Abemaciclib Does Not Have a Clinically Meaningful Effect on Pharmacokinetics of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 Substrates in Patients with Cancer

P. Kellie Turner, Stephen D. Hall, Sonya C. Chapman, Jessica L. Rehmel, Jane E. Royalty, Yingying Guo, and Palaniappan Kulanthaivel

Eli Lilly and Company, Indianapolis, Indiana (P.K.T., S.D.H., S.C.C., J.L.R., Y.G., P.K.) and Covance Early Clinical Development, Madison, Wisconsin (J.E.R.)

Received January 10, 2020; accepted May 19, 2020

ABSTRACT

Abemaciclib is an orally administered, potent inhibitor of cyclin-dependent kinases 4 and 6 and is metabolized extensively by CYP3A4. The effects of abemaciclib on several CYPs were qualified in vitro and subsequently evaluated in a clinical study. In vitro, human hepatocytes were treated with vehicle, abemaciclib, or abemaciclib metabolites [N-desethylabemaciclib (M2) or hydroxyabemaciclib (M20)]. mRNA levels for eight CYPs were measured using reverse-transcription quantitative polymerase chain reaction, and, additionally, catalytic activities for three CYPs were determined. In the clinical study, adult patients with cancer received a drug cocktail containing CYP substrates [midazolam (3A4), warfarin (2C9), dextromethorphan (2D6), and caffeine (1A2)] either alone or in combination with abemaciclib. Plasma pharmacokinetics (PK) samples were analyzed for all substrates, caffeine metabolite paraxanthine, and abemaciclib; polymorphisms of CYP2C9, CYP2D6, and CYP3A4, and CYP3A5 were evaluated. In vitro, downregulation of CYP mRNA, including 1A2, 2B6, 2C8, 2C9, 2D6, and 3A, by abemaciclib and/or M2 and M20 was observed at clinically relevant concentrations. In humans, abemaciclib did not affect the PK of CYP2D6 or CYP2C9 substrates. Minor statistically significant but clinically irrelevant changes were observed for midazolam [area under the concentration versus time curve from zero to infinity (AUC\(_{0-\infty}\)) (15% lower), C\(_{\text{max}}\) (15% lower)], caffeine [AUC\(_{0-\text{inf}}\) (56% higher)], and paraxanthine: caffeine [area under the concentration versus time curve from 0 to 24 hours ratio (was approximately 30% lower)]. However, given the magnitude of the effect, these changes are not considered clinically relevant. In conclusion, the downregulation of CYP mRNA mediated by abemaciclib in vitro did not translate into clinically meaningful drug-drug interactions in patients with cancer.

SIGNIFICANCE STATEMENT

Despite observations that abemaciclib alters the mRNA of various CYP isoforms in vitro, a clinical study using a drug cocktail approach found no clinically meaningful drug-drug interactions between abemaciclib and a range of CYP substrates [midazolam (CYP3A4), S-warfarin (CYP2C9), dextromethorphan (CYP2D6), and caffeine (CYP1A2)]. This lack of translation suggests greater understanding of mechanisms of CYP downregulation is needed to accurately predict clinical drug-drug interaction risk from in vitro data.

Introduction

Abemaciclib is an orally administered, selective cyclin-dependent kinase 4 and cyclin-dependent kinase 6 inhibitor approved for the treatment of hormone receptor-negative, human epidermal growth factor receptor 2-negative advanced or metastatic breast cancer (Dickler et al., 2017). Abemaciclib is primarily metabolized by CYP3A4, producing two major (>10% circulating exposure) equipotent metabolites: N-desethylabemaciclib [LSN2839567 (M2)] and hydroxyabemaciclib [LSN3106726 (M20)].

