Hospital variation in combined liver resection and thermal ablation for colorectal liver metastases and impact on short-term postoperative outcomes
Dutch Hepato Biliary Audit Group; Elfrink, Arthur K E; Nieuwenhuizen, Sanne; van den Tol, M Petrousjka; Burgmans, Mark C; Prevo, Warner; Coolen, Marielle M E; van den Boezem, Peter B; van Delden, Otto M; Hagendoorn, Jeroen
Published in:
Hpb
DOI:
10.1016/j.hpb.2020.10.003

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Dutch Hepato Biliary Audit Group, Elfrink, A. K. E., Nieuwenhuizen, S., van den Tol, M. P., Burgmans, M. C., Prevo, W., Coolen, M. M. E., van den Boezem, P. B., van Delden, O. M., Hagendoorn, J., Patijn, G. A., Leclercq, W. K. G., Liem, M. S. L., Rijken, A. M., Verhoef, C., Kuhlmann, K. F. D., Ruiter, S. J. S., Grünhagen, D. J., Klaase, J. M., ... Swijnenburg, R-J. (2021). Hospital variation in combined liver resection and thermal ablation for colorectal liver metastases and impact on short-term postoperative outcomes: a nationwide population-based study. Hpb, 23(6), 827-839. https://doi.org/10.1016/j.hpb.2020.10.003

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Hospital variation in combined liver resection and thermal ablation for colorectal liver metastases and impact on short-term postoperative outcomes: a nationwide population-based study

Arthur K.E. Elfrink1,2, Sanne Nieuwenhuizen3, M. Petrousjka van den Tol4, Mark C. Burgmans5, Warner Prevoo5, Marielle M.E. Coolsen, Peter B. van den Boezem5, Otto M. van Delden9, Jeroen Hagendoorn10,18, Gijs A. Patijn11, Wouter K.G. Leclercq12, Mike S.L. Liem13, Arjen M. Rijken14, Cornelis Verhoef16, Koert F.D. Kuhlmann16, Simeon J.S. Ruiter2, Dirk J. Grünhagen15, Joost M. Klaase2, Niels F.M. Kok16, Martijn R. Meijerink2, Rutger-Jan Swijnenburg11, Dutch Hepato Biliary Audit Group†, Collaborators

1Dutch Institute for Clinical Auditing, Scientific Bureau, Leiden, 2Department of Surgery, University Medical Center Groningen, Groningen, 3Department of Interventional Radiology, 4Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, 5Department of Radiology, Leiden University Medical Center, Leiden, 6Department of Interventional Radiology, OLVG, Amsterdam, 7Department of Surgery, Maastricht University Medical Center, Maastricht, 8Department of Surgery, Radboud Medical Center, Nijmegen, 9Department of Radiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 10Department of Surgery, University Medical Center Utrecht, Utrecht, 11Department of Surgery, Isala, Zwolle, 12Department of Surgery, Máxima Medical Center, Veldhoven, 13Department of Surgery, Medisch Spectrum Twente, Enschede, 14Department of Surgery, Amphia Medical Center, Breda, 15Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, 16Department of Surgery, Antoni van Leeuwenhoek – Dutch Cancer Institute, Amsterdam, 17Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, and 18Department of Surgery, St Antonius Hospital, Nieuwegein, the Netherlands

Abstract

Background: Combining resection and thermal ablation can improve short-term postoperative outcomes in patients with colorectal liver metastases (CRLM). This study assessed nationwide hospital variation and short-term postoperative outcomes after combined resection and ablation.

Methods: In this population-based study, all CRLM patients who underwent resection in the Netherlands between 2014 and 2018 were included. After propensity score matching for age, ASA-score, Charlson-score, diameter of largest CRLM, number of CRLM and earlier resection, postoperative outcomes were compared. Postoperative complicated course (PCC) was defined as discharge after 14 days or a major complication or death within 30 days of surgery.

Results: Of 4639 included patients, 3697 (80%) underwent resection and 942 (20%) resection and ablation. Unadjusted percentage of patients who underwent resection and ablation per hospital ranged between 4 and 44%. Hospital variation persisted after case-mix correction. After matching, 734 patients remained in each group. Hospital stay (median 6 vs. 7 days, p = 0.011), PCC (11% vs. 14.7%, p = 0.043) and 30-day mortality (0.7% vs. 2.3%, p = 0.018) were lower in the resection and ablation group. Differences faded in multivariable logistic regression due to inclusion of major hepatectomy.

Conclusion: Significant hospital variation was observed in the Netherlands. Short-term postoperative outcomes were better after combined resection and ablation, attributed to avoiding complications associated with major hepatectomy.

Received 19 March 2020; accepted 5 October 2020

Correspondence

Arthur K.E. Elfrink, Scientific Bureau, Dutch Institute of Clinical Auditing, 2333 AA Leiden, the Netherlands.
E-mail: a.elfrink@dica.nl

Previous communication concerning manuscript: Poster presentation – IAHPBA Virtual 2020.
† Members of the Dutch Hepato Biliary Audit Group and all collaborators are co-authors of this study.
Introduction

Colorectal cancer (CRC) is the third most common type of cancer worldwide and colorectal liver metastases (CRLM) have been described to occur in up to 50% of patients with CRC. Upfront liver resection with curative intent is thought to be possible in only 10–20% of the patients with CRLM. Induction chemotherapy and parenchymal-sparing surgery can increase surgical options. Thermal ablation poses an alternative for resection, in particular for more centrally located, smaller metastases (<3 cm). Resection of such lesions may imply sacrificing a significant amount of normal liver parenchyma.

Combining liver resection and thermal ablation in one surgical session can extend curative options in patients with CRLM who are not eligible for conventional liver resection due to multiple CRLM, location of CRLM, bilobar disease or due to severe comorbidities. Guidelines in the Netherlands provide insufficient guidance to support the combination of liver resection and thermal ablation in different patients and so the use of these treatment regimens may vary. The present study is the first population-based nationwide study worldwide on hospital variation in the use of combined resection and ablation and on corresponding short-term postoperative outcomes.

