Finite-dimensional representations of difference operators, and the identification of remarkable matrices

Francesco Calogero
Physics Department, University of Rome "La Sapienza", 00185 Rome, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Roma

Abstract

Two square matrices of (arbitrary) order N are introduced. They are defined in terms of N arbitrary numbers z_n, and of an arbitrary additional parameter (a respectively q), and provide finite-dimensional representations of the two operators acting on a function $f(z)$ as follows: $[f(z + a) - f(z)]/a$ respectively $[f(qz) - f(z)]/[(q - 1)z]$. These representations are exact—in a sense explained in the paper—when the function $f(z)$ is a polynomial in z of degree less than N. This formalism allows to transform difference equations valid in the space of polynomials of degree less than N into corresponding matrix-vector equations. As an application of this technique several remarkable square matrices of order N are identified, which feature explicitly N arbitrary numbers z_n, or the N zeros of polynomials belonging to the Askey and q-Askey schemes. Several of these findings have a Diophantine character.
1 Introduction

This paper is focussed on \((N \times N)\)-matrices which provide finite-dimensional representations of difference operators yielding exact results in the context of the functional space spanned by polynomials of degree less than \(N\); the precise meaning of this statement is clarified below.

These findings extend to difference operators the results reported for the standard differential operator in Section 2.4 (entitled "Finite dimensional representations of differential operators, Lagrangian interpolation, and all that") of [1] (and see also papers referred to there). Let us summarize here—for completeness, and also to introduce some notation used throughout—the essence of those findings.

Notation 1.1. Throughout this paper \(N\) is an arbitrary positive integer (unless otherwise explicitly indicated); \(N\)-vectors are denoted by underlined (Latin or Greek) letters, so that, for instance, the \(N\) vector \(v\) has the \(N\) components \(v_n\); likewise \((N \times N)\)-matrices are denoted by twice-underlined (Latin or Greek) letters, so that, for instance, the \((N \times N)\)-matrix \(M\) features the \(N^2\) components \(M_{nm}\). Here and throughout the indices \(n, m, \ell\) run over the integers from 1 to \(N\), unless otherwise indicated. Attention is generally restricted to functions \(f(z)\) which depend analytically on their argument \(z\), in particular that are polynomials in their argument \(z\). The formulas written below are generally valid for arbitrary, complex values of all the quantities denoted by (Latin or Greek) letters, up to obvious limitations for cases when limits might have to be taken: for instance \(g(a, z) = [f(a + z) - f(z)] / a\) has a clear significance for every value of the quantity \(a\) except for \(a = 0\), but it also clearly implies \(g(0, z) = df(z) / dz\). Finally, we use throughout the notation \(i\) to denote the imaginary unit, so that \(i^2 = -1\).

To summarize the previous results [1] let us assume that the function \(f(z)\) is a polynomial of degree less than \(N\),

\[
f(z) = \sum_{m=1}^{N} \left[c_m \, z^{N-m} \right],
\]

and let us then express it as a linear combination—with coefficients \(f_n\)—of the \(N\) interpolational polynomials \(p_{N-1}^{(n)}(z)\)—all of them of degree \(N-1\) in \(z\)—defined as follows in terms of the \(N\), arbitrarily assigned, numbers \(z_n\):

\[
p_{N-1}^{(n)}(z) \equiv p_{N-1}^{(n)}(z; \{z_\ell\} = \prod_{\ell=1, \ell \neq n}^{N} \left(\frac{z - z_\ell}{z_n - z_\ell} \right),
\]

\[
f(z) = \sum_{n=1}^{N} \left[f_n \, p_{N-1}^{(n)}(z) \right].
\]

This definition, [2], of the interpolational polynomials \(p_{N-1}^{(n)}(z)\) clearly implies the relation

\[
p_{N-1}^{(n)}(z_m) \equiv p_{N-1}^{(n)}(z_m; \{z_\ell\}) = \delta_{nm}, \quad n, m = 1, ..., N;
\]

2
hence the N coefficients f_n in the right-hand side of (3) are just the values of $f(z)$ at the N points z_n:

$$ f_n = f(z_n) , \quad n = 1, ..., N . $$

(5)

The above formulas correspond to the standard formulation of Lagrangian interpolation: the N interpolational points z_n can be arbitrarily assigned, except for the restriction that they be all different among themselves, see (2) (otherwise some limits would have to be taken). They entail a one-to-one relationship among the N-vector f featuring the N components f_n,

$$ f = (f_1, ..., f_N) , $$

(6)

and the function $f(z)$ restricted to be a polynomial in z of degree less than N.

In Section 2.4 of [1] certain relations are reported among differential operators acting on such functions $f(z)$, see (1), and appropriately defined $(N \times N)$-matrices acting on the N-vector f. The basic formula of this kind, corresponding to the definition

$$ f^{(r)}(z) = \left(\frac{d}{dz} \right)^r f(z) , \quad r = 0, 1, 2, ... $$

reads (see, up to minor notational changes, eq. (2.4.1-9) of [1])

$$ f^{(r)} = (V D V^{-1})^r f = V (D)^r V^{-1} f = V (D)^r f(Z) w , \quad r = 0, 1, 2, ... $$

(8)

Here the N components $f_n^{(r)}$ of the N-vector $f^{(r)}$ are of course the N values $f^{(r)}(z_n)$ that the r-th derivative $f^{(r)}(z)$ of the function $f(z)$ (see (7)) takes at the N interpolational points z_n,

$$ f_n^{(r)} = \left(f^{(r)} \right)_n = f^{(r)}(z_n) , \quad n = 1, ..., N , \quad r = 0, 1, 2, ... $$

(9a)

or, equivalently,

$$ f^{(r)} = f^{(r)}(Z) u , $$

(9b)

with the N-vector u having all elements equal to unity,

$$ u = (1, 1, ..., 1) ; \quad u_n = 1 , \quad n = 1, ..., N . $$

(10)

The $(N \times N)$-matrices $Z = Z(z)$, $D = D(z)$, $V = V(z)$ and the N-vector $w = w(z)$ are defined componentwise as follows, in terms of the N arbitrary numbers z_n which are the N components of the N-vector z:

$$ Z(z) = \text{diag} [z_n] ; \quad Z_{nm} = \delta_{nm} z_n ; $$

(11)

$$ D_{nn} = D_{nn}(z) = \sum_{\ell=1, \ell \neq n}^{N} \left(\frac{1}{z_n - z_\ell} \right) , \quad n = 1, ..., N , \quad (12a) $$
\[D_{nm} \equiv D_{nm}(z) = \left(\frac{1}{z_n - z_m} \right), \quad n \neq m, \quad n, m = 1, \ldots, N; \quad (12b) \]

\[V_{nm} \equiv V_{nm}(z) = \delta_{nm} \prod_{\ell = 1, \ell \neq n}^{N} (z_n - z_\ell); \quad (13) \]

\[w = V^{-1} u, \quad w_n \equiv w_n(z) = \prod_{\ell = 1, \ell \neq n}^{N} \left(\frac{1}{z_n - z_\ell} \right). \quad (14) \]

These formulas imply that, whenever a function \(f(z) \) which is a polynomial of degree less than \(N \) in \(z \), see (1), satisfies the differential equation (with no \textit{a priori} restriction on the positive integer \(R \) and on the \(R + 2 \) functions \(d_r(z) \) and \(g(z) \))

\[\sum_{r=0}^{R} \left[d_r(z) \left(\frac{d}{dz} \right)^r f(z) \right] = g(z), \quad (15a) \]

the following \(N \)-vector equation is as well valid:

\[\sum_{r=0}^{R} \left[d_r(Z) \left(D \right)^T \right] f(Z) w = g(Z) w; \quad (15b) \]

with the \((N \times N) \)-matrices \(Z \) and \(D \) and the \(N \)-vector \(w \) defined as above, see (11), (12) and (14), in terms of \(N \) numbers \(z_n \), arbitrary except for the condition that they be all different among themselves. With remarkable consequences.

The main findings of this paper extend to difference operators these results; they are reported in the next Section 2 and proven in Section 4. In Section 3, as examples of applications of these findings several \((N \times N) \)-matrices displaying remarkable features are explicitly defined in terms of a few arbitrary parameters and in addition of \(N \) arbitrary numbers \(z_n \) or, alternatively, of the \(N \) zeros \(z_n \) of the polynomials of degree \(N \) belonging to the Askey and \(q \)-Askey schemes. A terse Section 5 entitled Outlook outlines possible future developments. Some calculations are confined to an Appendix A in order to avoid unessential interruptions in the flow of the presentation.

2 Main results

Let the two difference operators \(\hat{\nabla}(a) \) and \(\hat{\nabla}(q) \) be defined as follows:

\[\hat{\nabla}(a) \ f(z) = \frac{f(z + a) - f(z)}{a}, \quad (16) \]

\[\hat{\nabla}(q) \ f(z) = \frac{f(z) - f(qz)}{(1-q)z}. \quad (17) \]
It is plain that the first of these difference operators becomes the standard differential operator \(\frac{d}{dz} \) as \(a \to 0 \), and likewise the second as \(q \to 1 \):
\[
\hat{\nabla} (0) \ f (z) = \hat{\nabla} (1) \ f (z) = f' (z) .
\] (18)

But hereafter we assume for simplicity that \(a \neq 0 \) and \(q \neq 1 \).

It is also plain that for the difference operator \(\hat{\nabla} (a) \) there holds the following eigenvalue equation:
\[
z \ \hat{\nabla} (a) \ \hat{f}_k (z; a) = k \ \hat{f}_k (z; a) , \quad k = 0, 1, 2, ... ,
\] (19a)
with the eigenfunction \(\hat{f}_k (z; a) \) coinciding—up to an irrelevant multiplicative constant—with the "shifted-factorial" \((z, a)_k \),
\[
\hat{f}_k (z; a) = (z, a)_k ,
\] (19b)

itself defined (here and hereafter) as follows:
\[
(z, a)_0 = 1 ; \quad (z, a)_r = \prod_{s=0}^{r-1} (z + s \ a) , \quad r = 1, 2,
\] (19c)

Likewise for the difference operator \(\hat{\nabla} (q) \) there holds the following eigenvalue equation:
\[
z \ \hat{\nabla} (q) \ \hat{f}_k (z) = \frac{1 - q^k}{1 - q} \ \hat{f}_k (z) , \quad \hat{f}_k (z) = z^k .
\] (20a)

Remark 2.1. In the eigenvalue equation (19) the nonnegative integer eigenvalues \(k \) are independent of the parameter \(a \), while the corresponding eigenfunctions \(\hat{f}_k (z; a) = (z; a)_k \) depend on both \(k \) and \(a \). Viceversa, in the eigenvalue equation (20a) the eigenfunctions \(\hat{f}_k (z) = z^k \) do not depend on the parameter \(q \), while the corresponding eigenvalues \((1 - q^k) / (1 - q) \) depend on both \(k \) and the parameter \(q \); in this case \(k \) is a priori not restricted to take integer, or even real, values, but in our treatment we will in fact restrict attention also in this case to nonnegative integer values of the parameter \(k \), so that the eigenfunction \(\hat{f}_k (z) = z^k \) is holomorphic, and the eigenvalues in (20a) read as follows:
\[
\frac{1 - q^k}{1 - q} = 0 \quad \text{for} \quad k = 0 ,
\]
\[
\frac{1 - q^k}{1 - q} = 1 + q + q^2 + ... + q^{k-1} = \sum_{s=0}^{k-1} (q^s) \quad \text{for} \quad k = 1, 2, 3,
\] (20b)

