Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel

Aad, G.; et al., [Unknown]; Bentvelsen, S.; Bobbink, G.J.; Bos, K.; Boterenbrood, H.; Colijn, A.P.; Daum, C.; de Jong, P.; de Nooij, L.; Doxiadis, A.D.; Ferrari, P.; Garitaonandia, H.; Geerts, D.A.A.; Gosselink, M.; Hartjes, F.; Hessey, N.P.; Igonkina, O.; Kayl, M.S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J.C.; Vranjes Milosavljevic, M.; Vreeswijk, M.

DOI
10.1016/j.physletb.2012.03.083

Publication date
2012

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):
Aad, G., et al., U., Bentvelsen, S., Bobbink, G. J., Bos, K., Boterenbrood, H., Colijn, A. P., Daum, C., de Jong, P., de Nooij, L., Doxiadis, A. D., Ferrari, P., Garitaonandia, H., Geerts, D. A. A., Gosselink, M., Hartjes, F., Hessey, N. P., Igonkina, O., Kayl, M. S., ... Vreeswijk, M. (2012). Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel. Physics Letters B, 711(3-4), 244-263. https://doi.org/10.1016/j.physletb.2012.03.083

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel

ATLAS Collaboration

A R T I C L E C O N T E N T S L I S T S A V A I L A B L E A T S c i V e r e S c i e n c e D i r e c t

Physics Letters B

Available online 2 April 2012

Editor: H. Weerts

© CERN for the benefit of the ATLAS Collaboration.

Abstract

A measurement of the production cross-section for top quark pairs (t\bar{t}) in pp collisions at \(\sqrt{s} = 7 \) TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in the single lepton topology by requiring an electron or muon, large missing transverse momentum and at least three jets. With a data sample of 35 pb\(^{-1}\), two different multivariate methods, one of which uses b-quark jet identification while the other does not, use kinematic variables to obtain cross-section measurements of \(\sigma_{t\bar{t}} = 187 \pm 11 \text{(stat.)} \pm 17 \text{(syst.)} \pm 6 \text{(lumi.)} \) pb and \(\sigma_{t\bar{t}} = 173 \pm 17 \text{(stat.)} \pm 18 \text{(syst.)} \pm 6 \text{(lumi.)} \) pb respectively. The two measurements are in agreement with each other and with QCD calculations. The first measurement has a better a priori sensitivity and constitutes the main result of this Letter.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Measurements of the production and decay properties of top quarks are of central importance to the Large Hadron Collider (LHC) physics programme. Uncertainties on the theoretical predictions for the top quark pair production cross-section are now less than 10%, and comparisons with experimental measurements allow a precision test of the predictions of Quantum Chromodynamics. Furthermore, top quark pair production is an important background in many searches for physics beyond the Standard Model (SM). New physics may also give rise to additional background in many searches for physics beyond the Standard Model.

In the SM the \(t\bar{t} \) production cross-section in pp collisions is calculated to be \(165^{+17}_{-16} \) pb [1–3] at a centre-of-mass energy \(\sqrt{s} = 7 \) TeV, assuming a top quark mass of 172.5 GeV. Top quarks are predicted to decay to a W-boson and a b-quark (\(t \rightarrow Wb \)) nearly 100% of the time. Events with a \(t\bar{t} \) pair can be classified as 'single lepton', 'dilepton', or 'all hadronic' according to the decays of the two W-bosons: each can decay into quark-antiquark pairs (\(W \rightarrow q\bar{q} \)) or a lepton-neutrino pair (\(W \rightarrow \ell\nu \)). Events in the single lepton channel, when the lepton is an electron or a muon, are characterised by an isolated, prompt, energetic lepton, jets, and missing transverse momentum from the neutrino. At the Tevatron the \(t\bar{t} \) cross-sections are 1.8 TeV and at \(\sqrt{s} = 1.96 \) TeV have been measured by CDF [4,5] and DØ [6,7] in most channels.

and CMS have measured the \(t\bar{t} \) cross-section at \(\sqrt{s} = 7 \) TeV at the LHC [8–11].

This Letter describes measurements of the \(t\bar{t} \) cross-section in the single lepton plus jets channel with 35 pb\(^{-1}\) of data recorded by ATLAS in 2010. Taking advantage of the increased data sample, the measurement techniques developed in Ref. [8] were extended to employ kinematic likelihood discriminants to separate signal from background and measure the cross-section. Two multivariate methods, one that includes b-quark jet identification (b-tagging) and one which does not, use several variables each to discriminate \(t\bar{t} \) events from the background. The two analyses are sensitive to different sources of systematic uncertainty.

2. The ATLAS detector

The ATLAS detector [12] consists of an inner tracking system (inner detector, or ID) surrounded by a thin superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadronic calorimeters and a muon spectrometer (MS). The ID consists of silicon pixel and microstrip detectors, surrounded by a transition radiation tracker. The electromagnetic calorimeter is

* © CERN for the benefit of the ATLAS Collaboration.

* E-mail address: atlas.publications@cern.ch.
a lead/liquid-argon (LAr) detector. Hadron calorimetry is based on two different detector technologies, with scintillator tiles or LAr as active media, and with either steel, copper, or tungsten as the absorber material. The MS includes three large superconducting toroids arranged with an eight-fold azimuthal coil symmetry around the calorimeters, and a system of three stations of chambers for the trigger and for track measurements.

A three-level trigger system is used to select interesting events. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two software-based trigger levels, level-2 and the event filter, which together reduce the event rate to about 200 Hz which is recorded for analysis.

