Effects of Singing on Oral Function, Stress, and Immunity

Katsuhisa Sakano1,2, Koufuchi Ryo1, Yoh Tamaki1, Ryoko Nakayama3, Shukuko Ebihara4, Keisuke Tozuka1 and Ichiro Saito1*

1Department of Pathology, Tsurumi University School of Dental Medicine 2-1-3, Tsurumi-Ku, Yokohama 230-8501, Japan
2PREMEDICO Co., Ltd., 4F Chushin Build. 3-3-5, Uchikanda Chiyoda-ku, Tokyo 101-0047, Japan
3Department of Health and Welfare Services, National Institute of Public Health 2-3-6 Minami, Wako-shi, Saitama 351-0197, Japan
4Chiyoda Paramedical Care Clinic, 2F Chushin Build. 3-3-5, Uchikanda Chiyoda-ku, Tokyo 101-0047, Japan
5Daichikosho Co., Ltd. 5-5-26 Kitashinagawa, Shinagawa-ku, Tokyo 141-8701, Japan

Abstract

Background: We previously reported that singing can improve mental health and oral function. Since the results were based on one singing session, further investigation was required. Therefore, we assessed the effects of daily singing on oral and immune/endocrine function in two studies.

Methods: Thirteen subjects (five men, eight women) with a mean age of 51.3 years (standard deviation [SD] = 13.0) and 17 subjects (six men, 11 women) with a mean age of 46.8 years (SD = 8.0) participated in study 1 and study 2, respectively. The effects of singing on oral function, immunity, and stress were determined by performing a swallowing function test, oral cavity examination, blood and saliva tests, and questionnaires before and after the singing period.

Results: Both chewing and swallowing showed significant improvement with singing (study 1), and saliva production also improved significantly with singing (study 2). In study 1, immunological analysis showed a significant increase of T cells, B cells, CD4+ T cells, and CD8+ T cells with singing, and immunity scores increased significantly from week 4 through week 8 compared to before singing. The mood and emotional state of the participants (visual analog scale) improved in both studies, along with reduction of cortisol and adrenaline, which are indicators of psychological stress. Levels of lipid peroxide and 8-hydroxy-2′-deoxyguanosine, markers of oxidative stress, were also reduced in both studies.

Conclusions: Singing effectively promotes oral function, including saliva secretion and muscle strength, and reduces psychological stress. Singing may also improve immune function and reduce oxidative stress.

Introduction

Oral function strongly influences health and quality of life. Feeding relies on oral function, while speech and facial expressions are crucial for communication [1]. Swallowing is linked to complex higher brain functions, and eating is associated with learning and memory [2,3]. Saliva cleans the oral cavity and reduces microbial proliferation [4-6]. Saliva contains various molecules involved in immunity and health maintenance [7-11], but their secretion decreases with aging [12,13]. Impaired chewing and swallowing are associated with aspiration pneumonia. Among the elderly, pneumonia is a frequently fatal and complications such as diffuse aspiration bronchiolitis can further increase mortality [14]. Hence, the oral cavity is important for both health and quality of life.

Reducing psychological stress may prolong the lifespan [15], while stress caused by isolation increases mortality [16]. Stress also negatively impacts immune function. Accordingly, stress reduction methods have been investigated [17-19]. Increased oral muscle strength is associated with greater secretion of saliva [20], and exercising the mimetic muscles can affect emotions [21]. We previously showed that saliva secretion increases after singing a single song and the participants reported emotional improvement [22]. This time, we investigated the effects of daily singing on oral function and health.

Methods

Study design

An open-label study (study 1) and a randomized, single-blind, cross-over study (study 2) were conducted after receiving approval from the Institutional Review Board of Chiyoda Paramedical Care Clinic (Tokyo, Japan). In accordance with the Declaration of Helsinki, the contents and methods of the study and other pertinent information were adequately explained to the participants, who provided written consent. Both studies were approved by the Institutional Review Board of Chiyoda Paramedical Care Clinic (approval numbers: study 1:13011702; study 2:14102102). Both studies were performed according to the Declaration of Helsinki and the subjects gave informed consent to participation.