Notation 2.1. It is convenient to also introduce the simpler operators \(\hat{\delta} (a) \) and \(\hat{\delta} (q) \) defined as follows:
\[
\hat{\delta} (a) \ f (z) = f (z + a) , \quad \hat{\delta} (q) \ f (z) = f (q \ z) .
\] (21a)
This implies of course that the operators $\hat{\nabla} (a)$ and $\hat{\nabla} (q)$ defined above are related to these operators—acting on functions $f(z)$ of the variable z—as follows:

$$\hat{\nabla} (a) = a^{-1} \left[\hat{\delta} (a) - 1 \right], \quad \hat{\nabla} (q) = \left[(1 - q) \ z \right]^{-1} \left[1 - \hat{\delta} (q) \right]. \quad \Box \quad (21b)$$

The main result of this paper is the identification of two $(N \times N)$-matrices $\hat{\delta} (a; z)$ and $\hat{\delta} (q; z)$ which provide—together with the $N \times N$ diagonal matrix $Z = \text{diag} \{ z_n \}$, see (11)—finite-dimensional representations of the two operators $\hat{\delta} (a)$ respectively $\hat{\delta} (q)$. These matrices are defined componentwise as follows:

$$(\hat{\delta} (a; z))_{nm} = \prod_{\ell=1, \ell \neq m}^N \left(\frac{z_n + a - z_{\ell}}{z_m - z_{\ell}} \right); \quad (22a)$$

$$(\hat{\delta} (q; z))_{nm} = \prod_{\ell=1, \ell \neq m}^N \left(\frac{q \ z_n - z_{\ell}}{z_m - z_{\ell}} \right). \quad (22b)$$

And of course the $(N \times N)$-matrices $\hat{\nabla} (a; z) = \left[\hat{\delta} (a; z) - 1 \right] / a$ respectively $\hat{\nabla} (q; z) = \left[(1 - q) \ Z (z) \right]^{-1} \left[1 - \hat{\delta} (q; z) \right]$ (see (21b) and (22)) which provide—again, together with the $N \times N$ diagonal matrix Z—finite-dimensional representations of the two difference operators $\hat{\nabla} (a)$ respectively $\hat{\nabla} (q)$ are correspondingly defined componentwise as follows:

$$(\hat{\nabla} (a; z))_{nm} = a^{-1} \left\{ \left[\prod_{\ell=1, \ell \neq m}^N \left(\frac{z_n + a - z_{\ell}}{z_m - z_{\ell}} \right) \right] - \delta_{nm} \right\}; \quad (23a)$$

$$(\hat{\nabla} (q; z))_{nm} = \left[(1 - q) \ z_n \right]^{-1} \left\{ \left[\prod_{\ell=1, \ell \neq m}^N \left(\frac{z_n + a - z_{\ell}}{z_m - z_{\ell}} \right) \right] - \delta_{nm} \right\}. \quad (23b)$$

Notation 2.2. In all the above formulas and hereafter δ_{nm} is the standard Kronecker symbol,

$$\delta_{nm} = 1 \quad \text{if} \quad n = m, \quad \delta_{nm} = 0 \quad \text{if} \quad n \neq m; \quad (24)$$

while—unless otherwise explicitly specified—the N numbers z_n are arbitrary (but obviously all different among themselves, and the same set of N numbers throughout). Let us reiterate that all the $(N \times N)$-matrices introduced above are defined in terms of these N a priori arbitrary numbers, i. e. of the N components of the N-vector z. This important fact should always be kept in mind, even though, for notational simplicity, we occasionally omit below to indicate explicitly this dependence. □

The significance of the statement that the $(N \times N)$-matrices $\hat{\delta} (a; z)$, $\hat{\delta} (q; z)$, $\hat{\nabla} (a; z)$ respectively $\hat{\nabla} (q; z)$ provide finite-dimensional representations of the
corresponding operators $\delta (a)$, $\delta (q)$, $\nabla (a)$ respectively $\nabla (q)$—and, most importantly, that these representations are exact in the functional space spanned by polynomials of degree less than N—is made explicit by the following properties which extend to these operators results reported in Section 2.4 of [1] for differential operators (as tersely summarized in the preceding Section 1). The main idea is again to identify relations among operators acting on functions $f(z)$—always restricted to live in the functional space spanned by polynomials in z of degree less than N, see (1)—and appropriately defined matrices acting on the corresponding N-vector $f(z)$, see (11), (22) and (23).

We report in the following Sections 2.1 respectively 2.2 the main relevant formulas for the operators $\delta (a)$ and $\nabla (a)$ respectively $\delta (q)$ and $\nabla (q)$; proofs of those of these results that are not immediately obvious are postponed to Section 4. And in Appendix B we report a few additional remarkable properties of the two ($N \times N$)-matrices $\hat{\delta} (a; z)$ and $\hat{\nabla} (a; z)$.

2.1 The ($N \times N$)-matrices $\hat{\delta} (a)$ and $\nabla (a)$

In this Section 2.1 we report the main results concerning finite-dimensional representations of the operators $\hat{\delta} (a)$ and $\nabla (a)$, see (16), (21a) and (21b).

Lemma 2.1.1. Let $f(z)$ be an arbitrary polynomial in z of degree less than N, see (1), and let us denote with the notation $\hat{f}^{[ar]} (z)$ the polynomial (also of degree less than N) that obtains by applying to it r times the operator $\hat{\delta} (a)$, see (21a):

$$\hat{f}^{[ar]} (z) \equiv \left(\hat{\delta} (a) \right)^r f(z) = f(z + ra) = \sum_{m=1}^N \left[c_m (z + ra)^{N-m} \right] = \hat{f}^{[ar]} (z), \quad r = 1, 2, \ldots . \quad (25a)$$

Now associate to $f(z)$ respectively to $\hat{f}^{[ar]} (z)$ the N-vectors $f \equiv f(z)$ respectively $\hat{f}^{[ar]} \equiv f^{[ar]} (z)$, whose N components f_n respectively $\hat{f}^{[ar]}_n$ are the N values that the polynomials (of degree less than N, see (1)) $f(z)$ respectively $\hat{f}^{[ar]} (z) = f(z + ra)$ take at the N (arbitrary) points z_n,

$$f_n = f(z_n), \quad \hat{f}^{[ar]}_n = \hat{f}^{[ar]} (z_n) = f(z_n + ra), \quad n = 1, \ldots , N; \quad r = 0, 1, 2, \ldots . \quad (25b)$$

There holds then the N-vector formula

$$\hat{f}^{[ar]} \equiv \left[\hat{\delta} (a; z) \right]^r f, \quad r = 0, 1, 2, \ldots , \quad (26)$$

with the ($N \times N$)-matrices $\hat{\delta} (a; z)$ defined componentwise by (22a). □

Remark 2.1.1. The fact that the matrix $\left[\hat{\delta} (a; z) \right]^r$ appearing in the right-hand side of the last equation depends—consistently with the left-hand side of
this equation—on the product ar (rather than separately on a and r) is not immediately obvious from its definition (22a), but is in fact true, indeed see below Remark 4.1.1. □

Clearly this finding implies an analogous result for the difference operator $\hat{\nabla} (a)$, see (21b):

Lemma 2.1.2. Let $f (z)$ be an arbitrary polynomial in z of degree less than N, see (1), and let us denote with the notation $\hat{f}^{[[a,r]]} (z)$ the polynomial that obtains by applying to it r times the difference operator $\hat{\nabla} (a)$, see (16) and (21b):

$$\hat{f}^{[[a,r]]} (z) \equiv \left(\hat{\nabla} (a) \right)^r f (z) = \left[\delta (a) - \frac{1}{a} \right]^r f (z) , \quad r = 0, 1, 2, \ldots . \quad (27a)$$

Now associate to $f (z)$ respectively to $\hat{f}^{[[a,r]]} (z)$ the N-vectors $\vec{f} \equiv \hat{f} (z)$ respectively $\hat{f}^{[[a,r]]} (z)$, whose N components $f_n \equiv f_n (z)$ respectively $\hat{f}^{[[a,r]]}_n (z)$ are the N values that the polynomials $f (z)$ respectively $\hat{f}^{[[a,r]]} (z)$ take at the N (arbitrary) points z_n,

$$f_n = f (z_n) , \quad \hat{f}^{[[a,r]]}_n = \hat{f}^{[[a,r]]} (z_n) , \quad n = 1, \ldots , N . \quad (27b)$$

There holds then the N-vector formula

$$\hat{f}^{[[a,r]]} = \left[\hat{\nabla} (a; z) \right]^r \vec{f} , \quad r = 0, 1, 2, \ldots , \quad (28)$$

of course with the $(N \times N)$-matrix $\hat{\nabla} (a; z)$ defined componentwise by (23a). □

Remark 2.1.2. It is plain that the operator $\hat{\nabla} (a)$, when acting on a polynomial in z of degree M, yields a polynomial of degree $M - 1$; hence, when it acts r times on any polynomial of degree less than N it yields an identically vanishing result if the integer r equals or exceeds N. Hence the right-hand side of (27a) vanishes for $r \geq N$, and this implies that the $(N \times N)$-matrix $\hat{\nabla} (a; z)$ features the remarkable property

$$\left[\hat{\nabla} (a; z) \right]^N = \mathbf{0} , \quad (29)$$

where $\mathbf{0}$ denotes of course the $(N \times N)$-matrix with all elements vanishing. □

The following Proposition and Corollaries are immediate consequences of these findings.

Proposition 2.1.1. Let the difference operator $\hat{D} (a)$ be defined as follows,

$$\hat{D} (a) = \sum_{r=0}^{R} \left\{ \hat{a}_r (z) \left[\delta (a) \right]^r \right\} , \quad (30)$$

where the positive integer R and the $R+1$ functions $\hat{a}_r (z)$ are a priori arbitrary (but see below the restriction on the function $f (z)$), and let

