Document N° 2
Document de travail, n’engage pas le Conseil

L’émergence et la consolidation des méthodes de microsimulation en France

François Legendre, Économie et Statistique 510-511-512, décembre 2019
L’émergence et la consolidation des méthodes de microsimulation en France

The Emergence and Consolidation of Microsimulation Methods in France

François Legendre*

Résumé – Le but de cet article est de relater en France l’émergence progressive, depuis le milieu des années 1960, puis la consolidation, depuis le milieu des années 2000, des modèles de microsimulation dédiés à l’analyse des politiques sociales et fiscales. Nous présentons brièvement ces modèles en reprenant la distinction statique/dynamique. Nous faisons le lien entre la mise en chantier du modèle Mir, pour Modèle de l’impôt sur le revenu, et le développement de l’enquête Revenus fiscaux. Nous distinguons ensuite une première phase pendant laquelle ces modèles se sont multipliés et une phase de normalisation qui donne maintenant une place centrale au modèle Iñes. À côté des évaluations en cours (Revenu universel d’activité, Régime universel de retraite, Assurance sociale du risque dépendance), les attentes les plus récentes ont trait à l’évaluation ex ante de mesures accélérant la transition écologique ou de dispositifs de type revenu universel. Enfin, nous relevons que le déploiement de la Déclaration sociale nominative renouvelle sensiblement la donne en matière de sources administratives pour alimenter ces modèles.

Abstract – The purpose of this paper is to trace the gradual emergence of microsimulation models dedicated to the analysis of tax and social security policies in France since the mid-1960s, as well as their subsequent consolidation since the mid-2000s. A brief outline of these models is given using the static/dynamic distinction. A connection is made between the construction of the Mir model (standing for Modèle de l’impôt sur le revenu, an income tax model) and the development of the survey Revenus fiscaux. Then we distinguish two periods: An initial period that saw a proliferation of such models and a second period, of standardisation, during which the Iñes model has acquired a central position. Besides ongoing evaluations (of minimum income and pension schemes, insurance for long-term care), the most recent expectations in this area relate to the ex ante evaluation of measures designed to accelerate the ecological transition and of universal income-type schemes. Finally, we underline that the recent replacement of all the periodic declarations made by employers to various administrations by a unique declaration (the Déclaration sociale nominative, or DSN) significantly renews the range of administrative sources capable of feeding into these models.

Codes JEL / JEL Classification : C53, D04, D1, D31, H2, H3, H55, J26

Mots-clés : microsimulation, évaluation des politiques publiques, analyse économique des politiques sociales, minima sociaux, politiques familiales, retraites, vieillissement, dépendance

Keywords: microsimulation, public policy evaluation, economic analysis of social policies, social minima, family policies, pensions, ageing, long-term care

* Érudite, Université Paris-Est, et Tepp, CNRS (f.legendre@u-pec.fr)

Je remercie un rapporteur anonyme pour ses appréciables remarques.
Cet article rend compte de la manière dont les méthodes de microsimulation se sont développées depuis une cinquantaine d’années en France pour acquérir une place centrale, mais un peu méconnue, dans le domaine de l’analyse des politiques sociales et fiscales. D’un côté, ces méthodes répondent à une forte demande d’évaluation des effets des politiques fiscales et sociales, en particulier, les réformes du financement de la protection sociale, des politiques familiales ou encore des retraites ; de l’autre côté, les barrières à la mise en œuvre de ces méthodes ont été désormais complètement levées puisque l’on dispose d’une part de données individuelles et, d’autre part, d’ordinateurs suffisamment puissants pour simuler au niveau individuel les situations économiques et sociales.

Dans cette introduction, nous présentons brièvement ces méthodes de sorte que le lecteur puisse mieux les appréhender. Puis, dans une première section, nous revenons sur la première phase de développement des modèles de microsimulation qui a conduit à ce qu’ils s’installent dans le paysage de l’analyse des politiques sociales. Dans une seconde section, nous cherchons à dresser ce que pourrait être la feuille de route des modèles déagrégé possible. Pour mettre en œuvre ces méthodes, il faut donc disposer de données individuelles afin de constituer le point de départ de la microsimulation et de moyens de calcul.

Les méthodes de microsimulation s’attachent, dans une démarche de type bottom-up, à retracer les comportements d’unités individuelles (individus, ménages, entreprises) au niveau le plus désagrégé possible. Pour mettre en œuvre ces méthodes, il faut donc disposer de données individuelles afin de constituer le point de départ de la microsimulation et de moyens de calcul.

Les modèles statiques

Les modèles de microsimulation les plus simples sont des modèles « comptables ». Prenons le cas de l’impôt sur le revenu où l’unité individuelle est le foyer fiscal. A partir d’un échantillon représentatif de déclarations fiscales, on calcule le montant de l’impôt avec le barème actuel : tous les éléments qui fixent le montant de l’impôt figurent dans la déclaration fiscale et le barème de l’impôt est programmé. On peut alors évaluer une réforme de l’impôt en calculant l’impôt avec le nouveau barème et en comparant, pour chaque contribuable, l’ancien et le nouvel impôt. Il est ainsi possible de chiffrer le coût (ou le rendement) agrégé de la réforme mais aussi d’identifier les gagnants et les perdants de la réforme : leur nombre, la distribution des gains et des pertes, etc. Il est aussi possible d’évaluer les conséquences redistributives de la réforme : en effet, on pourra d’une part ventiler les contribuables en fonction de leur niveau de vie et, d’autre part, estimer la distribution des montants moyens de gains ou de pertes par tranche de niveau de vie. On pourra par exemple dire « le dernier décile de niveau de vie est le décile qui perd le plus à la réforme » et évaluer ainsi les conséquences de la réforme en termes de réduction ou d’augmentation des inégalités de niveau de vie.

Les méthodes de microsimulation n’émergent que dans les années 1960 puisqu’elles supposent que l’on dispose d’un grand nombre de données individuelles (et donc d’un système d’information pour enregistrer et accéder à des volumes de données importants) et de capacités de calcul suffisamment puissantes. Dans le cas de l’impôt sur le revenu, il serait tentant de mobiliser l’exhaustif des déclarations fiscales et de réaliser les calculs pour les 38 millions de déclarations dont l’administration fiscale dispose actuellement en France. Bien sûr, un échantillon tiré avec un bon plan de sondage suffit, mais on voit que les progrès de l’informatique ouvrent la possibilité de développer un modèle de microsimulation dont l’échelle serait de un pour un.

Les modèles « comptables » sont aussi appelés modèles « statiques » parce que, dans ces modèles, les individus ne réagissent pas au nouveau contexte qui est consécutif à la réforme que l’on veut évaluer. Certaines réformes ne poursuivent qu’un but financier comme la réduction du déficit des finances publiques ou sociales ; d’autres cherchent à limiter les inégalités ; d’autres, enfin, sont mises en place dans le but explicite de modifier les comportements. Dans tous les cas, il convient de prendre en compte les réponses des individus sans quoi l’évaluation de la mesure serait incomplète. Reprenons le cas de l’impôt sur le revenu et supposons, par exemple, que le plafond de la réduction d’impôt pour l’emploi d’un salarié à domicile soit relevé. Cette réforme n’a pas pour but premier de « faire un cadeau » aux particuliers employeurs ; son objectif est de favoriser l’emploi dans le secteur des services aux particuliers. Il serait donc absurde de chiffrer le coût de la mesure en faisant comme si cette dernière ne conduisait pas les particuliers à employer un plus grand nombre des salariés à domicile : il faut, dans le modèle de microsimulation, intégrer des réponses comportementales. Dans notre exemple, des hypothèses doivent être
faites sur la « marge intensive » (la proportion dans laquelle une hausse du plafond conduit les particuliers à employer pendant plus longtemps un salarié à domicile) et sur la « marge extensive » (la proportion dans laquelle des particuliers vont pouvoir employer un salarié alors qu’ils ne le faisaient pas). Mais pour être complet, il faut aussi modéliser la situation des salariés en distinguant la encore la marge intensive (combien de salariés qui étaient employés à temps partiel vont ainsi accroître leur durée du travail) et la marge extensive (combien de chômeurs ou d’inactifs vont pouvoir trouver un emploi de salarié à domicile).

Les modèles dynamiques

Les modèles qui intègrent ainsi des réponses comportementales sont qualifiés de modèles « dynamiques » parce que, bien souvent, ils sont construits pour réaliser des prévisions à plus ou moins long terme : la méthode cherche alors à reproduire des énchaînements dynamiques en engendrant les trajectoires de tous les individus de l’échantillon sur toute la période considérée.

Le plus suggestif, pour comprendre la microsimulation dynamique, est sans doute de considérer la situation d’une caisse de retraite qui souhaiterait, d’une part, prévoir sa situation dans vingt ans et, d’autre part, évaluer les conséquences, au même horizon, d’une modification des règles de calcul des droits à la retraite. La caisse peut mettre en œuvre une méthode agrégée en estimant ce que pourrait être, d’un côté, le taux de croissance de la masse des cotisations dont elle pourrait disposer pour les vingt prochaines années et, de l’autre côté, le taux de croissance de la masse des pensions qu’elle devra verser, sur ce même horizon. Plusieurs scénarios peuvent être envisagés, en fonction d’hypothèses macroéconomiques sur la croissance, le chômage, l’inflation, etc.