Participants

Subjects were recruited by using a website. Study 1 was conducted in 13 subjects (five men and eight women with a mean age of 51.3 years; standard deviation [SD] = 13.0 years) and study 2 enrolled 17 subjects (six men and 11 women with a mean age of 46.8 years; SD = 8.0 years). All subjects satisfied the selection criteria and provided written consent to participation. Exclusion criteria were current treatment for respiratory, cardiac, or vascular conditions; regular intake of health foods that could modulate stress or immunity and have an impact on study outcomes; a history of serious heart, lung, kidney, gastrointestinal (including gastrectomy), hematological, endocrine,

Correspondence to: Ichiro Saito, DDS, PhD, Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi-Ku, Yokohama 230-8501 Japan, E-mail: saito-i@tsurumi-u.ac.jp

Key words: singing, immune system, oral function, psychological stress

Received: January 04, 2018; Accepted: January 20, 2018; Published: January 24, 2018

Oral Health Care, 2018 doi: 10.15761/OHC.1000135
or metabolic disease or current treatment for any of these diseases; difficulty attending hospital; depression, psychological instability, or strong psychogenic reaction; and any other reason that made the subject unsuitable according to the responsible physician. A profile of the participants is shown in Table 1.

Study schedule and procedures

Study 1 was an open investigation. Subjects were assessed at three baseline visits before the singing period, as well as after four and eight weeks of the singing period. Study 2 was performed according to a cross-over design. Subjects were assessed at four baseline visits before intervention, and then after four weeks of singing or not singing. They subsequently switched to the other intervention and were assessed again after a further 4 weeks. During the singing period of both studies, the subjects sang karaoke four times a week for one hour each time (five songs or more). The frequency of singing was set within the range that would not interfere with daily life. Singing in a karaoke box was selected because it is popular in Japan. Subjects sang alone in the karaoke box and they selected the songs themselves. The subjects were instructed to live normally, but to avoid drinking and eating excessively on the day before and the day of each examination, since overindulgence or poor health (e.g., fever or abdominal pain) could influence secretion of saliva. From 9 p.m. on the day preceding each visit, subjects were prohibited from the following activities until after completing the visit: drinking alcohol, consuming food/drink that could influence stress markers in saliva (green tea, coffee, soda, and high-caffeine beverages such as energy drinks), excessive exercise (physical stress can potentially affect salivary stress markers), and use of antihistamines (which inhibit secretion of saliva). On the examination day, subjects were prohibited from smoking until after completion of the examination. Subjects arrived at Chiyoda Paramedical Clinic in the morning and were interviewed by the study doctor. Then the body examination. Subjects arrived at Chiyoda Paramedical Clinic in

Measurements

Blood levels of lipid peroxides, cortisol, and catecholamines (adrenaline and noradrenaline) were analyzed. The immunity score, comprised of the immunity grade and T lymphocyte age, was calculated by the Scoring of Immunological Vigor (SIV) method [23, 24]. All measurements and calculations of immunological markers were performed by the Institute of Health and Life Science (Tokyo, Japan). Urine samples were analyzed to measure 8-hydroxy-2'-deoxyguanosine (8-OHdG). Secretion of saliva was assessed by the resting test, Saxon test, and gum test. Oral function and swallowing were examined by the RSST and bite force measurement. To complete the questionnaire, participants selected answers on a visual analog scale (VAS). In addition, the height, weight, blood pressure, and pulse rate were measured.

Statistical analysis

Results are expressed as the mean ± SD, unless otherwise specified. The Wilcoxon signed-rank test was used to compare data obtained at each visit with the baseline values. All analyses were performed with significance set at p < 0.05 (two-tailed) using SPSS 20.0 software (IBM Japan Inc., Tokyo, Japan) and SAS 9.2 software (SAS Institute Inc., North Carolina). In study 2, data obtained by the 2×2 crossover design were analyzed by using PROC GLM in the SAS program.

Results

Compliance with singing therapy

A 100% compliance rate was defined as singing on 32 days (study 1) or 16 days (study 2) for one hour per day, with five or more songs in each singing session. Table 2 shows compliance with singing therapy. The compliance rate was 101.7 ± 4.3% in study 1 because two subjects sang on 33 days and one subject sang on 37 days, while the remaining subjects sang on 32 days as scheduled.

