Fertility in Patients with Thalassemia and Outcome of Pregnancies: A Turkish Experience

Burcu Akınıc, Akkız Şahın Yaşar, Nihal Özdemir Karadağ, Zuhul Önder Sıviş, Hamiyet Hekimci Özdemir, Deniz Yılmaz Karapınar, Can Balkan, Kaan Kavaklı, Yeşim Aydınok

Ege University Faculty of Medicine, Department of Pediatric Hematology, Thalassemia Center, İzmir, Turkey

Abstract

Objective: In recent years, the rates of marriage and pregnancy are increasing in patients with thalassemia major. The aim of the present study was to investigate the fertility rate of thalassemic patients and the course of pregnancies in terms of mother and infant health.

Materials and Methods: In this observational study patients with major hemoglobinopathy were evaluated regarding marital status, the need for assisted reproductive techniques, fertility rate, iron status, and pregnancy complications.

Results: Seventeen female patients gave birth to 21 healthy infants. About one-third of the patients needed assisted reproductive techniques. Thalassemia major patients showed increased serum ferritin levels from 1203±1206 µg/L at baseline to 1880±1174 µg/L at the end of pregnancy. All babies are still alive and healthy.

Conclusion: Pregnancy in patients with thalassemia can be safe for the mother and newborn with close monitoring and a multidisciplinary approach.

Keywords: Thalassemia, Fertility, Pregnancy

Introduction

Until the new millennium, many medical and social barriers such as limited life expectancy resulting from iron-induced cardiac disease [1,2] and significant morbidities particularly resulting from endocrine complications [1,3,4,5,6] have been main factors in the negative attitudes towards starting a family in the thalassemic population. However, therapeutic advances in the management of thalassemia have significantly improved the quality of life and life expectancy in the past two decades [7,8,9,10,11,12,13] and have consequently encouraged the thalassemic population to marry and have children. This study was conducted to assess the current tendency towards marriage among patients with thalassemia, the reproductive rate of those who wish to have children, and the course of pregnancies with respect to maternal and infant outcomes in one of the largest thalassemia centers of Turkey.

Materials and Methods

One hundred and eighty-four patients (108 females, 76 males) with thalassemia aged above 18 years old were included in this observational study. All male and female patients who wished to have children but suffered from hypogonadotropic hypogonadism (HH) were referred to an infertility clinic. Female patients were carefully assessed for the severity of iron overload by serum ferritin (SF), cardiac T2* magnetic resonance imaging (MRI), liver R2 MRI, cardiac status by echocardiography, and the
presence of endocrine disturbances. The optimization of iron burden and normalized organ functions in the pre-conception period was strongly suggested. The overall rate of fertility and the course and outcome of the pregnancies were recorded. All pregnancies were followed in close collaboration with an obstetrician. A cardiac workup was performed at 3-month intervals throughout the pregnancies.

Results

Fertility Rate in Female and Male Thalassemia Patients

Fifty of the 184 adult patients were married. Forty-one patients (29 females and 12 males) were married to healthy partners, and nine marriages were composed of thalassemic couples. Seventeen of the 29 female patients (59%) gave birth to 21 healthy babies (three had two pregnancies, and one had twins). Conception was spontaneous in 14 (70%) and was achieved by gonadotrophin stimulation or an assisted reproductive technique (ART) in six female patients. Overall, six of 12 male patients (50%) had seven children spontaneously while the other six, who were receiving hormone replacement therapy, did not yet have a child. Although both male and female infertility was 50%, in our cohort 33% of females but none of the males with HH could have a child.

Thalassemic couples did not wish to give birth to an affected baby. However, in a couple with beta-thalassemia intermedia (TI) and S/beta-thalassemia, spontaneous fertilization occurred. Prenatal diagnosis was performed at the 12th week of gestation and genetic counseling was given to the couple, who decided to give birth to an offspring with S/beta-thalassemia.

