Effectiveness of Multidirectional Wobble Board Lateral Step Up Exercise and Unidirectional Wobble Board Lateral Step Up Exercise on Joint Position Sense in OA Knee

K. Kotteeswaran¹, Sowmya M.V.², V. Meena³

¹Professor, Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai-602 105, India; ²Assistant Professor, Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai-602 105, India; ³Post Graduate Student, Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai-602 105, India.

ABSTRACT

Background: Osteoarthrosis (OA) is defined as a degenerative condition of the synovial joints. OA of the knee is ranked as one of the most significant causes of disability among the elders. It is a common disorder of cartilage degradation, synovial inflammation, osteophyte formation, thinning of joint space and subchondral sclerosis.

Methods: 219 participants were allocated into three groups multidirectional wobble board lateral step-up exercise group (MD), unidirectional wobble board lateral step-up exercise group (UD) and control group. All the participants’ basic subjective data, clinical measurements including the age, gender, body mass index (BMI) and joint position sense were measured. Data were analyzed with a paired t-test, unpaired t-test and ANOVA.

Results: This study shows both the unidirectional wobble board exercise group(UD) and multidirectional wobble board exercise group(MD) showed a better reduction in mean test angle of joint position sense in OA knee participants than the control group but multidirectional wobble board exercise group(MD) was better than unidirectional wobble board exercise group (UD). The longer 4 weeks duration was more beneficial than the shorter 2 weeks of weight-bearing wobble board protocol.

Conclusion: This study proved that the multidirectional wobble board lateral step-up exercise is more beneficial than unidirectional wobble board lateral step-up exercise in OA Knee.

Key Words: Osteoarthrosis, BMI, Multidirectional wobble board, Unidirectional wobble board, Lateral step-up, Proprioception

INTRODUCTION

Osteoarthrosis (OA) is defined as a degenerative condition of the synovial joints. OA of the knee is ranked as one of the most significant causes of disability among the elders.1,2 Osteoarthrosis is a heterogeneous condition that will cause symptoms in the joint and are involved in damaging the integrity of the articular cartilage and bone at the margins of the joint.3 OA in the knee and hip is now ranked as the 11th leading cause for disability as per the global burden of disease study.4 OA is diagnosed as per the clinical symptom which exhibits eburnation, more wear and tear due to repeated loading leading to restrict ROM and pain of knee joint.5 The second risk factor for OA knee is the BMI of the individual.6 This is because of the joint overloading and inflammation-induced due to adiposity.7 It is a common disorder of cartilage degradation, synovial inflammation, osteophyte formation, thinning of joint space and subchondral sclerosis.8,9

Worldwide estimation reported that more than 100 million people suffer from OA, and it was clinically one of the leading causes of disability.10 The prevalence rate for symptomatic OA worldwide is estimated to be 9.6% in male and double in the female which is around 18%.11 In India due to reduced physical activity majority of the population will increase the risk of early occurrence of OA knee. The prevalence of osteoarthrosis of the knee was 21.6% among women in the age group between 30-60 years. Prevalence was higher in menopausal women due to hormonal changes. So clinically men had a lower risk of OA knee than women. In India, the prevalence rate is estimated to be 17–60.6 %.12

The knee undergoes many alterations of force pattern in the muscle biomechanics during the daily event.13 Biomechanically increased obesity and inactive physical activity are the risk factors for the prevalence of OA knee.14 OA knee creates a burden on future health problems among the Indian
population in modern health scenario. The female population
other than their age and obesity are susceptible to high risk
due to other factors like menopause, genetics, poor diet, joint
overuse and muscle weakness.15
The management for OA includes Ultrasound therapy,16
interferential therapy, 17 Neuromuscular electrical stimulation
(NMES),18 Laser and acupuncture19, Deep heat (microwave
diathermy)20, static stretching.21 The recent research has
found open kinematic chain exercise and closed kinematic
chain exercise is best for improving the muscle strength of
the quadriceps muscle.22 The Population who does not have
any kind of injury to the joint should do exercise regularly
to prevent degeneration of weight-bearing joints,23 aerobic
exercises,24 isometric exercises,25 Resistance strength train-
ing,26 Wobble boards,27,28 Manual therapy, exercise and elec-
trical dry needling techniques,29 massage therapy.30 Non-ste-
roidal anti-inflammatory drugs, hyaluronic acid, Total knee
replacement.21
Electrogoniometer (EGM) is a flexible lightweight tool that
is reliable for measuring static knee joint angles in supine,
sitting and standing positions. Electrogoniometer is an easy
non-invasive and cheap method to assess and is considered
as a precise way to assess movement capability. It is also
proved that the reliability of this instrument is high.31 The ad-
vantages of Electrogoniometer are stable, precise, accurate
and repeatable in performance. The universal goniometer is
easy to be employed, it can be used in the clinical evaluation
of patients. still, the electro-goniometer is more accurate and
hence it is used in laboratory studies.
The National Institute for Clinical Excellence (NICE) re-
port, in the 2014 guidelines, state that treatment for osteoar-
throsis should take a holistic approach. The use of MD and
UD wobble board is hypothesized that improves balance
and proprioception. So pain, lower extremity muscle power
and proprioception are clinically important for the partici-
pants’ balance control. Hence there is a need to study that the
weight-bearing exercise to hip abductor in various balance
strategies which may need to achieve joint position sense.

