Water availability trends across water management zones in Uganda

Charles Onyutha1 | Arnold Asiimwe1 | Lawrence Muhwezi1 | Ambrose Mubialiwo1,2

1Department of Civil and Environmental Engineering, Kyambogo University, Kampala, Uganda
2Africa Center of Excellence for Water Management, Addis Ababa University, Addis Ababa, Ethiopia

Correspondence
Charles Onyutha, Department of Civil and Environmental Engineering, Kyambogo University, P.O. Box 1, Kyambogo, Kampala, Uganda.
Email: conyutha@kyu.ac.ug

Abstract
This study assessed trends in gridded (0.25° × 0.25°) Climate Forecast System Reanalysis (CFSR) precipitation, potential evapotranspiration (PET), and precipitation minus PET (PMP) across the four water management zones (WMZs) in Uganda including Kyoga, Victoria, Albert, and Upper Nile. The period considered was 1979–2013. Validation of CFSR datasets was conducted using precipitation observed at eight meteorological stations across the country. Observed precipitation trend direction was satisfactorily reproduced by CFSR data extracted at five out of eight stations. Negative (positive) values of long-term PMP mean were considered to indicate areas characterized by water scarcity (surplus). Areas with large positive PMP were confined to Lake Victoria and mountains such as Rwenzori and Elgon. The largest negative PMP values were in the arid and semi-arid areas of north and northeastern Uganda. The null hypothesis H_0 (no trend) was rejected ($p < 0.05$) for increasing annual precipitation trends across the various WMZs except in the extreme eastern parts of the Upper Nile, Kyoga, and Victoria WMZs (or areas along the boundary of Uganda and Kenya). The H_0 (no trend) was rejected ($p < 0.05$) for decreasing trends in annual PET over West Nile region of the Upper Nile, western parts of Victoria, and the Albert WMZs. For increasing trend in PMP, the H_0 (no trend) was rejected ($p < 0.05$) across the various WMZs except around the Mount Elgon area. The study findings are relevant for planning of water resources management across the different WMZs in the country.

KEYWORDS
potential evapotranspiration, precipitation, trend analyses, Uganda, water availability, water management zones, water scarcity

1 | INTRODUCTION

Uganda is a land-locked country in East-Central Africa situated in the heart of the African Great Lakes region. To harness the abundant opportunities across Uganda, a 30-year development master plan referred to as the Uganda’s Vision 2040 was launched in 2013 (Government of Uganda, 2013). This vision was conceptualized around...
strengthening the fundamentals of the economy. Through the Directorate of Water Resources Management (DWRM), Ministry of Water and Environment (MWE) implemented catchment-based water resources management framework, thereby leading to the creation of four regional units known as Water Management Zones (WMZs). The WMZs in Uganda include Kyoga, Upper Nile, Victoria, and Albert located in the eastern, northern, southeastern, and western regions, respectively (Ministry of Water and Environment, 2014; 2021) (Figure 1). MWE issued guidelines to develop catchment management plans for the various catchments within each WMZ (Ministry of Water and Environment, 2014). Clear understanding of hydro-climatic trends across the country is relevant for developing such catchment management plans.

In Uganda, a number of studies (Kansiime et al., 2013; Nyeko-Ogiramoi et al., 2013; Egeru et al., 2019; Mubialiwo et al., 2020; 2021a; 2021b) have been conducted to understand variations in hydro-climatic variables such as precipitation, potential evapotranspiration (PET), river flow, and temperature. Most of these studies were conducted on the scales of a catchment, sub-catchment, or region. Nevertheless, the entire country was considered in a few other studies such as Ngoma et al. (2021), Kisembe et al. (2019), Jury (2018), Onyutha (2016a), and Nsubuga et al. (2014). However, even with the establishment of catchment management planning guidelines (Ministry of Water and Environment, 2014), country-wide studies conducted after 2014 (Onyutha, 2016a; Jury, 2018; Kisembe et al., 2019; Ngoma et al., 2021) did not consider differences in the hydro-climates of the various WMZs. Besides, some of the past studies (Onyutha, 2016a; Jury, 2018) analysed changes in precipitation only. A part from precipitation, PET is another key factor for understanding water balance of a catchment or region. As opposed to separately analysing precipitation or PET, consideration of the metric precipitation minus PET (PMP) (an indicator of physical water availability or scarcity) yields vital information for developing catchment management plans for WMZs.

Analyses of hydro-climatic trends require relevant long-term observed datasets. However, Uganda as a country in the sub-Saharan region lacks reliable long-term observed hydro-climatic data. Furthermore, historical records from the few weather stations across the sub-Saharan region are of uncertain and questionable quality (Van Griensven et al., 2012; Onyutha and Willems, 2017; Onyutha, 2018). To overcome the problem of data limitation, hydro-climatic trends can be conducted using reanalyses and/or satellite data products. Examples of such products include Global Precipitation Climatology Project (GPCP) (Adler et al., 2018), Princeton Global Forcing (PGF) (Sheffield et al., 2006), Climate Forecast System Reanalysis (CFSR) of the National Center for Environmental Prediction (NCEP) (Saha et al., 2014), Climate Research Unit (CRU) Time series version 4.0 (Harris et al., 2020), and Climate Hazards group Infrared Precipitation with Stations (CHIRPS) (Funk et al., 2015). A number of recent studies (Hua et al., 2019; Alfaro et al., 2020; Martinez-Cruz et al., 2020; Mubialiwo et al., 2020; 2021b; Ngoma et al., 2021; Onyutha et al., 2021) have made use of the reanalyses and/or satellite products. The increasing use of satellite or reanalyses products is largely attributed to their global coverage, fine spatial and temporal resolutions, and long-term record periods. CFSR dataset has a fine resolution, and coupled atmosphere–ocean–land surface–sea ice system intended to offer the superlative approximation of weather products (Saha et al., 2014). Whereas CFSR may exhibit slightly lower performance for instance, overestimating and/or underestimating station-based hydro-climatic variable in some regions (Nkiaka et al., 2017; Worqlul et al., 2017), its application has yielded creditable results when compared with the station-based data from several areas across the world (Fuka et al., 2013; Onyutha, 2016b; Alfaro et al., 2020; Martinez-Cruz et al., 2020). Besides, the study by Dile and Srinivasan (2014) recommended the application of

![Figure 1](attachment:image.png)
CFSR series, for instance, for hydrological prediction in a data-scarce region. Therefore, CFSR series were adopted in the present study.

