On the interpretation of Dirac δ pulses in differential equations for phase oscillators

Vladimir Klinshov1 and Leonhard Lücke2

1Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul’yanov Street, 603950, Nizhny Novgorod, Russia and
2Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26111 Oldenburg, Germany

Abstract

In this note we discuss the usage of the Dirac δ function in models of phase oscillators with pulsatile inputs. Many authors use a product of the delta function and the phase response curve in the right hand side of an ODE to describe the discontinuous phase dynamics in such systems. We point out that this notation has to be treated with care as it is ambiguous. We argue that the presumably most canonical interpretation does not lead to the intended behaviour in many cases.
Pulse-coupled phase oscillators are a popular framework used for modelling of various systems, among which biological oscillators, such as pacemaker cells, the circadian rhythm, or pulsating fireflies, are prototypical examples. In this framework each oscillator is described by its phase \(\varphi(t) \), a variable which can be introduced for an arbitrary dynamical system with a stable limit cycle \([10, 17, 22]\). The phase is defined in the attraction basin of the limit cycle as a circular variable \(\varphi \in [0, 1] \), where the points \(0 \sim 1 \) are identified. In the autonomous system the phase grows uniformly so that \(d\varphi/dt = \omega = 1/T \), where \(T \) is the period of the limit cycle. The effect of an incoming pulse is modeled as the instantaneous phase change leading to a discontinuous evolution of \(\varphi(t) \). The amount of the phase shift is determined as a function of the phase before the pulse arrival: for the pulse arriving at the moment \(t_p \)

\[
\varphi^+_p = \varphi^-_p + Z(\varphi^-_p),
\]

(1)

where \(\varphi^\pm_p := \varphi(t_p \pm 0) = \lim_{\varepsilon \downarrow 0} \varphi(t_p \pm \varepsilon) \). The function \(Z \) is called the phase response curve (PRC) \([1, 3, 4]\). It is a scalar, continuous function which can be calculated numerically or even measured experimentally for any real-life oscillator and any pulse with a finite duration \(\tau \). To do so one should place the system on the limit cycle with a certain phase \(\varphi \), apply a pulse and measure the phase \(\varphi^* \) just after the pulse end. Then the PRC

\[
Z(\varphi) := \varphi^* - \varphi - \omega \tau,
\]

and the repetition of the procedure for all points of the limit cycle would result in obtaining of the complete function profile. For short pulses, a good approximation is to ignore the dynamics during the pulse and to assume that the phase changes instantly according to (1). Then the once obtained PRC allows to predict the phase dynamics of the oscillator subject to stimulation in the form of pulse trains, if only the pulses are not too strong or frequent \([13]\)
Many authors (including the ones of this note) have defined models for oscillators interacting via phase response curves with the help of Dirac δ functions in the right hand side of the equations for the phase dynamics [5, 7, 9, 11, 12, 14, 16, 21]. In this formulation delta functions are multiplied by the phase response curve leading to the equations of the form

$$\frac{d\phi}{dt} = \omega + Z(\phi) \sum_{p} \delta(t - t_p).$$

(2)

Here, ω is the native frequency of the oscillator, and t_p are the moments when it receives pulses. The interpretation of (2) is the following: the phase grows uniformly with $d\phi/dt = \omega$ except for the moments t_p of the pulses arrival, and at these moments the phase instantly changes according to (1). However, as we explain below, the presumably most canonical interpretation of the delta function suggests a different behaviour for (2). Therefore, we consider it worthwhile raising this subject to attention.

First, let us recall the basic properties of the Dirac δ-function. From the physical perspective, it represents a signal having a negligibly short duration but a finite integral. In this sense it can be defined as the limit of suitable (e.g., continuous) functions δ_n which have unit integral $\int_{\mathbb{R}} \delta_n(t)dt = 1$ and fulfil for any $\varepsilon > 0$ that

$$\lim_{n \to \infty} \int_{\varepsilon}^{\varepsilon} \delta_n(t)dt = 1.$$

Such a sequence $\{\delta_n\}_{n\in\mathbb{N}}$ is called a Dirac sequence. Despite all δ_n being functions, their limit

$$\delta(t) := \lim_{n \to \infty} \delta_n(t),$$

(3)

is not a regular \mathbb{R}-valued function. For instance, choosing any sequence of even, unimodal δ_n, would imply

