Littoraria spp. Snail (Mollusca: Gastropoda) as a Bioindicator in The Mangrove Ecosystem

Syahrial, Desrita*, R. Ezraneti
Department of Marine Science, Faculty of Agriculture, Malikussaleh University
*Corresponding author: desrita@usu.ac.id

Abstract. Coastal environmental damage often occurs in various regions, especially around the mangrove forest area. Generally caused by anthropogenic which is increasingly high and causes mangrove habitat to change and gives great pressure on the biological community that inhabits it. One of the main objectives of bioindicators is to identify species or groups of species that can indicate environmental disturbances, so this study aims to determine or assess how suitable species or groups of **Littoraria** species as bioindicators in monitoring programs in coastal environments, especially mangrove ecosystems. The results of the study concluded that **Littoraria** spp. can be used as a species or group of bioindicator species. This is because they have fulfilled the requirements that must be fulfilled by an organism to be used in the biomonitoring program. However, the criteria for **Littoraria**'s spp. relationship with other species is still unclear, so they must be used with caution.

1. Introduction
Littoraria spp. is one of the genus of the gastropod class with its family taxa is Littorinidae which has taenioglossate type radula which is seven teeth in each row (a common feature of most caenogastropods) [1], able to survive when exposed to seawater splashes [2], are opportunistic feeders [3] and also eat small invertebrates [4, 5]. Availability of food, competition, and predation is a limiting factor for survival and distribution [6, 7], while wave heights [8] and currents [9] are limiting factors for density. In addition, the movement of **Littoraria** spp. was greatly influenced by the tidal period of the sea and the size of the shell [10].

One of the most widely used approaches to monitoring environmental quality is the use of indicator species (bioindicators), both animals [11, 12, 13, 14] and plants [15, 16, 17, 18, 19, 20, 21, 22, 23]. Bioindicators are very useful in measuring biological and non-biological changes [24] with their application depending on the conditions of reference that define the biological conditions or habitat to be achieved [25]. In simple terms, bioindicators are defined as species or groups of species that reflect the biotic or abiotic state of the environment, representing the effects of environmental changes in a habitat, community or ecosystem, and can show diversity in other species [26], so that using bioindicators is very possible assess the impact caused by human activities on surrounding organisms [27].

In tropical and subtropical regions, very dominant mangrove forests were found [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40], growing in tidal areas between sea and land [41, 42, 43, 44], having a heterogeneous environment [45] and the most productive ecosystems [37, 46, 47, 48, 49, 50]. The global economic value of mangroves is around 14000 – 16000 US$/ha/year [51], where the service benefits of mangrove ecosystems in Southeast Asia are equivalent to 4200 US$/ha/year [52] and contribution of forest products non-timber mangroves are around 79% of the family's annual average income at Sundarban [53]. In India, the results of mangrove resources are about 30% of the household income of the population [54], while in East Kalimantan 40% [55], Thailand 83% [56] and Sundarban 90% [57]. Furthermore, economic losses that occur per household in a village protected by the embankment are more of a loss (154 US$) compared to households in a village protected by mangrove forests (33 US$) [58]. In addition, mangrove forests also support complex food webs [59, 60, 61, 62, 63], supporting biodiversity [34, 47, 64, 65, 66, 67, 68, 69], habitat for various coastal and...
marine fauna [47, 70, 71], supporting coastal fisheries [34, 72, 73, 74], storing carbon [75, 76, 77, 78], providing wood [79, 80, 81] to improve water quality [82].

Table 1. Estimates of global mangrove forest based on reference years

No	Reference Source	Reference Years	Mangrove’s Area (km²)
1	[83]	1980	187940
2	[83]	1990	169250
3	[83]	1993	141973
4	[83]	2000	157400
5	[75]	2000	137600
6	[83]	2005	152310

The heavier the anthropogenic pressure in the mangrove region and the close relationship between living things and the environment [24] and the lack of information about bioindicator species from the genus Littoraria in the coastal environment, this study is very necessary. This aims to determine or assess how suitable the species or groups of Littoraria species as bioindicators in the monitoring program. Furthermore, to achieve this goal, Littoraria’s taxonomic nomenclature is adapted to [85], where Littoraria species have many synonym names (Table 2).

2. Categories and Selection of Bioindicator Standards

Biological indicators are used to supplement toxicity [86], chemical valuation methods [25] and serve as evaluations of environmental quality [25, 27]. The most important reason for using bioindicators is cost effectiveness [27] and is a technique that is fast in estimating several groups or the overall diversity of a species [87], so that someone (such as experts) can predict or predict and prepare future [24]. [26] divides indicators into three parts, namely environmental, ecological and biodiversity indicators. Environmental indicators detect changes and or monitor environmental conditions, while ecological indicators show the effects of stressors on biota and monitor changes that cause long-term stress, while biodiversity indicators identify the diversity of taxa in certain areas and monitor changes in biodiversity. To detect environmental changes, environmental and ecological indicators are used, while to detect the diversity of living things, biodiversity indicators are generally used [24].

