Research Paper

Effect of Chromium Picolinate Supplementation Combined With Resistance Training on Liver Enzymes Levels and Insulin Resistance in Patients With Type 2 Diabetes

Mohammad Parastesh1, Abbas Saremi2, Meisam Ebadianejad3

1. Assistant professor, Department of Exercise Physiology, Faculty of Sport Sciences, Arak University, Arak, Iran.
2. Associate Professor, Department of Exercise Physiology, Faculty of Sport Sciences, Arak University, Arak, Iran.
3. MSc, Department of Exercise Physiology, Faculty of Sport Sciences, Arak University, Arak, Iran.

1. Introduction

There is much evidence to suggest the role of oxidative stress and subsequent production of free radicals in the pathogenesis of diabetes [3]. Eye, nervous system, kidney and liver failures have been identified as the leading causes of mortality in diabetic patients [4]. An increase in liver enzymes has been suggested to be a predictor of diabetes [6]. Diabetes increases the level of liver enzymes in the blood, which is mainly due to the increased oxidative stress in tissue areas and can be partly because of increased blood sugar [6].

Chromium deficiency is associated with glucose intolerance, increased serum insulin levels and decreased num-

ABSTRACT

Objective The aim of this study was to investigate the effect of supplementation with chromium picolinate combined with resistance training on the serum level of liver enzymes and insulin resistance index (HOMA-IR) in male patients with Type 2 Diabetes (T2D).

Method In this study, participants were 30 male patients with T2D (Mean±SD weight: 75.1±6.3 kg and BMI= 26.1±2.3 kg/m²). They were divided into three groups (two experimental and one control). In addition to resistance training for 8 weeks, experimental groups consumed 400-mg chromium picolinate daily and placebo. Serum levels of liver enzymes, insulin and glucose were measured before and after the training period. Data were analyzed using one-way ACNOVA and Bonferroni correction test (P<0.05).

Result Both resistance training combined with chromium picolinate supplementation (P=0.04) and resistance training with placebo (P=0.11) significantly reduced HOMA-IR compared to the control group. They both also resulted in a significant decrease in Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) enzymes level compared to the diabetic control group (P=0.01). Resistance training along with chromium picolinate supplementation (P=0.01) significantly reduced the waist-hip ratio (P=0.04) and fat percentage (P=0.01) compared to controls.

Conclusion training combined with chromium picolinate supplementation is more effective in improving the liver enzymes level in T2D patients.
ber of insulin receptors which are the symptoms of Type 2 Diabetes (T2D) [9]. Studies have shown that serum concentrations of chromium picolinate in diabetic patients and in those with glucose intolerance are significantly lower than in controls [11].

Physical activity can enhance the skeletal muscle response to insulin by increasing the expression or activity of proteins involved in metabolism and insulin-signal transduction. Physical activity increases the glycolgen synthase activity and expression of glucose transporter proteins. In diabetic patients with insulin deficiency, regular physical exercise can facilitate the entry of glucose into muscle cells and consequently, increase insulin sensitivity and cause the absence of insulin [13]. Overall, there is high controversy on the effects of chromium picolinate supplementation, and the beneficial effect of resistance training mechanism combined with chromium picolinate supplementation on liver enzymes is not clear yet.

2. Materials and Methods

The present study is a quasi-experimental study with pre-test/post-test design. Thirty-four middle-aged men with T2D referred to Shiraz Medical Center were voluntarily participated in this study. They were randomly divided into three groups of diabetic control (n=10), resistance training with placebo (n=12) and resistance training with chromium picolinate supplementation (n=12). The subjects’ skinfold thickness was measured using a caliper (Seahan, South Korea) and the fat percentage was measured according to Pollock and Jackson (1976)’s method. Blood parameters including liver enzymes were analyzed using Pars Azmoon kits (Pars Azmoon Inc., Tehran, Iran). Fasting blood glucose was measured by a glucose assay kit (Pars Azmoon) with a sensitivity of 5 mg/dL. For serum insulin level measurement, ELISA kit (Monobind Co. US) with a sensitivity of 0.15 Μg/mL was used. To observe the overload principle, intensity of exercise program from 1-4 weeks was 40-50% of one Repetition Maximum (1RM), 2-3 sets each with 15-20 reps; from 6-8 weeks, the intensity was 75%-85% of 1RM intensity, 2-3 sets each with 8-10 reps [18]. Experimental groups received chromium picolinate supplementation at a dose of 400 mg per day for 8 weeks, twice per day after breakfast and dinner.

