ON CHAINS ASSOCIATED WITH ABSTRACT KEY POLYNOMIALS

SNEHA MAVI AND ANUJ BISHNOI

Abstract. In this paper, for a henselian valued field \((K, v)\) of arbitrary rank and an extension \(w\) of \(v\) to \(K(X)\), we use abstract key polynomials for \(w\) to give a connection between complete sets, saturated distinguished chains and Okutsu frames. Further, for a valued field \((K, v)\), we also obtain a close connection between complete set of ABKPs for \(w\) and Maclane-Vaquié chains of \(w\).

1. Introduction

Let \((K, v)\) be a henselian valued field and \(w\) be an extension of \(v\) to \(K(X)\). In this paper, we first give some conditions under which a saturated distinguished chain leads to the notion of a complete set of abstract key polynomials for a valuation-transcendental extension \(w\). Recall that a valuation-transcendental extension of \(v\) to \(K(X)\) is either value-transcendental or residually transcendental and they are well studied using abstract key polynomials (see [10], [16]-[19]).

In 1982, Okutsu associated to a monic irreducible polynomial \(F \in K[X]\) a family of monic irreducible polynomials, \(F_1, \ldots, F_r\), called the primitive divisor polynomials of \(F\) [20], later these polynomials were studied in papers [6], [7], [12] and [13], and they called the chain of such polynomials \([F_1, \ldots, F_r]\), an Okutsu frame for \(F\). Moreover, they proved that Okutsu frames, saturated distinguished chains and optimal Maclane chains are closely related. In this paper, we also establish a similar connection between saturated distinguished chains and Okutsu frames, however, our proof is elementary.

Next, for a valued field \((K, v)\), we give some conditions under which a complete set of ABKPs for a valuation \(w\) of \(K(X)\) give rise to an optimal Maclane chain of \(w\) and conversely. It is also observed that over a residually transcendental extension, the notion of saturated distinguished chains,

2020 Mathematics Subject Classification. 12F20, 12J10, 13A18.

Key words and phrases. Abstract key polynomials, key polynomials, minimal pairs, MacLane-Vaquié chains, Okutsu frames, optimal Maclane chains, saturated distinguished chains.

*Corresponding author, E-mail address: abishnoi@maths.du.ac.in.
Okutsu frames, optimal Maclane chains and complete set of ABKPs (under certain conditions) are equivalent.

In 1936, Maclane [9], proved that an extension w of a discrete rank one valuation v to $K[X]$ can be obtained as a chain of augmentations

$$w_0 \xrightarrow{\phi_1, \gamma_1} w_1 \xrightarrow{\phi_2, \gamma_2} \cdots \xrightarrow{\phi_n, \gamma_n} w_n \xrightarrow{\phi_{n+1}, \gamma_{n+1}} \cdots$$

for some suitable key polynomials $\phi_i \in K[X]$ for intermediate valuations and elements γ_i in some totally ordered abelian group containing the value group of v as an ordered subgroup. Later, Vaquié generalized Maclane’s theory to arbitrary valued fields (see [23]). More recently, Nart gave a survey of generalized Maclane-Vaquié theory in [14] and [15]. Starting with a valuation w_0 which admit key polynomials of degree one, Nart also introduced Maclane-Vaquié chains, consisting of a mixture of ordinary and limit augmentations satisfying some conditions (see Definition 2.37). The main result Theorem 4.3 of [15] says that all extensions w of v to $K[X]$ falls exactly in one of the following category:

(i) It is the last valuation of a complete finite Maclane-Vaquié chain, i.e., after a finite number r of augmentation steps, we get $w_r = w$.

(ii) After a finite number r of augmentation steps, it is the stable limit of a continuous family of augmentations of w_r defined by key polynomials of constant degree.

(iii) It is the stable limit of a complete infinite Maclane-Vaquié chain.

In this paper, we study Maclane-Vaquié chains of the first type and prove that a precise complete finite Maclane-Vaquié chain can be obtained using a given complete set $\{Q_i\}_{i \in \Delta}$ of ABKPs for w such that Δ has a maximal element. Conversely, if w is the last valuation of some complete finite Maclane-Vaquié chain, then there exists a complete set $\{Q_i\}_{i \in \Delta}$ of ABKPs for w such that Δ has a maximal element.

To state the main results of the paper, we first recall some notations, definitions and preliminary results.

