MEASURE THEORETICAL ENTROPY OF COVERS

URI SHAPIRA

Abstract. In this paper we introduce three notions of measure theoretical entropy of a measurable cover \(U \) in a measure theoretical dynamical system. Two of them were already introduced in [R] and the new one is defined only in the ergodic case. We then prove that these three notions coincide, thus answering a question posed in [R] and recover a variational inequality (proved in [GW]) and a proof of the classical variational principle based on a comparison between the entropies of covers and partitions.

1. Introduction

In this paper a measure theoretical dynamical system (m.t.d.s) is a four tuple \((X, \mathcal{B}, \mu, T)\), where \((X, \mathcal{B})\) is a standard space (i.e isomorphic to \([0, 1]\) with the Borel \(\sigma\)-algebra \(\mu\) is a probability measure on \((X, \mathcal{B})\) and \(T\) is an invertible measure preserving map from \(X\) to itself.

A topological dynamical system (t.d.s) is a pair \((X, T)\), where \(X\) is a compact metric space and \(T\) is a homeomorphism from \(X\) to itself.

In [R] the author introduced two notions of measure theoretical entropy of a cover, both generalizing the definition of measure theoretical entropy of a partition and influenced by [BGH]. Namely,

1. \(h^+_{\mu}(U) = \inf_{\alpha \supseteq U} h_{\mu}(\alpha) \)
2. \(h^-_{\mu}(U) = \lim_{n \to \infty} \frac{1}{n} \inf_{\alpha \supseteq U_n} H_{\mu}(\alpha) \)

It was shown there among other things that \(h^-_{\mu}(U) \leq h^+_{\mu}(U) \) and that in the topological case (i.e a t.d.s and an open cover), one can always find an invariant measure \(\mu\) such that \(h^-_{\mu}(U) = h_{\text{top}}(U) \). This generalizes the result from [BGH] asserting that in the topological case one can always find an invariant measure \(\mu\) such that \(h^+_{\mu}(U) \geq h_{\text{top}}(U) \).

The question whether \(h^-_{\mu}(U) = h^+_{\mu}(U) \) arose. In [HMRY] the authors continued the research on these concepts and proved, among other results, with aid of the Jewett-Krieger theorem, that if there exists a t.d.s, an invariant measure \(\mu\) and an open cover \(U\) such that \(h^-_{\mu}(U) < h^+_{\mu}(U) \) then one can find such a situation in a uniquely ergodic t.d.s.

Recently, B. Weiss and E. Glasner [GW] showed that if \((X, T)\) is a t.d.s and \(U\) is any cover, then for any invariant measure \(\mu\) \(h^+_{\mu}(U) \leq h_{\text{top}}(U) \) and so combining these results one concludes that for a t.d.s and an open cover we have that \(h^-_{\mu}(U) = h^+_{\mu}(U) \).

* Part of the author’s MS.c thesis at the Hebrew University of Jerusalem.
Email: ushapira@gmail.com.
The measure theoretical entropy of a partition \(\alpha \) in an ergodic m.t.d.s can be defined as:

\[
\lim_{n \to \infty} \frac{1}{n} \log N(\alpha^{-1}_n, \epsilon),
\]

where \(0 < \epsilon < 1 \) and \(N(\alpha^{-1}_n, \epsilon) \) is the minimum number of atoms of \(\alpha^{-1}_n \) needed to cover \(X \) up to a set of measure, less than \(\epsilon \). (See [Ru]).

In this paper we follow this line and in section 4 define a notion of measure theoretical entropy for a cover \(U \) of an ergodic m.t.d.s as

\[
h_\mu(U) = \lim_{n \to \infty} \frac{1}{n} \log N(U^{-1}_n, \epsilon)\]

(where \(0 < \epsilon < 1 \)). We prove (Theorem 4.2) the existence of the limit and its Independence of \(\epsilon \), in a different way from [Ru] using Strong Rohlin Towers. This can serve as an alternative proof of the fact that the above definition of measure theoretical entropy of a partition in an ergodic m.t.d.s is well defined.

We show in a direct way that in the ergodic case the three notions:

\[
h_\mu(U), h_\mu(U), h_\mu(U),
\]

coincide (Theorems 4.4, 4.5), and from the ergodic decomposition for \(h_\mu(U), h_\mu(U), \) proved in [HMRY], we deduce that \(h_\mu(U) = h_\mu(U) \) in the general case (Corollary 5.2), and so, we can denote this number by \(h_\mu(U, T) \) or \(h_\mu(U) \).

We also get an immediate proof of a slight generalization of the inequality \(h_\mu(U) \leq h_{\top}(U) \), mentioned earlier, from [GW], to the non topological case (Theorem 6.1).

Acknowledgements: This paper was written as an M.Sc thesis at the Hebrew University of Jerusalem under the supervision of prof’ Benjamin Weiss. I would like to thank prof’ Weiss, for introducing me to the subject and for sharing with me his and Eli Glasner’s valuable ideas.

2. Preliminaries

Recall that in the following a measure theoretical dynamical system, (m.t.d.s), is a four tuple \((X, \mathcal{B}, \mu, T)\), where \((X, \mathcal{B})\) is a standard space, \(\mu\) is a probability measure on \((X, \mathcal{B})\) and \(T\) is an invertible measure preserving transformation of \(X\).

2.1. Definition.

- A cover of \(X\) is a finite collection of measurable sets that cover \(X\).
- The collection of covers of \(X\) will be denoted by \(\mathcal{C}_X\).
- A partition of \(X\) is a cover of \(X\) whose elements are mutually disjoint.
- The collection of partitions of \(X\) will be denoted by \(\mathcal{P}_X\).
- Usually we denote covers by \(U, V\) and partitions by \(\alpha, \beta, \gamma\) etc.
- We say that a cover \(U\) is finer than \(V\) (\(U \geq V\)) if any element of \(U\) is contained in an element of \(V\).
- For any \(U \in \mathcal{C}_X\) and \(k \in \mathbb{Z}\) we denote by \(T^k(U)\) the cover whose elements are the sets of the form \(T^k(U)\) where \(U \in U\).
- We define the join, \(U \vee V\), of two covers \(U, V\), to be the cover whose elements are sets of the form \(U \cap V\) where \(U \in U\) and \(V \in V\).
- When the transformation \(T\) is understood we denote, for \(l > k\), the cover \(T^{-k}(U) \vee T^{-(k+1)}(U) \cdots \vee T^{-l}(U)\), by \(U^l_k\).
2.2. Definition. For $0 < \delta < 1$ define $H(\delta) = -\delta \log \delta - (1 - \delta) \log (1 - \delta)$. Note that $\lim_{\delta \to 0} H(\delta) = 0$.

In the sequel, we will prove some combinatorial lemmas and often we will encounter the expression $\sum_{j \leq \delta K} \binom{K}{j}$. We shall make use of the next elementary lemma:

2.3. Lemma. (Lemma 1.5.4 in [Sh1]): If $\delta < \frac{1}{2}$ then $\sum_{j \leq \delta K} \binom{K}{j} \leq 2H(\delta)$.

2.4. Definition. A m.t.d.s (X, \mathcal{B}, μ, T) is said to be aperiodic, if for every $n \in \mathbb{N}$, $\mu(\{x | T^n x = x\}) = 0$.

An ergodic system which is not aperiodic is easily seen to be a cyclic permutation on a finite number of atoms.

One of our main tools in practice, will be the Strong Rohlin Lemma ([Sh2] p.15):

2.5. Lemma. Let (X, \mathcal{B}, μ, T) be an ergodic, aperiodic system and let $\alpha \in P_X$. Then for any $\delta > 0$ and $n \in \mathbb{N}$, one can find a set $B \in \mathcal{B}$, such that $B, TB \ldots, T^{n-1}B$ are mutually disjoint, $\mu(\bigcup_0^{n-1} T^n B) > 1 - \delta$ and the distribution of α is the same as the distribution of the partition $\alpha|_B$ that α induces on B.

The data (n, δ, B, α) will be called, a strong Rohlin tower of height n and error δ with respect to α and with B as a base.

3. Measure theoretical entropy of covers

Let (X, \mathcal{B}, μ, T) be a m.t.d.s. The definitions and proofs in this section were introduced in [R].

3.1. Definition. For $\mathcal{U} \in C_X$ we define the entropy of \mathcal{U} as:

$$H_\mu(\mathcal{U}) = \inf_{\alpha \triangleright \mathcal{U}} H_\mu(\alpha).$$

3.2. Proposition.

1. If $\mathcal{U}, \mathcal{V} \in \mathcal{C}_X$ then $H_\mu(\mathcal{U} \vee \mathcal{V}) \leq H_\mu(\mathcal{U}) + H_\mu(\mathcal{V})$.
2. For every $\mathcal{U} \in \mathcal{C}_X$ $H_\mu(T^{-1}\mathcal{U}) = H_\mu(\mathcal{U})$.

3.3. Corollary. If $\mathcal{U} \in \mathcal{C}_X$ then the sequence $H_\mu(\mathcal{U}^{n-1})$ is sub-additive.

3.4. Corollary. If $\mathcal{U} \in \mathcal{C}_X$ then the sequence $\frac{1}{n} H_\mu(\mathcal{U}^{n-1})$ converges to $\inf_n \frac{1}{n} H_\mu(\mathcal{U}^{n-1})$.

