On-Line Evaluation of Interlaced Yarn

Yoshiyuki Iemoto, Shigeomi Chono and Mingquao Ge*

Faculty of Engineering, Fukui University, Fukui

*Present Address : Nantong Textile Engineering Institute,
Nantong, Jiangsu, P. R. China

Abstract

In order to evaluate interlaced yarns on an on-line real time system, diameters of yarn interlaced of a raw yarn are measured by means of an optical sensor and effects of feed ratio, air pressure and yarn speed on various evaluation quantities are clarified quantitatively. Results obtained are as follows.

(1) The number of tangles measured by the sensor agrees well with that by eye in the case of good processing. The distribution of the tangling part ratio against the tangling part distance obtained by means of the sensor agrees almost with that by eye.

(2) A yarn with many tangling parts has a large interlacing effect index as well as a small standard deviation of tangling part distance. Therefore, extremely speaking, an interlaced yarn can be qualitatively evaluated from only the number of tangles.

(3) When a yarn is not interlaced at all, because it presents flat appearance similar to a raw yarn, the mean yarn diameter shows a large value. When a yarn is interlaced, with increasing the feed ratio the number of tangles shows a variation with the maximum and the mean yarn diameter takes a variation similar to the number of tangles. As the air pressure increases, the number of tangles shows a variation with the maximum and the mean yarn diameter presents a variation opposite to the number of tangles. With the increment of the yarn speed, the number of tangles decreases monotonically while the mean yarn diameter increases monotonically.

(4) Within the limit of the present experiment the tangling part length of yarn interlaced of a raw yarn is longer than the opening part length.

(Received September 3, 1992)
(Accepted for Publication February 9, 1993)
１. 緒 言
マルチフィラメント系に対するインクレーレース加工は、解綫性・懸架性・製織性を向上する目的で無撚糸・無絡糸に集束性を与える工程や、編織布の質を向上する目的で複数の糸を合わせた複合混織糸を製造する工程で用いられる。そこで、インターレース系の評価は、単位長さ当たりの交絡数の交絡数、交絡数の長さ、交絡数と交絡数の間隔（生成間隔）の規則性、交絡数の交絡強度、フィラメントの混合の程度などで行われる。
これらの評価値のうち、最も頻繁に測定されるのは交絡数である。交絡数に関して(1) フックドロップ法、(2) 摩擦法、(3) 目視法、(4) 接触法、(5) 光電管法、(6) 間接法など様々な原理と手法に基づく測定法が提案されている。1. フックドロップ法は、糸に針を刺して糸を糸軸方向に相対運動させると、交絡数ではフィラメントが絡まっているために交絡数より大きな力を要することを利用する方法で、測定速度向上の試みもされている。2. 摩擦法は、走行糸をV字形の溝に接触させるととき溝に働く摩擦力が交絡数で交絡数より大きいことを利用する方法である。また、走行糸を角部に巻きつけるとき糸張力が交絡数で交絡数より大きいことを利用した方法もある。3. 目視法は、糸径が交絡数で交絡数より小さいことを利用して、交絡数を空気の中で目視により数える方法である。糸を水槽の水に浮かべて、交絡数を数える方法もある。4. 接触法は、一定の力で互いに押し合う2個の接糸部材の間に糸を走らせて、2個の接糸部材の間隔は円形断面を保つ交絡数で偏平になる関織数より広くなることを利用している。5. 光電管法では、走行糸を凹状ガラスに接触させると、関織数の糸幅は交絡数より大きくなるので、この糸幅を光電管で測定する。あるいは、ヤーンガイド間の糸径を光電管で測定する。6. 間接法では、交絡数を直接測定しない。インターレース直後の糸張力、バーンの直径や表面反射光強度、水噴流によって発生する糸張力測定し、あらかじめ作成しておいた検定曲線から交絡数を求める方法である。

ヤーンガイド間の走行糸の直径を光電管で測定する方法を除けば、上述の測定法は、人の感覚に依存する、オフライン方式である。オフライン方式でも測定速度が低いため、測定精度が低くて信頼性に乏しい糸に損傷を与える。測定できる評価量が少ないと点を欠く。
オンラインでリアルタイムに交絡数を測定するには、光電管による非接触測定が原理的に最も優れていると思われる。しかし、従来の光電管法を用いた文献(13)では、測定した糸の直径の系軸方向の変化から交絡数やその他の評価量を求めるアルゴリズムや詳細なデータが不明である。