Saliva secretion and oral function

The data on oral function and saliva secretion obtained in study 1 are listed in Table 3. Compared to baseline, the RSST value increased

Table 1. Profile of the participants.

Item Number	Study 1	Study 2
Sex (Male/Female)	5 13	6 17
Age (years)	51.3 ± 10.9	46.8 ± 12.5
Height (cm)	160.0 ± 7.86	101.7 ± 4.3
Weight (kg)	61.2 ± 15.57	101.7 ± 4.3
BMI (kg/m²)	23.5 ± 5.69	24.3 ± 5.442
SBP (mmHg)	115.7 ± 12.9	115.9 ± 11.6
DBP (mmHg)	73.8 ± 12.9	74.2 ± 11.6
Pulse rate (bpm)	76.5 ± 5.4	76.2 ± 8.0

Data are shown as the mean ± SD
BMI, body mass index; bpm, beats per minute; DBP, diastolic blood pressure; SBP, systolic blood pressure; SD, standard deviation

Table 2. Compliance with Singing Therapy.

Item	Study 1	Study 2
No. of days performed	32.5 ± 10.1	15.9 ± 1.5
Compliance rate (%)*	101.7 ± 4.3	99.6 ± 1.5
No. of songs per session	10.1 ± 2.5	7.8 ± 1.4

Data are shown as the mean ± SD (n=13)
*100% compliance rate = singing on 4 days per week during the study period.
SD, standard deviation
Table 3. Swallowing and oral function in study 1.

Item	Baseline (mean±SD)	Week 4 (mean±SD)	Week 8 (mean±SD)
RSST (times)	4.5 ± 1.4	5.4 ± 1.3	5.8 ± 1.5
Bite force test (kN)	0.087 ± 0.082	0.088 ± 0.045	0.101 ± 0.043
Unstimulated saliva test (ml)	3.1 ± 3.1	3.3 ± 2.9	3.1 ± 2.4
Saxon test (g)	4 ± 1.9	4.8 ± 1.6	4.8 ± 2
gum test (ml)	15.7 ± 8.6	18.1 ± 6.1	17.6 ± 5.6

Data are shown as the mean±SD (n=13).

*p<0.05, **p<0.01: Wilcoxon signed-rank test vs. Baseline.

Table 6 shows the results for study 1. Compared with baseline, the blood level of lipid peroxidase was significantly decreased in week 4 of the singing period. In addition, blood levels of cortisol and adrenaline were significantly decreased in week 8. While the urine level of 8-OHdG was decreased in weeks 4 and 8, the change was not significant.

The results for study 2 are shown in Table 7. Compared with the non-singing group, urine 8-OHdG in was decreased at 4 week in the singing group, but the change was not significant.

In study 2, the VAS score for “pleasurable” was significantly higher in the singing group compared to the non-singing group. The VAS scores of the other items (“relieved”, “feeling refreshed”, “comfortable”, “light-hearted”, and “relaxed”) were also higher at week 4 in the singing group compared with the non-singing group, but the differences were not significant.

Discussion

Good oral function is critical for various fundamental daily activities, both biological and social. Impairment of oral function, such as the ability to chew or swallow food, not only impacts the quality of life but can also lead to serious illness or require invasive medical interventions (such as insertion of a feeding tube). Deterioration of oral function can arise from organic or psychological causes. Psychological stress can exacerbate many diseases, while many disease processes can be better controlled by reducing stress [25,26]. Therefore, it is essential to maintain proper oral function and reduce psychological stress. It has been reported that music therapy is effective for pain [27] and for autism spectrum disorder [28]. In addition, it was reported that singing improves respiratory function in patients with chronic neurological conditions [29]. In this study, we investigated the efficacy of singing as a method of reducing psychological stress and improving oral function.

From middle age, there is a decline of the ability to swallow saliva and chew food. Our open-label study (study 1) showed that singing led to significant improvement of the RSST in weeks 4 and 8, while evaluation of chewing (by the bite force test assessing the strength of the masticatory muscles) revealed an increase of muscle strength in week 8. Thus, participants in study 1 showed improvement of oral function after 8 weeks of singing 4 times per week. In our cross-over study (study 2), the singing group showed significant improvement of the secretion of saliva (unstimulated saliva test) in week 4 compared with the non-singing group. Salivary glands are supported by the muscles of the oral cavity, and singing both strengthens these muscles and promotes local blood flow, which may explain how singing promotes saliva production. Reduction of saliva production, swallowing, and chewing are risk factors for aspiration pneumonia. Therefore, the present findings suggest that singing not only improves oral function, including saliva production and chewing, but may also reduce the risk of aspiration pneumonia.