Given that abemaciclib is dependent on CYP3A4 for elimination, two clinical drug-drug interaction (DDI) studies were performed to assess the impact of CYP3A induction and inhibition on the exposure of abemaciclib and its active metabolites. Rifampin, a strong CYP3A inducer, decreased the area under the concentration versus time curve (AUC) of abemaciclib by 95% (Kulanthaivel et al., 2016). After dosing with clarithromycin, a strong CYP3A inhibitor, the AUC ratio for abemaciclib was 3.4 (Kulanthaivel et al., 2016; Posada et al., 2017). Accordingly, labeling includes recommendations around the concomitant use of CYP3A inducers and inhibitors (http://uspl.lilly.com/verzenio/verzenio.html#pi;...
Effect of Abemaciclib on CYP1A2, 2C9, 2D6 and 3A4 Substrates

To model the effect of downregulation of CYP3A4 on the oral clearance of midazolam, nonlinear regression using a four-parameter logistic model was used to estimate the maximum extent of induction or downregulation (Emax) and EC50 (version 7; Graphpad Prism, San Diego, CA). The Emax and EC50 for CYP3A4 were entered in a simplified mechanistic static net effect model (eq. 1) (Fahmi et al., 2008) to predict the AUCR (ratio of AUC with and without downregulation) for orally administered midazolam.

$$AUCR = \frac{1}{1 - \left(\frac{f_m}{f_m + f_D} \right) \times \left(1 - F_s \right) + F_s \times \left(1 - \frac{f_m}{f_m + f_D} \right) \times f_D + 1 - f_D}$$

in which f_m is the fraction of systemic clearance of midazolam via CYP3A4 (set at 0.9), F_s is the fraction of midazolam escaping metabolism in the gut (set at 0.5), $[I]_H$ is the concentration of perpetrator drug at the liver (eq. 2), and $[I]_L$ is the concentration of perpetrator drug at the intestine (eq. 3), with inputs as shown in Supplemental Table 4 (Ito et al., 1998; Rostami-Hodjegan and Tucker, 2004, United States Food and Drug Administration, 2017; Tate et al., 2018).

Clinical Study Design

This Phase 1, multicenter, open-label, fixed-sequence study (NCT02688088) was conducted in patients with advanced and/or metastatic cancer. The enrolled patients were at least 18 years of age with an Eastern Cooperative Oncology Group (ECOG) score between 0 and 2 and adequate organ function. The study excluded patients who had surgery performed that could affect the absorption or experience emesis that may affect drug PK.

The study was conducted in accordance with ethical principles derived from international ethics guidelines, including the Declaration of Helsinki, the Council for International Organizations of Medical Sciences International Ethical Guidelines, the International Conference on Harmonisation Good Clinical Practice guideline, and applicable laws and regulations.

Treatment.

A drug cocktail containing four sensitive CYP substrates was selected based on a subset of the validated Cooperstown 5+1 cocktail, namely midazolam (CYP1A4), S-warfarin (CYP2C9), dextromethorphan (CYP2D6), and caffeine (CYP1A2).

Materials and Methods

In Vitro Studies

Abemaciclib, M2, and M20 were supplied by Eli Lilly and Company (Indianapolis, IN). Cryopreserved primary human hepatocytes and supplemented modified Eagle’s medium (with Dr. Chee’s modification; MCM+) were obtained from XenoTech LLC (Lenexa, KS), with lot-specific details given in Supplemental Table 1. Phenacetin, acetaminophen, bupropion hydrochloride, midazolam, omeprazole, phenobarbital, and rifampicin were obtained from Sigma Aldrich (St. Louis, MO). Hydroxybupropion and 1’-hydroxymidazolam were from Cerilliant (Round Rock, TX). Stable-label internal standards for acetaminophen, hydroxybupropion, and 1’-hydroxymidazolam were from a proprietary source. Reagents for RNA isolation and PCR were from Applied Biosystems and Qiagen.