$$\delta(t) = \begin{cases} \infty, & \text{for } t = 0, \\ 0, & \text{otherwise.} \end{cases}$$
To give it a mathematical definition, \(\delta \) is usually introduced as a distribution \([19]\). As such, the distribution \(D_\delta \) associated with \(\delta \) is defined by its action as a linear functional on a set of test functions \(\mathcal{C} \) (e.g., smooth, real-valued functions with compact support in \(\mathbb{R} \)), which is the mapping \(D_\delta (f) := f(0) \in \mathbb{R} \) for \(f \in \mathcal{C} \). Distributions are also called ‘generalized functions’ because for each regular (e.g. integrable) function \(\psi : \mathbb{R} \to \mathbb{R} \) there exists a canonical association of a distribution \(D_\psi : \mathcal{C} \to \mathbb{R} \), defined as
\[
D_\psi (f) := \int_{-\infty}^{\infty} \psi (t) f(t) \, dt.
\] (4)

In order to ensure that (4) defines a continuous functional on \(\mathcal{C} \), different choices for the spaces of test functions and regular functions are possible. In any case, a sequence of distributions \(D_n \) is said to converge towards a limit \(D_0 \) if, for all \(f \in \mathcal{C} \):
\[
\lim_{n \to \infty} D_n (f) = D_0 (f)
\]
and this gives a rigorous meaning to convergence \(\delta_n \to \delta \) by requiring
\[
\lim_{n \to \infty} D_\delta_n (f) = \lim_{n \to \infty} \int_{-\infty}^{\infty} \delta_n (t) f(t) \, dt = D_\delta (f) = f(0), \text{ for all } f \in \mathcal{C}.
\]

The main difficulty for the interpretation of (2) is that the solution \(\varphi(t) \), and therefore the time course of the PRC \(Z(\varphi(t)) \) as well, is discontinuous at the point \(t_p \), where \(\delta(t - t_p) \) is effecting it. In that case the notion of \(\delta \) as a limit of a general Dirac sequence \(\{\delta_n\} \) mediated by a space of discontinuous test functions is ambiguous. To see that, consider a piecewise continuous function \(f \) with discontinuity in \(t = 0 \).

Depending on the choice of the sequence, it is possible to obtain
\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} \delta_n (t) f(t) \, dt = cf(t - 0) + (1 - c) f(t + 0),
\] (5)
for any value of \(c \in [0,1] \). In general, the limit does not exist at all. Apparently, the ambiguity might be resolved by restricting the notion of a Dirac sequence to a specific proportion. In case of (2) this resolution would amount to defining \(\varphi^+_p \) as a
solution of
\[\varphi_p^+ + (c - 1)Z(\varphi_p^+) = \varphi_p^- + cZ(\varphi_p^-). \] (6)

For example, using \(\delta_n \) with \(\delta_n(t) = 0 \), for \(t \geq 0 \), would lead to \(c = 1 \), presumably indicating the behaviour (1). Alternatively, opting to restrict \(\delta_n \) to even functions would give \(c = 1/2 \), as noted by Griffith and Walborn [8]. Obviously, the particular choice of \(c \) influences the resulting magnitude of the discontinuous phase jump. In the following we suggest to employ another possible interpretation of Eq. (2), which bases on an unambiguous interpretation of the \(\delta \) function and leads to a discontinuity different from (6) for any value of \(c \).

Let us assume that \(Z(\varphi_p^-) \neq 0 \) while studying the discontinuity in the next paragraphs. Note that the case \(Z(\varphi_p^-) = 0 \) is less interesting as \(\varphi(t) \) would simply be continuous in \(t = t_p \). Then, \(Z(\varphi) \) does not change sign inside some interval \(I = (\alpha, \beta) \), with \(\varphi_p^- \in I \). For \(\varphi \) from this interval we consider a transformation
\[\psi := F(\varphi) = \int_\xi^\varphi \frac{dx}{Z(x)} , \] (7)
where \(F \) is an invertible, differentiable function on \(I \) and \(\xi \in I \) is arbitrarily chosen. Note, that one can extend the interval of definition \(I \) as long as \(Z(\varphi) \neq 0 \) inside \(I \), cf. Fig. 1. If any point with \(Z(\varphi) = 0 \) exists, the boundaries of the maximal interval must fulfil \(Z(\alpha) = Z(\beta) = 0 \) and
\[\lim_{\varphi \to \alpha, \beta} F(\varphi) \in \{ \pm \infty \} . \] (8)

