Heavy metals in the soil and vegetation cover of agricultural landscapes in the steppe southern European Russia (Rostov region as a case study)

V E ZakrutkinORCID0000-0001-5902-374X, D Yu ShishkinaORCID0000-0003-0242-0431
N V KohanistayaORCID0000-0002-6039-5177

Institute of Earth Sciences, Southern Federal University, Rostov-on-Don, Russia
E-mail: nvkohanistaya@sfedu.ru

Abstract. Recently, there has been an active development of all industries, transport, agriculture within the steppe zone of southern Russia. The agro-industrial complex is widely developed within the Rostov region, characterized by highly efficient crop production, grain and sunflower production. The article examines the soil cover and agricultural products of the region. A change in the distribution of trace elements in the upper soil layer with the use of various agricultural technologies was revealed. It was revealed that the most favorable conditions for the accumulation of most of the studied microelements are formed in the soils under rice fields and vineyards. In the course of the research, the differentiation of the main crops for a number of heavy metals was studied. An analysis of the data obtained indicates the existence of a tendency for the average content of trace elements to increase from grain crops to forage grasses, which is associated with soil conditions and specific biological characteristics. According to the content of elements in soils, the coefficient of biological absorption and biogeochemical activity of the studied crops were calculated, which made it possible to rank them according to their ability to accumulate heavy metals.

1. Introduction

The steppes of the south of the European part of Russia are a zone of intensive agricultural production, where about 80% of the country's agricultural production is grown. In terms of the cost of agricultural products produced in 2019, the Rostov Region ranks 2nd in Russia, second only to the Krasnodar Territory, a region with much more favorable natural and climatic conditions [1]. The main branch of the region's agriculture is crop production. In 2019, the Don Territory produced 11.7% of the all-Russian harvest of sunflower, 10% of grain, 4.1% of vegetables and 3.4% of fruits and berries. Agricultural lands occupy more than 84% of the total area of the region. Arable land accounts for 59% of its entire territory [2]. The sown area, which sharply declined in the 1990s, has steadily increased since 2001. At the same time, the agro-industrial load on the territory is increasing, which is manifested in the growth of the applied mineral fertilizers. Over the past 3 years, the dose of applied fertilizers has exceeded 80 kg per 1 ha of crops [3]. This is the maximum value in the entire history of agriculture on the Don.

In accordance with the classification of N.S. Kasimov [4] in the Rostov region, the following departments of agricultural landscapes are distinguished: field, garden (vegetable), rice plantations and landscapes with perennial crops (orchards and vineyards). With further division into classes, when the features of water migration are taken into account, rain-fed (rain-fed) and irrigated landscapes are...
distinguished, represented by vegetable and rice plantations. Field rainfed landscapes absolutely dominate the area of the Rostov region. Due to the shortage of water resources, the area of irrigated land has decreased by 2 times compared to the 1980s and now accounts for about 3.6% of the total arable land area. Orchards and vineyards take up even less space - less than 1%.

The soil cover of agricultural landscapes is formed mainly by chernozems and chestnut soils. Chernozems occupy the main part of the Rostov region; chestnut soils are developed in the arid east and southeast. Among the soils of the chernozem series, the following subtypes are distinguished: southern chernozem, ordinary, northern Azov and Ciscaucasian, as well as meadow-chernozem soils. Chestnut soils are represented by dark chestnut, chestnut and light chestnut subtypes. Their distinctive feature is solonetsousness, which grows eastward.

The introduction of large amounts of mineral fertilizers leads to disruption of the biogeochemical migration cycles of elements and the accumulation of heavy metals (HM) in all blocks of agroecosystems. Thus, the study of the distribution of HMs in the soil and vegetation cover of various agricultural landscapes is an important and urgent scientific and practical task.

2. Models and Methods
The work is based on the results of ecological and geochemical survey on the territory of 42 agricultural enterprises of different agricultural specialization, located in various natural and agricultural zones of the Rostov region. Sampling included sampling of the surface (0–20 cm) soil horizon and agricultural crops.

