Impulsive waves in ghost free infinite derivative gravity in anti-de Sitter spacetime

Suat Dengiz,1,∗ Ercan Kilicarslan,2,† Ivan Kolář,3,† and Anupam Mazumdar3,§

1Department of Mechanical Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey
2Department of Physics, Usak University, 64200, Usak, Turkey.
3Van Swinderen Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.

(Dated: 16/06/2020)

We study exact impulsive gravitational waves propagating in anti-de Sitter spacetime in the context of the ghost free infinite derivative gravity. We show that the source-free theory does not admit any AdS pp-wave solutions other than that of Einstein’s general relativity. The situation is significantly different in the presence of sources. We construct impulsive-wave solutions of the infinite derivative gravity generated by massless particles and linear sources in four and three dimensions. The singularities corresponding to distributional curvature at the locations of the sources get smeared by the non-localities. The obtained solutions regular everywhere. They reduce to the corresponding solutions of general relativity in the infrared regime and in the local limit.

I. INTRODUCTION

Einstein’s general relativity (GR) has surpassed all observations from solar system tests to gravitational waves so far [1]. However, it is not well constrained at short distances, i.e., in the ultraviolet regime (UV). Newton’s 1/r-potential was experimentally tested up to approximately 5 µm [2], which corresponds to 0.001 eV. Beyond these scales, gravitational interaction has not been constrained by direct experiments. Furthermore, as one approaches the short distances, GR has several problems. From the classical point of view, it suffers from the presence of spacetime singularities [3]; at the quantum level, it fails to be perturbatively renormalizable.

It has been known for a while that non-local terms can improve UV behavior. Non-local theories containing form factors with an infinite number of derivatives have brought considerable interest in the context of quantum field theories [4–11] and quantum gravity [12–16]. In particular, it was shown that infinite derivative gravity (IDG) may resolve cosmological [17] and black hole singularities [18]. In order to avoid introducing ghost-like instabilities, the form factors are chosen as analytic functions with no roots in the complex plane (i.e., exponential of entire functions), see [12, 13, 18]. Moreover, the form factor of such a non-local action emerges from the world line approximation of one-loop amplitude in string theory [19, 20]. There were also first attempts in studying initial value problem of IDG using diffusion equation method [21, 22] and constructing perturbative Hamiltonian [23] using non-local Hamiltonian formalism of [24, 25].

Recently, there has been further progress in finding solutions of linearized IDG. It was shown that IDG may avoid not only black-hole type singularities [26–33], but also topological defects such as p-branes [34], cosmic strings [35], and NUT-like singularities [36]. The exact pp-wave solutions have been studied in [37].

In this paper, we study generalised pp-wave solutions in anti-de Sitter (AdS) spacetimes, the AdS pp-waves, in the context of the ghost-free infinite derivative gravity presented in [38, 39]. The main focus of this work are the impulsive waves, which have been studied extensively in GR with a cosmological constant [40–46]. These solutions are generated by null sources with Dirac-delta stress-energy tensor. The impulsive-wave solution of IDG corresponding to a massless point particle was obtained in [37]. Here, we follow up by extending the analysis to the AdS spacetime in four and three dimensions. We illustrate how the non-locality affects the gravitational waves in AdS if the sources are absent or present.

The lay-out of the paper is as follows: In Sec. II, we briefly review the ghost-free infinite derivative gravity. In Sec. III, we study the AdS pp-wave solutions in the source-free case. Sec. IV and Sec. V are dedicated to the constructions of the impulsive gravitational waves of IDG in 3 + 1 and 2 + 1 dimensions, respectively. In Sec. VI, we conclude with a brief discussion of our results. Supplementary material is attached to the appendices.

II. INFINITE DERIVATIVE GRAVITY

The most general quadratic in curvature (parity-invariant, and torsion-free) theory of IDG in four dimensions with a cosmological constant Λ, [17, 18, 38, 39] is given by the Lagrangian density1

\[
\mathcal{L} = \frac{\sqrt{-g}}{16\pi G} \left[R - 2\Lambda + \alpha \left(R F_1(\Box_s) R + R_{\mu\nu} F_2(\Box_s) R^{\mu\nu} + C_{\mu\nu\rho\sigma} F_3(\Box_s) C^{\mu\nu\rho\sigma} \right) \right],
\]

(2.1)

1 We use mostly positive metric signature, (−, +, +, +).
where $G = M_p^{-2}$ is Newton’s gravitational constant, $\Box_s \equiv \Box / M_s^2$, and $\alpha_c = 1 / M_s^2$. The dimensionful constant M_s is the scale of non-locality at which non-local interactions become manifest. In the local limit, $M_s \to \infty$, the theory reproduces Einstein’s general relativity. The form factors $F_i(\Box_s)$ are analytic functions of d’Alembert operator $\Box \equiv g_{\mu \nu} \nabla^\mu \nabla^\nu$,

$$F_i(\Box_s) \equiv \sum_{n=0}^{\infty} f_{i,n} \Box^n / M_s^{2n},$$

where $f_{i,n}$ are dimensionless coefficients. The form factors give rise to non-local gravitational interactions. They are crucial to make the theory ghost-free, and the analyticity is required for obtaining the low energy limit similar to that of GR. The equations of motion for the action (2.1) are given in Appendix A.