The sympathetic and parasympathetic nervous systems are interrelated and exquisitely balanced components of the autonomic nervous system, which have a considerable impact on immune function (e.g., lymphocyte activity) [30]. Granulocytes increase when stress increases and sympathetic activity is predominant for an extended period. Conversely, when stress declines and parasympathetic activity becomes predominant, the number of lymphocytes (immunocompetent cells) increases. We observed a significant increase of lymphocytes after singing, which suggests that singing may influence the autonomic
Table 4. Swallowing and oral function in study 2.

Item	Non-singing group	Singing group	Analysis of variance					
	Baseline	week 4	Change	Baseline	week 4	Change		
RSST (times)	4.2 ± 1.1	4.2 ± 1.1	0 ± 1.1	3.9 ± 0.9	4.1 ± 1.1	0.2 ± 0.9	0.38	
Bite force test (kN)	0.056 ± 0.029	0.061 ± 0.02	0 ± 0.1	0.1 ± 0.035	0.063 ± 0.029	0.004 ± 0.03	0.824	
Unstimulated saliva test (mL)	4 ± 2.8	3.7 ± 2.1	-0.3 ± 0.8	1.4 ± 3.5	2.3 ± 3.4	0.1 ± 0.9	0.38	
Saxton test (g)	5 ± 2.0	5.2 ± 2.1	0.2 ± 0.5	0.7 ± 3.8	5.2 ± 2.3	5.3 ± 3.8	0.3 ± 0.8	0.839
gum test (mL)	17.8 ± 7.4	17.3 ± 7.6	-0.5 ± 0.6	1.5 ± 8.1	18.9 ± 7.6	1.3 ± 7.1	0.115	

Data are shown as the mean± SD (n=17).
RSST, repetitive saliva swallowing test; SD, standard deviation

Table 5. Immune function parameters in study 1

Item	Baseline	week 4	week 8
Immunity score	14.2 ± 1.5	15.4 ± 1.7	15.8 ± 1.9
Immunity grade	2.7 ± 0.5	3.0 ± 0.3	4.0 ± 0.5
CD3+T cells (%)	64.8 ± 9.2	66.5 ± 8.3	68.5 ± 8.3
CD20+B cells (%)	15.1 ± 4.8	16.6 ± 4.9	14.4 ± 4.4
CD4+T cells (%)	45.6 ± 8.2	46.5 ± 8.1	47.1 ± 7.4
CD8+T cells (%)	14.6 ± 5.3	16.7 ± 5.8	18.8 ± 7.1
CD4+ naïve T cells (%)	33.5 ± 7.0	40.1 ± 6.1	37.9 ± 10.9
CD4+ memory T cells (%)	66.5 ± 7.0	59.9 ± 6.1	62.1 ± 10.9
CD8 T cell subset CD8+ (%)	64.2 ± 18.5	65.2 ± 16.5	66.5 ± 18.8
CD56+16- NK cells (%)	6.4 ± 3.1	5.7 ± 4.2	6.3 ± 4.2
CD56+16+ NK cells (%)	13.7 ± 12.9	6.8 ± 13.3	7.4 ± 13.3
CD56-16+ NK cells (%)	20.0 ± 1.2	0.7 ± 0.6	0.3 ± 0.6
Neutrophils /µL	3117.3 ± 1357.4	2828.5 ± 1435.2	2710.1 ± 1520.1
Lymphocytes /µL	1631.7 ± 470.4	1576.4 ± 415.1	1611.2 ± 310.9
T cells /µL	1070.9 ± 401.5	1056.2 ± 340.3	1066.4 ± 263.4
B cells /µL	247.9 ± 261.2	445.6 ± 98.6	229.9 ± 85.8
CD4+ T cells /µL	747.1 ± 735.1	215.0 ± 762.7	202.3 ± 762.7
CD8+ T cells /µL	238.3 ± 100.2	89.4 ± 293.8	106.6 ± 293.8
CD4+/CD8+ T cell ratio	3.8 ± 2.7	3.6 ± 3.2	3.4 ± 3.4
Naïve T cells /µL	253.4 ± 115.7	301.0 ± 142.6	107.2 ± 142.6
Memory T cells /µL	493.7 ± 175.4	434.1 ± 123.7	476.8 ± 172.3
Naïve/memory T cell ratio	0.5 ± 0.2	0.7 ± 0.3	0.3 ± 0.3
NK cells /µL	215.6 ± 124.7	200.1 ± 107.0	210.6 ± 117.2
CD8+/CD8+ cells /µL	144.0 ± 58.8	161.2 ± 92.5	91.9 ± 92.5