The aims of this nationwide population-based cohort study were to assess hospital variation in the combined use of liver resection and thermal ablation in the Netherlands and to compare short-term postoperative outcomes between patients who underwent resection only and patients who underwent combined resection and ablation.

Methods

This nationwide cohort study was carried out with data from the Dutch Hepato Biliary Audit (DHBA), a nationwide obligatory audit in which all hospitals in the Netherlands performing liver surgery register all liver resections. Information about the formation and content of the DHBA has been described previously. Data verification was performed to provide insight in the completeness and accuracy of the DHBA. Ethical approval was considered unnecessary under Dutch law as the audit is part of the Dutch Inspectorate of Health Care and provides an anonymized dataset.

Patient selection

All patients who underwent liver resection or liver resection combined with ablation within one surgical session for CRLM between 1st of January 2014 and 31st of December 2018 and were registered in the DHBA before 22nd March of 2019 were included in the analyses. Patients were excluded if information was missing regarding date of birth, date of surgery or type of tumor for which treatment took place. All patients who only underwent ablation without liver resection for CRLM were also excluded. Patients were divided between two treatment groups for analysis depending on the type of treatment of CRLM. These groups were resection only or combined resection and ablation.

For assessment of patient- and tumor-characteristics that could possibly influence the use of combined resection and ablation and hospital variation in the use of combined resection and ablation, all eligible patients were included. For the comparison of short-term postoperative outcomes between resection and combined resection and ablation using propensity score matching, only patients with two or more CRLM could be included in the matching process.

Variables

Studied variables included patient characteristics (age in years, sex, American Society of Anesthesiologists (ASA) classification, comorbidity score according the Charlson Comorbidity Index (CCI), history of liver disease and a history of liver resection), tumor characteristics (number of CRLM, diameter of largest CRLM prior to treatment and time of diagnosis of metastases) and treatment characteristics (preoperative chemotherapy, resection only or combined resection and ablation, minimally invasive or open approach of the procedure, major or minor liver resection, simultaneous resection of colorectal primary tumor and CRLM, type of hospital where treatment took place and oncological network where treatment took place). Major liver resection was defined as resection of 3 or more adjacent Couinaud segments.

Of all 71 hospitals in the Netherlands, only 25 performed liver surgery. All regional hospitals are included in an oncological network. Seven oncological networks were classified according to treatment collaboration between hospitals or topographical location if no collaboration network was present, as described earlier. Oncological, networks include one or two tertiary referral centers and several regional hospitals performing liver surgery. Regional centers can refer patients to tertiary referral centers if the patient or tumor requires specific tertiary care.

Outcomes

Case-mix variables, defined as factors which are non-modifiable patient- and tumor-characteristics influencing the use of the type of procedure and possible hospital variation in the use of combined resection and ablation were assessed.

Perioperative outcomes comparing resection and combined resection and ablation were open or minimally invasive approach of the procedure, additional resection (i.e. bile duct resection, portal vein resection and arterial reconstruction), and extent of liver resection (i.e. major liver resection).

Short-term postoperative outcomes compared between groups included specific surgical complication rates and more general complication rates. Specific complications were specified as bile leakage, postoperative hemorrhage requiring reintervention, postoperative liver failure according the International Study Group of Liver Surgery, deep surgical site infection (i.e biloma or...
abcess), incisional surgical site infection, pneumonia, myocardial complication or a thrombo-embolic complication.16

Other postoperative outcomes included length of hospital stay (LOS), calculated as time between date of surgery and the date of discharge and postoperative complicated course (PCC), defined as a complication leading to a hospitalization longer than 14 days, any surgical, endoscopic or radiological re-intervention or death. This composite outcome measures takes into account several low-graded complications resulting in longer hospitalization.

Other major postoperative outcomes were 30-day major morbidity, defined as a complication graded Clavien-Dindo classification of grade III (CD > 3a) or higher (i.e. requiring re-intervention, medium care (MC) or intensive care (IC) management or death) within 30 days of surgery and 30-day mortality defined as death within 30 days from date of surgery or during initial hospitalization.17

Statistical analysis

Baseline characteristics were compared between groups using the Chi-square test or Fisher exact test as appropriate for categorical variables. The independent two-sample t-test was used for continuous variables.

Potential case-mix variables were entered in a univariable and multivariable multilevel regression model to obtain a parsimonious statistical model. Influence of case-mix factors was shown as adjusted odds ratios (aOR) with 95% Confidence Intervals (CI). In multivariable analyses two steps were undertaken. All variables were tested in a univariable model with the outcome as dependent variable. If the association was positive (p < 0.10) the variable was entered in the multivariable model. Multilevel analysis were performed with year, hospital and oncological network where surgery took place as a grouping covariate. Statistical significance was defined as a two-sided p-value <0.05 in the multivariable model.

Hospital and oncological network variation in the use of combined resection and ablation was corrected for case-mix variables. Case-mix correction was performed using the observed/expected ratio (O/E ratio) which is calculated by dividing the observed number of patients with type of procedure through the number of patients expected to receive a type of procedure. The expected number of patients is based on a prediction using a multivariable multilevel logistic regression model with all case-mix variables. An O/E ratio below 1 indicates that a hospital or oncological network performed less combined resection and ablation than expected and an O/E ratio above 1 indicated that a hospital or oncological network performed more combined resection and ablation than expected. This method was chosen as this constitutes the current manner of feedback for all Dutch hospitals which participate in registries from the Dutch Institute for Clinical Auditing.18

To evaluate differences in postoperative outcomes between resection and combined resection and ablation propensity score matching (PSM) was performed. As a first step, a multivariable logistic regression model was used to estimate propensity scores. Afterwards, PSM was performed with a 1:1 ratio using the nearest neighbor method with a caliper of 0.015. As covariates used for PSM were age, ASA score, Charlson Comorbidity Index, diameter of the largest CRLM prior to treatment, number of CRLM, and history of liver resection. Major liver resection was not used as covariate in the analyses as this represents the difference between resection and combined resection and ablation in the authors opinion. To assess the quality of the matching process standardized mean differences (smd) were used. Standard mean differences below 0.1 for baseline characteristics between the two groups indicate negligible differences between both groups after PSM. After PSM, baseline characteristics and outcomes were compared between the groups using the Chi-square test or Fisher exact test for categorical variables. Continuous outcomes were presented as medians with interquartile ranges (IQR). A multivariable logistic regression model was performed using backward selection for all postoperative outcomes which differed significantly after PSM to identify variables associated with these outcomes.

