Antihyperglycaemic and antioxidant activities of *Sansevierialiberica* as justification for its antidiabetic claims

Aanuolu Jesudunni Ajileye¹, Marcus Durojaye Ayoola¹*, Anthony Adebolu Elujoba¹ and Kemi Feyisayo Akinwunmi²

¹Department of Pharmacognosy, Faculty of Pharmacy, ObafemiAwolowo University, Nigeria.
²Department of Biochemistry and Molecular Biology, Faculty of Science, ObafemiAwolowo University, Nigeria.

Received 26 February, 2020; Accepted 14 April, 2020

Diabetes has become a global emergency because of its high prevalence, morbidity and mortality while the available hypoglycaemic drugs possess various adverse effects and are expensive. This has necessitated a continuous search for cheaper antidiabetic agents of plant origin with fewer or no side effects. The study evaluated the antihyperglycaemic activities of the methanol extract of *Sansevieria liberica* Gerome and Labroy (Agavaceae) rhizome. Both the partitioned and column fractions were tested on glucose-induced hyperglycaemic rats while their *in vitro* antioxidant effects studied using 1,1-diphenyl-2-dipicrylhydrazyl radical scavenging (DPPH), ferric reducing antioxidant power (FRAP), total antioxidant capacity (TAC), hydroxyl radical scavenging activity (HRSA) as well as the total phenolic content (TPC) and total flavonoid content (TFC) assays. Glibenclamide (5 mg/kg) and appropriate antioxidant standard drugs were used as positive controls. The estimated median lethal dose (LD₅₀) of the methanol extract was 3,808.0 mg/kg; at 100, 200 and 400 mg/kg, it gave comparable (p>0.05) antihyperglycaemic activity to glibenclamide at 5 mg/kg. Its ethyl acetate fraction at 200 and 400 mg/kg gave the highest antihyperglycaemic activities of 49.5 and 53.9%, respectively, the highest antioxidant activities in all the models used. The highest antihyperglycaemic and antioxidant values were observed in the column fractions, C₃, C₄ and C₇ of the ethylacetate partitioned fraction. The comparable antihyperglycaemic activity to glibenclamide of the methanol extract of *S. liberica* rhizome in this study has justified its ethnomedical claims as antidiabetic agent. The consistently high antihyperglycaemic and antioxidant activities of the extract and its partitioned and column fractions would suggest a direct relationship between the two biological activities investigated.

Key words: Diabetes mellitus, *Sansevierialiberica*, anti-hyperglycaemic activity, antioxidant activity.

INTRODUCTION

Diabetes mellitus is defined as a group of metabolic disorders that could be identified by a significant increase in the level of glucose in the blood (hyperglycaemia) and reduced production or action of insulin secreted by the
pancreas in the body (Maritim et al., 2003; Adebajo et al., 2013a,b; ADA, 2014). Globally, about 415 million individuals were affected with diabetes in 2015 and this has been projected to increase to 629 million by 2045 (IDF, 2017). The high cost and adverse effects of insulin and the available oral hypoglycaemic agents have necessitated increased investigations on medicinal plants used ethnomedically for the management of diabetes (Adebajo et al., 2013a,b; Ayoola et al., 2017a,b).

Reactive oxygen species (ROS) are natural by-products of various metabolic processes that are produced at low levels during normal metabolism in the body and they are known to cause damage to cells at higher physiological levels than normal (Ma et al., 2013; Gbadamosi and Emi, 2017). Several diseases such as diabetes, artherosclerosis, hypertension, cancer and neurodegenerative diseases have been linked to the damaging effects of ROS including, superoxide (O$_{2}^{-}$), hydroxyl (OH), peroxy (RO$_{2}$) and hydroperoxy (HO$_{2}$) radicals (Aslan et al., 2010; Dix and Legg, 2017; Ayoola et al., 2017a,b). Antioxidants which are scavengers of ROS have been found to be effective in preventing experimental diabetes in animal models as well as reduction in severity of Types I and II diabetic complications (Jeanette, 2005).

