Genetic Polymorphisms and Platinum-based Chemotherapy Treatment Outcomes in Patients with Non-Small Cell Lung Cancer: A Genetic Epidemiology Study Based Meta-analysis

Li-Ming Tan¹²³, Cheng-Feng Qiu², Tao Zhu¹²³, Yuan-Xiang Jin², Xi Li¹²³, Ji-Ye Yin¹²³, Wei Zhang¹²³, Hong-Hao Zhou¹²³ & Zhao-Qian Liu¹²³

Data regarding genetic polymorphisms and platinum-based chemotherapy (PBC) treatment outcomes in patients with NSCLC are published at a growing pace, but the results are inconsistent. This meta-analysis integrated eligible candidate genes to better evaluate the pharmacogenetics of PBC in NSCLC patients. Relevant studies were retrieved from PubMed, Chinese National Knowledge Infrastructure and WANFANG databases. A total of 111 articles comprising 18,196 subjects were included for this study. The associations of genetic polymorphisms with treatment outcomes of PBC including overall response rate (ORR), overall survival (OS) and progression-free survival (PFS) were determined by analyzing the relative risk (RR), hazard ration (HR), corresponding 95% confidence interval (CI). Eleven polymorphisms in 9 genes, including ERCC1 rs11615 (OS), rs3212986 (ORR), XPA rs1800975 (ORR), XPD rs1052555 (OS, PFS), rs13181 (OS, PFS), XPG rs2296147 (OS), XRCC1 rs1799782 (ORR), XRCC3 rs861539 (ORR), GSTP1 rs1695 (ORR), MTHFR rs1801133 (ORR) and MDR1 rs1045642 (ORR), were found significantly associated with PBC treatment outcomes. These variants were mainly involved in DNA repair (EXCC1, XPA, XPD, XPG, XRCC1 and XRCC3), drug influx and efflux (MDR1), metabolism and detoxification (GSTP1) and DNA synthesis (MTHFR), and might be considered as potential prognostic biomarkers for assessing objective response and progression risk in NSCLC patients receiving platinum-based regimens.

Lung cancer is a leading cause of cancer-associated death and substantially contributes to the heavy burden worldwide, with a dismal 5-year survival rate of 16.6%¹. Among all primary lung cancers, non-small cell lung cancer (NSCLC) represents approximately 85% of cases. Chemotherapy remains the standard first-line treatment for almost 80% of NSCLC patients, of which platinum-based chemotherapy (PBC) is considered as the most efficacious option, especially for patients with an advanced stage of the disease²³. Unfortunately, PBC efficacy varies markedly across individuals. Besides clinical and pathologic features, genetic variation is considered as an important factor to influence the treatment efficacy and prognosis.

For decades, we have witnessed a growing interest in the pharmacogenomics field, and a tremendous amount of epidemiological evidence that gene polymorphisms could give rise to varying drug response has emerged. Many studies have reported the association of genetic factors, including genes related to DNA repair pathway, drug influx and efflux, drug metabolism and detoxification, DNA synthesis, cell cycle control and apoptosis,
with PBC response and prognosis of patients4–9. The accumulation of pharmacogenomics findings calls for a more comprehensive systematic review and meta-analysis to summarize the evidence and to identify the general genetic associations among reported results. Some meta-analyses have studied the influences of certain genes on treatment outcomes of NSCLC patients receiving PBC. However, these findings including original studies are not always consistent, and no systematic review and meta-analysis covering all tested polymorphisms has been performed thus far.

The aim of this work is to identify the effects of all eligible genes in clinical prognosis of NSCLC patients receiving platinum-based treatment. A total of 24 single nucleotide polymorphisms (SNPs) of 12 genes (\textit{ERCC1}, \textit{XPA}, \textit{XPC}, \textit{XPD}, \textit{XRCC1}, \textit{XRCC3}, \textit{GSTP1}, \textit{MTHFR}, \textit{RRM1}, \textit{MDR1} and \textit{CDA}) have been studied in our work. The impacts of these genetic variants on PBC efficacy in NSCLC patients were assessed by evaluating the objective response ratio (ORR), progression-free survival (PFS), and overall survival (OS). We think this comprehensive meta-analysis with robust evidence would fill the gap in the pharmacogenomics of platinum in NSCLC patients.

Materials and Methods

Search strategy, eligibility criteria and data extraction. We followed the principles proposed by the Human Genome Epidemiology Network (HuGeNet) HuGe Review Handbook of Genetic Association Studies9.

Relevant studies were searched in PubMed, Chinese National Knowledge Infrastructure (CNKI) and WANFANG databases. A two-step search strategy was implemented and last updated on January 31, 2016. First, the following three groups of keywords were used for searching in MEDLINE (via the PubMed gateway): platinum OR cisplatin OR carboplatin OR oxaliplatin OR nedaplatin, polymorphism OR SNP OR variant, NSCLC OR non-small cell lung cancer. Second, we used different combinations of the above terms for complementary searching. Besides, references cited in the retrieved papers were manually searched in case of missing relevant studies. Afterwards, we singled out the candidate genes that were eligible in our research, and the terms including a candidate gene's official symbol and the three above-mentioned groups of keywords were used to perform a comprehensive search.

The studies included in the meta-analysis had to meet all the following inclusion criteria: (i) cancer should be confirmed as NSCLC; (ii) treatment regimens were platinum-based chemotherapies; (iii) studies provided primary outcomes of interest including ORR, PFS or OS. Studies met any one of the exclusion criteria listed below were excluded in our analysis: (i) studies without indispensable data such as genotypes, overall response rate (ORR), overall survival (OS), or progression-free survival (PFS); (ii) studies with other types of lung cancer such as small cell lung cancer (SCLC) included; (iii) reviews, case reports, and meta-analyses. (iv) studies based on cell lines and animal experiment.

All records were screened by three investigators independently (Tan, Qiu and Jin) with disagreement resolved by discussion. The following information was extracted from each of the eligible studies: first author, publication year, sample size, ethnicity, age, gender, stages of tumor, chemotherapeutic agents, SNPs and genotyping methods, treatment outcomes.

Statistical analysis. We used the ORR as an indicator for PBC efficacy. Patients were classified into two groups: the responding group, which included complete and partial responders (CR and PR), and the non-responding group, which included subjects with stable or progressive diseases (SD and PD)10. RR and the corresponding 95% CI were used to assess the association between each genetic variant and the response of NSCLC patients treated with PBC. The hazard ratios (HR) and corresponding 95% CI were determined to evaluate OS and PFS. Three genotypic models commonly used in genetic association synopses were applied in this meta-analysis: heterozygous or homozygous variant versus wild type, heterozygous variant versus wild type and homozygous variant versus wild type.

Between-study variance, also known as heterogeneity, was evaluated by the chi-square-based \textit{Q} test based on chi-square as well as \textit{I}^2. \textit{Q} tests with \textit{P} > 0.10 were considered with statistical significance. \textit{I}^2 described the proportion of variation originating from heterogeneity rather than within-study error, whose value varied from 0 to 100 percent and indicated different heterogeneity degrees. Heterogeneity could be accepted when \textit{I}^2 < 50\% (0 < \textit{I}^2 < 25\%: no heterogeneity; 25 \textit{I}^2 < 50\%: moderate heterogeneity). Sensitivity analysis and subgroup analysis were also applied to find the source of heterogeneity. Pooled RRs and HRs were calculated using the fixed-effects model when the heterogeneity was under the moderate degree or did not exist. Otherwise, the random-effects model was used. Moreover, the potential publication bias was assessed by statistical evaluation with Begg’s funnel plot and Egger’s linear regression test. The \(\alpha \) level of significance was set at 0.05 unless noted otherwise.

In the end, we calculated the false positive report probability (FPRP) of statistically significant results to assess whether the findings were noteworthy11. The FPRP value was determined based on the \(P \) value, the prior probability for the association and statistical power. We set a stringent FPRP threshold of 0.20 and assigned a prior probability range of 0.1–0.001, and the statistical power was based on the ability to detect an OR of 1.5, with \(\alpha \) equal to the observed \(p \)-value.

All statistical analyses were performed with STATA/SE 12.0 (StataCorp, College station, TX) and R (version 3.2.0, R Foundation for Statistical Computing, Vienna, Austria).

Results

Characteristics of Eligible Studies. After the process of selection, a total of 111 studies met the inclusion criteria and totally 18,196 NSCLC subjects (between the ages of 51 to 84) who accepted PBC were included in the final meta-analysis. More than 80% of these articles focused on the advanced NSCLC (in disease stages of III–IV).
The process of selecting publications is presented in Fig. 1 and more details about the characteristics of the studies included are listed in Table 1.

Meta-analysis findings. Genetic variants associated with response to platinum drugs. As shown in Table 2, we conducted 74 primary meta-analyses and 64 subgroup meta-analyses sorted by ethnicity to study the associations between 24 SNPs of 12 genes and the responses to PBC in NSCLC patients. Of the 138 performed meta-analyses, 26 (19%) resulted in statistically significant ($P < 0.05$), with the remaining 112 being non-significant. For ORR, RR < 1 indicated that patients carrying the allele or genotype had a disadvantageous response, RR > 1 donated that the allele carriers had a favorable response. Pooled RR with 95% CI of individual SNPs identified as statistically associated with favorable responses to PBC were listed as follows:

