Research Article

Yan Xu, Zhongjun Shi, Bianhong Li*, and Zhang Zhang

Effects of TVSR process on the dimensional stability and residual stress of 7075 aluminum alloy parts

https://doi.org/10.1515/rams-2021-0048
received April 11, 2021; accepted June 17, 2021

Abstract: Residual stress generated during the blank forming and machining process significantly influences the dimensional stability of the mechanical parts. The equivalent bending stiffness and thermal vibration stress relief (TVSR) are two factors that affect the deformation of thin-walled workpiece. To increase the machining accuracy, on the one hand, increase the equivalent bending stiffness in manufacturing, and on the other hand, usually conduct the stress relief process to reduce the residual stress in manufacturing. In the present study, morphology optimization and TVSR process are conducted on a thin-walled part Specimen B of 7075 aluminum alloy to control the residual stress and machining deformation before finish machining. As a contrast, Specimen A is machined in one step. The deformations vary with time of Specimen A and B are measured. The corresponding finite element model is built to further study the stress and distortion during the machining process. Results showed that (1) deformation decreased with the increase of equivalent bending stiffness, compared with Specimen A, the maximum deformation of Specimen B decreased by 58.28%. (2) The final maximum deformation of Specimen B can be reduced by 38.33% by topology reinforcement to improve the equivalent stiffness and TVSR to reduce the residual stress.

Keywords: residual stress, TVSR, dimensional stability, machining deformation, FEM

1 Introduction

Residual stress is the internal stress for the self-equilibrium, which remains in the body after eliminating the external force or uneven temperature field [1]. The residual stress will inevitably be induced into the workpiece in the rolling, extrusion, casting, forging, welding, or machining process [2]. The stress state in the material significantly determines the mechanical behavior and fatigue life [3]. It is the reflection of strain energy that introduced the external energy field [4], and it reaches a steady state before the shape is changed again [5]. In the machining process, the stress is released and redistributed due to the removal of the material, which causes the dimension change of the workpiece [6].

The aforementioned dimension change is also known as machining deformation [7], which evidently decreases the manufacturing accuracy. To reduce the machining deformation, adding stiffeners to increase bending stiffness is the simple way to first think [8]. Li et al. investigated the influence of the equivalent bending stiffness on the machining deformation [9] and proposed a deformation control method based on enhancing the equivalent bending stiffness [10] of the thin-walled parts. It is revealed that the machining deformation decreases as the equivalent bending stiffness increase in the length direction. When the stiffening ribs are placed closer to the maximum deformation point, the deformation can be further reduced. In comparison to the traditional machining method, the final maximum deformation of the samples from Group 1 and Group 2 produced by the three-step method is reduced by 29.68 and 48.09%, respectively. Li et al. [11] found that bending stiffness affects the contribution of machining-induced residual stress (MIRS) and initial residual stress (IRS) to machining deformation of the thin-walled part.
The relatively smaller equivalent stiffness leads to the more machining deformation contribution to the thin-walled part. Gao et al. [12] developed the influence of the workpiece position in the blank to the machining deformation. The results revealed that the symmetrical machining method is the most effective way to reduce the machining deformation.

Undoubtedly, residual stress is the primary cause of machining distortion [13], and the residual stress can be divided into two manufacture-induced and blank IRS [14]. In recent years, researchers are trying every trick in the book to eliminate the residual stress [15], and some of them have achieved good results [16]. Annealing treatment is a traditional but effective stress relief method [17–18], but it usually takes a lot of time energy to finish one process. Kim et al. [19] studied the effects of the annealing temperature and time on the residual stress relief, and the quantitative correlations between the annealing variables and the residual stress mitigation were obtained. Feng et al. [20] investigated the relationship between microstructure and residual stress of γ-TiAl alloy by molecular dynamics simulations, and they found that the fewer the point defects in the grain as long as the higher the annealing temperature. Dubois et al. [21] explored the residual stress relaxation and thermal stability of nano-composite metals via time-resolved in situ annealing under synchrotron high-energy X-rays.

