When Onco-Immunotherapy Meets Cold Atmospheric Plasma: Implications on CAR-T Therapies

Xiaofeng Dai1,2†, Jitian Li3†, Yiming Chen1 and Kostya (Ken) Ostrikov4

1 Wuxi School of Medicine, Jiangnan University, Wuxi, China, 2 CAPsoul Biotechnology Company, Ltd, Beijing, China, 3 Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital/Henan Provincial Orthopedic Institute, Zhengzhou, China, 4 School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia

T cells engineered with chimeric antigen receptors (CAR) have demonstrated its widespread efficacy as a targeted immunotherapeutic modality. Yet, concerns on its specificity, efficacy and generalization prevented it from being established into a first-line approach against cancers. By reviewing challenges limiting its clinical application, ongoing efforts trying to resolve them, and opportunities that emerging oncotherapeutic modalities may bring to temper these challenges, we conclude that careful CAR design should be done to avoid the off-tumor effect, enhance the efficacy of solid tumor treatment, improve product comparability, and resolve problems such as differential efficacies of co-stimulatory molecules, cytokine storm, tumor lysis syndrome, myelosuppression and severe hepatotoxicity. As a promising solution, we propose potential synergies between CAR-T therapies and cold atmospheric plasma, an emerging onco-therapeutic strategy relying on reactive species, towards improved therapeutic efficacies and enhanced safety that deserve extensive investigations.

Keywords: cold atmospheric plasma, onco-immunotherapy, chimeric antigen receptor, off-tumor effect, solid tumor

1 INTRODUCTION

Adoptive cell therapy (ACT) takes advantages of the immune system by transfusing back one’s own genetically engineered T cells or cancer-cognate lymphocytes that identify and attack malignant cells or foreign invasions (1). Adjuvant chemo- or radio- therapies are conventionally applied before ACT infusion to allow infused T cells to flourish by depleting patients’ endogenous immune cells (1, 2). Four types of immune cells are typically used to confer such clinical features, i.e., engineered peripheral blood T lymphocytes expressing T cell receptors (TCRs) or chimeric antigen receptors recognizing tumors (CARs), tumor infiltrating lymphocytes (TILs) expanded ex vivo, and T cells specific to viruses (3, 4) (Figure 1).

The efficacies of most ACT strategies are limited to certain types of diseases. While infusion of ex vivo-expanded TILs has demonstrated its efficacy in curing refractory metastatic melanoma (5, 6), the success is not at present easily transferable to other cancers due to difficulties in collecting tumor-specific T cells (7–9). Transfusing virus-specific T cells is a standard modality for malignancies or infections related to viruses (10–12). TCR therapy functions by enabling cells with new receptors and the ability to recognize antigens against specific cancers and/or trigger other
cells to marsh attack on neoplastic cells (13). TCRs can be cloned from the reactive T cells infiltrating patient tumors (14) or humanized mouse models (15, 16), or through phage display (17). TCR must match the human leukocyte antigen (HLA) immune type of the patient genetically before achieving any functionality. To date, TCR therapies have demonstrated their efficacies in shrinking several types of tumors such as melanoma, synovial sarcoma, and colorectal cancers (18–20).

Transducing CAR-T cells to confer specificities on a targeted epitope such as CD19 and BCMA has demonstrated its oncotherapeutic efficacy. CARs are recombinant antigen receptors capable of grafting the specificity of a tumor antigen onto T cells via a single chain variable fragment (scFv) derived from an antibody. The aim is to redirect the specificity and function of immune cells and rapidly generate tumor-targeting T cells. A CAR is comprised of four domains, i.e., an ectodomain that is responsible for tumor antigen recognition, an endodomain that contains one or several stimulatory molecules helping T cells persist, a hinge domain, and a transmembrane domain (21) (Figure 2). Once expressed on T cell surface, CAR acts as a switch that sets T cells to the attack mode when encountering a matching antigen (22). Any cell surface molecule can be, in principle, targeted by the CAR-T approach, filling in the antigen recognition gaps in the physiological T cell repertoire. Further, CARs do not require antigen processing and presentation and are more broadly applicable to HLA-diverse clinical cohorts. This brilliant idea of transforming T cells into a “living” drug gave birth to the CAR T-cells, whose clinical activity was confirmed in various types of diseases including diffuse large B-cell lymphomas (23). CAR-T cells targeting CD19 have been reported to result in tumor remission of advanced chronic lymphocytic leukemia (CLL) and ALL patients who have failed multiple rounds of chemotherapy (24, 25).

CAR-T therapies have remained as boutique treatments available to a small number of patients despite our complete acknowledgement on their primary roles in rewiring the immune response against tumors. This paper identifies challenges faced by CAR-T therapies limiting their wide applications, reviews ongoing efforts circumventing such problems, and highlights opportunities brought by such promising technologies to academia and clinics (Table 1).

FIGURE 1 | Illustrative diagram on adoptive cell therapy (ACT) and its manufacturing process. By transfusing back one’s own genetically engineered T cells or cancer-cognate lymphocytes that identify and attack cancer cells or foreign invasions, ACT activates the immune system and achieves its onco-therapeutic role. Engineered T cells expressing TCRs or CARs, TILs and virus specific T cells expanded ex vivo, are typically used to produce ACT. The manufacturing process is comprised of four major steps: ‘T cell isolation’, ‘T cell engineering’ (for TCR or CAR only), ‘T cell ex vivo expansion’, ‘T cell back infusion’. Adjuvant chemo- or radio-therapies are conventionally applied to deplete patients’ endogenous immune cells prior to ACT infusion to allow infused T cells to flourish.
2 PROBLEMS CHALLENGING CAR-T THERAPIES AND POSSIBLE SOLUTIONS

2.1 Off-Tumor Effect

One limitation of CAR-T therapy is the requirement of the targets to be solely present on the surface of malignant cells but absent from that of normal cells. The cancer cell antigen epitope needs to be unique for T cell recognition without creating conditions associated with autoimmunity. However, many antigen epitopes found in cancers also have baseline expression levels in normal tissues (48), and targeting an antigen epitope with low specificity may result in severe consequences, namely the ‘on-target off-tumor’ effect, such as EGFR, HER2 (49, 50). For example, a severe transient inflammatory colitis was induced in all three patients (carrying refractory metastatic colorectal tumors) administered with autologous T lymphocytes expressing a murine TCR against human carcinoembryonic antigen (CEA) as CEA is also present in colonic mucosa (51).

