Оригінальні дослідження

Ультразвукова характеристика ремоделювання серця під впливом терапевтичної гіпотермії та МСК на моделі інфаркту міокарда

Чиж М. О.,1 ORCID ID: https://orcid.org/0000-0003-0085-296X, e-mail: n.chizh@ukr.net
Манченко А. О.,1,2 ORCID ID: https://orcid.org/0000-0001-5982-4504, e-mail: anna.gorlenko@gmail.com
Трофімова А. В.,1 ORCID ID: https://orcid.org/0000-0002-4662-1318, e-mail: fortomi@rambler.ru
Бєлочкіна І. В.,1 ORCID ID: https://orcid.org/0000-0003-0090-2971, e-mail: ibelochkina@ukr.net

1 Інститут проблем кріобіології і кріомедицини Національної академії наук України, Харків, Україна
2 Харківський національний університет ім. В. Н. Каразіна Міністерства освіти і науки України, Харків, Україна

© Чиж М. О., Манченко А. О., Трофімова А. В., Бєлочкіна І. В., 2020

Ключові слова:
експериментальний інфаркт міокарда, ультразвукове дослідження, терапевтична гіпотермія, мезенхімальні стромальні клітини.

Для цитування:
Чиж М. О., Манченко А. О., Трофімова А. В., Бєлочкіна І. В. Ультразвукова характеристика ремоделювання серця під впливом терапевтичної гіпотермії та МСК на моделі інфаркту міокарда. Український радіологічний та онкологічний журнал. 2020. Т. XVIII. № 3. С. 222–240. DOI: https://doi.org/10.46879/ukroj.3.2020.222-240

Для кореспонденції:
Чиж Микола Олексійович
Інститут проблем кріобіології і кріомедицини Національної академії наук України, відділ експериментальної кріомедицини вул. Перевальська, буд. 23, м. Харків, Україна, 61016; e-mail: n.chizh@ukr.net

© Чиж М. О., Манченко А. О., Трофімова А. В., Бєлочкіна І. В., 2020

Ультразвукова характеристика ремоделювання серця під впливом терапевтичної гіпотермії та МСК на моделі інфаркту міокарда

Ультразвукове дослідження серця щурів з експериментальним ІМ для визначення характеру ремоделювання серця під впливом первинної медичної допомоги.

Мета роботи – проведение та анализ ультразвукового дослідження серця щурів з експериментальним ІМ для визначення характеру ремоделювання серця під впливом використання терапевтичної гіпотермії та МСК.

Мета роботи – проведение та анализ ультразвукового дослідження серця щурів з експериментальним ІМ для визначення характеру ремоделювання серця під впливом терапевтичної гіпотермії та МСК.

Мета роботи – проведение та анализ ультразвукового дослідження серця щурів з експериментальним ІМ для визначення характеру ремоделювання серця під впливом терапевтичної гіпотермії та МСК.

Мета роботи – проведение та анализ ультразвукового дослідження серця щурів з експериментальним ІМ для визначення характеру ремоделювання серця під впливом терапевтичної гіпотермії та МСК.

Мета роботи – проведение та анализ ультразвукового дослідження серця щурів з експериментальним ІМ для визначення характеру ремоделювання серця під впливом терапевтичної гіпотермії та МСК.

Мета роботи – проведение та анализ ультразвукового дослідження серця щурів з експериментальним ІМ для визначення характеру ремоделювання серця під впливом терапевтичної гіпотермії та МСК.

Результати та їх обговорення. У контрольній групі з експериментальним ІМ встановлено значне пригнічення функції лівого шлуночка ЛШ. Це відображалося у зниженні УО та ХО і в підсумку свідчило про зменшення ФВ до 46,04 %, що на 35 % менше відповідного початкового значення (ЛШ). Це відображалось у зниженні УО та ХО і в підсумку свідчило про зменшення ФВ до 46,04 %, що на 35 % менше відповідного початкового значення (ЛШ). Це відображалось у зниженні УО та ХО і в підсумку свідчило про зменшення ФВ до 46,04 %, що на 35 % менше відповідного початкового значення (ЛШ). Це відображалось у зниженні УО та ХО і в підсумку свідчило про зменшення ФВ до 46,04 %, що на 35 % менше відповідного початкового значення (ЛШ).
На підставі показників ВТС та МЛШ на 7-му та на 30-ту добу після перев'язки лівої коронарної артерії, ремоделювання ЛШ проходило за рахунок ексцентричної перебудови ЛШ. Застосування терапевтичної гіпотермії не змогло в повному обсязі зумовити патофізіологічні процеси, пов’язані з перев’язкою коронарної судини. ФВ достовірно не відрізнялася від контрольної групи і складала 51,08 ± 2,68 %. На 7-му добу експерименту ремоделювання серця в цій групі проходило за моделлю нормальної геометрії, а на 30-ту добу – за ексцентричною моделлю.

Незважаючи на об’ємне перенавантаження, яке викликає постінфарктне розширення порожнини ЛШ, у групі з введенням МСК на 7-му добу відмічали компенсаторне збільшення ударного об’єму в 1,8 разу відносно групи норми і в 2,3 разу відносно контрольної групи. ФВ була на 17 % менше норми, але статистично достовірно вища, ніж відповідний показник групи контролю цього терміну спостереження. Ремоделювання серця після введення алогенних МСК на тлі ІМ на всіх строках спостереження проходило шляхом ексцентричної гіпертрофії ЛШ.

У групі після використання терапевтичної гіпотермії та введення МСК на фоні експериментального інфаркту міокарда на 7-му та на 30-ту добу реєстрували найліпші значення ехопоказників анатомічних структур ЛШ, що свідчило про відсутність дилатаций та відсутність помірної гіпертрофії міокарда. Фракція викиду демонструвала найкращий результат – 58,78 %, а ремоделювання ЛШ було мінімальним і відбувалося за нормальної геометрії серця.

Висновки. Використання ехокардіографії у щурів є досить інформативним методом діагностики, що дає змогу охарактеризувати тип структурно-функціональної перебудови міокарда на фоні інфаркту в ранні та пізні строки спостереження. За даними УЗ-дослідження, найбільш близькою до показників норми була група тварин із поєднаним використанням терапевтичної гіпотермії і трансплантації МСК. За показниками маси ЛШ і ВТС у щурів цієї групи на 7-му та на 30-ту добу експерименту ремоделювання ЛШ проходило за нормальної геометрії.

Keywords:
- experimental myocardial infarction,
- ultrasound,
- therapeutic hypothermia,
- mesenchymal stromal cells.

For citation:
Chyzh M. O., Manchenko A. O., Trofimova A. V., Belochkina I. V. Ukrainian journal of radiology and oncology. 2020;28(3):222–240. DOI: https://doi.org/10.46879/ukroj.3.2020.222-240

For correspondence:
Chyzh Mykola Oleksiiovych Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Department of Experimental Cryomedicine; 23, Pereyaslavska Street, Kharkiv, Ukraine, 61016; e-mail: n.chizh@ukr.net

© Chyzh M. O., Manchenko A. O., Trofimova A. V., Belochkina I. V., 2020

ABSTRACT

Background. Late seeking medical advice, limited number of cardiac surgery hospitals and conservative treatment, which does not seem to be always efficacious, trigger the search for new, more effective mode of therapy of acute myocardial infarction (MI). Recently, mesenchymal stromal cells (MSCs) have come into sharp focus of scientists due to the prospects for clinical use. On the other hand, multicenter studies have proved that therapeutic hypothermia (TH) has neuro- and cardioprotective effects, and it is administered as one of the urgent methods in providing primary health care.

Purpose – providing and analyzing ultrasonography (US) of rat hearts with experimental MI in order to determine the nature of heart remodelling under combined use of TH and introducing allogeneic MSCs.

Materials and methods. The study involved 90 outbred white rats weighing 240–270 g. Myocardial infarction was reproduced by ligating the descending branch of the left coronary artery on the border of the upper and middle third of the vessel. Therapeutic hypothermia was performed in a cold chamber, 60 minutes long. The local skin temperature of the neck area was maintained at +4 °C, while the rectal and tympanic temperature decreased to + 25 °C. A suspension of allogeneic cryopreserved MSCs of the placenta with a concentration of 1.2 × 10^6 cells/ml was administered once intravenously through v. saphena magna. Heart sonography was carried out by means of «СОНОМЕД 500» («СПЕКТРОМЕД», Russia) ultrasound scanner in B- and M-mode using a linear sensor 7.5L38 with frequency of 7.5 MHz.
Results and discussion. The control group with experimental MI showed significantly suppressed function of the left ventricle (LV). It resulted in decreasing stroke volume (SV) and cardiac output (CO) and on the whole indicated reduced ejection fraction (EF) to 46.04 %, that was 35 % less than the corresponding normal range. According to the values of relative wall thickness (RWT) and left ventricular mass (LVM) on day 7 and day 30 after ligating the left coronary artery, LV remodelling was proceeding via eccentric mode of LV alteration.

Therapeutic hypothermia was not able to completely stop the pathophysiologocal processes associated with coronary ligation. EF was not significantly different from the control group, and was 51.08 ± 2.68 %. On day 7 of the experiment, heart remodelling in this group was proceeding according to the normal geometry model, and on day 30 – according to the eccentric model.

In spite of the volume overload causing post-infarction extension of the left ventricular cavity, in the group with applying MSCs, on day 7 there was a compensatory increase of the stroke volume, 1.8 times over compared to the group with normal range values and 2.3 over compared to the control group. The ejection fraction was 17 % less than the normal range, but statistically significantly higher than the corresponding indicator of the control group of this observation period. Heart remodelling after applying allogeneic MSCs associated with MI at all stages of observation was proceeding by eccentric LV hypertrophy.