Disease Characteristics and the Course of the Pregnancies

The baseline characteristics of pregnant patients are reported in Table 1. The average monthly red cell concentrate (RCC) consumption showed a nonsignificant increase during pregnancy compared to the pre-pregnancy period (14.5±2.4 vs. 12.7±2.4 mL/kg/month) in patients with thalassemia major (TM). Three patients with non-transfusion-dependent thalassemia (NTDT), including TI, S/beta-thalassemia, and hemoglobin H disease, received RCC transfusions of 7.7, 7.2, and 4.2 mL/kg/month, respectively, during pregnancy to maintain the pre-transfusion hemoglobin levels of ≥8 g/dL. New red cell alloantibody formation did not occur in any patients, but cross-match compatible RCC could not be provided to the patient with TI who developed multiple alloantibodies and experienced a hemolytic transfusion reaction before pregnancy. This patient was not transfused with any incompatible RCC during pregnancy. Hemoglobin levels gradually decreased to as low as 6 g/dL and were barely maintained at around 7 g/dL by erythropoietin administration during pregnancy. Ultimately, the patient delivered a healthy full-term baby.

Iron chelation therapy was immediately ceased for all pregnant patients but deferoxamine (DFO) subcutaneous infusions were initiated after the second trimester for two subjects whose SF increased over 2229 and 7199 µg/L, and one revealed a cardiac T2* of 16 ms before pregnancy.

The TM patients had slightly increased SF from baseline (1203±1206 µg/L) until the end of pregnancy (1880±1174 µg/L). None of the patients demonstrated myocardial T2* of <20 ms in the first cardiac MRI obtained after delivery.

Delivery and Outcomes in Newborns

All patients but one underwent a cesarean section following complication-free pregnancies. An ectopic pregnancy and a pregnancy with a fetus with trisomy 21 were terminated. Intrauterine growth retardation (IUGR) was observed in the full-term offspring of two patients with thalassemia major who maintained an average pre-transfusion hemoglobin level of 9.4 g/dL during pregnancy. Four of the 21 births (19%) were preterm (33- and 34-week singletons and 30-week twins).

Four infants were admitted to the neonatal intensive care unit due to prematurity, IUGR, or pneumothorax (Table 2). All infants were breastfed for at least 3 months.

Discussion

Although spontaneous fertility can occur in well-transfused and well-chelated patients with thalassemia, infertility mainly due to HH still remains one of the most common morbidities and obstacles for having children [9,10,11,12,13,14,15].
In our cohort, male and female fertility rates were 50%. Gestation and delivery may result in an increased cardiac load and together with chronic hypoxia and myocardial iron deposition may aggravate cardiac dysfunction in female patients with thalassemia [10,16,17]. Severe anemia can also be a risk factor for gestational hypertension [18]. As suggested in previous studies [19,20], we assessed organ function in female patients who wished to conceive, and only those with normal cardiac function and well-controlled iron overload were encouraged to conceive. Under these conditions, cardiac health did not deteriorate in any patient during pregnancy, and all deliveries were safely performed.

Because of the potential teratogenicity of chelators, the use of chelation therapy during pregnancy has remained controversial. The current standard of practice is to cease any chelation therapy when pregnancy is established [21,22,23]. Only DFO chelation may be restarted after the first trimester when the benefits outweigh the risks of excess iron [24,25,26,27,28,29]. In our cohort, three pregnant patients received DFO after the second trimester and delivered healthy babies with no specific hearing or visual defects.

It is suggested to maintain the pre-transfusion hemoglobin at ≥10 g/dL during pregnancy in patients with thalassemia [16,30,31,32]. We have followed the current clinical practice in TM patients but have been cautious of potential risks of alloimmunization in patients with NTDT. In the latter group, the pre-transfusion hemoglobin was maintained at ≥8 g/dL.

In accordance with other reports, the majority of our patients delivered via cesarean section [33,34,35]. The prevalence of fetal and maternal complications including miscarriages, IUGR, premature labor, and even fetal death is reported to be higher in thalassemic females compared to the normal population [36,37,38]. In our cohort, premature birth was observed in 19% of the deliveries, which was considerably higher than the rate of premature spontaneous live births (6.9%) in the Turkish registry [39].

