Therapeutic strategies for targeting the ovarian tumor stroma

Song Yi Ko, Honami Naora

Abstract

Epithelial ovarian cancer is the most lethal type of gynecologic malignancy. Sixty percent of women who are diagnosed with ovarian cancer present with advanced-stage disease that involves the peritoneal cavity and these patients have a 5-year survival rate of less than 30%. For more than two decades, tumor-debulking surgery followed by platinum-taxane chemotherapy has remained the conventional first-line treatment of ovarian cancer. Although the initial response rate is 70%-80%, most patients with advanced-stage ovarian cancer eventually relapse and succumb to recurrent chemoresistant disease. A number of molecular aberrations that drive tumor progression have been identified in ovarian cancer cells and intensive efforts have focused on developing therapeutic agents that target these aberrations. However, increasing evidence indicates that reciprocal interactions between tumor cells and various types of stromal cells also play important roles in driving ovarian tumor progression and that these stromal cells represent attractive therapeutic targets. Unlike tumor cells, stromal cells within the tumor microenvironment are in general genetically stable and are therefore less likely to become resistant to therapy. This concise review discusses the biological significance of the cross-talk between ovarian cancer cells and three major types of stromal cells (endothelial cells, fibroblasts, macrophages) and the development of new-generation therapies that target the ovarian tumor microenvironment.

INTRODUCTION

Epithelial ovarian cancer is the fifth leading cause of cancer death in women and the most lethal form of gynecologic malignancy[10]. The high morbidity and mortality caused by ovarian cancer primarily stems from late diagnosis. Sixty percent of women who are diagnosed with ovarian cancer present with advanced-stage disease that involves the peritoneal cavity and these patients have a 5-year survival rate of less than 30%. For more than two decades, tumor-debulking surgery followed by platinum-taxane chemotherapy has remained the conventional first-line treatment of ovarian cancer. Although the initial response rate is 70%-80%, most patients with advanced-stage ovarian cancer eventually relapse and succumb to recurrent chemoresistant disease. A number of molecular aberrations that drive tumor progression have been identified in ovarian cancer cells and intensive efforts have focused on developing therapeutic agents that target these aberrations. However, increasing evidence indicates that reciprocal interactions between tumor cells and various types of stromal cells also play important roles in driving ovarian tumor progression and that these stromal cells represent attractive therapeutic targets. Unlike tumor cells, stromal cells within the tumor microenvironment are in general genetically stable and are therefore less likely to become resistant to therapy. This concise review discusses the biological significance of the cross-talk between ovarian cancer cells and three major types of stromal cells (endothelial cells, fibroblasts, macrophages) and the development of new-generation therapies that target the ovarian tumor microenvironment.
A number of independent studies have identified that extensively studied in terms of its clinical significance. Of the cell types that comprise the ovarian tumor microenvironment, the endothelial cell has been the most clinically used and emerging experimental agents that target functionally relevant molecular aberrations in ovarian cancer cells have been directed to developing new-generation agents that target tumor cells and endothelial cells but also by other types of stromal cells that are “educated” by tumors to acquire properties that are permissive for tumor growth. In this article, we provide an overview of the cross-talk between ovarian cancer cells, endothelial cells and two other key constituents of the tumor microenvironment, specifically, fibroblasts and macrophages, and discuss examples of clinically used and emerging experimental agents that target these stromal cells.

ENDOTHELIAL CELLS

Of the cell types that comprise the ovarian tumor microenvironment, the endothelial cell has been the most extensively studied in terms of its clinical significance. A number of independent studies have identified that increased tumor angiogenesis as manifested by high microvessel density is predictive of poor outcomes in ovarian cancer patients. Angiogenesis is a dynamic process that involves the recruitment of endothelial progenitors, growth and maturation of endothelial cells and vessel formation, and is orchestrated by a repertoire of pro-angiogenic and anti-angiogenic factors. Key pro-angiogenic factors include the vascular endothelial growth factors (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), angiopoietin, interleukin (IL)-6 and IL-8. Of these factors, VEGF-A has emerged as the predominant pro-angiogenic factor that is highly expressed in ovarian cancers. VEGF-A has also been identified to be the causative factor of ascites formation by inducing vascular permeability.

