Selenium-binding protein 1 (SELENBP1) is a marker of mature adipocytes

Holger Steinbrenner, Mustafa Micoogullari, Ngoc Anh Hoang, Ina Bergheim, Lars-Oliver Klotz, Helmut Sies

1. Introduction

The essential trace element selenium (Se) exerts most of its biological actions through selenocysteine-containing selenoproteins, many of which are enzymes involved in redox regulation and antioxidant protection [1–3]. In addition, selenium-binding proteins (SELENBP)s including SELENBP1 covalently bind selenite through cysteine residues [4–7]. SELENBP1 has attracted attention due to its pronounced down-regulation in cancers. For patients, low SELENBP1 levels in tumour tissue are associated with poor prognosis [4,8–11].

The physiological role of SELENBP1 has long remained elusive. There is evidence for its involvement in intracellular protein degradation and transport [12,13]. SELENBP1 is a marker of terminally differentiated epithelial cells in the colon [9], and it may act as tumour suppressor [14]. Recently, an enzymatic activity of SELENBP1 has been discovered: SELENBP1 converts methanethiol, an organosulfur compound produced by gut microbiota, into hydrogen peroxide and hydrogen sulphide, serve as signalling molecules for cell differentiation. Indeed, colo- nocyte differentiation has been found to be associated with SELENBP1 induction. Here, we show that SELENBP1 is induced when 3T3-L1 preadipocytes undergo terminal differentiation and maturation to adipocytes. SELENBP1 induction succeeded the up-regulation of known marker proteins of white adipocytes and the intracellular accumulation of lipids. Immunofluorescence microscopy revealed predominant cytoplasmic localization of SELENBP1 in 3T3-L1 adipocytes, as demonstrated by co-staining with the key lipogenic enzyme, acetyl-CoA carboxylase (ACC), located in cytosol. In differentiating 3T3-L1 cells, the mTOR inhibitor rapamycin and the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α) likewise suppressed SELENBP1 induction, adipocyte differentiation and lipid accumulation. However, lipid accumulation per se is not linked to SELENBP1 induction, as hepatic SELENBP1 was down-regulated in high fructose-fed mice despite increased lipogenesis in the liver and development of non-alcoholic fatty liver disease (NAFLD). In conclusion, SELENBP1 is a marker of cell differentiation/maturation rather than being linked to lipogenesis/lipid accumulation.

1.1. Selenium-binding protein 1 (SELENBP1) is a marker of mature adipocytes

SELENBP1 has attracted attention due to its pronounced down-regulation in cancers. For patients, low SELENBP1 levels in tumour tissue are associated with poor prognosis [4,8–11].

The physiological role of SELENBP1 has long remained elusive. There is evidence for its involvement in intracellular protein degradation and transport [12,13]. SELENBP1 is a marker of terminally differentiated epithelial cells in the colon [9], and it may act as tumour suppressor [14]. Recently, an enzymatic activity of SELENBP1 has been discovered: SELENBP1 converts methanethiol, an organosulfur compound derived from gut bacteria, into hydrogen peroxide (H₂O₂), hydrogen sulphide (H₂S) and formaldehyde [15]. Interestingly, H₂O₂ and H₂S are signalling molecules for cell differentiation. Including the differentiation of preadipocytes into adipocytes [16,17]. In the multi-step process of adipogenesis, mesenchymal precursor cells first become committed preadipocytes (adipocyte determination), before undergoing mitotic clonal expansion, terminal differentiation and maturation (adipocyte differentiation) [18]. Both H₂O₂ and H₂S augment adipocyte differentiation and lipid accumulation [19–21]. Intracellular H₂O₂ levels increase during mitotic clonal expansion of preadipocytes, which is counter-balanced through antioxidant enzymes [16,19,20,22]. Also, H₂S levels increase during adipocyte differentiation, through up-regulation of H₂S-generating enzymes [21]. This requirement of H₂O₂ and H₂S for adipocyte differentiation

Abbreviations: ACC, acetyl-CoA carboxylase; DGAT, diacylglycerol O-acyltransferase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GPx, glutathione per- oxidase; HPRT, hypoxanthine phosphoribosyltransferase; HRP, horseradish peroxidase; IF, immunofluorescence; mTOR, mammalian target of rapamycin; NAFLD, non-alcoholic fatty liver disease; NADPH oxidase; PARP, poly (ADP-ribose) polymerase; PPARγ, peroxisomal proliferator-activated receptor gamma; SELENBP, selenium-binding protein; TNF-α, tumour necrosis factor alpha; VAT, visceral adipose tissue

