High-Density Livestock Production and Molecularly Characterized MRSA Infections in Pennsylvania

Joan A. Casey,1,2 Bo Shopsin,3 Sara E. Cosgrove,4 Keeve E. Nachman,1,2 Frank C. Curriero,1,5 Hannah R. Rose,3 and Brian S. Schwartz1,6,7

1Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; 2Center for a Livable Future, Johns Hopkins University, Baltimore, Maryland, USA; 3Department of Medicine, New York University School of Medicine, New York, New York, USA; 4Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; 5Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; 6Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; 7Center for Health Research, Geisinger Health System, Danville, Pennsylvania, USA

BACKGROUND: European studies suggest that living near high-density livestock production increases the risk of sequence type (ST) 398 methicillin-resistant Staphylococcus aureus (MRSA) colonization. To our knowledge, no studies have evaluated associations between livestock production and human infection by other strain types.

OBJECTIVES: We evaluated associations between MRSA molecular subgroups and high-density livestock production.

METHODS: We conducted a yearlong 2012 prospective study on a stratified random sample of patients with culture-confirmed MRSA infection; we oversampled patients from the Geisinger Health System with exposure to high-density livestock production in Pennsylvania. Isolates were characterized using S. aureus protein A (spa) typing and detection of Panton-Valentine leukocidin (PVL) and scn genes. We compared patients with one of two specific MRSA strains with patients with all other strains using logistic regression that accounted for the sampling design, for two different exposure models: one based on the location of the animals (livestock model) and the other on crop field application of manure (crop field model).

RESULTS: Of 196 MRSA isolates, we identified 30 spa types, 47 PVL-negative and 15 scn-negative isolates, and no ST398 MRSA. Compared with quartiles 1–3 combined, the highest quartiles of swine livestock and dairy/veal crop field exposures were positively associated with community-onset-PVL-negative MRSA (CO-PVL-negative MRSA vs. all other MRSA), with adjusted odds ratios of 4.24 (95% CI. 1.60, 11.25) and 4.88 (95% CI. 1.40, 17.00), respectively. The association with CO-PVL-negative MRSA infection increased across quartiles of dairy/veal livestock exposure (trend p = 0.05).

CONCLUSIONS: Our findings suggest that other MRSA strains, beyond ST398, may be involved in livestock-associated MRSA infection in the United States.

CITATION: Casey JA, Shopsin B, Cosgrove SE, Nachman KE, Curriero FC, Rose HR, Schwartz BS. 2014. High-density livestock production and molecularly characterized MRSA infections in Pennsylvania. Environ Health Perspect 122:464–470; http://dx.doi.org/10.1289/ehp.1307370

Introduction

Over the past decade, the incidence of community-associated methicillin-resistant Staphylococcus aureus (S. aureus) (CA-MRSA) infection has increased in the United States (Dukic et al. 2013). These CA-MRSA infections cost third-party payers between $478 and $2,200 million annually (Lee et al. 2013). Beginning in the mid-2000s, European research suggested that a portion of the increased incidence of CA-MRSA might be attributable to high-density livestock production because studies had isolated the same MRSA strains from infected farmers and their livestock (Harrison et al. 2013; Hartmeyer et al. 2010). In Europe, multilocus sequence type (ST) 398 has been the most common colonizer of livestock, specifically swine, and swine farmers (Graveland et al. 2010; Lewis et al. 2008). This association has led many to refer to ST398 as livestock-associated MRSA (LA-MRSA) (Price et al. 2012). Importantly, pathways for community transmission have been identified, with MRSA isolated from the air and soil at least 150 m from swine facilities (Gibbs et al. 2006; Schulz et al. 2012) and from meat processing and consumption (Molla et al. 2012; Waters et al. 2011).

To our knowledge, no North American studies have evaluated residence in rural communities as a risk factor for MRSA infection of specific molecular types. Four studies of colonization in farmers have disparate findings. The first reported ST398 as the only type colonizing swine and farmers (Smith et al. 2009); the second found mainly ST398, but also ST5 (Khanna et al. 2008); and two more recent studies identified ST5 [002 by S. aureus protein A (spa) typing (Monecke et al. 2011)] as the primary colonizer of swine and of veterinary students visiting farms (Frana et al. 2013; Molla et al. 2012). In the United States, ST5 has been considered to be a health care–associated MRSA clone, but it has begun to appear in the community in persons without health care risk factors (Klevens et al. 2006). Nearly all MRSA isolates associated with livestock colonization lack the genes encoding Panton-Valentine leukocidin (PVL) (Smith et al. 2009; Sunde et al. 2011). Finally, recent studies have reported that scn, the gene encoding staphylococcal complement inhibitor (SCIN), is often absent in MRSA strains that colonize livestock (McCarthy et al. 2011; Sung et al. 2008; Verkaik et al. 2011).