Data are shown as the mean± SD (n=13).
*p<0.05, ** p<0.01 : Wilcoxon signed-rank test vs. Baseline.
SD, standard deviation

Table 6. Changes of hormones and oxidative parameters in study 1

Item	Baseline	week 4	week 8
Blood cortisol (µg/dL)	7.08 ± 1.32	6.31 ± 1.29	6.04 ± 1.29
Blood adrenaline (ng/mL)	0.040 ± 0.020	0.033 ± 0.016	0.030 ± 0.021
Blood noradrenaline (ng/mL)	0.514 ± 0.282	0.505 ± 0.247	0.418 ± 0.142
Blood lipid peroxide (mmol/L)	3.12 ± 0.57	2.74 ± 0.47	2.86 ± 0.57
Urine 8-oxodG (ng/mg creatinine)	8.802 ± 9.316	8.437 ± 6.488	6.651 ± 4.319

Data are shown as the mean± SD (n=13).
*p<0.05, ** p<0.01 : Wilcoxon signed-rank test vs. Baseline.
8-OHdG, 8-hydroxy-2'-deoxyguanosine; SD, standard deviation
Table 7. Changes of hormones and oxidative parameters in study 2

Item	Non-singing group	Singing group	Analysis of variance	
Cort (ng/dL)	Baseline week 4	Change	Baseline week 4	Change
AD (ng/mL)	8.25 ± 2.67	-0.82	8.00 ± 2.27	-0.06
NA (ng/mL)	0.021 ± 0.013	0.000	0.023 ± 2.29	0.016
LP (nmol/mL)	3.10 ± 0.46	-0.29	3.12 ± 0.42	-0.25
8-OH (ng/mg creatinine)	6.931 ± 3.532	-0.729	6.705 ± 3.592	0.128

Data are shown as the mean ± SD (n=13).

Table 8. Results of the questionnaire in study 1 (VAS)

Item	Baseline	Week 4	Change Baseline	Week 4	Change
Refreshed	53.1 ± 3.532	61.9 ± 3.592	2.1 ± 0.239		
Comfortable	53.2 ± 3.532	61.0 ± 3.592	1.9 ± 0.239		
Pleasurable	51.5 ± 3.532	59.0 ± 3.592	2.1 ± 0.239		
Light hearted	49.8 ± 3.532	57.5 ± 3.592	8.6 ± 1.200		
Relieved	51.2 ± 3.532	65.8 ± 3.592	15.0 ± 1.170		
Relaxed	53.5 ± 3.532	64.3 ± 3.592	9.6 ± 1.166		

Data are shown as the mean ± SD (n=13).

Table 9. Results of the questionnaire in study 2 (VAS)

Item	Non-singing group	Singing group	Analysis of variance		
Baseline	week 4	Change	Baseline	week 4	Change
Refreshed	61.9 ± 19.2	22.1	55.8 ± 12.9	21.4	
Comfortable	59.4 ± 16.5	19.8	56.4 ± 14.8	25.3	
Pleasurable	66.0 ± 18.1	17.8	56.6 ± 14.6	21.0	
Light hearted	53.1 ± 20.6	22.0	55.0 ± 24.2	30.8	
Relieved	61.2 ± 20.6	18.0	56.5 ± 19.6	21.3	
Relaxed	61.4 ± 20.7	19.7	56.5 ± 18.2	24.0	

Because this small-scale study showed that daily singing improves psychological stress and mental health, further investigation is warranted to evaluate the effect of singing in a larger study.