Ecological and geochemical survey was carried out over a network of 0.5 × 0.5 km. The sampling of soil samples was carried out by the envelope method from a test plot measuring 10 × 10 m. During the work carried out, 477 samples were taken.

At each site, a sample of the productive part of the agricultural crop was taken simultaneously with the soil. Testing was carried out when crops reached commercial maturity. As a result, 311 samples of agricultural plants were taken, of which: 187 samples of grain and leguminous crops, 74 - forage grasses, 29 - fruits, 21 - vegetables.

In soil and plant samples, the content of vanadium, cadmium, manganese, copper, nickel, lead, chromium and zinc was determined by atomic absorption spectrometry. For soil samples, the concentration and dispersion coefficients of heavy metals were calculated in relation to the local geochemical background. The intensity of accumulation of heavy metals in agricultural crops was expressed through the biological absorption coefficient (BAC) obtained by dividing the content of a chemical element in a plant by its content in the soil.

3. Results and Discussion
To assess the level of anthropogenic transformation of agricultural landscapes, it is necessary to know the content of chemical elements in the landscapes of the background territories. Reference background landscapes should be located outside the zone of influence of industrial and agricultural pollution [4]. Intensive agricultural development of the territory led to the disappearance of natural steppes, therefore, many scientists use HM concentrations in the soils of local protected natural areas as background values [5]. In this work, the natural geochemical background is assumed to be the content of HMs in the soils of pastures, the most remote from the main sources of pollution in the regions of the Rostov region [6, 7]. Regional background concentrations of HMs in soils are presented in table 1.

regional natural background	Cr	Mn	Cu	Zn	Pb	Cd	Ni	V
61.5	750.0	34.8	84.3	24.0	0.21	43.8	97.0	
As already noted, the most common agricultural landscapes within the Rostov region are non-irrigation landscapes characterized by minimal agrogenic transformation of the soil environment. Their example can be used to study the distribution of chemical elements in different types of soils in the region (table 2).

Table 2. HM contents in different types of soils of non-irrigated field landscapes of the Rostov region [8–13].

	Southern chernozems	Ciscaucasian chernozems	Ordinary chernozems	Azov chernozems	Meadow-chernozem	Chestnut
Cr	60	61	65	67	68	62
Mn	742	724	707	695	718	712
Cu	29.5	31.0	33.0	30.7	33.6	28.0
Zn	72.4	82.5	78.7	75.0	85.0	72.4
Cd	0.25	0.26	0.23	0.25	0.25	0.24
Pb	28.3	29.0	25.8	27.2	26.7	26.9
Ni	41	42	45	42	44	36
V	92	99	96	92	97	110

Analysis of the content of elements in the soils of rainfed landscapes revealed insignificant differences in the concentrations of HMs within different types of soils in rainfed landscapes. This is explained by the general direction of the soil-forming process and the weak lithogeochemical differentiation of the parent rocks. According to the peculiarities of distribution in soils, the following groups of elements are distinguished:

1) Cr, Cu, Zn и Ni, for which a slight increase in concentrations is observed in the following order: chestnut - subtypes of chernozem - meadow-chernozem soils;

2) V, accumulating mainly in chestnut soils;

3) Mn, Cd и Pb, for which weak differentiation of elements in different soil subtypes was established.

In general, the average content of trace elements in the soils of non-irrigated landscapes is close to the background values. The exceptions are cadmium and lead, the content of which exceeds the natural pedogeochemical background by 1.1–1.2 times, as well as copper and zinc, whose concentrations are 1.1–1.25 times lower than the background.

Reclaimed landscapes and perennial plantations experience a more powerful agro-industrial impact due to the intensive application of mineral fertilizers and pesticides, deep plowing, the introduction of chemical elements with irrigation water, etc. irrigation, soil, drainage) - soil, additional input of chemical elements with fertilizers and pesticides, and sometimes changes in the structure of the soil cover. These factors cause a more significant differentiation of the content of elements in the upper soil cover of agricultural landscapes (table 3).

