PDK1 plays a vital role on hematopoietic stem cell function

Tianyuan Hu1,4, Cong Li1,5, Le Wang1, Yingchi Zhang1, Luyun Peng1, Hui Cheng1, Yajing Chu1, Weili Wang1, Hideo Ema1, Yingdai Gao1, Zhenyu Ju2, Zhongzhou Yang3, Xiaomin Wang1, Tao Cheng1 & Weiping Yuan1

3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a pivotal regulator in the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway that have been shown to play key roles in the functional development of B and T cells via activation of AGC protein kinases during hematopoiesis. However, the role of PDK1 in HSCs has not been fully defined. Here we specifically deleted the PDK1 gene in the hematopoietic system and found that PDK1-deficient HSCs exhibited impaired function and defective lineage commitment abilities. Lack of PDK1 caused HSCs to be less quiescent and to produce a higher number of phenotypic HSCs and fewer progenitors. PDK1-deficient HSCs were also unable to reconstitute the hematopoietic system. Notably, HSC function was more dependent on PDK1 than on mTORC2, which indicates that PDK1 plays a dominant role in the Akt-mediated regulation of HSC function. PDK1-deficient HSCs also exhibited reduced ROS levels, and treatment of PDK1-deficient HSCs with L-butathioninesulfoximine in vitro elevated the low ROS level and promoted colony formation. Therefore, PDK1 appears to contribute to HSC function partially via regulating ROS levels.

Hematopoietic stem cells (HSCs) exist as a rare self-renewing population that gives rise to hematopoietic progenitor and mature cells. HSCs are tightly regulated to maintain the balance between self-renewal, proliferation and differentiation in response to environmental cues. The elucidation of the mechanisms of HSC function is valuable to fully understand the hematopoietic process and HSC-related clinical applications.

The PI3K-Akt signaling pathway plays essential roles in the regulation of hematopoiesis. Extracellular signals activate PI3K, which generates the second messenger phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) for subsequent action. The downstream Akt is then recruited to the plasma membrane and activated by phosphorylation at its S473 and T308 residues by mTORC2 and 3-phosphoinositide-dependent protein kinase 1 (PDK1), respectively. Activated Akt regulates multiple biological processes, including cell survival, proliferation and protein synthesis via downstream effectors. Both mTORC2 and PDK1 are likely required for full Akt activation. Previous study found that down-regulated PI3K activity impaired the reconstitution of HSCs. Furthermore, deletion of PTEN in hematopoietic cells depleted HSC pool by promoting its differentiation and proliferation. The downstream molecules also involved in the regulation of HSC function. For example, FoxO family proteins control HSC quiescence by regulating ROS levels. Akt, a central factor in this pathway, maintains HSC function also by modulating ROS levels.

PDK1 is critical for cell survival and development in many species, including yeast, C. elegans and Drosophila. PDK1 is also essential for murine embryonic development. Mice lacking the PDK1 gene die at embryonic day 9.5 and exhibit abnormalities in various tissues. PDK1 hypomorphic mice exhibit smaller bodies and organ volumes, and conditional deletion of PDK1 in muscle cells results in cardiac defects and a shortened lifespan. T cell stage-specific deletion of PDK1 causes a T cell differentiation blockade and a significant decrease in T cell numbers in the thymus at the DN4 stage. PDK1 is also required for B cell development and survival since the ablation of PDK1 in the hematopoietic system causes stalled B cell development and impaired B cell VDJ

1 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China. 2Institute of Ageing, Hangzhou Normal University, Hangzhou, China. 3Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China. 4Present address: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. 5Present address: Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. Tianyuan Hu, Cong Li and Le Wang contributed equally to this work. Correspondence and requests for materials should be addressed to X.W. (email: wangxiaomin@ihcams.ac.cn) or W.Y. (email: wpyuan@ihcams.ac.cn)
recombination15, 16. These findings suggest that PDK1 defines the functions and development of hematopoietic cells, including T cells and B cells.