Conclusion

Male and female thalassemic patients may conceive spontaneously, or conception may be achieved by ART. Pregnancy in patients with thalassemia can be safely managed with remarkably positive outcomes for both the mother and infant under the supervision of a multidisciplinary team.

References

1. Borgna-Pignatti C, Rugololoto S, De Stefano P, Zhao H, Cappellini MD, Del Vecchio GC, Forni GI, Gamberini MR, Ghilardi R, Piga A, Cnna A. Survival and complications in patients with thalassaemia major treated with transfusion and deferoxamine. Haematologica 2004;89:1187–1193.
2. Modell B, Khan M, Darlison M. Survival in β-thalassaemia major in the UK: data from the UK Thalassemia Register. Lancet 2000;355:2051–2052.
3. Aydinok Y, Darcan S, Polat A, Kavakli K, Nigil G, Coker M, Kantar M, Cetingul N. Endocrine complications in patients with beta-thalassemia major. J Trop Pediatr 2002;48:50–54.
4. Cunningham MJ, Macklin EA, Neufeld EJ, Cohen AR; Thalassemia Clinical Research Network. Complications of beta-thalassemia major in North America. Blood 2004;104:34–39.
5. Gamberini MR, De Sanctis V, Gilli G. Hypogonadism, diabetes mellitus, hypothyroidism, hypoparathyroidism: incidence and prevalence related to iron overload and chelation therapy in patients with thalassaemia major followed from 1980 to 2007 in the Ferrara Centre. Pediatr Endocrinol Rev 2008;6:158–169.
6. Hабеб AM, Al-Hawsawi ZM, Morsy MM, Al-Harbi AM, Osilan AS, Al-Magami MS, Zolaly MA. Endocrinopathies in beta-thalasemia major. Prevalence, risk factors, and age at diagnosis in Northwest Saudi Arabia. Saudi Med J 2013;34:67–73.
7. Modell B, Khan M, Darlison M, Westwood MA, Ingram D, Pennell DJ. Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2008;10:42.
8. Galanello R. A thalassemic child becomes adult. Rev Clin Exp Hematol 2003;7:4–21.
9. Tuck SM. Fertility and pregnancy in thalassemia major. Ann NY Acad Sci 2005;1054:300-307.
10. Leung TY, Lao TT. Thalassemia in pregnancy. Best Pract Res Clin Obstet Gynaecol 2012;26:37-51.
11. Castaldi MA, Cobellis L. Thalassemia and fertility. Hum Fertil (Camb) 2016;19:90-96.
12. Skordis N, Poter J, Kalakoutis G. Fertility and pregnancy. In: Cappellini DM, Cohen A, Porter J, Taher A, Viprakasit V, eds. Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT) (3rd ed). Nicosia: Thalassaemia International Federation, 2014.
13. Aly EAH, Sawaf AE. Pregnancy outcome in patients with well treated beta-thalassemia major. Med J Cairo Univ 2014;82:53-57.
14. Origa R, Piga A, Quarta G, Forni GL, Longo F, Melpignano A, Galanello R. Pregnancy and beta-thalassemia: a multicenter experience. Haematologica 2010;95:376-381.
15. Rousou P, Tsagarakis NJ, Kountouras D, Livadas S, Diamanti-Kandarakis E. Beta-thalassemia major and female fertility: the role of iron and iron-induced oxidative stress. Anemia 2013;2013:617204.
16. Petrakos G, Andriopoulos P, Tsironi M. Pregnancy in women with thalassaemia: challenges and solutions. Int J Womens Health 2016;8:441-451.
17. Naik RP, Lanzkron S. Baby on board: what you need to know about pregnancy in the hemoglobinopathies. Hematology Am Soc Hematol Educ Program 2012;2012:208-214.
18. Chen C, Grewal J, Betran AP, Vogel JP, Souzo JP, Zhang J. Severe anemia, sickle cell disease, and thalassemia as risk factors for hypertensive disorders in pregnancy in developing countries. Pregnancy Hypertens 2018;13:141-147.
19. Origa R, Comitini F. Pregnancy in thalassaemia. Mediterr J Hematol Infect Dis 2019;11:e2019019.