Procedure
The participants were taken from the Physiotherapy Out-
patient Department, Saveetha Medical College Hospi-
tal, Saveetha Institute of Medical and Technical Sciences,
Thandalam, Chennai 602 105, Tamil Nadu, India. The Ran-
domised Controlled Trial with three arms (random allocation
with sealed envelopes) was used. The sample size estima-
tion was done by using N Master software with the power of
90% and alpha error 5% and arrive the sample size 219 (it
includes 10% of dropout), 73 of each group for three groups.
The inclusion criteria of OA knee was diagnosed by clinical
history and physical examination, each participant met the
American College of Rheumatology criteria for OA knee
and age of 50 years and above and chronic knee pain for 6
months or more and unilateral knee osteoarthritis subjects.
The exclusion criteria were a history of any recent injury in
the lower limbs. Any recent fracture in the lower limb, any
neurological weakness in the lower limb, feel difficult in sin-
gle-limb standing on wobble board, limb length discrepancy
and established deformities in the affected knee.
Totally 253 participants diagnosed with unilateral knee
osteoarthritis were screened for this study and 219 partici-
pants who satisfied the inclusion and exclusion criteria were
enrolled. The aim and purpose of the study, hip abductor
strengthening procedures on multidirectional and unidirec-
tional wobble board were explained to all the participants
and informed consent was taken before enrolling them for
the study.
The basic subjective data and clinical measurements were
collected for all participants before allotting them into the
groups randomly. The basic subjective data and clinical
measurements include the age of the patient, gender, body
mass index (BMI) after enrolling these data, the participants
were randomly allotted into three groups as multidirectional
wobble board lateral step-up exercise group (MD EXER-
CISE GROUP), unidirectional wobble board lateral step-up
exercise group (UD EXERCISE GROUP) and control group.
The sensitivity and acuity of peripheral proprioceptors have
been investigated by assessing JPS using electrogoniome-
ter by test angle measurement. In a quiet environment, the par-
ticipants were blindfolded and seated on a high couch with
back support and their hips and knees flexed to approxi-
mately 90° and their lower leg hanging independently. An
electrogoniometer was attached to the lateral aspect of the
subject’s knee using doubled sided sticky tape. The proximal
electrogoniometer block was placed just above the lateral
femoral condyle in line with the greater trochanter, and the
distal block just below the head of the fibula, in line with the
lateral malleolus. In this ‘resting position’ the electrogoni-
ometer display unit was set to 0. The subjects were instructed
to slowly straighten their knee and told to stop at a random
angle. This ‘test angle’ indicated on the display was noted.

MATERIALS AND METHODS

Ethical clearance
The present study was approved by the Institutional Ethics
Committee (IEC), Saveetha Medical College and Hospital[IEC
No. 016/02/2017/IEC/SU dated 28th February 2017]. The
procedure was informed to all the members and higher au-
thorities. The intervention procedure and benefits of the study
were well explained to the participants before enrolling on the
study. The clinical parameters and other details from the par-
ticipants were collected after getting informed consent and the
information was maintained confidential throughout the study.
For approximately 5 secs the subjects were asked to visualize their knee position. The subjects were then told to relax, allowing their leg to hang freely and return to the resting position, and after 3 secs the subjects were asked to reproduce the test angle. The ‘reproduced angle’ on the display was recorded. The procedure was performed for 10 test angles chosen randomly by the researcher throughout the range of 90° flexion and full knee extension. The mean error between the 10 test and reproduced angles were calculated and tabulated. JPS was measured by the physiotherapist who was blinded to the group allotment. These testers were qualified and expertise in making use of the above outcome measures.

