Energy security aspects related to the National Power Grid

Nicolae Daniel Fita¹*, Dragos Pasculescu¹, Florin Gabriel Popescu¹, Alina Daniela Handra¹, and Emilia Grigorie¹

¹University of Petrosani, Universitatii Street, No.20, Petrosani, Romania

Abstract. National Power Grid is an important element within the National Power System, having in its composition critical infrastructures of national importance without which the national economy could not operate, and its non-operation, totally or partially (black/brown-out), generates energy insecurity, negative factor with devastating and catastrophic effects on industrial, economic and national security. Due to the fact that National Power Grid is of national strategic importance, it has to be assessed and monitored permanently in terms of security risks, in order to identify vulnerabilities, and this need for assessment also comes from the European perspective because Romania is interconnected to ENTSO-E (European Network of Transmission System Operators) which interconnects various power overhead lines from North to South, from West to East, or even with Africa and Asia. In order to secure the National Power Grid, the authors have set out in this paper to identify possible internal or external vulnerabilities and what impact they have on the National Power Grid and National Power System. By knowing the vulnerabilities, one can automatically identify the dangers and threats to which it is subjected and engaged, being able to develop national/European measures or strategies for the protection and security of the critical infrastructures related to. For this reason, it is considered that the identification of vulnerabilities must become a pressing issue of national, and European energy security and be a useful tool for authorities to develop a energy strategy (short – long term) for the proper functioning of the National Power Grid and the national economy, because all sectors of the economy depend on electricity. The identified vulnerabilities are eliminated by National Energy Strategy 2021 – 2036 (short, medium, and long term) proposed by the authors, with the aim of increasing energy and national security.

1 General information regarding energy security

As we know, while we are facing an increase for the cases of energy collapses around the world, although this is manifested by the lack of electricity (phenomenon described by black-out) in industrial and household consumers, makes this paper of great importance and relevance, knowing that there are critical power infrastructure that can be vulnerable to some several internal or even external factors [1-3]. The lack of electricity supply to industrial and

* Corresponding author: daniel.fita@yahoo.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
household consumers leads to national crises that cause a state of societal imbalance causing extreme damage to the safety of citizens, industry, the national economy and thus national security, because all sectors of a national economy depend on electricity. In this context, the National Power System - NPS, through the National Power Grid – NPG, becomes a strategic objective of national importance by generating national and European critical infrastructures, without which the national economy cannot function properly [4-6]. Romania’s energy security depends on the energy independence in the context of the sustainable development of the European Union, therefore the energetic stability factors must be created by: providing the necessary primary resources (natural gas, oil, coal, uranium, etc.) for the engendering of electricity and therefore limiting the dependence on imports; enlarging provided natural resources considering the import for producing electrical energy and by its ways for the distribution; increasing the adequacy and safety of national transmission networks for electricity and gas outages; protection of the critical infrastructure regarding the physical integrity of energy purposes; securing workplaces and personnel by avoiding and/or stopping technical accidents/ incidents that could lead to disruption of the NPS [7-9].

But Romania’s energy security is endangered by various elements of instability that may threaten the safety and security of NPG: vulnerabilities (natural and anthropogenic hazards); threats (terrorist acts, political instability, armed conflict and piracy); dangers (lack of supply of raw materials necessary for the production of electricity, use of electricity as a weapon or pressure tool, high costs of electricity, etc.)[10].

In order to stabilize and increase energy security, the NPG must be constantly subject to security assessments to identify vulnerabilities, risks, dangers or threats, in order to prevent, combat or eliminate these sources of instability that may lead to NPS insecurity and general insecurity, and the recommendation is that these identification and evaluation processes be carried out more preventively than corrective [11].

2 Description of the NPG

The NPG infrastructure is as follows, according to Figure 1:
- **81 power substations**, from which: 1 power substation of 750 kV; 38 power substations of 400 kV; 42 power substations of 220 kV;
- **8931.6 km overhead power lines - OHL**, from which: 154.6 km. – 750 kV; 4703.7 km. – 400 kV; 4035.2 km. – 220 kV;
- **218 distribution units** totalling 37794 MVA [12-14].

