A peer-reviewed version of this preprint was published in PeerJ on 10 April 2014.

View the peer-reviewed version (peerj.com/articles/352), which is the preferred citable publication unless you specifically need to cite this preprint.

Wang S, Liao C, Li F, Liu S, Meng W, Li D. (2014) Castration modulates singing patterns and electrophysiological properties of RA projection neurons in adult male zebra finches. PeerJ 2:e352 https://doi.org/10.7717/peerj.352
Castration can change levels of plasma testosterone. Androgens such as testosterone play an important role in stabilizing birdsong. The robust nucleus of the arcopallium (RA) is an important premotor nucleus critical for singing. In this study, we investigated the effect of castration on singing patterns and electrophysiological properties of projection neurons (PNs) in the RA of adult male zebra finches. Adult male zebra finches were castrated and the changes in bird song assessed. We also recorded the electrophysiological changes from RA PNs using patch clamp recording. We found that the plasma levels of testosterone were significantly decreased, song syllable's entropy was increased and the similarity of motif was decreased after castration. Spontaneous and evoked firing rates, membrane time constants, and membrane capacitance of RA PNs in the castration group were lower than those of the control and the sham groups. Afterhyperpolarization AHP time to peak of spontaneous action potential (AP) was prolonged after castration. These findings suggest that castration decreases song stereotypy and excitability of RA PNs in male zebra finches.
Background

Steroid sex hormones change adult avian song behavior and modulate the underlying neural substrates. Androgens, particularly testosterone, play an important role. For example, testosterone can increase the stability of song, the size of song nuclei, the expression of androgen receptor mRNA and the excitability in song-control neurons in seasonally breeding songbirds.

The robust nucleus of the arcopallium (RA) is a crucial nucleus in the song control system, receiving synaptic input from both the HVC (used as a proper name) and lateral magnocellular nucleus of the anterior nidopallium (LMAN). The HVC-RA pathway produces a stereotyped pattern contributing to stable song, and while the LMAN-RA pathway fires when male birds sing to female birds, LMAN neurons exhibit reliable firing of single spikes precisely locked to song. Thus, the LMAN may act as a source of variability. The axons of projection neurons (PNs) in the ventral RA project topographically onto the hypoglossal motor nucleus (nXIIts) that innervates the syrinx (the avian song organ), and the axons of PNs in the dorsal RA project to the areas in the lateral medulla that control respiration. Lesion of the RA causes severe song deficits.

Moreover, RA activity is significantly correlated with variations in the spectral entropy of
syllables, and RA shows accurately timed and structured bursts of activity that are associated with specific syllables.

Recent studies have shown that testosterone and photoperiod affect the excitability of RA PNs in seasonally breeding songbirds that undergo major hormonal shifts as a result of photoperiod, but have no effect on the electrophysiological properties of HVC neurons. Zebra finches are opportunistic breeders rather than seasonal breeders. Castration of adult male zebra finches reduces testosterone levels in plasma and their singing rate. High levels of testosterone decrease the frequency of syllable in song and reduce the potential for vocal plasticity. However, the neural mechanism that androgen influence singing pattern is less well understood. Thus, the aim of the present study was to examine the effect of castration on singing patterns and electrophysiological properties of RA PNs in adult male zebra finches, to further understand the neural mechanism of androgens in adult songbirds.
Materials and Methods

Animals and experimental treatments

A total of 27 adult male zebra finches (Taeniopygia guttata) (> 120 days old) obtained from a commercial breeder were used in this study. All experiments were carried out in accordance with the University and China animal guidelines. The care and use of animals for this study was approved by the Institutional Animal Care and Use Committee at South China Normal University and in accordance with National Institutes of Health guidelines (scnu20070033). Birds were housed in stainless steel cages (23.5 × 22.5 × 27.5 cm), and each of the cages contained a pair of male and female birds, which were provided with ad libitum food and water and were kept in 14:10 h light/dark cycles. All birds were divided into three main experimental groups: castration group (n = 11 birds), control group (n = 12 birds), and sham group (n = 4 birds).

Before castration, the songs of all birds were recorded in the presence of adult female birds. Birds were then anesthetized with 10% chloral hydrate (0.02 mL/10 g). A small incision was made on the lateral wall of the body cavity between the last two ribs just ventral to the ventral margin of the kidney. The testicles were removed with ophthalmic forceps. The sham group underwent the same surgery without removing the testicles. The control group did not receive surgery.