The nominal pp interaction point at the centre of the detector is defined as the origin of a right-handed coordinate system. The positive x-axis is defined by the direction from the interaction point to the centre of the LHC ring, with the positive y-axis pointing upwards, while the z-axis is along the beam direction. The azimuthal angle \(\phi \) is measured around the beam axis and the polar angle \(\theta \) is the angle from the z-axis. The pseudorapidity is defined as \(\eta = -\ln \tan(\theta/2) \).

3. Simulated event samples

Monte Carlo (MC) simulation was used for various aspects of the analysis. The simulation consists of an event generator interfaced to a parton shower and hadronisation model, the results of which are passed through a full simulation of the ATLAS detector and trigger system [13,14]. MC simulation was used when data-driven techniques were not available or to evaluate relatively small backgrounds and certain sources of systematic uncertainty.

For the calculation of the acceptance of the \(\bar{t}t \) signal the next-to-leading order (NLO) generator MC@NLO v3.41 [15] was used with the top quark mass set to 172.5 GeV and with the NLO parton density function (PDF) set CTEQ66 [16].

W- and Z-boson production in association with jets was simulated with Alpgen v2.13, which implements the exact leading order (LO) matrix elements for final states with up to six partons and uses the ‘MLM’ matching procedure to remove the overlaps between samples with \(n \) and \(n + 1 \) final partons [17]. The LO PDF set CTEQ6L1 [16] was used to generate W + jets and Z + jets events with up to five partons. Diboson, WW, WZ and ZZ events were generated with Herwig [18,19]. Like the diboson production, single-top is also a relatively small background and is simulated using MC@NLO, invoking the ‘diagram removal scheme’ [20] to remove overlaps between single-top and \(\bar{t}t \) final states.

Unless otherwise noted, all events were hadronised with Herwig, using jimmy [21] for the underlying event model. Details of the generator and underlying event tunes used are given in Ref. [22].

3.1. Systematic uncertainties on signal and background modelling

The use of simulated \(\bar{t}t \) samples to calculate the signal acceptance gives rise to various sources of systematic uncertainty. These arise from the choice of the event generator and PDF set, and from the modelling of initial and final state radiation (ISR and FSR). The uncertainties due to the choice of generator and parton shower model were evaluated by comparing the results obtained with MC@NLO to those of Powheg [23], with events hadronised with either Herwig or Pythia [24]. The uncertainty due to the modelling of ISR/FSR was evaluated using the AcerMC generator [25] interfaced to Pythia and by varying the parameters controlling the ISR/FSR emission by a factor of two up and down. The variation ranges used are comparable to those in [26] for ISR and [27] for FSR. Finally, the uncertainty in the PDF set used to generate \(\bar{t}t \) samples was evaluated using a range of current PDF sets with the procedure described in Refs. [28–30].

The production of the W + jets background based on MC simulation has uncertainties on the total cross-section, on the contribution of events with jets from heavy-flavour (b, c) quarks, and on the shape of kinematic distributions. The predictions of the total cross-section have uncertainties of order 50% [31], increasing with jet multiplicity. Total W + jets cross-section predictions were not used in the cross-section measurement as this background was extracted from the fit to the data (see Section 7), but were used in the MC simulation shown in Figs. 1 to 4. A combination of the fitting method described in [32] and a counting method described here, both relying upon final states with one and two jets, was used to estimate the heavy flavour fractions in W + jets events. Since these bins are dominated by W + jet events, the total W + jet contribution to these events can be obtained, both with and without requiring at least one b-tagged jet. These four numbers are then used to constrain the following four event types which make up the W + jets sample: W + bb, W + cc, W + c and W + light flavours. Additionally it was assumed that the k-factors for W + bb and W + cc are equal. MC simulation with Alpgen was used to estimate the b-tagging efficiencies for each sub-sample as well as to extrapolate from the one-jet to the two-jet bin. The dominant uncertainties in this method arise from jet energy scale and b-tagging uncertainties. As a result of this study, it was found that the W + bb and W + cc sub-samples of events in the Alpgen MC simulation were to be rescaled by 1.30 ± 0.65, whereas W + c events were rescaled by 1.0 ± 0.4. An additional 25% relative uncertainty per jet bin was assigned to these flavour fractions when applied to the signal region based upon studies with Alpgen MC simulation.

The uncertainty on the shape of W + jets kinematic distributions was assessed by changing the factorisation and renormalisation scales by a factor of two up and down, and by varying the minimum \(p_T \) of the final state quarks and gluons from 10 to 25 GeV, with 15 GeV being the default.

For the smaller backgrounds arising from Z + jets, single-top and diboson production, only the overall normalisation uncertainties were considered, taken to be 30% for Z + jets production, 10% for single-top production, determined from comparisons of MCFM [33] and MC@NLO predictions, and 5% for diboson production, determined from MCFM studies of scale and PDF uncertainties.

4. Object selection

Single lepton \(\bar{t}t \) events are characterised by the presence of an electron or muon, jets, and missing transverse momentum, which is an indicator of undetected neutrinos, in the final state. The events used in this analysis were triggered by single lepton triggers. The electron trigger required a level-1 electromagnetic cluster in the calorimeter with transverse momentum \(E_T > 10 \) GeV. A more refined cluster selection was applied in the level-2 trigger, and a match between the electromagnetic cluster and an ID track was required in the event filter. The muon trigger required a track with transverse momentum \(p_T > 10 \) GeV in the muon trigger chambers at level-1, matched to a muon of \(p_T > 13 \) GeV reconstructed in the precision chambers and combined with an ID track at the event filter.

