Detection of High-Risk Human Papillomavirus in Oral Cavity Squamous Cell Carcinoma Using Multiple Analytes and Their Role in Patient Survival

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with an incidence of 550,000 cases annually. Oral cavity squamous cell carcinoma (OSCC) constitutes a majority of HNSCCs, including tumors of the oral anterior tongue and buccal mucosa. The major known risk factors for OSCC are use of tobacco and alcohol and infection with human papillomavirus (HPV). Unlike oropharyngeal tumors, in which HPV incidence is reported to be high (up to 90%), the prevalence of HPV in OSCC (although it varies greatly among geographies and choice of analyte and assay) is generally accepted to be low. In addition, unlike with oropharyngeal tumors, the role of HPV in disease prognosis and response to therapy in patients with OSCC is equivocal. Despite the fact that HPV RNA is shown to function as a better screening and patient management tool, the presence of HPV DNA is routinely used as a measure of HPV infection in tumors. HPV DNA results do not always match those for HPV RNA, especially in OSCC.

HPV16 and HPV18 subtypes have been epidemiologically linked with head and neck carcinoma. High-risk HPV16 and HPV18 are the most predominant subtypes in oral cavity tumors from Indian patients, whereas the other subtypes (HPV33, HPV6, and HPV11) are rare. HPV E6 interacts with p53 to promote its degradation via the ubiquitin pathway, whereas

Purpose

Accurate detection of human papillomavirus (HPV) in oral cavity squamous cell carcinoma (OSCC) is essential to understanding the role of HPV in disease prognosis and management of patients. We used different analytes and methods to understand the true prevalence of HPV in a cohort of patients with OSCC with different molecular backgrounds, and we correlated HPV data with patient survival.

Methods

We integrated data from multiple analytes (HPV DNA, HPV RNA, and p16), assays (immunohistochemistry, polymerase chain reaction [PCR], quantitative PCR [qPCR], and digital PCR), and molecular changes (somatic mutations and DNA methylation) from 153 patients with OSCC to correlate p16 expression, HPV DNA, and HPV RNA with HPV incidence and patient survival.

Results

High prevalence (33% to 58%) of HPV16/18 DNA did not correlate with the presence of transcriptionally active viral genomes (15%) in tumors. Eighteen percent of the tumors were p16 positive and only 6% were both HPV DNA and HPV RNA positive. Most tumors with relatively high copy number HPV DNA and/or HPV RNA, but not with HPV DNA alone (irrespective of copy number), were wild-type for TP53 and CASP8 genes. In our study, p16 protein, HPV DNA, and HPV RNA, either alone or in combination, did not correlate with patient survival. Nine HPV-associated genes stratified the virus-positive from the virus-negative tumor group with high confidence (P < .008) when HPV DNA copy number and/or HPV RNA were considered to define HPV positivity, and not HPV DNA alone, irrespective of copy number (P < .2).

Conclusion

In OSCC, the presence of both HPV RNA and p16 is rare. HPV DNA alone is not an accurate measure of HPV positivity and therefore may not be informative. HPV DNA, HPV RNA, and p16 do not correlate with patients' outcome.

author affiliations and support information (if applicable) appear at the end of this article.

Corresponding author: Binay Panda, PhD, Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Bangalore, Karnataka 560100, India; e-mail: binay@ganitlabs.in.
HPV E7 forms a complex with retinoblastoma (Rb) protein leading to its functional inactivation and dysregulation of the cell cycle. In some HPV-related tumors, E6- and E7-mediated inactivation of p53 and Rb result in the accumulation of p16 protein, whereas in others, p16 expression does not directly correlate with HPV positivity. A majority of HPV-negative tumors harbor mutations in TP53 and CASP8, and a significant proportion of HPV-positive tumors harbor mutations in PIK3CA. In addition, past studies have identified specific mutations in potential drug targets such as FGFR2/3, lack of EGFR aberrations in HPV-positive patients, and a potential role of CASP8 in HPV-negative cell lines and patients. Despite a wealth of information, questions regarding the accuracy of different HPV tests and whether HPV is an important factor in the stratification and treatment of oral cavity tumors remain to be answered.

In this study, we addressed the following five questions related to HPV in oral cavity tumors. (1) Does sensitivity of the test matter in the detection of HPV DNA? (2) Does the presence of p16 protein and HPV DNA correlate with HPV E6/E7 RNA? (3) Does the presence of high copy number HPV DNA accurately reflect HPV positivity? (4) Are p16 protein, HPV DNA, and HPV E6/E7 RNA individually or together linked with patient survival? (5) Do somatic mutations and DNA methylation at 5-cytosine residues distinguish the HPV-positive from the HPV-negative tumors?

METHODS

Patients, Cell Culture, and Nucleic Acid–Based Assays

Tumor samples (n = 153) from patients with OSCC (buccal mucosa, bone marrow [including from upper and lower gingivobuccal sulcus and retromolar trigone], and oral tongue) were accumulated consecutively and selected for the assay (Table 1; Data Supplement). For nucleic acid–based assays, we tested five sets of primers published in the literature and two that were newly designed in the amplification reactions (Fig 1; Appendix Table A1). Details of the patients and methodology are provided in the Data Supplement.

Immunohistochemistry

For p16 immunohistochemistry (IHC), staining was carried out by using formalin-fixed paraffin-embedded tissue blocks and primary antibody from BioGenex (Fremont, CA; catalog No. AM540-5M; Antip16[NK4], Clone G175-405 in the NordiQC list) and using the PolyHRP detection system (catalog No. QD400-60KE, BioGenex) according to the manufacturer’s instructions and a scoring method (Data Supplement). Sections of cervical cancer were used as a positive control.
We deduced the HPV absolute copy number from the quantitative polymerase chain reaction (qPCR) standard curves using cloned HPV16/18. We considered a tumor or cell line to have a relatively high copy number of HPV DNA when the copy number for HPV16 was more than 3.3×10^2 per μg of tumor DNA and that for HPV18 DNA was more than 3.3×10^3 per μg of tumor DNA. To minimize the effect of tumor cellularity, ploidy, and heterogeneity, we expressed the HPV copy number as copies per μg of tumor DNA used in the reaction.

Mutation and Survival Analysis

The mutation data on tumors for TP53, CASP8, and RASA1 were retrieved from previously published data. The χ^2 test was used to determine the significance of different clinical parameters of patients. The relationship between tumor HPV status and survival in patients was examined by Kaplan-Meier analysis (Data Supplement). Overall survival (OS) and disease-free survival (DFS) were analyzed, and a log-rank test was used to determine significance ($P < .05$).

Whole-Genome Methylation and Statistical Data Analyses

Whole-genome methylation data were gathered by using the Illumina Infinium Methylation450 BeadChip kit, chip scanning, and data preprocessing; the process was described previously. Statistical methods used to analyze methylation data are provided in the Data Supplement.

RESULTS

p16 Expression and HPV DNA

In our study, 18% of the tumors were p16 positive (Fig 2A; Table 2). We detected HPV DNA at 0.03 ng or with a larger amount of genomic DNA (Appendix Fig A1) from the cell line UMSCC-47/Hep2 when the following primers were used: GP5+6+, MY09/11, CPI-II, PGMY09/11, or HPV16L1 (Fig 2B). However, the newly designed type-specific primers (HPV16E6 and HPV18L1) could detect HPV16 and HPV18 with as little as 0.0003 ng and 0.003 ng of genomic DNA, respectively (Fig 2B). We also tested the effect of cloned HPV DNA amount on amplification efficiency (Appendix Fig A2). Figure 2C shows the efficiency of the consensus and type-specific primers in a set of representative oral cavity tumors (Appendix Fig A3). Widely used primers from the literature (MY09/11, PGMY09/11, GP5‘6’, and HPV16L1) yielded either the least sensitivity or moderate (CPI-II) sensitivity of detection, whereas the newly designed HPV16E6 and HPV18L1 primers showed the optimum sensitivity of detection (Fig 2B). We observed inhibition of the amplification reactions at a high concentration of tumor genomic DNA with a positive cell line spike-in experiment (Appendix Fig A4) and therefore higher concentrations of tumor DNA were avoided in the reactions. In addition, an increase in amplification cycles did not aid in the detection of HPV DNA in PCRs as shown in Appendix Figure A5. Results from qPCRs indicated that 33% of tumors (35 of 106) were positive for HPV DNA (Table 2). Although we found a higher incidence of HPV16 (30% [32...
of 106)) than HPV18 (18% [19 of 106]) type, the HPV18-positive tumors had high copy numbers of viral DNA as reflected in their cycle threshold (Ct) values (Fig 3A iii, vi). Quantitative PCR (qPCR) was performed on oral cavity tumors (n = 106), and the tumors were counted as HPV DNA positive if they had Ct values three times the standard deviation for the mean of negative controls (Fig 3A ii, v). Digital PCR has recently been shown to successfully detect HPV DNA in oropharyngeal tumors in a highly specific manner.31 Digital PCR results indicated that 43% of oral cavity tumors (59 of 136) were positive for HPV16 DNA (Fig 3B iii; Table 2; Appendix Fig A6).