To the best of our knowledge, by the time of conducting this research, there existed no studies that analysed trends in precipitation, PET, and PMP across the WMZs in Uganda and our work was aimed at addressing this research gap. This was performed while taking into account the differences in hydro-climates among the various WMZs.

2 | DATA AND METHODOLOGY

2.1 | Data

2.1.1 | Precipitation

Monthly CFSR series of NCEP (Saha et al., 2014) including precipitation, minimum \((T_{min}) \) and maximum \((T_{max}) \) temperature data over the period 1979–2013 were obtained in a gridded \((0.25^\circ \times 0.25^\circ)\) form (Figure 1). Being reanalyses products, CFSR series may possess some shortcomings resulting from, say, insufficient distribution of relevant instruments and uncertainties in the precipitation recovery procedures (Nair et al., 2009). Therefore, the validity of CFSR dataset was evaluated using observed daily precipitation obtained from the Uganda National Meteorological Authority (UNMA) (Table 1). This requirement of validating satellite or reanalysis products prior to their application was also considered in other past studies across Uganda. Examples of such studies include Mubialiwo et al. (2020, 2021a, 2021b) and Onyutha et al. (2020). The procedure followed in validating CFSR can be found in section 2.2.2. From Figure 1, only two stations were identified and deemed representative in each WMZ. The selection of precipitation observed at only two locations was due to lack of weather stations with data over the same period as that for the CFSR series. Data quality check revealed that not greater than 10% of the total required records over the study period was missing at each selected weather station. The inverted distance weighed (IDW) interpolation approach (Shepard, 1968) was adopted to fill-in the missing precipitation records. The suitability of IDW interpolation for the precipitation over the study area was recently demonstrated by Chelangat and Abebe (2021) and Mubialiwo et al. (2021a).

2.1.2 | Potential evapotranspiration PET

To estimate PET rates, a number of observed meteorological series (such as solar radiation, relative humidity, wind speed, and temperature) are required. As already mentioned before, such series are lacking across the study area. Eventually, a number of methods exist for estimating PET based on the relevant datasets available. These methods fall under three categories based on whether they depend on energy mass balance, temperature, and radiation. Penman–Monteith (PM) (Allen et al., 1998) is a typical approach which is based on the energy-mass balance. Methods based on temperature can be found in Linacre (1977), Thornthwaite (1948), Hargreaves and Samani (1985, 1982), Blaney and Criddle (1950), and Hamon (1963). Approaches that rely on radiation can be found in Abtew (1996), Priestley and Taylor (1972), and Makkink (1957). The Penman–Monteith method (Allen et al., 1998) has physical meanings, but is recommended to be applied in areas with adequate weather data. However, the Hargreaves method (Hargreaves and Samani, 1982; 1985) requires only minimum and maximum temperature and can be suitable for estimating PET over data-scarce areas. A few recent studies (Mubialiwo et al., 2020; 2021b; Mukasa et al., 2020; Onyutha et al., 2020; Chelangat and Abebe, 2021; Onyutha et al., 2021) have successfully applied the Hargreaves method in different parts of Uganda or the study area. In this line, the Hargreaves method was adopted in this study.

Daily PET (mm-day\(^{-1}\)) was estimated using the Hargreaves method (Hargreaves and Samani, 1982; 1985) which makes use of \(T_{min}(^\circ C) \) and \(T_{max}(^\circ C) \) such that

\[
PET = 0.0023 \times R_{d}(T_{mean} + 17.8) \sqrt{(T_{max} - T_{min})},
\]

where \(R_d \) is the incoming extra-terrestrial solar radiation (W-m\(^{-2}\)) estimated using the latitude of each grid point and the calendar day of the year. Daily precipitation and estimated PET were converted into seasonal and annual time series. It is known that the East African region is characterized by largely bimodal precipitation annual cycle comprising winter dry season (January–February [JF]), the long rains season (MAM), the summer dry season (June–September [JJAS]), and the short rains season (OND) (Yang et al., 2015). Eventually, JF, MAM, JJAS, and OND were considered in this study.

2.2 | Methodology

2.2.1 | Analyses of trends

Linear trend magnitude or slope \((m) \) in seasonal and annual precipitation, PET, and the metric PMP was computed using (Theil 1950) and Sen (1968) such that
TABLE 1 Precipitation stations within the WMZs

S. No.	Station name	Latitude	Longitude	Record length	Long-term mean of annual data (mm year⁻¹)
1	Masaka Forest – Masaka	−0.33°S	31.73°E	1920–2012	448
2	Serere Agric. Station – Soroti	1.52°N	33.45°E	1920–2010	1,326
3	Masindi Met. Station	1.68°N	31.72°E	1926–2010	1,319
4	Soroti Met. Station – Soroti	1.72°N	33.62°E	1924–2012	1,322
5	Ibanda – Mbarara	0.12°N	30.50°E	1928–2010	705
6	Nkozi Experimental Farm – Mpigi	0.02°N	32.02°E	1924–2012	508
7	Wadelai WDD – Gulu	2.73°N	31.40°E	1965–2008	1,068
8	Gulu Met. Station – Gulu	2.78°N	32.28°E	1937–2010	1,446

\[
m = \text{median}((x_j - x_i) \times (j - i)^{-1}), \forall i < j, \tag{2}\]

where \(x_j\) and \(x_i\) are correspondingly the \(j\)th and \(i\)th value from the sample of size \(n\) such that \(1 < i \leq (n - 1)\) and \(2 < j \leq n\).

