Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA

Andong Zhao1,2, Suzanne E. Howson3, Chuanqi Zhao1,*, Jinsong Ren1, Peter Scott3, Chunyu Wang4 and Xiaogang Qu1,*

1Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China, 2University of Chinese Academy of Science, Beijing 100039, China, 3Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK and 4State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, China

Received December 22, 2016; Revised March 28, 2017; Editorial Decision March 29, 2017; Accepted March 30, 2017

ABSTRACT

The design and synthesis of metal complexes that can specifically target DNA secondary structure has attracted considerable attention. Chiral metallo-supramolecular complexes (e.g. helicates) in particular display unique DNA-binding behavior, however until recently few examples which are both water-compatible and enantiomerically pure have been reported. Herein we report that one metallohelix enantiomer \(\Delta 1a \), available from a diastereoselective synthesis with no need for resolution, can enantioselectively stabilize human telomeric hybrid G-quadruplex and strongly inhibit telomerase activity with IC\(_{50}\) of 600 nM. In contrast, no such a preference is observed for the mirror image complex \(\Lambda 1a \). More intriguingly, neither of the two enantiomers binds specifically to human telomeric antiparallel G-quadruplex. To the best of our knowledge, this is the first example of one pair of enantiomers with contrasting selectivity for human telomeric hybrid G-quadruplex. Further studies show that \(\Delta 1a \) can discriminate human telomeric G-quadruplex from other telomeric G-quadruplexes.

INTRODUCTION

G-quadruplexes are highly dynamic four-stranded non-canonical DNA structures formed in guanine-rich sequences via stacking of G·G·G·G quartets (1). They are involved in a range of biological processes such as telomere maintenance (2–6), replication, transcription, epigenetic regulation and recombination (7–13). As a consequence, the study of specific and selective targeting of the G-quadruplex structure is an exciting avenue for exploration of the biological function of this motif, and of course the possibility of regulation of the corresponding processes. Human telomeric DNA sequences can form antiparallel G-quadruplexes in Na\(^+\) buffer and hybrid G-quadruplexes in K\(^+\) buffer (14–18). However, up to now only few ligands have been demonstrated to selectively target these highly challenging target structures: an acyclic oligoheteroarayle (TOxaPy) shows selectivity to antiparallel G-quadruplex, while \(N \)-methyl mesoporphyrin IX shows selectivity to hybrid G-quadruplex with a low binding constant (19–21).

Helical binmetallic complexes (helicates and related structures) resemble \(\alpha \)-helices in terms of their diameter and charge. Recently, great attention has been paid to their diagnostic and therapeutic applications (22–24). This has been accelerated by recent advances in their enantioselective self-assembly from simple components, thus avoiding chromatographic resolution or lengthy syntheses and the new ability to make low symmetry systems. They have been shown to interact with different DNA structures and showed admirable chiral selectivity (25–29). Our recent works showed that one pair of di-nickel helicates exhibited chiral selective binding with human telomeric G-quadruplex the right-handed helix selectively stabilized antiparallel G-quadruplex, whilst the left-handed compound did not, and both enantiomers stabilized hybrid G-quadruplex (27). Since high K\(^+\) concentration is existed in cells, hybrid G-quadruplex has been considered more predominant than antiparallel G-quadruplex under physiological conditions (30). Thus, the development of chiral compounds to enantioselectively target human telomeric hybrid G-quadruplex remains an important objective. To the best of our knowledge, this has not been achieved.

In this work, we investigated the interactions of human telomeric G-quadruplex with a pair of enantiomers of metallohelices (abbreviated to \(\Delta 1a \) and \(\Lambda 1a \)) (Figure 1A), which are water-compatible and enantiomerically pure (22,31). Our results showed that enantiomer \(\Delta 1a \)
could enantioselectively stabilize human telomeric hybrid G-quadruplex and strongly inhibit telomerase activity. In contrast, \(\Lambda1a \) showed no such a preference. More intriguingly, neither enantiomer displayed notable binding with human telomeric antiparallel G-quadruplex. This is the first example of one pair of enantiomers with contrasting selectivity for human telomeric hybrid G-quadruplex.

MATERIALS AND METHODS

DNA sequences

 Tel22: 5'-AGGGTTAGGGTTAGGGTTAGGG-3'
 HT: 5'-TTAGGGTTAGGGTTAGGGTTAGGG-3'
 Ap7: 5'-AGGGTTApGGGTTAGGGTTAGGG-3'
 Ap13: 5'-AGGGTTAGGGTTApGGGTTAGGG-3'
 Ap19: 5'-AGGGTTAGGGTTAGGGTTApGGG-3' (Ap was 2-aminopurine)
 Oxytricha: 5'-TTTTGGGGTTTTGGGGTTTTGGGG-3'
 Tetrahymena: 5'-GGGGTTGGGGTTGGGGTTGGGG-3'
 i-motif: 5'-CCCTAACCCCTAACCTAACCCCT-3'
 Tel22-TTT: 5'-AGGGTTTTGGGTGGTGGTGTTGG-3'

DNAs were synthesized by Shanghai Sangon Biotechnological Engineering Technology & Services (Shanghai, China).