À cette méthode de projection agrégée, on peut opposer une méthode de microsimulation, qui reposerait dans ce cas sur les six étapes suivantes :

1. chiffrer le nombre des entrants, c’est-à-dire le nombre (a) de nouveaux cotisants : des individus qui sortent de l’inactivité ou du chômage ; (b) de nouveaux pensionnés : des individus qui font valoir leurs droits à la retraite ;
2. identifier, dans les données, les entrants ;
3. pour chaque entrant, estimer le montant : (a) s’il s’agit d’un nouveau cotisant, de ses cotisations à partir de son salaire d’embauche à l’aide d’un modèle qui a fait l’objet d’une estimation économétrique ; (b) s’il s’agit d’un nouveau retraité, de sa pension en fonction de la réglementation mais aussi de son historique d’activité ;
4. chiffrer le nombre des sortants, c’est-à-dire le nombre : (a) de cotisants qui sortent : des individus qui changent de caisse de retraite, se retrouvent au chômage ou décèdent ; (b) de retraités qui disparaissent ;
5. identifier, dans les données, les sortants ;
6. chiffrer les évolutions pour les présents- présents, c’est-à-dire : (a) la variation du salaire de chaque cotisant, là encore à partir d’un modèle ; (b) la revalorisation de la pension de chaque retraité, conformément à la réglementation.

Le but est ainsi de projeter le système d’information de la caisse de retraite, autrement dit lui permettre d’avoir, dans vingt ans, les mêmes données individuelles que celles dont elle dispose actuellement. On pourra ainsi calculer dans vingt ans la masse des cotisations et la masse des pensions pour la situation de référence mais aussi pour les nouvelles règles de calcul des droits.

Dans la microsimulation dynamique, les calculs s’enchaînent. Supposons que le pas temporel du modèle soit mensuel : les calculs sont effectués, pour chaque individu, mois par mois – le salaire, par exemple, sera mis à jour chaque mois à partir des caractéristiques de l’individu mais aussi à partir de ses salaires précédents. On confie ainsi à l’ordinateur le soin de fabriquer, fictivement mais de manière réaliste, les trajectoires individuelles pour toute la période étudiée. Il est en effet possible d’engendrer artificiellement des trajectoires qui diffèrent d’un individu à l’autre mais qui, en moyenne, sont alignées sur des évolutions macroéconomiques : on a ainsi à la fois la diversité des situations individuelles mais aussi la (relative) régularité des dynamiques agrégées. On utilise pour cela un générateur de nombres pseudo-aléatoires : l’ordinateur fournit une suite de nombres qui constituent, chacun, une réalisation de la loi uniforme comprise entre 0 et 1. Ces nombres pseudo-aléatoires sont utilisés pour simuler les événements. Supposons que, pour une catégorie de salariés, la probabilité de perdre son emploi, d’un mois sur l’autre, soit égale à 1.5 %. Supposons en outre que, dans le modèle, il y ait 200 salariés de cette catégorie : il faut donc simuler cet événement pour, en
moyenne, trois salariés. On va retenir les salariés pour lesquels le nombre pseudo-aléatoire est inférieur à 1.5 %, c’est-à-dire 0.015.

Ces générateurs de nombres pseudo-aléatoires permettent d’engendrer des trajectoires individuelles qui artificiellement reproduisent la diversité des situations des unités individuelles ; ces évolutions artificielles sont en outre reproductibles : en effet, l’ordinateur est en mesure de répliquer exactement la même suite de nombres. C’est l’un des attraits de la méthode : deux simulations, conduites par exemple à une semaine d’intervalle, donneront exactement les mêmes résultats tout en engendrant des évolutions individuelles non triviales.

Cette opposition entre modèles « statiques » et modèles « dynamiques » renvoie aussi à deux filiations différentes des méthodes de microsimulation. La paternité de la méthode « dynamique » peut être attribuée à Orcutt (1957). Celui-ci distingue, pour chaque unité, des inputs (tous les éléments qui conditionnent les décisions de l’unité) et des outputs, certains proprement économiques mais aussi des événements de « toutes sortes », en fait, des événements démographiques : naissance d’un enfant, mise en couple, divorce, déménagement, décès, etc. Le terme « comportement » est ainsi employé dans un sens très large : il peut désigner soit d’un côté un changement d’état qui se déclenche en comparant un tirage pseudo-aléatoire avec une probabilité exogène soit, de l’autre côté, une réponse comportementale au sens de la théorie économique standard, c’est-à-dire une décision qui résulte de la maximisation d’une fonction d’utilité sous un jeu de contraintes. Les modèles de microsimulation dynamique ont, de fait, été développés comme une alternative aux méthodes agrégées de projection de population. Comme on l’a vu, les modèles statiques sont moins ambitieux : ils se contentent de retracer la réglementation relative aux prélèvements obligatoires et aux transferts sociaux en l’appliquant à des unités individuelles.

Nous ne présenton pas davantage les méthodes de microsimulation et invitons le lecteur intéressé à consulter par exemple Chambaz & Le Minez (2003) ou Legendre (2004) pour prendre connaissance de ce que ces méthodes peuvent apporter pour évaluer une mesure nouvelle : chiffrer son coût budgétaire, évaluer ses conséquences redistributives, estimer ses effets incitatifs, etc. Le lecteur pourra aussi consulter les articles de synthèse suivants : Blanchet (1998), Legendre et al. (2003), Blanchet et al. (2015) et Blanchet et al. (2016). Dans un travail récent, Bessis (2019) revient sur l’histoire des modèles de microsimulation avec une lecture en termes de construction des savoirs économiques. Nous cherchons plutôt à retracer la façon dont les modèles de microsimulation sont devenus des instruments irremplaçables d’évaluation ex ante des politiques fiscales et sociales.

L’émergence et l’installation des modèles de microsimulation

C’est pour mieux comprendre les conséquences redistributives de l’impôt sur le revenu que Mir, pour Modèle de l’impôt sur le revenu, le premier modèle de microsimulation statique a été développé en France à la direction de la prévision du ministère de l’Économie et des Finances. Trois publications relatent le développement de ce modèle : Bégin et al. (1971), Bonacossa et al. (1975) et Coutière et al. (1981).

Le lien fort entre microsimulation et données

L’un des intérêts de cet ensemble d’articles est de retracer implicitement l’histoire de l’enquête Revenus fiscaux : pas de modèle de microsimulation sans un échantillon représentatif suffisamment fiable. Les premières enquêtes étaient assises sur le recensement de la population, en reposant sur un échantillon de logements : les centres locaux des impôts étaient en charge de collecter les déclarations fiscales correspondantes et de les transmettre, à l’exclusion des informations nominatives, à l’Institut national de la statistique et des études économiques (Insee) afin d’assurer une séparation forte des secrets statistique et fiscal. Les enquêtes, en raison du coût de la collecte, étaient réalisées en moyenne tous les cinq ans. À partir de 1996, les enquêtes Revenus fiscaux reposent sur l’enquête Emploi et deviennent annuelles : les données fiscales sont alors appariées, pour chaque individu de l’enquête Emploi, aux informations contenues dans cette dernière. La collecte est automatisée et les centres des impôts n’assurent plus le recueil des données.

L’objet principal de ces enquêtes n’est toutefois pas d’alimenter les modèles de microsimulation dédiés à l’analyse des politiques sociales ;
ces enquêtes sont destinées à mieux connaître le niveau de vie des ménages et, en particulier, à produire des statistiques sur la pauvreté. C’est ainsi que les enquêtes Revenus fiscaux sont devenues les enquêtes Revenus fiscaux et sociaux à partir de 2005, en intégrant notamment les prestations sociales effectivement reçues par les ménages qui étaient jusqu’alors imputées 1. On voit ainsi, d’une part, que les méthodes de microsimulation sont exigeantes sur le nombre et la qualité des données qu’elles mobilisent en entrée et, d’autre part, que parler de « données » est particulièrement inapproprié : les données ne tombent pas du ciel et sont obtenues pour un coût qui peut être considérable.

La lecture des articles cités plus haut permet aussi de mesurer les progrès considérables accomplis ces cinquante dernières années en matière de traitement de l’information. Dans les années 1960, les données étaient enregistrées sur des cartes perforées et donc difficiles à traiter. Bégin et al. (1971) expliquent que les données sont dans une première étape transférées sur une bande magnétique « de telle sorte que l’ensemble soit plus maniable ». Notons que, dans sa conception, la microsimulation se présente comme un système récursif : la période est suffisamment courte pour que l’on puisse considérer que les décisions d’une unité n’influencent pas immédiatement la prise de décision des autres unités. Orcutt (1957), par exemple, évoque des périodes d’une semaine ou d’un mois pour justifier une telle hypothèse. Ainsi, la microsimulation peut être programmée en ne nécessitant qu’un accès séquentiel aux données de chaque unité. Deux dérouleurs de bande magnétique suffisaient pour enchaîner une microsimulation dynamique. L’un des deux dérouleurs est utilisé pour lire en séquence les données et l’autre dérouleur pour écrire les données en procédant unité par unité ; ensuite, le rôle des dérouleurs est permuté et les données en sortie de la période précédente deviennent les données en entrée de la nouvelle période. De nos jours, les bandes magnétiques ne sont plus utilisées mais subsiste l’idée que, même pour décrire les interactions entre les unités, un système d’équations simultanées n’est pas nécessaire.

