LINEAR PERIODS AND DISTINGUISHED LOCAL PARAMETERS

JERROD MANFORD SMITH

Abstract. Let F be a nonarchimedean local field of characteristic zero. Let X be the p-adic symmetric space $X = H\backslash G$, where $G = \text{GL}_{2n}(F)$ and $H = \text{GL}_n(F) \times \text{GL}_n(F)$. We verify a conjecture of Sakellaridis and Venkatesh on the Langlands parameters of certain representations in the discrete spectrum of X.

1. Introduction

Let F be a nonarchimedean local field of characteristic zero. Let $G = \text{GL}_{2n}(F)$ and let $H = \text{GL}_n(F) \times \text{GL}_n(F)$. The subgroup H of G is equal to the fixed points of an involution θ of G and the quotient $X = H\backslash G$ is a p-adic symmetric space. We are interested in the study of harmonic analysis on X and its relevance to the Local Langlands Correspondence (LLC). In particular, we aim to understand the discrete spectrum of X, as a representation of G, within the framework developed by Sakellaridis and Venkatesh [23]. The goal of this note is to understand the construction of relative discrete series for X via [27, Theorem 6.3] (see Theorem 2.5) in terms of the associated Langlands parameters, and to provide evidence for the truth of the general conjectures on the discrete spectrum formulated by Sakellaridis and Venkatesh [23, Conjecture 16.2.2].

Let (π, V) be an admissible representation of G on a complex vector space V. If there is a nonzero element $\lambda \in \text{Hom}_H(\pi, 1)$, then we say that (π, V) admits a (local) linear period and we refer to the H-invariant linear form λ on V as a linear period. This terminology parallels the language used in the global setting. If (π, V) admits a nonzero linear period then we say that π is H-distinguished. It is exactly the H-distinguished representations of G that are relevant to the harmonic analysis on X. The irreducible direct summands of the space $L^2(X)$ of square integrable \mathbb{C}-valued functions on X are referred to as relative discrete series representations. If (π, V) is an H-distinguished discrete series representation of G, then (π, V) is automatically a relative discrete series representation for X [18]. The relative discrete series representations constructed in [27, Theorem 6.3] consist of certain tempered

Date: August 25, 2020.
2010 Mathematics Subject Classification. Primary 22E50; Secondary 11F70.

Key words and phrases. Distinguished Langlands parameter, relative discrete series, linear periods.
representations of G that do not appear in the discrete spectrum of the group G.

For H-distinguished supercuspidal representations of G, the main result of this paper is due to Jiang, Nien and Qin [14, 15]. We refer the reader to [15, Theorem 1.1] for a complete statement of their characterization of H-distinction for supercuspidal representations of G (in terms of L-functions, local Langlands functorial transfer, and the Shalika model). Our work relies heavily on the results of Jiang, Nien and Qin and the work of Matringe [21].

We now take a moment to briefly outline the contents of the paper. In the next section, we fix notation and conventions. We recall the notion of a distinguished parameter and the relevant conjecture of Sakellaridis–Venkatesh in Section 1.2. Linear periods and the discrete spectrum of X are discussed in Section 2; in this section, we recall several known results including the work of Matringe [21] and the author’s construction of relative discrete series [27]. In the final part (Section 3), we study the L-parameters of the relative discrete series studied in [27] and prove the main result Theorem 3.3.

1.1. Notation. Let W_F be the Weil group of F. The local Langlands group of F is the Weil-Deligne group $L_F = W_F \times SL(2, \mathbb{C})$. For any integer $k \geq 1$, denote by $S(k)$ the unique (up to equivalence) k-dimensional irreducible representation of $SL(2, \mathbb{C})$. Recall that $S(k) \approx \text{Sym}^{k-1}(\mathbb{C}^2)$, where \mathbb{C}^2 is the standard representation of $SL(2, \mathbb{C})$. We denote the rank-k general linear group $GL_k(F)$ by G_k. Let H_{2k} be the subgroup $GL_k(F) \times GL_k(F)$ of G_{2k}.

Let P be a parabolic subgroup of G with Levi subgroup M and unipotent radical N. Given a smooth representation (ρ, V_ρ) of M we may inflate ρ to a representation of P, also denoted ρ, by declaring that N acts trivially. We define the representation $\iota_G^P \rho$ of G to be the (normalized) parabolically induced representation $\text{Ind}_{G}^{P}(\delta^1_\rho \otimes \rho)$. We will also use the Bernstein–Zelevinsky [3, 28] notation $\pi_1 \times \ldots \times \pi_k$ for the (normalized) parabolically induced representation $\iota_{P_{(m_1, \ldots, m_k)}}^{G_n}(\pi_1 \otimes \ldots \otimes \pi_k)$ of G_n obtained from the standard (block-upper triangular) parabolic subgroup $P_{(m_1, \ldots, m_k)}$ and representations π_j of G_{m_j}, where $\sum_{j=1}^{k} m_j = n$.