However, the specific role(s) of PDK1 in the regulation of HSCs has not been fully delineated. In this study, we conditionally deleted PDK1 in a murine hematopoietic system and found that PDK1 deletion impaired the reconstitution capacity of HSCs and led to an impaired hematopoiesis. We also demonstrated that PDK1 regulated HSC function probably through controlling cellular ROS levels.

Materials and Methods

All experiments were carried out in accordance with the guidelines approved by the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science.

Mice.

\(PDK1^{fl/fl} \) and \(Rictor^{ΔΔ} \) mice were generously provided by Drs. Dario R. Alessi12 and Mark A. Magnuson17, respectively. All mice were backcrossed for ten generations onto a C57BL/6 (CD45.2+) background. \(PDK1^{fl/fl} \) and/or \(Rictor^{ΔΔ} \) mice were crossed with \(Vav-Cre \) mice to delete \(PDK1 \) or \(Rictor \) in hematopoietic cells. The Institutional Animal Care and Use Committee (IACUC) of the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science approved all animal procedures, and the mice were housed in the SPF facilities in the same institute.

Flow cytometry analysis. Single-cell suspensions from blood, spleen or bone marrow were isolated, washed and stained using fluorochrome-labeled antibodies (BD Biosciences) based on the expression of surface or intracellular markers. All flow cytometry experiments were performed using either FACS Canto II or LSR II (BD Biosciences), and the data were analyzed using the FlowJo software.

Cell separation using MACS and FACS. Lineage-positive cells were pre-depleted from bone marrow cells using the MACS system (Miltenyi Biotec, Sunnyvale, CA, USA) for LT-HSC, ST-HSC and MPP cell isolation. The remaining cells were sequentially stained for LT-HSC, ST-HSC and MPP markers. The cells were sorted after staining using a FACS Aria III cytometer (BD Biosciences).

Bone marrow transplantation. For bone marrow transplantations, \(1 \times 10^6 \) freshly isolated C57BL/6 (CD45.2+) WT, \(Vav-Cre;PDK1^{fl/fl}(PDK1^{ΔΔ}) \), \(Vav-Cre;Rictor^{ΔΔ}(Rictor^{ΔΔ}) \) and DKO (\(Rictor^{ΔΔ}PDK1^{ΔΔ} \)) cells were suspended in PBS and injected into the tail veins of lethally irradiated BLSJL (CD45.1+) recipient mice (950 rad in 2 doses, 4 h apart). For competitive bone marrow transplantation experiments, \(0.5 \times 10^6 \) freshly isolated cells from WT, \(Rictor^{ΔΔ} \), \(PDK1^{ΔΔ} \) or \(Rictor^{ΔΔ}PDK1^{ΔΔ} \) mice (CD45.2+) and \(0.5 \times 10^6 \) competitive cells (CD45.1+) were suspended in PBS and injected into the tail veins of lethally irradiated CD45.1+ recipient mice. Peripheral blood cells were collected 4, 8, 12, 16, 20 and 24 weeks after transplantation, and bone marrow cells were collected 16 and 24 weeks after transplantation for further analyses. Bone marrow transplantation and competitive bone marrow transplantation experiments were performed using 3 mice for each time point. For HSC transplantation experiments, 300 sorted HSCs from WT and \(PDK1^{ΔΔ} \) mice (CD45.2+) and \(2 \times 10^6 \) competitive cells (CD45.1+) were injected into the tail veins of lethally irradiated CD45.1+ recipient mice. Bone marrow cells were collected 1.5 and 3 months after transplantation for further analyses.

Cell cycle analysis. Freshly isolated BM cells were stained using antibodies against Sca-1, c-kit, CD34, Flt3 and lineage markers to identify HSCs and MPPs. Antibody-labeled cells were subsequently incubated with DAPI and Ki67 to determine the cell cycle profile. The Ki67 antibody allows for the separation of cells in G0 and G1 phases, and the cell cycle profile of HSCs and MPPs can be analyzed using flow cytometry.