III. ADS PP-WAVE SPACETIMES IN IDG

The field equations of the infinite derivative gravity are very complicated [47], so a mere attempt of finding exact solutions to the theory is an extremely daunting task. To handle the situation, we focus on the AdS pp-wave metric ansatz, which can be written in the Kerr-Schild form,

$$g_{\mu \nu} = \bar{g}_{\mu \nu} + 2H \lambda_\mu \lambda_\nu,$$

where $\bar{g}_{\mu \nu}$ denotes the AdS background metric, and H is a scalar function that satisfies $\lambda^\mu \partial_\mu H = 0$. Here, λ_μ is a non-expanding, non-twisting, and shear-free null vector satisfying

$$\lambda^\mu \lambda_\mu = 0, \quad \nabla_\mu \lambda_\nu = \xi(\lambda_\nu), \quad \xi^\nu \lambda^\mu = 0.$$

Due to the fact that the curvature scalar R is constant, there is no contribution from the non-local form factor $R F_i(\Box_s) R$ to the field equations except a constant term. In addition, the Ricci tensor becomes [51–53]

$$R_{\mu \nu} = -\frac{3}{\ell^2} g_{\mu \nu} + \lambda_\mu \lambda_\nu O H,$$

where ℓ is the AdS radius and O denotes the operator

$$O \equiv -\left(\Box + 2 \xi^\mu \partial_\mu + \frac{1}{2} \xi^\mu \xi_\mu - \frac{4}{\ell^2}\right).$$

Furthermore, one should note that the traceless Ricci tensor takes the form

$$S_{\mu \nu} = \lambda_\mu \lambda_\nu O H,$$

which is of the type N in the aspect of null alignment classification [54, 55]. Moreover, one can derive the following formulas for the (repeated) action of the d’Alembert operator [52]:

$$\Box(\lambda_\mu \lambda_\nu H) = \Box(\lambda_\mu \lambda_\nu H) = -\lambda_\mu \lambda_\nu \left(\mathcal{O} + \frac{2}{\ell^2}\right) H,$$

$$\Box^n S_{\mu \nu} = \Box^n S_{\mu \nu} = (-1)^n \lambda_\mu \lambda_\nu \left(\mathcal{O} + \frac{2}{\ell^2}\right)^n H,$$

where $\Box = \bar{g}^{\mu \nu} \nabla_\mu \nabla_\nu$ is the AdS background d’Alembert operator. Throughout the calculations, one needs to use the following identity of higher-order derivative of the Weyl tensor:

$$\nabla_\mu \nabla_\nu \Box^n C^{\mu \alpha \nu \beta} = \frac{1}{2} \left(\Box + \frac{R}{3}\right)^n - \frac{R}{3} S^{\alpha \beta}.$$

By using the recursive relations above, one can easily convert the field equations of the IDG for the AdS pp-wave metric to a rather simple form,

$$\left(\Lambda + \frac{3}{\ell^2}\right) g_{\mu \nu} + \left[1 + \alpha_c \left(\frac{2 f_{1,0} + f_{2,0}}{2}\right) R + \left(\Box + \frac{2}{\ell^2}\right) F_2(\Box_s)
ight.$$
$$+ 2 F_3 \left(\Box_s - \frac{4}{M_s^2 \ell^2}\right) \left(\Box + \frac{4}{\ell^2}\right)\right] S_{\mu \nu} = 0.$$

The trace part of the equation determines the cosmological constant in terms of the AdS radius:

$$\Lambda = -\frac{3}{\ell^2}. $$

Note that (3.8) reduces to the field equations for pp-waves on Minkowski background [37] in the limit $\ell \to \infty$ (i.e., $\Lambda \to 0$). The traceless part of the field equations yields non-local equations

$$\left[1 + \alpha_c \left(-\frac{12}{\ell^2} \left(2 f_{1,0} + f_{2,0}\right) + \left(\Box + \frac{2}{\ell^2}\right) F_2(\Box_s)
ight.$$
$$+ 2 F_3 \left(\Box_s - \frac{4}{M_s^2 \ell^2}\right) \left(\Box + \frac{4}{\ell^2}\right)\right] \left(\Box + \frac{2}{\ell^2}\right) \lambda_\mu \lambda_\nu H = 0.$$

It is important to stress here that the full equations for AdS pp-waves (3.10) are equivalent to the linearized field equations for the Kerr-Schild perturbations $h_{\mu \nu} = g_{\mu \nu} - \bar{g}_{\mu \nu} = 2H \lambda_\mu \lambda_\nu$. Therefore, the solutions of the full equations that we obtain below are also solutions of the linearized equations for the transverse-traceless fluctuations around AdS background.

To ensure that the theory has no extra degrees of freedom and no ghosts on the AdS background, we choose the form factors [39]:

$$F_1(\Box_s) = F_2(\Box_s) = 0,$$

$$F_3(\Box_s) = \frac{1}{2} e^{-\left(\Box_s + \frac{4}{\ell^2}\right)} - \frac{1}{2}$$

$$+ \frac{8}{\ell^2 M_s}.$$
The AdS pp-wave equation (3.10) then turns into
\[e^{-1/2z^2} \left(\Box + \frac{2}{\ell^2} \right) \lambda \mu \nu \omega H = 0. \] (3.12)

Let us write AdS pp-wave metric [56] using the null coordinates, \(u = (x-t)/\sqrt{2} \) and \(v = (x+t)/\sqrt{2}, \)
\[ds^2 = \frac{\ell^2}{z^2} (2dudv + dy^2 + dz^2) + 2H(u, v, z) du^2, \] (3.13)
where \(z = 0 \) corresponds to the conformal infinity of AdS spacetime. In these coordinates, \(\xi, \) \(\partial \) corresponds to eigenvalue method \(\xi_{\alpha} \) spacetime. In these coordinates, \(z = \) 0 corresponds to the conformal infinity of AdS spacetime. In other words, the only AdS pp-wave solutions of the Einstein's general relativity.