After therapeutic hypothermia and applying MSCs associated with experimental myocardial infarction on day 7 and day 30, the group recorded the best values of echo param of LV anatomical structures, indicating no dilatation along with occurring moderate myocardial hypertrophy. The ejection fraction showed the best outcome, i.e. 58.78 %, while LV remodelling was minimal, occurring according to normal heart geometry.

Conclusions. Applying echocardiography in rats is a very informative diagnosis method which makes it possible to describe the type of structural and functional remodelling of the myocardium associated infarction at early and late observation stages. The ultrasound study showed that the closest to the normal range was the group of animals exposed to therapeutic hypothermia and MSC transplantation. According to LVM and RWT values, in the rats of that group on day 7 and day 30 of the experiment, LV remodelling was characterized by normal geometry.

Connection with scientific programs, plans and topics
The study has been carried out in the scope of the research project of Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine “Destructive and Regenerative Processes in Tissues in vivo after effect of Low Temperature and Biological Active Substances”, state registration No 0117U000849.

INTRODUCTION
One of the most common disorders of modern cardiology is coronary heart disease (CHD). The prevalence of this pathology is rapidly increasing and high mortality rate results from one of its severe complications, i.e. myocardial infarction (MI). Annually, about 45 thousand new cases of MI are recorded in Ukraine [1]. Stress, busy lifestyle, long-standing diseases of the cardiovascular
Оригінальні дослідження дозволяють своєчасно встановити ознаки серцевої реження з оцінкою ехокардіографічних параметрів - фарктного ремоделювання ЛШ і динамічно-цецевої недостатності [6], і тому діагностика постінфарктної функції, що в підсумку призводить до хронічної серцевої недостатності його геометрії і зниження насосної функції, завдяки її перспективності для клінічного застосування. MSCs are the cells which have a potential to differentiate and form tissues of different types. Due to unique immune regulatory potential and ability to secret a wide range of trophic and growth factors, MSCs are considered to be a perfect tool of gene and regenerative therapy of ischemic injuries of the myocardium [4]. On the other hand, multicenter studies have proved that therapeutic hypothermia (TH) has neuro- and cardio-protective effects, and it is administered as one of the urgent methods in providing primary health care [5]. Combining TH along with transplanting MSC seems to have good prospects in this regard. In clinical experience, ultrasonography (US) of the heart, as a non-invasive and painless study, is an essential in diagnosis and control of the effectiveness of treating patients with acute coronary syndrome. In MI, LV dysfunction is accompanied by involvement of compensatory mechanisms aimed at maintaining cardiac output at an appropriate level. Cardiac remodelling, initiated during the cessation of blood supply to the coronary vessel, lasts throughout the treatment period and can be both adaptive and maladaptive. Adaptive changes in the heart aid to maintain normal cardiac output. The maladaptive nature of remodelling is characterized by progressive dilatation of the left ventricle, a significant change of geometry and reduced pumping function, which ultimately leads to chronic heart failure [6] and therefore, diagnosing postinfarction left ventricular remodelling and case monitoring along with assessing echocardiographic parameters make it possible to detect cardiac failure signs.

Purpose - providing and analyzing ultrasonography (US) of rat hearts with experimental MI in order to determine the nature of heart remodelling under combined use of TH and introducing allogeneic MSCs.

MATERIALS AND METHODS

The study involved ninety 7-month-old outbred white rats weighing 240–270 g. The experiments were run as per the regulations approved by the Bioethics Committee of the Institute for Problems of Cryobiology and...
Оригінальні дослідження

Дослідження проведено на 90 безпорідних білих щурах масою 240–270 г, віком 7 місяців. Експерименти проведено за регламентом, затвердженим КОмітетом з біоетики ІПКІН НАН України, розробленим відповідно до Загальних принципів експериментів на тваринах, схвалених ІІІ Національним конгресом з біоетики (Київ, 2007) і узгоджених з положеннями Європейської конвенції з захисту хребетних тварин, що використовуються в експериментальних та інших наукових цілях (Страсбург, Франція, 1986).

Інфаркт міокарда відтворювали шляхом перев'язки низійшідної гілки лівої коронарної артерії на межі верхньої та середньої третини судини [7]. Терапевтичну гіпотермію проводили в холодовій камері протягом 60 хв. Температура шкіри комірцевої зони — +4 °C, ректальна і тимпанічна температура знижувалася до +25 °C [8].

Суспензію аллоенних криоконсервованих МСК плаценти з концентрацією 1,2 × 10^6 клітин/мл одноразово вводили внутрішньовенозно через v. saphena magna. Мезенхімальні стромальні клітини плаценти отримували і фенотипували за методикою Г. М. Світіної та співавт. [9].

Після моделювання ІМ всі тварини були розподілені на 5 групу по 15 тварин у кожній. Контрольну групу (IM) склали щурі з експериментальним ІМ без лікування. Щури з індукованою TH на фоні ІМ (ІМ + TH + МСК). Групу 4 склали тварини після поєднання ІМ и ТГ (ІМ + ТГ + МСК). Групу 3 були щури після введення МСК на фоні ІМ (ІМ + МСК). Групу 5 склали тварини після поєднаного використання ТГ та введення МСК на фоні ІМ (ІМ + ТГ + МСК). Група норми – 15 інтактних щурів.

Сонографічне дослідження серця проводили на ультразвуковому ехотомографі «Сономед 500» («СПЕКТРОМЕД», Росія) у B- і M-режимах з використанням лінійного датчика 7,5L38 з частотою 7,5 МГц. Ультразвукове сканування проводили в площині, перпендикулярній поверхні грудної клітки з патернального доступу по довірі осі серця. При дослідженні в М-модальному режимі вимірювали структури порожнин серця, та діаметри та толщина: кінцево-діастолічний діаметр ЛШ, кінцево-систолічний діаметр ЛШ, товщину міжшлуночкової перегородки в діастолу, товщину міжшлуночкової перегородки в систолу, товщину задньої стінки лівого шлуночка в діастолу, товщину задньої стінки лівого шлуночка в систолу та частоту серцевих скорочень.

Після вимірювання анатомічних структур програма автоматизованої обробки даних, закладена в ультразвукову систему, дозволяє розрахувати основні показники об’ємно-швидкісних характеристик серця та показники скоротильної функції міокарда ЛШ за формулами, які представлені в таблиці 1.

На підставі скринінгового ЕКХ дослідження на моделі перев’язки лівої коронарної артерії обрано два строки спостереження, які відображали процеси редоформування серця на різних стадіях захворювання. У гострій стадії перебігу ІМ УЗД проводили на 7 добу, коли ексконовани не відображали процес пристосування серцевого м’яза до функціонального навантаження, і на 30 добу експерименту — у строк, коли Cryomedicine of the National Academy of Sciences of Ukraine, which were developed in accordance with “General ethical principles of experiments on animals”, adopted by the III National Congress on Bioethics (Kiev, Ukraine, 2007) and confirmed with the regulations of the European Convention for the protection of vertebrate animals used for experimental and other scientific purposes (Strasbourg, France, 1986).

Myocardial infarction was reproduced by ligating the descending branch of the left coronary artery on the border of the upper and middle third of the vessel [7].

Therapeutic hypothermia was performed in a cold chamber, 60 minutes long. The local skin temperature of the neck area was maintained at +4 °C, while the rectal and tympanic temperature decreased to +25 °C [8].

A suspension of allogeneic cryopreserved MSCs of the placenta with a concentration of 1.2 × 10^6 cells / ml was administered once intravenously through v. saphena magna. Mesenchymal stromal cells of the placenta of rats were obtained and phenotyped according to the approach of G.M Svitina et al. [9].

After MI modelling, all animals were divided into 5 groups, represented by 15 animals each. The control group (MI) consisted of rats with experimental MI without treatment. Rats with induced TH associated with experimental MI were included in Group 2 (MI + TH). Group 3 there was represented by rats after administering MSCs associated with MI (MI + MSC). Group 4 consisted of animals after combined use of TH and applying MSCs associated with MI (MI + TH + MSC). The group with normal range values enrolled 15 intact rats.

Heart sonography was carried out by means of «Сономед 500» («СПЕКТРОМЕД», Russia) ultrasound scanner in B- and M-mode using a linear sensor 7.5L38 with frequency of 7.5 MHz. Ultrasound scanning was performed on the area perpendicular to the chest surface with parasternal access along the long axis of the heart. When researching in M-modal mode, the structures of heart, i.e. diameters and distances, were measured: end-diastolic diameter of LV (EDD), end-systolic diameter of LV (ESD), interventricular septum thickness at end-diastole (IVSd), interventricular septum thickness at end-systole (IVSs), left ventricular posterior wall thickness at end-diastole (LVPWd), left ventricular posterior wall thickness at end-systole (LVPWs) and heart rate (HR).

After measuring the anatomical structures, automated data processing software, embedded in the ultrasound system, allows, on the basis of the obtained values, to calculate the main values of volume-velocity properties of the heart and LV myocardial contractile function according to the formulas presented in Table 1.

