Safety of applying midazolam-ketamine-propofol sedation combination under the supervision of endoscopy nurse with patient-controlled analgesia pump in colonoscopy

Selda Kayaaltı, Ömer Kayaaltı

Selda Kayaaltı, Division of Anaesthesiology and Reanimation, Develi Public Hospital, Develi, Kayseri 38400, Turkey

Ömer Kayaaltı, Computer Technology, Kayseri University, Develi Huseyin Sahin Vocational College, Develi, Kayseri 38400, Turkey

ORCID number: Selda Kayaaltı (0000-0002-8176-0188); Ömer Kayaaltı (0000-0002-1630-1241).

Author contributions: Kayaaltı S designed and performed the research; Kayaaltı S and Kayaaltı Ö analysed the data, wrote the paper and reviewed the manuscript.

Institutional review board statement: This study was reviewed and approved by the ethics committee of Erciyes University Medical Faculty.

Clinical trial registration statement: The registration identification number is 2018/94.

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous data that were obtained after the patients agreed to treatment by written consent.

Conflict-of-interest statement: The authors declare no conflicts of interest with respect to the authorship and/or publication of this article.

Data sharing statement: No additional data are available.

CONSORT 2010 statement: The authors have read the CONSORT 2010 Statement, and the manuscript was prepared and revised according to the CONSORT 2010 Statement.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Corresponding author to: Selda Kayaaltı, MD, Specialist Doctor, Division of Anaesthesiology and Reanimation, Develi Public Hospital, Develi, Kayseri 38400, Turkey. drselda@hotmail.com

Telephone: +90-352-6216020
Fax: +90-352-6216223

Received: October 9, 2018
Peer-review started: October 10, 2018
First decision: November 1, 2018
Revised: November 9, 2018
Accepted: November 23, 2018
Article in press: November 24, 2018
Published online: December 26, 2018

Abstract

AIM
To compare the results of midazolam-ketamine-propofol sedation performed by an endoscopy nurse and anaesthetist during colonoscopy in terms of patient satisfaction and safety.

METHODS
American Statistical Association (ASA) I - II 60 patients who underwent colonoscopy under sedation were randomly divided into two groups: sedation under the supervision of an anaesthetist (SSA) and sedation under the supervision of an endoscopy nurse (SSEN). Both groups were initially administered 1 mg midazolam, 50 mg ketamine and 30-50 mg propofol. Continuation of sedation was performed by the anaesthetist in the SSA...
group and the nurse with a patient-controlled analgesia (PCA) pump in the SSEN group. The total propofol consumption, procedure duration, recovery times, pain using the visual analogue scale (VAS) and satisfaction score of the patients, and side effects were recorded. In addition, the patients were asked whether they remembered the procedure and whether they would prefer the same method in the case of re-endoscopy.

RESULTS
Total propofol consumption in the SSEN group was significantly higher ($P < 0.05$) than that in the SSA group. When the groups were compared in terms of VAS score, recovery time, patient satisfaction, recall of the procedure, re-preference for the same method in case of re-endoscopy, and side effects, there were no significant differences ($P > 0.05$) between the two groups. No long-term required intervention side effects were observed in either group.

CONCLUSION
Colonoscopy sedation in ASA I - II patients can be safely performed by an endoscopy nurse using PCA pump with the incidence of side effects and patient satisfaction levels similar to sedation under anaesthetist supervision.

Key words: Midazolam-ketamine-propofol combination; Patient-controlled analgesia pump; Nurse-administered sedation; Colonoscopy

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Sedation is frequently performed during interventional procedures such as colonoscopy. In cases where there are not enough anaesthetists, there are a variety of sedation protocols that can be applied by educated non-anaesthesia personnel. In our study, we showed that midazolam-ketamine-propofol combination can be applied under the supervision of an endoscopy nurse.

INTRODUCTION
Gastrointestinal endoscopy practices have been increasing worldwide. During colonoscopy, patients do not want to be awake because of severe abdominal pain, cramps and bloating, as well as embarrassment[1]. The demand for sedation in colonoscopies is increasing because of the influence of image quality in colorectal cancers and the increase in expectation of painless treatment of patients[2].

