I. INTRODUCTION

The spin-$\frac{1}{2}$ J_1-J_2 antiferromagnetic Heisenberg model on a square lattice has drawn great attention for the last two decades owing to its close relation to the disappearance of antiferromagnetic (AF) long-range order (LRO) in high-\tilde{T} superconducting materials [1,2], and has been proposed as a possible simple model to realize a topologically ordered chiral spin-liquid state [3,4] or a possible simple model to realize a topologically ordered chiral spin-liquid state [5–9]. The ground state phases of a spin-$\frac{1}{2}$ J_1-J_2 antiferromagnetic Heisenberg model on a square lattice around the maximally frustrated regime ($J_2 \sim 0.5J_1$) has been debated for decades. Here we study this model using the cluster update algorithm for tensor-product states (TPSs). The ground state energies at finite sizes and in the thermodynamic limit (with finite size scaling) are in good agreement with exact diagonalization study. Through finite size scaling of the spin correlation function, we find the critical point $J_2^c = 0.572(5)J_1$ and critical exponents $\nu = 0.50(8)$, $\eta_s = 0.28(6)$. In the range of $0.572 < J_2/J_1 \leq 0.6$ we find a paramagnetic ground state with an exponentially decaying spin-spin correlation. Up to a 24×24 system size, we observe power law decaying dimer-dimer and plaquette-plaquette correlations with an anomalous plaquette scaling exponent $\eta_p = 0.24(1)$ and an anomalous columnar scaling exponent $\eta_c = 0.28(1)$ at $J_2/J_1 = 0.6$. These results are consistent with a potential gapless $U(1)$ spin-liquid phase. However, since the $U(1)$ spin liquid is unstable due to the instanton effect, a valence bond solid order with very small amplitude might develop in the thermodynamic limit. Thus, our numerical results strongly indicate a deconfined quantum critical point at J_2^c. Remarkably, all the observed critical exponents are consistent with the J-Q model.

DO: 10.1103/PhysRevB.94.075143

The ground state phase of a spin-$\frac{1}{2}$ J_1-J_2 antiferromagnetic Heisenberg model on a square lattice around the maximally frustrated regime ($J_2 \sim 0.5J_1$) has been debated for decades. Here we study this model using the cluster update algorithm for tensor-product states (TPSs). The ground state energies at finite sizes and in the thermodynamic limit (with finite size scaling) are in good agreement with exact diagonalization study. Through finite size scaling of the spin correlation function, we find the critical point $J_2^c = 0.572(5)J_1$ and critical exponents $\nu = 0.50(8)$, $\eta_s = 0.28(6)$. In the range of $0.572 < J_2/J_1 \leq 0.6$ we find a paramagnetic ground state with an exponentially decaying spin-spin correlation. Up to a 24×24 system size, we observe power law decaying dimer-dimer and plaquette-plaquette correlations with an anomalous plaquette scaling exponent $\eta_p = 0.24(1)$ and an anomalous columnar scaling exponent $\eta_c = 0.28(1)$ at $J_2/J_1 = 0.6$. These results are consistent with a potential gapless $U(1)$ spin-liquid phase. However, since the $U(1)$ spin liquid is unstable due to the instanton effect, a valence bond solid order with very small amplitude might develop in the thermodynamic limit. Thus, our numerical results strongly indicate a deconfined quantum critical point at J_2^c. Remarkably, all the observed critical exponents are consistent with the J-Q model.

Numerous efforts have been made using many different approaches, such as the exact diagonalization (ED) [10–15], spin-wave theory [16,17], series expansion [18,19], large-N expansion [5], the coupled cluster method (CCM) [20], variational methods [including short-range resonating valence bond (SRVB) method] [21–23], and the fixed-node quantum Monte Carlo (QMC) [24]. The results turned out to be controversial: A series expansion calculation of a general magnetic susceptibility peaks at momentum $(\pi,0)$ or $(0,\pi)$. In the intermediate coupling regime, quantum fluctuation is meant to destroy the AF LRO near the maximally frustrated point $J_2 = 0.5$ of the classical model and establish a new paramagnetic phase. The nature of such a quantum phase is of great interest.

