Perturbation Theory for Core and Core-EP Inverses of Tensor via Einstein Product

Hong-mei Du*, Bing-xue Wang†, Hai-feng Ma‡

*School of Mathematical Science, Harbin Normal University, Harbin 150025, P. R. China.
†School of Mathematical Science, Harbin Normal University, Harbin 150025, P. R. China.
‡School of Mathematical Science, Harbin Normal University, Harbin 150025, P. R. China.

Abstract. In this paper, for given tensors A, E and $B = A + E$, we investigate the perturbation bounds for the core inverse A^\ast and core-EP inverse A° under some conditions via Einstein product.

1. Introduction

There are several papers on the core inverse and core-EP inverse [1–5, 7–9]. Recently, there are recent monographs [10–12] on the generalized inverse.

For convenience, we first adopt some of the terminologies which will be used in this paper. For a positive integer N, let $[N] = \{1, \ldots, N\}$. An order N tensor $A = (A_{i_1,j_1,\ldots,j_N})_{1\leq i_1\leq I_1, \ldots, 1\leq i_N\leq I_N}$ is a multidimensional array with $I_1 I_2 \cdots I_N$ entries. Let $\mathbb{C}^{I_1 \times \cdots \times I_N}$ and $\mathbb{R}^{I_1 \times \cdots \times I_N}$ be the sets of the order N dimension $I_1 \times \cdots \times I_N$ tensors over the complex field \mathbb{C} and the real field \mathbb{R}, respectively. Each entry of A is denoted by a_{i_1,i_2,\ldots,i_N}.

For a tensor $A = (a_{i_1,i_2,\ldots,i_N}) \in \mathbb{C}^{I_1 \times \cdots \times I_N}$, let $B = (b_{i_1,i_2,\ldots,i_N}) \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ be the conjugate transpose of A, where $b_{i_1,i_2,\ldots,i_N} = \overline{a_{i_1,i_2,\ldots,i_N}}$. The tensor B is denoted by A^\ast. When $b_{i_1,i_2,\ldots,i_N} = \overline{a_{i_1,i_2,\ldots,i_N}}$, B is the transpose of A, and is denoted by A^\trans. A tensor $D = (d_{i_1,i_2,\ldots,i_N}) \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ is called a diagonal tensor if all its entries are zero except for d_{i_1,i_2,\ldots,i_N}. In case of all the diagonal entries $d_{i_1,i_2,\ldots,i_N} = 1$, we call D as a unit tensor and is denoted by I. Similarly, 0 denotes the zero tensor in case of all the entries are zero.

The Einstein product of tensors is defined in [13] by the operation $*$ via

$$ (A * B)_{i_1,i_2,\ldots,i_N} = \sum_{k_1,k_2,\ldots,k_N} A_{i_1,k_1,\ldots,k_N} B_{k_1,i_2,\ldots,i_N} \quad (1) $$

where $\mathcal{A} \in \mathbb{C}^{I_1 \times \cdots \times I_K \times K_{1} \times \cdots \times K_{N}}$, $B \in \mathbb{C}^{I_1 \times \cdots \times I_K}$, and $\mathcal{A} * B \in \mathbb{C}^{I_1 \times \cdots \times I_K \times I_{1} \times \cdots \times I_{N}}$. The associative law of this tensor product holds. In the above formula, when $B \in \mathbb{C}^{K_{1} \times \cdots \times K_{N}}$, then

$$ (A * B)_{i_2,\ldots,i_N} = \sum_{k_1,k_2,\ldots,k_N} A_{i_1,k_1,\ldots,k_N} B_{k_1,i_2,\ldots,i_N} $$

where $\mathcal{A} * B \in \mathbb{C}^{I_1 \times \cdots \times I_K \times K_{1} \times \cdots \times K_{N}}$. For convenience, we denote $\mathbb{C}^{I_1 \times \cdots \times I_K} \times I_{1} \times \cdots \times I_{N}$ simply by $\mathbb{C}^{(I_{1} \times \cdots \times I_{N})}$.

2010 Mathematics Subject Classification. Primary 15A09; Secondary 65F20.

Keywords. core inverse; core-EP inverse; perturbation; tensor; Einstein product

Received: dd Month yyyy; Accepted: dd Month yyyy

Communicated by Yimin Wei

Research supported by the National Natural Science Foundation of China under grant 11971136 and the bilateral project between China and Poland (no.37-18).

emails:
	Hai-feng Ma
					1348159157@qq.com (Hong-mei Du), 555291837@qq.com (Bing-xue Wang), hai.fengma@aliyun.com (Hai-feng Ma)
Definition 1.1. [16] For $\mathcal{A} \in \mathbb{C}^{(N)\times K(N)}$, the range $\mathcal{R}(\mathcal{A})$ and the null space $\mathcal{N}(\mathcal{A})$ of \mathcal{A} are defined by

\[
\mathcal{R}(\mathcal{A}) = \{ y \in \mathbb{C}^{I \times I} : y = \mathcal{A} \ast_N X, X \in \mathbb{C}^{K \times \cdot} \}
\]

\[
\mathcal{N}(\mathcal{A}) = \{ X \in \mathbb{C}^{K \times \cdot} : \mathcal{A} \ast_N X = O \},
\]

where O is an appropriate order zero tensor.

