7 e^2 \left[24 + 5 e^2 \left(6 + e^2\right)\right]\right] \times \left[1,225 \cos I + 11 \left(105 \cos 3I + 91 \cos 5I + 65 \cos 7I\right)\right],$$ \hspace{1cm} (A12)

$$\eta_8^s = -\frac{315 n_b R_\star^8}{33,554,432 a^8 \left(1 - e^2\right)^{15/2}} \times \left[-32 + 35 e^4 \left(4 + e^2\right)\right] \times \left[1,225 + 2,520 \cos 2I + 2,772 \cos 4I + 3,432 \cos 6I + 6,435 \cos 8I\right].$$ \hspace{1cm} (A13)

References

1. O. Akyilmaz et al., ITU GRACE16 The global gravity field model including GRACE data up to degree and order 180 of ITU and other collaborating institutions (2016). Accessed 16 Oct 2018
2. B. Bertotti, P. Farinella, D. Vokrouhlický, *Physics of the Solar System* (Kluwer Academic Press, Dordrecht, 2003)
3. V.A. Brumberg, *Essential Relativistic Celestial Mechanics* (Adam Hilger, Bristol, 1991)
4. Q. Chen, Y. Shen, O. Francis, W. Chen, X. Zhang, H. Hsu, J. Geophys. Res. **123**, 6111 (2018)
5. I. Ciufolini, Il Nuovo Cimento A **109**, 1709 (1996)
6. I. Ciufolini, E. Pavlis, New Astron. **10**, 635 (2005)
7. T. Damour, N. Deruelle, Ann. Inst. Henri Poincaré Phys. Théor. **43**, 107 (1985)
8. I. Debono, G.F. Smoot, Universe **2**, 23 (2016)
9. S. Kopeikin, M. Efroimsky, G. Kaplan, *Relativistic Celestial Mechanics of the Solar System* (Wiley-VCH, Weinheim, 2011)
10. D.M. Lucchesi, Planet. Space Sci. **49**, 447 (2001)
11. D.M. Lucchesi, Planet. Space Sci. **50**, 1067 (2002)
12. D.M. Lucchesi, Geophys. Res. Lett. 30, 1957 (2003)
13. D.M. Lucchesi, L. Anselmo, M. Bassan, C. Magnafico, C. Pardini, R. Peron, G. Pucacco, M. Visco, Universe 5, 141 (2019)
14. D.M. Lucchesi, L. Anselmo, M. Bassan, C. Pardini, R. Peron, G. Pucacco, M. Visco, Class. Quantum Gravity 32, 155012 (2015)
15. A. Milani, A. Nobili, P. Farinella, Non-gravitational Perturbations and Satellite Geodesy (Adam Hilger, Bristol, 1987)
16. C. Pardini, L. Anselmo, D.M. Lucchesi, R. Peron, Acta Astronaut. 140, 469 (2017)
17. G. Renzetti, Open Phys. 11, 531 (2013)
18. I.I. Shapiro, in General Relativity and Gravitation, 1989, ed. by N. Ashby, D.F. Bartlett, W. Wyss (Cambridge University Press, Cambridge, 1990), pp. 313–330
19. M.H. Soffel, Relativity in Astrometry, Celestial Mechanics and Geodesy (Springer, Heidelberg, 1989)
20. M. Visco, D.M. Lucchesi, Phys. Rev. D 98, 044034 (2018)