Chiral d-wave superconductivity in the heavy-fermion compound CeIrIn$_5$

K. Maki, A. Raghavan and S. Haas

Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089-0484

PACS 74.70.Tx – Heavy-fermion superconductors
PACS 74.25.Fy – Transport properties
PACS 71.27.+a – Strongly correlated electron systems; heavy fermions

Abstract. - Recent thermal conductivity measurements in the heavy-fermion compound CeIrIn$_5$ indicate that its superconducting order parameter is very different from CeCoIn$_5$. Here we show that these experiments are consistent with chiral d-wave symmetry, i.e. $\Delta(\vec{k}) \sim e^{\pm i\phi}\cos(c k_z)$.

The discovery of antiparamagnon mediated superconductivity in the 115 heavy-fermion compounds CeTIn$_5$, where T represents Co, Ir, Rh, or a mixture of these, has recently opened up a new avenue to unconventional nodal superconductivity [1]. These strongly interacting materials are characterized by a plethora of competing ground states in addition to superconductivity, including conventional and unconventional spin density wave (SDW) phases [2]. Among the 115 compounds, the currently most well studied is CeCoIn$_5$ for which a d-wave superconducting order parameter $\Delta(\vec{k}) \sim \cos(2\phi) = \hat{k}_x^2 - \hat{k}_y^2$ has been identified [3–6]. Indeed, there are many parallels between CeCoIn$_5$ and the high-T_c cuprates, including (a) a layered quasi-two-dimensional Fermi surfaces [7], (b) d-wave superconductivity, and (c) d-wave spin density wave order in the pseudogap phase [8–10].

Recent thermal conductivity measurements [11, 12] indicating an order parameter symmetry in CeIrIn$_5$ very different from the one in CeCoIn$_5$ came as a big surprise. An initial analysis of this data suggested a hybrid E_g gap, $\Delta(\vec{k}) \sim Y_{2,\pm 1}(\theta, \phi)$, based on the assumption that the Fermi surface is three-dimensional. However, the Fermi surface of CeIrIn$_5$ is in fact quasi-two-dimensional, as known from band structure analysis [7,12]. Therefore, one needs to consider instead superconductivity in layered structures, similar as discussed in Refs. [13, 14]. In this case, only $f = e^{\pm i\phi}\sin(\chi)$ (chiral d-wave) with $\chi = c k_z$ or $f \sim \sin(\chi)$ (non-chiral p-wave) are consistent with the observed thermal conductivity data [11]. The magnitudes of the d-wave and chiral d-wave/non-chiral p-wave order parameters $|\Delta(\vec{k})|$ are shown in Fig. 1.

In the following, we present a theoretical analysis based on a generalized BCS model that properly accounts for a quasi-two-dimensional Fermi surface and a chiral d-wave superconducting order parameter. The thermal conductivity is computed following the receipt given in Refs. [14, 15]. Here, we assume for simplicity that the quasiparticle scattering is due to impurities. Furthermore, we consider the physically relevant limit $\Gamma/\Delta \ll 1$, where Γ is the quasiparticle scattering rate in the normal state and $\Delta(= 0.856 K)$ is the maximum value of the energy gap at $T = 0 K$. This Δ is the weak-coupling value for nodal
superconductors \cite{13,16}.

Let us begin by considering the zero-temperature limit. For quasi-two-dimensional structures, the thermal conductivity strongly depends on the direction within the material. Therefore we will discuss the cases $\vec{q}\parallel\vec{a}$ (in-plane) and $\vec{q}\parallel\vec{c}$ (out-of-plane) separately. Here \vec{q} denotes the heat current. For $\vec{q}\parallel\vec{a}$, one obtains

$$\frac{\kappa_a}{\kappa_a} = \frac{2\Gamma_a}{\pi\Delta},$$

(1)

and similarly for $\vec{q}\parallel\vec{c}$

$$\frac{\kappa_c}{\kappa_c} = 2\left(\frac{\Gamma_c}{\Delta}\right)^2,$$

(2)

where Γ_a and Γ_c denote the in-plane and out-of-plane scattering rates respectively. Eq.1 describes the universal heat conduction as discovered by P. Lee \cite{17,18}, whereas Eq.2 is very different. The strength of the impurity scattering can be extracted directly from the experimental data show in Fig. 2 of Ref. \cite{11}, from which we can deduce that $\frac{\Gamma_c}{\Delta} = 0.19635$.