In a previous study in Pennsylvania using electronic health records from 2005 through 2010 from a large health care system, we reported associations between CA-MRSA infection and residential proximity to high-density livestock operations and the crop fields to which manure was applied (Casey et al. 2013b). Due to the retrospective study design, we were unable to obtain MRSA isolates from patients. The objectives of the present study were to (a) prospectively collect MRSA isolates from patients residing in communities with and without high-density livestock production, (b) characterize these isolates by spa typing and polymerase chain reaction (PCR) for the presence of lukF-lukS genes (encoding PVL) and for the scn gene, and (c) assess associations of high-density livestock production with the molecular subgroups.

Methods

Setting, study design, and participants. The study area was a 38-county region of central and northeast Pennsylvania with 3.8 million inhabitants in which Geisinger Health System provides primary care services from 41 community practice clinics (Figure 1).

Address correspondence to B.S. Schwartz, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Room W7041, Baltimore, MD 21205 USA. E-mail: bschwartz@jhsph.edu

We acknowledge the contributions of D.G. Mercer, J.J. DeWalle, M.S. Kutsick, and S.H. Brandau, who participated in study management, data collection, and patient geocoding, and D. Alman, who assisted with microbiologic testing.

This research was supported by the New York University–Geisinger Seed Grant Program, the Johns Hopkins Center for a Livable Future, the Johns Hopkins Sommer Scholarship, and the National Institute of Environmental Health Sciences (National Institutes of Health, grant ES07141).

The authors declare they have no actual or potential competing financial interests.

Received: 15 July 2013; Accepted: 6 February 2014; Advance Publication: 7 February 2014; Final Publication: 1 May 2014.

464 | VOLUME 122 | NUMBER 5 | May 2014 • Environmental Health Perspectives
The primary care population is representative of the region’s population (Casey et al. 2013b). We compared patients infected with two specific MRSA strains to patients infected with all other strains as described below. Institutional review boards at the Geisinger Health System and the Johns Hopkins Bloomberg School of Public Health approved the study and waived informed consent.

Patients with MRSA infection identified by culture between 1 January 2012 and 31 December 2012, who had a Geisinger primary care provider, were eligible for inclusion. The cases were stratified as community-onset or hospital-onset and as residing in an area of high-density livestock production or not. Infections were classified as community-onset (CO) infections if the patient had a positive culture collected in the outpatient setting or ≤ 2 days after hospital admission. Infections were classified as hospital-onset (HO) if the patient had a positive culture collected > 2 days after hospital admission (David and Daum 2010). Onset date was defined as the date the culture was ordered. Patients living in a ZIP code with a high-density livestock operation or a crop field to which manure from such an operation was applied were defined as residing in an area of high-density livestock production, as described in detail below. Using these case definitions, we completed a random stratified sample (a sample was evaluated because of budgetary limitations) to select cases into four a priori categories (Table 1). We over-selected patients who resided in areas of high-density livestock production to improve the power to detect associations.

Patient data collection. MRSA isolates (one per patient) collected in clinical practice settings were sent to a central laboratory, grown on conventional blood agar plates, and stored at 4°C. A research assistant selected appropriate isolates and obtained samples for transport using sterile swab applicators (BBL Transport Swabs; Becton Dickinson, Franklin Lakes, NJ). A total of 203 unique isolates collected from sites of infection were sent unrefrigerated to New York University Langone Medical Center for genotypic testing, where isolates were subcultured onto agar plates and incubated overnight at 37°C. DNA was then extracted by mechanical lysis. We obtained information on patient demographics and inpatient, outpatient, and emergency department encounters, procedures, medication orders, and laboratory data from the electronic health records. Antimicrobial resistance testing on clindamycin, erythromycin, gentamicin, rifampin, tetracycline, trimethoprim–sulfamethoxazole, and vancomycin was also available from the electronic health records. Multidrug resistance was reported as resistance to three or more unique antimicrobials.

Genotyping. DNA sequence analysis of the protein A gene variable repeat region (spa typing) was completed using the primers TIGR-F (5′-GCAAAGGCACGCCATTTA-3′) and TIGR-R (5′–TCCAGCTAATAACGCTGCAC-3′) (Shopsin et al. 1999). Spa types were assigned a StaphType (e.g., t008, t002) using the Ridom SpaServer database (http://www.spaserver.ridom.de). We subsequently mapped spa types to clonal complex (CC) categories (CC5 or CC5-like, CC8 or CC8-like, or other) using the Ridom SpaServer spa to multilocus sequence type (MLST) database (http://spa.ridom.de/mlst.shtml). We also checked for the presence of PVL genes using S. aureus ATCC 49775 (ATCC, Manassas, VA) as a reference strain and primers as previously described (Lina et al. 1999). The presence of *scn* was determined by an additional PCR (Sung et al. 2008).

