抗新型冠状病毒肺炎中药的研究进展

麻冰洁, 吴燕, 张明, 饶丹, 邱金芳*, 陈培荣
(信阳农林学院动物科技学院, 河南信阳 464000)

【摘要】 新型冠状病毒肺炎(Coronavirus disease 2019, COVID-19) 在世界范围内大流行以来, 已成为全球公共卫生重大事件。目前 COVID-19 的治疗方案主要包括疫苗、抗体、化学药物及中药。其中, 中药在抗 COVID-19 过程中发挥了积极作用。单味中药如金银花、甘草、穿心莲、黄芩、虎杖、大黄、连翘、黄芪、中药单体如黄酮素、甘草酸、木犀草素、山奈酚、黄芩素等有潜在的抗 COVID-19 作用。另外, 中药方剂如连花清瘟颗粒(LHQW)、金花清感颗粒(JHQG)、清肺排毒汤(QFPD)等国家诊疗方案推荐的中药方剂对于 COVID-19 的防治具有较好的疗效。本文总结了目前抗 COVID-19 中药的研究进展, 探讨其抗病毒分子机制, 旨在为中药治疗 COVID-19 提供理论依据和新思路, 加速中药在 COVID-19 救治过程中的积极作用。

【关键词】 中药; COVID-19; 分子机制; 综述

【文献标识码】 A
【文献编码】 1673-5234(2023)03-0369-06

Research progress of traditional chinese medicine against COVID-19

MA Bing-jie, WU Xian, ZHANG Shai, RAO Dan, ZHENG Quan-fang, CHEN Pei-rong (Xinyang College of Agriculture and Forestry · College of Animal Science and Technology, Xinyang, Henan 464000, China)

【Abstract】 The transmission and pandemic of coronavirus disease 2019 (COVID-19) poses serious threat to public health safety and global economy. Current countermeasures against COVID-19 include vaccines, antibodies, chemical drugs and traditional Chinese medicine (TCM). Among them, TCM plays a key role in the anti-COVID-19 process. Single Chinese herbal medicines such as honeysuckle, licorice, andrographis paniculata, scutellaria baicalensis, polygonum cuspidatum, rhubarb, forsythia suspensa, astragalus membranaceus and Chinese herbal monomer such as quercetin, glycyrrhizic acid, luteolin, kaempferol and baicalein etc show potential anti-SARS-CoV-2 effects. In addition, TCM prescriptions such as Lianhua Qingwen Granules (Capsules) (LHQW), Jinhua Qinggan Granules (JHQG) and Qingfei Paiku Decoction (QFPD), Xuanfei Baidu Granules (XFBD) and other TCM prescriptions recommended by Chinese national diagnosis and treatment program exhibit potent effects on the prevention and treatment of COVID-19. This review summarized the progress and potential molecular mechanisms of anti-SARS-CoV-2 TCM, aiming to provide theoretical basis, prospects and accelerate the active application of TCM for the treatment of COVID-19.

【Key words】 Traditional Chinese medicine; COVID-19; molecular mechanism; review

COVID-19 是由新型冠状病毒 (severe acute respiratory disease coronavirus 2, SARS-CoV-2) 引起的高度传染性呼吸道疾病, 不同感染者的临床症状表现存在差异, 可分为无症状感染者、轻症患者、重症和重症患者。SARS-CoV-2 利用其表面的刺突蛋白(Spike, S)上的受体结合域 (Receptor binding domain, RBD) 识别宿主细胞上的血管紧张素转换酶 2 (Angiotensin converting enzyme 2, ACE2) 受体, 进入宿主并复制。病毒感染细胞诱导损伤反应, 焦亡、免疫细胞浸润, 抗炎细胞因子的表达和适应性免疫系统的激活, 其中细胞因子风暴是导致重症的重要原因。病毒复制周期中的酶和蛋白质是抗冠状病毒药物的主要靶点, 目前抗冠状病毒药物的研究热点主要集中在 S 蛋白、RNA 依赖的 RNA 聚合酶 (RNA dependent RNA polymerase, RdRp)、以及主蛋白酶 (3CLpro) 和木瓜蛋白酶样蛋白酶 (PLpro) 等。

目前多款中药单体或方剂可有效抑制 SARS-CoV-2 感染, 减轻 COVID-19 患者的临床症状, 治疗疾病进展过程, 但其作用机理尚不明确。因此, 本综述系统地分析并阐述了中药抗 COVID-19 的研究进展, 同时阐述了高频使用的中药抗病毒分子机制, 以期为临床上中药抗 COVID-19 的应用提供理论参考。