A variety of sedation techniques are used during colonoscopy. Sedoanalgesia, deep sedation under the supervision of anaesthetist (SSA), sedation under the supervision of nurse, and computer-assisted sedation with target-controlled devices are among these techniques[3]. Medications and applied techniques vary between clinics. The most commonly used agent is midazolam, either alone or in combination with an opioid (meperidine, fentanyl or alfentanil). The second most frequently used agent is propofol, which may be used alone or in combination with an opioid analgesic agent or midazolam[5]. Propofol is a short-acting sedative agent without analgesic properties[4]. Therefore, when propofol is used alone, high doses are required to tolerate some invasive procedures. This can lead to life-threatening conditions such as hypotension and respiratory depression[9]. Adding opioids to propofol reduces the incidence of side effects and allows patients to feel less pain during the procedure. It also reduces propofol injection pain[9]. Better results are obtained when propofol combined with ketamine, which provide dissociative anaesthesia[7]. Both fentanyl and ketamine provide anaesthesia, analgesia, and anxiolysis. The delayed peak levels and prolonged duration of action of fentanyl are significant disadvantages. After intravenous administration, it reaches its peak level in 4-6 min, and its duration of action ends in 20-40 min. Ketamine also has a good safety profile with the advantage of preserving spontaneous breathing and protective airway reflexes[8]. In our study, these features are important for sedation safety, since sedation is performed by non-anaesthesia personnel.

It is claimed that the application of propofol without an anaesthetist is dangerous. Even in the United States, the Food and Drug Administration recommends that the propofol should only be administered by trained anaesthesia personnel[10,11]. However, a worldwide study has shown that no major complications occur in patients (less than 1% of 142863 patients)[12]. The patient-controlled analgesia (PCA) pump was developed for postoperative pain control. In this regard, the patient applies his own pain medication according to his need. The PCA pump has been used with the same logic to provide sedation rather than analgesia in several studies. There are also studies where sedation applications have been performed under the supervision of a nurse or endoscopist using these pre-programmed devices[13]. In this study, we aim to compare the application of midazolam-ketamine-propofol combination by endoscopy nurse with PCA pump and anaesthetist in terms of patient satisfaction, side effects and safety.

MATERIALS AND METHODS
After receiving the approval of the ethical committee
of the Medical School of Erciyes University and the
informed consent of the patients, the study included the
American Statistical Association (ASA) I - II 60 patients
who underwent elective colonoscopy between 18 and
75 years of age. The study protocol was registered at
ClinicalTrials.gov (NCT03607110, https://clinicaltrials.
gov/ct2/show/NCT03607110). ASA III-IV-V patients
who had uncontrolled chronic disease (uncontrolled
diabetes mellitus and hypertension), severe respiratory
and cardiopulmonary insufficiency or liver and kidney
failure who did not accept the method were not included
in the study. Patients with a history of long-term anal­
egesic, opioid, and sedative use, with hypersensitivity to
soybean oil or eggs, and drugs used in our study, with
pregnancy or suspected pregnancy or lactating, and
with the use of antipsychotic or antidepressant drugs
were also excluded in the study.

Before the procedure, the group in which the pa­tients
were included was randomly determined by the
endoscopy nurse. The patients were given a proper
diet before the procedure, and intestinal cleansing
was implemented. After 8 h of fasting, the peripheral
vascular route was opened with a 20 G cannula, and
8 mL kg/h crystalloid solution was administered. Prior
to sedation, all patients were monitored for heart
rate, mean arterial pressure, and peripheral oxygen
saturation (SpO₂) measurements. All patients were
given 5 L/min oxygen via nasal cannula. Colonoscopy
was performed by two experienced endoscopists who
were trained in the same centre on the same dates.

During the procedure, the monitored data and the
cardiopulmonary side effects were recorded once a
minute for the first 5-min period and once every 5 min
in the next period. In the SSA group, the anaesthetist
was at the patient’s bedside. A total of two nurses, one
trained for sedation and the other who assisted the
endoscopist during the colonoscopy, were present in
the supervision of endoscopy nurse (SSEN) group. The
sedation-trained nurse was informed about possible
side effects during the procedure such as desaturation
(< 90%), hypotension (systolic < 90 mmHg), and
bradycardia (< 50) and was also trained to perform the
necessary interventions (such as jaw-thrust and head
tilt chin lift manoeuvres or using oropharyngeal airway
in case of desaturation or atropine administration in
case of bradycardia or 250 cc of fluid loading in case
of hypotension). If hypotension continued, 5-10 mg
intravenous ephedrine was administered. In cases
where peripheral oxygen saturation did not increase or
continued to decline (below 85), the anaesthetist would
intervene. In the case of long-term desaturation, the
materials required for emergency airway management
(bag mask ventilation, intubation, etc.) were available
in the endoscopy room to provide respiratory support.
The anaesthetist was not at the patient’s bedside in the
SSA group. However, the anaesthetist was ready in the
endoscopy unit for intervention in emergency situations
such as intubation and cardiopulmonary resuscitation.

