Chromosomal instability resulting from chromosome missegregation during mitosis is a hallmark of cancer cells and contributes to tumorigenesis (1, 2). The fidelity of chromosome segregation is guaranteed by a sophisticated mechanism that ensures timely resolution of sister chromatid cohesion, correct attachment of kinetochores to microtubules, and proper response of spindle assembly checkpoint (SAC)3 monitoring the status of kinetochore–microtubule (KT–MT) attachments, which allows chromosome segregation only when all chromosomes have completed biorientation on the metaphase plate (3).

The chromosomal passenger complex (CPC) is a master regulator of mitosis. CPC consists of inner centromere protein (INCENP), Survivin, Borealin, and the kinase Aurora B and plays key roles in regulating kinetochore–microtubule attachments and spindle assembly checkpoint signaling. However, the role of CPC in sister chromatid cohesion, mediated by the cohesin complex, remains incompletely understood. Here, we show that Aurora B kinase activity contributes to centromeric cohesion protection partly through promoting kinetochore localization of the kinase Bub1. Interestingly, disrupting the interaction of INCENP with heterochromatin protein 1 (HP1) in HeLa cells selectively weakens cohesion at mitotic centromeres without detectably reducing the kinase activity of Aurora B. Thus, through this INCENP–HP1 interaction, the CPC also protects centromeric cohesion independently of Aurora B kinase activity. Moreover, the requirement for the INCENP–HP1 interaction in centromeric cohesion protection can be bypassed by tethering HP1 to centromeres or by depleting the cohesin release factor Wapl. We provide further evidence suggesting that the INCENP–HP1 interaction protects centromeric cohesion by promoting the centromere localization of Haspin, a protein kinase that antagonizes Wapl activity at centromeres. Taken together, this study identifies Aurora B kinase activity–dependent and –independent roles for the CPC in regulating centromeric cohesion during mitosis in human cells.

3 The abbreviations used are: SAC, spindle assembly checkpoint; CPC, chromosomal passenger complex; INCENP, inner centromere protein; CSD, chromo shadow domain; HP1, heterochromatin protein 1; KT–MT, kinetochore–microtubule; inter-KT, interkinetochore; CB, CENP-B; STLC, S-trityl-L-cysteine; KMN, KNL1/Mis12 complex/Ndc80 complex; H3-pS10, H3 serine 10 phosphorylation; H2A-pT120, phosphorylation of histone H2A at threonine 120; VSV, vesicular stomatitis virus; MBP, maltose-binding protein; CENP, centromere protein; CENP-A-pS7, phosphorylation of CENP-A at serine 7; Hec1-pS44, phosphorylation of Hec1 at serine 44; H3-pT3, phosphorylation of histone H3 at threonine 3; PIM, Pds5-interacting motif; sgRNA, single-guide RNA; KO, knockout; ACA, anti-human centromere autoantibody; DAPI, 4',6-diamidino-2-phenylindole.
Role of the CPC in protecting sister chromatid cohesion

these well-established functions, the exact role of the CPC in the regulation of sister chromatid cohesion is unclear.

Sister chromatid cohesion is mediated by a multiple-subunit cohesion complex composed of Smc1, Smc3, Scc1, SA2 (or SA1), and the accessory subunit Pds5B (or Pds5A) (17). Sororin and Wapl competitively interact with Pds5A/B to positively and negatively regulate the association of cohesion with chromatin, respectively (18–22). Through antagonizing Wapl activity in cohesion release, Sororin ensures DNA replication–dependent sister chromatid cohesion and its maintenance in the subsequent G2 phase (22–24). During early mitosis, although cohesion at centromeres is protected by a complex mechanism involving the Wapl antagonists Sgo1, Sororin, and Hapasin in the proteolytic cleavage of Scc1 by the protease Separase at anaphase onset (25), most cohesion is removed by Wapl from chromosome arms in a cleavage-independent manner (18, 19, 26–28).

This prophase pathway of cohesin removal requires phosphorylation of SA2 (29–31) and Sororin (22, 32). Phosphorylation of Sororin by Cyclin-dependent kinase 1 and Aurora B destabilizes its interaction with Pds5A/B and causes Wapl activation and cohesion release (33), enabling the resolution of chromosome arms in prophase and prometaphase. Therefore, Aurora B kinase activity negatively regulates sister chromatid cohesion along the chromosome arms in early mitosis.

In this study, we report that Aurora B kinase activity positively regulates sister chromatid cohesion at mitotic centromeres at least partly through promoting the kinetochore localization of Bub1 in human cells. Importantly, through the interaction of its INCENP subunit with HP1, the CPC also plays an Aurora B kinase activity–independent role in the protection of centromeric cohesion.

Results

Inhibiting Aurora B kinase activity causes centromeric cohesion defects, which can be rescued by centromere-tethered Bub1

To dissect the role of CPC in the regulation of sister chromatid cohesion, we depleted its scaffold subunit INCENP by small interfering RNA (siRNA) and analyzed chromosomes prepared from HeLa cells that were arrested in mitosis with the microtubule destabilizer nocodazole. Immunofluorescence microscopy showed that the average interkinetochore (inter-KT) distance on chromosomes prepared from INCENP-depleted cells was 23% further apart than the control (Fig. 1, A and B), which is indicative of weakened centromeric cohesion. Similarly, inhibition of Aurora B kinase activity by the small-molecule inhibitor Hesperadin (34), as evidenced by loss of H3 serine 10 phosphorylation (H3-pS10) on chromatin (35), significantly increased the inter-KT distance (Fig. S1, A and B). As previously shown (28), we also noticed that Aurora B inhibition impaired the resolution of chromosome arms in nocodazole-arrested mitotic cells (Fig. S1A). These results indicate that, in contrast to its role in releasing cohesion from chromosome arms, Aurora B kinase activity is required to protect proper strength of sister chromatid cohesion at mitotic centromeres.