Two ways of generalizing the definition of measure theoretical entropy of a partition to a cover are:

3.5. Definition. If $\mathcal{U} \in \mathcal{C}_X$, define

1. $h^-_\mu(\mathcal{U}, T) = \lim_{n \to \infty} \frac{1}{n} H_\mu(\mathcal{U}^{n-1})$.
2. $h^+_\mu(\mathcal{U}, T) = \inf_{\alpha \triangleright \mathcal{U}} h_\mu(\alpha, T)$.

When T is understood we usually omit it and write $h^-_\mu(\mathcal{U})$, $h^+_\mu(\mathcal{U})$.

We shall see later that in fact $h^-_\mu(\mathcal{U}) = h^+_\mu(\mathcal{U})$.

3.6. Proposition.

(1) \(h_\mu^-(\mathcal{U}) \leq h_\mu^+(\mathcal{U}) \).

(2) For any \(m \in \mathbb{N} \), \(h_\mu^-(\mathcal{U}, T) = \frac{1}{m} h_\mu^- (\mathcal{U}_m^{n-1}, T^m) \).

(3) \(h_\mu^-(\mathcal{U}, T) = \lim_{n \to \infty} \frac{1}{n} h_\mu^+(\mathcal{U}_n^{n-1}, T) \).

4. THE ERGODIC CASE

Throughout this section, \((X, \mathcal{B}, \mu, T)\), is an ergodic m.t.d.s.

For \(U \in C_X \), we denote by \(N(U, \epsilon, \mu) \), the minimum number of elements of \(U \), needed to cover all of \(X \), up to a set of measure, less than \(\epsilon \). When \(\mu \) is understood we write \(N(U, \epsilon) \).

By a straight forward calculation one deduces from [Sh1] p.51 the following:

4.1. Theorem. If \((X, \mathcal{B}, \mu, T)\) is an ergodic m.t.d.s and \(\alpha \in \mathcal{P}_X \), then for any \(0 < \epsilon < 1 \),

\[h_\mu(\alpha, T) = \lim_{n \to \infty} \frac{1}{n} \log N(\alpha_n^{n-1}, \epsilon). \]

In view of this result, a natural way to generalize the definition of measure theoretical entropy of a partition to covers will be the following:

\[h_\mu(\mathcal{U}, T) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{N}(\mathcal{U}_n^{n-1}, \epsilon). \]

Where \(0 < \epsilon < 1 \). In order to do so we have to show that the above limit exists and is independent of \(\epsilon \).

4.2. Theorem. For any \(0 < \epsilon < 1 \), the sequence \(\frac{1}{n} \log \mathcal{N}(\mathcal{U}_n^{n-1}, \epsilon) \) converges and the limit is independent of \(\epsilon \).

In order to prove this theorem we shall need a combinatorial lemma. Let us first introduce some terminology (in first reading the reader may skip the following discussion and turn to the discussion held after the proof of Lemma 4.3):

- We say that two intervals in \(\mathbb{N} \), \(I, J \) are separated if there is \(n \in \mathbb{N} \) such that for any \(i \in I, j \in J \) we have \(i < n < j \) or \(j < n < i \).
- We say that a collection \(\{I_i\}_{i \in A} \) of intervals in \(\mathbb{N} \) is a separated collection if any two of its elements are separated.
- We say that a collection \(\{I_i\}_{i \in A} \) of subintervals of an interval \([1, K]\) is a \((\lambda, \epsilon)\) separated cover of \([1, K]\) (for \(0 < \lambda < 1, 0 < \epsilon \)), if it is separated and

\[\left| \frac{|\bigcup I_i|}{K} - \lambda \right| < \epsilon. \]

- Given a vector \(\bar{\lambda} = (\lambda_1 \ldots \lambda_l) \), we denote

\[\nu_r(\bar{\lambda}) = \prod_{j=r}^{l} (1 - \lambda_j) \]
or just \(\nu_r \) when \(\tilde{\lambda} \) is understood. For \(r > l \) we set \(\nu_r = 1 \). Note that for \(j < l \) we have:

\[
\sum_{r=j+1}^{l} \lambda_r \nu_{r+1} = 1 - \nu_j.
\]

In the following combinatorial lemma, we will be given \(l \) separated collections \(\{I_i^j\}_{i \in A_j} \), \(j = 1 \ldots l \) of subintervals of a very long interval \([1, K]\). The knowledge about these collections is that the members of the \(j \)'th collection all have the same length, \(N_j, N_1 << N_2 \ldots << N_l \) and every collection is very “equally distributed” in \([1, K]\) in some sense.

We would like to extract, from these collections, a separated collection that will cover as much as we can, from \([1, K]\).

Let us denote by \(\lambda_j \), the percentage of \([1, K]\), that is covered by the \(j \)'th collection and by \(\tilde{\lambda} \), the corresponding vector. Then, \(\lambda_j = 1 - \nu_j \) percent of \([1, K]\) is covered by \(\{I_i^j\} \).

The complement is of size \(K - \nu_j \) and we could cover \(\lambda_{j-1} \) percent of it with the \(\{I_i^{j-1}\} \)’s.

By now we covered \(K(1 - \nu_{j-1}) \) and we could cover \(\lambda_{j-2} \) percent of the complement by the \(\{I_i^{j-2}\} \)’s. So by now we covered \(K(1 - \nu_{j-2}) \) of \([1, K]\). We go on this way and extract a separated collection that covers \(1 - \nu_1 \) percent of \([1, K]\). Let us now make these ideas precise.

4.3. Lemma. For any \(l > 0 \), there exists a positive function \(\varphi = \varphi(N_1 \ldots N_l, \eta_1 \ldots \eta_l, \epsilon) \) (where \(N_1 < N_2 \ldots < N_l \in \mathbb{N}, \eta_1, \epsilon > 0 \)) such that

\[
\limsup_{\epsilon \to 0} \limsup_{N_1 \to \infty} \limsup_{N_2 \to N_1} \limsup_{\eta_1 \to 0} \limsup_{\eta_2 \to \eta_1} \varphi(N_i, \eta_i, \epsilon) = 0. \quad (\ast)
\]

and such that if \(0 < \lambda_j < 1 \) for \(j = 1 \ldots l \) and \(\{I_i^j\}_{i \in A_j} \) are separated collections of subintervals of \([1, K]\) that satisfy:

(a) For every \(1 \leq j \leq l \) \(|I_i^j| = N_j \).

(b) For every \(1 \leq j \leq l \) \(\{I_i^j\} \) is a \((\lambda_j, \epsilon)\)-separated cover of \([1, K]\).

(c) For every \(0 \leq j < r \leq l \), the number of subintervals, \(J \), of \([1, K]\), of length \(N_r \), which are not \((\lambda_j, \epsilon)\)-separately covered by \(\{I_i^j \subset J\} \) is less than \(\eta_r K \).

then there are sets \(\tilde{A}_j \subset A_j \) for \(j = 1 \ldots l \), such that \(\{\{I_i^j\}_{i \in \tilde{A}_j}\}_{j=1}^l \) is a separated collection and \([1, K]\) is \(((1 - \nu_1(\tilde{\lambda})), \varphi(N_i, \eta_i, \epsilon))\)-separately covered by \(\{I_i^j\}_{i \in \tilde{A}_j} \) for \(j = 1 \ldots l \).

Proof. We will build the \(\tilde{A}_j \)'s by recursion, starting with \(j = l \). Define \(\tilde{A}_l = A_l \). Then from (b) we have that \(|N_l| |\tilde{A}_l| - \lambda_l| < \epsilon \). So if we will define \(f_l(N_i, \eta_i, \epsilon) = \epsilon \), then \(f_l \) satisfies \((\ast)\) and \([1, K]\) is \((\lambda_l \nu_{l+1}, f_l(N_i, \eta_i, \epsilon))\)-separately covered by \(\{I_i^j\}_{i \in \tilde{A}_l} \). Now, suppose we have defined \(\tilde{A}_l, \ldots, \tilde{A}_{j+1} \) and positive functions \(f_l \ldots f_{j+1} \), that satisfy \((\ast)\), such that \(\{\{I_i^j\}_{i \in \tilde{A}_j}\}_{j=1}^l \), is a separated collection and for every \(j + 1 \leq r \leq l \), \([1, K]\) is \((\lambda_r \nu_{r+1}, f_r(N_i, \eta_i, \epsilon))\)-separately covered by \(\{I_i^j\}_{i \in \tilde{A}_r} \). Define now,

\[
\tilde{A}_j = \{ i \in A_j | I_i^j \text{ is separated from } \{I_s^r\}_{s \in \tilde{A}_r}, r = j + 1 \ldots l \}.
\]
We want to estimate the size of \tilde{A}_j.