Table 1. Power substations within NPG

	POWER SUBSTATIONS	
750 kV	**400 kV**	**220 kV**
750/400 kV Isaccea*	400/220/110 kV South	220/110 kV Fundeni;
	Bucharest;	220/110 kV Gheorgheni;
	400/110 kV Domnești;	220/110 kV Fântânele;
	400/220/110 kV Iernut;	220/110 kV Ungheni;
	400/220/110 kV South Sibiu;	220/110 kV Alba Iulia;
	400/110 kV Dârste;	220/110 kV Munteni;
	400/110 kV Brașov;	220/110 kV Iași (FAI);
	400/220/110 kV Gutinaș;	220/110 kV Dumbrava;
	400/220/110 kV Suceava;	220/110 kV Stejaru;
	400/110 kV South Bacău;	220/110 kV Filești;
	400/110 kV North Roman;	220/110 kV Bârboși;
	400 kV Stupina;	220/110 kV West Foçani;
	400 kV Rahman;	220/110 kV Stălpu;
	400/220/110 kV Lacu Sărat;	220/110 kV Teleajen;
400 kV Cernavodă; 400/110 kV South Medgidia; 400/110 kV North Constanța; 400/110 kV Tariverde; 400/110 kV West Tulcea; 400/110 kV Smârdan; 400/220/110 kV West Brazi; 400/220/110 kV Bradu; 400/110 kV Gura Ialomiței; 400/110 kV Pelicanu; 400 kV Țânțăreni (Bulgaria); 400 kV Portile de Fier (Serbia); 400/220/110 kV Urechești; 400/220 kV Slatina; 400/110 kV Drăgănești (Hungary); 400 kV Nădab (Hungary); 400 kV Reșița (Serbia); 400/220/110 kV Mintia; 400/220 kV Roșiori (Ukraine); 400 kV Gădălin; 400/110 kV East Cluj; 400/110 kV South Oradea; 220/110 kV Mostiștea; 220/110 kV Turnu Măgurele; 220/110 kV Ghizdaru; 220/110 kV Târgoviște; 220/110 kV South Pitești; 220/110 kV Arefu; 220/110 kV Stupărei; 220/110 kV North Târgu-Jiu; 220/110 kV Sărdănești; 220/110 kV Turnu Severin; 220/110 kV Cetate; 220/110 kV Calafat; 220/110 kV Grădiște; 220/110 kV North Craiova; 220/110 kV Răureni; 220/110 kV Calea Aradului; 220/110 kV Reșița (Serbia); 220/110 kV Săcălaz; 220/110 kV Iaz; 220/110 kV Peștis; 220/110 kV Hășdat; 220/110/20 kV Baru Mare; 220/110 kV Paroșeni; 220/110 kV Câmpia Turzii; 220/110 kV Cluj, Florești; 220/110 kV Tihău; 220/110 kV Sălaj; 220/110 kV Baia Mare 3; 220/110 kV Vetiş.

* operates at a voltage of 400 kV.

POWER OVERHEAD LINES
OHL 750 kV
750 kV Isaccea – South Ukraine (Ukraine) – disused OHLpl;
750 kV Isaccea – Stupina (Romania) – operates at a voltage of 400 kV;
750 kV Stupina – Varna (Bulgaria) – operates at a voltage of 400 kV.

