Thermodynamic speed limits for mechanical work

Erez Aghion\textsuperscript{1,2} and Jason R Green\textsuperscript{1,2,\ast}

\textsuperscript{1} Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, United States of America
\textsuperscript{2} Department of Physics, University of Massachusetts Boston, Boston, MA 02125, United States of America

E-mail: jason.green@umb.edu

Received 19 September 2022; revised 18 January 2023
Accepted for publication 24 January 2023
Published 9 February 2023

Abstract
Thermodynamic speed limits are a set of classical uncertainty relations that, so far, place global bounds on the stochastic dissipation of energy as heat and the production of entropy. Here, instead of constraints on these thermodynamic costs, we derive integral speed limits that are upper and lower bounds on a thermodynamic benefit—the minimum time for an amount of mechanical work to be done on or by a system. In the short time limit, we show how this extrinsic timescale relates to an intrinsic timescale for work, recovering the intrinsic timescales in differential speed limits from these integral speed limits and turning the first law of stochastic thermodynamics into a first law of speeds. As physical examples, we consider the work done by a flashing Brownian ratchet and the work done on a particle in a potential well subject to external driving.

Supplementary material for this article is available online

Keywords: thermodynamic speed limits, nonequilibrium statistical mechanics, stochastic thermodynamics

(Some figures may appear in colour only in the online journal)
Bounds on the efficient generation of mechanical work have been a defining feature of thermodynamics since its inception [1, 2]. Real processes fall short of these limits, particularly when the system is small, subject to strong fluctuations, or evolves on timescales that are fast compared to intrinsic timescales [3]. Biological systems must often overcome these challenges to generate work on particular timescales; for example, timely motion powered by motor proteins supports cellular functions and even cell survival [4, 5]. What limits the energy efficiency of machines, both biological and synthetic, at the nanoscale is that the work done by molecular motions is comparable to the entropic losses through fluctuating, dissipative processes [6, 7]. In efforts to create synthetic molecular motors and optimize their efficiency, a possible workaround would be to design their structure to generate power more quickly than entropic losses. That is, we might be able to engineer energy-efficient systems with a better understanding of the trade-off between the relative speed of work generation and dissipation in stochastic processes [8, 9].

Thermodynamic speed limits [10] have the potential to make new inroads into this challenge. Like quantum speed limits [11] and more recent classical speed limits [12–14], the central problem of thermodynamic speed limits is to determine the minimum time to transition between two physical states or the minimum time for an observable to change by a fixed amount [10]. Despite being classical, some thermodynamic speed limits have been discovered [15] that can be combined with the Mandelstam-Tamm time-energy uncertainty relation [16] to bound dynamical observables of open quantum systems [17]. While fluctuation theorems [18–21] and thermodynamic uncertainty relations [22–30] bound the value of thermodynamic observables and their fluctuations at specific points in time, thermodynamic speed limits instead bound the timescales associated with the observable. Speed limits have been applied to various stochastic dynamics with continuous and discrete state spaces [15, 31–43], and unlike early bounds in finite-time thermodynamics [44–47], do not rely on the system being close to equilibrium or transforming slowly. However, these bounds are largely on thermodynamic costs, such as the entropy production and energy wasted as heat, leaving open an important question: Are there physical bounds on the timescales associated with mechanical work?

In this letter, we establish upper and lower integral bounds on the minimum time to transfer energy to or from a system in the form of mechanical work. On short timescales, we show that these reduce to bounds on the intrinsic speed of work set by the intrinsic speeds of heat and internal energy, establishing a ‘first law of thermodynamic speeds’. Deriving these differential speeds from externally measured timescales gives a rigorous definition of intrinsic speeds of both thermal and mechanical observables. These bounds do not depend on the choice of stochastic dynamics and relate the timescales defined in other speed limits on intrinsic timescales. We demonstrate them using numerical simulations of physical setups that are experimentally realizable. Using these numerical examples, we also explain how to use empirical data and set speed limits that predict the minimum time to generate a needed amount of work.