Let ρ be an irreducible supercuspidal representation of G_r and let $k \geq 1$ be a positive integer. Let ν denote the character of G_r given by $g \mapsto |\det(g)|_F$, where $|\cdot|_F$ is the normalized absolute value on F and r is understood from context. The unique irreducible quotient $\text{St}(k, \rho)$ of the induced representation

$$\nu^{\frac{1-k}{2}} \rho \times \ldots \times \nu^{\frac{k-1}{2}} \rho$$

is a discrete series representation of G_{kr} [28, Theorem 9.3]. We refer to the representations $\text{St}(k, \rho)$ as generalized Steinberg representations. The usual Steinberg representation of G_n is $\text{St}(n, 1)$. Note that $\text{St}(k_1, \rho_1)$ is equivalent to $\text{St}(k_2, \rho_2)$ if and only if $k_1 = k_2$ and ρ_1 is equivalent to ρ_2 [28, Theorem 9.7(b)].
1.2. **Distinguished parameters.** In this section, suppose that G is an arbitrary connected reductive group that is defined and split over F. Let G^\vee be the complex dual group of G.\(^1\) An A-parameter, or an Arthur parameter, for G is a continuous homomorphism $\psi : \mathcal{L}_F \times \text{SL}(2, \mathbb{C}) \rightarrow G^\vee$ such that

- the restriction $\psi|_{\mathcal{W}_F}$ of ψ to the Weil group \mathcal{W}_F is bounded,
- the image of $\psi|_{\mathcal{W}_F}$ consists of semisimple elements of G^\vee,
- and the restriction of ψ to each of the two $\text{SL}(2, \mathbb{C})$ factors is algebraic.\(^2\)

The L-parameter, or Langlands parameter, for G associated to the A-parameter ψ is the admissible homomorphism $\phi_\psi : \mathcal{L}_F \rightarrow G^\vee$ given by $\phi_\psi(w, g) = \psi(w, g, d_w)$, where

$$d_w = \begin{pmatrix} |w|^\frac{1}{2} & 0 \\ 0 & |w|^{-\frac{1}{2}} \end{pmatrix} \in \text{SL}(2, \mathbb{C}),$$

and $| \cdot | : \mathcal{W}_F \rightarrow \mathbb{R}_{>0}$ is the absolute value determined by the normalized absolute value $| \cdot |_F$ on F^\times via local class field theory. Langlands parameters of the form ϕ_ψ are said to be of Arthur type \cite[Section 3.6]{7}.

Let X be a homogeneous spherical variety for G, that is, X is a (normal) variety defined over F equipped with a transitive G action such that a Borel subgroup B of G has a Zariski-dense orbit. Note that symmetric G-varieties are spherical. Let X^\dagger denote the open B orbit in X. Define P_0 to be the standard parabolic subgroup G that stabilizes X^\dagger, that is, $P_0 = \{ g \in G : X^\dagger = X^\dagger g \}$. Let $x_0 \in X^\dagger(F)$ and let H be the stabilizer of x_0 in G. Then $X \cong H \backslash G$. For a fixed x_0 there is a natural choice of Levi subgroup M_0 of P_0 \cite[§2.1]{23}.

Remark 1.1. If $X = G^\theta \backslash G$ is a symmetric variety, defined by an F-involution θ of G, then there is a natural choice of $x_0 = G^\theta$-e. The parabolic subgroup P_0 is a minimal θ-split parabolic subgroup and the Levi subgroup $M_0 = P \cap \theta(P_0)$ is θ-stable. Recall that a parabolic subgroup P of G is θ-split if $\theta(P)$ is opposite to P.

Before stating their conjectures on the parameters of relative discrete series, we recall Sakellaridis and Venkatesh’s definition of a distinguished morphism. We refer the reader to \cite[§2.1–2.2, 3.2]{23} for more detail and in particular for the definition of the spherical roots. Fix a maximal F-split torus A_0 of G contained in $B \cap M_0$. Let $A^\vee \subset G^\vee$ be the complex dual torus of A_0. Define A_X to be the torus $A_0/(A_0 \cap H)$. Let A^*_X be the complex torus dual to A_X. Dualizing the surjective map $A_0 \rightarrow A^*_X$ gives rise to a finite-to-one map $A^*_X \rightarrow A^\vee$. Let G^\vee_X be the complex dual group of the spherical variety X defined by Sakellaridis and Venkatesh, defined under the technical assumption of \cite[Proposition 2.2.2]{23} on the spherical roots. The

\(^1\)Since G is split over F, \mathcal{W}_F acts trivially on G^\vee and without loss of generality the L-group $^L G$ coincides with the dual group G^\vee.