$$\hat{D} (a) \ f (z) = g (z) \quad (31)$$

8
with \(f(z) \) a polynomial in \(z \) of degree less than \(N \), see (11) (but note: no such condition on \(g(z) \)). There then holds the \(N \)-vector equation
\[
\hat{D}(a; z) \cdot f(z) = g(z) \tag{32}
\]
with the \((N \times N)\)-matrix \(\hat{D}(a; z) \) defined as follows,
\[
\hat{D}(a; z) = \sum_{r=0}^{R} \left\{ \hat{d}_r(Z) \left[\hat{\delta}(a; z) \right]^r \right\} , \tag{33}
\]
and of course the \(N \)-vectors \(f(z) \) and \(g(z) \) defined so that their \(N \) components are
\[
(f(z))_n = f(z_n) , \quad (g(z))_n = g(z_n) , \quad n = 1, \ldots, N \tag{34a}
\]
or, equivalently,
\[
f(z) = f(Z) \cdot u , \quad g(z) = g(Z) \cdot u \tag{34b}
\]
of course with the \((N \times N)\)-matrices \(\hat{\delta}(a; z) \) respectively \(Z \) defined componentwise by (22a) respectively (11) and the "unit" \(N \)-vector \(u \) defined by (10).
\[
□
\]
Corollary 2.1.1. If in (31) \(g(z) = 0 \), i.e. if for the operator \(\hat{D}(a) \), see (30), there holds the equation
\[
\hat{D}(a) \cdot f(z) = 0 \tag{35a}
\]
with \(f(z) \) a polynomial in \(z \) of degree less than \(N \), see (1), then the \((N \times N)\)-matrix \(\hat{D}(a; z) \), see (33), has vanishing determinant,
\[
\det [\hat{D}(a; z)] = 0 . \tag{35b}
\]
Corollary 2.1.2. If the operator \(\hat{D}(a) \), see (30), has the eigenvalue \(b \),
\[
\hat{D}(a) \cdot f^{(b)}(z) = b \cdot f^{(b)}(z) \tag{36a}
\]
with the corresponding eigenfunction \(f^{(b)}(z) \) being a polynomial in \(z \) of degree less than \(N \), see (11), then the \((N \times N)\)-matrix \(\hat{D}(a; z) \), see (33), features the same eigenvalue \(b \),
\[
\hat{D}(a; z) \cdot f^{(b)} = b \cdot f^{(b)} \tag{36b}
\]
and the corresponding eigenvector \(f^{(b)} \) is given by the following simple prescription,
\[
f^{(b)} = f^{(b)}(Z) \cdot u ; \quad \left(f^{(b)} \right)_n = f^{(b)}(z_n) , \quad n = 1, \ldots, N \tag{36c}
\]
where of course the \((N \times N)\)-matrix \(Z \), respectively the \(N \)-vector \(u \), are again defined by (11) respectively (10).
\[
□
\]
Clearly these equations are merely examples of the neat prescriptions
\[
\hat{d}_s(z) \Rightarrow \hat{d}_s(Z) \cdot u , \quad \hat{\delta}(a) \Rightarrow \hat{\delta}(a; z) , \quad \hat{\nabla}(a) \Rightarrow \hat{\nabla}(a; z) , \quad f(z) \Rightarrow f(Z) \cdot u , \tag{37}
\]
which allow to transform equations involving the action of the multiplicative operator $d_s(z)$ (see (50)) and of the operators $\hat{\delta}(a)$ and $\hat{\nabla}(a)$ (see (21a and (16) or (21b)) acting on functions $f(z)$, into corresponding equations involving the action of corresponding $(N \times N)$-matrices on corresponding N-vectors; rules that involve the introduction of N arbitrary numbers z_n (all different among themselves), and that are applicable whenever these operators act on functions $f(z)$ which are polynomials in z of degree less than the arbitrary number N, and that involve the simultaneous replacement of the function $f(z)$ into the N-vector $f(z)$ of components $f_n(z) = f(z_n)$.

Remark 2.1.3. An interesting generalization of all the findings reported above (in this Section 2.1) is to the case in which the function $f(z)$, instead of being a polynomial of degree less than N in z, is a polynomial of degree less than N in a variable $\zeta \equiv \zeta(z)$,

$$f(\zeta) \equiv f(\zeta(z)) = \sum_{m=1}^{N} \left\{ c_m \left[\zeta(z) \right]^{N-m} \right\} .$$

(38)

It is then easily seen that all the results reported above (in this Section 2.1) remain valid, provided the $(N \times N)$-matrix $\hat{\delta}(a;z)$, see (22a), is replaced by the $(N \times N)$-matrix $\hat{\delta}(a;z)$ defined componentwise as follows:

$$\left(\hat{\delta}(a;z) \right)_{nm} = \prod_{\ell=1, \ell \neq m}^{N} \left[\frac{\zeta(z_n + a) - \zeta_{\ell}}{\zeta_m - \zeta_{\ell}} \right] , \quad n, m = 1, \ldots, N ,$$

(39a)

where of course $\zeta_n \equiv \zeta(z_n) , \quad \zeta = (\zeta_1, \ldots, \zeta_N)$.

(39b)

Of course likewise the matrix $\hat{\nabla}(a;z)$ is replaced by the matrix $\hat{\nabla}(a;z) = \left[\hat{\delta}(a;z) - 1 \right] /a$, of components

$$\left(\hat{\nabla}(a;z) \right)_{nm} = a^{-1} \left\{ \prod_{\ell=1, \ell \neq m}^{N} \left[\frac{\zeta(z_n + a) - \zeta_{\ell}}{\zeta_m - \zeta_{\ell}} \right] - \delta_{nm} \right\} , \quad n, m = 1, \ldots, N ;$$

(40)

and the N-vector $f(z)$ of components $f_n(z) = f(z_n)$ is replaced by the N-vector $f(\zeta(z))$ of components $f_n(\zeta(z)) = f(\zeta_n)$, while the N-vector $f(z + a u)$ of components $f_n(z + a u) = f(z_n + a)$ is replaced by the N-vector $f(\zeta(z) + a u)$ of components $f_n(\zeta(z) + a u) = f(\zeta(z_n) + a)$. □

The proof of this Remark 2.1.3 is quite analogous to that of Lemma 2.1.1 (see Section 4) and is therefore omitted.
2.2 The \((N \times N)\)-matrices \(\hat{\delta}(q; z)\) and \(\bar{\nabla}(q; z)\)

In this Section 2.2 we report the main results concerning finite-dimensional representations of the operators \(\hat{\delta}(q)\) and \(\nabla(q)\), see (17), (21a) and (21b). It should be mentioned that a somewhat less explicit, but essentially equivalent, finite-dimensional representation of the difference operator \(\nabla(q)\) was already provided almost two decades ago by Chakrabarti and Jagannathan [3]; and also, in the context of a more special case ("3-body problem") in [4].

Lemma 2.2.1. Let \(f(z)\) be an arbitrary polynomial in \(z\) of degree less than \(N\), see (1), and let us denote with the notation \(\bar{f}^{(q,r)}(z)\) the polynomial (clearly of the same degree) that obtains by applying to it \(r\) times the operator \(\hat{\delta}(q)\), see (21a):

\[
\bar{f}^{(q,r)}(z) = (\hat{\delta}(q))^r f(z) = f(q^r z) = \sum_{m=1}^N [c_m (q^r z)^{N-m}] = \bar{f}^{(q)}(z),
\]

\(r = 1, 2, \ldots\).

\[(41a)\]

Now associate to \(f(z)\) respectively to \(\bar{f}^{(q,r)}(z)\) the \(N\)-vectors \(\bar{f}^{(q,r)} \equiv f(\bar{z})\) respectively \(\bar{f}^{(q)} \equiv \bar{f}(\bar{z})\), whose \(N\) components \(f_n\) respectively \(\bar{f}_n^{(q,r)}\) are the \(N\) values that the polynomials \(f(z)\) respectively \(\bar{f}^{(q,r)}(z)\) take at the \(N\) (arbitrary) points \(z_n\),

\[
f_n = f(z_n), \quad \bar{f}_n^{(q,r)} = \bar{f}^{(q,r)}(z_n) = f(q^r z_n),
\]

\(n = 1, \ldots, N; \quad r = 0, 1, 2, \ldots\).

\[(41b)\]

There holds then the \(N\)-vector formula

\[
\bar{f}^{(q,r)} = \left[\hat{\delta}(q; \bar{z})\right]^r \bar{f}, \quad r = 0, 1, 2, \ldots,
\]

with the \((N \times N)\)-matrices \(\hat{\delta}(q; \bar{z})\) defined componentwise by (22b). \(\square\)

Remark 2.2.1. The fact that the matrix \(\left[\hat{\delta}(q; \bar{z})\right]^r\) appearing in the right-hand side of the last equation depends—consistently with the left-hand side of this equation—on the single quantity \(q^r\) (rather than separately on \(q\) and \(r\)) is not immediately obvious from its definition (22b), but is in fact true, indeed see below **Remark 4.2.1.** \(\square\)

Clearly this finding implies an analogous result for the difference operator \(\nabla(q)\), see (21b):

Lemma 2.2.2. Let \(f(z)\) be an arbitrary polynomial in \(z\) of degree less than \(N\), see (1), and let us denote with the notation \(\bar{f}^{\{(q,r)\}}(z)\) the polynomial that obtains by applying to it \(r\) times the difference operator \(\nabla(q)\), see (17) and (21b):

\[
\bar{f}^{\{(q,r)\}}(z) \equiv (\nabla(q))^r f(z) = \left[\frac{\hat{\delta}(q) - 1}{(q - 1) z}\right]^r f(z), \quad r = 0, 1, 2, \ldots.
\]

\[(43a)\]

Now associate to \(f(z)\) respectively to \(\bar{f}^{\{(q,r)\}}(z)\) the \(N\)-vectors \(\bar{f} \equiv f(\bar{z})\) respectively \(\bar{f}^{\{(q,r)\}} \equiv \bar{f}^{\{(q,r)\}}(\bar{z})\), whose \(N\) components \(f_n \equiv f_n(z)\) respectively
\[f^\{\{q,r\}\} \equiv f^\{\{q,r\}\} (z) \] are the \(N \) values that the polynomials \(f (z) \) respectively \(f^\{\{q,r\}\} (z) \) take at the \(N \) (arbitrary) points \(z_n \),

\[f_n = f (z_n) \quad , \quad f^\{\{q,r\}\} (z_n) \quad , \quad n = 1, ..., N \quad . \quad (43b) \]

There holds then the \(N \)-vector formula

\[\hat{f}^\{\{q,r\}\} = \left[\hat{\delta} (q; z) \right]^T f^\{\{q,r\}\} \quad , \quad r = 0, 1, 2, ... \quad , \quad (44) \]

of course with the \((N \times N)\)-matrix \(\hat{\delta} (q; z) \) defined componentwise by (23b).

Remark 2.2.2. It is again plain that the operator \(\hat{D} (q) \), when acting on a polynomial in \(z \) of degree \(M \), yields a polynomial of degree \(M - 1 \); hence, when it acts \(r \) times on any polynomial of degree less than \(N \) it yields an identically vanishing result if the integer \(r \) equals or exceeds \(N \). Hence the right-hand side of (43a) vanishes for \(r \geq N \), and this implies that the \((N \times N)\)-matrix \(\hat{\delta} (q; z) \) features the remarkable property

\[\left[\hat{\delta} (q; z) \right]^N = 0 \quad , \quad (45) \]

where again 0 denotes the \((N \times N)\)-matrix with all elements vanishing. □

The following **Proposition** and **Corollaries** are immediate consequences of these findings.