Conclusions

In our 2 studies, singing on a regular basis for 1-2 months increased secretion of saliva, as well as leading to improvement of chewing and swallowing. Singing therapy was also associated with reduction of psychological stress, and may potentially prevent/delay various diseases by reducing oxidative stress and improving immune function.

Author Contributions

KS conceived the study, participated in the study design, performed data collection, and drafted the manuscript. KR, YT, RN, and SF performed statistical analysis.

SE participated in the study design and performed data collection. KT participated in the study design. IS reviewed the study. All authors read and approved the final manuscript.

Acknowledgments

Editorial support in the form of copyediting and manuscript formatting was provided by Cactus Communications and funded by Daiichikosho Co., Ltd.

Volume 2(5): 5-6

Oral Health Care, 2018 doi: 10.15761/OHC.1000135
Funding
This study was conducted with funding received from Daiichikosho Co., Ltd.

Competing Interests
The authors declare that they have no competing interests and these data have not been published or used before in any manner in a journal article.

References
1. Yuki M, Maddux WW, Masuda T (2007) Are the windows to the soul the same in the East and West? Cultural differences in using the eyes and mouth as cues to recognize emotions in Japan and the United States. J Exp Clin Psychol 43: 303–311.

2. Kaye EK, Valencia A, Baba N, Spiro A 3rd, Dietrich T, et al. (2010) Tooth loss and periodontal disease predict poor cognitive function in older men. J Am Geriatr Soc. 58: 713–718.

3. Oomura Y, Sasaki K, Li AJ (1993) Memory facilitation educed by food intake. Physiol Behav 54: 493–498.

4. Soares RV, Lin T, Siqueira CC, Bruno LS, Li X, et al. (2004) Salivary micelles: identification of complexes containing MG2+, alfaA, lactoferrin, amylase, glycocylated proline-rich protein and lysozyme. Arch Oral Biol 49, 337–343.

5. Tenovuo J, Lehtonen OP, Aaltonen AS, Vilja P, Tuohimaa P (1986) Antimicrobial activity of saliva in whole saliva of human infants. Infect Immun 51: 49-53. [Crossref]

6. White MR, Helmerhorst EJ, Litsenberg A, Karpel M, Tett CE, et al. (2009) Multiple factors in whole saliva of human infants. J Exp Clin Psychol 43: 30-31.

7. Battino M, Ferreiro MS, Gallardo I, Newman HN, Bullon P (2002) The antioxidant capacity of saliva. J Clin Periodontol 29: 189-194. [Crossref]

8. Karita N, Horie S, Yamazaki S, Otoshi K, Otani K, et al. (2014) Low testosterone levels, depressive symptoms, and falls in older men: a cross-sectional study. J Am Med Directors Assoc 15: 30-35.

9. Ryo K, Iso A, Takatori R, Tai Y, Arikawa K, et al. (2011) Effects of coenzyme Q10 on salivary secretion. Clin Biochem 44: 669-674. [Crossref]

10. Ryo, K, Takahashi A, Tamaki Y, Oshinishi-Kameyama M, Inoue H, et al. (2014) Therapeutic effects of isoflavones on impaired salivary secretion. J Clin Bioch Nutr 55: 166–173.

11. Yamada T, Ryo K, Tai Y, Tamaki Y, Inoue H, et al. (2010) Evaluation of therapeutic effects of astatoxanthin on impairments in salivary secretion. J Clin Bioch Nutr 47: 130–137.

12. Challacombe SJ, Percival RS, Marsh PD (1995) Age-related changes in immunoglobulin isotypes in whole and parotid saliva and serum in healthy individuals. Oral Microbiol Immunol 100: 202–207.

13. Miletic ID, Schiffman SS, Miletic VD, Sattely-Miller EA (1996) Salivary IgA secretion rate in young and elderly persons. Physiol Behav 60: 243-248.

14. Matsuse T, Oka T, Kida K, Fukuchi Y (1996) Importance of diffuse aspiration bronchiolitis caused by chronic occult aspiration in the elderly. Chest, 110: 1289–1293.