Le développement des modèles statiques

Les premiers modèles statiques fournissent une bonne illustration des enseignements que l’on peut obtenir avec ces outils. Dans le cas de l’impôt sur le revenu, ils ont permis en premier lieu de mieux caractériser ce prélèvement mais aussi ses propriétés comme en particulier sa progressivité. L’analyse macroéconomique souligne par exemple que la part de cet impôt, dans le total des prélèvements obligatoires, reste relativement faible en France. De son côté, la microsimulation va permettre d’établir la répartition de l’impôt en fonction de nombreux critères (taille du foyer fiscal, nature du revenu principal, etc.) et aussi de montrer que l’impôt sur le revenu est relativement concentré et que sa progressivité est irrégulière.

De l’impôt...

Le modèle M_ir est utilisé pour évaluer les conséquences de modifications de la législation fiscale. Soit *ex post*, pour une mesure qui a été adoptée par la loi de finances ; soit *ex ante*, pour une mesure hypothétique dont on cherche à calculer le coût (ou le rendement) et les conséquences redistributives. Dans Bégin et al. (1971), le système du quotient familial fait l’objet d’une première évaluation : à cette époque, l’avantage apporté par ce dispositif est chiffré en moyenne à 20 % du rendement total de l’impôt. Dans Coutière et al. (1981), c’est « l’imposition séparée de la femme mariée » (c’est-à-dire l’individualisation de l’impôt) qui est plus particulièrement étudiée. On voit ainsi de quelle façon la microsimulation est en mesure de contribuer au débat public sur des aspects contestés du système fiscal.

L’analyse de la redistribution n’est toutefois pas encore stabilisée. Les décompositions présentées sont relatives à des catégories socio-professionnelles, des tranches de revenu du foyer, des tranches d’impôt payé du foyer, voire des déciles de revenu net du foyer. Les catégories socio-professionnelles sont privilégiées pour représenter la stratification sociale. La présentation en termes de déciles de niveau de vie en population totale n’est pas utilisée. Elle s’imposera par la suite, donnant une meilleure représentation des individus dans la distribution des niveaux de vie.

L’article de Coutière (1983) illustre de façon exemplaire l’utilisation de M_ir 4, la version du modèle basée sur l’enquête Revenus fiscaux de 1975, en proposant différents scénarios d’alourdissement de l’impôt sur le revenu.

1. Cette amélioration avait été recommandée par le Conseil national de l’information statistique qui avait souligné que les prestations sociales n’étaient pas bien connues puisque celles-ci, souvent non imposables, ne figurent pas toujours dans les déclarations fiscales et étaient imputées dans l’enquête.
rapprochant la structure des prélèvements obligatoires français de celle observée dans des pays occidentaux comparables. L’auteur précise bien qu’il ne s’agit pas d’évaluer l’incidence de l’impôt : « Le problème de l’incidence de l’impôt est, les économistes le savent depuis longtemps, l’un des plus redoutables de la théorie économique. » Le scénario qui retient le plus l’attention est celui où les cotisations sociales salariales seraient réduites de 10 points de pourcentage et où le rendement de l’impôt sur le revenu serait doublé à la fois en supprimant un certain nombre de dispositions qui singularisent le système français et en imposant le supplément de revenu consécutif à la baisse des cotisations. Alors que le total des prélèvements serait inchangé, l’impôt serait plus progressif et moins concentré et le nouveau système plus redistributif. Ce scénario, d’élargissement de l’impôt sur le revenu, aurait constitué une alternative par rapport à l’évolution que nous avons effectivement connue qui a pris la forme de la création de la Contribution sociale généralisée (CSG) mise en œuvre en 1991.

... au système socio-fiscal

L’administration économique, dans les années 1980, dispose donc d’une grande expertise dans le domaine de la microsimulation statique. Cette expertise, toutefois, reste limitée aux prélèvements obligatoires et ne permet donc pas une analyse du système « socio-fiscal » dans son ensemble ; on sait pourtant que la réduction des inégalités est obtenue, pour les individus les plus mal lotis, par des prestations sociales sous condition de ressources et, pour les individus les mieux lotis, par des prélèvements progressifs. Une impulsion importante, pour le développement des modèles de microsimulation d’ensemble (appelés en anglais Tax Benefit Models), a été fournie à la fin des années 1980 par une équipe de l’EHESS conduite par François Bourguignon, qui développe un modèle simple mais précurseur et relativement complet, appelé SYSIFF. Ces années-là sont aussi celles de la diffusion des micro-ordinateurs : l’essor des modèles de microsimulation n’est plus bridé par la capacité de traitement des ordinateurs et il devient ainsi plus facile pour les chercheurs d’investir dans ces méthodes.

Le modèle SYSIFF a connu plusieurs versions. La première, assise sur l’enquête Revenus fiscaux de 1975, a notamment permis de comparer l’architecture des prélèvements obligatoires en France et en Grande-Bretagne, (Atkinson et al., 1988). La seconde version, basée sur un échantillon de l’enquête Budget de famille, a constitué la partie française du projet Euromod (Bourguignon et al., 1988 ; Sutherland, 1997). Ces premiers travaux s’inscrivent ainsi dans une perspective de comparaison internationale, plus particulièrement européenne, d’une part pour préciser le lien entre la structure des prélèvements obligatoires et le système, notamment bismarckien ou beveridgien, de protection sociale et, d’autre part, pour mieux prendre la mesure des possibilités d’évolution du mode de financement de la protection sociale en France.

L’analyse des politiques familiales est un autre sujet qui fait l’objet d’une forte demande d’expertise. Une étude sur le quotient familial est ainsi menée pour le Conseil des impôts ; elle présente des simulations évaluant différentes variantes, comme par exemple le plafonnement de l’avantage apporté par le quotient conjugal (Glaude, 1991). Son auteur plaidera à l’Insee pour le développement d’un modèle de microsimulation permettant de disposer d’une vision d’ensemble de la politique familiale.

La montée des questions sur la protection sociale et l’emploi

À la fin de l’année 1988, le Revenu minimum d’insertion (RMI) est mis en place et cinq ans plus tard, un premier dispositif de réduction des cotisations sociales patronales sur les bas salaires. Les politiques de l’emploi sont alors marquées par des dispositifs à la fois généraux et ciblés comme le souligne L’Horty (2006). Ils sont généraux parce qu’ils ne s’adressent pas à une catégorie particulière de travailleurs ou d’entreprises ; ils restent cependant ciblés parce qu’ils dépendent soit de la configuration familiale et du niveau du revenu d’activité pour les dispositifs de type minima sociaux soit du taux de salaire horaire pour les dispositifs en forme de réduction de cotisations. On conçoit ainsi que les administrations économiques et sociales aient rapidement cherché à se doter de modèles de microsimulation, en renouant ainsi avec la démarche pionnière du modèle MIR : ces modèles apparaissent nécessaires pour chiffrer et évaluer ce type de dispositif. En particulier, si le chômage résulte, en partie, de défaillances sur le marché du travail, provient-il plutôt d’une insuffisance de la demande en raison d’un coût du travail qui serait trop élevé par rapport à la productivité du travail ou plutôt d’une insuffisance de l’offre...
L'émergence et la consolidation des méthodes de microsimulation en France

en raison d’un salaire net qui serait trop faible par rapport aux minima sociaux ? Faut-il plutôt inciter financièrement des entreprises à employer des salariés peu qualifiés ou plutôt inciter des travailleurs à reprendre un emploi ?

L’analyse économique standard souligne qu’un dispositif différentiel comme le RMI (où un euro gagné au travail en plus se traduit par un euro d’aide en moins et donc par un revenu disponible inchangé) conduirait à une « trappe à inactivité » : en d’autres termes, le RMI engendre des taux marginaux de prélèvement égaux à 100 % qui dissuaderaient le retour à l’emploi. Les modèles de microsimulation seront ainsi mis à contribution pour obtenir des distributions des incitations monétaires au travail en France.

Vers une nouvelle génération de modèles statiques

Par ailleurs, les nouvelles enquêtes Revenus fiscaux annuelles (à partir de 1996) s’imposent comme base informationnelle pour les modèles de microsimulation dédiés à l’analyse des politiques familiales. La situation est donc mûre pour l’éclosion d’une nouvelle génération de modèles statiques : des données et au moins trois sujets – le financement de la protection sociale, l’analyse des politiques familiales et l’évaluation des dispositifs de minima sociaux.

À l’Insee, le modèle Ines (d’abord pour Insee Études Sociales) a été développé à partir du milieu des années 1990 (David et al., 1999). Le modèle est rapidement mis à contribution pour un rapport commandé à Claude Thélot et Michel Villac par Lionel Jospin, Premier ministre, face à la contestation suscitée par la mise sous condition de ressources des allocations familiales. Celles-ci redeviennent alors universelles en contrepartie d’un nouveau plafonnement de l’avantage apporté par le quotient familial : on voit là le rôle de premier plan joué par la microsimulation en matière de décision publique.