Trend significance was quantified using cumulative sum of the difference (CSD) between exceedance and non-exceedance counts of data points (Onyutha, 2016c; 2016d). For the adopted method, consider \(n\) as sample size. The given series is rescaled to become \(d_i\) by computing the difference between the exceedance and non-exceedance counts of data points using (Onyutha, 2016c),

\[
d_i = u_i - v_i \quad \text{for } i = 1, 2, 3, ..., n, \tag{3}\]

where \(u_i\) is the number of times each data point is exceeded and \(v_i\) denotes the number of times each data point exceeds others. The trend statistic \(T\) can be calculated using (Onyutha, 2016c),

\[
T = 6 \times (n^3 - n)^{-1} \times \sum_{j=1}^{n-1} \sum_{i=1}^{j} d_i. \tag{4}\]

Values of \(T > 0\) and \(T < 0\) indicate increasing and decreasing trend, respectively.

\(T\) is approximately normally distributed with mean of zero and the variance given by \((n - 1)^{-1}\) (Onyutha, 2016e). The standardized trend statistic \(Z\) with a normalized distribution of mean of zero and variance equal to one can be given by

\[
Z = T \times \left(\sqrt{1/(n - 1) \times \gamma} \right)^{-1}, \tag{5}\]

where the term \(\gamma\) takes care of the influence of autocorrelation on trend results (Onyutha, 2016d). Considering \(Z_{α/2}\) as the standard normal variate, the null hypothesis \(H_0\) (no trend) was not rejected if \(|Z| < |Z_{α/2}|\) (or \(p > 0.05\)), otherwise, the \(H_0\) was rejected.

2.2.2 Validation of the CFSR data

CFSR series was extracted at the location of each selected station with observed precipitation. A common period 1979–2008 (30 years) over which both observed and CFSR series had data was considered. Observed series were converted to seasonal and annual scales as done for CFSR precipitation. In the validation, the \(H_0\) (no correlation) was not rejected when the coefficient of correlation between observed and CFSR precipitation was less than the critical Pearson’s correlation value at \(\alpha = 0.05\) (or 0.361 in this study). Trends from observed and CFSR-based precipitation were also compared. Validation was only conducted for precipitation because there was no observed data for evaporation or temperature. CFSR validation was conducted at annual and seasonal (JF, MAM, JJAS, and OND) time scales.

2.2.3 Homogeneity of precipitation

Data which is not homogeneous requires application of a correction factor before it can be used for further analysis. Examples of studies which tested for homogeneity in climatic data include Singh et al. (2015), Hänsel et al. (2016), and Singh et al. (2016). In order to identify if there was a particular pattern in the deviation from long-term mean, homogeneity test was conducted using observed annual precipitation data. The applied techniques included the Pettitt’s test (Pettitt, 1979), standard normal homogeneity test (SNHT) (Alexandersson, 1986), Buishand’s test (Buishand, 1982), and Von Neumann’s test (Von Neumann, 1941). In the four tests, the \(H_0\) (precipitation data are homogenous) was not rejected when the computed \(p\)-value was greater than the selected \(\alpha\) (0.05 in the present study). Under the alternative hypothesis \(H_1\), the four homogeneity testing techniques assume a step-wise jump in the long-term mean at a particular point in time. Additionally, the cumulative sum (CUSUM) nonparametric
test of Page (1961) was applied. Upper and lower limits on regime shifts in the CUSUM charts were constructed based on standard deviation (SD) and in terms of the mean ± 2 SD of CUSUM data points.

3 | RESULTS AND DISCUSSION

3.1 | Long-term mean precipitation, PET, and PMP

Figure 2 shows spatial distribution of seasonal and annual of precipitation, PET, and PMP. The Upper Nile, Kyoga, and (a big portion of) the Albert WMZs received the least precipitation amounts during the JF season. Also, Victoria WMZ received the least (highest) JJAS (JF) precipitation (Figure 2a,c). The highest JJAS precipitation was experienced in the Upper Nile as well as some parts of the Albert and Kyoga WMZs (Figure 2c). Areas around Lake Victoria, Mount Elgon, and Rwenzori ranges and southern part of Albert WMZ received the highest precipitation amounts in MAM and OND seasons (Figure 2b,d). Spatial variation in the seasonal and annual precipitation across Uganda as shown in this study agrees to some extent with the results from Ngoma et al. (2021) and Cattani et al. (2018), especially for MAM.
and annual time scales. Some mismatch between our findings and results from previous studies especially for dry seasons could be due to a few reasons. First, the CFRS series adopted in this study could be different from other reanalysis data analysed in previous studies. Second, we analysed seasonal and annual precipitation totals while others, like Cattani et al. (2018), considered extreme precipitation indices.

Low PET was confined to Lake Victoria (Figure 2f-j). PET represents evapotranspiration from green grass completely shading the ground with sufficient soil moisture content. Therefore, the low PET from a lake surface could be an indication of mainly evaporation from the lake water in the absence of vegetation or green grass required for the transpiration. Generally, Kyoga and Upper Nile as well as the northern part of Albert WMZ were characterized by large PET totals (Figure 2f-j). As highlighted before, negative and positive values of PMP indicate areas characterized by water scarcity and surplus, respectively. For both seasonal and annual PMP, it is noticeable that areas where PET is less than precipitation are confined to Lake Victoria and mountains such as Rwenzori and Elgon (Figure 2k-o). This is because mountains and large water bodies tend to regulate local
climate by attracting localized precipitation. Largest negative PMP values were in the arid and semi-arid areas of north and northeastern (or Karamoja region of) Uganda. This region grapples with prolonged dry spells and extreme hydrological and agricultural drought (Egeru et al., 2014; Ministry of Water and Environment, 2017) which affect the economic activities including pastoralism. To meet water demand (especially for crop and livestock), it is necessary to practice soil and water conservation such as storage of water during the rainy seasons for use in the dry seasons.

