Enhanced nuclear Schiff moment and time reversal violation in 229Th-containing molecules

V.V. Flambaum

1 School of Physics, University of New South Wales, Sydney 2052, Australia and
2 Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

(Dated: October 29, 2018)

Octupole deformation results in a strongly enhanced collective Schiff moment in 229Th nucleus. An additional enhancement of time reversal (T) and parity (P) violating effects (such as T,P-violating electric dipole moments) appears in the ground $^3\Sigma$ state and in the metastable $^3\Delta_1$ state of diatomic molecule 229ThO. Similar enhancements exist in molecular ions 229ThOH$^+$, 229ThF$^+$ and 225,223RaOH$^+$. Corresponding experiments may be used to test CP-violation theories predicting T,P-violating nuclear forces and to search for axions.

PACS numbers:

Introduction: octupole deformation and enhanced nuclear Schiff moments. Measurements of T,P and CP-violating electric dipole moments (EDM) of elementary particles, nuclei and atoms provide crucial tests of unification theories and have already cornered many popular models of CP-violation including supersymmetry \cite{1,2}. Corresponding effects are very small, therefore, we are looking for the enhancement mechanisms - see e.g. \cite{3,4,5}.

According to the Schiff theorem the nuclear EDM is completely screened in neutral atoms \cite{6}. EDM of diamagnetic atoms is produced by interaction of electrons with the nuclear Schiff moment. The Schiff moment is a vector multipole which produces electric field inside the nucleus. It appears in the third order of the multipole expansion of the nuclear electrostatic potential with added electron screening term \cite{7,11}. The distribution of the Schiff moment electric field inside the nucleus, the Hamiltonian describing interaction of the Schiff moment with relativistic atomic electrons and the finite nuclear size corrections to the formula for the Schiff moment have been considered in Ref. \cite{12}.

Refs. \cite{7,8,9,10} calculated the Schiff moment due to proton EDM. Refs. \cite{9,11} calculated (and named) the nuclear Schiff moment produced by the P,T-odd nuclear forces. It was shown in \cite{9} that the contribution of the P,T-odd forces to the nuclear EDM and Schiff moment is ~ 40 times larger than the contribution of the nuclear EDM.

Further enhancement of the nuclear Schiff moment may be due to the close nuclear levels of opposite parity with the same angular momentum which can be mixed by the T,P-odd nuclear forces \cite{6} (nuclear EDM and magnetic quadrupole can also be enhanced \cite{13}). Nuclear T,P-odd moments such as magnetic quadrupoles may also be enhanced due to their collective nature in deformed nuclei \cite{14}. However, the largest enhancement ($\sim 10^2 - 10^3$ times) happens in nuclei with the octupole deformation where both the close nuclear level effect and the collective effect work together \cite{13,16}.

Calculation of collective Schiff moment. The Schiff moment is defined by the following expression \cite{9}:

$$ S = \frac{e}{10} \left(< r^2 > - \frac{5}{3Z} < r^2 > < r > \right), \quad (1) $$

where $< r^n > \equiv \int \rho(r)r^n d^3r$ are the moments of the nuclear charge density ρ. The second term originates from the electron screening and contains nuclear mean squared charge radius $< r^2 > /Z$ and nuclear EDM $d = e < r >$, where Z is the nuclear charge.

If a nucleus has an octupole deformation β_3 and a quadrupole deformation β_2, in the fixed-body (rotating) frame the Schiff moment S_{intr} is proportional to the octupole moment O_{intr}, i.e. it has a collective nature \cite{15,16}:

$$ S_{intr} \approx \frac{3}{5\sqrt{35}} O_{intr} \beta_2 \approx \frac{3}{20\pi \sqrt{35}} eZR^3 \beta_2 \beta_3, \quad (2) $$

where R is the nuclear radius. However, in the laboratory frame EDM and Schiff moment are forbidden by the parity and time reversal invariance. Indeed, EDM and Schiff moment are polar T-even vectors which must be directed along the nuclear spin I which is T-odd pseudovector.

A nucleus with an octupole deformation and non-zero nuclear angular momentum has a doublet of close opposite parity rotational states $|I^\pm >$ with the same angular momentum I ($|I^\pm > = \frac{1}{\sqrt{2}} (|\Omega > + | - \Omega >)$, where Ω is the projection of I on to the nuclear axis). The states of of this doublet are mixed by P,T-violating interaction W. The mixing coefficient is:

$$ \alpha = \frac{< I^- | W | I^+ >}{E_+ - E_-}. \quad (3) $$

This mixing polarises nuclear axis n along the nuclear spin I, $| n_z > = 2\alpha \frac{I_z}{I+1}$, and the intrinsic Schiff moment shows up in the laboratory frame \cite{15,16}:

$$ S = 2\alpha \frac{I}{I+1} S_{intr}. \quad (4) $$

A nucleus with an octupole deformation also has a small intrinsic EDM D due to a difference between the proton...
orders of magnitude.

