Protein family review

The synucleins

Julia M. George

Address: Department of Cell and Structural Biology, University of Illinois, Urbana, IL 61801, USA. E-mail: j-george@uiuc.edu

Published: 20 December 2001

Genome Biology 2001, 3(1):reviews3002.1–3002.6

The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2001/3/1/reviews/3002

© BioMed Central Ltd (Print ISSN 1465-6906; Online ISSN 1465-6914)

Summary

Synucleins are small, soluble proteins expressed primarily in neural tissue and in certain tumors. The family includes three known proteins: α-synuclein, β-synuclein, and γ-synuclein. All synucleins have in common a highly conserved α-helical lipid-binding motif with similarity to the class-A2 lipid-binding domains of the exchangeable apolipoproteins. Synuclein family members are not found outside vertebrates, although they have some conserved structural similarity with plant ‘late-embryo-abundant’ proteins. The α- and β-synuclein proteins are found primarily in brain tissue, where they are seen mainly in presynaptic terminals. The γ-synuclein protein is found primarily in the peripheral nervous system and retina, but its expression in breast tumors is a marker for tumor progression. Normal cellular functions have not been determined for any of the synuclein proteins, although some data suggest a role in the regulation of membrane stability and/or turnover. Mutations in α-synuclein are associated with rare familial cases of early-onset Parkinson’s disease, and the protein accumulates abnormally in Parkinson’s disease, Alzheimer’s disease, and several other neurodegenerative illnesses. The current challenge is to understand the normal cellular function of these proteins and how they might contribute to the development of human disease.

Gene organization and evolutionary history

The synuclein family consists of three distinct genes, α-synuclein, β-synuclein, and γ-synuclein, which have so far been described only in vertebrates. Table 1 catalogs the unique members of the synuclein family that are currently listed in GenBank [1]; these 16 sequences encode the orthologs of each of the three synucleins in the species in which they have been described. The sequences are shown aligned in Figure 1a and their estimated relationships are indicated by the dendrogram in Figure 1b. The α-synuclein gene has been mapped to human chromosome 4q21.3-q22 [2], β-synuclein to human chromosome 5q35 [3], and γ-synuclein to human chromosome 10q23.2-q23.3 [4]. The α-synuclein gene is organized as 7 exons, 5 of which are protein-coding, while the β-synuclein gene has 6 exons (5 protein-coding) and the γ-synuclein gene has 5 exons (all protein-coding) (reviewed in [5]).

Characteristic structural features

All synuclein protein sequences consist of a highly conserved amino-terminal domain that includes a variable number of 11-residue repeats and a less-conserved carboxy-terminal domain that includes a preponderance of acidic residues. The only significant divergences within the repeat domain are the deletion of 11 amino acids (residues 53-63) in all β-synucleins and the addition of a repeat after residue 32 in the γ-synuclein of the electric ray Torpedo californica (Figure 1a). The 11-mer repeats make up a conserved apolipoprotein-like class-A2 helix (Figure 2a,b), which mediates binding to phospholipid vesicles; lipid binding is accompanied by a large shift in protein secondary structure, from around 3% to over 70% α-helix [6].

Although no confirmed synuclein orthologs have been identified in non-vertebrates, a low-scoring BLAST ‘hit’ for similarity is obtained for LEA76, a plant protein belonging to the late embryo-abundant (LEA) group III protein family. Upon further examination, the sequence similarity is attributable to the presence of an 11-residue repeat encoding a similar class-A2 lipid-binding motif (Figure 2c). Like synucleins, LEA group III proteins are relatively unordered in solution; upon fast drying, however, they shift to a largely α-helical
conformation [7], and are hypothesized to associate with and stabilize cellular membranes against desiccation stress. A Caenorhabditis elegans LEA homolog has been reported [8] that also shares this structural motif (Figure 2d). Thus, despite the low degree of primary sequence similarity, further scrutiny of the LEA proteins’ potential functional relationships to the synucleins is warranted.