We also found that inhibition of Aurora B kinase activity by Hesperadin and ZM447439 (Fig. S1C), another small-molecule inhibitor of Aurora B kinase (36), significantly reduced the centromeric localization of Sgo1 (Fig. 1, C and D). Consistently, Aurora B inhibition caused a strong reduction in the kinetochore localization of Bub1 kinase (Fig. 1, E and F) as well as Bub1-mediated phosphorylation of histone H2A at threonine 120 (H2A-pT120) (Fig. 1, G and H) (37), which is a direct binding site for Sgo1 at mitotic centromeres (38, 39). We therefore speculated that Aurora B kinase activity ensures full enrichment of Sgo1 at mitotic centromeres at least partly through promoting the kinetochore localization of Bub1 kinase. To test this hypothesis, we expressed a CENP-B (CB) fusion protein, CB-Bub1-K-GFP, in which Bub1 kinase domain is fused to the centromeric targeting domain of CENP-B (40, 41), which binds a 17-bp CENP-B–box motif within the α-satellite repeats of human centromeres (42–44). As expected, treatment of cells stably expressing CB-GFP with Hesperadin caused strong delocalization of Sgo1 from mitotic centromeres (Fig. 1, I and J). Interestingly, centromeric localization of Sgo1 was largely retained when cells stably expressing CB-Bub1-K-GFP were treated with Hesperadin, consistent with the role of Bub1-mediated H2A-pT120 in recruiting Sgo1 to centromeres. Moreover, the inter-KT distance in cells expressing CB-Bub1-K-GFP was not sensitive to Aurora B inhibition by Hesperadin (Fig. 1, K and L). Thus, the need for Aurora B kinase activity in maintaining proper inter-KT distance can be bypassed by tethering Bub1 to centromeres. These results are also consistent with the role of Sgo1 in protecting centromeric cohesion (30, 45–47). Previous studies reported that Aurora B kinase activity is required for efficient localization and activation of Mps1 at kinetochores (48–53) and that Mps1-mediated phosphorylation of KNL1 recruits Bub1 to kinetochores (54–57). In line with this, we found that treatment of cells with reversine and AZ3146, small-molecule inhibitors of Mps1 that strongly reduce the centromeric accumulation of Bub1 and Sgo1 (37, 51, 58), significantly increased the inter-KT distance (Fig. S1, D and E). Moreover, Mps1 inhibition significantly increased the inter-KT distance in cells stably expressing CB-GFP but not CB-Bub1-K-GFP, indicating that the requirement for Mps1 kinase activity in maintaining proper centromeric cohesion can be bypassed by centromere-tethered Bub1 (Fig. S1, F and G). Taken together, these results indicate that Aurora B kinase activity protects centromeric cohesion at least partly through promoting the localization of Bub1 kinase at kinetochores.

INCENP interacts with the chromo shadow domain (CSD) of HP1α and HP1γ

Previous studies showed that INCENP interacts with HP1 (59–62) and that loss of HP1α and/or HP1γ weakens centromeric cohesion (63–65). We were thus prompted to examine whether the INCENP–HP1 interaction might contribute to the role of CPC in regulating sister chromatid cohesion.

We found that GST-fused full-length HP1α or the CSD, but not CD and Hinge, selectively pulled down VSV-tagged INCENP (VSV-INCENP) transiently expressed in HEK-293T cells (Fig. 2A), indicating that CSD is sufficient to bind INCENP. Moreover, endogenous INCENP in mitotic HeLa cell lysates was efficiently pulled down by GST–HP1α (Fig. 2B) but not by GST–HP1α containing the mutations I165E and W174A.
that disrupt the formation of CSD dimer and hydrophobic pocket, respectively (66–68). This implies that INCENP utilizes a consensus (P/L)XVX(M/L/V) motif (PXVXL in short; X represents any amino acid) to interact with the hydrophobic pocket of CSD dimer (68, 69). We found that endogenous HP1\(\alpha\) and HP1\(\gamma\), but not HP1\(\beta\), in mitotic HeLa cell lysates was pulled down by MBP-fused INCENP fragment encompassing residues 124–248 (MBP-INCENP(124–248)). The immunofluorescence intensity ratios of centromeric Sgo1/ACA (D), Bub1/ACA (F), and H2A-pT120/ACA (H) were determined on 90–123 chromosomes in 20 cells. I–L, HeLa cells stably expressing CB-GFP or CB-Bub1-K-GFP were treated for 1 h with nocodazole and MG132 together with DMSO or Hesperadin. Mitotic chromosome spreads were stained with DAPI and antibodies for Sgo1, H3-pS10, and CENP-C. Example images are shown (I and K). The immunofluorescence intensity ratio of centromeric Sgo1/arm Sgo1 was determined on at least 124 chromosomes in 20 cells (I). The inter-KT distance was measured on over 759 chromosomes in 20 cells (L). Means and error bars representing S.D. are shown (unpaired t test). Scale bars, 10 \(\mu\)m. See also Fig. S1, ns, not significant.

Disrupting the INCENP–HP1 interaction delocalizes HP1 from mitotic centromeres and increases chromosome missegregation

We stably expressed WT INCENP-GFP and the HP1 binding-deficient mutants INCENP-ΔPVVEI-GFP and INCENP-5A-GFP in HeLa cells (Fig. 3A). Immunofluorescence microscopy showed concentrated localization of HP1\(\alpha\) and HP1\(\gamma\) at inner centromeres of mitotic chromosomes, which was abolished by transfection with siRNA targeting the 3’-UTR of endogenous INCENP (Figs. 3, B and C, and S2A). Interestingly, exogenous expression of INCENP-GFP, but not INCENP-ΔPVVEI-GFP and INCENP-5A-GFP, supported the centromeric localization of HP1\(\alpha\) and HP1\(\gamma\) in the absence of endogenous INCENP.
Moreover, INCENP-GFP (WT or the mutants) and endogenous Aurora B localized normally to centromeres in prometaphase and metaphase and subsequently to the anaphase spindle midzone (Figs. 3, B and D, and S2, B and C).

In addition, we further noticed that the mutant forms of INCENP-GFP were defective in localizing to the heterochromatic loci in interphase cells (Fig. 3E). Similar defects were observed when the INCENP mutant proteins were transiently expressed in mouse NIH 3T3 cells (Fig. S2D). These results indicate that although the INCENP–HP1 interaction is dispensable for the centromeric localization of CPC during mitosis it is required for CPC localization to heterochromatin in interphase.

Moreover, we found that the frequency of anaphases with lagging chromosomes was obviously higher in cells expressing the mutant forms of INCENP-GFP than in control cells (Fig. 3F and G). An increased rate of chromosome missegregation was also observed when cells were released from transient mitotic arrest with S-trityl-L-cysteine (STLC) (Fig. S2E), an Eg5 inhibitor that reversibly blocks cells in prometaphase with monopolar spindles.

Taken together, these results indicate that INCENP targets HP1 to mitotic centromeres, but not vice versa, and that the INCENP–HP1 interaction is required to prevent chromosome missegregation during mitosis. In line with this, HP1β, which is defective in binding INCENP (Fig. 2, D and E), is not enriched at centromeres in mitosis (63).

Disrupting the INCENP–HP1 interaction does not compromise Aurora B kinase activity

We next examined whether Aurora B kinase activity is compromised in cells expressing the HP1 binding–deficient mutants of INCENP-GFP. Aurora B phosphorylates multiple substrates, including histone H3 serine 10 on chromatin (35) and CENP-A at serine 7 at centromeres (70) (Fig. S1C) and KMN network proteins at kinetochores (12–15). Immunofluorescence staining showed that the levels of H3-pS10 were comparable in cells expressing the WT or mutant forms of INCENP-GFP (Figs. 4, A and B, and S3, A and B). This indicates that global Aurora B kinase activity is not compromised in the absence of INCENP–HP1 interaction. We further found that phosphorylation of CENP-A at serine 7 (CENP-A-pS7) and phosphorylation of Hec1 at serine 44 (Hec1-pS44), the readout of Aurora B kinase activity at centromeres and outer kinetochores, respectively, were insensitive to the loss of INCENP–HP1 interaction (Figs. 4, C–F, and S3, C and D).