A similar Ω- doublet mixing mechanism produces huge enhancement of electron EDM d_e and T,P-odd interactions in polar molecules, such as ThO. Interaction of d_e with molecular electric field produces the mixing coefficient α resulting in the orientation of large intrinsic molecular EDM $D \sim e \alpha a_B$ along the molecular angular momentum J, and we obtain $d = 2a(\ell + 1)D \sim e \alpha a_B$, where a_B is the Bohr radius. As a result, the T,P-violating molecular EDM d exceeds electron EDM d_e by 10 orders of magnitude.

In the papers [15, 16] the numerical calculations of the Schiff moments and estimates of atomic EDM produced by electrostatic interaction between electrons and these moments have been done for 223Ra, 225Ra, 223Fr, 223Ac and 229Pa. The Schiff moment of 225Ra exceeds the Schiff moment of 199Hg (where the most accurate measurements of the Schiff moment have been performed [17]) 200 times. Even larger enhancement of the 225Ra Schiff moment has been obtained in Ref. [18]. For other nuclei the enhancement factors relative to Hg are between 30 and 700. Atomic calculations of EDM induced by the Schiff moment in Hg, Xe, Ra, Pt and Pu atoms have been performed in Refs. [4, 13, 22] and include additional atomic enhancement mechanisms.

It is useful to make an analytical estimate of the Schiff moment. According to Ref. [10] the T,P-violating matrix element is approximately equal to

$$< \Gamma^{-}|W|\Gamma^{+}> \approx \frac{\beta_3 e \eta}{A^{1/3}} \text{eV}. \tag{5}$$

Here η is the dimensionless strength constant of the nuclear T, P-violating potential W:

$$W = \frac{G}{\sqrt{2}} \frac{m}{\rho} (\sigma \nabla) \rho, \tag{6}$$

where G is the Fermi constant, m is the nucleon mass and ρ is the nuclear number density. Eqs. (2,3,4,5) give the analytical estimate for the Schiff moment:

$$S \approx 1 \times 10^{-4} \frac{I}{I + 1} \beta_3^2 \bar{\eta} Z A^{2/3} \frac{\text{KeV}}{E_+ - E_-} e \eta \text{fm}^3. \tag{7}$$

This estimate gives $S = 0.28 e \eta \text{fm}^3$ for 225Ra, very close to the result of the numerical calculation in Ref. [10], $S = 0.30 e \eta \text{fm}^3$.

The values of the Schiff moments for the nuclei with octupole deformation listed above vary from 45 to 1000 $10^{-8} e \eta \text{fm}^3$ [10]. For spherical nuclei 199Hg, 129Xe, 203Tl and 205Tl, where the Schiff moment measurements have been performed, the calculations [4,11] give the Schiff moment $S \approx 1 \times 10^{-8} e \eta \text{fm}^3$.

The Schiff moment in Eq. (7) is proportional to the squared octupole deformation parameter β_3^2 which is about $(0.1)^2$. According to Ref. [24], in nuclei with a soft octupole vibration mode the squared dynamical octupole deformation $< \beta_3^2 > \approx (0.1)^2$, i.e. it is the same as the static octupole deformation. This means that a similar enhancement of the Schiff moment may be due to the dynamical octupole effect [23,25] in nuclei where $< \beta_3 > \approx 0$.

Unfortunately, the nuclei with the octupole deformation and non-zero spin have a short lifetime. Several experimental groups have considered experiments with 225Ra and 223Ra. The only published EDM measurement [27] has been done for 227Ra which has 15 days half-life. In spite of the Schiff moment enhancement the 225Ra EDM measurement has not reached yet the sensitivity to the T,P-odd interaction Eq. (6) comparable to the Hg EDM experiment [17]. The experiments continue, however, the instability of 225Ra and a relatively small number of atoms available may be a problem.