Concentrations of the oligomers were determined by measuring the absorbance at 260 nm after melting. Extinction coefficients were estimated by the nearest-neighbor method by using mononucleotide and dinucleotide values. Chemicals were purchased from Sigma-Aldrich and used without further purification. All water used to prepare buffer solutions was obtained by using a Milli-Q water system.

Synthesis of metallo-supramolecular complexes

Complex 1 and complex 2 were synthesized according to previous report (22).

The stability of the metal complexes in cells

Hela cells were plated in Dulbecco’s modified Eagle’s medium, supplemented with 10% (v/v) heat inactivated fetal bovine serum in a 6-well plate grown for 24 h at 37°C and 5% CO₂. Then, different amounts of metal complexes were added for further incubation of 72 h. Then, the cell culture media was separated from the well for further analysis and cell lysis solution was added in the well. The lysates were incubated for 30 min on ice and centrifuged 20 min at 12 000 rpm (4°C) to obtain cleared lysate for further analysis.
Thermodynamic analysis
Absorbance measurements and melting experiments were performed on a Cary 300 UV/Vis spectrophotometer equipped with a Peltier temperature control accessory. All UV/Vis spectra were measured in 1.0-cm path-length cell. For metal complex-containing melting assays, the same concentration of corresponding metal complex aqueous solution was used as the reference solution. Absorbance changes at 295 nm versus temperature were collected at a heating rate of 0.5°C min⁻¹. Before measurement, the DNA samples were heated at 95°C for 5 min, and gently cooled from 95°C to room temperature, following by incubation at 4°C overnight. To prepare the final DNA-complex samples, the corresponding metal complexes were added to the annealed DNA samples and incubated at 4°C for 3 h.

CD spectroscopy
Circular dichroism (CD) spectra were recorded with a JASCO J-810 spectropolarimeter. CD spectra were recorded in 1 nm increments with an average time of 2 s and three scans were accumulated and automatically averaged. The various concentration of complexes was scanned as a control and subtracted from the spectra of complex/DNA mixture to eliminate its influence on CD signal of DNA.

Fluorescence spectroscopy
Fluorescence measurements were carried out on a JASCO FP-6500 spectrofluorometer at 25°C. For 2-Ap-labeled oligonucleotides, fluorescence spectra were measured by using an excitation wavelength of 305 nm. DNA concentration was fixed at 0.5 μM in strand.

Binding constants obtained by fluorescence titration
Binding constants were measured by fluorescence titration methods, in which fixed concentrations of 2-Ap-labeled DNA was titrated with increasing Δ1a or Δ1a concentrations. To obtain the proper fluorescence intensity values, fluorescence data has been corrected for the inner filter effect caused by attenuation of the excitation beam and emission signal because of the absorption by quencher and fluorophore which led to artificial decreases in the fluorescence intensities. This effect was corrected with knowledge of the absorbance values from the corresponding spectra (31–33). The fluorescence of the system can be corrected using the following equation:

\[
F_{	ext{corr}} = F_{\text{obs}} \log^{-1} \left(\frac{A_{\text{ex}} + A_{\text{em}}}{2} \right)
\]

where \(F_{\text{corr}} \) and \(F_{\text{obs}} \) were the corrected and observed fluorescence intensity. \(A_{\text{ex}} \) was the absorbance value at the excitation wavelength and \(A_{\text{em}} \) was the absorbance value at the emission wavelength.

Absorption spectra titrations
Absorption spectra titrations were carried out at 25°C to determine the binding affinity between DNA and enantiomers. Initially, 500 μl solutions of blank buffer and the enantiomers (5 μM) were placed in the reference and sample cuvettes (1 cm path length), respectively. The binding constant obtained from UV titration experiment was calculated from the following equation:

\[
\frac{(e_a - e_t)}{(e_b - e_t)} = \left(b - \frac{2K}{[\text{DNA}]K_t} \right)^{1/2}
\]

where \(e_a, e_t \) and \(e_b \) are the apparent extinction coefficient, the extinction coefficient for the free metal complex and the extinction coefficient in the fully bound form, respectively. \(K \) is the equilibrium binding constant in M⁻¹, \(C_t \) is the total metal complex concentration and \(s \) is the binding site size (34,35).

Isothermal titration calorimetry (ITC)
Isothermal titration calorimetry (ITC) assays were performed on a NANO ITC System (TA Instruments Inc., New Castle, DE, USA). Titrations were performed in buffer (10 mM Tris·HCl buffer, 10 mM KCl, pH = 7.2). Injections of 10 μl of 0.25 mM AΔ1a/AΔ1a was added from a microsyringe at an interval of 600 s into Tel22 DNA (20 μM) solution with stirring at 400 rpm at 25°C. The experimental data were analyzed with NanoAnalyze software (TA Instruments Inc.).

NMR spectroscopy
Samples for nuclear magnetic resonance (NMR) were incubated in 10mM Tris–KCl buffer (pH 7.2) at 25°C with 10% D₂O added. The final concentration of Tel22 was 140 μM. The enantiomer was incubated with Tel22 at 25°C before measurement. NMR experiments were carried out on a Bruker 600 MHz AVANCE NMR spectrometer equipped with a triple-channel cryoprobe at 5°C.

