FEKETE-SZEGÖ PROBLEM FOR GENERALIZED BI-SUBORDINATE FUNCTIONS OF COMPLEX ORDER

SERCAN TOPKAYA AND ERHAN DENIZ

Abstract. In this paper, we obtain Fekete-Szegö inequality for the generalized bi-subordinate functions of complex order. The results, which are presented in this study, would generalize those in related works of several earlier authors.

1. INTRODUCTION

Let A be the class of analytic functions in the open unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$ and let S be the class of functions f that are analytic and univalent in D and are of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$

A function $f \in A$ is said to be subordinate to a function $g \in A$, denoted by $f \prec g$, if there exists a function $w \in B_0$ where

$$B_0 := \{w \in A : w(0) = 0, \ |w(z)| < 1, \ (z \in D)\},$$

such that

$$f(z) = g(w(z)), \quad (z \in D).$$

We let S^* consist of starlike functions $f \in A$, that is $\Re\{zf'(z)/f(z)\} > 0$ in D and C consist of convex functions $f \in A$, that is $1 + \Re\{zf''(z)/f'(z)\} > 0$ in D. In terms of subordination, these conditions are, respectively, equivalent to

$$S^* \equiv \{f \in A : \frac{zf'(z)}{f(z)} \prec \frac{1+z}{1-z}\}$$

and

$$C \equiv \{f \in A : 1 + \frac{zf''(z)}{f'(z)} \prec \frac{1+z}{1-z}\}.$$ A generalization of the above two classes, according to Ma and Minda [23], are

$$S^*(\psi) \equiv \{f \in A : \frac{zf'(z)}{f(z)} \prec \psi(z)\}$$

and

$$C(\psi) \equiv \{f \in A : 1 + \frac{zf''(z)}{f'(z)} \prec \psi(z)\}$$

where ψ is a positive real part function normalized by $\psi(0) = 1$, $\psi'(0) > 0$ and ψ maps D onto a region starlike with respect to 1 and symmetric with respect to the real axis. Obvious extensions of the above two classes (see [22]) are

$$S^*(\gamma;\psi) \equiv \{f \in A : 1 + \frac{zf'(z)}{f(z)} \prec \psi(z) ; \ \gamma \in \mathbb{C} \setminus \{0\}\}$$

and

$$C(\gamma;\psi) \equiv \{f \in A : 1 + \frac{zf''(z)}{f'(z)} \prec \psi(z) ; \ \gamma \in \mathbb{C} \setminus \{0\}\}.$$ In literature, the functions belonging to these classes are called Ma-Minda starlike and convex of complex order γ ($\gamma \in \mathbb{C} \setminus \{0\}$), respectively.

Some of the special cases of the above two classes $S^*(\gamma;\psi)$ and $C(\gamma;\psi)$ are

Key words and phrases. Analytic functions, starlike functions, convex functions, Ma-Minda starlike functions, Ma-Minda convex functions, subordination, Fekete-Szegö Inequality.

2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C80.
(1) $S^*\left((1, (1 + A)z)/(1 + Bz)\right) = S[A, B]$ and $C(1, (1 + A)z)/(1 + Bz)) = C[A, B], (-1 \leq B < A \leq 1)$ are classes of Janowski starlike and convex functions, respectively.

(2) $S^*\left((1 - \beta)e^{It} \cos \delta, (1 + z)/(1 - z)\right) = S^*[\beta, \delta]$ and $C((1 - \beta)e^{It} \cos \delta, (1 + z)/(1 - z)) = C[\beta, \delta]$,

\((\beta) < \pi/2 \), $0 \leq \beta < 1$ are classes of δ-spirallike and δ-Robertson univalent functions of order β, respectively.

(3) $S^*\left((1, (1 + (1 - 2\beta)z)/z)/(1 - z)\right) = S^*[\beta]$ and $C((1, (1 + (1 - 2\beta)z)/z)/(1 - z)) = C[\beta]$ ($0 \leq \beta < 1$) are classes of starlike and convex functions of order β, respectively.

(4) $S^*\left(1, \left(\frac{1 + \beta}{1 - \beta}\right)\right) = S^*_\beta$ and $C\left(1, \left(\frac{1 + \beta}{1 - \beta}\right)\right) = C[\beta]$ are class of strongly starlike and convex functions of order β, respectively,

\begin{align*}
(5) \ S^*\left(1, \sqrt{1 + z}\right) = S^*_L = \left\{ f \in A : \left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 \right\} \text{ is class of lemniscate starlike functions,} \\
(6) \ S^*\left(1, \gamma, (1 + z)/(1 - z)\right) = S^*[\gamma] \text{ and } C(1, \gamma, (1 + z)/(1 - z)) = C[\gamma] \quad (\gamma \in \mathbb{C}\setminus\{0\}) \text{ are classes of starlike and convex functions of complex order, respectively,} \\
(7) \ S^*\left(1, \gamma, (1 + z)/(1 - z)\right) = k - S^*_p = \left\{ f \in A : \Re\left(\frac{zf'(z)}{f(z)}\right) > k - 1 \right\} \text{ is class of } k-\text{parabolik starlike functions,} \\
(8) \ C(1, \gamma, (1 + z)/(1 - z)) = k - UCV = \left\{ f \in A : \Re\left(1 + \left|\frac{zf'(z)}{f(z)}\right|\right) > k - 1 \right\} \text{ is class of } k-\text{uniformly convex functions.}
\end{align*}

Here, for $0 \leq k < \infty$ the function $q_k : \mathbb{D} \to \{w = u + iv \in \mathbb{C} : \ u^2 > k^2 ((u - 1)^2 + v^2), \ u > 0\}$ has the form $q_k(z) = 1 + Q_1 z + Q_2 z^2 + \cdots$, $(z \in \mathbb{D})$ where

\begin{equation}
Q_1 = \begin{cases}
\frac{2k^2}{1 - k}, & 0 \leq k < 1, \\
\frac{2k}{\sqrt{k^2 - 1}}, & k = 1, \\
\frac{2k}{\sqrt{(k^2 - 1)(1 + k^2 - 1)}} > k < 1, \\
\frac{2k}{\sqrt{(k^2 - 1)(1 + k^2)}} > k > 1,
\end{cases} \quad Q_2 = \begin{cases}
\frac{(k^2 + 2)}{3}Q_1; & 0 \leq k < 1, \\
\frac{2k^2}{3}; & k = 1, \\
\frac{2k}{\sqrt{(k^2 - 1)(1 + k^2)}} > k > 1.
\end{cases}
\end{equation}

with $B = \frac{2}{\sqrt{\pi}} \arccos k$ and $K(t)$ is the complete elliptic integral of first kind (see [26]).

