Meta-analysis of association between TCF7L2 polymorphism rs7903146 and type 2 diabetes mellitus

Weiyue Ding†, Li Xu†∗, Lejun Zhang2, Zhijie Han3, Qinghua Jiang3, Zhe Wang4 and Shuilin Jin5∗

Abstract

Background: Large scale association studies have found a significant association between type 2 diabetes mellitus (T2DM) and transcription factor 7-like 2 (TCF7L2) polymorphism rs7903146. However, the quality of data varies greatly, as the studies report inconsistent results in different populations. Hence, we perform this meta-analysis to give a more convincing result.

Methods: The articles, published from January 1st, 2000 to April 1st, 2017, were identified by searching in PubMed and Google Scholar. A total of 56628 participants (34232 cases and 22396 controls) were included in the meta-analysis. A total of 28 studies were divided into 4 subgroups: Caucasian (10 studies), East Asian (5 studies), South Asian (5 studies) and Others (8 studies). All the data analyses were analyzed by the R package meta.

Results: The significant association was observed by using the dominant model (OR = 1.41, CI = 1.36 - 1.47, p < 0.0001), recessive model (OR = 1.58, CI = 1.48 - 1.69, p < 0.0001), additive model (CT vs CC) (OR = 1.34, CI = 1.28-1.39, p < 0.0001), additive model (TT vs CC) (OR = 1.81, CI = 1.69-1.94, p < 0.0001) and allele model (OR = 1.35, CI = 1.31-1.39, p < 0.0001).

Conclusion: The meta-analysis suggested that rs7903146 was significantly associated with T2DM in Caucasian, East Asian, South Asian and other ethnicities.

Keywords: T2DM, Polymorphism, rs7903146, Meta-analysis

Background

Diabetes is one of the largest global health emergencies in the twenty-first century. According to the International Diabetes Federation (IDF) [1], 46.5% of the adults with diabetes are undiagnosed, and 1 in 11 adults, about 415 million people, have diabetes. Every 6 s a person dies of diabetes (5.0 million deaths per year). By 2040, 1 in 10 adults, approximately 642 million people, will have diabetes. Notably, 12% of the global health expenditure, up to $673 billion, is dedicated to diabetes treatments, and the related take up most of the total expenditure.

The most prevalent form of diabetes is type 2 diabetes mellitus (T2DM), and in the developed countries up to 91% of the adults, who are being troubled by the diabetes, have T2DM. Excess body weight, physical inactivity, poor nutrition, genetics, family history of diabetes, past history of gestational diabetes and older age are risk factors that increase the rate of T2DM. Besides, T2DM is a complex disease, and and the function of the glycosylation plays a significant role [2, 3].

The SNP rs7903146(C/T) is a common variant in the gene TCF7L2, and allele T is the risk allele related to T2DM. The gene TCF7L2 is a transcription factor involved in the Wnt signaling pathway, and acts as a critical component of Wnt signalling and action [4–6]. The TCF7L2 gene product, a high mobility group box-containing transcription factor previously implicated in blood glucose homeostasis, is considered to act through the regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway [7]. In human islets, TCF7L2 expression associates positively with insulin gene expression [8, 9].
To address the genetic variations of T2DM, many scholars devoted themselves to the related research [10–16]. The common Pro12Ala polymorphism rs1801282 in PPARγ, the E23K variant rs5219 in KCNJ11, the polymorphism of the 5-HT2C receptor rs3813929 and the VKORC1 polymorphism rs9923231 were found to be associated with T2DM [17–20]. In 2006, Grant SF, et al. [7] confirmed a strongly significant association between susceptibility related to T2DM and common variants in transcription factor 7-like 2 (TCF7L2) in Icelandic subjects, and the result was the same with case-control method in Danish cohort and U.S. cohort. In 2006, Cauchi et al. [21] reported that the T-allele of the single nucleotide polymorphism (SNP) rs7903146 increased the risk of T2DM in the French population with 2367 cases and 2499 controls. The same results were shown by Horikoshi, Yu and Barra in case of the Japanese population, African American population and Brasilia [22–24]. However, Zheng et al. [25] found no association between rs7903146 and T2DM in the Chinese population.

The quality of the data varies greatly, is one of the reasons that the studies report inconsistent results, and the small sample size is another reason. The statistical efficiency can be improved after combining some samples together. The collected data in the control group was tested by the Hardy-Weinberg Equilibrium (HWE) in view of the quality of data. Therefore, we conducted a meta-analysis of published studies involving rs7903146 and T2DM to achieve a more comprehensive result. Finally, a total of 28 studies from 26 single studies [4, 22–46] were collected to reevaluate the association between rs7903146 and T2DM.

Methods
Search strategy
The articles, published from January 1st, 2000 to April 1st, 2017, were identified by searching the keywords “rs7903146” and “type 2 diabetes mellitus” in PubMed and Google Scholar. The selected articles were written in English.