To test whether loss of INCENP–HP1 interaction influences Aurora B activation, we used conditions in which Aurora B is initially inhibited in mitotic cells, but reactivation is then allowed upon removal of Aurora B inhibitor (Fig. S3E). After treatment with Hesperadin, Hec1-pS44 signal at kinetochores was abolished as expected. After removal of Hesperadin, Hec1-pS44 at kinetochores was largely recovered within 60–90 min in cells expressing WT INCENP-GFP. When we repeated these experiments in cells expressing the mutant forms of INCENP-GFP, the kinetics of Hec1-pS44 recovery was not delayed (Fig. S3, F and G). These findings suggest that, in these experimental circumstances, the INCENP–HP1 interaction does not contribute to activation of Aurora B and phosphorylation of substrates at kinetochores. Moreover, in cells expressing either the wildtype or mutant forms of INCENP-GFP, we did not find obvious differences in centromeric enrichment of Sgo1 and H2A-pT120 as well as the kinetochore localization of Bub1 (Figs. 4, G–L, and S3, H–K). Taken together, these results indicate that loss of the...
INCENP–HP1 interaction does not detectably compromise Aurora B kinase activity in mitotic cells.

Disrupting the INCENP–HP1 interaction weakens centromeric cohesion

Inspection of chromosome spreads prepared from nocodazole-arrested mitotic HeLa cells showed that, upon depletion of endogenous INCENP by siRNA, cells expressing the mutant forms of INCENP-GFP did not have obvious loss of sister chromatid cohesion (Fig. S4, A and B). Similar results were obtained when cells were arrested in mitosis with STLC (Fig. S4C).

Next, we treated cells with STLC to accumulate monopolar mitoses and then released them into MG132, a proteasome inhibitor that arrests cells in metaphase, to allow bipolar spindle formation and chromosome alignment (71). Examination of fixed cells showed that cells expressing the mutant forms of INCENP-GFP were largely impaired in maintaining the alignment of chromosomes on the metaphase plate (Fig. 5A). Similar results were observed when these cells were directly subjected to MG132-induced metaphase arrest (Fig. 5B). Time-lapse live-cell imaging further showed that, upon MG132-induced metaphase arrest, cells expressing the mutant forms of INCENP-GFP began to exhibit irreversible chromosome scattering from the metaphase plate much earlier than control cells (Fig. 5, C and D).

These results prompted us to investigate whether sister chromatid cohesion was compromised in cells expressing the mutant forms of INCENP-GFP. Inspection of chromosome spreads prepared from cells arrested in metaphase with MG132 revealed a strong increase in premature chromatid separation (Figs. 5E and S4D). We also found that the inter-KT distance of mitotic chromosomes was around 20% further apart in mutant
INCENP-GFP–expressing cells than that in the control cells (Fig. 5F), which is indicative of compromised cohesion at mitotic centromeres.

To further corroborate the contribution of INCENP–HP1 interaction to centromeric cohesion protection, we isolated two clones, 4-20 and 3-11, in which endogenous INCENP was depleted by CRISPR/Cas9-mediated genome editing (72) in cells stably expressing INCENP-GFP and INCENP-H9004PVVEI-GFP, respectively (Fig. S4E). Indeed, we found similar defects in maintaining chromosome alignment and sister chromatid cohesion during MG132-mediated metaphase arrest in INCENP-H9004PVVEI-GFP–expressing stable cell line (clone 3-11) (Fig. S4, F–H). Inspection of chromosome spreads showed that these “Type II” cells were largely impaired in maintaining sister chromatid cohesion (Fig. 5, I and J). This indicates that cohesion loss largely accounts for the increased misalignment of chromosomes during the sustained inhibition of CENP-E. Importantly, we found that the defects in maintaining metaphase chromosome alignment (Fig. 5, G and H) and sister chromatid cohesion were much stronger in cells expressing the INCENP-H9004PVVEI-GFP mutant than in the control (Fig. 5, I and J).

We recently reported that double knockout of HP1α and HP1γ weakens sister chromatid cohesion at mitotic centromeres (63). In contrast, when HP1α and HP1β or HP1β and HP1γ were knocked out in combination (Fig. S4, I–K), cells were capable of maintaining metaphase chromosome alignment and sister chromatid cohesion (Fig. 5, L–N). Thus, HP1β, which is defective in binding INCENP and localizing at mitotic centromeres, is dispensable for centromeric cohesion protection. In sum, these results indicate that the INCENP–HP1 interaction is required to sustain proper strength of
centromeric cohesion, which is particularly important for the maintenance of cohesion between sister chromatids on the metaphase plate.

Centromere-tethered HP1 and Wapl depletion bypass the requirement for INCENP–HP1 interaction in centromeric cohesion protection

Given the requirement for INCENP in HP1 localization at mitotic centromeres, we next examined whether INCENP promotes centromeric cohesion at least partly through targeting HP1 to centromeres. We expressed the CSD of HP1 as a CENP-B fusion protein (CB-CSD-Myc). Immunofluorescence microscopy showed that expression of CB-CSD-Myc in Haspin-knockout (clone D2) cells was unable to shorten the inter-KT distance, which is in line with the requirement for Haspin in centromeric cohesion protection by HP1 (63).

Thus, targeting the CSD of HP1 to centromeres rescues sister...
chromatid cohesion defects in cells lacking the INCENP–HP1 interaction. These results are in line with our previous observation that stable expression of the CSD of HP1 as a CENP-B fusion protein (CB-CSD-GFP) is sufficient to support proper centromeric cohesion in the absence of endogenous HP1 and HP1 (63). Moreover, we found that inhibition of Aurora B kinase activity by Hesperadin treatment was still capable of significantly increasing the inter-KT distance in HP1 and HP1 double-knockout cells stably expressing CB-CSD-GFP (Fig. S5, A and B), suggesting that Aurora B kinase activity can protect centromeric cohesion in a way that is independent of the centromeric localization of HP1.

Whereas the majority of cohesin is released from chromosome arms by Wapl in early mitosis to allow sister-chromatid resolution (18, 19), Wapl activity is normally inhibited at mitotic centromeres (25). We wondered whether aberrantly increased local Wapl activity might account for the centromeric cohesion defects in cells lacking the INCENP–HP1 interaction. We found that Wapl depletion by siRNA effectively prevented metaphase chromosome misalignment in INCENP–HP1 expression cells during MG132-induced metaphase arrest (Fig. 6, D and E). Consistently, these mutant cells were capable of maintaining sister chromatid cohesion in the absence of Wapl (Fig. 6, F). Moreover, proper inter-KT distance was restored by Wapl depletion in cells expressing the INCENP–HP1-GFP mutant (Fig. 6, G). Thus, Wapl depletion bypasses the requirement for INCENP–HP1 interaction in centromeric cohesion protection.

The INCENP–HP1 interaction promotes centromeric localization of Haspin to antagonize Wapl

During mitosis, Haspin localizes predominantly to centromeres and phosphorylates histone H3 at threonine 3, which is...
particularly concentrated at centromeres (6, 7, 74). Given that INCENP targets HP1 to mitotic centromeres and that HP1 promotes the centromeric accumulation of Haspin (7, 63), we next examined whether Haspin localization at mitotic centromeres is compromised in cells lacking the INCENP–HP1 interaction.