\(^2\)The second $\text{SL}(2, \mathbb{C})$ factor is referred to as the Arthur $\text{SL}(2)$.
torus A^*_X is a maximal torus of G'_X. The aim of Definition 1.2 is to produce an appropriate notion of extending the map $A^*_X \to A^*$ to a homomorphism from G'_X to G'. Let Σ_X denote the set of spherical roots of X. Let $\gamma \in \Sigma_X$. It is known [1, 5] that either

- γ is proportional to a positive root α of A_0 in G, or;
- γ is proportional to the sum $\alpha + \beta$ of two positive roots α of A_0 in G such that α is orthogonal to β and both α and β are contained in a system of simple roots (but not necessarily the simple roots corresponding to B),

In the first case, set $\gamma_0 = \alpha$ and in the second case set $\gamma_0 = \alpha + \beta$ (note that in the second case $\alpha + \beta$ is not a root of A_0 in G; moreover, α and β are not unique, but there is a canonical choice [23, Corollary 3.1.4]). The roots α and β are referred to as the associated roots of γ_0 (if $\gamma_0 = \alpha$, then α is the associated root). Sakellaridis and Venkatesh call the set $\Delta_X = \{\gamma_0 : \gamma \in \Sigma_X\}$ the simple normalized spherical roots of X.

Definition 1.2. A distinguished morphism $\xi : G'_X \times \text{SL}(2, \mathbb{C}) \to G'$ is a group homomorphism such that

1. the restriction of ξ to G'_X extends the canonical map of tori $A^*_X \to A^*$
2. for every simple normalized spherical root $\gamma_0 \in \Delta_X$, the corresponding root space of the Lie algebra \mathfrak{g}'_X maps into the sum of root spaces of its associated roots under the differential of ξ
3. the restriction of ξ to the $\text{SL}(2, \mathbb{C})$ factor is a principal morphism into $M'_0 \subset G'$ with weight $2\rho_{M_0} : \mathbb{G}_m \to G'$, where \mathbb{G}_m is identified with the maximal torus of $\text{SL}(2, \mathbb{C})$ via $a \mapsto \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ and $2\rho_{M_0}$ is the sum of the positive roots of A_0 in M_0.

Remark 1.3. Sakellaridis and Venkatesh proved that distinguished morphisms are unique up to A^* conjugacy [23, Proposition 3.4.3]. Knop and Schalke have proved the existence of distinguished morphisms in full generality [20].

Definition 1.4. An A-parameter $\psi : \mathcal{L}_F \times \text{SL}(2, \mathbb{C}) \to G'$ is X-distinguished if it factors through the distinguished morphism $\xi : G'_X \times \text{SL}(2, \mathbb{C}) \to G'$, that is, there exists a tempered (that is, bounded on \mathcal{W}_F) L-parameter $\psi_X : \mathcal{L}_F \to G'_X$ such that $\psi(w, g) = \xi(\psi_X(w), g)$.

We are now in a position to state the conjecture of Sakellaridis and Venkatesh on the parameters of relative discrete series representations (see [23, Conjectures 16.2.2, 16.5.1] for statements of the full local conjectures). Recall that an L-parameter $\phi : \mathcal{L}_F \to G'$ is elliptic if and only if the image of ϕ is not contained in any proper parabolic subgroup of G'.

Conjecture 1.5 (Sakellaridis and Venkatesh). A relative discrete series representation π in $L^2(X)$ is contained in an Arthur packet corresponding to an X-distinguished A-parameter $\psi : \mathcal{L}_F \times \text{SL}(2, \mathbb{C}) \to G'$ such that the L-parameter $\psi_X : \mathcal{L}_F \to G'_X$ is elliptic.
Our ultimate aim is to prove that the relative discrete series representations for $X = \text{GL}_n(F) \times \text{GL}_n(F) \backslash \text{GL}_{2n}(F)$ considered in [27] satisfy Conjecture 1.5. In the case that $G = \text{GL}_{2n}$, Arthur packets are L-packets and are singleton sets. This fact greatly simplifies the situation; moreover, we ultimately only need to consider L-parameters because the relative discrete series produced in [27] are all tempered.

2. Linear periods and relative discrete series

For the remainder of the paper, we let $G = \text{GL}_{2n}(F)$ and let $H = \text{GL}_n(F) \times \text{GL}_n(F)$. Let $X = H \backslash G$ be the p-adic symmetric space associated to the symmetric pair (G, H). In this section, we recall the main result of [27] and some background on local linear periods. For the symmetric pair (G, H), multiplicity-one is known due to work of Jacquet and Rallis [13].