Earlier literature from northern Europe suggested that ST398 would be a cause of human infection in those exposed to high-density livestock production (Hartmeyer et al. 2010; Wulf et al. 2012); however, we did not identify any ST398 infections. Therefore, before beginning statistical analysis, we identified two other strains of interest. Although most CA-MRSA contains PVL genes (David and Daum 2010), most MRSA (both ST5 and ST398) isolated from humans and animals with exposure to high-density livestock production in North America has been PVL-negative (Frana et al. 2013; Price et al. 2012; Tattevin et al. 2012). Therefore, we selected community-onset PVL-negative (CO-PVL-negative) MRSA isolates as a unique group with potential ties to high-density livestock production. We created a second molecular subgroup based on recent evidence that only

![Figure 1. High-density livestock production and MRSA infection, Geisinger Health Care System, Pennsylvania.](image)

Table 1. Patients identified and included in the present analysis according to MRSA subtype and exposure in their residential ZIP code.

Group	High-density livestock production	No-high-density livestock production	Total
CO-MRSA			
Patients included [n(%)]	70 (42.2)	96 (57.8)	166
Total patients [n(%)]	321 (32.5)	667 (67.5)	988
Sample weight	4.59	6.95	
HO-MRSA			
Patients included [n(%)]	11 (36.7)	19 (63.3)	30
Total patients [n(%)]	54 (22.5)	188 (77.5)	240
Sample weight	4.91	9.79	
Total patients included [n]	81	115	196
Total patients identified [n]	375	853	1,228

*Abbreviations: CO, community-onset; HO, hospital-onset.

Sample weight was calculated as the total number of patients identified in each stratum divided by the number of patients sampled from that stratum for the present analysis.
about 25% of animal S. aureus isolates carry the \(\textit{ scn} \) gene, whereas human isolates carry it about 90% of the time (Sung et al. 2008; Verkaik et al. 2011). To complete the analysis, we created two case groups—CO-PVL-negative MRSA and \(\textit{ scn} \)-negative MRSA—and compared these groups to patients with all other MRSA types.

Geospatial estimates of high-density livestock exposure. Pennsylvania Act 38 of 2005 (2005) requires nutrient management plans (NMPs) to regulate concentrated animal operations, operations where livestock density exceeds two animal equivalent units (AEUs; 1,000 pounds of animal weight) per acre and where the total number of AEUs exceeds eight. NMPs detail appropriate manure handling, storage, and land application to crop fields, both on-site where the animals are raised and off-site. NMPs also contain data on operation location and acreage and livestock type. In addition, the Pennsylvania Department of Environmental Protection requires NMPs from the largest operations called concentrated animal feeding operations (> 3,000 AEUs, or 301–1,000 AEUs and a concentrated animal operation, or per federal regulation) (U.S. Environmental Protection Agency 2012). For the present analysis, we defined a high-density livestock operation as \(a > 2 \) AEUs per acre and \(> 8 \) AEUs total, or \(b > 300 \) AEUs total.

We used ArcGIS (version 10.0; Esri, Redlands, CA) to geocode livestock operations, treated crop fields, and patients at their home address. Although patients were sampled using presence of high-density livestock production in their ZIP code, this criterion was not used to generate exposure metrics. We created two exposure metrics for livestock operations (swine or dairy/veal):

- **Exposure for patient** \(j = \sum_{i=1}^{n} (a_i d_{ij}^2) \), \[1\]
- **Exposure for patient** \(j = \sum_{k=1}^{n} (c_k d_{kj}^2) \), \[2\]

where \(n \) is the number of operations, \(a_i \) is the AEUs of livestock at operation \(i \), and \(d_{ij}^2 \) is the squared distance (in meters) between operation \(i \) and patient \(j \). In addition, we created two metrics for exposure to treated crop fields (swine or dairy/veal manure applications) during the season of infection:

- **Exposure for patient** \(j = \sum_{k=1}^{n} (c_k d_{kj}^2) \), \[2\]

where \(n \) is the number of treated crop fields, \(c_k \) is the concentration of manure (gallons per square meter) applied to field \(k \) during the season of diagnosis, and \(d_{kj}^2 \) is the squared distance (in meters) between field centroid \(k \) and patient \(j \) (Casey et al. 2013b). We modeled the exposure variables as quartiles to allow for nonlinear associations and for ease of interpretation.

Statistical methods. A multivariable logistic regression model was used to estimate associations between exposures and outcomes (i.e., CO-PVL-negative MRSA or \(\textit{ scn} \)-negative MRSA vs. all other MRSA strains combined). By study design, we oversampled cases living in ZIP codes with high-density livestock production. To account for this sampling design while obtaining unbiased regression estimates and robust standard errors, each participant was assigned a sample weight equal to the total number of MRSA patients identified in a stratum/total number included in the present analysis (Table 1), a measure of the number of patients represented by each sampled individual (Vittinghoff et al. 2005). We used the \(p \)-value from Fisher’s exact test to compare molecular profiles of the two subgroups of interest to all other MRSA isolates (Table 2).