Fig. 1 The flow chart of collecting articles for analyzing the association. And a total of 355 articles were identified by the search strategy. Firstly, a total of 230 articles were removed according to the title and abstract, and 45 articles were removed as the studies did not use case-control method, and 26 articles were removed as the studies did not have sufficient data to calculate OR, and 10 articles were excluded as they did not evaluate the association between rs7903146 and T2DM. After that 44 articles remained. Then, 5 articles were excluded as the control groups didn’t meet the Hardy-Weinberg Equilibrium (HWE), 9 articles were excluded when we made subgroup analyses and reduced the heterogeneity, and 4 articles were excluded as some LADA or type 1 diabetes patients were included in the case groups. Finally 28 studies from 26 articles were left.
Study selection criteria
We selected studies according to the following criteria: (1) The study was designed based on the case-control method. (2) The study evaluated the association between rs7903146 and T2DM. (3) The number of genotypes in case-controls groups was provided for calculating Odds Ratios (ORs). (4) The control group meets HWE. Besides, the p value of HWE was calculated by R program HWE version 1.2 [47]. If $p < 0.05$, the article was preserved, otherwise the article was removed.

Data extraction
We extracted the following information from each study: (1) the first author of each article; (2) the publication year of each article; (3) the population of the study; (4) the ethnicity of individuals in each study; (5) the number of the rs7903146 genotypes both in cases and controls; (6) p value of HWE in the control group. We used R package meta to analyze the data. We also referred to some other methods [48–51] to conduct the meta-analysis.

Choice of genetic model
The rs7903146 has two alleles: C and T. We analyzed the association between rs7903146 and T2DM by using the dominant model (TT+CT versus CC), recessive model (TT versus CC+CT), additive model (CT versus CC), additive model (TT versus CC) and allele model (T versus C), respectively [52].

Table 1 The primary characteristics of the 28 studies

Study	Year	Population	Ethnicity	T2DM	Control
Ezzidi et al.	2009	Arabic Tunisian	Arab	CC	250
Saadi et al.	2008	Arab	Arab	CT	396
Humphries et al.	2006	Afro-Caribbean	Black African	TT	217
Yu et al.	2009	American	Black African		
Danquah et al.	2013	Ghanaiian	Black African		
Yu et al.	2009	USA Caucasian	Caucasian		
Groves et al.	2006	English	Caucasian		
Humphries et al.	2006	European	Caucasian		
Cauchi et al.	2006	Austrian	Caucasian		
Dahlgren et al.	2007	Swedish	Caucasian		
Mayans et al.	2007	Swedish	Caucasian		
Van et al.	2007	Dutch	Caucasian		
Kimber et al.	2007	English	Caucasian		
De Silva et al.	2007	English	Caucasian		
Vcelak et al.	2012	Czech	Caucasian		
Hayashi et al.	2007	Japanese	East Asian		
Honikoshi et al.	2007	Japanese	East Asian		
Kuzuaki et al.	2008	Japanese	East Asian		
Yasuharu et al.	2009	Japanese	East Asian		
Zheng et al.	2011	Chinese	East Asian		
Marquezine et al.	2007	Brazilian	Brazilian		
Barra et al.	2013	Brazilian	Brazilian		
Assmann et al.	2014	Brazilian	Brazilian		
Bodhini et al.	2007	Asian Indian	South Asian		
Chandak et al.	2007	Indian	South Asian		
Rees et al.	2008	UK South Asian	South Asian		
Gupta et al.	2010	Indian	South Asian		
Hussain et al.	2014	Indian	South Asian		

A total of 56628 participants (34,232 cases and 22,396 controls) of 28 studies from 26 articles were included in the study. The name of the first author, the publication year of, the population of the study, the ethnicity of the study, the genotypes of the case-control group and the p value of HWE. If the p value of HWE in control group met the selection criteria ($p > 0.05$), it would be preserved, otherwise the data would be removed.
Table 2 The result of the heterogeneity in subgroup analyses

Subgroup	Dominant I²	P	Recessive I²	P	Additive (CT vs CC) I²	P	Allele I²	P	Additive (TT vs CC) I²	P
Caucasian	28.00%	0.18	0.00%	0.51	9.00%	0.36	38.00%	0.1	20.00%	0.26
East Asian	0.00%	0.9	0.00%	0.85	0.00%	0.96	0.00%	0.82	0.00%	0.84
South Asian	0.00%	0.9	0.00%	0.47	0.00%	0.97	0.00%	0.7	0.00%	0.44
Others	0.00%	0.62	0.00%	0.19	0.00%	0.81	17.00%	0.29	29.00%	0.19
Total	5.00%	0.39	9.00%	0.33	0.00%	0.76	29.00%	0.08	22.00%	0.15

The I² and P value were used to test the heterogeneity by the dominant model (TT+CT versus CC), recessive model (TT versus CC+CT), additive model (CT versus CC), additive model (TT versus CC) and allele model (T versus C), respectively.