Song recording

The song recording room (2.5 × 2 × 2.5 m) contained TAKSTAR directional microphones (Guangdong Victory Electronics Co.Ltd., Guangzhou, China; frequency range: 50–20000 Hz) and a glass window (85 × 65 cm). Birds in the song recording room could see the other birds from the glass window. When the songs were recorded, the male bird was placed in a cage in the
song recording room near the glass window, while the female bird was placed in a cage near the
glass window outside of the song recording room, so that the male bird could observe the female
bird through the window. On each recording day, every bird was recorded for 90–120 min. Songs
were recorded between 8:00 a.m and 11:00 a.m. Songs were recorded before the castration and
sham operation. When birds produce a stable song, the date defined as ‘pre’. The songs were then
recorded again at the 30th day after castration and sham operation. The songs of birds in control
group also were recorded at ‘pre’ and 30th day. Song recording was performed using Cool Edit
2000 (Adobe Systems Co., SAN Jose, CA, USA; sampling rate: 44100 Hz; channels: stereo;
resolution: 16-bit).

Stereotypy of song

We analyzed song stereotypy by calculating entropy (a measure of randomness, entropy is high
when the waveform is random, and low when the waveform is of pure tone) of the longest
syllable (the distance-call element, whose structure matched that of distance call and is derived
from distance call) in the motifs within a record using Sound Analysis Pro 2011 (contrast: 0,
frequency range: 0–11025 Hz, FFT data window: 10 ms, advance window: 1 ms, contour thresh:
10). On each recording day the entropy of 30 syllables in 30 motifs was analyzed. Sixty motifs
were used to analyze the percentage similarity (% similarity) of the motif in the song. Higher
entropy indicates less stereotypy, while higher (% similarity) indicates more stereotypy.

Slice preparation

At the 30th day after castration, the birds were anesthetized with 10% chloral hydrate and then
rapidly decapitated. Brains were dissected into ice-cold, oxygenated (95% O₂ and 5% CO₂) slice
solution. Slice solution consisted of KCl 5 mM, NaH₂PO₄·H₂O 1.26 mM, MgSO₄·7H₂O 1.3 mM,
NaHCO₃ 28 mM, glucose 10 mM, sucrose 248 mM, and NaCl 62.5 mM. Coronal brain slices (250–300 μm thick) containing the RA were cut with a vibrating microtome (World Precision Instruments Inc., Sarasota, FL, USA) and collected in artificial cerebrospinal fluid (ACSF) that was warmed to 37°C. After 30 min the ACSF was cooled to 35°C, and the slices were allowed to recover in the holding chamber for 1–1.5 h. Standard ACSF consisted of NaCl 125 mM, KCl 2.5 mM, NaH₂PO₄·H₂O 1.27 mM, MgSO₄·7H₂O 1.2 mM, NaHCO₃ 25 mM, glucose 25 mM and CaCl₂ 2.0 mM, and the osmolality was adjusted with sucrose to 350 mOsm.

Patch-clamp recording

During the experiments, slices were transferred to a recording chamber where they were continuously perfused with ACSF, saturated with 95% O₂ and 5% CO₂ at room temperature (23–28°C). RA and the surrounding tissues were observed at low magnification (50×) under a BX51WI microscope connected with a DIC-IR video camera (Olympus, Tokyo, Japan). At high magnification (400×), RA neurons were visualized and the recordings were made from RA PNs. Recording pipettes were fabricated from borosilicate glass (Sutter Instrument Co., Novato, CA, USA) using a Flaming-Brown puller (Micropipette Puller P-97; Sutter Instrument Co.), and were filled with the solution containing KMeSO₄ 120 mM, NaCl 5 mM, HEPES 10 mM, EGTA 2 mM, Mg-ATP 2 mM, and Na-GTP 0.3 mM (pH 7.3-7.4). Osmolality was adjusted with sucrose to 340 mOsm. The recording pipettes, which had resistances ranging from 4 to 7 MΩ, were positioned using an integrated motorized control system (Sutter Instrument Co.). Signals were amplified with a MultiClamp 700B (Axon Instruments, Sunnyvale, CA, USA). Signals were low-pass filtered at 5 kHz, digitized at 10 kHz with DIGIDATA 1322A (Axon Instruments) and acquired using Clampfit 9.2 (Axon Instruments). Tight-seal and whole-cell recordings were obtained using
standard techniques. The baseline membrane potential was held at −70 mV during the stimulation protocols. RA PNs were identified by their distinct intrinsic properties as described previously.