Models were constructed with attention to the small sample size. Our primary models compared the highest quartile of exposure to livestock or treated crop fields to all other quartiles combined. In addition, we modeled quartiles of exposure as an ordinal variable (\(0, 1, 2, 3 \)) and used the \(p \)-value of the resulting coefficient as a test of linear trend. For CO-PVL-negative MRSA, we also estimated associations with individual quartiles of exposure relative to the lowest quartile, but numbers of observations were too small to run comparable models for \(\textit{ scn} \)-negative MRSA. Similarly, adjustment for confounders selected based on \(a \) priori information (Casey et al. 2013a, 2013b) was limited to models of CO-PVL-negative MRSA. Specifically, we adjusted for sex, age (continuous), ever-smoking status, season of infection [winter (December–February) vs. all other seasons combined], physician order for an antibiotic in the 365 to 14 days preceding diagnosis, and ever-receiving Medical Assistance as health insurance (as a surrogate for low individual socioeconomic status [Bratu et al. 2006; Casey et al. 2013b]). We were unable to adjust models for race/ethnicity and to isolate sources because data were off-support (Oakes 2006). We did not adjust for location of onset because location was part of the CO-PVL-negative MRSA definition. Statistical analyses were performed using Stata 11.2 (StataCorp, College Station, TX) using the \textit{svy} commands for weighted regression and R version 3.0.0 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Study population characteristics. From 1 January to 31 December 2012 we collected data on 203 MRSA infections (from a pool of 1,128 patients with MRSA infection) from patients in 20 counties in Pennsylvania. The analysis included 196 isolates (Figure 1) after exclusion of isolates lacking the \(\textit{ mecA} \) gene (\(n = 4 \)) and patients who could not be geocoded or resided outside the study area (\(n = 3 \)). We identified 30 unique Ridom \(\textit{ spa} \) types, 47 \(\textit{ PVL} \)-negative isolates and

Table 2. Onset location, Ridom \(\textit{ spa} \) types, and \(\textit{ PVL} \) presence by MRSA subgroup (\(n \% \)).

Characteristic	CO-PVL-negative\(^a\) \((n = 23)\)	\(\textit{ scn} \)-negative\(^a\) \((n = 15)\)	All other MRSA \((n = 162)\)
CO-MRSA	23 (100)\(^b\)	12 (80.0)	135 (83.3)
CC5 or CC5-like			
002	9 (39.1)	1 (6.7)	17 (10.5)
010	2 (8.7)	0	0
045	0	1 (6.7)	1 (0.6)
082	1 (4.3)	0	0
088	3 (13.0)	1 (6.7)	0
109	1 (4.3)	1 (6.7)	2 (1.2)
1306	1 (4.3)	0	0
16614	1 (4.3)	1 (6.7)	0
Other\(^c\)	0	0	3 (1.8)
CC8 or CC8-like			
008	0	7 (46.7)	115 (71.0)
024	0	1 (6.7)	6 (3.7)
089	0	0	2 (1.2)
121	0	1 (6.7)	2 (1.2)
162	0	0	3 (1.9)
Other\(^d\)	0	0	7 (4.3)
Other CC			
1125	1 (4.3)	1 (6.7)	0
194	1 (4.3)	0	0
19964	1 (4.3)	0	0
111970	1 (4.3)	0	0
Other\(^e\)	0	0	3 (1.9)
Novel\(^f\)	1 (4.3)	0	1 (0.6)
PVL-positive	0	9 (60.0)\(^b\)	140 (86.4)

Percentages do not add to 100 due to rounding.

\(^a\)Four patients were in both the CO-PVL-negative group and the \(\textit{ scn} \)-negative group. \(^b\)Value < 0.05 comparing two subgroups of interest to all other MRSA using Fisher’s exact test. \(^c\)One each of \(t_{216}, t_{316}, t_{11971} \). \(^d\)One each of \(t_{064}, t_{206}, t_{125} \). \(^e\)One each of \(t_{068}, t_{002}, t_{121} \). \(^f\)One each of \(t_{008}, t_{010}, t_{125} \). \(^g\)One each of \(t_{062}, t_{306}, t_{105} \).
Patients with the two MRSA strains of inter-

Antibiotic prescription in previous year 5 (21.7) 1 (6.7) 139 (85.8) 41 (24.5) 46 (26.1) 46 (26.1) 41 (23.3)

Age at infection or visit [median (interquartile range)] (years)

Season of onset

Winter 7 (30.4) 3 (20.0) 27 (16.7) 12 (34.3) 7 (20.0) 7 (20.0) 9 (25.7)

Spring 5 (21.7) 4 (26.7) 37 (22.8) 16 (34.8) 13 (28.3) 9 (19.6) 8 (17.4)

Summer 7 (30.4) 5 (33.3) 39 (24.1) 10 (20.4) 16 (32.7) 12 (24.5) 11 (22.5)

Autumn 4 (17.4) 3 (20.0) 59 (36.4) 11 (16.7) 13 (19.7) 21 (31.8) 21 (31.8)

Swine (quartile)

1 2 3 4

15 (65.2) 11 (73.3) 85 (52.5) 28 (26.2) 25 (23.4) 24 (22.4) 30 (28.0)

46.0 (17.3–62.4) 33.6 (22.5–54.7) 31.1 (8.8–51.7) 37.5 (13.6–59.1)

60.9) 3 (20.0) 33 (20.4) 12 (24.5) 11 (22.5) 14 (28.6) 12 (24.5)

5 (14.7) 1 (6.7) 2 (1.2) 2 (66.7) 1 (33.3) 0 0

1 (4.4) 0 0 0 0 (100) 0

122 (95.1%), was distributed across multiple spa types, and 80% (n = 12) were community-onset. CO-PVL-negative isolates were mostly spa types associated with SCC4.

