ARGINASE INHIBITORY ACTIVITY OF STEM BARK EXTRACTS OF CAESALPINIA TORTUOSA ROXB

AMIRAH NAJID, BERNA ELYA*, ARIKADIA NOVIANI
Department of Phytochemical and Pharmacognosy, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia.
Email: bernaa.elya@farmasi.ui.ac.id

Received: 14 June 2018, Revised and Accepted: 15 September 2018 and 24 October 2018

INTRODUCTION

Caesalpinia tortuosa Roxb., Leguminosae, which is endemic to the Asian region (India, Myanmar, Burma, China, Malaysia, and Singapore), has been mostly found in Indonesia, particularly in Sumatra, Java, and Kalimantan [1,2]. The genus Caesalpinia has more than 500 species, each of which has several benefits for humans [3]. Such benefits include their use as dyes, preservatives, astringents, antioxidants, antibacterial agents, anti-inflammatory agents, antimalarial agents, furoreduct agents, vasodilators, liver protectants, wound healing agents, anticancer agents, antidiabetic agents, antirheumatic agents, ant-ace agents, antithrombotic agents, antineoplastic agents, and immunostimulants [3]. Bioactive compounds derived from Caesalpinia include flavonoids, polyphenols, saponins, diterpenes, triterpenes, naphthoquinones, pellagoids, chalcone, steroids, gallic acid, tannic acid, tannins, resins, resorcin, brasilien, d-alpha-phenllandrene, ocsimin, and several essential oils [3,4]. Based on previous studies, numerous phytochemical compounds, such as polyphenols [5], flavonoids [6], flavones [7], flavonols, quercitin [8], and quercitrin [9,10], have shown to exhibit arginase inhibitory activity. Moreover, phytochemical studies on Caesalpinia ferrea stem barks have revealed the presence of flavonoids, saponins, tannins, coumarin, steroids, and phenolic compounds and gallic acid, catechins, epicatechins, and ellagic acid [11,12]. A study performed on ethyl acetate and methanol extracts from C. sappan L. lignum showed an arginase inhibition with IC50 of 98.7 and 132.02 µg/mL, respectively [8]. Another study on ethyl acetate extracts from C. sappan L. lignum has reported an IC50 of 36.8 µg/mL [8].

METHODS

Preparation of extracts

About 150 g of powder underwent successive multilevel reflux extraction at 80°C with n-hexane, ethyl acetate, and methanol from low to high solvent polarity for three cycles. The solution was filtered using a 0.45-µm membrane filter, and the filtrate was concentrated using a water bath.

Arginase inhibition assay

In vitro arginase inhibition assay was performed using a microplate reader at 430 nm using nor-NOHA acetate as the standard drug.

Substrate optimization

Substrate optimization was performed using concentrations of 130, 570, 650, and 820 mM as suggested by the protocol. Substrate concentrations were tested using 1 U/mL of arginase enzyme. The procedure was performed in triplicate using 10 µL of bidistillation water, 15 µL of enzyme solution, and 20 µL of substrate solution followed by incubation for 30 min at 37°C. After incubation, 100 µL of urea was directly added, followed by incubation at room temperature (25°C).
Arginase inhibition of nor-NOHA acetate
Nor-NOHA acetate is a potent inhibitor of arginase. Concentrations of 0.5, 1, 3, 4, and 5 µg/mL of nor-NOHA acetate were used included in wells based on the IC50 range required by the protocol provided by Sigma-Aldrich®.

Arginase inhibition of samples
Using procedure as mentioned before, 100 µg/mL of n-hexane, ethyl acetate, and methanol extracts was prepared in wells to screen for active extracts. Active extracts were tested using five concentrations to determine the IC50 value based on potential screening.

Qualitative phytochemical analysis
Extracts underwent phytochemical analysis to determine the presence of alkaloids, flavonoids, tannins, saponins, quinones, and triterpenoids according to common method performed by Farnsworth [2,14].

Quantitative phytochemical analysis
Determination of total flavonoid content
Total flavonoid content was determined using AlCl₃ colorimetric method. 0.5 mL of ethyl acetate and methanol extracts, 1.5 mL of ethanol pro-analysis, 0.1 mL of 1% AlCl₃, 0.1 mL of 1 M potassium acetate, and 2.8 mL of distilled water were added to each test tube. All test tubes were incubated at room temperature for 30 min. Absorbance was measured at 437.5 nm. Quercetin was used as a standard to create a calibration curve. The total flavonoid content in the extracts was calculated in triplicate, after which mean values were presented.

Determination of total phenolic content
The total phenolic content was assessed using the Folin–Ciocalteu method. Briefly, 1 mL of sample (100 µg/mL) was mixed with 0.5 mL of Folin–Ciocalteu reagent and 4 mL of 1% NaOH. The reaction mixture was incubated at 25°C for 1 h, and the absorbance of the mixture was read at 730 nm. The sample was tested in triplicate, and a calibration curve with six data points for gallic acid was obtained. Results were compared using the gallic acid calibration curve, and the total phenolic content of C. tortuosa Roxb. extracts was expressed as mg of gallic acid equivalents (GE) per 100 g of extract.

