1 INTRODUCTION

Near-Earth Apollo asteroid 1566 Icarus = 1949 MA was discovered by Baade (1949) as a 16th magnitude fast-moving object, on a plate taken using the 48 inch Palomar Schmidt telescope on 1949 June 10, when Icarus approached the Earth to within 0.10 AU, near its descending node. Its orbital parameters were highly unusual: it had a smaller semimajor axis ($a = 1.08$ AU), smaller perihelion distance ($q = 0.19$ AU) and larger eccentricity ($e = 0.83$) than any other asteroid known at that time, and relatively high inclination ($i = 23^\circ$). Icarus remained the record holder in having the smallest q among all asteroids until the discovery of 3200 Phaethon in 1983. Indeed, on account of its small q, Icarus was historically of particular interest as to whether the relativistic effects on its orbital motion were detectable (e.g., Shapiro et al. 1971).

In Icarus’ subsequent approaches to the Earth in 1968, 1987, and 1996, the following physical data were derived: absolute magnitude ($H = 15.95$) and G-parameter (-0.04) (Tedesco 1989), rather high albedo (~ 0.33 and diameter ~ 1 km (e.g., Harris 1998), fast rotation period ~ 2.273 hr (e.g., Gehrels et al. 1970; De Angelis 1995), and others. Especially notable is that Icarus is spectrally classified as a Q-type in Tholen’s taxonomy. Q-type asteroids, which generally are spectroscopic analogs of ordinary chondrites (cf. McFadden et al. 1984; Hicks et al. 1998; Feigl & Fink 2007), are regarded as being less space-weathered S-complex asteroids, with a surface age $\lesssim 10$ Myr owing to resurfacing effects (Marchi et al. 2006). Hence, Icarus may represent the rather fresh internal structure of a precursor object broken up in recent history. Moreover, with $q \sim 0.19$ AU, the subsolar point on Icarus should reach a temperature of 800 K by solar heating, in which case the solar thermal stress may be a trigger to destroy the asteroid’s surface and subsurface. Resurfacing may alternatively be due to the tidal effects of the terrestrial planets (Nesvorný et al. 2005).

For the above reasons, we have expected some “Icarus family members” (IFMs) to exist in near-Earth space. We have therefore been searching for IFMs based on time-lag measurements (see below) between the orbital evolution of Icarus and any candidate IFM. This procedure was successful in finding the dynamical relationship between 3200 Phaethon and 155140 2005 UD (Ohtsuka et al. 2006, hereafter Paper I). No certain IFMs had been found in the Apollo asteroid database until very recently. However, we finally identified an extremely likely candidate from the latest MPECs (Minor Planet Electronic Circulars): a recently discovered Apollo asteroid 2007 MK$_6$.}

2 ORBITAL INTEGRATION OF 1566 ICARUS

As preliminary work for the IFM survey and for measuring the time lags (detailed in the next section) between Icarus and unknown potential IFMs, we calculated the orbital evolution of Icarus. We performed a backward and forward numerical integration of the KS (Kustaanheimo-Stiefel) regularized equation of motion (cf. Arakida & Fukushima 2000, 2001), applying the 12th-order Adams method in double precision with a step size of 0.5 day. The integration covered 10,000 BC to 10,000 AD (JDT -1931503.5 to 5373520.5) and included terms of first order in the post-Newtonian approximation for the Sun’s gravitational field since relativistic effects advance the line of apsides of Icarus at a rate of 10^7 Cy$^{-1}$.

We also confirmed that the results of our numerical integration did not significantly change even when we adopted smaller step sizes or when we used other integration methods such as the extrapolation method. The initial orbital data of Icarus at osculation epoch 2007 Apr 10.0 TT = JDT 2454200.5 were taken from NASA JPL’s HORIZONS System and are listed in Table 1. All the major planets from Mercury through Neptune and the quasi-planet, Pluto, were included as perturbing bodies (the Earth-Moon barycenter being one body, with the Moon’s mass added to the Earth’s). The coordinates of the major planets were taken from the JPL Planetary and Lunar Ephemeris DE408.

Over 20,000 yr we found the orbital motion of Icarus to...
show a high degree of stability, with long-period secular changes according to the cycle in argument of perihelion \(\omega \), also known as the Kozai cycle (Kozai 1962). The corresponding large-amplitude oscillations in \(q \) and \(i \), in antiphase with \(e \), have a period of \(\sim 25,000 \) yr, half that of the \(\omega \) cycle. The \(\omega \) period of \(\sim 50,000 \) yr is somewhat larger than the \(\sim 40,000 \) yr for Phaethon and 2005 UD (Paper I).