In this section, we will search for impulsive gravitational waves\(^4\) that are generated by massless sources in IDG. Since we put a non-zero stress-energy on the right-hand side of equations of motion, we can expect that the resulting solutions will be affected by the presence of non-local form-factors with infinite derivatives.

IV. IMPULSIVE WAVES IN 3+1 DIMENSIONS

In this section, we will search for impulsive gravitational waves\(^4\) that are generated by massless sources in IDG. Since we put a non-zero stress-energy on the right-hand side of equations of motion, we can expect that the resulting solutions will be affected by the presence of non-local form-factors with infinite derivatives.

A. Massless point-like source

Let us begin with the impulsive AdS pp-wave metric,
\[ds^2 = \frac{\ell^2}{z^2} (2dudv + dy^2 + dz^2) + 2\delta(u)H(y, z) du^2, \] (4.1)
and consider a massless point particle traveling in the positive \(x \)-direction with momentum \(p^\mu = E(\delta^\mu_0 + \delta^\mu_y). \) Such a particle is described by a source with stress-energy tensor \(T_{\mu\nu} = E z_0^2 \ell^{-2} \delta(u) \delta(y) \delta(z-z_0). \) The AdS pp-wave equation then reads
\[e^{-\frac{z^2 \partial^2_2 + 2z \partial_z - 2}{M^2 \ell^2} } (z^2 \partial^2 + 2z \partial_z - 2) H(y, z) = -L \delta(y) \delta(z-z_0), \] (4.2)
where we introduced the constant \(L = 16\pi G E z_0^2. \) Let us recall that the homogeneous solution is given by (3.19).

Since it is the same for the local as well as non-local theory, we will focus on finding a particular solution only. In order to solve (4.2), we first take the Fourier transform in coordinate \(y, \)
\[e^{-\frac{z^2 \partial^2_2 + 2z \partial_z - k^2 z^2 - 2}{M^2 \ell^2} } (z^2 \partial^2 + 2z \partial_z - k^2 z^2 - 2) \hat{H}(k, z) = -L \delta(z-z_0). \] (4.3)
Using the substitution \(\hat{H}(k, z) = V(k, z)/\sqrt{\nu}, \) we can rewrite this equation as
\[e^{-A(k)/M^2 \ell^2} A(k) V(k, z) = -L \sqrt{\nu z_0} \delta(z-z_0), \] (4.4)

\(^4\) For the details on the impulsive gravitational waves in GR with a cosmological constant, see [40–46].

\(^5\) Our convention for the Fourier transform is:
\[\hat{f}(k) = \frac{1}{\sqrt{2\pi} f_R} \int_R dx f(y) e^{-iky}, \quad f(y) = \frac{1}{\sqrt{2\pi} f_R} \int_R dk \hat{f}(k) e^{iky}. \]
where we introduced the k-dependent operator

$$A(k) \equiv z^2 \partial_z^2 + 2z \partial_z - k^2 z^2 - 2. \quad (4.5)$$

Similar to the homogeneous case, we will first study the eigenvalue problem for this operator. Assuming $k > 0$, one can show that

$$A(k) K_{i\beta}(kz) = - (\beta^2 + 9/4) K_{i\beta}(kz), \quad (4.6)$$

where $K_{i\beta}$ are modified Bessel functions of imaginary order. In order to make further progress, it is essential to express the right-hand side of (4.4) in terms of the eigenfunctions $K_{i\beta}(kz)$. Fortunately, this is possible thanks to the identity presented in [59],

$$\delta(z - z_0) = \frac{2}{\pi^2 z_0} \int_0^\infty d\beta \beta \text{sh}(\pi \beta) K_{i\beta}(kz_0) K_{i\beta}(kz), \quad (4.7)$$

for arbitrary $k > 0$. Thus, we can write

$$V(k, z) = -\frac{L \sqrt{\pi} e^{A(k)/M_2^2}}{\sqrt{2\pi}} A(k) \delta(z - z_0)$$

$$= \frac{\sqrt{2L}}{\pi^2 \sqrt{z_0}} \int_0^\infty d\beta \frac{e^{- (\beta^2 + 9/4)/M_2^2}}{\beta^2 + 9/4} \beta \text{sh}(\pi \beta)$$

$$\times K_{i\beta}(kz_0) K_{i\beta}(kz). \quad (4.8)$$

After taking the inverse Fourier transform, the particular solution of (4.2) takes the form of the integral

$$H(y, z) = \frac{16GE^2 z_0^3}{\pi^2 \sqrt{\pi}} \int dk \int_0^\infty d\beta \frac{e^{- (\beta^2 + 9/4)/M_2^2}}{\beta^2 + 9/4} \beta \text{sh}(\pi \beta)$$

$$\times K_{i\beta}(|k|z_0) K_{i\beta}(|k|z) e^{iky}, \quad (4.9)$$

where we also employed the fact that $H(y, z) = H(-y, z)$, as it follows from (4.2). This integral does not seem to have a closed form, but we can evaluate it numerically as shown in Fig. 1.