À la Caisse nationale des allocations familiales (CNAF), le modèle Myraide est développé au début des années 2000 (Legendre et al., 2001). Ce modèle est plus particulièrement dédié à l’analyse des politiques familiales. Il a été mobilisé pour la réforme des aides à la garde des enfants qui a conduit à la mise en place de la Prestation d’accueil du jeune enfant (Paje) en 2004. Il a aussi été utilisé, avec Ines, pour évaluer ex ante différents scénarios d’aide au jeune adulte pour le compte de la Commission nationale pour l’autonomie des jeunes (Foucauld & Roth, 2002). Il est particulièrement difficile d’évaluer le niveau de vie des jeunes et plus particulièrement de ceux qui sont étudiants (et qui sont de plus en plus nombreux avec la deuxième « massification » de l’enseignement supérieur). L’Insee dans ses statistiques sur la pauvreté opère, par prudence, sur le champ des « personnes vivant dans un ménage dont le revenu déclaré au fisc est positif ou nul et dont la personne de référence n’est pas étudiante ». Les modèles de microsimulation, en exploitant l’information sur les liens de parenté, permettent d’aller plus loin et d’évaluer le niveau de vie des étudiants, en fonction d’hypothèses sur la mutualisation des ressources au sein d’une famille élargie qui réintègre les jeunes adultes qui auraient décohéité.

Au milieu des années 2000, le département des études de l’Observatoire français des conjonctures économiques (OFCE) en collaboration avec le THEMA, qui avait acquis une expertise certaine de la réglementation à partir de travaux sur des cas-types (Hagneré & Trannoy, 2001), a mis en chantier le modèle de microsimulation Msimé au milieu des années 2000. L’ouvrage de Landais et al. (2011b) a contribué à faire connaître à un plus large public les méthodes de microsimulation. Le modèle que ces auteurs avaient développé, dans le prolongement de Syliff, a été repris par l’Institut des politiques publiques (IPP) à sa création en 2011 (Landais et al., 2011a ; Bozio et al., 2012). L’IPP met à la disposition du public, sur son site web, les barèmes législatifs ; ceux-ci sont classés de façon cohérente et mis à jour régulièrement, ce qui a constitué un travail considérable. Le barème de l’impôt sur le revenu est disponible depuis sa création en 1914. Par ailleurs, la direction générale du Trésor a voulu disposer d’une expertise propre ; elle a ainsi développé le modèle Saphir détaillé dans Amoureux et al. (2018). Ce modèle est utilisé lors des préparations de la loi de finances et de la loi de finance de la sécurité sociale, ce qui constitue sa principale originalité.

Les contributions possibles des modèles de microsimulation à l’élaboration des politiques publiques sont bien illustrées par la réforme du RMI qui a débouché sur le Revenu de solidarité active (RSA). Une assez forte aversion aux inégalités, qui peut par exemple être justifiée par le principe de différence avancé par John Rawls, plaide pour la mise en place de
minima sociaux d’un niveau élevé pour garantir aux moins favorisés un niveau de vie suffisant. De son côté, un minimum social différentiel engendrerait une forte désincitation au travail. La théorie de la fiscalité optimale, qui s’est développée dans les années 1970 avec notamment la contribution de Mirrlees (1971), explicite les termes de cet arbitrage entre équité sociale et efficacité économique.

En France, Piketty (1997) souligne, à partir d’une évaluation très grossière réalisée en considérant que chaque décile de la distribution des salaires constitue un salarié représentatif, que les taux marginaux, en fonction du niveau de vie, ont la forme d’un « U » : ils sont très élevés aux deux extrémités de la distribution des revenus d’activité en raison du RMI et des allocations logement pour le bas de la distribution et de l’impôt sur le revenu pour le haut de la distribution. Ce profil en U est-il optimal ? Il est facile de lui donner un contenu théorique. Pour réduire les inégalités, les taux moyens doivent être croissants en fonction des revenus. Un taux marginal élevé est le moyen d’accroître le taux moyen et donc d’assurer la redistribution ; en revanche, il occasionnerait de fortes désincitations au travail. Il est ainsi préférable d’avoir des taux marginaux élevés en bas de la distribution parce que, d’une part, le nombre d’individus qui seraient désincités au travail est faible et, d’autre part, le nombre d’individus qui supporteront un prélèvement plus important est élevé. De manière un peu étonnante, il est moins facile de justifier des taux marginaux élevés en haut de la distribution : il faut par exemple retenir une queue de distribution particulière pour les hauts revenus.

Peut-on ainsi qualifier d’optimal un système qui organise, en quelque sorte, l’exclusion des individus peu qualifiés en les confrontant à des taux marginaux de retour à l’emploi dissuasifs ? L’optimalité de ce système peut être contestée de deux façons différentes : la première en arguant que le gain financier du retour à l’emploi n’est sans doute pas l’argument principal dans les décisions de participation surtout dans un contexte de pénurie d’emploi, la seconde au contraire en expliquant que les pertes au niveau de la société de l’exclusion des individus les moins employables sont sans doute sous-estimées. L’idée selon laquelle le retour à l’emploi « ne paye pas assez » gagne du terrain dans les années 2000 comme en témoigne par exemple Bourguignon (2001) ; en outre, une distinction plus nette est faite entre marge intensive (taux marginaux effectifs de prélèvements) et marge extensive (taux effectifs de prélèvements de retour à l’emploi) comme le promeut en particulier Saez (2002). Les modèles de microsimulation documentent cette question en estimant le profil des taux marginaux de prélèvement en fonction des revenus d’activité (Albouy et al., 2002 ; Legendre et al., 2004).

La mise en place du RSA a été nourrie par cette vision et les modèles de microsimulation sont alors mobilisés d’une seconde façon, cette fois-ci pour chiffrer ex ante le coût de cette réforme en instruisant plusieurs scénarios sur la « pente » du dispositif. Le RSA prévoyait, initialement, un dispositif d’intéréssement permanent, le RSA-activité, qui permettait au bénéficiaire de conserver 62 % de ses revenus d’activité : la « pente » du dispositif était ainsi égale à 0,62. Les taux marginaux de prélèvement sont de la sorte contenus à 38 % dans le bas de la distribution des revenus. Les taux marginaux effectifs restent cependant en général supérieurs en raison notamment des aides au logement. À compter du 1er janvier 2016, la Prime d’activité remplace, en les fusionnant, le RSA-activité et la Prime pour l’emploi (PPE) ; elle permet à son bénéficiaire de garder 61 % de ses revenus d’activité. Le coût budgétaire du RSA-activité a été difficile à estimer : le montant, dégressif, est relativement sensible à ses déterminants, l’assiette de l’aide, trimestrielle, ne figure pas dans l’enquête Revenus fiscaux et sociaux, les configurations familiales comptent beaucoup, etc. Sa détermination a fait l’objet d’une synthèse issue des travaux conduits avec les modèles Ines, Myriade et Saphir, le sujet étant d’autant plus brûlant qu’une taxe spécifique sur les revenus financiers avait été instaurée pour financer le remplacement du RMI par le RSA. Il est ensuite apparu que le coût avait été surestimé en raison notamment d’un forfait taux de non recours. Le profil des taux marginaux n’est maintenant plus en forme de U mais en forme de « tilde » comme l’établit par exemple Sicsic (2018) avec le modèle Ines.

L’histoire récente, en matière de politiques de soutien aux bas revenus, est sans doute mieux connue : relèvement en 2019 de la prime d’activité à la suite du mouvement des « gilets jaunes » et projet de Revenu universel d’activité (RUA). Les modèles de microsimulation statiques sont devenus, en trente ans, des outils irremplaçables d’aide à la décision publique. Les modèles dynamiques, parallèlement, ont connu une évolution comparable.
Le développement des modèles dynamiques

La distinction entre modèles statiques et modèles dynamiques ne relève pas seulement d’une commodité d’exposition. Ces deux classes de modèle investissent en fait des domaines assez différents, les modèles dynamiques se focalisant, la plupart, sur l’analyse de l’avenir des systèmes de retraite. Dans les modèles dynamiques, les individus vieillissent et le renouvellement des générations est explicité. Là encore, c’est à la périphérie de l’administration économique et sociale que les premières modélisations ont été développées en France, avec des travaux précurseurs conduits par Didier Blanchet à l’Institut national d’études démographiques (Ined). Ces travaux ont été poursuivis à l’Insee dans la division Redistribution et politiques sociales, avec la mise en chantier de DESTINIE (pour Démographique Économique et Social de Trajectoires INDividuelles simulÉEs), le premier modèle dynamique d’ensemble dédié à l’étude des retraites en France. Ce modèle a été développé progressivement à partir du milieu des années 1990 (Chanut & Blanchet, 1998 ; Division Redistribution et politiques sociales, 1999).

Très vite, les démographes ont perçu l’intérêt des méthodes de microsimulation pour réaliser des projections de population, comme alternatives à la méthode des composantes qui est la méthode encore utilisée de nos jours. Avec la méthode des composantes, la population est ventilée en groupes (par exemple, les femmes et les hommes par tranche d’âge annuel) et l’on s’efforce de suivre l’évolution de la taille des groupes au cours du temps. Par exemple, on cherche à prévoir le nombre de femmes de 50 ans en t+1 ; ce nombre sera calculé à partir du nombre de femmes de 49 ans en t en appliquant le taux de survie des femmes de 49 ans en t. Les méthodes de microsimulation, dès lors que des données individuelles sont disponibles, pourront faire mieux qu’une méthode de projection : on pourra suivre les individus au cours du temps et disposer ainsi de toute l’information se rattachant à chaque individu. La méthode des composantes pourra répondre à la question : combien y aura-t-il de femmes âgées de plus de 80 ans dans 30 ans ? Les méthodes de microsimulation pourront répondre, en outre, aux questions suivantes : combien y aura-t-il de femmes âgées de plus de 80 ans dans 30 ans (i) qui sont veuves ? (ii) qui ont au moins deux enfants ? (iii) qui sont propriétaires de leur logement ? Etc. Dans une microsimulation dynamique, les liens de parenté font l’objet, comme les autres caractéristiques des individus, du processus de vieillissement/renouvellement : ils sont entretenus et mis à jour le cas échéant. On mesure l’intérêt, pour les politiques sociales qui se doivent aussi d’étudier les substitutions possibles entre les solidarités familiales et la solidarité nationale, de disposer ainsi de la projection d’un échantillon représentatif de la population résidente dans lequel figurent les liens de parenté. Ce point est clairement exposé dans Chanut & Blanchet (1998).

