Quantitative real-time PCR assay with immunohistochemical evaluation of HER2/neu oncogene in breast cancer patients and its correlation with clinicopathological findings

Nadia Gheni, David Westenberg

Department of Pathology and Forensic Medicine, College of Medicine, Tikrit University, Iraq, Department of Biology, Missouri University of Science and Technology, USA

Address for correspondence:
Dr. Nadia Gheni, College of Medicine, Tikrit University, 21 Salma Al Taglubia Street, Iraq. E-mail: ghenin@tu.edu.iq

ABSTRACT

Human epidermal growth factor receptor HER2/neu status is an important prognostic factor for breast cancer as it is crucial in stimulating growth and cellular motility. Overexpression of HER2/neu is observed in 10%−35% of the human breast cancer and is associated with prognosis and response to treatment. The magnitude of amplification must be determined to facilitate better prognosis and personalized therapy in the affected patient. This study aims to investigate the HER2/neu status in breast cancer by concurrent HER2/neu protein overexpression immunohistochemically with HER2/neu DNA amplification by quantitative real-time polymerase chain reaction (PCR), allowing accurate and precise quantification of HER2/neu amplification after a follow-up period. A total of 54 paired tissue samples from formalin-fixed paraffin-embedded (FFPE) breast cancer patients enrolled in this study were collected to evaluate tumor and normal tissues. Only cases with 80% and more tumor cells were included. For confirmation of immunohistochemistry (IHC) results, qPCR was used to determine the HER2/neu amplification. The association between clinicopathological variables like age, tumor size, histological grade, stage, lymph node status, hormone receptor status, family history, recurrence rate, and vital status was evaluated. We observed that 11/54 (20.4%) of the tumor tissues are positive for HER2/neu protein overexpression by IHC. A total of 8 out of these 11 cases (72.7%), which presented a score of 3+, showed gene amplification of HER2/neu. The concordance rate between IHC and qPCR was 94.4%. HER2/neu gene amplification was found to be significantly associated with recurrence, increased risk of death, and progesterone receptor status, supporting a negative prognostic role of HER2/neu in breast cancer survival. In conclusion, IHC can be used as an initial screening test to detect HER2/neu protein overexpression, and the use of qPCR can verify the IHC results and establish HER2/neu status in routine clinical practice.

KEY WORDS: Breast cancer, HER2/neu, immunohistochemistry, quantitative real-time PCR

INTRODUCTION

It is estimated that there were more than 3.5 million women living in the US with a history of invasive breast cancer as of January 1, 2016, and an additional 246,660 will be newly diagnosed in 2016. The median age at diagnosis is 61. About 19% of breast cancers occur among women younger than 50, while 44% occur in those older than 65. Breast cancer is a heterogeneous disease with a variety of morphological and molecular characteristics and response to therapy and clinical outcome. It is divided into five molecular subtypes: luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive, basal-like, and normal-like. This categorization assists in understanding the mechanisms that regulate differentiation and cell proliferation, thus allowing a better prognosis, and providing important tools for the choice of therapy. Breast cancer with HER2 overexpression currently comprises 10%−35% of all cases of human breast cancer, and amplification of the gene is associated with more than 96% of these cases.
The HER2/neu oncogene encodes for a 185 kDa transmembrane tyrosine kinase growth factor receptor that belongs to the epidermal growth factor receptor family.[7] The gene is located at the long arm of chromosome 17(q21) and is expressed in the epithelial cells.[8] In breast cancer, its amplification is strongly associated with poor prognosis in terms of shorter periods without relapse and shorter survival.[6,8-11] More interestingly, HER2/neu status affects the response and resistance to therapies.[12] It has been shown that amplification of HER2/neu is related to tumor size, lymph node metastasis, a high S-phase fraction, aneuploidy, and low level of steroid hormone receptors. These factors might increase the rate of proliferation of tumor cells.[13] It has also been reported that angiogenesis and expression of vascular endothelial growth factor increase when HER2/neu is amplified.[14] It has been observed that the degree of HER2/neu overexpression is higher in early forms of breast cancer than that in more advanced invasive carcinomas.[13] This suggests that alterations in HER2/neu alone cannot lead to progression from relatively benign to a more malignant phenotype in breast tumors. It has been stated that HER2/neu status determines whether certain anti HER2 drugs (e.g., trastuzumab, lapatinib, pertuzumab, and T-DM1) are recommended. The HER2 gene is important in tumor cell growth and tumors that have increased levels of HER2 (as measured by HER2 gene amplification or HER2 protein overexpression) and usually have a higher growth rate and more aggressive clinical behavior.[15] The most common detection methods of HER2/neu include measurement of protein overexpression by immunohistochemical assay and detection of gene amplification by the fluorescence in situ hybridization (FISH) technique.[16] Both of these methods are approved by the US Food and Drug Administration. PCR based methods have become important in clinical analyses, especially, the quantitative PCR methods such as real-time polymerase chain reaction (PCR), which is based on detection of DNA amplification. The HER2/neu gene is amplified in parallel with a reference gene that has a low risk of copy number variation in breast cancer, and then the copy number ratio between HER2/neu and the reference gene is determined.

