Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Substituted imidazopyridines as potent inhibitors of HCV replication

Inge Vliegen¹, Jan Paeshuyse¹, Tine De Burghgraeve¹, Laura S. Lehman², Matthew Paulson², I-Hung Shih², Eric Mabery², Nina Boddeker², Erik De Clercq¹, Hans Reiser², David Oare², William A. Lee², Weidong Zhong², Steven Bondy², Gerhard Pürstinger³, Johan Neyts¹,*

¹Rega Institute for Medical Research, KU Leuven, Minderbroedestraat 10, 3000 Leuven, Belgium
²Gilead Sciences, Foster City, CA, USA
³Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Austria

Background/aims: Following lead optimization, a set of substituted imidazopyridines was identified as potent and selective inhibitors of in vitro HCV replication. The particular characteristics of one of the most potent compounds in this series (5-[[3-(4-chlorophenyl)-5-isoxazolyl]methyl]-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine or GS-327073), were studied.

Methods: Antiviral activity of GS-327073 was evaluated in HCV subgenomic replicons (genotypes 1b, 1a and 2a), in the JFH1 (genotype 2a) infectious system and against replicons resistant to various selective HCV inhibitors. Combination studies of GS-327073 with other selective HCV inhibitors were performed.

Results: Fifty percent effective concentrations for inhibition of HCV subgenomic 1b replicon replication ranged between 2 and 50 nM and were 100-fold higher for HCV genotype 2a virus. The 50% cytostatic concentrations were $\geq 17 \mu M$, thus resulting in selectivity indices of ≥ 340. GS-327073 retained wild-type activity against HCV replicons that were resistant to either HCV protease inhibitors or several polymerase inhibitors. GS-327073, when combined with either interferon α, ribavirin, a nucleoside polymerase or a protease inhibitor resulted in overall additive antiviral activity. Combinations containing GS-327073 proved highly effective in clearing hepatoma cells from HCV.

Conclusions: GS-327073 is a potent in vitro inhibitor of HCV replication either alone or in combination with other selective HCV inhibitors.

© 2009 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Keywords: Non-nucleoside; HCV RdRp inhibitor; Combination; Viral clearance

1. Introduction

An estimated 170–180 million people worldwide are chronically infected with HCV and are thus at increased risk of developing liver cirrhosis, hepatocellular carcinoma, liver failure and end-stage liver disease [1]. The current standard therapy, i.e. pegylated interferon in combination with ribavirin, is associated with significant side-effects; moreover, a sustained virological response is (depending on the genotype) obtained in only 50–60% of the patients [2,3]. Hence, there is an urgent need for new
potent, selective and safe drugs for the treatment of HCV infections [4,5].

Several potent and selective inhibitors of HCV replication, most of which target the NS3 protease and the NS5B RNA-dependent RNA polymerase (RdRp), have been developed in recent years [4,6,7]. Other viral (such as NS4A) [8] and cellular targets (such as cyclophilins) [9] involved in the HCV lifecycle are also being explored. The efficacy of a number of inhibitors has been or is being studied in patients chronically infected with HCV [10].

Both nucleoside and non-nucleoside inhibitors of the HCV RdRp have been reported. Nucleoside HCV polymerase inhibitors act as premature chain terminators following conversion to their 5'-triphosphate metabolite and incorporation in the viral genome. 2'-C-Methyletidine (2'-C-MeCyt) [11] was the first nucleoside HCV inhibitor to enter clinical studies. Development of this compound has been discontinued in the light of modest antiviral efficacy along with significant gastrointestinal side effects [12]. The efficacy of R1626, a prodrug of 4'-azidocytidine, is currently being evaluated in combination with standard therapy [13]. β-p-2'-Deoxy-2'-fluoro-2'-C-methyletidine (prodrug R7128) has demonstrated promising efficacy in phase I studies in chronically infected patients [14]. Various non-nucleoside inhibitor classes of the HCV RdRp, including benzimidazoles [15–17], indoles [18–21], thiophene-based carboxylic acids [22,23], phenylalanines [24,25], dihydropyranones [26,27], pyranoindoles [28–30], proline sulfonamides [31], benzo-thiadiazines [32–36], benzylidene derivatives [37] and acrylic acids [38,39] have been reported, but optimization was not further pursued or clinical development has been stopped because of serious adverse effects. Efficacy of the benzofuran non-nucleoside RdRp inhibitor (HCV-796) was demonstrated in infected patients [40,41] but clinical development was stopped because of relatively independent of cell proliferation. Cells were grown in Dulbecco's modified Eagle's medium (DMEM, Gibco, Merelbeke, Belgium) supplemented with 10% heat-inactivated foetal calf serum (Integro, Zaandam, The Netherlands), 1 x MEM non essential amino acids solution without l-glutamine (Gibco), 100 IU of penicillin/ml and 100 µg of streptomycin/ml (Gibco) and 1 mg/ml G418 (Genetin® Selective Antibiotic, Gibco) for Huh 9-13 and HuH6 or 250 µg/ml G418 for Huh 5-2 cells. Huh-Lunet cells were cultured without G418. Replicons resistant to the protease inhibitors BILN-2061 and VX-950, the nucleoside polymerase inhibitors 4'-azidocytidine and 2-C-MeCyt, or the non-nucleoside RdRp inhibitor benzothiadiazide (GSK-4) were generated by selective pressure using increasing concentrations of the respective compounds.