Proposition 2.2.1. Let the difference operator \(\hat{D} (q) \) be defined as follows,

\[\hat{D} (q) = \sum_{r=0}^{R} \left\{ \hat{d}_r (z) \left[\hat{\delta} (q) \right]^r \right\} \quad , \quad (46) \]

where the positive integer \(R \) and the \(R + 1 \) functions \(\hat{d}_r (z) \) are *a priori* arbitrary (but see below the restriction on the function \(f (z) \)), and let

\[\hat{D} (q) \ f (z) = g (z) \quad (47) \]

with \(f (z) \) a polynomial in \(z \) of degree less than \(N \), see (1) (but note: no such condition on \(g (z) \)). There then holds the \(N \)-vector equation

\[\hat{D} (q; z) \ f (z) = g (z) \quad (48) \]

with the \((N \times N)\)-matrix \(\hat{D} (q; z) \) defined as follows,

\[\hat{D} (q; z) = \sum_{r=0}^{R} \left\{ \hat{d}_r (z) \left[\hat{\delta} (q; z) \right]^r \right\} \quad , \quad (49) \]

of course with the \(N \)-vectors \(f (z) \) and \(g (z) \) defined as above, see (34), and the \((N \times N)\)-matrices \(\hat{\delta} (q; z) \) respectively \(\hat{\delta} (q; z) \) defined componentwise by (22b) respectively (11). □

Corollary 2.2.1. If in (47) \(g (z) = 0 \), i.e. if for the operator \(\hat{D} (q) \), see (30), there holds the equation

\[\hat{D} (q) \ f (z) = 0 \quad , \quad (50a) \]
with \(f(z) \) a polynomial in \(z \) of degree less than \(N \), see (1), then the \((N \times N)\)-matrix \(\hat{D}(q; z) \), see (49), has vanishing determinant,

\[
\det \left[\hat{D}(q; z) \right] = 0. \quad \square \tag{50b}
\]

Corollary 2.2.2. If the operator \(\hat{D}(q) \), see (49), has the eigenvalue \(b \),

\[
\hat{D}(q) \, \hat{f}^{(b)}(z) = b \, \hat{f}^{(b)}(z) \quad \tag{51a}
\]

with the corresponding eigenfunction \(\hat{f}^{(b)}(z) \) being a polynomial in \(z \) of degree less than \(N \), see (1), then the corresponding \((N \times N)\)-matrix \(\hat{D}(q; z) \), see (49), features the same eigenvalue \(b \),

\[
\hat{D}(q; z) \, \hat{f}^{(b)} = b \, \hat{f}^{(b)}, \quad \tag{51b}
\]

and the corresponding eigenvector \(\hat{f}^{(b)} \) is given by the following simple prescription,

\[
\hat{f}^{(b)} = \hat{f}^{(b)}(Z) \, u, \quad \left(\hat{f}^{(b)} \right)_n = \hat{f}^{(b)}(z_n), \quad \tag{51c}
\]

where of course the \((N \times N)\)-matrix \(Z \), respectively the \(N \)-vector \(u \), are again defined by (11) respectively (10). \(\square \)

Clearly these equations are merely examples of the neat prescriptions

\[
\hat{d}_s(z) \Rightarrow \hat{d}_{s}(Z(z)), \quad \hat{\delta}(q) \Rightarrow \hat{\delta}(q; z), \quad \nabla(q) \Rightarrow \nabla(q; z),
\]

\[
\hat{f}(z) \Rightarrow \hat{f}(Z), \quad \tag{52}
\]

which allow to transform equations involving the action of the multiplicative operator \(\hat{d}_s(z) \) (see (19)) and of the operators \(\hat{\delta}(q) \) and \(\nabla(q) \) (see (21a) and (21b) acting on functions \(f(z) \), into corresponding equations involving the action of corresponding \((N \times N)\)-matrices on corresponding \(N \)-vectors; rules that involve the introduction of \(N \) arbitrary numbers \(z_n \) (all different among themselves), and that are applicable whenever these operators act on functions \(f(z) \) which are polynomials in \(z \) of degree less than the arbitrary number \(N \), and that involve the simultaneous replacement of the function \(f(z) \) into the \(N \)-vector \(f(z) \) of components \(f_n(z) = f(z_n) \).

Remark 2.2.3. An interesting generalization of all the findings reported above (in this Section 2.2) is to the case in which the function \(f(z) \), instead of being a polynomial of degree less than \(N \) in \(z \), is a polynomial of degree less than \(N \) in a variable \(\zeta \equiv \zeta(z) \), see (38). It is then easily seen that all the results reported above (in this Section 2.2) remain valid, provided the \((N \times N)\)-matrix \(\hat{\delta}(q; z) \), see (22a), is replaced by the matrix \(\hat{\delta}(q; z) \) defined componentwise as follows:

\[
\left(\hat{\delta}(q; z) \right)_{nm} = \prod_{\ell=1, \ell \neq m}^{N} \left[\frac{\zeta(q \, z_n) - \zeta_\ell}{\zeta_m - \zeta_\ell} \right], \quad n, m = 1, \ldots, N, \quad \tag{53a}
\]
where of course
\[\zeta_n \equiv \zeta(z_n) \, , \quad \underline{\zeta} = (\zeta_1, \ldots, \zeta_N) \, . \] (53b)

Of course likewise the matrix \(\hat{\nabla}(q; \underline{\zeta}) \) is replaced by the matrix \(\check{\nabla}(q; \underline{\zeta}) \) of components
\[\left(\check{\nabla}(q; \underline{\zeta}) \right)_{nm} = [(q - 1) \zeta_n]^{-1} \left\{ \prod_{\ell=1, \ell \neq m}^{N} \frac{\zeta(q \, z_n) - \zeta_{\ell}}{\zeta_n - \zeta_\ell} \right\} - \delta_{nm} \, , \]
\[n, m = 1, \ldots, N ; \] (54)
and the \(N \)-vector \(\check{f}(\underline{\zeta}) \) of components \(f_n(\underline{\zeta}) = f(z_n) \) is replaced by the \(N \)-vector \(\check{f}(\check{\zeta}(q \, z_n)) \) of components \(f_n(\check{\zeta}(q \, z_n)) \) is replaced by the \(N \)-vector \(\check{f}(\check{\zeta}(q \, z_n)) \) of components \(f_n(\check{\zeta}(q \, z_n)) \).

The proof of this Remark 2.2.3 is quite analogous to that of Lemma 2.2.1 (see Section 4) and is therefore omitted.

3 Remarkable matrices

In this Section 3—as examples of applications of the findings reported in the preceding Section 2—we identify several \((N \times N)\)-matrices which are remarkable because of some nontrivial properties they feature, and we report some properties of the zeros of the polynomials belonging to the Askey and \(q \)-Askey schemes.

Proposition 3.1. The \((N \times N)\)-matrix
\[\hat{K}(a; \underline{z}) = Z \hat{\nabla}(a; \underline{z}) \] ,

hence defined componentwise as follows in terms of the \(N + 1 \) arbitrary numbers \(z_n \) and \(a \) (see \(11 \) and \(23a \)),
\[\hat{K}_{nm}(a; \underline{z}) = \left(\frac{z_n}{a} \right) \left\{ \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{z_n + a - z_\ell}{z_n - z_\ell} \right) \right\} - \delta_{nm} \, , \] (55b)
features the \(N \) nonnegative integers less than \(N \) as its \(N \) eigenvalues:
\[\hat{K}(a; \underline{z}) \, p^{(k)}(a; \underline{z}) = k \, p^{(k)}(a; \underline{z}) \, , \quad k = 0, 1, \ldots, N - 1 \, , \] (55c)
\[\hat{v}^{(k)}(a; \underline{z}) = (z_n; a)_k = \prod_{s=0}^{k-1} (z_n + s \, a) \, , \quad k = 0, 1, 2, \ldots, N - 1 \, . \] (55d)

This result is an immediate consequence of Corollary 2.1.2, together with the eigenvalue equation \(110 \) and of course the definitions \(11 \) respectively \(23a \) of the \((N \times N)\)-matrices \(\hat{\nabla} \) respectively \(\hat{\nabla}(a; \underline{z}) \) and \(10c \) of the symbol \((z; a)_k \).
Remark 3.1. Note the Diophantine character of this result, and the fact that it implies that the \((N \times N)\)-matrix \(\hat{F}(a; z)\), which clearly depends nontrivially on the \(N + 1\) numbers \(z_n\) and \(a\), see (55), is isospectral for any variation of these \(N + 1\) parameters. □

Proposition 3.2. The \((N \times N)\)-matrix
\[
\hat{F} \equiv \hat{F}(\alpha, c; z) = (c - Z) \cdot (2 - \alpha) Z + (\alpha - 1) Z \cdot (1 - z) ,
\]
hence defined componentwise as follows in terms of the \(N + 2\) arbitrary numbers \(z_n\) and \(c\) (see (11) and (22a)),
\[
\hat{F}_{nm}(\alpha, c; z) = (2 - \alpha) z_n \cdot \delta_{nm} + (c - z_n) \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{z_n - 1 - z_\ell}{z_n - z_\ell} \right)
+ (\alpha - 1) z_n \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{z_n - 1 - z_\ell}{z_n - z_\ell} \right),
\]
has the \(N\) eigenvalues \(c + \alpha k\) with \(k\) the first \(N\) nonnegative integers:
\[
\hat{F}(\alpha, c; z) \cdot f(z, -k; c; \alpha) = (c + \alpha k) f(z, -k; c; \alpha), \quad k = 0, 1, ..., N - 1 ,
\]
the corresponding \(N\) eigenvectors \(f(z, -k; c; \alpha)\) being defined componentwise as follows,
\[
f_n(z, -k; c; \alpha) = F(z_n, -k; c; \alpha), \quad (56d)
\]
where \(F(a, b; c; z)\) is the standard hypergeometric function (see for instance [5]),
\[
F(a, b; c; z) = \sum_{r=0}^{\infty} \left[\frac{(a)_r (b)_r}{r!} \right] \left[\frac{z^r}{(c)_r} \right] ,
\]
(here of course the Pochhammer symbol \((x)_r \equiv (x; 1)_r\) (see (19c)) is defined as follows:
\[
(x)_0 = 1; \quad (x)_r = x (x + 1) \cdots (x + r - 1), \quad r = 1, 2, ... ;
\]
hence for \(b = -k\)—and generic values of the parameters \(c\) and \(\alpha\), as we generally assume—the sum in the right-hand side of (56c) stops at \(r = k\), so that \(F(z, -k; c; \alpha)\) is a polynomial of degree \(k\) in \(z\). □

This finding is an immediate consequence of Corollary 2.1.2 together with the formula
\[
(c - z) F(z - 1, -k; c; \alpha) + (2 - \alpha) z F(z, -k; c; \alpha) + (\alpha - 1) z F(z + 1, -k; c; \alpha) = (c + \alpha k) F(z, -k; c; \alpha),
\]
or equivalently (see (21a))
\[
\left[(c - z) \cdot \hat{\delta}(-1) + (2 - \alpha) z + (\alpha - 1) z \cdot \hat{\delta}(-1) \right] F(z, -k; c; \alpha)
= (c + \alpha k) F(z, -k; c; \alpha),
\]
where \(\hat{\delta}(\cdot)\) denotes the generalized Pochhammer symbol.
which coincides with eq. (2.8(28)) of [5] by replacing there \(z \) with \(\alpha, a \) with \(z \) and moreover by setting \(b = -k \) so that—when \(k \) is a nonnegative integer—
\(F(z, -k; c; \alpha) \) becomes a polynomial of degree \(k \) in \(z \).