If we assume that the discontinuity does not convey \(\varphi \) out of \(I \), i.e., \(\varphi_p^+ \in I \), we can express (2) as
\[\frac{d\psi}{dt} = \frac{1}{Z(F^{-1}(\psi))} + \sum_p \delta(t - t_p), \] (9)
where \(F^{-1} \) is the inverse of \(F \) defined on its range \(F(I) \). Integration of (9) over a
sufficiently short time interval \([t_p - \tau ; t_p + \tau]\) gives

\[
\psi(t_p + \tau) - \psi(t_p - \tau) = \int_{t_p - \tau}^{t_p + \tau} \left(\frac{1}{Z(F^{-1}(\psi(t)))} + \delta(t - t_p) \right) dt, \tag{10}
\]

where the interpretation of \(\delta\) is unambiguous since it is not multiplied by a discontinuous function. For the other integrand we have

\[
\int_{t_p - \tau}^{t_p + \tau} \frac{dt}{Z(F^{-1}(\psi(t)))} = \int_{t_p - \tau}^{t_p} \frac{dt}{Z(F^{-1}(\psi(t)))} + \int_{t_p}^{t_p + \tau} \frac{dt}{Z(F^{-1}(\psi(t)))}
\]

\[
= \frac{\tau}{Z(\phi_p^-) + O(\tau)} + \frac{\tau}{Z(\phi_p^+) + O(\tau)} \to 0, \quad \text{for} \quad \tau \searrow 0.
\]

Thus, in the limit of \(\tau \searrow 0\) (10) yields

\[
1 = \psi(t_p + 0) - \psi(t_p - 0) = F(\phi_p^+) - F(\phi_p^-). \tag{11}
\]

Finally, the phase \(\phi_p^+\) after the pulse arrival can be evaluated as

\[
\phi_p^+ = F^{-1}(F(\phi_p^-) + 1). \tag{12}
\]

In general, the phase value given by (12) differs from that given by (1) or any other fixed choice of \(c \in [0, 1]\) in (6). Interestingly, there exists a different interpretation of Eq. (2), which leads to the same notion for a solution. In Ref. [6] Catllá et al suggested to calculate a sequence of solutions \(\phi_n\) of (2) where \(\delta\) has been substituted by elements of a Dirac series \(\{\delta_n\}\):

\[
\frac{d\phi_n}{dt} = \omega + Z(\phi_n) \sum_p \delta_n(t - t_p). \tag{13}
\]

Then the solution \(\phi(t)\) of (2) can be defined as a limit of the solutions of (13) for \(n \to \infty\). This definition is physically motivated since the delta function is an approximation for pulses with short but finite duration. Therefore it is natural to expect that the behaviour of Eq. (2) with the delta pulses will be similar to the
behaviour of Eq. (13) with short enough but finite pulses. The solution \(\varphi^* (t) := \lim_{n \to \infty} \varphi_n (t) \) coincides with the solution \(\varphi (t) \) obtained by (12). Indeed, defining \(\psi_n := F (\varphi_n) \) gives

\[
\psi(t_p + 0) = \lim_{\tau \downarrow 0} \lim_{n \to \infty} \psi_n(t_p + \tau) \tag{14}
\]

\[
= \lim_{\tau \downarrow 0} \lim_{n \to \infty} \left(\psi_n(t_p - \tau) + \int_{t_p - \tau}^{t_p + \tau} \frac{1}{Z(F^{-1}(\psi_n(t)))} + \delta_n(t - t_p) \right) dt \tag{15}
\]

\[
= \lim_{\tau \downarrow 0} \left(\psi(t_p - \tau) + \lim_{n \to \infty} \int_{t_p - \tau}^{t_p + \tau} \frac{dt}{Z(F^{-1}(\psi_n(t)))} + \lim_{n \to \infty} \int_{t_p - \tau}^{t_p + \tau} \delta_n(t - t_p) dt \right) \tag{16}
\]

\[
= \psi(t_p - 0) + 1, \tag{17}
\]

which leads to the phase jump (12). Note that the derivation of the solution \(\varphi^* \) does not rely on the assumption that \(\varphi^+ \in I \), but implies this property.