L’étude des retraites

En matière de retraites, il s’agissait tout d’abord de mesurer tous les effets de la réforme de 1993 qui a porté sur le régime général et qui prévoyait un allongement de la durée de cotisation, le calcul du salaire annuel moyen sur une période plus longue et l’indexation des pensions sur les prix : quelles sont les économies sur les dépenses de retraite que cette réforme a engendrées ? Quelles sont les mesures qui ont conduit aux plus grandes économies ? La réforme a-t-elle conduit à une réduction des inégalités de retraite ? Notons qu’il importe de connaître l’évolution des retraites les plus faibles pour chiffrer les économies puisqu’il faut tenir compte du minimum contributif et du minimum vieillesse. C’est ainsi que la première version de DESTINIE, assise sur l’enquête Patrimoine, retenait des hypothèses particulièrement simples en faisant comme si toute la population était au régime général et bénéficiait, pour les retraites complémentaires, des régimes ARRCO et AGIRC.

L’évaluation du passage progressif, pour le calcul du salaire annuel moyen, des dix meilleures années aux vingt-cinq meilleures années n’est pas immédiate. À première vue, ce sont les carrières ascendantes qui seraient le plus penalisées par cette mesure ; celle-ci conduirait ainsi à réduire les inégalités de retraite. L’examen de la réglementation suffit toutefois pour montrer que les individus poly-pensionnés étaient plus particulièrement affectés puisque l’allongement de la période de calcul était appliqué dans chaque régime (la réforme de 2003 modifiera cette règle afin de limiter l’injustice faite aux poly-pensionnés). Par contre, la microsimulation met en évidence le caractère anti-redistributif de la mesure : Bridenne & Brossard (2008) dans un exercice de microsimulation rétrospectif portant sur la génération née en 1938 montrent que ce sont les premiers déciles, en fonction
du niveau de la pension, qui perdent le plus à cette mesure, à l’exception du premier décile dont les pertes sont limitées par le minimum contributif. En outre, l’effet anti-redistributif est plus marqué pour les femmes que pour les hommes, les carrières incomplètes étant beaucoup plus fréquentes chez les femmes. On tient là une belle illustration des enseignements que la microsimulation apporte : dans cet exemple, les résultats de la microsimulation contredisent l’intuition initiale.

Le développement de Destinie a su anticiper la demande d’expertise : au début des années 2000, une modélisation des décisions de départ à la retraite est introduite dans le modèle. La réforme de 2003, qui adoucit la décote et crée la surcote, donne en effet une plus grande place aux choix en matière d’âge de départ alors que, dans le système antérieur, le départ à l’âge du taux plein s’imposait. La deuxième version de Destinie distingue le régime de retraite des fonctionnaires et le modèle est ainsi prêt à contribuer à l’évaluation d’un régime universel de retraite. Nous ne détaillerons pas plus le modèle, dont la première version est présentée de façon approfondie dans l’article de Blanchet (2011) et la deuxième version dans Blanchet et al. (2011). Destinie a été un modèle précurseur ; il reste aujourd’hui un modèle de référence puisqu’une partie de sa base informationnelle2 a été reprise dans Pensipp, un modèle de microsimulation destiné à projeter les retraites à long terme développé par l’IPP, et dans Aphrodite (Cuvilliez & Laurent, 2018), un modèle mis en chantier par la direction générale du Trésor pour lui permettre de disposer d’une expertise propre, à l’instar du modèle statique Saphir. La Direction de la recherche, des études, de l’évaluation et des statistique (Drees), une direction des ministères sociaux, a de son côté développé le modèle Trajectoire (Duc et al., 2016) en s’appuyant directement sur les données de l’échantillon interrégimes de cotisants afin de disposer d’une information fine et fiable sur les carrières professionnelles. Ce modèle a été intensément utilisé en 2018 et en 2019 pour fournir l’expertise du Haut-Commissariat à la réforme des retraites en charge de proposer un système universel par répartition. Par ailleurs, des modèles de microsimulation « sectoriels » ont été développés à la Caisse nationale d’assurance vieillesse (Poubelle et al., 2006) pour le régime général et au Service des retraites de l’État pour le régime de retraite des fonctionnaires.

Analyser le vieillissement et la dépendance

L’un des attraits des modèles de microsimulation dynamiques est de démêler les effets d’âge et les effets de génération. Cette décomposition est importante par exemple en économie de la santé pour étudier le vieillissement : il est pertinent de distinguer, pour le recours aux soins, ce qui relève de l’état de santé qui dépend principalement de l’âge mais aussi de la distance au décès et ce qui a trait au comportement d’accès aux soins pour lequel l’effet de génération compte. Cette même capacité à dissocier les effets temporels des effets générations se retrouve dans l’analyse à long terme des retraites. Dans un système à prestations définies (comme le régime par annuités de base français) qui protège les retraités des risques économiques et démographiques, le régime de retraite exhibe nécessairement une « dépendance à la croissance » que Blanchet et al. (2011) avaient bien montrée alors que la crise financière et économique de 2008-2009 ouvrait la perspective d’une croissance durablement plus faible. Blanchet et al. (2016), à l’aide du modèle Pensipp, ont en mesure de discuter trois scénarios de réduction de cette « dépendance à la croissance », dont notamment un système de retraites par points à cotisations définies.

Enfin, les modèles dynamiques sont plus particulièrement mobilisés pour étudier la dépendance, risque qui pourrait (et devrait) être couvert par une assurance sociale. À l’aide de Destinie, Marbot & Roy (2015) tracent les perspectives de l’Allocation personnalisée d’autonomie (APA). L’article de Bonnet et al. (2019) illustre l’intérêt de la microsimulation pour des travaux comparatifs sur la dépendance et son financement.

La phase de consolidation des modèles de microsimulation

Il nous faut maintenant nuancer la présentation que nous venons de faire, un peu trop radieuse. Certes, les modèles de microsimulation ont pris une grande place dans le champ de l’évaluation des politiques publiques mais ils sont aussi apparus coûteux à maintenir. Pour éclairer le débat public, il est toujours possible

2. Les biographies des individus de l’enquête Patrimoine construites à partir d’un rapprochement avec l’échantillon interrégime de cotisants, créé par la loi de financement de la sécurité sociale pour 2011.
de produire des « cahiers de variantes » où les principaux composants du système socio-fiscal sont évalués à partir d’une modification plus ou moins marginale des paramètres de leur barème. Par exemple, on va évaluer l’impôt sur le revenu en augmentant de 1 % tous les taux du barème ; puis en augmentant de 1 % tous les seuils des tranches d’imposition, etc. ; à chaque fois, les résultats sont présentés en écart à la situation de référence et ventilés selon les critères d’intérêt. En procédant de la sorte, on apporte de la connaissance sur le fonctionnement de notre système de prélèvements et de transferts. Bien souvent cependant, les mesures nouvelles qui sont en débat ne relèvent pas de réformes paramétriques. Elles prennent la forme de dispositifs nouveaux, qui, dans le modèle de microsimulation, exigent d’un côté de rechercher l’information qui permettrait de déterminer l’éligibilité au dispositif et, de l’autre côté, de programmer en partant de rien un nouveau module dans le modèle. Il est difficile de proposer un instrument « presse-bouton » qui permettrait à un utilisateur imparfaitement informé de tirer véritablement parti du modèle.

Aux années 2000, caractérisées par une multiplication des modèles, succèdent les années 2010, années de consolidation pendant lesquelles l’INSEE est devenu un modèle central, en raison notamment des coûts élevés de maintenance de ces modèles, et DESTINIE un modèle de référence.

L’institutionnalisation des modèles INSEE et DESTINIE

L’institutionnalisation du modèle INSEE s’est produite en plusieurs étapes. Au début des années 2000, l’Insee et la Drees s’accordent pour poursuivre en commun le développement du modèle, dont l’acronyme devient Insee-Drees. Les deux organismes vont mutualiser les coûts de développement et de maintenance du modèle.

Puis la CNAF abandonne le modèle MYRIADE et rejoint le « consortium » INSEE. Les raisons en sontmultiples : proximité des équipes qui avaient collaboré pour l’évaluation de la mise en place du RSA, rapprochement plus en amont pour constituer l’enquête Revenus fiscaux et sociaux, difficultés pour maintenir MYRIADE qui a été programmé dans le langage C++, coûts toujours très élevés de maintenance des modèles, difficultés à recruter ou à motiver des chargés d’étude pour ce type de projets, etc.