To have a breakthrough in the sensitivity we need a more stable nucleus and a larger number of atoms. An excellent candidate is 229Th nucleus which lives 7917 years and is very well studied in numerous experiments and calculations (this nucleus is the only candidate for the nuclear clock which is expected to have a precision significantly better than atomic clocks [28,29], has strongly enhanced effects of “new physics” [30,31] and may be used for a nuclear laser [32]). 229Th is produced in macroscopic quantities by the decay of 233U (see e.g. [33]), and its principal use is for the production of the medical isotopes 225Ac and 213Bi.

According to Ref. [34] the 229Th nucleus has the octupole deformation with the parameters $\beta_3=0.115$, $\beta_3=0.150$, $I = 5/2$ and the interval between the opposite parity levels $E(5/2^-)-E(5/2^+)=133.3$ KeV. The analytical formula in Eq. (7) allows us to scale the value of the Schiff moment from the numerical calculations for 225Ra which has $\beta_3=0.099$, $\beta_3=0.12$, $I = 1/2$ and interval between the opposite parity levels $E(1/2^-)-E(1/2^+)=55.2$ KeV [10]. Then Eq. (7) gives:

$$S(\text{Th}^{229}) = 2 S(\text{Th}^{225}), \tag{8}$$

Using $S(\text{Th}^{225}) = 300 \times 10^{-8} e \eta \text{fm}^3$ [10] we obtain $S(\text{Th}^{229}) = 600 \times 10^{-8} e \eta \text{fm}^3$.

Within the meson exchange theory the π-meson exchange gives the dominating contribution to the T,P-violating nuclear forces [2]. According to Ref. [30] the neutron and proton constants in the T,P-odd potential [6] may be presented as $\eta_n \approx -\eta_p \approx 5 \times 10^6(-0.2 \bar{g}_0 + \bar{g}_3 + 0.4 \bar{g}_2)$. In Refs. [13,10] we have not separated the proton and neutron contributions. Majority of the nucleons are neutrons, so it makes sense to take $\eta = \eta_n$. However, the proton interaction constant has an opposite sign and may cancel a part of the neutron contribution, so we multiply the interaction constant by $((N-Z)/N) = 0.36$ and use $\eta = 0.36 \eta_n$. This way we can obtain a rough estimate: $S(\text{Th}^{225}) = (-2.2 \bar{g}_0 + 11 \bar{g}_1 + 4 \bar{g}_2) e \eta \text{fm}^3$, $S(\text{Th}^{229}) = (-4.4 \bar{g}_0 + 22 \bar{g}_1 + 8 \bar{g}_2) e \eta \text{fm}^3$.

A more accurate job has been done in Ref. [18] where they presented the Schiff moment as $S(\text{Th}^{225}) = (a_0 \bar{g}_0 + a_1 \bar{g}_1 + a_2 \bar{g}_2) e \eta \text{fm}^3$. To estimate the error the authors of Ref. [18] have done the calcula-
tions using 4 different models of the strong interaction. They obtained the following 4 sets of the coefficients: \(a_0 = -1.5, -1.0, -4.7, -3.0; \) \(a_1 = 6.0, 7.0, 21.5, 16.9; \) \(a_2 = -4.0, -3.9, -11.0, -8.8. \) Taking the average values of the coefficients and using Eq. (8) we obtain:

\[
S^{(225)\text{Ra}} = (-2.69g_9 + 12.9g_9 - 6.9g_9) \times 10^{-3}, \quad (9)
\]

\[
S^{(229)\text{Th}} = (-5.1g_9 + 25.7g_9 - 13.9g_9) \times 10^{-3}. \quad (10)
\]

We will use these expressions as our final values for the Ra and Th Schiff moments. We can express the results in terms of the more fundamental parameters such as the QCD \(\theta \)-term constant \(\theta \) and the quark chromo-EDMs \(\hat{d}_a \) and \(\hat{d}_d \) using the relations \(gg_9 = -0.370 \times 10^{-4} \) and \(gg_9 = 0.8 \times 10^{15}(\hat{d}_a + \hat{d}_d)/\text{cm} \):

\[
S^{(225)\text{Ra}} = 1.0 \hat{d}_e \times 10^{-3}, \quad (11)
\]

\[
S^{(229)\text{Th}} = 2.0 \hat{d}_e \times 10^{-3}, \quad (12)
\]

\[
S^{(225)\text{Ra}} = 10^4(0.50 \hat{d}_a - 0.54 \hat{d}_d) \times 10^{-2} \hat{d}_e \times 10^{-2} \hat{d}_e, \quad (13)
\]

\[
S^{(229)\text{Th}} = 10^4(1.0 \hat{d}_a - 1.1 \hat{d}_d) \times 10^{-2} \hat{d}_e \times 10^{-2} \hat{d}_e. \quad (14)
\]

Note that the contributions of \(\hat{\theta} \) and \(\hat{d}_{a,d} \) should not be added to avoid double counting since \(\hat{d}_{a,d} \) may be induced by \(\hat{\theta} \).

