Composable Sparse Fine-Tuning for Cross-Lingual Transfer

Alan Ansell1 Edoardo Maria Ponti1,2 Anna Korhonen1 Ivan Vulić1
1Language Technology Lab, University of Cambridge 2Mila - Quebec AI Institute and McGill University

Abstract

Fine-tuning the entire set of parameters of a large pretrained model has become the mainstream approach for transfer learning. To increase its efficiency and prevent catastrophic forgetting and interference, techniques like adapters and sparse fine-tuning have been developed. Adapters are modular, as they can be combined to adapt a model towards different facets of knowledge (e.g., dedicated language and/or task adapters). Sparse fine-tuning is expressive, as it controls the behavior of all model components. In this work, we introduce a new fine-tuning method with both desirable properties. In particular, we learn sparse, real-valued masks based on a simple variant of the Lottery Ticket Hypothesis. Task-specific masks are obtained from annotated data in a source language, and language-specific masks from masked language modeling in a target language. Both these masks can then be composed with the pretrained model. Unlike adapter-based fine-tuning, this method neither increases the number of parameters at inference time nor alters the original model architecture. Most importantly, it outperforms adapters in zero-shot cross-lingual transfer by a large margin in a series of multilingual benchmarks, including Universal Dependencies, MasakhaNER, and AmericasNLI. Based on an in-depth analysis, we additionally find that sparsity is crucial to prevent both 1) interference between the fine-tunings to be composed and 2) overfitting. We release the code and models at https://github.com/cambridgeltl/composable-sft.

1 Introduction

Fine-tuning of pretrained models (Howard and Ruder, 2018; Devlin et al., 2019, inter alia) is arguably the dominant paradigm in NLP at present. Originally, “fine-tuning” involved supervised learning of all the parameters of a model pretrained on unlabeled texts. However, given the size of Transformer-based architectures, this approach is often time- and resource-inefficient, and may result in catastrophic forgetting and interference (Wang et al., 2020) during multiple adaptations. To overcome these limitations, two main alternatives have emerged: 1) through adapters, new parameters can be added to a pretrained model in the form of extra intermediate layers (Rebuffi et al., 2017; Houlsby et al., 2019) and fine-tuned while keeping all the pretrained parameters fixed; 2) sparse fine-tuning (SFT) of a small subset of pretrained model parameters (Guo et al., 2021; Zaken et al., 2021; Xu et al., 2021b, inter alia).

Adapters have proven especially useful in multilingual NLP (Bapna and Firat, 2019; Üstün et al., 2020; Pfeiffer et al., 2020b; Vidoni et al., 2020; Pfeiffer et al., 2021b; Ansell et al., 2021) because they exhibit a surprising degree of modularity. This ability to disentangle and recombine orthogonal facets of knowledge in original ways (Ponti et al., 2021; Ponti, 2021) allows for separately learning a task adapter from labeled data in a source language and dedicated language adapters from unlabeled data in the source language and target languages. By stacking these components, it is possible to perform zero-shot cross-lingual transfer. Compared to sequentially fine-tuning the full model on both the task and target language, this yields superior performance and efficiency (Pfeiffer et al., 2020b). Notably, achieving coverage over N_T tasks in N_L target languages with the sequential approach requires $N_T N_L$ models to be trained, whereas the modularity of adapters reduces this to $N_T + N_L$.

Meanwhile, the advantage of SFTs over adapters is their expressivity: rather than a non-linear transformation of the output of Transformer layers (e.g., using a shallow MLP as with adapters), they can operate directly on a pretrained model’s embedding and attention layers. It therefore seems natural to search for a parameter-efficient fine-tuning method that is both modular and expressive.
Figure 1: A graphical representation of Lottery Ticket Sparse Fine-Tuning: from the parameters of a pretrained model (gray, left), we generate sparse fine-tunings for task and language knowledge (blue and red, center). Finally, we sum these three components (right) to obtain the adapted/fine-tuned model. Best viewed in color.

To this end, we propose Lottery Ticket Sparse Fine-Tuning (LT-SFT), a simple and general-purpose adaptation technique inspired by the Lottery Ticket Hypothesis (LTH; Frankle and Carbin, 2019; Malach et al., 2020), which was originally conceived for pruning large neural networks. In particular, after fine-tuning a pretrained model for a specific task or language, we select the subset of parameters that change the most. Then, we rewind the model to its pretrained initialization (without setting any value to zero, contrary to the original LTH algorithm). By re-tuning again only the selected subset of parameters, we obtain a sparse fine-tuning in the form of a vector of differences with respect to the pretrained model. Multiple SFTs can be composed by simply summing them with the pretrained model. We provide a graphical representation of our method in Figure 1.

We benchmark LT-SFT on a series of multilingual datasets, including Universal Dependencies (Zeman et al., 2020) for part-of-speech tagging and dependency parsing, MasakhaNER (Adelani et al., 2021) for named entity recognition, and Americas-NLI (Ebrahimi et al., 2021) for natural language inference. We evaluate it in a zero-shot cross-lingual transfer setting on 35 typologically and geographically diverse languages that include both languages seen and unseen during masked language modeling of the pretrained model. The results in all transfer tasks indicate that LT-SFT consistently achieves substantial gains over the current state-of-the-art adapter-based method for cross-lingual transfer, MAD-X (Pfeiffer et al., 2020b).

In addition to its superior performance, modularity, and expressivity, LT-SFT offers a series of additional advantages over adapters: 1) the number of parameters remains constant, which prevents the decrease in inference speed observed when adapter layers are added; 2) the neural architecture remains identical to the pretrained model, which makes code development model-independent rather than requiring special modifications for each possible architecture (Pfeiffer et al., 2020a). Finally, 3) we empirically demonstrate that the peak in performance for LT-SFT is consistently found with the same percentage of tunable parameters, whereas the best reduction factor for MAD-X is task-dependent. This makes our method more robust to the choice of hyper-parameters.

In addition, we find that a high level of sparsity in language and task fine-tunings is beneficial to performance, as this makes overlaps less likely and poses a lower risk of creating interference between the knowledge they contain. Moreover, it makes fine-tunings less prone to overfitting due to their constrained capacity. Thus, sparsity is a fundamental ingredient for achieving modularity and composability. These properties in turn allow for systematic generalization to new combinations of tasks and languages in a zero-shot fashion.