Correspondence to: Institute of Nutritional Sciences, Nutrigenomics, Friedrich Schiller University Jena, Dornburger Strasse 29, D-07743 Jena, Germany. E-mail address: Holger.Steinbrenner@uni-jena.de (H. Steinbrenner).
together with the roles of SELENBP1 as H$_2$O$_2$/H$_2$S-generating enzyme [15] and as differentiation marker of colonocytes [9] prompted us to study its regulation during adipocyte differentiation of 3T3-L1 cells. This widely used in vitro model reflects well the respective processes in primary preadipocytes undergoing adipocyte differentiation [18,23,24]. Here, we show that SELENBP1 is a marker of mature adipocytes that is induced during terminal adipocyte differentiation of 3T3-L1 cells.

2. Materials and methods

2.1. Reagents and antibodies

All chemicals were from Sigma-Aldrich (Munich, Germany) except for tumour necrosis factor alpha (TNF-α) from PeproTech (Hamburg, Germany) and rapamycin from Merck (Darmstadt, Germany). PCR primers were synthesised by ThermoFisher Scientific Life Technologies (Waltham, MA).

The following antibodies were used: anti-SELENBP1 (MBL; Nagoya, Japan); anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Sigma-Aldrich); anti-acetyl-CoA-carboxylase (ACC), anti-perilipin 1, anti-poly (ADP-ribose) polymerase (PARP), anti-peroxisomal proliferator-activated receptor gamma (PPAR-γ) (Cell Signalling Technology (CST); Beverly, MA); horseradish peroxidase (HRP)-coupled anti-rabbit IgG (Dianova; Hamburg, Germany); HRP-coupled anti-mouse IgG (ThermoFisher Scientific Pierce); Alexa Fluor® 488-coupled anti-rabbit IgG and Alexa Fluor® 594-coupled anti-mouse IgG (CST).

2.2. Cell culture

Murine 3T3-L1 cells (CL-173) obtained from the American Type Culture Collection (ATCC) were used between passages 3 and 10 after receipt, and cultured and differentiated into adipocytes as described [22,25]. Where indicated, the differentiation medium was supplemented with 200 nM selenite, as the Se content in cell culture media is insufficient to ensure saturated biosynthesis of selenoproteins [26]. Lipid accumulation was assessed by Oil Red O staining as described [25].

2.3. Animals

For analysis of SELENBP1 mRNA levels in liver and visceral adipose tissue (VAT) of mice, samples from a previously characterised animal model [27] were used. In brief, female C57BL/6J mice were fed a 30% fructose solution and chow ad libitum for 16 weeks to induce non-alcoholic fat liver disease (NAFLD), while controls were fed plain water and chow ad libitum [27]. Female mice were chosen, as they are more susceptible to fructose-induced NAFLD than males [28]. All procedures were approved by the local Institutional Animal Care and Use Committee (IACUC).

2.4. RNA isolation and real-time RT-PCR

Total RNA was prepared from 3T3-L1 cells using the RNeasy Mini Kit (Qiagen; Hilden, Germany), or from liver and VAT sections of C57BL/6J mice as described [27]. RNA was transcribed into cDNA with SuperScript II reverse transcriptase (ThermoFisher Scientific Life Technologies). For the 3T3-L1 samples, analysis was done in a LightCycler 2.0 2 qPCR system (Roche; Mannheim, Germany), and PCR amplicons were quantitated by the LightCycler software as described [25]. The mouse samples were analysed in a GFX Connect cycler (Bio-Rad Laboratories; Munich, Germany), and PCR amplicons were quantitated by the GFX Connect software as described [29]. Results were computed as fold changes after normalisation to the mRNA levels of hypoxanthine-guanine phosphoribosyl transferase (HPRT). Primer sequences are listed in Table 1.