Real-time PCR is cost effective, and many samples can be analyzed at the same time.[16] The HER2 overexpression is currently defined according to the 2014 ASCO/CAP guideline scoring system to achieve reproducible assay performance.

The aim of the present study was to investigate the usefulness of real-time PCR in evaluating HER2 status in breast cancer and to compare the results with the corresponding findings obtained from immunohistochemistry analysis and clinicopathological data.

METHODS AND MATERIALS

A total of 54 breast cancer cases were enrolled in this study. A prior consent was obtained from the patients. Paired tissue samples comprising normal and tumor tissues were selected from the department of pathology and anatomical science, School of Medicine, University of Missouri, Colombia, from January 2010 to January 2011. All the breast tissues were fixed in 10% neutral buffered formalin and embedded in paraffin under standard conditions. Hematoxylin and eosin stained sample sections from each tumor block were examined microscopically to confirm the presence of >80% cancer cells. Paired normal tissues from the same patients were used as controls and showed histologically normal features. Clinical data including age, stage, histological grade, lymph nodes status, recurrence, family history, and vital status were collected (Table 1). None of the patients had undergone radiation or chemotherapy before surgery. Clinical stage was classified according to the American Joint Committee on Cancer’s TNM Staging System. This study had an Institutional Review Board (IRB) approval obtained from the Department.

Table 1: Clinicopathological features by HER2/neu status

Variables	Amplified	Nonamplified	P
Number of patients			0.539
Age (year)			
<50	8 (14.8%)	46 (85.2%)	
≥50	2 (12.5%)	14 (87.5%)	
Stage			0.725
I+II	8 (20%)	34 (80%)	
III+IV	0	12 (100%)	
Tumor size			0.927
≤2	4 (14.8%)	23 (85.2%)	
(cm) >2	4 (14.8%)	23 (85.2%)	
Lymph node status			0.445
Positive	0	20 (100%)	
Negative	8 (23.5%)	26 (76.5%)	
Histologic grade			0.423
I/II	4 (12.9%)	27 (87.1%)	
III	4 (17.4%)	19 (82.6%)	
ER status			
Positive	7 (18.9%)	30 (81%)	0.121
Negative	1 (10%)	9 (90%)	
PR status			
Positive	5 (15.2%)	28 (84.8%)	0.047
Negative	3 (23.1%)	10 (76.9%)	
Family history of cancer			
Positive	1 (5.3%)	18 (94.7%)	0.250
Negative	7 (20%)	28 (80%)	
Recurrence			
Positive	6 (60%)	4 (40%)	0.041
Negative	2 (4.5%)	42 (95.5%)	
Vital status			
Alive	4 (8.9%)	41 (91.1%)	0.040
Deceased	4 (44.4%)	5 (55.6%)	

Table 2: Sequences and concentrations of primers and hybridization probes used for real-time quantitative PCR

