Study on the synthesis of Indium Tinoxide (ITO) nanomaterial using sol-gel process and its potential for CO gas detection

Goib Wiranto1, Novrita Idayanti and Lilis Retnaningsih

Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (LIPI), Jl. Sangkuriang, Bandung 40135, INDONESIA

Email: gwiranto@gmail.com

Abstract. This paper describes the synthesis of doped and undoped nanomaterial Indium Tinoxide (ITO) using sol-gel process with the base materials from Indium Nitride (In(NO3)) and Tin Chloride (SnCl4). Doping was done using Palladium Chloride (PdCl), with the molar ratio of 90:10 and 70:30, respectively. Physical characteristics of the nanocrystallites were examined using SEM, EDS, XRD, and FTIR, whereas its resistivity was tested against CO gas. The result showed that the ITO powders have a crystal size smaller than 100 nm, with a cubic crystal structure (byxbite type), and having strong molecular bonds for In-O-In and Sn-O-Sn. The response to CO gases showed a decreasing resistivity with increasing CO gas concentration, showing its potential for gas sensor application.

1. Introduction

Indium Tinoxide (ITO) is a semiconducting material that has been widely used in the field of optoelectronics. Many devices such as CCD (Charged Coupled Device), LCD (Liquid Crystal Display), solar cells, LED (Light Emitting Diode), Photo Diode, Photo Transistor, and Laser, have used layers of ITO because of its optical transparency and high reflectivity in ultraviolet range [1]. In the field of sensor, ITO has been used as an active material to detect gases such as NO2 [2], methanol [3], H2 [4], and CO [5]. This widespread application has made ITO an interesting topic to be studied more intensively, especially its synthesis process and characteristics. The process of forming layers of ITO can be conducted using many different techniques, such as sputtering [6], CVD (Chemical Vapor Deposition) [7], thermal evaporation [8], and spray pyrolysis [9], and the resulting layer characteristics are very dependent on the process parameters used during deposition [10]. A simple and thus very popular method in synthesising an ITO material is by sol-gel process. Compared with the other techniques, sol-gel process has the advantages in terms of homogeneity, purity, low processing temperature, simplicity in adding dopant elements, and compatibility with microfabrication processes. Previous works in the application of sol-gel process to synthesise ITO nanomaterials have been demonstrated by Li and Ren [11], Hjiri et al [12], Silva et al [13], and Ibrahim and Moghdad [14]. Therefore this research was conducted to synthesise ITO nanomaterial using sol-gel process. Characterisation was conducted to study the physical characteristics of the resulting ITO powders using SEM, EDS, XRD, and FTIR, and the electrical characteristic was studied using four-point probe in response to CO gas.

1To whom any correspondence should be addressed.
2. Experimental

Indium Nitride (In(NO$_3$)$_3$) and Tin Chloride (SnCl$_4$) have been chosen as the base materials, and PdCl$_2$ was used as the dopant material. Four samples have been prepared in this experiment with each molar composition as seen in Table 1. Sample A and B were for the undoped ITO, and sample C and D were for the doped ITO.

Sample	In(NO$_3$)$_3$	SnCl$_4$.5H$_2$O	PdCl$_2$	% Molar Ratio
A	10 g	1.1 g	-	90 : 10
B	10 g	4.28 g	-	70 : 30
C	10 g	1.1 g	0.28 g	90 : 10
D	10 g	4.28 g	0.36 g	70 : 30

Initially, 10 g of In(NO$_3$)$_3$ was dissolved in 10 ml H$_2$O. All materials were then mixed for each sample, and added with 15 ml Diethylene Glycol. The resulting mixture was stirred using magnetic stirrer for 2 hours, while maintaining its temperature at 60 °C and pH = 1. A clear solution (sol) was then resulted. The next step was to increase the pH of the sol solution by adding 10 ml of ammonium (NH$_3$) solution. This has resulted in pH value of the solution = 9. Stirring was then repeated for 2 hours using magnetic stirrer, while maintaining its temperature at 60 °C, and a white gel was formed. The resulting white gel was then filtered and rinsed with DI water, and dried for 24 hours. The final step was to dry the white powder in an oven at 60 °C for 3 hours, followed by calcination at 400 °C for 2 hours.

3. Results and discussion

The ITO powders resulted after calcination process at 400 °C have a dark brown color for sample A and B (undoped), and light brown color for sample C and D (doped). It appeared that the addition of PdCl$_2$ has caused the difference in the resulting ITO powders.

