New 2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-2,2′-bipyridine-based co-polymer, synthesis, photophysical properties and response to metal cations

Alexey P. Krinochkin ab*, Maria I. Savchuk ab, Ekaterina S. Starnovskaya ab, Igor L. Nikonov ab, Artem V. Baklykov ab, Ekaterina A. Kudryashova a, Svetlana S. Rybakova a, Evgeny D. Ladin a, Dmitry S. Kopchuk ab c, Zhuo Wang c, Oleg N. Chupakhin ab

a: Ural Federal University, 620002 Mira st., 19, Yekaterinburg, Russia
b: I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the RAS, 620990 Kovalevskoy/Akademicheskaya st., 22/20, Yekaterinburg, Russia
c: Beijing University of Chemical Technology, 100029 Beijing, China
* Corresponding author: yapet89@mail.ru

This short communication (letter) belongs to the regular issue.

© 2021, The Authors. This article is published in open access form under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Abstract

A new co-polymer based on fragments of 2-(2-pyridyl)monoazatriphenylene and 2,5-bis (2-ethylhexyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione was prepared by using the Sonogashira reaction. The photophysical properties of the polymer were studied. The presence of a strong bathochromic shift of the absorption and emission maxima in comparison with the previously described monomer units is shown. The polymer exhibits an intense “turn-off” response toward Cu²⁺ cations.

Keywords

Sonogashira coupling polymer monoaazatriphenylene 3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione fluorescence Cu²⁺ “turn-off” response

Received: 16.12.2021
Revised: 19.12.2021
Accepted: 23.12.2021
Available online: 24.12.2021

1. Introduction

Acetylene-based polymers find a variety of applications as functional materials for sensors and molecular electronics [1]. In particular, conjugated polymers containing 2,2′-bipyridine moiety [2] as monomer units are of interest in terms of optical response to metal cations [3]. Thus, the selective determination of Cu²⁺ [4] and Hg²⁺ [5] cations has been described with the help of such polymers. On the other hand, bis-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-diones (DPPs) were widely used as components of donor–acceptor alternating co-polymers, which were reported as promising hole-transport materials [6,7], as materials for molecular electronics and photovoltaics [8,9], components of laser dyes [10], dyes for two-photon fluorescence microscopy [11], chemosensors for Cu²⁺ [12] and Hg²⁺ [13] cations, and many other applications [14]. One of the most important application of DPP-based materials was in their use as reagents for photothermal therapy of cancer [15], including photoacoustic imaging-guided photothermal therapy [16].

In this work, we wish to report the synthesis of a polymer containing fragments of 2-(2-pyridyl)monoaazatriphenylene and 2,5-bis(2-ethylhexyl)-3,6-bis(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione.

2. Experimental

1H NMR spectra were recorded on a Bruker Avance-400 spectrometer (400 MHz), the internal standard was SiMe₄. Elemental analysis was performed on a Perkin Elmer PE 2400 II CHN analyzer. UV–visible absorption spectra were recorded on a Perkin Elmer Lambda 45. Luminescence spectra were obtained using a HORIBA Scientific FluoroMax-4 spectrofluorometer. GPC measurements were performed using a chromatograph Agilent 1200 with an aerosol light scattering detector (ELSD) (Agilent technologies,
3. Results and discussion

The synthesis of monomers 1 [17] and 2 [18] was carried out according to the described methods. Thus, compound 1 was obtained as described in the literature.

The chemical polymerization process was carried out in accordance with the modified method [19]. The compounds 1 (33 mg, 0.048 mmol) and 2 (19.1 mg, 0.048 mmol) were dissolved in the mixture of diisopropylamine/toluene (2:3, 4.0 ml). Then CuI (5.8 mg, 0.030 mmol), Pd(dppe)Cl2 (3.4 mg, 0.0048 mmol) and Ph3P (2.5 mg, 0.01 mmol) were added. The reaction mixture was stirred in an autoclave under argon atmosphere at 65 °C for 3 days. Then the solvents were evaporated under reduced pressure. Water (10 ml) was added to the residue and the product was extracted with methylene chloride (3×10 ml). The organic phase was washed with an aqueous solution of NH4Cl and then dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure. The polymer was obtained as a purple powder. Yield 32 mg (70%). NMR 1H (CDCl3, δ, ppm): 0.77–0.96 (m, 14H, 2-ethylhexyl), 1.14–1.40 (m, 28H, 2-ethylhexyl), 1.49–1.63 (m, 9H, 2-ethylhexyl), 2.44–2.49 (ddd, 2H, J7.6 Hz, 7.6 Hz, J2.6 Hz, CH2rom), 2.65–2.75 (m, 1H, CH2rom), 7.64–7.67 (m, 1H, CH2rom), 7.67–7.70 (m, 1H, CH2rom). IR (ν, cm⁻¹): 1660 (C=O).