Oligonucleotide	Conc.	Sequence
HER2 forward	5	5'-CCA GTA CCT GCT GAA CTG CTG GT-3'
HER2 reverse	5	5'-TGT AGC AGC CGC ACA TCC -3'
HER2 probe	5	5'-HEX CAG ATT GGC ZEN AAG GGG ATG AGC TAC CTG 3' ABKFQ
RNaseP forward	2.5	5'-AGA TTT GGA CCT GGC AGC G-3'
RNaseP reverse	2.5	5'-GAG CGG CTG TCT CCA CAA GT-3'
RNaseP probe	2.5	5'-6FAM TTC TGA CCT GAC GGC TCT GGC CG 3' 6TAMSp
of Environmental Health and Safety at Missouri University of Science and Technology.

DNA extraction

FFPE breast samples (tumor and normal tissues) were cut using Leica microtome. Sections measuring 2 × 10 μm were placed in a 1.7 ml microcentrifuge tube; then 1 ml xylene was added to the sample, vortexed, and centrifuged at full speed for 2 min. After the supernatant was removed, 1 ml of ethanol (200 proof) was added, vortexed for 10 s, and then centrifuged at full speed for 2 min at room temperature. The samples were air-dried for 15 min until no residual ethanol could be seen. The samples were resuspended in 180 μl A tissue lysis (ALT) buffer with the addition of 20 μl proteinase K and then vortexed. Incubation occurred at 56°C for 3 hr and 90°C for 1 hr. Samples were then cooled at room temperature. Then we added 1 μl Rase A. 200 μl buffer AL was added and vortexed; then 200 μl ethanol was added and vortexed. The entire lysate was transferred to the MinElute column and centrifuged. The DNA was isolated by QIAamp™ DNA FFPE tissue kit (QIAGEN) as described by the manufacturer. A NanoDrop 2000 spectrophotometer was used to read the concentrations.

Immunohistochemistry

The rabbit monoclonal antibody SP3 for HER2/neu (Cell Marque Corporation, Rocklin, CA, USA) was immunostained on the Benchmark ULTRA automated stainer (Ventana Medical Systems, Tucson, AZ, USA). The antigen retrieval method using the ultraView DAB Detection Kit CC2 on a preheated slide at 91°C for 68 min (standard). CC2 is the equivalent of a citrate buffer antigen retrieval buffer. The dilution used for HER2 SP3 was RTU (prediluted) with an immunoglobulin concentration of 1.18 μg/ml with primary antibody incubation time of 32 min. Negative and positive control slides were included in each assay. Samples were interpreted according to the American Society of Clinical Oncology/College of American Pathology (ASCO/CAP) guidelines: Negative (0), weakly positive (2+), and strongly positive (3+), with a threshold of more than 10% of the tumor cells that must show homogenous, dark circumferential (chicken wire) pattern to call results 3+, HER2 positive.[19,10] The estrogen receptor (ER) and progesterone receptor (PR) results were interpreted according to the ASCO/CAP recommended guidelines.[15,18]

SP3 is a rabbit monoclonal antibody that recognizes the extracellular domains of HER2/neu receptors and is a reliable candidate to evaluate the expressions of HER2 in breast cancer cases.[19,20]

Real-time quantitative PCR

Quantification of the HER2/neu gene was determined using an Mx300P QPCR System (Agilent Technologies, Santa Clara, CA, USA) with RNase P as the reference gene. The hybridization probes used for quantification are based on primers and probes described by Chariyalertsak et al.[21] The sequence, primer, and probe concentrations are listed in Table 2. Primers, probes, and prime time master mix were purchased from Integrated DNA Technologies (IDT, Coralville, IA, USA). Primer/probe mixes and master mix were combined with 3 μl template DNA in a final volume of 20 μl. Amplification conditions were denatured at 95°C for 10 min, followed by denaturation at 95°C for 15 s and annealing at 60°C for 1 min. The cycle was repeated 50 times and samples were cooled to 40°C. Triplicate reactions were performed

Description, n (%)
Estrogen receptor status
Progesterone receptor status
HER2/neu status
Negative