MOG-Negative strains were more often resistant to antibiotics commonly used to treat MRSA infection (i.e., clindamycin, tetracycline, and trimethoprim–sulfamethoxazole) than all other CO-PVL-positive MRSA strains. The 30 hospital-onset (HO)-MRSA isolates were resistant to more antibiotics compared with CO-MRSA: clindamycin (83.3% vs. 12.7%), tetracycline (6.7% vs. 3.6%), trimethoprim–sulfamethoxazole (3.3% vs. 1.2%), and multidrug (83.3% vs. 14.5%). Resistance patterns did not appear to be associated with agriculture exposure variables, but tetracycline resistance in a small number of isolates (n = 4) was associated with infection by CO-PVL-negative MRSA (p = 0.02).

Associations with livestock and crop field manure exposure. High-density livestock production was not associated with spa-negative MRSA infection in unadjusted analysis (Table 4). Swine livestock exposure was associated with CO-PVL-negative MRSA in unadjusted and adjusted analysis (Table 4), which appeared driven by the association in the fourth quartile of exposure (Figure 2). There was a positive but nonsignificant association with the dichotomized dairy/veal livestock exposure variable [odds ratio (OR) = 2.42; 95% CI: 0.85, 6.88]. There was a trend (p = 0.05) of increasing odds of CO-PVL-negative MRSA across quartiles of dairy/veal livestock exposure; however, all ORs were increasingly imprecise with higher exposure for individual versus lowest quartile exposures (Figure 2). Those in the highest quartile of swine crop field exposure had an OR of 2.38 (95% CI: 0.78, 7.28) of CO-PVL-negative MRSA case compared with those in quartiles 1–3 (Table 4). Dichotomous dairy/veal crop field exposure was associated with CO-PVL-negative MRSA in adjusted analyses (OR = 4.88; 95% CI: 1.40, 17.00) (Table 4). Neither crop field exposures were mostly spa types associated with SCC5.

Table 3. Patient demographic and clinical characteristics of MRSA subgroups by swine livestock exposure quartilea [data are n(%) unless otherwise indicated].

Characteristic	CO-PVL-negative (n = 23)b	spa-negative (n = 15)b	All other MRSA (n = 162)	Swine (quartile)			
	1	2	3	4			
Sex, male							
Male	16 (69.6)	10 (66.7)	139 (85.8)	40 (24.5)			
1 (4.4)	0	0	1 (100)	0			
Unmarried							
Married	15 (65.2)	11 (73.3)	85 (52.5)	28 (26.2)			
5 (21.7)	4 (26.7)	37 (22.8)	16 (34.8)	13 (28.3)			
7 (30.4)	5 (33.3)	39 (24.1)	10 (20.4)	16 (32.7)			
4 (17.4)	3 (20.0)	59 (36.4)	11 (16.7)	13 (19.7)			
Antibiotic prescription in previous year	5 (21.7)	6 (40.0)	65 (40.1)	21 (27.8)	20 (26.3)	15 (19.7)	20 (26.3)
Skin/soft tissue	19 (82.6)	11 (73.3)	141 (87.0)	36 (25.9)			
Respiratory	2 (8.7)	1 (6.7)	2 (1.2)	1 (25.0)			
Other	2 (8.7)	1 (6.7)	4 (2.5)	0	3 (42.9)	2 (28.6)	2 (28.6)
Antibiotic resistancec							
Clindamycin	12 (52.2)	2 (13.3)	32 (19.8)	10 (21.7)			
Erythromycin	18 (78.3)	12 (80.0)	149 (92.0)	43 (24.4)			
Tetracycline	4 (17.4)	1 (6.7)	4 (2.5)	2 (25.0)			
TMP-SMZ	1 (4.4)	1 (6.7)	2 (1.2)	2 (66.7)			
Multidrugb	14 (60.9)	3 (20.0)	33 (20.4)	12 (24.5)			
Community type							
City	1 (4.4)	0	23 (14.2)	11 (45.8)			
Borough	11 (47.8)	5 (33.3)	44 (27.2)	15 (25.9)			
Township	11 (47.8)	10 (66.7)	95 (58.6)	23 (20.2)			
Medical Assistance							
Never received	15 (65.2)	10 (66.7)	127 (78.4)	35 (23.3)			
Location of onset							
Community	27 (100)	15 (83.3)	135 (83.3)	41 (24.7)			
Hospital	0	3 (16.7)	27 (16.7)	8 (26.7)			
No. of patients with high-density livestock production in their residential ZIP code	9 (39.1)	7 (46.7)	67 (41.4)	1 (1.2)	17 (21.0)	50 (30.9)	38 (46.9)