3.2 | Trend analysis

3.2.1 | Trends in precipitation, PET, and PMP

Figure 3 shows results of trend analysis. Corresponding significance of the trends can be seen in Figure 4. Except for the JF season, positive precipitation trends of both seasonal and annual time scales were confined to Mount Rwenzori and areas along the eastern boundary of Lake Albert (Figure 3a–e). The north and
northeastern areas of the country were characterized by decreasing precipitation trends. The entire area exhibited positive precipitation trends except JF and MAM season. Nsubuga et al. (2014) also reported annual precipitation increase over Uganda except in the southwestern and northwestern regions.

Increasing PET trends were exhibited around the Mount Elgon (Figure 3f–j). For the JJAS and annual PET, positive trends are noticeable over the Kyoga and Upper Nile WMZs (Figure 3h,j). Increasing trends in MAM and annual PET over Kyoga basin was also reported by Onyutha et al. (2020). For JJAS and annual time scales, areas with positive (negative) trends in precipitation also exhibited increasing (decreasing) trends in PMP (Figure 3c,m,e,o). Most areas except around Mount Elgon were characterized by increasing MAM PMP (Figure 3l). For JF PMP, positive trends were mainly in Kibale and around the Mount Rwenzori (Figure 3k). Generally, the OND PMP exhibited low magnitudes of increasing trend across the country except around Mount Rwenzori (Figure 3n).

The H_0 (no trend) was rejected ($p < 0.05$) for increasing annual precipitation trends across the various WMZs except in the extreme eastern parts of the Upper Nile, Kyoga, and Victoria WMZs (or areas along the boundary of Uganda and Kenya) (Figure 4e). The increasing trend in JJAS and OND precipitation had the H_0 (no trend) rejected ($p < 0.05$) over almost the entire country apart from a small region around Mount Elgon within Kyoga WMZ (Figure 4c,d).

The H_0 (no trend) was also rejected ($p < 0.05$) for decreasing trends in PET over West Nile region of the Upper Nile, western parts of Victoria and the Albert WMZs (Figure 4f–j). For increasing trend in PMP, the H_0 (no trend) was rejected ($p < 0.05$) across the various WMZs except around Mount Elgon (Figure 4k–o).

Positive (negative) trends in PMP indicates more (less) precipitation than PET totals hence available water (water scarcity). Available water, if sufficient, could be vital (a) to meet crop water requirements, (b) support ecosystem, and (c) promote water security across the various WMZs. However, excess of the available water in low-lying (mountainous) areas could imply possibilities of flooding (landslides). In arid areas (like the northern Kyoga WMZ or the Karamoja region), drought-resistant crops could be adopted for smallholder farming. In areas with significant trends in precipitation or PMP, future water resources management should consider non-stationarity of hydro-climate (Onyutha, 2017). Concepts of return period and risk for non-stationary hydrologic extreme events which should be considered, for instance, in designing hydraulic structures can be found in Salas and Obeysekera (2014).

3.3 Homogeneity of precipitation

Table 2 shows results on homogeneity tests. There is close agreement among results from the four tests. All tests rejected the H_0 (homogenous) ($p < 0.05$) at stations 1, 3, and 5–7. The homogenous precipitation was at stations 2 and 4 (within Kyoga) as well as station 8 in the Upper Nile. Further graphical results of the Pettitt’s test and CUSUM charts can be seen in Figures 5 and 6, respectively. Based on the results, the idea that inhomogeneity could be due to errors in measurement was deemed not to hold water in our study. Neither was the occurrence of the inhomogeneity of the precipitation by chance. This was because the H_0 (homogenous) was rejected ($p < 0.05$) in data from majority (or 62.5%) of the stations. Thus, the inhomogeneity could be due to spatial differences in the precipitation characteristics across the country over time. Strength of precipitation variability drivers can vary over time in a particular region or sub-region. Differences in precipitation characteristics across the study area may be due to the differential influences of the topographical features (Great Lakes and several mountains such as Rwenzori, Muhavura, Elgon, Moroto, Gahinga, and Sabinyo) in the various WMZs. Nevertheless, further research is required to comprehensively characterize the effects of possible interactions between regional circulation (such as localized convergence) with local geographical factors on precipitation distribution across the East African region and/or the various WMZs. The positive and negative regime shifts in the CUSUM charts depict impacts of climate variability on precipitation across the country. Thus, both trends and variability are vital for planning water resources management (Onyutha, 2021) in each WMZ.

3.4 Validation of CFSR

Results on correlation between observed and CFSR-based precipitation can be seen in Table 3. At all stations, CFSR and observed precipitation were positively correlated with coefficients ranging from 0.069 (station 8) and 0.999 (station 1). At stations 1 and 5–6, the H_0 (no correlation) was rejected ($p < 0.05$) for both annual and seasonal time scales. For stations 2–4 and 7–8, the H_0 (no correlation) was rejected ($p < 0.05$) for at least one-time scale. Considering the various time scales, the H_0 (no correlation) was rejected ($p < 0.05$) for about 60% (or 23 out of 40) cases (Table 3). Top performance of CFSR in reproducing precipitation totals was registered in Victoria WMZ. Nevertheless, we generally deemed this performance of CFSR data satisfactory though further improvements are required in the reanalysis model to accurately reproduce the historical climatology across the various WMZs.
Table 4 shows comparison between the trend slopes or significance from observed and CFSR precipitation. At a given location (except at stations 3–4 and 8), both observed and CFSR data exhibited positive trends in both seasonal and annual time scales. The magnitude of the mismatch between trend slope from observed precipitation and that of CFSR data varied from one WMZ to another. Contrasting signs of the slopes of linear trends in precipitation for the observed and precipitation data were obtained at station 8. The CFSR data

