Bioaccessibility of phenolic compounds and antioxidant capacity in organic peppermint leaves

Bioaccesibilidad de compuestos fenólicos y capacidad antioxidante en hojas de menta de pimienta orgánica

Rodrigo Barbosa Monteiro Cavalcante1 https://orcid.org/0000-0003-2649-6588
Amanda Jéssica Barros de Moura2, https://orcid.org/0000-0002-8005-8370
Marcos Antônio da Mota Araújo1, https://orcid.org/0000-0002-9061-7359
Regilda Saraiva dos Reis Moreira-Araújo4*, https://orcid.org/0000-0002-3669-2358

1. Postgraduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil.
2. Graduation in nutrition, Federal University of Piauí – UFPI. Teresina, PI, Brazil.
3. Municipal Health Foundation, Teresina, PI, Brazil.
4. Department of Nutrition. Federal University of Piauí, Teresina, PI, Brazil.

*Corresponding author: Regilda Moreira-Araújo.
Campus Min. Petrônio Portela, S/N. Block 13. Ininga Neighborhood. CEP 64049-550.
Teresina, PI, Brazil.
E-mail: regilda@ufpi.edu.br

ABSTRACT

The objective of this study was to analyze the chemical composition and bioaccessibility of phenolic compounds as well as their antioxidant capabilities of organic peppermint leaves after each phase of simulated digestion. Moisture was determined until a constant weight was obtained in an oven at 105 °C; ash was determined after sample calcination in a muffle furnace at 550 °C. The protein concentration was determined by the Macro-Kjeldahl method and lipid content by hot-extraction in a Soxhlet apparatus. Carbohydrates were calculated from differences and energy values based on the Atwater conversion factors. Total phenolic, flavonoid content, and antioxidant activity were determined by spectrophotometry. A four-step procedure was used for in vitro digestion. Organic peppermint was found to contain the following: 78% moisture, 1.7% ash, 1.5% lipids, 0.3% proteins, 17.7% carbohydrates, and a total of 85.5 kcal/100 g. Values of 705 mg GAE/100 g of phenolic, 918 mg QE/100 g of flavonoids, and 58.8 mg/g of vitamin C were also measured. It was discovered that total phenolics had the highest bioaccessible fraction relative to flavonoids; the salivary phase was identified as that with the highest release of these compounds and thus the phase in which peppermint showed significant antioxidant activity (1509 μmol TEAC/100g). This study demonstrated that organic peppermint has a high content of phenolic compounds that can be extracted from the alimentary matrix in the salivary and intestinal phases of the digestive system. Because of the antioxidant activity of these compounds, the use of this aromatic plant as seasonings and spices is relevant.

Keywords: Antioxidant capacity; Bioactive compounds; Chemical composition; Mentha piperita L.; Simulated digestion.
INTRODUCTION

The search for food using more sustainable production systems such as organic production methods has increased worldwide. Agro-ecological systems are beneficial because they reflect nutritional value, concerns related to food production and conservation processes, and the environment. Although studies of the nutrient contents of organic foods are inconclusive, organic system have been shown to be effective for reducing chemical additives that may enter the food chain.

Aromatic and medicinal plants have gained attention for their important roles in health, foods, and essences. The chemical, pharmacological, food, and cosmetic industries use raw materials such as members of the Lamiaceae family that includes peppermint (Mentha piperita L.). The cultivation of these species has economic potential.

Several studies have reported the presence of a wide variety of compounds such as terpenoids, iridoids, flavonoids, and phenolic compounds in plants of the Lamiaceae family. Another component of peppermint is a volatile oil composed mainly of menthol, menthone, menthofuran, and menthyl acetate. Other pharmaceutically active ingredients comprise bitter substances, caffeic acid, flavonoids, polymerized polyphenols, carotenes, tocopherols, betaine, choline, and tannins.

These phytochemicals can help reduce the oxidative damage associated with several diseases, including cancer, cardiovascular diseases, atherosclerosis, diabetes, and arthritis, among others. When consumed as food, it is important to note that humans do not effectively utilize all ingested compounds. During the digestive process, these compounds undergo biotransformation. Thus, the bioaccessible fraction of a compound can be understood as the amount of the compound released from its matrix into the gastrointestinal tract and available for absorption.

This study was conducted to analyze the chemical composition and bioaccessibility of phenolic compounds, as well as antioxidant capacity, after each phase of simulated digestion (in vitro) of organic peppermint (Mentha piperita L.) leaves.