Sedation protocol: Both groups were initially admi­
nistered 1 mg midazolam, 50 mg ketamine, and 30-50
mg propofol (30 mg in patients over 65 years old and
50 mg in patients under 65 years old). Afterwards,
the propofol required for the SSA group was determined
and administered by the anaesthetist to provide ade­
quate sedation and patient comfort. For the SSEN
group, sedation was continued by the endoscopy
nurse using a PCA pump (Accumate 1100; Woo Young
Medical, Seoul, Korea). Each time the endoscopy nurse
pressed the PCA pump according to the patient’s clinical
response or tolerance, the patient was administered
10-20 mg propofol (10 mg in patients over 65 years
old, 20 mg in patients under 65 years) with a delay of
about 10-20 s. At the end of the procedure, the total
drug consumption, procedure duration, and patient eye
opening/recovery times were recorded.

Patient Satisfaction: Patients were monitored until
the Aldrete Recovery Score (ARS) was ≥ 9. Patients
with ARS ≥ 9 were transferred to another eligible
unit. To evaluate patient satisfaction, the patients were
asked questions about the procedure. A visual analogue
scale (VAS) was used to evaluate the pain after the
procedure. Patients were asked to rate their pain on a
scale of 0-10, where 0 meant “no pain” and 10 meant
“worst imaginable pain”.

Patients were also questioned about whether they
remembered the operation and side effects. Side effects
such as hypotension, bradycardia and desaturation,
which require serious and rapid intervention, and
frequently encountered side effects such as nausea,
vomiting, and headache, which may adversely affect
patient satisfaction, were included in the patient follow­
up form. In addition to these side effects, the endoscopy
nurse was informed about complications related to
ketamine, such as emergence reactions, hypertension,
tachycardia, visual hallucinations, vivid dreams, tonic­
clonic movements, diplopia, and nystagmus. However,
these side effects were not separately listed on the
patient follow-up form, but were instead included
under the title of other side effects. In addition, patient
satisfaction was determined by a four-point satisfaction
score (1 very good, 2 good, 3 not bad, 4 bad). Two
days after the procedure, the patients were asked
whether they would prefer the same method again in
the case of a repeat endoscopy, and their answers were
recorded. Patients were questioned for possible delayed
side effects when they were contacted 2 d after the
colonoscopy to determine method preference.

Statistical methods
Mean, standard deviation (SD), median, minimum,
maximum, frequency, and ratio values were used in the
descriptive statistics of the data. The distribution of the
variables was measured by the Kolmogorov-Smirnov
test. A Mann-Whitney U test was utilized in the analysis
of quantitative independent data. A chi-square test was
employed to analyse qualitative independent data, and
RESULTS

There was no significant difference ($P > 0.05$) between the SSA and SSEN groups in terms of demographic data such as age, gender distribution, and ASA distribution. Patient demographic data is given in Table 1.

The total propofol used in the SSEN group was significantly higher ($P < 0.05$) than in the SSA group. Reaching the cecum and total procedure time in the SSA group was significantly higher ($P < 0.05$) than in the SSEN group (Table 2).

When patients were asked about their satisfaction, one patient in the SSEN group and five patients in the SSA group expressed their satisfaction as "not bad", while the rest of the patients expressed their satisfaction as "good" or "very good". In each group, three patients said that they remembered the procedure. All patients in both groups, except for two patients in the SSA group, stated that they would prefer the same method for the second time. However, when the groups were compared in terms of patient satisfaction, recall of the procedure, and preferring the same method in the case of repeat endoscopy, there was no significant difference ($P > 0.05$) between the two groups (Table 2).

Patient pain was evaluated by VAS score after the procedure. The highest recorded VAS value was 4, and only one patient in each group had a VAS score of 4. The mean VAS score in each group was 1. Recovery times were also similar between the two groups. There was no statistically significant difference ($P > 0.05$) between the two groups in terms of VAS score or recovery time.

The two groups were also compared in terms of hemodynamic parameters recorded during the procedure. Pulse values taken at the baseline, first minute, second minute, third minute, fourth minute, fifth minute, eighth minute, and afterwards did not significantly differ between the two groups ($P > 0.05$). While the systolic and diastolic pressure values of the SSA and SSEN groups did not significantly differ ($P > 0.05$) at baseline or the first, second, third, or fourth minute, the systolic and diastolic pressure values were significantly lower ($P < 0.05$) in the SSEN group compared to the SSA group in the fifth and eighth minutes, and afterwards. SpO$_2$ values for the baseline and first minute were significantly higher in the SSEN group compared to the SSA group ($P < 0.05$). There was no significant ($P > 0.05$) difference in SpO$_2$ values for the second, third, fourth, or eighth minute or afterwards between the two groups (Table 3).