Molecular enhancement. Atomic EDM \(d_a \) produced by the Schiff moment \(S \) very rapidly increases with the nuclear charge \(Z \):

\[
d_a \propto Z^2 \left[\frac{a_B}{2ZR} \right]^{2-2\gamma} S, \quad (15)
\]

where \(R \) is the nuclear radius, \(a_B \) is the Bohr radius, \(\gamma = \sqrt{1 - (Z\alpha)^2} \). Th and Ra have close nuclear charges, \(Z = 88 \) and 90, and similar electronic structure up to last filled \(7s^2 \) subshell. Two extra 6d electrons in Th have high angular moments, do not interact with the Schiff moment directly (up to many-body corrections). Therefore, \(d_a/S \) for Th is approximately equal to \(d_a/S \) for Ra. Using calculations of Ra atom EDM from Refs. \[21\] \[22\] we have

\[
d_a(\text{Th}) \approx -9 \times 10^{-17} \frac{S}{|e|} \times \text{fm}^3 |e| \times \text{cm} = -2 \times 10^{-16} \hat{\theta} |e| \times \text{cm}. \quad (16)
\]

\(d_a(\text{Th}) \) as a function of other T,P and CP-violating interaction constants \(\eta, \bar{\eta}, \hat{d} \) can be found by the substitution of the Th Schiff moment from the equations in the nuclear Schiff moment section above. This value of Th EDM is 3 orders of magnitude larger than Hg EDM and 4 orders of magnitude larger than Xe EDM. However, Th atom has non-zero electron angular momentum, \(J = 2 \), and this reduces the signal coherence time and increases systematic errors. In principle, one may use Th\(^{+}\) ion which has closed shells or look for zero electron angular momentum Th ions in solid state materials.

Note that the measurements of the effects produced by the \(^{229}\text{Th} \) Schiff moment may be used to search for axions. Indeed, the axion dark matter produces oscillating neutron EDM \[38\] and oscillating Schiff moment \[39\], the latter is enhanced in \(^{229}\text{Th} \) by the same octupole mechanism. Indeed, the axion dark matter field \(a(t) = a_0 \cos(m_a t) \) (\(m_a \) is the axion mass) generates oscillating nuclear forces which are similar to the T,P-odd nuclear forces producing the Schiff moments. To obtain the result for the oscillating Schiff moments and EDM it is sufficient to replace the constant \(\hat{\theta} \) by \(a(t)/f_a \), where \(f_a \) is the axion decay constant \[38\] \[39\]. Search for the effects produced by the oscillating axion-induced Schiff moments in solid state materials is in progress \[41\]. A promising direction here may be to use \(^{229}\text{Th} \) molecule placed in a matrix of Xe (or other) atoms. A proposal to use paramagnetic molecules in the matrix of rare-gas atoms for the electron EDM search has been described in Ref. \[41\].

Promising objects for the Th Schiff moment measurement may be ThO molecule and ThOH\(^+\) molecular ion. Both molecules have zero electron angular momentum in the ground state and very close opposite parity levels which enhance T,P-violating EDM.

Use of polar diatomic molecules for the measurement of the nuclear Schiff moment was suggested by Sandars \[7\] \[8\] because electric field inside polarised molecule exceeds external electric field \(\epsilon \) by several orders of magnitude and has the same direction. The molecular polarisation is \(P \sim D\epsilon/(E_\perp - E_\parallel) \), where \(D \sim ea_B \) is the intrinsic electric dipole moment of the polar molecule. Therefore, to have a significant polarisation degree \(P \) the interval between the opposite parity molecular rotational levels \(E_\perp - E_\parallel \) should be sufficiently small. Indeed, the rotational interval in molecules is 3-5 orders of magnitude smaller than a typical interval between the opposite parity levels in atoms.

