Early postnatal irradiation-induced age-dependent changes in adult mouse brain: MRI based characterization

Bo Xu Ren1†, Isaac Huen2†, Zi Jun Wu3†, Hong Wang4, Meng Yun Duan1, Ilonka Guenther5, K. N. Bhanu Prakash2* and Feng Ru Tang4*

Abstract

Background: Brain radiation exposure, in particular, radiotherapy, can induce cognitive impairment in patients, with significant effects persisting for the rest of their life. However, the main mechanisms leading to this adverse event remain largely unknown. A study of radiation-induced injury to multiple brain regions, focused on the hippocampus, may shed light on neuroanatomic bases of neurocognitive impairments in patients. Hence, we irradiated BALB/c mice (male and female) at postnatal day 3 (P3), day 10 (P10), and day 21 (P21) and investigated the long-term radiation effect on brain MRI changes and hippocampal neurogenesis.

Results: We found characteristic brain volume reductions in the hippocampus, olfactory bulbs, the cerebellar hemisphere, cerebellar white matter (WM) and cerebellar vermis WM, cingulate, occipital and frontal cortices, cerebellar flocculonodular WM, parietal region, endopiriform claustrum, and entorhinal cortex after irradiation with 5 Gy at P3. Irradiation at P10 induced significant volume reduction in the cerebellum, parietal region, cingulate region, and olfactory bulbs, whereas the reduction of the volume in the entorhinal, parietal, insular, and frontal cortices was demonstrated after irradiation at P21. Immunohistochemical study with cell division marker Ki67 and immature marker doublecortin (DCX) indicated the reduced cell division and genesis of new neurons in the subgranular zone of the dentate gyrus in the hippocampus after irradiation at all three postnatal days, but the reduction of total granule cells in the stratum granulosum was found after irradiation at P3 and P10.

Conclusions: The early life radiation exposure during different developmental stages induces varied brain pathophysiological changes which may be related to the development of neurological and neuropsychological disorders later in life.

Keywords: Acute irradiation, Postnatal, MRI, Biomarker, Brain damage, Neurogenesis

Background

Radiotherapy has been used to treat brain tumors and prevent cancer cell metastasis from other organs to the brain, but it induces brain structural and functional changes, which causes lifelong problems with severe societal and economic impact, in particular, in young patients. Brain structural changes such as volume reduction, vascular dilatation and permeability, and white matter pathology ranging from demyelination to coagulative necrosis can be detected by magnetic resonance imaging.
Pocampal volume changes and neurogenesis was further studied by immunohistochemistry using immature (doublecortin, or DCX), mature (NeuN) neuronal markers, and cell division marker (Ki67).

Brain development in rodents from P1 to P3 is comparable to 23–32 weeks of gestation (preterm infant) in the human [6, 12]. At this stage, the main developmental changes include a predominance of mitotically active preoligodendrocytes[13, 14–16], immune system development [17] and establishment of the blood-brain barrier [18, 19]. From P7 to P10, it is comparable to 36–40 weeks of gestation (preterm infant) in the human [6, 12]. During this period, there are peak brain growth spurt [20, 21] and gliogenesis [22, 23], increasing axonal and dendritic density [24, 25], pre-dominance of immature oligodendrocytes [13–16] and consolidation of the immune system [17], and from P20 to P21, it is comparable to 2–3-year-old children [12]. During this period, rapid brain development, synaptogenesis, myelination, and changes of neurotransmitter and receptor systems occur [6, 12]. In this study, BALB/c mice were chosen because this strain is more radiosensitive than other strains of mice [26, 27].

Methods

Animal irradiation

Neonatal specific-pathogen-free BALB/c mice with mother were provided by InVivos, Singapore, and kept in the Comparative Medicine Facility, the National University of Singapore with free access to water and food in a specific pathogen-free (SPF) facility with room temperature ranging from 210 to 240 °C. Animals were provided with toys and checked by vet daily, and were euthanized with CO2 once they suffered pale mucous membranes, hunched posture and ruffled fur, increased respiratory rate/difficulty breathing, ocular/nasal discharge, unresponsive to gentle prodding, and weight loss >20% compared to age-matched control.

A total of 28 mice was used in this study. These animals were divided into four groups based on litters, i.e., the normal control group (n = 7, 2 from P3 group, 2 from P10 group, and 3 from P21 group) without irradiation; The experimental groups were whole-body irradiated with 5 Gy (dose rate 2.48 Gy/min) at postnatal day 3 (P3, n = 9), 10 (P10, n = 7), and 21 (P21, n = 5) using the Gamma-Irradiator BIOBEAM8000 (GammaService Medical GmbH, Leipzig, Germany). To monitor the animal radiation dose, two nanoDots dosimeters (LANDAUER, Landauer Global Headquarters, IL, USA) was attached to the opposite sides of the inner wall of the mouse container for each radiation exposure and was read after irradiation using InLight microStar System (LANDAUER, Landauer Global Headquarters, IL, USA) to estimate the actual dose animal received. The
were monitored using an MRI-compatible small animal physiological monitoring system (Model 1030, SA Instruments Inc, USA).