The abundance of species on earth, there is at least one that fulfills it as an indicator criterion [27], although its selection is very complicated and difficult [24, 88, 89]. This is because species responses to environmental changes may be contradictory [90, 91], the activity and abundance of each species vary throughout the year [92], each species has different ecological requirements [90, 91, 93], and some species that are general in various habitats and some are special [27]. In addition, the most difficult problem in selecting bioindicators is the generalization of results [27] namely how well species or groups of species represent other species in the event of environmental changes [90, 91], so as to make as species or groups of indicators of environmental change species must have several standards or criteria, namely: 1) taxonomy, ecology and habitat characteristics must be clear, 2) spread over a wide geographical area, 3) can provide early warning of a change, 4) easy and cost-effective when surveyed, 5) have many groups of individuals who are independent and not too affected by the size of individual groups, 6) represent responses of other species, 7) represent ecological changes caused by the influence of human (anthropogenic) pressure, and 8) very important socially, economically and culturally [24, 88, 89, 94]. Furthermore, species or groups of species to be used as environmental indicators must also have been carried out studies of climate change, easily observed and emerged for a long time and formed groups with many individuals [24].

3. Testing Littoraria spp. as a Bioindicator

Studies of marine and coastal biota have been numerous and have been used successfully in various types of indicator studies [95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107], including Littoraria’s closest relative Littorina [108] most of the studies regarding responses to heavy metal
pollution (Table 3). In addition, *Littorina* species are also used to understand the spatial and temporal effects of hydrocarbon oil spills and the evaluation of biomonitoring tributyltin (TBT).

3.1. Has a clear taxonomy
Littoraria's taxonomy has been revised and explained by Bandel and Kadolsky [119] and Reid [117, 120, 121], where previously *Littoraria* species were included in the genus *Littorina* [121] whose grouping was based on shell characters [122, 123, 124, 125]. In the family level monograph proposed by Rosewater [122], the group 'scabra' in the Indo-Pacific consists of three species, namely *L. scabra* (widespread and highly variable), *L. melanostoma* and *L. carinifera* (both spread only in Indo-Malaya). Furthermore, after switching to soft anatomical characters [126], the 'scabra' group consists of 20 species, so it must be referred to in the genus *Littoraria* and recently the number of species from the genus *Littoraria* has reached 39 species [118].

3.2. It has clear ecology and habitat characteristics
Thirty-nine (39) of *Littoraria* species are distributed in the tropics and subtropics, most (mainly) found in mangrove trees, although at least some are found on rocky beaches or protected rocks (Table 5) [1, 118].

3.3. Spread over a wide geographical area
The geographical distribution of *Littoraria* is widespread in the Indo Pacific, Atlantic and Pacific Oceans [70, 118, 121, 122, 126, 127, 128, 129], where *Littoraria* is almost exclusively found in tropical regions compared to subtropics, both spread and biodiversity [121] (Table 5).

3.4. Can provide an early warning of a change
The most well-known mangrove-related Littorinidae are *L. scabra* (Linne) in the Indo-Pacific and *L. angulifera* (Lamarck) in the Atlantic [126]. The destruction of mangrove forests caused by land conversion for residential settlements and agricultural land causes gastropod *L.scabra* not found in Ambon Bay mangrove forests [130]. Then the area that experienced physical pressure by aquaculture, industry, residential settlements and tourism, also caused gastropod *L. scabra* not to be found in the mangrove forest of Tugurejo Village, Semarang [131]. While in the mangrove rehabilitation program area, gastropod *L. scabra* was only found with a low attendance rate at some points [132].

3.5. Easy and economically inexpensive during the survey
In conducting surveys, *Littoraria* can be collected by hand (collected without using a tool). This is because his life tends to be relatively sedentary [133] and its movements are very slow [10].

3.6. Have many groups of individuals who are independent and not too affected by the size
Littoraria is typically found on tropical and subtropical beaches [1, 118, 126] and has geographical variations in shell size. As many as 50 individuals of *L. scabra* have been collected by [70] on the Southwestern side of Nananu-i-Ra Island in the Fiji Islands and obtained the size of the shell between 13 – 28 mm, while [10] measured 30 shell lengths of *L. scabra* on the beach Tawiri Ambon Island (Indonesia) ranges from 10 – 24 mm. If the survey/study is carried out in several locations (replication), it will reduce the problem of inequality of a species, where the more number of locations carried out, the species will be evenly distributed and the results will be more accurate [134].

3.7. A represent the response of other species
Specifically, the response of other species due to changes in *Littoraria* (increased or lost) is still less studied. However, changes in *L. littorea*, the closest relative of *Littoraria* [108] have been studied and greatly influence algal cover [135, 136, 137] and barnacles *Balanus balanoides* [137]. This has similarities with *Littoraria*, where *Littoraria* is a herbivorous gastropod [5, 129, 138, 139] with food types such as microalgae, macrophyte sheets, algal filaments and mangrove tissue [3, 129].
Table 2. The names of synonyms and real names of species *Littoraria*.

