Mechanisms and insights into drug resistance in cancer

Hiba Zahreddine and Katherine L. B. Borden*
Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada

Cancer drug resistance continues to be a major impediment in medical oncology. Clinically, resistance can arise prior to or as a result of cancer therapy. In this review, we discuss different mechanisms adapted by cancerous cells to resist treatment, including alteration in drug transport and metabolism, mutation and amplification of drug targets, as well as genetic reversion which can lead to impaired apoptosis. Tumor heterogeneity may also contribute to resistance, where small subpopulations of cells may acquire or stochastically already possess some of the features enabling them to emerge under selective drug pressure. Making the problem even more challenging, some of these resistance pathways lead to multidrug resistance, generating an even more difficult clinical problem to overcome. We provide examples of these mechanisms and some insights into how understanding these processes can influence the next generation of cancer therapies.

Keywords: origin of cancer, multidrug resistance, drug metabolism, drug transporters, oncogene addiction, microenvironment, collateral sensitivity, synthetic lethality

CANCER TALE: ITS TREATMENT AND RELAPSE
In 1961, Frei and Freireich initiated the high-dose four-drug combination clinical trial for the treatment of pediatric leukemia (Feri et al., 1963). Despite the threat imposed by administering four drugs at once, five weeks following treatment onset, children began to respond, “the bone marrow biopsies came back one after another—all without leukemia cells. Red blood cells and white blood cells and platelets sprouted up in an otherwise scorched field of bone marrow. But the leukemia did not return” (Mukherjee, 2010). Out of the 16 enrolled patients, 11 showed complete remission. This outstanding success, however, was short-lived. With the exception of a handful of children, all patients eventually relapsed, developing a more vigorous form of cancer that was no longer responsive to the treatment: leukemia cells had invaded the blood–brain barrier and colonized the brain “the only place unreachable by chemotherapy… the children died one after the other-felled by virtue of the adaptation designed to protect them… it was a consequence of the body’s defense system subverting cancer treatment” (Mukherjee, 2010). To date, this story still reflects the same tale of cancer treatment where its resistance and relapse remains a major challenge (Wilson et al., 2009).

In this review we provide an overview of advances made in our understanding of the mechanisms that enable cancerous cells to adapt to and eventually overcome therapy, and how identifying these mechanisms can help circumvent resistance and improve treatment.

Despite its complex biological nature, many recent successes have been made in the treatment of cancer, including most strikingly chronic myeloid leukemia (CML) and acute promyelocytic leukemia (APL) which have met with great success as well as many cases of pediatric leukemias, Hodgkin’s lymphomas, and testicular cancers (Siegel et al., 2012). These success stories mainly relied on an increased understanding of the diverse molecular mechanisms governing tumor development. Owing to this, various anti-cancer therapies were designed to target disease-specific mechanisms that are absent in normal cells. Such strategies include (i) inhibition of a specific oncoprotein, such as targeting the oncogenic fusion proteins Bcr–Abl and PML–RARα with Gleevec and all trans retinoic acid (ATRA) with arsenic trioxide respectively or (ii) activation of a specific immune response against cancerous cells demonstrated by the use of interferon alpha alone or in combination with other anti-cancer drugs including 5-fluorouracil and cytarabine (Baderer and Scheithauer, 1995; Guilhot et al., 1997; Druker et al., 2001; Kreitman et al., 2001; Tallman et al., 2002; Goldman and Melo, 2003; O’Brien et al., 2003; Sawyers, 2004; Kreitman, 2006; Ferrantini et al., 2007; Chin and Gray, 2008; Sellers, 2011). Many of these drugs are currently being used in the clinic and have established positive impact on patient survival.

However, a major impediment to their success is the development of therapeutic resistance which in some cases predates clinical intervention (Wilson et al., 2009). Based on tumor response to the initial therapy, cancer resistance can be broadly classified into two categories, primary and acquired (Meads et al., 2009; Lippert et al., 2011). While primary drug resistance exists prior to any given treatment, acquired resistance occurs after initial therapy. Unfortunately, the majority of patients will likely develop resistance at a certain point of treatment. For example, 50–70% of patients with adenocarcinoma relapse following surgery with a chemoresistant phenotype (Castells et al., 2012), and approximately 20% of adults with acute lymphoblastic leukemia suffer from primary resistance to treatment (Testi et al., 1992; Giona et al., 1994; Thomas et al., 1999; O’Connor et al., 2011). In addition, primary resistance has been recognized in nearly 50% of all cancer patients in the 1990s (Pinedo and Giaccone, 1998). Therefore, the design of anti-cancer drugs that are fully effective necessitates a better understanding of the mechanisms by which cancer cells elude treatment. Here we will discuss several features of drug resistant cells including modification of drug transport, mutation of extracellular receptors, amplification and mutation of drug targets as well as related topics. Additionally, we will briefly
address the important question of how resistant cell populations emerge.

MECHANISMS OF DRUG RESISTANCE

Both primary and acquired resistance can be caused by alterations to drug metabolism (sequestrations or enhanced detoxification) or modifications to the drug targets (Gottesman, 2002; Gatti and Zanino, 2005; Teicher, 2006; Wilson et al., 2006; Ullah, 2008). A brief overview of these mechanisms supported with examples of clinical relevance are presented below (Figure 1).