Fig. 2 The funnel plots of publication bias in different models. The funnel plots showed the results of the publication bias analyses between rs7903146 and T2DM by using a Dominant Model, b Recessive Model, c Additive Model (CT vs CC), d Allele Model and e Additive Model (TT vs CC). The Y-axis indicated the standard error of each study, and the standard error was smaller, the effect of the meta-analysis would be better.
Heterogeneity test

Odds Ratios and 95% confidence intervals (CIs) were calculated to assess the association between rs7903146 and T2DM. The two quantities, Cochran’s Q and I², were adopted to evaluate the heterogeneity in different kinds of ethnic groups. Q approximately follows a chi square distribution with k-1 degrees of freedom (where k is the number of studies), and the p value can be used to measure the significance level of the heterogeneity. The value of I², ranging from 0 to 100%, is calculated according to the formula, which is I² = (Q-(K-1))/Q*100%. The low, moderate, and high heterogeneity were labelled by I² levels of 25%, 50% and 75%, respectively. If I² is less than 50%, or p is more than 0.10, the fixed effect model is used, otherwise the random effect model is adopted.

Meta-analysis and subgroup analysis

After the heterogeneity test, we used the R package meta to perform the experiment with the fixed effect model [53].

Publication bias analysis and sensitivity analysis

Begg’s test [54] and Egger’s test [55] were selected for testing the publication bias. When a two-tailed value is less than 0.05, the publication bias is significant.

Results

Literature search

A flow diagram for the study selection process was shown in Fig. 1. A total of 355 articles were identified by the search strategy, and 28 studies from 26 articles were left. The detailed information about

Study	Experimental Events	Control Events	Odds Ratio	OR 95%−CI	Weight		
Subgroup = Caucasian							
Cauchi et al., 2006	286	806	200	755	1.53	[1.23; 1.90]	3.2%
Dallgren et al., 2008	201	490	67	563	1.92	[1.37; 2.69]	1.2%
Groves et al., 2006	1230	2531	771	1946	1.44	[1.28; 1.62]	10.8%
Humphries et al., 2006	1858	2058	601	1896	1.54	[1.35; 1.76]	8.8%
Kimber et al., 2007	1820	3397	1405	3119	1.41	[1.28; 1.55]	16.3%
Mayans et al., 2007	372	860	452	984	1.52	[1.25; 1.85]	3.8%
Vriel-Oostrijk et al., 2007	299	741	203	662	1.48	[1.19; 1.88]	3.1%
Silva et al., 2007	686	1735	420	1452	1.54	[1.33; 1.79]	6.8%
Vcex et al., 2012	199	370	148	353	1.61	[1.20; 2.16]	1.7%
Yan et al., 2009	493	577	430	4725	1.21	[1.05; 1.38]	9.1%
Fixed effect model	17363	16455			1.46	[1.38; 1.52]	64.7%
Heterogeneity: I² = 58%, I² = 0.0026, p = 0.18							
Subgroup = East Asian							
Miyake et al., 2008	233	371	1921	3617	1.49	[1.20; 1.86]	3.2%
Hayashi et al., 2007	169	256	1450	2430	1.31	[1.00; 1.72]	2.3%
Morikoshi et al., 2007	24	45	165	408	1.74	[0.84; 3.22]	0.4%
Yashin et al., 2009	47	73	434	806	1.55	[0.94; 2.55]	0.6%
Zheng et al., 2011	26	38	202	341	1.32	[0.66; 2.68]	0.3%
Fixed effect model	783	7610			1.44	[1.24; 1.64]	6.6%
Heterogeneity: I² = 0%, I² = 0, p = 0.90							
Subgroup = Others							
Amsel et al., 2008	343	564	179	304	1.08	[0.82; 1.44]	2.2%
Assmann et al., 2014	571	845	382	643	1.42	[1.16; 1.76]	3.4%
Barra et al., 2012	64	133	49	119	1.33	[0.80; 2.18]	0.6%
Humphries et al., 2006	166	316	141	302	1.26	[0.92; 1.73]	1.8%
Danquah et al., 2013	401	534	273	455	1.39	[1.07; 1.79]	2.4%
Marquezine et al., 2007	67	798	45	609	1.15	[0.78; 1.70]	1.1%
Saadi et al., 2008	65	182	30	101	1.31	[0.76; 2.22]	0.6%
Yan et al., 2009	260	1346	255	1411	1.09	[0.90; 1.31]	4.8%
Fixed effect model	4778	3564			1.24	[1.12; 1.35]	16.8%
Heterogeneity: I² = 0%, I² = 0, p = 0.62							
Subgroup = South Asian							
Bodhini et al., 2007	569	1052	462	1017	1.42	[1.19; 1.68]	5.2%
Chandak et al., 2007	564	758	391	596	1.52	[1.21; 1.93]	2.7%
Gupta et al., 2010	140	239	55	117	1.59	[1.02; 2.49]	0.7%
Hussain et al., 2014	43	85	25	64	1.90	[0.98; 3.66]	0.3%
Rees et al., 2008	476	686	352	574	1.43	[1.13; 1.81]	2.8%
Fixed effect model	2817	2372			1.47	[1.31; 1.64]	11.7%
Heterogeneity: I² = 0%, I² = 0, p = 0.90							
Fixed effect model	25741	30381			1.41	[1.36; 1.47]	100.0%

Fig. 3 The forest plots for the meta-analysis of rs7903146 by using the dominant model. The data of CC/CT/TT was used in the dominant model (CT + TT vs CC)
the search strategy was displayed in Additional file 1: Table S1.

