Growth efficiency as a cellular objective in Eschericia coli

Tommi Aho1*, Juha Kesseli1, Olli Yli-Harja1, Stuart A. Kauffman1,2

1 Department of Signal Processing, Tampere University of Technology, Korkeakoulunkatu 1, 33720 Tampere, Finland
2 Complex Systems Center, University of Vermont, U.S.A

Author email addresses: tommi.aho@tut.fi, juha.kesseli@tut.fi, olli.yli-harja@tut.fi, stuart.kauffman@uvm.edu

* Corresponding author. Contact details: tommi.aho@tut.fi, tel. +358 40 1981304, fax +358 3 3115 4989
Abstract

The identification of cellular objectives is one of the central topics in the research of microbial metabolic networks. In particular, the information about a cellular objective is needed in flux balance analysis which is a commonly used constrained-based metabolic network analysis method for the prediction of cellular phenotypes. The cellular objective may vary depending on the organism and its growth conditions. It is probable that nutritionally scarce conditions are very common in the nature and, in order to survive in those conditions, cells exhibit various highly efficient nutrient processing systems like enzymes. In this study, we explore the efficiency of a metabolic network in transformation of substrates to new biomass, and we introduce a new objective function simulating growth efficiency.

We examined the properties of growth efficiency using a metabolic model for *Eschericia coli*. We found that the maximal growth efficiency is obtained at a finite nutrient uptake rate. The rate is substrate-dependent and it typically does not exceed 20 mmol/h/gDW. We further examined whether the maximal growth efficiency could serve as a cellular objective function in metabolic network analysis, and found that cellular growth in batch cultivation can be predicted reasonably well under this assumption. The fit to experimental data was found slightly better than with the commonly used objective function of maximal growth rate.

Based on our results, we suggest that the maximal growth efficiency can be considered as a plausible optimization criterion in metabolic modeling for *E. coli*. In the future, it
would be interesting to study growth efficiency as a cellular objective also in other cellular systems and under different cultivation conditions.

KEYWORDS: constraint-based modeling; metabolism; microorganism

1. Introduction

Flux balance analysis (FBA; [9, 21]) has been successfully applied to genome-scale models of microorganisms in order to characterize their metabolic capabilities [16]. FBA makes it possible to simulate different growth phenotypes attained under different environmental conditions and genetic modifications. The analysis can be performed without kinetic parameters in biochemical reactions equations, but using only stoichiometric and thermodynamic constraints. Typically, an objective function, representing the true cellular objective, needs also to be determined in flux balance analysis.

FBA is one of the constraint-based modeling methods that are based on the steady state assumption. The assumption states that the concentrations of metabolites not freely exchangeable with the environment are in a steady state. Given a metabolic network of m metabolites and n reactions, the network structure and the stoichiometric coefficients in reactions can be expressed in an $m \times n$ stoichiometric matrix S. Using S and the steady state assumption, it is possible to form the following set of equations to comprehensively characterize all the feasible metabolic flux distributions:
\[
\frac{dc}{dt} = S\nu = 0
\]

\[v_i^{lb} \leq v_i \leq v_i^{ub} \quad i = 1, \ldots, n \tag{1}\]