Definition 1.2. [16] The inner product on $\mathbb{C}^{N \times \cdot \times N_c}$ is defined by

\[
\langle X, Y \rangle = \sum_{n \in [N], r \in [K]} \bar{x}_{n_1 n_2 \cdots n_r} y_{n_1 n_2 \cdots n_r}, \quad \forall X, Y \in \mathbb{C}^{N \times \cdot \times N_c},
\]

and the spectral norm $\| \cdot \|_2$ is defined as [17, Lemma 2.1]

\[
\| X \|_2 = \sqrt{\lambda_{\text{max}}(X^* \ast_N X)},
\]

where $\lambda_{\text{max}}(X^* \ast_N X)$ denotes the largest eigenvalue of $X^* \ast_N X$.

Definition 1.3. [14] Let $\mathcal{A} \in \mathbb{C}^{(N)\times K(N)}$. The tensor $X \in \mathbb{C}^{K(N)\times I(N)}$ which satisfies

1. $\mathcal{A} \ast_N X \ast_N \mathcal{A} = \mathcal{A}$;
2. $X \ast_N \mathcal{A} \ast_N X = X$;
3. $(\mathcal{A} \ast_N X)^* = \mathcal{A} \ast_N X$;
4. $(X \ast_N \mathcal{A})^* = X \ast_N \mathcal{A}$

is called the Moore-Penrose inverse of \mathcal{A}, abbreviated by M-P inverse, denoted by \mathcal{A}^+. If the equation (i) of the above equations (1) – (4) holds, then X is called an (i)-inverse of \mathcal{A}, denoted by $\mathcal{A}^{(i)}$.

Definition 1.4. [17] Assume that $\mathcal{A} \in \mathbb{C}^{(N)\times I(N)}$. Define

\[
\mathcal{A}^0 = I \quad \text{and} \quad \mathcal{A}^p = \mathcal{A}^{p-1} \ast_N \mathcal{A}, \quad \text{for } p \geq 2.
\]

It is easily seen that

\[
[0] \subseteq \cdots \subseteq \mathcal{R}(\mathcal{A}^{p+1}) \subseteq \mathcal{R}(\mathcal{A}^p) \subseteq \cdots \subseteq \mathcal{R}(\mathcal{A}) \subseteq \mathcal{R}(I) = \mathbb{C}^{I \times \cdot \times I_0}
\]

and

\[
[0] = \mathcal{N}(I) \subseteq \mathcal{N}(\mathcal{A}) \subseteq \mathcal{N}(\mathcal{A}^2) \subseteq \cdots \subseteq \mathcal{N}(\mathcal{A}^p) \subseteq \mathcal{N}(\mathcal{A}^{p+1}) \subseteq \cdots \subseteq \mathbb{C}^{I \times \cdot \times I_0}.
\]

The smallest non-negative integer p such that $\mathcal{R}(\mathcal{A}^{p+1}) = \mathcal{R}(\mathcal{A}^p)$ (or $\mathcal{N}(\mathcal{A}^{p+1}) = \mathcal{N}(\mathcal{A}^p)$), denoted by $\text{Ind}(\mathcal{A})$, is called the index of \mathcal{A}.

Definition 1.5. [17] Let $\mathcal{A} \in \mathbb{C}^{(N)\times I(N)}$. The tensor $X \in \mathbb{C}^{(N)\times I(N)}$ which satisfies

1. $X \ast_N \mathcal{A} \ast_N X = X$;
2. $\mathcal{A} \ast_N X \ast_N \mathcal{A} = \mathcal{A}$;
3. $(\mathcal{A} \ast_N X)^* = \mathcal{A} \ast_N X$;
4. $(X \ast_N \mathcal{A})^* = X \ast_N \mathcal{A}$

is called the Drazin inverse of \mathcal{A}, denoted by \mathcal{A}^d. Especially, if $\text{Ind}(\mathcal{A}) = 1$, X is called the group inverse of \mathcal{A}, denoted by \mathcal{A}^g.