Multicollinearity was assessed in all logistic regression models. This was carried out by calculation of the Variance Inflation Factor (VIF). A VIF higher than 2.5 was considered to indicate multicollinearity.

All analyses were performed in R version 3.2.2® (R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria).

Results

In total, 4776 patients underwent resection only or resection combined with ablation for CRLM. Of these patients, 137 were excluded because of missing information concerning type of tumor, and date of surgery. A total of 4639 patients were analyzed of whom 3697 (80%) underwent resection only and 942 (20%) underwent combined resection and ablation.

Patients who underwent combined resection and ablation were younger, had lower CCI, had a history of liver resection less often, and received preoperative chemotherapy less often compared to patients who underwent resection only (Table 1). Patients who underwent combined resection and ablation also had higher total number of CRLM, smaller diameter of the largest CRLM, synchronous metastases more often and were treated in a tertiary referral center more often compared to patients who underwent resection only.

Case-mix variables associated with liver resection and thermal ablation

In multivariable multilevel logistic regression analysis case-mix variables that were positively associated with combined resection and ablation included preoperative chemotherapy (aOR 1.38, CI 1.11–1.71, p = 0.004), higher number of CRLM (4 or more CRLM, aOR 3.56, CI 2.58–3.87, p < 0.001), and bilobar disease (aOR 3.16, CI 2.58–3.87, p < 0.001) (Table 2).
Table 1 Baseline characteristics for patients diagnosed with colorectal liver metastases (CRLM) between 2014 and 2018 in the Netherlands undergoing resection only or combined resection and ablation

Factor	Resection only	Combined resection and ablation	p-value
	N (%)	N (%)	
Total	3697	942	

Patient characteristics

Sex	0.018	
Male	2300 (62)	626 (67)
Female	1397 (38)	316 (33)

Age in years	0.032	
<50	252 (7)	77 (8)
50–64	1244 (34)	349 (37)
65–79	1919 (52)	456 (48)
>80	277 (8)	56 (6)

Charlson Comorbidity Index (CCI)	<0.001	
0/1	2676 (74)	717 (80)
2+	934 (26)	179 (20)

Body Mass Index (BMI)

| Mean (sd) | 26.26 (4.38) | 26.32 (4.37) | 0.671 |

American Society of Anesthesiology (ASA) classification

ASA I/II	2904 (81)	734 (81)
ASA III+	702 (19)	168 (19)

History of liver resection	<0.001	
No	2927 (81)	786 (86)
Yes	688 (19)	127 (14)

History of liver disease¹	0.135	
No	3472 (99)	868 (99)
Yes	54 (1)	7 (1)

History of preoperative chemotherapy	<0.001	
No	2526 (73)	483 (55)

Table 1 (continued)

Factor	Resection only	Combined resection and ablation	p-value
	N (%)	N (%)	
Yes	925 (27)	389 (45)	
Missing	246	70	

Tumor characteristics

- **Number of CRLM**
 - ≤3: 3007 (85) | 452 (50) |
 - >3: 540 (15) | 444 (50) |
 - Missing: 150 | 46 |
 - p-value <0.001

- **Maximum diameter of largest CRLM (mm)²**
 - <20: 954 (30) | 624 (67) |
 - 20–34: 1182 (38) | 326 (41) |
 - 35–54: 610 (19) | 136 (17) |
 - >55: 398 (13) | 58 (7) |
 - Missing: 553 | 146 |
 - p-value <0.001

- **Location primary tumor**
 - Colon: 2342 (64) | 624 (67) |
 - Rectal: 1347 (37) | 310 (33) |
 - Missing: 8 | 8 |
 - p-value 0.064

- **Type of metastases**
 - Metachronous: 1981 (56) | 380 (43) |
 - Synchronous: 1550 (44) | 514 (57) |
 - Missing: 166 | 48 |
 - p-value <0.001

- **Extrahepatic disease**
 - No: 3042 (88) | 757 (86) |
 - Yes: 623 (12) | 121 (14) |
 - Missing: 32 | 6 |
 - p-value 0.222

- **Type of hospital³**
 - Regional hospital: 2102 (57) | 455 (48) |
 - Tertiary referral hospital: 1595 (43) | 487 (52) |
 - p-value <0.001

- **Year of procedure**
 - 2014: 682 (18) | 172 (18) |
 - 2015: 705 (19) | 191 (20) |
 - 2016: 803 (22) | 181 (19) |
 - 2017: 770 (21) | 216 (23) |
 - 2018: 737 (20) | 182 (19) |
 - p-value 0.342

Bold p-values indicate statistical significance.

¹ History of liver disease containing liver cirrhosis, esophageal variceal disease, hepatorenal syndrome, liver failure, alcoholic liver disease, toxic liver disease (mild), (chronic) hepatitis or liver fibrosis.

² millimeter.

