TOWARDS COMBINATORIAL CLUSTERING: Preliminary Research Survey

Mark Sh. Levin

a Inst. for Information Transmission Problems, Russian Academy of Sciences
19 Bolshoj Karetny Lane, Moscow 127994, Russia
E-mail: mslevin@acm.org

The paper describes clustering problems from the combinatorial viewpoint. A brief systemic survey is presented including the following: (i) basic clustering problems (e.g., classification, clustering, sorting, clustering with an order over cluster), (ii) basic approaches to assessment of objects and object proximities (i.e., scales, comparison, aggregation issues), (iii) basic approaches to evaluation of local quality characteristics for clusters and total quality characteristics for clustering solutions, (iv) clustering as multicriteria optimization problem, (v) generalized modular clustering framework, (vi) basic clustering models/methods (e.g., hierarchical clustering, k-means clustering, minimum spanning tree based clustering, clustering as assignment, detection of clique/quasi-clique based clustering, correlation clustering, network communities based clustering). Special attention is targeted to formulation of clustering as multicriteria optimization models.

Combinatorial optimization models are used as auxiliary problems (e.g., assignment, partitioning, knapsack problem, multiple choice problem, morphological clique problem, searching for consensus/median for structures).

Numerical examples illustrate problem formulations, solving methods, and applications. The material can be used as follows: (a) a research survey, (b) a fundamental for designing the structure/architecture of composite modular clustering software, (c) a bibliography reference collection, and (d) a tutorial.

Keywords: Clustering, Classification, Combinatorial optimization, Assignment, Multicriteria problems, Decision making, Heuristics, Composite problem frameworks, Applications, Applied artificial intelligence

Contents

1 Introduction

2 General Preliminary Glance

2.1 Preliminaries

2.2 Objects, evaluation, problems

2.2.1 Examined objects, parameters

2.2.2 Basic scales

2.2.3 Assessment/evaluation problems

2.2.4 Calculation of objects/clusters proximities

2.2.5 Quality of clustering solution

2.2.6 Comparison of two clustering solutions

2.2.7 Aggregation of objects/clustering solutions

2.3 Basic clustering models and general framework

2.3.1 Basic clustering problems/models

2.3.2 Systems problems

2.3.3 General framework

2.3.4 Example of solving morphological scheme

2.4 On clustering in large scale data sets/networks

2.5 Note on multidimensional scaling
3 Basic Structured Clustering Combinatorial Schemes

3.1 Auxiliary problems

3.2 Hierarchical clustering

3.2.1 Basic agglomerative algorithm

3.2.2 Balancing by cluster size

3.2.3 Improvements of hierarchical clustering scheme

3.3 K-means clustering

3.4 Clustering as assignment

3.5 Graph based clustering

3.5.1 Minimum spanning tree based clustering

3.5.2 Clique based clustering

3.5.3 Correlation clustering

3.5.4 Network communities based clustering

3.6 Towards fast clustering

4 Some Combinatorial Clustering Problems

4.1 Clustering with interval multiset estimates

4.1.1 Some combinatorial optimization problems with multiset estimates

4.1.2 Towards Clustering with interval multiset estimates

4.2 Restructuring in clustering

4.2.1 One-stage restructuring

4.2.2 Multistage restructuring, cluster/element trajectories

4.2.3 Restructuring in sorting

4.3 Clustering with multi-type elements

4.3.1 Basic problems

4.3.2 Example of Team Design

4.3.3 Analysis of Network

4.4 Scheduling in multi-beam antenna communication system

5 Conclusions

6 Acknowledgments
1. Introduction

Recently clustering/classification problems have been widely used in many domains (Table 1.1).

No.	Some applied domains	Basic applied problem(s)	Source(s)
1.	Design/analysis of information systems, information retrieval	Document clustering/classification, design of hierarchy/ontology/menu, information retrieval	32, 50, 191, 418, 453, 534, 157, 593, 595, 614, 658
2.	Web systems, web services	Clustering of Web sites, design of hierarchical Web systems, search	67, 175, 185, 202, 418, 634, 150, 652
3.	Data mining&knowledge discovery	Detection of information objects, associations, rules, structures	551, 147, 199, 255, 252, 265, 279, 434, 446
4.	Medical/technical diagnostics, system testing, maintenance of systems	Definition of solution classes, diagnostics (assignment/multiple assignment of patients/system components into solution classes), clustering of symptoms/faults, etc.	214, 215, 282, 341, 399, 422, 488, 505, 602, 632, 665
5.	Graph partitioning (network design, VLSI design, etc.)	Grouping of graph vertices	191, 211, 218, 251, 320, 328, 582, 625
6.	Cell formation in industrial/ manufacturing systems	Grouping of machines	122, 228, 637, 655
7.	Anomaly detection (networks, distributed systems, etc.)	Finding patterns in data that do not conform to expected behavior	93, 211, 487, 659
8.	Computer vision (images/scenes, object trajectories)	Clustering/segmentation of images, shape analysis, detection of events	302, 310, 542, 556
9.	Trajectory clustering/classification (e.g., air-traffic control), system testing/maintenance, monitoring	Tracking: traces initialization/maintenance; classification/clustering/fusion of streams	53, 104, 213, 247, 277, 360, 365, 389, 392, 499, 400
10.	Chemistry, biology, gene expression data clustering in DNA microarray technology	Classification/clustering of chemical objects (elements, structures), detection of natural structures, interesting patterns	383, 392, 635, 661
11.	Communication/sensor systems/networks, computer networks	Management, clustering of nodes, clustering based routing, detection of cluster heads, design of hierarchical network	712, 306, 415, 443, 521, 529, 635, 641, 656
12.	Management, planning, marketing, evaluation of economical objects (e.g., financial instruments, tasks, firms, countries)	Hierarchical management, design of management hierarchy, team design, segmentation of market, segmentation of customers	241, 103, 120, 160, 103, 245, 273, 274, 329, 378, 392, 442, 463, 513, 638, 605
13.	Social sciences, political marketing, social network analysis, recognition of communities, econometrics, etc.	Clustering of social/psychological objects, analysis of networks/hierarchies, evaluation, planning	461, 169, 169, 287, 266, 395, 438, 470, 474, 407, 694, 669
14.	Education (evaluation, course design, cluster grouping, planning)	Evaluation (students, courses), clustering of students, timetabling, educational data mining	57, 801, 113, 133, 220, 456, 499, 511, 512, 513, 616

The significance of clustering/classification is essentially increased, for example, in the following contemporary fields: data analysis, management and decision making, communication systems, engineering, chemistry, biomedicine, information retrieval, system monitoring, social sciences, network modeling and analysis (e.g., 93, 59, 154, 227, 435, 545, 618, 508, 557, 666) (Fig. 1.1).

In two recent decades, excellent well-known surveys and books on clustering problems and methods have been published (e.g., 302, 435, 628, 629, 666). Many research publications including surveys and books are targeted to special clustering approaches, for example: clustering based on fuzzy data (e.g.,
support vector clustering (e.g., [53]), cross-entropy based clustering (e.g., [312,348]), online clustering (e.g., [53,192,230]), dynamic clustering (e.g., [43,104]), consensus clustering (e.g., [124,245]), graph-based clustering (e.g., [190,230,340]), clustering ensembles (e.g., [597,224,278]), clustering based on hesitant fuzzy information (e.g., [110,656]), multicriteria clustering (e.g., [159]), correlation clustering (e.g., [159]).

In recent decade, the significance of combinatorial approaches to clustering have been increased. In Table 1.2, some research efforts in combinatorial approaches to clustering are pointed out.

This material contains an author’s “architectural” engineering glance to combinatorial clustering problems. A special attention is targeted to formulation of clustering problems as multicriteria optimization models which are based on usage of various quality parameters for clustering solutions (e.g., clusterings as partitions, hierarchical clusterings). Combinatorial optimization models are used as auxiliary problems (e.g., partitioning, assignment, knapsack problem, multiple choice problem, matching problem).

In recent years, various fuzzy clustering methods have been widely studied and used (e.g., [42,109,110,180,238,287,302,330,347,440,467,529,628,656]) and these approaches are not considered in the material.

The presented materials can be useful for educational courses and student projects in computer science, engineering, management, social sciences applications (e.g., [377,380,382]).
Table 1.2. Combinatorial approaches to clustering

No.	Approaches, algorithmic schemes	Source(s)
1.	Some surveys:	218, 302, 437
1.1	General	533
1.2	Graph clustering	189
1.3	Approximate graph partitioning	348, 520, 568
1.4	Cross-entropy method for clustering, partitioning	228, 537, 555
1.5	Cell formation (in industrial engineering)	597
1.6	Clustering ensemble algorithms	518, 666
1.7	Multicriteria classification and sorting methods	534
2.	Basic combinatorial optimization problems:	244, 45, 179, 192, 582, 606, 626, 660
2.1	Minimal spanning tree approach	266, 76, 134, 166, 189, 554
2.2	Partitioning based clustering	227
2.3	Assignment/location based clustering	534
2.4	Graph matching	101, 263, 400, 489, 543
2.5	Dominant set based clustering	91, 46, 525
2.6	Covering based clustering	98, 518, 176, 236, 340, 539
2.7	Clique based clustering	74, 59, 101, 149, 625
2.8	Structural clustering (detection of communities)	440, 159, 345, 564
3.	Correlation clustering	440, 159, 345, 564
4.	Graph-based data clustering with overlaps	119
5.	Segmentation problems	834
6.	Cluster graph modification problems	589, 540
7.	Multi-criteria decision making in clustering-sorting	244, 508, 590, 666
8.	Consensus clustering:	
8.1	Voting-based consensus of cluster ensembles	28, 522
8.2	Consensus partitions	245
9.	Algorithmic schemes:	
9.1	Enumerative methods:	
9.1.1	Branch-and-bound methods	111
9.1.2	Dynamic programming	640
9.2	Local optimization heuristics:	
9.2.1	Simulated annealing algorithms	78, 47, 536
9.2.2	Tabu search algorithms	47, 1561
9.2.3	Ant colonies algorithms	31, 138
9.2.4	PSO methods	102, 577, 592
9.2.5	Variable neighborhood search	268, 269, 270, 271
9.3	Genetic algorithms, evolutionary strategies	30, 142, 288, 477, 587
9.4	Hyper-heuristic approach	129, 852, 1580
2. General Preliminary Glance

2.1. Preliminaries

From the structured viewpoint, the following basic clustering problem formulations can be pointed out (i) set partitioning clustering (Fig. 2.1), (ii) classification (i.e., solution classes are predefined as in diagnostics) (Fig. 2.2), (iii) sorting (group ranking, stratification) problem (the obtained clusters are linear ordered) (Fig. 2.3), (iv) hierarchical clustering (Fig. 2.4), (v) multiple clustering (i.e., obtaining different clustering solutions while taking into account goals/models; alternative clustering) (Fig. 2.5), and (vi) consensus clustering (aggregation of clustering solutions; clustering ensembles) (Fig. 2.6).

Table 2.1 contains initial data for an illustrative numerical example: (a list of item/students and their skill estimates upon parameters/criteria): (1) formal approaches, modeling (i.e., mathematics, physical modeling) C_1, (2) applied computer science, computing (i.e., software development, software implementation, computing) C_2, (3) engineering science domain (i.e., information transmission, radio channels, antenna devices, sender/receiver devices, networking) C_3, (4) measurement radio techniques C_4, and (5) preparation of the technical documentations (reports, papers, presentations C_5. Here ordinal scale $[3, 4, 5]$ is used: excellent (“5′′), good (“4′′), sufficient (“3′′).
This numerical example illustrates the pointed out 5 types of clustering problems on the basis of the same initial data (Table 2.2, for 12 students): (i) clustering as partitioning (Fig. 2.7a), (ii) classification problem (“soft” problem formulation) (Fig. 2.7b), (iii) sorting problem (stratification, multicriteria ranking) (Fig. 2.7c), (iv) hierarchical clustering (Fig. 2.8), and (v) consensus clustering (Fig. 2.9). Note, consensus clustering is based on three initial clustering solutions:

(a) five clusters (from partitioning problem, Fig. 2.7a): \{6,9,10\}, \{1,8,3\}, \{2,5,7,11\}, \{12,14\}, \{3,4\};

(b) four clusters (from sorting problem, Fig. 2.7c): \{6,9\}, \{1,3,10\}, \{4,8,13,14\}, \{2,5,7,11,12\};

(c) four clusters (from hierarchical clustering, Fig. 2.8): \{6,9,10\}, \{1,3\}, \{4,8,13,14\}, \{2,5,7,11,12\}.

In recent decade, the significance of the fifth type of clustering problem has been increased: network clustering (e.g., detection of community structures) (Fig. 2.10). Here initial information consists in description of network: i.e., set of vertices/nodes and set of edges. Weights of vertices and/or edges can be used as well.

Item (student)	\(C_1\)	\(C_2\)	\(C_3\)	\(C_4\)	\(C_5\)
Student 1	4	4	5	5	4
Student 2	3	3	3	4	3
Student 3	4	4	4	5	4
Student 4	5	4	4	3	5
Student 5	3	3	3	4	3
Student 6	5	5	5	5	5
Student 7	3	3	3	4	3
Student 8	4	3	4	4	3
Student 9	5	5	5	5	5
Student 10	5	5	5	4	5
Student 11	3	3	3	5	3
Student 12	3	5	3	3	3
Student 13	5	3	4	3	3
Student 14	3	5	3	5	4
A generalized scheme of clustering processes consists of the following:

Phase 1. Collection of initial data on the applied situation.
Phase 2. Analysis of applied situation(s) and formulation/structuring of clustering problem:
 (2.1.) generation/detection and description of initial objects/elements;
 (2.2.) generation/detection of element parameters (i.e., feature selection or extraction);
 (2.3.) selection/design of proximity measures (for elements, for clusters) and types for inter-cluster criterion and for intra-cluster criterion; and
 (2.4.) selection of basic clustering model(s) (i.e., hierarchical clustering, partitioning clustering).
Phase 3. Selection/design of clustering solving scheme (solving method/procedure).
Phase 4. Implementation of clustering procedure(s).
Phase 5. Analysis of clustering solution(s) (i.e., clusters validation).
2.2. Objects, evaluation, problems

2.2.1. Examined objects, parameters

It is reasonable to point out the basic examined objects:
1. item (i.e., element, point),
2. set of items (e.g., initial set of items),
3. subset of items, cluster (e.g., a subset of initial items),
4. clustering solution as partitioning of the initial item set into set of clusters, and
5. clustering solution and an order over its clusters:
 5.1. linear order over the clusters (sorting problem),
 5.2. hierarchy over the clusters,
 5.3. poset over the clusters.

Significant auxiliary problems consist in measurement of proximity for pair of objects: 1. item and item, 2. item and cluster, 3. cluster and cluster, 4. clustering solution and clustering solution, 5. order over clusters and order over clusters, and 6. clustering solution, order over its clusters and clustering solution, order over its clusters.

In recent years, a special research attention is targeted to aggregation of clustering solutions and evaluation of the obtained aggregated clustering solution(s).

Generally, basic problem types, parameters, and criteria are pointed out in Table 2.2 (e.g., \[177,229,300,302,333,375,430,435,452,455,458,459,461,501,623,624,625,648,627,638\]).
Table 2.2. Basic parameters in clustering/classification problems

No.	Parameters, requirements	Description(s) (e.g., type, evaluation scale)
I.	Elements (items/objects):	
1.1	Type of element(s)	One-type/multi-type element(s), whole element(s) or structured/composite element(s)
1.2	Description of element	Quantitative, nominal, ordinal estimate(s); fuzzy, multiset estimates, vector estimates, binary relation(s) over elements
1.3	Proximity for elements pair	Metric/proximity, ordinal estimate, fuzzy estimate, multiset estimate, vector estimate
1.4	Proximity between element and element set (e.g., cluster)	Metric/proximity, ordinal estimate, fuzzy estimate, multiset estimate, vector estimate
1.5	Proximity between element set and element set (e.g., two clusters)	Metric/proximity, ordinal estimate, fuzzy estimate, multiset estimate, vector estimate
II. Clusters/classes (clustering solution):		
2.1	Definition type for clusters/classes	1. Predefined clusters (classification problem)
		2. Clusters are defend under solving process (clustering problem)
		Number of clusters, number of cluster elements
		Independent clusters, linear order/chain, ranking (layered structure), hierarchy (e.g., tree), poset
		Quality, correspondence to requirements, etc.
2.2	Constraints for clusters	
2.3	Order over clusters/classes (binary relation(s))	Number of clusters, number of cluster elements
2.4	Clustering solution validity:	
2.4.1	Basic criteria (e.g., [6, 177, 502, 648]):	Uniqueness of objects in each cluster:
2.4.1.1	Compactness (minimization):	e.g., closeness to cluster centroid in cluster, maximum distance between objects in each
	(i) intra-cluster “distance”,	cluster, closeness of object to cluster centroid “good” correspondence of object to cluster
	(ii) object positioning.	Well-separated clusters: e.g., maximum
		distances between cluster centroids
2.4.1.2	Isolation or separability (maximization):	similar objects are neighboring
	inter-cluster “distance”	
2.4.1.3	General (maximization):	Similarity to predefined structure
	(i) number of correctly positioned objects,	Maximization
	(ii) number of “good” clusters (Fig. 2.13),	
	(iii) connectedness.	
2.4.2	Quality of structure over clusters	
2.5.	Modularity (community structure based network clustering, Fig. 2.14 [7, 459, 496])	Assignment of each item to the only one cluster
III. Fuzziness/softness of problem/model:	Assignments of each item to many clusters	
3.1.	Hard problem	
3.2.	Fuzzy/soft problem	
IV. Problem time mode:		
4.1.	Off-line (statical) mode	
4.2.	On-line mode (dynamics)	
V. Complexity of clustering process:		
5.1.	Algorithmic complexity	
5.2.	Volume of required data	
5.3.	Volume of required expert’s work	

Fig. 2.13. Illustration for “good” clusters

Fig. 2.14. Illustration for community structures
2.2.2. Basic scales

Usually, the following main approaches (i.e., scales, types of estimates) for assessment of vector component (i.e., $x_i, i = 1, m$) are used (e.g., [273, 300, 302, 374, 392, 435, 624]): (i) quantitative estimate (Fig. 2.15a), (ii) ordinal estimate (Fig. 2.15b), (iii) nominal estimate, (iv) poset-like scale (Fig. 2.15c), (v) fuzzy estimate, (vi) multiset based scales: (a) multiset estimate for evaluation of composite system (Fig. 2.16, [372, 374, 386, 392]), (b) interval multiset estimate [386, 392], and (vii) vector-like estimate (i.e., multicriteria description) (e.g., [374, 392]). Here, traditional fuzzy estimates and hesitant fuzzy estimates are not considered (e.g., [110, 628, 647, 650]).

Some fundamentals of multisets and comparison of sets and multisets have been described in ([260, 338, 629]). Our brief description of multiset estimates is the following (e.g., [372, 374, 386, 392]). The approach consists in assignment of elements (1, 2, 3,...) into an ordinal scale [1, 2,..., l]. As a result, a multiset based estimate is obtained, where a basis set involves all levels of the ordinal scale: $\Omega = \{1, 2, \ldots, l\}$ (the levels are linear ordered: $1 > 2 > 3 > \ldots$) and the assessment problem (for each alternative) consists in selection of a multiset over set Ω while taking into account two conditions:

1. cardinality of the selected multiset equals a specified number of elements $\eta = 1, 2, 3, \ldots$ (i.e., multisets of cardinality η are considered);
2. “configuration” of the multiset is the following: the selected elements of Ω cover an interval over scale $[1, l]$ (i.e., “interval multiset estimate”).

Thus, an estimate e for an alternative A is (scale $[1, l]$, position-based form or position form): $e(A) = (\eta_1, \eta_2, \ldots, \eta_l)$, where η_i corresponds to the number of elements at the level i ($i = 1, l$), or $e(A) = \{1, 2, 3, \ldots, \text{number of elements} \}$. The number of multisets of cardinality η, with elements taken from a finite set of cardinality l, is called the “multiset coefficient” or “multiset number” ([338, 629]): $\mu^{l, \eta} = \frac{l!}{(l + 1) \cdot (l + 2) \cdot \ldots \cdot (l + \eta - 1)}$. This number corresponds to possible estimates (without taking into account interval condition 2). The basic multiset estimate (i.e., without taking into account condition 2) can be used as integration of ordinal estimates to obtain a resultant estimate for a composite system (when system components are evaluated via ordinal scale [1, 2, 3]) (e.g., [372, 374, 392]) (Fig. 2.16, Fig. 2.17).

In the case of condition 2 (i.e., interval multiset estimate), the number of estimates is decreased. Generally, assessment problems based on interval multiset estimates can be denoted as follows: $P_i^{k, \eta}$. A poset-like scale of interval multiset estimates for assessment problem $P_i^{3,4}$ is presented in Fig. 2.18. Calculation of multiset estimate is be based on transformation of vector ordinal estimate. An illustrative numerical example for obtaining multiset vector estimate is the following:

$$\overline{\pi_1} = (0, 3, 1, 0, 2, 1) \implies e(\overline{\pi_1}) = (e_0, e_1, e_2, e_3) = (2, 2, 1, 1),$$

where e_k equals the number of ordinal estimate k in ordinal vector estimate $\overline{\pi}$.
Fig. 2.18. Scale, estimates \(P^{3.4} \) \([386,392]\)

Brief descriptions of the scales above and their transformations (e.g., mapping, integration) are presented in \([386,390,392]\). The basic types of operations over estimates above are the following (Table 2.3) (e.g., \([390,392]\)):

1. transformation of an estimate (including transformation into an estimate of another type),
2. calculation the difference (distance/proximity) for two estimates,
3. integrations (e.g., summarization, average estimate or median-like estimate).

A basic approach to integration of qualitative estimates (including vector qualitative estimates) consists in summarization or calculation of an average value. On the other hand, integration of ordinal estimates, poset-like estimates, and multiset estimates (i.e., “structural” estimates) is usually considered as calculation of a median-like estimate (i.e., as agreement/consensus structure). This kind of problems is formulated as an optimization (or multicriteria optimization) (e.g., \([372,381,392]\)). Sometimes, the resultant integrated estimate can be considered as a “fuzzy” structure (e.g., interval-like integrated ranking for integration of rankings in \([372,392]\)).

The above-mentioned operations (integration as summarization, calculation of proximity, calculation of a median estimate) for multiset estimates are presented in \([386,392]\).
2.2.3. Assessment/evaluation problems

Generally, the following measurement approaches are under examination (for solutions as clustering, ranking, consensus clustering, and their components): 1. metrics/proximities: (i) for objects/clusters, (ii) for orders over clusters, (iii) for clustering solutions; 2. total measures for clustering solution(s) (total quality); 3. measure for an aggregation structure (i.e., median, consensus, agreement structure, covering structure). Table 2.4 involves a list of basic types of the assessment/evaluation problems.

2.2.4. Calculation of objects/clusters proximities

The initial set of items (objects) under examination is \(A = \{a_1, \ldots, a_j, \ldots, a_m\} \). There are \(m \) parameters of \(x \in A \) and vector estimate \(\bar{\mathbf{x}} = (x_1, \ldots, x_i, \ldots, x_m) \) (Fig. 2.19). Here, the following cases of metrics/proximities for objects/clusters are considered:

Case 1. objects points - object/point (Fig. 2.20, Fig. 2.21a).
Case 2. object - cluster (subset) (Fig. 2.21b).
Case 3. Intra-cluster proximity (distance): for all elements in cluster.
Case 4. Inter-cluster proximity (distance): cluster - cluster (Fig. 2.21c).

Further, the above-mentioned cases are examined.

Case 1. Metrics/proximity for two objects (points) (Fig. 2.20, Fig. 2.21a).

Two objects are examined while taking into account \(m \) parameters (criteria): (i) the first object \(x \in A \): vector estimate \(\bar{\mathbf{x}} = (x_1, \ldots, x_i, \ldots, x_m) \), (ii) the second object \(y \in A \): vector estimate \(\bar{\mathbf{y}} = (y_1, \ldots, y_i, \ldots, y_m) \). Here, \(x_i, y_i \) (\(i = 1, m \)) are real numbers. The basic types of proximities/distances (as an integration of vector-like difference between vector estimate upon quantitative scales) between two objects \(x \) and \(y \) (\(D(x,y) \)) are the following (e.g., 251, 275, 300, 302, 321, 343, 392, 434, 435, 490, 623, 624, 666):

1. Euclidean distance: \(D(x,y) = \left[\sum_{i=1}^{m} |x_i - y_i|^2 \right]^{1/2} \).
2. Minkowski distance: \(D^{\text{mink}}(x,y) = \left[\sum_{i=1}^{m} |x_i - y_i|^r \right]^{1/r} \) \((r > 0) \).
3. Manhattan distance: \(D^{\text{manh}}(x,y) = \sum_{i=1}^{m} |x_i - y_i| \).
4. Tchebyschev distance: \(D^{\text{cheb}}(x,y) = \max_{i \in \{1, \ldots, m\}} |x_i - y_i| \).
5. Canberra distance: \(D^{\text{can}}(x,y) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|} \) \((x_i > 0 \text{ and } y_i > 0) \).
6. Vector proximity: \(D(x,y) = (|x_1 - y_1|, \ldots, |x_i - y_i|, \ldots, |x_m - y_m|) \).
7. Ordinal estimate (for example, scale \([0,1,2,3,4]\)): 0 corresponds to the same objects or equivalent ones, 1 corresponds to the “very close” objects, 2 corresponds to the “close” objects, 3 corresponds to

No.	Type of initial estimate(s)	Transformation of estimate (resultant estimate)	Difference (proximity) of two estimates (resultant estimate)	Integration of several estimates (resultant estimate)
1.	Quantitative	1. Qualitative	1. Quantitative	1. Quantitative (average value)
		2. Ordinal	2. Ordinal	2. Vector estimate
2.	Ordinal	1. Ordinal	1. Ordinal	1. Ordinal (average/median)
		2. Multiset	2. Multiset	3. Multiset
3.	Nominal	1. Nominal	1. Ordinal	1. Vector estimate
4.	Vector	1. Vector	1. Qualitative	1. Vector
		2. Ordinal	2. Ordinal	(average/median)
		3. Multiset	3. Multiset	
5.	Multiset	1. Multiset	1. Ordinal	1. Multiset
		2. Ordinal	2. Multiset	
		3. Vector	3. Vector	

Table 2.3. Basic operations over estimate(s)
the “different” objects, 4 corresponds to the “very different” objects).

Table 2.4. Assessment/evaluation problems

No.	Analyzed object(s)	Goal	Approach	Estimate type (scales)
1.	Element (item)	Description	Assessment (e.g., expert, nominal, fuzzy, multiset, vector)	
2.	Two elements/items	Proximity/distance	Calculation	Quantitative, ordinal, fuzzy, multiset, vector
3.	Element, cluster (subset)	Proximity/distance	Calculation	Quantitative, ordinal, fuzzy, multiset, vector
4.	Two clusters (subsets)	Proximity/distance	Calculation	Quantitative, ordinal, fuzzy, multiset, vector
5.	All elements of cluster (subset)	Intra-cluster proximity (quality of cluster as element proximity)	Calculation	Quantitative, ordinal, fuzzy, multiset, vector
6.	All elements in all clusters (clustering solution)	Total intra-cluster proximity (generalized element proximity in all clusters)	Calculation	Quantitative, ordinal, fuzzy, multiset, vector
7.	All clusters of clustering solution	Inter-cluster proximity (quality of solution as integrated proximity between clusters)	Calculation	Quantitative, ordinal, fuzzy, multiset, vector
8.	Clustering solution	Criteria, requirements/constraints	Constraint satisfaction/optimization	Quantitative, ordinal, fuzzy, multiset, vector
9.	Two rankings (two sorting solutions)	Proximity/distance	Calculation	Quantitative, ordinal, fuzzy, multiset, vector
10.	Ranking (sorting) solution	Proximity to standard solution, correspondence to requirements (quality of solution)	Constraint satisfaction/optimization problem	Quantitative, ordinal, fuzzy, multiset, vector
11.	Two hierarchies (e.g., trees) over clusters	Proximity/distance	Calculation	Quantitative, ordinal, fuzzy, multiset, vector
12.	Hierarchy over clusters (solution)	Proximity to standard solution, correspondence to requirements	Constraint satisfaction/optimization	Quantitative, ordinal, fuzzy, multiset, vector
13.	Aggregated item(s): “median item/set”, “center”, covering object (e.g., ellipsoid)	Quality of aggregated item(s) (value, vector)	Calculation	Quantitative, ordinal, fuzzy, multiset, vector
14.	Consensus clustering (median/agreement)	Quality of consensus solution (value, vector)	Constraint satisfaction/optimization	Quantitative, ordinal, fuzzy, multiset, vector
15.	Consensus ranking/sorting solution	Quality of consensus solution (value, vector)	Constraint satisfaction/optimization	Quantitative, ordinal, fuzzy, multiset, vector
16.	Consensus hierarchical clustering solution	Quality of consensus solution	Constraint satisfaction/optimization	Quantitative, ordinal, fuzzy, multiset, vector

8. Fuzzy estimate of object proximity and/or vector fuzzy estimate of object proximity. Fuzzy estimates are widely used in clustering methods (e.g., [42,109,180,238,287,302,330,347,440,467,529]) including clustering based on hesitant fuzzy estimates (e.g., [110,628,656]) (here they are not considered).
9. Multiset estimate of object proximity \([386,392]\).

10. Angular separation (e.g., \([490]\), Fig. 2.20):
 \[D_{\text{angular}}(x, y) = \frac{\sum_{i=1}^{m} x_i y_i}{\sqrt{\sum_{i=1}^{m} x_i^2 \sum_{i=1}^{m} y_i^2}}. \]
 The similarity measure corresponds to the angle between the item vectors in directions of \(x\) and \(y\) \([490]\).

Fig. 2.19. Illustration for object/item

Fig. 2.20. Angle proximity

Fig. 2.21. Object/cluster proximities

Illustrative numerical examples are the following.

Example 2.1. An ordinal vector proximity can be used for calculation of the proximity of two ordinal vectors \(\overline{x}\) and \(\overline{y}\) (ordinal scale \([1, 5]\) for vector estimates, ordinal scale \([0, 4]\) for vector proximity):

a) ordinal vector estimates are: \(x : \overline{x} = (3, 4, 1, 1, 2, 5)\), \(y : \overline{y} = (3, 1, 2, 1, 4, 4)\);
b) ordinal proximities are:
 i) \(D(x, y) = (x_1 - y_1, x_2 - y_2, x_3 - y_3, x_4 - y_4, x_5 - y_5, x_6 - y_6) = (0, 3, -1, 0, -2, 1)\),
 ii) \(D'(x, y) = (|x_1 - y_1|, |x_2 - y_2|, |x_3 - y_3|, |x_4 - y_4|, |x_5 - y_5|, |x_6 - y_6|) = (0, 3, 1, 2, 1, 1)\).

Example 2.2. An ordinal vector proximity can be used for calculation of the proximity of two quantitative vectors \(\overline{x}\) and \(\overline{y}\) (quantitative scale \((0, 5)\) for vector estimates, ordinal scale \([0, 4]\) for vector proximity). Two initial quantitative vector estimates are: (a) \(\overline{x} = (0.3, 3.5, 1.4, 1.5, 2.3, 4.9)\), (b) \(\overline{y} = (0.3, 0.8, 2.2, 1.6, 3.9, 4.1)\). Examples for calculation of proximities are:

1. The quantitative proximity is:
 \(D(x, y) = (|x_1 - y_1|, |x_2 - y_2|, |x_3 - y_3|, |x_4 - y_4|, |x_5 - y_5|, |x_6 - y_6|) = (0.0, 2.7, 0.8, 0.1, 1.6, 0.8)\).

2. Calculation of the vector ordinal proximity \(D'(x, y) = (d_1, d_2, d_3, d_4, d_5, d_6)\) can be based on rule:

 \[
 d_i = \begin{cases}
 0, & \text{if } 0.0 \leq |x_i - y_i| \leq 0.2, \\
 1, & \text{if } 0.2 < |x_i - y_i| \leq 0.5, \\
 2, & \text{if } 0.5 < |x_i - y_i| \leq 0.8, \\
 3, & \text{if } 0.8 < |x_i - y_i| \leq 3.5, \\
 4, & \text{if } 3.5 < |x_i - y_i| \leq 5.0.
 \end{cases}
 \]

The resultant vector ordinal proximity is (based on \(D(x, y)\)):

\(D'(x, y) = (0, 3, 2, 0, 3, 2)\).

Example 2.3. In the case when quantitative vector estimates are transformed into ordinal vector estimates, the example 1 is obtained.

Case 2. Object-cluster (subset) (Fig. 2.21b). The following initial information is considered:

i) object \(x \in A\): \(\overline{x} = (x_1, ..., x_i, ..., x_m)\) (vector estimate);
ii) elements of cluster \(Y = \{y^1, ..., y^\ell, ..., y^n\} \subset A\), \(\overline{y}^\ell = (y_1^\ell, ..., y_\ell^\ell, ..., y_n^\ell)\) (vector estimate) \((\forall y^\ell \in Y)\).

Proximity \(D(x, Y)\) between object \(x\) and cluster \(Y\) can be considered, for example, as the following:
transformation the general vector proximity into a number (quantitative or ordinal).

Example 2.4. Let us consider item x: $\bar{x} = (0.3, 3.5, 1.4, 1.5)$ and cluster Y: $\bar{y} = (1.1, 4.0, 3.2, 4.3)$, $\bar{y}^2 = (2.0, 5.1, 2.5, 5.2)$, $\bar{y}^3 = (1.3, 4.7, 4.2, 1.6)$.

For four case above, the following proximities are obtained (Euclidean distance of two items is used):

1) $D_{min}(x, Y) = \min_{y \in Y} D(x, y)$;
2) $D_{max}(x, Y) = \max_{y \in Y} D(x, y)$;
3) $D_{av}(x, Y) = 1/|Y| \sum_{y \in Y} D(x, y)$;
4) $D_{cent}(x, Y) = D(x, \bar{y})$, where \bar{y} is centroid (or median point) of cluster Y.

Clearly, various measurement approaches (i.e., metric/proximity) described for case 1 can be used.

Example 2.5. Numerical examples for the above-mentioned two cases (i) and (ii) are the following:

Scheme 1. Preliminary transformation of vector proximities $D(x, y^i)$ into ordinal vector proximity and usage of the measurement methods above (e.g., proximity to the closest point of cluster):

Scheme 2. Integration of proximities $D(x, y^i)$ to obtain a general vector proximity $D(x, Y)$ and transformation the general vector proximity into a number (quantitative or ordinal).

Example 2.6. Let us consider cluster $Y = \{y^1, y^2, y^3\}$ (from example 2.4).

Euclidean distances between cluster elements are: $D(y^1, y^2) = 1.8$, $D(y^1, y^3) = 3.0$, $D(y^2, y^3) = 4.0$.

Thus, versions of intra-cluster proximities for cluster Y are:
Table 2.5

	\(x^i\)	\(y^i\)	\(y^j\)
\(x^1\)	(1.0, 3.0, 3.0, 4.0)	(1.9, 4.1, 2.3, 4.9)	(1.2, 3.7, 4.0, 1.3)
\(x^2\)	(0.8, 3.1, 2.7, 3.7)	(1.7, 4.2, 2.0, 4.6)	(1.0, 3.8, 3.7, 1.0)

Table 2.6

	\(x^i\)	\(y^i\)	\(y^j\)
\(x^1\)	6.0	7.0	5.8
\(x^2\)	5.7	6.8	5.4

Table 2.7

	\(x^i\)	\(y^i\)	\(y^j\)
\(x^1\)	(3.3, 3.4)	(3.4, 3.4)	(3.4, 4.3)
\(x^2\)	(2.3, 3.4)	(3.4, 3.4)	(3.4, 4.3)

Thus, versions of inter-cluster proximities for clusters \(X\) and \(Y\) are:
\(I_{\text{inter,min}}(X, Y) = 5.4\), \(I_{\text{inter,max}}(X, Y) = 7.0\), \(I_{\text{inter,av}}(X, Y) = 6.1\).

Results of transformation of ordinal vector proximities into integrated ordinal estimates (by rule above) are presented in Table 2.8. Here, minimum ordinal inter-cluster proximity equals 2, maximum ordinal inter-cluster proximity equals 3. Resultant multiset estimates are presented in Table 2.9.
2.2.5. Quality of clustering solution

Here “hard” clustering problem is examined. Consider initial items/elements of element set \(A = \{a_1, ..., a_j, ..., a_n\} \) (Fig. 2.19). Two types of initial information for clustering can be examined: 1. there are \(m \) parameters/criteria and measurement of \(a \) is based on vector estimate \(\mathbf{f} = (x_1, ..., x_1, ..., x_m) \) (Fig. 2.19); 2. binary relation(s) over element set \(A \) (including weighted binary relation(s); this is a structure over obtained clusters of a graph). Note, the first type of initial information can be transformed into the second type. A clustering solution consists of the following two parts:

1) Clusters \(\hat{X} = \{X_1, ..., X_i, ..., X_l\} \), i.e. dividing set \(A \) into clusters: \(X_i \subseteq A \ \forall i = 1, \lambda; \ \eta_i = |X_i| \) is the cluster size (i.e., cardinality for cluster \(X_i, i = 1, \lambda \)).

2) Structure over clusters (if needed). Let \(\Gamma(\hat{X}) \) be a structure over the clusters of the clustering solution \(\hat{X} \), i.e., there exists digraph \(G = (\hat{X}, \Gamma(X)) \). Let \(\Gamma(X_i) \) be the structure over the elements of cluster \(X_i \) (\(\forall X_i \in \hat{X} \)).

The list of basic quality characteristics is the following (Table 2.10):

Quality type	Notation	Description		
I. Cluster	\(X_i \)	\(1 \leq i \leq \lambda \) Proximity between elements of cluster \(X_i \)		
1.1. Intra-cluster distance	\(Q_{intra}^{\text{intra}}(X_i) \)	Number of elements in cluster \(X_i \)		
1.2. Size of cluster	\(X_i	\)	Closeness to predefined form (e.g., ball, ellipsoid) (if needed)
1.3. Quality of cluster form	\(Q_{intra}^{\text{reg}}(X_i) \)	Configuration of element types (if needed)		
1.4. Size of cluster region	\(Q_{intra}^{\text{bal}}(X) \)	Balance by cluster size, closeness to predefined balance vector		
1.5. Quality of cluster content/structure	\(Q_{intra}^{\text{form}}(\hat{X}) \)	Integration of cluster form parameters (by coordinates)		
1.6. Quality of cluster structure	\(Q_{intra}^{\text{reg}}(\hat{X}) \)	Integration of cluster regions sizes (by coordinates)		
II. Clustering solution	\(\hat{X} \)	\(X = \{X_1, ..., X_i, ..., X_l\} \)		
2.1. Total intra-cluster quality	\(Q_{intra}^{\text{intra}}(\hat{X}) \)	Integration of intra-cluster parameters (by \(i = 1, \lambda \))		
2.2. Total inter-cluster quality	\(Q_{intra}^{\text{inter}}(\hat{X}) \)	Integration of inter-cluster parameters (\(i = 1, t_2 \), \(t_1 \neq t_2 \))		
2.3. Number of clusters (\(\lambda \))	\(Q_{intra}^{\text{num}}(\hat{X}) \)	Number of clusters in clustering solution		
2.4. Closeness to cluster size	\(Q_{intra}^{\text{bal}}(\hat{X}) \)	Integration of maximum agreement (in each cluster) and minimum disagreements (between clusters)		
2.5. Quality by forms of clusters	\(Q_{intra}^{\text{form}}(\hat{X}) \)	Parameter of network modularity		
2.6. Parameter of cluster regions	\(Q_{intra}^{\text{reg}}(\hat{X}) \)	Closeness to predefined structure		
2.7. “Correlation clustering functional”	\(Q_{intra}^{\text{corr}}(\hat{X}) \)	Integrated vector of quality (e.g., \(Q(\hat{X}) = (Q_{intra}^{\text{intra}}(\hat{X}),Q_{inter}^{\text{intra}}(\hat{X}),Q_{intra}^{\text{reg}}(\hat{X}),Q_{intra}^{\text{form}}(\hat{X}),Q_{intra}^{\text{bal}}(\hat{X})) \)		
1. Quality of clusters (i.e., local quality parameters in clustering solution):

1.1. Intra-cluster distance (i.e., general proximity between elements in each cluster):
 \(I_{\text{intra}}(X_\iota) \) \((\iota = 1, \lambda)\).

 Version 1. Quantitative parameter as integration of quantitative element proximities (distances) in the cluster (this is described in previous section, case 3).

 Version 2. Multiset parameter as integration of ordinal estimates of element proximities. The approach is illustrated by example.

Example 2.8. Example for three clusters is depicted in Fig. 2.22: \(X_1 = \{1, 2, 3, 4\}, X_2 = \{5, 6, 7\}, X_3 = \{8, 9, 10, 11, 12\} \). Ordinal scale \([1, 2, 3]\) for estimates of element similarity is used:

1 corresponds to “very similar”,

2 corresponds to “medium level”,

3 corresponds to “very different” (in this case the edge in Fig. 2.22 is absent).

Ordinal proximities of edges are presented in Table 2.11. The resultant multiset intra-cluster parameters for clusters are: \(I_{\text{intra}}(X_1) = (2, 3, 1) \), \(I_{\text{intra}}(X_2) = (1, 1, 1) \), \(I_{\text{intra}}(X_3) = (4, 2, 4) \).