1 中医药在抗病毒中的应用及发展

中药几千年来在治疗人类疾病过程中发挥着不可替代的作用。公元前 200 年的《黄帝内经》中首次描述了抗感染性疾病的中药方剂[1], 中医经典著作《伤寒论》中的五苓散, 可通行三焦水道, 增强身体机能, 在古代经常被用于治疗瘟疫; 炎热寒热症状, 温和热服可以清热解毒的药的代表, 用于治疗高热和呼吸困难, 是重要的抗抗体组方。目前这些方剂在我国内广泛使用。
居鼻咽因从葛属植物中成功提取出抗疟药物青蒿素，在2015年获得诺贝尔奖；研究人员从紫杉木提取的紫杉醇成为典型抗癌药物[3]，从八角中提炼的莽草酸可抗流感病毒，大大降低了治疗成本。

2003年中药在防治SARS冠状病毒（Severe acute respiratory syndrome coronavirus, SARS-CoV）传播和降低死亡率方面的应用也显示出巨大的潜力，在COVID-19大流行期间，特别是在缺乏有效药物和疫苗的情况下，中医药被广泛使用。目前部分中药对COVID-19有显著的疗效，且COVID-19诊疗方案从第3版起将中药配方列入其中，中药配方在治疗COVID-19中发挥了重要作用。

中药的核心思想为辨证施治，整体观念，即根据不同的综合症为每个患者配伍特定的药物来提供更有效和个性化的治疗；鉴于其低毒性和无严重不良反应，中药被推荐作为SARS-CoV-2的潜在策略，具有重要科学价值和应用价值。目前已发现数十种中草药和数千种天然中药成分具有广谱抗病毒活性，可对抗单纯疱疹病毒、流感病毒、人免疫缺陷病毒、乙型和丙型肝炎病毒、SARS-CoV和MERS-CoV（Middle East Respiratory Syndrome coronavirus）等病毒[4]。

由于中药具有多种成分、多靶点、多通路的特点，因此传统药物理学方法难以阐明中医治疗疾病的复杂机制。基于分子模拟的预测表明，鞣皮素[5]、穿心莲内酯[6]、甘草酸[7]、黄芩苷[8]、广藿香醇[9]、木犀草素[10]等中药成分对蛋白酶的结合位点有3CLpro、ACE2、S蛋白、RdRp和PLpro，这些成分能够通过以下方式抑制病毒感染，与SARS-CoV-2关键蛋白结合导致病毒进入细胞，抑制病毒活化诱导细胞通路，并抑制发生在体内的复制过程，随着网络药理学的兴起和现代医学发展，中药的活性成分、作用靶点将被有效预测并进一步揭示其作用机制，进而推进行中医药现代化的进程。在未来，中药与西药相结合也将成为治疗COVID-19的一个趋势。

2 抗COVID-19的单味中药及其有效成分

2.1 金银花 金银花是指忍冬属植物藤蔓或最初花的花冠，主要生长在东亚。在传统中医中，金银花具有清热解毒的功效，被广泛用于治疗各种临床疾病，包括发热、咽喉痛、流感症状、咳嗽和关节炎。研究显示，金银花对多种病毒均有抑制作用，包括流感病毒、呼吸道合胞病毒、H1N1型禽流感病毒、肠病毒EV71及疱疹病毒[11]。金银花可有效缓解COVID-19的临床症状并抑制SARS-CoV-2复制，张文荣等[12]在探讨金银花口服对COVID-19临床疗效的实验中发现，在常规治疗基础上加上金银花口服液，可显著改善COVID-19患者症状，减轻肺部病变。金银花中主要黄酮类化合物木犀草素与SARS-CoV-2冠状病毒主要蛋白酶具有高亲和力，对SARS-CoV-2有潜在抑制作用[13]。可通过缓解COVID-19患者的发热并改善呼吸，对COVID-19产生实质性的疗效[14-16]。