Off-tumor effects can also be mediated by another protein sharing similar binding affinity with TCR or antigen escape,

TABLE 1 | Challenges faced by the CAR-T therapies and the ongoing efforts.

Challenges	Ongoing efforts	References
Off-tumor effect	Double tumor-associated antigen targeting, systematic safety testing of the targeted therapies	(26–30)
Inefficiency in solid tumor treatment	Introduction of chemokine receptors to CAR-T cells, CAR-T cocktail immunotherapy, γδ T cells	(31–36)
Differential efficacies of co-stimulatory molecules	Optimization of ACT combination on a case-by-case basis	(37–39)
Cytokine storm, tumor lysis syndrome	Modulation of co-stimulatory domains, suicide gene design	(40–43)
Myelosuppression, severe hepatotoxicity	Personalization of effective drug duration according to the genetic profile and pathological state of each patient	(44, 45)
Difficulties in product generalization without sacrificing product efficacy	Using off-the-shelf third-party donor gene modified T cells	(46, 47)
called the ‘off-target off-tumor’ effect. For example, MAGE-A3 is a cancer-testis antigen expressed in a wide array of malignancies including melanoma (52), cancers of ovary (53), lung (54), bladder (55), colon (56), breast (57), and has been proposed as an immunogenic target in clinics. However, targeting this antigen has resulted in many negative clinical results (52, 58), and even severe consequences (29). The first clinical example of the ‘off-target off-tumor’ effect mediated by TCR targeting MAGE-A3 is Titin (29), which is not related to MAGE-A3 neither structurally nor functionally. In this study, TCR targeting MAGE-A3 caused the death of two patients from heart failure due to the off-target binding to Titin on heart cells (29). In another study, two out of nine cancer patients died after receiving therapies targeting MAGE-A3 in a clinical trial of TCR-engineered T cells; it was found, on further examination, that a family member MAGE-A12 (also possibly, MAGE-A1, MAGE-A8, MAGE-A9) has a low level expression in brain tissue (30). Most top-ranked antigens that could be targeted by CAR-T are also expressed in potentially important normal tissues, such as HER2, EGFR, MUC1, PSMA, and GD2 (10). Although these examples are from failed clinical trials on TCR therapies, they are transferrable to CAR-T therapies and important lessons warranting special care on CAR design. Antigen escape may also result in failure in stimulating immune response. For instance, up to 30% of B-ALL (B cell acute lymphoblastic leukemia) patients receiving CART19 (anti-CD19 CAR-T cells) or blinatumomab (anti-CD19/CD3 antibodies) relapsed due to the loss of CD19 epitope in some tumor cells, imposing a major concern that challenges the efficacy of immunotherapies targeting CD19 (51, 59). Since approval in 2018, tisagenlecleucel (Kymriah, Novartis; Basel, Switzerland) and axicabtagene ciloleucel (Yescarta, Kite Pharma [Gilead]; Santa Monica, USA) are subjected to additional monitoring (CAR T-cell product performance in hematological malignancies before and after marketing authorization). However, the intact immune system in the mice used makes it a less accurate model of human disease than that using immunodeficient mice and thus could not be used to test the safety issues such as the ontarget offtumor activity and cytokinerelease syndrome (60).

To avoid or minimize the off-tumor effect, intensive research exploring target candidates with sufficient tumor-specificity and developing novel strategies for therapeutic design have gained traction. The Adaptimmune company has launched extensive safety examination to avoid undesirable therapeutic outcome. The ‘double tumor-associated antigen targeting’ strategy (i.e., targeting two instead of one tumor-associated antigen) has demonstrated its power in generating durable tumor remission; for instance, concomitant expression of CARs targeting CD19/CD20 (28), CD19/CD22 (26), or CD19/CD123 (27) on T cells creates better therapeutic response than pooling T cells carrying either CAR together. However, targeting two tumor-associated antigens may need to reduce the dose of CARs targeting each antigen as the total amount of CAR-T cells could not be increased without limit for the sake of safety; thus, how to appropriately balance the proportion of each CAR expressed on the modulated T cells is of vital importance to create the desired therapeutic efficacy where rigorous computational simulations and experimental validations are needed. It was also suggested that CAR-T cells targeting CD19 induced B precursor acute lymphoblastic leukemia lineage switch towards a more plastic state (61), suggesting the potential of combining therapies targeting cancer stem cells with CART19 or blinatumomab in restoring the sensitivity of cancer cells to anti-CD19 drugs. Despite these experimental efforts, computational approaches, such as establishing databases for target scan and simulating the efficacy of CARs (62, 63), may considerably accelerate this process.

2.2 Inefficiency
2.2.1 Inefficiency in Solid Tumor Treatment
The field of CAR-T therapies awaits a clear demonstration of their clinical efficacies in solid tumor treatment, which ultimately determines the validity of this novel modality in the battle against cancer. Though designed to be capable of selectively targeting specific cancer cells, CAR-T cells need to be able to reach the tumor site to take on any effect. While trafficking is not a problem for blood cancers as evidenced by numerous clinical successes (64–67), it is likely to be a bottleneck for delivering therapeutic cells to solid tumors due to the strong immunosuppressive tumor microenvironment. Introducing chemokine receptors such as IL13Ra2 (68), CCR4 (69) and CCR242 to CAR-T cells has been indicated to improve these immune cell trafficking in vivo and infiltration into tumors. A recent study reported the feasibility of using CAR-T cocktail immunotherapy, i.e., combined use of CAR-T cells against EGFR and CD133, in the treatment of cholangiocarcinoma, where patients receiving such a therapeutic modality achieved an 8.5- and 4.5-month partial response, respectively (33). Also in 2017, a phase I clinical trial involving 23 metastatic colorectal cancer patients was launched to test the efficacy and safety of a CAR-T product targeting TAG-72 convolving a CD3ζ intracellular signaling domain, and the results showed effective CAR-T cell trafficking to the tumor site and reduced TAG-72 expression without clear evidence of off-tumor toxicity, despite symptoms of anti-CAR immune response in some patients (34). Specific type of immune cells such as γδ T cells have been proposed promising for use in cellular therapy targeting solid tumors (70, 71). Another strategy is to augment the anti-tumor function of CAR-T cells by concomitantly targeting tumor antigens and tumor associated fibroblasts. It is shown that CAR-T cells targeting fibroblast activation protein α together with tumor-associated antigens could considerably enhance the anti-tumor efficacies of CAR-T cells targeting either part alone (36). Also possible is to combine CAR-T therapies with the immune checkpoint inhibitors such as anti-PD-1, anti-CTLA4, OX40, and their combinations such as the joint use of anti-PD-1 and agonist OX40 to create a favorable microenvironment for CAR-T therapies to take on the effect (31, 72, 73). Mechanisms of aforementioned strategies need to be completely understood before any other novel strategies can be brought up including, e.g., how T cells are activated by CARs and how each component
of CARs is optimized to enable efficient targeting and killing of
CAR-T cells against solid tumors.