Intensive clinical efforts have focused on evaluating agents that inhibit VEGF signaling. These agents fall into two categories: (1) those that inhibit the ligand; and (2) those that inhibit tyrosine kinase activity of the VEGF receptors (VEGFR) (Figure 1). Of the former group, bevacizumab has been the most extensively evaluated agent in ovarian cancer. Bevacizumab is a humanized monoclonal antibody (mAb) that neutralizes all forms of VEGF and was originally Food and Drug Administration-approved in 2004 for treatment of metastatic colorectal cancer. Bevacizumab has been evaluated as a single agent in the treatment of patients with recurrent ovarian cancer in two pivotal phase II trials. In one of these studies (AVF 2949g), the response rate was 15.9% and median overall survival (OS) was 10.7 mo. This study was terminated early due to a high rate of gastrointestinal perforations (5 of 44 patients, 11.4%). In the other study [Gynecologic Oncology Group (GOG) 170D], the response rate was 21.0%, median OS was 16.9 mo, and no bowel perforations were observed. One possible explanation for

Figure 1 Therapeutic strategies to target the tumor microenvironment. Shown are examples of different strategies and agents that inhibit the regulation of a specific type of stromal cell or its functional properties. Several of these agents are in clinical use, whereas others are at different stages of clinical development. VEGF: Vascular endothelial growth factors; TAMs: Tumor-associated macrophages; CAFs: Cancer-associated fibroblasts; TGF-β: Transforming growth factor-β; FAP: Fibroblast activation protein; CCL2: Chemokine (C-C motif) ligand 2; VEGFR: Vascular endothelial growth factor receptor.

ovarian cancer present with extensive peritoneal carcinomatosis and these patients have a 5-year survival rate of less than 30%). For more than 20 years, tumor-debulking surgery followed by platinum-taxane combination chemotherapy has remained the standard first-line treatment. Although the initial response rate is 70%-80%, most patients with advanced-stage ovarian cancer relapse within 18 mo and eventually die from the disease. Substantial efforts have been made to develop new-generation strategies and agents that inhibit the regulation of specific types of stromal cells. For example, targeting fibroblast activation protein (FAP), a DNA repair enzyme, has been the focus of intensive clinical investigations. Inhibitors of poly (ADP-ribose) polymerase, a DNA repair enzyme, have been undergoing clinical trials in patients with BRCA-deficient ovarian cancer and have attracted considerable attention. In addition to agents that target pathway-specific molecular aberrations in ovarian cancer cells, inhibitors of poly (ADP-ribose) polymerase, a DNA repair enzyme, have been undergoing clinical trials in patients with BRCA-deficient ovarian cancer and have attracted considerable attention. Inhibition of tyrosine kinase activity of the VEGF receptors, platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), angiopoietin, interleukin (IL)-6 and IL-8. Of these factors, VEGF-A has emerged as the predominant pro-angiogenic factor that is highly expressed in ovarian cancers. VEGF-A has also been identified to be the causative factor of ascites formation by inducing vascular permeability.
the differences in results of these trials is that the GOG study was limited to patients who had received no more than two prior lines of therapy, whereas 21 of the 44 patients in the AVF 2949g study (including the five patients who developed bowel perforations) had received three prior regimens. Bevacizumab has also been evaluated in combination with carboplatin and paclitaxel. In the first-line setting, two phase III trials (GOG 218 and ICON7) reported that progression-free survival (PFS) was increased (by 3.8 and 1.7 mo, respectively) with the combination of bevacizumab and standard chemotherapy followed by bevacizumab maintenance, as compared to standard chemotherapy alone \(^5\). In the recurrent setting, two other phase III studies have found that PFS was increased by approximately 3.6 mo when bevacizumab was combined with standard chemotherapy\(^6,7\). Another ligand-inhibitory agent is aflibercept, a fusion protein that acts as a soluble VEGF decoy. In a phase II study of aflibercept in patients with recurrent ovarian cancer, the rate of gastrointestinal perforations was found to be low (1.4%) but the primary endpoint of a response rate of greater than 5% was not achieved\(^8\).