Immunofluorescence microscopy showed that the level of phosphorylation of histone H3 at threonine 3 (H3-pT3) at mitotic centromeres, the readout of Haspin activity, was significantly lower in INCENP−/H9004 PVVEI-GFP–expressing cells than in control cells (Fig. 7, A and B). Using HeLa cells stably expressing Haspin-GFP, we further found that depletion of INCENP by siRNA reduced the localization of Haspin-GFP at mitotic centromeres (Fig. 7, C and D). Thus, the INCENP–HP1 interaction is required for full enrichment of Haspin at centromeres in mitosis.

We previously showed that the Pds5-interacting motif (PIM) in the N terminus of Haspin competes with the PIM of Wapl for binding Pds5B and that centromeric targeting of the PIM-containing fragment of Haspin as a CENP-B fusion protein rescues the centromeric cohesion defect in cells lacking the Pds5B–Haspin interaction (75). We hypothesized that, if the INCENP–HP1 interaction protects centromeric cohesion through localizing Haspin, artificially targeting Haspin to centromeres might bypass the need for INCENP–HP1 interaction in cohesion protection. Indeed, expression of the N terminus (residues 1–50) of Haspin as a CENP-B fusion protein (CB-Haspin-N50-Myc), but...
Role of the CPC in protecting sister chromatid cohesion

not CB-Myc, strongly shortened the inter-KT distance in cells expressing the INCENP–ΔPVVEI-GFP mutant (Fig. 7, E–G), indicative of the restoration of proper centromeric cohesion. Taken together, these results indicate that INCENP targets HP1 to mitotic centromeres, which promotes the centromeric localization of Haspin to antagonize Wapl activity in cohesin release.

Discussion

Timely resolution of sister chromatid cohesion in a stepwise manner during mitosis is critical for precise chromosome segregation. Defects in this process lead to chromosomal instability in cancer cells (76). It has been known for a long time that Aurora B kinase activity promotes cohesin release from chromosome arms, thereby enabling the resolution of sister chromatids in prophase and prometaphase (27, 28). Previous studies also found that depletion of Survivin or Aurora B or inhibition of Aurora B kinase activity impaired centromeric cohesion during mitosis (77, 78). We confirmed these observations and further demonstrated that the requirement for Aurora B kinase activity in centromeric cohesin protection can be bypassed by centromere-tethered Bub1, whose kinase activity toward histone H2A is required to recruit Sgo1 to centromeres (38, 39, 41, 46, 79–81). Thus, Aurora B kinase activity–dependent localization of the Mps1–pKNL1–Bub1 (p represents phosphorylation) signaling cascade to kinetochores not only plays an important role in SAC signaling through recruiting spindle checkpoint proteins (82) but also is required for centromeric cohesion through phosphorylating H2A and recruiting Sgo1 to centromeres (see the working model in Fig. 7H).

Previous studies have indicated that HP1 is a CPC-binding protein (59–61, 83) and that the INCENP–HP1 interaction assists Aurora B kinase activity to prevent chromosome segregation errors, particularly in nontransformed cells (62). Our finding that the INCENP–HP1 interaction is required for CPC localization to heterochromatic loci in G2 phase cells, together with a recent study (84), confirms the observation in a previous study (61). Interestingly, we found that loss of INCENP–HP1 interaction in HeLa cells does not seem to compromise Aurora B kinase activity at mitotic centromeres, likely because the amount of HP1 associated with CPC in cancer cells is below the threshold that is sufficient to cause an allosteric activation of Aurora B (62).

Importantly, we found that the INCENP–HP1 interaction is required to maintain sister chromatid cohesion at mitotic centromeres. This is in line with a recent study that infers that the CPC is localized at the inner centromere to sustain centromere cohesion on bioriented chromosomes with an unknown mechanism (85). At first glance, our results appear inconsistent with the previous observation that mitotic centromere targeting of HP1 is dispensable for sister chromatid cohesion in a HeLa-derived Tet-On cell line (61). However, it should be noted that the status of sister chromatid cohesion in the absence of INCENP–HP1 interaction was measured by Kang et al. (61) using chromosome spreads prepared from nocodazole-arrested mitotic cells. Consistently, we did not observe obvious cohesion defects in cells arrested in mitosis with either nocodazole or STLC. Intriguingly, we found that the INCENP–HP1 interaction is particularly important to maintain cohesion between sister chromatids on the metaphase plate, a situation where the kinetochore is under the sustained spindle pulling forces. The cohesion defects observed in cells lacking the INCENP–HP1 interaction are reminiscent of the “cohesion fatigue” phenotype (86–88). We demonstrated that Wapl depletion restores proper strength of centromeric cohesion in the absence of INCENP–HP1 interaction. In contrast, a recent study showed that Wapl-mediated opening of cohesin rings is not required after metaphase arrest to separate sister chromatid in cohesion fatigue (89). Thus, it seems that the sister chromatid cohesion defects in cells lacking INCENP–HP1 interaction are not simply an accelerated cohesion fatigue defect.

Although we cannot fully rule out the possibility that the INCENP–HP1 interaction protects centromeric cohesion through an additional unknown mechanism, we favor the idea that this interaction promotes the centromeric localization of Haspin, thereby antagonizing Wapl activity in cohesin release from mitotic centromeres (Fig. 7H) (63, 75, 90–92). Because both INCENP and Haspin use the PXVXL motif to bind HP1 (61, 63), it remains to be determined in the future how HP1 brought to centromeres by INCENP can also bind and recruit Haspin. This could be due to the dynamic nature of the interaction between the CSD dimer and PXVXL motif as well as the fact that INCENP is much more abundant than Haspin in somatic cells.

Moreover, we found that loss of the INCENP–HP1 interaction causes an elevated rate of chromosome missegregation. Then how might chromosome segregation errors occur in these cells with normal Aurora B kinase activity? It is possible that weakened cohesion at centromeres of metaphase chromosomes alters the kinetochore geometry and/or chromosome oscillation, thereby increasing errors in the KT–MT attachments.

Taken together, our results indicate that the CPC regulates sister chromatid cohesion at mitotic centromeres in ways that are both Aurora B kinase activity–dependent and –independent, thereby ensuring the maintenance of centromeric cohesion to the full extent in mitosis. This study provides important insight into the complex mechanism that ensures the fidelity of chromosome segregation during mitosis in human cells.

Experimental procedures

Cell culture, plasmids, siRNAs, transfection, and drug treatments

All cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 1% penicillin/streptomycin and 10% fetal bovine serum (Gibco) and maintained at 37 °C with 5% CO2. Cells stably expressing CB-GFP, H2B-GFP, INCENP-GFP, CB-Bub1-K-GFP, or Haspin-GFP were isolated and maintained in medium supplemented with 1% penicillin/streptomycin and 10% fetal bovine serum (Gibco) and maintained at 37 °C with 5% CO2. Cells stably expressing CB-GFP, H2B-GFP, INCENP-GFP, CB-Bub1-K-GFP, or Haspin-GFP were isolated and maintained in medium supplemented with 1% penicillin/streptomycin and 10% fetal bovine serum (Gibco) and maintained at 37 °C with 5% CO2.
were subcloned into the BamHI site of pBos-CB-GFP. To make pBos-CB-Myc, GFP sequence in pBos-CB-GFP was digested with BamHI and NotI and replaced with the Myc tag. Then the PCR fragments encoding HP1 CSD (residues 121–179) and Haspin N terminus (residues 1–50) were subcloned into the BamHI site of pBos-CB-Myc, resulting in pBos-CB-CDT-Myc and pBos-CB-Haspin-N50-Myc, respectively. All point mutations were introduced with the QuikChange II XL site-directed mutagenesis kit (Agilent Technologies). All plasmids were sequenced to verify desired mutations and absence of unintended mutations.