HPV RNA
Compared with the cell lines, tumors showed low levels of expression of E6 or E7 messenger RNA (mRNA; Fig 3C). Only 15% of the tumors showed expression of E6 RNA and/or E7 RNA (unlike HPV DNA), and 6% of the tumors had both HPV DNA (in all three assays) and transcriptionally active HPV genomes (Table 2). In our cohort, younger patients (age 40 years or younger) had significantly more HPV RNA positivity than older patients when χ² analysis was used (P = .029).

When the results from all of the assays (p16 IHC, HPV DNA, and HPV RNA) were combined, we found that 6% to 48% of the tumors were positive in various assays combined with PCR (Table 2; Appendix Table A2). We found that 22% of the tumors (23 of 106) had relatively high copy numbers of HPV DNA and/or HPV E6 or E7 mRNA.

Linking Tumor Attributes, Somatic Mutations, and HPV With Survival

We performed Kaplan-Meier survival analyses with various tumor attributes that revealed significant association between tumor differentiation (P = .03) and clinical stage (P < .001) with OS (Fig 4A). None of the other tumor attributes showed significant association with survival (Appendix Fig A7A-F). In patients with oral cavity tumors, p16, HPV DNA, and HPV RNA did not correlate with the either OS or DFS (Fig 4A; Appendix Fig A8). HPV DNA status alone measured by any of the DNA-based assays alone or in combination
Fig 3. Detection of HPV DNA and RNA. (A i-vi) HPV16/18 assays using quantitative polymerase chain reaction (qPCR) and (B i-iii) drop-let digital PCR (DDPCR) in OSCC. (A i,iv, B i) Standard curves were obtained by using cloned HPV16/18 plasmids. (A ii,v, B ii) Data were subsequently obtained by using the positive (UMSCC-47 and Hep2) and negative (UPCI:SCC29B and UPCI:SCC40) cell line DNA to count HPV DNA in (A iii,vi,Biii) oral cavity tumors. (C) HPV16 (top panel) and HPV18 (bottom panel) E6 and E7 mRNA expression in tumors using qPCR. Horizontal dotted lines: threshold lines for negative samples. BM, buccal mucosa; Ct, cycle threshold; OT, oral tongue.
did not correlate with survival (Fig 4A; Appendix Fig A8), except when measured with droplet digital PCR (ddPCR) for OS ($P = .03$; Appendix Fig A8E). We tested whether tumors with relatively high HPV DNA copy numbers and/or HPV E6 or E7 mRNA were linked with survival. As shown in Appendix Figure A9A-B, we did not find any significant association with this group of tumors for either OS ($P = .45$) or DFS ($P = .68$).

We also investigated whether somatic mutations in significantly mutated genes in OSCC play a role in survival in patients with HPV DNA-positive tumors. We analyzed three genes (TP53, CASP8, and RASA1) shown to be significantly mutated in oral cavity tumors.26,29,32 Ninety-five percent of the HPV-positive tumors in the group were wild-type for TP53 and CASP1 genes, and 85% of the HPV-positive tumors were wild-type for RASA1 gene (Appendix Fig A10). We tested whether the mutations in any of the genes, alone or in combination in the HPV-negative tumor group, were linked with survival. We did not find any significant association for this group of tumors with survival (Appendix Fig A9C-D).

Linking Methylation With HPV

Supervised clustering of the first group of patients (a group defined as having high copy number HPV DNA and/or E6 or E7 RNA) resulted in a list of 60 genes of which nine (FERMT3, GIT2, HK3, PRKCD, ZCCHC8, IRF5, IFFO1, ARID3A, HOXA2) were mapped to the HPV pathway (Fig 4B). Methylation of those genes is involved in the downstream control of the expression of different target genes. For example, ZCCHC8 methylation is linked with the expression of RB1, PRKCD methylation controls state change of DLG1, methylation in ARID3A, IRF5, IFFO1, and HOXA2 are connected with the expression of TP53, and FERMT3, HK3, and GIT2 genes control the expression of API JUN (Fig 4B). All of the genes except HOXA2 were significantly

Table 2. Summary of HPV Assays for Oral Cavity Tumors

Detection Method	Oral Tongue	Buccal Mucosa	Combined (oral cavity)	
	Patients	Patients	Patients	
	Analyzed/	Analyzed/	Analyzed/	
	Total No.	Total No.	Total No.	
	of Patients	of Patients	of Patients	
	%	%	%	
p16 IHC				
p16	10/55	18	10/55	18
DNA based				
PCR	39/66	59	41/70	58
qPCR	34/78	44	35/106	33
ddPCR	52/95	55	59/136	43
RNA based				
qPCR	5/30	17	6/41	15
Combination				
PCR + qPCR	23/60	38		
PCR + ddPCR	29/60	48.3		
qPCR + ddPCR	27/99	27.2		
PCR + qPCR + ddPCR	20/53	37.7		
p16 + 3/3 methods	2/36	5.5		
RNA + DNA	1/17	6		

NOTE. p16 was measured by the presence of immunopositive cells with both nuclear and cytoplasmic staining using immunohistochemistry (IHC). Polymerase chain reaction (PCR) results indicate the presence of any HPV subtype with consensus primers or HPV16/18 type-specific primers. Quantitative PCR (qPCR) and droplet digital PCR (ddPCR) results are from TaqMan assays with primers and probes for HPV16/HPV18 and HPV16, respectively. HPV RNA results indicate the presence of E6 and/or E7 mRNA for HPV16/HPV18. 3/3 methods, tested with all the 3 DNA-based methods.
Fig 4. (A) Kaplan-Meier survival plots linking tumors with various attributes such as grade, stage, p16 immunohistochemistry (IHC), HPV DNA, and HPV RNA. (B) Clustering of nine methylated genes stratifying the HPV-positive from the HPV-negative group of tumors along with the HPV-associated pathways in HPV-positive tumors. Cyto, cytoplasmic (staining); MDSCC; moderately-differentiated squamous cell carcinoma; Nuc, nuclear staining; PDSCC, poorly-differentiated squamous cell carcinoma; WDSCC, well-differentiated squamous cell carcinoma.
hypermethylated in the HPV-positive group of tumors compared with the HPV-negative group (Fig 4B). The four linked genes obtained from the nine significantly methylated genes were mapped to the pathways involving HPV E6 and E7 proteins (Fig 4B). To test significance, we performed unpaired t tests between the two groups: group 1 had relatively high copy numbers of HPV DNA and/or HPV RNA, and group 2 was negative for both HPV DNA and HPV RNA.

DISCUSSION

HPV plays a vital role in the prognosis of patients with oropharyngeal tumors. Unlike with disease in the oropharynx, the incidence of HPV and its role in disease prognosis in oral cavity tumors are not well established. Past results regarding HPV DNA incidence in oral cavity tumors varied widely (from low to high; Appendix Table A4) depending on the assay sensitivity, analyte, and patient cohort were used. Questions regarding the accuracy of the HPV tests and HPV positivity need to be answered to make confident treatment decisions for treating patients with head and neck tumors. There are only a few studies that used multiple analytes (protein, DNA, and RNA) and various molecular tests (IHC, PCR, qPCR, and digital PCR) to establish HPV positivity in oral cavity tumors and that correlated HPV with tumor attributes (including somatic mutations and methylation) and survival. In this study, we attempted to assess correlations between HPV DNA, RNA, and p16 protein and survival in 153 patients with oral cavity tumors.