The groups were also compared in terms of side effects that might occur during the procedure. In each group, hypotension and headache occurred in two patients. Bradycardia was observed in only one patient in the SSEN group. When the groups were compared in

Table 1 Patient demographic data, n (%)

	Endoscopy Nurse	Anaesthetist	P
Age	53.6 ± 15.5	59.9 ± 11.8	0.113
Sex	18 (60.0)	17 (56.7)	0.793
Male	12 (40.0)	13 (43.3)	
ASA	I 18 (60.0)	11 (36.7)	0.071
II	12 (40.0)	19 (63.3)	

1Mann-Whitney U test; 2Chi-square test. ASA: American statistical association.

Table 2 Propofol consumption, durations (reaching the cecum, operation, and recovery), patient satisfaction, operation re-preference, and recall of the procedure, n (%)

	Endoscopy Nurse	Anaesthetist	P
Dose	83.0 ± 57.1	50.7 ± 17.5	0.014
Reaching the cecum (min)	5.8 ± 4.9	4.9 ± 2.2	0.004 2
Total operation (min)	13.7 ± 7.2	9.5 ± 3.6	0.022 2
Eye opening/Recovery (min)	1.6 ± 1.2	2.0 ± 0.8	1.000 2
VAS	0.5 ± 0.8	0.5 ± 0.9	0.803 3
Patient Satisfaction	Very good 19 (63.3) & 12 (40.0)	0.098 3	
	Good 10 (33.3)	13 (43.3)	
	Not bad 1 (3.3)	5 (16.7)	
	Bad 0 (0)	0 (0)	
Operation re-preference	(100.0)	28 (93.3)	0.492 1
Recall of the procedure	(90.0)	27 (90.0)	1.000 1

1Mann-Whitney U test; 2Chi-square test. VAS: Visual analogue scale.
terms of desaturation, four patients in the SSN group and one patient in the SSA group had desaturation. Nausea and vomiting were not seen in either group. However, there was no statistically significant difference \((P > 0.05)\) between the two groups (Table 4).

DISCUSSION

In the majority of developed countries, various sedation applications are used for endoscopic procedures in low-risk patients. When we examined the agents used for analgesia and sedation in endoscopic procedures over time, meperidine was first used as an analgesic, followed by extensive use of a meperidine-diazepam combination. This often preferred combination is accepted as a traditional sedation method. Later, midazolam was preferred in endoscopic sedation because of its shorter duration of action and higher efficacy than diazepam. A few years after midazolam, the ultra-short acting hypnotic agent propofol started to be used\(^1\).

Propofol sedation is becoming more popular due to its features, such as pain relief during endoscopy and the ability to have a quick recovery time\(^3\). However, it is controversial whether propofol should be applied by anaesthesia personnel or educated non-anaesthesia personnel. In European and American guidelines, it is stated that sedation applied by non-anaesthesia personnel should be applied only in low-risk patients and that sedation personnel should be qualified to rescue patients from any level of sedation, including general anaesthesia\(^15\). However, it has been shown in various studies that sedation performed by non-anaesthesia personnel can be safely performed as long as it is performed by educated personnel\(^15-18\).

Walker et al\(^19\) showed that sedation performed by non-anaesthesia personnel during colonoscopy can be applied more easily and with lower risk than esophagogastroduodenoscopy. In a study/review by Rex et al\(^16\), records of sedation applications performed by non-anaesthesia personnel from various centres around the world have been reviewed and evaluated. In this review/study involving 646080 patients, only 11 cases of emergency endotracheal intubation and four deaths were reported.

In guidelines for propofol administration of non-anaesthesia personnel, it has been stated that ASA III or higher patient procedures, long complex procedures, and difficult airway conditions require an anaesthetic personnel\(^15,20\). In our study, only ASA I-II patients were included in the study. There are a variety of studies on sedation applications without anaesthesia personnel in colonoscopy patients. Patient-controlled sedation (PCS) studies were conducted in which the patient determined his/her own sedation level with a PCA pump\(^13,21\). In this method, the patients press the button when they feel uncomfortable. A certain