BrdU staining assay. \(1 \times 10^6 \) LSK (Lin−c-kit−Sca-1+) cells were cultured in SFEM (Gibco) for 12 h, washed three times in 0.1 M phosphate buffered saline (PBS), and incubated with BrdU for 2 h. BrdU labeling assays were performed using the FITC-BrdU Flow kit (BD Biosciences) according to the manufacturer's instruction.

Apoptosis assay. BM cells from groups were incubated with antibodies against Sca-1, c-kit, CD34, Flt3 and lineage markers to identify HSCs and MPPs. Antibody-labeled cells were washed and incubated with Annexin V and DAPI at room temperature followed by flow cytometry analysis using an LSR II flow cytometer (BD Biosciences).

Measurement of ROS. BM cells were incubated with antibodies against Sca-1, c-kit, CD34, Flt3 and lineage markers to identify HSCs and MPPs. Antibody-labeled cells were washed and incubated in 10 μM DCF-DA for 20 minutes at 37 °C for flow cytometric analysis. BSO (L-buthioninesulfoximine, Sigma-Aldrich) was added to MethoCult GF M3434 medium at various concentrations (0.01 μM, 0.02 μM, 0.03 μM, 0.05 μM, 0.1 μM or 0.2 μM) to increase ROS levels in vitro for further CFC analysis.

Real-time RT-PCR. mRNA expression levels were quantified using real-time RT-PCR with SYBR Green PCR Master Mix. Changes in relative gene expression between groups were calculated using the 2\(^{-}\Delta\Delta CT\) method normalized to GAPDH expression.

Colony-forming cell (CFC) assay. A total of \(2 \times 10^4 \) bone marrow cells from WT and \(Vav-Cre;PDK1^{fl/fl} \) mice were plated in MethoCult GF M3434 (Stem Cell Technologies) medium containing various cytokines to support the hematopoietic progenitors. For HSC and MPP colony-forming assays, 300 HSCs from WT and \(Vav-Cre;PDK1^{fl/fl} \) mice were plated in MethoCult GF M3434 (Stem Cell Technologies) medium. Colonies were counted after 3–14 days of culture according to the manufacturer’s instructions.
Statistical analyses. Significant differences in parameters were assessed between groups using unpaired Student's t-test. Significance is denoted with asterisks (*P < 0.05, **P < 0.01, ***P < 0.001), and P > 0.05 was considered non-significant (NS).

Results

PDK1 deficiency in mice results in increased phenotypic HSCs and decreased progenitor cells. We generated PDK1 conditional knockout mice *Vav-Cre;PDK1^{fl/fl}* (PDK1^{Δ/Δ}) to explore the roles of PDK1 in murine HSCs. *PDK1^{fl/fl}* (WT) mice were used as a control. Real-time PCR confirmed the efficient excision of the *PDK1* gene in PDK1^{Δ/Δ} mice (Fig. 1A). The BM cellularity, splenocytes and thymocytes were decreased after PDK1 deletion (Fig. 1B–D). WBC, lymphocyte and platelet number were also decreased in PDK1-deficient mice (Fig. 1E–H). PDK1^{Δ/Δ} mice were smaller than wild-type controls and exhibited a larger spleen and smaller thymus (Fig. 1G–I). H&E staining revealed evidence of extramedullary hematopoiesis in PDK1⁻-deficient mice (Fig. 1K).

FACS analysis revealed that the percentage of LSK (Lin⁻c-kit⁺Sca-1⁺) cells and LK (Lin⁻c-kit⁻Sca-1⁻) cells in PDK1^{Δ/Δ} mice were comparable to those of the control mice (Fig. 2A,B). Further examination of the frequency of...
HSCs and HPCs in BM using flow cytometry revealed significant increases in phenotypic LT-HSCs and ST-HSCs but substantial decreases in MPPs (Fig. 2C,D, Figure S1A,B) and CMPs after PDK1 deletion (Fig. 2E,F). These results indicated that the loss of PDK1 significantly perturbed steady-state hematopoiesis.