Enfin, plus récemment, l’ouverture du code source d’INSEE en 2016 reconfigure le paysage. La direction générale du Trésor met, en 2018, le code du modèle SAPHEIR à la disposition du public sous la pression de la Commission d’accès aux documents administratifs (Cada). Par contre, l’Insee et la Drees, membres du service statistique public, avaient adopté une posture plus ouverte en favorisant l’appropriation du modèle INSEE par des tiers. Ce modèle a ainsi acquis une position centrale illustrée par exemple par son utilisation par l’OFCE. Au total, bien que certains acteurs comme le Parlement peinent à développer une compétence en matière d’évaluation des politiques publiques (Padirac, 2018), la situation a beaucoup progressé : il est maintenant possible de contester, sur la base d’une critique interne, les évaluations proposées par le gouvernement et de développer, plus facilement qu’auparavant, une expertise propre en ayant librement accès aux outils développés par la statistique publique. Le dernier frein qui subsiste est celui de l’accès aux données ; pour le moment, pour faire « tourner » le modèle INSEE, il faut disposer par ailleurs d’un accès aux données de l’enquête Revenus fiscaux et sociaux.

Comme nous l’avons déjà souligné, DESTINIE a acquis, dans les années 2000, une position particulière : sa base informationnelle est réutilisée par d’autres et sa structure modulaire permet de le mobiliser sur les sujets relatifs au vieillissement de la population. Le code source a été ouvert en 2018 et le modèle est précisément documenté, tant pour l’utilisateur ordinaire que pour le modélisateur.

La demande de normalisation

Cette homogénéisation du domaine engendre alors, nous semble-t-il, une demande de normalisation. La comptabilité nationale a beaucoup œuvré, au prix de nombreuses conventions, pour préciser le contenu des agrégats macro-économiques : on sait précisément, grâce au système européen des comptes 2010, ce qu’est...
la dette publique « au sens de Maastricht ». Les modèles de microsimulation devraient ainsi mieux s’accorder pour qualifier les différents éléments du système socio-fiscal. Il est difficile par exemple de compter tous les prélèvements obligatoires comme des impôts : certains prélèvements offrent des contreparties individualisables. Les cotisations à l’assurance vieillesse, en raison du lien étroit entre cotisations et prestations, devraient notamment être considérées comme des éléments de rémunération.

En revanche, les prélèvements indirects sont bien souvent absents de l’analyse de la redistribution : pourtant, dans le débat public, ces prélèvements sont souvent perçus comme anti-redistributifs. Notons une étude récente qui propose une approche par microsimulation des effets d’une hausse de la TVA (André & Biotteau, 2019). De même, certaines dépenses publiques peuvent être plus ou moins individualisées : il en est ainsi par exemple des dépenses d’éducation. On voit ainsi qu’il serait possible de normaliser des imputations qui portent soit sur des prélèvements indirects soit sur des dépenses publiques afin de documenter la situation de groupes sociaux qui supporteraient d’importants prélèvements indirects mais qui bénéficieraient assez peu des services publics.

Les questions du non recours aux droits sociaux et de la fraude aux prestations sociales gagnaient à être prises en compte dans les modèles de microsimulation. Le non recours a constitué un argument important pour dresser un bilan plutôt négatif du RSA. Les modèles de microsimulation pourraient ainsi être perfectionnés pour intégrer cette dimension dans l’évaluation des politiques sociales. Ces modèles aideraient à la lutte contre le non recours en en précisant les causes. D’un autre côté, ils le relativiseraient en estimant son intensité : autant il semble grave qu’une famille soit privée d’une aide qui pourrait lui permettre de sortir de la pauvreté, autant il semble normal qu’une famille n’aille pas demander une aide dont le montant serait très faible (le montant minimum du RSA actuellement est de six euros). Enfin, la comptabilité nominative (Hagneré & Mahieu, 2017) s’efforce de prendre en compte le travail dissimulé. Dans l’élaboration des politiques sociales, les possibilités de fraude conditionnent parfois l’architecture du dispositif ; les modèles de microsimulation pourraient rendre explicite ce type de contrainte.

Une feuille de route pour les modèles de microsimulation

Nous nous risquons maintenant à présenter une feuille de route pour les années à venir. Nous avons déjà évoqué trois sujets importants : l’unification des minima sociaux et de certaines prestations sous condition de ressources avec le RUA, la réflexion sur un régime universel de retraite et la lancinante question de l’assurance sociale du risque dépendance. Sur ces trois sujets, le recours aux modèles de microsimulation a été organisé. Ces modèles pourraient aussi être mis à contribution pour éclairer le débat public sur deux autres questions : la transition climatique et le revenu universel. Nous évoquerons pour finir les perspectives ouvertes du côté des sources avec la déclaration sociale nominative.

Étudier des politiques de transition écologique

Il nous semble que la transition écologique sollicitera fortement l’expertise apportée par les modèles de microsimulation. Pour les économistes, à côté bien sûr de l’éducation des individus et de la mise en place d’une réglementation rigoureuse, il est difficile de penser que cette transition pourra se faire sans une augmentation substantielle du prix des facteurs qui sont à l’origine de la dégradation de l’environnement (voir Quinet, ce numéro). D’une part, le prix par exemple de l’énergie n’a pas du tout connu la hausse qu’il aurait dû connaître afin de contenir le réchauffement climatique. Nous ne résistons pas à la tentation de rappeler qu’après le premier choc pétrolier, en 1975, le prix d’un litre d’essence était de l’ordre de 2.2 francs ; il est de l’ordre de 1.6 euros en 2018. Dans l’intervalle, le salaire minimum brut est passé de 7.3 francs de l’heure à 9.9 euros. Il fallait donc travailler une vingtaine de minutes en 1975 pour acheter un litre d’essence contre une dizaine de minutes en 2018. D’autre part, le prix des facteurs qui dégradent l’environnement est trop faible pour pour qu’il soit financièrement rentable de faire les investissements qui permettraient d’en réduire l’usage : à quoi bon isoler son logement si la facture pour se chauffer dans l’année ne baisse que de quelques centaines d’euros ? L’alignement de la rentabilité économique sur la rentabilité écologique pourrait passer par des aides aux investissements mais il passe beaucoup plus sûrement par un relèvement important du prix de tous les facteurs à l’origine d’externalités négatives sur notre environnement, relèvement qui serait obtenu par leur taxation.
Pour autant, cette proposition est inacceptable socialement : ce serait faire payer la transition écologique aux individus les plus défavorisés. Il n’y a donc pas de « double dividende » : les recettes qui sont retirées de cette taxation destinée à faire payer un prix complet (c’est-à-dire y compris les externalités négatives environnementales) doivent être utilisées pour aider les individus à s’adapter et à changer leurs habitudes. Il faut donc d’une part identifier les familles en situation de « précarité énergétique » et, d’autre part, évaluer différents dispositifs d’aide. Les dispositifs actuels sont extrêmement divers comme par exemple le crédit d’impôt transition énergétique (CITE) ou le chèque énergie (attribué sous condition de ressources). Comme le prix de l’énergie reste peu élevé, ces dispositifs sont ciblés en étant réservés à certains investissements ou à certaines familles, avec de nombreux inconvénients : la liste des investissements est en partie arbitraire, la condition de ressources est stigmatisante, la non universalité affaiblirait la cohésion sociale, le non recours serait fréquent, etc. Avec l’augmentation des taxes, les aides pourraient être massivement relevées et bien moins ciblées. Si l’on veut ainsi mobiliser la taxation pour contribuer à la transition écologique et si l’on veut que celle-ci soit acceptable socialement (et qu’elle ne soit pas perçue comme une « taxation punitive »), il importe, nous semble-t-il, d’éclairer le débat public à l’aide des enseignements qu’apportent les modèles de microsimulation. Citons ici des travaux développés avec le modèle PROMETHEUS (Thao Khamsing et al. (2016), ou avec le modèle TAXIPP (Douenne, 2018). Ces modèles ne sont sans doute pas capables de prévoir les mouvements sociaux ; ils peuvent toutefois identifier les conséquences anti-redistributives des politiques de taxation indirecte.

Évaluer des dispositifs de revenu universel

Un deuxième sujet pourrait s’inviter dans le débat public : c’est celui qui porte sur le revenu universel. La version faible du revenu universel relève d’une simplification du système socio-fiscal. L’illustration la plus frappante a sans doute trait aux politiques familiales. Actuellement, les allocations familiales ne sont plus universelles, l’avantage apporté par le quotient familial est plafonné à un niveau relativement faible, le premier enfant ne donne pas le droit aux allocations mais ouvre le droit au quotient familial si bien que seules les familles imposables sont aidées, l’allocation de rentrée scolaire est versée sous condition de ressources, etc. Il serait plus légitime, finalement, de remplacer cet empilement de dispositions par une allocation universelle dès le premier enfant dont le montant ne dépendrait que de l’âge de l’enfant et qui serait versé moitié au premier parent moitié au second parent. Ce type de proposition est par exemple avancé par Régent (2018) à partir d’un examen minutieux de la législation sociale ; ce sujet pourrait être instruit par un modèle de microsimulation afin d’en mesurer toutes les conséquences. Notre système socio-fiscal pourrait aussi être simplifié en passant à une individualisation de l’impôt sur le revenu : les couples mariés ou les couples de conjoints unis par un pacte civil de solidarité (Pacs) seraient imposés séparément. Les deux branches de la tenaille que sont le RSA et l’impôt sur le revenu pourraient se transformer en un revenu universel dont le montant correspondrait au RSA social et en un impôt universel sur le revenu. Ces réformes ne procéderaient pas seulement un objectif de simplification ; on en attend aussi un moindre sentiment d’injustice : nul n’est exclu du droit que constitue le revenu universel, ni du devoir que constitue l’impôt universel.