Table 3: Estrogen, progesterone, and HER2/neu status in breast cancer patients studied

Description, n (%)
Negative
Positive

Table 4: Comparison between IHC and real-time PCR HER2 protein expression and DNA amplification status in 54 cases of breast cancer

IHC	Nonamplified (%)	Amplified (%)
Negative	43 (79.6%)	0
Positive	3 (5.6%)	8 (14.8%)

IHC score	n (%)	HER2/neu ratio Mean (range)	Ratio <2 n %	Ratio ≥2 n %
0 or 1+	30 (55.6%)	1.28 (1.03-1.53)	30 (55.6%)	-
2+	13 (24.0%)	1.29 (0.79-1.52)	13 (24.0%)	-
3+	11 (20.4%)	1.77 (1.12-2.02)	3 (5.6%)	8 (14.8%)

Table 5: Comparison between IHC and real-time HER2 protein expression and DNA amplification status in 54 cases of breast cancer according to IHC classification

Figure 1: Hematoxylin and eosin (H and E) staining of breast cancer tissues OHB1080E, OHB1080AA, and OHB1080iii. IHC of tumor tissues with HER2/neu and estrogen (ER) and progesterone receptors (PR).
and the mean cycle threshold value (Ct) was used to determine the relative amount of PCR product.

Statistical analysis used

Pearson’s Chi-squared test was performed to evaluate the association between clinicopathological variables and HER2/neu amplification.

All P values were two-sided, and results were considered statistically significant at P < 0.05. All calculations were performed with IBM statistical analysis SPSS 23.

RESULTS

A total of 54 breast cancer patients were included in this study, with ages ranging between 32 and 90 years old (mean age = 56.06 years). No statistical correlation was found between HER2/status and age (P = 0.539), stage (P = 0.725), tumor size (P = 0.927), lymph node status (P = 0.445), ER receptor status (P = 0.121), and family history (P = 0.250). Patients with amplified HER2/neu were more likely to have higher rate of recurrence [X2 = 4.193, P = 0.041] compared to the patients with unamplified tumors. Comparison of individual HER2/neu quantification values showed a significant correlation with the vital status of the patients (P = 0.040). Also, a marginal significant correlation was observed with PR receptor status (P = 0.047), as shown in Table 1.

Estrogen, progesterone, and HER2/neu status in breast cancer using immunohistochemistry

FFPE sections were performed in all breast cancer cases to determine the representative samples with >80% tumor cells [Figure 1 and Table 1]. Estrogen receptors showed positive results in 39 (72.2%) samples, and 15 (27.8%) cases were negative. A total of 38 (70.4%) cases proved to be positive for progesterone receptors and 16 (29.6%) were negative. The tumor tissue with positive results for HER2/neu was identified in 11 (20.4%) cases of breast cancer, and negative results were identified in 43 cases [Table 3].

q RT-PCR compared to IHC

Table 4 shows the comparison between HER2/neu identification using IHC compared to q real-time PCR. HER2 amplification levels were significantly lower in cases presenting with low protein expression (0 or 1+) than those in cases with high expression (3+). None of the low protein cases (score 0 or 1+) showed gene amplification by q RT-PCR, and none of the cases comprising 2+ immunostaining showed gene amplification by q RT-PCR, as shown in Table 5.

A total of 8 out of 11 cases (72.7%) that presented a score of 3+ showed gene amplification of HER2, as shown in Table 5. Concordance between q RT-PCR and IHC was observed in eight cases (concordance rate 94.4%).

Clinicopathological data in comparison with HER2 status

HER2 data were also compared to the clinicopathological features as shown in Table 1. No statistical correlation was observed between age, tumor size, clinical stage, lymph node status, histological grade, ER receptor status, and family history of cancer.

A marginally significant correlation between tumor recurrence, vital status, and PR receptor status was detected.

DISCUSSION

The HER2/neu gene has been extensively studied as a prognostic and predictive marker in clinical breast cancer, making this receptor a valuable target for the treatment of human breast cancer. HER2/neu overexpression has been observed in 10%–35% of human breast cancers. HER2 status is predominantly evaluated by immunohistochemical staining, because it is easy to perform and has relatively low cost.