In this paper, we revisit this problem with a tensor-product state (TPS) [27] ansatz for the ground state wave function, accessed by the recently proposed cluster update
algorithm [28], and reveal the answer to both questions. By fitting a universal scaling function for the spin-spin correlation we observe a continuous phase transition from the Néel to paramagnetic phase at $J_2^c = 0.572(5)$ with critical exponents $\nu = 0.50(8)$ and $\eta_s = 0.28(6)$. In the paramagnetic phase we find exponentially decaying spin-spin correlation functions. Up to a 24×24 system size, we observe power law decaying dimer-dimer and plaquette-plaquette correlation functions, which indicate a nonzero spin triplet gap and a zero spin singlet gap. These properties are consistent with the previously proposed $U(1)$ gapless spin-liquid state [29] by using a one-parameter TPS ansatz. Nevertheless, it is well known that the $U(1)$ gapless spin liquid is unstable due to the instanton effect, and we argue that a very small VBS order might eventually develop in the thermodynamic limit. Interestingly, at $J_2 = 0.6$ the scaling of plaquette (columnar) VBS order parameter suggests an anomalous VBS scaling exponent $\eta_p = 0.24(1) [\eta_c = 0.28(1)]$. Remarkably, all observed exponents are consistent with those of the $J-Q$ model [30–32]. Thus, our numerical results strongly indicate a deconfined quantum critical point scenario (DQCP) [33,34] from Néel order to VBS order at $J_2 = 0.572(5)$.

II. RESULTS

We divide the square lattice into four sublattices A, B, C, D that form a 2×2 unit cell, and associate each type of site with one of the four different sublattice tensors. Such a choice of tensor-product state ansatz aims at describing potential VBS orders and studying their competing effects. We use the cluster update imaginary time evolution method [28] to evolve from a TPS with random initialized tensor elements to a converged state of the J_1-J_2 Hamiltonian. Such an obtained state is often called infinite TPS, since there is no system size information entering into this evolution scheme. Once the infinite TPS (with a bond dimension $D = 9$) converges, we cover a $L \times L$ torus with repeated 2×2 unit cells and form a finite size wave function. Without further finite size ground state optimization, we measure the size-dependent variational energies, staggered magnetizations, spin-spin, dimer-dimer, and plaquette-plaquette correlations on $L \times L$ tori for $L = 4, 6, 8, 12, 16, \text{and} 24$. Our tensor measurement strategy is to use variational Monte Carlo (VMC) [35] to sample spin configurations, whose weights are computed by the tensor renormalization idea [36,37]. With these combined techniques, we can make precise measurements (for periodic systems) and perform a careful finite size scaling analysis. Hereafter, all our numerical results are obtained from TPSs with a bond dimension $D = 9$.

Ground state energies. We present the ground state energies on tori of $L \times L$ (at $L = 8$ and 16) as functions of D_c ($D_c = 8, 10, 12, 16, 20, 24$, and 28) in Fig. 1, where D_c is the Schmidt number kept in calculating the importance weight of the sampled spin configurations [35]. We find that the variational ground state energies decrease monotonically with increasing D_c. Using a quadratic function in $1/D_c^2$, we extrapolate the finite size energies to the $D_c \rightarrow \infty$ limit. The fitted results are shown in the dashed curves in Fig. 1. Note that our measurement scheme [35] makes approximations to the importance weight of the sampled spin configurations, where error is controlled by D_c. However, the VMC principle guarantees that all measured energies at finite D_c are variational. Furthermore, the almost-converged energies at $D_c = 28$ make sure that the extrapolations are reliable.