For anatomical reference and to check the correct animal alignment in the magnet bore, localizers were acquired in three orthogonal planes: axial, sagittal, and coronal. A 2D Turbo Spin Echo (TSE) protocol (FOV 23mm; matrix size 320 × 320; TR 4400ms; TE 39ms; Flip Angle 180°) was used to produce T2-weighted sagittal images with a slice thickness of 0.4 mm, and an in-plane resolution of 0.072 mm × 0.072 mm. A 3D TSE sequence (FOV 25mm; matrix size 286 × 320; TR 3000ms; TE 121ms; 2 averages) was also used to produce T1-weighted coronal images with a slice thickness of 0.2mm and an in-plane resolution of 0.075 mm × 0.078 mm. Each scan lasted approximately 40 min.

Analysis

Three-dimensional (3D) brain images were automatically segmented into 364 labels using an in-house pipeline. This consisted of atlas-based brain extraction [29] followed by atlas-based segmentation [30]. In both cases, the atlas used was the high-resolution mouse brain atlas, whose labels include regions such as CA1 which were assigned to super-regions such as the hippocampus [31, 32]. Brain extraction involved linear registration of atlas brain mask to an estimate of the subject’s brain mask (Brain Extraction Tool) [33]. To verify the accuracy of brain extraction, all registrations were manually reviewed. Segmentation required 3D registration of atlas brain to subject brain using both linear and nonlinear registration, with inspection at every stage (Fig. 1). This allowed the transformation of atlas brain regions onto subject brain regions.

The volume of each region was automatically calculated in mm³ using an in-house script developed in the programming language R. Percentage differences from the control group were calculated for each region and then converted into a color-coded image (Fig. 2). Volumes of super-regions were calculated by summing regions assigned to them. Comparisons were made between groups for super-regions and selected regions of relevance such as the lateral ventricle (Fig. 3).

For each super-region, a boxplot of its volume across groups was plotted and groups without significant differences were labeled by the same letter (Fig. 3). This was achieved by calculation of significance of volume change across all groups using a one-way ANOVA (corrected for an unbalanced design using type III sum of squares), followed by calculation of 95% confidence intervals of volume change (Fig. 4) between individual groups using least-squares means estimation (correction for multiple comparisons using Tukey-Kramer test, α = 0.05). We also investigated the interaction of the group, region, and sex.
using a three-way ANOVA (corrected for an unbalanced design using type III sum of squares). All statistical analysis was carried out in R using the R lsmeans, cars, ggplot2, and gridExtra packages.

Immunohistochemistry
At 15 M after irradiation, animals (5 control, 4 P3 + 15 M, 3 P10 + 15 M and 3 P21 + 15 M with the respective mean weight of 32.32, 24.60, 24.57, 25.07 g) were anesthetized with ketamine (75 mg/kg) + medetomidine (1 mg/kg) at 0.1ml/10 g, perfused with saline and fixed with freshly prepared 4% paraformaldehyde solution. The brain was removed, postfixed overnight, and then transferred to 30% sucrose in 0.1 M PB (pH: 7.4). Sagittal sections were then cut at 40 μm thickness, a serial of alternative 6 sections were collected and put into 6 wells. Three wells were processed for immunohistochemistry to investigate radiation-induced changes of cell proliferation, neurogenesis (immature neurons), and mature neurons using Ki67, doublecortin (DCX), or and neuron-specific nuclear protein (NeuN) respectively.

For immunohistochemistry, sections were blocked with 3% H2O2 for 10 min, followed by 1.5% normal goat serum (for Ki67 and NeuN) or 2% horse serum (for DCX) for 2 h at room temperature. The sections were then treated with primary rabbit antibodies for Ki67 (1: 400) (Gene Tex, USA), and NeuN (1:1500) (Gene Tex, USA) or goat antibodies for DCX (Santa Cruz Biotechnology Inc., CA, USA) in 0.1 M phosphate buffer saline (PBS) with 0.1% Triton X-100 (PBS-TX) overnight. The sections were then treated with biotinylated goat anti-rabbit or horse anti-goat secondary antibodies for 1 h. The sections were then treated with avidin-biotin complex (ABC) reagent (Vector Laboratories Inc., Burlingame, CA, USA) for 1 h, reacted in DAB Peroxidase Substrate (Vector Laboratories Inc., Burlingame, CA, USA) for 10 min, mounted, and covered with a coverslip.

Cell counting and statistical analysis
Ki67- or DCX- or NeuN-immunostained cells were analyzed by a stereological method using STEREOLOGER™ software (Stereological Resource Center Biosciences, Inc. Florida, USA). The experimenter was blind to the group allocation, and only the principal investigator was aware of the group allocation at the different stages of the experiment. “Regional Volume Probe” and “Object
Number Probe” were chosen to count positive cell numbers in the entire medial-lateral extent of the dentate gyrus. The section interval was 6. The cell number was indicated as mean ± SEM and was statically analyzed by One-Way ANOVA followed by Tukey’s post hoc test. A p-value < 0.05 was considered as statistical significant.