The same object definition used for the previous \(\bar{t}t \) cross-section measurement [8] was used in this analysis, except for more stringent electron selection criteria and ID track quality requirements for muons. Electron candidates were defined as electromagnetic clusters consistent with the energy deposition of an electron in the calorimeters and with an associated well-measured track.
Fig. 1. Input variables to the likelihood discriminants in the exclusive three-jet bin for the muon channel: lepton η (top), $\exp(-8 \times A)$ (second from top), lepton charge (third from top) and $\exp(-4 \times H_T^{p_1})$ (bottom). All simulated processes are normalised to theoretical SM predictions, except the multijet background which uses the normalisation presented in Section 6. The two top distributions are used in the untagged and the tagged analyses, the third distribution in the untagged analysis, and the bottom distribution in the tagged analysis.

They were required to satisfy $p_T > 20$ GeV and $|\eta_{\text{cluster}}| < 2.47$, where η_{cluster} is the pseudorapidity of the cluster associated with the candidate. Candidates in the barrel to endcap calorimeter transition region $1.37 < |\eta_{\text{cluster}}| < 1.52$ were excluded. Muon candidate tracks were reconstructed from track segments in the different layers of the muon chambers. These segments were combined starting from the outermost layer, with a procedure that takes material effects into account, and matched with tracks found in the inner detector. The final candidates were refitted using the complete track information from both detector systems and required to satisfy $p_T > 20$ GeV and $|\eta| < 2.5$.

To further reduce background from leptons produced in heavy-flavour or in-flight hadron decays the selected leptons were required to be ‘isolated’. For electrons the transverse momentum, E_T, deposited in the calorimeter cells inside an isolation cone of
Fig. 3. Input variables to the likelihood discriminants in the exclusive four-jet bin for the muon channel: lepton η (top), $\exp(-8 \times A)$ (second from top), $\exp(-4 \times H_{T,3p})$ (third from top) and \overline{w}_{JP} (bottom). All simulated processes are normalised to theoretical SM predictions, except the multijet background which uses the normalisation presented in Section 6. These distributions are used in the tagged analysis.

Fig. 4. Input variables to the likelihood discriminants in the inclusive five-jet bin for the electron channel: lepton η (top), $\exp(-8 \times A)$ (second from top), $\exp(-4 \times H_{T,3p})$ (third from top) and \overline{w}_{JP} (bottom). All simulated processes are normalised to theoretical SM predictions, except the multijet background which uses the normalisation presented in Section 6. These distributions are used in the tagged analysis.
size $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ around the electron position was corrected to take into account the leakage of the electron energy into this cone. The remaining E_T was required to be less than 4 GeV. Muons were required to have a distance ΔR greater than 0.4 from any jet with $p_T > 20$ GeV, which suppresses muons from heavy-flavour decays inside jets. Furthermore, the calorimeter transverse momentum in a cone of size $\Delta R = 0.3$ around the muon direction was required to be less than 4 GeV, and the sum of track transverse momenta, other than the muon track, in a cone of size $\Delta R = 0.3$ was required to be less than 4 GeV.

Pure samples of prompt muons and electrons were obtained from Z-boson events in the data and were used to correct the lepton trigger, and the reconstruction and selection efficiencies in MC simulation to match those in the data. The corrections were found to be small.

Jets were reconstructed [34] with the anti-k_t algorithm [35, 36] with radius parameter 0.4 from clusters of adjacent calorimeter cells. If the closest object to an electron candidate (before the above electron isolation requirement) was a jet within a distance $\Delta R < 0.2$, the jet was removed. The jet energy scale (JES) and its uncertainty were derived by combining information from testbeam data, LHC collision data and simulation. The JES uncertainty was found to vary from 2% to 7% as a function of jet p_T and η [37].

Jets arising from the hadronisation of b-quarks were identified using an algorithm (JetProb) [38] which relies upon the transverse impact parameter d_0 of each track in the jet: this is the distance of closest approach in the transverse x-y plane of a track to the primary vertex. It is signed with respect to the jet direction: the sign is positive if the track crosses the jet axis in front of the primary vertex, negative otherwise. The signed impact parameter significance, d_0/σ_{d_0}, of each selected track is compared to a resolution function for prompt tracks, to assess the probability that the track originates from the primary vertex. Here, σ_{d_0} is the uncertainty on d_0. The individual track probabilities are then combined into a global probability that the jet originates from the primary vertex. The simulated data were smeared to reproduce the resolution found in collision data.

The b-tagging efficiencies and mistag rates were calibrated with data for a wide range of b-tagging efficiency requirements. The efficiency was measured in a sample of jets containing muons, making use of the transverse momentum of the muon relative to the jet axis. The mistag rates were measured on an inclusive jet sample with two methods, one using the invariant mass spectrum of tracks associated to reconstructed secondary vertices to separate light- and heavy-flavour jets, and the other based on the fraction of secondary vertices in data with negative decay-length significance. The results of these measurements were applied in the form of p_T-dependent scale factors to correct the b-tagging performance in simulation to match the data. For a b-tagging efficiency around 50%, the scale factor was found to be approximately 0.9 in all bins of jet p_T, and the relative b-tagging efficiency uncertainty was found to range from 5% to 14% depending on the jet p_T [38]. The mistag rate and mistag scale factors are approximately 1% and 11, respectively, in the jet p_T region of interest, $20 < p_T < 100$ GeV. The analysis including b-tagging used the probabilities returned by the JetProb algorithm as a discriminating variable, as explained in Section 7.