Abbreviations: previous year, 365 to 14 days before infection; TMP-SMZ, trimethoprim–sulfamethoxazole. *Quartile 1: swine livestock exposure < 6.20 AEU/km²; quartile 2: 6.20–16.00 AEU/km²; quartile 3: 16.01–33.40 AEU/km²; quartile 4: > 33.41 AEU/km². Four patients were in both the CO-PVL-negative group and the spa-negative group. Race/ethnicity was missing for two members of the all other MRSA isolates comparison group. Resistance to gentamicin was observed in one CO-PVL-negative isolate, and intermediate resistance to rifampin was observed in one all other MRSA isolates. Resistance to three or more unique antimicrobials.

Environmental Health Perspectives • VOLUME 122 • NUMBER 5 • May 2014

467
variable evidenced a statistically significant trend across quartiles (Figure 2). Associations strengthened slightly as we added sex, age, ever-smoking, antibiotic order, and Medical Assistance to the models. Season of onset was a strong confounder in the crop field exposure models [e.g., the unadjusted OR of 0.79 (95% CI: 0.20, 3.09) increased to 2.38 (95% CI: 0.78, 7.28) (Table 4) for the swine crop field model, primarily due to the inclusion of season as a variable].

Discussion

This analysis compared patients infected by two specific MRSA strains to patients infected by all other MRSA strains and found a number of associations with high-density livestock production. The livestock model incorporated AEUs at the farming operation and distance to the patient residence; whereas the crop field model incorporated manure volume, crop field area, and distance to the patient residence. Although adjusted estimates were imprecise because of small sample numbers, each exposure variable was associated with increased odds of CO-PVL-negative MRSA infection, and three of four were statistically significant. Specifically, there were increased odds comparing the fourth quartiles to the other three quartiles of both swine livestock exposure and dairy/veal crop field exposure. There was also a significant trend of increasing odds across the four quartiles for dairy/veal livestock exposure. For the fourth exposure variable, swine crop field, the OR in the fourth quartile versus the other three was higher, but not statistically significant. Unexpectedly, we did not identify any patients with MRSA infection due to ST398, the MRSA subtype that previously has been associated with livestock operations, mainly based on studies of colonization in Europe.

This raises two issues. First, to understand risk factors for MRSA infection, we need to study MRSA infection rather than colonization. Second, although ST398 may be prevalent among swine and swine farmers in the United States, other strains found on farms may actually be more important for infection.

When we did not identify any infections due to ST398, we evaluated associations of livestock production with two other MRSA strains compared with all other MRSA strains. To our knowledge, only one U.S. study has reported PVL-positive MRSA isolated from swine (Osadebe et al. 2013). Associations with CO-PVL-negative MRSA were of interest because many highly successful human epidemic MRSA clones, like CC5, do not contain PVL genes and have recently been isolated from swine and swine farmers in the United States (Frana et al. 2013; Molla et al. 2012; Osadebe et al. 2013). We observed eight tetracycline-resistant isolates, four of which were CO-PVL-negative MRSA. This resistance could plausibly be a marker of high-density livestock production as tetracycline is the antibiotic most commonly sold for use in U.S. farm animals, and isolates resistant to tetracycline have been observed in workers at industrial livestock operations (Food and Drug Administration 2010; Rinsky et al. 2013). In addition, only 6.7% of HO-MRSA was resistant to tetracycline, suggesting that the association of CO-PVL-negative MRSA is not likely attributable to the health care system. Likewise, we selected scn-negative MRSA strains because we expected MRSA associated with livestock production to lack scn (McCarthy et al. 2011; Sung et al. 2008; Verkaik et al. 2011). Previous work showing selection against scn in animal hosts dealt primarily with ST398 (McCarthy et al. 2011), a strain of MRSA already adapted to animals (Price et al. 2012). Because the scn gene produces a protein that hinders phagocytosis of S. aureus by human neutrophils (Sung et al. 2008), this work might not translate directly to human-adapted strains of MRSA (e.g., ST5 or ST8), especially in the study of infection rather than colonization.