The GR solution can be obtained by taking the local limit $M_s \to \infty$ of the integrand in (4.9). Using the identity [60],

$$\int_0^\infty d\beta \frac{\beta \text{sh}(\pi \beta)}{\beta^2 + 9/4} K_{i\beta}(|k|z_0) K_{i\beta} = \left\{ \frac{\pi^2}{2} I_2 (|k|z) K_2 (|k|z_0), \frac{\pi^2}{2} I_2 (|k|z_0) K_2 (|k|z) \right\} \quad (4.10)$$

which holds for $z < z_0$ and $z > z_0$, respectively, we arrive at the function

$$H_{GR} = \frac{2GE}{z^2} \left[(y^2 + z^2 + z_0^2) \log \left(1 + \frac{4z z_0}{y^2 + (z - z_0)^2} \right) - 4z z_0 \right]. \quad (4.11)$$

This GR solution represents an impulsive gravitational wave that is generated by a massless particle, see, for example, [61].

It is clear that the impulsive-wave solution of GR diverges at the location of the particle, where it has distributional curvature. On the other hand, the non-local impulsive-wave solution of IDG is regular everywhere due to the improved behavior of the propagator in the UV scale. Let us remark that we could replace $\delta(u)$ by a more realistic smooth regularization of Dirac-delta $\delta_i(u)$ thanks to the linearity of equations and the independence of the coordinate ν (derivative ∂_ν in (3.14) never applies). In this sense, all curvature tensors can be considered as regular. Near the conformal infinity $z = 0$, the non-local solution approaches GR.

B. Massless linear source

Let us consider a specific example of a null matter distribution, $T_{uu} = E z_0 \ell^2 \delta(u) \delta(z - z_0)$, for which one can find an impulsive-wave solution in a closed form. This particular stress-energy tensor describes a linear null source that moves in x-direction with momentum $p^\mu = E(z_0^\mu + y_0^\nu)$ and extends to infinity in y-direction. The trajectory of this surface is visualized in the Poincaré spherical model of Lobachevsky space in Fig. 2. Details of this representation are reviewed in the Appendix B.

This choice of the source allows the profile function H to be independent of y. Thus, the field equation takes a simpler form

$$e^{- \frac{z^2 \partial_z^2 + 2z \partial_z - 2}{M_2^2 z^2}} (z^2 \partial_z^2 + 2z \partial_z - 2) H(z) = -L_4 \delta(z - z_0). \quad (4.12)$$
where $L_4 = 16\pi G E z_0$. Thanks to the absence of ∂_y, this equation can be solved directly using the heat-kernel method \[26\]. After transforming the equation to the coordinate $w = \log z$ and defining $\tilde{H}(w) = H(e^w)$, we can write

$$
\tilde{H}(w) = -L_4 e^{-w_0} \frac{e^{(\partial_w^2 + \partial_w - 2)/M^2 \ell^2}}{\partial_w + \partial_w - 2} \delta(w - w_0)
$$

$$
= L_4 e^{-w_0} \int_1/M^2 \ell^2 dse^{s(\partial_w^2 + \partial_w - 2)} \delta(w - w_0)
$$

$$
= L_4 e^{-w_0} \int_1/M^2 \ell^2 dse^{-2s} e^{s\partial_w^2} \delta(w - w_0 + s)
$$

$$
= L_4 e^{-w_0} \int_1/M^2 \ell^2 dse^{-2s} \int_\mathbb{R} dw e^{\frac{(w - w_0)^2}{4s}} \delta(w - w_0 + s),
$$

(4.13)

where we applied the shift operator $e^{s\partial_w}$ on the third line and expected the action of $e^{s\partial_w}$ using the heat kernel on the fourth line. This integral can be easily found. Returning back to the variable z, we obtain the particular solution of (4.12),

$$
H(z) = \frac{8\pi G E}{3z^2 z_0} \left[\frac{z_0^3}{z^3} \text{erfc} \left(\frac{3}{2M_s \ell} - \frac{M_s \ell}{2} \log \left(\frac{z}{z_0} \right) \right) + z^3 \text{erfc} \left(\frac{3}{2M_s \ell} + \frac{M_s \ell}{2} \log \left(\frac{z}{z_0} \right) \right) \right],
$$

(4.14)

which is plotted in Fig. 3.

By taking the local limit $M_s \to \infty$, we can recover the GR solution,

$$
H_{\text{GR}} = \frac{8\pi G Ez}{3z_0} \left(1 + \frac{z^3}{z_0^3} - \left| 1 - \frac{z^3}{z_0^3} \right| \right).
$$

(4.15)

As can be easily seen, this GR solution has a discontinuity and distributional curvature at the location of the source $z = z_0$, while the IDG solution is completely smooth everywhere. This is again caused by the fact that the form factor with infinite number of derivatives effectively smears the delta-like distributions in the stress-energy tensor. As before, the non-local solution approaches the GR solution near the conformal infinity $z = 0$.

V. IMPULSIVE WAVES IN 2+1 DIMENSIONS

Now that we have discussed gravitational waves in $3 + 1$ dimensions, let us study the solutions in $2 + 1$ dimensions. In this section, we will not repeat details that remain almost the same, but focus on the important differences from the four-dimensional case.

