Isopoda is a large ingroup of the crustacean group Peracarida, comprising morphologically diverse representatives that inhabit a variety of ecosystems such as the deep sea, shores, brackish waterbodies, freshwater and one ingroup even managed to inhabit terrestrial ecosystems (Wägele 1989, Brandt & Poore 2003, Broly et al. 2013). Even though the majority of representatives of Isopoda can easily be recognised by the organisation of the body and the overall shape, this does not necessarily apply for all groups. One of these groups is Phreatoicidea. Phreatoicidea is thought to be the sistergroup to all remaining ingroups of Isopoda and is morphologically distinct in some aspects, including the overall shape (Wägele 1989, Brusca & Wilson 1991). Phreatoicideans are rather laterally compressed than dorso-ventrally compressed, similar to sideswimmers (Amphipoda; Nicholls 1942). Also the the shape of the posteriormost appendages (uropods) is dissimilar to that in many other lineages of Isopoda by being styliform rather than flat. Extant representatives of Phreatoicidea are only found in freshwater environments (Wilson & Johnson 1999). Phreatoicideans are also interesting, as the oldest fossils of Isopoda supposedly are representatives of this group. The fossil record of the group Isopoda in the Palaeozoic (see Tab. 1 for all described Palaeozoic species) can be denoted as rather scarce compared to the record in the Meso- and Cenozoic. The oldest fossil record of the group (Hesslerella shermani Schram, 1970) is from the Middle Pennsylvanian (Upper Carboniferous, about 300 million years old) of Mazon Creek (Illinois, USA) and is interpreted as a representative of Phreatoicidea (Schram 1970).

Five species have been described from the Middle Permian of Brazil (Paraná Basin, São Paulo State; Mezzalira &
Martins-Neto 1992, Martins-Neto 2001, Chahud & Petri 2015), which are generally interpreted as representatives of Scutocoxifera. Scutocoxifera is an ingroup of Isopoda, not including Phreatoicidea, which representatives are characterised by having scale-like lateral expansions to the dorsal sclerites of the pereon (postocular segments 7–13) that are part of the proximal leg element (‘coxal plates’) (Dreyer & Wägele 2002). The remainder of the Palaeozoic fossils of Isopoda have all been interpreted as representatives of Phreatoicidea (Glaessner & Malzahn 1962, Schram 1980).

For the Triassic only eight species of Isopoda and one not formally described specimen have been reported so far (Figs 1, 2). *Anhelkocephalon handlirschi* is deliberately not included, see discussion below. Records of the group Isopoda are missing throughout the Early Triassic (Induan and Olenekian).

The earliest Triassic record, so far, is from the early Middle Triassic of France (‘Grès à Volzia’ Formation, ‘Völtziensandstein’, Upper Buntsandstein, Anisian) with *Palaega pumila* Gall & Grauvogel, 1971 (Gall & Grauvogel 1971, Schram 1980).

Table 1. Palaeozoic species of Isopoda.

Species	Age	Country & reference
Hesslerella shermani Schram, 1970	late Carboniferous, Moscovian	Illinois, USA (Schram 1970)
Sottyella montcellensi Racheboef et al., 2009	late Carboniferous, Gzhelian	France (Racheboef et al. 2009)
Pseudopalaega granulifera Mezzalira & Martins-Neto, 1992	early Permian, Artinskian	Brazil (Mezzalira & Martins-Neto 1992)
Pseudopalaega microcelata Mezzalira & Martins-Neto, 1992	early Permian, Artinskian	Brazil (Mezzalira & Martins-Neto 1992)
Pseudopalaega iratiensis Martins-Neto, 2001	early Permian, Artinskian	Brazil (Martins-Neto 2001)
Protourda tupiensis Mezzalira & Martins-Neto, 1992	early Permian, Artinskian	Brazil (Mezzalira & Martins-Neto 1992)
Protourda circumscription Mezzalira & Martins-Neto, 1992	early Permian, Artinskian	Brazil (Mezzalira & Martins-Neto 1992)
Palaeophreatoicus sojanensis Birstein, 1962	middle Permian	Russia (Birstein 1962, Schram 1980)
Protamphisopus reichelti Malzahn, 1962	late Permian, Lopingian	Germany (Glaessner & Malzahn 1962)
Palaeocrangon problematicus (= *Prosoponiscus problematicus*) (von Schlotheim, 1820)	late Permian, Lopingian	Germany (Schlotheim 1820, Schauroth 1854, Geinitz 1861) & Great Britain (Kirkby 1857)

Figure 1. Maps with the field sites of all published findings of Isopoda from the Triassic. • A – map of Europe. • B – world map. Stars denote field sites corresponding to the herein described fossils.
Mader 1984, Gall & Grauvogel-Stamm 2005). *Palaega pumila* can be easily identified as a representative of *Scutocoixera*. Despite the generic name, no close relationship to other species with the same (form-) genus name is generally assumed (Feldmann & Rust 2006).

Protamphisopus wianamattensis Chilton, 1918 from the Middle Triassic (Anisian) Ashfield Shale (Wiannamatta Group, Sydney basin, Australia) is a phreatoicidean that likely lived in a freshwater environment (Chilton 1918, Wilson & Edgecombe 2003).

Protamphisopus baii Fu et al., 2010 from the Middle Triassic (Anisian) Luoping fauna (Guanling Formation, Yunnan Province, China) is also a representative of Phreatoicidea and likely lived in a marine environment (Fu et al. 2010, Hu et al. 2011).

From the Middle Triassic (Meissner Formation, Upper Anisian) of Southern Germany there is one specimen which has not been formally described as a species (Schöllmann et al. 2015). This specimen has been interpreted as a representative of Cymothoida based on the similarity to some of its representatives (Schöllmann et al. 2015, but see discussion below). The trace fossil *Sinusichnus seilacheri* (ichnotaxon) occurs in the same stratigraphic range and is interpreted to be caused by representatives of Isopoda (Knaust et al. 2016).

Isopodites triasinus (Picard, 1858), originally described as *Sphaeroma triasina* Picard, 1858, has been found near the town Schlotheim (Thuringia, Germany) from the upper part of the Erfurt Formation (‘Keuperübergänge’; Picard 1858). Since the holotype is located on the shell of a ceratid cephalopod *‘Ammonites nodosus’*, it seems unlikely that it stems from the ‘Keuper’ (Erfurt Formation, Ladinian, Longobardian substage) since ceratids are extremely rare in sediments of this age (Hagdorn 2015). Thus, more likely, the holotype of *Isopodites triasinus* is from the underlying, older, limestones of the ‘Upper Muschelkalk’ (Meissner Formation, Ladinian, Fassanian substage). The Fassanian can be correlated with an absolute age of ca. 241.5–239.1 million years (Ogg 2012), consistent with the International Chronostratigraphic Chart, v. 2019/5 (Cohen et al. 2013, updated).

Isopodites triasinus has originally been interpreted as a representative of the group *Sphaeroma* (Picard 1858); von Ammon (1882) suggested a less specific interpretation and created a new generic name (*Isopodites*) for the species. Due to the overall body shape, *Isopodites triasinus* has been interpreted as a representative of Cymothoida (Gerstaecker & Ortmann 1901, Van Straelen 1928). Hessler (1969) suggested a position within Sphaeromatidae due to the reduction in the number of pleon segments. Gerstaecker & Ortmann (1901) had raised questions on the original interpretation by Picard regarding the identity of what Picard has referred to as the head. Gerstaecker & Ortmann argued that this body part likely is the anteriormost tergite instead of the head.

Ferrensicus magransi Calzada & Urquiola, 1994 from the Middle Triassic (Ladinian, Longobardian substage) dolomitic sediments of Alcover (Tarragona province, Spain) (Calzada & Urquiola 1994, Calvet & Tucker 1995). *Ferrensicus magransi* has been interpreted as a representative of Archaeoniscidae Haack, 1918 (ingroup of
Sphaeromatidea) (Calzada & Urquiola 1994, Calzada et al. 2011). Alongside with Ferrensicus magranius, Calzada & Urquiola (1994) mentioned the presence of further, likely not conspecific, isopods from the same locality and age (not figured).

From the middle Late Triassic (Norian) there are three species of about the same age (Alaunian to Savatian substage). Two of the species, Elioserolis alpina Basso & Tintori, 1994 and Triassphaeroma magnificum Basso & Tintori, 1994 have been interpreted as representatives of Sphaeromatidea (Basso & Tintori 1994, Brandt et al. 1999). These two species come from the same locality and were found in the ‘Calcari di Zorzino’ limestone near Zogno (Bergamo, Italy). Elioserolis alpina has been interpreted as a representative of Serolidae due to the rough similarity in the overall shape (Basso & Tintori 1994); this interpretation has been rejected by Brandt et al. (1999) who stated that no interpretation further than Sphaeromatidea is possible.

The other species of similar age, Fornicaris calligarisi Wilson & Selden in Selden et al., 2016, has also been found in northern Italy (ca. 240 km distance, Fig. 1) and is from the ‘Dolomia di Forni’ Formation near Forni di Sotto (Province of Udine). Fornicaris calligarisi has been interpreted as a representative of Paramunnidae (ingroup of Janiroidea and Asellota) (Selden et al. 2016). Apart from the published specimens there are probably more Triassic asellotans from Italy pending examination (Paolo Schirolli, personal communication, mentioned in Selden et al. 2016).

The fossil record for the Jurassic as well as for the Cretaceous and the Cenozoic is far more extensive. For the Jurassic there are more than 35 formally described species (Meyer & Münster 1840; Milne Edwards 1843; Westwood 1854; Ammon 1882; Carter 1889; Woodward 1890; Stolley 1910; Remes 1912; Van Straalen 1928; Reiff 1936; Frentzen 1937; Bachmayer 1955; Radawanski 1995; Grant-Mackie et al. 1996; Polz 1998, 2005a,b; Guinot et al. 2005; Polz et al. 2006; Etter 2014; Jones et al. 2014; Gašparič et al. 2015; Keupp & Mahlow 2017). Already in the Jurassic more ingroups of Isopoda become apparent such as some ingroups of Cymothoidae (Etter 2014, Nagler et al. 2017) or Sphaeromatidae (Bachmayer 1955, Radawanski 1995). With the occurrence of fossil-rich amber deposits in the Cretaceous, also terrestrial forms of Isopoda (Oniscoidea) appear in the fossil record (Broly et al. 2015).