3.1. Morphology

Initial observation showed that the grain size of the resulting ITO powder for sample A was much below 100 nm. As can be seen from the SEM results in Figure 1a, the majority of the grain size measured around 50 nm. For sample B, the average particle size was even smaller than sample A, as seen from Figure 1b. This is in consequence with the increase in Tin (Sn) components of the ITO composition. The atomic radius for ion In$^{3+}$ is 0.81 Angstrom, whereas that of Sn$^{4+}$ is 0.71 Angstrom. In sample B, with the composition of Sn : In = 70 : 30, there are more Sn$^{4+}$ ions replacing the In$^{3+}$ ion position in their lattice structure than in sample A.

![Figure 1. SEM view of: (a). sample A, and (b). Sample B](image-url)
As can be seen in Figure 2, the addition of Palladium dopant did not have a significant effect to the average particle size of the ITO powder. Although Pd2+ ion has an atomic radius of 86 Angstrom, its composition of only 2% from the total ITO composition did not have enough strength to alter the ITO particle size.

![Figure 2. SEM view of: (a). sample C, and (b). Sample D](image)

3.2. Composition

To study the elemental composition of the resulting ITO powders, the EDS spectrum of each sample has been taken. ITO consists of three elements, In, Sn, and O, which are formed by substitution of Sn atom into In3+ in In\textsubscript{2}O\textsubscript{3} compound (through doping substitution mechanism). Therefore the chemical structure of ITO can be expressed in the form of In\textsubscript{2-x}Sn\textsubscript{x}O\textsubscript{3-2x}.

![Figure 3. EDS spectra of the ITO powder: (a). sample A, and (b). Sample C](image)

Table 2. The content of O, In, and Sn in the ITO compound extracted from the EDS spectra, and the corresponding x value from the chemical formula In\textsubscript{2-x}Sn\textsubscript{x}O\textsubscript{3-2x}.

Sample	% O (8)	% In (49)	% Sn (50)	X value
A	18.87	49.57	31.56	0.75
B	19.67	32.77	47.55	1.27
C	18.47	57.90	23.63	0.53
D	19.07	45.35	35.58	0.90

From the EDS spectra as shown in Figure 3, it was obtained that the percent composition of O, In, and Sn for sample A was 18.87%, 49.57%, and 31.56%, respectively. Since the atomic weight of O, In,
and Sn is 8, 49, and 50, therefore the value of X in the chemical formula of ITO was approximately 0.75. By the same technique of calculation, the value of X for sample B, C, and D was obtained, and the results are as seen in Table 2.

3.3. Crystal structure
The XRD results for all samples showed that the ITO compound (In$_2$SnO$_5$) has been formed, along with Indium Oxide (In$_2$O$_3$). In ITO compound, each Sn$^{4+}$ atom replaces In$^{3+}$ producing one free electron, therefore ITO material will retain its bixbyte type cubic structure from In$_2$O$_3$. This can be seen in Figure 4 where the highest peaks of both compounds are located close to one another. For sample A, the highest peak of plane <222> occurs at (2θ angle) 30.44 for In$_2$O$_3$, and 32.64 for In$_2$SnO$_5$, whereas reflection of planes <400> and <440> occurs at 45.295 and 50.190 (for ITO).

Figure 4. XRD spectra of the ITO powder: (a). sample B, and (b). Sample D

The addition of Pd as dopant material did not shift the location of the spectrum peaks. However, the peak intensity increased even for the same molar concentration. The peak intensity for sample A at 32.64 increased from 151 to 256 (in sample C). This increase showed that the addition of Pd dopant material had a positif effect on the crystal structure of the ITO nanomaterials. In sample B and D, InOCl compound was formed caused by the increase in molar percentage (from 10% to 30% of the SnCl$_4$.

3.4. Molecular bonds
The molecular bonds of the ITO nanomaterial have been analysed using FTIR spectra. Since ITO is composed of In, Sn, and O, therefore the FTIR spectra should provide information on the molecular bond between In-O-In, Sn-O, and Sn-O-Sn. From the spectrum of all samples, it was found that the peaks are located at the the wavelength between ~400 cm$^{-1}$ sampai ~700 cm$^{-1}$, in which the bonds were dominated by metal and oxygen bonds. Figure 5 shows the FTIR spectra of the ITO powder for all
samples, and the wave numbers corresponding to the peaks of the molecular bonds are listed on Table 2.