Although p16 expression (as measured by IHC) is a commonly used proxy for HPV in HNSCC, its expression is not specific in HPV-associated tumors. Several past studies have correlated p16 expression with HPV, but p16 IHC has shortcomings, especially when relating the expression of p16 to patient survival. Limitations, such as variations in staining intensities, non-specific binding of antibodies, and the lack of scoring and interpretive criteria for p16 staining make the method less reliable. Associating p16 status with survival of patients with OSCC has been inconclusive, and some previous reports have suggested additional study to derive any conclusive evidence in this regard. In our study, although we found an unusually high percentage (51%) of tumor cells that showed immunopositive staining, only a small percentage (18%) had both cytoplasmic and nuclear staining, an
accurate reflection of HPV positivity as described earlier. Unlike antibody-based methods, nucleic acid-based methods detect HPV with high sensitivity and are therefore widely used. Meta-analysis of 5,478 oral cavity tumors suggested that overall prevalence of HPV DNA was 24.2% with 11% of the tumors being positive for both HPV DNA and E6 or E7 RNA. India has one of the highest incidence rates of oral cavity cancers, and there is a significant difference in the incidence trend between oropharyngeal and oral cavity cancer. Previously, PCR coupled with mass array was shown to provide highly sensitive detection with a small amount of genomic DNA input. Our results showed that 38% of tumors were positive and 13% were negative in all three DNA-based assays (PCR, qPCR, and ddPCR). Overall, the prevalence of HPV DNA (33% to 58%) was dependent on the type of test used; PCR yielded the highest incidence over the more sensitive methods such as qPCR and ddPCR assays (Table 2). This was possibly due to the result of consensus primers used in PCR (but not in qPCR and ddPCR) in addition to the type-specific primers that resulted in the detection of non-HPV16/18 subtypes. As expected, digital PCR, which was the most sensitive of the three DNA-based assays, showed more tumors being HPV16 DNA positive, which resulted in the detection of low copy number viral genomes in tumor samples. On the basis of several levels of evidence, we conclude that the presence of low copy numbers of HPV DNA alone may not be a reflection of functionally active HPV. First, we found that only a fraction of the tumors (15%) had HPV E6 or E7 RNA. Second, only 6% of the tumors were positive for the presence of both the HPV genome and E6 or E7 RNA. Third, almost all of the tumors with relatively high copy numbers of the HPV genome and/or HPV RNA had wild-type TP53 and CASP8 genes, which was not the case for tumors with low copy numbers of HPV DNA. Both TP53 and CASP8 are known to be wild-type primarily in HPV-positive tumors. In our study, we found that this corresponds to tumors with high copy numbers of the HPV genome and/or a transcriptionally active genome only (Table 2). High prevalence of HPV DNA, as demonstrated in some assays, might suggest the presence of passenger HPV genomes coming from adjacent normal cells (as reported earlier), or it could be a reflection of inactive or passenger viruses in oral cavity tumors. Although the numbers are low (n = 3), we cannot explain why some tumors in our study with HPV E6 or E7 RNA did not show the presence of HPV DNA. It is possible that the genomic DNA for those tumors was degraded and therefore could not serve as an ideal template for DNA-based assays. An additional factor that might have added to this is the presence of inhibitors for DNA-based assays in those tumors.

The fact that there were only two tumors that were p16 positive and HPV RNA negative means that a definitive conclusion on the lack of correlation between p16 and HPV RNA cannot be made from our study. Similarly, there were two tumors that were positive for HPV RNA and negative for p16. In HNSCC, p16 is often mutated or silenced, which results in its loss of expression. This could have led to the lack of p16 expression in those two tumors. We did not find any significant correlation between p16, HPV-DNA, and/or HPV RNA and disease outcome (Fig 4A; Appendix Fig A8). Even the tumors with relatively high copy number of HPV genomes and/or E6 or E7 RNA did not support the role of HPV in patient survival (Appendix Fig A9A-B). Our study has highlighted that understanding HPV prevalence in OSCC is complicated. In fact, in oropharyngeal tumors in which p16 has been a definite prognostic marker, a recent study recommended additional HPV DNA testing to accurately predict prognosis. These aspects need further study and analysis.

Although more research is needed to determine how HPV gets to the mouth cavity, it is believed that oral sex and/or bad oral hygiene are two responsible factors. However, a causal role between bad oral hygiene and HPV infection is unclear. In addition, recent data show the role of the oral microbiome in HPV-positive and HPV-negative oral tumors. Future studies linking oral sex and bad oral hygiene with HPV in the mouth cavity among patients belonging to different sociogeographic strata might shed additional light on this problem. Although our study is comprehensive, it has several limitations. Not all
the tumors were assayed with all of the analytes, which makes the sample number different for different methods. We could not perform additional survival analyses for the tumors that were HPV RNA positive, given the small sample size. In our study, we did not perform in situ hybridization, which could have provided additional information on p16 positivity and HPV prevalence. It is possible that the presence of high copy numbers of the HPV genome in the tumors studied does not correlate with the presence of the biologically active virus. Further studies may help answer this question.

DOI: https://doi.org/10.1200/JGO.18.00058
Published online on jgo.org on November 6, 2018.

AUTHOR CONTRIBUTIONS
Conception and design: Vinayak Palve, Moni Abraham Kuriakose, Binay Panda
Financial support: Binay Panda
Administrative support: Vinayak Palve, Jamir Bagwan, Manisha Pareek, Udita Chandola, Binay Panda
Provision of study materials or patients: Amritha Suresh, Gangotri Siddappa
Collection and assembly of data: Vinayak Palve, Jamir Bagwan, Manisha Pareek, Udita Chandola, Amritha Suresh, Gangotri Siddappa, Bonney L. James, Vikram Kekatpure, Binay Panda
Data analysis and interpretation: Vinayak Palve, Neeraja M. Krishnan, Amritha Suresh, Vikram Kekatpure, Binay Panda
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Vinayak Palve
No relationship to disclose

Jamir Bagwan
No relationship to disclose

Neeraja M. Krishnan
No relationship to disclose

Manisha Pareek
No relationship to disclose

Udita Chandola
No relationship to disclose

Amritha Suresh
No relationship to disclose

Gangotri Siddappa
No relationship to disclose

Bonney L. James
No relationship to disclose

Vikram Kekatpure
No relationship to disclose

Moni Abraham Kuriakose
No relationship to disclose

Binay Panda
No relationship to disclose

ACKNOWLEDGMENT
We thank Osama Mansour of Bio-Rad, Mumbai, India, for helping us with droplet digital polymerase chain reaction.

Affiliations
Vinayak Palve, Jamir Bagwan, Neeraja M. Krishnan, Manisha Pareek, Udita Chandola, and Binay Panda, Ganit Labs, Institute of Bioinformatics and Applied Biotechnology; Amritha Suresh, Gangotri Siddappa, Bonney L. James, and Moni Abraham Kuriakose, Mazumdar Shaw Centre for Translational Cancer Research; and Vikram Kekatpure and Moni Abraham Kuriakose, Mazumdar Shaw Medical Centre, Bangalore; Neeraja M. Krishnan and Binay Panda, Ganit Labs Foundation, Delhi, India

Support
Supported by Grants No. 18(4)/2010-E-Infra., 31-03-2010 from the Department of Electronics and Information Technology, Government of India, and by No. 3451-00-090-2-22 from the Department of Information Technology, Biotechnology and Science & Technology, Government of Karnataka, India.