3. Time Lag \(\Delta t \) of the Orbital Evolutions

In the first stage of the formation of an asteroid family, the orbital energies \((\propto 1/a)\) of bodies or fragments are slightly different from that of the precursor, since the motions of the released objects are slightly accelerated or decelerated relative to the precursor. This results in differences in their evolutionary rates under gravitational perturbations (in addition, there may be differential nongravitational perturbations); then a time lag (which hereafter we call \(\Delta t \)) in the orbital evolutions arises. At the starting epoch, \(\Delta t \approx 0 \) yr, and it tends to increase with time. We note that \(\Delta t \) is not the time since separation but rather quantities how separated in phase two orbits have become in their respective (similar) secular perturbation cycles. For measuring a difference in the evolutionary phase of two orbits, \(\Delta t \) is much more suitable than, for example, the difference in \(\omega \), since (for highly eccentric orbits particularly) \(\alpha = \pi \Delta t \) is strongly dependent on the phase within the Kozai cycle (e.g., see Fig. 1 below). Any IFM should show a very close orbital similarity with Icarus when shifted by the appropriate \(\Delta t \) that brings both orbits to the same evolutionary phase.

The following successful studies applying this time-lag theory have been made so far:

1. **Anticipation of the Marsden and Kracht comet groups’ periodicity and their return.**—Ohtsuka et al. (2003) anticipated these comet groups, which initially had parabolic orbit solutions, as being fragments of periodic comet 96P/Machholz. Their prediction was shown to be correct when Sekanina & Chodas (2005) linked orbits and found these comet groups to have orbital periods of 5–6 yr, corresponding to 96P’s \(\sim 5.2 \) yr. The Marsden and Kracht comet groups thus turned out to be decameter-size members of the 96P-Quadrantid stream complex.

2. **Genetic relationship of Phaethon and 2005 UD.**—Paper I revealed 2005 UD as being the most likely large fragment of Phaethon. This dynamical relationship was confirmed by the physical studies of Jewitt & Hsieh (2006) and Kinoshita et al. (2007), who classified both objects as F or B type. These taxonomic types are very rare, comprising only \(\sim 5\% \) of near-Earth objects (NEOs) that have been classified; combined with the dynamical evidence, the genetic relationship of Phaethon and 2005 UD is beyond doubt.

This time-lag theory is straightforward and is now well established as a technique to demonstrate the existence of cometary stream complexes or likely NEO families; so it should be a useful tool to survey for IFMs.

4. Survey

4.1. Procedure

The survey for IFMs in the Apollo asteroid database and latest MPECs uses the same procedure as in Paper I. We again applied the following three criteria as the retrieving engine for our IFM survey. The first is the traditional orbital similarity criterion \(D_{\text{sh}} \) of Southworth & Hawkins (1963), who defined \(D_{\text{sh}} \) as a distance between the orbits of two objects \(A \) and \(B \) in five-dimensional orbital element space \((e, q, \omega, \Omega, i)\), as follows:

\[
D_{\text{sh}} = \sqrt{\sum_{j=1}^{5} f_{j}^{2}(P_{A,j} - P_{B,j})^{2}},
\]

where \(P_{A,j} \) and \(P_{B,j} \) are orbital elements and \(f_{j} \) are functions of the elements that ensure suitable weights are given to each term in equation (1). Thus, we searched for potential IFMs on the basis of Icarus’ orbital evolution from the integration described in § 2. For each near-Earth Apollo, we found the minimum \(D_{\text{sh}} \) between it and Icarus, as Icarus’ orbit evolves. A minimum \(D_{\text{sh}} \leq 0.15 \) means that Icarus and the given asteroid are within the probable association range.

The second and third criteria are the \(C_{1} \) and \(C_{2} \) integrals derived by Moiseev (1945) and Lidov (1961), respectively, which we calculate for candidates selected by \(D_{\text{sh}} \):

\[
C_{1} = (1 - e^{2}) \cos^{2} i,
\]

\[
C_{2} = e^{2}(0.4 - \sin^{2} i \sin^{2} \omega).
\]

These integrals describe the secular orbital variations well. Both \(C_{1} \) and \(C_{2} \) are almost invariant for the orbital motions of Phaethon and 2005 UD (Paper I) and should also be useful criteria to distinguish IFMs.