Modern representatives of Isopoda comprise a large variety of different body shapes, comprising a wide range from long and slender forms such as e.g. in Anthuroidea (Wägele 1981) to disc-shaped forms such as e.g. in some lineages of Sphaeromatida (Wägele 1989, Brandt & Poore 2003). Distinct disc-shaped forms are also present in the fossil record (Polz 1998). Also, from an ecological perspective there is much diversity within Isopoda. Their ecological specialisations range from wood boring (Daniel et al. 1991), over burrowing (Matsui et al. 2011), herbivory (Salemaa 1987), scavenging (Lowry & Dempsey 2006), and preying (Kaneko & Omori 2003) to parasitism (van der Wal et al. 2019). Morphological features that indicate parasitism are also present in the fossil record. Parasitism and the development of true larval forms are also key features for the evolution of certain body shapes such as e.g. in Cymothoidae, Epicaridea and Gnathiidae (Smit & Davies 2004, Boyko & Wolff 2014, Nagler et al. 2017, Schädel et al. 2019). Aside from parasitism, also other ecological factors contributed to the evolution of certain lineages and subsequently also for the evolution of body shapes, such as the colonisation of the deep sea (Lins et al. 2012) or interstitial environments (Kim et al. 2017).

Here, we present three new fossil forms of Isopoda. All specimens are Triassic in age and come from two field sites in central Europe (Polzberg, Winterswijk). We discuss the preserved morphological features from a phylogenetic perspective. We also summarize the fossil record of the group up until the end of the Triassic and discuss phylogenetic affinities of already described Triassic species. Furthermore, we attempt to analyse the evolution of body shapes based on Triassic and extant specimens.

Material and Methods

Material

Three specimens form the basis of the study. Two originate from the Polzberg locality and one from the Winterswijk locality.

The two specimens from the Polzberg locality were found by Birgitt Aschauer (private collector, Waidhofen an der Ybbs, Austria) and donated to the collection of the Natural History Museum Vienna (Naturhistorisches Museum Wien), accession numbers NHMW 2020/0003/0001 and NHMW 2020/0003/0002. The specimen from the Winterswijk locality was collected by Herman Winkelhorst (private collector, Aalten, Netherlands) and donated to the Museum Naturalis, Leiden, accession number RGM.792591.

Geological setting of the Polzberg locality

The fossil locality Polzberg (after the village near the site and the Polzberg Graben) also known under the alternative name Schindelberg (after the adjoining mountain) is located in the municipality of Gaming, Lower Austria (state), Austria. The Polzberg Graben is surrounded by the mountains Föllbaumberg and Schindelberg. Two scientific excavations have been carried out in 1886 (Stur 1887)
The fossiliferous sediments at the site are dark, organic rich laminated marls of the Reingraben Formation. The stratum in which the fossils were found is also referred to as “Aon Schichten”, “Aon Schiefer” or “Aonoides Schiefer” – referring to the Trachyceras aoni and/or the Trachyceras aonoides ammonite stratigraphic zones (Teller 1891, Glaessner 1931, Hornung & Brandner 2005). The Reingraben shales can be dated to a Julian (Early Carnian, Upper Triassic) age (Hornung & Brandner 2005). The Julian (substage of the Carnian stage) can be correlated with an absolute age of 235.4 to 237 million years (Ogg 2012).

The proximity to the town Lunz am See led to the attribution terms like “Lunz Lagerstätte”. This is problematic, as the Lunz Lagerstätte, which is famous for its abundant plant remains (e.g. Pott & Krings 2010), is of a different age and there is also no close geological connection between the sites (Forchielli & Pervesler 2013).

The fossil remains that have been so far reported from the Polzberg site include ray-finned fishes (Actinopterygia; Abel 1906, Griffith 1977), a lungfish (Dipnoi; Teller 1891), sea urchins (Echinoida; Glaessner 1931), as well as numerous representatives of Mollusca, such as different forms of Cephalopoda (Ammonoidea; Doguzhaeva et al. 2007a, and Colleoida; Doguzhaeva et al. 2006, 2007b), but also snails (Gastropoda) and clams and relatives (Bivalvia) (including abundant planktic representatives of the group Halobia, ‘Halobia shale’; Glaessner 1931). Eurcrustacean remains include thylacoccephalans (Glaessner 1931, Forchielli & Pervesler 2013), paenaeoidean prawns, glypheaoidans and polychelidan lobsters (Glaessner 1931). Also rare plant remains have been found from the same sediment (B. Aschauer, personal communication).

Geological setting of the Winterswijk locality

Early Anisian (Middle Triassic) sediments belonging to the Lower Muschelkalk Vossenveld Formation are exposed in the Winterswijk quarry in the easternmost Netherlands (Hagdorn & Simon 2010). These outcrops of finely laminated micritic limestone consist of alternating marly limestones, dolomites, clayey marls and dolomitic clay layers (Borkhataria et al. 2006, Klein et al. 2015, Maxwell et al. 2016). The sediments were deposited near the margin of the epicontinental Germanic Basin and alternately document shallow marine environments and intertidal mudflats with algal laminates and polygonal mudcracks (Klein 2012, Oosterink & Winkelhorst 2013, Klein et al. 2015).

The fossil remains that have been so far reported from the Winterswijk site include ray-finned fishes (Actinopterygia; Maxwell et al. 2016), sharks (Euselachii; Oosterink 2001) and representatives of Sauropterygia (Klein 2012, Klein et al. 2015), as well as brachiopods (Brachiopoda; Oosterink 1986), various representatives of Mollusca, such as snails (Gastropoda), clams and relatives (Bivalvia), and representatives of Cephalopoda (Oosterink 1986) and Scyphozoa (Oosterink & Winkelhorst 2013). Arthropod remains comprise representatives of Xiphosura (Hauschke et al. 2009), Decapoda (Klompmaker & Fraaije 2011) and Insecta (van Eldijk et al. 2017). Remains of plants are mostly represented by palynomorphs (pollen and spores; Herngreen et al. 2005b). In addition, numerous ichnofossils have also been identified, including burrowing traces (Knaust 2013), terrestrial track ways (Diedrich 2001) and swimming traces (Schulp et al. 2017). An initial stratigraphy of the Winterswijk quarry was published by Oosterink (1986), who identified 39 stratigraphic horizons. Subsequently, additional layers unearthed near the top of the profile were identified by the Working Group Muschelkalk Winterswijk and numbered in accordance with the system of Oosterink (1986) (Maxwell et al. 2016). The specimen RGM.792591 described here was found by HW in layer 43, this layer is particularly noteworthy since it has already yielded several insect remains in addition to exquisitely preserved fish fossils (Maxwell et al. 2016, van Eldijk et al. 2017). There seem to be some unresolved issues regarding the precise dating of the top section of the quarry to which layer 43 belongs (Maxwell et al. 2016, van Eldijk et al. 2017). Hagdorn & Simon (2010) considered the top section of the stratigraphy to belong to the Illyrian substage of Anisian, based on the occurrence of the bivalve Neoschizodus orbicularis. However, they acknowledged that this dating is not compatible with the palynological results obtained by Herngreen et al. (2005a, b), which indicate that the top section of the stratigraphy belongs to the Bithynian substage of the Anisian. Regardless, specimen RGM.792591 can thus be correlated with confidence to be Anisian. Although it would seem most probable that layer 43 is of Bithynian age as the palynological date assigned by Herngreen et al. (2005a, b) is based on two separate stratigraphic marker species, further stratigraphic studies are required. The Anisian can be correlated with an absolute age of 245.9 to 237 million years (Ogg 2012).

Imaging

The specimens from the Polzberg locality were photographed using a Canon EOS 70D DSLR camera with a Canon MP-E 65 mm macro objective and MT24 twin flashes. In some cases, a grid of multiple images was recorded to overcome the limit of field of view at higher
magnifications. Stereoscopic images were recorded by tilting the macrophotography setup relative to the specimen. The specimen from the Winterswijk locality was photographed using a Keyence BZ9000 digital microscope. Incident white light was used to obtain microscopic images and incident fluorescent light was used to obtain epifluorescence microscopic images. For the fluorescence microscopy the fossils were excited by light of 470 nm wavelength (GFP-filter) and 545 nm wavelength (TRITC-filter) (e.g. Metz et al. 2015). To overcome the limitations of depth of field and field of view, for both kinds of illumination, a grid of image stacks with images of different levels of focus was recorded (e.g. Haug et al. 2011).

Image processing

Images of different levels of focus were combined to overall in-focus images (‘focal plane merging’) using CombineZP (GPL). Grids of in-focus images were combined to larger images (‘panoramic stitching’) using TrakEM (ImageJ, GPL). The resulting images were optimised for colour and contrast using GIMP (GPL). The map was created using QGIS (GPL) data from naturalearthdata.com (public domain). The map was exported as a vector file and postprocessed using Inkscape (GPL).

Measurements and analysis

Measurements were performed using Adobe Acrobat Reader, ImageJ and Inkscape (using the Bezier tool, the distance between the cursor and the last click is given in the status bar). Measurements (Suppl. files 1, 2) of extant specimens were gathered from Nicholls (1942, 1943) and Richardson (1905); measurements of fossil specimens were gathered from Basso & Tintori (1994), Picard (1858), Schöllmann et al. (2015) and Selden et al. (2016). Graphs were created using R including the packages readr, ggplot2, ggrepel and gridExtra (Suppl. file 3).

Fossils of Protamphisopus baii and Protamphisopus wianamattensis, as well as one of the herein presented fossils, are laterally compressed and thus could not be measured for dorsal/ventral aspect of the body shape. Ferreniscus magransi is not included in the analysis, because there appears to be a mismatch between the reconstructive drawing in the original description (Calzada & Urquiola 1994) and a more recent photograph of the specimen (Institut Cartogràfic i Geològic de Catalunya 2018, collection number 52506), that could greatly affect the outcome of the analysis. Isopodites triasinus is only figured with an apparently highly stylised, miniature scaled, drawing and the measurement must thus be interpreted with caution.

Results

All new taxonomic names were registered in the ZooBank database (International Commission on Zoological Nomenclature, http://zoobank.org) prior to the publication.

