Archaeoseismological Analysis of a Late Bronze Age Site on the Alhama de Murcia Fault, SE Spain

Marta Ferrater,1,*, Pablo G. Silva,2 María Ortúño,1 Miguel Ángel Rodríguez-Pascua,3 and Eulàlia Masana1

1RISKNAT Group. GEOMODELS. Departament de Geodinàmica i Geofísica, Facultat de Geologia, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès, s/n, 08028 Barcelona, Spain
2Dpto. Geología, Universidad de Salamanca Escuela Politécnica Superior de Ávila, Avda. Hornos Caleros 50, 05003 Ávila, Spain
3Instituto Geológico y Minero de España (IGME), c/ Ríos Rosas 23, 28003 Madrid, Spain

Correspondence
*Corresponding author;
E-mail: marta.ferrater@ub.edu

Received
31 July 2014
Revised
9 December 2014
Accepted
11 December 2014

An archaeoseismological study of Tira del Lienzo (Totana, Spain) was undertaken. The site belongs to the Argar archaeological group (2200–1550 cal. B.C.; Bronze Age). It is located on the trace of the reverse left-lateral Alhama de Murcia fault (AMF) that was responsible for the 5.1 Mw 2011 Lorca earthquake. The constructive typology of the site consists of mortar-free irregular natural boulders (dry-set masonry) and differs from earlier archaeoseismological sites built on regular masonry constructions in the Betic Cordillera. Four Earthquake Archaeological Effects (EAEs) were identified as follows: (1) an apparent surface rupture (c. 18 cm left-lateral offset), (2) the differential coseismic uplift of several centimeters affecting the main building of the settlement, (3) the widespread development of fractures on the ground surface (ground cracks) in a NE-SW direction consistent with the kinematics of the AMF, and (4) fractures in boulders that constitute the remains of the dry stone walls at the site. Structural analysis of the two fracture types reveals two nearly orthogonal sets (NE-SW and NW-SE), matching the strike-slip kinematics of the AMF in the zone. Archaeoseismic evidence and related radiocarbon dates of the different building phases of the Bronze Age site indicate the probable occurrence of at least one strong seismic event (6.3–6.5 Mw; IX ESI-07) around 1550 cal. B.C., or soon after, triggering the destruction and probably the eventual abandonment of the site. We have identified an ancient lost earthquake from the Bronze Age and report the first archaeoseismological evidence of surface rupture in the Iberian Peninsula. This study also provides the first numerical data in the Totana-Alhama segment of the AMF based on the recorded archaeoseismic displacements. These data allowed us to characterize the related slip rates (0.05 mm/yr) to define the seismic potential of the analyzed fault segment of the AMF, which was poorly defined by previous seismic and geological data. © 2015 Wiley Periodicals, Inc.

INTRODUCTION

Although the oldest archaeoseismological evidence in the world is located in northern Iraq and dates from the middle Palaeolithic (c. 50,000 years old), archaeoseismological studies usually date from the Bronze Age (c. 1700 B.C.; Nur & Burgess, 2008). From an archaeoseismological perspective, the oldest archaeological sites in the Iberian Peninsula are Baelo Claudia in Cadiz (Silva et al., 2005, 2009) and Ilunum in Albacete (Tolmo de Minateda, Rodríguez-Pascua et al., 2010, 2013a). Both sites are located in the Betic Cordillera and were affected by repeated earthquakes between the 1st and 4th centuries A.D. (Silva & Rodríguez-Pascua, 2014). These Roman sites show abundant archaeoseismic evidence of seismic ground shaking. Multiple Earthquake Archaeological Effects (EAES) from the classification of Rodríguez-Pascua et al. (2011) have been identified, most of them associated with permanent deformations of the fabric of buildings and pavements and notable oriented damage.

The Tira del Lienzo site, from the Bronze Age, constitutes the oldest archaeoseismological record in Spain, as...
preliminary evidence of fault offset in the archaeological remains suggest (Ferrater et al., 2013). In this study, we follow the guidelines of the classification of EAEs proposed by Rodríguez-Pascua et al. (2011) in order to characterize the site archaeoseismologically. However, the type of dry-set masonry (irregular boulders) construction style used at the site is not specifically considered in the EAE classification of these authors, and thereby new types of EAE are described in this paper for consideration in future updates of the classification. The described EAE come from the recognition of a suspect wall offset in a microtopographic map of the archaeological site and preliminary field research (Ferrater, 2013; Ferrater et al., 2013). The detailed map, published for the first time in this paper, was produced by the team from the Universitat Autònoma de Barcelona (UAB) in charge of archaeological research at the La Bastida de Totana site (La Bastida Project). This site is the largest fortified metropolis of the Late Bronze Age in the western Mediterranean, especially during its final occupation period (1900–1550 cal. B.C.; Lull et al., 2014). It is informally known in the archaeological community as the Little Western Troy.

Tira del Lienzo is a settlement at the top of a small hill forming part of the La Bastida metropolis (Lull et al., 2011a) and is located on the Alhama de Murcia fault (AMF) zone. In detail, the site is founded on a 35 m high elongated pressure ridge developed on the trace of the Totana-Alhama segment of the AMF, which has not been subjected to previous palaeoseismic analyses. Although the AMF is one of the more active faults in the Iberian Peninsula, and was responsible for the destructive 5.1 Mw 2011 Lorca earthquake (López-Comino et al., 2012), its historical earthquake record (I max = VIII EMS-98 European Macroseismic Scale) does not go beyond the 14th century. Owing to the poor preinstrumental record for this fault, several palaeoseismic studies have been carried out to assess late Pleistocene to late Holocene surface faulting events in the adjacent Lorca-Totana segment (Silva et al., 1997; Martínez-Díaz, 1998; Martínez-Díaz et al., 2001, 2003; Masana et al., 2004), and also in the southern horse tail termination of the fault (Ortuño et al., 2012). An archaeoseismological study, in a location known to be an on-fault location, would be able to detect ancient earthquakes, thereby allowing us to improve the preinstrumental record.