### 1. Minimum time to generate an amount of work

Consider a microscopic physical system undergoing a, potentially nonstationary, stochastic process over a time $t_0 \leq t \leq t_0 + T$ and generating work, $\mathcal{W}(T)$. What is the minimum time, $T_{\text{min}}$, it will take for the system to produce or consume a net amount of work $|\mathcal{W}(T_{\text{min}})| =$
| \int_{t_0}^{t_0 + T_W} W(t) dt |? To answer this question, we recognize that the work is bounded from above by the absolute work, $W(T_w)$ [48]:

\[ |\dot{W}(T_w)| \leq W(T_w(c)) := \int_{t_0}^{t_0 + T_w(c)} |\dot{W}(t)| dt = c. \] (1)

The last equality means that any process exchanging energy as work at a ‘speed’, $|\dot{W}(t)|$, for a time, $T_w$, traverses a ‘distance’, $c$. From this perspective, the absolute value $|\dot{W}(t)|$ ensures the time and the speed have positive values. To put this interpretation on firmer ground, the rate of change in the time $T_w$ with respect to the distance,

\[ T'_w(c) := \frac{dT_w(c)}{dc} = \frac{1}{|\dot{W}(T_w(c))|}. \] (2)

is determined by the inverse-function theorem [49] when $W$ is continuously differentiable around $T_w$ and $\dot{W}$ is non-zero. If these conditions are not satisfied, this relation must be determined in separate time intervals where the conditions hold. Similar relations follow if we instead start with the heat or internal energy.

Now, any exchange of energy as work will depend on the internal energy $\dot{U}$ and heat $\dot{Q}$ through the (stochastic) first law of thermodynamics, $\dot{W} = \dot{U} - \dot{Q}$ [2]. So, applying the triangle inequality [50],

\[ ||\dot{U}(t)| - |\dot{Q}(t)|| \leq |\dot{W}(t)| \leq |\dot{U}(t)| + |\dot{Q}(t)|, \] (3)

leads to our first main result:

\[ \frac{1}{|\dot{U}|[T_w]} + \frac{1}{|\dot{Q}|[T_w]} \leq T'_w(c) \leq \frac{1}{|\dot{U}|[T_w] - |\dot{Q}|[T_w]|}. \] (4)

The temporal rate of the internal energy, $\dot{U}$, and the heat flux, $\dot{Q}$, evaluated at the time $T_w(c)$ set bounds on the timescale for the generation of the accumulated work. Solving equation (4), analytically or numerically, yields bounds on the minimum time, $T_w$, for the work, $|W|$, done on or by the system. That is, the integrated bounds are on the time $T_w$ to exchange an amount of absolute work, $c$. The initial condition for the differential inequalities can be any pair $W(T_w)$ and $\dot{W}$. In principle, the initial value could be chosen by the experimentalist. The bounds set by equation (4) are physical limits on the speed time $T'_w$.

One can readily derive versions of equation (4) for the time to dissipate an amount of energy as heat or cause a change in internal energy. These relations could be used in situations when the exact rates setting the bounds are known from a model or can be estimated from empirical data [51]. An advantage of these relations is that they allow for the estimation of timescales from measured data.

2. Flashing ratchet

To illustrate equation (4) and the ability to relate a timescale to other fluxes of energy, we consider the flashing ratchet as a system performing work [52]. The system consists of a collection of particles along a spatial coordinate $x$ that draw thermal energy from a heat bath and leverage an asymmetric, periodically-flashing potential to do work against a constant external force, $\epsilon_{\text{eff}} = gx$. For our numerical examples, $g = 0.5$. Without the flashing potential, the ensemble of Brownian particles simply drifts gradually to the left (decreasing $x$) under the static force [52]. A representative probability density function is shown in figure 1.
For example, linear fits are used to extract the heat and work in the optical manipulation of colloidal particles. For linear functions, the exact solution to equation (4) is $|1/(a + b)|c + T_0 \leq T_w(c) \leq |1/(a - b)|c + T_0$, given $|\bar{U}| = a > 0$ and $|\bar{Q}| = b > 0$ with constants $T_0$ and $T_0$. To confirm equation (4), we fit our simulation data to a linear model for $\bar{U}(t)$ and $\bar{Q}(t)$.
Figure 2. Extracting heat and energy rates for bounds on the minimum time to produce work. (a) The absolute-work $W(t)$ in equation (1) grows with time in five independent simulations of the Brownian ratchet [53] with 100,000 particles (colored symbols). Inset: magnification of the region between $t = 1.5$ and 2 with $t_{on} = t_{off} = 0.393$. For an arbitrarily chosen value $W = 37$ (dashed line), solving equation (4) gives upper/lower bounds (gray) on the minimum time $T_{W}(37)$. (b) The ensemble averaged absolute energy $U(t)$ (yellow) and absolute heat $Q(t)$ (green) as function of time. Data and linear fits (dashed black lines) of one simulation. (c) Upper and lower bounds (solid black lines) on $T_{W}(c)$ as function of $c = W$. Simulation data is from $|\dot{U}(t)|$ and $|\dot{Q}(t)|$ via equation (4) in (b). These bounds nicely confine the results of $T_{W}(c)$, from all five simulations (colored symbols). A dashed black line shows the linear fit to $T_{W}(c)$ from one of these simulations.