Electrophysiological data analysis

Clampfit 9.2 and Origin Pro 8.0 (Origin Lab, Northampton, MA, USA) were used for analysis. In measuring spontaneous firing rates in the cell-attached configuration, we analyzed the spike amplitude, waveform, and time derivative to ensure that spike events were single units. We measured spontaneous activity for at least 5 min, and calculated the firing rate by dividing the number of spikes observed by the duration of the recording as reported. Action potentials (AP) were detected using the event detection package of the Clampfit 9.2. Spontaneous firing rates were calculated at the beginning of the recording as soon as it stabilized following patch rupture. The AP threshold was detected using a custom algorithm described previously by Baufreton; the afterhyperpolarization (AHP) peak amplitude was the difference between the AP threshold and the most negative voltage reached during the AHP. The AHP time to peak was the time of this minimum minus the time when the membrane potential crossed the AP threshold on descent from the AP peak. For each neuron, the measurements of five APs were averaged to produce the final AP measurements for that neuron. Evoked firing rates were measured after patch rupture. The evoked firing rate was defined as the number of AP evoked over the duration of the current injection. The slope of the F-I relationship was estimated by linear fitting. Slope parameters were estimated separately for individual neurons and mean slope values were averaged for the whole groups of neurons. Input resistance was estimated by applying small hyperpolarizing current pulses. The membrane time constant was calculated by fitting a single exponential curve to the membrane potential change in response to −200 pA hyperpolarizing pulses. Membrane
capacitance was calculated using the following equation: capacitance = membrane time
constant/input resistance.

Hormone assay

On the day of each electrophysiological recording, carotid artery blood was rapidly collected
from each subject before they were decapitated into a heparinized microhematocrit tube and
stored on ice until centrifugation (within 1 h). The plasma was harvested and stored it at −80°C.
To measure circulating testosterone levels, enzyme-linked immunosorbant was used in a bird
testosterone ELISA kit (IBL, Hamburg, Germany), which contained a substrate standard. The
minimum detectable plasma testosterone concentration was 0.12 ng/mL, and the maximum was
7.20 ng/mL. All samples were tested in one single assay.

Statistical analysis

All values are reported as mean ± SEM. We used two-way repeated measures ANOVA to
compare the song data at the 30th day after castration and sham operation with the song data at
‘pre’ (see the part of song recording), and injected current on the evoked firing rate of RA PNs in
the castration group with sham and control groups. We used one-way ANOVA to compare the
song data at the 30th day with the song data at ‘pre’ in the control group. We also used one-way
ANOVA to compare all plasma testosterone levels and other electrophysiological data of RA PNs
in the castration group with sham and control groups. P values < 0.05 were considered
significant.
Results

We analyzed plasma testosterone levels, stereotypy of the song, and electrophysiological properties of RA PNs of the experimental groups in adult male zebra finches.

Plasma testosterone levels

In the castration group (n=11), plasma testosterone levels were lower (3.91±0.08 ng/mL) compared with the control group (n=12) (5.15±0.08 ng/mL, \(F_{(1,22)}=150.49, P<0.01\)) and the sham group (n=4) (5.27±0.09 ng/mL, \(F_{(1,13)}=98.32, P<0.01\)).

Stereotypy of the song before and after castration

We randomly selected five birds in each of the castration and control groups, respectively, to analyze the stereotypes of their songs, while four birds were analyzed in the sham group. Zebra finch song usually contains motifs. Every motif includes two to eight syllables. In our experiment, we recorded song motifs from castration (Figure 1A₁, A₂), control and sham (Figure 1B₁, B₂) groups, and analyzed the entropy of syllable and % similarity of the motif in each group (Figure 2).