Primary human hepatocytes in culture were treated with vehicle, abemaciclib, or M2 or M20 for 48 hours. Abemaciclib was incubated with a single lot of cells, whereas M2 and M20 were each incubated with three lots of cells. Quantitative evaluation of cytotoxicity was measured using a lactate dehydrogenase release assay (Roche Diagnostics, Indianapolis, IN). mRNA levels for CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 and CYP3A5 as well as the endogenous control, glyceraldehyde 3-phosphate dehydrogenase, were measured using reverse transcription quantitative PCR with specific assays listed in Supplemental Table 2. Catalytic activities for CYP1A2, CYP2B6, and CYP3A4 were measured using selective catalytic assays for CYP1A2 (phenacetin O-deethylated to acetaminophen), CYP2B6 (bupropion hydroxylation), and CYP3A4 (midazolam 1’-hydroxylation) as described in Supplemental Table 3. Omeprazole (50 μM) served as the positive control for aryl hydrocarbon receptor–mediated induction of CYP1A2, phenobarbital (750 μM) was the positive control for constitutively active receptor–mediated induction of CYP2B6, and rifampicin (20 μM) was the positive control for pregnane X receptor–mediated induction of the remaining inducible CYPs. Data are reported for noncytotoxic concentrations as determined by lactate dehydrogenase release, increases in cycle threshold values for glyceraldehyde 3-phosphate dehydrogenase, and/or morphologic observations. Criteria for induction were concentration-dependent increases in mRNA expression of greater than or equal to 2-fold and a response greater than or equal to 20% of the positive control response. Concentration-dependent decreases in mRNA of greater than or equal to 50% were considered downregulation.
caffeine, and paraxanthine (Covance Bioanalytical Services, LLC, Indianapolis, IN) using validated liquid chromatography with tandem mass spectrometric methods.

Pharmacokinetics. PK samples were collected on period 1 day 1 and period 2 day 8 predose and 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 hours postdose for caffeine, paraxanthine, and midazolam, with an additional sample at 48 hours for midazolam. PK samples for dextromethorphan and S-warfarin were collected at predose and 1, 2, 4, 6, 8, 10, 24, 48, and 72 hours postdose on day 1 (period 1) and day 8 (period 2), with an additional sample at 96 hours for S-warfarin. Predose PK samples were taken in period 2 on days 7–9 for abemaciclib.

Pharmacogenomics. Blood samples were collected predose and 8, 24, 48, 72, and 96 hours postdose on period 1 day 1 and period 2 day 8 to assess INR AUC0–96 and INRmax.

Pharmacodynamics. Blood samples were collected predose and 8, 24, 48, 72, and 96 hours postdose for each CYP based on the functional-determining genetic variant for each star allele was selected and assayed according to the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Allele frequencies were tested for Hardy-Weinberg equilibrium within each ethnic group and considered significant at P < 0.0001.

Patients were classified into metabolizer groups for each CYP based on the combination of alleles associated with their genotype (Ingelman-Sundberg et al., 2007; Johnson et al., 2011; Birdwell et al., 2015; Hicks et al., 2017). Patients who were poor metabolizers for any CYP were evaluated for exclusion from the DDI analysis for period 1, and up to 37 were included in period 2. The PK analysis for period 1, and up to 37 included in period 2. The PK

Statistical Methods

Pharmacokinetic and Pharmacodynamic Endpoints. Midazolam, S-warfarin, 1-dextromethorphan, caffeine, and paraxanthine PK (e.g., Cmax, AUC0-inf, and tmax) and S-warfarin pharmacodynamics (INR AUC0–96 or INRmax) were calculated by standard noncompartmental methods (Version 6.4; Phoenix WinNonlin). The ratio between paraxanthine and caffeine exposure was calculated by standard noncompartmental methods (Version 6.4; Phoenix WinNonlin). The ratio between paraxanthine and caffeine exposure was calculated by standard noncompartmental methods (Version 6.4; Phoenix WinNonlin). The ratio between paraxanthine and caffeine exposure was calculated by standard noncompartmental methods (Version 6.4; Phoenix WinNonlin).

Results

In Vitro Studies

First, the effect of abemaciclib and metabolites on catalytic activity of CYP enzymes was assessed. In human liver microsomes, abemaciclib and its major circulating metabolites, M2 and M20, did not inhibit the catalytic activities of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, or CYP3A4 either directly or in a time-dependent manner at clinically relevant circulating concentrations for abemaciclib (0.59 μM), M2 (0.27 μM), and M20 (0.38 μM). No reversible or time-dependent inhibition of CYPs was expected in the liver based on the in vitro data from human liver microsomes for abemaciclib, M2, or M20. However, because of poor solubility, concentrations achieved in vitro were not sufficiently high (12.5 μM for abemaciclib) to rule out CYP3A4 inhibition at the intestine (relevant concentration 0.1*dose/250 ml = 160 μM) (https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions_en.pdf).

