OSMRβ mutants enhance basal keratinocyte differentiation via inactivation of the STAT5/KLF7 axis in PLCA patients

Letter

Dear Editor,

Primary localized cutaneous amyloidosis (PLCA) is a skin-limited disorder characterized by deposition of amyloid material in the superficial dermis. According to clinical characteristics, PLCA is divided into lichen, macular, and nodular amyloidosis. PLCA is found worldwide but has a higher incidence in South America and Southeast Asia, such as in Brazil and China (Chang et al., 2014; Tey et al., 2016). The etiology of PLCA is complicated, involving environmental factors, the immune state, and genetic factors (Tanaka et al., 2009; Katayama et al., 2019). A genome-wide scan revealed that mutations in several genes are involved in the development of PLCA, including oncostatin M receptor (OSMR) (Arita et al., 2008), interleukin 31 receptor A (IL-31RA) (Shiao et al., 2013), and glycoprotein Nmb (GPNMB) (Yang et al., 2018).

Recently, we demonstrated that the c.1538G>A (p.G513D) and c.2081C>T (p.P694L) mutations of OSMR were the most frequent mutations in a Chinese PLCA population (Lu et al., 2019). It has been reported that OSM maintains hair follicle stem cell and muscle stem cell quiescence by binding to heterodimeric receptors comprising gp130 and OSMRβ (Sampath et al., 2018; Wang et al., 2019). Additionally, OSM signaling plays crucial roles in the regulation of cardiomyocyte differentiation and cellular plasticity (Kubin et al., 2011). Whether OSMRβ-mediated cell differentiation plays a role in PLCA remains unexplored.

To answer this question, we compared the RNA expression profiles between PLCA patients and healthy controls. Interestingly, Gene Ontology (GO) analysis of the dysregulated genes revealed that most of them were associated with keratinocyte differentiation processes (Fig. 1A). Consistent with the above findings, in PLCA patients with OSMR mutations, epidermal keratinocyte differentiation was enhanced, with increased expression of FLG and LOR, compared to that in healthy controls (Fig. 1B). Furthermore, immunofluorescence analysis suggests that the expression of Ki67, an indicator of cell proliferation, was also enhanced in the epidermis of PLCA patients with OSMR mutations (Fig. 1C and 1D).

To further determine the biological functions of OSMRβ protein in the skin, Osmr−/− C57BL/6 mice were produced using the CRISPR/Cas9 system (Figs. 1E, 1F and S1A). Unfortunately, no PLCA-like phenotype was observed in these mice under physiological or pathological conditions (including UVA exposure and an itch challenge; data not shown). Hair follicle cycle changes were observed between WT and Osmr−/− mice at post-natal day 30 (P30) using hematoxylin and eosin staining (Fig. S1B), which is consistent with previous reports (Wang et al., 2019). More importantly, the tail epidermal thickness was significantly
increased in Osmr−/− mice compared to WT mice (Fig. 1G and 1H). RNA-seq analysis indicated a 2-fold change in the expression levels of 2,328 genes in the skin of Osmr−/− mice compared to their WT littermates. GO analysis showed that the genes related to certain functions, such as keratinocyte differentiation and skin development, were dysregulated, which suggests that epidermal keratinocyte differentiation was enhanced in the skin of Osmr−/− mice (Fig. S1C). Of the differentially expressed genes between the two groups, 39 genes are known to be related to epidermal keratinocyte differentiation (Fig. 1I). To validate our findings, we used qRT-PCR to examine terminal differentiation marker expression levels of their WT littermates. This analysis confirmed increasing expression in freshly isolated skin from Osmr−/− mice and their WT littermates. These results suggest that Osmr knockout enhances basal keratinocyte differentiation and proliferation in mice.

OSMRβ is a component of both the OSM type II receptor and the IL-31 receptor, so we sought to investigate which of these cytokines was involved in the regulation of human keratinocyte differentiation. HaCaT and primary keratinocytes were cultured and stimulated with indicated concentration of OSM or IL-31, and the expression levels of epidermal keratinocyte differentiation-related genes were significantly decreased in the OSM-treated HaCaT cells or primary keratinocytes (Figs. 2A, 2B and S2A–D). Further, we validated our results using 3D skin models. Consistently, qRT-PCR and immunofluorescence analysis demonstrated the decreased expression of epidermal keratinocyte differentiation markers in OSM-treated 3D skins (Figs. 2C and S2E).

