KnowBias: Detecting Political Polarity in Long Text Content (Student Abstract)

Aditya Saligrama
MIT PRIMES/Weston High School
77 Vassar Street
Cambridge, MA 02139
saligrama@csail.mit.edu

Abstract

We introduce a classification scheme for detecting political bias in long text content such as newspaper opinion articles. Obtaining long text data and annotations at sufficient scale for training is difficult, but it is relatively easy to extract political polarity from tweets through their authorship. We train on tweets and perform inference on articles. Universal sentence encoders and other existing methods that aim to address this domain-adaptation scenario deliver inaccurate and inconsistent predictions on articles, which we show is due to a difference in opinion concentration between tweets and articles. We propose a two-step classification scheme that uses a neutral detector trained on tweets to remove neutral sentences from articles in order to align opinion concentration and therefore improve accuracy on that domain. Our implementation is available for public use at https://knowbias.ml.

Introduction

Rising bias in news media, along with the formation of filter bubbles on social media, where content with the same political slant is repeatedly shared, have contributed to severe partisanship in the American political environment in recent years (Renka 2010; Kelly and François 2018). We aim to increase awareness of this heightened polarization by alerting users to the political bias in the content they consume.

In this work, we discuss an NLP-based approach that predicts political bias on a left-to-right spectrum on long text such as news articles independent of metadata such as content origin or authorship. Annotating polarity on long documents at sufficient scale for training is infeasible, requiring humans to read each article and manually determine polarity. However, tweets can be easily gathered in high volume and be annotated based on authorship.

We envision an approach that transfers knowledge from tweets to long text at test time. While tweets have been analyzed for political sentiment (Demszy et al. 2019), no research has focused on domain adaptation from short to long text in this context. Previous work has filtered text in order to derive justifiable predictions (Lei, Barzilay, and Jaakkola 2016), but not for domain adaptation for our target problem.

Universal sentence encoders (Cer et al. 2018) provide good text representations regardless of target task. We would expect a classifier trained on these to perform well on all text, but this delivers inaccurate and inconsistent predictions.

We show that this poor performance is due to the existence of neutral, apolitical sentences in articles that dilute opinion concentration compared to tweets. Our proposed method (Figure 1) alleviates this issue by using a neutral detector trained on tweets to remove neutral sentences before predicting bias, improving prediction accuracy and consistency. Our work summarizes Saligrama (2019).

Predicting Polarity in Text Content

Data collection We train on political tweets due to the aforementioned ease in collecting and annotating them at scale and aim to transfer this knowledge to longer articles. Our polarity data consisted of roughly 150,000 tweets from 28 Twitter verified politicians or media personalities across the political spectrum. 80% of these samples were used for training and 20% were used as testing. We also sampled a set of roughly 80,000 neutral tweets from the Twitter general stream in order to train the neutral detector.

Baseline approach We use a sentence embedding suite to convert tweets to high-dimensional vectors that preserve semantic meaning in vector space. We used the Google Uni-
Table 1: In bold are the experiments on long articles. Knowledge is transferred from learning on tweets at test time. All classifiers were DNN models with two hidden layers.

Task	One-Step	Two-Step
Twitter Political - Acc.	82.27%	82.42%
Twitter Crowdsourced - Acc.	86.00%	86.00%
Twitter Crowdsourced - ρ	0.65	0.65
Articles Crowdsourced - Acc.	66.67%	75.00%
Articles Crowdsourced - ρ	0.52	0.69

Figures 2: Degradation of accuracy after neutral sentence augmentation with One-Step vs. Two-Step classification approaches. The Two-Step method degrades gracefully relative to One-Step method as a result of removal of augmented sentences by neutral detector.

Spearman-Rho To verify prediction consistency, we computed the Spearman-rho rank correlation (McDonald 2015) against crowd opinions. Table shows that the proposed system (ρ = 0.69) is far more consistent in assigning predictions with respect to crowdsourced predictions on articles than the baseline one-step method (ρ = 0.52).

Conclusions & Future Work

We introduced a two-step classification method to detect polarity in text content without using metadata. By aligning opinion concentration using a neutral detector to remove apolitical sentences, our method performs well on tweets and long-form articles. Future work may involve exploring the problem of time shift, where predictions based on stale training data do not accurately represent positions on new issues. This reinforces the need for continuous model updates. Additionally, while we used random Twitter data to train the neutral detector and run the degradation experiment, it is desirable to test dilution by drawing neutral sentences that are more cohesive relative to the presented context, but this is somewhat difficult. We leave this open for future work.

Acknowledgement The author thanks Prof. Kai-Wei Chang (UCLA) for comments and suggestions in writing this paper.

References

Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.; St. John, R.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; Sung, Y.-H.; Strope, B.; and Kurzweil, R. 2018. Universal Sentence Encoder. arXiv e-prints arXiv:1803.11175.

Demszky, D.; Garg, N.; Voigt, R.; Zou, J.; Shapiro, J.; Gentzkow, M.; and Jurafsky, D. 2019. Analyzing polarization in social media: Method and application to tweets on 21 mass shootings. In Proceedings of NAACL 2019, 2970–3005.

Kelly, J., and François, C. 2018. This is what filter bubbles actually look like. MIT Technology Review.

Lei, T.; Barzilay, R.; and Jaakkola, T. 2016. Rationalizing neural predictions. In Proceedings of EMNLP 2016, 107–117.

McDonald, J. H. 2015. Spearman rank correlation. Handbook of Biological Statistics.

Renka, R. D. 2010. Political bias in the news media.

Saligram, A. 2019. KnowBias: A Novel AI Method to Detect Polarity in Online Content. arXiv e-prints arXiv:1905.00724.