Song et al. [22] found that the grain refinement has occurred due to the residual stress as the driving force although a residual amount of the columnar microstructural architecture of α-Fe could be observed after the vacuum annealing treatment. Tong et al. [23] demonstrated that grain boundaries in the deformed NC α-iron evolve to a more equilibrium state during annealing, eliminating, or minimizing the residual stress. Fernández et al. [24] believed that below a certain treatment temperature (250°C), it is possible to identify an appropriate thermal treatment capable of relaxing residual stress in this composite while even increasing its yield strength. Sun et al. [25] demonstrated that residual stress magnitudes are significantly decreased and eliminated by novel multistage interrupted artificial aging treatment, while the traditional artificial aging only contributes to a reduction of 10–35%.

Vibration stress relief (VSR) is also an efficient method to control the residual stress. Compared with TSR, VSR is more high efficiency, environmentally safe, and energy saving. Gong et al. [26] presented that VSR significantly improved the shape and dimension stability of the thin-walled parts by relieving induced residual stresses. Li et al. [27] presented that the maximum residual stress of welded DH36 steel tube is decreased by 47–49% after treated by VSR. Shalvandi et al. [28] demonstrated that after treated by ultrasonic stress relief (USR) with 24,500 Hz vibration frequency and 23–46 μm amplitude, the grain size does not change and the dislocation movement increases. Cai et al. [29] combined the traditional VSR with torsional vibration, and they found that the torsional vibration can induce coupled lateral torsional resonance and decrease the residual stress. Gao et al. [30] conducted residual stress measurement and fatigue tests to investigate the effects of VSR on the fatigue life and residual stress of 7075-T651 aluminum alloy, and the S–N curves and fatigue limit were obtained.

Wang et al. [31] concluded that the residual stress is released after treated by VSR. At the same time, the disintegration of “orientation of banding” and the decrease of dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation are observed. Wang et al. [32] also found that VSR vibration more than 10 min can weaken the basal textures of AZ31 Mg alloy. Vardanjani et al. [33] presented an analytical model on the basis of the plasticity theory with linear kinematic hardening to clarify the mechanism of release of residual stress under cyclic loading.

Moreover, Gu et al. [34] proposed a multidimensional ultrasonic stress relief (MDUSR) method and proved that the MDUSR has the evident effect on residual stress elimination and the MDUSR can increase the energy conservation compared with the MDUSR. Gong et al. [35] used a roll-bending process to eliminate the quenching residual stress in a large-size 2219 Al alloy ring, and the residual stress reduction rates of circumferential and axial are 61.72 and 86.24%, respectively. Colegrove et al. [36] reduced the residual stress of wire and arc additive manufacturing parts using high-pressure rolling with a “profiled” roller.

Thermal vibration stress relief (TVSR) is a novel stress relief method that has the advantages of both TSR and VSR and has a better stress relief effect than single TSR and VSR. Lv and Zhang [37] first validated the effectiveness of TVSR on the aluminum alloy. Gao et al. [38] further validated the stress-reduction effect of TVSR and investigated the stress relief mechanism of TVSR on 7075 aluminum alloy. They found that TVSR has a good stress reduction effect for peak stress, the reduction rates of TVSR are 38.56 and 20.43% higher than VSR and TSR, and it evidently increased the dislocation density. Chen et al. [39] concluded that for 2219 Aluminum Alloy Weldments, the temperature of 185°C at resonant frequency is more helpful to reduce transversal and longitudinal residual stresses by TVSR.
In recent years, TVSR has been widely concerned by scholars due to its high-efficiency, energy-saving, and environmental protection characteristics, and its stress relief effect has been verified on a variety of materials. However, most of the current researches are focused on the stress relief effect, and the research on the dimensional stability of structural parts after TVSR is rarely reported, and its effect on the dimensional stability also needs to be further verified. In the present study, the TVSR process is conducted on a thin-walled part of 7075 aluminum alloy to control the residual stress and machining deformation before finish machining. As a contrast, the other part is machined without a stress relief process. The blank IRS and the deformations after machining are measured. The corresponding finite element (FE) model is built to further study the stress and distortion during the machining process.

