Supplementary Information for
A common vesicle proteome drives fungal biofilm development

Robert Zarnowski, Hiram Sanchez, Anna Jaromin, Ula J Zarnowska, Jeniel E Nett, Aaron Mitchell, David Andes

David Andes and Aaron Mitchell
Email: dra@medicine.wisc.edu; Aaron.Mitchell@uga.edu

This PDF file includes:
Extended Materials and Methods
Figures S1 to S3
Tables S1 to S3

Extended Materials and Methods

Culture media and conditions. Stocks of Candida strains were stored in 15% glycerol frozen at -80°C and routinely maintained on YPD agar plates (1% yeast extract, 2% Bacto™ peptone, 2% dextrose, 2% Bacto™ agar). Liquid cultures were grown in broth YPD (1% yeast extract, 2% Bacto™ peptone, 2% dextrose) rotating at 200 rpm at 30°C. For biofilm assays, strains were cultured in filter-sterilized Roswell Park Memorial Institute medium 1640 (RPMI), buffered with 4-morpholinepropanesulfonic acid (MOPS) and pH adjusted to 7.0¹.

Fungal mutant construction strategies. Strains used in this study along with their genotypes are listed in Table S2. The parental strains C. tropicalis CAY3764, C. parapsilosis CPL2H1, C. glabrata HTL, and C. auris B11804 (wild type Colombian isolate of the South American clade IV) were used to generate homozygous deletion mutants using available auxotrophic and drug resistance marker-based strategies²⁴. Gene replacement cassettes were prepared using a PCR-assisted gene splicing by overlap extension (SOE) DNA assembly procedure⁵. At least two independent mutants were created for each gene of interest. Gene deletion complementation with a single wild type gene copy and an antibiotic resistance marker was done either with nourseothricin in case of C. tropicalis and C. parapsilosis or with hygromycin B in case of C. glabrata and C. auris, respectively. Correct integration sites during gene deletion and complementation procedures were confirmed by routine PCR. The primers utilized for strain construction and genetic manipulations are listed in Table S3.
Large scale biofilm cultures and extracellular matrix and extracellular vesicle isolation. Candida biofilms were grown using a large scale rolling bottle biofilm model system. Culture media were carefully decanted from the polystyrene bottles after 24 and 48 h of incubation at 37°C. The remaining fungal biomass was dislodged from the roller bottle surface with a sterile spatula and used to isolate the extracellular matrix. The intact biofilms were then gently subjected to sonication to remove matrix from fungal cells. Sonication with done with a 6-mm microtip head at 20 kHz with an amplitude of 30% for 8 min, followed by centrifugation to separate the biomass from the matrix, filter-sterilization, and the isolated matrix was then lyophilized. Culture supernatants were filter sterilized, and concentrated down to about 25 ml using a Vivaflow 200 unit (Sartorius AG) equipped with a Hydrosart 30 kDa cut-off membrane. Samples were centrifuged in order to remove smaller cellular debris particulates first at 10,000 × g for 1 h at 4°C. The pellet was discarded, and the resulting supernatant was centrifuged again at 100,000 × g for 1.5 h at 4°C. Next, the supernatant was discarded, and the pellet was then washed in 5 ml of PBS and re-centrifuged at 100,000 × g for 1 h at 4°C. The collected extracellular vesicles were next polished by flash size-exclusion chromatography on a qEV/35 nm column (Izon Science), filter sterilized and stored until further use at 4°C.

Intermediate scale biofilm cultures. Intermediate scale biofilm cultures were grown in six-well polystyrene plates and were used to determine biofilm extracellular matrix carbohydrate composition in wild type and mutant strains of all five Candida species. Biofilms were seeded with 10⁶ yeast cells per well. The nonadherent cells were removed after a 60-min-long static adherence incubation and 1 ml of fresh RPMI medium was applied to each well. The biofilms were grown on an orbital shaker set at 50 rpm at 37°C for 24 h, then the medium was replaced with fresh RPMI and the incubation was continued for another 24 h. Biofilms were removed from wells with a sterile spatula and harvested in sterile water (1 ml/well). The aliquots were combined in a 15-ml Falcon tube and sonicated in a water bath sonicator for 20 min. To separate the dissolved ECM from fungal biomass, the sample was centrifuged at 2880 × g at 4°C for 20 min. Five-ml of the collected ECM suspension was placed in a clear 8-ml glass screw thread vial and dried overnight at 60°C. Such prepared samples were used for gas chromatography-based carbohydrate profiling as described below.

Biofilm antifungal drug susceptibility assay. Antifungal drug susceptibility of Candida biofilms was measured in 96-well flat-bottom polystyrene plates. Biofilms were treated with fluconazole, one of the most prescribed antifungal azoles, at 1000 mg/ml. Fungal cell inocula (10⁶ cells/ml) were prepared out of overnight yeast cultures in YPD at 30°C, followed by dilution in RPMI-MOPS based on count numbers with an automated Countess™ II cell counter (Invitrogen). One hundred μl of yeast cells per well were seeded. For C. albicans and C. tropicalis cultures, after a 6-h biofilm formation period in the wells, the biofilms were washed twice with phosphate-buffered saline (PBS, pH 7.2) in order to remove nonadherent cells, followed by the addition of the antifungal drug and fresh RPMI medium. The drug treatment was repeated after 24 h and the plates were incubated for an additional period of 24 h. For C. parapsilosis, C. glabrata, and C. auris cultures, the growth medium was replaced and fluconazole was dosed after 24 h followed by an additional 24 h incubation period. Biofilms exposed to the antifungal azole were then evaluated using the colorimetric tetrazolium reduction XTT assay and the percent reduction in biofilm growth was calculated using the reduction in absorbance compared to that of controls with no antifungal treatment. Briefly, XTT (2,3-bis[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide inner salt) was prepared fresh prior to use at the concentration of 0.75 mg/ml. To enhance XTT reduction, phenazine methosulfate (2
mM) was used as electron acceptor in *C. albicans* and *C. tropicalis* assays, whereas menadione (1 mM in acetone) was used in assays involving *C. parapsilosis, C. glabrata*, and *C. auris*. Absorbance at 492 nm was measured using an automated Cytation 5 imaging reader (BioTek).

Biofilm dispersion assay. Biofilm dispersion was determined in 96-well plates. Fungal cell inocula (10⁶ cells/ml) were prepared out of overnight yeast cultures in YPD at 30°C, followed by dilution in RPMI-MOPS based on count numbers with an automated Countess™ II cell counter (Invitrogen). One hundred μl of yeast cells per well were seeded and the plates were incubated for 6 h at 37°C, followed by gentle washing with PBS and fresh RPMI was applied. After continued incubation for another 24 h, the biofilms were washed with PBS and RPMI was replaced with fresh one and allowed to incubate for 24 h at 37°C. Supernatants were then carefully removed from biofilm cultures and 100-μl aliquots were transferred to a fresh 96-well plate. The amount of dispersed biofilm cells was determined by the described above modified XTT assay, in which both XTT and PMS or menadione were applied at double concentration. Dispersion capacity of biofilms was calculated using the change in absorbance compared to that of controls.

Exogenous extracellular vesicle addback assays and functional network construction. Biological impact of exogenous extracellular vesicles on Candida biofilm properties (susceptibility to fluconazole and dispersion) was determined in 96-well plates. Fungal cell inocula (10⁶ cells/ml) were prepared out of overnight yeast cultures in YPD at 30°C, followed by dilution in RPMI-MOPS based on count numbers with an automated Countess™ II cell counter (Invitrogen). One hundred μl of yeast cells per well were seeded. TOS1 deletion strains were used to evaluate biofilm susceptibility to fluconazole, whereas CHT3 deletion mutants were used in dispersion assays. Extracellular vesicles isolated from all five tested Candida species were used in combinations in biofilms of all five Candida species at normalized concentrations ranging between 1×10^4 and 3×10^6 particles/ml. For the biofilm antifungal susceptibility assay, exogenous extracellular vesicles were added after an initial 5-h biofilm formation period, incubated for an additional hour followed by the drug treatment as described above. Biofilm cultures were treated with fluconazole (1,000 μg/ml). For the biofilm dispersion assay, exogenous extracellular vesicles were added after 24 h of growth. Biofilms growth in cultures with and without exogenous extracellular vesicles was evaluated by the XTT assay as described above. The obtained phenotypic outcomes were organized into visual Candida biofilm phenotypic networks using the Cytoscape platform⁹.

Time course assessment of extracellular vesicle production in biofilms. Quantitative analysis of EVs produced in Candida biofilms was determined at various culture growth time points in 96-well plates. Fungal cell inocula (10⁶ cells/ml) were prepared out of overnight yeast cultures in YPD at 30°C, followed by dilution in RPMI-MOPS based on count numbers with an automated Countess™ II cell counter (Invitrogen). One hundred μl of yeast cells per well were seeded and incubated for 6, 12, 24, and 48 h, followed by collection of supernatants, which were then filter sterilized and subjected to extracellular vesicle analysis as described below. Data were normalized based on XTT assay readouts as described above.

Extracellular vesicle analyses. Exosomes were quantified using nanoparticle tracking analysis. Initial analyses were performed on a Zetasizer Nano-ZS (Malvern Instruments)¹⁰. EV samples were diluted in PBS to a final volume of 1 ml and pretested to obtain an ideal
30-100 particles per frame rate using a NanoSight NS300 system (Malvern). The following settings were applied: camera level was increased to 16 and camera gain to 2 until tested images were optimized and nanoparticles were distinctly visible without exceeding particle signal saturation. Each measurement consisted of five 1-min videos with a delay of 5 s between sample introduction and the start of the first measurement. For detection threshold analysis the counts were limited to 10-100 red crosses and no more than 5-7 blue crosses. Acquired data were analyzed using the NanoSight Software NTA 3.4 Build 3.4.003. At least 1000 events in total was tracked per sample in order to minimize data skewing based on single large particles.