Perhaps the most studied mode of resistance involves drug metabolism, including its uptake, efflux, and detoxification. The means by which drugs enter cells depend on their chemical nature, and it mainly necessitates the use of receptors, which they bind to and transmit their effects without cellular entry, or transporters, which allow their cellular entry (Gottesman, 2002). At this level, resistance can result from mutations that modify activity or reduce the expression of surface receptors and transporters. For instance, mutations or reduced expression of the extracellular receptor smoothened (Bauch et al., 2009; Avveduto et al., 2012; Kasper and Tofgar, 2013), nucleoside transporters (Galmarini et al., 2001; Damaria et al., 2003) or one or both folate transporters (Longo-Sorbello and Bertino, 2001) result in defective uptake of cyclopamine, nucleoside drugs, such as cytarabine, and toxic folate analogs, such as methotrexate, respectively. On the other hand, enhanced drug efflux is frequently caused by increased expression of ATP binding cassette (ABC) membrane transporters (Gottesman et al., 2002). Among the 48 known ABC transporters in humans, elevation of three members, P-gp (MDR1 gene product), Multidrug resistance-associated protein 1 (MRP1) and mitoxantrone resistance protein (MXR; also known as breast cancer resistance protein (BCRP) or placenta ABC protein (ABC-P)); have been correlated with cancer chemoresistance to various drugs (Gottesman, 2002; Gottesman et al., 2002). For instance, P-gp transports a wide variety of hydrophobic anti-cancer drugs such as vinblastine, doxorubicin, vincristine, and taxol, and therefore its increased expression has been correlated with resistance to these (Gottesman et al., 2002). MRP1 on the other hand, transports negatively charged natural-product drugs in addition to drugs that have been modified by the conjugation of glutathione (GSH), glucuronic acid or sulfate (Jedlicky et al., 1996; Higgin et al., 1999; Konig et al., 1999; Boaret et al., 2000) while MXR overexpression has been correlated with resistance to topoisomerase I inhibitors, anthracyclines, and mitoxantrone (Gottesman, 2002). As can be seen, these factors comprise a major site for the development of drug resistance.

To exert their cytotoxic effects, many anti-cancer drugs must undergo metabolic activation. For instance, cytarabine (also known as Ara-C), a nucleoside drug widely used for the treatment of acute myelogenous leukemia (Sampath et al., 2006), necessitates initial phosphorylation by deoxycytidine kinase to cytarabine-monophosphate which is subsequently phosphorylated to the active form cytarabine triphosphate. To circumvent the effects of these drugs, cancer cells develop resistance through decreased drug activation (Kauf and Spriggs, 1983; Bardehenber et al., 2005). This occurs via the downregulation or mutation of enzymes involved in this metabolic pathway, such as deoxycytidine kinase in the case of cytarabine (Sampath et al., 2006). Drug inactivation can also play a major role in the development of resistance. These mechanisms include, for example, conjugation of the drug to GSH, a powerful anti-oxidant that protects the cells against the damaging effects of reactive oxygen species (Wilson et al., 2006). GSH conjugation to platinum drugs, such as etoposide and cisplatin is used in the treatment of various types of cancers, renders them substrates for ABC transporters which enhances drug efflux (Meijer et al., 1992; Ishikawa and Ali-Osman, 1993). Furthermore, the topoisomerase I inhibitor, irinotecan, used for treating colon cancer, have been shown to become inactivated via phase I drug metabolizing enzymes, CYP3A4 (Xu and Villalona-Cañero, 2002). Finally, binding of platinum drugs, particularly cisplatin, to metallothionein (MT), a small cysteine-rich protein, is another means of drug inactivation (Kelley et al., 1988; Kaushal et al., 1991).

Many cancer cells develop an overreliance or dependency on an oncogene. This is referred to as oncogene addiction (Archer et al., 1997; Weinstein, 2002; Weinstein and Joe, 2006; Sharma and Settleman, 2007). Targeting such oncogenes, provided a basis for the development of targeted therapies. Examples of such targeted therapies include: (i) imatinib targeting BCR/ABL tyrosine kinase in CML (Hughes et al., 2003), (ii) gettinib and erlotinib targeting the epidermal growth factor receptor (EGFR) tyrosine kinase domain in non-small cell lung carcinoma (Lynch et al., 2004; Shepard et al., 2005; Taron et al., 2005), and (iii) trastuzumab targeting human epidermal growth factor receptor-2 (HER-2) receptor in breast carcinomas (Slamon et al., 2001; Piccart-Gebhart et al., 2005). Unfortunately, the long term effectiveness of these drugs is hindered by the development of drug resistance due to mutation of the targeted protein (Goell, 2011; Wong and Lee, 2012). In the case of BCR/ABL and EGFR inhibitors, resistance emerges as a result of mutations occurring at the gatekeeper residues of the kinase domain which disables drug binding (Goers et al., 2001; Blanke et al., 2014; Kobayashi et al., 2005; Piao et al., 2005; Souvini et al., 2005; Balak et al., 2006; Jabbour et al., 2006, 2008; Nicolaï et al., 2006; Appleley, 2007; Costa et al., 2007; Bean et al., 2008; Goell, 2011). Furthermore, it has been demonstrated that resistance mutations can be detected prior to treatment in small subpopulations of tumor cells suggesting that these mutant forms were selected via the targeted therapy used (Hofmann et al., 2003; Toyooka et al., 2005; Inukai et al., 2006). In essence, understanding how mutations in the target proteins confer resistance enables the development of new therapeutic approaches to surmount resistance. For instance, second generation CML inhibitors have been developed based on mutational studies of patients who have become Gleevec resistant.