2. Notations, Definitions and Statements of Main Results

Throughout the paper, (K, v) denote a valued field of arbitrary rank with value group Γ_v, valuation ring O_v having a unique maximal ideal M_v, and residue field k_v. Let \bar{v} be an extension of v to a fixed algebraic closure \overline{K} of K with value group $\Gamma_{\bar{v}}$ and residue field $k_{\bar{v}}$. Let w be an extension of v to the simple transcendental extension $K(X)$ of K with value group Γ_w and residue field k_w.
All extensions of \(v \) to \(K(X) \) are classified as follows:

Definition 2.1. The extension \(w \) of \(v \) to \(K(X) \) is said to be **valuation-algebraic** if \(\Gamma_w \) is a torsion group and \(k_w \) is algebraic over \(k_v \). The extension \(w \) is said to be **value-transcendental** if \(\Gamma_w \) is a torsion-free group and \(k_w \) is algebraic over \(k_v \).

If \(L \) is an extension field of \(K \), then an extension \(v_L \) of \(v \) to \(L \) is called residually transcendental (abbreviated as r. t.) if the corresponding residue field extension \(k_{v_L}/k_v \) is transcendental.

Definition 2.2. The extension \(w \) of \(v \) to \(K(X) \) is called **valuation-transcendental** if \(w \) is either value-transcendental or is residually transcendental.

Let \(\bar{w} \) be a common extension of \(w \) and \(\bar{v} \) to \(K(X) \). Then for a pair \((\alpha, \delta) \in K \times \Gamma_{\bar{w}} \), the map \(\bar{w}_{\alpha,\delta} : K[X] \rightarrow \Gamma_{\bar{w}} \), given by

\[
\bar{w}_{\alpha,\delta} \left(\sum_{i \geq 0} c_i (X - \alpha)^i \right) := \min \{ \bar{v}(c_i) + i\delta \}, \quad c_i \in \overline{K},
\]

is a valuation on \(\overline{K}[X] \) and can be uniquely extended to \(\overline{K}(X) \) (cf. [5, Theorem 2.2.1]). Such a valuation is said to be defined by \(\min, \bar{v}, \alpha \) and \(\delta \). If \(\bar{w} = \bar{w}_{\alpha,\delta} \), then we say that \((\alpha, \delta) \) is a pair of definition for \(w \).

Definition 2.3. A pair \((\alpha, \delta) \) in \(K \times \Gamma_{\bar{w}} \) is called a **minimal pair** of definition for \(w \) if \(\bar{w} = \bar{w}_{\alpha,\delta} \) and for every \(\beta \) in \(\overline{K} \), satisfying \(\bar{v}(\alpha - \beta) \geq \delta \), we have \(\deg \beta \geq \deg \alpha \), where by \(\deg \alpha \) we mean the degree of the extension \(K(\alpha)/K \).

Remark 2.4. In the above definition, if \(\Gamma_{\bar{w}} = \Gamma_{\bar{v}} \), then the minimal pair \((\alpha, \delta) \) is called a **(K,v)-minimal pair**.

Let \((K, v) \) be a henselian valued field. If \(\theta \in K \), then \((\theta, \delta) \) is a minimal pair for each \(\delta \in \Gamma_{\bar{v}} \) and it is immediate from the definition that a pair \((\theta, \delta) \in (\overline{K} \setminus K) \times \Gamma_{\bar{v}} \) is minimal if and only if \(\delta \) is strictly greater than each element of the set \(M(\theta, K) \) defined by

\[
M(\theta, K) := \{ \bar{v}(\theta - \beta) \mid \beta \in \overline{K}, \deg \beta < \deg \theta \}.
\]

This led to the notion of main invariant

\[
\delta_K(\theta) := \max M(\theta, K)
\]
defined for those \(\theta \in \overline{K} \setminus K \) for which the set \(M(\theta, K) \) contains a maximum. In general, this maximum value may not exist. However, in 2002, Aghigh and Khanduja gave some necessary and sufficient condition under which the set \(M(\theta, K) \) has a maximum element for every \(\theta \in \overline{K} \setminus K \) (see [1, Theorem 1.1]). We now recall the notion of distinguished pairs which was introduced by Popescu and Zaharescu [22], for local fields in 1995 and was later generalized to arbitrary henselian valued fields ([1] and [3]).