The participant’s baseline values for JPS were recorded and analyzed with the help of the parametric test, one way ANOVA was used to analyse the baseline homogeneity. Before starting the exercise program the pretest measurements was taken and post-test measurements were measured and tabulated during the 2nd week of the intervention period and 4th of the intervention period for statistical analysis to obtained results. Joint position sense in OA knee was measured and statistically analysed by Electrogoniometer. One way repeated measures of ANOVA (Student Newman Keuls Method) was used to compare within-group significance and the second section deals with one way ANOVA test.

The results of paired and unpaired t-test of JPS were presented in (Table 3). This study shows both UD and MD with a better reduction in mean test angle of JPS in OA knee participants than control and MD was better than UD. The longer 4 weeks duration was more beneficial than the shorter 2 weeks of weight-bearing wobble board protocol. This study showed that in response to 4 weeks of proprioceptive training in participants with degenerative OA knee exhibited a better increase in proprioception sense used wobble board lateral step up than unilateral wobble board lateral step up with help of hip abductor strength in the frontal plane.

DISCUSSION

Proprioceptive exercises will increase attention by giving proprioceptive cues to the brain. The first stage at the conscious level early in training, second stage later level, more training, at last, autonomous level. Joint pain may have harmful effects on muscle spindle function (muscle strength and activation) and joint position sense (proprioception and balance). So, the wobble board weight-bearing exercise program was designed to strengthen the thigh muscles, enhance proprioception, and reduce pain in individuals with OA. Clinically in OA knee proprioception deficits act as a risk factor for symptoms progression. Proprioceptive accuracy of the knee seems to be impaired in OA the knee. Eleven studies showed a significant impairment in position sense or motion sense in a total of 387 OA knee participants, when compared to age and gender-matched healthy controls.
Exercises in specific weight-bearing seem to improve proprioceptive accuracy (both position and motion sensing in joint movement), as well as pain and functional activity limitation. Proprioceptive exercises (both non-weight bearing and weight-bearing) weight-bearing muscle strengthening exercises seem to be the most effective in improving proprioceptive accuracy. Non-weight bearing muscle strengthening exercises, however, do not result in improvement in proprioceptive accuracy.[39,40,41]

The present study proves that 4 weeks and regular follow up. All Authors Involved in study

In our participants it was 12.39± 0.6º, 12.21 ± 0.7º and 12.45 ± 0.6ºat the angles of 20º and 60º of knee flexion, respectively, before training and improved to 3.14 ± 0.4º, 9.26 ± 0.3º and 11.25 ± 0.2º respectively, after 4 weeks of training. Therefore in the wobble board lateral step up training knee position sense was improved in the OA knee (Table 4, Figure 3).

CONCLUSION

In summary, this study proved that the multidirectional wobble board lateral step-up exercise is more beneficial than unidirectional wobble board lateral step-up exercise in OA Knee. Considering the higher prevalence rate of OA knee in India there is huge evidence available for the management of symptoms like pain and reduced muscle power. Another symptom that tends to affect the patients ADL and QOL is diminished joint proprioception and balance. Multidirectional wobble board training protocol may be beneficial as proved with joint position sense for the participant with OA knee. Results of this study conclude that changes in improved intermuscular coordination and co-activation and selective muscle recruitment, hip knee and ankle strategy were the key factors for adaptations to balance training and these adaptations influenced joint mechanics and contribute to the safer performance of challenging landing activities in degenerative conditions. This study strongly recommends using weight-bearing exercise to hip abductor in various balance strategies for managing osteoarthritis of the knee joint.

Conflict of Interest: There was no conflict of interest in the study

ACKNOWLEDGEMENTS

We are thankful to the research department of Saveetha University and participants for their co-operation in the study and regular follow up.

Funding: This study was self-funded research by the author.