Other mechanisms by which cancerous cells circumvent the effects of targeted inhibitors have also been described, including amplification of alternative oncogenes or inactivation of alternative survival pathways (Le Coutre et al., 2009; Engelman et al., 2007). In some cases, targeting of one protein only (that cells are showing dependency on) can become ineffective because another parallel pathway supports tumor survival. In this case, the two pathways develop a synthetic lethal relationship (Hartman et al., 2001; Tucker and Fields, 2003). This way, the loss/inactivation of one of these genes would be supported by the other pathway and
FIGURE 1 | A major impediment in the treatment of cancer is the development of resistance. While most tumors initially respond to the given therapy, the majority will relapse following treatment, and in some cases, resistance even predates clinical intervention. Therefore cancer resistance can be classified into two broad classes: primary or acquired. In both cases, the emergence of resistant cells could be due to, at least, two mechanisms: (A) presence of multiple initial clones some of which emerge as dominant after treatment. These subpopulations could possess stem-like characteristics and/or use their interactions with the surrounding microenvironment to enter into a dormant state, thus surviving the insult of therapy. (B) Acquisition of stochastic alterations within the cancer cells per se. In all cases, the surviving population is less likely to respond to any further therapy and will be responsible for the minimal residual disease and cancer relapse. The biochemical underpinnings of resistance include: alterations to drug metabolism, increased drug efflux, decreased drug uptake, modification of the drug targets, amplification of targeted protein, genetic rewiring, enhanced DNA repair, inactivation of apoptotic proteins, or activation of anti-apoptotic ones, among others.

for the most effective treatment, one would need to target both pathways (Luo et al., 2009; Nijman, 2011).

An example of new pathways emerging once another pathway is targeted comes from the work of Isoyama et al. (2012), showed that acquired resistance to phosphatidylinositol 3-kinase (PI3K) inhibitors (such as ZSTK474) was due to the upregulation of insulin-like growth factor 1 receptor (IGF1R) pathway and that inhibition of this pathway with selective IGF1R inhibitors reverses the acquired PI3Ki resistance phenotype (Isoyama et al., 2012). Additionally, resistance could result from evasion of apoptotic pathways triggered by the acquisition of either inactivating mutations in genes coding for apoptotic proteins, such as p53, or activating mutations in genes coding for anti-apoptotic proteins, such as B cell lymphoma 2 (Bcl-2; Teicher, 2006). Indeed p53

www.frontiersin.org
mutations have been correlated with de novo resistance to doxorubicin treatment in patients with advanced breast cancer, as well as resistance to anthracyclines in a mouse sarcoma tumor model (Aas et al., 1996; Levine, 1997).

Another excellent example of this phenomenon (i.e., synthetic lethality) is seen in breast and ovarian cancers carrying mutations in the BRCA1 and BRCA2 genes, important mediators of DNA double-strand break (DSB) repair. When the poly (ADP-ribose) polymerase (PARP) protein, which is involved in different cellular processes including DNA repair, was targeted in these tumors, selective cancer cell toxicity was achieved (Bryant et al., 2005; Farmer et al., 2005). Several PARP inhibitors (PARPs) are currently being tested in clinical trials, such as olaparib (phase III ongoing; Guba, 2011) and veliparib cancer (Trudeau et al., 2006; Palma et al., 2008, 2009; Kummar et al., 2011), among others. However, despite the promising results these inhibitors showed, whether used as a mono- or combinatorial therapy (Jovekar et al., 2012; Kummar et al., 2012; Riffell et al., 2012), cancer cells once again were capable of evolving resistance to PARPs in preclinical and clinical settings (Chiarugi, 2012; Montoni et al., 2013). The mechanisms of resistance to these inhibitors have been grouped in to at least four categories, as summarized recently (Montoni et al., 2013). But perhaps the most distinct of these, was the ability of cancer cells to revert sensitivity to PARP by acquiring deletion of the mutation in BRCA gene, thus restoring its function and the subsequent repair of DSBRs.