近年の光電子技術の進展に伴って、糸の見分けの直径（あるいは幅を、非接触、高精度、高速に測定できる小型の光センサが提供されている。本報告では、インターレース加工時に糸径を光センサにより非接触で測定し、インターレース糸の外観に関する種々な評価量（糸平均直径、関織数平均直径、交絡数平均直径、糸径の標準偏差、変動係数、無次元関織数平均直径、無次元交絡数平均直径。無次元直径差）を求める方法について述べる。つぎに、原糸をインターレース加工した糸の評価量の加工条件（フィード率、空気圧、糸速）依存性や、仮複糸をインターレース加工した糸に関する従来結果と比較した結果について述べる。

２. 実験装置および方法
実験に用いた試料糸は、ポリエステル原糸（150d/48f）である。
糸走行装置は、従来の装置を改良したものなので、詳細は省略し、改造部分のみを述べる。センサをデリバリーローラと巻取ローラの間に設置する。図1に、センサ（ツインマージャパン㈱のポータブル外径モニターMODEL 460D/2）と糸の設置姿勢を示す。図1では、細部を拡大して描いている。投光器と受光器を持つセンサは、糸に遮られなかった透過光を検出し、糸径に比例した電圧を出力する。
ラの回転速度を変化させて行う。糸張力の測定は、センサの直前に設置したテンションピックアップにより行う。

使用したインターレーザは、糸道管直径2.8mm、糸道管長さ14.7mm、空気噴射ノズル直径1.4mm、ガイド間距離31.5mmである。初期張力は一定値50mN（1mN=0.102gf）とする。

3. 評価量および算出方法

交絡部の単位長さ当たりの数を交絡数 N、交絡部と交絡部の間隔を生成間隔と定義する。交絡数および生成間隔の目視による測定は次のようにする。無張力状態で目視により交絡部と織造部を判定して印を付け、糸に30mNの張力を与えて200個の交絡部を含む糸の長さおよび交絡部の間隔を測定することにより求める。ただし、測定長さは最大5mとする。

図2に、センサにより得られた糸直径dₐの糸軸方向座標zに対する変化の例を示す。ただし、糸直径測定時の糸張力Tₜは30mNである。図(a)は原糸を糸速 v=200m/minで測定したもので、原糸でも見かけの直径は糸軸方向に一定でなく変化していることが分かる。図(b)は図(a)の原糸を加工したインターレーザ糸に関するもので、加工条件はフィード率 F=3%，空気圧 p=0.4MPa（1MPa=10.2kgf/cm²）、糸速 v=200m/minである。図より、原糸の値はインターレーザ糸と比較して大きく、原糸はヤーンガイドにより偏平につぶされて走行することが
分かれる。インターレース系の直径は、原糸に比し糸軸方向に大きな変化を示す。糸軸方向に詳細にみると、交絡部と開織が明瞭に確認できるところもある。原糸と交絡部の間の変化は明瞭である。図のように糸間姿が大きく変化する場合、糸間姿の大きさが変化する。糸軸方向に平均した糸を平均直径を用いるとき、糸軸方向に平均した糸を平均直径を用いるとき、図中のL_{m}はd_{r}=d_{m}+kS_{m}を表す直線である。曲線Cと直線L_{m}の交点（以後、区点と称し、図3に印で表す）により、糸軸に平行に分割する。d_{r}がd_{m}より大きい区間ににおける最小値（△, △）を開織部直径d_{p}の候補とし、d_{m}>d_{m}+kS_{m}を満たすd_{m}（△）を開織部直径と定義する。ただし、kは正の係数。

S_{m}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} (d_{m}-d_{m})^{2}}

ここに、d_{m}はパソコンに取込んだ糸軸方向のi番目の値、nはデータの総数である。

開織部直径d_{m}、交絡部直径d_{m}、開織部直径と交絡部直径の直径差d_{m}の糸軸方向平均値d_{m}、d_{m}, d_{m}をd_{m}で除して、無次元開織部平均直徑D_{m}、無次元交絡部平均直徑D_{m}とする。D_{m}が大きい糸は、開織部・交絡部の区別が明瞭である。

ND_{m}を交絡数の多さと開織部・交絡部の明瞭さを併せて表す効果指標lとする。Lは単位長さ当たりの無次元平均直径差D_{m}の和を表し、糸軸方向の変化と方向の変化の両方の定量的な数値を含むので、イントレース系の外観に対する効果を総合的に評価することができる。Lが大きければ大きいほど、インターレース加工の効果が著しい。