MATERIALS AND METHODS

Location and study period

This study was conducted in the Laboratory of Bromatology and Biochemistry of Food/Antioxidants and Liquid Chromatography Room of the Department of Nutrition of the Federal University of Piauí, from September 2016 to February 2019.

Raw materials

The organic peppermint samples were purchased in an establishment specialized in organic product sales in Teresina-PI. The presence of the SISORG (Brazilian Organic Conformity Assessment System) seal was used as the selection criterion.

Centesimal composition

The moisture content of the samples was determined after obtaining a constant weight after drying in an oven at 105 °C. Ash content was determined after calcination of the samples in a muffle furnace at 550 °C. Protein concentration was determined using the Macro-Kjeldahl method with a conversion factor of 5.75. Lipid content was measured by hot intermittent extraction using hexane as a solvent in a Soxhlet apparatus. Carbohydrate content was calculated as a difference (carbohydrates= 100 - (moisture+ash+protein+lipids) and total energy value according to Atwater conversion factors.

Vitamin C

Tillman’s method, which is based on the reduction of 2,6-dichlorophenolindophenol sodium salt dye by an acid solution of vitamin C, was used to determine vitamin C content.

Phenolic compounds

Several reagents were tested for preparing the extracts, as the solubility of phenolic compounds varies as a function of solvent polarity, degree of polymerization of the compounds, and their interactions.
To obtain the extracts, samples went through a pre-drying process in a ventilated oven (60 °C/2h). The highest extraction yields of peppermint were obtained when 50% methanol: 70% acetone:water solution (2:2:1) was used10. The contents of bioactive compounds were measured by spectrophotometry. Total phenolics11 and total flavonoids12,13.

Antioxidant capacity - 2,2 - diphenyl-1- picrylhydrazyl (DPPH) method

The scavenger effect of DPPH radicals in the sample was determined by spectrophotometry14. Results were expressed as μmol TEAC (troclox equivalent antioxidant capacity)/100 g of the sample.

Bioaccessibility

Bioaccessible fractions of antioxidant compounds were estimated using a four-step procedure (salivary, gastric, intestinal, and colonic), in which the human digestive process was simulated *in vitro* using synthetic digestive fluids15,16.

Statistics

Statistical analyses of the data were performed using SPSS version 21.0 software (SPSS, Inc., Chicago, IL, USA). For multiple comparisons, the Tukey test was used at a 5% significance level and the 95% confidence interval17.

RESULTS

Table 1 presents proximate composition, total energy value, content of phenolic compounds, and antioxidant capacity of organic peppermint leaves. Average values of three repetitions and the standard deviation are shown.

Table 2 shows phenolic compound content and antioxidant capacity of peppermint leaves (Mentha piperita L.) after each simulated digestion phase. High antioxidant capacity was verified in the salivary phase.

Table 3 shows the result of in vitro bioaccessibility of phenolic compounds and antioxidant capacity of organic peppermint leaves. A statistically significant difference was observed between phenolic compounds (p≤0.05).

DISCUSSION

The chemical composition of the organic peppermint leaf is shown in table 1. These samples had a high moisture content (78.8 g/100 g). Research that analyzed plants in the Lamiaceae family (rosemary and basil) also found high moisture contents of 63.6 and 82.7 g/100 g, respectively. To increase the shelf life of these foods, they must be dried to reduce high moisture content18,19.

The ash content was found to be 1.7 g/100 g (Table 1). In a study of medicinal plants sold in Cuiabá (MT), ash levels ranged from 1.6 to 8.4 g/100 g. Contents obtained in the present study agree with those of the previous study with acceptable variation, as the raw materials and cultivation conditions used were different20.

As shown in table 1, among macronutrients, the carbohydrate content was 17.7 g/100 g and protein levels were low (0.32 g/100 g). A study that analyzed samples of rosemary pepper, French basil, eucalyptus, and elderberry found lipid contents of 1.04, 1.44, 2.33, and 6.26 g/100 g, respectively, which are comparable to the value obtained

Analysis	Peppermint (mean ± standard deviation)
Moisture (g/100g)	79±0
Ash (g/100g)	1.7±0
Lipids (g/100g)	1.5±0
Proteins (g/100g)	0.3±0
Total carbohydrates (g/100g)	17.7
TEV (Kcal/100g)	85.5
Vitamin C (mg/g)	59±0
Total phenolics (mg GAE/100g)*	705±5
Total flavonoids (mg QE/100g)**	918±5
Antioxidant capacity (μmol TEAC/100g)**	4431±3

* GAE – Equivalent to gallic acid.
** QE – Equivalent to quercetine.
*** TEAC – Antioxidant capacity equivalent to trolox.
in the present study (1.50 g/100 g)18. Several researches have reported that plants contain essential oils with diverse functions, including therapeutic properties.