A function $f \in A$ is said to be bi-univalent in \mathbb{D} if both f and its inverse map f^{-1} are univalent in \mathbb{D}. Let σ be the class functions $f \in S$ that are bi-univalent in \mathbb{D}. For a brief history and interesting examples of functions which are in (or are not in) the class σ, including various properties of such functions we refer the reader to the work of Srivastava et al. [3] and references therein. Bounds for the first few coefficients of various subclasses of bi-univalent functions were obtained by a variety of authors including [19, 13, 2], [1], [21] and references therein. Not much was known about the bounds of the general coefficients $a_n; n \geq 4$ of subclasses of σ up until the publication of the article [11] by Jahangiri and Hamidi and followed by a number of related publications. Moreover, many author have considered the Fekete-Szegö problem for various subclasses of A, the upper bound for $|a_3 - \mu a_2^2|$ is investigated by many different authors (see [10, 15, 9, 8]). In this paper, we apply the Fekete-Szegö inequality to certain subclass of generalized bi-subordinate functions of complex order.

2. Coefficient Estimates

In the sequel, it is assumed that φ is an analytic function with positive real part in the unit disk \mathbb{D}, satisfying $\varphi(0) = 1$, $\varphi'(0) > 0$, and $\varphi(\mathbb{D})$ is symmetric with respect to the real axis. Such a function is known to be typically real with the series expansion $\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$ where B_1, B_2 are real and $B_1 > 0$. Motivated by a class of functions defined by the first author [2], we define the following comprehensive class of analytic functions

$$S(\lambda, \gamma; \varphi) \equiv \left\{ f \in A : 1 + \frac{1}{\gamma} \left(\frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) - \lambda z f'(z)} - 1 \right) < \varphi(z); \ 0 \leq \lambda \leq 1, \ \gamma \in \mathbb{C}\setminus\{0\} \right\}.$$

A function $f \in A$ is said to be bi-univalent in the domain \mathbb{D} of complex order γ and type λ if both f and its inverse map $g = f^{-1}$ are in $S(\lambda, \gamma; \varphi)$. As special cases of the class $S(\lambda, \gamma; \varphi)$ we have $S(0, \gamma; \varphi) \equiv S^* (\gamma; \varphi)$ and $S(1, \gamma; \varphi) \equiv C(\gamma; \varphi).

To prove our next theorems, we shall need the following well-known lemma (see [2]).

Lemma 2.1. (see [2]) Let the function $w \in B_0$ be given by

$$w(z) = c_1 z + c_2 z^2 + \cdots (z \in \mathbb{D}),$$
then for by every complex number \(s \),

\[
|c_2 - se^2| \leq 1 + (|s| - 1) |c_1|^2.
\]

In the following theorem, we consider functional \(|a_2 - \mu a_2^2| \) for \(\gamma \) nonzero complex number and \(\mu \in \mathbb{C} \).

Theorem 2.1. Let \(\gamma \) be a nonzero complex number, \(\mu \in \mathbb{C} \) and \(0 \leq \lambda \leq 1 \). If both functions \(f \) of the form \((2.1)\) and its inverse maps \(g = f^{-1} \) are in \(S(\lambda, \gamma; \varphi) \), then we obtain,

\[
|a_2| \leq \frac{|\gamma| |B_1|}{(1 + \lambda)}
\]

(2.1)

\[
|a_3| \leq \frac{|\gamma| |B_1|}{4(1 + 2\lambda)} \max\{2, (|s| + |t|)\}
\]

(2.2)

and

\[
|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{B_1|\gamma|}{2(1 + 2\lambda)} & \text{if } L \leq 2, \\
\frac{B_1|\gamma|}{4(1 + 2\lambda)} L & \text{if } L \geq 2,
\end{array} \right.
\]

(2.3)

where \(s = \frac{B_1}{B_4}, -\frac{4B_1(1 + 2\lambda)}{B_4(1 + \lambda)}, t = \frac{B_1}{B_3} \) and \(L = \frac{B_1}{B_2} + (1 - \mu) \frac{4B_1(1 + 2\lambda)}{B_4(1 + \lambda)} \).

Proof. Let \(f(z) \in S(\lambda, \gamma; \varphi) \) and \(g = f^{-1} \). Then there are two functions \(u(z) = c_1 z + c_2 z^2 + \cdots (z \in \mathbb{D}) \) and \(v(w) = d_1 w + d_2 w^2 + \cdots \), such that

\[
1 + \frac{1}{\gamma} \left(\frac{zf''(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) - \lambda z f'(z)} - 1 \right) = \varphi(u(z))
\]

(2.4)

\[
= 1 + \frac{(1 + \lambda) a_2}{\gamma} z + \left[\frac{2(1 + 2\lambda) a_3 - (1 - \lambda)^2 a_2^2}{\gamma} \right] z^2 + \cdots
\]

and

\[
1 + \frac{1}{\gamma} \left(\frac{ wg''(w) + \lambda w^2 g''(w)}{(1 - \lambda)g(w) - \lambda wg'(w)} - 1 \right) = \varphi(v(w))
\]

(2.5)

\[
= 1 - \frac{(1 + \lambda) a_2}{\gamma} w + \left[-\frac{2(1 + 2\lambda) a_3 + (3 + 6\lambda - \lambda^2) a_2^2}{\gamma} \right] w^2 + \cdots
\]

