Improving Channel Charting using a Split Triplet Loss and an Inertial Regularizer

Brian Rappaport1, Emre Gönültaş1, Jakob Hoydis2, Maximilian Arnold3, Pavan Koteswar Srinath4, and Christoph Studer5

1School of Electrical and Computer Engineering, Cornell University; e-mail: br434@cornell.edu, eg566@cornell.edu
2NVIDIA, France; e-mail: jhoydis@nvidia.com
3Nokia Bell Labs Stuttgart; e-mail: maximilian.arnold@nokia-bell-labs.com
4Nokia Bell Labs France; e-mail: pavan.koteswar_srinath@nokia-bell-labs.com
5Department of Information Technology and Electrical Engineering, ETH Zürich; e-mail: studer@ethz.ch

Abstract—Channel charting is an emerging technology that enables self-supervised pseudo-localization of user equipments by performing dimensionality reduction on large channel-state information (CSI) databases that are passively collected at infrastructure base stations or access points. In this paper, we introduce a new dimensionality reduction method specifically designed for channel charting using a novel split triplet loss, which utilizes physical information available during the CSI acquisition process. In addition, we propose a novel regularizer that exploits the physical concept of inertia, which significantly improves the quality of the learned channel charts. We provide an experimental verification of our methods using synthetic and real-world measured CSI datasets, and we demonstrate that our methods are able to outperform the state-of-the-art in channel charting based on the triplet loss.

I. INTRODUCTION

Hardly any area of modern research remains untouched by deep-learning-based machine learning. Wireless communications is no exception; in recent years, machine learning has been considered for many applications, including network routing, data detection, and others [1]–[5]. The rapid pace of data collection in modern wireless systems allows for data-driven approaches to address many pressing problems, including localization, the problem of estimating the position of a wireless transmitter given its channel state information (CSI). Wireless localization is a well-studied problem; CSI fingerprinting [4], [5] is one approach, but fingerprinting requires large CSI databases and access to ground-truth location, which is challenging to acquire as the channels change over time. To address such issues, we turn to self-supervised methods, which do not require ground truth location information.

A. Channel Charting: Main Idea

Of particular interest here is channel charting [6], a self-supervised framework for pseudo-localization and tracking of user equipments (UEs) using dimensionality reduction in the CSI domain. This technique learns a charting function over a specific channel, which maps high-dimensional CSI to low-dimensional pseudo-locations. Moreover, the function is learned in a self-supervised manner, without any need for ground truth location information. Successful channel charting relies on two aspects: (i) carefully-designed CSI features, as CSI measurements are prone to a variety of system and hardware impairments, such as noise, small-scale fading, time synchronization errors, and residual sampling rate and frequency offsets; and (ii) the dimensionality reduction method [6]–[10]. This paper focuses on the second aspect.

We consider one or more mobile UEs moving in the vicinity of an infrastructure base station (BS) or access point (AP), which regularly transmit pilots that are used to acquire large CSI datasets. The time-varying information can be used to build a channel chart with data from the same UE but taken at different time instants, rather than CSI measurements at the same time from different transmitters. The additional information that two consecutive samples are temporally adjacent also improves the quality of dimensionality reduction. Similar ideas have been considered in the past, e.g., the SM+ algorithm proposed in [6], but have been limited in scope.

B. Contributions

In this paper, we strive to take full advantage of all information available at the BS or AP when acquiring CSI measurements and learning the channel chart, both explicit and implicit. Concretely, we propose a new dimensionality reduction method we call the split triplet loss, which takes into account physical properties of the transmitting UEs during CSI acquisition. In addition, we augment our loss function using a novel inertial regularizer, which further improves the quality of the learned channel charting function. We demonstrate the efficacy of our methods using a synthetic and a real-world dataset, and compare them to Sammon’s mapping from [8] and the recently-proposed triplet loss approach from [9].

C. Notation

We denote column vectors and matrices by boldface lowercase and capital letters, respectively. The ith element of a vector a is denoted by a_i, the ith column of a matrix A by a_i, and the (i,j)th entry of A by A_{ij}. The transpose of A is A^T. The work of CS was supported in part by ComSenTer, one of six centers in JUMP, a SRC program sponsored by DARPA, and by an ETH Research Grant. The work of BR, EG, and CS was also supported by the US National Science Foundation (NSF) under grants CNS-1717559 and ECCS-1824379.

\[a_{ij} \]
the conjugate (Hermitian) transpose is A^H, and the (element-wise) conjugate is A^*. We use the Euclidean norm for vectors and Frobenius norm for matrices. Element-wise powers on vectors and matrices are denoted using \circ, e.g., $(A^{o2})_{ij} = A_{ij}^2$.

