A NOTE ON THE REGULARITY OF PRODUCTS

SEYED HAMID HASSANZADEH AND SIAMAK YASSEMI

Abstract. Let \(S = \mathbb{K}[x_1, \ldots, x_n] \) denote a polynomial ring over a field \(\mathbb{K} \). Given a monomial ideal \(I \) and a finitely generated multigraded \(M \) over \(S \), we follow Herzog’s method to construct a multigraded free \(S \)-resolution of \(M/IM \) by using multigraded \(S \)-free resolutions of \(S/I \) and \(M \). The complex constructed in this paper is used to prove the inequality \(\text{reg}(IM) \leq \text{reg}(I) + \text{reg}(M) \) for a large class of ideals and modules. In the case where \(M \) is an ideal, under one relative condition on the generators which specially does not involve the dimensions, the inequality \(\text{reg}(IM) \leq \text{reg}(I) + \text{reg}(M) \) is proven.

Introduction

Throughout this paper \(S = \mathbb{K}[x_1, \ldots, x_n] \) is a polynomial ring over a field \(\mathbb{K} \). The Castelnuovo-Mumford regularity, \(\text{reg}(M) \), is one of the most important invariants of a finitely generated graded module \(M \) over a polynomial ring \(S \). Despite in general the regularity of a module can be doubly exponential in the degrees of the minimal generators and in the number of the variables, \([3]\) and \([10]\), there are several descriptions of the regularity of sum, intersection and products of ideals in term of each factor. A look on the enormous works in this topic, for example \([4]\), \([5]\), \([11]\), \([14]\), \([7]\), \([6]\) shows the importance of finding a neat formula for the regularity of a combination of two ideals.

Let \(I \) and \(J \) be two monomial ideals of \(S \) and let \(F \) and \(G \) be the multigraded free \(S \)-resolutions of \(S/I \) and \(S/J \). In \([8]\) Herzog constructs a multigraded free \(S \)-resolution of \(S/(I + J) \). This resolution generalizes the Taylor resolution \([13]\). The complex constructed in this way is used to generalize results on the Castelnuovo-Mumford regularity that were obtained for square-free monomial ideals by G. Kalai and R. Meshulam \([9]\). More precisely, Herzog declares the expected formula for the sum and intersection of monomial ideals \(I, J \) of the polynomial ring \(S \),

\[
\text{reg}(I + J) \leq \text{reg}(I) + \text{reg}(J) - 1,
\]

\[
\text{reg}(I \cap J) \leq \text{reg}(I) + \text{reg}(J).
\]

The problem on the regularity of products of homogeneous ideals, even monomial ideals, is more complicated. There are several counterexamples, \([12]\), \([14]\), \([6]\), which show that the inequality \(\text{reg}(IJ) \leq \text{reg}(I) + \text{reg}(J) \) does not hold in general. The regularity of two ideals or an ideal and an \(R \)-module is

\[Date: August 16, 2024.\]

2000 Mathematics Subject Classification. 13D02, 13D25.

Key words and phrases. Castelnuovo–Mumford regularity, Resolution.

The research of Hassanzadeh was in part supported by grant No. 89130112 from IPM.

The research of Yassemi was supported in part by a grant No. 89130214 from IPM.
related to the regularity of tensor product of two modules, the work started by Sidman \[11\] and continued by Conca and Herzog \[5\] who showed that $\text{reg}(IM) \leq \text{reg}(I) + \text{reg}(M)$ for a finitely generated graded R-module M and a homogeneous ideal I in the case where $\dim(S/I) \leq 1$. In \[2\] Caviglia showed that $\text{reg}(M \otimes N) \leq \text{reg}(M) + \text{reg}(N)$ whenever $\dim(\text{Tor}_1^S(M,N)) \leq 1$, the regularity of Tor modules was subsequently studied in detail by Eisenbud, Huneke, and Ulrich in \[7\].

The aim of this paper is to determine some cases in which the inequality $\text{reg}(IM) \leq \text{reg}(I) + \text{reg}(M)$ is valid. By changing the point of view, instead of considering the codimension of the homogeneous ideal I or $\dim(\text{Tor}_1^S(S/I,M))$, a relation between the variables participate in the minimal generating set of I and those correspond to the minimal generating set of M is studied.