Table 3 Hemodynamic changes during the procedure

	Endoscopy Nurse	Anaesthesit	\(P\)		
	mean ± SD	Median	mean ± SD	Median	
Pulse (beats per minute)					
Baseline	82.8 ± 13.3	82.5	84.2 ± 11.7	85.5	
1st min	81.4 ± 13.3	79.0	85.7 ± 14.6	84.0	
2nd min	80.9 ± 13.8	79.0	83.5 ± 17.9	81.0	
3rd min	80.8 ± 13.5	79.0	80.7 ± 19.2	79.5	
4th min	81.0 ± 15.3	80.0	80.1 ± 18.5	77.5	
5th min	81.9 ± 14.6	81.0	80.5 ± 16.8	78.0	
≥ 6th min	81.1 ± 14.7	78.5	77.5 ± 14.4	75.0	0.336
Systolic blood pressure (mmHg)					
Baseline	131.0 ± 20.5	131.5	136.1 ± 22.3	135.0	
1st min	126.2 ± 17.6	121.0	129.9 ± 19.4	132.5	
2nd min	124.2 ± 13.6	125.0	125.7 ± 25.9	121.5	
3rd min	123.4 ± 13.9	122.0	126.5 ± 27.9	125.0	0.519
4th min	126.5 ± 15.9	125.0	131.8 ± 30.3	129.5	0.448
5th min	123.8 ± 13.4	122.0	139.3 ± 26.7	141.0	0.034
≥ 6th min	124.1 ± 17.2	120.5	142.3 ± 26.7	141.0	0.003
Diastolic blood pressure (mmHg)					
Baseline	73.2 ± 12.3	70.5	73.4 ± 13.4	74.0	0.871
1st min	70.6 ± 10.2	69.5	74.7 ± 14.0	74.0	0.183
2nd min	71.1 ± 11.1	71.0	72.9 ± 18.3	69.0	0.988
3rd min	71.2 ± 11.1	70.0	76.3 ± 18.2	75.5	0.359
4th min	72.8 ± 11.1	72.0	78.7 ± 17.9	80.5	0.175
5th min	69.2 ± 11.5	69.5	81.9 ± 17.2	82.0	0.002
≥ 6th min	73.2 ± 11.8	70.5	83.4 ± 16.8	82.0	0.005
SpO2					
Baseline	96.7 ± 1.9	97.0	94.4 ± 2.7	94.0	0.000
1st min	96.0 ± 2.8	97.0	94.7 ± 2.4	95.0	0.014
2nd min	96.5 ± 3.5	97.0	95.3 ± 2.2	95.5	0.071
3rd min	96.2 ± 2.8	97.0	95.9 ± 2.0	95.5	0.307
4th min	96.4 ± 2.3	97.0	96.3 ± 1.9	96.0	0.502
5th min	95.1 ± 5.3	97.0	96.1 ± 1.7	96.0	0.685
≥ 6th min	96.1 ± 2.3	97.0	96.0 ± 1.4	96.0	0.422

\(^1\)Mann-Whitney U test.
period of time passes until they are sedated. In these studies, it is mentioned that patients suffer from pain, although not severe. Feeling pain and time to become sedated may cause patients to opt out of the method. For this reason, SSEN sedation practices have rapidly increased in recent years. Several studies have shown that SSEN sedation and colonoscopy practices are safe and effective\cite{19,22,23}. A study comparing PCS with SSEN showed that many patients prefer SSEN instead of PCS because of the anxiety they feel\cite{24}. After this study, we also recommend SSEN instead of PCS. We applied propofol with the PCA pump to reduce human-caused mistakes. The PCA pump allows us to easily and repeatedly dispense the right dose of medicine without requiring our attention.

In the study by Poon et al\cite{25}, it was found that SSEN with PCA pump was effective and safe in healthy individuals undergoing colonoscopy. In another study by Liu et al\cite{26}, while a group was administered propofol-alfentanil via SSEN with PCA pump, opioid-benzodiazepine was administered to the other group by an anaesthetist. As a result of the study, there was no significant difference between groups in terms of side effects, pain scores, and the willingness to repeat the colonoscopy with the same sedation method. In the SSEN group, it was stated that only deeper sedation was obtained. Since two sets of sedation protocols were applied, it was thought that this situation was caused by the difference in drug combinations used rather than the SSEN method.

In a sedation protocol, the total amount of drug used is reduced due to the synergistic effect of drugs on each other formed by adding adjuvant drugs in addition to propofol\cite{6}. Total doses of propofol used in previous studies ranged from 124 to 188 mg\cite{19,25-28}. Lower levels of propofol were used in studies where propofol was used in combination with other medicines\cite{25,26} when compared studies where propofol alone used\cite{19,27,28}. In our study, propofol consumption decreased, as expected, when used in combination with ketamine, which provides analgesia and dissociative anaesthesia, and midazolam, which has amnesic and sedative properties. The total amount of propofol used in both groups was significantly lower than previous studies in which the SSEN method was applied. Propofol consumption in the SSEN group and SSA group was 83.0 ± 57.1, 59.7 ± 17.5 respectively. In our study, propofol consumption was significantly higher in the SSEN group. The reason for this significant difference in propofol consumption was thought to be the longer duration of the procedure in the SSEN group. The duration of the procedure was significantly higher in the SSEN group than in the SSA group. The endoscopist stated that the two sedation methods did not affect the difficulty of operation. Therefore, this difference may be due to the small number of patients or the fact that the procedure was performed by two different endoscopists.