Table 2: Statistical homogeneity test results

S. No.	Station	Pettit’s test	SNHT	Buishand’s test	Von Neumann test
1	Masaka Forest – Masaka	<0.001	<0.001	<0.001	<0.001
2	Serere Agric. Station – Soroti	0.295	0.329	0.080	0.336
3	Masindi Met. Station	0.019	0.015	0.017	0.013
4	Soroti Met. Station – Soroti	0.659	0.441	0.647	0.296
5	Ibanda – Mbarara	<0.001	<0.001	<0.001	<0.001
6	Nkozi Experimental Farm – Mpigi	<0.001	<0.001	<0.001	<0.001
7	Wadelai WDD – Gulu	0.010	0.018	0.004	0.029
8	Gulu Met. Station – Gulu	0.177	0.407	0.169	0.629

Note: Values which are less than 0.05 indicate that the H_0 (homogenous) was rejected.

Figure 5: Pettitt’s test applied to annual precipitation at (a–h) stations 1–8.
FIGURE 6 CUSUM charts for annual precipitation at (a–h) stations 1–8. UC and LC stand for upper and lower CUSUM limits, respectively. C+ and C− denote positive and negative shift, respectively.

TABLE 3 Correlation of observed and CFSR precipitation

S. No.	Station (up)	Correlation coefficient				
	Grid (below)	JF	MAM	JJAS	OND	Annual
1	Masaka Forest – Masaka	0.972*	0.995*	0.980*	0.981*	0.999*
	CFSR data at station 1					
2	Serere Agric. Station – Soroti	0.295	0.268	0.344	0.447*	0.160
	CFSR data at station 2					
3	Masindi Met. Station	0.186	0.110	0.657*	0.259	0.168
	CFSR data at station 3					
4	Soroti Met. Station – Soroti	0.538*	0.125	0.268	0.512*	0.115
	CFSR data at station 4					
5	Ibanda – Mbarara	0.846*	0.911*	0.972*	0.904*	0.961*
	CFSR data at station 5					
6	Nkozi Experimental Farm – Mpigi	0.653*	0.681*	0.900*	0.869*	0.779*
	CFSR data at station 6					
7	Wadelai WDD – Gulu	0.106	0.127	0.509*	0.329	0.373*
	CFSR data at station 7					
8	Gulu Met. Station – Gulu	0.256	0.366*	0.362*	0.162	0.069
	CFSR data at station 8					

Note: Asterisk indicates that H_0 (no correlation) was rejected ($p < 0.05$).
generally over-estimated observed trends at all the selected locations except station 5. In 14 out of 40 (35%) cases, the H_0 (no trend) was rejected in both CFSR and observed precipitation. Contrasting directional signs of increase or decrease were obtained in 17.5% (7 out of 40) cases of the various time scales for which CFSR and observed precipitation trends were compared. Again, top performance of CFSR in reproducing precipitation trends was registered in Victoria WMZ (stations 1 and 6). Overall, the performance of the CFSR in reproducing trend was deemed satisfactory. Results of validation indicate that the trends in CFSR data can give insights into the actual historical precipitation trends across the various WMZs.

Table 4: Trend magnitude and direction in observed and CFSR precipitation

S. No.	Station (up)	CFSR grid (below)	Time scale	JF	MAM	JJAS	OND	Annual
			Trend magnitude, m (mm·year$^{-1}$)					
1	Masaka Forest – Masaka	CFSR data at station 1	2.46	2.76	3.29	3.83	13.90	19.20
2	Serere Agric. Station – Soroti	CFSR data at station 2	0.09	3.72	1.36	2.25	5.46	
3	Masindi Met. Station	CFSR data at station 3	−1.02	1.00	5.98	−0.65	5.44	
4	Soroti Met. Station – Soroti	CFSR data at station 4	0.27	−3.60	1.70	2.61	1.64	
5	Ibanda – Mbarara	CFSR data at station 5	2.17	8.21	9.75	7.70	30.63	
6	Nkozi Experimental Farm – Mpigi	CFSR data at station 6	2.23	3.80	5.19	4.28	15.72	
7	Wadelai WDD – Gulu	CFSR data at station 7	0.87	1.17	2.78	3.00	6.70	
8	Gulu Met. Station – Gulu	CFSR data at station 8	−0.26	−2.24	−1.14	−0.38	−4.72	

S. No.	Station (up)	CFSR grid (below)	Trend direction, Z					
--------	----------------------------------	-----------------------------						
1	Masaka Forest – Masaka	CFSR data at station 1	2.67*	1.29	3.08*	2.09*	2.55*	
2	Serere Agric. Station – Soroti	CFSR data at station 2	3.14*	2.64*	4.09*	3.20*	3.51*	
3	Masindi Met. Station	CFSR data at station 3	0.40	1.35	0.82	1.39	1.82	
4	Soroti Met. Station – Soroti	CFSR data at station 4	2.15*	2.51*	3.63*	3.95*	3.99*	
5	Ibanda – Mbarara	CFSR data at station 5	−1.58	0.53	1.92	−0.05	2.02*	
6	Nkozi Experimental Farm – Mpigi	CFSR data at station 6	2.10*	3.25*	3.65*	3.98*	4.11*	
7	Wadelai WDD – Gulu	CFSR data at station 7	−1.58	0.53	1.92	−0.05	2.02*	
8	Gulu Met. Station – Gulu	CFSR data at station 8	2.11*	2.94*	3.56*	2.32*	3.30*	

Note: Asterisk denotes that H_0 (no trend) was rejected at $\alpha = 0.05$.
CONCLUSION

This study analysed precipitation, PET, and PMP trends across the four WMZs in Uganda. The study used the gridded (0.25° × 0.25°) CFSR monthly data series over the period 1979–2013. The H_0 (no correlation between CFSR and observed precipitation) was rejected ($p < 0.05$) for about 60% cases of validation based on various time scales. Thus, the performance of CFSR in reproducing observed precipitation total was deemed satisfactory.