La version forte du revenu universel relève plus d’une politique de stabilisation du revenu des ménages face aux bouleversements attendus sur le marché du travail. Il ne s’agit pas nécessairement d’imaginer des destructions massives d’emploi consécutives à la robotisation de l’économie, très peu compensées par la création d’emplois nouveaux. On peut au moins prévoir que le contenu des emplois va énormément changer et que les facultés d’adaptation des employés seront particulièrement sollicitées. Il en résultera une forte demande sociale relative à une nouvelle forme de protection des individus comme par exemple un revenu universel d’un niveau relativement élevé. Les modèles de microsimulation statiques ne sont alors pas nécessairement les outils les plus appropriés pour détailler les conséquences de ce type de réforme. Un tel revenu universel conduira-t-il à la multiplication d’emplois à temps partiel choisis (et non subis) ? Induira-t-il une tension à la hausse ou à la baisse des taux de salaire horaire les plus faibles ? Il faudrait là développer un modèle faisant une place suffisante aux comportements des travailleurs et des entreprises pour éclairer ce débat.

Une nouvelle donne des données

Le dernier sujet aurait trait aux données, tant cet aspect est important pour les modèles de
microsimulation. Avec la Déclaration sociale nominative (DSN) pleinement en place pour la plupart des employeurs depuis 2017, la donne a changé en matière de sources administratives pour alimenter la connaissance sur les revenus des ménages et pour asseoir l’échantillon en entrée d’un modèle de microsimulation statique. En effet, on trouve dans la DSN une information mensuelle sur les revenus d’activité, qui en outre intègre un partage volume/prix (une information sur les heures travaillées et sur la rémunération totale et, ainsi, sur le taux de rémunération horaire).

Cette nouvelle donne, en premier lieu, place l’administration fiscale en situation particulière : celle-ci, qui connaît par ailleurs tous les occupants d’un logement, est en mesure de constituer un superbe échantillon représentatif pour un modèle de microsimulation. En deuxième lieu, l’enquête Revenus fiscaux et sociaux, dans sa forme actuelle, devient nettement dominée : l’appariement avec l’enquête Emploi qui apportait de l’information sur l’activité des individus perd de son intérêt et ses inconvénients sont plus manifestes (le champ est limité aux ménages ordinaires et la structure aréolaire du plan de sondage ne permet pas d’obtenir des statistiques régionales fines). En troisième lieu, en accédant à l'historique, pour chaque individu, de la DSN, les imputations sur barème gagneraient beaucoup en précision. L'une des difficultés rencontrées par les modèles de microsimulation a trait à la condition de ressources qui fixe l’éligibilité à la plupart des prestations sociales. Ces ressources peuvent être comptées pour une année ou pour un trimestre ; elles sont de plus comptées avec un décalage temporel variable. Par exemple, pour les aides au logement, on prend les ressources annuelles de la famille avec un décalage de deux ans ; pour le RSA, les ressources trimestriels du trimestre précédent. Il restera cependant difficile d’évaluer les droits des individus à l’assurance chômage, calculés sur une base journalière à partir d’un historique d’activité plus ou moins long.

On se prend ainsi à rêver d’une grande enquête mise à la disposition des chercheurs qui permettrait d’impulser une dynamique de coopération/compétition dans le développement des modèles de microsimulation : coopération pour construire une base informationnelle commune (les données individuelles mais aussi les paramètres des barèmes) et compétition pour assurer le pluralisme de l’expertise dans le domaine de l’évaluation des politiques économique et sociale. L’information apportée par la DSN nous renseignerait sur les conditions de travail mais aussi sur les mobilités entre le domicile et le lieu de travail ; les déclarations fiscales et l’information dont dispose l’administration fiscale nous renseignerait sur les autres revenus dont notamment les indemnités journalières de l’assurance maladie et de l’assurance chômage mais aussi sur quelques caractéristiques du logement et de la collectivité territoriale de résidence. Il serait bien sûr nécessaire d’imputer un grand nombre d’informations manquantes mais les chercheurs pourraient ainsi disposer d’une image très complète des situations individuelles qui inclurait en particulier les prestations locales (Anne & L’Horty, 2002) et les prélèvements indirects.

* * *

L’une des forces des méthodes de microsimulation est de permettre de communiquer dans les débats de politique économique de façon simple en opposant à des exemples ad hoc, très peu représentatifs, des exemples réellement pertinents suffisamment représentatifs. En dépit de cette capacité, ces méthodes restent un peu méconnues. La modélisation macroéconomique, en lien avec le perfectionnement de la comptabilité nationale, est parvenue à développer un espace commun aux macroéconomistes. Les modèles néo-keynésiens ont constitué un cadre dans lequel les controverses ont pu s’épanouir : on parle de la courbe de Phillips, de la critique de Lucas ou encore de la règle de Taylor. Les modèles d’équilibre général dynamique stochastique avec des rigidités nominales ou réelles ont même pu se présenter comme prolongeant les modèles néo-keynésiens.

Les modèles de microsimulation n’ont cepen
dant pas fourni un espace comparable où les controverses sur les politiques sociales se seraient développées. Le monde académique se saisit encore trop peu de ces méthodes. Gageons, face à la très forte demande par la société d’évaluation des politiques sociales, que les méthodes de microsimulation prendront une plus grande place dans la boîte à outils des statisticiens-économistes.
BIBLIOGRAPHIE

Albouy, V., Chambaz, C., Fugazza, M., Le Minez, S., Lhommeau, B., Murat, F., … Starzee, C. (2002). Du revenu initial au revenu disponible : le point sur le système socio‑fiscal en 2001. In: Insee Références – France portrait social 2002‑2003. https://www.insee.fr/fr/statistiques/1371825?sommaire=1371826

Amoureux, V., Benoteau, I. & Naouas, A. (2018). Le Modèle de microsimulation Saphir. DG Trésor, Document de travail N° 2018/6. https://www.tresor.economie.gouv.fr/Articles/2018/09/05/document‑de‑travail‑de‑la‑dg‑tresor‑n‑2018‑6‑le‑modele‑de‑microsimulation‑saphir

André, M. & Biotteau, A.‑L. (2019). Effets de moyen terme d'une hausse de TVA sur le niveau de vie et les inégalités : une approche par microsimulation. Insee, Document de travail N° F1901‑G2019/01. https://www.insee.fr/fr/statistiques/3714024

Anne, D. & L'Horty, Y. (2002). Transferts sociaux locaux et retour à l’emploi. Économie et Statistique, 357‑358, 49–71. https://doi.org/10.3406/estat.2002.7664

Atkinson, A. B., Bourguignon, F. & Chiappori, P.‑A. (1988). Fiscalité et transferts : une comparaison franco‑britannique. Annales d’Économie et de Statistique, 11, 117–140. https://doi.org/10.2307/20075709

Bessis, F. (2019). Les modèles de microsimulation en action. Communication présentée au colloque international AFEP‑IIPPE, Lille.

Biotteau, A.‑L. & Sicsic, M. (2019). Effets d'une variation de certains transferts socio‑fiscaux sur le niveau de vie et les inégalités. Insee, Document de travail N° F1901‑G2019/01. https://www.insee.fr/fr/statistiques/3952160

Blanchet, D. (1998). Présentation générale : la microsimulation appliquée à l’analyse des politiques sociales. Économie et Statistique, 315, 29–34. https://doi.org/10.3406/estat.1998.2639

Blanchet, D. (2011). Microsimuler l’avenir des retraites en France : l’exemple du modèle Destinie. Cahiers québécois de démographie, 40(2), 209‑238. https://doi.org/10.7202/1011540ar

Blanchet, D., Bozio, A. & Rabaté, S. (2016). Quelles options pour réduire la dépendance à la croissance du système de retraite français ? Revue économique, 67(4), 879‑911. https://doi.org/10.3917/reco.674.0879

Blanchet, D., Buffeteau, S., Crenner, E. & Le Minez, S. (2011). Le modèle de microsimulation Destinie 2 : principales caractéristiques et premiers résultats. Économie et Statistique, 441‑442, 101–121. https://doi.org/10.3406/estat.2011.9615

Blanchet, D., Hagneré, C., Legendre, F. & Thibault, F. (2015). Introduction. Microsimulations statique et dynamique appliquées aux politiques fiscales et sociales : modèles et méthodes. Économie et Statistique, 481‑482, 5‑30. https://doi.org/10.3406/estat.2015.10625

Blanchet, D., Hagneré, C., Legendre, F. & Thibault, F. (2016). Évaluation des politiques publiques, ex post et ex ante : l’apport de la microsimulation. Introduction. Revue économique, 67(4), 685‑696. https://doi.org/10.3917/reco.674.0685

Bonacossa, J., Pontagnier, C. & Godderidge, W. (1975). Le modèle d’impôt sur le revenu 1970. Statistiques et études financières, 17, 3‑31. https://doi.org/10.3406/estat.1975.2042

Bonnet, C., Juin, S. & Laferrière, A. (2019). Private Financing of Long Term Care: Income, Savings and Reverse Mortgages. Economie et Statistique / Economics and Statistics, 507‑508, 5‑24. https://doi.org/10.24187/ecostat.2019.507d.1972

Bourguignon, F. (2001). Revenu minimum et redistribution optimale des revenus : fondements théoriques. Économie et Statistique, 346, 187‑204. https://doi.org/10.3406/estat.2001.7436

Bourguignon, F., Chiappori, P.‑A. & Sastre‑Descals, J. (1988). Sysiff: a simulation of the french tax benefit system. In/ Atkinson? A. B. & Sutherland? H. (Eds.), Tax benefit models. STICERD Occasional Paper, LSE.