2 Experiments and simulations

In this study, three 7075-T6 aluminum (Al) alloy thick plates are used to prepare experimental specimens. One plate, whose size is 200 mm × 150 mm × 30 mm, is applied for residual stress measurement, and two plates, whose size is 200 mm × 150 mm × 30 mm, are applied for machining and stress relief experiments.

2.1 Design of specimen

Machining deformation problem is more serious for thin-walled parts. Therefore, one type of thin-walled part is designed for the validation of residual stress and deformation control. The size and shape are shown in Figure 1. It is made of 7075-T6 Al alloy thick plates, and the material composition and mechanical properties are presented in Tables 1 and 2.

Table 1: Material composition of 7075-T6 Al alloy

Element	Si (%)	Fe (%)	Cu (%)	Mn (%)	Mg (%)	Cr (%)	Zn (%)	Ti (%)	Al (%)
	0.40	0.50	1.1–2.0	0.30	2.1–2.9	0.18–0.28	5.1–6.1	0.20	The rest

Table 2: Properties of 7075-T6 Al alloy

Property	Value
Density (kg·m⁻³)	2,810
Elastic modulus (GPa)	71.7
Yield strength (MPa)	518
Poisson’s ratio	0.33
on the original size and shape of the specimen, some extra materials are reserved as the machining allowance to improve the stiffness. In this situation, the finite element analysis (FEA) and topological optimization are combined to obtain the ideal allowance.

Optimization design is based on the mathematical programming theory, the optimization mathematical theory, computer and application software as tools, and fully considering a variety of design constraints to seek the best design to meet the predetermined objectives. For the structural optimization design, the topology optimization based on FEA is an effective method. The topology optimization takes the material distribution as the optimization object. Through the topology optimization, the best distribution scheme can be found in the design space of uniformly distributed materials. In the structure analysis, the topological optimization needs to be calculated by the FE method. An exponential approximation topology optimization problem can be defined as the following forms:

\[
\begin{align*}
\min_X & \quad c(X) = U^T K U = \sum_{e=1}^{N} (x_e) P u_e^T k_0 d_e \\
\text{subject to:} & \quad \frac{V(X)}{V_0} = f \\
& \quad K U = F \\
& \quad 0 < X_{\text{min}} \leq X \leq 1
\end{align*}
\]

(1)

\(U\) and \(F\) represent the global displacement vector and force vector, respectively, and \(K\) is the global stiffness matrix of the structure. \(X\) is the design variable and represents the density of the material at each location. The objective function is to minimize the deformation energy of the structure under external load. The constraint conditions are the optimized volume fraction \(f\) in the design domain, and the optimized density is between \(X_{\text{min}}\) and 1.

According to the relative basic theory, the deformation caused by residual stress can be equivalent to the bending distortion caused by the uniform bending moment on the two opposite edges. Hence, FEA under two load conditions (bending loads in length and width direction) are established using Hyperworks software as the basic model. The deformation is set as the optimization constraints, and the minimized element density is set as the optimization objective. The morphology of the material can be obtained by iterative calculations using Optistruct modular of Hyperworks, as shown in Figure 2. According to the optimization results, the optimized specimen can be obtained, and the specimens before (Specimen A) and after (Specimen B) optimization are presented in Figure 3.

2.2 Experiments

Specimen blanks are purchased from Tianjin Dongfang Hanyu Technology Development Co., Ltd. The blanks come from the same batch of 7075-T6 Al alloy forging.

![Figure 2: Iterative process of topology optimization. (a) Iteration 15, (b) Iteration 30, (c) Iteration 45, and (d) iteration 63.](image)
plate. The blanks size is 300 mm \times 150 \text{mm} \times 30 \text{mm} rectangles. Prism residual stress measurement device (Stress tech Group) and layer removal method are used to measure the blank IRS. The X direction is the rolling direction. The residual stress in each layer of the plate is shown in Figure 4. From Figure 4, we can see the IRS in X and Y directions is different. The main reason for such phenomenon is as follows. During the forming process of the blank, the cooling of each part of the blank is uneven, resulting in temperature difference and thereby residual stress. For the specimen in the study, the blank is the rolling plate and the X direction is the rolling direction. For the Y direction, the edge is cooled first, and the middle part is still at high temperature, so the temperature gradient in the Y direction is larger, and the residual stress caused by the temperature gradient is larger, while the temperature in the X direction is more uniform than that in Y direction, and the temperature gradient is smaller than that in the Y direction, so the residual stress is smaller.