Estimation from below: Choose $j + 1 \leq r \leq l$ and divide the members of $\{I_i^r\}_{i \in \tilde{A}_r}$ to good ones and bad ones according to (c), i.e., I_i^r is good if it is (λ_i, ϵ_i)-separately covered by $\{I_i^\ell \subset I_i^r\}$. We have at most $\eta_i K$, I_i^r's, which are bad and at most $|\tilde{A}_r|$, I_i^r's, which are good. Every bad I_i^ℓ rules out at most $\frac{N_i}{N_j} + 2$ i’s in A_j from being in \tilde{A}_j. Every good I_i^r rules out at most $\frac{N_i}{N_j} (\lambda_j + \epsilon) + 2$, i’s in A_j from being in \tilde{A}_j. In total, the maximum number of i’s in A_j that are not in \tilde{A}_j is at most:

$$\sum_{r=j+1}^l |\tilde{A}_r| \left(\frac{N_i}{N_j} (\lambda_j + \epsilon) + 2 \right) + \eta_i K \left(\frac{N_i}{N_j} + 2 \right) = (**)$$

Note that because $[1, K]$ is $(\lambda_i, \nu_{r+1}, f_r)$-separately covered by $\{I_i^r\}_{i \in \tilde{A}_r}$, we must have

$$|\tilde{A}_r| \leq \frac{K}{N_j} (\lambda_i \nu_{r+1} + f_r).$$

Using this we get:

$$(** \leq \sum_{r=j+1}^l \frac{K}{N_j} (\lambda_i \nu_{r+1} + f_r) \left(\frac{N_i}{N_j} (\lambda_j + \epsilon) + 2 \right) + \eta_i K \left(\frac{N_i}{N_j} + 2 \right)$$

$$= \sum_{r=j+1}^l \frac{K}{N_j} \lambda_i \nu_{r+1} (\lambda_j + \epsilon) + \frac{K}{N_j} (\lambda_j + \epsilon) f_r + \frac{2K}{N_j} (\lambda_i \nu_{r+1} + f_r) + \frac{K}{N_j} \eta_i K r + 2 \eta_i K$$

$$= \frac{K}{N_j} \lambda_j \left(\sum_{r=j+1}^l \lambda_i \nu_{r+1} \right)$$

$$+ \frac{K}{N_j} \sum_{r=j+1}^l \{ \epsilon \lambda_i \nu_{r+1} + (\lambda_j + \epsilon) f_r + 2 \frac{N_j}{N_r} (\lambda_i \nu_{r+1} + f_r) + \eta_i (N_r + 2 N_j) \} = (\text{8})$$

as mentioned earlier $\sum_{r=j+1}^l \lambda_i \nu_{r+1} = 1 - \nu_j$ so we have that:

$$|\tilde{A}_j| \geq |A_j| - (\text{8}) \geq \frac{K}{N_j} (\lambda_j - \epsilon) - (\text{8})$$

$$= \frac{K}{N_j} \left\{ \lambda_j \nu_j - \left\{ \epsilon + \sum_{r=j+1}^l \{ \epsilon \lambda_i \nu_{r+1} + (\lambda_j + \epsilon) f_r + 2 \frac{N_j}{N_r} (\lambda_i \nu_{r+1} + f_r) + \eta_i (N_r + 2 N_j) \} \right\} \right\}$$

note that

$$|\left(\epsilon + \sum_{r=j+1}^l \{ \epsilon \lambda_i \nu_{r+1} + (\lambda_j + \epsilon) f_r + 2 \frac{N_j}{N_r} (\lambda_i \nu_{r+1} + f_r) + \eta_i (N_r + 2 N_j) \} \right)|$$

$$\leq \epsilon + \sum_{r=j+1}^l \{ \epsilon + (1 + \epsilon) f_r + 2 \frac{N_j}{N_r} (1 + f_r) + \eta_i (N_r + 2 N_j) \}$$
so if we will denote the last expression by $\hat{f}_j(N_i, \eta_i, \epsilon)$, then we see that \hat{f}_j satisfies (*) and $|\tilde{A}_j| \geq \frac{K}{N_j}(\lambda_j \nu_{j+1} - \hat{f}_j)$.

Estimation from above: For every $j + 1 \leq r \leq l$, we have that $|\tilde{A}_r| \geq \frac{K}{N_r}(\lambda_r \nu_{r+1} - f_r)$ and the number of bad $I_i \setminus \tilde{A}_r$’s is at most η_rK, so we must have at least $\frac{K}{N_r}(\lambda_r \nu_{r+1} - f_r) - \eta_rK$ good $I_i \setminus \tilde{A}_r$’s. Every good $I_i \setminus \tilde{A}_r$, rules out at least $\frac{N_r}{N_j}(\lambda_j - \epsilon)$ i’s in A_j from being in \tilde{A}_j. So the number of i’s in A_j that are not in \tilde{A}_j is at least:

$$\sum_{r=j+1}^l \frac{N_r}{N_j}(\lambda_j - \epsilon)\left\{\frac{K}{N_r}(\lambda_r \nu_{r+1} - f_r) - \eta_rK\right\}$$

and so

$$|\tilde{A}_j| \leq |A_j| - \sum_{r=j+1}^l \frac{N_r}{N_j}(\lambda_j - \epsilon)\left\{\frac{K}{N_r}(\lambda_r \nu_{r+1} - f_r) - \eta_rK\right\}$$

$$\leq \frac{K}{N_j}(\lambda_j + \epsilon) - \sum_{r=j+1}^l \left\{\frac{K}{N_j}(\lambda_j(\lambda_r \nu_{r+1} - f_r) - \epsilon(\lambda_r \nu_{r+1} - f_r)) - \frac{K}{N_j}\eta_rN_r(\lambda_j - \epsilon)\right\}$$

$$= \frac{K}{N_j}\left\{\lambda_j\left(1 - \sum_{r=j+1}^l \lambda_r \nu_{r+1}\right) + \epsilon + \sum_{r=j+1}^l \left(\lambda_j f_r + \epsilon(\lambda_r \nu_{r+1} - f_r) + \eta_rN_r(\lambda_j - \epsilon)\right)\right\}$$

$$\leq \frac{K}{N_j}\left\{\lambda_j \nu_{j+1} + \epsilon + \sum_{r=j+1}^l \left(f_r + \epsilon(1 + f_r) + \eta_rN_r(1 + \epsilon)\right)\right\}$$

so if we will denote

$$\hat{f}_j(N_i, \eta_i, \epsilon) = \epsilon + \sum_{r=j+1}^l \left(f_r + \epsilon(1 + f_r) + \eta_rN_r(1 + \epsilon)\right)$$

then \hat{f}_j satisfies (*) and $|\tilde{A}_j| \leq \frac{K}{N_j}(\lambda_j \nu_{j+1} + \hat{f}_j)$. Define $f_j = \max(\tilde{f}_j, \hat{f}_j)$ and then we have that f_j satisfies (*) and

$$|\tilde{A}_j| \leq \frac{K}{N_j}(\lambda_j \nu_{j+1} + f_j).$$

We have defined $\tilde{A}_j \subset A_j$ and a positive function f_j, that satisfies (*), such that $\{\{I_i^j\}_{i \in \tilde{A}_j}\}_{r=j}$ is a separated collection and $[1, K]$ is $(\lambda_j \nu_{j+1}, f_j)$-separately covered by $\{I_i^j\}_{i \in \tilde{A}_j}$.

We continue this way and define sets $\tilde{A}_j \subset A_j$ and positive functions f_j, $j = 1 \ldots l$, such that $\{\{I_i^j\}_{i \in \tilde{A}_j}\}_{j=1}^l$, is a separated collection and $[1, K]$ is $(\lambda_j \nu_{j+1}, f_j)$-separately covered by $\{I_i^j\}_{i \in \tilde{A}_j}$.

Note that this means:

$$K\left(\sum_{j=1}^l \lambda_j \nu_{j+1} - \sum_{j=1}^l f_r\right) \leq \left|\bigcup_{j=1}^l \bigcup_{i \in \tilde{A}_j} I_i^j\right| \leq K\left(\sum_{j=1}^l \lambda_j \nu_{j+1} + \sum_{j=1}^l f_r\right)$$
and so, if we will define $\varphi = \sum f_j$, then φ satisfies (*) and $\{\{J^i_j\}_{i \in \tilde{A}}\}_{j=1}^N$ is a $(1 - \nu_1, \varphi)$-separated cover of $[1, K]$.

Before turning to the proof of theorem 4.2, let us present some terminology. In the following $\mathcal{U} = \{U_1, \ldots, U_M\}$, is a cover of X. For any $\rho > 0$, we can find a partition $\beta \geq \mathcal{U}$, such that $\mathcal{N}(\mathcal{U}, \rho) = \mathcal{N}(\beta, \rho)$. Namely, we choose a subset of \mathcal{U}, of $N = \mathcal{N}(\mathcal{U}, \rho)$ elements, that covers X up to a set of measure $< \rho$, $\{U_1, \ldots, U_i\}$ and define $C_1 = U_1$, $C_j = U_i \setminus \bigcup_{m=1}^{j-1} U_{im}$, $j = 2 \ldots N$. The C_j's are disjoint, $C_j \subset U_{ij}$ and $\bigcup_1^N C_j = \bigcup_{j=1}^N U_{ij}$. Extend the collection $\{C_j\}_{j=1}^N$ to a partition, β, refining \mathcal{U}, in some way. Then, because $\beta \geq \mathcal{U}$, we have $\mathcal{N}(\beta, \rho) \geq N$ and from our construction, it follows that $\mathcal{N}(\beta, \rho) \leq N$.

- We call such a partition, a ρ-good partition for \mathcal{U}.

If (X, \mathcal{B}, μ, T) is aperiodic and $N \in \mathbb{N}$, $\rho, \delta > 0$ are given, then for a ρ-good partition β, for \mathcal{U}_0^{N-1}, we can construct a strong Rohlin tower with height $N + 1$ and error $< \delta$. Let \tilde{B} denote the base of the tower and let $B \subset \tilde{B}$ be a union of $\mathcal{N}(\beta, \rho)$ atoms of $\beta|\tilde{B}$ that covers \tilde{B} up to a set of measure, less than $\rho \mu(\tilde{B})$.

- We call (β, \tilde{B}, B), a good base for $(\mathcal{U}, N, \rho, \delta)$.
- For a set $J \subset \mathbb{N}$, a (\mathcal{U}, J)-name, is a function $f : J \rightarrow \{1 \ldots M\}$.
- f is a name of $x \in X$, if $x \in \bigcap_{i \in J} T^{-1} U_{f(i)}$.
- We denote the set of elements of X with f as a name by S_f.
- A set of (\mathcal{U}, J)-names, $\{f_i\}$, covers a set $C \subset \mathcal{B}$, if $C \subset \bigcup_i S_{f_i}$.