Statistical analysis was performed in SPSS V. 22 software by using ANCOVA and Bonferroni Post Hoc test at P≤0.05 after testing the assumption of normality by Shapiro-Wilk test and the equality of variances by Levene’ test.

3. Result

ANCOVA results showed no significant difference in fasting blood sugar (F=6.48, P=0.66) between the study groups after intervention, but in terms of serum insulin levels (F=116.97, P=0.001) and insulin resistance index (HOMA-IR) (F=23.26, P=0.001) the difference between groups was significant after intervention. Based on Bonferroni test results, the serum insulin level (P=0.001) and HOMA-IR (P=0.001) in the training group with chromium picolinate supplementation were significantly lower than the other groups.

Table 1. Evaluation of glucose homeostasis and body composition indicators in the study groups

Variables	Phases	Diabetic Control	Training With Placebo	Training With Supplementation	P
ALT (U/L)	Pre-test	15.60±6.48	18.30±3.36	19.70±4.58	0.001
	Post-test	24.10±11.90	18.01±4.02	14.50±4.07a	0.001
ALP (U/L)	Pre-test	258.2±49.08	241.71±45.2	252.20±54.82	0.001
	Post-test	277.9±66.2	218.71±19.02	235.36±56.41a	0.002
AST (U/L)	Pre-test	21.40±4.19	31.80±3.12	30.50±9.32	0.001
	Post-test	21.20±4.10	17.30±29.41	22.20±7.61	0.139
GGT (U/L)	Pre-test	28.60±11.75	52.95±29.41	33.18±20.64	0.002
	Post-test	26.63±9.49	40.90±9.89	27.78±16.84	0.666

ANOVA and Bonferroni post hoc test results. * compared to diabetic control group; * compared to training with placebo group; ALP: Alkaline Phosphatase; GGT: Gamma-Glutamyl Transferase
supplementation, and HOMA-IR (P= 0.02) in the training group with placebo showed a significant decrease after intervention compared to the diabetic control group. Moreover, HOMA-IR level of the training group with chromium picolinate supplementation in post-test phase significantly decreased compared to the placebo group (P= 0.045).

Resistance training combined with chromium picolinate supplementation (P=0.04) and resistance training with placebo (P=0.11) resulted in a significant decrease in HOMA-IR compared to the control group. Also, resistance training combined with supplementation (P=0.01) significantly reduced the waist-to-hip ratio (P=0.04) and fat percentage (P=0.01) compared to diabetic controls. Resistance training combined with supplementation (P=0.01) and placebo (P=0.01) resulted in a significant decrease in Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) compared to diabetic controls (Table 1).

4. Conclusion

It was concluded that resistance training alone can have favorable effects on hepatic markers and improvement of body composition. Supplementation of chromium picolinate can improve hepatic markers in T2D men, while combination of resistance training with chromium picolinate supplementation has a significant effect on both body composition improvement and hepatic markers in men with T2D.

Less studies have been conducted on the effect of resistance training combined with chromium picolinate supplementation on the serum levels of enzymes and liver failures in T2D men. In order to clarify and confirm the effect of chromium picolinate supplementation along with physical activity on liver enzymes, other training methods are suggested in future studies.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of Arak University of Medical Sciences (Code: IR.ARAKMU.REC.1397.172).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Authors' contributions

Conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing–original draft Preparation, writing–review & editing, visualization, supervision, funding acquisition by all authors; Project administration by Mohammad Parastesh.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the staff of the Faculty of Physical Education and Sport Sciences at Arak University of Medical Sciences for their valuable cooperation.
تأثیر تمرین مقاومتی همراه با مصرف مکمل پیکولینات کروم بر سطح سرمی آنزیم‌های کبدی و شاخص مقاومت به انسولین مردان دیابت نوع ۲

