Allergic Bronchopulmonary Aspergillosis (ABPA) is a localized inflammatory airway disease seen in patients sensitized to *Aspergillus fumigatus* (*A. fumigatus*) antigens. The disease presents with productive cough, wheezing, episodic fever, as well as central bronchiectasis (CB) and mucus plugs on computed tomography (CT) scans. If treated accordingly, symptoms and pulmonary damage caused by ABPA can be reverted. Currently, the diagnostic criteria for ABPA require the diagnosis of predisposing pulmonary diseases such as asthma and cystic fibrosis (CF) in order to establish the diagnosis. ABPA presents as an acute or subacute clinical deterioration from baseline with increased cough, sputum production or sputum color change, wheezing, dyspnea, as well as constitutional symptoms such as weight loss and fever, that fails to respond to appropriate medical therapy [1].

There are multiple diagnostic criteria, which include a combination of radiological findings as well as serologic and immunologic studies, in order to establish the diagnosis of ABPA. The vast majority of them either include the presence of asthma or CF as an integral part of the diagnostic algorithm, or the criteria is specifically made for patients with CF [2, 3]. However, an increasing number of reported ABPA cases do not strictly satisfy all diagnostic criteria or are presented atypically, which causes delays in diagnosis and subsequent initiation of appropriate medical treatment [4-8]. ABPA has been shown to revert pulmonary pathology when treated appropriately and in a timely manner. Conversely, unrecognized and untreated ABPA may lead to irreversible lung damage and increased overall morbidity and mortality [9]. In this report, we discuss the case of a 22-year-old Puerto Rican male patient who went undiagnosed and undertreated for ABPA due to the lack of previous asthma or CF history.

Case Presentation

A 22-year-old non-smoker Puerto Rican male presented to our services with a 12-month history of shortness of breath, cough productive of thick, brown, well-formed sputum, chest pain, episodic fevers and general malaise. Symptoms occurred acutely with no identifiable precipitating factors. Past medical history prior to the development of his symptomology was unremarkable. Family history was negative for pulmonary disease or similar symptoms in the household. Over this time period, he required seven hospitalizations for presumed recurrent mycoplasma pneumonia. Physical examination revealed bilateral polyphonic wheezes on auscultation that were appreciated on all lung fields. Spirometry demonstrated severe airway obstruction with a forced vital capacity (FVC) of 43%, forced expired volume in one second (FEV1) of 26%, and FEV1/FVC of 62% predicted values with a 20% of predicted change in FEV1 on the post-bronchodilator test. Fractional excretion of nitric oxide (FeNO) was 105 ppm (normal < 30 ppm).

The initial chest radiography (CXR) scan was positive for reticulonodular interstitial lung markings (Figure 1A). Subsequent high-resolution computed tomography (HRCT) scan of the chest documented central bronchiectasis (CB) and extensive ground-glass opacities suggestive of interstitial lung disease (ILD). Of note, these findings were appreciated on official radiographical documentation, however, the radiographical
images were not available for review. Laboratory workup were remarkable for \textit{A. fumigatus} immunoglobulin G (IgG) level of 20.6 µg/mL (normal < 2 µg/mL), total serum IgE of 7001 kU/L (normal < 100 kU/L), and eosinophilia of 14,300 cells/µL (66.2%). Results from imaging and laboratory studies confirmed the diagnosis of ABPA with central bronchiectasis (ABPA-CB).

![Radiographic findings of allergic bronchopulmonary aspergillosis](image1)

\textbf{FIGURE 1:} Radiographic findings of allergic bronchopulmonary aspergillosis

(A) Posteroanterior (PA) chest radiography demonstrating reticulonodular interstitial markings; (B) coronal and (C) cross-section HRCT chest scans obtained one month after corticosteroid treatment.

HRCT: high-resolution computed tomography

Treatment with oral prednisone 30 mg (0.5 mg/kg) daily for two weeks then followed by prednisone 5 mg daily taper every two weeks, as well as inhaled corticosteroids and albuterol rescue for symptomatic relief. Following one month of therapy, complete pulmonary function tests (PFTs) demonstrated significant improvement in airway obstruction and inflammation with an FVC of 67%, FEV1 of 72%, FEV1/FVC of 108%, post-bronchodilator FEV1 of 2% predicted values and FeNO of 38 ppm. Follow-up HRCT (Figure 1B, 1C) scan at this time showed a significant reduction of central bronchiectasis and ILD pattern. Total serum IgE had a 75% reduction to 1694 kU/L. A flexible fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) was performed and revealed bilateral diffuse, non-obstructing mucinous plugs at proximal and distal airways (Figure 2A-2C). BAL fluid galactomannan (GM) index was 0.12 (normal 0.0 - 0.49) and \(\beta\)-1,3-D-Glucan was 31 pg/mL (normal < 60 pg/mL).