The reconstruction of the missing transverse momentum E^{miss}_T [39] was based upon the vector sum of the transverse momenta of the reconstructed objects (electrons, muons, jets) as well as the transverse energy deposited in calorimeter cells not associated with these objects. The electrons, muons and jets were used in the E^{miss}_T calculation consistently with the definitions and uncertainties stated above.

Event Selection			
Electron channel	3 jets	4 jets	≥ 5 jets
$t\bar{t}$	117 ± 16	109 ± 15	76 ± 19
W + jets	524 ± 225	124 ± 77	35 ± 23
Multijet	64 ± 32	12 ± 6	8 ± 4
Single top	21 ± 5	7 ± 3	3 ± 2
Z + jets	60 ± 28	21 ± 15	8 ± 6
Diboson	9 ± 3	1.9 ± 1.5	0.4 ± 0.8
Predicted	795 ± 236	275 ± 84	130 ± 35
Observed	755	261	123

Table 1

Number of observed events in the data in the electron and muon channels after the selection cuts as a function of the jet multiplicity. The expected signal and background contributions are also given. All simulated processes are normalised to theoretical SM predictions, except the multijet background which uses the normalisation presented in Section 6. The quoted uncertainties include statistical, systematic and theoretical components, except for the multijet background. All numbers correspond to an integrated luminosity of 35 pb$^{-1}$.

5. Event selection

Events that passed the trigger selection were required to contain exactly one reconstructed lepton with $p_T > 20$ GeV, matching the corresponding event filter object. Selected events were required to have at least one reconstructed primary vertex with at least five tracks. Events were discarded if any jet with $p_T > 20$ GeV was identified to be due to calorimeter noise or activity out of time with respect to the LHC beam crossings. The E^{miss}_T was required to be greater than 35 (20) GeV in the electron (muon) channel and the transverse mass constructed from the lepton and E^{miss}_T transverse momentum vectors was required to be greater than 25 GeV (60 GeV $- E^{\text{miss}}_T$) in the electron (muon) channel. The muon requirement is referred to as the ‘triangular cut’. The requirements were stronger in the electron channel to suppress the larger multijet background. Finally, events were required to have three or more jets with $p_T > 25$ GeV and $|\eta| < 2.5$. The selected events were then classified by the number of jets fulfilling these requirements and by the lepton flavour. Table 1 shows the number of selected events in the data in the electron and muon channels, together with the SM expectations for the signal and the different backgrounds. All predictions were obtained from MC simulation except the multijet background estimate which was obtained from data as described in the next section.

6. Background evaluation

The main backgrounds to $t\bar{t}$ signal events in the single lepton plus jets channel arise from W-boson production in association with jets, in which the W decays leptonically, and from multijet production. Smaller backgrounds arise from Z + jets, diboson and single-top production. These smaller backgrounds have been estimated from MC simulation and normalised to the latest theoretical predictions, as discussed in Section 3. The W + jets background is difficult to predict from theory, particularly in the high jet-multiplicity bins. A data-driven cross-check following methods similar to those described in Ref. [8] was therefore performed. The results obtained with data were found to agree with the MC predictions within the uncertainties. Both

Table 1

Event channel	3 jets	4 jets	≥ 5 jets
$t\bar{t}$	115 ± 22	156 ± 18	108 ± 27
W + jets	796 ± 414	222 ± 139	58 ± 38
Multijet	79 ± 24	18 ± 6	11 ± 3
Single top	31 ± 7	10 ± 4	4 ± 2
Z + jets	58 ± 26	14 ± 10	5 ± 4
Diboson	16 ± 4	3 ± 2	0.6 ± 0.8
Predicted	1325 ± 422	423 ± 143	186 ± 51
Observed	1289	436	190
analyses presented here rely on the assumption that the MC simulation correctly describes the kinematic properties of the $W + \text{jets}$ events, whereas the normalisation of the $W + \text{jets}$ cross-section was fitted from the data, as described in Section 7. In the analysis using b-tagging the theoretical uncertainty on the normalisation was used as a constraint in the fit, whereas in the other analysis it was allowed to vary freely.

The multijet background was measured with a data-driven approach. In the muon channel, the background from multijet events is dominated by ‘non-prompt’ muons arising from the decay of heavy-flavour hadrons, in contrast to the tt signal where muons arise from the ‘prompt’ decays of W-bosons. The multijet background can be estimated by defining two samples of muons, ‘loose’ and ‘tight’. The tight sample is the one defined in the event selection described above, whilst the loose sample satisfies the same criteria except the muon isolation requirements. Since the reconstructed muons from background are associated with jets, they tend to be much less isolated than the leptons in tt decays. Any sample of muons is composed of prompt and non-prompt muons and it is assumed that the tight muon sample is a subsample of the loose sample:

\[
N_{\text{loose}} = N_{\text{prompt}}^\text{loose} + N_{\text{non-prompt}}^\text{loose},
\]

\[
N_{\text{tight}} = \epsilon_{\text{prompt}} N_{\text{loose}}^\text{loose} + \epsilon_{\text{non-prompt}} N_{\text{loose}}^\text{non-prompt},
\]

(1)

where $N_{\text{loose}}^\text{non-prompt}$ is the number of loose, non-prompt muons (with the other $N_{\text{loose}}^\text{...}$ defined similarly) and ϵ_{prompt} ($\epsilon_{\text{non-prompt}}$) represents the probability for a prompt (non-prompt) muon that satisfies the loose criteria to also satisfy the tight ones. The probability ϵ_{prompt} was measured from the data using high-purity samples dominated by Z-bosons decaying into muons. The probability $\epsilon_{\text{non-prompt}}$ for a non-isolated lepton to pass the isolation cuts was measured by defining control samples dominated by multijet events. Two different control samples were defined to have at least one jet plus a muon (i) with high impact parameter significance or (ii) with low transverse mass of the muon-E_T^{miss} system plus reversed triangular cut. These control samples gave consistent results. Contamination of the multijet control samples by muons from W and Z events was determined from MC simulation. The results of these studies are $\epsilon_{\text{non-prompt}}$ and ϵ_{prompt} as a function of the muon η, from which the multijet background expectations can be obtained as a function of any variable. A 30% systematic uncertainty was assigned to this estimate based on the observation that the method gives agreement to within 30% across the different jet multiplicities.