محمد پرستش*، عباس صارمی، میثم عبادی نژاد

1. استاد، گروه آسیب‌شناسی و فیزیولوژی ورزشی، دانشگاه اراک، اراک
2. عالی‌شناس، گروه آسیب‌شناسی و فیزیولوژی ورزشی، دانشگاه اراک، اراک
3. کارشناسی ارشد، گروه آسیب‌شناسی و فیزیولوژی ورزشی، دانشگاه اراک، اراک

مقدمه

دیابت، یک بیماری مزمن غدد درون‌ریز است که با دیابت ملیتوس هیپرگلیسمی مداوم همراه است که اغلب ناشی از کمبود مطلق یا نسبی ترشح انسولین یا مقاومت به انسولین است. هنگامی که کبد قادر به نگهداری سطح سرمی انسولین را برای دیابتی‌ها می‌نماید، تأثیرات آن در شاید کبدی به‌طور قابل‌توجهی افزایش می‌یابد.

شواهد زیادی حاکی از نقش استرس اکسیداتیو و فعالیت‌های بیولوژیکی دیابتی در تولید رادیکال‌های آزاد با میزانی مانند ۲۰۱۳ میلیون کودک و بزرگسالان در سال ۲۰۲۵ به دیابت تا سال ۲۰۲۵. شواهد زیادی حاکی از نقش استرس اکسیداتیو و فعالیت‌های بیولوژیکی دیابتی در تولید رادیکال‌های آزاد با میزانی مانند ۲۰۱۳ میلیون کودک و بزرگسالان در سال ۲۰۲۵.

شواهد زیادی حاکی از نقش استرس اکسیداتیو و فعالیت‌های بیولوژیکی دیابتی در تولید رادیکال‌های آزاد با میزانی مانند ۲۰۱۳ میلیون کودک و بزرگسالان در سال ۲۰۲۵.

تاریخ دریافت: ۱۳۹۸ اردیبهشت، تاریخ پذیرش: ۱۳۹۸ شهریور، تاریخ انتشار: ۱۳۹۸ آذر
پس از توضیح مراحل مطالعه و اخذ رضایت نامه آگاهانه از آزمودنی واجد مصرف داروهای کاهنده قند خون، کنترل فشار خون و چربی جیوه، استعمال نکردن دخانیات، مصرف نکردن مکمل، تغییرندادن میلی متر دیابت بیشتر از شش ماه، شرکت نداشتن در فعالیت بدنی منظم سال، نداشتن سابقه بیماری قلبی عروقی، داشتن سابقه بیماری که به مرکز درمانی شهر شیراز مراجعه کرده‌اند.

پیش آزمون ـ پس آزمون است که از میان مردان میان سال مبتلا تحقیق حاضر از نوع نیمه تجربی در قالب سه گروه با طرح تصادفی جهت بررسی اثر همزمان همراه با مکمل پیکولینات کروم بر آنزیم های کبدی به خوبی زیادی وجود دارد و از سویی سازوکار تأثیر مفید تمرین مقاومتی در مجموع، در مورد نتایج اثر مکمل پیکولینات کروم تناقض مقدار معینی از قدرت و استقامت عضلانی است که می‌تواند از راه ندارند. لازمی فعالیت بدنی در بیماران دیابتی مسن، داشتن افرادی انگیزه و توان کافی برای فعالیت های استقامتی تمرینات استقامتی برای همه این افراد امکان‌پذیر نیست. چنین اضافه وزن هستند و شیوه زندگی غیرفعالی دارند، انجام این گونه تمرینات بهانه کنند، زیرا تمرین مقاومتی نسبت به استقامتی، موجب کاهش بیشتر به طوری که در تحقیق کاوزا و همکاران بهوضوح مشخص شد. این گونه تمرینات به روشی که با تمرین استقامتی، بیماران دیابتی که نقص در عملکرد انسولین دارند، تمرینات بدنی همراه است. در هنگام که سلامت کلی فرد، فواید عملکردی برای مصرف مکمل پیکولینات کروم بر سطح سرمی انزیم‌های کبدی نسبت به استقامتی می‌شود.