OHL 400 kV	**OHL 220 kV**
400 kV South Bucharest – Domnești;	220 kV South Bucharest – Fundeni;
400 kV South Bucharest – Gura Ialomiței;	220 kV South Bucharest – Ghizdaru;
400 kV South Bucharest – Pelicanu;	220 kV South Bucharest – Mostiștea;
400 kV South Bucharest – Slatina;	220 kV Fundeni – West Brazi;
400 kV Domnești – West Brazi;	220 kV Gheorgheni – CHE Stejaru;
400 kV Iernut – Gădălin;	220 kV Gheorgheni – Fântânele;
400 kV Iernut – South Sibiu;	220 kV Fântânele – Ungheni;
400 kV South Sibiu – Mintia;	220 kV Ungheni – Iernut;
400 kV South Sibiu – Țânțăreni;	220 kV Iernut – Baia Mare 3;
400 kV South Sibiu – Brașov;	220 kV Iernut – Câmpia Turzii;
400 kV Brașov – Bradu;	220 kV South Sibiu – CHE Lotru;
400 kV Brașov – Dârste;	220 kV Alba Iulia – Mintia;
400 kV Brașov – Gutinaș;	220 kV Alba Iulia – CHE Ţugag;
400 kV Dârste – West Brazi;	220 kV Alba Iulia – CHE Gâlceag;
400 kV Gutinaș – Brașov;	220 kV Alba Iulia – Cluj Florești;
400 kV Gutinaș – South Bacău;	220 kV Gutinaș – Dumbra;
400 kV Bacău South – North Roman;	220 kV Gutinaș – CTE Borzesti;
400 kV Roman North – Suceava;	220 kV Gutinaș – Munteni;
400 kV Rahman – Dobrudja (Bulgaria); 400 kV Isaccea – Vuclăneschi (Rep. Moldova); 400 kV Smârdan – Gutinaș; 400 kV Smârdan – Lacu Sărât; 400 kV Smârdan - Iasace; 400 kV Lacu Sărât – Gura Ialomîei; 400 kV Lacu Sărât – Isaccea; 400 kV Isaccea – West Tulcea; 400 kV Isaccea – Rahman; 400 kV Tulcea West – Târîve; 400 kV Târîve – North Constanța; 400 kV North Constanța – Cernavodă; 400 kV Cernavodă – Medgidia South; 400 kV Cernavodă – Pelicanu; 400 kV Cernavodă – Gura Ialomipei; 400 kV Lacu Sărât – CTE Brăila; 400 kV West Brazi - Dârste; 400 kV West Brazi – CTE Petrom Brazi; 400 kV West Brazi - Domnesti; 400 kV Bradu - Brâsov; 400 kV Bradu - Tântâreni; 400 kV Gura Ialomîei – Lacu Sărâc; 400 kV Gura Ialomîei – Cernavodă; 400 kV Gura Ialomîei – Bucharest South; 400 kV Pelicanu – Cernavodă; 400 kV Pelicanu – South Bucharest; 400 kV Porîile de Fier – Djerdap (Serbia); 400 kV Tântâreni – Kosloduy (Bulgaria); 400 kV Urechești – Porîile de Fier; 400 kV Urechești – Domnesti; 400 kV Urechești – Tântâreni; 400 kV Urechești – CTE Rovinari; 400 kV Porîile de Fier - Slatina; 400 kV Tântâreni – Bradu; 400 kV Tântâreni – Slatina; 400 kV Tântâreni – CTE Turceni; 400 kV Slatina – South Bucharest; 400 kV Slatina – Drăgănești-Olt; 400 kV Nădab – Bekecsaba (Hungary); 400 kV Arad – Sandorfalva (Hungary); 400 kV Reșita – Pancevo (Serbia); 400 kV Nădab – Arad; 400 kV Arad – Mintia; 400 kV Mintia – South Sibiu; 400 kV Roșiori – Mukacevo (Ukraine); 400 kV Roșiori – South Oradea; 400 kV Roșiori – Gădalîn; 400 kV Gădalîn – East Cluj; 400 kV Gădalîn – Iernut.	220 kV Gutinaș – Iași (FAI); 220 kV Iași (FAI) – Munteni; 220 kV Iași (FAI) – Suceava; 220 kV Dumbrava – CTE Stejaru; 220 kV CTE Stejaru – Gheorgheni; 220 kV West Focșani – Gutinaș; 220 kV West Focșani – Bârboși; 220 kV Bârboși – Filești; 220 kV Lacu Sărât – CTE Brâila; 220 kV Teleajen – West Brazi; 220 kV Teleajen – Stâlpu; 220 kV Mostiștea – South Bucharest; 220 kV Turnu Măgurele – Ghizdaru; 220 kV Turnu Măgurele – North Craiova; 220 kV Ghizdaru – South Bucharest; 220 kV Târgoviște – West Brazi; 220 kV Târgoviște – Bradu; 220 kV South Pitești – Bradu; 220 kV Arefu – CHE Vidraru; 220 kV Arefu – Râureni; 220 kV Bradu – Stupărei; 220 kV Urechești – North Târgu Jiu; 220 kV Urechești – Sărdânești; 220 kV Sărdânești – North Craiova; 220 kV North Craiova – Slatina; 220 kV North Craiova – Turnu Măgurele; 220 kV CTE Ișalnița – Grădiște; 220 kV Grădiște – Slatina; 220 kV Porîile de Fier – Reșița; 220 kV Porîile de Fier – Turnu Severin; 220 kV Porîile de Fier – Cetate; 220 kV Cetate – Calafat; 220 kV Râureni – Arefu; 220 kV Râureni – Stupărei; 220 kV Stupărei – Bradu; 220 kV North Craiova – CTE Ișalnița; 220 kV CHE Lotru – South Sibiu; 220 kV Arad – Calea Aradului; 220 kV Arad – Timișoara; 220 kV Calea Aradului – Sâcălaz; 220 kV Sâcălaz – Timișoara; 220 kV Timișoara – Mintia; 220 kV Timișoara – Reșița; 220 kV Reșița – Iaz; 220 kV Reșița – Porîile de Fier; 220 kV Mintia – Pestiș; 220 kV Mintia – Hășdat; 220 kV Mintia – Alba Iulia; 220 kV Hășdat – Pestiș; 220 kV Hășdat – CHE Rezezat; 220 kV Hășdat – Baru Mare; 220 kV Baru Mare – Paroșeni; 220 kV Paroșeni – North Târgu Jiu; 220 kV Roșiori – Vetiș; 220 kV Roșiori – Baia Mare 3; 220 kV Baia Mare 3 - Tihău; 220 kV Baia Mare 3 - Iernut;
Table 3. Power plant within NPG

