Advantages of modified ADM formulation: constraint propagation analysis of Baumgarte-Shapiro-Shibata-Nakamura system

Gen Yoneda* and Hisa-aki Shinkai†

* Department of Mathematical Sciences, Waseda University, Okubo, Shinjuku, Tokyo, 169-8555, Japan
† Computational Science Division Institute of Physical & Chemical Research (RIKEN), Hirosawa, Wako, Saitama, 351-0198 Japan

(Dated: September 29, 2002 (gr-qc/0204002) to appear in Phys. Rev. D.)

Several numerical relativity groups are using a modified ADM formulation for their simulations, which was developed by Nakamura et al (and widely cited as Baumgarte-Shapiro-Shibata-Nakamura system). This so-called BSSN formulation is shown to be more stable than the standard ADM formulation in many cases, and there have been many attempts to explain why this re-formulation has such an advantage. We try to explain the background mechanism of the BSSN equations by using eigenvalue analysis of constraint propagation equations. This analysis has been applied and has succeeded in explaining other systems in our series of works. We derive the full set of the constraint propagation equations, and study it in the flat background space-time. We carefully examine how the replacements and adjustments in the equations change the propagation structure of the constraints, i.e. whether violation of constraints (if it exists) will decay or propagate away. We conclude that the better stability of the BSSN system is obtained by their adjustments in the equations, and that the combination of the adjustments is in a good balance, i.e. a lack of their adjustments might fail to obtain the present stability. We further propose other adjustments to the equations, which may offer more stable features than the current BSSN equations.

I. INTRODUCTION

One of the current most important topics in the field of numerical relativity is to find a formulation of the Einstein equations which gives us stable and accurate longterm evolution. We all know that simulating space-time and matter based on general relativity is the essential research direction to go in the future, but we do not have a definite recipe for controlling numerical blow-ups. We concentrate our discussion on free evolution of the Einstein equations based on the 3+1 (space + time) decomposition of space-time, which requires solving the constraints only on the initial hypersurface and monitors the violation (error) of the calculation by checking constraints during the evolution.

Over the decades, the Arnowitt-Deser-Misner (ADM) [1] formulation has been treated as the default for numerical relativists. (More precisely, the version introduced by Smarr and York [2] was taken as the default, which we denote the standard ADM formulation hereafter.) Although the ADM formulation mostly works for gravitational collapses or cosmological models in numerical treatments, it does not satisfy the requirement for longterm evolution e.g. the studies of gravitational wave sources.

As we mentioned in our previous paper [3], we think we can classify the current efforts of formulating equations for numerical relativity in the following three ways: (1) apply a modified ADM (BSSN) formulation [4, 5], (2) apply a first-order hyperbolic formulation (see the references e.g. in [6, 7, 8]), or (3) apply an asymptotically constrained system [9, 10, 11, 12].

The first refers to using a modified ADM formulation, originally proposed by Nakamura in late 80s, and subsequently modified by Nakamura-Oohara and Shibata-Nakamura [4]. This introduces conformal decomposition of the ADM variables, a new variable for calculating Ricci curvature, and adjusts the equations of motion using constraints. The advantage of this formulation was reintroduced by Baumgarte and Shapiro [5], and therefore this is often cited as the BSSN formulation, which we follow also. The BSSN equations are now widely used in the large scale numerical computations, including coalescence of binary neutron stars [13] and binary black holes [14].

The second and third efforts use similar modifications such as introductions of new variables and/or adjustments of the equations, but differ in their purposes: to construct a hyperbolic formulation or to construct a formulation which constraints will decay or propagate away. The latter is intended to control numerical evolution so as the constrained manifold is its attractor. While the hyperbolic formulations have been extensively studied in this direction, we think the worrisome point in the discussion is the treatment of the non-principal part which is ignored in the hyperbolic formulation. As Kidder, Scheel and Teukolsky [8] reported recently, unless we reduce the effect of the non-principal part of the equations we may not get an advantages of hyperbolic formulation for numerical results [6, 15].

Through the series of studies [3, 6, 12, 16], we propose a systematic treatment for constructing a robust evolution system against perturbative error. We call it an asymp-
totically constrained (or asymptotically stable) system if the error decays itself. The idea is to adjust evolution equations using constraints (we term it an adjusted system), and to decide the coefficients (multipliers) by analyzing constraint propagation equations. We propose to apply an eigenvalue analysis of the propagation equations of the constraints, especially in its Fourier components so as to include the non-principal part in the analysis. The characters of eigenvalues will be changed according to the adjustments to the original evolution equations. We conjectured that the constraint violation which was occurred during the evolution will decay (if negative real eigenvalues) or propagate away (if pure imaginary eigenvalues).

This conjecture was affirmatively confirmed to explain the numerical behaviors: wave propagation in the Maxwell equations [12], in the Ashtekar version of the Einstein equations [12], and in the ADM formulation (flat space-time background) [16]. The advantage of this construction scheme is that it can be applied to a formulation which is not a first-order hyperbolic form, such as to the ADM formulation [3, 16]. We think therefore our proposal is an alternative way to control/predict the violation of constraints. (We believe that the idea of the constraint propagation analysis first appeared in Frittelli [17], where she made hyperbolicity classification for the standard ADM formulation).

The purpose of this article is to apply this constraint propagation analysis to the BSSN formulation, and understand how each improvement contributes to more stable numerical evolution. Together with numerical comparisons with the standard ADM case [18, 19], this topic has been studied by many groups with different approaches. Using numerical test evolutions, Alcubierre et al. [20] found that the essential improvement is in the process of replacing terms by constraints, and that the eigenvalues of the BSSN evolution equations has fewer "zero eigenvalues" than those of ADM, and they conjectured that the instability can be caused by "zero eigenvalues" that violate "gauge mode". Miller [21] applied von Neumann's stability analysis to the plane wave propagation, and reported that BSSN has a wider range of parameters that give us stable evolution. These studies provide some supports regarding the advantage of BSSN, while it was also shown an example of an ill-posed solution in BSSN (as well in ADM) [22]. (Inspired by BSSN’s conformal decomposition, several related hyperbolic formulations have also been proposed [23, 24, 25].)

We think our analysis will offer a new vantage point on the topic, and contribute an alternative understanding of its background. Consequently, we propose more effective improvement of the BSSN system which has not yet been tried in numerical simulations.

The construction of this paper is as follows. We review the BSSN system in §II, and there also we discuss where the adjustments are applied. In §III we apply our constraint propagation analysis to show how each improvement works, and in §IV we extend our study to seek a better formulation which might be obtained by small steps. We only consider the vacuum space-time throughout the article, but the inclusion of matter is straightforward.