As noted above, the maximal range of definition for (7) is always a maximal interval \(I \) such that \(Z(\varphi) \neq 0 \) for all \(\varphi \in I \). If \(Z \) has no zeros at all, \(F \) is a bijection over \(\mathbb{R} \), resp. \([0,1]\) and its image \(F([0,1]) \). Otherwise, the bounds of the interval \(I = (\alpha, \beta) \) fulfill \(Z(\alpha) = Z(\beta) = 0 \). Effectively, this partitions the whole range of possible phases \(\varphi \in [0,1] \) into disjoint intervals \(I_j \) and points where \(Z = 0 \), see Fig. 1. That is,

\[
\bigcup_j I_j = [0,1] \setminus \{Z = 0\}.
\]

If we denote for each \(I_j \) the corresponding transformation (7) by \(\psi = F_j (\varphi) \) we may define

\[
\tilde{Z} (\varphi) := \begin{cases}
0, & \text{for } Z(\varphi) = 0, \\
F_j^{-1} (F_j (\varphi) + 1) - \varphi, & \text{for } \varphi \in I_j.
\end{cases} \tag{18}
\]
Then, (18) describes the discontinuous phase reset obtained in the limit of a Dirac sequence approximation of (2).

The functions Z and \tilde{Z} are in general different and can be equal or close only in some particular cases, for example:

i) The PRC is flat, i.e. the does not depend on the phase: $Z(\phi) = Z_0 = \text{const}$, then $F(\phi) = \phi / Z_0$, and $\tilde{Z}(\phi) = Z_0$ as well. In this case the interpretation problem is absent because the delta function is not multiplied by a discontinuous function. For the same reason the interpretation is unambiguous for the models based on integrate-and-fire neurons rather than phase oscillators [2, 18].

ii) The PRC is small, i.e. $Z(\phi) \ll 1$, then $F(\phi) \gg 1)$, and F^{-1} can be expanded into the Taylor series

$$F^{-1}(F(\phi) + 1) = F^{-1}(F(\phi)) + (F^{-1})'(F(\phi)) + \ldots \approx$$

$$\approx \phi + \frac{1}{F''(\phi)} = \phi + Z(\phi),$$

from where $\tilde{Z}(\phi) \approx Z(\phi)$. Thus, the ambiguity problem vanishes for phase oscillators.
FIG. 2: Top row: the phase shift $\varphi_{new} - \varphi_{old}$ after the pulse arrival versus the old phase φ_{old} before the pulse arrival given by the original PRC $Z(\varphi)$ as in (20) (blue solid line) and by the modified PRC $\tilde{Z}(\varphi)$ calculated on its base according to (18) (red dashed line). Bottom row: the slope $d\varphi_{new}/d\varphi_{old}$. The steepness parameter equals $q = 4$ for the left column and $q = 30$ for the right column.

with weak coupling [21].

Except for these two cases the functions $Z(\varphi)$ and $\tilde{Z}(\varphi)$ are different. To illustrate this difference we plot these two functions for the PRC used in [12]:

$$Z(\varphi) = \kappa \sin^q (\pi \varphi),$$ \hspace{1cm} (20)

where $\kappa = 0.1$ is the coupling strength and q is a parameter controlling the PRC steepness. The functions $Z(\varphi)$ and $\tilde{Z}(\varphi)$ are plotted in Fig. 1 (top row). One sees that these functions are indeed different, and the difference is more pronounced for larger steepness q. Note also that although Eq. (1) might give none-monotonous
FIG. 3: Top panel: the temporal evolution of the oscillator phase for the original PRC $Z(\phi)$ (blue solid line) and for the modified PRC $\tilde{Z}(\phi)$ (red dashed line). Bottom panel: the magnitudes of the phase shifts for the original PRC $Z(\phi)$ (blue solid line with circles) and for the modified PRC $\tilde{Z}(\phi)$ (red dashed line with diamonds). The steepness parameter equals $q = 30$, the delay $\tau = 4.32$.

dependency of ϕ_{new} versus ϕ_{old} for large q, the dependency given by (12) is always strictly monotonous. In order to demonstrate that the slope $d\phi_{new}/d\phi_{old} = 1 + Z'(\phi)$ is plotted in Fig. 1 (bottom row) which can be negative for $Z(\phi)$ but is strictly positive for $\tilde{Z}(\phi)$.

The difference between the two PRCs becomes even more critical when one considers not a perturbation by a single pulse but the dynamics of coupled pulse oscillators. Consider the simplest system with pulse coupling, a single oscillator with pulse delayed feedback studied in [11, 12]. The oscillator emits pulses when its phase
reaches unity (the phase is considered modulo 1). These pulses are sent to the delay line and arrive back to the oscillator after the delay τ. When the pulse is received, the oscillator’s phase changes according to (1).