Proposition 3.3. The \((N \times N)\)-matrix

\[
\hat{W} \equiv \hat{W}(\alpha, \beta, \gamma, \delta; z) = B\left(\zeta\right) \hat{\nabla}(1; \zeta) - B\left(-\zeta\right) \hat{\nabla}(-1; \zeta) ,
\]

(58a)

hence defined componentwise as follows in terms of the \(N + 4 \) arbitrary numbers \(z_n \) and \(\alpha, \beta, \gamma, \delta \) (see (11) and (23a)),

\[
\hat{W}_{nm} = B(z_n; \alpha, \beta, \gamma, \delta) \left\{ \left[\prod_{\ell=1}^{N} \left(\frac{z_n^2 - z_\ell^2}{z_m^2 - z_\ell^2} \right) \right] - \delta_{nm} \right\} + B(-z_n; \alpha, \beta, \gamma, \delta) \left\{ \left[\prod_{\ell=1}^{N} \left(\frac{(z_n - 1)^2 - z_\ell^2}{z_m^2 - z_\ell^2} \right) \right] - \delta_{nm} \right\} ,
\]

(58b)

with

\[
B(z; \alpha, \beta, \gamma, \delta) = \frac{(z + \alpha)(z + \beta)(z + \gamma)(z + \delta)}{2z(2z + 1)} ,
\]

(58c)

features the \(N \) eigenvalues \(k(k + \alpha + \beta + \gamma + \delta - 1) \) with \(k \) a nonnegative integer less than \(N \),

\[
\hat{W} \varphi^{(k)}(\alpha, \beta, \gamma, \delta, z_n; \zeta) = k(k + \alpha + \beta + \gamma + \delta - 1) \varphi^{(k)}(\alpha, \beta, \gamma, \delta, z_n; \zeta) ,
\]

(58d)

with the eigenvectors \(\varphi^{(k)}(\alpha, \beta, \gamma, \delta; z) \) defined componentwise as follows:

\[
\varphi_n^{(k)}(\alpha, \beta, \gamma, \delta; z) = W_k(-z_n^2; \alpha, \beta, \gamma, \delta) ,
\]

(58e)

where \(W_k(\zeta; \alpha, \beta, \gamma, \delta) \) is the Wilson polynomial of degree \(k \) in \(\zeta \), defined (up to an irrelevant multiplicative constant) as follows:

\[
W_k(\zeta) \equiv W_k(\zeta; \alpha, \beta, \gamma, \delta) = \sum_{s=0}^{k} \frac{(-k)_s}{s!} \frac{(k + \alpha + \beta + \gamma + \delta - 1)_s}{(\alpha + \beta)_s (\alpha + \gamma)_s (\alpha + \delta)_s} (\alpha + 1)_s \zeta^s ,
\]

(58f)

(see Section 1.1 of [2]; hence here \((x)_s\) is again the Pochhammer symbol, see [56]; but note that here and below the 4 parameters \(\alpha, \beta, \gamma, \delta \) are not required to satisfy the restrictions that are instead necessary for the validity of some of the results reported in Section 1.1 of [2]; the only restrictions they must satisfy are those necessary for this definition to make good sense). □

This finding is a direct consequence of Corollary 2.1.2 (together with Remark 2.1.3), applied to the difference equation satisfied by the Wilson polynomial,
see eq. (1.1.6) of [2] (with some appropriate changes of variables, as explained in Appendix A).

Remark 3.2. Note again the Diophantine character of this result, and the fact that it implies that the \((N \times N)\)-matrix \(\hat{W}(\alpha, \beta, \gamma, \delta; \bar{z})\), see (56c), which clearly depends nontrivially on the \(N + 4\) numbers \(z_n\) and \(\alpha, \beta, \gamma, \delta\), is isospectral for any variation of these \(N + 4\) parameters which leaves invariant the sum \(\alpha + \beta + \gamma + \delta\). \(\square\)

A variant of this result is provided by the following

Proposition 3.4. Let the \(N\) numbers \(\tilde{z}_n \equiv \zeta_n(\alpha, \beta, \gamma, \delta) = -\bar{z}_n^2\) be the \(N\) zeros of the Wilson polynomial \(W_N(\zeta; \alpha, \beta, \gamma, \delta)\) of degree \(N\) in \(\zeta\) (see Section 1.1 of [2]),

\[W_N(\zeta_n; \alpha, \beta, \gamma, \delta) = 0, \quad n = 1, \ldots, N, \quad (59a)\]

and let the \((N \times N)\)-matrix \(\hat{W} = \hat{W}(\alpha, \beta, \gamma, \delta; \bar{z})\) be defined componentwise as follows in terms of the \(N + 4\) numbers \(\bar{z}_n\) and \(\alpha, \beta, \gamma, \delta\),

\[
\begin{align*}
\hat{W}_{nn} &= -[B(\bar{z}_n; \alpha, \beta, \gamma, \delta) + B(-\bar{z}_n; \alpha, \beta, \gamma, \delta)] \\
&+ \left(\frac{4}{2 \bar{z}_n - 1}\right) B(\bar{z}_n; \alpha, \beta, \gamma, \delta) \prod_{\ell=1, \ell \neq n}^{N} \left[\frac{(\bar{z}_n + 1)^2 - \bar{z}_\ell^2}{\bar{z}_n^2 - \bar{z}_\ell^2}\right], \\
n &= 1, \ldots, N, \quad (59b)
\end{align*}
\]

\[
\begin{align*}
\hat{W}_{nm} &= B(\bar{z}_n; \alpha, \beta, \gamma, \delta) \left[\prod_{\ell=1, \ell \neq m}^{N} \left(\frac{(\bar{z}_n + 1)^2 - \bar{z}_\ell^2}{\bar{z}_m^2 - \bar{z}_\ell^2}\right)\right] \\
&+ B(-\bar{z}_n; \alpha, \beta, \gamma, \delta) \left[\prod_{\ell=1, \ell \neq n}^{N} \left(\frac{(\bar{z}_n - 1)^2 - \bar{z}_\ell^2}{\bar{z}_m^2 - \bar{z}_\ell^2}\right)\right], \\
n &\neq m, \quad n, m = 1, \ldots, N, \quad (59c)
\end{align*}
\]

with \(B(z; \alpha, \beta, \gamma, \delta)\) defined as above, see (56c). Then this matrix features the same eigenvalues and eigenvectors as the matrix \(\hat{W}(\alpha, \beta, \gamma, \delta; \bar{z})\) defined above, see Proposition 3.3, except that in the definition (56c) of the eigenvectors the arbitrary numbers \(z_n\) must be replaced by the \(N\) numbers \(\bar{z}_n\) such that the \(N\) numbers \(\hat{z}_n = -\bar{z}_n^2\) are the \(N\) zeros of the Wilson polynomial \(W_N(\zeta; \alpha, \beta, \gamma, \delta)\) of degree \(N\) in \(\zeta\) (note that the matrix \(\hat{W} = \hat{W}(\alpha, \beta, \gamma, \delta; \bar{z})\) defined componentwise above is invariant under the exchange \(\bar{z}_n \rightarrow -\bar{z}_n\), so it is in fact a function of the \(N\) numbers \(\zeta_n \equiv \zeta_n(\alpha, \beta, \gamma, \delta) = -\bar{z}_n^2\) rather than the \(N\) numbers \(\bar{z}_n\). \(\square\)

For a proof of this result see Appendix A.

Remark 3.3. This result, and analogous ones reported below (see Propositions 3.6 and 3.9) evoke an interesting class of open problems, such as that raised by the following question. Define the \((N \times N)\)-matrix \(\hat{W} = \hat{W}(\alpha, \beta, \gamma, \delta; \bar{z})\) as in Proposition 3.4, but assuming that the \(N\) numbers \(\bar{z}_n\) are \textit{a priori} arbitrary; and require that this \((N \times N)\)-matrix feature the \(N\) eigenvalues \(k(\alpha + \beta + \gamma + \delta - 1)\) with \(k = 0, 1, \ldots, N - 1\). Does this requirement imply that the \(N\) numbers
\(\zeta_n = -z_n^2 \) are necessarily the \(N \) zeros of the Wilson polynomial \(W_N(\zeta; \alpha, \beta, \gamma, \delta) \) of degree \(N \) in \(\zeta \)? The finding reported in [3] suggests that this is not the case. □

Proposition 3.5. The \((N \times N)\)-matrix

\[
\hat{R} \equiv \hat{R}(\alpha, \beta, \gamma, \delta; z) = C(\zeta) \hat{\nabla}(1; \zeta) - D(\zeta) \hat{\nabla}(-1; \zeta),
\]

(60a)

hence defined componentwise as follows in terms of the \(N + 4 \) arbitrary numbers \(z_n \) and \(\alpha, \beta, \gamma, \delta \) (see (11) and (23a)),

\[
\hat{R}_{nm}(z_n; \alpha, \beta, \gamma, \delta) = C(z_n; \alpha, \beta, \gamma, \delta) \left\{ \left[\prod_{\ell=1, \ell \neq m}^{N} \left(\frac{\zeta(z_n + 1) - \zeta(z)}{\zeta(z_m) - \zeta(z)} \right) \right] - \delta_{nm} \right\} + D(z_n; \alpha, \beta, \gamma, \delta) \left\{ \left[\prod_{\ell=1, \ell \neq m}^{N} \left(\frac{\zeta(z_n - 1) - \zeta(z)}{\zeta(z_m) - \zeta(z)} \right) \right] - \delta_{nm} \right\},
\]

(60b)

with

\[
\zeta(z) = z \ (z + \gamma + \delta + 1)
\]

(60c)

\[
C(z; \alpha, \beta, \gamma, \delta) = \frac{(z + \alpha + 1) (z + \beta + \gamma + 1)}{2 (z + \gamma + \delta + 1)}
\]

(60d)

\[
D(z; \alpha, \beta, \gamma, \delta) = \frac{z (z - \alpha + \gamma + \delta)}{2 (z + \gamma + \delta)}
\]

(60e)

features the \(N \) eigenvalues \(k \ (k + \alpha + \beta + 1) \) with \(k \) a nonnegative integer less than \(N \),

\[
\hat{R} \phi^{(k)}_n(\alpha, \beta, \gamma, \delta, z_n; z) = k \ (k + \alpha + \beta + 1) \ \phi^{(k)}_n(\alpha, \beta, \gamma, \delta, z_n; z),
\]

(60f)

\[
\phi^{(k)}_n(\alpha, \beta, \gamma, \delta; z) = R_k(\zeta(z_n); \alpha, \beta, \gamma, \delta),
\]

(60g)

where \(R_k(\zeta; \alpha, \beta, \gamma, \delta) \) is the Racah polynomial of degree \(k \) in \(\zeta \), defined (up to an irrelevant multiplicative constant) as follows:

\[
R_k(\zeta; \alpha, \beta, \gamma, \delta) \equiv R_k(\zeta(z); \alpha, \beta, \gamma, \delta) = \sum_{s=0}^{k} \left[\frac{(-k)_s}{s!} \frac{(k + \alpha + \beta + 1)_s}{(\beta + \delta + 1)_s} \frac{(-z)_s}{(\gamma + 1)_s} \right] \]

(60h)

(see Section 1.2 of [2]; hence here \(x)_s \) is again the Pochhammer symbol, see [56]; but note that here and below neither the 4 parameters \(\alpha, \beta, \gamma, \delta \) nor the argument \(\zeta \) are required to satisfy the restrictions that are instead necessary for the validity of most of the results reported in Section 1.2 of [2]: the only
restrictions they must satisfy are those necessary for this definition to make good sense). □

This finding is a direct consequence of Corollary 2.1.2 (together with Remark 2.1.3), applied to the difference equation satisfied by the Racah polynomial, see eq. (1.2.5) of [2]; its proof is omitted because it is analogous—mutatis mutandis—to the proof (given in Appendix A) of Proposition 3.3.