No	Species Name	Synonyms Name	Real Name
1	*L. aberrans* (Philippi, 1846)	-	-
2	*L. albicans* (Metcalfe, 1852)	*Littorina albicans* Metcalfe, 1852	*Littorina albicans* Metcalfe, 1852
3	*L. angulifera* (Lamarck, 1822)	*Littorina angulifera* (Lamarck, 1822)	*Phasianella angulifera* Lamarck, 1822
4	*L. ardouiniana* (Heude, 1885)	-	-
5	*L. articulata* (Philippi, 1846)	*Littorina intermedia var. articulata* Philippi, 1846	*Melarhaphe blanfordi* Dunker, 1871
6	*L. bengalensis* Reid, 2001	-	-
7	*L. carinifera* (Menke, 1830)	*Littorina carinifera* (Menke, 1830)	-
8	*L. cingulata cingulata* (Philippi, 1846)	*Littoraria cingulata* (Philippi, 1846)	*Littoraria cingulata* Reid, 1986
9	*L. cingulata pristissini* Reid, 1986	-	-
10	*L. cingulifera* (Dunker, 1845)	*Litorina cingulifera* Dunker, 1845	-
11	*L. coccinea* (Gmelin, 1791)	*Litorina coccinea* (Gmelin, 1791)	-
12	*L. conica* (Philippi, 1846)	*Litorina conica* Philippi, 1846	-
13	*L. filosa* (Sowerby, 1832)	*Litorina filosa* G. B. Sowerby I, 1832	*Litorina filosa* G. B. Sowerby I, 1832
14	*L. flava* (King & Broderip, 1832)	*Littorina flava* P. P. King, 1832	*Littorina flava* P. P. King, 1832
		Litorina fasciventris Boettger, 1891	*Litorina fasciventris* Boettger, 1891
		Melaraphe columna (d’Orbigny, 1840)	*Melaraphe columna* (d’Orbigny, 1840)
		Melaraphe columna (d’Orbigny, 1840)	*Melaraphe columna* (d’Orbigny, 1840)
15	*L. glabrata* (Philippi, 1846)	-	-
16	*L. ianthostoma* Stuckey & Reid, 2002	-	*Littoraria ianthostoma* Stuckey & Reid, 2002
17	*L. intermedia* (Philippi, 1846)	*Litorina ambigua* Philippi, 1848	*Litorina intermedia* Philippi, 1846
		Litorina scabra var. articulata Philippi, 1847	*Litorina fraseri* Reeve, 1857
		Litorina fraseri Reeve, 1857	-
Littorina intermedia Philippi, 1846
Littorina intermedia var. punctata Philippi, 1846
Littorina newcombi Reeve, 1857
Littorina scabra var. rhodea Biggs, 1958

18 L. irrata (Say, 1822) Turbo irratus Say, 1822
Litorina irrata (Say, 1822)

19 L. lutea (Philippi, 1847) -
Litorina luteola Quoy & Gaimard, 1833

20 L. luteola (Quoy & Gaimard, 1833) -
Litorina filosa var. subcingulata Nevill, 1885
Litorina luteola Quoy & Gaimard, 1833

21 L. mauritiana (Lamarck, 1822) -
Litorina mauritiana (Lamarck, 1822)
Phasianella vitrea Deshayes, 1863

22 L. melanostoma (Gray, 1839) -
Litorina melanostoma Gray, 1839
Litorina melanostoma var. articulata Nevill, 1885

23 L. nebulosa (Lamarck, 1822) -
Litorina nebulosa (Lamarck, 1822)

24 L. pallescens (Philippi, 1846) -
Litorina pallescens Philippi, 1846
Litorina pallescens var. subcingulata Nevill, 1885

25 L. philippiana (Reeve, 1857) -
Litorina philippiana Martens, 1900
Litorina philippiana Reeve, 1857

26 L. pintado pintado (Wood, 1828) -
Litoraria pintado (Wood, 1828)
Litoraria pintado (Wood, 1828)
Litoraria pintado pintado (Wood, 1828)
Litorina pullata Carpenter, 1864
Litorina pullata Carpenter, 1864
Litorina schmitti Bartsch & Rehder, 1939

27 L. pintado pullata (Carpenter, 1864) -

28 L. rosewateri Reid, 1999 -
Litoraria rosewateri Reid, 1999

29 L. scabra (Linnaeus, 1758) -
Buccinum lineatum Gmelin, 1791
Helix scabra Linnaeus, 1758
Litorina scabra var. punctata Philippi, 1847
Litorina scabra var. rhæbra Philippi, 1847
Litorina novaehiberniae Lesson, 1831
Litorina pallescens var. erronea Nevill, 1885
Litorina scabra (Linnaeus, 1758)
No.	Species	Author Date
30	*L. sinensis* (Philippi, 1847)	*Melarhaphe scabra* (Linnaeus, 1758)
		Littorina sinensis Philippi, 1847
		Littorina strigata Lischke, 1871
		Littorina adonis Yokoyama, 1927
31	*L. strigata* (Philippi, 1846)	*Littorina intermedia* var. *strigata* Philippi, 1846
32	*L. subvittata* Reid, 1986	*Littorina borbonica* Barnard, 1951
33	*L. sulculosa* (Philippi, 1846)	*Littorina sulculosa* Philippi, 1846
34	*L. tessellata* (Philippi, 1847)	*Littorina undulata* Reid, 1986
35	*L. undulata* (Gray, 1839)	*Melarhaphe undulata* Gray, 1839
		Littorina undulata (Gray, 1839)
36	*L. varia* (Sowerby, 1832)	*Littorina variegata* Souleyet, 1852
37	*L. variegata* (Souleyet, 1852)	*Littorina variegata* Souleyet, 1852
38	*L. vespacea* Reid, 1986	*Littoraria pulchra* Gray, 1833
		Littoraria pulchra G. B. Sowerby I, 1832
39	*L. zebra* (Donovan, 1825)	*Littorina zebra* (Donovan, 1825)
		Turbo zebra Donovan, 1825
Table 3. Bioindicator studies of *Littorina* species (mollusks: gastropods).