Authors Contribution:

Authors Contribution	All Authors Involved in This Study Contribute Following Areas
Research concept and design	✓
Collection of samples	✓
Data analysis and interpretation	✓
Writing the article	✓
Critical revision of the article	✓
Final approval of the article	✓

REFERENCES

1. Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PW. The effects of specific medical conditions on the functional limitations of elders in the Framingham study. Am J Public Health 1994; 84(3):351-358.
2. Brooks PM. Impact of osteoarthritis on individuals and society: How much disability? Social consequences and health economic implications. Curr Opin Rheumatol 2002;14(5):573-577.
3. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K. Development of criteria for the classification and reporting of osteoarthritis Classification of osteoarthritis of the knee. Arthritis Rheum 1986; 29(8):1039-1049.
4. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 2014;73(7):1323-1330.
5. World Health Organization. World Health Report 2002. Reducing Risks, Promoting Healthy Life. Geneva, WHO.
6. Looser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016;12(7):412–420.
7. Wu CA, Lombard CB, Cucitini FM. Tackling obesity in knee osteoarthritis. Nat Rev Rheumatol 2013:9(4):225-35.
8. Attur M, Krasnokutsky Samuels S, Samuels J, Abramson SB. (2013). Prognostic biomarkers in osteoarthritis. Curr Opin Rheumatol 2013;25(1):136-144.
9. Rousseau J, Garnero P. Biological markers in osteoarthritis. Bone 2011; 52:265-277.
10. Himman RS, Hunt MA, Creaby MW, Wrigley TV, McManus FJ, Bennell K L. Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care Res 2010; 62(8):1190-3.
11. Mody G, Woolf AA. Report on Global Burden Musculoskeletal Disorders. Business Briefing of Pharmcotherapy Association. 2003.
12. Sharma MK, Swami HM, Bhatia V, Verma A, Bhatia SP, Kaur G. An epidemiological study of correlates of osteoarthritis in the geriatric population of UT Chandigarh. Indian J Community Med 2007;32(1):77-78.
13. Vincent BP, Conrad BJ, Fregly IK, Vincent. The Pathophysiology of Osteoarthritis: A Mechanical Perspective on the Knee Joint. Physico Med Res 2012;4(5):S3–S9.
14. Marshall S, Vanderby C, Barnabe. Estimating the Burden of Osteoarthritis to Plan for the Future. Arthr Care Res 2015;67(10):1379–1386.
15. Ashkavand H, Malekinejad BS, Vishwanath. The pathophysiology of osteoarthritis. J Pharm Res 2013;7(1):132–138.
16. Loyola-Sánchez J, Richardson NJ, MacIntyre. Efficacy of ultrasound therapy for the management of knee osteoarthritis: a systematic review with meta-analysis. Osteoarthr Cartil 2010;18(9):1117-1126.

17. Eftekharasadat B, Babaei-Ghazani A, Habibzadeh A, Kolahi B. Efficacy of action potential stimulation and interferential therapy in the rehabilitation of patients with knee osteoarthritis. Therap Adv Musculoskel Dis 2015;7(3):67-75.

18. Bruce-Brand RA, Walls RJ, Ong JC, Emerson BC, O’Byrne JM, Moyna NM. Effects of home-based resistance training and neuromuscular electrical stimulation in knee osteoarthritis: a randomized controlled trial. BMC Musculoskeletal Disord 2012;13(1):118.

19. Dwi R, Simadibrata HC, Srilestari A, Wahyudi ER, Hidayat R. Pain Reduction After Laser Acupuncture Treatment in Geriatric Patients with Knee Osteoarthritis: a Randomized Controlled Trial. Indonesian J Intern Med 2016;48(2):114-121.

20. Rabini DB, Piazzini G, tancredi C, Foti. (2012). Deep heating therapy via microwave diathermy relieves pain and improves physical function in patients with knee osteoarthritis: a double-blinded randomized clinical trial. Eur J Phys Rehabil Med 2012;48(4):549-559.

21. Weng MC, Lee CL, Chen CH, Hsu JJ, Lee WD, Huang MH, et al. Effects Of Different Stretching Techniques On The Outcomes of Isokinetic Exercise In Patients With Knee Osteoarthritis. Kaohsiung J Med Sci 2009; 25(6):306-315.

22. Olagbegi OM, Adegoke BO, Odole AC. Effectiveness of three modes of kinetic chain exercises on quadriceps muscle strength and thigh girth among individuals with knee osteoarthritis. Arch Physiother 2017;9:7-11.

23. Mangione KK, McCully K, Gloviak A, Lefebvre I, Hofmann M, Craik R. The Effects of High-Intensity and Low-Intensity Cycle Ergometry in Older Adults With Knee Osteoarthritis. J Gerontol 1999;54-A(4): M184-M190.

24. Nadine M, Fisher David R, Pendergast Glen E, Gresham Evan Calkins. Muscle Rehabilitation: It’s Effect on Muscular and Functional Performance of Patients with Knee Osteoarthritis. Arch Phys Med Rehab 1991;72:367-374.