The longest syllable of motif was first analyzed. In the castration group, the entropy was altered gradually, and entropy was significantly increased from −3.71±0.31 to −3.31±0.33 (\(F_{(1,58)}=33.61, P<0.01\)) at the 30th day after castration (Figure 2A). To test the effect of castration on all syllables in the motif, we analyzed other syllables, as shown in Figure 1 A₁, A₂. The entropy of syllable ‘a’ in ‘pre’ was −2.76±0.06, while at the 30th day after castration the entropy changed to −2.48±0.05. Castration increased the entropy of syllable ‘a’ (\(F_{(1,58)}=10.77, P<0.01\)). Castration also increased the entropy of other syllables (Figure 1A, B).
Next, we analyzed the % similarity of the motif. Castration significantly decreased the % similarity of the motif from 93.83±0.80 to 87.7±1.04 ($F_{(1,58)}=201.32$, $P<0.01$) (Figure 2B).

However, in the sham group the entropy of syllables and % similarity of the motif did not change before and after operation, and were similar to the control group (Figure 2A, B).

Electrophysiological properties of RA PNs

Twenty one RA PNs from 11 birds of the castrated group, 23 RA PNs from 12 birds of the control group, and 8 RA PNs from 4 birds of the sham group were recorded.

Castration decreased spontaneous firing rates in the cell-attached configuration

When cells were sealed, many RA PNs were spontaneously active *in vitro*, as described previously in wild song sparrows. Castration significantly affected the spontaneous firing rate of RA PNs compared with the control group ($F_{(1,42)}=7.85$, $P<0.01$) and the sham group ($F_{(1,19)}=8.41$, $P<0.01$) (Table 1, Figure 3A–C). The mean firing rate of RA PNs was approximately 1.5 times higher in the control group and sham group than that in the castrated group.

Castration decreased spontaneous firing rates in the whole-cell configuration

In seasonally breeding songbirds, breeding conditions increase spontaneous firing rates in the whole-cell configuration. In our experiment, castration significantly decreased spontaneous firing rate of RA PNs compared with the control group ($F_{(1,31)}=6.65$, $P=0.015$) and the sham group ($F_{(1,22)}=8.26$, $P<0.01$) (Table 1, Figure 3D–F).

Castration decreased evoked firing rates

AP firing rates evoked by depolarizing current injection were significantly decreased in the castrated group (Figure 4A, B). At the current of 100 pA for 500 ms, the mean number of evoked firing was 13.63±1.12 (n=15) in the castrated group, 18.00±0.72 (n=16) in the control group and
17.88±0.88 (n=8) in the sham group. Castration significantly decreased the evoked firing rates compared with the control group ($F_{(1,31)}=10.43, P<0.01$) (Figure 4C) and the sham group ($F_{(1,22)}=5.76, P=0.048$). When the currents were set from 0 to 200 pA for 500 ms at 50 pA steps and 10 s intervals, castration decreased the mean number of evoked firing, particularly at 50 pA, 100 pA, 150 pA, and 200 pA ($P<0.01$). F-I curves were linearized. Castration significantly decreased the slope of F-I curve compared with the control group ($F_{(1,31)}=21.87, P<0.01$) (Figure 4D) and sham group ($F_{(1,22)}=27.89, P<0.01$) (Table 1).

Castration decreased the membrane time constant and capacitance, but increased AHP time to peak

To compare input resistance, currents from −200 to 20 pA for 500 ms at 10 pA steps and 10 s intervals were injected. The slope of the I–V curve by linear fit was the input resistance. There was no significant difference between the castrated and control groups. Castration significantly decreased the membrane time constant compared with the control group ($F_{(1,29)}=10.62, P<0.01$) (Figure 5A) and the sham group ($F_{(1,21)}=12.17, P<0.01$). Castration also decreased membrane capacitance compared with the control group ($F_{(1,29)}=6.93, P=0.013$) (Figure 5B) and the sham group ($F_{(1,21)}=8.35, P<0.01$). The intrinsic properties of spontaneous AP were also analyzed. AP threshold, AHP peak amplitude, half-width, and peak amplitude of the castration group were similar to the control and sham groups. However, castration significantly prolonged the AHP time to peak compared with the control group ($F_{(1,29)}=12.76, P<0.01$) (Figure 5C, D) and the sham group ($F_{(1,21)}=13.32, P<0.01$) (Table 1).
Discussion

In the present study, castration decreased plasma testosterone levels in adult male zebra finches, although the decrease was not as marked as those previously reported. This difference may be due to residual testicular tissue in our study, or due to differences between breeding and non-breeding zebra finches.