Tyrosine kinase inhibitors (TKIs) represent another important class of anti-angiogenic agents. Sorafenib is an oral multi-kinase inhibitor that targets several receptor tyrosine kinases including VEGFR-2, VEGFR-3, platelet-derived growth factor receptor-β (PDGFR-β) and c-kit, and also the RAF family of serine/threonine kinases \(^9\). In a phase II trial of sorafenib monotherapy in patients with recurrent ovarian cancer, two of the 59 evaluable patients had partial responses whereas 20 had stable disease and 30 had progressive disease \(^10\). Another phase II study found that sorafenib did not improve efficacy of first-line carboplatin/paclitaxel treatment and resulted in additional toxicity\(^11\). Several TKIs that inhibit all three VEGFRs and both PDGFRs have been developed such as sunitinib, cabozatinib and pazopanib. Sunitinib has been found to have only modest activity as a single agent in patients with recurrent ovarian cancer \(^12,13\). Clinical trials are ongoing to evaluate cabozatinib \(^14\) for treatment of recurrent ovarian cancer and pazopanib \(^15\) as maintenance therapy for patients in remission following first-line platinum-taxane chemotherapy.

CANCER-ASSOCIATED FIBROBLASTS

Cancer-associated fibroblasts (CAFs) constitute the cellular fibrotic component of the tumor stroma that is commonly described as “reactive” or desmoplastic stroma. CAFs are often distinguished from normal quiescent fibroblasts by their expression of markers of myofibroblasts and activated fibroblasts such as α-smooth muscle actin (αSMA) and fibroblast activation protein (FAP) \(^16,17\). CAFs derive from multiple cell types. Two important sources are mesenchymal stem cells (MSCs) and tissue-resident fibroblasts. MSCs are abundant in white adipose tissues such as the omentum \(^18\), the most commonly involved site in ovarian cancer. It has been demonstrated that ovarian cancer cell-derived factors, such as transforming growth factor-β (TGF-β) and lysophosphatidic acid, induce normal omental fibroblasts and adipose MSCs to acquire features of CAFs \(^19,20\). Studies of other types of tumors have shown that CAFs can also derive from bone marrow MSCs that are recruited to tumors \(^21,22\). There is evidence in breast cancer that some CAFs derive from tumor cells that have undergone epithelial-to-mesenchymal transition \(^23\). However, a study of ovarian cancer xenograft models found that stromal αSMA+ cells did not derive from tumor cells, suggesting that ovarian cancer cells are not a major source of CAFs\(^24\).

Substantial evidence indicates that CAFs contribute to poor survival of cancer patients by promoting tumor cell proliferation, angiogenesis and metastasis \(^25,26\). In a study of gene expression profiles of clinical specimens of ovarian cancer, Tothill et al \(^27\) identified that the subset of cases with the poorest outcomes was characterized by a desmoplastic gene signature. As compared to normal omental fibroblasts, CAFs more highly express IL-6, chemokine (C-X-C motif) ligand 12 (CXCL12) and VEGF-A, and are more effective in stimulating growth of ovarian cancer cells and endothelial cells\(^28\). The abundance of CAFs in ovarian cancers has been found to correlate with microvessel density \(^29\). CAFs also highly express TGF-β, matrix metalloproteinases (MMPs) and numerous extracellular matrix proteins \(^27-29\), and stimulate invasiveness of ovarian cancer cells \(^30\). Furthermore, McLean and colleagues identified that propagating ovarian cancer cells with MSCs derived from ovarian cancer specimens increased the number of cancer stem cells \(^31\). These findings suggest that another mechanism by which CAFs drive tumorigenesis is by expanding the sub-population of tumour-initiating cells.

Given the profound negative impact of CAFs on outcomes, there have been intensive efforts to develop strategies to target this cell population (Figure 1). Several approaches to inhibit CAFs have been directed to targeting FAP. A humanized mAb to FAP has been found to be well-tolerated, but failed to show efficacy in a clinical trial of patients with metastatic colorectal cancer \(^32\). In a preclinical study, a DNA vaccine against FAP inhibited tumor growth and increased survival in a mouse colon cancer model \(^33\). A study by Brennen and colleagues exploited both the expression of FAP on CAFs and its proteolytic activity. These authors generated a produg that consisted of a FAP-specific peptide coupled to a thapsigargin analog as the cytotoxic moiety, and demonstrated that the compound induced stromal cell death and inhibited growth of breast and prostate tumor xenografts \(^34\). Another potential approach to inhibit CAFs is to prevent normal MSCs and fibroblasts from transitioning into CAFs by blocking TGF-β signaling. A number of agents that inhibit TGF-β signaling have been developed including TGF-β-ligand traps, TGF-β antisense oligonucleotides and small molecule inhibitors of the TGF-β type I receptor kinase, and several of these agents have been evaluated in clinical trials \(^35,36\). The utility of TGF-β inhibitors has been little-explored in ovarian cancer. In one
study, treatment of mice with the TGF-β type 1 receptor inhibitor A83-01 reduced the fibrotic component of ovarian tumor xenografts but did not increase survival times\cite{43}. Unlike TGF-β, PDGF does not induce myofibroblastic differentiation but instead stimulates fibroblasts to produce mitogenic factors for tumor cells and pro-angiogenic factors. Blockade of PDGFR signaling in a mouse model of cervical cancer has been found to inhibit tumor growth and angiogenesis in part by inhibiting FGF-2 production by CAFs\cite{46}. As discussed earlier, several TKIs that block VEGFR signaling also inhibit the PDGFRs. The impact of these TKIs on the desmoplastic stroma warrants further study as the PDGFRs are often highly expressed in CAFs.