REFERENCES
1. Stenson KM, Brockstein BE, Ross ME: Epidemiology and risk factors for head and neck cancer. 2014. https://www.uptodate.com/contents/epidemiology-and-risk-factors-for-head-and-neck-cancer
2. Ferlay J, Shin HR, Bray F, et al: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893-2917, 2010
3. Majchrzak E, Szybiak B, Wegner A, et al: Oral cavity and oropharyngeal squamous cell carcinoma in young adults: A review of the literature. Radiol Oncol 48:1-10, 2014
4. Bhat SP, Bhat V, Permi H, et al: Oral and oropharyngeal malignancy: A clinicopathological study. Internet J Pathol Lab Med2:OA3, 2016. https://www.chanrejournals.com/index.php/pathology/article/view/129/html
5. Mishra A, Meherotra R: Head and neck cancer: Global burden and regional trends in India. Asian Pac J Cancer Prev 15:537-550, 2014
6. Stein AP, Saha S, Kraninger JL, et al: Prevalence of human papillomavirus in oropharyngeal cancer: A systematic review. Cancer J 21:138-146, 2015
7. Walline HM, Komarck C, McHugh JB, et al: High-risk human papillomavirus detection in oropharyngeal, nasopharyngeal, and oral cavity cancers: Comparison of multiple methods. JAMA Otolaryngol Head Neck Surg 139:1320-1327, 2013
8. Isayeva T, Li Y, Maswah D, et al: Human papillomavirus in non-oropharyngeal head and neck cancers: A systematic literature review. Head Neck Pathol 6:S104-S120, 2012
9. de Abreu PM, Có ACG, Azevedo PL, et al: Frequency of HPV in oral cavity squamous cell carcinoma. BMC Cancer 18:324, 2018
10. Machado J, Reis PP, Zhang T, et al: Low prevalence of human papillomavirus in oral cavity carcinomas. Head Neck Oncol 2:6, 2010
11. Fakhry C, Zhang Q, Nguyen-Tan PF, et al: Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J Clin Oncol 32:3365-3373, 2014
12. Ang KK, Harris J, Wheeler R, et al: Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363:24-35, 2010
13. Fakhry C, Westra WH, Li S, et al: Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 100:261-269, 2008
14. Grønhøj Larsen C, Gyldenløve M, Jensen DH, et al: Correlation between human papillomavirus and p16 overexpression in oropharyngeal tumours: A systematic review. Br J Cancer 110:1587-1594, 2014
15. Rischin D, Young RJ, Fisher R, et al: Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J Clin Oncol 28:4142-4148, 2010
16. Wang HY, Lee D, Park S, et al: Diagnostic performance of HPV E6/E7 mRNA and HPV DNA assays for the detection and screening of oncogenic human papillomavirus infection among women with cervical lesions in China. Asian Pac J Cancer Prev 16:7633-7640, 2015
17. Cattani P, Siddu A, D’Onghia S, et al: RNA (E6 and E7) assays versus DNA (E6 and E7) assays for risk evaluation for women infected with human papillomavirus. J Clin Microbiol 47:2136-2141, 2009
18. Huang CG, Lee LA, Tsao KC, et al: Human papillomavirus 16/18 E7 viral loads predict distant metastasis in oral cavity squamous cell carcinoma. J Clin Virol 61:230-236, 2014
19. Balaram P, Nalinakumari KR, Abraham E, et al: Human papillomaviruses in 91 oral cancers from Indian betel quid chewers: High prevalence and multiplicity of infections. Int J Cancer 61:450-454, 1995
20. D’Costa J, Saranath D, Dedhia P, et al: Detection of HPV-16 genome in human oral cancers and potentially malignant lesions from India. Oral Oncol 34:413-420, 1998
21. Sriggs CC, Laimins LA: Human papillomavirus and the DNA damage response: Exploiting host repair pathways for viral replication. Viruses 9, 2017
22. zur Hausen H: Papillomaviruses and cancer: From basic studies to clinical application. Nat Rev Cancer 2:342-350, 2002

23. Martins AFL, Pereira CH, Morais MO, et al: p53 and p16 expression in oral cavity squamous cell and basaloid squamous cell carcinoma. Oral Cancer 2:7-17, 2018

24. Wang H, Sun R, Lin H, et al: P16INK4A as a surrogate biomarker for human papillomavirus-associated oropharyngeal carcinoma: Consideration of some aspects. Cancer Sci 104:1553-1559, 2013

25. Lechner M, Frampton GM, Fenton T, et al: Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med 5:49, 2013

26. Cancer Genome Atlas Network: Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576-582, 2015

27. Seiwert TY, Zuo Z, Keck MK, et al: Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res 21:632-641, 2015

28. Seiwert TY, Zuo Z, Keck MK, et al: Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res 21:632-641, 2015

29. Krishnan N, Gupta S, Palve V, et al: A minimal DNA methylation signature in oral tongue squamous cell carcinoma identifies key variants and pathways linked to risk habits, HPV, clinical parameters and tumor recurrence. F1000Res 4:1215, 2015

30. Krishnan NM, Dhas K, Nair J, et al: A minimal DNA methylation signature in oral tongue squamous cell carcinoma links altered methylation with tumor attributes. Mol Cancer Res 14:805-819, 2016

31. Biron VL, Kostiuk M, Isaac A, et al: Detection of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma using droplet digital polymerase chain reaction. Cancer 122:1544-1551, 2016

32. India Project Team of the International Cancer Genome Consortium: Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun 4:2873, 2013

33. Maxwell JH, Grandis JR, Ferris RL: HPV-associated head and neck cancer: Unique features of epidemiology and clinical management. Annu Rev Med 67:91-101, 2016

34. Vokes EE, Agrawal N, Seiwert TY: HPV-associated head and neck cancer. J Natl Cancer Inst 107:dvj344, 2015

35. Bruni L, Barrionuevo-Rosas L, Serrano B, et al: Human papillomavirus and related diseases: World. Summary Report 27 July 2017. ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre). http://www.hpvcentre.net/statistics/reports/XWX.pdf

36. Seiwert T. Accurate HPV testing: A requirement for precision medicine for head and neck cancer. Ann Oncol 24:2711-2713, 2013

37. Chung CH, Zhang Q, Kong CS, et al: p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J Clin Oncol 32:3930-3938, 2014

38. Stephen JK, Divine G, Chen KM, et al: Significance of p16 in site-specific HPV positive and HPV negative head and neck squamous cell carcinoma. Cancer Clin Oncol 2:51-61, 2013

39. Gröbe A, Hanken H, Kluwe L, et al: Immunohistochemical analysis of p16 expression, HPV infection and its prognostic utility in oral squamous cell carcinoma. J Oral Pathol Med 42:676-681, 2013

40. Seiwert TY: Ties that bind: p16 as a prognostic biomarker and the need for high-accuracy human papillomavirus testing. J Clin Oncol 32:3914-3916, 2014

41. El-Naggar AK, Westra WH: p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: A guide for interpretative relevance and consistency. Head Neck 34:459-461, 2012
42. Lingen MW, Xiao W, Schmitt A, et al: Low etiologic fraction for high-risk human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol 49:1-8, 2013

43. Chen ZW, Weinreb I, Kamel-Reid S, et al: Equivocal p16 immunostaining in squamous cell carcinoma of the head and neck: Staining patterns are suggestive of HPV status. Head Neck Pathol 6:422-429, 2012

44. Lewis JS Jr, Chernock RD, Ma XJ, et al: Partial p16 staining in oropharyngeal squamous cell carcinoma: Extent and pattern correlate with human papillomavirus RNA status. Mod Pathol 25:1212-1220, 2012

45. Shelton J, Purgina BM, Cipriani NA, et al: p16 immunohistochemistry in oropharyngeal squamous cell carcinoma: A comparison of antibody clones using patient outcomes and high-risk human papillomavirus RNA status. Mod Pathol 30:1194-1203, 2017

46. Alexander RE, Hu Y, Kum JB, et al: p16 expression is not associated with human papillomavirus in urinary bladder squamous cell carcinoma. Mod Pathol 25:1526-1533, 2012

47. Gibson JS: Nucleic acid-based assays for the detection of high-risk human papillomavirus: A technical review. Cancer Cytopathol 122:639-645, 2014

48. Ndiaye C, Mena M, Alemany L, et al: HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: A systematic review and meta-analysis. Lancet Oncol 15:1319-1331, 2014

49. Chaturvedi AK, Anderson WF, Lortet-Tieulent J, et al: Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol 31:4550-4559, 2013

50. Du H, Yi J, Wu R, et al: A new PCR-based mass spectrometry system for high-risk HPV: Part II. Clinical trial. Am J Clin Pathol 136:920-923, 2011

51. Leonard SM, Pereira M, Roberts S, et al: Evidence of disrupted high-risk human papillomavirus DNA in morphologically normal cervices of older women. Sci Rep 6:20847, 2016

52. Gillison ML, Broutian T, Pickard RK, et al: Prevalence of oral HPV infection in the United States, 2009-2010. JAMA 307:693-703, 2012

53. Terai M, Hashimoto K, Yoda K, et al: High prevalence of human papillomaviruses in the normal oral cavity of adults. Oral Microbiol Immunol 14:201-205, 1999

54. Nauta IH, Rietbergen MM, van Bokhoven AAJD, et al: Evaluation of the eighth TNM classification on p16-positive oropharyngeal squamous cell carcinomas in the Netherlands and the importance of additional HPV DNA testing. Ann Oncol 29:1273-1279, 2018

55. Orosco RK, Califano JA: HPV status, like politics, is local-evaluating p16 staining and a new staging system in a Dutch cohort of oropharynx cancer. Ann Oncol 29:1089-1090, 2018

56. Bui TC, Tran LT, Markham CM, et al: Self-reported oral health, oral hygiene, and oral HPV infection in at-risk women in Ho Chi Minh City, Vietnam. Oral Surg Oral Med Oral Pathol Oral Radiol 120:34-42, 2015

57. Börnigen D, Ren B, Pickard R, et al: Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. Sci Rep 7:17686, 2017
Fig A1. Increasing amount of genomic DNA from cell lines used as positive or negative controls for human papillomavirus16 (HPV16) and HPV18 quantitative polymerase chain reaction (qPCR). HPV16 qPCR using negative control (A) Hep2 and (B) UPCI:SCC029B. HPV18 qPCR using negative control (C) UMSCC-47 and (D) UPCI:SCC029B. Error bars are drawn using data from three independent experiments. Ct, cycle threshold.