SEISMOTECTONIC FRAMEWORK OF THE ZONE: THE AMF ZONE

The site under study is located in the AMF zone that controls the recent development of the landscape and the seismic activity in the area. The AMF is a N45°–65°E left-lateral strike-slip fault with a reverse component, consistent with NW-SE convergence between the Eurasian and the African plates (Silva, 1994; Martínez-Díaz, 1998). This fault zone constitutes the key element of one of the main crustal-scale active tectonic structures of the Eastern Betic Cordillera, the Eastern Betic Shear Zone (EBSZ; Silva et al., 1993; Martínez-Díaz et al., 2001, 2012; Masana et al., 2004). The Totana-Alhama segment is the smallest central segment of the fault (11 km; Figure 1). Together with the adjacent Lorca-Totana segment, this segment displays fault branching, with a northern branch controlling the N45°E Espuña range composed of metamorphic Betic rocks, and a N65°E southern branch affecting Upper Neogene to Quaternary sediments (Silva et al., 2008). Fault branching promoted the generation of a set of triangular strike-slip basins between the main faulted mountain front and the southern fault branches. These basins are filled by a thick series of early to middle Pleistocene alluvial fan deposits (Silva et al., 2003). Crusted middle Pleistocene alluvial fan surfaces are distally offset and uplifted by the younger activity of the southern branch and incorporated into the pressure ridges developed in this area (Silva et al., 1992; Silva, 1994). Along this southern branch, a set of restraining strike-slip fault landforms such as pressure ridges, spur ridges, and sinistrally deflected stream channels are assembled on intervening N65°E linear tectonic landforms, separating the main mountain front from the Guadalentin Tectonic Depression (Figures 1 and 2A).
Instrumental records of earthquakes indicate that 90% of the seismicity is shallow, that is less than 20 km in depth (Martínez-Díaz, 1998). The most significant historical earthquakes (VIII EMS) in the AMF are those that occurred in A.D. 1579, 1674, and 1818 at Lorca (Lorca-Totana fault segment). The only event reported in the Totana-Alhama segment, the subject of this study, is the A.D. 1907 event at Totana that reached an intensity of VII EMS (IGN, 2012). The strongest instrumentally recorded event along the fault zone occurred in Lorca on May 11 2011 (Mw 5.1) and had VII EMS intensity (López-Comino et al., 2012). None of these historical or instrumental seismic events triggered surface faulting (Silva et al., 1997; Martínez-Díaz et al., 2012). However, the first palaeoseismic studies of the zone found robust evidence of late Pleistocene to Holocene surface faulting along the AMF zone (Silva, 1994; Silva et al., 1997; Martínez-Díaz, 1998). Other palaeoseismic studies based on fault-trenching analyses on this fault characterized a number of surface-faulting palaeoearthquakes, with maximum magnitude values in the range of Mw 6.1–7.0 (Martínez-Díaz et al., 2001, Masana et al. 2004; Ortuño et al., 2012). These studies recorded a minimum of six palaeoseismic events during the last 274–174 kyr. Initial fault-trenching analyses (Martínez-Díaz et al., 2003) estimated average vertical slip rates of 0.21 mm/yr for the last 130 kyr. However, more systematic palaeoseismic analyses and recent regional reviews (Masana et al., 2004; Martínez-Díaz et al., 2012; Ortuño et al., 2012) report maximum vertical slip rates of 0.35 mm/yr, maximum lateral slip rates of 0.53 mm/yr, and maximum net slip rates of 0.66 mm/yr. Recent geodetic studies indicate that the ongoing horizontal slip rates for the last 15 years are 0.70 ± 0.2 mm/yr, in the range of the maximum rates obtained by palaeoseismic analyses (CuáTe-Neo GPS network; Echeverría et al., 2013). DinSar and GPS analyses after the 2011 Lorca earthquake (Mw 5.1) revealed coseismic vertical deformation of about 3–4 cm along the trace of the AMF north of Lorca (Frontera et al., 2012).

These studies were, however, mainly focused on the Lorca-Totana segment, rather than on the smaller Totana-Alhama segment in which our site is located. This segment only records the aforementioned VII EMS
Archaeology and Geoaarchaeology

Tira del Lienzo is a small early Bronze Age archaeological site, belonging to the so-called “Argaric Culture” located near Totana in Murcia, SE Spain. This ancient culture prospered between 2200 and 1550 cal. B.C. in the southeastern sector of the Iberian Peninsula, comprising the present provinces of Almeria, Granada, and Murcia (Lull, 1983; Lull et al., 2011a, 2014). According to these authors, the site under study is related to one of the largest metropolises of early Bronze Age culture in SE Spain—La Bastida de Totana—which is located about 7 km SW from the site (Figure 1). The first human occupation at the La Bastida site dates from 2200 cal. B.C. and it was finally abandoned between 1600 and 1550 cal. B.C. (Lull et al., 2011a, 2014). However, Tira del Lienzo was occupied from 2050 to 1600/1550 cal. B.C. There are two main phases of occupation and building development at this site, the first in 2050–1900 cal. B.C. and the second in 1900–1550 cal. B.C., bracketed by the radiocarbon ages reported by the La Bastida archaeological project (e.g. Lull et al., 2011a; Delgado-Raack et al., 2014). Our study is focused on the second phase of occupation (1900–1550 cal. B.C.) from where the archaeoseismological evidence is preserved (Figure 3). Archaeological data indicate that this site constituted a small settlement used for administration and management of agricultural production, linked to La Bastida (Delgado-Raack et al., 2014).