We compare our variational energies on tori with the SU(2) symmetric DMRG results on tori [26] and the best VMC with Lanczos projection steps [9] on tori. As seen in Fig. 2, at a system size $L = 8$, our results are consistent with the DMRG results.
results. Interestingly, our variational energies on tori of $L = 16$ are lower than the DMRG energies on tori of $L = 10$. This means that the ground state entanglement on tori of 10×10 are beyond the resolution of the DMRG if we keep only 8000 SU(2) Schmidt states, which also explains why DMRG often relies on cylinder studies instead of tori. Very impressively, our variational ground state energy for $L = 16$ is comparable to (at $J_2 \simeq 0.5$) or better than (at $J_2 \simeq 0.55$) the best VMC results for a smaller size $L = 14$ torus with one-step Lanczos projections [9].

Staggered magnetization. The staggered magnetization square is defined as

$$M^2 = \frac{1}{N} \sum_{x,y} (-1)^{x+y} C(r_x,r_y),$$

where $C(r_x,r_y)$ is the spin-spin correlation function,

$$C(r_x,r_y) = \frac{1}{N} \sum_{x,y} S_{(x,y)} \cdot S_{(x+\nu_x,y+\nu_y)},$$

We compute the spin-spin correlation functions at the largest distance $C(L/2,L/2)$ for various L, and show their dependence with coupling J_2 in Fig. 3(a), where dashed lines are polynomial fittings. To determine the critical transition point, we present $C(L/2,L/2)$ against $1/L$ in a regular plot for various J_2 in Fig. 3(b), and extrapolate using quadratic functions (shown in the dashed lines). We find the critical point to be $0.57 < J_2^c < 0.58$. To see the critical behavior, we present $C(L/2,L/2)$ vs $1/L$ in a log-log plot in Fig. 3(c). Taking the critical scaling as $C(L/2,L/2) \propto L^{-(c+\eta_s)}$ and using a linear regression function, we find the anomalous spin scaling exponent $\eta_s = 0.19(5)$ at $J_2 = 0.57$ and $\eta_s = 0.43(10)$ at $J_2 = 0.58$. Finally, we take the finite size scaling (FSS) formula

$$C(L/2,L/2) \propto L^{\eta_s}(1 + a L^\omega)$$

$$= F\left(J_2^c - J_2\right)^{1/\nu}(1 + b L^\omega)$$

![Fig. 3](image3.png)

FIG. 3. (a) The largest distance spin-spin correlation as a function of J_2 at $L = 8$, 12, 16, 24. The same correlations $C(L/2,L/2)$ presented against $1/L$ in a regular plot (b) and in a log-log plot (c) for various J_2. We determine the phase at region $J_2 \in (0.57,0.6)$, dimer-dimer and plaquette-plaquette correlation functions are investigated. We define the dimer-dimer correlation function as

$$C_{dx}(r_x,r_y) = \frac{1}{N} \sum_{x,y} D_x(x,y) D_x(x + r_x,y + r_y),$$

$$C_{dy}(r_x,r_y) = \frac{1}{N} \sum_{x,y} D_y(x,y) D_y(x + r_x,y + r_y),$$

with

$$D_x(x,y) \equiv S_{(x,y)} \cdot S_{(x+1,y)},$$

$$D_y(x,y) \equiv S_{(x,y)} \cdot S_{(x,y+1)}.$$

Similarly, the plaquette correlation function is [22,38]

$$C_{plq}(r_x,r_y) = \frac{1}{N} \sum_{x,y} Q(x,y) Q(x + r_x,y + r_y),$$

where

$$\omega = 0.50(8),$$

$$\eta_s = 0.28(6),$$

$$J_2^c = 0.572(5).$$

![Fig. 4](image4.png)

FIG. 4. The finite size scaling function of $C(L/2,L/2)$.

- PHYSICAL REVIEW B 94, 075143 (2016)
with $Q(x,y) \equiv \{P_{\Box}(x,y) + P_{\Box}^{-1}(x,y)\}$ defined as the permutation operator that permutes four spins on a plaquette by one lattice spacing.