PDK1-deficient HSCs fail to reconstitute the hematopoietic system upon transplantation. Colony-Forming Cell (CFC) assays were performed to determine the colony-forming abilities of PDK1-deficient progenitor cells in vitro to investigate whether the loss of PDK1 affected their function. PDK1Δ/Δ BM cells gave rise to fewer CFU-GM and CFU-GEMM colonies when compared with control BM cells in MethoCult GF M3434 medium (Fig. 3A), demonstrating that the loss of PDK1 impairs the colony-forming ability of PDK1-deficient cells in vitro.

BM cells from PDK1Δ/Δ and WT mice (CD45.2+) were transplanted into lethally irradiated recipients (CD45.1+) to evaluate the effect of PDK1 on HSC reconstitution ability (Figure S2A). BM cells from PDK1-deficient mice failed to reconstitute the hematopoietic system in recipient mice, while the WT BM cells fully rescued the lethally irradiated mice (Fig. 3B). We didn’t found any significant different in homing assay (Figure S2B), suggesting that the impaired reconstitute ability in recipients by PDK1 knockout BM cells might not be due to their homing defect.

Figure 2. Conditional deletion of PDK1 in a hematopoietic system results in increased HSCs but reduced progenitors. (A,B) Representative FACS plots and histograms showing the frequency of LKs (Lin−c-kit−Sca-1− cells) and LSKs (Lin−c-kit+Sca-1+ cells) in BM from WT and PDK1Δ/Δ mice. (C,D) Representative FACS plots and histograms showing the frequency of LT-HSCs, ST-HSCs and MPPs in LSKs from WT and PDK1Δ/Δ mice. (E) Representative FACS plots showing the frequency of GMPs, CMPs and MEPs in BM from WT and PDK1Δ/Δ mice. (F) Representative FACS plots showing the frequency of GMPs, CMPs, MEPs and CLPs in LKs from WT and PDK1Δ/Δ mice. The data are shown as the mean ± SD (n = 5); *P < 0.05; **P < 0.01; ***P < 0.001; NS, not significant.
We performed competitive transplantation experiments to further determine the function of PDK1 in HSCs. BM cells from PDK1\(\Delta\Delta\) and WT mice (CD45.2\(+\)) were transplanted into lethally irradiated recipients (CD45.1\(+\)) to assess the ability of PDK1\(\Delta\Delta\) HSCs to reconstitute the hematopoietic system. The competitive transplantation experiments revealed that PDK1\(\Delta\Delta\) HSCs were impaired in their ability to reconstitute the hematopoietic system, as evidenced by decreased colony formation and reduced survival of lethally irradiated recipients. Additionally, the mixed bone marrow transplantation experiment showed that PDK1\(\Delta\Delta\) HSCs were outcompeted by WT HSCs, indicating a role for PDK1 in maintaining HSC self-renewal and multipotentiality.