During the second phase (1900–1550 cal. B.C.), the structure of the settlement consisted of a minimum of seven rectangular or trapezoidal houses/enclosures (each of c. 15–27 m²) around a larger rectangular central building (c. 90 m²) oriented NE-SW (Figure 3; Delgado-Raack et al., 2014). The dimensions of the remains are about 750 m² surrounded by a wall about 1–1.20 m wide. The main architectural features of the buildings consist of rectangular rooms with dry stone walls 50–60 cm wide made up of boulders of decimetric size (Figure 4; Lull et al., 2011b). The rocky ground of the site is constituted by indurated calcareous soils developed on top of the middle Pleistocene alluvial fan deposits. At present, the remains display the lower three to four rows (<1 m high) of the original dry-set masonry walls, in which the apparent archaeoseismic damage is recorded. Archaeological excavations started in the year 2010 when the settlement was completely buried by numerous stone blocks, a consequence of the collapse and downfall of the original dry stone walls (González Guerao, 2005).

Archaeoseismology of the site

The archaeoseismological analysis of the site is focused on: (1) the inventory of EAEs recorded at the site on the basis of the classification of Rodríguez-Pascua et al. (2011), and on (2) structural analysis of the observed fractures and the AMF zone.

EAEs

Four types of EAE were recorded at the site (Figure 5): (a) ground fractures (Figures 3 and 4A), (b) broken wall-boulders (Figure 4B), (c) offset/folded walls (Figures 3 and 5), and (d) seismic uplift/subsidence (Figure 3). The first two of these EAE (a and b) are not included in
Figure 3 Planimetric map of the site provided by the archaeological group of the Universitat Autònoma de Barcelona (La Bastida Project). Location of all the Earthquake Archaeological Effects (EAEs). Numbers correspond to the fractures in Figure 4. Houses and walls where earthquake effects were identified are highlighted.

the classification of Rodríguez-Pascua et al. (2011) because the construction method (dry-set masonry) and building material (boulders) featured in the site were not considered by these authors. These two new EAE have been described by Ferrater (2013) and Ferrater et al. (2013). These authors acknowledge that these two EAE have their respective equivalents in the classification of Rodríguez-Pascua et al. (2011), albeit affecting other construction types and materials. Rocky ground fractures (a) in the natural floor (indurate calcrite surface) correspond to the “regular and irregular fractures and folds in pavements” (Figure 5) of Rodríguez-Pascua et al. (2011). On the other hand, the broken boulders (b) recorded in the dry stone walls at this site are equivalent to the “penetrative fractures in masonry blocks” of the aforementioned authors (Figure 5).

Ground fractures

The rocky surface where the Tira del Lienzo archaeological remains are located can be considered as an almost rigid element owing to the surface (calcrite) cementation of the alluvial deposits (Figures 2B). This hardened surface would behave as any thick (c. 1 m)
anthropogenic cemented pavement. In the event of ground shaking, this surface undergoes similar deformations (mainly cracking) to those listed for human-made pavements in the EAE classification of Rodríguez-Pascua et al. (2011; Figure 5) and in the ESI-07 macroseismic scale (Michetti et al., 2007). The surface calcrete horizon overlays the 2–3 m thick weakly cemented alluvial materials outcropping at the top of the pressure ridge (see Figure 2B). These alluvial deposits, with soil-like geotechnical properties, constitute a relatively soft layer between the more competent underlying rocks of the fault zone and the overlying calcrete horizon. Ground cracks display NE-SW dominant orientations. Some of them exceed 4–5 m in length and have a millimetric width at indoor locations (Figure 4A). Cracks are arranged in a fracture system that crosses the entire archaeological site parallel to the AMF zone (Figure 4). This fracture system mainly affects the central building (H1) and House 10 (H10; Figure 3), extending outdoors along the whole hilltop of the site (c. 40 m length). These ground cracks are decametric in length and some of them are a few centimeter to millimeter wide, a large number of them showing partial or complete thin calcrete coatings. This indicates that ground cracking was a recurrent process in this hilltop site before, and probably after, its occupation during the early Bronze Age. The largest ground cracks affecting the site appear as open cracks, in some cases 1–1.5 cm wide, and they are currently filled with soil. Figure 3 shows that the main indoor fracture system is closely associated with most of the other EAE recorded in this study.
Broken wall-boulders

Individual blocks of varying dimensions are vertically cracked (Figure 4B), preferably in the NW-SE walls (88%). These walls are orthogonal to the ground fracture system and in some cases (30%) the broken boulders are spatially related to rocky ground cracks (Figure 3). As regards ground failure, vertical propagation of these ground fractures toward and in the walls is likely to have occurred. However, these fractures are not clearly recorded after the works that repaired most of the stone walls. The original mortar-free construction of the dry stone walls probably contributed to the vertical interblock propagation of the fractures, although intrablock cracking occurred in some cases. An intricate arrangement of inter- to intrablock fracture propagation within the dry stone wall is feasible. This was probably facilitated by the jagged assemblage of the rows of rough blocks in the walls, resulting in irregular and discontinuous vertical fracture propagation unlike the almost-linear propagation of penetrative fractures in regular masonry blocks described in Rodríguez-Pascua et al. (2011). In fact, dry stone walls appear to be more resistant to earthquakes than are walls constructed with mortar (which serves as a clamp), and thus they could undergo interblock sliding and then resettle without collapsing (Senthivel, Lourenco, & Vasconcelos, 2006). Analytical models suggest that interblock propagation of the fractures is the main deformation control in dry stone walls, although intrablock cracking or crushing can occur in the lower third of the wall, especially in cases of ground failure (Senthivel, Lourenco, & Vasconcelos, 2006; Colas, Morel, & Garnier, 2013). According to these authors, the intrablock fracture system opens progressively upwards, causing extensive damage to the upper halves of the walls and leading to their collapse. Fracture generation has also been attributed to other causes such as thermal contrast caused by fire. In such cases, the fractures would be parallel to the wall.