Extensive computational efforts have been devoted to explore
molecular features of T cells, B cells, NK cells or any of their
combinations, in tumors or tumor microenvironment for the
prognosis of the immunotherapeutic response of a solid tumor
(35, 74, 75), which not only helps clinicians make correct
decision on whether an immunotherapy or which therapeutic
modality is feasible to give, but also contributes in identifying the
molecular driving force leading to immunotherapeutic resistance
towards improved druggling strategies.

2.2.2 Differential Efficacies of Co-Stimulatory
Molecules
The patients’ endogenous immunity needs to be suppressed pre-
CAR-T treatment to allow the persistence and expansion of
infused T cells (76). Patients thus suffer from the adverse effects
of adjunctive treatments such as chemo- and/or radio- therapies,
rendering the outcome of the standard modality double-edged,
i.e., improved efficacy is in sacrifice of patients’ immunity. The
addition of co-stimulatory domains may take over the role of
adjunctive therapies by empowering CAR-T cells to proliferate
and expand. Differential use of co-stimulatory molecules is
needed for different types of cancers. For example, coupling
CD20 with CD137 and CD3ζ can cause prolonged tumor
regression for advanced diffuse B cell lymphomas (39);
autologous or donor-derived T cells expressing a CAR that
targets CD19 and harbors CD137 and the CD3ζ moiety can
cause regression of extramedullary B-cell lineage acute
lymphocytic leukemia (37). It was demonstrated that CD137 is
a more effective costimulatory domain of CD19 CAR-T cells
than CD28 regarding therapeutic persistency in clinical trials
(38). Thus, balancing components of the immune system to
reach the desired clinical outcome, as featured by CAR-T
therapies, represents a new way of conceptualizing dosing in
medicine and needs to be optimized, on a case-by-case basis,
towards each type of malignancy or even per patient to achieve
the best response.

2.3 Over-Inefficiency
2.3.1 Cytokine Storm and Tumor Lysis Syndrome
CAR-T is advantageous in the relatively short response time it
takes to show effects (often in days to weeks). However, it is
dangerous to trigger such a dramatic immunogenic response that
implies elevated potential for the occurrence of uncontrollable
or even lethal side effects. For instance, the British company
TeGenero almost killed six volunteers in a phase I study
testing the efficacy of TGN1412 (an anti-CD28 monoclonal
antibody) in the treatment of B-cell tumors and autoimmune
disorders due to the induction of toxic levels of cytokines in vivo,
referred to as the cytokine storm (77). The CAR-T associated
cytokine storm can occur within the first few days after T cell
infusion characterized by high serum cytokine levels, fever,
vascular leakage, hypotension and even death (78). Norelli
et al. simulated CAR-T associated cytokine storm using
humanized mice, in which the endogenous immune system
was replaced with human immune cells, thereby avoiding the
induction of graft-versus-host disease after human CAR T cell
infusion (41). Such an immune avalanche can also lead to the
tumor lysis syndrome, which occurs when many tumor cells die
rapidly following the release of cell contents into the blood and is
caused by the infiltration of a large amount of lysed components
of dead tumor cells into the blood. The safety issues linked to
CAR-T have now drawn considerable attention. Several
strategies have been proposed to control the side effects and
launched with preclinical success. For example, suicide genes
can be designed to easily ablate CAR-T cells and activated on
abnormal CAR-T cell persistence or under acute toxicity, and
such a technology is called ‘suicide gene design’ (79). Inducible
Caspase 9, namely iCasp9, is a well-studied suicide gene for
CAR-T therapies (40, 80). It consists of iCasp9 (the intracellular
domain of the human Caspase 9 protein) that functions in
inducing cell apoptosis and a human FK506 binding protein
that dimerizes on the presence of small molecules such as
API903 (81). Activation of iCasp9 in patients transplanted with
CAR-T cells could rapidly induce the T cell apoptosis to
cease the cytokine storm (82). Effective elimination of T cells has
been observed in the pre-clinical studies on CAR-T cells carrying
the iCasp9 design (83); joint use of iCasp9 and anti-GD2 CAR-T
cells have been administrated in clinics, with one being
completed in US (NCT02107963) and the other under
recruitment in China (NCT02992210). Aside from these
clinical successes, novel design on suicide genes and endeavors
on other strategies as well as standardized clinical practice in
validating the efficacy of CAR-T therapies await to be established.

2.3.2 Myelosuppression and Severe Hepatotoxicity
The CAR-T cells can persist for years with the potential of
preventing cancer relapse. This, however, may lead to serious
safety concerns including myelosuppression and severe
hepatotoxicity (44). Han W. D. et al. reported in 2015 their
observation of a remarkable decrease followed by a gradual
augmentation of blasts in the bone marrow after administrating
autologous CART-33 cells to an acute myeloid leukemia (AML)
patient (45). These warrant further efforts to personalize the
effective drug duration of CAR-T products according to, e.g., the
genetic profile and pathological state of each patient.