Figure 3. PDK1 is required for HSC reconstitution upon transplantation. (A) Quantification of colony numbers generated by WT and PDK1\(\Delta\Delta\) BM cells (\(2 \times 10^4/\text{well}\)) in colony-forming assays. (B) Survival curve of lethally irradiated recipient mice (CD45.1\(+\)) transplanted with whole bone marrow cells from WT and PDK1\(\Delta\Delta\) mice (CD45.2\(+\)) \((n \geq 10)\). (C) Whole bone marrow cells from WT and PDK1\(\Delta\Delta\) mice (CD45.2\(+\)) were mixed with WT whole bone marrow competitor cells (CD45.1\(+\)) in a 1:1 ratio and transplanted into lethally irradiated recipients (CD45.1\(+\)). Representative FACS plots showing the reconstitution proportion of donor cells against competitors in PB 4 months after transplantation. (D) PB chimera rates in recipients 8, 12, 16, 20, and 24 weeks after competitive transplantation. (E–G) Multilineage distribution (B cells, T cells and myeloid cells) of donor cells in PB at the indicated time points. (H, I) Representative FACS plots showing the reconstitution of donor HSCs against competitors 3 months after transplantation. All data are shown as the mean ± SD \((n \geq 3); *P < 0.05; **P < 0.01; ***P < 0.001; \text{NS}, \text{not significant.}\)
with wild-type competitive cells (CD45.1+) (Figure S2C). The recipient mice displayed extremely reduced percentages of PDK1Δ/Δ-derived total donor cells, CD3+, B220+ and myeloid cells in the peripheral blood (PB) at various time points after transplantation (Fig. 3C–G). Whole bone marrow cells from WT, RictorΔ/Δ, PDK1Δ/Δ and RictorΔ/ΔPDK1Δ/Δ mice (CD45.2+) were mixed with WT whole bone marrow competitor cells (CD45.1+) in a 1:1 ratio were transplanted into lethally irradiated recipients (CD45.1+). Representative FACS plots showing the reconstitution portion of donor cells against competitors in PB. (D) PB chimeras rates in recipients 8, 12, 16, 20, and 24 weeks after competitive transplantation. (E,F) The frequencies of donor-derived BM Lin− cells, LSKs, LT-HSCs, ST-HSCs and MPPs in recipients. The data are shown as the mean ± SD (n ≥ 3); *P < 0.05; ***P < 0.001; NS, not significant.

Figure 4. PDK1, but not Rictor, plays a dominant role in Akt-mediated HSC functions. (A) Quantification of colony numbers generated by WT, RictorΔ/Δ, PDK1Δ/Δ and RictorΔ/ΔPDK1Δ/Δ BM cells (2 × 10^4/well) in colony-forming assays. (B) Survival rate of lethally irradiated recipients (CD45.1+) transplanted with whole bone marrow cells from WT, RictorΔ/Δ, PDK1Δ/Δ and RictorΔ/ΔPDK1Δ/Δ mice (CD45.2+), (n ≥ 10). (C) Whole bone marrow cells from WT, RictorΔ/Δ, PDK1Δ/Δ and RictorΔ/ΔPDK1Δ/Δ mice (CD45.2+) that were mixed with WT whole bone marrow competitor cells (CD45.1+) in a 1:1 ratio were transplanted into lethally irradiated recipients (CD45.1+). Representaive FACS plots showing the reconstitution portion of donor cells against competitors in PB. (D) PB chimeras rates in recipients 8, 12, 16, 20, and 24 weeks after competitive transplantation. (E,F) The frequencies of donor-derived BM Lin− cells, LSKs, LT-HSCs, ST-HSCs and MPPs in recipients. The data are shown as the mean ± SD (n ≥ 3); *P < 0.05; ***P < 0.001; NS, not significant.

PDK1 deficiency is dominant over mTORC2 deficiency. PDK1 phosphorylates Akt at its T308 residue. Therefore, we examined the related protein phosphorylation levels in LSKs and HSCs using flow cytometry. Phosphorylation at the T308 residue of Akt was lower in PDK1-deficient HSCs (Figure S3A), but the phosphorylation level of S473 was comparable to control (Figure S3B). Notably, a downstream effector of Akt, S6 protein, exhibited decreased phosphorylation levels, which indicates an impairment of Akt signaling transduction after
PDK1 gene loss (Figure S3C). Phosphorylation of P44/P42 and Stat3 was altered after the loss of PDK1, which suggests a potential role of PDK1 in the p38-MAPK and Jak-Stat signaling pathways (Figure S3D,E).