Systematic part

Euarthropoda sensu Walossek (1999)
Eucrustacea sensu Walossek (1999)
Peracarida Calman, 1904
Isopoda Latreille, 1817
Scutocoxifera Dreyer & Wägele, 2002

Obtusotelson gen. nov.

http://zoobank.org/10472CD8-97E6-4B84-9795-374E63AA05C2

Type species. – Obtusotelson summesbergeri sp. nov. (type and only species).

Etymology. – From Latin obtusus (= blunt) and telson, referring to the shape of the pleotelson in the holotype of the type species.

Diagnosis. – Not applicable since monotypic.

Remarks. – The name Obtusotelson is introduced, exclusively, to allow a representation of the species summesbergeri sp. nov. under a Linnean framework (by serving as the generic name of the type species) (e.g. Béthoux 2009). Obtusotelson does not represent a monophyletic group of organisms, since only a single species is included (monotypic). Yet, Obtusotelson may serve as a ‘group name in advance’ if, in the future, another species is found to be the sister-species to the type species of Obtusotelson.

Obtusotelson summesbergeri sp. nov.

Figure 3A–C

http://zoobank.org/E449512B-FDF7-45F6-AB88-E414046666FEA

Types. – Holotype and only type, NHMW 2020/0003/0001, Naturhistorisches Museum Wien (Natural History Museum Vienna), Austria.

Type horizon and locality. – Reingraben Formation, Julian (Carnian), 235.4 to 237 million years (Ogg 2012); Polzberg, Gaming, Lower Austria, Austria.
Material. – Holotype only.

Etymology. – After Dr. Herbert Summesberger, retired palaeontologist who worked at the Natural History Museum in Vienna.

Diagnosis. – Body about half as wide as long; coxal plates triangular; dactyli with truncated distal ends; pleon tergites with concave posterior margins and pointed posterolateral corners; pleotelson with median ridge, posterior margin of pleotelson straight in the median portion (‘truncated’ appearance); uropod posteriorly extending to the level of the posterior margin of the pleotelson, endopod with straight distal margin.

Description. – Preservation of the holotype: Strongly compressed remains of the exoskeleton; specimen accessible in dorsolateral view; remains located on two
corresponding slabs of rock matrix (part and counterpart); counterpart with only few pieces of exoskeleton; head not preserved or represented by inconspicuous fragments; remains of putative antennal elements visible on the counterpart; seven appendages of the pereon (pereopods) preserved on the left side of the body (not all of them might be legs of the left body side).

Description of the holotype: The body is composed of a functional head (ocular segment and postocular segments 1–6, cephalothorax) and a trunk (postocular segments 7–19). The trunk is divided into two tagmata: the pereon (postocular segments 7–13) and the pleon (postocular segments 14–19). The last segment of the pleon is conjoined with the telson, forming a pleotelson. Body longer than wide, about half as wide as long. Measurements are listed in Tab. 2.

The trunk bears one pair of appendages per segment on the ventral side. The appendages of the pereon segments (pereopods) consist of seven elements (from proximal to distal: coxa, basipod, ischium, merus, carpus, propodus, dactylus).

Pereon with all seven segments bearing distinct dorsal sclerites (tergites). Pereon segments 2 to 7 with coxa conjoined with the tergite of the same segment forming a scale-like lateral sclerite (coxal plate). Tergite of pereon segment 1 with rounded lateral margin; posterior margin slightly convex, no coxal plates. Tergite of pereon segment 2 slightly shorter than preceding tergite, about the same width; posterior margin slightly convex; with coxal plate; coxal plate triangular with pointed posterolateral corner, ridge parallel to the anterolateral margin. Tergite of pereon segment 3 about as long as preceding tergite, slightly wider than preceding tergite; posterior margin almost straight; with coxal plate; coxal plate triangular with pointed posterolateral corner, ridge parallel to the anterolateral margin. Tergite of pereon segment 4 about as long as preceding tergite, slightly wider than preceding tergite; posterior margin almost straight; coxal plate not preserved. Tergite of pereon segment 5 about as long as preceding tergite, about the same width as the preceding tergite; coxal plate triangular with pointed posterolateral corner, straight posterior margin. Tergite of pereon segment 6 slightly shorter than the preceding tergite, about the same width as the preceding tergite; posterior margin slightly concave; coxal plate not preserved. Tergite of pereon segment 7 shorter than the preceding tergite; coxal plate not preserved.

Anteriormost preserved leg with merus, carpus, propodus and dactylus preserved; merus with oblique distal margin in accessible view (posterior side); carpus triangular in the accessible view (posterior side), smaller than the merus; propodus elongated, much longer than wide; dactylus shorter and narrower than propodus, with truncated distal end. Third preserved leg with merus, carpus, propodus and dactylus preserved; sub-similar to the preceding leg; distal part of the propodus not preserved; dactylus with truncated distal end. Fourth preserved leg with merus, carpus, propodus and dactylus preserved; overall much slenderer than the preceding leg; preserved part of the merus short; carpus elongated, longer and slenderer than in the preceding legs; propodus elongated, longer than carpus; dactylus much shorter and narrower than propodus and with truncated distal end. Fifth preserved leg with merus and carpus preserved; merus short; carpus elongated similar to the carpus of the preceding leg. Sixth preserved leg with carpus, propodus and dactylus preserved; carpus elongated; propodus elongated with dorsal side slightly convex, distinctly longer than propodus of leg 4; dactylus much shorter and narrower than propodus and with truncated distal end. Seventh preserved leg with only one elongated element of uncertain affinity (counterpart).

Pleon with all seven segments bearing distinct dorsal sclerites (tergites). Tergite of pleon segment 1 longer than the preceding tergite of pereon segment 7. Tergite of pleon segment 2 longer than the preceding tergite; posterior margin convex or straight in the median part and concave in the lateral parts, posterolateral corner pointed. Tergite of

Body part	Length (mm)	Width (mm)
complete body	15.29	6.93
pleon segment 1	1.75	not accessible
pleon segment 2	1.26	not accessible
pleon segment 3	1.24	not accessible
pleon segment 4	1.16	not accessible
pleon segment 5	1.02	not accessible
pleon segment 6	0.74	not accessible
pleon segment 7	0.53	not accessible
pleotelson	3.88	3.75
uropod endopod length	1.80	0.63
uropod exopod	1.53	not accessible
pleon segment 3 shorter than the tergite of the preceding segment; posterior margin convex or straight in the median part and concave to the lateral side; lateral margin straight; posterolateral corner distinctly pointed. Tergite of pleon segment 4 longer than the preceding tergite, posterior margin straight to slightly convex in the median part and concave to the lateral side; lateral margin straight; posterolateral corner distinctly pointed. Tergite of pleon segment 5 longer than the preceding tergite; posterior margin straight to slightly convex in the median part and concave in the lateral part. Pleotelson roughly trapezoidal in dorsal view, with straight lateral margins and straight posterior margin (‘truncate’ sensu e.g. Bruce 1986), anterior side wider than the posterior side, anterior margin with straight median part and concave lateral parts, ridge along the midline, without conspicuous ornamentation.

Appendages of the pleotelson (uropods) consisting of a proximal element (basipod) and two distal elements (endopod, median and exopod, lateral) that both originate from the basipod. Endopod broad, wider in the distal part, with ‘truncated tip’ (with straight distal margin), median margin slightly convex. Exopod about as long as the endopod or slightly shorter.

Remarks. – The legs that are only present in the anterior part of the body indicate a tagmatisation of the trunk into two functional units (pereon and pleon; autapomorphy of Malacostraca (Walossek 1999). The posteriormost pair of appendages, together with the (pleo-) telson, forms a tail fan (autapomorphy of Eumalacostraca) (Ax 2000). Apomorphic features of Isopoda are often not visible in fossil specimens. Features that are not exclusive for Isopoda but part of the ground pattern of Isopoda are: posteriormost pleon segment conjoined with the telson (‘pleotelson’) (Wägele 1989, Brusca & Wilson 1991). Head shield forms a capsule, not constituted by postocular segment 7 (postocular segment 7 can constitute to the head shield in some ingroups of Isopoda) (Ax 2000, Haug 2011). A dorsoventral flattened body is often stated as apomorphic for Isopoda (e.g. Wägele 1989). However, a dorsoventral flattened body cannot be reconstructed for the ground pattern of Isopoda without assuming convergence in the earliest lineages within Isopoda (Brusca & Wilson 1991, Wilson 1996). Nevertheless, a dorsoventral flattened body can be reconstructed as an apomorphy for an ingroup of Isopoda (Isopoda nec Phreatoicidea). In Obitusotelson summesbergeri sp. nov. a flattened body shape is not conspicuous, as legs of only one body side are preserved. Yet, in the posterior part of the body, especially in the pleotelson, it is apparent that the outline of the right body side is not constituted by the midline of the body and thus, that the body is indeed dorsoventrally flattened.

In the holotype of Obitusotelson summesbergeri sp. nov. the pereon segments 2–5 bear lateral sclerites that are distinct from the tergites. The distinctness and relative size of these sclerites (about as long or longer than the lateral margin of the corresponding tergite) suggest that these are coxal plates rather than tergopleura or lateral aspects of ring-shaped coxae (cf. illustrations in Gruner 1954 and Dreyer & Wägele 2002). Coxal plates are autapomorphic for Scutocoxifera (Dreyer & Wägele 2002). The truncated distal ends of the dactyli indicate the presence of prominent claws. A pair of two claws on the distal end of the dactylus is plesiomorphic for Scutocoxifera (Wägele 1989).

Discosalaputium gen. nov.

http://zoobank.org/C93F3340-35B0-48FF-8B81-93E4DE43890D

Type species. – **Discosalaputium aschauerorum** sp. nov. (type and only species).

Etymology. – From Latin *discus* (= disc) and *salaputium* (= manakin), referring to the overall shape and size of the holotype of the type species.

Diagnosis. – Not applicable since monotypic.

Remarks. – The name *Discosalaputium* is introduced, exclusively, to allow a representation of the species *aschauerorum* sp. nov. under a Linnean framework (by serving as the generic name of the type species) (e.g. Béthoux 2009). *Discosalaputium* does not represent a monophyletic group of organisms, since only a single species is included (monotypic). Yet, *Discosalaputium* may serve as a ‘group name in advance’ if, in the future, another species is found to be the sister-species to the type species of *Discosalaputium*.

Discosalaputium aschauerorum sp. nov.

Figure 4A–D

http://zoobank.org/CD2A1601-94A6-4271-957F-A2658D0EEFBA

Types. – Holotype and only type, NHMW 2020/0003/0002, Naturhistorisches Museum Wien (Natural History Museum Vienna), Austria.