Offset and folded walls

This is the most striking archaeoseismological feature recorded at Tira del Lienzo. Folding and disruption of dry stone walls are always recorded in the NW-SE walls and are in direct relationship with the two EAE described above, especially with the ground fractures (Figure 3). As shown in Figure 3, wall folding was recorded in two walls (W43 and W29) of the main building (House 1), in the southern wall (W46) of House 10 and in the northern wall of the site (W5). The most significant relationship between a folded wall and a ground crack is well preserved in the ancient doorway of House 10 (W46; Figure 3). In this zone, one of the main ground fractures of millimetric width propagates NE-SW indoors and outdoors, affecting the entire building over at least c. 10 m and reaching the northern wall of the site. The ground rupture coincides with an apparent differential uplift of several centimeters (5–8 cm) between the eastern (up)
Figure 6 Detail of the offset wall (W46) in relation to the other EAEs (broken boulders, ground fractures, and ground deformation); same legend as in Figure 3. (A), (B), and (C) are images of the W46 wall from different angles.

and western (down) portions of the house. At the ancient doorway, these two portions of the building record a visible left-lateral offset of 18 cm (Figure 6) that is consistent with the kinematics of the AMF under the site. In fact, NW-SE-oriented walls (orthogonal to the overall NE-SW fault strike) constitute linear markers that record the strike slip. In detail, the NW segment of the disrupted wall W46 displays a left-lateral drag bend-like deformation (Figure 6A and B). The recorded wall offset can be considered a reliable feature for surface rupture related to the fracture system crossing the archaeological site. As shown in Figure 3, the mapping of ground fractures records similar left-lateral anomalies in the other folded walls. All these fractures are related to the main NE-SW fracture system affecting House 10 (W46), House 1 (W29) and the northern wall (W5). To the SE, the zone is not excavated, and it is not possible to follow the fractures. It is therefore reasonable to consider this NE-SW fracture system as evidence of the left-lateral surface deformation and of the centimetric differential uplift along the trace of the AMF. The coincidence of surface faulting with the ancient doorway of House 10 allows measurement of the offset (18 cm) since in the other cases the walls are only folded.

Wall folding above the trace of the NE-SW fracture system was probably facilitated by the relatively interblock free sliding favored by the dry stone masonry style and the absence of wall foundations (Senthivel, Lourenco, & Vasconcelos, 2006). All cases of wall folding are linked to the occurrence of broken wall-boulders (Figure 6) that is interpreted as occasional intrablock cracking in the lower portions of the wall due to ground failure, as described in laboratory analogs (Colas, Morel, & Garnier, 2013; see Broken wall-boulders section). In this case, inter- and intrablock sliding linked to the process of wall bending will be the result of the upward propagation into the buildings of the centimetric left-lateral displacement along the NE-SW ground fracture system. As discussed in the Broken wall-boulders section, this mechanism of deformation will cause the destruction of the upper portions of the walls and buildings (Senthivel, Lourenco, & Vasconcelos, 2006; Colas, Morel, & Garnier, 2013).
Seismic uplift/subsidence

The site displays centimetric ground uplift related to the ground rupture in H10 (Figures 3 and 6). As stated above, this uplift coincides with the offset wall and with the broken boulders in some walls. The magnitude of the vertical offset ranges between 5 and 8 cm and uplifts the SE portion of the house (H10).

Structural Analysis of EAEs

The structural analysis was performed using data for rocky ground fractures (n = 60) and broken boulders (n = 28). The results indicate the occurrence of two consistent NE-SW and NW-SE orientations of fracturing in both data sets with a NE-SW dominant orientation (Figure 4). The dominant orientation coincides with the AMF orientation in the fault zone outcrop located beneath the site (see Figure 2B). Therefore, the consistent fault and fracture orientations (including the main surface rupture recording left-lateral offset in House 10; W46) strongly suggest that the generation of the analyzed fractures was controlled by fault activity. Damage to the buildings due to other causes would, by contrast, have produced randomly oriented wall displacements and fractures in dry stone wall-boulders, not necessarily consistent with the ground fractures affecting the site. Coseismic left-lateral displacement and differential uplift probably triggered on-fault ground failure. As a result, the upper halves of the walls were destroyed, whereas their lower halves underwent fracturing. This has been corroborated by analyses of dry-set masonry constructions (Senthivel, Lourenco, & Vasconcelos, 2006; Colas, Morel, & Garnier, 2013).

DISCUSSION: PALAEOSEISMIC ANALYSIS

On the basis of (1) the left-lateral displacement recorded by offset wall 46 in House 10 (18 cm) and on (2) the apparent surface uplift (5–8 cm) related to the NE-SW fracture system affecting the site (Figure 3), it is possible to obtain empirical approximations of the size of the suspected palaeoseismic event and slip rates of the AMF in this fault segment.

Application of the empirical magnitude–displacement relationship for strike-slip faults (Wells & Coppersmith, 1994) to the ground rupture data (which considers both the 18 cm of lateral displacement and 8 cm of maximum uplift) would imply the occurrence of a 6.4 ± 0.1 Mw earthquake. The magnitude of this event is consistent with the theoretical seismic potential of the Totana-Alhama fault segment (5.9–6.5 Mw; Martínez-Díaz et al., 2012). The above relationship is at the limit of its magnitude range of application; however, it has been extensively used in all the previous palaeoseismic analyses developed in the AMF and is the most reliable tool for comparing calculated magnitudes along the whole fault zone (e.g., Martínez-Díaz et al., 2012). The application of other existing empirical earthquake scaling relationships (e.g., Stirling, Rhoades, & Berryman, 2002; Wesnousky, 2008; Stirling et al., 2013) to the site yield similar magnitude values between 5.7 and 6.5 Mw.

Surface faulting is rare for magnitudes smaller than 6.5 Mw, and the population of earthquakes used in all the mentioned relationships (including Wells & Coppersmith, 1994) is sparse. This fact results in large uncertainties and accumulated errors that decrease for earthquakes above 6.5 Mw with metric-scale displacements. Another reason for using the Wells and Coppersmith (1994) relationships is that the other empirical earthquake scaling equations do not directly relate magnitude and displacement (Stirling, Rhoades, & Berryman, 2002; Wesnousky, 2008; Stirling et al., 2013).