DEVELOPMENT OF CROSS RESISTENCE

An important feature of drug resistance, is that development of resistance to one drug can lead to resistance to other drugs (Ullah, 2008). For instance, loss of a drug transporter can lead to resistance to structurally diverse compounds that utilize it or elevation of ABC transporters resulting from one therapy will influence the efficacy of many other compounds. Since this multidrug resistance phenomenon correlates with poor chemotherapy response, drug development strategies to overcome this problem are being designed. These include drugs that are not recognized by transporters and therefore evade efflux, efflux inhibitors, drugs that are selectively lethal to P-gp expressing cells, etc. (Hall et al., 2009; Kelly et al., 2011; Nobili et al., 2012). But, perhaps resistance is not useless after all, as Hall et al. (2009) proposed. The alternative strategy to treat the progeny of the drug imposed Darwinian selection process is to identify their new “Achilles’ heel,” where resistance to the first given drug conferred a hypersensitivity to an alternate cytotoxic agent to which parental cells were not sensitive to. A phenomenon referred to as “collateral sensitivity”, which could be considered as a type of synthetic lethality as well since the same genetic alteration that rendered the cells resistant to one drug now sensitizes them to another (Hall et al., 2009; Plachnik et al., 2012).

WHERE DO RESISTANT CELLS COME FROM?

The development of human cancers is a complex multistage process involving accumulation of both genetic and epigenetic alterations over time (Caulin and Malvy, 2011). As a consequence, a single tumor is comprised of heterogeneous populations of cells with distinct genetic fingerprints (Heppner et al., 1978; Marusyk and Polyak, 2010; Michor and Polyak, 2010). As the tumor progresses, some cells undergo genetic alterations, with selection of those having a superior growth advantage in a given context. An excellent example of tumor heterogeneity is provided by breast cancer studies (Schvimer et al., 1995; Shen et al., 2000; Wild et al., 2000). Wild et al. (2000) demonstrated that about 97% of epithelial breast carcinomas possess high levels of intra-tumor diverseness. The relevance of this innate heterogeneity is seen in cancer resistance. Since cancer cell selection obeys the Darwinian law of evolution, hence, under therapeutic pressure, those populations that are most adaptive or resistant to treatment will be selected for. These clones will then dominate and populate the tumor rendering it highly resistant to the given therapy (Williams and Nesse, 1991; Nesse, 2001; Breivik, 2005; Crespi and Summers, 2005; Lichterstein, 2005; Monceviciute-Eringiene, 2005; Gireaves, 2007). The selection process can be rationalized by, at least, two mechanisms. First, the emergence of a dominant cellular population after drug selection since it possesses some favorable characteristics such as a mutated drug binding site (Zhang et al., 2006; O’Brien et al., 2007; Ricci-Vitiani et al., 2007). The second mechanism involves the acquisition of stochastic alterations within the cancer cells which provide a survival advantage (Campbell et al., 2008; Stratton et al., 2009; Negrini et al., 2010; The International Cancer Genome Consortium, 2010; Shen, 2011). The advantage itself, e.g., a mutation in a drug binding site or alteration in drug transporters (as just two examples) could be the same for either of these mechanisms. What is different is the underlying process to generate these biochemical differences.

Two known models, the cancer stem cell (CSC) model, and the environment-mediated drug resistance (EMDR) model, which are not mutually exclusive, could explain the origin of resistant cells. In the CSC model, rare populations of cancer stem cells possess tumor-initiating properties (Téicher, 2006; Nguyen et al., 2012). It is thought that CSCs diverge from normal tissue stem cells or from more-differentiated progenitor cells through dysregulation of self-renewal pathways. Beside modulation of molecular mechanisms, such as increased efficiency of DNA repair (Poten et al., 2002; Cai et al., 2004; Park and Gerson, 2005), changes in cell cycle parameters (Venezia et al., 2004), overexpression of anti-apoptotic proteins (Wang et al., 2003) or drug transporters (Gottsmann et al., 2002, Krishnamurthy et al., 2004), etc., resistance of CSCs could be due to their quiescent nature (Téicher, 2006). Thus, in this case, the cell population is present and is difficult to target using traditional chemotherapy strategies many of which depend on active cell cycling.

In the EMDR model, resistance emerges as the cancer cells use their interactions with the surrounding microenvironment to enter into a quiescent or dormant state as a means of circumventing the effects of the given therapy. Under the drug imposed selection pressure, these cells remain in their protective shelter, undergoing genetic changes until they ultimately reach a more permanent acquired resistance phenotype and in turn, alter their surrounding microenvironment (Braun et al., 2008; Meads et al., 2009). These surviving populations, which may or may not be CSCs, can contribute to minimal residual disease (MRD) and cancer relapse (Matsumaga et al., 2003; Biddard et al., 2008; Meads et al., 2009). The EMDR model is relevant
to both hematopoietic and metastatic epithelial malignancies. EMDR could be mediated by either soluble or cell adhesion-related microenvironmental factors. Soluble factor-mediated drug resistance occurs through induction of gene transcription within the tumor cells by cytokines, chemokines, or growth factors secreted by neighboring stroma-like fibroblasts (Meadis et al., 2009). One of the known mechanisms is interleukin-6 (IL-6), whose increased secretion has been correlated with resistance to various cytokinins both in vitro and in vivo models. This includes, for instance, resistance to bortezomib in multiple myeloma and to etoposide and cisplatin in hormone-independent prostate carcinomas (Borsellino et al., 1995, 1999; Frassanito et al., 2001; Voorhees et al., 2007). Further, cell adhesion-mediated drug resistance is triggered by the adherence of integrins from tumor cells to stromal fibroblasts or to components of the surrounding extracellular matrix. Molecularly, this process could be due to many scenarios including (i) degradation of apoptotic proteins or (ii) enhanced stability or altered subcellular distribution of anti-apoptotic proteins and cell cycle regulators (Hazelhurst et al., 2001, 2007; Shain et al., 2002, 2009; Lwin et al., 2007). One example is provided by studies into melanoma resistance. In this case, the cancerous cells tend to use their adhesion to fibronectin in the surrounding microenvironment to reduce the endogenous levels of the proapoptotic BH3-only Bcl-2 family member, Bim, thus conferring resistance by disrupting apoptosis (Hazelhurst et al., 2003; Hanahan and Weinberg, 2011). From a clinical point of view, it will likely improve therapeutic strategies by identifying optimal combinations based on the genetic lesions in the tumors. Importantly, tumors are highly heterogeneous and this heterogeneity may well substantially contribute to primary or acquired resistance. Armed with a greater understanding of the mechanisms of drug resistance will undoubtedly lead to more long-term remissions and hopefully cures.

