Adenosine A_2A receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease

R. L. Potenza · M. T. Tebano · A. Martire · M. R. Domenici · R. Pepponi · M. Armida · A. Pèzzola · L. Minghetti · P. Popoli

Received: 1 June 2007 / Accepted: 25 July 2007 / Published online: 15 September 2007 © Springer Science + Business Media B.V. 2007

Abstract Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, enhances synaptic transmission and regulates neuronal proliferation and survival. Functional interactions between adenosine A_2A receptors (A_2ARs) and BDNF have been recently reported. In this article, we report some recent findings from our group showing that A_2ARs regulate both BDNF functions and levels in the brain. Whereas BDNF (10 ng/ml) increased the slope of excitatory postsynaptic field potentials (fEPSPs) in hippocampal slices from wild-type (WT) mice, it was completely ineffective in slices taken from A_2AR knock-out (KO) mice. Furthermore, enzyme immunoassay studies showed a significant reduction in hippocampal BDNF levels in A_2AR KO vs. WT mice. Having found an even marked reduction in the striatum of A_2AR KO mice, and as both BDNF and A_2ARs have been implicated in the pathogenesis of Huntington’s disease (HD), an inherited striatal neurodegenerative disease, we then evaluated whether the pharmacological blockade of A_2ARs could influence striatal levels of BDNF in an experimental model of HD-like striatal degeneration (quinolinic acid-lesioned rats) and in a transgenic mice model of HD (R6/2 mice). In both QA-lesioned rats and early symptomatic R6/2 mice (8 weeks), the systemic administration of the A_2AR antagonist SCH58261 significantly reduced striatal BDNF levels. These results indicate that the presence and the tonic activation of A_2ARs are necessary to allow BDNF-induced potentiation of synaptic transmission and to sustain a normal BDNF tone. The possible functional consequences of reducing striatal BDNF levels in HD models need further investigation.

Keywords Adenosine A_2A receptors · BDNF levels · Hippocampus · Huntington’s disease · Striatum · Synaptic transmission

Introduction

Brain-derived neurotrophic factor (BDNF) is an endogenous glycoprotein belonging to neurotrophins, a family of signaling molecules that play a key role in regulating neuronal proliferation, differentiation and survival [1–3]. Among the neurotrophins, BDNF has the widest distribution in the central nervous system [4, 5]. In the adult hippocampus, BDNF is critically involved in the regulation of synaptic plasticity [6] and facilitates long-term potentiation (LTP) [7–10; see 11 for review]. Most biological effects of BDNF are mediated by the tyrosine kinase receptor TrkB. Both BDNF and its receptors are highly expressed in the hippocampus, and the activation state of the complex BDNF/TrkB appears critical for modulating synaptic efficacy [12] and the response to excitotoxic injury [13, 14].

In hippocampal neurones, adenosine has been reported to transactivate TrkB receptors, an effect involving the A_2A
receptor subtype (A2ARs) [15]. Furthermore, Diogenes et al. [16] reported that A2ARs facilitate the excitatory action of BDNF on hippocampal synaptic transmission. Besides its involvement in hippocampal functions, BDNF is also very important for the survival of striatal neurons and the activity of corticostratial synapses [17]. Impairment in BDNF function is though to play a major role in Huntington’s disease (HD), an inherited neurodegenerative disease caused by a mutation in the protein huntingtin and characterised by marked striatal degeneration (see [18] for review). Specifically, it has been shown that the activity of BDNF depends on the presence of normal huntingtin [19–21]. In vitro and in vivo data showed that wild-type huntingtin, but not the mutant protein, stimulates cortical BDNF production by acting at the level of Bdnf gene transcription [20, 21]. At the corticostratial synapse, BDNF controls glutamate release and its exogenous administration allows striatal neurons to survive excitotoxin-induced neurodegeneration [22].

Mounting evidence also indicates an involvement of striatal A2A receptors in HD (see [23] and [24] for reviews). First, A2ARs are mainly localised on the neurons that degenerate early in HD [25]. Second, A2ARs and underlying signalling systems undergo profound changes in cellular and animal models of HD (see [24] for review). Thus, not only A2ARs seem to regulate BDNF functions in the brain, but both BDNF and A2ARs seem to be implicated in HD.

In this article we report and critically discuss some recent findings on the following issues obtained by our group: (1) the regulatory role exerted by hippocampal A2ARs on BDNF functions and levels as revealed by studies performed in A2AR KO mice, and (2) the effects of A2AR blockade on striatal BDNF levels in experimental models of HD or HD-like striatal degeneration.