The specimens are machined using Fage 650 machining center (Jinan Fage CNC Machinery Co., Ltd) and four-edge carbide end cutting cutters. No. 5 white oil is used as a coolant. The feed rate, spindle speed, cutting depth, and cutting width are 3,500 rpm, 9,000 mm·min$^{-1}$, 0.3 mm, and 3 mm, respectively.

To reduce the effect of the clamping force on the plate deformation, AB glue (acrylic-modified epoxy resin mixed with modified amine hardener) is used to fix the workpiece on a steel rectangular base plate, and the four corners of the rectangular base plate are fixed on the machine tool workbench with pressing plates.

Specimen A is directly cut from blank to type A as shown in Figure 3 without any other process. Compared with Specimen A, for Specimen B, the first step is blank cutting to Type B, and then 96 h later, TVSR is carried out. The aging temperature is 175°C. First, the specimen is heated to 175°C in 0.5 h and preserved for 0.5 h. Then, a 5 min VSR process with the frequency of 60.1 Hz and eccentric motor speed of 3,606 rpm is conducted. After the vibration process, it is preserved for 0.5 h at 175°C and then another 5 min vibration process is carried out. Finally, after cooling in the furnace for 4 h, the fixture is removed and Specimen B (Type A) is air cooled to room temperature. The machining process is shown in Figure 5a, the TVSR platform is shown in Figure 5b, and the TVSR process flow chart of Specimen B is shown in Figure 6.

The distortion measurement of the bottom surface of Specimen A is carried out after the end of the cutting 24, 72, 96, 144, 288, and 312 h, respectively (Figure 7a). The deformation measurement of the bottom surface of Specimen B is carried out after the end of the first cutting 24, 72, and 96 h and after the end of the second cutting 24, 48, and 72 h, respectively (Figure 7b). The distribution of measuring points is shown in Figure A1 in the Appendix.
The deformation measurement equipment is Croma 10158 CMM (Shenzhen Surrey Measurement Technology Co., Ltd.) (Figure 7c), and the measurement software is PC DMIS. The measurement accuracy of CMM is characterized by the maximum allowable error of length measurement (MPEE), that is, linear error or length error. The MPEE of Croma 10158 CMM is $3.0 + 1 \frac{L}{300} \mu m$.

The deformation measurement of specimens is performed in Anhui Chungu 3D Printing Intelligent Equipment Industry Technology Research Institute (Wuhu City, Anhui Province, 118.20°E, 31.08°N). The time period of experiments and deformation measurement is from May 2019 to June 2019.

The indoor temperature is 18–25°C, and the relative humidity is 40–60%.

2.3 Simulations

The equivalent bending stiffness is obtained by FE simulation. In the Design Moduler of Workbench 19.0, 3D parameterized model of specimen is established. Material properties of the FE model are presented in Table 2. Zero is applied to the displacement in three directions to the face parallel to the YZ plane and then applied to evenly distributed load q_x in the Z direction to the other face (Figure 8). So, from the solution of deformation in the static analysis, maximum deformation d_{xz} is calculated along the X direction. Similarly, maximum deformation d_{yz} along the Y direction is calculated (Figure 8).

Therefore, the equivalent bending stiffness of thin-walled parts in the X and Y directions can be calculated on the basis of the results of the FE simulation and equations (2)–(5) [11].
where h_{eqx} (h_{eqy}) and D_{eqx} (D_{eqy}) are the equivalent thickness and equivalent bending stiffness in the X and Y directions, respectively; L and W are the length and width of the rectangular part, respectively; $F_x = q_x \cdot W$; and $F_y = q_y \cdot L$.