Study characteristics

As shown in Table 1, a total of 56628 participants (34232 cases and 22396 controls) of 28 studies from 26 articles were included in this meta-analysis. The studies were divided into Caucasian (10 studies) [4, 22, 29–36], East Asian (5 studies) [23, 25, 37–39], South Asian (5 studies) [42–46] and Others (Arab (2 studies) [26, 27], Black African (3 studies) [22, 28, 29] and Brazilian (3 studies) [24, 40, 41]) subgroups. The collected data, performed with the R package meta in this meta-analysis, was displayed in Additional file 1: Table S2.

Heterogeneity test

According to the genotypes shown in Table 1, a total of 28 studies were analyzed by the dominant model, recessive model, additive model and allele model, respectively. The heterogeneity of subgroups was shown in Table 2. According to the data displayed in Table 2, we didn't get the significant heterogeneity in the dominant model ($p = 0.39$ and $I^2 = 5.00$%), recessive model ($p = 0.33$ and $I^2 = 9$%), additive model (CT vs CC: $p = 0.76$ and $I^2 = 0.00$%), additive model (TT vs CC: $p = 0.15$ and $I^2 = 22$%) and allele model ($p = 0.08$ and $I^2 = 29$%). As the p value was more than 0.1, we selected the fixed effect model.

Publication bias analysis and sensitivity analysis

The publication bias was not found in all models below. The p values of Begg's test and Egger's test for the dominant, recessive, additive (CT vs CC), additive (TT vs CC) and allele model are 0.7821 and 0.7352, 0.3635 and 0.441, 0.6354 and 0.5673, respectively. The
results were reflected in the funnel plots Fig. 2(a-e) directly.

Association between rs7903146 and type 2 diabetes mellitus

The association between rs7903146 and T2DM was shown in the forest plots: Figs. 3, 4, 5, 6 and 7 were the forest plots of the dominant model (TT + CT versus CC), recessive model (TT versus CC), additive model (CT versus CC), allele model (T versus C) and additive model (TT versus CC), respectively. We made the Z test, and the result was displayed in the Table 3.

In Caucasian subgroup, the results were shown as follows: dominant model (TT + CT vs CC): (OR = 1.45, CI = 1.38 - 1.52, p < 0.0001); recessive model (TT vs CC + CT): (OR = 1.66, CI = 1.53 - 1.79, p < 0.0001); additive model (CT vs CC): (OR = 1.36, CI = 1.29 - 1.43, p < 0.0001); additive model (TT vs CC): (OR = 1.91, CI = 1.76 - 2.08), p < 0.0001); allele model (T vs C): (OR = 1.37, CI = 1.32 - 1.43, p < 0.0001).

In East Asian subgroup, the results were shown as follows: dominant model (TT + CT vs CC): (OR = 1.44, CI = 1.24 - 1.68, p < 0.0001); recessive model (TT vs CC + CT): (OR = 2.82, CI = 1.00 - 7.98, p = 0.0509); additive model (CT vs CC): (OR = 1.42, CI = 1.21 - 1.65, p < 0.0001); additive model (TT vs CC): (OR = 1.81, CI = 1.69 - 1.94, p < 0.0001); allele model (T vs C): (OR = 1.37, CI = 1.32 - 1.43, p < 0.0001).

In South Asian subgroup, the results were shown as follows: dominant model (TT + CT vs CC): (OR = 1.41, CI = 1.31 - 1.64, p < 0.0001); recessive model (TT vs CC + CT): (OR = 1.52, CI = 1.26 - 1.83, p < 0.0001); additive model (CT vs CC): (OR = 1.42, CI = 1.29 - 1.43, p < 0.0001); additive model (TT vs CC): (OR = 1.81,