We may interpret the molecular enhancement in a different way \[20\]: interaction between the Schiff moment and electrons mixes close opposite parity levels in the molecule, polarises the molecule along its angular momentum and creates T,P-violating EDM proportional to the large intrinsic electric dipole moment \(D \) - see the discussion below Eq. (4). This enhanced EDM interacts with the external electric field \(\epsilon \). The experiment has been performed with the TIF molecule \[42\]. In the paper Ref. \[43\] it was proposed to study molecule \(^{225}\text{RaO} \) where the effect may be 500 times larger than in TIF due to the enhanced Schiff moment and larger nuclear charge \(Z \). The best sensitivity to the electron EDM has been obtained using molecules ThO \[44\] and HIF\(^+\) \[47\] in the excited metastable electronic state \(^3\Delta_1 \) which contains doublets of very close opposite parity levels. Finally, in the recent paper \[43\] it was suggested that linear molecules MOH, molecular ions MOH\(^+\) (M is a heavy atom, e.g. Ra in the molecule RaOH\(^+\)) and symmetric top molecules (such as MCH\(_3\) or MOCH\(_3\)) may be better systems than molecules MO since such polyatomic molecules have a doublet of the close opposite parity energy levels in the bending mode and may be polarised by a weak electric field. The reduction of the strength of the necessary electric field simplifies the experiment and
dramatically reduces systematic effects.

The T,P-violating effect in 229ThO is much larger than in TlF due to the enhanced Schiff moment and larger nuclear charge. An additional advantage may appear in ThOH$^+$ which is expected to have very close opposite parity states (similar to RaOH$^+$). Another possibility may be to use the doublet in $^3\Delta_1$ metastable state of 229ThO (used to improve the limit on electron EDM) and the ground state doublet $^3\Delta_1$ in ThF$^+$.

The interaction constant W_S for the effective T,P-violating interaction in molecules

$$W_{T,P} = W_S \frac{S}{T} I \cdot n$$ \hspace{1cm} (17)

(here I is the nuclear spin, n is the unit vector along the molecular axis) in ThO, ThOH$^+$ and RaOH$^+$ may be estimated by the comparison with the RaO molecule. Calculation of W_S for RaO has been done in Ref. 44: W_S(RaO) = 45192 atomic units (here a.u.$= e/a_0^2$). In RaOH$^+$ ion the electron density on the Ra nucleus is slightly smaller than in RaO (since a part of the electron charge density moves to hydrogen), therefore, we assume W_S(RaOH$^+$) \approx 30000 a.u. In ThO and in ThOH$^+$ the electron density on the Th nucleus is expected to be slightly larger than that for Ra due to the higher Th charge and two extra electrons. Therefore, we assume W_S(ThO) \approx 50000 a.u. and W_S(ThOH$^+$) \approx 30000 a.u. Note that the electron wave function in the bending molecular mode of RaOH$^+$ and ThOH$^+$ is the same as in their ground states, therefore, the parameters W_S are practically not affected by these bending vibrations (where we have the doublet of the opposite parity levels). The parameter W_S in the $^3\Delta_1$ state of the 229ThO molecule should have comparable value to their ground state values since $^3\Delta_1$ and the ground $^1\Sigma_0$ state differ by one electron orbital only. The $^3\Delta_1$ state in ThF$^+$ molecular ion is similar to the $^3\Delta_1$ state in 229ThO molecule.

The estimates presented above are based on comparison with the numerical calculations of the Schiff moment contribution in RaO. Estimates based on the Z dependence extrapolation Eq. (15) from TlF give 2 times larger results.

Substitution of the Schiff moment [42] to the energy shift $W_{T,P} = W_S \frac{S}{T} I \cdot n$ gives for the fully polarised molecule the energy difference between the $I_z = I$ and $I_z = -I$ states in 229ThO:

$$2W_S S = 1 \cdot 10^7 \theta \text{ Hz}$$ \hspace{1cm} (18)

A similar estimate is valid for molecular ions ThF$^+$ and ThOH$^+$. The measured shift in the 1991 TIF experiment 42 was -0.13 ± 0.22 mHz. The same sensitivity in the 229ThO, ThF$^+$ or ThOH$^+$ experiments would allow one to improve the current limit $|\theta| < 10^{-10}$ and also the limits on other fundamental parameters of the CP-violation theories such as the strength of T,P-violating potential η, the $\pi N N$ interaction constants \tilde{g} and the quark chromo-EDMs d.