- **XRCC1** rs25487 (AA vs. GG: overall RR $= 1.27$, 95% CI $= 1.02–1.58$), **XRCC1** rs1799782 (CT vs. CC: overall RR $= 1.22$, 95% CI $= 1.07–1.56$), **XRCC3** rs861539 (CT VS CC: Caucasian RR $= 1.46$, 95% CI $= 1.06–1.99$ and overall RR $= 1.31$, 95% CI $= 1.07–1.59$; TT VS CC: Caucasian RR $= 1.59$, 95% CI $= 1.07–2.36$ and overall RR $= 1.48$, 95% CI $= 1.12–1.97$; TT+CT VS CC: Caucasian RR $= 1.48$, 95% CI $= 1.10–2.01$ and overall RR $= 1.28$, 95% CI $= 1.07–1.52$), **XPA** rs1800975 (AG VS AA: Asian RR $= 2.17$, 95% CI $= 1.29–3.64$ and overall RR $= 1.74$, 95% CI $= 1.18–2.57$), **GSTP1** rs1695 (GG vs. AA: overall RR $= 0.71$, 95% CI $= 0.54–0.94$ and overall RR $= 0.72$, 95% CI $= 0.56–0.94$), **XRCC1** rs13181 (CA+CC vs. AA: Asian RR $= 0.83$, 95% CI $= 0.71–0.98$), **ERP1** rs1799793 (AA vs. GG: Asian RR $= 0.20$, 95% CI $= 0.05–0.76$), **MTHFR** rs1801133 (CT vs. CC: mixed RR $= 0.63$, 95% CI $= 0.44–0.89$), **MDR1** rs1045642 (CT vs. CC: Asian RR $= 0.69$, 95% CI $= 0.50–0.95$ and overall RR $= 0.73$, 95% CI $= 0.56–0.94$; TT vs. CC: Asian RR $= 0.47$, 95% CI $= 0.26–0.85$ and overall
| First author (Year) | Ethnicity (country) | Sample size | Male/female | Median age | Disease stage | Chemotherapeutic drugs | Outcomes | Genotyping method | SNPs | Ref. |
|---------------------|--------------------|-------------|-------------|------------|--------------|------------------------|----------|------------------|------|------|
| Camps, C. (2003) | Caucasian (Spain) | 39 | 34/5 | 64 (27–82) | IIIB–IV | DDP+GEM | OR | Direct sequencing | XPD rs1799793 rs13181 | 12 |
| Ryu, J. S. (2004) | Asian (Korea) | 109 | 88/21 | 60 (32–78) | IIIB–IV | DDP+TAX/GEM/DOC | OR | SNPShot assay | ERCCI rs11615 XPD rs179973 rs13181 | 13 |
| Gurubhagavatula, S. (2004) | Caucasian (USA) | 103 | 53/50 | 58 (32–77) | IIIA–IV | DDP/CBP-based | OS | PCR-RFLP | XPD rs179973 XRCXI rs25487 | 14 |
| Isla, D. (2004) | Caucasian (Spain) | 62 | 48/14 | 62 (35–78) | IIIB–IV | DDP+DOC | OR | TaqMan | ERCCI rs11615 rs3212986 | 15 |
| Zhou, W. (2004) | Caucasian (USA) | 128 | 66/62 | 60 (32–78) | IIIA–IV | Platinum based | OS | PCR-RFLP | ERCCI rs1799782 | 16 |
| Wang, Z. H. (2004) | Asian (China) | 105 | 59/46 | 56 (30–74) | IIIB–IV | DDP/CBP+NVB/TAX/DOC | OR | PCR-RFLP | ERCCI rs3212986 XPD rs13181 XPC PAT | 17 |
| Yuan, P. (2005) | Asian (China) | 200 | 130/70 | 56 (30–74) | IIIA–IV | Platinum based | OR | PCR-RFLP | ERCCI rs16615 | 18 |
| Lu, C. (2006) | Caucasian+Mexican/African American | 425 | 236/198 | NR | III–IV | Platinum based | OS | PCR-RFLP | GSTP1 rs1695 | 19 |
| de Las, F. R. (2006) | Caucasians (Spain) | 135 | 125/10 | 62 (31–81) | IIIB–IV | DDP+GEM | OS | TaqMan | ERCCI rs16615 XPD rs1799793 XRCXI rs25487 | 20 |
| Booton, R. (2006) | Caucasian (UK) | 108 | 74/34 | 62.5 (35–80) | III–IV | DDP/CBP-based | OR | PCR-RFLP | XPD rs13181 rs1799793 | 21 |
| Yuan, P. (2006) | Asian (China) | 200 | 130/70 | 56 (30–74) | IIIB–IV | DDP/CBP+NVB/TAX/DOC | OR | PCR-RFLP | XRCXI rs1799782 | 22 |
| Booton, R. (2006a) | Caucasian (UK) | 108 | 74/34 | 62.5 (35–80) | III–IV | DDP/CBP-based | OR, OS | PCR-RFLP | GSTP1 rs1695 | 23 |
| Shi, M. (2006) | Asian (China) | 97 | 67/30 | 60 (22–81) | II–IV | Platinum based | OR | PCR-RFLP | MTHFR rs1801133 | 24 |
| Shi, M. (2006a) | Asian (China) | 112 | 81/31 | 60 (22–81) | II–IV | Platinum based | OR | PCR-RFLP | XRCXI rs25487 rs1799782 | 25 |
| Su, D. (2007) | Asian (China) | 76 | 179/51 | 58 (28–80) | III–IV | Platinum based | OR | TaqMan | ERCCI rs11615 | 26 |
| Sun, X. C. (2007) | Asian (China) | 96 | 62/34 | 58 (34–77) | IV | DDP/CBP-based | OR | PCR-cDNA | XPA rs1800975 | 27 |
| Song, D. G. (2007) | Asian (China) | 166 | 97/69 | 56 (30–68) | III–IV | DDP+/NVB/DOC/GEM | OR | PCR-RFLP | XPD rs1799793 | 28 |
| Yu, Q. Z. (2007) | Asian (China) | 101 | 78/23 | 57 (30–72) | III–IV | DDP-based | OR | PCR-RFLP | XPG rs17655 MDR1 rs1045642 | 29 |
| Pan, J. H. (2008) | Asian (China) | 69 | 48/21 | 55 (30–76) | IIIB–IV | DDP+NVP | OR | PCR-RFLP | MDR1 rs1045642 | 30 |
| Tibaldi, C. (2008) | Caucasian (Italy) | 65 | 51/14 | 65 (44–77) | IIIB–IV | DDP+GEM | OR, OS | TaqMan | ERCCI rs11615 XPD rs13181 rs1799793 CDA rs2072671 | 31 |
| Wu, X. (2008) | Caucasian (USA) | 229 | 135/94 | NR | III–IV | Cisplatin-based | OS | TaqMan | ERCCI rs3212986 XPG rs17655 GSTPI rs1695 MDR1 rs1045642 XPA rs1800975 XPC rs2228001 XPC rs2228000 | 32 |
| Din, Z. H. (2008) | Asian (China) | 116 | 85/31 | 60 (22–81) | IIIB–IV | DDP+GEM | OR | PCR-RFLP | XPD rs13181 | 33 |
| Liu, X. Z. (2008) | Asian (China) | 53 | 38/15 | 61 (28–74) | I–IV | DDP/CBP-based | OS | TaqMan | XPD rs13181 | 34 |
| Pan, J. H. (2009) | Asian (China) | 54 | 38/16 | 55 (30–76) | IIIB–IV | DDP+DOC | OR | PCR-RFLP | MDR1 rs1045642 | 35 |
| Sun, X. (2009) | Asian (China) | 82 | 53/29 | 59 (34–79) | IV | DDP/CBP-based | OR | 3D DNA | XPG rs1047768 rs17655 XRCXI rs25487 rs1799782 | 36 |
| Feng, J. F. (2009) | Asian (China) | 214 | 158/56 | 59 (21–75) | III–IV | Platinum-based | OR | PCR-RFLP | RMAI rs12806698 | 37 |
| Feng, J. E. (2009a) | Asian (China) | 115 | 78/37 | 59.6 (34–84) | III–IV | DDP/CBP-based | OR | DNA microarray | XPA rs1800975 | 38 |
| Kalikaki, A. (2009) | Caucasian (Greece) | 119 | 101/18 | 61 (39–85) | III–IV | Platinum-based | OR, OS | PCR-RFLP | ERCCI rs3212986 XPD rs13181 rs1799793 GSTPI rs1695 | 39 |
| Hong, C. Y. (2009) | Asian (China) | 164 | 99/65 | 61 (27–84) | IIIB–IV | DDP+NVP | OR | PCR-RFLP | XRCXI rs25487 rs1799782 | 40 |
| Gao, C. M. (2009) | Asian (China) | 57 | 44/13 | 59 (38–77) | II–IV | DDP+GEM | OR | PCR-RFLP | XRCXI rs1799782 | 41 |

Continued
First author (Year)	Ethnicity (country)	Sample size	Male/female	Median age	Disease stage	Chemotherapeutic drugs	Outcomes	Genotyping method	SNPs	Ref.
Hu, S N. (2009)	Asian (China)	214	158/56	59 (22–81)	II–IV	Platinum based	OR	PCR-RFLP	RRM1 rs12806698	42
Takenaka, T. (2010)	Asian (Japan)	122	75/47	69 (30–86)	I–III	platinum-based	OS	Direct sequencing	rs11615	43
Sun, N. (2010)	Asian (China)	113	76/37	59.6	IIIA-IV	DDP/CPB-based	OR	3-D polycrylamide gel-based DNA microarray	GSTP1 rs1695	44
Chen, S. (2010)	Asian (China)	95	76/19	58 (35–77)	IIIB-IV	Platinum based	OR	LDR	rs11615	45
Li, E. (2010)	Asian (China)	115	78/37	60 (NR)	IIIB-IV	Platinum based	OR	3-D polycrylamide gel-based DNA microarray	rs13181	46
Zhou, C. (2010)	Asian (China)	130	74/56	61 (30–78)	IIIA-IV	Platinum-based	OR	TaqMan	rs11615	47
Zhu, X. L. (2010)	Asian (China)	96	64/32	57 (34–79)	III-IV	DDP/CPB+/NVB/TAX/GEM	OR	DNA microarray genotyping	rs861539	48
Wang, J. (2010)	Asian (China)	90	63/27	55 (33–73)	III-IV	DDP+/NVB/TAX/GEM/DO/C	OR	Direct sequencing	rs11615	49
Yuan, P. (2010)	Asian (China)	199	129/70	56 (29–74)	IIIA-IV	Platinum-based	OS, PFS	PCR-RFLP	rs25487	50
Okuda, K. (2011)	Asian (Japan)	90	73/17	NR	I-IV	Platinum-based	OS	PCR-RFLP	rs11615	51
Vinolas, N. (2011)	Caucasian (Spain)	94	79/15	61 (37–77)	IIIA-IV	DDP+NVP	OR, OS	5′ nuclease allelic discrimination assay	rs25487	52
Liu, L. (2011)	Asian (China)	199	129/70	56 (29–74)	IIIA-IV	Platinum-based	OS, PFS	PCR–RFLP	rs13181	53
KimCurran, V. (2011)	Asian (China)	300	201/99	60 (33–78)	IIIB-IV	DDP/CPB+/NVB/TAX/GEM	OR	RT-PCR	rs3212986	54
Cui, L. H. (2011)	Asian (China)	101	62/39	58 (27–76)	IIIB-IV	DDP/CPB-based	OR	MTHFR rs1801133	rs11615	55
Ryu, J. S. (2011)	Asian (Korea)	298	236/62	63 (28–89)	IIIB-IV	DDP+GEM/TAX	OS	SBE	rs861539	56
Zhou, F. (2011)	Asian (China)	111	67/44	57 (42–71)	IV	DDP+/DO/C/GEM/NVB/PEM	OR	Direct sequencing	rs11615	57
Zhai, Y. N. (2011)	Asian (China)	163	98/65	61 (27–84)	IV	DDP+NVP	OR, OS	PCR-RFLP	rs25487	58
Ludovini, V. (2011)	Caucasian (Italy)	192	142/50	63 (25–81)	IIIB-IV	DDP-based	OR	TaqMan	rs13181	59
Xu, C. (2011)	Asian (China)	130	90/40	NR	IIIB-IV	Platinum-based	OR	PCR-RFLP	rs11615	60
Yan, P. W. (2011)	Asian (China)	103	67/36	61 (39–79)	IIIB-IV	Platinum-based	OR	RT-PCR	rs1045642	61
Cheng, H. Y. (2011)	Asian (China)	120	82/38	58 (34–77)	NR	DDP/CPB-based	OR	Two-color fluorescent probe hybridization	rs25487	62
Jia, X F. (2011)	Asian (China)	89	45/44	NR	III-IV	DDP/CPB+/DO/C/GEM	OR	Direct sequencing	rs1047768	63
Li, D. R. (2011)	Asian (China)	89	64/25	59 (21–84)	IIIA-IV	DDP-based	OR	Direct sequencing	rs25487	64
Li, D. R. (2011a)	Asian (China)	89	64/25	59 (21–84)	IIIA-IV	DDP-based	OR	Direct sequencing	rs1799793	65
Zhao, W. (2011)	Asian (China)	151	92/59	62 (32–82)	IIIB-IV	DDP/CPB-based	OR	TaqMan	rs25487	66
Zhou, F. (2011a)	Asian (China)	94	55/39	57 (42–71)	IIIB-IV	DDP-based	OR	Direct sequencing	rs13181	67
Ren, S. (2012)	Asian (China)	340	232/108	60 (30–78)	IIIA-IV	DDP+/NVB/GEM/TAX/DO/C	OR, OS	TaqMan	rs13181	68
Dong, J. (2012)	Asian (China)	568	434/134	60 (25–83)	III–IV	Platinum-based	OS	TaqMan	rs11615, rs25487	69
Li, D. (2012)	Asian (China)	89	64/25	59 (21–84)	III-IV	DDP+/NVB/TAX/DDP/GEM/DO	OR	PCR-RFLP	rs11615	70

Continued
First author (Year)	Ethnicity (country)	Sample size	Male/female	Median age	Disease stage	Chemotherapeutic drugs	Outcomes	Genotyping method	SNPs	Ref.
Butkiewicz, D. (2012)	Caucasian (Poland)	171	NR	I–IV	Platinum based OR PCR-RFLP	TaqMan	XPCR rs11615			
Dogu, G. G. (2012)	Caucasian (Turkey)	79	72/7	60 (32–84)	IB-IV	Platinum based OS	PCR-RFLP	MRDR1 rs1045642		
Ke, H. G. (2012)	Asian (China)	460	334/126	55 (32–79)	I-IV	DDP-based OS	PCR-CTPP	XPCR1 rs25487, XRC3C rs8161539		79
Liu, H. N. (2013)	Asian (China)	62	38/24	58 (37–72)	IIIB-IV	DDP+NV/P TAX/ GEM	TaqMan	XPCR1 rs25487, GSTP1 rs1695		
Zhang, Y P. (2012)	Asian (China)	62	38/24	58 (37–72)	IIIB-IV	DDP+NV/P TAX/ GEM	TaqMan	GSP1 rs1695		
Krawczyk, P. (2012)	Caucasian (Poland)	43	33/10	63 (NA)	IIIB–IV	Platinum based OR	PCR-RFLP	ERCC1 rs11615		
Liao, W. Y. (2012)	Asian (Taiwan)	62	35/27	57 (36–78)	III- IV	DDP+GEM	OR, OS, TaqMan	XPCR1 rs11615		
Ke, H. G. (2012)	Asian (China)	460	334/126	55 (32–79)	I-IV	DDP-based OS	PCR-CTPP	XPCR1 rs25487, XRC3C rs8161539		79
Liu, H. N. (2013)	Asian (China)	62	38/24	58 (37–72)	NR	DDP-based OR	TaqMan	XPCR1 rs25487		
Zhao, W. (2013)	Asian (China)	147	92/55	60 (32–82)	IIIB-IV	Platinum-based OR, OS, PFS	TaqMan	XPCR1 rs25487, XRC3C rs1695		
Li, X. D. (2013)	Asian (China)	496	324/172	63 (33–79)	IIIA-IV	Platinum-based OR, OS, PFS	PCR-SBE	XPCR1 rs3181, XPCR1 rs1799793, XRC3C rs1052555		
Li, W. I. (2013)	Asian (China)	45	23/22	63 (39–81)	IIIB-IV	DDP+PEM	TaqMan	MT4F3 rs1801133		
Cheng, H. (2013)	Asian (China)	115	78/37	59.6 (34–84)	IIIB-IV	Platinum-based OS, PFS 3-D polyacrylamide gel-based DNA	XPCR1 rs3181, XPC rs1800975			
Zhang, T. (2013)	Asian (China)	475	306/145	64 (32–76)	III-IV	DDP+DOC, DDP/ CBP+GEM/NV B	OR, PFS, TaqMan	XPCR1 rs25487, XRC3C rs1799792		
Lee, S. Y. (2013)	Asian (Korea)	382	311/71	NR	III-IV	DDP+TAX	OR, OS, Sequenome mass spectrometry-based	XPCR1 rs1052555, XRC3C rs25487		
Milak, R. (2013)	Caucasian (Poland)	62	43/19	61 (38–76)	IIIA-IV	Platinum-based OS	PCR-RFLP	REMI rs12806698		
Yuli, Y. (2013)	Asian (China)	433	284/149	61 (33–79)	IIIA-IV	DDP+CBP-based OS, PFS	TaqMan	XPCR1 rs7655		
Lu, H D. (2013)	Asian (China)	100	54/46	61 (41–82)	III-IV	DDP+NV/B TAX/ OR	PCR-RFLP	ERCC1 rs11615		
Sheng, F. E. (2013)	Asian (China)	62	38/24	58 (37–72)	NR	DDP-based OR	TaqMan	XPCR1 rs25487		
Yang, W J. (2013)	Asian (China)	54	38/16	56 (30–73)	III-IV	DDP+CBP-based OR	PCR-RFLP	XPCR1 rs1799792, XRC3C rs1052555		
Zhang, Y P. (2013)	Asian (China)	62	38/24	58 (37–72)	NR	DDP+NV/B TAX/ GEM/PEM	OR, OS, TaqMan	XPCR1 rs3181, XPCR1 rs12806698		
Zhou, G R. (2013)	Asian (China)	204	120/84	61 (45–75)	NR	DDP-based OR	MALDI-TOF- MS	XPCR1 rs25487		
Huang, S. J. (2014)	Asian (China)	187	124/63	NR	IIIA-IV	Platinum-based OR, OS, MALDI-TOF- MS	XPCR1 rs11615			
Zhang, L. (2014)	Asian (China)	375	249/126	NR	IIIA-IV	CBP+NV/PP, DDP+DOC	OR, OS, PFS, Sequenome MassARRAY platform	XPCR1 rs3181, XPCR1 rs1799793, XRC3C rs1052555		