Extracellular vesicle uptake by Candida cells. Candida cells and extracellular vesicles were imaged using the multispectral ImageStreamX Mk II flow cytometry system (Amnis Corporation) at ×60 magnification, with default low flow rate/high sensitivity using the INSPIRE software. Candida cells grown in YPD at 30°C overnight and transferred to 37°C for 30-60 min in order to induce and mimic an early biofilm formation stage. Cells were next counted with an automated Countess™ II cell counter (Invitrogen) and 90-µl aliquots containing ~2×10⁶ cells were prepared and kept on ice. Extracellular vesicles were labeled with the EZLabel™ Protein-FITC Labeling Kit (BioVision). Excessive dye particles were removed from stained vesicles using Illustra microspin G-50 columns (GE Healthcare). Ten-µl aliquots containing ~1×10⁸ FITC-labelled extracellular vesicles were used. Cells and extracellular vesicles were mixed right before the experiment and immediately introduced into the flow cytometer. The image acquisition started approximately within 90-120 s afterward. On average 1×10⁴ cells were collected for each sample and the data obtained were analyzed using the IDEAS image analysis software (Amnis Corporation). The uptake experiment was validated by using extracellular vesicles stained with lipid dyes (DiI, DiD, rhodamine R18), which could be detected in recipient Candida cells exposed to the lipid-labelled extracellular vesicles.

In vivo Candida catheter model. Candida biofilm growth during infection of implanted medical devices was measured using an external jugular vein rat catheter infection model. For drug treatment experiments, fluconazole at a concentration of 250 μg/ml was instilled and dwelled in the catheter over a 24-h period. The post treatment viable burden of Candida biofilm on the catheter surface was compared to untreated control growth. Three replicates were performed for treatment and control conditions. Quantitative cultures of Candida spp. after 24 h of in vivo growth were utilized to measure viable biofilm cell burden.

Scanning electron microscopy of Candida biofilms. The surface of Candida biofilms grown in 6-well plates was imaged using scanning electron microscopy (SEM). Briefly, 40 μl of an inoculum of 10⁸ cells/ml in RPMI was added to the coverslips and incubated at 37°C for 60 min. One ml RPMI was added to each well, and the plates were incubated at 37°C for 20 h. One ml fixative (4% formaldehyde, 1% glutaraldehyde in PBS) was then added to each well prior to incubation at 4°C overnight. Coverslips were then washed with PBS prior to incubation in 1% OsO₄ for 30 min. Samples were then serially dehydrated in ethanol (30% to 100%). Critical point drying was used to completely dehydrate the samples prior to palladium-gold coating. Samples were imaged on a SEM LEO 1530, with Adobe Photoshop 2022 (v. 23.2.2) used for image compilation.

Cryo-electron microscopy. Cryo-electron microscopy (cryo-EM) was done at the University of Wisconsin-Madison Cryo Research Center. CF200-CU grids (EMS) were glow-discharged for 30 seconds in at 15mA with a chamber pressure of 0.004 mBar.
Plunge freezing occurred in an FEI Vitrobot Mark IV cryo plunge freezing robot at 4°C. Three μl of sample were then spotted onto the grid, blotted for 5 seconds with a blotted pressure of 1, and plunge-frozen into liquid ethane. Grids were transferred into liquid nitrogen for storage. Cryo EM imaging was performed on a Talos Arctica (ThermoScientific) at 200 kV. Images (defocus of −2 μm) were recorded on a post-GIF Gatan K3 camera in EFTEM mode (3.7 Å/pixel at 24kx magnification and 1.1 Å/pixel at 79kx magnification) with a 20-eV slit, CDS counting mode, using SerialEM 3.8. Two magnifications were set for high-resolution imaging: 24kx magnification (spot size 7, C2 aperture 100, C2 lens power 38.133%, objective aperture 100, pixel size 3.7Å) and 79kx magnification (spot size 4, C2 aperture 70, C2 lens power 42.546%, objective aperture 100, pixel size 1.1Å). A total dose of 21.6 e-/Å2 at 24kx magnification and 48 e-/Å2 at 79kx magnification were used, respectively.

Gel-free proteomics. Enzymatic “in liquid” digestion and mass spectrometric analysis was done at the Mass Spectrometry Facility, Biotechnology Center, University of Wisconsin–Madison. Two hundred μg of proteins were extracted by precipitation with 15% TCA/60% acetone and then incubated at −20°C for 30 min. The matrix or vesicle preparation was centrifuged at 16,000 × g for 10 min, and the resulting pellets were washed twice with ice-cold acetone, followed by an ice-cold MeOH wash. Pelleted proteins were resolubilized and denatured in 10 μl of 8 M urea in 100 mM NH₄HCO₃ for 10 min, then diluted to 60 μl for tryptic digestion with the following reagents: 3 μl of 25 mM DTT, 4.5 μl of acetonitrile, 36.2 μl of 25 mM NH₄HCO₃, 0.3 μl of 1M Tris-HCl, and 6 μl of 100 ng/μl Trypsin Gold solution in 25 mM NH₄HCO₃ (Promega). Digestion was conducted in two stages, first overnight at 37°C, then additional 4 μl of trypsin solution were added and the mixture was incubated at 42°C for an additional 2 h. The reaction was terminated by acidification with 2.5% TFA to a final concentration of 0.3% and then centrifuged at 16,000 × g for 10 min. Trypsin-generated peptides were analyzed by nanoLC-MS/MS using the Agilent 1100 nanoflow system (Agilent) connected to a hybrid linear ion trap-orbitrap mass spectrometer (LTQ-Orbitrap, Thermo Fisher Scientific) equipped with a nanoelectrospray ion source. Capillary HPLC was performed using an in-house fabricated column with an integrated electrospray emitter, as described elsewhere. Sample loading and desalting were achieved using a trapping column in line with the autosampler (Zorbax 300SB-C18, 5 μm, 5 × 0.3 mm, Agilent). The LTQ-Orbitrap was set to acquire MS/MS spectra in a data-dependent mode as follows: MS survey scans from 300 to 2,000 m/z were collected in profile mode with a resolving power of 100,000. MS/MS spectra were collected on the five most abundant signals in each survey scan. Dynamic exclusion was employed to increase the dynamic range and maximize peptide identifications. Raw MS/MS data were searched against a concatenated C. albicans amino acid sequence database using an in-house MASCOT search engine. Identified proteins were further annotated and filtered to 1.5% peptide and 0.1% protein false-discovery-rate with Scaffold Q+ version 4.10.0 (Proteome Software Inc.) using the protein prophet algorithm. Proteomic data were mapped using Heatmapper. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the partner repository with the dataset identifier XXX and XXX.

Proteome functional mapping. The obtained Candida extracellular vesicle and matrix proteomes were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Both KEGG pathway maps and BRITE hierarchies databases were used. Each protein predicted from the C. albicans genome assigned a KEGG Ontology ID (KOID) was obtained, and the specific pathway and superpathway membership information retained. For non-albicans Candida species, BLASTP-based mapped protein
orthologies and homologies among Candida species were obtained from the Candida Genome Database (CGD)22. This was then correlated with the experimental proteome data, and the number of proteins expressed within a given pathway was then determined. Tabulated proteins were presented as a percentage out of the total number of proteins predicted to belong to a given pathway from the \textit{C. albicans} genome, as determined by KEGG/BRITE assignments. The visualization of relative quantities of biofilm proteins was done using KEGG/BRITE protein functional categorization23. Based on this hierarchical classification scheme, Voronoi treemaps were constructed using Paver (v. 2.1.9, DECODON Software UG). This approach divides screen space according to hierarchy levels in which the main functional categories determine screen sections on the first level, subsidiary categories on the second level, and so forth. The polygonic cells of the deepest level represented functionally classified proteins and were colored according to relative abundance of each protein that was determined based on total counts of corresponding trypsin-digested peptides.

Extracellular vesicle carbohydrate profiling. Carbohydrates in biofilm extracellular vesicles were analyzed based on the modified procedures reported elsewhere24. Monosugars were converted to alditol acetate derivatives25 and then identified and quantified by gas chromatography on a Shimadzu GC-2010 system (Shimadzu). A CrossbondTM 50% cyanopropylmethyl/50% phenylmethyl polysiloxane column was used (15 m × 0.25 mm with 0.25 μm film thickness, RTX-225, Restek). The GLC conditions were as follows: injector at 220°C, FID detector at 240°C, and a temperature program of 215°C for 2 min, then 4°C/min up to 230°C before holding for 11.25 min, run at constant linear velocity of 33.4 cm/sec and split ratio of 50:1.

Statistics. Data sets of equal of different sample sizes were analyzed using the nonparametric Kruskal-Wallis one-way analysis of variance with uncorrected Dunn’s multiple comparisons without prior elimination of outliers. Data were processed with GraphPad Prism 9 for Windows 64-bit (version 9.3.1 (471)).

Ethics statement. All animal procedures were approved by the Institutional Animal Care and Use Committee at the University of Wisconsin-Madison according to the guidelines of the Animal Welfare Act, The Institute of Laboratory Animal Resources Guide for the Care and Use of Laboratory Animals, and Public Health Service Policy. The approved animal protocol number is DA0031.

1 Moore, G. E., Gerner, R. E. & Franklin, H. A. Culture of normal human leukocytes. \textit{JAMA} \textbf{199}, 519-524 (1967).
2 Mancera, E., Porman, A. M., Cuomo, C. A., Bennett, R. J. & Johnson, A. D. Finding a Missing Gene: EFG1 Regulates Morphogenesis in Candida tropicalis. \textit{G3 (Bethesda, Md.)} \textbf{5}, 849-856, doi:10.1534/g3.115.017566 (2015).
3 Holland, L. M. \textit{et al.} Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. \textit{PLoS Pathog} \textbf{10}, e1004365, doi:10.1371/journal.ppat.1004365 (2014).
4 Istel, F., Schwarzmuller, T., Tscherner, M. & Kuchler, K. Genetic Transformation of Candida glabrata by Electroporation. \textit{Bio Protoc} \textbf{5}, doi:10.21769/BioProtoc.1528 (2015).
5 Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. \textit{Gene} \textbf{77}, 61-68, doi:10.1016/0378-1119(89)90359-4 (1989).
Zarnowski, R., Sanchez, H. & Andes, D. R. Large-scale production and isolation of Candida biofilm extracellular matrix. *Nat Protoc* **11**, 2320-2327, doi:10.1038/nprot.2016.132 (2016).

Nett, J. E., Cain, M. T., Crawford, K. & Andes, D. R. Optimizing a Candida biofilm microtiter plate model for measurement of antifungal susceptibility by tetrazolium salt assay. *J Clin Microbiol* **49**, 1426-1433, doi:10.1128/JCM.02273-10 (2011).