## II. BSSN Equations and their Constraint Propagation Equations

### A. BSSN equations

We start presenting the standard ADM formulation, which expresses the space-time with a pair of 3-metric $\gamma_{ij}$ and extrinsic curvature $K_{ij}$. The evolution equations become

$$\partial_t^A \gamma_{ij} = -2\alpha K_{ij} + D_i \beta_j + D_j \beta_i, \quad (2.1)$$

$$\partial_t^B K_{ij} = \alpha R_{ij}^{ADM} + \alpha K K_{ij} - 2\alpha K^k K_j^k - D_i D_j \alpha + (D_i \beta^k) K_{kj} + (D_j \beta^k) K_{ik} + \beta^k D_k K_{ij}, \quad (2.2)$$

where $\alpha, \beta_i$ are the lapse and shift function and $D_i$ is the covariant derivative on 3-space. The symbol $\partial_t^A$ means the time derivative defined by these equations, and we distinguish them from those of the BSSN equations $\partial_t$, which will be defined in (2.15)-(2.19). The associated constraints are the Hamiltonian constraint $\mathcal{H}$ and the momentum constraints $\mathcal{M}_i$:

$$\mathcal{H}^{ADM} = R^{ADM} + K^2 - K_{ij} K^{ij}, \quad (2.3)$$

$$\mathcal{M}_i^{ADM} = D_j K^i_j - D_i K. \quad (2.4)$$

The widely used notation [4, 5] is to introduce the variables $(\varphi, \tilde{\gamma}_{ij}, K, \tilde{A}_i, \tilde{\Gamma}^i)$ instead of $(\gamma_{ij}, K_{ij})$, where

$$\varphi = (1/12) \log(\det(\gamma_{ij})), \quad (2.5)$$

$$\tilde{\gamma}_{ij} = e^{-\varphi} \gamma_{ij}, \quad (2.6)$$

$$K = \gamma^{ij} K_{ij}, \quad (2.7)$$

$$\tilde{A}_i = e^{-\varphi} (K_{ij} - (1/3)\gamma_{ij} K), \quad (2.8)$$

$$\tilde{\Gamma}^i = \tilde{\Gamma}^i_{jk} \gamma^{jk}. \quad (2.9)$$

The new variable $\tilde{\Gamma}^i$ was introduced in order to calculate Ricci curvature more accurately. $\tilde{\Gamma}^i$ also contributes to make the system re-produce wave equations in its linear limit. In the BSSN formulation, Ricci curvature is not calculated as

$$R_{ij}^{ADM} = \partial_k \Gamma^k_{ij} - \partial_i \Gamma^k_{kj} + \Gamma^k_{ij} \Gamma^l_k - \Gamma^l_k \Gamma^k_{lj}, \quad (2.10)$$

but

$$R_{ij}^{BSSN} = R_{ij}^\varphi + \tilde{R}_{ij}, \quad (2.11)$$

$$R_{ij}^\varphi = -2 \tilde{D}_i \tilde{D}_j \varphi - 2 \tilde{\gamma}_{ij} \tilde{D}^k \tilde{D}_k \varphi + 4 (\tilde{D}_i \varphi \tilde{D}_j \varphi) - 4 \tilde{\gamma}_{ij} (\tilde{D}^k \varphi) (\tilde{D}_k \varphi), \quad (2.12)$$

$$\tilde{R}_{ij} = -(1/2) \gamma^{kl} \partial_k \tilde{\gamma}_{lj} + \tilde{\gamma}_{lj} (\partial_j \tilde{\Gamma}^k + \tilde{\Gamma}^k \tilde{\Gamma}_{lij} - \tilde{\Gamma}_{ijkl} \gamma^k) + 2 \gamma^m \tilde{\Gamma}^k_{lm} \tilde{\Gamma}_{klj}, \quad (2.13)$$
where $\tilde{D}_i$ is covariant derivative associated with $\tilde{g}_{ij}$. These are weakly equivalent, but $R_{ij}^{BSSN}$ does have wave operator apparently in the flat background limit, so that we can expect more natural wave propagation behavior. Additionally, BSSN requires us to impose the conformal factor as
\[ \tilde{\gamma} := \text{det} \tilde{g}_{ij} = 1, \quad (2.14) \]
during the evolution. This is a kind of definition, but can also be thought of as a constraint. We will return to this point shortly.

BSSN’s improvements are not only the introductions of new variables, but also the replacement of terms in the evolution equations using the constraints. The purpose of this article is to understand and to identify which improvement works for the stability. Before doing that we first show the standard set of the BSSN evolution equations:

\[
\begin{align*}
\partial_t^B \varphi &= -(1/6)\alpha K + (1/6)\beta^i(\partial_i \varphi) + (\partial_i \beta^i), \\
\partial_t^B \tilde{g}_{ij} &= -2\alpha \tilde{A}_{ij} + \tilde{\gamma}_{ik}(\partial_j \beta^k) + \tilde{\gamma}_{jk}(\partial_i \beta^k) - (2/3)\tilde{\gamma}_{ij}(\partial_i \beta^k) + \beta^k(\partial_\beta \tilde{g}_{ij}), \\
\partial_t^B \tilde{B}^{ij} &= -\tilde{D}^i\tilde{D}_j\alpha + \alpha \tilde{A}_{ij} \tilde{A}^{ij} + (1/3)\alpha K^2 + \beta^i(\partial_i K), \\
\partial_t^B \tilde{A}_{ij} &= -e^{-\varphi}(D_i D_j \alpha)^{TF} + e^{-\varphi}\alpha(R_{ij}^{BSSN})^{TF} + \alpha K \tilde{A}_{ij} - 2\alpha \tilde{A}_{ik} \tilde{A}^k_j + (\partial_i \beta^k) \tilde{A}_{kj} + (\partial_j \beta^k) \tilde{A}_{ki} - (2/3)(\partial_i \beta^k) \tilde{A}_{ij} + \beta^k(\partial_k \tilde{A}_{ij}), \\
\partial_t^B \tilde{T}^{ij} &= -2(\partial_j \alpha) \tilde{A}^j + 2\alpha(\tilde{\Gamma}^j_{ik} \tilde{A}^k) - (2/3)\tilde{\gamma}^{ij}(\partial_j K) + 6\tilde{A}^j(\partial_j \varphi) - \partial_j(\beta^k(\partial_\beta \tilde{g}^{ij}) - \tilde{\gamma}^{kj}(\partial_k \beta^i)) - \tilde{\gamma}^{ki}(\partial_k \beta^i) + (2/3)\tilde{\gamma}^{ij}(\partial_k \beta^k).
\end{align*}
\]

We next summarize the constraints in this system. The normal Hamiltonian and momentum constraints (the “kinematic” constraints) are naturally written as
\[
\begin{align*}
H^{BSSN} &= R^{BSSN} + K^2 - K_{ij} K^{ij}, \\
M_i^{BSSN} &= M_i^{ADM},
\end{align*}
\]
where we use Ricci scalar defined by (2.11). Additionally, we regard the following three as the constraints (the “algebraic” constraints):
\[
G^i = \tilde{\Gamma}^i - \tilde{\gamma}^{jk} \tilde{\Gamma}^i_{jk},
\]
where the first two are from the algebraic definition of the variables (2.8) and (2.9), and the (2.24) is from the requirement of (2.14). Hereafter we write $H^{BSSN}$ and $M^{BSSN}$ simply as $H$ and $M$ respectively.