![Fig. 2.22. Local intra-cluster quality (for cluster)](image)

Table 2.11. Ordinal proximities (intra-cluster, edge \((i_1,i_2)\))

| \(i_1 \) | \(i_2 \) : | 2 | 3 | 4 | 6 | 7 | 9 | 10 | 11 | 12 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 1 | 2 | | | | | | |
| 2 | 3 | 2 | | | | | | | |
| 3 | | | | | | | | | |
| 5 | | | | | | | | | |
| 6 | | | | | | | | | |
| 8 | | | | | | | | | |
| 9 | | | | | | | | | |
| 10 | | | | | | | | | |
| 11 | | | | | | | | | |

1.2. Number of elements in cluster (or in each cluster, i.e., cluster size) corresponds to constraints, for example: \(\pi^- \leq \eta_\iota = |X_\iota| \leq \pi^+ \) (\(\pi^-, \pi^+ \) are predefined limits of the cluster size) \((\forall X_\iota \in \hat{X})\).

The quality parameter corresponds to external requirement (from the viewpoint of applied problem(s), e.g., teams, communication systems).

1.3. Quality of cluster form (e.g., body, envelope, cover), for example: sphere/ball, ellipsoid, globe (i.e., closeness to the required cluster form).

1.4. Quality as constraint for size of cluster region (limits for interval for coordinates of cluster elements). Let us consider cluster \(X = \{x^1, ..., x^\xi, ..., x^\phi\} \), parameter estimates of each cluster element \(x^\xi \) are (vector estimate, parameters \(i = 1, m \)): \(\bar{x}^\xi = (x^\xi_1, ..., x^\xi_i, ..., x^\xi_m) \). Constraints are (by each parameter \(\forall i = 1, \phi \) (Fig. 2.23):

\[
| \max_{\xi=1,\phi} x^\xi_i - \min_{\xi=1,\phi} x^\xi_i | \leq d_i, \quad \forall i = 1, m.
\]

The quality parameter corresponds to external requirement (from the viewpoint of applied problem(s), e.g., communication systems).
1.5. Quality of the cluster contents/structure (if needed), for example (a composite “team”): 1 element of the 1st type, 3 elements of the 2nd type, 2 elements of the 3rd type, 1 element of the 4th type. Here proximity of the obtained cluster content to the required content can be considered.

1.6. Quality of cluster structure (if needed) for cluster \(X_\iota \) (\(\forall X_\iota \in \hat{X} \)), i.e., proximity \(\delta(\Gamma(\hat{X}), \Gamma(\hat{X}))) \), where \(\Gamma(\hat{X}) \) is the predefined structure over the cluster elements.

2. Total quality for clustering solution (i.e., for cluster set):

2.1. Total intra-cluster quality for clustering solution \(Q^{intra}(\hat{X}) \) is an integrated measure of intra-cluster parameters \(I^{intra}(X_\iota) \) of all clusters in clustering solution (i.e., \(\iota = 1, \lambda \)).

Version 1. Total qualitative quality parameter for qualitative local estimates:

\[
Q^{intra}(\hat{X}) = \frac{1}{\lambda} \sum_{\iota=1,\lambda} I^{intra}(X_\iota).
\]

Note, integration process can be based on summarization and some other operations (maximization, minimization, etc.).

Version 2. Total multiset quality parameter for multiset local estimates. The approach is illustrated by example.

Example 2.9. Example for three clusters is depicted in Fig. 2.24 (for simplification the cardinality of clusters is the same): \(X_1 = \{1,2,3\}, X_2 = \{4,5,6\}, X_3 = \{7,8,9\} \); clustering solution is: \(\hat{X} = \{X_1, X_2, X_3\} \). Ordinal scale \([1,2,3]\) for estimates of element similarity is used: 1 corresponds to “very similar”, 2 corresponds to “medium level”, 3 corresponds to “very different” (in this case the corresponding edge is absent). Ordinal proximities of edges in clusters are presented in Table 2.12.

The resultant multiset intra-cluster parameters for clusters are:
\[
I^{intra}(X_1) = (1,2,0), \ I^{intra}(X_2) = (2,1,0), \ I^{intra}(X_3) = (2,1,0).
\]

These multiset estimates correspond to poset (lattice) from Fig. 2.16.

Integration of the above-mentioned intra-cluster multiset estimates can be based on two methods (e.g., \([386,392]\)):

(a) summarization (by the vector components): \(Q^{intra}(\hat{X}) = (5,4,0) \), the obtained integrate estimate corresponds to an extended lattice (not to lattice from Fig. 2.16);

(b) searching for a median multiset estimate: \(Q^{intra}(\hat{X}) = (2,1,0) \) (lattice from Fig. 2.16).

\(t_1 \)	\(t_2 \)
1	2 2
2	1
4	2 1
5	1
7	2 1
8	1

Fig. 2.23. Size of cluster region

Fig. 2.24. Intra- and inter-cluster qualities

Table 2.12. Ordinal proximities (intra-cluster, edge \((i_1, i_2)\))
2.2. Total inter-cluster quality for clustering solution \(Q^{\text{inter}}(\bar{X}) \) is an integrated measure of inter-cluster parameters \((I^{\text{intra}}(X_{i_1}, X_{i_2})) \) of all cluster pairs in clustering solution (i.e., \(\ell_1 = 1, \lambda, \ell_2 = 1, \lambda, \ell_1 \neq \ell_1 \)).

Version 1. Total qualitative quality parameter for qualitative local estimates as integration of all qualitative two-cluster inter-cluster proximities/distances (from previous section, case 4):

\[
Q^{\text{inter}}(\bar{X}) = \frac{1}{\lambda(\lambda - 1)} \sum_{\ell_1 = 1, \lambda, \ell_2 = 1, \lambda, \ell_1 \neq \ell_2} I^{\text{inter}}(X_{i_1}, X_{i_2}).
\]

Note, integration process can be based on summarization and some other operations (maximization, minimization, etc.).

Version 2. Total multiset quality parameter for multiset local estimates. The approach is illustrated by example.

Example 2.10. The example is based on data from previous example 2.9 (i.e., Fig. 2.24). Table 2.13 contains inter-cluster ordinal proximities.

Table 2.13. Ordinal proximities (inter-cluster, edge \((i, j)\))

\(i\)	\(j\): 4 5 6 7 8 9	
1	3 3 3 3 3 3	
2	2 2 3 3 3 3	
3	3 3 3 3 2 2	
4	3 3 3	
5	3 3 3	
6	2 3 2	

Inter-cluster multiset estimates are:

\(I^{\text{inter}}(X_1, X_2) = (0, 2, 7), \ I^{\text{inter}}(X_1, X_3) = (0, 1, 8), \ I^{\text{inter}}(X_2, X_3) = (0, 2, 7)\).

Integration of the above-mentioned intra-cluster multiset estimates can be based on two methods (e.g., \[386,392\]):

(a) summarization (by the vector components): \(Q^{\text{inter}}(\bar{X}) = (0, 5, 22)\);

(b) searching for a median multiset estimate: \(Q^{\text{inter}}(\bar{X}) = (0, 2, 7)\).

2.3. Total number of clusters in clustering solution \(Q^{\text{num}}(\bar{X}) \), for example: \(\Upsilon^- \leq \lambda(\bar{X}) \leq \Upsilon^+ \) (\(\Upsilon^-, \Upsilon^+ \) are predefined limits of the total cluster number). The quality parameter corresponds to external requirement (from the viewpoint of applied problem(s)). This is connected to 1.2

2.4. Closeness of element cluster sizes in clustering solution to the predefined cluster size constraints, i.e., balance (or imbalance) of cluster cardinalities \(Q^{\text{bal}}(\bar{X}) \), for example: \(\pi^- \leq \mid X_i \mid \leq \pi^+ \) (\(\pi^-, \pi^+ \) are general limits of each cluster size. Evidently, here the balance/imbalance (i.e., out-of-balance) estimate of a clustering solution can be considered as the number of clusters that corresponds (or does not correspond) to the constraints. The estimates can be examined as a vector-like estimate or a multiset estimate, for example: the number of “good” clusters (with “good/right” cluster size), the number of quasi-good clusters (with quasi-right cluster size), and the number of other clusters. This parameter corresponds to external requirement (from the viewpoint of applied problem(s)). Now let us describe the version of the vector-like estimate. The notations are as follows: (a) \(\pi^0(\bar{X}) \) is the number of clusters in \(\bar{X} \) in which the cluster size \(X_i \) complies with the predefined limits, (b) \(\pi^{l+}(\bar{X}) \) is the number of clusters in \(\bar{X} \) where the cluster size \(X_i \) more than \(\bar{X}^+ \) (upper limit) by \(l \) elements, (c) \(\pi^{-l}(\bar{X}) \) be the number of clusters in \(\bar{X} \) where the cluster size \(X_i \) less than \(\bar{X}^- \) (bottom limit) by \(l \) elements. As a result, the following vector estimate can be considered:

\[
Q^{\text{bal}}(\bar{X}) = (\pi^- (\bar{X}), ..., \pi^{-l}(\bar{X}), \pi^0(\bar{X}), \pi^1(\bar{X}), ..., \pi^{l+}(\bar{X})).
\]

Note, a close type of the vector estimate (vector proximity) has been suggested for comparison of rankings in \[372\]. The approach is illustrated by example.
Example 2.11. Initial set of objects is: \(A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17\} \), clustering solution is: \(\hat{X}: X_1 = \{1, 5, 7\}, X_2 = \{2\}, X_3 = \{3, 6, 10, 13, 17\}, X_4 = \{11, 12\}, X_5 = \{4, 12, 14, 15\}, X_6 = \{8, 16\} \). The following constrains for cluster size are considered: \(\pi_1 = 2, \pi_2 = 3 \). Vector estimate for balance of cluster cardinalities is: \(Q^{bal} (\hat{X}) = (\pi^{-1}(\hat{X}), \pi^0(\hat{X}), \pi^1(\hat{X}), ..., \pi^2(\hat{X})) = (1, 3, 1, 1) \).

The considered approach is close to \(\Upsilon \)-balanced partitioning (clustering solution \(\hat{X} \)) when size of each obtained cluster \(|X_i| \approx \frac{n}{\Upsilon_i(\hat{X})} (\forall X_i \in \hat{X}) \) where \(\Upsilon(\hat{X}) \) (i.e., \(\lambda \)) is the number of obtained clusters.

2.5. Total quality for balance (or imbalance) of cluster forms (i.e., cluster bodies/cover) in a clustering solution \(Q^{form}(\hat{X}) \), for example: majority of clusters of a clustering solution have the same (or about the same) bodies (e.g., spheres/balls, ellipsoids, globes).

Evidently, it is possible to consider a measure of imbalance, analogically as in parameter 2.3.

2.6. Total quality \(Q^{reg}(\hat{X}) \) as constraints for size of cluster regions (limits for interval of cluster element coordinates for each cluster). Let us consider cluster \(X_i = \{x_i^1, ..., x_i^\xi, ..., x_i^\phi\} \). Parameter estimates of each cluster element \(x_i^\xi \) are (vector estimate, parameters \(i = 1, m \) and clusters \(\iota = 1, \lambda \)); \(\overline{x_i^\xi} = (x_i^1, \ldots, x_i^\xi, \ldots, x_i^\phi) \). Constraints are (by each parameter \(\forall i = 1, \phi_i \)) (Fig. 2.23):

\[
| \max_{\xi=1,\phi_i} x_i^\xi - \min_{\xi=1,\phi_i} x_i^\xi | \leq d_i, \quad \forall i = 1, m \quad (each \ coordinate/parameter), \quad \forall i = 1, \lambda \quad (each \ cluster).
\]

The quality parameter corresponds to external requirement (from the viewpoint of applied problem(s), e.g., communication systems).

2.7. The “correlation clustering functional” to maximize the intra-cluster agreement (attraction) and the inter-cluster disagreement (repulsion) has been proposed in [39, 40] \(Q^{corr}(\hat{X}) \). Here, partitioning a fully connected labeled graph is examined (label “+” corresponds to edge between similar vertices, label “−” corresponds to edge between different vertices). The optimization functional \(Q^{corr}(\hat{X}) \) is an integration (i.e., summarization) of two components: (i) the maximizing number of “−” edges between clusters (i.e., minimizing disagreements), (b) the number of “+” edges inside the clusters (i.e., maximizing agreements) (e.g., [13, 39, 10, 119, 145, 364, 662]). Weighted versions of the “correlation clustering functional” are considered as well (e.g., [64, 95, 159]).

2.8. Modularity of clustering solution \(Q^{mod}(\hat{X}) \) is defined as follows (e.g., [226, 457, 459, 461]) (Fig. 2.25). Let \(G = (A, E) \) be an initial graph, where \(A \) is the set of nodes, \(E \) is the set of edges. Clustering solution for graph \(G \) is: \(\hat{X} = \{X_1, ..., X_\lambda\} \). Let \(A^i \) be the set of nodes in cluster \(X_i \) (\(i = 1, \lambda \)), i.e., all corresponding nodes belong to \(A^i \). Let \(\overline{E_i} \) be the set of external edges for cluster \(X_i \) (\(i = 1, \lambda \)), i.e., the only one corresponding node belong to \(A^i \). The definitions are illustrated in Fig. 2.25 for a four cluster solution (cluster \(X_3 \)).

Thus, the following parameters for each cluster \(X_i \) can be used:

(a) \(e_i = \frac{|E_i^i|}{|E|} \) (% edges in module \(i \)),

(b) \(a_i = \frac{|E_i| + |E_i^i|}{|E|} \) (% edges with at least one end in module \(i \)).

Further, general modularity of clustering solution for graph \(G \) is:

\[
Q^{mod}(\hat{X}) = \sum_{i=1}^{\lambda} (e_i - (a_i)^2).
\]

Clustering problem to maximize the modularity is NP-hard [73]. The approach is illustrated by example.

Example 2.12. Let us consider modularity parameters for clustering solution from Fig. 2.25. Here, \(|E| = 26 \). Parameters for clusters are:

1. \(|E_1| = 6, |\overline{E_1}| = 4, e_1 = 0.23, a_1 = 0.38; \)
2. \(|E_2| = 4, |\overline{E_2}| = 4, e_2 = 0.15, a_2 = 0.3; \)
3. \(|E_3| = 3, |\overline{E_3}| = 4, e_3 = 0.115, a_3 = 0.27; \)
4. \(|E_4| = 4, |\overline{E_4}| = 2, e_4 = 0.15, a_4 = 0.23. \)
The resultant modularity parameter for clustering solution is:

\[Q^{mod}(\tilde{X}) = (0.23 - 0.14) + (0.15 - 0.09) + (0.115 - 0.073) + (0.15 - 0.053) = 0.09 + 0.06 + 0.42 + 0.097 = 0.667. \]

3. Quality of structure over clusters (e.g., tree, hierarchy) (if needed) (\(Q^{struc}(\tilde{X})\)). Here a proximity of the obtained structure \(\Gamma(\tilde{X})\) in clustering solution \(\tilde{X}\) and a predefined structure \(\Gamma^0\) is examined:

\[Q^{struc}(\tilde{X}) = \delta(\Gamma(\tilde{X}), \Gamma^0). \]

Clearly, various scales for assessment of the proximities can be used (e.g., qualitative, ordinal, vector-like, multiset) (e.g., [38, 39]).

4. Generally, it is reasonable to consider multicriteria quality of clustering solutions that integrates the above-mentioned clustering characteristics, for example:

\[Q(\tilde{X}) = (Q^{inter}(\tilde{X}), Q^{intra}(\tilde{X}), \pi(\tilde{X})). \]

Evidently, general integrated vector-like estimate for assessment of total quality of clustering solution can be examined, for example:

\[Q(\tilde{X}) = (Q^{inter}(\tilde{X}), \delta(\Gamma(\tilde{X}), \Gamma^0)). \]

As a result, the clustering problem can be formulated as generalized multicriteria optimization problem (i.e., Pareto-efficient solutions have to be searched for), for example:

\[\min Q^{intra}(\tilde{X}), \quad \max Q^{inter}(\tilde{X}), \quad \text{s.t.} \quad Q^{bal}(\tilde{X}) \leq \pi^0, \quad Q^{struc} = \delta(\Gamma(\tilde{X}), \Gamma^0) \leq \delta^0. \]

In the case of multiset estimates, the multiple criteria optimization clustering problem can be considered on the basis of quality lattices (poset-like scales) as follows (i.e., Pareto-efficient solutions over posets have to be searched for):

\[\min Q^{intra}(\tilde{X}), \quad \text{(by lattice, Fig. 2.26a)} \]

\[\max Q^{inter}(\tilde{X}), \quad \text{(by lattice, Fig. 2.26b)} \]

\[\text{s.t.} \quad I^{intra}(X_i) \geq I^0, \quad \forall i = \overline{1,L}, \quad \text{I}^0 \text{ is reference multiset estimate} \forall X_i \text{ (by lattice, Fig. 2.26c)} \]

\[Q^{bal}(\tilde{X}) \leq \pi^0, \quad \pi^0 \text{ is reference multiset estimate (balance by cluster size, by lattice, Fig. 2.26d)} \]

\[Q^{struc} = \delta(\Gamma(\tilde{X}), \Gamma^0) \leq \delta^0, \quad \text{(closeness to predefined general structure } \Gamma^0) \]

Thus, Fig. 2.26 illustrates the integrated “discrete space” (poset) for total multiset based vector quality of clustering solution \(\tilde{X}\).
In the case of “soft” clustering problems, it is necessary to examine measures of solution “softness” (e.g., total parameter for intersection of clusters).

2.2.6. Comparison of two clustering solutions

Comparing methods for clustering solutions (e.g., partitions, hierarchical clustering solutions) have been studied many years (e.g., 31612072932941281331341504601). The main methods are the following:

(a) pair counting methods (i.e., how likely two solutions group an elements pair together, or, separate them in different clusters); (b) set matching, (c) variation of information. Here, the following kinds of clustering solution are considered:

1. basic clustering solution \(\hat{X} \) as a set of clusters \(\hat{X} = \{X_1, \ldots, X_n\} \) (i.e., partition of initial elements \(A = \{1, \ldots, n\} \));

2. clustering and order over the cluster set \(\{X_1, \ldots, X_n\} \):

(a) clustering and linear order over the cluster set, i.e., ranking \(R \),

(b) hierarchy over the cluster set \(\hat{H} = < H, \hat{X} > \), where \(H \) is hierarchy over clusters of basic clustering solution (partition of elements) \(\hat{X} \).

Evidently, general graph over the cluster set can be examined as well.

Generally, two approaches can be examined for comparison of two clustering solutions:

(a) difference by structures (“structural” comparison), e.g., a cost of transformation:

\[\hat{X}_1 \Rightarrow \hat{X}_2, R_1 \Rightarrow R_2, \hat{H}_1 \Rightarrow \hat{H}_2. \]

(b) difference by quality criterion (or criteria), for example:

\[Q' (\hat{X}_1) - Q' (\hat{X}_2), Q'' (R_1) - Q'' (R_2), Q'''' (\hat{H}_1) - Q'''' (\hat{H}_2). \]

Here “structural” comparison is considered. The following comparison cases are examined:

Case 1. Proximity of two clustering solutions \(\hat{X}_1 \) and \(\hat{X}_2 \) (Fig. 2.27): \(D (\hat{X}_1, \hat{X}_2) \).

Case 2. Proximity of two rankings \(R_1 \) and \(R_2 \) (Fig. 2.28): \(D (R_1, R_2) \).

Case 3. Proximity (auxiliary) of two hierarchies \(H_1 \) and \(H_2 \) (over clusters, Fig. 2.29): \(D (H_1, H_2) \).

Case 4. Proximity of two hierarchical clusterings \(\hat{H}_1 \) and \(\hat{H}_2 \) (e.g., vector; Fig. 2.30):

\[D (\hat{H}_1, \hat{H}_2) = (D (H_1, H_2), D (\hat{X}_1, \hat{X}_2)). \]

Fig. 2.31 depicts an illustrative numerical example for 7 elements: \(A = \{1, 2, 3, 4, 5, 6, 7\} \) (“hard” clustering problems).

![Fig. 2.27. Proximity for two clustering solutions](image1)

![Fig. 2.28. Proximity of rankings](image2)

![Fig. 2.29. Proximity of hierarchies](image3)

![Fig. 2.30. Proximity of hierarchical clusterings](image4)

Further, some simplified versions of comparing methods for clusterings solutions are described (for “hard” clustering).

For case 1 (proximity for clustering solutions, i.e., partitions) the following main approaches are considered (e.g., 316111832391281331341504601):

Misclassification Error distance, \(\chi^2 \) distance, Hamming distance, Rand index, Mirkin metric, ordered sets, consensus. Generally, it is possible to use
vector and multiset estimates as well. Let us consider a simplified edit proximity as number of steps for transformation (i.e., cost of transformation):
\[
D(\hat{X}_1 \Rightarrow \hat{X}_2): \hat{X}_1 = \{X_{1,1}, \ldots, X_{1,t_1}, \ldots, X_{1,\lambda_1}\} \Rightarrow \hat{X}_2 = \{X_{2,1}, \ldots, X_{2,t_2}, \ldots, X_{2,\lambda_2}\}.
\]
The value of proximity will be based on ordinal interval [0, n] (i.e., the number of relocated elements in \(\hat{X}_1\)). The following simple algorithm (heuristic) can be used (i.e., \(\hat{X}_1 \Rightarrow \hat{X}_1' = \hat{X}_2\)):

Stage 1. Definition: \(D(\hat{X}_1 \Rightarrow \hat{X}_2) = 0\).
If \(\lambda_1 < \lambda_2\) then extension of solution \(\hat{X}_1\) by \((\lambda_2 - \lambda_1)\) empty clusters.

Stage 2. Calculation of the number of common elements for clusters of the clustering solutions (the number corresponds to cluster proximity) \(X_{1,t_1}, \ t_1 = \overline{1, \lambda_1}\) and \(X_{2,t_2}, \ t_2 = \overline{1, \lambda_2}\) as intersection (as cardinality of the same elements set). As a result, the intersection matrix will be obtained: \(M(\hat{X}_1, \hat{X}_2) = \left|\mu(X_{1,t_1}, X_{2,t_2})\right|\). \(\ t_1 = \overline{1, \lambda_1}, \ t_2 = \overline{1, \lambda_2}\).

Stage 3. Finding the maximum element in matrix \(M\):
\[
\mu^{\text{max}} = \mu(X_{1,t_1}, X_{2,t_2}) = \max_{t_1=1, \lambda_1, t_2=1, \lambda_2} \{\mu(X_{1,t_1}, X_{2,t_2})\}.
\]

Stage 4. Selection the cluster \(X_{1,t_1}\) in solution \(\hat{X}_1\) as cluster of new (transformed from \(\hat{X}_1\)) solution \(\hat{X}_1'\).

Stage 5. Relocation for set \(X_{1,t_1}\) the following elements: \(t \in X_{2,t_2} \setminus \{X_{2,t_2}\}\) (with deletion of the elements from other clusters of solution \(\hat{X}_1\)).

Stage 6. Increasing \(D(\hat{X}_1 \Rightarrow \hat{X}_2)\) by the number of the relocated elements.

Stage 7. Deletion of cluster \(X_{1,t_1}\) and \(X_{2,t_2}\) from the examination and recalculation of matrix \(M\) (i.e., deletion of the corresponding line and column).

Stage 8. If matrix \(M\) is empty (i.e., resultant transformed cluster \(\hat{X}_1'\) is built) then GO TO Stage 9.

Stage 9. Stop.

![Figure 2.31](image)

Example 2.13. The usage of algorithm above for example from Fig. 2.31b is the following.

Two clustering solutions are under examination:
(i) \(\hat{X}_1 = \{X_{1,1}, X_{1,2}, X_{1,3}, X_{1,4}\}, \ X_{1,1} = \{1, 2\}, \ X_{1,2} = \{3, 4\}, \ X_{1,3} = \{5, 6\}, \ X_{1,4} = \{7\}\),
(ii) \(\hat{X}_2 = \{X_{2,1}, X_{2,2}, X_{2,3}, X_{2,4}\}, \ X_{2,1} = \{1\}, \ X_{2,2} = \{2, 3\}, \ X_{2,3} = \{4\}, \ X_{2,4} = \{5, 6, 7\}\).

Table 2.14 presents the number of common elements for cluster pairs. Fig. 2.32 depicts step-by-step building the clustering solution \(\hat{X}_1' = \hat{X}_2\). Thus, \(D(\hat{X}_1 \Rightarrow \hat{X}_1) = 3\) (three elements have been re-located: \(7, 2, 4\)).

\(X_{2,1} = \{1\}\)	\(X_{2,2} = \{2, 3\}\)	\(X_{2,3} = \{4\}\)	\(X_{2,4} = \{5, 6, 7\}\)	
\(X_{1,1} = \{1, 2\}\)	1	1	0	0
\(X_{1,2} = \{3, 4\}\)	0	1	1	0
\(X_{1,3} = \{5, 6\}\)	0	0	0	2
\(X_{1,4} = \{7\}\)	0	0	0	1
For case 2 (proximity for rankings), the following approaches are often considered (e.g., Kendall tau distance \[327\], distances for partial rankings \[11,190\], and vector-like proximity \[372\].

Further, proximity measure as a transformation cost will be used: \(D(R_1, R_2) = D(R_1 \Rightarrow R_2)\) (i.e., the number of element re-allocations while taking into account linear ordering over clusters) (this is similar to Kendall tau distance). Let \(\alpha(i, R_1)\) be the number of layer of element \(i \in A\) in ranking \(R_1\) and \(\alpha(i, R_2)\) be the number of layer of element \(i \in A\) in ranking \(R_2\). Thus, re-location parameter for \(i \in A\) is: \(\Delta(i, R_1 \Rightarrow R_2) = \alpha(i, R_2) - \alpha(i, R_1)\). Generally, the following proximity is obtained (an analogue of Kendall tau distance, ordinal scale \([0, (n - 1)n]\)):

\[D(R_1 \Rightarrow R_2) = \sum_{i \in A} |\Delta(i, R_1 \Rightarrow R_2)| = \sum_{i \in A} |\alpha(i, R_2) - \alpha(i, R_1)|.\]

For vector-like proximity (e.g., \[372,384,392\]), the following parameter is considered: \(\beta^\kappa\) (\(\kappa \in \mathbb{Z}\)) which equals the number of elements with \(\Delta(i, R_1 \Rightarrow R_2) = \kappa\). Then, integrated vector-like proximity is: \(\overline{D}(R_1 \Rightarrow R_2) = (\beta^{-(n-1)}, ..., \beta^{-1}, \beta^0, \beta^1, ..., \beta^{(n-1)})\).

Example 2.14. Example of two rankings from Fig. 2.31 is considered. Table 2.15 contains numbers of re-locations for each element of ranking \(R_1\) to obtain ranking \(R_2\).

Table 2.15. Re-location of elements for transformation \(R_1 \Rightarrow R_2\)

\(i \in A\)	Re-location	\(\Delta(i, R_1 \Rightarrow R_2)\)
1	0	0
2	1	1
3	1	1
4	0	0
5	0	0
6	1	-2
7	1	-1

Thus, the resultant transformation cost (the number of re-location) is: \(D(R_1 \Rightarrow R_2) = 5\). For vector-like proximity \[372,384,392\], the following result is obtained: \(\overline{D}(R_1 \Rightarrow R_2) = (0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 0)\).

For case 3 (proximity for hierarchies, e.g., trees), the following main approaches are in use (e.g., \[69, 215, 384, 392\]): 1. metrics/distances (e.g., alignment distance, top-down distance, bottom-up distance) (e.g., \[305, 190, 571, 591\]), 2. tree edit distances (i.e., correction algorithms) (e.g., \[10, 526, 559, 572\]), 3. largest common subtree, median tree or tree agreement/consensus (e.g., \[12, 20, 603\]), and 4. vector proximity (e.g., \[384, 392\]). For the simplification, the following correction algorithm will be considered as the number of addition and deletion of edges/arscs to transform initial tree (hierarchy) \(H_1\) into the resultant hierarchy (tree) \(H_2\): \(D(H_1 \Rightarrow H_2)\). For example in Fig. 2.31d, \(D(H_1 \Rightarrow H_2) = 1\) (i.e., deletion of the only one arc).

In case 4, it may be reasonable to use an integrated vector-like resultant including two main components: proximity for clustering solution and proximity for hierarchies. For example in Fig. 2.31d, the following initial information is examined: \(\hat{H}_1 = \langle \hat{X}_1, H_1 \rangle\) and \(\hat{H}_2 = \langle \hat{X}_2, H_2 \rangle\). Thus, the following resultant two-component proximity is obtained: \(\overline{D}(\hat{H}_1 \Rightarrow \hat{H}_2) = (D(\hat{X}_1 \Rightarrow \hat{X}_2), D(H_1 \Rightarrow H_2) = (2, 1)\).
2.2.7. Aggregation of objects/clustering solutions

The aggregation problem for \(N \) initial objects is depicted in Fig. 2.33 (e.g., [38,392]):

\[
\{S_1, \ldots, S_\theta, \ldots, S_N\} \Rightarrow S^{agg}.
\]

The basic types of aggregation problems are listed in Table 2.16. Two notes can be pointed out:

1. There are aggregation problems in which the resultant (agreement) structure has another type than the initial structures, for example: (a) trees are aggregated by graph, (b) trees are aggregated by forest, (c) rankings are aggregated by fuzzy ranking, (d) rankings are aggregated by poset (e.g., [97,250,392]).

2. Separation of two-object aggregation problems is based some situations when these problems can have more simple level of algorithmic complexity than many object aggregation problems.

![Fig. 2.33. Aggregation of objects](image)

Table 2.16. Types of aggregation problems

No.	Type of objects	Result	Description	Some) source(s)
1.	Two elements (i.e., two parameters vectors)	1.Aggregated element	1.Median	1.Integration
2.	\(N \) elements (i.e., \(N \) parameters vectors)	1.Aggregated element	1.Centroid/median	1.Integration
3.	1 element and cluster \(X \)	1.Agreement cluster	Addition	2.Integration
4.	2 clusters \(X_1, X_2 \),	1.Agreement cluster	1.Median/agreement/consensus	
5.	\(N \) clusters \(\{X_1, \ldots, X_N\} \)	1.Agreement cluster	1.Median/agreement/consensus	
6.	2 clustering solutions \(\hat{X}_1, \hat{X}_2 \)	1.Aggregated cluster	2.Integration	
7.	\(N \) clustering solutions \(\{\hat{X}_1, \ldots, \hat{X}_N\} \)	Aggregated clustering solution \(\hat{X}^{agg} \)	Median/agreement/consensus	
8.	2 rankings \(R_1, R_2 \)	Aggregated ranking \(R^{agg} \)	Median/agreement/consensus	
9.	\(N \) rankings \(\{R_1, \ldots, R_N\} \)	Aggregated ranking \(R^{agg} \)	Median, agreement/consensus	
10.	2 hierarchies (trees) \(H_1, H_2 \)	Aggregated hierarchy (tree) \(H^{agg} \)	Median/agreement/consensus	
11.	\(N \) hierarchies (trees) \(\{H_1, \ldots, H_N\} \)	Aggregated hierarchy (tree) \(H^{agg} \)	Median/agreement/consensus	
12.	2 hierarchical clustering solutions \(\hat{H}_1, \hat{H}_2 \)	Aggregated hierarchical clustering solution \(\hat{H}^{agg} \)	Median/agreement/consensus (by clustering, by hierarchy)	
13.	\(N \) hierarchical clustering solutions \(\{\hat{H}_1, \ldots, \hat{H}_N\} \)	Aggregated hierarchical clustering solution \(\hat{H}^{agg} \)	Median/agreement/consensus (by clustering, by hierarchy)	
The aggregation problems are formulated as a calculation procedure (e.g., calculation of a median point) or as an optimization problem to find a set/structure which is median/agreement/consensus for the set of initial structures: $S^\text{agg} = \arg \min_{S'} \sum_{\theta=1\ldots N} D(S \Rightarrow S')$. On the other hand, the aggregation problem can be considered on the basis of optimization approach:

Find an aggregation object (set, structure) S^agg for the initial set of objects $\{S_1, \ldots, S_\theta, \ldots, S_N\}$ to obtain maximum/minimum for quality estimates of S^agg while taking into account requirements (as some constraints, e.g., transformation costs) for S^agg.

Here, the problem is (D^0) is a limit for transformation cost:

$$\max_{\forall S^\text{agg}} \mathcal{Q}(S^\text{agg}) \quad \text{s.t.} \quad D(S_\theta \Rightarrow S^\text{agg}) \leq D^0, \quad \theta = 1, \ldots, N.$$

The basic cases for aggregation of N objects are the following:

Case 1. Aggregation of N objects (i.e., points/clusters). Here, calculations of an average object/centroid or a covering object are usually used.

Case 2. Aggregation of N clustering solutions: $\{\hat{X}_1, \ldots, \hat{X}_\theta, \ldots, \hat{X}_N\} \Rightarrow \hat{X}^\text{agg}.$

Case 3. Aggregation of N rankings: $\{R_1, \ldots, R_\theta, \ldots, R_N\} \Rightarrow R^\text{agg}.$

Here the following three methods can be used: (i) median consensus method based on assignment problem (e.g., [135,136]), (ii) heuristic approach (e.g., [41,57,4]), and (iii) method based on multiple choice problem (e.g., [372]).

Case 4. Aggregation of N hierarchies (trees): $\{H_1, \ldots, H_\theta, \ldots, H_N\} \Rightarrow H^\text{agg}.$

The following methods are often considered for trees: (1) maximum common subtree (e.g., [12]), (2) median/agreement tree (e.g., [20,192]), (3) compatible tree (e.g., [261]), and (4) maximum agreement forest (e.g., [97,259]).

Case 5. Aggregation of N hierarchical clustering solutions: $\{\hat{H}_1, \ldots, \hat{H}_\theta, \ldots, \hat{H}_N\} \Rightarrow \hat{H}^\text{agg}.$

Here, a composition of case 2 and case 4 can be considered. This aggregation problem is very prospective for future study.

Mainly (e.g., cases 2, 3, 4, 5), the aggregation problems above belong to class of NP-hard problems (e.g., [135,261]). A simplified illustrative numerical example for case 2 is as follows.

Example 2.15. Three initial clustering solutions for set $A = \{1, 2, 3, 4, 5, 6, 7\}$ are examined:

\begin{itemize}
 \item[(i)] $\hat{X}_1 = \{X_{11}, X_{12}, X_{13}, X_{14}\}$, $X_{11} = \{1, 2\}$, $X_{12} = \{3, 4\}$, $X_{13} = \{5, 6\}$, $X_{14} = \{7\}$ (Fig. 2.31b);
 \item[(ii)] $\hat{X}_2 = \{X_{21}, X_{22}, X_{23}, X_{24}\}$, $X_{21} = \{1\}$, $X_{22} = \{2, 3\}$, $X_{23} = \{4\}$, $X_{24} = \{5, 6, 7\}$ (Fig. 2.31b);
 \item[(iii)] $\hat{X}_3 = \{X_{31}, X_{32}, X_{33}\}$, $X_{31} = \{1, 2\}$, $X_{32} = \{3, 4\}$, $X_{33} = \{5, 6, 7\}$
\end{itemize}

The following aggregation problem is under examination (with constraint for cluster size):

$$\hat{X}^\text{agg} = \arg \min_{2 \leq |\hat{X}| \leq 3} \sum_{\theta=1\ldots N} D(\hat{X}_\theta \Rightarrow \hat{X}).$$

In our problem $(N = 3)$, the number of admissible partitions (i.e., clustering solutions) equals 90 ($C_6^N \times C_7^N$). For the simplified calculation, the following admissible aggregated clustering solution is considered: $\hat{X}^\text{agg} = \{\hat{X}_1^\text{agg}, \hat{X}_2^\text{agg}, \hat{X}_3^\text{agg}\}$. Numbers of common elements for clusters of initial clustering solutions \hat{X}_1, \hat{X}_2, \hat{X}_3 and considered aggregated solution \hat{X}^agg are presented in Table 2.17, Table 2.18, Table 2.19. The transformation costs are (i.e., numbers of re-allocations):

$$D(\hat{X}_1 \Rightarrow \hat{X}^\text{agg}) = 1, \quad D(\hat{X}_2 \Rightarrow \hat{X}^\text{agg}) = 2, \quad D(\hat{X}_3 \Rightarrow \hat{X}^\text{agg}) = 0.$$
Table 2.17. Common elements for clusters of solutions \hat{X}_1, \hat{X}_{agg}

$X_{1,1}^{agg}$	$X_{3,4}^{agg}$	$X_{1,3}^{agg}$
$\{1,2\}$	$\{3,4\}$	$\{5,6,7\}$
2	0	0
0	2	0
0	0	2

Table 2.18. Common elements for clusters of solutions \hat{X}_2, \hat{X}_{agg}

$X_{2,1}^{agg}$	$X_{3,4}^{agg}$	$X_{1,3}^{agg}$
$\{1\}$	$\{3,4\}$	$\{5,6,7\}$
1	0	0
0	1	0
0	1	0

Table 2.19. Common elements for clusters of solutions \hat{X}_3, \hat{X}_{agg}

$X_{3,1}^{agg}$	$X_{1,3}^{agg}$	$X_{1,3}^{agg}$
$\{1,2\}$	$\{3,4\}$	$\{5,6,7\}$
2	0	0
0	2	0
0	0	3

2.3. Basic clustering models and general framework

2.3.1. Basic clustering problems/models

Table 2.20 contains the list of basic types of well-known clustering problems/models: (e.g., [25,22,139,156,179,218,251,275,300,302,321,328,342,345,435,451,509,533,594,623,624]):

1. connectivity models (e.g., hierarchical clustering),
2. centroid models (e.g., k-means algorithms, i.e. exclusive clustering),
3. distribution models (based on statistical distribution),
4. subspace models (e.g., bi-clustering or two-mode clustering while taking into account elements and attributes),
5. graph-based models (e.g., detection of cliques or quasi-cliques/community structures, graph partitioning), etc.

Note, clustering procedures based on combinatorial optimization problems and/or their composition are widely studied [27,267,300,302,437]:

(i) spanning trees based clustering (e.g., [235,244,441,479,492,606,626,660]);
(ii) assignment/location problems based clustering (e.g., [227,323]);
(iii) set covering problem based clustering (e.g., [9,446,525]);
(iv) partitioning problem based clustering (e.g., [134,166,189,328,554,625]) including correlation clustering (e.g., [4,159,345]);
(v) dominant sets/dominating sets based clustering (e.g., [10,263,400,489,633]); and
(vi) clique/community based clustering (e.g., [9,155,170,176,236,340,426,458,459,461,496,539]).

Important contemporary clustering problems are targeted to clustering of complex (e.g., composite, modular, structured) objects, for example:

(a) words/chains/sequence clustering (e.g., in bioinformatics) [188],
(b) trajectory clustering [218,365,400],
(c) data stream clustering [27,247,389],
(d) subspace clustering [9,345,446], and
(e) clustering of structured objects (e.g., trees, graph-based models) [201,421,534,558].