II. CHANNEL CHARTING BASICS

Channel charting is a self-supervised pseudo-localization framework that applies dimensionality reduction to measured CSI [6]. In brief, channel charting takes a dataset of measured CSI, converts the CSI measurements into CSI features that are resilient to small-scale fading and hardware impairments [9], [11], and applies dimensionality reduction in order to learn a low-dimensional embedding: the channel chart. Our goal is to learn a channel chart that preserves local geometry: two nearby charted points should also be close in real space.

A. System Model

We consider a single-input multiple-output (SIMO) orthogonal frequency-division multiplexing system (OFDM) system in which one or multiple single-antenna UEs transmit pilots to a B-antenna BS or AP in time-division duplexing (TDD) fashion. While the UEs continuously broadcast pilot sequences for all wireless channels, the BS or AP collects the SIMO-OFDM CSI of an UE in the form of a CSI matrix $H_i \in \mathbb{C}^{B \times W}$, where i refers to the index of the measured CSI. We normalize the CSI matrix H_i via $H'_i = H_i / \|H_i\|_2$, which makes the CSI features independent of time synchronization offset and global phase changes [11]. Note that the 2D autocorrelation of a matrix is rotationally symmetric, so we can truncate the redundant second half of the rows of H^acorr.

5) Vectorization: We finish by vectorizing the entry-wise absolute values of the truncated autocorrelation matrix in order to extract our final CSI features: $f_i = \text{vec}(H_i^\text{acorr})$.

C. Dimensionality Reduction: Sammon’s Mapping

After generating CSI features, the next step is to learn a low-dimensional embedding. Dimensionality reduction is a well-studied problem [13] and linear dimensionality reduction, e.g., using principal component analysis (PCA), is widely used for many problems. Unfortunately, such methods do not work well for channel charting and nonlinear methods have been proposed instead [6]. Sammon’s mapping [14] learns an embedding vector \hat{x}_i for each CSI feature f_i in a low (D') dimensional space. The embedding $\{\hat{x}_i\}$, the set of points in the channel chart, can be calculated by minimizing the non-convex loss function

$$L_{\text{Sammon}}(\{\hat{x}_i\}) \equiv \sum_{i,j} \frac{(\|\hat{x}_i - \hat{x}_j\| - \|f_i - f_j\|)^2}{\|f_i - f_j\|}, \quad (1)$$

summed over all pairs of CSI features. Sammon’s mapping attempts to learn an embedding $\{\hat{x}_i\}$ in which pairs of CSI features with small Euclidean distance $\|f_i - f_j\|$ match the embedding distance $\|\hat{x}_i - \hat{x}_j\|$, pairs of points with large feature distances are deweighted. The loss can be approximately minimized efficiently using gradient-descent methods [6].

Although Sammon’s mapping is appealingly simple, it has several drawbacks. It is non-parametric and suffers from the out-of-sample problem: given a new CSI feature f', finding the corresponding point x' in the channel chart requires either solving the entire optimization problem or using approximate out-of-sample extensions [15]. In [8], the authors address this issue using Siamese neural networks [16], two parallel and identical neural networks with shared parameter vector θ. They replace the embedded points \hat{x}_i and \hat{x}_j in [11] with the outputs of a neural network g_{θ} that takes in CSI features and produces points in the channel chart by setting $\hat{x}_i = g_{\theta}(f_i)$ and $\hat{x}_j = g_{\theta}(f_j)$. It can be formulated using the following loss function:

$$L_{\text{Siamese}}(\theta) \equiv \sum_{i,j} \frac{(\hat{x}_{ij}^\theta \cdot \hat{x}_{ij}^\theta - f_i \cdot f_j)^2}{\|f_i - f_j\|}, \quad (2)$$

where $\hat{x}_{ij}^\theta \equiv \|\hat{x}_i^\theta - \hat{x}_j^\theta\|$, and the network is optimized over the weights and biases subsumed in the vector θ. We note that the
embedding points \(\hat{x}_i \) and distances \(\hat{d}_{ij} \) are functions of \(\theta \), but we omit these dependencies for ease of notation. Unfortunately, solving (2) relies heavily on the precept that the Euclidean distance between two CSI features is an accurate proxy for real pairwise distances. Although distance information is contained within the CSI features, the Euclidean distance is a poor choice to uncover it—a more appropriate CSI feature dissimilarity would allow us to learn more faithful channel charts.