High testosterone levels are associated with song stability, which reduces the potential for vocal plasticity. We found that castration also increased the entropy of syllable and decreased the percentage similarity of motif in the songs, suggesting that castration decreased the stability of syllables and songs. Like seasonally breeding songbirds, when the testosterone levels in adult male zebra finches are high, the song nuclei and the syringes are fully grown. Therefore, male zebra finches have the ability to produce highly stereotyped song. In our castrated birds, lower testosterone levels resulted in less stereotyped songs.

It was previously reported that testosterone regulates the electrophysiological properties of RA PNs. RA is an important premotor nucleus, and these changes in its intrinsic properties may directly modify the motor control of song production, resulting in changes in song stereotypy. In this study, castration decreased spontaneous and evoked firing rates, and the membrane time constant and capacitance, but increased AHP time to peak. These results indicate that castration decreased the excitability of the RA PNs, as previously reported. Castration also decreased the spontaneous firing rates and evoked firing rates, which reduce the ability of RA PNs to produce AP in response to synaptic input, particularly from HVC. Castration decreased the membrane time constant, which might reduce the time to integrate synaptic input. As such, RA PNs slowly...
integrate relatively sparse inputs from the HVC to produce patterned firing that is closely correlated with song production. The decrease in membrane capacitance induced by castration may be related to the decrease of the size of RA PNs. Castration also increased the AHP time to peak, which may be associated with the suppression of large conductance calcium-activated potassium channels.

The HVC-RA pathway contributes to stable song, while the LMAN-RA pathway contributes to variable song. Testosterone-stimulated growth of the HVC is sufficient to induce growth of RA. High testosterone levels increase axonal density in the HVC-RA pathway. In our castrated birds, low testosterone levels may decrease axonal density in the HVC-RA pathway. High testosterone levels decrease levels of NR2B mRNA, which is modulatory subunits of N-methyl-D-aspartic acid receptor (NMDAR), within the LMAN and the RA. The LMAN-RA input is largely mediated by the NMDAR. In our castrated birds, low testosterone levels may increase the modulation of the LMAN-RA input by the NMDAR. These effects may produce unstable songs.

Finally, the castration-induced decrease in testosterone levels and excitability of the RA PNs may decrease the size of the song nuclei, the mass of the syrinx, and the synapses from the HVC to the RA, and increase the input from the LMAN to the RA. All of these effects would produce less stereotyped songs.

In conclusion, our study revealed that castration decreased song stereotypy and the excitability of RA PNs. The results provide a further understand of how androgens, rather than the photoperiod, modulate electrophysiological properties to change song behavior.

Competing interests

The authors have declared that they have no conflicts of interests.
Author contributions

WSH, LCS, LFL, LSY, and MW performed research and analyzed data. LDF designed the study and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31172092). The authors thank Dr. Feng QL and Cui RJ for critical reading and helpful comments on this paper.

Author details

School of Life Science, South China Normal University, Key Laboratory of Ecology and Environmental Science in Higher Education of Guangdong Province, Guangzhou 510631, China
1. Meitzen J, Thompson CK, Choi H, Perkel DJ, Brenowitz EA: Time course of changes in Gambel's white-crowned sparrow song behavior following transitions in breeding condition. *Horm Behav* 2009, 55(1):217-227.

2. Sizemore M, Perkel DJ: Premotor synaptic plasticity limited to the critical period for song learning. *Proc Natl Acad Sci U S A* 2011, 108(42):17492-17497.

3. Brenowitz EA, Nalls B, Wingfield JC, Kroodsma DE: Seasonal changes in avian song nuclei without seasonal changes in song repertoire. *J Neurosci* 1991, 11(5):1367-1374.

4. Brenowitz EA, Baptista LF, Lent K, Wingfield JC: Seasonal plasticity of the song control system in wild Nuttall's white-crowned sparrows. *J Neurobiol* 1998, 34(1):69-82.

5. Meitzen J, Thompson CK: Seasonal-like growth and regression of the avian song control system: neural and behavioral plasticity in adult male Gambel's white-crowned sparrows. *Gen Comp Endocrinol* 2008, 157(3):259-265.