In the sequel, we will want to estimate the number of elements of \mathcal{U}_0^{N-1}, needed to cover a set $C \subset \mathcal{B}$, i.e, we will want to estimate the number of $(\mathcal{U}, [0, N - 1])$-names needed to cover C. The usual way to do so is to find a collection of disjoint sets $J_i \subset [0, N - 1]$ $i = 1 \ldots m$, that covers most of $[0, N - 1]$, such that we can bound the number of (\mathcal{U}, J_i)-names needed to cover C. If we can cover C by R_i, (\mathcal{U}, J_i)-names, $\{f_i^m\}_{m=1}^{R_i}$, then the set $\Gamma = \{f : [0, N - 1] \rightarrow \{1 \ldots M\} | f|_{J_i} \in \{f_i^m\}_{m=1}^{R_i}\}$, of $(\mathcal{U}, [0, N - 1])$-names, covers C and contains $\prod R_i \cdot M^{N-\sum |J_i|}$ elements.

This situation occurs in our proofs in the following way: Let (β, \tilde{B}, B), be a good base for $(\mathcal{U}, N, \rho, \delta)$ and $K >> N$. Set C to be the set of elements of X that visits B at times $i_1 < \cdots < i_m$ between 0 to $K - N$ (under the action of T). Then we can cover C by no more than $\mathcal{N}(\beta, \rho)$, $(\mathcal{U}, [i_j + N - 1])$-names. We can now turn to the proof of theorem 4.2.

Proof (theorem 4.2): If (X, \mathcal{B}, μ, T) is periodic, it follows from the ergodicity, that the system is a cyclic permutation on a finite set of atoms and for every $0 < \epsilon < 1$ we have $\liminf_n \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \epsilon) = 0$. We assume, then, that the system is aperiodic and thus we are able to use the Strong Rohlin Lemma. Given $0 < \rho_2 < \rho_1 < 1$, we need to show that the limits: $\liminf_n \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_i)$ $i = 1, 2$ exist and are equal. Note that for every n, we have that $\mathcal{N}(\mathcal{U}_0^{n-1}, \rho_1) \leq \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_2)$ and thus $\limsup_n \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_1) \leq \liminf_n \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_2)$, so it's enough to prove that

$$\limsup_n \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_2) \leq \liminf_n \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_1).$$
Let $0 < \epsilon_0 < \frac{1}{2}$, be given and denote:
\[
h_0 = \liminf_n \frac{1}{n} \log N(\mathcal{U}_0^{n-1}, \rho_1), \quad L = \{ n \in \mathbb{N} \mid h_0 - \frac{1}{n} \log N(\mathcal{U}_0^{n-1}, \rho_1) < \epsilon_0 \},
\]
so L contains arbitrarily large numbers. Choose $\ell \in \mathbb{N}$, large enough so that
\[
\left(\frac{1}{2} (1 + \rho_1) \right)^\ell \log M < \epsilon_0, \quad \left(\frac{1}{2} (1 + \rho_1) \right)^\ell + \epsilon_0 < \frac{1}{2} \quad (*).
\]

The towers construction: Remember the function φ from the combinatorial lemma (Lemma 4.3). It satisfies:
\[
\limsup_{\epsilon \to 0} \limsup_{N_1 \to \infty} \limsup_{\eta_1 \to 0} \limsup_{\eta_2 \to 0} \phi(N_i, \eta_i, \epsilon) = 0
\]
so we can choose $\epsilon > 0$, small enough, such that
\[
\limsup_{N_1 \to \infty} \limsup_{\eta_1 \to 0} \limsup_{\eta_2 \to 0} \phi(N_i, \eta_i, \epsilon) < \epsilon_0.
\]
Choose a small enough $\delta > 0$ (in a manner specified later). Choose $N_1 \in L$, large enough, such that
\[
\limsup_{\eta_1 \to 0} \limsup_{N_1 \to \infty} \limsup_{\eta_2 \to 0} \phi(N_i, \eta_i, \epsilon) < \epsilon_0.
\]
From the ergodicity, we can choose $N_2 \in L$, large enough, such that
- $\limsup_{N_2 \to \infty} \limsup_{N_1 \to \infty} \limsup_{\eta_1 \to 0} \phi(N_i, \eta_i, \epsilon) < \epsilon_0$.
- $\mu \{ x \mid \left| \frac{1}{N_2} \sum_{r=0}^{N_2-N_1} \chi_{B_1}(T^r x) - \mu(B_1) \right| < \frac{\epsilon}{N_2} \} \geq 1 - \eta_1$.
Find a good base $(\beta_1, \tilde{B}_1, B_1)$, for $(\mathcal{U}, N_1, \rho_1, \delta)$. Choose $\eta_1 > 0$, small enough, such that
\[
\limsup_{N_1 \to \infty} \limsup_{\eta_1 \to 0} \limsup_{N_2 \to \infty} \limsup_{\eta_2 \to 0} \phi(N_i, \eta_i, \epsilon) < \epsilon_0.
\]
Again, from the ergodicity, we can choose $N_3 \in L$, such that
- $\limsup_{N_3 \to \infty} \limsup_{N_2 \to \infty} \limsup_{N_1 \to \infty} \limsup_{\eta_1 \to 0} \phi(N_i, \eta_i, \epsilon) < \epsilon_0$.
- $\mu \{ x \mid \left| \frac{1}{N_3} \sum_{r=0}^{N_3-N_2} \chi_{B_j}(T^r x) - \mu(B_j) \right| < \frac{\epsilon}{N_3} j = 1, 2 \} \geq 1 - \eta_2$.
In this way we construct, inductively, $N_1 < N_2 \cdots < N_\ell$ (all from L), $\eta_1 \ldots \eta_\ell$ and good bases $(\beta_j, \tilde{B}_j, B_j)$, for $(\mathcal{U}, N_j, \rho_1, \delta)$, such that $\phi(N_i, \eta_i, \epsilon) < \epsilon_0$ and if we denote
\[
F_j = \{ x \mid \left| \frac{1}{N_j} \sum_{r=0}^{N_j-N_i} \chi_{B_i}(T^r x) - \mu(B_i) \right| < \frac{\epsilon}{N_j} i = 1 \ldots j - 1 \}
\]
then, $\mu(F_j) > 1 - \eta_j$.
Define
\[
E_K = \{ x \mid \frac{1}{K} \sum_{r=0}^{K-N_j} \chi_{F_j}(T^r x) > 1 - \eta_j, \quad \frac{1}{K} \sum_{r=0}^{K-N_j} \chi_{B_j}(T^r x) - \mu(B_j) \mid < \frac{\epsilon}{N_j} j = 1 \ldots \ell \}.
\]
From the ergodicity, we know that there is a \(K_0\), such that, for any \(K > K_0\), we have \(\mu(E_K) > \rho_2\). Fix \(K > K_0\), we shall show that we can cover \(E_K\), by "few" \((U, [0, K - 1])\)-names. For a fixed \(x \in E_K\) denote

\[
A_j = \{0 \leq m \leq K - N_j \mid T^m x \in B_j\}
\]

and for every \(i \in A_j\), let \(I_i^j = [i, i + N_j - 1]\). We claim that the collections \(\{I_i^j\}_{i \in A_j}\), \(j = 1 \ldots \ell\), satisfies conditions (a), (b), (c) from the combinatorial lemma (lemma 4.3), with \(\lambda_j = N_j \mu(B_j)\). To see this, note first, that because the height of the \(j\)'th tower was \(N_j + 1\), we have that each collection \(\{I_i^j\}_{i \in A_j}\) is separated.

(a) By definition \(|I_i^j| = N_j\).

(b) because \(x \in E_K\), we know that \(\frac{1}{K} \sum_{r=0}^{K-N_j} \chi_{B_j}(T^r x) - \mu(B_j) < \frac{\epsilon}{N_j}\) and thus, \(|\frac{N_j A_j}{K} - \lambda_j| < \epsilon\). So the \(\{I_i^j\}_{i \in A_j}\) forms a \((\lambda_j, \epsilon)\)-separated cover of \([0, K - 1]\).