Theorem 2.1 (Jacquet–Rallis). Let (π, V) be an irreducible admissible representation of G. The dimension of the space $\text{Hom}_H(\pi, 1)$ is at most one. If $\dim \text{Hom}_H(\pi, 1) = 1$, then π is self-contragredient, that is, $\tilde{\pi} \cong \pi$.

Remark 2.2. Jacquet and Rallis also proved that if an irreducible admissible representation (π, V) of G admits a nonzero Shalika model, then π is H-distinguished. The converse for irreducible supercuspidal representations was obtained by Jiang, Nien, and Qin [14, Theorem 5.5]. Sakellaridis and Venkatesh [23, Section 9.5], and independently Matringe [21, Theorem 5.1], proved the converse for irreducible H-relatively integrable and relative discrete series representations.

As above, for a positive integer m we write $G_m = \text{GL}_m(F)$ and, if m is even, $H_m = \text{GL}_{m/2}(F) \times \text{GL}_{m/2}(F)$. Let π be a discrete series representation of G_m. Let $L(s, \pi \times \pi)$ be the local Rankin–Selberg convolution L-function. Shahidi [25, Lemma 3.6] proved the local identity

$$L(s, \pi \times \pi) = L(s, \pi, \wedge^2)L(s, \pi, \text{Sym}^2),$$

where $L(s, \pi, \wedge^2)$, respectively $L(s, \pi, \text{Sym}^2)$, denotes the exterior square, respectively symmetric square, L-function of π defined via the Local Langlands Correspondence (LLC). The L-function $L(s, \pi \times \pi)$ has a simple pole at $s = 0$ if and only if π is self-contragredient [12]. Note that $L(s, \pi, \wedge^2)$ cannot have a pole when m is odd (see, for instance, [6, Section 9], [19, Theorem 4.5]). For all discrete series representations of G_m, and all irreducible generic representations of G_{2m}, the associated Jacquet–Shalika and Langlands–Shahidi local exterior square L-functions agree with with the exterior square L-function defined via the LLC [11, Theorem 4.3 in §4.2], [19, Theorems 1.1 and 1.2].

Matringe proved the following results which characterize the H-distinction of discrete series representations of G. The first result appears as [21, Proposition 6.1], and the second appears as [21, Theorem 6.1].
Theorem 2.3 (Matringe). Suppose that π is a square integrable representation of G, then π is H-distinguished if and only if the exterior square L-function $L(s, \pi, \wedge^2)$ has a pole at $s = 0$.

Theorem 2.4 (Matringe). Suppose that $m = kr$ is even. Let ρ be an irreducible supercuspidal representation of G_r. Let $\pi = St(k, \rho)$ be a generalized Steinberg representation of G_m.

1. If k is odd, then r must be even, and π is H_m-distinguished if and only if $L(s, \rho, \wedge^2)$ has a pole at $s = 0$ if and only if ρ is H_r-distinguished.
2. If k is even, then π is H_m-distinguished if and only if $L(s, \rho, \text{Sym}^2)$ has a pole at $s = 0$.

The author has studied relative discrete series for several p-adic symmetric spaces and carried out a systematic construction of relative discrete series in the papers [26, 27]. The following result forms part of [27, Theorem 6.3]. As the work [27] relies on [17], we further assume that the residual characteristic of F is odd.

Theorem 2.5. Suppose that F has odd residual characteristic. Let (m_1, \ldots, m_d) be a partition of $2n$ such that each m_i, $1 \leq i \leq d$ is an even integer. Let τ_i, $1 \leq i \leq d$, be pairwise inequivalent H_{m_i}-distinguished discrete series representations of G_{m_i}. The parabolically induced representation $\pi = \tau_1 \times \ldots \times \tau_d$ is a relative discrete series representation. That is, π occurs in the discrete spectrum of $X = H \backslash G$.

The aim of the current work is to prove that the local parameters of the relative discrete series representations described in Theorem 2.5 satisfy Conjecture 1.5.

3. X-distinguished X-elliptic parameters

Next we record a description of the dual group G_X^\vee attached to $X = H \backslash G$ and choose a representative for the distinguished morphism $\xi : G_X^\vee \times \text{SL}(2, \mathbb{C}) \to G^\vee$. The existence of the distinguished morphism is now known in full generality by the work of Knop and Schalke [20]. Lemma 3.1 is well known, thus we omit the proof which amounts to a routine calculation of the restricted root system attached to X (see [27, Sections 3.1 and 5.1], cf. [20, Table 3]). We note that the fact that the distinguished morphism $\xi : G_X^\vee \times \text{SL}(2, \mathbb{C}) \to G^\vee$ is trivial on the $\text{SL}(2, \mathbb{C})$-factor follows from the fact that a minimal θ-split parabolic subgroup of G is a Borel subgroup P_0, with θ-stable Levi $A_0 = M_0$, and the principal morphism of $\text{SL}(2, \mathbb{C})$ into $M_0^\vee = A_0^\vee$ is trivial (cf. Definition 1.2).