6. Dloniak SM, Deviche P: Effects of testosterone and photoperiodic condition on song production and vocal control region volumes in adult male dark-eyed juncos (Junco hyemalis). *Horm Behav* 2001, 39(2):95-105.

7. Hall ZJ, Macdougall-Shackleton SA: Influence of testosterone metabolites on song-control system neuroplasticity during photostimulation in adult European starlings (Sturnus vulgaris). *PLoS One* 2012, 7(7):e40060.

8. Fraley GS, Steiner RA, Lent KL, Brenowitz EA: Seasonal changes in androgen receptor mRNA in the brain of the white-crowned sparrow. *Gen Comp Endocrinol* 2010, 166(1):66-71.

9. Wacker DW, Wingfield JC, Davis JE, Meddle SL: Seasonal changes in aromatase and androgen receptor, but not estrogen receptor mRNA expression in the brain of the free-living male song sparrow, Melospiza melodia morphna. *The Journal of Comparative Neurology* 2010, 518(18):3819-3835.

10. Meitzen J, Perkel DJ, Brenowitz EA: Seasonal changes in intrinsic electrophysiological activity of song control neurons in wild song sparrows. *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* 2007, 193(6):677-683.

11. Meitzen J, Moore IT, Lent K, Brenowitz EA, Perkel DJ: Steroid hormones act transsynaptically within the forebrain to regulate neuronal phenotype and song stereotypy. *J Neurosci* 2007, 27(44):12045-12057.

12. Meitzen J, Weaver AL, Brenowitz EA, Perkel DJ: Plastic and stable electrophysiological properties of adult avian forebrain song-control neurons across changing breeding conditions. *J Neurosci* 2009, 29(20):6558-6567.

13. Wild JM: Descending projections of the songbird nucleus robustus archistriatalis. *J Comp Neurol* 1993, 338(2):225-241.

14. Nottebohm F: The neural basis of birdsong. *PLoS Biol* 2005, 3(5):e164.

15. Kao MH, Wright BD, Doupe AJ: Neurons in a Forebrain Nucleus Required for Vocal Plasticity Rapidly Switch between Precise Firing and Variable Bursting Depending on Social Context. *The Journal of Neuroscience* 2008, 28(49):13232-13247.
16. Olveczky BP, Andalman AS, Fee MS: Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. *PLoS Biol* 2005, 3(5):e153.

17. Xie F, London SE, Southey BR, Annangudi SP, Amare A, Rodríguez-Zas SL, Clayton DF, Sweedler JV: The zebra finch neuropeptidome: prediction, detection and expression. *BMC Biol* 2010, 8:28.

18. Vicario DS: Motor mechanisms relevant to auditory-vocal interactions in songbirds. *Brain Behav Evol* 1994, 44(4-5):265-278.

19. Nottebohm F, Stokes TM, Leonard CM: Central control of song in the canary, Serinus canarius. *J Comp Neurol* 1976, 165(4):457-486.

20. Sober SJ, Wohlgemuth MJ, Brainard MS: Central contributions to acoustic variation in birdsong. *J Neurosci* 2008, 28(41):10370-10379.

21. Yu AC, Margoliash D: Temporal hierarchical control of singing in birds. *Science* 1996, 273(5283):1871-1875.

22. Prior NH, Heimovics SA, Soma KK: Effects of water restriction on reproductive physiology and affiliative behavior in an opportunistically-breeding and monogamous songbird, the zebra finch. *Horm Behav* 2013, 63(3):462-474.

23. Adkins-Regan E, Abdelnabi M, Mobarak M, Ottinger MA: Sex steroid levels in developing and adult male and female zebra finches (Poephila guttata). *Gen Comp Endocrinol* 1990, 78(1):93-109.

24. Arnold AP: The effects of castration and androgen replacement on song, courtship, and aggression in zebra finches (Poephila guttata). *J Exp Zool* 1975, 191(3):309-326.

25. Cynx J, Bean NJ, Rossmann I: Testosterone implants alter the frequency range of zebra finch songs. *Horm Behav* 2005, 47(4):446-451.

26. Williams H, Connor DM, Hill JW: Testosterone decreases the potential for song plasticity in adult male zebra finches. *Horm Behav* 2003, 44(5):402-412.

27. Tchemichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP: A procedure for an automated measurement of song similarity. *Anim Behav* 2000, 59(6):1167-1176.