Based on the screening electrocardiographic study on a left coronary artery ligation model, we selected two observation periods that would reflect the processes of heart remodelling at different stages of the disease. At the acute stage of MI, ultrasound examination was carried out on day 7, when the echo params were reflecting the process of adaptation of the heart muscle to functional load, and on day 30 of the experiment, in the period
Процес ремоделювання серцевого м'яза знаходився в завершальній фазі (стадія рубцювання). Цифрові дані наведені у вигляді «M ± m» (M ± SE), де M – середнє арифметичне значення, m (SE) – стандартна похибка середнього арифметичного. Статистичну обробку результатів проводили, використовуючи критерій Краскела – Уолліса за допомогою пакета програм STATISTICA 6.0 («StatSoft», USA).

Результати та їх обговорення

Ехокардіографічні показники серця щурів на 7-му добу експериментального інфаркту міокарда. При проведенні УЗ-дослідження щурів устанохено, що в нормі порожнина лівого шлуночка має кінцево-діастолічний об’єм, LVPWsT, %, LVPWd, ml, у якому серцевий м'яз розташований у формі конусоподібної кільцевої структури.

Показники параметри	Unit	Розрахунок
Відносна товщина стінки ЛШ	RWT	(КДД – КСД) / КДД × 100 %
Процент систолічного потовщення задньої стінки ЛШ	IVSsT, %	(ТМПС – ТМПД) / ТМПД × 100 %
Процент систолічного потовщення міжшлуночкової перегородки	IVSdT, %	(IVSd + EDD + LVPWd) / (7 × (0.1 × EDD))
Відносна товщина стінки ЛШ	LV relative wall thickness, %	ВТС
Фракція скоротливої функції міокарда	EF, %	ФВ / ЄФ
Фракція викиду	Fractional shortening	FS, %
Відносна товщина стінки ЛШ	Fractional shortening	ЛМШ
Відносна товщина стінки ЛШ	Fractional shortening	МЛШ
Відносна товщина стінки ЛШ	Fractional shortening	ПФВ, %
Відносна товщина стінки ЛШ	Fractional shortening	ЛВ mass
Відносна товщина стінки ЛШ	Fractional shortening	МЛШ
Відносна товщина стінки ЛШ	Fractional shortening	ПФВ
Відносна товщина стінки ЛШ	Fractional shortening	ЛВ mass
Відносна товщина стінки ЛШ	Fractional shortening	МЛШ
Відносна товщина стінки ЛШ	Fractional shortening	ПФВ
Відносна товщина стінки ЛШ	Fractional shortening	ЛВ mass

Результати та їх обговорення

Ехокардіографічні показники серця щурів на 7-му добу експериментального інфаркту міокарда. При проведенні УЗ-дослідження щурів устанохено, що в нормі порожнина лівого шлуночка має кінцево-діастолічний об’єм, LVPWsT, %, LVPWd, ml, у якому серцевий м'яз розташований у формі конусоподібної кільцевої структури.

Показник ФВ ЛШ у нормі дорівнював 71.82 ± 1.29 % і ФС ЛШ – 36.16 ± 1.01 %, що свідчить when the process of remodelling the heart muscle was at the final stage (scarring stage).

The numeric data are presented in the form of “M ± m”, where M is the arithmetic mean, m (SE) is the standard error of the arithmetic mean. Statistical processing of the outcomes was performed according to the Kruskel-Wallis test by means of STATISTICA 6.0 software package (StatSoft, USA).
про досить високі можливості скоротливої функції серцевого м’яза ЛШ у щурів, які є майже на одному рівні з аналогічним показником у людини [10, 11].

Морфологічні зміни серцевого м’яза при IM приводять до появи особливостей внутрішньосерцевої гемодинаміки, пов’язаної з об’ємним перенавантаженням. Завдяки цьому зона інфаркту через різні причини може потоншуватись та розширюватись, що сприяє ремоделюванню ЛШ і, як наслідок, по-русенню діастолічного розслаблення і систолічної функції ЛШ [11]. У контрольній групі це підтверджувалося тим, що на 7-му добу експерименту LV heart muscle of rats that was almost at the same level with this figure in human [10, 11].

Morphological changes in the heart muscle in case of MI result in occurring features of intra-cardiac hemodynamics associated with volume overload. Thus, due to various reasons, the MI area can grow thinner and expand contributing to remodelling the left ventricle and, as a consequence, to disturbing diastolic relaxation and systolic function of the LV [11]. In the control group, this was confirmed by the fact that on day 7 of the experiment, a statistically significant increase of EDD and ESD compared to the normal range by 8 % and 35 %, respectively,

Рис. 1. Ехокардіограма шура в нормі. В- і М-режим. 1 – КДД; 2 – КСД; 3 – ТМПД; 4 – ТМПС; 5 – ТЗСД; 6 – ТЗСС
Fig. 1. Echocardiogram of a rat under normal condition. B- and M-mode. 1 – EDD; 2 – ESD; 3 – IVSd; 4 – IVSs; 5 – LVPWd; 6 – LVPWs

Таблиця 2. Виміри анатомічних структур при ехокардіографічному дослідженні в М-режимі після перев’язки лівої коронарної артерії на 7-му добу, мм
Table 2. Measurements of anatomical structures in echocardiographic examination in M-mode after ligating the left coronary artery on day 7, mm

Показник	Норма Normal range	IM Контроль MI Control	IM + ТГ MI + TH	IM + МСК MI + MSC	IM + ТГ + МСК MI + TH + MSC
КДД, мм EDD	6,03 ± 0,16	6,47 ± 0,2	6,70 ± 0,2	8,16 ± 0,38	6,67 ± 0,25
КСД, мм ESD	3,84 ± 0,10	5,19 ± 0,18	5,19 ± 0,22	6,14 ± 0,35	5,00 ± 0,2
ТМПД, мм IVSd	0,68 ± 0,08	0,85 ± 0,03	0,70 ± 0,06	0,76 ± 0,06	0,65 ± 0,02
ТМПС, мм IVSs	1,17 ± 0,11	1,26 ± 0,03	1,06 ± 0,09	1,13 ± 0,09	0,93 ± 0,06
ТЗСД, мм LVPWd	1,03 ± 0,05	0,95 ± 0,05	1,09 ± 0,05	1,39 ± 0,06	1,16 ± 0,07
ТЗСС, мм LVPWs	1,46 ± 0,05	1,65 ± 0,05	1,42 ± 0,06	1,83 ± 0,08	1,38 ± 0,09
ЧСС скор./хв HB, contractions per minute	374 ± 16,8	430 ± 16,8	436 ± 11,7	427 ± 13,5	441 ± 17,9

Примітки:
Відмінності статистично достовірні (р < 0,05): 1 – у порівнянні з інтактними тваринами; 2 – у порівнянні з контрольною групою.

Notes:
Differences are statistically significant (p < 0.05): 1 – in comparison with intact animals; 2 – in comparison with the control group.
Як відомо, у всіх об'єктивних показниках скоротливості міжшлуночкової перегородки отримувалися значні відхилення від нормативних, що стосується іншої стінки лівого шлуночка. Існують дослідження, що вказують на зменшення фракції викиду до 46,04 %, що є значним пригніченням функції ЛШ у контрольній групі [11]. Статистично достовірні відхилення від норми свідчать про зменшення фракції викиду до 46,04 %, що суттєвим чином здатне змінити харктеристики лівого шлуночка щурів на 7-му добу після перев'язки лівої коронарної артерії (табл. 3). У цьому контексті, щоб зрозуміти механізми перетворень, які відбуваються на рівні системи кровообігу, звернемо увагу на зміни об'ємно-швидкісних характеристик ЛШ.

Table 3. Volume-velocity properties of the LV of rats on day 7 after ligating the left coronary artery

Показник	Норма	IM Контроль	IM + МІ	IM + МКІ	IM + ТГ + МКІ
КДО, мл	0,52 ± 0,03	0,64 ± 0,05	0,71 ± 0,06	1,23 ± 0,14	0,71 ± 0,08
КСО, мл	0,14 ± 0,01	0,35 ± 0,03	0,36 ± 0,05	0,57 ± 0,08	0,31 ± 0,04
УО, мл	0,37 ± 0,03	0,29 ± 0,03	0,35 ± 0,03	0,66 ± 0,07	0,39 ± 0,04
ХО, мл	137,9 ± 10,5	122,5 ± 8,6	153,1 ± 12,7	282,4 ± 32,5	155,9 ± 19,7
ФВ, %	71,8 ± 1,2	46,04 ± 1,74	51,08 ± 2,68	54,81 ± 2,26	55,20 ± 1,33

Примітки:
Відмінності статистично достовірні (p < 0,05): 1 – у порівнянні з інтактними тваринами; 2 – у порівнянні з контрольною групою.

Notes:
Differences are statistically significant (p < 0.05): 1 – in comparison with intact animals; 2 – in comparison with the control group.

Значне пригнічення функції ЛШ у контрольній групі відображалося у зниженні УО та ХО і в підсумку повноцінно відображало процес зменшення фракції викиду до 46,04 %, що на 35 % менше за відповідний показник норми (табл. 3). У цій ситуації як компенсаторний механізм для досягнення достатньої об’ємності кровообігу частота серцевих відбивалася в зниженні УО та ХО і в підсумку повноцінно відображало процес зменшення фракції викиду до 46,04 %, що на 35 % менше за відповідний показник норми (табл. 3). У цій ситуації як компенсаторний механізм для досягнення достатньої об’ємності кровообігу частота серцевих відбивалася в зниженні УО та ХО і в підсумку повноцінно відображало процес зменшення фракції викиду до 46,04 %, що на 35 % менше за відповідний показник норми (табл. 3). У цій ситуації як компенсаторний механізм для досягнення достатньої об’ємності кровообігу частота серцевих відбивалася в зниженні УО та ХО і в підсумку повноцінно відображало процес зменшення фракції викиду до 46,04 %, що на 35 % менше за відповідний показник норми (табл. 3).