生成幅間数lの平均値を平均生成間隔l_{m}と名付け。l_{m}は交絡数Nの逆数である。開織部直径、交絡部直径を有する区間をそれぞれ開織部、交絡部、残留の区間を未加工部と名付け、それぞれの長さを総和長さl_{m}、交絡長さl_{m}、未加工長さl_{m}と定義する。開織部長さl_{m}、交絡部長さl_{m}、未加工長さl_{m}のそれぞれの和の測定した全長に対する割合を、総和長さ割合R_{m}、交絡長さ割合R_{m}、未加工長さ割合R_{m}とする。生成幅間の全数に対する、l_{m}で生成した数の割合を生成割合R_{m}とする。R_{m}とl_{m}の関係
は生成間隔の規則性を表すので、R_sのl_iに対する分布の様子を生成間隔の標準偏差S_rで代表させる：

$$S_r = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (l_i - l_{\text{avg}})^2}$$

ただし、l_iは生成間隔l_iのi番目の値である。

さて、交絡数Nは、係数kと糸直径測定時の糸張力T_yに依存する。センサによる測定値Nの係数kに対する変化の例を図4に示す。加工条件は、フィード率$F=3\%$、空気圧$p=0.4 \text{MPa}$、糸速$v=200\text{m/min}$で、糸直後測定時の糸張力$T_y=30, 80, 155\text{mN}$の場合である。kが大きいほどNは当然小さい。kの増加に対してNが減少する勾配は、kとT_yにより変化する。以後では$k=1$に設置する。

つぎに、糸直径測定時の糸張力T_yの設定について述べる。センサによる測定値$N, d_{ym}, d_{dm}, d_{dm}$の$T_y$に対する変化の一例を図5に示す。加工条件は、$F=3\%, p=0.4 \text{MPa}, v=200\text{m/min}$である。$v=200\text{m/min}$で測定した原糸直径の変動係数$C_v$（=$S_{d_{ym}}/d_{ym}$）を併せてプロットしてある。$T_y$を大きくすると、糸が伸ばされてかさ高性が減少して、開織半径直径d_{ys}が小さくなるために、平均直径差d_{dm}が減少する。なお、d_{dm}の減少に伴い、

図4 Relation between number of tangles and coefficient ($F=3\%$, $p=0.4 \text{MPa}$, $v=200\text{m/min}$)

図5 Relation between evaluation quantities and yarn tension ($F=3\%$, $p=0.4 \text{MPa}$, $v=200\text{m/min}$)
4. 結果および考察

4.1 フィード率の影響

空気圧 p を 0.4MPa，流速 v を 200m/min に固定し，糸平均直径 d_{zm}，開繊部平均直径 d_{zm}，交繊部平均直径 d_{zm}，糸径の標準偏差 S_d，変動係数 C_v，無次元開繊部平均直径 D_{zm}，無次元交繊部平均直径 D_{zm}，無次元開繊部平均直径差 D_{zm}，交繊数 N，効果指標 I_0，平均生成間隔 l_m，生成間隔の標準偏差 S_m，開繊部長さ割合 R_m，交繊部長さ割合 R_m，未加工部長さ割合 R_m に及ぼすフィード率 F の影響を図 6 に示す。

図(d)より，$F = -1\%$ の場合にはインターレース加工部の余張力が大きいため，目視で測定した交繊数 $N (\triangle)$ は $0.8m$ で，インターネット加工はされない，$F = 0\%$ でインターネット加工が行われている。そこで，$F = -1\%$ と $F = 0\%$ の場合で，種々の評価量の F に対する変化の傾向は異なる。

インターネット加工されない $F = -1\%$ の場合，糸は偏平な外観を呈するために，図(a)より，糸平均直径 d_{zm}（○），開繊部平均直径 d_{zm}（△），交繊部平均直径 d_{zm}（▽）は比較的大きい。このため，図(b)より，糸径の標準偏差 S_d（〇）は大きな値を示し，空気噴流にさらされ張力を受けてもインターネット加工されない糸の変動係数 C_v（△）は原糸の変動係数 $C_v = 10.9\%$ より大きくなる。