2.2. Cell cultures

Huh 7 cells carrying subgenomic HCV replicon 1a;NS3-3′/wt[Huh 9-13] [53] or luc-ubs-neo/NS3-3′/5.1 [Huh 5-2] [54] were kindly provided by R. Bartenschlager, (University of Heidelberg, Heidelberg, Germany). HuH6 replicons [55] have a similar genetic make-up as Huh 5-2 replicons, but (i) replicate in a different cell clone, (ii) carry different adaptive mutations and (iii) replicon replication is not inhibited by IFNα, and relatively independent of cell proliferation. Cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Merelbeke, Belgium) supplemented with 10% heat-inactivated foetal calf serum (Integro, Zaandam, The Netherlands), 1 x MEM non essential amino acids solution without l-glutamine (Gibco), 100 IU of penicillin/ml and 100 µg of streptomycin/ml (Gibco) and 1 mg/ml G418 (Genetin® Selective Antibiotic, Gibco) for Huh 9-13 and HuH6 or 250 µg/ml G418 for Huh 5-2 cells. Huh-Lunet cells were cultured without G418. Replicons resistant to the protease inhibitors BILN-2061 and VX-950, the nucleoside polymerase inhibitors 4'-azidocytidine and 2-C-MeCyt, or the non-nucleoside RdRp inhibitor benzothiadiazide (GSK-4) were generated by selective pressure using increasing concentrations of the respective compounds.

2.3. Anti-HCV assay in replicon containing cells

Huh 9-13, HuH6 and Huh 5-2 cells were seeded at a density of 5 x 10⁴ cells per well in 96-well cell culture plates [Huh 9-13, HuH6 (Iwaki, Asahi Techno Glass, Japan)] or in tissue culture treated white 96-well view plates [Huh 5-2 (Packard, Canberra, Canada)] in complete DMEM without G418. Antiviral assays were carried out as reported earlier [56]. Read-out for Huh 5-2 cells was a luciferase assay, quantification of viral RNA in Huh 9-13 and HuH6 was performed by means of real-time PCR. For Huh 5-2 cells, the EC₅₀ was defined as the concentration of compound that reduced the firefly luciferase signal by 50%; for Huh 9-13 and HuH6 cells as the concentration of compound that reduced the amount of HCV RNA by 50%.

2.4. Antiviral assays with HCVcc virus

A J6/JFH chimeric HCV reporter virus (J6/JFH-Rluc2a-FLAG) was constructed [57]. Infectious virus stocks were generated by transfecting in vitro transcribed RNA into Huh-Lunet cells and harvesting culture medium from the transfected cells. To test antiviral activity of compounds against this chimeric 2a virus, Huh-Lunet cells in 96-well plates (5000 cells per well) were infected with the virus (MOI = 0.1) after which serial dilutions of compounds were added. After three days of incubation, medium was removed, cells were washed once with PBS and lysed using a lysis buffer containing 1% Triton X-100. Viral replication was monitored by measuring Renilla luciferase activity according to the manufacturer’s protocol (Promega, Madison, WI), or by RNA extraction and real-time quantitative RT-PCR. Antiviral data were fit to the logistic dose response equation $y = a/(1 + ((x/b)^c))$ using XLFit software (IBDS, Emmeryville, CA), and EC₅₀ values were calculated from the resulting equations as described previously [58].
2.5. Cytostatic assay

Replicon-containing cells (Huh 5-2, HuH6 or Huh 9-13) were seeded at a density of 5 × 10^5 cells per well in complete DMEM without G418 pressure. The 50% cytotoxic concentration (CC50), which is defined as the concentration that inhibits the proliferation of exponentially growing cells by 50%, was determined using the MTS/MTS method previously described [56].

2.6. Drug combinations

The effects of drug–drug combinations were studied in HuH6 cells, in which replicon replication is largely independent of cell proliferation (which is important when planning combination studies with a cytostatic drug such as ribavirin) [55]. Cells were seeded in complete DMEM without G418 and compounds were added to the cells in the cell culture plates in checkerboard format. Combinations for each pair of compounds were at least performed in three independent experiments. Data were evaluated using the method of Prichard and Shipman [59]. Briefly, the theoretical additive effect is calculated from the dose–response curves of individual compounds by the equation Z = X + Y(1 – X), where X represents the inhibition produced by compound 1 and Y represents that of compound 2. Z represents the effect produced by the combination of compound 1 and compound 2. The theoretical additive surface is subtracted from the actual experimental surface, resulting in a horizontal surface that equals the zero plane when the combination is additive. Data points more than 20% above the zero plane indicate synergistic activity, data points lower than 20% under the zero plane indicate antagonistic activity.

2.7. HCV replicon clearance-rebound assay

Huh 9-13 cells were seeded in 25 cm² culture flasks at a cell density of 3 × 10^5 cells per condition; a sample of 1.5 × 10^5 Huh 9-13 cells was collected in RLT buffer (RNeasy mini kit (Qiagen) (“Clear- ance 0” sample) and stored at −80 °C until further use. Cells were cultured for 24 h, after which standard cell culture medium containing 1 mg/ml G418 was replaced with medium that contained either no antiviral drug or various concentrations of GS-327073, IFNα 2b, 2-C-MeCyt or VX-950 (all conditions in the absence of G418). Cells were incubated until 90% confluency was reached. Cells were subsequently subcultured at a density of 3 × 10^5 per 25 cm² culture flask containing the same concentration of antiviral drug without G418 (clearance “C”) or were subcultured in culture medium containing 1 mg/ml G418 in the absence of antiviral drug (rebound “R”). At every subculture step a sample of 1.5 × 10^5 cells was lysed in RLT buffer and stored at −80 °C. After collection of all samples, RNA was extracted and samples were analyzed by quantitative real-time PCR for their HCV replicon content. Real-time RT-PCR values of all assayed samples were normalized against the “no-drug control” of the same passage. Cells were cultured under clearance and rebound conditions for 3 passages and 4 passages, respectively. Cells that had lost the replicon died in the presence of G418 during the rebound; cells that still contained the replicon were able to survive under G418 pressure.