³ Type of hospital: tertiary referral centers are defined as hospitals with highest expertise on oncologic surgery.
Table 2
Univariable and multivariable logistic regression model nested for year of surgery and hospital where treatment took place to assess the association of patient and tumor characteristics with combined resection and ablation in patients with colorectal liver metastases (CRLM) in the Netherlands between 2014 and 2018

Factor	N	Univariable analysis						
	OR	CI (95%)	p-value	OR	CI (95%)	p-value		
Sex								
Male	2926	1						
Female	1713	0.83	0.71–0.97	0.78	0.64–0.94			
Age in years								
<50	329	1						
50–64	1592	1.56	0.96–2.68	0.94	0.64–1.35	0.727		
65–79	2375	1.76	1.11–2.99	0.95	0.66–1.36	0.767		
>80	333	2.23	1.26–4.07	0.95	0.47–1.55	0.816		
Missinga	9							
Charlson Comorbidity Index (CCI)								
0/1	3638	1						
2+	870	0.95	0.78–1.14	0.92	0.73–1.16			
Missinga	131							
Body Mass Index		1.00	0.99–1.02	0.671				
American Society of Anesthesiology (ASA) classification				0.566				
I/II	3393	1						
III+	1113	0.72	0.60–0.85					
Missinga	133							
History of liver diseaseb		0.104	0.734					
No	4340	1						
Yes	61	0.52	0.21–1.07	0.86	0.33–2.17			
Missinga	238							
History of liver resection		0.495						
No	3713	1						
Yes	815	1.10	0.84–1.41					
Missinga	111							
History of preoperative chemotherapy		<0.001	0.004					
No	3009	1						
Yes	1314	2.20	1.88–2.56	1.38	1.11–1.71			
Missing	316							
Number of CRLM		<0.001	<0.001					
<3	3459	1						
>3	984	5.47	4.66–6.42	3.56	2.85–4.43			
Missinga	196							
Maximum diameter largest CRLM (mm)c		<0.001	<0.001					
<20	1230	1						
20–34	1508	0.95	0.80–1.14	0.606	0.63–0.98	0.035		
35–54	746	0.77	0.61–0.97	0.52	0.40–0.70	<0.001		
>55	456	0.50	0.37–0.68	<0.001	0.28	0.19–0.40	<0.001	
Missingd	699	0.91	0.73–1.14	0.428	0.75	0.54–1.05	0.092	
Bilobar disease		<0.001	<0.001					
No	2472	1						

(continued on next page)
Case-mix variables negatively associated with combined resection and ablation were female sex (aOR 0.78, CI 0.64–0.94, p < 0.001), increasing diameter of the largest CRLM (>55 mm compared to <20 mm, aOR 0.28, CI 0.19–0.40, p < 0.001) and a rectal primary tumor (aOR 0.76, CI 0.63–0.93, p = 0.006) (Table 2).

Hospital variation in the use of liver resection and thermal ablation

Significant hospital variation in the use of combined resection and ablation was present in Dutch hospitals and Dutch oncological networks. The variation was observed in both uncorrected and case-mix corrected analyses.

Unadjusted percentage of patients treated per hospital using combined resection and ablation ranged between 4% and 44% (Fig. 1a). Unadjusted percentage of patients treated per oncological network using combined resection and ablation ranged between 11% and 28% (Fig. 2a).

Case-mix adjusted O/E ratios showed several outliers between hospitals in the use of combined resection and ablation (Fig. 1b). Six hospitals performed significantly more combined resection and ablation than expected on the basis of their case-mix variables. O/E ratios ranged between 0 and 2.19 between the hospitals.

Case-mix adjusted O/E ratios showed several outliers between oncological networks in the use of combined resection and ablation (Fig. 2b). Two oncological networks performed significantly more combined resection and ablation than expected on the basis of their case-mix variables. Three oncological networks performed significantly less combined resection and ablation than expected on the basis of their case-mix variables. O/E ratios ranged between 0.49 and 1.36 between the oncological networks.

Propensity score matching: baseline- and surgical characteristics

After the matching process, 1468 patients were included in the final analyses regarding short-term postoperative outcomes, of whom 734 (50%) were included in the resection only group and of whom 734 (50%) in the combined resection and ablation group.

Standard mean differences were below 0.100 for all baseline characteristics (Table 3). The only significant difference between the groups was a higher number of patients treated in a tertiary hospital variation in combined liver resection and thermal ablation for colorectal liver metastases and impact on short-term postoperative outcomes: a nationwide population-based study, HPB, https://doi.org/10.1016/j.hpb.2020.10.003
referral hospital in the combined resection and ablation group (53% versus 43%, p < 0.001; smd = 0.192).

Perioperative outcomes
Minimally invasive and major resection, respectively, were performed less often in the combined resection and ablation group (6% vs. 15%, p < 0.001 and 15% vs. 36%, p < 0.001) (Table 4). Several specific complications occurred less often in the combined resection and ablation group, including bile leakage (1.6% vs. 4.3% p = 0.005) and postoperative liver failure (0.5% vs. 2.9%, p = 0.001). Hospital stay was lower in the combined resection and ablation group (median 6 days (IQR 5–9) vs. 7 days (IQR 5–10), p = 0.011). Overall morbidity and 30-day major morbidity were not different between the two groups. PCC (11% vs. 14.7%, p = 0.043) and 30-day mortality (0.7% vs. 2.3%, p = 0.018) were lower in the combined resection and ablation group.

Associated factors with postoperative complicated course and 30-day mortality
In univariable logistic regression, combined resection and ablation was associated with a reduction of PCC and 30-day...
mortality (Table 4). In multivariable logistic regression, combined resection and ablation (aOR 0.95, CI 0.65–1.38, p = 0.789) was not associated with PCC. Factors such as major liver resection (aOR 2.31, CI 1.57–3.39, p < 0.001), ASA score (aOR 1.92, CI 1.27–2.89, p = 0.001), increasing diameter of largest CRLM (<20 mm vs. >55 mm, aOR 2.18, CI 1.57–3.39, p = 0.001) and simultaneous resection of the colorectal primary tumor and CRLM (aOR 2.49, CI 1.55–3.98, p < 0.001) were associated with an increased PCC rate (Table 5).