Taking careful account of these constraints, (2.20) and (2.21) can be expressed directly as
\[
\begin{align*}
A &= \tilde{A}_{ij} \tilde{\gamma}^{ij}, \\
S &= \tilde{\gamma} - 1,
\end{align*}
\]
where $A$ and $S$ are $4 \times 4$ matrices. These are left which correspond to two gravitational polarization modes.

\begin{itemize}
\item \textbf{B. Adjustments in evolution equations}
\end{itemize}

Next, we show the BSSN evolution equations (2.15)-(2.19) again, identifying where the terms are replaced using the constraints, (2.20)-(2.24).

By a straightforward calculation, we get:
\[
\begin{align*}
\partial_t^B \varphi &= \partial_t^A \varphi + (1/6)\alpha A - (1/12)\tilde{\gamma}^{-1}(\partial_j S)\beta^j, \\
\partial_t^B \tilde{g}_{ij} &= \partial_t^A \tilde{g}_{ij} - (2/3)\alpha \tilde{g}_{ij} A + (1/3)\tilde{\gamma}^{-1}(\partial_k S)\beta^k \tilde{g}_{ij},
\end{align*}
\]
\[
\begin{align*}
\partial_t^B K &= \partial_t^A K - (2/3)\alpha K A - \alpha H + \alpha e^{-4\varphi}(\tilde{D}, G) , \\
\partial_t^B A_{ij} &= \partial_t^A A_{ij} + ((1/3)\alpha \tilde\gamma_{ij} K - (2/3)\alpha \tilde A_{ij}) A + ((1/2)\alpha e^{-4\varphi}(\tilde{\partial}_k \tilde\gamma_{ij}) - (1/6)\alpha e^{-4\varphi}\tilde\gamma_{ij} \tilde\gamma^{-1}(\partial_k S)) G^k \\
&\quad + \alpha e^{-4\varphi}\tilde\gamma_{ij}(\partial_j G^k) - (1/3)\alpha e^{-4\varphi}\tilde\gamma_{ij}(\partial_k G^k) , \\
\partial_t^B \tilde{\Gamma}^i &= \partial_t^A \tilde{\Gamma}^i + (- (2/3)(\partial_j \alpha)\tilde\gamma^{ji} - (2/3)\alpha (\partial_j \tilde\gamma^{ji}) - (1/3)\alpha \tilde\gamma^{ji} \tilde\gamma^{-1}(\partial_j S) + 4\alpha \tilde\gamma^{ji}(\partial_j \varphi)) A - (2/3)\alpha \tilde\gamma^{ji}(\partial_j A) \\
&\quad + 2\alpha \tilde\gamma^{ji} M_j - (1/2)(\partial_j \beta^i)\tilde\gamma^{ji} \tilde\gamma^{-1}(\partial_j S) + (1/6)(\partial_j \beta^i)\tilde\gamma^{ji} \tilde\gamma^{-1}(\partial_j S) + (1/3)(\partial_j \beta^i)\tilde\gamma^{ji} \tilde\gamma^{-1}(\partial_j S) \\
&\quad + (5/6)\beta^k \tilde\gamma^{-2}\tilde\gamma^{ji}(\partial_k S)(\partial_j S) + (1/2)\beta^k \tilde\gamma^{-1}(\partial_k \tilde\gamma^{ji})(\partial_j S) + (1/3)\beta^k \tilde\gamma^{-1}(\partial_k \tilde\gamma^{ji})(\partial_k S) .
\end{align*}
\] (2.29) (2.30) (2.31)

where \(\partial_t^A\) denotes the part of no replacements, i.e. the terms only use the standard ADM evolution equations in its time derivatives.

From (2.27)-(2.31), we understand that all the BSSN evolution equations are \textit{adjusted} using constraints. This fact will give us the importance of the scaling constraint \(S = 0\) and the tracefree operation \(A = 0\) during the evolution.

As we have pointed out in the case of adjusted ADM systems [3, 16], certain combinations of adjustments (replacements) in the evolution equations change the eigenvalues of constraint propagation equations drastically. For example, all negative eigenvalues can be negative real by applying Detweiler’s adjustment [26] or its simplified version. One common fact we found is that such a case has an adjustment which breaks time reversal parity of the original equation. That is, with a change of time integration direction \(\partial_t \to -\partial_t\), an adjusted term might become effective if it breaks time reversal symmetry. (This time asymmetric feature was first implemented as a “lambda-system” in [9].) Unfortunately, for the case of the BSSN evolution equations, (2.27)-(2.31), all the above adjustments keep the time reversal symmetry. So that we can not expect direct decays of constraint violation in the present form. We will give the details on this point later.

\section{III. CONSTRAINT PROPAGATION ANALYSIS IN FLAT SPACE-TIME}

\subsection{A. Procedures}

We start this section overviewing the procedures and our goals. In our series of previous works [3, 12, 16], we have concluded that eigenvalue analysis of the constraint propagation equations are quite useful for explaining or predicting how the constraint violation grows.

Suppose we have a set of dynamical variables \(u^a(x^i, t)\), and their evolution equations

\[
\partial_t u^a = f(u^a, \partial_t u^a, \cdots) ,
\] (3.1)

and the (first class) constraints

\[
C^\alpha (u^a, \partial_t u^a, \cdots) \approx 0.
\] (3.2)

For monitoring the violation of constraints, we propose to investigate the evolution equations of \(C^\alpha\) (constraint propagation),

\[
\partial_t C^\alpha = g(C^\alpha, \partial_t C^\alpha, \cdots).
\] (3.3)

(We do not mean to integrate (3.3) numerically, but rather to evaluate them analytically in advance.) In order to analyze the contributions of all RHS terms in (3.3), we propose to reduce (3.3) in ordinary differential equations by Fourier transformation,

\[
\partial_t \tilde{C}^\alpha = \tilde{g}(\tilde{C}^\alpha) = M^\alpha_\beta \tilde{C}^\beta,
\] (3.4)

where \(C(x, t)^\alpha = \int \tilde{C}(k, t)^\alpha \exp(ik \cdot x)d^3k\), and then to analyze the set of eigenvalues, say \(\Lambda^\alpha\), of the coefficient matrix, \(M^\alpha_\beta\), in (3.4). We call \(\Lambda_s\) and \(\Lambda_\beta\) the constraint amplification factors (CAFs) of (3.3) and constraint propagation matrix, respectively. Our guidelines to have ‘better stability’ are that

(A) If the CAFs have a \textit{negative real-part} (the constraints are forced to be diminished), then we see more stable evolution than a system which has a positive real-part.

(B) If the CAFs have a \textit{non-zero imaginary-part} (the constraints are propagating away), then we see more stable evolution than a system which has zero CAFs.

We found heuristically that the system becomes more stable when more \(\Lambda_s\) satisfy the above criteria [6, 12]. We note that these guidelines are confirmed numerically for wave propagation in the Maxwell system and in the Ashtekar version of the Einstein system [12], and also for error propagation in Minkowski space-time using adjusted ADM systems [16]. Supporting theorems for above (A) was recently discussed [31].