In Equation (1), \(c\) is a vector of concentrations of non-exchangeable metabolites, and \(\nu\) is a vector of reaction rates. The lower and upper bounds of reaction rates are defined by \(v_i^{lb}\) and \(v_i^{ub}\), respectively. The bounds for reaction rates can be used to constrain specific reactions to be irreversible, and to constrain the substrate uptake rate that usually is an important parameter in constraint-based metabolic modeling. In FBA it is often assumed that microorganisms aim to maximize their growth rate [8]. Therefore, a specific reaction is implemented to describe the generation of new biomass. In FBA the maximum rate of this reaction is determined using Linear Programming under the constraints of Equation (1). Currently, the maximal growth rate has established usage as an objective function but the rationale for cells always pursuing at maximal growth remains debatable [8]. Therefore, the research for other possible objective functions continues active. Other suggested functions include the maximization of ATP yield [19, 17], the minimization of the overall intracellular flux [4, 3], the maximization of ATP yield per flux unit [5], the maximization of biomass yield per flux unit [18], the minimization of glucose consumption [15], the minimization of reaction steps needed to produce biomass [13], the maximization of ATP yield per reaction step [18], the minimization of redox potential [12], the minimization of ATP producing fluxes [12], and the maximization of ATP producing fluxes [11, 6, 12]. Similarly to these studies, FBA provides the methodological framework also for our study of growth efficiency.
In the present work, we define the concept of growth efficiency and hypothesize that *Eschericia coli* uses it as the cellular objective. Maximal growth efficiency as the cellular objective would allow bacteria to utilize substrates efficiently to the production of new biomass while producing only little amount of waste, heat, or other side-products. In this work we explore the properties of growth efficiency using a genome-wide metabolic model for *Eschericia coli* [7] and study whether the growth efficiency could be considered as a plausible cellular objective in phenotypic simulations.

2. The definition and calculation of growth efficiency

We define the growth efficiency η as the growth rate v_{bm} (i.e. biomass production rate) divided by the substrate uptake rate v_s ($\eta = v_{bm} / v_s$). Because v_{bm} is largely determined by v_s, and in the following analysis we specifically focus on the effects of v_s to η, we now define so-called growth efficiency function as $\eta = H(v_s)$ and explore its properties. This simplification ignores specific other factors affecting η via v_{bm}, but the sensitivity of η to these factors will also be examined. The key assumption in our approach is that under specific conditions bacteria actively work to tune the substrate uptake rate such that the growth efficiency η will be maximized. That is, the bacteria aim at substrate uptake rate

$$v_s^* \text{ that is optimal in the sense of } v_s^* = \arg\max_{v_s} H(v_s).$$

In order to characterize the properties of growth efficiency and to study its use as a cellular objective function, we apply the constraints of Equation (1) and set maximal η as
the objective in Flux Balance Analysis. The problem is a linear-fractional problem where \(\eta \), that is the ratio of biomass production rate to the substrate uptake rate, is maximized:

\[
\max \quad \eta \\
\text{s.t.} \quad Sv = 0 \\
\quad v_{ar} \geq 0 \\
\quad v_{i}^{lb} \leq v_{i} \leq v_{i}^{ub} \quad \forall i
\]

(2)

We used the metabolic model iAF1260 for *Eschericia coli* [2] to study growth efficiency. Different substrates in cultivation media were modeled by changing the uptake bounds of the corresponding substrates. Different gene knockouts were modeled by setting the lower and upper bounds of the respective enzymatic reactions to zero. We examined substrate uptake rates \(v_s \) between 0 and 50 mmol/h/grams of cell dry weight (mmol/h/gDW). The linear-fractional optimization problem in Equation (2) was solved by sampling the allowed values \(v_s \), (60 samples in equal distances between 0 and 50), maximizing \(v_{bm} \) in each case, and selecting the value for \(v_s \) that maximizes \(\eta \). The analysis was performed using COBRAToolbox [2] and the Linear Programming problems were solved using glpk (http://www.gnu.org/software/glpk/).

3. Properties of growth efficiency

3.1 Maximum of growth efficiency

The growth efficiency function \(H(v_s) \) obtains its maximum at a finite substrate uptake rate \(v_s \). This is illustrated in Figure 1 which shows the predicted growth rate and growth
efficiency for a wild-type *E. coli* strain in glucose minimal media assuming varying glucose uptake rates. While the growth rate increases monotonically as the function of the glucose uptake rate, the growth efficiency has a maximum at $v^* = 9.2 \text{ mmol/h/gDW}$. If the uptake rate is greater than v^*, the cell starts to secrete increasing amounts excess metabolites like acetate.