However, a wide range of sensitivity and specificity was observed among various commercially available antibodies. Quantitative real-time PCR has the potential to become standard in terms of its performance, accuracy, sensitivity, broad dynamic range, and high throughput capacity. A high concordance rate was observed especially between 3+ score by IHC and gene amplification by q RT-PCR. A total of 8 out of 11 cases with a score 3+ by IHC showed gene amplification. Three cases with 3+ status and HER2 amplification showed transcript downregulated expression. Concordance between IHC and q RT-PCR results was 94.4%. The discordance between these methodologies could include interobserver errors, due to subjectivity of IHC interpretation and q RT-PCR analysis, which can cause discrepancies particularly in the initial cycles, which depend not only on the melting temperature of the amplicon, but also on the behavior of the amplicon. Using PCR-based methods, the expression of a tumor- or tissue-specific gene and the presence of genetic abnormalities can be detected in a clinical specimen with higher sensitivity (one malignant cell out of 106_107 normal cells) than that of other techniques such as light microscopy (one malignant cell out of 102_103 normal cells). Using RT-PCR, the nucleic acid molecules can be amplified 1010-fold.

In the present study, a good correlation rate between IHC and q RT-PCR was observed. No correlation was found between HER2/neu gene levels by IHC, gene copy number, or clinicopathological data, including the age, stage, tumor size, histological grade, lymph node status, family history, and ER receptor status. Similarly, the absence of correlation between HER2 status and clinical and pathological features has been reported in other studies. A correlation was observed for HER2 status by IHC and RT-PCR with tumor recurrence and vital status. Marginal correlation with PR receptor status (P = 0.047) is in agreement
with a study by Ji et al. in which tumors with HER2 amplification were more likely to be PR-negative.[30]

Several methods can be used to determine the HER2/neu DNA amplification and protein overexpression including fluorescence in situ hybridization (FISH), IHC, and chromogenic in situ hybridization (CISH), which are semiquantitative.[30] Quantitative real-time PCR can be used for quantitative measurements of HER2/neu DNA.[5] In the current study, we use two different methods to confirm HER2/neu protein overexpression and DNA amplification in breast cancer patients. The standard method to identify HER2/neu status is the IHC technique, where HER2/neu protein expression is detected with different antibodies, different binding affinities, and different epitope specificities, thereby creating differences in HER2/neu overexpression rates[5] in addition to the scoring system, which relies on the subjective measures of staining intensity and pattern.[5] Therefore, IHC can only be the initial screening strategy to distinguish between positive and negative cases of HER2/neu amplification in breast cancer patients.[31] Although FISH is the gold standard for detection of the HER2/neu amplification, this method does not assess the gene expression and cannot identify cases in which the gene product is overexpressed in the absence of gene amplification. The only quantitative technique is quantitative real-time PCR, which offers a more accurate, reliable, and simple method in detecting HER2/neu amplification.[32] However, only 8 out of 54 cases (15%) of the tumor tissue demonstrated positive HER2/neu DNA amplification.

The current study revealed that 94.4% cases were in concordance with IHC and q RT-PCR. Two other studies were performed by Rosa et al.[33] and Olsson et al.[34] The concordance between IHC and q RT-PCR was observed in 59 cases out of 75 cases (78.7%). In the second, there was an 86% concordance rate between real-time PCR and IHC. Although several techniques can be used in order to determine the HER2/neu gene expression, q RT-PCR is more convenient, easier, and rapid compared to IHC, FISH, and CISH. Nistor et al.[35] conclude from their results, obtained from gene amplification of HER2/neu, that real-time PCR combined with the IHC approach for determination of HER2/neu status in breast cancer patients may be an effective and efficient strategy, but HER2/neu detection using qPCR was more accurate and reproducible compared to IHC. False-positive and false-negative results are still seen, despite intensive effort to establish standard methods for detection of HER2/neu amplification by IHC, FISH, and CISH. This is related to fixed tumor tissue in which formalin fixation may cause damage to HER2/neu epitopes. In IHC, conditions like tissue processing, reagent variability, antigen retrieval methods, scoring interpretation, tumor heterogeneity, and case selection or study IHC showed that 3/54 cases (5.6%) were false positives, while qPCR showed unamplified HER2/neu DNA. These three false-positive cases were of 3+ score by IHC.