The above features of the constraint propagation, (3.3), will differ when we modify the original evolution equations. Suppose we add (adjust) the evolution equations using constraints

\[
\partial_t u^a = f(u^a, \partial_t u^a, \cdots) + F(C^\alpha, \partial_t C^\alpha, \cdots),
\] (3.5)

then (3.3) will also be modified as

\[
\partial_t C^\alpha = g(C^\alpha, \partial_t C^\alpha, \cdots) + G(C^\alpha, \partial_t C^\alpha, \cdots).
\] (3.6)

Therefore, the problem is how to adjust the evolution equations so that their constraint propagation satisfies the above criteria as much as possible.
B. BSSN constraint propagation equations

Our purpose in this section is to apply the above procedure to the BSSN system. The set of the constraint propagation equations, \( \partial_t (\mathbf{H}, \mathbf{M}, \mathbf{g}^i, \mathbf{A}, S)^T \), turns to be quite long and not elegant (is not a first-order hyperbolic and includes many non-linear terms), and we put them in Appendix. In order to understand the fundamental structure, we hereby show an analysis on the flat space-time background.

For the flat background metric \( g_{\mu \nu} = \eta_{\mu \nu} \), the first order perturbation equations of (2.27)-(2.31) can be written as

\[
\begin{align*}
\partial_t (1) b & = -(1/6)(1) K + (1/6)(\kappa \phi - 1)(1) A, \\
\partial_t (1) k_{ij} & = -2(1) \tilde{A}_{ij} - (2/3)(\kappa \tilde{\gamma} - 1) \delta_{ij}(1) A, \\
\partial_t (1) k & = - (\partial_t \partial_j (1) b) + (\kappa \kappa_1 - 1) \partial_j(1) \tilde{g}^j - (\kappa \kappa_2 - 1)(1) \mathbf{H}, \\
\partial_t (1) \tilde{A}_{ij} & = (1) \mathbf{R}^{\text{BSSN}}_{ij} (1) \mathbf{H} - (1) \tilde{D}_i \tilde{D}_j (1) \mathbf{H} + (\kappa \kappa_1 - 1) \delta_{ij}(1) \tilde{g}^j - (1/3)(\kappa \kappa_2 - 1) \delta_{ij}(1) \tilde{g}^j, \\
\partial_t (1) \tilde{g}^i & = -(4/3)(\partial_t (1) K) - (2/3)(\kappa \tilde{\gamma} - 1)(1) A + 2(\kappa \tilde{\gamma} - 1)(1) A, \\
\partial_t (1) S & = -2 \kappa \kappa_1 (1) A, \\
\partial_t (1) A & = (\kappa \kappa_1 - \kappa \kappa_2)(1) A.
\end{align*}
\]

where we introduced parameters \( \kappa \), all \( \kappa = 0 \) reproduce no adjustment case from the standard ADM, and all \( \kappa = 1 \) correspond to the BSSN equations. We express them as

\[
\kappa_{\text{adj}} := (\kappa \phi, \kappa \tilde{\gamma}, \kappa \kappa_1, \kappa \kappa_2, \kappa \kappa_1, \kappa \kappa_2, \kappa \tilde{\gamma}_1, \kappa \tilde{\gamma}_2).
\]

Constraint propagation equations at the first order in the flat space-time, then, become:

\[
\begin{align*}
\partial_t (1) \mathbf{H} & = (\kappa \kappa_1 - (2/3) \kappa \tilde{\gamma}_1 - (4/3) \kappa \phi - 2) \partial_j(1) A + 2(\kappa \tilde{\gamma} - 1)(1) \mathbf{M}_j, \\
\partial_t (1) \mathbf{M}_i & = -((2/3) \kappa \kappa_1 + (1/2) \kappa \kappa_1 - (1/3) \kappa \kappa_2 + (1/2)) \partial_t(1) \tilde{g}^i + ((2/3) \kappa \kappa_2 - (1/2)) \partial_t(1) \mathbf{H}, \\
\partial_t (1) \tilde{g}^i & = 2(\kappa \kappa_1 - 1)(1) \mathbf{M}_i + (-2(2/3) \kappa \tilde{\gamma}_1 - (1/3) \kappa \tilde{\gamma}_2)(1) A, \\
\partial_t (1) S & = -2 \kappa \kappa_1 (1) A, \\
\partial_t (1) A & = (\kappa \kappa_1 - \kappa \kappa_2)(1) A.
\end{align*}
\]

We will discuss CAFs of (3.13)-(3.17).

C. Effect of adjustments

We check CAFs of the BSSN equations in detail. The list of examples is shown also in Table I. Hereafter we let \( k^2 = k_1^2 + k_2^2 + k_3^2 \) for Fourier wave numbers.

1. The no-adjustment case, \( \kappa_{\text{adj}} = (\text{all zeros}) \). This is the starting point of the discussion. In this case,

\[
\text{CAF}_S = (0 \times 7), \pm \sqrt{-k^2},
\]

i.e., \( (0 \times 7), \pm \text{pure imaginary} \) (1 pair). In the standard ADM formulation, which uses \( (\gamma_{ij}, K_{ij}) \), CAFs are \((0,0, \pm \text{Pure Imaginary}) \) [16]. Therefore if we do not apply adjustments in the BSSN equations the constraint propagation structure is quite similar to that of the standard ADM.

2. For the BSSN equations, \( \kappa_{\text{adj}} = (\text{all 1s}) \),

\[
\text{CAF}_S = (0 \times 3), \pm \sqrt{-k^2} \text{ (3 pairs)}
\]

i.e., \( (0 \times 3), \pm \text{Pure Imaginary} \) (3 pairs). The number of pure imaginary CAFs is increased over that of No.1, and we conclude this is the advantage of adjustments used in the BSSN equations.

3. No \( S \)-adjustment case. All the numerical experiments so far apply the scaling condition \( S \) for the conformal factor \( \phi \). The \( S \)-originated terms appear many places in the BSSN equations (2.15)-(2.19), so that we suspect non-zero \( S \) is a kind of source of the constraint violation. However, since all \( S \)-originated terms do not appear in the flat space-time background analysis, [no adjusted terms in (3.7)-(3.11)] our analysis is independent of the \( S \)-constraint. (Remark that we do not deny the effect of \( S \)-adjustment in other situation.)

4. No \( A \)-adjustment case. The trace (or traceout) condition for the variables is also considered necessary (e.g. [27]). This can be checked with
constraint adjustment and the importance of the new

5. No \( G^i \)-adjustment case. The introduction of \( \Gamma^i \) is the key in the BSSN system. If we do not apply adjustments by \( G^i \), \( \kappa_{adj} = (1, 1, 0, 1, 0, 0, 1, 1) \) then we get

\[
CAF_s = (0 (\times 7), \pm \sqrt{-k^2}),
\]

which is the same with No.1. That is, adjustments due to \( G^i \) terms are effective to make a progress from ADM.