In the electron channel, the multijet background also includes photons inside jets undergoing conversions into electron–positron pairs and jets with high electromagnetic fractions. A different method was used, based on a binned likelihood fit of the E_T^{miss} distribution in the region $E_\text{T}^{\text{miss}} < 35 \text{ GeV}$. The data was fitted to the sum of four templates: multijet, tt, $W + \text{jets}$ and $Z + \text{jets}$. The templates for the latter three processes were obtained from MC simulation whereas the multijet template was obtained from the data in a control region defined by the full event selection criteria except that the electron candidate fails one or more of the identification cuts. The multijet background was obtained by extrapolating the fraction of multijet events from the fit at low E_T^{miss} to the signal region at high E_T^{miss}. Several choices of electron identification cuts were considered and the largest relative uncertainty among these (50%) was used as a conservative estimate of the systematic uncertainty of this background evaluation.

7. Cross-section extraction

The $t\bar{t}$ production cross-section was extracted by exploiting the kinematical properties of $t\bar{t}$ events compared to those from the dominant background ($W + \text{jets}$) by means of likelihood discriminants (D) constructed from several variables. Templates of the distributions D for signal and all background samples were created using the TMVA package [40]. The variables were selected for their good discriminating power, small correlation with each other, and low sensitivity to potentially large uncertainties such as jet energy calibration. The variables are:

- The pseudorapidity η of the lepton, since leptons produced in $t\bar{t}$ events are more central than those in $W + \text{jets}$ events.
- The aplanarity A, defined as $3/2$ times the smallest eigenvalue of the momentum tensor $M_{ij} = \sum_{k=1}^{N_{\text{objects}}} p_{ik} p_{jk}/\sum_{k=1}^{N_{\text{objects}}} p_{ik}^2$, where p_{ik} is the i-th momentum component of the k-th object and p_{ik} is the modulus of its momentum. The lepton and the four leading jets are the objects included in the sum. To increase the separation power of the aplanarity distribution, the transformed variable $\exp(-8 \times A)$ was used. This variable exploits the fact that $t\bar{t}$ events are more isotropic than $W + \text{jets}$ events.
- The charge of the lepton q_{lepton}, which uses the fact that a sample of $t\bar{t}$ events should contain the same number of positively and negatively charged leptons, while $W + \text{jets}$ events produce an excess of positively charged leptons in pp collisions.
- $H_{T,3p}$, defined as the sum of the transverse energies of the third and fourth leading jets normalised to the sum of the absolute values of the longitudinal momenta of the four leading jets, the lepton and the neutrino, $H_{T,3p} = \sum_{i=1}^{4} |p_{T,i}|/\sum_{j=1}^{N_{\text{objects}}} |p_{T,j}|$, where p_{T} is the transverse momentum and p_{T} the longitudinal momentum. The longitudinal momentum of the neutrino was obtained using the quadratic W mass constraint and taking the solution with the smaller neutrino p_{T} value. To increase the separation power of the $H_{T,3p}$ distribution, the transformed variable $\exp(-4 \times H_{T,3p})$ was used.
- The average \overline{w}_{p} of $w_{p} = -\log_{10}(P_{1})$ for the two jets with lowest P_{1} in the event. P_{1} is the probability for a jet to be a light jet from the JetProb b-tagging algorithm. These correspond to the jets that have the highest probability to be heavy-flavour jets.

Two complementary analyses were performed, one which relied upon the use of b-tagging information (i.e. the variable \overline{w}_{p}) and one which did not. We refer to the analyses as ‘tagged’ and ‘untagged’, respectively. The untagged analysis employed the first three variables, whereas the tagged analysis did not consider the lepton charge but used $H_{T,3p}$ and \overline{w}_{p}. \overline{w}_{p} was not included in the three-jet bin. Figs. 1 to 4 show the distributions of the discriminating variables for the selected data superimposed on the signal and background SM predictions for the different jet multiplicities.

The $t\bar{t}$ cross-section was extracted by means of a likelihood fit of the signal and background discriminant distributions to those of the data. The fit yields the fractions of $t\bar{t}$ signal and backgrounds in the data sample. The fit was performed simultaneously to four samples (three-jet exclusive and four-jet inclusive, electron and muon) in the untagged analysis and six samples (three-jet exclusive, four-jet exclusive and five-jet inclusive, electron and muon) in the tagged analysis, as these were the combinations that provided maximum sensitivity. The discriminants were built separately for each jet multiplicity and lepton flavour subsample, and
the different channels were combined in the likelihood fit by multiplying the individual likelihood functions.