28. Bolhuis JJ: The zebra finch: A synthesis of field and laboratory studies. *Q J Exp Psychol-B* 1999, 52(1):90-91.

29. Bottjer SW: Silent synapses in a thalamo-cortical circuit necessary for song learning in zebra finches. *J Neurophysiol* 2005, 94(6):3698-3707.

30. Spiro JE, Dalva MB, Mooney R: Long-range inhibition within the zebra finch song nucleus RA can coordinate the firing of multiple projection neurons. *J Neurophysiol* 1999, 81(6):3007-3020.

31. Baufreton J, Atherton JF, Surmeier DJ, Bevan MD: Enhancement of excitatory synaptic integration by GABAergic inhibition in the subthalamic nucleus. *J Neurosci* 2005, 25(37):8505-8517.

32. Farries MA, Meitzen J, Perkel DJ: Electrophysiological properties of neurons in the basal ganglia of the domestic chick: conservation and divergence in the evolution of the avian basal ganglia. *J Neurophysiol* 2005, 94(1):454-467.

33. Nordeen KW, Nordeen EJ: Deafening-induced vocal deterioration in adult songbirds is reversed by disrupting a basal ganglia-forebrain circuit. *J Neurosci* 2010, 30(21):7392-7400.

34. Strand CR, Deviche P: Hormonal and environmental control of song control region growth and
new neuron addition in adult male house finches, Carpodacus mexicanus. *Dev Neurobiol* 2007, 67(6):827-837.

35. Luine V, Nottebohm F, Harding C, McEwen BS: *Androgen affects cholinergic enzymes in syringeal motor neurons and muscle*. *Brain Res* 1980, 192(1):89-107.

36. Marler P, Peters S, Ball GF, Dufty AM, Jr., Wingfield JC: *The role of sex steroids in the acquisition and production of birdsong*. *Nature* 1988, 336(6201):770-772.

37. Tramontin AD, Hartman VN, Brenowitz EA: *Breeding conditions induce rapid and sequential growth in adult avian song control circuits: a model of seasonal plasticity in the brain*. *J Neurosci* 2000, 20(2):854-861.

38. Bean BP: *The action potential in mammalian central neurons*. *Nat Rev Neurosci* 2007, 8(6):451-465.

39. Faber ES, Sah P: *Physiological role of calcium-activated potassium currents in the rat lateral amygdala*. *J Neurosci* 2002, 22(5):1618-1628.

40. Brenowitz EA, Lent K: *Act locally and think globally: intracerebral testosterone implants induce seasonal-like growth of adult avian song control circuits*. *Proc Natl Acad Sci U S A* 2002, 99(19):12421-12426.

41. De Groof G, Verhoye M, Van Meir V, Balthazart J, Van der Linden A: *Seasonal rewiring of the songbird brain: an in vivo MRI study*. *Eur J Neurosci* 2008, 28(12):2475-2485; discussion 2474.

42. Singh TD, Heinrich JE, Wissman AM, Brenowitz EA, Nordeen EJ, Nordeen KW: *Seasonal regulation of NMDA receptor NR2B mRNA in the adult canary song system*. *J Neurobiol* 2003, 54(4):593-603.

43. Mooney R, Konishi M: *Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons*. *Proc Natl Acad Sci U S A* 1991, 88(10):4075-4079.

Tables

Table 1 The electrophysiological properties of RA PNs
Property	Castration	Control	Sham
Spontaneous firing rate (Hz)	8.13±1.00 (n=21)	12.49±1.17** (n=23)	11.32±0.74 ** (n=10)
(cell-attached)			
Resting membrane potential (mV)	-64.27±1.52 (n=16)	-65.46±1.90 (n=17)	-66.48±1.67 (n=8)
Spontaneous firing rate (Hz)	6.58±0.89 (n=15)	10.53±1.23* (n=16)	10.97±1.26** (n=8)
(Whole-cell)			
Membrane time constant (ms)	25.44±3.58 (n=16)	43.98±4.42** (n=16)	46.28±4.46** (n=8)
Input resistance (MΩ)	197.75±10.25 (n=16)	228.11±14.58 (n=17)	226.98±17.33 (n=8)
Capacitance (pF)	126.65±14.71 (n=16)	194.08±20.97* (n=16)	201.49±21.88** (n=8)
FI slope (Hz/pA)	0.186±0.014 (n=15)	0.296±0.017** (n=13)	0.289±0.016** (n=6)
AP threshold (mV)	-50.12±1.73 (n=15)	-49.59±1.74 (n=16)	-50.14±1.63 (n=8)
AHP peak amplitude (mV)	-17.30±1.16 (n=15)	-17.57±1.64 (n=16)	-16.05±1.70 (n=8)
AHP time to peak (ms)	21.38±1.53 (n=15)	15.44±1.85** (n=16)	15.03±2.03** (n=8)
Half-width (ms)	42.32±2.44 (n=15)	49.17±2.69 (n=16)	48.99±2.50 (n=8)