به عنوان نتیجه، به دلیل نتایج مطرح کردن دیابت مطرح شده است [8]، بیماری‌های قلبی عروقی با درک کردن دیابت مطرح شده است، گزارشی به تدریج کاهش افزایش در مصرف مکمل کروم توسط دیابت مطرح شده است، بنابراین چنین خود را با مصرف مکمل کروم توسط دیابت مطرح‌شده است.
آزمودنی، آنها به مطوری تمامی در سه گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی هم‌آمیزی از گروه کنترل دیابتی (0-10 گرم در گرم وزن)، متوسط و کم‌وزنی هم‌آمیزی HOMA-IR = (µU/mL) (mmol/l) + 1720
این استفاده‌ها در یک مطالعه سطح سرمی محیط کمر به لگن را مورد بررسی قرار داده. نتایج آنالیز واریانس محیط کمر به لگن نشان داد که تفاوت معناداری در بین سال‌ها وجود نداشت. همچنین، درصد چربی بدن، سطح سرمی انسولین و متغیرهای مطالعه حاضر توزیع طبیعی داشتند. پس از تحقق نرمال بودن داده‌ها با استفاده از آزمون برآورد نرمالی شاپیرو، میانگین‌ها و انحراف معیار آن‌ها محاسبات آماری با استفاده از نسخه SPSS 1398 سال آماده گردید. پس از مشخص شدن طبیع بودن توزیع داده‌ها و محقق برابری با تاپسیویس، جهت آنالیز آماری پس از اطمینان از برابری واریانس با استفاده از آزمون تحلیل کوواریانس و آزمون تعقیبی بونفرانی استفاده شد. در این مطالعه تفاوت معناداری در بین گروه‌ها مشاهده شد. جدول ۲: ضریب همبستگی بین فاکتور‌های مرتبط با مقیاس گروه‌ها

متغیرهای مطالعه	میانگین ± انحراف معیار
وزن (کیلوگرم متر مربع)	23/70 ± 12/88
درصد چربی بدن	28/20 ± 21/54
سطح سرمی انسولین	63/49 ± 3/0
محیط کمر به لگن	11/61 ± 5/46

نتایج بیش از پیش ثبت گردید که بیش از این برای زندگی بهتر و بهبود کارکرد جسمانی کمک می‌شود.
چند از پرسوره‌های گلوکز و شاخص‌های ترکیبی در گروه‌های مورد مطالعه

متغیرها	مراحل	مقایسه‌ها
میانگین (+/−)	تمرین و فشارها	کنترل دویی
گروه A (کنترل)		0.01/0.01
گروه B (پیش آزمون)	۶۰/۷۸/۵۴	۶۰/۷۸/۵۴
گروه C (پس آزمون)	۶۰/۷۸/۵۴	۶۰/۷۸/۵۴
گروه D (آزمون)	۶۰/۷۸/۵۴	۶۰/۷۸/۵۴

بررسی همه‌تای گلوکز و شاخص‌های ترکیبی بدن در گروه‌های مورد مطالعه نشان داد که اختلاف با گروه کنترل دیابتی گروه A وجود دارد. بهنامه یک مطالعه، مشاهده شد که سطح سرمی انسولین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است. همچنین مشاهده شد که فازیتین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است.

نتایج آزمون تحلیل کوواریانس نشان داد که بین سطح سرمی آسپارتاژات (AST)، آلکالین فسفاتاز (ALP)، گاما گلوتامیل ترانسفراز (GGT) در گروه B (پیش آزمون) و گروه C (پس آزمون) اختلاف معنی‌داری وجود دارد. در سطح سرمی آلکالین فسفاتاز (ALP) در گروه D (آزمون) نمایش گذاشت.

نتایج آزمون تحلیل کوواریانس نشان داد که بین سطح سرمی برخی از پرسوره‌های گلوکز و شاخص‌های ترکیبی بدن اختلاف با گروه کنترل دیابتی گروه A وجود دارد. بهنامه یک مطالعه، مشاهده شد که سطح سرمی انسولین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است. همچنین مشاهده شد که فازیتین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است.