POWER PLANT	Capacity (MW)	Voltage (kV)
Thermal power plant		
South Bucharest	270	400
Iernut	563	400
Șugag	149	220
Gâlceag	149	220
Stejaru	143	220
Borzești	210	220
Nuclear power plant		
Cernavodă	1300	400
Rahman	242	110
Brăila	210	400
Petrom Brazi	850	400
Făcăeni	132	400
Vidraru	219	220
Porțile de Fier	1080	400
Țurceni	1196	400
Rovinari	888	400
Știința	582	220
Lotru	509	220
Mintia	930	400
Paroșeni	133	220
Rețezat	210	220
Mărișelu	215	220

Fig. 1. NPG map (map’s legend is presented in Romanian)
Table 4. Cross-border power infrastructures within NPG
POWERS SUBSTATIONS
750 kV Isaccea* → Ukraine and Moldova;
400 kV Stupina** → Bulgaria;
400 kV Rahman → Bulgaria;
400 kV Țântăreni → Bulgaria;
400 kV Portile de Fier → Serbia;
400 kV Reșița → Serbia;
400/220/110 kV Arad → Hungary;
400 kV Nădab → Hungary;
400/220 kV Roșiori → North Ukraine.

* operates at a voltage of 400 kV;
** gabarit of 750 kV;
* disused lines;
** operates at a voltage of 400 kV;

3 Measures and proposals concerning the operational security of NPG and increasing energy security

3.1 Identifying vulnerabilities

a) Internal vulnerabilities with internal impact within NPG, according to the table 5.

Table 5. Internal vulnerabilities with internal impact within NPG
INTERNAL VULNERABILITIES WITH INTERNAL IMPACT WITHIN NPG
1. Development region for BUCHAREST – ILFOV:
Failure to close the 400 kV ring in the area of Bucharest and Ilfov County (South Bucharest – Domnești – West Brazi – Fundeni – South Bucharest),
2. Development region for CENTER:
Failure to close the 400 kV ring in the northern and western areas of the North-East region (Iernut – South Sibiu – Brașov – Gutinaș – Dumbrava – Stejaru – Gheorgheni – Fântânele – Ungheni – Iernut).
3. Development region for NORTH–EAST:
Failure to close the 400 kV ring in the north-est areas of the North-East region (Gutinaș – Munteni – Iași FAI – Suceava).
4. Development region for NORTH – EAST:
400 kV radial distribution Gutinăs - Suceava (Gutinaș – South Bacău – North Roman – Suceava).
5. Development region for SOUTH – EAST:
Failure to close the 400 kV ring in the northern part of the South-East region (Lacu Sărat – Filești – Bârboși – West Focșani – Gutinaș).
6. Development region for SOUTH – EAST:
Missing the european interconnection between 400 kV Sandorfalva – Arad and 400 kV Cernavodă power plant (Sandorfalva – Arad – Mintia – South Sibiu – Brașov – Dârste) – (Dârste – Stâlpă – Gura Ialomiței – Cernavodă).
7. Development region for SOUTH:
Failure to close the 400 kV ring in the central area of the South region (West Brazi – Târgoviște – Bradu – Brașov – Dârste – West Brazi).
8. Development region for SOUTH:
Failure closing for the 400 kV ring (or doubling the ring) in the southern part of the South region and the southern part of the South-West region (South Bucharest – Ghizdaru – Turnu Măgurele) and (Turnu Măgurele – North Craiova – Sârdănești – Urechești).
9. Development region for SOUTH – WEST:

MATEC Web of Conferences 342, 04010 (2021) https://doi.org/10.1051/matecconf/202134204010
UNIVERSITARIA SIMPRO 2021
10. Development region for WEST:
Failure to close the 400 kV ring in the western part of the Western region (Arad – Calea Aradului – Săcălaz – Timișoara).

11. Development region for WEST:
Failure to close the 400 kV ring in the central area of the West region (Arad – Mintia – Timișoara).

12. Development region for WEST:
Failure to close the 400 kV ring in the eastern part of the Western region (Mintia – Hășdat – Baru Mare – Paroșeni – Târgu Jiu Nord – Urechești) and (Urechești – Portile de Fier – Reșița – Timișoara – Arad – Mintia).

13. Development region for WEST:
Failure to close the 400 kV ring in the eastern part of the Western region (Mintia – Hășdat – Pestiș).

LEGEND:
Red color: Power Critical Infrastructures (power substation and OHL) for 400 kV;
Green color: Power Critical Infrastructures (power substation and OHL) 220 kV.

b) External vulnerabilities with external impact within NPG, according to the table 6.

Table 6. External vulnerabilities with external impact within NPG

Development region	Vulnerability
Development region for NORTH – EAST:	Missing the international interconnection voltage of 400 kV in the North of North - West and North - East Romania (Suceava – Bălți).
Development region for NORTH – EAST:	Failure to close the 400 kV ring in the northern part of Romania (Suceava – Roșiori) or (Suceava – Gădălin).
Development region for WEST:	Failure to close the 400 kV ring in the western part of the Western region and Romania (Arad – Timișoara – Reșița – Portile de Fier).
Development region for NORTH – WEST:	Failure to close the 400 kV ring in the western part of the western region and Romania (South Oradea – Nădab).

LEGEND:
Red color: Power Critical Infrastructures (power substation and OHL) for 400 kV;
Green color: Power Critical Infrastructures (power substation and OHL) 220 kV.

c) External vulnerabilities within neighbouring power systems with internal impact on NPG, according to the table 7 [15].

Table 7. External vulnerabilities within neighbouring power systems with internal impact on NPG

Republic of Moldova:	Vulnerability
Total dependence to the IPS (Integrated Power System) Power System of the former Soviet Union countries following components: Belarus, Ukraine, Moldova, Kazakhstan, Georgia, Mongolia, Kyrgyzstan, Azerbaijan, Tajikistan (power weapon or pressure tool).	
REPUBLIC OF MOLDOVA:	The voltage of 330 kV (atypical EU) which is specific only to IPS (Integrated Power System), which creates dependence on this power system and makes it almost impossible to interconnect to another power system (eg Romanian EEA), without major investments in power infrastructure power stations, overhead power lines and power plants) (power weapon or pressure tool).
3. Republic of Moldova:
The single radial distribution bus of energy (HV-OHL) voltage of 330 kV (atypical EU) [CERS Moldova – Chișinău – Strășeni – Bălți – Dnistrovska (Ukraine)].

4. Republic of Moldova:
Total absence (except the ESRB 400 kV and the 400 kV Vulcanesti Moldova - Moldova ESRB) Power Critical Infrastructure (substations and overhead lines) at a line voltage of 400 kV [ES 330 kV Chișinău, ES 330 kV Strășeni, ES 330 kV Bălți, OHL 330 kV CERS Moldova – Chișinău, OHL 330 kV Chișinău – Strășeni, OHL 330 kV Strășeni – Bălți, OHL 330 kV Bălți – Dnistrovska (Ukraine)].

5. Republic of Moldova:
Missing the international interconnection voltage of 400 kV in the north of Moldova (OHL Bălți – Dnistrovska – Kamianetsk-Podilsk – Chernivetska – Ivano-Frankivst – Burshtyn].