The normalisation of the $t\bar{t}$ signal templates is the parameter of interest in the fit and was allowed to vary freely in both analyses. The $t\bar{t}$ cross-section was assumed to be common to all channels and the number of $t\bar{t}$ events in each subsample returned by the fit was related to the $t\bar{t}$ cross-section by the expression $\sigma_{t\bar{t}} = N_{\text{sig}}/\int \mathcal{L} \, dt \times e_{\text{sig}}$, where N_{sig} is the number of $t\bar{t}$ events, $\int \mathcal{L} \, dt$ is the integrated luminosity and e_{sig} is the product of the signal acceptance, selection efficiency and branching ratio, obtained from $t\bar{t}$ simulation. The normalisation of the backgrounds was treated differently in the two analyses. In the untagged analysis the multijet and small backgrounds (single-top, diboson and $Z +$ jets production) were fixed in the fit to their expected contributions, whereas the $W +$ jets background was allowed to vary freely in each channel. In the tagged analysis all backgrounds were allowed to vary within the uncertainties of their assumed cross-sections, described in Sections 3 and 6. These uncertainties were used as Gaussian constraints on the cross-section normalisation. The robustness of this fitting approach was checked with ensemble tests. The central value and uncertainties returned by the fit were shown to be unbiased for a wide range of input cross-sections.

8. Systematic uncertainties

The evaluation of the systematic uncertainties was performed differently in the two analyses. The untagged analysis performed pseudo-experiments (PEs) with simulated samples which included the various sources of uncertainty. For example, for the JES uncertainty, PEs were performed with jet energies scaled up and down according to their uncertainties and the impact on the cross-section was evaluated. The tagged analysis, on the other hand, accounted for most of the changes in the normalisation and shape of the templates due to systematic uncertainties by adding ‘nuisance’ terms to the fit [41]. Templates of the samples with one standard deviation ‘up’ and ‘down’ variations of the systematic uncertainty source under study were generated in addition to the nominal templates. The fit interpolated between these templates with a continuous parameter by means of a Gaussian constraint. Before the fit, the constraint was such that the mean value was zero and the width was one; a fitted width less than one means a Gaussian constraint. The effects due to the modelling of the $W +$ jets and multijet background shapes, initial and final state radiation, parton density function of the $t\bar{t}$ signal, NLO generator, hadronisation and template statistics cannot be fully described by a simple linear parameter controlling the template interpolation. As a consequence, they were not treated as nuisance terms but obtained by performing PEs with modified simulated samples, as was done in the untagged analysis.

The nuisance parameters of the systematic uncertainties were all fitted together taking into account the correlations among them in the minimisation process. As a consequence, the uncertainties on the fitted quantities obtained from the fit include both the statistical and the total systematic components. Therefore, to obtain an estimation of the individual contributions to the total uncertainty in the tagged analysis, each individual systematic uncertainty was obtained as the difference in quadrature between the total uncertainty and the uncertainty obtained after having fixed the corresponding nuisance parameter to its fitted value. The central values of the nuisance parameters after the fit agreed with their input values. The fit was cross-checked using PEs where the starting value of the nuisance parameters was different than the nominal value. The result was found to be unbiased. In addition, large variations of the kinematic dependence of the nuisance parameters (e.g. the JES as a function of the jet p_T) were considered and resulted in a negligible impact on the result of the fit.

The systematic uncertainties on the cross-section for both methods are summarised in Table 2. The dominant effects in the untagged analysis were JES, multijet and $W +$ jets backgrounds shape and ISR/FSR. The latter was also important in the tagged analysis, together with the uncertainty related to the signal MC generator. In addition, this analysis was sensitive to effects related to b-tagging, specifically the determination of the heavy-flavour content of the $W +$ jets background and the calibration of the b-tagging algorithm itself. The luminosity uncertainty was 3.4% [42,43].

Several cross-checks of the cross-section measurements were performed. These included the results of the likelihoods applied to individual lepton channels and $t\bar{t}$ cross-section measurements done with simpler and complementary approaches, including cut-and-count methods and fits to kinematic variables such as the reconstructed top mass. These cross-checks gave consistent results within the uncertainties.

9. Results and conclusions

The results of the likelihood fits applied to the data are shown in Figs. 5 and 6, where the distributions of the discriminants in data are overlaid on the fitted discriminant distributions of the signal and backgrounds. The final measured cross-section results are: $\sigma_{t\bar{t}} = 173_{-22}^{+18} \text{(stat.)} \pm 12 \text{(syst.)} \pm 6 \text{(lumi.)} \text{ pb} = 173_{-22}^{+18} \text{ pb}$ in the untagged analysis and $\sigma_{t\bar{t}} = 187_{-21}^{+18} \text{(stat.)} \pm 12 \text{(syst.)} \pm 6 \text{(lumi.)} \text{ pb} = 187_{-21}^{+18} \text{ pb}$ in the tagged analysis. The two measurements are in agreement with each other. The latter has a better a priori sensitivity and thus constitutes the main result of this Letter. It is the most precise $t\bar{t}$ cross-section measurement at the LHC published to date and is in good agreement with the SM prediction calculated at NLO plus next-to-leading-log order 165_{-16}^{+11} pb [1–3].
Fig. 5. Untagged analysis: (Top) The distribution of the likelihood discriminant for data superimposed on expectations for signal and backgrounds, scaled to the results of the fit. The left bins correspond to the muon channel and the right bins to the electron channel. (Bottom) The ratio of data to fit result.