3. Results and discussion

3.1. SELENBP1 was induced during terminal adipocyte differentiation, succeeding induction of known biomarkers of white adipocytes

SELENBP1 was strongly induced in 3T3-L1 cells undergoing adipocyte differentiation: SELENBP1 mRNA levels began to rise during terminal differentiation (at day 6) and were highest in mature adipocytes (> 70-fold induction compared to preadipocytes) at day 14 (Fig. 1A). SELENBP1 protein was not detectable in preadipocytes, and it was induced from day 6 on, with highest levels in mature adipocytes (Fig. 1B). In comparison, protein levels of perilipin 1, a major lipid droplet coat protein and known marker of adipocytes [30], started to rise already at day 3 of differentiation in parallel with intracellular lipid accumulation (Fig. 1B and C). Likewise, mRNA levels of perilipin 1 and adiponectin, a characteristic hormone of white adipocytes, started to rise from day 3 on (data not shown). PPAR-γ, the master regulator of adipocyte differentiation [18,24], was induced at day 3 and was not further increased in mature adipocytes (Fig. 1B). This indicates that

Table 1 Promoters (5'-3') used for real-time RT-PCR analysis.
Gene

ACC
DGAT2
GPX1
HPRT
SELENBP1

3.2. Subcellular fractionation of proteins

3T3-L1 cells were cultured and differentiated into adipocytes until day 14. Cytoplasmic and nuclear fractions were prepared using NE-PER nuclear and cytoplasmic extraction reagents (ThermoFisher Scientific Pierce).

3.3. Immunoblotting

Immunoblotting techniques were applied as described [25]. Cells were lysed in ProteoJET Mammalian Cell Lysis Reagent (ThermoFisher Scientific) supplemented with protease inhibitors (Merck). Equal amounts of protein were run on SDS-polyacrylamide gels, and electroblotted onto PVDF membranes (GE Healthcare; Freiburg, Germany). Protein detection was carried out using SuperSignal West Pico (ThermoFisher Scientific Pierce) or SignalFire ECL Reagent (CST) on Hyperfilm ECL (GE Healthcare). For quantitation, films were scanned and analysed using ImageJ software.

3.4. Statistical analysis

Means were calculated from at least three independent in vitro experiments and from n = 6 animals/group, respectively. Error bars represent standard error of the mean (S.E.M.). Analysis of statistical significance was done by Student’s t-test with p < 0.05 considered to be significant.

4. Conclusion

SELENBP1 was strongly induced in 3T3-L1 cells undergoing adipocyte differentiation: SELENBP1 mRNA levels began to rise during terminal differentiation (at day 6) and were highest in mature adipocytes (> 70-fold induction compared to preadipocytes) at day 14 (Fig. 1A). SELENBP1 protein was not detectable in preadipocytes, and it was induced from day 6 on, with highest levels in mature adipocytes (Fig. 1B). In comparison, protein levels of perilipin 1, a major lipid droplet coat protein and known marker of adipocytes [30], started to rise already at day 3 of differentiation in parallel with intracellular lipid accumulation (Fig. 1B and C). Likewise, mRNA levels of perilipin 1 and adiponectin, a characteristic hormone of white adipocytes, started to rise from day 3 on (data not shown). PPAR-γ, the master regulator of adipocyte differentiation [18,24], was induced at day 3 and was not further increased in mature adipocytes (Fig. 1B). This indicates that
SELENBP1 is a marker of terminal adipocyte differentiation and maturation. Its late induction may make an involvement of H₂O₂ or H₂S derived from the methanethiol oxidase-activity of SELENBP1 in the fine-tuning of adipocyte differentiation improbable, as those signalling messengers are required in early stages of differentiation [19–22]. A similar pattern of SELENBP1 induction has been observed during differentiation of epithelial cells of the large intestine. Proliferating intestinal cells showed very low SELENBP1 levels that strongly increased in late stages of differentiation [9]. Migration of cells along the colonic crypt-luminal axis was associated with SELENBP1 induction [9].

SELENBP1 binds selenite [4–6]; however, supplementation with selenite did not further augment SELENBP1 mRNA or protein levels in differentiating adipocytes (Fig. 1A and B). Perilipin 1 and PPAR-γ (Fig. 1B) as well as lipid accumulation in mature adipocytes (Fig. 1C) were also not affected by selenite. Similarly, we and others previously reported that selenite does not influence adipocyte differentiation [25,31].