2 Background

To establish a broader context for our research, we first provide a succinct overview of current methods for efficient fine-tuning, such as adapters and SFT. We then recapitulate the Lottery Ticket Hypothesis,
Adapters and Composition. An adapter is a component inserted into a Transformer model with the purpose of specializing it for a particular language, task, domain, or modality (Houlsby et al., 2019). Previous work in multilingual NLP has mainly adopted the lightweight yet effective adapter variant of Pfeiffer et al. (2021a). In this setup, only one adapter module, consisting of a successive down-projection and up-projection, is injected per Transformer layer, after the feed-forward sub-layer. The adapter \(A_b \) at the \(b \)-th Transformer layer performs the following operation:

\[
A_b(h_b, r_b) = U_b a(D_b h_b) + r_b. \tag{1}
\]

\(h_b \) and \(r_b \) are the Transformer hidden state and the residual at layer \(b \), respectively. \(D_b \in \mathbb{R}^{m \times h} \) and \(U_b \in \mathbb{R}^{h \times m} \) are the down- and up-projections, respectively (\(h \) being the Transformer’s hidden layer size, and \(m \) the adapter’s dimension), and \(a(\cdot) \) is a non-linear activation function. The residual connection \(r_b \) is the output of the Transformer’s feed-forward layer whereas \(h_b \) is the output of the subsequent layer normalization. During fine-tuning of a pretrained model with adapters, only the adapter parameters \(U \) and \(D \) are modified while the pretrained model’s parameters are kept fixed.

In the MAD-X adapter composition framework for cross-lingual transfer (Pfeiffer et al., 2020b), a language adapter (LA) for a massively multilingual Transformer (MMT) is learned for each source and target language through masked language modeling (MLM), and a task adapter (TA) is learned for each target task, where the LA for the source language is inserted during TA training. At inference time, the task adapter and target language adapter are composed by stacking one on top of the other. This adapter composition approach has been shown to be highly effective for cross-lingual transfer (Pfeiffer et al., 2020b, 2021b; Ansell et al., 2021), especially for low-resource languages and target languages unseen during MMT pretraining.

Sparse Fine-Tuning. We call \(F' = F(\cdot; \theta + \phi) \) a sparse fine-tuning (SFT) of a pretrained neural model \(F(\cdot; \theta) \) if \(\phi \) is sparse. We sometimes refer to \(\phi \) itself as an SFT, or as the SFT’s difference vector. Previously proposed SFT methods include DiffPruning (Guo et al., 2021), BitFit (Zaken et al., 2021) and ChildTuning (Xu et al., 2021b). DiffPruning simulates sparsity of the difference vector during training by applying a continuous relaxation of a binary mask to it. BitFit on the other hand allows non-zero differences only for bias parameters. ChildTuning selects a subset of fine-tunable parameters by using Fisher information to measure the relevance of each parameter to the task. These methods have been shown to be competitive with full fine-tuning on GLUE (Wang et al., 2019), despite the difference vector \(\phi \) having fewer than 0.5% non-zero values.

Lottery Ticket Hypothesis. (LTH; Frankle and Carbin, 2019; Malach et al., 2020) states that each neural model contains a sub-network (a “winning ticket”) that, if trained again in isolation, can match or even exceed the performance of the original model. To achieve this, after a pruning stage where some parameters are zero-masked and frozen according to some criterion (e.g., weight magnitude), the remaining parameters are restored to their original values and then re-tuned. This process of pruning and re-training can be iterated multiple times.

The LTH has so far been used mostly for model compression through network pruning; to our knowledge, we are the first to use it for pretrained model adaptation.

Multi-Source Task Training. Ansell et al. (2021) showed that training task adapters using data from multiple source languages can result in sizable improvements in downstream zero-shot transfer performance even when the total number of training examples is held constant. In their training setup, each batch consisted of examples from a single, randomly selected source language, the language adapter for which is activated for the duration of the training step.

3 Methodology

3.1 Lottery Ticket Sparse Fine-Tuning

Training. In this work, we propose Lottery Ticket Sparse Fine-Tuning (LT-SFT). Similar to the Lottery Ticket algorithm of Frankle and Carbin (2019), our LT-SFT method consists of two phases:

(Phase 1) Pretrained model parameters \(\theta^{(0)} \) are fully fine-tuned on the target language or task data \(D \), yielding \(\theta^{(1)} \). Parameters are ranked according to some criterion, in our case greatest absolute difference \(|\theta_i^{(1)} - \theta_i^{(0)}| \), and the top \(K \) are selected for tuning in the next phase: a binary mask \(\mu \) is set to have 1 in positions corresponding to these parameters, and 0 elsewhere.

(Phase 2) After resetting the parameters to their
original values $\theta^{(0)}$, the model is again fine-tuned, but this time only the K selected parameters are trainable whereas the others are kept frozen. In practice, we implement this by passing the masked gradient $\mu \odot \nabla_{\theta} L(F(\cdot; \theta), D)$ (where \odot denotes element-wise multiplication and L a loss function) to the optimizer at each step. From the resulting fine-tuned parameters $\theta^{(2)}$ we can obtain the sparse vector of differences $\phi = \theta^{(2)} - \theta^{(0)}$.

In addition, we experiment with applying a regularization term which discourages parameters from deviating from their pretrained values $\theta^{(0)}$. Specifically, we use L1 regularization of the form $J(\theta) = \frac{1}{N} \sum_l |\theta_l - \theta_l^{(0)}|$.

Composition. Although we often use the term “sparse fine-tuning” to refer to the difference vector ϕ itself, an SFT is most accurately conceptualized as a functional which takes as its argument a parameterized function and returns a new function, where some sparse difference vector ϕ has been added to the original parameter vector. Suppose we have a language SFT S_L and a task SFT S_T defined by

$$
S_L(F(\cdot; \theta)) = F(\cdot; \theta + \phi_L) \\
S_T(F(\cdot; \theta)) = F(\cdot; \theta + \phi_T).
$$

Then we have

$$
S_L \circ S_T(F(\cdot; \theta)) = F(\cdot; \theta + \phi_T + \phi_L).
$$

3.2 Zero-Shot Transfer with LT-SFT

We adopt a similar cross-lingual transfer setup to MAD-X (Pfeiffer et al., 2020b, see also §2). We start with an MMT F with pretrained parameters θ learned through masked language modeling on many languages, such as mBERT (Devlin et al., 2019) or XLM-R (Conneau et al., 2020).

For each language of interest l, we learn a language SFT $\phi_L^{(l)}$ through LT-SFT (also with an MLM objective) on text from language l.

For each task of interest t, we learn a task SFT $\phi_T^{(t)}$ through LT-SFT on annotated data from some source language s. When learning the task SFT, we first adapt to the source language by applying the language SFT for s.

The language SFT is removed again after training. That is, we perform LT-SFT on $F(\cdot; \theta + \phi_L^{(s)})$ to obtain fine-tuned parameter vector θ'. We then calculate $\phi_T^{(t)} = \theta' - (\theta + \phi_L^{(s)})$. Note that during task training, we also learn a classifier head, which is fully fine-tuned during both phases of LT-SFT adaptation, with the same random initialization applied at the beginning of each phase.

We perform zero-shot adaptation of F to target language l for task t by composing language and task SFTs to obtain $F_{l,t} = F(\cdot; \theta + \phi_T^{(t)} + \phi_L^{(l)})$. On top of this, we stack the classifier head learned for t. For a formal algorithm of LT-SFT and the transfer procedure, we refer to Appendix A.