Results

Acute γ-irradiation with 5 Gy induced brain volume changes as characterized by MRI scans

Regional percentage volume changes as characterized by MRI scans were visualized in Fig. 2 for P3 + 13 M, P10 + 13 M, and P21 + 13 M groups. For each superregion, the distribution of volumes in each group was shown in Fig. 3. The groups without a significant difference were labeled with the same letter. The 95% confidence intervals of volume changes between individual groups were shown in Fig. 4.

Compared to the control group, the total brain volume was reduced in all three groups of P3 + 13 M (−51.53 ± 5.88 mm³, t-ratio = 8.759, df = 12, p < 0.0001), P10 + 13 M (−41.74 ± 6.44 mm³, t-ratio = 6.476, df = 12, p = 0.0002) and P21 + 13 M (−31.42 ± 6.44 mm³, t-ratio = 4.876, df = 12, p = 0.0019).

Percentage volume change from control ranged from −45% (cerebellar vermis WM) to −2% (temporal region, insular region) at P3 + 13 M, −28% (cerebellar WM) to −4% (cerebellar paravermis WM, insular claustrum, insular region) at P10 + 13 M and −9% (deep cerebellar nuclei, cerebellar paravermis WM, cerebellar hemisphere) to −4% (piriform cortex, insular claustrum, cerebellar paravermis) at P21 + 13 M.
Fig. 3 Acute irradiation (5 Gy γ irradiation) induced volume changes in various super-regions of the brain. Compared to the control group (n = 6) MRI scanning shows that acute gamma radiation (5 Gy γ radiation) causes volume changes in various super-regions of the brain in the group of P3 + 13 M (P3) (n = 4), P10 + 13 M (P10) (n = 3), P21 + 13 M (P21) (n = 3). Boxplots show distribution of volumes for each group. Letters denote groups not significantly different from each other. These were calculated by one-way ANOVA between groups followed by calculation of least-squares means (correction for multiple comparisons using Tukey-Kramer test, α = 0.05). Regions are ordered by mean volume of each region.
In order, regions with the greatest percentage volume reduction between control and P3 + 13 M groups were cerebellar vermis WM (−44.7%, −1.03 ± 0.0653 mm³, t-ratio = 15.852, df = 12, p < 0.0001), deep cerebellar nuclei, (−40.4%, −0.52 ± 0.0419 mm³, t-ratio = 12.504, df = 12, p < 0.0001), cerebellar vermis, (−39.8%, −7.44 ± 0.369 mm³, t-ratio = 20.155, df = 12, p < 0.0001), cerebellar white matter, (−35.9%, −2.15 ± 0.147 mm³, t-ratio = 14.623, df = 12, p < 0.0001), cerebellar flocculonodular lobe (−26.0%, −1.11 ± 0.211 mm³, df = 12, p < 0.0001).
t-ratio = 5.241, df = 12, p = 0.0001), cerebellar hemisphere (−24.4%, −4.82 ± 0.411 mm³, t-ratio = 11.729, df = 12, p < 0.0001), thalamus (−20.9%, −3.36 ± 0.389 mm³, t-ratio = 8.616, df = 12, p < 0.0001), cerebellar paravermis WM (−18.1%, −0.0157 ± 0.00705 mm³, t-ratio = 2.221, df = 12, p = 0.1727), cerebellar flocculonodular lobe WM (−18.0%, −0.0496 ± 0.0173 mm³, t-ratio = 2.870, df = 12, p = 0.0593) and olfactory bulbs (−17.4%, −3.44 ± 0.25 mm³, t-ratio = 13.8, df = 12, p < 0.0001).

Statistical testing of the interaction of group, region and sex using a three-way ANOVA showed significant interactions between group and region (F_{1005,2688} = 6.82, P < 2.2 × 10^{-16}), region and sex (F_{335,2688} = 2.81, P < 2.2 × 10^{-16}) and group and sex (F_{3,2688} = 9.71, P = 2.3 × 10^{-6}). The interaction between region, group and sex was not significant (F_{1005,2688} = 0.88, P = 0.99).

Acute γ-irradiation with 5 Gy induced impairment of cell proliferation and neurogenesis at 15 M after irradiation

The immunohistochemical study of Ki67 (Fig. 5a–d) and DCX (Fig. 5e–h) showed a significant loss of dividing cells (Fig. 5a–d) and newly generated neurons (Fig. 5e–h) in the subgranular zone in P3 + 15 M, P10 + 15 M and P21 + 15 M groups compared to the control. Similarly, NeuN immunohistochemistry (Fig. 5i–l) revealed a significant loss of mature neurons in the stratum granulosum of the dentate gyrus in the group of P3 + 15 M and P10 + 15 M compared to the control, but there is no statistical significance between control and P21 + 15 M. In the P3 + 15 M group, there was hypoplasia of the low blade of the stratum granulosum.

