Intra-arterial induction for emergency intubation—Should we use?

Sir,

Although accidental and intentional use of intra-arterial (IA) route is described in literature, IA induction is not yet reported from the emergency department (ED) for intubation. We are sharing two interesting cases (one adult and one child), where we used IA induction of anesthesia for emergency intubation as we faced difficulty in getting intravenous access. The patients’ family reviewed this report and gave written consent for publication.

A 23-year-old obese male presented to ED with breathlessness (acute respiratory distress syndrome). His arterial blood gas showed severe hypoxia (PO2 50 mmHg) despite oxygen therapy (50%). But, due to obesity and peripheral edema, we were not able to get venous access. External jugular veins bilaterally were also tried. A 20-gauge cannula, however, could be inserted in his left radial artery successfully. We injected 50 mg of preservative-free lignocaine, 150 mcg fentanyl, and 100 mg succinylicholine through the IA cannula. Cannula was flushed with 50 ml heparinized (1000 U) saline immediately.

A 6-year-old male child presented to ED with hepatic encephalopathy and breathlessness, requiring urgent airway protection. Repeated attempts of venous cannulation failed even by pediatric anesthesiast. A 20-gauge cannula was accidentally inserted in the right brachial artery while searching for antecubital vein. We injected 20 mg of preservative-free lignocaine, 50 mcg fentanyl along with 20 ml of heparinized (500 U) saline this time.

Both the patients’ trachea could be successfully and safely intubated within a minute. After intubation, central venous catheters (in the right internal jugular vein) were placed in priority with ultrasound guidance in both the patients. We palpated all peripheral arterial pulses of involved hands and compared with other hand arterial pulses. There were no color change or temperature differences also in the involved hands in both of them. Serial Doppler studies of involved vessels could be done for both the patients. They always revealed normal blood flow. There were no sequelae of IA injection during their stay in hospital even also in a follow-up (3 months).

Accidental IA injection of sedative-hypnotic drugs are well reported in literature. Even intentional induction of anesthesia using IA route is increasingly reported from pediatric operation theatre. Keeping these facts in our mind, we used IA route in emergency situation. In adults, if intravenous access is difficult or not available, intramuscular, ultrasound-guided central venous access, and intra-tracheal injections are the options. Ultrasound-guided central venous cannulations are time consuming and needs expertise and may not help in emergency situations. Drugs effects for intramuscular or intra-tracheal injections are not reliable (depends upon site of injection and patient's hemodynamic status). In emergency, IA route is less time-consuming than central venous access (much less invasive also) and drugs effects are more reliable than intramuscular or intra-tracheal injections.

In addition, intra-osseous route can solve the problems of emergency access in pediatric emergency situation. However, it needs expertise with instrument and has “difficult to maintain” issues. Even in trained operators, the failure rate is as high as 16%. Tissue necrosis and extremity ischemia following IA injection labels use of this route very debatable. Vasospasm, intravascular thrombosis, and chemical endoarteritis are the proposed pathophysiological mechanism for those morbidities. Different case reports reported that water soluble drugs and drug’s with pH closer to arterial blood pH may be used through IA route. We used aqueous solution of fentanyl and succinylicholine. Prophylactically, we used lignocaine and heparinized saline to reduce vessel spasm and thrombosis.

Emergent condition forced us to use IA route for intubating two patients. Although, in our cases intubation was uneventful, safety profile of IA route could not be certified. IA injections safety needs further research. We decided to use IA route only in desperate emergent conditions. Our view is for prophylactic use of preservative-free lignocaine and diluted heparin to reduce IA thrombosis risk.

Tanmoy Ghatak, Sukhen Samanta
Department of Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Address for correspondence:
Dr. Tanmoy Ghatak,
Rammohan Pally, Arambagh, Hooghly - 712 601, West Bengal, India.
E-mail: tanmoyghatak@gmail.com
5. Gerber AC, Weiss M. Intentional use of intra-arterial medications – the wrong message! Paediatr Anesth 2008;18:894-5.

High altitude cerebral edema with a fatal outcome within 24 h of its onset: Shall acclimatization be made compulsory?

Sir,

High altitude cerebral edema (HACE) is a rare clinical condition which occurs as a result of travelling to high altitude without acclimatization, causing significant morbidity, and mortality. Clinically and pathophysiologically, HACE has been considered extension of acute mountain sickness (AMS), characterized by features of encephalopathy. Generally, it takes 3-5 days to develop HACE after AMS.

We present a case of a 39-year-old healthy male patient who developed HACE with fatal outcome within 24 h of travelling to a height of 3524 meters above sea level. A 39-year-old male patient with no co-morbidity, residing at 560 meters above sea-level decided to go on a vacation by air to an altitude of 3524 m without any prior acclimatization. He started having generalized headache associated with vertigo, nausea, and vomiting, progressively worsening within 14 h of arrival at his destination. He was soon admitted to a local hospital with respiratory distress and altered sensorium. There he was intubated and put on mechanical ventilation. Non-contrast computed tomography (NCCT) of head revealed bilateral thalamic and brain stem infarct. After having received symptomatic and supportive care he was referred to our center.

Thirty-six hour after onset of symptoms; the was received in our casualty with a Glasgow coma scale of E1VTM1 and no cardiac activity. Patient was resuscitated within 10 min using Advanced Cardiac Life Support (ACLS) guidelines. Repeat NCCT head here showed same infarcts with diffuse brain edema and hydrocephalus [Figure 1]. Patient had two more incidence of cardiac arrest from which he was successfully resuscitated. His pupils were fixed, dilated, absent corneal, conjunctival, cough, and gag reflex with negative Dolls eye movement although with spontaneous respiration. He was put on mechanical ventilation and could be given only symptomatic and supportive care. Following day, apnea and calorie test was done which was positive and patient was declared brain dead. The relatives of the patient took the patient home against medical advice.