2.4 Difficulties in Product Generalization
Without Sacrificing Product Efficacy
Product comparability imposes a great concern towards the large-
scale application of CAR-T therapies. It is challenging to clearly
define the dosage, design and calculation method of infused CAR-T
cells that considerably affect the efficacy of CAR-T therapies. The
total number of CAR-T cells infused varies from 108 to 1010, in
clinical practice, according to the body surface area and weight of
the patient. It is also possible to determine the amount of infused
CAR-T cells by the CAR-positive cohort. How to reach consensus
on the requirements of these detailed specifications to standardize
the use of CAR-T while taking into account the heterogeneous
nature of CAR-T therapy remains challenging. Some groups have
been exploring the feasibility of using third party donor gene
modified T cells for treating viral infections (46, 47), with the hope of creating a universal cell therapy. For CAR-T therapy, fully compatible cell bank, low immunogenic umbilical cord blood cells, allogeneic natural killer cells, and gene-editing T cells have been considered as the off-the-shelf sources for the sake of uniformity and safety (84, 85).

3 WHEN ONCO-IMMUNOTHERAPY MEETS COLD ATMOSPHERIC PLASMA

3.1 Cold Atmospheric Plasma

Cold atmospheric plasma (CAP) is an emerging onco-therapeutic tool (32). It generates a collection of reactive oxygen and nitrogen species (RONS) such as hydrogen peroxide (H$_2$O$_2$), ozone (O$_3$), singlet oxygen (O), hydroxyl radical (OH$^-$), superoxide (O$_2^-$), nitric oxide (NO$^-$), anionic (OONO$^-$) and protonated (ONOOH) forms of peroxynitrite. The cocktail of CAP is comprised of long-lived species such as H$_2$O$_2$ and short-lived species such as O. While long-lived species function inside cells to induce apoptosis or necrosis via imposing oxidative/nitrosative stress to cells, short-lived species could induce immunogenic cell death that kill cancer cells located at the long distance (86). Both long- and short-lived species function together to trigger selective death of cancer cells. The selectivity of CAP on cancer cells is achieved via interactions between various components and malignant cells. Malignant cells typically have a high local concentration of catalysis on the surface that prevent H$_2$O$_2$ entry; H$_2$O$_2$ and peroxynitrite interact to generate O and amplify its signaling that ultimately leads to H$_2$O$_2$ influx; H$_2$O$_2$, once entering cells, modulate intracellular redox level to halt cells at a certain cell cycle stage, trigger apoptosis or necrosis depending on the intracellular redox level after CAP exposure (87).

The selectivity of CAP against cancer cells has been demonstrated in several types of malignancies including e.g. melanoma (88), pancreatic cancer (89), and breast cancer (90). In clinics, the first clinical trial testing the efficacy of CAP in being used as an oncotherapy has been issued in July 2019. Though many studies have reported the use of CAP in rewireing the resistance of cancer cells towards chemotherapies (91, 92), synergies between CAP and drugs such as chemotherapy or immunotherapy have not been tested or launched in clinics. Below, we forecast and discuss the potential aid of CAP in enhancing the efficacy of immunotherapies and preventing its possible side effects.

3.2 CAP May Enhance CAR Efficiency by Boosting Cancer Cells’ Sensitivity to Immunotherapies

The multimodality nature of CAP could selectively kill cancer cells by breaking their more vulnerable redox equilibrium as compared with normal cells (90), induce immunogenic cell death (ICD) by increasing the visibility of malignant cells to immune cells (86, 93), and edit tumor microenvironment (TME) towards a more immune-sensitive environment by switching M2 macrophages (immunosuppressive) to the M1 state (pro-inflammatory) (94, 95), suggesting its potential in creating synergies with CAR-T cells in treating solid tumors. During cancer immunotherapy, cancer cells release antigens that are presented by antigen-presenting cells (APCs) followed by activation of T cells that infiltrate tumors and kill cancer cells (96). ICD, inducible by oxidative stress and capable of triggering the adaptive immune response, can transform non-immunogenic cells to immunogenic cells towards enhanced antigenic substance release that promotes anti-tumor immunity (96). Accumulating in vitro and in vivo evidences have demonstrated the efficacy of CAP in inducing ICD in many cancers such as colorectal tumors, pancreatic cancers, glioblastoma, and melanoma (93, 97–101), suggestive of the role of CAP in sensitizing tumors to immunotherapies (Figure 3). In addition, we found previously that CAP could selectively kill triple negative breast cancer cells, and this type of breast cancers is featured by high cancer stemness (90), implicating the functionality of CAP in targeting cancer stem cells; and such a property can be used to rewire lineage switch caused by CAR-T cells against CD19 for prolonged therapeutic efficacy and reduced recurrence rate. Importantly, CAP could be administrated in the form of liquids (102), thus the reactive species it delivers could more easily infiltrate solid tumors than engineered T cells due to their much smaller size, boosting CAP’s role in assisting CAR-T therapies for improved efficacy delivery.

3.3 CAP May Avoid Immune Over-Reaction by Reducing the Dose of Immunotherapies

The aforementioned side effects caused by uncontrolled over-efficiency of CAR-T cells (either via fast response or long-lasting effect) may be tempered by taking the joint use of CAP and immunotherapies by creating synergies. ROS-inducing therapies have been shown capable of stimulating the immune system and sensitizing resistant cancers to chemo- and immunotherapies (103, 104). Mechanistically, ROS could facilitate the release of damage-associated molecular patterns (DAMPs) into TME that lead to activated macrophages and enhanced antigen presentation, and promote the expression of major histocompatibility complex (MHC) I (105) that counteracts the intratumoral downregulation of CD8+ T cell response towards improved tumor antigen presentation in TME (Figure 3). Thus, CAP, relying on ROS to take on actions, may reduce the amount and frequency of CAR-T cells infused to the patient to achieve the desired therapeutic efficacy, and thus reduce the probability of causing side effects related to over-activated immune response. On the other hand, CAP is a mild approach with multiple clinical applications, the safety of which has been rigorously examined and clinically validated for years (106–111). Being a treatment strategy with multi-modality nature, CAP has demonstrated its power in creating synergies with chemotherapies such as Temozolomide (91) and Bortezomib (92), as well as rewireing drug resistant cells to a chemo-sensitive state (112). It is thus worthwhile to investigate the potential synergies created between CAP and CAR-T therapies for improved efficacy and reduced side effects.
4 DISCUSSION

ACT immunotherapies have demonstrated tremendous efficacies in the control of complex diseases such as cancer. Among them, CAR-T therapies have considerably enriched the current oncotherapeutic modalities and revolutionized our conception in treatment and dosing given their extreme heterogeneity and flexibility by design. This, on one hand, provides us with opportunities for curing highly variable complex diseases and taking personalized medicine to an extreme and, on the other hand, imposes us tremendous challenges regarding appropriate harness on such therapeutic strategies and their large-scale production as well as applications.

