We compute the $B \to \pi \ell \nu$ semileptonic form factors and update the determination of the CKM matrix element $|V_{ub}|$. We use the MILC asqtad ensembles with $N_f = 2 + 1$ sea quarks at four different lattice spacings in the range $a \approx 0.045$ fm to 0.12 fm. The lattice form factors are extrapolated to the continuum limit using SU(2) staggered chiral perturbation theory in the hard pion limit, followed by an extrapolation in q^2 to the full kinematic range using a functional z-parameterization. The extrapolation is combined with the experimental measurements of the partial branching fraction to extract $|V_{ub}|$. Our preliminary result is $|V_{ub}| = (3.72 \pm 0.14) \times 10^{-3}$, where the error reflects both the lattice and experimental uncertainties, which are now on par with each other.
1. Introduction

The ratio of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_{ub}|/|V_{cb}|$ can provide a strong test of the unitarity of the CKM matrix in standard model (SM) and is of high priority in flavor physics. However, the value is still known rather poorly, and the uncertainty is currently dominated by that of $|V_{ub}|$. One reliable way to determine $|V_{ub}|$ is to use the exclusive $B \to \pi \ell \nu$ semileptonic decay where the partial branching fraction is given (in the SM) by

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2.$$

The form factor f_+, which encodes the non-perturbative effects with the q^2-dependence in the hadronic matrix element, is computed from theory using light-cone sum rules (LCSR) or, more systematically, using lattice QCD [1, 2]. The precision in $|V_{ub}|$ using the exclusive method, which is currently at about 9%, is largely limited by lattice uncertainties. In addition to the large error, there is also a long-standing tension between the values of $|V_{ub}|$ determined from exclusive and inclusive methods. It is, therefore, important to improve the existing lattice calculations of the form factor f_+. Recently, efforts from several lattice collaborations [3] are aiming to improve the precision of f_+ with better statistics and methods. These proceedings report progress along this line. Last year [4] and at this conference, our results were still blinded, i.e., an offset factor was still hidden. In September, at the CKM conference, we unblinded our calculation, and the unblinded result for $|V_{ub}|$ is presented below.

We also compute the (additional) tensor form factor which is needed to predict the rare decay $B \to \pi \ell^+ \ell^-$. This will be further elaborated in a separate paper (in preparation).

2. Lattice simulation and chiral-continuum extrapolation

Many details about this calculation were given in Ref. [4]. Our calculation is based on 12 of the MILC (2+1)-flavor asqtad ensembles [5], at four different lattice spacings in the range of 0.12−0.045 fm. Some basic parameters of these ensembles are summarized in Table 1. The light asqtad valence quarks use the same masses as in the sea, while the b quark uses the Sheikholeslami-Wohlert clover action with the Fermilab interpretation [6]. Ensembles marked with asterisks were also used in Ref. [2], but we have increased statistics typically by a factor of more than three.

The vector- and tensor-current matrix elements can be written as

$$\langle \pi | V^\mu | B \rangle = \sqrt{2M_B} \left[v^\mu f_0(E_\pi) + p_\perp^\mu f_\perp(E_\pi) \right],$$

$$\langle \pi | T^{0j} | B \rangle = \frac{2M_B}{M_B + M_\pi f_T(E_\pi)} p_\pi^j.$$

*Present address: Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52245
†Speaker.
‡Email: dadu@syr.edu
§Present address: Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, Maryland, USA
¶Brookhaven National Lab is operated by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
‖Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Table 1: MILC asqtad ensembles and the simulation parameters used in this analysis. The columns are, from left to right, the approximate lattice spacing a in fm, the sea light/strange quark mass ratio am/am_s, lattice grid size, number of configurations N_{cfg}, root-mean-squared pion mass M_{π}^{RMS}, the Goldstone pion mass M_π, $M_\pi L$ (L is the size of space), the source-sink separations t_{sink} and the b quark mass (hopping) parameter κ_b. Asterisks indicate that the ensembles were also used in Ref. [2].

a(fm)	am/am_s	Size	N_{cfg}	M_π^{RMS}(MeV)	M_π(MeV)	$M_\pi L$	t_{sink}	κ_b
\approx0.12	0.2*	$20^3 \times 64$	2259	532	389	4.5	18,19	0.0901
	0.14*	$20^3 \times 64$	2110	488	327	3.8	18,19	0.0901
	0.1*	$24^3 \times 64$	2099	456	277	3.8	18,19	0.0901
\approx0.09	0.2*	$28^3 \times 96$	1931	413	354	4.1	25,26	0.0979
	0.15	$32^3 \times 96$	984	374	307	4.1	25,26	0.0977
	0.1	$40^3 \times 96$	1015	329	249	4.2	25,26	0.0976
	0.05	$64^3 \times 96$	791	277	177	4.8	25,26	0.0976
\approx0.06	0.4	$48^3 \times 144$	593	466	450	6.3	36,37	0.1048
	0.2	$48^3 \times 144$	673	340	316	4.5	36,37	0.1052
	0.14	$56^3 \times 144$	801	291	264	4.4	36,37	0.1052
	0.1	$64^3 \times 144$	827	255	224	4.3	36,37	0.1052
\approx0.045	0.2	$64^3 \times 192$	801	331	324	4.6	48,49	0.1143