For a homogeneous ideal I (resp. a finitely generated multigraded S-module M) we define $\text{Gens}(I)$ (resp. $\text{Gens}(M)$) to be the variables participate in the minimal generating set of I (resp. in the degrees of the minimal generating set of M). Using the techniques in \[8\], it is shown that in the case where I is a monomial ideal and $\text{Gens}(I) \cap \text{Gens}(M) = \emptyset$ the Herzog’s complex (generalized Taylor complex) provides a free resolution for M/IM in term of those of S/I and M. This resolution in turn shows that the inequality $\text{reg}(IM) \leq \text{reg}(I) + \text{reg}(M)$ is valid in this case (see Theorem 1.2). For two homogeneous ideals I and J of S, we show that the condition $\text{Gens}(I) \cap \text{Gens}(J) = \emptyset$ implies that $I \cap J = IJ$. This is the case where the inequality of the regularity was already known. Trying to extend the desired inequality for ideals, it is shown that if I and J are two homogeneous (not necessarily monomial) ideals in which $|\text{Gens}(I) \cap \text{Gens}(J)| \leq 1$, then $\text{reg}(IJ) \leq \text{reg}(I) + \text{reg}(J)$ (see Theorem 1.6). Finally, an already known example of Conca and Herzog \[6, 2.1\] shows that the inequality $\text{reg}(IJ) \leq \text{reg}(I) + \text{reg}(J)$ is no longer generally valid if $|\text{Gens}(I) \cap \text{Gens}(J)| \geq 2$ (see Example 1.7).

1. Main results

Throughout k is a field and $S = k[x_1, \ldots, x_n]$ is a polynomial ring, M is a finitely generated multigraded (\mathbb{N}^n-graded) S-module. In his technical paper Herzog \[8\] defines a new product between free S-modules. For the sake of a ready to hand definition we restate the construction of this product.

For a homogeneous element $m \in M$ of degree $(a_1, \ldots, a_n) \in \mathbb{N}^n$ the unique monomial in S which has the same degree as m is denoted by u_m. We define the set of gens of M, $\text{Gens}(M)$, as the set of $x_i \in \{x_1, \ldots, x_n\}$ such that x_i divides some u_m where m is a member of a minimal generating set of M. In addition, $\text{Gens}(M) = \emptyset$, if M is generated by elements of degree zero.

Definition 1.1. Let F and G be free S-modules with homogeneous basis B and C, respectively. The $*$-product of F and G, $F * G$ is the multigraded free S-module with a basis given by the symbols $f * g$ where $f \in B$ and $g \in C$, the multidegree of $f * g$ is defined to be $|u_f u_g|$, the least common multiple of u_f and u_g.

Comparing to the ordinary tensor product, $F \otimes G$ is a free S-module with the basis $f \otimes g$ where $f \in B$ and $g \in C$ and $\deg(f \otimes g) = \deg(u_f u_g)$. Hence, $F * G$ and $F \otimes G$ are free S-modules of a same rank. Keeping in mind that S is a domain and the set $\{f * g : f \in B \text{ and } g \in C\}$ is a basis for $F * G$, one can
Therefore we may assume that

\[I \]

\[N \]

of \(T \) after specialization, the multigraded free

\[j \]

see that the homogeneous multigraded map

\[B \rightarrow \mathbb{C} \]

with basis \(S \)

Theorem 1.2.

Let \(I \) be a monomial multigraded ideal of \(S \) and \(M \) be a finitely generated multigraded \(S \)-module such that \(\text{Gens}(I) \cap \text{Gens}(M) = \emptyset \). Let \(F \) and \(G \) be the minimal multigraded free resolutions of \(S/I \) and \(M \), respectively. Then \(F \ast G \) is a multigraded free resolution of \(M/IM \).

Proof. The proof goes along the same lines as that of [8, 2.1], we just mention the slight modifications which have to be done. In the first step of the proof, we use polarization for the ideal \(I \) and assume that \(I \) is squarefree. As well by [4, Theorem 2.1], the multigraded \(S \)-module \(M \) can be lifted to a multigraded \(T \)-module \(N \) where \(T \) is a polynomial ring over \(S \), such that all shifts in the multigraded free \(T \)-resolution of \(N \) are squarefree. The shifts of this multigraded free \(T \)-resolution are of the expected form; so that after specialization, the multigraded free \(T \)-resolution becomes the multigraded free \(S \)-resolution of \(M \). Therefore we may assume that \(I \) and \(M \) have squarefree free resolution. We continue to the proof as in [8].