Application of the ESI-07 intensity scale to the surface deformation data implies the occurrence of a palaeoseismic event of IX ESI-07 intensity. This scale takes into account the surface faulting for this minimum intensity value in nonvolcanic areas, which results in ground ruptures over a few kilometers with offsets of several centimeters and coseismic uplift of only few centimeters, such as those recorded in the studied site (Michetti et al., 2007). Regarding probable EMS-98 intensity, based on building damage, Karabacak et al. (2013) developed a comparative scheme for EMS-98 (Grünthal, 1998) and ESI-07 (Michetti et al., 2007) intensities recorded in different archaeological sites in the Mediterranean and Europe. In all cases this resulted in bracketed intensity values between VIII and X EMS-98. The work of Karabacak et al. (2013) provides a case of left-lateral surface faulting (c. 20 cm), affecting the walls and pavement of the Stadium of the ancient Roman city of Kirbyra in Turkey, reporting an intensity of VIII-IX EMS-98.

In the case of Tira del Lienzo, due to its construction style, ground shaking of intensity VIII would be sufficient to promote the destruction of the Bronze Age buildings (Rodríguez-Pascua et al., 2013b). Additionally, analytical models of deformation for this construction style (Senthivel, Lourenco, & Vasconcelos, 2006; Colas, Morel, & Garnier, 2013) indicate that, apart from ground shaking, ground failure in this context triggers the opening of large interblock fractures in the upper halves of the walls and their subsequent destruction. Furthermore, given the hilltop position of the site (narrow pressure ridge), a topographic amplification of seismic shaking is expected. According to the ESI-07 macroseismic scale (Michetti et al., 2007), the record of ground left-lateral
displacement of 18 cm at Tira del Lienzo strongly suggests a maximum intensity of IX (destructive event).

The palaeoseismic analysis of lateral-slip data (18 cm) results in a fault slip rate of 0.046 mm/yr for the last 3914 years. Moreover, the striae pitch orientations measured on the fault plane beneath the archaeological site (10°–45°; Figures 2B and 4) allow us to estimate net lateral slip rates between 0.024 and 0.039 mm/yr. These values are smaller than those reported by earlier palaeoseismic research in the adjacent segment of the AMF (Lorca-Totana; c. 23 km length, Martínez-Díaz et al., 2012), which attained maximum net slip-rate values of c. 0.66 mm/yr. Our values are, however, consistent with the theoretical seismic potential of the Totana-Alhama fault segment (c. 11 km length; Martínez-Díaz et al., 2012). Although we assume that ground displacements occurred during a single Bronze Age seismic event in a location known to be on-fault, calculated slip rates are significant for further seismic hazard analyses. In this sense, this study provides the first slip-rate data based on field analysis for this fault segment, following the preliminary estimations of Ferrater et al. (2013).

GEOARCHAEOLOGICAL APPROACH TO ARCHAEOSEISMIC DAMAGE

Given the (1) generic magnitude (c. 6.4 Mw) and maximum intensity (IX) value resulting from the palaeoseismic analysis and (2) the dry-set masonry construction style of the site, the occurrence of an event more than and equal to VIII EMS-98 would have triggered the near destruction of Tira del Lienzo (Senthivel, Lourenco, & Vasconcelos, 2006; Rodríguez-Pascua et al., 2013b).

Taking into account the two building phases of construction at the archaeological site (2050–1900 and 1900–1550 cal. B.C.), the event could have occurred after the construction of the buildings (1900 cal. B.C.), although most likely it was around or soon after 1550 cal. B.C. (c. 3550 years ago). The event could have triggered the eventual abandonment of the site since there is no re-construction or occupation evidence after this date (Delgado-Raack et al., 2014). Neither, however, is there any evidence to suggest that the settlement was abandoned as a result of an earthquake. The hypothesized date coincides with the decline of Bronze Age populations in the area and the depopulation of the La Bastida metropolis (Lull et al., 2014). Apart from the earthquake, other causes, such as social unrest or depopulation in response to unsustainable agricultural practices, are considered by the La Bastida Project (Lull, Mico, Rihuete & Risch, personal communication, 2013) as potential explanations for the abandonment of Tira del Lienzo.

Thus, the final abandonment of the La Bastida and Tira del Lienzo sites almost coincide at 1600/1550 B.C. (c. 3600–3550 B.P.; Lull et al., 2014), and this is consistent with significant palaeoenvironmental changes in the zone, resulting in a notable depopulation around the Guadalentin Depression (Calmel-Avila, 2002). Geoarchaeological analyses strongly suggest that around 3500 B.P., tectonic activity of the El Romeral rock-bar fault (Librilla) led to generalized fluvial dissection within the Guadalentin Depression upstream of Librilla (Silva et al., 2008; Calmel-Avila et al., 2009). The headward fluvial incision between Librilla and Totana triggered the fragmentation and partial disappearance of the palustrine environments, and this brought about the late Bronze Age depopulation of the zone (Silva et al., 2008; Calmel-Avila et al., 2009). The El Romeral rock-bar fault is mainly a reverse blind N65°–70°E fault considered by some authors (Silva, 1994; Martínez Díaz, 1998) to be the prolongation of the Totana-Alhama fault segment beneath the sedimentary filling of the Guadalentin Depression. This fault only crops out at El Romeral (Librilla; Figure 1) in the Guadalentin rambla valley, and provides palaeoseismic evidence (sediment perturbation) after 3885 ± 60 B.P. (Calmel-Avila, 2002).

Whatever the case, at least one earthquake occurred during or soon after the second phase of occupation at Tira del Lienzo (1900–1550 cal. B.C.; Figure 7). The preferred age is around or shortly after the eventual abandonment of the site in 1550 cal. B.C., since the presence of broken boulders in the walls is consistent with a structure that is unaffected by the passage of time (Senthivel, Lourenco, & Vasconcelos, 2006). The seismic event would have destroyed the upper halves of the walls (Senthivel, Lourenco, & Vasconcelos, 2006; Colas, Morel, & Garnier, 2013) and would have triggered the abandonment of the site if it had occurred during occupation. The archaeological remains would, otherwise, present another phase of reconstruction.