2.8. Antiviral assays with other viruses

Antiviral assays for herpes simplex virus-1 (KOS strain, TK–KOS ACV), herpes simplex virus-2 (G strain, herpesviridae), vaccinia virus (poxviridae), vesicular stomatitis virus (rhabdoviridae), coxsackie virus B4 (picornaviridae), respiratory syncytial virus (para-myxoviridae), para-influenza-3 virus (para-myxoviridae), reovirus-1 (reoviridae), sindbis virus (alphaviridae), influenza A virus (H1N1 and H3N2), influenza B virus (orthomyxoviridae), Plica Tororo virus (bunyaviridae), HIV-1 (IIIb) and HIV-2 (ROD, retroviridae), YFV-17D (flaviviridae), bovine viral diarrhea virus (BVDV, flaviviridae) and feline coronavirus (coronaviridae) were carried out as reported before [45,60–66].

3. Results

3.1. GS-327073 is a potent inhibitor of in vitro HCV replication

We recently reported the identification of a novel class of 2,5-disubstituted imidazo[4,5-c]pyridines as potent inhibitors of in vitro pestivirus replication [67]. Introduction of a fluorine at position 2 of the phenyl of the lead anti-pestivirus compound 5-[4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP) resulted in a molecule that not only exhibited anti-BVDV but also anti-HCV activity (compound 1; EC50 HCV = 3.0 μM; CC50 = 136 μM) (Fig. 1) [43]. Introduction of two fluorines on the 2-phenyl ring (2,3-difluoro analogue; compound 2) resulted in a molecule that proved 5-fold more potent against HCV than compound 1 and that retained the anti-BVDV activity. In an attempt to further optimize the anti-HCV activity of this class of compounds, a set of analogues with modifications to the 4-bromo substituent on the 5-benzyl residue (for example the introduction of a trifluoromethyl; compounds 3 and 4) was synthesized [44], resulting in compounds with a 15- to 30-fold increased anti-HCV activity as compared to compound 1. Interestingly, whereas these modifications resulted in an increased anti-HCV activity, there was relatively little effect on BVDV activity. Subsequently, a set of analogues with more extensive modifications at the 5-benzyl position was synthesized (data not shown). This resulted in the identification of a series of analogues with highly potent low nM range anti-HCV activity. One of these, i.e. GS-327073 or 5-[[3-(4-chlorophenyl)-5-isoxazolyl)methyl]-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine, was selected for further characterization of the in vitro anti-HCV activity. The compound inhibited HCV (genotype 1) subgenomic replicon replication with mean EC50 values ranging between 2 and 50 nM in a dose-dependent manner (Table 1, Fig. 2). GS-327073 proved markedly more potent than the protease inhibitors BILN-2061, VX-950 and SCH 503034, the nucleoside polymerase inhibitors 2’C-MeCyt and 4’-azidocytidine and the non-nucleoside polymerase inhibitor GSK-4. GS-327073 inhibited the replication of cell culture–grown chimeric HCV (HCVcc, genotype 2a) designated J6/JFH-Rluc-FLAG in a dose-dependent manner, although less efficiently than the replication of genotype 1b replicon. The antiviral activity of GS-327073 against the J6/JFH-Rluc-FLAG virus was however comparable to the activity of the reference protease or polymerase inhibitors studied.

GS-327073 also inhibited BVDV replication, although about 10-fold less potent than compound 1 (Fig. 1). The compound proved inactive against the yellow fever virus (17D), another member of the Flaviviridae family, as well as against a panel of viruses unrelated to HCV (human immunodeficiency virus 1
and 2, herpes simplex virus 1 and 2, influenza virus A and B, vaccinia virus, vesicular stomatitis virus, respiratory syncitial virus, coxsackie virus, para-influenza virus, reovirus, sindbis virus, feline coronavirus and Punta Toro virus) (data not shown).

Table 1

Activity of GS-327073 against various HCV genotype 1b replicons and J6/JFH-Rluc-flag.	Anti-HCV activity EC50 (µM)	CC50 (µM)			
	Huh 9-13	Huh 5-2	HuhH6	J6/JFH	
GS-327073	0.002 ± 0.004	0.004 ± 0.002	0.05 ± 0.02	0.33 ± 0.14	≥ 17
IFNα 2b (IU/ml)	0.24 ± 0.17	0.10 ± 0.06	22 ± 5.4	1.9 ± 0.07	n.d.
Ribavirin	n.d.	38 ± 12	28 ± 16	n.d.	> 33
BILN-2061	0.01 ± 0.01	0.03 ± 0.03	0.004 ± 0.002	n.d.	≥ 22
VX-950	0.58 ± 0.10	1.1 ± 0.71	1.4 ± 0.49	0.29 ± 0.11	≥ 24
SCH 503034	0.37 ± 0.26	0.93 ± 0.39	0.35 ± 0.07	0.34c	≥ 7.4
2′-C-MeCyt	0.43 ± 0.35	2.7 ± 1.5	1.02 ± 0.44	0.10 ± 0.02	≥ 26
4′-Azidocytidine	2.9 ± 0.87	1.4 ± 0.63	7.4 ± 3.7	n.d.	> 33
GSK-4	0.94 ± 0.62	1.8 ± 0.42	11 ± 0.81	n.d.	> 33
HCV-796	0.08 ± 0.05	0.04 ± 0.01	0.01 ± 0.003	< 0.1d	> 33