Let \(S/I \) and \(M \) admit minimal multigraded free resolutions \(F : 0 → F_p → \cdots → F_1 → S → 0 \) and \(G : 0 → G_q → \cdots → G_1 → G_0 → 0 \), respectively, where \(F_i \), resp. \(G_i \), is a multigraded free \(S \)-module with basis \(B_i \), resp. \(C_i \), for all \(0 \leq i \leq p \), resp. \(0 \leq i \leq q \). The complex \(G \) arisen from the first spectral
sequence of the double complex $F_\bullet \ast G_\bullet$ is of the form:

$$\tilde{G}_\bullet : 0 \to \bigoplus_{g \in C_q} (S/I_g)g \to \cdots \to \bigoplus_{g \in C_1} (S/I_g)g \to \bigoplus_{g \in C_0} (S/I_g)g \to 0$$

where I_g is an ideal generated by the monomials $[u, u_g]/u_g$ in which u is a member of the generating set of I. Here is the point that makes this theorem more general. The fact that \tilde{G}_\bullet is acyclic, [8], in conjunction with the fact that the second spectral sequence converges shows that to know what is resolved by $F_\bullet \ast G_\bullet$ we have to know what $H_0(\tilde{G}_\bullet)$ is. We consider the most right terms of $F_\bullet \ast G_\bullet$, that is $F_1 \ast G_0 \oplus S \ast G_1 \xrightarrow{\psi} S \ast G_0 \to 0$. Since S is generated by 1, the map j induces the isomorphisms $S \ast G_1 \cong S \otimes G_1$ and $S \ast G_0 \cong S \otimes G_0$. The assumption that $\text{Gens}(I) \cap \text{Gens}(M) = \emptyset$ implies that the homogenous homomorphism $j : F_1 \ast G_0 \to F_1 \otimes G_0$ is an isomorphism, since $j(f_1 \ast g_0) = \text{gcd}(u_{f_1}, u_{g_0})f_1 \otimes g_0 = f_1 \otimes g_0$ for all $f_1 \in B_1$ and $g_0 \in C_0$. Hence we have the following commutative diagram, where φ is the map at the beginning of the complex $F_\bullet \otimes G_\bullet$.

$$
\begin{array}{c}
F_1 \ast G_0 \oplus S \ast G_1 \xrightarrow{\psi} S \ast G_0 \\
\cong \downarrow j \quad \cong \downarrow j \\
F_1 \otimes G_0 \oplus S \otimes G_1 \xrightarrow{\varphi} S \otimes G_0
\end{array}
$$

To see that this diagram is commutative, we just need to verify the image of $f_1 \ast g_0$ for $f_1 \in B_1$ and $g_0 \in C_0$.

$$\psi(f_1 \ast g_0) = a_{f_1, 1}u_{g_0}f_{1, 1} 1 \ast g_0 = a_{f_1, 1}([u_{g_0}, u_{f_1}]/[u_{g_0}, 1])1 \ast g_0 = a_{f_1, 1}u_{f_1} 1 \ast g_0,$$

recall that $\text{gcd}(u_{f_1}, u_{g_0}) = 1$. We then have $j(\psi(f_1 \ast g_0)) = a_{f_1, 1}u_{f_1} 1 \otimes g_0 = \varphi(j(f_1 \ast g_0)) = \varphi(f_1 \otimes g_0)$, which shows that the above diagram is commutative. Therefore, $H_0(F_\bullet \ast G_\bullet) = H_0(F_\bullet \otimes G_\bullet) = S/I \otimes_S M \cong M/IM$, as desired. \hfill \Box

Regarding the above theorem, the main theorem of [8] deals with the case where $M = S/J$ and J is a monomial ideal. In this case $\text{Gens}(M) = \emptyset$, hence the condition $\text{Gens}(M) \cap \text{Gens}(I) = \emptyset$ is automatically satisfied and the above argument for determining $H_0(\tilde{G}_\bullet)$ becomes vacuous.