The Purpose of The Studies	Location	The Result of The Studies	References
Consider evidence of the use of heavy metal indicators against *L. littoralis*	Various estuaries and coasts in England	Gastropod *L. littoralis* is a good indicator of Cd heavy metal contamination	[109]
Assess *L. littorea* gastropods as an indicator of heavy metal contamination	United Kingdom Estuary	*L. littorea* is still far away as an ideal bioindicator of heavy metal contamination in estuaries and coastal waters	[110]
Evaluation of biomonitoring tributyltin (TBT))	Along the North Sea coast of East Frissier between Emden and Cuxhaven	Changes in the pallial (intersex) channel at *L. littorea* are a response to TBT pollution	[111]
Test the application of the *L. littorea* intersex phenomenon for monitoring the biological effects of TBT pollution	German coastline	The intersex phenomenon in *L. littorea* can be used as a monitoring of the biological effects of TBT pollution	[112]
Monitor pollution of TBT using intersex *L. littorea*	Waters of Cork Harbor, Ireland	*L. littorea* can be used as a bioindicator of TBT pollution	[113]
Assessing contamination of heavy metals Cd, Pb, Cu and Zn in gastropod *L. brevicula* Philippi and seawater	Korea Onsan Bay	*L. brevicula* can be used as a bioindicator for metal pollution in the estuary and coastal regions of Korea	[114]
Ensure the use of *L. brevicula* as biomonitor in the coastal waters of Korea	The waters of the Korean coast	*L. brevicula* is a good biomonitor for assessing metal pollution	[115]
Understand the spatial and temporal effects of oil spills on *L. littorea* gastropods	Ondo State, the Southwestern part of Nigeria	*L. littorea* can be used as a bioindicator of oil pollution	[116]
Table 4. Classification of littorinid gastropods by Reid [117].

Family	Subfamily	Genus	Subgenus	Estimated Number of Species
Lacunidae	Lacuna	*Lacuna*		5
		Epheria		6
		Temanella		2
	Sublacuna			2
	Carinolacuna			1
	Aquilonaria			1
	Mainwaringia			1
	Haloconcha			2
Littorinidae	Bembiciinae	Bembicum		3
		Risellops		1
		Peasiella		5
	Littorininae	Laevilitorina	*Laevilitorina*	13
			Corneolitorina	3
	Macquariella			4
	Laevilacunaria	*Laevilacunaria*	3	
			Pellilacunella	1
	Rufolacuna			1
	Rissolittorina			1
	Pellilitorina			2
	Littorina	*Littorina*	*11*	
		Littoraria	*9*	
		Littorinopsis	8	
		Austrolitorina	15	
		Melarhaphe		3
		Fossarilitorina	2	
		Algamorda		1
	Nodilittorina	*Nodilittorina*	5	
		Echinolitorina	1	
	Tectariinae	Tectarius	*Tectarius*	5
			Cenchritis	1
	Echinininae	Echininus		2
		Tectinus		1
		Cremnoconchus	2	

*Estimated 18 species [108]
*bEstimated 39 species [118]