![Findings of flexible fiberoptic bronchoscopy](image2)

\textbf{FIGURE 2:} Findings of flexible fiberoptic bronchoscopy

The presence of diffuse, non-obstructing mucus plugs (A) proximal (carina) and (B, C) distal airways after one month of corticosteroid therapy.

\textbf{Discussion}

The pathogenesis of ABPA starts with inhalation of \textit{A. fumigatus} spores with subsequent lodging on distal airways. Here, a localized immune response involving type I, III, and IV reactions as well as T helper 2 response that stimulates the production of interleukin-4, resulting in IgE isotype switching and eosinophil proliferation. This localized inflammatory response damages the bronchial epithelium and reduces the mucociliary capacity. This, in turn, causes accumulation of mucus and formation of mucus plugs around the airways. Plugged and inflamed airways ultimately lead to the development of bronchiectasis \cite{10}. The thick, golden-brown mucus expectorated, as the one seen in our case, is typical of ABPA and contains eosinophils, desquamated epithelial cells, and mucin \cite{1}.

\textit{Aspergillus} species are able to produce a wide range of pulmonary diseases ranging from aspergilloma within
Conclusions

This further highlights the importance of early recognition and treatment of ABPA. Of ABPA to develop everlasting lung injuries when the disease is manifested for a prolonged period of time.

Following one month of therapy, HRCT was remarkable for a lack of previously documented lesions of CB and ground-glass opacities. Similarly, PFTs showed significant improvement in the obstructive airflow profile as compared with glucocorticoids. For this reason, azoles should be added to the treatment regimen when the patient either cannot tolerate oral glucocorticoids or has not seen an adequate response to therapy.

The treatment regimen was implemented as per established guidelines [1, 18]. In a recent randomized control trial, Agarwal et al. [19] established the superiority of oral glucocorticoids monotherapy in producing a response to treatment over Itraconazole monotherapy (100% vs 88%) in asthmatic patients with acute ABPA. Even so, itraconazole was still significantly effective and had the advantage of a safer side-effect profile as compared with glucocorticoids. For this reason, azoles should be added to the treatment regimen when the patient either cannot tolerate oral glucocorticoids or has not seen an adequate response to therapy [19].