(c) For \(1 < r \leq \ell\), we know from the fact that \(x \in E_K\), that \(\frac{1}{K} \sum_{s=0}^{K-N_r} \chi_{F_r}(T^s x) > 1 - \eta_r\) and thus we have \(\frac{1}{K} \sum_{s=0}^{K-N_r} \chi_{F_r}(T^s x) < \eta_r\). If we use the definition of \(F_r\), this becomes

\[
\frac{1}{K} \#\{0 \leq s \leq K - N_r \mid \exists 1 \leq j \leq r - 1 \mid \frac{1}{N_r} \sum_{i=0}^{N_r-N_j} \chi_{B_j}(T^{i+s} x) - \mu(B_j) \geq \frac{\epsilon}{N_j}\} < \eta_r
\]

or equivalently

\[
\#\{0 \leq s \leq K - N_r \mid \exists 1 \leq j \leq r - 1 \mid \frac{N_j}{N_r} #\{i \mid i + s \in A_j\} - \lambda_j \geq \epsilon\} < \eta_r K
\]

so if we choose \(1 \leq j < r \leq \ell\), we must have

\[
\#\{J \subset [0, K - 1] \mid |J| = N_r, \frac{N_j}{N_r} #\{i \mid I_i^j \subset J\} - \lambda_j \geq \epsilon\} < \eta_r K
\]

In words, the number of subintervals of \([0, K - 1]\) of length \(N_r\), \(J\), which are not \((\lambda_j, \epsilon)\)-separately covered, by those \(I_i^j\) which are contained in \(J\) is less than \(\eta_r K\), as we wanted. Using the combinatorial lemma, we can choose for every \(x \in E_K\) a separated collection \(\{\{I_i^j(x)\}_{i \in A_j}\}_{j=1}^\ell\) that covers at least \(K(1 - \nu_1(\lambda) - \epsilon_0)\) elements of \([0, K - 1]\). Because these collections are separated, there is a \(1 - 1\) correspondence between them and their complements. Hence, the number of such covers is less than

\[
\psi(K, \lambda_j, \epsilon_0) = \sum_{j \leq (\nu_1 + \epsilon_0) K} \binom{K}{j} (**)
\]

Fix such a collection \(\{\{I_i^j\}_{i \in A_j}\}_{j=1}^\ell\) and set

\[
C = \{x \in E_K \mid \{I_i^j(x)\} = \{I_i^j\}\}
\]

From the construction we see that for every \(1 \leq j \leq \ell\) we can cover \(B_j\) by no more than \(2^{N_j(h_0+\epsilon_0)}\) \((U, [0, N_j - 1])\)-names, thus we can cover \(C\) by no more than \(2^{N_j(h_0+\epsilon_0)}\)
(\mathcal{U}, I^j_\ell)$-names. So the number of $(\mathcal{U}, [0, K - 1])$-names, needed to cover C is at most
\[
\prod_{j=1}^{\ell} (2^{N_j(h_0 + \epsilon_0)})^{|\hat{A}_j|} \cdot M^{K(\nu_1 + \epsilon_0)} = 2^{\sum_j N_j(\hat{A}_j)(h_0 + \epsilon_0)} \cdot M^{K(\nu_1 + \epsilon_0)} \\
\leq 2^{K(h_0 + \epsilon_0)} \cdot M^{K(\nu_1 + \epsilon_0)}.
\]
Finally we get from this and (**) that
\[
\mathcal{N}(\mathcal{U}^{K-1}_0, \rho_2) \leq \psi(K, \lambda_j, \epsilon_0) \cdot 2^{K(h_0 + \epsilon_0)} \cdot M^{K(\nu_1 + \epsilon_0)}
\]
and so
\[
\frac{1}{K} \log \mathcal{N}(\mathcal{U}^{K-1}_0, \rho_2) \leq \frac{1}{K} \log \psi(K, \lambda_j, \epsilon_0) + h_0 + \epsilon_0 + \nu_1 \log M + \epsilon_0 \log M.
\]
If, in the construction of the towers, we choose δ small enough and N_1 large enough, we can ensure that $\lambda_j = N_j \mu(B_j) > \frac{1-\rho_1}{2}$ and thus $1 - \lambda_j < \frac{1+\rho_1}{2}$ \Rightarrow $\nu_1 < (\frac{1+\rho_1}{2})^{\ell}$ and so, from (*) we have that
\[
\nu_1 \log M < \epsilon_0 \quad \nu_1 + \epsilon_0 \leq \frac{1}{2}
\]
hence, from lemma 2.3
\[
\psi(K, \lambda_j, \epsilon_0) \leq 2^{K-H((\frac{1+\rho_1}{2})^{\ell}+\epsilon_0)}
\]
hence
\[
\frac{1}{K} \log \mathcal{N}(\mathcal{U}^{K-1}_0, \rho_2) \leq h_0 + \epsilon_0(2 + \log M) + H((\frac{1+\rho_1}{2})^{\ell} + \epsilon_0) \Rightarrow
\]
\[
\limsup_{K} \frac{1}{K} \log \mathcal{N}(\mathcal{U}^{K-1}_0, \rho_2) \leq h_0 + \epsilon_0(2 + \log M) + H((\frac{1+\rho_1}{2})^{\ell} + \epsilon_0)
\]
letting $\ell \to \infty$ and $\epsilon_0 \to 0$ we get
\[
\limsup_{K} \frac{1}{K} \log \mathcal{N}(\mathcal{U}^{K-1}_0, \rho_2) \leq h_0
\]
as desired. \hfill \Box

After proving theorem 4.2, we can define, for an ergodic m.t.d.s, (X, \mathcal{B}, μ, T) and a cover $\mathcal{U} = \{U_1 \ldots U_M\}$ of X, a notion of measure theoretical entropy in the following way:
\[
h_\mu^c(\mathcal{U}, T) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \epsilon) \quad where \quad 0 < \epsilon < 1.
\]
Often we omit T and write $h_\mu^c(\mathcal{U})$.

4.4. Theorem. $h_\mu^c(\mathcal{U}) = h_\mu^+(\mathcal{U})$
Proof. As before, if the system is periodic then \(h^c_\mu(U) = h^+_\mu(U) = 0 \). We assume, then, that the system is aperiodic. For every partition \(\alpha \geq U, n \in \mathbb{N} \) and \(0 < \epsilon < 1 \), we have that \(\mathcal{N}(U_0^{n-1}, \epsilon) \leq \mathcal{N}(\alpha_0^{n-1}, \epsilon) \) and therefore

\[
\forall \epsilon \leq \mu \leq \eta \Rightarrow h^c_\mu(U) \leq h^+_\mu(U)
\]

To prove the other inequality, we shall show that for a given \(0 < \epsilon < \frac{1}{4} \) and \(n \in \mathbb{N} \) we have:

\[
h^+_\mu(U) \leq \frac{1}{n} \log \mathcal{N}(U_0^{n-1}, \epsilon) + \sqrt{\epsilon} \cdot \log M + H(\sqrt{\epsilon}). \tag{*}
\]

Once we prove (*), we are done, for letting \(n \to \infty \) we get \(h^+_\mu(U) \leq h^c_\mu(U) + \sqrt{\epsilon} \cdot \log M + H(\sqrt{\epsilon}) \) and now, letting \(\epsilon \to 0 \) we get \(h^+_\mu(U) \leq h^c_\mu(U) \) as desired.

Proof of (*): choose \(\delta > 0 \), such that \(\epsilon + \delta < \frac{1}{4} \) and find a good base \((\beta, \tilde{B}, B) \) for \((U, n, \epsilon, \delta) \).

(Now we take \(\tilde{B} \) to be a base for a strong Rohlin tower of height \(N \) and error \(\epsilon < \delta \) and not of height \(N + 1 \) as before). Set \(N = \mathcal{N}(U_0^{n-1}, \epsilon) \), so \(B \) is the union of \(N \) elements of \(\beta|_\tilde{B} \). We index these elements by sequences \(i_0 \ldots i_{n-1} \), such that if \(B_{i_0 \ldots i_{n-1}} \) is one, then \(T^j(B_{i_0 \ldots i_{n-1}}) \subset U_{i_j} \), for every \(0 \leq j \leq n - 1 \). We have that \(\mu(U \setminus \bigcup_0^{n-1} T^i(B)) \leq \epsilon + \delta \).

Let \(\tilde{\alpha} = \{ \tilde{A}_1 \ldots \tilde{A}_M \} \) be the partition of

\[
E = \bigcup_0^{n-1} T^i(B)
\]

defined by

\[
\tilde{A}_m = \bigcup \{ T^j(B_{i_0 \ldots i_{n-1}}) \mid j \in [0, n - 1], i_j = m \}.
\]

Note that \(\tilde{A}_m \subset U_m \), for every \(1 \leq m \leq M \). Extend \(\tilde{\alpha} \), to a partition, \(\alpha \), of \(X \), refining \(U \), in some way. Set \(\eta^2 = \epsilon + \delta \) and define for every \(k > n \) \(f_k(x) = \frac{1}{k} \sum_0^{k-1} \chi_E(T^jx) \). We have that \(0 \leq f_k \leq 1 \) and \(\int f_k > 1 - \eta^2 \), so if we will denote:

\[
G_k = \{ x \mid f_k(x) > 1 - \eta \}
\]

then,

\[
\eta \cdot \mu(G_k^c) \leq \int_{G_k^c} 1 - f_k \leq \int 1 - f_k \leq \eta^2
\]

\[
\Rightarrow \mu(G_k) \geq 1 - \eta.
\]

We shall show that we can cover \(G_k \), by ”few” \((\alpha, [0, k-1]) \)-names. Partition \(G_k \) according to the values of \(0 \leq i \leq k - n \), such that \(T^i x \in B \). Note that if \(x \in G_k \) and \(0 \leq i_1 < \cdots < i_m \leq k - n \), are the times in which \(x \) visits \(B \), then the collection \(\{ [i_j, i_j + n - 1] \}_{j=1}^m \) covers all but at most \(\eta k + 2n \) elements of \([0, k - 1] \). Because each element of this partition defines a collection of subintervals of \([0, k - 1] \), of length \(n \), that covers all but at most
\[\eta k + 2n, \text{ elements of } [0, k - 1], \text{ in a } 1 - 1 \text{ manner, we have that the number of elements in the partition of } G_k \text{ is at most} \]

\[\psi(k, n, \eta) = \sum_{j < (\eta + \frac{2n}{k})^k} \binom{k}{j} \]