To explore how mTORC2 and/or PDK1 influence Akt function in HSCs, we generated RictorΔ/Δ PDK1Δ/Δ (DKO) mice in conjunction with RictorΔ/Δ and PDK1Δ/Δ mice to explore how mTORC2 and/or PDK1 influence Akt function in HSCs. In addition to the defective colony-forming ability of RictorΔ/Δ PDK1Δ/Δ progenitors (Fig. 4A), lethally irradiated recipient mice transplanted with whole bone marrow cells from PDK1Δ/Δ or RictorΔ/Δ PDK1Δ/Δ mice failed to survive compared with WT or RictorΔ/Δ BM cell transplantations (Fig. 4B). Competitive transplantation experiments revealed an impaired reconstitution ability of RictorΔ/Δ PDK1Δ/Δ HSCs after transplantation (Fig. 4C–F), which indicates a long-term hematopoiesis defect after Rictor/PDK1 deletion.
consistent with PDK1ΔΔ HSCs. Therefore, our data suggest that PDK1 plays a dominant role in the Akt-mediated regulation of HSC function compared with Rictor/mTORC2.

PDK1 deficiency results in less quiescent HSC. We examined the cell cycle status of HSCs using Ki67 to categorize HSCs in resting or active cell cycle stages during cellular proliferation to explore the mechanism of PDK1 regulation of HSCs. The percentage of cells in G0 stage was decreased significantly in PDK1ΔΔ HSCs compared with control HSCs, and this result was characterized by a reduction in the Ki67− G0 fraction (Fig. 5A–C). PDK1ΔΔ HSCs were also enriched in G1 and S/G2/M phases, which suggest an increase in HSC exit from their quiescent state (Fig. 5C). We further confirmed this in an in vitro BrdU incorporation assay and found that PDK1 deficiency decreased the G0 fraction of LSKs (Fig. 5D). Next, we examined the proportion of HSC undergoing apoptosis. We found a comparable percentage of Annexin V+DAPI− PDK1ΔΔ and WT HSCs (Fig. 5E–G, Figure S4A,B). These findings indicate that the loss of PDK1 altered HSC cell cycle status to be less quiescent.

Figure 6. PDK1-deficient HSCs display lower ROS levels than controls. (A,B) LSKs (A) and CD34−LSKs (B) from WT or PDK1ΔΔ mice were stained with DCF-DA and analyzed using flow cytometry. Representative histograms showed the MFI (median fluorescence intensities) of DCF-DA-labeled cells from WT or PDK1ΔΔ mice. (C) BM cells from WT or PDK1ΔΔ mice were treated with BSO at various concentrations for colony-forming assays. (D,E) 300 HSCs were sorted from WT or PDK1ΔΔ mice and treated with BSO (0.02 μM) for colony-forming assays. The data are shown as the mean ± SD (n = 5); *P < 0.05; **P < 0.01; ***P < 0.001; NS, not significant.
PDK1-deficient HSCs show reduced colony-forming ability and decreased ROS levels. Previous studies demonstrated that ROS levels correlate with HSC quiescence. Therefore, we assessed ROS levels in PDK1-deficient HSCs by measuring intracellular ROS levels using 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA) staining. Notably, we found that PDK1-deficient LSKs and HSCs exhibit significantly reduced ROS levels compared to that of control HSCs (Fig. 6A,B).

We treated PDK1-deficient BM cells with various concentrations of BSO in vitro to increase cellular ROS levels and examined the colony-forming ability of HSCs after treatment to probe whether reduced cellular ROS levels were responsible for the impaired function of HSCs. The functional discrepancies in PDK1 and Akt-deficient HSCs may be attributed to other HSCs exhibited only modest reduced reconstitution ability. Here we showed that in this process. However, additional work is needed to completely elucidate the roles of ROS in HSCs.