6. No \( M \)-adjustment case. This can be checked with \( \kappa_{adj} = (1, 1, 1, 1, 1, 1, \kappa) \), and we get

\[
CAF_s = (0, \pm \sqrt{-k^2} (2 \text{ pairs}), \\
\pm \sqrt{-k^2}(-1 + 4\kappa + |1 - 4\kappa|)/6, \\
\pm \sqrt{-k^2}(-1 + 4\kappa - |1 - 4\kappa|)/6).
\]

If \( \kappa = 0 \), then \((0 (\times 7), \pm \sqrt{k^2/3})\), which is \((0 (\times 7), \pm \text{real value})\). Interestingly, these real values indicate the existence of the error growing mode together with the decaying mode. Alcubierre et al. [20] found that the adjustment due to the momentum constraint is crucial for obtaining stability. We think that they picked up this error growing mode. Fortunately at the BSSN limit \( (\kappa = 1) \), this error growing mode disappears and turns into a propagation mode.

7. No \( \mathcal{H} \)-adjustment case. The set \( \kappa_{adj} = (1, 1, 1, \kappa, 1, 1, 1, 1) \) gives

\[
CAF_s = (0 (\times 3), \pm \sqrt{-k^2} (3 \text{ pairs})),
\]

independently to \( \kappa \). Therefore the effect of \( \mathcal{H} \)-adjustment is unimportant according to this analysis, i.e. on flat space-time background. (Remark again that we do not deny the effect of \( \mathcal{H} \)-adjustment in other situation.)

These tests are on the effects of adjustments. We will consider whether much better adjustments are possible in the next section.

We list the above results in Table I. (Table I includes a column of diagonalizability of constraint propagation matrix \( M \), of which importance was pointed out in [31].) The most characteristic points of the above are No. 5 and No.6 that denote the contribution of the momentum constraint adjustment and the importance of the new variable \( \Gamma^i \). It is quite interesting that the unadjusted BSSN equations (case 1) does not have apparent advantages from the ADM system. As we showed in the case 5 and 6, if we missed a particular adjustment, then the expected stability behavior occasionally gets worse than the starting ADM system. Therefore we conclude that the better stability of the BSSN formulation is obtained by their adjustments in the equations, and the combination of the adjustments is in a good balance. That is, a lack of their adjustments might fail to obtain the stability of their system.

### IV. PROPOSALS OF IMPROVED BSSN SYSTEMS

In this section, we consider the possibility whether we can obtain a system which has much better properties; whether more pure imaginary CAFs or negative real CAFs.

#### A. Heuristic examples

(A) A system which has 8 pure imaginary CAFs:

One direction is to seek a set of equations which make fewer zero CAFs than the standard BSSN case (No.2 in the previous section). Using the same set of adjustments in (3.7)-(3.11), CAFs are written in general

\[
CAF_s = \left(0, \pm \sqrt{-k^2\kappa_{A1}\kappa_{\Gamma 2}} (2 \text{ pairs}), \right.
\]

\[
\pm \text{complicated expression}, \\
\pm \text{complicated expression}.
\]

The terms in the first line certainly give four pure imaginary CAFs (two positive and negative real pairs) if \( \kappa_{A1}\kappa_{\Gamma 2} > 0 (< 0) \). Keeping this in mind, by choosing \( \kappa_{adj} = (1, 1, 1, 1, 1, \kappa, 1, 1) \), we find

\[
CAF_s = \left(0, \pm \sqrt{-k^2 (2 \text{ pairs}),} \right.
\]

\[
\pm \sqrt{-k^2(2 + \kappa + |\kappa - 4|)/6,} \\
\pm \sqrt{-k^2(2 + \kappa - |\kappa - 4|)/6}.
\]

Therefore the adjustment \( \kappa_{adj} = (1, 1, 1, 1, 4, 1, 1, 1) \) gives

\[
CAF_s = \left(0, \pm \sqrt{-k^2} (4 \text{ pairs})\right),
\]

which is one step advanced from BSSN’s according our guidelines.

We note that such a system can be obtained in many ways, e.g. \( \kappa_{adj} = (0, 0, 1, 0, 2, 1, 0, 1/2) \) also gives four pairs of pure imaginary CAFs.

(B) A system which has negative real CAF:

One criterion to obtain a decaying constraint mode (i.e.
an asymptotically constrained system) is to adjust an
evolution equation as it breaks time reversal symmetry [3, 
16]. For example, we consider an additional adjustment to
the BSSN equation as
\[ \partial_t \tilde{\gamma}_{ij} = \partial_t^B \tilde{\gamma}_{ij} + \kappa_{SD} \alpha \tilde{\gamma}_{ij} \mathcal{H}, \]  
(4.1)
which is a similar adjustment of the simplified Detweiler-
type [26] that was discussed in [3]. The first order con-
straint propagation equations on the flat background
space-time become
\[ \begin{align*}
\partial_t (1) \mathcal{H} &= \partial_t \gamma_{ij} A - (3/2) \kappa_{SD} \partial_t \gamma_{ij} (1) \mathcal{H}, \\
\partial_t (1) M_i &= (1/6) \partial_t ^{(1)} \mathcal{H} + (1/2) \partial_t \gamma_{ij} \mathcal{Y}^i, \\
\partial_t (1) \mathcal{Y}^i &= -\partial_t (1) A + (1/2) \kappa_{SD} \partial_t (1) \mathcal{H} + 2(1) M_i, \\
\partial_t (1) A &= -(\partial_t \gamma_{ij} (1) b)^T F + (1) \mathcal{R}_{ij} ^{BSSN} T F, \\
\partial_t (1) S &= -2(1) A + 3 \kappa_{SD} (1) \mathcal{H},
\end{align*} \]
where we wrote only additional terms to (3.13)-(3.17).
The CAFs become
\[ \text{CAFs} = \begin{cases} 
0 \times (2), & \\
\pm \sqrt{-k^2} (3 \text{ pairs}), & (3/4) k^2 \kappa_{SD} \leq \sqrt{k^2 (-\kappa_8 + (9/16) k^2 \kappa_{SD}^2)}
\end{cases} \]
in which the last one becomes negative real if \( \kappa_{SD} < 0. \)

\( \text{(C) Combination of above (A) and (B)} \)

Naturally we next consider both adjustments:
\[ \begin{align*}
\partial_t \tilde{\gamma}_{ij} &= \partial_t^B \tilde{\gamma}_{ij} + \kappa_{SD} \alpha \tilde{\gamma}_{ij} \mathcal{H} \\
(4.2)
\end{align*} \]

\[ \text{B. Possible adjustments} \]