ACKNOWLEDGMENTS
This work was supported by National Institutes for Health (NIH) and The Leukemia and Lymphoma Society (USA). Hiba Zahreddine holds a scholarship from the National Council for Scientific Research (CNRS)-Lebanon. Katherine L. B. Borden holds a Canada Research Chair.

REFERENCES
Arboe, N., Doki, Y., Han, E. K., Sgamellotti, A., Borresen, A. L., Geisler, S., et al. (1997). Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells. Cancer Res. 57, 1569–1574.
Borsellino, N., Bellugrun, A., and Bonavida, B. (1995). Endogenous interleukin 6 is a resistance factor for cis-diaminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res. 55, 4633–4639.
Borsellino, N., Bonavida, B., Giliberti, G., Tonutti, C., Yarmish, S., and D’Alessandro, N. (1999). Blocking signal transduction through the Gp130 receptor and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatin-mediated cytotoxicity. Cancer 85, 173–184.
Braun, P., Diers, R., Kroll, M., and Wijshofs, J. (2000). A family of drug transporters: the multidrug resistance–associated proteins. J. Natl. Cancer Inst. 92, 1395–1398.
Brown, S., Kentenich, C., Jinani, W., Hepp, F., De Waal, J., Wilgotski, F., et al. (2000). Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol. 18, 80–86.
Bucrai, J. (2005). The evolutionary origin of genetic instability in cancer development. Semin. Cancer Biol. 15, 53–69.
Cyrus, H. E., Schultz, N., Thomas, H. D., Parker, K. M., Flower, D., Lopez, E., et al. (2005). Specific killing of BCL2-deficient tumors with inhibitors of poly(ADP-ribose) polymerase. Nat. 434, 913–917.
D’Alessandro, N. (1999). Blocking signal transduction through the Gp130 receptor and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatin-mediated cytotoxicity. Cancer 85, 173–184.
Erdos, T. M., et al. (2008). Identification of somatically acquired rearrangements in cancer using genome-wide microarray-based copy number analysis. Nat. Genet. 40, 722–729.
Feldscher, C., et al. (2006). Novel D701V and common secondary T790M mutations in epidermal growth factor receptor mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res. 12, 6494–6501.
Ferrand, C., Bacchi, P., Pouliot, F., and Varhaug, J. E., et al. (1996). Specific development of cancer resistance in vitro and in vivo models. J. Natl. Cancer Inst. 88, 811–814.
Finkel, T., Toker, A., and Oso, A. E. (2012). Hedgehog path- way inhibition and the race against tumor evolution. J. Biol. Rad. 199, 193–197.
Fukuda, M., Goy, G., Reid, G. J., Semmes, R., Li, A. R., Zakeri, M. E., et al. (2006). Novel D701V and common secondary T790M mutations in epidermal growth factor receptor mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res. 12, 6494–6501.
Gallagher, M. J., Bean, J., Riely, G. J., Balak, M., Marks, J. L., Ladani and Inidhak, V. A., et al. (2008). Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T790M mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin. Cancer Res. 14, 7519–7525.
Hazelhurst, W., Lehnberg, K., Wittman, I., Bruckner, A., Schnei- der, A., Sipp, U. R., et al. (2005). Resistance to etoposide and gemcitabine and in vitro selection of transduced cells after intravenous dosing of mitoxantrone in human hematopoietic progenitor cells. Leukemia 19, 2287– 2298.
Hibshoohi, W., Lehnberg, K., Wittman, I., Bruckner, A., Schneid- ner, A., Sipp, U. R., et al. (2005). Resistance to etoposide and gemcitabine in vitro selection of transduced cells after intravenous dosing of mitoxantrone in human hematopoietic progenitor cells. Leukemia 19, 2287–2298.
Hibshoohi, W., Lehnberg, K., Wittman, I., Bruckner, A., Schneid- ner, A., Sipp, U. R., et al. (2005). Resistance to etoposide and gemcitabine in vitro selection of transduced cells after intravenous dosing of mitoxantrone in human hematopoietic progenitor cells. Leukemia 19, 2287–2298.
Hibshoohi, W., Lehnberg, K., Wittman, I., Bruckner, A., Schneid- ner, A., Sipp, U. R., et al. (2005). Resistance to etoposide and gemcitabine in vitro selection of transduced cells after intravenous dosing of mitoxantrone in human hematopoietic progenitor cells. Leukemia 19, 2287–2298.
Hibshoohi, W., Lehnberg, K., Wittman, I., Bruckner, A., Schneid- ner, A., Sipp, U. R., et al. (2005). Resistance to etoposide and gemcitabine in vitro selection of transduced cells after intravenous dosing of mitoxantrone in human hematopoietic progenitor cells. Leukemia 19, 2287–2298.
in inducing and maintaining remission in patients with acute leukemia. Blood 28, 642–651.
Galantris, C. M., Mackey, J. B., and Duttner, C. (2001). Nuclear
table anomalies: mechanisms of drug resistance and reversed strategies. Blood 195, 875–980.
Gatti, L. and Zanetti, F. (2005). Overview of tumor cell chemo-
sensitization mechanisms. Methods Mol. Biol. 112, 127–140.
Gekas, D. (2011). Targeted Therapies: Mechanisms of Resistance: New York: Humana Press.
Gona, F., Tosti, A. M., Ambrosio, L., Amadori, S., Aresu, V., Camera, A., et al. (1994). Treatment of pri-
mary refractory and relapsed acute lymphoblastic leukemia in adults: the GIMEMA/ AIEOP experience. Gruppo Italiano Malattie Ematologiche Maligne dell’Adulti. Associazione Italiana Ematologia e Oncologia Pediatrica. Br J Haematol 86, 55–51.
Goldman, J. M., and Misko, J. V. (2010). Chronic myeloid leukemia – advances in biology and new approaches to treatment. N. Engl. J Med. 354, 1431–1440.