The photophysical characteristics for polymer 5 in acetonitrile at room temperature are shown in Fig. 1. Next, we studied the fluorescent response of the new polymer 5 with respect to cations of a number of metals. Thus, it was found that the addition of Cu²⁺ cation to the solution of polymer 5 in acetonitrile results in almost complete quenching of its fluorescence, which is due to the influence of both monomer units on the supramolecular properties of the whole polymer.

Fig. 2 depicts GPC chromatography for the resulting polymer 5. According to the obtained data, the resulting product 5 is a mixture of oligomers/short polymers, among which there are structures with molecular weights of up to 3–4 kDa. Thus, the method reported herein for the preparation of the polymer 5 requires further development in order to increase its average molecular weight.

Table 1 The photophysical characteristics for polymer 5 and compounds 6 and 7 in MeCN at room temperature

Compound	Absorption maxima, nm	Emission maxima, nm
6	263, 313, 339, 357	364, 381, 403 (sh)
7	341, 353, 508, 541	560, 600

Fig. 1 Absorption and emission spectra of polymer 5 in acetonitrile at room temperature
Scheme 1 Synthesis of polymer 5. Reagents and conditions: i) CuI, PPh₃, Pd(tpp),Cl/diisopropylamine, 65 °C, 3 days.

Fig. 2 GPC chromatogram for polymer 5.
4. Conclusions

In conclusion, a co-polymer containing 2-(2-pyriddy1)monoazatriphenylene and 2,5-bis(2-ethylhexyl)-3,6-bis(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione fragments as monomer units was prepared. Its photophysical properties were studied, and the bathochromic shift of the absorption and emission maxima in comparison to those for monomer units was shown. Quenching of the fluorescence of the polymer in the presence of copper cations in solution was observed.

Acknowledgements

This work was supported by Russian Foundation for Basic Research (Grant № 19-53-55002). Zhuo Wang thanks National Natural Science Foundation of China (Grant № 81961138011) and Beijing Natural Science Foundation (Grant № 7192106).

References

1. Liu J, Lam JYW, Tang BZ. Acetylenic polymers: syntheses, structures, and functions. Chem Rev. 2009;109(11):5799–5867. doi:10.1021/cr900149d

2. Wang T, Zhang N, Baic W, Bao Y. Fluorescent chemosensors based on conjugated polymers with N-heterocyclic moieties: two decades of progress. Polym Chem. 2020;11:3095–3114. doi:10.1039/d0py00376k

3. Wang B, Wasilewski MR. Design and synthesis of metal ion-recogniton-induced conjugated polymers: an approach to metal ion sensory materials. J Am Chem Soc. 1997;119(1):12–21. doi:10.1021/ja96229ad

4. Xing CF, Shi ZQ, Yu MH, Wang S. Cationic conjugated polyelectrolyte-based fluorometric detection of copper (II) ions in aqueous solution. Polymer. 2008;49(11):2698–2703. doi:10.1016/j.polymer.2008.04.041

5. Li C, Zhou C, Zheng H, Yin X, Zuo Z, Liu H, Li Y. Synthesis of a novel poly(para-phenylene ethynylene) for highly selective and sensitive sensing mercury (II) ions. J Polym Sci Part A: Polym Chem. 2008;46:1998–2007. doi:10.1002/pola.22534

6. Ha JS, Kim KH, Choi DH. 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor-acceptor alternating copolymer bearing 5,5’-di(thiophen-2-yl)-2,2’-biselenophene exhibiting 1.5 cm–V–s–1 hole mobility in thin-film transistors. J Am Chem Soc. 2011;133(27):10364–10367. doi:10.1021/ja203189h

7. Lee TW, Lee DH, Shin J, Cho MJ, Choi DH. X-conjugated polymers derived from 2,5-bis(2-decyltetradecyl)-3,5-di(selenophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione for high-performance thin film transistors. Polym Chem. 2015;6(1):1777–1785. doi:10.1039/C4PY01536C