In order to break time reversal symmetry of the evolution equations \([3, 9, 16], \) the possible simple adjustments are
(1) to add \( \mathcal{H}, \mathcal{S} \) or \( \mathcal{G}^i \) terms to the equations of \( \partial_t \phi, \partial_t \tilde{\gamma}_{ij}, \) or \( \partial_t \tilde{\Gamma}^i, \) or (2) to add \( M_i \) or \( A \) terms to \( \partial_t K \) or \( \partial_t \tilde{A}_{ij}. \) We
write them generally, including the above proposal (B), as
\[ \begin{align*}
\partial_t \phi &= \partial_t^B \phi + \kappa_{\phi H} \alpha \mathcal{H} + \kappa_{\phi \mathcal{G}^i} \alpha \tilde{D}_i \mathcal{G}^k, \\
\partial_t \gamma_{ij} &= \partial_t^B \gamma_{ij} + \kappa_{SD} \alpha \gamma_{ij} \mathcal{H} + \kappa_{\gamma_{ij} \mathcal{G}^i} \alpha \tilde{D}_i \mathcal{G}^k + \kappa_{\gamma \mathcal{G}^j} \alpha \tilde{D}_j \mathcal{G}^k + \kappa_{\gamma \mathcal{S} \mathcal{S}} \alpha \gamma_{ij} \mathcal{S} + \kappa_{\gamma \mathcal{S} \mathcal{G}^i} \alpha \tilde{D}_i \mathcal{S}, \\
\partial_t K &= \partial_t^B K + \kappa_{K,M} \alpha \tilde{D}_j \mathcal{M}_k, \\
\partial_t \tilde{A}_{ij} &= \partial_t^B \tilde{A}_{ij} + \kappa_{\mathcal{A} M1} \alpha \tilde{D}_j \mathcal{M}_k + \kappa_{\mathcal{A} M2} \alpha \tilde{D}_j \mathcal{M}_j + \kappa_{\mathcal{A} \mathcal{A} 1} \alpha \gamma_{ij} \mathcal{A} + \kappa_{\mathcal{A} \mathcal{A} 2} \alpha \tilde{D}_j \mathcal{A}, \\
\partial_t \tilde{\Gamma}^i &= \partial_t^B \tilde{\Gamma}^i + \kappa_{\tilde{\Gamma} H} \alpha \tilde{D}_i \mathcal{H} + \kappa_{\tilde{\Gamma} \mathcal{G}^i} \alpha \mathcal{G}^i + \kappa_{\tilde{\Gamma} \mathcal{G}^j} \alpha \tilde{D}_j \mathcal{G}^i + \kappa_{\tilde{\Gamma} \mathcal{G}^j} \alpha \tilde{D}_j \mathcal{G}^i,
\end{align*} \]
where \( \kappa \) are possible multipliers (all \( \kappa = 0 \) reduce the system the standard BSSN evolution equations).

\[ \text{We show the effects of each terms in Table II. The} \]

\( \text{CAF}s \) in the table are on the flat space background. We see several terms produce negative real-part in CAFs, 
which might improve the stability than the previous sys-
tem. (Table II includes again a column of diagonalizability
of constraint propagation matrix \( M. \) Diagonalizable
ones are expected to reflect the predictions from eigen-
value analysis. That is, the eigenvalue analysis with diag-

\[ \partial_t \tilde{A}_{ij} = \partial_t^B \tilde{A}_{ij} - \kappa_{\mathcal{A} M2} \alpha (\tilde{D}_j \mathcal{M}_j) \]  
(4.3)
where the second one produces the 8 pure imaginary
CAF{s}. The additional terms in the constraint propaga-
tion equations (3.13)-(3.17) are
\[ \begin{align*}
\partial_t (1) \mathcal{H} &= \partial_t \gamma_{ij} A - (3/2) \kappa_{SD} \partial_t \gamma_{ij} (1) \mathcal{H}, \\
\partial_t (1) M_i &= (1/6) \partial_t (1) \mathcal{H} + (1/2) \partial_t \gamma_{ij} \mathcal{Y}^i \\
&- \kappa_{SD} \partial_t (1) \mathcal{G}^k, \\
\partial_t (1) \mathcal{Y}^i &= -\partial_t (1) A + (1/2) \kappa_{SD} \partial_t (1) \mathcal{H} + 2(1) M_i, \\
\partial_t (1) A &= -3 \kappa_{SD} \partial_t (1) \mathcal{G}^k, \\
\partial_t (1) S &= -2(1) A + 3 \kappa_{SD} (1) \mathcal{H}.
\end{align*} \]

We then obtain
\[ \text{CAFs} = \begin{cases} 
0, \pm \sqrt{-k^2} (3 \text{ pairs}), & \\
(3/4) k^2 \kappa_{SD} \leq \sqrt{k^2 (-\kappa_8 + (9/16) k^2 \kappa_{SD}^2)}
\end{cases} \]
which reproduces case (A) when \( \kappa_{SD} = 0, \kappa_8 = 1, \) and
case (B) when \( \kappa_8 = 0. \) These CAFs can become (0, pure
imaginary (3 pairs), complex numbers with a negative
real part (1 pair)), with an appropriate combination of
\( \kappa_8 \) and \( \kappa_{SD}. \)
with $\kappa_{AM2} > 0$, CAFs on the flat background are 7 negative real CAFs.

(E) A system which has 6 negative CAFs

The below two adjustments will make 6 negative real CAFs, while they also produce one positive real CAF (a constraint violating mode). The effectiveness is not clear at this moment, but we think they are worth to be tested in numerical experiments.

(E1) With $\kappa_{fG2} < 0$,

$$\partial_t \tilde{\gamma}_{ij} = \partial_t^{BSSN} \tilde{\gamma}_{ij} \tau + \kappa_{fG2} \alpha \tilde{\gamma}_i (\tilde{D}_j \tilde{G}^k). \quad (4.10)$$

(E2) With $\kappa_{fG2} < 0$,

$$\partial_t \tilde{\Gamma}^i = \partial_t^{BSSN} \tilde{\Gamma}^i \tau + \kappa_{fG2} \alpha \tilde{D}^i \tilde{D}_j \tilde{G}^j. \quad (4.11)$$

V. CONCLUDING REMARKS

Applying the constraint propagation analysis, we tried to understand why and how the so-called BSSN (Baumgarte-Shapiro-Shibata-Nakamura) re-formulation works better than the standard ADM equations in general relativistic numerical simulations. Our strategy was to evaluate eigenvalues of the constraint propagation equations in their Fourier modes, which method succeeded to explain the stability properties in many other systems in our series of works.

We have studied step-by-step where the replacements in the equations affect and/or newly added constraints work, by checking whether the error of constraints (if it exists) will decay or propagate away. Alcubierre et al [20] pointed out the importance of the replacement (adjustment) to the evolution equation using the momentum constraint, and our analysis clearly explains why they concluded this is the key. Not only this adjustment, we found, but also other adjustments and other introductions of new constraints also contribute to making the evolution system more stable. We found that if we missed a particular adjustment, then the expected stability behavior occasionally gets worse than the ADM system. We further propose other adjustments of the set of equations which may have better features for numerical treatments.

The discussion in this article was only in the flat background space-time, and may not be applicable directly to the general numerical simulations. However, we rather believe that the general fundamental aspects of constraint propagation analysis are already revealed in this article. This is because, for the ADM and its adjusted cases, we found that the better formulations in the flat background are also better in the Schwarzschild space-time, while there are differences on the effective adjusting multipliers or the effective coordinate ranges[3, 16].