In addition, *Littoraria* contributes to the dynamics of food webs in mangroves [70] or rocky substrates, where the presence of *Littoraria* on the surface of mangrove mud and rocks can provide food for macro-organisms and microalgae and other small invertebrates [4].
No	Species *Littoraria*	Ecological Environment	Distribution Region
1	*L. aberrans* (Philippi, 1846)	Mangrove	West Panama
2	*L. albicans* (Metcalfe, 1852)	Mangrove	Borneo
3	*L. angulifera* (Lamarck, 1822)	Stone and mangrove	Tropical West and East Atlantic Ocean
4	*L. arduiniana* (Heude, 1885)	Stone and mangrove	North and West Pacific Ocean
5	*L. articulata* (Philippi, 1846)	Stone and mangrove	Central Indo Pacific
6	*L. bengalensis* Reed, 2001	Mangrove	Indian Ocean
7	*L. carinifera* (Menke, 1830)	Mangrove	North and East Indo Central Pacific
8	*L. cingulata cingulata* (Philippi, 1846)	Mangrove	North and West Australia
9	*L. cingulata pristissini* Reid, 1986	Mangrove	Shark Bay, Western Australia
10	*L. cingulifera* (Dunker, 1845)	Stone and mangrove	West Africa
11	*L. cocinea* (Gmelin, 1791)	Stone and mangrove	Pasific Ocean
12	*L. conica* (Philippi, 1846)	Mangrove	Central Indo Pacific
13	*L. filosa* (Sowerby, 1832)	Mangrove	North Australia
14	*L. flavia* (King & Broderip, 1832)	Stone and mangrove	West of the Atlantic Ocean
15	*L. glabrata* (Philippi, 1846)	Stone and mangrove	Indian Ocean
16	*L. ianthostoma* Stuckey & Reid, 2002	Mangrove	Joseph Bonaparte Bay, North Australia
17	*L. intermedia* (Philippi, 1846)	Stone and mangrove	Indo Pasific
18	*L. irritora* (Say, 1822)	Mangrove	South and East of the United States
19	*L. lutea* (Philippi, 1847)	Mangrove	West of the Pacific Ocean
20	*L. luteola* (Quoy & Gaimard, 1833)	Mangrove	East Australia
21	*L. mauritiana* (Lamarck, 1822)	Stone and mangrove	West of the Indian Ocean
22	*L. melanostoma* (Gray, 1839)	Mangrove	Central Indo Pacific
23	*L. nebulosa* (Lamarck, 1822)	Stone and mangrove	West of the Atlantic Ocean
24	*L. pallescens* (Philippi, 1846)	Mangrove	Indo Pasific
25	*L. philippiana* (Reeve, 1857)	Mangrove	North and East Australia
26	*L. pintado pintado* (Wood, 1828)	Stone and mangrove	Indo Pasific
27	*L. pintado pullata* (Carpenter, 1864)	Mangrove	East of the Pacific Ocean
28	*L. rosewateri* Reid, 1999	Stone and mangrove	East of the Pacific Ocean
29	*L. scabra* (Linnaeus, 1758)	Stone and mangrove	Indo Pasific
30	*L. sinensis* (Philippi, 1847)	Mangrove	North and West Pacific Ocean
31	*L. strigata* (Philippi, 1846)	Mangrove	Central Indo Pacific
32	*L. subvittata* Reid, 1986	Mangrove	West of the Indian Ocean
33	*L. sulcifera* (Philippi, 1846)	Mangrove	North and West Australia
34	*L. tessellata* (Philippi, 1847)	Mangrove	Caribbean Sea
35	*L. undulata* (Gray, 1839)	Stone and mangrove	Indo Pasific
36	*L. varia* (Sowerby, 1832)	Mangrove	East of the Pacific Ocean
37	*L. variegata* (Souleyet, 1852)	Stone and mangrove	East of the Pacific Ocean
38	*L. vespea* Reid, 1986	Stone and mangrove	Central Indo Pacific
39	*L. zebra* (Donovan, 1825)	Mangrove	East of the Pacific Ocean

[^1]: [1]
[^2]: [118]
3.8. Representing ecological changes caused by the influence of human pressure
[140] study show that the presence of *L. scabra* in non-polluted areas has a greater total weight, length and width of the shell compared to the polluted area. Likewise, the density is lower in polluted areas when compared to non-polluted areas.

3.9. A study of climate change has been carried out
[141] examined the variable environment temperature of *L. scabra* related to climate change and showed that the maximum limit of environmental temperature that could be tolerated by *L. scabra* only reached 33.40ºC, then they showed better-locating behavior if the temperature exceeded 33.40ºC.

3.10. Easy to observe, appear for a long time and form groups with many individuals
The *Littoraria* lifestyle tends to move up and down mangrove trees or perpendicular to the coastline [137]. To move down the mangrove tree, *L. scabra* requires a slower time than upward [70], so they are very easy to observe and appear for a long time. In addition, *Littoraria* is the only arboreal gastropod most abundant in the intertidal region [126] and its dispersal pattern forms groups with many individuals [142]. This statement is also supported by [143] that gastropods live in groups.

3.11. Important socially, economically and culturally
Littoraria can be considered economically important because it has the properties of grazers that affect the density of algae and barnacles. [144] states that Littorinidae density is a key factor in barnacle population dynamics, where barnacles are often a serious problem for a building that is affixed (eg dock/port pole) which can damage and shorten the life of a building [145].

4. Conclusion
Changes and sensitivities of *Littoraria* in coastal areas, especially mangrove ecosystems, can cause them to be used as species or groups of bioindicator species. This is because they have fulfilled the requirements that must be fulfilled by an organism to be used in biomonitoring programs, although their response to represent other species or groups of species is unclear.