6. Ukraine:
Total dependence to the IPS (Integrated Power System) Power System of the former Soviet Union countries following components: Belarus, Ukraine, Moldova, Kazakhstan, Georgia, Mongolia, Kyrgyzstan, Azerbaijan, Tajikistan (power weapon or pressure tool).

7. Ukraine:
The voltage of 330 to 750 kV (atypical EU) which is peculiar to IPS (Integrated Power System), which creates the dependency on the power system and make it almost impossible for interconnection to other power system (eg EEA Romanian, Slovak, Polish), with major investments in power infrastructure (power stations, overhead power lines and power plants) (power weapon or pressure tool).

8. Ukraine:
Loop radial distribution of energy bus (HV-OHL) voltage of 330 kV (atypical EU) [Bălți (Republica Moldova) – Dnistrovska – Kamianetsk-Podilsk – Chernivetska – Ivano-Frankivst – Burshtyn].

9. Ukraine:
Total absence (except Mukacevo 400 kV and 400 kV Donbaska and Roșiori-Mukacevo) Power Critical Infrastructure (power substations and overhead lines) at a voltage of 400 kV [ES 330 kV Dnistrovska, ES 330 kV Kamianetsk-Podilsk, ES 330 kV Chernivetska, ES 330 kV Ivano-Frankvist, OHL 330 kV Bălți – Dnitrovska, OHL 330 kV Dnitrovska – Kamianetsk-Podilsk, OHL 330 kV Kamianetsk-Podilsk – Ivano-Frankvist, OHL 330 kV Ivano-Frankvist – Burshtyn].

Legend:
Red color: Power Critical Infrastructures (power substation and OHL) for 400 kV;
Green color: Power Critical Infrastructures (power substation and OHL) 220 kV;
Purple color: Power Critical Infrastructures (power substation and OHL) 330 kV.

3.2 Drawing up the National Energy Strategy 2021 – 2036
The National Energy Strategy (short, medium and long term) following proposed solutions by the authors to eliminate (combat) the internal or external vulnerabilities of the NPG, according to the table 8.

Table 8. National Energy Strategy 2021 – 2036 (short, medium and long term)

THE SOLUTIONS REGARDING THE ELIMINATION OF INTERNAL OR EXTERNAL VULNERABILITY OF NPG	Importance	Period / Term
1.1. Passing OHL 220 kV București Sud – Fundeni to 400 kV voltage	VI	M
	1.2. Passing OHL 220 kV Fundeni – West Brazi to 400 kV voltage	
---	---	
	1.3. Passing PS 220 kV Fundeni to 400 kV voltage	
	2.1. Passing OHL 220 kV Iernut – Ungheni – Fântânele – Gheorgheni – Stejaru – Dumbrava – Gutinaș to 400 kV voltage	
	2.2. Passing PS 220 kV Ungheni, Fântânele, Gheorgheni, Stejaru, Dumbrava to 400 kV voltage	
	3.1. Passing OHL 220 kV Gutinaș – Munteni – Iași (FAI) – Suceava to 400 kV voltage	
	3.2. Passing OHL 220 kV Gutinaș – Iași (FAI) to 400 kV voltage	
	3.3. Passing PS 220 kV Munteni, Iași (FAI) to 400 kV voltage	
	4.1. The construction of a OHL 400 kV to double the power supply to the OHL Suceava – Gutinaș, also serving to close the 400 kV ring in the northern part of the country. There are 2 possibilities:	
	- the construction OHL 400 kV Gădălin – Suceava at 400 kV voltage;	
	- the construction OHL 400 kV Roșiori – Suceava at 400 kV voltage.	
	5.1. Passing OHL 220 kV Lacu Sărat – Filești – Bărboși – Focșani Vest – Gutinaș to 400 kV voltage	
	5.2. Passing PS 220 kV Focșani Vest, Bărboși, Filești to 400 kV voltage	
	6.1. The construction of a OHL 400 kV for the interconnection of the European bus 400 kV Sandorfalva – Arad with the 400 kV Cernavoda power substation. There are 2 possibilities:	
	- the construction OHL 400 kV Dărste – Stălpu – Gura Ialomiței;	
	- the construction OHL 400 kV Brașov – Stălpu – Cernavoda.	
	6.2. Passing OHL 220 kV Brazi Vest – Teleajen – Stălpu to 400 kV voltage	
	6.3. Passing PS 220 kV Teleajen and Stălpu to 400 kV voltage	
	7.1. Passing OHL 220 kV Bradu – Târgoviște – Brazi Vest to 400 kV voltage	
	7.2. Passing PS 220 kV Târgoviște to 400 kV voltage	
	8.1. Passing OHL 220 kV București Sud – Ghizdaru – Turnu Măgurele to 400 kV voltage	
	8.2. Passing PS 220 kV Ghizdaru and Turnu Măgurele to 400 kV voltage	
	8.3. Passing OHL 220 kV București Sud – Mostiștea to 400 kV voltage	
	8.4. Passing PS 220 kV Mostiștea to 400 kV voltage	
	9.1. Passing OHL 220 kV Turnu Măgurele – Craiova Nord – Sărdănești – Ureștești to 400 kV voltage	
	9.2. Passing PS 220 kV Craiova Nord and Sărdănești to 400 kV voltage	
	10.1. Passing OHL 220 kV Timișoara – Săcălaz – Calea Aradului – Arad to 400 kV voltage	
	10.2. Passing PS 220 kV Timișoara, Săcălaz and Calea Aradului to 400 kV voltage	
11.1. Passing OHL 220 kV Arad – Timișoara to 400 kV voltage
11.2. Passing OHL 220 kV Timișoara – Mintia to 400 kV voltage
11.3. Passing PS 220 kV Timișoara to 400 kV voltage