We fix an element \(C \) of this partition of \(G_k \) and want to estimate the number of \((\alpha, [0, k - 1])\)-names, needed to cover it. If \(0 \leq i_1 < \ldots < i_m \leq k - n \) are the times elements of \(C \) visit \(B \), then we need at most \(N, (\alpha, [i_j, i_j + n - 1])\)-names, to cover \(C \). Because the size of \([0, k - 1] \setminus \bigcup_j [i_j, i_j + n - 1] \), is at most \(\eta k + 2n \), we need at most \(N^{\frac{k}{2}} \cdot M^{\eta k + 2n} \)

\((\alpha, [0, k - 1])\)-names, to cover \(G_k \), by no more than:

\[\psi(k, n, \eta) \cdot N^{\frac{k}{2}} \cdot M^{\eta k + 2n} \]

\((\alpha, [0, k - 1])\)-names. Because \(\mu(G_k) > 1 - \eta \), this means that:

\[\frac{1}{k} \log N(\alpha_0^{k-1}, \eta) \leq \frac{1}{k} \log \psi(k, n, \eta) + \frac{1}{n} \log N + (\eta + \frac{2n}{k}) \log M. \]

Recall that once \((\eta + \frac{2n}{k}) < \frac{1}{2} \), we have \(\psi(k, n, \eta) \leq 2^{-k H(\eta + \frac{2n}{k})} \) and so

\[h_\mu(\alpha) = \lim \frac{1}{k} \log N(\alpha_0^{k-1}, \eta) \leq \frac{1}{n} \log N(\mathcal{U}_0^{n-1}, \epsilon) + \eta \cdot \log M + H(\eta) \]

so

\[h_\mu^+(\mathcal{U}) \leq \frac{1}{n} \log N(\mathcal{U}_0^{n-1}, \epsilon) + \sqrt{\epsilon + \delta} \cdot \log M + H(\sqrt{\epsilon + \delta}) \]

Letting \(\delta \to 0 \) we get

\[h_\mu^+(\mathcal{U}) \leq \frac{1}{n} \log N(\mathcal{U}_0^{n-1}, \epsilon) + \sqrt{\epsilon} \cdot \log M + H(\sqrt{\epsilon}) \]

as desired.

\[\square \]

4.5. **Theorem.** \(h_\mu^+(\mathcal{U}) = h_\mu^-(\mathcal{U}) \)

We already know that \(h_\mu^+(\mathcal{U}) \geq h_\mu^-(\mathcal{U}) \) (Proposition 3.6), so we only need to prove the other inequality. Before we turn to the proof, let us present some terminology and prove a combinatorial lemma.

Let \(\Lambda \), be a finite alphabet of \(M \) letters, \(k, n \in \mathbb{N} \) \(k \gg n \), \(0 < \delta < 1 \) and \(\omega = \omega_0^{k-1}, \) a word of length \(k \) on \(\Lambda \). (The symbol \(a_s^r \) stands for \(a_r \ldots a_s \)). Denote \(\Gamma = \Lambda^n \).

- An \((n, k, \delta)\)-packing is a pair \(\mathcal{C} = (\gamma_m^{m-1}, \gamma_0^{m-1}) \) where \(0 \leq i_j \leq k - n \), \(\gamma_j \in \Gamma, \ j = 0 \ldots m - 1, \ i_j + n - 1 < i_{j+1} \) and \(\frac{m+1}{k} > 1 - \delta \). (We think of an \((n, k, \delta)\)-packing as instructions to ”almost” write a word of length \(k \), we just fill it with the \(\gamma_j \)'s, where \(\gamma_j \) starts in the \(i_j \) letter and there will be no more than \(\delta k \) letters to add.)

- An \((n, k, \delta)\)-packing for \(\omega \), is an \((n, k, \delta)\)-packing, \(\mathcal{C} = (\gamma_m^{m-1}, \gamma_0^{m-1}) \), such that \(\omega_{i_j+n-1}^{i_j+n} = \gamma_j \).
• if μ_1, μ_2 are probability distributions on Γ then
 $$||\mu_1 - \mu_2|| = \max_{\gamma} |\mu_1(\gamma) - \mu_2(\gamma)|.$$

• An (n, k, δ)-packing, $C = (i_0^{m-1}, \gamma_0^{m-1})$, induces a probability distribution on Γ, denoted by P_C, by the formula $P_C(\gamma) = \frac{1}{m} \# \{0 \leq j \leq m-1 \mid \gamma = \gamma_j\}$.

• If μ is a probability distribution on Γ and C is an (n, k, δ)-packing, then we say that C is (n, k, δ, μ), if $||\mu - P_C|| < \delta$. We say that ω is (n, k, δ, μ), if there is an (n, k, δ)-packing for ω, which is (n, k, δ, μ).

4.6. Lemma. If μ is a probability distribution on Γ, with "average entropy"

$$h_0 = -\frac{1}{n} \sum_{\gamma \in \Gamma} \mu(\gamma) \log \mu(\gamma)$$

then there exists a positive function $\varphi(\delta)$, such that $\varphi(\delta) \to 0$ as $\delta \to 0$ and such that if $0 < \delta < \frac{1}{2}$, then for any $k > n$, the number of words $\omega \in \Lambda^k$, which are (n, k, δ, μ), is at most $2^{k(h_0 + \varphi(\delta))}$.

Proof. Fix $k > n$. We want to estimate the number of words $\omega = \omega_0^{k-1} \in \Lambda^k$, that are (n, k, δ, μ). For every such word, ω, we can choose an (n, k, δ)-packing, $C = (i_0^{m-1}, \gamma_0^{m-1})$ which is (n, k, δ, μ). In this way we define a map

$$\pi : \{\omega \in \Lambda^k \mid \omega \text{ is } (n, k, \delta, \mu)\} \to \{C \mid C \text{ is an } (n, k, \delta, \mu) - \text{packing}\}$$

If $C = (i_0^{m-1}, \gamma_0^{m-1})$, is an (n, k, δ)-packing, then $\frac{n+m}{k} > 1 - \delta$. This means that $\pi^{-1}(C) \leq |\Lambda|^\delta k = M^\delta k$. So we have that

$$\# \{\omega \in \Lambda^k \mid \omega \text{ is } (n, k, \delta, \mu)\} \leq M^\delta k \# \{C \mid C \text{ is an } (n, k, \delta, \mu) - \text{packing}\}.$$

Let us now estimate the number of (n, k, δ, μ)-packings, $C = (i_0^{m-1}, \gamma_0^{m-1})$:

The number of sequences, i_0^{m-1}, such that $0 \leq i_j \leq k-n$, $i_j + n - 1 < i_{j+1}$ and $\frac{m+n}{k} > 1 - \delta$ is at most $\sum_{j < \delta k} \binom{k}{j}$. From lemma 2.3 we know that for $\delta < \frac{1}{2}$, this sums to something $\leq 2^{H(\delta) k}$.

Fix such a sequence i_0^{m-1}. Let us now estimate the number of sequences, γ_0^{m-1}, such that the (n, k, δ)-packing, $C = (i_0^{m-1}, \gamma_0^{m-1})$, is (n, k, δ, μ).

Denote $\nu = \otimes_1 \mu$, the product measure on Γ. If $\gamma_0^{m-1} \in \Gamma^m$, then

$$\nu(\gamma_0^{m-1}) = \prod_{\gamma \in \Gamma} \mu(\gamma)^{\# \{0 \leq j \leq m-1 \mid \gamma = \gamma_j\}} = 2^{\sum_{\{\gamma \mid \mu(\gamma) \neq 0\}} \# \{0 \leq j \leq m-1 \mid \gamma = \gamma_j\} \cdot \log \mu(\gamma)}$$

$$= 2^{m \sum_{\{\gamma \mid \mu(\gamma) \neq 0\}} \frac{1}{m} \# \{0 \leq j \leq m-1 \mid \gamma = \gamma_j\} \cdot \log \mu(\gamma)}.$$

Now, the function $f : \{(x_\gamma)_{\gamma \in \Gamma} \in \mathbb{R}^\Gamma \mid \sum x_\gamma = 1\} \to \mathbb{R}$, defined by

$$f(x_\gamma) = \sum_{\{\gamma \mid \mu(\gamma) \neq 0\}} x_\gamma \cdot \log \mu(\gamma)$$
is continuous and so there is a positive function $\psi(\delta)$, such that $\psi(\delta) \to 0$ as $\delta \to 0$ and if $\max \gamma \{x_\gamma - \mu(\gamma)\} < \delta$, then $|f(\bar{x}_\gamma) - f(\mu(\gamma))| < \psi(\delta)$ (note that ψ depends only on n, μ). So if $\gamma^{m-1}_0 \in \Gamma^m$ is such that $\mathcal{C} = (i_0^{m-1}, \gamma^{m-1}_0)$, is a (n, k, δ, μ)-packing, it follows that

$$\nu(\gamma^{m-1}_0) = 2^m \sum_{\gamma^{m-1}_0} \mu(\gamma^{m-1}_0) \frac{1}{m} \#(0 \leq j \leq m-1 | \gamma = \gamma_j) \log \mu(\gamma)$$

$$\geq 2^m \left(\sum_{\gamma^{m-1}_0} \mu(\gamma^{m-1}_0) \log \mu(\gamma) - \psi(\delta) \right) \geq 2^{k(\epsilon h_0 + \psi(\delta))}$$

Where the last inequality follows from the fact that $m < \frac{k}{n}$ and the definition of h_0. We conclude that an upper bound for the number of such sequences γ^{m-1}_0 is $2^{k(h_0 + \psi(\delta))}$. If we collect these estimations, we get to the conclusion that for $0 < \delta < \frac{1}{2}$

$$\{\omega \in \Lambda^k \mid \omega \text{ is } (n, k, \delta, \mu)\} \leq M^{\delta k} \cdot 2^{H(\delta)k} \cdot 2^{k(h_0 + \psi(\delta))} \leq 2^{k(h_0 + \psi(\delta)) + H(\delta) + \delta \cdot \log M}$$

so $\phi(\delta) = \psi(\delta) + H(\delta) + \delta \cdot \log M$ is our desired function.

\[\square\]

Proof. (of theorem 4.5): We want to show that for an ergodic system (X, \mathcal{B}, μ, T) and a cover $\mathcal{U} = \{U_1 \ldots U_M\}$ of X, we have $h^+_\mu(\mathcal{U}) \leq h^-_\mu(\mathcal{U})$. As before, if the system is periodic, then, from the ergodicity, it must be a cyclic permutation on a finite set of atoms. Therefore $h^+_\mu(\mathcal{U}) = h^-_\mu(\mathcal{U}) = 0$. In the aperiodic case we can use the Strong Rohlin Lemma.

