Cheetah-MS: a web server to model protein complexes using tandem cross-linking mass spectrometry data
Hamed Khakzad, Lotta Happonen, Johan Malmström, Lars Malmström

To cite this version:
Hamed Khakzad, Lotta Happonen, Johan Malmström, Lars Malmström. Cheetah-MS: a web server to model protein complexes using tandem cross-linking mass spectrometry data. Bioinformatics, 2021, 37 (24), pp.4871-4872. 10.1093/bioinformatics/btab449. hal-04430468

HAL Id: hal-04430468
https://hal.science/hal-04430468
Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Cheetah-MS: a web server to model protein complexes using tandem cross-linking mass spectrometry data

Hamed Khakzad 1,2,*, Lotta Happonen3, Johan Malmström3 and Lars Malmström3,*

1Equipe Signalisation Calcique et Infections Microbiennes, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France, 2Institut National de la Santé et de la Recherche Médicale U1282, Gif-sur-Yvette 91190, France and 3Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund SE-22184, Sweden

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on March 10, 2021; revised on May 7, 2021; editorial decision on June 13, 2021; accepted on June 14, 2021

Abstract

Summary: Protein–protein interactions (PPIs) are central in many biological processes but difficult to characterize, especially in complex, unfractionated samples. Chemical cross-linking combined with mass spectrometry (MS) and computational modeling is gaining recognition as a viable tool in protein interaction studies. Here, we introduce Cheetah-MS, a web server for predicting the PPIs in a complex mixture of samples. It combines the capability and sensitivity of MS to analyze complex samples with the power and resolution of protein–protein docking. It produces the quaternary structure of the PPI of interest by analyzing tandem MS/MS data (also called MS2). Combining MS analysis and modeling increases the sensitivity and, importantly, facilitates the interpretation of the results.

Availability and implementation: Cheetah-MS is freely available as a web server at https://www.txms.org.

Contact: hamed.khakzad@ens-cachan.fr or lars.malmstrom@med.lu.se

1 Introduction

Cross-linking mass spectrometry (XL-MS) is a powerful technique to measure protein–protein interactions (PPIs) directly in complex samples (O’Reilly et al., 2018). Bi-functional reagents are used to covalently link two specific residues when the proteins are in their native states. The proteins then undergo enzymatic digestions resulting in many peptides linked by the reagents. The length of the cross-linker arm reveals the maximum distance between the two cross-linked amino acids, and this information is then used to identify and characterize the PPI. Using macromolecular modeling tools such as Rosetta (Koehler et al., 2020), a structural model can be created if enough cross-linked peptides are identified. Here, we propose Cheetah-MS, a web server based on our previously published method, targeted chemical cross-linking MS (TX-MS), a deep integration of protein structure modeling, and chemical XL-MS (Hauri et al., 2019). The power of Cheetah-MS relies on its fast convergence to the solution due to iterative sampling and filtering by XL peptides, where we reduced the number of decoy sampling by order of magnitude. Cheetah-MS supports tandem MS/MS acquisition data type based on non-cleavable reagents (DSS/BS3, DSG and EGS) and can detect up to 12 post-translational modifications (PTMs).

2 Implementation

Cheetah-MS is implemented using appicake (a python package), making the whole workflow easy to connect and flexible for further development. It is composed of four main appicake nodes, including PDB-tools, XL-generator, modeling-core and Taxlink (Fig. 1). The first node uses PDB-tools (Rodrigues et al., 2018) to clean up the...
input PDBs, recognize the chains, retrieve the sequences and combine the two PDBs into a starting conformational model. XL-generator provides a complete list of all theoretical XLs without considering distance cutoff. Next, this list is passed to Taxlink for MS/MS analysis part of the TX-MS approach. Table 1 summarizes the list of published studies where Cheetah-MS was applied for MS/MS analysis.

Table 1. The applicability of Cheetah-MS as the core MS/MS analysis of the TX-MS approach in several case studies

Study	Partner proteins	# XLs
GAS M1 protein’s interactome (Hauri et al., 2019)	M1, fibrinogen, albumin, haptoglobin, SerpinA1, coagulation factor XIII A, C4BPa and IgG1	204
Membrane attack complex (Khakzad et al., 2020)	Complement proteins: C5b, C6, C7, C8 and C9	126
GAS M1 interaction with human IgGs (Khakzad et al., 2021)	M1, IgG1, IgG2, IgG3 and IgG4	21
Structure determination of Dermatan sulfate epimerase 1 (Hasan et al., 2021)	DS-epi1	24
GAS M28 interaction with human IgAs (Chowdhury et al., 2021)	M28, IgA1, IgA2 and C4BP	14

After submitting the workflow, the status of the running job is shown, containing the job identifier at the top and the exact processing time of each submodule below. Once the workflow is finished, the best-scoring model is visualized using the NGL viewer (Rose et al., 2014), and the top scored models are selected. Finally, the best model that supports the largest number of XLs is chosen to be visualized in the output.

To run Cheetah-MS, users need to provide two PDB files and one MS/MS mzML (or converted MGF file) containing the XL-MS data. The advanced options to set include the XL agent, the PTM(s) of interest, the number of final models, the cutoff threshold for modeling, the delta-window for precursor and product ion detection, and finally, the intensity value to remove the background noise in MS/MS data analysis.

Funding

This work was supported by the Foundation of Knut and Alice Wallenberg [2016.0023 and 2019.0353 to J.M. and L.M.] as well as Vetenskapsrådet 2020-02419 to L.M., and by the Swiss National Science Foundation [PPZHP3_191289 to H.K.].

Conflict of Interest: none declared.

References

Chowdhury, S. et al. (2021) Streptococcus pyogenes forms serotype and local environment-dependent inter-species protein complexes. bioRxiv. doi.org/10.1101/2021.02.09.430411.
Hasan, M. et al. (2021) The structure of human dermatan sulfate epimerase 1 emphasizes the importance of C5-epimerization of glucuronic acid in higher organisms. Chem. Sci., 12, 1869–1885.
Hauri, S. et al. (2019) Rapid determination of quaternary protein structures in complex biological samples. Nat. Commun., 10, 192.
Kessner, D. et al. (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics, 24, 2534–2536.
Khakzad, H. et al. (2020) In vivo cross-linking MS of the complement system MAC assembled on live Gram-positive bacteria. Front. Genet., 11, 1630.
Khakzad, H. et al. (2021) Structural determination of Streptococcus M1 protein interaction with human IgGs using targeted cross-linking mass spectrometry. PLoS Comput. Biol., 17, e1008169.
Koehler, J. et al. (2020) Macromolecular modeling and design in Rosetta: new methods and frameworks. Nat. Methods, 17, 665–680.
O’Reilly, F.J. et al. (2018) Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat. Struct. Mol. Biol., 25, 1000–1008.
Rogrigues, J.P. et al. (2018) pdb-tools: a Swiss Army Knife for molecular structures. P1000Research, 7, 1961.
Rose, A.S. et al. (2018) NGL viewer: web-based molecular graphics for large complexes. Bioinformatics, 34, 3755–3758.