D. Dimensionality Reduction: Triplet Loss

The triplet loss, originally from [17] and applied to channel charting in [9], avoids Euclidean pairwise distances altogether by learning a dissimilarity directly from the CSI features. This method is based on the concept of triplets: suppose we have access to a set \(T = \{(i,j,k) : d_{ij} \leq d_{ik}\} \), where \(d_{ij} \triangleq \|x_i - x_j\| \) is the true pairwise distance. For each triplet \((i,j,k) \), we call the vector \(x_i \) the anchor point, \(x_j \) the positive (or close) point, and \(x_k \) the negative (or far) point. By comparing the distances from positive and negative points, we can learn an embedding which ensures that the ordering of real pairwise distances is maintained in the channel chart. As before, this method avoids the out-of-sample problem by learning a dissimilarity directly from the CSI features. Unfortunately, the function \(g \) of real pairwise distances is maintained in the channel chart. By comparing the distances from positive and negative points, we can learn an embedding which ensures that the ordering of real pairwise distances is maintained in the channel chart.

A. Split Triplet Loss

The triplet loss, originally from [17] and applied to channel charting in [9], avoids Euclidean pairwise distances altogether by learning a dissimilarity directly from the CSI features. This method is based on the concept of triplets: suppose we have access to a set \(T = \{(i,j,k) : d_{ij} \leq d_{ik}\} \), where \(d_{ij} \triangleq \|x_i - x_j\| \) is the true pairwise distance. For each triplet \((i,j,k) \), we call the vector \(x_i \) the anchor point, \(x_j \) the positive (or close) point, and \(x_k \) the negative (or far) point. By comparing the distances from positive and negative points, we can learn an embedding which ensures that the ordering of real pairwise distances is maintained in the channel chart. As before, this method avoids the out-of-sample problem by learning a dissimilarity directly from the CSI features. Unfortunately, the function \(g \) of real pairwise distances is maintained in the channel chart. By comparing the distances from positive and negative points, we can learn an embedding which ensures that the ordering of real pairwise distances is maintained in the channel chart.

B. Triplet Selection

As mentioned in Section II-D, triplets can be selected based solely on time stamps. In [9], an anchor point \(i \) is chosen at random from the dataset, at time stamp \(t_i \); then the positive point \(j \) is chosen from \(\{ j : 0 < |t_i - t_j| < T_c \} \) and the negative point \(k \) is chosen from \(\{ k : T_c < |t_i - t_k| < T_f \} \), where \(T_c \) and \(T_f \) are user-defined parameters. Although intuitive, this approach cannot correctly identify self-intersecting tracks. If a UE crosses its own path from some time prior, points could be arbitrarily far in time but close in feature distance (as measured using a quantile threshold over all feature distances), then it is likely to be a self-intersection point and should be treated as a nearby point instead.
C. Inertial Regularization

Throughout this paper, we have been guided by the principle that we can and should use all information we have available to us. In a physical system, we can make a simple observation: the track of a body moving through real space is smooth. By this we mean that the UE’s path must be continuous, so it cannot jump far away in a short time; this corresponds to the temporally-based triplet selection mechanism mentioned in Section III-B. But we can glean additional information from this assertion: a body also cannot change its velocity discontinuously, which would imply infinite acceleration. In order to make use of this information, we propose a new regularizer which captures this inertia of the UE. The regularizer, which we unsurprisingly call the inertial regularizer, takes the following form:

\[L_{\text{Inertia}}(\theta) \triangleq \sum_{(i,j,\ell) \in I} \| \langle \hat{x}_i^\theta - x_i^\theta \rangle - \langle \hat{x}_j^\theta - x_j^\theta \rangle \|, \]

where \(I = \{(i,j,\ell) : t_i - t_j = t_j - t_i, |t_i - t_j| < T_c\} \), temporally linear triplets. The regularizer is the second difference of consecutive points: if \(i, j, \) and \(\ell \) are equally spaced and on a straight line, then it will be zero, but it penalizes the UE slowing down, speeding up, or turning. In real motion, with a high enough sampling rate, the UEs move linearly or with gradual turns or changes in acceleration. Forcing this regularizer to be zero would result in linear, evenly spaced points. Instead, we weight it using a suitably chosen regularization factor \(\mu \). We can modify the existing temporal triplet selection procedure to provide inertial points: for an anchor point \(i \) with positive point \(j \), the inertial point is at time stamp \(t_i - (t_j - t_i) \), for points close in time; we ignore inertial loss on points re-identified by feature distance (see Section III-B for the details).