From these linear fits, we find the rates of heat and work from the slopes: $U(t) = 22.41t - 2.47$ and $Q(t) = 8.089t + 1.988$. Substituting these rates into equation (4), we solve the differential inequalities with the initial condition $T_{W}(7.9) = 0.293$ (solid black lines in figure 2(c)).

The bounds on $T_{W}(c)$ that follow from this analysis match simulations well for $c \geq 7.9$. The choice of initial condition is arbitrary; here, the choice matches a point on the best linear fit to $T_{W}(c)$ from the one of the ratchet simulations. The choice of a linear model and this initial condition do cause outliers at small $c$ values. These fits are meant as an illustration, as the linear fits in figure 2(b) do not represent the instantaneous jumps in $U$ and $Q$ in the ‘on/off’ switching of the sawtooth potential. Other choices for the intercept are possible, such as $(c, T_{W}) = (0, 0)$. Generally, equation (4) leaves us freedom to choose the initial condition for the fitting, however it ensures that from the $U$ and $Q$ data we can obtain bounds on $T_{W}$ whose tightness increases with the quality of the numerical fit. If the fitting function is precise, or if the energy and heat rates are known exactly (as in a model), one of the bounds will saturate.
3. Intrinsic speeds and differential speed limits

The bounds in equation (4) for the extrinsic time raise the question of their connection to other speed limits on the intrinsic timescale of observables. Previous ‘differential speed limits’ were given in terms of intrinsic speeds, speeds defined through heuristic arguments and analogy with quantum mechanical speeds [10, 15, 33, 35, 57].

To reconcile the use of intrinsic and extrinsic times in thermodynamic speed limits, we establish equation (2) as the formal definition of an intrinsic speed. To see this connection, we can consider smoothly varying path functions, \( \mathcal{X} \), and state functions, \( \langle X \rangle \). Take a time interval where their rates, \( \dot{\mathcal{X}} \) and \( d_t\langle X \rangle \), do not change sign. Sufficiently short time intervals will naturally satisfy this condition, and the magnitude of the absolute integrated values will also not change significantly. Then, equation (1) becomes:

\[
\left| \int_{t_0}^{t_0 + \tau_X} \dot{X}(t) dt \right| = \int_{t_0}^{t_0 + \tau_X} |\dot{X}(t)| dt =: \delta|X| \approx \tau_X |\dot{X}(t_0)|, \\
\left| \int_{t_0}^{t_0 + \tau_{\langle X \rangle}} \dot{\langle X \rangle}(t) dt \right| = \int_{t_0}^{t_0 + \tau_{\langle X \rangle}} |\dot{\langle X \rangle}(t)| dt =: \delta|\langle X \rangle| \approx \tau_{\langle X \rangle} |\dot{\langle X \rangle}(t_0)|. 
\] (5)

The equalities on the left-hand side stem from the assumption that the observable rates do not change sign in the time interval. When these rates are zero over the entire interval, the intrinsic time diverges and the observable would take an infinite amount of time to grow by any finite amount. Physically, this situation occurs at steady-states, where one would naturally expect a vanishing speed. The approximations on the right-hand side of equation (5) hold when \( \dot{X} \) or \( \dot{\langle X \rangle} \) are constant, when the process can be linearized, or when \( \delta|X| \) and \( \delta|\langle X \rangle| \) are sufficiently small. They also relate a distance to a velocity and intrinsic timescale, and this analogy motivates the more general definition [10] of the intrinsic speeds.