Gore, M. E., Mohammed, M., Ellwood, K., Hsu, N., Puaprapat, R., Rao, P. N., et al. (2001). Clinical resistance to STI-571: 2007 cancer therapy caused by BCR-ABL gene amplifi-
cation or mutation. Nat Med 3, 581–587.
Gottelman, M. M. (2002). Mechanisms of cancers drug resistance. Am J Med 53, 613–627.
Gottelman, M. M., Feo, Y., and Bates, S. E. (2002). Multidrug resistance in cancer: role of ATP-dependent trans-
porters. Nat Rev Cancer 2, 46–56.
Goren, M. (2007). Darvacine medicine: a case for cancer. Nat Rev Clin Oncol 4, 110–121.
Gha, M. (2011). PaPaP inhibitors stumble in breast cancer. Nature Rev Clinc Transl 29, 373–374.
Ghifary, F., Chantag, C., Michaud, M., Guerci, A., Marty, M. L., Mail-
oud, E., et al. (1997). Interferon alpha-
2b combined with cytotoxic versus alone interferon alpha in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group. N. Engl. J Med 337, 223–229.
Hall, M. D., Handler, M. D., and Gott-
eman, M. M. (2009). Is resistance useless? Malignant drug resistance and col-
elsensitivity. Trends Pharmacol Sci 30, 546–556.
Harran, D. S., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 67–70.
Hartman, J. I. T., Gavril, V., and Hartwell, L. (2001). Principles for the
bleshooting of genetic variation. Science 291, 1001–1004.
Hauksdottir, L. A., Arslanagic, R. F., and Dakon, W. S. (2007). Rutal integrin mediated adhesion increases Bim protein degradation and contributes to drug resistance in leukaemia cells. Br J Haematol 138, 246–257.
Hullherr, L. A., Davani-Arslan, J., Bayuk-
ad, L., Hedges, W. J., and Dakon, W. S. (2010). Adhesion to fibronectin via beta integrin regulates PTEN levels and contributes to cell adhe-
ion mediated drug resistance (CAM-
DR). Oncogene 4:1016–4:1021.
Hullherr, L. A., Feray, S. A., Bau, C., Arslanagic, R. F., Parent, J., Stum, K. H., et al. (2013). Geno-
typic and phenotypic comparisons of nk cell and acquired multipla-
lamin resistance in an isogenic multiple myeloma cell line model. Cancer Res 65, 7900–7908.
Hullherr, L. A., Valler, N., Wissner, L., Storey, J. A., Bros rocks, D., Silli-
van, D. M., et al. (2011). Reduction in drug induced DNA strand breaks associated with beta integrin med-
ated adhesion correlates with drug resistance in 5397 cells. Blood 98, 1907–1917.
Huppertz, H. G., Hunter, D. L., Dennis, T., Miller, F. R., and Calabresi, P. (1979). Heterogeneity in drug sen-
sitivity among tumor cell subpopula-
tions of a single malignant tumor. Cancer Res 39, 3758–3763.
Hupfer, D. R., Dooley, R. G., and Cole, S. P. (1999). Structural, mechanistic and clinical characteri-
sation of glutathione-
related drug resistance in U937 cells. Blood 102, 685–691.
Hughes, T. P., Kaul, J., Bradfield, S., Rudder, Z., Hochhaus, A., and Cheadle, A. (2000). Frequency of the BCR–ABL mutation following failure of imatinib treatment. Br J Haematol 19, 4319–4327.
Hu, X., et al. (2003). Nucleo-
sion in children with acute leukemia. Br J Haematol 97, 483–489.
Hummers-Pradier, E., Kapp, W., and Dalton.
Huvos, A. G., Heppner, G. H., Dexter, D. L., Denucci, J., Shain, K. H., et al. (2003). Geno-
type and clinical outcomes of patients with chronic myeloid leukemia treated with imatinib-mo-
dir. Leukemia 17, 5767–5775.
Ishad, J., Laun, I., Buchholz, U., Barnekow, K., Kau, G., and Keppel, D. (1996). Transport of glutathione, glycuronate, and sulfate conjugates by the MRP gene-encoded comp-
gate export pump. Cancer Res 56, 898–904.
Joerdar, A., Barga, L. N., Hu, H., Linstead, P. E., Bramham, Y. H., Bal-
tiff, L., et al. (2012). Combining a PI3K inhibitor with a PPAR gamma inhibitor provides an effective ther-
apy for BCRL-related breast cancer. Cancer Discov 2, 1948–1963.
Johannes, S. E., Deininger, W., Nidame, K., Obi, M., Komers, Y., Konytki, K., et al. (1995). Metabolism cot-
tent correlates with the sensitivity of human small cell lung cancer cells to platinum. Cancer Res 55, 3237–3242.
Kaplan, D. J., and Tollgård, R. (2013). Smoothing out drug resistance. Can-
cer Cell 23, 1–5.
Kelleher, S. L., Bus, A., Tischer, B. A., Hacker, M. P., Hamer, D. H., and Kornel, J. S. (1988). Overexpression of melatonin receptor confers resistance to molecular
characterization of glutathione-platinum complex and its biological significance. J Biol Chem 268, 20116–20123.
Koike, S., Han, T., Nakamura, Y., Nakamura, N., Katsura, S., and Kishi, M. (2012). Establishment of phos-
phorylantibody 3 kinase inhibitor-
resistant cancer cell lines and thera-
potetic strategies for overcoming the resistance. Cancer Sci 103, 1995–1998.
Jabbour, E., Kantarjian, H., Jones, D., Bruinen, M., Garcia-Manero, G., O’Brien, S., et al. (2008). Character-
istics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imat-
inizum molythepyl therapy. Blood 112, 53–55.
Jabbour, E., Kantarjian, H., Jones, D., Talpaz, M., Bokhi, N., O’Brien, S., et al. (2006). Frequency and clini-
cal significance of BCR-ABL muta-
tions in patients with chronic myeloid leukemia treated with imatinib-mo-
dir. Leukemia 20, 545–552.
Jabbour, E., Kantarjian, H., Jones, D., Talpaz, M., Bokhi, N., O’Brien, S., et al. (2006). Frequency and clini-
cal significance of BCR-ABL muta-
tions in patients with chronic myeloid leukemia treated with imatinib-mo-
dir. Leukemia 20, 545–552.
Koike, S., Boggan, T. J., Davey, J., Iame, P. A., Koch, O., Meyerzon, M., et al. (2005). EGFR mutations and
resistance of non-small cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792.