نتایج آزمون تحلیل کوواریانس نشان داد که بین سطح سرمی برخی از پرسوره‌های گلوکز و شاخص‌های ترکیبی بدن اختلاف با گروه کنترل دیابتی گروه A وجود دارد. بهنامه یک مطالعه، مشاهده شد که سطح سرمی انسولین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است. همچنین مشاهده شد که فازیتین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است.

نتایج آزمون تحلیل کوواریانس نشان داد که بین سطح سرمی برخی از پرسوره‌های گلوکز و شاخص‌های ترکیبی بدن اختلاف با گروه کنترل دیابتی گروه A وجود دارد. بهنامه یک مطالعه، مشاهده شد که سطح سرمی انسولین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است. همچنین مشاهده شد که فازیتین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است.

نتایج آزمون تحلیل کوواریانس نشان داد که بین سطح سرمی برخی از پرسوره‌های گلوکز و شاخص‌های ترکیبی بدن اختلاف با گروه کنترل دیابتی گروه A وجود دارد. بهنامه یک مطالعه، مشاهده شد که سطح سرمی انسولین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است. همچنین مشاهده شد که فازیتین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است.

نتایج آزمون تحلیل کوواریانس نشان داد که بین سطح سرمی برخی از پرسوره‌های گلوکز و شاخص‌های ترکیبی بدن اختلاف با گروه کنترل دیابتی گروه A وجود دارد. بهنامه یک مطالعه، مشاهده شد که سطح سرمی انسولین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است. همچنین مشاهده شد که فازیتین گروه A به طور معنی‌داری از گروه B (پیش آزمون) و گروه C (پس آزمون) لبسته است.
بین مشترک‌های مذکور در گروه‌های بروز، نشان دهنده اثر افزایش قدرت بدنی، آنگرینی و گیاه‌های کروم بود. با وجود این، سطح سرمی آلانین امرینترافسفار (ALT) در گروه کنترل دیابتی مشاهده نشد. این کاهش نیز در شاخص مقاومت به انسولین بعد از هشت هفته تمرین مقاومتی به همراه مصرف پیکولینات کروم نسبت به گروه تمرین به همراه مصرف پیکولینات و همچنین وزن و شاخص توده بدنی، نسبت پس از تمرین مقاومتی به همراه مصرف پیکولینات کروم کاهش معنی‌داری نسبت به گروه کنترل تأثیر داشت.

نتیجه‌گیری
نتیجه‌گیری‌های حاضر نشان داد که تمرین مقاومتی به همراه مصرف پیکولینات کروم سبب کاهش مقداری از گروه‌های دیابتی می‌شود. این نتیجه با تحقیق‌های پیشین تطابق دارد. با توجه به نتایج این مطالعه، مصرف پیکولینات کروم به همراه تمرین مقاومتی می‌تواند به بهبود سطح سرمی آنتی‌اکسیدان‌ها و کاهش شاخص توده بدنی کمک کند. این نتایج می‌تواند به بهبود سلامت در بیماران دیابتی کمک کند. نتایج این تحقیق نشان داد که مصرف پیکولینات کروم به همراه تمرین مقاومتی سبب کاهش مقداری از گروه‌های دیابتی می‌شود. این نتیجه با تحقیق‌های پیشین تطابق دارد. با توجه به نتایج این مطالعه، مصرف پیکولینات کروم به همراه تمرین مقاومتی می‌تواند به بهبود سطح سرمی آنتی‌اکسیدان‌ها و کاهش شاخص توده بدنی کمک کند. این نتایج می‌تواند به بهبود سلامت در بیماران دیابتی کمک کند.
با توجه به نتایج مطالعه به نظر می‌رسد اثر تمرین مقاومتی و تمرین مصرف کلم پیکولینات کروم روی سطح سرمی آنزیم‌های کبدی تأثیر قابل توجهی دارد. در این مطالعه، نشان داده شد که تمرین مقاومتی به صورت درصد چربی بدن و اندازه WHR کاهش می‌دهد. همچنین، برای کاهش مقاومت به انسولین، مصرف کلم پیکولینات کروم امر حیاتی می‌باشد.