The average contents of Cr, Cu, Cd, and Pb in the soils of reclaimed types of landscapes exceed the natural soil-geochemical background by 1.1–2.6 times; the average contents of Cu in rice paddies, Zn in soils of gardens, and V in soils of landscapes of perennial plantations are comparable with background values. The concentrations of Mn in the soils of irrigated landscapes and Ni in the soils of vegetable plantations and rice paddies are 0.7–0.8 parts of the background.

Periodically flooded landscapes are distinguished by the most intensive application of fertilizers and pesticides and a long stay of the soil cover under water, which determined the specifics of geochemical processes. In the soils of rice paddies, alkaline-acid and redox conditions of the environment are changeable, and the hydrodynamic regime is unstable [14, 15]. Due to the instability of the soil-geochemical environment, both positive and negative HM anomalies are formed, and rice grown on these soils is often depleted in microelements.
Different agricultural landscapes reveals a clear tendency for the average concentrations of Mn, Cu, Zn, Cd, Pb, and V to increase in the sequence: landraces of perennial plantations, which is associated with the widespread use of copper-containing fungicides - Bordeaux liquid and copper oxychloride [16]. Vineyards, in comparison with orchards, are more often treated with copper-containing preparations, therefore the concentration of the element in the soils of vineyards is much higher.

Comparison of HM contents in soils of different agricultural landscapes reveals a clear tendency for the removal of manganese and the accumulation of chromium, copper, cadmium, lead, and vanadium in the soils of irrigated landscapes and perennial plantations.

Different supply of soils with microelements leads to their different accumulation in agricultural crops. The influence on the chemical composition of plants is exerted not only by the soil-geochemical characteristics of soils, but also by the species belonging of plants, biomorphs, phases of vegetation, natural conditions and other factors.

The content of heavy metals in agricultural vegetation in the Rostov region varies within wide limits (table 4). Manganese exhibits the greatest variability. Its content ranges from 7–11 mg / kg in fruit crops (cherries, apples) to 220 mg / kg in beets. Large variability of contents in different cultures is typical for zinc, cadmium, lead and nickel. At the same time, the concentrations of chromium and copper are in a narrow range. The lowest Cr content is observed in corn (0.14 mg / kg), the highest in sainfoin and cabbage (0.28 mg / kg). The distribution of copper in agricultural crops is very even, with grapes having the highest concentrations (9.6 mg / kg).

Against the background of a wide range of HM contents in the vegetation samples, the following tendency for the average concentrations of Mn, Cu, Zn, Cd, Pb, and V to increase in the sequence: cereals and legumes - vegetables and fruits - forage grasses was revealed. The increase in the average nickel content occurs in a slightly different order: vegetables and fruits - forage grasses - cereals and legumes. This order is formed due to the natural ability of peas to actively accumulate the element, noted by many authors [20–22].

The resulting pattern in the accumulation of trace elements by vegetation can also be explained by which part of the plant is eaten: root crops containing the maximum amount of elements (beets), leaves occupying an intermediate position in the concentration of heavy metals due to additional accumulation of elements with dust and atmospheric precipitation (cabbage) or fruits (cherries, grapes, tomatoes, apples, cereals). Nevertheless, the distribution of Cr, Mn, Zn, Ni and V in vegetables

Field arable	Landscapes of perennial plantations	Reclaimed				
	non-irrigated	gardens	vineyards	irrigated	periodically flooded	
Cr	64	77.1 (1.3)	86.0 (1.4)	84.1 (1.4)	94.2 (1.5)	
Mn	716	592 (0.8)	508 (0.7)	583 (0.8)	411 (0.5)	
Cu	31 (0.9)*	55.6 (1.6)	90.2 (2.6)	38.9 (1.1)	34.8	
Zn	78 (0.9)	83.2	78.3 (0.9)	77.9 (0.9)	78.4 (0.9)	
Cd	0.25 (1.2)**	0.29 (1.4)	0.28 (1.3)	0.26 (1.2)	0.27 (1.3)	
Pb	27.3 (1.1)	30.3 (1.3)	29.9 (1.2)	29.4 (1.2)	29.8 (1.2)	
Ni	42	47 (1.1)	49 (1.1)	34 (0.8)	37 (0.8)	
V	98	95	92	105 (1.1)	124 (1.3)	

* – deconcentration coefficient
** concentration coefficient
and fruits confirms the fact that plants accumulate chemical elements in the following order: roots > leaves > fruits.