We simulated the system twice with the same delay and the same initial conditions, but with the different PRCs. For the first simulation we used the PRC (20) with $q = 30$, and for the second simulation we used the modified PRC calculated on its base. The results of the simulation are shown in Fig. 2. As can be seen from the phase dynamics (top panel), the two solutions diverge even if they start from the same initial conditions. Moreover, the magnitudes of the phase shifts (bottom panel) reveal the qualitative difference between the solutions. For the original PRC the phase shifts are not equal but form a sequence of period 5 which is manifestation of the so-called jittering [11, 12]. In contrast, the modified PRC shows no jittering, and the phase shifts converge to a constant value.

To conclude, we have shown that Eq. (2) in general does not show the phase jumps corresponding to the PRC $Z(\phi)$ and therefore should not be used for phase oscillators. In order to unambiguously define the system where the phase jumps correspond to the PRC $Z(\phi)$ one should rather use the notation

$$\frac{d\phi}{dt} = \omega + Z(\phi - \sum_p \delta(t - t_p)),$$ \hspace{1cm} (21)

or

$$\frac{d\phi(t)}{dt} = \omega + Z(\phi(t_p - 0)) \sum_p \delta(t - t_p),$$ \hspace{1cm} (22)

indicating directly that the value $\phi(t_p - 0)$ should be used to calculate the magnitude of the jump at t_p. Similar notations were used, for example, in a popular model of synaptic plasticity [20]. Note however, that (21) and (22) are not ordinary
differential equations but rather shortcuts for the impulsive differential equation [15]

\[
\frac{d\varphi}{dt} = \omega, \quad t \neq t_p, \quad (23)
\]

\[
\varphi(t) = \varphi(t_-) + Z(\varphi(t_-)), \quad t = t_p. \quad (24)
\]

The benefit of using the formulation in the form of an IDE is double. First, one can directly choose the PRC \(Z(\varphi)\) governing the phase jumps and does not need to calculate the modified PRC \(\tilde{Z}(\varphi)\). Second, in the PRC of the IDE is free of any limitations, for example one can select it such that the new phase is a non-monotonic function of the old phase:

\[
\varphi_2 + Z(\varphi_2) < \varphi_1 + Z(\varphi_1) \text{ for } \varphi_2 > \varphi_1. \quad (25)
\]

In particular, this possibility of the phase “reordering” is crucial for the multi-jitter instability [11, 12]. Obviously, the phase reordering is impossible for the ODEs (13) corresponding to a Dirac sequence \(\{\delta_n\}\), and likewise for (2) with the Dirac delta function if interpreted as a limit of ODEs.

For curiosity, we remark that it is possible to define the solution of (1) as a limit of solutions to a sequence of delay differential equations (DDE), though. Since \(\varphi(t_-) = \lim_{\tau \searrow 0} \varphi(t - \tau)\), we can define \(\varphi_{n,\tau}(t)\) as a solution to

\[
\dot{\varphi}_{n,\tau} = \omega + Z(\varphi_{n,\tau}(t - \tau)) \sum_p \delta_n(t - t_p), \quad (26)
\]

with a Dirac sequence \(\{\delta_n\}\), and obtain a solution to (1) as \(\varphi(t) := \lim_{\tau \searrow 0} \lim_{n \to \infty} \varphi_{n,\tau}(t)\).

This work is supported by the Russian Science Foundation (grant No. 19-72-10114). The authors are grateful to Serhiy Yanchuk for helpful discussions during various stages of the manuscript preparation, and to Arkady Pikovsky for pointing
out the problem.

[1] Eric Brown, Jeff Moehlis, and Philip Holmes. On the phase reduction and response
dynamics of neural oscillator populations. *Neural Computation*, 16:673–715, 2004. (document)

[2] Nicolas Brunel. Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons. *Journal of computational neuroscience*, 8(3):183–208,
2000. (document)

[3] Carmen C Canavier. Phase response curve. *Scholarpedia*, 1(12):1332, 2006. (document)

[4] Carmen C. Canavier and Srisairam Achuthan. Pulse coupled oscillators and the
phase resetting curve. *Mathematical Biosciences*, 226(2):77–96, 2010. ISSN 00255564.
[doi:10.1016/j.mbs.2010.05.001](http://dx.doi.org/10.1016/j.mbs.2010.05.001) URL http://www.sciencedirect.com/science/article/pii/S0025556410000714. (document)

[5] Carmen C. Canavier and Ruben A. Tikidji-Hamburyan. Globally attracting synchrony
in a network of oscillators with all-to-all inhibitory pulse coupling. *Physical Review E*,
95(3):032215, 2017. ISSN 2470-0045. [doi:10.1103/PhysRevE.95.032215](http://link.aps.org/doi/10.1103/PhysRevE.95.032215) URL http://link.aps.org/doi/10.1103/PhysRevE.95.032215. (document)