References
[1] Reid DG and Mak Y 1999 *Moll. Stud.* 65 355.
[2] Alvarez-Leon R and Garcia-Hansen I 2003 ISME/GLOMIS Elec. Jour. 3 1.
[3] Christensen JT 1998 *Hydrol.* 378 235.
[4] Barlocher F and Newell SY 1994 *Mar. Biol.* 118 109.
[5] Lee OHK, Williams GA and Hyde KD 2001 *Mar. Biol. Assoc. of The Unit. King.* 81 967.
[6] Warren JH 1985 *Exper. Mar. Biol. Eco.* 89 11.
[7] Vaughn CC and Fisher FM 1988 *Exper. Mar. Biol. Eco.* 123 163.
[8] Evans RG 1947 *Ecol.* 34 273.
[9] Lee OHK and Williams GA 2002 *Hydrol.* 481 137.
[10] Tupan CI 2009 *Triton* 5 28.
[11] Schulte-Oehlmann U, Bettin C, Fioroni P, Oehlmann J and Stroben E 1995 *Ecotox.* 4 372.
[12] de Castro IB, Meirelles CAO, Matthews-Cascon H and Fernandez MA 2004 *Brazil. J. Ocean.* 52 135.
[13] Costa MB, Otegui MBP, Barbiero DC and Fernandez MA 2008 *J. Braz. Soc. Ecotoxicol.* 3 65.
[14] Pribadi T, Raffiudin R and Harahap IS 2011 *Biodiv.* 12 235.
[15] Micieta K and Murin G 1997 *Ekolog. Brats.* 16 193.
[16] Micieta K and Murin G 1998 *Wat. Air Soil Pollu.* 104 413.
[17] Geraskin SA, Zimina LM, Dikarev VG, Dikareva NS, Zimin VL, Vasiliyev DV, Oudalova AA, Blinova LD and Alexakhin RM 2003 *Environ. Radioac.* 66 171.
[18] Pasqualini V, Robles C, Garzino S, Greff S, Bousquet-Melou A and Bonin G 2003 *Chemos.* 52 239.
[19] Manning WJ and Godzik B 2004 *Environ. Pollut.* 130 33.
[20] Hijano CF, Dominguez MDP, Gimenez RG, Sanchez PH and Garcia IS 2005 Environ. Monit. Assess. 111 75.
[21] Ratola N, Amigo JM, Oliveira MSN, Araujo R, Silva JA and Alves A 2011 Environ. Experimen. Bot. 72 339.
[22] Parzych A and Jonczak J 2014 Ecolog. Engin. 15 29.
[23] Kashyap R, Sharma R and Uniyal SK 2018 Environ. Monit. Assess. 190 1.
[24] Han Y, Kwon O and Cho Y 2015 Ecol. Environ. 38 119.
[25] Dauer DM 1993 Mar. Poll. Bull. 26 249.
[26] McGeoch MA 1998 Biol. Rev. 73 181.
[27] Rainio J and Niemela J 2003 Biodiv. Conser. 12 487.
[28] Sainilan N, Wilson N, Rogers K, Rajkaran A and Krauss KW 2014 Glob. Chan. Biol. 20 147.
[29] Sandilyan S and Kathiresan K 2014 Ocean Coas. Manag. 102 161.
[30] Kauffmann JB, Heider C, Norfolk J and Payton F 2014 Ecol. Appl. 24 518.
[31] Rogers K, Sainilan N and Woodroffe CD 2014 Estuar. Coas. Shelf Scien. 149 46.
[32] Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S and Turner RK 2014 Glob. Environ. Chan. 26 152.
[33] Giri C, Belshe EF and Narayan GR 2017 Estuar. Coas. 40 1207.
[34] Alongi DM 2018 Forests 9 1.
[35] Hamilton SE and Casey D 2016 Glob. Ecol. Biogeog. 30 279.
[36] Tripathi R, Shukla AK, Shahid M, Nayak D, Puree C, Mohanty S, Raja R, Lal B, Gautam P, Bhattacharyya P, Panda BB, Elara M and Goyal AK 2016 Ecol. Engin. 90 163.
[37] Osland M, Feher L, Griffith K, Cavanaugh K, Enwright N, Day RH, Stagg CL, Krauss KW, Howard JR, Grace JB and Rogers K 2016 Ecol. Monog. 86 341.
[38] Akbar AA, Sartohadi J, Djohan TS and Ritohardoyo S 2017 Ibm. Lingk. 15 1.
[39] Gillis LG, Belshe EF and Narayan GR 2017 Estuar. Coas. 40 1207.
[40] Alongi DM 2018 Forests 9 1.
[41] Kathiresan K and Bingham BL 2001 Advan. Mar. Biol. 40 81.
[42] Alongi DM 2015 Curr. Clim. Chan. Repor. 1 30.
[43] Vane CH, Harrison I, Kim AW, Moss-Hayes V, Vickers BP and Hong K 2009 Mar. Poll. Bull. 58 134.
[44] Gaut BS 2018 New Phytol. 217 5.
[45] Couturier S, Castellou-Etcheysry J, Patino P and Martin E 2009 Forest Ecol. Manag. 257 23.
[46] Vannucci M 2001 Braz. J. Biol. 61 599.
[47] Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton L, Leung C, Leung PM, Lyras E and Martin E 2009 Mar. Ecol. Prog. Ser. 370 67.
[48] Sandilyan S and Kathiresan K 2012 Biodiv. Conser. 21 3523.
[49] Chakraborty SK 2013 Ecoscan 3(Special) 251.
[50] Hartati and Harudu L 2016 Penel. Pendid. Geog. 1 30.