Table 3

Study	Experimental Events	Total Events	Control Total	Odds Ratio	OR 95% CI	Weight
Subgroup = Caucasian						
Cauchi et al. 2006	208	640	200	1.34	1.06:1.68	3.2%
Dahlgrem et al. 2008	83	410	67	1.88	1.32:2.67	1.2%
Groves et al. 2006	960	2044	771	1.35	1.19:1.53	10.8%
Humphries et al. 2006	865	1866	601	1.43	1.25:1.64	8.7%
Kimber et al. 2007	1459	2788	1405	1.34	1.21:1.48	16.4%
Mayans et al. 2007	318	571	452	1.48	1.29:1.62	3.8%
Vladd-Obstaphneuk et al. 2007	221	586	203	1.37	1.08:1.73	3.1%
Silva et al. 2007	507	1394	420	1.40	1.20:1.64	6.8%
Voelax et al. 2012	156	303	148	1.47	1.08:2.00	1.7%
Yan et al. 2009	392	3783	430	1.15	1.02:1.33	8.9%
Fixed effect model	14185	1655		1.36	1.29:1.43	64.5%
Heterogeneity: p^2 = 9%, p^2 = 0.0007, p = 0.36						
Subgroup = East Asian						
Miyake et al. 2008	224	365	1921	1.47	1.18:1.83	3.4%
Hayashi et al. 2007	165	250	1450	1.31	1.00:1.73	2.4%
Horiohsh et al. 2007	22	43	135	1.59	0.85:2.99	0.4%
Yasahara et al. 2009	45	71	434	1.48	0.90:2.45	0.7%
Zheng et al. 2011	24	37	202	1.27	0.83:2.58	0.4%
Fixed effect model	796	7610		1.42	1.21:1.65	7.2%
Heterogeneity: p^2 = 0%, p^2 = 0, p = 0.96						
Subgroup = Others						
Asmann et al. 2008	253	415	179	1.09	0.81:1.47	2.1%
Asmann et al. 2014	415	630	382	1.32	1.06:1.66	3.3%
Barra et al. 2012	47	110	49	1.07	0.63:1.80	0.7%
Humphries et al. 2008	136	260	141	1.25	0.90:1.75	1.6%
Danquah et al. 2013	323	488	273	1.31	1.00:1.70	2.5%
Marquezone et al. 2007	54	657	45	1.12	0.74:1.69	1.1%
Saadi et al. 2008	54	148	30	1.36	0.79:2.34	0.6%
Yan et al. 2009	215	1133	255	1.04	0.85:1.28	4.8%
Fixed effect model	3841	3944		1.18	1.06:1.31	16.7%
Heterogeneity: p^2 = 0%, p^2 = 0, p = 0.81						
Subgroup = South Asian						
Bodhini et al. 2007	455	846	462	1.40	1.16:1.68	5.0%
Chandak et al. 2007	423	583	391	1.39	1.08:1.78	2.7%
Gupta et al. 2010	96	174	55	1.39	0.87:2.22	0.8%
Hussain et al. 2014	36	71	25	1.77	0.90:3.48	0.3%
Rees et al. 2008	360	526	352	1.37	1.07:1.75	2.7%
Fixed effect model	2200	2372		1.40	1.24:1.58	11.6%
Heterogeneity: p^2 = 0%, p = 0.97						
Fixed effect model	**20992**	**30381**		**1.34**	**1.28:1.39**	**100.0%**

Fig. 5 The forest plots for the meta-analysis of rs7903146 by using the additive model. The data of CC/CT/TT was used in the additive model (CT vs CC).
Fig. 6 The forest plots for the meta-analysis of rs7903146 by using the allele model. The data of CC/CT/TT was used in the allele model (T vs C).

CI = 1.69 - 1.94, \(p < 0.0001 \); additive model (TT vs CC): (OR = 1.77, CI = 1.46 - 2.15, \(p < 0.0001 \)) allele model (T vs C): (OR = 1.44, CI = 1.24 - 1.67, \(p < 0.0001 \)).

In Others subgroup, the results were shown as follows: dominant model (TT + CT vs CC): (OR = 1.41, CI = 1.36 - 1.47, \(p < 0.0001 \)); recessive model (TT vs CC + CT): (OR = 1.43, CI = 1.36 - 1.50, \(p = 0.0002 \)); additive model (CT vs CC): (OR = 1.48, CI = 1.26 - 1.75, \(p < 0.0001 \)); allele model (T vs C): (OR = 1.37, CI = 1.25 - 1.49, \(p < 0.0001 \)).

In total groups, the results were shown as follows: dominant model (TT + CT vs CC): (OR = 1.41, CI = 1.36 - 1.47, \(p < 0.0001 \)); recessive model (TT vs CC + CT): (OR = 1.58, CI = 1.48 - 1.69, \(p < 0.0001 \)); additive model (CT vs CC): (OR = 1.34, CI = 1.28 - 1.39, \(p = 0.0001 \)); additive model (TT vs CC): (OR = 1.81, CI = 1.69 - 1.94, \(p < 0.0001 \)); allele model (T vs C): (OR = 1.35, CI = 1.31 - 1.39, \(p < 0.0001 \)).

Discussion

In the meta-analysis, 56628 participants (34232 cases and 22396 controls) of 28 studies from 26 articles were included. The result of the four subgroups (Caucasian, East Asian, South Asian and Others) suggested that rs7903146 was significantly associated with T2DM in all subgroups and the total groups.

We removed each one of the studies in the groups or any subgroups in the dominant, recessive, additive and allele model for testing the robustness of results, respectively. The results did not change significantly, which displayed that the conclusion was robust. The heterogeneity and publication bias were not found in our meta-analysis.

We used the keywords “rs7903146”, “type 2 diabetes” and “meta-analysis” to search in PubMed, and got nine articles [46, 56–63]. Our work was different from others. We analyzed the association between rs7903146 and T2DM in Caucasian, East Asian, South Asian and Others groups. We did not find a significant heterogeneity in all...
subgroup analyses, so the fixed effect model was used. We found that rs7903146 was associated with T2DM in Caucasian, East Asian, South Asian and other ethnicities significantly.

Some limitations existed in this meta-analysis. Firstly, considering the heterogeneity in all subgroup analyses, we excluded 9 articles. More articles should be added into the meta-analysis. Secondly, some of the same cases or controls may be used in different studies.