25. Topp R, Woolley S, Hornykj J, Kluder S, Kahaleh B. The Effect of Dynamic Versus Isometric Resistance Training on Pain and Functioning Among Adults With Osteoarthritis of the Knee. Arch Phys Med Rehab 2002;83(9):1187-1195.

26. Dadabo J, Fram J, Jayabal P. Non-interventional therapies for the Management of Knee Osteoarthritis. J Knee Surg 2019;32(1):46-54.

27. Loughlin PJ, Redfern MS. Spectral characteristics of visually induced postural sway in healthy elderly and healthy young subjects. IEEE Trans Neural Syst 2001; 9(1):24-30.

28. Silva PDB, Oliveira AS, Mrachacz-Kersting N, Laessoë U, Kersting UG. Strategies for equilibrium maintenance during single-leg standing on a wobble board. Gait Posture 2016;44, 149-154.

29. Dunning J, Butts R, Young I, Mourad F, Galante V. Periosteal Electrical Dry Needling as an Adjunct to Exercise and Manual Therapy for Knee Osteoarthritis A Multicenter Randomized Clinical Trial. Clin J Pain 2018;34(12):1149-1158.

30. Adam I, Perlman, Alyse Sabina, Anna-Leila Williams. Massage Therapy for Osteoarthritis of the Knee A Randomized Controlled Trial. Arch Intern Med 2006;166, (22): 2533–2538.

31. Kirwan J, Currey H, Freeman M, Snow S, Young P. Overall long-term impact of total hip and knee joint replacement surgery with osteoarthritis and rheumatoid arthritis. Br J Rheumatol 1994;33(4):357-360.

32. Tajali SB, MacDermid JC, Grewal R, Young C. Reliability and validity of an electro-goniometric range of motion measurements in patients with hand and wrist limitations. Orthopaed J 2016;10:190-205.

33. Felson DT. Osteoarthritis: New insights. Part 1, The disease and its risk factor. Ann Intern Med 2000;133(8):635-46.

34. Si HB. The effect of primary total knee arthroplasty on the incidence of falls and balance-related functions in patients with osteoarthritis. Sci Rep 2017; 7:16583.

35. Tononi G, Edelman GM. Consciousness and complexity. Science 1998; 282(5395): 1846–1851.

36. Hassan BS, Doherty SA, Mockett S. Effect of pain reduction on postural sway, proprioception, and quadriceps strength in subjects with knee osteoarthritis. Ann Rheum Dis 2002;61:422–428.

37. Petrella RJ, Lattanzio PJ, Nelson MG. Effect of age and activity on knee joint proprioception. Am J Physical Med Rehabil 1997;76(3):235-241.

38. Knoop J, Steultjens MP, van der Leeden M. Proprioception in knee osteoarthritis: a narrative review. Osteoarthr Cartil 2011;19(4):381–388.

39. Diracoqui D, Aydin R, Baskent A, Celik A. Effects of kinesthesia and balance exercises in knee osteoarthritis. J Clin Rheumatol 2016; 10:190-205.

40. Lin DH, Lin YF, Chai HM, Han YC, Jan MH. Comparison of proprioceptive functions between computerized proprioception facilitation exercise and closed kinetic chain exercise in patients with knee osteoarthritis. Clin Rheumatol 2002;21(4):520–528.

41. Jan MH, Lin CH, Lin YF, Lin JJ, Lin DH. Effects of weight-bearing versus non-weight-bearing exercise on function, walking speed, and position sense in participants with knee osteoarthritis: a randomized controlled trial. Arch Phys Med Rehabil 2009;90(6):897-904.

42. Ming- Hsia Hu and Majjoriehineswollacotta. Multisensory training of standing balance in older adults: I Postural stability and one-leg stance balance. J Gerontol Soc Am Med Sci 1994;49(2): M52-M61.