図(d)より，センサを用いて測定した交繊数 $N (\triangle)$ は24.2m⁻¹であり，目視による交繊数0m⁻¹と大きく異なる。

インターネット加工が行われる $F \geq 0\%$ の場合，F の増加は単位長さ当たりの糸の張力の増加を意味するので，図(e)より，F の増加に従って d_{zm}，d_{zm}，d_{zm} は増加するが，増加の割合は徐々に減少し，ほぼ一定値に達する。さらに，F を増すと，糸径の変化が減少して，糸がインターネット加工に入り込み，糸切れを起こし，インターネット加工が続いてできない。

$F = 8\%$ の場合でも，その兆候がみられ，1時間以上及び加工は困難となる。図(b)より，糸径の標準偏差 S_d（〇）は F の増加とともに大きくなって，$F = 7\%$ の場合に最大値をとる。インターネット糸の径の変動係数 C_v（△）は原糸の変動係数 C_v の値 10.9\% に比してはあるかに大きい。

4.2 空気圧の影響

フィード率 F を 3\%，流速 v を 200m/min に固定し，種々の評価量に及ぼす空気圧 p の影響を図 8 に
Fig. 6 Relation between evaluation quantities and feed ratio ($p=0.4$ MPa, $v=200$ m/min)
Fig. 7 Relation between tangling part ratio and tangling part distance ($p=0.4$ MPa, $v=200$ m/min)

示す。

図(a)より, p の増加に対して, 糸平均直径 d_{mm}, 開繊部平均直径 d_{nn}, 開繊部平均直径 d_{nn}, 開繊部平均直径差 d_{mm} は同じ変化の傾向を示し, $p=0.3$ MPa の場合に最小値をとる。図(b)より, 糸直径の標準偏差 S_v（◎）は $p=0.3$ MPa の場合に最小値をとる, d_{mm}（図(a)）と概略同じ分布を示す。p を増しても, 糸直径の変動係数 C_v（△）はほとんど変わらない。図(c)より, この加工条件の場合には, 無次元開繊部平均直径 D_{mn}（△）は1.4付近を減少し, 無次元交繊部平均直径 D_{nm}（▼）はほぼ一定値0.78をとる。無次元平均直径差 D_{mn}（〇）は減少するが, わずかであり, 交繊部と開繊部の明瞭さに及ぼす p の影響は小さい。

図(d)より, センサで測定した交繊数 N（〇）は目視による交繊数 N（△）によく一致している。N は $p=0.3$ MPa で最大値を示し, 高空気圧で徐々に減少する。一方, 糸平均直径 d_{mm}（図(a)）は $p=0.3$ MPa の場合に小さい。F を固定した場合, 單位長さ当たりの糸の質量が一定なので, N と d_{mm} の p に対する変化の傾向は逆になる。原系を加工したインター系と仮設系を加工したインター系を比較すると, N の最大値を与える p は同じであるが, 原系を加工したインター系では p の広い範囲にわたって N は小さく, 原系は加工しにくいことが分かる。低空気圧の場合に, F（〇）は大きく, インター系加工の効果が明瞭である。図(e)より, 生成間隔 I_{mm}（〇）は $p=0.3$ MPa の場合に最小値をとる。交繊数 N も多い。このとき, S_v（△）も小さく, 生成間隔の規則性は良好である。図(f)より, p の増加とともに, 開繊部長さ割合 R_n はやや増し, 交繊部長さ割合 R_n はやや減る。これは高空気圧の場合に, 一度生成された交繊部が空気噴射ノズルから噴出する強力な空気噴流にさらされることにより消滅し, 開繊部に変わるためである。この結果, 交繊数 N も少なくなる。未加工部長さ割合 R_n は $p=0.3$ ～0.4 MPa で比較的小さな値をとる。このとき加工が良好に行われていることが分かる。ただし, p の変化に対するこれらの量の変化はあまり大きくなっていないので, p の影響は F の影響に比較して小さい。いずれの p で加工されたインター系糸も, 交繊部は開繊部より長いことが分かる。