[51] Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC and Silliman BR 2011 Ecol. Monog. 81 169.
[52] Brander LM, Wagdendenon AJ, Hussain SS, McVittie A, Verburg PH, De Groot RS and van der Ploeg S 2012 Ecosys. Surv. 1 62.
[53] Singh A, Bhattacharya P, Vyas P and Roy S 2010 Human Ecol. 29 191.
[54] Hussain SA and Badola R 2010 Wet. Ecol. Manag. 18 321.
[55] Bosma R, Sidik AS, van Zwieten P, Aditya A and Visser L 2012 Wet. Ecol. Manag. 20 89.
[56] Barbier EB 2007 Environ. Develop. 16 398.
[57] Getzner M and Islam MS 2013 Inter. J. Sustain. Develop. Plan. 8 75.
[58] Badola R and Hussain SA 2005 Environ. Conser. 32 85.
[59] Dittmar T and Lara RJ 2001a Mar. Ecol. Prog. Ser. 213 67.
[60] Dittmar T and Lara RJ 2001b Estuar. Coas. Shelf Scien. 52 249.
[61] Dittmar T, Lara RJ and Kattner G 2001 Mar. Chem. 73 253.
[62] Jennerjahn TC and Ittekot V 2002 Naturwissenschaften 89 23.
[63] Gilbert M, Needoba J, Koch C, Barnard A and Baptista A 2013 Estuar. Coast. 36 708.
[64] Primavera JH 1997 Aquacul. Resear. 28 815.
[65] Valiela I, Bowen JL and York JK 2001 Biosci. 51 807.
[66] Macintosh DJ, Ashtona EC and Havannon S 2002 Estuar. Coas. Shel. Scien. 55 331.
[67] Munby PJ, Edwards AJ, Arias-Gonzalez JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC and Llewellyn G 2004 Nat. 427 533.
[68] Onrizal 2010 Biol. Indon. 6 163.
[69] Valencz APMC and Santos PP 2012 Mar. Poll. Bull. 64 1809.
[70] Alfaro AC 2007 Mar. Fresh. Behav. Physiol. 40 247.
[71] Kusmana C 2011 Pengl. Sum. Alam Ling 1 152.
[72] Aboudha PAW and Kairo JG 2001 Hydrobiol. 458 255.
[73] Dsikowitzky L, Nordhaus I, Jennerjahn TC, Khrycheva P, Sivatharshan Y, Yuwono E and Schwarzbauer J 2011 Mar. Poll. Bull. 62 851.
[74] Barkes IHT, Drengstig A, Kumara MP, Jayasinghe JMPK and Huxham M 2015 Mar. Pol. 61 273.
[75] Siri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J and Duke N 2011 Glob. Ecol. Biogeog. 20 154.
[76] Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M and Kanninen M 2011 Nat. Geos. 4 293.
[77] Dutta MK, Bianchi TS and Mukhopadhyay SK 2017 Fron. Mar. Scien. 4 1.
[78] Liu X, Yiong Y and Liao B 2017 Plant Soil 421 493.
[79] Burbridge PR and Koesoebiono 1982 Aquat. Bot. 89 220.
[80] Walters BB, Ronnback P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E and Dahouh-Guebas F 2008 Aquat. Bot. 89 220.
[81] Murdiyarso D, Purbo-puspipto J, Kauffman JB, Warren MW, Sasmito SD, Donato DC, Manuri S, Krisnawati H, Taberima S and Kurnianto S 2015 Nat. Clim. Chang. 5 1089.
[82] Day JW, Coronado-Molina C, Vera-Herrera FR, Twilley R, Rivera-Monroy VH, Alvarez-Guillen H, Day R and Conner W 1996 Aquat. Bot. 55 39.
[83] [FAO] Food and Agriculture Organization 2007 The World’s Mangroves 1980–2005 (Rome: FAO Forestry Paper) p 89.
[84] [ITTO and ISME] International Tropical Timber Organization and International Society for Mangrove Ecosystems 1993 Mangrove Ecosystems: Technical Reports (Nishihara: ITTO/ISME/JIAM Project PD71/8).
[85] [WoRMS] World Register of Marine Species 2019 Available from http://www.marinespecies.org/.
[86] Bridgham SD 1998 Archiv. Environ. Contam. Toxic. 17 731.
[87] Colwell RK and Coddington JA 1994 Philos. Transac. Roy. Soc. Lon. B. 345 101.
[88] Noss RF 1990 Conser. Biol. 4 355.
[89] Pearson DL and Cassola F 1992 Conser. Biol. 6 376.
[90] Lawton JH, Bignell DE, Bolton B, Blooms GE, Eggelton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS and Watt AD 1998 Nat. 391 72.
[91] Jonsson BG and Jonsell M 1999 Biodiv. Conser. 8 1417.
[92] Janzen DH and Shoener TW 1968 Ecol. 14 96.
[93] Dufrene M and Legendre P 1997 Ecol. Monog. 67 345.
[94] Niemela J 2000 Annal. Zoolog. Fenn. 37 307.