Large PET totals were over Kyoga and Upper Nile as well as the northern part of Albert WMZ. Areas with large positive PMP were confined to Lake Victoria and mountains such as Rwenzori and Elgon. Arid and semi-arid areas of north and northeastern Uganda (or the Karamoja region) exhibited the largest negative PMP values. The H_0 (no trend) was rejected ($p < 0.05$) for positive trends in annual precipitation across the various WMZs except in the extreme eastern parts of the Upper Nile, Kyoga, and Victoria WMZs. The H_0 (no trend) was rejected ($p < 0.05$) for negative trends in annual PET over West Nile region of the Upper Nile, as well as western parts of Victoria and the Albert WMZs. For positive PMP trend, the H_0 (no trend) was rejected ($p < 0.05$) across the various WMZs except around Mount Elgon. This study's findings are relevant for planning for water resources management over the different WMZs in the country. In other words, water cycle management system comprising planning, developing, implementing and managing the optimum use of water resources is required across the various WMZs of Uganda. This is to ensure future safety and security of the local population from impacts of water scarcity or surplus on livelihoods.

ACKNOWLEDGEMENTS

The authors acknowledge that this study was based on CFSR data (Saha et al., 2014). The authors also recognize that this paper was to some extent based on a Master of Science dissertation of Asiimwe (2021) who was supervised by Charles Onyutha (PhD).

AUTHOR CONTRIBUTIONS

Charles Onyutha: Conceptualization; data curation; formal analysis; investigation; methodology; supervision; validation; writing-review & editing. Arnold Asiimwe: Conceptualization; data curation; formal analysis; investigation; methodology; resources; validation; writing-original draft. Lawrence Muhwezi: Project administration; writing-review & editing. Ambrose Mubialivo: Conceptualization; formal analysis; validation; writing-original draft; writing-review & editing.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

ORCID

Charles Onyutha https://orcid.org/0000-0002-0652-3828

REFERENCES

Abtew, W. (1996) Evapotranspiration measurements and modeling for three wetland systems in south Florida. *Journal of the American Water Resources Association*, 32, 465–473. https://doi.org/10.1111/j.1752-1668.1996.tb04044.x.

Adler, R.F., Sapiano, M.R.P., Huffman, G.J., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R. and Shin, D.-B. (2018) The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 Global Precipitation. *Atmosphere*, 9, 1–27. https://doi.org/10.3390/atmos9040138.

Alexandersson, H. (1986) A homogeneity test applied to precipitation data. *Journal of Climatology*, 6, 661–675.

Alfaro, M.D.M., Lopes, I., Montenegro, A.A.A. and Leal, B.G. (2020) CFSR-NCEP performance for weather data forecasting in the Pernambuco Semiárido, Brasil. *Dyna*, 87, 204–213. https://doi.org/10.15446/dyna.v87n215.89952.

Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998) *Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements*. FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nations.

Asiimwe, A. (2021) *Climate change impacts on precipitation and potential evapotranspiration across water management zones in Uganda*. MSc dissertation, Department of Civil and Environmental Engineering, Kyambogo University, Kampala, Uganda.

Blaney, H.F. and Criddle, W.D. (1950) *Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data*, 48th edition. Washington, DC: U.S. Soil Conservation Service.

Buishand, T.A. (1982) Some methods for testing the homogeneity of rainfall records. *Journal of Hydrology*, 58, 11–27.

Cattani, E., Merino, A., Guijarro, J.A. and Leal, B.G. (2018) East Africa rainfall trends and variability 1983–2015 using three long-term satellite products. *Remote Sensing*, 10, 1–26. https://doi.org/10.3390/rs10060931.

Chelangat, C. and Abebe, A. (2021) Reservoir operation for optimal water use of Kabalega reservoir in Uganda. *International Journal of Energy and Water Resources*. https://doi.org/10.1007/s42108-020-00109-x.

Dile, Y.T. and Srinivasan, R. (2014) Evaluation of CFSR climate data for hydrologic prediction in data scarce watersheds: an application in the Blue Nile River basin. *Journal of American Water Resources Association*, 50(5), 1226–1241. https://doi.org/10.1111/jawr.12182.

Egeru, A., Barasa, B., Nampijja, J., Siya, A., Makooma, M.T., Gilbert, M. and Majaliwa, J. (2019) Past, present and future climate trends under varied representative concentration pathways for a sub-humid region in Uganda. *Climate*, 7, 1–21. https://doi.org/10.3390/cli7030035.

Egeru, A., Osaliya, R., Macopiyi, L., Mburu, J., Wasonga, O., Barasa, B., Said, M., Aleper, D. and Mwanjalolo, G.M. (2014) Assessing the spatio-temporal climate variability in semi-arid Karamoja sub-region in north-eastern Uganda. *International Journal of Environmental Studies*, 71, 490–509. https://doi.org/10.1080/00207233.2014.919729.
Fuka, D.R., Walter, M.T., Macalister, C., Degaetano, A.T., Steenhuis, T.S. and Easton, Z.M. (2013) Using the climate forecast system reanalysis as weather input data for watershed models. *Hydrological Processes*, 28(22), 5613–5623. https://doi.org/10.1002/hyp.10073.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A. and Michaelsen, J. (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. *Scientific Data*, 2, 1–21. https://doi.org/10.1038/sdata.2015.66.

Government of Uganda. (2013) *Uganda Vision 2040*. Kampala: National Planning Authority.