Data are mean values ± SD from at least three independent experiments.

n.d., not determined.

a As determined by a luciferase (Huh 5-2) or RT-qPCR assay (Huh 9-13, HuH6).

b As determined by a luciferase assay.

c Data from 1 single experiment.

d Mean from 2 independent experiments.

3.2. **GS-327073 is active against various drug resistant replicons**

The activity of GS-327073 was evaluated against a panel of drug-resistant replicons (Table 2). GS-327073
retained wild-type activity against replicons resistant to the protease inhibitor BILN-2061 and against BILN-2061/VX-950 double resistant replicons. GS-327073 also retained wild-type activity against replicons resistant to the nucleoside inhibitors 2'-C-MeCyt and 4'-azidocytidine and to the benzothiadiazine GSK-4. The observation that GS-327073 is active against VX-950/BILN-2061 resistant and 2'-C-MeCyt-resistant replicon-containing Huh 9-13 was corroborated by the observation that cells containing VX-950/BILN-2061 resistant and 2'-C-MeCyt-resistant replicon [that replicated efficiently in the presence of either 5 μg/ml VX-950 or 15 μM 2'-C-MeCyt (and G418 pressure)], died following only one passage in the presence of GS-327073 (300 nM) (data not shown).

3.3. GS-327073 in combination with interferon, protease or polymerase inhibitors results in an additive antiviral activity

Combination experiments were performed in HuH6 replicon-containing cells in which replicon replication is largely independent of cell proliferation. This is important since the reference drugs 2'-C-MeCyt and ribavirin, at the concentrations used, inhibit host cell proliferation. GS-327073 was combined (in checkerboard format) with either IFNα2b, VX-950, ribavirin or 2'-C-MeCyt, and data were analyzed using the method of Prichard and Shipman [59]. Each combination resulted overall in an additive antiviral activity (Fig. 3). A slight synergistic effect was observed when GS-327073 was combined with low concentrations of IFNα2b.

3.4. Combinations containing GS-327073 efficiently clear hepatoma cells from their replicon

The potential of GS-327073 alone or combined with either a protease inhibitor (VX-950), a nucleoside poly-

![Fig. 2. Dose–response curves for inhibition of HCV replicon replication in (A) Huh 9-13, (B) Huh 5-2 and (C) HuH6 cells by GS-327073.](image)

Table 2

In vitro anti-HCV activity of GS-327073 against various protease, nucleoside and non-nucleoside polymerase inhibitor resistant replicons.
EC50 in μM (fold resistance)
GS-327073
BILN-2061
VX-950
2'-C-MeCyt
4'-Azidocytidine
GSK-4
HCV-796
IFNα2b (IU/ml)

Data are mean values ± SD from 2 to 5 independent experiments. n.d., not determined.
merase inhibitor (2′-C-MeCyt) or IFNα2b to cure hepatoma cells from their replicon was evaluated. GS-327073 or VX-950, when used at concentrations of five times their EC50, resulted in a rapid and profound drop in replicon level but did not achieve complete clearance of Huh 9-13 cells from their replicon following 3 passages in the presence of either drug (Fig. 4C). In contrast, the combination GS-327073 (5/C2 EC50) and VX-950 (5/C2 EC50) resulted in clearance of Huh 9-13 cells from their replicon following one passage, (Fig. 4A). Combination of GS-327073 (20/C2 EC50) with either 100 IU/ml IFNα2b (Fig. 4D–F) or with 2′-C-MeCyt (20/C2 EC50) (Fig. 4G–I) resulted in clearance of replicon RNA following 2 passages under the combined compound pressure (Fig. 4E and H). Neither 2′-C-MeCyt nor GS-327073 alone (each at 20/C2 EC50) resulted in clearance, whereas IFNα2b 2b did so after 3 passages. Furthermore, replicon-containing Huh 9-13 cells surviving rebound conditions (i.e. addition of G418) following GS-327073 or 2′-C-MeCyt treatment did not contain drug resistant replicon (data not shown). In addition, the clearance capacity of the combination of 10 × EC50 of GS-327073 and 10 × EC50 of 2′-C-MeCyt was compared to that of 20 × EC50 of either compounds (Fig. 4G–I). Clearance of replicon from Huh 9-13 cells was observed after 3 passages with the combination at 10 × EC50, whereas either compound alone failed to achieve clearance at 20 × EC50.