Equation (5) leaves open the choice of distance \( \delta|X| \) or \( \delta|\langle X \rangle| \) in the definition of the intrinsic timescale. Previous definitions [15, 35] chose the time that it takes for an observable to change by one standard deviation, \( \Delta X \), at \( t_0 \). This definition is analogous to the timescale used in the Mandelstam-Tamm version of the time-energy uncertainty relation [58]. In stochastic thermodynamics, this definition leads to bounds on intrinsic speeds using the product of \( \Delta X \) and variance of the Fisher information [15, 35]. With this choice: \( \tau^{-1}_X = |d_t\langle X \rangle|/\Delta X \) and \( \tau^{-1}_{\langle X \rangle} = |\dot{\langle X \rangle}|/\Delta X \). These definitions of speed are time-dependent and depend on the evolution of \( \langle X \rangle \) and \( \langle \dot{X} \rangle \), even when they are nonlinear functions of time. We suppress this time dependence in our notation. We can Open these intrinsic timescales to the extrinsic time, \( T_X \), defined from \( \overline{X(T_X)} = \int_{t_0}^{t_0 + T_X} \dot{X}(t) dt \) in equation (1). The extrinsic timescales converge to their intrinsic timescale counterparts when \( \overline{X} \to \delta|X| \to 0 \). In this limit, the inequality \( |X(T_X)| \leq \overline{X(T_X)} \) becomes an equality. A similar logic holds for the extrinsic time of path functions, \( T_\langle X \rangle \).

So far, intrinsic times have been defined for the internal energy and heat, but not mechanical work. Consequently, the definition of the intrinsic speed for work above completes the family of stochastic thermodynamics speeds [10, 15]. Still open, though, is how the first law of stochastic thermodynamics constrains the relation between these intrinsic thermodynamics speeds. We would anticipate upper and lower bounds on the intrinsic speeds similar to equation (4). Notice that we can divide the time series of all the observables into segments of equal, short time intervals in which the derivatives are approximately constant. Provided the
associated speeds are small and there are no abrupt changes, the first law of stochastic thermodynamics and the triangle inequality in equation (3) together yield \(|\delta U| - |\delta Q| \leq |\delta W| \leq |\delta U| + |\delta Q|\). For the intrinsic timescale of work,

\[
|f_k \tau_k - f_\omega \tau_\omega| \leq \tau_W \leq f_k \tau_k + f_\omega \tau_\omega,
\]

the bounds depend on \(f_k = |U|/|W|\) and \(f_\omega = |Q|/|W| \leq 1 + f_k\), which determine the relative contributions of the internal energy and heat timescales. The intrinsic timescales of first law quantities are then related with a combination of any two speeds bounding the third.

4. First law of intrinsic thermodynamic speeds

We can derive more direct relationships between the intrinsic speeds. Consider the time it takes for the energy, work, and heat to change by some fixed, equal small ‘distance’ \(\dot{c} \geq 0\) during a physical transformation of the system: \(\delta W \approx W \tau_W = \dot{c}\), \(\delta Q \approx \dot{Q} \tau_\omega = \dot{c}\), and \(\delta U \approx U \tau_k = \dot{c}\). With fixed distances, we can recast equation (3) entirely in terms of the intrinsic speeds, \(\tau_W^{-1}\), \(\tau_\omega^{-1}\), \(\tau_k^{-1}\). Using \(W \approx \delta |W|/\tau_W\), \(\delta |U|/\delta |W| = 1\), and \(\delta |Q|/\delta |W| = 1\), we find:

\[
|\tau_W^{-1} - \tau_\omega^{-1}| \leq \tau_W^{-1} \leq \tau_k^{-1} + \tau_\omega^{-1}.
\]

Similarly, the heat or internal energy are bounded: \(|\tau_W^{-1} - \tau_\omega^{-1}| \leq \tau_W^{-1} \leq \tau_k^{-1} + \tau_\omega^{-1}\) and \(|\tau_W^{-1} - \tau_k^{-1}| \leq \tau_W^{-1} \leq \tau_k^{-1} + \tau_\omega^{-1}\). These expressions become equalities when one of the rates, \(W\), \(\dot{Q}\), or \(U \rightarrow 0\). For example, the intrinsic speed for work \(\tau_W^{-1} \rightarrow 0\) when \(\dot{W} \rightarrow 0\). Since they derive from the stochastic first law of thermodynamics, these results represent what we call the first law of intrinsic thermodynamic speeds. As a corollary to the stochastic first law: The intrinsic speed of a composite observable is upper (lower) bounded by the sum (difference) of the speeds of its components.