We have not shown any numerical tests here. However, recently, the proposal (B) in §IV was examined numerically using linear wave initial data and confirmed to be effective for controlling the violation of the Hamiltonian constraint with our predicted multiplier signature [28]. The systematic numerical comparisons between different formulations are underway [29], and we expect to have a chance to report them in near future. We are also trying to explain the stability of Laguna-Shoemaker’s implemented BSSN system [30] using the constraint propagation analysis.

There may not be the almighty formulation for any models in numerical relativity, but we believe our guidelines to find a better formulation in a systematic way will contribute a progress of this field. We hope the predictions in this paper will help the community to make further improvements.

Acknowledgements

HS thanks T. Nakamura and M. Shibata for their comments, and he appreciates the hospitality of the Centre for Gravitational Wave Physics, the Pennsylvania State University, where the part of this work has been done. HS is supported by the special postdoctoral researchers’ program at RIKEN. This work was supported partially by the Grant-in-Aid for Scientific Research Fund of Japan Society of the Promotion of Science, No. 14740179.

[1] R. Arnowitt, S. Deser and C.W. Misner, in Gravitation: An Introduction to Current Research, ed. by L.Witten, (Wiley, New York, 1962).
[2] J.W. York, Jr., in Sources of Gravitational Radiation, ed. by L.Smarr, (Cambridge, 1979); L. Smarr, J.W. York, Jr., Phys. Rev. D17, 2529 (1978).
[3] H. Shinkai and G. Yoneda, Class. Quantum Grav. 19, 1027 (2002).
[4] T. Nakamura and K. Oohara, in Frontiers in Numerical Relativity edited by C.R. Evans, L.S. Finn, and D.W. Hobill (Cambridge Univ. Press, Cambridge, England, 1989). M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995).
[5] T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999).
[6] H. Shinkai and G. Yoneda, Class. Quant. Grav. 17, 4799 (2000).
[7] L. Lehner, Class. Quantum Grav. 18, R25 (2001).
[8] L. E. Kidder, M. A. Scheel, S. A. Teukolsky, Phys. Rev. D 64, 064017 (2001).
[9] O. Brodbeck, S. Frittelli, P. H"ubner, and O.A. Reula, J. Math. Phys. 40, 909 (1999).
[10] F. Siebel and P. H"ubner Phys. Rev. D 64, 024021 (2001).
[11] H. Shinkai and G. Yoneda, Phys. Rev. D60, 101502 (1999).
[12] G. Yoneda and H. Shinkai, Class. Quant. Grav. 18, 441
The constraint propagation equations of the BSSN can be written as follows.}

\[
\begin{align*}
\partial_t \mathcal{H} &= \left( (2/3) \alpha K + (2/3) \alpha A + \beta^k \partial_k \right) \mathcal{H} + \left( -4e^{-4\varphi} \alpha (\partial_t \varphi) \tilde{\gamma}^{kj} - 2e^{-4\varphi} (\partial_t \varphi) \tilde{\gamma}^{kj} \right) \mathcal{M}_j \\
&+ \left( -2e^{-4\varphi} \tilde{A}_k \partial_j - e^{-4\varphi} (\partial_t \tilde{A}_k) \tilde{\gamma}^{kj} - e^{-4\varphi} (\partial_t \varphi) A - e^{-4\varphi} \tilde{\beta}^k \partial_k \partial_j \right) \\
&+ (1/2) e^{-4\varphi} \beta^j \gamma_{-1}^k \partial_j \partial_k + (1/2) e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k + (2e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k - 3/2) e^{-4\varphi} (\partial_t \beta^k) \partial_j \\
&+ (2e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k - 1/2) e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k + (1/2) e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k + (2e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k - 3/2) e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k \\
&+ (1/3) e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k + (1/3) e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k - (1/2) e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k - (1/2) e^{-4\varphi} \gamma_{-1}^k \partial_j \partial_k \\
&+ (4/9) \alpha K A - (8/9) \alpha K^2 + (4/3) e^{-4\varphi} (\partial_t \varphi) \tilde{\gamma}^{ij} + (8/3) e^{-4\varphi} (\partial_t \varphi) (\partial_t \tilde{\gamma}^{lk}) \\
&+ (1/4) \alpha K A - (8/9) \alpha K^2 + (4/3) e^{-4\varphi} (\partial_t \varphi) \tilde{\gamma}^{ij} + (8/3) e^{-4\varphi} (\partial_t \varphi) (\partial_t \tilde{\gamma}^{lk}) \\
&+ 2e^{-4\varphi} (\partial_t \alpha) \tilde{\gamma}^{jk} \partial_k + e^{-4\varphi} \tilde{\gamma}^{jk} (\partial_t \partial_k \alpha) A, \tag{A1}
\end{align*}
\]

\[
\begin{align*}
\partial_t \mathcal{M}_i &= \left( - (1/3) \alpha (\partial_t \varphi) + (1/6) \partial_i \right) \mathcal{H} + \alpha K \mathcal{M}_i + \left( -4e^{-4\varphi} \tilde{\kappa} m (\partial_t \varphi) \tilde{\gamma}_{\mu i} - 1/2 \right) e^{-4\varphi} \tilde{\kappa} m \tilde{\gamma}^{kl} (\partial_t \tilde{\gamma}_{\mu i}) \\
&+ (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} (\partial_t \partial_{\tilde{\gamma}_{\mu i}}) + (1/2) e^{-4\varphi} (\partial_t \varphi) \tilde{\gamma}_{\mu i} - (1/4) \alpha e^{-4\varphi} (\partial_t \tilde{\gamma}_{\mu i}) (\partial_t \tilde{\gamma}_{\mu i}) + e^{-4\varphi} \tilde{\kappa} m (\partial_t \varphi) \tilde{\gamma}_{\mu i} \partial_m \\
&+ (1/2) e^{-4\varphi} (\partial_t \varphi) \partial_i - (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} + (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} + (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} + (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} \\
&+ (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} + (1/2) e^{-4\varphi} (\partial_t \alpha) \partial_i - (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} - (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} \\
&+ (1/2) e^{-4\varphi} (\partial_t \alpha) \partial_i + (1/2) e^{-4\varphi} (\partial_t \varphi) \tilde{\gamma}_{\mu i} + (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} + (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} \\
&+ (1/2) e^{-4\varphi} (\partial_t \alpha) \partial_i + (1/2) e^{-4\varphi} (\partial_t \varphi) \tilde{\gamma}_{\mu i} + (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} + (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} \\
&+ (1/2) e^{-4\varphi} (\partial_t \alpha) \partial_i + (1/2) e^{-4\varphi} (\partial_t \varphi) \tilde{\gamma}_{\mu i} + (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} + (1/2) e^{-4\varphi} \tilde{\gamma}_{\mu i} \partial_{\mu i} \right).
\tag{A2}
\end{align*}
\]