Furthermore, from the observed anisotropy of the thermal conductivity, we can infer the ratio of the Fermi velocities along the c-axis and the a-b plane, i.e. $\frac{v_c}{v_a} = 0.66$, which is very similar to $\frac{v_c}{v_a} = 0.5$ extracted for CeCoIn$_5$ \cite{8}. Then, for $T \neq 0 K$ but $\frac{T}{\Delta} \ll 1$, we obtain in the regime $T \gg \Gamma$,

$$\frac{\kappa_a(T)}{\kappa_a(T)} = \frac{27}{2\pi^2}\zeta(3)\left(\frac{T}{\Delta}\right) + O\left(\frac{T}{\Delta}\right)^3,$$

(3)

and

$$\frac{\kappa_c(T)}{\kappa_c(T)} = \frac{45^2}{4\pi^2}\zeta(5)\left(\frac{T}{\Delta}\right)^5 + O\left(\frac{T}{\Delta}\right)^5.$$

(4)

This is consistent with the experimental observation of a dominant in-plane heat conductivity proportional to the temperature, and a subdominant out-of-plane conductivity.

In order to connect these finite-temperature results with the above equations for $T = 0$, we use an interpolation formula which applies in the regime for $T/\Delta(T) \ll 1$. The resulting low-temperature thermal conductivities are then given by

$$\frac{\kappa_a(T)}{\kappa_a(T)} = \frac{2\Gamma_a}{\pi\Delta}\left(1 + \left(\frac{27}{4\pi}\zeta(3)\frac{T}{\Gamma_a}\right)^2\right)^{1/2},$$

(5)
Chiral d-wave superconductivity in the heavy-fermion compound CeIrIn$_5$

Fig. 2: Thermal conductivity in the $\vec{q}||\vec{a}$ (in-plane) and $\vec{q}||\vec{c}$ (out-of-plane) directions. $T_c = 0.4K$. The symbols represent experimental data from [11], and the solid lines are low-temperature fits using Eqs. 5 and 6.

and

$$\frac{\kappa^c(T)}{\kappa^a_0(T)} = 2 \left(\frac{\Gamma_c}{\Delta} \right)^2 \left[1 + \left(\frac{45^2}{8\pi^2} \zeta(5) \frac{T}{\Gamma_c} \right)^2 \left(\frac{T}{\Delta} \right)^2 \right]^{1/2}$$

respectively.

In Fig. 2, we compare these dependencies with the experimental data reported in Ref. [11]. A fit of the low-temperature regimes yields good agreement with $\frac{\Gamma_c}{\Gamma_a} = 0.5592$. Evidently, the quasi-particle scattering rate is somewhat anisotropic in the present system. Here, the temperature dependence of the gap function $\Delta(T)$, is approximated by

$$\Delta(T) = 2.14T_c \left[1 - \left(\frac{T}{T_c} \right)^3 \right]^{1/2}$$

with $T_c = 0.4K$, which is known to be a very good approximation for d-wave superconductors [19].

Similarly, the ratio $\kappa^c(T)/\kappa^a(T)$ can be computed and compared to the experiments. Within our model, it is given by

$$\kappa^c(T)/\kappa^a(T) = 0.2703 \left[1 + \frac{45^2}{8\pi^2} \zeta(5) \right]^2 \left(\frac{T}{\Gamma_c} \right)^2 \left(\frac{T}{\Gamma_a} \right)^2 \left[1 + \frac{27}{4\pi} \zeta(3) \right]^2 \left(\frac{T}{\Delta} \right)^2 \right]^{1/2}$$

which is shown in Fig. 3 along with the thermal conductivity measurements of Ref. [11].

These expressions give a very reasonable description of the thermal conductivity for $T/T_c \leq 0.3$. We note that a similarly good description of the thermal conductivity is given by the hybrid gap proposed in Ref. [11]. At higher temperatures, $T/T_c \geq 0.3$, our simple model fails to describe the measured thermal conductivity, possibly due to the fact that phonons begin to play an important role as we approach $T \to T_c$. Nevertheless, we can conclude that chiral d-wave SC is consistent with the experimental data of Refs. [11, 12] in the relevant low-temperature regime. Note also, that our calculations predict an interesting upturn in the ratio $\kappa^c(T)/\kappa^a(T)$ as the temperature is further lowered. This prediction can
be scrutinized experimentally, and may serve as a means to distinguish the present theory from the hybrid gap model that was proposed earlier.