A few U.S. studies have molecularly characterized MRSA isolated from agricultural workers (Frana et al. 2013; Molla et al. 2012; Osadebe et al. 2013; Smith et al. 2009, 2013). Because those studies only described MRSA carriage in persons with direct contact with swine, they may have low utility regarding inference about MRSA infection in the community. Two studies reported transient carriage (< 24 hours) after short-term exposure to pigs and veal calves (Frana et al. 2013; van Cleef et al. 2011). Even if carriage persists after exposure, and the risk of infection increases, infection is not assured (Davis et al. 2004).
Co-POVL-negative MRSA with swine and dairy/veal livestock operations and application of dairy/veal manure to crop fields. Our findings were based on small numbers of observations and indirect estimates of exposure, but if confirmed, have important implications for the role of livestock operations in the MRSA epidemic, the different roles of colonization and infection studies, and the identification of other MRSA strains that may be arising from high-density livestock production. To help estimate the public health burden that high-density livestock production may place on the U.S. health care system, future studies should use MRSA infection, along with colonization, as their outcomes of interest. Our study also indicates the need to look beyond MRSA ST398 when investigating MRSA infection associated with high-density livestock production in the United States.

References

Bratu S, Landman D, Gupta J, Trehan M, Panwar M, Quale J. 2006. A population-based study examining the emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 in New York City. J Clin Microbiol 44:2934–2939.

Casey JA, Cosgrove SE, Stewart WF, Pollak J, Schwartz BS. 2013a. A population-based study of the epidemiology and clinical features of methicillin-resistant Staphylococcus aureus infection in Pennsylvania, 2001-2010. Epidemiol Infect 141(6):1166–1179.

Casey JA, Curriero FC, Cosgrove SE, Nachman KE, Schwartz BS. 2013b. High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Intern Med 173:1980–1990; doi:10.1001/ jamanetworkmed.2013.10408.

David MZ, Daum RS. 2010. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(6):667–687.

Davis KA, Stewart WF, Kheir HK, Flaroz CE, Hospenthal DR. 2004. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis 38:776–782.

Dukic VM, Lauderdale DS, Wilder J, Daum RS, David MZ. 2013. Epidemics of community-associated methicillin-resistant Staphylococcus aureus in the United States: a meta-analysis. PLoS One 8(1):e52722; doi:10.1371/journal. pone.0052722.

Food and Drug Administration. 2010. Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Available: http://www.fda.gov/downloads/ ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/ UCM277657.pdf [accessed 10 September 2013].

Franz TS, Beahm AR, Hanson BM, Kinyon JM, Layman LL, Karriker LA, et al. 2013. Isolation and characterization of methicillin-resistant Staphylococcus aureus from pork farms and visiting veterinary students. PLoS One 8(1):e53736; doi:10.1371/journal.pone.0053736.

Gibbs SG, Green CF, Tarwater PM, Mata LC, Mena KD, Scarpino PV. 2006. Isolation of antibiotic-resistant bacteria from the air plume downwind of a confined animal feeding operation. Environ Health Perspect 114(10):1307–1311; doi:10.1289/ehp.8910.

Golding GR, Bryden L, Levett PN, McDonald RR, Wong A, Wylie J, et al. 2010. Livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 in humans, Canada. Emerging Infect Dis 16(4):587–594.

Graveland H, Wagenaar JA, Heersterbeek H, Mevius D, van Duijkeren E, Heederik D. 2010. Methicillin-resistant Staphylococcus aureus ST398 inveal calf farming: human MRSA carriage related with animal antimicrobial usage and farm hygiene. PLoS One 5(6):e10900; doi:10.1371/journal. pone.0010900.

Harrison EM, Paterson GK, Holden MT, Larsen J, Stegger M, Larsen AR, et al. 2013. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecC homologue mecC2. EMBO Mol Med 5(4):509–515.

Hartmeyer GN, Gahrn-Hansen B, Skov RL, Kolm HS. 2010. Pig-associated methicillin-resistant Staphylococcus aureus: family transmission and skin infection in a newborn. Scand J Infect Dis 42(4):318–320.

Khanne T, Friendship R, Dewey C, Weese JS. 2008. Methicillin-resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet Microbiol 128(1–2):298–302.

Klevens RM, Morrison MA, Fradinik SK, Reinold A, Petis S, Gershman K, et al. 2006. Community-associated methicillin-resistant Staphylococcus aureus and healthcare risk factors. Emerg Infect Dis 12(12):1891–1897.

Lee BY, Singh A, David MZ, Bartich SM, Clayton RB, Huang SS, et al. 2013. The economic burden of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Clin Microbiol Infect 19(6):528–536.

Lewis HC, Malikuk R, Reese C, Wiedenmann BM, Zelichka M, Sorum M, et al. 2008. Pigs as source of methicillin-resistant Staphylococcus aureus CC398 infections in humans. Denmark. Emerg Infect Dis 14(9):1383–1389.

Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, et al. 1999. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29(5):1128–1132.

McCarthy AJ, Witney AA, Gould KA, Moodley A, Guardabassi L, Voss A, et al. 2011. The distribution of mobile genetic elements (MEGs) in MRSA CC398 is associated with both host and country. Genome Biol Evol 3:1364–1374.

Molla B, Byrne M, Abley M, Mathews J, Jackson CR, Fedorka-Cray P, et al. 2012. Epidemiology and genotypic characteristics of meticillin-resistant Staphylococcus aureus strains of porcine origin. J Clin Microbiol 50(11):3687–3693.