Conclusion

The meta-analysis suggested that rs7903146 was significantly associated with T2DM in Caucasian, East Asian, South Asian and other ethnicities.

Table 3 The result of the Z test in subgroup analyses

Subgroup	Dominant	Recessive	Additive (CT vs CC)	Allele	Additive (TT vs CC)	
	Z	P	Z	P	Z	P
Caucasian	14.86	<0.0001	12.35	<0.0001	11.67	<0.0001
South Asian	4.69	<0.0001	1.95	0.0509	4.42	<0.0001
East Asian	6.61	<0.0001	4.47	0.0001	5.45	<0.0001
Others	4.17	<0.0001	3.75	0.0002	3.11	0.0019
Total	17.2	<0.0001	13.53	<0.0001	13.73	<0.0001

The Z test was performed with the dominant model (TT+CT versus CC), recessive model (TT versus CC+CT), additive model (CT versus CC), additive model (TT versus CC) and allele model (T versus C), respectively.
Additional file

Additional file 1: Table S1. The detailed information about the search strategy. Table S2. The collected data in the meta-analysis. (XLSX 13 kb)

Abbreviations
Cis. Confidence intervals; HWE: Hardy-Weinberg Equilibrium; ORs: Odds ratio; SNP: Single nucleotide polymorphism; T2DM: Type 2 diabetes mellitus; TCF7L2: Transcription factor 7-like 2

Acknowledgements
The authors gratefully thanked the editors and reviewers to help improve the manuscript.

Funding
This work was supported by China Natural Science Foundation (Grant No. 11301110), Natural Science Foundation of Heilongjiang Province of China (Grant No. QC2015076, No. A2015001 and No. LC2016024), China Postdoctoral Science Foundation (Grant No. 2015T80326 and No. 2013MS41346), Heilongjiang Postdoctoral Fund (Grant No. LBH-TZ20504, No. LBH-Z13058 and No. LBH-Q13072), Open Project Program of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education of Jilin University (Grant No. 93K172016K16), Open Project of State Key Laboratory of Urban Water Resource and Environment and Harbin Institute of Technology (Grant No. ES201602) and National High-Tech Research and Development Program (863) of China (No. 2015AA020101, 2015AA020108, 2014AA021505).

Availability of data and materials
All the data generated or analyzed in this study was included in this manuscript.

Authors’ contributions
WYD wrote the paper. SLJ and LX revised the paper. WYD, ZJH, LJZ and SLJ collected and selected the data, designed and performed the experiment. QJU and ZW conducted the project. ZJH and SLJ helped interpret the results. WYD and LX developed analytical tools. All authors discussed the results and contributed to the final manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declared that they had no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 College of Computer Science and Technology, Harbin Engineering University, No.145 Nantong Street, Nangang District, 150001 Harbin, China. 2 School of Information Engineering, Yangzhou University, No.196, Huayang West Road, 225127 Yangzhou, China. 3 School of Life Science and Technology, Harbin Institute of Technology, No.92 Xidazhi Street, Nangang District, 150001 Harbin, China. 4 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, No.2699, Qianjin Avenue, Qianweinan District, Changchun, China. 5 Department of Mathematics, Harbin Institute of Technology, No.92, Xidazhi Street, Nangang District, 150001 Harbin, China.