To subtract the background expectation value, we take the modified correlation functions as follows:

$$C_{dx}(r,r) = C_{dx}(r,r) - C_{dx}(r-1,r-1),$$

$$C_{plq}(r,r) = C_{plq}(r,r) - C_{plq}(r-1,r-1).$$

We present the modified dimer-dimer and plaquette-plaquette correlation functions for $J_2 = 0.6$ and $L = 8, 12, 16,$ and 24 in Fig. 3. We find clear power law decay behaviors for both the dimer-dimer and plaquette-plaquette correlations. To measure the two most possible VBS orders, namely, the columnar VBS order and the plaquette VBS order, we define the following order parameters:

$$S_{plq}^2(L) = \frac{1}{L-2} \sum_{r=2}^{L} (-1)^r C_{plq}(r,r),$$

$$S_{col}^2(L) = \frac{1}{L-2} \sum_{r=2}^{L} (-1)^r C_{dx}(r,r).$$

We show the above two VBS order parameters at $J_2 = 0.6$ as a function of $1/L$ in a log-log plot in Fig. 6. Again, we find power law decay behaviors for both the columnar and plaquette VBS orders. Taking the critical scaling behavior as $S_{VBS}^2(L) \propto L^{-(c+n)}$, we find the anomalous plaquette scaling exponent $\eta_p = 0.24(1)$ and the anomalous columnar scaling exponent $\eta_c = 0.28(1)$. Our critical exponents $\eta_s, \eta_c, \eta_p,$ and ν are all consistent with the results of the $J-Q$ model [30–32].

Gapless spin liquid versus deconfined quantum criticality. The exponentially decaying spin-spin correlation and power law decaying dimer-dimer correlation indicate that the paramagnetic phase has a spin $S = 1$ gap but no $S = 0$ gap. These properties are consistent with the gapless $U(1)$ spin-liquid state constructed by a single variational parameter TPS ansatz [29]. However, since it is well known that a $U(1)$ gapless spin-liquid state is unstable due to the confinement of $U(1)$ gauge field in $2+1$ dimensions, we argue that a VBS order with an exponentially small amplitude might eventually develop at long wavelengths. Thus, our numerical results could imply a Landau forbidden phase transition from Néel order to VBS order described by the DQCP scenario.

III. Conclusions

In conclusion, we applied the cluster update algorithm for tensor-product states (TPSs) to study the frustrated spin-$\frac{1}{2}$ J_1-J_2 antiferromagnetic Heisenberg model on a square lattice. Limited to a cluster size 2×2, a rather large bond dimension $D = 9$ is feasible. Through a finite D_c scaling, our ground state energies at finite sizes are in good agreement with the results from a state-of-the-art exact diagonalization (ED) study [15], an SU(2) symmetric density matrix renormalization group (DMRG) study [26], and a variational Monte Carlo (VMC) study [9]. Applying finite size scaling (FSS) to the spin-spin correlation function, we found the staggered magnetization diminishes to zero at $J_2^{c1} \approx 0.572(5)$, suggesting a continuous quantum phase transition. We further observed an exponentially decaying spin-spin correlation with power law decaying dimer-dimer and plaquette-plaquette correlations up to a 24×24 system size. All this evidence points to the emergence of a gapless $U(1)$ spin-liquid state that is consistent with a single variational parameter TPS ansatz [29]. Nevertheless, since the $U(1)$ spin liquid is unstable due to the instanton effect, a VBS order with a small amplitude could emerge in the thermodynamic limit. Remarkably, we found the critical exponents $\nu = 0.50(8)$ and $\eta_c = 0.28(6)$.
\[v \] are operators acting on the physical index, and \(\eta_p \) is a tensor-product state approach to spin-1/2 ordering of \(\alpha \) (MPO) [39], function. By writing \(\exp(- J S_i \cdot S_j) \) as

\[
\prod_a \left[\cosh(\epsilon J/4) l_i \otimes 1_j - \sinh(\epsilon J/4) \sigma_i^a \otimes \sigma_j^a \right],
\]

where \(\alpha = x, y, z \), \(\sigma^a \) are Pauli matrices, and omitting higher orders of \(O(\epsilon) \), one obtains

\[
\hat{O} = \mathbb{1}_1 \otimes \mathbb{1}_2 \otimes \mathbb{1}_3 - \sum_a \tanh(\epsilon J_1/4) \sigma_1^a \otimes \sigma_2^a \otimes 1_3
\]

\[
- \sum_a \tanh(\epsilon J_1/4) \sigma_1^a \otimes 1_2 \otimes \sigma_3^a
\]

\[
- \sum_a \tanh(\epsilon J_2/2) \sigma_1^a \otimes 1_2 \otimes \sigma_3^a.
\]