On the other hand, clustering is widely used in complex combinatorial optimization problems, for example:

1. clustering/partitioning of an initial problem for decreasing the problem dimension,
2. clustering as local auxiliary problem(s) (e.g., [32,350,372,389]).
Table 2.20. Basic types of clustering problems/models

No.	Model type	Some sources
I.	Basic problem formulations	146275282355509468630
1.1	Connectivity models (hierarchical/agglomerative clustering)	161276800492299381435
1.2	Centroid models (k-means algorithms, exclusive clustering)	300301302133
1.3	Distribution models (based on statistical distribution)	300302344415
1.4	Subspace models (e.g., bi-clustering or two-mode clustering while taking into account elements and attributes)	171344476491604
1.5	Pattern-based clustering	
1.6	Combinatorial optimization models in clustering:	302235244455479492606
	(i) minimal spanning tree based clustering,	426060
	(ii) partitioning based clustering,	134166189328437
	(iii) correlation clustering,	410159345564
	(iv) detection of communities structures (clique, etc.),	21817030215946149688
	(v) assignment/location based clustering.	227242
1.7	Overlapping clustering	23
1.8	Modularity clustering	1713459401625
1.9	Support vector clustering	531184101
1.10	Spectral clustering models	161254131414
1.11	Symbolic approach in clustering	9863165235234361530
1.12	AI-based clustering (e.g., knowledge bases, heuristics, evolutionary approaches)	14307814234015356
1.13	Clustering based on Variable Neighborhood Search	5445615087
1.14	Neural networks based clustering	1862468319
1.15	Robust clustering	1491881212240310
1.16	Clustering of structured objects	265335
II.	Fuzzy (soft) clustering problems/models	
2.1	Fuzzy clustering	122352873028344440
2.2	Fuzzy k-means clustering	467490
2.3	Kernel-based fuzzy clustering	185180287294
2.4	Fuzzy clustering for symbolic data/categorical data	109118238292
2.5	Clustering based on hesitant fuzzy information	1831290330
III.	Stochastic clustering	
3.1	Probabilistic clustering	62726023474128570
3.2	Probability-based graph partitioning, Markov random works	67181358410653566
3.3	Cross-entropy method for clustering	1533483812520568567
IV.	Dynamic clustering, online clustering, restructuring	
4.1	Dynamic clustering	1884131163816644692
4.2	Dynamic fuzzy clustering	144464180528
4.3	Online clustering	4385492654
4.4	Restructuring in clustering (i.e., changing of clustering)	381392
4.5	Multistage clustering, cluster trajectories	this paper
V.	Very large clustering problems/models	
5.1	Clustering of large data sets	555439552577594650
5.2	K-means clustering for large data sets	289291299
VI.	Multiple clustering, framework-based clustering	
6.1	Multiple clustering, cluster ensembles, aggregation	3281632221245278143
	clustering, consensus clustering	447500597037
6.2	Unified frameworks, parallel clustering, hybrid strategies	1462383521684716270

2.3.2. Systems problems

Generally, the following vital clustering system problems can be pointed out (e.g., 52196360302435, 540539552577594650) (Table 2.21).
Table 2.21. Basic systems problems in clustering

No.	Systems problem	Some source(s)
1.	Formulation/structuring of clustering problem(s)	275, 300, 302, 433, 434, 435, 594
2.	Comparison of models/methods/techniques	427, 501, 557, 650
3.	Selection/design of model/method/technique	117, 209, 541
4.	Evaluation of clustering solution(s)	433, 394, 409, 495, 159
		226, 845, 457, 459, 564, 662
5.	Validation of clustering solution	50, 177, 257, 258, 339, 424, 452
6.	Stability of clustering solution	61, 359, 541, 552
7.	Robustness of clustering solution	110, 6, 191, 188, 124, 236, 810
8.	Cluster editing, cluster graph modification, transformation of clustering solution	64, 365, 661, 147, 157, 254
		500, 539, 540
9.	Identification/selection/assignment of cluster heads (e.g., sensor networks, mobile networks, target tracking)	82, 98, 103, 119, 280, 307, 577, 583
10.	Prospective clustering problems/approaches:	589, 638
10.1	Online clustering, clustering data streams	43, 192, 247, 360, 389
10.2	Multiple clustering, consensus clustering	328, 153, 224, 245, 278, 443
10.3	Hybrid (by methods, by data types) clustering methods	115, 303, 314, 357, 1094, 1166, 576, 584
	composite, multistage/multilevel clustering methods	562, 617, 618, 642
10.4	Expert knowledge based clustering/classification (including expert judgment based clustering)	125, 126, 241, 245, 353, 490
10.5	Multicriteria optimization clustering	156, 197, 368, 392, 451, 666
10.6	Clustering with multi-type elements (each cluster is composed by compatible elements of different types)	this paper
10.7	Clustering with hesitant fuzzy sets data	627, 628, 1089
10.8	Fast clustering methods	218, 170, 302, 457, 459, 461

In addition, the following system stage can be used:

“Modification of clustering process (if needed), for example, by the following ways:” (a) modification of type(s) of element description(s), (b) modification of element parameters/features, (c) modification of element estimates types (or scales), (d) modification of criteria for inter-cluster proximity and intra-cluster proximity, (e) modification of criteria for quality of clustering solution(s), (f) modification of clustering method(s), and (g) searching for additional expert(s).

2.3.3. General framework

Fig. 2.6 depicts an example of a clustering framework for multiple clustering. Another generalized clustering/classification framework (the viewpoint of a simplified information processing morphology) is presented in Fig. 2.34 (an extension of framework in Fig. 2.11):

Stage 1. Collection of initial data.

Stage 2. Analysis of applied situation, problem structuring/formulation: (2.1) selection/generation of features/parameters/criteria, (2.2) definition and description (assessment) of the set of objects/items, (2.3) selection/design of basic clustering model(s).

Stage 3. Preliminary data processing: (3.1) calculation of element proximities (distances), (3.2) definition of very close elements (i.e., definition of a small element proximity/distance), (3.3) definition of basic relation(s) over element set (a basic relation graph(s)), (3.4) revelation of basic preliminary groups of interconnected elements (i.e., some preliminary kernels of clusters).

Stage 4. Basic clustering: (4.1) selection/definition of basic groups of interconnected elements (i.e., some candidates-clusters), (4.2) definition of the basic cluster set, (4.3.) extension of the basic cluster set (within framework of feedback).

Stage 5. Classification (if needed): (5.1) assignment of elements into clusters, (5.2) multiple assignment of elements into clusters.

Stage 6. Aggregation of cluster solutions (i.e., consensus clustering/clustering ensemble) (if needed).
Stage 7. Analysis of clustering/classification results (clustering solution(s)) (e.g., cluster validity).

Here, a special support layer can include the following: 1. additional data, 2. expert(s) and expert(s) knowledge, 3. additional models (e.g., vertex covering problem, assignment/matching problems, multiple criteria sorting/ranking problems, clique/quasi clique problem(s), multiple clique/quasi clique problem(s), median/consensus/agreement problems).

![Diagram of the general framework for clustering/classification](image)

Stage 3: Preliminary processing: proximity/distances, close element pairs, relations over elements, basic groups of close elements (as cluster kernels)

Stage 4: Basic clustering (including definition of basic cluster set(s))

Stage 5: Classification: assignment (multiple assignment) of elements into clusters

Stage 6: Aggregation of clustering solutions

Stage 7: Analysis of results: clustering solution(s)

Support Layer:
1. Additional data
2. Expert(s) and expert(s) knowledge
3. Additional models: vertex covering problem, assignment/matching problems, multiple criteria sorting/ranking problems, clique/quasi clique problem(s), multiple clique/quasi clique problem(s), median/consensus/agreement problems

Note, the following can be used as alternative morphological components:
(i) various problem analysis and formulation approaches (e.g., selection of well-known problem statement(s), design of a new problem formulation(s)), (ii) various element metrics/proximities, (iii) various cluster metrics/proximities, (iv) various item assessment techniques (e.g., usage of statistical data, usage of expert-based techniques), (v) various clustering methods, (v) various clustering solution aggregation methods.

2.3.4. Example of solving morphological scheme

A simplified example of morphological scheme for clustering process presented in Fig. 2.34 (an analogue of composite strategy for multicriteria ranking/sorting problem [387,392]) is the following (Fig. 2.35):

Step 0. Compressed solving framework $S = H \ast P \ast M \ast G \ast Q$:
1. Analysis of situation, problem statement and structuring (i.e., parameters/criteria, scales, etc.), assessment $H = X \ast Y$ (stage 3):
 - (1.1) problem formulation X: classification (“hard”) X_1, classification (“soft”) X_2, clustering (i.e., partitioning) (“hard”) X_3, clustering (i.e., partitioning) (“soft”) X_4, sorting (“hard”) X_5, sorting (“soft”) X_6, a composite problem X_7.
 - (1.2) assessment of objects/items Y: usage of statistical data Y_1, expert based procedures Y_2, statistical data and expert based procedures $Y_3 = Y_1 \& Y_2$.
2. Criteria/proximities and preliminary processing $P = U \ast V$ (stage 3):
 - (2.1) proximity/metric for element pair (i.e., similarity measure) U: Euclidean distance (L_2) U_1, ordinal estimate U_2, multicriteria estimate U_3, interval multiset estimate U_4.
 - (2.2) intra-cluster quality (criterion for intra-cluster “distance”, to minimize) V: maximum of element pair proximity (single link) V_1, maximum of all element pair proximities (all links or average link) V_2.
 - (2.3) criterion for inter-cluster “distance” (to maximize) W: minimum “distance” between clusters W_1, average “distance” between clusters W_2.

3. Clustering method/model M (stage 4): hierarchical clustering M_1, K-means clustering M_2, spanning tree based clustering M_3, graph method based on detection of cliques/quasi-cliques M_4, correlation clustering M_5, composite method (parallel processing) $M_6 = M_3 \& M_4 \& M_5$, composite method (parallel processing) $M_7 = M_2 \& M_4 \& M_5$.

4. Aggregation of clustering solutions G (stage 6): none G_1, median-based solving process G_2, extension of common clustering solution part (i.e., a solution kernel) G_3.

5. Analysis of resultant clustering solution(s) (i.e., cluster validity) Q (stage 7): none Q_1, expert-based process Q_2, special calculation procedure(s) Q_3.

Thus, five illustrative alternative examples of the composite (series-parallel) solving strategies for clustering are the following (Fig. 2.35):

- $S_1 = H_1 \times P_1 \times M_1 \times G_1 \times Q_1 = (X_1 \times Y_2) \times (U_1 \times V_2 \times W_1) \times M_1 \times G_1 \times Q_1$;
- $S_2 = H_1 \times P_2 \times M_1 \times G_1 \times Q_1 = (X_1 \times Y_2) \times (U_2 \times V_1 \times W_2) \times M_1 \times G_1 \times Q_1$;
- $S_3 = H_3 \times P_1 \times M_2 \times G_1 \times Q_1 = (X_7 \times Y_2) \times (U_1 \times V_2 \times W_1) \times M_2 \times G_1 \times Q_1$;
- $S_4 = H_3 \times P_3 \times M_6 \times G_2 \times Q_1 = (X_7 \times Y_2) \times (U_4 \times V_1 \times W_2) \times (M_2 \& M_3 \& M_4) \times G_2 \times Q_1$; and
- $S_5 = H_2 \times P_3 \times M_7 \times G_3 \times Q_2 = (X_3 \times (Y_1 \& Y_2)) \times (U_4 \times V_1 \times W_2) \times (M_2 \& M_3 \& M_5) \times G_3 \times Q_1$.

In Fig. 2.36, a graphical illustration for three composite strategies above is depicted.

Fig. 2.36. Examples of composite solving strategies

2.4. On clustering in large scale data sets/networks

In recent years, the significance of clustering in large-scale data bases and analysis and modeling in large networks has been increased, for example:

(i) clustering of large data sets (e.g., [55, 289, 291, 299, 543, 653, 667]);
(ii) detection of communities in large networks (e.g., [127, 230, 285, 286, 370, 495, 636]);
(iii) detection of communities in mega-scale networks (e.g., [59, 600]);
(iv) tracking evolving communities in large networks (e.g., [280]).

Table 2.22 illustrates some dimensional layers (classification) of data sets/networks.
Table 2.22. Dimensional layers of data sets/networks

No.	Type of studied data sets/networks	Number of objects/network nodes	Examples of source(s)	Some applications
1.	Simplified data sets/networks (e.g., small groups)	~ 10...60	(i) student group, (ii) sport club network, (iii) laboratory group, (iv) Web page structure, (v) product assortment (product variety)	606
2.	Simple data sets/networks	~ 100	(i) university department, (ii) animal network, (iii) big firm department, (iv) department of government organization, (v) network of books/articles (close by topic(s)), (vi) social network of bottlenose dolphins, (vii) supply chain network, (viii) network of software system components, (ix) molecular structures, (x) manufacturing structures	461
3.	Traditional data sets/networks	~ 1 k	(i) citation networks, (ii) university network, (iii) collaboration network, (iv) urban systems, (v) consumers bases, (vi) multiple server computer systems	226
4.	Large data sets/networks	~ 10 k	(i) research society network, (ii) sensor networks, (iii) manufacturing technology networks, (iv) Microarrays	461
5.	Very large data sets/networks	~ 100 k	(i) client bases, (ii) VLSI, (iii) medical patients bases	127
6.	Mega-scale data sets/networks	~ 1 M	(i) university library, (ii) bases of editorial houses, (iii) protein sequence databases	500
7.	Super-scale data sets/networks	~ 10 M	(i) library networks, (ii) Internet-based shops, (iii) protein sequence databases	500
8.	To-day’s/prospective Web-based data sets/networks	~ 100 M ...1 B	(i) World Wide Web, (ii) social networks (e.g., Twitter, Facebook)	

2.5. Note on multidimensional scaling

Many decades, multidimensional scaling approach is widely used in many domains (e.g., 70, 86, 143, 150, 580, 645). Here, an initial space of object parameters is transformed and simplified (by increasing its dimension, on the basis of optimization). As a result, obtained clusters are more “good”. Table 2.23 contains some basic directions in multidimensional scaling researches.
No.	Approaches, models	Source(s)
1.	Basic methods in multidimensional scaling:	
1.1	Multidimensional scaling, general	70, 86, 143, 150, 240, 349, 580
1.2	Nonmetric multidimensional scaling	284, 350
1.3	Least-squares multidimensional scaling	242
1.4	Application of convex analysis to multidimensional scaling	366
1.5	Global optimization in multidimensional scaling	241, 241
1.6	Probabilistic multidimensional scaling	663
1.7	Genetic algorithms, evolutionary methods	575
1.8	Multigrid multidimensional scaling	77
1.9	Configural synthesis in multidimensional scaling	239
1.10	Functional approach to data structure	89
1.11	Convergence of methods in multidimensional scaling	367
1.12	Distributed multidimensional scaling	141
2.	Multidimensional clustering:	
2.1	Multidimensional clustering algorithms	451
2.2	Multidimensional scaling and data clustering:	
2.2.1	Multidimensional scaling and data clustering	283
2.2.2	Multidimensional scaling: tree-fitting, and clustering	545
2.3	Multidimensional data clustering utilizing hybrid search strategies	298
3.	Contemporary applications in CS:	
3.1	Multidimensional clustering in data mining	55
3.2	Graph drawing by multidimensional scaling	337
3.3	Visualization	619
3.4	Multidimensional scaling in communication, sensor networks (node localization, location, positioning, etc.)	116, 141, 362
3. Basic Structured Clustering Combinatorial Schemes

3.1. Auxiliary problems

Table 3.1 contains a list of main auxiliary problems for combinatorial clustering methods/procedures.

Table 3.1. Auxiliary problems

No.	Problem	Clustering model(s)/stage(s)	Solving schemes	Some source(s)
1.	Transformation of scales	Data processing	1. Calculation	71198124387392
			2. Expert judgment	685518666
	Calculation of proximity matrix	Main clustering schemes	1. Direct calculation	485518666
			2. Calculation with scale transformation	485518666
3.	Multicriteria ranking/sorting	1. Data processing	1. Utility function	485518666
		2. Clustering	2. Pareto approach	485518666
			3. Outranking technique	485518666
			4. Expert judgment, etc.	485518666
4.	Minimum spanning tree	Graph-based clustering	1. Kruskal’s algorithms	10139174217218
			2. Boruvka’s algorithms	599606493620639
5.	Knapsack-like problems	k-means clustering	1. Dynamic programing	174218295325420
	(basic problem, multiple choice problem, multicriteria problems)	restructuring, (e.g., FPTAS)	2. Approximation	523
			3. Heuristics	523
6.	Assignment problems	k-means clustering	1. Fast algorithms	167999174217218
	(basic problem, generalized problem, multicriteria problem)	clustering	2. Heuristics	292323351392396
			3. Enumerative methods	485438194411952
7.	Covering problems	Set covering based clustering	1. Enumerative methods	91446525
8.	Dominating sets problem	Dominating set based clustering	2. Heuristics	101263400189663
9.	Partitioning problems:		2. Heuristics	101263400189663
9.1	Graph partitioning	Partitioning based clustering	1. Approximation	1341166189328552
			2. Heuristics	625
9.2	Graph partitioning	Correlation clustering	1. Enumerative methods	1333491401110
			2. Heuristics	1593455641662
10.	Communities detection:	Clique based clustering	1. Enumerative methods	281152176174218
			2. Heuristics	2343809340126
10.1	Detection of clique/quasi-clique	Clique based clustering	2. Heuristics	2343809340126
			2. Heuristics	7226371457458
10.2	Detection of network communities	Communities detection	1. Enumerative methods	459460466178197
			2. Heuristics	459460466178197
13.	Finding agreement/median/consensus for:	Consensus clustering	1. Approximation	281441107261283
13.1	Partitions		2. Heuristics	443477560579
13.2	Rankings		2. Heuristics	471351136392374
13.3	Trees		2. Heuristics	1220192603
14.	Morphological clique problem	Clustering of multi-type objects	1. Heuristic	192872874386392
			2. Enumerative methods	192872874386392

Fig. 3.1 depicts main stages for processing of initial data:
1. Collection of initial information, i.e., set of objects $A = \{A_1, ..., A_i, ..., A_n\}$, set of parameters $C = \{C_1, ..., C_i, ..., C_m\}$, estimates of objects upon parameters $x_i = (x_{i,1}, ..., x_{i,i}, ..., x_{i,m})$ ($i = 1, n$).
2. Calculation of distance matrix $Z = ||z_{1,2}||$ ($l_1 = 1, n$, $l_2 = 1, n$); (usually: complexity estimate equals $O(m \times n^2)$).
3. Transformation of distance matrix into a spanning graph (if needed):
Fig. 3.1. Preliminary data processing

Collection of information from databases, engineering/computing experiments, expert judgment	Basic data:	Calculation of distance/proximity matrix	Building of spanning graph		
	1.Objects	$A = \{A_1, ..., A_n\}$	$G = (A, \Gamma)$; (usually: complexity estimate equals $O(n^2)$).		
	2.Parameters	$C = \{C_1, ..., C_m\}$	$Z =	z_{i_1,i_2}	$
	3.Estimates	$(\forall A_i) x_i = (x_{i,1}, ..., x_{i,m})$	$Z =	z_{i_1,i_2}	$

Procedures for transformation of scales (e.g., transformation of ordinal scale into ordinal scale, transformation of vector-like scale into ordinal scale, transformation of vector scale into multiset based scale) can be useful for processing of proximity matrix and for design of covering graph (to obtain a simple covering graph, e.g., by the use of thresholds for edge/arcs estimates/weights). On the other hand, transformation of vector-like estimates into ordinal estimates can be based on multicriteria ranking (sorting problem).

Minimum spanning tree problem is an important part of many effective solving schemes for many combinatorial optimization problems (e.g., [139,218]): (a) polynomial approximation of initial graph by tree, (b) effective solving a combinatorial problem over the obtained tree. Here, several well-known algorithms for design of minimum spanning tree can be used, for example: Borovka’s algorithm, Prim’s algorithm, Kruskal’s algorithm [10,217,218,139,493,639]. Complexity estimate of the algorithms is: $O(p \log n)$ (or less [639]) (p is the number of edges, n is the number of vertices).

Other auxiliary combinatorial problems (Table 3.1) are more complicated (i.e., they belong to class of NP-hard problems). Only in some simple cases polynomial algorithms can be used:

(i) polynomial algorithms for basic assignment problem (e.g., [218,351]);
(ii) polynomial approximate solving schemes for basic knapsack problem and multiple choice problem (e.g., [218,295,325,420,523]);
(iii) polynomial algorithms for some network partition problems (e.g., cores decomposition of networks [45]);
(iv) polynomial approximate solving schemes for simple cases of partitioning problems, network community detection problems, covering problems.

Thus, it is necessary to use polynomial heuristics or enumerative methods for the above-mentioned auxiliary combinatorial problems (i.e., generalized assignment problem, clique problems, morphological clique problem, dominating set problem, covering problems, graph partitioning problems, finding agreement/median/consensus problems, multicriteria combinatorial problems). In the case of fast clustering schemes, fast heuristics (e.g., some analogues of greedy algorithms) have to be used for auxiliary combinatorial problems.

Some basic clustering models (e.g., hierarchical clustering, k-means clustering) are often used as auxiliary problems of multi-stage clustering schemes (e.g., for preliminary definition of a cluster set or cluster centroids).

The significance of balanced clustering problems (by cluster size) has been increased in many domains (e.g., communication systems). As a result, balanced partition of tree problem can be useful components of contemporary clustering schemes. Generally, the problem of k-balanced partitioning a tree is NP-hard (k is the number of elements in each cluster of clustering solution) [193]. Here, it may be reasonable to use k-balanced agglomerative algorithm over a tree (i.e., under restriction on cluster sizes in obtained solution).

3.2. Hierarchical clustering

Hierarchical clustering is widely used in many domains (e.g., [146,232,275,300,302,355,375,468,509,630]). The approach consists in agglomerative (i.e., hierarchical, “Bottom-Up”) scheme (e.g., [275,300,302,375]):

1. Calculate the proximity (distance) matrix between elements.
2. Start with n clusters containing one element.
3. Find the most similar pair of clusters from the proximity matrix and merge them into a single cluster
4. Update the proximity matrix (reduce its order by one, by replacing the individual clusters with the merged clusters)
5. Repeat steps 3, 4 until a single cluster is obtained (i.e., \(n - 1 \) times).

3.2.1. Basic agglomerative algorithm

The basic agglomerative algorithm (algorithm 1) is the following (e.g., [375, 392]):

Stage 1. Calculate the matrix of element pair \(\forall (A(i_1), A(i_2)), \ A(i_1) \in A, \ A(i_2) \in A, \ i_1 \neq i_2 \) “distances” (a simple case, metric \(l_2 \)):

\[
z_{i_1, i_2} = \sqrt{\sum_{j=1}^{m} (x_{i_1, j} - x_{i_2, j})^2}.
\]

Stage 2. Searching for the minimum element pair “distance” \(z^{\text{min}} = \min_{i_1, i_2 \in \{1, ..., n\}} \{z_{i_1, i_2}\} \), integration of the corresponding two elements into a resultant “integrated” element, extension of the corresponding cluster.

Stage 3. If all elements are processed then GO TO Stage 5.

Stage 4. Recalculate the matrix of pair “distances” \(Z \) (initial element set is decreased by 1 element) and Go To Stage 2.

Stage 5. Stop.

As result, a tree-like structure for the element pair integration process (Bottom-Up) is obtained (one element pair integration at each integration step). A basic simplified procedure for aggregation of items (aggregation as average values) is as follows (\(J_{i_1, i_2} = A_{i_1} \& A_{i_2} \)):

\[
\forall j = 1, m \quad x_{J_{i_1, i_2}, j} = \frac{x_{i_1, j} + x_{i_2, j}}{2}.
\]

Complexity estimates for the above-mentioned version hierarchical clustering algorithm (by stages) is presented in Table 3.2.

Stage	Description	Complexity estimate (running time)
Stage 1	Calculate the distance matrix \(Z \)	\(O(n^2) \)
Stage 2	Searching for the minimum element pair “distance”, extension of the corresponding cluster	\(O(n^2) \)
Stage 3	Checking the condition for stopping (all elements are processed)	\(O(n) \)
Stage 4	Recalculate the “distance” matrix \(Z \)	\(O(n^2) \)
Stage 5	Stopping	\(O(1) \)

Here there exists a computing cycle (stages 2, 3, 4) that can contain \((n - 1)\) steps. Thus, the general complexity (running time) of this hierarchical clustering algorithm equals \(O(n^3) \). Generally, hierarchical clustering methods have the following problems: (a) sensitivity to noise and outliers, (b) difficulty handling different sized clusters and convex shapes, and (c) breaking large clusters.

3.2.2. Balancing by cluster size

Now let us consider a modified version of hierarchical clustering with a special requirement to cluster size (as balancing of cluster sizes) to obtain about the same (close) cluster sizes. Let \(B = \{B_1, ..., B_{i}, ..., B_{\kappa}\} \) be the obtained set of clusters. Let \(\alpha_i = |B_i| \ (i = 1, \kappa) \) be the size (i.e., number of elements) for cluster \(B_i \).

Thus for each cluster the following constraints are considered: \(\alpha' \leq \alpha_i \leq \alpha'' \). For example: \(\alpha' = 3 \), \(\alpha'' = 4 \). Evidently, one cluster of the obtained cluster set can contain less elements (i.e., \(1, 2, ..., (\alpha' - 1) \)). Generally, the above-mentioned requirement leads to balanced clustering solution by cluster size. This is
significant in many applications (e.g., local areas in communication networks, student teams in educational process). Our modified balanced by cluster size hierarchical clustering algorithm is:

Stage 1. Calculate the matrix of element pair \(\forall(A(i_1), A(i_2)), A(i_1) \in A, A(i_2) \in A, i_1 \neq i_2 \) “distances” (a simple case, metric \(l_2 \)):

\[
z_{i_1i_2} = \sqrt{\sum_{j=1}^{m} (x_{i_1,j} - x_{i_2,j})^2}.
\]

Stage 2. Searching for the minimum element pair “distance” \(z^{\text{min}} = \min_{i_1, i_2 \in \{1, \ldots, n\}} \{z_{i_1i_2}\} \), integration of the corresponding two elements into a resultant “integrated” element, extension of the corresponding cluster.

Stage 3. Analysis of the obtained extended cluster \(B \), by new size \(\alpha_i \). If \(\alpha_i = \alpha'' \) then deleting the cluster and its elements for the future processing (as a part of the resultant solution).

Stage 4. If all elements are processed than GO TO Stage 6.

Stage 5. Recalculate the matrix of pair “distances” \(Z \) (initial element set is decreased by 1 element) and Go To Stage 2.

Stage 6. The other elements are organized as additional separated clusters (if needed). Stop.

Complexity estimates for the above-mentioned version hierarchical clustering algorithm (by stages) is presented in Table 3.3.

Stage	Description	Complexity estimate (running time)
Stage 1	Calculate distance matrix \(Z \)	\(O(n^2) \)
Stage 2	Searching for the minimum element pair “distance”, integration of the corresponding element pair, extension of the corresponding cluster	\(O(n^2) \)
Stage 3	Checking the condition for stopping (all elements are processed)	\(O(n) \)
Stage 4	Analysis of the obtained cluster by cluster size	\(O(1) \)
Stage 5	Recalculate the “distance” matrix \(Z \)	\(O(n^2) \)
Stage 6	Stopping	\(O(1) \)

Here there exists a computing cycle (stages 2,3,4,5) that can contain \((n - 1) \) steps. Thus, the general complexity (running time) of this hierarchical clustering algorithm equals \(O(n^3) \). Note the average complexity estimate is less.

Example 3.1. A numerical example of tree with weights of edges (i.e., proximity between element pairs) is presented in Fig. 3.2: tree \(T = (A, E) \), \(A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\} \). The constraint for cluster size is: \(\leq 3 \). Table 3.4. contains the corresponding proximity matrix, i.e., weights of edges (a very large proximity is denoted by symbol “⋆”, proximity is symmetric).
Table 3.4. Proximities for tree-like example (edge \((i_1, i_2)\))

\(i_1\)	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1.5	1.7	0.5	0.2	*	*	*	*	*	*	*	*	*
2	*	*	*	0.1	0.6	*	*	*	*	*	*	*	*
3	*	*	*	3.1	1.0	0.9	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*	*	*	*	*	*	*
5	*	*	*	*	*	2.5	2.1	*	*	*	*	*	*
6	*	*	*	*	*	*	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*	*	*	*	*	*	*
8	*	*	*	0.3	0.4	*	*	*	*	*	*	*	*
9	*	*	*	*	*	*	*	*	*	*	*	*	*
10	*	*	*	*	*	*	*	*	*	*	*	*	*
11	*	*	*	*	*	*	*	*	*	*	*	*	*
12	*	*	*	*	*	*	*	*	*	*	*	*	*
13	*	*	*	*	*	*	*	*	*	*	*	*	*

In the considered case (i.e., tree), proximity information can be presented as a list of \((n-1)\) components: number of vertex, number of “son”-vertex, weight of the corresponding edge (Table 3.5).

Table 3.5. Initial list if proximities

Vertex \(i_1\)	Vertex \(i_2\) ("son" of \(i_1\))	Weight of edge \((i_1, i_2)\)
1	2	1.5
1	3	1.7
1	4	0.5
1	5	0.2
2	6	0.1
2	7	0.6
3	8	3.1
3	9	1.0
3	10	0.9
5	11	2.5
5	12	2.1
8	13	0.3
8	14	0.4

In the example, proximity between element \(x\) and cluster \(Y\) (or integrated element) \(D_{min}(x, Y)\) is used (case 2 from previous section 2). The steps of agglomerative algorithms to obtain the balanced clustering (cluster size is \(\leq 3\)) are the following:

Step 1. Integration of elements 2 and 6 into \(J(2, 6)\). As a result, Table 3.6 is obtained.

Table 3.6. List of proximities after step 1

Vertex \(i_1\)	Vertex \(i_2\) ("son" of \(i_1\))	Weight of edge \((i_1, i_2)\)
1	\(J(2, 6)\)	1.5
1	3	1.7
1	4	0.5
1	5	0.2
\(J(2, 6)\)	7	0.6
3	8	3.1
3	9	1.0
3	10	0.9
5	11	2.5
5	12	2.1
8	13	0.3
8	14	0.4
Step 2. Integration of elements 1 and 5 into $J(1, 5)$. As a result, Table 3.7 is obtained.

Vertex i_1	Vertex i_2 ("son" of i_1)	Weight of edge (i_1, i_2)
$J(1, 5)$	$J(2, 6)$	1.5
$J(1, 5)$	3	1.7
$J(1, 5)$	4	0.5
$J(2, 6)$	7	0.6
3	8	3.1
3	9	1.0
3	10	0.9
$J(1, 5)$	11	2.5
$J(1, 5)$	12	2.1
8	13	0.3
8	14	0.4

Step 3. Integration of elements 8 and 13 into $J(8, 13)$. As a result, Table 3.8 is obtained.

Vertex i_1	Vertex i_2 ("son" of i_1)	Weight of edge (i_1, i_2)
$J(1, 5)$	$J(2, 6)$	1.5
$J(1, 5)$	3	1.7
$J(1, 5)$	4	0.5
$J(2, 6)$	7	0.6
3	$J(8, 13)$	3.1
3	9	1.0
3	10	0.9
$J(1, 5)$	11	2.5
$J(1, 5)$	12	2.1
$J(8, 13)$	14	0.4

Step 4. Integration of elements $J(8, 13)$ and 14 into $J(8, 13, 14)$. Thus, cluster 1 is designed $X_1 = \{8, 13, 14\}$. The corresponding elements (i.e., $J(8, 13), 14$) can be deleted from the next analysis. As a result, Table 3.9 is obtained.

Vertex i_1	Vertex i_2 ("son" of i_1)	Weight of edge (i_1, i_2)
$J(1, 5)$	$J(2, 6)$	1.5
$J(1, 5)$	3	1.7
$J(1, 5)$	4	0.5
$J(2, 6)$	7	0.6
3	9	1.0
3	10	0.9
$J(1, 5)$	11	2.5
$J(1, 5)$	12	2.1

Step 5. Integration of elements $J(1, 5)$ and 4 into $J(1, 4, 5)$. Thus, cluster 2 is designed $X_2 = \{1, 4, 5\}$. The corresponding elements (i.e., $J(1, 5), 4$) can be deleted from the next analysis. As a result, Table 3.10 is obtained.
Table 3.10. List of proximities after step 5

Vertex i_1	Vertex i_2 ("son" of i_1)	Weight of edge (i_1, i_2)
$J(2, 6)$	7	0.6
3	9	1.0
3	10	0.9

Step 6. Integration of elements $J(2, 6)$ and 7 into $J(2, 6, 7)$. Thus, cluster 3 is designed $X_3 = \{2, 6, 7\}$. The corresponding elements (i.e., $J(2, 6), 7$) can be deleted from the next analysis. As a result, Table 3.11 is obtained.

Table 3.11. List of proximities after step 6

Vertex i_1	Vertex i_2 ("son" of i_1)	Weight of edge (i_1, i_2)
3	9	1.0
3	10	0.9

Step 7. Integration of elements 3 and 10 into $J(3, 10)$. As a result, Table 3.12 is obtained.

Table 3.12. List of proximities after step 7

Vertex i_1	Vertex i_2 ("son" of i_1)	Weight of edge (i_1, i_2)
$J(3, 10)$	9	1.0

Step 8. Integration of elements $J(3, 10)$ and 9 into $J(3, 9, 10)$. Thus, cluster 4 is designed $X_4 = \{3, 9, 10\}$. The corresponding elements (i.e., $J(3, 10), 9$) can be deleted from the next analysis.

Two separated elements 11 and 12 can be organized as two clusters: $X_5 = \{11\}$ and $X_6 = \{12\}$.

3.2.3. Improvements of hierarchical clustering scheme

First, let us point out some properties of the considered clustering process as follows:

1. The matrix of element pair proximity can contain several “minimal” elements. Thus there are problems as follows: (i) selection of the best unit pair for integration; (ii) possible integration of several unit pair at each algorithm stage.

2. Computing the matrix of element pair distances often does not correspond to the problem context and it is reasonable to consider a “softer” approach for computing element pair proximity.

3. The obtained structure of the clustering process is a tree. Often the clustering problem is used to get a system structure that corresponds to the above-mentioned clustering process (e.g., evolution trees, system architecture). Thus, it is often reasonable to organize the clustering process as a hierarchy, e.g., for modular systems in which the same modules can be integrated into different system components/parts.

Fig. 3.3 illustrates concurrent integration of element pairs at the same step of the algorithm when some elements can be integrated into different system components parts, i.e., obtaining a hierarchical system structure (common modules/parts, e.g., 3 and 4). In this case, obtained clusters can have intersections (Fig. 3.4).

Fig. 3.3. Illustration for hierarchy

Fig. 3.4. Clusters for Step 2 (Fig. 3.2)
Now, let us describe some possible algorithm improvements.

Improvement 1 (algorithm 2):

Stage 1. Computing an ordinal distance/proximity (0 corresponds to equal or the more similar elements). Here it is possible to compute the pair distance/proximity via the previous approach and mapping the pair distance to the ordinal scale.

Stage 2. Revelation of the smallest pair distance and integration of the corresponding elements.

Note 1. It is possible to reveal several close element pairs and execution several pair integration.

Note 2. It is possible to include the same element into different integrated pairs.

Stage 3. The stage corresponds to stage 3 in algorithm 1.

Here, a hierarchical structure for the element pair integration (Bottom-Up) is obtained (several element pair integration at each integration step). The complexity of the problem may consist in revelation of many subcliques (in graph over elements and their proximity). In the process of computing the ordinal proximity it is reasonable to use a limited number of element pairs for each level of the proximity ordinal scale. As a result, the limited number of integrated element pairs (or complete subgraphs or cliques) will be revealed at each integration stage. This provides polynomial complexity of the algorithm (number of operations, volume of required memory) \(O(m n^2) \).

Improvement 2 (algorithm 3): This algorithm is close to algorithm 2, but the computing process for the ordinal element pairs proximity is based on multicriteria analysis, e.g., Pareto-approach or outranking technique (i.e., Electre-like methods). Complexity of the algorithm is \(O(m n^4) \).

The algorithms 2 and 3 implement the following trend:

from tree-like structure (of clustering process) to hierarchy.

An analysis of obtained clique(s) can be included into the algorithms as well.

3.3. K-means clustering

K-means clustering approach is widely used [161,276,300,302,299,318,435]. The basic simplified version of the algorithm is:

Stage 1. Select \(K \) points as initial centroids (e.g., mean points) (e.g., selection is based on random process).

Stage 2. Cycle by all \(n \) points:

(2.1) Form \(K \) clusters by assigning all points to the closest centroid.

(2.2) Recalculate the centroid of each cluster.

(2.3) If all points are assigned GO TO stage 3.

(2.4) GO TO (2.1).

Stage 3. Stop.

Complexity estimates for \(K \)-mean clustering algorithm (by stages) is presented in Table 3.13.

Stage	Description	Complexity estimate (running time)
Stage 1	Selection of \(K \) centroids	\(O(K) \)
Stage 2.2	Assignment of all \(n \) points to \(K \) centroids (by \(m \) attributes)	\(O(n \times K \times m) \)
Stage 2.2	Recalculation of the centroids (for \(K \) clusters)	\(O(K \times n \times m) \)
Stage 2.3	Checking the condition for stopping (all elements are processed)	\(O(1) \)
Stage 3	Stopping	\(O(1) \)

Thus, the general complexity of this algorithm equals \(O(K \times n \times m) \).
This approach has some problems when initial object set contains "outlier"-like point(s). (Fig. 2.14). A general framework of k-means clustering is shown in Fig. 3.5.

![Fig. 3.5. General framework of k-means clustering process](image)

3.4. Clustering as assignment

Generally, the k-means clustering approaches involve a stage to assignment the items to preliminary defined clusters. Thus assignment problems can be used at this stage and, as a result, special assignment based clustering methods are obtained (e.g., [218, 249]).

In basic assignment problem (bipartite matching problem) there are the following: items/elements \{1, ..., i, ..., n\}, agents \{1, ..., j, ..., \mu\}, positive \(c_{ij}\) profit for assignment of item \(i\) to agent \(j\), binary variable \(x_{ij}\) equals 1 if item \(i\) is assigned to agent \(j\) and 0 otherwise. The basic assignment problem is (e.g., [218]):

\[
\max \sum_{j=1}^{\mu} \sum_{i=1}^{n} c_{ij}x_{ij} \quad s.t. \quad \sum_{i=1}^{n} a_{ij}x_{ij} \leq 1, \quad j = \Gamma, \mu, \quad \sum_{j=1}^{\mu} x_{ij} \leq 1, \quad i = \Gamma, n, \quad x_{ij} \in \{0, 1\}, \quad i = \Gamma, n, \quad j = \Gamma, \mu.
\]

Here each item has to be assigned to the only one cluster (agent). There exist several well-known polynomial algorithms for the problem above (e.g., [183, 195, 167, 218, 351]).

The generalized assignment problem GAP can be described as a multiple knapsack (or multiple agents) problem. Analogically, given \(n\) items/elements \(i = \Gamma, n\) and \(\mu\) knapsacks (agents) \(j = \Gamma, \mu\). The following notations are used: \(c_{ij}\) is a profit of item \(i\) if it is assigned to knapsack (agent), \(a_{ij}\) is a weight (e.g., required resource) of item \(i\) if it assigned to knapsack (agent) \(j\), \(b_j\) is a capacity (volume of resource) of knapsack (agent) \(j\), binary variable \(x_{ij}\) equals 1 if item \(i\) is assigned to agent \(j\) and 0 otherwise. Clearly, the knapsack (agent) capacity can be considered as multiple recourse (i.e., a vector-like parameter) as well (e.g., [219]). The problem is [218, 420]:

 Assign each item to exactly one knapsack so as to maximize the total profit assigned, without assigning to any knapsack a total weight greater than its capacity.

The basic problem statement is:

\[
\max \sum_{j=1}^{\mu} \sum_{i=1}^{n} c_{ij}x_{ij} \quad s.t. \quad \sum_{i=1}^{n} a_{ij}x_{ij} \leq b_j, \quad j = \Gamma, \mu, \quad \sum_{j=1}^{\mu} x_{ij} \leq 1, \quad i = \Gamma, n, \quad x_{ij} \in \{0, 1\}, \quad i = \Gamma, n, \quad j = \Gamma, \mu.
\]

The problem is known to be NP-hard (e.g., [524]). Evidently, the objective function can be minimized as well (e.g., minimum cost assignment of a set of items/objects to a set of agents). In the case of \(a_{ij} = 1 \forall i, \forall j\), each agent has an integer restriction of assigned elements as restriction for cluster size). In multiple assignment problem constraint \(\sum_{j=1}^{\mu} x_{ij} \leq 1 (i = \Gamma, n)\) is replaced by \(\sum_{j=1}^{\mu} x_{ij} \leq \lambda_i (i = \Gamma, n)\) where \(\lambda_i\) is restriction for the number of admissible assignment to different agents for elements \(i\). In applications, knapsack/agents can be considered as service centers (e.g., access points in communication networks) which have limited service resource(s) (e.g., [296, 397]).

Generally, the following kinds of algorithms have been used for basic generalized assignment problems (e.g., [87, 325, 420]): (i) exact algorithms as enumerative methods (e.g., branch-and-bound algorithms)
(e.g., [503,515,531]), (ii) relaxation methods, reduction algorithms (e.g., relaxations to linear programming models, relaxation heuristics) (e.g., [219,308,581]), (iii) approximation schemes (e.g., [130,151,200,466,547]), (iv) various heuristics (e.g., [253,455]) including greedy algorithms (e.g., [455,510]), set partitioning heuristic (e.g., [88]) genetic algorithms (e.g., [123]), tabu search algorithms (e.g., [162,281]). Fig. 3.6 illustrates the generalized assignment problem.

In multiple criteria generalized assignment problem, vector-like profit is considered for each item \(i \) (e.g., [396,392,532,655]): \(c_{ij} = (c_{ij}^1,...,c_{ij}^l,...,c_{ij}^k) \) (criteria: \(\{C_1,...,C_l,...,C_k\} \)).

A simplified multicriteria problem statement can be examined as follows:

\[
\begin{align*}
\max & \sum_{j=1}^{\mu} \sum_{i=1}^{n} c_{ij}^l x_{ij}, \ldots, \max & \sum_{j=1}^{\mu} \sum_{i=1}^{n} c_{ij}^l x_{ij}, \ldots, \max & \sum_{j=1}^{\mu} \sum_{i=1}^{n} c_{ij}^k x_{ij}, \quad l = 1, k \\
\text{s.t.} & & \sum_{i=1}^{n} a_{ij} x_{ij} \leq b_j, \quad j = 1, \mu, \quad \sum_{j=1}^{\mu} x_{ij} \leq 1, \quad i = 1, n, \quad x_{ij} \in \{0,1\}, \quad i = 1, n, \quad j = 1, \mu.
\end{align*}
\]

Here it is reasonable to search for Pareto-efficient solutions.

Example 3.2. A modified numerical example for connection of end-users and access points in a wireless telecommunication network is based on the example from [396,392,532,655]. Four access points are considered as cluster centroids and 14 end-users are examined as initial objects (example from [396] is compressed, Fig. 3.7).

Let \(\{1,...,i,...,n\} \) be a set of users (here: 14) and \(\{1,...,j,...,\mu\} \) be a set of access points (here: 4). Each user \(i \) is described by parameters (a compressed set of parameters): (i) coordinates \((x_i,y_i,x_i) \); (ii) parameter corresponding to required frequency bandwidth (e.g., 1 Mbit/s ... 10 Mbit/s) \(f_i \); (iii)
maximal possible number of access points for connection $\kappa_i \leq \mu$ (here $\kappa_i = 1 \forall i$, i.e., each user is assigned to the only one access point/cluster); (iv) required reliability of information transmission r_i. Note, in multi-assignment problem $\kappa_i \geq 1$.