Figure 7 shows that an event within this time frame is consonant with (1) the event dated by fault trenching in the Lorca-Totana segment of the AMF dated at 1760–830 cal. B.C. (Masana et al., 2004), and with (2) the event that caused sediment perturbation in El Romeral (Calmel-Avila, 2002). We do not rule out the possibility that the archaeoseismic damage reported in this study was a consequence of the rupture of more than one segment of the AMF, as illustrated in Table I. An event affecting both the Lorca-Totana and Totana-Alhama segments can be considered because the magnitude obtained by Masana et al. (2004) is within the range of the hypothetical rupture of both segments (Mw = 6.9 ± 0.2; Table I). However, the resulting magnitudes for the rupture of more than one segment of the AMF are higher.
Figure 7 Proposed time span for palaeoseismic, ancient (this study), and historical seismic events in the central sector of the Alhama de Murcia fault (AMF). Information: fault segment (length km; Mw is theoretical as calculated in Martínez-Díaz et al., 2012) and references for the proposed events. El Romeral is not considered in Martínez-Díaz et al. (2012), but we have calculated its theoretical magnitude based on the methodology followed by these authors (magnitude vs. area with width of 12 km).

than the magnitude evaluated from the EAE at Tira del Lienzo, such that a Late Bronze Age seismic period in the central sector of the AMF fault can also be considered. In fact, although the decline of the Bronze Age population in the zone is still not well understood (Lull et al., 2014), some authors (Silva et al., 2008; Calmel-Avila et al., 2009) point to the occurrence of tectonically induced fragmentation of palustrine zones in the central sector of the Guadalentin Depression upstream of El Romeral rock-bar fault at Librilla. In this scenario, the occurrence of moderate to strong seismic events in the zone would enhance the decline of civilization in the area. In fact, following the Bronze Age decline in c. 1550 B.C., the next urban settlements in the area did not appear until Phoenician times, around the 6th century B.C. (c. 500 B.C.).

CONCLUSIONS

Tira del Lienzo, a Bronze Age site, is located in the Totana-Alhama segment of the AMF in an on-fault location. We identified four EAEs (Figure 5) that support the occurrence of a palaeoseismic event around 1550 B.C. (or soon after). Two of them are primary EAE (surface rupture and uplift) and the other two are secondary (ground fractures and broken wall-boulders). The latter are reported for the first time in this study, although they have equivalents in the EAE classification of Rodríguez-Pascua et al. (2011). The structural analysis of fracture orientations reveals two main fracture orientations (NE-SW and NW-SE) consistent with the left-lateral kinematics of the AMF zone in the area. The coinciding orientations lend support to the coseismic origin of the fractures. The main fracture produces a left lateral displacement (18 cm) of one of the walls and an apparent differential uplift of 5–8 cm.

Numerical analysis of the data indicates that the recorded deformation is consistent with a 6.4 ± 0.1 Mw palaeoseismic event of intensity IX ESI-07 in the fault zone. The estimated net lateral slip rates range between 0.024 and 0.039 mm/yr and are reported for the first time in this fault segment. It is therefore possible to relate the palaeoseismic event to the abandonment of the site in 1550 cal. B.C. (Delgado-Raack et al., 2014). This date matches (1) the tectonically induced environmental changes that triggered a large depopulation of the zone during the late Bronze Age (Calmel-Avila, 2002; Silva et al., 2008), and (2) the age of one earthquake (1760–830 cal. B.C.; Masana et al., 2004).

Table 1 Theoretical moment magnitude for different fault segments and combinations of fault segments according to their length.

Segment	Length (e = 1 km)	Mw Theoretical (Magnitude vs. Length; Wells & Coppersmith, 1994)
Lorca-Totana + Totana-Alhama	34 km	6.9 ± 0.2
El Romeral (blind fault)	22 km	6.6 ± 0.2
Totana-Alhama + El Romeral	33 km	6.9 ± 0.2
Lorca-Romeral	56 km	7.1 ± 0.2
This work affords the first compelling evidence in the Iberian Peninsula of surface rupture recorded by means of archaeoseismological analysis, and provides numerical data on the seismic potential of the analyzed segment (Totana–Alhama) of the AMF, previously only characterized by theoretical approaches. An interdisciplinary analysis (archaeology, geology, and seismology) of an ancient “lost” earthquake from the Bronze Age has allowed us to make a significant contribution to the historical seismic catalogue.

This research was funded by SHAKE CGL2011-30005-C02-02 and QTEC TBETICA CGL2012-37581-C02-01 projects and supported by CSD2006-0004 “Topo-Iberia” (Consolider-Ingenio 2010). The authors are indebted to the entire team of La Bastida Project (directors: Vicente Lull, Rafael Micó, Cristina Rihuete-Herrada, Roberto Risch) for all the information supplied. La Bastida is supported by the projects: HUM2006-04610, HAR2011-25280, TSI-070100-2008-133, and 2009SGR778. The authors thank Mari Hernández, Antonio Caño, Nil Domínguez, and César Ferrater, as well as Klaus Reicherter and a further anonymous reviewer for their comments that improved the original manuscript.

REFERENCES

Alonso-Zarza, A.M., Silva, P.G., Goy, J.L., & Zazo, C. (1998). Fan-surface dynamics, plant-activity and calcrete development: Interactions during ultimate phases of fan evolution in the semi-arid SE Spain (Murcia). Geomorphology, 24, 147–167.

Calmel-Avila, M. (2002). The Librilla “rambla” an example of morphogenetic crisis in the Holocene (Murcia, SE Spain). Quaternary International, 93–94, 101–108.

Calmel-Avila, M., Silva, P.G., Bardaji, T., Goy, J.L., & Zazo, C. (2009). Drainage system inversion in the Guadalentín depression during the late Pleistocene–Holocene (Murcia, Spain). In: Romero, C., Belmonte, F., Alonso, F., & López-Bermúdez, F. (Eds.), Advances in studies of desertification. Servicio de publicaciones Universidad de Murcia, Murcia, 461–464.