Fig. 6. Tagged analysis: (Top) The distribution of the likelihood discriminant for data superimposed on expectations for signal and backgrounds, scaled to the results of the fit. The left bins correspond to the muon channel and the right bins to the electron channel. (Bottom) The ratio of data to fit result.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not have operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; SNF and SNSF, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[1] S. Moch, P. Uwer, Phys. Rev. D 78 (2008) 034003.
[2] U. Langenfeld, S. Moch, P. Uwer, in: Proc. XVII Int. Workshop on Deep-Inelastic Scattering and Related Topics, arXiv:hep-ph/0907.2527.
[3] M. Beneke, et al., Phys. Lett. B 690 (2010) 483; Predictions in this paper are calculated with HATHOR [44] with m_{H_{12}} = 172.5 GeV, CTEQ66 [16], where PDF and scale uncertainties were added linearly.
[4] T. Affolder, et al., CDF Collaboration, Phys. Rev. D 64 (2001) 032002; T. Affolder, et al., Phys. Rev. D 67 (2003) 119901 (Erratum).
[5] T. Aaltonen, et al., CDF Collaboration, Phys. Rev. Lett. 105 (2010) 012001.
[6] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. D 67 (2003) 012004.
[7] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. D 84 (2011) 012008.
[8] The ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1577.
[9] The ATLAS Collaboration, Phys. Lett. B 707 (2012) 478.
[10] The CMS Collaboration, JHEP 1107 (2011) 049.
[11] The CMS Collaboration, Phys. Rev. D 84 (2011) 092004.
[12] The ATLAS Collaboration, JINST 3 (2008) S08003.
[13] The ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823.
[14] S. Agostinelli, et al., Nucl. Inst. Meth. in Phys. Res. A 50 (2003) 250.
[15] S. Frixione, P. Nason, B.R. Webber, JHEP 0308 (2003) 007.
[16] J. Pumpklin, et al., JHEP 0207 (2002) 012.
[17] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 0307 (2003) 001.
[18] G. Corcella, et al., JHEP 0101 (2001) 010.
[19] G. Corcella, et al., arXiv:hep-ph/0201213.
[20] S. Frixione, et al., JHEP 0807 (2008) 029.
[21] J.M. Butterworth, et al., Z. Phys. C 72 (1996) 637.
[22] The ATLAS Collaboration, ATLAS-PHYS-PUB-2010-014, https://cdsweb.cern.ch/record/1303025.
[23] P. Nason, JHEP 0411 (2004) 40.
[24] T. Sjostrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026.
[25] B.P. Kersevan, E. Richter-Was, arXiv:hep-ph/0405247.
[26] P. Skands, Phys. Rev. D 82 (2010) 074018.
[27] A.D. Martin, et al., Eur. Phys. J. C 63 (2009) 189.
[28] M. Cacciari, G.P. Salam, Phys. Lett. B 641 (2006) 57.
[29] M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804 (2008) 063.
[30] M. Cacciari, G.P. Salam, Phys. Lett. B 641 (2006) 57.
[31] The ATLAS Collaboration, CERN-PH-EP-2011-191, Eur. Phys. J. C, submitted for publication, arXiv:hep-ex/1112.6426v1.
[32] The ATLAS Collaboration, ATLAS-COLL-2011-089, http://cdsweb.cern.ch/record/1356196.
[33] The ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844.
[34] A. Hoecker, et al., PoS ACAT 40 (2007), v4.10.
[35] N. Reid, D.A.S. Fraser, in: L. Lyons, R.P. Mount, R. Reitmeyer (Eds.), Proceedings of PHYSAT 2001, SLAC, Stanford, 2003, p. 265.
[36] The ATLAS Collaboration, Eur. Phys. J. 71 (2011) 1630.
[37] The ATLAS Collaboration, ATLAS-COLL-2011-044, http://cdsweb.cern.ch/record/1334563.
[38] M. Aliiev, et al., Comput. Phys. Commun. 182 (2011) 1034.
N. Kimura 169, O. Kind 15, B.T. King 72, M. King 66, R.S.B. King 117, J. Kirk 128, L.E. Kirsch 22, A.E. Kiryunin 98, T. Kishimoto 66, D. Kisielewska 37, T. Kittelmann 122, A.M. Kiver 127, E. Kladiv 143b, J. Kläiber-Lodewig 42, M. Klein 72, U. Klein 72, K. Kleinknecht 80, M. Klemetti 84, A. Klier 170, A. Klimentov 24, R. Klingenberg 42, E.B. Klinkby 35, T. Kloutchnikova 29, P.F. Klok 103, S. Klous 104, E.