Natural killer (NK) cells and cytotoxic T lymphocytes eliminate virally infected and transformed cells. Target cell killing is mediated by the regulated exocytosis of secretory lysosomes, which deliver perforin and proapoptotic granzymes to the infected or transformed cell. Yet despite the central role that secretory lysosome exocytosis plays in the immune response to viruses and tumors, little is known about the molecular machinery that regulates the docking and fusion of this organelle with the plasma membrane. To identify potential components of this exocytic machinery we used proteomics to define the protein composition of the NK cell secretory lysosome membrane. Secretory lysosomes were isolated from the NK cell line YTS by subcellular fractionation, integral membrane proteins and membrane-associated proteins were enriched using Triton X-114 and separated by SDS-PAGE, and tryptic peptides were identified by LC ESI-MS/MS. In total 221 proteins were identified unambiguously in the secretory lysosome membrane fraction of which 61% were predicted to be either integral membrane proteins or membrane-associated proteins. A significant proportion of the proteins identified play a role in vesicular trafficking, including members of both the Rab GTPase and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and protein families. These proteins include Rab27a and the SNARE vesicle-associated membrane protein-7, both of which were enriched in the secretory lysosome fraction and represent potential components of the machinery that regulates the exocytosis of this organelle in NK cells. *Molecular & Cellular Proteomics* 6:767–780, 2007.
ics to define the protein composition of the NK cell secretory lysosome membrane and hence identify potential components of the exocytic machinery associated with this organelle. To achieve this goal highly enriched secretory lysosomes were obtained by subcellular fractionation of the NK cell line YTS. The integral membrane proteins and membrane-associated proteins were then enriched using Triton X-114 and separated by SDS-PAGE, and the proteins were identified by LC ESI-MS/MS. A total of 221 proteins were unambiguously identified, including members of the Rab GTPase and SNARE protein families. Subsequent validation by immunoblotting with specific antibodies demonstrated that proteins identified by LC ESI-MS/MS were present within the YTS cell secretory lysosome fraction and expressed by primary NK cells.

EXPERIMENTAL PROCEDURES

Materials and Reagents—Unless otherwise stated all reagents were supplied by Sigma-Aldrich. The following primary antibodies were used: rabbit anti-calnexin (Stressgen), rabbit anti-calreticulin (Stressgen), mouse monoclonal anti-CD63 clone MEM-259 (Serotec), rabbit anti-early endosomal antigen 1 (EAA1; Abcam), rabbit anti-Erp57 (a kind gift from Professor Neil Bulleid, University of Manchester), rabbit ant-GLUT1 (a kind gift from Professor Stephen Baldwin, University of Leeds), mouse monoclonal anti-granzyme B clone ZC5/F5 (BD Biosciences), mouse monoclonal anti-mannose-6-phosphate receptor (MPR) clone 2G11 (Abcam), mouse monoclonal anti-major histocompatibility (MHC) class I heavy chain clone HC10 (11), mouse monoclonal anti-NADH-ubiquinol oxidoreductase clone 20C11 (Molecular Probes), mouse monoclonal anti-Rab8 clone 4 (BD Transduction Laboratories), mouse monoclonal anti-Rab27a clone 4B12 (12) (a kind gift from Professor Miguel Seabra, Imperial College, London, UK), mouse monoclonal anti-RalA (BD Transduction Laboratories), rabbit anti-syntaxin 7 (a kind gift from Dr. Andrew Peden, University of Cambridge), rabbit anti-syntaxin 11 (13) (a kind gift from Dr. Ryts Prekeris, University of Colorado Health Sciences Center), mouse monoclonal anti-transferrin receptor clone H68.4 (Zymed Laboratories Inc.), rabbit anti-transporter associated with antigen processing 1 (TAP1; Calbiochem), sheep anti-TGN46 (a kind gift from Dr. Vas Ponnambalam, University of Leeds), mouse monoclonal anti-vesicle-associated membrane protein-7 (VAMP7) clone CI158.2 (a kind gift from Dr. Thierry Galli, INSERM U536 and UMR144, Paris, France), and rabbit anti-VAMP7 (a kind gift from Professor Paul Luzio, University of Cambridge).

Cell Culture of YTS Cells and Primary NK Cells—The human NK cell line YTS was maintained in RPMI 1640 medium containing 10% (v/v) fetal bovine serum, 2 mM glutamine, 5 units/ml penicillin, and 50 μg/ml streptomycin. Primary NK cells were isolated from human blood and cultured for 14 days with interleukin-2 as described previously (14).

Subcellular Fractionation of YTS Cells—Cells (2 × 10^8) were washed three times in PBS before resuspension into 4 ml of homogenization buffer (10 mM acetic acid, 1 mM EDTA, 190 mM sucrose, 10 mM triethanolamine, pH 7.4) containing 1 mM PMSF and a protease inhibitor mixture (Complete EDTA-free, Roche Applied Science). The cell suspension was homogenized on ice by 10 passes through a ball bearing homogenizer with a 10-μm clearance (Isobiotec). Nuclei, mitochondria, and intact cells were removed by centrifugation (3,000 × g for 10 min at 4 °C), and the resulting postnuclear supernatant (PNS) (3 ml) was layered on top of 21 ml of 27% (v/v) Percoll suspension in homogenization buffer and centrifuged (48,000 × g for 45 min at 4 °C) in a T1250 rotor (Sorvall) to separate subcellular organelles. Twenty-four 1-ml fractions were collected from the gradient. An aliquot of each fraction was added to an equal volume of 2× Laemmli sample buffer and heated at 70 °C for 10 min prior to SDS-PAGE and immunoblotting. Each fraction was assayed for N-acetyl-β-D-glucosaminidase (NAGA) activity and alkaline phosphatase activity to determine the distribution of secretory lysosomes and plasma membrane, respectively, through the gradient using methods described previously (15). Fractions 21 and 22, which contained the highest NAGA activity, were pooled and centrifuged (166,000 × g for 60 min at 4 °C) in a TLS-55 rotor (Beckman) to pellet the membrane fraction, which was stored at –80 °C. An aliquot of this secretory lysosome sample was removed for immunoblotting. In total, secretory lysosomes from 2.9 × 10^10 cells were pooled for proteomics analysis.