Received: 1 May 2017 Accepted: 23 February 2018 Published online: 07 March 2018

References
1. Cho NH, Whiting D, Forouhi N, Guariguata L, Hambleton I, Li R, Majeed A, Mbanja JC. IDF diabetes atlas. 7th edition. Brussels: International Diabetes Federation, 2015.
2. Yu X, Wang Y, Kristic J, Dong J, Chu X, Ge S, Wang H, Fang H, Gao Q, Liu D, et al. Profiling igg n-glycans as potential biomarker of chronological and biological ages: A community-based study in a han chinese population. Medicine. 2016;95(28).
3. Meng Q, Ge S, Yan W, Li R, Dou J, Wang H, Wang B, Ma Q, Zhou Y, Song M. Screening for potential serum-borne proteomic biomarkers for human type 2 diabetes mellitus using malf-tocf ms PROTEOMICS-Clinical Applications. 2017;11(3–4).
4. Ycelak J, Vejrakova D, Vafikova M, Lukasova P, Bradnova O, Halkova T, Besjak J, Andelova K, Kvassnickova H, Hoskovcova P, et al. T2d risk haplotypes of the tcf7l2 gene in the czech population sample: the association with free fatty acids composition. Physiol Psychol. 2012;61(3): 229.
5. Smith U. Tcf7l2 and type 2 diabetes—we went to know. Diabetologia. 2007;50(1):5–7.
6. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, Macdougald OA. Inhibition of adipogenesis by wing signaling. Science. 2000;289(5481):950–953.
7. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, et al. Variant of transcription factor 7-like 2 (tcf7l2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(12):3–3.
8. Lyssenko V, Lupi R, Marchetti P, Guerra S, O’Helmeland M, Almgren P, Sjogren M, Ling C, Eriksson K, Lethagen S, et al. Mechanisms by which common variants in the tcf7l2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2153–63.
9. Ozmak P, Hansson O, Jonsson AM, Ronn T, Groop L, Renstrom E. Unique splicing pattern of the tcf7l2 gene in human pancreatic islets. Diabetologia. 2009;52(5):850–4.
10. Orahilly S, Barroso I, Wareham NJ. Genetic factors in type 2 diabetes: The end of the beginning? Science. 2005;307(5708):370–9.
11. Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenomics of oral antidiabetic medications: current data and pharmacopeigenomic perspective. Pharmacogenomics. 2011;12(8):1161–91.
12. Iordanidou M, Tavridou A, Petridis I, Arvanitidis KI, Christakidis D, Vargemezis V. The serotonin transporter promoter polymorphism (5-htt1pr) is associated with type 2 diabetes. Clinica Chimica Acta. 2010;411(3):167–71.
13. Ragia G, Petridis I, Tavridou A, Christakidis D, Manolopoulos VG. Presence of cyp2c9*3 allele increases risk for hypoglycemia in type 2 diabetic patients treated with sulfonylureas. Pharmacogenomics. 2009;10(11):1781–87.
14. Ragia G, Tavridou A, Petridis I, Manolopoulos VG. Association of kcnj11 e23k gene polymorphism with hypoglycemia in sulfonylurea-treated type 2 diabetic patients. Diabetes Res Clin Pract. 2012;98(1):119–24.
15. Zhao F, Mamatyusupu D, Wang Y, Fang H, Wang H, Gao Q, Dong H, Ge S, Yu X, Zhang J, et al. The uygur population and genetic susceptibility to type 2 diabetes: potential role for variants in capn10, apm1 and fut6 genes. J Cell Mol Med. 2016;20(11):2138–47.
16. Adua E, Roberts P, Sakyi SA, Yeboah FA, Dompah P, Frimpong K, Anto EO, Wang W. Profiling of cardio-metabolic risk factors and medication utilisation among type ii diabetes patients in ghana: a prospective cohort study. Clin Transl Med. 2017;6(1):32.
17. Altschuler D, Hirschhorn JN, Klannemarck M, Lindgren CM, Vohl M, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, et al. The common ppar[gamma]prot2ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80.
18. Gloyon AL, Weeden MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, et al. Large-scale association studies of variants in genes encoding the pancreatic p-cell kcatp channel subunits kir6.2 (kcnj1) and sur1 (abcc8) confirm that the kcnj11 e23k polymorphism is associated with type 2 diabetes. Diabetes. 2005;54(2):568–72.
19. Iordanidou M, Tavridou A, Vasiladis MZ, Avanitisidki HI, Petridis I, Christakidis D, Vargemezis V, Bougioukas G, Manolopoulos VG. The-759c/t polymorphism of the 5-ht2c receptor is associated with type 2 diabetes in male and female caucasians. Pharmacogenet Genomics. 2008;18(2):153–9.
Ding et al. | BMC Medical Genetics | (2018) 19:38

Page 11 of 12

20. Tavridou A, Petridis I, Vasiileiadis M, Ragia G, Helipoupolos I, Vargemiezis V, Manolopoulos VG. Association of vkr01c-1639 g/a polymorphism with carotid intima–media thickness in type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011;94(2):236–41.

21. Cauchi S, Meyre D, Dina C, Choquet H, Samson C, Gallina S, Balkau B, Charpentier G, Pattou F, Stetsyuk V, et al. Transcription factor tcf7l2 genetic study in the french population. Diabetes. 2006;55(10):2905–8.

22. Yan Y, North KE, Ballantyne CM, Frank LK, Bedu Addo G, Schulze MB, Ezzidi I, Mtiraoui N, Cauchi S, Vaillant E, Dechaume A, Chaieb M, Saadi H, Nagelkerke N, Carruthers SG. Association of tcf7l2 variant genotypes and type 2 diabetes risk in a hospital-based case–control study. Diabetes. 2009;58(1):285–9.

23. Horiguchi M, Hara K, Ko C, Nagai R, Froguel P, Kadowaki T. A genetic variation of the transcription factor 7-like 1 gene is associated with risk of type 2 diabetes in the Japanese population. Diabetologia. 2007;50(4):747–51.

24. Barra GB, Dutra LAS, Watanabe S, Costa PGG, Cruz PSGM, Azevedo MF. Association of rs7903146 single nucleotide polymorphism at the transcription factor 7-like 2 (tcf7l2) locus with type 2 diabetes in afro-caribbean men and women. Arch Med Genet. 2016;20(4):1005–765.

25. Zheng X, Ren W, Zhang S, Liu J, Li S, Li J, Yang P, He J, Su S, Li P. Association of type 2 diabetes susceptibility genes (tcf7l2, slc30a8, pck1 and pck2) and prionsulin conversion in a chinese population. Mol Biol Rep. 2011;38(1):17–23.

26. Saadi H, Nagelkerke N, Carneiro K. Association of tcf7l2 polymorphisms with susceptibility to type 2 diabetes mellitus, metabolic syndrome, and markers of beta cell function and insulin resistance in a population-based sample of emirati subjects. Diabetes Res Clin Pract. 2008;80(3):392–398.