The siRNA targeting the 3′-UTR of INCENP (5′-GGCUUG-GCCAGGUGUAAUdTdT-3′), Wapl siRNA (5′-CCGAC- UACCUUAGCACAAdTdT-3′), and control siRNA were ordered from Ribobio. Plasmid and siRNA transfections were done with FuGENE 6 (Promega) and Oligofectamine or Lipofectamine RNAiMAX (Invitrogen), respectively. Cells were arrested in mitosis with 0.33 μM nocodazole (Selleckchem). Other drugs used in this study were STLC (5 μM; Tocris Bioscience), MG132 (5–20 μM; MCE), GSK 923295 (1 μM; Selleckchem), Hersedin (20–50 nM; Selleckchem), ZM447439 (2–3 μM; Selleckchem), Reversine (0.5 μM; MedChem Express), and AZ3146 (3 μM; MedChem Express). Mitotic cells were collected by selective detachment with “shake-off.”

CRISPR/Cas9 gene editing

Single-guide RNA (sgRNA) for human INCENP gene was ordered as oligonucleotides from Integrated DNA Technology, annealed, and cloned into the BbsI site of dual Cas9 and sgRNA expression vector pX330 (Addgene). The plasmids were transfected into HeLa cells stably expressing INCENP-GFP or INCENP-ΔPVVEI-GFP. After 48-h incubation, cells were split individually to make a clonal cell line with selection using 1 μg/ml puromycin for 2–3 days. The sgRNA targeting sequence (5′-TGCCCTTCAGACAGAGCC-3′) is in an intron 3 bases upstream of the start codon of INCENP gene. A total of 96 clones (48 clones for each) were isolated and analyzed by immunoblotting to confirm the loss of endogenous INCENP.

The HeLa cell–derived HP1β-KO clone was described previously (63). HP1α was knocked out in HP1β-KO cells by means of double nicking with the pX462 (Addgene)-expressed Cas9-D10A mutant and a pair of sgRNAs targeting two sequences (5′-AGAAGTCTAGCTGTCGGCTG-3′, 17 bases downstream of the start codon, and 5′-GGATGAGGAGGATATGTG-3′; the PAM sequence is lowercase). Similarly, HP1γ was knocked out in HP1β-KO cells with the Cas9-D10A mutant and a pair of sgRNAs targeting two sequences (5′-TCTTCGACAATCTTCTTGG-3′, 78 bases downstream of the start codon, and 5′-CTAGATCGAGCGTGTAG-GAATGG-3′). Clones with loss of HP1 proteins were isolated by immunostaining and confirmed by immunoblotting.

Antibodies

Rabbit polyclonal antibodies used were to H3-pT3 (B8633; a gift from Dr. Jonathan Higgins), GFP (A11122, Invitrogen), GAPDH (14C10, Cell Signaling Technology), H2A-pT120 (Active Motif), INCENP (2807, Cell Signaling Technology), CENP-A-pS7 (04-792, Millipore), VSV (V-4888, Sigma), and Wapl (A300-268A, Bethyl Laboratories). Rabbit anti-Bub1 and anti-Hecl-pS44 polyclonal antibodies were produced by immunization with the synthetic peptides NYGLPQPKNKPT-GAR and PTFGKLpSINKPTSE (where pS is phosphoserine), respectively. Mouse monoclonal antibodies were used to HP1α (MAB3446 for immunoblotting; MAB3584 for immunostaining), HP1β (MAB3448), and HP1γ (MAB3450) (all from Millipore); FLAG tag (M2, Sigma); Myc tag (4A6, Millipore); H3-pS10 (6G3, Cell Signaling Technology); Aurora B (A1-1, BD Biosciences); α-Tubulin (T-6047, Sigma); and Sgo1 (3C11, Abnova). Guinea pig polyclonal antibodies against CENP-C were from MBL (PD030). Anti-human centromere autoantibody (ACA) was from Immunovision. Secondary antibodies for immunoblotting were goat anti-rabbit or horse anti-mouse IgG–horseradish peroxidase (Cell Signaling Technology). Secondary antibodies for immunostaining were donkey anti-rabbit IgG–Alexa Fluor 488 or Cy3 (Jackson ImmunoResearch Laboratories), anti-mouse IgG–Alexa Fluor 488 or 546 (Invitrogen), anti-human IgG–Alexa Fluor 647 (Jackson ImmunoResearch Laboratories), and goat anti-guinea pig IgG–Alexa Fluor 647 (Invitrogen).

Fluorescence microscopy, time-lapse live-cell imaging, and statistical analysis

Cells cultured on coverslips were fixed with 2% paraformaldehyde in PBS for 10 min followed by extraction with 0.5% Triton X-100 in PBS for 5 min. To stain Hec1-pS44, cells were extracted for 5 min in PHEM (60 mM Pipes, 25 mM Heps, 10 mM EGTA, and 2 mM MgCl2, pH 6.9) plus 1% Triton X-100 and fixed at room temperature for 20 min in PHEM plus 4% formaldehyde. Mitotic cells collected by shake-off were spun on slides by Cytospin (Cytospin 4, Thermo Scientific) at 1500 rpm for 5 min. To produce chromosome spreads, mitotic cells obtained by selective detachment were incubated in 75 mM KCl for 10 min. After attachment to glass coverslips by Cytospin, chromosome spreads were fixed with 2% paraformaldehyde in PBS for 10 min followed by extraction with 0.5% Triton X-100 in PBS for 5 min. Fixed cells and chromosome spreads were stained with primary antibodies for 1–2 h and secondary antibodies for 1 h, all with 3% BSA in PBS with 0.5% Triton X-100 and at room temperature. DNA was stained for 10 min with DAPI. Fluorescence microscopy was carried out at room temperature using a Nikon ECLIPSE Ni microscope with a Plan Apo Fluor 60× oil (numerical aperture, 1.4) objective lens and a Clara charge-coupled device (Andor Technology). The inter-KT distance was measured using the inner kinetochore marker CENP-C or centromere marker ACA on over 15 kinetochores per cell in at least 10 cells. Distance was determined by drawing a line from the outer kinetochore extending to the outer edge of its sister kinetochore. The length of the line was calculated using the imaging software of NIS-Elements BR (Nikon). Quantification of fluorescence intensity was carried out with NIH ImageJ using images obtained at identical illumination settings. Briefly, on chromosome spreads, the average pixel intensity of Sgo1, Bub1, H2A-pT120, CENP-A-pS7, Hec1-pS44, H3-pT3, Haspin-GFP, CENP-C, or ACA staining at centromeres, defined as circular regions including paired centromeres, or on chromosome arms, was determined using ImageJ.