4.2. Detection of the IFM Candidate: Near-Earth Apollo Asteroid 2007 \(MK_{6} \)

In this way, we finally detected a very likely IFM candidate from the latest MPECs: near-Earth Apollo asteroid 2007 \(MK_{6} \), which was recently discovered in the Catalina sky survey, on 2007 June 21.2 (Hill et al. 2007). Soon after, Ohtsuka (2007) made the identification of 2007 \(MK_{6} \) with another Apollo asteroid, 2006 KT\(_{6}\); so 2007 \(MK_{6} \) = 2006 KT\(_{6}\); the latter was both discovered (on 2006 May 26) and observed only (12 positions over a 1 day arc) by the Mt. Lemmon survey. This extended the arc to more than 1 yr. Nakano successfully linked their orbits, based on 54 positions at two oppositions (covering 2006 May 26 to 2007 June 27) with an rms residual of 0.74\(^{\circ}\).
The absolute magnitude $H \sim 19.9$ corresponds to an object a few hundred meters in size at most, if we assume 2007MK_6 is a high-albedo object such as an S-type.

Using Nakano’s data listed in Table 1, we integrated 2007MK_6 using the same method as that for Icarus. The dynamical evolutions of both asteroids are illustrated in Figure 1. Icarus and 2007MK_6 sometimes encounter the terrestrial planets. Encounters with Venus or Earth can cause changes in a, but these are small enough that the other elements display a stable secular evolution, as with Phaethon and 2005UD (Paper I). Neither asteroid has a nodal intersection epoch with Venus or Earth in the past 10,000 yr, hence, the interval of constant a that can be seen in Figure 1.

Comparing the orbital elements of 2007MK_6 at the current epoch with the changing orbit of Icarus over time, as described in § 4.1, we found a strikingly good match with Icarus at around 1034 AD (Table 1); thus, $\Delta t \sim 1000$ yr. The corresponding minimum value of D_{SH} is only 0.0098. Both Δt and D_{SH} are fairly small compared to the respective values ~ 4600 yr and 0.04 between Phaethon and 2005UD (Paper I). The C_1 and C_2 parameters are almost constant, within the ranges 0.26–0.28 and 0.24–0.25, respectively. Therefore, 2007MK_6 is a very strong candidate IFM.

The two orbital evolutions show a similar profile, with quasi-sinusoidal changes, simply shifted by $\Delta t \sim 1000$ yr. Their smaller Δt than Phaethon and 2005UD suggests a younger separation age, but the value of D_{SH} between Icarus and 2007MK_6 at the same osculation epoch has never been below 0.03.
in our integration time span. Only in quite rare cases (such as the Karin cluster in the main belt; Nesvorný et al. 2002) can an exact separation age be found unambiguously, although we may certainly expect D_{stat} to have been smaller around the time that Icarus and 2007 MK$_6$ separated. Some test integrations back 103 yr tentatively show Δt decreasing back in time, but random small changes in a due to close encounters make it hard to reach a precise quantitative conclusion about the separation age. However, this age is clearly within 10 Myr, the resurfacing age of Q-type NEOs, possibly 2 orders of magnitude shorter. The Icarus and 2007 MK$_6$ parent may well have been injected into the near-Earth environment of the order of 10 Myr ago (cf. Bottke et al. 2002) but with the separation occurring much more recently.

We also surveyed meteor data related to the IFMs. Consequently, we noticed a likely meteor swarm found by Sekanina (1973) in the Harvard (Havana) radar meteor orbit survey: the daytime Taurid-Perseid meteor swarm, recorded around June (1973) in the Harvard radar’s 1961–1965 term of operation. The orbital parameters are in good agreement with those of Icarus, as presented in Table 2. Their D_{stat} ∼ 0.08 is in the probable association range. Although we cannot accurately measure their Δt, both the current orbits look to be at almost the same evolutionary phase. No further orbital data were found in the radar meteor orbit database. We may therefore regard the Taurids-Perseids as a transient Earth-crossing IFM dust band rather than a cometary meteor stream.