In hippocampal slices from wild-type mice, the facilitatory effects exerted by BDNF on synaptic transmission require the endogenous activation of A2AR.

In hippocampal slices from wild-type (WT) mice (400-μm thick, see [26] for a detailed methodological description), BDNF (10 ng/ml over 30 min) induced a long-lasting increase in the slope of field excitatory postsynaptic potential (fEPSP) recorded in the CA1 area (Fig. 1). This effect was abolished not only by the inhibitor of Trk phosphorylation K-252a, but also by the selective adenosine A2A antagonists ZM241385 and SCH58261 (Tebano et al., manuscript in preparation). The effects of A2ARs seem to involve the cyclic adenosine monophosphate/protein kinase A (cAMP-PKA) pathway, the main transduction mechanism operated by A2ARs, as the selective PKA inhibitor KT 5720 abolished the excitatory action of BDNF (Tebano et al., manuscript in preparation).

BDNF is no longer able to facilitate synaptic transmission in hippocampal slices from A2A KO mice A2A R KO mice (A2AR−/−) were generated, as previously described [29]. In hippocampal slices from A2AR KO mice, BDNF was no longer able to increase the fEPSP slope (Tebano et al., manuscript in preparation). As shown in Fig. 1, none of the tested concentrations of BDNF (5, 10 and 20 ng/ml) potentiated the synaptic response in slices from A2AR KO mice. Since the effectiveness of BDNF may depend on the proper expression of its receptors, we compared the levels of TrkB protein in WT and A2AR KO mice by Western blotting. By using primary anti-TrkB antibody (Bioscience), we found that the levels of full-length TrkB

![Fig. 1 Brain-derived neurotrophic factor (BDNF) facilitates synaptic transmission in hippocampal slices from wild-type (WT) but not A2A receptor (R) knock-out (KO) mice. In hippocampal slices from WT mice, BDNF (10 ng/ml) induces an increase of the excitatory postsynaptic field potentials (fEPSP) slope, whereas a lower concentration (5 ng/ml) is ineffective. BDNF (5, 10 and 20 ng/ml) was totally ineffective in hippocampal slices from A2AR KO mice. *P<0.05 vs. baseline (paired t test)
isoforms were very similar in hippocampal extracts from WT and A$_{2A}$R KO mice (Tebano et al., manuscript in preparation). Thus, the loss of BDNF activity observed in A$_{2A}$R KO mice is not associated with a reduced density of TrkB receptors.

BDNF protein levels are significantly reduced in the brain of A$_{2A}$R KO vs. WT mice

The BDNF protein levels were then measured on hippocampal extracts from A$_{2A}$R KO and WT mice using the BDNF immunoassay system [enzyme-linked immunosorbent assay (ELISA) kit; Promega]. Interestingly, hippocampal BDNF levels were significantly lower in the A$_{2A}$R KO mice compared with the WT littermates. As shown in Fig. 2, such an effect was not confined to the hippocampus, as a significant loss of BDNF levels was observed also in the striatum of A$_{2A}$ KO vs. WT mice.

This result indicates that the presence of A$_{2A}$Rs is required to maintain normal BDNF levels in the brain. Although the mechanism by which A$_{2A}$Rs regulate BDNF is yet undetermined, it is worth mentioning that the cAMP-PKA pathway (the main transduction system operated by A$_{2A}$Rs) has been implicated not only in "gating" BDNF functions [30], but also in modulating BDNF gene transcription [31] and release [32]. Furthermore, Kolarow et al. [33] showed that the PKA inhibitor Rp-cAMP significantly inhibited and delayed BDNF secretion in hippocampal neurons. Interestingly, the endogenous state of activation of A$_{2A}$Rs seems to be adequate to sustain a normal BDNF tone in WT mice, as no increase in the hippocampal levels of BDNF were observed in WT mice treated with a single (0.5 mg/kg i.p sacrifice 24 h later) or with repeated (0.5 mg/kg per day over 5 days) doses of the A$_{2A}$ agonist CGS 21680.

On their whole, the experiments performed in A$_{2A}$ KO mice indicate that A$_{2A}$Rs are essential for the tone and synaptic activity of BDNF. It should be noted, however, that the stimulation or the blockade of A$_{2A}$Rs can induce effects very different from those achieved after stimulation or blockade of the BDNF/TRkB system. For instance, whereas BDNF is thought to play an important role in memory processes [34, 35], adenosine A$_{2A}$Rs seem to negatively influence them. Indeed, an improvement in spatial memory has been reported in A$_{2A}$R KO mice [36], whereas working memory was impaired in rats overexpressing A$_{2A}$Rs [37]. Another consideration that apparently weakens the importance of the A$_{2A}$/BDNF interaction is that A$_{2A}$Rs and TrkB Rs undergo opposite age-related changes in the hippocampus [38]. According to the authors’ interpretation, however, the relationship between age-related changes in the density of TrkB and A$_{2A}$R receptors does play a role in the modulation of BDNF effects, thus even reinforcing the hypothesis of a close functional interplay between A$_{2A}$Rs and BDNF.