15. Holt-Lunstad J, Smith TB, Layton JB (2010) Social relationships and mortality risk: a meta-analytic review. PLoS Med 7: e1000316. [Crossref]

16. Holt-Lunstad J, Smith TB, Baker M, Harris T, Stephenson D (2015) Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect Psychol Sci 10: 227-237. [Crossref]

17. Cao L, Choi EY, Liu X, Martin A, Wang C, et al. (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Met 14: 324–338.

18. Ramirez S, Liu X, MacDonald CJ, Moffia A, Zhou J, et al. (2015) Activating positive memory engrams suppresses depression-like behavior. Nature 522: 335–339.

19. Shirai K, Iso H, Ohira T, Ikeda A, Noda H, et al. (2009) Perceived level of life enjoyment and risks of cardiovascular disease incidence and mortality: the Japan public health center-based study. Circulation 120: 956–963.

20. Sreebny LM (2000) Saliva in health and disease: an appraisal and update. Int Dent J 50: 140–161. [Crossref]

21. Wiswede D, Münte TF, Kriemler UM, Rüsseler J (2009) Embodied emotion modulates neural signature of performance monitoring. PLoS One 4: e5754.

22. Sakano K, Ryo K, Tamaki Y, Nakayama R, Hasaka A, et al. (2014) Possible benefits of singing to the mental and physical condition of the elderly. BioPsychoSocial Medicine 21: 8–11.

23. Utsumaya M, Kikuchi Y, Kitagawa M, Hirokawa K (2009) Age-related changes in subpopulations of peripheral blood lymphocytes in healthy Japanese population. In Handbook on Immunosenescence: Basic Understanding and Clinical Applications. Fulop, T, Franceschi, C, Hirokawa, K, Pawelec, G. (eds) Berlin/Heidelberg: Springer Science+Business Media, 204–218.

24. Hirokawa K, Utsumaya M, Kikuchi Y, Kitagawa M (2009) Assessment of age-related decline of immunological function and possible methods for immunological restoration in elderly. In Handbook on Immunosenescence: Basic Understanding and Clinical Applications, Fulop, T, Franceschi, C, Hirokawa, K, Pawelec, G. (eds) Berlin/Heidelberg: Springer Science+Business Media, 1548–1569.

25. Iso H, Date C, Yamamoto A, Toyoshima H, Tanabe N, et al. (2002) Perceived mental stress and mortality from cardiovascular disease among Japanese men and women: the Japan Collaborative Cohort Study for Evaluation of Cancer Risk Sponsored by Monbusho (JACC Study). Circulation 106: 1229–1236.

26. Veenhooven R (2008) Healthy happiness: effects of happiness on physical health and the consequences for preventive health care. J Happiness Stud. 9: 449–469. [Crossref]

27. Lee JH (2016) The Effects of Music on Pain: A Meta-Analysis. J Music Ther 53: 430–477. [Crossref]

28. Geretsegger M, Holck U, Carpenter JE, Elefant C, Kim J, et al. (2015) Common characteristics of improvisational approaches in music therapy for children with autism spectrum disorder: developing treatment guidelines. J Music Ther 52: 258-81.

29. Ang K, Maddocks M, Xu H, Higgison U (2017) The effectiveness of singing or playing a wind instrument in improving respiratory function in patients with long-term neurological conditions: A systematic review. J Music Ther 54: 108-131.

30. Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K (2014) Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. Journal of Experimental Medicine, 211, 2583–2598.

31. Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, et al. (2013) Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci 14: 17643–17663.

32. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247. [Crossref]

33. Mei N, Tamae K, Kunugita N, Hirano T, Kasai H (2001) Analysis of 8-hydroxydeoxyguanosine as a marker of oxidative stress. Foods & Food Ingrid J Japan 194: 10–16.

34. Hori N, Lee MC, Sasaguri K, Ishii H, Kamei M, et al. (2005) Suppression of stress-induced nNOS expression in the rat hypothalamus by biting. J Dent Res 84: 624-628. [Crossref]

35. Miyake S, Sasaguri K, Hori N, Shoji H, Yoshino F, et al. (2005) Biting reduces acute stress-induced oxidative stress in the rat hypothalamus. Redox Report, 10, 19–24.

Copyright: ©2018 Sakano K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.