Table 3 Baseline characteristics for propensity score matched patients diagnosed with colorectal liver metastases (CRLM) between 2014 and 2018 in the Netherlands undergoing resection only or combined resection and ablation

Factor	Resection only	Combined resection and ablation	p-value	smd
Total	734 (100)	734 (100)		
Patient characteristics				
Sex			0.082	0.094
Male	453 (62)	486 (66)		
Female	281 (38)	248 (34)		
Age in years			0.367	0.093
<50	54 (7)	64 (9)		
50–64	278 (38)	295 (40)		
65–79	369 (49)	337 (46)		
>80	32 (5)	37 (5)		
Missing	1	1		
Body Mass Index (BMI)				
(mean, SD)	26 (4)	26 (4)	0.084	0.090
Charlson Comorbidity Index (CCI)			0.432	0.045
0/1	583 (81)	54 (79)		
2+	139 (19)	153 (21)		
Missing	12	7		
American Society of Anesthesiology (ASA) classification			0.747	0.020
ASA I/II	606 (83)	597 (82)		
ASA III+	127 (17)	132 (18)		
Missing	1	5		
History of liver resection			0.906	0.010
No	623 (86)	623 (86)		
Yes	105 (14)	102 (14)		
Missing	6	9		
History of liver disease			0.996	0.015
No	706 (99)	709 (99)		
Yes	7 (1)	6 (1)		
Missing	21	19		
History of preoperative chemotherapy			0.970	0.005
No	372 (54)	378 (54)		
Yes	322 (46)	324 (46)		
Tumor characteristics				
Number of lesions			0.490	0.040
≤3	355 (51)	345 (49)		
>3	347 (49)	365 (51)		
Missing	32	24		
Maximum diameter of largest CRLM (mm)			0.968	0.028
<20	206 (32)	213 (33)		
20–34	256 (40)	257 (40)		
35–54	123 (19)	118 (18)		
>55	55 (9)	53 (8)		
Missing	94	93		
Type of metastases			0.968	0.004
Metachronous	289 (41)	288 (41)		
Synchronous	417 (59)	419 (59)		
Missing	28	27		
Type of hospital			<0.001	0.192
Regional hospital	416 (57)	346 (47)		
Tertiary referral hospital	318 (43)	388 (53)		
Year of surgery			0.423	0.098
2014	123 (17)	105 (14)		
2015	169 (23)	152 (21)		
2016	140 (19)	158 (22)		
2017	159 (22)	158 (23)		
2018	143 (19)	151 (20)		

Bold p-values indicate statistical significance. a History of liver disease containing liver cirrhosis, esophageal variceal disease, hepatorenal syndrome, liver failure, alcoholic liver disease, toxic liver disease (mild), (chronic) hepatitis or liver fibrosis. b millimeter. c Type of hospital: tertiary referral center is defined as hospitals with highest expertise on oncologic surgery.
Table 4 Perioperative outcomes for patients diagnosed with colorectal liver metastases between 2014 and 2018 in the Netherlands who underwent resection only or combined resection and ablation

Factor	Resection only	Combined resection and ablation	p-value
Number of patients (total)	734	734	
Surgical approach			<0.001
Open	602 (82)	648 (89)	
Minimally invasive	107 (15)	47 (6)	
Conversion	20 (3)	34 (5)	
Missing	5	5	
Surgical strategy			0.431
Primary tumor first	441 (64)	453 (65)	
Liver first	172 (25)	152 (22)	
Simultaneous resection of colorectal tumor and CRLM	82 (12)	89 (13)	
Missing	39	40	
Synchronous additional resection*			0.171
No	379 (74)	431 (78)	
Yes	131 (26)	121 (22)	
Missing*	224	182	
Major liver resection			<0.001
No	470 (64)	627 (85)	
Yes	264 (36)	107 (15)	
Bile leakage			0.005
No	696 (96)	717 (99)	
Yes	31 (4)	12 (1)	
Missing*	7	5	
Postoperative haemorrhage			0.416
No	676 (99)	683 (99)	
Yes	9 (1)	5 (1)	
Missing*	49	46	
Postoperative liver failure			0.001
No	706 (97)	725 (99)	
Yes	21 (3)	4 (1)	
Missing*	7	5	
Intra-abdominal infection			0.453
No	661 (95)	660 (94)	
Yes	37 (5)	45 (6)	
Missing*	36	29	

Surgical site infection

Factor	Resection only	Combined resection and ablation	p-value
No	681 (98)	677 (94)	0.177
Yes	17 (2)	45 (6)	
Missing*	36	30	

Pneumonia

Factor	Resection only	Combined resection and ablation	p-value
No	661 (94)	656 (93)	0.520
Yes	41 (6)	48 (7)	
Missing*	32	30	

Cardiac complication

Factor	Resection only	Combined resection and ablation	p-value
No	698 (96)	703 (96)	0.775
Yes	29 (4)	26 (4)	
Missing*	7	5	

Thromboembolic complication

Factor	Resection only	Combined resection and ablation	p-value
No	705 (97)	715 (98)	0.299
Yes	21 (3)	14 (2)	
Missing*	8	5	

Length of stay (Median + IQR)

Factor	Resection only	Combined resection and ablation	p-value
No	7 (5–10)	6 (5–9)	0.011
Yes	240 (15)	81 (11)	

Overall 30-day morbidity

Factor	Resection only	Combined resection and ablation	p-value
No	493 (67)	516 (71)	0.187
Yes	240 (33)	215 (29)	
Missing*	1	3	

Postoperative complicated course

Factor	Resection only	Combined resection and ablation	p-value
No	626 (85)	653 (89)	0.043
Yes	240 (15)	81 (11)	

30-day major morbidity

Factor	Resection only	Combined resection and ablation	p-value
No	672 (92)	667 (91)	0.712
Yes	62 (8)	67 (9)	

30-day mortality

Factor	Resection only	Combined resection and ablation	p-value
No	717 (98)	729 (99)	0.018
Yes	17 (2)	5 (1)	

Bold p-values indicate statistical significance.
Synchronous additional resection was defined as any extra procedure including vascular resection or reconstruction or as additional intra-abdominal resection as a result of in-growth in other structures.
Major liver resection was defined as resection of at least 3 liver segments.
Postoperative complicated course was defined as a complication after surgery resulting in prolonged hospitalization (>14 days), or reintervention or death as a result of a complication.
Major morbidity was defined as a Clavien Dindo Grade 3 or higher complication.

a Missing are not included in the analysis.
The odds of mortality were higher in patients with a high ASA score (aOR 5.53, CI 2.07–14.7, p < 0.001) increasing diameter of largest CRLM (<20 mm vs. >35–54 mm, aOR 6.97, CI 1.35–34.3, p = 0.023) (Table 5).