4.3 糸速の影響

フィード率 F を 3%, 空気圧 p を 0.4 MPa に固定し, 糸の評価量に及ぼす糸速 v の影響を図9に示す。

図(a)より, v の増加とともに糸平均直径 d_{mm}（〇）と交繊部平均直径 d_{nn}（▼）はわずかに増加する。図(b)より, v の増加に従って, 糸直径の標準偏差 S_v（〇）は400～600m/minでピークを持つ。糸直径の変動係数 C_v（△）は, v を増してもほとんど変わら
Fig. 8 Relation between evaluation quantities and air pressure \((F = 3 \%, \ v = 200 \text{ m/min})\)
Fig. 9 Relation between evaluation quantities and yarn speed ($F=3\%$, $p=0.4\,\text{MPa}$)
ない。図(c)より、無次元開糸部平均直径 $D_m (\Delta)$ は約 1.4、無次元交絡部平均直径 $D_m (\nabla)$ は約 0.7 で、v によって反比例を示し、v を変化させたときの無次元平均径差 $D_m (\Box)$ の変化も小さいので、交絡部と開糸部の明瞭さに及ぼす v の影響は小さいことが分かる。

図(d)より、センサで測定した交絡数 $N (\bigcirc)$ は目鏡による交絡数 $N (\triangle)$ に比例して、v の増加とともに、N は単調に減少する。図(e)と見比べると、N が大きくインターーレースが良い条件下に行われると、平均直径 D_m は小さい。これはすぐに述べたように、F を固定すると、単位長さ当たりの交絡数が一定であるからである。低係數の場合は $L (\Box)$ が大きく、インターーレースの効果が明確である。図(e)より、v を変えた場合、平均生成間隔 $L_m (\bigcirc)$ は $v=200m/min$ のときに最小値をとり、N は大きい。この場合に、$S_m (\triangle)$ は小さく、生成間隔の規則性も良好である。図(f)より、v を変えても開糸部長さ割合 R_m 、交絡部長さ割合 R_e 、非加工部長さ割合 R_n はほとんど変わらない。いずれの v で加工されたインターーレース系も、交絡部は長く、開糸部は短い。

5. 結 言

インターーレース系をオーバーでリアルタイムに評価する目的で、原系をインターーレース加工した系の直角とその糸方向変化を光学センサにより測定し、種々の評価値を定量的に明らかにした。

フィード率、空気圧、系束を種々に変えたときに得られた結果を要約して以下に示す。

(1) センサによる交絡数の測定値は、良好インターーレース加工が行われる場合には、目視による測定値よく一致する。センサにより得られた生成割合が生成間隔に対する分布は、目視による分布に大略一致する。

(2) 交絡数が大きい系は、効果指標が大きく、生成間隔の標準偏差も小さい。したがって、極言すれば、インターーレース系の外觀に及ぼす加工条件を定性的に評価する場合には、交絡数を測定すれば充分で、効果指標が生成間隔の標準偏差を調べる必要はないと考えられる。これらの評価値の良否は交絡数から推定できること。

(3) フィード率が極端に小さいときは、インターーレース加工は行われないために系は原系のように偏平な外観を呈し、測定した系平均径差は大きな値を示す。フィード率を増すと系平均径差はいったん減少するがインターーレース加工が行われ、フィード率をさらに増すと系平均径差は大きくなり、交絡数も増す。しかし、フィード率を増しすぎるとインターーレースが生じ、加工が進行しない。一方、フィード率を固定した場合、空気圧の增加に対して系平均径差は最小値を有する変化を示し、系束を増すと系平均径差は増加する。交絡数の変化の傾向は系平均径差と逆である。

(4) 本実験範囲では、原系をインターーレース加工した系の交絡部は開糸部より長く。

終わりに、本研究は御福井大学企業、御福井工業大学研究機会の助成を受けたことを記し、感謝の意を表す。また本研究を遂行するに当たり、工学試験役井澤昭雄氏、御愛機製作所 代表取締役 松本総務氏、ツィンマージャパン株式 代表取締役 佐々木昭夫氏、福井大学工学部 技官 山内春一氏に多大の援助を賜った。併せて感謝の意を表す。

参考文献
1) 岩間昭 1991 119745
2) 岩間昭 1991 146054
3) 岩倉 1991 90457
4) 岩間昭 1991 115170
5) 岩間昭 1991 193541
6) 岩間昭 1991 66880
7) 岩間昭 1991 194268
8) 家元、舞野、杉 東京工業機械 45 T117 (1992)
9) 岩倉 1991 25833
10) 岩間昭 1991 134157
11) 岩倉 1991 96668
12) 岩間昭 1991 643092
13) 岩間昭 1991 104725
14) 岩間昭 1991 104266
15) 岩倉 1991 124671
16) 岩間昭 1991 115139
17) 岩間昭 1991 265070
18) 岩間昭 1991 90658
19) 岩間昭 1991 63766
20) 家元、舞野、寺地、機械機 42 T117 (1989)