where $v^\mu = p^\mu_B/M_B$ and $p^\mu_\perp = p^\mu_\perp - (p_\perp \cdot v)v^\mu$. The form factors f_\parallel, f_\perp are natural to compute on the lattice and easy to convert to f_+, f_0 [2]. The lattice currents in Eq. (2.1) and Eq. (2.2) are renormalized in a two-step manner by a renormalization factor $Z_{hl} = \sqrt{Z_{V\theta} Z_{ll}}$. The factor Z_{hl} is dominated by the flavor-diagonal renormalization factors $Z_{V\theta}, Z_{ll}$ for the vector current which are computed non-perturbatively. ρ_{hl} captures the remaining effects and is computed using one-loop lattice perturbation theory.

We calculate the three-point functions of these current operators, as well as the necessary two-point functions [4]. Following Ref. [2], we construct ratios of these three- and two-point functions that eliminate the need to extract the wave function overlaps $\langle 0 | \phi_\pi | \pi \rangle$ and $\langle 0 | \phi_B | B \rangle$. With our statistics, excited-state effects in these ratios become noticeable and cannot be captured by a simple plateau fit without suffering significant systematic errors. We find that including the B-meson lowest excited-state contribution to the usual plateau gives a satisfactory and robust description of the data. We constrain the fit parameters corresponding to the energy splittings via excited-state information from simultaneous fits to the B-meson two-point functions.

We use SU(2) heavy meson staggered chiral perturbation theory (HMχPT) [7] in the hard-pion limit [8] at next-to-next-to-leading order (NNLO) to guide our extrapolation of the lattice data to the continuum limit and physical light quark masses. In addition, we incorporate heavy-quark discretization effects into the χPT fit. The results for f_\parallel and f_\perp are shown in Fig. 1.

The form factors f_+ and f_0 are easily obtained from the combinations of f_\parallel and f_\perp, along with their uncertainties. The error budget for form factor f_+ in the simulated q^2-range, 17–26 GeV2, is plotted in Fig. 2. The uncertainty is dominated by the contributions from statistics, heavy-quark discretization, χPT variations and input of the coupling $g_{B'\bar{B}Z}$. The uncertainties from other sources (such as renormalization, quark mass tuning and scale setting) are all less than or close to
Figure 1: Chiral-continuum fit results for the form factors f_{\parallel} (top) and f_{\perp} (bottom) in r_1 units. We plot our form factor data using color to indicate the lattice spacing and shape to indicate the ratio m_l/m_s, as detailed in the legend. The black solid lines in shaded bands are the χPT-continuum extrapolated curves with their fit errors.

one percent and, thus, sub-dominant.

3. Extrapolation in q^2 and the determination of $|V_{ub}|$

In addition, a careful analytic continuation of the form factor functions beyond the poles and branch cuts could reduce the theoretical uncertainties. Some details of this approach are choices, and here we follow those of Bourrely, Caprini and Lellouch [9]. To propagate the information from the chiral-continuum fit to the z parameterization, we introduce a new functional approach [4]. The extrapolation uses terms up to order z^3 and implements the kinematic constrain $f_0(q^2 = 0) = f_+(q^2 = 0)$. The resulting fits for f_+ and those from χPT are compared with each other, and with the previous calculations in Fig. 3, showing very good consistency. Our results for $f_+(q^2)$ and $f_0(q^2)$ versus q^2 are shown in Fig. 3 (right).

To determine $|V_{ub}|$, we use four recent experimental measurements of the q^2 dependence of neutral and charged $B \rightarrow \pi\ell\bar{v}$ decays: BaBar untagged 6 bins (2011), Belle untagged 13 bins (2011), BaBar untagged 12 bins (2012) and Belle hadronic tagged 13+7 bins (neutral-charged) (2013) [11]. These data sets can be largely considered independent statistically and systematically.
form factors from lattice QCD and $|V_{ub}|$

We simultaneously fit these data to the z parameterization along with our calculation of f_+, taking $|V_{ub}|$ as an additional fit parameter corresponding to the relative normalization. The combined fit of lattice and all four experiments gives a somewhat low confidence level, p-value=0.02. This outcome arises from tension among these experimental data sets. We also tried fitting our results to each experimental data set one at a time, and those individual fits are all of high quality. The form factor $f_+(q^2)$ is very precisely determined through the combined fit as is shown in Fig. 4.
4. Results and discussion