With a free resolution of the product in hand, we are now able to give an upper bound for the Castelnuovo-Mumford regularity and the projective dimension of products. For a graded S-module L, we set $M_i(L)$ to be the highest shifts appears in the graded minimal S-free resolution of L. The castelnuovo-Mumford regularity of M is defined as $\text{reg}(L) := \max \{M_i(L) - i : i \geq 0\}$.

Corollary 1.3. Let I be a monomial ideal of S and M be a f.g. multigraded S-module such that $\text{Gens}(M) \cap \text{Gens}(I) = \emptyset$. Then

(a) $\text{proj dim}(M/IM) \leq \text{proj dim}(M) + \text{proj dim}(I) + 1$; and

(b) $\text{reg}(IM) \leq \text{reg}(I) + \text{reg}(M)$.

Proof. Part (a) is due to the fact that $F_\bullet \ast G_\bullet$ is acyclic and has length $\text{proj dim}(M) + \text{proj dim}(S/I) + 1$.

For (b), since $F_{\bullet} \ast G_{\bullet}$ is not probably the minimal free resolution of M/IM we have that $M_i(M/IM) \leq$ the highest shift in $(F_{\bullet} \ast G_{\bullet})$. The highest shift in $(F_{\bullet} \ast G_{\bullet})$; is less than or equal to $\max_{j+k=i} \{M_j(M), M_k(S/I)\}$, and so

$$\text{reg}(M/IM) = \max\{M_i(M/IM) - i : i \geq 0\} \leq \max_{j+k=i} \{M_j(M) - j, M_k(S/I) - k\} \leq \text{reg}(M) + \text{reg}(S/I).$$

Now, the exact sequence $0 \to IM \to M \to M/IM \to 0$ implies that

$$\text{reg}(IM) \leq \max\{\text{reg}(M), \text{reg}(M/IM) + 1\} \leq \text{reg}(M) + \text{reg}(S/I) + 1 = \text{reg}(M) + \text{reg}(I).$$

\[\Box\]

One may apply Corollary [13] for the case where $M = J$ is a monomial ideal to obtain the formula $\text{reg}(IJ) \leq \text{reg}(I) + \text{reg}(J)$ provided that $\text{Gens}(J) \cap \text{Gens}(I) = \emptyset$. Although this is the desired formula for the regularity of product of ideals, it is shown in Corollary [15] of the following general proposition that under the condition $\text{Gens}(J) \cap \text{Gens}(I) = \emptyset$ one has $IJ = I \cap J$. Hence to make the inequality $\text{reg}(IJ) \leq \text{reg}(I) + \text{reg}(J)$ valuable, we will later reduce the condition on Gens (c.f. Theorem [16]).

Proposition 1.4. Consider the polynomial ring $S = \mathbb{k}[x_1, \cdots, x_n]$. Let $1 \leq k < n$ be an integer, $R = \mathbb{k}[x_1, \cdots, x_k]$ and $R' = \mathbb{k}[x_{k+1}, \cdots, x_n]$. Suppose that M and N are two extended modules, that is, there are graded (not necessarily multigraded) R-modules M_1 and R'-module N_1 such that $M = M_1 \otimes_R S$ and $N = N_1 \otimes_{R'} S$. Then

(a) $\text{Tor}_i^S(M, N) = 0$ for all $i \geq 1$; and
(b) $\text{reg}(M \otimes_S N) \leq \text{reg}(M) + \text{reg}(N)$.

Proof. To prove (a), let F_{\bullet} be a R-free resolution of M_1. $F_{\bullet} \otimes_R S$ provides a S-free resolution for $M_1 \otimes_RS = M$. To compute $\text{Tor}_i^S(M, N)$, we consider the homology of the complex $(F_{\bullet} \otimes_R S) \otimes_S N$. Considering the natural isomorphisms $(F_{\bullet} \otimes_R S) \otimes_S N \cong (F_{\bullet} \otimes_R S) \otimes_S (N_1 \otimes_{R'} S) \cong F_{\bullet} \otimes_R (N_1 \otimes_{R'} S) \cong F_{\bullet} \otimes_R (S \otimes_{R'} N_1) \cong F_{\bullet} \otimes_R (R \otimes_{\mathbb{k}} R') \otimes_{R'} N_1 \cong F_{\bullet} \otimes_{\mathbb{k}} N_1$, we have

$$\text{Tor}_i^S(M, N) = H_i((F_{\bullet} \otimes_R S) \otimes_S N) = H_i(F_{\bullet} \otimes_{\mathbb{k}} N_1) = \text{Tor}_{i}^k(M_1, N_1) = 0$$

the last equality holds, since k is a field.