Comparison with existing and proposed experiments. We should compare suggested experiments with 229ThO, ThF$^+$ and 229ThOH$^+$ molecules with other existing and proposed experiments. The best limit on the nuclear Schiff moment has been obtained in the measurement of Hg EDM [17]. However, there is a theoretical problem here: the most recent sophisticated calculation 35 was not able to find out even the sign of the Hg Schiff moment, different interaction models give very different results. There are two reasons for this: firstly, the Schiff moment is determined by the charge distribution of the protons. However, it is directed along the nuclear spin which in 199Hg is carried by the valence neutron, i.e. the Schiff moment in 199Hg is determined by the many-body effects which are harder to calculate. The second reason is in the formula for the Schiff moment defined by Eq. (11). There are two terms of opposite sign in this formula which tend to cancel each other, the main term and the screening term (remind the reader that the screening term kills the nuclear EDM contribution to the atomic EDM). If we do not know each term sufficiently accurately, the final sign and the magnitude of the Schiff moment are unknown.

Recently the interest in EDM experiments has moved towards molecules where the effects are very strongly enhanced by the close rotational levels and very strong internal "effective electric field". For example, the limit on electron EDM in ThO and HgF$^+$ experiments have been improved by more than an order of magnitude in comparison with the atomic EDM experiments. The Tl nuclear Schiff moment has been measured in the TIF experiment 42. Similar to 199Hg, calculations of the 203,205Tl Schiff moments suffer from the problem of the cancellation between two approximately equal terms in Eq. (11) and the problem of the nuclear core polarization contribution (since there is a strong cancellation between the two terms in the valence proton contribution in Tl [3,11,66]).

Actually, the interpretation of the TIF experiment 42 was done in terms of the proton EDM. However, here we probably have even a more serious problem (below we will follow the discussion in Ref. 80). Firstly, calculations with different choices of the strong interaction give different signs and magnitudes of the Schiff moment S_p induced by the proton EDM (since we also have here the cancellation between the main and the screening contributions). The authors of the molecular calculation 48 selected the maximal value out of 4 numbers calculated by A. Brown (this maximal number leads to the strongest limit on the proton EDM), and this value of S_p was used in all other molecular calculations for TIF 48, 51 (see also 211). There was no such accuracy investigation for the proton EDM contribution to the Hg Schiff moment but naively we may expect that the accuracy is actually lower than in Tl since the valence nucleus in 199Hg is neutron.

The second problem is that in practically any model the contribution of the T,P-violating nuclear forces to the Schiff moment is 1-2 orders magnitude larger than
the proton EDM contribution (the ratio is "model independent" since the πNN interaction constant appears in both contributions and cancels out in the ratio). Therefore, to obtain the limit on the proton EDM we neglect much larger contribution of the P,T-odd nuclear forces. Thus, in the Particle Data tables the limit on the proton EDM is presented assuming that there are no other contributions to atomic and molecular EDM. However, if we wish to test CP-violation theories such limits on the proton EDM from Hg and Tl EDM can hardly be used.

These theoretical problems do not exist for the collective Schiff moments in the nuclei with the octupole deformation. The second screening term is very small in this case since it is proportional to a very small intrinsic dipole moment D of the "frozen" nucleus. If the distributions of the neutrons and protons are the same, $D = 0$. Thus, there is no cancellation and the intrinsic Schiff moment is proportional to the known electric octupole moment (which may actually be measured using probabilities of the octupole transitions between the rotational levels). Then the calculation is reduced to the expectation value of the T,P-odd interaction $< \Omega | W | \Omega >$, here $| \Omega >$ is the ground state of the "frozen" deformed nucleus. Calculation of one expectation value looks more reliable than the calculation of the infinite sum $\sum_n \frac{\langle n | W | 0 \rangle^2}{E_n - E_0}$ in nuclei where there is no single dominating contribution. Thus, calculations of the collective Schiff moments look more "clean" theoretically. More importantly, the collective Schiff moment is enhanced by 2-3 orders of magnitude.

Conclusion. We propose to search for the T,P and CP violating effects in the molecule 229ThO where the effects are 2-3 orders of magnitude larger than in TIF due to the enhanced Schiff moment of the 229Th nucleus and large nuclear charge. An additional advantage may be in 229ThOH$^+$ molecular ion, in $^3\Delta_1$ state of the 229ThO molecule and in 229ThF$^+$ molecular ion which have very close opposite parity energy levels and may be polarised by a weak electric field. The $^3\Delta_1$ state of the 229ThO molecule has already been used to measure electron EDM. The enhanced effects in these molecules may also be used to search for axions. 229Th lives 7917 years, may be produced in macroscopic quantities (as it is done for the medical applications) and is very well studied in numerous experiments.

This work is supported by the Australian Research Council and Gutenberg Fellowship. I am grateful to M. Kozlov, N. Hutzler, A. Paliffy, Jun Ye, D. DeMille, H. Feldmeier, N. Minkov, A. Afansiev, P. Ring and TACTICA collaboration for useful discussions.