According to Hartwig and Spindelböck decomposition [18] of tensors, every tensor $\mathcal{A} \in \mathbb{C}^{(N)\times I(N)}$ of rank r can be represented by

\[
\mathcal{A} = U \ast_N \left(\Sigma \ast_N \mathcal{K} \begin{bmatrix} 0 & \Sigma \ast_N \mathcal{L} \end{bmatrix} \right) \ast_N U^*,
\]
where \(\Sigma \in \mathbb{C}^{R(N) \times R(N)} \) is a diagonal tensor of singular values of \(\mathcal{A} \), and the tensors \(\mathcal{K} \in \mathbb{C}^{R(N) \times R(N)}, \mathcal{L} \in \mathbb{C}^{R(N) \times (G_2 \times R_3)} \) satisfy

\[
\mathcal{K} *_N \mathcal{K}' + \mathcal{L} *_N \mathcal{L}' = \mathcal{I}
\]

(3)

It follows from (2) that the Moore-Penrose inverse of \(\mathcal{A} \) is given as follows:

\[
\mathcal{A}^+ = \mathcal{U} *_N \left(\begin{array}{cc}
\mathcal{K}' *_N \Sigma^{-1} & O \\
\mathcal{L}' *_N \Sigma^{-1} & O
\end{array} \right) *_N \mathcal{U}'.
\]

If \(\text{Ind}(\mathcal{A}) \leq 1 \), then the group inverse of \(\mathcal{A} \) is

\[
\mathcal{A}^g = \mathcal{U} *_N \left(\begin{array}{cc}
\mathcal{K}^{-1} *_N \Sigma^{-1} & \mathcal{K}^{-1} *_N \Sigma^{-1} *_N \mathcal{K}^{-1} *_N \mathcal{L}
\end{array} \right) *_N \mathcal{U}'.
\]

Lemma 1.6. [15] Let \(\mathcal{E} \in \mathbb{C}^{(R) \times (R)} \) be a tensor of index \(k \). If \(\| \mathcal{E} \|_2 < 1 \), then \(\mathcal{I} + \mathcal{E} \) is nonsingular and

\[
\|(\mathcal{I} + \mathcal{E})^{-1}\|_2 \leq \frac{1}{1 - \| \mathcal{E} \|_2}.
\]

Lemma 1.7. [15] Let \(\mathcal{E} \in \mathbb{C}^{(R) \times (R)} \). If \(\| \mathcal{E} \|_2 < 1 \), then

\[
(\mathcal{I} - \mathcal{E})^{-1} = \sum_{n=0}^{\infty} \mathcal{E}^n,
\]

(4)

\[
\|(\mathcal{I} - \mathcal{E})^{-1} - \mathcal{I}\|_2 \leq \frac{\| \mathcal{E} \|_2}{1 - \| \mathcal{E} \|_2}.
\]

(5)

The recent results on the core inverse of tensor can be found in [19, 20].

Definition 1.8. [19, 20] Let \(\mathcal{A} \in \mathbb{C}^{(R) \times (R)} \) be a given core tensor. A tensor \(\mathcal{X} \in \mathbb{C}^{(R) \times (R)} \) satisfying

\[
*_{\mathcal{A}} \mathcal{X}^2 = \mathcal{X}; \quad \mathcal{A} *_{\mathcal{A}} \mathcal{X}^2 = \mathcal{X}; \quad (\mathcal{A} *_{\mathcal{A}} \mathcal{X})' = \mathcal{A} *_{\mathcal{A}} \mathcal{X}
\]

is called the core inverse of \(\mathcal{A} \) and denoted by \(\mathcal{A}^\circ \).

Lemma 1.9. [19, 20] Let \(\mathcal{A} \in \mathbb{C}^{(R) \times (R)} \) be given. Then \(\mathcal{A}^\circ \) satisfies equations (1) and (2) in Definition 1.3.

By the definition of core inverse, we have the following lemma.

Lemma 1.10. [19, 20] Let \(\mathcal{A} \in \mathbb{C}^{(R) \times (R)} \) be of the form (2) and \(\text{Ind}(\mathcal{A}) \leq 1 \). Then

\[
\mathcal{A}^\circ = \mathcal{U} *_N \left(\begin{array}{cc}
*_{\mathcal{A}} \mathcal{K}^{-1} & O \\
O & O
\end{array} \right) *_N \mathcal{U}'.
\]

Another important generalized inverse is the core-EP inverse.

Definition 1.11. [8, 19] Let \(\mathcal{A} \in \mathbb{C}^{(R) \times (R)} \) and \(\text{Ind}(\mathcal{A}) = k \). A tensor \(\mathcal{X} \in \mathbb{C}^{(R) \times (R)} \) satisfying

\[
*_{\mathcal{A}} \mathcal{X}^k = \mathcal{X}; \quad \mathcal{A} *_{\mathcal{A}} \mathcal{X}^k = \mathcal{X}; \quad (\mathcal{A} *_{\mathcal{A}} \mathcal{X})' = \mathcal{A} *_{\mathcal{A}} \mathcal{X}
\]

is called core-EP inverse of \(\mathcal{A} \) and it is denoted as \(\mathcal{A}^\bar{\circ} \).

