Proton-helium elastic scattering: a possible high-energy polarimeter at RHIC-BNL

C. Bourrely and J. Soffer

Centre de Physique Théorique - CNRS - Luminy,
Case 907 F-13288 Marseille Cedex 9 - France

Abstract

We examine a suggestion to use p-\(^4\)He elastic scattering, as an absolute polarimeter for high-energy polarized proton beams, by means of a Coulomb-Nuclear Interference effect for the single-spin asymmetry \(A_N(t)\), around the diffractive minimum of the differential cross section |\(t| \sim 0.21\text{GeV}^2\). Although this reaction has a fairly simple dynamical structure, our theoretical uncertainties and the present experimental inaccuracy of the differential cross section in this \(t\) region, allows one to generate dramatic effects for \(A_N(t)\), which will be discussed.

PACS numbers: 13.85.Dz, 12.90.+b, 13.88.+e
Key-Words : Proton-Helium elastic scattering, spin asymmetry, polarimeter.
Number of figures : 4

September 1998
Unité Propre de Recherche 7061
CPT-98/P.3688
Web address: www.cpt.univ-mrs.fr
High-energy polarized proton beams are under construction at RHIC – BNL and thanks to the so-called Siberian snake technique, the beam polarization is expected to reach the value $P = 70\%$ and to be maintained at this impressive high level. This is one of the key elements supporting the vast spin phenomena programme for pp collisions, which will be undertaken in the near future [1]. It has also motivated some detailed studies at DESY in order to decide whether or not HERA could operate as a ep collider with both electron and proton beams polarized [2]. However, one should have a reliable method for measuring P and the primary goal would be to achieve an accuracy of 5\% or better, i.e. $\Delta P/P \leq 0.05$. This important calibration problem has given rise recently to some activity, several methods have been proposed and their limitations have been discussed [3]. In particular, one interesting candidate is the so-called Coulomb-Nuclear Interference (CNI) polarimeter relying on an idea, first suggested by Schwinger [4]. If we consider pp elastic scattering near the forward direction, say for $|t| \sim 10^{-3}\text{GeV}^2$, the single-spin asymmetry $A_N(t)$ arises primarily from the interference between the real electromagnetic helicity-flip amplitude and the imaginary hadronic helicity-nonflip amplitude. It can be calculated exactly [5, 6] and one finds that it has a maximum value of about 4\% for $|t| \sim 3.10^{-3}\text{GeV}^2$, which is almost energy independent. This effect has been investigated by the E-704 experiment at FNAL at $p_{lab} = 200\text{GeV}/c$ [7] and the results are consistent with the theoretical prediction. However, the situation is not as simple as that, because the hadronic interaction need not conserve helicity in the small t region and the existence of a non-zero single-flip hadronic amplitude introduces a substantial uncertainty on the predicted asymmetry [8, 9, 10]. Unfortunately, the lack of accuracy in the E-704 experiment leaves too much freedom on the size of the single-flip hadronic amplitude and as a result, given the present data, the CNI polarimeter is not a method which can achieve the desired 5\% beam polarization error goal.

Another polarimetry method which involves $p-^{4}\text{He}$ elastic scattering has been first briefly suggested in Ref. [3] and we think it deserves a careful phenomenological analysis, which is presented in this paper. Since ^{4}He is a spinless object, $p-^{4}\text{He}$ elastic scattering is a simple reaction which is described in terms of two helicity amplitudes, the nonflip $\phi_{+}(t)$ and the flip $\phi_{-}(t)$. The differential cross section reads

$$\frac{d\sigma(t)}{dt} = |\phi_{+}(t)|^2 + |\phi_{-}(t)|^2$$

and the single-spin asymmetry is

$$A_N(t) = \frac{2Im[\phi_{+}(t)\phi_{-}(t)^{*}]}{[\phi_{+}(t)]^2 + [\phi_{-}(t)]^2}.$$ \hfill (2)

ϕ_{+} and ϕ_{-} are written in terms of hadronic and electromagnetic amplitudes in the form

$$\phi_{\pm}(t) = \phi_{\pm}^{h}(t) + e^{i\delta}\phi_{\pm}^{e}(t),$$

where δ is the Coulomb phase shift. We have

$$\phi_{+}^{e}(t) = -\frac{4\alpha\sqrt{\pi}}{|t|}G_{p}(t)G_{He}(t),$$

where α is the fine-structure constant, $G_{p}(t)$ is the proton electromagnetic form factor $G_{p}(t) = 1/(1 + |t|/0.71)^2$ and $G_{He}(t) = [1 - (2.56t)^6]e^{11.70t}$ is the ^{4}He electromagnetic form factor [11]. Similarly we have

$$\phi_{-}^{e}(t) = \sqrt{|t|} \frac{\mu_{p} - 1}{2m_{p}}\phi_{+}^{e}(t),$$

\hfill (4)
where μ_p is the magnetic moment of the proton and m_p its mass.