5. Driven particles in a harmonic trap

To demonstrate the intrinsic speed limits, we consider a collection of particles hovering in a heat bath above a flat surface, which exerts a force whose amplitude depends on the particles’ height above the surface and time. Here, work is involved in changing the potential shape with or against the direction of the packet’s thermal expansion. Experimentally, this system can be realized by optically trapped colloidal particles [52, 56, 59]. We model it with a unidimensional, overdamped Langevin equation [53]. The particles start from rest at \(x(0) = 0\). Their spatial coordinate, \(x(t)\), evolves via \(x(t) = \mu^{-1}F(x,t) + \sqrt{2D\Gamma(t)}\) with damping \(\mu > 0\), diffusion constant \(D = k_B T/\mu\), and temperature \(T > 0\). We set \(\mu = 1\) and \(k_B T = 1.25\). The deterministic force \(F(x,t) = [-0.2x + 0.5 \sin(x)] \times [1 + 0.75 \sin(t)]\) originates from a time-dependent potential \(\epsilon(x,t)\). The \(\delta\)-correlated white Gaussian noise, \(\Gamma(t)\), has zero mean. Since the modulation of the external force is continuous in time, we measure the work via \(W = \langle \epsilon(x,t) \rangle\) [15] and heat/energy as in the ratchet.

Solving the master equation associated with these stochastic dynamics [60–62], we obtain the position distribution and observables for \(t \in [0 \rightarrow 5\pi/2]\). The sinusoidal modulation of the potential causes the particle packet to flatten and sharpen periodically. Work varies over time as the external force varies. Figure 3(a) shows three representative intervals of \(|\delta W| = 0.02\) setting the value of \(\tau_W(t)\).

Figure 3(b) confirms the relation between intrinsic speeds in equation (7). As for the extrinsic time, \(T_W\), the energy rate and heat flux put speed limits on the intrinsic speed of
mechanical work, $\tau_W$. These limits hold for any time interval that is short enough to resolve the shape of $W(t)$. In the figure, we use $\delta W = 0.01$ [63]. Unlike the extrinsic time, figure 2, either the upper or lower bound is always tight (provided $\dot{W} \neq 0$), even while the system is driven. While the total accumulated work in equation (1) is over measurable times set by an external clock, the intrinsic speeds are determined in short time intervals. The value of the work is determined from two components which maintain constant sign during the interval $\tau_W$.

6. Discussion

The integral and differential bounds above are a relationship between the timescales associated with work and the speeds of heat and internal energy. Any two observables that can be measured directly will set bounds on the third observable. For example, in a mechanical system subject to a time-dependent potential, the internal energy is measured from the rate of change of the potential energy. The heat flux can also be related to the rate of change in the entropy flow, $S_e$ [64], through $\dot{Q} = T S_e$. We can define the intrinsic time of entropy flow, $\tau_{S_e}$, from the relation: $|T \delta S_e| = \left| T \int_{t_0}^{t_0+\tau_{S_e}} S_e(t) dt \right|$. Using $\tau_{S_e}$ with a fixed ‘distance’ $T \delta S_e = c$, equation (7) can now be written as $\tau_{U}^{-1} - \tau_{S_e}^{-1} \leq \tau_{W}^{-1} \leq \tau_{U}^{-1} + \tau_{S_e}^{-1}$. While in this letter we focus on mechanical work, the speed limit derived here applies to any linear combination of
observables, such as the decomposition \([\dot{S} = \dot{S}_i + \dot{S}_e]\) of the total entropy rate \(\dot{S}\) into the rates of entropy flow, \(\dot{S}_e\), and the entropy production in the system, \(\dot{S}_i\).