A$_{2A}$Rs regulate striatal BDNF levels in experimental models of HD or HD-like striatal degeneration

Two different models of HD were used: the quinolinic-acid (QA)-lesioned rats (pathogenetic model of HD-like striatal degeneration, [39]) and transgenic R6/2 mice (genetic HD model, [40]). For the method of QA-induced striatal lesions, see [41]. Briefly, QA (180 nmol/1 μl) was unilaterally injected in the striatum of anaesthetised rats, whereas vehicle [1 μl phosphate-buffered saline (PBS)] was injected in the other side. SCH58261 was administered at the doses of 0.01 and 1 mg/kg i.p. 20 min before QA lesion. The
levels of BDNF were measured 24 h after surgery. As shown in Fig. 3, BDNF levels were significantly increased in the QA-lesioned vs. the control side. In animals pretreated with both doses of SCH58261, the rise in striatal BDNF was completely prevented. Worthy of note, SCH58261 markedly reduced BDNF levels in the control (vehicle-injected) side also (Fig. 3). As the early rise in BDNF levels most probably reflects a compensatory mechanism following QA injection, one can consider that SCH58261 may worsen QA effects by preventing BDNF increase. Previous studies have, however, demonstrated that whereas SCH58261 exerted very clear neuroprotective effects towards QA at 0.01 mg/kg i.p., it was no longer neuroprotective when administered at 1 mg/kg [39]. The finding that SCH58261 reduces BDNF levels irrespective of the dose (neuroprotective or non-neuroprotective) indicates that early changes in the striatal BDNF levels do not seem to correlate with the clinical and neuropathological outcome in the QA model.

R6/2 HD mice may represent a more suitable model to evaluate whether A2AR antagonists have a worsening influence through the reduction of striatal BDNF levels. Indeed, the administration of BDNF has been reported to have beneficial effects in transgenic models of HD [42, 43]. Considering that in the transgenic mice the neurodegenerative process progressively takes place over several weeks, to ascertain whether A2AR blockade could influence striatal BDNF levels, we decided to treat R6/2 mice chronically with SCH58261. The drug was administered at the dose of 0.01 mg/kg per day i.p. over 1 or 3 weeks starting from the fifth week of age. Another group of R6/2 mice was treated with vehicle over 3 weeks. BDNF levels were then assayed at the beginning of the symptomatic phase (8 weeks of age). Three groups of age-matched WT littermates were used as controls and treated in the same way described as above. As shown in Fig. 4, BDNF protein levels were not reduced, and showed instead a nonsignificant tendency to increase, in the striatum of early symptomatic R6/2 vs. WT mice. This finding was unexpected, as a significant decrease in BDNF mRNA has been recently reported in the striatum of R6/2 mice of the same age [43]. Although we have not explored the mechanisms responsible for such a discrepancy, a dissociation between the levels of BDNF protein and mRNA has already been observed in the brains of transgenic R6/1 HD mice [44]. Another reason for which one would expect a reduction in BDNF levels in the striatum of R6/2 mice is that a marked reduction in the expression of A2ARs (which, as mentioned above, are very important to maintain normal BDNF levels) was reported in these mice [45]. More recently, however, the A2AR-stimulated adenylyl cyclase, the A2AR density, and their affinity for the agonist CGS21680 were found unchanged in the striatum of clearly symptomatic R6/2 mice [46]. As for the influence of A2AR blockade, both schedules (1 and 3 weeks) of SCH treatment significantly reduced

![Fig. 3 The A2A receptor (R)-antagonist SCH58261 reduces striatal brain-derived neurotrophic factor (BDNF) levels in control and quinolinic-acid (QA)-lesioned rats. QA (180 nmol/1 μl) was unilaterally injected in the striatum of anaesthetised rats, whereas vehicle [1 μl phosphate-buffered saline (PBS)] was injected in the other side. SCH58261 was administered at the doses of 0.01 and 1 mg/kg i.p., 20 min before QA lesion. The levels of free mature BDNF were measured 24 h after surgery. BDNF levels were significantly increased in the QA-lesioned vs. the control side. In animals pretreated with both doses of SCH58261, the rise in striatal BDNF was completely prevented. N=5/group. °P<0.05 vs. PBS. *P<0.05 vs. corresponding vehicle](image)