Table 3. Об’ємно-швидкісні характеристики лівого шлуночка щурів на 7-му добу після перев’язки лівої коронарної артерії

Показник	Норма	IM Контроль	IM + МІ	IM + МКІ	IM + ТГ + МКІ
КДО, мл	0,52 ± 0,03	0,64 ± 0,05	0,71 ± 0,06	1,23 ± 0,14	0,71 ± 0,08
КСО, мл	0,14 ± 0,01	0,35 ± 0,03	0,36 ± 0,05	0,57 ± 0,08	0,31 ± 0,04
УО, мл	0,37 ± 0,03	0,29 ± 0,03	0,35 ± 0,03	0,66 ± 0,07	0,39 ± 0,04
ХО, мл	137,9 ± 10,5	122,5 ± 8,6	153,1 ± 12,7	282,4 ± 32,5	155,9 ± 19,7
ФВ, %	71,8 ± 1,2	46,04 ± 1,74	51,08 ± 2,68	54,81 ± 2,26	55,20 ± 1,33

Примітки:
Відмінності статистично достовірні (p < 0,05): 1 – у порівнянні з інтактними тваринами; 2 – у порівнянні з контрольною групою.

Notes:
Differences are statistically significant (p < 0.05): 1 – in comparison with intact animals; 2 – in comparison with the control group.

As far as is known, the removal of a part of viable cardiomyocytes from the general contractile process leads to a pronounced kinetic heterogeneity between the damaged, borderline and distant parts of the left ventricular wall. Ischemic and preserved segments differ significantly in terms of the level of systolic thickening and chronologic sequence of contraction – relaxation of myocardial fibers. The decreased force developing by myocardial segments under their kinetic inhomogeneity is less than in the case of synchronous contraction, which potentiates the drop in contractility and pumping function of the left ventricle as a whole [11]. Significant suppression of LV function in the control group led to decreased SV and CO, and as a result, suggested a reduced ejection fraction to 46.04 %, which was 35 % less than the corresponding normal range (Table 3). It is the ejection fraction that is an integral parameter of the pumping function of the left ventricle and is important in the prognosis of the disease.

In this case, as a compensatory mechanism for the delivery of oxygen, nutrients and restoring the balance of volume and blood flow, the heart rate increased up to 430 contractions per minute. However, the cardiac output associated with heart rate is falling behind the normal range by 10 % (Table 3).

The thickness of the interventricular septum and posterior wall also tended to increase at end diastole as well as at end systole (Table 2). This had an impact on the values of myocardial contractile function and indicated decreased systolic heart function (Table 4).

When calculating the percentage of contractility of the interventricular septum (IVSsT), a decrease of this value by 20 % compared to animals of the intact group was observed, while the percentage of contraction of the posterior wall of the left ventricle was within normal range (Table 4).

In addition, fractional shortening (FS), which is directly related to EDD and ESD, was 1.8 times decreasing compared to the group with normal range values, which was 35 % less than the corresponding normal range (Table 3). It is the ejection fraction that is an integral parameter of the pumping function of the left ventricle and is important in the prognosis of the disease.

In this case, as a compensatory mechanism for the delivery of oxygen, nutrients and restoring the balance of volume and blood flow, the heart rate increased up to 430 contractions per minute. However, the cardiac output associated with heart rate is falling behind the normal range by 10 % (Table 3).

The thickness of the interventricular septum and posterior wall also tended to increase at end diastole as well as at end systole (Table 2). This had an impact on the values of myocardial contractile function and indicated decreased systolic heart function (Table 4).

When calculating the percentage of contractility of the interventricular septum (IVSsT), a decrease of this value by 20 % compared to animals of the intact group was observed, while the percentage of contraction of the posterior wall of the left ventricle was within normal range (Table 4).

In addition, fractional shortening (FS), which is directly related to EDD and ESD, was 1.8 times decreasing compared to the group with normal range values,
Крім того, фракція скорочення (ФС), яка на пряму пов'язана з КДД та КСД, у порівнянні з групою норми, знижувалась у 1,8 разу, що підтверджувало розвиток систолічної дисфункції ЛШ після перев'язки лівої коронарної артерії.

Грунтуючись на результатах розрахунку індексу маси міокарда ЛШ та відносної товщинах стінки ЛШ, оцінювалися геометричні моделі ЛШ (типи ремоделювання). Відповідно до класифікації Ganau A et al. (1992), виділяють 4 типи структурно-функціональної перебудови міокарда: концентрична гіпертрофія, ексцентринна гіпертрофія, концентричне ремоделювання і нормальна модель ЛШ [12]. При аналізі експериментальних даних установлено, що показник відносного потовщення задньої стінки ЛШ статистично достовірно відрізнявся від показника норми і дорівнював 0,29 ± 0,01.

Завдяки невеликому збільшенню в діастолу товщина міжшлуночкової перегородки в 1,8 рази, що дорівнювало відносному збільшенню товщі стінки ЛШ, знижувалися чорноти, що пов'язано з КДД та КСД, у порівнянні з контрольною групою.

Показники скоротливої функції лівого шлуночку у щурів на 7-му добу

Table 4. Parameters of contractile function of LV myocardium in rats on day 7 after ligating the left coronary artery

Показник Parameters	Норма Normal range	IM Контроль MI Control	IM + TT MI + TH	IM + MCK MI + MSC	IM + TT + MCK MI + TH + MSC
CHMIP, %	70,6 ± 5,4	50,77 ± 7,3\(^1\)	53,12 ± 7,09\(^2\)	49,08 ± 5,25\(^3\)	42,87 ± 8,2m
IVSlt, %	41,5 ± 5,98	42,3 ± 3,07	33,57 ± 7,6\(^4\)	32,48 ± 6,03\(^2\)	20,14 ± 3,4\(^1\)
ФС, %	36,16 ± 1,0	19,86 ± 1,84\(^5\)	22,84 ± 1,4\(^6\)	25,08 ± 1,3\(^2\)	24,99 ± 0,8\(^3\)
ВТС, %	0,34 ± 0,02	0,29 ± 0,01\(^7\)	0,33 ± 0,015	0,34 ± 0,01	0,35 ± 0,02
МЛШ, г	0,81 ± 0,02	0,85 ± 0,02\(^8\)	0,86 ± 0,02\(^9\)	1,07 ± 0,05\(^1\)	0,87 ± 0,03

Примітки:
Відмінності статистично достовірні (р < 0,05): 1 – в порівнянні з інтактними тваринами; 2 – в порівнянні з контрольною групою.

Notes:
Differences are statistically significant (p < 0,05): 1 – in comparison with intact animals; 2 – in comparison with the control group.

Confirming the development of systolic dysfunction of the LV after ligating the coronary artery.

Based on calculation data on left ventricular mass index and LV relative wall thickness, geometric models of the LV (remodelling types) were being assessed. According to the classification of Ganau A, et al. (1992), there are 4 types of structural and functional remodelling of the myocardium: concentric hypertrophy, eccentric hypertrophy, concentric remodelling and normal LV model [12]. In the analysis of experimental data, it was found that the relative thickness of the posterior wall of the left ventricle was statistically significantly different from the normal range value and was equal to 0.29 ± 0.01. Due to a minor increase of thickness of the interventricular septum and posterior wall of the left ventricle at end diastole, the mass of the left ventricle also increased and reached the level of 0.85 ± 0.03 g (Table 4).

According to RWT and LVM values, we could conclude that on day 7 after ligating the left coronary artery, the remodelling of the LV of rats as per the classification of LV hypertrophy models was proceeding due to eccentric remodelling mode of the LV.

Therapeutic hypothermia was not able to completely stop the pathophysiological processes associated with coronary ligation. Increasing EDD and ESD by 11 % and 35 %, respectively, on day 7 resulted in increased EDV by 36.5 % compared to normal range values, while the ESV value was 2.6 times increased (Tables 2, 3).

As far as is known, therapeutic hypothermia has a pronounced neuroprotective effect, which is expressed in decreased cerebral metabolism (6-8 % when the core temperature decreases by 1 °C); reduced production of excitatory neurotransmitters, free oxygen radicals and lipid peroxidation; inhibition of destructive enzymatic reactions (by 1.5 % in decreasing the core temperature by 1 °C); protecting the plasticity of lipoproteins of cytoplasmic membranes; reduction of intracellular lactic acidosis. These properties of therapeutic hypothermia spread affecting the heart as well. A cardioprotective effect of hypothermia on the myocardium is associated with a decrease in oxygen consumption and improved myocardial energy metabolism; reducing the flow of...
Назвавши на зміни в архітектоніці серця, що супроводжуються дилатацією порожнини ЛШ, ударний та хвильний об'єми були на рівні показників норми (табл. 3). Тим не менше, фракція викиду достовірно не відрізнялася від контролю та складала 51,08 ± 2,68 %. При цьому фракція скорочення була в 1,6 разу менше показника норми та також достовірно не відрізнялася від показника контрольної групи (табл. 4).

Відносна товщина стенки ЛШ та маса лівого шлуночка достовірно не відрізнялася від відповідних показників групи норми, що свідчило про рівномірне збереження серцевого м'яза у середньої групи за моделлю нормальної геометрії, і, як наслідок, показники ударного та хвильного об'єму не відрізнялися від показників інших груп. Але зазначимо, що на 7-му добу експериментального інфаркту міокарда використання терапевтичної гіпотермії як спосіб, який підтримує енергетичний метаболізм у міокарді, не дозволяє повної мірою запобігти розвитку дилатаций ЛШ.