Triton X-114 Phase Partitioning—Integral membrane proteins and membrane-associated proteins were enriched by Triton X-114 phase partitioning. Solutions of Triton X-114 are homogenous at 0 °C but separate into a detergent-enriched phase and a detergent-depleted phase at temperatures above 20 °C (16). Proteins partition according to their hydrophobicity with integral membrane proteins and membrane-associated proteins partitioning in the lower detergent phase and hydrophilic proteins partitioning in the upper aqueous phase (16, 17). Prior to use Triton X-114 was precondensed, to remove hydrophilic molecules to obtain a more homogeneous preparation, according to the method of Bordier (16). Extraction of integral membrane proteins and membrane-associated proteins was performed according to a modification to the method of Bordier (16). Briefly 1.2 ml of 5% (v/v) Triton X-114 containing Complete EDTA-free protease inhibitor mixture at 0 °C was added to the secretory lysosomal sample (3.3 ml), and the mixture was kept on ice for 30 min before being centrifuged (10,000 × g for 10 min at 4 °C) to remove the insoluble residue. The supernatant was added to 10 ml of 0.2 mM EDTA, 5 mM MgCl2, 200 mM NaCl, and 40 mM Tris-HCl (pH 7.5) and incubated for 5 min at 37 °C before being centrifuged at 4,470 × g for 3 min at room temperature. The upper aqueous phase was discarded, and the lower detergent phase was partitioned a further four times. Proteins in the detergent phase were precipitated by adding 20% (w/v) TCA in acetone, incubating at –20 °C for 4 h, and then centrifuging at 13,000 × g for 20 min at 4 °C. The pellet was washed twice in 90% (v/v) acetone and then resuspended in 95 μl of 2× Laemmli sample buffer (0.02% (w/v) bromphenol blue, 20% (v/v) glycerol, 5% (v/v) mercaptoethanol, 6% (v/v) SDS, and 125 mM Tris-HCl (pH 6.8)) and stored at –80 °C until required.

SDS-PAGE and In-gel Trypsin Digestion of Secretory Lysosome Membrane Proteins—The Triton X-114-extracted membrane proteins (95 μl) were loaded into a single well of a 1-mm-thick 4% (v/v) stacking gel above a 7–20% (v/v) gradient polyacrylamide gel. SDS-PAGE was performed in an SE 600 Ruby electrophoresis unit (Amer sham Biosciences) at 20 mA/gel for 2 h followed by 30 mA/gel until the bromphenol blue dye front was 0.5 cm from the bottom of the gel. After electrophoresis the gel was fixed overnight in 50% (v/v) ethanol and 3% (v/v) phosphoric acid before the separated proteins were visualized by Coomassie Brilliant Blue staining (17% (w/v) ammonium sulfate, 34% (v/v) methanol, 3% (v/v) phosphoric acid, and 0.035% (w/v) Coomassie Brilliant Blue (G-250)) for 48 h. The stained gel was destained in deionized water for 16–18 h and then scanned. The lane from the polyacrylamide gel was cut into eight segments (A–H) at points corresponding to molecular weight markers, and then each segment was further cut into 2–4-mm slices. Gel slices were subsequently cut into 1-mm³ pieces with a scalpel before being destained and subjected to in-gel trypsin digestion as described previously (18). Peptides were extracted from gel pieces using vigorous shaking at room temperature using a modification to the method of Wilm et al. (19) as described previously (18). Extracted peptides were dissolved in 8 μl of 2% (v/v) formic acid.
After washing, blots were incubated for 1 h with goat anti-mouse, and separated from other less dense organelles by centrifugation. Fractions were collected, and the secretory lysosomes were pelleted by high speed centrifugation. B, the YTS cell homogenate and PNS were immunoblotted with an antibody specific for mitochondrial NADH-ubiquinol oxidoreductase. No immunoreactivity of mitochondrial NADH-ubiquinol oxidoreductase was observed in the PNS.

RESULTS

Isolation of Secretory Lysosomes from the NK Cell Line YTS—Secretory lysosomes were separated from other organelles on the basis of their size and density by subcellular fractionation (Fig. 1A). To reduce disruption of intracellular organelles, YTS cells were homogenized using a ball bearing homogenizer. The homogenate was subsequently centrifuged at 3,000 \(\times \) g for 10 min to generate a PNS. This speed of centrifugation was used because it was also sufficient to sediment mitochondria as evidenced by immunoblotting with an antibody specific for mitochondrial NADH-ubiquinol oxidi-
doreductase (Fig. 1B). The PNS was then layered on top of a self-forming Percoll gradient, and after centrifugation fractions were collected and assayed for activity of the plasma membrane marker alkaline phosphatase and the lysosomal enzyme NAGA (Fig. 2A). Membrane-associated alkaline phosphatase activity peaked in fractions 8–10, whereas non-membrane-associated soluble alkaline phosphatase activity was present in fractions 1–5. In contrast the peak NAGA activity was much deeper in the gradient in fractions 21 and 22, which is consistent with the high density of secretory lysosomes when compared with that of many other organelles. Therefore fractions 21 and 22 were pooled and retained for proteomics analysis.

To assess the purity of the fractions chosen for proteomics analysis, immunoblots were performed using antibodies specific to proteins localized to a range of different intracellular organelles (Fig. 2B). The presence of secretory lysosomes in fractions 21 and 22 was corroborated by immunoblotting with an antibody specific for CD63, an integral membrane protein associated with secretory lysosomes (22). CD63 was enriched in the fractions with the highest NAGA activity. In contrast, the fractions chosen for proteomics analysis showed no detectable contamination with markers of other organelles, namely calnexin (endoplasmic reticulum), TGN46 (trans-Golgi network), EEA1 (early endosome), MPR (late endosome and trans-Golgi network), GLUT1 (plasma membrane), and CD63 (secretory lysosome marker). Immunoblots are representative of four different experiments.

Protein Separation and LC ESI-MS/MS Identification—Because the primary aim of this study was to identify the exocytic machinery associated with the secretory lysosome membrane, integral membrane proteins and membrane-association proteins were enriched prior to LC ESI-MS/MS by Triton X-114 phase partitioning. This enrichment step was included because peptides from highly abundant luminal proteins may have suppressed the ionization of peptides from less abundant integral membrane proteins and membrane-associated proteins. Triton X-114 solutions are homogenous at 0 °C but separate into a detergent phase and an aqueous phase at 30 °C (16, 23–26). Integral membrane proteins and membrane-associated proteins partition into the detergent phase (23–26). Therefore, the pooled secretory lysosome fractions were solubilized in Triton X-114, and the detergent phase was retained for proteomics analysis. The detergent phase was then separated by SDS-PAGE, and protein bands were visualized with Coomassie Brilliant Blue (Fig. 3). The lane was cut into eight segments (A–H) at points determined by the location of molecular weight.
markers, and then each segment was further cut into 2–4-mm slices. Following in-gel digestion of each gel slice, peptides were separated and identified by LC ESI-MS/MS.