Continued
First author (Year)	Ethnicity (country)	Sample size	Male/female	Median age	Disease stage	Chemotherapeutic drugs	Outcomes	Genotyping method	SNPs	Ref.
Jin, Z. Y. (2014)	Asian (China)	378	297/81	62.4	1-IV	DDP+GEM/DOC/ NVP/TAX	OR, OS	PCR-RFLP	XPG rs1047768 rs17655, XRCC1 rs25489, XRCC3 rs861539	101
Hu, W. (2014)	Asian (China)	277	184/93	63.1	IIIA-IV	Platinum-based	OS, PFS	PCR-RFLP	XPG rs1047768 rs17655 rs2296147 rs873601	102
Peng, Y. (2014)	Asian (China)	235	180/55	58 (29–84)	IIIA-IV	DDP+TAX/DOC/GEM	OR, OS	PCR-CTTP	XRCC1 rs25487	103
Zhou, M. (2014)	Asian (China)	93	56/37	61.5	IIIIB-IV	DDP+GEM	OR	PCR-RFLP	XPD rs13181 rs1799733, CD4 rs2072671	104
Zhao, X. (2014)	Asian (China)	192	132/60	60.8	IIIA-IV	Platinum-based	OR, OS	MALDI-TOF-MS	ERCC1 rs3122986 rs16165 rs2298881	105
Lv, H. (2014)	Asian (China)	91	54/37	59 (34–80)	IIIIB-IV	DDP+TAX/GEM/NVP	OR	TaqMan-MGB	GSTP1 rs1695	106
Krawczyk, P. (2014)	Caucasian (Poland)	115	59/56	61 (NR)	II-IV	DDP/CBP+FEM	OS	HRM, PCR-RFLP	ERCC1 rs16165	107
Sullivan, I. (2014)	Caucasian (Spain)	161	125/36	63.7	IIIA-IV	DDP/CBP-based	OR, OS	Dynamic array chips	ERCC1 rs3122986 rs16165, XPD rs13181 rs1799733, XPG rs1047768 rs17655, XRCC1 rs25487 rs1799782 rs25489, XPA rs1809075	108
Dong, C. M. (2014)	Asian (China)	92	38/54	57 (40–60)	IIIIB-IV	Platinum-based	OR	PCR-RFLP	MTHFR rs1801133	109
Liu, D. (2014)	Asian (China)	378	297/81	62.4	1-IV	DDP+GEM/DOC/ NVP/TAX	OR, OS	PCR-RFLP	XPG rs1047768 rs17655, XRCC1 rs25487 rs1799782	110
Kou, G. (2014)	Asian (China)	50	14/36	56 (45–78)	IIIIB-IV	DDP+NVP	OR	PCR-RFLP	ERCC1 rs3122986 rs16165	111
Kalikaki, A. (2015)	Caucasian (Greece)	107	90/17	60 (37–78)	IIIIB-IV	DDP/CBP-based	OR, OS	PCR-RFLP	ERCC1 rs3122986, XRCC1 rs25487	112
Zou, H. Z. (2015)	Asian (China)	246	170/76	64.3	IIIA-IV	DDP/CBP-based	OR, OS	PCR-RFLP	XPG rs2296147 rs873601	113
Yuan, Z. J. (2015)	Asian (China)	47	42/5	59 (29–74)	III-IV	DDP+GEM	OR	DNA sequencing	GSTP1 rs1695	114
Deng, I. H. (2015)	Asian (China)	97	66/31	57 (31–79)	IIIIB-IV	DDP+GEM/NVP/TAX/DOC	OR, PFS	DNA pyrosequencing	XRCC1 rs25487, GSTP1 rs1695	115
Shi, Z. H. (2015)	Asian (China)	240	155/85	61.5	III-IV	DDP+GEM/NVP/TAX/DOC	OR, OS	PCR-RFLP	ERCC1 rs16165 rs3122986 rs2298881	116
Han, B. (2015)	Asian (China)	325	116/209	NR	IIIB-IV	DDP+GEM/NVP/TAX/DOC	OR	PCR-RFLP	XRCC1 rs25487 rs1799782 rs25489, GSTP1 rs1695	117
Li, P. (2015)	Asian (China)	142	89/53	62 (43–81)	IIIB-IV	DDP+NVP	OR	PCR-RFLP	XPD rs13181 rs1799733	118
Liu, J. Y. (2015)	Asian (China)	322	226/140	62.5	IIIB-IV	DDP+GEM/NVP/TAX/DOC	OR, OS	PCR-RFLP	XRCC1 rs25487 rs1799782, GSTP1 rs1695	119
Wu, G. (2015)	Asian (China)	282	181/101	NR	IIIA-IV	DDP-based	OR, OS	PCR-RFLP	GSTP1 rs1695	120
Zhu, M. Z. (2015)	Asian (China)	68	40/28	NR	IIIIB-IV	DDP/CBP-based	OR	PCR-RFLP	ERCC1 rs16165	121

Table 1. The baseline characteristics of the studies included in this meta-analysis. NR, no report; DDP, cisplatin; CBP, carboplatin; GEM, gemcitabine; NVP, vinorelbine; PEM, pemetrexed; TAX, taxol/paclitaxel; DOC, docetaxel; LDR, Ligase detection reactions; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; SBE, single base extension; HRM, High Resolution Melt; MALDI-TOF-MS, matrix-assisted laser desorption/ionization time-of flight mass.

RR = 0.52, 95% CI = 0.34–0.81; CT+TT vs. CC. Asian RR = 0.61, 95% CI = 0.48–0.79 and overall RR = 0.64, 95% CI = 0.52–0.80).

Genetic variants associated with OS and PFS. Statistically significant results with HR > 1 indicated that patients carrying the allele or genotype harbored a poorer OS or PFS, while with HR < 1 meant better OS or PFS of patients. As for OS (Table 3), 52 meta-analyses were preformed to examine the influence of 22 SNPs in 11 genes on the overall survival. Seven results were identified as statistically significantly associated with OS. Of them, ERCC1 rs16165 (CT+TT vs. CC; HR = 1.47, 95% CI = 1.15–1.88), ERCC1 rs3212986 (AA vs. CC; HR = 2.06, 95% CI = 1.39–3.57), XPD rs13181 (AA+CC vs. AA; HR = 1.24, 95% CI = 1.07–1.44), and XPD rs1052555 (CT+TT vs. CC; HR = 1.71, 95% CI = 1.31–2.23) might be related to a poorer OS, while XPG rs873601 (GG vs. AA; HR = 0.67, 95% CI = 0.46–0.97), XPG rs2296147 (TT vs. CC; HR = 0.40, 95% CI = 0.27–0.61), and XPD
rs1799793 (GA vs. GG: HR = 0.78, 95% CI = 0.62–0.99) might be potentially related to a better OS. No significant association was identified in the remaining SNPs. As for PFS (Table 4), 19 meta-analyses were conducted and 11 SNPs of 4 genes were investigated to explore their associations with the PFS of NSCLC patients. Our findings showed that patients with C allele of XPD rs13181 had a poorer PFS (AC vs. CC: HR = 1.38, 95% CI = 1.10–1.73), and the T allele of XPD rs1052555 also indicated a poorer PFS (CT vs. TT vs. CC: HR = 1.97, 95% CI = 1.38–2.83).

Heterogeneity and publication bias. A total of 54% (n = 97) of meta-analyses showed no heterogeneity (I^2 = 0 to 25%) and 14% (n = 25) presented moderate heterogeneity (I^2 = 25 to 50%), and large heterogeneity even extreme heterogeneity existed in other meta-analyses. Sensitivity analysis and subgroup analysis were also applied to find the source of heterogeneity. The clinical heterogeneity such as disease stages, different chemotherapy regimens might be the major reason for the large or extreme heterogeneity.

We used P value for Egger's test to evaluate the potential publication bias. Our results suggested that effects of XPD rs238406 (CA + AA vs. CC), XRCC1 rs25487 (GA + AA vs. GG), XRCC1 rs1799782 (CT vs. CC) and XRCC1 rs861539 (CT vs. CC, TT vs. CC and TT + CT vs. CC) on the ORR of the ORR had significant publication bias. There was also some publication bias in the analysis of the effects of XRCC1 rs25487 (GA vs. GG, GA + AA vs. GG) on the OS. Three meta-analyses showed bias in the association of certain SNPs with PFS, including XPD rs13181 (AC vs. CC vs. AA), XPD rs1799793 (GA + AA vs. GG) and XRCC1 rs25487 (GA + AA vs. GG). More details were listed in Tables 2 and 3.

False positive report probability. False positive findings regarding associations between genetic variants and diseases lead to a confounding effect. Here we assessed the FPRP to determine whether our finding was noteworthy. As shown in Table 5, 23 out of 35 results had FPRP lower than 0.2, with the prior probability set as 0.1 and the FPRP was high prior probability levels (AC vs. CC vs. AA). XPD rs1799793 (GA + AA vs. GG) and XRCC1 rs25487 (GA + AA vs. GG). More details were listed in Table 5.

High-quality significant associations that emerged from the current meta-analysis were discussed below.

Excision Repairs Cross-complementation Groups 1 (ERCC1). Data showed that ERCC1 rs3212986 (C8092A) variant was related to the treatment response to PBC, and A allele may have poorer response comparing with C allele in Asians (A vs. CC: pooled OR = 0.71, 95% CI = 0.54–0.94). Only moderate between-study heterogeneity was observed (I^2 = 29.2%), and with a low FPRP when prior probability level was set as 0.1, suggesting that A allele of ERCC1 rs3212986 might be specifically linked to the poorer response in Asians.

ERCC1 rs11615 (C354T) was associated with OS, and T allele carriers might have unfavorable OS with HR being 1.47 and corresponding 95% CI being 1.15–1.88, and with no heterogeneity and low FPRP when prior probability level was set as 0.2. The report had low FPRP at high prior probability levels and no heterogeneity was observed. Further investigation with a larger sample size is needed to confirm the association between rs1052555 variant and prognosis of NSCLC patients.

Xeroderma Pigmentosum Group D (XPD). Only the dominant model was used to analyze the relation between XPD rs13181 (A2251C) mutation and OS due to insufficient raw data. We found that the variant C allele was remarkably associated with the adverse OS in overall NSCLC patients treated with PBC (AC + CC vs. AA: HR = 1.24, 95% CI = 1.07–1.44). There was no heterogeneity and publication bias in the meta-analysis, and FPRP was low with the prior probability level being 0.1. C allele was also related to poor PFS with low FPRP at the high prior probability levels (AC + CC vs. AA: HR = 1.38, 95% CI = 1.10–1.73). No heterogeneity with statistical significance was observed, but the P value for Egger's test showed that there was some publication bias in the meta-analysis. These results indicated that C allele was a risk allele for the poor clinical prognosis of NSCLC patients.

For other SNPs (rs1052555, C2133T) of XPD, we found that T allele was a risk allele and might be significantly associated with unfavorable OS (CT vs. TT vs. CC: HR = 1.71, 95% CI = 1.31–2.23). In the beginning, we included 4 articles in the meta-analysis and found that extreme heterogeneity and publication bias existed. After sensitivity analysis, we removed one article that was identified as the major source of heterogeneity, then I^2 reduced to zero and no bias was observed from these data. The report had low FPRP with the prior probability level being 0.1 or 0.01. T allele was also related to poor PFS, and pooled HR was 1.97 and the 95% CI ranged from 1.38 to 2.83, though the report had low FPRP at high prior probability levels and no heterogeneity was observed. Further investigation with a larger sample size is needed to confirm the association between rs1052555 variant and prognosis of NSCLC patients.