Table 4. HM content in the productive part of agricultural crops grown on the territory of the Rostov region, mg / kg dry matter [8–10, 17–19].

Agricultural crops	Chemical element	Cereals and legumes						
	Cr	Mn	Cu	Zn	Cd	Pb	Ni	V
Wheat	0.16	44.3	4.3	20.7	0.065	0.63	0.35	0.046
Barley	0.17	42.7	4.6	22.7	0.068	0.64	0.34	0.039
Rye	0.16	37.7	3.2	19.2	0.063	0.41	0.43	0.014
Corn	0.14	29.1	-	-	0.080	0.77	0.30	0.039
Sunflower	0.15	30.2	-	-	0.080	0.77	0.24	0.052
Peas	-	-	6.8	30.7	-	0.10	2.09	0.020
Fodder crops								
Alfalfa	0.25	92.0	8.9	24.7	0.130	1.60	0.59	0.341
Sudanese grass	0.21	85.2	9.4	26.0	0.130	1.64	0.46	0.248
Sainfoin	0.28	102.3	5.9	20.9	0.120	1.70	0.66	0.365
Vegetables and fruits								
Tomatoes	0.23	12	7.8	13.9	-	0.41	0.68	0.270
Cabbage	0.28	48	3.5	11.9	-	2.6	0.77	0.243
Beet	0.40	220	6.8	18.3	-	0.09	1.36	0.585
Grapes	0.19	12	9.6	3.6	-	0.16	0.16	0.158
Cherry	0.26	7	7.9	12	-	0.27	0.15	0.175
Apples	0.24	11	3.7	7.8	-	0.39	0.11	0.067

To assess the levels of accumulation of heavy metals in plants, biological absorption coefficients were calculated. As the results of the study have shown, agricultural crops, regardless of the place of growth, tend to accumulate lead (BAC 3.2–27.9), which occurs due to a high technogenic load. Plants also actively accumulate copper (BAC 1.14–7.53) and zinc (BAC 1.09–12.43), which is explained by their important biochemical function (table 5).

It is known that zinc belongs to the elements of strong biological accumulation (CBP exceeds one); manganese, nickel, copper and lead are elements of the average biological uptake (BAC = 0.1–1); vanadium, chromium, and cadmium belong to the elements of weak and very weak capture, the BAC of which does not exceed 0.1 [23]. In agricultural crops of the Rostov region, an increase in the values of the BAC of cadmium, lead and copper and moving these elements to a higher level. The transition of chromium to the group of medium biological uptake is noted in wheat (BCI = 0.115), and the transition of vanadium in the Sudanese grass (BCI = 0.233). An increase in the intensity of manganese accumulation is noted in wheat, corn, Sudanese grass, sainfoin and beets, zinc - in peas and wheat (table 5).

Using the indicator of the biogeochemical activity of the species (BAS), obtained by summing the coefficients of biological absorption of individual elements, it is possible to assess the overall ability of the studied culture to the concentration of various microelements. The most intensive involvement of heavy metals in biogenic migration is characteristic of Sudanese grass, wheat and alfalfa, the BAS values of which are 38.05, 37.25, and 36.71, respectively, the least intense - in grapes (BAS = 7.45).

Based on the analysis of the data obtained, it can be argued that forage grasses are characterized by intense accumulation of all the elements under consideration. Also, beets are characterized by intense accumulation of 6 out of 8 considered chemical elements (Cr, Mn, Cu, Zn, Ni and V). This circumstance is due to the fact that we analyzed beet root crops, which store nutrients and are associated with the root system.
The study of the distribution of HMs in different genetic types of soils in rainfed agricultural landscapes revealed lower concentrations of Zn and Cu, as well as increased concentrations of Pb and Cd in comparison with the natural soil-geochemical background. At the same time, the differences in the contents of elements between different types of soil in rainfed landscapes are insignificant, which is explained by the general direction of the soil-forming process and weak geochemical differentiation of parent rocks.