Assay of telomerase activity
Telomerase activity was assayed using a conventional telomere repeat amplification protocol (TRAP) assay. A total of 5 μl of telomerization products with corresponding complex were added into 45 μl of solution which contains 1 × PCR buffer, 200 μM dNTPs, 3U of Taq DNA polymerase, 0.1 μg of TS primer and 0.1 μg of ACX primer. PCR was carried out in an Eppendorf AG thermal cycler with the following program: 94°C for 4 min, 30 cycles at 94°C for 30 s, 58°C for 30 s, 72°C for 30 s, 72°C for 5 min, 4°C cold. PCR products were analyzed on a Bio-Rad (Bio-Rad Laboratories, USA) slab electrophoresis system. The 10 μl samples were loaded onto a 12% native
polyacrylamide gel (29:1 acryl/bisacryl) in 0.5 x Tris borate ethylenediaminetetraacetic acid. Gels were run at room temperature for 1 h at 120 V. The gel was confirmed by silver staining.

RESULTS AND DISCUSSION

Enantioselectivity to hybrid G-quadruplex of Tel22

The stability of the metallohelix enantiomers (Δ1α and Δ1α) was firstly studied. UV and CD spectra showed that cation concentration and type had negligible effects on their CD and UV spectra, implying that Δ1α and Δ1α were stable in Na+/-K+ containing buffer (Supplementary Figure S1A–D). In addition, for testing whether the complexes can be applied in vivo or in vitro studies, the stability of metal complexes in cells was also investigated. As shown in Supplementary Figure S1E and F, Δ1α and Δ1α were stable both in cell culture media and cell lysate. These results indicated the high stability of such complexes (22).

UV-melting experiments were employed to study the effects of the enantiomers on the melting temperature (Tm) of human telomeric DNA (Tel22). As shown in Figure 1B and C, the chiral selectivity of the enantiomers on stabilization of Tel22 was remarkable. Δ1α stabilized Tel22 in K+ containing buffer and Tm increased by ~10.8°C at 1:1 ratio of [Δ1α]/[Tel22] whilst there was no measurable stabilization in Na+ containing buffer (Figure 1B and Supplementary Figure S2). In contrast, Δ1α did not stabilize Tel22 either in K+ or Na+ buffer. According to previous studies, Tel22 adopted antiparallel G-quadruplex in Na+ buffer but hybrid G-quadruplex in K+ buffer (15,36). Thus, we concluded that Δ1α strongly stabilized the former structure but not the latter, while Δ1α stabilized neither. As far as we know, this is the first example of one pair of enantiomers with contrasting chiral selectivity for hybrid G-quadruplex.

Further studies were next carried out to confirm and extend these unusual observations. Melting studies showed that neither of the constituent ligands (LΔ1α and LΔ1α, used for synthesizing Δ1α and Δ1α) could stabilize Tel22 G-quadruplex (Table 1). These data confirmed that the selectivity of Δ1α for Tel22 G-quadruplex originated from the three-dimensional structure of ligand/metal assembly. Further, Tm of Tel22 in low Na+ concentration (10 mM) was shown to be unaffected in the presence or absence of Δ1α/Δ1α, thus excluding the possible effect of cation concentration (Supplementary Figure S3B). The selectivity of the enantiomers to i-motif and double-strand DNA (formed by Tel22 and i-motif) was also found to be negligible (Table 1 and Supplementary Figure S3), demonstrating that Δ1α not only recognizes G-quadruplex but also discriminates against other DNA motifs. Similarly, the stabilization effect of the enantiomers to calf thymus DNA (ct-DNA) and Tel22 was compared. After addition of Δ1α, Tm of Tel22 G-quadruplex increased by ~10.4°C, however just ~1.4°C increase for ct-DNA (Supplementary Figure S4). Therefore, from the aspect of stabilization effect, Δ1α had a 7.4-fold selectivity for Tel22 DNA against ct-DNA.

For further studying the structural effect of 1α on the chiral selectivity for hybrid G-quadruplex of Tel22, the interactions of other enantiomeric metallohelices (1b and 2a) with Tel22 were compared (Supplementary Figures S5 and 6). Although all enantiomers of 1b and 2a had a comparable size and identical charge with 1a, none of them exhibited obvious stabilization effect on either hybrid or antiparallel G-quadruplex of Tel22. It is particularly interesting when compared with the enantiomers of 1b because the difference between 1b and 1α is just additional hydroxyl groups at the termini. This suggests that the structure of end groups of 1α may play an important role in chiral recognition of human telomeric hybrid G-quadruplex. Considering the large size of 1α (length ~2.2 nm), we propose that the end of 1α could be the binding site for Tel22.