4 Experimental Setup

To evaluate our new method extensively, we benchmark its zero-shot cross-lingual performance on four distinct tasks: part-of-speech tagging (POS), dependency parsing (DP), named entity recognition (NER), and natural language inference (NLI). Table 1 summarizes our experimental setup, including the datasets and languages considered in our experiments. We put emphasis on low-resource languages and languages unseen during MMT pretraining, although we also evaluate on a few high-resource languages. In total, we cover a set of 35 typologically and geographically diverse languages, which makes them representative of cross-lingual variation (Ponti et al., 2019, 2020).

4.1 Baselines and Model Variants

The main baseline is MAD-X, the state-of-the-art adapter-based framework for cross-lingual transfer (Pfeiffer et al., 2020b). We use the “MAD-X 2.0” variant, where the last adapter layers are dropped. Pfeiffer et al. (2021b) found that this improved performance, which we could confirm in our preliminary experiments. Since adapters with the configuration used by Pfeiffer et al. (2020b) are unavailable for many languages in our evaluation, we train our own for all languages. In Appendix D we also provide an evaluation with comparable language adapters from AdapterHub (Pfeiffer et al., 2020a) where available.

We also perform experiments with BrITFit (Za-ken et al., 2021) to establish a baseline for an existing SFT technique. In addition to the main LT-SFT model variant, on POS and DP we test a RAND-SFT variant as an ablation, where the K parameters to be fine-tuned are selected at random rather than based on an informed criterion.
Table 1: Details of the tasks, datasets, MMTs and languages involved in our zero-shot cross-lingual transfer evaluation. * denotes low-resource languages seen during MMT pretraining; † denotes high-resource languages seen during MMT pretraining; all other languages are low-resource and unseen. The source language is always English. Further details of all the language and data sources used are provided in Appendix B.

Task	Target Dataset	Source Dataset	MMT	Target Languages
Part-of-Speech Tagging (POS), Dependency Parsing (DP)	Universal Dependencies 2.7 (Zeman et al., 2020)	Universal Dependencies 2.7 (Zeman et al., 2020)	mBERT	Arabic†, Bambara, Buryat, Cantonese, Chinese†, Erzya, Faroese, Japanese†, Livvi, Maltese, Manx, North Sami, Komi Zyrian, Sanskrit, Upper Sorbian, Uyghur
Named Entity Recognition (NER)	MasakhaNER (Adelani et al., 2021)	CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003)	mBERT	Hausa, Igbo, Kinyarwanda, Luganda, Luo, Nigerian-Pidgin, Swahili†, Wolof, Yorùbá†
Natural Language Inference (NLI)	AmericasNLI (Ebrahimi et al., 2021)	MultiNLI (Williams et al., 2018)	XLM-R	Aymara, Asháninka, Bribri, Guarani, Náhuatl, Otomí, Quechua, Rarámuri, Shipibo-Konibo, Wixarika

For both LT-SFT and MAD-X, we also evaluate a task adaptation (TA)-ONLY configuration, where only the task SFT/adapter is applied, without the target language SFT/adapter.

4.2 Language SFT/Adapter Training Setup

MLM Training Data. For all languages in our POS and DP evaluation, we perform MLM language SFT/adapter training on Wikipedia corpora. We also use Wikipedia for all languages in our NER evaluation if available. Where this is not the case, we use the Luo News Dataset (Adelani et al., 2021) for Luo and the JW300 corpus (Agić and Vulić, 2019) for Nigerian Pidgin. The main corpora for the languages in our NLI evaluation are those used by the dataset creators to train their baseline models (Ebrahimi et al., 2021); however, since the sizes of these parallel corpora are small, we further augment them with data from Wikipedia and the corpora of indigenous Peruvian languages of Bustamante et al. (2020) where available. More details on data sources are provided in Appendix B.

Training Setup and Hyper-parameters. For both SFTs and adapters, we train for the lesser of 100 epochs or 100,000 steps of batch size 8 and maximum sequence length 256, subject to an absolute minimum of 30,000 steps since 100 epochs seemed insufficient for some languages with very small corpora. Model checkpoints are evaluated every 1,000 steps (5,000 for high-resource languages) on a held-out set of 5% of the corpus (1% for high-resource languages), and the one with the smallest loss is selected at the end of training. We use the AdamW optimizer (Loshchilov and Hutter, 2019) with an initial learning rate of 5e-5 which is linearly reduced to 0 over the course of training.

Following Pfeiffer et al. (2020b), the reduction factor (i.e., the ratio between model hidden size and adapter size) for the adapter baseline was set to 2 for a total of ~7.6M trainable parameters. For comparability, we set the same number of trainable parameters K for our language LT-SFTs. This results in language SFTs with a sparsity of 4.3% for mBERT and 2.8% for XLM-R. Since BitFit tunes exclusively the bias parameters, its language SFTs have a fixed sparsity of 0.047% for mBERT and 0.030% for XLM-R.

Importantly, during language sparse fine-tuning, we decouple the input and output embedding matrices and fix the parameters of the output matrix; otherwise, we find that the vast majority of the K most changed parameters during full fine-tuning belong to the embedding matrix, seemingly due to its proximity to the model output, which damages downstream performance. We also fix the layer normalization parameters; all other parameters are trainable. For language adaptation, we apply L1 regularization as described in §3.1 with $\lambda = 0.1$. Note that the specified training regime is applied in the same way during both phases of LT-SFT.

For language adapter training in the MAD-X baseline, we use the Pfeiffer configuration (Pfeiffer et al., 2021a) with invertible adapters, special additional sub-components designed for adapting to the vocabulary of the target language.

4.3 Task SFT/Adapter Training Setup

For POS tagging, DP, and NER,\(^2\) we train task SFTs/adapters on the datasets indicated in Table 1

\(^2\)MasakhaNER and CoNLL 2003 datasets respectively use the DATE and MISC tags which are not used by the other; we replace these with the O tag at both train and test time.
for 10 epochs with batch size 8, except during the first phase of LT-SFT training where we train for only 3 epochs. Model checkpoints are evaluated on the validation set every 250 steps, and the best checkpoint is taken at the end of training, with the selection metric being accuracy for POS, labeled attachment score for DP, and F1-score for NER. Similarly to language fine-tuning, we use an initial learning rate of 5×10^{-5} which is linearly reduced to 0 over the course of training. For POS and NER we use the standard token-level single-layer multi-class model head. For DP, we use the shallow variant (Glavaš and Vulić, 2021) of the biaffine dependency parser of Dozat and Manning (2017).

For NLI, we employ the same fine-tuning hyper-parameters as Ebrahimi et al. (2021): 5 epochs with batch size 32, with checkpoint evaluation on the validation set every 625 steps, and an initial learning rate of 2×10^{-5}. We apply a two-layer multi-class classification head atop the MMT output corresponding to the [CLS] token.