Kong, J., Niao, A. T., Cui, Y., Loehr, L., and Kaplan, D. (1999). Compu-
gate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP-mediated drug resis-
tance. Biochim. Biophys. Acta 1461, 377–394.

Kristensen, R. B. (2006). Immunostains for targeted cancer therapy. APS J. 8, E332–E353.

Kristensen, R. B., Wilson, W. H., Bergersen, K., Raggi, M., Sudler-
 Stevens, M., Ferns, D. J., et al. (2001). Efficacy of the anti-CL23 recombinant immunostain BL22 in doxorubicin-resistant hairy-cell leukemia. N. Engl. J. Med. 345, 245–252.

Krausnussmeyer, P., Rose, D. D., Nakan-
ushita, T., Bailey-Dell, K., Zhou, S., Mire, K., et al. (2004). The stem cell marker Rec/ARCG2 enhances hsaipone cell survival through interactions with homeo-
ized B-CLL. J. Biol. Chem. 279, 32418–32422.

Kafe, D. W., and Sprigg, D. R. (1985). Biochemical and cellular pharmacol-
ogy of cytostatic arsides. Semin. Oncol. 12, 54–64.

Kummer, S., Chen, A., Ji, J., Zhang, Y., Kinders, R. J., Ji, J., Tomaszewski, J. E., et al. (2004). Activation of the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

Laplorte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Luyten, A., Takemoto, N., Sano, T., Takeda, R., Tsuchi, I., Fujimi, A., et al. (2005). Interaction between leukemia cell VLA-4 and integrin

Mai, M., Laporte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Luyten, A. J. (1997). p53, the cellular
www.frontiersin.org

Kummar, S., Chen, A., Ji, J., Zhang, Y., Kinders, R. J., Ji, J., Tomaszewski, J. E., et al. (2004). Activation of the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

Laplorte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Luyten, A., Takemoto, N., Sano, T., Takeda, R., Tsuchi, I., Fujimi, A., et al. (2005). Interaction between leukemia cell VLA-4 and integrin