The conformation changes of Tel22 induced by 1α and 1α were determined by CD studies. In K+ buffer, Tel22 alone formed hybrid G-quadruplex characterized by two positive bands at 294 and 255 nm and a negative band around 235 nm. After addition of Δ1α, no obvious signal change was observed at band of 294 and 235 nm, while a notable shift was observed at trough of 255 nm (Figure 2A and Supplementary Figure S7). In contrast, 1α induced a hypochromism at band of 294 and 255 nm (Figure 2B). These results implied that, both 1α and 1α disturbed slightly the conformation of Tel22, but could not alter the hybrid conformation. Therefore, CD signal of Tel22 displayed different change after treated with different enantiomer. This implied that 1α and 1α might employ different binding mode when interacting with Tel22. In addition, the CD spectra of Tel22 in Na+ buffer were also determined in the absence and presence of the enantiomers (Supplementary Figure S8). No new bands or band shifts were observed, indicating that both enantiomers showed no impact on the antiparallel conformation of Tel22.

Inducing human telomeric G-quadruplex formation is important for telomeric DNA to exert the desired biological function. Thus, we next studied whether the enantiomer
could induce G-quadruplex formation under Na⁺ or K⁺-deficient conditions. As shown in Figure 2C, Tel22 was in an unfolded single strand DNA in the absence of Na⁺ or K⁺. After titration with Δ1a, the intensity of the CD band at 256 nm decreased gradually from positive to negative, and at the same time, a distinct increase at 288 nm and an emergence of a shoulder peak at 270 nm were observed. This induced CD spectrum was similar to that of the hybrid G-quadruplex in K⁺ buffer, indicating that Δ1a can induce the formation of hybrid G-quadruplex under Na⁺ or K⁺-deficient conditions (37). In contrast, no inducing process was observed after adding of Λ1a (Figure 2D). These results further supported the chiral selectivity of Δ1a for human telomeric hybrid G-quadruplex.

Binding constant and binding mode

Absorption changes of Δ1a/Λ1a upon addition of Tel22 DNA were investigated by titration experiments. The UV spectra of the enantiomers were monitored on addition of aliquots of preformed Tel22 hybrid G-quadruplex DNA (Figure 3A and B). When treated with DNA, both Δ1a and Λ1a showed notable hypochromism at band of 280 and 570 nm. However, obviously, a stronger hypochromism was observed for Δ1a rather than Λ1a in the presence of low concentration of DNA (Figure 3B, Inset). For example, when treated with 3 μM DNA, Δ1a yielded an absorbance hypochromism of 33.8%. However, just 19.5% was observed for Λ1a. This suggested that Δ1a could bind stronger to Tel22 than Λ1a. According to previous reported methods (34,35), the binding constant of Λ1a with Tel22 was estimated to be 2.8×10^7 M⁻¹, whereas 4.5×10^5 M⁻¹ for Λ1a (Table 2). This indicates that Δ1a can specifically bind to Tel22, however, the interaction of Λ1a with Tel22 may be just non-specific electrostatic interaction. It should be also noted that, upon addition of high enough concentration of Tel22, the two enantiomers displayed a comparable hypochromism. These results were understandable because both enantiomers were highly positive-charged and DNA was highly negative-charged. Thus, in the presence of high concentration of DNA, multiple non-specific electrostatic interactions and stacking between DNA and Δ1a and Λ1a were occurred, which could cause hypochromism.

Modifying 2-aminopurine (2-Ap) in different loops of quadruplex DNA is a widely used strategy to estimate the binding mode of DNA with ligand (38). Herein, for exploring how the two enantiomers binding to hybrid Tel22 G-quadruplex, fluorescence experiments were carried out using Tel22 with different 2-Ap substitutions at adenine residue position 7, 13 and 19 (Figure 3C). First, CD studies showed that 2-Ap modified Tel22 had almost an identical CD feature with the original unmodified Tel22, indicating that 2-Ap modified Tel22 had the same conformation as the wild-type Tel22 (Supplementary Figure S9). In addition, after interacting with Δ1a, the CD signal of Tel22 was slightly changed, indicating that Δ1a did not disrupt the structure of Tel22 and Tel22 maintained hybrid conformation (Figure 2A). These offered the prerequisite for investigating the binding mode by using 2-Ap fluorescence assay. As shown in Figure 3D, addition of Δ1a decreased the 2-Ap fluorescence significantly and the order was Ap19 > Ap7 > Ap13. These indicated that, after binding with Tel22, Δ1a had a close contact with Ap19 and Ap7, not with Ap13. As previously reported, in K⁺ solution, Tel22 adopts two distinct (3 + 1) topologies: hybrid-1 and hybrid-2 form (13). The two forms are coexisted in a certain state of equilibrium, as shown in Figure 3C. Based on the results of 2-Ap fluorescence studies, we proposed that Δ1a preferably bound to hybrid-1 form rather than hybrid-2 form and Δ1a could bind to the end.
Figure 3. Absorption spectra of Δ1a (A) and Δ1a (B) in the presence of Tel22 DNA. Enantiomers was 5 μM, and Tel22 was varied from 0.5 to 10 μM. Arrow showed the absorption change of the enantiomer along with the addition of Tel22. Inset: plot of (ε_a−ε_f)/(ε_b−ε_f) versus concentration of Tel22. The assays were measured in 10 mM Tris buffer containing 10 mM KCl, pH = 7.2. (C) Schematic illustration of the individual 2-Ap position in Tel22 and the two types of Tel22 G-quadruplex conformations. (D) Plot of normalized fluorescence intensity at 370 nm of 2-Ap individually labeled Tel22 versus molar ratio of [Δ1a]/[DNA] in 10 mM KCl, 10 mM Tris buffer, pH = 7.2. 2-Ap labeled Tel22 was 0.5 μM in strand. (E) Job plot for complexation of Δ1a and Ap19-Tel22 in 10 mM KCl, 10 mM Tris buffer, pH = 7.2. [Δ1a]+[Ap19-Tel22] = 0.3 μM.