Colas, A.S., Morel, J.C., & Garnier, D. (2013). Assessing the two-dimensional behaviour of drystone retaining walls by full-scale experiments and yield design simulation. Géotechnique, 63(2), 107–117.

Delgado-Raack, S., Lull, V., Martín, K., Micó, R., Rihuete Herrada, C., & Risch, R. (2014). Die Silberschmiede von Tira del Lienzo, Totana, Prov. Murcia, im Kontext der El Argar Metallurgie. In Meller, H., Risch, R., & Pernicka, E. (Eds.), Argar Metallurgie. In Meller, H., Risch, R., & Pernicka, E. (Eds.), Metalle der Macht—Frühzeitliche Gold und Silber, 6. ÖZiDoğru, Ş., Yağmurlu, C. Ç., & Akyüz, H. S. (2013). Analyses of seismic deformation at the Kibyra Roman Stadium, Southwest Turkey. Geoarchaeology, 28, 531–543.

López-Comino, J.A., Mancilla, F., Morales J., & Stich, D. (2012). Rupture directivity of the 2011, Mw 5.1 Lorca earthquake, (Southern Spain). Solid Earth, 3, 111–119.

González Guerao, J.A. (2005). Prospección arqueológica de urgencia en paraje Tira del Lienzo, Totana. XVI Jornadas de Patrimonio Histórico. Intervenciones en el Patrimonio arquitectónico, arqueológico y etnográfico etnográfico de la Región de Murcia, Murcia, 390–391. ISBN 84-7564-318-3.

Grünthal, G. (Ed.), (1998). European macroseismic scale, European Seismological Commission, Sub-commission on Engineering Seismology, Working Group Macroseismic scales, Luxembourg, 99 pp.

Instituto Geográfico Nacional, IGN. (2012). Servicio de información sísmica, catálogo de terremotos. Instituto Geográfico Nacional. http://www.01.ign.es/ign/layoutIn/sismoFormularioCatalogo.

Karabacak, V., Yönlü, Ö., Dökü, E., Kiyak, N. G., Altunel, E., ÖzıDoğru, Ş., Yağmurlu, C. Ç., & Akyüz, H. S. (2013). Analyses of seismic deformation at the Kibyra Roman Stadium, Southwest Turkey. Geoarchaeology, 28, 531–543.

López-Comino, J.A., Mancilla, F., Morales J., & Stich, D. (2012). Rupture directivity of the 2011, Mw 5.2 Lorca earthquake (Spain). Geophysical Research Letters, 39, L03301, 1–5. DOI: 10.1029/2011GL050498.

Lull, V. (1983). La cultura de El Argar. Un modelo para el estudio de las formaciones económico-sociales prehistóricas. Akal, Madrid, 488pp.

Lull, V., Micó, R., Rihuete Herrada C., & Risch, R. (2011a). El Argar and the Beginning of Class Society in the Western Mediterranean. In S. Hansen & J. Müller (Eds.) Sozialarchäologische Perspektiven: Gesellschaftlicher Wandel 5000-1500 v. Chr. Zwischen Atlantik und Kaukasus (pp. 381–414). Berlin: Deutsches Archäologisches Institut.

Lull, V., Micó, R., Rihuete Herrada, C., & Risch, R. (2011b). Proyecto La Bastida: Economía, urbanismo y territorio de una capital argárica. Verdolay, 13, 57–70. ISSN: 1130-9776.

Lull, V., Micó, R., Rihuete Herrada, C., & Risch, R. (2014). The La Bastida fortification: New light and new questions...
on early Bronze Age societies in the western Mediterranean. Antiquity, 88, 395–410.

Martínez-Díaz, J.J. (1998). Neotectonía y Tectónica Activa del Sector Centro-Occidental de la Región de Murcia y Sur de Almería (Cordillera Bética–España). Ph.D., UCM, Madrid, Spain, 466 pp.

Martínez-Díaz, J.J., Masana, E., Hernández-Enrile, J.L., & Santanach, P. (2001). Evidence for coseismic events of recurrent prehistoric deformation along the Alhama de Murcia fault, southwestern Spain. Acta Geológica Hispanica, 36(3–4), 315–327.

Martínez-Díaz, J.J., Masana, E., Hernández-Enrile, J.L., & Santanach, P. (2003). Effects of repeated paleoearthquakes on the Alhama de Murcia Fault (Betic Cordillera, Spain) on the Quaternary evolution of an alluvial fan system. Annals of Geophysics, 46(5), 775–791.

Martínez-Díaz, J.J., Masana, E., & Ortúñ, M. (2012). Active tectonics of the Alhama de Murcia fault, Betic Cordillera, Spain. Journal of Iberian Geology, 38(1), 170–180.

Masana, E., Martínez-Díaz, J.J., Hernández-Enrile, J.L., & Santanach, P. (2004). The Alhama de Murcia Fault (SE Spain), a seismogenic fault in a diffuse plate boundary: Seismotectonic implications for the Ibero-Magrebían region. Journal of Geophysical Research, 109, B01301, 1–17. DOI: 10.1029/2002JB002359.

Michetti, A.M., Esposito, E., Guerreri, L., Porfido, S., Serva, L., Tatevosian, R., Vittori, E., Audevard, F., Azuma, T., Clague, J., Comerci, V., Gürpinar, A., McCalpin, J., Mohamadioun, B., Mörner, N.A., Ota, Y., & Roghiz, E. (2007). Intensity Scale ESI-2007. Mem. Descr. Carta Geologica d’Italia, 74. Servizio Geologico d’Italia—Dipartimento Difesa del Suolo. APAT, Roma, Italia, 41 pp.

Nur, A., & Burgess, D. (2008). Apocalypse: Earthquakes, archaeology and the wrath of God. Princeton, NJ and Oxford: Princeton University Press, 309 pp.

Ortuñ, M., Masana, E., García-Meléndez, E., Martínez-Díaz, J.J., Stepanciková, P., Cunha, P.P., Sohrbati, R., Canora, C., Buylaert, J.P., & Murray, A.S. (2012). An exceptionally long paleoseismic record of a slow-moving fault: The Alhama de Murcia fault (Eastern Betic Shear Zone, Spain). The Geological Society of America Bulletin, 124(9–10), 1474–1494. DOI: 10.1130/B30558.1.