![Fig. 5](image_url) Ki67 immunohistochemistry shows dividing cells (arrows, with high magnification in insert) in the subgranular zone of the dentate gyrus in the control (n = 5) (a), P3 + 15 M (with 5 Gy γ-ray irradiation at postnatal day 3, n = 4) (b), P10 + 15 M (with 5 Gy γ-ray irradiation at postnatal day 10, n = 3) (c), P21 + 15 M (with 5 Gy γ-ray irradiation at postnatal day 21, n = 3) (d) mouse respectively. DCX immunohistochemistry shows newly generated neurons (arrows, with high magnification in insert) in the subgranular zone of the dentate gyrus in the normal control (e), P3 + 15 M (f), P10 + 15 M (g), and P21 + 15 M (h) group of mice respectively. NeuN immunohistochemistry shows mature neurons in the granule cell layer of dentate gyrus in the normal control (i), P3 + 15 M (j), P10 + 15 M (k), and P21 + 15 M (l) group of mice respectively. In P3 + 15 M group, the ventral blade of the stratum granulosum is not fully developed (arrows in j) (Insert in i–l shows magnified NeuN positive cells from the dashed rectangle in each Fig). One-way ANOVA followed by the Tukey’s post hoc test were used for statistical analyses indicate significant reduction of Ki67 (m), DCX (n) and NeuN (o) immunopositive cells. *P < 0.05 compared to the control, **P < 0.01 compared to the control, ***P < 0.001 compared to the control, ****P < 0.0001 compared to the control. ns: P > 0.05 no statistical significant difference compared to the control.
Discussion

Main findings

In the present MRI scan, we showed a significant brain region- and age-dependent radiosensitivity after irradiation with 5 Gy. Relative to control, there was a significant reduction at P3 in 17 of the 27 super-regions. At P3, the highest percentage volume reductions were primarily in the cerebellum including its hemispheres, vermis, paravermis, and flocculonodular lobe, although thalamus and olfactory bulbs were also in the top 10. Other notable regions with significant reductions included the hippocampal region, cingulate region, lateral ventricle, and fiber groups.

In many regions, there was a trend of P10 and P21 being less radiosensitive. Both P10 and P21 had significant consecutive increases in cerebellar WM, cerebellar vermis, cerebellar vermis white matter, while at least one of P10 and P21 significantly increased from P3 in olfactory bulbs, thalamus, cerebellar hemisphere, and deep cerebellar nuclei.

At a cellular level, acute irradiation at all the 3 postnatal days reduced dividing cells and newly generated neurons in the subgranular zone of the dentate gyrus indicated by Ki67 and DCX at 15 M after irradiation. Furthermore, the number of NeuN immunostained granule cells in the dentate gyrus was also reduced at 15 M after irradiation when animals were irradiated at P3 and P10.

Radiation-induced mouse brain volumetric changes are region- and age-dependent

Clinical studies suggest that radiation induces the white [34, 35] and gray [11, 36–38] matter atrophies in the human brain [34–45]. These changes were usually induced by very high doses of acute or fractionated radiotherapy and were dose-dependent [36, 41]. It suggests that further study on brain structural changes after irradiation with doses less than 10 Gy is still needed. Irradiation of animals with 5 Gy in the present study may provide a good model for searching MRI markers for detection of relatively low dose radiation-induced brain pathophysiological changes.

Radiation-induced brain damage is age- and region-dependent. Cortical thinning in the pediatric population with radiotherapy for medulloblastoma was found predominantly in those brain regions undergoing active development which are therefore more radiosensitive than other regions [46]. In adult patients with high-grade glioma (HGG), the temporal lobe was the most radiosensitive neuroanatomic location at 1-year post-radiotherapy [38]. However, it remains unknown whether the minor age difference among the pediatric population will be related to radiation-induced brain damage in different brain regions. In the present mouse model, we showed significant volume changes in the hippocampus, and cerebellar flocculonodular lobe when animals were irradiated at P3, but not P10 and P21, suggesting that radiation exposure at different early postnatal days may induce varied brain pathological changes and subsequent neurological and neuropsychological disorders in the later stages of animal or human life.

While most mouse brain neurogenesis occurs prenatally, neurogenesis in several brain regions including granule cells of the dentate gyrus in the hippocampus, granule cells of the olfactory bulbs, and the cerebellar cortex undergo their principal development during the postnatal period, in particular, in the first 1 or 2 weeks of postnatal neurodevelopment in rodents [47]. In the present study in the mouse model, several relevant regions had significant volume reduction at P3, but not at one or both of P10 and P21, including the hippocampus and some cerebellar regions including cerebellar paravermis, deep cerebellar nuclei, and cerebellar flocculonodular. This suggests volume reduction is closely related to the postnatal brain developmental stages.

The radiosensitivity of adult brain tumor patients is also brain function-dependent. Brain regions with sophisticated thinking skills such as the entorhinal cortex and the lateral inferior parietal cortex are more vulnerable than the primary visual cortex or primary somatosensory/motor cortex to radiation-induced damage. It was supported by the clinical finding that patients with radiotherapy had neurocognitive impairment [36].

In our mouse model, we have also shown the loss of spatial memory and induced depression when animals were irradiated at P3 which may be related to the impairment of hippocampus and aberrant neurogenesis in the dentate gyrus [48]. The current Ki67 and DCX immunostaining at 15 months after irradiation of P3 mice further confirmed our previous study.