The normal range are harmful to hematopoietic stem and progenitor cell functions and PDK1 plays an important role in the regulation of HSCs. We observed a reduced G0 phase of HSCs and an increased S/G2/M phase of PDK1-deficient HSCs, which was accompanied by an increase in HSC frequency. These results indicate that PDK1-deficient HSCs were less quiescent due to PDK1 loss. Fewer G0-phase HSCs in PDK1-deficient mice led to reduced HSC reconstitution ability, and the increased HSC proliferation likely occurs through feedback mechanisms because PDK1 deletion resulted in a significant loss of progenitor cells, mature B cells and T cells. This result is consistent with a previous study that HSCs in the G0 phase exhibited enhanced reconstitution ability than less quiescent HSCs.

Lower HSC cellular ROS levels have been demonstrated to be essential for the maintenance of quiescent HSCs. Notably, we found that PDK1-deficient HSCs exhibited lower ROS levels with an increased proportion of HSCs entering the cell cycle. This result likely occurred because the loss of PDK1 either interrupted the regulatory mechanism of adequate HSC ROS level maintenance or perturbed cell cycle regulation independently of ROS, which resulted in the loss of quiescence in HSCs. Moreover, we found that the colony count of PDK1-deficient cells in vitro increased when ROS levels were elevated by 0.01–0.02 μM BSO treatment, but the number of colonies decreased when BSO concentrations were above 0.03 μM (Fig. 6). This result suggests that ROS levels are precisely controlled in hematopoietic stem and progenitor cells, and that higher or lower ROS levels beyond the normal range are harmful to hematopoietic stem and progenitor cell functions and PDK1 plays an important role in this process. However, additional work is needed to completely elucidate the roles of ROS in HSCs.

Akt is a major downstream effector of PDK1. A previous study demonstrated that Akt1/Akt2 double-knockout HSCs exhibited only modest reduced reconstitution ability. Here we showed that PDK1-deficient HSCs alone could not reconstitute the recipient mice, whereas Rictor/mTORC2-deficient HSCs successfully reconstituted hematopoiesis in lethally irradiated mice with minor defects in B cell and T cell differentiation. We generated RictorΔ/Δ-PDK1Δ/Δ to explore the possible differential downstream signaling roles of PDK1 and mTORC2 on HSCs that govern Akt activation. Notably, Rictor/PDK1 double-deficient HSCs exhibited very similar phenotypes as PDK1-deficient HSCs (Figs 3 and 4). This result indicates that PDK1 plays a dominant role in the Akt-mediated regulation of HSCs. The functional discrepancies in PDK1 and Akt-deficient HSCs may be attributed to other AGC kinases that are regulated by PDK1. Other AGC kinases and PDK1 substrates, such as SGK and p70S6K might also contribute to the defective HSC function after PDK1 deletion. Future studies about other potential downstream factors of PDK1 will improve the current understanding of the role of PDK1 on HSC function.