3.2 Sensitivity of growth efficiency to model uncertainties

Metabolic network models are based on well known and validated information on stoichiometric coefficients in biochemical reactions. However, the models also include specific uncertainties. We examined the robustness of the growth efficiency function against four model parameters: (1) the maximal oxygen uptake rate, (2) ATP requirement for growth associated maintenance (GAM), (3) ATP requirement for non-growth associated maintenance (NGAM), and (4) the phosphorus to oxygen (P/O) ratio that reflects the efficiency of ATP synthesis in the electron transfer chain. These parameters have been identified most critical to the behavior of the iAF1260 model [7]. We first examined the form of the growth efficiency function while varying the maximal oxygen uptake rate between 0 and 50 mmol/h/gDW (the original value being 18.5 mmol/h/gDW). Second, GAM and NGAM were varied for +/- 50% of their original values (59.81 and 8.39 mmol/h/gDW, respectively) by constraining the respective reaction rates. Finally, P/O ratios 0.5, 1.0, 1.75, and 2.67 were tested by modifying the stoichiometric coefficients in the electron transfer chain and constraining specific reactions of the electron transfer chain (similarly as described in [7]). Figure 2 shows that all four
parameters affect the growth efficiency function. Oxygen uptake rate has the most drastic
effect which shifts v_{s}^{*}, i.e., the glucose uptake rate at which the maximum of growth
efficiency is obtained. GAM and NGAM have similar effects of shifting v_{s}^{*} but the effect
is more moderate. The increased P/O ratio increases the maximum growth efficiency
without notable effects to v_{s}^{*}.

3.3 Substrate uptake rate distributions

Because we assume a bacterium to self-regulate the substrate uptake rate to the maximum
η at a finite v_{s}^{*}, we are able to set the substrate uptake rate unconstrained. Usually in FBA
it is crucial to constrain the substrate uptake rate properly. Otherwise, as shown in the
upper panel of Figure 1, the growth rate simply increases monotonically with increasing
substrate input rate. In the following analysis, we simulated 10 different cultivation and
1261 genetic conditions to study the distribution of v_{s}^{*}. Figure 3 shows the results for
phenotypes that are predicted to be viable (i.e., the growth rate is greater than 0.1 h$^{-1}$). For
them, the substrate uptake rate v_{s}^{*} always remains at a finite range. Typical values for v_{s}^{*}
are from 5 to 20 mmol/h/gDW. The largest v_{s}^{*} is obtained under the knockouts of
components of ATP synthase, in particular in pyruvate cultivation. The blockage of ATP
synthase requires that the needed ATP is synthesized by other mechanisms, such as
glycolysis and the citric acid cycle, which requires a large substrate uptake rate.
3.4 The relation of growth efficiency and overflow metabolism

In situations where the maximal growth is achieved, a bacterium may not be able to transform all the substrate efficiently to new biomass but an increasing amount of material is directed to waste. This phenomenon of overflow metabolism has been extensively studied as it is detrimental in industrial applications. In the case of E. coli, overflow metabolism directs valuable carbon to acetate production instead of biomass generation. This inhibits growth and it may also disturb product synthesis [20].

We studied the relationship between the maximal growth efficiency and overflow metabolism by simulating all single gene knockouts in the iAF1260 model under varying carbon sources. We found that usually the substrate uptake rate at the maximal growth efficiency (v^*) equals to the substrate uptake rate at the start of overflow metabolism (i.e., the start of acetate production). There are few exceptions to this rule, for example, when the knockout is directed to specific genes of ATP synthase, pyruvate dehydrogenase, or succinate dehydrogenase. Thus, we reason that the maximal growth efficiency is a concept of its own, and it cannot be directly interpreted as the substrate uptake rate threshold above which overflow metabolism starts.

The use of the maximal growth criterion in growth phenotype simulation may easily produce estimates that are sub-optimal in growth efficiency and likely to express
overflow metabolism. In order to illustrate the sub-optimality under the maximal growth criterion, we calculated the loss of growth efficiency using the above-mentioned set of 1261 genetic and 10 environmental conditions. In simulations with the maximal growth criterion, the maximal substrate uptake rate was constrained to 10 mmol/h/gDW. The relative loss in growth efficiency was determined as the growth efficiency under the maximal growth criterion divided by the maximal achievable growth efficiency. Figure 4 summarizes the calculated loss ratios. In the figure, the loss of growth efficiency at maximal growth demonstrates that maximal growth wastes input substrate energy.