Radiation-induced neuropathological changes in different brain regions

Hippocampus

Radiation-induced pathophysiological changes in the hippocampus have been well documented [8, 49]. Acute irradiation of immature mice at P0 (6 Gy to the mouse brain) [50], P9 (6 Gy to the mouse brain) [51], P10 (6 or 12 Gy to the mouse brain) [52], P11 (8 Gy to the mouse brain) [53], P14 (8 Gy to the mouse brain) [54, 55], P21 (5 Gy to the mouse brain) [56] and P30 (15-25 Gy to the rat brain) [49, 57] induced impairment of hippocampal neurogenesis when animals were tested at mature ages. Clinical MRI studies indicated that radiotherapy may cause dose-dependent hippocampal atrophy, suggesting a potential of using this biomarker to constrain...
radiotherapy dose in order to prevent its subsequent cognitive impairment [40–44, 58, 59]. In the present study, hippocampal atrophy occurred after irradiation with a relative low dose of 5 Gy at P3, but not P10 and P21, suggesting that mouse hippocampus is more radiosensitive at P3 than P10 and P21. The immunohistochemical study indicated significant reduction of cell division and newly generated neurons in the dentate gyrus 15 months after irradiation at P3, P10 and P21. The number of mature neurons in the stratum granulosum was also reduced after irradiation at P3 and P10. The impairment of neurogenesis may lead to reorganized neural circuits which may be involved in radiation-induced different neurological and neuropsychological disorders.

Cerebrum

Brain MRI study has also shown open-lip schizencephaly with an absence of considerable portions of the right frontal, parietal, and temporal lobes in a patient prenatally exposed to the Chernobyl nuclear disaster after the 28th week of pregnancy [60]. While the authors concluded that it was unlikely that radiation could account for the anatomic abnormality [60], a constellation of clinical neurophysiological examination and neurobehavioral tests strongly suggests that preterm radiation exposure induces extensive brain damage [61, 62]. Prophylactic whole-brain radiation therapy of acute lymphoblastic leukemia (ALL) at age 5 of a girl induced different neurological and neuropsychological disorders at the late stages of her life [63]. In the present study, the highest whole brain volume reduction was observed after irradiation at P3 which was followed by P10 and P21. The radiation-induced whole brain volume reduction in the mouse model confirms recent clinical studies showing whole-brain volume changes following radiotherapy in either child [64] or adult [65] patients.

Cerebellum

The fastest development of the human cerebellum occurs from 24 to 40 weeks of gestation [66, 67]. Harmful environmental exposures during pregnancy, in particular in the fastest development period have been reported to induce abnormal prenatal cerebellar development [68, 69]. The structural changes in the subcortical and cortical areas may also affect vestibular and acoustic functions in clean-up workers of the Chernobyl accident (30 years of follow-up) [70]. In the present study, P3 mice are comparable to the human fetal period of 23–32 weeks of gestation. Since a rapid growth of the cerebellum occurs at this postnatal age, this may explain why the cerebellum is in general more radiosensitive than other brain structures. Our results matched with a previous study [71] showing abnormal cytoarchitecture of the cerebellar cortex and motor abnormalities after a single dose X-irradiation (5 Gy) of rats immediately after birth. It also confirmed the cerebellar regional variation in radiosensitivity after X-ray irradiation of P1 rat with 1.5 Gy and examined at 3 weeks of age [72]. At cellular levels, radiation-induced progenitor cell death in the external germinal layer, microglial reaction, and impairment of the blood-brain barrier may be involved in the volume reduction or atrophy of the cerebellum [73].

Olfactory bulb

Radiation exposure also affects the olfactory system. Acute irradiation of immature (P19) or mature (8–12 weeks) mice with high doses of 7.5 or 7 Gy respectively reduced both neurogenesis and volume of the olfactory bulb (OB) [74, 75]. Fractionated irradiation also caused atrophy of OB which was indicated by MRI [76–78]. At a molecular level, P53 mediated apoptosis plays an important role in volume loss in the hippocampus and OB after radiation exposure [79]. Radiotherapy of patients with head and neck cancer also reduced peripheral progenitor cell numbers and taste dysfunction which may persist for months and often years after treatment [80, 81]. In the present study, significant atrophy of OB was observed at P3, with reduced but still significant atrophy at P10 and P21, after radiation exposure with 5 Gy.

Thalamus

The brain neuropathological changes in different neurological and neuropsychological disorders varied. Delli Pizzi et al. [82] reported structural connectivity alterations between cortical and subcortical regions or within a cortical network in dementia with Lewy body (DLB), whereas disconnection of mnemonic pathways was present in AD [82]. In DLB, the closed match of neuropathological changes in grey and white matter suggests that neuronal loss but not white matter damage may be related to disruption of brain connectivity. Both cortical and subcortical neuropathological changes are involved in schizophrenia. X-ray irradiation (with a total dose of 1.75–3.5 Gy) of macaques in early gestation but not midgestation reduced thalamic neuron numbers, in particular in the mediodorsal nucleus (MD). Early prenatal radiation exposure-induced neuronal loss in the thalamus results in the reduction of cortical volume, which may imitate the thalamocortical pathology of schizophrenia [83, 84]. Irradiation in adulthood caused behavioral abnormalities relevant to schizophrenia, and reduction of adult neurogenesis by irradiation may be associated with schizophrenia-like behaviors in rats [85]. In the present study, a significant reduction of thalamic volume occurred after irradiation at P3 but not P10 and P21, combined with atrophy of cortex and reduced...
neurogenesis in the subgranular zone. It is speculated that schizophrenia may be developed at certain stages of animal life after irradiation at P3.