CONCLUSION

The results obtained by IHC for HER2/neu gene expression were comparable with the results obtained by q RT-PCR for the HER2 amplification and suggest that q RT-PCR is a viable alternative to FISH in evaluating tumors that are uncertain by IHC. IHC should be used as a screening method in the laboratories and methods including q RT-PCR, FISH, and CISH should be performed to confirm the results. It is also recommended that laboratories should establish a high concordance rate between IHC and PCR.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Institute of International Education.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Society AAC. Selected cancers, Breast Cancer Facts and Figures 2016;2016:9-10.
2. 2016 AAcS. Selected cancers, Breast (female). Cancer treatment and Survivorship Facts and Figures 2016-2017. 2016:6.
3. Ali AM, Provenzano E, Bartlett J, Abraham J, Driver K, Munro AF, et al. Prognosis of early breast cancer by immunohistochemistry defined intrinsic sub-types in patients treated with adjuvant chemotherapy in the NEAT/BR9601 trial. Int J Cancer 2013;133:1470-8.
4. Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, et al. Breast cancer prognostic classification in the molecular era: The role of histological grade. Breast Cancer Res 2010;12:1.
5. Nistor A, Watson PH, Pettigrew N, Tabiti K, Dawson A, Myal Y. Real-time PCR complements immunohistochemistry in the determination of HER-2/neu status in breast cancer. BMC Clin Pathol 2006;6:1.
6. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244:707-12.
7. Abdul Murad NA, Razak ZA, Hussain RM, Syed Hussain SN, Ko Ching Huat C, Che Md Ali SA, et al. Quantification of HER-2/neu gene in breast cancer patients using real-time-polymerase chain reaction (Q-PCR) and correlation with immunohistochemistry findings. Asian Pac J Cancer Prev 2013;14:1655-9.
8. Bofin AM, Ytterhus B, Martin C, O'Leary JJ, Hagmar BM. Detection and quantitation of HER-2 gene amplification and protein expression in breast carcinoma. Am J Clin Pathol 2004;122:110-9.
9. Riou G, Mathieu MC, Barrios M, Le Bihan ML, Ahomadegbe JC, Benard J, et al. c-erbB-2 (HER-2/neu) gene amplification is a better indicator of poor prognosis than protein over-expression in operable breast-cancer patients. Int J Cancer 2001;95:266-70.
10. Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, et al. HER-2/neu gene amplification characterized by fluorescence in situ
hybridization: Poor prognosis in node-negative breast carcinomas. J Clin Oncol 1997;15:2894-904.

11. Borg Å, Baldetorp B, Fernö M, Killander D, Olsson H, Ryden S, et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett 1994;81:137-44.

12. Muss HB, Thor AD, Berry DA, Kute T, Liu ET, Koerner F, et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 1994;330:1260-6.

13. Yarden Y, Sliwkowski MX. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2001;2:127-37.

14. Nahta R, Esteva FJ. Herceptin: Mechanisms of action and resistance. Cancer Lett 2006;232:123-38.

15. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. American Society of Clinical Oncology: College of American Pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med 2013;138:241-56.

16. Bánkfalvi A, Boecker W, Reiner A. Comparison of automated and manual determination of HER2 status in breast cancer for diagnostic use: A comparative methodological study using the Ventana BenchMark automated staining system and manual tests. Int J Oncol 2004;25:929-36.

17. Pauletta G, Godolphin W, Press MF, Slamon DJ. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene 1996;13:63-72.

18. Hammond ME, Hayes DF, Wolff AC. Clinical notice for American society of clinical oncology-college of American pathologists guideline recommendations on ER/PgR and HER2 testing in breast cancer. J Clin Oncol 2011;29:e458-e.