Components with significant antioxidant effects also are detected in foods, which may be useful for preventing diseases. Vitamin C content in peppermint leaves was 59 mg/g. Vitamin C levels of 126.63 mg/100g were found in peppermint (dry weight). These results reflect the differences in the chemical composition of leaves due to the edaphoclimatic conditions21.

A study determined the total phenolic content in six species of wild Mentha (Lamiaceae) from Northeastern Algeria22. The levels obtained varied from 1466 to 4321 mg GAE (gallic acid equivalent)/100 g, dry weight, which are higher than levels obtained in the present study (705 mg GAE/100 g). This may be because of genetic variation, harvesting season, climatic conditions, soil, cultivation method, stage of maturation, and other factors. The solvent used to prepare the extracts is also important; in this study, used 50% methanol: 70% acetone:water solution, while the reported research used 80% methanol.

Among the phenolic compounds, flavonoids were prevalent. Peppermint leaves showed a flavonoid content of 918 mg quercetin equivalent/100 g (Table 1). A research study evaluated spices commonly consumed in southern Nigeria and found total flavonoid content of 12–147 mg

Table 2. Phenolic compounds and antioxidant capacity of peppermint leaf (Mentha piperita L.) after each simulated digestion phase.

Phase	Total phenolics (mg GAE/100g)	Flavonoids (mg QE/100g)	Antioxidant Capacity DPPH (µmol TEAC/100g)
	Mean ± SD	Mean ± SD	Mean ± SD
Salivary	3711±12a	364±10a	1509±0b
Gastric	143±5a	101±16b	438±0c
Intestinal	362±6a	400±6b	361±4c
Colonic	100±0a	58±2b	393±9c

Different subscribed letters, on the same line, represents a significant difference between means according to One Way ANOVA: Post Hoc Multiple Comparisons test, the Tukey’s test was used at the level of 5% p<0.05, 95% CI.

Table 3. Bioaccessible fraction of phenolic compounds and antioxidant capacity of peppermint leaf (Mentha piperita L.) after each simulated digestion phase.

Phase	Total phenolics (mg GAE/100g) -1	Flavonoids (mg QE/100g) -1	Antioxidant Capacity DPPH (µmol TEAC/100g) -1
	Mean ± SD	Mean ± SD	Mean ± SD
Salivary	53a	40b	34c
Gastric	20a	11b	10c
Intestinal	51a	43b	8c
Colonic	14a	6b	9b

Different subscribed letters, on the same line, represents a significant difference between means according to One Way ANOVA: Post Hoc Multiple Comparisons test, the Tukey’s test was used at the level of 5% p<0.05, 95% CI.
a higher bioaccessible fraction compared to flavonoids, and that the highest release of these compounds occurred during the salivary phase. Thus, peppermint showed the significant antioxidant capacity in this phase.

Organic peppermint contains high levels of phenolic compounds that showed the highest levels of extraction from the alimentary matrix during the salivary phase in the digestive system. Because of the antioxidant capacity of these compounds, the use of peppermint leaves as seasonings and spices, in addition to contributing with sensory aspects, can help in the prevention of chronic diseases and in food conservation. These materials are also important for producing flours for use in enriched food products.