In patients with epilepsy and intellectual disability, cortical dysplasia has been reported, it may be closely linked to clinical manifestation [86]. The atrophy of the animal brain after irradiation at P3, P10, and P21 may also induce epilepsy and intellectual disability which is supported by previous human epidemiological and animal experimental studies [87–89].

In the present study, both male and female mice were used as we kept litters with dams. While different brain regions are sexually dimorphic in terms of volume [90], volume, and time course of development [91], this study only reported the difference in mature mice age 84 days [90], or immature stages from P3 to P65 without any brain insults (normal development) [91]. No evidence was provided regarding the difference at the late stages of animal life. Furthermore, the brain insults at the early stages of animal life may eliminate those changes as the previous studies by pre-or post-natal irradiation of rodents did not show obvious differences in radiosensitivity between the sexes or tested strains. For instance, Jensh [92] reported significant sex differences in responses within the prenatally irradiated and control groups for behavioral tests, but these changes were unrelated to radiation exposure. Eriksson et al. [93] showed an altered adult spontaneous behavior and impaired habituation capacity after irradiation of mice at P3 and P10 but did not find a major difference in neurobehavioural defects between male and female mice, in neither Naval Medical Research Institute (NMRI) mice nor C57BL/6, suggesting no obvious differences in susceptibility between the sexes or tested strains. Furthermore, in these studies, C57BL/6 mice were used, which are different from BALB/c mice used in the current study. Our statistical testing of the interaction among the region, group, and sex did not show a significant difference.

Conclusions

Both epidemiological and animal experimental studies have suggested the link between prenatal or postnatal radiation exposure and different neurological and neuropsychological disorders. In the present MRI study, characteristic regional volume changes were observed at 13 months after irradiation at P3, P10, and P21, suggesting different brain disorders may be developed at later stages of animal life. These characteristic regional volume change patterns may be used as biomarkers to retrospectively calculate the radiation doses animals are exposed at the early stages of their life. From this point of view, non-invasive MRI scanning may provide morphological biomarkers for retrospective estimation of the radiation doses animals may be exposed in addition to prospective monitoring of radiation-induced brain damage from both radiotherapy and accidental radiation exposure. Further study in patients with radiotherapy or radiodiagnostic exposure may provide more evidence for the development of MRI biomarkers for radiation exposure detection.

Acknowledgements

The authors thank all individuals who participated in the present study. The work described in the manuscript has not been published previously.

Authors’ contributions

FRF, BXR conceived the idea, FRF, KB, GI designed the experiments, and ZJW, HI conducted the experiments and data analysis, and ZJW, HI, BXR, FRF drafted the manuscript. HW conducted the experiments, and revised the manuscript, MYO conducted data analysis and manuscript formatting. All authors read and approved the final manuscript.

Funding

This work was supported by grants from the National Research Foundation of Singapore to Singapore Nuclear Research and Safety Initiative (TFR) and the National Natural Science Foundation of China (No. 81772223) (RBX). The data processing and analysis were supported by a core grant from Agency for Science, Technology, and Research (A*STAR) to Singapore Bioimaging Consortium (SBIC).

Availability of data and materials

The datasets generated and/or analyzed during the current study are not publicly available but will provide if required by researchers. The study data are available when required.

Declarations

Ethics approval and consent to participate

The experimental protocols were reviewed and approved by the Institutional Animal Use and Care Committee (IACUC), National University of Singapore (R15-01576).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Medical Imaging, School of Medicine, Yangtze University, 1 Nanhu Road, Jiangzhou 434023, Hubei, China. 2 Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore. 3 Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China. 4 Radiaton Physiology Laboratory, Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, 1 CREATE Way #04-01, Singapore 138602, Singapore. 5 Comparative Medicine, Centre for Life Sciences (CeLS), National University of Singapore, #05-02, 28 Medical Drive, Singapore 117456, Singapore.