SELENBP1 physically and functionally interacts with the H₂O₂-reducing selenoenzyme glutathione peroxidase 1 (GPx1), reciprocally interfering with GPx1 expression and activity [10,32]. Compared to
preadipocytes, mature 3T3-L1 adipocytes show lower GPx activity [33]. We hypothesised that SELENBP1 induction is accompanied by GPx1 suppression, and indeed, we observed a down-regulation of GPx1 during adipocyte differentiation (Fig. 1D). As GPx1 biosynthesis depends on Se supply [1,3], GPx1 mRNA levels were generally higher in the selenite-supplemented cells (Fig. 1D). In contrast to GPx1, other antioxidant selenoproteins are up-regulated during adipocyte differentiation [25,34,35]. This is considered as part of the adaptive response to cope with increased production of H2O2 during mitotic clonal expansion, ensuring cellular redox homeostasis [3,16].

SELENBP1 resides primarily in the cytosol but it was also detected in smaller amounts within the nucleus and the endoplasmic reticulum of some cells [5,9,12]. In mature 3T3-L1 adipocytes, SELENBP1 was present in the cytoplasm, as observed after subcellular fractionation (Fig. 1E). In addition, we co-stained 3T3-L1 adipocytes for SELENBP1 and ACC, which catalyses the rate-limiting step in fatty acid biosynthesis. Only the 3T3-L1 cells with lipid droplets and strong ACC immunoreactivity displayed strong SELENBP1 immunoreactivity (Fig. 2). While the vast majority of SELENBP1 immunoreactivity co-localised with ACC in the cytosol, there was also some punctual SELENBP1 staining in the nucleus of well-differentiated cells (Fig. 2). Our ACC antibody detects both ACC1 and ACC2; however, 3T3-L1 adipocytes can be expected to express almost exclusively (cytosolic) ACC1, being the predominant ACC isoform in lipogenic tissues (including adipose tissue) in mice [36].

3.2. Anti-adipogenic factors inhibited SELENBP1 induction in differentiating 3T3-L1 cells

Development of an adipocyte phenotype is suppressed by treatment with the mammalian target of rapamycin (mTOR) inhibitor rapamycin as well as under pro-inflammatory conditions [37,38]. 3T3-L1 cells were subjected to the standard adipocyte differentiation protocol in the presence of either rapamycin or TNF-α. As previously reported [25,37,38], biosynthesis of the key adipocyte transcription factor PPAR-γ and intracellular lipid accumulation were suppressed under both treatment schemes, with more pronounced anti-adipogenic and anti-lipogenic effects of TNF-α compared to rapamycin (Fig. 3). In parallel, TNF-α as well as rapamycin suppressed SELENBP1 biosynthesis (Fig. 3). Selenite did not modulate the inhibitory effects of rapamycin or TNF-α (Fig. 3).

3.3. Induction of hepatic lipogenesis in high fructose-fed mice was accompanied by down-regulation of SELENBP1

Alterations in SELENBP1 expression have been linked to differentiation (in the large intestine) as well as to energy metabolism [9,39]. In 3T3-L1 cells undergoing adipocyte differentiation, terminal differentiation and lipid accumulation are closely intertwined, being part of the development of an adipocyte phenotype. In order to discriminate between effects related to differentiation or lipid metabolism, we compared SELENBP1 mRNA levels in liver and VAT of mice fed either standard chow and plain water (controls) or standard chow and fructose-enriched water. In this animal model of NAFLD, lipid accumulation takes place without concurrent differentiation, as high fructose consumption induces de novo lipogenesis in the liver [40], whereas the histological appearance of the VAT as well as markers of adipogenesis and lipogenesis therein are not altered [41]. As previously demonstrated, the high fructose-fed mice showed pronounced hepatic lipid accumulation and other characteristics of NAFLD [27].

ACC1 was strongly up-regulated (5.3-fold, as compared to controls) in livers of NAFLD mice (Fig. 4A). Moreover, diacylglycerol O-acyltransferase 2 (DGAT2), which catalyses the incorporation of endogenously produced fatty acids into triglycerides [42], was increased 2-fold in livers of NAFLD mice (Fig. 4B). Neither ACC1 (Fig. 4A) nor DGAT2 (Fig. 4B) were significantly altered in VAT of NAFLD mice, as compared to controls. Thus, the differential impact of high fructose consumption on molecular markers of lipogenesis in liver and VAT was also evident in our model. Up-regulation of lipogenesis markers was accompanied by significant down-regulation of SELENBP1 in livers of NAFLD mice.
NAFLD mice, to 40% of the levels in the controls (Fig. 4C).