Lemma 1.12. [8, 19] Let \(\mathcal{A} \in \mathbb{C}^{(R) \times (R)} \) and \(\text{Ind}(\mathcal{A}) = k \). There is a Schur form of \(\mathcal{A} \),

\[
\mathcal{A} = \mathcal{U} *_N \left(\begin{array}{cc}
T_1 & T_2 \\
O & T_3
\end{array} \right) *_N \mathcal{U}',
\]

(6)

where \(\mathcal{U} \in \mathbb{C}^{(R) \times (R)} \) is a unitary tensor, \(T_1 \) is a upper triangular tensor and \(T_3 \) is a nilpotent tensor with \(\text{Ind}(T_3) = k \).
Theorem 2.1. Let \(\mathcal{A} \) be of the form (2) and \(\text{Ind}(\mathcal{A}) \leq 1 \), \(\mathcal{B} = \mathcal{A} + \mathcal{E} \). If the perturbation \(\mathcal{E} \) satisfies \(\mathcal{A} * \mathcal{A} = \mathcal{B} * \mathcal{B} \), then
\[
(\mathcal{A} * \mathcal{A})^{-1} = \mathcal{B}^{-1}.
\]

Definition 1.13. [15, 22] Let \(I_1, \ldots, I_M, K_1, \ldots, K_N \) be given integers and \(\mathcal{A}, \mathcal{B} \) are the integers defined as
\[
\mathcal{A} = I_1 I_2 \cdots I_M, \quad \mathcal{B} = K_1 K_2 \cdots K_N.
\]

The reshaping operation
\[
\text{rsh} : \mathbb{C}^{(M)\times(K)} \rightarrow \mathbb{C}^{(M)\times(K)}
\]
transforms a tensor \(\mathcal{A} \in \mathbb{C}^{(M)\times(K)} \) into the matrix \(A \in \mathbb{C}^{(M)\times(K)} \) using the Matlab function \texttt{reshape} as follows:
\[
\text{rsh}(\mathcal{A}) = A = \text{reshape}(\mathcal{A}, \mathcal{I}, \mathcal{R}), \quad \mathcal{A} \in \mathbb{C}^{(M)\times(K)}, \quad A \in \mathbb{C}^{(M)\times(K)}.
\]

The inverse reshaping \(A \in \mathbb{C}^{(M)\times(K)} \) is the tensor \(\mathcal{A} \in \mathbb{C}^{(M)\times(K)} \) defined by
\[
\text{rsh}^{-1}(A) = \mathcal{A} = \text{reshape}(A, I_1, \ldots, I_M, K_1, \ldots, K_N).
\]

Also, an appropriate definition of the tensor rank, arising from the reshaping operation, was proposed in [22].

Definition 1.14. [15, 22] Let \(\mathcal{A} \in \mathbb{C}^{(M)\times(K)} \) and \(A = \text{reshape}(\mathcal{A}, \mathcal{I}, \mathcal{R}) = \text{rsh}(\mathcal{A}) \in \mathbb{C}^{(M)\times(K)} \). Then the tensor rank of \(\mathcal{A} \), denoted by \(\text{rshrank}(\mathcal{A}) \), is defined by \(\text{rshrank}(\mathcal{A}) = \text{rank}(A) \).

2. Perturbation for core inverse

In this section, we present the optimal perturbations for the core inverse of tensors via Einstein product under two-sided and one-sided conditions.

Theorem 2.1. Let \(\mathcal{A}, \mathcal{E} \in \mathbb{C}^{(M)\times(K)} \) be of the form (2) and \(\text{Ind}(\mathcal{A}) \leq 1 \), \(\mathcal{B} = \mathcal{A} + \mathcal{E} \). If the perturbation \(\mathcal{E} \) satisfies \(\mathcal{A} * \mathcal{A} = \mathcal{B} * \mathcal{B} \), then
\[
\mathcal{B} = (I + \mathcal{A} * \mathcal{E})^{-1} * \mathcal{A} * \mathcal{E} = \mathcal{A} * (I + \mathcal{E} * \mathcal{A})^{-1},
\]
and
\[
\mathcal{B} * \mathcal{B} = (I + \mathcal{A} * \mathcal{E})^{-1} * \mathcal{A} * \mathcal{A} + (I + \mathcal{E} * \mathcal{A})^{-1} * \mathcal{A} * \mathcal{E} * (I - \mathcal{E} * \mathcal{A}).
\]

Furthermore,
\[
\frac{\|\mathcal{A}\|_2}{1 + \|\mathcal{A} * \mathcal{E}\|_2} \leq \|\mathcal{B}\|_2 \leq \frac{\|\mathcal{A}\|_2}{1 - \|\mathcal{A} * \mathcal{E}\|_2}
\]
and
\[
\frac{\|\mathcal{B} * \mathcal{B} - \mathcal{A} * \mathcal{A}\|_2}{\|\mathcal{A} * \mathcal{A}\|_2} \leq \frac{\|\mathcal{A} * \mathcal{E}\|_2}{1 - \|\mathcal{A} * \mathcal{E}\|_2}.
\]

Proof. We assume that the perturbation \(\mathcal{E} \) is partitioned by
\[
\mathcal{E} = U * \begin{pmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix} * V^T.
\]