Plant-derived antioxidants have been reported to possess physiological effects such as antiobiotic, antitumor and anti-inflammatory activities (Adebajo et al., 2009; Andre de Souza et al., 2011). Sansevieria liberica Gerome and Labroy (Agavaceae) is a tropical, West African perennial, rhizomatous plant and an erect herb with several stiff-edged, elliptic leaf, arising from the rhizome and 1-3 or more leaves in a clump (Eze et al., 2011). It is traditionally used for the treatment of asthma, diabetes, abdominal pains, hypertension, menorrhagia, piles, sexual weakness, snake bites and wounds of the foot (Gill, 1992; Osobohien and Egboh, 2008). Its antihypertensive (Ikewuichi et al., 2012); anticancer (Abidemi et al., 2015); diuretic and antioxidant (Omodamiro and Jimoh, 2017); hepatoprotective (Ikewuichi et al., 2011); antimicrobial (Eze et al., 2011) and hypoglycaemic activities (Amao, 2015) have been reported. Some isolated compounds from S. liberica include, pavetannin, alyssamine-2, abscisic acid, α-conidendrin and queretin-3-O-α-L-arabinofuranoside (Eze et al., 2017). The present study was designed to investigate the antihyperglycaemic and antioxidant activities of the plant with a view to justifying its antidiabetic folkloric claim and also examine any possible correlation between the two biological activities.

MATERIALS AND METHODS

Chemicals, equipment and instrumentation

UV Spectrophotometer (Model M107, SpectronicCamspec Ltd, U.K.), Vortex Genie rotamixer (K-550-GE model, Vortex-Genie accessories, U.S.A.), CareSensTM Glucometer (model PGA 1E3028 REV3, i- SENS, Inc., Korea) with CareSensTM test strips (i- SENS, Inc., Korea), ammonium molybdate, ascorbic acid, sodium acetate, 2,4,6-tripryydil-s-trazine (TPTZ), trolox, and 1,1-diphenyl-1-picrylhydrayl radical (Sigma-Aldrich Co. LLC, U.S.A.), column chromatographic (dimension: 60 × 4 cm, silica gel mesh 70–230) apparatuses were used. Others were aluminium plated thin-layer chromatographic (silica gel 60 F254, 0.25 mm) and glass plated preparative thin-layer chromatographic (silica gel 60 F254, 0.25, 0.5, 0.1, 2 mm, Whatman Inc., U.S.A.), silica gel (70-230 mesh, Merck & Co., Inc., U.S.A.). All solvents used were of analytical grade.

Animals

Albino Wistar rats (150–270 g) of both sexes bred under standard conditions (27 ± 3 °C, relative humidity 65%) in the animal house, Department of Pharmacology, Faculty of Pharmacy, O.A.U., Ile-Ife, Nigeria were used for the study. They were fed on a standard commercial rat pellet diet (Bendel Feeds, Nigeria) and water was given ad libitum. Rats were handled according to the suggested National Ethical Guidelines for the care of laboratory animals by the Animal Ethics Committee (Committee for the update of the guide for the care and use of laboratory animals).

Plant material

S. liberica Gerome and Labroy (Agavaceae) rhizome was collected from the medicinal plant garden, Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University (OAU), Ile-Ife, Nigeria. It was identified and authenticated by Dr. I. I. Ogunlowo, and a voucher specimen (FP1 2176) was deposited at the Pharmacy Herbarium, Department of Pharmacognosy, Faculty of Pharmacy, OAU, Ile-Ife, Nigeria. The rhizomewas washed with water, chopped into small pieces, oven-dried at 60 °C and powdered; 4 kg of the powdered plant was extracted with methanol at room temperature for four days and concentrated using rotary evaporator at 50°C to give 11.0% w/w yield (coded A). The extract (A) was suspended in water and solvent partitioned with n-hexane and ethyl acetate, concentrated in vacuo to obtain their corresponding n-hexane, ethyl acetate and aqueous partitioned fractions, coded B$_{1}$, B$_{2}$ and B$_{3}$ respectively.

Acute toxicity study of the extract

Themethanol extract (A) of S. liberica doses ranging from 10 to 5000 mg/kg was orally administered to 24 h fasted rats weighing between 150-270 g in two phases. The Phase 1 of the test consisted of nine (9) rats divided into 3 groups of 3 rats each and administered with A using doses of 10, 100 and 1000mg/kg. The animals were then observed for mortality and/or toxicity within each group over a 24-h period. From the results obtained in the Phase 1, the phase 2 test was carried out using eight (8) rats that were divided into 4 groups of 2 rats each. Each group was given 1000, 1600, 2900 and 5000 mg/kg of A, respectively. The animals were also observed for mortality and/or toxicity for 24h. The LD$_{50}$ was calculated as the geometric mean of the dose that resulted in 100% lethality and that caused no lethality at all (Lorke, 1983).