SELENBP1 has been reported to be ubiquitously expressed, with highest levels in liver, kidneys and intestine [9,43]. We measured markedly lower SELENBP1 mRNA levels in VAT compared to liver, with levels in VAT at 13% of the values in liver (Fig. 4D). Adipose tissue has been estimated to contain 50–70% mature adipocytes together with stromal preadipocytes, endothelial cells and macrophages [44]. Our data showing induction of SELENBP1 during adipocyte differentiation...
suggest that SELENBP1 is mostly confined to mature adipocytes in the VAT.

4. Conclusion

We identified SELENBP1 as a marker of mature adipocytes. Induction of SELENBP1 is linked to cell differentiation/maturation rather than to lipogenesis/lipid accumulation. The function of SELENBP1 in adipocytes remains to be elucidated. As several studies in tumour cells suggest that SELENBP1 counteracts proliferation and dedifferentiation [9, 14, 45], high SELENBP1 levels may support the maintenance of a well-differentiated phenotype in mature adipocytes.

Acknowledgments

We thank A. Borchardt and T. Becher for the excellent technical assistance. Helmut Sies was a Fellow of the National Foundation for Cancer Research (NFCR), Bethesda, MD.

References

[1] V.V. Labunskyy, D.L. Hatfield, V.N. Gladyshev, Selenoproteins: molecular pathways and physiological roles, Physiol. Rev. 94 (3) (2014) 739–777.
[2] M.P. Rayman, Selenium and human health, Lancet 379 (9822) (2012) 1256–1268.
[3] H. Steinbrenner, B. Speckmann, L.O. Klotz, Selenoproteins: antioxidant selenoenzymes and beyond, Arch. Biochem. Biophys. 595 (2016) 113–119.
[4] E. Ansong, W. Yang, A.M. Diamond, Molecular cross-talk between members of distinct families of selenium containing proteins, Mol. Nutr. Food Res. 58 (1) (2014) 117–123.
[5] M.P. Bansal, C.J. Oborn, K.G. Danielson, D. Medina, Evidence for two selenium-binding proteins distinct from glutathione peroxidase in mouse liver, Carcinogenesis 10 (3) (1989) 541–546.
[6] R. Raucci, G. Colonna, E. Guerrieri, F. Capone, M. Accardo, G. Castello, S. Costantini, Structural and functional studies of the human selenium binding protein-1 and its involvement in hepatocellular carcinoma, Biochim. Biophys. Acta 1814 (4) (2011) 513–522.
[7] F. Schild, S. Kieffer-Jaquind, A. Palencia, D. Cobessi, G. Sarret, C. Zubieta, A. Joerdain, B. Dumas, V. Forge, D. Testemale, J. Bourguignon, V. Hugouvieux, Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1, J. Biol. Chem. 289 (46) (2014) 31765–31776.
[8] G. Chen, H. Wang, C.T. Miller, D.G. Thomas, G. Giordano, M.B. Orringer, S.M. Hanash, D.G. Beer, Reduced selenium-binding protein 1 expression is associated with poor outcome in lung adenocarcinomas, J. Pathol. 202 (3) (2004) 321–329.
[9] T. Li, W. Yang, M. Li, D.S. Byun, C. Tong, S. Nasser, M. Zhuang, D. Arango, J.M. Mariadason, L.H. Augenlicht, Expression of selenium-binding protein 1 is associated with poor outcome in lung adenocarcinomas, J. Pathol. 202 (3) (2009) 583–588.
[10] S. Zhang, F. Li, M. Younes, H. Liu, C. Chen, Q. Yao, Reduced selenium-binding protein 1 in breast cancer correlates with poor survival and resistance to the anti-proliferative effects of selenium, PLOS One 8 (5) (2013) e63702.
[11] J.Y. Jeong, Y. Wang, A.J. Sytkowski, Human selenium binding protein-1 (hSbp56) interacts with VD1 in a selenium-dependent manner, Biochem. Biophys. Res. Commun. 379 (2) (2009) 583–588.
in nude mouse xenografts, PLOS One 4 (11) (2009) e7774.