در این مطالعه، طراحی را بیش از سه بار در هفته انجام داده و نتایج نشان داد که مصرف کلم پیکولینات کروم بهبود دهنده حسایسی آنزیم‌های کبدی می‌باشد. به علاوه، طرح باعث افزایش حساسیت به انسولین می‌شود که این نتایج با دیدگاهی بهتری در مطالعات آتیو اتفاقی به‌شمار می‌رود.

این مطالعه تا حدی به‌عنوان یک محدودیت اشاره کرد که احتمالاً در نظر گرفته می‌شود به این ترتیب که تمرین مقاومتی مربوط به تغییرات مربوط به افزایش سطح سرمی آنزیم‌های کبدی می‌باشد. در نتیجه، می‌توان به ترتیب مصرف کلم پیکولینات کروم بهبود دهنده حسایسی آنزیم‌های کبدی می‌باشد. به علاوه، طرح باعث افزایش حساسیت به انسولین می‌شود که این نتایج با دیدگاهی بهتری در مطالعات آتیو اتفاقی به‌شمار می‌رود.

در نهایت اشاره به این موضوع از اهمیت فوق‌العاده‌ی این مطالعه است که یکی از مهم‌ترین علل به وجود آمدن آسیب‌های کبدی مقاومت به انسولین است که با عوامل مختلف سندرم متابولیک در رابطه می‌باشد. این وضعیت حتی در شرایطی که افزایش وزن و دیابت نوع ۲ مشاهده شده است، باعث افزایش احتمال آسیب‌های کبدی می‌شود.

نتایج بانی این مطالعه نشان‌دهنده مشابهی بین تغییرات آنزیم‌های کبدی و معنی‌دار است و با توجه به این نتایج، می‌توان گفت که افزایش حساسیت به انسولین بهبود دهنده حسایسی آنزیم‌های کبدی می‌باشد. به علاوه، طرح باعث افزایش حساسیت به انسولین می‌شود که این نتایج با دیدگاهی بهتری در مطالعات آتیو اتفاقی به‌شمار می‌رود.

در مورد محدودیت‌های در حاضر، می‌توان به اندازه‌ی اعمال مصرف کلم پیکولینات کروم در مطالعات حاضر اشاره کرد که کم محدودیتی در نظر گرفته می‌شود. در نتیجه، می‌توان به‌خوبی این مطالعه را به‌عنوان یک محدودیت اشاره کرد که باعث افزایش حساسیت به انسولین می‌شود. به علاوه، طرح باعث افزایش حساسیت به انسولین می‌شود که این نتایج با دیدگاهی بهتری در مطالعات آتیو اتفاقی به‌شمار می‌رود.

در نهایت، اشاره به این موضوع از اهمیت فوق‌العاده‌ی در حاضر است که یکی از مهم‌ترین علل به وجود آمدن آسیب‌های کبدی مقاومت به انسولین است که با عوامل مختلف سندرم متابولیک در رابطه می‌باشد. این وضعیت حتی در شرایطی که افزایش وزن و دیابت نوع ۲ مشاهده شده است، باعث افزایش احتمال آسیب‌های کبدی می‌شود.
References

[1] Shi GJ, Shi GR, Zhou JY, Zhang WJ, Gao CY, Jiang YP, et al. Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomedicine & Pharmacotherapy. 2018; 101:510-27. [DOI:10.1016/j.biopha.2018.02.105] [PMID]

[2] Shi GJ, Zheng J, Wu J, Qiao HQ, Chang G, NiU Y, et al. Beneficial effects of Lycium barbarum polysaccharide on spermatogenesis by improving antioxidiant activity and inhibiting apoptosis in streptozotocin-induced diabetic male mice. Food & Function. 2017; 8(3):1215-26. [DOI:10.1039/C6FO01575A] [PMID]

[3] Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sciences. 2018; 193:20-33. [DOI:10.1016/j.lfs.2017.12.001] [PMID]