373 Numbers in parentheses indicate sample size. *P<0.05; **P<0.01.
Figure legends

Figure 1 Song sonograms and entropy curves (white line) of castration and sham groups in adult male zebra finches. A₁, A₂. The motifs of two birds in the castration group at “pre” operation and the 30th day after castration, respectively. B₁, B₂. The motifs of two birds in the sham group at “pre” operation and the 30th day after sham operation, respectively. When white line became lower, the entropy of syllable was smaller.

Figure 2 The entropy of syllable and % similarity of motif in castration, control, and sham groups. A. Castration group increased the entropy of syllables. Control and sham groups did not change. B. Castration group exhibited decreased % similarity of motif. Control and sham groups showed no change.

Figure 3 The spontaneous firing of RA PNs in the cell-attached and whole-cell configuration. A, B. Example traces of spontaneous firing in RA PNs of the castration and control groups, respectively. C. Castration significantly decreased spontaneous firing rates. D, E. Example traces of spontaneous firing in RA PNs of the castration and control groups, respectively. F. Castration significantly decreased spontaneous firing rates.

Figure 4 The evoked firing of RA PNs in the whole-cell configuration. A, B. Example traces of AP firing in RA PNs of the castration and control groups in response to injecting a current of 100 pA for 500 ms, respectively. C. Castration significantly decreased evoked firing rates when
injecting a current of 100 pA for 500 ms. D. F–I curve of the castration and control groups. The slope of the F–I curve in the castration group was lower than that of the control group.

Figure 5 The differences in membrane time constant, capacitance and AHP time to peak between the castration and control groups. A. Castration decreased the membrane time constant. B. Castration decreased the membrane capacitance. C. Example traces of AP in the castration and control groups, showing differences in the AHP time to peak. D. Castration prolonged the AHP time to peak.
Figure 1

Figure 5 The differences in membrane time constant, capacitance and AHP time to peak between the castration and control groups.

A. Castration decreased the membrane time constant. B. Castration decreased the membrane capacitance. C. Example traces of AP in the castration and control groups, showing differences in the AHP time to peak. D. Castration prolonged the AHP time to peak.
Figure 2

Figure 4 The evoked firing of RA PNs in the whole-cell configuration. A, B.

Example traces of AP firing in RA PNs of the castration and control groups in response to injecting a current of 100 pA for 500 ms, respectively. C. Castration significantly decreased evoked firing rates when injecting a current of 100 pA for 500 ms. D. F–I curve of the castration and control groups. The slope of the F–I curve in the castration group was lower than that of the control group.
Figure 3

Figure 3 The spontaneous firing of RA PNs in the cell-attached and whole-cell configuration.

A, B. Example traces of spontaneous firing in RA PNs of the castration and control groups, respectively. C. Castration significantly decreased spontaneous firing rates. D, E. Example traces of spontaneous firing in RA PNs of the castration and control groups, respectively. F. Castration significantly decreased spontaneous firing rates.
Figure 4

Figure 2 The entropy of syllable and % similarity of motif in castration, control, and sham groups.

A. Castration group increased the entropy of syllables. Control and sham groups did not change. B. Castration group exhibited decreased % similarity of motif. Control and sham groups showed no change.
Figure 5

Figure 1 Song sonograms and entropy curves (white line) of castration and sham groups in adult male zebra finches.

A1, A2. The motifs of two birds in the castration group at “pre” operation and the 30th day after castration, respectively. B1, B2. The motifs of two birds in the sham group at “pre” operation and the 30th day after sham operation, respectively. When white line became lower, the entropy of syllable was smaller.