Following one month of therapy, HRCT was remarkable for a lack of previously documented lesions of CB and ground-glass opacities. Similarly, PFTs showed significant improvement in the obstructive airflow pattern. However, the new pattern is concerning for restrictive lung disease. This is likely due to the nature of ABPA to develop everlasting lung injuries when the disease is manifested for a prolonged period of time. This further highlights the importance of early recognition and treatment of ABPA.
Herein we present the case of a previously healthy 21-year-old male who went undiagnosed and untreated for ABPA due to the lack of asthma per history. Delays in diagnosis and initiation of treatment have detrimental consequences for the patient's health such as irreversible structural lung injuries and permanent loss of lung function, as seen in this case. Consequently, given the good prognosis of adequately treated ABPA, we recommend that it is important that physicians should have a high suspicion for the disease when a patient presents as either difficult-to-treat asthma, drug-resistant pneumonia, or tuberculosis, regardless of their age or past medical history.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Institutional Review Board of the University of Puerto Rico, Medical Sciences Campus, Department of Pediatrics issued approval B1750120. The study was conducted according to the guidelines of the University of Puerto Rico, Medical Sciences Campus, and approved by the Institutional Review Board of the University of Puerto Rico, Medical Sciences Campus, Department of Pediatrics. **Conflicts of interest:** In compliance with the ICMJE uniform disclosure form, all authors declare the following: **Payment/services info:** This research was funded by the Hispanic Center of Excellence, University of Puerto Rico School of Medicine, Grant Number: D34HP24463, U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Workforce. **Financial relationships:** All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. **Other relationships:** All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Sunnar B, Ademhan Tural D, Ozzezen B, Emiralioglu N, Yalcin E, Öçelik U: Current approach in the diagnosis and management of allergic bronchopulmonary aspergillosis in children with cystic fibrosis. Front Pediatr. 2020, 8:582964. 10.3389/fped.2020.582964
2. Maleki M, Mortezaee V, Hassanzad M, et al.: Prevalence of allergic bronchopulmonary aspergillosis in cystic fibrosis patients using two different diagnostic criteria. Eur Ann Allergy Clin Immunol. 2020, 52:104-11. 10.23822/EurAnnACI.1764-1489.121
3. Patel AR, Patel AR, Singh S, Singh S, Khawaja I: Diagnosing allergic bronchopulmonary aspergillosis: a review. Cureus. 2019, 11:e4550. 10.7759/cureus.4550
4. Kim Y, Lee HY, Gu KM, et al.: Delayed diagnosis of allergic bronchopulmonary aspergillosis due to absence of atypical symptoms. Asia Pac Allergy. 2016, 6:187-91. 10.5415/apallergy.2016.6.3.187
5. Kurihara Y, Tashiro H, Takahashi K, Komiya N, Sadamatsu H, Kimura S, Sueno-Aragane N: Clinical manifestations of allergic bronchopulmonary aspergillosis without major features of asthma diagnosed by the new criteria in Japan. Intern Med. 2021, 60:1251-5. 10.2169/internalmedicine.6072-20
6. Savi D, Valente G, Iacovelli A, Olmari F, Bezzi M, Palange P: Uncommon presentation of allergic bronchopulmonary aspergillosis during the COVID-19 lockdown: a case report. BMC Pulm Med. 2020, 20:225. 10.1186/s12890-020-01575-7
7. Pandit S, Choudhury S, Das A, Datta S, Das SK: Atypical presentation of allergic bronchopulmonary aspergillosis: an unusual cause of difficult-to-treat asthma. J Fam Med Prim Care. 2015, 2:98-100. 10.4103/2249-4863.109968
8. Asano K, Hebiwaka A, Ishiguro T, et al.: New clinical diagnostic criteria for allergic bronchopulmonary aspergillosis/mycosis and its validation. J Allergy Clin Immunol. 2021, 147:1261-1266.e5. 10.1016/j.jaci.2020.08.029
9. Agarwal R, Garg M, Aggarwal AN, Saikia B, Gupta D, Chakrabarti A: Serologic allergic bronchopulmonary aspergillosis (ABPA-S): long-term outcomes. Respir Med. 2012, 106:942-7. 10.1016/j.rmed.2012.03.001
10. Knutsen AP, Slavin RG: Allergic bronchopulmonary aspergillosis in asthma and cystic fibrosis . Clin Dev Immunol. 2011, 2011:843765. 10.1155/2011/843765
11. Moldoveanu B, Gearhart AM, Jali1 BA, Saad M, Guaridola JJ: Pulmonary aspergillosis: spectrum of disease . Am J Med Sci. 2021, 361:411-9. 10.1016/j.amjms.2020.12.009
12. Kumbari J, Iat KR, Lodha R, Jana M, Xess I, Kabra SK: Prevalence and risk factors of allergic bronchopulmonary aspergillosis and aspergillus sensitization in children with poorly controlled asthma. J Trop Pediatr. 2020, 66:275-83. 10.1095/tropej/fme066
13. Gao Y, Soubani A: Advances in the diagnosis and management of pulmonary aspergillosis . Adv Respir Med. 2019, 87:251-45. 10.5005/ARM.2019.0661
14. Agarwal R, Aggarwal AN, Gupta D, Bal A, Das A: A rare cause of miliary nodules -- allergic bronchopulmonary aspergillosis. Br J Radiol. 2009, 82:e151-4. 10.1259/bjr/20490804
15. Jiang N, Xiang L: Allergic bronchopulmonary aspergillosis misdiagnosed as recurrent pneumonia . Asia Pac Allergy. 2020, 10:e27. 10.5415/apallergy.2020.10.e27
16. Agarwal R, Khan A, Gupta D, Aggarwal AN, Saxena AK, Chakrabarti A: An alternate method of classifying allergic bronchopulmonary aspergillosis based on high-attenuation mucus. PLoS One. 2010, 5:e15346. 10.1371/journal.pone.0015346
17. Nguyen NH, Jaber R, Leather HL, et al.: Use of bronchoalveolar lavage to detect galactomannan for diagnosis of pulmonary aspergillosis among nonimmunocompromised hosts. J Clin Microbiol. 2007, 45:2787-92. 10.1128/JCM.00716-07
18. Russo A, Tiseo G, Falcone M, Menichetti F: Pulmonary aspergillosis: an evolving challenge for diagnosis and treatment. Infect Dis Ther. 2020, 9:511-24. 10.1007/s40121-020-00315-4
19. Agarwal R, Dhoooria S, Singh Sehgal J, et al.: A randomized trial of itraconazole vs prednisolone in acute-
stage allergic bronchopulmonary aspergillosis complicating asthma. Chest. 2018, 153:656-64.
10.1016/j.chest.2018.01.005