Xeroderma Pigmentosum Group G (XPG). XPG rs2296147 (T242C) might be associated with NSCLC patients' prognosis receiving platinum drugs. We found that T allele acted as a protective allele with the carriers having favorable OS (TT vs. CC: HR = 0.40, 95% CI = 0.27–0.61), no heterogeneity and publication bias was detected, and the FPRP was low both at the high (0.1) and intermediate (0.01) prior probability levels. The strength of association needs to be further studied because of the small sample size of current meta-analysis.

X-Ray Cross-Complementing Group 1 (XRCC1). Three genetic models were used to analyze the association between XRCC1 rs1799782 (C580T) polymorphisms and ORR, and results confirmed the positive response of patients carrying T allele to PBC with a low FPRP at the high (0.1) prior probability level, but large between-study heterogeneity existed in the three meta-analyses ((CT vs. CC: HR = 1.22, 95% CI = 1.03–1.44; I^2 = 63.4%); (TT vs. CC: HR = 1.29, 95% CI = 1.07–1.56; I^2 = 50.5%); (CT + TT vs. CC: HR = 1.22, 95% CI = 1.04–1.42; I^2 = 65.1%).
Genetic model	Subgroup	No. of Study	Effect model	Pooled RR (95%CI)	I² (%)	P_{het}	Begg's test (P-value)	Egger's test (P-value)
ERCC1 rs3212986	AA VS CC	Asian 7	Fixed	0.71 (0.54,0.94)	29.2	0.206		
		Caucasian 1	Fixed	0.85 (0.47,1.53)	—	—		
		Overall 8	Fixed	0.72 (0.56,0.94)	18.7	0.282	0.458	0.115
	CA VS CC	Asian 7	Fixed	0.91 (0.78,1.05)	46.3	0.083		
		Caucasian 1	Fixed	1.03 (0.80,1.31)	—	—		
		Overall 8	Fixed	0.92 (0.80,1.05)	41.3	0.103	0.322	0.259
	CA+AA VS CC	Asian 10	Random	0.85 (0.68,1.05)	58.1	0.011		
		Caucasian 4	Random	1.19 (0.93,1.51)	25.1	0.261		
		Overall 14	Random	0.95 (0.80,1.13)	55.9	0.006	0.447	0.441
ERCC1 rs11615	CT VS CC	Asian 10	Random	0.97 (0.72,1.31)	38.5	0.123		
		Caucasian 1	Random	1.03 (0.80,1.31)	—	—		
		Overall 11	Random	0.99 (0.73,1.36)	37.3	0.174	0.582	0.087
XPA rs1800975	AG VS AA	Asian 2	Random	2.17 (1.29,3.64)	79.6	0.027		
		Caucasian 1	Random	1.01 (0.61,1.68)	—	—		
		Overall 3	Random	1.74 (1.18,2.57)	77.8	0.011	0.117	0.156
	GG VS AA	Asian 2	Random	1.09 (0.59,2.02)	85.3	0.009		
		Caucasian 1	Random	1.22 (0.75,1.99)	—	—		
		Overall 3	Random	1.14 (0.74,1.75)	71.2	0.031	0.602	0.175
	AG+GG VS AA	Asian 3	Random	1.05 (0.72,1.52)	83.8	0.002		
		Caucasian 1	Random	1.11 (0.68,1.80)	—	—		
		Overall 4	Random	1.06 (0.77,1.45)	76.0	0.006	0.174	0.087
XPC rs2228000	CT VS CC	Asian 3	Fixed	1.09 (0.84,1.41)	50.6	0.132	0.602	0.234
	TT VS CC	Asian 3	Fixed	1.05 (0.71,1.56)	29.1	0.244	0.602	0.989
	CT+TT VS CC	Asian 3	Fixed	1.09 (0.86,1.40)	37.0	0.204	0.117	0.030
XPC rs2228001	AC VS AA	Asian 2	Random	0.85 (0.58,1.25)	88.8	0.003		
	CC VS AA	Asian 2	Random	0.83 (0.46,1.51)	56.1	0.131		
	CC+AC VS AA	Asian 3	Random	0.90 (0.71,1.14)	79.1	0.008	0.602	0.065
XPC intron9 PAT	SL VS SS	Asian 2	Fixed	0.93 (0.61,1.40)	0.0	0.322		
	LL VS SS	Asian 2	Random	1.07 (0.29,3.94)	81.5	0.020		
	SL+LL VS SS	Asian 2	Random	0.87 (0.38,1.89)	70.7	0.065		
XPD rs13181	AC VS AA	Asian 8	Fixed	0.82 (0.65,1.04)	9.80	0.354		
	CC VS AA	Asian 2	Random	1.14 (0.09,1.43)	73.6	0.051		
	CC+AC VS AA	Asian 8	Random	1.09 (0.87,1.36)	0.0	0.935		
	CA+CC VS AA	Asian 9	Fixed	0.83 (0.71,0.98)	0.0	0.580		
		Overall 20	Fixed	0.92 (0.82,1.03)	0.0	0.615	1.000	0.414

Continued
Genetic model	Subgroup	No. of Study	Effect model	Pooled RR (95%CI)	I² (%)	Phet	Begg's test (P-value)	Egger's test (P-value)
AA VS GG	Asian	1	Random	0.20 (0.05,0.76)	—	—	—	—
	Caucasian	8	Random	1.21 (0.96,1.51)	0.0	0.551	—	—
	Overall	9	Random	1.03 (0.69,1.54)	52.6	0.031	0.144	0.247
GA VS GG	Asian	4	Random	0.88 (0.45,1.74)	74.6	0.008	—	—
	Caucasian	9	Random	1.04 (0.87,1.24)	0.0	0.647	—	—
	Overall	13	Random	0.99 (0.81,1.23)	35.3	0.100	0.625	0.969
GA+AA VS GG	Asian	6	Random	0.83 (0.59,1.17)	67.3	0.009	—	—
	Caucasian	10	Random	1.04 (0.89,1.21)	0.0	0.746	—	—
	Overall	16	Random	0.94 (0.79,1.11)	40.8	0.046	0.589	0.656
XPD rs1052555	CT+TT VS CC	Overall 4	Random	0.92 (0.65,1.31)	67.5	0.026	1.000	0.813
CA+AA VS CC	Overall 3	Fixed	0.96 (0.81,1.15)	0.0	0.667	0.117	0.007a	
XPG rs1047768	CT VS CC	Asian 3	Fixed	0.97 (0.79,1.20)	18.8	0.292	—	—
	Caucasian	2	Fixed	1.17 (0.88,1.55)	0.0	0.777	—	—
	Overall 5	Fixed	1.01 (0.85,1.21)	0.0	0.466	0.624	0.767	
TT VS CC	Asian 3	Random	0.70 (0.27,1.81)	87.9	0.000	—	—	—
	Caucasian	2	Random	0.92 (0.64,1.32)	0.0	0.735	—	—
	Overall 5	Random	0.80 (0.49,1.32)	76.2	0.002	0.142	0.155	
CT+TT VS CC	Asian 5	Random	0.86 (0.61,1.21)	68.3	0.013	—	—	—
	Caucasian	2	Random	1.07 (0.84,1.37)	0.0	0.890	—	—
	Overall 7	Random	0.94 (0.75,1.19)	55.6	0.036	0.293	0.319	
XPG rs17655	CG VS CC	Asian 6	Fixed	1.09 (0.92,1.27)	22.6	0.264	—	—
	Caucasian	1	Fixed	1.00 (0.58,1.72)	—	—	—	—
	Overall 7	Fixed	1.08 (0.93,1.26)	8.2	0.366	0.453	0.230	
GG VS CC	Asian 6	Fixed	1.20 (0.99,1.45)	20.1	0.282	—	—	—
	Caucasian	1	Fixed	1.16 (0.71,1.88)	—	—	—	—
	Overall 7	Fixed	1.19 (0.99,1.43)	4.5	0.392	0.652	0.417	
CG+GG VS CC	Asian 6	Fixed	1.12 (0.97,1.29)	38.1	0.152	—	—	—
	Caucasian	1	Fixed	1.11 (0.68,1.80)	—	—	—	—
	Overall 7	Fixed	1.12 (0.97,1.29)	25.7	0.233	0.652	0.495	
XPG rs2296447	CT VS CC	Overall 2	Fixed	1.14 (0.84,1.54)	0.0	0.477	—	—
TT VS CC	Overall 2	Fixed	1.34 (0.92,1.97)	0.0	0.547	—	—	—
CT+TT VS CC	Overall 2	Fixed	1.22 (0.96,1.56)	0.0	0.863	—	—	—
XRCCI rs25487	GA VS GG	Overall 15	Random	1.08 (0.94,1.24)	60.8	0.001	0.458	0.375
	AA VS GG	Overall 15	Random	1.27 (1.02,1.58)	66.7	0.000	0.216	0.095
GA+AA VS GG	Overall 23	Random	0.89 (0.76,1.05)	78.5	0.000	0.013a	0.004a	
XRCCI rs1799782	CT VS CC	Overall 13	Random	1.22 (1.03,1.44)	63.4	0.001	0.051	0.032a
TT VS CC	Overall 13	Random	1.29 (1.07,1.56)	50.5	0.019	1.000	0.735	
CT+TT VS CC	Overall 14	Random	1.22 (1.04,1.42)	65.1	0.000	0.139	0.082	
XRCCI rs25489	GA VS GG	Overall 2	Fixed	0.99 (0.81,1.22)	0.0	0.801	—	—
AA VS GG	Overall 2	Fixed	0.96 (0.76,1.22)	0.0	0.712	—	—	—
XRCC3 rs861539	CT VS CC	Asian 3	Fixed	1.20 (0.94,1.53)	0.0	0.588	—	—
	Caucasian	3	Fixed	1.46 (1.06,1.99)	26.3	0.257	—	—
	Overall 6	Fixed	1.51 (1.07,1.99)	0.0	0.502	0.005a	0.009a	
TT VS CC	Asian 1	Fixed	1.36 (0.91,2.02)	—	—	—	—	—
	Caucasian	3	Fixed	1.59 (1.07,2.36)	0.0	0.935	—	—
	Overall 4	Fixed	1.48 (1.12,1.97)	0.0	0.921	0.04a	0.001a	

Continued
Genetic model Subgroup	No. of Study	Effect model	Pooled RR (95% CI)	I² (%)	Phet	Begg's test (P-value)	Egger's test (P-value)
TT + CT VS CC	Asian 5	Fixed	1.16 (0.94, 1.44)	0.0	0.764		
	Caucasian 3	Fixed	1.48 (1.10, 2.01)	0.0	0.472		
	Overall 8	Fixed	1.28 (1.07, 1.52)	0.0	0.723	0.001*	0.000
RRM1 rs12806698	AA VS CC	Overall 4	Fixed	0.61	0.33	0.734	0.434
	CA VS CC	Overall 6	Fixed	1.02	0.86	1.000	0.765
	CA + AA VS CC Overall 6	Fixed	0.98 (0.83, 1.16)	0.0	0.954	1.000	0.770
MTHFR rs1801133	CT VS CC	Overall 5	Fixed	0.63	0.44	0.148	0.327
	TT VS CC	Overall 5	Random	0.81	0.38	0.025	0.327
	CT + TT VS CC Overall 5	Random	0.66 (0.37, 1.18)	64.8	0.023	0.624	0.598
GSTP1 rs1695	AG VS AA	Asian 5	Random	1.19	0.92	0.004	
		Caucasian 2	Random	0.94	0.62	0.529	
		Overall 7	Random	1.14	0.91	0.012	0.881
	GG VS AA	Asian 4	Random	1.17	0.71	0.001	
		Caucasian 2	Random	0.73	0.28	—	—
		Overall 5	Fixed	1.45	1.20	0.416	1.000
	AG + GG VS AA	Asian 11	Random	1.47	1.11	0.000	
		Caucasian 2	Random	0.90	0.59	0.713	
		Overall 13	Random	1.37	1.06	0.000	0.625
MDR1 rs1045642	CT VS CC	Asian 3	Fixed	0.69	0.50	0.495	
		Caucasian 2	Fixed	0.81	0.52	0.421	
		Overall 5	Fixed	0.73	0.56	0.678	0.624
	TT VS CC	Asian 3	Fixed	0.47	0.26	0.252	
		Caucasian 2	Fixed	0.62	0.32	0.093	
		Overall 5	Fixed	0.52	0.34	0.061	0.142
	CT + TT VS CC	Asian 5	Fixed	0.61	0.48	0.050	
		Caucasian 2	Fixed	0.75	0.49	0.551	
		Overall 7	Fixed	0.64	0.52	0.722	0.652
CDA rs2072671	AC VS AA	Asian 1	Fixed	1.48	0.78	0.281	
		Caucasian 2	Fixed	0.85	0.56	0.183	
		Overall 3	Fixed	0.99	0.70	0.062	0.829
	CC VS AA	Asian 2	Random	0.62	0.10	0.065	
		Caucasian 2	Random	0.77	0.36	0.064	
		Overall 3	Random	0.95	0.53	0.055	0.602

Table 2. The association between candidate gene polymorphisms and objective response. *Begg's test \(P < 0.05; \) **Egger's test \(P < 0.05.\)

X-Ray Cross-Complementing Group 3 (XRCC3). Results from subgroup meta-analysis sorted by ethnicity showed that T allele of XRCC1 rs861539 (C241T) was associated with the positive response of PBC treatment in Caucasian population, three genetic models had consistent results (CT VS CC: \(RR = 1.46, 95\% CI = 1.06–1.99; \) TT VS CC: \(RR = 1.59, 95\% CI = 1.07–2.36; \) TT + CT VS CC: \(RR = 1.48, 95\% CI = 1.10–2.01), no heterogeneity has been found. Begg's test and Egger's test revealed that some publication bias existed in the meta-analysis. However, Lower FRPR values suggested that the findings were statistically significant. Genetic variant of XRCC1 rs861539 was not associated with OS and PFS in the current meta-analysis.