Antihyperglycaemic effect of the extract and fractions

Glucose (10g/kg) was orally administered to normal rats that were fasted for 24 h and those that were hyperglycaemic with blood glucose level ≥ 7.0 mmol/L (126 mg/dL) after 0.5 h (T$_{0}$) were selected and divided into groups of five rats. Each group of rats was

06 Afr. J. Pharm. Pharmacol.
separately orally administered with extract (A) at 100, 200 and 400 mg/kg, with 1% Tween 80 in normal saline as negative control and glibenclamide at 5 mg/kg as positive control. A drop of blood was taken from the tip of the tail of each rat at 0.0, 0.5, 1.0, 2.0 and 4.0 h and the glucose level was measured using a glucometer and strip. The blood glucose levels at 0.0 h (T0) were recorded as 100% while the others were expressed as percentage of the T0 values (Adebajo et al., 2009, 2013a,b; Akinwunmi and Ayoola, 2018). The partitioned and bulked column fractions of the extract were similarly tested for anti-hyperglycaemic activity using this procedure.

Antioxidant assay

1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay

The DPPH Radical Scavenging Activity was determined using the standard method earlier reported with ascorbic acid as reference standard (Brand-Williams et al., 1995; Adebajo et al., 2013a; Akinwunmi and Ayoola, 2018).

Ferric reducing antioxidant power (FRAP) assay

FRAP assay was carried out according to the method described by Benzie and Strain (1999).

Total antioxidant capacity (TAC) assay

This was done following the prescribed method of Prieto (1999) and the results were expressed as ascorbic acid equivalents (AAE) (µmolar/g).

Hydroxyl radical scavenging activity (HRSA) assay

The HRSA of the test extract was evaluated by modification of a described method of Ferrer-Sueta and Radi (2009).

Total flavonoid content

The estimation of the total flavonoid content of the extracts was based on the aluminum chloride colorimetric method according to the method of Zhilenet al. (1999) as described by Miliauskaset al. (2004).

Total phenolic content

The total phenol content of the extract was determined by Folin-Ciocalteu’s method of Singletonet al. (1999) as described by Gulcinet al. (2003).

Statistical analysis

Data were expressed as the mean ± SEM for the number (N) of the animals in the group. Analysis of variance (ANOVA) was first used, followed by Bonferroni t-test comparisons to determine the source of significant differences for all determinations, and p<0.05 was considered to be statistically significant. Primer version 3.01 Inc. (McGraw-Hill, USA, 1992) and Graph Pad Instant Software Inc. version 5.0 (San Diego, USA) were used.

RESULTS AND DISCUSSION

Safety profile of S. liberica

Using the Lorke’s method, no death nor any changes in the breathing of the rats was observed. Also, there were no effects on the skin, gastrointestinal, sensory and nervous systems of the rats when given 10, 100, 1000, 1600 and 2900 mg/kg of S. liberica rhizome extract. However, death of the two rats was observed at 5000 mg/kg of methanolextract, giving the median lethal dose (LD50) of S. liberica rhizome extract in this study as 3,808.0 mg/kg. Hence, the extract was tolerably safe and possessed a low risk of toxicity within the dose range used in these experiments; while also the doses at 100, 200 and 400 mg/kg used in the test model for the antihyperglycaemic activity of the crude methanol extract were experimentally safe. However, the LD50 of the aqueous leaf extract of the same S. liberica rhizome had previously been shown to be 4570 mg/kg (Achi and Ohaeri, 2012), thus slightly safer than the methanol extract in the present investigation.

Antihyperglycaemic effects of the extract

Verspohl (2002) and Adebajo et al. (2013a,b) have reported that the results of glucose-loaded rat model in the hyperglycaemia-lowering experiments of medicinal plants or modern drugs could be extrapolated on the Type II diabetic state in humans (especially when glibenclamide and other insulin stimulatory drugs are used as reference standards). Furthermore, the use of glibenclamide in antidiabetic experiments as the standard drug (Luzzi and Pozza, 1997) could be used to determine the early extra-pancreatic and late insulin stimulating effects in terms of the mechanisms of action of the extract being investigated (Murray et al., 2006; Adebajo et al., 2013a,b).