Let $\epsilon > 0$. We shall show that $h^+_\mu(\mathcal{U}) \leq h^-_\mu(\mathcal{U}) + 2\epsilon$. From the definition of $h^-_\mu(\mathcal{U})$, we can find $n \in \mathbb{N}$ and a partition $\beta \succeq \mathcal{U}_0^{n-1}$, such that $\frac{1}{n} H^+_{\mu}(\beta) \leq h^-_\mu(\mathcal{U}) + \epsilon$. As $\beta \succeq \mathcal{U}_0^{n-1}$, we can index the elements of β, by sequences $i_0^{n-1} = i_0 \ldots i_{n-1}$, such that if $\bar{B}_{i_{n-1}}$ is one, then $T_j \bar{B}_{i_{n-1}} \subset U_{i_j} \quad j = 0 \ldots n-1$. We can assume that each sequence, i_0^{n-1}, corresponds to, at most one element of β, for otherwise, we could unite these elements and get a coarser partition β', still refining \mathcal{U}_0^{n-1}, such that $\frac{1}{n} H^+_{\mu}(\beta') \leq \frac{1}{n} H^+_{\mu}(\beta) \leq h^-_\mu(\mathcal{U}) + \epsilon$. Set $\Gamma = \{1 \ldots M\}^n$. So the elements of β are indexed by Γ. (if $\gamma \in \Gamma$, does not correspond to an element of β, in the above way, we set $\bar{B}_{i_{n-1}} = \emptyset$). In this way, the partition β, defines a probability distribution, ν, on Γ, defined by $\nu(\gamma) = \mu(\bar{B}_{i_{n-1}})$ and we have that $h_0 = \frac{1}{n} H^+_{\mu}(\beta)$, is the "average entropy" (see Lemma 4.6) of ν.

Choose $\delta > 0$ (in a manner specified later) and F, be a base for a strong Rohlin tower (with respect to β) of height n and error $\leq \delta^2$. Denote the atoms of $\beta |_F$ by $B_{i\gamma} \in \Gamma$, (where $B_{i\gamma} = \bar{B}_{i\gamma} \cap F$), and define a partition $\alpha = \{A_1 \ldots A_M\}$ of $E = \bigcup_{i=0}^{n-1} T^j F$, by $A_m = \cup \{T^j B_{i_{n-1}} \mid j \in \{0 \ldots n-1\}, \ i_j = m\}$. Note that $A_m \subset U_m$. Extend α, to a partition α of X refining \mathcal{U}, in some way. The set of indices of elements of α, Λ (the alphabet in which α-names are written) contains $\{1 \ldots M\}$ and we can always build α, such that $|\Lambda| \leq 2M$. We slightly abuse our notation and denote $\Gamma = \Lambda^n$. In this way, ν is still a probability distribution on Γ.

Claim: If δ, is small enough, then $h^+_\mu(\alpha) \leq h_0 + \epsilon$.

Once we prove this claim, we are done, because then

$$h^+_\mu(\mathcal{U}) \leq h^+_\mu(\alpha) \leq h_0 + \epsilon \leq h^-_\mu(\mathcal{U}) + 2\epsilon.$$
Proof of claim: For $k >> n$, we look at the function $f_k(x) = \frac{1}{k} \sum_{0}^{k-1} \chi\nu(T^jx)$. We have that $0 \leq f_k \leq 1$ and $\int f_k > 1 - \delta^2$. Therefore
\[
\delta \cdot \mu(\{x | f_k(x) > 1 - \delta\}) \leq \int_{\{x | f_k(x) > 1 - \delta\}} \chi\nu \leq \int 1 - f_k \leq \delta^2
\]
\[
\Rightarrow \mu(\{x | f_k(x) > 1 - \delta\}) \geq 1 - \delta.
\]
Denote, $G_1^k = \{x | f_k(x) > 1 - \delta\}$. For $x \in G_1^k$, there are at most δk times $0 \leq i \leq k - 1$, such that $T^i x \notin E$. Define
\[
G_2^k = \{x | \frac{1}{k} \sum_{0}^{k-n} \chi\nu(T^ix) - \mu(A) < \delta, A \in \beta | F \cup \{F\}\}.
\]
Let us see what can we say about the $(\alpha, [0, k - 1])$-name of an element, x, of $G_1^k \cap G_2^k$. Fix such an x and denote by $i_0 < \cdots < i_{m-1}$, the times between 0 to $k - n$ in which x visits F. We have that $0 \leq i_j \leq k - n, i_j + n - 1 < i_{j+1}$ (that is because the height of the tower is n). Except for at most $2n$ times (at the beginning and n at the end), x visits E, exactly in the times $i_j \ldots i_j + n - 1, j = 1 \ldots m - 1$. Therefore, we must have
\[
n \cdot m \geq (1 - \delta)k - 2n \Rightarrow n \cdot m \geq 1 - (\delta + \frac{2n}{k})
\]
Denote the $(\alpha, [0, k - 1])$-name of x by $\omega = \omega_0^{k-1} (\omega_i \in \Lambda)$, and $\gamma_j = \omega_{i_j} \ldots \omega_{i_j+n-1} \in \Gamma, j = 0 \ldots m - 1$. We have that $C = (\gamma_0^{m-1}, \gamma_0^{m-1})$ is an $(n, k, \delta + \frac{2n}{k})$-packing for ω. Let us now see, what can we say about the distribution, P_C, this packing induces on Γ.
For $0 \leq r \leq k - n$, we have that $T^r x \in B_\gamma$ if and only if, there is a $0 \leq j \leq m - 1$, such that $r = i_j$ and $\gamma = \gamma_j$. Therefore, because $x \in G_2^k$
\[
\bullet \forall \gamma \in \Gamma \quad |\frac{1}{k} \sum_{0}^{k-n} \chi\nu(T^ix) = \mu(A) - \mu(B_\gamma)| < \delta.
\]
\[
\bullet |\frac{m}{k} - \mu(F)| < \delta.
\]
Note that $\mu(F) > \frac{1-\delta}{m}$, so if δ is sufficiently small, we can guarantee that $|\frac{k}{m} - \frac{1}{\mu(F)}|$ would be arbitrarily small and in turn we can guarantee that for every $\gamma \in \Gamma$
\[
|\frac{k}{m} - \frac{1}{\mu(F)}| \cdot |\{0 \leq j \leq m - 1 | \gamma = \gamma_j\} - \mu(B_\gamma)| = |P_C(\gamma) - \nu(\gamma)|
\]
would be arbitrarily small. This is to say that $||P_C - \nu||$ is arbitrarily small. We see that there is a positive function $\psi(\delta)$, independent of k, such that $\psi(\delta) \to 0$ as $\delta \to 0$ and such that, if $x \in G_1^k \cap G_2^k$ and ω is its $(\alpha, [0, k - 1])$-name, then ω is $(n, k, \psi(\delta) + \frac{2n}{k}, \nu)$.
Remember the function φ, from lemma 4.6. There is an $\eta_0 > 0$, such that for every $0 < \eta < \eta_0 \varphi(\eta) < \epsilon$. Choose k to be large enough so that $\frac{2n}{k} < \frac{\eta_0}{2}$ and the error, δ, of the tower to be so small, such that $\psi(\delta) < \frac{\eta_0}{2}$, and conclude, from lemme 4.6, that the number of $(\alpha, [0, k - 1])$-names of elements of $G_1^k \cap G_2^k$ is at most $2^{k(\eta_0 + \epsilon)}$. From the ergodicity, we know that for large enough k, $\mu(G_1^k \cap G_2^k) > 1 - 2\delta$, so we have
\[
h_\mu(\alpha) = \lim_{k} \frac{1}{k} \log N(\alpha^{k-1}, 2\delta) \leq \eta_0 + \epsilon.
\]
as desired.
Remarks:

- If \((X, T)\) is totally ergodic, i.e \((X, T^n)\) is ergodic for every \(n \in \mathbb{N}\), then we can look at expressions like \(h^e_\mu(U_n, T^n)\). It follows from the definition that \(h^e_\mu(U_n, T^n) = \frac{1}{n} h^e_\mu(U_0^{n-1}, T^n)\). This enables us to prove the last theorem without any hard work done. We know from theorem 4.4, that \(h^e_\mu(U_n, T^n) = h^e_\mu(U, T^n)\) and therefore \(h^+_\mu(U, T) = \frac{1}{n} h^+_\mu(U_0^{n-1}, T^n)\). But then, proposition 3.6 (which is elementary), gives: \(h^+_\mu(U, T) = \lim_{n} h^+_\mu(U_0^{n-1}, T^n) = h^+_\mu(U, T)\) and this gives the desired result.