We next assessed the effect of abemaciclib and metabolites on mRNA expression. Downregulation of CYP mRNA, including I2A, 2B6, 2C8, 2C9, 2D6, 3A4, and 3A5 (but not 2C19), by abemaciclib and/or M2 and M20 was observed in the in vitro study conducted in human hepatocytes (Fig. 2, A–C). This mRNA downregulation was concentration-dependent, greater than 50%, and not due to cytotoxicity to cells according to evaluation of three endpoints. Furthermore, in studies in human hepatocytes, abemaciclib and metabolites did not inhibit the catalytic activities of CYP1A2, CYP2B6, or CYP3A4. Instead, activity decreased for all three CYPs decreased; CYP3A4 activity is shown as an example in Fig. 2 (http://aspl.lilly.com/verzenio/verzenio.html#pi).

An overall tabular summary of the interpretation of the data for abemaciclib, M2, and M20, including selected Emax and EC50 values, is shown in Supplemental Table 1, and the mean data, presented as % change from 0.1% DMSO (vehicle) control, is shown in Supplemental Table 5.

In the case of CYP2D6, both induction (up to 2.87-fold change) and marked decreases (up to 79.3%) in mRNA levels were observed when hepatectomies were treated with abemaciclib across the concentration range (Fig. 2; Supplemental Table 1). For CYP3A4 mRNA, Emax and EC50 based on fitting of the data for abemaciclib were −0.89-fold and 0.37 μM, respectively. Application of the mechanistic static model (eq. 1) predicted an AUCR of 2.0 for oral midazolam due to CYP3A4 downregulation by abemaciclib. When M2 and M20 were included in the calculation (affecting midazolam model systemic clearance only), the AUCR increased to 2.1.

Clinical Trial

Demographics and Disposition. The majority of the 44 patients enrolled in the study were Caucasian (91%) with a mean age of 60 years (range: 37–78 years) (Table 1). Most patients had an ECOG status of 0 (27.3%) or 1 (68.2%). Of the 44 patients who entered the study and received at least one dose of study drug, 37 completed period 2. There were two patients who discontinued prior to day 1 of period 2, one because of fatal disease progression and one because of a TEAE of increased bilirubin.

Pharmacokinetics. Up to 44 patients were included in the PK analysis for period 1, and up to 37 included in period 2. The PK
profiles for each analyte in the presence and absence of abemaciclib are shown in Fig. 3. Individual changes in AUC$_{0-24}$ are shown in Fig. 4.

Midazolam. The midazolam AUC$_{0-\text{inf}}$ was approximately 13% lower and the C$_{\text{max}}$ was approximately 15% lower when midazolam was administered after multiple doses of abemaciclib versus when midazolam was administered alone with no significant differences in median t_{max}. The lower bounds of the 90% CIs for the ratios for midazolam AUC$_{0-\text{inf}}$ and C$_{\text{max}}$ were below 0.8 (0.775 and 0.760, respectively) (Fig. 5; Table 2).

S-Warfarin. No significant differences in the geometric least squares (LS) mean S-warfarin C$_{\text{max}}$, AUC$_{0-\text{inf}}$, or t_{max} between warfarin administered alone or in combination with abemaciclib were evident (Fig. 5; Table 2). There were also no significant differences in INR AUC$_{0-96}$ or INR$_{\text{max}}$ when warfarin was administered after multiple doses of abemaciclib [geometric mean (CV%), 1.27 (34%), 1.56 (44%), respectively] compared with when administered alone [1.20 (23%) and 1.43 (32%), respectively].