RESULTS AND DISCUSSION
Reflex extraction was considered based on the efficiency of the method employing a reduction in extractant viscosity, which increases the solvent’s ability to penetrate into the sample matrix. The use of different solvent polarities allows for varying dispersibility and penetrability, such that phytochemical components can be selectively identified [15,16]. Extraction temperature was set below 80°C to minimize the degradation of flavonoid and phenolic compounds [17], the results of extraction are shown in Table 1.

Arginase inhibition assay
After optimization, the optimum level of L-arginine substrate was determined to be 570 nM at an arginase concentration of 1 U/mL. Moreover, according to the standard assay, the IC50 value for nor-NOHA acetate was determined to be 3.77 µg/mL (y=4.8755x + 31.604, r=0.9749). Nor-NOHA acetate was selected for this assay because it exhibits the most potential arginase inhibitory activity compared with that of other standard compounds, such as NOHA and boronic acid [13].

Extracts to be assayed were prepared by diluting them with Aquabidest and dimethyl sulfoxide. A dimethyl sulfoxide concentration of 0–0.4% exhibits the most potential arginase inhibitory activity compared with that of other standard compounds, such as NOHA and boronic acid [13].

RESULTS AND DISCUSSION
Reflex extraction was considered based on the efficiency of the method employing a reduction in extractant viscosity, which increases the solvent’s ability to penetrate into the sample matrix. The use of different solvent polarities allows for varying dispersibility and penetrability, such that phytochemical components can be selectively identified [15,16]. Extraction temperature was set below 80°C to minimize the degradation of flavonoid and phenolic compounds [17], the results of extraction are shown in Table 1.

Arginase inhibition assay
After optimization, the optimum level of L-arginine substrate was determined to be 570 nM at an arginase concentration of 1 U/mL. Moreover, according to the standard assay, the IC50 value for nor-NOHA acetate was determined to be 3.77 µg/mL (y=4.8755x + 31.604, r=0.9749). Nor-NOHA acetate was selected for this assay because it exhibits the most potential arginase inhibitory activity compared with that of other standard compounds, such as NOHA and boronic acid [13].

Extracts to be assayed were prepared by diluting them with Aquabidest and dimethyl sulfoxide. A dimethyl sulfoxide concentration of 0–0.4% was used to avoid significant effects of UV absorption [18]. Accordingly, potential inhibition from n-hexane, ethyl acetate, and methanol extracts were 48.68%, 88.39%, and 92.21%, respectively. IC50 values were calculated for ethyl acetate and methanol extracts with >50% potential inhibition, and these values presented in Tables 2 and 3, respectively.

Qualitative phytochemical analysis
Results of the phytochemical analysis are presented in Table 4.

Table 4: Phytochemical analysis of C. tortuosa Roxb.

Phytochemical	Reagent	Ethyl acetate	Methanol
Alkaloids	Dragendorff	-	-
	Mayer	-	-
	Wagner	-	-
Flavonoids	Mg, HCl: EtOH (1:1) + amyl alcohol	+++	++
	Gelatin	++	+++
	FeCl₃, 10%	++	+++
Tannins	Froth test	++	+++
Quinones	NaOH 10%	-	-
Triterpenoids	EtOH+diethyl ether+concentrated H₂SO₄+CH₃COOH anhydrous	-	-

Table 1: Results of multilevel extraction

Extract	Weight (g)	Yield (%)
n-hexane	1.02	0.68
Ethyl acetate	2.58	1.72
Methanol	13.45	8.96

Table 2: Arginase inhibition of the ethyl acetate extract

Ethyl acetate extract in wells (µg/mL)	% Inhibition (%)	IC₅₀ (µg/mL)
20	35.75±4.934	33.812
50	67.69±7.283	
70	76.1±1.704	
90	82.05±2.417	
100	89.37±5.273	

Table 3: Arginase inhibition of the methanol extract

Methanol extract in wells (µg/mL)	% Inhibition (%)	IC₅₀ (µg/mL)
10	50.79±3.975	11.58
20	54.63±5.833	
70	66.59±5.151	
90	78.20±11.162	
100	92.21±4.271	

s, the IC₅₀ values of ethyl acetate and methanol extracts were 33.812 and 11.58 µg/mL, respectively.

The 2nd Physics and Technologies in Medicine and Dentistry Symposium (PTMDS), Universitas Indonesia. Depok, Indonesia 131
Determination of the total phenolic content
The calibration curve for gallic acid showed maximum absorbances at 730 nm ($y=0.0076x+0.1486$, $r^2=0.9958$). The total phenolic content of active ethyl acetate and methanol extracts was 27.553 and 17.158 mgGE/g, respectively.

Considering that the methanol extract had the highest arginase inhibitory activity despite having lesser flavonoid and phenolic content than the ethyl acetate extract, our results revealed no correlation between arginase inhibitory activity and flavonoid and phenolic content, which is consistent with findings of previous studies.