Zarnowski, R. *et al.* Coordination of fungal biofilm development by extracellular vesicle cargo. *Nat Commun* **12**, 6235, doi:10.1038/s41467-021-26525-z (2021).

Shannon, P. *et al.* Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* **13**, 2498-2504, doi:10.1101/gr.1239303 (2003).

Jaromin, A. *et al.* Liposomal formulation of DIMIQ, potential antitumor indolo[2,3-b]quino lignole agent and its cytotoxicity on hepatoma Morris 5123 cells. *Drug Deliv* **15**, 49-56, doi:10.1080/10717540701829192 (2008).

Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W. & Sargent, I. L. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. *J Extracell Vesicles* **2**, doi:10.3402/jev.v2i0.19671 (2013).

Headland, S. E., Jones, H. R., D’Sa, A. S. V., Perretti, M. & Norling, L. V. Cutting-Edge Analysis of Extracellular Microparticles using ImageStream(X) Imaging Flow Cytometry. *Sci Rep-Uk* **4**, doi:ARTN 523710.1038/srep05237 (2014).

Andes, D. *et al.* Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. *Infect Immun* **72**, 6023-6031, doi:10.1128/IAI.72.10.6023-6031.2004 (2004).

Dominguez, E. *et al.* Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. *mBio* **9**, doi:10.1128/mBio.00451-18 (2018).

Martin, S. E., Shabanowitz, J., Hunt, D. F. & Marto, J. A. Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI fourier transform ion cyclotron resonance mass spectrometry. *Anal Chem* **72**, 4266-4274, doi:10.1021/ac000497v (2000).

Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis* **20**, 3551-3567, doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 (1999).

Keller, A. *et al.* Experimental protein mixture for validating tandem mass spectral analysis. *OMICS* **6**, 207-212, doi:10.1089/153623102760092805 (2002).

Babicki, S. *et al.* Heatmapper: web-enabled heat mapping for all. *Nucleic Acids Res* **44**, W147-W153, doi:10.1093/nar/gkw419 (2016).

Perez-Riverol, Y. *et al.* The PRIDE database and related tools and resources in 2019: improving support for quantification data. *Nucleic Acids Res* **47**, D442-D450, doi:10.1093/nar/gky1106 (2019).

Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* **28**, 27-30, doi:10.1093/nar/28.1.27 (2000).

Kanehisa, M., Sato, Y. & Kawashima, M. KEGG mapping tools for uncovering hidden features in biological data. *Protein Sci* **31**, 47-53, doi:10.1002/pro.4172 (2022).

Skrzypek, M. S. *et al.* The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. *Nucleic Acids Res* **45**, D592-D596, doi:10.1093/nar/gkw924 (2017).
23 Bernhardt, J. F. S., Hecker, M. & Siebourg, J. in Sixth International Symposium on Voronoi diagrams. (IEEE).

24 Zarnowski, R. et al. Novel entries in a fungal biofilm matrix encyclopedia. mBio 5, e01333-01314, doi:10.1128/mBio.01333-14 (2014).

25 Henry, R. J., Blakeney, A. B., Harris, P. J. & Stone, B. A. Detection of neutral and aminosugars from glycoproteins and polysaccharides as their alditol acetates. J Chromatogr 256, 419-427, doi:10.1016/s0021-9673(01)88259-5 (1983).
Fig. S1. Mutations of select Candida EV cargo proteins impacts the carbohydrate biochemistry of Candida biofilm extracellular matrices (ECMs) determined by gas chromatography. (A) Levels of total carbohydrates in the tested Candida biofilm ECMs. Data are presented as the mean ± SD; n = 6; *P<0.05; **P<0.01; ***P<0.005; ****P ≤ 0.0001, using non-parametric Kruskal–Wallis one-way analysis of variance with post hoc uncorrected Dunn’s multiple comparison test. (B) Changes in the tested Candida biofilm ECM mannans. Data are presented as the mean ± SD; n = 6; *P<0.05; **P<0.01; ***P<0.005; ****P ≤ 0.0001, using non-parametric Kruskal–Wallis one-way analysis of variance with post hoc uncorrected Dunn’s multiple comparison test. (C) Changes in the tested Candida biofilm ECM glucans. Data are presented as the mean ± SD; n = 6; ***P<0.005; ****P ≤ 0.0001, using non-parametric Kruskal–Wallis one-way analysis of variance with post hoc uncorrected Dunn’s multiple comparison test. CA – *Candida albicans*; CT – *Candida tropicalis*; CP – *Candida parapsilosis*; CG – *Candida glabrata*; CR – *Candida auris*.
Fig. S2. Effects of exogenous Candida biofilm EVs on biofilm fluconazole susceptibility of TOS1 null mutants. Biofilm cultures of fluconazole-sensitive mutant strains (grouped in rows) were amended with WT EVs (columns) isolated from five different Candida species biofilm culture supernatants. Lines represent the mean of 8 technical replicates and the shaded blue area represents minimal and maximal value range distribution. Data are presented as the mean ± SD; n = 5; *P<0.05; **P<0.01; ***P<0.005; ****P ≤ 0.0001, using non-parametric Kruskal–Wallis one-way analysis of variance with post hoc uncorrected Dunn’s multiple comparison test. CA – Candida albicans; CT – Candida tropicalis; CP – Candida parapsilosis; CG – Candida glabrata; CR – Candida auris.
Fig. S3. Effects of exogenous Candida biofilm EVs on biofilm dispersion of CHT3 null mutants. Biofilm cultures of dispersion-altered mutant strains (grouped in rows) were amended with WT EVs (columns) isolated from five different Candida species biofilm culture supernatants. Lines represent the mean of 8 technical replicates and the shaded blue area represents minimal and maximal value range distribution. Data are presented as the mean ± SD; n = 5; *P<0.05; **P<0.01; ***P<0.005; ****P ≤ 0.0001, using non-parametric Kruskal–Wallis one-way analysis of variance with post hoc uncorrected Dunn’s multiple comparison test. CA – Candida albicans; CT – Candida tropicalis; CP – Candida parapsilosis; CG – Candida glabrata; CR – Candida auris.
Table S1. KEGG/BRITE-based functional category assignments to the identified proteins in Candida extracellular vesicle proteomes

Database	Hierarchy level 1	Hierarchy level 2	Hierarchy level 3	No. of proteins per group																													
				CA	CT	CP	CG	CR																									
KEGG Pathways	Metabolism	Carbohydrate																															
		metabolism																															
			Glycolysis / Gluconeogenesis	23	24	12	8	8																									
			Citrate cycle (TCA cycle)	11	14	4	0	6																									
			Pentose phosphate pathway	9	11	6	3	5																									
			Pentose and glucuronate	4	2	2	0	1																									
			interconversions																														
			Fructose and mannose	8	10	6	2	3																									
			metabolism																														
			Galactose metabolism	7	6	5	0	1																									
			Ascorbate and aldarate	3	1	1	0	1																									
			metabolism																														
			Starch and sucrose	15	12	11	4	5																									
			metabolism																														
			Amino sugar and nucleotide	17	14	10	2	7																									
			sugar metabolism																														
			Pyruvate metabolism	19	16	4	1	5																									
			Glyoxylate and dicarboxylate	10	12	3	1	6																									
			metabolism																														
			Propanoate metabolism	8	8	1	0	2																									
			Butanoate metabolism	3	1	0	0	0																									
			Inositol phosphate	2	1	1	1	0																									
			metabolism																														
			Energy metabolism																														
			Oxidative phosphorylation	18	14	2	4	7																									
			Methane metabolism	10	12	5	3	3																									
			Nitrogen metabolism	2	1	0	0	0																									
			Sulfur metabolism	1	1	1	1	0																									
			Lipid metabolism																														
			Fatty acid biosynthesis	3	3	1	0	2																									
			Fatty acid elongation	1	0	0	0	1																									
			Fatty acid degradation	6	3	0	0	2																									
			Synthesis and degradation	2	1	0	0	0																									
			of ketone bodies																														
			Steroid biosynthesis	0	0	0	0	2																									
			Glycerolipid metabolism	1	1	2	0	3																									
			Glycerophospholipid	3	2	0	2	3																									
			metabolism																														
			Arachidonic acid	1	1	0	0	0																									
			metabolism																														
			alpha-Linolenic acid	1	0	0	0	1																									
			metabolism																														
			Biosynthesis of unsaturated	1	0	0	0	2																									
			fatty acids																														
			Nucleotide metabolism																														
			Purine metabolism	8	8	3	1	3																									
			Pyrimidine metabolism	2	4	1	0	1																									
			Amino acid																														
			metabolism																														
			Alanine, aspartate	9	3	2	0	1																									
			and glutamate metabolism																														
			Glycine, serine and	6	8	2	1	2																									
			threonine metabolism																														
			Cysteine and methionine	11	7	6	1	2																									
			metabolism																														
			Valine, leucine and	4	3	1	0	2																									
			isoleucine degradation																														
			Valine, leucine and	1	0	0	0	0																									
			isoleucine biosynthesis																														
			Lysine biosynthesis	5	1	2	0	0																									
			Lysine degradation	5	3	2	0	2																									
			Arginine biosynthesis	6	2	2	0	0																									
Metabolism of other amino acids	Arginine and proline metabolism	Histidine metabolism	Tyrosine metabolism	Phenylalanine metabolism	Tryptophan metabolism	Phenylalanine, tyrosine and tryptophan biosynthesis	beta-Alanine metabolism	Taurine and hypotaurine metabolism	Selenocompound metabolism	Cyanoamino acid metabolism	Glutathione metabolism	N-Glycan biosynthesis	Various types of N-glycan biosynthesis	Mannose type O-glycan biosynthesis	Other types of O-glycan biosynthesis	Other glycan degradation	Glycosaminoglycan degradation	Glycosphingolipid biosynthesis - globo and isoglobo series	Glycosphingolipid biosynthesis - ganglio series	Other glycan degradation	Thiamine metabolism	Riboflavin metabolism	Vitamin B6 metabolism	Pantothenate and CoA biosynthesis	Folate biosynthesis	One carbon pool by folate	Porphyrin and chlorophyll metabolism	Ubiquinone and other terpenoid-quinone biosynthesis	Terpenoid backbone biosynthesis	Biosynthesis of ansamycins	Carbapenem biosynthesis	Monobactam biosynthesis	Neomycin, kanamycin and gentamicin biosynthesis
---	---------------------------------	----------------------	---------------------	-------------------------	------------------------	---	-------------------------	-----------------------------------	---------------------------	----------------------------------	------------------------	------------------	--	--------------------------	-----------------------------	------------------	-----------------------------	-----------------------------	---------------------------	------------------	------------------	----------------------	------------------------	-----------------	------------------	----------------------------------	------------------------	-----------------------	------------------	------------------------	------------------------	------------------	
Glycan biosynthesis and metabolism						N-Glycan biosynthesis		Various types of N-glycan biosynthesis	Mannose type O-glycan biosynthesis	Other types of O-glycan biosynthesis	Other glycan degradation	Glycosaminoglycan degradation	Glycosphingolipid biosynthesis - globo and isoglobo series	Glycosphingolipid biosynthesis - ganglio series	Other glycan degradation	Thiamine metabolism	Riboflavin metabolism	Vitamin B6 metabolism	Pantothenate and CoA biosynthesis	Folate biosynthesis	One carbon pool by folate	Porphyrin and chlorophyll metabolism	Ubiquinone and other terpenoid-quinone biosynthesis	Terpenoid backbone biosynthesis	Biosynthesis of ansamycins	Carbapenem biosynthesis	Monobactam biosynthesis	Neomycin, kanamycin and gentamicin biosynthesis					
Metabolism of cofactors and vitamins						Other glycan degradation		Glycosaminoglycan degradation	Glycosphingolipid biosynthesis - globo and isoglobo series	Glycosphingolipid biosynthesis - ganglio series	Other glycan degradation	Thiamine metabolism	Riboflavin metabolism	Vitamin B6 metabolism	Pantothenate and CoA biosynthesis	Folate biosynthesis	One carbon pool by folate	Porphyrin and chlorophyll metabolism	Ubiquinone and other terpenoid-quinone biosynthesis	Terpenoid backbone biosynthesis	Biosynthesis of ansamycins	Carbapenem biosynthesis	Monobactam biosynthesis	Neomycin, kanamycin and gentamicin biosynthesis									
Genetic Information Processing						Thiamine metabolism		Riboflavin metabolism	Vitamin B6 metabolism	Pantothenate and CoA biosynthesis	Folate biosynthesis	One carbon pool by folate	Porphyrin and chlorophyll metabolism	Ubiquinone and other terpenoid-quinone biosynthesis	Terpenoid backbone biosynthesis	Biosynthesis of ansamycins	Carbapenem biosynthesis	Monobactam biosynthesis	Neomycin, kanamycin and gentamicin biosynthesis														
Transcription						Spliceosome		Ribosome	Aminoacyl-tRNA biosynthesis	RNA transport	mRNA surveillance pathway	Ribosome biogenesis in eukaryotes	Protein export																				
Translation						Spliceosome		Ribosome	Aminoacyl-tRNA biosynthesis	RNA transport	mRNA surveillance pathway	Ribosome biogenesis in eukaryotes	Protein export																				
Folding, sorting and degradation						Spliceosome		Ribosome	Aminoacyl-tRNA biosynthesis	RNA transport	mRNA surveillance pathway	Ribosome biogenesis in eukaryotes	Protein export																				
Environmental Information Processing	Membrane transport	ABC transporters	2	1	2	1	3																										
-------------------------------------	-------------------	------------------	---	---	---	---	---																										
Signal transduction	MAPK signaling pathway - yeast	10	5	7	4	12																											
	Phosphatidylinositol signaling system	1	0	0	0	1																											
Cellular Processes	Transport and catabolism	Endocytosis	11	15	9	5	13																										
	Phagosome	6	4	0	1	2																											
	Peroxisome	5	0	3	1	4																											
	Autophagy - yeast	6	10	6	1	6																											
	Autophagy - other	1	0	0	0	0																											
Cell growth and death	Cell cycle - yeast	5	2	1	1	0																											
	Meiosis - yeast	4	4	2	0	1																											
Aging	Longevity regulating pathway - multiple species	5	5	5	3	5																											