Hamon, W.R. (1963) Computation of direct runoff amounts from storm rainfall. *International Association of Sciences Hydrological Sciences*, 63, 52–62.

HänSEL, S., Matschullat, D.M.M., Petta, R.A. and Silva, I.d.M. (2016) Assessing homogeneity and climate variability of temperature and precipitation series in the capitals of North-Eastern Brazil. *Frontiers in Earth Science*, 4, 1–21. https://doi.org/10.3389/feart.2016.00029.

Hargreaves, G.H. and Samani, Z.A. (1982) Estimation of potential evapotranspiration. *Journal of Irrigation and Drainage Division*, 108, 225–230.

Hargreaves, G.H. and Samani, Z.A. (1985) Reference crop evapotranspiration from temperature. *Transactions: American Society of Agricultural Engineers*, 1, 96–99.

Harris, I., Osborn, T.J., Jones, P. and Lister, D. (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. *Scientific Data*, 7, 1–18. https://doi.org/10.1038/s41597-020-0453-3.

Hua, W., Zhou, L., Nicholson, S.E., Chen, H. and Qin, M. (2019) Assessing reanalysis data for understanding rainfall climatology and variability over central equatorial Africa. *Climate Dynamics*, 53, 651–669. https://doi.org/10.1007/s00382-018-04604-0.

Jury, M.R. (2018) Uganda rainfall variability and prediction. *Theoretical and Applied Climatology*, 132, 905–919. https://doi.org/10.1007/s00704-017-2135-4.

Kansiime, M.K., Wambugu, S.K. and Shisanya, C.A. (2013) Perceived and actual rainfall trends and variability in eastern Uganda: implications for community preparedness and response. *Journal of Natural Sciences Research*, 3, 179–195.

Kisembbe, J., Favre, A., Dosio, A., Lennard, C., Sabitti, G. and Nimusima, A. (2019) Evaluation of rainfall simulations over Uganda in CORDEX regional climate models. *Theoretical and Applied Climatology*, 137, 1117–1134. https://doi.org/10.1007/s00704-018-2643-x.

Linacre, E.T. (1977) A simple formula for estimating evaporation rates in various climates, using temperature data alone. *Agricultural Meteorology*, 18, 409–424. https://doi.org/10.1016/0021-1571(77)90007-3.

Makkink, G.F. (1957) Testing the Penman formula by means of lysimeters. *Journal Institute of Water Engineers*, 11, 277–288.

Martinez-Cruz, D.A., Gutiérrez, M. and Alarcón-Herrera, M.T. (2020) Spatial and temporal analysis of precipitation and drought trends using the climate forecast system reanalysis (CFSR). In: Lucatello, S., Huber-Sannwald, E., Espejel, I. and Martinez-Tagüeña, N. (Eds.) *Stewardship of Future Drylands and Climate Change in the Global South*. Switzerland: Springer Cham. https://doi.org/10.1007/978-3-030-22464-6_8.

Ministry of Water and Environment. (2014) *Uganda Catchment Management Planning Guidelines*. Kampala: Ministry of Water and Environment.

Ministry of Water and Environment. (2017) *Catchment Management Plan: Lokok Catchment*. Kampala: Ministry of Water and Environment.

Ministry of Water and Environment. (2021) *Water Management Zones (WMZ)*. Available at: https://www.mwe.go.ug/library/water-management-zones-wmz [Accessed 4th January 2021].

Mubialwiyo, A., Abebe, A. and Onyutha, C. (2021a) Performance of rainfall–runoff models in reproducing hydrological extremes: a case of the river Malaba sub-catchment. *SN Applied Sciences*, 3, 515. https://doi.org/10.1007/s42452-021-04514-7.

Mubialwiyo, A., Chelangat, C. and Onyutha, C. (2021b) Changes in precipitation and evapotranspiration over Lokok and Lokere catchments in Uganda. *Bulletin of Atmospheric Science and Technology*, 2, 1–23. https://doi.org/10.1007/s42865-021-00031-y.

Mubialwiyo, A., Onyutha, C. and Abebe, A. (2020) Historical rainfall and evapotranspiration changes over Mpologoma catchment in Uganda. *Advances in Meteorology*, 2020, 1–19. https://doi.org/10.1155/2020/8870935.

Mukasa, J., Okala, L. and Said, M.Y. (2020) Drought and households’ adaptive capacity to water scarcity in Kasali, Uganda. *Journal of Water and Climate Change*, 11, 217–232. https://doi.org/10.2166/wcc.2020.012.

Nair, S., Srinivasan, G. and Nemani, R. (2009) Evaluation of multisatellite TRMM derived rainfall estimates over a western state of India. *Journal of the Meteorological Society of Japan*, 87, 927–939. https://doi.org/10.2151/jmsj.87.927.

Ngoma, H., Wen, W., Ojara, M. and Ayugi, B. (2021) Assessing current and future spatiotemporal precipitation variability and trends over Uganda, East Africa, based on CHIRPS and regional climate model datasets. *Meteorology and Atmospheric Physics*, 133, 823–843. https://doi.org/10.1007/s00703-021-00784-3.

Nkiake, E., Nawaz, N.R. and Lovett, J.C. (2017) Evaluating global reanalysis precipitation datasets with rain gauge measurements in the Sudan-Sahel region: case study of the Logone catchment, Lake Chad Basin. *Meteorological Applications*, 24, 9–18. https://doi.org/10.1002/met.1600.

Nsubuga, F.W.N., Botai, O.J., Olwoch, J.M., Rautenbach, C.J.dW., Bevis, Y. and Adetunji, A.O. (2014) The nature of rainfall in the main drainage sub-basins of Uganda. *Hydrological Sciences Journal*, 59, 278–299. https://doi.org/10.1080/02626667.2013.804188.