In the soils of reclaimed landscapes, in comparison with non-irrigated ones, there is a clear tendency towards the removal of Mn from soils and the accumulation of Cr, Cu, Zn, Pb, and V. This pattern is due to the level of agrotechnogenic impact, which increases from rainfed agricultural landscapes to rice paddies and vineyards.

When studying agricultural products, the following tendency for an increase in the content of heavy metals was revealed: grain and leguminous crops - vegetables and fruits - fodder grasses. Among vegetables, beets deserve special attention, for which an increased accumulation of most elements (Cr, Mn, Cu, Zn, Ni, V) was noted relative to the other crops under consideration.

4. Conclusion

Table 5. Biological absorption coefficients of HM by agricultural crops of the Rostov region.

Agricultural crops	Chemical element	БХА
Wheat	Cr 0.115 Mn 2.75 Cu 7.53 Zn 12.43 Cd 0.81 Pb 13.2 Ni 0.39 V 0.025	37.25
Barley	Cr 0.066 Mn 0.85 Cu 3.83 Zn 7.53 Cd 0.75 Pb 10.1 Ni 0.18 V 0.016	23.32
Rye	Cr 0.052 Mn 0.91 Cu 3.54 Zn 8.53 Cd 0.77 Pb 8.3 Ni 0.27 V 0.010	22.38
Corn	Cr 0.092 Mn 1.84 Cu - Zn - Cd 0.98 Pb 11.2 Ni - V -	14.11
Sunflower	Cr 0.074 Mn 0.87 Cu - Zn - Cd 2.1 Pb 21.3 Ni - V -	24.34
Peas	Cr - Mn - Cu - Zn 6.87 Cd 12.4 Pb - Ni 3.03 V 1.22	23.53

Fodder crops	Cr 0.025 Mn 0.79 Cu 3.16 Zn 3.53 Cd 2.3 Pb 26.6 Ni 0.24 V 0.066	36.71
Alfalfa	Cr 0.045 Mn 1.12 Cu 3.33 Zn 3.70 Cd 1.46 Pb 27.9 Ni 0.26 V 0.233	38.05
Sudanese grass	Cr 0.067 Mn 1.39 Cu 2.96 Zn 4.20 Cd 1.08 Pb 12.0 Ni 0.19 V 0.030	21.92

Vegetables and fruits	Cr 0.025 Mn 0.43 Cu 2.95 Zn 2.63 Cd - Pb 7.0 Ni 0.29 V 0.038	13.36
Tomatoes	Cr 0.041 Mn 0.72 Cu 1.14 Zn 1.94 Cd - Pb 10.1 Ni 0.24 V 0.032	14.21
Cabbage	Cr 0.065 Mn 2.19 Cu 2.71 Zn 3.65 Cd - Pb 5.1 Ni 0.37 V 0.069	14.15
Beet	Cr 0.020 Mn 0.33 Cu 2.52 Zn 1.09 Cd - Pb 3.2 Ni 0.08 V 0.034	7.45
Grapes	Cr 0.021 Mn 0.23 Cu 3.03 Zn 3.07 Cd - Pb 7.6 Ni 0.08 V 0.035	14.07
Cherry	Cr 0.031 Mn 1.43 Cu 3.40 Zn 4.78 Cd - Pb 14.2 Ni 0.11 V 0.036	23.99

References

[1] Regions of Russia. Socio-economic indicators 2020 from: https://rosstat.gov.ru/folder/210/document/13204

[2] On the state of the environment and natural resources of the Rostov region in 2019. Environmental bulletin of the Don from: https://xn--d1ahaoghebjc5k.xn--p1ai/projects/current/19/

[3] Rostov Region in figures 2019 Statistical collection from: https://rostov.gks.ru/folder/30195

[4] Kasimov N S 2013 Ecogeochemistry of landscapes (Moscow: IE Filimonov M V) p 208

[5] Chernova O V and Bezuglova O S 2019 Experience of using data of background concentrations of heavy metals in regional monitoring of soil pollution Soil science 8 pp 1015-26