In the present context, the unconventional superconducting order in CeRhIn$_5$ is of great interest. Let us briefly contemplate on the doped case. Inspecting Fig. 3 of Ohira-Kawamura et al [12] we may conclude that the order parameter in CeRh$_{1-x}$Co$_x$In$_5$ should be d-wave SC with an angular dependence $f = \cos(2\phi)$, whereas the order parameter in CeRh$_{1-x}$Ir$_x$In$_5$ is consistent with chiral d-wave superconductivity with an angular dependence $f = e^{\pm i\phi} \cos(\chi)$. Therefore, the above approach will provide a basis to identify the many competing phases of the 115 compounds. Also, the phase diagrams for CeRh$_{1-x}$Co$_x$In$_5$ and CeRh$_{1-x}$Ir$_x$In$_5$ in Ref. [12] are of great interest for the perspective of the Gossamer superconductivity, i.e. a phase with competing order parameters [10,20,21]. We observe that (a) the incommensurate phases in both CeRh$_{1-x}$Co$_x$In$_5$ and CeRh$_{1-x}$Ir$_x$In$_5$ are conventional spin-density waves, (b) the commensurate phase in CeRh$_{1-x}$Co$_x$In$_5$ and the incommensurate+commensurate phase in CeRh$_{1-x}$Ir$_x$In$_5$ have d-wave symmetry. Therefore, there is a wide region where d-wave superconductivity coexists with unconventional nodal spin density wave order.

In summary, we have successfully applied a nodal weak-coupling BCS theory to fit recent experimental data on the directional thermal conductivity of CeRhIn$_5$. We find that in contrast to CeCoIn$_5$, which has plain d-wave order, this compound is consistent with chiral d-wave superconductivity. Furthermore, this technique will allow us to identify the many different phases which were recently discovered in doped derivatives of these materials.

We would like to thank Y. Matsuda for very informative discussions on the superconductivity in CeIrIn$_5$.

Fig. 3: Ratio of thermal conductivities of the $\vec{q}||c$ and $\vec{q}||\vec{a}$ direction, plotted as a function of T/T_c. The symbols represent the experimental data from Ref. [11].
Chiral d-wave superconductivity in the heavy-fermion compound CeIrIn$_5$

REFERENCES

[1] C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys. Lett. 53, 354 (2001).
[2] G. Knebel, K. Izawa, F. Bourdarot, E. Hassinger, B. Salce, D. Aoki and J. Flouque, J. MMM 310, 195 (2007).
[3] K. Izawa, H. Yamaguchi, Yuji Matsuda, H. Shishido, R. Settai, and Y. Onuki, Phys. Rev. Lett 87, 057002 (2001).
[4] H. Aoki, T. Sakakibara, H. Shishido, R. Settai, Y. Onuki, P. Miranovic, and K Machida, J. Phys. Cond. Matt 16, L13 (2004).
[5] H. Won, K. Maki, S. Haas, N. Oreschler, F. Weicke and P. Gegenwart, Phys. Rev. B 61, 180504(R) (2004).
[6] C. Miclea, M. Nicklas, D. Parker, K. Maki, J. L. Sarrao, J. D. Thompson, G. Sparn, and F. Steglich, Phys. Rev Lett. 96, 117001 (2006); ibid 97, 039901 (2006).
[7] T. Maehira, T. Hotta, K. Ueda and A. Hasegawa, J. Phys. Soc. Jpn 72, 854 (2003).
[8] T. Hu, H. Xiao, T. A. Sayles, M. B. Maple, K Maki, B. Dora and C. C. Almasan, Phys. Rev. B 73, 134509 (2006).
[9] K. Maki, B. Dora, A. Vanyolas and A. Virosztek, Physica C 460-462, 226 (2007).
[10] H. Won, Y. Morita and K. Maki Phys. State Sol(B)244, 4371 (2007)
[11] H. Shakeripour, M.A. Tanatar, S.Y. Li, C. Petrovic, and Louis Taillefer, Phys. Rev. Lett. 99, 187004 (2007).
[12] S. Ohira-Kawamura, H. Shishido, A. Yoshida, R. Okazaki, H. Kawano-Furukawa, T. Shibata, H. Harima, and Y. Matsuda, Phys. Rev. B 76, 132507 (2007).
[13] H. Won et al, AIP conference proceedings 789 (Melville 2005).
[14] H. Won, D. Parker, K. Maki, T. Watanabe, K. Izawa, and Y. Matsuda, Phys. Rev. B 70, 140509 (2004).
[15] G. Yang and K. Maki, Eur Phys. J B 21, 61 (2001).
[16] H. Won and K. Maki, Phys. Rev. B 49, 1397 (1994).
[17] P. A. Lee, Phys. Rev. Lett. 71, 1887 (1993).
[18] Y. Sun and K. Maki, Europhys. Lett 32, 355 (1995).
[19] B. Dora and A. Virosztek, Eur. Phys. J. B 22, 167 (2000).
[20] H. Won, S. Haas, D. Parker, and K. Maki, Phys. State Sol(B) 242, 363 (2005).
[21] K Maki, S. Haas, D. Parker, H. Won, B. Dora, and A. Virosztek, Phys. State Sol(C) 3, 3156 (2006).