TUMOR-ASSOCIATED MACROPHAGES

Macrophages are normally present in the peritoneal cavity of healthy women and are abundant in ascites of ovarian cancer patients\cite{45}. Tumor-associated macrophages (TAMs) are the major immune component of the tumor stroma\cite{46,47}. Macrophages exhibit polarized phenotypes in response to different microenvironmental cues. Macrophages that are stimulated with microbial agents and interferon-γ exhibit an immunostimulatory M1 phenotype. In contrast, TAMs exhibit an immunosuppressive M2 macrophage phenotype\cite{46,47}. Polarization of macrophages towards an M2 phenotype is induced by stimulation with various cytokines such as IL-6, IL-10 and leukemia inhibitory factor (LIF) that are present at elevated levels in ascites of ovarian cancer patients\cite{46,49}. Chemokine (C-C motif) ligand 2 (CCL2) and TGF-β are also expressed in ovarian cancer cells and in CAFs, and these ligands have been recently shown to induce normal peritoneal macrophages to acquire an M2 phenotype\cite{49}. CCL2 is also a key chemotactic factor that is responsible for macrophage infiltration into tumors\cite{47}.

TAMS are strongly associated with poor outcomes in cancer patients\cite{49}. A principal mechanism by which TAMs promote tumor progression is by suppressing adaptive immunity. The M2 macrophage phenotype is characterized by high expression of immunosuppressive cytokines and chemokines such as CCL17, CCL18, CCL22, IL-10 and TGF-β1\cite{47}. IL-10 and TGF-β1 inhibit T cell proliferation and dendritic cell maturation\cite{47}. CCL18 induces naïve T cell anergy and has been identified to be the most abundant chemokine present in ovarian cancer patient ascites\cite{49}. CCL17 and CCL22 promote recruitment of T regulatory cells (Treg) cells\cite{47,50}. Treg cells suppress activity of effector T cells and have been found to promote ovarian tumor growth and to be predictive of poor survival in ovarian cancer patients\cite{51}. In addition to the effect on T cells, TAMs express MMPs, VEGF-A and other growth factors that stimulate metastasis and angiogenesis\cite{46,47}. Depletion of peritoneal macrophages has been found to inhibit ascites and peritoneal spread of ovarian cancer in xenograft models\cite{49}.

The recruitment of macrophages and their polariza-

CONCLUSION

Over the past decade, a wealth of insight has been gained into the biology of ovarian cancer, the fertile nature of the peritoneal cavity for carcinomatosis, and the complex networks of receptor/ligand-mediated interactions between tumor cells and stromal cells. Several of the key receptors and ligands serve as molecular targets against which new-generation therapeutic agents have been developed and evaluated. Although several studies have yielded promising results, the efficacy of most stromal-targeting drugs as single agents seems limited. Several challenges remain such as identifying the most effective combinations of these drugs with conventional chemo-
therapy or with other targeted therapies, minimizing toxicity, and determining the appropriate clinical setting for their use.

ACKNOWLEDGMENTS

The authors apologize for the inability to cite all contributing primary literature due to space constraints.