Discussion

In this nationwide population-based analysis significant variation was observed in the use of combined resection and ablation between hospitals and oncological networks in the Netherlands which persisted after case-mix correction. The propensity score-matched analysis showed lower rates of postoperative liver failure, bile leakage, shorter length of hospital stay, lower rates of PCC and 30-day mortality in the combined resection and ablation group. This effect was attributable to the extent of the liver resection performed. Oncological results of combined resection and ablation remain to be determined in order to provide a definitive advice concerning this technique in colorectal liver metastases patients.

Combining resection and ablation for CRLM in order to spare parenchyma has gained terrain over the last decade, with studies increasingly reporting postoperative- and oncological outcomes. Decreasing postoperative 30-day morbidity and 30-day mortality are first priority after surgical procedures and specifically liver surgery in order to decrease the impact of complications on quality of life, oncological outcomes and costs.9-23 Several reports show that complications after liver surgery impact the with 30-day mortality. The odds of mortality were higher in patients with a high ASA score (aOR 5.53, CI 2.07–14.7, p < 0.001) increasing diameter of largest CRLM (<20 mm vs. >35–54 mm, aOR 6.97, CI 1.35–34.3, p = 0.023) (Table 5).

Table 5

Results of stepwise multilevel logistic regression model nested for year and hospital where treatment took place with postoperative outcomes for patients with colorectal liver metastases (CRLM) who underwent liver resection in the Netherlands between 2014 and 2018

Factor	N	OR	CI (95%)	p-value
Type of procedure				
Resection only	734	1		
Combined resection and ablation	734			
Major liver resection				
No	1097	1		
Yes	371	2.31	1.57–3.39	
American Society of Anesthesiology (ASA) classification				
I/II	1203	1		
III+	259	1.92	1.27–2.89	
Maximum diameter of largest CRLM (mm)				
<20	419	1		
20–34	513	1.21	0.79–1.86	0.382
35–54	241	1.56	0.95–3.96	0.081
>55	108	2.18	1.57–3.39	0.001
Surgical strategy				
Primary tumor first	894	1		
Liver first	324	0.89	0.58–1.41	0.687
Simultaneous resection of colorectal tumor and CRLM	171	2.49	1.55–3.98	<0.001
Missinga	79			
Type of surgery				
Open	1250	1		
Minimally invasive	154	0.55	0.26–1.13	0.104
Conversion	54	1.00	0.41–2.39	0.984
Missinga	10			
Mortality				
Type of procedure				
Resection only	734	1		
Combined resection and ablation	734	0.54	0.17–1.72	0.299

Bold p-values indicate statistical significance.

a Missing not included in analyses based on relatively small group.
long-term survival and should be minimized.24,25 Using an approach that decreases complications should therefore always be considered in such patients. Promising results concerning postoperative outcomes in patients receiving the combination of resection and thermal ablation have been published.9 Reports on short-term postoperative outcomes after combined resection and ablation are mainly small sample sized studies.6,9,26 A large retrospective study from the United States showed that postoperative outcomes were at least similar between patients undergong resection or combined resection and ablation.57 When comparing two-staged procedures to combined resection and ablation several studies show that combined resection and ablation seems to provide similar postoperative- and oncological outcomes.8,9,28 The present study shows improved short-term postoperative outcomes such as lower length of stay and lower mortality rate after combined surgery and ablative techniques compared to resection only. However, this effect was attributable to not performing major liver resection in the combined resection and ablation patients. The combination of resection and ablative techniques seems safe in patients with CRLM and should be considered in these patients either as a potentially curative option in patients who would otherwise be considered to have unresectable disease or as an alternative for more invasive surgery. In multivariable logistic regression it was shown that the positive results in our study are a result of the less invasive character of combining liver resection with thermal ablation compared to resection only. Therefore, treating physicians should try to avoid liver major liver resection, if by combining liver resection and ablation, the same result can be achieved. This can particularly be used in more frail patients. However, oncological outcomes will have to be assessed.

This population-based study reflecting daily practice in the Netherlands showed that several factors were associated with the use of combined resection and ablation. These factors include preoperative chemotherapy, \(>3\) CRLM, and bilobar disease. Earlier reports provide information on factors that increase the use of combination of resection and ablation. These studies show that combining treatment techniques can increase resectability when CRLM are situated at a difficult location, are bilobar or when a high number of CRLM is present.4,29 The lack of consensus in the Dutch guideline and international studies on oncological safety may be responsible for the variation in the use of combined resection and ablation between hospitals and oncological networks in the Netherlands. Another possible explanation for the variation in the use of combined resection and ablation could be the varying availability of interventional radiologists or surgeons who can perform thermal ablation across centers in the Netherlands. These specialists are more often situated in a tertiary referral center. The assessment of hospital variation in the use of combined resection and ablation provides insight in the differences in the use of combined resection and ablation between Dutch hospitals and oncological networks. Hospital variation has proven to be associated with undesired complications as well as higher costs.30-32 We are still awaiting potentially oncological favorable outcomes of either treatment strategy. Hospital variation is a problem when one of the treatment strategies proves to be favorable and should therefore be minimized.33

An important limitation of this study is that long-term oncological outcomes such as overall survival and disease-free survival were not analyzed. These long-term outcomes are not part of the DHBA, and therefore no conclusions can be drawn regarding oncological outcome of combined resection and ablation. Before we can recommend resection and ablation over surgery alone as the preferred approach for this subgroup, non-inferiority with regards to overall survival should be established. Several studies show that oncological outcomes of patients who receive parenchymal sparing resection of CRLM are not significantly different from patients undergoing conventional liver resection.4,6 Other reports concerning CRLM patients indicated that local control and oncological safety of ablative techniques were similar to liver resection.14-35 Some reports indicate that combined resection and ablation achieves results comparable to conventional liver resection with respect to short-term post-operative outcomes and oncological outcomes.38-42 However, oncological safety of combined resection and ablation is still under debate as multicenter randomized studies are lacking and contrasting results have been published before.43 These are urgently needed to address the true oncological safety of the combination of combined resection and ablation. If these studies have been realized these results can pose a change in (inter)national guidelines and on the use of combined resection and ablation.44 This study with upcoming trials could also result in health insurances reimbursing thermal ablation for CRLM. To date thermal ablation is not reimbursed by Dutch Health insurance companies for resectable CRLM.