Since the Weyl tensor is identically zero in $2 + 1$ dimensions, the IDG action contains only the form factors of $F_1(\Box_s)$ and $F_2(\Box_s)$. Traceless part of the source-free field equations in three dimensions are reduced to

$$
\left[1 + \alpha_c \left(-\frac{12}{\ell^2} \left(f_{1,0} + f_{2,0} \right) + \left(\Box + \frac{2}{\ell^2} \right) F_2(\Box_s) \right) \right] \times \left(\Box + \frac{2}{\ell^2} \right) \lambda_\mu \lambda_\nu H = 0,
$$

(5.1)

Furthermore, one needs to set the form factor $F_2(\Box_s)$ to be in the following form in order to avoid ghost-like degrees of freedom \[62\]:

$$
F_2(\Box_s) = C e^{-\left(\frac{\Box}{M_s^2 \ell^2} + \frac{2}{M_s^2 \ell^2} \right)} - 1,
$$

(5.2)

where we denoted $C = 1 + \text{th}(M_s^{-2} \ell^{-2})$. It is also important to note that the field equation is independent of the
form factor $F_1(\square_a)$. We refer the reader to [62] for the explicit form of $F_1(\square_a)$.

The AdS pp-wave metric in $2 + 1$ dimensions is

$$ds^2 = \frac{\ell^2}{z^2} (2dudv + dz^2) + 2H(u, z) dv^2.$$ \hspace{1cm} (5.3)

A similar arguments to those in Sec. III could be used to show that there are no new solutions of the homogeneous equation. In the next section, we focus on particular solutions in the presence of the non-zero source.

A. Massless point-like source

Consider a point-like particle moving in the positive x-direction with the momentum $p^\mu = E (\delta^u_a + \delta^z_a)$ with the stress-energy tensor $T_{uu} = E z^2 \ell^2 \delta^3 \delta(u) \delta(z-z_0)$. This source together with the impulsive-wave profile $H = \delta(u) H(z)$ lead to the equation

$$e^{-z_0^2 \sqrt{\frac{a^2 + z_0^2}{M^2 z^2}}} (z^2 \delta^2_z z + 3 z \partial_z z) H(z) = -L_3 \delta(z-z_0),$$ \hspace{1cm} (5.4)

where $L_3 = 16\pi G_3 E z_0^2 / C$.

By introducing $w = \log z$, $H(w) = H(e^w)$, and employing the heat-kernel method, we find

$$\tilde{H}(w) = -L_3 e^{-w_0} \frac{e^{((\partial^2_u + 2z \partial_u) / M^2 \ell^2)}}{\partial^2_u + 2z \partial_u} \delta(w-w_0)$$

$$= L_3 e^{-w_0} \int_1^{M^2 \ell^2} ds \int_\mathbb{R} dw \frac{e^{-s^2 / \sqrt{4\pi s}}}{\sqrt{4\pi s}} \delta(w-w_0+2s),$$ \hspace{1cm} (5.5)

which can be easily calculated. The resulting particular solution of (5.4) is

$$H(z) = \frac{4\pi G_3 E z_0}{C^2 z^2} \left[-z_0^2 \text{erfc} \left(\frac{1}{M \ell} \log \left(\frac{z}{z_0} \right) \right) + z^2 \text{erfc} \left(\frac{1}{M \ell} + \frac{M \ell}{2} \log \left(\frac{z}{z_0} \right) \right) \right].$$ \hspace{1cm} (5.6)

This function is depicted in Fig. 4.

By calculating the local limit $M s \to \infty$, we can arrive at the GR solution,

$$H_{\text{GR}} = 4\pi G_3 E z_0 \left(1 + \frac{z_0}{z^2} - \left| 1 - \frac{z_0}{z^2} \right| \right).$$ \hspace{1cm} (5.7)

Unlike the four-dimensional GR solution of a point-like massless particle, which diverges, this three-dimensional GR solution is regular but has a discontinuity at $z = z_0$. This discontinuity is again cured by infinite derivatives.

The IDG impulsive-wave solution is smooth everywhere. The full solution (with the homogeneous part $c_1 / z^2 + c_2$) approaches the GR solution at the conformal infinity $z = 0$. Note that the metric of the GR solution is actually just the AdS metric. This is a consequence of the fact that the three-dimensional GR has no local degrees of freedom [63, 64]. The spacetime, however, differs from an empty AdS by a presence of non-trivial (global) topological defects that causes distributional curvature, which is not present in the non-local case.

VI. CONCLUSIONS

In this paper, we studied the generalized pp-wave solutions of the ghost-free infinite derivative gravity in anti-de Sitter spacetime with the main focus on the impulsive waves which are generated by Dirac-delta source. We argued that the source-free infinite derivative gravity does not admit any new AdS pp-wave solutions other than that of Einstein’s general relativity. It was demonstrated that the non-locality described by form factors with the infinite number of derivatives plays a role only in the presence of a nonzero source.

We found the exact impulsive waves corresponding to massless point-like and linear sources propagating in four- and three-dimensional anti-de Sitter spacetimes. It turned out that the non-localities smear all the divergences and discontinuities (corresponding to distributional curvature) that are present in the local impulsive-wave solutions. The obtained solutions of the infinite derivative gravity are regular everywhere. They reduce to the impulsive-waves solutions of general relativity in the local limit $M s \to \infty$ and in the infrared regime (near the conformal infinity of AdS). Simply put, the solutions get modified due to the non-local effects only in the ultraviolet regime, but not in the infrared regime.

VII. ACKNOWLEDGMENTS

We thank Bayram Tekin, Talis C. Sisman, Ayse K. Karasu, and Pavel Krtoň for useful discussions and sug-
gestions. The works of S.D., E.K., and A.M. are supported by the TUBITAK Grant No. 119F241. I.K. and A.M. are supported by Netherlands Organization for Scientific Research (NWO) Grant number 680-91-119.