Deformation simulation FE models of specimens are built by workbench 19.0 (Figure 9). The geometry model consists of two parts: the final specimen and the material to be removed. The geometry model is imported into Workbench 19.0. Then, the geometry model is evenly divided into 30 layers. Solid 186 element is selected as the FE type. The elastic constraint to the face is applied parallel to the YZ plane. The material properties of the FE model are presented in Table 2. The IRS is assigned to each layer by utilizing “Inistate” function. Then, “kill” element has to be removed with element birth and death technology layer by layer (“kill” element means assignment 0 to element stiffness, unit load, mass, and so on. The killed element mass and energy will not be included in the results of model). As a consequence, deformations and stress are obtained.

3 Results and discussions

The simulation results of equivalent stiffness before and after topology optimization are presented in Figure 10 and Table 3. It can be seen from Figure 10 and Table 3, compared with Specimen A (before optimization), the equivalent bending stiffness D_{eqx} in the X direction and D_{eqy} in the Y direction of Specimen B (after topology optimization) is increased by 123.66 and 108.93%, respectively.
respectively; compared with Specimen A, the material removal ratio of Specimen B is reduced by 6.82%.

The simulation results of deformation and stress of Specimen B after the first cutting are shown in Figure 11. It can be seen from Figure 11 that the maximum deformation is 0.16 mm, the maximum stress in the X direction is 81.84 MPa, and the maximum stress in the Y direction is 49.38 MPa. It can be seen that there is still a large residual stress in the specimen after the first cutting.

Vertexes and maximum point as a typical point are taken to analyze the whole deformation. Thus, the average value of four corner point on the bottom surface (namely four vertexes), maximum point, the average value of P1 and P7 (P1–P7), and average value of P30 and P33(P30–P33) as the typical point for Specimens A and B. The deformation comparison of Specimen A of 24, 72, 96, 144, 168, 288, and 312 h after the end of the cutting is shown in Figure 12(a). The deformation comparison of simulation and experiment of Specimen B of 24, 72, and 96 h after first cutting, and 24 h (124 h), 48 h (148 h), and 72 h (172 h) after second cutting are shown in Figure 12(b).

Figure 12(a) shows that, 24, 72, 96, 144, 168, 288, and 312 h after the end of the cutting, the maximum deformations of Specimen A are 0.317, 0.399, 0.385, 0.376, 0.371, 0.362, and 0.356 mm, respectively; the average values of vertexes are 0.128, 0.163, 0.167, 0.188, 0.188, 0.190, and 0.186 mm, respectively. Within 72 h after machining, the deformation changes obviously. After 72 h of machining, the dimension of Specimen A tend to be stable, and the deformation variation in unit hour is less.

Figure 12(b) shows that the simulation results are in accordance with the experimental results. 24, 48, and 96 h after first cutting, the maximum deformations of Specimen B are 0.132, 0.144, and 0.149 mm, respectively; the average value of vertexes are 0.064, 0.059, and 0.062 mm, respectively. 24 h (124 h), 48 h (148 h), and 72 h (172 h) after second cutting, the maximum deformations of Specimen B are 0.216, 0.207, and 0.220 mm, respectively; the average values of vertexes are 0.153, 0.148, and 0.155 mm, respectively. After removing the topological optimization allowance in the second cutting, the maximum deformations of Specimen B increased by 0.084 mm (24 h), 0.063 mm (48 h), and 0.071 mm (72 h), and the average deformations of the vertexes increased

Table 3: Comparison of equivalent bending stiffness and material removal ratio

Comparison	Specimen A	Specimen B	Increase percentage
D_{eqv}^x (N-mm)	3.72×10^6	8.32×10^6	+123.66
D_{eqv}^y (N-mm)	4.37×10^6	9.14×10^6	+108.93
Material removal ratio	82.94%	76.11%	–6.82

Figure 11: Simulation results of deformation and stress of Specimen B after first cutting.
4 Conclusion

In the present study, the deformation and dimension stability of two thin-wall parts of 7075 Al alloy with different equivalent bending stiffness are studied. Topological optimization is carried out on the basis of Specimen A to improve the equivalent stiffness, the specimen after optimization as Specimen B. Specimen A is one time cutting to the final shape, and after Specimen B first cutting 96 h, the TVSR is conducted to control the residual stress and machining deformation. Then, the second cutting is implemented. The deformation vary with time are measured within 312 h after the end of cutting of Specimen A, and the deformations that vary with time are measured within 96 h after first cutting and 72 h after second cutting of Specimen B. By comparing the deformation and dimension stability of Specimens A and B, the following conclusions are obtained.