Lemma 3.1. The complex dual group G_X^\vee associated to X is the symplectic group $\text{Sp}(2n, \mathbb{C})$. The distinguished morphism $\xi : G_X^\vee \times \text{SL}(2, \mathbb{C}) \to G^\vee$ is trivial on the $\text{SL}(2, \mathbb{C})$ factor and is given by the inclusion map into $G^\vee = \text{GL}(2n, \mathbb{C})$ on the G_X^\vee component.
Since the distinguished morphism $\xi : G^\vee_X \times \text{SL}(2, \mathbb{C}) \to G^\vee$ is trivial on the $\text{SL}(2, \mathbb{C})$-factor, Conjecture 1.5 predicts that an X-distinguished A-parameter $\psi : \mathcal{L}_F \times \text{SL}(2, \mathbb{C}) \to G^\vee$ must also be trivial on the Arthur $\text{SL}(2)$.

That is, Conjecture 1.5 predicts that the relative discrete series representations for X should be tempered representations of G. This is in agreement with the fact that the symmetric space X is known to be tempered, that is, the Plancherel measure of $L^2(X)$ is supported on tempered representations of G [4, Proposition 2.7.1], [8, Corollary 1.2]. Moreover, we may restrict our attention to tempered L-parameters for G instead of dealing with more general Arthur parameters.

Let $\phi : \mathcal{L}_F \to G^\vee$ be an X-distinguished L-parameter, i.e., $\phi \otimes 1 : \mathcal{L}_F \times \text{SL}(2, \mathbb{C}) \to G^\vee$ is an X-distinguished A-parameter. Thus ϕ is an L-parameter for G that has image contained in $G^\vee_X = \text{Sp}(2n, \mathbb{C})$ (up to conjugacy), and since $\text{SO}(2n + 1)^\vee = \text{Sp}(2n, \mathbb{C})$, we may regard ϕ as an L-parameter for the split special orthogonal group $\text{SO}_{2n+1}(F)$. We say that the parameter ϕ is X-elliptic if the image of ϕ is not contained in any proper parabolic subgroup of G^\vee_X. In particular, if ϕ is X-elliptic, then the parameter $\phi : \mathcal{L}_F \to G^\vee_X$ corresponds to a finite set (an L-packet) Π_ϕ of essential discrete series representation of $\text{SO}_{2n+1}(F)$ [2, Proposition 6.6.5]. Conjecture 1.5 predicts that the discrete spectrum of X is contained in the image of the local Langlands functorial transfers, determined by the inclusion $\text{Sp}(2n, \mathbb{C}) \hookrightarrow \text{GL}(2n, \mathbb{C})$, of representations in the discrete spectrum of $\text{SO}_{2n+1}(F)$. In fact, it is known that an irreducible tempered representation π of G is H-distinguished if and only if π is the local Langlands functorial lift of a generic discrete series representation of $\text{SO}_{2n+1}(F)$ [16, Theorem 2.1], [22, Theorem 3.1].

Let $\tau = \text{St}(k, \rho)$ be a generalized Steinberg representation, where ρ is an irreducible unitary supercuspidal representation of G_r. Let $m = kr$. By the LLC for the general linear group [9, 10, 24], the L-parameter $\phi_r : \mathcal{L}_F \to \text{GL}(m, \mathbb{C})$ of the generalized Steinberg representation $\tau = \text{St}(k, \rho)$ is equal to $\phi_r = \phi_\rho \otimes \mathcal{S}(k)$, where $\phi_\rho : \mathcal{W}_F \to \text{GL}(r, \mathbb{C})$ is the (irreducible) L-parameter of the supercuspidal representation ρ and $\mathcal{S}(k)$ is the unique irreducible k-dimensional representation of $\text{SL}(2, \mathbb{C})$. The following proposition is a consequence of Theorem 2.3 [21, Theorem 6.1].

Proposition 3.2. Let $k, r \geq 2$ be integers such that $m = kr$ is even. Let ρ be an irreducible self-contragredient supercuspidal representation of G_r. Let $\tau = \text{St}(k, \rho)$ be the generalized Steinberg representation of G_m attached to k and ρ. If τ is H_m-distinguished, then the image of the L-parameter ϕ_r is contained in the complex symplectic group $\text{Sp}(m, \mathbb{C})$.