3.5. Stability and predicted hepatic clearance

Both in basic (pH 7.3) and in acidic solutions (pH 2.2) GS-327073 remained stable. The NADPH-dependent metabolic stability and predicted hepatic clearance was determined in human, dog and rat hepatic microsomes in vitro according to standard methods. The microsomal half-time for GS-327073 was 236 min in human, 88 min in dog and 96 min in rat hepatic microsomes. The predicted hepatic clearance of GS-327073 was 0.15 L/h/kg in human, 0.36 L/h/kg in dog and 0.63 L/h/kg in rat microsomes.
4. Discussion

We recently reported the anti-pestivirus activity of a novel class of imidazopyridines initially devoid of anti-HCV activity [67]. Introduction of a fluorine at position 2 of the phenyl group of the lead compound resulted in compounds with \textit{in vitro} anti-HCV activity. Further optimization resulted in the discovery of 2-(2,3-difluorophenyl)-5-[4-(trifluoromethyl)benzyl]-5\textit{H}-imidazo[4,5-c]pyridine that inhibited HCV replication with an EC\textsubscript{50} of about 100 nM [43,44].

A series of broader modifications to the 5-benzyl group of the substituted 5-benzyl-5\textit{H}-imidazo[4,5-c]pyridines was performed. This resulted in a series of molecules with highly potent anti-HCV activity. Within this series, GS-327073 [5-[[3-(4-chlorophenyl)-5-isoxazolyl]methyl]-2-(2,3-difluorophenyl)-5\textit{H}-imidazo[4, 5-c]pyridine], was selected for further characterization. GS-327073 proved particularly effective against geno-type 1b replicons (the system used to optimize for antiviral potency) with EC\textsubscript{50} values in the low nanomolar range. GS-327073 also inhibited the replication of a genotype 2a cell culture infectious HCVcc (J6/JFH-Rluc-FLAG), but did so less efficiently than for the genotype 1b replicon. The anti-HCV activity of GS-327073 was compared to that of other HCV inhibitors, including ribavirin, the NS3 protease inhibitors BILN-2061, VX-950 and SCH 503034, the nucleoside NS5B polymerase inhibitors 20-C\textsubscript{-MeCyt and 40-azidocytidine and the non-nucleoside NS5B polymerase benzothiadiazine inhibitor GSK-4. The anti-HCV activity of GS-327073 was superior to that of any of these compounds. GS-327073 retained wild-type antiviral activity against a panel of replicons resistant to various HCV inhibitors, including protease, nucleoside and non-nucleoside polymerase inhibitors. Remarkably, GS-327073 retained a significant antiviral activity against the pestivirus BVDV. GS-327073 proved also cross-resistant in anti-BVDV assay with BPIP, one of the parent compounds in this class of compounds with potent anti-pestivirus activity but no anti-HCV activity. BPIP was shown to target the fingertip of the pestivirus RNA dependent RNA polymerase [45]. It is remarkable that a given non-nucleoside analogue (such as GS-327073) is able to inhibit both pestiviruses and HCV. Representatives of the imidazopyridines are, to the best of our
knowledge, the first class of non-nucleoside molecules that are able to inhibit the replication of both pesti-
and hepaciviruses, albeit potentially different mecha-
nisms of action may be involved. Detailed studies on
the molecular mechanism of action of the imidazopyri-
dines will be reported elsewhere. Replicons resistant to
GS-327073 were generated following several months of
selective in vitro pressure (data not shown). In compar-
isum to several other STAT-C inhibitors, the genetic bar-
tier to achieve high levels of resistance of GS-327073 is
relatively high. This might be explained by the fact that
three mutations are required in the RNA-dependent
RNA polymerase gene to achieve 50-fold or more
resistance.

It is likely that specifically targeted antiviral therapy
compounds (STAT-C), in the initial years after they
become available for the treatment of HCV infected
patients, will be combined with the current standard
therapy [68]. At a later stage, two or more potent
STAT-C inhibitors with different resistance profiles,
may hopefully be combined without further need for
interferon and/or ribavirin. It is hence important to
obtain information about the antiviral efficacy of partic-
ular combinations. For this reason we studied the anti-
viral activity of GS-327073 when combined with other
classes of HCV inhibitors. To this end, two different
assay systems were employed. In a first assay, the com-
bined antiviral activity was evaluated in regular antiviral
assays, i.e. with a read-out after 3 days of incubation of
the replicon containing cells with the antiviral drug(s).
All combinations studied resulted in an overall additive
antiviral activity, which was in line with our expectation
that compounds that do (likely) not interfere with each
others’ metabolism or mechanism of action should
result in an additive antiviral effect. Combinations of
compounds that interfere with each others’ biological
activity may either result in a synergistic or antagonistic
antiviral activity. For example, the IMP-dehydrogenase
inhibitor ribavirin is able to potentiate the antitherpes
and anti-HBV activity of purine based deoxynucleoside
analalogues on one hand, but results in an antagonistic
effect on HIV and HCV replication when combined with
pyrimidine ribonucleoside analogues [69–73]. Particular
interference of ribavirin with the purine and pyrimidine
metabolism is an explanation for these observations. No
such antagonistic or synergistic activities were noted
when GS-327073 was combined with other selective
inhibitors of HCV replication. However, a short anti-
viral assay may not necessarily predict the antiviral effect
of either single compounds or combinations thereof.
We, therefore, studied the anti-HCV activity of GS-
327073 alone or in combination with either interferon
α, a protease or a polymerase HCV inhibitor in “clear-
ance rebound” assays. Replicon containing cells were
cultured for one or more passages in the presence of
the antiviral drug(s) and in the absence of the selection
marker geneticin. Neither drug, at concentrations that
were 5- to 20-fold higher than their EC_{50} values, was
able to achieve clearance (except for 3 passages in the
presence of 100 IU of interferon α). Surprisingly, and
despite the fact that no synergistic activity was noted
in a regular 3 day antiviral assay, all GS-327073 contain-
ing combinations (5×, 10× and 20× EC_{50}) efficiently
cleared cells from their replicon. Clearance-rebound
experiments may possibly have predictive value for esti-
mating the potential of drugs (or combinations thereof)
to clear liver cells from replicating virus. Combinations
of imidazopyridines with various STAT-C inhibitors
(or interferon) may have the potential to achieve rapid
viral clearance. Our data also indicate that regular short
term antiviral combination assays (in replicon based sys-
tems) may not necessarily predict synergistic antiviral
effects following long-term culture.