![FTIR spectra of the ITO powders for all samples](image)

Figure 5. FTIR spectra of the ITO powders for all samples

Table 2. Wave numbers (cm\(^{-1}\)) for molecular bonds obtained from ITO spectra for all samples

Sample	In-O-In	Sn-O	Sn-O-Sn
A	453.27	503.42	671.23
B	389.62	489.92	667.37
C	443.63	493.78	669.30
D	325.97	499.56	669.30

3.5. Resistivity of the ITO nanomaterials

The study of electrical characteristics of the ITO nanomaterial was aimed to identify its resistivity changes in the presence of CO gas. The measurement of resistivity of the ITO powder was done using four-point-probe. As such, 0.3 g of ITO from each sample was pressed and then put inside a measurement chamber. The ITO sample was then exposed to the CO gas for 5 min, and the amount of CO was determined by the flow rate of the gas (1 ml/s and 5 ml/5). As shown in Figure 6, the results of the measurement showed that for all samples, the resistivity dropped as the amount of CO gas was increased. This is as expected since CO is one of reducing gases for metal oxide materials. In response to increase in molar Sn content, the resistivity decreased for the undoped samples (sample A to B), and increased for the doped samples (sample C to D). The addition of Pd content to the ITO has caused a lower drop in the measured resistivity as the amount of CO was increased.
4. Conclusion
The synthesis of doped and undoped nanomaterial Indium Tinoxide (ITO) using sol-gel process has been described in this paper. Both physical and electrical characteristics of the resulting ITO powders have been studied. The morphology of the ITO powder showed nanometer grain size and smaller as the Sn content increased. The chemical structure of ITO can be expressed in the form of $\text{In}_2\text{O}_3-x\text{Sn}_x\text{O}_{3-2x}$, with the value of x as obtained by EDS spectra increased with increasing Sn content. The crystal structure of the ITO nanomaterial as obtained from the XRD peaks is the same as that of In_2O_3. The molecular bonds constituting the ITO are between In-O-In, Sn-O, and Sn-O-Sn. From the FTIR spectra of all samples, it was found that the peaks were located at the wavelength between $\sim 400 \text{ cm}^{-1}$ sampai $\sim 700 \text{ cm}^{-1}$. The response to CO gases showed a decreasing resistivity with increasing CO gas concentration, showing its potential for gas sensor application.

Acknowledgments
The authors greatly acknowledged the financial support provided by Indonesian Institute of Sciences (LIPI) under “Program Unggulan 2016” and “Program Tematik 2016”.

References
[1] Singh V, Suman C K, and Kumar S 2006 Proc. 9th Asia. Symp. on Inf. Dis. 388.
[2] Vijayalakshmi K, and Ravidhas C 2010 Mat. Sci. Res. Ind.7 249.
[3] Jeong C, Shin C, Kim D, Chae J, and Kim Y 2011 Trans. on Electric. Electro. Mat. 11 77.
[4] Yoo K S, Park S H, and Kang J H 2005 Sens. Act. B: Chem. 108 159.
[5] Kim I J, Han S D, Han C H, Gwak J, Lee H D, and Wang J S 2006 Sens.6 526.
[6] Tuna O, Selamet Y, Aygun G, and Ozyuzer L 2010 J. Phys. D: Appl. Phys. 43 1.
[7] Atabaev I G, Hajiev M U, and Pak V A 2016 Int. J. Thin. Fil. Sci. Tec. 5 13.
[8] Dong H, Zhang X, Niu Z, Zhao D, Li J, Cai L, Zhou W, and Xie S 2013 J Nanosci. Nanotech. 13 1300.
[9] Gao Y, Zhao G, Duan Z, and Ren Y 2014 Mat. Sci. Poland 32 66.
[10] Bhatti M T, Rana A M, Khan A F, and Ansari M I 2002 J. of Appl. Sci. 2 570.
[11] Li Z, and Ren D 2006 Trans. Nonferrous Met. Soc. China 16 1358.
[12] Hjiri M, Ghribi F, and El Mir L 2014 Sens. & Trans. 27 198.
[13] Silva G M, Faria E H, Nassar E J, Ciufti K J, and Calefi P S 2012 Quim. Nova 35 473.
[14] Ibrahim H, and Moghad M 2013 IPASJ Int. J. of Electri. Eng. 1 18.