Equating coefficients of both side of equations (2.4) and (2.5) yield

\[
\frac{(1 + \lambda) a_2}{\gamma} = B_1 c_1, \quad \frac{2(1 + 2\lambda) a_3 - (1 - \lambda)^2 a_2^2}{\gamma} = B_1 c_2 + B_2 c_1,
\]

(2.6)

\[
\frac{-(1 + \lambda) a_2}{\gamma} = B_1 d_1, \quad \frac{-2(1 + 2\lambda) a_3 + (3 + 6\lambda - \lambda^2) a_2^2}{\gamma} = B_1 d_2 + B_2 d_1,
\]

(2.7)

so that, on account of (2.6) and (2.7),

\[
c_1 = -d_1,
\]

(2.8)

\[
a_2 = \frac{\gamma B_1}{(1 + \lambda)} c_1
\]

(2.9)

and

\[
a_3 = a_2^2 + \frac{\gamma}{4(1 + 2\lambda)} \left[B_1 c_2 + B_2 c_1^2 - B_1 d_2 - B_2 d_1^2 \right], \quad |c_1| \leq 1.
\]

(2.10)

Taking into account (2.8), (2.9), (2.10) and Lemma 2.1, we obtain

\[
|a_2| = \left| \frac{\gamma B_1}{(1 + \lambda)} c_1 \right| \leq \frac{|\gamma| |B_1|}{(1 + \lambda)}
\]

(2.11)
and

\[
|a_3| = \left| a_2^2 + \frac{\gamma}{4(1 + 2\lambda)} \left[B_1 c_2 + B_2 c_1^2 - B_1 d_2 - B_2 d_1^2 \right] \right|
\]

\[
= \left| \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} c_2^2 + \frac{\gamma}{4(1 + 2\lambda)} \left[(B_1 c_2 - B_2 d_1^2) - (B_1 d_2 - B_2 c_1^2) \right] \right|
\]

\[
= \left| \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} c_2^2 + \frac{\gamma}{4(1 + 2\lambda)} \left[(B_1 c_2 - B_2 c_1^2) - (B_1 d_2 - B_2 d_1^2) \right] \right|
\]

\[
= \frac{\gamma B_1}{4(1 + 2\lambda)} \left\{ c_2 - \left(\frac{B_2}{B_1} - \frac{4\gamma B_1 (1 + 2\lambda)}{(1 + \lambda)^2} \right) \right\} c_1^2 - \left[d_2 - \frac{B_2}{B_1} d_1^2 \right] \right\}
\]

\[
\leq \frac{|\gamma| B_1}{4(1 + 2\lambda)} \left\{ c_2 - \left(\frac{B_2}{B_1} - \frac{4\gamma B_1 (1 + 2\lambda)}{(1 + \lambda)^2} \right) \right\} c_1^2 + \left[d_2 - \frac{B_2}{B_1} d_1^2 \right] \right\}
\]

\[
\leq \frac{|\gamma| B_1}{4(1 + 2\lambda)} \left\{ 1 + (|s| - 1) |c_2^2| + 1 + (|t| - 1) |c_1^2| \right\}
\]

\[
= \frac{|\gamma| B_1}{4(1 + 2\lambda)} \max \{2, (|s| + |t|)\}
\]

Thus, we have

\[
|a_3| \leq \frac{|\gamma| B_1}{4(1 + 2\lambda)} \max \{2, (|s| + |t|)\},
\]

where \(s = \frac{B_2}{B_1} - \frac{4B_1 \gamma (1 + 2\lambda)}{(1 + \lambda)^2} \) and \(t = \frac{B_2}{B_1} \).

Furthermore,

\[
|a_3 - \mu a_2^2| = \left| (1 - \mu) a_2^2 + \frac{\gamma}{4(1 + 2\lambda)} \left[B_1 c_2 + B_2 c_1^2 - B_1 d_2 - B_2 d_1^2 \right] \right|
\]

\[
= \frac{\gamma B_1}{4(1 + 2\lambda)} \left\{ c_2 - \left(\frac{B_2}{B_1} - (1 - \mu) \frac{4\gamma B_1 (1 + 2\lambda)}{(1 + \lambda)^2} \right) \right\} c_1^2 - \left[d_2 - \frac{B_2}{B_1} d_1^2 \right] \right\}
\]

(2.12)

\[
\leq \frac{|\gamma| B_1}{4(1 + 2\lambda)} \left\{ 2 + \left(\frac{B_2}{B_1} - (1 - \mu) \frac{4\gamma B_1 (1 + 2\lambda)}{(1 + \lambda)^2} \right) + \frac{B_2}{B_1} - 2 \right\} \right\}
\]

As a result of this, we obtain

\[
|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{B_1 (1 - \mu)}{2(1 + 2\lambda) L} & \text{if } \mathcal{L} < 2, \\
\frac{B_1 (1 - \mu) \frac{4B_1 \gamma (1 + 2\lambda)}{(1 + \lambda)^2}}{2(1 + 2\lambda) L} & \text{if } \mathcal{L} \geq 2.
\end{array} \right.
\]

where \(\mathcal{L} = \frac{B_2}{B_1} + (1 - \mu) \frac{4B_1 \gamma (1 + 2\lambda)}{(1 + \lambda)^2} \).

Thus the proof is completed.