Remark 3.4. Note again the Diophantine character of this result, and the fact that it implies that the \((N \times N)\)-matrix \(\hat{R}(\alpha, \beta, \gamma, \delta; z)\), see eq. (60), which clearly depends nontrivially on the \(N + 4\) numbers \(z\) and \(\alpha, \beta, \gamma, \delta\), is isospectral for any variations of these \(N + 4\) parameters which leaves invariant the sum \(\alpha + \beta\). □

Proposition 3.6. Let the \(N\) numbers \(\tilde{\zeta}_n \equiv \tilde{\zeta}_n (\alpha, \beta, \gamma, \delta) = z_n (z_n + \gamma + \delta + 1)\) be the \(N\) zeros of the Racah polynomial \(R_N (z; \alpha, \beta, \gamma, \delta)\) of degree \(N\) in \(z\) (see Section 1.2 of [2]),

\[
R_N (\tilde{\zeta}_n; \alpha, \beta, \gamma, \delta) = 0, \quad n = 1, \ldots, N,
\]

and let the \((N \times N)\)-matrix \(\bar{R} \equiv \bar{R}(\alpha, \beta, \gamma, \delta; \bar{z})\) be defined componentwise as follows in terms of the \(N + 4\) numbers \(\bar{z}\) and \(\alpha, \beta, \gamma, \delta\):

\[
R_{nn} = - [C (\bar{z}_n) + D (\bar{z}_n)] + 2 \left(\frac{2 \bar{z}_n + \gamma + \delta + 1}{2 \bar{z}_n + \gamma + \delta} \right),
\]

\[
\cdot C (\bar{z}_n) \prod_{\ell=1, \ell \neq n}^{N} \frac{\zeta (\bar{z}_n + 1) - \zeta_\ell}{\zeta (\bar{z}_n - 1) - \zeta_\ell},
\]

\[
n = 1, \ldots, N,
\]

\[
\bar{R}_{nm} = C (\bar{z}_n; \alpha, \beta, \gamma, \delta) \left[\prod_{\ell=1, \ell \neq m}^{N} \frac{\zeta (\bar{z}_n + 1) - \zeta (\bar{z}_m)}{\zeta (\bar{z}_m) - \zeta (\bar{z}_\ell)} \right]
\]

\[
+ D (\bar{z}_n; \alpha, \beta, \gamma, \delta) \left[\prod_{\ell=1, \ell \neq m}^{N} \frac{\zeta (\bar{z}_n - 1) - \zeta (\bar{z}_m)}{\zeta (\bar{z}_m) - \zeta (\bar{z}_\ell)} \right],
\]

\[
n \neq m, \quad n, m = 1, \ldots, N,
\]

where of course \(\zeta (z) = z (z + \gamma + \delta + 1)\), and we omitted to indicate explicitly the dependence of \(C (\bar{z}_n)\) and \(D (\bar{z}_n)\), see (60d) and (60e), on the 4 parameters \(\alpha, \beta, \gamma, \delta\). Then this matrix features the same eigenvalues and eigenvectors as the matrix \(\hat{R}(\alpha, \beta, \gamma, \delta; z)\) defined above, see Proposition 3.1.5, except that in the definition (60g) of the eigenvectors the arbitrary numbers \(z\) must be replaced by the \(N\) numbers \(\bar{z}\) such that the \(N\) numbers \(\tilde{\zeta}_n = \tilde{\zeta}_n (\alpha, \beta, \gamma, \delta) = \bar{z}_n (\bar{z}_n + \gamma + \delta + 1)\) are the \(N\) zeros of the Racah polynomial \(R_N (\zeta; \alpha, \beta, \gamma, \delta)\) of degree \(N\) in \(\zeta\). □

Again, the proof of this result is omitted because it is analogous—mutatis mutandis—to the proof of Proposition 3.4 given in Appendix A.
Remark 3.5. Since the Wilson and the Racah polynomials are the "highest" polynomials belonging to the Askey scheme (see for instance [2]), analogous results involving all the "lower" polynomials of the Askey scheme can be obtained from those reported above—see Propositions 3.3, 3.4, 3.5 and 3.6—by appropriate reductions. □

Proposition 3.7. The \((N \times N)\)-matrix

\[\mathbf{K} (q; \mathbf{z}) = \mathbf{Z} \mathbf{\hat{\n}} (q; \mathbf{z}) , \]

hence defined componentwise as follows in terms of the \(N + 1\) arbitrary numbers \(z_n\) and \(q\) (see (11) and (23b)),

\[\mathbf{K}_{nm} (q; \mathbf{z}) = \left(\frac{1}{q - 1} \right) \left\{ \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{q z_n - z_\ell}{z_m - z_\ell} \right) - \delta_{nm} \right\} , \]

features the \(N\) eigenvalues \((1 - q)^k / (1 - q)\) with \(k\) the \(N\) nonnegative integers less than \(N\):

\[\mathbf{K} (q; \mathbf{z}) \mathbf{\hat{\n}}^{(k)} (q; \mathbf{z}) = \left(\frac{1 - q^k}{1 - q} \right) \mathbf{\hat{\n}}^{(k)} (q; \mathbf{z}) , \]

\[\mathbf{\hat{\n}}_{nm}^{(k)} (a; \mathbf{z}) = (z_n)^k , \quad k = 0, 1, \ldots, N - 1 . \quad \square \]

This result is an immediate consequence of Corollary 2.1.2, together with the eigenvalue equation (20a) and of course the definitions (11) respectively (23b) of the \((N \times N)\)-matrix \(\mathbf{Z}\) respectively \(\mathbf{\hat{\n}}\).

Remark 3.6. Note again the Diophantine character of this result, and the fact that it implies that the \((N \times N)\)-matrix \(\mathbf{K} (q; \mathbf{z})\), which clearly depends nontrivially on the \(N + 1\) numbers \(z_n\) and \(q\), see (62b), is isospectral for any variations of the \(N\) parameters \(z_n\). □

Proposition 3.8. The \((N \times N)\)-matrix \(\mathbf{\hat{Y}}\) defined componentwise as follows in terms of the \(N + 5\) arbitrary numbers \(z_n\) and \(\alpha, \beta, \gamma, \delta, q\),

\[\mathbf{\hat{Y}}_{nm} = A (z_n; \alpha, \beta, \gamma, \delta; q) \left\{ \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{\zeta (q z_n - \zeta (z_\ell))}{\zeta (z_m - \zeta (z_\ell))} \right) - \delta_{nm} \right\} + A (z_n^{-1}; \alpha, \beta, \gamma, \delta; q) \left\{ \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{\zeta (q^{-1} z_n - \zeta (z_\ell))}{\zeta (z_m - \zeta (z_\ell))} \right) - \delta_{nm} \right\} , \]

(63a)

with

\[\zeta \equiv \zeta (z) = \frac{1}{2} \left(z + \frac{1}{z} \right) \]

(63b)

and

\[A (z; \alpha, \beta, \gamma, \delta; q) = \frac{(1 - \alpha z)(1 - \beta z)(1 - \gamma z)(1 - \delta z)}{(1 - z^2)(1 - q z^2)} , \]

(63c)

20
features the N eigenvalues $(q^{-k} - 1) \left(1 - \alpha \beta \gamma \delta q^{k-1} \right)$ with k a nonnegative integer less than N,

$$\sum_{k=0}^{N-1} (q^{-k} - 1) \left(1 - \alpha \beta \gamma \delta q^{k-1} \right) \tilde{\varphi}^{(k)}(\alpha, \gamma; q; z) = (q^{-k} - 1) \left(1 - \alpha \beta \gamma \delta q^{k-1} \right) \tilde{\varphi}^{(k)}(\alpha, \gamma; q; z),$$

with the eigenvectors $\tilde{\varphi}^{(k)}(\alpha, \gamma; q; z)$ defined componentwise as follows:

$$\tilde{\varphi}^{(k)}(\alpha, \gamma; q; z) = p_k(\zeta; \alpha, \beta, \gamma, \delta; q; \zeta),$$

where $p_k(\alpha, \beta, \gamma, \delta; q; \zeta)$ is the Askey-Wilson polynomial of degree k in ζ, defined (up to an irrelevant multiplicative constant; see eq. (3.1.1) of [2]) as follows:

$$p_k(\alpha, \beta, \gamma, \delta; q; \zeta) = \sum_{s=0}^{k} \frac{\left(q^{-k}; q \right)_s}{\left(q; q \right)_s} \frac{\left(\alpha \beta \gamma \delta q^{-1}; q \right)_s}{\left(\alpha \beta \gamma \delta; q \right)_s} \left[\alpha, \zeta; q; q^s \right],$$

where $\zeta = \frac{1}{2} \left(z + \frac{1}{z} \right)$, $k = 0, 1, 2, \ldots$, (63f)

(see Sections 0.1 and 3.1 of [2]; but note that here and below the 4 parameters $\alpha, \beta, \gamma, \delta$ are not required to satisfy the restrictions that are instead necessary for the validity of some of the results reported in Section 3.1 of [2]; the only restrictions they must satisfy are those necessary for this definition to make good sense). □

This finding is a direct consequence of Corollary 2.1.2 (together with Remark 2.1.3), applied to the difference equation satisfied by the Askey-Wilson polynomial reading (see eq. (3.1.7) of [2], with some appropriate notational changes)

$$A(z) \left[\begin{array}{c} p_k(\zeta; q; z) - p_k(\zeta) \\ p_k(\zeta; q; z^{-1}) \end{array} \right] + A(z^{-1}) \left[\begin{array}{c} p_k(\zeta; \frac{z}{q}) - p_k(\zeta) \\ p_k(\zeta; \frac{z}{q}; z) - p_k(\zeta) \end{array} \right] = (q^{-k} - 1) \left(1 - \alpha \beta \gamma \delta q^{k-1} \right) p_k(\zeta),$$

where of course $A(z) \equiv A(z; \alpha, \beta, \gamma, \delta; q)$ and $p_k(\zeta) \equiv p_k(\alpha, \beta, \gamma, \delta; q; \zeta)$ are defined as above, see (63a) and (63b), and—most importantly—$\zeta \equiv \zeta(z)$, see (63b).
Remark 3.7. Note again the Diophantine character of this result, and the fact that it implies that the \((N \times N)\)-matrix \(\tilde{Y} \equiv \tilde{Y}(\alpha, \beta, \gamma, \delta; \tilde{z})\), which clearly depends nontrivially on the \(N + 5\) numbers \(\tilde{z}_n, \alpha, \beta, \gamma, \delta\) and \(q\), see (63), is isospectral for any variations of the \(N + 4\) parameters \(\tilde{z}_n, \alpha, \beta, \gamma, \delta\) which keeps constant the product \(\alpha \beta \gamma \delta\). □

Proposition 3.9. Let the \(N\) numbers \(\tilde{z}_n \equiv \tilde{z}_n(\alpha, \beta, \gamma, \delta; q, N)\) be such that the \(N\) numbers \(\tilde{\zeta}_n \equiv \tilde{\zeta}_n(\alpha, \beta, \gamma, \delta; N) = (\tilde{z}_n + 1/\tilde{z}_n)/2\) are the \(N\) zeros of the Askey-Wilson polynomial \(p_N(\alpha, \beta, \gamma, \delta; q; \zeta)\) of degree \(N\) in \(\zeta\) (see (63)),

\[
p_N(\alpha, \beta, \gamma, \delta; q; \tilde{\zeta}_n) = 0, \quad n = 1, \ldots, N,
\]

so that, up to an irrelevant multiplicative constant,

\[
p_N(\alpha, \beta, \gamma, \delta; q; \zeta) = \prod_{k=1}^{N} (\zeta - \tilde{\zeta}_k); \tag{65b}
\]

and let the \((N \times N)\)-matrix \(\tilde{Y} \equiv \tilde{Y}(\alpha, \beta, \gamma, \delta; q \tilde{z})\) be defined componentwise as follows in terms of the \(N + 5\) numbers \(\tilde{z}_n\) and \(\alpha, \beta, \gamma, \delta, q\),

\[
\tilde{Y}_{nn} = - \left[A(\tilde{z}_n) + A\left(\frac{1}{\tilde{z}_n}\right) \right] + (1 + q) \left(\frac{\tilde{z}_n^2 - 1}{\tilde{z}_n^2 + q} \right) A(\tilde{z}_n) \prod_{\ell=1, \ell \neq n}^{N} \left[\frac{\zeta(q \tilde{z}_n) - \zeta(\tilde{z}_\ell)}{\zeta(\tilde{z}_m) - \zeta(\tilde{z}_\ell)} \right],
\]

\[
n = 1, \ldots, N, \tag{65c}
\]

\[
\tilde{Y}_{nm} = A(\tilde{z}_n) \left\{ \prod_{\ell=1, \ell \neq m}^{N} \left[\frac{\zeta(q \tilde{z}_n) - \zeta(\tilde{z}_\ell)}{\zeta(\tilde{z}_m) - \zeta(\tilde{z}_\ell)} \right] \right\} + A\left(\frac{1}{\tilde{z}_n}\right) \left\{ \prod_{\ell=1, \ell \neq m}^{N} \left[\frac{\zeta(q^{-1} \tilde{z}_n) - \zeta(\tilde{z}_\ell)}{\zeta(\tilde{z}_m) - \zeta(\tilde{z}_\ell)} \right] \right\}, \quad n \neq m, \quad n, m = 1, \ldots, N, \tag{65d}
\]

of course with \(A(z) \equiv A(z; \alpha, \beta, \gamma, \delta; q)\) respectively \(\zeta(z)\) defined as above, see (63) respectively (63). Then this matrix features the same eigenvalues and eigenvectors as the matrix \(\tilde{Y} \equiv \tilde{Y}(\alpha, \beta, \gamma, \delta; q \bar{z})\) defined above, see Proposition 3.8, except that in the definition (63) of the eigenvectors the \(N\) arbitrary numbers \(z_n\) must be replaced by the \(N\) numbers \(\tilde{z}_n\). □