The promise delivered by CAR-T therapies is tempered by the safety concerns, which primarily include ‘off-tumor’ toxicity, cytokine storm and tumor lysis syndrome, myelosuppression and severe hepatotoxicity. Besides concerns relevant to CAR design, safety issues may also arise from inappropriate manufacturing. For instance, due to an unintentional introduction of the CAR gene into one single leukemic B cell during T cell manufacturing, the mistakenly engineered product bound in cis to the CD19 epitope of leukemic cells and masked
them from being recognized by anti-CD19 CAR, leading to patient relapse and CTL019 resistance (113). Thus, despite the ongoing efforts paid to improve our control on CAR-T therapies, special care needs to be paid to the manufacturing process and quality of CAR-T cells. These, collectively, require the establishment of novel strategies and technologies through joint efforts from biologists, computational scientists, clinicians and technicians.

How to deliver the desirable efficacy constitutes another major concern limiting the wide applications of CAR-T therapies. These mainly include inefficiency in treating solid tumors, differential efficacies of co-stimulatory molecules, and difficulties in product generalization without sacrificing or compromising product efficacy. Despite the ongoing effort and conventional approaches in solving these issues, we need to keep aware of emerging oncotherapeutic tools and their potential in enhancing the efficacies of CAR-T therapies. For example, CAP, whose selectivity against cancer cells and multi-modality nature may enable it an ideal adjuvant therapy or jointly used approach for CAR-T therapies to sensitize resistant solid tumors to immunotherapies and reduce the amount of infused CAR-T cells to both achieve the desired efficacy and solve the safety problem (Figure 4). Yet, how to jointly administrating CAP and CAR-T to patients such as the interval and frequency need to be carefully tested and designed to enable desirable outcome. It is also possible that T cells behave differently on CAP exposure that could be taken advantages of which, however, requires intensive investigations before any conclusion could be drawn.

CAR-T therapies could be used to reprogram T cells towards targeting tumor-specific antigens given a patient, taking oncotherapeutics to an extreme of personalization. This, however, may demand systematic genetic screen for each patient on mutations unique to tumors and impose too much challenges on its design, cost and production, largely restricting its wide application. How to find a proper balance between the personalization and generalization of such therapies to get each patient benefit from this promising revolutionary life-saving and emerging first-line therapeutic approach exploiting unique

5 CONCLUSION

In conclusion, it is crucial to find a balance between personalization and generalization towards improved controllability on the specificity and efficacy of CAR-T therapies. To be specific, CAR should be designed with care to avoid the off-tumor effect, enhance solid tumor treatment efficacy, improve product comparability, and resolve issues such as differential efficacies of co-stimulatory molecules, cytokine storm, tumor lysis syndrome, myelosuppression and severe hepatotoxicity. Importantly, we propose the potential synergies between immunotherapies and CAP, an emerging onco-therapeutic approach exploiting unique...
chemical and physical features of the fourth state of matter to deliver mild yet effective doses of reactive species, towards improved immunotherapeutic efficacies against cancers with reduced side effects.

AUTHOR CONTRIBUTIONS

XD conceived the study and drafted the manuscript. XD, YC and JL prepared the figures and tables. XD provided the financial support. All authors have read and proved the content of the manuscript.

REFERENCES

1. Cohen JE, Merims S, Frank S, Engelstein R, Peretz T, Lotem M. Adoptive Cell Therapy: Past, Present and Future. *Immunotherapy* (2017) 9(2):183–96. doi: 10.2217/imt-2016-0112

2. Choi D, Kim TG, Sung YC. The Past, Present, and Future of Adoptive T Cell Therapy. *Immu Network* (2012) 12(4):139–47. doi: 10.4110/in.2012.12.4.139

3. Jiang L, Wang W. Genetically Modified Immune Cells for Cancer Immunotherapy. *Sci China Life Sci* (2018) 61(10):1277–9. doi: 10.1007/s11427-018-9395-0

4. Veiga-Parga T, Sehrawat S, Rouse BT. Role of Regulatory T Cells During Virus Infection. *Immunol Rev* (2013) 255(1):182–96. doi: 10.1111/imr.12085

5. Nguyen LT, Saibil SD, Sotov V, Le MX, Khoja L, Ghazarian D, et al. Phase II Clinical Trial of Adoptive Cell Therapy for Patients With Metastatic Melanoma With Autologous Tumor-Infiltrating Lymphocytes and Low-Dose Interleukin-2. *Cancer Immunol Immunother: CII* (2019) 68(5):773–85. doi: 10.1007/s00062-019-02307-x

6. Prickett TD, Crystal JS, Cohen CJ, Pasetto A, Parkhurst MR, Gartner JJ, et al. Durable Complete Response From Metastatic Melanoma After Transfer of Autologous T Cells Recognizing 10 Mutated Tumor Antigens. *Cancer Immunol Res* (2016) 4(8):669–78. doi: 10.1158/2326-6066.CIR-15-0215

7. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. *J Clin Oncol* (2008) 26(32):5233–9. doi: 10.1200/JCO.2008.16.5449

8. Yee C. Adoptive T-Cell Therapy for Cancer: Boutique Therapy or Treatment Modality? *Clin Cancer Res*: An Off J Am Assoc Cancer Res (2013) 19(7):4550–2. doi: 10.1158/1078-0432.CCR-13-1367

9. Lee N, Zakka LR, Mihm MC Jr, Schatton T. Tumor-Infiltrating Lymphocytes in Melanoma Prognosis and Cancer Immunotherapy. *Pathology* (2016) 48(2):177–87. doi: 10.1016/j.pathol.2015.12.006