Each access point is described by parameters (a compressed set of parameters): (a) coordinates of access point (x_j, y_j, z_j), (b) parameter corresponding to maximal possible traffic (i.e., maximum of possible bandwidth) f_j, (c) maximal possible number of users under service k_j, (d) reliability of channel for data transmission r_j, (e) admissible proximity (distance) d_j. Table 3.14 and Table 3.15 contains parameters estimates of the access points and users.

Table 3.14. Parameter estimates of access points

Access point j	Coordinates: x_j y_j z_j	Bandwidth f_j	Number of users n_j	Reliability r_j	Admissible distance d_j
1	50 157 10	30	4	10	10
2	150 165 10	30	5	15	10
3	72 102 10	42	6	10	6
4	140 112 10	32	5	8	9

Table 3.15. Parameter estimates of end users

User i	Coordinates: x_j y_j z_j	Bandwidth f_i	Reliability r_i
1	30 165 5	10	5
2	58 174 5	5	9
3	88 156 0	6	6
4	110 169 5	7	5
5	145 181 3	5	4
6	170 161 5	7	4
7	52 134 5	6	8
8	86 134 3	6	7
9	120 140 6	4	6
10	150 136 3	6	7
11	175 125 1	8	5
12	27 109 7	8	5
13	55 105 2	7	10
14	98 89 3	10	10

As a result, each pair “user-access point” can be described by the following parameters (a compressed set of parameters): (1) proximity (e.g., Euclidean distance) d_{ij}, (2) level of reliability r_{ij}, (3) parameter of using bandwidth f_{ij}.

Clearly, Euclidean distances between users and access points $\{d_{ij}\}$ can be calculated on the basis coordinates from Table 3.14 and Table 3.15. Thus, the following parameter vector is obtained $\vec{c}_{ij} = (d_{ij}, r_{ij}, f_{ij})$ ($i = 1, n, j = 1, \mu$). Further, the parameter vector can be transformed into a profit c_{ij} (i.e., mapping of vector estimate into ordinal scale $[1, 2, 3]$, 3 corresponds to the best level, multicriteria ranking based on outranking ELECTRE technique can be used).

The assignment of user i to access point j is defined by Boolean variable x_{ij} ($x_{ij} = 1$ in the case of assignment i to j and $x_{ij} = 0$ otherwise). The assignment solution is defined by Boolean matrix $X = \{x_{ij}\}$, $i = 1, n, j = 1, \mu$. Finally, the problem is:

$$\max \sum_{j=1}^{\mu} \sum_{i=1}^{n} c_{ij} x_{ij}$$

s.t. $\sum_{i=1}^{n} f_{ij} x_{ij} \leq f_j \forall j = 1, \mu$; $\sum_{i=1}^{n} x_{ij} \leq k_j \forall j = 1, \mu$; $\sum_{j=1}^{\mu} x_{ij} \leq 1 \forall i = 1, n$;

$x_{ij} = 0$ if $d_{ij} > d_j \forall i = 1, n, \forall j = 1, \mu$; $x_{ij} = 0$ if $r_{ij} > r_j \forall i = 1, n, \forall j = 1, \mu$;
\(x_{ij} \in \{0, 1\} \quad \forall \ i = 1, n, \quad \forall \ j = 1, \mu. \)

A numerical example of the assignment solution (i.e., clustering solution) is depicted in Fig. 3.8. In [390], the described problem is examined as generalized multiple assignment problem (extended version).

Fig. 3.8. Assignment of users to access points

3.5. Graph based clustering

3.5.1. Minimum spanning tree based clustering

The preliminary building of minimum trees is widely used in many combinatorial problems (e.g., [218]). The algorithmic complexity estimate for this spanning problem over graph equals \(O(n \log n) \) (\(n \) is the number of graph vertices). Minimum spanning tree based clustering algorithms have been studied and applied by many researchers (e.g., [235, 244, 353, 445, 479, 492, 555, 606, 626, 660]). The basic stages of the algorithms are as follows:

Stage 1. Calculation of distance/proximity matrix \(Z \).

Stage 2. Design of the corresponding graph \(G \).

Stage 3. Building of the minimum spanning tree \(T \) for graph \(G \).

Stage 4. Clustering of the vertices of tree \(T \) (e.g., by algorithm of deletion of branches, by algorithm of hierarchical clustering).

Stage 5. Stopping.

Further, the usage of hierarchical clustering at stage 4 is considered. Complexity estimates for minimum spanning tree clustering algorithm (by stages) are presented in Table 3.16.

Table 3.16. Complexity estimates of stages for minimum spanning tree based clustering

Stage	Description	Complexity estimate (running time)
Stage 1	Calculate distance matrix \(Z \)	\(O(n^2) \)
Stage 2	Design the corresponding graph \(G \)	\(O(n^2) \)
Stage 3	Building the minimum spanning tree	\(O(n \log n) \)
Stage 4	Clustering of the tree vertices	\(O(n \log n) \)
Stage 5	Stopping	\(O(1) \)

Stages 3, 4, 5 correspond to the situation when a graph is examined as initial data. In this case, complexity of the algorithm equals \(O(n \log n) \).

Example 3.3. A numerical example for elements \(A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} \) illustrates building of graph \(G = (A, E) \) (corresponding proximity matrix \(Z \)), minimum spanning tree \(T = (A, E') \), and clustering solution \(\hat{X} = \{X_1, X_2, X_3\} \) (cluster size \(\leq 4 \)). The following is implemented:

Proximity matrix \(Z \) \Rightarrow Graph \(G = (A, E) \) \Rightarrow Tree \(T = (A, E') \) \Rightarrow Clustering solution \(\hat{X} = \{X_1, X_2, X_3\} \).

The method for building the spanning tree is used as in example 3.1. Table 3.17 contains proximity matrix (symbol “\(*\)” corresponds to a very big value).
Table 3.17. Proximities for example (edge \((i_1, i_2)\))

\(i_1\)	\(i_2: 2\)	\(3\)	\(4\)	\(5\)	\(6\)	\(7\)	\(8\)	\(9\)	\(10\)	\(11\)	\(12\)
1	0.3 \(\ast\) 1.45 \(\ast\)										
2	\(\ast\) 0.3 \(\ast\) \(\ast\) 2.6 \(\ast\) \(\ast\) \(\ast\) \(\ast\) \(\ast\) \(\ast\) \(\ast\) \(\ast\)										
3	\(\ast\) \(\ast\) 0.4 \(\ast\)										
4	\(\ast\) \(\ast\) \(\ast\) 0.4 \(\ast\) \(\ast\) \(\ast\) \(\ast\) \(\ast\) \(\ast\) \(\ast\) \(\ast\) \(\ast\)										
5	\(\ast\)										
6	\(\ast\)										
7	\(\ast\)										
8	\(\ast\)										
9	\(\ast\) 0.1 \(\ast\)										
10	\(\ast\) 0.41 \(\ast\)										
11	\(\ast\) 0.9 \(\ast\)										
12	\(\ast\) 2.1 \(\ast\)										

Fig. 3.9 depicts corresponding graph, \(G = (A, E)\), Fig. 3.10 depicts spanning tree \(T = (A, E')\), and clustering solution. Generally, it is reasonable to point out threshold based modification of graph \(G = (A, E)\) over object set \(A\): deletion of edges by condition: the weight “>” the threshold. Decreasing the threshold leads to decreasing the cardinality of \(E\). This process can be very useful for analysis and processing of initial data in clustering. Let us consider an illustration of the above-mentioned process on the basis graph from example 3.3 (basic proximity matrix from Table 3.17): (i) threshold equals 2.6: graph \(G = (A, E)\) in Fig. 3.9; (ii) threshold equals 1.4: graph \(G^1 = (A, E^1)\) in Fig. 3.11; (iii) threshold equals 0.5: graph \(G^2 = (A, E^2) = T = (A, E')\) in Fig. 3.10 (here: spanning tree); (iv) threshold equals 0.3: graph \(G^3 = (A, E^3)\) in Fig. 3.12.

As a result, a useful structure can be found. The described by example procedure is an important auxiliary problem. An additional significant problem consists in analysis of the obtained graph, for example: (a) connectivity, (b) similarity to tree (or hierarchy, clique). Further, a modified version of adaptive minimum spanning tree clustering algorithm is examined as follows. Initial data are: (a) set of objects/alternatives \(A = \{A_1, \ldots, A_n\}\), (b) set of parameters/criteria \(C = \{C_1, \ldots, C_j, \ldots, C_m\}\), (c) estimate matrix \(X = \{x_{ij}\}, i = 1, n, j = 1, m\), where \(x_{ij}\) is estimate of \(A_i\) upon criterion \(C_j\) (a qualitative scale is considered). The algorithm consists of the following stages:
Stage 1. Calculation of proximity matrix \(Z = \{z_{ik}\} \), \(i = 1, n \), \(k = 1, n \), where \(z_{ik} \) is estimate of proximity (distance) between \(A_i \) and \(A_k \) (e.g., Euclidean metric is used). Evidently, \(z_{ii} = 0, \forall i = 1, n \).

Stage 2. Transformation of matrix \(Z \) into ordinal matrix \(Y = \{y_{ik}\} \). Let us consider the maximum and minimum values of elements of matrix \(Z \): \(z_{min} = \min_{i=k} \{z_{ik}\} \), \(z_{max} = \max_{i,k} \{z_{ik}\} \). Thus an interval is obtained \([z_{min}, z_{max}] \) and \(d = z_{max} - z_{min} \). Now an additional integer parameter \(\delta \) (e.g., 3, 4, 5, 6) is used. Let \(\delta = 5 \). Then elements of new matrix \(Y \) (i.e., adjacency matrix) are based on the following calculation:

\[
y_{ik} = \begin{cases}
0, & \text{if } 0.0 \leq z_{ik} \leq d/\delta, \\
1, & \text{if } d/\delta < z_{ik} \leq 2d/\delta, \\
2, & \text{if } 2d/\delta < z_{ik} \leq 3d/\delta, \\
3, & \text{if } 3d/\delta < z_{ik} \leq 4d/\delta, \\
4, & \text{if } 4d/\delta < z_{ik} \leq d.
\end{cases}
\]

Stage 3. Obtaining an interconnected graph over elements \(A \) (iterative approach):

Let \(\Delta = 1, 2, \ldots \) be an integer algorithmic parameter (for the algorithm cycle).

Step 3.1. Initial value \(\Delta = 1 \).

Step 3.2 Transformation of ordinal matrix \(Y \) into Boolean matrix \(B = \{b_{ik}\} \):

\[
b_{ik} = \begin{cases}
1, & \text{if } y_{ik} < \Delta, \\
0, & \text{if } y_{ik} \geq \Delta.
\end{cases}
\]

Step 3.3. Building a graph over elements \(A \): \(G^\Delta = (A, \Gamma^\Delta) \), where \(\Gamma^\Delta \) is the set of edges, edge \((A_i, A_k)\) exists if \(b_{ik} = 1 \).

Step 3.4. Analysis of connectivity for graph \(G^\Delta = (A, \Gamma^\Delta) \). If the graph is connected, then GOTO Step 3.6.

Step 3.5. \(\Delta = \Delta + 1 \) and GOTO Step 3.2

Step 3.6. Building of minimum spanning tree for graph \(G^\Delta = (A, \Gamma^\Delta) \): \(T^\Delta = (A, \hat{E}^\Delta) \).

Here, several well-known algorithms can be used, for example: Borovka's algorithm, Prim's algorithm, Kruskal's algorithm \[10, 217, 218, 139, 493, 639 \]. Complexity estimate of the algorithms is: \(O(p \log n) \) (or less \[639 \]) \((p \text{ is the number of edges, } n \text{ is the number of vertices})

Here, several well-known algorithms can be used, for example: Borovka's algorithm, Prim's algorithm, Kruskal's algorithm \[10, 217, 218, 139, 493, 639 \]. Complexity estimate of the algorithms is: \(O(p \log n) \) (or less \[639 \]) \((p \text{ is the number of edges, } n \text{ is the number of vertices})

It is necessary to take into account for each edge \(e_i \in \Gamma \) its weight as follows: proximity value \(z_{ik} \) for corresponding element of \(Z \).

Step 3.7. Clustering set \(A \) on the basis of spanning tree \(T^\Delta = (A, \hat{E}^\Delta) \) while taking into account an algorithmic parameter: a number of elements \(\alpha \) in each obtained cluster \(\alpha' \leq \alpha \leq \alpha'' \), for example \(\alpha' = 4 \), \(\alpha'' = 6 \). The constrains above have to be based on the engineering analysis of the applied problem.

Stage 4. Stop.

Complexity estimates for the described adaptive algorithm (by stages) is presented in Table 3.18. Thus, the general complexity estimate (running time) of the described adaptive algorithm equals \(O(n^2) \).

Generally, the problem of \(k \)-balanced partitioning a tree is NP-hard \((k \text{ is the number of elements in each cluster of clustering solution}) \[195 \].

Note, the obtained clustering solution has a property: “modularity”. This can be very important for many applied problems (e.g., close cardinalities of clusters/groups: local region elements in communication network, student teams).
Table 3.18. Complexity estimates for adaptive minimum spanning tree based algorithm

Stage/step	Description	Complexity estimate (running time)
Stage 1	Calculate the distance matrix Z	$O(n^2)$
Stage 2	Transformation of matrix Z into ordinal matrix Y	$O(n^2)$
Stage 3	Design of interconnected graph over elements A	$O(n^2)$
Step 3.1	Specifying the start of the cycle	$O(1)$
Step 3.2	Transformation of matrix Y into Boolean matrix B	$O(n^2)$
Step 3.3	Building the graph G that corresponds to matrix B	$O(n^2)$
Step 3.4	Analysis of connectivity of graph G	$O(n)$
Step 3.5	Correction of cycle parameter	$O(1)$
Step 3.6	Building the minimum spanning tree T for graph G	$O(p \log n)$
Step 3.7	Clustering the vertices (elements A) of the spanning tree T while taking into account the constraints for cluster size	$O(n)$
Stage 4	Stopping	$O(1)$

3.5.2. Clique based clustering

Here, an initial graph $G = (A, E)$ is examined as initial data. In a clique (complete graph/subgraph), each vertex is connected to all other the vertices (Fig. 3.13). A quasi-clique can be examined, for example, as a clique without one-two edges. The cliques (or quasi-cliques) form a very strong clusters (from the viewpoint of interconnection). The problem of finding a maximal clique in a graph is a well-known NP-hard problem (e.g., [218,319]). Thus, heuristics or enumerative methods have been used for the problem.

![Fig. 3.13. Illustration of cliques](image)

Clique-based clustering process can be organized as a series of clique problems [218]:

Stage 1. Finding the “maximal clique” (or maximal “quasi-clique”) in graph $G = (A, E)$: subgraph $H = (B, V)$ ($H \subseteq A$, $V \subseteq E$).

Stage 2. Forming a cluster from subgraph H and compression of initial graph G: $G' = (A', E')$, ($A' = A\setminus H$, $E' = E\setminus \{V \cup W\}$, where W is a set of external edges of clique, i.e., the only one vertex belongs to set H) (Fig. 3.14).

Stage 3. If G' is empty GO TO Stage 4 otherwise GO TO Stage 1.

Stage 4. Stop.

![Fig. 3.14. Illustration of clique in graph](image)

The above-mentioned solving scheme is based on series of NP-hard problems. Evidently, it is possible to find several “maximal cliques” concurrently. Some sources on researches on clique finding and clique based clustering are presented in Table 3.19.

Clique partitioning problem for a given graph $G = (A, E)$ with edge weights consists in partitioning the graph into cliques such that the sum of the edge weights over all cliques formed is as large as possible (e.g., [340,469]).
There are some close problems over graphs/digraphs, for example, independent set problems and dominating set problems which are used in clustering as well (e.g., [105,131,132,140,263,296,489]). Recently, the significance of dynamic problems over data streams has been increased including clique/quasi-clique finding in graph streams (e.g. [8,128,247,389]).

On the other hand, clique-based approaches can be considered as density-based and grid-based clustering methods. In some recent works, subgraph as clique/quasi-clique is considered as one of network community structures (network community based clustering [226,459,460,496]).

Table 3.19. Detection of cliques/quasi-cliques and clustering

No.	Research	Source(s)
1.	Detection and analysis of cliques in graphs:	
1.1	Cliques in graphs	309, 444
1.2	Finding of clique/quasi-clique in graphs	218, 81, 193, 218, 472, 484
1.3	Maximum-weight clique problem	203, 168, 173, 481
1.4	Finding all cliques of undirected graph	13
1.5	Enumeration maximal cliques of large graph	
2.	Clustering based on cliques:	
2.1	Clique based clustering	955, 176, 236, 302, 420, 437, 539, 588
2.2	Clique partitioning problem	154, 401, 469
3.	Clique-based multiple clustering:	
3.1	Ensemble clustering with voting active clusters	590
3.2	Cliques for combining multiple clusterings	434
4.	Clique based methods over data streams:	
4.1	K-clique clustering in dynamic networks	176
4.2	Clique-based fusion of graph streams	389

In recent decades, several new combinatorial problems as clique clustering in multipartite graphs have been suggested (e.g., [96, 152, 272, 372, 374, 392, 596]). Fig. 3.15. illustrates this kind of problems. Table 3.20 contains a list of the research directions in the above-mentioned field.

Fig. 3.15. Cliques in four-partite graph

Table 3.20. Research directions in multi-partite graphs

No.	Research	Source(s)
1.	Problem of compatible representatives	339
2.	Morphological clique (ordinal estimates)	372, 374, 392
3.	Morphological clique (multiset estimates)	380, 392
4.	Clustering in multipartite graph	90, 596
5.	Bipartite and multipartite clique problems	152
6.	Morphological clique over graph streams	389
7.	Coreset problems	194, 272
8.	Coresets in dynamic data streams	208
3.5.3. Correlation clustering

Correlation clustering provides a method for partitioning a fully connected labeled graph (label “+” corresponds to edge for similar vertices, label “-” corresponds to edge for different vertices) while taking into account two objectives for the obtained clusters:

(i) minimizing disagreements (i.e., minimizing the number of “-” edges within the clusters \(Q_{\text{disagr}}(\hat{X}) \to \min\)) or maximizing the number of “-” between clusters,

(ii) maximizing agreements (i.e., the number of “+” edges inside the clusters) \(Q_{\text{agr}}(\hat{X}) \to \max\) (e.g., [4,33,40,52,159,345,564,662]).

In the basic above-mentioned problem formulation, the objective functions are summarized. In other words, binary scale \([-1, +1]\) is used for each edge as a weight (zero value is not used). Here it is not necessary to specify the preliminary number of clusters (e.g., as in k-means clustering). The correlation clustering problem formulation is motivated from documents/web pages clustering. This combinatorial model belongs to NP-complete class (e.g., [11,39,40]).

Various versions of correlation problem formulations are examined:
(a) weighted versions of the “correlation clustering functional” are considered as well (e.g., [33,39,40,662]),
(b) correlation clustering with partial information (e.g., [158]),
(c) correlation clustering with noisy input (e.g., [423]), etc.

Let us consider the weighted version of the problem. Let \(A = \{A_1, ..., A_j, ..., A_n\}\) be the initial set of elements. As a result, \((n-1)^2\) elements pairs can be considered: \(G = \{g_1, ..., g_{(n-1)^2}\}\). Each element of \(G\) corresponds to element pair \((A_j, A_{j'})\) and an element of proximity matrix \(Z = ||z_{j,j'}||\). Further, it is possible to replace scale \([-1, +1]\) for each edge (i.e., for each element from \(G\) or element of proximity matrix \(Z\)) by two quantitative scales: negative quantitative (or ordinal) scale \([-w, ..., +w]\) and positive quantitative scale \([0, ..., w^+]\) instead of “-1” and “+1”. Evidently, element pair set is divided into two separated subsets \(G = G^- \cup G^+\) (without intersection, i.e., \(|G^- \cap G^+| = 0\)) where \(z_{j,j'} \in G^-\) weight estimate corresponds to negative quantitative scale above, where \(z_{j,j'} \in G^+\) weight estimate corresponds to negative quantitative scale above. The clustering solution is: \(\hat{X} = \{X_1, ..., X_t, ..., X_n\}\). For this solution, two total quality parameters above are examined:

(i) total agreements quality as (summarization by all intra-cluster pairs with positive edge weight) \(Q_{\text{agr}}(\hat{X})\) (maximization);

(ii) total disagreements quality (summarization by all intra-cluster pairs with negative edge weight) \(Q_{\text{disagr}}(\hat{X})\) (for minimization, by module).

As a result, the weighted version of correlation clustering problem is (Fig. 3.16):

Find clustering solution \(\hat{X}\) such that: (i) \(Q_{\text{agr}}(\hat{X}) \to \max\) and (ii) \(|Q_{\text{disagr}}(\hat{X})| \to \min\).

![Fig. 3.16. “Space” of solution quality](image)

Heuristics and approximation algorithms (e.g., PTAS) have been proposed for the problem versions (e.g., [33,39,40,662]). Clearly, agglomerative (hierarchical) clustering scheme (i.e., selection of an element pair from set \(B\) for next joining for improvement of a current clustering solution) can be used here as a simple greedy algorithm (Bottom-Up process of selection of element pair with the best improvement of objective vector function and corresponding joining the elements), for example (Fig. 3.16):

Stage 1. Calculation of the matrix of element pair \(\forall(A(j_1), A(j_2)), A(j_1) \in A, A(j_2) \in A, j_1 \neq j_2\) proximities (“distances”).
Stage 2. Transformation of element pair proximities into positive (for similar elements) or negative (for dissimilar elements) weights (e.g., mapping).

Stage 3. Specifying the initial clustering solution \(\tilde{X}^0 \) as composition of initial elements, vector objective function \(\tilde{f}^0 = (Q^{\text{disagr}}(\tilde{X}^0), Q^{\text{agr}}(\tilde{X}^0)) \) (initial value, initial index \(\gamma = 0 \)).

Stage 4. Searching for the element pair with the best improvement of vector objective function \(\tilde{f} \) (i.e., searching for Pareto-efficient point(s)). Integration of the corresponding both elements into a cluster or inclusion of the corresponding element into the cluster with the second element (i.e., new clustering solution) \(\tilde{X}^q \) (\(q \) is parameter of algorithm iteration). Recalculation of the current value of vector objective function: \(\tilde{f}' = (Q^{\text{disagr}}(\tilde{X})^\gamma), Q^{\text{agr}}(\tilde{X})^\gamma) \).

Stage 5. If all elements are processed then GO TO Stage 7.

Stage 6. Increasing index \(\gamma = \gamma + 1 \), while constraint \(|Q^{\text{disagr}}(\tilde{X})| \leq q \) is satisfied Go To Stage 4, else GO TO Stage 7.

Stage 7. Stop.

Complexity estimates of greedy heuristic above for two-objectives correlation clustering (by stages) are presented in Table 3.21.

Stage	Description	Complexity estimate (running time)
Stage 1.	Calculation of distance matrix \(Z \)	\(O(n^2) \)
Stage 2.	Calculation of positive/negative weights	\(O(n^2) \)
Stage 3.	Specifying the initial solution	\(O(1) \)
Stage 4.	Searching for the best element pair (by Pareto-efficient improvement of objective function)	\(O(n^2) \)
Stage 5.	Analysis of algorithm end, recalculation of objective function	\(O(n) \)
Stage 6.	Transition of computing process	\(O(1) \)
Stage 7.	Stopping	\(O(1) \)

Example 3.4. The examined element set involves 11 elements: \(A = \{A_1, ..., A_2, ..., A_{11}\} \). The weights of all edges are presented in Table 3.22. Here, two quantitative scales are used: \([-6.5, 0) \) and \((0, 3.5] \).

\(j_1 \)	\(j_2 \)	2	3	4	5	6	7	8	9	10	11
1		-3.0	1.4	-0.6	-5.1	-5.5	-3.5	-1.2	-3.4	-4.5	-6.5
2		-0.8	-1.3	-3.3	-1.4	3.1	-2.9	-3.6	-5.1	-4.9	
3		-1.1	-2.0	-2.7	-2.1	3.2	-3.0	-4.5	-4.1		
4		-0.5	-3.7	-2.5	2.6	-0.9	-1.3	-2.2			
5		-6.5	-5.6	-1.1	2.8	-0.5	-0.6	-6.1			
6		3.5	0.4	-1.8	-3.2	-0.3					
7		0.5	-0.3	-0.8	2.9						
8		1.0	-0.8	-2.8							
9		3.0	-5.5								
10		-6.0									

Initial information is the following (iteration index equals \(\gamma = 0 \)): (a) \(\tilde{X}^0 = \{X_1^0, ..., X_i^0, ..., X_{11}^0\} \) where \(X_1^0 = \{A_1\}, X_2^0 = \{A_2\}, X_3^0 = \{A_3\}, X_4^0 = \{A_4\}, X_5^0 = \{A_5\}, X_6^0 = \{A_6\}, X_7^0 = \{A_7\}, X_8^0 = \{A_8\}, X_9^0 = \{A_9\}, X_{10}^0 = \{A_{10}\}, X_{11}^0 = \{A_{11}\} \); (b) \(\tilde{f}^{(0)}(\tilde{X}) = (0, 0) \); (c) improvement operations (i.e., inclusion of element (cluster) \(A_j \) into cluster \(X_i \)) as \(O_{j,i}(A_j \rightarrow X_i) \) \((j = 1, 10, i = j, 11)\) and corresponding improvements (by positive component or by negative component) of objective function \(\tilde{f} \) as \(\Delta \tilde{f}(O_{j,i}) \) are presented in Table 3.23 (component 0 of the vector is not pointed out).
Table 3.23. Improvements of objective function $\Delta \overline{f}(O_{j,i})$ (iteration index $\gamma = 0$)

A_j	$X_{i_1} : X_2 \ X_3 \ X_4 \ X_5 \ X_6 \ X_7 \ X_8 \ X_9 \ X_{10} \ X_{11}$
A_1	$-3.0 \ 1.4 \ -0.6 \ -5.1 \ -5.5 \ -3.5 \ -1.2 \ -3.4 \ -4.5 \ -6.5$
A_2	$-0.8 \ -1.3 \ -3.3 \ -1.4 \ 3.1 \ -2.9 \ -3.6 \ -5.1 \ -4.9$
A_3	$-1.1 \ -2.0 \ -2.7 \ -2.1 \ 3.2 \ -3.0 \ -4.5 \ -4.1$
A_4	$-0.5 \ -3.7 \ -2.5 \ 2.6 \ -0.9 \ -1.3 \ -2.2$
A_5	$-6.5 \ -5.6 \ -1.1 \ 2.8 \ -0.5 \ -6.1$
A_6	$3.5 \ 0.4 \ -1.8 \ -3.2 \ -0.3$
A_7	$-0.3 \ -0.8 \ 0.5 \ 2.9$
A_8	$1.0 \ -0.8 \ -2.8$
A_9	$3.0 \ -5.5$
A_{10}	-6.0

Iteration 1. Selection of the best (Pareto-efficient) improvement operation $O_{6,7}$ with the best improvement $\Delta \overline{f}(O_{j,i}) = (0, 3.5)$. As a result, the following information is used for the next algorithm step: (a) $\hat{X} = \{X_1^1, X_2^1, X_3^1, X_4^1, X_5^1, X_6^1, X_7^1, X_8^1, X_9^1, X_{10}^1\}$ where $X_1^1 = \{A_1\}, X_2^1 = \{A_2\}, X_3^1 = \{A_3\}, X_4^1 = \{A_4\}, X_5^1 = \{A_5\}, X_6^1 = \{A_6\}, X_7^1 = \{A_7\}, X_8^1 = \{A_8\}, X_9^1 = \{A_9\}, X_{10}^1 = \{A_{10}\}$; (b) $\overline{f}(\hat{X}) = (0, 3.5)$; (c) improvement operations (i.e., inclusion of element/cluster X_{i_1} into cluster X_{i_2}) as $O_{1,1} (X_{i_1} \rightarrow X_{i_2})$ and corresponding improvements (by positive component or by negative component) of objective function \overline{f} as $\Delta \overline{f}(O_{j,i})$ are presented in Table 3.24 (component 0 of the vector is not pointed out).

Table 3.24. Improvements of objective function $\Delta \overline{f}(O_{j,i})$ (iteration index $\gamma = 1$)

X_{i_1}	$X_{i_2} : X_2^1 \ X_3^1 \ X_4^1 \ X_5^1 \ X_6^1 \ X_7^1 \ X_8^1 \ X_9^1 \ X_{10}^1 \ X_{11}^1$
X_1^1	$-3.0 \ 1.4 \ -0.6 \ -5.1 \ -9.0 \ -1.2 \ -3.4 \ -4.5 \ -6.5$
X_2^1	$-0.8 \ -1.3 \ -3.3 \ -1.4 \ 3.1 \ -2.9 \ -3.6 \ -5.1 \ -4.9$
X_3^1	$-1.1 \ -2.0 \ -2.7 \ -2.1 \ 3.2 \ -3.0 \ -4.5 \ -4.1$
X_4^1	$-0.5 \ -3.7 \ -2.5 \ 2.6 \ -0.9 \ -1.3 \ -2.2$
X_5^1	$-6.5 \ -5.6 \ -1.1 \ 2.8 \ -0.5 \ -6.1$
X_6^1	$3.5 \ 0.4 \ -1.8 \ -3.2 \ -0.3$
X_7^1	$-0.3 \ -0.8 \ 0.5 \ 2.9$
X_8^1	$1.0 \ -0.8 \ -2.8$
X_9^1	$3.0 \ -5.5$
X_{10}^1	-6.0

Iteration 2. Selection of the best (Pareto-efficient) improvement operation $O_{3,8}$ with the best improvement $\Delta \overline{f}(O_{j,i}) = (0, 3.2)$. As a result, the following information is used for the next algorithm step: (a) $\hat{X} = \{X_1^2, X_2^2, X_3^2, X_4^2, X_5^2, X_6^2, X_7^2, X_8^2, X_9^2, X_{10}^2\}$ where $X_1^2 = \{A_1\}, X_2^2 = \{A_2\}, X_3^2 = \{A_3\}, X_4^2 = \{A_4\}, X_5^2 = \{A_5\}, X_6^2 = \{A_6\}, X_7^2 = \{A_7\}, X_8^2 = \{A_8\}, X_9^2 = \{A_9\}, X_{10}^2 = \{A_{10}\}$; (b) $\overline{f}(\hat{X}) = (0, 3.2)$; (c) improvement operations (i.e., inclusion of element/cluster X_{i_1} into cluster X_{i_2}) as $O_{1,1} (X_{i_1} \rightarrow X_{i_2})$ and corresponding improvements (by positive component or by negative component) of objective function \overline{f} as $\Delta \overline{f}(O_{j,i})$ are presented in Table 3.25 (component 0 of the vector is not pointed out).

Table 3.25. Improvements of objective function $\Delta \overline{f}(O_{j,i})$ (iteration index $\gamma = 2$)

X_{i_1}	$X_{i_2} : X_2^2 \ X_3^2 \ X_4^2 \ X_5^2 \ X_6^2 \ X_7^2 \ X_8^2 \ X_9^2 \ X_{10}^2 \ X_{11}^2$
X_1^2	$-3.0 \ -0.6 \ -5.1 \ -9.0 \ -1.2 \ 1.4 \ -3.4 \ -4.5 \ -6.5$
X_2^2	$-1.3 \ -3.3 \ -1.4 \ 3.1 \ -3.7 \ -3.6 \ -5.1 \ -4.9$
X_3^2	$-0.5 \ -6.2 \ -1.1 \ 2.6 \ -0.9 \ -1.3 \ -2.2$
X_4^2	$-12.2 \ -3.1 \ 2.8 \ -0.5 \ -6.1$
X_5^2	$-4.8 \ 0.9 \ -2.1 \ -4.0 \ -0.3 \ 2.9$
X_6^2	$1.0 \ -0.8 \ -2.8$
X_7^2	$3.0 \ -5.5$
X_8^2	-6.0

Iteration 3. Selection of the best (Pareto-efficient) improvement operations: $O_{2,7}$ and $O_{9,10}$. The corresponding Pareto-efficient improvements are: $\Delta \overline{f}(O_{2,7}) = (-1.4, 3.1)$ and $\Delta \overline{f}(O_{9,10}) = (0, 3.0)$. Operation $O_{9,10}$ is selected. As a result, the following information is used for the next algorithm step:
(a) \(\hat{X}^3 = \{X_1^4, X_2^4, X_3^4, X_4^4, X_5^4, X_6^4, X_7^4, X_8^4, X_9^4, X_{10}^4, X_{11}^4\} \) where \(X_1^4 = \{A_1\}, X_2^4 = \{A_2\}, X_3^4 = \{A_4\}, X_5^4 = \{A_5\}, X_6^4 = \{A_6, A_7\}, X_7^4 = \{A_3, A_8\}, X_8^4 = \{A_9, A_{10}\}, X_9^4 = \{A_{11}\}\); (b) \(\bar{f}(\hat{X}^3) = (0, 12.9) \); (c) improvement operations (i.e., inclusion of element/cluster \(X_{i1} \) into cluster \(X_{i2} \)) as \(O_{1,1}^{(a)}(X_{i1} \rightarrow X_{i2}) \) and corresponding improvements (by positive component or by negative component) of objective function \(\bar{f} \) as \(\Delta \bar{f}(O_{1,1}^{(a)}) \) are presented in Table 3.26 (component 0 of the vector is not pointed out).

Table 3.26. Improvements of objective function \(\Delta \bar{f}(O_{j,1}) \) (iteration index \(\gamma = 3 \))

\(X_{11} \)	\(X_{12}^2 \)	\(X_{13}^4 \)	\(X_{14}^4 \)	\(X_{15}^4 \)	\(X_{16}^4 \)	\(X_{17}^4 \)	
\(X_1^4 \)	-3.0	-0.6	-5.1	-9.0	(-1.2, 1.4)	-7.9	-6.5
\(X_2^4 \)	-1.3	-3.3	(-1.4, 3.1)	-3.7	-8.7	-4.9	
\(X_3^4 \)	-0.5	-6.2	(-1.1, 2.6)	-2.2	-2.2		
\(X_4^4 \)	-12.2	-3.1	(-0.5, 2.8)	-6.1			
\(X_5^4 \) = \{A_6, A_7\}	(-4.8, 0.9)	-6.1	(-0.3, 2.9)				
\(X_6^4 \) = \{A_3, A_8\}	(-8.3, 1.0)	-2.8					
\(X_7^4 \) = \{A_9, A_{10}\}	-8.8						

Iteration 4. Selection of the best (Pareto-efficient) improvement operations: \(O_{2,7} \) and \(O_{7,11} \). The corresponding Pareto-efficient improvements are: \(\Delta \bar{f}(O_{2,7}) = (-1.4, 3.1) \) and \(\Delta \bar{f}(O_{7,11}) = (-0.3, 2.9) \). Operation \(O_{7,11} \) is selected. As a result, the following information is used for the next algorithm step: (a) \(\hat{X}^4 = \{X_1^4, X_2^4, X_3^4, X_4^4, X_5^4, X_6^4, X_7^4, X_8^4, X_9^4, X_{10}^4, X_{11}^4\} \) where \(X_1^4 = \{A_1\}, X_2^4 = \{A_2\}, X_3^4 = \{A_4\}, X_4^4 = \{A_5\}, X_5^4 = \{A_6, A_7\}, X_6^4 = \{A_3, A_8\}, X_7^4 = \{A_9, A_{10}\}, X_8^4 = \{A_{11}\}\); (b) \(\bar{f}(\hat{X}^4) = (-0.3, 15.8) \); (c) improvement operations (i.e., inclusion of element/cluster \(X_{i1} \) into cluster \(X_{i2} \)) as \(O_{1,1}^{(a)}(X_{i1} \rightarrow X_{i2}) \) and corresponding improvements (by positive component or by negative component) of objective function \(\bar{f} \) as \(\Delta \bar{f}(O_{1,1}^{(a)}) \) are presented in Table 3.27 (component 0 of the vector is not pointed out).

Table 3.27. Improvements of objective function \(\Delta \bar{f}(O_{j,1}) \) (iteration index \(\gamma = 4 \))

\(X_{11} \)	\(X_{12}^4 \)	\(X_{13}^4 \)	\(X_{14}^4 \)	\(X_{15}^4 \)	\(X_{16}^4 \)	\(X_{17}^4 \)
\(X_1^4 \)	-3.0	-0.6	-5.1	(-1.2, 1.4)	-7.9	-15.5
\(X_2^4 \)	-1.3	-3.3	(-1.1, 2.6)	-3.7	-8.7	(-6.3, 3.1)
\(X_3^4 \)	-0.5	-6.2	(-1.1, 2.6)	-2.2	-8.4	
\(X_4^4 \)	-12.2	-3.1	(-0.5, 2.8)	-18.2		
\(X_5^4 \) = \{A_3, A_8\}	(-8.3, 1.0)	(-14.8, 0.9)				
\(X_6^4 \) = \{A_9, A_{10}\}	-17.6					

Iteration 5. Selection of the best (Pareto-efficient) improvement operations: \(O_{2,11} \) and \(O_{5,10} \). The corresponding Pareto-efficient improvements are: \(\Delta \bar{f}(O_{2,11}) = (-6.3, 3.1) \) and \(\Delta \bar{f}(O_{5,10}) = (-0.5, 2.8) \). Operation \(O_{5,10} \) is selected. As a result, the following information is used for the next algorithm step: (a) \(\hat{X}^5 = \{X_1^5, X_2^5, X_3^5, X_4^5, X_5^5, X_6^5, X_7^5, X_8^5, X_9^5, X_{10}^5, X_{11}^5\} \) where \(X_1^5 = \{A_1\}, X_2^5 = \{A_2\}, X_3^5 = \{A_4\}, X_4^5 = \{A_3, A_8\}, X_5^5 = \{A_5, A_9, A_{10}\}, X_6^5 = \{A_6, A_7, A_{11}\}\); (b) \(\bar{f}(\hat{X}^5) = (-0.8, 18.6) \); (c) improvement operations (i.e., inclusion of element/cluster \(X_{i1} \) into cluster \(X_{i2} \)) as \(O_{1,1}^{(a)}(X_{i1} \rightarrow X_{i2}) \) and corresponding improvements (by positive component or by negative component) of objective function \(\bar{f} \) as \(\Delta \bar{f}(O_{1,1}^{(a)}) \) are presented in Table 3.28 (component 0 of the vector is not pointed out).

Table 3.28. Improvements of objective function \(\Delta \bar{f}(O_{j,1}) \) (iteration index \(\gamma = 5 \))

\(X_{11} \)	\(X_{12}^5 \)	\(X_{13}^5 \)	\(X_{14}^5 \)	\(X_{15}^5 \)	\(X_{16}^5 \)
\(X_1^5 \)	-3.0	-0.6	-12.0	-13.0	-15.5
\(X_2^5 \)	-1.3	-3.7	(-1.1, 2.6)	-2.7	-8.4
\(X_3^5 \) = \{A_3, A_8\}	(-11.4, 1.0)	(-14.8, 0.9)			
\(X_4^5 \) = \{A_5, A_9, A_{10}\}	-35.8				

Iteration 6. Selection of the best (Pareto-efficient) improvement operations: \(O_{2,11} \) and \(O_{4,8} \). The corresponding Pareto-efficient improvements are: \(\Delta \bar{f}(O_{2,11}) = (-6.3, 3.1) \) and \(\Delta \bar{f}(O_{4,8}) = (-1.1, 2.6) \). Operation \(O_{4,8} \) is selected. As a result, the following information is used for the next algorithm step: (a) \(\hat{X}^6 = \{X_1^6, X_2^6, X_3^6, X_4^6, X_5^6, X_6^6, X_7^6, X_8^6, X_9^6, X_{10}^6, X_{11}^6\} \) where \(X_1^6 = \{A_1\}, X_2^6 = \{A_2\}, X_3^6 = \{A_3, A_4, A_8\}, X_4^6 = \{A_5, A_9, A_{10}\}, X_5^6 = \{A_6, A_7, A_{11}\}\).
\(X^6_{11} = \{A_6, A_7, A_{11}\}\); (b) \(\overline{T}(\hat{X}^6) = (-1.9, 21.2)\); (c) improvement operations (i.e., inclusion of element/cluster \(X_{i1}\) into cluster \(X_{i2}\) as \(O_{i1,i2}(X_{i1} \rightarrow X_{i2})\) and corresponding improvements (by positive component or by negative component) of objective function \(\overline{f}\) as \(\Delta\overline{f}(O_{i1,i2})\) are presented in Table 3.29 (component 0 of the vector is not pointed out).