Extrinsic times, like \(T_W\), are potentially useful to predict the minimal time it will take a physical, chemical, or biological system to produce a certain desired amount of work. The bounds we have derived on these times, equation (4), led us here to the first intrinsic speed for mechanical work. They also led us to the first formal definition of intrinsic timescales, which measure the distinguishability of observables and local fluxes of energy \([10, 15]\). There, the Fisher information, \(I_F\), sets the time it takes a probability distribution to evolve to a new statistically distinguishable state \([10]\) and a speed limit \(\tau^{-1} = \sqrt{I_F}\) on the intrinsic speeds of any observable with the same mathematical form as the heat: \(\tau_q^{-1} \leq \tau^{-1}\). We can use this speed limit together with the relationship between intrinsic speeds from the first law to constrain the intrinsic speed of mechanical work from above. From equation (7), we can now write \(\tau_W^{-1} \leq \tau_q^{-1} + \tau^{-1}\).

The formal definition of intrinsic speeds makes this result more rigorous and clearly connects intrinsic and extrinsic times. To see how, we use the inverse function theorem \([49]\) for an observable, like heat, that is represented as a covariance, \(A(t) = \text{cov}(\dot{A}, \dot{I})\). From \(|A[T_A(c)]| \leq \int_0^{\infty} T_A(c) |\dot{A}(t)| dt = c\), we can use the time-information uncertainty relation, \(|\dot{A}| \leq \sqrt{I_F} \Delta A\), where \(\Delta A\) is the standard deviation of \(A\) \([15]\). Substituting gives \(dT_A(c) \geq 1/(\sqrt{I_F} \Delta A)|T_A(c)|\). Thus, given the Fisher information, we can obtain the first time \(T_A(c)\) to reach \(|A| = c\) for any \(c > 0\). To recover the thermodynamic speed limit in \([15]\), we choose \(dc \approx \Delta A\), yielding \(dT_A \geq 1/\sqrt{I_F}\). Taking \(dT_A = \Delta A/\dot{A} = \tau_A\), we get \(\tau_A \geq 1/\sqrt{I_F}\), which agrees with \([15]\). Unlike \([15]\), where \(\sqrt{I_F}\) alone bounds intrinsic observable timescales, here the statistical length is evaluated at \(T_A\) and, so, depends on the observable.

Generating work is a critical aspect of physical systems and devices, but also the dynamical functions of living systems. Systems that are small, and driven stochastically, present particular challenges to the prediction of work that can be accomplished in a given amount of time, but also the practical design of optimal protocols in fluctuation-induced motion \([65]\). The bounds here on the minimum time to accomplish mechanical work, heat, or internal energy are theoretically grounded and can be implemented in practice. They are a relationship between stochastic observables that can be manipulated to bound an unknown quantity from others that are directly measurable. The extrinsic and intrinsic and speed relations here hold for systems that are both open and driven. By clarifying the distinction between extrinsic and intrinsic timescales, we can turn the stochastic first law of thermodynamics into a corollary relating thermodynamic speeds.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1856250. J R G acknowledges helpful conversations with Sky Nicholson and Luis Pedro García-Pintos.
ORCID iDs

Erez Aghion  https://orcid.org/0000-0002-5591-8084
Jason R Green  https://orcid.org/0000-0003-2572-2838