We found that the number of trainable parameters during task adaptation (governed by K for SFTs and reduction factor for adapters) has a large effect on performance: we thus experiment with a range of values. Specifically, we test adapter reduction factors of 32, 16, 8, 4, 2, and 1, and equivalent values of K for SFT.

During task adaptation, we always apply the source language adapter following Pfeiffer et al. (2020b), or source language SFT (see §3.2).

4.4 Multi-Source Training

To validate that task LT-SFT training, like task adapter training in prior work (Ansell et al., 2021), benefits from the presence of multiple source languages in the training data, and to push the boundaries of zero-shot cross-lingual transfer, we perform multi-source training experiments on DP and NLI.

We adopt a similar setup to Ansell et al. (2021): we obtain the training set by concatenating the training data for all source languages. We randomly shuffle the training set and train as in the single-source case, except that each batch is composed of examples from a single source language, whose language SFT is applied during the training step. We prioritize maximizing performance rather than providing a fair comparison against the single-source case, so unlike Ansell et al. (2021), we use the entirety of the training sets. In derogation of this principle, we set a maximum of 15K examples per language for DP to better balance our sample.

For DP, we train our models on the UD treebanks of 11 diverse high-resource languages. For NLI, we train on MultiNLI (Williams et al., 2018) plus the data for all 14 non-English languages in the XNLI dataset (Conneau et al., 2018).

We also evaluate multi-source task SFT training on extractive question answering (QA), as a comparatively generous amount of multilingual data is available for this task. Specifically, we train on English data from SQuAD version 1 (Rajpurkar et al., 2016), all languages from MLQA (Lewis et al., 2020), and those languages from XQuAD (Artetxe et al., 2020) which also appear in MLQA. We evaluate on the languages present in XQuAD but not in MLQA. For QA, we train for 5 epochs with batch size 12 and initial learning rate 3×10^{-5}. Full details of the source languages can be found in Appendix B.

We use an equivalent reduction factor of 1 for all tasks, following the strongest setting from our single-source experiments. Except as stated above, the training configuration and hyper-parameters are the same as for single-source training.

5 Results and Discussion

We report the average test performance of zero-shot cross-lingual transfer for the best reduction factor (or equivalent K) in Table 2. Some patterns emerge across all four tasks: first, LT-SFT consistently outperforms all the baselines. In particular, it surpasses the state-of-the-art MAD-X across all tasks, with gains of 2.5 accuracy in part-of-speech tagging, 2.5 UAS and 3.7 LAS in dependency parsing, 1.8 F1 score in named entity recognition, and 1.9 accuracy in natural language inference. Compared to RAND-SFT, its superior performance demonstrates the importance of selecting “winning tickets” rather than a random subset of parameters. Secondly, the results demonstrate the importance of language SFTs/adapters for specializing pretrained models to unseen languages, as they bring about a large increase in performance across the 4 tasks compared to the corresponding

1 This is because full fine-tuning is more prone to overfitting than sparse/adapter fine-tuning. Early stopping somewhat addresses overfitting, but it is insufficient in a cross-lingual setting because the target language performance generally starts to deteriorate faster than the source language performance.

2 Approximately 442K, 884K, 1.7M, 3.5M, 7.1M, and 14.2M respectively, amounting to sparsity levels of 0.25%, 0.50%, 1.0%, 2.0%, 4.0% and 8.0% for mBERT and 0.16%, 0.32%, 0.63%, 1.3%, 2.6% and 5.1% for XLM-R.

3 We found that the number of trainable parameters during task adaptation (governed by K for SFTs and reduction factor for adapters) has a large effect on performance: we thus experiment with a range of values. Specifically, we test adapter reduction factors of 32, 16, 8, 4, 2, and 1, and equivalent values of K for SFT.

4 In Appendix B.
Table 2: Results of zero-shot cross-lingual transfer evaluation averaged over all languages when best equivalent reduction factor (shown in parentheses after each result) is chosen.

	POS Accuracy	DP UAS	NER F1 score	NLI Accuracy
LT-SFT	71.1 (1)	57.1 (1)	37.8 (1)	71.7 (1)
RAND-SFT	69.2 (1)	54.3 (1)	33.9 (1)	69.9 (8)
MAD-X	68.6 (16)	54.6 (2)	34.1 (1)	54.9 (49)
BtFit	58.1	45.7	23.9	38.3
LT-SFT TA-ONLY	51.3 (32)	39.1 (1)	19.9 (1)	55.3 (8)
MAD-X TA-ONLY	52.1 (32)	38.9 (1)	19.5 (1)	52.4 (32)

Figure 2: Zero-shot cross-lingual transfer evaluation of Lottery-Ticket Sparse Fine-Tuning (LT-SFT), Random Sparse Fine-Tuning (RAND-SFT), and adapter-based MAD-X over four tasks with varying numbers of trainable parameters during task adaptation. Results are averages over all target languages.

settings with task adaptation only (TA-ONLY).

We remark that LT-SFT’s zero-shot performance also exceeds translation-based baselines on the AmericasNLI task, achieving an average accuracy of 51.4%, compared with the 48.7% of the ‘translate-train’ baseline of Ebrahimi et al. (2021).

In Figure 2, we provide a more detailed overview of average cross-lingual model performance across a range of different reduction factors. The results for the LT-SFT and RAND-SFT methods generally improve or stay steady as the number of trainable task parameters increases. On the contrary, there is not such a trend for MAD-X, as lower reduction factors may degrade its results. This makes it easier to choose a good setting for this hyper-parameter when using SFT. Moreover, it is worth stressing again that, contrary to MAD-X, this hyper-parameter does not affect inference time.

BtFit performs much worse than the other methods which perform language adaptation across all tasks. Bearing in mind the strong trend towards increasing performance with increasing K for the other SFT methods, it seems likely that BtFit, with two orders of magnitude fewer trainable parameters, lacks the capacity to learn effective task and language SFTs.

For additional results at the level of individual languages and an analysis of the efficacy of language adaptation for high- versus low-resource target languages, we refer the reader to Appendix C.
Table 3: Results of zero-shot cross-lingual transfer evaluation on XQuAD (Artetxe et al., 2020), restricted to languages which do not appear in MLQA (Lewis et al., 2020) (see §4.4) in the format F1/exact match score. “Full FT” denotes full fine-tuning, MS denotes multi-source training, where additional data from MLQA and XQuAD is utilized, LT-SFT denotes Lottery-Ticket Sparse Fine-Tuning.

	el	ro	ru	th	tr
XLM-R Base, full FT	71.1/54.3	78.3/63.7	74.1/57.8	67.1/55.7	67.5/51.1
XLM-R Large, full FT (Artetxe et al., 2020)	79.8/61.7	83.6/69.7	80.1/64.3	74.2/62.8	75.9/59.3
XLM-R Base MS, LT-SFT	81.9/65.5	86.3/73.3	81.4/64.6	82.4/75.2	75.2/58.6

Figure 3: Performance of LT-SFT on DP and NER controlling for the sparsity of task and language fine-tuning. Results are averaged over several selected languages. Denser fine-tunings may interfere with each other and consequently degrade the model performance.