Antihyperglycaemic activities of S. Liberica methanol extract

There was a significant (p < 0.05) blood glucose level reduction from 0.5 to 4 h in the glucose-induced hyperglycaemic rats administered with 1% Tween 80 in normal saline (negative control). This was due to homeostasis and confirmed that the pancreas of the rats used was functioning well (Kar et al., 1999; Adebajo et al., 2009, 2013a; Ayoola et al., 2017a,b). Similarly, the glucose-induced hyperglycaemic rats that were administered with glibenclamide at 5 mg/kg (the positive control) showed a time-dependent reduction of their blood glucose levels, up to the fourth hour, confirming its early minor extra pancreatic and late major insulin stimulating activities (Luzzi and Pozza, 1997). The extract (A) at 100
and 200 mg/kg lacked a time-dependent antihyperglycaemic activity while its effect at 400 mg/kg was time-dependent. The comparable (p > 0.05) antihyperglycaemic activity of the extract (A) with glibenclamide (5 mg/kg) at all doses and at each time points suggested similar early extrapancreatic and late insulinotropic mechanisms of action of glibenclamide as seen in Table 1 (Luzi and Pozza, 1997). However, increasing the dose has not significantly increased the activity. These results are in agreement with the reported hypoglycaemic activity of the aqueous extract of the rhizome of the same plant in alloxan-induced diabetic rats (Ikewuchi and Ikewuchi, 2011).

Table 1. Antihyperglycaemic activities of *S. liberica* methanol extract in glucose loaded rats.

Extract/drug (Dose mg/kg)	Blood glucose levels as percentages of T0 (% reduction in blood glucose relative to negative control at T0)				
	0 h	0.5 h	1 h	2 h	4 h
GLU (10 g/kg)	100.0	83.79±3.81^a	85.89±0.50^b	76.45±1.71^b	74.18±1.97^b
A (100)	100.0	69.17±7.63^a	57.54±3.75^a	58.17±4.41^a	44.17±2.73^a
A (200)	100.0	75.04±2.58^a	65.48±2.09^a,^b	59.24±4.19^a	36.74±1.23^a
A (400)	100.0	74.54±1.95^a	67.30±7.29^a,^b	59.14±3.64^a	42.80±3.64^a
GLI (5)	100.0	75.64±6.73^a	70.68±6.86^a,^b	58.32±6.44^a	45.27±6.88^a

Data show the mean ± SEM blood glucose levels at the different time points expressed as percentages of levels at 0h (T0), n=5. Values in parentheses represent the percentage reductions in blood glucose levels relative to negative control for each time point. Values with different superscripts within columns are significantly different (p > 0.05, one-way analysis of variance followed by the Bonferroni test). GLU (negative control); A: Extract of *S. liberica* rhizome; GLI: Glibenclamide (positive control).

Antihyperglycaemic effects of column fractions of *S. liberica*

Seven bulked column fractions (C₁- C₇) of *S. liberica* were obtained when the ethylacetate fraction of the extract was subjected to column chromatography. Column fractions (C₂- C₇) were tested for antihyperglycaemic activity while C₁ could not be tested due to its low weight. From the result obtained, C₂, C₃ and C₆ lacked antihyperglycaemic activities at 0.5-4 h while C₃, C₅ and C₇ showed moderate insulin stimulating effects at 4 h that was significantly lower than those of the extract, ethyl acetate fraction and glibenclamide (Table 3). This further confirmed that partitioning the extract did not improve the activity of the extract and the antihyperglycaemic constituents of the plant are working synergistically (Table 3). Similar synergistic effect of partitioned and column fractions has been reported for *Eugenia uniflora* leaf (Adebajo et al., 2013a).

Antioxidant activities of *S. liberica*

The DPPH test provides the basic information on the free radical scavenging ability of natural compounds (Nenadis and Tsimidou, 2002). Other antioxidant assay protocols, HRSA, FRAP and TAC were also employed in this study to further confirm the result of DPPH assay (Adebajo et al., 2013a). In the DPPH assay, partitioning the extract caused a reduction in IC₅₀ of the resulting fractions indicating an improvement in its antioxidant properties. The ethylacetate fraction, (B₃) with the least IC₅₀ value of 0.136 possessed the highest antioxidant activity (Table...
Table 2. Antihyperglycaemic effects of the partitioned fractions of *S. liberica* rhizome methanol extract.