References

[1] Carnot S 1824 Reflections on the Motive Power of Fire and on Machines Fitted to Develop That Power (Paris: Bachelier)
[2] Callen H B 1985 Thermodynamics and an Introduction to Thermostatistics 2nd edn (New York: Wiley)
[3] Jarzynski C 2011 Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale Annu. Rev. Condens. Matter Phys. 2 329
[4] Miller R J D 2012 Molecular motor speed limits Nat. Chem. 4 523
[5] Milo R and Phillips R 2015 Cell Biology by the Numbers (New York: Garland Science)
[6] Bo S and Celani A 2014 Entropy production in stochastic systems with fast and slow time-scales J. Stat. Phys. 154 1325
[7] Amano S, Esposito M, Kreidt E, Leigh D A, Penocchio E and Roberts B M 2022 Insights from an information thermodynamics analysis of a synthetic molecular motor Nat. Chem. 14 530
[8] Bone R A, Sharpe D J, Wales D J and Green J R 2022 Stochastic paths controlling speed and dissipation Phys. Rev. E 106 054151
[9] Bone R A and Green J R 2022 Optimizing dynamical functions for speed with stochastic paths J. Chem. Phys. 157 224101
[10] Green J R 2022 Geometric perspective on thermodynamic uncertainty relations and speed limits (under revision)
[11] Deffner S and Campbell S 2017 Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control J. Phys. A: Math. Theor. 50 453001
[12] Shanahan B, Chenu A, Margolus N and del Campo A 2018 Quantum speed limits across the quantum-to-classical transition Phys. Rev. Lett. 120 070401
[13] Okuyama M and Ohzeki M 2018 Quantum speed limit is not quantum Phys. Rev. Lett. 120 070402
[14] Das S and Green J R 2022 Density matrix formulation of dynamical systems Phys. Rev. E 106 054135
[15] Nicholson S B, García-Pintos L P, del Campo A and Green J R 2020 Time–information uncertainty relations in thermodynamics Nat. Phys. 16 1211
[16] Mandelstam L and Tamm I 1991 The uncertainty relation between energy and time in non-relativistic quantum mechanics Selected Papers ed I E Tamm, B M Bolotovskii, V Y Frenkel and R Peierls (Berlin: Springer) pp 115–23
[17] García-Pintos L P, Nicholson S B, Green J R, del Campo A and Gorshkov A V 2022 Unifying quantum and classical speed limits on observables Phys. Rev. X 12 011038
[18] Jarzynski C 1997 Nonequilibrium equality for free energy differences Phys. Rev. Lett. 78 2690
[19] Crooks G E 1999 Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences Phys. Rev. E 60 2721
[20] Esposito M and Van den Broeck C 2010 Three detailed fluctuation theorems Phys. Rev. Lett. 104 090601
[21] Rao R and Esposito M 2018 Detailed fluctuation theorems: a unifying perspective Entropy 20 635
[22] Barato A C and Seifert U 2015 Thermodynamic uncertainty relation for biomolecular processes Phys. Rev. Lett. 114 158101
[23] Gingrich T R, Horowitz J M, Perunov N and England J L 2016 Dissipation bounds all steady-state current fluctuations Phys. Rev. Lett. 116 120601
[24] Di Terlizzi I and Baiesi M 2018 Kinetic uncertainty relation J. Phys. A 52 02LT03
[25] Horowitz J M and Gingrich T R 2020 Thermodynamic uncertainty relations constrain nonequilibrium fluctuations Nat. Phys. 16 15
[26] Neri I 2020 Second law of thermodynamics at stopping times Phys. Rev. Lett. 124 040601
[27] Dechant A and Sasa S-i 2021 Continuous time reversal and equality in the thermodynamic uncertainty relation Phys. Rev. Res. 3 L042012
[28] Kolchinsky A and Wolpert D H 2021 Work, entropy production and thermodynamics of information under protocol constraints Phys. Rev. X 11 041024
[29] Hartich D and Godec A 2021 Thermodynamic uncertainty relation bounds the extent of anomalous diffusion Phys. Rev. Lett. 127 080601
[30] Skinner D J and Dunkel J 2021 Improved bounds on entropy production in living systems Proc. Natl Acad. Sci. 118 e2024300118
[31] Aurell E, Gawedzki K, Mejía-Monasterio C, Mohayaee R and Muratore-Ginanneschi P 2012 Refined second law of thermodynamics for fast random processes J. Stat. Phys. 147 487
[32] Shiraishi N, Funo K and Saito K 2018 Speed limit for classical stochastic processes Phys. Rev. Lett. 121 070601
[33] Hasegawa Y and Van Vu T 2019 Uncertainty relations in stochastic processes: an information inequality approach Phys. Rev. E 99 062126