12.1. Passing OHL 220 kV Mintia – Hășdat – Baru Mare – Paroșeni – Târgu Jiu Nord – Ureștești to 400 kV voltage
12.2. Passing PS 220 kV Hășdat, Baru Mare, Paroșeni and Târgu Jiu Nord to 400 kV voltage

13.1. Passing OHL 220 kV Mintia – Hășdat – Pestiş to 400 kV voltage
13.2. Passing PS 220 kV Hășdat and Pestiş to 400 kV voltage

14.1. The construction OHL 400 kV Suceava – Bălți in order to connect Romania with the Republic of Moldova
14.2. Passing PS 220 kV Suceava with PS 400 kV Roșiori or 400 kV Gădălin.

There are 2 possibilities:
- the construction of the OHL 400 kV Gădălin – Suceava at a voltage 400 kV;
- the construction of the OHL 400 kV Roșiori – Suceava at a voltage of 400 kV.

16.1. Passing OHL 220 kV Porțile de Fier – Reșița – Timișoara – Arad to 400 kV voltage
16.2. Passing PS 220 kV Timișoara to 400 kV voltage

17.1. The construction of the OHL 400 kV Oradea Sud – Nădab at a voltage 400 kV;

LEGEND:
- OHL – Power Overhead Line;
- PS – Power Substation.

4. Conclusions

According to the results of the risk assessment of energy security on critical infrastructure (power substations and power overhead lines) within NPG, we have identified 26 vulnerabilities: 13 internal vulnerabilities with internal impact within NPG, 4 external vulnerabilities with external impact within NPG, and 9 external vulnerabilities within neighbouring power systems with internal impact on NPG.

The need to identify vulnerabilities of critical infrastructures in the NPG apparent from the following considerations: knowing the fact that NPG is of national strategic importance, it should be assessed and continuously monitored in terms of security risks in order to identify vulnerabilities, the need for security risk assessment comes from a European perspective because Romania is interconnected ENTSO-E (European Union power system), by knowing the vulnerabilities, we can automatically identify dangers and threats that NPG is subject engaged and create measures or national strategy to protect and secure critical infrastructures national/European, and specific risk scenarios developed a high level of risk with devastating effects on national security.

The identified vulnerabilities are eliminated by National Energy Strategy 2021 – 2036 (short, medium, and long term) proposed by the authors, with the aim of increasing energy and national security, resulting from the following: **5 solutions:** U – Urgently in S – Short Period/Term (1 – 5 years): point 4 (4.1.); point 14 (14.1.); point 15 (15.1.); point 16 (16.1.; 16.2.); point 17 (17.1.), **7 solutions:** VI – Very Important in M – Medium Period/Term (5 – 10 years): point 1 (1.1.; 1.2.; 1.3.); point 2 (2.1.; 2.2.); point 3 (3.1.; 3.2.; 3.3.); point 5 (5.1.; 5.2.); point 6 (6.1.; 6.2.; 6.3.); point 10 (10.1.; 10.2.); point 11 (11.1.; 11.2.; 11.3.), and...
5 solutions: I – Important in L – Long Period/Term (10 – 15 years): point 7 (7.1.; 7.2.); point 8 (8.1.; 8.2.; 8.3.; 8.4.); point 9 (9.1.; 9.2.); point 12 (12.1.; 12.2.); point 13 (13.1.; 13.2.).