We next consider the case, when \(\gamma \) and \(\mu \) are real. Then we have:

Theorem 2.2. Let \(\gamma > 0 \) and if both functions \(f \) of the form (1.1) and its inverse maps \(g = f^{-1} \) are in \(S(\lambda, \gamma; \varphi) \), then for \(\mu \in \mathbb{R} \),

(1) If \(|B_2| \geq B_1 \), we have

\[
|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma| B_2}{2(1 + 2\lambda)} - (\mu - 1) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} & \text{if } \mu \leq 1, \\
\frac{\gamma^2 B_1^2}{(1 + \lambda)^2} & \text{if } \mu > 1.
\end{array} \right.
\]

(2) If \(|B_2| < B_1 \), we have

\[
|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma| B_2}{2(1 + 2\lambda)} - (\mu - 1) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} & \text{if } \mu \leq 1 - \mathcal{F}, \\
\frac{\gamma^2 B_1^2}{2(1 + 2\lambda)} + (\mu - 1) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} & \text{if } 1 - \mathcal{F} < \mu < 1 + \mathcal{F}, \\
\frac{\gamma^2 B_1^2}{2(1 + 2\lambda)} + (\mu - 1) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} & \text{if } \mu \geq 1 + \mathcal{F}.
\end{array} \right.
\]
where \(F = \frac{(1 + \lambda)^2}{\zeta_1(B_1 - B_2)} \).

For each \(\mu \) there is a function \(f \in S(\lambda, \gamma; \varphi) \) such that equality holds.

Proof. Using (2.12) and Lemma 2.1, we obtain

\[
|a_3 - \mu a_2^2| = \left| \frac{\gamma B_1}{4(1 + 2\lambda)} \left(c_2 - \left(\frac{B_2}{B_1} - (1 - \mu) \frac{4\gamma B_1 (1 + 2\lambda)}{(1 + \lambda)^2} \right) c_1^2 \right) - \left(d_2 - \frac{B_2}{B_1} d_1^2 \right) \right|
\]

\[
\leq \left| \frac{\gamma |B_1|}{4(1 + 2\lambda)} \right| \left(2 + \left(\frac{B_2}{B_1} - (1 - \mu) \frac{4\gamma B_1 (1 + 2\lambda)}{(1 + \lambda)^2} \right) + \frac{B_2}{B_1} - 2 \right) c_1^2
\]

(2.13)

\[
= \frac{\gamma B_1}{2(1 + 2\lambda)} + \left(\frac{\gamma |B_2| - \gamma B_1}{2(1 + 2\lambda)} + (\mu - 1) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} \right) |c_1^2|
\]

Now, the proof will be presented in two cases by considering \(B_1, B_2 \in \mathbb{R} \) and \(B_1 > 0 \).

Firstly, we want to consider the case with \(|B_2| \geq B_1 \). Several possible cases need to further analyze.

Case 1: If \(\mu \leq 1 \), using (2.13) and Lemma 2.1 we obtain

\[
|a_3 - \mu a_2^2| \leq \frac{\gamma B_1}{2(1 + 2\lambda)} + \left(\frac{\gamma |B_2| - \gamma B_1}{2(1 + 2\lambda)} + (1 - \mu) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} \right) |c_1^2|
\]

\[
\leq \frac{\gamma B_1}{2(1 + 2\lambda)} + \left(\frac{\gamma |B_2| - B_1}{2(1 + 2\lambda)} + (1 - \mu) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} \right)
\]

\[
= \frac{\gamma |B_2|}{2(1 + 2\lambda)} + \frac{\gamma B_1}{2(1 + 2\lambda)} - \frac{\gamma B_1}{2(1 + 2\lambda)} + \frac{\gamma B_1}{2(1 + 2\lambda)} - \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} + \mu \frac{\gamma^2 B_1^2}{(1 + \lambda)^2}
\]

\[
= \frac{\gamma |B_2|}{2(1 + 2\lambda)} + (\mu - 1) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2}
\]

Case 2: If \(\mu > 1 \), again using (2.13) and Lemma 2.1 we obtain

\[
|a_3 - \mu a_2^2| \leq \frac{\gamma B_1}{2(1 + 2\lambda)} + \left(\frac{\gamma |B_2| - B_1}{2(1 + 2\lambda)} + (\mu - 1) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} \right) |c_1^2|
\]

\[
\leq \frac{\gamma B_1}{2(1 + 2\lambda)} + \left(\frac{\gamma |B_2| - B_1}{2(1 + 2\lambda)} + (1 - \mu) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} \right)
\]

\[
= \frac{\gamma |B_2|}{2(1 + 2\lambda)} + \frac{\gamma B_1}{2(1 + 2\lambda)} - \frac{\gamma B_1}{2(1 + 2\lambda)} + \frac{\gamma B_1}{2(1 + 2\lambda)} - \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} + \mu \frac{\gamma^2 B_1^2}{(1 + \lambda)^2}
\]

\[
= \frac{\gamma |B_2|}{2(1 + 2\lambda)} + (\mu - 1) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2}
\]

Finally, we want to consider the case with \(|B_2| < B_1 \). By a similar way, several possible cases need to further analyze.

(i) Let \(\mu \leq 1 - F \), using (2.13) and Lemma 2.1 we have

\[
|a_3 - \mu a_2^2| \leq \frac{\gamma B_1}{2(1 + 2\lambda)} + \left(\frac{\gamma |B_2| - B_1}{2(1 + 2\lambda)} + (1 - \mu) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} \right) |c_1^2|
\]

\[
\leq \frac{\gamma B_1}{2(1 + 2\lambda)} + \left(\frac{\gamma |B_2| - B_1}{2(1 + 2\lambda)} + (1 - \mu) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} \right)
\]

\[
= \frac{\gamma |B_2|}{2(1 + 2\lambda)} - (\mu - 1) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2}
\]

(ii) Let \(1 - F < \mu \leq 1 \), using (2.13) and Lemma 2.1 we obtain

\[
|a_3 - \mu a_2^2| \leq \frac{\gamma B_1}{2(1 + 2\lambda)} + \left(\frac{\gamma |B_2| - B_1}{2(1 + 2\lambda)} + (1 - \mu) \frac{\gamma^2 B_1^2}{(1 + \lambda)^2} \right) |c_1^2|
\]

\[
\leq \frac{\gamma B_1}{2(1 + 2\lambda)}
\]
(iii) Let $1 < \mu < 1 + \mathcal{F}$, using (2.13) and Lemma 2.1, we obtain

$$
|a_3 - \mu a_2^2| \leq \frac{\gamma B_1}{2 (1 + 2 \lambda)} + \left\{ \frac{\gamma (|B_2| - B_1)}{2 (1 + 2 \lambda)} + \frac{\mu - 1}{1 + \frac{2 \lambda}{4}} \right\} |c_1^2|
$$

Thus the proof is completed.