Our preliminary result for the exclusive $|V_{ub}|$ is

$$|V_{ub}| = (3.72 \pm 0.14) \times 10^{-3}, \quad (4.1)$$

where the error includes the uncertainties from both lattice QCD and experiments. The contributions to the total uncertainty from these two sources are now about the same, which can be seen from the fact that the red and cyan bands in Fig. 4 (left) are of similar width around $z \sim 0$ (or $q^2 \sim 20$ GeV2) which is the most important data range in the determination of $|V_{ub}|$. The result is compared with previous determinations in Fig. 4 (right). The value of $|V_{ub}|$ shifts about one sigma higher than that with the 2008 Fermilab/MILC result [2], which stems from a similar shift in f_+ at around $z \sim 0$ as is shown in Fig. 3 (right). The tension between the inclusive and exclusive values is now about 2.4σ.

Acknowledgments

This work was supported by the U.S. Department of Energy and National Science Foundation, by the URA Visiting Scholars’ program, and by the MINECO, Junta de Andalucia, the European Commission, the German Excellence Initiative, the European Union Seventh Framework Programme, and the European Union’s Marie Curie COFUND program. Computation for this work was done at the Argonne Leadership Computing Facility (ALCF), the National Center for Atmospheric Research (UCAR), the National Energy Resources Supercomputing Center (NERSC), the National Institute for Computational Sciences (NICS), the Texas Advanced Computing Center (TACC), and the USQCD facilities at Fermilab, under grants from the NSF and DOE.
References

[1] A. X. El-Khadra, A. S. Kronfeld, P. B. Mackenzie, S. M. Ryan and J. N. Simone, Phys. Rev. D 64, 014502 (2001) [hep-ph/0101023]; E. Dalgic, A. Gray, M. Wingate, C. T. H. Davies, G. P. Lepage and J. Shigemitsu [HPQCD Collaboration], Phys. Rev. D 73, 074502 (2006) [Erratum-ibid. D 75, 119906 (2007)] [hep-lat/0601021].

[2] J. A. Bailey et al. [Fermilab Lattice and MILC Collaborations], Phys. Rev. D 79, 054507 (2009) [arXiv:0811.3640 [hep-lat]].

[3] T. Kawanai, R. S. Van de Water and O. Witzel, arXiv:1311.1143 [hep-lat]; F. Bahr et al. [ALPHA Collaboration], PoS ICHEP 2012, 424 (2013) [arXiv:1211.6327 [hep-lat]]; C. M. Bouchard, G. P. Lepage, C. J. Monahan, H. Na and J. Shigemitsu [HPQCD Collaboration], arXiv:1310.3207 [hep-lat].

[4] D. Du et al., PoS LATTICE 2013, 383 (2013) [arXiv:1311.6552 [hep-lat]].

[5] A. Bazavov et al., Rev. Mod. Phys. 82, 1349 (2010) [arXiv:0903.3598 [hep-lat]].

[6] A. X. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, Phys. Rev. D 55, 3933 (1997) [hep-lat/9604004].

[7] C. Aubin and C. Bernard, Phys. Rev. D 76, 014002 (2007) [arXiv:0704.0795 [hep-lat]].

[8] J. Bijnens and I. Jemos, Nucl. Phys. B 840, 54 (2010) [Erratum-ibid. B 844, 182 (2011)] [arXiv:1006.1197 [hep-ph]].

[9] C. Bourrely, I. Caprini and L. Lellouch, Phys. Rev. D 79, 013008 (2009) [Erratum-ibid. D 82, 099902 (2010)] [arXiv:0807.2722 [hep-ph]].

[10] A. Khodjamirian, T. Mannel, N. Offen and Y.-M. Wang, Phys. Rev. D 83, 094031 (2011) [arXiv:1103.2655 [hep-ph]].

[11] P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. D 83, 032007 (2011) [arXiv:1005.3288 [hep-ex]]; H. Ha et al. [Belle Collaboration], Phys. Rev. D 83, 071101 (2011) [arXiv:1012.0090 [hep-ex]]; J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 86, 092004 (2012) [arXiv:1208.1253 [hep-ex]]; A. Sibidanov et al. [Belle Collaboration], Phys. Rev. D 88, no. 3, 032005 (2013) [arXiv:1306.2781 [hep-ex]].

[12] Y. Amhis et al. [Heavy Flavor Averaging Group], arXiv:1207.1158 [hep-ex]; Updated results as of Summer 2014 on the website: http://www.slac.stanford.edu/xorg/hfag/