Energy security vulnerability should be prevented, combated and eliminated through major investments in power infrastructure (power substations, overhead power lines and power plant) and qualified personnel in following activity regarding electrical installation high, very high and ultra high voltage: operational, maneuvers, maintenance, dispatch, occupational health and safety, critical infrastructures protection and emergency or crisis response.

References

1. C. Bahnareanu, Energy security, Center for Strategic Defense and Security Studies, "Carol I" National Defense (UPH, Bucharest, 2008)
2. N. D. Fita, Research on the identification of critical infrastructure vulnerabilities in the national power grid at ultra-high and very-high voltage, with international connection, Thesis of Doctorate, (2020)
3. N.D. Fita, Identifying vulnerabilities of critical infrastructures from national power grid in the context of increasing energy security (UPH, Petrosani, 2019)
4. N.D. Fita, R. Moraru, G. Babut, D. Pasculescu, L. Pana, M. Badica, N. Visan, Electrical safety of critical infrastructures and personnel within the national power grid (UPH, Petrosani, 2019)
5. N.D. Fita, R. Moraru, Strategii de securitate a infrastructurilor critice asupra instalațiilor de ultra înaltă și foarte înaltă tensiune din cadrul sistemului electroenergetic național în context european, Academia Națională de Informații "Mihai Viteazul" – Conferința Științifică a Școlii Doctorale "Informații și Securitate Națională", București, (2016)
6. L. Pana, J. Grabara, D. Pasculescu, V.M. Pasculescu, R.I. Moraru, Optimal quality management algorithm for assessing the usage capacity level of mining transformers, Polish Journal of Management Studies, 18 (2), 233-244, (2018)
7. D. Pasculescu, L. Pana, V.M. Pasculescu, F. Deliu, Economic criteria for optimizing the number and load factor of mining transformers, Mining of Mineral Deposits, 13 (2), 1-16, (2019)
8. A.D. Handra, F.G. Popescu, D. Pasculescu, Utilizarea energiei electrice - lucrări de laborator, (UPH, Petrosani, 2020)
9. F.G. Popescu, D. Pasculescu, V.M. Pasculescu, Modern methods for analysis and reduction of current and voltage harmonics, (LAP LAMBERT Academic Publishing, 2020)
10. F. G. Popescu, D. Pasculescu, M. D. Marcu, V. M. Pasculescu, Analysis of current and voltage harmonics introduced by the drive systems of a bucket wheel excavator, Mining of Mineral Deposits, 14 (4), 40-46, (2020)
11. F. G. Popescu, D. Pasculescu, M. Marcu, T. Niculescu, A. D. Handra, The technical and economic advantages of power factor correction, Annals of University of Petrosani, Electrical Engineering, 21, 35-42, (2019)
12. M.D. Marcu, L. Pana, F.G. Popescu, R. Slusariuc, Evaluation the losses power and electrical energy on the basis of the relative load curves, by reference to the basic sizes. Proceedings of the 18th International Multidisciplinary Scientific Geoconference SGEM 2014 14, 229 - 236, (2014)
13. N.D. Fita, C. Barb, D. Pasculescu, L. Pana, The description and evaluation of technical incident risk on the National Power Grid in the context of power safety growth, 9th International Conference on Manufacturing Science and Education (MSE) - Trends in New Industrial Revolution, 290, 12010, (2019)
14. T. Niculescu, V. Arad, M. Marcu, S. Arad, F. G. Popescu, Safety barrier of electrical equipment for environments with a potential explosion in underground coal mines, Mining of Mineral Deposits, 14 (3), 78-86, (2020)
15. G. Buica, A.E. Antonov, C. Beiu, D. Pasculescu, R. Dobra, Occupational health and safety management in construction sector – the cost of work accidents, Supplement of Quality-Access to Success, 18 (S1), 35-40, (2017)