Received: 28 November 2020 Accepted: 13 April 2021

Published online: 21 April 2021

References

1. Valk PE, Dillon WP. Radiation injury of the brain. American Journal of Neuroradiology. 1991;12(1):45–62.
25. Baloch S, Verma R, Huang H, Khurd P, Clark S, Yarowsky P, et al. Quantification of radiation and age on diffusion tensor imaging in rats. Brain Res. 2010;1351:23–31.
24. Cowan WM. The development of the brain. Sci Am. 1979;241(3):113–33.
23. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult brain structural and functional abnormalities in pre-symptomatic phase and outcome prediction. Hum Brain Mapp. 2018;39(1):407–27.
22. Catalani A, Sabbatini M, Consoli C, Cinque C, Tomassoni D, Azmitia E, et al. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and age. Prog Neurobiol. 2013;106:107–116.
21. Bockhorst KH, Narayana PA, Liu R, Ahobila-Vijjula P, Ramu J, Kamel M, et al. Radiation-induced brain injury: Hybrid multifunctional MRI-based study. Magn Reson Imaging. 2018;54:101–8.
20. Ding Z, Zhang H, Lv VF, Xie F, Liu L, Qiu S, et al. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp. 2018;39(1):407–27.
19. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for brain development and their correlation with human. Dev Neurosci. 2011;33(3–4):251–60.
18. Tang FR, Loke WK, Khoo BC. Postnatal irradiation-induced hippocampal neurodegeneration, cognitive impairment, and aging. Brain Development. 2017;39(4):277–93.
17. Holsapple MP, West LJ, Landreth KS. Species comparison of anatomical specific differences in perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol. 2003;181(2):231–40.
16. Lodygensky G, Vasung L, Sizonenko S, Hüppi P. Neuroimaging of cortical development and brain connectivity in human newborns and animal models. J Anat. 2010;217(4):418–28.
15. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTS similarity metric performance in brain image registration. NeuroImage. 2011;54(3):2033–44.
14. Lodygensky G, Vasung L, Sizonenko S, Hüppi P. Neuroimaging of cortical development and brain connectivity in human newborns and animal models. J Anat. 2010;217(4):418–28.
13. Craig A, Ling Luo N, Beardside D, Wingate-Pearse N, Walker D, Hohimer A, et al. Quantitative analysis of perinatal rodent gliodendrocyte lineage progression and its correlation with human. Exp Neurol. 2003;181(2):231–40.
12. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTS similarity metric performance in brain image registration. NeuroImage. 2011;54(3):2033–44.
11. Tang FR, Loke WK, Khoo BC. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. Journal of Radiation Research. 2017;58(2):165–82.
10. Vorhees CV, Ahrens KG, Acuff-Smith KD, Schilling MA, Fisher JE. Methamphetamine exposure during early postnatal development in rats: I. Acoustic startle augmentation and spatial learning deficits. Psychopharmacology. 1994;114(3):392–401.
9. Eriksson P. Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology. 1997;18(3):719–26.
8. Cowen WM. The development of the brain. Sci Am. 1979;241(3):113–33.
7. Bockhorst KH, Narayana PA, Liu R, Ahobila-Vijjula P, Ramu J, Kamel M, et al. Radiation-induced brain injury: Hybrid multifunctional MRI-based study. Magn Reson Imaging. 2018;54:101–8.
6. Ferrer I, Serrano T, Alcantara S, Tortosa A, Graus F. X-ray-induced cell death in the developing hippocampal complex involves neurons and requires protein synthesis. J Neuropathol Exp Neurol. 1993;52(4):370–8.
5. Ding Z, Zhang H, Lv XF, Xie F, Liu L, Qiu S, et al. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp. 2018;39(1):407–27.
4. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult brain structural and functional abnormalities in pre-symptomatic phase and outcome prediction. Hum Brain Mapp. 2018;39(1):407–27.
3. Semple BD, Blomgren K, Gimlin K, Fernerno DM, Noble-Haeselss LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106:107–116.
2. Catalani A, Sabbatini M, Consoli C, Cinque C, Tomassoni D, Azmitia E, et al. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp. 2018;39(1):407–27.
International Journal of Radiation Oncology Biology Physics. 2007;68(4):992–8.

47. Chen VS, Morrison JP, Southwell MF, Foley JJ, Bolon B, Elmore SA. Histology atlas of the developing prenatal and postnatal mouse central nervous system, with emphasis on prenatal days E7.5 to E18.5. Toxicol Pathol. 2017;45(6):705–44.

48. Tang FR, Wang H, Shen HY, Sethi G. Neuropsychological changes and relevant neurocorticchitectonic abnormality of the dentate gyrus after early life acute radiation exposure to mice. Prog Abst Book. 2017;5:392.

49. Yang J, Gao J, Han D, Li Q, Liao C, Li J, et al. Hippocampal changes in inflammasomes, apoptosis, and M2MΦ after radiation-induced brain injury in juvenile rats. Radiat Oncol. 2020;15(1):78.

50. Gairasa JL, Beaudoin M, Ben-Ari Y. Effect of neonatal degranulation on the development of rat CA3 pyramidal neurons: inductive role of mossy fibers on the formation of thorny excrescences. J Comp Neurol. 1992;321(4):612–25.

51. Naylor AS, Bull C, Nilsson MK, Zhu C, Bjork-Eriksson T, Eriksson PS, et al. Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain. Proc Natl Acad Sci USA. 2008;105(38):14632–7.

52. Kremer T, Jagasia R, Herrmann A, Matile H, Borroni E, Francis F, et al. Application of whole brain radiation. Parkinsonism Related Disorders. 2016;29:129–30.

53. Roughton K, Kalm M, Blomgren K. Sex-dependent differences in behavior and hippocampal neurogenesis after irradiation to the young mouse brain. Eur J Neurosci. 2012;36(6):2763–72.

54. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol. 2004;188(2):316–30.

55. Zabolotnyi DI, Mishchanchuk NS. Vestibular and acustic dysfunctions in clean up workers of Chornobyl accident (30 years of follow up). Problemy Radiatsiinoi Medytsyny Ta Radiobiolohii. 2016;21:218–37.

56. Guelman LR, Zieher LM, Ríos H, Mayo J, Dopico AM. Motor abnormalities and changes in the noradrenaline content and the cytoarchitecture of the developing cerebellum following X-irradiation at birth. Mol Chem Neurobiol. 1993;20(1):45–57.