Methylenetetrahydrofolate Reductase (MTHFR). T allele of MTHFR rs1801133 (C665T) might be related to the negative response, the report had low FRPR at the high (0.1) prior probability level, with pooled HR = 0.63, 95% CI = 0.44–0.89, \(I^2 = 41.0\% \) when comparing CT and CC genotypes. The other genetic models including TT vs. CC and CT + TT vs. CC didn't show statistical significance.

Glutathione S-transferase P1 (GSTP1). For GSTP1 rs1695 (A313G), two genetic models showed consistent results about the association of the SNP with response (GG vs. AA: \(HR = 1.45, 95\% CI = 1.20–1.74; \) AG + GG vs. AA: \(HR = 1.37, 95\% CI = 1.06–1.76), the same effects were also observed in the Asian group by subgroup analysis in model AG + GG vs. AA (HR = 1.47, 95% CI = 1.11–1.95). However, we did not find a significant association in
Genetic model	No. of Study	Effect model	Pooled HR (95%C.I)	I2%	Phet (P-value)	Egger's test (P-value)
ERCC1						
rs3212986		Fixed	2.06 (1.19,3.57)	49.9	0.112	0.174 0.270
AA VS CC	4	Fixed	1.16 (0.83,1.63)	16.5	0.310	0.327 0.622
CA VS CC	5	Fixed	0.97 (0.63,1.50)	81.1	0.000	0.851 0.356
CA+AA VS CC	6	Random				
AC VS AA	3	Fixed	1.20 (0.81,1.79)	0.0	0.526	0.602 0.644
CC VS AA	3	Fixed	1.20 (0.66,2.18)	0.0	0.437	0.117 0.151
XPA rs1800975		Random				
AG+GG VS AA	2	Fixed	0.97 (0.73,1.29)	85.3	0.009	
XPC rs2228009		Random				
CT VS CC	2	Fixed	0.74 (0.37,1.48)	85.5	0.009	
TT VS CC	2	Fixed	0.91 (0.56,1.50)	0	0.449	
CT+TT VS CC	2	Random	0.77 (0.40,1.48)	84.9	0.010	
XPD rs1052555		Random				
CT VS CC	2	Fixed	1.10 (0.89,1.37)	0.0	0.426	0.573 0.251
TT VS CC	8	Random	1.40 (0.92,2.16)	60.1	0.014	1.000 0.796
CT+TT VS CC	5	Fixed	1.47 (1.15,1.88)	0.0	0.682	0.624 0.597
XPD rs1799793						
AA VS GG	5	Random	1.09 (0.62,1.92)	65.3	0.021	0.624 0.595
GA VS GG	4	Fixed	0.78 (0.62,0.99)	0.0	0.419	0.497 0.422
GA+AA VS GG	6	Random	1.29 (0.94,1.76)	66.8	0.010	0.851 0.759
XPD rs238406		Fixed	1.26 (0.95,1.68)	0.0	0.913	
CT VS CC	2	Random	1.11 (0.69,1.79)	59.3	0.117	
TT VS CC	3	Random	1.11 (0.45,2.78)	89.9	0.000	0.602 0.326
XPG rs1047768		Random				
CT VS CC	3	Fixed	0.98 (0.73,1.32)	0.0	0.743	
TT VS CC	3	Fixed	1.02 (0.68,1.51)	0.0	0.394	
CT+TT VS CC	3	Fixed	0.86 (0.68,1.08)	19.4	0.265	
XPG rs17655		Fixed				
CT VS CC	3	Fixed	0.79 (0.59,1.05)	0.0	0.920	0.602 0.376
TT VS CC	3	Fixed	0.40 (0.27,0.61)	13.3	0.315	0.117 0.333
XPG rs873601		Fixed				
AG VS AA	3	Fixed	0.91 (0.69,1.21)	0.0	0.548	1.000 0.878
GG VS AA	3	Fixed	0.67 (0.46,0.97)	0.5	0.366	0.602 0.710
XRCC1 rs25487		Random				
GA VS GG	13	Random	0.87 (0.71,1.07)	70.3	0.000	0.038 0.029a
AA VS GG	11	Random	0.84 (0.52,1.36)	80.1	0.000	0.186 0.183
GA+AA VS GG	6	Random	0.96 (0.68,1.36)	68.8	0.007	0.039 0.019b
XRCC1 rs1799782						
CT VS CC	7	Fixed	0.91 (0.76,1.08)	0.0	0.784	0.362 0.233
TT VS CC	7	Fixed	0.81 (0.63,1.04)	0.0	0.424	0.453 0.685
XRCC1 rs25489		Fixed				
GA VS GG	2	Fixed	0.85 (0.63,1.15)	41.3	0.192	
AA VS GG	2	Fixed	1.31 (0.65,2.65)	22.6	0.256	
CT VS CC	3	Fixed	0.95 (0.76,1.17)	0.0	0.630	0.117 0.064
TT VS CC	3	Fixed	1.01 (0.72,1.41)	46.1	0.156	0.602 0.935
TT+CT VS CC	2	Fixed	0.83 (0.61,1.13)	0.0	0.661	

Continued
In this study, we described the meta-analysis findings of associations between genetic polymorphisms and treatment outcomes of NSCLC patients receiving platinum drugs. Our study identified that 14 SNPs in 10 genes were significantly associated with the ORR, OS and PFS. We further calculated FPRPs of the statistically significant results and 23 results were identified with high-quality evidence (Table 5).

Discussion

In this study, we described the meta-analysis findings of associations between genetic polymorphisms and treatment outcomes of NSCLC patients receiving platinum drugs. Our study identified that 14 SNPs in 10 genes were statistically associated with clinical prognosis including treatment response, OS and PFS. We further calculated FPRPs of the statistically significant results and 23 results were identified with high-quality evidence (Table 5).

The anti-cancer activity of platinum agents mainly depends on the formation of DNA adducts which inhibit DNA replication, hinder cell division and induce cell apoptosis. DNA repair pathways including nucleotide excision repair (NER) and base excision repair (BER) could timely repair the damaged DNA induced by platinum agents and thus lead to treatment failure. DNA repair pathways or certain physiological functions. As shown in Fig. 2, they included DNA repair pathway (EXCC1, ERCC1, XPD, XPG and XRCC1), drug influx and efflux (MDR1), metabolism and detoxification (GSTM1) and DNA synthesis (MTHFR).

Genetic model	No. of Study	Effect model	Pooled HR (95%CI)	I2%	P_{het}	Begg's test (P-value)	Egger's test (P-value)
RRM1 rs12806698	AA VS CC	Fixed	0.86 (0.47, 1.58)	0.0	0.977		
	AG VS CC	Fixed	0.91 (0.66, 1.24)	0.0	0.513		
	AC+AA VS CC	Random	1.01 (0.71, 1.42)	66.7	0.029	0.174	0.391
GSTP1 rs1695	AG VS AA	8 Random	1.03 (0.82, 1.28)	52.9	0.038	0.383	0.113
	GG VS AA	5 Random	0.87 (0.51, 1.47)	71.2	0.008	0.624	0.535
	AG+GG VS AA	2 Fixed	1.19 (0.92, 1.55)	0.0	0.538		
MDR1 rs1045642	CT VS CC	3 Fixed	0.91 (0.64, 1.29)	0.0	0.883	0.117	0.173
	TT VS CC	3 Fixed	0.91 (0.64, 1.29)	0.0	0.883	0.117	0.173
CDA rs2072671	AC VS CC	2 Fixed	0.90 (0.63, 1.29)	0.0	0.334		
	CC VS AA	2 Random	1.80 (0.47, 6.87)	80.6	0.023		

Table 3. The association between candidate gene polymorphisms and OS. *Begg's test P < 0.05; †Egger's test P < 0.05.

Multidrug resistance 1 (MDR1). There were statistically significant associations between MDR1 rs1045642 (T3435C) polymorphism and treatment response in both overall and Asian groups in three comparison genetic models (CT vs. CC, TT vs. CC, CT+TT vs. CC), and results are presented in Table 2. Three statistically significant findings with low FPRP were considered as noteworthy (CT vs. CC: overall RR = 0.73; 95% CI = 0.56–0.94; CT+TT vs. CC: Asian RR = 0.61, 95% CI = 0.48–0.79; CT+TT vs. CC: overall RR = 0.64, 95% CI = 0.52–0.80). Significant between-study heterogeneity and potential bias were not observed in all comparison models.

Biological pathways associated with platinum drugs treatment outcomes in NSCLC patients. Genetic variants significantly associated with treatment outcomes of NSCLC patients receiving platinum drugs had impacts on several biological pathways or certain physiological functions. As shown in Fig. 2, they included DNA repair pathway (EXCC1, ERCC1, XPD, XPG and XRCC1), drug influx and efflux (MDR1), metabolism and detoxification (GSTM1) and DNA synthesis (MTHFR).

Discussion

In this study, we described the meta-analysis findings of associations between genetic polymorphisms and treatment outcomes of NSCLC patients receiving PBC had impacts on several biological pathways or certain physiological functions. As shown in Fig. 2, they included DNA repair pathway (EXCC1, ERCC1, XPD, XPG and XRCC1), drug influx and efflux (MDR1), metabolism and detoxification (GSTM1) and DNA synthesis (MTHFR).
and cancer. We identified that the T allele was related to a negative response of PBC. *MDR1* gene encodes for P-glycoprotein (P-gp), which plays a major role in the process of drug efflux and influx across the cell membrane. We found that *MDR1* rs1045642 variant was associated with ORR only in Asians, and published meta-analyses supported the association. GST is a phase II metabolic enzyme involved in the platinum detoxification, mediated by glutathione (GSH) conjugation. Increasing GSH content would decrease platinum-DNA binding and result in platinum resistance. *GSTP1* gene was found to be associated with platinum treatment response, and our results indicated that T allele of *GSTP1* rs1695 increased the ORR in NSCLL patients, but the association was only observed in Asians. A previous meta-analysis also reported the same effect as ours.

Great efforts have been made to identify the molecular predictive markers of platinum sensitivity. By further integrating our results according to genes biological functions, we found that the majority of polymorphisms of those genes significantly associated with treatment outcomes of platinum agents were involved in four biological pathways or physiological functions. According to the mechanism of platinum, DNA repair pathway may play a key role in the response of platinum therapy. Our results showed that the important components of DNA repair pathways (*ERCC1, XPD, XPG, XRCC1* and *XRCC3*) were involved in the efficacy of platinum treatment and clinical outcome of NSCLL patients. *MDR1* and *GSTP1*, which were related to drug transportation and detoxification respectively, influenced the outcome of platinum treatment. Another potential key gene was *MTHFR*, which was involved in regulating folate metabolism and DNA synthesis and was correlated with platinum sensitivity.

In the current meta-analysis, we comprehensively searched the relevant articles and explored all the eligible genes related to multiple biological functions, aiming to provide an updated and more critical summary of the available evidence of genetic polymorphisms and treatment outcomes of PBC in NSCLC patients. We first analyzed six SNPs including *ERCC1* rs2298881, *XPD* rs1052555, *XPD* rs238406, *XPG* rs17655, *XPG* rs2296147 and *XPG* rs873601. There is a high chance that an initial “statistically significant” finding based on *P* value alone turns out to be a false-positive finding, so we calculated the FPRP of each statistically significant association to ensure the credibility of our findings, and we identified 11 SNPs in 9 genes that might truly associate with the ORR and/or OS and/or PFS of NSCLC patients receiving platinum drugs.

However, there were some limits in the present meta-analysis. First, despite the intensive efforts we have made to comprehensively search the related studies, some information might have been missed. Second, between-study...
heterogeneity existed in the current meta-analysis. Although sensitivity analysis and subgroup analysis were applied to find the source of heterogeneity, some heterogeneity couldn’t be fully explained by statistical methods. Clinical heterogeneity might play a role in the large between-study heterogeneity, such as disease stage and age.

Table 5. FPRP values for the SNPs associated with the response, OS and PFS of NSCLC patients receiving platinum-based chemotherapy. *FPRP value < 0.2.