Table 1: Demographic Data analysis for all three groups (n=225)

S. No.	Variable	Control	Groups	MD	χ² value	p value
	Gender (m/f)	19/56	16/59	18/57	0.346	0.841
	Age (Mean and SD)	55.60 and 3.72	56.41 and 4.47	56.61 and 4.22	1.038	0.595
	BMI (Mean and SD)	28.44 and 3.84	28.92 and 4.07	27.48 and 3.93	1.303	0.521

Table 2: Baseline Data analysis for all three groups (n=225)

S. No.	Variable	Groups	F value	p value			
	JPS Mean and SD	Control	12.44 and 0.61	12.20 and 0.714	12.38 and 0.60	2.895	0.057

Table 3: Effectiveness multidirectional wobble board lateral stepup exercise and unidirectional wobble board lateral stepup exercise on joint position sense in OA knee measured by electrogoniometer in degreeo (n=225)

S. No	Parameter	Group	Mean ± SD	4 - 0 week	4 - 2 week	2 - 0 week	0 week	2nd week	4th week
				p value	p value	p value		p value	p value
EGM	Control Group 0 Week	12.449 ± 0.617	44.665 p<0.001	17.925 p<0.001	26.740 p<0.001	2.895 p 0.057	6519.306 p<0.001	1915.988 p<0.001	
	Control Group 2nd week	11.248 ± 0.206	75.625 p<0.001	26.740 p<0.001	47.731 p<0.001	3.895 p 0.057	6519.306 p<0.001	1915.988 p<0.001	
	Control Group 4th Week	10.443 ± 0.194	93.132 p<0.001	37.318 p<0.001	55.814 p<0.001	2.895 p 0.057	6519.306 p<0.001	1915.988 p<0.001	
	UD Group 0 Week	12.205 ± 0.714	93.132 p<0.001	37.318 p<0.001	55.814 p<0.001	2.895 p 0.057	6519.306 p<0.001	1915.988 p<0.001	
	UD Group 2nd week	9.256 ± 0.266	93.132 p<0.001	37.318 p<0.001	55.814 p<0.001	2.895 p 0.057	6519.306 p<0.001	1915.988 p<0.001	
	UD Group 4th Week	7.284 ± 0.145	93.132 p<0.001	37.318 p<0.001	55.814 p<0.001	2.895 p 0.057	6519.306 p<0.001	1915.988 p<0.001	
	MD Group 0 Week	12.389 ± 0.605	170.154 p<0.001	65.731 p<0.001	104.423 p<0.001	2.895 p 0.057	6519.306 p<0.001	1915.988 p<0.001	
	MD Group 2nd week	7.715 ± 0.255	93.132 p<0.001	37.318 p<0.001	55.814 p<0.001	2.895 p 0.057	6519.306 p<0.001	1915.988 p<0.001	
	MD Group 4th Week	3.143 ± 0.441	93.132 p<0.001	37.318 p<0.001	55.814 p<0.001	2.895 p 0.057	6519.306 p<0.001	1915.988 p<0.001	

Figure 2: Measurement of test angle using electrogoniometer.
APPENDIX-1

INFORMED CONSENT

Informed Consent to Participate in a Research Study

Outpatient Department of Physiotherapy, Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamilnadu.

Title of the Study: Effectiveness of multidirectional wobble board lateral step-up exercise and unidirectional wobble board lateral step-up exercise on joint position sense in OA knee.

Name of the Principal Investigator: Dr. Kotteeswaran. K
Professor, Saveetha College of Physiotherapy, SIMATS, Thandalam, Chennai-602015
Phone: 9894286700
Email: k.kotteeswaran@gmail.com

Purpose & Background: To study the weight-bearing exercise to hip abductor in various balance strategies to achieve joint position sense among OA knee subjects.

Address: Outpatient Department of Physiotherapy, SCPT, SIMATS.

If I participate in this study: I will be required to share my demographic details and I will be assessed on my balance and proprioception. The assessment timings will range up to maximum 30 minutes.

Risks: There are no foreseeable risks or discomforts involved in participating in this study.

Confidentiality: The records from this study will be kept as confidential as possible. No individual identities will be revealed in any reports or publications resulting from the study. Research information will be kept in locked files at all times at the Department of Physiotherapy. Only the research personal will have access to the files and only those with essential need to see names will have access to that particular file.

Costs: There will be no costs to me as a result of participating in the study.

Consent

I’m giving my full consent to participate in this study. I am free to decline to participate in this research study, or I may withdraw my participation at any point without penalty.

I have spoken with ________________ about this study and have my questions and doubts answered. If I have any doubts I can contact Dr. K. Kotteeswaran 9894286700 or write to him at the outpatient Department of Physiotherapy, Saveetha College of physiotherapy, SMCH, SIMATS, Thandalam.

Signature: _____________________ (Research Participant) Date: ____________

Signature: _____________________ (Researcher) Date: ____________