In total, 221 proteins were unambiguously identified from one or more peptide sequences (Table I and the supplemental table). However, there was one example when an unambiguous identification was not possible. In this instance we were unable to discriminate between the closely related proteins Rab11a and Rab11b, which share 90.8% sequence identity. Of the 221 proteins unambiguously identified, 103 were predicted to have at least one hydrophobic membrane-spanning domain, 31 had a predicted lipoprotein motif, and 87 were soluble proteins (Table I). Thus 61% of the proteins identified were likely to be integral membrane proteins or membrane-associated proteins. The remaining proteins represent, at least in part, soluble proteins that were not completely removed by Triton X-114 phase partitioning. These include granzyme B and granzyme H, which are abundant within the NK cell secretory lysosome lumen (27). Alternatively some luminal proteins may have physiochemical properties that cause them to partition into the Triton X-114 detergent phase. One such example is perforin, which although found within the secretory lysosome lumen can insert itself into the membrane of a target cell to form pores (3).

Experimental molecular mass values generally compared well with predicted values based upon cDNA sequences. However, there were some notable exceptions. Thirty-seven proteins were found to have higher than expected experimental molecular mass values. The vast majority of these proteins were either known glycoproteins or had predicted glycosylation sites in their sequences. These include LAMP1 and LAMP2, which based upon their cDNA sequences have predicted molecular mass values of 38.3 and 44.8 kDa, respectively, but due to extensive glycosylation both proteins have experimental molecular mass values of ~120 kDa (28). Forty-five proteins displayed lower than expected molecular mass values; this may be because some of these proteins were in the process of being proteolytically degraded within secretory lysosomes.

Functional Classification of Identified Proteins—Functional classification of proteins was based upon information obtained from published literature and from the Swiss-Prot Protein Knowledgebase (www.expasy.org/sprot/) (Table I and Fig. 4). The major functional class represented was channels and transporters (38 of 221). This is not surprising given the role that the secretory lysosome membrane plays in transporting lysosomal degradation products to the cytosol and in maintaining the acidic environment of this organelle. Other functional classes represented include GTPases (33 of 221) with most of these proteins belonging to the Rab protein family, hydrolases (19 of 221), receptors and signal transduction (19 of 221), immunity (18 of 221) with the majority of these proteins being MHC molecule subunits, metabolism (16 of 221), vesicular and protein trafficking (15 of 223), biosynthesis (9 of 221), cytoskeletal (8 of 221), chaperones (7 of 221), membrane structure and lipid rafts (6 of 221), DNA binding (5 of 221), and redox proteins (3 of 221). Twenty-seven proteins were of unknown/uncharacterized function.

Analysis of the Expression of Proteins Identified by LC ESI-MS/MS—A number of potential components of the NK cell secretory lysosome exocytic machinery were identified by LC ESI-MS/MS. The small GTPases Rab8b, Rab27a, and RaLA have all been shown to participate in regulated secretion in other cell types (6, 7, 29–32), whereas the three SNARE proteins identified by LC ESI-MS/MS, namely syntaxin 7, syntaxin 11, and VAMP7, are either associated with conventional lysosomes or have been implicated in NK cell function (33–37). Nonetheless it was important to validate the data obtained by LC ESI-MS/MS with an alternative method to demonstrate that these proteins were indeed expressed by YTS NK cells and present within the secretory lysosome fraction. To this end immunoblots of YTS cell lysates and secre-
Table I

Identification of proteins in the lysosomal membrane fraction by LC ESI-MS/MS

SC, sequence coverage; ER, endoplasmic reticulum; Hpp, human protective protein; IMAP, immunity-associated protein; NSF, N-ethylmaleimide-sensitive factor.

Accession number	Protein identified	Peptides matched; SC (%)	Mascot score	Predicted molecular mass (kDa); location	TMHMM
GTPases					
1 P84077	ADP-ribosylation factor 1	2; 16	194	20.7; F	0α
2 NP_001654	ADP-ribosylation factor 6	1; 6	114	20.2; F	0α
3 NP_620150	ADP-ribosylation factor-like 10B	4; 26	418	21.6; F	0
4 NP_060654	ADP-ribosylation factor-like 10C	4; 33	624	21.7; F	0
5 1AJE	Cdc42	2; 10	195	21.7; F	0
6 BAB70958	GTPase, IMAP family member 5	1; 3	39	39.5; E	1
7 NP_112243	Rab1B	4; 36	320	22.3; F	0α
8 NP_002856	Rab2	7; 44	540	23.7; F	0α
9 NP_116235	Rab2B	2; 12	509	24.4; F	0α
10 AAP97171	Rab4B	1; 6	109	27.8; F	0α
11 NP_004153	Rab5A	3; 27	268	23.6; F	0α
12 AAH40143	Rab5B	2; 10	236	29.0; F	0α
13 AA06040	Rab5C	6; 37	413	23.5; F	0α
14 NP_004628	Rab7	7; 49	579	23.8; F–H	0α
15 AAB19881	Rab8A	2; 11	446	23.7; F	0α
16 NP_057614	Rab8B	3; 17	471	23.7; F	0α
17 NP_004242	Rab9A	2; 28	181	23.1; F	0α
18 NP_057215	Rab10	5; 39	491	22.7; F	0α
19 CAG38732	Rab11A or Rab11B	2; 12	147	21.5; F	0α
20 CAG33675	Rab14	4; 26	415	23.9; F	0α
21 AAH21901	Rab21	3; 19	240	24.3; F	0α
22 AAC51195	Rab27A	4; 19	316	24.8; F	0α
23 AAH01157	Rab33A	1; 5	37	27.0; G	0α
24 CAG46484	Rab35	3; 32	449	23.0; F	0α
25 AAH16615	Rab37	1; 6	139	24.8; F	0α
26 AAL12244	Rab39	1; 5	42	24.8; H	0α
27 NP_002875	RAP1A	4; 32	637	21.3; F, G	0α
28 NP_056461	RAP1B	4; 30	314	21.0; G	0α
29 AAM12824	RaA	3; 16	177	24.0; F	0α
30 NP_001656	Ras homolog gene family, member G	3; 19	173	21.3; F	0α
31 AAA36544	Ras-related C3 botulinum toxin substrate 1	2; 13	212	20.8; F	0α
32 NP_002863	Ras-related C3 botulinum toxin substrate 2	2; 11	140	20.5; F–H	0α
33 AAA36565	Rh protein	1; 10	39	21.7; F	0α
Vesicular and protein trafficking					
34 AAH00804	Adaptor-related protein complex 3, ε1 subunit	2; 12	128	21.7; F	0
35 NP_004850	Clathrin heavy chain 1	8; 6	600	191.5; B	0
36 AAH08081	ER lumen protein-retaining receptor 2	4; 27	233	24.6; F	0
37 AAH13314	NSF protein	1; 4	118	36.2; E	0
38 AAB62724	Secretory carrier-associated protein 3	2; 10	133	38.7; C, E, F	4
39 AAAH16509	Secretory carrier-associated membrane protein 4	1; 5	60	26.0; F	4
40 AAD27834	Sorting nexin 11	1; 5	66	29.6; F	0
41 AAD48491	Sorting nexin 12	2; 10	82	19.0; G	0
42 CAI12572	Synaptic vesicle glycoprotein 2A	1; 3	80	82.6; C	12
43 NP_006745	Synaptophysin-like 1 isoform a	1; 4	81	28.5; A, D–F	3
44 NP_003560	Syntaxin 7	1; 5	71	29.8; E	1
45 AAC24031	Syntaxin 11	1; 4	36	32.9; E	0α
46 CAD70593	VAMP7	5; 42	393	20.1; A, F	1
47 AAH01825	Transmembrane trafficking protein	1; 4	65	25.1; F	2
48 751846A	Ubiquitin	3; 5	210	8.5; A–H	0
Membrane structure and lipid rafts					
49 NP_001771	CD63 antigen	1; 5	91	25.6; A–E	4
50 NP_005794	Flotillin 1	13; 46	951	47.3; D–F	0
51 NP_004466	Flotillin 2	12; 36	872	41.7; D, E	0
CHANNELS AND TRANSPORTERS