Cardiovascular and respiratory depression can be observed during sedation. Our most important goal during colonoscopy sedation is to ensure patient safety and comfort. For this reason, we aimed to have less cardiovascular and respiratory side effects by using lower doses of propofol with a combined sedation protocol. Propofol does not have any analgesic activity. However, it has a synergistic effect when used with analgesic agents\cite{30}. In a study by Hsu et al\cite{20}, one patient group underwent gastrointestinal endoscopy with propofol alone and the other group with propofol-midazolam-fentanyl combination. As a result, the propofol alone group had higher total propofol consumption and incidence of hypotension; the recovery time of this group was also longer. Some clinicians avoid propofol administration without an anaesthetist because of the absence of a propofol antidote in a possible cardiopulmonary complication. However, the short duration of the propofol balances this negative feature. In our study, we did not observe serious long-term side effects in any of the patients. All of the cardiopulmonary side effects that occurred ended quickly (less than 30 s) without the need for intervention. Of course, a much safer SSEN application can be achieved when the patient is closely followed up and the sedation practitioner is trained in cardiopulmonary resuscitation. Only low-risk patients with ASA Ⅰ-Ⅱ were included in our study, but Heuss et al\cite{31} showed that propofol can be safely applied in gastrointestinal endoscopy even in high-risk patients. They stated that these patients should be more closely monitored in terms of desaturation and that propofol use in these patients would be appropriate at doses of 10%-20% lower than in ASA Ⅰ-Ⅱ patients.

Complications such as emergence reactions, hypertension, tachycardia, visual hallucinations, vivid dreams, tonic-clonic movements, diplopia, nystagmus,
increased intracranial pressure, and increased intraocular pressure are among the complications associated with ketamine\(^{[32]}\). Even 24 h after application, side effects such as severe confusion, hallucinations, unusual thoughts, or extreme fear can be seen\(^{[33]}\). In our study, nausea, vomiting, and agitation were possible side effects due to ketamine in the sedation protocol, but we did not observe these in any of the patients in either group\(^{[34]}\). The use of ketamine in combination with low doses of propofol and midazolam may have reduced the incidence of side effects. Guit et al\(^{[35]}\) showed that ketamine-related side effects are reduced when ketamine is combined with propofol.

In our study, several questions were asked to patients to determine patient satisfaction, which is one of our primary goals. There was no significant difference between the groups in terms of patient satisfaction score and re-preference for the same sedation method in case of repeated endoscopy. All of the patients in the SSEN group and 93.3% of the patients in the SSA group stated that they would prefer the same sedation method in the case of repeat endoscopy. Similarly, Poon et al reported that 92% of patients would prefer the same sedation method in a new endoscopy procedure\(^{[25]}\). One of the questions asked to evaluate patient satisfaction is whether the patient remembered the operation. There was no significant difference between the groups in terms of recall of the procedure. Adequate sedation and pain control provide a comfortable and successful colonoscopy. When the pain status of the patients was questioned, 96.6% of the patients in the SSEN group and 86.6% of the patients in the SSA group were found to have a VAS below 1. Liu et al\(^{[24]}\) also compared the two sedation methods under the supervision of an anaesthetist/nurse using PCA pump. In their study, there was no significant difference between the groups in terms of patient satisfaction and VAS values.

In conclusion, our study demonstrated that the combination of midazolam-ketamine-propofol could be administered under the supervision of an anaesthetist or an endoscopy nurse with a PCA device in colonoscopy sedation of low-risk (ASA I-II) patients with similar side effects. There is a need for further studies with ASA III-IV patients and also with more patients.

A small sample size of ASA I-II patients with low cardiovascular risk was included in the study. The expected incidence of adverse events is less than 0.01%, and studies with a small sample size may reduce this rate.

ARTICLE HIGHLIGHTS

Research background

Sedation is performed in many centres during the colonoscopy procedure. However, since there are a limited number of anaesthesiologists, there are centres where colonoscopy is performed without sedation. In the literature, there are several studies in which colonoscopy sedation is performed without anaesthesia personnel. In this study, we aim to evaluate the patient satisfaction and the side effects of colonoscopy sedation performed by endoscopy nurse with patient-controlled analgesia (PCA) pump.

Research motivation

In studies where colonoscopy sedation is performed under the supervision of a nurse, propofol is often used alone or in combination with agents such as fentanyl, meperidine or midazolam. Ketamine, which protects spontaneous breathing and protective airway reflexes by providing dissociative anaesthesia, is not used in adult colonoscopy patients. In our study, we wanted to determine the advantages and disadvantages of ketamine in combination with propofol and midazolam without anaesthesia personnel during colonoscopy.

Research objectives

It is aimed to perform ketamine-midazolam-propofol sedation with minimum side effects and to obtain the best patient satisfaction under the supervision of a nurse in low-risk colonoscopy patients. Individual dose errors were minimized by using a PCA pump.