4. Maximal growth efficiency as a cellular objective

We examined whether the maximal growth efficiency is a plausible cellular objective for E. coli cultivated in a small-scale batch process. Therefore, we used the metabolic model iAF1260 to predict the cellular growth rate assuming E. coli maximizes the growth efficiency. The growth predictions were compared to two experimental data sets as follows.

First, we predicted the viability for mutant strains carrying single gene deletions. The predictions were produced for 1117 mutant strains cultivated under glucose minimal media [1]. Each mutant strain in the data set has been experimentally determined to be either viable or inviable. For 982 viable mutants, the viability was correctly predicted (i.e. True Positive rate was 97%) and, for 76 inviable mutants, the inviability was correctly
predicted (True Negative rate was 72%). The results are identical with the prediction results obtained using the maximal growth criterion.

Second, we predicted the growth rate for 5,096 growth conditions, consisting of 91 single gene knockout strains cultivated under 56 different media conditions. The optical density (OD) of *E. coli* grown in these conditions has been measured in a high-throughput experimental screen using the Biolog platform (http://www.biolog.com), and the data has been set available through the ASAP database [10]. Figure 5 shows the growth predictions for each of the growth conditions versus the corresponding OD value. Under the maximal growth criterion, the Spearman correlation between the predicted growth rates and the experimental OD values was 0.19 while under the maximal growth efficiency criterion the Spearman correlation was 0.24. We also fitted linear models to both data in order to further compare the phenotype prediction performance of the two criteria. Under the maximal growth criterion, the linear model had residual standard error of 0.83 and the adjusted R^2 was 0.59. Under the maximal growth efficiency criterion, the linear model had residual standard error of 0.76 and the adjusted R^2 was 0.65. The better fit in the case of the maximal growth efficiency was confirmed using Akaike’s information criterion (12,537.83 for maximal growth criterion versus 11,639.86 for maximal growth efficiency criterion).

5. Conclusions

The identification of cellular survival strategies and their simulation by realistic objective functions have fundamental importance on phenotype prediction in metabolic analysis. It
is probable that there is no single survival strategy that is optimal in all situations but the
strategy is likely to depend on growth conditions of a microorganism [8]. Feist and
Palsson discuss three qualitatively different environments: nutritionally rich, nutritionally
scarce, and elementally limited [8]. Nutritionally rich laboratory-like conditions are
probably very rare in the nature and thus, maximal growth is probably an unrealistic
objective function in most of the situations. In a study by Schuetz et al. [18] it was found
that under nutrient scarcity in continuous cultivations, the best prediction accuracy was
achieved using linear maximization of ATP or biomass yields. On the other hand, in
unlimited growth on glucose in oxygen or nitrogen respiring batch cultures, the best
prediction accuracy was achieved by nonlinear maximization of the ATP yield per flux
unit.

In this work we introduced a concept called growth efficiency and characterized its
properties. The study was performed using the metabolic model iAF1260 for *Eschericia
coli*. As a result we found that the growth efficiency function has its maximum within a
finite substrate uptake rate. According to our predictions, the substrate uptake rate at
which the maximal growth efficiency is obtained (v^*_s) varies typically from 5 to 20
mmol/h/gDW. Our simulations with several different cultivation media and a set of single
gene knockouts demonstrated that the optimal rate v^*_s depends on the cultivation and
genetic conditions. For example, with sucrose the median uptake rate of v^*_s was 4.5
mmol/h/gDW while with pyruvate the median rate was 17 mmol/h/gDW. We also found
that the growth efficiency function is affected by specific parameters that usually remain
unsure in metabolic network models. In particular, oxygen uptake and ATP requirement
for growth associated maintenance affect \(v_r \), and increasing P/O ratio in electron transfer chain increases growth efficiency while maintaining the form of the growth efficiency function.