Type horizon and locality. – Reingraben Formation, Julian (Carnian), 235.4 to 237 million years (Ogg 2012); Polzberg, Gaming, Lower Austria, Austria.

Material. – Holotype only.

Etymology. – In honour of the private collectors and amateur palaeontologists Karl and Birgitt Aschauer, who
provided access to two of the herein presented specimens and donated them to the collection of the Geological Service of Austria.

Diagnosis. – Body with semicircular outline in dorsal view, about as wide as long, dorsoventrally flattened; coxal plates with rounded anterolateral side and angled posterolateral corner; pleon without free (distinct, not conjoined with other sclerites) tergites; pleotelson roughly triangular; uropods large.

Description. – *Preservation of the holotype:* Strongly compressed remains of the exoskeleton; specimen accessible in dorsal view; remains located on two corresponding slabs of rock matrix (part and counterpart). Head and appendages of the trunk (except for the posteriormost ones) not preserved.

Description of the holotype: The body is composed of a head (oculartagment and postocular segments 1–6, not preserved in the holotype) and a trunk (postocular segments 7–19). The trunk is divided into two functional tagmata: the pereon (postocular segments 7–13) and the pleon (postocular segments 14–19). Body with semicircular outline in dorsal view, about as wide as long. Measurements are listed in Tab. 3.

Pereon segment 1 with concave anterior margin and convex posterior margin, lateral part not distinct from median part (no coxal plate). Lateral margin anterolaterally projected and straight to slightly convex. Pereon segment 2 distinctly wider than preceding segment, with concave anterior margin, posterior margin overall straight with concave part in the median part; lateral expansions distinct from the (rest of) the tergite by a notch on the posterior margin (possibly representing coxal plates); lateral expansions with slightly convex lateral margin, anterolateral corner rounded.

Table 3. Measurements of *Discosalaputium aschauerorum* sp. nov. (NHMW 2020/0003/0002).

Body part	Length	Width
complete body	7.67 mm	8.30 mm (reconstructed from one body side)
pereon segment 1	not accessible	6.13 mm
pereon segment 2	0.52 mm	7.98 mm
pereon segment 3	0.64 mm	4.19 mm
pereon segment 4	0.63 mm	8.38 mm (reconstructed from one body side)
pereon segment 5	0.59 mm	8.28 mm (reconstructed from one body side)
pereon segment 6	0.53 mm	8.18 mm (reconstructed from one body side)
pereon segment 7	0.48 mm	3.95 mm
pleotelson	2.40 mm	3.68 mm

curved ridge on the expansion from centre of the base of the expansion to the posterolateral corner, posteromedian corner with distinct angle. Pereon segment 3 wider than preceding segment, shape similar to preceding segment but anterior margin overall straight with convex proportion in the centre. Pereon segment 4 about as wide as preceding segment, shape similar to preceding segment. Pereon segment 5 about as wide as preceding segment, shape similar to preceding segment but without concave portion in the posterior margin. Pereon segment 6 narrower than the preceding segment, anterior margin evenly convex, posterior margin strongly concave, lateral expansion narrower than in preceding segments and pointing posterolaterally. Pereon segment 7 narrower than the preceding segment, shape similar to preceding segment but with strongly convex anterior margin, lateral expansion narrow and pointing more posteriorly than in the preceding segment.

Pleon segments 1–5 not discernible in the holotype. Pleon segment 6 conjoined with the telson forming the pleotelson. Pleotelson roughly triangular in dorsal view, anterior margin straight in the median part, anterior margin oblique (anteromedian to posterlateral) in the lateral part.

Uropod large, located lateral to the posterolateral margin of the pleotelson, anterolateral corner close to the lateral expansion of pereon segment 7; elements of the uropod (basipod, endopod and exopod) not discernible.

Remarks. – The posteriormost pair of appendages, together with the (pleo-) telson, forms a tail fan (autapomorphy of Eumalacostraca; Ax 2000). Although the low relief preservation of the holotype does not allow to estimate the exact dorsoventral aspect of the living animal, due to the positioning of the holotype, it can be concluded that *Discosalaputium aschauerorum* sp. nov. was wider than high. A dorsoventrally flattened body can be seen as apomorphic for a monophyletic ingroup of Isopoda (Isopoda nec Phreatoicidea; see discussion above). The lateral expansions in the pereon are distinct from the tergite by a notch on the posterior margin. Also, the shape of the expansion and the shape and position of the ridge on the dorsal side of the expansion resembles much that of representatives of Scutocoxifera, indicating that the expansion is likely a coxal plate, which is autapomorphic for Scutocoxifera (Dreyer & Wägele 2002). However, this would imply that the coxal plate is conjoined with the tergite, as it is *e.g.* in most adult land-living isopods (Oniscoidea; Gruner 1954). To test this assumption it would be necessary to inspect the coxal area on the ventral side of the body. All dorsal sclerites in the holotype of *Discosalaputium aschauerorum* sp. nov. can be identified as parts of the pereon, due to the likely presence of coxal plates. This implies that aside from the pleotelson, all dorsal sclerites of the pleon are reduced or conjoined with the pleotelson. A reduction in the number of free
pleon segments, in combination with a semicircular body outline, can be seen in various lineages of Sphaeromatidea (e.g. Plakarthriidae, Bathynataliidae and some lineages of Sphaeromatidae) (Wägele 1989, Brusca & Wilson 1991, Brandt & Poore 2003). Yet, conditions where not even one pleon tergite is distinct from the telson are extremely rare (e.g. Ancinus belizensis Kensley & Schotte, 1987).

Very wide uropods, in combination with a semicircular outline of the body, like in the holotype of Discosalaputium aschauerorum sp. nov., do only occur in Sphaeromatoidea Brandt & Poore 2003 (see Fig. 5A–B, D–E). The absence of free dorsal pleon sclerites could be interpreted as apomorphic for Sphaeromatoidea. Yet, because no other apomorphic features are visible in the holotype, we suggest to be careful with a possible affinity of Discosalaputium aschauerorum sp. nov. with Sphaeromatoidea.

The morphology of the lateral aspect of the tergites (or the coxal plates) in Discosalaputium aschauerorum sp. nov.,...
nov. is very similar to that in *Elioserosis alpina*. Yet, in the reconstruction of *Elioserosis alpina* by Basso & Tintori (1994) there are two free pleon tergites (the photograph is of bad quality and the specimen should be restudied as some parts of the dorsal morphology are unclear). Also there is an age gap of 18 million years between the occurrences of both species, making it unlikely that they are conspecific in the sense of a biological species concept.

Cymothoida Wägele, 1989

Gelrincola gen. nov.

http://zoobank.org/F7EA70DD-56B0-411C-AE07-0EE68107E515

Type species. – Gelrincola winterswijkensis sp. nov. (type and only species).

*Etymology. – From Latin *Gelria* (= Gelderland, province of the Netherlands where the field site is located) and *incola* (= inhabitant), referring to the field site of the holotype of the type species.*

Diagnosis. – Not applicable since monotypic.

*Remarks. – The name Gelrincola is introduced, exclusively, to allow a representation of the species *winterswijkensis* sp. nov. under a Linnean framework (by serving as the generic name of the type species) (e.g. Béthoux 2009). Gelrincola*

Figure 5. Habitus of different representatives of Sphaeromatidae, pleon and telson region marked with a darker shade of grey. • A – *Platyphera membranata*, redrawn from Bruce 1994. • B – *Discidina bannawarra*, redrawn from Bruce 1994. • C – *Discosalaputium aschauerorum* sp. nov., reconstruction, dotted lines mark body parts which are not preserved in the holotype. • D – *Apemosphaera naranagi*, redrawn from Bruce 1994. • E – *Cassidinidea clarkiae*, redrawn from Schotte & Kensley 2005.
does not represent a monophyletic group of organisms, since only a single species is included (monotypic). Yet, *Gelrincola* may serve as a ‘group name in advance’ if, in the future, another species is found to be the sister-species to the type species of *Gelrincola*.

Gelrincola winterswijkensis sp. nov.
Figure 6A–G

http://zoobank.org/534AEB1C-F99E-43D1-B09D-6030A3A0185C

Types. – Holotype and only type, RGM.792591, Museum Naturalis, Leiden, Netherlands.

Type horizon and locality. – Lower Muschelkalk Vossen-veld Formation, Anisian, 245.9 to 237 million years (Ogg 2012); Winterswijk, Gelderland, Netherlands.

Material. – Holotype only.

Etymology. – After the name of the town ‘Winterswijk’, the field site where the holotype was found.
Diagnosis. – Body obround in dorsal view, about half as wide as long; head more than twice as long as the subsequent pereon tergite; pleon segment 5 without free tergite; pleotelson wider than long; uropod basipod triangular with median angle located ventral to the pleotelson; uropod endopod posteriorly protruding beyond the posterior margin of the pleotelson.

Description. – Preservation of the holotype: Strongly compressed remains of the exoskeleton; specimen accessible in dorsal view.

Description of the holotype: The body is composed of a head (ocular segment and postocular segments 1–6) and a trunk (postocular segments 7–19). The trunk is divided into two functional tagmata: the pereon (postocular segments 7–13) and the pleon (postocular segments 14–19), dorsal sclerite of one segment missing in the holotype). Pleon segment 6 conjoined with the telson forming the pleotelson. Body in dorsal view with straight lateral sides and rounded anterior and posterior side, about half as wide as long. Measurements are listed in Tab. 4.

Head half circular in dorsal view, posterior margin slightly convex; compound eyes at the lateral side of the head, touching the lateral outline in dorsal projection. Pereon segment 1 about half of the length of the head, much wider than long, distinctly broader than the head, posteriorly increasing in width, anterior margin slightly concave, posterior margin straight, lateral margin antero-laterally projected and straight to slightly convex. Pereon segment 2 wider than preceding segment, anterior margin straight, posterior margin straight throughout most of the width and concave at the lateral-most part. Pereon segment 3 similar to preceding segment but posterior margin slightly concave. Pereon segment 4 shorter than the preceding segment, narrower or about as wide as preceding segment. Pereon segment 5 about as long as preceding segment, wider than preceding segment, anterior margin convex, posterior margin concave, lateral margins rounded. Pereon segment 6 similar to preceding segment. Pereon segment 7 similar to preceding segment. Pleon segment 1 longer and wider than the preceding segment, anterior margin convex in the median part and concave in the lateral part, posterior margin concave in the median part and convex in the lateral part, anterolateral corner rounded, posterolateral corner angled. Pleon segment 2 similar to preceding segment but slightly narrower. Pleon segment 3 longer and narrower than preceding segment, anterior margin convex in the median part and slightly concave (less than in the preceding segments) in the lateral part, anterolateral corner rounded, posterolateral corner angled. Pleon segment 4 longer and narrower than preceding segment, anterior margin convex in the median part and slightly concave in the lateral part, posterior margin concave.