57. Li HP, Miki T, Yokoyama T, Lee KY, Gu H, Matsumoto Y, et al. Regional differences in vulnerability of the cerebellar foliations of rats exposed to neonatal X-irradiation. Neurosci Lett. 2006;402(1–2):86–91.

58. Zhou K, Bostrom M, Ek CJ, Li T, Xie C, Yu Y, et al. Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum. Sci Rep. 2017;7:46181.

59. Diaz D, Muñoz-Castañeda A, Ávila-Zarza C, Carrero J, Alonso JR. Weruaga E. Olfactory bulb plasticity ensures proper olfaction after severe impairment in postnatal neurogenesis. Sci Rep. 2017;7(1):5654.

60. Pereira-Caxeta AR, Guareschi PA, Medeiros DC, Mendes E, Ladeira LCD, Pereira MT, et al. Inhibiting constitutive neurogenesis compromises long-term social recognition memory. Neurobiol Learn Mem. 2018;155:92–103.

61. Bâlentová S, Hnilicová P, Kalenská D, Murín P, Hajtmanová E, Lehotský J, Adamkov M. Metabolic and histopathological changes in the brain and plasma of rats exposed to fractionated whole-brain irradiation. Brain Res. 2019;1708:146–59.

62. Bâlentová S, Hajtmannová E, Filová B, Bordělová V, Lehotejský J, Adamkov M. Effects of fractionated whole-brain irradiation on cellular composition and cognitive function in the rat brain. Int J Radiat Biol. 2018;94(3):238–47.

63. Bâlentová S, Hnilicová P, Kalenská D, Murín P, Hajtmannová E, Lehotejský J. Effect of whole-brain irradiation on the specific brain regions in a rat model. Metabolic and histopathological changes. Neurotoxicology. 2017;60:70–81.

64. de Guzman AE, Ahmed M, Li YQ, Wong CS, Nieman BJ. p53 loss mitigates early volume deficits in the brains of irradiated young mice. Int J Radiat Oncol Biol Phys. 2019;103(2):S11–20.

65. Neff P, Kingsley PA, Thomas M, Sachdeva J, Srivastava H, Kalra B. Pattern of gustatory impairment and its recovery after head and neck irradiation. Iran J Chiropractynalgy. 2017;29(95):319–27.

66. Chang CH, Chang FM, Yu CH, Ko HC, Chen HY. Assessment of fetal cerebellar volume using three-dimensional ultrasound. Ultrasound Med Biol. 2000;26(6):981–8.

67. C L, JS S, SK H, W H, B, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115(5):688–95.

68. Koning IV, Tielman LS, Hoekoe EC, Eury-Coosens GM, Reiss IJM, Steegers-Theunissen RPM, et al. Impacts on prenatal development of the human cerebellum: a systematic review. J Mater Fetal Neonatal Med. 2017;30(20):2461–8.

69. AV S, CM VM. Pre-clinical models of neurodevelopmental disorders: focus on the cerebellum. Reviews in The Neurosciences. 2014;25(2):177–94.

70. Zabolotnyi DI, Mishchanchuk NS. Vestibular and acustic dysfunctions in clean up workers of Chornobyl accident (30 years of follow up). Problemy Radiatsiinoi Medytsyny Ta Radiobiolohii. 2016;21:218–37. Problem Radiatsiinoi Medytsyny Ta Radiobiolohii. 2016;21:218–37.

71. Guelman LR, Zieher LM, Ríos H, Mayo J, Dopico AM. Motor abnormalities and changes in the noradrenaline content and the cytoarchitecture of the developing cerebellum following X-irradiation at birth. Mol Chem Neurobiol. 1993;20(1):45–57.
88. Syndikus I, Tait D, Ashley S, Jannoun L. Long-term follow-up of young children with brain tumors after irradiation. Int J Radiat Oncol Biol Phys. 1994;30(4):781–7.

89. Fushiki S. Pathogenesis of the neuronal migration disorder, with special reference to the animal model of prenatal exposure to low-dose ionizing radiation. No to Hattatsu = Brain Development. 1997;29(2):102–7.

90. Spring S, Lerch JP, Henkelman RM. Sexual dimorphism revealed in the structure of the mouse brain using three-dimensional magnetic resonance imaging. NeuroImage. 2007;35(4):1424–33.

91. Qiu LR, Fernandes DJ, Szulc-Lerch KU, Dazai J, Nieman BJ, Turnbull DH, et al. Mouse MRI shows brain areas relatively larger in males emerge before those larger in females. Nat Commun. 2018;9(1):2615.

92. Jensh RP, Brent RL, Vogel WH. Studies of the effect of 0.4-Gy and 0.6-Gy prenatal X-irradiation on postnatal adult behavior in the Wistar rat. Teratology. 1987;35(1):53–61.

93. Eriksson P, Buratovic S, Fredriksson A, Stenerlow B, Sundell-Bergman S. Neonatal exposure to whole body ionizing radiation induces adult neurobehavioural defects: critical period, dose–response effects and strain and sex comparison. Behav Brain Res. 2016;304:11–9.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.