(iv) Let $\mu \geq 1 + \mathcal{F}$, using (2.13) and Lemma 2.1, we have

$$
|a_3 - \mu a_2^2| \leq \frac{\gamma B_1}{2 (1 + 2 \lambda)} + \left\{ \frac{\gamma (|B_2| - B_1)}{2 (1 + 2 \lambda)} + \frac{\mu - 1}{1 + \frac{2 \lambda}{4}} \right\} |c_1^2|
$$

Finally, we consider the case, when γ nonzero complex number and $\mu \in \mathbb{C}$. Then we get:

Theorem 2.3. Let γ be a nonzero complex number and let both functions f of the form (1.4) and its inverse maps $g = f^{-1}$ are in $\mathcal{S}(\lambda, \gamma; \varphi)$. Then for $\mu \in \mathbb{R}$ we have

1. If $\frac{(1 + |\sin \theta|)|B_2|}{2B_1} \geq 1$, we have

$$
|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma|^2 B_1^2}{(1 + \lambda)^2} (1 - \mu - \Re (k_1)) + \frac{|\gamma|^2 |B_2| (1 + |\sin \theta|)}{4(1 + 2 \lambda)} & \text{if } \mu \leq 1 - \Re (k_1), \\
\frac{|\gamma|^2 |B_2| (1 + |\sin \theta|)}{4(1 + 2 \lambda)} - \frac{|\gamma|^2 B_1^2}{(1 + \lambda)^2} (1 - \mu - \Re (k_1)) & \text{if } \mu > 1 - \Re (k_1).
\end{array} \right.
$$

2. If $\frac{(1 + |\sin \theta|)|B_2|}{2B_1} < 1$, we obtain

$$
|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma|^2 B_1^2}{(1 + \lambda)^2} (1 - \mu - \Re (k_1)) + \frac{|\gamma|^2 |B_2| (1 + |\sin \theta|)}{4(1 + 2 \lambda)} & \text{if } \mu \leq 1 - \Re (k_1) + \mathcal{N}, \\
\frac{|\gamma|^2 |B_2| (1 + |\sin \theta|)}{4(1 + 2 \lambda)} - \frac{|\gamma|^2 B_1^2}{(1 + \lambda)^2} (1 - \mu - \Re (k_1)) & \text{if } 1 - \Re (k_1) + \mathcal{N} < \mu < 1 - \Re (k_1) - \mathcal{N}, \\
& \text{if } \mu \geq 1 - \Re (k_1) - \mathcal{N},
\end{array} \right.
$$

where $k_1 = \frac{B_2 (1 + \lambda)^2 e^{i \theta}}{4B_1^2 |\gamma| (1 + 2 \lambda)}$, $l_1 = \frac{|B_2| - 2B_1 (1 + \lambda)^2}{4B_1^2 |\gamma| (1 + 2 \lambda)}$, $|\gamma| = \gamma e^{i \theta}$ and $\mathcal{N} = \frac{(1 + |\sin \theta|)|B_2| (1 + |\sin \theta|)}{4B_1^2 |\gamma| (1 + 2 \lambda)}$

For each μ there is a function $\mathcal{S}(\lambda, \gamma; \varphi)$ such that the equality holds.

Proof. Suppose $f (z) = z + \sum_{k=2}^{\infty} a_k z^k \in \mathcal{S}(\lambda, \gamma; \varphi)$, using (2.12) and Lemma 2.1, then we obtain

$$
|a_3 - \mu a_2^2| \leq \frac{|\gamma| B_1}{4 (1 + 2 \lambda)} \left\{ \begin{array}{l}
2 + \left| \frac{B_2 - B_1 - (1 - \mu) \frac{4 \gamma B_1 (1 + 2 \lambda)}{(1 + \lambda)^2}}{B_1} \right| + \left| \frac{B_2}{B_1} - 2 \right| |c_1^2| \\
\frac{|\gamma| B_1}{2 (1 + 2 \lambda)} + \frac{|\gamma|^2 B_1^2}{(1 + \lambda)^2} \left[(1 - \mu) - \frac{B_2 (1 + |\sin \theta|)}{1 + \lambda} \right] \left| \frac{B_2}{B_1} - 2 \right| |c_1^2|
\end{array} \right.
$$

(2.14)

Thus the proof is completed. □
Taking $|\gamma| = \gamma e^{i\theta}$, $k_1 = \frac{B_3(1+\lambda)^2 e^{i\theta}}{4B_1^2(1+2\lambda)^2}$ and $l_1 = \frac{(B_2 - 2B_1)(1+\lambda)^2}{4B_1^2(1+2\lambda)^2}$, a direct calculation with (2.14) shows that

\[|a_3 - \mu a_2^2| \leq \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_2^2}{(1+\lambda)^2} (1 - \mu - k_1) + l_1 \right| |c_1^2| \]

\[\leq \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_2^2}{(1+\lambda)^2} (1 - \mu - \Re(k_1) - i(\Im(k_1)) + l_1 \right| |c_1^2| \]

\[\leq \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_1^2}{(1+\lambda)^2} (1 - \mu - \Re(k_1)) + \frac{|B_2|(1+\lambda)^2 |\sin \theta|}{4B_1^2 |\gamma|(1+2\lambda)} + l_1 \right| |c_1^2| \]

\[= \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_2^2}{(1+\lambda)^2} (1 - \mu - \Re(k_1)) + \frac{|B_2||\sin \theta|}{|B_2| - 2B_1} \right| |c_1^2| \]

\[= \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_1^2}{(1+\lambda)^2} (1 - \mu - \Re(k_1)) + \frac{|\gamma||B_2|(1+|\sin \theta|) - 2B_1}{4(1+2\lambda)} \right| |c_1^2|. \]

(2.15)

Now, we will make some discussions for several different cases by considering $B_1, B_2 \in \mathbb{R}$ and $B_1 > 0$.