-E. Kluge 58a, T. Kluge 72, P. Kluft 104, S. Kluth 98, N.S. Knecht 157, E. Kneiring 51, J. Knobloch 29, E.B.F.G. Knoops 82, A. Knue 54, B.R. Ko 44, T. Kobayashi 154, M. Kobel 43, M. Kocian 142, P. Kodys 125, K. Köneke 29, A.C. König 103, S. Koenig 80, L. Köpke 80, F. Koetsveld 103, P. Koeversarki 20, T. Koffas 28, E. Koffeman 104, F. Kohr 54, Z. Kohout 126, T. Kohriki 65, T. Koji 142, T. Kokott 106, G.M. Kolachev 106, H. Kolanoski 15, V. Kolesnikov 54, I. Kolotou 88a, J. Kol 87, D. Kollar 29, M. Kollefrath 48, S.D. Kolya 81, A.A. Komar 93, Y. Komori 154, T. Kondo 65, T. Kono 41, p, A.I. Kononov 48, R. Konoplich 107, J. Krstic 12a, U. Kruchonak 64, H. Krüger 20, T. Krueker 16, N. Krumnack 63, Z.V. Krumshteyn 64, A. Kruth 20, T. Kubota 85, S. Kuehn 48, A. Kugel 58c, T. Kuhl 41, D. Kuhn 61, V. Kukhtitsky 89, S. Kuleshov 31b, C. Kummer 97, M. Kun 77, N. Kundu 117, J. Kunkle 119, A. Kupco 124, H. Kurashige 66, M. Kurata 159, Y.A. Kurochkin 89, V. Kus 124, M. Kuze 156, J. Kvita 29, R. Kwee 15, A. La Rosa 49, L. La Rotonda 36a, 36b, L. Labarga 79, J. Labbe 4, S. Lablak 134a, C. Lacasta 166, F. Lacava 131a, 131b, H. Lacker 15, D. Lacour 77, V.R. Lacuesta 166, E. Ladygin 64, R. Lafaye 4, B. Laforge 77, T. Lagouri 79, S. Lai 48, E. Laisne 55, M. Lamanna 29, C.L. Lampen 6, W. Lamp 8, E. Lancon 135, U. Landgraf 48, M.P.J. Landon 74, H. Landsman 151, J.L. Lane 81, C. Lange 41, A.J. Lankford 162, F. Lanni 24, K. Lantzsch 173, S. Laplace 77, C. Lappo 20, J.F. Larot 135, T. Lari 88a, A.V. Laronov 127, A. Larner 117, C. Lassegue 29, M. Lassnig 29, P. Laurelli 47, W. Lavrijsen 14, P. Laycock 72, A.B. Lazarev 64, O. Le Dortz 77, E. Le Guiric 82, C. Le Maner 157, E. Le Menedeu 135, C. Lebel 92, T. LeCompte 5, F. Ledroit-Guillon 55, H. Lee 104, J.S.H. Lee 115, S.C. Lee 150, M. Lee 174, M. Lefebvre 168, M. Legendre 135, A. Leger 49, B.C. Legett 119, F. Legger 97, C. Leggett 14, M. Lehmacher 20, G. Lehmann Miotto 29, X. Lei 6, M.A.L. Leite 142, S. Lee 171, N. Leu 171, C. Leun 131b, V. Leungs 171, J. Levete 4, D. Levin 86, J.L. Levinson 70, M.S. Levitski 127, A. Lewis 117, G.H. Lewis 107, A.M. Leyko 40, M. Leyton 15, B. Li 82, H. Li 171r, S. Li 32b, x, X. Li 80, Z. Liang 39, Z. Liang 117r, H. Liao 33, B. Liberti 132a, P. Lichard 29, M. Lichtnecker 97, K. Lie 164, W. Liebig 13, R. Lifshitz 151, C. Limbach 20, A. Limosani 85, W. Limper 62, S.C. Lin 150, i, F. Linde 104, J.T. Linnemann 87, E. Lipeles 119, L. Lipinsky 124, A. Lippiacka 13, T.M. Liss 164, D. Lissauer 24, A. Lister 49, A.M. Litke 136, C. Liu 28, D. Liu 150, H. Liu 86, J.B. Liu 86, M. Liu 32b, S. Liu 2, Y. Liu 32b, M. Livian 118a, 118b, S.S.A. Livermore 117, A. Lleres 55, J. Llorente Merino 79, S.L. Lloyd 74, E. Lobodzinska 41, P. Loch 6, W.S. Lockman 136, T. Loddenkoetter 20, F.K. Loebinger 81, A. Logino 174, C.W. Loh 167, T. Lohse 15, K. Lohwasser 48, M. Lokajicek 124, J. Loken 117, V.P. Lombardo 4, R.E. Long 70, L. Lopes 123a, b, D. Lopez Mateos 57, M. Losada 161, P. Loscutoff 14, F. Lo Sterzo 130, 131a, 131b, M.J. Losty 158a, X. Lou 40, A. Lounis 114, K.F. Loureiro 161, J. Love 21, P.A. Love 70, A.J. Lowe 42, F. Luo 132a, H.J. Lubbatti 137, C. Lucato 131a, 131b, A. Lucotte 55, A. Ludwig 43, D. Ludwig 41, I. Ludwig 48, J. Ludvig 48, F. Luehring 60, G. Luijckx 104, D. Lumb 48, L. Luminari 131a, F. Luneberg 78, J. Lundberg 145a, 145b, J. Lundquis 35, M. Lungwitz 80, G. Lust 98, D. Lynn 24, J. Lys 14, E. Lytken 78, H. Ma 24, L.L. Ma 171, J.A. Macana Goia 92, G. Macarrone 47, A. Macchiolo 98, B. Maček 73, J. Machado Miguens 123a, R. Mackeprang 39, R.J. Madaras 14, W.F. Mader 43, R. Maenner 58c, T. Maeno 24, P. Mättig 173, S. Mättig 41, L. Maggioni 29, E. Magradze 54, Y. Mahalalel 152, K. Mahboubi 48, G. Mahout 17, C. Maiani 131a, 131b, C. Maidanitchik 23a, A. Maiol 123a, b, S. Majewski 24, Y. Makida 65, N. Makovec 114, P. Mal 135, Pa. Malecki 38, P. Malecki 38, V.P. Maleev 120, F. Malek 55, U. Mallik 82, D. Malon 3, C. Malone 142, S. Malezios 9, V. Malyshov 106, S. Malyukov 29, R. Mameghani 97, J. Mamuzic 12b, A. Manabe 65, L. Mandelli 88a, I. Mandic 73, R. Mandrysch 15, J. Maneira 123a, P.S. Mangeard 87, I.D. Manjavidze 64, A. Mann 54, P.M. Manning 136, A. Manousakis-Katsikakis 8.