	DP UAS	DP LAS	NLI Accuracy
SINGLE SOURCE	57.1	37.8	51.4
MULTI-SOURCE	64.3	47.6	53.1

Table 4: Results of zero-shot cross-lingual transfer evaluation of single- vs. multi-source LT-SFT task training averaged over all target languages.

5.1 Multi-Source Training

As shown in Table 4, multi-source LT-SFT training brings about a large improvement in zero-shot cross-lingual transfer performance on DP, and a modest improvement for NLI. This may be a result of the fact that the training set for NLI contains a relatively small number of non-English examples compared to the DP training set. Also, the Americas/NLI target languages generally have a lower degree of genealogical relatedness to the source languages compared to the DP target languages.

Table 3 demonstrates that multi-source training is also beneficial to zero-shot cross-lingual transfer for QA on a series of relatively high-resource languages. In particular, LT-SFT multi-source training of XLM-R Base outperforms single-source full fine-tuning of XLM-R Large (a larger model) comfortably, and outperforms XLM-R Base single-source full fine-tuning by a significant margin. The fact that such an improvement occurs despite each of the 6 non-English source languages having more than an order of magnitude less training data than the English data from SQuAD illustrates the disproportionate advantage of multilingual source data.

5.2 Benefits of Sparsity

Finally, we address the following question: is sparsity responsible for preventing the interference of separate fine-tunings when they are composed? To support this hypothesis with empirical evidence, we use LT-SFT to train language5 and task fine-tunings with different levels of density, i.e. the percentage of non-zero values (from 5% to 100%). We then evaluate all possible combinations of density levels. The results are visualized in the form of a contour plot in Figure 3 for selected combinations of tasks and languages: Buryat, Cantonese, Erzya, Maltese, and Upper Sorbian for DP, and Hausa, Igbo, Luganda, Swahili and Wolof for NER.

From Figure 3, it emerges that the performance decreases markedly for SFTs with a density level greater than ~30% of fine-tuned parameters.6 We

5To reduce computational cost, we train language fine-tunings for a maximum of 30K steps rather than the 100K of our main experiments.

6Note, furthermore, that levels of task fine-tuning density greater than ~60% do not vary in performance. This is because their subsets of parameters include embeddings of tokens never encountered during task training, which are therefore
speculate that this is due to the fact that sparser fine-tunings have a lower risk of overlapping with each other, thus creating interference between the different facets of knowledge they encapsulate. It must be noted, however, that alternative hypotheses could explain the performance degradation in addition to parameter overlap, such as overfitting as a result of excessive capacity. While we leave the search for conclusive evidence to future work, both of these hypotheses illustrate why enforcing sparsity in adaptation, as we propose in our method, is crucial to achieving modularity.

6 Related Work

Within the framework of the Lottery Ticket Hypothesis, a series of improvements have been suggested to make the original algorithm to find winning tickets (Frankle and Carbin, 2019) more stable: after fine-tuning, Frankle et al. (2019) rewind the parameters to their values after a few iterations rather than their values before training, whereas Renda et al. (2020) also rewind the learning rate. In addition, Zhou et al. (2019) found that 1) different criteria can be used to select weights as an alternative to the magnitude of their change; 2) different rewinding methods are also effective, such as restoring the original sign, but not the value. In future work, we will investigate whether these variants also benefit our method for cross-lingual transfer, where the LTH is used for adaptation rather than pruning.

Whereas the LTH was originally conceived in the vision domain for convolutional architectures, it is also effective for pruning models trained on NLP tasks (Yu et al., 2020), such as neural machine translation, and based on Transformer architectures (Prasanna et al., 2020). Recently, Xu et al. (2021a) adapted the LTH specifically to prune pretrained models after fine-tuning.

To the best of our knowledge, Wortsman et al. (2020) is the only instance where winning tickets were composed in previous work. In their experiment, a set of task-specific masks were linearly combined at inference time, in order to generalize to new tasks in a continuous learning setting.

7 Conclusion and Future Work

We have presented a new method to fine-tune pretrained models that is both modular (like adapters) and expressive (like sparse fine-tuning). This method is based on a variant of the algorithm to find winning tickets under the framework of the Lottery Ticket Hypothesis. We infer a sparse vector of differences with respect to the original model for each individual language (by modeling unlabeled text) and each individual task (with supervised learning). The adaptations for a language and a task can then be composed with the pretrained model to enable zero-shot cross-lingual transfer. Comparing our method with the state-of-the-art baseline in several multilingual tasks, the results have indicated substantial gains across the board in both languages seen and unseen during pretraining (which includes many truly low-resource languages).

In future work, our method offers several potential extensions. In addition to the variants to the Lottery Ticket algorithm surveyed in §6, given the importance of sparsity for modularity (§5.2), we plan to experiment with additional algorithms previously applied to pruning that can identify and fine-tune a subset of the model parameters, such as DiffPruning (Guo et al., 2021) and ChildTuning (Xu et al., 2021b). Finally, given its simplicity and generality, our method is suited for many other applications of transfer learning in addition to cross-lingual transfer, such as multimodal learning, debiasing, and domain adaptation. The code and models are available online at https://github.com/cambridgeltl/composable-sft.

Acknowledgements

Alan wishes to thank David and Claudia Harding for their generous support via the Harding Distinguished Postgraduate Scholarship Programme. Anna and Ivan are supported by the ERC PoC Grant MultiConvAI (no. 957356) and a Huawei research donation. We would like to thank Chiara Ponti for the graphic illustration. We also thank the anonymous reviewers for their helpful suggestions.

References

David Ifeoluwa Adelani, Jade Abbott, Graham Neubig, Daniel D’souza, Julia Kreutzer, Constantine Lignos, Chester Palen-Michel, Happy Buzaaba, Shruti Rijhwani, Sebastian Ruder, Stephen Mayhew, Israel Abebe Azime, Shamsuddine Muhammad, Chris Chinenye Emezue, Joyce Nakatumba-Nabende, Perez Ogayo, Anuoluwapo Aremu, Catherine Gitau, Derguene Mbaye, Jesujoba Alabi, Seid Muhie Yimam, Tajudeen Gwadabe, Ignatius Ezeani, Rubungo Andre Niyongabo, Jonathan Mukibi, Verrah Otende, Iroro Orife, Davis David, Samba Ngom, Tosin Adewumi, Paul Rayson, Mofetoluwa Adeyemi, Gerald Muriuki,
Emmanuel Anebi, Chiamaka Chukwuneke, Nkiruka Odu, Eric Peter Wairagala, Samuel Oyerinde, Clemencia Siro, Tobias Saul Bateesa, Temiilola Oloyede, Yvonne Wambui, Victor Akinode, Deborah Nabagereka, Maurice Katusiime, Ayodele Awokoya, Mouhammadane MBOUP, Dibora Gebreyohannes, Henok Tilaye, Kelechi Nwaieke, Degaga Wolde, Abdoulaye Faye, Blessing Sibanda, Orevaughene Ahia, Bonaventure F. P. Dossou, Kelechi Ogueji, Thierno Ibrahima DIOP, Abdoulaye DIALLO, Adéwale Àkinfaderin, Tendai Marengereke, and Salomey Osei. 2021. MasakhaNER: Named Entity Recognition for African Languages. arXiv preprint.