For (b), it is enough to notice that if F_{\bullet} and G_{\bullet} are R-free resolution and R'-free resolution of M_1 and N_1, respectively, then by part (a) $F_{\bullet} \otimes_{\mathbb{k}} G_{\bullet}$ is a S-free resolution for $M \otimes_S N$. Now a similar computation as in the proof of the Corollary [13] yields the assertion. \[\Box\]

Corollary 1.5. Let I and J be two homogeneous ideals of S with $\text{Gens}(J) \cap \text{Gens}(I) = \emptyset$, then $I \cap J = IJ$.

Proof. By the same token as Proposition [14] suppose that $I = I_1S$ and $J = J_1S$ where I_1 and J_1 are graded ideals of R and R', respectively. Considering the natural maps $I_1 \to R$, $J_1 \to R'$, $R \otimes_R S \to S$
and \(R' \otimes_R S \rightarrow S \) and the fact that \(S \) is flat over \(R \) and \(R' \), one sees that \(S/I \cong R/I_1 \otimes_R S \) and \(S/J \cong R'/J_1 \otimes_R S \). Now the result follows from Proposition 1.4 in conjunction with the fact that \(\text{Tor}^S_1(S/I, S/J) = I \cap J/IJ \).

Theorem 1.6. Let \(I \) and \(J \) be two homogeneous ideals of \(S \) such that \(\text{Gens}(J) \cap \text{Gens}(I) \) consists of at most one element. Then \(\text{reg}(IJ) \leq \text{reg}(I) + \text{reg}(J) \).

Proof. Set \(A := \text{Gens}(J) \cap \text{Gens}(I) \). The case where \(A = \emptyset \) is an immediate consequence of Proposition 1.4 or Corollary 1.3.

With no loss of generality, assume that \(A = \{x_1\} \), that \(I = I_1S \) where \(I_1 \) is an ideal of \(R = k[x_1, \ldots, x_k] \) and that \(J = J_1S \) where \(J_1 \) is an ideal of \(R' = k[x_1, x_{k+1}, \ldots, x_n] \). Let \(F_* \) be a \(R \)-free resolution of \(I_1 \) and \(G_* \) be a \(R' \)-free resolution of \(R'/J_1 \). Then \(F_* \otimes_R S \) and \(G_* \otimes_{R'} S \) are \(S \)-free resolutions of \(I \) and \(S/J \), respectively. Hence for all integer \(i \),

\[
\text{Tor}^S_i(I, S/J) = H_i((F_* \otimes_R S) \otimes_S (G_* \otimes_{R'} S)) \cong H_i((F_* \otimes_R S) \otimes_{R'} G_*) \\
\cong H_i(F_* \otimes_R (R \otimes_{k[x_1]} R') \otimes_{R'} G_*) \cong H_i(F_* \otimes_{k[x_1]} G_*) = \text{Tor}^{k[x_1]}_i(I_1, R'/J_1)
\]

The fact that \(k[x_1] \) has global dimension 1 implies the vanishing of these Tor modules for all \(i \geq 2 \). To see the vanishing of the first Tor modules, notice that \(R \) is a flat \(k[x_1] \) module, hence the exact sequence \(0 \rightarrow I_1 \rightarrow R \rightarrow R/I_1 \rightarrow 0 \) yields \(\text{Tor}^{k[x_1]}_1(I_1, R'/J_1) = \text{Tor}^{k[x_1]}_2(R/I_1, R'/J_1) = 0 \).

The vanishing of all Tor modules shows that \((F_* \otimes_R S) \otimes_S (G_* \otimes_{R'})S \) is a free resolution of \(I \otimes_S S/J = I/IJ \). Now, a similar calculation as in the proof of Corollary 1.3 shows the assertion.