Using the fact that \(\mathcal{A} * \mathcal{A} * \mathcal{E} = \mathcal{E} * \mathcal{A} * \mathcal{A} = \mathcal{E} \), together with
\[
\mathcal{A} * \mathcal{A} = U * \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} * V^T,
\]
From Definition 1.11 and (6), we can obtain that
\[
\mathcal{A}^\# = U * \begin{pmatrix} T^{-1} & 0 \\ 0 & 0 \end{pmatrix} * V^T.
\]
implies $E_{12} = O$, $E_{21} = O$, $E_{22} = O$. It is easy to see that the perturbation E has the form

$$E = U^* N \begin{pmatrix} E_{11} & 0 \\ O & O \end{pmatrix} U^*. $$

Furthermore, we obtain

$$B = A + E = U^* N \begin{pmatrix} \Sigma_n K + E_{11} & \Sigma_n L \\ O & O \end{pmatrix} U^*. $$

In view of Lemma 1.6, since $\|A^* N E\|_2 < 1$, then $I + A^* N E$ is invertible and

$$\|(I + A^* N E)^{-1}\|_2 \leq \frac{1}{1 - \|A^* N E\|_2}. $$

Moreover,

$$I + A^* N E = U^* N \begin{pmatrix} I + (\Sigma_n K)^{-1} E_{11} & 0 \\ O & I \end{pmatrix} U^*, $$

and

$$(I + (\Sigma_n K)^{-1} E_{11})^{-1} = (\Sigma_n K)^{-1} (\Sigma_n K + E_{11})^{-1} = (\Sigma_n K + E_{11})^{-1} (\Sigma_n K)^{-1}.$$ This implies that $(\Sigma_n K + E_{11})^{-1}$ exists.

Then the core inverse of B exists and has the following expression,

$$B^* = U^* N \begin{pmatrix} (\Sigma_n K + E_{11})^{-1} & 0 \\ O & O \end{pmatrix} U^*
\begin{pmatrix} (I + (\Sigma_n K)^{-1} E_{11})^{-1} & 0 \\ O & O \end{pmatrix} U^*$$

By using (4) of Lemma 1.7, direct computation shows that

$$(I + A^* N E)^{-1} A^* N (I + E N A^*)^{-1}.$$ Next, the perturbation bounds of core inverse are estimated. It is easy to verify that

$$B^* N B - A^* N A
= U^* N \begin{pmatrix} I + (\Sigma_n K)^{-1} E_{11} & 0 \\ O & O \end{pmatrix} U^* [I + (\Sigma_n K)^{-1} E_{11} - I] \begin{pmatrix} K^{-1} & 0 \\ 0 & K^{-1} \end{pmatrix} U^*$$

Taking forms of both sides, we obtain

$$\|B^* N B - A^* N A\|_2 \leq \|(I + A^* N E)^{-1}\|_2 \|A^* N E\|_2 \|I - A^* N A\|_2 = \|(I + A^* N E)^{-1}\|_2 \|A^* N E\|_2 \|A^* N A\|_2.$$
That is
\[
\frac{\|\mathcal{B}^* \mathcal{E} - \mathcal{A}^* \mathcal{E}\|_2}{\|\mathcal{A}^* \mathcal{E}\|_2} \leq \frac{\|\mathcal{A}^* \mathcal{E}\|_2}{1 - \|\mathcal{A}^* \mathcal{E}\|_2}
\]
The proof is complete. \(\square\)

Next, we provide a perturbation bound for the core inverse under one-sided condition.

Theorem 2.2. Let \(\mathcal{A}, \mathcal{E} \in \mathbb{C}^{(N) \times (N)}\) be of the form (2) and \(\text{Ind}(\mathcal{A}) \leq 1, \mathcal{B} = \mathcal{A} + \mathcal{E}\). If the perturbation \(\mathcal{E}\) satisfies
\[
\mathcal{A}^* \mathcal{E} = \mathcal{E}
\]
and \(\mathcal{A}^* \mathcal{E}\) is partitioned by \(\mathcal{A}^* \mathcal{E} = \mathcal{E} = \mathcal{E}\) and \(\mathcal{A}^* \mathcal{E}\) is of the form (2) and if the perturbation \(\mathcal{E}\) satisfies
\[
\mathcal{A}^* \mathcal{E} = \mathcal{E} = \mathcal{E}
\]
then
\[
\mathcal{B}^* = (\mathcal{I} + \mathcal{A}^* \mathcal{E})^{-1} \mathcal{A}^* \mathcal{E} = \mathcal{A}^* \mathcal{E} = \mathcal{A}^* \mathcal{E} \]
and
\[
\mathcal{B} \mathcal{E} = \mathcal{A}^* \mathcal{E}, \quad \mathcal{B}^* \mathcal{B} = \mathcal{A}^* \mathcal{E} + (\mathcal{I} + \mathcal{A}^* \mathcal{E})^{-1} \mathcal{A}^* \mathcal{E} = \mathcal{A}^* \mathcal{E} \mathcal{A}^* \mathcal{E} \mathcal{A}^* \mathcal{E} \mathcal{A}^* \mathcal{E} \mathcal{A}^* \mathcal{E} \mathcal{A}^* \mathcal{E}
\]
Furthermore,
\[
\frac{\|\mathcal{A}\|_2}{1 + \|\mathcal{A}^* \mathcal{E}\|_2} \leq \|\mathcal{B}\|_2 \leq \frac{\|\mathcal{A}\|_2}{1 - \|\mathcal{A}^* \mathcal{E}\|_2}
\]
and
\[
\frac{\|\mathcal{B}^* \mathcal{B} - \mathcal{A}^* \mathcal{E}\|_2}{\|\mathcal{A}^* \mathcal{E}\|_2} \leq \frac{\|\mathcal{A}^* \mathcal{E}\|_2}{1 - \|\mathcal{A}^* \mathcal{E}\|_2}
\]