Željko Agić and Ivan Vulić. 2019. JW300: A wide-coverage parallel corpus for low-resource languages. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3204–3210, Florence, Italy. Association for Computational Linguistics.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Sebastián Ruder, Goran Glavaš, Ivan Vulić, and Anna Korhonen. 2021. MAD-G: Multilingual adapter generation for efficient cross-lingual transfer. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4762–4781, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. 2020. On the cross-lingual transferability of monolingual representations. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4623–4637, Online. Association for Computational Linguistics.

Ankur Bapna and Orhan Firat. 2019. Simple, scalable adaptation for neural machine translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1538–1548, Hong Kong, China. Association for Computational Linguistics.

David Brambila. 1976. Diccionario Raramuri-Castellano: Tarahumar.

Gina Bustamante, Arturo Oncevay, and Roberto Zariquey. 2020. No data to crawl? monolingual corpus creation from PDF files of truly low-resource languages in Peru. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 2914–2923, Marseille, France. European Language Resources Association.

Luis Chiruzzo, Pedro Amarilla, Adolfo Ríos, and Gustavo Giménez Lugo. 2020. Development of a Guaraní - Spanish parallel corpus. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 2629–2633, Marseille, France. European Language Resources Association.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440–8451, Online. Association for Computational Linguistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. XNLI: Evaluating cross-lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2475–2485, Brussels, Belgium. Association for Computational Linguistics.

Rubén Cushmanario Romano and Richer C. Sebastián Q. 2008. Naantsi pesha asháninkkak bi-rakochaki. diccionario asháninka-castellano. versión preliminar. http://www.lengamer.org/publicaciones/diccionarios/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for neural dependency parsing. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Abteen Ebrahimi, Manuel Mager, Arturo Oncevay, Vishrav Chaudhary, Luis Chiruzzo, Angela Fan, John Ortega, Ricardo Ramos, Annette Rios, Ivan Vladimir, Gustavo A. Giménez-Lugo, Elisabeth Mager, Graham Neubig, Alexis Palmer, Rolando A. Coto Solano, Ngoc Thang Vu, and Katharina Kann. 2021. AmericasNLI: Evaluating Zero-shot Natural Language Understanding of Pretrained Multilingual Models in Truly Low-resource Languages.

Isaac Feldman and Rolando Coto-Solano. 2020. Neural machine translation models with back-translation for the extremely low-resource indigenous language Bribri. In Proceedings of the 28th International Conference on Computational Linguistics, pages 3965–3976, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Jonathan Frankle and Michael Carbin. 2019. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In International Conference on Learning Representations.
Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. 2019. *Stabilizing the lottery ticket hypothesis*. arXiv preprint arXiv:1903.01611.

Ana-Paula Galarreta, Andrés Melgar, and Arturo Onecevay. 2017. *Corpus creation and initial SMT experiments between Spanish and Shipibo-konibo*. In *Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017*, pages 238–244, Varna, Bulgaria. INCOMA Ltd.

Goran Glavaš and Ivan Vulić. 2021. *Is supervised syntax parsing beneficial for language understanding tasks? an empirical investigation*. In *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume*, pages 3090–3104, Online. Association for Computational Linguistics.

Demi Guo, Alexander Rush, and Yoon Kim. 2021. *Parameter-efficient transfer learning with diff pruning*. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 4884–4896, Online. Association for Computational Linguistics.

Ximena Guierrez-Vasques, Gerardo Sierra, and Isaac Hernandez Pompa. 2016. *Axolotl: a web accessible parallel corpus for Spanish-Nahuatl*. In *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)*, pages 4210–4214, Portorož, Slovenia. European Language Resources Association (ELRA).

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. *Parameter-Efficient Transfer Learning for NLP*. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 2790–2799. PMLR.

Jeremy Howard and Sebastian Ruder. 2018. *Universal language model fine-tuning for text classification*. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 328–339, Melbourne, Australia. Association for Computational Linguistics.

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian Riedel, and Holger Schwenk. 2020. *MLQA: Evaluating cross-lingual extractive question answering*. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7315–7330, Online. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. *Decoupled weight decay regularization*. In *International Conference on Learning Representations*.

Manuel Mager, Diódico Carrillo, and Ivan Meza. 2018. *Probabilistic finite-state morphological segmenter for wixarika (huichol) language*. *Journal of Intelligent & Fuzzy Systems*, 34(5):3081–3087.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. 2020. *Proving the lottery ticket hypothesis: Pruning is all you need*. In *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 6682–6691. PMLR.

Elena Mihas. 2011. *Añaani katonkosatzi parenini, El idioma del alto Peréné*. Milwaukee, WI: Clarks Graphics.

John E Ortega, Richard Alexander Castro-Mamani, and Jaime Rafael Montoya Samame. 2020. *Overcoming resistance: The normalization of an Amazonian tribal language*. In *Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages*, pages 1–13, Suzhou, China. Association for Computational Linguistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. 2021a. *AdapterFusion: Non-destructive task composition for transfer learning*. In *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume*, pages 487–503, Online. Association for Computational Linguistics.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun Cho, and Iryna Gurevych. 2020a. *AdapterHub: A framework for adapting transformers*. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 46–54, Online. Association for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. 2020b. *MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer*. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 7654–7673, Online. Association for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. 2021b. *UNKs everywhere: Adapting multilingual language models to new scripts*. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)*.

Edoardo Ponti, Ivan Vulić, Ryan Cotterell, Marinela Farovic, Roi Reichart, and Anna Korhonen. 2021. *Parameter space factorization for zero-shot learning across tasks and languages*. *Transactions of the Association for Computational Linguistics*, 9(0):410–428.

Edoardo Maria Ponti. 2021. *Inductive Bias and Modular Design for Sample-Efficient Neural Language Learning*. Ph.D. thesis, University of Cambridge.
Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020. XCOPA: A multilingual dataset for causal common-sense reasoning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2362–2376, Online. Association for Computational Linguistics.

Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak, Ivan Vulić, Roi Reichart, Thierry Poibeau, Ekaterina Shutova, and Anna Korhonen. 2019. Modeling language variation and universals: A survey on typological linguistics for natural language processing. Computational Linguistics, 45(3):559–601.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020. When BERT Plays the Lottery, All Tickets Are Winning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3208–3229, Online. Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas. Association for Computational Linguistics.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. 2017. Learning Multiple Visual Domains with Residual Adapters. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Alex Renda, Jonathan Frankle, and Michael Carbin. 2020. Comparing rethinking and fine-tuning in neural network pruning. In International Conference on Learning Representations.

Jörg Tiedemann. 2012. Parallel data, tools and interfaces in OPUS. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), pages 2214–2218, Istanbul, Turkey. European Language Resources Association (ELRA).

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pages 142–147.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gertjan van Noord. 2020. UDapter: Language adaptation for truly Universal Dependency parsing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2302–2315.

Marko Vidoni, Ivan Vulić, and Goran Glavaš. 2020. Orthogonal language and task adapters in zero-shot cross-lingual transfer. CoRR, abs/2012.06460.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In International Conference on Learning Representations.

Zirui Wang, Zachary C. Lipton, and Yulia Tsvetkov. 2020. On negative interference in multilingual models: Findings and a meta-learning treatment. In Proceedings of EMNLP 2020, pages 4438–4450.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana. Association for Computational Linguistics.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari, Jason Yoshinski, and Ali Farhadi. 2020. Supermasks in superposition. In Advances in Neural Information Processing Systems, volume 33, pages 15173–15184. Curran Associates, Inc.

Dongkuan Xu, Ian En-Hsu Yen, Jinxi Zhao, and Zhibin Xiao. 2021a. Rethinking network pruning – under the pre-train and fine-tune paradigm. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2376–2382, Online. Association for Computational Linguistics.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei Huang. 2021b. Raise a child in large language model: Towards effective and generalizable fine-tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 9514–9528, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. McRoscos. 2020. Playing the lottery with rewards and multiple languages: lottery tickets in rl and nlp. In International Conference on Learning Representations.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2021. BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models. CoRR, abs/2106.10199.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Elia Ackermann, Noémi Aepli, Hamid Aghaie, Željko Agić, Amir Ahmadi, Lars Ahrenberg, Chika Kennedy Ajede, Gabrièle Aleksandruvičiūtė, Ika Alfina, Lene Antonsen, Katya Aplonova, Angelina Aquino, Carolina Aragon, Maria Jesus Aranzabe, Hórunn Arnardóttir, Gashaw Arutie, Jessica Naraiswari Arwidarasti, Masayuki Asahara, Luma Ateyah, Furkan Atmaca, Mohammed Atta,
ers, Sumire Uematsu, Roman Untilov, Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit, Andrius Utka, Sowmya Vajjala, Daniel van Niekerk, Gertjan van Noord, Viktor Varga, Eric Villemonte de la Clergerie, Veronika Vincze, Aya Wåkasa, Joel C. Wallenberg, Lars Wallin, Abigail Walsh, Jing Xian Wang, Jonathan North Washington, Maximilan Wendt, Paul Widmer, Seyi Williams, Mats Wirén, Christian Wittern, Tsegay Woldemariam, Tak-sum Wong, Alina Wróblewska, Mary Yako, Kayo Yamashita, Naoki Yamazaki, Chunxiao Yan, Koichi Yasuoka, Marat M. Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Shorouq Zahra, Amir Zeldes, Hanzhi Zhu, and Anna Zhuravleva. 2020. Universal Dependencies 2.7. LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. 2019. Deconstructing lottery tickets: Zeros, signs, and the supermask. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.
Algorithm 1 Cross-Lingual Transfer with Lottery-Ticket Sparse Fine-Tuning

```plaintext
function LTSTFT(D, L, θ(0), η, K)
    θ(1) ← θ(0)
    while not converged do
        θ(1) ← θ(1) − η∂L(θ(1), D)
        μ_i ← 1 if θ_i(1) ∈ argmax_{θ_1,..,θ_K} [θ(1) − θ(0)]
        0 otherwise
        θ(2) ← θ(0)
        while not converged do
            θ(2) ← θ(2) − μ ⊙ η∂L(θ(2), D)
            φ ← θ(2) − θ(0)
        return φ
    end function

function CROSSLINGUALTRANSFER(Dsrc, Dtar, Dtask, Ltask, θ(0), η, K)
    φsrc ← LTSTFT(Dsrc, LMLM, θ(0), η, K)
    φtask ← LTSTFT(Dtask, Ltask, θ(0) + φsrc, η, K)
    φtar ← LTSTFT(Dtar, LMLM, θ(0), η, K)
    return θ(0) + φtask + φtar
end function
```
B Languages