Fig A2. Amplification efficiency of human papillomavirus16 E6 (HPV16E6) and HPV18L1 primers measured by polymerase chain reaction amplification of serially diluted HPV16/18 cloned plasmid copies. M, marker; N, negative control.
Fig A3. Human papillomavirus (HPV) polymerase chain reaction (PCR) performed by using different sets of consensus or type-specific primers with oral cavity squamous cell carcinoma tumor DNA. PCR for oral cavity tumors with (A) MY09/11, (B) HPV16E6, (C) HPV18L1 using cell lines as positive and negative controls, (D) HPV16E6 for batch 2 (15 tumors), (E) HPV CPI-II using cell lines as positive controls, and (F) HPV16L1 using cell lines for positive controls. BM, buccal mucosa; L, DNA ladder; N1, UPCI:SCC029B DNA (300 ng); N2, no template control (NTC); OT, oral tongue; P1, positive control cervical DNA sample 1; P2, positive control cervical DNA sample 2; P3, UMSCC-47 DNA (HPV16-positive cell line).
Fig A4. Inhibition of amplification reactions for detecting human papilloma-virus (HPV) in polymerase chain reactions at high concentrations of tumor genomic DNA (used with PGMYO9-11 primer) spiked with HPV-positive UMSCC-47 DNA.
Fig A5. The effect of amplification cycles on polymerase chain reactions. The genomic DNAs used for positive control (UMSCC-47) and negative control cell lines were 63.0 ng and 300 ng, respectively. dNTP, deoxynucleotide triphosphates; NTC, no template control.
Fig A6. Positive and negative cell line DNA used for threshold in droplet digital polymerase chain reaction experiment. OTSCC, oral tongue squamous cell carcinoma.
Fig A7. Kaplan-Meier survival analysis with tumors from patients according to habits, age, and nodal status. Overall survival (OS) percentages for patients who were (A) positive v negative for any habit, (B) positive for tobacco chewing v no habit, (C) positive for alcohol consumption and tobacco chewing v no habit, (D) positive for alcohol consumption and smoking v no habit, (E) age older than 40 v age younger than 40 years, and (F) their nodal status.
Fig A8. Kaplan-Meier survival analysis with (A-H) human papillomavirus (HPV) DNA and (I-J) HPV RNA. (A) Overall survival (OS) with DNA polymerase chain reaction (PCR). (B) Disease-free survival (DFS) with DNA PCR. (C) OS with DNA qPCR. (D) DFS with DNA qPCR. (E) OS with DNA ddPCR. (F) DFS with DNA ddPCR. (G) OS with HPV positive in PCR+qPCR+ddPCR vs HPV negative in PCR+qPCR+ddPCR. (H) DFS with HPV positive in PCR+qPCR+ddPCR vs HPV negative in PCR+qPCR+ddPCR. (I) DFS with HPV RNA, and (J) DFS with p16 IHC.
Fig A9. Kaplan-Meier survival analysis of tumors with (A-B) high copy number human papillomavirus (HPV) DNA and/or HPV RNA and (C-D) HPV-negative tumors with mutations in significant genes. DFS, disease-free survival; Mut, mutation; OS, overall survival; WT, wild-type.

Fig A10. Mutational frequency in tumors with mutations in three commonly mutated (Mut) genes. WT, wild-type.
Table A1. Primer and Probe Sequences Used in the Study With Amplicon Size and Conditions for Amplification Reactions

Assay and Primer	Sequence	Domain	Amplicon Size (bp)	PCR Conditions	Reference if any
DNA					
PCR					
HPV16L1	5′ TGC TAG TGC TTA TGC AGC AA 3′	L1	6030-6180	94°C, 3 min; 94°C, 60 sec; 55°C, 60 sec; 72°C, 60 sec; 40 cycles; 72°C, 2 min and 4°C hold	Pool of 11F and 9R primers from Gravitt PE, et al: J Clin Microbiol 38:357-361, 2000 and Karlsen F, et al: J Clin Microbiol 34:2095-2100, 1996)
GP5+6+	5′ TTT GTT ACT GTG GTA GAT AC 3′	L1	6624-6746	94°C, 5 min; 94°C, 60 sec; 57.8°C, 60 sec; 72°C, 30 sec; 40 cycles; 72°C, 7 min and 4°C hold	
MY09/11	5′ CGT CCM ARR GGA WAC TGA TC 3′	L1	6602-7034	94°C, 5 min; 94°C, 60 sec; 57.8°C, 60 sec; 72°C, 60 sec; 40 cycles; 72°C, 7 min and 4°C hold	

(Continued on following page)
Table A1. Primer and Probe Sequences Used in the Study With Amplicon Size and Conditions for Amplification Reactions (Continued)

Assay and Primer	Sequence	Domain	Amplicon Size (bp)	PCR Conditions	Reference if any	
CP I-II	5′ TTA TCW TAT GCC CAY TGT ACC AT 3′ 3′ ATG TTA ATW SAG CCW CCA AAA TT 5′	E1	1777-1942	188	94°C, 5 min; 94°C, 60 sec; 61.7°C, 60 sec; 72°C, 30 sec; 40 cycles; 72°C, 7 min and 4°C hold	
PGMY09/11	Pool of 11F and 9R primers from Gravitt PE, et al: J Clin Microbiol 38:357-361, 2000	L1	6602-7034	450	94°C, 5 min; 94°C, 60 sec; 57.8°C, 60 sec; 72°C, 60 sec; 40 cycles; 72°C, 7 min and 4°C hold	
HPV16E6 primer for PCR	5′ CAG GAG CGA CCC AGA AAG TT 3′ 3′ CAG CTG GGT TTC TCT ACG TGT 5′	E6	119-556	438	94°C, 3 min; 94°C, 30 sec; 53°C, 30 sec; 72°C, 30 sec; 40 cycles; 72°C, 2 min and 4°C hold	Newly designed used for PCR

(Continued on following page)
Assay and Primer	Sequence	Domain	Amplicon Size (bp)	PCR Conditions	Reference if any
HPV18L1 primer for PCR	5' TCG CGT CCT TTA TCA CAG GGC GA 3'	L1	6141-6676	94°C, 3 min; 94°C, 40 sec; 55°C, 40 sec; 72°C, 30 sec; 40 cycles; 72°C, 2 min and 4°C hold	
qPCR					
HPV16E6 cloning primer	5' CAG GAG CGA CCC AGA AAG TT 3'	E6	119-556	95°C, 3 min; 95°C, 30 sec; 55°C, 30 sec; 72°C, 30 sec; 40 cycles followed with dissociation curve	Used for cloning HPV16E6 region in PUC19 plasmid
HPV16E6	5' GCA CAG AGC TGC AAA CAA CT 3'	E6	150-256	95°C, 3 min; 95°C, 30 sec; 55°C, 30 sec; 72°C, 30 sec; 40 cycles followed with dissociation curve	

(Continued on following page)
Table A1. Primer and Probe Sequences Used in the Study With Amplicon Size and Conditions for Amplification Reactions (Continued)