BRITE	Protein families: metabolism	Enzymes	Protein kinases	3	1	1	1	3
			Protein phosphatases and associated proteins	7	8	3	2	5
			Peptidases and inhibitors	41	30	13	4	26
			Glycosyltransferases	16	11	7	4	5
			Lipid biosynthesis proteins	4	4	1	0	4
			Prenyltransferases	1	1	0	0	1
			Amino acid related enzymes	7	12	3	0	1
	Protein families: genetic information processing	Transcription factors	Transcription factors	1	0	1	0	0
			Transcription machinery	3	0	2	2	1
			Messenger RNA biogenesis	19	16	5	3	4
			Spliceosome	4	5	2	2	2
			Ribosome	15	28	1	4	6
			Ribosome biogenesis	8	6	1	4	4
			Transfer RNA biogenesis	9	14	3	1	2
			Translation factors	11	6	5	3	2
			Chaperones and folding catalysts	18	20	15	6	12
			Membrane trafficking	54	56	36	12	49
			Ubiquitin system	5	5	2	1	2
			Proteasome	13	13	2	3	16
Protein families: signaling and cellular processes	Transporters							
---	--------------							
DNA replication proteins	4 1 0 0 0							
Chromosome and associated proteins	19 14 4 4 9							
DNA repair and recombination proteins	7 3 2 0 1							
Mitochondrial biogenesis	12 11 6 5 7							
Translators	19 15 12 9 28							
Secretion system	1 0 0 0 0							
Cytoskeleton proteins	10 11 5 3 4							
Exosome	60 64 41 15 37							
Ion channels	1 1 1 0 1							
GTP-binding proteins	12 13 10 3 15							
Glycosylphosphatidylinositol (GPI)-anchored proteins	9 2 2 1 2							
Lectins	2 0 0 0 0							
Domain-containing proteins not elsewhere classified	1 1 0 0 3							

Not Included in KEGG or BRITE
Unclassified: metabolism
Unclassified: signaling and cellular processes
Poorly characterized

	Enzymes with EC numbers	Others	Signaling proteins	Function unknown
	9 9 9 3 11	1 0 0 0 0	1 0 0 0 0	1 2 1 1 2
Strain/Gene	Phenotype	Genetic makeup*	Reference	
------------	-----------	-----------------	-----------	
Candida albicans				
SN152	reference strain	his1Δ::his1Δ; leu2Δ::leu2Δ; arg4Δ::arg4Δ	1	
SN250	reference strain	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	2	
URZ585	cht3 homozygote Arg'	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	3	
URZ688	cht3 complement prototroph	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	3	
URZ375	mp65 homozygote Arg'	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	3	
URZ889	mp65 complement prototroph	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	3	
URZ376	sun41 complement prototroph	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	4	
URZ562	tos1 homozygote Arg'	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	3	
URZ680	tos1 complement prototroph	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	3	
URZ386	zrt2 homozygote Arg'	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	3	
URZ874	zrt2 complement prototroph	his1Δ::his1Δ; leu2Δ::CD HIS1/leu2Δ::CM LEU2; arg4Δ::arg4Δ	3	
Candida tropicalis				
CAY2597	reference strain C. tropicalis wild type strain		5	
CAY3764	reference strain	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF	5	
URZ922	cht3 homozygote prototroph	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, cht3::CM LEU2/cht3::CD HIS1	This work	
URZ978	cht3 complement prototroph/Nat1*	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, cht3::CM LEU2/cht3::CD HIS1, CM leu2::CHT3-NAT1	This work	
URZ928	mp65 homozygote prototroph	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, cht3::CM LEU2/cht3::CD HIS1	This work	
URZ982	mp65 complement prototroph/Nat1*	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, cht3::CM LEU2/cht3::CD HIS1, CM leu2::TOS1-NAT1	This work	
URZ993	sun41 homozygote prototroph	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, sun41::CM LEU2/sun41::CD HIS1	This work	
URZ984	sun41 complement prototroph/Nat1*	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, sun41::CM LEU2/sun41::CD HIS1, CM leu2::SUN41-NAT1	This work	
URZ925	tos1 homozygote prototroph	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, tos1::CM LEU2/tos1::CD HIS1	This work	
URZ980	tos1 complement prototroph/Nat1*	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, tos1::CM LEU2/tos1::CD HIS1, CM leu2::TOS1-NAT1	This work	
URZ937	zrt2 homozygote prototroph	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, zrt2::CM LEU2/zrt2::CD HIS1	This work	
URZ986	zrt2 complement prototroph/Nat1*	his1Δ::FRF/his1Δ::FRF, leu2Δ::FRF/leu2Δ::FRF, zrt2::CM LEU2/zrt2::CD HIS1, CM leu2::ZRT2-NAT1	This work	
Candida parapsilosis				
CLIB214	reference strain C. parapsilosis wild type strain		6	
CPL2H1	reference strain His'Leu-	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT	6	
URZ904	cht3 homozygote prototroph	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT, cht3::CM LEU2/cht3::CD HIS1	This work	
URZ992	cht3 complement prototroph/Nat1*	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT, cht3::CM LEU2/cht3::CD HIS1, CM leu2::CHT3-NAT1	This work	
URZ913	mp65 homozygote prototroph	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT, mp65::CM LEU2/mp65::CD HIS1	This work	
1. Noble SM & Johnson AD (2005) Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. *Eukaryot Cell* 4(2):298-309.

2. Noble SM, French S, Kohn LA, Chen V, & Johnson AD (2010) Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. *Nat Genet* 42(7):590-598.

3. Zarnowski R, et al. (2021) Coordination of fungal biofilm development by extracellular vesicle cargo. *Nat Commun* 12(1):6235.

