Non-degenerate Two Photon Absorption Spectra of Si Nanocrystallites

Toshiaki Iitaka and Toshikazu Ebisuzaki
Computational Science Laboratory
The Institute of Physical and Chemical Research (RIKEN)
2-1 Hirosawa, Wako, Saitama 351-0198, JAPAN
e-mail: tiitaka@postman.riken.go.jp, URL: http://espero.riken.go.jp/

We propose an efficient linear-scaling time-dependent method for calculating nonlinear response function, and study the size effects in non-degenerate two photon absorption spectra of Si nanocrystallites by using semi-empirical pseudopotentials.

1. INTRODUCTION

The two-photon absorption (TPA) spectrum is an important optical property of semiconductors. It brings valuable information complementary to the one-photon absorption spectrum, gives the limits to the optical transparency of materials, and causes laser-induced damages.

Recently, the TPA spectrum of direct-gap nanocrystallites was calculated by Cotter et al. [1] by using the effective-mass approximation to predict a strong effect of the nanocrystallites size. However the experimental result [2] does not support this result. Since then TPA spectra of nanocrystallites has been attracting attention of researchers.

In this paper, we develop a new algorithm for calculating TPA spectra by using semi-empirical local pseudopotentials [3], finite difference method in real space [4], and a linear-scaling time-dependent method which has been applied to the calculation of the linear-response functions [5, 6, 7, 8]. This efficient algorithm made it possible, for the first time, to calculate the size effect on the TPA spectra of very large nanocrystallites without using effective-mass approximation. In the following we show the effectiveness of this algorithm by applying it to the TPA spectra of indirect-gap nanocrystallites. Though this result does not solve the controversy related to direct-gap nanocrystallites [1, 2], it will be an important step toward it.

2. TPA COEFFICIENT

The non-degenerate TPA coefficient $\beta_{ab}(\omega_1, \omega_2)$ describes absorption of the probe light with the frequency ω_1 and the polarization e_a in the presence of the excite light with the frequency ω_2 and the polarization e_b, and, in the transparent region ($\omega_1, \omega_2 < E_g$), it is related to the third order nonlinear susceptibility $\chi^{(3)}_{abba}$ by

$$\beta_{ab}(\omega_1, \omega_2) = \frac{6(2\pi)^2\omega_1}{c^2 \eta_{aa}(\omega_1)\eta_{bb}(\omega_2)} \text{Im}\chi^{(3)}_{abba}(-\omega_1; -\omega_2, \omega_2, \omega_1)$$

where $\eta_{aa}(\omega_1)$ and $\eta_{bb}(\omega_2)$ are the real part of linear refractive index. A simple form of $\chi^{(3)}$ for TPA is provided by the second-order time-dependent perturbation theory [9],

$$\chi^{(3)}_{abba}(-\omega_1; -\omega_2, \omega_2, \omega_1) = \sum_{v,c} \frac{1}{6\hbar\epsilon_0 V} \frac{\alpha_{vc}(\omega_1, \omega_2)\alpha^*_{vc}(\omega_1, \omega_2)}{\omega_{cv} - i\gamma - \omega_1 - \omega_2}$$
where the composite matrix element is defined by

$$\alpha_{vc}(\omega_1, \omega_2) = \frac{e^2}{\hbar} \sum_m \left(\frac{(e_a \cdot r_{cm})(e_b \cdot r_{mv})}{\omega_{mv} - \omega_2} + \frac{(e_b \cdot r_{cm})(e_a \cdot r_{mv})}{\omega_{mv} - \omega_1} \right).$$ \hspace{1cm} (3)$$

The subscripts \(v\) and \(c\) in the summation run over all valence-band states and all conduction-band states, respectively. The subscript \(m\) for the intermediate states runs over both valence- and conduction-band states.

It is worth to note that the form Eq. (2) looks very similar to that of the linear-response function, and that, therefore, we may calculate \(\chi^{(3)}\) by using the linear-scaling time-dependent method for the linear-response functions [7, 8],

$$\chi^{(1)}_{bc}(\omega) = \sum_{v,c} -\frac{e^2}{\hbar \epsilon_0 V} \left\{ \frac{(e_b \cdot r_{vc})(e_a \cdot r_{cv})}{\omega_{cv} - i\gamma - \omega} - \frac{(e_b \cdot r_{vc})(e_a \cdot r_{cv})}{\omega_{cv} + i\gamma + \omega} \right\} = \langle \langle \int_0^T dt \ e^{+i(\omega+i\gamma)t} \delta B(t) \rangle \rangle$$ \hspace{1cm} (4)$$

where \langle\langle \cdot \rangle\rangle\) indicates the statistical average over random vectors, and \(\delta B(t)\) is the response of the system defined by

$$\delta B(t) = 2 \ \text{Im} \langle \Phi_{E_f} \ e^{+iHt}(e_b \cdot r)e^{-iHt}\theta(H - E_f)(e_a \cdot r)\Phi_{E_f} \rangle.$$