The proof of this result is analogous to that of Propositions 3.4 and 3.6; it takes advantage of the relation

\[
A\left(\frac{1}{\tilde{z}_n}\right) \prod_{\ell=1, \ell \neq n}^{N} \left[\zeta\left(\frac{\tilde{z}_n}{q}\right) - \zeta(\tilde{z}_\ell) \right] = \left(\frac{q \tilde{z}_n^2 - 1}{\tilde{z}_n^2 - q} \right) A(\tilde{z}_n) \prod_{\ell=1, \ell \neq n}^{N} \left[\zeta(q \tilde{z}_n) - \zeta(\tilde{z}_\ell) \right] \tag{66}
\]
easily seen to be implied by (64) together with (65a) and (65b).

Remark 3.8. Analogous results to those reported in Propositions 3.8 and 3.9 but involving the q-Racah instead of the Askey-Wilson polynomials can be obtained in an analogous manner, or via the relation among the polynomials of these two classes reported at the end of Section 3.1 of [2]. Moreover, since the Askey-Wilson and the q-Racah polynomials are the "highest" polynomials belonging to the q-Askey scheme (see for instance [2]), analogous results involving all the "lower" polynomials of the q-Askey scheme can be obtained from those reported above by appropriate reductions. □

Remark 3.9. The results reported above involving $(N \times N)$-matrices constructed with polynomials belonging to the Askey and q-Askey schemes have already been obtained—up to notational changes, and some unessential restrictions on their validity—by Ryu Sasaki (private communication, and see [7]); for analogous results see [8]. Other recent papers reporting somewhat analogous results for the zeros of named polynomials are listed (with no pretence to completeness) in Ref. [9]. □

Remark 3.10. Let us finally emphasize that the $(N \times N)$-matrices $\hat{\delta}(a)$ respectively $\hat{\delta}(q)$ defined componentwise by (22a) respectively (22b) are themselves quite remarkable, see below the two Remarks 4.1.1 and 4.2.1 and Appendix B. And the $(N \times N)$-matrices $\hat{\nabla}(a; z)$ respectively $\hat{\nabla}(q; z)$ also feature remarkable properties, see (29) respectively (45). □

4 Proofs of the main results

In this Section 4 we provide the missing proofs of the findings reported in Section 2. We use of course the notation introduced above, see Sections 1 and 2. The alert and informed reader will note the analogy of these proofs to that of [3] provided in Section 2.4 of [1]: indeed the starting point are the Lagrangian interpolational formulas (2) and (3), applicable to any function $f(z)$ which is a polynomial in z of degree less than N.

4.1 The $(N \times N)$-matrices Z, $\hat{\delta}(a; z)$ and $\hat{\nabla}(a; z)$

It is plain, see [2] and [3], that

\[
f(z + a) = \sum_{m=1}^{N} \left[f_m \, p_{N-1}^{(m)}(z + a) \right]
\]

(67)

and that

\[
p_{N-1}^{(m)}(z + a) = \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{z + a - z_\ell}{z_m - z_\ell} \right), \quad m = 1, \ldots, N.
\]

(68)
Hence
\[f(z + a) = \sum_{m=1}^{N} f_m \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{z + a - z_\ell}{z_m - z_\ell} \right), \] (69)
implying, for \(z = z_n \),
\[f(z_n + a) = \sum_{m=1}^{N} f_m \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{z_n + a - z_\ell}{z_m - z_\ell} \right). \] (70)

One therefore concludes that the \(N \)-vector \(f(z + a) \), of components \(f_n(z + a) = f(z_n + a) \), is given by the \(N \)-vector formula
\[f(z + a) = \hat{\delta}(a; z)f(z), \] (71a)
with the \((N \times N) \)-matrix \(\hat{\delta}(a; z) \) defined by (22a). Iterating \(r \) times this formula implies
\[f(z + ra) = \left[\hat{\delta}(a; z) \right]^r f(z). \] (71b)
This coincides with (26), proving Lemma 2.1.1.

Remark 4.1.1. Note that the formulas (71) clearly imply the matrix identity
\[\hat{\delta}(r a; z) = \left[\hat{\delta}(a; z) \right]^r, \quad r = 0, 1, 2, \ldots. \] (72)
Indeed, more generally, the formulas (71) clearly imply
\[f(z + a + b) = \hat{\delta}(a + b; z)f(z) = \hat{\delta}(a; z)\hat{\delta}(b; z)f(z) = \hat{\delta}(a; z)\hat{\delta}(b; z)f(z), \] (73a)
entailing the remarkable matrix identities
\[\hat{\delta}(a; z)\hat{\delta}(b; z) = \hat{\delta}(b; z)\hat{\delta}(a; z) = \hat{\delta}(a + b; z). \] (73b)
And these formulas, together with the obvious identity \(\hat{\delta}(0; z) = I \), with \(I \) the \((N \times N) \) unit matrix, also imply the remarkable matrix identity
\[\left[\hat{\delta}(a; z) \right]^{-1} = \hat{\delta}(-a; z). \] (73c)

4.2 The \((N \times N)\)-matrices \(Z, \hat{\delta}(q; z) \) and \(\nabla(q; z) \)
The treatment in this Section 4.2 is analogous—mutatis mutandis—to that of the previous Section 4.1; hence its presentation is a bit more terse.
The starting point are again the basic formulas of Lagrangian interpolation, see (2) and (3). They clearly imply

\[f(q \cdot z) = \sum_{m=1}^{N} \left[f_m \cdot p_{N-1}^{(m)}(q \cdot z) \right], \quad (74) \]

and

\[p_{N-1}^{(m)}(q \cdot z) = \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{q \cdot z - z_{\ell}}{z_{m} - z_{\ell}} \right), \quad m = 1, ..., N; \quad (75) \]

hence

\[f(q \cdot z) = \sum_{m=1}^{N} \left[f_m \cdot \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{q \cdot z - z_{\ell}}{z_{m} - z_{\ell}} \right) \right], \quad (76) \]

implying, for \(z = z_n \),

\[f(q \cdot z_n) = \sum_{m=1}^{N} \left[f_m \cdot \prod_{\ell=1, \ell \neq m}^{N} \left(\frac{q \cdot z_n - z_{\ell}}{z_{m} - z_{\ell}} \right) \right]. \quad (77) \]

One therefore concludes that the \(N \)-vector \(f(q \cdot z) \), of components \(f_n(q \cdot z) = f(q \cdot z_n) \), is given by the \(N \)-vector formula

\[f(q \cdot z) = \tilde{\delta}(q; z) \cdot f(z), \quad (78a) \]

with the \((N \times N)\)-matrix \(\tilde{\delta}(a; z) \) defined by (22b). Iterating \(r \) times this formula one gets

\[f(q^r \cdot z) = [\tilde{\delta}(q; z)]^r \cdot f(z), \quad r = 1, 2, \ldots. \quad (78b) \]

This coincides with (26), proving Lemma 2.2.1.

Remark 4.2.1. Note that the formulas (78) clearly imply the matrix identity

\[\tilde{\delta}(r^q; z) = [\tilde{\delta}(q; z)]^r, \quad r = 0, 1, 2, \ldots. \quad (78c) \]

Indeed, more generally, the formulas (78) clearly imply

\[\tilde{\delta}(pq; z) \cdot \tilde{\delta}(q; z) \cdot f(z) = \tilde{\delta}(q; z) \cdot \tilde{\delta}(p; z) \cdot \tilde{\delta}(q; z) \cdot f(z), \quad (79a) \]

entailing the remarkable matrix identities

\[\tilde{\delta}(p; z) \cdot \tilde{\delta}(q; z) = \tilde{\delta}(q; z) \cdot \tilde{\delta}(p; z) = \tilde{\delta}(pq; z). \quad (79b) \]

And these formulas, together with the obvious identity \(\tilde{\delta}(1; z) = I \), with \(I \) the \((N \times N)\) unit matrix, also imply the remarkable identity

\[[\tilde{\delta}(q; z)]^{-1} = \tilde{\delta}(q^{-1}; z). \quad \Box \quad (79c) \]
5 Outlook

In this last section we mention tersely possible future developments.

A possibility is to investigate finite-dimensional representations of difference operators which are exact in other functional spaces: for instance in functional spaces spanned by other seed functions than polynomials (of degree less than N), possibly also including functions of more than a single dependent variable. For previous developments in these directions see for instance [10], [1].

Another possibility is to identify many more remarkable matrices than the representative examples reported in Section 3; such as those discussed in the various subsections of Section 2.4.5 (entitled ”Remarkable matrices and identities”) and in Appendix D (entitled ”Remarkable matrices and related identities”) of [1], and in other papers referred to there.

Yet another possibility is to identify solvable nonlinear dynamical systems, for instance by extending to exact finite-dimensional representations of difference operators the techniques based on exact finite-dimensional representations of differential operators, as described in Section 2.5 (entitled ”Many-body problems on the line solvable via techniques of exact Lagrangian interpolation”) of [1].

6 Acknowledgements

It is a pleasure to thank the organizers of the CRM-ICMAT Workshop on ”Exceptional orthogonal polynomials and exact solutions in mathematical physics” (Segovia, Spain, 7–12 July 2014), and in addition professor Ryu Sasaki, because the derivation and presentation of the findings reported in this paper were motivated by discussions with him initiated at that meeting and continued via a few e-mail exchanges.

7 Appendix A

In this Appendix A we tersely outline the derivation of Propositions 3.3 and 3.4.