(1) After topological optimization, the equivalent bending stiffness $D_{eq_{x}}$ in the X direction and $D_{eq_{y}}$ in the Y direction of Specimen B (after topology optimization) is increased by 123.66 and 108.93%, respectively; compared with Specimen A (before optimization), the material removal ratio of Specimen B (after topology optimization) is reduced by 6.82%.

(2) Deformation decreased with the increase of equivalent bending stiffness. After first cutting, compared with Specimen A, the maximum deformation of Specimen B decreased by 58.28%, the average value of P_{30} and P_{33} decreased by 94.11%, and the average value of vertexes decreased by 49.96%.

(3) From the simulation results, it can be seen there is still a large residual stress in the specimen after the first cutting. The maximum stress in the X direction is 81.84 MPa, and the maximum stress in the Y direction is 49.38 MPa.

(4) From the comparison of Specimens A and B, the maximum deformation of the part can be reduced by 38.33% by topology reinforcement to improve the equivalent stiffness and TVSR to reduce the residual stress.

Acknowledgement: The work is financially support by the Aeronautical Science Foundation of China [grant number 2019ZE051002]. The authors gratefully acknowledge the support.

Author contributions: Yan Xu: Conceptualization, methodology, investigation, writing – original draft. Zhongjun Shi:
conceptualization, validation, visualization, funding acquisition. Zhang Zhang: resources, writing – review & editing, supervision, data curation.

Conflict of interest: Authors state no conflict of interest.

References

[1] Zhang, Y., W. H. Wang, and A. L. Greer. Making metallic glasses plastic by control of residual stress. *Nature Materials*, Vol. 5, No. 11, 2006, pp. 857–860.

[2] Wang, L., X. Chen, T. Luo, H. Ni, L. Mei, P. Ren, et al. Effect of cross cold rolling and annealing on microstructure and texture in pure nickel. *Reviews on Advanced Materials Science*, Vol. 59, No. 1, 2020, pp. 252–263.

[3] Jung, C. Y. and J. H. Lee. Crack closure and flexural tensile capacity with SMA fibers randomly embedded on tensile side of mortar beams. *Nanotechnology Reviews*, Vol. 9, No. 1, 2020, pp. 354–366.

[4] Muhamad, S. S., J. A. Ghani, C. H. C. Haron, and H. Yazid. Cryogenic milling and formation of nanostructured machined surface of AISI 4340. *Nanotechnology Reviews*, Vol. 9, No. 1, 2020, pp. 1104–1117.

[5] Selim, M. M. and S. A. El-Safty. Vibrational analysis of an irregular single-walled carbon nanotube incorporating initial stress effects. *Nanotechnology Reviews*, Vol. 9, No. 1, 2020, pp. 1481–1490.

[6] Yu, H., L. Zhang, F. Cai, S. Zhong, J. Ma, L. Bao, et al. Microstructure and mechanical properties of brazing joint of silver-based composite filler metal. *Nanotechnology Reviews*, Vol. 9, No. 1, 2020, pp. 1034–1043.

[7] Lee, S. Y. and J. G. Hwang. Finite element nonlinear transient modelling of carbon nanotubes reinforced fiber/polymer composite spherical shells with a cutout. *Nanotechnology Reviews*, Vol. 8, No. 1, 2019, pp. 444–451.

[8] Nguyen, D., J. Yuan, B. Lv, Z. Wu, P. Zhao, and Q. Deng. Numerical and experimental study of thickness effect on deflection of glass plate in elastic deformation machining method. *International Journal of Nanomanufacturing*, Vol. 10, No. 3, 2014, pp. 254–264.

[9] Li, B., H. Gao, H. Deng, H. Pan, and B. Wang. Investigation on the influence of the equivalent bending stiffness of the thin-walled parts on the machining deformation. *The International Journal of Advanced Manufacturing Technology*, Vol. 101, No. 1–10, 2019, pp. 1171–1182.