Accession number	Protein identified	Peptides matched; SC (%)	Mascot score	Predicted molecular mass (kDa); location	TMHMM
55 AAB96347	ADP/ATP carrier protein (adenine nucleotide translocator 2)	3; 11	227	32.8; E	3
56 NP_109599	Amino acid transporter system A1	1; 2	41	54.0; A	10
57 NP_277053	Amino acid transport system N2	1; 2	46	51.4; A, C, D	11
58 BAA77248	ATPase	2; 2	133	130.9; B	8
59 NP_775965	ATPase, class VI, type 11C isoform a	1; 1	47	128.0; D	7
60 NP_001685	ATPase, H⁺-transporting, lysosomal, V0 subunit c	1; 20	100	15.7; G	4
61 AAH08861	ATPase, H⁺-transporting, lysosomal, V0 subunit d1	2; 8	159	40.3; E	0
62 NP_005041	ATP-binding cassette, subfamily D, member 4 isoform 1	1; 12	44	11.0; H	1
63 NP_064731	ATP-binding cassette, subfamily D, member 4 isoform 5	2; 4	81	55.7; E	5
64 NP_004880	ATP synthase, H⁺-transporting, mitochondrial F0 complex, subunit f isoform 2a	1; 12	44	11.0; H	1

HYDROLASES

Accession number	Protein identified	Peptides matched; SC (%)	Mascot score	Predicted molecular mass (kDa); location	TMHMM
93 AAC51775	Carboxypeptidase D	2; 2	176	152.9; D	2
94 CAA60671	Cathepsin C	1; 3	116	53.0; F	0
95 ABB28449	Cathepsin W	2; 11	114	42.7; F	0
96 AAH28040	2',3'-Cyclic-nucleotide 3'-phosphodiesterase	1; 3	41	47.5; E	0
97 CAA43118	Dipeptidyl-peptidase IV	1; 2	96	88.2; B	1
98 NP_001767	Ectonucleoside-triphosphate diphosphohydrolase 1	1; 3	51	58.5; F	2
99 BAA74853	Endonuclease domain-containing 1 protein	1; 2	68	57.1; D	3
100 A32609	α-Glucosidase (EC 3.2.1.20), lysosomal	2; 4	157	105.3; C	1
101 NP_003869	γ-Glutamyl hydrolase	3; 16	184	35.9; E	0
102 AAA75490	Granzyme B	1; 4	67	27.6; D	0
103 NP_219491	Granzyme H	1; 3	77	27.3; E	0
104 BAA74902	KIAA0879 protein	1; 2	48	52.5; C	2
105 CAA83495	Lysosomal acid lipase	1; 3	71	45.4; D	0
106 AAH03160	Lysosomal acid phosphatase	1; 3	77	48.3; D	1
107 BAC11519	Minor histocompatibility antigen H13	1; 2	44	41.5; C	7
Accession number	Protein identified	Peptides matched; SC (%)	Mascot score	Predicted molecular mass (kDa); location	TMHMM
------------------	--------------------	--------------------------	-------------	--	--------
108 AAH11729	Presenilin 1	1; 3	44	52.9; G	9
109 AAH72405	Serine carboxypeptidase 1 protein	7; 24	427	50.8; E–G	0
110 CAD13133	Signal peptide peptidase-like 2A	1; 2	90	58.1; A–D	9
111 AAH14863	Tripeptidyl-peptidase I	3; 8	206	61.2; D, G	0
112 NP_001020329	CD74 antigen isoform c	1; 9	77	18.4; H	1
113 CAD52872	Cystatin F	1; 6	49	16.9; F	0
114 AAH08611	HLA-A25α	6; 23	444	41.1; A–G	1
115 CAC38066	HLA-B48a	2; 8	271	40.3; E, F	1
116 AAS59645	HLA-B52α	1; 4	170	41.3; E–H	1
117 CAG28534	HLA-DQB1	1; 9	154	21.4; E	0
118 CAA25076	HLA-DRα	2; 18	250	26.0; A–C, E	1
119 AAH08611	HLA-DRA3	1; 9	392	30.0; E	1
120 AAP80750	HLA-DQA2	4; 19	303	28.5; A–E	1
121 AAP93137	HLA-DQA1	1; 5	102	28.9; E, F	1
122 AAP80750	HLA-DQβ2	6; 23	144	61.1; C, D, F	2
123 AAH08611	HLA-DQA2	1; 5	418	27.0; E	1
124 AAP80750	HLA-DRβ3	2; 14	299	29.9; E	1
125 AAP80750	HLA-DRβ2	5; 32	423	28.9; E	1
126 AAP80750	HLA-DRβ3	2; 14	299	29.9; E	1
127 AAP80750	HLA-DRβ2	1; 5	56	131.9; B	0
128 AAP80750	HLA-DRβ2	10; 29	775	54.0; D–G	0
129 AAP80750	HLA-DRβ3	4; 13	264	60.1; D	0
130 AAP80750	HLA-DRβ3	1; 4	50	21.3; F	1
131 AAP80750	HLA-DRβ3	1; 4	67	19.7; D, F	1
132 AAP80750	HLA-DRβ3	2; 10	100	53.0; C	2
133 AAP80750	HLA-DRβ3	2; 5	107	35.1; A–D	6
134 AAP80750	HLA-DRβ3	2; 6	123	37.3; E	0
135 AAP80750	HLA-DRβ3	1; 1	63	96.9; D	15
136 AAP80750	HLA-DRβ3	2; 7	81	42.8; H	1
137 AAP80750	HLA-DRβ3	2; 9	81	42.8; H	1
138 AAP80750	HLA-DRβ3	1; 1	56	131.9; B	0
139 AAP80750	HLA-DRβ3	10; 29	775	54.0; D–G	0
140 AAP80750	HLA-DRβ3	4; 13	264	60.1; D	0
141 AAP80750	HLA-DRβ3	1; 4	50	21.3; F	1
142 AAP80750	HLA-DRβ3	1; 4	67	19.7; D, F	1
143 AAP80750	HLA-DRβ3	2; 10	100	53.0; C	2
144 AAP80750	HLA-DRβ3	2; 5	107	35.1; A–D	6
145 AAP80750	HLA-DRβ3	2; 6	123	37.3; E	0
146 AAP80750	HLA-DRβ3	1; 1	63	96.9; D	15
147 AAP80750	HLA-DRβ3	2; 7	81	42.8; H	1
148 AAP80750	HLA-DRβ3	2; 9	81	42.8; H	1
149 AAP80750	HLA-DRβ3	1; 1	56	131.9; B	0
150 AAP80750	HLA-DRβ3	10; 29	775	54.0; D–G	0
151 AAP80750	HLA-DRβ3	4; 13	264	60.1; D	0
152 AAP80750	HLA-DRβ3	1; 4	50	21.3; F	1
153 AAP80750	HLA-DRβ3	1; 4	67	19.7; D, F	1
154 AAP80750	HLA-DRβ3	2; 10	100	53.0; C	2
155 AAP80750	HLA-DRβ3	2; 5	107	35.1; A–D	6
156 AAP80750	HLA-DRβ3	2; 6	123	37.3; E	0
157 AAP80750	HLA-DRβ3	1; 1	63	96.9; D	15
158 AAP80750	HLA-DRβ3	2; 7	81	42.8; H	1
159 AAP80750	HLA-DRβ3	2; 9	81	42.8; H	1
160 AAP80750	HLA-DRβ3	1; 1	56	131.9; B	0