In conclusion, following lead optimization, a series of
highly potent HCV inhibitors were developed of which
GS-327073 can be considered as a prototype. GS-
327073 exhibited favorable pharmacokinetic properties
in vitro. Interestingly, several compounds in this series
are active against both HCV and pestiviruses. It is cur-
rently being studied whether a common mechanism is
responsible for both antiviral activities or whether the
precise molecular mechanism of action of anti-HCV or
anti-pestivirus activity differs.

Acknowledgements

We thank Katrien Geerts for excellent technical assis-
tance. This work is part of the activities of the VIRGIL
European Network of Excellence on Antiviral Drug
Resistance supported by a grant (LSHM-CT-2004-
503359) from the Priority 1 “Life Sciences, Genomics
and Biotechnology for Health” Programme in the 6th
Framework Programme of the EU. Jan Paeshuyse is
supported by a post-doctoral position of the “Fonds
voor Wetenschappelijk Onderzoek, Vlaanderen”.

References

[1] Craxi A, Laffi G, Zignego AL. Hepatitis C virus (HCV) infection: a
systemic disease. Mol Aspects Med 2007;29:85–95.
[2] Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos C,
Goncales L, et al. Peginterferon alfa-2a plus ribavirin for chronic
hepatitis C virus infection. N Engl J Med 2002;347:975–982.
[3] Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman
M, Reindollar R, et al. Peginterferon alfa-2b plus ribavirin
compared with interferon alfa-2b plus ribavirin for initial treat-
ment of chronic hepatitis C: a randomised trial. Lancet
2001;358:958–965.
[4] Firpi RJ, Nelson DR. Current and future hepatitis C therapies.
Arch Med Res 2007;38:678–690.
[5] Hayashi N, Takehara T. Antiviral therapy for chronic hepatitis C: past,
present, and future. J Gastroenterol 2006;41:17–27.
[6] De Francesco R, Migliaccio G. Challenges and successes in
developing new therapies for hepatitis C. Nature 2005;436:953–960.
[7] Neys J, Selective inhibitors of hepatitis C virus replication. Antiviral Res 2006;71:363–371.

[8] Yang W, Zhao Y, Fabrycki J, Hou X, Nie X, Sanchez A, et al. Selection of replicon variants resistant to ACH-806, a novel hepatitis C virus inhibitor with no cross-resistance to NS3 protease and NS5B polymerase inhibitors. Antimicrob Agents Chemother 2008;52:2043–2052.

[9] Flisiak R, Dumont JM, Crabbe R. Cyclophilin inhibitors in hepatitis C viral infection. Expert Opin Investig Drugs 2007;16:1345–1354.

[10] Soriani V, Madejon A, Vispo E, Labarga P, Garcia-Samaniego J, Martin-Carbonero L, et al. Emerging drugs for hepatitis C. Expert Opin Emerging Drugs 2008;13:1–19.

[11] Clark JL, Hollecker L, Mason JC, Stuyver LJ, Tharnish PM, Lostia S, et al. Design, synthesis, and antiviral activity of 2'-deoxy-2'-fluoro-2'-C-methylcytidine, a potent inhibitor of hepatitis C virus replication. J Med Chem 2005;48:5504–5508.

[12] Poordad F, Lawitz EJ, Gitlin N, Rodriguez-Torres M, Box T, Nguyen T, et al. Efficacy and safety of valopicitabine in combination with pegylated interferon and ribavirin in patients with chronic hepatitis C. Hepatology 2007;46 (Suppl.):LB15.

[13] Pockros PJ, Nelson D, Godofsky E, Rodriguez-Torres M, Everson GT, et al. Antiviral activity, pharmacokinetics, safety and tolerability of R1262 in combination with peginterferon alfia-2a (40 KDa), with or without ribavirin – interim analysis of phase 2a study. Hepatology 2007;46 (Suppl.):167.

[14] Reddy R, Rodriguez-Torres M, Gane E, Robson R, Lalezar J, Everson GT, et al. Antiviral activity, pharmacokinetics, safety and tolerability of R1728, a novel nucleoside HCV RNA polymerase inhibitor, following multiple, ascending, oral doses in patients with genotype 1 infection who have failed prior interferon therapy. Hepatology 2007;46 (Suppl.):LB9.

[15] Beaulieu PL. Finger loop inhibitors of the HCV NS5B polymerase: discovery and prospects for new HCV therapy. Curr Opin Drug Discov Dev 2006;9:618–626.

[16] Hirashima S, Suzuki T, Ishida T, Noji S, Yata S, Ando I, et al. Benzimidazolone derivatives bearing substituted biphenyls as hepatitis C virus NS5B RNA-dependent RNA polymerase inhibitors: structure-activity relationship studies and identification of a potent and highly selective inhibitor JTK-109. J Med Chem 2006;49:4721–4736.