The ket \(\ket{\Phi_{E_f}}\) is a random vector projected onto the Fermi occupied states, and \(\theta(H - E_f)\) is a projection operator to extract the Fermi unoccupied states. The imaginary part of frequency \(\gamma\) is introduced to limit the integration time in Eq. (3) to a finite value \(T = -\ln \delta/\gamma\) with \(\delta\) being the relative numerical accuracy we need. The main difference of \(\chi^{(3)}\) from \(\chi^{(1)}\) is the composite matrix elements in place of the dipole matrix elements, which we can calculate with the help of the particle source method [5, 6].

3. RESULT

Figure 1 shows the non-degenerate TPA coefficient \(\beta_{xx}(\omega_1, \omega_2)\) of hydrogenated cubic Si nanocrystallites of size \(l = 1 \sim 4\) (nm) as a function of \(\omega_1\) with a fixed excite light frequency, \(\omega_2 = 2.4(eV)\). In the calculation, we used the Hamiltonian matrix discretized into \(N = L^3\) (\(L = 32 \sim 80\)) cubic meshes in real space, which consists of the semi-empirical local pseudopotential [3] the kinetic energy operator in the finite difference form [4]. The results were averaged over 2 – 16 random vectors depending on the system size. The energy resolution is set to \(\gamma = 200(m\text{eV})\), which may not small enough to resolve the fine structures in the spectra but small enough to study the size effects on the magnitude of \(\text{Im}\chi^{(3)}\).

Fig. 1 \(\beta_{xx}(\omega_1, \omega_2)\) of Si nanocrystallites with \(\omega_2 = 2.4(eV)\).
The size effects on the TPA coefficient is evident in the figure. The absorption increases as the crystallite size increases, and approaches to the bulk value when \(l \approx 4 \) (nm). The tail extending below the TPA absorption edge \(0.8 \) (eV) in the spectrum is due to the Lorentzian distribution with the finite width \(\gamma \) in the time-dependent calculation.

4. DISCUSSIONS AND SUMMARY

The computational cost of our method is \(O(MN) \) for the linear response function and the non-degenerate TPA coefficient and \(O(M^2N) \) for the degenerate TPA coefficient. The large number \(M \propto T/\Delta t \propto E_{\text{max}}/\gamma \ll N \) is the number of time steps in a time evolution or the number of the frequency \(\omega_1 \) to be calculated, where \(E_{\text{max}} \) is the range of the eigenenergy. Therefore our method is much more efficient than the \(O(N^3) \) diagonalization method [1] and the equation of motion methods [1] whose computational effort is \(O(M^2N) \) for the linear-response function and \(O(M^3N) \) for the third order susceptibility.

In summary, we have established an efficient linear-scaling time-dependent method for nonlinear response function, and studied the size effects on the two photon absorption spectra of Si nanocrystallites. Such a large scale calculation has been impossible with conventional algorithms. Therefore the present result will be an important step to solve the controversy related to direct-gap nanocrystallites [1, 2].

The calculation in this article has been done on the supercomputer Fujitsu VPP500 at RIKEN and NIG.

References

[1] D. Cotter et al., Phys. Rev. Lett. 68, 1200 (1992).
[2] G.P.Banfi et al., Phys. Rev. B 50, 5699 (1994); Opt. Lett. 21, 1490 (1996).
[3] L.W. Wang and A. Zunger, J. Phys. Chem. 98, 2158 (1994).
[4] J. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994).
[5] T. Iitaka, in High Performance Computing in RIKEN 1995 (ISSN-1342-3428), 241 (1996),[physics/9802021] and references therein.
[6] H. Tanaka, Phys. Rev. B 57, 2168 (1998); H.Tanaka and M.Itoh, Phys. Rev. Lett. 81, 3727 (1998).
[7] T. Itak, et. al., Phys. Rev. E 56, 1222 (1997); T. Itaka, Phys. Rev. E 56, 7318 (1997).
[8] S. Nomura et al., Phys. Rev. B 56, 4348 (1997).
[9] P.N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge Univ. Press, Cambridge, 1990).
[10] M. Murayama and T. Nakayama, Phys. Rev. B 49, 5737 (1994); M. Murayama and T. Nakayama, Phys. Rev. B 52, 4986 (1995).
[11] D. Hobbs et al., J. Phys.: Condens. Matter 8, 4691 (1996) and references therein.