Table 2. Binding constants of Tel22 DNA with Δ1a and Δ1a

Complex	¹K_a (M⁻¹)	²K_a (M⁻¹)	³K_a (M⁻¹)
Δ1a	2.8(±0.2) × 10⁷	3.5(±0.5) × 10⁷	0.92(±0.4) × 10⁷
Δ1a	4.5(±0.8) × 10⁵	6.9(±0.7) × 10⁵	1.81(±0.3) × 10⁵

*a*Binding constant ¹K_a was measured by UV titration method. Binding constant ²K_a was measured by fluorescence titration method. Binding constant ³K_a was measured by ITC method. The values were the average of three independent measurements.

G-quartet near 5' end of hybrid-1 form by external stacking mode. This binding mode can well response to the order of Ap19 > Ap7 > Ap13. The binding mode can be benefited from the compatible size between Δ1a (diameter ~1.2 nm) and G-quartet (length ~1.4 nm, width ~1.1 nm) (39).

According to Job plot, a 1:2 binding ratio was found between Δ1a and Tel22 G-quadruplex, indicating that two Tel22 bind with one Δ1a (Figure 3E). The binding stoichiometry was also confirmed by ITC studies (Supplementary Figure S11 and Table 3). In our previous work, we reported that a di-nickel helicate, [Ni₂L₃]⁴⁺, exhibited 1:1 binding with Tel22. We propose that two aspects may cause different binding ratio for Δ1a and [Ni₂L₃]⁴⁺. First, Δ1a (length ~2.2 nm, diameter ~1.2 nm) has a larger size than
Table 3. Binding stoichiometry and thermodynamic parameters for the interaction of Tel22 DNA with Δ1a and Δ1a

	Δ1a	Δ1a
n	0.5 ± 0.1	0.6 ± 0.2
ΔG°₂₅ (kcal mol⁻¹)	-9.4 ± 0.4	-7.2 ± 0.5
ΔH° (kcal mol⁻¹)	-15.4 ± 1.4	-11.8 ± 0.7
ΔS° (kcal mol⁻¹ K⁻¹)	-6.0 ± 0.4	-4.6 ± 0.5

^aAll data were derived from ITC experiments. ΔH° and n (stoichiometry) was directly obtained from ITC. ΔG°₂₅ was obtained from the relation ΔG°₂₅ = -RTlnK (K_n was listed in Table 1). ΔS°₀ obtained from the relation ΔS°₀ = ΔH°₀ - ΔTΔS°₀.

[Ni₂L₃]⁴⁺ (length ~1.8 nm, diameter ~0.8 nm). Second, there are six phenyls in middle part of [Ni₂L₃]⁴⁺, which provide a tight stacking platform for Tel22 G-quadruplex by π-π interaction. Thus, Tel22 possibly locates in the middle part of Δ1a, which may not be suitable for providing tight π-stacking with Tel22. Thereby, Tel22 may bind to the two identical ends of Δ1a, thus resulting in 1:2 binding ratio.

Non-linear least-squares analysis of the fluorescence titration data of Ap19 by Δ1a yielded a binding constant of 3.5 × 10⁷ M⁻¹ (Table 2). In contrast, for Δ1a, the binding constant was 6.9 × 10⁵ M⁻¹ (Supplementary Figure S10). The results were in good agreement with ITC and UV titration data (Table 2). In addition, the thermodynamic parameters for Tel22 binding with Δ1a were estimated by ITC and the data were listed in Table 3. The results indicated that Δ1a binding to Tel22 G-quadruplex DNA was favorable enthalpy-driven.

The interactions between the enantiomers and Tel22 were further studied by ¹H-NMR experiments (Figure 4A and Supplementary Figure S12). In K⁺ buffer the guanine imino protons of the G-quadruplex were observed at characteristic chemical shifts (10–12 ppm) (14,16). With addition of Δ1a, the signal at 11.11 ppm was shifted to 10.9 ppm, indicating a strong interaction with the G-quartets (40–42). In contrast, addition of Δ1a just resulted in broadening of the signals, implying a labile interaction (39). This further supports Δ1a specifically binds to Tel22 G-quadruplex.