\[
\begin{align*}
\partial_t \mathcal{G}^j &= 2\alpha \tilde{\gamma}_{ij} \mathcal{M}_j + \left( - (1/2) \beta^k \tilde{\gamma}^{kl} \partial_l \partial_{\tilde{\gamma}_{ij}} - (1/2) \beta^k \tilde{\gamma}^{kl} \partial_l \partial_{\tilde{\gamma}_{ij}} + (1/2) \beta^k \tilde{\gamma}^{kl} \partial_l \partial_{\tilde{\gamma}_{ij}} - (1/2) \beta^k \tilde{\gamma}^{kl} \partial_l \partial_{\tilde{\gamma}_{ij}} \\
&+ (1/2) (\partial_m \beta^l) \tilde{\gamma}^{ijkl} \partial_l \partial_{\tilde{\gamma}_{ij}} + (1/3) (\partial_l \beta^j) \tilde{\gamma}^{ijkl} \partial_l \partial_{\tilde{\gamma}_{ij}} \right) + \left( + 4\alpha \tilde{\gamma}_{ij} (D_j \varphi) - \alpha \tilde{\gamma}_{ij} \partial_j - (\partial_t \varphi) \tilde{\gamma}_{ij} \right) A,
\tag{A3}
\end{align*}
\]

\[
\begin{align*}
\partial_t \mathcal{S} &= + \beta^k (\partial_k \mathcal{S}) - 2\alpha \mathcal{M}_k - 2\alpha \mathcal{M}_k, \\
\partial_t \mathcal{A} &= - \alpha K + \beta^k \partial_k \mathcal{A}.
\tag{A4}
\end{align*}
\]
The flat background linear order equations, (3.13)-(3.17), were obtained from these expression.

| No. in text. | Constraints (number of components) | diag? | CAFs in Minkowski background |
|--------------|------------------------------------|-------|-----------------------------|
| 0. standard ADM | use use - - use adj use adj use adj use adj | yes | (0, 0, 3, 3) |
| 1. BSSN no adjustment | use use use use use use use use | yes | (0, 0, 0, 0, 0, 0, 3, 3) |
| 2. the BSSN | use adj | no | (0, 0, 0, 3, 3, 3, 3, 3) |
| 3. no S adjustment | use adj | no | no difference in flat background |
| 4. no A adjustment | use adj | no | (0, 0, 0, 3, 3, 3, 3, 3) |
| 5. no G adjustment | use adj | no | (0, 0, 0, 0, 0, 0, 3, 3) |
| 6. no M adjustment | use adj use use adj use adj use adj use adj use adj | no | (0, 0, 0, 0, 0, 0, 3, 3) |
| 7. no H adjustment | use use adj use adj use adj use adj use adj use adj | no | (0, 0, 0, 3, 3, 3, 3, 3) |

TABLE I: Summary of constraints (number of components) in text. The right column shows CAFs, where $\Im$ and $\Re$ means pure imaginary and real eigenvalue, respectively. No.0 (standard ADM) is shown in [16].

| adjustment | CAFs | diag? | effect of the adjustment |
|------------|------|-------|--------------------------|
| $\partial \phi \, \kappa_{\phi H} \alpha H$ | $(0, 0, \pm \sqrt{-k^2}(1,3), 8\kappa_{\phi H}k^2)$ | no | $\kappa_{\phi H} < 0$ makes 1 Neg. |
| $\partial \phi \, \kappa_{\phi \phi} \alpha \bar{D}_h G^k$ | $(0, 0, \pm \sqrt{-k^2}(1,3), \text{long expressions})$ | yes | $\kappa_{\phi \phi} < 0$ makes 2 Neg. 1 Pos. |
| $\partial \gamma_{ij} \kappa_{\gamma \gamma D} \alpha \gamma_{ij} H$ | $(0, 0, \pm \sqrt{-k^2}(1,3), (3/2)\kappa_{\gamma \gamma D}k^2)$ | yes | $\kappa_{\gamma \gamma D} < 0$ makes 1 Neg. Case (B) |
| $\partial \gamma_{ij} \kappa_{\gamma \gamma G} \alpha \gamma_{ij} \bar{D}_h G^k$ | $(0, 0, \pm \sqrt{-k^2}(1,3), \text{long expressions})$ | yes | $\kappa_{\gamma \gamma G} > 0$ makes 1 Neg. |
| $\partial K \kappa_{KM} \alpha \gamma_{ij} (\bar{D}_j M_k)$ | $(1/3)\kappa_{KM} k^2 \pm (1/3) \sqrt{k^2(9 + k^2(\kappa_{KM}^2))}$ | no | $\kappa_{KM} < 0$ makes 2 Neg. |
| $\partial \bar{A}_{ij} \kappa_{AAM} \alpha \gamma_{ij} (\bar{D}_j M_k)$ | $(0, 0, \pm \sqrt{-k^2}(1,3), \kappa_{AAM} k^2)$ | yes | $\kappa_{AAM} > 0$ makes 1 Neg. Case (D) |
| $\partial \bar{A}_{ij} \kappa_{AAM} \alpha \Delta (\bar{D}_j M_k)$ | $(0, 0, \pm \sqrt{-k^2}(1,3), \pm \kappa_{AAM} k^2)$ | yes | $\kappa_{AAM} > 0$ makes 7 Neg Case (D) |
| $\partial \bar{A}_{ij} \kappa_{AAM} \alpha \gamma_{ij} A$ | $(0, 0, \pm \sqrt{-k^2}(1,3), \kappa_{AAM} k^2)$ | yes | $\kappa_{AAM} > 0$ makes 1 Neg. |
| $\partial \bar{A}_{ij} \kappa_{AAM} \alpha \Delta (\bar{D}_j M_k)$ | $(0, 0, \pm \sqrt{-k^2}(1,3), \kappa_{AAM} k^2)$ | yes | $\kappa_{AAM} > 0$ makes 1 Neg. |
| $\partial \bar{A}_{ij} \kappa_{AAM} \alpha \Delta (\bar{D}_j M_k)$ | $(0, 0, \pm \sqrt{-k^2}(1,3), \kappa_{AAM} k^2)$ | yes | $\kappa_{AAM} > 0$ makes 1 Neg. |
| $\partial \bar{A}_{ij} \kappa_{AAM} \alpha \gamma_{ij} A$ | $(0, 0, \pm \sqrt{-k^2}(1,3), \kappa_{AAM} k^2)$ | yes | $\kappa_{AAM} > 0$ makes 1 Neg. |
| $\partial \bar{A}_{ij} \kappa_{AAM} \alpha \Delta (\bar{D}_j M_k)$ | $(0, 0, \pm \sqrt{-k^2}(1,3), \kappa_{AAM} k^2)$ | yes | $\kappa_{AAM} > 0$ makes 1 Neg. |

TABLE II: Possible adjustments which make a real-part CAFs negative (§IV B). The column of adjustments are nonzero multipliers in terms of (4.4)-(4.8), which all violate time reversal symmetry of the equation. The column ‘diag?’ indicates diagonalizability of the constraint propagation matrix. Neg./Pos. means negative/positive respectively.