Genetic/SNP	Genetic model	Subgroup	No. of study	Pooled RR of ORR (95% CI)	Reported P-value	Power	FPRP based on prior
ERCC1 rs3212986	AA VS CC	Asian	7	0.71 (0.54,0.94)	0.017	0.670	0.184*
	AA VS CC	Overall	8	0.72 (0.56,0.94)	0.016	0.714	0.166*
XRCC3 rs861539	CT VS CC	Caucasian	3	1.46 (1.06,1.99)	0.017	0.568	0.208
	CT VS CC	Overall	6	1.31 (1.07,1.59)	0.006	0.915	0.058*
	TT VS CC	Caucasian	3	1.59 (1.07,2.36)	0.021	0.386	0.332
	TT VS CC	Overall	4	1.48 (1.12,1.97)	0.007	0.537	0.108*
	TT+CT VS CC	Caucasian	3	1.48 (1.10,2.01)	0.012	0.534	0.169*
	TT+CT VS CC	Overall	8	1.28 (1.07,1.52)	0.005	0.965	0.043*
XPA rs1800975	AG VS AA	Asian	2	2.17 (1.29,3.64)	0.003	0.081	0.270
	AG VS AA	Overall	3	1.74 (1.18,2.57)	0.005	0.228	0.175*
XPD rs13181	CA+CC VS AA	Asian	11	0.83 (0.71,0.98)	0.028	0.995	0.202
	AA VS GG	Asian	1	0.20 (0.05,0.76)	0.047	0.069	0.861
XRCCI rs25487	AA VS GG	Overall	15	1.27 (1.02,1.58)	0.032	0.932	0.236
XRCCI rs1799782	CT VS CC	Overall	13	1.22 (1.03,1.44)	0.019	0.993	0.145*
	TT VS CC	Overall	13	1.29 (1.07,1.56)	0.009	0.940	0.076*
	CT+TT VS CC	Overall	14	1.22 (1.04,1.42)	0.010	0.996	0.085*
MTHFR rs1801133	CT VS CC	Overall	5	0.63 (0.44,0.89)	0.009	0.374	0.174*
GSTP1 rs1695	AG+GG VS AA	Asian	11	1.47 (1.11,1.95)	0.008	0.556	0.109*
	CT VS CC	Overall	13	1.37 (1.06,1.76)	0.014	0.761	0.140*
	TT VS CC	Overall	5	0.73 (0.56,0.94)	0.015	0.759	0.148*
	CT+TT VS CC	Overall	7	0.64 (0.52,0.80)	0.000	0.360	0.002*
MDRI rs1045642	CT+TT VS CC	Asian	5	1.47 (1.15,1.88)	0.002	0.564	0.033*
	CT+TT VS CC	Overall	5	1.47 (1.15,1.88)	0.002	0.564	0.033*
ERCC1 rs31615	CT+TT VS CC	Overall	5	0.69 (0.50,0.95)	0.023	0.584	0.261
ERCC1 rs3212986	AA VS CC	Overall	4	2.06 (1.19,3.57)	0.050	0.129	0.411
XPD rs13181	AC+CC VS AA	Overall	8	1.24 (1.07,1.44)	0.005	0.994	0.042*
XPD rs1799793	GA VS GG	Overall	4	0.78 (0.62,0.99)	0.041	0.902	0.291
XPD rs1052555	CT+TT VS CC	Overall	3	1.71 (1.31,2.23)	0.000	0.167	0.004*
XPG rs873601	GG VS AA	Overall	3	0.67 (0.46,0.97)	0.034	0.511	0.374
XPG rs2296147	TT VS CC	Overall	3	0.40 (0.27,0.61)	0.000	0.009	0.021*
XPD rs13181	AG+CC VS AA	Overall	4	1.38 (1.10,1.73)	0.005	0.765	0.058*
XPD rs1052555	CT+TT VS CC	Overall	2	1.97 (1.38,2.83)	0.000	0.070	0.030*

Figure 2. Biological pathways and physiological functions influenced by genetic variants which were statistically significantly associated with clinical outcomes of platinum-based chemotherapy in NSCLC patients.
Third, three genotypic variant (heterozygote variant vs. wild type, homozygote variant vs. wild type and the dominant model) were used for this study, the other models including recessive model and allele comparison were not performed because of limited raw data. However, the models used in the study were commonly used in genetic analysis, and could in part decrease the type I error inflation. Fourth, we didn’t analyze the role of gene-gene as well as gene-environment interactions in the modification of chemotherapy efficacy, and attention should be paid to these factors in further studies.

In conclusion, this collection of data might provide a useful platform for research and clinical healthy practice. Further work still needs to be done to pinpoint the use of these SNPs as prognostic biomarkers for assessing objective response and progression risk in NSCLC patients receiving platinum-based regimens.