Monaco M, Pedroni P, Sanchini A, Bonomini A, Indelicato A, Pantosti A. 2013. Livestock-associated meticillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming. BMC Infect Dis 13:258; doi:10.1186/1471-2334-13-258.

Monecke S, Coomba G, Share AC, Coleman DC, Akpaka P, Borg M, et al. 2011. A field guide to pandemic, endemic and sporadic clones of meticillin-resistant Staphylococcus aureus. PLoS One 6(4):e17936; doi:10.1371/journal. pone.0017936.

Morrison MA, Hageman JC, Klevens RM. 2006. Case definition for community-associated-meticillin-resistant Staphylococcus aureus. J Hosp Infect 62(2):241; doi:10.1016/j.jhin.2005.07.011.

Oakes JM, 2008. Commentary: advancing neighbourhood-effects research—selection, inferential support, and structural confounding. Int J Epidemiol 35(6):643–647.

Osadbe LU, Hanson B, Smith TC, Heimer R. 2013. Prevalence and characteristics of Staphylococcus aureus in Connecticut swine and swine farmers. Zoonoses Public Health 60(3):234–243.

Pennsylvania Act 8 of 2005. 2005. PA Cons. Stat. Art. 51. §317–318. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, et al. 2012. Staphylococcus aureus CC398: host adaptation and emergence of meticillin-resistant in livestock. mBio 3(6):e00635–11; doi:10.1128/mBio.00635-11.

Rinsky JL, Nadimpalli M, Wing S, Hall D, Baron D, Price LB, et al. 2013. Livestock-associated meticillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS One 8(7):e70641; doi:10.1371/journal. pone.0070641.

Salmenlinna S, Lyytikainen O, Vainio A, Myllniemi AL, Rauno S, Kanerva M, et al. 2010. Human cases of meticillin-resistant Staphylococcus aureus CC398, Finland. Emerg Infect Dis 16(10):1626–1629.

Schulz J, Friese A, Klee S, Tenhagen BA, Fetsch A, Rosler U, et al. 2012. Longitudinal study of the contamination of air and of soil surfaces in the vicinity of pig barns by
livestock-associated methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78(16):5666–5671.

Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, et al. 1999. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37(11):3556–3563.

Smith TC, Gebreyes WA, Ablay MJ, Harper AL, Forshey BM, Male MJ, et al. 2013. Methicillin-resistant Staphylococcus aureus in pigs and farm workers on conventional and antibiotic-free swine farms in the USA. PLoS One 8(5):e63704; doi:10.1371/journal.pone.0063704.

Smith TC, Male MJ, Harper AL, Croeger JS, Tinkler GP, Moritz ED, et al. 2009. Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U.S. swine and swine workers. PLoS One 4(1):e4258; doi:10.1371/journal.pone.0004258.

Sunde M, Tharaldsen H, Marstein L, Haugum M, Norstrom M, Jacobsen T, et al. 2011. Detection of methicillin-resistant Staphylococcus aureus sequence type 8 in pigs, production environment, and human beings. J Vet Diagn Invest 23(2):348–350.

Sung JM, Lloyd DH, Lindsay JA. 2008. Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 154(pt 7):1949–1959.

Tattevin P, Schwartz BS, Graber CJ, Volinski J, Bhukhien A, Bhukhien A, et al. 2012. Concurrent epidemics of skin and soft tissue infection and bloodstream infection due to community-associated methicillin-resistant Staphylococcus aureus. Clin Infect Dis 55(6):781–788.

U.S. Environmental Protection Agency. 2012. Regulatory Definitions of Large CAFOs, Medium CAFO, and Small CAFOs. Available: http://www.epa.gov/npdes/pubs/sector_table.pdf [accessed 10 July 2013].

Van Cleef BA, Graveland H, Haenen AP, van de Giessen AW, Heederik D, Wagenaar JA, et al. 2011. Persistence of livestock-associated methicillin-resistant Staphylococcus aureus in field workers after short-term occupational exposure to pigs and veal calves. J Clin Microbiol 49(3):1020–1023.

Verkaik NJ, Benard M, Boelens HA, de Vogel CP, Nouwen JL, Verbrugh HA, et al. 2011. Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin Microbiol Infect 17(3):343–348.

Vittinghoff E, Glidden D, Shiboski S, McCulloch C. 2005. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. New York:Springer Science+Business Media.

Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11(12):1955–1966.

Waters AE, Contente-Cuoto T, Buchhagen J, Liu CM, Watson L, Pearce K, et al. 2011. Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry. Clin Infect Dis 52(10):1227–1230.

Wulf MW, Verduin CM, van Nes A, Huijsdens X, Voss A. 2012. Infection and colonization with methicillin resistant Staphylococcus aureus ST398 versus other MRSA in an area with a high density of pig farms. Eur J Clin Microbiol Infect Dis 31(1):61–65.