4. Zarnowski R, et al. (2018) Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. *PLoS Biol* 16(10):e2006872.

Candida glabrata

Strain	Gene Deletions	Reference	Notes
URZ999	mp65 complement prototroph/Nat1*	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT, mp65::CM	This work
URZ911	sun41 homozygote prototroph	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT, sun41::CM	This work
URZ908	tos1 homozygote prototroph	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT, tos1::CM	This work
URZ996	tos1 complement prototroph/Nat1*	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT, tos1::CM	This work
URZ917	zrt2 homozygote prototroph	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT, zrt2::CM	This work
URZ002	zrt2 complement prototroph/Nat1*	leu2Δ::FRT/leu2Δ::FRT, his1Δ::FRT/his1Δ::FRT, zrt2::CM	This work

Candida albicans

Strain	Deletions	Reference	Notes
ATCC2001	reference strain	C. glabrata wild type strain	(7)
HTL	reference strain	His3::FRT, leu2Δ::FRT, trp1Δ::FRT	(8)
URZ953	cht3 homozygote Trp/Nat1*	his3Δ::FRT, leu2Δ::FRT, trp1Δ::FRT, cht3Δ::Nat1	This work
URZ964	cht3 complement Trp/HygB	his3Δ::FRT, leu2Δ::FRT, trp1Δ::FRT, cht3Δ::Nat1::CHT3-HygB	This work
URZ959	mp65 homozygote Trp/Nat1*	his3Δ::FRT, leu2Δ::FRT, trp1Δ::FRT, mp65Δ::Nat1	This work
URZ969	mp65 complement Trp/HygB	his3Δ::FRT, leu2Δ::FRT, trp1Δ::FRT, mp65Δ::Nat1	This work
URZ957	tos1 homozygote Trp/Nat1*	his3Δ::FRT, leu2Δ::FRT, trp1Δ::FRT, tos1Δ::Nat1	This work
URZ965	tos1 complement Trp/HygB	his3Δ::FRT, leu2Δ::FRT, trp1Δ::FRT, tos1Δ::Nat1::TOS1-HygB	This work
URZ962	zrt2 homozygote Trp/Nat1*	his3Δ::FRT, leu2Δ::FRT, trp1Δ::FRT, zrt2Δ::Nat1	This work
URZ973	zrt2 complement Trp/HygB	his3Δ::FRT, leu2Δ::FRT, trp1Δ::FRT, zrt2Δ::Nat1::ZRT2-HygB	This work

Candida auris

Strain	Deletions	Reference	Notes
B11804	Reference strain	*Candida auris* wild type Colombian isolate of the South American clade IV	(9)
URZ034	cht3 homozygote Nat1*	cht3Δ::Nat1	This work
URZ017	cht3 complement HygB	cht3Δ::Nat1::Nat1::CHT3-HygB	This work
URZ036	mp65 homozygote Nat1*	mp65Δ::Nat1	This work
URZ013	mp65 complement HygB	mp65Δ::Nat1::MP65-HygB	This work
URZ038	sun41 homozygote Nat1*	sun41Δ::Nat1	This work
URZ015	sun41 complement HygB	sun41Δ::Nat1::SUN41-HygB	This work
URZ040	tos1 homozygote Nat1*	tos1Δ::Nat1	This work
URZ011	tos1 complement HygB	tos1Δ::Nat1::TOS1-HygB	This work
URZ042	zrt2 homozygote Nat1*	zrt2Δ::Nat1	This work
URZ021	zrt2 complement HygB	zrt2Δ::Nat1::ZRT2-HygB	This work

CD – Candida dubliniensis; CM – Candida maltosa
5. Mancera E, Porman AM, Cuomo CA, Bennett RJ, & Johnson AD (2015) Finding a Missing Gene: EFG1 Regulates Morphogenesis in Candida tropicalis. G3 (Bethesda, Md.) 5(5):849-856.
6. Holland LM, et al. (2014) Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. PLoS Pathog 10(9):e1004365.
7. Anonymous (1996) Resource Sharing in Biomedical Research, eds Berns KI, Bond EC, & Manning FJ Washington (DC).
8. Schwarzmuller T, et al. (2014) Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLoS Pathog 10(6):e1004211.
9. Dominguez E, et al. (2018) Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. mBio 9(2).
Table S3. PCR primers used in this study