Research methods

Sixty American Statistical Association (ASA) I-II patients who underwent colonoscopy were included in the study. Patients were randomly divided into two groups [sedation under the supervision of anaesthetist (SSA) and sedation under the supervision of endoscopy nurse (SSEN)]. Both groups were initially administered 1 mg midazolam, 50 mg ketamine, and 50-50 mg propofol. The required dose of propofol in the SSA group was then determined and administered by the anaesthesiologist. In the SSEN group, the continuation of sedation was carried out by the nurse with PCA pump. Data such as patient satisfaction, incidence of side effects, total drug consumption, and procedure duration were recorded, and differences among the groups were evaluated.

Research results

There were no statistically significant differences (\(P > 0.05\)) between the two groups in terms of patient satisfaction, the rate of re-preference for the same method in case of repeat endoscopy, and the side effects. Total propofol consumption in the SSEN group was significantly higher (\(P < 0.05\)), whereas the systolic and diastolic pressure values were significantly lower (\(P < 0.05\)) at 5 min and after 6 min. Reaching the cecum and total procedure time were significantly longer (\(P < 0.05\)) in the SSEN group. There were no significant prolonged side effects in either group.

Research conclusions

In ASA I-II patients, sedation under the supervision of nurses with PCA pump in colonoscopy has similar side effects and patient satisfaction levels as sedation under SSA.

Research perspectives

There is a need for further studies with ASA III-IV patients and also with more patients.

ACKNOWLEDGEMENTS

We would like to sincerely thank general surgery specialists Dr. Abdullah Haluk Şirin and Dr. Muhammed Emin Yenen for their cooperation.

REFERENCES

1. Ghanouni A, Plumb A, Hewitson P, Nickerson C, Rees CJ, von Wagner C. Patients’ experience of colonoscopy in the English Bowel Cancer Screening Programme. Endoscopy 2016; 48: 232-240 [PMID: 26841268 DOI: 10.1055/s-0042-100613]
2. Ferreira AO, Cravo M. Sedation in gastrointestinal endoscopy: Where are we at in 2014? World J Gastrointest Endosc 2015; 7: 102-109 [PMID: 25685266 DOI: 10.4253/wjge.v7.i2.102]
3. Lin OS. Sedation for routine gastrointestinal endoscopic procedures: a review on efficacy, safety, efficiency, cost and satisfaction.
Safeguarding patient safety in outpatient colonoscopy by non-anesthesiologists: a review of the literature and a position statement.

Kayaalp S et al. Safety of colonoscopy sedation by endoscopy nurse

Intest Res 2017; 15: 456-466 [PMID: 29142513 DOI: 10.5217/ir.2017.15.4.456]

4 Faulx AL, Vela S, Das A, Cooper G, Sivak MV, Isenberg G, Chak A. The changing landscape of practice patterns regarding unsedated endoscopy and propofol use: a national Web survey. Gastrointest Endosc 2005; 62: 9-15 [PMID: 15990813 DOI: 10.1016/S0016-5107(05)00518-3]

Türk HS, Aydınmuş M, Ünsal O, Köksal HM, Açik ME, Oba DW, Drummond S, Redel K, Green N, Singh R. Assessing the safety of physician-directed nurse-administered propofol sedation in low-risk patients undergoing endoscopy and colonoscopy. Endosc Int Open 2017; 5: E110-E115 [PMID: 28210707 DOI: 10.1055/s-0042-121667]

Walker JA, McIntyre RD, Schleinitz PF, Jacobson KN, Haulk AA, Adesman P, Tolleson S, Parent R, Donnelly R, Rex DK. Nurse-administered propofol sedation without anesthesia specialists in 9152 endoscopic cases in an ambulatory surgery center. Am J Gastroenterol 2003; 98: 1744-1750 [PMID: 12907328 DOI: 10.1111/j.1572-0241.2003.07605.x]

Dumannece JM, Rijphu A, Beilenhoff U, Vilmann P, Hornslet P, Aparicio JR, Dinis-Ribeiro M, Giostra E, Ortmann M, Knipe JT, Ladis S, Passpatis G, Ponsioen CY, Racz I, Wehrmann T, Walder B. European curriculum for sedation training in gastrointestinal endoscopy: position statement of the European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy Nurses and Associates (ESENGA). Endoscopy 2013; 45: 496-504 [PMID: 23702777 DOI: 10.1055/s-0033-1344142]

Sultan SS. Patient-controlled sedation with propofol/remifentanil versus propofol/alfentanil for patients undergoing outpatient colonoscopy, a randomized, controlled double-blind study. Saudi J Anaesth 2014; 8: S36-S40 [PMID: 25538518 DOI: 10.4103/1688-5453.144068]