[6] Anne J. Catllá, David G. Schaeffer, Thomas P. Witelski, Eric E. Monson, and Anna L.
Lin. On spiking models for synaptic activity and impulsive differential equations. *SIAM Review*, 50(3):553–569, 2008. ISSN 00361445. [doi:10.1137/060667980](http://dx.doi.org/10.1137/060667980) (document)

[7] Pranay Goel and Bard Ermentrout. Synchrony, stability, and firing
patterns in pulse-coupled oscillators. *Physica D: Nonlinear Phenomena,*
[8] David Griffiths and Stephen Walborn. Dirac deltas and discontinuous functions. *American Journal of Physics*, 67(5):446–447, May 1999. ISSN 0002-9505, 1943-2909. doi:10.1119/1.19283. URL http://aapt.scitation.org/doi/10.1119/1.19283. (document)

[9] X Guardiola, A Diaz-Guilera, M Llas, and C J Pérez. Synchronization, diversity, and topology of networks of integrate and fire oscillators. *Phys. Rev. E*, 62(4):5565–5570, 2000. doi:10.1103/PhysRevE.62.5565. (document)

[10] J Guckenheimer. Isochrons and Phaseless Sets. *Journal of Mathematical Biology*, 1:259–273, 1975. (document)

[11] Vladimir Klinshov, Leonhard Lück, Dmitry Shchapin, Vladimir Nekorkin, and Serhiy Yanchuk. Emergence and combinatorial accumulation of jittering regimes in spiking oscillators with delayed feedback. *Physical Review E*, 92(4):042914, 2015. ISSN 1539-3755. doi:10.1103/PhysRevE.92.042914. URL http://link.aps.org/doi/10.1103/PhysRevE.92.042914. (document)

[12] Vladimir Klinshov, Leonhard Lück, Dmitry Shchapin, Vladimir Nekorkin, and Serhiy Yanchuk. Multistable jittering in oscillators with pulsatile delayed feedback. *Phys Rev Lett*, 114(17):178103, 2015. (document)

[13] Vladimir Klinshov, Serhiy Yanchuk, Artur Stephan, and Vladimir Nekorkin. Phase response function for oscillators with strong forcing or coupling. *EPL (Europhysics Letters)*, 118:50006, 2017. (document)

[14] Vladimir Klinshov, Leonhard Lück, and Serhiy Yanchuk. Desynchronization by phase slip patterns in networks of pulse-coupled oscillators with delays:
Desynchronization by phase slip patterns. *European Physical Journal: Special Topics*, 227(10-11):1117–1128, 2018. ISSN 19516401. doi:10.1140/epjst/e2018-800073-7 URL http://link.springer.com/10.1140/epjst/e2018-800073-7. (document)

[15] Vangipuram Lakshmikantham, Pavel S Simeonov, and Others. *Theory of impulsive differential equations*, volume 6. World scientific, 1989. (document)

[16] Sashi Marella and G Bard Ermentrout. Class-II neurons display a higher degree of stochastic synchronization than class-I neurons. *Physical review E*, 77(4):41918, 2008. (document)

[17] A Pikovsky, M Rosenblum, and J Kurths. *Synchronization. A Universal Concept in Nonlinear Sciences*. Cambridge University Press, 2001. (document)

[18] Antonio Politi, Ekkehard Ullner, and Alessandro Torcini. Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons. *European Physical Journal: Special Topics*, 227(10-11):1185–1204, 2018. ISSN 19516401. doi:10.1140/epjst/e2018-00079-7 (document)

[19] Walter Rudin. *Functional analysis*. International series in pure and applied mathematics. McGraw-Hill, New York, 2nd ed edition, 1991. ISBN 978-0-07-054236-5. ZSCC: 0000110. (document)

[20] Misha Tsodyks, Klaus Pawelzik, and Henry Markram. Neural networks with dynamic synapses. *Neural computation*, 10(4):821–835, 1998. (document)

[21] Ekkehard Ullner and Antonio Politi. Self-sustained irregular activity in an ensemble of neural oscillators. *Physical Review X*, 6(1):011015, 2016. ISSN 21603308. doi:10.1103/PhysRevX.6.011015 (document)

[22] A T Winfree. Patterns of phase compromise in biological cycles. *Journal of Mathematical Biology*, 1(1):73–93, 1974. (document)