Appendix A: Equations of motion of IDG

The equations of motion following from the action given (2.1) were found in [47]. Using a common notation for a power of d’Alembert operator, \(\Box^n X_{\beta...}^\alpha \equiv X_{\beta...}^{(n)}\), they can be written as

\[
G^{\alpha\beta} + \Lambda g^{\alpha\beta} + \frac{\Omega_c}{2} \left[\frac{4G^{\alpha\beta} F_1(\Box) R + g^{\alpha\beta} R F_1(\Box) R - 4(\Box^{\alpha} \Box^{\beta} - g^{\alpha\beta} \Box) F_1(\Box) R - 2\Omega_1^{\alpha} + g^{\alpha\beta}(\Omega_1^\rho + \Omega_1) + 4R^{\alpha}_{\nu} F_2(\Box) R^{\nu\beta} - g^{\alpha\beta} R^{\mu}_{\nu} F_2(\Box) R^{\mu\nu} - 4\Box_{\nu} \Box^{\nu} (F_2(\Box) R^{\alpha\beta}) + 2\Box(2F_2(\Box) R^{\alpha\beta}) + 2g^{\alpha\beta} \Box_{\mu} \Box_{\nu} (F_2(\Box) R^{\mu\nu}) - 2\Omega_2^{\alpha} + g^{\alpha\beta}(\Omega_2^\rho + \Omega_2) - 4\Delta_2^{\alpha\beta} - g^{\alpha\beta} C_{\mu\nu\rho\sigma} F_3(\Box) C_{\mu\nu\rho\sigma} + 4C^{\alpha\mu\nu\sigma} F_3(\Box) C_{\nu\rho\sigma} - 4(R^{\mu\nu} + 2\Box_{\mu} \Box_{\nu}(F_3(\Box) C_{\nu\rho\sigma}^\beta - 2\Omega_3^{\alpha\beta} + g^{\alpha\beta}(\Omega_3^\gamma + \Omega_3) - 8\Delta_3^{\alpha\beta}) = 0 \right],
\]

where the symmetric tensors are

\[
\Omega_1^{\alpha\beta} = \sum_{n=1}^{\infty} f_{1,n} \sum_{l=0}^{n-1} \Box^{\alpha} R^{(l)} \Box^{\beta} R^{(n-l-1)}, \quad \Omega_1 = \sum_{n=1}^{\infty} f_{1, n} \sum_{l=0}^{n-1} R^{(l)} R^{(n-l)},
\]

\[
\Omega_2^{\alpha\beta} = \sum_{n=1}^{\infty} f_{2,n} \sum_{l=0}^{n-1} R^{\mu\nu\alpha(l)} R^{\nu\beta(l)} R^{(n-l-1)}, \quad \Omega_2 = \sum_{n=1}^{\infty} f_{2,n} \sum_{l=0}^{n-1} R^{\mu\nu(l)} R^{\nu(l)} R^{(n-l)},
\]

\[
\Omega_3^{\alpha\beta} = \sum_{n=1}^{\infty} f_{3,n} \sum_{l=0}^{n-1} C_{\nu\rho\sigma}^{\mu\nu\rho\sigma} C_{\nu\rho\sigma}^{\nu\rho\sigma} R^{(n-l-1)}, \quad \Omega_3 = \sum_{n=1}^{\infty} f_{3,n} \sum_{l=0}^{n-1} C_{\nu\rho\sigma}^{\nu\rho\sigma} C_{\nu\rho\sigma}^{\nu\rho\sigma} R^{(n-l)},
\]

\[
\Delta_2^{\alpha\beta} = \frac{1}{2} \sum_{n=1}^{\infty} f_{2,n} \sum_{l=0}^{n-1} R^{\beta(\sigma)(\nu)(l-1)} R^{\nu(\beta)(\sigma)(\nu)(l-1)} - R^{\nu(\beta)(\sigma)(\nu)(l-1)} R^{\nu(\beta)(\sigma)(\nu)(l-1)} [\nu],
\]

\[
\Delta_3^{\alpha\beta} = \frac{1}{2} \sum_{n=1}^{\infty} f_{3,n} \sum_{l=0}^{n-1} C_{\mu\nu\sigma}^{\mu\nu\sigma} C_{\mu\nu\sigma}^{\mu\nu\sigma} R^{(n-l-1)} - C_{\mu\nu\sigma}^{\mu\nu\sigma} C_{\mu\nu\sigma}^{\mu\nu\sigma} R^{(n-l-1)} [\nu].
\]

Appendix B: Poincaré spherical model

Poincaré spherical model is a compactified representation of the Lobachevsky space,

\[
ds^2 = \frac{\ell^2}{z^2} (dx^2 + dy^2 + dz^2),
\]

which is a spatial part of the AdS metric. The surface of the sphere is the conformal infinity. The standard conformally-flat coordinates \(x, y,\) and \(z\) are visualized in Fig. 5.