2.2 甘草 甘草是传统医学中的药用植物，具有行气健脾、润肺止咳、清热解毒、解痉和驱风效果。研究表示，中国超过85%的COVID-19患者使用中药，最常用的草药是甘草，它在体内抑制不同病毒复制的机制，包括冠状病毒。其中，甘草酸是甘草的主要生物活性成分，被证实与ACE2直接相互作用，因此甘草酸可能是一种潜在的COVID-19抑制剂[17]。甘草酸在体内连接并改变ACE2受体的构象，对SARS-CoV-2进入宿主细胞至关重要。研究发现，甘草酸可以显著阻断SARS-CoV-2的S蛋白与人体内膜蛋白ACE2结合，是抗SARS-CoV-2活性的有效中药单体[18]。甘草和半夏联合使用可治疗中度COVID-19患者，IL-6/STAT3信号转导和转录激活因子3是其关键的信号通路，半夏的两种活性成分（松柏素和3，4-亚甲基基-6-（4-羟基基基）噻唑2,5-醚）和甘草的两种活性成分（甘草次黄酮A和甘草果皮）对STAT3有很强的结合力。甘草和半夏配伍可以超过更大程度上抑制SARS-CoV-2引起的细胞因子风暴，从而降低COVID-19 产生严重情况[19]。

2.3 穿心莲 穿心莲内酯是从穿心莲的全草或叶中提取的二萜内酯类化合物，是穿心莲的主要有效成分之一，其功效主要是清热解毒，抗菌消炎，止咳平喘。穿心莲内酯及其衍生物对多种病毒有抑制作用，可抑制病毒复制，阻止病毒入侵细胞。穿心莲内酯对SARS-CoV有一定的抑制作用，结合穿心莲内酯的抗菌病毒作用机制，提示其可能在治疗COVID-19中具有潜在的抗病毒作用[20]。张爱群等[21]在穿心莲治疗机制研究中发现，穿心莲中的汉黄芩素、黄芩素、木犀草素和穿心莲内酯是COVID-19起效的主要活性成分，这些成分通过多靶点、多通路发挥抗病毒作用。
ACE2的结合受体。值得注意的是，橄榄皮还可以与S蛋白的RBD结构域结合，表明橄榄皮不仅具有受体阻滞剂的效果，还有中和病毒SARS-CoV-2的作用[25]。此外，中药中的活性成分橄榄皮、汉防己和虎杖苷可预测能直接结合到SARS-CoV-2的3CLPro上从而影响病毒复制。作为推荐药物，橄榄皮和表没食子儿茶素没食子酸酯和其他12种中药单体对IL-6、ACE2和SARS-CoV-2表现出相似的亲和力，因此在COVID-19的治疗中发挥了至关重要的作用[26]。

2.7 其他 中药黄芩具有多种药理作用，如抗病毒活性、调节机体免疫功能等。临床上广泛使用，疗效显著。黄芩可降低炎症介质含量，抑制肿瘤抑制因子，起到广谱抗菌的作用[27]。黄芩多糖[28]作为黄芩的主要成分之一，已被证实是一种免疫调节剂[29]，可调节呼吸系统和消化系统的黏膜分泌。

苦参（苦参酮）属于较类黄酮，从亚洲灌木薇的根中分离出的，在传统亚洲医学中用于镇痛剂。最近发现，苦参酮可诱导自噬抑制冠状病毒感染，还可能抑制病毒诱导的细胞病变效应，以及细胞内外RNA和病毒蛋白的表达。苦参酮可用于治疗冠状病毒初期感染[30]。

连翘的代表性成分连翘苷具有抗炎作用，抗病毒活性。目前，Mao等[31]阐明了连翘苷可以阻断病毒复制从而抑制SARS-CoV-2感染，并通过抑制NF-κB信号通路调节炎症细胞因子，从而显著抑制SARS-CoV-2引起的炎症反应。然而，SARS-CoV-2诱导的抗病毒和抗炎作用以及连翘苷治疗COVID-19的潜在机制仍需进一步研究。

麻黄具有抗病毒、抗炎、解热、抗抗、抗利尿等作用[32]，在中医药防治COVID-19的经验中，发现麻黄和甘草被广泛使用[33]。麻黄和甘草的活性化合物与SARS-CoV-2相关靶点（3CLPro、S蛋白和ACE2）结合良好，有研究发现麻黄和甘草的潜在药理机制是通过增加感染途径和减少治疗COVID-19[34]。

3 抗COVID-19的几种有效组方

3.1 金花清感颗粒（LHQW） LHQW是一种典型的中药制剂，具有清热解毒，抗炎消肿，镇痛作用。LHQW由13种草药组成，用于治疗呼吸道疾病，并在2003年防治非典中发挥了重要作用[35]。其方剂成分中麻黄、金银花、连翘、苦甘草、白术、黄芩、贝母、知母、牛蒡、黄芩、甘草、黄连等对多种呼吸道病毒感染有预防和治疗效果[36]。LHQW的体内实验显示它能显著抑制SARS-CoV-2在Vero E6细胞中的复制，增加抗炎活性，并导致体外病毒粒子形态变异[37]。