Постінфарктна зміна геометрії лівого шлуночка – це компенсаторний процес, наслідком якого є підтримка скорочувальної функції ЛШ, яка досягається балансуванням між гіпертрофією міокарда та дилатациєю камер серця. Більшою мірою це стосується груп штурів, яким вводили аллогенні криоконсервовані МСК.

Зміни архітектоніки серця на 7-му добу, в першу чергу, зумовлені збільшенням ехопоказників КДД та КСД, які в 1,35 і 1,6 разу перевищували норму, що свідчило про дилатацию ЛШ (табл. 2). Незважаючи на об’ємне переємнення, яке викликає постінфарктне розширення порожнини ЛШ, відмічали компенсаторні зміни ударного об’єму в 1,8 разу відносно групи норми і в 2,3 рази відносно контрольної групи (табл. 3). Слід зазначити, що фракція викиду у тварин групи з введеним МСК не різнялася від показника контрольної групи, але статистично достовірно вище, ніж відповідний показник контрольної групи, що свідчило про компенсаторний процес, наслідком якого є остаточна стабілізація кислотно-лужного балансу [13]. Крім того, кардіопротекторну дію гіпотермії поширюють в тому, що при терапевтичній гіпотермії помітна корекція метаболізму глутамату [13]. Вона також супроводжується впливом МСК на репаративні процеси в міокарді, що свідчило про зниження показників споживання кальцію [14].

Дані експериментальних і клінічних досліджень свідчать про збільшення числа і на серці. Кардіопротекторну дію гіпотермії стосується до стимуляції кількісного лукатацидозу. Це, разом з іншими, дозволяє досліджень, що свідчило про розвиток дилатаций ЛШ.

Постінфарктна зміна геометрії лівого шлуночка – це компенсаторний процес, наслідком якого є підтримка скорочувальної функції ЛШ, яка досягається безпосередньою між гіпертрофією міокарда та дилатациєю камер серця. Більшою мірою це стосується груп штурів, яким вводили аллогенні криоконсервовані МСК.

Зміни архітектоніки серця на 7-му добу, в першу чергу, зумовлені збільшенням ехопоказників КДД та КСД, які в 1,35 і 1,6 разу перевищували норму, що свідчило про дилатацию ЛШ (табл. 2). Незважаючи на об’ємне переємнення, яке викликає постінфарктне розширення порожнини ЛШ, відмічали компенсаторні зміни ударного об’єму в 1,8 разу відносно групи норми і в 2,3 рази відносно контрольної групи (табл. 3). Слід зазначити, що фракція викиду у тварин групи з введеним МСК не різнялася від показника контрольної групи, але статистично достовірно вище, ніж відповідний показник контрольної групи, що свідчило про зниження показників споживання кальцію [14]. Вона також супроводжується впливом МСК на репаративні процеси в міокарді, що свідчило про зниження показників споживання кальцію [14].
демонструють, що при доставці МСК до вогнища ура
ження, вони сприяють відновленню функції міокарда
й позитивно впливають на ремоделювання ЛШ [4].

Відомо, що після введення МСК функціональні
результати компенсації не відбуваються на 7-му добу експерименту встановлено, що ремоделювання серця після перева́жки лівої коронарної артерії і введення альо
genніх МСК проходило шляхом екскентричної гіпертро
gії ЛШ, при якій збільшення маси ЛШ зумовлене його
dilataцією з розвитком міокардіальної недостатності
при нормальній відносній товщині стінки ЛШ.

З даними УЗ-дослідження, найбільш близько до показників норми була група тварин із остиничним використанням терапевтичної гіпотермії і трансплан
tацією МСК. Показники КДД і КСД на 10 % і 30 % перевищували відповідні показники групи норми. Незважаючи на це, КДО і КСО, показник ударного
об’єму був максимально наближений до відповід
них МСК проходило шляхом екскентричної гіпертро
gії ЛШ, при якій збільшення маси ЛШ зумовлене його
dilataцією з розвитком міокардіальної недостатності
при нормальній відносній товщині стінки ЛШ.

Відносна товщина стінки ЛШ також не переви
щувала показник норми і складала 0,35 ± 0,02, а маса
ЛШ складала 0,87 ± 0,03 г. Після аналізу результат
тів можна зробити висновок, що поєднане вико
ристання терапевтичної гіпотермії і альо
genних МСК призначає більше об’єм маси ЛШ і ВТС на 7-му добу експерименту сприяло ремоделюванню ЛШ за нормальної
геометрії. За об’ємно-швидкісними характеристиками
наближені до показників норми, і тому ознаки вираженої діла
tції ЛШ не відмічали.

Ехокардіографічні показники серця шу
рів на 30-ту добу експериментального інфаркту міо
cарда. За результатами ультрасонографічного до
слідження встановлено, що на 30-ту добу після перева́жки лівої коронарної артерії в контроль
ній групі шури збережені зв’язки, що вплинули на вільну тінь серця, яка протягом 23 діб виросла тільки
на 5 % і складала 50.95 ± 1.92 %, але була ще до
статочно низькою відносно норми та інших експеримент

Відносна товщина стінки ЛШ також не переви
щувала показник норми і складала 0,35 ± 0,02, а маса
ЛШ складала 0,87 ± 0,03 г. Після аналізу результат
тів можна зробити висновок, що поєднане вико
ристання терапевтичної гіпотермії і альо
genних МСК призначає більше об’єм маси ЛШ і ВТС на 7-му добу експерименту сприяло ремоделюванню ЛШ за нормальної
геометрії. За об’ємно-швидкісними характеристиками
наближені до показників норми, і тому ознаки вираженої діла
tції ЛШ не відмічали.

Збільшення КДД, у свою чергу, приводило до зростання КДО на 17 % відносно цього показника
26 % and 41 % compared to the previous observation
period and exceeded the normal range by 10 % (Table
6). Due to the increased heart rate, cardiac output was
influenced which within the period of 23 days increased only
by 5 % and reached 50.95 ± 1.92 % being at the time
quite low in comparison to the normal range and other
groups involved in the experiment. The increase in stroke
volume also influenced cardiac output velocity which in
creased 1.45 times compared to the previous observation
period and exceeded the normal range by 10 % (Table
6). Due to the increased heart rate, cardiac output was
increasing and so exceeding the normal range by 10 % and
30 %. In spite of this fact, EDV and ESV, stroke volume
value was max close to that one of intact animals., 0.39 ±
0.04 ml (Table 3). The ejection fraction and fractional
shortening were also max close to the normal range. They
did not differ significantly from the values of the
group exposed to administering MSC (Tables 3, 4).

The relative wall thickness of the left ventricle also
did not exceed the normal range, 0.35 ± 0.02, while the
mass of the left ventricle was 0.87 ± 0.03g. Having ana
lyzed the outcomes, we can conclude that the combined
use of therapeutic hypothermia and allogeneic MSCs in
terms of LV mass and RWT on day 7 of the experiment
contributed to the remodelling of the LV under normal
geometry. Regarding volume-velocity properties, the
echo values of this group were max close to the normal
range and, therefore, no signs of severe LV dilatation
were observed.

Echocardiographic values of the heart of rats on
day 30 of experimental myocardial infarction

Ultrasonography findings showed that on day 30 after
ligating the left coronary artery in the control group of
rats, increased EDD in comparison with the previous
observation period in the setting of the preserved ESD was
observed (Table 5).

The increase in EDD, in its turn, led to increasing
EDV by 17 % compared to this value on day 7, suggest
ning the enlargement of the left ventricular cavity, i.e. its
dilatation (Table 6), and confirming the fact that long
term, continuously volume overload was causing the
stress of compensatory mechanisms and dynamic pro
gression of dilatation [16].

According to those changes, the stroke volume was
increasing, 0.38 ± 0.03 ml. It affected the ejection frac
tion which within the period of 23 days increased only
by 5 % and reached 50.95 ± 1.92 % being at the time
quite low in comparison to the normal range and other
groups involved in the experiment. The increase in stroke
volume also influenced cardiac output velocity which in
creased 1.45 times compared to the previous observation
period and exceeded the normal range by 10 % (Table
6). Due to the increased heart rate, cardiac output was
increasing and so exceeding the normal range values by
26 % and 41 % compared to the previous observation
period. Despite the increase in stroke volume, the low
est fractional shortening was observed among the groups
(Table 7).

Adaptive tonogenic dilatation, under normal con
ditions, was combined with increasing muscle mass
Оригінальні дослідження

Таблиця 5. Виміри анатомічних структур при ехокардіографічному досліджені в М-режимі після перев’язки лівої коронарної артерії на 30-ту добу

Table 5. Measurements of anatomical structures in echocardiographic examination in M-mode after ligating the left coronary artery on day 30

Показники	Норма	IM контроль	IM + TH	IM + MCK	IM + TH + MCK
KсД, мм	6,03 ± 0,16	6,92 ± 0,121	7,05 ± 0,322	7,7 ± 0,521	6,52 ± 0,11
KсД, мм	3,84 ± 0,10	5,36 ± 0,111	5,31 ± 0,381	6,05 ± 0,551	4,74 ± 0,081
ТМПД, мм	0,68 ± 0,08	0,96 ± 0,061	0,60 ± 0,062	0,68 ± 0,12	0,73 ± 0,032
ТМПС, мм	1,17 ± 0,11	1,20 ± 0,06	0,85 ± 0,132	0,97 ± 0,112	0,91 ± 0,042
ТЗСД, мм	1,03 ± 0,05	1,0 ± 0,12	0,98 ± 0,04	1,19 ± 0,141	1,15 ± 0,06
ТЗСС, мм	1,46 ± 0,05	1,38 ± 0,051	1,30 ± 0,051	1,51 ± 0,091	1,52 ± 0,032
ЧСС, об/хв	374 ± 16,8	454 ± 18,81	422 ± 22,012	390 ± 7,11	422 ± 14,92

Примітки:
Відмінності статистично достовірні (р < 0,05): 1 – у порівнянні з інтактними тваринами; 2 – у порівнянні з контрольною групою.