Dextromethorphan. Based on the CYP2D6 genotyping results, 70.5% of patients were extensive metabolizers, 9.1% were intermediate metabolizers, 2.3% were ultra-rapid metabolizers, 2.3% were poor metabolizers, and in 9.1% the genotype could not be interpreted. Data from the patient with poor metabolizer status were excluded from the statistical analysis for dextromethorphan; however, those with unknown status were included in the analysis. Abemaciclib had no statistically significant effects on dextromethorphan C$_{\text{max}}$, AUC$_{0-\text{inf}}$, or t_{max} (Fig. 5; Table 2).

Caffeine/Paraxanthine. The AUC$_{0-\text{inf}}$ of caffeine was 56.0% higher when caffeine was administered after multiple abemaciclib doses compared with administration alone, with the upper limit of the 90% CI for the ratio of geometric LS mean exceeding the 1.25 boundary; however, there were no significant differences in caffeine C$_{\text{max}}$ or t_{max} (Fig. 5; Table 2). The paraxanthine to caffeine ratio (P:C) decreased by 38.9% at the P:C 6-hour time point and decreased by 31.7% for P:C AUC$_{0-24}$ in the presence of abemaciclib (Table 2).

Noncompliance with caffeine restriction was evident in the data, both before and after drug cocktail administration, as demonstrated by higher than expected levels of caffeine in predose samples and in samples taken after the patient had left the clinical research unit (24 and 48 hours postdose) (Supplemental Fig. 1). Quantifiable predose caffeine

TABLE 1

Demographics of enrolled patients

Parameter	Overall
Age, yr, mean (SD)	60 (11)
Sex, n (%)	24 (54.5)
Female	20 (45.5)
Body mass index, kg/m², mean (SD)	28.5 (5.05)
Ethnicity, n (%)	2 (4.5)
Hispanic or Latino	41 (92.2)
Not Hispanic or Latino	1 (2.3)
Race, n (%)	1 (2.3)
Asian	1 (2.3)
Black or African American	1 (2.3)
White	40 (90.9)
Unknown	2 (4.5)
ECOG status, %	27.3
0	1
1	68.2
2	4.5
concentrations of more than 10% of \(C_{\text{max}} \) were observed in period 1 \((n = 4)\) and period 2 \((n = 5)\), and two patients exhibited post-clinical research unit increases in caffeine concentrations in both study periods. There was one patient who exhibited both predose caffeine concentrations greater than 10% of \(C_{\text{max}} \) and rising concentrations after clinical research unit discharge in both study periods.

Abemaciclib. The geometric mean abemaciclib trough concentrations after Q12H abemaciclib oral dosing with 200 mg (the highest approved dose) or 150 mg (if the patient had experienced a dose reduction) were between 453 ng/ml (0.89 \(\mu \)M) and 561 ng/ml (1.11 \(\mu \)M).

Safety. A total of 250 TEAEs were reported, of which the majority (87.6%) were Grade 1 or Grade 2 in severity, and 11.2% of patients experienced greater than or equal to Grade 3 events. Overall, the most common drug-related TEAEs of any grade were diarrhea (56.8%), nausea (25.0%), and vomiting (25.0%). Adverse events greater than or equal to Grade 3 observed included two events of vomiting and five events of diarrhea. Abemaciclib-induced adverse events were generally manageable and monitorable. Four patients reported serious adverse events. This included one patient each with Common Terminology Criteria for Adverse Events Grade 2 abdominal pain, Grade 3 diarrhea \((n = 1)\), fractured radius \((n = 1)\), and Grade 3 cholangitis \((n = 1)\) related to other medical conditions as well as Grade 3 ascites \((n = 1)\), which was disease-related. The only study drug-related events were abdominal pain and diarrhea. One patient death was reported during period 1 (drug cocktail in the absence of abemaciclib) that was due to disease progression.