[17] Kukolj G, McGibbon GA, McKercher G, Marquis M, Lefebvre MG, et al. Selection and characterization of replicon variants dually resistant to thumb- and palm-binding nonnucleoside polymerase inhibitors of the hepatitis C virus. J Virol 2006;80:6146–6154.

[18] Chan L, Reddy TJ, Proulx M, Das SK, Pereira O, Wang W, et al. Identification of N,N-disubstituted phenylalanines as a novel class of inhibitors of hepatitis C NS5B polymerase. J Med Chem 2003;46:1283–1285.

[19] Reddy TJ, Chan L, Turcotte N, Proulx M, Pereira OZ, Das SK, et al. Further SAR studies on novel small molecule inhibitors of the hepatitis C (HCV) NS5B polymerase. Bioorg Med Chem Lett 2003;13:3341–3344.

[20] Li H, Tlatolek J, Linton A, Gonzalez J, Borchardt A, Dragovich P, et al. Identification and structure-based optimization of novel dihydropyrones as potent HCV RNA polymerase inhibitors. Bioorg Med Chem Lett 2006;16:4834–4838.

[21] Love RA, Parge HE, Yu X, Hickey MJ, Diehl W, Gao J, et al. Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme. J Virol 2003;77:7755–7758.

[22] Gopalasamy A, Lim K, Cizewski G, Park K, Ellingboe JW, Bloom J, et al. Discovery of pyrano[3,4-b]indoles as potent and selective HCV NS5B polymerase inhibitors. J Med Chem 2004;47:6603–6608.

[23] Howe AY, Bloom J, Baldick CJ, Benetatos CA, Cheng H, Christensen JS, et al. Novel nonnucleoside inhibitor of hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 2004;48:4813–4821.

[24] Howe AY, Cheng H, Thompson I, Chandru SK, Herrmann S, O’Connell J, et al. Molecular mechanism of a thumb domain hepatitis C virus nonnucleoside RNA-dependent RNA polymerase inhibitor. Antimicrob Agents Chemother 2006;50:4103–4113.

[25] Gopalasamy A, Chopra R, Lim K, Cizewski G, Shi M, Curran KJ, et al. Discovery of proline sulfonamides as potent and selective hepatitis C virus NS5B polymerase inhibitors. Evidence for a new NS5B polymerase binding site. J Med Chem 2006;49:3052–3055.

[26] Dhanak D, Duffy KJ, Johnston VK, Lin-Goeke J, Darcy M, Shaw AN, et al. Identification and biological characterization of heterocyclic inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 2002;277:38322–38327.

[27] Nguyen TT, Gates AT, Gutshall LL, Johnston VK, Gu B, Duffy KJ, et al. Resistance profile of a hepatitis C virus RNA-dependent RNA polymerase benzothiadiazine inhibitor. Antimicrob Agents Chemother 2003;47:3525–3530.

[28] Pratt JK, Donner P, McDaniell KF, Maring CJ, Kati H, Mo T, et al. Inhibitors of HCV NS5B polymerase: synthesis and structure-activity relationships of N-1-heteroaryl-4-hydroxyquinol-3-yl-benzothiazidines. Bioorg Med Chem Lett 2005;15:1577–1582.

[29] Rockway TW, Zhang R, Liu D, Betbenemer DA, McDaniell KF, Pratt JK, et al. Inhibitors of HCV NS5B polymerase: synthesis and structure-activity relationships of N-1-benzyl and N-1-[3-methylbutyl]-4-hydroxy-1,8-naphthyridon-3-yl benzothiazidine analogs containing substituents on the aromatic ring. Bioorg Med Chem Lett 2006;16:3833–3838.

[30] Tedesco R, Shaw AN, Bambal R, Chai D, Concha NO, Darcy MG, et al. 3-(1,1-dioxo-2H-(1,2,4)-benzothiadiazin-3-yl)-4-hydroxy-2(H)-quinolines, potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase. J Med Chem 2006;49:971–983.

[31] Lee G, Piper DE, Wang Z, Anzola J, Powers J, Walker N, et al. Novel inhibitors of hepatitis C virus RNA-dependent RNA polymerases. J Mol Biol 2006;365:1051–1057.

[32] Plefferkorn JA, Greene ML, Nugent RA, Gross J, Mitchell MA, Finzel BC, et al. Inhibitors of HCV NS5B polymerase. Part 1: evaluation of the southern region of (ZZ)-2-[benzoylamino]-3-[5-phenyl-2-furyl]acrylic acid. Bioorg Med Chem Lett 2005;13:2481–2486.
[39] Pfefferkorn JA, Nugent R, Gross RJ, Greene M, Mitchell MA, Reding MT, et al. Inhibitors of HCV NS5B polymerase. Part 2: evaluation of the northern region of (2Z)-2-benzoylamino-3-(4-phenoxy-phenyl)-acrylic acid. Bioorg Med Chem Lett 2005;15:2812–2818.

[40] Villano S, Howe A, Raible D, Harper D, Speth J, Bichier G. Analysis of HCV NS5B genetic variants following monotherapy with HCV-796, a non-nucleoside polymerase inhibitor, in treatment-naive HCV-infected patients. Hepatology 2006;44 (Suppl.):1127.

[41] Villano S, Raible D, Harper D, Priyamvada C, Bazisotto L, Bichier G. Phase 1 evaluation of antiviral activity of the non-nucleoside inhibitor, HCV-796, in combination with different pegylated interferons in treatment-naive patients with chronic HCV. Hepatology 2007;46 (Suppl.):1302.