Nyeiko-Ogiramo, P., Willems, P. and Njirane-Katashaya, G. (2013) Trend and variability in observed hydrometeorological extremes in the Lake Victoria basin. *Journal of Hydrology*, 489, 56–73. https://doi.org/10.1016/j.jhydrol.2013.02.039.

Onyutha, C. (2016a) Geospatial trends and decadal anomalies in extreme rainfall over Uganda, East Africa. *Advances in Meteorology*, 2016, 6935912. https://doi.org/10.1155/2016/6935912.

Onyutha, C. (2016b) Influence of hydrological model selection on simulation of moderate and extreme flow events: a case study of the Blue Nile Basin. *Advances in Meteorology*, 2016, 7148326. https://doi.org/10.1155/2016/7148326.
Onyutha, C. (2016c) Identification of sub-trends from hydrometeorological series. Stochastic Environmental Research and Risk Assessment, 30, 189–205. https://doi.org/10.1007/s00477-015-1070-0.

Onyutha, C. (2016d) Statistical analyses of potential evapotranspiration changes over the period 1930–2012 in the Nile River riparian countries. Agricultural and Forest Meteorology, 226–227, 80–95. https://doi.org/10.1016/j.agrformet.2016.05.015.

Onyutha, C. (2016e) Statistical uncertainty in hydrometeorological trend analyses. Advances in Meteorology, 2016, 8701617. https://doi.org/10.1155/2016/8701617.

Onyutha, C. (2017) On rigorous drought assessment using daily time scale: non-stationary frequency analyses, revisited concepts, and a new method to yield non-parametric indices. Hydrology, 4(48), 1–43. https://doi.org/10.3390/hydrology4040048.

Onyutha, C. (2018) Trends and variability in African long-term precipitation. Stochastic Environmental Research and Risk Assessment, 32, 2721–2739. https://doi.org/10.1007/s00477-018-1587-0.

Onyutha, C. (2021) Graphical-statistical method to explore variability of hydrological time series. Hydrology Research, 52, 266–283. https://doi.org/10.2166/hr.nh.2020.111.

Onyutha, C., Acayo, G. and Nyende, J. (2020) Analyses of precipitation and evapotranspiration changes across the Lake Kyoga Basin in East Africa. Water, 12, 1–23. https://doi.org/10.3390/w12041134.

Onyutha, C., Amollo, C.J., Nyende, J. and Nakagiri, A. (2021) Suitability of averaged outputs from multiple rainfall-runoff models for hydrological extremes: a case of River Kafu catchment in East Africa. International Journal of Energy and Water Resources, 5, 43–56. https://doi.org/10.1007/s42108-020-00075-4.

Onyutha, C. and Willems, P. (2017) Space-time variability of extreme rainfall in the River Nile basin. International Journal of Climatology, 37(14), 4915–4924. https://doi.org/10.1002/joc.5132.

Page, E.S. (1961) Cumulative sum charts. Technometrics, 3, 1–9.

Pettitt, A.N. (1979) A non-parametric approach to the change-point problem. Applied Statistics, 28, 126–135.

Priestley, C.H.B. and Taylor, R.J. (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH-2.3.CO;2.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.P.A., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M. and Becker, E. (2014) The NCEP Climate Forecast System version 2. Journal of Climate, 27, 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1.

Salas, J.D. and Obeysekera, J. (2014) Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. Journal of Hydrologic Engineering, 19, 554–568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820.

Sen, P.K. (1968) Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389. https://doi.org/10.1080/01621459.1968.10480934.

Sheffield, J., Goteti, G. and Wood, E.F. (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19, 3088–3111. https://doi.org/10.1175/JCLI3790.1.

Shepard, D. (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd National Conference. Cambridge, MA: Havard College-Cambridge, pp. 517–524. https://doi.org/10.1145/800186.810616.

Singh, D., Gupta, R.D. and Jain, S.K. (2015) Statistical analysis of long term spatial and temporal trends of temperature parameters over Sutlej river basin, India. Journal of Earth System Science, 124, 17–35. https://doi.org/10.1007/s12040-014-0530-0.

Singh, D., Rai, S.P., Kumar, B., Jain, S.K. and Kumar, S. (2016) Study of hydro-chemical characteristics of Lake Nainital in response of human interventions, and impact of twentieth century climate change. Environmental Earth Sciences, 75(1380), 1–15. https://doi.org/10.1007/s12665-016-6177-1.

Theil, H. (1950) A rank-invariant method of linear and polynomial regression analysis. In: Nederlandse Akademie van Wetenschappen, Series A. Amsterdam: Statistical Department of the Mathematisch Centrum, pp. 386–392.

Thornthwaite, C.W. (1948) An approach toward a rational classification of climate. Geographical Review, 38, 55–94.

Van Griensven, A., Ndomba, P., Yalew, S. and Kilonzo, F. (2012) Critical review of SWAT applications in the upper Nile basin countries. Hydrology and Earth System Sciences, 16, 3371–3381. https://doi.org/10.5194/hess-16-3371-2012.

Von Neumann, J. (1941) Distribution of the ratio of the mean successive difference to the variance. Annals of Mathematical Statistics, 12, 367–395. https://doi.org/10.1214/aoms/1177731677.

Worqul, A.W., Yen, H., Collick, A.S., Tilahun, S.A., Langan, S. and Steenhuis, T.S. (2017) Catena evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: the upper Blue Nile. Catena, 152, 242–251. https://doi.org/10.1016/j.catena.2017.01.019.

Yang, W., Seager, R., Cane, M.A. and Lyon, B. (2015) The annual cycle of East African precipitation. Journal of Climate, 28(6), 2385–2404. https://doi.org/10.1175/JCLI-D-14-00484.1.

How to cite this article: Onyutha, C., Asiimwe, A., Muhwezi, L., & Mubialwi, A. (2021). Water availability trends across water management zones in Uganda. Atmospheric Science Letters, e1059. https://doi.org/10.1002/asl.1059.