IV. RESULTS

We now provide results on synthetic and real-world measured CSI datasets: first, we introduce performance metrics and summarize the neural network structure used in the algorithms; second, we present our results compared to two benchmarks, Sammon’s mapping via Siamese nets [8] and the triplet loss [9].

A. Performance Metrics

Channel charting is inherently a self-supervised learning problem, which means that standard error metrics, such as the mean-squared error, are not applicable. Instead, we consider the following performance metrics to assess channel chart quality.

1) Kruskal Stress: Kruskal stress [18] is commonly used in multidimensional scaling, the problem of finding a low-dimensional set of points which preserve distances in the high-dimensional space. We use the following definition [8]:

\[KS \triangleq \sqrt{1 - \left(\frac{d_{\hat{x}}}{d_{x}} \right)^2}. \]

Here, \(d \) and \(\hat{d} \) are vectorized versions of the pairwise distance matrices formed by \(\{d_{ij}\} \) and \(\{d_{\hat{i}\hat{j}}\} \), lower is better. This metric can also be interpreted in terms of the cosine distance between \(d \) and \(\hat{d} \): if \(\frac{d_{\hat{i}\hat{j}}}{d_{x}} = \cos \phi \), then \(KS = \sin \phi \). The Kruskal stress in (6) is independent of scale, rotation, or translation, since it is measured using normalized distances. It is a useful similarity measurement for global distances, but does not specifically measure local embedding quality.

2) Optimal Shifting, Stretching, and Rotating: Since the channel charts are created using relative distances, they are invariant to translations and rotations. In addition, there cannot be a measure of absolute scale since the distances are given by a partial ordering. Accordingly, the optimal shifting, stretching, and rotating metric (SR) [9] is invariant to these parameters:

\[SR \triangleq \frac{1}{N} \sum_{i} \left\| \mathbf{D}_{\sigma_x}(x_i - \mu_x) - W \mathbf{D}_{\sigma_x}(\hat{x}_i - \mu_x) \right\|^2. \]

Here, \(\mu_x = \frac{1}{N} \sum_{i} x_i, \mathbf{D}_{\sigma_x} = \text{diag}(\frac{1}{N} \sum_{i}(x_i - \mu_x)^2)^{1/2}, \mu_{\hat{x}} \) and \(\mathbf{D}_{\sigma_{\hat{x}}} \) are defined analogously, and \(W \) is the optimal projection from normalized embeddings onto normalized ground truth solving the orthogonal Procrustes problem,
\[
W = UV^T \text{ with the singular value decomposition } USV^T \text{ of } (D^{-1}_N(X - 1\mu^2)_i)^TD^{-1}_N(X - 1\mu^2)_i, \text{ where } X \text{ and } \hat{X} \in \mathbb{R}^{N \times D} \text{ are the matrices created by concatenating the } N \text{ ground truth and learned locations, respectively [19].}
\]

3) Trustworthiness and Continuity: Local embedding quality uses a different set of metrics. Trustworthiness (TW) captures whether the neighbors in the embedding are also neighbors in the ground truth; continuity (CT) measures the converse [8]. Each is parametrized over a neighborhood of size \(K \); we consider values of \(K \) from 1% to 5% of the total number of samples, \(N \). If the set of \(K \) closest neighbors by Euclidean distance to a point \(i \) in the embedding is \(U_K(i) \), then

\[
TW(K) \triangleq 1 - \frac{1}{(2N - 3K - 1)NK} \sum_i \sum_{j \in U_K(i)} (r(i, j) - K), \quad (8)
\]

where \(r(i, j) \) is the order of \(j \neq i \), ranked by distance from \(i \) in the ground truth. Similarly, if \(V_K(i) \) is the set of \(K \) closest neighbors to \(i \) in the ground truth, then

\[
CT(K) \triangleq 1 - \frac{1}{(2N - 3K - 1)NK} \sum_i \sum_{j \in V_K(i)} (\hat{r}(i, j) - K), \quad (9)
\]

where \(\hat{r}(i, j) \) is the analogous rank ordering in the embeddings; the leading coefficient is a normalization factor which ensures that \(TW(K) \) and \(CT(K) \) are between 0 and 1; higher is better.