![Fig. 4 The A2A receptor (R)-antagonist SCH58261 reduces striatal brain-derived neurotrophic factor (BDNF) levels in R6/2 HD mice. SCH58261 was administered at the dose of 0.01 mg/kg per day i.p. over 1 or 3 weeks starting from the fifth week of age. Free mature BDNF levels were then assayed at the beginning of the symptomatic phase (8 weeks of age). Three groups of age-matched wild-type (WT) littermates were used as controls and treated in the same way as described above. Both schedules (1 and 3 weeks) of SCH treatment significantly reduced BDNF levels in the striatum of either R6/2 and WT mice. N=4–7/group. *P<0.05 vs. corresponding control group (two-tailed unpaired t test)](image)
BDNF levels in the striatum of either R6/2 and WT mice (Fig. 4). Again, however, such an effect does not necessarily imply a negative influence of SCH58261 on HD mice. Indeed, in recent experiments, we found that SCH treatment (0.01 mg/kg per day i.p. between the 5th and the 6th weeks of age) exerted some beneficial effects, namely, normalisation of emotional behaviour and restoration of a normal sensitivity to NMDA in corticostriatal slices (Domenici et al., manuscript in preparation). Thus, although the pharmacological blockade of A2ARs significantly reduces striatal BDNF levels in experimental models of HD or HD-like neurodegeneration, this does not seem to have a negative impact on the course of the disease. Of course, it is still possible that reducing BDNF levels at other time points of the pathological process has a much marked influence on the disease. This issue, as well as the evaluation of BDNF protein changes at different stages of the disease, will be the object of future studies.

Conclusions

Over the last several years, BDNF has emerged not only as a potent neuromodulator but also as a substance exerting fast excitatory actions in neurons, controlling resting membrane potential, neuronal excitability and synaptic transmission and participating in the induction of long-term changes in synaptic transmission [47]. In agreement with the recent evidence that A2ARs play a major role in regulating BDNF functions [16, 48], data reported in this article indicate that the presence and tonic activation of A2ARs are necessary to allow BDNF-induced potentiation of synaptic transmission. As for the mechanisms responsible for the permissive effects of A2ARs, data indicate an involvement of the cAMP-PKA pathway, the main transduction mechanism operated by A2ARs. The finding of reduced BDNF levels in the brain of A2AR KO mice indicates that A2ARs are critical not only to allow the synaptic effects of BDNF but also to maintain normal BDNF levels. Findings also point out that A2ARs tonically regulate BDNF levels in different areas of the brain, irrespective of their levels of expression. The tonic effect exerted by A2ARs in the regulation of BDNF levels is also evident in experimental models of HD (R6/2 mice) and of HD-like striatal degeneration (QA lesion in rats).

Given that BDNF delivery has beneficial effects in models of HD [42, 43], the possible functional consequences of reducing striatal BDNF levels in those models need to be clarified. In particular, further investigations on trophic factors and associated signal pathways are warranted before A2AR antagonists can be considered as a suitable therapeutic approach to HD [24].