The interactions between the enantiomers and Tel22 were further studied by ¹H-NMR experiments (Figure 4A and Supplementary Figure S12). In K⁺ buffer the guanine imino protons of the G-quadruplex were observed at characteristic chemical shifts (10–12 ppm) (14,16). With addition of Δ1a, the signal at 11.11 ppm was shifted to 10.9 ppm, indicating a strong interaction with the G-quartets (40–42). In contrast, addition of Δ1a just resulted in broadening of the signals, implying a labile interaction (39). This further supports Δ1a specifically binds to Tel22 G-quadruplex.

To further explore the selectivity of the metallohelicates for human telomeric G-quadruplex, we studied the interactions of Δ1a/Δ1a with telarymena and oxytricha telomeric G-quadruplexes. CD spectra of the tetrahymena and oxytricha telomeric G-quadruplexes were not substantially affected by the metallohelicate enantiomers, indicating weak conformational changes of the G-quadruplexes (Supplementary Figure S17). Melting studies showed that no matter in Na⁺ or K⁺ condition, both Δ1a and Δ1a could not stabilize the two telomeric G-quadruplexes (Table 4 and Supplementary Table S1). These results confirmed the chiral selectivity of Δ1a for human telomeric hybrid G-quadruplex.

It should be emphasized that, although both Tel22 and telarymena telomeric G-quadruplex adopted hybrid conformation in K⁺ condition, Δ1a cannot stabilize telarymena telomeric G-quadruplex (Table 4). This indicated that the topology of Tel22 was not the only determinant for its selectivity of Δ1a. Previous studies have demonstrated that the loop sequence of G-quadruplex DNA plays a crucial role in DNA binding (45,46). Evidently, a significant difference between Tel22 and telarymena telomeric G-quadruplex is the adenine base in the loop region. Thus, to investigate how the loop sequences influence the binding behavior of Tel22, we substituted the TTA loops with TTT (abbreviated to Tel22-TTT), in which the adenine was replaced by a thymine. CD indicated that Tel22-TTT adopted the same hybrid conformation as the wild-type Tel22 (Supplementary Figure S9B). However, intriguingly, neither Δ1a nor Δ1a can stabilize Tel22-TTT (Table 4). This indicates that adenine in the loop of Tel22 plays important roles in chiral selection for hybrid Tel22 G-quadruplex. Thus, based on discussion mentioned above, both the hybrid topology of G-quadruplex and TTA loop sequence of Tel22 are crucial for determining the chiral recognition.
Figure 4. (A) 1H NMR spectra of Tel22 in the absence and presence of Δlα/Λlα. The assays were measured in 10 mM Tris–KCl buffer containing 10% D$_2$O. (B) Telomerase inhibition by Δlα/Λlα by using TRAP assay. Line 1: no enantiomer; Line 2–5: PCR products in the presence of 0.2, 0.5, 1, 2 μM Δlα, respectively; Line 6–9: PCR products in the presence of 0.2, 0.5, 1, 2 μM Λlα, respectively. (C) Schematic illustration of the chiral enantiomer selectively interacts with human telomeric hybrid G-quadruplex DNA.

Table 4. Stabilization effect of Δlα and Λlα on different telomeric G-quadruplex DNA in K$^+$ containing buffera

Telomeric DNA	Structure	DNA T_m (°C)	+Δlα T_m (°C)	+Λlα T_m (°C)
Human (Tel22)	Hybrid	54.6 ± 0.3	10.8 ± 0.3	0.2 ± 0.2
Oxytrichab	Antiparallel	61.6 ± 0.2	−5.0 ± 0.5	−4.7 ± 0.4
Tetrahymenab	Hybrid	58.2 ± 0.1	0.7 ± 0.3	0.8 ± 0.3
Tel22-TTT	Hybrid	64.8 ± 0.3	0.2 ± 0.3	0.4 ± 0.2

aMelting assays were carried out in 10 mM Tris buffer containing 10 mM KCl at pH 7.2. DNA is 3 μM in strand. The concentration of the Ligands is equivalent with corresponding DNA. The values were the average of three independent measurements.

bThe T_m of the was measured in 1 mM K$^+$ containing buffer.

Inhibition of telomerase activity

Human telomeric G-quadruplex is associated with the activity regulation of telomerase, which is activated in 80–90% of human tumors and is considered to be a specific target for cancer therapy (47–51). Our results indicate that Δlα can selectively and strongly bind to human telomeric hybrid G-quadruplex DNA. This intriguing finding prompted us to investigate telomerase inhibition effect of Δlα by using TRAP assay. As shown in Figure 4B, Δlα can inhibit telomerase efficiently with an IC$_{50}$ of 600 nM. In contrast, Λlα shows weak inhibition on telomerase. These results encouraged us to examine the behavior of tumor cell treated with Δlα and Λlα. Further studies are undergoing and will be reported in due course.