Firstly, we want to consider the case with $\frac{2B_1}{|B_2|} - |\sin \theta| < 1$. Several possible cases need to further analyze.

Case 1: Let $\mu \leq 1 - \Re(k_1)$. Then from (2.15) and Lemma 2.1 we obtain

\[|a_3 - \mu a_2^2| \leq \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_2^2}{(1+\lambda)^2} (1 - \mu - \Re(k_1)) + \frac{|\gamma||B_2|(1+|\sin \theta|) - 2B_1}{4(1+2\lambda)} \right| |c_1^2| \]

\[\leq \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_2^2}{(1+\lambda)^2} (1 - \mu - \Re(k_1)) + \frac{|\gamma||B_2|(1+|\sin \theta|) - 2B_1}{4(1+2\lambda)} \right| |c_1^2| \]

\[= \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_2^2}{(1+\lambda)^2} (1 - \mu - \Re(k_1)) + \frac{|\gamma||B_2|(1+|\sin \theta|) - 2B_1}{4(1+2\lambda)} \right| \frac{2(1+2\lambda)}{2(1+2\lambda)} \]

Case 2: Let $\mu > 1 - \Re(k_1)$, then from (2.15) and Lemma 2.1 we yield

\[|a_3 - \mu a_2^2| \leq \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_2^2}{(1+\lambda)^2} (1 - \mu - \Re(k_1)) + \frac{|\gamma||B_2|(1+|\sin \theta|) - 2B_1}{4(1+2\lambda)} \right| |c_1^2| \]

\[\leq \frac{|\gamma| B_1}{2(1+2\lambda)} + \left| \frac{|\gamma|^2 B_2^2}{(1+\lambda)^2} (\mu + \Re(k_1) - 1) + \frac{|\gamma||B_2|(1+|\sin \theta|) - 2B_1}{4(1+2\lambda)} \right| \frac{2(1+2\lambda)}{2(1+2\lambda)} \]

\[= \frac{|\gamma||B_2|(1+|\sin \theta|) - 2B_1}{4(1+2\lambda)} \left| \frac{|\gamma|^2 B_2^2}{(1+\lambda)^2} (1 - \mu - \Re(k_1)) \right| \frac{2(1+2\lambda)}{2(1+2\lambda)} \]

Finally, we want to consider the case with $\frac{2B_1}{|B_2|} - |\sin \theta| > 1$. By a similar approximation, several possible cases need to further analyze.
(i) Let $\mu \leq 1 - \Re(k_1) + \mathcal{N}$, using (2.15) and Lemma 2.1 we have
\[
|a_3 - \mu a_2| \leq \frac{|\gamma|}{2(1 + 2\lambda)} \left[|\gamma|^2 B_2^2 \frac{(1 + |\sin \theta|)}{(1 + \lambda)^2} \right] |c_1| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
\leq \frac{|\gamma|}{2(1 + 2\lambda)} \left[\frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \right] \cdot |1 - \mu - \Re(k_1)| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
= \frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \cdot |1 - \mu - \Re(k_1)| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
= \frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \cdot (1 - \mu - \Re(k_1)) + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|.
\]

(ii) Let $1 - \Re(k_1) + \mathcal{N} < \mu \leq 1 - \Re(k_1)$, using (2.15) and Lemma 2.1 we obtain
\[
|a_3 - \mu a_2| \leq \frac{|\gamma|}{2(1 + 2\lambda)} \left[|\gamma|^2 B_2^2 \frac{(1 + |\sin \theta|)}{(1 + \lambda)^2} \right] |c_1| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
\leq \frac{|\gamma|}{2(1 + 2\lambda)} \left[\frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \right] \cdot |1 - \mu - \Re(k_1)| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
= \frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \cdot |1 - \mu - \Re(k_1)| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
= \frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \cdot (1 - \mu - \Re(k_1)) + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|.
\]

(iii) Let $1 - \Re(k_1) < \mu < 1 - \Re(k_1) - \mathcal{N}$, using (2.15) and Lemma 2.1 we obtain
\[
|a_3 - \mu a_2| \leq \frac{|\gamma|}{2(1 + 2\lambda)} \left[|\gamma|^2 B_2^2 \frac{(1 + |\sin \theta|)}{(1 + \lambda)^2} \right] |c_1| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
\leq \frac{|\gamma|}{2(1 + 2\lambda)} \left[\frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \right] \cdot |1 - \mu - \Re(k_1)| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
= \frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \cdot |1 - \mu - \Re(k_1)| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
= \frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \cdot (1 - \mu - \Re(k_1)) + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|.
\]

(iv) Let $\mu \geq 1 - \Re(k_1) - \mathcal{N}$, using (2.15) and Lemma 2.1 we have
\[
|a_3 - \mu a_2| \leq \frac{|\gamma|}{2(1 + 2\lambda)} \left[|\gamma|^2 B_2^2 \frac{(1 + |\sin \theta|)}{(1 + \lambda)^2} \right] |c_1| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
\leq \frac{|\gamma|}{2(1 + 2\lambda)} \left[\frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \right] \cdot |1 - \mu - \Re(k_1)| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
= \frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \cdot |1 - \mu - \Re(k_1)| + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|
\]
\[
= \frac{|\gamma|^2 B_2^2}{(1 + \lambda)^2} \cdot (1 - \mu - \Re(k_1)) + \frac{|\gamma|}{4(1 + 2\lambda)} \left[|\gamma| ||B_2| (1 + |\sin \theta|) - 2B_1| \right] |c_1|.
\]

Thus the proof is completed. \(\square\)