Extract/Fractions/Drug (Dose mg/kg)	Blood glucose levels as percentages of T₀ (% reduction in blood glucose relative to negative control at T₀)				
	0 h	0.5 h	1 h	2 h	4 h
GLU (10 g/kg)					
A (200)	100.0				
	83.79±3.81^a	85.89±0.50^c	76.45±1.71^c	74.18±1.97^c	
B₁ (200)	100.0				
	75.04±2.5^b	65.48±2.09^b	59.24±4.19^b	36.74±1.23^a	
	89.71±2.25^b	76.28±1.73^b	58.48±6.61^b	49.88±5.47^{a,b}	
B₂ (200)	100.0				
	80.83±2.82^{a,b}	58.55±4.62^a	51.36±5.23^a	37.40±2.93^a	
	81.19±8.97^a	59.97±8.83^a	57.12±5.92^b	56.68±3.07^b	
B₃ (200)	100.0				
	75.64±6.73^a	70.68±6.86^a	58.32±6.44^a	45.27±6.88^{a,b}	
	83.79±3.81^a	85.89±0.50^c	76.45±1.71^c	74.18±1.97^b	
	75.04±2.5^a	65.48±2.09^b	59.24±4.19^b	36.74±1.23^a	
B₁ (400)	100.0				
	77.36±3.93^b	61.11±6.71^{a,b}	46.79±4.33^{a,b}	39.99±1.61^b	
	85.44±6.39^a	57.86±2.03^a	37.54±4.35^a	34.23±4.39^a	
B₂ (400)	100.0				
	79.18±3.25^b	58.09±2.69^b	51.54±1.46^b	36.35±2.76^b	
B₃ (400)	100.0				
	75.64±6.73^a	70.68±6.86^b	58.32±6.44^b	45.27±6.88^{a,b}	

Data show the mean ± SEM blood glucose levels at the different time points expressed as percentage of levels at 0 h (T₀), n = 5. Values with different superscripts within columns are significantly different (p<0.05), while values with similar superscript are comparable (p<0.05): GLU (10 g/kg): glucose with normal saline (negative control); A: *S. liberica* extract; B₁: n-Hexane fraction; B₂: Ethyl acetate fraction; B₃: Aqueous fraction; GLI: Glibenclamide (positive control).

Table 3. Antihyperglycaemic effects of the column fractions of *S. liberica* rhizome.

Extract/Drug (Dose mg/kg)	Blood glucose levels as percentages of T₀ (% reduction in blood glucose relative to negative control at T₀)				
	0h	0.5 h	1 h	2 h	4 h
GLU (10 g/kg)					
A (200)	100.0				
	83.79±3.81^a	85.89±0.50^b	76.45±1.71^c	74.18±1.97^c	
B₁ (400)	100.0				
	75.04±2.5^a	65.48±2.09^b	59.24±4.19^b	36.74±1.23^a	
B₂ (400)	100.0				
	85.44±6.39^a	57.86±2.03^a	37.54±4.35^a	34.23±4.39^a	
C₁ (400)	100.0				
	91.46±2.40^{a,b}	88.53±3.18^b	82.32±2.51^c	73.97±3.92^c	
C₂ (400)	100.0				
	94.78±1.09^b	86.67±1.87^a	74.21±2.59^c	62.39±2.56^c	
C₃ (400)	100.0				
	95.60±2.07^b	88.28±3.01^b	83.21±3.49^c	63.69±0.82^{ab}	
C₄ (400)	100.0				
	91.54±1.10^b	83.65±0.94^b	78.99±0.43^c	74.12±1.65^c	
C₅ (400)	100.0				
	92.53±2.99^b	87.76±3.76^b	80.52±2.07^c	70.66±1.97^c	
Table 3. Cont’d.