\(X_{i1}\)	\(X_{i2} : \hat{X}^7_7\)	\(X^8_7\)	\(X^8_{10}\)	\(X^8_{11} = \{A_6, A_7, A_{11}\}\)
\(X^6_1\)	-3.0	(-1.8, 1.4)	-13.0	-15.5
\(X^6_2\)	-5.7	-12.0	(-6.3, 3.1)	
\(X^6_8 = \{A_4, A_4, A_b\}\)	(-14.1, 1.0)	(-20.1, 0.9)		
\(X^6_{10} = \{A_5, A_9, A_{10}\}\)			-35.8	

Iteration 7. Selection of the best (Pareto-efficient) improvement operations: \(O_{2,11}\) and \(O_{1,8}\). The corresponding Pareto-efficient improvements are: \(\Delta\overline{f}(O_{2,11}) = (-6.3, 3.1)\) and \(\Delta\overline{f}(O_{1,8}) = (-1.8, 1.4)\). Operation \(O_{1,8}\) is selected. As a result, the following information is used for the next algorithm step: (a) \(\hat{X}^7 = \{X^7_2, X^7_8, X^7_{10}, X^7_{11}\}\) where \(X^7_2 = \{A_2\}\), \(X^7_8 = \{A_1, A_3, A_4, A_8\}\), \(X^7_{10} = \{A_5, A_9, A_{10}\}\), \(X^7_{11} = \{A_6, A_7, A_{11}\}\); (b) \(\overline{T}(\hat{X}^7) = (-3.7, 22.6)\); (c) improvement operations (i.e., inclusion of element/cluster \(X_{i1}\) into cluster \(X_{i2}\) as \(O_{i1,i2}(X_{i1} \rightarrow X_{i2})\) and corresponding improvements (by positive component or by negative component) of objective function \(\overline{f}\) as \(\Delta\overline{f}(O_{i1,i2})\) are presented in Table 3.30 (component 0 of the vector is not pointed out).

\(X_{i1}\)	\(X_{i2} : \hat{X}^8_7\)	\(X^8_7\)	\(X^8_{11} = \{A_6, A_7, A_{11}\}\)
\(X^6_1\)	-8.0	-12.0	(-6.3, 3.1)
\(X^6_8 = \{A_1, A_5, A_4, A_8\}\)	(-27.1, 1.0)	(-35.6, 0.9)	
\(X^6_{10} = \{A_5, A_9, A_{10}\}\)			-35.8

Iteration 8. Selection of the best (Pareto-efficient) improvement operation \(O_{2,11}\). The corresponding Pareto-efficient improvement is: \(\Delta\overline{f}(O_{2,11}) = (-6.3, 3.1)\). As a result, the following information is used for the next algorithm step: (a) \(\hat{X}^8 = \{X^8_8, X^8_{10}, X^8_{11}\}\) where \(X^8_8 = \{A_1, A_3, A_4, A_8\}\), \(X^8_{10} = \{A_5, A_9, A_{10}\}\), \(X^8_{11} = \{A_2, A_6, A_7, A_{11}\}\); (b) \(\overline{T}(\hat{X}^8) = (-10.0, 25.7)\); (c) improvement operations (i.e., inclusion of element/cluster \(X_{i1}\) into cluster \(X_{i2}\) as \(O_{i1,i2}(X_{i1} \rightarrow X_{i2})\) and corresponding improvements (by positive component or by negative component) of objective function \(\overline{f}\) as \(\Delta\overline{f}(O_{i1,i2})\) are presented in Table 3.31 (component 0 of the vector is not pointed out).

\(X_{i1}\)	\(X_{i2} : \hat{X}^9_7\)	\(X^9_7\)	\(X^9_{11} = \{A_6, A_7, A_{11}\}\)
\(X^6_8 = \{A_1, A_3, A_4, A_8\}\)	(-27.1, 1.0)	(-43.8, 0.9)	
\(X^6_{10} = \{A_5, A_9, A_{10}\}\)			-47.8

Finally, it is reasonable to consider the result of iteration 8 as the clustering solution: \(\hat{X} = \hat{X}^8 = \{X^8_8, X^8_{10}, X^8_{11}\}\). Table 3.32 contains a list of main research directions in correlation clustering.

On the other hand, it is possible to use a multiset based problem formulation. It is possible to replace scale \([-1, +1]\) (or two quantitative scales above) for each edge (i.e., for each element from \(G\) or element of proximity matrix \(Z\)) by two ordinal scales: negative ordinal scale \([-k^-, \ldots, -1]\) instead of \("-1\") and positive ordinal scale \([+1, \ldots, k^+]\) instead of \("+1\"). Note, calculation of edge weights upon the above-mentioned scales is sufficiently easy (e.g., mapping of the quantitative estimate into the ordinal scale). For the clustering solution \(\hat{X} = \{X_1, \ldots, X_\lambda\}\) two total quality parameters can be calculated as follows: (i) total agreements quality as multiset estimate (summarization by the component for all intra-cluster pairs with positive edge weight) \(Q^{agr}(\hat{X})\) (maximization); (ii) total disagreements quality as multiset estimate (summarization by the component for all intra-cluster pairs with negative edge weight) \(Q^{disagr}(\hat{X})\) (for minimization). As a result, the multiset based correlation clustering problem is (Fig. 3.17):

Find clustering solution \(\hat{X}\) such that \(Q^{agr}(\hat{X}) \rightarrow \max\) and \(|Q^{disagr}(\hat{X})| \rightarrow \min\).
Table 3.32. Correlation clustering

No.	Research direction	Source(s)
1.	Basic problem formulations and complexity	[11,33,39,40,52,345,662]
2.	Surveys	[11,10,345,662]
3.	Comparing methods for correlation clustering	[185]
4.	Approximation algorithms (including PTAS)	[33,39,40,225,662]
5.	Weighted versions of correlation clustering problems	[91,95,159]
6.	Correlation clustering with fixed number of clusters	[225]
7.	Maximizing agreements via semidefinite programming	[564]
8.	Minimizing disagreements on arbitrary weighted graphs	[187]
9.	Global correlation clustering	[5]
10.	Correlation clustering with partial information	[158]
11.	Correlation clustering with noisy input	[223]
12.	Error bounds for correlation clustering	[308]
13.	Robust correlation clustering	[434]
14.	Correlation clustering in image segmentation	[331]

3.5.4. Network communities based clustering

In recent decades, “network communities based clustering” as a new research direction has been organized (e.g., [206,226,285,370,457,458,459,460,461,496]). The largest connected components are examined as “network communities”, for example: cliques, quasi-cliques, cliques/quasi-cliques with leaves, chains of cliques/quasi-cliques, integrated groups of cliques/quasi-cliques (Fig. 3.18).

The network example in Fig. 3.18 does not contain overlaps (i.e., without intersection of community structures). Fig. 3.19 illustrates the overlaps.
The detection of “network communities structures” corresponds to complex combinatorial optimization models (e.g., linear/nonlinear integer programming, mixed integer programming). The models belong to NP-hard problems (e.g., [73,127,206,460]). Table 3.33 contains a list of basic research directions in community network based clustering.

A list of basic algorithmic approaches for finding communities involves the following (e.g., [206,459,460,461]): (i) graph partitioning (e.g., minimum-cut method), (ii) hierarchical clustering (greedy agglomerative algorithms), (iii) Girvan-Newman algorithm (edge betweenness), (iv) modularity maximization approaches, (v) spectral clustering methods, (vi) methods based on statistical inference, (vii) clique based methods.

Modularity of a graph can be defined as a normalized tradeoff between edges covered by clusters and squared cluster degree sums [73,461]. The problem is formulated as combinatorial optimization model. For the modularity maximization, several main algorithms are pointed out [73]: (a) greedy agglomeration [127,457], (b) spectral division [459,610], (c) simulated annealing [249,504], (d) extremal optimization [178]. An example of modularity algorithm as greedy agglomerative heuristic is the following [457]:

Stage 1. Trivial clustering: each node corresponds to its own cluster.
Stage 2. Cycle by cluster pairs:
Stage 2.1. Calculation of possible increase of modularity for merging each cluster pairs.
Stage 2.2. Merging the two clusters with maximum possible increase.
Stage 2.3. If increasing of modularity by merges of cluster pair is impossible then GO TO Stage 3.
Stage 2.4. Go To Stage 2.2.
Stage 3. Stop.

In this algorithm, algorithmic complexity estimate equals $O((p + n)n)$ or $O(n^2)$ [457].

The general scheme of Girvan-Newman (GN) algorithm based on edge betweenness is [226]:

Step 1. Calculation of the betweenness score for each the edges.
Step 2. Deletion of the edges with the highest score.
Step 3. Performance analysis for the network’s components.
Step 4. If all edges are deleted and the system breaks up into N non-connected nodes Go TO Step 5. Otherwise GO TO Step 1.
Step 5. Stop.

Algorithmic complexity estimate of the algorithm equals $O(p^2n)$ (p is the number of edges) [226]).

3.6. Towards fast clustering

Many applications based on very large data sets/networks require fast clustering approaches (e.g., [127,457,510,583,600,662]). In Table 3.34, basic ideas for fast clustering schemes are pointed out. Generally, many fast clustering schemes consist of two basic levels (global level and local level): (a) partition of the initial problems into local problems (i.e., decreased dimension, limited type of objects/elements) (global level), (b) clustering of local clustering problems (local level), (c) composition/integration of local clustering solutions into a resultant global clustering solution (global level).

In Table 3.35, a list of basic fast local clustering algorithms (i.e., fast sub-algorithms) is presented.
No.	Research direction	Source(s)
1.	Basic issues:	
1.1	Basic problem formulations	73, 200, 226, 370, 461, 459, 460, 296, 608, 635, 636
1.2	Basic surveys	73, 61, 200, 370, 439, 461, 459, 460, 496, 635, 636
1.3	Problems complexity	73, 127, 206, 460, 635, 636
1.4	Overlapping (fuzzy) community structures	230, 608, 622, 633, 634, 635
1.5	Analysis/evaluation of community structures	370, 461, 608, 636, 636
2.	Main algorithms/solving schemes:	
2.1	Algorithm based on edge betweenness	226
2.2	Modularity algorithm as greedy agglomerative heuristic	457, 475
2.3	“Karate Club” algorithm	461
2.4	Kernighan-Lin method and variants	328
2.5	Overlapping communities (clique percolation,	230, 622, 633, 634, 635
	local expansion, dynamic algorithms, etc.)	
2.6	Spectral clustering algorithms, modifications	636
2.7	Genetic algorithms	405
2.8	Agent-based algorithms	250
3.	Modularity clustering (maximum modularity):	
3.1	Surveys	73, 459, 604, 636
3.2	Tripartite modularity (three vertex types)	448, 449
3.3	Modularity in k-partite networks	406
3.4	Greedy agglomeration algorithm	127, 457
3.5	Spectral division algorithm	459, 610
3.6	Simulated annealing algorithms	249, 504
3.7	Detecting communities by merging cliques	631
3.8	Extremal optimization scheme	7178
3.9	Global optimization approach	126
3.10	Memetic algorithm	454
3.11	Random works algorithms	495
3.12	Multi-level algorithms	168, 465, 517
4.	Large networks:	
4.1	Communities in large networks	59, 127, 230, 285, 286, 370, 495, 636
4.2	Communities in mega-scale networks	600
4.3	Communities in super-scale networks	59
4.4	Tracking evolving communities in large networks	286
5.	Applications:	
5.1	World Wide Web	168, 370, 448
5.2	Journal/article networks, citation networks, etc.	106, 206, 516
5.3	Social networks (friendship, collaboration, etc.)	206, 226, 248, 457, 460, 461, 600, 636
5.4	Biological networks	206, 226, 461
5.5	Purchasing network	127
5.6	CAD applications	461
5.7	Antenna-To-Antenna network (mobile phone network)	60, 407
Table 3.34. Main approaches to fast clustering

No.	Approach	Solving schemes	Source(s)
1.	Aggregation of object/network nodes	Hierarchical clustering (Bottom-Up, step-by-step node aggregation)	[300, 302, 546]
2.	Division of objects/network nodes (partition/decomposition):	Top-Down scheme	
2.1.	Pruning of objects/network nodes (Fig. 3.20)	1. Selection of basic edge betweenness in graph and decoupling (Top-Down scheme) 2. Clustering in each graph part (if needed)	[226, 546]
2.2.	Multi-level schemes (partition, clustering, integration of solutions):	1. Partition of object set/network 2. Clustering of local regions 3. Composition of local solutions	[584, 585, 662]
2.2.1.	“Basic” objects (special “key” objects/nodes) based clustering (Fig. 3.21)	1. Detection of “basic” objects/nodes (e.g., by filtering) 2. Clustering of “basic” objects/nodes, 3. Joining other elements/nodes to obtained clusters	this paper
2.2.2.	Grid-based clustering	Dividing the space into cells	[341, 102, 662]
2.2.3.	Grid-based clustering in data streams	Online clustering of data streams	[411, 146]
2.2.4.	Grid-based clustering (composition): multiple division of objects “space”/network into cells/regions (e.g., axis-parallel subspaces), region-based clustering, composition of local solutions (Fig. 3.22)	1. Grid over object “space”/network 2. Analysis of grid regions 3. Selection of “non-empty” regions 4. Clustering in “dense” regions 5. Clustering in “sparse” regions (while taking into account solutions in “dense” regions) 6. Composition of regions solutions	this paper
2.2.5.	Grid-based clustering (extension): multiple division of objects “space”/network and “extension” of clustering solutions (with condensing of clusters, as in dynamic programming) (Fig. 3.22)	1. Grid over object “space”/network 2. Analysis of grid regions 3. Selection of “non-empty” regions 4. Clustering in “dense” regions 5. Extension of “dense” regions by neighbor region(s) and extension of clustering solution(s)	this paper
2.2.6.	Division of object “space”/network by types (k-partite network) (close to 2.2.1)	1. Detection of objects by types 2. Clustering for each part 3. Composition of clustering solutions of various approaches	[409, 148, 149]
3.	Composite (multistage, concurrent, multi-techniques) approaches	Composition/combination	[357]

![Fig. 3.20. Edge betweenness for decoupling](image-url)
Fig. 3.21. “Basic” objects based clustering framework

Fig. 3.22. “Grid” over object “space”/network

Table 3.35. List of some fast local clustering algorithms

No.	Fast scheme	Description	Complexity estimate (running time)	Source(s)
1.	Basic agglomerative (hierarchical) algorithm	Bottom-up joining the closest object pair	$O(n^3)$	302
2.	Balanced by cluster size hierarchical algorithm	Bottom-up joining the closest object pair under constraints for cluster size	$O(n^3)$	
3.	Minimum spanning tree based algorithm	Clustering the spanning tree nodes	$O(n \log n)$	235, 244, 441, 479, 492, 555, 600, 626, 660
4.	Balanced by cluster size minimum spanning tree based algorithm	Clustering the spanning tree nodes under constraints for cluster size	$O(n \log n)$	
5.	Graph clustering algorithm	Detection of network communities (edge betweenness of the graph)	$O(p^2 n)$	226
6.	Modularity graph clustering algorithm	Modularity based detection of network communities	$O((p + n)n)$ or $O(n^2)$	457
7.	Algorithms based on grid over “space of object coordinates” (partition space techniques)	Assignment of objects into local regions of “space of object coordinates”	$O(n + n' \times n'')$ ($n' \ll n, n'' \ll n$)	585
8.	Clustering based on cores decomposition of networks	Preliminary cores decomposition of covering graph	$O(n^2) + O(h)$	45
4. Some Combinatorial Clustering Problems

4.1. Clustering with interval multiset estimates

4.1.1. Some combinatorial optimization problems with multiset estimates

Multiset estimates are a simplification of multicriteria (vector) estimates. As a result, a simple scale (a little more complicated as an ordinal scale) is used. On the other hand, multiset estimate is a simple generalization of well-known binary voting procedure. Thus, multiset estimate can be used for simplification of multicriteria (multi-parameter) measurement in various problems/procedures.

In [386,392], basic operations over multiset estimates have been described: integration, vector-like proximity, aggregation, and alignment.

Integration of estimates (mainly, for composite systems) can be considered as summarize of the estimates by components (i.e., positions).

Let us consider vector-like proximity of two multiset estimates [386,392]. Let A_1 and A_2 be two alternatives with corresponding interval multiset estimates $e(A_1), e(A_2)$. Vector-like proximity for the alternatives above is: $\delta(e(A_1), e(A_2)) = (\delta^-, (A_1, A_2), \delta^+(A_1, A_2))$, where vector components are: (i) δ^- is the number of one-step changes: element of quality $\iota + 1$ into element of quality ι ($\iota = 1, I - 1$) (this corresponds to “improvement”); (ii) δ^+ is the number of one-step changes: element of quality ι into element of quality $\iota + 1$ ($\iota = 1, I - 1$) (this corresponds to “degradation”). It is assumed: $|\delta(e(A_1), e(A_2))| = |\delta^-(A_1, A_2)| + |\delta^+(A_1, A_2)|$.

Aggregation of multiset estimates can be defined as a median estimate for the specified set of initial estimates (traditional approach). Let $E = \{e_1, ..., e_n\}$ be the set of specified estimates (or a corresponding set of specified alternatives), let D be the set of all possible estimates (or a corresponding set of possible alternatives) ($E \subseteq D$). Thus, the median estimates (“generalized median” M^g and “set median” M) are: $M^g = \arg\min_{M \in D} \sum_{e=1}^{n} |\delta(M, e_e)|$; $M = \arg\min_{M \in E} \sum_{e=1}^{n} |\delta(M, e_e)|$.

Multiple choice problem with multiset estimates can be considered as follows [386,392]. Basic multiple choice problem is: (e.g., [218,325]):

$$\text{max} \sum_{i=1}^{m} \sum_{j=1}^{q_i} c_{ij} x_{ij} \quad \text{s.t.} \sum_{i=1}^{m} \sum_{j=1}^{q_i} a_{ij} x_{ij} \leq b; \sum_{j=1}^{q_i} x_{ij} \leq 1, \ i = 1, m; \ x_{ij} \in \{0, 1\}.$$

In the case of multiset estimates of item “utility” $e_i, i \in \{1, ..., i, ..., m\}$ (instead of c_i), the following aggregated multiset estimate can be used for the objective function (“maximization”) [386,392]: (a) an aggregated multiset estimate as the “generalized median”, (b) an aggregated multiset estimate as the “set median”, and (c) an integrated multiset estimate.

A special case of multiple choice problem is considered:

(1) multiset estimates of item “profit”/“utility” $e_{i,j}, i \in \{1, ..., i, ..., m\}, j = 1, q_i$ (instead of c_{ij}).
(2) an aggregated multiset estimate as the “generalized median” (or “set median”) is used for the objective function (“maximization”).

The item set is: $A = \bigcup_{i=1}^{m} A_i, A_i = \{(i, 1), (i, 2), ..., (i, q_i)\}$.

Boolean variable $x_{i,j}$ corresponds to selection of the item (i, j). The solution is a subset of the initial item set: $S = \{(i, j)|x_{i,j} = 1\}$. The problem is:

$$\text{max} \ e(S) = \max M = \arg\min_{M \in D} \sum_{(i,j) \in S=(i,j)|x_{i,j}=1} |\delta(M, e_{i,j})|,$$

$$\text{s.t.} \sum_{i=1}^{m} \sum_{j=1}^{q_i} a_{ij} x_{ij} \leq b; \sum_{j=1}^{q_i} x_{ij} = 1; \ x_{ij} \in \{0, 1\}.$$

Here the following algorithms can be used (as for basic multiple choice problem) (e.g., [218,325,380,392]): (i) enumerative methods including dynamic programming approach, (ii) heuristics (e.g. greedy algorithms), (iii) approximation schemes (e.g., modifications of dynamic programming approach).

Combinatorial synthesis (Hierarchical Multicriteria Morphological Design - HMMMD) with ordinal estimates of design alternatives is examined as follows [374,376,385,386,392]. A composite (modular,
decomposable) system consists of components and their interconnection or compatibility (IC). Basic assumptions of HMMD are the following: (a) a tree-like structure of the system; (b) a composite estimate for system quality that integrates components (subsystems, parts) qualities and qualities of IC (compatibility) across subsystems; (c) monotonic criteria for the system and its components; (d) quality of system components and IC are evaluated on the basis of coordinated ordinal scales. The designations are: (1) design alternatives (DAs) for leaf nodes of the model; (2) priorities of DAs \((\upsilon = 1,7; 1 \text{ corresponds to the best one}) \); (3) ordinal compatibility for each pair of DAs \((w = 1,\nu; \nu \text{ corresponds to the best one}) \).

Let \(S \) be a system consisting of \(m \) parts (components): \(R(1), ..., R(i), ..., R(m) \). A set of design alternatives is generated for each system part above. The problem is:

\[
\text{Find a composite design alternative } \quad S = S(1) \ast \cdots \ast S(i) \ast \cdots \ast S(m) \quad \text{of DAs (one representative design alternative } \quad S(i) \text{ for each system component/part } \quad R(i), \quad i = 1, m \quad \text{) with non-zero compatibility between design alternatives.}
\]

A discrete “space” of the system excellence (a poset) on the basis of the following vector is used: \(N(S) = (w(S); e(S)) \), where \(w(S) \) is the minimum of pairwise compatibility between DAs which correspond to different system components (i.e., \(\forall R_{j_1} \text{ and } R_{j_2}, 1 \leq j_1 \neq j_2 \leq m \) in \(S \), \(e(S) = (\eta_1, ..., \eta_1, ..., \eta_0) \), where \(\eta \) is the number of DAs of the \(i \text{th} \) quality in \(S \). Further, the problem is described as follows:

\[
\max e(S), \quad \max w(S), \quad \text{s.t. } w(S) \geq 1.
\]

Here, composite solutions which are nondominated by \(N(S) \) (i.e., Pareto-efficient) are searched for. “Maximization” of \(e(S) \) is based on the corresponding poset. The considered combinatorial problem is NP-hard and an enumerative solving scheme is used.

Here, combinatorial synthesis is based on usage of multiset estimates of design alternatives for system parts. For the resultant system \(S = S(1) \ast \cdots \ast S(i) \ast \cdots \ast S(m) \) the same type of the multiset estimate is examined: an aggregated estimate (“generalized median”) of corresponding multiset estimates of its components (i.e., selected DAs). Thus, \(N(S) = (w(S); e(S)) \), where \(e(S) \) is the “generalized median” of estimates of the solution components. Finally, the modified problem is:

\[
\max e(S) = M^g = \arg\min_{M \in D} \sum_{i=1}^{m} |\delta(M, e(S_i))|, \quad \max w(S), \quad \text{s.t. } w(S) \geq 1.
\]

Here enumeration methods or heuristics are used (e.g., [374,376,385,386,392]).

Assignment problem with multiset estimates is formulated as follows. Estimates of “profits” / “utilities” of local assignments (i.e., item-position) \{c_{ij}\} can be replaced by multiset estimates \{e_{ij}\}. Further, summarization in objective function can be implemented as summarization of multiset estimates or by searching for a median estimate (\(S \) is an assignment solution for all elements \(i = 1, n \)):

\[
\max e(S) = \max M = \arg\min_{M \in D} \sum_{(i,j) \in S = \{(i,j) \mid x_{i,j} = 1\}} |\delta(M, e_{i,j})|,
\]

\[
s.t. \quad \sum_{i=1}^{n} x_{i,j} \leq 1, j = 1, n; \quad \sum_{j=1}^{n} x_{i,j} \leq 1, i = 1, m; \quad x_{i,j} \in \{0, 1\}, i = 1, m, j = 1, n.
\]

In the case of generalized problem (e.g., it is possible to assign several items to each position), the problem is (i.e., change of constraint for each position \(j \)):

\[
\max e(S) = \max M = \arg\min_{M \in D} \sum_{(i,j) \in S = \{(i,j) \mid x_{i,j} = 1\}} |\delta(M, e_{i,j})|,
\]

\[
s.t. \quad \sum_{i=1}^{n} x_{i,j} \leq b_j, j = 1, n; \quad \sum_{j=1}^{n} x_{i,j} \leq 1, i = 1, m; \quad x_{i,j} \in \{0, 1\}, i = 1, m, j = 1, n.
\]

here \(b_j \) is constraint for number of assigned elements for each position \(j \). Clearly, other analogical constraints for each positions can be used as well (i.e., by other types of resources). It is reasonable to use heuristics as solving schemes.
4.1.2. Towards Clustering with interval multiset estimates

In agglomerative algorithms, the basic methodological problem consists in selection/design of proximity measure for objects/clusters. Evidently, the measure is often based on many parameters and it is necessary to use vector proximity/distance. Here, it may be reasonable to simplify of the solving procedure via transformation of the vector proximity (proximities) into multiset estimate(s). Minimization of multiset estimates is a simple process (in some complex situations Pareto-efficient point(s) can be used).

Analogical approach can be used in k-means clustering method by the usage of interval multiset estimates instead of proximity/distance of objects to cluster centroids. In the case of assignment based clustering, the above-mentioned model based on multiset estimates can be used.

Example 4.1. A simplified numerical example is based on data from example 3.2: set of 9 end users $(A = \{1, \ldots, i, \ldots, 9\})$ (Fig. 4.1) and their quantitative estimates (Table 3.15, vector estimate x_i, y_i, z_i).

![Fig. 4.1. Example: 9 items](image)

Table 4.1 contains pair vector proximity estimates: $\overline{D}(i_1, i_2) = (d_x(i_1, i_2), d_y(i_1, i_2), d_z(i_1, i_2))$, where $d_x(i_1, i_2) = |x_{i_1} - x_{i_2}|$, $d_y(i_1, i_2) = |y_{i_1} - y_{i_2}|$, $d_z(i_1, i_2) = |z_{i_1} - z_{i_2}|$.

i_1	i_2	2	3	4	5	6	7	8	9
1		(28,9,0)	(58,9,5)	(80,4,0)	(115,16,2)	(140,4,0)	(22,31,0)	(56,31,2)	(90,25,1)
2		(30,18,5)	(52,5,0)	(107,25,3)	(112,13,0)	(6,40,0)	(28,40,2)	(82,34,1)	
3		(22,13,5)	(58,25,3)	(36,22,5)	(2,22,3)	(32,16,6)			
4		(35,12,2)	(60,8,0)	(58,35,0)	(24,35,2)	(10,29,1)			
5		(25,20,2)	(93,48,2)	(59,48,0)	(25,41,1)				
6		(118,27,0)	(84,27,2)	(50,21,1)					
7		(34,0,2)	(30,6,1)						
8		(34,6,3)							

Table 4.1. Vector quantitative proximity between end users $\overline{D}(i_1, i_2)$

Table 4.2 contains corresponding vector ordinal proximity $\overline{r}(i_1, i_2) = (r_x(i_1, i_2), r_y(i_1, i_2), r_z(i_1, i_2))$ (ordinal scale $[1, 2, 3]$ is used, 1 corresponds to close values). Ordinal values are calculated as follows (for parameter x, for other parameters calculation is analogical):

$$r_x(i_1, i_2) = \begin{cases}
1, & \text{if } d_x^{\text{min}} \leq d_x(i_1, i_2) \leq d_x^{\text{min}} + \frac{\Delta_x}{3}, \\
2, & \text{if } d_x^{\text{min}} + \frac{\Delta_x}{3} < d_x(i_1, i_2) \leq d_x^{\text{min}} + \frac{2\Delta_x}{3}, \\
3, & \text{if } d_x^{\text{min}} + \frac{2\Delta_x}{3} < d_x(i_1, i_2) \leq d_x^{\text{min}} + \Delta_x,
\end{cases}$$

where $d_x^{\text{min}} = \min_{i \in A} d_x(i), d_x^{\text{min}} = \min_{i \in A} d_x(i), d_x^{\text{min}} = \min_{i \in A} d_x(i)$;

$$\Delta_x = d_x^{\text{max}} - d_x^{\text{min}}, \Delta_y = d_y^{\text{max}} - d_y^{\text{min}}, \Delta_z = d_z^{\text{max}} - d_z^{\text{min}}.$$
Table 4.2. Vector ordinal proximity between end users $\tau(i_1, i_2)$

i_1	i_2 :	2	3	4	5	6	7	8	9
1	(1, 1, 1)	(2, 1, 3)	(2, 1, 1)	(3, 1, 1)	(3, 1, 1)	(1, 2, 1)	(2, 2, 1)	(2, 2, 1)	
2	(1, 2, 3)	(2, 1, 1)	(3, 2, 2)	(3, 1, 1)	(1, 3, 1)	(1, 3, 1)	(2, 3, 1)		
3	(1, 1, 3)	(2, 2, 2)	(2, 1, 3)	(1, 2, 3)	(1, 2, 2)	(1, 1, 3)			
4	(1, 1, 1)	(2, 3, 1)	(2, 3, 1)	(1, 3, 1)	(1, 2, 1)				
5	(3, 2, 1)	(2, 3, 1)	(2, 3, 1)	(1, 3, 1)					
6	(3, 2, 1)		(2, 2, 1)						
7			(1, 1, 1)						
8									(1, 1, 2)

Table 4.3. Multiset proximity between end users $e(i_1, i_2)$

i_1	i_2 :	2	3	4	5	6	7	8	9
1	(3, 0, 0)	(1, 1, 1)	(2, 1, 0)	(2, 0, 1)	(2, 0, 1)	(2, 1, 0)	(1, 2, 0)	(1, 2, 0)	
2	(1, 1, 1)	(2, 1, 0)	(0, 2, 1)	(2, 0, 1)	(2, 0, 1)	(2, 0, 1)	(1, 1, 1)		
3	(2, 0, 1)	(0, 3, 0)	(1, 1, 1)	(1, 1, 1)	(1, 2, 0)	(2, 0, 1)			
4	(3, 0, 0)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 2, 0)				
5	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(2, 0, 1)			(2, 0, 1)	
6	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(2, 0, 1)		(2, 0, 1)			
7	(1, 1, 1)	(1, 1, 1)	(1, 2, 0)						
8	(3, 0, 0)	(2, 1, 0)							

Fig. 4.2. Multiset scale

Application of hierarchical agglomerative balance by cluster size (≤ 3) algorithm (while taking into account multiset proximity estimates) leads to the following results (integration of multiset estimates is implemented as searching for the median estimate).

Iteration 1. The smallest pair multiset proximity $(3, 0, 0)$ correspond to the following item node pairs (with next integration of the pairs): $(1, 2) \Rightarrow J_{1,2}, (4, 5) \Rightarrow J_{4,5},$ and $(7, 8) \Rightarrow J_{7,8}$ (concurrent elements integration).

Iteration 2. The smallest pair multiset proximity $(2, 1, 0)$ correspond to the following item node pair (with next integration of the pairs): $(J_{7,8}, 9) \Rightarrow J_{7,8,9}$. Cluster $X_1 = \{7, 8, 9\}$ is obtained.

Iteration 3. The smallest pair multiset proximity $(2, 0, 1)$ correspond to the following item node pair (with next integration of the pairs): $(J_{4,5}, 3) \Rightarrow J_{3,4,5}$. Cluster $X_2 = \{3, 4, 5\}$ is obtained.
Finally, the following clustering solution can be considered:
\[\hat{X} = \{X_1, X_2, X_3, X_4, X_5\}, \]
\[X_1 = \{7, 8, 9\}, \]
\[X_2 = \{3, 4, 5\}, \]
\[X_3 = \{1, 2\}, \]
\[X_4 = \{6\}. \]

Note, a numerical example for assignment based clustering can be considered analogically (e.g., on the basis of data from example 3.2).

4.2. Restructuring in clustering

Restructuring approach in combinatorial optimization has been suggested by the author in [381, 392]. In this section, restructuring approach for clustering problems is briefly described.

4.2.1. One-stage restructuring

Fig. 4.3 and Fig. 4.4 illustrate the restructuring process (one-stage framework) [381, 392]. Restructuring in clustering problem is depicted in Fig. 4.5.

Let \(P \) be a combinatorial optimization problem with a solution as structure \(S \) (i.e., subset, graph), \(\Omega \) be initial data (elements, element parameters, etc.), \(f(P) \) be objective function(s). Thus \(S(\Omega) \) be a solution for initial data \(\Omega \), \(f(S(\Omega)) \) be the corresponding objective function. Let \(\Omega^1 \) be initial data at an initial stage, \(f(S(\Omega^1)) \) be the corresponding objective function. \(\Omega^2 \) be initial data at next stage, \(f(S(\Omega^2)) \) be the corresponding objective function. As a result, the following solutions can be considered:

(a) \(S^1 = S(\Omega^1) \) with \(f(S(\Omega^1)) \) and (b) \(S^2 = S(\Omega^2) \) with \(f(S(\Omega^2)) \).

In addition it is reasonable to examine a cost of changing a solution into another one: \(H(S^\alpha \to S^\beta) \). Let \(\rho(S^\alpha, S^\beta) \) be a proximity between solutions \(S^\alpha \) and \(S^\beta \), for example, \(\rho(S^\alpha, S^\beta) = |f(S^\alpha) - f(S^\beta)| \). Clearly, function \(f(S) \) can be a vector function. Thus, the following version of restructuring problem is considered:

Find a solution \(S^* \) while taking into account the following:
(i) \(H(S^1 \to S^*) \to \min \), (ii) \(\rho(S^*, S^2) \to \min \) (or constraint).
The basic optimization model can be examined as the following:

\[
\min \rho(S^*, S^2) \quad \text{s.t.} \quad H(S^1 \rightarrow S^*) \leq \hat{h},
\]

where \(\hat{h} \) is a constraint for cost of the solution change. In a simple case, this problem can be formulated as knapsack problem for selection of a subset of change operations [381392].

\[
\max \sum_{i=1}^{n} c_i^1 x_i \quad \text{s.t.} \quad \sum_{i=1}^{n} a_i^1 x_i \leq b^1, \quad x_i \in \{0, 1\}.
\]

In the case of interconnections between change operations, it is reasonable to consider combinatorial synthesis problem (i.e., while taking into account compatibility between the operations).

Example 4.2. Initial information involves the following:

(i) set of elements \(A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \);

(ii) initial solution \(1 (t = \tau_1): \hat{X}^1 = \{X_1^1, X_2^1, X_3^1\} \), clusters \(X_1^1 = \{1, 3, 8\}, X_2^1 = \{2, 4, 7\}, X_3^1 = \{5, 6, 9\} \);

(iii) solution \(2 (t = \tau_2): \hat{X}^2 = \{X_1^2, X_2^2, X_3^2\} \), clusters \(X_1^2 = \{2, 3\}, X_2^2 = \{5, 7, 8\}, X_3^2 = \{1, 4, 6, 9\} \);

(v) general set of considered possible change operations (each element can be replaced, the number of solution clusters is not changed):

\(O_{11} \): none, \(O_{12} \): deletion of element 1 from cluster \(X^1 \), addition of element 1 into cluster \(X^2 \), \(O_{13} \): deletion of element 1 from cluster \(X^1 \), addition of element 1 into cluster \(X^3 \);

\(O_{21} \): none, \(O_{22} \): deletion of element 2 from cluster \(X^1 \), addition of element 2 into cluster \(X^1 \), \(O_{23} \): deletion of element 2 from cluster \(X^2 \), addition of element 2 into cluster \(X^2 \);

\(O_{31} \): none, \(O_{32} \): deletion of element 3 from cluster \(X^1 \), addition of element 3 into cluster \(X^2 \), \(O_{33} \): deletion of element 3 from cluster \(X^1 \), addition of element 3 into cluster \(X^3 \);

\(O_{41} \): none, \(O_{42} \): deletion of element 4 from cluster \(X^2 \), addition of element 4 into cluster \(X^2 \), \(O_{43} \): deletion of element 4 from cluster \(X^2 \), addition of element 4 into cluster \(X^3 \);

\(O_{51} \): none, \(O_{52} \): deletion of element 5 from cluster \(X^3 \), addition of element 5 into cluster \(X^1 \), \(O_{53} \): deletion of element 5 from cluster \(X^3 \), addition of element 5 into cluster \(X^2 \);

\(O_{61} \): none, \(O_{62} \): deletion of element 6 from cluster \(X^3 \), addition of element 6 into cluster \(X^1 \), \(O_{63} \): deletion of element 6 from cluster \(X^3 \), addition of element 6 into cluster \(X^2 \);

\(O_{71} \): none, \(O_{72} \): deletion of element 7 from cluster \(X^2 \), addition of element 7 into cluster \(X^1 \), \(O_{73} \): deletion of element 7 from cluster \(X^2 \), addition of element 7 into cluster \(X^3 \);

\(O_{81} \): none, \(O_{82} \): deletion of element 8 from cluster \(X^1 \), addition of element 8 into cluster \(X^2 \), \(O_{83} \): deletion of element 8 from cluster \(X^1 \), addition of element 8 into cluster \(X^3 \);

\(O_{91} \): none, \(O_{92} \): deletion of element 9 from cluster \(X^3 \), addition of element 9 into cluster \(X^1 \), \(O_{93} \): deletion of element 9 from cluster \(X^3 \), addition of element 9 into cluster \(X^2 \).

In this case, optimization model (multiple choice problem) is:

\[
\max \sum_{i=1}^{n} \sum_{j=1}^{3} c(O_{ij})x_{ij} \quad \text{s.t.} \quad \sum_{i=1}^{n} \sum_{j=1}^{3} a(O_{ij})x_{ij} \leq b, \quad x_{ij} \in \{0, 1\},
\]
where \(a(O_{ij}) \) is the cost of operation \(O_{ij} \), \(c(O_{ij}) \) is a “local” profit of operation \(O_{ij} \) as influence on closeness of obtained solution \(X^* \) to clustering solution \(X^2 \). Generally, it is necessary to examine quality parameters of clustering solution as basis for objective function(s).

Evidently, the compressed set of change operations can be analyzed:

- \(O_1 \): deletion of element 1 from cluster \(X^1 \), addition of element 1 into cluster \(X^3 \);
- \(O_2 \): deletion of element 2 from cluster \(X^2 \), addition of element 2 into cluster \(X^1 \);
- \(O_3 \): deletion of element 4 from cluster \(X^2 \), addition of element 4 into cluster \(X^3 \);
- \(O_4 \): deletion of element 5 from cluster \(X^3 \), addition of element 5 into cluster \(X^2 \);
- \(O_5 \): deletion of element 8 from cluster \(X^4 \), addition of element 8 into cluster \(X^2 \).

In this case, optimization model is knapsack problem:

\[
\max \sum_{j=1}^{9} c(O_j)x_j \quad s.t. \quad \sum_{j=1}^{9} a(O_j)x_j \leq b, \quad x_j \in \{0, 1\},
\]

where \(a(O_j) \) is the cost of operation \(O_j \), \(c(O_j) \) is a “local” profit of operation \(O_j \) as influence on closeness of obtained solution \(X^* \) to clustering solution \(X^2 \).

Finally, let us point out an illustrative example of clustering solution (Fig. 4.6):
\(\tilde{X}^* = \{X^*_1, X^*_2, X^*_3\} \), clusters \(X^*_1 = \{1, 2, 3\}, X^*_2 = \{7, 8\}, X^*_3 = \{4, 5, 6, 9\} \).

4.2.2. Multistage restructuring, cluster/element trajectories

This kind of clustering (or classification) model/problem is close to multistage system design [206, 280, 389, 391, 392]. Fig. 4.7 and Fig. 4.8 illustrate multistage classification and multistage clustering problems:

![Fig. 4.7. Illustration of multistage classification](image)

1. Multistage classification (Fig. 4.7): the same set of classes at each time stage (here: four classes \(L^1, L^2, L^3, L^4 \)), elements can belong to different classes at each stage. Here: elements 1, 2, 3; trajectory for
element 1: \(J(1) = < L^1, L^1, L^1 > \), trajectory for element 2: \(J(2) = < L^2, L^1, L^2 > \), trajectory for element 3: \(J(3) = < L^3, L^1, L^3 > \).

2. Multistage clustering (Fig. 4.8): different set of clusters at each time stage can be examined, elements can belong to different clusters at each stage. Here: elements 1, 2, 3; trajectory for element 1: \(J(1) = < L^1_1, L^2_2, L^3_3 > \), trajectory for element 2: \(J(2) = < L^1_1, L^1_2, L^3_3 > \), trajectory for element 3: \(J(3) = < L^1_1, L^2_2, L^3_3 > \).

![Fig. 4.8. Illustration of multistage clustering](image)

In this problem, it is necessary to examine a set of change trajectories for each element. As a result, multi-stage restructuring problem has to be based on multiple choice model. Generally, this problem is very prospective.

4.2.3. Restructuring in sorting

One-stage restructuring for sorting problem can be considered as well. Let \(A = \{ A_1, ..., A_i, ..., A_n \} \) be a initial element set. Solution is a result of dividing set \(\{ A \} \) into \(k \) linear ordered subsets (ranking): \(\hat{R} = \{ R_1, ..., R_j, ..., R_k \} \), \(R_j \subseteq A \ \forall j = \{ R_{j1}, \& R_{j2} = 0 \} \forall j_1, j_2 \). Linear order is: \(R_1 \rightarrow ... \rightarrow R_j \rightarrow ... \rightarrow R_k \), \(A_{i1} \rightarrow A_{i2} \) if \(A_{i1} \in R_{j1}, A_{i2} \in R_{j2}, j_1 < j_2 \).

Generally, the sorting problem (or multicriteria ranking) consists in transformation of set \(A \) into ranking \(\hat{R}: A \Rightarrow \hat{R} \) while taking into account multicriteria estimates of elements and/or expert judgment (e.g., \([51, 666] \)). In Fig. 4.9, illustration for restructuring in sorting problem is depicted. The problem is:

\[
\min \delta(\hat{R}^2, \hat{R}^*) \ \text{s.t.} \ \delta(\hat{R}^1 \rightarrow \hat{R}^*) < b,
\]

where \(\hat{R}^* \) is solution, \(\hat{R}^1 \) is initial (the “first”) ranking, \(\hat{R}^2 \) is the “second” ranking, \(\delta(\hat{R}^*, \hat{R}^2) \) is proximity between solution \(\hat{R}^* \) and the “second” ranking \(\hat{R}^* \) (e.g., structural proximity or proximity by quality parameters for rankings), \(\delta(\hat{R}^1 \rightarrow \hat{R}^*) \) is the cost of transformation of the “first” ranking \(\hat{R}^1 \) into solution \(\hat{R}^* \) (e.g., editing “distance”), \(b \) is constraint for the transformation cost. Evidently, multi-stage restructuring problems (with change trajectories of elements) are prospective as well.