B. Neural Network Structure

In the following experiments, we use the same neural network architecture for the function \(g_\theta \) that maps CSI features to points in the channel chart. We use a neural network with 2048 inputs, three dense layers, halving the number of nodes in each subsequent layer, and 256 outputs. We use ReLU activations except for the last layer, which generates probability maps [11] and uses a softmax function instead. This final layer outputs a probability mass function (PMF) \(p_i = g_\theta(f_i) \) over a set of predefined grid centroids \(\{c_k\} \) with \(c_k \in \mathbb{R}^D \) which span the area, instead of predicting the pseudo-location in \(\mathbb{R}^D \) directly; \(p_k \) indicates the likelihood of the UE being at grid point \(c_k \).

We can then calculate the expected pseudo-location using the PMF and the \(16 \times 16 \) set of centroids, \(\hat{x}_i = \sum_k c_k p_k \).

C. Synthetic Results

We evaluate the performance of our methods on a synthetic dataset with CSI generated using the QuadriGa urban macro non-line-of-sight Berlin scenario [20]. We created a simple city-block MATLAB simulator in which a mobile UE travels randomly around a 4 × 4 grid of blocks. Using this simulator, we generated a dataset of \(N = 17769 \) channel vectors using a \(B = 32 \) antenna BS with a ULA and half wavelength antenna spacing. Thermal noise was added to the CSI vectors dependent on room temperature (300 K) and the bandwidth, and the signals were received using an OFDM system with \(W = 64 \) subcarriers at a bandwidth of 20 MHz. The BS is located around 50 m away from the UE locations; see Figure 2a for further details.

As shown in Figure 1, both algorithms are able to convincingly approximate the dataset. In Figure 1b we compare the original algorithm from [9], the triplet loss with a margin \(\lambda = 1 \) and no inertia; this algorithm is able to recreate some of the city-block topology but contains irregularities. In Figure 1c we add the inertial regularizer described in Section III-C to the triplet loss, which improves the local accuracy but negatively affects the scaling. Finally, in Figure 1d we demonstrate the split triplet loss with the inertial regularizer, which has trustworthiness and continuity similar to that of the triplet loss but lower Kruskal stress and optimal stretch/rotation; see Table 1 for the details.

D. Measured Results

We also demonstrate the performance of our methods on a real-world dataset consisting of channel matrices from the published dataset from [21] of the IEEE Communication Theory Workshop (CTW) 2020 data competition. The dataset covers a large suburban area (see Figure 2a). The UE in the field is equipped with a differential global positioning system (GPS), creating tagged CSI with 20 MHz of bandwidth at a carrier frequency of 1.27 GHz. The BS is equipped with a URA...
We have demonstrated the efficacy of our methods on a real dataset consisting of 8×8 antennas mounted on a high building complex. The measurement sanity was verified for massive MIMO precoding, thus capturing the spatial component of the environment correctly. Data was collected using SIMO-OFDM with $W = 924$ subcarriers for about 8 hours, resulting in $N = 45,784$ CSI measurements. We calculated CSI features and averaged over 5 independent measurements.

It is harder to learn accurate embeddings on the real dataset, since it is larger and more sparsely sampled in space than the synthetic dataset, and the performance is correspondingly lower, as seen in Figure 2. We observe the same patterns of behavior as in the synthetic dataset. The benchmark algorithm with the triplet loss and no inertial regularization in Figure 2 is able to separate points roughly by location, but is poorly scaled and misshapen. When we add the inertia regularizer, Figure 2 shows slightly improved performance (it is able to separate the blue “elbow” of points at the bottom of the ground truth around (150, -600) in Figure 2 from the other points, for example) but still suffers from overlapping points and a bad scale. Finally, in Figure 2 we show the triplet loss combined with the inertial regularizer, which is able to outperform the other methods, once again marginally in terms of SR, TW, and CT and more so in Kruskal stress; see Table I for the details.