Extract/Drug	IC$_{50}$ (mg/ml)	(µgAAEq/ml)	IC$_{50}$ (mg/ml)			
	DPPH	TPC	TFC	TAC	FRAP	HRSA
SLE	0.170	0.632 ±0.083a	0.348 ±0.025a	3.888 ±0.070f	0.236 ±0.083e	0.677
B$_1$	0.149	0.988 ±0.030b	0.537 ±0.013b	5.712 ±0.014a,e	0.436 ±0.029e	0.068
B$_2$	0.136	1.628 ±0.058c	0.866 ±0.037c	9.504 ±0.143d	0.826 ±0.013d	0.018
B$_3$	0.142	0.897 ±0.018b	0.462 ±0.007b	6.432 ±0.029c	0.372 ±0.007e	0.235
C$_2$	0.126	0.913 ±0.014b	0.785 ±0.02c	6.055 ±0.07c	0.017 ±0.001a	0.160
C$_3$	0.034	1.983 ±0.011d	1.996 ±0.07d	5.470 ±0.21d	0.081 ±0.005d,e	0.085
C$_4$	0.044	0.940 ±0.01b	0.482 ±0.03b	3.266 ±0.08b	0.069 ±0.005c	0.082
C$_5$	0.019	0.670 ±0.033a	0.395 ±0.11a,b	2.574 ±0.19a	0.042 ±0.004b	0.081
C$_6$	0.061	0.940 ±0.01b	0.759 ±0.05c	4.008 ±0.33c	0.106 ±0.014d	0.055
C$_7$	0.026	0.981 ±0.004c	1.274 ±0.23c	4.056 ±0.13c	0.040 ±0.003b	0.082
Vit. C	0.037	NA	NA	NA	NA	NA

Data show the mean ± SEM (n = 6). IC$_{50}$: Concentration needed to give 50% activity; µgAAEq/ml: µg Ascorbic acid equivalent per mL; DPPH: 1,1-diphenyl-2-picrylhydrazyl assay; FRAP: Ferric reducing antioxidant power assay; TAC: Total antioxidant capacity; HRSA: Hydroxyl radical scavenging assay; TPC: Total phenolic content; TFC: Total flavonoid content. SLE: S. liberica extract; B$_1$: n-Hexane fraction; B$_2$: Ethyl acetate fraction; B$_3$: Bulked column fractions; GLI: Gilbenclamide (positive control).

4). Smaller IC$_{50}$ value has been reported to correspond to higher and stronger antioxidant activity (Maisuthiasakul et al., 2008).

Similar to DPPH assay, B$_2$ with the least IC$_{50}$ value of 0.018 in HRSA assay with better activity than the extract was also the most active antioxidant fraction. In the TAC and FRAP assays, the antioxidant properties of B$_2$ were consistent with those observed in DPPH and HRSA assays with B$_2$ giving the highest values of 9.5 and 0.8 µgAAEq/mL, respectively that were significantly higher (p<0.05) than those of extract and other partitioned fractions (Table 4). The highest antihyperglycaemic effect that was elicited by B$_2$ (Table 3) and its best antioxidant properties in the four antioxidant assays (Table 4) suggested a strong link between the two biological activities. Similar effects have been reported for Entandrophragma cylindricum and Eugenia uniflora leaf (Adebajo et al., 2013a; Ayoola et al., 2017a). High values of total phenolic content (TPC) and total flavonoid content (TFC) elicited by B$_2$ (Table 4) indicated that this fraction was richer in phenolic compounds than all other fractions and were possibly responsible for the observed effects. Carica papaya and Citrillus lanatus seeds have similarly been reportedor their antihyperglycaemic and antioxidant activities and have been found to be rich in total phenolic and total flavonoid content (Akinwunmi and Ayoola, 2018).

The antioxidant activities of the bulked column fractions of B$_2$ showed that in DPPH assay, C$_3$, C$_4$ and C$_7$, which were the most active antihyperglycaemic bulked column fractions, gave a highradical scavenging activity that was comparable to the positive control (Table 4). In HRSA assay, C$_3$, C$_7$ and C$_4$ similarly demonstrated good antioxidant effects with low IC$_{50}$ values. Furthermore, in TAC and FRAP assays, C$_3$, C$_4$ and C$_7$ gavem significant free radical scavenging activities with C$_3$ showing better effect than C$_4$ (Table 4). High TPC and TFC values, especially for C$_3$ and C$_7$ showed high concentration of phenolic constituents in these fractions and implicated them in their observed antihyperglycaemic and antioxidant activities (Table 4). It was evident from the results of this work that purification of the extract
improved its antioxidant activities while its antihyperglycaemic effect was further reduced (Tables 1 to 4). Therefore, further fractionation of the fractions for the isolation of their antihyperglycaemic constituents may not be worthwhile.