Role of the CPC in protecting sister chromatid cohesion

Cells cultured on coverslips were fixed with 2% paraformaldehyde in PBS for 10 min followed by extraction with 0.5% Triton X-100 in PBS for 5 min. To stain Hec1-pS44, cells were extracted for 5 min in PHEM (60 mM Pipes, 25 mM Heps, 10 mM EGTA, and 2 mM MgCl2, pH 6.9) plus 1% Triton X-100 and fixed at room temperature for 20 min in PHEM plus 4% formaldehyde. Mitotic cells collected by shake-off were spun on slides by Cytospin (Cytospin 4, Thermo Scientific) at 1500 rpm for 5 min. To produce chromosome spreads, mitotic cells obtained by selective detachment were incubated in 75 mM KCl for 10 min. After attachment to glass coverslips by Cytospin, chromosome spreads were fixed with 2% paraformaldehyde in PBS for 10 min followed by extraction with 0.5% Triton X-100 in PBS for 5 min. Fixed cells and chromosome spreads were stained with primary antibodies for 1–2 h and secondary antibodies for 1 h, all with 3% BSA in PBS with 0.5% Triton X-100 and at room temperature. DNA was stained for 10 min with DAPI. Fluorescence microscopy was carried out at room temperature using a Nikon ECLIPSE Ni microscope with a Plan Apo Fluor 60× oil (numerical aperture, 1.4) objective lens and a Clara charge-coupled device (Andor Technology). The inter-KT distance was measured using the inner kinetochore marker CENP-C or centromere marker ACA on over 15 kinetochores per cell in at least 10 cells. Distance was determined by drawing a line from the outer kinetochore extending to the outer edge of its sister kinetochore. The length of the line was calculated using the imaging software of NIS-Elements BR (Nikon). Quantification of fluorescence intensity was carried out with NIH ImageJ using images obtained at identical illumination settings. Briefly, on chromosome spreads, the average pixel intensity of Sgo1, Bub1, H2A-pT120, CENP-A-pS7, Hec1-pS44, H3-pT3, Haspin-GFP, CENP-C, or ACA staining at centromeres, defined as circular regions including paired centromeres, or on chromosome arms, was determined using ImageJ.
Role of the CPC in protecting sister chromatid cohesion

After background correction, the ratio of kinetochore or centromeric staining intensity versus CENP-C or ACA or centromeric Sgo1/arm Sgo1 was calculated for each centromere.

Time-lapse live-cell imaging was carried out with the GE DV Elite Applied Precision DeltaVision system (GE Healthcare) equipped with Olympus oil objectives of 40× (numerical aperture, 1.35) UApo/340, an API Custom Scientific complementary metal-oxide semiconductor camera, and Resolve3D soft-WoRx imaging software. Cells expressing H2B-GFP were plated in four-chamber glass-bottomed 35-mm dishes (Cellvis) coated with poly-d-lysine and filmed in a climate-controlled and humidified environment (37 °C and 5% CO2). Images were captured every 5 min. The acquired images were processed using Adobe Photoshop and Adobe Illustrator. Statistical analyses were performed with a two-tailed unpaired Student’s t test in GraphPad Prism. A p value less than 0.05 was considered significant.

Immunoblotting, immunoprecipitation, protein purification, and GST/MBP pulldown

SDS-PAGE, immunoblotting, and immunoprecipitation were prepared out using standard procedures. Cell lysates were prepared in standard SDS sample buffer for immunoblotting. For the immunoprecipitation, cells were lysed in “P150 buffer” containing 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5% Nonidet P-40, 10% glycerol, protease inhibitor mixture (P8340, Sigma), 1 mM phenylmethylsulfonyl fluoride or phenylmethanesulfonyl fluoride, 0.1 μM okadaic acid (Calbiochem), 10 mM NaF, 20 mM β-glycerophosphate, and Benzonase (Merck). After removal of insoluble materials by high-speed centrifugation, lysates were precleared with GammaBind G-Sepharose (17-0885-02, GE Healthcare). Lysates were incubated with antibodies for 3 h at 4 °C before addition of GammaBind G-Sepharose for a further 1 h. Beads were washed several times with the lysis buffer, boiled in standard SDS sample buffer, and subjected to immunoblotting.

Plasmids expressing MBP- or GST-fused HP1 and INCENP proteins were constructed by subcloning PCR fragments into pGEX-MBP-10xHis or pGEX-4T1. The plasmids were transfected into BL21 competent cells (Stratagene). Cells were grown in LB broth under antibiotic selection at 37 °C until reaching an A600 of 0.6–0.7, and protein expression was induced with 0.4 mM isopropyl 1-thio-d-galactopyranoside at 16 °C for 16 h. Cells were lysed by sonication in buffer A (50 mM Tris-HCl, pH 8.0, and 300 mM NaCl; for MBP fusion proteins) or buffer B (20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, and 1% Triton X-100; for GST fusion proteins). The lysate was clarified by centrifugation and incubated with amylose resin (BioLab) or GSH-Sepharose 4B (GE Healthcare) in lysis buffer. The resins were washed with lysis buffer or eluted with 150 mM maltose or 150 mM GSH. For pulldown of proteins from lysates (GST pulldown as the example), HeLa cells were first lysed in P150 buffer except that NaCl was used at 500 mM, and then the lysates were diluted to achieve the final concentration of NaCl at 150 mM. The lysates were precleared with GSH-Sepharose 4B beads and then incubated with GST fusion proteins immobilized to GSH-Sepharose 4B beads for 2 h.

Author contributions—Q. Y. and Q. C. validation; Q. Y., Q. C., M. Z., and F. W. investigation; Q. Y., Q. C., H. Y., M. Z., C. L., X. X., X. P., and F. W. methodology; H. Y. and F. W. conceptualization; H. Y. and F. W. resources; H. Y. and F. W. writing and reviewing and editing; F. W. data curation; F. W. formal analysis; F. W. supervision; F. W. funding acquisition; F. W. writing—original draft; F. W. project administration.

Acknowledgment—We thank members of our laboratory for discussions and the Life Sciences core facility for technical assistance.