The starting point to prove Propositions 3.3 is the difference equation satisfied by the Wilson polynomial $W_k(\zeta; \alpha, \beta, \gamma, \delta)$ of degree k in ζ (see eq. (1.1.6) of [2]; and note that the validity of this relation for Wilson polynomials does not require any limitation on the 4 parameters $\alpha, \beta, \gamma, \delta$ other than those required in order that their definition (58f) make good sense). We conveniently write this difference equation as follows, via some trivial notational changes (including the relations $x = iz$ and $\zeta = x^2 = -z^2$, and the omission of the explicit indication
of dependence on the 4 parameters α, β, γ, δ:

$$
\left[B(z) \hat{\nabla}(1) - B(-z) \hat{\nabla}(-1) \right] W_k(-z^2) = k \left(k + \alpha + \beta + \gamma + \delta - 1 \right) W_k(-z^2), \quad k = 0, 1, 2, \ldots , \quad (80)
$$

with $B(z)$ defined as above, see [5NC], and the operators $\hat{\nabla}(\pm 1)$ acting on functions of the variable z as follows (see (16)):

$$
\hat{\nabla}(\pm 1) f(z) = \pm \left[f(z \pm 1) - f(z) \right]. \quad (81)
$$

It is plain that the operator

$$
\hat{D} = B(z) \hat{\nabla}(1) - B(-z) \hat{\nabla}(-1), \quad (82)
$$

when acting on functions of the variable $\zeta = -z^2$, yields functions of this variable ζ (not of z), hence we can consider the equation (80) as an eigenvalue equation,

$$
\hat{D} W_k(\zeta) = k \left(k + \alpha + \beta + \gamma + \delta - 1 \right) W_k(\zeta), \quad (83)
$$

satisfied by polynomials $W_k(\zeta)$ of degree k in the variable ζ.

The validity of Proposition 3.3 is then an immediate consequence of Corollary 2.1.2, together with Remark 2.1.3.

Moreover, let the N zeros of the polynomial $W_N(-z^2) \equiv W_N(\zeta)$ be denoted as $\bar{\zeta}_j = -\bar{z}_j^2$, $j = 1, \ldots , N$, so that (up to an irrelevant multiplicative constant)

$$
W_N(-z^2) = \prod_{j=1}^{N} (-z^2 + \bar{z}_j^2) = \prod_{j=1}^{N} (\zeta - \bar{\zeta}_j). \quad (84)
$$

Then (80) with $k = N$ and $z = \bar{z}_n$, $n = 1, \ldots , N$, implies

$$
B(\bar{z}_n) \prod_{j=1}^{N} \left[(\bar{z}_n + 1)^2 - \bar{z}_j^2 \right] + B(-\bar{z}_n) \prod_{j=1}^{N} \left[(\bar{z}_n - 1)^2 - \bar{z}_j^2 \right] = 0 , \quad n = 1, \ldots , N, \quad (85a)
$$

entailing

$$
(2 \bar{z}_n + 1) B(\bar{z}_n) \prod_{\ell=1, \ell \neq n}^{N} \left[(\bar{z}_n + 1)^2 - \bar{z}_\ell^2 \right] + (-2 \bar{z}_n + 1) B(-\bar{z}_n) \prod_{\ell=1, \ell \neq n}^{N} \left[(\bar{z}_n - 1)^2 - \bar{z}_\ell^2 \right] = 0 \quad (85b)
$$

hence

$$
B(-\bar{z}_n) \prod_{\ell=1, \ell \neq n}^{N} \left[(\bar{z}_n - 1)^2 - \bar{z}_\ell^2 \right] = \left(\frac{2 \bar{z}_n + 1}{2 \bar{z}_n - 1} \right), \quad n = 1, \ldots , N.
$$
Now one observes that Proposition 3.3 holds for any arbitrary assignment of the N numbers z_n; hence it holds in particular for the assignment $z_n = \bar{z}_n$. And with this assignment—via the last formula written above—Proposition 3.3 clearly becomes Proposition 3.4, which is thereby proven.

8 Appendix B

In this Appendix B we list two remarkable identities satisfied by the two $(N \times N)$-matrices $\hat{\delta}(a; \bar{z})$ and $\hat{\delta}(q; \bar{z})$. Their proof is an immediate consequence of the identities satisfied by the two corresponding operators $\hat{\delta}(a)$ and $\hat{\delta}(q)$, the validity of which is quite obvious.

$$\hat{\delta}(q^{-1}; \bar{z}) \hat{\delta}(a; \bar{z}) \hat{\delta}(q; \bar{z}) = \hat{\delta}(q^{a}; \bar{z}) ;$$ \hspace{1cm} (86)

$$\hat{\delta}(q^{-1}; \bar{z}) \hat{\delta}(a; \bar{z}) \hat{\delta}(q; \bar{z}) \hat{\delta}(b; \bar{z}) = \hat{\delta}(a+q^{-1}b; \bar{z}) .$$ \hspace{1cm} (87)

Other analogous identities can be obviously obtained.

It is moreover plain that there holds the matrix-vector eigenvalue equation

$$\hat{\delta}(q; \bar{z}) \begin{bmatrix} Z u \end{bmatrix} = q^k \begin{bmatrix} Z u \end{bmatrix} , \hspace{1cm} k = 0, 1, ..., N - 1 ,$$ \hspace{1cm} (88a)

implying

$$\det \left[\hat{\delta}(q; \bar{z}) \right] = q^{N(N-1)/2} , \hspace{1cm} \text{trace} \left[\hat{\delta}(q; \bar{z}) \right] = \frac{1 - q^N}{1 - q} .$$ \hspace{1cm} (88b)

Here of course the two $(N \times N)$-matrices $\hat{\delta}(a; \bar{z})$ and $\hat{\delta}(q; \bar{z})$ are defined componentwise by (22) in terms of the N components z_n of the N-vector \bar{z} (which are N arbitrary numbers, except for the restriction to be all different among themselves), and of the arbitrary parameters a and q; while $Z = \text{diag}[z_n]$ and the N-vector u has all components equal to unity, $u = (1, 1, ..., N)$.

References

[1] F. Calogero, Classical many-body problems amenable to exact treatments, Lecture Notes in Physics Monographs m66, Springer, Heidelberg, 2001, 749 pages.

[2] R. Koekoek and R. F. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, Report no. 98-17, 1998 (updated version available on the web: homepage.tudelft.nl/11r49/askey.html).
[3] R. Chakrabarti and R. Jagannathan, "Finite-dimensional Calogero representation of the q-differential operator", [arXiv:q-alg/9504021v1](http://arxiv.org/abs/q-alg/9504021v1) 24 Apr 1995.

[4] F. Calogero and Ji Xiaoda, "Solvable (nonrelativistic, classical) N-body problems in multidimensions. II", in: National Workshop on Nonlinear Dynamics, edited by M. Costato, A. Degasperis and M. Milani, Conference Proceedings vol. 48, Pavullo nel Frignano (Modena), Italy, 19-22 May 1994; Società Italiana di Fisica, Bologna, 1995, pp. 21-32.

[5] A. Erdélyi (editor), Higher transcendental functions, vol. I, McGraw-Hill, New York, 1953.

[6] F. Calogero, "Disproof of a conjecture", Lett. Nuovo Cimento 35, 181-185 (1982).

[7] R. Sasaki, "Perturbations around the zeros of classical orthogonal polynomials", (to be published).

[8] O. Bihun and F. Calogero, “Properties of the zeros of the polynomials belonging to the Askey scheme”, Lett. Math. Phys. 104, 1571-1588 (2014). DOI: 10.1007/s11005-014-0728-8; “Properties of the zeros of the polynomials belonging to the q-Askey scheme”, J. Math. Anal. Appl. (submitted to, 03.10.2014); [arXiv:1410.0549v2](http://arxiv.org/abs/1410.0549v2) [math-ph].

[9] S. Osake and R. Sasaki, “Equilibrium positions, Shape invariance and Askey-Wilson polynomials”, [arXiv:hep-th/0410109v2](http://arxiv.org/abs/hep-th/0410109v2), 22.10.2004. J. F. van Diejen, “On the equilibrium configuration of the BC-type Ruijsenaars-Schneider system”, J. Nonlinear Math. Phys. 12, Suppl. 1, 689-696 (2005); "Remarks on the zeros of the associated Legendre functions with integral degree", Acta Appl. Math. 99, 293-299 (2007), DOI 10.1007/s10440-9172-4. M. Bruschi, F. Calogero and R. Droghei, “Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials”, J. Phys. A: Math. Theor. 40, 3815-3829 (2007); “Tridiagonal matrices, orthogonal polynomials and Diophantine relations. I”, J. Phys. A: Math. Theor. 40, 9793-9817 (2007); “Tridiagonal matrices, orthogonal polynomials and Diophantine relations. II”, J. Phys. A: Math. Theor. 40, 14759-14772 (2007); “Additional recursion relations, factorizations and Diophantine properties associated with the polynomials of the Askey scheme”, Advances Math. Phys., vol. 2009, Article ID 268134 (43 pages) (2009). doi:10.1155/2009/268134; “Polynomials defined by three-term recursion relations and satisfying a second recursion relation: connection with discrete integrability, remarkable (often Diophantine) factorizations”, J. Nonlinear Math. Phys. 18, 1-39 (2011). Y. Chen and M. E. H. Ismail, “Hypergeometric origins of Diophantine properties associated with the Askey scheme”, Proc. Amer. Math. Soc. 138, 943-951 (2010). M. E. H. Ismail and M. Rahman, “Diophantine properties of orthogonal polynomials and rational functions”, Proc. Amer. Math. Soc. (in press).
O. Bihun and F. Calogero, “Equilibria of a recently identified solvable \(N\)-body problem and related properties of the \(N\) numbers \(x_n\) at which the Jacobi polynomial of order \(N\) has the same value”, J. Nonlinear Math. Phys. 20, 539-551 (2013); “Properties of the zeros of generalized hypergeometric polynomials”, J. Math. Analysis Appl. 419, 1076-1094 (2014), http://dx.doi.org/10.1016/j.jmaa.2014.05.023. “Properties of the zeros of generalized basic hypergeometric polynomials” (to be published).

F. Calogero and G. Yi, “Diophantine properties of the zeros of certain Laguerre and para Jacobi polynomials”, J. Phys. A: Math. Theor. 45, 095207 (2012) (9 pages), doi: 10.1088/1751-8113/45/9/095207; “Polynomials satisfying functional and differential equations and Diophantine properties of their zeros”, Lett. Math. Phys. 103, 629-6511 (2013), doi:10.1007/s11005-013-0612-y. O. Bihun, F. Calogero and G. Yi, “Diophantine properties associated to the equilibrium configurations of an isochronous \(N\)-body problem”, J. Nonlinear Math. Phys. 20, 158-178 (2013).

F. Calogero, “On the zeros of polynomials satisfying certain linear second-order ODEs featuring many free parameters”, J. Nonlinear Math. Phys. 20, 191-198 (2013); “Properties of the zeros of the sum of two polynomials”, J. Nonlinear Math. Phys. 20, 348-354 (2013); “Properties of the zeros of the sum of three polynomials”, J. Nonlinear Math. Phys. 20, 469-474 (2013). H. Alici and H Taşeli, “Unification of Stieltjes-Calogero type relations for the zeros of classical orthogonal polynomials”, Math. Meth. Appl. Sci. (12 pages) (2014) (wileyonlinelibrary.com) DOI: 10.1002/mma.3285.

[10] F. Calogero, ”Generalized Lagrangian interpolation, finite-dimensional representations of shift operators, remarkable matrices, trigonometric and elliptic identities”. In: Special Functions and Differential Equations, Proceedings of a Workshop held at The Institute of Mathematical Sciences, Madras, India, January 13-24, 1997, edited by K. Srinivasa Rao, R. Jagannathan, G. Van den Berghe and J. Van der Jeugt. Allied Publishers Private, New Delhi, 1998, pp. 50-59.