The next example of Conca and Herzog [6] shows that the inequality \(\text{reg}(IJ) \leq \text{reg}(I) + \text{reg}(J) \) is no longer true if \(\text{Gens}(J) \cap \text{Gens}(I) \) consists of two elements.

Example 1.7. Let \(R = k[x_1, x_2, x_3, x_4] \), \(I = (x_2, x_3) \) and \(J = (x_2^2x_2, x_1x_2x_3, x_2x_3x_4, x_3x_3^2) \). The minimal free resolution of \(I, J \) and \(IJ \) are:

\[
0 \rightarrow R(-2) \rightarrow R^2(-1) \rightarrow 0, \quad 0 \rightarrow R^3(-4) \rightarrow R^4(-3) \rightarrow 0 \text{ and } 0 \rightarrow R(-8) \rightarrow R^5(-6) \oplus R^2(-7) \rightarrow R^{10}(-5) \oplus R(-6) \rightarrow R^8(-4) \rightarrow 0,
\]

respectively. Hence, we have \(\text{reg}(I) = 1, \text{reg}(J) = 3 \) and \(\text{reg}(IJ) = 5 > \text{reg}(I) + \text{reg}(J) \).

Notice that \(\text{Gens}(I) = \{x_2, x_3\} \) and \(\text{Gens}(J) = \{x_1, x_2, x_3, x_4\} \), thus \(\text{Gens}(J) \cap \text{Gens}(I) = \{x_2, x_3\} \).

References

1. W. Bruns, J. Herzog, On multigraded resolutions, Math. Proc. Camb. Phil. Soc. 25 (1995), 245–257.
2. G. Caviglia, Bounds on the Castelnuovo-Mumford regularity of tensor products, Proc. Amer. Math. Soc. 135 (2007), no. 7, 1949–1957
3. G. Caviglia, E. Sbarra, *Characteristic-free bounds for the Castelnuovo-Mumford regularity*, Compositio Math. 141 (2005), 1365–1373.

4. K. A. Chandler, *Regularity of the powers of an ideal* Comm. Algebra 25 (1997), no. 12, 3773–3776.

5. M. Chardin, N. C. Minh, N. V. Trung, *On the regularity of products and intersections of complete intersections*, Proc. Amer. Math. Soc. 135 (2007), 1597–1606.

6. A. Conca, J. Herzog *Castelnuovo–Mumford regularity of products of ideals*. Collect. Math. 54 (2003), no. 2, 137-152.

7. D. Eisenbud, C. Huneke and B. Ulrich, *The Regularity of Tor and Graded Betti Numbers*, Amer. J. Math. 128, (2006), no. 3, 573–605.

8. J. Herzog, *A Generalization of the Taylor Complex Construction*, Comm. Algebra, 35(2007), no. 5, 1747-1756.

9. G. Kalai, R. Meshulam, (2006). *Unions and intersections of Leray complexes*, J. Combin. Theory Ser. A 113 (2006), 1586–1592.

10. E. Mayer, A. Meyer, *The complexity of the word problem for commutative semigroups and polynomial ideals*, Adv. Math. 46, (1982), 305–329.

11. J. Sidman, *On the Castelnuovo-Mumford regularity of products of ideal sheaves*, Adv. Geom. 2 (2002), no. 3, 219-229.

12. B. Sturmfels, *Four counterexamples in combinatorial algebraic geometry*, J. Algebra 230 (2000), 282-294.

13. D. K. Taylor, *Ideals generated by monomials in an R-sequence*, Ph.D. thesis, Univ. Chicago, Chicago, IL, 1966

14. N. Terai, *Eisenbud-Goto inequality for Stanley-Reisner rings* In: Herzog, J., Restuccia, G, eds. Geometric and Combinatorial Aspects of Commutative Algebra. Lecture Note in Pure and Applied Mathematics 217, Marcel Dekker, 379-391, (2001).

Seyed Hamid Hassanzadeh: Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, Tehran, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

E-mail address: hamid@dmat.ufpe.br

Siamak Yassemi: Department of Mathematics, University of Tehran, Tehran, Iran, and School of Mathematics, Institute for research in fundamental sciences (IPM), P. O. Box 19395-5746, Tehran, Iran.

E-mail address: yassemi@ipm.ir