Our theoretical knowledge of $\phi^h_\pm(t)$ is less straightforward, but before going into this discussion, let us briefly review the experimental situation. At low energies, say, $1.1 \leq p_{lab} \leq 2.5 GeV/c$, the differential cross section and the single-spin asymmetry have been accurately measured at the ZGS-Argonne [12], using polarized proton beams. The cross section has a diffractive minimum around $|t| = 0.21 GeV^2$ and $A_N(t)$, which is large (40-50%), exhibits also an interesting behavior in the dip region. At higher energies, say, $45 \leq p_{lab} \leq 400 GeV/c$, only $d\sigma/dt$ has been measured [13], and the diffractive minimum remains essentially at the same t value (see Fig. 1).

Since we are concerned by the proton beams at RHIC – BNL, whose momentum lie between 50GeV/c and 250GeV/c, we will concentrate on the high-energy data. Several analysis of these data have been made in the past based on, for example, a Chou-Yang type model [14] or a Glauber model [13], but here we will present a rather simple phenomenological model. A Regge exchange approach is greatly simplified by the fact that, since 4He is an isoscalar, the isovector "ρ exchange", which has a large flip coupling, is forbidden. Moreover only isoscalar trajectories can be exchanged. They contribute mainly to the non-flip amplitude $\phi_+(t)$ and the Pomeron prevails at very high-energy. Consequently, one can assume the dominance of a purely diffractive Pomeron of the form Ae^{Bt}, at fixed high-energy [1]. Therefore, as a first approximation, we take the simple parametrization

$$Im\phi^h_+(t) = Ae^{Bt} - Ce^{Dt},$$

(5)

where the second term stands for rescattering effects, so we expect $C \ll A$ and $D \ll B$. For the moment we neglect $Re\phi^h_+(t)$ and $\phi^h_-(t)$, but we will come back to them later. The fit of the cross section data at $E_{lab} = 393 GeV$, shown in Figs. 1-2 is excellent and leads to the following values of the parameters

$$A = 31.84\sqrt{mb/GeV}, \quad B = 15.51 GeV^{-2}, \quad C = 3.69\sqrt{mb/GeV}, \quad D = 5.68 GeV^{-2}.$$

(6)

We have also well fitted the total cross section $p-^4$He value, namely $\sigma_{tot} = (125.9 \pm 0.6)mb$. Note that in this case, $Im\phi^h_+(t)$ changes sign at $|t| = 0.219 GeV^2$, so we find a very deep diffractive minimum, namely $d\sigma/dt = 5.10^{-5}mb/GeV^2$ at this $|t|$ value, which is due to the contributions of $\phi^h_\pm(t)$. Although the data are not very accurate in this region, it would be surprising to get such a small cross section, but one cannot rule out such a possibility [2]. If we now calculate $A_N(t)$, it is driven by the product $Im\phi^h_+(t) \cdot \phi^e_-(t)$ and the result is depicted by the solid line in Fig. 3. In the very small $|t|$ region we check that we have the usual CNI effect at the level of 4% or so, and in the vicinity of the dip, we find a strong oscillation between $+35\%$ and -35%, which is better displayed in Fig. 4.

As already mentioned above, there is no fundamental theoretical reason to believe that $\phi^h_-(t) = 0$, even in a dynamical framework where the Pomeron dominates. This

1The energy dependence and the phase of the Pomeron, which have been obtained in a very successful analysis of pp and $\bar{p}p$ elastic scattering [13], could be also used here, but it goes beyond the scope of this paper.

2Assuming a conservative 4He jet density and a realistic proton beam intensity, the luminosity is expected to be high enough, to allow such a measurement with a reasonable accuracy (W.Guryn, private communication).
important issue of the size of the Pomeron flip coupling has been studied in details \[16, 17\] and if we take, in analogy with Eq. (4),

\[Im\phi^h_-(t) = r \frac{\sqrt{|t|}}{m_p} Im\phi^h_+(t) , \] (7)

one finds from different arguments a value of \(r \) of 10% or below. We have also included such a contribution in our fit of \(d\sigma/dt \) and the best fit leads to \(r = 0.25 \), with almost no changes in A, B, C and D. This new contribution fills up the dip in the cross section, as show in Fig. 2 (dotted line) and we see in Figs. 3-4 that the strong oscillation of \(A_N(t) \) is now replaced by a smooth curve with a maximum value of 13% or so, in the dip region.

This situation is somehow oversimplified because, so far, we have neglected the fact that from the data \[13\], one can extract \(\rho \), the ratio of the real to the imaginary part of the forward scattering amplitude and they find \(\rho = +0.102 \pm 0.035 \). Therefore it is clear that we should take \(Re\phi^h_+(0) \neq 0 \). We don’t know the \(t \)-dependence of \(Re\phi^h_+(t) \) but for simplicity we will assume it has the slope \(B \) of the leading term of \(Im\phi^h_+(t) \). So if we now take

\[Re\phi^h_+(t) = E e^{Bt} , \] (8)

the best fit leads to \(E = 3.09 \sqrt{mb}/GeV \). The net effect of this real part is also to fill up the dip, as show in Fig. 3. We have first considered the case where \(r = 0 \) (small dashed curve) and a second case with \(r \neq 0 \), which was fitted and led to \(r = 0.15 \) (dotted-dashed curve). This value is much smaller than that found above, in the absence of \(Re\phi^h_+(t) \). These two cases correspond to very different predictions for \(A_N(t) \) as shown in Figs. 3-4. In the first case \(A_N(t) \) is a smooth curve (small dashed line) which changes sign at the dip position and in the second case it is very large and reaches almost -100%. This effect is entirely due to the product of \(Re\phi^h_+(t) \) and \(Im\phi^h_+(t) \), which dominate and become almost equal in magnitude at the dip position. Since the sign of \(Im\phi^h_+(t) \) is unknown, by changing this sign one can have the mirror effect. In this case, it is no longer a CNI effect.