CONCLUSION

In summary, our water-stable metallohelices, synthesized directly via diastereoselective self-assembly, are capable of discriminating human telomeric hybrid G-quadruplex with high chiral selectivity. One enantiomer, Δlα, selectively stabilizes hybrid human telomeric G-quadruplex and shows no effect on the antiparallel conformer. In contrast, the mirror image compound Λlα showed no stabilization on both hybrid and antiparallel G-quadruplex. To the best of our knowledge, this is the first example of one pair of enantiomers showing such distinct chiral selectivity for human telomeric hybrid G-quadruplex. In addition, only Δlα was found to effectively inhibit telomerase activity. These findings provide new insights into rational design and synthesis of specific G-quadruplex targeting metal complexes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We acknowledge financial support from 973 Project and NSFC.
FUNDING
973 Project [2012CB720602]; National Natural Science Foundation of China (NSFC) [21210002, 21431007, 21533008, 21572216]. Funding for open access charge: 973 Project; NSFC.

Conflict of interest statement. None declared.

REFERENCES
1. Huppert, J.L. (2008) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem. Soc. Rev., 37, 1375–1384.
2. Biffi, G., Tannahill, D., McCafferty, J. and Balasubramanian, S. (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem., 5, 182–186.
3. Lam, E.Y.N., Beraldii, D., Tannahill, D. and Balasubramanian, S. (2013) G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun., 4, 1796.
4. Yu, Y. and Komiyama, M. (2013) Evidence for G-Quadruplex DNA in human cells. ChemBioChem, 14, 927–928.
5. Yu, H., Gu, X., Nakao, S.-I., Miyoshi, D. and Sugimoto, N. (2012) Beads-on-a-string structure of long telomeric DNAs under molecular crowding conditions. J. Am. Chem. Soc., 134, 20660–20669.
6. Liu, H.-Y., Zhao, Q., Zhang, T.-P., Wu, Y., Xiong, X.-X., Wang, S.-K., Ge, Y.-L., He, J.-H., Lv, P., Ou, T.-M. et al. (2016) Conformation selective antibody enables genome profiling and leads to discovery of parallel G-quadruplex in human telomeres. Cell Chem. Biol., 23, 1261–1270.
7. Bochman, M.L., Paesche, K. and Zakian, V.A. (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet., 13, 770–780.
8. Tarsounas, M. and Tijsterman, M. (2013) Genomes and G-Quadruplexes: for better or for worse. J. Mol. Biol., 425, 4782–4789.
9. Todd, A.K., Johnston, M. and Neidle, S. (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res., 33, 2901–2907.
10. Burge, S., Parkinson Gn Fau-Hazel, P., Hazel, P. and Todd, A.K., Todd Ak Fau-Neidle, S. and Neidle, S. (2006) Quadruplex DNA: structure, topology and function. Nucleic Acids Res., 34, 5402–5415.
11. Miyoshi, D., Karimata, H. and Sugimoto, N. (2005) Drastic effect of a single base difference between human and tetrahymena telomere sequences on their structures under molecular crowding conditions. Angew. Chem. Int. Ed., 44, 3740–3744.
12. Howson, S.E., Bolhuis, A., Brabec, V., Clarkson, G.J., Malina, J., Rodger, A. and Scott, P. (2012) Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity. Nat. Chem., 4, 31–36.
13. Meistermann, I., Moreno, V., Prieto, M.J., Molderheim, E., Stetten, E., Khalid, S., Rodger, P.M., Peberdy, J.C., Isaac, C.J., Rodger, A. et al. (2002) Intramolecular DNA coiling mediated by metallo-supramolecular cylinders: Differential binding of P and M helical enantiomers. Proc. Natl. Acad. Sci. U.S.A., 99, 5069–5074.
14. Carter, M.T., Rodriguez, M. and Bard, A.J. (1989) Voltammetric experiment for physical chemistry students. Fresenius J. Anal. Chem., 335, 9963–9970.
15. Barlow, S., Parkinson Gn Fau-Hazel, P., Hazel, P. and Todd, A.K. (2012) Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA. Nucleic Acids Res., 36, 5095–5098.
16. Zhao, C., Wu, L., Ren, J. and Qu, X. (2013) Targeting human telomeric higher-order DNA: dimeric G-Quadruplex units serve as preferred binding site. J. Am. Chem. Soc., 135, 15786–15789.
17. Yu, B., Zhao, C., Chen, Y., Tateishi-Karimata, H., Ren, J., Sugimoto, N. and Qu, X. (2014) Methyl substitution regulates the enantioselectivity of supramolecular complex binding to human G-Quadruplex DNA. Chem. Eur. J., 20, 16467–16472.
18. Nair, R.B., Teng, E.S., Kirkland, S.L., Murphy, C.J. et al. (2006) High and selective activity against cancer cells. J. Am. Chem. Soc., 128, 11655–11663.
19. Schlamadinger, D.E., Kats, D.I. and Kim, J.E. (2010) Quenching of tryptophan fluorescence in unfolded cytochrome c: a biophysics experiment for physical chemistry students. J. Chem. Educ., 87, 961–964.
20. Puchalski, M.M., Morra, M.J. and von Wandruszka, R. (1991) Assessment of inner filter effect corrections in fluorimetry. Fresenius J. Anal. Chem., 340, 341–344.
21. Nair, R.B., Teng, E.S., Kirkland, S.L. and Murphy, C.J. (1998) Synthesis and DNA-Binding properties of [Ru(NH3)4dpzp]2+. Inorg. Chem., 37, 139–141.
22. Carver, M.T., Rodriguez, M. and Bard, A.J. (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J. Am. Chem. Soc., 111, 8901–8911.
23. Ciferri, O. and Patel, D.J. (1993) Structure solution of the human telomere repeat d(AG3(T2AG3))3 G-tetruplex. Structure, 1, 263–282.
24. De Cian, A., DeLemos, E., Merz, J.L., Teulade-Fichou, M.-P. and Monchaud, D. (2007) Highly efficient G-Quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc., 129, 1856–1857.
25. Kimura, T., Kawai, K., Fujitsu, M. and Majima, T. (2006) Detection of the G-quadruplex-TMPyP4 complex by 2-aminoaridine modified human telomeric DNA. Chem. Commun., 4, 401–402.
26. De Cian, A., DeLemos, E., Merz, J.L., Teulade-Fichou, M.-P. and Monchaud, D. (2007) Highly efficient G-Quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc., 129, 1856–1857.
27. Davidek, J., Kovalova, K., Stolar, M., Kopriva, O., Novak, M. and Janak, P. (2008) Kinetics and mechanism of K+ and Na+–induced folding of models of human telomeric DNA into G-quadruplex structures. Nucleic Acids Res., 36, 4191–4203.
28. Phan, A.T., Kuryavyi, Y., Loo, K.N. and Patel, D.J. (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res., 35, 6517–6525.
29. Gray, R.D. and Chaires, J.B. (2008) Kinetics and mechanism of K+ and Na+–induced folding of models of human telomeric DNA into G-quadruplex structures. Nucleic Acids Res., 36, 4191–4203.
30. Hanon, F., Largy, E., Guédin-Beaurepaire, A., Rouchon-Dagois, M., Sidibe, A., Monchaud, D., Merz, J.L., Riou, J.F., Nguyen, C.H. and Teulade-Fichou, M.-P. (2011) An acyclic oligoheteroaryle that discriminates strongly between diverse G-Quadruplex topologies. Angew. Chem. Int. Ed., 50, 8745–8749.
telomerase inhibitor: NMR studies of the 2:1 complex of a pentacyclic methylacridinium cation with d(TTAGGGT)4. *Angew. Chem. Int. Ed.*, 40, 4749–4751.