![Fig. 4.9. Example: restructuring in sorting problem](image)
4.3. Clustering with multi-type elements

4.3.1. Basic problems

Our basic clustering problem can be considered as the follows: initial set of elements A consists of several subsets: $A = \bigcup_{i=1}^{n} A^j$ where $A^j = \{a_1^j, ..., a_n^j\}$, j corresponds to a certain kind of element type, i.e., there is a set of the types: $J = \{1, ..., j_1, ..., j_t\}$. Special binary relation is defined over the set J: R_j.

The first clustering strategy is:

(i) to group the initial set of elements A without analysis of the element types,
(ii) to examine a connection of the elements of different types at the next stage (e.g., for each obtained cluster).

Here, the second clustering strategy is examined:

(1) to obtain clustering for each subset $A^j = \{A^j_1, ..., A^j_k\}$.

(2) to find a correspondence between clusters of subset A^j_1 and clusters of subset A^j_2 (for the case $R(j^1, j^2) = 1$);

(3) to find a correspondence between cluster elements of subsets A^j_1 and cluster elements of subsets A^j_2 (for the case $R(j^1, j^2) = 1$).

Here, three new clustering problems with multi-type elements are suggested and examined: (i) clustering with two-type elements, (ii) clustering with three-type elements, and (iii) clustering with four-type elements. Examples of the special binary relation(s) over the element types are depicted in Fig. 4.10.

Fig. 4.11 and Fig. 4.12 illustrate the above-mentioned second clustering strategy (three-type elements):

(i) clustering of subsets:

\[G = G_1 \cup G_2 \cup G_3 \text{ where } G_1 = \{g_1^1, g_2^1, g_3^1\}, G_2 = \{g_1^2, g_2^2, g_3^2\}, G_3 = \{g_1^3, g_2^3, g_3^3\}; \]

\[B = B_1 \cup B_2 \cup B_3 \text{ where } B_1 = \{b_1^1, b_2^1, b_3^1\}, B_2 = \{b_1^2, b_2^2, b_3^2\}, B_3 = \{b_1^3, b_2^3, b_3^3\}; \]

\[H = H_1 \cup H_2 \cup H_3 \text{ where } H_1 = \{h_1^1, h_2^1, h_3^1\}, H_2 = \{h_1^2, h_2^2, h_3^2\}, H_3 = \{h_1^3, h_2^3, h_3^3\}; \]

(ii) three-matching of the obtained clusters: $< B_1 * G_3 * H_2 >, < B_2 * G_1 * H_3 >, \text{ and } < B_3 * G_2 * H_1 >$.

(iii) three-matching of cluster elements:

\[< B_1 * G_3 * H_2 >: \quad < b_1^1 * g_1^3 * h_2^3 >, < b_1^1 * g_2^3 * h_2^3 >, < b_1^1 * g_3^3 * h_2^3 >; \]

\[< B_2 * G_1 * H_3 >: \quad < b_2^1 * g_1^1 * h_3^3 >, < b_2^1 * g_2^1 * h_3^3 >, < b_2^1 * g_3^1 * h_3^3 >; \]

\[< B_3 * G_2 * H_1 >: \quad < b_3^1 * g_2^2 * h_1^3 >, < b_3^1 * g_2^3 * h_1^3 >, < b_3^1 * g_3^3 * h_1^3 >. \]

Fig. 4.10. Illustration for binary relation over element types

Fig. 4.11. Clustering strategy (three-type elements): clustering, three-matching

Problem solving frameworks are based on combinations of well-known combinatorial problems and cor-
responding algorithms: clustering (e.g., hierarchical clustering, k-means clustering), assignment/allocation, three-matching, for example:
(a) clustering of elements for each element subset,
(b) assignment of the obtained clusters (while taking into account the binary relation over element types),
(c) assignment of cluster elements (while taking into account the binary relation over element types), and
(d) analysis of the obtained solution and its correction/improvement.

![Fig. 4.12. Three-matching for elements](image)

4.3.2. Example of Team Design

The problems of analysis, modeling and design of teams are widely used in many domains (R&D, Start-Up companies, manufacturing, education, etc.). Some basic types of teams are briefly described in Table 4.4.

No.	Type	Purpose(s)	Domain(s)	Source(s)
1.	R&D project team	Accomplishment of specific task	R&D	[204]
2.	Multi-functional/ multi-disciplinary team	Forming of multi-functional/ multi-disciplinary task(s) (system life cycle)	R&D, design, manufacturing, logistics, marketing, investment, etc.	[121,651]
3.	Formal work group	To deliver a product or service	R&D	[559]
4.	Global virtual teams	Forming and management of distributed team(s)	Integrated distributed technologies	[403,497]
5.	Informal group (e.g., friends)	To collect and pass on business information	Business	
6.	Community of practice (group of experts)	Building and sharing/exchange of knowledge, coordination	Professional networks, organizations	[371,478,612]
7.	Start-Up team	Design of new product/service	Innovation	[392]
8.	Student team	Joint educational work, joint research project	Education	this paper
9.	Professors/lecturers teams	Design of/participation in new educational program	Education	

Some additional description for two special types of teams are:
(a) “communities of practice” are the groups of experts in applied domains (with interaction, exchange of knowledge and experience, etc.),
(b) global virtual (distributed) teams involves four major elements: (i) virtual team structure, (ii) strategic objectives, (iii) work characteristics, (iv) situational constraints [497].

The discipline of teams [322] contains several basic research problems, for example:
(1) design of teams (e.g., structure, elements) (e.g., [392][109][197]),
(2) selection/forming of multi-functional teams (e.g., [392][651]),
(3) analysis of relationships between team design and team performance (e.g., [520]),
(4) modeling of teams evolution and forecasting (e.g., [392]).

Example 4.3. A simplified numerical example for designing a multi-student teams for joint laboratory/project works is described. General solving framework consists of seven stages (Fig. 4.13):

Stage 1. Preliminary data analysis (expert judgment).
Stage 2. Analysis and generation/processing of criteria (expert judgment, databases).
Stage 3. Assessment of objects upon criteria, processing of estimates (expert judgment, computing).
Stage 4. Grouping/classification of initial object set to obtain object subset for each type (filtering, classification/sorting).
Stage 5. Evaluation of relationship between object pairs (e.g., “friendship”/compatibility) (expert judgment, databases).
Stage 6. Design of object configurations (special composite structures) (e.g., morphological clique problem).
Stage 7. Analysis of results.

Here example for 14 students (from Table 2.2) is considered: Table 4.5. The considered basic set of criteria (educational disciplines) is the following (ordinal scale [3, 4, 5], 5 corresponds to the best level): (1) mathematics C_1, (2) physics C_2, (3) computer systems C_3, (4) software engineering C_4, (5) antenna devices C_5, (6) signal processing C_6, (7) receiver and sender systems C_7, (8) information transmission C_8, (9) measurement in radio engineering C_9, (10) control systems C_{10}.

The following student types are examined (by professional inclination/skill):
(1) formal methods (O_1), support disciplines by criteria: $C_1, C_3, C_6, C_8, C_{10}$;
(2) physical processes (O_2), support disciplines by criteria: C_2, C_9;
(3) system design (O_3), support disciplines by criteria: C_3, C_6, C_8, C_{10};
(4) software development (O_4), support disciplines by criteria: C_3, C_4;
(5) simulation (O_5), support disciplines by criteria: C_1, C_3, C_4;
(6) signal processing (O_6), support disciplines by criteria: C_1, C_3, C_4, C_8, C_9;
(7) data transmission (O_7), support disciplines by criteria: $C_1, C_2, C_3, C_5, C_6, C_7, C_8$.

Thus, it is necessary to transform initial estimates of students upon basic set of criteria (i.e., C_1, \ldots, C_5) into estimates by inclination (i.e., O_1, O_2, O_3, O_4) with selection of “domain leader”/“quasi-domain leader” for each inclination type (i.e., by some rule(s), multicriteria ranking/sorting problem, expert judgment) (Table 4.6). Here, 1 corresponds to level of “domain leader”, 2 corresponds to level of “quasi-domain leader”.

In the example, the problem purpose is to form the following laboratory/project student teams (joint laboratory works, student joint projects):
(1) monitoring system project T_1, support professional skills (as team structure): $T_1 = O_1 \ast O_3 \ast O_4 \ast O_5 \ast O_7$;
(2) medical systems (measurement and analysis) T_2, support professional skills (as team structure): $T_2 = O_1 \ast O_3 \ast O_4 \ast O_6$;
(3) GIS and seismic modeling T_3, support professional skills (as team structure): $T_3 = O_1 \star O_2 \star O_3 \star O_4 \star O_5 \star O_6$.

Ordinal estimates of student friendship is presented in Table 4.7 (expert judgment, ordinal scale $[0, 1, 2, 3]$ is used, 3) corresponds to the best friendship).

The design process is based on morphological clique problem while taking into account ordinal quality of elements (Table 4.6) and elements compatibility (Table 4.7). Structures for configuration design of team T_1, team T_2, team T_3 are depicted in Fig. 4.14, in Fig. 4.15, and in Fig. 4.16.

It is assumed that each student team consists of 2, 3, or 4 students. “Domain leader(s)” or “quasi-domain leader(s)” have to be contained into each team. In educational process, elements which are not “domain leaders”/“quasi-domain leaders” have to be added into some some student teams (composite solutions). Numerical examples of composite solutions are:

- (a) for T_1 (Fig. 4.14):

 $T_1^1 = A_6 \star A_9 \star A_2 \star A_{11}$, $T_1^2 = A_6 \star A_9 \star A_2 \star A_{11}$, $T_1^3 = A_6 \star A_9 \star A_2$, $T_1^4 = A_6 \star A_9$;

- (b) for T_2 (Fig. 4.15):

 $T_2^1 = A_6 \star A_9 \star A_2 \star A_{11}$, $T_2^2 = A_6 \star A_9 \star A_2 \star A_{11}$, $T_2^3 = A_6 \star A_9 \star A_2$, $T_2^4 = A_6 \star A_9$;

- (c) for T_3 (Fig. 4.16):

 $T_3^1 = A_6 \star A_9 \star A_2 \star A_{11}$, $T_3^2 = A_6 \star A_9 \star A_2 \star A_{11}$, $T_3^3 = A_6 \star A_9 \star A_2$, $T_3^4 = A_6 \star A_9$.

Item (student)	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}
Student 1	3	3	4	4	4	4	5	5	5	4
Student 2	3	3	3	3	3	4	4	3	4	3
Student 3	4	4	4	4	4	4	4	4	4	4
Student 4	5	5	4	4	4	4	5	3	4	3
Student 5	3	3	3	4	3	4	4	3	4	3
Student 6	5	4	5	4	5	5	5	5	5	4
Student 7	3	3	3	4	3	4	4	3	4	3
Student 8	4	4	4	4	4	4	4	5	4	4
Student 9	5	5	5	5	5	5	5	5	5	5
Student 10	5	5	5	4	5	5	5	5	5	5
Student 11	3	3	3	3	3	4	3	5	3	3
Student 12	3	4	4	4	4	4	4	4	5	4
Student 13	5	5	5	5	5	4	4	5	4	5
Student 14	3	4	4	4	4	4	4	4	4	4

Item (student)	O_1	O_2	O_3	O_4	O_5	O_6	O_7
Student 1	2	2	2	2	2	2	2
Student 2	2	2	2	2	2	2	2
Student 3	2	2	2	2	2	2	2
Student 4	1	1	1	1	1	1	1
Student 5	1	1	1	1	1	1	1
Student 6	2	2	2	2	2	2	2
Student 7	2	2	2	2	2	2	2
Student 8	1	1	1	1	1	1	1
Student 9	1	1	1	1	1	1	1
Student 10	1	1	1	1	1	1	1
Student 11	2	2	2	2	2	2	2
Student 12	1	1	1	1	1	1	1
Student 13	1	1	1	1	1	1	1
Student 14	2	2	2	2	2	2	2
4.3.3. Analysis of Network

Multi-type clustering strategy can be applied for analysis in networks. The types of networks nodes can be obtained by analysis of their connections (the number and types of neighbors): (a) multi-connected nodes (type 1), (b) connected nodes (type 2), (c) outliers (type 3), (d) isolated nodes (type 4).

Discipline	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}
A_1	0	3	1	3	1	1	2	2	3	3	1	1	1
A_2	1	2	1	2	3	2	1	1	2	1	2	1	2
A_3	3	3	3	1	1	2	3	3	3	1	1	1	1
A_4	2	3	1	1	2	1	3	3	0	2	2	2	2
A_5	3	1	1	3	2	2	3	1	0	2	2	2	2
A_6	0	0	1	0	3	3	1	1	2	1	2	1	2
A_7	3	2	3	1	2	1	2	1	0	2	2	2	2
A_8	3	3	2	3	2	1	2	1	0	2	2	2	2
A_9	3	3	2	3	2	1	2	1	0	2	2	2	2
A_{10}	3	3	2	3	2	1	2	1	0	2	2	2	2
A_{11}	3	3	2	3	2	1	2	1	0	2	2	2	2
A_{12}	3	3	2	3	2	1	2	1	0	2	2	2	2
A_{13}	3	3	2	3	2	1	2	1	0	2	2	2	2

Note, the system problem to design a trajectory of composite teams (or multistage team design) is very prospective one [392].

Fig. 4.14. 5-component team T_1

Fig. 4.15. 4-component team T_2

Fig. 4.16. 6-component team T_3
Let $G = (A, E)$ be the examined network (graph), where $A = \{A_1, ..., A_i, ..., A_n\}$ is the set of nodes, E is the set of edges ($|E| = h$). The following clustering scheme can be considered:

Stage 1. Building the list of nodes (with info on neighbors) $O(n)$

Stage 2. Selection of multi-neighbor nodes (type 1) (complexity estimate equals $O(n)$). Result: subset $B_1 \subset A$.

Stage 3. Selection of outlier nodes (i.e., leaves, type 3) (complexity estimate equals $O(n)$). Result: subset $B_3 \subset \{A B_1\}$.

Stage 4. Selection of other nodes (type 2) (complexity estimate equals $O(n)$). Result: subset $B_2 \subset A$, $B_2 = \{A \{B_1 \cup B_3\}\}$.

Stage 5. Clustering of multi-neighbor nodes B_1 (complexity estimate equals about $O(|B_1|^2)$ (about $O((n/3)^2)$)). Thus, a preliminary clustering solution is: $\hat{X}^1 = \{X^1_1, ..., X^1_j, ..., X^1_q\}$. Now, a macro-network can be built: $G^1 = (\hat{X}^1, E^1)$, where \hat{X}^1 is the node set that corresponds to the obtained clustering solution (i.e., set of clusters), E^1 is a built set of edges. (Note, the obtained clusters can be used as centroids in k-means clustering at the next step(s)).

Stage 6. Clustering of nodes of type 2, i.e., set B_2 (if needed). The corresponding clustering solution is: $\hat{X}^2 = \{X^2_1, ..., X^2_j, ..., X^2_q\}$. Now, a macro-network can be built: $G^2 = (\hat{X}^2, E^2)$, where \hat{X}^2 is the node set that corresponds to the obtained clustering solution (i.e., set of clusters), E^2 is a built set of edges.

Stage 7. Matching of two graphs $G^1 = (\hat{X}^1, E^1)$ and $G^2 = (\hat{X}^2, E^2)$. The matching process can be based on edges from initial network or on the usage of additional parameters (e.g., node coordinates). As a result, integrated clustering solution can be obtained $\hat{X}^{12} = \{X^{12}_1, ..., X^{12}_j, ..., X^{12}_q\}$.

Stage 8. Joining outliers (B_3) to clusters of solution \hat{X}^{12}. As a result, integrated clustering solution can be obtained \hat{X}^{123}.

4.4. Scheduling in multi-beam antenna communication system

There are the following initial information (Fig. 4.17):

(a) multi-beam antenna system,

(b) number of antenna beams: μ,

(c) set of communication nodes $A = \{A_1, ..., A_i, ..., A_n\}$,

(d) volume of transmitted data is about the same for each A_i.

The problem is:

Design a schedule for connection of antenna system to communication nodes while taking into account the following: (i) minimization of total connection time, (ii) providing the best communication quality (by the minimum interference between neighbor (by angle) connections, i.e.,

$$\max_{i \in A} \min_{1,2 \in A} D_{\text{angular}}(A_{i_1}, A_{i_2}),$$

where $D_{\text{angular}}(A_{i_1}, A_{i_2})$ is angular separation $D_{\text{angular}}(A_{i_1}, A_{i_2})$ (section 2.2.4) (or angle between beams to the nodes).

The solving scheme is the following:

Stage 1. Linear ordering of communication nodes by their angle (Fig. 4.17, node 1 is the 1st).

Stage 2. Dividing of the obtained list of nodes into μ equal by size groups (the last group can have less elements) and numeration as follows:

- group 1: $\{(1,1), (1,2), ..., (1,k), \}$
- group 2: $\{(2,1), (2,2), ..., (2,k), \}$
- ...
- group μ: $\{(\mu,1), (\mu,2), ..., (\mu,k), \}$

Here $k = \lceil \frac{n}{\mu} \rceil$.

Stage 3. Generation of scheduling by the rules: Slot j ($j = \overline{1,\mu}$): the j-th element from each group ($\zeta = 1, 2, \ldots, \mu$), i.e., elements $\{\zeta, j\}$ (Fig. 4.17).

Stage 4. Stop.
Fig. 4.17. Multi-beam antenna system

Slot 1	Slot 2	...	Slot k
(1, 1)	(1, 2)	...	(1, k)
(2, 1)	(2, 2)	...	(2, k)
...
(µ, 1)	(µ, 2)		(µ, k)

Period T

Multi-beam antenna

Node 1

Node i

Node n
5. Conclusions

The paper addresses combinatorial modular viewpoints to clustering problems and procedures: (a) generalized modular clustering frameworks (i.e., typical combinatorial engineering frameworks); (b) main structural clustering models/methods (e.g., hierarchical clustering, minimum spanning tree based clustering, clustering as assignment, detection of clique/quasi-clique based clustering, correlation clustering, network communities based clustering); (c) main ideas for fast clustering schemes. Described problem solving frameworks are based on compositions of well-known combinatorial optimization problems and corresponding algorithms (e.g., assignment, partitioning, assignment, knapsack problem, multiple choice problem, morphological clique problem, searching for consensus/median for structures).

A set of numerical examples illustrate all stages of clustering processes (problem statement, assessment and evaluation, design of solving algorithms/schemes, analysis of results).

Future research directions can involve the following:
1. analysis and design of new composite problems and modular solving frameworks;
2. design of special decision support tools (modular solving environments) for structural clustering problems;
3. special study of dynamic structural clustering problems and very large applications;
4. applications of structural clustering problems in networking (design, covering, routing, etc.); and
5. application of the structural clustering problems in education and in educational data mining.

6. Acknowledgments

This research (without sections 4.2) was partially supported by Russian Science Foundation grant 14-50-00150 “Digital technologies and their applications” (project of Inst. for Information Transmission Problems). The research materials presented in sections 4.2 were partially supported by The Russian Foundation for Basic Research, project 15-07-01241 “Reconfiguration of Solutions in Combinatorial Optimization” (principal investigator: Mark Sh. Levin).

The author thanks Prof. Andrey I. Lyakhov for preliminary engineering description of problem: design of communication schedule for multiple beam antenna (section 4.4).
REFERENCES

1. A.A. Abbasi, M. Younis, A survey on clustering algorithms for wireless sensor networks. Computer Communications 30(14), 2826–2841, 2007.
2. J. Abello, M.G.C. Resende, S. Sudarsky, Massive quasi-clique detection. In: S. Rajsbaum (ed), Proc. of 5th Latin American Symp. on Theor. Inform. LATIN 2002, LNCS 2286, Springer, 598–612, 2002.
3. B. Abu-Jamous, R. Fa, D.J. Roberts, A.K. Nandi, Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery. PLOS ONE 8(2), 1–14, 2013.
4. E. Achtert, C. Bohn, H.-P. Kriegel, P. Kroger, A. Zimek, Robust, complete, and efficient correlation clustering. In: Proc. SIAM Int. Conf. on Data Mining (SDM), 413–418, 2007.
5. E. Achtert, C. Bohn, J. David, P. Kroger, A. Zimek, Global correlation clustering based on the hough transform. Statistical Analysis and Data Mining 1, 111–127, 2008.
6. M. Ackerman, S. Ben-David, Measures of clustering quality: A working set of axioms for clustering. In: Advances in Neural Information Processing Systems (NIPS), MIT Press, 121–128, 2008.
7. G. Agarwal, D. Kempe, Modularity maximizing network communities using mathematical programming. The European Physical Journal B, 66, 4009–418, 2008.
8. C.C. Aggarwal (ed.), Data Streams: Models and Algorithms. Springer, New York, 2007.
9. R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data. Data Mining and Knowledge Discovery, 11(5), 5–33, 2005.
10. A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms. Addison Wesley, Reading, MA, 1974.
11. N. Alon, M. Charikar, A. Newman, Aggregating inconsistent information: Ranking and clustering. J. of the ACM, 55(5), art. No. 23, 2008.
12. T. Akatsu, M.M. Halldorsson, On the approximation of largest common subtrees and largest common point sets. Theoretical Computer Science 233(1-2), 33–50, 2000.
13. E. Akkoyunlu, The enumeration of maximal cliques of large graph. SIAM J. on Computing 2(1), 1-6, 1973.
14. K. Al-Sultan, A Tabu search algorithm to the clustering problem. Pattern Recogn. 28(9), 1443–1451, 1995.
15. E. Alba, G. Luque, J. Garcia-Nieto, MALLBA: a software library to design efficient optimization algorithms. Int. J. of Innovative Comput. & Appl. 1(1), 74–85, 2007.
16. D. Alevras, Assignment and matching. In: C.A. Floudas, P.M. Pardalos (eds.), Encyclopedia of Optimization. 2nd ed., Springer, pp. 106–108, 2009.
17. G. Alexe, S. Alexe, P.L. Hammer, Pattern-based clustering and attribute analysis. Soft Computing 10(5), 442–452, 2006.
18. N. Alon, M. Krivelevich, B. Sudakov, Finding a large hidden clique in a random graph. In: Proc. of the Ninth Annual ACM-SIAM Symp. on Discr. Algorithms, SIAM, 594–598, 1998.
19. C.J. Alpert, A.B. Kahng, Recent directions in netlist partitioning: a survey. Integration, The VLSI Journal 19(1), 1–81, 1995.
20. A. Amir, D. Keselman, Maximum agreement subtree of a set of evolutionary trees - metrics and efficient algorithms. SIAM J. on Comp. 26(6), 1656–1669, 1997.
21. B. An, S. Papavassiliou, A mobility-based clustering approach to support mobility management and multicast routing in mobile ad-hoc wireless networks. Int. J. of Network Manag. 11(6), 387–395, 2001.
22. M.R. Anderberg, Cluster Analysis for Applications. Academic Press, New York, 1973.
23. P. Arabie, J.D. Carrol, W.S. DeSarbo, J. Wind, Overlapping clustering: A new method for product positioning. J. of Marketing Research 18, 310-317, 1981.
24. P. Arabie, L.J. Hubert, Cluster analysis in marketing research. In: Advanced Methods in marketing Research. Blackwell, Oxford, 160–189, 1994.
25. P. Arabie, L.J. Hubert, G. De Soete (Eds.), Clustering and Classification. World Scientific, 1996.
26. C.J. Augeri, H.H. Ali, New graph-based algorithms for partitioning VLSI circuits. In: Proc. of the 2004 Int. Symp. on Circuits and Systems ISDAS’04, vol. 4, pp. 521–524, 2004.
27. J.G. Augston, J. Minker, An analysis of some graph theoretical clustering techniques. J. of the ACM 17(4), 571–588, 1970.
28. H. Ayad, M.S. Kamel, On voting-based consensus of cluster ensembles. Pattern Recognition 43(5), 1943–1953, 2010.
29. L. Babel, A fast algorithm for the maximum weight clique problem. Computing 52, 31–38, 1994.
30. G. Babu, M. Nurty, Clustering with evolution strategy. Pattern Recogn. Lett. 14(10), 763–769, 1993.
31. F. Bach, M.I. Jordan, Learning spectral clustering with applications to speech separation. J. of Machine Learning Research 7, 1963–2001, 2006.
32. R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval. Addison-Wesley, 1999.
33. S. Bagon, M. Galun, Optimizing large scale correlation clustering. Electronic preprint, 9 p., Dec. 13, 2011. [http://arxiv.org/abs/1112.2903 [cs.CV]]
34. E. Balas, V. Chvatal, J. Nesetril, On the maximum weight clique problem. Math. Oper. Res. 12(3), 522–535, 1987.
35. P. Baldi, G. Hatfield, DNA Microarrays and Gene Expression. Cambridge Univ. Press, 2002.
36. S. Bandyopadhyay, E.J. Coyle, An energy efficient hierarchical clustering algorithm for wireless sensor networks. In: Proc. of INFOCOM 2003, vol. 3, 1713–1723, 2003.
37. S. Bandyopadhyay, E.J. Coyle, Minimizing communication costs in hierarchically-clustered networks of wireless sensors. Computer Networks 44(1), 1–16, 2004.
38. S. Banerjee, S. Khuller, A clustering scheme for hierarchical control in multi-hop wireless networks. In: Proc. of Twentieth Annual Joint Conf. of the IEEE Computer and Communications Societies INFOCOM 2001, vol. 2, 1028–1037, 2001.
39. N. Bansal, A. Blum, S. Chawla, Correlation clustering. In: Proc. of Int. Conf. FOCS, 2002, 238–250, 2002.
40. N. Bansal, A. Blum, S. Chawla, Correlation clustering. Machine Learning 56(1-3), 89–113, 2004.
41. M.S. Bansal, D. Fernandez-Baca, Computing distances between partial rankings. Inform. Proc. Lett. 109(4), 238–241, 2009.
42. A. Baraldi, P. Blonda, A survey of fuzzy clustering algorithms for pattern recognition - Part I and II. IEEE Trans. SMC, Part B, 29(6), 778–801, 1999.
43. W. Barbakh, C. Fife, Online clustering algorithms. Int. J. of Neural Systems 18(03), 185–194, 2008.
44. J.-P. Barthelemy, B. Leclerc, B. Monjardet, On the use of ordered sets in problems of comparison and consensus of classifications. J. of Classification, 3(2), 17–24, 1986.
45. V. Batagelj, M. Zavershik, An O(m) algorithm for cores decomposition of networks. Electronic preprint, 10 p., Oct. 25, 2003. [http://arxiv.org/abs/0310.0049 [cs.DS]]
46. V. Batagelj, P. Doreian, A. Ferligoj, N. Kejzar, Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution. Wiley, 2014.
47. M.P. Beck, B.W. Lin, Some heuristics for the consensus ranking problem. Computers and Operations Research 10(1), 183, 1–7, 1983.
48. A. Benslimane, T. Taleb, R. Sivaraj, Dynamic clustering-based adaptive mobile gateway management in integrated VANET -3G heterogeneous wireless networks. IEEE J. on Selected Areas in Communications 29(3), 559–570, 2011.
49. M.J.A. Berry, G. Linoff, Data Mining Techniques for Marketing, Sales and Customer Support. Wiley, 1996.
50. M.W. Berry, M. Browne, Understanding Search Engines: Mathematical Modeling and Text Retrieval. SIAM, 1999.
51. S. Ben-David, U. von Luxburg, D. Pal, A sober look at clustering stability. In: Proc. of 19th Annual Conf. on Machine Learning COLT 2006, Springer, Berlin, 5–19, 2006.
52. A. Ben-Dor, R. Shamir, Z. Yakhini, Clustering gene expression patterns. J. of Computational Biology 6(34), 281–292, 1999.
53. A. Ben-Hur, D. Horn, H. Siegelman, V. Vapnik, Support vector clustering. J. Mach. Learn. Res. 2(0), 125–137, 2001.
54. J. Beringer, E. Hullermeier, Online clustering of parallel data streams. Data & Knowledge Engineering 58(2), 180–204, 2006.
55. P. Berkhin, A survey of clustering data mining techniques. In: Grouping Multidimensional Data, Springer, 25–71, 2006.
56. J. Bezdek, N. Pal, Some new indexes of cluster validity. IEEE Trans. SMC, Part B, 28(3), 301–315, 1998.
57. M. Biddick, Cluster grouping for the gifted and talented: It works! APEX 15(4), 78–86, 2009.
58. L. Billard, E. Diday, Symbolic Data Analysis. Wiley, 2007.
59. V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. Electronic preprint. 12 p., July 25, 2008. [http://arxiv.org/abs/0803.0476 [physics.soc-ph]]
60. V.D. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, E. Huens, F. Morlot, Z. Smoreda, C. Ziemlicki, Data for development the d4d challenge on mobile phone data. Electronic preprint. 10 p., Jan. 28, 2012, [http://arxiv.org/abs/1210.0137 [cs.CY]]
61. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex network: Structure and dynamics. Physics Reports 424, 175—208, 2006.
62. H. Bock, Probabilistic models in cluster analysis. Comput. Statist. Data Anal. 23, 5–28, 1996.
63. H.H. Bock, E. Diday (eds), Analysis of Symbolic Data. Springer, Heidelberg, 2000.
64. S. Boker, S. Briesemeister, Q.B.A. Bui, A. Truss, Going weighted: Parametrized algorithms for cluster editing. Theor. Comput. Sci. 410, 5467–5480, 2009.
65. S. Boker, P. Danuschke, Even faster parametrized cluster deletion and cluster editing. Inf. Process. Lett. 111(14), 717–721, 2011.
66. S. Boker, S. Briesemeister, G.W. Klau, Going weighted: Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica, 60(2), 316–334, 2011.
67. D. Boley, M. Gini, R. Gross, S. Han, K. Hastings, G. Kapyris, V. Kumar, B. Mobasher, J. Moor, Partitioning-based clustering of web document categorization. DSS 25(3), 329–341, 1999.
68. I.M. Bomze, M. Budinich, P.M. Pardalos, M. Pelillo, The maximum clique problem. In: D.-Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial Optimization. (Supp. vol. A), Springer, New York, 659-729, 1999.
69. S.A. Boorman, D.C. Oliver, Metrics on spaces of finite trees. J. of Math. Psychology 10(1), 26–59, 1973
70. I. Borg, J. Kerbosch, Algorithm 457: Finding all cliques of an undirected graph. Commun. of the ACM 16(9), 575–577, 1973.
71. M.M. Bronstein, A.M. Bronstein, R. Kimmel, I. Yavneh, Multigrid multidimensional scaling. Numerical Linear Algebra with Applications 13(2-3), 149–171, 2006.
72. D. Brown, C. Huntley, A practical application of simulated annealing to clustering. Pattern Recognit. 25(4), 401–412, 1992.
73. S. Butenko, W. Wilhelm, Clique-detection models in computational biochemistry and genomics. EJOR 173(1), 1–17, 2006.
74. L. Buttyan, T. Holczer, Private cluster head election in wireless sensor networks. In: Proc. of IEEE 6th Int. Conf. on Mobile Adhoc and Sensor Systems MASS’09, 1048–1053, 2009.
75. F. Cai, N.-A. LeKhac, M-T. Kechadi, Toward a new classification model for analyzing financial datasets. In: S. Fong, P. Pichappan, S. Mohammed, P. Hung, S. Asghar (eds), Seventh Int. Conf. on Digital Information Management (ICDIM), IEEE Press, 22-24 Aug., 2012, Macau, 1–6, 2012.
76. T. Campbell, M. Liu, B. Kulis, J.P. How, L. Carin, Dynamic clustering via asymptotics of dependent Dirichlet process mixture. Electr. confer. 9 pp., Nov. 1, 2013. [http://arxiv.org/abs/1305.6659 [cs.LG]]
77. C. Carpineto, S. Osinski, R. Romano, D. Weiss, A survey of Web clustering engines. ACM Comput. Surv. 41, 1–38, 2009.
78. J.D. Carrol, P. Arabie, Multidimensional scaling. Annu. Rev. Psychol. 31, 607–649, 1980.
87. D.G. Cattrysse, L.N. Van Wassenhove, A survey of algorithms for the generalized assignment problem. EJOR 60(3), 260–272, 1992.
88. D.G. Cattrysse, M. Salomon, L.N. Van Wassenhove, A set partitioning heuristic for the generalized assignment problem. EJOR 72(00), 167–174, 1994.
89. D. Cavendish, M. Gerla, Routing optimization in communication networks. In: M.X. Cheng, Y. Li, D.-Z. Du (eds), Combinatorial Optimization in Communication Networks. Springer, 505–547, 2006.
90. E. Cela, The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic Publishers, Dordrecht, 1998.
91. A. Chamam, S. Pierre, On the planning of wireless sensor networks: Energy-efficient clustering under the joint routing and coverage constraints. IEEE Trans. Mobile Computing 8(8), 1077–1086, 2009.
92. T.M. Chan, H. Zarrabi-Zadeh, A randomized algorithm for online unit clustering. In: Approximation and Online Algorithms. Springer, 121–131, 2007.
93. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey. ACM Computing Surveys 41(3), Article no. 15, 2009.
94. M. Charikar, V. Guruswami, A. Wirth, Clustering with quantitative information. In: Int. Conf. FOCS 2003,524–533, 2003.
95. M. Charikar, V. Guruswami, A. Wirth, Clustering with quantitative information. J. of Comput. Syst, Sci. 71(3), 360–383, 2005.
96. I. Charon, O. Hundry, Optimal clustering in multipartite graph. Discrete Applied Mathematics 156(8), 1330–1347, 2008.
97. F. Chataigner, Approximating the maximum agreement forest on k trees. Information Processing Letters 93(5), 239–244, 2005.
98. M. Chatterjee, S.K. Das, D.A. Turgut, WCA: A weighted clustering algorithm for mobile Ad Hoc networks. Cluster Computing 5(2), 193–204, 2002.
99. B. Chazelle, A functional approach to data structures and its use in multidimensional scaling, SIAM J. on Computing 17, 427–462, 1988.
100.W. Chen, New algorithm for ordered tree-to-tree correction problem. J. of Algorithms 40(2), 135–158, 2001.
101.Y.P. Chen, A.L. Liestman, Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks. In: Proc. of the 3rd ACM Int. Symp. on Mobile Ad Hoc Networking & Computing, 165–172, 2002.
102.C.-Y. Chen, F. Ye, Particle swarm optimization algorithm and its application to cluster analysis. In: Proc. of 2004 IEEE Int. Conf. on Networking, Sensing and Control, vol. 2, 789-794, 2004.
103.H. Chen, S. Megerian, Cluster sizing and head selection for efficient data aggregation and routing in sensor networks. In: Proc. of Wireless Communicaions and Netowrking Conf. WCNC 2006, vol. 4, 2318–2323, 2006.
104.W.-P. Chen, J.C. Hou, L. Sha, Dynamic clustering for acoustic target tracking in wireless sensor networks. IEEE Trans. Mobile Computing 3(3), 258–271, 2004.
105.Y.P. Chen, A.L. Liestman, Maintaining weakly-connected dominating sets for clustering ad hoc networks. Ad Hoc Networks 3, 629–642, 2005.
106.P. Chen, S. Redner, Community structure of the physical review citation network. J. of Informetrics 4(3), 278–290, 2010.
107.Y. Chen, J.H. Lv, F.L. Han, X.H. Yu, On the cluster consensus of discrete-time multi-agent systems. Systems and Control letters 60, 517–523, 2011.
108.N. Chen, Z. Xu, M. Xia, Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis. Applied Mathematical Modelling 37(4), 2197–2211, 2013.
109.Z. Chen, S.X. Xia, B. Liu, A robust fuzzy kernel clustering algorithm. Applied Mathematics & Information Sciences 7(3), 1005–1012, 2013.
110.N. Chen, Z. Xu, M. Xia, Hierarchical hesitant fuzzy K-means clustering algorithm. Applied Mathematics 29(1), 1–17, 2014.
111.C.H. Cheng, A branch-and-bound clustering algorithm. IEEE Trans. SMC 25, 895–898, 1995.
112.T.W. Cheng, D.B. Goldgof, L.O. Hall, Fast fuzzy clustering. Fuzzy Sets and Systems 93(1), 49–56, 1998.
113.S.Y. Cheng, C.S. Lin, H.H. Chen, J.S. Heh, Learning and diagnosis of individual and class conceptual
perspectives: an intelligent systems approach using clustering techniques. Computers & Education 44(3), 257–283, 2005.
114. M.X. Cheng, Y. Li, D.-Z. Du (Eds.), Combinatorial Optimization in Communication Networks. Springer, 2006.
115. E.Y. Cheu, C. Keongg, Z. Zhou, On the two-level hybrid clustering algorithm. In: Proc. of Int. Conf. on Artificial Intelligence in Science and Technology, 138–142, 2004.
116. K.W. Cheung, H.C. So, A multidimensional scaling framework for mobile location using time-of-arrival measurements. IEEE Trans. Signal Processing 53(2), 460–470, 2005.
117. Y. Cheung, Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic mode selection. IEEE Trans. KDE 17(6), 750–761, 2005.
118. J. Chiang, P. Hao, A new kernel-based fuzzy clustering approach: Support vector clustering with cell growing. IEEE Trans. Fuzzy Syst. 11(4), 518–527, 2003.
119. C.-F. Chiasserini, I. Chlamtac, P. Monti, A. Nucci, An energy-efficient method for node assignment in cluster-based Ad Hoc networks. Wireless Networks 10(3), 223–231, 2004.
120. C. Chiu, A case-based customer classification approach for direct marketing. ESwA 22(2), 163–168, 2002.
121. D. Choudron, Organizational development: how to improve cross-functional teams. HR Focus 72(8), 1–4, 1995.
122. C.H. Chu, Cluster analysis in manufacturing cellular formation. Omega 17(3), 289–295, 1989.
123. P.C. Chu, J.E. Beasley, A genetic algorithm for the generalized assignment problem. Computers and Oper. Res. 24(1), 17–23, 1997.
124. C.-W. Chu, J.D. Holliday, P. Willett, Combining multiple classification of chemical structures using consensus clustering. Bioorganic & Medicinal Chemistry 20(18), 5366–5371, 2012.
125. M. Clark, L. Hall, C. Li, D. Goldgof, Knowledge based (re-)clustering. In: Proc. 12th IAPR Int. Conf. Pattern Recognition, 245–250, 1994.
126. M.C. Clark, L.O. Hall, D.B. Goldgof, R. Velthuizen, F.R. Murtagh, M.S. Silbiger, Automatic timor segmentation using knowledge-based techniques. IEEE Trans. on Medical Imaging 17(2), 187-201, 1998.
127. A. Clauset, M. E. J. Newman, and C. Moore, Finding community structure in very large networks. Physical Review E, vol. 70, no. 066111, 2004.
128. J. Coble, D.J. Cook, L.B. Holder, Structure discovery in sequentially-connected data streams. Int. J. on Artificial Intelligence Tools 15(6), 917–944, 2006.
129. C. Cobos, M. Mendoza, E. Leon, A hyper-heuristic approach to design and tuning heuristic methods for web document clustering. In: Proc. of 2011 IEEE Congress on Evol. Comput. (CEC), 1350–1358, 2011.
130. R. Cohen, L. Katzir, D. Raz, An efficient approximation for the generalized assignment problem, Information Proc. Lett. 100(4), 162–166, 2006.
131. D. Cokuslu, K. Erciyes, O. Dagdeviren, A dominating set based clustering algorithm for mobile ad hoc networks. In: V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, J. Dongarra (eds), Proc. of Int. Conf. on Computational Sciences ICCS 2006, LNCS 3991, Springer, 571–578, 2006.
132. D. Cokuslu, K. Erciyes, A hierarchical connected dominating set based clustering algorithm for mobile ad hoc networks. In: Proc. of 15th Int. Symp. on Modeling, Analysis and Simulation of Computer and Telecommunication Systems MASCOTS’07, 60–66, 2007.
133. C.L. Comm, D.F.X. Mathaisel, College course scheduling. A market computer software support. J. of Research of Computing in Education, 21, 187–195, 1988.
134. A. Condon, R.M. Karp, Algorithms for graph partitioning on the planted partition model. Random Structures and Algorithms 18, 116–140, 2001.
135. W.P. Cook, M. Kress, Ordinal Information and Preference Structures: Decision Models and Applications. Prentice-Hall, Englewood Cliffs, 1992.
136. W.D. Cook, L.M. Seiford, M.Kress, A general framework for distance-based consensus in ordinal ranking models. EJOR 96(2) 392–397, 1996.
137. D.J. Cook, L.B. Holder, Graph-based data mining. IEEE Intelligent Systems 15(2), 32–41, 2000.
138. R. Coppi, P. D’Urso, Fuzzy K-means clustering models for triangular fuzzy time trajectories. Statist. Methods Appl. 11(1), 21–40, 2002.
139. T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms. 3rd ed., MIT Press and McGraw-Hill, 2009.
140. D.G. Corneil, Y. Perl, Clustering and domination in perfect graphs. Discrete Applied Mathematics 9(1), 27–39, 1984.
141. J.A. Costa, N. Patwari, A.O. Hero III, Distributed weighted multidimensional scaling for node localization in sensor networks. ACM Trans. on Sensor Networks 2(1), 39–64, 2006.
142. M.C. Cowgill, R.J. Harvey, L.T. Watson, A genetic algorithm approach to cluster analysis. Comput. Math. Appl. 37(7), 99–108, 1999.
143. T.F. Cox, M.A.A. Cox, Multidimensional Scaling. CRC Press, 2000.
144. F. Crespo, R. Weber, A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Sets and Systems 150(2), 267–284, 2005.
145. J. Current, H. Min, D. Schilling, Multiobjective analysis of facility location decisions. EJOR 49(3), 295–300, 1990.
146. E. Dahlhaus, Parallel algorithms for hierarchical clustering and applications to split decomposition and party graph recognition. J. Algorithms, 36(2), 205–240, 2000.
147. P. Damaschke, Fixed-parameter enumerability of cluster editing and related problems. Theory Computing Sys. 46, 261–283.
148. S. Dasgupta, P.M. Long, Performance guarantees for hierarchical clustering. J. of Computer and System Sciences 70(4), 555–569, 2005.
149. R. Dave, R. Krishnapuram, Robust clustering methods: A unified view. IEEE Trans. Fuzzy Syst. 5(2), 270–293, 1997.
150. M.L. Davidson, Multidimensional Scaling. Wiley, 1983.
151. M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi, F.S. Salman, Approximation algorithms for the multiple knapsack problem with assignment restrictions. J. of Combinatorial Optimization 4(00), 171–186, 2000.
152. M. Dawande, P. Keskinocak, J.M. Swaminathan, S. Tayur, On bipartite and multipartite clique problems. J. of Algorithms 41(2) (2001) 388–403.
153. W.H.E. Day, Fireword: comparison and consensus of classifications. J. of Class. 3(2), 183–185, 1986.
154. S.G. de Amorim, J.-P. Barthelemy, C.C. Ribeiro, Clustering and clique partitioning: Simulated annealing and tabu search approaches. J. of Classification 9(1), 17–41, 1992.
155. P.T. de Boer, D.K. Kroese, S. Mannor, R.Y. Rubinstein. A tutorial on the cross-entropy method. Annals of Operations Research 134, 19–67, 2005.
156. Y. De Smet, S. Eppe, Multicriteria relational clustering: The case of binary outranking matrices. In: M. Ehrgott et al. (eds), Proc. of 5th Int. Conf. on Evolutionary Multi-Criterion Optimization EMO 2009, LNCS 5467, Springer, 380–392, 2009.
157. F. Dehne, M.A. Langston, X. Luo, S. Pitre, P. Shaw, Y. Zhang, The cluster editing problem: implementation and experiments. In: H.L. Bodlaender, M.A. Langston (eds), Proc. of Int. Workshop on parameterized and Exact Comp. IWPEC 2006, LNCS 4169, Springer, 13-24, 2006.
158. E.D. Demaine, N. Immorlica, Correlation clustering with partial information. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Springer, 1–13. 2003.
159. E.D. Demaine, D. Emanuel, A. Fiat, N. Immorlica, Correlation clustering in general weighted graphs. Theoretical Computer Science 361(2), 172–187, 2006.
160. M. Dewatripont, I. Jewitt, J. Tirole, Multitask agency problems: Focus and task clustering. European Economic Review 44(4), 869–877, 2000.
161. I. Dhillon, Y. Guan, B. Kulis, A unified view of kernel k-means, spectral clustering, and graph partitioning. Technical Report No. UTRC TR-0425, U. of Texas at Austin, 2005.
162. J.A. Diaz, E. Fernandez, A tabu search heuristic for the generalized assignment problem. EJOR, 132, 22–38, 2001.
163. P.R. Dickson, J.L. Ginter, Market segmentation, product differentiation, and marketing strategy. J. of Marketing 51, 1–10, 1987.
164. E. Diday, The dynamic cluster method in non-hierarchical clustering. J. Comput. Inf. Sci., 2, 61–88, 1973.
165. E. Diday, The symbolic approach in clustering. In: K.S. Fu (ed), Digital Pattern Recognition, Springer, 47–94, 1988.
166. C.H.Q. Ding, X. He, H. Zha, M. Gu, H.D. Simon, A min-max algorithm for graph partitioning and data clustering. In: Proc. IEEE Int. Conf. on Data Mining (ICDM 2001), 107–114, 2001.
167. E.A. Dinic, An algorithm for the solution of the max-flow problem with the polynomial estimation. Soviet mathematics Doklady 11, 1277-1280, 1970.
168. H.N. Djidjev, A scalable multilevel algorithm for graph clustering and community structure detection. In: W. Aiello, A. Broder, J. Janssen, E. Milios (eds), Proc. of the 4th Int. Workshop on Algorithms and Models for Web-Graph (WAW 2006), LNCS 4936, Springer, 117–128, 2008.
169. P. Doreian, V. Batagelj, A. Ferligoj, Generalized Blockmodeling. Cambridge Univ. Press, 2004.
170. U. Dorndorf, E. Pesch, Fast clustering algorithms. ORSA J. of Computing 6(2), 141-153, 1994.
171. A.A. Dorofeyuk, Methods for automatic classification: A review. Automation and Remote Control 32(12), 1928–1958, 1971.
172. G.M. Downs, J.M. Barnard, Clustering methods and their uses in computational chemistry. In: K.B. Lipkowitz, D.B. Boyd (eds), Reviews in Computational Chemistry, vol. 18, Wiley, 1–40, 2002.
173. T. Drezner, Competitive facility location. In: C.A. Floudas, P.M. Pardalos (Eds.), Encyclopedia of Optimization. 2nd ed., Springer, pp. 396–401, 2009.
174. D.-Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial Optimization. Volumes 1,2,3, Springer, New York, 1999.
175. D.-Z. Du, B. Lu, H. Ngo, P.M. Pardalos, Steiner tree problems. In: C.A. Floudas, P.M. Pardalos (Eds.), Encyclopedia of Optimization. 2nd ed., Springer, pp. 3723–3743, 2009.
176. Duan, Y. Li, R. Li, Z. Lu, Incremental K-clique clustering in dynamic social networks. Artificial Intelligence Review 38(2), 129–147, 2012.
177. R.C. Dubes, A.K. Jain, Validity studies in clustering methodologies. Pattern Recogn. 11(4), 235–254, 1979.
178. J. Duch, A. Arenas, Community detection in complex networks using extremal optimization. Physical Review E, vol. 72, no. 027104, 2005.
179. B. Duran, P. Odell, Cluster Analysis: A Survey. Springer, New York, 1974.
180. P. D’Urso, P. Giordani, A weighted fuzzy c-means clustering model for fuzzy data. Computational Statistics & Data Analysis 50, 1496–1523, 2006.
181. S. Dutt, W. Deng, A probability-based approach to VLSI circuit partitioning. In: Proc. of the 33rd Annual Design Automation Conf., ACM, 100–105, 1996.
182. J.G. Dy, C.E. Brodley, Feature selection for unsupervised learning. The J. of Machine Learning Research 5, 845–889, 2004.
183. J. Edmonds, R.M. Karp, Theoretical improvements in algorithm efficiency for network flow problems. J. of the ACM 19, 248–264, 1972.
184. Y. El-Sonbaty, M.A. Ismail, Fuzzy clustering for symbolic data. IEEE Trans. Fuzzy Syst. 6(2), 195–204, 1998.
185. M. Elsner, W. Schudy, Bounding and comparing methods for correlation clustering beyond ILP. In: Proc. of the NAACL HLT Workshop on Integer Linear Programming for Natural Language Processing, 19–27, 2009.
186. T. Eltoft, R. de Figueiredo, A new neural netowrk for cluster-detection-and-labeling. IEEE Trans. Neural Netw. 9(5), 1021–1035, 1998.
187. D. Emanuel, A. Fiat, Correlation clustering - minimizing disagreements on arbitrary weighted graphs. In: Proc. Algorihtms-ESA 2003, Springer, 208–220, 2003.
188. A.J. Enright, C.A. Ouzounis, GeneRAGE: A robust algorithm for sequence clustering and domain detection. Bioinformatics 16(5), 451–457, 2000.
189. G. Even, J. Naor, S. Rao, B. Schieber, Fast approximate graph partitioning algorithms. SIAM J. on Computing 28(6), 2187–2214, 1999.
190. R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee, Comparing partial rankings. SIAM J. Discrete Math. 20(3), 628–648, 2006.
191. N. Fanizzi, C. d’Amato, F. Esposito, Metric-based stochastic conceptual clustering for ontologies. Information Systems 34(8), 792–806, 2009.
192. M. Farach, T. Przytycka, M. Thorup, On the agreement of many trees. Inf. Process. Lett. 55(6), 297–301, 1995.
193. U. Feige, R. Krauthgamer, Finding and certifying a large clique in a semi-random graph. Random
85