References
1. Ettinger DS FAU Wood, D. E. et al. Non-Small Cell Lung Cancer, Version 1.2015. J Natl Compr Canc Netw. 2014 Dec, 12(12), 1738–61 (2014).
2. Rossi, A. & Di Maio, M. Platinum-Based Chemotherapy in Advanced Non-Small-Cell Lung Cancer: Optimal Number of Treatment Cycles. Expert Rev Anticancer Ther (2016).
3. Bonanno, L., Favaretto A FAU Rosell, R. & Rosell, R. Platinum Drugs and DNA Repair Mechanisms in Lung Cancer. Anticancer Res. 2014 Jan, 34(1), 493–501 (2014).
4. Kilari, D. Role of Copper Transporters in Platinum Resistance. World Journal of Clinical Oncology 7, 106 (2016).
5. Germa-Lluch, J. R. & Piatets, J. M. [Molecular Bases of Platinum Resistance in Testicular Cancer]. Arch Esp Urol 66, 524–535 (2013).
6. Martin, L. P., Hamilton TC FAU Schilder, R. J. & Schilder, R. J. Platinum Resistance: The Role of DNA Repair Pathways. Clin Cancer Res. 2008 Mar 1, 14(5), 1291–5, doi:10.1186/1078-0432.CCR-07-2238 (2008).
7. Rosell, R., Mendez P FAU Isla, D., Isla D FAU Taron, M. & Taron, M. Platinum Resistance Related to a Functional NER Pathway. J Thoric Oncol. 2007 Dec, 2(12), 1063-6 (2007).
8. Muggia, F. M. & Los, G. Platinum Resistance: Laboratory Findings and Clinical Implications. Stem Cells 11, 182–193 (1993).
9. Sagoo, G. S., Little, J. & Higgins, J. P. Systematic Reviews of Genetic Association Studies. Human Genome Epidemiology Network, Plos Med 6, e28 (2009).
10. Eiseñhauer, E. A. et al. New Response Evaluation Criteria in Solid Tumours: Revised Recist Guideline (Version 1.1). Eur J Cancer 45, 228–247 (2009).
11. Wacholder, S., Chanock, S., Garcia-Closas, M., El, G. L. & Rothman, N. Assessing the Probability that a Positive Report is False: An Approach for Molecular Epidemiology Studies. J Natl Cancer Inst 96, 434–442 (2004).
12. Camps, C. et al. Assessment of Nucleotide Excision Repair Xpd Polymorphisms in the Peripheral Blood of Gemcitabine/Cisplatin-Treated Advanced Non-Small-Cell Lung Cancer Patients. Clin Lung Cancer 4, 237–241 (2003).
13. Ryu, J. S. et al. Association Between Polymorphisms of Ercc1 and Xpd and Survival in Non-Small-Cell Lung Cancer Patients Treated with Cisplatin Combination Chemotherapy. Lung Cancer 44, 311–316 (2004).
14. Gurubhagavatula, S. et al. Xpd and Xrcc1 Genetic Polymorphisms are Prognostic Factors in Advanced Non-Small-Cell Lung Cancer. Lung Cancer Patients Treated with Platinum Chemotherapy. J Clin Oncol 22, 2594–2601 (2004).
15. Isla, D. et al. Single Nucleotide Polymorphisms and Outcome in Docetaxel-Cisplatin-Treated Advanced Non-Small-Cell Lung Cancer. J PTO Oncol 15, 1194–1203 (2004).
16. Zhou, W. et al. Excision Repair Cross-Complementation Group 1 Polymorphism Predicts Overall Survival in Advanced Non-Small Cell Lung Cancer Patients Treated with Platinum-Based Chemotherapy. Clin Lung Cancer 10, 4839–4943 (2004).
17. Wang, Z. H. et al. Single Nucleotide Polymorphisms in Xrcc1 and Clinical Response to Platinum-Based Chemotherapy in Advanced Non-Small-Cell Lung Cancer. Ai Zhong 23, 865–868 (2004).
18. Yuan, P. et al. Correlation of Genetic Polymorphisms in Nucleotide Excision Repair System to Sensitivity of Advanced Non-Small-Cell Lung Cancer. Lung Cancer Patients to Platinum-Based Chemotherapy. Ai Zhong 24, 1510–1513 (2005).
19. Li, C. et al. Association Between Glutathione S-Transferase Pi Polymorphisms and Survival in Patients with Advanced Non-small Cell Lung Carcinoma. Cancer-Am Cancer Soc 106, 441–447 (2006).
20. de Las, P. R. et al. Polymorphisms in DNA Repair Genes Modulate Survival in Cisplatin/Gemcitabine-Treated Non-Small-Cell Lung Cancer Patients. Ann Oncol 17, 668–675 (2006).
21. Booton, R. et al. Xenodermia Pigmentosum Group D Haploype Predicts for Response, Survival, and Toxicity After Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. Cancer-Am Cancer Soc 102, 2421–2427 (2006).
22. Yuan, P. et al. Xrcc1 and Xpd Genetic Polymorphisms Predict Clinical Responses to Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. Zhonghua Zhong Liu Za Zhi 28, 196–199 (2006).
23. Booton, R. et al. Glutathione S-Transferase Pi Isoenzyme Polymorphisms, Platinum-Based Chemotherapy, and Non-Small Cell Lung Cancer. J Thoric Oncol 1, 679–683 (2006).
24. Shi, M. et al. Genetic Polymorphisms in Methylenetetrahydrofolate Reductase and Clinical Response to Chemotherapy in Non-Small Cell Lung Cancer. Zhongguo Fei Ai Za Zhi 6, 519–524 (2006).
25. Shi, M. Q. et al. Polymorphisms in Xrcc1 Gene and Sensitivity to Platinum-Based Chemotherapy in Advanced Lung Cancer. Chinese Clinical Oncology 575–578 (2006).
26. Su, D. et al. Genetic Polymorphisms and Treatment Response in Advanced Non-Small Cell Lung Cancer. Lung Cancer 56, 281–288 (2007).
27. SUN Xin-cheng, S. N. C. H. Xpa a23G Polymorphism and Clinical Response to Platinum Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. Journal of Medical Postgraduates 1271–1273 (2007).
28. Song, D. G., Liu, J., Wang, Z. H., Song, B. & Li, C. Z. Single Nucleotide Polymorphisms in Xrcc1 and Xpd Predict Sensitivity to Platinum-Based Chemotherapy in Advanced Nsclc. Chinese Journal of Gerontology 1684–1686 (2007).
29. Yu, Q. Z. et al. The Relationship Between the Polymorphisms of Gene Xpg and Mdr1 and the Responsiveness of Advanced Non-Small-Cell Lung Cancer to Platinum-Based Chemotherapy. The practical journal of cancer 252–256 (2007).
30. Pan, J. H. et al. Mdr1 Single Nucleotide Polymorphisms Predict Response to Vinorelbine-Based Chemotherapy in Patients with Non-Small Cell Lung Cancer. Respiration 75, 380–385 (2008).
31. Tikhida, C. et al. Correlation of Cda, Ercc1, and Xpd Polymorphisms with Response and Survival in Gemcitabine/Cisplatin-Treated Advanced Non-Small-Cell Lung Cancer Patients. Clin Cancer Res 14, 1797–1803 (2008).
32. Wu, X. et al. Germline Genetic Variations in Drug Action Pathways Predict Clinical Outcomes in Advanced Lung Cancer Treated with Platinum-Based Chemotherapy. Pharmacogenet Genomics 18, 955–965 (2008).
33. Ding, Z. H. et al. Polymorphisms in Xpd751 Gene and Sensitivity to Gemcitabine/Cisplatin Chemotherapy in Advanced Stage of Non-Small-Cell Lung Cancer. Acta Universitatis Medicinalis Nanjing (Natural Science) 457–461 (2008).
34. Liu, X. Z., Qian, X. P., Liu, B. R., Hu, W. J. & Wang, L. F. Single Nucleotide Polymorphisms in Xrcc1, Xpd and Platinum Prognosis in Non-Small-Cell Lung Cancer Patients. Journal of Clinical Medicine in Practice 7–11 (2008).
35. Pan, J. H. et al. Mdr1 Single Nucleotide Polymorphism G2677T/a and Haploype are Correlated with Response to Docetaxel-Cisplatin Chemotherapy in Patients with Non-Small-Cell Lung Cancer. Respiration 78, 49–55 (2009).
36. Sun, X. et al. Polymorphisms in Xrc1 and Xpg and Response to Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer Patients. Lung Cancer 65, 230–236 (2009).
37. Feng, J. F. et al. Polymorphisms of the Ribonucleotide Reductase M1 Gene and Sensitivity to Platin-Based Chemotherapy in Non-Small Cell Lung Cancer. Lung Cancer 66, 344–349 (2009).
38. Feng, J. F. et al. Xpa a25G Polymorphism is Associated with the Elevated Response to Platinum-Based Chemotherapy in Advanced Non-Small-Cell Lung Cancer. Acta Bioch Bioph Sin 41, 429–435 (2009).
39. Kalikaki, A. et al. Dna Repair Gene Polymorphisms Predict Favorable Clinical Outcome in Advanced Non-Small-Cell Lung Cancer. Clin Lung Cancer 10, 118–123 (2009).
40. Hong, C. Y., Xu, Q., Yue, Z., Zhang, Y. & Yuan, Y. Correlation of the Sensitivity of Np Chemotherapy in Non-Small Lung Cancer with Dna Repair Gene Xrc1 Polymorphism. Ai Zheng 28, 1291–1297 (2009).
41. Gao, C. M. et al. Polymorphisms in Ercc1, Xrc1 Genes and Sensitivity to Gemcitabine/Cisplatin Chemotherapy in Non-Small Cell Lung Cancer. Chin J Cancer Prev Treat 27–30 (2009).
42. Hu, S. N., Feng, J. F., Wu, J. Z., Gao, C. M. & Shi, M. Q. Polymorphisms in Rrm1 Gene and Sensitivity to Platin Based Chemotherapy in Non-Small Cell Lung Cancer Patients. Chin J Cancer Prev Treat 1477–1481 (2009).
43. Takenaka, T. et al. Effects of Excision Repair Cross-Complementation Group 1 (Ercc1) Single Nucleotide Polymorphisms On the Prognosis of Non-Small-Cell Lung Cancer Patients. Lung Cancer 67, 101–107 (2010).
44. Sun, N. et al. Mrp2 and Gspt1 Polymorphisms and Chemotherapy Response in Advanced Non-Small Cell Lung Cancer. Cancer Chemother Pharmacol 65, 437–446 (2010).
45. Chen, S. et al. Association of Mdr1 and Ercc1 Polymorphisms with Response and Toxicity to Cisplatin-Based Chemotherapy in Non-Small-Cell Lung Cancer Patients. Int J Hyg Environ Health 213, 140–145 (2010).
46. Li, F. et al. Association Between Polymorphisms of Ercc1 and Xpd and Clinical Response to Platinum-Based Chemotherapy in Advanced Non-Small-Cell Lung Cancer. Am J Clin Oncol 33, 489–494 (2010).
47. Zhou, C. et al. Predictive Effects of Ercc1 and Xrc3 Snp On Efficacy of Platinum-Based Chemotherapy in Advanced Nsclc Patients. Ipn J Clin Oncol 40, 954–960 (2010).
48. Zu-hong, Z. X. S. X. Xpc Lys939Gln Polymorphism is Associated with the Decreased Response to Platinum Based Chemotherapy in Advanced Non-Small-Cell Lung Cancer. Chinese Medical Journal 123, 3427–3432 (2010).
49. Wang, J. et al. Association Between Polymorphisms of Ercc1 and Response in Patients with Advanced Non-Small Cell Lung Cancer Receiving Cisplatin-Based Chemotherapy. Zhongguo Fei Ai Za Zhi 13, 337–341 (2010).
50. Yuan, P. et al. No Association Between Xrc1 Polymorphisms and Survival in Non-Small-Cell Lung Cancer Patients Treated with Platinum-Based Chemotherapy. Cancer Biol Ther 10, 854–859 (2010).
51. Okuda, K. et al. Excision Repair Cross Complementation Group 1 Polymorphisms Predict Overall Survival After Platinum-Based Chemotherapy for Completely Resected Non-Small-Cell Lung Cancer. J Surg Res 168, 206–212 (2011).
52. Vinolos, N. et al. Single Nucleotide Polymorphisms in Mdr1 Gen Correlates with Outcome in Advanced Non-Small-Cell Lung Cancer Patients Treated with Cisplatin Plus Vinorelbine. Lung Cancer 71, 191–198 (2011).
53. Liu, L. et al. Assessment of Xpd Lys751Gln and Xrc1 T-C77C Polymorphisms in Advanced Non-Small-Cell Lung Cancer Patients Treated with Platinum-Based Chemotherapy. Lung Cancer 73, 110–115 (2011).
54. KimCurran, V. et al. Lack of Correlation Between Ercc1 (C89092a) Single Nucleotide Polymorphism and Efficacy/Toxicity of Platinum Based Chemotherapy in Chinese Patients with Advanced Non-Small Cell Lung Cancer. Adv Med Sci 56, 30–38 (2011).
55. Cui, L. H. et al. Influence of Polymorphisms in Mthfr 677 C->T, Tmys 3R->2R and Mtr 2756 a->G On Nsclc Risk and Response to Platinum-Based Chemotherapy in Advanced Nsclc. Pharmacogenomics 12, 797–808 (2011).
56. Ryu, J. S. et al. Differential Effect of Polymorphisms of Cmpk1 and Rrm1 On Survival in Advanced Non-Small Cell Lung Cancer Patients Treated with Gmcabine Or Taxane/Cisplatinum. J Thorac Oncol 6, 1320–1329 (2011).
57. Zhou, F. et al. Genetic Polymorphisms of Gspt1 and Xrc1: Prediction of Clinical Outcome of Platinum-Based Chemotherapy in Advanced Non-Small-Cell Lung Cancer (Nsclc) Patients. Swiss Med Wkly (2011).
58. Ludovini, V. et al. Association of Cytidine Deaminase and Xeroderma Pigmentosum Group D Polymorphisms with Response, Toxicity, and Survival in Cisplatin/Gemcitabine-Treated Advanced Non-Small-Cell Lung Cancer Patients. J Thorac Oncol 6, 2018–2026 (2011).
59. Xu, C., Wang, X., Zhang, Y. Li, L. Effect of the Xrc1 and Xrc3 Genetic Polymorphisms On the Efficacy of Platinum-Based Chemotherapy in Patients with Advanced Non-Small Cell Lung Cancer. Zhongguo Fei Ai Za Zhi 14, 912–917 (2011).
60. Yan, P. W., Huang, X. E., Yan, F., Xu, L. & Jiang, Y. Influence of Mdr1 Gene Codon 3435 Polymorphisms On Outcome of Platinum-Based Chemotherapy for Advanced Non Small Cell Lung Cancer. Asian Pac J Cancer Prev 12, 2291–2294 (2011).
61. Cheng, H. Y. et al. Relationship of Single Nucleotide Polymorphisms and Clinical Response to Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. Jiangsu Med 272–274 (2011).
62. Jia, X. F. et al. Relationship Between Xpa and Xpg Polymorphisms and Platinum-Based Chemotherapy Outcomes in Advanced Non-Small Cell Lung Cancer. Progress in Modern Biomedicine 1718–1722 (2011).
63. Li, D. R. et al. Association of Dna Repair Gene Polymorphisms with Response to Platinum-Based Chemotherapy in Patients with Non-Small-Cell Lung Cancer. J Thorac Oncol 6, 3348–3353 (2011).
64. Li, D. R. et al. Correlation of Excision Repair Cross-Complementing Group 2 Polymorphisms and Response to Platinum-Based Chemotherapy in Advanced Non-Small-Cell Lung Cancer. China Journal of Modern Medicine 2004–2007 (2011).
65. Zhao, W. et al. Relationship of Xrc1, Parp1 and Apel Polymorphisms with Efficacy of Platinum-Based Chemotherapy for Patients with Advanced Non-Small Cell Lung Cancer. Acta Universitatis Medicinalis Nanjing (Natural Science) 1021–1026 (2011).
66. Zhou, F. et al. Association of Gspt1 and Xrc1 Genetic Polymorphisms with the Effects of Platinum-Based Chemotherapy On Advanced Non-Small Cell Lung Cancer Patients. Chinese Clinical Oncology 304–309 (2011).
67. Ren, S. et al. Association Between Polymorphisms of Dna Repair Genes and Survival of Advanced Nsclc Patients Treated with Platinum-Based Chemotherapy. Lung Cancer 75, 102–109 (2012).
68. Dong, J. et al. Potentially Functional Polymorphisms in Dna Repair Genes and Non-Small-Cell Lung Cancer Survival: A Pathway-Based Analysis. Mol Carcinog 51, 546–552 (2012).
69. Li, D., Zhou, Q., Liu, Y., Yang, Y. & Li, Q. Dna Repair Gene Polymorphism Associated with Sensitivity of Lung Cancer to Therapy. Med Oncol 29, 1622–1628 (2012).
70. Joerger, M. et al. Germline Polymorphisms in Patients with Advanced Nonsmall Cell Lung Cancer Receiving First-Line Platinum-Gemcitabine Chemotherapy: A Prospective Clinical Study. Cancer-Am Cancer Soc 118, 2466–2472 (2012).
71. Chen, X. et al. Association of Xrc1 and Xpg 187T Polymorphism of Ercc1 and Response to Cisplatin Chemotherapy in Patients with Late-Stage Non-Small Cell Lung Cancer. J Cancer Res Clin Oncol 138, 231–238 (2012).
72. Li, W. et al. Polymorphisms in Gspt1, Cyp1a1, Cyp2e1, and Cyp2d6 Are Associated with Susceptibility and Chemotherapy Response in Non-Small-Cell Lung Cancer Patients. Lung 190, 91–98 (2012).
73. Chen, X. et al. Association of Xrc3 and Xpd751 Snp with Efficacy of Platinum-Based Chemotherapy in Advanced Nsclc Patients. Clin Transl Oncol 14, 207–213 (2012).
74. Wu, W. et al. Effect of Polymorphisms in Xpd On Clinical Outcomes of Platinum-Based Chemotherapy for Chinese Non-Small-Cell Lung Cancer Patients. Plos One 7, e33200 (2012).
75. Butkiewicz, D. et al. Influence of Dna Repair Gene Polymorphisms On Prognosis in Inoperable Non-Small Cell Lung Cancer Patients Treated with Radiotherapy and Platinum-Based Chemotherapy. Int J Cancer 131, E1100–E1108 (2012).
76. Krawczyk, P. et al. Predictive Value of Ercc1 Single-Nucleotide Polymorphism in Patients Receiving Platinum-Based Chemotherapy for Locally-Advanced and Advanced Non-Small Cell Lung Cancer– A Pilot Study. *Folia Histochem Cytobiol* **50**, 80–86 (2012).

77. Liao, W. Y. et al. Genetic Polymorphism of Xrcc1 Arg399Gln is Associated with Survival in Non-Small-Cell Lung Cancer Patients Treated with Gemcitabine/Platinum. *J Thorac Oncol* **7**, 973–981 (2012).

78. Dogu, G. G. et al. Mdr1 Single Nucleotide Polymorphism C3435T in Turkish Patients with Non-Small-Cell Lung Cancer. *Gene* **506**, 404–407 (2012).

79. Ke, H. G. et al. Prognostic Significance of Gspt1, Xrccl and Xrcce3 Polymorphisms in Non-Small-Cell Lung Cancer Patients. *Asian Pac J Cancer Prev* **13**, 4413–4416 (2012).

80. Lv, H. Y. et al. Relationship Between Gspt1 and Xpg Genetic Polymorphisms and Survival of Platinum-Based Chemotherapy in Advanced Non-Small-Cell Lung Cancer Patients. *China Oncology* **69**–617 (2012).

81. Zhang, Y. P., Sheng, G. E., Liu, Y. P., Xue, H. B. & Ling, Y. The Relationship of Gspt1 and Clinical Response to Platinum Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. *J Med Theor & Pract* **3903–3004 (2012).

82. Provencio, M. et al. Prospective Assessment of Xrcc3, Xpd and Aurora Kinase a Single-Nucleotide Polymorphisms in Advanced Lung Cancer. *Cancer Chemother Pharm* **70**, 883–890 (2012).

83. He, C., Duan, Z., Li, P., Xu, Q. & Yuan, Y. Role of Ercc5 Promoter Polymorphisms in Response to Platinum-Based Chemotherapy in Patients with Advanced Non-Small Cell Lung Cancer. *Anticancer Drugs* **24**, 300–305 (2013).

84. Hong, W. et al. Methylenetetrahydrofolate Reductase C677T Polymorphism Predicts Response and Time to Progression to Gemcitabine-Based Chemotherapy for Advanced Non-Small Cell Lung Cancer in a Chinese Han Population. *J Zhejiang Univ Sci B* **14**, 207–215 (2013).

85. Liu, H. N., Liu, Y. P., Xue, H. B., Deng, Y. Q. & Ling, Y. Association of Repair Gene Polymorphisms with Clinical Response to Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. *Modern Medical Journal* **659**–661 (2013).

86. Zhao, W. et al. Polymorphisms in the Base Excision Repair Pathway Module Prognosis of Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. *Cancer Chemother Pharmacol* **71**, 1287–1295 (2013).

87. Li, X. D., Han, J. C., Zhang, Y. J., Li, H. B. & Wu, X. Y. Common Variations of DNA Repair Genes are Associated with Response to Platinum-Based Chemotherapy in Nscics. *Asian Pac J Cancer Prev* **14**, 145–148 (2013).

88. Li, W. et al. Polymorphisms in Thymidylate Synthase and Reduced Folate Carrier 1 Genes Predict Survival Outcome in Advanced Non-Small-Cell Lung Cancer Patients Treated with Platinum-Based Chemotherapy. *Onco Lett* **5**, 1165–1170 (2013).

89. Cheng, H. et al. Predictive Effect of Xpa and Xpd Polymorphisms On Survival of Advanced Nsclc Patients Treated with Platinum-Based Chemotherapy: A Three-Dimensional (3-D), Polycyramide Gel-Based DNA Microarray Method. *Technol Cancer Res Treat* **12**, 473–482 (2013).