The Secretory Lysosome Membrane Proteome
Accession number	Protein identified	Peptides matched; Mascot score	Predicted molecular mass (kDa); location	TMHMM
161	NP_000166 Glucose-phosphate isomerase	1; 3 73 63.1; D	0	
162	CA25833 Glyceraldehyde-3-phosphate dehydrogenase	2; 11 158 36.0; E, G	0	
163	1402394A Glycogen phosphorylase	6; 8 441 97.1; B	0	
164	BAC85389 l-Lactate dehydrogenase A chain	2; 8 127 30.0; E, F	0	
165	AAH47621 Nicastrin	9; 19 478 76.7; B	1	
166	NP_620061 Phosphoglycerate kinase 2	1; 4 64 44.9; E	0	
167	AAH62302 Phosphoglycerate mutase 1	1; 5 84 28.8; F	0	
168	NP_002653 Phospholipase D₁, phosphatidylincholine-specific	6; 9 442 124.1; A–D	0	
169	AAA36594 Proactivator polypeptide	1; 2 59 60.3; H	2	
170	CAA39849 Pyruvate kinase	2; 3 136 57.8; D, F, G	0	
171	NP_065956 Retinol dehydrogenase 14	1; 4 35 36.8; E	1	
172	CAA34756 Elongation factor-1 α 1	4; 12 237 50.1; D–F, H	0	
173	AAH13918 Elongation factor 1 γ	1; 2 41 41.3; D	0	
174	NP_001952 Elongation factor 2	5; 7 427 95.3; C, D	0	
175	CAA41027 Ribosomal protein L7	2; 10 129 29.1; E	0	
176	CAA55816 Ribosomal protein L11	2; 13 115 20.3; F	0	
177	NP_000967 Ribosomal protein L12	3; 24 196 18.0; F	0	
178	AAH71674 RPS16 protein	1; 7 60 17.3; G	0	
179	AAA36597 Scar protein	1; 4 68 27.3; E	0	
180	XP_376420 Similar to ribosomal protein S25	1; 8 89 13.8; G	0	
181	AAA36022 Chaperonin (HSP60)	1; 4 75 61.0; D	0	
182	CAC15494 DNAJC5	1; 9 38 19.6; F	1	
183	BAA02656 DnaJ protein homolog	1; 3 58 44.8; D	0*	
184	NP_006588 Heat shock 70-kDa protein 8 isoform 1	12; 20 663 70.8; C–H	0	
185	AAH12807 Heat shock 90-kDa protein 1–β	2; 4 167 83.2; C, F, H	0	
186	CAG32988 Peptidyl-prolyl cis-trans isomerase A	5; 39 323 18.2; G	0	
187	BAA07652 T-complex protein 1 subunit ζ	1; 2 70 58.4; D	0	
188	NP_859047 Peroxiredoxin 1	4; 20 206 22.3; F	0	
189	NP_003320 Thioredoxin	1; 12 42 12.0; H	0	
190	NP_006397 Thioredoxin peroxidase	1; 4 118 30.7; F	0	
191	AAC50766 DNA replication licensing factor MCM6	1; 1 47 93.0; D	0	
192	CAA24951 Histone H2A type 1-B	1; 15 85 14.2; G	0	
193	CAB02542 Histone H2B	2; 19 148 13.9; G	0	
194	CAA24918 Histone H4	1; 12 84 11.3; H	0	
195	NP_631946 Nucleosome assembly protein 1-like 1	2; 7 83 45.3; D	0	
196	AAH28081 Chromosome 2 open reading frame 18	1; 7 64 40.2; E	10	
197	1IVYB Chain B, physiological dimer Hpp precursor	1; 3 101 51.9; F	0	
198	AAA35733 Cyclophilin	1; 6 147 22.8; F, G	1	
199	AAN08508 Epididymal protein	6; 19 371 43.1; E	0	
200	BAC03391 FLJ00303 protein	1; 3 91 40.6; D	0	
201	AAH39741 FLJ11273 protein	1; 5 57 35.1; E	1	
202	AAH02759 FLJ20489 protein	1; 13 36 10.5; A	2	
203	NP_006842 Glioma pathogenesis-related protein	1; 5 41 30.9; H	1	
204	AAC97371 HIWI	1; 1 36 98.5; D	0	
205	AAD39919 HSPC041 protein	1; 14 63 12.2; G	*	
206	BAB85084 Hypothetical protein FLJ23859	1; 6 39 16.5; F	0	
207	BAA13378 KIA0247	2; 12 95 32.7; F	2	
208	BAA34512 KIAA0792 protein	2; 2 123 94.2; B	11	
209	BAB67791 KIAA1898 protein	2; 2 157 112.2; E	0	
210	AAG88807 Multitransmembrane domain immunoglobulin-like protein	2; 3 123 95.6; C	9	
211	AAD27000 Osteopetrosis-associated transmembrane protein 1	1; 9 75 14.8; D, F, G	1	
212	NP_009204 Prohibitin	1; 6 46 33.3; E	0	
213	AAH24200 Protein FAM3C	1; 7 35 24.7; F	1	
tory lysosome fractions were probed with antibodies that recognize Rab8, Rab27a, RalA, syntaxin 7, syntaxin 11, and VAMP7 (Fig. 5). Immunoblots probed with each antibody revealed the presence of a protein of the corresponding size in both the YTS lysate and secretory lysosome fraction, hence providing independent corroboration of the data obtained by LC ESI-MS/MS.