Notes:
Differences are statistically significant (p < 0.05): 1 – in comparison with intact animals; 2 – in comparison with the control group.

Таблиця 6. Об’ємно-швидкісні характеристики лівого шлуночка шурів на 30-ту добу після перев’язки лівої коронарної артерії

Table 6. Volume-velocity properties of the LV of rats on day 30 after ligating the left coronary artery

Показники	Норма	IM контроль	IM + TH	IM + MCK	IM + TH + MCK
КДО, мл	0,52 ± 0,03	0,75 ± 0,041	0,80 ± 0,101	1,01 ± 0,212	0,64 ± 0,033
КСО, мл	0,14 ± 0,01	0,37 ± 0,021	0,37 ± 0,071	0,51 ± 0,112	0,26 ± 0,012
УО, мл	0,37 ± 0,03	0,38 ± 0,03	0,43 ± 0,033	0,57 ± 0,13	0,38 ± 0,04
ХО, мл	137,9 ± 10,5	173,2 ± 11,21	181,6 ± 17,11	225,0 ± 22,81	159,5 ± 18,6
ФВ, %	71,8 ± 1,2	50,9 ± 1,99	54,9 ± 3,61	57,4 ± 2,5112	58,8 ± 3,4112

Примітки:
Відмінності статистично достовірні (р < 0,05): 1 – у порівнянні з інтактними тваринами; 2 – в порівнянні з контрольною групою.

Notes:
Differences are statistically significant (p < 0.05): 1 – in comparison with intact animals; 2 – in comparison with the control group.

Спостереження і перев’язував показник норми на 10 % (табл. 6). Завдяки збільшенню ЧСС зростав хвильний об’єм і перев’язував показник норми на 26 % і на 41 % відносно попереднього строку спостереження. Незважаючи на збільшення шахтарського об’єму, відмічали найнижчий серед груп показник фракції скорочення (табл. 7).

Адаптивна тоногенна дилатация при нормальному перебігу процесу поєднувалася зі збільшенням м’язової маси без потовщення стінки. Так, на 30-ту добу експерименту показник потовщення міжшлуночкової перегородки був знижений у 2,8 разу, а потовщення задньої стінки ЛШ – на 9 %, і, як наслідок, відносна товщина стінки ЛШ дорівнювала 0,29 ± 0,03, що на 14 % менше від норми, при цьому маса ЛШ дорівнювала 0,91 ± 0,03 г, що на 11 % перевищуvalа показник норми і підтверджувала розвиток гіпертрофії міокарда. Without wall thickening. Thus, on day 30 of the experiment, the value of thickening of the interventricular septum was 2.8 times reduced, the thickening of the posterior wall of the left ventricle was increased by 9 %, and as a consequence, the relative wall thickness of the left ventricle was 0.29 ± 0.03, that was 14 % less in comparison with the normal range, while the mass of the left ventricle was 0.91 ± 0.03 g, that was 11 % higher than normal range and it confirmed the development of myocardial hypertrophy.

Long-term, continuously increasing volume overload leads to stressing compensatory mechanisms and dynamic progression of dilatation. Despite a significant impact of myocyte hypertrophy on maintaining the tone of the LV walls and compensation of the pumping function of the heart, in case of myocardial damage, the degree of cavity extending is often disproportionate to the increase of its mass [16, 17]. This is evidenced by the
Протягом 60 хвилин повною мірою сприяло мії. Проведення процедури терапевтичної гіпотермії, а за ексцентричною моделлю. Ці зміни зумовлювалися відсутністю компенсації, а не за нормальною геометрією. Протякуючи на 30-ту добу ремонтовання ЛШ у цій групі відносно контрольної групи на 30-ту добу не відмічалася. У контрольній групі, але в 1,3 разу менше відносно до стадії декомпенсації серцевої діяльності. І тому саме в цій групі є велика вірогідність розвитку і прогресування хронічної серцевої недостатності, у тому числі до стадії декомпенсації.

Помітних відмінностей ехокартіографічних показників анатомічних структур у групах після перев’язки коронарної артерії відмічено. Відмінності статистично достовірні (р < 0,05): 1 – у порівнянні з інтактними тваринами; 2 – у порівнянні з контрольною групою.

Таблиця 7. Показники скоротливої функції міокарда лівого шлуночка у щурів на 30-ту добу після перев’язки лівої коронарної артерії

Показники скоротливої функції	Норма	ІМ контроль	IM + TT	IM + МСК	IM + TT + МСК
СТПП, %	70,6 ± 5,4	25,1 ± 5,9	40,2 ± 9,3	41,6 ± 9,9	26,79 ± 8,6
СТППМ, %	41,5 ± 5,98	37,8 ± 6,08	32,6 ± 7,8	26,4 ± 8,2	33,05 ± 8,31
ЛВПW, %	36,16 ± 1,01	22,54 ± 1,08	24,01 ± 2,13	26,53 ± 1,45	27,22 ± 2,17
ВТС, %	0,34 ± 0,02	0,29 ± 0,03	0,28 ± 0,02	0,34 ± 0,01	0,35 ± 0,02
МЛШ, g	0,81 ± 0,02	0,91 ± 0,03	0,85 ± 0,03	0,96 ± 0,04	0,86 ± 0,01

Примітки:
Відмінності статистично достовірні (р < 0,05): 1 – у порівнянні з інтактними тваринами; 2 – у порівнянні з контрольною групою.

Notes:
Differences are statistically significant (р < 0,05): 1 – in comparison with intact animals; 2 – in comparison with the control group.

Тривало, безперервно зростає перепонування об’ємом веде до напрузи компенсаторних механізмів і динамічного прогресування ділянцій. Незважаючи на значний вплив гіпертрофії міощинців на підтримку тонусу стінки лівого шлуночка і компенсацію насосної функції серця, при пошкодженні міокарда змінюються тип розширення порожнини частю непропорційний збільшення його маси [16, 17]. Про це свідчить збільшення УО відносно до маси ЛШ у щурів контрольної групи. Оскільки ширина зони ураження і вираженість кінетичного дисбалансу асоціюється зі ступенем і швидкістю розвитку гіпоконтрактurreності всього міокарда – провідної причини подальшої декомпенсації серцевої діяльності. І тому саме в цій групі є велика вірогідність розвитку і прогресування клініки хронічної серцевої недостатності (ХСН) [16].

Таким чином, на етапі рубцювання після перев’язки коронарної артерії відмічається продовження дилататії ЛШ, зниження скоротливості та ознаки ремоделювання ЛШ у цій групі. Перев’язка коронарної артерії відмічала продовження розширення відносно до нормального розміру (Табл. 6).

Щодо відносної товщини стінки ЛШ, то вона була найменшою серед експериментальних груп, а маса ЛШ статистично значуще не відрізнялася від норми. Тому на 30-ту добу ремоделювання ЛШ у цій групі продовжувалося, тільки не за нормальною геометрією, а за екскентринною моделлю. Цей зміни зумовлені короткочасним ефектом терапевтичної гіпотермії. Проведення процедури терапевтичної гіпотермії протягом 60 хвилин повною мірою сприяло increase in stroke volume compared to the mass of the left ventricle in rats of the control group. Since the width of the affected area and the severity of the kinetic imbalance is associated with the degree and rate of development of hypocontractility of the entire myocardium, i.e. the leading cause of further deceleration of cardiac activity. Consequently, the probability of development and progression of chronic heart failure (CHF) is high in this very group [16].

Thus, at the stage of scarring, after ligating the coronary artery, there was continuing LV dilatation, decreased contractility and signs of LV remodelling by eccentric type. In terms of prognosis, all these echocardiographic parameters suggest the likelihood of development of chronic heart failure, including the stage of deceleration, in rats of this group.

No pronounced differences in the echo parameters of anatomical structures in the group after therapeutic hypothermia associated with ligating coronary artery in comparison with the control group on day 30 were observed. First of all, it concerns ESD, so ESV was at the level of the control group as well (Tables 5, 6). The ejection fraction was 55 %, that was 4 % higher than the normal range (Table 6).

Regarding the relative wall thickness of the left ventricle, it was the smallest among the experimental groups, and the mass of the left ventricle did not differ statistically significantly from the normal range. Therefore, on day 30, LV remodelling was progressing in this group, not according to the normal geometry, but according to the eccentric model. Those changes resulted from the short-term effect of therapeutic hypothermia. Providing therapeutic hypothermia procedure for 60 minutes was fully aiding in short-term reduction of oxygen consumption in the area of ischemia and suppression of free radical reactions, that affected the echo parameters on day 7 of the experiment.

Subsequently, at the scarring stage, remodelling process did not differ significantly from the control, but the gradual recovery of the ejection fraction suggested decreased systolic dysfunction compared to the control group.
короткочасному зниженню споживання кисню в зоні ішемії і суперєї вільнорадикальних реакцій, що відбивалося на ехопоказниках на 7-му добу експерименту. У подальшому на етапі рубізнення процес ремоделювання достовірно не відрізнявся від контролю, але поступове відновлення фракції викиду свідчило про зменшення систолічної дисфункції по-рівняно з контрольною групою.