Proof. We assume that the perturbation \(\mathcal{E}\) is partitioned by
\[
\mathcal{E} = \mathcal{U}^* \begin{pmatrix} \mathcal{E}_{11} & \mathcal{E}_{12} \\ \mathcal{E}_{21} & \mathcal{E}_{22} \end{pmatrix} \mathcal{U}^*
\]
Using the fact that \(\mathcal{A}^* \mathcal{E} = \mathcal{E}\), it together with
\[
\mathcal{A}^* \mathcal{E} = \mathcal{U}^* \begin{pmatrix} \mathcal{I} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} \end{pmatrix} \mathcal{U}^*
\]
implies \(\mathcal{E}_{21} = \mathcal{O}, \mathcal{E}_{22} = \mathcal{O}\). It is easy to see that the perturbation \(\mathcal{E}\) has the form
\[
\mathcal{E} = \mathcal{U}^* \begin{pmatrix} \mathcal{E}_{11} & \mathcal{E}_{12} \\ \mathcal{O} & \mathcal{O} \end{pmatrix} \mathcal{U}^*
\]
Furthermore, we obtain
\[
\mathcal{B} = \mathcal{A} + \mathcal{E} = \mathcal{U}^* \begin{pmatrix} \mathcal{A}^* + \mathcal{E}_{11} & \mathcal{A}^* + \mathcal{E}_{12} \\ \mathcal{O} & \mathcal{O} \end{pmatrix} \mathcal{U}^*
\]
Since \(\|\mathcal{A}^* \mathcal{E}\|_2 < 1\) and \(\mathcal{A}^* \mathcal{E}\) is an orthogonal projection, we obtain
\[
\|\mathcal{A}^* \mathcal{E} \mathcal{A}^* \mathcal{E}\|_2 \leq \|\mathcal{A}^* \mathcal{E}\|_2 \|\mathcal{A}^* \mathcal{E}\|_2 = \|\mathcal{A}^* \mathcal{E}\|_2 < 1
\]
Then \(\mathcal{I} + \mathcal{A}^* \mathcal{E} \mathcal{A}^* \mathcal{E}\) is invertible, so \(\mathcal{I} + (\Sigma + \mathcal{K})^{-1} \mathcal{E}_{11}^{-1}\) exists. Then the core inverse of \(\mathcal{B}\) exists and has the following expression.
\[
\mathcal{B}^* = \mathcal{U}^* \begin{pmatrix} \mathcal{I} + (\Sigma + \mathcal{K})^{-1} \mathcal{E}_{11}^{-1} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} \end{pmatrix} \mathcal{U}^*
\]
and

\[B^r \ast N B = U^N \left(I + (\Sigma \ast N K)^{-1} \ast N E_{12} \right) \ast N U^r. \]

Now we can estimate

\[B^r \ast N B - A^r \ast N A = U^N \left(I + (\Sigma \ast N K)^{-1} \ast N E_{12} \right) \ast N U^r. \]

Taking norms of both sides, we obtain

\[\|B^r \ast N B - A^r \ast N A\| \leq \|(I + A^r \ast N E) - I\|\|A^r \ast N E\| \leq (1 - \|A^r \ast N E\|)\|I - A^r \ast N A\|. \]

This completes the proof of the theorem. \(\square \)

In a similar way, we obtain another one-sided perturbation formula.

Theorem 2.3. Let \(A, E \in \mathbb{C}^{N \times N} \) be of the form (2) and \(\text{Ind}(A) \leq 1, B = A + E. \) If the perturbation \(E \) satisfies \(A^r \ast N A \ast N E = E \) and \(\|A^r \ast N E\| < 1, \) then

\[B^r = (I + A^r \ast N E)^{-1} \ast N A^r = A^r \ast N (I + E \ast N A^r)^{-1}. \]
3. Perturbation for core-EP inverse

In this section, we investigate the optimal perturbations for the core-EP inverse of tensors via Einstein product under one-sided conditions which extends the matrix case [9].