Finally, one can envisage another realistic situation, where \(Re\phi^h_+(t) \) has not the same \(t \)-dependence as \(Im\phi^h_+(t) \). This is the case in various models and in particular in Ref. \[15\], where the real part decreases faster than the imaginary part. So we have used again eq.(8) with a larger value of the slope, that is \(B = 20 GeV^{-2} \), and \(r = 0.15 \). The results are shown in Figs. 3-4-5 by the large dashed lines. As expected, the filling of the dip is less pronounced than with the previous value \(B = 15.51 GeV^{-2} \). The shape of \(A_N(t) \) is not affected, but its magnitude is reduced accordingly.

To summarize, this phenomenological study of \(p-d \) elastic scattering, shows that this simple reaction cannot be easily used as an absolute polarimeter. An accurate measurement of \(d\sigma/dt \) in the dip region, might help us to pin down the value of \(Re\phi^h_+(t) \), but in order to clearly disentangle its effect, on the filling of the dip, from that of \(Im\phi^h_+(t) \), one certainly needs a direct measurement of \(A_N(t) \), which hopefully, will have large values in the dip region.

We are grateful to Boris Kopeliovich and Tai Tsun Wu for several helpful discussions.
References

[1] Proceedings of the Workshop *RHIC Spin Physics*, Riken BNL Research Center, April 27-29 (1998) (vol.7, Ed. T.D. Lee) report BNL-65615 and references therein.

[2] Proceedings of the Workshop *Deep Inelastic Scattering off Polarized Targets:Theory meets Experiment*, DESY-Zeuthen, September 1-5 (1997) (Eds. J. Blümlein, A. De Roeck, T. Gehrmann and W.-D. Nowak) report DESY 97-200 and references therein.

[3] B.Z. Kopeliovich, High-Energy Polarimetry at RHIC, [hep-ph/9801414](https://arxiv.org/abs/hep-ph/9801414).

[4] J. Schwinger, Phys. Rev. **73**, 407 (1948).

[5] B.Z. Kopeliovich and I.I. Lapidus, Sov.J.Nucl. Phys. **19**, 114 (1974).

[6] N.H. Buttimore, E. Gotsman and E. Leader, Phys. Rev. **D18**, 694 (1978).

[7] N. Akchurin *et al.*, Phys. Lett. **229B**, 299 (1989); Phys. Rev. **D48**, 3026 (1993).

[8] B.Z. Kopeliovich and B.G. Zakharov, Phys. Lett. **226**, 156 (1989).

[9] L.T. Trueman, preprint BNL-63700, [hep-ph/9610429](https://arxiv.org/abs/hep-ph/9610429).

[10] C. Bourrely and J. Soffer, Proceedings of the ”12th Int. Symp. on High-energy Spin Physics”, Amsterdam Sept.10-14 (1996), World Scientific (1997) p.825 (Eds. C.W. de Jager *et al.*).

[11] J.S. McCarthy *et al.*, Phys. Rev. **C15**, 1396 (1977).

[12] R. Klem *et al.*, Phys. Rev. Lett. **22**,1272 (1977); Phys. Lett. **70B**, 155 (1977).

[13] A. Bujak *et al.*, Phys. Rev. **D23**, 1895 (1981).

[14] R.J. Lombard and A. Tellez-Arenas, Phys. Lett. **165B**, 205 (1985).

[15] C. Bourrely, J. Soffer and T.T. Wu, Proceedings of the VIth Blois Workshop, Blois, 20-24 June 1995, Editions Frontières 1996, p.15 and references therein.

[16] Proceedings of the Workshop *Hadron Spin-Flip at RHIC Energies*, Riken BNL Research Center, July 21-August 22 (1997) (vol.3, Ed. T.D. Lee) report BNL-64724 and references therein.

[17] N.H. Buttimore, B.Z. Kopeliovich, E. Leader, J. Soffer and L.T. Trueman, preprint CPT-98/P.3693 (in preparation).
Figure 1: Differential cross section for p-^{4}He at $E_{\text{lab}} = 393\text{ GeV}$ as a function of $|t|$. Data are from Ref. [13]. The solid line is the result of our fit using eqs. (5) and (6).
Figure 2: Enlarged dip region of Fig. 1, showing different possibilities described in the text.

$E_{\text{lab}} = 393$ GeV
Figure 3: Single-spin asymmetry $A_N(t)$ for p-4He at $E_{lab} = 393$ GeV as a function of $|t|$, showing different predictions explained in the text.
Figure 4: Enlarged dip region of Fig. 3.