Досить високі показники анатомічних структур серця після введення алегенних мезенхімальних МСК на фоні експериментального інфаркту міокарда на 30-ту добу демонстрували незначне їх зменшення відносно попереднього строку спостереження (табл. 5). Незважаючи на це, вони були достовірно відмінними від показників норми. Так, КДД та КСД в 1,27 та 1,6 рази вище норми приводило до збільшення ударного об’єму до 50,7 ± 0,1 мл. Слід зазначити, що саме в цій групі ЧСС статистично значуще не відрізнялася від показників норми і складала 390 ± 7,1 скор./хв, що свідчило про досить економну роботу серця завдяки збільшенню хвильного об’єму. Фракція викиду досягла 57,45 %, а фракція скорочення 26,53 % (табл. 6, 7). Ремоделювання ЛШ продовжувалося за ексцентрічним типом гіпертрофії, про що свідчить співвідношення показників відносно товщини стінки та маси ЛШ. Необхідно підкреслити, що МСК сприяють паракриному ефекту, тобто за рахунок виділення низки біологічно активних речовин відбувається регуляція не тільки ангиогенезу, але й відновного морфогенезу міокарда [15].

Таким чином, найбільш виражена дилатація ЛШ, спричинена перев’язкою лівої коронарної артерії, була частково компенсована введенням алегенних МСК, що сприяло компенсаційній гіпертрофії стінки ЛШ, що відбивалася на відновленні об’ємно-швидкісних характеристик стінки ЛШ та масти ЛШ. Необхідно підкреслити, що МСК сприяють паракриному ефекту, тобто за рахунок виділення низки біологічно активних речовин відбувається регуляція не тільки ангиогенезу, але й відновного морфогенезу міокарда [15]. Відносне потовщення стінки ЛШ та його маса достовірно не відрізнялися від показника норми, і тому ремоделювання серця відбувалося за нормальною геометрією. Об’ємно-швидкісні характеристики підтвердили збережену систолічну функцію ЛШ.

Отже, високі показники анатомічних структур серця після введення алегенних мезенхімальних МСК на фоні експериментального інфаркту міокарда на 30-ту добу демонстрували незначне їх зменшення відносно попереднього строку спостереження (табл. 5). Незважаючи на це, вони були достовірно відмінними від показників норми.

Слід зазначити, що саме в цій групі ЧСС статистично значуще не відрізнялася від показників норми і складала 390 ± 7,1 скор./хв, що свідчило про досить економну роботу серця завдяки збільшенню хвильного об’єму. Фракція викиду досягла 57,45 %, а фракція скорочення 26,53 % (табл. 6, 7). Ремоделювання ЛШ продовжувалося за ексцентрічним типом гіпертрофії, про що свідчить співвідношення показників відносно товщини стінки та маси ЛШ. Необхідно підкреслити, що МСК сприяють паракриному ефекту, тобто за рахунок виділення низки біологічно активних речовин відбувається регуляція не тільки ангиогенезу, але й відновного морфогенезу міокарда [15].

Таким чином, найбільш виражена дилатація ЛШ, спричинена перев’язкою лівої коронарної артерії, була частково компенсована введенням алегенних МСК, що сприяло компенсаційній гіпертрофії стінки ЛШ, що відбивалася на відновленні об’ємно-швидкісних характеристик стінки ЛШ та масти ЛШ. Необхідно підкреслити, що МСК сприяють паракриному ефекту, тобто за рахунок виділення низки біологічно активних речовин відбувається регуляція не тільки ангиогенезу, але й відновного морфогенезу міокарда [15]. Відносне потовщення стінки ЛШ та його маса достовірно не відрізнялися від показника норми, і тому ремоделювання серця відбувалося за нормальною геометрією. Об’ємно-швидкісні характеристики підтвердили збережену систолічну функцію ЛШ.

Quite high measurements of the anatomical structures of the heart after administering allogeneic mesenchymal MSCs associated with experimental myocardial infarction on day 30 showed a minor decrease compared to the previous observation period (Table 5). Despite this, they were quite high compared to the normal range. Thus, EDD and ESD were 1.27 and 1.6 times, respectively, higher than the normal range (Table 5). In this regard, increasing EDV and ESV were 2 and 3 times over than the normal range lead to increasing stroke volume up to 0.57 ± 0.1 ml. It is worth noting that in this group the heart rate did not differ statistically significantly from the normal range, 390 ± 7.1 contractions per minute, that indicated rather saving activity of the heart due to the increase in cardiac output. The ejection fraction reached 57.45 % as well as the fractional shortening reached 26.53 % (Tables 6, 7). LV remodelling was progressing according to the eccentric type of hypertrophy, as evidenced by the ratio of the relative wall thickness and LV mass. It should be emphasized that MSCs have a paracrine effect, i.e. due to the release of a number of biologically active substances, there is the regulation not only of angiogenesis but also restorative morphogenesis of the myocardium [15].

Thus, the most pronounced dilatation of the left ventricle, caused by ligating the left coronary artery, was partially compensated by administering allogeneic MSCs, which aided in compensatory hypertrophy of the left ventricular wall affecting the restoring volume-velocity properties of the left ventricle. The increased LV mass in the setting of normal relative LV wall thickness confirmed that in animals of this group, heart remodelling was progressing according to the model of eccentric LV hypertrophy.

Combination of therapeutic hypothermia and administering allogeneic MSCs aided in the most pronounced recovery of echo parameters on day 30 of the experiment. In comparison with the previous observation period and the control groups, EDD and ESD decreased (Table 5). As a consequence of these changes, EDV and ESV values were 14 % and 29 % lower than the control group and were max close to the normal range values (Table 6).

Stroke volume and cardiac output did not differ statistically significantly from the normal range. Normalization of these parameters affected the ejection fraction exceeding the control group by 8 % and showing the best outcome – 58.78 %, while the fractional shortening was 27.2 % (Table 7).

The relative thickening of the left ventricular wall and the mass of the left ventricle did not differ significantly from the normal range. Normalization of these parameters affected the ejection fraction exceeding the control group by 8 % and showing the best outcome – 58.78 %, while the fractional shortening was 27.2 % (Table 7).

Original research
CONCLUSIONS

1. Applying echocardiography in rats is a very informative method of diagnosis, which makes it possible to measure the anatomical structures of the cavities and walls of the heart with further calculating the basic volume-velocity properties of the heart and contractile function of the left ventricular myocardium, which allows to describe the type of structural and functional remodelling of the myocardium associated with MI at early and late observation stages.

2. Ligating the left coronary artery, both on day 7 and day 30 of the experiment led to changes in the architecture of the heart indicating the development of dilatation and decreased contractile function of the left myocardium, along with its remodelling based on eccentric hypertrophy and signs of systolic dysfunction of the LV. The ejection fraction in this group was minimal and on day 7 it was 46 %, which was 35 % less than the corresponding normal range value, contributing to the development of chronic heart failure.

3. Therapeutic hypothermia, as a method improving energy metabolism in the myocardium on experimental infarction model did not completely prevent the development of left ventricular dilatation, while remodelling of the heart muscle on day 7 was proceeding according to the normal model, but later, on day 30 of LV remodelling experiment in this group it was progressing according to the eccentric model.

In the group, after therapeutic hypothermia and administering MSC associated with experimental myocardial infarction on day 7 and day 30, the best values of echo params of anatomical structures of the left ventricle were recorded, suggesting no dilatation along with occurring moderate myocardial hypertrophy. The ejection fraction showed the best outcome, i.e. 58.78 %, while LV remodelling was minimal proceeding at normal heart geometry.
Список використаної літератури

1. URL: https://interfax.com.ua/news/pharmacy/558941.html

2. Торенда Н. О. Впровадження методу стентування коронарних артерій в Україні. Вісник соціальної гігієни та організації охорони здоров'я України. 2016. Т. 70, № 4. С. 12–17. DOI: https://doi.org/10.11603/1681-2786.2016.4.7543

3. https://www.kmu.gov.ua/news/moz-rozpochalo-informatsiu-kampaniyu-pro-svojoychasne-bezoplatne-likvuvannya-infarktu data zvernennya 07.11.2020

4. Хулуп Г. Я., Мастицкая С. Ю., Зафранська М. М. Дифференцировочные и иммуномоду- лирующие свойства мезенхимальных стволовых клеток как потенциальные механизмы положитель- ного действия при инфаркте миокарда. Вест- ник Витебского государственного медицинского университета. 2009. Т. 8, № 1. С. 12–23. URL: https://cyberleninka.ru/article/n/differentsirovochnye-i-immunomoduliruyushchie-svoystva-mesenchnimalnyh-stvolyovyh-kletok-kak-potentialnye-mehanizmy-polozhitelnogo (дата звернення: 15.11.2020).

5. Rech T. H., Vieira S. R. Mild therapeutic hypothermia after cardiac arrest: mechanisms of action and protocol development. Rev. Bras. Ter. Intensiva. 2010. Vol. 22, № 2. P. 196–205. DOI: http://dx.doi.org/10.1590/S0103-507X2010000200015.

6. Абдулаев Р. Я., Никонов В. В. Особенности ран- него ремоделирования левого желудочка и лево- го предсердия у больных с острым инфаркт- том миокарда. URL: http://www.emergencymed. org.ua/index.php?option=com_content&view=article&id=1195:2009-11-08-13-50-40&catid=100:7&Itemid=148 (дата звернення: 15.11.2020).