Theorem 3.1. Let \(A, E \in \mathbb{C}^{I(N) \times I(N)} \) be of the form (6) and \(\text{Ind}(A) = k \), \(B = A + E \in \mathbb{C}^{I(N) \times I(N)} \). If the perturbation \(E \) satisfies \(A^{*}N A^{*}N E = E \) and \(\|A^{*}N E\|_2 < 1 \), then

\[
B^{\#} = (I + A^{*}N E)^{-1} * N A^{*}N (I - A^{*}N A),
\]

and

\[
B^{\#} N B^{\#} = A^{*}N A^{*}N, \quad B^{\#} N B = A^{*}N A + (I + A^{*}N E)^{-1} * N A^{*}N E * N (I - A^{*}N A).
\]

Furthermore,

\[
\frac{\|A^{\#}\|_2}{1 + \|A^{*}N E\|_2} \leq \frac{\|B^{\#}\|_2}{1 - \|A^{*}N E\|_2} \leq \frac{\|A^{\#}\|_2}{1 - \|A^{*}N E\|_2},
\]

and

\[
\frac{\|B^{\#} N B - A^{*}N E \|_2}{\|A^{*}N E\|_2} \leq \frac{\|A^{*}N E\|_2}{1 - \|A^{*}N E\|_2}.
\]

Proof. We assume that the perturbation \(E \) is partitioned by

\[
E = U * N \begin{pmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix} * N U^{*}.
\]

Since \(E \) satisfies \(A * N A * N E = E \), together with

\[
A * N A^{\#} = U * N \begin{pmatrix} I & O \\ O & O \end{pmatrix} * N U^{*},
\]

leads to \(E_{21} = 0, E_{22} = 0 \). It is straightforward to see that the perturbation \(E \) has the form

\[
E = U * N \begin{pmatrix} E_{11} & E_{12} \\ O & O \end{pmatrix} * N U^{*},
\]

and the tensor \(B \) keeps the Schur form

\[
B = A + E = U * N \begin{pmatrix} T_1 + E_{11} & T_2 + E_{12} \\ O & T_3 \end{pmatrix} * N U^{*}.
\]

Since \(\|A^{*}N E\|_2 < 1 \), and \(A * N A^{\#} \) is an orthogonal projection, we obtain

\[
\|A^{\#} N E * N A * N A^{\#}\|_2 \leq \|A^{*}N E\|_1 \|A * N A^{\#}\|_2 = \|A^{\#} N E\|_2 < 1.
\]

Then \(I + A^{\#} * N E * N A * N A^{\#} \) is invertible, so \((I + T_1^{-1} * N E_{11})^{-1} \) exists.
Then the core-EP inverse of B exists, and it has the form as follows

$$B^o = U_1 (T_1 + E_{11})^{-1} \begin{pmatrix} O & O \\ O & O \end{pmatrix} U_2^*,$$

$$= U_1 (I + T_1^{-1} E_{11})^{-1} \begin{pmatrix} E_{11} & T_1^{-1} \\ O & O \end{pmatrix} U_2^*,$$

$$= (I + A^o E_N A_N A^o)^{-1} E_N A^o,$$

$$= (I + A^o E_N A^o)^{-1} E_N A^o,$$

and $B^o * N B$ possesses the following representation

$$B^o * N B = U_1 \begin{pmatrix} I & (T_1 + E_{11})^{-1} E_{11} (T_2 + E_{12}) \end{pmatrix} U_2^*.$$

Further,

$$A^o * N A = U_1 \begin{pmatrix} I & T_1^{-1} E_{11} \\ O & O \end{pmatrix} U_2^*.$$

Now we can estimate

$$B^o * N A = U_1 \begin{pmatrix} O & (T_1 + E_{11})^{-1} \end{pmatrix} U_2^*,$$

$$= U_1 \begin{pmatrix} O & (I + T_1^{-1} E_{11})^{-1} \end{pmatrix} U_2^*,$$

$$= U_1 \begin{pmatrix} O & (I + T_1^{-1} E_{11})^{-1} \end{pmatrix} U_2^*,$$

$$= (I + A^o E_N A_N A^o)^{-1} E_N A^o.$$

The proof is complete. \Box

In the same way, we obtain the similar perturbation formula.

Theorem 3.2. Let $A, E \in C^{(N)\times(N)}$ be of the form (6) and Ind(A) = k, $B = A + E \in C^{(N)\times(N)}$. If the perturbation E satisfies $A^o * N A_N A^o \neq 0$ and $\|A^o * N E_N\| < 1$, then

$$B^o = (I + A^o E_N)^{-1} = A^o * N (I + E_N A^o)^{-1},$$

$$B_N B^o = A_N A^o.$$
Theorem 3.3. Let \(A, E \in \mathbb{C}^{(N)\times(I)} \) be of the form (6) and \(\text{Ind}(A) = k, \ B = A + E \in \mathbb{C}^{(N)\times(I)} \). If the perturbation \(E \) satisfies \((I - A^{\ast} N A^\oplus) *_N E *_N A *_N A^\oplus = O \) and \(\text{rank}(A) = \text{rank}(B) \) with \(||A^\oplus *_N E||_2 < 1 \), then

\[
B^\oplus = (I + A^\oplus *_N E)^{-1} *_N A^\oplus = A^\oplus *_N (I + E *_N A^\oplus)^{-1},
\]

\[
B *_N B^\oplus = A *_N A^\oplus.
\]