Struc. Algorithms 16(2), 195–208, 2000.
194. D. Feldman, M. Langberg, A unified framework for approximating and clustering data. In: Proc. of 47th Annual ACM Symp. on Theory of Computing STOC 2011, 569–578, 2011.
195. A.E. Feldman, L. Foschini, Balanced partitions of trees and applications. Algorithmica 71(2), 354–376, 2015.
196. M.R. Fellows, J. Guob, C. Komniewisz, R. Niedermeier, J. Uhlmann, Graph-based data clustering with overlaps. Discrete Optimization 8(1), 2-17, 2011.
197. A. Ferligoj, V. Batagelj, Direct multicriteria clustering algorithms. J. of Classification 9(1), 43–61, 1992.
198. P.C. Fishburn, Utility Theory for Decision Making. Wiley, New York, 1970.
199. D.H. Fischer, Knowledge acquisition via incremental conceptual clustering. Machine Learning 2(2), 139–172, 1987.
200. L. Fleischer, M.X. Goemans, V.S. Mirrokni, M. Sviridenko, Tight approximation algorithms for maximum general assignment problems. In: SODA 2006, 611–620, 2006.
201. M. Flores-Carrido, J.A. Carrasco-Ochoa, J.F. Martinez-Trinidad, Graph clustering via inexact patterns. In: E. Bayro-Corrochano, E. Hancock (eds), Proc. of 19th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications CIARP 2014, LNCS 8827, Springer, 391–398, 2014.
202. D. Florescu, A.Y. Levy, A.O. Mendelzon, Database techniques for the world-wide-web: A survey. SOGMOD Record 27(3), 59–74, 1998.
203. C.A. Floudas, P.M. Pardalos (Eds.), Encyclopedia of Optimization. 2nd ed., Springer, 2009.
204. R. Ford, F. McLaughlin, Successful project teams: a study of MIS managers. IEEE Trans. Engineering Management 39(4), 312–317, 1992.
205. A. Forster, A.L. Murphy, CLIQUE: Role-free clustering with Q-learning for Wireless Sensor Networks. In: 29th IEEE Int. Conf. on Distributed Computing Systems ICDCS’09, 441-449, 2009.
206. S. Fortunato, Community detection in graphs. Electronic preprint, 103 p., Jan. 25, 2010. http://arxiv.org/abs/0906.0612v2 [physics.soc-ph]
207. E.B. Fowlkes, C.L. Mallows, A method for comparing two hierarchical clusterings. J. of the American Statistical Association 78(383), 553–569, 1983.
208. G. Frahling, C. Sohler, Coresets in dynamic geometric data streams. In: Proc. of 37th Annual ACM Symp. on Theory of Computing STOC 2005, 209–217, 2005.
209. C. Fraley, A.E. Raftery, How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer J. 41(8), 578–588, 1998.
210. M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms. J. of the ACM 34(3) (1987) 596–615.
211. M. Friedman, M. Last, Y. Makover, A. Kandel, Anomaly detection in web documents using crisp and fuzzy-based cosine clustering methodology. Inf. Sci. 177(2), 467–475, 2007.
212. H. Frigui, R. Krishnapuram, A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. PAMI 21(5), 450–465, 1999.
213. Z. Fu, W. Hu, T. Tan, Similarity based vehicle trajectory clustering and anomaly detection. In: Int. Conf. on Image Processing, vol. 2, 602–605, 2005.
214. E.M. Furems, Dominance-based extension of STEPCLASS for multiattribute nominal classification. Int. J. of Information Technology & Decision Making 12(5), 905–925, 2013.
215. E.M. Furems, L. Sokolova, Expert’s knowledge acquisition for differential diagnostics of bronchial asthma in children in STEPCLASS. Int. J. of Technology and Management 11(1), 68–85, 2011.
216. B. Gabrys, A. Bargiela, General fuzzy min-max neural network for clustering and classification. IEEE Trans. Neural Netw. 11(3), 769–783, 2000.
217. H.N. Gabow, Z. Galil, T. Spencer, R.E. Tarjan, Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6(2), 109–122, 1986.
218. M.R. Garey, D.S. Johnson, Computers and Intractability. The Guide to the Theory of NP-Completeness. W.H.Freeman and Company, San Francisco, 1979.
219. B. Gavish, H. Pirkul, Algorithms for the multi-resource generalized assignment problem. Manag. Science 37(6), 695–713, 1991.
220. M. Gentry, J. MacDougall, Total school cluster grouping: Model, research, and practice. In: J.S.
Renzulli, E.J. Gubbins, K.S. McMillen, R.D. Eckert, C.A. Little (eds), Systems and Models for Developing Programs for the Gifted and Talented. 2nd ed., Creative Learning Press, Mansfield Center, CT, 211–234, 2009.

221. M. Gerla, J.T.C. Tsai, Multicluster, mobile, multimedia radio networks. Wireless networks 1(3), 255–265, 1995.

222. Z. Ghahramani, Unsupervised learning. In: O. Bousquet, U. von Luxburg, G. Raersch (eds), Machine Learning, LNCS 3176, Springer, 72–112, 2004.

223. S. Ghiasi, A. Srivastava, X. Yang, M. Sarrafzadeh, Optimal energy aware clustering in sensor networks. Sensors 2(7), 258–269, 2002.

224. J. Ghosh, A. Acharya, Cluster ensembles. Data Mining & Knowledge Discovery, 1(4), 305–315, 2011.

225. J. Goldberger, T. Tassa, A hierarchical clustering algorithm based on the Hungarian method. Pattern Recognition Letters 29(11), 1632–1638, 2008.

226. B. Goldengorin, D. Krushinsky, P.M. Pardalos, Cell Formation in Industrial Engineering: Theory, Algorithms and Experiments. Springer, 2013.

227. T.F. Gonzales, Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306, 1985.

228. O. Grygorash, Y. Zhou, Z. Jorgensen, Minimum spanning tree based clustering algorithms. In: Proc. of 18th IEEE Int. Conf. on Tools with Artificial Intelligence ICTAI’06, 73–81, 2006.

229. J. Gower, G. Ross, Minimum spanning trees and single linkage cluster analysis. J. of the Royal Statistical Society, Series C (Applied Statistics) 18(1), 54–64, 1969.

230. J. Gramm, J. Guo, F. Huffner, R. Niedermeier, Graph-modeled data clustering: Fixed-parameter algorithm for clique generation. Theory of Computing Systems 38(4), 373–392, 2005.

231. C.W.J. Granger, Combining forecasts - twenty years later. J. of Forecasting 8(3), 167–173, 1989.

232. D. Graves, W. Pedrycz, Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study. Fuzzy Sets and Systems 161(4), 522–543, 2010.

233. P.E. Green, V.R. Rao, Configural synthesis in multidimensional scaling. J. of Marketing Research 9, 65–68, 1972.

234. P.E. Green, F.J. Carmone Jr., S.M. Smith, Multidimensional Scaling: Concepts and Applications. Allyn and Bacon, Boston, 1989.

235. P.J.F. Groenen, W.J. Heiser, The tunneling method for global optimization in multidimensional scaling. Psychometrika 61(3), 529–550, 1996.

236. P.J.F. Groenen, W.J. Heiser, J.J. Meulman, Global optimization in least-squares multidimensional scaling by distance smoothing. J. of Classification 16(2), 225–254, 1999.

237. S. Grossman, M. Miller, K. Cone, D. Fischel, D. Ross, Clustering and competition in asset markets. J. of Low and Economics 40, 23–60, 1997.

238. O. Grygorash, Y. Zhou, Z. Jorgensen, Minimum spanning tree based clustering algorithms. In: Proc. of 18th IEEE Int. Conf. on Tools with Artificial Intelligence ICTAI'06, 73–81, 2006.

239. S. Guha, R. Rastogi, K. Shim, ROCK: A robust clustering algorithm for categorical attributes. Inf. Syst. 25(5), 345–366, 2000.
248. R. Guimera, L. Dadon, A. Diaz-Guilera, F. Giralt, A. Arenas, Self-similar community structure in a network of human interactions. Physical Review E, vol. 68, no. 065103, 2003.

249. R. Guimera, M. Sales-Pardo, L.A.N. Amaral, Modularity from fluctuations in random graphs and complex networks. Physical Review E, vol. 70, no. 025101, 2004.

250. I. Gunes, H. Bingol, Community detection in complex networks using agents. Electronic preprint, 5 p., Oct. 23, 2006. [arXiv:cs/0610129] [cs.MA]

251. J. Guo, A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410, 718–726, 2009.

252. D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge Univ. Press, Cambridge, Cambridge, UK, 1997.

253. S. Haddadi, H. Ouzia, Effective algorithm and heuristic for the generalized assignment problem. EJOR 153, 184–190, 2004.

254. L. Hagen, A. Kahng, New spectral methods for ratio cut partitioning and clustering. CAD 11(9), 1074–1085, 1992.

255. S.K. Halgamuge, L. Wang (eds), Classification and Clustering for Knowledge Discovery. Springer, 2005.

256. M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation techniques. J. of Intelligent Information Systems 17, 107–145, 2001.

257. M. Halkidi, Y. Batistakis, M. Vazirgiannis, Cluster validity methods: Part I. SIGMOD Record 31(2), 40–45, 2002.

258. M. Halkidi, Y. Batistakis, M. Vazirgiannis, Clustering validity checking methods: Part II. SIGMOD Record 31(3), 19–27, 2002.

259. M.T. Hallett, C. McCartin, A faster FPT algorithm for the maximum agreement forest problem. Theory of Computing Systems 41(3), 539–550, 2007.

260. A. Haliez, A. Bronselaer, G. De Tre, Comparison of sets and multisets. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 17, 153–172, 2009.

261. A.M. Hamel, M.A. Steel, Finding a maximum compatible tree is NP-hard for sequences and trees. Applied Mathematical Letters 9(2), 55–59, 1996.

262. J. Han, M. Kamber, Data Mining: Concepts and Techniques. 2nd ed., Morgan Kaufmann, 2005.

263. B. Han, W. Jia, Clustering wireless ad hoc networks with weakly connected dominating set. J. of Parallel and Distributed Computing 67(6), 727–737, 2007.

264. Y. Han, W. Lu, T. Chen, Cluster consensus in discrete-time networks of multi-agents with inter-cluster nonidentical inputs. Electronic preprint, 13 p., Mar. 9, 2013. [http://arxiv.org/abs/1201.2803 [math.OC]]

265. D.J. Hand, H. Mannila, P. Smyth, Principles of Data Mining. The MIT Press, 2001.

266. M. Handcock, A.E. Raftery, J.M. Tantrum, Model-based clustering for social networks. J. of the Royal Statistical Society: Series A (Statistics in Society) 170(2), 301–354, 2007.

267. P. Hansen, B. Jaumard, Cluster analysis and mathematical programming. Mathematical Programming: Series A and B 79(1-3), 191–215, 1997.

268. P. Hansen, N. Mladenovic, Variable neighborhood search for the p-median. Location Science 5(4), 207–226, 1997.

269. P. Hansen, J. Brimberg, D. Urosevic, N. Mladenovic, Data Clustering using Large p-Median Models and Primal-Dual Variable Neighborhood Search. TR G-2007-41, 2007 GERAD, June 2007.

270. P. Hansen, J. Brimberg, D. Urosevic, N. Mladenovic, Primal-Dual Variable Neighborhood Search for the simple plant-location problem. INFORMS J. on Computing 19, 552-564, 2007.

271. P. Hansen, J. Brimberg, D. Urosevic, N. Mladenovic, Solving large p-median clustering problems by primal-dual variable neighborhood search. Data Mining and Knowledge Discovery 19(3), 351–375, 2009.

272. S. Har-Peled, S. Mazumdar, On coresets for k-mean and k-median clustering. In: Proc. of 36th Annual ACM Symp. on Foundations of Computer Science STOCs 2004, 291–300, 2004.

273. K.R. Harrigan, An application of clustering for strategic group analysis. Startegic Management J. 6(1), 55–73, 1985.

274. L. Harris, Stock price clustering and discreteness. Review of Financial Studies 4, 389–415, 1991.

275. J.A. Hartigan, Clustering algorithms. Wiley, New York, 1975.
276. J.A. Hartigan, M.A. Wong, A K-mean clustering algorithm. J. of the Royal Statistical Society, Ser. C, 28(1), 100–108, 1979.
277. M. Hassani, P. Spaus, T. Seidl, Adaptive multi-resolution stream clustering. In: Petra Perner (ed), Proc. of 10th Int. Conf. Machine Learning and Data Mining in Pattern Recognition, LNCS 8556, Springer, 134–148, 2014.
278. Z. He, X. Xu, S. Deng, A cluster ensemble method for clustering categorical data. Information Fusion 6(2), 143–151, 2005.
279. L. He, L.D. Wu, Y.C. Cai, Survey of clustering algorithms in data mining. Application Research in Computers 1, 55–57, 2007.
280. W.B. Heinzelman, A.P. Chandrakasan, H. Balakrishnan, An application-specific protocol architecture for wireless microsensor networks. IEEE Trans on Wireless Communications 1(4), 660-670, 2002.
281. A.J. Higgins, A dynamic tabu search for large-scale generalized assignment problems. Comput. and Oper. Res. 28, 1039–1048, 2001.
282. S. Hirano, S. Tsumoto, Rough clustering and its application to medicine. J. of Information Science 124, 125–137, 2000.
283. T. Hofmann, J.M. Buhmann, Multidimensional scaling and data clustering. In: Proc. NIPS 1994, 459-466, 1994.
284. E.W. Holman, Completely nonmetric multidimensional scaling. J. of Math. Psychol. 18, 39–51, 1978.
285. J. Hopcroft, O. Khan, B. Kulis, B. Selman, Natural communities in large linked networks. In: Proc. of the Ninth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining KDD'03, 541–546, 2003.
286. J. Hopcroft, O. Khan, B. Kulis, B. Selman, Tracking evolving communities in large linked networks. PNAS 101(Suppl 1), 5249–5353, 2004.
287. F. Hoppner, F. Klawonn, R. Kruse, Fuzzy Cluster Analysis: Methods for Classification, Data Analysis, and Image Recognition. Wiley, New York, 1999.
288. E.R. Hruschka, R.G.B. Campello, A.A. Freitas, A.P.L. Carvalho, A survey of evolutionary algorithms for clustering. IEEE Trans SMC, Part C 39(2), 133-155, 2009.
289. Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining Knowl. Discov 2(3), 283–304, 1998.
290. Z. Huang, M.K. Ng, A fuzzy k-modes algorithm for clustering categorical data. IEEE Trans. on Fuzzy Systems 7(4), 446–452, 1999.
291. J.Z. Huang, M.K. Ng, H. Rong, Z. Li, Automated variable weighting in k-means type clustering. IEEE Trans. PAMI 27(5), 657–668, 2005.
292. L.J. Hubert, Assignment Methods in Combinatorial Data Analysis. M. Dekker, New York, 1987.
293. L. Hubert, P. Arabie, Comparing partitions. J. of Classification 2, 193–218, 1985.
294. Z. Hussain, M. Meila, Graph-sensitive indices for comparing clusterings. Electronic preprint, 15 p., Nov. 27, 2014. http://arxiv.org/abs/1411.7582 [cs.LG]
295. O.H. Ibarra, C.E. Kim. Fast approximation algorithms for the knapsack and sum of subset problems. J. of the ACM 22, 463–468, 1975.
296. R.K.R. Indukuri, S.V. Penumaths, Dominating sets and spanning tree based clustering algorithms for mobile ad hoc networks. Int. J. of Advanced Computer Science and Applications 2(2), 75–81, 2011.
297. M.A. Ismail, S.Z. Selim, Fuzzy c-means: Optimality of solutions and effective termination of the problem. Pattern Recognition 19(6), 481–485, 1986.
298. M.A. Ismail, M.S. Kamel, Multidimensional data clustering utilizing hybrid search strategies. Pattern Recognition, 22(1), 75–89, 1989.
299. A.K. Jain, Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666, 2010.
300. A.K. Jain, R.C. Dubes, Algorithms for clustering data. Prentice Hall, Upper Saddle River, NJ, 1988.
301. A.K. Jain, R. Duin, J. Mao, Statistical pattern recognition: A review. IEEE Trans. PAMI 22(1), 4-37, 2000.
302. A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review. ACM Comput. Surv. 31(3) (1999) 264–323.
303. F. Janssens, L. Zhang, B. De Moor, W. Glanzel, Hybrid clustering for validation and improvement of subject-classification schemes. Information Processing and Management 45(6), 683–702, 2009.
304. X. Ji, H. Zha, Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling. In: Proc. of Twenty-third Annual Joint Conf. of the IEEE Computer and Communications Societies INFOCOM 2004, vol. 4, 2652–2661, 2004.

305. T. Jiang, L. Wang, K. Zhang, Alignment of trees - an alternative to tree edit. Theoretical Computer Science 143(1), 137–148, 1995.

306. D. Jiang, C. Tang, A. Zhang, Cluster analysis for gene expression data: A survey. IEEE Trans. KDE 16(11), 1370–1386, 2004.

307. S. Jin, C. Park, D. Choi, K. Chung, H. Yoon, Cluster-based trust evaluation scheme in an Ad Hoc network. ETRI J. 27(4), 465–468, 2005.

308. T. Joachims, J. Hopcroft, Error bounds for correlation clustering. In: Proc. of the 22rd Int. Conf. on Machine Learning ICML’05, ACM, 385–392, 2005.

309. D.S. Johnson, M.A. Trick (Eds.), Cliques, Coloring, and Satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 26, AMS, Providence, 1996.

310. J.-M. Jolion, P. Meer, S. Bataouche, Robust clustering with applications in computer vision. IEEE Trans. PAMI, 22(8), 1025–1034, 1991.

311. R. Jovanovic, M. Tuba, S. Voss, An ant colony optimization algorithm for partitioning graphs with supply and demand. Electr. prep. 21 p., March 3, 2015. [http://arxiv.org/abs/1503.00899 [cs.AI]]

312. C.J. Jung, H.Y. Cho, Y.-H. Oh, Data-driven subvector clustering using the cross-entropy method. In: Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing ICASSP 2007, vol. 4, 977–980, 2007.

313. L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: A survey. J. of Artificial Intelligence Research, 4, 237–285, 1996.

314. A.A. Kamal, S.M. Alyeid, M.Sj; Mahmoud, Multistage clustering: An efficient technique in socioeconomic field experiments. IEEE Trans. SMC 11(12), 779–785, 1981.

315. B. Kamgar-Parsi, J.A. Guaitieri, J.A. Devaney, K. Kamgar-Parsi, Clustering with neural networks. Biol. Cybern. 63(3), 201–208, 1990.

316. K. Kaneko, Relevance of dynamic clustering to biological networks. Physica D: Nonlinear Phenomena 75(1), 55–73, 1994.

317. R. Kannan, S. Vempala, A. Vetta, On clustering: Good, bad and spectral. J. of the ACM 51(3), 497–515, 2004.

318. T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, A. Wu, An efficient K-means clustering algorithm: Analysis and implementation. IEEE Trans. PAMI 24(7), 881–892, 2000.

319. R.M. Karp, Reducibility among combinatorial problems. In: R.E. Miller, J.W. Thatcher (eds), Complexity of Computer Computations. Plenum, pp. 85–103, 1972.

320. G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph partitioning: Application in VLSI domain. IEEE Trans. Very Large Scale Integration Systems (VLSI) 7(1), 69–79, 1999.

321. L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, 1990.

322. J.R. Katzenbach, D.K. Smith, The discipline of teams. Harvard Business Review 71, 111–120, 1993.

323. M. Kearns, Y. Mansour, A.Y. Ng, An information-theoretic analysis of hard and soft assignment methods for clustering. In: Learning in Graphical Models, Springer, 495–520, 1998.

324. R.L. Keeney, H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs J.Wiley & Sons, Wiley, New York, 1976.

325. H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems. Springer, Berlin, 2004.

326. R.L. Kemeny, J.L. Snell, Mathematical Models in Social Sciences. MIT Press, Cambridge, Mass, 1972.

327. M. Kendall, Rank correlation methods. 3rd ed., Hafner, New York, 1962.

328. B. Kernigham, S. Lin, An efficient heuristic procedure for partitioning graphs. Bell Systems Technical J. 49, 291–307, 1970.

329. D.J. Ketchen, C.L. Sloook, The application of cluster analysis in strategic management research and critique. Strategic Management J. 17(6), 441–458, 1996.

330. D.W. Kim, K.H. Lee, D. Lee, Fuzzy clustering of categorical data using fuzzy centroids. Pattern Recognition Letters 25, 1263–1271, 2004.

331. S. Kim, S. Nowozin, P. Kohli, C.D. Yoo, Higher-order correlation clustering for image segmentation. In: Advances in Neural Information Processing Systems, 1530–1538, 2011.
332. G.W. Kinney, J.W. Barnes, B.W. Colletti, A reactive tabu search algorithm with variable clustering for the unicoset covering problem. Int. J. of Operational Research 2(2), 156–172, 2007.
333. J.M. Kleinberg, An impossibility theorem for clustering. In: Advances in Neural Information Processing Systems (NIPS 2002), 15, 466–453, 2002.
334. J.M. Kleinberg, C. Papadimitriou, P. Raghavan, Segmentation problems. In: Proc. of the Thirtieth Annual ACM Symp. on the Theory on Computing STOC’98, 473–482, 1998.
335. L. Kleinrock, F. Kamoun, Hierarchical routing for large networks performance evaluation and optimization. Computer Networks 1(3), 155–174, 1977.
336. L. Kleinrock, F. Kamoun, Optimal clustering structures for hierarchical topological design of large computer networks. Networks 10, 221–248, 1980.
337. M. Klimenta, U. Brandes, Graph drawing by classical multidimensional scaling: New perspectives, In: W. Didimo, M. Patrignani (eds), Proc. of Int. Conf. GD 2012, LNCS 7704, Springer, 55–66, 2013.
338. D.E. Knuth, The Art of Computer Programming. Vol. 2, Seminumerical Algorithms. Addison Wesley, Reading, 1998.
339. D.E. Knuth, A. Raghunathan, The problem of compatible representatives. SIAM J. on Disc. Math. 5(3) (1992) 422–427.
340. G. Kochenberg, F. Glover, B. Alidaee, H. Wang, Clustering of microarray data via clique partitioning. J. of Combinatorial Optimization 10(1), 77–92, 2005.
341. J. Korbitz, J. Koscielny, Z. Kowaleczuk, W. Cholewa (eds), Fault Diagnosis: Models, Artificial Intelligence, Applications. Springer, 2004.
342. S. Kotsiantis, P. Pintelas, Recent advances in clustering: A brief survey. WSEAS Trans. on Information Science and Applications 1(1), 73-81, 2004.
343. S.B. Kotsiantis, Supervised machine learning: A review of classification techniques. Informatica 31(3), 249–2658, 2007.
344. H.-P. Kriegel, P. Kroger, E. Schubert, A. Zimek, A general framework for increasing the robustness of PCA-based correlation clustering algorithms. In: Proc. of 20th Int. Conf. on Scientific and Statistical Database Management (SSDBM), Springer, 418–435, 2008.
345. H.-P. Kriegel, P. Kroger, A. Zimek, Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. KDD, 3(1), 1–58, 2009.
346. K. Krishna, M. Murty, Genetic K-means algorithm. IEEE Trans. SMC, Part B 29(3), 433–439, 1999.
347. R. Krishnapuram, H. Frigui, O. Nasraoui, Fuzzy and probabilistic shell clustering algorithms and their applications to boundary detection and surface approximation. IEEE Trans. Fuzzy Systems 3(1), 29–60, 1995.
348. D.P. Kroese, R.Y. Rubinstein, T. Taimre, Application of the cross-entropy method for clustering and vector quantization. J. of Global Optimization 37(1), 137–157, 2007.
349. J.B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27, 1964.
350. J.B. Kruskal, Nonmetric multidimensional scaling: A numerical method. Psychometrika 29, 115–129, 1964.
351. H.W. Kuhn, The Hungarian Method for the assignment problems. Naval Research Logistics 2, 83–97, 1957.
352. A.C. Kumari, K. Srinivas, Software module clustering using a fast multi-objective hyper-heuristic evolutionary algorithm. Int. J. of Applied Information Systems 5(6), 12–18, 2012.
353. V. Kumar, M. Steinbach, P.-N. Tan, Introduction to Data Mining. Addison-Wesley, 2005.
354. V. Kumar, S. Minz, Feature selection: a literature review. Smart Comput. Review 4(3), 211–229, 2014.
355. T. Kurita, An efficient agglomerative clustering algorithm using a heap. Pattern Recognition 24(3), 205–209, 1991.
356. R.K. Kwatera, B. Simeone, Clustering heuristics for set covering. Annals of Operations Research 43(5), 295–308, 1993.
357. M. Kyperountas, A. Tefas, I. Pitas, Dynamic training using multistage clustering for face recognition. Pattern Recognition 41(3), 894–905, 2008.
358. S. Lafon, A.B. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parametrization. IEEE Trans. PAMI 28(9), 1393-1403,
91

359. T. Lange, M. Braun, V. Roth, J.M. Buhmann, Stability-based validation of clustering solutions. Neural Computation 16(6), 1299–1323, 2004.

360. M. Last, Online classification of nonstationary data streams. Intell. Data Anal. 6(2), 129–147, 2007.

361. M. Last, A. Kandel, O. Maimon, Information-theoretic algorithm for feature selection. Pattern Recognition 22(6), 799–811, 2001.

362. G. Latsoudas, N.D. Sidiropoulos, A fast and effective multidimensional scaling approach for node localization in wireless sensor networks. IEEE Trans. on Signal Processing 55(10), 5121–5127, 2007.

363. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (Eds.), The Traveling Salesman Problem. Wiley, New York, 1985.

364. Y. Lechevallier, R. Verde, F. de A.T. Carvalho, Symbolic clustering of large datasets. In: V. Batagelj, H.-H. Bock, A. Ferligoj, Z. Ziberna (eds), Data Science and Classification. Springer, 193–201, 2006.

365. J.-G. Lee, J. Han, K.-Y. Whang, Trajectory clustering: A partition-and group framework. In: Proc. 2007 ACM SIGMOD Int. Conf. on Management of Data, 593–604, 2007.

366. J. de Leeuw, Applications of convex analysis in multidimensional scaling. In: Recent Developments in Statistics, 133–145, 1977.

367. J. de Leeuw, Convergence of the majorization methods for multidimensional scaling. J. of Classification 5(2), 163–180, 1988.

368. L.P. Lefkovitch, Multi-criteria clustering in genotype environment interaction problems. Theoretical and Applied Genetics 70, 585–589, 1985.

369. Y. Lei, Z. He, Y. Zi, X. Chen, New clustering algorithm-based fault diagnosis using compensation distance evaluation technique. Mechanical Systems and Signal Processing 22(2), 419–435, 2008.

370. J. Leskovec, K.J. Lang, A. Dasgupta, M.W. Mahoney, Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6, 29–123, 2009.

371. E. Lesser, J. Storck, Communities of practice and organizational performance. IBM Syst. J. 40(4), 831–841, 2001.

372. M. Sh. Levin, Combinatorial Engineering of Decomposble Systems. Kluwer Academic Publishers, Dordrecht, 1998.

373. M. Sh. Levin, Common part of preference relations. Foundations of Computing & Dec. Sciences 28(4), 223–246, 2003.

374. M. Sh. Levin, Composite Systems Decisions. Springer, 2006.

375. M. Sh. Levin, Towards hierarchical clustering. In: V. Diekert, M. Volkov, A. Voronkov (Eds.), Proc. of Int. Conf. Computer Science in Russia CSR-2007, LNCS 4649, Springer, pp. 205–215, 2007.

376. M. Sh. Levin, Combinatorial optimization in system configuration design. Autom. & Remote Control 70(3) (2009) 519–561.

377. M. Sh. Levin, Student research projects in system design. In: Proc. of 1st Int. Conf. CSEDU-2009, Lisbon, Portugal, vol. 2, pp. 67–72, 2009.

378. M. Sh. Levin, Combinatorial scheme for design of marketing strategy, Business Informatics 2(08), 42–51, 2009 (in Russian)

379. M. Sh. Levin, k-Set frameworks in multicriteria combinatorial optimisation. J. of Technology, Policy and Management, 11(1), 85–95, 2011.

380. M. Sh. Levin, Towards k-set problem frameworks in education. The 3rd Int. Conf. on Computer Supported Education CSEDU-2011, vol. 2, The Netherlands, pp. 99–104, 2011.

381. M. Sh. Levin, Restructuring in combinatorial optimization. Electronic preprint, 11 p., Febr. 8, 2011. [cs.DS]

382. M. Sh. Levin, Course on system design (structural approach). Electronic preprint, 22 p., Febr. 19, 2011. [cs.SE]

383. M. Sh. Levin, Four-layer framework for combinatorial optimization problems domain. Advances in Engineering Software 42(12), 1089–1098, 2011.

384. M. Sh. Levin, Aggregation of composite solutions: strategies, models, examples. Electronic preprint, 72 p., Nov. 29, 2011. [cs.SE]

385. M. Sh. Levin, Morphological methods for design of modular systems (a survey). Electronic preprint, 20 p., Jan. 9, 2012. [cs.SE]

386. M. Sh. Levin, Multiset estimates and combinatorial synthesis. Electronic preprint. 30 p., May 9, 2012.
387. M. Sh. Levin, Composite strategy for multicriteria ranking/sorting (methodological issues, examples). Electronic preprint. 24 p., Nov. 9, 2012. [http://arxiv.org/abs/1211.2245 [math.OC]]

388. M. Sh. Levin, Towards design of system hierarchy (research survey). Electronic preprint. 36 p., Dec. 7, 2012. [http://arxiv.org/abs/1212.1735 [math.OC]]

389. M. Sh. Levin, Clique-based fusion of graph streams in multi-function system testing. Informatica 23(3), 391–404, 2012.

390. M. Sh. Levin, Note on evaluation of hierarchical modular systems. Electronic preprint, 15 p., May 21, 2013. [http://arxiv.org/abs/1305.4917 [cs.AI]]

391. M. Sh. Levin, Towards multistage design of modular systems. Electronic preprint, 13 p., June 19, 2013. [http://arxiv.org/abs/1306.4635 [cs.AI]].

392. M. Sh. Levin, Modular System Design and Evaluation, Springer, 2015.

393. M. Sh. Levin, M. Last, Design of test inputs and their sequences in multi-function system testing, Applied Intelligence 25(1) (2006) 544-553.

394. M. Sh. Levin, A.O. Merzylyakov, Composite combinatorial scheme of test planning (example for microprocessor systems). In: V. Diekert, M. Volkov, A. Voronkov (Eds.), Proc. of IEEE Region 8 Int. Conf. Sibercon-2008, Novosibirsk, pp. 291–295, 2008.

395. M. Sh. Levin, A.V. Fimin, Combinatorial scheme for analysis of political candidates and their strategies. Information Processes 9(2), 83–92, 2009 (in Russian)

396. M. Sh. Levin, M.V. Petukhov, Multicriteria assignment problem (selection of access points). In: N. Garcia-Pedrajas et al. (Eds.), Proc. of 23rd Int. Conf. IEA/AIE 2010, LNCS 6097, part II, Springer, 277–287, 2010.

397. M. Sh. Levin, M.V. Petukhov, Connection of users with telecommunications network: Multicriteria assignment problem. J. of Telecommunications Technology and Electronics 55(12), 1532–1541, 2010.

398. M. Sh. Levin, R.I. Nuriakhmetov, Multicriteria Steiner tree problem for communication network. Electronic preprint, 11 p., Feb. 8, 2011. [http://arxiv.org/abs/1102.2524 [cs.DS]]

399. D. Li, K.D. Wong, Y.H. Hu, A.M. Sayeed, Detection, classification, tracking of targets in micro-sensor networks. IEEE Signal Processing Magazine 19(2), 17–29, 2002.

400. X. Li, S. Yu, F.A.L. Janssens, W. Glanzel, Y. Moreau, B. De Moor, Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database. JASIST 61(6), 1105–1119, 2010.

401. X. Liu, T. Murata, Detecting communities in k-partite k-uniform (hyper)networks. J. of Computer Science and Technology 26(5), 778–791, 2011.

402. X. Liu, T. Murata, K. Wakita, Extending modularity by capturing the similarity attraction feature in the null model. Electronic preprint. 10 p., Feb. 12, 2013. [http://arxiv.org/abs/1210.4007 [cs.SI]]

403. J. Lipnack, J. Stamps, Virtual Teams: Reaching across Space, Time and Organizations with Technology. Wiley, New York, 1997.

404. X. Liu, S. Yu, F.A.L. Janssens, W. Glanzel, Y. Moreau, B. De Moor, Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database. JASIST 61(6), 1105–1119, 2010.