References
1. Bakhoum, S. F., Ngo, B., Laughney, A. M., Cavallo, J. A., Murphy, C. J., Ly, P., Shah, P., Sriram, R. K., Watkins, T. B. K., Taunk, N. K., Duran, M., Pauli, C., Shaw, C., Chadalavada, K., Rajasekhar, V. K., et al. (2018) Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 CrossRef Medline
2. Bakhoum, S. F., and Cantley, L. C. (2018) The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 CrossRef Medline
3. Trivedi, P., and Stukenberg, P. T. (2016) A centromere-signaling network underlies the coordination among mitotic events. Trends Biochem. Sci. 41, 160–174 CrossRef Medline
4. Carmona, M., Pinson, X., Platani, M., Salloum, Z., Xu, Z., Clark, A., Macisacac, F., Ogawa, H., Eggert, U., Glover, D. M., Archambault, V., and Earnshaw, W. C. (2012) The chromosomal passenger complex activates Polo kinase at centromeres. PLoS Biol. 10, e1001250 CrossRef Medline
5. Kelly, A. E., Ghenoiu, C., Xue, J. Z., Zierhut, C., Kimura, H., and Funabiki, H. (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330, 235–239 CrossRef Medline
6. Wang, F., Dai, J., Daum, J. R., Niedzialkowska, E., Banerjee, B., Stukenberg, P. T., Gorbsky, G. J., and Hoggins, J. M. (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 320, 231–235 CrossRef Medline
7. Yamagishi, Y., Honda, T., Tanno, Y., and Watanabe, Y. (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330, 239–243 CrossRef Medline
8. Sessa, F., Mapelli, M., Ciferri, C., Tarricone, C., Areces, L. B., Schneider, T. R., Stukenberg, P. T., and Musacchio, A. (2005) Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol. Cell 18, 379–391 CrossRef Medline
9. Bishop, J. D., and Schumacher, J. M. (2002) Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B kinase stimulates Aurora B kinase activity. J. Biol. Chem. 277, 27577–27580 CrossRef Medline
10. Honda, R., Körner, R., and Nigg, E. A. (2003) Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol. Biol. Cell 14, 3325–3341 CrossRef Medline
11. Adams, R. R., Wheatley, S. P., Gouldsworthy, A. M., Kandels-Lewis, S. E., Carmona, M., Smythe, C., Gerloff, D. L., and Earnshaw, W. C. (2000) INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr. Biol. 10, 1075–1078 CrossRef Medline
12. DeLuca, J. G., Gall, W. E., Ciferri, C., Chinetti, G., Musacchio, A., and Salmon, E. D. (2006) Kinetochores microtubule dynamics and attachment are regulated by Hec1. Cell 127, 969–982 CrossRef Medline
13. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M., and Desai, A. (2006) The conserved KMN network constitutes the core microtubule interface. Cell 127, 983–997 CrossRef Medline
14. Welburn, J. P., Vleugel, M., Liu, D., Yates, J. R., 3rd, Lampson, M. A., Fukagawa, T., and Cheeseman, I. M. (2010) Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell 38, 383–392 CrossRef Medline
Role of the CPC in protecting sister chromatin cohesion

15. DeLuca, K. F., Lens, S. M., and DeLuca, J. G. (2011) Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. *J. Cell Sci.* **124**, 622–634

16. London, N., and Higgins, S. (2014) Signalling dynamics in the spindle checkpoint response. *Nat. Rev. Mol. Cell Biol.* **15**, 736–747

17. Nasmyth, K., and Haering, C. H. (2009) Cohesin: its roles and mechanisms. *Annu. Rev. Genet.* **43**, 525–558

18. Gandhi, R., Gillespie, P. J., and Hirano, T. (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. *Curr. Biol.* **16**, 2406–2417

19. Schmitz, J., Watrin, E., Lénárt, P., Mechtler, K., and Peters, J. M. (2007) Aurora B specifies spindle checkpoint kinase Mps1 signaling at the kinetochore. *Curr. Opin. Cell Biol.* **19**, 511–517

20. Liu, H., Qu, Q., Warrington, R., Rice, A., Cheng, N., and Yu, H. (2015) Mitotic transcription installs Sgo1 at centromeres to coordinate chromosome segregation. *Mol. Cell* **59**, 426–436

21. Meppelink, A. E., Kabeche, L., Vromans, M. J., Compton, D. A., and Lens, S. M. (2015) Shugoshin-1 balances Aurora B kinase activity via PP2A to promote chromosome bi-orientation. *Cell Rep.* **11**, 508–515

22. Pluta, A. F., Saitoh, N., Goldberg, I., and Earnshaw, W. C. (1992) Identification of a subdomain of CENP-B that is necessary and sufficient for localization to the human centromere. *J. Cell Biol.* **116**, 1081–1093

23. Nijenhuis, W., van Castel, E., Lüttner, D., De Marco, V., Tromer, E., Vleugel, M., van Osch, M. H., Snel, B., Perrakis, A., and Kops, G. J. (2013) A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B. *J. Cell Biol.* **201**, 217–231

24. Saurin, A. T., van der Waal, M. S., Medema, R. H., Lens, S. M., and Kops, G. J. (2011) Aurora B potentiates Mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis. *Nat. Commun.* **2**, 316

25. Santaguida, S., Tighe, A., D’Alise, A. M., Taylor, S. S., and Musacchio, A. (2010) Dissecting the role of MPS1 in chromosome biorientation and the role of cohesin-microtubule attachment and in maintaining the spindle assembly checkpoint. *J. Cell Biol.* **161**, 281–294

26. Dreier, M. R., Bekier, M. E., and Taylor, W. R. (2011) Regulation of sororin by Cdk1-mediated phosphorylation. *J. Cell Sci.* **124**, 2976–2987

27. McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J. M., and Nasmyth, K. (2005) Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. *PloS Biol.* **3**, e69

28. Salic, A., Waters, J. C., and Mitchison, T. J. (2004) Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. *Cell* **118**, 567–578

29. Sumara, I., Vorlaufer, E., Stukenberg, P. T., Kelm, O., Redemann, N., Nigg, E. A., and Peters, J. M. (2002) The dissociation of cohesin from chromosomes is regulated by Polo-like kinase. *Mol. Cell* **9**, 515–525

30. Li, F., Gao, X., Ke, Y., Wang, Z., Aikhionbare, F., Fu, C., Ding, X., et al. (2013) Phosphorylation of microtubule-binding protein Hec1 by mitotic kinase Aurora B specifies spindle checkpoint kinase Mps1 signaling at the kinetochore. *J. Biol. Chem.* **288**, 36149–36159

31. Nishiya, T., Sykora, M. M., Huis in’t Veld, P. J., Mechtler, K., and Peters, J. M. (2013) Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 13404–13409

32. Hauff, S., Cole, R. W., LaTerra, S., Zimmer, C., Schnapp, G., Walter, R., Heckel, A., van Meel, J., Rieder, C. L., and Peters, J. M. (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kineto-
Role of the CPC in protecting sister chromatid cohesion

spindle checkpoint through the small molecule inhibitor rottnerine. J. Cell Biol. 190, 73–87 CrossRef Medline

51. Ji, Z., Gao, H., and Yu, H. (2015) Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 348, 1260–1264 CrossRef Medline

52. Hiruma, Y., Sacristán, C., Pachis, S. T., Adamopoulos, A., Kujit, T., Ubbink, M., von Castelmer, E., Perrakis, A., and Kops, G. J. (2015) Competition between Mps1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348, 1264–1267 CrossRef Medline

53. Yamagishi, Y., Yang, C. H., Tanno, Y., and Watanabe, Y. (2012) Mps1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat. Cell Biol. 14, 746–752 CrossRef Medline

54. Shepperd, L. A., Meadows, J. C., Sochaj, A. M., Lancaster, T. C., Zou, J., Buttrick, G. J., Rappsilber, J., Hardwick, K. G., and Millar, J. B. (2012) Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr. Biol. 22, 891–899 CrossRef Medline

55. London, N., Ceto, S., Ranish, J. A., and Biggins, S. (2012) Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr. Biol. 22, 900–906 CrossRef Medline

56. Ainzts, A. M., Kandels-Lewis, S. E., Ackay, A. M., and Earnshaw, W. C. (1998) INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein H1. J. Cell Biol. 143, 1763–1774 CrossRef Medline