10. Dose Interleukin-2. *Cancer Immunol Immunother: CII* (2006) 177(9):6548 doi: 10.1007/s00262-006-0599-4

11. Proff J, Walterskirchen C, Brey C, Geyeregger R, Full F, Ensner A, et al. Cytomegalovirus-Infected Cells Resist T Cell Mediated Killing in an HLA-Recognition Independent Manner. *Front Microbiol* (2016) 7:844. doi: 10.3389/fmicb.2016.00844

12. Rosewell Shaw A, Porter CE, Watanabe N, Tanoue K, Sikora A, Gottschalk S, et al. Alendron therapy Delivering Cytokine and Checkpoint Inhibitor Augment HLA T Cells Against Metastatic Head and Neck Cancer. *Mol Ther: J Am Soc Gene Ther* (2017) 25(11):2440–51. doi: 10.1016/j.molther.2017.09.010

13. Haji-Fatalahzadeh M, Hossein M, Abkarian A, Sadreddini S, Jadidi-Niaragh F, Yousefi M. CAR-Modified T-Cell Therapy for Cancer: An Updated Review. *Artif Cells Nanomed Biotechnol* (2016) 44(6):1339–49. doi: 10.3109/21691401.2015.1052465

14. Johnson LA, Heemskerk B, Powell DJ Jr, Cohen CJ, Morgan RA, Dudley ME, et al. Gene Transfer of Tumor-Reactive TCR Confers Both High Avidity and Tumor Reactivity to Nonreactive Peripheral Blood Mononuclear Cells and Tumor-Infiltrating Lymphocytes. *J Immunol* (2006) 177(9):6548–59. doi: 10.4049/jimmunol.177.9.6548

15. Roux KH, Zink J, Low DP, Zhao Y, Rosenberg SA, et al. Recognition of Genetically Modified T-Cell Receptors That Recognize the CEA:691-699 Peptide in the Context of HLA-A2.1 on Human Colorectal Cancer Cells. *Clin Cancer Res: An Off J Am Assoc Cancer Res* (2009) 15(1):169–80. doi: 10.1185/j078-0432.CCR-08-1638

16. Cohen CJ, Zheng Z, Bray R, Zhao Y, Sherman LA, Rosenberg SA, et al. Recognition of Fresh Human Tumor by Human Peripheral Blood Lymphocytes Transduced With a Bistricic Retroviral Vector Encoding a Murine Anti-P53 TCR. *J Immunol* (2005) 175(9):7999–8008. doi: 10.4049/jimmunol.175.9.7999

17. Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski MM, Carroll RG, et al. Control of HIV-1 Immune Escape by CD8 T Cells Expressing Enhanced T-Cell Receptor. *Nat Med* (2008) 14(12):1390–5. doi: 10.1038/nm.1779

18. Inderberg EM, Walchli S, Myhre MR, Trachsel S, Almasbakh H, Kvalheim G, et al. T Cell Therapy Targeting a Public Neoantigen in Macrolactam Stable Colon Cancer Reduces In Vivo Tumor Growth. *Oncoimmunology* (2017) 6(4):e1026361. doi: 10.1080/2162402x.2017.1302631

19. Zhang W, Yang Z, Wang M, Li S, Li Y, et al. Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA (+) Metastatic Colorectal Cancers. *Mol Ther: J Am Soc Gene Ther* (2017) 25(5):1248–58. doi: 10.1016/j.ymthe.2017.03.010

20. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1. *J Clin Oncol* (2011) 29(7):917–24. doi: 10.1200/jco.2010.32.2537

21. Maus MV, Grupp SA, Porter DL, June CH. Antibody-Modified T Cells: CARs Take the Front Seat for Hematologic Malignancies. *Blood* (2014) 123(17):2623–35. doi: 10.1182/blood-2013-11-492231

22. Labanieh L, Majzner RG, Mackall CL. Programming CAR-T Cells to Kill Cancer. *Nat Biomed Eng* (2018) 2(6):377–91. doi: 10.1038/s41551-018-0235-9

23. Barbet J, Fouquereau A, Thomas Y. Therapeutic Progress in Oncology: Towards a Revolution in Cancer Therapy. (2020). Available at: https://books.google.com/ books?id=OnuDSWAQBAJ

24. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T Cells With Chimeric Antigen Receptors Have Potent Antitumor Effects and can Establish Memory in Patients With Advanced Leukemia. *Sci Transl Med* (2011) 3(95):95ra73. doi: 10.1126/scitranslmed.3002842

25. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults With Chemotherapy-Refractory Acute Lymphoblastic Leukemia. *Sci Transl Med* (2013) 5(177):177ra38. doi: 10.1126/scitranslmed.3005930

26. Jin A, Feng J, Wei G, Wu W, Yang L, Xu H, et al. CD19/CD123 Chimeric Antigen Receptor T-Cell Therapy for Refractory Acute B-Cell Lymphoblastic Leukemia With FLT3-ITD Mutations. *Bone Marrow Transplant* (2020) 55(4):717–21. doi: 10.1038/s41409-020-0807-7

27. Ruella M, Barrett DM, Kenderian SS, Shesota O, Hofmann TJ, Perazzelli J, et al. Dual CD19 and CD123 Targeting Prevents Antigen-Loss Relapses

FUNDING

This work was supported by the National Natural Science Foundation of China (Grant No. 81972789, 8204397), Fundamental Research Funds for the Central Universities (Grant No. JUSRP22011), Technology Development Funding of Wuxi (Grant No. WX181VJ019), Major Project of Science and Technology in Henan Province (Grant No. 192102310437), the Major Project of TCM research in Henan Province (Grant No. 2019ZYD02, 2018ZYD01). The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.
When CAP Meets CAR

After CD19-Directed Immunotherapies. J Clin Invest (2016) 126(10):3814–
26. doi: 10.1172/JCI83766

Lin MY, Shi S, Benedict A, Jensen MC, Chen YY. T Cells Expressing
CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape
by Malignant B Cells. Cancer Immunol Res (2016) 4(6):498–508.
doi: 10.1158/2326-6066.CIR-15-0231

Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L,
et al. Cardiovascular Toxicity and Titin Cross-Reactivity of Affinity-
Enhanced T Cells in Myeloma and Melanoma. Blood (2013) 122(6):863–
71. doi: 10.1182/blood-2013-03-049565

Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z,
et al. Cancer Regression and Neurological Toxicity Following Anti-MAGE-
A3 TCR Gene Therapy. J Immunother (2013) 36(2):133–51. doi: 10.1097/
CJI.0b013e3182829903

Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M,
et al. Rapid Regulation of Human Monocyte-Derived IL-1 and IL-6 are Differentially Required for Cytokine-
Response and Delayed Toxicities of Refractory Advanced Diffuse Large B-
Cell Lymphoma Treated by CD20-Directed Chimeric Antigen Receptor-
Modified T Cells. Curr Immunol (2014) 155(2):160–75. doi: 10.1016/j.
cijclin.2014.10.002

Tsujiura M, Kusamori K, Nishikawa M. Rapid Regulation of Human
Mesenchymal Stem Cell Proliferation Using Inducible Caspase-9 Suicide
Gene for Safe Cell-Based Therapy. Blood (2019) 133(10):2637–48.
doi: 10.1182/blood.2018-808311

Wang Y, Zhang WY, Han QW, Liu Y, Dai HR, Guo YL, et al. Effective
Response and Delayed Toxicities of Refractory Advanced Diffuse Large B-
Cell Lymphoma Treated by CD20-Directed Chimeric Antigen Receptor-
Modified T Cells. Clin Immunol (2014) 155(2):160–75. doi: 10.1016/j.
cijclin.2014.10.002

Tsujiura M, Kusamori K, Nishikawa M. Rapid Regulation of Human
Mesenchymal Stem Cell Proliferation Using Inducible Caspase-9 Suicide
Gene for Safe Cell-Based Therapy. Int J Mol Sci (2019) 20(22):3759.
doi: 10.3390/ijms20223759

Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al.
Monocyte-Derived IL-1 and IL-6 are Differentially Required for Cytokine-
Release Syndrome and Neurotoxicity Due to CAR T Cells. Nat Med (2018)
24(6):739–48. doi: 10.1038/s41591-018-0036-4

Lim WA, June CH. The Principles of Engineering Immune Cells to Treat
Cancer. Cell (2017) 168(4):724–40.

Jaspers JE, Brentjens RJ. Development of CAR T Cells Designed to Improve
Antitumor Efficacy and Safety. Pharmacol Ther (2017) 178(4):83–91.

Gill S, Maus MV, Porter DL. Chimeric Antigen Receptor T Cell Therapy: 25
Years in the Making. Blood Rev (2015) 30(3):157–67. doi: 10.1016/j.
blre.2015.10.003

Wang QS, Wang Y, Lv HY, Han QW, Fan H, Guo B, et al. Treatment of
CD33-Directed Chimeric Antigen Receptor-Modified T Cells in One Patient
With Relapsed and Refractory Acute Myeloid Leukemia. Mol Ther: J Am Soc
Gene Ther (2015) 23(1):184–91. doi: 10.1038/mt.2014.164

Turtle CJ, Maloney DG. Clinical Trials of CD19-Targeted CAR-Modified T
Cell Therapy: a Complex and Varied Landscape. Oxfordshire: Taylor &
Francis (2016).

Morgan RA, Yang JC, Kitano M, Shpall EJ, Szabolcs P, Rosenberg SA.
Case Report of a Serious Adverse Event Following the Administration of T
Cells Transduced With a Chimeric Antigen Receptor Recognizing ERBB2.
Mol Ther: J Am Soc Gene Ther (2010) 18(4):843–51. doi: 10.1038/mt.2010.24

Liu X, Jiang S, Fang C, Yang S, Oal dere L, P equingot EC, et al. Affinity-Tuned ErbB2 or EGFR Chimeric Antigen Receptor T Cells Exhibit an Increased
Therapeutic Index Against Tumors in Mice. Cancer Res (2015) 75(17):3596–
607. doi: 10.1158/0008-5472.CAN-15-0159

Parkhurst MR, Yang JC, Langan KC, Dudley ME, Nathan DA, Feldman SA,
et al. T Cells Targeting Carcinoembryonic Antigen can Mediate Regression
of Metastatic Colorectal Cancer But Induce Severe Transient Colitis. Mol
Ther: J Am Soc Gene Ther (2011) 19(3):620–6. doi: 10.1038/mt.2011.272

Davies F, Thompson JP, Smithers BM, Santinami M, Jouary T, Gutierrez R,
et al. MAGE-A3 Immunotherapeutic as Adjuvant Therapy for Patients With
Resected, MAGE-A3-Positive, Stage III Melanoma (DERMA): A Double-
Blind, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Oncol (2018)
19(7):916–29. doi: 10.1016/S1470-2045(18)30524-7

Batchu RB, Gruzdyn OV, Moreno-Bost AM, Szmania S, Jayandharan G,
Srivastava A, et al. Efficient Lysis of Epithelial Ovarian Cancer Cells by
MAGE-A3-Induced Cytotoxic T Lymphocytes Using rAAV-6 Caspid
Mutant Vector. Vaccine (2014) 32(8):938–43. doi: 10.1016/j.vaccine.2013.
12.049

Chen X, Wang L, Liu J, Huang L, Yang L, Gao Q, et al. Expression and
Prognostic Relevance of MAGE-A3 and MAGE-C2 in Non-Small Cell Lung
Cancer. Oncol Lett (2017) 13(3):1609–18. doi: 10.3892/ol.2017.5665

Yin B, Zeng Y, Liu G, Wang X, Wang P, Song Y. MAGE-A3 is Highly
Expressed in a Cancer Stem Cell-Like Side Population of Bladder Cancer
Cells. Int J Clin Exp Pathol (2014) 7(6):2934–41.

Shantha Kumara HM, Grieco MJ, Caballero OL, Su T, Ahmed A, Ritter E,
et al. MAGE-A3 is Highly Expressed in a Subset of Colorectal Cancer Patients.
Cancer Immun (2012) 12:16.