[34] Dechant A and Sakurai Y 2019 Thermodynamic interpretation of Wasserstein distance (arXiv: 1912.08405)
[35] Ito S and Dechant A 2020 Stochastic time evolution, information geometry and the Cramér-Rao bound Phys. Rev. X 10 021056
[36] Plata C A, Güery-Odelin D, Trizac E and Prados A 2020 Finite-time adiabatic processes: derivation and speed limit Phys. Rev. E 101 032129
[37] Falasco G and Esposito M 2020 Dissipation-time uncertainty relation Phys. Rev. Lett. 125 120604
[38] Van Vu T and Hasegawa Y 2021 Geometrical bounds of the irreversibility in Markovian systems Phys. Rev. Lett. 126 010601
[39] Hamazaki R 2022 Speed limits for macroscopic transitions PRX Quantum 3 020319
[40] Dechant A and Sasa S-i 2021 Improving thermodynamic bounds using correlations Phys. Rev. X 11 041061
[41] Tasnim F and Wolpert D H 2021 Thermodynamic speed limits for co-evolving systems (arXiv: 2107.12471)
[42] Falasco G, Esposito M and Delvenne J-C 2022 Beyond thermodynamic uncertainty relations: nonlinear response, error-dissipation trade-offs and speed limits J. Phys. A: Math. Theor. 55 124002
[43] Nicholson S B and Green J R 2021 Thermodynamic speed limits from the regression of information (arXiv:2105.01588)
[44] Salamon P and Berry R S 1983 Thermodynamic length and dissipated availability Phys. Rev. Lett. 51 1127
[45] Salamon P, Nulton J D and Berry R S 1985 Length in statistical thermodynamics J. Chem. Phys. 82 2433
[46] Feldmann T, Andresen B, Qi A and Salamon P 1985 Thermodynamic lengths and intrinsic time scales in molecular relaxation J. Chem. Phys. 83 5849
[47] Fairen V, Hatlee M and Ross J 1982 Thermodynamic processes, time scales and entropy production J. Phys. Chem. 86 70
[48] Throughout, \(\tilde{O}(t)\) denotes the integrated absolute value of the observable \(\tilde{O}(t) = \int_{t_0}^{t} |\dot{Q}(t')| dt'\)
[49] Clarke F 1976 On the inverse function theorem Pac. J. Math. 64 97
[50] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (New York: Dover)
[51] For empirical data, if \(|\tilde{U}(t)|, |\tilde{Q}(t)|\) or \(\tilde{W}(t)\) cannot be fit with smooth functions for the entire duration of measurement, the solution can be obtained for segments of time. For example, if \(\tilde{Q}\) needs two different fits when \(t' \in (0, t/2)\) and \(t' \in (t/2, t)\), then bounds are generated independently for \(T_{W} < t/2\) and \(t/2 < T_{W} < t\), for any value of \(\tilde{W}\) achievable in these time segments. Segmenting time intervals is also necessary when \(|\tilde{U}| = |\tilde{Q}|\)
[52] Astumian R D 1997 Thermodynamics and kinetics of a Brownian motor Science 276 917
[53] See the Supplemental Material (SM) [62] for additional simulation details
[54] Band Y B, Kafri O and Salamon P 1982 Finite time thermodynamics: optimal expansion of a heated working fluid J. Appl. Phys. 53 8
[55] Gomez-Solano J R, July C, Mehl J and Bechinger C 2015 Non-equilibrium work distribution for interacting colloidal particles under friction New J. Phys. 17 045026
[56] Martinez I A, Roldán E, Dinis L and Rica R A 2017 Colloidal heat engines: a review Soft matter 13 22
[57] Hasegawa Y 2021 Thermodynamic uncertainty relation for general open quantum systems Phys. Rev. Lett. 126 010602
[58] Messiah A 1961 Quantum Mechanics vol 1 (Amsterdam: North-Holland)
[59] Grier D G and Roichman Y 2006 Holographic optical trapping Appl. Opt. 45 880
[60] Barkai E, Aghion E and Kessler D A 2014 From the area under the Bessel excursion to anomalous diffusion of cold atoms Phys. Rev. X 4 021036
[61] Holubec V, Kroy K and Steffenoni S 2019 Physically consistent numerical solver for time-dependent Fokker-Planck equations Phys. Rev. E 99 032117
[62] See the Supplemental Material
[63] When measuring intrinsic times numerically from data, if the starting point for measuring τV is too close to a maximum or minimum of V(t), such that δW is not obtained, then this time interval is undefined. This can occur in figure 3(a) near t ≈ 1.8 and 4.7
[64] Van den Broeck C and Esposito M 2015 Ensemble and trajectory thermodynamics: a brief introduction Physica A 418 6
[65] Brown A I and Sivak D A 2017 Toward the design principles of molecular machines Phys. Can. 73 61