Target Gene	Primer Name	Function	Sequence
Candida tropicalis (CT) primers			
CT_CHT3 5' FLANK F	deletion	GCAAATCTTCAAATCTAATCATC	
CT_CHT3 5' FLANK R	deletion	CACGGCGCGCCCTAGCAGCGG AGGATTATGAACTTAGCAAGCT	
CT_CHT3 3' FLANK F	deletion	GTCAAGCGCGCAGCATCCCTG GCCACCTGTGCACTACCCATTA	
CT_CHT3 3' FLANK R	deletion	TTGAATCTGATGACTGACCA	
CT_CHT3 NESTED F	deletion	TAAATAAGCACGAGAACAACAA	
CT_CHT3 NESTED R	deletion	TGATTTTCGTGCTAGCTGCCC	
CT_CHT3 INTERNAL F	deletion	TATCTGCTAGCATCTGTTGG	
CT_CHT3 INTERNAL R	deletion	TTTGATGGATGACGCTAGTA	
CT_CHT3 UPSTREAM CHECK F	deletion	AGAACGTTGCACAATAATCATT	
CT_CHT3 DOWNSTREAM CHECK R	deletion	GGTGTCAAAATAAACCGGAAT	
CT_CHT3 compl 5' FLANK F/ORF	complementation	CGACTCAGTAAACCAGCATCA	
CT_CHT3 compl 5' FLANK R/ORF	complementation	CACGGCGCGCCTAGCAGCGG TAAATGAATGGACAGGTGGG	
CT_CHT3 compl 3' FLANK F	complementation	GTCAGCGCGCAGCATCCCTGC CAAGTGAATAATTGCATGTTTTG	
CT_CHT3 compl 3' FLANK R	complementation	TTGGGAATGGTTTGATTTGGA	
CT_CHT3 compl NESTED F	complementation	TCACAACATCCACAAAGAT	
CT_CHT3 compl NESTED R	complementation	TTAATCGTGACTGACCA	
CT_CHT3 compl UPSTREAM CHECK F	complementation	GGCATCCACAAATATCAG	
CT_CHT3 compl UPSTREAM CHECK R	complementation	GCGGCCATCAAAATGTATG	
CT_CHT3 compl DOWNSTREAM CHECK F	complementation	GTTTGGCTACTGGAAGCAGT	
CT_CHT3 compl DOWNSTREAM CHECK R	complementation	ACCAAATGAACTGATGACCTG	
CT_MP65 5' FLANK F	deletion	TTCATCAGAGTCAACGCTAG	
CT_MP65 5' FLANK R	deletion	CACGGCGCGCCTAGCAGCGG AGGATTAGAAGGAAGACTGA	
CT_MP65 3' FLANK F	deletion	GTCAAGCGCGCAGCATCCCTGC GTTATCGTGATGACTGAA	
CT_MP65 3' FLANK R	deletion	TTGGGAATGGTTTGATTTGGA	
CT_MP65 NESTED F	deletion	TTTCAAGATTGGCGCTTGG	
CT_MP65 NESTED R	deletion	CAGGGATGATGTTCCAGTT	
CT_MP65 INTERNAL F	deletion	TCACAAAGACTACGTTGTT	
CT_MP65 INTERNAL R	deletion	GATTTGTGGTGTGGCTTGG	
CT_MP65 UPSTREAM CHECK F	deletion	AGACAGATGAGGAATACATTA	
CT_MP65 DOWNSTREAM CHECK R	deletion	ATTTCCGAGATTTCAATACATTAG	
CT_MP65 compl 5' FLANK F/ORF	complementation	CGCAAAACATTACGTAACGAA	
CT_MP65 compl 5' FLANK R/ORF	complementation	CACGGCGCGCCTAGCAGCGG TACAGATCCAGCGATAAC	
CT_MP65 compl 3' FLANK F	complementation	GTCAGCGCGCAGCATCCCTGC TCCACTGTGTTATTTCCAA	
CT_MP65 compl 3' FLANK R	complementation	ATATACTTCTCTCATCCATG	
CT_MP65 compl NESTED F	complementation	GAATGTGACTGTTGAGG	
CT_MP65 compl NESTED R	complementation	GGTAGTGCTGTGTTAGG	
CT_MP65 compl UPSTREAM CHECK F	complementation	ACACACACATCCCTGTT	
CT_MP65 compl UPSTREAM CHECK R	complementation	TGATGGGGCTAAATGTACGG	
CT_MP65 compl DOWNSTREAM CHECK F	complementation	GCCATGTCATAAATCTCG	
CT_MP65 compl DOWNSTREAM CHECK R	complementation	ATACACTTTTCTCATCCATG	
CT_SUN41 5' FLANK F	deletion	GGTATTTGTGTGTGGTG	
CT_SUN41 5' FLANK R	deletion	CACGGCGCGCCTAGCAGCGG ATAAAAGGAAACGACTAAGGT	
CT_SUN41 3' FLANK F deletion GTCAGCGGCCGATCCCTGCT GTTGCTGATACCTTTGCC			
CT_SUN41 3' FLANK R deletion GCTATTGAAACTCCAGGCAC			
CT_SUN41 NESTED F deletion TGTTGTCAGAAACACTAAGTGA			
CT_SUN41 NESTED R deletion AATTTATGCTGATACCTTTGGA			
CT_SUN41 INTERNAL F deletion TCAGCTGAAACTCAG			
CT_SUN41 INTERNAL R deletion AACAACGAGACTAACCAC			
CT_SUN41 DOWNTSTREAM CHECK F deletion TTCTCTTAAGTGTGTTTA			
CT_SUN41 DOWNTSTREAM CHECK R deletion TCATTGGCTCTTGTCTTTCA			
CT_SUN41 compl 5' FLANK F/ORF complementation ATTTGTTGTGTGTTGGTTG			
CT_SUN41 compl 5' FLANK R/ORF complementation CACGGCGGCGCTAGACGCGG TCAGAAACATGATTCTA			
CT_SUN41 compl 3' FLANK F complementation GTCAGCGGCCGCTCCCTGC TCCCCGACGTCTAGCTATGT			
CT_SUN41 compl 3' FLANK R complementation TCAGCTGAAACTCAG			
CT_TOS1 5' FLANK F deletion GAAAGATCAAATCACCAGCA			
CT_TOS1 5' FLANK R deletion CACGGCGGCGCTAGACGCGG TCAGAAACATGATTCTA			
CT_TOS1 3' FLANK F deletion GTCAGCGGCCGCTCCCTGC TCCCCGACGTCTAGCTATGT			
CT_TOS1 3' FLANK R deletion TCAGCTGAAACTCAG			
CT_TOS1 NESTED F deletion GTTTGAGCGGTGTATGAAAG			
CT_TOS1 NESTED R deletion TCTTTACATTGTTCAATTGGTA			
CT_TOS1 INTERNAL F deletion AGAAGCCACTGAAACTCAG			
CT_TOS1 INTERNAL R deletion ACCAGATCCACTCAACCAGC			
CT_TOS1 UPSTREAM CHECK F deletion ATTATTITGGCTGAGAAGAA			
CT_TOS1 DOWNTSTREAM CHECK R deletion ATCCTTTAAGTGCATCCATTA			
CT_TOS1 compl 5' FLANK F/ORF complementation CGACACTGACTCTACAT			
CT_TOS1 compl 5' FLANK R/ORF complementation CACGGCGGCGCTAGACGCGG TCAGAAACATGATTCTA			
CT_TOS1 compl 3' FLANK F complementation GTCAGCGGCCGCTCCCTGC TCCCCGACGTCTAGCTATGT			
CT_TOS1 compl 3' FLANK R complementation TCTTTACATTGTTCAATTGGTA			
CT_TOS1 compl NESTED F complementation AATCCTTTACACATCCCA			
CT_TOS1 compl NESTED R complementation TCACCTTTGGATTTGCATTT			
CT_TOS1 compl UPSTREAM CHECK F complementation AGATTAAGCGACGTAAAGTG			
CT_TOS1 compl UPSTREAM CHECK R complementation CAATTCAACGCGTCTGTT			
CT_TOS1 compl DOWNTSTREAM CHECK F complementation TATGTCTATGCAATGCTCAT			
CT_TOS1 compl DOWNTSTREAM CHECK R complementation TGATGATGATGACAATG			
CT_ZRT2 5' FLANK F deletion AGAAATGTCAAAGAGATGGGT			
CT_ZRT2 5' FLANK R deletion CACGGCGGCGCTAGACGCGG TCAGAAACATGATTCTA			
CT_ZRT2 3' FLANK F deletion GTCAGCGGCCGCTCCCTGC TCCCCGACGTCTAGCTATGT			
CT_ZRT2 3' FLANK R deletion AATTTGAAACTCAG			
CT_ZRT2 NESTED F deletion CCATCGAGTCGATGCAGA			
CT_ZRT2 NESTED R deletion CCATCGAGTCGATGCA			
CT_ZRT2 INTERNAL F deletion GTTTCTGGTGTATTGTGTTG			
CT_ZRT2 INTERNAL R deletion GCACATAAGAATAAGCC			
Primer Name	Type	Sequence	
------------------------------------	-----------------------	---------------------------------	
CT_ZRT2 UPSTREAM CHECK F	deletion	ACAGGCACACAGAATAATACG	
CT_ZRT2 DOWNSTREAM CHECK R	deletion	ACTTGTTAAGAGATATTGACGA	
CT_ZRT2 compl 5’ FLANK F/ORF	complementation	GATCTTCCATTCACCAT	
CT_ZRT2 compl 5’ FLANK R/ORF	complementation	CACGGCGGCCTAGCAAGGGA	
CT_ZRT2 compl 3’ FLANK F	complementation	GTCAGCGGCCGATCCCTCG	
CT_ZRT2 compl 3’ FLANK R	complementation	AATCCGGGAACTCAAATT	
CT_ZRT2 compl NESTED F	complementation	TTGGTGGTATCGGGAATT	
CT_ZRT2 compl NESTED R	complementation	CCACTAGTTCAATGTCAAGG	
CT_ZRT2 compl UPSTREAM CHECK F	complementation	GACAAGGTAGTTTCCGAGAA	
CT_ZRT2 compl UPSTREAM CHECK R	complementation	GGGATGTATGGGCTAAATGT	
CT_ZRT2 compl DOWNSTREAM CHECK F	complementation	TATACGATGGTACTGCTTCC	
CT_ZRT2 compl DOWNSTREAM CHECK R	complementation	ACTTGTTAAGAGATATTGACGA	
CP_CHT3 5’ FLANK F	deletion	GTAAAGCTGAAAGACCGTG	
CP_CHT3 5’ FLANK R	deletion	CACGGCGGCCTAGCAAGGGGAAGATCAAATT	
CP_CHT3 3’ FLANK F	deletion	GTCAGCGGCCGATCCCTCG	
CP_CHT3 3’ FLANK R	deletion	TTTGCAGCTTGGTTGTTTACT	
CP_CHT3 NESTED F	deletion	TCACTCACCTCAAGTTT	
CP_CHT3 NESTED R	deletion	TGAAACATTGCAAGCTAAA	
CP_CHT3 INTERNAL F	deletion	CACGTCAAGTGGTCAAGCTA	
CP_CHT3 INTERNAL R	deletion	CGCGAGATGGTATGATGAT	
CP_CHT3 UPSTREAM CHECK F	deletion	AAGTCATTTCGTTGTTTCGAC	
CP_CHT3 DOWNSTREAM CHECK R	deletion	TTATGAAACAAACTGAGATAAG	
CP_CHT3 compl 5’ FLANK F/ORF	complementation	GCTGAAAGACCGTGTAACACT	
CP_CHT3 compl 5’ FLANK R/ORF	complementation	CACGGCGGCCTAGCAAGGGGAGTAGTAAGCAT	
CP_CHT3 compl 3’ FLANK F	complementation	GTCAGCGGCCGATCCCTCG	
CP_CHT3 compl 3’ FLANK R	complementation	TCACTAGTTCAATGTCAAGG	
CP_CHT3 compl NESTED F	complementation	TCTTCTCACCACCTCAAG	
CP_CHT3 compl NESTED R	complementation	TTGCGCTGTTTGTGTTTACT	
CP_CHT3 compl UPSTREAM CHECK F	complementation	GACACCATTTCGATGGTTCA	
CP_CHT3 compl UPSTREAM CHECK R	complementation	GTGGATCAACTGGAACCTCTT	
CP_CHT3 compl DOWNSTREAM CHECK F	complementation	TTCCTGCTGCGAGACCTG	
CP_CHT3 compl DOWNSTREAM CHECK R	complementation	ACTATGGTGTGGAATTTGCAAT	
CP_MP65 5’ FLANK F	deletion	AATCTTGAAACAAGACCC	
CP_MP65 5’ FLANK R	deletion	CACGGCGGCCTAGCAAGGGGTAAGTAGGTAGGG	
CP_MP65 3’ FLANK F	deletion	GTCAGCGGCCGATCCCTCG	
CP_MP65 3’ FLANK R	deletion	AAAGATGGAAGGGAAGATT	
CP_MP65 NESTED F	deletion	TGAACAAGATTTGATGCAGA	
CP_MP65 NESTED R	deletion	ACTGAAACACCTCAATCAAG	
CP_MP65 INTERNAL F	deletion	CTACCACTTGGAGGCTTA	
CP_MP65 INTERNAL R	deletion	ATCAGCTTTCCCAAGATCAT	
CP_MP65 UPSTREAM CHECK F	deletion	GAAGATAAATTTCCACATCGT	
CP_MP65 DOWNSTREAM CHECK R	deletion	TTTAAAATCCAGACAGTGA	
CP_MP65 compl 5’ FLANK F/ORF	complementation	AATCTTGAAACAAGACCAAC	
CP_MP65 compl 5’ FLANK R/ORF	complementation	CACGGCGGCCGCTAGCAAGGGGTCAGAAGCTCAT	
CP_MP65 compl 3' FLANK R complementation AAAGATGGAGGGAAAGCATT			
CP_MP65 compl NESTED F complementation CAAGTGGAAGATAAATTTCACCA			
CP_MP65 compl NESTED R complementation ACCTAATCCAGTGAGATGTA			
CP_MP65 compl UPSTREAM CHECK F complementation TATGTGCTTTCGTTAGCA			
CP_MP65 compl UPSTREAM CHECK R complementation GTACCACTGAACTCTCCTCA			
CP_MP65 compl DOWNSTREAM CHECK F complementation GTATGAGAATCCGATGATGTA			
CP_MP65 compl DOWNSTREAM CHECK R complementation GGTCATGGGTATTGATGTA			
CP_SUN41 5' FLANK F deletion AAGAGCGGACAAACCAAAAA			
CP_SUN41 5' FLANK R deletion CACGGCGGCCTAGCCAGCAGAAATGTTTGACTCGGGGA			
CP_SUN41 3' FLANK F deletion GTAGCGGCAGCCTCCCTGCCTTCTTTAGATGTGTGTGTTGT			
CP_SUN41 3' FLANK R deletion TCATATCGGCAGCTAATTCC			
CP_SUN41 NESTED F deletion TCAATACACTCACTGGACAC			
CP_SUN41 NESTED R deletion CTTTTGCAGCTTGGGATAC			
CP_SUN41 INTERNAL F deletion TGTCAAGAACCAGTTTTCCA			
CP_SUN41 INTERNAL R deletion GTAGCCGATACAAAGATTTCA			
CP_SUN41 UPSTREAM CHECK F deletion AAGAGTTAACAACCAGCAGA			
CP_SUN41 UPSTREAM CHECK R deletion GTGGATCAACTGGAACTTCT			
CP_SUN41 DOWNSTREAM CHECK F deletion CCACTGAGGTTCTTCTTTCA			
CP_SUN41 DOWNSTREAM CHECK R deletion TCATATCGGCAGCTAATTCC			
CP_TOS1 5' FLANK F deletion GGCAAATGACTCGATCTAGT			
CP_TOS1 5' FLANK R deletion CACGGCGGCCTAGCCAGCAGAAATGTTTGACTCGGGGA			
CP_TOS1 3' FLANK F deletion GTACCGGCAGCCTCCCTGCCTTCTTTAGATGTGTGTGTTGT			
CP_TOS1 3' FLANK R deletion ACCACTTGAACACAGAAGA			
CP_TOS1 NESTED F deletion GCGACTTACATCACAATGTT			
CP_TOS1 NESTED R deletion CTTTTGCAGCTTGGGATAC			
CP_TOS1 INTERNAL F deletion TTGTTGTGTTTGGATGAAGC			
CP_TOS1 INTERNAL R deletion TTGAAGTTGCTCCAGAACAT			
CP_TOS1 UPSTREAM CHECK F deletion TTAAACTTGTCGATCTCTTAC			
CP_TOS1 DOWNSTREAM CHECK R deletion CTAGGTGGAATAAACAAGTAG			
CP_TOS1 compl 5' FLANK F/ORF complementation GCGCAAATGACTCGATCTAGT			
CP_TOS1 compl 5' FLANK R/ORF complementation CACGGCGGCCTAGCCAGCAGAAATGTTTGACTCGGGGA			
CP_TOS1 compl 3' FLANK F complementation GTACCGGCAGCCTCCCTGCCTTCTTTAGATGTGTGTGTTGT			
CP_TOS1 compl 3' FLANK R complementation CTGACCAAACTCGTACAAGTGGC			
CP_TOS1 compl NESTED F complementation TCCCTCAACTACCTCCTTA			
CP_TOS1 compl NESTED R complementation GGAATCTTTAGCAATACGG			
CP_TOS1 compl UPSTREAM CHECK F complementation AATCAGACAGTGAGCTTCTG			
CP_TOS1 compl UPSTREAM CHECK R complementation GGACAATTCACGCGCTT			
CP_TOS1 compl DOWNSTREAM CHECK F complementation TTGAAGTTGCTCCAGAACAT			
Primer Name	Function	Mutation Type	Sequence
-------------	----------	---------------	----------
CP_TOS1 compl DOWNSTREAM CHECK R	complementation	deletion	TTTGGCAAATAATCGTTGCATG
CP_ZRT2 5' FLANK F	deletion	CAACGGGCAGCCATAGCAGGG AATTGAAATTGCTGATATGGTAT	
CP_ZRT2 3' FLANK F	deletion	GTCAGGCGGCCATCCCTGC ACAATAGAATCATAATCAGG	
CP_ZRT2 3' FLANK R	deletion	TGAAGGTGTCATGTGATAG	
CP_ZRT2 NESTED F	deletion	TAGGGCAAAATTTTGTTGAG	
CP_ZRT2 NESTED R	deletion	CCGTCAATGAAGCTGAATGG	
CP_ZRT2 INTERNAL F	deletion	TGGAAAGGTGTCATGTGATAG	
CP_ZRT2 INTERNAL R	deletion	ATCTTACCATGAAAGCCAT	
CP_ZRT2 UPSTREAM CHECK F	deletion	CCAGAGTACTTTAATTAAAC	
CP_ZRT2 DOWNSTREAM CHECK R	deletion	TCATGGATATGGCTCTATAG	
CP_ZRT2 compl 5' FLANK F/ORF	complementation	deletion	CAGGTTGTGCAGTCGTTGAG
CP_ZRT2 compl 5' FLANK R/ORF	complementation	deletion	CACGGCAGGCATCCCTGC ACAATAGAATCATAATCAGG
CP_ZRT2 compl 3' FLANK F	complementation	deletion	ATCTTACCATGAAAGCCAT
CP_ZRT2 compl 3' FLANK R	complementation	deletion	CCAGGCTTTATGAAATGG
CP_ZRT2 compl NESTED F	complementation	deletion	TGIGAAGGTGTCATGTGATAG
CP_ZRT2 compl NESTED R	complementation	deletion	ATCTTACCATGAAAGCCAT
CP_ZRT2 compl UPSTREAM CHECK F	complementation	deletion	CCAGGCTTTATGAAATGG
CP_ZRT2 compl UPSTREAM CHECK R	complementation	deletion	TCATGGATATGGCTCTATAG
CP_ZRT2 compl DOWNSTREAM CHECK F	complementation	deletion	TCATGGATATGGCTCTATAG
CP_ZRT2 compl DOWNSTREAM CHECK R	complementation	deletion	TCATGGATATGGCTCTATAG