Proof. As above, the L-parameter of τ is equal to $\phi_r = \phi_\rho \otimes \mathcal{S}(k)$.

1. If k is odd, then r is even. By assumption τ is H_m-distinguished; therefore, by Theorem 2.4, ρ is H_r-distinguished. By [14, Theorem 5.5], ρ is a local Langlands functorial transfer from $\text{SO}_{r+1}(F)$. In particular, ρ is of symplectic type and its L-parameter ϕ_ρ has image
contained in \(\text{Sp}(r, \mathbb{C}) \). When \(k \) is odd, the image of \(\text{SL}(2, \mathbb{C}) \) under \(S(k) \) is contained in the complex orthogonal group \(\text{O}(k, \mathbb{C}) \). It follows that the image of \(\phi_\tau \) preserves a non-degenerate skew-symmetric bilinear form on \(\mathbb{C}^r \otimes \mathbb{C}^k \cong \mathbb{C}^m \) given by the tensor product of the non-degenerate skew-symmetric bilinear form on \(\mathbb{C}^r \) preserved by \(\text{Im} \varphi_\rho \) and the non-degenerate symmetric bilinear form on \(\mathbb{C}^k \) preserved by \(\text{Im} S(k) \). That is, \(\text{Im} \phi_\tau \) is contained in \(\text{Sp}(m, \mathbb{C}) \).

(2) If \(k \) is even, then the image of \(\text{SL}(2, \mathbb{C}) \) is contained in the symplectic group \(\text{Sp}(k, \mathbb{C}) \). Since \(\tau \) is \(H_m \)-distinguished; it follows from Theorem 2.3, that the symmetric square \(L \)-function \(L(s, \rho, \text{Sym}^2) \) has a pole at \(s = 0 \). In this case, \(\rho \cong \tilde{\rho} \) is self-contragredient and the exterior square \(L \)-function \(L(s, \rho, \wedge^2) \) does not have a pole at \(s = 0 \) \([12], [25, Lemma 3.6]\). It follows that \(\phi_\tau \) is an irreducible self-dual \(r \)-dimensional representation of \(W_F \) such that \(\text{Im} \phi_\tau \) is not contained in a symplectic group \([14, Theorem 5.5]\). Following \([2, Section 1.2]\), one may readily observe that \(\text{Im} \phi_\tau \) must then be contained in the complex orthogonal group \(\text{O}(r, \mathbb{C}) \). As above, the image of \(\phi_\tau \) preserves a non-degenerate skew-symmetric bilinear form on \(\mathbb{C}^m \) and \(\text{Im} \phi_\tau \) is contained in \(\text{Sp}(m, \mathbb{C}) \).

□

Theorem 3.3. Let \(\pi \) be an \(H \)-distinguished relative discrete series representation of \(G \) constructed via Theorem 2.5. The image of the \(L \)-parameter \(\phi_\pi \) of \(\pi \) is contained in the symplectic group \(\text{Sp}(2n, \mathbb{C}) \); moreover, the image of \(\phi_\pi \) is not contained in any proper parabolic subgroup of \(\text{Sp}(2n, \mathbb{C}) \).

Proof. By assumption, \(\pi = \tau_1 \times \ldots \times \tau_d \), where \(2n = \sum_{i=1}^d m_i \) and each \(m_i = k_i r_i \) is an even integer, and \(\tau_i \) are pairwise inequivalent \(H_{m_i} \)-distinguished discrete series representation of \(G_{m_i} \), for all \(1 \leq i \leq d \). Moreover, each \(\tau_i = \text{St}(k_i, \rho_i) \) is a generalized Steinberg representation, where \(\rho_i \) is an irreducible unitary self-contragredient supercuspidal representation of \(G_{r_i} \). The compatibility of the LLC with parabolic induction gives that \(L \)-parameter of \(\pi \) is equal to the direct sum

\[
\phi_\pi = \phi_{\tau_1} \oplus \ldots \oplus \phi_{\tau_d}.
\]

By Proposition 3.2, \(\text{Im} \phi_{\tau_i} \subset \text{Sp}(m_{i}, \mathbb{C}) \), for all \(1 \leq i \leq d \). Each of the parameters \(\phi_{\tau_i} \) are elliptic in \(\text{GL}(m_i, \mathbb{C}) \) and thus are also elliptic in \(\text{Sp}(m_i, \mathbb{C}) \) \([8, Lemma 3.1]\). Moreover, since \(\tau_i \) is determined by \(\phi_{\tau_i} \) up to conjugacy in \(\text{GL}(m_i, \mathbb{C}) \), we may assume that \(\text{Im} \phi_{\tau_i} \) is contained in the symplectic group determined by the non-singular skew-symmetric matrix \(J'_{m_i} \), where