The above terms can be expressed as a matrix product operator (MPO) [39],

\[
\hat{O} = \sum_{i_1, i_2, i_3 = 0}^3 (v_i^T B v_i) X_i \otimes X_i \otimes X_i,
\]

\(X_0 = \mathbb{1}, \quad X_1 = \sigma^x, \quad X_2 = \sigma^y, \quad X_3 = \sigma^z, \)

\(v_0 = |0\rangle, \)

\(v_i = a|i\rangle \quad (i = 1, 2, 3), \)

\(B_0 = |0\rangle\langle 0| + |1\rangle\langle 1| + |2\rangle\langle 2| + |3\rangle\langle 3|, \)

\(B_i = c|0\rangle\langle i| + c|i\rangle\langle 0| \quad (i = 1, 2, 3), \)

where \(v_i \) are the vectors of length 4, \(B_i \) are 4x4 matrices, \(X_i \) are operators acting on the physical index, and \(a, b, c \) are scalar variables. In order to correctly match the coefficients in front of each term in Eq. (15), \(a, b, c \) have to be chosen to satisfy \(ac = -\tanh(\epsilon J_1/4), \quad a^2 b = -\tanh(\epsilon J_2/2), \quad \text{and} |a|, |b|, |c| \ll 1 \). Thus the evolution operators on these sites are written as \(\hat{O}_1 = \sum_i v_i^T \otimes X_i, \quad \hat{O}_2 = \sum_i B_i \otimes X_i, \quad \text{and} \quad \hat{O}_3 = \sum_i v_i \otimes X_i \), respectively.

We present the diagrammatic representation of the evolution operators \(\hat{O}_1, \hat{O}_2, \) and \(\hat{O}_3 \) acting on sites \(A, B, \) and \(C \) in a 2x2 cluster in Fig. 7(b). The corresponding simple update scheme is sketched in Fig. 7(a). In both cases, the complexity scales as \(D^2 \), and there is no cumulative error.

ACKNOWLEDGMENTS

We would like to thank J. Richter for passing along their exact diagonalization data for comparison, F. Becca for passing along their variational Monte Carlo data for comparison, and A. W. Sandvik, Leon Balents, H.-C. Jiang, D. Sheng, S.-S. Gong, and Z.-Y. Zhu for their stimulating discussions. L.W. is supported by National Natural Science Foundation of China (NSFC-11474016), National Thousand Young Talents program of China. Z.C.G. is supported by startup support from Department of Physics, CUHK. F.V. is supported by the EU Strep Project QUEVADIS, the ERC Grant QUERG, and the WFW SFB Grants FoQuS and ViCoM. The computational results presented have been achieved partially using Tianhe-2J computing time award at the Beijing Computational Science Research Center (CSRC).
[12] H. J. Schulz and T. A. L. Ziman, Finite-size scaling for the two-dimensional frustrated quantum Heisenberg antiferromagnet, Europhys. Lett. 18, 355 (1992).

[13] H. J. Schulz, T. A. L. Ziman, and D. Poilblanc, Magnetic order and disorder in the frustrated quantum Heisenberg antiferromagnet in two dimensions, J. Phys. I 6, 675 (1996).

[14] T. Einarsson and H. J. Schulz, Direct calculation of the spin stiffness in the J_1-J_2 Heisenberg antiferromagnet, Phys. Rev. B 51, 6151 (1995).

[15] J. Richter and J. Schulenburg, The spin-1/2 J_1-J_2 Heisenberg antiferromagnet on the square lattice: Exact diagonalization for $N = 40$ spins, Eur. Phys. J. B 73, 117 (2010).