Pleon segment narrower and about three times longer than preceding segment, about one and a half times wider than long, anterior margin convex; posterior margin trapezoid to semi-circular in dorsal view, posterior side ‘truncated’ (median portion of the posterior margin almost straight. Uropods inserting laterally on the pleotelson at about mid-length of the pleotelson, about 60% as long as the pleotelson; basipod short and wide, triangular in shape, proximal margin straight, distal margin slightly convex, lateral margin straight, median side angled; endopod paralellogram-shaped, much longer than wide, distal end ‘truncated’ (straight distal margin), lateral margins straight, median margin with weak denticulate pattern in the proximal part; exopod about as wide as the endopod, preserved part much shorter than the endopod, median margin slightly convex. It should be noted that, to our knowledge, this specimen constitutes the oldest known isopod fossil from the Netherlands.

Remarks. – The posteriormost pair of appendages, together with the (pleo-) telson, forms a tail fan (autapomorphy of Eumalacostraca, Ax 2000). Although the low relief preservation of the holotype does not allow to estimate the exact dorsoventral aspect of the living animal, due to the positioning of the holotype, it can be concluded that Gelrincola winterswijkensis sp. nov. was wider than high. A dorsoventrally flattened body can be seen as apomorphic

Table 4. Measurements of Gelrincola winterswijkensis sp. nov. (RGM.792591).

Body part	Length	Width
complete body	7.30 mm	3.65 mm
head	0.99 mm	1.92 mm
pereon segment 1	0.42 mm	2.72 mm
pereon segment 2	0.47 mm	3.29 mm
pereon segment 3	0.51 mm	3.40 mm
pereon segment 4	0.37 mm	3.12 mm
pereon segment 5	0.37 mm	3.50 mm
pereon segment 6	0.32 mm	3.50 mm
pereon segment 7	0.29 mm	3.24 mm
pleon segment 1	0.34 mm	3.65 mm
pleon segment 2	0.34 mm	3.61 mm
pleon segment 3	0.44 mm	3.48 mm
pleon segment 4	0.61 mm	3.78 mm
pleotelson	1.90 mm	2.95 mm
uropod basipod	0.21 mm	0.63 mm
uropod endopod	0.95 mm	0.35 mm
uropod exopod	0.68 mm	0.32 mm
for a monophyletic ingroup of Isopoda (Isopoda nec Phreatoicidea; see discussion above). The posteriormost pleon segment is conjoined with the telson (‘pleotelson’) and the head shield is not constituted by postocular segment 7 (pereon segment 1). Both of those features are present in the ground pattern of Isopoda (Wägele 1989, Brusca & Wilson 1991, Ax 2000). The presence of coxal plates (Fig. 6D) is autapomorphic for Scutocoxifera (Dreyer & Wägele 2002). The basipod of the uropod is triangular and the median angle is located ventral to the pleotelson (Fig. 6F, G). This condition is apomorphic for Cymothoida (Wägele 1989).

Morphological comparison of the fossils to extant representatives of Isopoda

For this morphological inspection which is graphically represented by Fig. 7, the morphology of the isopod body is drastically simplified. Only the length and width of two regions of the body are considered: anterior region (head capsule and pereon), posterior region (pleon and telson). Some ingroups of Isopoda with extant representatives (based on arbitrary samples of extant representatives) have little variance in the observed variables, resulting in relatively dense point clouds in the plots (Fig. 7, e.g. Asseloiida, Oniscoidea and Phreatoicidea). Other groups such as Valvifera and Cymothoida have relatively more variance in those variables, resulting in less dense point clouds in the plots. Anthuroidea is the only isopod ingroup which is graphically distinctly separated from the remainder groups (Fig. 7). This is a result of a unique body shape. Anthuroideans have a long and slender body with a very short pleon. There is no such body shape known from the Triassic fossil record. Some phreatoicideans have equally slender bodies, however their pleon and telson region is proportionally longer (Fig. 7, right plot). There is a reconstruction of the dorsal view of Protamphisopus wianamattensis in Nicholls (1942). Yet, due to the incompleteness of this reconstruction, we decided not to include measurements from it. However, it can be assumed that Protamphisopus wianamattensis falls within the same range as the included extant specimens (we tried to cover as much of the morphological diversity as possible).

All of the Triassic specimens fall within the range of extant forms of Isopoda and do not plot in areas that are dominated by a single ingroup of Isopoda. Consequently, no indications of relationships can be drawn from this analysis. The posterior body region of Gelrincola winterswijkensis sp. nov. is wide compared to the majority of measured specimens. This might be a preservational artefact, as the specimen is a compression fossil and the lateral aspect of the anterior body part (coxal plates) may have behaved differently from the lateral aspect of the posterior body region (tergopleura of the pleon). The relative width of the complete body in Discosalaputium aschauerorum sp. nov. is quite extreme. This is partly also a result of the missing head in the holotype (measurements were performed, assuming a short head that does not extend beyond the anteriormost part of the first pereon tergite). In Isopodites triasinus the number of free pleon tergites is strongly reduced (likely only one free pleon tergite). This results in a comparably short posterior body region, though it is by far not as short as in Anthuroidea. The species Obtusotelson summesbergeri sp. nov. was not included in this analysis because, due to the preservation of the holotype, it was not possible to reconstruct the aspects by which the other species are compared.
Discussion

Diagnoses

It is very likely, that the herein provided diagnoses are not sufficient to distinguish the herein described species from all known fossil and extant species. However, they are sufficient to separate them from all other Triassic species and also from the Palaeozoic species. There is an age gap between the youngest herein described species and the beginning of the Jurassic of at least 34.1 million years (Fig. 2). This time interval is large enough to assume that, if there were fossils with a very similar morphology in the Jurassic, the herein described species are not conspecific to any already described species.

Interpretation of Anhelkocephalon Handlirschi Bill, 1914

From the same locality as Palaega pumila, another species has been described, Anhelkocephalon handlirschi Bill, 1914, also interpreted as a representative of Isopoda. The holotype and a single paratype (both have never been figured) have presumably been destroyed during a fire (Schwebel et al. 1983). Further material from the same site, that matched the diagnosis given by Bill (1914), has been assigned as the neotype and paraneotype of the species by Schwebel et al. (1983). The morphology that is apparent in the two available types does not provide convincing features that would allow for an interpretation as a representative of Isopoda. The character states listed by Schwebel et al. (1983) for their systematic interpretation can hardly be considered autapomorphic for Isopoda. Brandt et al. (1999) raised doubts about the interpretation of Anhelkocephalon handlirschi as a representative of Isopoda. In our view, there are features in the posterior part of the body that strongly resemble that of representatives of the enigmatic group Cycloida rather than those of Isopoda (cf. drawings and reconstructions in Dzik 2008). Further examination of the types will be needed to further compare the fossils of Anhelkocephalon handlirschi to Cycloida.

Interpretation of Ferrensicus magransi Calzada & Urquiola, 1994

Parts of the reconstruction and the subsequent systematic interpretation of Ferrensicus magransi appear doubtful, as there are discrepancies between the reconstruction drawing and a photograph provided in the holotype database of the corresponding museum collection (Institut Cartogràfic i Geològic de Catalunya 2018, collection number 52506). A redescription and restudy of Ferrensicus magransi could be interesting from a systematic viewpoint, as Ferrensicus magransi is suggested to be a sister-taxon to the group Archaeoniscus (Calzada & Urquiola 1994, Calzada et al. 2011); yet this interpretation could be the result of arbitrary systematic practice (e.g. arbitrary allocation of diagnostic characters to species and monotypic taxa) that is persisting throughout the literature.

Uropods

There has been much dispute about the uropod morphology in the ground pattern of Isopoda. Wägele (1989, 1994) reconstructed the ground pattern of Isopoda with flat uropod endo- and exopods. In contrast, Brusca & Wilson (1991) reconstructed the ground pattern of Isopoda with styliform uropod endo- and exopods. A comparison with suitable outgroups (representatives of Tanaidacea and Cumacea have styliform uropod endo- and exopods) suggests that styliform uropods have been present in the stem species of Isopoda (Kutschera et al. 2012). This is also consistent with the fossil record – the oldest fossils of the group have styliform uropod endo- and exopods (Schram 1970, Racheboeuf et al. 2009).

The reconstruction of the ground pattern of Isopoda for this character is of major concern for the interpretation of fossils of the group. If styliform uropod endo- and exopods are reconstructed for the ground pattern of Isopoda, then the most parsimonious conclusion is that the styliform uropod endo- and exopods of many lineages (e.g. Phreatocteida and Asellota) are plesiomorphic and the flat uropod endo- and exopods evolved within Scutocoxifera (Wilson 1996, cf. Dreyer & Wägele 2002). Thus, fossils of Isopoda with flat uropods could be interpreted as scutocoxiferosans, even if the coxal plates are not preserved or not distinctly separated from the tergite.

Both Scutocoxifera and its ingroup Cymothoida have a fossil record older than the herein presented fossils. The earliest record of scutocoxiferosans is from the Early Permian (Mezzalira & Martins-Neto 1992, Martins-Neto 2001). The earliest record of a representative of Cymothoida is Palaega pumila (Gall & Grauvogel 1971), which is likely a bit older than Gelrincola winterswijiki sp. nov. (see Fig. 2 and ‘Geological setting of the Winterswijk locality’).