Assay and Primer	Sequence	Domain	Region (bp)	Amplicon Size (bp)	PCR Conditions	Reference if any
HPV18L1 cloning primer	5′ TCG CGT CCT TTA TCA CAG GGC GA 3′ 3′ TGC CCA GGT ACA GGA GAC TGT G 5′	L1	6141-6676	536	As described above	Used for cloning HPV18L1 region in PUC19 plasmid
HPV18L1	5′ TGA CAC TGT GCC TCA ATC CT 3′ 3′ AGA GCC ACT TGG AGA GGG AG 5′ Probe-TGCCCTGCTACCTGGGCGC- VICT-BHQ	L1	6416-6506	91	95°C, 3 min; 95°C, 30 sec; 60°C, 30 sec; 72°C, 30 sec; 40 cycles followed with dissociation curve	
ddPCR	HPV16E6	5′ ACT GTC AAA AGC CAC TGT GT 3′ 3′ GCT GGG TTT CTC TAC GTG TT 5′ Probe- AGGGGTGCTGGACCGGTCGATG- FAM-BHQ	E6	417-554	138	95°C, 10 min; 95°C, 15 sec; 55°C, 20 sec; 40 cycles; 95°C, 10 min
Assay and Primer	Sequence	Domain (bp)	Amplicon Size (bp)	PCR Conditions	Reference if any	
-----------------	----------	-------------	--------------------	----------------	-----------------	
E6	HPV16_E6_ RTPCR using SYBR chemistry	GCACCAAAAGAGAAGCTGCAATGTT	E6 85-108	152	95°C, 3 min; 95°C, 3 sec; 60°C, 30 sec; 40 cycles followed with dissociation curve	
	HPV18_E6_ RTPCR using SYBR chemistry	CTATAGGAGGCGAGTGGGCCATTCG	E6 503-524	79	Same as above	
E7	HPV16_E7_ RTPCR using SYBR chemistry	CAAGTGACTCTAAGCTCAGG	E7 738-759	81	Same as above	
	HPV18_E7_ RTPCR using SYBR chemistry	TAATCATCAACATTACCAGGCCCG	E7 721-744	113	Same as above	
	GAPDH	CTGCACCAACACTGCTTAG	NA 7537-7641	105	Same as above	

NOTE. All the primers were aligned or designed using NC_001526.4 and NC_001357.1 sequences from the National Center for Biotechnology Information for human papillomavirus16 (HPV16) and HPV18, respectively. Sanger sequencing for the mutation study was performed as described in Krishnan et al.29

Abbreviations: ddPCR, droplet digital polymerase chain reaction (PCR); GAPDH, glyceraldehyde 3-phosphate dehydrogenase; NA, not available; qPCR, quantitative PCR; RT-PCR, real-time PCR.
Table A2. Summary of Tumor HPV Status in Individual Tumors Used in This Study

Sample Code	Protein IHC	DNA E6/E7	DNA IN all 3 DNA-Based Assays
BM1	ND	ND	ND
BM10	ND	ND	–
BM11	ND	ND	–
BM12	ND	ND	–
BM13	ND	ND	–
BM14	ND	ND	–
BM15	ND	ND	–
BM16	ND	ND	+
BM17	ND	ND	–
BM18	ND	ND	–
BM19	ND	ND	–
BM20	ND	ND	–
BM21	ND	ND	–
BM22	ND	ND	–
BM23	ND	ND	–
BM24	ND	ND	–
BM25	ND	ND	–
BM26	ND	ND	+
BM27	ND	ND	–
BM28	ND	ND	+
BM29	ND	ND	–
BM30	ND	ND	–
BM31	ND	ND	–
BM32	ND	ND	–
BM33	ND	ND	–
BM34	ND	ND	–
BM35	ND	ND	–
BM36	ND	ND	–
BM37	ND	ND	–
BM38	ND	ND	–
BM39	ND	ND	–
BM40	ND	ND	–
BM41	ND	ND	–
BM5	ND	ND	–
BM6	ND	ND	–
BM7	ND	ND	–
BM8	ND	ND	–

(Continued on following page)
Table A2. Summary of Tumor HPV Status in Individual Tumors Used in This Study (Continued)

Sample Code	Protein	p16	PCR	qPCR	ddPCR	In all 3 DNA-Based Assays	E6/E7
BM9	ND	ND	–	+	–	ND	ND
OT10	–	+	–	+	–	ND	ND
OT100	ND	+	–	+	–	ND	ND
OT101	ND	ND	–	–	ND	+	ND
OT102	ND	ND	ND	ND	+	ND	ND
OT103	ND	ND	–	–	ND	ND	ND
OT104	ND	ND	ND	+	ND	ND	ND
OT105	ND	ND	ND	–	ND	ND	ND
OT106	ND	ND	–	–	ND	ND	ND
OT107	ND	ND	ND	+	ND	ND	ND
OT108	ND	ND	ND	–	ND	ND	ND
OT109	ND	ND	–	–	ND	ND	ND
OT11	–	+	ND	–	ND	ND	ND
OT110	ND	ND	–	–	ND	+	ND
OT111	ND	ND	ND	–	ND	ND	ND
OT112	ND	+	–	+	–	ND	ND
OT113	ND	ND	ND	–	ND	ND	ND
OT115	–	+	ND	ND	ND	ND	ND
OT12	–	+	ND	ND	ND	ND	ND
OT116	ND	ND	–	+	ND	ND	ND
OT13	–	+	ND	ND	ND	ND	ND
OT14	–	+	+	+	–	ND	ND
OT15	–	ND	ND	ND	ND	ND	ND
OT16	–	+	+	+	+	ND	ND
OT17	–	+	+	ND	ND	+	ND
OT18	–	+	–	ND	ND	ND	ND
OT19	–	–	–	–	–	ND	ND
OT2	–	–	–	–	–	ND	ND
OT20	–	+	+	–	–	ND	ND
OT21	ND	ND	ND	ND	ND	ND	ND
OT22	ND	–	ND	–	ND	ND	ND
OT23	ND	–	ND	ND	ND	ND	ND
OT24	ND	–	–	ND	ND	ND	ND
OT25	–	+	ND	+	ND	–	ND
OT26	–	–	–	–	–	ND	ND
OT27	ND	–	ND	–	ND	–	ND
OT28	–	–	–	ND	ND	ND	ND
OT3	–	+	–	–	–	–	–
OT27	ND	–	ND	–	ND	–	ND
OT31	–	–	+	+	–	ND	ND

(Continued on following page)
Table A2. Summary of Tumor HPV Status in Individual Tumors Used in This Study
(Continued)

Sample Code	p16 IHC	Protein DNA	PCR	qPCR	ddPCR	In all 3 DNA-Based Assays	E6/E7 RNA
OT32	–	+	+	+	–	ND	
OT33	–	+	–	–	–	–	
OT38	–	+	+	–	–	ND	
OT4	–	–	–	+	–	ND	
OT41	–	–	–	–	–	ND	
OT42	–	+	+	+	+	–	
OT43	–	–	–	–	–	–	
OT35	ND	ND	ND	ND	ND	ND	ND
OT36	ND	–	+	ND	ND	ND	ND
OT37	ND	–	–	ND	ND	ND	ND
OT44	–	+	+	+	+	–	
OT48	–	+	+	+	+	ND	
OT51	–	–	+	ND	ND	ND	ND
OT52	–	ND	ND	ND	ND	ND	ND
OT54	–	+	+	+	+	ND	ND
OT55	–	ND	–	+	ND	–	
OT6	–	–	+	–	–	ND	
OT61	–	+	+	+	+	+	
OT45	ND	–	ND	–	ND	ND	ND
OT46	ND	+	+	+	+	ND	ND
OT65	–	+	+	+	+	ND	ND
OT67	–	+	+	+	+	–	
OT50	ND	–	–	+	–	ND	ND
OT69	–	+	+	+	+	ND	ND
OT7	–	+	–	+	–	ND	ND
OT77	–	+	+	+	+	–	
OT78	–	–	+	–	–	–	
OT81	–	+	+	+	+	ND	
OT56	ND	ND	–	–	ND	ND	ND
OT57	ND	ND	ND	ND	ND	ND	ND
OT58	ND	ND	+	–	ND	ND	ND
OT59	ND	ND	ND	–	ND	ND	ND
OT82	–	+	+	+	+	ND	ND
OT60	ND	ND	–	–	ND	–	
OT83	–	+	–	+	–	ND	ND
OT62	ND	+	–	+	–	–	
OT63	ND	ND	ND	–	ND	ND	ND
OT64	ND	+	+	+	+	–	

(Continued on following page)
Table A2. Summary of Tumor HPV Status in Individual Tumors Used in This Study (Continued)