REFERENCES

1. Mooz ED, Silva MV. Organic food in the national and international scenarios. Braz J Soc Food Nutr. 2014; 39: 99-112.
2. Ferreira SD, Bulegon LG, Yassue RM, Echer MM. Effect of nitrogen fertilization on the production and productivity of Basil, red basil (Ocimum basilicum L) in spring and autumn seasons. Braz J Med Plants. 2016; 18: 67-73.
3. Naghibi F, Mosaddegh M, Motamed SM, Chorbani A, Labiatea family in folk medicine in Iran: from ethnobotany to pharmacology. Iran J Pharm Res. 2005; 2: 63-79.
4. Rahila MP, Nath BS, Naik NL, Pushpadass HA, Manjunatha M, Franklin MEE. Rosemary (Rosmarinus officinalis Linn.) extract: a source of natural antioxidants for imparting antioxidative and thermal stability to ghee. J Food Process Preserv. 2017; 42: 1-10.
5. Singh R, Shushini MAM, Belkheir A. Antibacterial and antioxidant activities of Mentha piperita L Arab J Chem. 2015; 8: 322-328.
6. Siddhuraju P, Becker K. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L) Walp.) seed extracts. Food Chem. 2007; 101: 10-19.
7. Peixoto RRA, Mazon EAM, Cadore S. Estimation of the bioaccessibility of metallic elements in chocolate drink powder using an in vitro digestion method and spectrometric techniques. J Braz Chem Soc. 2013; 24: 884-890.
8. Association of Official Analytical Chemists. Official methods of analysis of the association of analytical chemists. Washington, D.C., 2005.
9. Watt B, Merrill AL. Composition of foods: raw, processed, and prepared. Washington, D.C: Consumer and Food Economics Research Division/Agricultural Service. (Agriculture Handbook, 8), 1963.
10. Rufino MSM, Alves RE, Brito ES, Moraís SM, Sampaio CG, Pérez-Jiménez J, Saura-Calixto FD. Scientific methodology: determination of total antioxidant activity in fruits by capturing the free radical DPPH. Terezina: Embrapa Mid-North (Technical release, nº 127), 2007.
11. Rossi JA, Singleton VL. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965; 20: 144-158.
12. Kim D, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003; 81: 321-326.
13. Blas M, Candiacci M, Accorsi A, Piacentini MP, Albertini MC, Piatti E. Raw Millefiori honey is packed full of antioxidants. Food Chem. 2006; 97: 217-222.
14. Brand-Williams W, Cuveller ME, Berset C. Use of a free radical method for determination of antioxidant capacity. LWT Food Sci Technol. 1995; 28: 25-30.
method to evaluate antioxidant activity. LWT - Food Sci Tec. 1995; 28: 25-30.
15. Fogliano V, Corollarro ML, Vitaglione P, Napolitano A, Ferracane R, Travaglia F, et al. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol Nutr Food Res. 2011; 55: S44-S55.
16. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, et al. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct. 2014; 5: 1113-1124.
17. Andrade DF. Statistics for agrarian and biological sciences: experimental concepts. Ed. da UFSC, Florianópolis, 2013.
18. Almeida MMB, Lopes MFG, Sousa PHM, Nogueira CMD, Magalhães CEC. Determination of moisture, fibers, lipids, ashes and silica in medicinal plants. B CEPPA. 2003; 21: 343-350.
19. Reis RC, Devilla IA, Ascheri DPR, Servulo ACO, Souza ABM. Kinetics of drying of basil leaves (Ocimum basilicum L.) in the infrared. Braz J Agr Env Eng. 2012; 16: 1346-1352.
20. Pedro FGG, Arruda CL, Oliveira JC, Santos AD, Sigarini KS, Hernandes T, et al. Centesimal and mineral composition of medicinal plants commercialized in the Cuiabá Port Market, Mato Grosso, Brazil. Braz J Med Plants. 2016; 18: 297-306.
21. Uribe E, Marín D, Vega-Gálvez A, Quispe-Fuentes I, Rodríguez A. Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants. Food Chem. 2016; 190: 559-565.
22. Benabdallah A, Rahmoune C, Boumendjel M, Aissi O, Messaoud C. Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria. Asian Pac J Trop Biomed. 2016; 6: 760-766.
23. Ene-Obong H, Onuoha N, Aburime L, Mbah O. Chemical composition and antioxidant activities of some indigenous spices consumed in Nigeria. Food Chem. 2018; 238: 58-64.
24. Silva CO, Tassi EMM, Pascoal GB. Food Science: principles of bromatology. Rubio, Rio de Janeiro, 2016.
25. Atki YEl, Aouam I, Kamari FEI, Taroq A, Lyoussi B, Taleb M, et al. Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Mater Today: Proc. 2019; 13: 777-783.
26. Manivannan V, Johnson M. Total phenolic, tannin, triterpenoid, flavonoid and sterol contents, anti-diabetic, anti-inflammatory and cytotoxic activities of Tectaria paradoxa (Fee.) Sledge. Toxicol Rep. 2020; 7: 1465-1468.