Proof. We assume that the perturbation \(E \) is partitioned by

\[
E = U *_N \begin{pmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix} *_N U^\ast.
\]

Since \(E \) satisfies \((I - A^{\ast} N A^\oplus) *_N E *_N A *_N A^\oplus = O \), together with

\[
A *_N A^\oplus = U *_N \begin{pmatrix} I & O \\ O & O \end{pmatrix} *_N U^\ast
\]

implies \(E_{21} = O \), and then \(B \) has the following expression

\[
B = A + E = U *_N \begin{pmatrix} T_1 + E_{11} \\ O \\ O \\ T_2 + E_{12} \\ T_3 + E_{22} \end{pmatrix} *_N U^\ast.
\]

Now, from \(||A^\oplus *_N E||_2 < 1 \) and \(\text{rank}(A) = \text{rank}(B^\oplus) \), we can obtain that \(T_1 + E_{11} \) is invertible and \(\text{rank}[(T_3 + E_{22})^\ast] = O, ((T_2 + E_{22})^\ast)^\ast = O \). Moreover,

\[
B^\oplus = U *_N \begin{pmatrix} (T_1 + E_{11})^{-1} & O \\ O & O \end{pmatrix} *_N U^\ast.
\]

Similar to the proof of Theorem 3.1, we obtain

\[
B^\oplus = (I + A^\oplus *_N E)^{-1} *_N A^\oplus = A^\oplus *_N (I + E *_N A^\oplus)^{-1},
\]

and

\[
B *_N B^\oplus = A *_N A^\oplus.
\]

The proof is complete. \(\square \)

References

[1] O.M. Baksalary and G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58 (2010), 681–697.

[2] O.M. Baksalary and G. Trenkler, On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450–457.

[3] O.M. Baksalary, G.H. Styan, and G. Trenkler, On a matrix decomposition of Hartwig and Spindelböck, Linear Algebra Appl., 430 (2009), 2796–2812.

[4] H. Kurata, Some theorems on the core inverse of matrices and the core partial ordering, Appl. Math. Comput., 316 (2018), 43–51.

[5] H. Ma, Optimal perturbation bounds for the core inverse, Appl. Math. Comput., 336 (2018), 176–181.

[6] H. Ma and T. Li, Characterizations and representations of the core inverse and its applications, Linear Multilinear Algebra, 2019, DOI: 10.1080/03081087.2019.1588847.

[7] K. Manjunatha Prasad and K.S. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62 (2014), pp. 792–802.

[8] H. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289–300.

[9] H. Ma and P. Stanimirović, Characterizations, approximation and perturbations of the core-EP inverse, Appl. Math. Comput., 359 (2019), 404–417.

[10] D. S. Cvetković-Ilić and Y. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore, 2017.

[11] G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and Computations, Developments in Mathematics 53. Singapore: Springer; Beijing: Science Press, 2018.

[12] Y. Wei, P. Stanimirović and M. Petković, Numerical and Symbolic Computations of Generalized Inverses, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018.
[13] A. Einstein, The foundation of the general theory of relativity, In: A. Kox, M. Klein, and R. Schulmann, editors, The collected papers of Albert Einstein, Vol. 6. Princeton (NJ): Princeton University Press, 2007. p. 146-200
[14] L. Sun, B. Zheng, C. Bu and Y. Wei, Moore-Penrose inverse of tensors via Einstein product, Linear Multilinear Algebra, 64 (2016), 686–698
[15] H. Ma, N. Li, P. Stanimirović and V. N. Katsikis, Perturbation theory for Moore-Penrose inverse of tensor via Einstein product, Computational and Applied Mathematics, 38 (2019), no. 3, Art. 111, 24 pp. https://doi.org/10.1007/s40314-019-0893-6.
[16] J. Ji and Y. Wei, Weighted Moore-Penrose inverses and the fundamental theorem of even-order tensors with Einstein product, Front. Math. China, 12 (2017), 1317–1337.
[17] J. Ji and Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor equations, Comput. Math. Appl., 75 (2018), 3402–3413.
[18] R. E. Hartwig and K. Spindelböck, Matrices for which A^* and A^\dagger commute, Linear Multilinear Algebra, 14 (1983), 241–256.
[19] J. K. Sahoo, R. Behera, P. S. Stanimirović, V. N. Katsikis and H. Ma. Core and core-EP inverses of tensors, arXiv:1905.07874, 2019.
[20] J. K. Sahoo and R. Behera, Reverse-order law for core inverse of tensor, arXiv:1907.09291, 2019.
[21] M. Liang, B. Zheng and R. Zhao, Tensor inversion and its application to the tensor equations with Einstein product, Linear Multilinear Algebra, 67 (2019), 843-870.
[22] P. Stanimirović, M. Cirić, V. Katsikis, C. Li and H. Ma, Outer and (b, c) inverse of tensors, Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2018.1521783.