Sample Code	Protein p16 IHC	E6/E7 DNA PCR	qPCR	ddPCR	In all 3 DNA-Based Assays
OT84	–	ND	–	+	ND
OT66	ND	ND	–	–	ND
OT91	–	ND	–	–	ND
OT68	ND	ND	+	+	ND
OT9	+	–	–	–	ND
OT114	+	+	–	+	ND
OT70	ND	ND	–	–	ND
OT71	ND	ND	–	–	ND
OT72	ND	ND	–	+	ND
OT73	ND	ND	ND	+	ND
OT74	ND	ND	ND	–	ND
OT75	ND	ND	+	+	+
OT76	ND	+	+	+	ND
OT77	+	–	–	–	ND
OT78	ND	ND	–	+	ND
OT79	ND	ND	–	+	ND
OT80	ND	–	+	+	–
OT34	+	–	ND	+	ND
OT39	+	ND	ND	ND	ND
OT40	+	–	ND	+	ND
OT85	ND	+	–	+	–
OT86	ND	ND	–	–	ND
OT87	ND	ND	–	–	ND
OT88	ND	–	+	+	–
OT89	ND	ND	ND	–	ND
OT5	+	ND	ND	–	ND
OT90	ND	ND	–	–	ND
OT53	+	–	–	–	ND
OT92	ND	–	+	+	–
OT93	ND	ND	ND	+	ND
OT94	ND	ND	ND	–	ND
OT95	ND	+	+	+	ND
OT96	ND	ND	ND	–	ND
OT97	ND	ND	–	–	ND
OT98	ND	ND	ND	+	ND
OT99	ND	ND	–	–	ND

Abbreviations: (+), positive; (–), negative; BM, buccal mucosa; ddPCR, droplet digital polymerase chain reaction; HPV, human papillomavirus; IHC, immunohistochemistry; ND, not done; OT, oral tongue; qPCR, quantitative PCR.
Table A3. \(P \) Values From Unpaired \(t \) Tests Measuring Significance in Differences Between Differential Methylation in Nine HPV-Associated Genes Between HPV-Positive and HPV-Negative Groups

Gene	Group 1 HPV positive v HPV negative	Group 2 HPV positive v HPV negative
FERMT3	< .00001	.0346
GIT2	< .00001	.1052
HK3	< .00001	.0574
PRKCZ	< .00001	.052
ZCCHC8	< .00001	.0504
IRF5	< .00001	.083
IFFO1	< .00001	.0608
ARID3A	< .00001	.0654
HOXA2	.0074	.1788

NOTE. Group 1: when high-copy and/or HPV E6/E7 RNA is taken into consideration to define HPV positivity. Group 2: when HPV DNA only, irrespective of copy number, is taken into consideration to define HPV positivity.
Table A4. Literature Survey of HPV Studies in Oral Cavity Tumors

Sr. No.	First Author	Cohort	Subsite	Patient No. (n)	HPV DNA by PCR/qPCR/RFLP/sequencing	HPV Genotyping	DNA-PCR by Dot Blot	DNA by ISH	HPV Subtype p16	HPV DNA p16	Prevalence Linked With Outcome
1	Huang (2014)	Taiwan	Oral cavity	312 +	– – – – – – – – – –	16.6 HPV16 NA	High HPV16/18 E7 viral load identified a small subgroup of patients at high-risk of 5-year distant metastases.				
2	Lee (2012)	Taiwan	Oral cavity	333 +	– – – + – – – – – –	21.3 HPV16 NA	HPV16 infection in patients with advanced oral cavity cancer is related to an increased risk of distant metastases and poor survival.				
3	Gracía (2014)	Spain	Oral tongue	64 +	– – – – – – – –	26.2 HPV56 NA	Mortality showed a statistically significant correlation, being higher in patients with high-risk HPV.				
4	Lee (2015)	Taiwan	Oral cavity	1002 –	– – – + – – – – –	19 HPV16 NA	HPV infections are common in Taiwanese patients with OSCC and predict 5-year OS; 5-year OS rate of HPV-positive patients was significantly lower than that for HPV-negative patients.				
5	Lee (2013)	Taiwan	Oral cavity	410 –	– – – + – – – – –	21.2 HPV16 NA	Low-risk HPV infection was a predictor of poor 2-year DFS, disease-specific survival, and OS in the subgroups of patients with OSCC with poor differentiation and pN2 lymph node metastases.				

(Continued on following page)

Sr. No.	First Author	Cohort	Subsite	Patient No. (n)	HPV DNA by PCR/qPCR/RFLP/sequencing	HPV Genotyping	HPV RNA by qRT-PCR	DNA by PCR/Mass Array	DNA-PCR-Dot Blot	E6/E7 Antibody-ELISA	HPV DNA	HPV Subtype	p16	HPV DNA	p16		
6	Ringström	United States	Oral cavity and others	41	+	–	–	–	–	–	–	–	5	HPV16	NA	HPV-positive younger group with NA less alcohol consumption habit had better clinical outcome than HPV-negative group.	
8	Smith	United States	Oral cavity and others	170	+	–	–	–	–	+	–	–	15	HPV16	25	High-risk HPV is a positive predictor of outcome.	p16 is a positive predictor of outcome.
9	Smith	United States	Oral cavity and others	21	–	–	–	–	+	–	+	–	15.8	?	?	Two distinct patient groups with HNC with HPV DNA-positive tumors distinguishable by E6 and/or E7 antibody status. Differences in antibody status were associated with distinct risk factors and clinical outcomes.	
10	Smith	United States	Oral cavity and others	166	+	–	–	–	+	–	–	–	16	HPV16	NA	Joint assessment of p53/HPV status provided different HRs for each clinical outcome. (p53 overexpression = 48%). p53/HPV provides a better indicator of prognosis.	
11	Zhao	China	Oral cavity	52	+	–	–	–	–	–	–	–	40.4	HPV16	NA	HPV was significantly correlated with better survival for patients with OSCC.	
15	Ramakrishna	India	Oral tongue	167	+	–	–	–	–	–	–	–	52	HPV16	15.3	HPV16 DNA was not a significant predictor for OSFS and disease outcome.	?

(Continued on following page)
Sr. No.	First Author	Cohort	Subsite	Patient No. (n)	Method/Marker of HPV Detection	Prevalence	Linked With Outcome
16	Chung	United States	Oral cavity and others	89/80	SPF-PCR/Fluorescent hybridization in situ hybridization (ISH)	14.6 HPV16	26.3 HPV16
12	Vietía	Venezuela	Oral cavity and others	25	- + - - - - -	35.4 HPV16	NA
17	Gröbe	Germany	Oral cavity and others	222	+ - - - - - -	6.9 HPV16	7
7	Duncan	United States	Oral cavity	81	+ - - - - - -	8.6 HPV16	8 to 27
12	Elanago	India	Oral cavity	60	+ - - - + - +	50 HPV16	33

(Continued on following page)
Sr. No.	First Author	Cohort	Subsite	Patient No. (n)	HPV DNA by PCR/ qPCR/RFLP/ sequencing	HPV Genotyping	HPV PCR- Mass Array	HPV DNA by PCR (E2/ p16 E6/E7)	HPV DNA Dot Blot	HPV DNA by ISH	HPV RNA by qRT-	HPV E6/E7	HPV DNA Subtype	p16	HPV DNA p16	Linked With Outcome	
14	Stephen (2014)^f	United States	Oral cavity and others^f	20	+	–	–	–	–	+	–	–	50	HPV16	20	The prognostic effects of HPV16 and p16 alone were analyzed for individual non-oropharyngeal sites (oral cavity, larynx, hypopharynx), but were not statistically significant. Both HPV16 and p16 showed positive correlation when all sites were combined.	
18	Kouchetsu (2015)^g	Japan	Oral cavity	174	+	–	–	–	–	+	–	–	7.4	HPV16	13.7	No information	
19	Wallin^h	United States	Oral cavity and others^f	108	+	–	–	+	–	+	–	–	26	HPV16	18.9	No information	
20	Lingen (2013)ⁱ	United States	Oral cavity	409	–	+	–	–	–	+	+	–	5.9	HPV16	3	No information	
21	Chaudhary (2013)^j	India	Oral submucous fibrosis and oral cavity	222	+	–	–	–	–	–	+	+	37.83	HPV16	No information		
22	Rivero (2006)^k	Brazil	Oral cavity	40	+	–	–	–	–	–	–	–	0	HPV16	No information		
23	Pannone (2012)^l	Italy	Oral cavity	400	+	–	–	–	–	–	–	–	11	HPV16	No information		
24	Smith (2004)^m	United States	Oral cavity and others^f	193	+	–	–	–	–	–	–	–	13.3	HPV16	No information		
27	Hervieux (2003)ⁿ	France	Oral cavity and others^f	766	+	–	–	–	–	–	–	+	3.9	HPV16	NA	No information	
25	Kurise (2004)^o	Japan	Oral cavity	662	+	–	–	–	–	–	–	–	0.6	HPV71 and HPV12	NA	NA	No information
26	Rice (2000)^p	United Kingdom	Oral cavity	267	+	–	–	–	+	–	–	–	51.7	NA	NA	NA	