Above, we mentioned the possibility that Discosalaputium aschauerorum sp. nov. might be a representative of Sphaeromatidea. If this is true, Discosalaputium aschauerorum sp. nov. would indeed be the earliest fossil record of this group. Yet, to further support this assumption, the examination of further specimens is needed. Especially, the structure of the uropods could be helpful for a more precise systematic interpretation.
Decrease of phreatoicideans

The relative abundance of phreatoicideans compared to representatives of its sistergroup (all remaining lineages of Isopoda) has rapidly decreased since the Carboniferous. In the Carboniferous both of the two formally described species are phreatoicideans (100% phreatoicideans) (Schram 1970, Racheboeuf et al. 2009). In the Permian three out of five formally described species are phreatoicideans (60% phreatoicideans) (Schlotheim 1820, Schauroth 1854, Kirkby 1857, Geinitz 1861, Glaessner & Malzahn 1962, Mezzalira & Martins-Neto 1992, Martins-Neto 2001). In the Triassic two out of twelve formally described species (and two not formally described species, including the herein described species) are phreatoicideans (16.7% phreatoicideans) (Picard 1858, Chilton 1918, Gall & Grauvogel 1971, Basso & Tintori 1994, Wilson & Edcombe 2003, Fu et al. 2010, Schöllmann et al. 2015, Selden et al. 2016). In the Jurassic there are at least 35 formally described species of Isopoda which are not representatives of Phreatoicidae (Meyer & Münster 1840; Milne Edwards 1843; Westwood 1854; Ammon 1882; Woodward 1890; Carter 1889; Stolley 1910; Remes 1912; Van Straelen 1928; Reiff 1936; Frentzen 1937; Bachmayer 1955; Radawanski 1995; Grant-Mackie et al. 1996; Polz 1998, 2005a, b; Guinot et al. 2005; Polz et al. 2006; Etter 2014; Jones et al. 2014; Gašparič et al. 2015; Keupp & Mahlow 2017). This is in contrast to one, not formally described, phreatoicidean from Antarctica (Borns et al. 1972) (0.3% phreatoicideans). Also, phreatoicideans disappeared from marine sediments and have their youngest marine record in the Middle Triassic (Fu et al. 2010) and the youngest (freshwater) record in the Jurassic (Borns et al. 1972).

The proportional decrease in phreatoicideans does not only reflect the systematic aspect but also a morphological aspect, as phreatoicideans are rather limited in their body shape (cf. figures in Nicholls 1942, 1943 and Fig. 7), whereas within its sistergroup a wide variety of body shapes evolved (e.g. figures in Brandt & Poore 2003 and Fig. 7).

Systematic bias towards scutocoxiferans in the fossil record

It is noteworthy that all of the herein described species, and all but one previously described Triassic species, are scutocoxiferans. The one other species has been interpreted as a representative of Asellota (Selden et al. 2016). The Triassic record of Asellota (Selden et al. 2016) is also the only formally described or figured one of the group, up to date (see personal communication in Selden et al. 2016 for further putative occurrences). The scarcity of fossils of Isopoda that are neither representatives of Phreatoicidae nor Scutocoxifera might be an indication that they lived in areas which are not ideal for the fossilisation of their remains (e.g. deep sea, fluviatile freshwater environments, etc.) or that their preservation potential is poor (see also discussion in Selden et al. 2016).

Conclusions

Three new species of Isopoda can be added to the seven already formally described species of Isopoda from the Triassic. All of the here described species are representatives of Scutocoxifera and one of them – Gelrincola winterswijiki sp. nov. – is also a representative of the scutocoxiferan ingroup Cymothoida. These fossils substantially increase our knowledge about the morphological diversity of isopods in the Triassic. The herein described species Discosalaputium aschauerorum sp. nov. adds a further disc-shaped form with strongly reduced pleon to the Triassic fossil record and might be the oldest fossil record of Sphaeromatidea; however, the affinity is partly ambiguous and the same overall-morphology could also have evolved in other lineages.

There are still large stratigraphic gaps for the fossil record of Isopoda within the Triassic (e.g. in the Early Triassic and in the Late Triassic during the Carnian and the Norian and in the Rhaetian). Also, certain body shapes are still lacking in the Triassic fossil record, that occur later on in the Jurassic, such as slender, not laterally compressed isopods (e.g. Urda rostrata Münster in Meyer & Münster, 1940). Perhaps future discoveries of Triassic isopod fossils will reveal new body shapes. Furthermore, it will be interesting to see if future findings might be able to close the aforementioned stratigraphic gap.

Acknowledgements

This study would not have been possible without Karl and Birgitt Aschauer (Waidhofen an der Ybbs, Austria) who gave access to two of the specimens, which in the course of this study have been donated to the collection of the Natural History Museum Vienna, and provided profound information about the geological context of their findings. We are grateful to Marie K. Hörnig (University of Greifswald) who acquired microscopic images for two of the herein presented specimens. We thank Matúš Hyžný (Comenius University Bratislava) for sharing his private literature database with one of the authors (MS). We thank Carolin Haug and J. Matthias Starck (both LMU Munich) for their long-standing support. In addition, Sibeleo Europe MineralsPlus Winterswijk, and its plant manager Gerard ten Dolle are to be thanked for their invaluable support. Furthermore, the members of the Working Group Muschelkalk Winterswijk are to be thanked for their continued effort in searching for, studying and teaching about the fossils from the Winterswijk quarry. We thank Rodney M. Feldmann (Kent State University) and one anonymous reviewer,
for their helpful comments on the manuscript. The project was kindly funded by the Deutsche Forschungsgemeinschaft (DFG Ha 6300/3-2). Joachim Haug is kindly funded by the Volkswagen Foundation (Lichtenberg professorship).

References

ABEL, O. 1906. Fossile Flagfische. 100 pp. Privately published, Wien. DOI 10.5962/bhl.title.61007

AMMON, L. von 1882. Ein Beitrag zur Kenntnis der fossilen Asseln. Sitzungsberichte der Mathemathisch-Physikalischen Classe der Königlichen Bayerischen Akademie der Wissenschaften 12, 507–511.

AX, P. 2000. The Phylogenetic System of the Metazoa. Multicellular Animals. Vol. 1. 154 pp. Springer-Verlag, Berlin. DOI 10.1007/978-3-662-10396-8_44

BACHMAYER, F. 1995. Die fossilen Asseln aus den Oberguruschichten von Ernstrubrn in Niederösterreich und von Stramberg in Mähren. Sitzungsberichte der Österreichischen Akademie der Wissenschaften 164(1), 255–273. DOI 10.1007/978-3-662-26256-6_1

BASSO, D. & TINTORI, A. 1994. New Triassic isopod crustaceans from Northern Italy. Paleontology 37(4), 801–810.

BETHOUX, O. 2009. A new triadotomopomorph insect from the Anisian (Middle Triassic), Buntsandstein facies, Spain. Journal of Iberian Geology 35(2), 179–184.

BILL, P.C. 1914. Ueber Crustaceen aus dem Voltsziensandstein des Elsass. Mitteilungen der Geologischen Landesanstalt von Elsass-Lothringen 8(3), 289–338.

BIRSTEIN, Y.A. 1962. Palaeophasmatoco sojanensis i nekotorey vpovory filogenii i zoogeografi ravnogobiikh rakoobraznikh. Paleontologicheskii Zhurnal 3, 65–80.

BORKHATRIA, R., AIGNER, T. & PIPPING, K.J.C.P. 2006. An unusual, muddy, epeiric carbonate reservoir: The Lower Muschelkalk (Middle Triassic) of the Netherlands. AAPG Bulletin 90(1), 61–89. DOI 10.1306/08030504124

BORS, H.W., HALL, B.A., BALL, H.W. & BROOKS, H.K. 1972. Mawson Tillite, Victoria Land, East Antarctica: reinvestigation continued. Antarctic Journal of the United States 7(4), 106–107.

BOYCO, C.B. & WOLF, C. 2014. Isopoda and Tanaidacea, 210–212. In Martin, J.W., OLESEN, J. & HOEG, J.T. (eds) Atlas of Crustacean Larvae. Johns Hopkins University Press, Baltimore.

BRANDT, A. & POORE, G.C. 2003. Higher classification of the flabelliferan and related Isopoda based on a reappraisal of relationships. Invertebrate Systematics 17(6), 893–923. DOI 10.1071/IS02032

BRANDT, A., CRANE, J.A., POLZ, H. & THOMSON, M.R.A. 1999. Late Jurassic tethyan ancestry of Recent southern high-latitude marine isopods (Crustacea, Malacostraca). Palaeontology 42(4), 663–675. DOI 10.1111/1475-4983.00090

BROLY, P., DEVILLE, P. & MAILLET, S. 2013. The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). Evolutionary Ecology 27(3), 461–476. DOI 10.1007/s10682-012-9625-8

BROLY, P., MAILLET, S. & ROSS, A.J. 2015. The first terrestrial isopod (Crustacea: Isopoda: Oniscidea) from Cretaceous Burmese amber of Myanmar. Cretaceous Research 55, 220–228. DOI 10.1016/j.cretres.2015.02.012

BRUCE, N.L. 1986. Cirolanidae (Crustacea: Isopoda) of Australia. Records of the Australian Museum, Supplement 6, 1–239. DOI 10.3853/j.0812-7387.6.1986.98

BRUCE, N.L. 1994. The Cassidininae Hansen, 1905 (Crustacea: Isopoda: Sphaeromatidae) of Australia. Journal of Natural History 28(5), 1077–1173. DOI 10.1080/00222939400770571

BRUSCA, R.C. & WILSON, G.D.F. 1991. A phylogenetic analysis of the Isopoda with some classificatory recommendations. Memoirs of the Queensland Museum 31, 143–204.

CALMAN, W.T. 1904. XVIII.—On the classification of the Crustacea Malacostraca. Annales and Magazine of Natural History 13(74), 144–158. DOI 10.1080/00222930408562451

CALVET, F. & TUCKER, M.E. 1995. Mud-mounds with reefer caps in the Upper Muschelkalk (Triassic), Eastern Spain, 309–333. In MONTY, C.L.V., BOSENCE, D.W.J., BRIDGES, P.H. & PRATT, B.R. (eds) Carbonate mud-mounds. Blackwell Publishing Ltd, Oxford, UK. DOI 10.1002/9781444304114.ch10

CALZADA, S. & URQUJOLO, M.M. 1994. Isópodos del Triásico de Alcoy – Monral. Batalleria 4, 37–40.

CALZADA, S., SENDINGO, C. & CORBACHO, J. 2011. Possible inclusion en el género triásico Ferrencias (Isopoda) de la Península Ibérica de una especie del Cretácico japonés. Bulletin de la Société d’histoire naturelle de Toulouse 147, 43–45.