To further confirm that OSM inhibits keratinocyte differentiation through heterodimeric receptors comprising gp130 and OSMRβ, the CRISPR/Cas9 system was employed to produce OSMR-knockout HaCaT cells (Fig. S2F–H).
OSMRβ mutants enhance KC differentiation in PLCA patients

A. Protein & Cell

B. Healthy control vs. PLCA with OSMR mutation

C. Krt14, KI67, Integrin α6, DAPI, Merge

D. % KI67+ (Krt17+ basal keratinocytes)

E. 5′ gRNA1 4 5 6 18

F. Mouse Osmr Intron 3

G. Osmr+−

H. Epidermal thickness (μm)
Figure 1. continued.
results indicated that knockout of OSMR can rescue OSM-induced inhibition of keratinocyte differentiation (Fig. 2D). Next, we aimed to identify the molecular mechanisms underlying OSM-induced inhibition of keratinocyte differentiation. Western blot showed that HaCaT cells exhibited activation of STAT3, STAT5, ERK1/2, and AKT signaling after OSM stimulation (Fig. S2I). However, only the STAT3 and ERK1/2 pathways were activated in IL-31-treated HaCaT cells (Fig. S2I). We further demonstrated that OSMR knockout can block OSM-induced phosphorylation of STAT3, STAT5, ERK1/2, and AKT in HaCaT cells (Fig. 2E).

In an attempt to delineate the downstream signaling pathways, HaCaT cells were pretreated with inhibitors before being stimulated with OSM. STAT5 inhibitor could almost completely rescue the decreased mRNA expression of keratinocyte differentiation-related genes (Fig. S2J). STAT3 inhibitor had a partial rescue effect (Fig. S2K). And ERK1/2 (Fig. S2L) and AKT (Fig. S2M) inhibitors had no effect at all. Similar results were observed when the protein expression levels of these differentiation genes were checked (Figs. 2F and S2N). These findings strongly suggest that OSM/OSMRβ signaling, likely via JAK/STAT5, is involved in the regulation of keratinocyte differentiation.

Next, we tried to identify critical factors downstream STAT5 to regulate keratinocyte differentiation. An increased abundance of KLF7 (Fig. 2G), a transcription factor involved in the regulation of somatic stem cell quiescence (Wang et al., 2016), was observed in OSM-treated HaCaT cells. In contrast, decreased Klf7 expression was found in OsMr−/− mice compared to WT mice (Fig. S3A). OSM-induced upregulation of this gene in mRNA and protein in HaCaT cells was further identified using qRT-PCR and Western blot, respectively (Figs. 2H and S3B).

Further, we analyzed two available STAT5 ChIP-seq data sets involving human B lymphocytes (Gertz et al., 2013) and mice natural killer cells (Villarino et al., 2017). The results indicated that human and mice STAT5-binding sites at the KLF7 intragenic locus are highly conserved (Fig. S3C and S3D). Furthermore, ChIP-qPCR confirmed that STAT5 binds to the KLF7 gene locus in human keratinocytes upon OSM stimulation (Fig. 2I). In addition, we cloned approximately 2 kb of the upstream region of the KLF7 gene transcriptional start site (defined as KLF7 promoter in our study) into a pGL4 luciferase reporter vector, and we then tested whether the luciferase reporter activity is regulated by STAT5 in HEK293T cells. As shown in Fig. 2J, the upregulation of luciferase activity in OSM-stimulated HEK293T cells was inhibited, in a dose-dependent manner, by pretreatment with a STAT5 inhibitor, but not by pretreatment with STAT3, ERK1/2, or AKT inhibitors. Three potential STAT5-binding sites (ChIP-seq peaks) were found within the KLF7 promoter region, combinational deletion experiments demonstrated that all the three sites contributed to KLF7 expression (Fig. S3E). These above data indicate that KLF7 is a direct target gene of STAT5.