Other limitations of this study include its retrospective design and, as a result of the audit nature of this research lacking of very detailed perioperative information. This is represented by the lack of information regarding tumor location and diameter of lesions other than the largest CRLM. When tumors are near large vessels, are very centrally located or several large lesions are in situ, combined resection and ablation might not be possible and the surgical team may have chosen a higher risk resection only strategy.

In conclusion, this population-based nationwide study reflecting daily practice in the Netherlands showed significant hospital and oncological network variation in the use of combined resection and ablation. Lower postoperative bile leakage, liver failure, length of stay, postoperative complicated course and 30-day mortality was observed in the combined resection and ablation group. Improved postoperative outcomes after combined resection and ablation are due to parenchymal sparing surgery. This implies that if technically feasible, combining resection and ablation and thereby avoiding major hepatectomy improves postoperative outcomes. Oncological
results of combined resection and ablation remain to be determined in order to provide a definitive advice concerning this technique in colorectal liver metastases patients. Therefore, the implication should be that a surgeon should consider the trade-off of possible increase in local recurrence rates and the decrease in short-term postoperative risk when using ablation to avoid a major hepatectomy while treating patients with multiple liver lesions. That is particularly true for patients that are at higher risk of complications.

Funding

None.

Conflict of Interest

None to declare.

References

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917.
2. Adam R, De Gramont A, Figueras J, Guthrie A, Kokudo N, Kunstlinger F et al. (2012) The oncosurgery approach to managing liver metastases from colorectal cancer: a multidisciplinary international consensus. Oncologist 17:1225–1239.
3. Alvarez FA, Sanchez Claria R, Oggiero S, de Santibanes E. (2016) Parenchymal-sparing liver surgery in patients with colorectal carcinoma liver metastases. World J Gastrointest Endoscopy 8:407–423.
4. Moris D, Ronnekleiv-Kelly S, Rahnam-Azar AA, Felekoursis E, Dilhoffs M, Schmidt C et al. (2017) Parenchymal-sparing versus anatomic liver resection for colorectal liver metastases: a systematic review. J Gastrointest Surg 21:1076–1085.
5. Wang LJ, Zhang ZY, Yan XL, Yang W, Yan K, Xing BC. (2018) Microwave ablation versus resection for technically resectable colorectal liver metastasis: a propensity score analysis. World J Surg Oncol 16:207.
6. Barabino M, Gatti A, Santambrogio R, Polizzi M, Luigiano C, Opocher E. (2017) Intraoperative local ablative therapies combined with surgery for the treatment of bilobar colorectal liver metastases. Anticancer Res 37:2743–2750.
7. Evvard S, Terzilli G, Caballero C, Bonhomme B. (2018) Parenchymal sparing surgery brings treatment of colorectal liver metastases into the precision medicine era. Eur J Cancer 104:195–200.
8. Philips P, Groeschl RT, Hanna EM, Swan RZ, Turaga KK, Martinie JB et al. (2016) Single-stage resection and microwave ablation for bilobar colorectal liver metastases. Br J Surg 103:1048–1054.
9. van Amerongen MJ, van der Stok EP, Futterer JJ, Jenniskens SF, Moelker A, Grunhagen DJ et al. (2016) Short term and long term results of patients with colorectal liver metastases undergoing surgery with or without radiofrequency ablation. Eur J Surg Oncol 42:523–530.
10. (iKLN) CCOtN. (2014) National evidence-based guideline. Colorectal carcinoma.
11. van der Werf LR, Kok NFM, Buij CS, Grunhagen DJ, Hoogwater FJH, Swijnenburg RJ et al. (2019) Implementation and first results of a mandatory, nationwide audit on liver surgery. HPB 21:1400–1410.
12. van der Werf LR, Voeten SC, van Loe CMM, Karthaus EG, Wouters M, Prins HA. (2019) Data verification of nationwide clinical quality registries. BJS Open 3:857–864.
13. RIVM. (2019) Regional and academic hospital distribution in the Netherlands.
14. Elfrink AKE, Kok NFM, van der Werf LR, Krul MF, Marra E, Wouters M et al. (2020) Population-based study on practice variation regarding preoperative systemic chemotherapy in patients with colorectal liver metastases and impact on short-term outcomes. Eur J Surg Oncol 46:1742–1755.
15. Elfrink AKE, Pool M, van der Werf LR, Marra E, Burgmans MC, Meijerink MR et al. (2020 May 6) Preoperative imaging for colorectal liver metastases: a nationwide population-based study. BJU Open 4:605–621.
16. Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R et al. (2011) Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 149:713–724.
17. Clavien PA, Sanabria JR, Strasberg SM. (1992) Proposed classification of complications of surgery with examples of utility in cholecystectomy. Surgery 111:518–526.
18. Beck N, van Bonnel AE, Eddes EH, van Leersum NJ, Tollenaar RA, Wouters MW et al. (2020) The Dutch Institute for Clinical Auditing: Achieving Codman’s dream on a nationwide basis. Ann Surg 271:627–631.
19. Kaupilla JH, Johar A, Lagergren P. (2020) Medical and surgical complications and health-related quality of life after esophageal cancer surgery. Ann Surg 271:502–508.
20. Archer S, Pinto A, Vilk S, Bicknell C, Faiz O, Byrne B et al. (2019) Surgery, complications, and quality of life: a longitudinal cohort study exploring the role of psychosocial factors. Ann Surg 270:95–101.
21. Pandanaboyana S, Bell R, White A, Pathak S, Hidalgo E, Lodge P et al. (2018) Impact of parenchymal preserving surgery on survival and recurrence after liver resection for colorectal liver metastasis. ANZ J Surg 88:66–70.
22. Memeo R, de Blasi V, Adam R, Goere D, Laurent A, de Angelis N et al. (2018) Postoperative infectious complications impact long-term survival in patients who underwent hepatectomies for colorectal liver metastases: a propensity score matching analysis. J Gastrointest Surg 22:2045–2054.
23. Chen Q, Beal EW, Kimbrough CW, Bagante F, Merath K, Dilhoffs M et al. (2018) Perioperative complications and the cost of rescue or failure to rescue in hepato-pancreato-biliary surgery. HPB 20:854–864.
24. Matsuda A, Matsumoto S, Seya T, Matsutani T, Kishi T, Yokoi K et al. (2013) Does postoperative complication have a negative impact on long-term outcomes following hepatic resection for colorectal liver metastasis?: a meta-analysis. Ann Surg Oncol 20:2485–2492.
25. Tzeng CW, Vaughter JN. (2013) Postoperative complications and oncologic outcomes after resection of colorectal liver metastases: the importance of staying on track. Ann Surg Oncol 20:2457–2459.
26. Philips P, Scoggins CR, Rostas JK, McMasters KM, Martin RC. (2017) Safety and advantages of combined resection and microwave ablation in patients with bilobar hepatic malignancies. Int J Hyperthermia 33:43–50.
27. Xourafas D, Pawlik TM, Eraz A, Dilhoffs M, Abdel-Misih S, Tsung A et al. (2019) Impact of concomitant ablation on the perioperative outcomes of patients with colorectal liver metastases undergoing hepatectomy: a propensity score matched nationwide analysis. HPB 21:1079–1086.
28. Faitot F, Faron M, Adam R, Elias D, Cimino M, Cherqui D et al. (2014) Two-stage hepatectomy versus 1-stage resection combined with...
radiofrequency for bilobar colorectal metastases: a case-matched analysis of surgical and oncological outcomes. Ann Surg 260:822–827. discussion 827–828.