90. Zhang, T. et al. Xpg is Predictive Gene of Clinical Outcome in Advanced Non-Small-Cell Lung Cancer with Platinum Drug Therapy. *Asian Pac J Cancer Prev* **14**, 701–705 (2013).

91. Lee, S. Y. et al. Polymorphisms in DNA Repair and Apoptosis-Related Genes and Clinical Outcomes of Patients with Non-Small-Cell Lung Cancer Treated with First-Line Paclitaxel-Cisplatin Chemotherapy. *Lung Cancer* **82**, 330–339 (2013).

92. Mlaker, R. et al. Predictive Value of Ercc1 and Rrm1 Gene Single-Nucleotide Polymorphisms for First-Line Platinum- And Gemcitabine-Based Chemotherapy in Non-Small-Cell Lung Cancer Patients. *Oncol Rep* **30**, 2385–2398 (2013).

93. Yu, Y. et al. Xpg is a Novel Biomarker of Clinical Outcome in Advanced Non-Small-Cell Lung Cancer. *Fak J Med Sci* **79**, 762–767 (2013).

94. Lu, H. D., Cui, E. H. & Hua, F. The Association Between the Susceptibility to Platinum Drugs and the Genetic Polymorphisms of Ercc1 and Bag-1 in Patients with Advanced Non-Small Cell Lung Cancer. *China Modern Doctor* **65**–67 (2013).

95. Sheng, G. E. et al. Relationship of Xrccl and Efficacy of Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. *Jiangsu Med J* **295**–297 (2013).

96. Yang, W. J., Wang, N. J. & Chen, D. M. Mutation in Xrcce3, Polymorphism in Xrcce1 Gene Could Predict Clinical Outcome of Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer. *Jiangsu Med J* **648**–650 (2013).

97. Zhou, G. R. et al. Effects of Genetic Polymorphisms of Xrcce1 On the Efficacy of Platinum-Based Chemotherapy for Advanced Nonsmall Cell Lung Cancer. *Pract Geriatr* **897**–899 (2013).

98. Huang, S. J., Wang, Y. F., Lin, Z. Y., Sun, J. Y. & Guo, Z. L. Role of Ercc1 Variants in Response to Chemotherapy and Clinical Outcome of Advanced Non-Small-Cell Lung Cancer. *Tumour Biol* **35**, 4023–4029 (2014).

99. Zhang, L., Ma, W., Li, Y., Wu, J. & Shi, G. Y Pharmacogenetics of DNA Repair Gene Polymorphisms in Non-Small-Cell Lung Carcinoma Patients On Platinum-Based Chemotherapy. *Gene Ther Mol Res* **13**, 228–236 (2014).

100. Jin, Z. Y. et al. Effects of Polymorphisms in the Xrccl, Xrcce3, and Xpg Genes On Clinical Outcomes of Platinum-Based Chemotherapy for Treatment of Non-Small-Cell Lung Cancer. *Genet Mol Res* **13**, 7617–7625 (2014).

101. Hu, W., Pan, J., Zhao, P., Yang, G. & Yang, S. Genetic Polymorphisms in Xpg Could Predict Clinical Outcome of Platinum-Based Chemotherapy for Advanced Non-Small Cell Lung Cancer. *Tumour Biol* **35**, 5561–5567 (2014).

102. Peng, Y. et al. Association of DNA Base Excision Repair Genes (Ogg1, Ape1 and Xrcce1) Polymorphisms with Outcome to Platinum-Based Chemotherapy in Advanced Nonsmall Cell Lung Cancer Patients. *Int J Cancer* **135**, 2687–2696 (2014).

103. Zhou, M. et al. Association of Xeroderma Pigmentosum Group D (Asp312Asn, Lys751Gln) and Cytidine Deaminase (Lys27Gln, Ala70Thr) Polymorphisms with Outcome in Chinese Non-Small Cell Lung Cancer Patients Treated with Cisplatin-Gemcitabine. *Genet Mol Res* **13**, 3310–3318 (2014).

104. Zhao, Y., Zhang, Z., Yuan, Y. & Yuan, X. Polymorphisms in Ercc1 Gene Could Predict Clinical Outcome of Platinum-Based Chemotherapy for Non-Small-Cell Lung Cancer Patients. *Tumour Biol* **35**, 8335–8341 (2014).

105. Lv, H. et al. Genetic Polymorphism of Gspt1 and Ercc1 Correlated with Response to Platinum-Based Chemotherapy in Non-Small-Cell Lung Cancer. *Med Oncol* **31**, 86 (2014).

106. Krawczyk, P. et al. Polymorphisms in Ts, Mhfr and Ercc1 Genes as Predictive Markers in First-Line Platinum and Pemetrexed Therapy in Nscic Patients. *J Cancer Res Clin Oncol* **140**, 2047–2057 (2014).

107. Sullivan, L. et al. Pharmacogenetics of the DNA Repair Pathways in Advanced Non-Small Cell Lung Cancer Patients Treated with Platinum-Based Chemotherapy. *Cancer Lett* **353**, 160–166 (2014).

108. Dong, C. H., Kang, M. F., Zhao, Y. Y., Lin, J. & Tao, L. Y. Correlation of Methylenetetrahydrofolate Reductase (Mhfr) C677T Polymorphism and Chemotherapy Efficacy in Lung Adenocarcinoma. *Chin J of Oncol Prev and Treat* **35**–38 (2014).

109. Liu, D., Wu, J., Shi, G. Y., Zhou, H. F. & Yu, Y. Role of Xrccl and Ercc5 Polymorphisms On Clinical Outcomes in Advanced Non-Small Cell Lung Cancer. *Genet Mol Res* **13**, 3100–3107 (2014).

110. Kou, G., Liu, Z. T., Zhang, Z., Mei, Z. J. & Wang, S. H. Ercc1 Gene Polymorphism and Efficacy and Prognosis of Platinum Combination Regimens in Advanced Lung Adenocarcinoma Patients. *The practical journal of cancer* **483**–485 (2014).

111. Kallikaki, A. et al. Ercc1 Snps as Potential Predictive Biomarkers in Non-Small Cell Lung Cancer Patients Treated with Platinum-Based Chemotherapy. *Cancer Invest* **33**, 107–113 (2015).

112. Zou, H. Z. & Zhao, Y. Q. Xpg Polymorphisms are Associated with Prognosis of Advanced Non-Small Cell Lung Cancer Treated with Platinum-Based Doublet Chemotherapy. *Genet Mol Res* **14**, 500–506 (2015).

113. Yuan, Z. J. et al. Association of Gspt1 and Rrm1 Polymorphisms with the Response and Toxicity of Gemcitabine-Cisplatin Combination Chemotherapy in Chinese Patients with Non-Small-Cell Lung Cancer. *Asian Pac J Cancer Prev* **16**, 4347–4351 (2015).
115. Deng, J. H., Deng, J., Shi, D. H., Ouyang, X. N. & Niu, P. G. Clinical Outcome of Cisplatin-Based Chemotherapy is Associated with the Polymorphisms of Gstm1 and Xrcc1 in Advanced Non-Small Cell Lung Cancer Patients. *Clinical and Translational Oncology* 17, 720–726 (2015).

116. Shi, Z. H., Shi, G. Y. & Liu, G. G. Polymorphisms in Ercc1 and Xpf Gene and Response to Chemotherapy and Overall Survival of Non-Small Cell Lung Cancer. *Int J Clin Exp Pathol* 8, 3132–3137 (2015).

117. Han, X. et al. Association of Gsp1 and Xrcc1 Gene Polymorphisms with Clinical Outcome of Advanced Non-Small Cell Lung Cancer Patients with Cisplatin-Based Chemotherapy. *Int J Clin Exp Pathol* 8, 4113–4119 (2015).

118. Li, P., Wang, Y. D., Cheng, J., Chen, J. C. & Ha, M. W. Association Between Polymorphisms of Bag-1 and Xpd and Chemotherapy Sensitivity in Advanced Non-Small-Cell Lung Cancer Patients Treated with Vinorelbine Combined Cisplatin Regimen. *Tumour Biol* 36, 9465–9473 (2015).

119. Liu, J. Y., Li, L. R. & Liu, Q. M. Association of Gsp1 and Xrcc1 Gene Polymorphisms with Clinical Outcomes of Patients with Advanced Non-Small Cell Lung Cancer. *Genet Mol Res* 14, 10331–10337 (2015).

120. Wu, G., Jiang, B., Liu, X., Shen, Y. & Yang, S. Association of Gsp1 Gene Polymorphisms with Treatment Outcome of Advanced Non-Small Cell Lung Cancer Patients with Cisplatin-Based Chemotherapy. *Int J Clin Exp Pathol* 8, 13346–13352 (2015).

121. Zhu, M. Z., Xu, H. Y., Zhu, Z. X. & J., H. Association of Genetic Polymorphisms of Hif-1A and Ercc1 with the Short-Term Efficacy of Platinum Drugs for Advanced Non-Small Cell Lung Cancer. *The practical journal of cancer* 1276–1280 (2015).

122. Reed, E. Platinum-Dna Adduct, Nucleotide Excision Repair and Platinum Based Anti-Cancer Chemotherapy. *Cancer Treat Rev* 24, 331–344 (1998).

123. Yang, Y. & Xian, L. The Association Between the Gsp1 a313G and Gstm1 Null/Present Polymorphisms and the Treatment Response of the Platinum-Based Chemotherapy in Non-Small Cell Lung Cancer (Nscle) Patients: A Meta-Analysis. *Tumour Biol* 35, 6791–6799 (2014).

124. Xu, T. P., Shen, H., Liu, X. X. & Shu, Y. Q. Association of Ercc1 C118T and -C8092A Polymorphisms with Lung Cancer Risk and Survival of Advanced-Stage Non-Small Cell Lung Cancer Patients Receiving Platinum-Based Chemotherapy: A Pooled Analysis Based On 39 Reports. *Gene* 526, 265–274 (2013).

125. Yu, D. et al. Pharmacogenetic Role of Ercc1 Genetic Variants in Treatment Response of Platinum-Based Chemotherapy Among Advanced Non-Small Cell Lung Cancer Patients. *Tumour Biol* 33, 877–884 (2012).

126. Yang, Y. & Xian, L. The Association Between the Ercc1 12 Polymorphisms and the Clinical Outcomes of the Platinum-Based Chemotherapy in Non-Small Cell Lung Cancer (Nscle): A Systematic Review and Meta-Analysis. *Tumour Biol* 35, 2905–2921 (2014).

127. Huang, D. & Zhou, Y. Nucleotide Excision Repair Gene Polymorphisms and Prognosis of Non-Small Cell Lung Cancer Patients Receiving Platinum-Based Chemotherapy: A Meta-Analysis Based On 44 Studies. *Biomed Rep* 2, 452–462 (2014).

128. Gu, A. Q. et al. Xrcc1 Genetic Polymorphisms and Sensitivity to Platinum-Based Drugs in Non-Small Cell Lung Cancer: An Update Meta-Analysis Based On 4708 Subjects. *Int J Clin Exp Med* 8, 145–154 (2015).

129. Li, L., Wang, C. & Wen, F. Q. Polymorphisms in the Xrcc1 Gene are Associated with Treatment Response to Platinum Chemotherapy in Advanced Non-Small Cell Lung Cancer Patients Based On Meta-Analysis. *Genet Mol Res* 13, 3772–3786 (2014).

130. Wu, J. et al. Predictive Value of Xrcc1 Gene Polymorphisms On Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer Patients: A Systematic Review and Meta-Analysis. *Clin Cancer Res* 18, 3972–3981 (2012).

131. Moll, S. & Varga, E. A. Homocysteine and Mthfr Mutations. *Circulation* 132, e6–e9 (2015).

132. Brambila-Tapia, A. J. Mdr1 (Abcb1) Polymorphisms: Functional Effects and Clinical Implications. *Rev Invest Clin* 65, 445–454 (2013).

133. Yin, J. Y., Huang, Q., Zhao, Y. C., Zhou, H. H. & Liu, Z. Q. Meta-Analysis On Pharmacogenetics of Platinum-Based Chemotherapy in Non Small Cell Lung Cancer (Nscle) Patients. *PloS One* 7, e38150 (2012).

134. Wei, H. B. Polymorphisms of Ercc1 C118T/C8092A and Mdr1 C3435T Predict Outcome of Platinum-Based Chemotherapies in Advanced Non-Small Cell Lung Cancer Patients. *Tumour Biol* 8, 412–420 (2011).

135. Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L. & Rothman, N. Assessing the Probability that a Positive Report is True: An Approach for Molecular Epidemiology Studies. *JNCI Journal of the National Cancer Institute* 96, 434–442 (2004).

Acknowledgements

This work was supported by the National Key Research and Development Plan (SQ2016YFSF110100, 2016YFC0905000), National Natural Science Foundation of China (81373490, 81573508, 81573463), Hunan Provincial Science and Technology Plan of China (2015JC3025), and Open Foundation of Innovative Platform in University of Hunan Province of China (421530004).

Author Contributions

L.M.T. and Z.Q.L. conceived and designed the study. L.M.T., C.F.Q., T.Z. and Y.X.J. acquired the data, performed data extraction. L.M.T. analyzed the data. L.M.T. wrote the paper. X.L., J.Y.Y., W.Z. and H.H.Z. provided valuable comments and important insights.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.