To investigate the function of KLF7 in keratinocyte differentiation, KLF7-overexpressing lentivirus was packaged and transduced into HaCaT cells. As expected, qRT-PCR and Western blot revealed that the expression levels of KRT1, KRT10, FLG, and LOR were decreased in KLF7-overexpressing HaCaT cells (Fig. 2G). Two independent siRNAs resulted in efficient knockdown of KLF7 (Fig. S3H) and in a reduction of OSM-induced keratinocyte differentiation (Fig. S3I). To further confirm our results, CRISPR/Cas9 technology was employed to generate KLF7-knockout HaCaT cell lines (Fig. 2K). Loss of KLF7 also resulted in the inhibition of OSM-induced keratinocyte differentiation (Fig. 2L). These findings support our hypothesis that OSM inhibits keratinocyte differentiation through activation of the STAT5/KLF7 signaling pathway.

Several studies have demonstrated that missense mutations of OSMR are involved in the development of PLCA (Arita et al., 2008; Wali et al., 2015). However, the changes in the biological function of the OSMR protein caused by the mutations still need to be identified. The OSMR-knockout HaCaT cell line was infected with Lv-OSMR-pG513D-P2A-GFP, Lv-OSMR-pP694L-P2A-GFP, or the Lv-OSMR-WT-P2A-GFP virus as control (Fig. S3J). We assessed whether the p.G513D and p.P694L variants resulted in mislocalization of OSMRβ using immunofluorescence analysis. The
results showed that the cellular localization of WT-OSMRβ and the two variants (with the p.G513D and p.P694L mutations) were similar, indicating that neither variant impacted the overall cellular localization (Fig. S3K). We next checked the downstream signaling pathways activated by the two variants. Western blot showed that p.P694L mutant failed to activate STAT5 and STAT3, and that p.G513D mutant failed to activate STAT5 (Fig. 2M). No dominant negative effect was observed, as OSM can activate either STAT5 or STAT3 phosphorylation in both WT/p.G513D and WT/p.P694L co-infected HaCaT cells (Fig. S3L). More importantly, qRT-PCR analysis further confirmed that the OSMR mutations resulted in the inhibition of OSM-induced keratinocyte differentiation (Fig. 2N).

In summary, we identified OSM as a negative regulator of epidermal keratinocyte differentiation that acts via STAT5/ KLF7 signaling in vivo and in vitro. Dysregulation of the OSM/OSMRβ/STAT5/KLF7 axis by OSMR mutation could lead to PLCA (Fig. S4). Therefore, this study discovered the potential underlying cellular and molecular mechanisms how OSMR mutations caused PLCA, and the discovered STAT5/ KLF7 molecule axis could be a potential target for PLCA treatment in the future.

FOOTNOTES

We thank all members of the Rong and Yang labs for their helpful discussions and suggestions regarding the manuscript. The research was funded by the National Natural Science Foundation of China (82003329, 82073418, 81872511 and 81670093), Frontier Research Program of Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) (2018GZR110105005), National Science and Technology Major Project (2018ZX10301101), Guangdong Basic and Applied Basic Research Foundation (2019A1515110109), and China Postdoctoral Science Foundation (2019M662983).

The accession numbers for the RNA sequencing data reported in this paper are GEO: GSE150884, GSE150994 and GSE151174.

Jun Liu, Junchen Chen, Yadan Zhong, Xiaoling Yu, Jianqi Feng, Xin Zhang, Shufeng Ma, Chao Yang, Bin Yang, and Zhili Rong declare that they have no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (the Dermatology Hospital of Southern Medical University) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.
OSMRβ mutants enhance KC differentiation in PLCA patients

Figure 1:

A Western blot analysis showing the expression of OSMRβ mutants in IL-31 and KRT10

B Heatmap representing the expression levels of various genes in KC and KC + OSM

C Immunofluorescence images of 3D skin, 3D skin + OSM, and 3D skin + IL-31

D Bar graph showing relative mRNA levels of OSMR KO and OSMR KO + OSM

E Western blot analysis of HaCaT and OSMR KO

F Western blot analysis of STAT5-Stat5

G Volcano plot showing the expression of KLF7

H Western blot analysis of OSM and IL-31

I Bar graph showing signal relative to input of KLF7 intragenic locus

© The Author(s) 2021

659
Figure 2. continued.
Jun Liu¹, Junchen Chen¹, Yadan Zhong¹,², Xiaoling Yu¹, Ping Lu¹, Jianqi Feng², Xin Zhang², Shufeng Ma², Chao Yang¹, Bin Yang¹,²,³, Zhili Rong¹,²,³, Correspondence: Yangbin101@hotmail.com (B. Yang), Rongzhili@smu.edu.cn (Z. Rong)