[15] A. Pol, G.H. Renkema, A. Tangerman, E.G. Winkel, U.F. Engelke, A.P.M. de Brouwer, K.C. Lloyd, R.S. Arauza, L. van den Heuvel, H. Oomar, H. Olbrich, M. Oude Elferink, C. Gillissen, R.J. Rodenburg, J.O. Sans, K.O. Schwab, H. Schafer, H. Venzeelaar, J.S. Seguerra, H.J.M. Op den Camp, R.A. Wevers, Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis, Nat. Genet. 50 (1) (2018) 120–129.

[16] L.O. Klotz, C. Sanchez-Ramos, I. Prieto-Arroyo, P. Urbanek, H. Steinbrener, M. Monnvalve, Redox regulation of FoxO transcription factors, Redox Biol. 5 (2017) 51–72.

[17] H. Sies, C. Berndt, D.P. Jones, Oxidative stress, Annu. Rev. Biochem. 86 (2017) 715–748.

[18] M.I. Lefterova, M.A. Lazar, New developments in adipogenesis, Trends Endocrinol. Metab. 20 (3) (2009) 107–114.

[19] M. Higuchi, G.J. Dusting, H. Peshavariya, F. Jiang, S.T. Hsiao, E.C. Chan, G.S. Liu, Differentiation of human adipocyte-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes, Stem Cells Dev. 22 (6) (2013) 878–888.

[20] K. Schroder, K. Wandzioch, I. Helmcke, R.P. Brandes, Nox4 acts as a switch between disease over time, J. Nutr. Biochem. 26 (11) (2015) 1183–1192.

[21] H. Green, M. Meuth, An established pre-adipose cell line and its differentiation and proliferation in preadipocytes, Arterioscler. Thromb. Vasc. Biol. 29 (2) (2009) 239–245.

[22] C.Y. Tsai, M.T. Peh, W. Feng, B.W. Dymock, P.K. Moore, Hydrogen sulfide promotes adipogenesis in 3T3LI cells, PLOS One 10 (3) (2015) e0119511.

[23] P.H. Dautelzue, M. Priou, M. Weinheimer, M. Flamment, L. Duluc, F. Iacobaci, R. Soleti, G. Simard, A. Durand, J. Rieuex, R. Andriantsitohaina, Y. Malthiery, Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation, J. Physiol. Biochem. 67 (3) (2011) 285–296.

[24] H. Green, M. Meuth, An established pre-adipose cell line and its differentiation in culture, Cell 3 (2) (1974) 127.

[25] J.M. Ntambi, K. Young-Choel, Adipoyce differentiation and gene expression, J. Nutr. 130 (12) (2000) 3125S–3126S.

[26] A.M. Rajalin, M. Miscoiullari, H. Sies, H. Steinbrener, Uregulation of the chlordorexindox-repond redox system during differentiation of 3T3-L1 cells to adipocytes, Biol. Chem. 390 (4) (2009) 667–677.

[27] M. Leist, B. Raab, S. Maserur, U. Rosick, B. Triergus, A. Schilling, F. Cavin, Free Radic. Biol. Med. 21 (3) (1996) 297–306.

[28] C. Sellmann, J. Priefs, M. Landmann, C. Degen, A.J. Engstler, C.J. Jin, S. Gartner, A. Spruss, O. Huber, I. Bergherm, Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time, J. Nutr. Biochem. 26 (11) (2015) 1183–1192.

[29] A. Spruss, J. Henkel, G. Kanuri, D. Blank, G.P. Puschel, S.C. Bischof, I. Bergherm, Female mice are more susceptible to nonalcoholic fatty liver disease: sex-specific regulation of the hepatic AMP-activated protein kinase-plasminogen activator inhibitor 1 cascade, but not the hepatic endothelin response, Mol. Med. 18 (2012) 1346–1355.

[30] N. Urban, D. Trisipapat, F. Hausig, K. Kreuzer, K. Erler, V. Stein, M. Ristow, H. Steinbrener, L.O. Klotz, Non-linear impact of glutathione depletion on C.elegans life span and stress resistance, Redox Biol. 11 (2017) 502–515.

[31] C. Satalyrd, A.R. Kimmel, Perilipin: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection, Biochimie 96 (2014) 96–101.