LHQW中存在抗病毒的中药及中药单体，牛黄等[38]研究发现，LHQW中的成分金银花、连翘等可以阻断SARS-CoV-2与细胞表面ACE2的结合。黄芩有效成分黄芩苷可抑制SARS-CoV-2与细胞表面ACE2的结合。ACE2，汉防已和虎杖苷可抑制SARS-CoV-2的复制[39]。对于LHQW的有效成分，生物碱、皂苷、鞣质等，黄芩等可抑制SARS-CoV-2的复制[40]。对于LHQW的成分甘草，治病毒性肺炎、流感等有一定效果。黄芩等可抑制SARS-CoV-2的复制[41]。LHQW对SARS-CoV-2的治疗作用，主要体现在抗病毒和抗炎方面。LHQW可作为治疗COVID-19的一种药物。LHQW在抗COVID-19的临床研究中，对28例COVID-19患者进行随机临床试验，其中142例患者使用LHQW治疗14天（餐，1次/天），结果显著，治疗组的恢复率（91.5%、83.3%），改善率（83.8%、64.1%）和临床治愈率（78.9%、66.3%）均高于对照组，无严重不良反应[42]。表明LHQW可以对抗冠状病毒，是潜在的抗COVID-19药物。

3.2 脉络安慰饮（QFPD） QFPD是一种由21种成分组成的方剂，包括黄芩和黄连等，适用于早期，轻度和重度感染患者，已作为主要治疗方案纳入第六版指南[43]。QFPD在中国被推荐用于COVID-19治疗，可以靶向3CLPro抑制ACE2结合，抑制SARS-CoV-2侵袭和复制的潜在作用[44]。其中，黄芩、黄连、黄芩、丹参、乙酰谷酰胺B可直接靶向SARS-CoV-2的3CLPro，阻止病毒增殖，Zhang等[45]通过网络药理学和分子对接技术发现QFPD中药物部分与SARS-CoV-2的3CLPro和ACE2蛋白具有一定的亲和力。网络药理学研究结果表明QFPD包括948种不同的化学成分，对790个潜在的靶蛋白产生作用，这些靶点之间的相互作用可以形成一个分子网络，这可能会影响病毒入侵、复制和修复性炎症因子，从而导致多个器官损伤[46]。

通过中医理论分析结合初步临床观察，QFPD可以起到快速抗病毒效果，缩短患者就诊时间[47]，具体而言，使用该药物的临床病例和计算机断层扫描（CT）表现明显改善，其临床症状无恶化[48]。Huang等[49]总结出几种潜在的靶向抗病毒的中草药，如COVID-19的S蛋白、ACE2、3CLPro、PI3K和RdRp。为了选择SARS-CoV-2具有高潜在功能的天然化合物，通过分子对接预测了6种化合物与COVID-19相关靶标之间的结合亲和力，这些化合物包括，橄榄皮，银花连翘，甘草，黄芩等[49]。目前，中药对COVID-19的治疗效果在临床上是未知的，故需要对大量人群进行严格的临床试验，以验证中药在治疗COVID-19中的效果。

3.3 金花清感颗粒（LHQG） LHQG由麻黄甘草和连翘散为基础发展而来，包括金银花、麻黄、甘草、苦甘草、黄连、贝母、知母、牛蒡、黄芩、甘草、甘草等，对SARS-CoV-2具有抗病毒和中和作用，对SARS-CoV-2的3CLPro、S蛋白和ACE2结合良好，对SARS-CoV-2的复制有抑制作用[50]。LHQG的核心活性成分（包括黄芩苷、连翘苷和麻黄碱）对对SARS-CoV-2蛋白和ACE2蛋白的抑制作用具有较强的互感，因此能够抑制病毒复制并靶向细胞及其抑制病毒的复制。王连等[51]研究发现LHQG对SARS-CoV-2的抑制作用，对SARS-CoV-2的3CLPro、S蛋白和ACE2结合良好，对SARS-CoV-2的复制有抑制作用[52]。LHQG的主要成分黄芩、甘草、黄连等对SARS-CoV-2的抑制作用具有较强的作用，因此对SARS-CoV-2的3CLPro、S蛋白和ACE2结合良好，对SARS-CoV-2的复制有抑制作用[53]。LHQG的主要成分黄芩、甘草等对SARS-CoV-2的抑制作用具有较强的作用，因此对SARS-CoV-2的3CLPro、S蛋白和ACE2结合良好，对SARS-CoV-2的复制有抑制作用[54]。LHQG的主要成分黄芩、甘草等对SARS-CoV-2的抑制作用具有较强的作用，因此对SARS-CoV-2的3CLPro、S蛋白和ACE2结合良好，对SARS-CoV-2的复制有抑制作用[55]。
青蒿、虎杖、甘草)的29种化合物，其中，Cirsiliolt-3(提取自黄花蒿)、Pachypodium利(提取自广藿香)、甘草次酸、甘草次酸、3种化二甲基基复合素1-3，Pinocembrin2，Pinocembrin3，Pinocembrin5(提取自广藿香)可用于治疗COVID-19的候选化合物[3]。在一份临床病例报告中，280名COVID-19患者接受自XIFD治疗，所有病例均痊愈，避免了从重症向危重症的转变。XIFD对COVID-19(奥密克戎变体感染)具有良好的临床疗效，可以缩短核酸转阴时间[4]。表明XIFD通过中药配伍发挥整体调控作用，从而达到抗病毒作用。