REFERENCES

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11-30 [PMID: 23335087 DOI: 10.3322/caac.21166]
2. Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 2003; 3: 502-516 [PMID: 12835670 DOI: 10.1038/nrc1123]
3. Yap TA, Carden CP, Kaye SB. Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 2009; 9: 167-181 [PMID: 19829381 DOI: 10.1038/nrc2637]

4. Garber K. PARP inhibitors bounce back. Nat Rev Drug Discov 2013; 12: 725-727 [PMID: 24880684 DOI: 10.1038/nrd4147]
5. Spannuth WA, Sood AK, Coleman RL. Angiogenesis as a strategic target for ovarian cancer therapy. Nat Clin Pract Oncol 2008; 5: 194-204 [PMID: 18268546 DOI: 10.1038/ncponc1051]

6. Burger RA. Overview of anti-angiogenic agents in development for ovarian cancer. Gynecol Oncol 2011; 121: 230-238 [PMID: 21215996 DOI: 10.1016/j.ygyno.2010.11.033]

7. Hollingsworth HC, Kohn EC, Steinberg SM, Rothenberg ML, Merino MJ. Tumor angiogenesis in advanced stage ovarian carcinoma. Ann J Pathol 1995; 147: 33-41 [PMID: 7541612]

8. Alvarez AA, Krigman HR, Whitaker RS, Dodge RK, Rodriguez GC. The prognostic significance of angiogenesis in epithelial ovarian carcinoma. Clin Cancer Res 1999; 5: 387-591 [PMID: 10190710]

9. Stone PJ. Goodheart MJ, Rose SL, Smith BJ, DeYoung BR, Buller RE. The influence of microvessel density on ovarian carcinogenesis. Gynecol Oncol 2003; 90: 566-571 [PMID: 13678725]

10. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002; 2: 795-803 [PMID: 12360282 DOI: 10.1038/nrc909]

11. CANNISTRAS A, Matulonis UA, Penson RT, Hambleton J, Dupont J, Mackey H, Douglas J, Burger RA, Armstrong D, Wenham R, McGuire W. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal melanoma. J Clin Oncol 2005; 23: 1011-1027 [PMID: 15585754 DOI: 10.1200/JCO.2005.06.081]

12. Byrne AT, Ross L, Holash J, Nakashima M, Hu L, Hofmann JL, Yanopoulos GD, Jaffe RB. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res 2003; 9: 5721-5729 [PMID: 14654557]

13. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23: 1011-1027 [PMID: 15585754 DOI: 10.1200/JCO.2005.06.081]

14. Burger RA, Sill MW, Monk BJ, Greer BE, Sorokey JH. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: A Gynecologic Oncology Group Study. J Clin Oncol 2007; 25: 5180-5186 [PMID: 18024865 DOI: 10.1200/JCO.2007.12.0782]

15. Burger RA, Sill MW, Monk BJ, Greer BE, Sorokey JH. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: A Gynecologic Oncology Group Study. J Clin Oncol 2007; 25: 5165-5171 [PMID: 18024863 DOI: 10.1200/JCO.2007.11.5345]

16. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, Mannel RS, Homesley HD, Fowler J, Greer BE, Boente M, Birrer M, Liang SX. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 2011; 365: 2473-2483 [PMID: 22204724 DOI: 10.1056/NEJMoa104390]

17. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Kurzeder C, du Bois A, Schouk J, Kimmig R, Staleh A, Collinson F, Essapen S, Courley L, Lortholary A, Selle F, Mirza MR, Lemin A, Plante M, Stark D, Qian W, Parmar MK, Oza AM. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 2011; 365: 2484-2496 [PMID: 22204725 DOI: 10.1056/NEJMoa103799]

18. Pujade-Lauraine E, Hilpert F, Weber B, Reuss A, Poveda A, Kristensen G, Soro R, Vergote IB, Witteveen P, Bamias A, Pereira D, Wimberger P, Oskin A, Mirza MR, Follana P, Bollag DT, Ray-Cocquard I, AURELIA Investigators. AURELIA: A randomized phase III trial evaluating bevacizumab (BEV) plus chemotherapy (CT) for platinum (PT)-resistant recurrent ovarian cancer (OC). J Clin Oncol 2012; 30: 2309-2045 [PMID: 22529265 DOI: 10.1200/JCO.2012.42.0505]

19. Teo WP, Coombo N, Ray-Coquard I, Del Campo JM, Oza A, Pereira D, Mammoliti S, Matei D, Scambia G, Tonkin K, Shun Z, Sterna S, Sriggs DR. Intravenous aflibercept in patients with platinum-resistant, advanced ovarian cancer: results of a randomized, double-blind, phase 2, parallel-arm study. Cancer 2014; 120: 335-343 [PMID: 24127346 DOI: 10.1002/cncr.28406]

20. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujah J, Gawlak S, Eaveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099-7109 [PMID: 15466206 DOI: 10.1158/0008-5472.CAN-04-1443]

21. Matei D, Sill MW, Lankes HA, DeGeest K, Bristow RE, Mutch D, Yamada SD, Cohn D, Calvert V, Farley J, Petricoin EF, Birrer MJ. Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. J Clin Oncol 2011; 29: 69-75 [PMID: 21098325 DOI: 10.1200/JCO.2009.26.7856]

22. Thompson DS, Dudley BS, Bismayer JA, Gian VG, Merritt WM, Whorf RC, Buiirs HA, Hainsworth JD. Paclitaxel/carboplatin with or without sorafenib in the first-line treatment of patients with stage III/IV epithelial ovarian cancer: A randomized phase II study of the Sarah Cannon Research Institute. J Clin Oncol 2013; 31: 5513

23. Biagi JJ, Oza AM, Chalchal HI, Grimshaw R, Ellard SL, Lee U, Hirte H, Sederas J, Ivy SP, Eisenhauer EA. A phase II trial of sunitinib in patients with recurrent epithelial ovarian and primary peritoneal carcinoma: an NCIC Clinical Trials Group Study. Ann Oncol 2011; 22: 335-340 [PMID: 20705911 DOI: 10.1093/annonc/mdq357]

24. Campos SM, Penson RT, Matulonis U, Horowitz NS, Whalen C, Pereira L, Tyburski K, Roche M, Szymonifka J, Berlin S. A phase II trial of Sunitinib malate in recurrent and refractory ovarian, fallopian tube and peritoneal carcinoma. Gynecol Oncol 2013; 128: 215-220 [PMID: 22885865 DOI: 10.1016/j.ygyno.2012.07.126]

25. Ledermann JA, Perren TJ, Raja FA, Embleton A, Rustin GJS, Jayson G, Kaye SB, Swart AM, Vaughan M, Hirte H. Randomised double-blind phase III trial of cediranib (AZD 2171) in relapsed platinum sensitive ovarian cancer: Results of the
Barengo N, Ladanyi A, Lee JS, Marini F, Lengyel 2012; Hodivala-Dilke K, Jeffery R, Hunt T, Poulsen J, Pahler J, Bergers G, Hanahan D. Functions of Tumour-educated macrophages promote tumour progression. J Clin Oncol 2012; 101: 2325-2332 [PMID: 20804499 DOI: 10.1111/j.1349-7006.2010.01695.x]

Brennen WN, Rosen DM, Wang H, Isaacs JT, Denmeade SR. Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst 2012; 104: 1320-1334 [PMID: 22911669 DOI: 10.1093/jnci/djs336]

Bonafous D, Lee WC. Strategies for TGF-beta modulation: a review of recent patents. Expert Opin Ther Pat 2009; 19: 1759-1769 [PMID: 19939191 DOI: 10.1517/135437709397400]

Connolly EC, Freimuth J, Akhurst R. Complexities of TGF-beta targeted cancer therapy. Int J Biol Sci 2012; 8: 964-978 [PMID: 22811618 DOI: 10.7150/ijbs.4564]

Cai J, Tang H, Xu L, Wang X, Yang C, Ruan S, Guo J, Hu S, Wang Z. Fibroblasts in omentum activated by tumor cells promote ovarian cancer growth, adhesion and invasiveness. Carcinogenesis 2012; 33: 20-29 [PMID: 22021907 DOI: 10.1093/carcin/bgr230]

Pietras K, Fahler J, Bergers G, Hanahan D. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 2008; 5: e19 [PMID: 18232278 DOI: 10.1371/journal.pmed.0050019]

Haskill S, Becker S, Fowler W, Walton L. Mononuclear-cell infiltration in ovarian cancer. I. Inflammatory-cell infiltrates from tumour and ascites material. Br J Cancer 1982; 45: 728-736 [PMID: 6973949]

Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4: 71-78 [PMID: 14708027 DOI: 10.1038/jnci.2012.136]

Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006; 42: 717-727 [PMID: 16520032 DOI: 10.1016/j.ejca.2006.01.003]

Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, Preissler A, Anegon I, Catala L, Ifrah N, Descamps P, Gamez J. Mononuclear-cell recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2010; 16: 392-401 [PMID: 16572188 DOI: 10.1038/nrc1877]
Ko SY et al. Targeting the ovarian tumor stroma

2004; 10: 942-949 [PMID: 15322536 DOI: 10.1038/nn1093]