[32] C.Y. Kim, G.N. Kim, J.L. Wiuscek, C.Y. Chen, K.H. Kim, Selenate inhibits adipogenesis through induction of transforming growth factor-beta1 (TGF-beta1) signaling, Biochem. Biophys. Res. Commun. 426 (4) (2012) 551–557.

[33] W. Fang, M.L. Goldberg, N.M. Pohl, X. Bi, C. Tong, B. Xiong, T.J. Koh, A.M. Diamond, W. Yang, Functional and physical interaction between the selenium-binding protein 1 and the glutathione peroxidase 1 selenoprotein, Carcinogenesis 31 (8) (2010) 1360–1366.

[34] H. Kobayashi, M. Matsuda, A. Fukuhara, R. Komuro, I. Shimomura, Dysregulated glutathione metabolism links to impaired insulin action in adipocytes, Am. J. Physiol. Endocrinol. Metab. 296 (6) (2009) E126–E134.

[35] Y.S. Lee, A.Y. Kim, J.W. Choi, M. Kim, S. Yaseu, H.J. Son, H. Masuzaki, K.S. Park, J.B. Kim, Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress, Mol. Endocrinol. 22 (9) (2008) 2176–2189.

[36] Y. Zhang, X. Chen, Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation, Am. J. Physiol. Endocrinol. Metab. 300 (1) (2011) E77–E85.

[37] J.C. Castle, Y. Hara, C.K. Raymond, P. Garrett-Engele, K. Ohwaki, Z. Kan, J. Kusunoki, J.M. Johnson, AG22 is expressed at high levels in human white adipose and has an isoform with a novel N-terminus (corrected), PLOS One 4 (2) (2009) e3969.

[38] B. Gustafson, U. Smith, Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes, J. Biol. Chem. 281 (14) (2006) 9507–9516.

[39] J.E. Kim, J. Chen, Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis, Diabetes 53 (11) (2004) 2748–2756.

[40] Q. Ying, E. Ansong, A.M. Diamond, Z. Lu, W. Yang, X. Bie, Quantitative proteomic analysis reveals that anti-cancer effects of selenium-binding protein 1 in vivo are associated with metabolic pathways, PLOS One 10 (5) (2015) e0126285.

[41] S. Softic, D.E. Cohen, C.R. Kahn, Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease, Dig. Dis. Sci. 61 (5) (2016) 1282–1293.

[42] B. Bursac, A. Djordjevic, N. Velickovic, D.V. Milutinovic, S. Petrovic, A. Teo, T. Hasegawa, G. Matic, Involvement of glucocorticoid receptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet, Mol. Cell. Endocrinol. 476 (2018) 110–118.

[43] J. Qi, W. Lang, J.G. Geisler, P. Wang, I. Petronia, S. Mai, C. Smith, H. Akrari, G.T. Struble, R. Williams, S. Bhatan, B.P. Monia, S. Bayoumy, E. Grant, G.W. Caldwell, M.J. Todd, Y. Liang, M.D. Gaul, K.T. Demarest, M.A. Connelly, The use of stable isotope-labeled glycerol and oleic acid to differentiate the hepatic functions of DGAT1 and -2, J. Lipid Res. 53 (6) (2012) 1106–1116.

[44] S. Tsujimoto, T. Ishida, T. Takeda, Y. Ishii, Y. Onomura, K. Tsukimori, S. Takechi, T. Yamasaki, T. Uchida, S.O. Suzuki, M. Yamamoto, M. Himeno, M. Furue, H. Yamada, Selenium-binding protein I: its physiological function, dependence on aryl hydrocarbon receptors, and role in wasting syndrome by 2,3,7,8-teta-chlorodibenzo-p-dioxin, Biochim. Biophys. Acta 1830 (6) (2013) 3616–3624.

[45] H. Hauser, Secretory factors from human adipose tissue and their functional role, Proc. Nutr. Soc. 64 (2) (2005) 163–169.

[46] C. Zhang, Y.E. Wang, P. Zhang, F. Liu, C.J. Sung, M.M. Steinbrenner, M.R. Qudus, W.D. Lawrence, Progressive loss of selenium-binding protein 1 expression correlates with increasing epithelial proliferation and papillary complexity in ovarian serous borderline tumor and low-grade serous carcinoma, Hum. Pathol. 41 (2) (2010) 255–261.