5. DISCUSSION AND CONCLUSIONS

There have been numerous studies on the formation of main belt asteroid (MBA) families and also some on NEO families. Statistical studies using NEO orbit data, based on orbital similarity, often generate positive results on the existence of NEO families. However, Fu et al. (2005) concluded that it is unlikely that these results are anything more than random fluctuations in the NEO orbit population. In a past IFM study, Steel et al. (1992) noted an orbital similarity between 5786 Talos = 1991 RC and Icarus. Their orbital elements, except for ω and Ω, indeed coincide well with each other. However, Talos’ longitude of perihelion remains widely separated (by ∼50°) from that of Icarus over the past 11,000 yr integrated by Steel et al., so that it is difficult to verify a genetic relationship. If there exist NEO families having high eccentricity and rather highly inclined orbits, then unless their origin is extremely recent, their differential orbital evolutions, shifted by Δt, will lead to their current orbital elements being drastically different. For this reason it is more complicated to search for NEO families than MBA families.

Nevertheless, we found near-Earth Apollo asteroids Icarus and 2007 MK$_6$ to be very likely candidates for IFMs, based on our time-lag theory. Their Δt ∼ 1000 yr and minimized D_{stat} ∼ 0.0098 are even smaller than those, ∼4600 yr and 0.04, of the well-established Phaethon and 2005 UD relationship. Since Phaethon and 2005 UD may have a cometary origin (Paper I), the dynamical relationship between Icarus and 2007 MK$_6$ along with a possible IFM dust band may constitute the first detection of an asteroidal NEO family, namely, the “Icarus asteroid family.” In this case, Icarus should be the parent body, but as it is only a 1 km size object, the Icarus family is on a smaller scale than MBA families.

The next Earth approaches of Icarus and 2007 MK$_6$ will occur, respectively, on 2015 June 17 to 0.05 AU and 2016 June 15 to 0.10 AU, providing good opportunities to determine additional physical parameters and to further study their common origin. It is possible that further accurate astrometry and advances in the numerical analysis will eventually resolve the separation age.

The authors are grateful to the anonymous referee for his careful reading of the manuscript and for his comments.

REFERENCES

Arakida, H., & Fukushima, T. 2000, AJ, 120, 3333
———. 2001, AJ, 121, 1764
Baade, W. 1949, IAU Circ. 1226
Bottke, W. F., et al. 2002, Icarus, 156, 399
De Angelis, G. 1995, Planet. Space Sci., 43, 649
Feigl, R. A., & Fink, U. 2007, Icarus, 188, 175
Fu, H., et al. 2005, Icarus, 178, 434
Gehrels, T., Roemer, E., Taylor, R. C., & Zellner, B. H. 1970, AJ, 75, 186
Harris, A. W. 1998, Icarus, 131, 291
Hicks, M. D., Fink, U., & Grundy, W. M. 1998, Icarus, 133, 69
Hill, R. E., et al. 2007, Minor Planet Electronic Circ., 2007-M32
Jewitt, D., & Hsieh, H. 2006, AJ, 132, 1624
Kinoshi, D., et al. 2007, A&A, 466, 1153
Kozai, Y. 1962, AJ, 67, 591
Lidov, M. L. 1961, Iskusstvennie Sputniki Zemli, 8, 5
Marchi, S., et al. 2006, MNRAS, 368, L39
Moiseev, N. D. 1945, Trudy Gosud. Astron. Shternberga, 15, 75
Nesvorný, D., Botke, W. F., Dones, L., & Levison, H. F. 2002, Nature, 417, 720
Ohtsuka, K. 2007, Minor Planet Electronic Circ., 2007-M49
Ohtsuka, K., Nakano, S., & Yoshikawa, M. 2003, PASJ, 55, 321
Ohtsuka, K., et al. 2006, A&A, 450, L25 (Paper I)
Sekanina, Z. 1973, Icarus, 18, 253
Sekanina, Z., & Chodas, P. W. 2005, ApJS, 161, 551
Shapiro, I. I., Smith, W. B., Ash, M. E., & Herrick, S. 1971, AJ, 76, 588
Southworth, R. B., & Hawkins, G. S. 1963, Smithsonian Contrib. Astrophys., 7, 261
Steel, D., McNaught, R. H., & Asher, D. 1992, Minor Planet Bull., 19, 9
Tedesco, E. F. 1989, in Asteroids II, ed. R. B. Binzel et al. (Tucson: Univ. Arizona Press), 1090

TABLE 2

Object	Epoch (TT)	q (AU)	a (AU)	e	ω (deg)	Ω (deg)	i (deg)
Icarus	1963 Jul 3.0	0.18697	1.07791	0.82655	31.032	88.337	22.940
Tau-Per	1961–1965	0.163	1.268	0.871	36.3	86.7	23.3

1566 Icarus and the Taurids-Perseids (Sekanina 1973) at almost the same evolutionary phase (J2000.0)