Task	Language	ISO Code	Family	UD Treebank	Corpus source(s)
Source	Arabic†,‡	ar	Afro-Asiatic, Semitic	BDT	Wikipedia
Basque*	eu	Basque	PDT	Wikipedia	
Chinese†,‡	zh	Sino-Tibetan	EWT	Wikipedia	
Czech*	cs	Indo-European, Slavic	EDT	Wikipedia	
English*,†,‡	en	Indo-European, Germanic	GSD	Wikipedia	
Estonian*	et	Uralic, Finnic	Wikipedia		
French*†	fr	Indo-European, Romance	BOUN	Wikipedia	
German†,‡	de	Indo-European, Germanic	VTB	Wikipedia	
Greek*†,‡	el	Indo-European, Greek	BOUN	Wikipedia	
Hindi*†	hi	Indo-European, Indic	BOUN	Wikipedia	
Japanese*	ja	Japanese	BOUN	Wikipedia	
Korean*	ko	Korean	BOUN	Wikipedia	
Persian*	fa	Indo-European, Iranian	BOUN	Wikipedia	
Russian†	ru	Indo-European, Slavic	BOUN	Wikipedia	
Spanish*†,‡	es	Indo-European, Romance	BOUN	Wikipedia	
Swahili†	swa	Niger-Congo, Bantu	BOUN	Wikipedia	
Thai†	th	Tai-Kadai, Kam-Thai	BOUN	Wikipedia	
Turkish*†	tr	Turkic, Southwestern	BOUN	Wikipedia	
Urdu†	ur	Indo-European, Indic	BOUN	Wikipedia	
Vietnamese* †	vi	Austro-Asiatic, Viet-Muong	BOUN	Wikipedia	
POS/DP	Arabic	ar	Afro-Asiatic, Semitic	PUD	Wikipedia
Bambara	bm	Mandé	CRB	Wikipedia	
Burayat	bzh	Mongolic	BDT	Wikipedia	
Cantonese	yue	Sino-Tibetan	HK	Wikipedia	
Chinese	zh	Sino-Tibetan	GSD	Wikipedia	
Erzya	myv	Uralic, Mordvin	GSD	Wikipedia	
Finnic	fi	Indo-European, Germanic	FinPaHc	Wikipedia	
Japanese	ja	Japanese	GSD	Wikipedia	
Li	olq	Uralic, Finnic	KKPP	Wikipedia	
Maltese	mt	Afro-Asiatic, Semitic	MUDT	Wikipedia	
Maori	gv	Indo-European, Celtic	Callian	Wikipedia	
North Sami	sme	Uralic, Sami	Gielia	Wikipedia	
Komorzytan	kpv	Uralic, Permic	Lattice	Wikipedia	
Sandekki	sa	Indo-European, Indic	UFAL	Wikipedia	
Upper Sorbian	hsb	Indo-European, Slavic	UFAL	Wikipedia	
Uyghur	ur	Turkic, Southwestern	UFAL	Wikipedia	
NER	Hamar	hnr	Afro-Asiatic, Chadic	UFAL	Wikipedia
Igbo	ibo	Niger-Congo, Volta-Niger	UFAL	Wikipedia	
Kinyarwanda	kin	Niger-Congo, Bantu	UFAL	Wikipedia	
Ligurian	lug	Niger-Congo, Bantu	UFAL	Wikipedia	
Luo	luu	Nilo-Saharan	UFAL	Wikipedia	
Nigerian Pidgin	pcm	English-Cree	UFAL	Wikipedia	
Swahili†	ssa	Niger-Congo, Bantu	UFAL	Wikipedia	
Wolof	wol	Niger-Congo, Senegambian	UFAL	Wikipedia	
Yoruba	yor	Niger-Congo, Volta-Niger	UFAL	Wikipedia	
NLI	Aymara	aym	Aymaran	Tiedemann (2012); Wikipedia	Ortiga et al. (2020); Cuchimariano Romano and Sebastián Q. (2008); Mihos (2011); Bustamante et al. (2020)
Asháninka	cni	Arawakan	N/A	Wikipedia	Feldman and Coto-Solano (2020)
Bribri	bzd	Carib, Talamancan	N/A	Wikipedia	Gutierrez-Vasques et al. (2016); Wikipedia
Guarani	gn	Tupian, Tupi-Guarani	N/A	Wikipedia	Hathi Online Corpus
Nahuatl	nah	Uto-Aztecan, Aztecan	N/A	Wikipedia	Agü and Valic (2019); Wikipedia
Ometepe	oto	Uto-Manguean, Otomian	N/A	Wikipedia	Brambilla (1976)
Quichua	quy	Quechuan	N/A	Wikipedia	Galarreta et al. (2017); Bustamante et al. (2020)
Raraymi	tar	Uto-Aztecan, Tarahumaran	N/A	Wikipedia	Mager (2018)
Shipibo-Konibo	shk	Panoan	N/A	Wikipedia	
Wotaria	hch	Uto-Aztecan, Corachol	N/A	Wikipedia	
QA	Greek	el	Indo-European, Greek	N/A	Wikipedia
Romanian	ro	Indo-European, Romance	N/A	Wikipedia	
Russian	ru	Indo-European, Slavic	N/A	Wikipedia	
Thai	th	Tai-Kadai, Kam-Tai	N/A	Wikipedia	
Turkish	tr	Turkic, Southwestern	N/A	Wikipedia	

Table 5: Details of the languages and data used for training and evaluation of SFTs and adapters. The corpora of Bustamante et al. (2020) are available at https://github.com/iapupc/multilingual-data-peru; all other NLI corpora mentioned are available at https://github.com/AmericasNLP/americasnlp2021. * denotes source languages for multi-source DP training; † denotes source languages for multi-source NLI training; ‡ denotes source languages for multi-source QA training. English is the source language in all single-source task training experiments.
C Results by Language

Language	POS accuracy (%)	NER (F1)	NLI accuracy (%)
Arabic	67.8	33.8	49.5
Japanese	59.0	35.6	43.9
Chinese	60.8	36.9	54.2

Table 6: Results achieved by various zero-shot cross-lingual transfer methods across all tasks for each language. For each method (task pair), the (equivalent) reduction factor with the best mean score is selected as shown in Table 2. LT-SFT MS denotes LT-SFT with multi-source training. Bold denotes best-performing method per language, excluding LT-SFT MS as its larger, more diverse dataset gives it an unfair advantage.

POS (accuracy)	DP (UAS)	NER (F1)
Arabic	67.8	59.0
Japanese	60.8	59.0
Chinese	60.8	59.0

Table 7: Results for zero-shot cross-lingual transfer evaluation of the seen languages included in the POS, DP, and NER evaluations. For each method/metric pair, the best equivalent reduction factor from Table 2 is used. Arabic, Japanese, and Chinese, which were included in the POS/DP evaluation, can be considered high-resource languages; Swahili and Yorùbá, on the other hand, were included in the NER evaluation and are arguably resource-poor. In keeping with previous work, we find that language adaptation benefits seen languages less than unseen languages and—among the former—resource-rich languages less than resource-poor languages. This agrees with the intuition that lower-resource languages have greater scope for improvement through language adaptation due to the fact that they receive less signal during MMT pretraining. Interestingly, BrîtFIT performs much more competitively on the high-resource languages than low-resource and unseen languages, suggesting that its lack of capacity is more problematic for language adaptation rather than for task fine-tuning.
D MAD-X Results with AdapterHub Adapters

![Graphs showing results for different tasks](image1)

Figure 4: Zero-shot cross-lingual transfer evaluation of Lottery-Ticket Sparse Fine-Tuning (LT-SFT) and MAD-X when pretrained language adapters from AdapterHub (Pfeiffer et al., 2020a) are used during task training and evaluation. These adapters are trained for 250,000 steps with a batch size of 64, as opposed to the 100,000 steps of batch size 8 used in our experiments. LT-SFT nevertheless maintains an edge in performance across all tasks. Since AdapterHub adapters are only available for some of the languages in our evaluation, the results shown are averaged over only the languages for which they are available, indicated in the subfigure captions.

E Parameter Overlap between Languages

![Parameter overlap matrix](image2)

Figure 5: Percentage of parameters selected for the sparse fine-tuning of both languages in a pair.
In order to understand whether similar languages also share similar sub-networks, we plot the pairwise overlap (in percentage) between parameter subsets of language SFTs in Figure 5. Except for a single instance (Mandarin Chinese and Cantonese) where the high overlap reflects the fact that both languages are genealogically related, we find that the overlap is small for most language pairs. The explanation, we believe, is two-fold. Firstly, most of the languages in the multilingual datasets considered in our experiments belong to separate genera and families. Therefore, a lack of correlation in parameter subsets is expected. Secondly, for a pretrained model, there exist multiple parameter subsets (“winning tickets”) with comparable performance (Prasanna et al., 2020). The Lottery Ticket algorithm selects randomly among these equally valid subsets. Hence, a lack of overlap does not necessarily imply the reliance on disjoint sub-networks.