Ayyoub M, Scarlata CM, Hamai A, Pignon P, Valmori D. Expression of
MAGE-A3 in Primary Breast Cancer is Associated With Hormone
Receptor Negative Status, High Histologic Grade, and Poor Survival.
J Immunother (2014) 37(2):73–7. doi: 10.1097/CJI.0000000000000103

Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, et al.
Efficacy of the MAGE-A3 Cancer Immunotherapeutic as Adjuvant Therapy
in Patients With Resected MAGE-A3-Positive Non-Small Cell Lung Cancer
(MAGRIT): A Randomised, Double-Blind, Placebo-Controlled, Phase 3
Trial. Lancet Oncol (2016) 17(6):822–35. doi: 10.1016/S1470-2045(16)
00999-1

Weij H, Han X, Bo J, Han W. Target Selection for CAR-T Therapy. J Hematol
Oncol (2012) 9(1):62. doi: 10.3324/haematol.2011.043069

Pressor Negative Status, High Histologic Grade, and Poor Survival.
J Immunother (2014) 37(2):73–7. doi: 10.1097/CJI.0000000000000103

Jacob E, Nguyen SM, Fountains TJ, Welp K, Gyrder B, Qin H, et al. CD19
CARI mmune Pressure Induces B-Precurso Acute Lymphoblastic
Leukaemia Lineage Switch Exposing Inherent Leukaemic Plasticity.
Nat Commun (2016) 7:13230. doi: 10.1038/ncomms13230

Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, et al. TankCAR:
A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy.
Mol Ther Nucleic Acids (2013) 2:105. doi: 10.1038/mtna.2013.32

MacKay M, Afshinnekoe E, Rub J, Hassan C, Khante M, Baskaran N, et al.
The Therapeutic Landscape for Cells Engineered With Chimeric Antigen
Receptors. Nat Biotechnol (2020) 38(2):233–44. doi: 10.1038/s41587-019-
0329-2
101. Van Loenhout J, Freire Boullisa L, Quattannens D, De Waele J, Merlin C, Lambrechts H, et al. Auranoamine and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma. Cells (2021) 10(11):2936. doi: 10.3390/cells10112936

102. Azzariti A, Iacobazzi RM, Di Fonte R, Porcelli L, Gristina R, Favia P, et al. Plasma-Activated Medium Triggers Cell Death and the Presentation of Immune Activating Danger Signals in Melanoma and Pancreatic Cancer Cells. Sci Rep (2019) 9(1):8099. doi: 10.1038/s41598-019-40637-z

103. Almeida ND, Klein AL, Hogan EA, Terhaar SJ, Kedda J, Uppal P, et al. Cold Atmospheric Plasma as an Adjunct to Immunotherapy for Glioblastoma Multiforme. World Neurosurg (2019) 130:369–76. doi: 10.1016/j.wneu.2019.06.209

104. Alimohammadi M, Golpur M, Sohbatzadeh F, Hadavi S, Bekeschus S, Niaki HA, et al. Cold Atmospheric Plasma Is a Potent Tool to Improve Chemotherapy in Melanoma In Vitro and In Vivo. Biomolecules (2020) 10(7):1011. doi: 10.3390/biom10071011

105. Wang C, Li P, Liu L, Pan H, Li H, Cai L, et al. Self-Adjuvanted Nanovaccine for Cancer Immunotherapy: Role of Lysosomal Rupture-Induced ROS in MHC Class I Antigen Presentation. Biomaterials (2016) 79:88–100. doi: 10.1016/j.biomaterials.2015.11.040

106. Dasschlein G, Scholz S, Ahmed R, Majumdar A, von Woedtke T, Haase H, et al. Cold Plasma is Well-Tolerated and Does Not Disturb Skin Barrier or Reduce Skin Moisture. J Disch Dermatol Ges (2012) 10(7):509–15. doi: 10.1111/j.1610-0387.2012.07857.x

107. Metelmann HR, Vu TT, Do HT, Le TNB, Hoang THA, Phi TTT, et al. Scar Formation of Laser Skin Lesions After Cold Atmospheric Pressure Plasma (CAP) Treatment: A Clinical Long Term Observation. Clin Plasma Med (2013) 1(1):30–5. doi: 10.1016/j.cpme.2012.12.001

108. Metelmann HR, von Woedtke T, Russiain R, Weltmann KD, Rieck M, Khalili R, et al. Experimental Recovery of CO2-Laser Skin Lesions by Plasma Stimulation. Am J Cosmetic Surg (2012) 29(1):52–6. doi: 10.5992/ajcs-d-11-00042.1

109. Ulrich C, Kluschke F, Patzelt A, Vandersee S, Czaika VA, Richter H, et al. Clinical Use of Cold Atmospheric Pressure Argon Plasma in Chronic Leg Ulcers: A Pilot Study. J Wound Care (2015) 24(5):196, 198–200, 202-3. doi: 10.12968/jowc.2015.24.5.196

110. Metelmann HR, Nedrelow DS, Seebauer C, Schuster M, Woedtke T, Weltmann KD, et al. Head and Neck Cancer Treatment and Physical Plasma. Clin Plasma Med (2015) 3:17–23. doi: 10.1016/j.cpme.2015.02.001

111. Kulaga EM, Jacofsky DJ, McDonnell C, Jacofsky MC. The Use of an Atmospheric Pressure Plasma Jet to Inhibit Common Wound-Related Pathogenic Strains of Bacteria. Plasma Med (2016) 6(1):1–12. doi: 10.1615/PlasmaMed.2016015851

112. Ishaq M, Zhao JH, Kumar S, Evans MDM, Ostrikov K. Atmospheric-Pressure Plasma- and TRAIL-Induced Apoptosis in TRAIL-Resistant Colorectal Cancer Cells. Plasma Process Polym (2015) 12(6):574–82. doi: 10.1002/ppap.20140207

113. Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, et al. Induction of Resistance to Chimeric Antigen Receptor T Cell Therapy by Transduction of a Single Leukemic B Cell. Nat Med (2018) 24(10):1499–503. doi: 10.1038/s41591-018-0201-9

Conflict of Interest: XD was employed by CAPsoul Biotechnology Company, Ltd, Beijing, China.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Dai, Li, Chen and Ostrikov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.