CONCLUSION
Our study findings suggested that methanol extracts from C. tortuosa Roxb. stem barks have the greatest potential for arginase inhibition. Moreover, ethyl acetate extracts had the highest total flavonoid and phenolic content. Both active ethyl and methanol extracts contained saponins, tannins, and flavonoids. Finally, no correlation between arginase inhibitory activity and flavonoids and phenolics content was observed.

ACKNOWLEDGMENTS
All authors acknowledge Universitas Indonesia for support and PITTA Research Grants 2017.

CONFLICTS OF INTEREST
All authors have none to declare.

REFERENCES
1. Chadburn H. Caesalpinia Tortuosa. The IUCN Red List of Threatened Species 2012: c19892394A20034138; 2012. Available from: http://www.dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T19892394A20034138.en. [Last accessed on 14 Jul 2018].
2. Farnsworth NR. Biological and phytochemical screening of plants. J Pharm Sci 1966;55:225-76.
3. Zainin JL, de Carvalho BA, Martinelli PS, dos Santos MH, Lago JH, Sartorelli P, et al. The genus Caesalpinia L. (Caesalpiniaceae): Phytochemical and pharmacological characteristics. Molecules 2012;17:7887-902.
4. Rina O, Ibrahim S, Dharma A, Afrizal, Chandra UW, Widodo YR. Stabilities natural colorant of sappan wood (Caesalpinia sappan L.) for food and beverages in various pH, temperature, and matrices of food. Int J Chem Tech Res 2017;10:98-103.
5. Oboh G, Adeniluyo AO, Ademiluyi AO, Olasehinde TA, Oyeyele SI, Boligon AA, et al. Phenolic extract from Moringa oleifera leaves inhibits key enzymes linked to erectile dysfunction and oxidative stress in rats’ penile tissues. Biochem Res Int 2015;2015:175950. Biochem Res Int 2015;2015:175950.
6. Gilsic S, Sencanski M, Petovic V, Stevanovic S, Garcia-Sosa AT. Arginase flavonoid anti- Leishmanial in silico inhibitors flagged against anti-targets. Molecules 2016;21:589.
7. Kim SW, Cuong TD, Hung TM, Ryoo S, Lee JH, Min BS, et al. Arginase II inhibitory activity of flavonoid compounds from Scutellaria indica. Arch Pharm Res 2013;36:922-6.
8. Shin W, Cuong TD, Lee JH, Min B, Jeon BH, Lim HK, et al. Arginase inhibition by ethylacetate extract of Caesalpinia sappan lignum contributes to activation of endothelial nitric oxide synthase. Korean J Physiol Pharmacol 2011;15:123-8.
9. da Silva ER, Maquievi Cdo C, Magalhães PP. The leishmanialid flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp Parasitol 2012;130:183-8.
10. Schnoor O, Brosette T, Monnna TY, Kleinbongard P, Keen CL, Schroeter H, et al. Cocoa flavonoids lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo. Arch Biochem Biophys 2008;476:211-5.
11. Wyrepkowski CC, Costa DL, Sinhorin AP, Vilegas W, De Grandis RA, Reesende FA, et al. Characterization and quantification of the compounds of the ethanolic extract from Caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules 2014;19:16039-57.
12. Aminbarawai NS, Malik A, Deborah EA, Arpatism CH, Haniif M, Elya B, et al. The antibacterial activity of fractions of ethyl acetate Garcinia latissima Muq. stem bark extracts against Bacillus subtilis and Pseudomonas aeruginosa. Asian J Pharm Clin Res 2017;10:69-72.
13. Steppan J, Nyhan D, Berkowitz DE. Development of novel arginase inhibitors for therapy of endothelial dysfunction. Front Immunol 2013;4:278.
14. Sauriarsi R, Azizah N, Basah K. Tyrosinase inhibition, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and phytochemical screening of fractions and ethanol extract from leaves and stem bark of matoa (Pometia pinnata). Asian J Pharm Clin Res 2017;10:85-9.
15. Wang L, Weller C. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 2006;17:300-12.
16. Slimani A, Abdellah M, Hamadi L. Phytochemical screening, characterization and quantification of the compounds of the ethanolic extract from Caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules 2014;19:16039-57.
17. Steppan J, Nyhan D, Berkowitz DE. Development of novel arginase inhibitors for therapy of endothelial dysfunction. Front Immunol 2013;4:278.
18. Tsunoda R, Elya B, Hamami K. Tyrosinase inhibition, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and phytochemical screening of fractions and ethanol extract from leaves and stem bark of matao (Pometia pinnata). Asian J Pharm Clin Res 2017;10:85-9.
19. Wang L, Weller C. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 2006;17:300-12.
20. Farnsworth NR. Biological and phytochemical screening of plants. J Pharm Sci 1966;55:225-76.
21. Zainin JL, de Carvalho BA, Martinelli PS, dos Santos MH, Lago JH, Sartorelli P, et al. The genus Caesalpinia L. (Caesalpiniaceae): Phytochemical and pharmacological characteristics. Molecules 2012;17:7887-902.