\[
J'_m = \begin{pmatrix} 0 & J_{m/2} \\ -J_{m/2} & 0 \end{pmatrix} \quad \text{and} \quad J_k = \begin{pmatrix} 1 \\ & \ddots \\ \vdots & \ddots & 1 \end{pmatrix},
\]
for any even integer $m \geq 2$ and any $k \geq 1$. That is, for an even integer m, we realize the symplectic group $\text{Sp}(m, \mathbb{C})$ as the subgroup

$$\text{Sp}(J'_m) = \{ g \in \text{GL}(m, \mathbb{C}) : J'_m g = J'_m \}$$

of $\text{GL}(m, \mathbb{C})$. It follows that the image of the L-parameter ϕ_π is contained in the subgroup $\prod_{i=1}^{d} \text{Sp}(J'_m)$ of the symplectic group $\text{Sp}(J'_{2n}) = \text{Sp}(2n, \mathbb{C})$ in $G^\prime = \text{GL}(2n, \mathbb{C})$, where $\text{Sp}(J'_{2n})$ is determined by the non-singular skew-symmetric matrix $J'_{2n} = J'_{m_1} \oplus \ldots \oplus J'_{m_d}$. In fact, $J'_{2n} = w_{+}^{-1}J'_{2n}w_{+}$, where w_{+} is the permutation matrix corresponding to the permutation of 2^{i-1}, and $2i \mapsto 2n + 1 - i$, for $1 \leq i \leq n$. Thus $\text{Sp}(J'_{2n}) = w_{+}^{-1}\text{Sp}(J'_{2n})w_{+}$; moreover, $w_{+}(\text{Im } \phi_\pi)w_{+}^{-1} \subset \text{Sp}(J'_{2n})$.

It now remains to show that ϕ_π is elliptic in $\text{Sp}(2n, \mathbb{C})$. We argue by contradiction. Suppose that ϕ_π factors through a (proper) maximal parabolic subgroup P of $\text{Sp}(2n, \mathbb{C})$. Since each τ_i is a discrete series representation, the representations ϕ_{τ_i} of L_{F} are irreducible; in particular, ϕ_π is semisimple and must factor through a Levi component L of P. Up to conjugacy, L has the form

$$L = \left\{ \begin{pmatrix} x & y \\ J'_{m_1}^{-1} & J'_{m_2} \end{pmatrix} : x \in \text{GL}(m, \mathbb{C}), y \in \text{Sp}(2k, \mathbb{C}) \right\},$$

for some integers m, k so that $n = m + k$ and $m \geq 1$. It follows that ϕ_π can be decomposed as the direct sum $\phi_\pi = \phi_{1} \oplus \phi_{0} \oplus \phi_{1}^\vee$, where ϕ_{1} and ϕ_{0} are finite dimensional representations of L_{F}, $\phi_{1} \neq 0$, and ϕ_{1}^\vee denotes the contragredient of ϕ_{1}. By assumption, ϕ_π is the direct sum of self-dual non-isomorphic irreducible representations (3.1); therefore, ϕ_π cannot be decomposed as $\phi_\pi = \phi_{1} \oplus \phi_{0} \oplus \phi_{1}^\vee$ and this is a contradiction. We conclude that $\text{Im } \phi_\pi$ cannot be contained in a proper parabolic subgroup of $\text{Sp}(2n, \mathbb{C})$, that is, ϕ_π is elliptic in $\text{Sp}(2n, \mathbb{C})$.

Theorem 3.3 says precisely that the L-parameters of the known relative discrete series representations for $X = H \backslash G$ are X-distinguished and X-elliptic. That is, the relative discrete series for X produced via **Theorem 2.5** satisfy **Conjecture 1.5**.

Remark 3.4. The last paragraph of the proof of **Theorem 3.3**, together with **Conjecture 1.5**, suggests that we cannot relax the regularity condition imposed in **Theorem 2.5** (cf. [27, Remark 6.6]). The author expects that the representations constructed in **Theorem 2.5** exhaust the discrete spectrum of X, as predicted by **Conjecture 1.5**; however, the author does not have a proof of this fact.

3Recall that π is determined by ϕ_π up to G^\vee-conjugacy. The choice to work with $\text{Sp}(2n, \mathbb{C}) = \text{Sp}(J'_{2n})$ in what follows is convenient for working with block-upper triangular parabolic subgroups.
Acknowledgments. The author is deeply grateful the anonymous referees for numerous helpful comments, corrections, and the suggested improvements to the proof of Theorem 3.4 that greatly increased its clarity. Thank you also to Clifton Cunningham for helpful conversations on Arthur parameters and L-packets.