Rodríguez-Pascua, M.A., Silva, P.G., Gardoño-Monroy, V.H., Pérez-López, R., Israde-Alcántara, I., Giner-Robles, J.L., Bischoff, J.L., & Calvo, J.P. (2010). Ancient earthquakes from archaeoseismic evidence during the Visigothic and Islamic periods in the archaeological site of “Tolmo de Minateda” (SE Spain). Geological Society of America Special Papers, 471, 171–184.

Rodríguez-Pascua, M.A., Pérez-López, R., Giner-Robles, J.L., Silva, P.G., Gardoño-Monroy, V.H., & Reicherter, K. (2011). A comprehensive classification of earthquake archaeological effects (EAE) in archaeoseismology: Application to ancient remains of roman and mesoamerican cultures. Quaternary International, 242, 20–30.

Rodríguez-Pascua, M.A., Abad Casal, L., Pérez-López, R., Gamo Parra, B., Silva, P.G., Gardoño-Monroy, V.H., Giner-Robles, J.L., Perucha-Atienza, M.A., Israde-Alcántara, I., Bischoff, J., & Calvo, J.P. (2013a). Roman, Visigothic and Islamic evidence of earthquakes recorded in the archaeological site of “El Tolmo de Minateda” (Prebetic Zone, southeast of Spain). Cuaternario y Geomorfología, 27(3–4), 65–72.

Rodríguez-Pascua, M.A., Silva, P.G., Pérez-López, R., Giner-Robles, J.L., Martín-González, F., & Perucha-Atienza, M.A. (2013b). Preliminary intensity correlation between macroseismic scales (ESI-07 and EMS-98) and Earthquake Archaeological Effects (EAEs). In Grützner, C., Rudersdorf, A., Pérez-López, R., & Reicherter, K. (Eds.), Seismic hazard, critical facilities and slow active faults, Proceedings of the 4th International INQUA meeting on Paleoseismology, Active Tectonics and Archeoseismology (pp. 221–224). Aachen: Grützner & Reicherter Geosolutions UG. ISBN: 978-3-00-042796-1.

Senthivel, R., Lourenço, P.G., & Vasconcelos, G. (2006). Analytical modeling of dry stone masonry wall under monotonic and reversed cyclic loading. In P.B. Lourenço, P. Roca, C. Modena, & S. Agrawal (Eds.), Structural analysis of historical constructions (pp. 1005–1012). Macmillan India Ltd, New Delhi.

Silva, P.G. (1994). Evolución Geodinámica de la Depresión del Guadalentín desde el Mioceno Superior hasta la actualidad: Neotectónica y Geomorfología. Ph.D. UCM, Madrid, Spain. 642 pp.

Silva, P.G. (2014). The Guadalentín tectonic depression (Betic Cordillera, Murcia). In F. Gutiérrez & M. Gutiérrez (Eds.), Landscapes and landforms of Spain. World geomorphological landscapes series (pp. 25–35). Dordrecht, Germany: Springer Science.

Silva, P.G., Harvey, A.M., Zazo, C., & Goy, J.L. (1992). Geomorphology, depositional style and morphometric relationships of Quaternary alluvial fans in the Guadalentín Depression (Murcia, SE Spain). Z F Geomorphologie, 36, 661–673.

Silva, P.G., & Rodríguez-Pascua, M.A. (Eds.). (2014). Catálogo de los Efectos Geológicos de los Terremotos en España. Serie Riesgos Geológicos/Geotécnica. 4. Instituto Geológico y Minero de España (IGME), Madrid, 358 pp.

Silva, P.G., Goy, J.L., Somoza, L., Zazo, C., & Bardají, T. (1993). Landscape response to strike-slip faulting linked to collisional settings: Quaternary tectonics and basin formation in the Eastern Betics, Southeast Spain. Tectonophysics, 224, 289–303.

Silva, P.G., Goy, J.L., Zazo, C., & Bardají, T. (1997). Paleoseismic indications along “aeseismic” fault segments in the Guadalentín Depression (SE Spain). Journal of Geodynamics, 24(1–4), 105–115.
Silva, P.G., Goy, J.L., Zazo, C., & Bardají, T. (2003). Fault-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50, 203–225.

Silva, P.G., Borja, F., Zazo, C., Goy, J.L., Bardají, T., De Luque, L., Lario, J., & Dabrio, C. (2005). Archaeoseismic record at the ancient Roman City of Baelo Claudia (Cádiz, South Spain). Tectonophysics, 408(1–4), 129–146.

Silva, P.G., Calmel-Avila, M., Bardají, T., Goy, J.L., & Zazo, C. (2008). Transition from alluvial to fluvial systems in the Guadalentin Depression (SE Spain) during the Holocene: Lorca Fan versus Guadalentín River. Geomorphology, 100, 144–153.

Silva, P.G., Reicherter, K., Grützner, C., Bardají, T., Lario, J., Goy, J.L., Zazo, C., & Becker-Heidmann, P. (2009). Surface and subsurface palaeoseismic records at the ancient Roman city of Baelo Claudia and the Bolonia Bay area, Cádiz (south Spain). Geological Society, London, Special Publicaciones, 316, 93–121.

Stirling, M., Goded, T., Berryman, K., & Litchfield, N. (2013). Selection of earthquake scaling relationships for seismic-hazard analysis. Bulletin of the Seismological Society of America, 103(6), 2993–3011.

Stirling, M.W., Rhoades, D.A., & Berryman, K. (2002). Comparison of earthquake scaling relations derived from data of the instrumental and preinstrumental era. Bulletin of the Seismological Society of America, 92(2), 812–830.

Wells, K., & Coppersmith, D.L. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

Wesnousky, S.G. (2008). Displacement and geometrical characteristics of earthquake Surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bulletin of the seismological Society of America, 98(4), 1609–1632.