Immunoblots probed with the Rab8 antibody (which recognizes both Rab8a and Rab8b) revealed the presence of a significant proportion of one or both isoforms in the secretory lysosome fraction, consistent with observations in the closely related CTL cell type where this protein is associated with secretory lysosomes (7). RalA, although present, was not enriched in the secretory lysosome fraction implying that the majority of this protein was localized elsewhere in the cell. Of the three SNAREs identified, both syntaxin 7 and VAMP7 were enriched within the secretory lysosome fraction, consistent with a significant proportion of these proteins being localized to this organelle. In contrast syntaxin 11 was not enriched in the secretory lysosome fraction, suggesting that this organelle is not the principal intracellular location of this protein.

Although the YTS cell line is a well established model for NK cells, it was necessary to confirm that the proteins identified in the YTS cells are also expressed in primary human NK cells. Therefore, primary NK cell lysates were immunoblotted with Rab8, Rab27a, RalA, syntaxin 7, syntaxin 11, and VAMP7 antibodies; in each instance the corresponding protein was detected (Fig. 5). Because rabbit antisera were available to detect the SNARE proteins it was also possible to use immunofluorescence microscopy to test for co-localization of syntaxin 7, syntaxin 11, and VAMP7 with secretory lysosomes in primary NK cells by co-staining with a mouse monoclonal antibody specific for CD63 (Fig. 6). CD63 staining was concentrated into large punctate structures in the cytoplasm of the primary NK cells. The intracellular distribution of both syntaxin 7 and VAMP7 paralleled that of CD63 with a high

Accession number	Protein identified	Peptides matched; SC (%)	Mascot score	Predicted molecular mass (kDa); location	TMHMM
214 AA109067	Proteolipid protein 2	1; 9	45	17.0; G	4
215 AAI9355	Ring finger protein 149	1; 3	88	43.1; D, E	1
216 CAA23754	Serum albumin	1; 2	69	69.3; A–C, F	0
217 AAH02920	Tetraspanin-14	1; 4	55	28.8; F	4
218 AAH03106	TMEM59 protein	1; 4	38	34.4; F	1
219 AAH02616	Transgelin 2	2; 10	100	22.6; F	0
220 NP_060717	Transmembrane protein 30A	1; 2	117	40.6; D	2
221 AA10569	Unc-93 homolog B1	2; 4	96	66.6; D	12
222 BAC05068	Unnamed protein product	1; 2	43	66.7; D	0

* Proteins with a putative lipoprotein motif.

Table I—continued
degree of overlap in large punctate structures. This is consistent with the localization of syntaxin 7 and VAMP7 to the secretory lysosome and corroborates the data obtained from the immunoblots of the YTS cell secretory lysosome fractions. In contrast, although there may have been some overlap with CD63, syntaxin 11 staining was more diffuse with some immunoreactivity observed in small punctate structures (Fig. 6). This implies that the majority of syntaxin 11 is not localized to the secretory lysosome in these cells and is in agreement with the results obtained by immunoblotting.

DISCUSSION

Subcellular fractionation and proteomics represent a powerful combination when used to analyze the composition and function of intracellular organelles (10). In this study we applied these techniques to NK cell secretory lysosomes with the specific aim of identifying potential components of the exocytic machinery associated with this organelle. Subcellular fractionation of YTS NK cells was performed using self-forming Percoll gradients. Due to their high density it was possible to use this single step fractionation procedure to separate secretory lysosomes from other organelles. Immunoblotting demonstrated that the secretory lysosome fractions were highly enriched with little or no contamination of other organelles. However, LC ESI-MS/MS did identify a number of proteins not normally associated with lysosomes and lysosome-like organelles. One possible interpretation of this finding is that the secretory lysosome fraction may have been contaminated to a small degree with other organelles; this is something that we cannot exclude. However, it is important to note that the secretory lysosome is a degradative organelle, and as such many proteins not classically associated with the secretory lysosome may have been sorted to this organelle to be degraded. This process could occur either via autophagy, in which cytoplasmic components including organelles are delivered to the secretory lysosome (38), or via the endocytic pathway. Consistent with the latter, ubiquitin was identified throughout the molecular mass range of the SDS-PAGE gel suggesting that it was covalently conjugated to a number of different proteins. This is significant because ubiquitin conjugation acts as a signal for the trafficking to the lysosome for membrane proteins that are down-regulated from the plasma membrane (39).

Because the secretory lysosome is a specialized organelle that functions both as a degradative compartment and as a secretory organelle, it is not surprising that many of the proteins identified are also present in conventional lysosomes. Indeed a significant proportion of the proteins identified in this study are orthologues of proteins identified in the proteomics analysis of conventional lysosomes isolated from rat liver (40). These include LAMP1 and LAMP2, both of which are associated with the membrane of conventional lysosomes. However, a substantial number of the proteins identified in this study were not found in rat liver lysosomes, and these proteins reflect the specialized function of the NK cell secretory lysosome. One important function of NK cells is cytotoxicity; correspondingly we identified perforin, granzyme B, and granzyme H in the NK cell secretory lysosome. Another more recently described function of NK cells is antigen presentation to CD4\(^+\) T cells (41); this is also clearly reflected in the composition of the secretory lysosome. Antigen-presenting cells activate CD4\(^+\) T cells by presenting antigens on MHC class II molecules, and these antigens are loaded onto the MHC class II molecules within endocytic/lysosomal compart- ments (42). Indeed not only were 10 different MHC class II molecule subunits identified in the secretory lysosome fraction, but both invariant chain (also known as CD74) and a subunit of human leukocyte antigen-DM (HLA-DM) were identified. Invariant chain is required to target newly synthesized MHC class II molecules to lysosomes, whereas HLA-DM acts as a chaperone to facilitate the removal of the invariant chain and promote the subsequent peptide loading of MHC class II molecules (42). Consistent with the NK cell secretory lysosome serving as a compartment for antigenic peptide loading of MHC class II molecules, HLA-DM is enriched in YTS cell secretory lysosome fractions (data not shown).