Bozio,A., Dauvergne,R., Fabre,B., Goupille,J. & Meslin, O. (2012). Le modèle de micro‑simulation TAXIPP – version 0.1. Paris : Institut des politiques publiques. https://www.ipp.eu/wp‑content/uploads/2013/01/guide‑methodIPP‑nov2012‑taxipp01.pdf

Bridenne, I. & Brossard, C. (2008). Les effets de la réforme de 1993 sur les pensions versées par le régime général. Retraite et société, 54, 121‑153. https://www.cairn.info/revue‑retraite‑et‑societe1‑2008‑2‑page‑121.htm

Bégin, C., Lamare, J. & Pontagnier, C. (1971). Le modèle de l’impôt sur le revenu. Statistiques et études financières, 3, 27‑61. https://doi.org/10.3406/estat.1971.1902
Analyse des coûts budgétaires, des effets redistributifs et incitatifs des politiques sociales et fiscales affectant le revenu disponible des ménages : l’apport des modèles de microsimulation. In: *La microsimulation des politiques de transferts sociaux et fiscaux à la DREES : objectifs, outils et principales études et évaluations*. Drees, Dossier solidarité et santé N° 3. https://drees.solidarites-sante.gouv.fr/IMG/pdf/dossier200303.pdf

Chanut, J.-M. & Blanchet, D. (1998). Les retraites individuelles à long terme : une projection par micro-simulation. *Économie et Statistique*, 315, 95–106. https://doi.org/10.3406/estat.1998.2643

Coutière, A. (1983). Augmenter l’impôt sur le revenu : des mesures de portée inégale. *Économie et Statistique*, 158, 21–35. https://doi.org/10.3406/estat.1983.4779

Coutière, A., Pontagnier, C. & Godderidge, W. (1981). Le modèle d’impôt sur le revenu : Mir 4. *Économie et prévision*, 46, 5–29. https://doi.org/10.3406/ecop.1981.6038

Cuvillez, J. & Laurent, T. (2018). Le modèle de microsimulation dynamique des retraites Aphrodite. DG Trésor, *Document de travail* N° 2016/4. https://www.tresor.economie.gouv.fr/Articles/2016/07/16/document-de-travail-n-2016-04-le-modele-de-microsimulation-dynamique-des-retraites-aphrodite

David, M.-G., Lhommeau, B. & Starzec, C. (1999). Le modèle de microsimulation Ines. Insee, DSDES, *Document de travail* N° F9902.

Division Redistribution & politiques sociales (1999). Le modèle de microsimulation dynamique Destinie. Insee, DESE, *Document de travail* N° G9913. https://www.epsilon.insee.fr/jspui/bitstream/1/5627/1/g9913.pdf

Douenne, T. (2018). The vertical and horizontal distributive effects of energy taxes: A case study of a French policy. *FAERE, Working Paper* N° 2018.10. http://faere.fr/pub/WorkingPapers/Douenne_FAERE_WP2018.10.pdf

Duc, C., Martin, H. & Tréguijer, J. (2016). Les réformes des retraites de 2010 à 2015. Une analyse détaillée de l’impact pour les affiliés et pour les régimes. *Dossiers de la Drees* N° 9. https://drees.solidarites-sante.gouv.fr/etudes-et-statistiques/publications/les-dossiers-de-la-drees/article/76/les-reformes-des-retraites-de-2010-a-2015-une-analyse-detaillée-de-l-impact

Fontaine, M. & Sicsic, M. (2018). L’effet d’une variation du montant de certains transferts du système socio-fiscal sur le niveau de vie : résultats sur 2016 à partir du modèle de microsimulation Ines (Cahier de variantes). Insee, *Documents de travail* N° F1806. https://www.insee.fr/fr/registre/3604001

Foucauld, J.-B. & Roth, N. (2002). *Pour une autonomie responsable et solidaire : rapport au Premier ministre*. Paris : La Documentation Française. https://www.ladocumentationfrancaise.fr/rapports-publics/02400175/index.shtml

Glaude, M. (1991). L’originalité du système du quotient familial. *Économie et statistique*, 248, 51–67.

Hagneré, C. & Mahieu, R. (2017). La mesure du travail dissimulé et ses impacts pour les finances publiques. *Rapport du groupe de travail du CNIS* N° 145. https://www.cnis.fr/wp-content/uploads/2017/11/Rapport_145web.pdf

Hagneré, C. & Trannoy, A. (2001). L’impact conjugué de trois ans de réforme sur les trappes à inactivité. *Économie et Statistique*, 346-347, 161–181. https://doi.org/10.3406/estat.2001.7434

Hairault, J.-O., Langot, F. & Sopraseuth, T. (2006). Les effets à rebours de l’âge de la retraite sur le taux d’emploi des seniors. *Économie et Statistique*, 397, 51–68. https://doi.org/10.3406/estat.2006.7126

Landais, C., Piketty, T. & Saez, E. (2011a). *Le modèle de micro-simulation TAXIPP – version 0.0*. Paris : Institut des politiques publiques. https://www.ipp.eu/wp-content/uploads/2013/01/guide-methodIPP-jan2011-taxipp00.pdf

Landais, C., Piketty, T. & Saez, E. (2011b). *Pour une révolution fiscale. Un impôt sur le revenu pour le XXIe siècle*. Paris : Seuil.

Legendre, F. (2004). *Micro-simulation et évaluation des politiques économiques et sociale : un panorama des développements récents en France*. *Revue d’économie politique*, 114, 17–53. https://doi.org/10.3917/rep.141.0017

Legendre, F., Lorgnet, J.-P. & Thibault, F. (2001). *Myriade : le modèle de microsimulation de la CNAF*. Un outil d’évaluation des politiques sociales. *Recherches et Prévisions*, 66, 33–50. https://doi.org/10.3406/estat.2001.977

Legendre, F., Lorgnet, J.-P. & Thibault, F. (2003). Que peut-on retenir de l’expérience française en matière de micro-simulation ? Présentation générale. *Économie et prévision*, 160–161, I–XV. https://doi.org/10.3406/ecop.2003.6918
La distribution des incitations financières au travail en France : l’évaluation du modèle Myriade. *Économie et prévision*, 160-161(4), 23–48. https://www.cairn.info/revue-economie-et-prevision-2003-4-page-23.htm

Legendre, F., Lorgnet, J.-P. & Thibault, F. (2004).

La distribution des incitations financières au travail en France : l’évaluation du modèle Myriade. *Économie et prévision*, 160-161(4), 23–48. https://www.cairn.info/revue-economie-et-prevision-2003-4-page-23.htm

L’Horty, Y. (2006). *Les nouvelles politiques de l’emploi*. Paris : La Découverte.

Marbot, C. & Roy, D. (2015). Projections du coût de l’APA et des caractéristiques de ses bénéficiaires à l’horizon 2040 à l’aide du modèle Destinie. *Économie et Statistique*, 481-482, 185–209. https://doi.org/10.3406/estat.2015.10635

Mirrlees, J. A. (1971). An exploration in the theory of optimum income taxation. *The Review of Economic Studies*, 38(2), 175–208. https://doi.org/10.2307/2296779

Orcutt, G. H. (1957). A new type of socio-economic system. *The Review of Economics and Statistics*, 39(2), 116–123. https://www.microsimulation.org/IJM/V1_1/IJM_1_1_2.pdf

Padirac De, H. (2018). Le Parlement français et l’évaluation. Une institutionnalisation impossible ? LIEPP Working Paper N° 80.

Piketty, T. (1997). La redistribution fiscale face au chômage. *Revue française d’économie*, 12(1), 157–201. https://doi.org/10.3406/rfeco.1997.1016

Poubelle, V., Albert, C., Beurnier, P., Couhin, J. & Grave, N. (2006). Prisme, le modèle de la Cnav. *Retraite et société*, 48, 202–215. https://www.cairn.info/revue-retraite-et-societe1-2006-2-page-202.htm

Quinet, A. (2019). Quelle valeur donner à l’action pour le climat ? *Économie et Statistique / Economics and Statistics*, ce numéro.

Régent, L. (2018). La face cachée des prestations familiales : projet de simplification. Paris : Éditions de l’Onde.

Saez, E. (2002). Optimal income transfer programs: intensive versus extensive labor supply responses. *The Quarterly Journal of Economics*, 117(3), 1039–1073. https://www.jstor.org/stable/4132495

Sicsic, M. (2018). Financial Incentives to Work in France between 1998 and 2014. *Économie et Statistique / Economics and Statistics*, 503-504, 13–35. https://doi.org/10.24187/ecostat.2018.503d.1955

Sutherland, H. (1997). The EUROMOD Preparatory Study: A Summary Report. *Cambridge Working Papers in Economics* N° 9725. https://econpapers.repec.org/RePEc:cam:camdae:9725

Thao Khamsing, W., Ceci-Renaud, N. & Guillot, L. (2016). Simuler l’impact social de la fiscalité énergétique : le modèle Prometheus. *Études et documents* N° 138. http://temis.documentation.developpement-durable.gouv.fr/docs/Temis/0083/Temis-0083851/22397.pdf