[10] Li, B., H. Gao, H. Deng, and C. Wang. A machining deformation control method of thin-walled part based on enhancing the equivalent bending stiffness. *The International Journal of Advanced Manufacturing Technology*, Vol. 108, No. 1–4, 2020, pp. 2775–2790.

[11] Li, B., H. Deng, D. Hui, Z. Hu, and W. Zhang. A semi-analytical model for predicting the machining deformation of thin-walled parts considering machining-induced and blank initial residual stress. *The International Journal of Advanced Manufacturing Technology*, Vol. 110, No. 5, 2020, pp. 1–23.

[12] Gao, H., Y. Zhang, Q. Wu, and J. Song. An analytical model for predicting the machining deformation of a plate blank considering biaxial initial residual stresses. *International Journal of Advanced Manufacturing Technology*, Vol. 93, No. 1–4, 2017, pp. 1–14.

[13] Shen, H. S., Y. Xiang, and Y. Fan. Large amplitude vibration of doubly curved FG-GRC laminated panels in thermal environments. *Nanotechnology Reviews*, Vol. 8, No. 1, 2019, pp. 467–483.

[14] Li, B., S. F. Wu, and X. S. Gao. Theoretical calculation of a TiO2 nanotube-based photocatalyst in the field of water splitting: A review. *Nanotechnology Reviews*, Vol. 9, No. 1, 2020, pp. 1080–1103.

[15] Hwang, S. J. The formation kinetics of Cr2O3 dispersed Cu nanotubes synthesized by Cryo-milling. *Reviews on Advanced Materials Science*, Vol. 59, 2020, pp. 47–53.

[16] Yinghua, L., P. Xuelong, K. Jiachao, and D. Yingrui. Improving the microstructure and mechanical properties of laser cladded Ni-based alloy coatings by changing their composition: A review. *Reviews on Advanced Materials Science*, Vol. 59, No. 1, 2020, pp. 340–351.

[17] Zhang, Y., X. Jiang, H. Sun, and Z. Shao. Effect of annealing heat treatment on microstructure and mechanical properties of nonequiatomic CoCrFeNiMo medium-entropy alloys prepared by hot isostatic pressing. *Nanotechnology Reviews*, Vol. 9, No. 1, 2020, pp. 580–595.

[18] Lin, N., R. Xie, J. Zou, J. Qin, Y. Wang, S. Yuan, et al. Surface damage mitigation of titanium and its alloys via thermal oxidation: A brief review. *Reviews on Advanced Materials Science*, Vol. 58, No. 1, 2019, pp. 132–146.

[19] Kim, J. S., J. H. Yoo, and Y. J. Oh. A study on residual stress mitigation of the HDPE pipe for various annealing conditions. *Journal of Mechanical Science & Technology*, Vol. 29, No. 3, 2015, pp. 1065–1073.

[20] Feng, R., W. Song, H. Li, Y. Qi, H. Qiao, and L. Li. Effects of Annealing on the Residual Stress in γ-TiAl Alloy by Molecular Dynamics Simulation. *Materials*, Vol. 11, 2018, id. 1025.

[21] Dubois, J. B., L. Thilly, P. O. Renault, F. Lecouturier, and M. Di Michiel. Thermal stability of nanocomposite metals: In situ observation of anomalous residual stress relaxation during annealing under synchrotron radiation. *Acta Materialia*, Vol. 58, No. 19, 2010, pp. 6504–6512.

[22] Song, B., S. Dong, G. Liu, H. Liao, and C. Coddet. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior. *ScienceDirect. Materials & Design (1980–2015)*, Vol. 54, No. 2, 2014, pp. 727–733.

[23] Tong, X., H. Zhang, and D. Y. Li. Effect of annealing treatment on mechanical properties of nanocrystalline α-iron: an atomistic study. *Scientific Reports*, Vol. 5, 2015, id. 8459.

[24] Fernández, R., S. Caballero, T. Mishurova, P. Fernández-Castrillo, G. González-Doncel, and G. Bruno. Residual stress and yield strength evolution with annealing treatments in an age-hardenable aluminum alloy matrix composite. *Materials Science and Engineering A*, Vol. 731, 2018, pp. 344–350.