[95] Butterworth J, Lester P and Nickless G 1972 Mar. Poll. Bull. 3 72.
[96] Mason AZ and Simkiss K 1983 Mar. Biol. Assoc. Unit. King. 63 661.
[97] Langston WJ and Zhou M 1986 Mar. Biol. 92 505.
[98] Langston WJ and Zhou M 1987 Mar. Bio. Assoc. Unit. King. 67 585.
[99] Marigomez JA and Ireland MP 1989 Scien. Tot. Environ. 78 1.
[100] Langston WJ, Bebianno MJ and Zhou M 1989 *Mari. Environ. Resear* 28 195.
[101] Marigomez JA and Ireland MP 1990 *Scien. Tot. Environ.* 90 75.
[102] Nott JA, Bebianno MJ, Langston WJ and Ryan KP 1993 *Mar. Biol. Assoc. Unit. King.* 73 655.
[103] Deutsch U and Brick M 1993 *Helgol. Meeresunt.* 47 49.
[104] Soto M, Ireland MP and Marigomez I 1997 *Scien. Tot. Environ.* 198 135.
[105] Paek S, Chung S and Lee I 1999 *Kor. J. Ecol.* 22 95.
[106] Park J, Chung S, Park I, Kim Y, Koh C and Lee I 2002 *Compar. Biochem. Physiol. Part C.* 131 425.
[107] Han S, Park J and Lee I 2003 *Environ Scien Heal, Part A: Toxic/Hazard. Substan. Environ. Engin.* 38 965.
[108] Reid DG, Dyal P and Williams ST 2012 *Zoolog. Scrip.* 41 125.
[109] Bryan GW 1983 *Scien. Tot. Environ.* 28 91.
[110] Bryan GW, Langston WJ, Hummerstone LG, Burt GR and Ho YB 1983 *Mar. Biol. Assoc. Unit. King.* 63 327.
[111] Bauer B, Fioroni P, Ide I, Liebe S, Oehlmann J, Stroben E and Watermann B 1995 *Hydrobiol.* 309 15.
[112] Bauer B, Fioroni P, Schulte-Oehlmann U, Oehlmann J and Kalbfus W 1997 *Environ. Poll.* 96 299.
[113] Casey JD, De Grave S and Burnell GM 1998 *Hydrobiol.* 378 193.
[114] Kang S, Choi M, Oh I, Wright DA and Koh C 1999 *Scien. Tot. Environ.* 234 127.
[115] Olofide IA, Lajide L, Oladoja NA, Olumekun VO and Adeyemi OO 2011 *Turk. J. Fish. Aquat. Scien.* 11 451.
[116] Reid DG 1989 *Philosop. Transac. Roy. Soc. Lon. Ser. B.* 324 1.
[117] Reid DG 2001 *Nautilus* 115 115.
[118] Rosewater J 1970 *Indo-Pacific Mollus.* 2 417.
[119] Rosewater J 1972 *Indo-Pacific Mollus.* 2 507. (Replacement pages 509–516 issued 1973).
[120] Reit DG 1986 *Tentonid Molluscs of Mangrove Forests in The Indo-Pacific Region. The Genus Littoraria.* (London: British Museum (Natural History)) p XV + 228.
[121] Reid DG 2001 *Nautilus* 115 115.
[122] Rosewater J 1970 *Indo-Pacific Mollus.* 2 417.
[123] Rosewater J 1972 *Indo-Pacific Mollus.* 2 507. (Replacement pages 509–516 issued 1973).
[124] Rosewater J 1973 *Indo-Pacific Mollus.* 2 507.
[125] Rosewater J 1981 *Atlan. Report* 13 7.
[126] Reid DG 1985 *Biol. J. Linn. Soc.* 26 39.
[127] Hamilton PV 1977 *Mar. Behav. Physiol.* 4 293.
[128] Sanpanich K, Wells FE and Chitravong Y 2008 *Raff. Bull. Zool.* 18 225.
[129] Alfaro AC 2008 *Estuar. Coas. Shelf Scien.* 79 718.
[130] Suyadi 2009 *Ber. Biol.* 9 481.
[131] Hardooyantoro S, Hartati R and Widianingsih 2013 *Mar. Resear.* 2 85.
[132] Siaen IF, Hendrarto B and Supardjo MN 2013 *Manag. Aquat. Resour.* 2 93.
[133] Salmo SG, Tibbetts I and Duke NC 2017 *Biodiv. Conser.* 26 865.
[134] Weaver JC 1995 *Conser. Biol.* 9 939.
[135] Lubchenco J and Menge BA 1978 *Ecol. Monog.* 48 67.
[136] Bertness MD, Yund PO and Brown AF 1983 *Experimen. Mar. Biol. Ecol.* 71 147.
[137] Petrovits PS 1983 *Ecolog.* 64 522.
[138] Imrie DW, McCrohan CR and Hawkins SJ 1990 *Hydrobiol.* 193 191.
[139] Volotolina D and Sacchi CF 1990 *Hydrobiol.* 193 147.
[140] Wolf HD and Rashid R 2008 *Environ. Pollut.* 152 636.
[141] Chapperon C and Seunort L 2011 *Glob. Chang. Biol.* 17 1740.
[142] Adi JS, Sudarmadji and Subchan W 2013 *Ilm. Das.* 14 99.
[143] Tuheteru M, Notosoedarmo S and Martosupono M 2014 *Pros. Sem. Nas. Raj. Ampat* (Waisai).
[144] Buschbaum C 2000 *Hydrobiol.* 440 119.
[145] Nontji A 2001 *Laut Nusantara* (Jakarta: Djambatan Edisi Revisi Cetakan 5) p 300.