(Continued on following page)

Sr. No.	First Author	Cohort	Subsite	Patient No. (n)	HPV DNA by (PCR/qPCR/RFLP/sequencing)	HPV Genotyping INNO-LIPA	PCR-Mass Array	DNA by PCR (E2/E6/E7)	DNA Dot Blot	E6/E7 Antibody-ELISA	HPV DNA Subtype	HPV DNA p16	Linked With Outcome	
28	Lohaus	Germany	Oral cavity and others	60	+	–	–	–	–	+	–	12 HPV16	18.3 HPV16 DNA status correlated with oropharyngeal carcinoma but not in the oral cavity. Overexpression of \(p16 \) showed a significant association with distant metastases (HR, 0.31; \(P = .02 \)) and OS.	
29	Chandarana	Canada	Oral cavity and others	49	–	–	–	–	+	–	–	NA HPV16 NA HPV DNA p16	13 HPV16	Patients with OSCC showed no association between biomarkers and outcome.
30	Huang	Taiwan	Oral cavity	103	–	+	–	–	–	–	–	30.1 HPV16	HPV infection was not associated with tumor aggressiveness, risk exposure, or treatment outcome.	
31	Duray	Belgium	Oral cavity	162	+	–	–	–	+	–	–	44 HPV16	53 High-risk HPV positivity was associated with shorter DFS in our series of 147 patients with OSCC (negative correlation). Statistical analyses did not show any impact of \(p16 \) expression on disease-free survival.	
32	Rautava	Finland	Oral cavity and others	37	–	+	–	–	–	–	–	41 HPV16	HPV positive and negative HNSCC similar survival. Patients with low-risk HPVs who were treated with radiotherapy had a poor prognosis.	

(Continued on following page)
Sr. No.	First Author	Cohort	Subsite	Patient No. (n)	HPV DNA by PCR/qPCR/RFLP/sequencing	HPV Genotyping	HPV RNA by qRT-PCR-Mass Array	DNA-PCR-Dot Blot	DNA by ISH	HPV RNA by PCR (E2/E6/E7)	Antibody-ELISA	HPV DNA	HPV DNA	Prevalence	Linked With Outcome		
33	Chen	Taiwan	Oral cavity	65	–	–	–	–	+	+	–	–	37	HPV11	42	Related to a better outcome with longer survival and bears a causally associated relationship different from other carcinogenic mechanisms.	
34	Reyes	Chile	Oral cavity	80	+	–	–	–	–	+	+	–	–	11	HPV16 and HPV18	NA	No association with the presence of HPV.
35	Quintero	Colombia	Oral cavity and others	175	+	–	–	–	–	–	–	–	23.9	HPV16 and HPV19	NA	?	
36	Patil	India	Oral cavity	30	–	–	–	–	–	–	–	–	NA	NA	86.66	Association between HPV and OSCC.	
37	Gichki	Pakistan	Normal oral cavity	192	+	–	–	–	–	–	–	–	24.5	NA	Association between the presence of HPV and smoking.		
38	Hwang	Taiwan	Oral papillary and verrucous lesions	31	+	–	–	–	–	–	–	–	28.3	HPV11	1	HPV infection was independently associated with malignant transformation and disease-specific survival.	

(Continued on following page)
Table A4. Literature Survey of HPV Studies in Oral Cavity Tumors (Continued)

Sr. No.	First Author	Cohort	Subsite	Patient No. (n)	HPV DNA by PCR/qPCR/RFLP/sequencing	HPV Genotyping	HPV RNA by qRT-PCR Mass Array	HPV DNA by PCR (E2/E6/E7) Dot Blot	HPV DNA by ISH	E6/E7 DNA	HPV DNA by q RTP-PCR	HPV DNA by DNA-PCR-Dot Blot	HPV DNA by Antibody-ELISA	HPV Subtype	p16	HPV DNA	p16
39	Terai	Japan	Normal cavity	37	+	+	–	–	–	–	–	–	–	HPV5		81.1	

NOTE. In the last column, 0 represents the study that shows HPV as a negative indicator of outcome; 1 represents the study that shows HPV as a positive indicator of outcome; 2 represents the study that shows no information on HPV as indicator of outcome. Abbreviations: (+), positive; DFS, disease-free survival; ELISA, enzyme-linked immunosorbent assay; HNC, head and neck cancer; HNSCC, head and neck squamous cell carcinoma; HPV, human papillomavirus; HR, hazard ratio; IHC, immunohistochemistry; INNO-LI PA, INNO line probe assay; ISH, in situ hybridization; NA, not available; OP, oropharyngeal; OPSCC, oropharyngeal squamous cell carcinoma; OS, overall survival; OSCC, oral cavity squamous cell carcinoma; PCR, polymerase chain reaction; PFS, progression-free survival; qPCR, quantitative polymerase chain reaction; qRT-PCR, quantitative real-time PCR; RFLP, restriction fragment length polymorphism; SCC, squamous cell carcinoma; seq, sequence.

*Lee LA, et al: PLoS One 7:e40767, 2012.
*García-de Marcos JA, et al: Int J Oral Maxillofac Surg 43:274-280, 2014.
*Lee LA, et al: Medicine (Baltimore) 94:e2069, 2015.
*Lee LA, et al: J Clin Virol 57:331-337, 2013.
*Ringström E, et al: Clin Cancer Res 8:3187-3192, 2002.
*Study involves sites other than the oral cavity.
*Smith EM, et al: Oral Oncol 44:133-142, 2008.
*Smith EM, et al: Int J Cancer 127:111-117, 2010.
*Smith EM, et al: Cancer Epidemiol Biomarkers Prev 17:421-427, 2008.
*Zhao D, et al: Int J Oral Sci 1:119-125, 2009.
*Ramshankar V, et al: Asian Pac J Cancer Prev 15:8351-8359, 2014.
*Chaudhary AK, Pandya S, Singh M, et al: Head and Neck Oncol 5:4, 2013.
*Chung CH, Zhang Q, Kong CS, et al: J Clin Oncol 32:3930-3938, 2014.
*Gröbe A, et al: J Oral Pathol Med 42:676-681, 2013.
*Duncan LD, et al: J Oral Maxillofac Surg 71:1367-1375, 2013.
*Elangu KD, et al: Asian Pac J Cancer Prev 12:889-896, 2011.
*Kouketsu A, et al: J Oral Pathol Med 45:565-572, 2016.
*Lingen MW, et al: Oral Oncol 49:1-8, 2013.
*Patil S, Rao RS, Amrutha N, et al: J Int Soc Prev Community Dent 4:61-66, 2014.
*Rivero ER, et al: Braz Oral Res 20:21-24, 2006.
*Vasia D, Liuzzi J, Avila M, et al: Evid Based Med Sci 8:475, 2014.
*Smith EM, et al: Int J Cancer 108:766-72 2004.
*Herrero R, et al: J Natl Cancer Inst 95:1772-1783, 2003.
*Kurose K, et al: Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98:91-96, 2004.
*Rice PS, et al: J Med Virol 61:70-75, 2000.
*Lohaus F, et al: Radiother Oncol 113:317-323, 2014.
*Chandarana SP, et al: Head Neck 35:1083-1090, 2013.
*Huang SF, et al: Oral Dis 18:809-815, 2012.
*Duray A, et al: Laryngoscope 122:1558-1565, 2012.
*Rautava J, et al: J Clin Virol 53:116-120, 2012.
*Reyes M, et al: Exp Mol Pathol 99:95-99, 2015.
*Quintero K, et al: Braz J Otorhinolaryngol 79:375-381, 2013.
*Pannone GN, Rodolico V, Santoro A, et al: Infect Agent Cancer 7:4, 2012.
*Gichki AS, et al: Asian Pac J Cancer Prev 13:2299-2304, 2012.
*Hwang CF, et al: Cancer Epidemiol 36:e122-e127, 2012.