Supporting Information

Facile Synthesis of C-FeF$_2$ Nanocomposites from CF$_X$: Influence of Carbon Precursor on Reversible Lithium Storage

M. Anji Reddy* [a], Ben Breitung [b], Venkata Sai Kiran Chakravadhanula [a] [b] [c], M. Helen [a], Ralf Witte [b], Carine Rongeaut [a], Christian Kübel [a] [b] [c], Horst Hahn [b] and Maximilian Fichtner [a] [b]

[a] Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr.11, D-89081 Ulm, Germany
[b] Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
[c] Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

*E mail: munnangi.reddy@kit.edu

Table S1 Physical and chemical properties of various CF$_X$ samples studied

Product Grade	ARC1000	ARC2065	ARC3000	ARC4000
Carbon source	Petro-coke	Carbon-black	Graphite	Carbon-fiber
Precursor code	FPC	FCB	FG	FCF
Composition	CF$_{1.05}$	CF$_{1.12}$	CF$_{0.95}$	CF$_{1.1}$
Particle size range, μm	1-45	N/A	<1 to 10	1-30
Median particle size, μm	~ 8	<1	~ 2	~ 6
Surface Area, m2/g	130	340	N/A	344
Decomposition Temperature, °C	~ 630	~ 500	>550	N/A

Sources: Advanced Research Chemicals

Table S2. Rietveld refinement parameters of C-FeF$_2$ nanocomposites

Sample	Composition	a (Å)	b (Å)	c (Å)	θ (°)	Crystallite Size (nm)	Strain (%)	R_w (%)
PC-FeF$_2$	93.2 wt% FeF$_2$	4.697	4.697	3.293	90	11	0.07	5.6
	6.8 wt% Fe$_5$C$_2$	11.895	4.552	5.052	97.15	93	1.43	
CB-FeF$_2$	100 wt% FeF$_2$	4.696	4.696	3.303	90	17	0	5.4
G-FeF$_2$	89.8 wt% FeF$_2$	4.701	4.701	3.297	90	12	0.24	5.6
	10.2 wt% Fe$_5$C$_2$	11.821	4.564	5.039	98.28	73	1.33	
*CF-FeF$_2$	77.5 wt% FeF$_2$	4.699	4.699	3.299	90	16	0.13	6.6
	22.5 wt% Fe$_5$C$_2$	11.839	4.594	5.036	98.65	16	0.04	
Table S3 Summary of hyperfine parameters obtained from fitting the 57Fe Mössbauer spectra.

	FeF$_2$	Fe$^{3+}$ Content	Fe Carbide										
	IS	QS	%	IS	QS	%	IS	IS	IS	IS	IS	%	
PC-FeF$_2$	1.33(1)	2.76(1)	72	0.47*	0.65(1)	15	0.25(1)	22.1(1)	0.31(1)**	19.2(1)	0.31(1)**	11.3(1)	13
CB-FeF$_2$	1.33(1)	2.77(1)	79	0.47*	0.77(1)	21	-	-	-	-	-	-	
Q-FeF$_2$	1.33(1)	2.77(1)	80	0.47*	0.70(1)	10	0.26(1)	22.0(1)	0.25(1)**	18.7(1)	0.25(1)**	10.7(1)	30
CF-FeF$_2$	1.33(1)	2.78(1)	47	0.47(1)	0.68(1)	15	0.27(1)	22.2(1)	0.21**	18.0(1)	0.21**	10.1(1)	38

IS and QS are given in [mm/s], B$_{hf}$ in [T].

"% Carbide" is the sum of the spectral fractions of the FeII, III sub-spectra.

* Parameter is fixed to the value obtained from sample CF-FeF$_2$.

** IS of FeII and FeIII site are constrained to be identical, as the IS of these Fe sites are known to be very similar.

Figure S1 XRD patterns of various CFx samples
Figure S2 SEM Images of (a) FPC (ARC 1000) (b) FCB (ARC 2065) (c) FG (ARC 3000) and (d) FCF (ARC 4000).

Figure S3 SEM images of (a) PC-FeF$_2$ (b) CB-FeF$_2$ (c) G-FeF$_2$ and (d) CF-FeF$_2$
Figure S4 High resolution TEM image of G-FeF$_2$ nanocomposites
Figure S5 Electrochemical impedance spectra of C-FeF$_2$ nanocomposites obtained at OCV.