Discussion

Patients receiving abemaciclib for the treatment of cancer are likely to receive other drugs to manage their condition and/or other nonrelated

Fig. 3. Mean plasma concentration-time profiles of midazolam, S-warfarin, dextromethorphan, caffeine, and paraxanthine after administration of a CYP substrate drug cocktail containing 0.2 mg midazolam (CYP3A4), 10 mg warfarin (CYP2C19), 30 mg dextromethorphan (CYP2D6), and 100 mg caffeine (CYP1A2) either alone (black) or in combination with abemaciclib after 7 days of 200 mg Q12H abemaciclib (red).
illnesses. Many of these concomitant medications are likely to be CYP substrates. The present study investigated the potential in vitro and clinical effect of abemaciclib and its major circulating equipotent metabolites, M2 and M20, on the exposures of other CYP substrate drugs.

During in vitro studies, abemaciclib-mediated concentration-dependent downregulation of several CYPs in cultured human hepatocytes was observed. The mechanisms underlying this observation are unknown, although the similarity of the downregulation pattern across abemaciclib, M2, and M20 suggest a common mechanism may be involved. One possible explanation could be in vitro metabolism of abemaciclib, M2, and M20, which results in a common downregulating species. Poor evidence exists for the translation of in vitro CYP downregulation to in vivo changes in PK. For CYP3A4, some small molecules downregulate mRNA expression in hepatocytes in vitro by binding to and downregulating the nuclear factor pregnane X receptor, which mediates the upregulation of this enzyme by inducers (Tian, 2013; Burk et al., 2018; Staudinger, 2019). In vivo exploration of the clinical effects of antibody-conjugated monomethyl auristatin E (MMAE) (the active moiety of brentuxumab vedotin), another in vitro downregulator of CYP3A4 without reduced cell viability, was hindered by low systemic exposures due to antibody-conjugated MMAE delivery. This lack of effect of MMAE on the clearance of midazolam can be explained by the relevant in vitro concentrations not being achieved in vivo.

Fig. 4. Individual AUC0–24 of midazolam, S-warfarin, dextromethorphan, and caffeine and individual 6-hour paraxanthine:caffeine ratios after administration of a CYP substrate drug cocktail containing 0.2 mg midazolam (CYP3A4), 10 mg warfarin (CYP2C19), 30 mg dextromethorphan (CYP2D6), and 100 mg caffeine (CYP1A2) either alone or in combination with abemaciclib after 7 days of 200 mg Q12H abemaciclib. Individual data are denoted by open circles, individual change is denoted by dotted lines, and the geometric means of the individual data are denoted by filled circles.
predictions, any potentially concerning in vitro observations should be
to reliably translate in vitro CYP downregulation into clinical DDI
this time. Until sufficient knowledge and methodologies are developed
et al., 2017); however, no details of this package are publicly available at
downregulation of CYP activity both in vitro and in vivo (Hariparsad
bupropion (Sager et al., 2017). Notably, the European Medicines
simultaneous inhibition and downregulation of CYP2D6 mediated by
possible exceptions are 1) the effect of obeticholic acid on caffeine but
downregulation translating into meaningful DDIs in the clinic. The
clinical investigation included midazolam to evaluate the
effect of abemaciclib on the PK of CYP3A substrates. Indeed, the
clinical study ruled out abemaciclib-mediated CYP3A inhibition, with
marginal decreases in midazolam AUC, suggesting either an inconse-
quential degree of abemaciclib-mediated CYP3A4 induction or reduced
absorption. Similarly, Wang and colleagues report in vitro down-
regulation of CYP3A4 mRNA by carfilzomib in human hepatocytes
in vitro, which did not affect midazolam pharmacokinetics in patients
with cancer (AUC\sub{0-inf} = least squares mean (90% geometric CI) 108.2 (94.1–124)) (Wang et al., 2013). Conversely, it was shown that
weak induction of CYP3A4-mediated midazolam clearance by the
retinoid compounds was indeed predictable based on in vitro studies
(Stevison et al., 2019). These studies again highlight the currently
unreliable prediction of in vivo DDIs from in vitro data for CYP
induction and/or downregulation. Notably, static models may over-
predict drug interactions in cases of reversible inhibition and rapidly
changing concentrations. However, a static model was deemed appro-
priate for this evaluation because 1) the downregulation is mainly
occurring at the gut, where concentrations are high for a relatively short
period generally coinciding with the absorption of midazolam; 2) at
steady state, abemaciclib and metabolites have relatively low fluctua-
tion between C\text{max} and C\text{min}, thus concentrations are not rapidly changing;
and 3) changes due to downregulation would be expected to occur
relatively slowly. That is, the long-enzyme turnover half-lives dampen
the effect of changes in enzyme regulation.
For CYP2D6, the pathway is minimally regulated by transcription
(Sager et al., 2017), and, consequently, the potential for induction is