References
1. Buitenhuis, M. & Coffer, P. J. The role of the PI3K-PKB signaling module in regulation of hematopoiesis. Cell cycle 8, 560–566 (2009).
2. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101, doi:10.1126/science.1106148 (2005).
3. Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Current biology: CB 7, 261–269 (1997).
4. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274, doi:10.1016/j.cell.2007.06.009 (2007).
5. Moon, Z., Wang, Y., Aryan, N., Mousseau, D. D. & Scheid, M. P. Serine 396 of PDK1 is required for maximal PKB activation. Genes & development 21, 1925–1936, doi:10.1101/gad.1498909 (2007).
6. Haneline, L. S. et al. Genetic reduction of class IA PI-3 kinase activity alters fetal hematopoiesis and competitive repopulating ability of hematopoietic stem cells in vivo. Blood 107, 1375–1382, doi:10.1182/blood-2005-05-1895 (2006).
7. Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522, doi:10.1038/nature04747 (2006).
8. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339, doi:10.1016/j.cell.2007.01.003 (2007).
9. Jurila, M. M. et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115, 4030–4038, doi:10.1182/blood-2009-09-241000 (2010).
10. Paradis, S., Alixon, M., Toker, A., Thomas, J. H. & Ruvkun, G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes & development 13, 1438–1452 (1999).
11. Cho, K. S. et al. Drosophila phosphoinositide-dependent kinase-1 regulates apoptosis and growth via the phosphoinositide 3-kinase-dependent signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 98, 6144–6149, doi:10.1073/pnas.101596998 (2001).
12. Lawlor, M. A. et al. Essential role of PDK1 in regulating cell size and development in mice. The EMBO journal 21, 3728–3738, doi:10.1093/emboj/cdf387 (2002).
13. Jun, A. et al. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. The EMBO journal 22, 4666–4676, doi:10.1093/emboj/cdg469 (2003).
14. Hinton, H. J., Alessi, D. R. & Cantrell, D. A. The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nature immunology 5, 539–545, doi:10.1038/ni0602 (2004).
15. Venigalla, R. K. et al. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development. The EMBO journal 32, 1098–1102, doi:10.1038/emboj.2013.40 (2013).
16. Baracho, G. V. et al. PDK1 regulates B cell differentiation and homeostasis. Proceedings of the National Academy of Sciences of the United States of America 111, 9573–9578, doi:10.1073/pnas.1314562111 (2014).
17. Shiotani, C., Woo, J. T., Lindner, J., Shelton, K. D. & Magnuson, M. A. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Developmental cell 11, 583–589, doi:10.1016/j.devcel.2008.06.013 (2006).
18. Norddahl, G. L. et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell stem cell 8, 499–510, doi:10.1016/j.stem.2011.03.009 (2011).
19. Han, M. K. et al. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell stem cell 2, 241–251, doi:10.1016/j.stem.2008.01.002 (2008).
20. Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell stem cell 1, 101–112, doi:10.1016/j.stem.2007.02.001 (2007).
21. Kobayashi, C. I. & Suda, T. Regulation of reactive oxygen species in stem cells and cancer stem cells. Journal of cellular physiology 227, 421–430, doi:10.1002/jcp.22764 (2012).
22. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783, doi:10.1038/nature07733 (2009).
23. Yahata, T. et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118, 2941–2950, doi:10.1182/blood-2011-01-310090 (2011).
24. Matsumoto, A. et al. G55 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell stem cell 9, 262–271, doi:10.1016/j.stem.2011.06.014 (2011).
25. Qing, Y., Wang, Z., Bunting, K. D. & Gerson, S. L. Bcl2 overexpression rescues the hematopoietic stem cell defects in Ku70-deficient mice by restoration of quiescence. Blood 123, 1002–1011, doi:10.1182/blood-2013-08-521716 (2014).
26. Vennie, T. A. et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS biology 2, e301, doi:10.1371/journal.pbio.0020301 (2004).
27. Fleming, H. E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell stem cell 2, 274–283, doi:10.1016/j.stem.2008.01.003 (2008).
28. Zhang, Y. et al. Rictor is required for early B cell development in bone marrow. PLoS One 9, e103970, doi:10.1371/journal.pone.0103970 (2014).
29. Lee, K. et al. Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia. The Journal of experimental medicine 209, 713–728, doi:10.1084/jem.201111470 (2012).

Acknowledgements
The authors want to thank Wen Ning, Haoyue Liang for the assistance rendered in the study and Chase Yuan for proof reading the paper. This work was supported by funds from Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine CAMS-I2M (2016-I2M-1-017), the National Nature Science Foundation of China (81300436, 81421002, 81470280, 81600082, 81600136, 81629001), MOST (2017YFA0103402), and Tianjin Science and Technology Commission (15JQNJC12100, 17JQJNCJD9800).

Author Contributions
T.H., C.L. and L.W. conceived and performed all of the experiments, analyzed the data and wrote the paper. Y.Z., L.P. and H.C. performed the in vivo experiments and analyzed the data. Y.C., W.W. contributed to the in vitro experiments or reagents. H.E., Y.G., Z.J., Z.Y., X.W. and T.C. contributed to the experimental design, data analyses and paper discussion. X.M. and W.Y. directed the experiments and revised the paper.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-05213-3

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017