[6] Zakrutkin V E 2002 Geochemistry of the landscape and technogenesis (Rostov-on-Don: North-Caucasian Scientific Center of Higher School) p 308
[7] Kohanistaya N V and Shishkina D Yu 2015 Determination of the regional pedogeochemical background (on the example of the Rostov region) *Cooperation of the BRICS countries for sustainable development. International Scientific and Practical Conf. of Young Scientists of the BRICS countries* (Rostov-on-Don) pp 295-8

[8] Zabolotnaya O N 2004 Chromium in soils and agricultural vegetation of the Rostov region *Problems of geology, minerals and ecology of the South of Russia and the Caucasus Proceedings of the IV International Scientific Conf.* (Novocherkassk) 3 pp 178-84

[9] Zakrutkin V E and Kohanistaya N V 2013 Vanadium in agrolandscapes of the Rostov Region *Theoretical and Applied Ecology* 1 pp 83-8

[10] Kohanistaya N V 2015 Nickel in the system of soil-plant agrolandscapes of the Rostov region *Mission of youth in science. Scientific and practical Conf.* (Rostov-on-Don) pp 340-3

[11] Zakrutkin V E, Shishkina D Yu, Romanyuk O L and Zabolotnaya O N 2005 Features of the distribution of heavy metals in the soils of agricultural landscapes of small catchments (on the example of the Kundryuchya and Kagalnik rivers of the Rostov region) *Izvestiya Vuzov North Caucasus region Natural Sciences* 2 pp 98-102

[12] Shishkina D Yu 2017 Chemical contaminations of soils of industrial urban landscapes South of Russia *17th International Multidisciplinary Scientific GeoConference SGEM 2017 Conf. proceedings* (Albena, Bulgaria) pp 169-74

[13] Kohanistaya N V 2017 Features of distribution of nickel in soils of the Rostov region *17th International Multidisciplinary Scientific GeoConferences SGEM 2017 Conf. proceedings* (Albena, Bulgaria) pp 471-8

[14] Alekseenko V A, Minkina T M, Shvydkaya N V and Nevidomskaya D G 2018 Soils of geochemical landscapes of the Lower Don and their ecological characteristics (Rostov-on-Don; Taganrog: SFU) p 158

[15] Dyachenko V V 2004 *Geochemistry, systematics and assessment of the state of the landscapes of the North Caucasus* (Rostov-on-Don) p 267

[16] Zakrutkin V E, Shishkina D Yu and Zabolotnaya O N 1999 Biogeochemistry of copper, zinc and manganese in agrolandscapes of the Rostov region *Problems of geology, minerals and ecology of the South of Russia and the Caucasus Proceedings of the II International Scientific Conf.* (Novocherkassk) 2 pp 42-6

[17] Shishkina D Yu and Romanyuk O L 2007 Features of the distribution of copper, zinc and manganese in the agrolandscapes of the Rostov region *Problems of geochemistry of endogenous processes and the environment. All-Russian Scientific Conf.* (Irkutsk) 1 pp 248-51

[18] Kohanistaya N V 2018 Nickel and vanadium in agricultural crops of the Rostov region *18th International Multidisciplinary Scientific GeoConferences SGEM 2018 Conf. proceedings* (Albena, Bulgaria) pp 581-8

[19] Kohanistaya N V 2019 Bioaccumulation of nickel and vanadium by grain crops of the Rostov region *Problems of nature management and ecological situation in European Russia and in adjacent territories VIII International Scientific Conf.* (Belgorod) pp 145-7

[20] Ilyin V B and Syso A I 2001 *Trace elements and heavy metals in soils and plants of the Novosibirsk region* (Novosibirsk: SB RAS) p 229

[21] Protasova N A 2005 Heavy metals in chernozems and cultural plants of the Voronezh region *Agrochemistry* 2 pp 80-6

[22] Serikkyzy M S and Kyzyr K 2016 The study of food and chemical compositions of legume products: peas, beans, soy *Innovations in science* 7 (59) pp 110-4

[23] Perelman A I 1989 *Geochemistry* (Moscow: Higher school) p 528