Localization and function
The first synuclein was identified in 1988 by Maroteaux et al. [9], who screened an expression library with an antiserum raised against purified cholinergic vesicles from the electric organ of the Pacific electric ray Torpedo californica. This initial cDNA clone (encoding electric-ray \(\alpha \)-synuclein; Table 1) was used to isolate a rat clone encoding a 140-amino-acid protein (rat \(\alpha \)-synuclein, Table 1). The product of the \(\beta \)-synuclein gene was first isolated as a bovine brain-specific phosphoprotein (phosphateuroprotein 14 kDa or PNP14), and its sequence was first described in 1993 [10].

The \(\alpha \)- and \(\beta \)-synuclein proteins are predominately expressed in brain, particularly in the neocortex, hippocampus, striatum, thalamus, and cerebellum; protein immunoreactivity is enriched at presynaptic terminals [11,12]. Although their normal physiological functions are unknown, several lines of evidence suggest a role in membrane-associated processes at the presynaptic terminal: \(\alpha \)-synuclein is specifically upregulated in a discrete population of presynaptic terminals of the songbird brain during a period of song-acquisition-related synaptic rearrangement [13]; \(\alpha \)- and \(\beta \)-synuclein proteins were biochemically purified from bovine brain as constitutive inhibitors of phospholipase D2 [14], an enzyme that catalyzes the hydrolysis of phosphatidylethanolamine to phosphatidic acid and appears to play a role in cytoskeletal reorganization and/or endocytosis at the plasma membrane [15]; \(\alpha \)-synuclein knockout mice have enhanced dopamine release at nigrostriatal terminals in response to paired electrical stimuli, suggesting that \(\alpha \)-synuclein is an activity-dependent negative regulator of dopamine neurotransmission [16]; and, finally, depletion of \(\alpha \)-synuclein from cultured primary hippocampal neurons by treatment with antisense oligonucleotides results in a decrease in the distal pool of presynaptic vesicles, as visualized by electron microscopy [17].

Mammalian \(\gamma \)-synuclein was first identified as breast cancerspecific gene 1 (BCSG1) in a high-throughput direct differential-cDNA-sequencing screen for markers of breast cancer [18]. The protein is expressed in the peripheral nervous system (in primary sensory neurons, sympathetic neurons, and motor neurons) [18] and is also detected in brain [19], ovarian tumors [20], and in the olfactory epithelium [21]. A sequence dubbed synoretin was independently isolated from ocular tissues in a screen for novel proteins regulating phototransduction and is now thought to represent the bovine ortholog of \(\gamma \)-synuclein [22]. The normal cellular function of \(\gamma \)-synuclein is likewise unknown, but exogenous expression of the protein increases the invasive and metastatic potential of breast tumors [23].

Synucleins in neurodegenerative disease
In 1993, Ueda et al. reported [24] that a short peptide (non-amyloid component, NAC) derived from purified amyloid

Gene type	Species	Other names	OMIM accession number*	GenBank accession number†
\(\alpha \)	Human	NACP	163890	586087
\(\alpha \)	Rat	SYN1, SYN2, SYN3 (splice variants)		
\(\alpha \)	Mouse	SYN2 (splice variant)		
\(\alpha \)	Chicken			
\(\alpha \)	Canary	Synelfin		
\(\beta \)	Human		602569	4507111
\(\beta \)	Bovine	PNP14		
\(\beta \)	Rat	PNP14		
\(\beta \)	Mouse			
\(\beta \)	Chicken			
\(\gamma \)	Human	BCSG1, persyn	602998	4507113
\(\gamma \)	Rat	Sensory neuron synuclein		
\(\gamma \)	Mouse	Persyn		
\(\gamma \)	Chicken	Persyn		
\(\gamma \)	Bovine	Synoretin		
\(\gamma \)	Electric ray	Synuclein		

*See OMIM [36]; †see GenBank [1].
refereed research

into 16 unique groups, each representing a single protein-coding sequence orthologous to one of the three synucleins (summarized in Table 1). The resulting 16 synuclein sequences were aligned with the Multalin program [37]. Shading indicates identity with rat component precursor (NACP), which is now known to be derived from a larger precursor protein, non-amyloid plaques from the brains of people with Alzheimer’s disease [22].