27. Ezidi I, Mitraouli N, Cauchi S, Vaillant E, Dechaume A, Chabre M, Kacem M, Almawi WY, Froguel P, Mahjoub T, et al. Contribution of type 2 diabetes associated loci in the arabic population from tunisia: a case-control study. BMC Med Genet. 2009;10(1):33–33.

28. Danquah I, Othmer T, Frank LK, Bedu Addo G, Schulze MB, Ezzidi I, Mtiraoui N, Cauchi S, Vaillant E, Dechaume A, Chaieb M, Saadi H, Nagelkerke N, Carruthers SG. tcf7l2 gene and predisposition to type 2 diabetes in uk european whites, indian asians and afro-caribbean men and women. J Mol Med. 2006;84(12):1005–1014.

29. Groves CJ, Zeggini E, Minton JAL. Analysis of large-scale samples confirmsthe association between tcf7l2, hhex, kcnj11, and adipq genes in one endogamous ethnic group of north india. Ann Hum Genet. 2010;74(4):361–8.

30. Hussain H, Ramachandran V, Ravi S. Tcf7l2 rs7903146 polymorphism and diabetic nephropathy association is not independent of type 2 diabetes—a study in a south indian population and meta-analysis. Endokrynologia Polska. 2014;65(4):298–305.

31. Han J, Zhang Q, Zhang T, Wu X, Ma R, Wang J, Bai Y, Wang R, Tan R, Wang Y. Analyzing large-scale samples confirms the association between the rs1051730 polymorphism and lung cancer susceptibility. Sci Rep. 2015;5:15642.

32. Gupta V, Khadgawat R, Ng HKT, Kumar S, Aggarwal A, Rao VR, Sachdeva MP. A validation study of type 2 diabetes-related variants of the tcf7l2, hhex, kcnj11, and adipq genes in one endogamous ethnic group of north india. Ann Hum Genet. 2010;74(4):361–8.

33. Fei E, Han Y, Guo S, Wang Y. Analyzing large-scale samples confirms the association between the rs1051730 polymorphism and lung cancer susceptibility. Sci Rep. 2015;5:15642.

34. Gupta V, Khadgawat R, Ng HKT, Kumar S, Aggarwal A, Rao VR, Sachdeva MP. A validation study of type 2 diabetes-related variants of the tcf7l2, hhex, kcnj11, and adipq genes in one endogamous ethnic group of north india. Ann Hum Genet. 2010;74(4):361–8.

35. Hussain H, Ramachandran V, Ravi S. tcf7l2 rs7903146 polymorphism and diabetic nephropathy association is not independent of type 2 diabetes—a study in a south indian population and meta-analysis. Endokrynologia Polska. 2014;65(4):298–305.

36. Guo SW, Thompson EA. Performing the exact test of hardy-weinberg proportion for multiple alleles. Biometrics. 1992;361–372.

37. Han J, Zhang Q, Zhang T, Wu X, Ma R, Wang J, Bai Y, Wang R, Tan R, Wang Y. Analyzing large-scale samples confirms the association between the rs1051730 polymorphism and lung cancer susceptibility. Sci Rep. 2015;5:15642.

38. Yang Y, Wang W, Liu G, Yu Y, Liao M. Association of single nucleotide polymorphism rs3803662 with the risk of breast cancer. Sci Rep. 2016;6:29008.

39. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, Von Elm E, Stroup DS, Altman DG, Moher D, Gotzsche PC, et al. Strengthening the reporting of genetic association studies (strega): an extension of the strobe statement. Hum Genet. 2009;125(2):131–51.

40. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

41. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

42. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

43. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

44. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

45. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

46. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

47. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

48. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

49. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

50. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

51. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

52. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

53. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

54. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.

55. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002;3(2):146–53.
59. Ding Y, Hu Z, Yuan S, Xie P, Liu Q. Association between transcription factor 7-like 2 rs7903146 polymorphism and diabetic retinopathy in type 2 diabetes mellitus: A meta-analysis. Diabetes Vasc Dis Res. 2015;12(6):436–444.

60. Lin Y, Li P, Cai L, Zhang B, Tang X, Zhang X, Li Y, Xian Y, Yang Y, Wang L, et al. Association study of genetic variants in eight genes/loci with type 2 diabetes in a han chinese population. BMC Med Genet. 2010;11(1):97–97.

61. Dou H, Ma E, Yin L, Jin Y, Wang H. The association between gene polymorphism of tcf7l2 and type 2 diabetes in chinese han population: a meta-analysis. PLoS ONE. 2013;8(3).

62. Zhang B, Li W, Zhu M, Xu Y. Association of tcf7l2 gene polymorphisms with type 2 diabetes mellitus in han chinese population: a meta-analysis. Gene. 2013;512(1):76–81.

63. Wang J, Hu F, Feng T, Zhao J, Yin L, Li L, Wang Y, Wang Q, Hu D. Meta-analysis of associations between tcf7l2 polymorphisms and risk of type 2 diabetes mellitus in the chinese population. BMC Med Genet. 2013;14(1):8–8.