V. Conclusions

We have proposed the split triplet loss for channel charting, which takes into account physical constraints from the CSI measurement process, as well as a suitable triplet selection procedure and a novel inertial regularizer that incorporates the fact that moving UEs must have finite acceleration/deceleration. We have demonstrated the efficacy of our methods on a real-world dataset, which reveals that our methods outperform the Siamese network of [8] and the state-of-the-art triplet loss of [9] in terms of Kruskal stress, optimal stretching/rotating, trustworthiness, and continuity. We leave several problems as future work: an obvious extension is to utilize multiple BSs/APs as well as semi-supervised techniques as in [8] to enable absolute positioning capabilities with channel charting.

Acknowledgments

The authors would like to thank Olav Tirkkonen and Pengzhi Huang for discussions on channel charting.

References

[1] A. Forster, “Machine Learning Techniques Applied to Wireless Ad-Hoc Networks: Guide and Survey,” in 2007 3rd International Conference on Advanced Sensors, Sensor Networks and Information, 2007, pp. 365–370.

[2] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine learning in wireless networks: Key techniques and open issues,” IEEE Commun. Surv. Tutor., vol. 21, no. 4, pp. 3072–3108, 2019.

[3] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, “Machine learning paradigms for next-generation wireless networks,” IEEE Wireless Communications, vol. 24, no. 2, pp. 98–105, 2016.

[4] Y. Zhang, D. Li, and Y. Wang, “An indoor passive positioning method using CSI fingerprint based on adaboost,” IEEE Sensors J., vol. 19, no. 14, pp. 5792–5800, Mar. 2019.

[5] V. Savic and E. G. Larsson, “Fingerprinting-based positioning in distributed massive MIMO systems,” in Proc. IEEE 82nd Vehic. Tech. Conf., Sep. 2015, pp. 1–5.

[6] C. Studer, S. Medjkouh, E. Gönlütka, T. Goldstein, and O. Tirkkonen, “Channel charting: Locating users within the radio environment using channel state information,” IEEE Access, vol. 6, pp. 47 682–47 698, Aug. 2018.

[7] P. Huang, O. Castañeda, E. Gönlütka, S. Medjkouh, O. Tirkkonen, T. Goldstein, and C. Studer, “Improving channel charting with representation-constrained autoencoders,” in Proc. IEEE Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC), Aug. 2019, pp. 1–5.

[8] E. Lei, O. Castañeda, O. Tirkkonen, T. Goldstein, and C. Studer, “Siamese neural networks for wireless positioning and channel charting,” in Proc. 57th Ann. Allerton Conf. Commun., Control, and Comput., Sep. 2019, pp. 200–207.

[9] P. Ferrand, A. Decurninge, L. G. Ordóñez, and M. Guillaud, “Triplet-based wireless channel charting,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1–6.

[10] P. Ferrand, A. Decurninge, and M. Guillaud, “DNN-based localization from channel estimates: Feature design and experimental results,” ArXiv preprint: 2004.00363, Apr. 2020.

[11] E. Gönlütka, E. Lei, J. Langerman, H. Huang, and C. Studer, “CSI-based multi-antenna and multi-point indoor positioning using probability fusion,” ArXiv preprint: 2009.02798, Sep. 2020.

[12] J. Brady, N. Behdad, and A. M. Sayeed, “Beam-space MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3814–3827, Mar. 2013.

[13] L. van der Maaten, E. Postma, and H. Herik, “Dimensionality reduction: A comparative review,” J. Mach. Learn. Res., vol. 10, Jan 2007.

[14] J. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Transactions on Computers, vol. C-18, no. 5, pp. 401–409, 1969.

[15] T. Ponnada, H. Altou, O. Tirkkonen, and C. Studer, An Out-of-Sample Extension for Wireless Multipoint Channel Charting, Jul 2019, pp. 208–217.

[16] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a "siamese" time delay neural network,” Advances in neural information processing systems, vol. 6, pp. 737–744, 1993.

[17] F. Schroff, D. Kadenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition and clustering,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2015.

[18] J. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27, 1964.

[19] P. Schönemann, “A generalized solution of the orthogonal procrustes problem,” Psychometrika, vol. 31, pp. 1–10, 1966.

[20] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “QuaDriga: A 3-D multi-cell channel model with time evolution for enabling virtual field trials,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256, Mar. 2014.

[21] I. Arnold, I. Hoidas, and S. ten Brink, “Novel massive MIMO channel sounding data applied to deep learning-based indoor positioning,” in Int. ITG Conf. Systems, Commun., Coding, Feb. 2019, pp. 1–6.