Sieg A. Propofol sedation in outpatient colonoscopy by trained practice nurses supervised by the gastroenterologist: a prospective evaluation of over 3000 cases. Z Gastroenterol 2007; 45: 697-701 [PMID: 17701858 DOI: 10.1055/s-2007-963349]

Tohda G, Higashi S, Wakahara S, Morikawa M, Sakamoto H, Kane T. Propofol sedation during endoscopic procedures: safe and effective administration by registered nurses supervised by endoscopists. Endoscopy 2006; 38: 360-367 [PMID: 16680635 DOI: 10.1055/s-2005-921192]

Heuss LT, Drewé J, Schnieper P, Tapparelli CB, Pflimlin E, Beglinger C. Patient-controlled versus nurse-administered sedation with propofol during colonoscopy. A prospective randomized trial. Am J Gastroenterol 2004; 99: 511-518 [PMID: 15056094 DOI: 10.1111/j.1572-0241.2004.04088.x]

Poon CM, Leung TL, Wong CW, Chan YL, Leung TC, Leong HT. Safety of nurse-administered propofol sedation using PCA pump for outpatient colonoscopy in Chinese patients: a pilot study. Asian J Surg 2007; 30: 239-243 [PMID: 17962125 DOI: 10.1016/S1015-9584(08)60032-9]

Liu SY, Poon CM, Leung TL, Wong CW, Chan YL, Leung TC, Leong HT. Nurse-administered propofol/alfentanil sedation using a patient-controlled analgesia pump compared with opioid-benzodiazepine sedation for outpatient colonoscopy. Endoscopy 2009; 41: 522-528 [PMID: 19440955 DOI: 10.1055/s-0029-1214711]

Sipe BW, Rex DK, Latovich D, Overley C, Kinser K, Bratcher L, Kareken D. Propofol versus midazolam/meperidine for outpatient colonoscopy: administration by nurses supervised by endoscopists. Gastrointest Endosc 2002; 55: 815-825 [PMID: 12024134 DOI: 10.1067/mge.2002.124636]

Killing D, Rothenbühler R, Inauen W. Safety of nonanesthetist sedation with propofol for outpatient colonoscopy and esophagogastroduodenoscopy. Endoscopy 2003; 35: 679-682 [PMID: 12929064 DOI: 10.1055/s-2003-41518]

Horn E, Nesbit SA. Pharmacology and pharmacokinetics of sedatives and analgesics. Gastrointest Endosc Clin N Am 2004; 14: 247-268 [PMID: 15121142 DOI: 10.1016/j.giec.2004.01.001]

Hsu CH, Huang JM, Chuang YP, Wei HY, Su YC, Wu JY, Wang WM, Hsu HT, Huang HF, Lu IC, Lu DV. Propofol target-controlled infusion for sedated gastrointestinal endoscopy: A comparison of propofol alone versus propofol-fentanyl-midazolam. Kaohsiung J Med Sci 2015; 31: 580-584 [DOI: 10.1016/j.kjms.2015.09.004]

Heuss LT, Schnieper P, Drewé J, Pflimlin E, Beglinger C. Safety of propofol for conscious sedation during endoscopic procedures in high-risk patients—a prospective, controlled study.
Kayaalti S et al. Safety of colonoscopy sedation by endoscopy nurse

Am J Gastroenterol 2003; 98: 1751-1757 [PMID: 12907329 DOI: 10.1111/j.1572-0241.2003.07596.x]

32 ketamine (Rx) [cited 8 Nov 2018]. Available from: https://reference.medscape.com/drug/ketalar-ketamine-34309984
33 Ketamine Hydrochloride (Ketamine HCl) side effects drug center [cited 8 Nov 2018]. Available from: https://www.rxlist.com/ketamine-hydrochloride-side-effects-drug-center.htm
34 Shah A, Mosdossy G, McLeod S, Lehnhardt K, Peddle M, Rieder M. A blinded, randomized controlled trial to evaluate ketamine/propofol versus ketamine alone for procedural sedation in children. Ann Emerg Med 2011; 57: 425-33.e2 [PMID: 20947210 DOI: 10.1016/j.annemergmed.2010.08.032]
35 Guit JB, Koning HM, Coster ML, Niemeijer RP, Mackie DP. Ketamine as analgesic for total intravenous anaesthesia with propofol. Anaesthesia 1991; 46: 24-27 [PMID: 1996747 DOI: 10.1111/j.1365-2044.1991.tb09308.x]

P- Reviewer: de Quadros LG, Teramoto-Matsubara OT
S- Editor: Dou Y
L- Editor: Filipodia
E- Editor: Wu YXJ