Corollary 2.4. Let $\gamma = 1$ and $\lambda = 0$. If both functions f of the form (1.1) and its inverse maps $g = f^{-1}$ are in $\mathcal{S}[A,B]$, then using Theorem (2.7), (2.23) and (2.24), we obtain

(1) For $\gamma \in \mathbb{C}\setminus\{0\}$ and $\mu \in \mathbb{C}$,
\[
|a_3 - \mu a_2| \leq \left\{ \begin{array}{ll}
\frac{A-B}{2} & |B| + |4(1 - \mu)(A-B) - B| < 2,
\frac{|B(A-B)|}{2} & |B| + |4(1 - \mu)(A-B) - B| \geq 2.
\end{array} \right.
\]

(2) For $\gamma > 0$ and $\mu \in \mathbb{R}$,
\[
|a_3 - \mu a_2| \leq \left\{ \begin{array}{ll}
\frac{|B(A-B)|}{2} & (\mu - 1) (A-B)^2 \quad \text{if } |B| + |4(1 - \mu)(A-B) - B| < 2,
\frac{A-B}{2} & (\mu - 1) (A-B)^2 \quad \text{if } |B| + |4(1 - \mu)(A-B) - B| \geq 2.
\end{array} \right.
\]

(3) For $\gamma \in \mathbb{C}\setminus\{0\}$ and $\mu \in \mathbb{R}$,
\[
|a_3 - \mu a_2| \leq \left\{ \begin{array}{ll}
\frac{(A-B)^2}{2} (1 - \mu) + \frac{|B(A-B)(1 + |\sin \theta| - |\cos \theta|)}{4} & \text{if } |B| + |4(1 - \mu)(A-B) - B| < 2,
\frac{A-B}{2} & \text{if } |B| + |4(1 - \mu)(A-B) - B| \geq 2.
\end{array} \right.
\]

(4) if $|B| + |4(1 - \mu)(A-B) - B| < 2$,
\[
|a_3 - \mu a_2| \leq \frac{A-B}{2} - (\mu - 1) (A-B)^2 \quad \text{if } |B| + |4(1 - \mu)(A-B) - B| \geq 2.
\]

(5) if $\mu \leq 1 + \psi_1(A,B,\theta)$,
\[
|a_3 - \mu a_2| \leq \frac{|B(A-B)|}{2} + (\mu - 1) (A-B)^2 \quad \text{if } |B| + |4(1 - \mu)(A-B) - B| < 2,
\]

(6) if $\mu \geq 1 - \psi_2(A,B,\theta)$,
\[
|a_3 - \mu a_2| \leq \frac{A-B}{2} - (\mu - 1) (A-B)^2 \quad \text{if } |B| + |4(1 - \mu)(A-B) - B| \geq 2.
\]
where \(B_1 = A - B, B_2 = -B (A - B), -1 \leq B < A \leq 1, \psi_1 (A, B, \theta) = \frac{[(1 + |\sin \theta| - \cos \theta)]}{2(|A - B|)} \) and
\[\psi_2 (A, B, \theta) = \frac{[(1 + |\sin \theta| + \cos \theta)]}{2(|A - B|)}. \]

Corollary 2.5. Let \(\gamma = 1 \) and \(\lambda = 1 \). If both functions \(f \) of the form (1.1) and its inverse maps \(g = f^{-1} \) are in \(\mathcal{C}[A, B] \), then using Theorem (2.7), (2.8), and (2.9), we have

(i) For \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\mu, \nu \in \mathbb{C}, \)
\[|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|B|}{\sqrt{2}} |1 + (1 - \mu) (A - B)| & \text{if } |B| + |3 (1 - \mu) (A - B)| < 2,
\frac{|B|}{\sqrt{2}} |1 + (1 - \mu) (A - B)| & \text{if } |B| + |3 (1 - \mu) (A - B)| \geq 2.
\end{array} \right. \]

(ii) For \(\gamma > 0 \) and \(\mu \in \mathbb{R}, \)
\[|a_3 - \mu a_2^2| \leq \frac{|B|}{\sqrt{2}} |1 + (1 - \mu) (A - B)| \quad \text{if } |B| + |3 (1 - \mu) (A - B)| < 2, \]
\[\frac{|B|}{\sqrt{2}} |1 + (1 - \mu) (A - B)| \quad \text{if } |B| + |3 (1 - \mu) (A - B)| \geq 2. \]

(iii) For \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\mu, \nu \in \mathbb{C}, \)
\[|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|B(1 + |\sin \theta| - \cos \theta)|}{2} |1 + (1 - \mu) (A - B)| & \text{if } |B(1 + |\sin \theta| - \cos \theta)| + |3 (1 - \mu) (A - B)| < 2,
\frac{|B(1 + |\sin \theta| + \cos \theta)|}{2} |1 + (1 - \mu) (A - B)| & \text{if } |B(1 + |\sin \theta| + \cos \theta)| + |3 (1 - \mu) (A - B)| \geq 2.
\end{array} \right. \]

Corollary 2.6. Let \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\lambda = 0 \). If both functions \(f \) of the form (1.1) and its inverse maps \(g = f^{-1} \) are in \(S^\ast[\gamma] \), then similarly, using Theorem (2.7), (2.8), and (2.9), we obtain

(i) For \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\mu, \nu \in \mathbb{C}, \)
\[|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma|}{2} |1 + (1 - \mu) 8 \gamma| + 1 & \text{if } |1 + (1 - \mu) 8 \gamma| < 1,
\frac{|\gamma|}{2} |1 + (1 - \mu) 8 \gamma| + 1 & \text{if } |1 + (1 - \mu) 8 \gamma| \geq 1.
\end{array} \right. \]

(ii) For \(\gamma > 0 \) and \(\mu \in \mathbb{R}, \)
\[|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma|}{2} |1 + (1 - \mu) 8 \gamma| + 1 & \text{if } |1 + (1 - \mu) 8 \gamma| < 1,
\frac{|\gamma|}{2} |1 + (1 - \mu) 8 \gamma| + 1 & \text{if } |1 + (1 - \mu) 8 \gamma| \geq 1.
\end{array} \right. \]