Accepted December 7, 2020

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES

Arita K, South AP, Hans-Filho G, Sakuma TH, Lai-Cheong J, Clements S, Odashiro M, Odashiro DN, Hans-Neto G, Hans NR et al (2008) Oncostatin M receptor-beta mutations underlie familial primary localized cutaneous amyloidosis. Am J Hum Genet 82:73–80
Chang YT, Lin CH, Lee CT, Lin MW, Liu LY, Chen CC, Lee DD, Liu HN, Tsai SF, Matsuura I (2014) Detection of common mutations in sporadic primary localized cutaneous amyloidosis by DNA mass spectrometry. Br J Dermatol 170:974–976
Gertz J, Savic D, Varley KE, Partridge EC, Safi A, Jain P, Cooper GM, Reddy TE, Crawford GE, Myers RM (2013) Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol Cell 52:25–36
Katayama C, Hayashida Y, Sugiyama S, Shiohara T, Aoyama Y (2019) Postherpetic hypohidrosis-related isotopic response associated with lichen planus and lichen amyloidosis. Eur J Dermatol 29:233–234
Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lorchner H, Schimanski S et al (2011) Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9:420–432
Lu P, Wu FF, Rong ZL, Fang C, Deng CC, Bin LH, Yang B (2019) Clinical and genetic features of Chinese patients with lichen and macular primary localized cutaneous amyloidosis. Clin Exp Dermatol 44:e110–e117
Sampath SC, Sampath SC, Ho ATV, Corbel SY, Millstone JD, Lamb J, Walker J, Kinzel B, Schmedt C, Blau HM (2018) Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M. Nat Commun 9:1531
Shiao YM, Chung HJ, Chen CC, Chiang KN, Chang YT, Lee DD, Lin MW, Tsai SF, Matsuura I (2013) MCP-1 as an effector of IL-31 signaling in familial primary cutaneous amyloidosis. J Invest Dermatol 133:1375–1378
Tanaka A, Arita K, Lai-Cheong JE, Palisson F, Hide M, McGrath JA (2009) New insight into mechanisms of pruritus from molecular studies on familial primary localized cutaneous amyloidosis. Br J Dermatol 161:1217–1224
Tey HL, Cao T, Nattkemper LA, Tan VW, Pramono ZA, Yosipovitch G (2016) Pathophysiology of pruritus in primary localized cutaneous amyloidosis. Br J Dermatol 174:1345–1350
Villarino AV, Sciume G, Davis FP, Iwata S, Zitti B, Robinson GW, Hennighausen L, Kanno Y, O’Shea JJ (2017) Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. J Exp Med 214:2999–3014
Wali A, Liu L, Takeichi T, Jelani M, Rahman OU, Heng YK, Thng S, Lee J, Akiyama M, McGrath JA et al (2015) Familial primary localized cutaneous amyloidosis results from either dominant or recessive mutations in OSMR. Acta Derm Venereol 95:105–107
Wang X, Shen QW, Wang J, Zhang Z, Feng F, Chen T, Zhang Y, Wei H, Li Z, Wang X et al (2016) KLF7 Regulates Satellite Cell Quiescence in Response to Extracellular Signaling. Stem Cells 34:1310–1320
Wang ECE, Dai Z, Ferrante AW, Drake CG, Christiano AM (2019) A Subset of TREM2(+) Dermal Macrophages Secrete Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell 24(654–669):e656
Yang CF, Lin SP, Chiang CP, Wu YH, H’Ng WS, Chang CP, Chen YT, Wu JY (2018) Loss of GPNMB Causes Autosomal-Recessive Amyloidosis Cutis Dyschromica in Humans. Am J Hum Genet 102:219–232

Jun Liu and Junchen Chen have contributed equally to this work.

Supplementary Information The online version of this article (https://doi.org/10.1007/s13238-020-00818-3) contains supplementary material, which is available to authorized users.