(Wolenski et al., 2018). Despite the numerous examples of CYP
downregulation in vitro, there is no clear example of CYP in vitro
downregulation translating into meaningful DDIs in the clinic. The
possible exceptions are 1) the effect of obeticholic acid on caffeine but
not its metabolite paraxanthine (Edwards et al., 2017) and, consequently, the potential for induction is

TABLE 2

PK parameter estimates of CYP substrates

PK parameter estimates of CYP substrates	Geometric Mean (CV%)	Ratio of Geometric LS Means (90% CI)	Test:reference
Midazolam (0.2 mg)			
N			
AUC\sub{0-inf}, ng*h/ml	44	7.34 (74)	
C\text{max}, ng/ml	37	2.12 (54)	
t\text{max}, h	37	0.50 (0.40–1.07)	
t\text{1/2}, h	37	7.62 (22.3–31.20)	
S-warfarin (10 mg)	44	21.400 (43)	
AUC\sub{0-inf}, ng*h/ml	37	561 (35)	
C\text{max}, ng/ml	30	1.01 (0.92–8.00)	
t\text{max}, h	30	43.0 (25.70–132.00)	
t\text{1/2, h}			
Dextromethorphan (30 mg)	42	32.6 (316)	
AUC\sub{0-inf}, ng*h/ml	35	3.18 (182)	
C\text{max}, ng/ml	36	2.08 (0.93–6.00)	
t\text{max}, h	35	10.90 (4.48–26.30)	
t\text{1/2, h}			
Caffeine (100 mg)	37	32.900 (72)	
AUC\sub{0-inf}, ng*h/ml	30	2890 (29)	
C\text{max}, ng/ml	32	0.52 (0.40–3.00)	
t\text{max}, h	32	10.3 (2.96–35.30)	
t\text{1/2, h}	26	0.452 (62)	
P\text{C AUC}\sub{0-inf}, 6 h	26	0.404 (76)	
DEX dextromethorphan; t\text{1/2}, half-life.			
a) t\text{max} is presented as median (min, max).			
b) Ratio of t\text{max} is presented as median of differences (90% CI).			

For abemaciclib, which is extensively cleared by CYP3A4, clinical
monotherapy PK data did not indicate any evidence of autoinhibition
(http://uspl.lilly.com/verzenio/verzenio.html#pi), suggesting abemaci-
clib would also not increase the exposure of the CYP3A4 substrate,
midazolam. However, using the mechanistic static model with the
in vitro downregulation data reported herein, a 2-fold change in
midazolam AUC was predicted, driven predominantly by inhibition at
the gut wall. Despite these contrasting findings and general absence
in vitro–in vivo connectivity for CYP3A inhibition due to down-
regulation, the clinical investigation included midazolam to evaluate the
effect of abemaciclib on the PK of CYP3A substrates. Indeed, the
clinical study ruled out abemaciclib-mediated CYP3A inhibition, with
marginal decreases in midazolam AUC, suggesting either an inconse-
quential degree of abemaciclib-mediated CYP3A4 induction or reduced
absorption.

![Forest plot showing the change in AUC\sub{0-inf} and C\text{max} of midazolam, S-warfarin, and dextromethorphan; the AUC\sub{0-t} and C\text{max} of caffeine; and the paraxanthine:caffeine AUC\sub{0-t} ratio when taken with or without abemaciclib (200 mg Q12H for 7 days) after a CYP substrate drug cocktail containing 0.2 mg midazolam (CYP3A4), 10 mg warfarin (CYP2C19), 30 mg dextromethorphan (CYP2D6), and 100 mg caffeine (CYP1A2). AUC\sub{0-t}, area under the concentration versus time curve from 0 to 12 hours; Dex, dextromethorphan; LSM, least squares mean.