Lower antihyperglycaemic activities of the fractions of *S. liberica* rhizome in this study suggested that the plant is more effective as an extract in the management of diabetes and should be used as such. Also, the high antioxidant activities of the bulked column fractions may be linked to the other activities of the plant such as anticancer (Abidemi et al., 2015) and hepatoprotective (Ikewuchi et al., 2011);

Conclusion

The results of this study confirmed that *S. liberica* is safe for use, has a significant anti-hyperglycaemic activity that justified its anti-diabetic ethno-medicinal claims. It also has additional anti-oxidant effects.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Abidemi JA, Zahoor AW, Sadhana S, Girish M, Naresh KS, Olutunmiliayo OA, Dilip MM, Aijit KS (2015). In vitro and in vivo antiscorbutic activity of root extracts of *Sansevierialiberica*Gerome and Labroy (Agavaceae). Evidence-Based Complementary and Alternative Medicine 20:15(5):55-66.

Achi N, Ohaeri 0 (2012). Acute and subacute toxicity studies of *Sansevierialiberica* aqueous leaf extracts. Pharma Science Monitor 3:1938-1951.

AdebaJO AC, Ayoola MD, Obagbemi OR, Obotum EM, Ogunsina MO, Verspohl EJ (2013a). Antihyperglycaemic and antioxidant activities of *Eugenia uniflora* leaf: evaluation of ethnomedical claims IV. Ile Journal of Science and Technology 1:1-18.

AdebaJO AC, Ayoola MD, Odediran SA, Aladesanmi AJ, Schmidt TJ, Verspohl EJ (2013b). Evaluation of ethnomedical claims III: anti-hyperglycaemic activities of Gongronematatifolium root and stem. Journal of Diabetes 5:336-43.

AdebaJO AC, Iwalawo EO, Obotum EM, Ikibunre GF, Omisore NO, Adewumi CO (2009). Pharmacological properties of the extract and some isolated compounds of *Clausenalanium* stem bark: anti-trichomonal, anti-diabetic, anti-inflammatory, hepatoprotective and antioxidant effects. Journal of Ethnopharmacology 122:10-19.

Akinwunmi KK, Ayoola MD (2018). Antihyperglycaemic, anti-inflammatory and antioxidant activities of Carica papaya and Citrus lanatus seeds. Ile Journal of Science 20(2):207-217.

Amao O (2015). Hypoglycaemic activity studies on root extracts of *Sansevierialiberica* root in streptozotocin-induced diabetic rats. World Academy of Science, Engineering and Technology International Journal of Medical and Health Sciences 9(2):1.

American Diabetes Association, ADA (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care 37 (Suppl. 1):81-90.

Andre de Souza P, Rodrigues AS, Camara de Lucas N, Leitao GG, Filho AG (2011). Antioxidant activity of natural compounds of *Stachytarpheta* cayennensis by scavenger of mitochondrial reactive oxygen species. Brazilian Journal of Pharmacognosy 21(3):420-426.

Aslan M, Orhan N, Orhan DD, Ergun F (2010). Hypoglycaemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. Journal of Ethnopharmacology 28:384-89.

Ayoola MD, Akinwunmi KK, Agboula OB (2017a). Anti-diabetic and Antihyperglycaemic Activities of *Entandrophragmacylinicordium* and *Triclisiasubcordata*. Nigerian Journal of Natural Products and Medicine 21:24-31.

Ayojola MD, AdebaJO AC, Obotum EM, Oladapo TO, Fleischer TC (2017b). Antihyperglycaemic and anti-oxidant activities of five Nigerian antidiabetic plants. Journal of Science and Technology KNUST 37(2):71-84.

Benzie FF, Strain JJ (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology 299:15-23.

Brand-Williams W, Cuvelier ME, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology 28:29-30.

CAMPBELL for the guide of the use and bioavailability. institute for laboratory animals, division on earth and life studies, national research council of the national academies. Guide for the Care and Use of Laboratory Animals, 8th ed. The National Academies Press, Washington, DC; 2011.

Dix M, Legg TJ (2017). Oxidative stress. Healthline 1:1.

Eze CC, Inya-Agha SI, Ezugwu CO, Ezee SE (2011). Antimicrobial activities of the leaf extract of *Sansevierialiberica*Ger. and Labr. (Draeanaeaceae). African Journal of Pharmaceutical Research and Development 3(1):14-21.