REFERENCES

[1] Dmitry Ahiezer, *Equivariant completions of homogeneous algebraic varieties by homogeneous divisors*, Ann. Global Anal. Geom. 1 (1983), no. 1, 49–78. MR 739893
[2] James Arthur, *The endoscopic classification of representations*, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013, Orthogonal and symplectic groups. MR 3135650
[3] I. N. Bernstein and A. V. Zelevinsky, *Induced representations of reductive p-adic groups. I*, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 0579172 (58 #28310)
[4] Raphaë! Beuzart-Plessis, *On distinguished square-integrable representations for galois pairs and a conjecture of Prasad*, Inventiones mathematicae 214 (2018), no. 1, 437–521.
[5] Michel Brion, *On orbit closures of spherical subgroups in flag varieties*, Comment. Math. Helv. 76 (2001), no. 2, 263–299. MR 1839347
[6] Daniel Bump, *The Rankin-Selberg method: an introduction and survey*, Automorphic representations, L-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 41–73. MR 2192819
[7] Clifton Cunningham, Andrew Fiori, Ahmed Moussaoui, James Mracek, and Bin Xu, *Arthur packets for p-adic groups by way of microlocal vanishing cycles of perverse sheaves, with examples*, to appear in Memoirs of the American Mathematical Society.
[8] Maxim Gurevich and Omer Offen, *A criterion for integrability of matrix coefficients with respect to a symmetric space*, J. Funct. Anal. 270 (2016), no. 12, 4478–4512. MR 3490774
[9] Michael Harris and Richard Taylor, *The geometry and cohomology of some simple Shimura varieties*, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich. MR 1876802
[10] Guy Henniart, *Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique*, Invent. Math. 139 (2000), no. 2, 439–455. MR 1738446 (2001e:11052)
[11] , *Correspondance de Langlands et fonctions L des carrés extérieur et symétrique*, Int. Math. Res. Not. IMRN (2010), no. 4, 633–673. MR 2595008
[12] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, *Rankin-Selberg convolutions*, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565
[13] Hervé Jacquet and Stephen Rallis, *Uniqueness of linear periods*, Compositio Math. 102 (1996), no. 1, 65–123. MR 1394521 (97k:22025)
[14] Dihua Jiang, Chufeng Nien, and Yujun Qin, *Local Shalika models and functoriality*, Manuscripta Math. 127 (2008), no. 2, 187–217. MR 2442895 (2010b:11057)
[15] Dihua Jiang and David Soudry, *Generic representations and local Langlands reciprocity law for p-adic SO_{2n+1}*, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 457–519. MR 2058617
[16] Shin-Ichi Kato and Keiji Takano, *Subrepresentation theorem for p-adic symmetric spaces*, Int. Math. Res. Not. IMRN (2008), no. 11, 2428854
[17] , *Square integrability of representations on p-adic symmetric spaces*, J. Funct. Anal. 258 (2010), no. 5, 1427–1451. MR 2566307
[19] Pramod Kumar Kewat and Ravi Raghunathan, *On the local and global exterior square L-functions of GL_n*, Math. Res. Lett. **19** (2012), no. 4, 785–804. MR 3008415

[20] F. Knop and B. Schalke, *The dual group of a spherical variety*, Transactions of the Moscow Mathematical Society **78** (2017), 187–216.

[21] Nadir Matringe, *Linear and Shalika local periods for the mirabolic group, and some consequences*, J. Number Theory **138** (2014), 1–19. MR 3168918

[22] ______, *On the local Bump–Friedberg L-function*, J. Reine Angew. Math. **709** (2015), 119–170. MR 3430877

[23] Yiannis Sakellaridis and Akshay Venkatesh, *Periods and harmonic analysis on spherical varieties*, Astérisque **396** (2017), viii+360.

[24] Peter Scholze, *The local Langlands correspondence for GL_n over p-adic fields*, Invent. Math. **192** (2013), no. 3, 663–715. MR 3049932

[25] Freydoon Shahidi, *Twisted endoscopy and reducibility of induced representations for p-adic groups*, Duke Math. J. **66** (1992), no. 1, 1–41. MR 1159430

[26] Jerrod Manford Smith, *Local unitary periods and relative discrete series*, Pacific J. Math. **297** (2018), no. 1, 225–256. MR 3864235

[27] ______, *Relative discrete series representations for two quotients of p-adic GL_n*, Canad. J. Math. **70** (2018), no. 6, 1339–1372. MR 3850546

[28] A. V. Zelevinsky, *Induced representations of reductive p-adic groups. II. On irreducible representations of $GL(n)$*, Ann. Sci. École Norm. Sup. (4) **13** (1980), no. 2, 165–210. MR 584084 (83g:22012)

Department of Mathematics & Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

E-mail address: jerrod.smith@ucalgary.ca