- The definitions of \(h^+_\mu(U), h^-_\mu(U)\), were introduced in [R] and discussed also in [Ye], [HMRY]. There, a proof of their equality was given only in the case where \((X, T)\), is a t.d.s, and \(U\) is an open cover. The proof was based on a reduction to a uniquely ergodic case and then a use of a variational inequality, proved in [GW].

- The definition of \(h^e_\mu(U)\) is new. This definition helps us to prove directly a slight generalization of the variational inequality proved in [GW] and mentioned above, to the non-topological case. (Theorem 6.1).

- The proofs of theorems 4.2, 4.4, 4.5 and lemma 4.6 are based on ideas of B.Weiss and E.Glasner

5. Ergodic decomposition for \(h^+_\mu, h^-_\mu\)

5.1. Theorem. (Proposition 5 in [HMRY]): Let \(U = \{U_1 \ldots U_M\}\), be a cover of \(X\), and \(\mu = \int \mu_x d\mu(x)\), the ergodic decomposition of \(\mu\) with respect to \(T\). Then

\[
h^+_\mu(U, T) = \int h^+_{\mu_x}(U, T) d\mu(x) \quad h^-_\mu(U, T) = \int h^-_{\mu_x}(U, T) d\mu(x)
\]

5.2. Corollary. \(h^+_{\mu}(U) = h^-_{\mu}(U)\)

Proof. It follows immediately from the above and the ergodic case (Theorem 4.5)

From now on we will denote the number \(h^+_{\mu}(U, T) = h^-_{\mu}(U, T)(= h^e_{\mu}(U, T)\) in the ergodic case), simply by \(h_{\mu}(U, T)\) or \(h_{\mu}(U)\) or \(h(U)\), when no ambiguity can occur.

6. Variational relations

As always, let \(U = \{U_1 \ldots U_M\}\), be a cover of the m.t.d.s \((X, \mathcal{B}, \mu, T)\). We can define the "combinatorial entropy" of \(U\) as

\[
h_c(U, T) = \lim_{n} \frac{1}{n} \log N(U_0^{n-1})
\]

where, \(N(\mathcal{V})\), is the minimum number of elements of \(\mathcal{V}\), needed to cover the whole space. Note that the sequence \(\log N(U_0^{n-1})\), is sub-additive, hence the limit exists. If \((X, T)\) is a t.d.s and \(U\) is an open cover then we denote \(h_{\text{top}}(U, T) = h_c(U, T)\).
The next theorem was proved in [GW] for topological dynamical systems and measurable covers. We give here a simple proof for the non topological case that uses the definition of $h^c_\mu(U)$.

6.1. **Theorem.** $h_\mu(U) \leq h_c(U)$.

Proof. First, if the system is ergodic, then $h_\mu(U) = \lim \frac{1}{n} \log N(U_{0}^{n-1}, \frac{1}{2})$ and as $N(U_{0}^{n-1}, \frac{1}{2}) \leq N(U_{0}^{n-1})$, we have

$$h_\mu(U) \leq \lim \frac{1}{n} \log N(U_{0}^{n-1}) = h_{\text{top}}(U)$$

as desired. In the non ergodic case, let $\mu = \int \mu_x d\mu(x)$, be the ergodic decomposition of μ. By theorem 5.1, $h_\mu(U) = \int h_{\mu_x}(U)d\mu(x)$, so from the first part we see that $h_\mu(U) \leq h_c(U)$. \hfill \Box

Remark: Another simple proof of the above, uses the definition of $h^c_\mu(U)$:

$$H^c_\mu(U_{0}^{n-1}) = \inf_{\alpha \geq U_{0}^{n-1}} H_\mu(\alpha) \leq \inf_{\alpha \geq U_{0}^{n-1}} \log |\alpha| \leq \log N(U_{0}^{n-1})$$

$$\Rightarrow h_\mu(U) = \lim \frac{1}{n} H_\mu(U_{0}^{n-1}) \leq \lim \frac{1}{n} \log N(U_{0}^{n-1}) = h_c(U).$$

From this stage, until the end of this paper we assume that (X, T), is a t.d.s. We denote by $\mathcal{M}_T(X)$, the set of T-invariant probability measures on X and by $\mathcal{M}_T^e(X)$, the set of ergodic ones. Also C^o_X, will denote the set of finite open covers of X.

In [BGH], the following theorem was proved:

6.2. **Theorem.** (Theorem 1 in [BGH]): If $U \in C^o_X$, then there exists $\mu \in \mathcal{M}_T(X)$, such that $h_\mu(U) \geq h_{\text{top}}(U)$.

In light of theorem 6.1 we have that for every $U \in C^o_X$, one can find a measure $\mu \in \mathcal{M}_T(X)$, such that $h_\mu(U) = h_{\text{top}}(U)$. In fact theorem 7 in [HMRY] now becomes:

6.3. **Corollary.** for every $U \in C^o_X$, one can find a measure $\mu \in \mathcal{M}_T^e(X)$, such that $h_\mu(U) = h_{\text{top}}(U)$.

Proof. Choose $\mu \in \mathcal{M}_T(X)$, such that $h_\mu(U) = h_{\text{top}}(U)$, and let $\mu = \int \mu_x d\mu(x)$, be its ergodic decomposition. We know that

$$h_{\text{top}}(U) = h_\mu(U) = \int h_{\mu_x}(U)d\mu(x)$$

and that $h_{\mu_x}(U) \leq h_{\text{top}}(U)$. So we must have $h_{\mu_x}(U) = h_{\text{top}}(U)$ for $[\mu]$ a.e x. \hfill \Box

We conclude from the above, the classical variational principle:

First we state a technical lemma, taken from [Ye].

6.4. **Lemma.** For any $\epsilon > 0$, $\mu \in \mathcal{M}_T(X)$ and $\alpha = \{A_1 \ldots A_M\} \in \mathcal{P}_X$, there exists an open cover $U \in C^o_X$, such that for every partition $\beta \supseteq U$ one has $H_\mu(\alpha|\beta) < \epsilon$.

6.5. **Theorem.** (The Variational Principle):

(a) For every $\mu \in \mathcal{M}_T(X)$, $h_\mu(T) \leq h_{\text{top}}(T)$.
(b) \(\sup_{\mu \in \mathcal{M}_T(X)} h_\mu(T) = h_{\text{top}}(T). \)

Proof. To prove (a), we first show that for each \(\mu \in \mathcal{M}_T(X) \), \(h_\mu(T) = \sup_{U \in \mathcal{C}_X^0} h_\mu(U,T). \) If this is done, then from theorem 6.1, we get
\[h_\mu(T) \leq \sup_{U \in \mathcal{C}_X^0} h_{\text{top}}(U,T) = h_{\text{top}}(T). \]

It follows from the definition, that for any cover \(U \) of \(X \), we have \(h_\mu(U,T) \leq h_\mu(T) \), so one inequality is clear. For the other inequality, fix a partition, \(\alpha = \{A_1 \ldots A_M\} \), of \(X \) and \(\epsilon > 0 \). We need to find an open cover, \(U \), of \(X \), such that \(h_\mu(\alpha,T) \leq h_\mu(U,T) + \epsilon \). By the preceding lemma and from the fact that for any \(\beta \in \mathcal{P}_X \) one has \(h_\mu(\alpha) \leq h_\mu(\beta) + H(\alpha|\beta) \) we have \(U \in \mathcal{C}_X^0 \), such that
\[h_\mu(U,T) = \inf_{\beta \supseteq U} h_\mu(\beta,T) \geq \inf_{\beta \supseteq U} (h_\mu(\alpha,T) - H(\alpha|\beta)) \geq h_\mu(\alpha,T) - \epsilon. \]

To prove (b), note that from (6.3) we know that for any \(U \in \mathcal{C}_X^0 \), we can find \(\mu \in \mathcal{M}_T(X) \), such that \(h_\mu(U,T) = h_{\text{top}}(U,T) \). This gives us
\[\sup_{\mu \in \mathcal{M}_T(X)} h_\mu(T) \geq h_{\text{top}}(U,T) \Rightarrow \sup_{\mu \in \mathcal{M}_T(X)} h_\mu(T) \geq \sup_{U \in \mathcal{C}_X^0} h_{\text{top}}(U,T) = h_{\text{top}}(T). \]
Together with (a), we get equality, which is (b). \(\square \)

References

[BGH] F.Blanchard, E.Glasner and B.host. A variation on the variational principle and applications to entropy pairs. Ergod.th.&Dynam.Sys. 17(1997),29-43.

[GW] E.Glasner and B.Weiss. On the interplay between measurable and topological dynamics. Preprint 2004.

[HMRY] W.Huang, A.Maass, P.P.Romagnoly and X.Ye. Entropy pairs and local abramov formula for measure-theoretic entropy for a cover. Ergod. Th. and Dynam. Sys.24(2004), 1127-1153.

[R] P.P.Romagnoli. A local variational principle for the topological entropy. Ergod.th.& Dynam.Sys.23(2003),1601-1610.

[Ru] D.J.Rudolph. Fundamentals of measurable dynamics: Ergodic Theory on Lebesgue Spaces. Oxford Clarendon Press, 1990.

[Sh1] P.C.Shields. The Ergodic Theory Of Discrete Sample Paths. AMS Graduate Studies in Mathematics vol.13. 1996.

[Sh2] P.C.Shields. The Theory of Bernoulli Shifts. Reprint of 1973 University of Chicago Press edition (available on the Web).

[Ye] W.huang, X.Ye and G.Zhang. A local variational principle for conditional entropy. Preprint 2004.