The detection of α-synuclein in ubiquitinated inclusions raises the issue of whether α-synuclein is normally targeted for turnover by the ubiquitin-proteasome machinery. Although the evidence for α-synuclein turnover by the proteasome is equivocal [30-32], proteasomal inhibitors do not appear to cause accumulation of poly-ubiquitinated α-synuclein. The α-synuclein binding partner synphilin-1 was, however, recently shown to be ubiquitinated and targeted for proteasomal turnover by parkin, a ubiquitin ligase, mutation of which is itself a risk factor for familial Parkinson’s disease. This may provide a common pathological mechanism linking familial mutations in α-synuclein and parkin via their common interactions with synphilin-1 [33].

The β- and γ-synuclein proteins are not found in Lewy bodies, but both are associated with hippocampal axon pathology in Parkinson’s disease and dementia with Lewy bodies [34]. A change in the expression of γ-synuclein has also been specifically observed in the retina of patients with Alzheimer’s disease [22].
The association of synucleins with human disease has focused a great deal of interest on this protein family. The question of what the synucleins do still remains, however. Much work remains to be done to elucidate the normal cellular functions of these unusually conserved proteins and to determine how they contribute to diverse disease processes spanning neurodegenerative disease and cancer.

Acknowledgements

The author is supported by NIH grant ROI1 AG13762 from the National Institute on Aging.

Additional data files

Additional data files available with the online version of this article include animated versions of Figure 2a, Figure 2b, Figure 2c and Figure 2d, which can be viewed with Quick-Time Player.

References

1. Searching GenBank
 [http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html]
 An annotated sequence database maintained by the National Institutes of Health.

2. Chen X, de Silva HA, Pettenati MJ, Rao PN, St George-Hyslop P, Roses AD, Xia Y, Horsburgh K, Ueda K, Saitoh T: The human NACP/alpha-synuclein gene: chromosome assignment to 4q21.3-q22 and TaqI RFLP analysis. Genomics 1995, 26:425-427.

3. Spillantini MG, Divise A, Goedert M: Assignment of human alpha-synuclein (SNCA) and beta-synuclein (SNCB) genes to chromosomes 4q21 and 5q35. Genomics 1995, 27:379-381.

4. Ninkina NN, Alimova-Kost MV, Paterson JW, Delaney L, Cohen BB, Imreh S, Gnuwech NV, Davies AM, Buchman VL: Organization, expression and polymorphism of the human persyn gene. Hum Mol Genet 1998, 7:1417-1424.

5. Lavedan C: The synuclein family. Genome Res 1998, 8:871-880.

6. Perrin RJ, Woods WS, Clayton DF, George JM: Interaction of human alpha-synuclein and Parkinson's disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J Biol Chem 2000, 275:34393-34398.

7. Walker M, McCreary S, Brandt WF, Lindsay GG, Holzknecht FA: Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 2001, 1544:196-206.

8. Entrez Nucleotide entry for Caenorhabditis elegans LEA
 [http://www.ncbi.nlm.nih.gov/entrez/viewer.cgi?val=AF016513.1]
 A C. elegans sequence with homology to plant late embryo abundant (LEA) proteins.
9. Maroteaux L, Campanelli JT, Scheller RH: Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 1988, 8:2804-2815.

10. Nakajo S, Tsukada K, Omata K, Nakamura Y, Nakaya K: A new brain-specific 14-kDa protein is a phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation. Eur J Biochem 1993, 217:1057-1063.

The first β-synuclein was directly isolated from bovine brain.

11. Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T: The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995, 14:467-475.

This study maps the distribution of α-synuclein protein in rat brain and demonstrates localization to presynaptic terminals.

12. Nakajo S, Shioda S, Nakai Y, Nakaya K: Localization of phospho-neuroprotein 14 (PNP 14) and its mRNA expression in rat brain determined by immunocytochemistry and in situ hybridization. Brain Res Mol Brain Res 1994, 27:81-86.

The authors map the distribution of β-synuclein protein and mRNA in rat brain.

13. George JM, Jin H, Woods WS, Clayton DF: Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 1995, 15:361-372.

Zebra finch α-synuclein protein is transiently expressed in a brain area associated with song acquisition during the critical period for song learning; expression declines concomitantly with song stabilization.

14. Jenco JM, Rawlingson A, Daniels B, Morris AJ: Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 1998, 37:4901-4909.

The activity of phospholipase D2 (PLD2) is thought to be constitutively repressed in vivo. Purification of an endogenous inhibitor of PLD2 yielded α- and β-synuclein proteins.

15. Colley WC, Sung TC, Roll R, Jenco J, Hammond SM, Altschuller Y, Bar-Sagi D, Morris AJ, Frohman MA: Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 1997, 7:191-201.

Summarizes the enzymatic activity and potential physiological roles of PLD2.

16. Abelowich A, Schnitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, et al.: Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000, 25:229-252.

Electrophysiological characterization of α-synuclein null mice demonstrates that the absence of α-synuclein protein leads to a reduction in striatal dopamine.

17. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM: Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hipocampal neurons. J Neurosci 2000, 20:3214-3220.

Antisense deplation of α-synuclein from cultured primary hippocampal neurons causes a decline in a discrete population of presynaptic vesicles.

18. Ji H, Liu YE, Jia T, Wang M, Liu J, Xiao G, Joseph BK, Rosen C, Shi YE: Identification of a breast cancer-specific gene, BCSC1, by direct differential cDNA sequencing. Cancer Res 1997, 57:759-764.

The first mammalian member of the γ-synuclein subfamily, breast-cancer-specific gene 1 (BCSC1), was identified in a screen for markers of human breast cancer.

19. Buchman VL, Adu J, Pinon LG, Ninkina NN, Davies AM: Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci 1998, 18:9335-9341.

Mapping of the expression of γ-synuclein protein within the brain and peripheral nervous system.

20. Lavedan C, Leroy E, Dehejaia A, Buchholtz S, Dutra A, Nussbaum RL, Polymeropoulos MH: Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet 1998, 103:106-112.

Reports the organization and chromosomal location of the γ-synuclein gene and also maps the tissue distribution of the protein.

21. Duda JE, Shah U, Arnold SE, Lee VM, Trojanowski JQ: The expression of alpha-, beta-, and gamma-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases. Exp Neurol 1999, 160:515-522.

Documentation of the expression of γ-synuclein protein in the olfactory epithelium.

22. Surhoyah A, McMahan B, Masliah E, Surguchova I: Synucleins in ocular tissues. J Neurosci Res 2001, 65:68-77.

Mapping of the distributions of α-, β-, and γ-synuclein proteins in retina and optic nerve.

23. Jia T, Liu YE, Liu J, Shi YE: Stimulation of breast cancer invasion and metastasis by synuclein gamma. Cancer Res 1999, 59:742-747.

Demonstrates that overexpression of γ-synuclein in breast-cancer cells increases motility and invasiveness in vitro and metastatic potential in vivo.

24. Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DO, Kondo J, Ihara Y, Saitoh T: Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 1993, 90:11282-11286.

A fragment of α-synuclein was isolated from plaque material from patients with Alzheimer’s disease. This is the first report of an association of α-synuclein with neurodegenerative diseases.

25. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejaia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al.: Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276:2045-2047.

Identification of the first α-synuclein mutation linked to familial Early-onset Parkinson’s disease.