Eze CC, Inya-Agha SI, Ezugwu CO, Ezee SE (2017). Evaluation of anti-inflammatory property of the leaves of *Sansevierialiberica*Ger. and Labr. (Draeanaeaceae). Asian Pacific Journal of Tropical Medicine 6(11):132-139.

Ferreira-Sueta G, Radi M (2009). Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. Chemical Biology 20:161-77.

Gbadamosi IT, Emi U (2017). Natural food wrappers: Nutritional components, antioxidant and microbial activities. Nigerian Journal of Natural Products and Medicine 21:45-53.

Gill LS (1992). Ethnomedical Uses of Plants in Nigeria. University of Benin Press, Benin City, Nigeria p. 209.

Gulcin, SI, Beydemir S, Elemastas M, Kfirevoglu OI (2003). Comparison of antioxidant activity of clove (Eugenia caryophyllata Thumb) buds and lavender (Lavender stoechas L.). Food Chemistry 87:393-400.

Ikewuchi CC, Ayalogu EO, Onyelie EN, Ikewuchi JC (2012). Effect of aqueous extracts of the leaves of *Sansevierialiberica*Gerome and Labroy on blood pressure indices and pulse rates of sub-chronic salt-loaded rats. Journal of Naturol Medicine 12(1):30-38.

Ikewuchi JC, Ikewuchi CC (2011). Hypoglycaemic, hypcholesterolemic, anti-anaemic and ocular-protective effects of an aqueous extract of the rhizomes of *Sansevierialiberica*Gerome and Labroy (Agavaceae) on alloxan induced diabetic Wistar rats. Asian Journal of Pharmacy and Technology 11(4):137-148.

International Diabetes Federation, IDF (2017). 8th edition., 19 Avenue Emile de Mot, B-1000 Brussels, Belgium: p. 387.

Jeanette SJ, Alex KH, David JR, Adjive E (2005). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovascular Diabetology 4:2844-45.

Kar A, Choudhary BK, Bandyopadhyay NG (1999). Preliminary studies on the inorganic constituents of some indigenous hypoglycaemic herbs on oral glucose tolerance test. Journal of Ethnopharmacology 64:179-84.

Lorke D (1983). A new approach to practical acute toxicity testing. Archives of Toxicology 54(4):275-87.

Luzzi L, Pozza G (1997). Glibenclamide: an old drug with a novel mechanism of action? ActaDiabetologica34:239-44.

Ma J, Nakagawa Y, Kojima I, Shibata H (2013). Prolonged insulin stimulation down-regulates GLUT4 through oxidative stress-mediated retromer inhibition by a protein kinase och-dependent mechanism in 3T3L1 adipocytes. Journal of Biological Chemistry 298:133-142.

Maiusithasakul P, Pasuk S, Rithirunjan洁 P (2008). Relationship between antioxidant properties and chemical composition of some Thai plants. Journal of Food Composition and Analysis 21(3):229-240.
Maritim AC, Sanders RA, Watkins JB (2003). Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology 17(1):24-38.

Miliauskas G, Venskutonis PR, Van Beek TA (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extract. Food Chemistry 88:231-237.

Murray RK, Granner DK, Rodwell VW (2006). Harper’s Illustrated Biochemistry, 27th Ed., International Edition, McGraw-Hill Education (Asia), Singapore, pp. 172-175.

Nenadis N, Tsimidou M (2002). Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH•) tests. Journal of the American Oil Chemists’ Society 79(12):1191-1195.

Omodamiro OD, Jimoh MA (2017). Evaluation of in-vitro antioxidant, antiinflammatory and diuretic potential of an ethanol extract of Sansevierialiberica leaves on Wistar albino rats. The Pharmaceutical and Chemical Journal 4(1):16-24.

Osabohien E, Egboh SH (2008). Utilization of Bowstring Hemp fiber as a filler in Natural Rubber Compounds. Journal of Applied Polymer Science 107:210-214.

Prieto P, Pineda M, Aguilar M (1999). Spectrophotometric quantification of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry 269:337-41.

Singleton VL, Rudolf O, Lamuela-Raventos RM (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299:152-178.

Verspohl EJ (2002). Recommended testing in diabetes research. Planta Medica 68:581-90.

Zhilen J, Mengeheng T, Jianming W (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64:555-559.