29. Desjardin M, Desolneux G, Brouste V, Degrandi O, Bonhomme B, Fonck M et al. (2017) Parenchymal sparing surgery for colorectal liver metastases: the need for a common definition. Eur J Surg Oncol 43:2285–2291.

30. Idrees JJ, Johnston FM, Canner JK, Dillhoff M, Schmidt C, Haut ER et al. (2019) Cost of major complications after liver resection in the united states: are high-volume centers cost-effective? Ann Surg 269:503–510.

31. Birkmeyer JD, Reames BN, McCulloch P, Carr AJ, Campbell WB, Wennberg JE. (2013) Understanding of regional variation in the use of surgery. Lancet 382:1121–1129.

32. Nelson-Williams H, Gani F, Kilic A, Spolverato G, Kim Y, Wagner D et al. (2016) Factors associated with interhospital variability in inpatient costs of liver and pancreatic resections. JAMA Surg 151:155–163.

33. McCulloch P, Nagendran M, Campbell WB, Price A, Jani A, Birkmeyer JD et al. (2013) Strategies to reduce variation in the use of surgery. Lancet 382:1130–1139.

34. Elias D, Batou O, Sideris L, Matsuhisa T, Pocard M, Lasser P. (2004) Local recurrences after intraoperative radiofrequency ablation of liver metastases: a comparative study with anatomic and wedge resections. Ann Surg Oncol 11:500–505.

35. Tanaka K, Shimada H, Nagano Y, Endo I, Sekido H, Togo S. (2006) Outcome after hepatic resection versus combined resection and microwave ablation for multiple bilobar colorectal metastases to the liver. Surgery 139:263–273.

36. Desolneux G, Vara J, Razafindratsira T, Isambert M, Brouste V, McKelvie-Sebileau P et al. (2014) Patterns of complications following intraoperative radiofrequency ablation for liver metastases. HPB 16:1002–1008.

37. Razafindratsira T, Isambert M, Evrard S. (2011) Complications of intraoperative radiofrequency ablation of liver metastases. HPB 13:15–23.

38. Meijerink MR, Puijk RS, van Tilborg A, Henningsen KH, Fernandez LG, Neyt M et al. (2018) Radiofrequency and microwave ablation compared to systemic chemotherapy and to partial hepatectomy in the treatment of colorectal liver metastases: a systematic review and meta-analysis. Cardiovasc Intervent Radiol 41:1189–1204.

39. Sasaki K, Margonis GA, Andreatos N, Kim Y, Wilson A, Gani F et al. (2016) Combined resection and RFA in colorectal liver metastases: stratification of long-term outcomes. J Surg Res 206:182–189.

40. Imai K, Allard MA, Castro Benitez C, Vibert E, Sa Cunha A, Cherqui D et al. (2017) Long-term outcomes of radiofrequency ablation combined with hepatectomy compared with hepatectomy alone for colorectal liver metastases. Br J Surg 104:570–579.

41. Tinguely P, Dal G, Bottai M, Nilsson H, Freedman J, Engstrand J. (2020) Microwave ablation versus resection for colorectal cancer liver metastases - A propensity score analysis from a population-based nationwide registry. Eur J Surg Oncol 46:476–485.

42. Scherman P, Syk I, Holmberg E, Naredi P, Rizell M. (2020 Aug 6) Impact of patient, primary tumor and metastatic pattern including tumor location on survival in patients undergoing ablation or resection for colorectal liver metastases: A population-based national cohort study. Eur J Surg Oncol. S0748-7984(20)30657.

43. Weng M, Zhang Y, Zhou D, Yang Y, Tang Z, Zhao M et al. (2012) Radiofrequency ablation versus resection for colorectal cancer liver metastases: a meta-analysis. PLoS One 7:e45493.

44. Puijk RS, Ruarus AH, Vroomen L, van Tilborg A, Scheffer HJ, Nielsen K et al. (2018) Colorectal liver metastases: surgery versus thermal ablation (COLLISSION) - a phase III single-blind prospective randomized controlled trial. BMC Cancer 18:821.