References

1. Vicario-Abegón C, Owens D, McKay R et al (2002) Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci 3:965–974
2. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736
3. Kalb R (2005) The protein actions of neurotrophins and their receptors on the life and death of neurons. Trends in Neurosciences 28:5–11
4. Schmidt-Kastner R, Wetmore C, Olson L (1996) Comparative study of brain-derived neurotrophic factor messenger RNA and protein at cellular level suggests multiple roles in hippocampus, striatum and cortex. Neuroscience 74:161–183
5. Conner JM, Lauterborn JC, Yan Q et al (1997) Distribution of brain derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313
6. Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10:86–98
7. Figurov A, Pozzo-Miller LD, Olafsson P et al (1996) Regulation of synaptic responses to high frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381:706–709
8. Korte M, Carroll P, Wolf E et al (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92:8856–8860
9. Korte M, Griesbeck O, Gravel C et al (1996) Virus-mediated gene transfer into hippocampal CA1 region restores long term potentiation in brain derived neurotrophic factor mutant mice. Proc Natl Acad Sci USA 93:12547–12552
10. Patterson SL, Abel T, Deuel TA et al (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16:1137–1145
11. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125
12. Nagappan G, Lu B (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 28:464–471
13. Canals J.M, Checa N, Marco S et al (1999) The neurotrophin receptors trkA, trkB and trkC are differentially regulated after excitotoxic lesion in rat striatum. Brain Res Mol Brain Res 69:242–248
14. Checa N, Canals JM, Gratacos E et al (2001) TrkB and TrkC are differentially regulated by excitotoxicity during development of the basal ganglia. Exp Neurol 172:282–292
15. Lee FS, Chao MV (2001) Activation of trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA 98:3555–3560
16. Diogenes MJ, Fernandes CC, Sebastião AM et al (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24:2905–2913
17. Cattaneo E, Zuccato C, Tartari M et al (2005) Normal Huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930
18. Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330
19. Hodgson, JG, Agopyan, N, Gutekunst CA et al (1999) A YAC mouse model for Huntington’s disease with full-length mutant Huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192
20. Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of Huntington-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498
21. Zuccato C, Tartari M, Crotti A et al (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83
22. Bemelmans AP, Horellou P, Pradier L et al (1999) Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 10:2987–2997
23. Blum D, Hourez R, Galas MC et al (2003) Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics. Lancet Neurol 2:366–374
24. Popoli P, Blum D, Martire A et al. (2007) Functions, dysfunctions and therapeutic potential of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 81(5–6):331–348
25. Glass M, Dragunow M, Faull RLM (2000) The pattern of biological activity of adenosine: a review. Neuropharmacology 39:237–264
26. Tebano MT, Martire A, Rebola N et al (2005) Adenosine receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-D-aspartate effects. J Neurochem 95:1188–1200
27. Poo M (2001) Neurotrophins as synaptic modulators. Nature 410:24–32
28. Suzuki S, Numakawa T, Shimazu K et al (2004) BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: roles in synaptic modulation. J Cell Biol 167:1205–1215
29. Chen JF, Huang Z, Ma J, Zhu J et al (1999) A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19:9192–9200
30. Boulanger L, Poo MM (1999) Gating of BDNF-induced synaptic potentiation by cAMP. Science 284:1982–1984
31. Fang H, Chartier J, Soda J et al (2003) Transcriptional activation of the human brain-derived neurotrophic factor gene promoter III by dopamine signalling in NT2/N neurons. J Biol Chem 278:26401–26409
32. Patterson SL, Pittenger C, Morozov A et al (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phosphoMAP kinase. Neuron 32:123–140
33. Kolarow R, Brigadski T, Lessmann V (2006) Intracellular targeting of neurotrophins and signalling cascades involved in synaptic secretion of BDNF and NT3. Society for Neurosci, Annual Meeting, Atlanta USA, 14–18 October 2006
34. Tyler WJ, Alonso M, Bramhan CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9:224–237
35. Heldt SA, Stanek L, Chatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12:656–670
36. Wang JH, Ma YY, van den Buuse M (2006) Improved spatial recognition memory in mice lacking adenosine A2A receptors. Exp. Neurol 199:438–445
37. Gimenez-Llort L, Schiffmann SN, Shmidt T et al (2007). Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 87:42–56
38. Diogenes JM, Assaife-Lopes N, Pinto-Duarte A, Ribeiro JA, Sebastiao A (2007) Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus 17:577–585
39. Popoli P, Pintor A, Domenici MR et al (2002) Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 22:1967–1975
40. Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506
41. Minghetti L, Greco A, Potenza RL et al (2007) Effects of the adenosine A2A receptors antagonist SCH 58261 on cyclooxygenase-2 expression, glial activation and BDNF availability in a rat model of striatal neurodegeneration. J Neuropathol Exp Neurol 66:363–371
42. Lynch G, Kramar EA, Rex CS et al (2007) Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J Neurosci 27:4424–4434
43. Zuccato C, Liber D, Ramos C et al (2005) Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol Res 52:133–139
44. Pang TYC, Stam NC, Nithianantharajah J et al (2006) Differential effects of voluntary physical exercise on behavioural and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience 141:569–584
45. Cha JH, Frey AS, Alsford SA et al (1999) Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease transgenic mice. Neuroscience 87:493–506
46. Cha JH, Frey AS, Alsford SA et al (1999) Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos. Trans. R. Soc. Lond. B Biol Sci 354:981–989
47. Kovalchuk Y, Holthoff K, Konnerth A (2004) Neurotrophin action on a rapid timescale. Current Opinion in Neurobiol 14:558–563
48. Pousinha PA, Diogenes MJ, Ribeiro JA et al (2006) Triggering of BDNF facilitatory action on neuromuscular action transmission by adenosine A2A receptors. Neurosci Lett 404:143–147