[4] Shi GJ, Li Y, Cao QH, Wu HX, Tang YX, Gao SH, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy. 2019; 109:1085-99. [DOI:10.1016/j.biopha.2018.10.130] [PMID]

[5] König M, Bulik S, Holzhüttner HG. Quantifying the contribution of the liver to glucose homeostasis: A detailed kinetic model of human hepatic glucose metabolism. PLoS Computational Biology. 2012; 8(6):e1002577. [DOI:10.1371/journal.pcbi.1002577] [PMID]

[6] Anhangpour A, Shabari R, Farbood Y. The effect of betulinic acid on leptin, adiponectin, hepatic enzyme levels and lipid profiles in streptozotocin-nicotinamide-induced diabetic mice. Research in Pharmaceutical Sciences. 2018; 13(2):142-8. [DOI:10.4103/1735-5362.223796] [PMID] [PMCID]

[7] Khalili M, Shuhart MC, Lombardero M, Feld JJ, Kleiner DE, Chung RT, et al. Relationship between metabolic syndrome, alanine aminotransferase levels, and liver disease severity in a multibehavior North American cohort with chronic Hepatitis B. Diabetes Care. 2018; 41(6):1251-9. [DOI:10.2337/dci18-0040] [PMID] [PMCID]

[8] Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004; 27(11):2741-51. [DOI:10.2337/diabcare.27.11.2741] [PMID]

[9] Wang ZQ, Cefalu WT. Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Current Diabetes Reports. 2010; 10(2):145-51. [DOI:10.1007/s11892-010-0097-3] [PMID]

[10] Jain SK, Kahlon G, Morehead L, Dhawan R, Lieblong B, Stapleton T, et al. Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: Randomized, double-blind, placebo-controlled study. Molecular Nutrition & Food Research. 2012; 56(8):1333-41. [DOI:10.1002/mnfr.201100719] [PMID] [PMCID]

[11] Nourmohammadi L, Kocheki-Shalmani I, Shaabani M, Gohari L, Nazari H. Zinc, copper, chromium, manganese and magnesium levels in serum and hair of insulin-dependent diabetics. 2000.

[12] Arslan F, Güven SD, Öztan A, Vatansev H, Taşpin Ö. The effect of exercise, reflexology and chrome on metabolic syndrome. International Journal of Medical Research & Health Sciences. 2018; 7(8):77-85.

[13] Roessner C, Pasch U, Kratzsch J, Glander HJ, Grunewald S. Sperm apoptosis signalling in diabetic men. Reproductive Biomedicine Online. 2012; 25(3):292-9. [DOI:10.1007/j.9160.2012.06.004] [PMID]

[14] Scherenberg M, Dendale P. Exercise training in diabetes. European Journal of Preventive Cardiology. 2019; 26(7):698-700. [DOI:10.1177/2047487319829674] [PMID]

[15] Cauza E, Hanusch-Ensurer U, Strasser B, Ludvik B, Metz-Schimmerl S, Pacini G, et al. The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Archives of Physical Medicine and Rehabilitation. 2005; 86(8):1527-33. [DOI:10.1016/j.apmr.2005.01.007] [PMID]

[16] Cassidy S, Thoma C, Hallsworth K, Parikh J, Hollingsworth KG, Taylor R, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: A randomised controlled trial. Diabetologia. 2016; 59(1):56-66. [DOI:10.1007/s00125-015-3741-2] [PMID] [PMCID]

[17] Saremi A, Parastesh M. Twelve-week resistance training decreases myostatin level and improves insulin sensitivity in overweight-obese women. International Journal of Diabetes and Metabolism. 2011; 19:63-8.

[18] Swain DP. American College of Sports Medicine. ACSM’s resource manual for guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014.