[1] M. Pospelov, A. Ritz, Ann. Phys. (Amsterdam) 318, 119 (2005).
[2] J. Engel, M.J. Ramsey-Musolf, U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013).
[3] I.B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Gordon and Breach, Amsterdam, 1991).
[4] I.B. Khriplovich, S.K. Lamoreaux, CP violation without strangeness. (Springer-Verlag, Berlin, 1997).
[5] Violation of fundamental symmetries in atoms and tests of unification theories of elementary particles. J.S.M. Ginges, V.V. Flambaum. Phys. Rep. 397, 63 (2004).
[6] L.I. Schiff, Phys. Rev. 132, 2194 (1963).
[7] P. G. H. Sandars, Phys.Rev.Lett. 19, 1396 (1967).
[8] E. A. Hinds and P. G. H. Sandars, Phys.Rev.A 21, 471 (1980).
[9] On the possibility of investigation of P- and T-odd nuclear forces in atomic and molecular experiments. O.P. Sushkov, V.V. Flambaum, I.B. Khriplovich. Zh. Exp. Teor. Fiz. 87, 1521 (1984) [Sov. JETP 60, 873 (1984)].
[10] V.V. Flambaum, I.B. Khriplovich, O.P. Sushkov, Phys. Lett. B 162, 213 (1985).
[11] On the P- and T-nonconserving nuclear moments, V.V. Flambaum, I.B. Khriplovich, O.P. Sushkov. Nucl. Phys. A 449, 750, 1986.
[12] Nuclear Schiff moment and time invariance violation in atoms. V.V. Flambaum and J.S.M. Ginges, Phys. Rev. A 65, 032113 (2002).
[13] W.C. Haxton, E.M. Henley, Phys. Rev. Lett. 51, 1937 (1983).
[14] Spin hedgehog and collective magnetic quadrupole moments induced by parity and time invariance violating interaction. V. V. Flambaum, Phys. Lett. B 320, 211 (1994).
[15] Collective T- and P-odd electromagnetic moments in nuclei with octupole deformations. N. Auerbach, V. V. Flambaum, and V. Spevak, Phys. Rev. Lett. 76, 4316 (1996).
[16] Enhanced T-odd P-odd electromagnetic moments in reflection assymmetric nuclei. V. Spevak, N. Auerbach, and V.V. Flambaum, Phys. Rev. C 56, 1357 (1997).
[17] Reduced Limit on the Permanent Electric Dipole Moment of 199Hg. B. Grauer, Y. Chen, E.G. Lindahl, and B.R. Heckel. Phys. Rev. Lett. 116, 161601 (2016); Phys. Rev. Lett. 119, 119901 (E) (2017).
[18] Time-reversal violating Schiff moment of 225Ra. J. Engel, M. Bender, J. Dobaczewski, J. H. de Jesus, and P. Olbratowski Phys. Rev. C 68, 025501 (2003).
[19] Enhancement of parity and time invariance violation in the radium atom. V.V. Flambaum. Phys. Rev. A60, R2611-2613 (1999).
[20] Calculation of parity and time invariance violation in the radium atom. V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, Phys. Rev. A61, 062509-1 - 062509-10 (2000).
[21] Electric dipole moments of Hg, Xe,Ra,Ru and TIF induced by the nuclear Schiff moment and limits on time-reversal violating interactions. V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges and M.G. Kozlov. Phys. Rev. A66,012111 (2002).
[22] Calculation of P,T-odd electric dipole moments for diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Ru, and 225Ra. V.A. Dzuba, V.V. Flambaum, S.G. Porsev, Phys Rev A80,032120 (2009).
[23] Nuclear octupole correlations and the enhancement of atomic time-reversal violation. J. Engel, J.L. Friar, and
A.C. Hayes, Phys. Rev. C 61, 035502 (2000).

[24] Enhancement of nuclear Schiff moment and time reversal violation in atoms due to soft nuclear octupole vibrations. V.V. Flambaum, V.G. Zelevinsky. Phys. Rev. C 68, 035502 (2003).

[25] Nuclear Schiff moment in nuclei with soft octupole and quadrupole vibrations. N. Auerbach, V.F. Dmitriev, V.V. Flambaum, A. Lisetskiy, R.A. Sen’kov, V.G. Zelevinsky, Phys. Rev. C 74, 025502 (2006).