20. Carlberg KT, Singer ST, Vichinsky EP. Fertility and pregnancy in women with transfusion-dependent thalassemia. Hematol Oncol Clin N Am 2018;32:297-315.
21. Ricchi P, Costantini S, Spasiano A, Di Matola T, Cinque P, Prossomariti L. A case of well-tolerated and safe deferasirox administration during the first trimester of a spontaneous pregnancy in an advanced maternal age thalassemic patient. Acta Haematol 2011;125:222-224.
22. Vini D, Servos P, Drosou M. Normal pregnancy in a patient with beta-thalassaemia major receiving iron chelation therapy with deferasirox (Exjade®). Eur J Haematol 2011;86:274-275.
23. Anastasi S, Lisi R, Abbate G, Caruso V, Giovannini M, De Sanctis V. Absence of teratogenicity of deferasirox treatment during pregnancy in a thalassaemic patient. Pediatr Endocrinol Rev 2011;8:345-357.
24. Tsironi M, Karagiorga M, Aessopos A. Iron overload, cardiac and other factors affecting pregnancy in thalassaemia major. Hemoglobin 2010;34:240-250.
25. Hussein Aly EA, El Sawaf A. Pregnancy outcome in patients with well treated beta-thalassemia major. Med J Cairo Univ 2014;82:53-57.
26. Singer ST, Vichinsky EP. Deferoxamine treatment during pregnancy: is it harmful? Am J Hematol 1999;60:24-26.
27. Casserino E, Baldini IM, Alameddine RS, Marcon A, Borroni R, Osola W, Taher A, Cappellini MD. Pregnancy in patients with thalassemia major: a cohort study and conclusions for an adequate care management approach. Ann Hematol 2017;96:1015-1021.
28. Howard J, Tuck SM, Eissa A, Porter J. Hemoglobinopathies in pregnancy. In: Cohen H, O’Brien P, eds. Disorders of Thrombosis and Hemostasis in Pregnancy. Cham, Springer, 2015.
29. Vlachodimitropoulou E, Thomas A, Shah F, Kyei-Mensah A. Pregnancy and iron status in beta-thalassaemia major and intermedia: six years’ experience in a North London hospital. J Obstet Gynaecol 2018;38:567-570.
30. Levy A, Fraser D, Katz M, Mazor M, Sheiner E. Maternal anemia during pregnancy is an independent risk factor for low birthweight and preterm delivery. Eur J Obstet Gynecol Reprod Biol 2005;122:182-186.
31. Kumar KJ, Asha N, Murthy DS, Sujatha M, Manjunath V. Maternal anemia in various trimesters and its effect on newborn weight and maturity: an observational study. Int J Prev Med 2013;4:193-199.
32. Nassar AH, Naja M, Cesaretti C, Eprassi B, Cappellini MD, Taher A. Pregnancy outcome in patients with thalassaemia intermedia at two tertiary care centers, in Beirut and Milan. Haematologica 2008;93:1586-1587.
33. Lao TT. Obstetric care for women with thalassaemia. Best Pract Res Clin Obstet Gynaecol 2017;39:89-100.
34. Cunningham MJ. Update on thalassaemia: clinical care and complications. Pediatr Clin North Am 2008;55:447-460.
35. Fozza C, Asara MA, Vaccarino, Caggiari S, Monti A, Zaccheddu F, Capobianco G, Desole S, Dore F, Antonucci R. Pregnancy outcome among women with beta-thalassaemia major in North Sardinia. Acta Haematol 2017;138:166-167.
36. Ansari S, Kivan A, Tabaroki A. Pregnancy in patients treated for beta-thalassaemia major in two centers (Ali Asghar Children’s Hospital and Thalassaemia Clinic): outcome for mothers and newborn infants. Pediatr Hematol Oncol 2006;23:33-37.
37. Mancuso A, Giacobbe A, De Vivo, Ardita FV, Meo A. Pregnancy in patients with beta-thalassaemia major: maternal and foetal outcome. Acta Haematol 2005;1054:300-307.
38. Akncr et al: Fertility in Patients with Thalassemia

277