The capacity of the NK cell for regulated secretion is reflected by the identification of a number of small GTPases that are known to be associated with this process in other cell types. Rab27a is a key component of the exocytic machinery in CTLs in which it is required to tether secretory lysosomes to the plasma membrane prior to fusion (6, 7). Given that Rab27a was enriched in the YTS NK cell secretory lysosome fraction,

Fig. 5. Expression of GTPase and SNARE proteins in YTS cells and primary NK cells. YTS cell lysate, YTS secretory lysosome fraction, and primary NK cell lysate were immunoblotted with antibodies specific for Rab8, Rab27A, RabA, syntaxin 7, syntaxin 11, and VAMP7. 20 \(\mu\)g of protein was loaded in each lane.
it seems highly likely that Rab27a will perform the same function in NK cells. Another potential component of the NK cell exocytic machinery is Rab8b, which also was identified in the secretory lysosome fraction by LC ESI-MS/MS. In the neuroendocrine cell line AtT20, Rab8b co-localizes with adrenocorticotropic hormone, and overexpression of this GTPase stimulates adrenocorticotropic hormone release (30). By analogy Rab8b may also participate in secretory lysosome exocytosis in NK cells, perhaps acting in concert with Rab27a. Indeed a precedent for this notion is granule exocytosis by PC12 cells in which both Rab27a and Rab3a are required for docking of the granules to the plasma membrane (43). Additionally the GTPase RalA was identified by LC ESI-MS/MS, but unlike Rab27a it was not obviously enriched in the secretory lysosome fraction. Nonetheless RalA represents a candidate component for the NK cell exocytic machinery because it is also required for granule exocytosis in PC12 cells, although it is localized primarily to the plasma membrane in these cells (31, 32). Clearly future studies are required to dissect what role RalA and the other small GTPases associated with the secretory lysosome play in the exocytosis of this organelle in NK cells.

LC ESI-MS/MS identified three SNAREs in the secretory lysosome fraction of the YTS NK cell line, and this finding was corroborated by immunoblotting with antibodies specific for each SNARE. Additionally syntaxin 7 and VAMP7 co-localized to a significant degree with the secretory lysosome membrane protein CD63 in primary NK cells when analyzed by immunofluorescence microscopy. Taken together, these results demonstrate the presence of syntaxin 7 and VAMP7 in the NK cell secretory lysosome. This is consistent with previous observations in which syntaxin 7 and VAMP7 were localized to conventional lysosomes (33–35). VAMP7 is of particular interest because based upon literature precedents it is likely to play a central role in the exocytosis of the secretory lysosome. Conventional lysosomes can also undergo exocytosis in non-specialized cells to seal holes in the plasma membrane (44). In this wound repair response, VAMP7 forms a complex with the plasma membrane Q-SNAREs syntaxin 4 and SNAP23 (33); as such VAMP7 may form a complex with the same plasma membrane Q-SNAREs to facilitate secretory lysosome exocytosis. Results obtained by immunoblotting demonstrate that syntaxin 11 was present but not enriched in secretory lysosomes. In addition, immunofluorescence microscopy revealed that although there was a small degree of co-localization with CD63 in primary NK cells, the majority of syntaxin 11 was located on other intracellular organelles. Indeed previous studies have localized syntaxin 11 to a variety of different intracellular locations but not to lysosomes (13, 45, 46). However, our data demonstrate for the first time that syntaxin 11 is expressed in both YTS cells and primary NK cells. This is an important observation because mutations in syntaxin 11 are
linked to familial hemophagocytic lymphohistiocytosis type 4 (36, 37). Familial hemophagocytic lymphohistiocytosis is an autosomal recessive disorder characterized by defective NK cell cytotoxicity, hence implying a role for syntaxin 11 in target cell killing. Given that SNAREs mediate membrane fusion reactions, syntaxin 11 may either be required for the exocytosis of the secretory lysosome or be involved in the trafficking of cytotoxic proteins to this organelle, although further work will be required to determine the precise role of this SNARE.

In summary we describe for the first time the protein composition of the NK cell secretory lysosome membrane. Although many proteins localized to this organelle are also associated with conventional lysosomes, a significant proportion of the proteins identified reflect both the capacity of this organelle for regulated secretion and the immunological role that it plays. Crucially we have used proteomics as a tool to identify the small GTPases and SNARE proteins that represent potential components of the exocytic machinery of the secretory lysosome.

Acknowledgments—We thank Dr. David Ashford and Dr. Jerry Thomas of the Proteomics and Analytical Biochemistry Laboratory at the University of York for assistance and technical advice.

* This work was funded by the Biotechnology and Biological Sciences Research Council Proteomics and Cell Function Initiative. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