Mizukami Y, Kono K, Kawaguchi Y, Akaile H, Kaminura K, Sugai H, Fujii H. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 2008; 122: 2286-2293 [PMID: 1824687 DOI: 10.1002/ijc.23392]

Robinson-Smith TM, Isaacsohn I, Mercer CA, Zhou M, Van Rooijen N, Husseinzadeh N, McFarland-Mancini MM, Drew AF. Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res 2007; 67: 5708-5716 [PMID: 17575137 DOI: 10.1158/0008-5472.CAN-06-4375]

Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevérin L, Quail DF, Olson OC, Quick ML, Huse JT, Tojeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19: 1264-1272 [PMID: 24056773 DOI: 10.1038/nm.3337]

Hagemann T, Lawrence T, McNeill I, Charles KA, Kulbe H, Thompson RC, Robinson SC, Balkwill FR. "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008; 205: 1261-1268 [PMID: 18490990 DOI: 10.1084/jem.20080108]

Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RH, O'Dwyer PJ. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Cancer Res 2008; 68: 2266-2275 [PMID: 18297280 DOI: 10.1158/0008-5472.CAN-07-4982-9]

Tsagozis P, Eriksson F, Pisa P. Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages. Cancer Immunol Immunother 2008; 57: 1451-1459 [PMID: 18289321 DOI: 10.1007/s00262-008-0482-9]

Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, Wojno K, Snyder LA, Yan L, Pienta KJ. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 2007; 67: 9417-9424 [PMID: 17909051 DOI: 10.1158/0008-5472.CAN-07-1286]

Plante KJ, Machiels JP, Schrijvers D, Alekseev B, Shkolnik M, Crabbe SJ, Li S, Seetharam S, Puchalski TA, Takimoto C, Elsayed Y, Dawkins F, de Bono JS. Phase 2 study ofカルム(CTNO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs 2013; 31: 760-768 [PMID: 22907596 DOI: 10.1007/s10637-012-9669-8]

Zollo M, Di Dato V, Spano D, De Martino D, Liguori G, Marino N, Vastolo V, Naslav, Larrone B, Mangano G, Biondi G, Guglielmotti A. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin Exp Metastasis 2012; 29: 585-601 [PMID: 22484917 DOI: 10.1007/s10585-012-9473-5]

D’Incalci M, Galmarini CM. A review of trabectedin (ET-743): a unique mechanism of action. Mol Cancer Ther 2010; 9: 2157-2163 [PMID: 20647340 DOI: 10.1158/1535-7163.MCT-10-0263]

Monk BJ, Herzog TJ, Kaye SB, Krasner CN, Vemorken JB, Muggia FM, Pujade-Lauraine E, Lisynskaya AS, Makhson AN, Rolski J, Gorbounova VA, Ghatage P, Bidzinski M, Shen K, Nian HY, Vergote IB, NAM JH, Park YC, Lebedinsky CA, Poveda AM. Trabectedin plus pegylated liposomal Doxorubicin in recurrent ovarian cancer. J Clin Oncol 2010; 28: 3107-3114 [PMID: 20516432 DOI: 10.1200/JCO.2009.25.4037]

Allavena P, Signorelli M, Chiappetta M, Erba E, Bianchi G, Marchesi F, Olimpio CO, Bonardi C, Garbi A, Lissoni A, de Braud F, Jimeno J, D’Incalci M. Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res 2005; 65: 2964-2971 [PMID: 15805300 DOI: 10.1158/0008-5472.CAN-04-0377]

Germano G, Frapollini R, Belgiovinne C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, Nebuloni M, van Rooijen N, Mortarini R, Beltrame L, Marchini S, Fuso Nerini I, Santinolli R, Casali PG, Filotti S, Galmarini CM, Anichini A, Mantovani A, D’Incalci M, Allavena P. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 2013; 23: 249-262 [PMID: 23410977 DOI: 10.1016/j.ccr.2013.01.008]

Cieslewicz M, Tang J, Yu JL, Cao H, Zavaljevski M, Motoyama K, Lieber A, Raines EW, Pwn SH. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc Natl Acad Sci U S A 2013; 110: 15919-15924 [PMID: 24046375 DOI: 10.1073/pnas.1312197110]

P- Reviewers: Cavallaro U, Sherbini MAHE S- Editor: Ji FF L- Editor: A E- Editor: Wu HL