Fig. 5.
Effect of Abemaciclib on CYP1A2, 2C9, 2D6 and 3A4 Substrates

rarely studied (Hariparsad et al., 2017). We thus expected no change in CYP2D6 mRNA levels after incubation with abemaciclib and metabolites. However, the in vitro data suggested mixed effects of abemaciclib on CYP2D6 induction at concentrations up to 5 µM and downregulation at higher concentrations. Because there was no effect of multiple doses of 200 mg abemaciclib Q12H on dextromethorphan [AUC] 0.976 (0.805, 1.181), both the in vitro induction and downregulation appear to be false positives. The ability to predict in vivo CYP2D6 induction from in vitro studies is mixed: Sager et al. (2017) successfully predicted CYP2D6-mediated DDIs for bupropion based on simultaneous CYP2D6 inhibition and induction, but in vitro CYP2D6 downregulation by retinoids identified by Stavison et al. (2019) did not translate into the clinic.

The CYP1A2 substrate caffeine exhibited statistically significant increases in AUC, but the analysis was confounded by evidence of noncompliance with the dietary restriction of caffeine. For this reason, the caffeine metabolite, paraxanthine, was subsequently analyzed to determine the mechanism of any change in caffeine PK and to lessen the confounding effect of dietary caffeine consumption. The ratio of paraxanthine to caffeine (AUC or 6-hour concentration) reflects the formation clearance of paraxanthine, the major CYP1A2 metabolite of caffeine, and has been used to quantify CYP1A2 activity (Tian et al., 2019). Using this approach, the present study suggests abemaciclib inhibits the CYP1A2-mediated metabolism of caffeine to paraxanthine. However, given the magnitude of intraindividual variability for caffeine AUC (34%) (unpublished data), the inhibitory effect of abemaciclib on CYP1A2 is not considered clinically meaningful. This study highlights the inherent challenges in using caffeine as a substrate, especially in the outpatient setting wherein caffeine consumption cannot be controlled. Therefore, including the paraxanthine:caffeine ratio prospectively as a primary endpoint would be advised when caffeine is used as a probe substrate.

In conclusion, the downregulation of CYP mRNA expression and activity by abemaciclib in vitro did not translate into the clinic. No clinically relevant changes in the PK of CYP1A2, CYP2C9, CYP2D6, or CYP3A substrate drugs were observed when coadministered with multiple doses of abemaciclib. This lack of translation suggests the specific CYP mechanisms of downregulation in vitro need to be better understood, and further work is warranted to develop appropriate models to better inform clinical DDI risk.

Acknowledgments

The authors wish to acknowledge Jill Chappell for her expertise in study design and implementation.

Authorship Contributions

Participated in research design: Turner, Hall, Rehmel, Royalty, Guo, Kulanthaivel.
Conducted experiments: Rehmel.
Performed data analysis: Chapman, Rehmel.
Wrote or contributed to the writing of the manuscript: Turner, Hall, Chapman, Rehmel, Royalty, Guo, Kulanthaivel.

References

Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, Wang D, Vinks AA, He Y, Sweeney J, et al. (2015) Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP2A6 genotype and tacrolimus dosing. Clin Pharmacol Ther 98:19–24.
Berk O, Kuizrok M, Kranenberger T, Josie J, Kemmer O, Thader WE, Schwab M, Wenger C, and Windigebel B (2018) Identification of approved drugs as potential inhibitors of pregancy-X receptor activation with differential receptor interaction profiles. Arch Toxicol 92:1435–1451.
Chaimuvvati S, Nairzger AN, Leeder JS, Gardigk A, Kearns GL, Sellers E, Zhang Y, Kadusha AD, Rowland E, and Bertino JS Jr. (2003) Combined phenotypic assessment of cytochrome p450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the “Cooperstown 5+1 cocktail”. Clin Pharmacol Ther 74:437–447.

Address correspondence to: P. Kellie Turner, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285. E-mail: turnerpa@lilly.com