[19] Russell-Guzmán J, Karachon L, Gacitúa T, Freundlich A, Poblete-Aro C, Rodríguez R. Role of exercise in the mechanisms ameliorating hepatic steatosis in non-alcoholic fatty liver disease. Sport Sciences for Health. 2018; 14(3):463-73. [DOI:10.1016/s1133-018-0459-9] [PMID]

[20] Steenberge DE, Jørgensen NB, Birk JB, Sjøberg KA, Kiens B, Richter EA, et al. Exercise training reduces the insulin-sensitizing effect of a single bout of exercise in human skeletal muscle. The Journal of Physiology. 2019; 597(1):89-103. [DOI:10.1113/JP276735] [PMID]

[21] Shamssoddini AR, Sobhani V, Ghamar Chehreh ME, Alavian SM, Zaree A. Effect of aerobic and resistance exercise training on liver enzymes and hepatic fat in Iranian men with nonalcoholic fatty liver disease. Hepatitis Monthly. 2015; 15(10):e31434. [DOI:10.5812/hepatmon.31434] [PMID] [PMCID]

[22] Zelber-Sagi Sh, Buch A, Yeshua H, Vaisman N, Webb M, Harari G, et al. Effect of resistance training on non-alcoholic fatty liver disease: a randomized-clinical trial. World Journal of Gastroenterology. 2014; 20(15):4382-92. [DOI:10.3748/wjg.v20.i15.4382] [PMID] [PMCID]

[23] Gonzalez JT, Fuchs CJ, Betts JA, Van Loan LJ. Liver glycogen metabolism during and after prolonged endurance-type exercise. American Journal of Physiology-Endocrinology and Metabolism. 2016; 311(3):E543-E53. [DOI:10.1152/ajpendo.00232.2016] [PMID]

[24] George N, Kumar TP, Antony S, Jayaranayanan S, Paulose C. Effect of vitamin D 3 in reducing metabolic and oxidative stress in the liver of streptozotocin-induced diabetic rats. British Journal of Nutrition. 2012; 108(8):1410-8. [DOI:10.1017/S0007114510006830] [PMID]

[25] Schmatz R, Perreira LB, Stafanello N, Mazzanti C, Spanevello R, Gutierrez J, et al. Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats. Biochimie. 2012; 94(2):374-83. [DOI:10.1016/j.biochi.2011.08.005] [PMID]

[26] Oh S, Tanaka K, Warabi E, Shoda J. Exercise reduces inflammation and oxidative stress in obesity-related liver diseases. Medicine and Science in Sports and Exercise. 2013; 45(12):2214-22. [DOI:10.1249/MSS.0b013e318296c633] [PMID]

[27] Chij IC, Mureşan A, Oros A, Nagy AL, Clichici S. Protective effects of Quercetin and chronic moderate exercise (training) against oxidative stress in the liver tissue of streptozotocin-induced diabetic rats. Acta Physiologica Hungarica. 2016; 103(1):49-64. [DOI:10.1556/036.103.2016.1.5] [PMID]

[28] Sigal RJ, Alberga AS, Goldfield GS, Prud‘homme D, Hadjynnakis S, Gougeon R, et al. Effects of aerobic exercise training, resistance training, or both on percentage body fat and cardiometabolic risk markers in obese
adolescents: the healthy eating aerobic and resistance training in youth randomized clinical trial. JAMA Pediatrics. 2014; 168(11):1006-14. [DOI:10.1001/jamapediatrics.2014.1392] [PMID]

[29] Olioso D, Dauriz M, Bacchi E, Negri C, Santi L, Bonora E, et al. Effects of aerobic and resistance training on circulating micro-RNA expression profile in subjects with type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism. 2019; 104(4):1119-30. [DOI:10.1210/jc.2018-01820] [PMID]

[30] Slentz CA, Bateman LA, Willis LH, Shields AT, Tanner CJ, Piner LW, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. American Journal of Physiology-Endocrinology and Metabolism. 2011; 301(5):E1033-E9. [DOI:10.1152/ajpendo.00291.2011] [PMID] [PMCID]

[31] Davidson LE, Hudson R, Kilkpatrick K, Kuk JL, McMillan K, Janiszewski PM, et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: A randomized controlled trial. Archives of Internal Medicine. 2009; 169(2):122-31. [DOI:10.1001/archinternmed.2008.558] [PMID]

[32] Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology. 2012; 55(6):2005-23. [DOI:10.1002/hep.25762] [PMID]