[16] P. Chandra and B. Doucot, Possible spin-liquid state at large S for the frustrated square Heisenberg lattice, Phys. Rev. B 38, 9335 (1988).

[17] J. Richter and J. Schulenburg, The spin-1/2 J_1-J_2 Heisenberg antiferromagnet on the square lattice: Exact diagonalization for

[18] N. E. Ivanov and P. Ch. Ivanov, Frustrated two-dimensional systems, Phys. Rev. Lett. 98, 227202 (2007).

[19] T. Einarsson and H. J. Schulz, Direct calculation of the spin stiffness in the J_1-J_2 Heisenberg antiferromagnet, Phys. Rev. B 51, 6151 (1995).

[20] M. Arlego and W. Brenig, Plaquette order in the

[21] M. Mambrini, A. Läuchli, D. Poilblanc, and F. Mila, Plaquette order in the

[22] H. J. Schulz, T. A. L. Ziman, and D. Poilblanc, Magnetic order and disorder in the frustrated quantum Heisenberg antiferromagnet in two dimensions, J. Phys. I 6, 675 (1996).

[23] L. Capriotti and S. Sorella, Resonating Valence Bond Wave Functions for Strongly Frustrated Spin Systems, Phys. Rev. Lett. 87, 097201 (2001).

[24] L. Capriotti and S. Sorella, Spontaneous Plaquette Dimerization in the J_1-J_2 Heisenberg Model, Phys. Rev. Lett. 84, 3173 (2000).

[25] H.-C. Jiang, H. Yao, and L. Balents, Spin-liquid ground state of the spin-$\frac{1}{2}$ square J_1-J_2 Heisenberg model, Phys. Rev. B 86, 024424 (2012).

[26] S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Plaquette Ordered Phase and Quantum Phase Diagram in the Spin-$\frac{1}{2}$ J_1-J_2 Square Heisenberg Model, Phys. Rev. Lett. 113, 027201 (2014).

[27] F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, arXiv:cond-mat/0407066.

[28] L. Wang and F. Verstraete, Cluster update for tensor network states, arXiv:1110.4362.

[29] L. Wang, D. Poilblanc, Z.-C. Gu, X.-G. Wen, and F. Verstraete, Constructing Gapless Spin-Liquid State for the Spin-$\frac{1}{2}$ J_1-J_2 Heisenberg Model on a Square Lattice, Phys. Rev. Lett. 111, 037202 (2013).

[30] A. W. Sandvik, Evidence for Deconfined Quantum Criticality in a Two-Dimensional Heisenberg Model with Four-Spin Interactions, Phys. Rev. Lett. 98, 227202 (2007).

[31] A. W. Sandvik, Continuous Quantum Phase Transition between an Antiferromagnet and a Valence-Bond Solid in Two Dimensions: Evidence for Logarithmic Corrections to Scaling, Phys. Rev. Lett. 104, 177201 (2010).

[32] H. Shao, W. Guo, and A. W. Sandvik, Quantum criticality with two length scales, Science 352, 213 (2016).

[33] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. Fisher, Deconfined quantum critical points, Science 303, 1490 (2004).

[34] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher, Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm, Phys. Rev. B 70, 144407 (2004).

[35] L. Wang, I. Pižorn, and F. Verstraete, Monte Carlo simulation with tensor network states, Phys. Rev. B 83, 134421 (2011).

[36] M. Levin and C. P. Nave, Tensor Renormalization Group Approach to 2D Classical Lattice Models, Phys. Rev. Lett. 99, 120601 (2007).

[37] Z.-C. Gu, M. Levin, and X.-G. Wen, Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions, Phys. Rev. B 78, 205116 (2008).

[38] V. Murg, F. Verstraete, and J. I. Cirac, Exploring frustrated spin systems using projected entangled pair states, Phys. Rev. B 79, 195119 (2009).

[39] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete, Matrix product operator representations, New J. Phys. 12, 025012 (2010).