Figure 5. Surfaces of constant \(x, y,\) and \(z\) coordinates of the Lobachevsky space depicted in the Poincaré spherical model.
[1] C. M. Will, “The Confrontation between General Relativity and Experiment,” Living Rev. Rel. 17, 4 (2014).
[2] D. J. Kapner, et.al., “Tests of the gravitational inverse-square law below the dark-energy length scale,” Phys. Rev. Lett. 98, 021101 (2007).
[3] S. Hawking and G. Ellis, “The Large Scale Structure of Space-Time,” doi:10.1017/CBO9780511525466.
[4] G. Efimov, “Non-local quantum theory of the scalar field,” Commun. Math. Phys. 5 (1967) no.1, 42-56 doi:10.1007/BF01643557.
[5] G. Efimov and S. Selts, “Gauge invariant nonlocal theory of the weak interactions,” Annals Phys. 67 (1971) no.1, 124-144 doi:10.1016/0003-4916(71)90007-8.
[6] G. Efimov, “On the construction of nonlocal quantum electrodynamics,” Annals Phys. 71 (1972) no.2, 466-485.
[7] N. Khriankov, “Nonlocal gauge theories,” Theor. Math. Phys. 73 (1987), 1184-1190.
[8] J. Moffat, “Finite nonlocal gauge field theory,” Phys. Rev. D 40 (1990), 1177-1184.
[9] D. Evans, J. Moffat, G. Kleppe and R. Woodard, “Nonlocal regularizations of gauge theories,” Phys. Rev. D 43 (1991) no.2, 499-519.
[10] E. Tomboulis, “Nonlocal and quasilocal field theories,” Phys. Rev. D 92 (2015) no.12, 125037.
[11] L. Buoninfante, G. Lambiase and A. Mazumdar, “Ghost-free infinite derivative quantum field theory,” Nucl. Phys. B 944 (2019), 114646.
[12] E. Tomboulis, “Renormalizability and Asymptotic Freedom in Quantum Gravity,” Phys. Lett. B 97 (1980), 77-80.
[13] E. Tomboulis, “Superrenormalizable gauge and gravitational theories,” [arXiv:hep-th/9702146 [hep-th]].
[14] L. Modesto, “Super-renormalizable Quantum Gravity,” Phys. Rev. D 86, 044005 (2012).
[15] A. A. Tseytlin, “On singularities of spherically symmetric backgrounds in string theory,” Phys. Lett. B 363 (1995), 223-229 doi:10.1016/0370-2693(95)01228-7 [arXiv:hep-th/9509050 [hep-th]].
[16] W. Siegel, “Stringy gravity at short distances,” [arXiv:hep-th/0309093 [hep-th]].
[17] T. Biswas, A. Mazumdar and W. Siegel, “Bouncing universes in string-inspired gravity,” JCAP 03 (2006), 009.
[18] T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, “Towards singularity and ghost free theories of gravity,” Phys. Rev. Lett. 108 (2012), 031101.
[19] S. Abel and N. A. Dondi, “UV Completion on the Worldline,” JHEP 07 (2009), 090.
[20] S. Abel, L. Buoninfante and A. Mazumdar, “Nonlocal gravity with worldline inversion symmetry,” JHEP 01 (2020), 003.
[21] G. Calcagni, L. Modesto and G. Nardelli, Phys. Lett. B 795 (2019), 391-397 doi:10.1016/j.physletb.2019.06.043 [arXiv:1803.0728 [hep-th]].
[22] G. Calcagni, L. Modesto and G. Nardelli, JHEP 05 (2018), 087 doi:10.1007/JHEP05(2018)087 [arXiv:1803.02561 [hep-th]].
[23] I. Kolar and A. Mazumdar, “Hamiltonian for scalar field model of infinite derivative gravity,” [arXiv:2003.0590 [gr-qc]].
[24] J. Llosa and J. Vives, “Nonlocal Lagrangians and Hamiltonian formalism,” Int. J. Mod. Phys. D 3 (1994), 211-241.
[25] J. Gomis, K. Kamimura and J. Llosa, “Hamiltonian formalism for space-time noncommutative theories,” Phys. Rev. D 63 (2001), 045003.
[26] V. P. Frolov, A. Zelnikov and T. de Paula Netto, “Spherical collapse of small masses in the ghost-free gravity,” JHEP 06 (2015), 107.
[27] V. P. Frolov and A. Zelnikov, “Head-on collision of ultrarelativistic particles in ghost-free theories of gravity,” Phys. Rev. D 93 (2016) no.6, 064048.
[28] J. Edholm, A. S. Koshelev and A. Mazumdar, “Behavior of the Newtonian potential for ghost-free gravity and singularity-free gravity,” Phys. Rev. D 94 (2016) no.10, 104033.
[29] E. Kilicarslan, “Weak Field Limit of Infinite Derivative Gravity,” Phys. Rev. D 98, no. 6, 064048 (2018).
[30] L. Buoninfante, G. Harmsen, S. Maheshwari and A. Mazumdar, “Nonsingular metric for an electrically charged point-source in ghost-free infinite derivative gravity,” Phys. Rev. D 98 (2018) no.8, 084009.
[31] L. Buoninfante, A. S. Koshelev, G. Lambiase and A. Mazumdar, “Classical properties of non-local, ghost- and singularity-free gravity,” JCAP 09 (2018), 034.
[32] L. Buoninfante, A. S. Cornell, G. Harmsen, A. S. Koshelev, G. Lambiase, J. Marto and A. Mazumdar, “Towards nonsingular rotating compact object in ghost-free infinite derivative gravity,” Phys. Rev. D 98 (2018) no.8, 084041.
[33] J. Boos, J. P. Soto and V. P. Frolov, “Ultrarelativistic spinning objects (gyratons) in non-local ghost-free gravity,” arXiv:2004.0742 [gr-qc].
[34] J. Boos, V. P. Frolov and A. Zelnikov, “Gravitational field of static p -branes in linearized ghost-free gravity,” Phys. Rev. D 97, no. 8, 084021 (2018).
[35] J. Boos, “Angle deficit & non-local gravitoelectromagnetism around a slowly spinning cosmic string,” arXiv:2003.13847 [gr-qc].
[36] I. Kolar and A. Mazumdar, “NUT charge in linearized infinite derivative gravity,” Phys. Rev. D 101 (2020), 124005.
[37] E. Kilicarslan, “pp-waves as Exact Solutions to Ghost-free Infinite Derivative Gravity,” Phys. Rev. D 99, no. 12, 124048 (2019).
[38] T. Biswas, A. S. Koshelev and A. Mazumdar, “Gravitational theories with stable (anti-)de Sitter backgrounds,” Fundam. Theor. Phys. 183 (2016), 97-114.
[39] T. Biswas, A. S. Koshelev and A. Mazumdar, “Consistent higher derivative gravitational theories with stable de Sitter and anti-de Sitter backgrounds,” Phys. Rev. D 95 (2017) no.4, 043533.
[40] M. Hotta and M. Tanaka, “Shock wave geometry with nonvanishing cosmological constant,” Class. Quant. Grav. 10 (1993), 307-314.
[41] J. Podolsky and J. B. Griffiths, “Impulsive gravitational waves generated by null particles in de Sitter and anti-de Sitter backgrounds,” Phys. Rev. D 56 (1997), 4756-4767.
[42] J. Podolsky and J. Griffiths, “Impulsive waves in de Sitter and anti-de Sitter space-times generated by null particles with an arbitrary multipole structure,” Class. Quant. Grav. 15 (1998), 451-463.
waves in space-times of constant curvature,” doi:10.1142/9789812776938_0007 [arXiv:gr-qc/0201029 [gr-qc]].