8. Lee JH, Park GE, Choi S, Lee DH, Um HA, Shin J, Cho MJ, Choi DH. Effect of the thiophene and selenophene moiety in regular terpolymers on the performance of thin film transistors and polymer solar cells. Polymer. 2016;94:43–52. doi:10.1016/j.polymer.2016.04.077

9. Wei C, Zhang W, Zhou Y, Huang J, Li D, Wang Q, Yu G. High-performance ternary x-conjugated copolymers containing dialkylethylene units: synthesis, properties, and study of substituent effects on molecular aggregation and charge transport characteristics. J Mater Chem C. 2019;7:362–370. doi:10.1039/C8TC04940F

10. Makoto F, Kunihiko K, Hiroshi Y, Keiichi M. Evaluation of new organic pigments as laser-active media for a solid-state dye laser. Dyes and Pigments. 2004;63(2):115–125. doi:10.1016/j.dyepig.2004.02.002

11. Ptonu H, Bolze F, Nicoud JN. Water-soluble diketopyrrolopyrrole derivatives for two-photon excited fluorescence microscopy. Dyes Pig. 2015;97(1):77–83. doi:10.1016/j.dyepig.2012.11.028

12. Nie K, Dong B, Shi H, Chao L, Duan X, Jiang XF, Liu Z, Liang B. N-alkylated diketopyrrolopyrrole-based ratiometric/fluorescent probes for CuII detection via radical process. Dyes Pigments. 2019;160:814–822. doi:10.1016/j.dyepig.2018.09.037

13. Nie K, Dong B, Shi H, Liu Z, Liang B. Thiényl diketopyrrolopyrrole as a robust sensing platform for multiple ions and its application in molecular logic system. Sensor Actuator B Chem. 2017;244:845–853. doi:10.1016/j.snb.2017.09.037

14. Grzybowski M, Gryko DT. Diketopyrrolopyrroles: synthesis, reactivity, and optical properties. Adv Optical Mater. 2015;3(3):280–320. doi:10.1002/adom.201400559

15. Jianga X, Wanga L, Tanga H, Caoa D, Chen W. Diketopyrrolopyrrole: an emerging phototherapy agent in fighting cancer. Dyes Pigments. 2020;181:108599–609. doi:10.1016/j.dyepig.2020.108599

16. Jin X, Xing X, Deng Q, Qinq W, Lithou Z, Huang Y. Molecular engineering of diketopyrrolopyrrole-conjugated polymer nanoparticles by chalcogenide variation for photocoustic imaging guided photothermal therapy. J Mater Chem B. 2021;9:3153–3160. doi:10.1039/D1TB00193K

17. Wang P, Li H, Gu C, Dong H, Xua Z, Fu H. Air-stable ambipolar organic field-effect transistors based on naphthalenediimide-diketopyrrolopyrrole copolymers. RSC Adv. 2015;5:19520–19527. doi:10.1039/C5RA00791A

18. Khasanov AF, Kopchuk DS, Krinchkin AP, Kovaliev IS, Taniya US, Svorovova AI, Zryaznok GV, Rusinov VL, Chupakhin ON. The extension of conjugated diketopyrrolopyrrole functional units. J Photochem Photobiol A: Chem. 2017;244:849–857. doi:10.1016/j.jphotochem.2016.09.015

19. Makoto F, Kunihiko K, Hiroshi Y, Keiichi M. Evaluation of new organic pigments as laser-active media for a solid-state dye laser. Dyes and Pigments. 2004;63(2):115–125. doi:10.1016/j.dyepig.2004.02.002

20. Ptonu H, Bolze F, Nicoud JN. Water-soluble diketopyrrolopyrrole derivatives for two-photon excited fluorescence microscopy. Dyes Pig. 2015;97(1):77–83. doi:10.1016/j.dyepig.2012.11.028

21. Makoto F, Kunihiko K, Hiroshi Y, Keiichi M. Evaluation of new organic pigments as laser-active media for a solid-state dye laser. Dyes and Pigments. 2004;63(2):115–125. doi:10.1016/j.dyepig.2004.02.002

22. Ptonu H, Bolze F, Nicoud JN. Water-soluble diketopyrrolopyrrole derivatives for two-photon excited fluorescence microscopy. Dyes Pig. 2015;97(1):77–83. doi:10.1016/j.dyepig.2012.11.028