57. Nozawa, R. S., Nagao, K., Masuda, H. T., Iwasaki, O., Hirota, T., Nozaki, N., Kimura, H., and Obuse, C. (2010) Human POGZ modulates dissociation of HIP1α from mitotic chromosome arms through Aurora B activation. Nat. Cell Biol. 12, 719–727 CrossRef Medline

58. Yi, Q., Chen, Q., Liang, C., Liang, X., Zhang, Z., Zhang, M., Qi, F., Zhou, L., and Wang, F. (2018) HIP1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO Rep. 19, e54584 CrossRef Medline

59. Yamagishi, Y., Sakuno, T., Shimura, M., and Watanabe, Y. (2008) Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455, 251–255 CrossRef Medline

60. Shimura, M., Toyoda, Y., Iijima, K., Kinomoto, M., Tokunaga, K., Yoda, K., Yanagida, M., Sata, T., and Ishizaka, Y. (2011) Epigenetic displacement of HIP1 from heterochromatin by HIV-1 Vpr causes premature sister chromatid separation. J. Cell Biol. 194, 721–735 CrossRef Medline

61. Brashier, S. V., Smith, B. O., Fogg, R. H., Nietlispach, D., Thiru, A., Nielsen, P. R., Broadhurst, R. W., Ball, L. I., Murzina, N. V., and Laure, E. D. (2000) The structure of mouse HIP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J. 19, 1587–1597 CrossRef Medline

62. Maison, C., and Almouzni, G. (2004) HIP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol. 5, 296–304 CrossRef Medline

63. Thiru, A., Nietlispach, D., Mott, H. R., Okuwaki, M., Lyon, D., Nielsen, P. R., Hirshberg, M., Verreault, A., Murzina, N. V., and Laure, E. D. (2004) Structural basis of HIP1/PXVXL motif peptide interactions and HIP localization to heterochromatin. EMBO J. 23, 489–499 CrossRef Medline

64. Smothers, J. F., and Henikoff, S. (2000) The HIP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol. 10, 27–30 CrossRef Medline

65. Zeitlin, S. G., Shelby, R. D., and Sullivan, K. F. (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J. Cell Biol. 155, 1147–1157 CrossRef Medline

66. Lampson, M. A., Renduchithala, K., Khodjakov, A., and Kapoor, T. M. (2004) Correcting improper chromosome-spindle attachments during cell division. Nat. Cell Biol. 6, 232–237 CrossRef Medline

67. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 CrossRef Medline

68. Wood, K. W., Lad, L., Luo, L., Qian, X., Knight, S. D., Nevins, N., Brej, K., Sutton, D., Gilmartin, A. G., Chua, P. R., Desai, R., Schauer, S. P., McNulty, D. E., Annan, R. S., Belmont, L. D., et al. (2010) Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl. Acad. Sci. U.S.A. 107, 5839–5844 CrossRef Medline

69. Dai, J., Sultan, S., Taylor, S. S., and Higgins, J. M. (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 19, 472–488 CrossRef Medline

70. Zhou, L., Liang, C., Chen, Q., Zhang, Z., Zhang, B., Yan, H., Qi, F., Zhang, M., Yi, Q., Guan, Y., Xiang, X., Zhang, X., Ye, S., and Wang, F. (2017) The N-terminal non-kinase-domain-mediated binding of Haspin to Pds5B protects centromeric cohesion in mitosis. Curr. Biol. 27, 992–1004 CrossRef Medline

71. Losada, A. (2014) Cohesin in cancer: chromosome segregation and beyond. Nat. Rev. Cancer 14, 389–393 CrossRef Medline

72. Kawashima, S. A., Tsukahara, T., Langegger, M., Hauf, S., Kitajima, T. S., and Watanabe, Y. (2007) Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 21, 420–435 CrossRef Medline

73. Tanno, Y., Kitajima, T. S., Honda, T., Ando, Y., Ishiguro, K., and Watanabe, Y. (2010) Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres. Genes Dev. 24, 2169–2179 CrossRef Medline

74. Phoenix-H2A and cohesin specify distinct tension-regulated Sgo1 pools at kinetochores and inner centromeres. Curr. Biol. 23, 1927–1933 CrossRef Medline

75. Kitajima, T. S., Hauf, S., Ohsugi, M., Yamamoto, T., and Watanabe, Y. (2005) Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr. Biol. 15, 353–359 CrossRef Medline

76. London, N., and Biggins, S. (2014) Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes Dev. 28, 140–152 CrossRef Medline

77. Liu, X., Song, Z., Huo, Y., Zhang, J., Zhu, T., Wang, J., Zhao, X., Aikin-Jonbare, F., Zhang, J., Duan, H., Wu, J., Dou, Z., Shi, Y., and Yao, X. (2014) Chromatin protein HIP1 interacts with the mitotic regulator borealin protein and specifies the centromere localization of the chromosomal passenger complex. J. Biol. Chem. 289, 20638–20649 CrossRef Medline

78. Ruppert, J. G., Samejima, K., Platani, M., Molina, O., Kimura, H., Jeya-prakash, A. A., Ohta, S., and Earnshaw, W. C. (2018) HIP1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO J. 37, e97677 CrossRef Medline

79. Hengeveld, R. C. C., Vromans, M. J. M., Vleugel, M., Hadders, M. A., and van Haren, P. H. (2010) Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl. Acad. Sci. U.S.A. 107, 5839–5844 CrossRef Medline

80. Lara-Gonzalez, P., and Taylor, S. S. (2012) Cohesion fatigue explains why pharmacological inhibition of the APC/C induces a spindle
checkpoint-dependent mitotic arrest. PLoS One 7, e49041 CrossRef Medline
87. Daum, J. R., Potapova, T. A., Sivakumar, S., Daniel, J. J., Flynn, J. N., Rankin, S., and Gorbsky, G. J. (2011) Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr. Biol. 21, 1018–1024 CrossRef Medline
88. Stevens, D., Gassmann, R., Oegema, K., and Desai, A. (2011) Uncoordinated loss of chromatid cohesion is a common outcome of extended metaphase arrest. PLoS One 6, e22969 CrossRef Medline
89. Sapkota, H., Wasiak, E., Daum, J. R., and Gorbsky, G. J. (2018) Multiple determinants and consequences of cohesion fatigue in mammalian cells. Mol. Biol. Cell 29, 1811–1824 CrossRef Medline
90. Liang, C., Chen, Q., Yi, Q., Zhang, M., Yan, H., Zhang, B., Zhou, L., Zhang, Z., Qi, F., Ye, S., and Wang, F. (2018) A kinase-dependent role for Haspin in antagonizing Wapl and protecting mitotic centromere cohesion. EMBO Rep. 19, 43–56 CrossRef Medline
91. Goto, Y., Yamagishi, Y., Shintomi-Kawamura, M., Abe, M., Tanno, Y., and Watanabe, Y. (2017) Pds5 regulates sister-chromatid cohesion and chromosome bi-orientation through a conserved protein interaction module. Curr. Biol. 27, 1005–1012 CrossRef Medline
92. Dai, J., Sullivan, B. A., and Higgins, J. M. (2006) Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev. Cell 11, 741–750 CrossRef Medline