19. Ricardo SAV, Milanezi F, Carvalho ST, Leitão DRA, Schmitt FC. HER2 evaluation using the novel rabbit monoclonal antibody SP3 and CISH in tissue microarrays of invasive breast carcinomas. J Clin Pathol 2007;60:1001-5.

20. Song Z, Deng Y, Zhuang K, Li A, Liu S. Immunohistochemical results of HER2/neu protein expression assessed by rabbit monoclonal antibodies SP3 and 4B5 in colorectal carcinomas. J Clin Exp Pathol 2014;7:4454-60.

21. Chariyalertsa S, Purisa W, Vinyuvat S. HER-2/neu amplification determined by real-time quantitative PCR and its association with clinical outcome of breast cancer in Thailand. Asian Pac J Cancer Prev 2011;12:1703-6.

22. Ferretti G, Felici A, Papaldo P, Fabi A, Cognetti F. HER2/neu role in breast cancer: From a prognostic foe to a predictive friend. Curr Opin Obstet Gynecol 2007;19:56-62.

23. Kalal Iravathy Goud SD, Vijayalaxmi K, Babu SJ, Vijay AR. Evaluation of HER-2/neu status in breast cancer specimens using immunohistochemistry (IHC) and fluorescence in-situ hybridization (FISH) assay. Indian J Med Res 2012;135:312.

24. Vandenberg B, Provencher V, Drijkoningen M, Wlodarska I, Vandenberghe P, Peereboom D. Real-time reverse transcription-PCR and fluorescence in-situ hybridization are complementary to understand the mechanisms involved in HER-2/neu overexpression in human breast carcinomas. Histopathology 2005;46:431-41.

25. Ntoulla M, Kaklamani V, Valavanis C, Kafousi M, Statopoulos E, Arapantoni P, et al. HER-2 DNA quantification of paraffin-embedded breast carcinomas with LightCycler real-time PCR in comparison to immunohistochemistry and chromogenic in situ hybridization. Clin Biochem 2006;39:942-6.

26. Kim YR, Choi JR, Song KS, Chong WH, De Lee H. Evaluation of HER2/neu status by real-time quantitative PCR in breast cancer. Yonsei Med J 2002;43:335-40.

27. Mocellin S, Keilholz U, Rossi CR, Nitti D. Circulating tumor cells: The ‘leukemic phase’ of solid cancers. Trends Mol Med 2006;12:130-9.

28. Rosa FE, Silveira SM, Silveira CG, Bergamo NA, Neto FA, Domingues MA, et al. Quantitative real-time RT-PCR and chromogenic in situ hybridization: Precise methods to detect HER-2 status in breast carcinoma. BMC Cancer 2009;9:1.

29. Ji Y, Sheng L, Du X, Qiu G, Chen B, Wang X. Clinicopathological variables predicting HER-2 gene status in immunohistochemistry-equivocal (2+) invasive breast cancer. J Thorac Dis 2014;6:896.

30. Møelans C, De Weger R, Van der Wall E, Van Diest P. Current technologies for HER2 testing in breast cancer. Crit Rev Oncol Hematol 2009;70:380-92.

31. Carney WP, Leitzel K, Ali S, Neumann R, Lipton A. HER-2 therapy. HER-2/neu diagnostics in breast cancer. Breast Cancer Res 2007;9:1.

32. Tse C, Brault D, Gligorov J, Antoine M, Neumann R, Lotz JP, et al. Evaluation of the quantitative analytical methods real-time PCR for HER-2 gene quantification and ELISA of serum HER-2 protein and comparison with fluorescence in situ hybridization and immunohistochemistry for determining HER-2 status in breast cancer patients. Clin Chem 2005;51:1093-101.

33. Olsson H, Jansson A, Holmlund B, Gunnarsson C. Methods for evaluating HER2 status in breast cancer: Comparison of IHC, FISH, and real-time PCR analysis of formalin-fixed paraffin-embedded tissue. Pathol Lab Med Int 2013;5:31-7.