405. X. Liu, D. Li, S. Wang, Z. Tao, Effective algorithm for detecting community structure in complex networks based on GA and clustering. In: Y. Shi, G. Dick van Albada, J. Dongarra, P.M. Sloot (eds), Proc. of the 7th Int. Conf. on Computational Science ICCS’07, Part II, LNCS 4488, Springer, 675-664, 2007.

406. X. Liu, T. Murata, Detecting communities in k-partite k-uniform (hyper)networks. J. of Computer Science and Technology 26(5), 778–791, 2011.

407. X. Liu, T. Murata, K. Wakita, Extending modularity by capturing the similarity attraction feature in the null model. Electronic preprint. 10 p., Feb. 12, 2013. [http://arxiv.org/abs/1210.4007 [cs.SI]]

408. L.A.N. Lorena, M.G. Narciso, Relaxation heuristics for a general assignment problem. EJOR 91(3), 600–610, 1996.

409. L. Lovasz, M. Simonovits, The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume. In: Proc. 31st IEEE Annual Symp. on Foundations of Computer Science (FOCS), vol. 1, 346–354, 1990.

410. L. Lovasz, M. Simonovits, Random walks in a convex body and an improved volume algorithm. RSA: Random Structures & Algorithms 4, 359–412, 1993.
411. Y. Lu, Y. Sun, G. Xu, G. Liu, A grid-based clustering algorithm for high-dimensional data streams. In: Advanced Data Mining and Applications, Springer, 824–831, 2005.
412. Z. Lu, T.K. Leen, Penalized probabilistic clustering. Neural Networks 19(6), 1528–1567, 2007.
413. N. Lucas, B. Zalik, K.R. Zalik, Sweep-hyperplan clustering algorithm using dynamic model. Informatica 25(4), 563–580, 2014.
414. U. von Luxburg, A tutorial on spectral clustering. Electronic preprint, 32 p., Nov. 2007. [http://arxiv.org/abs/0711.0189 [cs.DS]]
415. S.C. Madeira, A.L. Oliveira, Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Trans. Computat. Biol. Bioinformatics 1(1), 24–45, 2004.
416. P. Maji, S.K. Pal, RFCM: A hybrid clustering algorithm using rough and fuzzy sets. Fundamenta Informaticae 80(), 475–496, 2007.
417. B. Mannaa, Cluster editing problem for points on the real time: A polynomial time algorithm. Inform. Proc. Lett. 110, 961–965, 2010.
418. C.D. Manning, P. Raghavan, H. Schutze, Introduction to Information Retrieval. Cambridge Univ. Press, 2008.
419. T. Margush, Distance between trees. Discr. Appl. Math. 4, 281–290, 1982.
420. S. Martello, P. Toth, Knapsack Problem: Algorithms and Computer Implementation. Wiley, New York, 1990.
421. Z. Marx, I. Dagan, J.M. Buhmann, E. Shamir, Coupled clustering: A method for detecting structural correspondence. J. of Machine Learning Research 3, 747–780, 2002.
422. F. Massuli, A. Schenone, A fuzzy clustering based segmentation system as support to diagnosis in medical imaging. Artificial Intelligence in Medicine 16(00), 129–147, 1999.
423. C. Mathieu, W. Schudy, Correlation clustering with noisy input. In: Proc. of the Twenty-first Annual ACM-SIAM Symp. on Discrete Algorithms, SIAM, 712–728, 2010.
424. U. Maulik, S. Bandyopadhyay, Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. PAMI 24(12), 1650–1654, 2002.
425. A. Medius, G. Acuna, C.O. Dorso, Detection of community structure in networks via global optimization. Physica A 358, 396–405, 2005.
426. A. Mehrrotra, M.A. Trick, Cliques and clustering: A combinatorial approach. Operations Research Lett. 22(1), 1–12, 1998.
427. M. Meila, D. Heckerman, An experimental comparison of model-based clustering methods. Machine Learning 42(1-2), 9–29, 2001.
428. M. Meila Local equivalences of distances between clusterings - a geometric perspective. Machine Learning 86(3), 369–389, 2012.
429. G.W. Milligan, A Monte-Carlo study of 30 internal criterion measures for cluster-analysis. Psychometrika 46, 187–195, 1981.
430. G.W. Milligan, Clustering validation: Results and implications for applied analyses. In: P. Arabie, L. Hubert, G. DeSoete (eds), Clustering and Classification. World Scientific Publishers, River Edge, NJ, 341–375, 1996.
431. S. Mimaroglu, M. Yagci, CLICOM: Cliques for combining multiple clusterings. ESwA 39(2), 1889–1901, 2012.
432. M. Minoux, Network synthesis and optimum network design problems: models, solutions, applications, Networks 152(3), 530–554, 1989.
433. B.G. Mirkin, Group Choice. Winston, New York, 1979.
434. B.G. Mirkin, Mathematical Classification and Clustering. Kluwer, 1996.
435. B.G. Mirkin, Clustering for Data Mining: A Data Recovery Approach. Chapman & Hall/CRC, Boca Raton, FL, 2005.
436. B.G. Mirkin, L.B. Chernyi, On a distance measure between partitions of a finite set. Automation and Remote Control 31(5), 786–792, 1970.
437. B. Mirkin, I. Muchnik, Combinatorial optimization in clustering. In: D.-Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial Optimization. volume 2, Springer, New York, 261–329, 1999.
438. N. Mishra, R. Schreiber, I. Stanton, R.E. Tarjan, Clustering in social networks. In: A, Bonato, F.R.K. Chung (eds), Proc. of 5th Int. Workshop Algorithms and Models for the Web-Graph WAW 2007, LNCS 4863, Springer, 56–67, 2007.
439. M. Mitchell, Complex systems: Network thinking. Artificial Intelligence 170, 1194–1212, 2006.
440. S. Miyamoto, Fuzzy Sets in Information Retrieval and Cluster Analysis. Kluwer, Dordrecht, 1990.
441. M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning. The MIT Press, 2012.
442. S. Mola, T. Loughram, Discounting and clustering inseasoned equity offering prices. J. of Financial and Quantitative Analysis 39(1), 1–23, 2004.
443. S. Monti, P. Tamayo, J. Mesirov, T. Golub, Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52(1-2), 91–118, 2003.
444. J.W. Moon, L. Moser, On cliques in graphs. Israel J. of Mathematics 3(1), 23–28, 1965.
445. A.C. Muller, S. Nowozin, C.H. Lampert, Information theoretic clustering using minimum spanning trees. In: A. Pinz et al. (eds.), Proc. of Joint 34th DAGM and 36th OAGM Symp. Pattern Recognition, LNCS 7476, Springer, 205–2015, 2012.
446. E. Muller, I. Assent, S. Gunnamann, T. Seidl, Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data. In: Proc. of Ninth IEEE Int. Conf. on Data Mining ICDM’09, 377-386, 2009.
447. E. Muller, I. Assent, S. Gunnermann, T. Seidl, J. Dy (eds), MultiClust special issue on discovering, summarizing and using multiple clusterings. Machine Learning 98(1-2), 2015.
448. T. Murata, Detecting communities from tripartite networks. In: World Wide Web Conf. (WWW’2010), 1159–1160, 2010.
449. T. Murata, Modularity for heterogeneous networks. In: Proc. of the 21th ACM Conf. on Hypertext and Hypermedia (HyperText2010), 129–134, 2010.
450. R. Murphey, Frequency assignment problem. In: C.A. Floudas, P.M. Pardalos (Eds.), Encyclopedia of Optimization. 2nd ed., Springer, pp. 1097–1101, 2009.
451. F. Murtagh, Multidimensional Clustering Algorithms. Physica-Verlag, Vienna, 1985.
452. F. Murtagh, Comments on “Parallel Algorithms for Hierarchical Clustering and Cluster Validity”. IEEE Trans. PAMI 14(10), 1056–1057, 1992.
453. M.N. Murty, A.K. Jain, Knowledge-based clustering scheme for collection management and retrieval of library books. Pattern Recognition 28(7), 949–964, 1995.
454. L.M. Naeni, R. Berretta, P. Moscano, MA-Net: A reliable memetic algorithm for community detection by modularity optimization. In: H. Handa, H. Ishibuchi, HY.-S. Ong, K.C. Tan (eds), Proc. of the 18th Asia Pacific Symp. on Intelligent and Evolutionary Systems, Springer vol. 1, 311-323, 2015.
455. R.M. Nauss, Solving the generalized assignment problem: an optimizing and heuristic approach. INFORMS J. on Computing 15, 249–266, 2003.
456. G.I. Nemhauser, M.A. Trick, Scheduling a major college basketball conference. Operations Research 46(1), 1–8, 1998.
457. M.E.J. Newman, Fast algorithm for detecting community structure in networks. Electronic preprint. 5 p., Sep. 22, 2003. http://arxiv.org/abs/0309508 [cond-mat.stat-mech]
458. M.E.J. Newman, Detecting community structure in networks. Eur. Phys. J. B 38(2), 321–330, 2004.
459. M.E.J. Newman, Modularity and community structure in networks. PNAS 103(23), 8577–8582, 2006.
460. M.E.J. Newman, Networks: an Introduction. Oxford Univ. Press, Oxford, 2010.
461. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Electronic preprint. 16 pp., Aug. 11, 2003. http://arxiv.org/abs/0308217 [cond-mat.stat-mech]
462. Y.-H. Ng, S.-F. Chin, Problem Solving in a Dynamic Environment. World Scientific Publishing Co., Singapore, 1994.
463. E.W.T. Ngai, L. Xiu, D.C.K. Chau, Application of data mining techniques in customer relationship management: A literature review and classification. ESWA 36(2), 2592–2602, 2009.
464. T.M. Nguyen, Q.M.J. Wu, Dynamic fuzzy clustering and its application in motion segmentation. IEEE Trans. on Fuzzy Systems 21(6), 1019–1031, 2013.
465. A. Noack, R. Rotta, Multi-level algorithms for modularity clustering. Electronic preprint. 12 p., Dec. 22, 2008. http://arxiv.org/abs/0812.4073 [cs.DC]
466. Z. Nutov, I. Benjaminy, R. Yuster, A (1-1/e)-approximation algorithm for the generalized assignment problem. Oper. Res. lett. 34(3), 283–288, 2006.
467. J.V. de Oliveira, W. Pedrycz, Advances in Fuzzy Clustering and Its Applications. Wiley, 2007.
468. C. Olson, Parallel algorithms for hierarchical clustering. Parallel Comput. 21, 1313–1325, 1995.
469. M. Oosten, J.G.C. Rutten, F.C.R. Spieksma, The clique partitioning problem: Facets and patching facets. Networks 38(4), 209–226, 2001.

470. T. Opsahl, P. Panzarasa, Clustering in weighted networks. Social Networks 31(2), 155–163, 2009.

471. I.H. Osman, N. Christofides, Capacitated clustering problems by hybrid simulated annealing and tabu search. Int. Trans. on Operational Research 1(3), 317–336, 1994.

472. R.E. Osteen, J.T. Tou, A clique-detection algorithm based on neighborhoods in graphs. Int. J. of Computer & Inform. Sciences 2(4), 257–268, 1973.

473. P.R.J. Ostergard, A new algorithm for the maximum-weight clique problem. In: Electronic Notes in Discrete Mathematics, 6th Twente Workshop on Graphs and Combinatorial Optimization, vol. 3, 153–156, 1999.

474. L. Osuagwu, Political marketing: Conceptualization, dimensions and research agenda. Marketing Intelligence & Planning 26(7), 921–930, 2005.

475. T. Ozyer, R. Alhajj, Parallel clustering of high dimensional data by integrating multi-objective genetic algorithm with divide and conquer. Applied Intelligence 31(3), 318–331, 2009.

476. M.M. Ozdal, C. Ayakznat, Hypergraph models and algorithms for data-pattern-based clustering. Data Mining and Knowledge Discovery 9(1), 29–57, 2004.

477. V. Pareto, Manual of political economy. (English translation), A. M. Kelley Publishers, New York, 1971.

478. S.K. Pal, S. Mitra, Fuzzy dynamic clustering algorithm. Pattern Recogn. Lett. 11(8), 525–535, 1990.

479. M. Pavan, M. Pelillo, Dominant sets and pairwise clustering. IEEE Trans. PAMI 29(1), 167–172, 2007.

480. W. Pedrycz, Knowledge-Based Clustering: From Data to Information Granules. Wiley, Hoboken, NJ, 2005.

481. J. Pei, X. Zhang, M. Cho, H. Wang, P.S. Yu, MaPle: A fast algorithm for maximal pattern-based clustering. In: Proc. of the 3rd IEEE Int. Conf. on Data Mining (ICDM 2003), 259–266, 2003.

482. S.J. Peter, S.P. Victor, A novel algorithm for dual similarity clusters using minimum spanning tree. J. of Theoretical and Applied Information Technology 14(1), 60–66, 2010.

483. S. Pettie, V. Ramasandhram, An optimal minimum spanning tree algorithm. J. of the ACM 49(1), 16–34, 2002.

484. P. Pons, M. Latapy, Computing communities in large networks using random walks. J. of Graph Algorithms and Applications 10, 191–218, 2006.
1097.1164, 2009.

497. K. Prasad, K.B. Akhilesh, Global virtual teams: what impacts their design and performance? Team Performance Management 8(5/6), 102–112, 2002.

498. J. Puzicha, T. Hofmann, J.M. Buhmann, Theory of proximity based clustering: Structure detection by optimization. Pattern Recognition 33(4), 617-634, 2000.

499. R. Qu, E.K. Burke, B. McCollum, L.T.G. Merlot, S.Y. Lee, A survey of search methodologies and automated system development for examination timetabling. J. of Scheduling 12(1), 55–89, 2009.

500. S. Rahman, T. Wittkop, J. Baumbach, M. Martin, A. Truss, S. Boker, Exact and heuristic algorithms for weighted cluster editing. In: Comput. Syst. Bioinformatics Conf., 6(1), 391–401, 2007.

501. W. Rand, Objective criteria for the evaluation of clustering methods. J. of the American Statistical Association 66, 846–850, 1971.

502. B. Raskutti, C. Leckie, An evaluaiton of criteria for measuring the quality of clusters. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence IJCAI’99, vol. 2, 905-910, 1999.

503. F. Rajabi-Alni, Two exact algorithms for the generalised assignment problem. Electronic preprint. 13 p., Mar. 17, 2013. [http://arxiv.org/abs/1303.4031 [cs.DS]

504. J. Reichardt, S. Bornholdt, Statistical mechanics of community detection. Physical Review E, vol. 74, no. 016110, 2006.

505. J.R. Rice, R.F. Boisvert, From scientific software libraries to problem-solving environments, IEEE Comput. Sci. & Eng. 3(3) (1996) 44–53.

506. F.S. Roberts, Applied Combinatorics, Prentice Hall, Englewood Cliffs, NJ, 1984.

507. F.S. Roberts, Discrete Mathematical Models with Applications to Social, Biological and Environmental Problems. Prentice Hall, Englewood Cliffs, NJ, 1976.

508. C. Rocha, L.C. Dias, I. Dimas, Multicriteria classification with unknown categories: A clustering-sorting approach and an application to conflict management. J. of Multi-Criteria Decision Analysis 20(1-2), 13–27, 2013.

509. C. Rocha, L.C. Dias, MPOC - an agglomerative algorithm for multicriteria partially ordered clustering. 4OR 11(3), 253–273, 2013.

510. H.E. Romeijn, D.R. Morales, A class of greedy algorithms for the generalised assignment problem. Discrete Applied mathematics 103(00), 209–235, 2000.

511. C. Romero, S. Ventura, Educational data mining: A survey from 1995 to 2005. ESWA 33(00), 125–146, 2007.

512. C. Romero, S. Ventura, Educational data mining: A review of the state of the art. IEEE Trans. SMC, Part C 40(6), 601–618, 2010.

513. C. Romero, S. Ventura, M. Pechenizkiy, R.S.J.d. Baker (eds.), Handbook of Educational Data Mining, Chapman & Hall/CRC Press, 2010.

514. S. Ronen, O. Shenkar, Clustering countries on attitudinal dimensions: A review and synthesis. Academy of Management Review, 435–454, 1985.

515. G.T. Ross, R.M. Soland, A branch-and-bound algorithm for the generalized assignment problem. Math., Programming 8(1), 91–103, 1975.

516. M. Rosvall, C.T. Bergstrom, An information-theoretic framework for resolving community structure in complex networks. PNAS 104(18), 7327–7331, 2007.

517. R. Rotta, A multi-level algorithm for modularity clustering. MS thesis, Brandenburg Univ. of Technology, 2008.

518. B. Roy, Multicriteria Methodology for Decision Aiding. Kluwer, Dordrecht, 1996.

519. B. Roy, R. Slowinski, Multi-criteria assignment problem with incompatibility and capacity constraints. Annals of Operations Research, 147(1) (2006) 287-316.

520. R.Y. Rubinstein, Cross-entropy and rare-events for maximal cut and partition problems. ACM Trans. on Modeling and Computer Simulation 12(1), 27–53, 2002.

521. F. Saeed, N. Salim, A. Abdo, H. Hentabli, Combining multiple individual clusterings of chemical structures using cluster-based similarity partitioning algorithm. In: A.E. Hasssanien, A.-B.M. Salem, R. Ramadan, T.-h. Kim (eds), Proc. of 1st Int. Conf. Advanced Machine learning Technologies and Applications AMLTA 2012, CCIS 322, Springer, 276–284, 2012.

522. F. Saeed, N. Salim, A. Abdo, Voting-based consensus clustering for combining multiple clusterings of chemical structures. J. of Cheminformatics 4(37), 1–8, 2012.
523. S. Sahni, Approximate algorithms for the 0-1 knapsack problem. J. of the ACM 22(1), 115–124, 1975.
524. S. Sahni, T. Gonzalez, P-complete approximation problems. J. of the ACM 23(00), 555–565, 1976.
525. J. Salzmann, R. Behnke, M. Gag, D. Timmermann, 4-MASCLE - improved coverage aware clustering with self healing abilities. In: IEEE Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing UIC-ATC’09, 537–543, 2009.
526. D. Sasha, K. Zhang, Simple fast algorithms for editing distance between trees and related problems. SIAM J. on Computing 18(6), 1245–1262, 1989.
527. A.A.V. Sastry, K. Netti, A parallel sampling based clustering. Electronic preprint, 3 pp., Dec. 5, 2014. http://arxiv.org/abs/1412.1947 [cs.LG]
528. M. Sato-Ilic, Dynamic fuzzy clustering using fuzzy cluster loading. Int. J. General Systems 35(2), 209–230, 2006.
529. M. Sato-Ilic, L.C. Jain, Kernel based fuzzy clustering. In: M. Sato-Ilic, Innovations in Fuzzy Clustering, Springer, 89–104, 2006.
530. M. Sato-Ilic, Symbolic clustering with interval-valued data. Procedia Computer Science 6, 358–363, 2011.
531. M. Savelsbergh, A branch-and-price algorithm for the generalized assignment problem. Operations Research 45, 831–841, 1997.
532. A. Scarelli, S.C. Narula, A multicriteria assignment problem, J. of Multi-Criteria Dec. Anal. 11(2), 65–74, 2002.
533. S. Schaeffer, Graph clustering. Computer Science Review 1(1), 27–64, 2007.
534. A. Schenker, M. Last, H. Bunke, A. Kandel, Classification of web documents using graph matching. Int. J. of Pattern Recognition and Artificial Intelligence 18(3), 475–496, 2004.
535. A. Schuffenhaer, N. Brown, P. Ertl, J.L. Jenkins, P. Selzer, J. Hamon, Clustering and rule-based classificaitons of chemical structures evaluated in the biological activity space. J. Chem. Inf. Model. 47(2), 325–336, 2007.
536. S. Selim, K. Alsultan, A simulated annealing algorithm for the clustering problems. Pattern Recognition 24(10), 1003–1008, 1991.
537. H.M. Selim, R.G. Askin, A.J. Vakharia, Cell formation in group technology: review, evaluation and direction for future research. Computers & Industrial Engineering 34(1), 3–20, 1998.
538. S. Shama, K. Gopolan, S. Nanda, Viking: A multi-spanning-tree Ethernet architecture for metropolitan area and cluster networks. In: Proc. of Twenty-third Annual Joint Conf. of the IEEE Computer and Communication Societies INFOCOM 2004, vol. 4, 2283–2294, 2004.
539. R. Shamir, R. Sharan, D. Tsur, Cluster graph modification problems. In: Proc. of 28th WG, Springer, LNCS 2573, 379–316, 2002.
540. R. Shamir, R. Sharan, D. Tsur, Cluster graph modification problems. Discrete Applied Mathematics 144 (12), 173–182, 2004.
541. O. Shapira, I. Tishby, Stability and model selection in k-means clustering. Machine Learning 80(2-3), 213–243, 2010.
542. L.G. Shapiro, G.C. Stockman, Computer Vision. Prentice-Hall, NJ, 2001.
543. G. Sheikholeslami, C. Chattterjee, A. Zhang, WaveCluster: a wavelet-based clustering approach for spatial data in very large databases. The VLDB J. 8(3-4), 289–304, 2000.
544. B. Shekar, N.M. Murty, G. Krishna, A knowledge-based clustering scheme. Pattern Recogn. Lett. 5(4), 253–259, 1987.
545. R.N. Shepard, Multidimensional scaling: Tree-fitting, and clustering. Science 210(4468), 390–398, 1980.
546. H. Shikawa, Y. Fujiwara, M. Onizuka, Fast algorithm for modularity-based graph clustering. In: Proc. of the Twenty-Seventh AAAI Conf. on Artificial Intelligence, 1170–1176, 2013.
547. D.B. Shmoys, E. Tardos, An approximation algorithm for the generalized assignment problem. Math. program. 62(3), 461–474, 1993.
548. R. Shimcha, O. Shenkar, Clustering countries on attitudinal dimensions: A review and synthesis. Academy of Management Review, 435–454, 1985.
549. H.A. Simon, The structure of ill-structured problems, Artificial Intelligence 4(3) (1973) 181–201.
550. M.P. Sinka, D.W. Corne, A large benchmark dataset for web document clustering. Soft Computing Systems: Design, Management and Applications 87, 881–890, 2002.
551. D. Skoutas, D. Sacharidis, A. Simitsis, T. Sellis, Ranking and clustering web services using multicriteria dominance relationships. IEEE Trans. on Service Computing 3(3), 163–177, 2010.
552. S.P. Smith, R.C. Dubes, Stability of hierarchical clustering. Pattern Recognition 12(3), 177–187, 1980.
553. D.A. Spielman, S.-H. Teng, Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proc. of the 36th Ann. ACM Symp. on Theory of Comput., 81–90, 2004.
554. D.A. Spielman, S.-H. Teng, A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning. SIAM J. Comput. 42(1), 1–26, 2013.
555. G. Srinivasan, A clustering algorithm for machine cell formation in group technology using minimum spanning tree. The Int. J. of Production Research 32(9), 2149–2158, 1994.
556. A. Srivastava, S.H. Joshi, W. Mio, X. Liu, Statistical shape analysis: Clustering, learning, and testing. IEEE Trans. PAMI 27(4), 590–602, 2005.
557. M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering techniques. TR 00-034, Dept. of CS, U. of Minnesota, May 2000.
558. R.E. Stepp, R.S. Michalski, Conceptual clustering of structured objects: A goal-oriented approach. Artif. Intellent. 28(1), 43–69, 1986.
559. G.L. Stewart, A meta-analytic review of relationships between team design and team performance. J. of Management 32(1), 29–55, 2006.
560. A. Strehl, J. Ghosh, Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. of Machine Learning Research 3, 583–617, 2002.
561. C.S. Sung, H.W. Jin, A Tabu-search-based heuristic for clustering. Pattern Recognition 33(5), 849–858, 2000.
562. M. Surdeanu, J. Turno, A. Ageno, A hybrid unsupervised approach for document clustering. In: Proc. of the 11th ACM SIGKDD Int. Conf. on Knowledge Discovery in Data Mining, 685–690, 2005.
563. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction. The MIT Press, Boston, 1998.
564. C. Swamy, Correlation clustering: maximizing agreements via semidefinite programming. In: Proc. of the Fifteenth Annual ACM-SIAM Symp. on Discrete Algorithms, SIAM, 526–527, 2004.
565. P. Szolovits (ed), Artificial Intelligence in Medicine. Westview Press, Boulder, CO, 1982.
566. M. Szummer, T. Jaakkola, Partially labeled classification with Markov random walks. In: T.G. Dietrich, S. Becker, Z. Ghahramani (eds), Advances in Neural Information Processing Systems (NIPS 2001), vol. 14, 945–952, 2001.
567. J. Tabor, K. Misztal, Detection of elliptical shapes via cross-entropy clustering. In: J.M. Sanches, L. Mico, J.S. Cardoso (eds), Proc. of 6th Iberian Conf. Pattern Recognition and Image Analysis IbPRIA 2013, LNCS 7887, Springer, 656–663, 2013.
568. J. Tabor, P. Spurek, Cross-entropy clustering. Pattern Recognition 47(9), 3046–3059, 2014.
569. K.-C. Tai, The tree-to-tree correction problem. J. of the ACM 26(3), 422–433, 1979.
570. B. Taksar, E. Segal, D. Koller, Probabilistic clustering in relational data. In: Proc. Seventeenth Int. Joint Conf. on Artificial Intelligence (IJCAI), 870–887, 2001.
571. E. Tanaka, A metric between unrooted and unordered trees and its bottom-up computing method. IEEE Trans. PAMI 16(12), 1233–1238, 1994.
572. E. Tanaka, K. Tanaka, The tree-to-tree editing problem. Int. J. Pattern Recogn. and Art. Intell. 2(2), 221–240, 1988.
573. Z. Tarapata, On a multicriteria shortest path problem. Int. J. Appl. Math. Comput. Sci., 17(2) (2007) 269–287.
574. M. Tavana, CROSS: a multicriteria group-decision-making model for evaluating and prioritizing advanced-technology projects at NASA. Interfaces 33(3), 40–56, 2003.
575. P. Tecuanhuehue-Vera, J.A. Carrasco-Ochoa, J.F. Martinez-Trinidad, genetic algorithm for multidimensional scaling over mixed and incomplete data. In: J.A. Carrasco-Ochoa, J.F. Martinez-Trinidad, J.A.O. Lopez, K.L. Boyer et al. (eds), Proc. of 4th Mexican Conf. on Pattern Recognition MCRP, LNCS 7329, Springer, 3226–3235, 2012.
576. P. Tillapart, S. Thammarojnakul, T. Thumthawatworn, P. Santiprabhob, An approach to hybrid clustering and routing in wireless sensor networks. In: Proc. of 2005 IEEE Aerospace Conf., 1–8, 2005.
577. J. Tillet, R. Rao, F. Sahin, Cluster-head identification in ad hoc sensor networks using particle swan...
optimization. In: 2002 IEEE Int. Conf. on Personal Wireless Communications, 201–205, 2002.
578. E. Tomita, A. Tanaka, H. Takahashi, The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science 363(1), 28–42, 2006.
579. A.P. Topchy, M.H.C. Law, A.K. Jain, A.L. Fred, Analysis of consensus partition in cluster ensemble. In: Proc. of Fourth IEEE Int. Conf. on Data Mining ICDM 2004, 225–232, 2004.
580. W.S. Torgerson, Multidimensional scaling: I. Theory and method. Psychometrika 17, 401–419, 1952.
581. M.A. Trick, A linear relaxation heuristic for the generalized assignment problem. Nav. Res. Logist. 39(00), 137–151, 1992.
582. A. Trifunovic, W.J. Knottenbelt, Parallel multilevel algorithms for hypergraph partitioning. J. of Parallel and Distributed Computing 68(5), 563–581, 2008.
583. R.K. Tripathi, Y.N. Singh, N.K. Verma, N-leach, a balanced cost cluster-heads selection algorithm for wireless sensor networks. In: Proc. of 2012 Nat. Conf. on Communications (NCC), 1–5, 2012.
584. C.-F. Tsai, C.-C. Yen, ANGEL: a new effective and efficient hybrid clustering techniques for large databases. In: Z.-H. Zhou, H. Li, Q. Yang (eds), Proc. of 11th Pacific-Asia Conf. on Advances in Knowledge Discovery and Data Mining PKDD 2007, LNCS 4426, Springer, Springer, Berlin, 817–824, 2007.
585. C.-F. Tsai, H.-F. Yeh, J.-F. Chang, N.-H. Liu, PHD: an efficient data clustering scheme using partition space technique for knowledge discovery in large databases. Appl. Intell. 33(1), 39–53, 2010.
586. C.-W. Tsai, H.-J. Song, M.-C. Chiang, A hyper-heuristic clustering algorithm. In: Proc. of 2012 IEEE Int. Conf. on Systems, Man, and Cybernetics, 2839–2844, 2012.
587. L.Y. Tseng, S.B. Yang, A genetic approach to the automatic clustering problem. Pattern Recognit. 34(2), 415–424, 2001.
588. K. Tsuda, T. Kudo, Clustering graphs by weighted substructure mining. In: Proc. 23rd Int. Conf. on Machine Learning, 953–960, 2006.
589. M. Tubaishat, S.K. Madria, Sensor networks: an overview. Potentials, IEEE 22(2), 20-23, 2003.
590. K. Tumer, A.K. Agogino, Ensemble clustering with voting active clusters. Pattern Recognition Lett. 29(14), 1947–1953, 2008.
591. G. Valiente, Algorithms on trees and graphs. Springer, Berlin, 2002.
592. D.W. Van der Merwe, A.P. Engelbrecht, Data clustering using particle swarm optimization. In: The 2003 Congress on Evolutionary Computation CEC’03, vol. 1, 215–220, 2003.
593. C.J. Van Rijsbergen, Information Retrieval, 2nd ed., Dept. of CS, Univ. of Glasgow, 1979.
594. J. Van Ryzin (Ed.), Classification and Clustering. Academic Press, New York, 1977.
595. V.N. Vapnik, The Nature of Statistical Learning Theory. 2nd ed., Springer, Berlin, 2000.
596. A. Vashist, C.A. Kulikowsky, I. Muchnik, Ortholog clustering on a multipartite graph. IEEE/ACM Trans. Comput. Biology and Bioinformatics 4(1), 17–27, 2007.
597. A. Vega-Pons, J. Ruiz-Schulcloper, A survey of clustering ensemble algorithms. Int. J. of Pattern Recogn. Artificial Intelligence 25(11), 337–372, 2011.
598. E.M. Voorhees, Implementing agglomerative hierarchic clustering algorithms for use in document retrieval. Information Processing & Management 22(6), 465–476, 1986.
599. S. Voss, Capacitated minimum spanning trees. In: C.A. Floudas, P.M. Pardalos (Eds.), Encyclopedia of Optimization. 2nd ed., Springer, pp. 347–357, 2009.
600. K. Wakita, T. Tsusumi, Finding community structure in mega-scale social networks. Electronic preprint. 9 p., Feb. 8, 2007. [http://arxiv.org/abs/0702.2048 [cs.CY]]
601. C.S. Wallace, D.M. Boulton, An information measure for classification. The Computer J. 11, 185–194, 1968.
602. D. Walsh, L. Rybicki, Symptom clustering in advanced cancer. Supportive Care in Cancer 14(8), 831–836, 2006.
603. J.T.-L. Wang, K. Zhang, Finding similar consensus between trees: an algorithm and distance hierarchy. Pattern Recognition 34(1), 127–137, 2001.
604. H. Wang, W. Wang, J. Yang, P.S. Yu, Clustering by pattern similarity in large data sets. In: M.J. Franklin, B. Moon, A. Ailamaki (eds), Proc. of the 2002 ACM SIGMOD Int. Conf. on Management of Data, 394–405, 2002.
605. C.-H. Wang, Outlier identification and market segmentation using kernel-based clustering techniques. Expert Systems with Applications 36(2), Part 2, 3744–3750, 2009.
606. X. Wang, X. Wang, D.M. Wikes, A divide-and-conquer approach for minimum spanning tree-based clustering. IEEE Trans. KDE 21(7), 945–958, 2009.

607. S. Wang, W. Chaovalitwongse, R. Babuska, Machine learning algorithms in bipedal robot control. IEEE Trans. SMC, Part A 42(5), 728–743, 2012.

608. Q. Wang, E. Fleury, Overlapping community structure and modular overlaps in complex networks. In: T. Ozyer, Z. Erdem, J. Rokne, S. Khoury (eds.), Mining Social Networks and Security Informatics, Lecture Notes in Social Networks, Springer, 15–40, 2013.

609. S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications. Cambridge Univ. Press, Cambridge, 1994.

610. S. White, P. Smyth, A spectral clustering approach to finding communities in graph. In: SIAM Data Mining Conference, 76–84, 2005.

611. A.F. Wells, Structural Inorganic Chemistry. Oxford Univ. Press, 2012.

612. E. Wenger, R. McDermott, W.M. Snyder, Cultivating Communities of Practice. Harvard Business Review Press, Cambridge, MA, 2002

613. P. Willett, Similarity and Clustering in Chemical Information Systems. Research Studies Press, Letchworth, 1987.

614. P. Willett, Recent trends in hierarchical document clustering: a critical review. Information Processing & Management 24(5), 577–597, 1988.

615. R.J. Wilson, Introduction to Graph Theory. Academic Press, New York, 1972

616. S. Winebrenner, D. Brulles, The Cluster Grouping Handbook: How to Challenge the Gifted Students and Improve Achievement for All. Free Spirit Publishing, Minneapolis, MN, 2008.

617. M.A. Wong, A hybrid clustering method for identifying high-density clusters. J. of the American Statistical Association 77(380), 841–847, 1982.

618. C.C. Wong, C.C. Chen, A hybrid clustering and gradient descent approach for fuzzy modeling. IEEE Trans. SMC, Part B 29(6), 686–693, 1999.

619. S. Wu, T.W.S. Chow, PRSOM: A new visualization method by hybridizing multidimensional scaling and self-organizing map. IEEE Trans. on Neural Networks 16(6), 1362–1380, 2005.

620. Z. Wu, R. Lealhy, An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Trans. PAMI 11(00), 1101–1113, 1993.

621. C. Wynants, Network Synthesis Problems. Kluwer Academic Publishers, Dordrecht, 2001.

622. J. Xie, S. Kelley, B.K. Szymanski, Overlapping community detection in networks: The state-of-the-art and comparative study. ACM Computing Surveys 45(4), art. 443, 2013

623. R. Xu, D. Wunsch II, Survey on clustering algorithms. IEEE Trans. Neural Networks 16(3), 645–678, 2005.

624. R. Xu, D. Wunsch, Clustering. Wiley-IEEE Press, 2009.

625. X. Xu, N. Yuruk, Z. Feng, T.A.J. Schweiger, SCAN: a structural clustering algorithm for networks. In: Proc. of the 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining SIGKDD’07, 824–833, 2007.

626. Y. Xu, V. Olman, D. Xu, Minimum spanning trees for gene expression data clustering. Genome Informatics 12, 24–33, 2001.

627. Z. Xu, M. Xia, Distance and similarity measures for hesitant fuzzy sets. Information Sciences 181(11), 2128–2138, 2011.

628. Z. Xu, Distance, similarity, correlation, entropy measures and clustering algorithms for hesitant fuzzy information. In: Z. Xu, Hesitant Fuzzy Sets Theory. Springer, 165–279, 2014.

629. R.R. Yager, On the theory of bags. Int. J. of General Systems 13(1), 23–37, 1986.

630. R. Yager, Intelligent control of the hierarchical agglomerative clustering process. IEEE Trans. SMC 30(6), 835–845, 2000.

631. B. Yan, S. Gregory, Detecting communities in networks by merging cliques. In: Proc. 2009 IEEE Int. Conf. on Intelligent Computing and Intelligent Systems (ICIS 2009), 832–836, 2009.

632. Q. Yang, J. Wu, Keep it simple: A case-base maintenance policy based on clustering and information theory. In: Advances in Artificial Intelligence, Springer, 102–114, 2000.

633. J. Yang, J. Leskovec, Overlapping community detection at scale: A nonnegative matrix factorization approach. In: Proc. of Sixth ACM Int. Conf. on Web Search and Data Mining WSDM 2013, 587–596, 2013.
634. J. Yang, J. Leskovec, Overlapping communities explain core-periphery organization of networks. Proc. of the IEEE 102(12), 1892–1902, 2014.
635. J. Yang, J. Leskovec, Structure and overlaps of ground-truth communities in networks. ACM Trans. on Intelligent Systems and Technology (TIST) 15(2), art. 26, 2014.
636. J. Yang, J. Leskovec, Designing and evaluation network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213, 2015.
637. Y. Yang, M.S. Kamel, An aggregated clustering approach using multi-ant colonies algorithms. Pattern Recognition, 39(7), 1278–1289, 2006.
638. G. Yang, M. Xiao, E. Cheng, J. Zhang, A cluster-head selection scheme for underwater acoustic sensor networks. In: Proc. of 2010 Int. Conf. on Communication and Mobile Computing (CMC), vol. 3, 188–191, 2010.
639. A.C. Yao, An $O(|E|\log \log |V|)$ algorithm for finding minimum spanning trees. Inform. Process. Lett. 4(1), 21–23, 1975.
640. D.Y. Yeh, A dynamic programming approach to the complete set partitioning problem. BIT Numerical Mathematics, 26(4), 467–474, 1986.
641. K.Y. Yeung, W.L. Ruzzo, Principal components analysis for clustering gene expression data. Bioinformatics 17(9), 763–774, 2001.
642. O. Younis, S. Fahmy, HEED: A hybrid, energy-efficient, distributed clustering approach for Ad Hoc sensor networks. IEEE Trans. Mob. Comput. 3(4), 366–379, 2004.
643. O. Younis, M. Krunz, S. Ramasubramanian, Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Networks 20(3), 20–25, 2006.
644. M. Yu, K.K. Leung, A. Malvankar, A dynamic clustering and energy efficient routing technique for sensor networks. IEEE Trans. Wireless Communications 6(8), 3069–3079, 2007.
645. F.W. Yang, Multidimensional Scaling: History, Theory, and Applications. Psychology Press, 2013.
646. W.W. Zachary, An information flow model for conflict and fission in small groups. J. of Anthropological Research 33, 452–473, 1977.
647. L.A. Zadeh, Fuzzy sets. Information and Control 8(3), 338–353, 1965.
648. D. Zaharie, F. Zamfirache, V. Negru, D. Pop, H. Popa, A comparison of quality criteria for unsupervised clustering of documents based on differential evolution. In: Proc. of Int. Conf. on Knowledge Engineering, Principles and Techniques KEPT2007, 25–32, 2007.
649. C.T. Zahn, Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Computers 20(1), 68–86, 1971.
650. M. Zait, H. Messatta, A comparative study of clustering methods. Future Generation Computer Systems 13(2-3), 149–159, 1997.
651. A. Zakarian, A. Kusiak, Forming teams: an analytical approach. IIE Transactions 31, 85–97, 1999.
652. O. Zmir, O. Etzioni, Grouper: a dynamic clustering interface to Web search results. Computer Networks 31(11), 1361–1374, 1999.
653. T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering method for very large databases. In: Proc. 1996 ACM SIGMOD Int. Conf. on Management of Data, vol. 25, 103–114, 1996.
654. D. Zhang, Y. Dong, Semantic, hierarchical, online clustering of web search results. In: Advanced Web Technologies and Applications, Springer, 69–78, 2004.
655. C.W. Zhang, H.L. Ong, An efficient solution to biobjective generalized assignment problem. Advances in Engineering Software 38(00), 50–58, 2007.
656. X. Zhang, Z. Xu, Hesitant fuzzy agglomerative hierarchical clustering algorithm. Int. J. of Systems Science 46(3), 562–576, 2015.
657. S. Zhong, J. Ghosh, A unified framework for model-based clustering. J. of Machine Learning Research 4, 1001–1037, 2003.
658. S. Zhong, J. Ghosh, Generative model-based document clustering: a comparative study. Knowl. Inf. Syst. 8(3), 374–384, 2005.
659. S. Zhong, T.M. Khoshgoftaar, S.V. Nath, A clustering approach to wireless network intrusion detection. In: Proc. of 17th IEEE Int. Conf. on Tools with Artificial Intelligence ICTAI 2005, 190–196, 2005.
660. C. Zhong, D. Miao, R. Wang, A graph-theoretical clustering method based on two rounds of minimum spanning trees. Pattern Recognition 43(3), 752–766, 2010.
661. D. Zhou, J. Li, H. Zha, Ding, Zhou, Jia Li, Hongyuan Zha, A new Mallows distance based metric for comparing clusterings. In: Proc. of the 22nd Int. Conf. on Machine Learning ICML 2005, 1028–1035, 2005.

662. A. Zimek, Correlation Clustering. PhD Thesis, Faculty of Mathematics, Informatics, and Statistics, Univ., of Munchen, 2008.

663. J. Zinnes, D. MacKay, Probabilistic multidimensional scaling: complete and incomplete data. Psychometrika 48, 27–48, 1983.

664. E. Ziv, M. Middendorf, C. Wiggins, Information-theoretic approach to network modularity. Physical Review E, vol. 71, no. 046117, 2005.

665. D. Zogg, E. Shafai, H.P. Geering, Fault diagnosis for heat pumps with parameters identification and clustering. Control Engineering Practice 14(12), 1435–1444, 2006.

666. C. Zopounidis, M. Doumpos, Multicriteria classification and sorting methods: a literature review. EJOR 138(2), 229–246, 2002.

667. J. Zupan, Clustering of Large Data Sets. Research Studies Press Ltd., Taunton, UK, 1982.