A straight-forward application of growth efficiency is to use it as an optimization criterion (i.e., objective function) for predictions of cellular growth. We explored this possibility and validated our computational predictions using two sets of experimental data. We found that maximal growth efficiency can be considered as a feasible optimization criterion in metabolic modeling. The criterion predicted the given experimental data slightly better than the commonly applied maximal growth rate criterion.

In this study we used data from batch cultivations to validate the feasibility of growth efficiency as an objective function. However, based on the work by Schuetz et al. [18], we hypothesize that the growth efficiency criterion could perform better in situations where cells are under nutrient scarcity, i.e. they are cultivated in nutrient-limiting chemostats. Such chemostat data was not available in this study, and the hypothesis should be validated in a future study.

Considering maximal growth efficiency as a cellular objective suggests that cells can save nutrients in the benefit of other cells or to be used to themselves at a later moment. This raises the question about the mechanisms, e.g. quorum sensing, which bacteria growing in colonies may use to tune their growth rate in each growth situation. As a
further point we note that if it proves true that bacterial cells maximize the growth

efficiency per unit food or energy uptake, this picks out an optimal rate of energy
utilization, hence an optimal displacement from chemical equilibrium for non-
equilibrium living cells. We note that we lack the theory of an optimal displacement from
equilibrium for living, non-equilibrium, cells. Jacques Monod, in Chance and Necessity,
notes that optimally growing bacteria give off little heat [14]. This may be consonant
with maximal growth efficiency, so that the maximal amount of energy coming into cells
goes into biomass production and minimizes waste heat.

Acknowledgments

This work was supported by the Academy of Finland (Finnish Programme for Centres of
Excellence in Research 2006-2011) and the FiDiPro programme of Finnish Funding
Agency for Technology and Innovation.

References

[1] T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K.A. Datsenko,
M. Tomita, B.L. Wanner, H. Mori, Construction of *Escherichia coli* K-12 in-frame,
single-gene knockout mutants: the Keio collection, Mol. Syst. Biol. 2 (2006) 2006.0008.
[2] S.A. Becker, A.M. Feist, M.L. Mo, G. Hannum, B.Ø. Palsson, M.J. Herrgard, Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox, Nat. Protocols 2 (2007) 727-738.

[3] L.M. Blank, L. Kuepfer, U. Sauer, Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast, Genome Biol. 6 (2005) R49.

[4] H.P.J. Bonarius, V. Hatzimanikatis, K.P.H. Meesters, C.D. de Gooijer, G. Schmid, J. Tramper, Metabolic flux analysis of hybridoma cells in different culture media using mass balances, Biotechnol. Bioeng. 50 (1996) 299–318.

[5] M. Dauner, U. Sauer, Stoichiometric growth model for riboflavin-producing *Bacillus subtilis*, Biotechnol. Bioeng. 76 (2001) 132–143.

[6] O. Ebenhoh, R. Heinrich, Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems, Bull. Math. Biol. 63 (2001) 21–55.

[7] A.M. Feist, C.S. Henry, J.L. Reed, M. Krummenacker, A.R. Joyce, P.D. Karp, L.J. Broadbelt, V. Hatzimanikatis, B.Ø. Palsson, A genome-scale metabolic reconstruction for *Escherichia coli* K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information, Mol. Syst. Biol. 3 (2007) 121.
[8] A.M. Feist, B.Ø. Palsson, The biomass objective function, Curr. Opin. Microbiol., 13 (2010) 344-349.

[9] D.A. Fell, J.R. Small, Fat synthesis in adipose tissue. An examination of stoichiometric constraints, Biochem J 238 (1986) 781–786.

[10] J.D. Glasner, P. Liss, G. Plunkett 3rd, A. Darling, T. Prasad, M. Rusch, A. Byrnes, M. Gilson, B. Biehl, F.R. Blattner, N.T. Perna, ASAP, a systematic annotation package for community analysis of genomes, Nucleic Acids Res. 31 (2003) 147-151.