Mai, M., Laporte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Kummar, S., Chen, A., Ji, J., Zhang, Y., Kinders, R. J., Ji, J., Tomaszewski, J. E., et al. (2004). Activation of the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

Laplorte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Luyten, A. J. (1997). p53, the cellular

Kummar, S., Chen, A., Ji, J., Zhang, Y., Kinders, R. J., Ji, J., Tomaszewski, J. E., et al. (2004). Activation of the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

Laplorte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Luyten, A. J. (1997). p53, the cellular

Kummar, S., Chen, A., Ji, J., Zhang, Y., Kinders, R. J., Ji, J., Tomaszewski, J. E., et al. (2004). Activation of the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

Laplorte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Luyten, A. J. (1997). p53, the cellular

Kummar, S., Chen, A., Ji, J., Zhang, Y., Kinders, R. J., Ji, J., Tomaszewski, J. E., et al. (2004). Activation of the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

Laplorte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Luyten, A. J. (1997). p53, the cellular

Kummar, S., Chen, A., Ji, J., Zhang, Y., Kinders, R. J., Ji, J., Tomaszewski, J. E., et al. (2004). Activation of the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

Laplorte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Luyten, A. J. (1997). p53, the cellular

Kummar, S., Chen, A., Ji, J., Zhang, Y., Kinders, R. J., Ji, J., Tomaszewski, J. E., et al. (2004). Activation of the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

Laplorte, G., and Polkov, K. (2015) Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1850, 155–177.

Luyten, A. J. (1997). p53, the cellular

Kummar, S., Chen, A., Ji, J., Zhang, Y., Kinders, R. J., Ji, J., Tomaszewski, J. E., et al. (2004). Activation of the epidermal growth factor receptor underlyi
Soverini, S., Martinelli, G., Rosti, G., Slamon, D. J., Leyland-Jones, B., Shak, S., Siegel, R., Desantis, C., Virgo, K., Stein, F. A., Rodrigues Pereira, J., Shain, K. H., Yarde, D. N., Meads, M., Sellers, W. (2011). A blueprint for multi-drug resistance (MDR): a major impediment to effective chemotherapy. *Ann Rev. J. Cancer Res.* 9, 1–6.

Voorhees, P. M., Chen, Q., Kuhn, D. J., Small, G. W., Hummeker, S. A., Strader, J. S., et al. (2006). Molecular signatures of proliferation and quiescence in hematopoietic stem cells. *PLoS Biol.* 4:e205. doi: 10.1371/journal.pbio.0050205

Voorhees, P. M., Chen, Q., Kuhn, D. J., Small, G. W., Hummeker, S. A., Strader, J. S., et al. (2006). Molecular signatures of proliferation and quiescence in hematopoietic stem cells. *PLoS Biol.* 4:e205. doi: 10.1371/journal.pbio.0050205

Wang, S., Yang, D., and Lippman, M. E. (2005). Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. *J. Mol. Med.* 83, 133–142.

Watt, V. M., Barrett, J. L., Gierga, D. R., Beamer, G. W., Libutti, S. K., and Verma, I. M. (2002). Mechanisms of dose-sequence addiction -- a rationale for molecular targeting in cancer therapy. *Nat. Clin. Pract. Oncol.* 3, 448–457.

White, D. E., Karpuz, N. A., Zou, D., Hassell, J. A., Blau, S., Sallan, S., et al. (2004). Impaired disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. *Cancer Cell* 6, 159–170.

Wild, P., Krausche, B., Dattamangal, W., Hofmaister, V., and Hartmann, A. (2005). Laser microdissection and microarray analysis of breast cancer reveal a high degree of tumour heterogeneity. *Pathology* 36, 180–189.

Williams, G. C., and Nese, R. M. (1991). The dawn of Darwinian medicine. *Q. J. Med.* 86, 1–22.

Wilson, T. R., Johnston, P. G., and Longley, D. B. (2002). Anti-apoptotic mechanisms of drug resistance in cancer. *Curr. Cancer Drug Targets* 2, 321–334.

Wilson, T. R., Longley, D. B., and Johnston, P. G. (2006). Chemoresistance in solid tumours. *Ann. Oncol.* 17(suppl 10), S175–S184.

Wong, A. L., and Lee, S. C. (2012). Mechanisms of resistance to trastuzumab and novel therapeutics in HER2-positive breast cancer. *Int. J. Breast Cancer* 2012, 413170.

Xu, Y., and Villalona-Calero, M. A. (2002). Intracellular mechanisms of tumor resistance and novel strategies for modulating its activity. *Ann. Oncol.* 13, 1841–1851.

Yashar, B., Michael, R., Siao, R., Mehta, K., Dinerman, J. L., and Hartman, W. D. (2002). Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. *J. Mol. Med.* 83, 133–142.

Zahreddine, A., et al. (2005). ABL mutations in leukemia patients with up-front failure of imatinib therapy. *J. Mol. Med.* 83, 1–3.

Zhu, Z., Fan, W., and Yang, X. (2012). Overcoming drug resistance through ER stress-mediated apoptosis. *Cell Death Dis.* 3, 1–6.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.