REFERENCES

1. Trambas, C. M., and Griffiths, G. M. (2003) Delivering the kiss of death. Nat. Immunol. 4, 399–403
2. Davis, D. M., and Dustin, M. L. (2004) What is the importance of the immunological synapse? Trends Immunol. 25, 323–327
3. Trapani, J. A., and Smyth, M. J. (2002) Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol. 2, 735–747
4. Blott, E. J., and Griffiths, G. M. (2002) Secretory lysosomes. Nat. Rev. Mol. Cell. Biol. 3, 122–131
5. Clark, R. H., Stinchcombe, J. C., Day, A., Blott, E., Booth, S., Bossi, G., Hamblin, T., Davies, E. G., and Griffiths, G. M. (2003) Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat. Immunol. 4, 1111–1120
6. Stinchcombe, J. C., Barral, D. C., Mules, E. H., Booth, S., Hume, A. N., Machesky, L. M., Seabra, M. C., and Griffiths, G. M. (2001) Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834
7. Haddad, E. K., Wu, X., Hammer, J. A., Ill, and Henkart, P. A. (2001) Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. J. Cell Biol. 152, 835–842
8. Feldmann, J., Calebaut, I., Raposo, G., Certain, S., Bacq, D., Dumont, C., Lambert, N., Ouachee-Chardin, M., Chedeville, G., Tamary, H., Minard-Colin, V., Vilmer, E., Blanche, S., Le Deist, F., Fischer, A., and de Saint Basile, G. (2003) Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473
9. Hong, W. (2005) SNAREs and traffic. Biochim. Biophys. Acta 1744, 493–517
10. Brunet, S., Thibault, P., Gagnon, E., Kearney, P., Bergeron, J. J., and Desjardins, M. (2003) Organelle proteomics: looking at less to see more. Trends Cell Biol. 13, 629–638
11. Stam, N. J., Spits, H., and Ploegh, H. L. (1986) Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J. Immunol. 137, 2299–2306
12. Strom, M., Hume, A. N., Tarafder, A. K., Barkagianni, E., and Seabra, M. C. (2002) A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J. Biol. Chem. 277, 25423–25430
13. Prekeris, R., Klumperman, J., and Scheller, R. H. (2000) Syntaxin 11 is an atypical SNARE abundant in the immune system. Eur. J. Cell Biol. 79, 771–780
14. Meade, J. L., de Wynter, E. A., Brett, P., Sharif, S. M., Woods, C. G., Markham, A. F., and Cook, G. P. (2006) A family with Papillon-Lefevre syndrome reveals a requirement for cathepsin C in granzyme B activation and NK cell cytolytic activity. Blood 107, 3665–3668
15. Beaufay, H., Aamar-Costescu, A., Feytmans, E., Thines-Sempoux, D., Wilbo, M., Robbi, M., and Berthet, J. (1974) Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J. Cell Biol. 61, 185–200
16. Bordier, C. (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256, 1604–1607
17. Santoni, V., Molloy, M., and Rabilloud, T. (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070
18. Casey, T. M., Arthur, P. G., and Bogoyevitch, M. A. (2005) Proteomic analysis reveals different protein changes during endothelin-1- or leupeptin inhibitory factor-induced hypertrophy of cardiomyocytes in vitro. Mol. Cell. Proteomics 4, 651–661
19. Wilm, M., Shevchenko, A., Houthaeve, T., Brett, S., Schweigerer, L., Hotz, T., and Mann, M. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469
20. Sonnhammer, E. L., Eddy, S. R., Birney, E., Bateman, A., and Durbin, R. (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res. 26, 320–322
21. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov mod- el: application to complete genomes. J. Mol. Biol. 305, 567–580
22. Peters, P. J., Borst, J., Oorschot, V., Fukuda, M., Krahenbuhl, O., Tschopp, J., Slot, J. W., and Geuze, H. J. (1991) Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109
23. Garin, J., Diez, R., Kieffer, S., Dermin, J. F., Duclos, S., Gagnon, E., Sadou, R., Rondeau, C., and Desjardins, M. (2001) The phagosome proteome: insight into phagosome functions. J. Cell Biol. 152, 165–180
24. Bell, A. W., Ward, M. A., Blackstock, W. P., Freeman, H. N., Choudhary, J., Lewis, A. P., Chotai, D., Fazel, A., Gushue, J. N., Paiement, J., Palcy, S., Chevet, E., Lafreniere-Roula, M., Solari, R., Thomas, D. Y., Rowley, A., and Bergeron, J. J. (2001) Proteomics characterization of abundant Golgi membrane proteins. J. Biol. Chem. 276, 5152–5165
25. Taylor, R. S., Wu, C. C., Hays, L. G., Eng, J. K., Yates, J. R., III, and Howell, K. E. (2000) Proteomics of rat liver Golgi complex: minor proteins are identified through sequential fractionation. Electrophoresis 21, 3441–3459
26. Moebius, J., Zahedi, R. P., Lewandrowski, U., Berger, C., Walter, U., and Sickmann, A. (2005) The human platelet membrane proteome reveals several new potential membrane proteins. Mol. Cell. Proteomics 4, 1754–1761
27. Sedelius, K. A., Sayers, T. J., Edwards, K. M., Sonnhammer, E. L., Godfrey, D. I., and Trapani, J. A. (2004) Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J. Biol. Chem. 279, 26861–26867
28. Carlsson, S. R., Roth, J. P., Miller, F., and Fukuda, M. (1988) Isolation and characterization of certain HLA-C locus products. J. Immunol. 137, 263, 25423–25430
29. van Dam, E. M., and Robinson, P. J. (2006) Rai: mediator of membrane trafficking. Int. J. Biochem. Cell Biol. 38, 1841–1847
30. Chen, S., Liang, M. C., Chia, J. N., Ngsee, J. K., and Ting, A. E. (2001)
Rab8b and its interacting partner TRIP8b are involved in regulated secretion in AtT20 cells. *J. Biol. Chem.* **276**, 13209–13216
31. Wang, L., Li, G., and Sugita, S. (2004) RalA-exocyst interaction mediates GTP-dependent exocytosis. *J. Biol. Chem.* **279**, 19875–19881
32. Vitale, N., Mawet, J., Camonis, J., Regazzi, R., Bader, M. F., and Chasserot-Golaz, S. (2005) The Small GTPase RalA controls exocytosis of large dense core secretory granules by interacting with ARF6-dependent phospholipase D1. *J. Biol. Chem.* **280**, 29921–29928
33. Rao, S. K., Huynh, C., Proux-Gillardeaux, V., Galli, T., and Andrews, N. W. (2004) Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. *J. Biol. Chem.* **279**, 20471–20479
34. Pryor, P. R., Mullock, B. M., Bright, N. A., Lindsay, M. R., Gray, S. R., Richardson, S. C., Stewart, A., James, D. E., Piper, R. C., and Luzio, J. P. (2004) Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. *EMBO Rep.* **5**, 590–595
35. Mullock, B. M., Smith, C. W., Ihrke, G., Bright, N. A., Lindsay, M., Parkinson, E. J., Brooks, D. A., Parton, R. G., James, D. E., Luzio, J. P., and Piper, R. C. (2000) Syntaxin 7 is localized to late endosome compartments, associates with Vamp 8, and is required for late endosome-lysosome fusion. *Mol. Biol. Cell* **11**, 3137–3153
36. zur Stadt, U., Schmidt, S., Kasper, B., Beutel, K., Henter, J. I., Schneppenheim, R., Nurnberg, P., Janka, G., and Hennies, H. C. (2005) Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. *Hum. Mol. Genet.* **14**, 827–834
37. Rudd, E., Goransdotter Ericson, K., Zheng, C., Uysal, Z., Ozkan, A., Garvey, A., Fadeel, B., Nordenskjold, M., and Henter, J. I. (2006) Spectrum and clinical implications of syntaxin 11 gene mutations in familial haemophagocytic lymphohistiocytosis: association with disease-free remissions and haematopoietic malignancies. *J. Med. Genet.* **43**, e14
38. Cuervo, A. M. (2004) Autophagy: in sickness and in health. *Trends Cell Biol.* **14**, 70–77
39. Hicke, L., and Dunn, R. (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. *Annu. Rev. Cell Dev. Biol.* **19**, 141–172
40. Bagshaw, R. D., Mahuran, D. J., and Callahan, J. W. (2005) A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. *Mol. Cell. Proteomics* **4**, 133–143
41. Hanna, J., Gonen-Gross, T., Fitchett, J., Rowe, T., Daniels, M., Arnon, T. I., Gazit, R., Joseph, A., Schjetne, K. W., Steinle, A., Porgador, A., Mevorach, D., Goldman-Wohl, D., Yagel, S., LaBarre, M. J., Buckner, J. H., and Mandelboim, O. (2004) Novel APC-like properties of human NK cells directly regulate T cell activation. *J. Clin. Investig.* **114**, 1612–1623
42. Watts, C. (1997) Capture and processing of exogenous antigens for presentation on MHC molecules. *Annu. Rev. Immunol.* **15**, 821–850
43. Tsuboi, T., and Fukuda, M. (2006) Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. *J. Cell Sci.* **119**, 2196–2203
44. Reddy, A., Caler, E. V., and Andrews, N. W. (2001) Plasma membrane repair is mediated by Ca2+–regulated exocytosis of lysosomes. *Cell* **106**, 157–169
45. Valdez, A. C., Cabaniols, J. P., Brown, M. J., and Roche, P. A. (1999) Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network. *J. Cell Sci.* **112**, 845–854
46. Tang, B. L., Low, D. Y., and Hong, W. (1998) Syntaxin 11: a member of the syntxin family without a carboxyl terminal transmembrane domain. *Biochem. Biophys. Res. Commun.* **245**, 627–632