[11] R. Heinrich, F. Montero, E. Klipp, T.G. Waddell, E. Melendez-Hevia, Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints, Eur. J. Biochem. 243 (1997) 191–201.

[12] A.L. Knorr, R. Jain, R. Srivastava, Bayesian-based selection of metabolic objective functions, Bioinformatics 23 (2007) 351–357.

[13] E. Meléndez-Hevia, A. Isidoro, The game of the pentose phosphate cycle, J. Theor. Biol. 117 (1985) 251-263.

[14] J. Monod, Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology, first ed., Knopf, New York, 1971.
[15] A.P. Oliveira, J. Nielsen, J. Forster, Modeling *Lactococcus lactis* using a genome-scale flux model., BMC Microbiol 5 (2005) 39.

[16] N.D. Price, J.L. Reed, B.Ø. Palsson, Genome-scale models of microbial cells: evaluating the consequences of constraints, Nature Rev. Microbiol. 2 (2004) 886-897.

[17] R. Ramakrishna, J.S. Edwards, A. McCulloch, B.Ø. Palsson, Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints, Am. J. Physiol. Regul. Integr. Comp. Physiol. 280 (2001) R695-R704.

[18] R. Schuetz, L. Kuepfer, U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in *Escherichia coli*, Mol. Syst. Biol. 3 (2007) 119.

[19] W.M. van Gulik, J.J. Heijnen, A metabolic network stoichiometry analysis of microbial growth and production formation, Biotech. Bioeng. 48 (1995) 681-698.

[20] K. Valgepea, K. Adamberg, R. Nahku, P.-J. Lahtvee, L. Arike, R. Vilu, Systems biology approach reveals that overflow metabolism of acetate in *Escherichia coli* is triggered by carbon catabolite repression of acetyl-CoA synthetase, BMC Syst. Biol. 4 (2010) 166.
[21] A. Varma, B.Ø. Palsson, Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type *Escherichia coli* W3110, Appl. Environ. Microbiol. 60 (1994) 3724–3731.
Figure 1. Maximal growth efficiency is obtained at a finite substrate uptake rate. The upper panel depicts the growth rate and the acetate secretion rate as the function of glucose uptake rate. The growth rate is a monotonically increasing function without a maximum. The lower panel shows the growth efficiency as the function of glucose uptake rate, i.e., the growth efficiency function $H(v_s)$.
Figure 2. The robustness of the growth efficiency function against four uncertain model parameters. (A) oxygen uptake rate, (B) growth associated maintenance, (C) non-growth associated maintenance, (D) P/O ratio.

Figure 3. Distributions of substrate uptake rates under the maximal growth efficiency criterion. The uptake rate is calculated using both criteria for 1261 gene knockout strains in 10 carbon sources (glc: glucose, succ: succinate, gal: galactose, ala-D: D-alanine, pyr:...
pyruvate, cit: citrate, fru: fructose, rmn: rhamnose, sucr: sucrose, man: mannose). All the
distributions are presented as boxplots. The distributions are so concentrated that their
data points without outliers appear together as a black bar. Dots represent outliers. Eight
data points representing the largest substrate uptake rate (224 mmol/h/gDW for deletions
of ATP synthase components in pyruvate cultivation) are not shown.

Figure 4. Sub-optimality of growth efficiency under the maximal growth criterion. The
relative loss in growth efficiency under the maximal growth rate criterion is depicted for
1261 gene knockout strains in 10 cultivation conditions. The bar represents the median of
the 1261 mutants. Almost all the mutants are very close to the median so they cluster
under the bar. The distribution is right skewed and the points are at least 2.7 S.D. above
or occasionally below the median. The median in almost all culture conditions shows a
loss of growth efficiency under the maximal growth rate criterion.
Figure 5. The correspondence of predicted growth rates and experimentally observed optical density. OD values are presented as the function of the predicted growth rates. The upper and the lower panel present the predictions under the maximal growth criterion and the maximal growth efficiency criterion, respectively. A linear model is fitted to both data. In simulations with the maximal growth criterion, the maximal substrate uptake rate was constrained to 10 mmol/h/gDW.