CARTER, J. 1889. On fossil isopods, with a description of a new species. The Geological Magazine. New Series 3(6), 193–196. DOI 10.1017/S0016756800189083

CHAUD, A. & PETRI, S. 2015. The Tatuí Formation (Early Permian, Paraná Basin), Brazil: Paleontology and paleoenvironmental considerations. Earth Sciences Research Journal 19(2), 158–159. DOI 10.15446/esrj.v19n2.50245

CHILTON, C. 1918. A fossil isopod belonging to the fresh-water genus Phreaticus. Proceedings of the Royal Society of New South Wales 51, 365–388.

COHEN, K.M., FINNEY, S.C., GIBBARD, P.L. & FAN, J.-X. 2013, updated. The ICS International Chronostratigraphic Chart. Episodes 36, 199–204. DOI 10.1884-espiiius/2013/v363/002

DANIEL, G., NILSSON, T. & CRAGG, S. 1991. Limnoria lignorum ingest bacterial and fungal degraded wood. Holz als Roh- und Werkstoff 49(12), 488–490. DOI 10.1007/BF02619480

DIEBRECH, C. 2001. Vertebrate track bed stratigraphy of the Röt and basal Lower Muschelkalk (Anisian) of Winterswijk (East Netherlands). Geologie en Mijnbouw 80(2), 31–39. DOI 10.1017/S00222939400770571

DOKUZHAeva, L.A., SUMMESBERGER, H. & MUTVEI, H. 2006. An unique Upper Triassic coleoid from the Austrian Alps reveals pro-ostracum and mandible ultrastructure. Acta Universitatis Carolinae. Geologica 49, 69–82.

DOKUZHAeva, L.A., SUMMESBERGER, H. & MUTVEI, H. 2007b. The Preservation of Body Tissues, Shell, and Mandibles in the ceratitid ammonoid Austrotrachyceras (Late Triassic), Austria, 221–238. In LANDMAN, N.H. (ed.) Cephalopods Present and Past: New Insights and Fresh Perspectives. Springer, Dordrecht. DOI 10.1007/978-1-4020-6806-5_11
preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. *Proceedings of the Royal Society B: Biological Sciences* 278(1716), 2274–2282. DOI 10.1098/rspb.2010.2235

Institut Cartogràfic i Geològic de Catalunya. 2018. Base de dades d’holotips. http://www.icgc.cat/Administracio-i-empresa/Eines/Bases-de-dades-i-catalegs/Base-de-dades-d-holotips (accessed 10.02.2020)

Jones, W.T., Feldmann, R.M. & Garassino, A. 2014. Three new isopod species and a new occurrence of the tanaidacean *Niveotanais brunnensis* Polz, 2005 from the Jurassic Plattenkalk beds of Monte Fallano, Italy. *Journal of Crustacean Biology* 34(6), 739–753. DOI 10.1163/1937240X-00002282

Kaneko, K. & Omori, M. 2003. Diel and tidal migrations and predator-prey relationships of macrobenthic animals in intertidal sandy beaches of Sendai Bay, Northern Japan. *Benthos Research* 58(1), 43–49. DOI 10.5179/benthos1996.58.1_43

Kensley, B. & Schotte, M. 1987. New records of isopod crustacean from the Caribbean, the Florida Keys, and the Bahamas. *Proceedings of the Biological Society of Washington* 100(1), 216–247. DOI 10.1061/0198-0254(87)90335-9

Keupp, H. & Mahlow, K. 2017. Eine neue Isopoden-Art (*Palaega johannschoberti* n. sp.) aus dem Amaltheenton (Unter-Jura, Ober-Pliensbachium) von Buttenheim in Oberfranken. *Zitteliana* 89, 161–170.

Kim, J., Lee, W. & Karanovic, I. 2017. A new species of *Microcharon* from marine interstitial waters, Shizuoka, Japan (Isopoda, Lepidocharontidae). *ZooKeys* 680, 13–31. DOI 10.3897/zookeys.680.12048

Kirkby, J.W. 1857. On some Permian Fossils from Durham. *Quarterly Journal of the Geological Society* 13(1–2), 213–218. DOI 10.1144/GSL.JGS.1857.013.01-02.33

Klein, N. 2012. Postcranial morphology and growth of the pachypleurosaur *Anarosaurus heterodontus* (Sauropterygia) from the Lower Muschelkalk of Winterswijk, The Netherlands. *Paläontologische Zeitschrift* 86(4), 389–408. DOI 10.1007/s12542-012-0137-1

Klein, N., Voeten, D.F., Lankamp, J., Bleeker, R., Sichelschmidt, O.J., Liebrand, M., Nieuw, D.C. & Sander, P.M. 2015. Postcranial material of *Nothosaurus marchicus* from the Lower Muschelkalk (Anisian) of Winterswijk, The Netherlands, with remarks on swimming styles and taphonomy. *Paläontologische Zeitschrift* 89(4), 961–981. DOI 10.1007/s12542-015-0273-5

Kloppmaker, A.A. & Fraade, R.H. 2011. The oldest (Middle Triassic, Anisian) lobsters from the Netherlands: taxonomy, taphonomy, paleoenvironment, and paleoecology. *Palaeontologia Electronica*, art. 14.1.1A, 1–16.

Knaust, D. 2013. The ichnogenus *Rhizocorallium*: classification, trace makers, paleoenvironments and evolution. *Earth-Science Reviews* 126, 1–47. DOI 10.1016/j.earscirev.2013.04.007

Knaust, D., Uchman, A. & Hagedorn, H. 2016. The probable isopod burrow *Sinusichmus seilacheri* isp. n. from the Middle Triassic of Germany: An example of behavioral convergence. *Ichnos* 23(1–2), 138–146.DOI 10.1080/10420940.2015.1132211

Kutscher, V., Maas, A. & Waloszek, D. 2012. Uropods of Eumalacostraca (Crustacea s.l.): Malacostraca) and their phylogenetic significance. *Arthropod Systematics & Phylogeny* 70(3), 181–206.

Latreille, P.A. 1817. Le régime animal distribué d’après son organisation: pour servir de base à l’histoire naturelle des animaux et d’introduction a l’anatomie comparée. 653 pp. Chez Déterville, Paris.

Lins, L.S.F., Ho, S.Y.W., Wilson, G.D.F. & Lo, N. 2012. Evidence for Permio-Triassic colonization of the deep sea by isopods. *Biologia Letters* 8(6), 979–982. DOI 10.1098/rsbl.2012.0774

Lowry, J. & Dempsey, K. 2006. The giant deep-sea scavenger genus *Bathyergus* (*Crustacea, Isopoda, Ciliomorpha*) in the Indo-West Pacific, 163–192. *In Richer de Forges, B. & Justine, J.L. (eds) Tropical Deep-Sea Benthos. Paris, Mémoires du Muséum national d’Histoire naturelle, 193.

Mader, D. 1984. Charakteristische Fossilien des mitteleuropäischen Buntsandsteins. *Naturwissenschaften* 71, 69–78. DOI 10.1007/BF01156351

Martins-Neto, R.G. 2001. Review of some Crustacea (Isopoda and Decapoda) from Brazilian deposits (Paleozoic, Mesozoic and Cenozoic) with descriptions of new taxa. *Acta Geologica Leopoldensia* 24(52/53), 237–254.

Matsui, T., Moriyama, T. & Kato, R. 2011. Burrow plasticity in the deep-sea Isopod *Bathynous doederleini* (Crustacea: Isopoda: Ciliomorpha). *Zoological Science* 28(12), 863–868. DOI 10.2108/zsj.28.28863

Maxwell, E.E., Diependaal, H., Winkelhorst, H., Goris, G. & Klein, N. 2016. A new species of *Saurichthys* (Actinopterygii: Saurichthyidae) from the Middle Triassic of Winterswijk, The Netherlands. *Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen* 280(2), 119–134. DOI 10.1127/njpa/2016/0569

Metz, M., Haug, C. & Haug, J.T. 2015. Autofluorescence microscopy as a method for the documentation of cephalopod paralarvae and juveniles. *Ruthenica* 25(4), 105–116.

**Meyer, H., Von & Mönster, G. zu. 1840. *Untersuchungen über die Formen der Artenschichtung.* 152 pp. Buchner’sche Buchhandlung, Bayreuth.

Mezzalira, S. & Martins-Neto, R.G. 1992. Novos crustáceos paleozócios do estado de Sao Paulo, com descricao de novos taxa. *Acta Geologica Leopoldensia* 36(15), 49–66.

Milne Edwards, H. 1843. Note sur deux Crustacés fossiles de l’ordre des isopodes. *Annales des Sciences Naturelles (Zoologie)* 20, 326–329.

Nagler, C., Hyžný, M. & Haug, J.T. 2017. 168 million years old “marine lice” and the evolution of parasitism within isopods. *BMC Evolutionary Biology* 17(1), 76. DOI 10.1186/s12862-017-0915-1

Nicholls, G.E. 1942. The Phreatoicoidea. Part I – The Amphipodidae. *Papers and Proceedings of the Royal Society of Tasmania*, 1–146.

Nicholls, G.E. 1943. The Phreatoicoidea. Part II. – The Phreatoicoidea. *Papers and Proceedings of the Royal Society of Tasmania*, 1–158.

Ogg, J.G. 2012. Triassic, 681–730. *In Gradstein, F.M., Ogg, J.G., Schmitz, M.D. & Ogg, G (eds) The Geologic Time Scale*. Elsevier. DOI 10.1016/B978-0-444-59425-9.00025-1
OOSTERINK, H.W. 1986. Winterswijk, geologie deel II: De Trias-periode (geologie, mineralen en fossielen). Wetenschappelijke Mededelingen van de Koninklijke Nederlandse Natuurhistorische Vereniging 178, 1–120.

OOSTERINK, H.W. 2001. Rugvinstekels van Acrodis (kraakbeens) uit de Winterswijkse Onder-Muschelkalk. Groendboor & Hamer 4, 16–18.

OOSTERINK, H.W. & WINKELHORST, H. 2013. Probable remains of jellyfish (Cnidaria, Scyphozoa) from the lower Middle Triassic (Anisian) of Winterswijk, eastern Netherlands. Netherlands Journal of Geosciences 92(1), 61–67. DOI 10.1017/s0016774600000287

PICARD, E. 1858. Über den Keuper bei Schlotheim in Thüringen und seine Versteinerungen. Zeitschrift für die gesamten Naturwissenschaften 11, 425–436.