[25] Sun, Y., F. Jiang, H. Zhang, J. Su, and W. Yuan. Residual stress relief in Al–Zn–Mg–Cu alloy by a new multistage interrupted artificial aging treatment. *Materials & Design*, Vol. 92, 2016, pp. 281–287.
[26] Gong, H., Y. Sun, Y. Liu, Y. Wu, Y. He, X. Sun, et al. Effect of vibration stress relief on the shape stability of aluminum alloy 7075 thin-walled parts. *Metals*, Vol. 9, No. 1, 2018, id. 27.
[27] Li, S., H. Fang, X. Liu, W. Wang, Q. Wang, and W. Cui. A combined computational and experimental study on vibration stress relief for large welded DH36 steel tube. *Journal of Vibroengineering*, Vol. 18, No. 3, 2016, pp. 1486–1496.
[28] Shalvandi, M., Y. Hojjat, A. Abdullah, and H. Asadi. Influence of ultrasonic stress relief on stainless steel 316 specimens: A comparison with thermal stress relief. *Materials & Design*, Vol. 46, 2013, pp. 713–723.
[29] Cai, G., Y. Huang, and Y. Huang. Operating principle of vibratory stress relief device using coupled lateral-torsional resonance. *Journal of Vibroengineering*, Vol. 19, No. 6, 2017, pp. 4083–4097.
[30] Gao, H., Y. Zhang, Q. Wu, J. Song, and K. Wen. Fatigue life of 7075-T651 aluminium alloy treated with vibratory stress relief. *International Journal of Fatigue*, Vol. 108, 2017, pp. 62–67.
[31] Wang, J. S., C. C. Hsieh, C. M. Lin, E. C. Chen, C. W. Kuo, and W. Wu. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy. *Materials Science and Engineering A*, Vol. 605, No. 3, 2014, pp. 98–107.
[32] Wang, J. S., C. C. Hsieh, H. H. Lai, C. W. Kuo, P. T. Y. Wu, W. Wu, et al. The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique. *Materials Characterization*, Vol. 99, 2015, pp. 248–253.
[33] Vardanjani, M. J., M. Ghayour, and R. M. Homami. Analysis of the vibrational stress relief for reducing the residual stresses caused by machining. *Experimental Techniques*, Vol. 40, No. 2, 2016, pp. 705–713.
[34] Gu, B., X. Hu, L. Zhao, D. Kong, Z. Yang, J. Lai, et al. Effect of multi-dimensional ultrasonic-assisted pulsed-laser surface irradiation on residual stress in AISI 1045 steel. *Journal of Cleaner Production*, Vol. 143, 2017, pp. 1183–1190.
[35] Gong, H., X. Sun, Y. Liu, Y. Wu, Y. Wang, and Y. Sun. Residual stress relief in 2219 aluminium alloy ring using roll-bending. *Materials*, Vol. 13, No. 1, 2019, id. 105.
[36] Colegrove, P. A., H. E. Coules, J. Fairman, F. Martina, T. Kashoob, H. Mamash, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. *Journal of Materials Processing Technology*, Vol. 213, No. 10, 2013, pp. 1782–1791.
[37] Lv, T. and Y. Zhang. A combined method of thermal and vibratory stress relief. *Journal of Vibroengineering*, Vol. 17, No. 6, 2015, pp. 2837–2845.
[38] Gao, H., S. Wu, Q. Wu, B. Li, Z. Gao, Y. Zhang, et al. Experimental and simulation investigation on thermal-vibratory stress relief process for 7075 aluminium alloy. *Materials & Design*, Vol. 195, 2020, id. 108954.
[39] Chen, S. G., Y. D. Zhang, Q. Wu, H. J. Gao, and D. Y. Yan. Residual stress relief for 2219 aluminum alloy weldments: A comparative study on three stress relief methods. *Metals – Open Access Metallurgy Journal*, Vol. 9, No. 4, 2019, id. 419.
Appendix

Figure A1: Deformation measurement point.