(iii) For \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\mu, \nu \in \mathbb{C}, \)
\[|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{4 |\gamma|^2 (1 - \mu) + |\gamma|(1 + |\sin \theta| - \cos \theta)|}{2} & \text{if } \mu \leq 1 + \psi_1 (\gamma, \theta),
\frac{4 |\gamma|^2 (1 - \mu) + |\gamma|(1 + |\sin \theta| - \cos \theta)|}{2} & \text{if } \mu \geq 1 + \psi_1 (\gamma, \theta),
\end{array} \right. \]

where \(B_1 = A - B, B_2 = -B (A - B), -1 \leq B < A \leq 1, \phi_1 (A, B, \theta) = \frac{[(1 + |\sin \theta| - \cos \theta)]}{2(|A - B|)}, \) and
\[\phi_2 (A, B, \theta) = \frac{[(1 + |\sin \theta| + \cos \theta)]}{2(|A - B|)}. \]

Corollary 2.7. Let \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\lambda = 1 \). Let both functions \(f \) of the form (1.1) and its inverse maps \(g = f^{-1} \) are in \(\mathcal{C}[\gamma] \). Then similarly, using Theorem (2.7), (2.8), and (2.9), we have

(i) For \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\mu, \nu \in \mathbb{C}, \)
\[|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma|}{2} |1 + (1 - \mu) 8 \gamma| + 1 & \text{if } |1 + (1 - \mu) 6 \gamma| < 1,
\frac{|\gamma|}{2} |1 + (1 - \mu) 8 \gamma| + 1 & \text{if } |1 + (1 - \mu) 6 \gamma| \geq 1.
\end{array} \right. \]

(ii) For \(\gamma > 0 \) and \(\mu \in \mathbb{R}, \)
\[|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma|}{2} |1 + (1 - \mu) 8 \gamma| + 1 & \text{if } |1 + (1 - \mu) 6 \gamma| < 1,
\frac{|\gamma|}{2} |1 + (1 - \mu) 8 \gamma| + 1 & \text{if } |1 + (1 - \mu) 6 \gamma| \geq 1.
\end{array} \right. \]

(iii) For \(\gamma \in \mathbb{C} \setminus \{0\} \) and \(\mu, \nu \in \mathbb{C}, \)
\[|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|\gamma|^2 (1 - \mu) + |\gamma|(1 + |\sin \theta| - \cos \theta)|}{6} & \text{if } \mu \leq 1 + \psi_1 (\gamma, \theta),
\frac{|\gamma|^2 (1 - \mu) + |\gamma|(1 + |\sin \theta| - \cos \theta)|}{6} & \text{if } \mu \geq 1 + \psi_1 (\gamma, \theta),
\end{array} \right. \]

where \(B_1 = 2, B_2 = 2, \psi_1 (\gamma, \theta) = \frac{[(1 + |\sin \theta| - \cos \theta)]}{8|\gamma|}, \) and
\[\psi_2 (\gamma, \theta) = \frac{[(1 + |\sin \theta| - \cos \theta)]}{|\gamma|}. \]
where $B_1 = 2$, $B_2 = 2$, $\phi_1(\gamma, \theta) = \frac{(|\sin \theta | - \cos \theta - 1)}{6|\gamma|}$ and $\phi_2(\gamma, \theta) = \frac{|\sin \theta + \cos \theta - 1)}{6|\gamma|}$.

Acknowledgement 1. The research of E. Deniz and M. Çağlar were supported by the Commission for the Scientific Research Projects of Kafkas University, project number 2016-FM-67.

References

[1] B.A. Frasin, M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011) 1569-1573.
[2] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (1) (2013) 49-60.
[3] F.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969) 8–12.
[4] H. Aïrault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (5) (2002) 343-367.
[5] H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10) (2010) 1188–1192.
[6] H. M. Srivastava, S. Bulut, M. Çağlar, N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27(5) (2013) 831-842.
[7] H.M. Srivastava, S.S. Eker, R.M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29(8) (2015) 1839-1845.
[8] H. Orhan, E. Deniz, M. Çağlar, Fekete–Szegö problem for certain subclasses of analytic functions, Demonstratio mathematica (2012) 4:835-846.
[9] H. Orhan, N. Magesh, V. K. Balaji, Fekete–Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afr. Mat. (2016) 27:889–897.
[10] J. M. Jahangiri, N. Magesh, J. Yamini, Fekete–Szegö inequalities for classes of bi-starlike and bi-convex functions, Electron. J. Math. Anal. Appl. 3(1) (2015) 133-140.
[11] J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013) Article ID 190560, 4 pages.
[12] J. M. Jahangiri, S. G. Hamidi, S. A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malay. Math. Sci. Soc. (2)37 (2014), no. 3, 633-640.
[13] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27(7) (2013), 1165-1171.
[14] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol.259, Springer, New York, 1983.
[15] P. Zaprawa, Estimates of Initial Coefficients for Bi-Univalent Functions, Hindawi Publishing Corporation Abstract and Applied Analysis, Volume 2014(2014), Article ID 357480, 6 pages.
[16] P. Zaprawa, On the Fekete–Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21(1) (2014) 169–178.
[17] Q.-H. Xu, Y.-C. Guı, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012) 990-994.
[18] Q.-H. Xu, H.-G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012) 11461-11465.
[19] R.M. Ali, S.K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma–Minda starlike and convex functions, Appl. Math. Lett. 25 (3) (2012) 344–351.
[20] S. Kanas, A. Wisniowska, Conic regions and k–uniform convexity, J. Math. Anal. Appl. 105 (1995) 327-336. MR1609599
[21] S. S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Tamsui Oxford J. Inform. Math. Sci. 29(4) (2013) 487-504.
[22] V. Ravichandran, Y. Polatoglu, M. Bolcal, A. Şen, Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34 (2005) 9–15.
[23] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994.