4 小结

中药在COVID-19患者中的抗病毒作用，中重度中药发挥作用有抗COVID-19，一方面增强机体的抗病毒能力，提高免疫力，另一方面通过特异性的作用与SARS-CoV-2的靶标部位结合，发挥抗病毒作用。虽然多种中药表现出抗SARS-CoV-2能力，但通过综合评估COVID-19有待进一步探索。到目前为止，基于结构的药物设计方向主要是抑制病毒进入、组装、复制，主要针对SARS-CoV-2的一些结构非结构蛋白。因此，在中药的筛选中主要基于靶向蛋白的中药及单体，研究发现中药抗SARS-CoV-2的潜在机制有：靶向作用于S蛋白从而阻断病毒与宿主受体的结合[43，44]，阻断S蛋白和ACE2的结合，防止SARS-CoV-2的进入和复制[44]，除了S蛋白，还有两种关键的蛋白酶，3CLpro和PLpro。http://www.nejm.org/doi/full/10.1056/NEJOb1907698

5，6 国内[5]，7，8 文献

抗SARS-CoV-2的中草药

5，6 国内[5]，7，8 文献

抗SARS-CoV-2的中草药

5，6 国内[5]，7，8 文献

抗SARS-CoV-2的中草药

5，6 国内[5]，7，8 文献

抗SARS-CoV-2的中草药

5，6 国内[5]，7，8 文献

抗SARS-CoV-2的中草药
effectively inhibit SARS-CoV-2 in vitro [J]. Cell Discov, 2020, 6 (1): 50.

[65] Jang Y, Shin H, Lee MK, et al. Antiviral activity of lambsdarcageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2 [J]. Sci Rep, 2021, 11(1): 821.

[66] Ho TY, Wu SL, Chen JC, et al. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction [J]. Antiviral Res, 2007, 74(2): 92-101.

[67] Muhsen ZT, Hameed AR, Al-Hassani HMH, et al. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach [J]. J Mol Liq, 2020(320): 114493.

[68] Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors [J]. Science, 2020, 368(6489): 409-412.

[69] Maiti BK, Can Papain-like Protease Inhibitors Halt SARS-CoV-2 Replication? [J]. ACS Pharmacol Transl Sci, 2020, 3(5): 1017-1019.

[70] Steuten K, Kim H-Widen JC, et al. Challenges for Targeting SARS-CoV-2 Proteases as a Therapeutic Strategy for COVID-19 [J]. J Infect Dis, 2021, 7(6): 1457-1468.

[71] Swain CD, Devvedi V, Perng YC, et al. 6-Thioguanine blocks SARS-CoV-2 replication by inhibition of PLpro [J]. iScience, 2021, 24(10): 103213.

[72] Tian L, Qiang T, Liang C, et al. RNA-dependent RNA polymerase (RdRp) inhibitors, The current landscape and repurposing for the COVID-19 pandemic [J]. Eur J Med Chem, 2021, 213(3): 113201.

[73] Ahmad M, Devvedy A, Mariadass R, et al. Prediction of Small Molecule Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus-2 RNA-dependent RNA Polymerase [J]. ACS Omega, 2020, 5(29): 18356-18366.

[74] 何黎霖, 邱瑞阳, 封雪等. 中药在抗新型冠状病毒肺炎(COVID-19)引起的细胞因子风暴中的应用分析 [J]. 中草药, 2020, 51 (6): 1375-1385.

[75] 孙铁, 于小勇. 中医药治疗新型冠状病毒肺炎述评 [J]. 河南中医, 2020, 40(7): 983-986.

【收稿日期】2022-10-10 【修回日期】2023-01-03