Candida glabrata (CG) primers

Primer Name	Function	Mutation Type	Sequence
CG_CHT3 5' FLANK F	deletion	AACAAAACAGGATCAAAACAAAT	
CG_CHT3 5' FLANK R	deletion	CACGGGCGGCGCTGCAAGG GGGTGTATTGACGCGCATAA	
CG_CHT3 3' FLANK F	deletion	GTCAGGCGGCCGCTCCCTGC GGTTGATATTGACGCGCATAA	
CG_CHT3 3' FLANK R	deletion	AGTGAAGATTGAAACGTTAAT	
CG_CHT3 NESTED F	deletion	CCAGGCTTTATGAAATGG	
CG_CHT3 NESTED R	deletion	TGGTTAACAATAGTGCCTT	
CG_CHT3 INTERNAL F	deletion	GTGCTATTATGAAATTG	
CG_CHT3 INTERNAL R	deletion	TGAAGGTGTCATGTGATAG	
CG_CHT3 5' FLANK F	deletion	TTAACCGACACTGGCTAAAT	
CG_CHT3 5' FLANK R	deletion	TGAAGGTGTCATGTGATAG	
CG_CHT3 3' FLANK F	deletion	GATGGGAATTACCTGGCTCTG	
CG_CHT3 3' FLANK R	deletion	GACTATAAGGTGCTAAGGAG	
CG_CHT3 compl 5' FLANK F/ORF	complementation	deletion	AACAAGATCAAAGGATCAGCAG
CG_CHT3 compl 5' FLANK R/ORF	complementation	deletion	CACGGGCGGCGCTGCAAGG GGGTGTATTGACGCGCATAA
CG_CHT3 compl 3' FLANK F	complementation	deletion	GTCAGGCGGCCGCTCCCTGC GGTTGATATTGACGCGCATAA
CG_CHT3 compl 3' FLANK R	complementation	deletion	ACCTGAAGACTTTAGACCCAG
CG_CHT3 compl NESTED F	complementation	deletion	ACCTGAAGACTTTAGACCCAG
CG_CHT3 compl NESTED R	complementation	deletion	TGCAAACTACGAAAGGATAG
CG_CHT3 compl UPSTREAM CHECK F	complementation	deletion	GACGACACTGGCTAAGGAG
CG_CHT3 compl UPSTREAM CHECK R	complementation	deletion	AGTTTTCCTCGTAAAGCAGC
CG_CHT3 compl DOWNSTREAM CHECK F	complementation	deletion	GACGACACTGGCTAAGGAG
CG_CHT3 compl DOWNSTREAM CHECK R	complementation	deletion	GACGACACTGGCTAAGGAG

Primer Name	Function	Mutation Type	Sequence
CG_MP65 5' FLANK F	deletion	AGATTTCCTCTGGTAGACAGC	
CG_MP65 5' FLANK R	deletion	CACGGGCGGCGCTGCAAGG GGGTGTATTGACGCGCATAA	
CG_MP65 3' FLANK F deletion GTCAGGGCAGCATCCCTGC CTTTCTTGTAGTCAAAGTTATGA
CG_MP65 3' FLANK R deletion ATACAATTTGATTCTCTGTAGCC
CG_MP65 NESTED F deletion ATCGAAGCTTCTCTGGTATTTA
CG_MP65 NESTED R deletion AGTTACTTCTCAGGGAATTA
CG_MP65 INTERNAL F deletion GTTTTTCACTGTTGTAAGGG
CG_MP65 INTERNAL R deletion AATGTATGGAATTAGAGGT
CG_MP65 5' FLANK F deletion TAAATAGGGTTCTTCTAATGAG
CG_MP65 5' FLANK R deletion GGGTAGGTTCTTGTAAAGCT
CG_MP65 3' FLANK F deletion CATTTATGTTATATCGGTGA
CG_MP65 3' FLANK R deletion TCAATGTAGAACTAGAGG
CG_MP65 compl 5' FLANK F/ORF complementation AGATTTCTCTCTGAGACCCCTT
CG_MP65 compl 5' FLANK R/ORF complementation CACGGGGGCCCAGGCTACAATTAGCTTCTGTAGGCA
CG_MP65 compl 3' FLANK F complementation GTCAGGGGCCATCCCTGC
CG_MP65 compl 3' FLANK R complementation CCTATCACTGGAATTATGGGAC
CG_MP65 compl NESTED F complementation TGTCTGATATCTGTGCAGCCA
CG_MP65 compl NESTED R complementation AGTTGCAGTTTACAGATGAGGA
CG_MP65 compl UPSTREAM CHECK F complementation TCCGAGGTAAATCGAGATGAGGA
CG_MP65 compl UPSTREAM CHECK R complementation AAGAAGGAAGAAGAAGA
CG_MP65 compl DOWNSTREAM CHECK F complementation AGACTTAAATAATAGGACCCAAG
CG_MP65 compl DOWNSTREAM CHECK R complementation AATTAGGAGTTCACATACTGTT
CG_SUN41 5' FLANK F deletion CCTACCAATCAAATCGAGTTTT
CG_SUN41 5' FLANK R deletion CATCTATCTTCTTTGTGTTCG
CG_SUN41 3' FLANK F deletion GTCAGGGCAGCATCCCTGC
CG_SUN41 3' FLANK R deletion AGGTGTACATCTTTCGACAAAA
CG_SUN41 NESTED F deletion GTTTTGCCCTAATTCAGTCATC
CG_SUN41 NESTED R deletion TACATGGAAATGCAAAGCTAAG
CG_SUN41 INTERNAL F deletion TCATCATCATCATCTCCATCTC
CG_SUN41 INTERNAL R deletion CATTTTCGTAGGAAACATCCAC
CG_SUN41 5' FLANK F deletion TTGCCACACTATGAAAATGAAA
CG_SUN41 5' FLANK R deletion CTTTTGTGCTGGGAGGATTT
CG_SUN41 3' FLANK F deletion AGTCTTAATTGCATGTCCATCA
CG_SUN41 3' FLANK R deletion TGTTCCGACAGTTTTACGTAG
CG_TOS1 5' FLANK F deletion TTGGTGTGTGGTACTGAAA
CG_TOS1 5' FLANK R deletion TTTTCTGGGCTTTGTTCAAAG
CG_TOS1 3' FLANK F deletion CAGGGGCGGCCTAGCAGCAGGCGATTAGATGGTTGTGATG
CG_TOS1 3' FLANK R deletion GTGTTGTGATTCTAGACGATTGA
CG_TOS1 NESTED F deletion TCTCATTCTGTGAGTCTCTG
CG_TOS1 NESTED R deletion AGTGAGAGAGAGTAAATCGGTT
CG_TOS1 INTERNAL F deletion GAGGTCTCTTAAACTATCCAA
CG_TOS1 INTERNAL R deletion TTAGCACTTCAATGATT
CG_TOS1 5' FLANK F deletion AGTTTTGTGTTGTAGTCTAGCAA
CG_TOS1 5' FLANK R deletion CCACTAAACACTAAACACTAACTT
CG_TOS1 3' FLANK F deletion CCGCTAACACCTAACACTAAACACTT
CG_TOS1 3' FLANK R deletion AAGATGACCAACTACACTAACTAATG
CG_TOS1 compl 5' FLANK F/ORF complementation GCCCTTCAGTGGTTGTG
CG_TOS1 compl 5' FLANK R/ORF complementation CAGGGGCGGCCTAGCAGCAGGCGAAAGAAGGTTG
CG_TOS1 compl 3' FLANK F | complementation | GTCAGCGGCGCGATCCCTGCA ACCAACCCTTGCGCTAACAA
CG_TOS1 compl 3' FLANK R | complementation | TGCATACAAAAATGGCCAAAT
CG_TOS1 compl NESTED F | complementation | CGGTTTGTGCTGGGAGGAG
CG_TOS1 compl NESTED R | complementation | GCGGCCATTTGATGTTGAGA
CG_TOS1 compl UPSTREAM CHECK F | complementation | GATGCGGCCGCAACTTCGTT
CG_TOS1 compl UPSTREAM CHECK R | complementation | AAATGGATTGTGGCCTTCG
CG_TOS1 compl DOWNSTREAM CHECK F | complementation | GACCTAAAAATGCAACCCAGAG
CG_TOS1 compl DOWNSTREAM CHECK R | complementation | CAGTTCTGATGCTGGTGTTGC