POLZ, H. 1998. Schwieglerella strobli gen. nov. sp. nov. (Crustacea: Isopoda: Sphaeromatidea), eine Meeres-Assel aus den Solnhofener Plattenkalke. Arch. Pol. Sci. 36(2), 19–28.

POLZ, H. 2005a. Niveotanais brunensis g. nov. sp. nov. (Crustacea: Tanaidacea: Anthracocaridomorpha) eine fossile Scherenassel aus den Plattenkalke von Brunn. Archaeopechys 23, 57–66.

POLZ, H. 2005b. Zwei neue Asselarten (Crustacea: Isopoda: Scutocoxifera) aus den Plattenkalke von Brunn (Oberkimmeridgium, Mittlere Frankenalb). Arch. Pol. Sci. 36(2), 67–81.

POLZ, H., SCHWEGER, G. & MASCH, M. 2006. Two new species of Palaea (Isopoda: Cymothoida: Cirolanidae) from the Upper Jurassic of the Swabian Alb, South Germany. Stuttgarter Beiträge zur Naturkunde B 362, 1–17.

POTT, C. & KRINGS, M. 2010. Gymnosperme foliage from the Upper Triassic of Lunz, Lower Austria: an annotated check list and identification key. Geo.Alp 7, 19–38.

RACHBEUF, P.R., SCHRAM, F.R. & VIDAL, M. 2009. New malacostracan Crustacea from the Carboniferous (Stephanian) Lagerstätte of Montceau-les-Mines, France. Journal of Paleontology 83(4), 624–629. DOI 10.1666/08-171R.1

RADAWSKI, A.J. 1995. A unique, ‘trilobite-like’ fossil – the isopod Cyclopsphaeroma malaglostomum sp.n. from the Lower Kimmeridgian of the Holy Cross Mountains, Central Poland. Acta Geologica Polonica 45(1–2), 9–25.

REEF, E. 1936. Isopoden aus dem Lias Delta (Amaltheenschichten) Schwabens. Paläontologische Zeitschrift 18(1–2), 49–90. DOI 10.1007/BF03041710

REMÉS, M. 1912. Uida moravica n. sp. z doggeru Chhibū. Acta Musei Moraviae Scientiae biologicae 12, 173–177.

RICHARDSON, H. 1905. Monograph on the isopods of North America. Bulletin of the United States National Museum. 727 pp. Government Print Office, Washington.

DOI 10.5479/si.03629236.54.i

SALEMMA, H. 1987. Herbivory and microhabitat preferences of Idotea spp. (Isopoda) in the northern Baltic Sea. Ophelia 27(1), 1–15. DOI 10.1080/000785236.1987.10422007

SCHÄDEL, M., PERRICHOT, V. & HAUG, J.T. 2019. Exceptionally preserved cryptoniscium larvae – morphological details of rare isopodan crustaceans from French Cretaceous Vendean amber. Palaeontologia Electronica 22.3.71, 1–46. DOI 10.26879/977

SCHAURRTH, K.F. von 1854. Ein Beitrag zur Palaeontologie des deutschen Zechsteingebirges. Zeitschrift der Deutschen Geologischen Gesellschaft 6, 539–577.

SCHLOTHEM, E.F. von 1820. Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier- und Pflanzenreiche der Vorwelt. 619 pp. Becker’sche Buchhandlung, Gotha.

SCHÖLLMANN, L., HAGDORN, H. & HAUSCHKE, N. 2015. A marine isopod (Malacostraca) from the Upper Muschelkalk (Middle Triassic) of the Hohenlohe County (Southwest Germany). Geologica Saxonica 61(1), 95–103.

SCHOTTE, M. & KENSLEY, B. 2005. New species and records of Flabellifera from the Indian Ocean (Crustacea: Peracarida: Isopoda). Journal of Natural History 39(16), 1211–1282. DOI 10.1080/00222930400005757

SCHRAM, F.R. 1970. Isopod from the Pennsylvanian of Illinois. Science 169(3948), 854–855. DOI 10.1126/science.169.3948.854

SCHRAM, F.R. 1980. Miscellaneous Late Paleozoic Malacostraca of the Soviet Union. Journal of Paleontology 54(3), 542–547.

SCHULP, A.S., BLEEKER, R.W., HAARHUIS, A., VAN SPORSEN, E., DURING, M.A., GORIS, G., KASKES, P., MATTEMAN, Y., WINKELHORST, W. & WINKELHORST, H. 2017. A tetrapod swimming traceway from the Triassic of Winterswijk, the Netherlands. Netherlands Journal of Geosciences 96(3), 273–277. DOI 10.1017/njg.2017.13

SCHREIBEL, L., GALL, J.C. & GRAUVOGEL-STAMM, L. 1983. Faune du Buntsandstein V. –Description du Néotyp ďAnhelikocephalon handlirschi Bill (1914), crustacé isopode du Trias inférieur des Vosges (France). Annales de Paléontologie 69, 307–316.

SELDEN, P.A., WILSON, G.D.F., SIMONETTO, L. & DALLA VECCHIA, F.M. 2016. First fossil asellote (Isopoda: Asellota), from the Upper Triassic (Norian) of the Carnic Prealps (Friuli, northeastern Italy). Journal of Crustacean Biology 36(1), 68–86. DOI 10.1163/1937240X-0002387

SMIT, N.J. & DAVIES, A.J. 2004. The curious life-style of the parasitic stages of gnathiid Isopods. Advances in Parasitology 58, 289–391. DOI 10.1016/S0065-308X(04)58005-3

STOLLEY, E. 1910. Über zwei neue Isopoden aus norddeutschem Mesozoikum. Jahresbericht der Naturhistorischen Gesellschaft zu Hannover 60, 191–216.

STUR, D. 1887. Jahressitzung am 18. Jänner 1887. Verhandlungen der kaiserlich-königlichen Geologischen Reichsanstalt 1, 1–40.

TELLER, F.J. 1891. Über den Schädel eines Fossilen dipnoers Ceratodus sturii nov. spec. aus den Schichten der oberen Trias der Nordalpen: Mit 4 lithographirten Tafeln und 8 Zinkotypien im Text. Abhandlungen der kaiserlich-königlichen geologischen Reichsanstalt 15(3), 1–38.

VAN DER WAL, S., SMIT, N.J. & HADFIELD, K.A. 2019. Review of the fish parasitic genus Elthusa Schiodte & Meinert, 1884 (Crustacea, Isopoda, Cymothoidae) from South Africa, including the description of three new species. ZooKeys 841, 1–37. DOI 10.3897/zookeys.841.32364

VAN ELDIK, T., GORIS, G., HAARHUIS, A., LANKAMP, J., WINKELHORST, H., REIJER, J., NEL, A. & WAPPLEER, T. 2017. New fossil insects from the Anisian (Lower to Middle Muschelkalk) from
the Central European Basin (Germany and The Netherlands).

PalZ 9(2), 185–194. DOI 10.1007/s12542-017-0343-y

Van Straelen, V. 1928. Contribution a l’étude des Isopodes

Méso- et Cénozoïques. _Mémoires de l’Académie Impériale et Royale des Sciences et Belles-Lettres de Bruxelles_ 9, 1–59.

Wägele, J.-W. 1981. Zur Phyllogenie des Anthuridea (Crustacea, Isopoda). _Zoologica_ 132, 1–127.

Wägele, J.-W. 1989. Evolution und phylogenetisches System

der Isopoda: Stand der Forschung und neue Erkenntnisse. _Zoologica_ 140, 1–262.

Wägele, J.W. 1994. Review of methodological problems of ‘Computer cladistics’ exemplified with a case study on isopod phylogeny (Crustacea: Isopoda). _Journal of Zoological Systematics and Evolutionary Research_ 32(2), 81–107.

DOI 10.1111/j.1439-0469.1994.tb00474.x

Walossek, D. 1999. On the Cambrian diversity of Crustacea, 3–27. In _Schram, F.R. & Vaupel Klein, J.C. (eds) Crustaceans and the Biodiversity Crisis, Proceedings of the Fourth International Crustacean Congress, Amsterdam, The Netherlands, July 20–24_, 1998, vol. 1. Brill Academic Publishers, Leiden, The Netherlands.

Appendix

Translation of the original description of _Isopodites triasinus_ Picard, 1858: “Before I close this communication, I have to mention an animal belonging to the family of crustaceans [‘Kruster’ in the original], which will not of no interest with respect to the scarcity of this class of animal. _Sphaeroma triasina_ nov. sp. fig. 11. This interesting finding from the limestone banks of our Keuper transitions, which I provisionally attributed to the pill-bugs, is located on the shell of _Ammonites nodosus_. The body organisation and namely the structure of the antennae points toward a placement within the pill-bugs – which is why decided to do so. The characterisation I will give in the following.

Antennae: two pairs of which the longer ones point to the front and the shorter ones to the rear. The front antennae consist of two pairs, a peduncle-like proximal element and a flagellum with multiple elements, which gave the flagellum movability. The length of this large antennae is 4 mm of which one half is made up by the peduncle and the other half is made up by the flagellum. The length of the complete body is 13 mm and the width is less than 4 mm. The body is vaulted except for the shield-like tail shield [= pleotelson], which consists of a single piece and is ornamented by a median carina. The head shield is pushed in, as are the body shields [= tergites] but like those it is completely preserved; of the latter [= tergites] 7 are preserved. Aside from those and the tail shields [= pleotelson and uropods], which probably acted like a fin, it seems that there have been one or two rings, which belong to the latter [probably the pleotelson is meant here]. However, those are so heavily damaged that they cannot be discerned properly. Of the lateral legs there are only two, barely, visible on the left side. While the posterior legs [= uropods] are scissor-like forked and are located to both sides of the tail shield [= pleotelson]. One, a bit longer second distal element pair [likely a posterior pereopod] has been present of which there is a rudiment visible on the left side. On the right side nothing of this kind is visible.”

Supplementary File 1. Graphical representation of the measurements used for Fig. 7 exemplified on a drawing of _Cirolana harfordi_ (based on a photograph, © Peter J. Bryant). Red rectangles represent the measurements performed on the literature specimens. Upper rectangle, length and width of head and pereon combined; lower rectangle, length and width of head and pleon combined.

Supplementary File 2. Measurements used for Fig. 7.

Supplementary File 3. R code used to create Fig. 7.