26. Kruger R, Kuhn W, Muller T, Wotaila D, Graeber M, Kosel P, Przuntek H, Epplin JT, Schols L, Riess O: Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998, 18:106-108.

Description of the second α-synuclein mutation linked to Parkinson’s disease.

27. Irizarry MC, Growdon W, Gomez-Isla T, Newell K, George JM, Clayton DF, Hyman BT: Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J Neuropathol Exp Neurol 1998, 57:334-337.

Identification of α-synuclein as an excellent immunological marker for Lewy bodies and Lewy neurites.

28. Goedert M: Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001, 2:492-501.

A comprehensive review of the relationship between α-synuclein accumulation and human neurodegenerative disease.

29. Conway KA, Rochet JC, Bieganski RM, Lansbury PT: Kinetic stabi- lization of the α-synuclein protofibril by a dopamine-α-synu- clein adduct. Science 2001, 294:1346-1349.

A screen for compounds inhibiting α-synuclein fibrillation yielded primarily catecholamines related to dopamine.

30. Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MA: Degradation of alpha-synuclein by proteasome. J Biol Chem 1999, 274:33855-33858.

The authors report that A53T α-synuclein has a longer half-life than wild-type α-synuclein in transfected SYSY cells. Turnover of both isoforms is blocked by the selective proteasomal inhibitor beta-lactone.

31. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trock- bacher A, Schneider R, Mizuno Y, Koski KS, Selkoe DJ: Ubiquitina- tion of a new form of alpha-synuclein by parkin in human brain: implications for Parkinson’s disease. Science 2001, 293:263-269.

This paper reports the identification of a novel N-glycosylated form of α-synuclein (alphaSp22), which is a target for ubiquitination by parkin, an E3 ubiquitin ligase implicated in Parkinsonian disease.

32. Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM, Trojanowski JQ, Lee VM, Ichisopoulous H: Induction of alpha- synuclein aggregation by intracellular nitrative insult. J Neurosci 2001, 21:8053-8061.

The authors conclude that induction of the proteasome in HEK-293 cells does not alter the steady-state levels of transfected α-synuclein.

33. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM: Parkin ubiquititates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 2001, 7:114-1150.

Demonstrates ubiquitination of the α-synuclein-associated protein synphilin by the E3 ubiquitin ligase parkin, and shows that mutations in
parkin that are linked to Parkinson’s disease disrupt its ability to ubiquitinate synphilin.

34. Galvin JE, Uryu K, Lee VM, Trojanowski JQ: Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc Natl Acad Sci USA 1999, 96:13450-13455.

The authors report that β- and γ-synuclein, although not found in Lewy bodies, are associated with hippocampal axon pathology in both Parkinson’s disease and dementia with Lewy bodies.

35. Perrin RJ, Woods WS, Clayton DF, George JM: Exposure to long-chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J Biol Chem 2001, 276:41958-41962.

This paper reports rapid and irreversible multimerization of each of the synuclein family members when exposed to very long-chain polyunsaturated fatty acids such as the second-messenger arachidonic acid.

36. Online Mendelian Inheritance in Man (OMIM) [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM]

A catalog of human genes and genetic disorders at the National Center for Biotechnology Information.

37. Corpet F: Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 1988, 16:10881-10890.

The Multalin program is useful for creating multiple alignments and formatting them for display.

38. Thompson J, Higgins D, Gibson T: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.

This program calculates the optimal alignment between multiple sequences; output can be as a multiple alignment or as a phylogenetic tree.

39. Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996, 12:357-358.

This application is useful for displaying the output of ClustalW.

40. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723.

This program can be used to render molecular coordinates into three-dimensional images; it can also be used to assign an idealized secondary structure to a sequence and then generate the corresponding molecular coordinates.

41. Sayle RA, Milner-White EJ: RASMOL: biomolecular graphics for all. Trends Biochem Sci 1995, 20:374.

This program is useful for rendering three-dimensional images of molecules from their molecular coordinates.