7. Способ моделирования инфаркту миокарда: пат. на к/м № 65535 Украина; заявл. 10.05.2011, опубл. 12.12.2011. Бюл. № 23. 2 с. URL: https://ua.patents.com/2-65535-sposib-modelyuvannya-infarktu-miokaruda. (дата звернення: 15.11.2020).

8. Trofimova A. V., Chizh N. A., Belochkina I. V. et al. Cardiomyocyte ultrastructure of rats with experimental myocardial infarction after therapeutic hypothermia and mesenchymal stromal cell administration. Problems of cryobiology and cryomedicine. 2017. Vol. 27, Issue 4. P. 334–347. DOI: https://doi.org/10.15407/cryo27.04.334

9. Світіна Г. М., Калмикова О. О., Шелест Д. В. та ін. Клітинна імунна відповідь у шріф з 1,2-диметилгідразин-індукуваним раком товстої кишки після трансплантації мультитипотентних клітин плаценти. Клітинна та органна трансплан- тологія, 2016. Т. 4, № 1. С. 48–54. URL: http://transplantology.org/wp-content/uploads/2016/06/KOT_6_tom4_1_block_web_print_04_1_UA_47-54.pdf (дата звернення: 15.11.2020).

10. Аткіков О. Ю. і др. Ультразвукове исследо- вання сердца и сосудов. Москва: Эксмо, 2015. 456 с. URL: https://www.booksmed.com/

Список використаної літератури

1. URL: https://interfax.com.ua/news/pharmacy/558941.html

2. Торенда Н. О. Впровадження методу стентування коронарних артерій в Україні. Вісник соціальної гігієни та організації охорони здоров'я України. 2016. Т. 70, № 4. С. 12–17. DOI: https://doi.org/10.11603/1681-2786.2016.4.7543

3. https://www.kmu.gov.ua/news/moz-rozpochalo-informaciu-kampaniyu-pro-svojchasne-bezoplatne-likvuvannya-infarktu data zvernennya 07.11.2020

4. Хулуп Г. Я., Мастицкая С. Ю., Зафранська М. М. Дифференцировочные и иммуномоду- лирующие свойства мезенхимальных стволовых клеток как потенциальные механизмы положитель- ного действия при инфаркте миокарда. Вест- ник Витебского государственного медицинского университета. 2009. Т. 8, № 1. С. 12–23. URL: https://cyberleninka.ru/article/n/differentsirovochnye-i-immunomoduliruyushchie-svoystva-mesenchnimalnyh-stvolyovyh-kletok-kak-potentialnye-mehanizmy-polozhitelnogo (дата звернення: 15.11.2020).

5. Rech T. H., Vieira S. R. Mild therapeutic hypothermia after cardiac arrest: mechanisms of action and protocol development. Rev. Bras. Ter. Intensiva. 2010. Vol. 22, № 2. P. 196–205. DOI: http://dx.doi.org/10.1590/S0103-507X2010000200015.

6. Абдулаев Р. Я., Никонов В. В. Особенности ран- него ремоделирования левого желудочка и лево- го предсердия у больных с острым инфаркт- том миокарда. URL: http://www.emergencymed. org.ua/index.php?option=com_content&view=article&id=1195:2009-11-08-13-50-40&catid=100:7&Itemid=148 (дата звернення: 15.11.2020).

7. Способ моделирования инфаркту миокарда: пат. на к/м № 65535 Украина; заявл. 10.05.2011, опубл. 12.12.2011. Бюл. № 23. 2 с. URL: https://ua.patents.com/2-65535-sposib-modelyuvannya-infarktu-miokaruda. (дата звернення: 15.11.2020).

8. Trofimova A. V., Chizh N. A., Belochkina I. V. et al. Cardiomyocyte ultrastructure of rats with experimental myocardial infarction after therapeutic hypothermia and mesenchymal stromal cell administration. Problems of cryobiology and cryomedicine. 2017. Vol. 27, Issue 4. P. 334–347. DOI: https://doi.org/10.15407/cryo27.04.334

9. Світіна Г. М., Калмикова О. О., Шелест Д. В. та ін. Клітинна імунна відповідь у шріф з 1,2-диметилгідразин-індукуваним раком товстої кишки після трансплантації мультитипотентних клітин плаценти. Клітинна та органна трансплан- тологія, 2016. Т. 4, № 1. С. 48–54. URL: http://transplantology.org/wp-content/uploads/2016/06/KOT_6_tom4_1_block_web_print_04_1_UA_47-54.pdf (дата звернення: 15.11.2020).

10. Аткіков О. Ю. і др. Ультразвукове исследо- вання сердца и сосудов. Москва: Эксмо, 2015. 456 с. URL: https://www.booksmed.com/
Перспективи подальших досліджень
Перспективними є подальші УЗ-дослідження серця шурів під впливом терапевтичної гіпотермії та з ув'язженням MSC на моделі інфаркту міокарда для оцінки стану кровотоку в аорти з використанням ефекту Допплера, який є ефективним засобом неінвазивного дослідження характеристик руху крові. Визначення кількісних показників пульсової хвилі і стану судини, а саме: індексу периферичного опору Пурсело, пульсаційного індексу Гослінга та індексу спектрального розширення Стоярта, допоможе до- датково охарактеризувати скоротливу функцію міокарда на фоні терапевтичних заходів.

Конфлікт інтересів
Автори заявляють про відсутність конфлікту інтересів.

Інформація про фінансування
Робота фінансується видатками Державного бюджету України.

ВІДОМОСТІ ПРО АВТОРІВ
Чиж Микола Олексійович – кандидат медичних наук, старший дослідник, в. о. завідувач відділу експериментальної кріомедicine Інституту проблем кріобіології і кріомедицини НАН України; вул. Переяславська, буд. 23, м. Харків, Україна, 61016; e-mail: n.chizh@ukr.net
тел.: +38 (097) 361-68-61.

Внесок автора: участь у плануванні експерименту, узагальненні результатів та підготовці статті.

Манченко Анна Олександрівна – кандидат медичних наук, в. о. молодший науковий співробітник відділу експериментальної кріомедicine Інституту проблем кріобіології і кріомедицини НАН України; вул. Переяславська, буд. 23, м. Харків, Україна, 61016; e-mail: anna.gorlenko@gmail.com
тел.: +38 (067) 936-62-51.

Внесок автора: участь у проведенні експериментальних досліджень та оформленні статті.

Трофімова Ганна Василівна – аспірант відділу експериментальної кріомедicine Інституту проблем кріобіології і кріомедицини НАН України; вул. Переяславська, буд. 23, м. Харків, Україна, 61016; e-mail: fortomi@rambler.ru
тел.: +38 (067) 741-35-70.

Внесок автора: інформаційний пошук та аналіз літературних даних за темою, участь у проведенні експериментальних досліджень.

Проспект для подальших досліджень
Продовжуються відтиснення залежностей відділу кровотоку в аорти з використанням ефекту Допплера, який є ефективним засобом неінвазивного дослідження характеристик руху крові. Визначення кількісних показників пульсової хвилі і стану судини, а саме: індексу периферичного опору Пурсело, пульсаційного індексу Гослінга та індексу спектрального розширення Стоярта, допоможе до- датково охарактеризувати скоротливу функцію міокарда на фоні терапевтичних заходів.

Конфлікт інтересів
Автори заявляють про відсутність конфлікту інтересів.

Інформація про фінансування
Робота фінансується видатками Державного бюджету України.

INFORMATION ABOUT THE AUTHORS
Chyzh Mykola Oleksiiovych – Candidate of Medical Sciences, Senior Researcher, act. Head of Experimental Cryomedicine Department of Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine; 23, Pereyaslavskaya Street, Kharkiv, Ukraine, 61016; e-mail: n.chizh@ukr.net
tel.: +38 (097) 361-68-61.

Author contributions: participating in planning the experiment, generalizing the outcomes and preparing the article.

Manchenko Anna Oleksandrivna – Candidate of Medical Sciences, act. Junior Researcher of Experimental Cryomedicine Department of Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine; 23, Pereyaslavskaya Street, Kharkiv, Ukraine, 61016; e-mail: anna.gorlenko@gmail.com
tel.: +38 (067) 936-62-51.

Author contributions: participating in experimental studies and preparing the article.

Trofimova Hanna Vasylivna – Postgraduate of Experimental Cryomedicine Department of Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine; 23, Pereyaslavskaya Street, Kharkiv, Ukraine, 61016; e-mail: fortomi@rambler.ru
tel.: +38 (067) 741-35-70.

Author contributions: information search and analyzing the literature on the project, participating in experimental studies.
Бєлочкіна Ірина Владиславівна – кандидат біологічних наук, старший науковий співробітник, старший науковий співробітник відділу експериментальної кріомедицини Інституту проблем кріобіології і кріомедицини НАН України; вул. Переяславська, буд. 23, м. Харків, Україна, 61016; e-mail: ibelochkina@ukr.net
моб.: +38(097) 252-55-12.

Внесок автора: участь у плануванні експерименту, узагальненні результатів та підготовці статті.

Belochkina Iryna Vladyslavivna – Candidate of Biological Sciences, Senior Researcher, Senior Researcher of Experimental Cryomedicine Department of Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine; 23, Pereyaslavskaya Street, Kharkiv, Ukraine, 61016; e-mail: ibelochkina@ukr.net
tel.: +38 (097) 252-55-12.

Author contributions: participating in the planning of the experiment, generalizing the outcomes and preparing the article.