[42] Cooper C, Lawitz EJ, Ghali P, Rodriguez-Torres M, Anderson FH, Lee SS, et al. Antiviral activity of the non-nucleoside polymerase inhibitor, VCH-759, in chronic Hepatitis C patient: results from a randomized, doubleblind, placebo-controlled, ascending multiple dose study. Hepatology 2007;46 (Suppl.):LB11.

[43] Pauerstinger G, Paesyhuse J, De Clercq E, Nyts J. Antiviral 2,5-disubstituted imidazo[4,5-c]pyridines: from anti-pestivirus to anti-hepatitis C virus activity. Bioorg Med Chem Lett 2004;6:2901–2904.

[44] Pauerstinger G, Paesyhuse J, Heinrich S, Mohr J, Schraffl N, De Clercq E, et al. Antiviral 2,5-disubstituted imidazo[4,5-c]pyridines: further optimization of anti-hepatitis C virus activity. Bioorg Med Chem Lett 2007;17:5111–5114.

[45] Paesyhuse J, Leyssen P, Mabery E, Boddeker N, Vrancken R, Froeyen M, et al. A novel, highly selective inhibitor of hepatitis C virus polymerase replication that targets the viral RNA-dependent RNA polymerase. J Virol 2006;80:149–160.

[46] Burns CJ, Del Vecchio AM, Bailey TR, Kulkarni BA, Faigt TH, Sherk SR, et al. Benzofuran compounds, compositions and methods for treatment and prophylaxis of hepatitis C virus infections and associated diseases. PCT/US2003/034962(WO/2004/041201) Viropharma Incorporated and Wyeth [US] 2004.

[47] Eldrup AB, Allerson CR, Bennett CF, Bera S, Bhat B, Bhat N, et al. Structure-activity relationship of purine ribonucleosides for inhibition of hepatitis C virus RNA-dependent RNA polymerase. J Med Chem 2004;47:2283–2295.

[48] Faucher AM, Bailey MD, Beaulieu PL, Brochu C, Duceppe JS, Ferland JM, et al. Synthesis of BILN 2061, an HCV NS3 protease inhibitor with proven antiviral effect in humans. Org Lett 2004/041201) Viropharma Incorporated and Wyeth [US] 2004.

[49] Keyaerts E, Vijgen L, Pannecoque C, Van Damme E, Peumans W, Egberink H, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007;75:179–187.

[50] Neyts J, Meerbach A, McKenna P, De Clercq E. Use of the yellow fever virus vaccine strain 17D for the study of strategies for the treatment of yellow fever virus infections. Antiviral Res 1998;63:3240–3249.

[51] Pauerstinger G, Paesyhuse J, Herdewijn P, Rozenski J, De Clercq E. Use of the yellow fever virus vaccine strain 17D for the study of strategies for the treatment of yellow fever virus infections. Antiviral Res 1998;63:3240–3249.

[52] Pauerstinger G, Paesyhuse J, Herdewijn P, Rozenski J, De Clercq E. Comparative activities of several nucleoside analogs against influenza A, B, and C viruses in vitro. Antimicrob Agents Chemother 1998;32:906–911.

[53] Windisch MP, Frese M, Kaul A, Trippler M, Lohmann V, Bartenschlager R. Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 2005;79:13778–13793.

[54] Windisch MP, Frese M, Kaul A, Trippler M, Lohmann V, Bartenschlager R. Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 2005;79:13778–13793.

[55] Windisch MP, Frese M, Kaul A, Trippler M, Lohmann V, Bartenschlager R. Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 2005;79:13778–13793.

[56] Windisch MP, Frese M, Kaul A, Trippler M, Lohmann V, Bartenschlager R. Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 2005;79:13778–13793.

[57] Windisch MP, Frese M, Kaul A, Trippler M, Lohmann V, Bartenschlager R. Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 2005;79:13778–13793.

[58] Windisch MP, Frese M, Kaul A, Trippler M, Lohmann V, Bartenschlager R. Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 2005;79:13778–13793.

[59] Windisch MP, Frese M, Kaul A, Trippler M, Lohmann V, Bartenschlager R. Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 2005;79:13778–13793.
idine 2',3'-dideoxynucleosides but enhances inhibitory effects of purine 2',3'-dideoxynucleosides on replication of human immunodeficiency virus in vitro. Antimicrob Agents Chemother 1987;31:1613–1617.

[70] Coelmont L, Paesuyse J, Windisch MP, De Clercq E, Bartenschlager R, Neyts J. Ribavirin antagonizes the in vitro anti-hepatitis C virus activity of 2′-C-methylcytidine, the active component of valopicitabine. Antimicrob Agents Chemother 2006;50:3444–3446.

[71] Pancheva SN. Potentiating effect of ribavirin on the anti-herpes activity of acyclovir. Antiviral Res 1991;16:151–161.

[72] Vogt MW, Hartshorn KL, Furman PA, Chou TC, Fyfe JA, Coleman LA, et al. Ribavirin antagonizes the effect of azidothymidine on HIV replication. Science 1987;235:1376–1379.

[73] Ying C, De Clercq E, Neyts J. Ribavirin and mycophenolic acid potentiate the activity of guanine- and diaminopurine-based nucleoside analogues against hepatitis B virus. Antiviral Res 2000;48:117–124.