[26] Effects of parity nonconservation in diatomic molecules. O.P. Sushkov, V.V.Flambaum. Zh. Exp. Teor. Fiz. 75, 1208, (1978) [Sov. JETP 48, 608 (1978)].

[27] First Measurement of the Atomic Electric Dipole Moment of 225Ra. R.H. Parker, M.R. Dietrich, M.R. Kalita, N.D. Lemke, K.G. Bailey, M. Bishof, J.P. Greene, R.J. Holt, W. Korsch, Z.-T. Lu, P. Mueller, T.P. O’Connor, and J.T. Singh, Phys. Rev. Lett. 114, 233002 (2015).

[28] Nuclear laser spectroscopy of the 3.5eV transition in Th229, E. Peik, Chr. Tamm, Europhys. Lett., 61, 181 (2003).

[29] A Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place. C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dziuba, V. V. Flambaum, and A. Derevianko, Phys. Rev. Lett.108, 120802 (2012).

[30] Enhanced effect of temporal variation of the fine structure constant and strong interaction in 229Th. V.V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006).

[31] Enhancing the effect of Lorentz invariance and Einstein’s equivalence principle violation in nuclei and atoms, V.V. Flambaum. Phys. Rev. Lett. 117, 072501 (2016).

[32] Proposal for a Nuclear Gamma-Ray Laser of Optical Range. E. V. Tkalya. Phys. Rev. Lett. 106, 162501 (2011).

[33] Energy Splitting of the Ground-State Doublet in the Nucleus 229Th. B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley. Phys. Rev. Lett. 98, 142501 (2007).

[34] Reduced transition probabilities for gamma decay of the 7.8 eV isomer in 229Th. N. Minkov, A. Palffy, Phys. Rev. Lett. 118, 212501 (2017).

[35] Fully self-consistent calculations of nuclear Schiff moments. S. Ban, J. Dobaczewski, J. Engel, and A. Shukla Phys. Rev. C 82, 015501 (2010).

[36] V. V. Flambaum, D. DeMille and M.G. Kozlov Phys. Rev. Lett. 113, 103003 (2014).

[37] R.J. Crewther, P. di Vecchia, G. Veneziano, E. Witten. Phys. Lett. B 91, 487 (1980).

[38] Axion Dark-Matter Detection with Cold Molecules. P. W. Graham and S. Rajendran, Phys. Rev. D84, 055013 (2011).

[39] Axion-induced effects in atoms, molecules and nuclei: Parity nonconservation, anapole moments, electric dipole moments, and spin-gravity spin-axion momentum couplings. Y.V. Stadnik, V.V. Flambaum, Phys. Rev. D89, 043522 (2014).

[40] Proposal for a Cosmic Axion Spin Precession Experiment (CASPeR). Dmitry Budker, Peter W. Graham, Micah Ledbetter, Surjeet Rajendran, and Alexander O. Sushkov, Phys. Rev. X 4, 021030 (2014).

[41] M.G. Kozlov, A. Derevianko. Phys. Rev. Lett. 97, 063001 (2006).

[42] D. Cho, K. Sangster, E.A. Hinds, Phys. Rev. A 44, 2783 (1991).

[43] Electric dipole moments of actinide atoms and RaO molecule. V.V. Flambaum, Phys.Rev. A 77,024501 (2008).

[44] Calculation of P,T-odd interaction effect in 225RaO. A.D. Kudashov, A.N. Petrov, L.V. Skripnikov, N.S. Mosyagin, A.V. Titov, and V.V. Flambaum, Phys. Rev. A87, 092102 (R) (2015).

[45] Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. I. Kozyrev, N.R. Hutzler, Phys. Rev. Lett., 119, 133002 (2017).

[46] J. Baron et al (ACME collaboration), Science 343, 269 (2014).

[47] William B. Cairncross, Daniel N. Gresh, Matt Grau, Kevin C. Cossel, Tanya S. Roussey, Yiqi Ni, Yan Zhou, Jun Ye, and Eric A. Cornell. Phys. Rev. Lett. 119, 153001 (2017).

[48] P. V. Coveney and P. G. H. Sandars, J. Phys. B16, 3727 (1983).

[49] F. A. Parpia, J. Phys. B30, 3983 (1997).

[50] H. M. Quiney, J. K. Laerdahl, K. Faegri, Jr., and T. Saue, Phys. Rev. A57, 920 (1998).

[51] A. N. Petrov, N. S. Mosyagin, T. A. Isaev, A. V. Titov, V. F. Ezhov, E. Eliav, and U. Kaldor, Phys. Rev. Lett. 88, 073001 (2002).