CG_ZRT2 5' FLANK F | deletion | AGTCTTTCTTTCTATACCT
CG_ZRT2 5' FLANK R | deletion | CACGGCGGCCCTAGCAAGCC ATCACTCCTGAAACCAAAGATT
CG_ZRT2 3' FLANK F | deletion | GTCAAGGCCGATCCCTGC TGGATCGATGAAAATGCTCT
CG_ZRT2 3' FLANK R | deletion | ACCAATTCTTGATGTTGAGA
CG_ZRT2 NESTED F | deletion | CTTTATGAACTCCCTATCTT
CG_ZRT2 NESTED R | deletion | TGAATATGGTAAATAGTTGCTG
CG_ZRT2 INTERNAL F | deletion | TCTCAAAATTCAGTTTTCT
CG_ZRT2 INTERNAL R | deletion | TAGCATACCTCAGCTATC
CG_ZRT2 5' FLANK F | deletion | ACCAACCCTATACCTGCAAT
CG_ZRT2 5' FLANK R | deletion | GTCTAGTAGCTCACCTGTTAAT
CG_ZRT2 3' FLANK F | deletion | CTCAGAAACATGTTAACAGCAT
CG_ZRT2 3' FLANK R | deletion | ACCCGAGAAAAATACCTTTTTA
CG_ZRT2 compl 5' FLANK F/ORF | complementation | CATCAACTTTCTTACCGCATA
CG_ZRT2 compl 5' FLANK R/ORF | complementation | CACGGCGGCCCTAGCAAGCC ATCACTCCTGAAACCAAAGATT
CG_ZRT2 compl 3' FLANK F | complementation | GTCAAGGCCGATCCCTGCTGTCTTTCGAAA
CG_ZRT2 compl 3' FLANK R | complementation | ACCAATTCTTGATGTTGAGA
CG_ZRT2 compl NESTED F | complementation | AAGTGTTGCTGAAAGACGAG
CG_ZRT2 compl NESTED R | complementation | TCTTTAAAGGCTGTAGAGA
CG_ZRT2 compl UPSTREAM CHECK F | complementation | AGAATGCACAAGGATGAG
CG_ZRT2 compl UPSTREAM CHECK R | complementation | TGAAGTGACGCTGGAAAGTACG
CG_ZRT2 compl DOWNSTREAM CHECK F | complementation | AGGATCCGAGTGAAATCTCTG
CG_ZRT2 compl DOWNSTREAM CHECK R | complementation | AGGTTGGTTGACAGCAGACT

Candida auris (CR) primers

CR_CHT3 5' FLANK F | deletion | GGTATGTAATGCTCGCAA
CR_CHT3 5' FLANK R | deletion | CAGCGGCCGCGCTACGAGAGG AATTGTTGATCAAAGGGTGTCG
CR_CHT3 3' FLANK F | deletion | GTCAAGGCCGATCCCTGC TGGATCGATGAAAATGCTCT
CR_CHT3 3' FLANK R | deletion | GACCATGATGAGGAGCATC
CR_CHT3 NESTED F | deletion | CACTCTGTGCGATAATTTG
CR_CHT3 NESTED R | deletion | ACATCTTTGCAATGTTTGA
CR_CHT3 INTERNAL F | deletion | ACTCTTTGGCTCTCTGTT
CR_CHT3 INTERNAL R | deletion | CAGAAGTAGAGGTGATGTCG
CR_CHT3 5' FLANK F | deletion | GCCTCTCTTTTACCAATT
CR_CHT3 5' FLANK R | deletion | ACCACTAAAGGAGAAACG
CR_CHT3 3' FLANK F | deletion | GATTGCTGCCGCTAATT
CR_CHT3 3' FLANK R | deletion | ATATCGTAAGTGAG

CR_CHT3 compl 5' FLANK F/ORF | complementation | TGGGCGGCTCTTTACCAATT
CR_CHT3 compl 5' FLANK R/ORF | complementation | CAGCGGCCGCGCTACGAGAGG AATTGTTGATCAAAGGGTGTCG
CR_CHT3 compl 3' FLANK F | complementation | GTCAAGGCCGCGCTACGAGAGG AATTGTTGATCAAAGGGTGTCG
CR_CHT3 compl 3' FLANK R	complementation	ATCGTACTTGACTTGGCCCA
CR_CHT3 compl NESTED F	complementation	TTAGTGCCCTCAGTATTGACATCA
CR_CHT3 compl NESTED R	complementation	GCTTAGATCTGGCTAGG
CR_CHT3 compl UPSTREAM CHECK F	complementation	TTTGCAACCTCAGCCACGC
CR_CHT3 compl UPSTREAM CHECK R	complementation	CATTTAAATGTATTTGGCTTTT
CR_CHT3 compl DOWNSTREAM CHECK F	complementation	AGACTATAAAATAGCCACCA
CR_CHT3 compl DOWNSTREAM CHECK R	complementation	CGCATTACCTGAGCTCAT
CR_MP65 5' FLANK F	deletion	CTTTTCGAGTGTTCAGAA
CR_MP65 5' FLANK R	deletion	CACGGGCGGCCTAGCAGCGG
CR_MP65 3' FLANK F	deletion	GTCAGGGGCGGCATCCTGG TAAATTTGCTAGG
CR_MP65 NESTED F	deletion	AAGGTTATCACCTGTTTTT
CR_MP65 NESTED R	deletion	AGGTAAGAAAGCTGAGG
CR_MP65 INTERNAL F	deletion	AACTGGAACACTGTTGTT
CR_MP65 INTERNAL R	deletion	TGGCAGAGGATAGTCAAGA
CR_MP65 5' FLANK F	deletion	ATCTGATAAAACACCCACC
CR_MP65 5' FLANK R	deletion	AAAACAGGCCAGATTGTTT
CR_MP65 3' FLANK F	deletion	TTTGTCGAGTGGTTTT
CR_MP65 3' FLANK R	deletion	CGCATTACCTGAGCTCAT
CR_MP65 compl 5' FLANK F	complementation	CTTTTCGAGTGTTCAGAA
CR_MP65 compl 5' FLANK R	complementation	CACGGGCGGCCTAGCAGCGG
CR_MP65 compl 3' FLANK F	complementation	GTCAAGGCGGCCATCCTGG TAAATTTGCTAGG
CR_MP65 compl 3' FLANK R	complementation	TAACAACCTATCAAAGCGG
CR_MP65 compl NESTED F	complementation	ATCTGATAAAACACCCACC
CR_MP65 compl NESTED R	complementation	CTTGCTCATTTGTTGTTT
CR_MP65 compl UPSTREAM CHECK F	complementation	GGGCAAATTTGGAATCTT
CR_MP65 compl UPSTREAM CHECK R	complementation	TGGATTTGGCTTTGCTAT
CR_MP65 compl DOWNSTREAM CHECK F	complementation	CACCCAAGGCAATTCTATA
CR_MP65 compl DOWNSTREAM CHECK R	complementation	GCCAACGCTACCTTTTATA
CR_SUN41 5' FLANK F	deletion	CAGAATCTCTGGGGCTTCTT
CR_SUN41 5' FLANK R	deletion	CAGCAGCAGCCTAGCAGCGG
CR_SUN41 3' FLANK F	deletion	GTCAAGGCGGCCATCCTG
CR_SUN41 3' FLANK R	deletion	TTTACGTTGTGGTAGTTGA
CR_SUN41 NESTED F	deletion	CCTGCGAGGTTGGAATA
CR_SUN41 NESTED R	deletion	GAGAAGCATCAGG
CR_SUN41 INTERNAL F	deletion	GCAGTAGACTGTCTACT
CR_SUN41 INTERNAL R	deletion	CAAACGTCTGACGGAAG
CR_SUN41 5' FLANK F	deletion	GGGTAGAATTTGTTGGAAC
CR_SUN41 5' FLANK R	deletion	CCACGAGATAGCAAGGT
CR_SUN41 3' FLANK F	deletion	GATACAAATACGTAGCAAG
CR_SUN41 3' FLANK R	deletion	ACTGTTTTGCAGCTGTTACT
CR_SUN41 compl 5' FLANK F	complementation	TCCCCCTAGTTGGTTCA
CR_SUN41 compl 5' FLANK R	complementation	CAGGCGCGCCCTAGCAGCGG
CR_SUN41 compl 3' FLANK F	complementation	GTCAAGGCGGCCATCCTG
CR_SUN41 compl 3' FLANK R	complementation	TTGCTTTGTTGCTCAT
CR_SUN41 compl NESTED F	complementation	AACAACGACACTTTTGCAAAT
CR_ZRT2 compl UPSTREAM CHECK R	complementation	TGGATTTGGCTTTCGGTAT
---------------------------------	-----------------	----------------------
CR_ZRT2 compl DOWNSTREAM CHECK F	complementation	CCACCAAGGCATTTCTATA
CR_ZRT2 compl DOWNSTREAM CHECK R	complementation	AAAGACCAAGTATATCAATCT
Dataset S1. Candida albicans extracellular vesicle proteome.

Dataset S2. Candida tropicalis extracellular vesicle proteome.

Dataset S3. Candida parapsilosis extracellular vesicle proteome.

Dataset S4. Candida glabrata extracellular vesicle proteome.

Dataset S5. Candida auris extracellular vesicle proteome.