[44] J. Podolsky and J. Griffiths, “Nonexpanding impulsive gravitational waves with an arbitrary cosmological constant,” Phys. Lett. A 261 (1999), 1-4.

[45] J. Bicak and J. Podolsky, “Gravitational waves in vacuum space-times with cosmological constant. 1. Classification and geometrical properties of nontwisting type N solutions,” J. Math. Phys. 40 (1999), 4495-4505.

[46] R. G. Cai and J. Griffiths, “Null particle solutions in three-dimensional (anti-)de Sitter spaces,” J. Math. Phys. 40 (1999), 3465-3475.

[47] T. Biswas, A. Conroy, A. S. Koshelev and A. Mazumdar, “Generalized ghost-free quadratic curvature gravity,” Class. Quant. Grav. 31 (2014), 015022.

[48] R. P. Kerr and A. Schild. Some algebraically degenerate solutions of Einsteins gravitational field equations - 1965. Proc.Symp.Appl.Math.,17,199.

[49] T. Malek and V. Pravda, “Kerr-Schild spacetimes with (A)dS background,” Class. Quant. Grav. 28, 125011 (2011).

[50] I. Gullu, M. Gurses, T. C. Sisman and B. Tekin, “AdS Waves as Exact Solutions to Quadratic Gravity,” Phys. Rev. D 83, 084015 (2011).

[51] M. Gurses, T. C. Sisman and B. Tekin, “New Exact Solutions of Quadratic Curvature Gravity,” Phys. Rev. D 86, 024009 (2012).

[52] M. Gurses, T. C. Sisman and B. Tekin, “AdS-plane wave and pp-wave solutions of generic gravity theories,” Phys. Rev. D 90, no. 12, 124005 (2014).

[53] M. Gurses, T. C. Sisman, B. Tekin and S. Hervik, “AdS-Wave Solutions of f(Riemann) Theories,” Phys. Rev. Lett. 111, 101101 (2013).

[54] R. Milson, A. Coley, V. Pravda and A. Pravdova, “Alignment and algebraically special tensors in Lorentzian geometry,” Int. J. Geom. Meth. Mod. Phys. 2, 41 (2005).

[55] A. Coley, S. Hervik, G. O. Papadopoulos and N. Pelavas, “Kundt Spacetimes,” Class. Quant. Grav. 26, 105016 (2009).

[56] S. T. C. Siklos. 1985. in: Galaxies, axisymmetric systems and relativity, M.A.H. MacCallum (eds.) Cambridge University Press, Cambridge.

[57] N. Barnaby and N. Kamran, “Dynamics with Infinitely Many Derivatives: Variable Coefficient Equations,” JHEP 12, 022 (2008).

[58] A. Chamblin and G. Gibbons, “Supergravity on the brane,” Phys. Rev. Lett. 84, 1090-1093 (2000).

[59] S. Murashima, T. Kiyono” “Modified Bessel Functions of Purely Imaginary Order $K_{is}(x)$, $I_{is}(x)$ and their Related Functions,” Research Reports of the Kagoshima University Faculty of Engineering 15,91-131 (1973).

[60] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.

[61] X. O. Camanho, J. D. Edelstein, J. Maldacena and A. Zhiboedov, “Causality Constraints on Corrections to the Graviton Three-Point Coupling,” JHEP 1602, 020 (2016).

[62] A. Mazumdar and G. Stettinger, “New massless and massive infinite derivative gravity in three dimensions and perturbations around Minkowski and in (A)dS,” Nucl. Phys. B 956, 115024 (2020).

[63] S. Deser, R. Jackiw and G. ’t Hooft, “Three-Dimensional Einstein Gravity: Dynamics of Flat Space,” Annals Phys. 152 (1984), 220.

[64] S. Deser and R. Jackiw, “Three-Dimensional Cosmological Gravity: Dynamics of Constant Curvature,” Annals Phys. 153 (1984), 405-416.