41. Haudecoeur, R., Stefan, L., Denat, F. and Monchaud, D. (2013) A model of smart G-Quadruplex ligand. *J. Am. Chem. Soc.*, 135, 550–553.

42. Jaumot, J. and Gargallo, R. (2012) Experimental methods for studying the interactions between G-Quadruplex structures and ligands. *Curr. Pharm. Des.*, 18, 1900–1916.

43. Singh, V., Azarkh, M., Exner, T.E., Hartig, J.S. and Drescher, M. (2009) Human telomeric quadruplex conformations studied by pulsed EPR. *Angew. Chem. Int. Ed.*, 48, 9728–9730.

44. Li, Q., Xiang, J., Li, X., Chen, L., Xu, X., Tang, Y., Zhou, Q., Li, L., Zhang, H., Sun, H. et al. (2009) Stabilizing parallel G-quadruplex DNA by a new class of ligands: two non-planar alkaloids through interaction in lateral grooves. *Biochimie*, 91, 811–819.

45. Shi, S., Xu, J.-H., Gao, X., Huang, H.-L. and Yao, T.-M. (2015) Binding behaviors for different types of DNA G-Quadruplexes: Enantiomers of [Ru(bpy)2(L)]2+ (L=dppz, dppz-idzo). *Chem. Eur. J.*, 21, 11435–11445.

46. Yu, H., Zhao, C., Chen, Y., Fu, M., Ren, J. and Qu, X. (2009) DNA Loop Sequence as the determinant for chiral supramolecular compound G-Quadruplex selectivity. *J. Med. Chem.*, 53, 492–498.

47. Riou, J.F., Guittat, L., Mailliet, P., Laouli, A., Renou, E., Petitgenet, O., Megnin-Chatel, F., Helene, C. and Mergny, J.L. (2002) Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. *Proc. Natl. Acad. Sci. U.S.A.*, 99, 2672–2677.

48. Wang, Q., Liu, J.Q., Chen, Z., Zheng, K.W., Chen, C.Y., Hao, Y.H. and Tan, Z. (2011) G-quadruplex formation at the 3′ end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase. *Nucleic Acids Res.*, 39, 6229–6237.

49. Henderson, E., Hardin, C.C., Walk, S.K., Tinoco, I. Jr and Blackburn, E.H. (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. *Cell*, 51, 899–908.

50. Xu, Y. (2011) Chemistry in human telomere biology: structure, function and targeting of telomeric DNA/RNA. *Chem. Soc. Rev.*, 40, 2719–2740.

51. Tan, J.H., Ou, T.M., Lu, J.Y., Huang, S.L., Luo, H.B., Wu, J.Y., Huang, Z.S., Wong, K.Y. and Gu, L.Q. (2009) Isaindigotone derivatives: a new class of highly selective ligands for telomeric G-quadruplex DNA. *J. Med. Chem.*, 52, 2825–2835.