Definition 2.5 (Distinguished pairs). A pair \((\theta, \alpha)\) of elements of \(\overline{K} \) is called a \((K, v)\)-distinguished pair if the following conditions are satisfied:

(i) \(\deg \theta > \deg \alpha \),
(ii) \(\bar{v}(\theta - \alpha) = \max \{ \bar{v}(\theta - \beta) \mid \beta \in \overline{K}, \deg \beta < \deg \theta \} = \delta_K(\theta) \),
(iii) if \(\eta \in \overline{K} \) be such that \(\deg \eta < \deg \alpha \), then \(\bar{v}(\theta - \eta) < \bar{v}(\theta - \alpha) \).

Equivalently, we say that \((\theta, \alpha)\) is a distinguished pair, if \(\alpha \) is an element in \(\overline{K} \) of minimal degree over \(K \) such that

\[
\bar{v}(\theta - \alpha) = \delta_K(\theta).
\]

Clearly (iii) implies that \((\alpha, \bar{v}(\theta - \alpha))\) is a \((K, v)\)-minimal pair. Also for any two monic irreducible polynomials \(f \) and \(g \) over \(K \), we call \((g, f)\) a distinguished pair, if there exists a root \(\theta \) of \(g \) and a root \(\alpha \) of \(f \) such that \((\theta, \alpha)\) is a \((K, v)\)-distinguished pair. Distinguished pairs give rise to distinguished chains in a natural manner. A chain \(\theta = \theta_r, \theta_{r-1}, \ldots, \theta_0 \) of elements of \(\overline{K} \) is called a saturated distinguished chain for \(\theta \) of length \(r \), if \((\theta_i+1, \theta_i)\) is a \((K, v)\)-distinguished pair for every \(0 \leq i \leq r - 1 \) and \(\theta_0 \in K \).

Definition 2.6. Let \(w \) be a valuation of \(K(X) \) and \(\bar{w} \) a fixed common extension of \(w \) and \(\bar{v} \) to \(\overline{K}(X) \). For any polynomial \(f \) in \(K[X] \), we call a root \(\alpha \) of \(f \) in \(\overline{K} \) an optimizing root of \(f \) if

\[
\bar{w}(X - \alpha) = \max \{ \bar{w}(X - \alpha') \mid f(\alpha') = 0 \} = \delta(f).
\]

We call \(\delta(f) \) the optimal value of \(f \) with respect to \(\bar{w} \).

Definition 2.7 (Abstract key polynomials). A monic polynomial \(Q \) in \(K[X] \) is said to be an abstract key polynomial (abbreviated as ABKP) for \(w \) if for each polynomial \(f \) in \(K[X] \) with \(\deg f < \deg Q \) we have \(\delta(f) < \delta(Q) \).

It is immediate from the definition that all monic linear polynomials are ABKPs for \(w \). Also an ABKP for \(w \) is an irreducible polynomial (see [16, Proposition 2.4]).
Definition 2.8. For a polynomial Q in $K[X]$ the Q-truncation of w is a map $w_Q : K[X] \to \Gamma_w$ defined by

$$w_Q(f) := \min_{0 \leq i \leq n} \{ w(f_i^Q_i) \},$$

where $\sum_{i=0}^n f_i^Q_i$, $\deg f_i < \deg Q$, is the Q-expansion of f.

The Q-truncation w_Q of w need not be a valuation [16, Example 2.5]. However, if Q is an ABKP for w, then w_Q is a valuation on $K(X)$ (see [16, Proposition 2.6]). Also any ABKP, Q for w, is also an ABKP for the truncation valuation w_Q. For an ABKP, Q in $K[X]$, for w, we set

$$\alpha(Q) := \min \{ \deg f \mid f \in K[X], w_Q(f) < w(f) \}, \quad \text{(if } w_Q = w, \text{ then } \alpha(Q) := \infty)$$

and

$$\psi(Q) := \{ f \in K[X] \mid f \text{ is monic, } w_Q(f) < w(f) \text{ and } \deg f = \alpha(Q) \}.$$

Clearly $\alpha(Q) \geq \deg Q$. Also, observe that w_Q is a proper truncation of w, (i.e., $w_Q < w$) if and only if $\psi(Q) \neq \emptyset$.

Lemma 2.9 (Lemma 2.11, [16]). If Q is an ABKP for w, then every element $F \in \psi(Q)$ is also an ABKP for w and $\delta(Q) < \delta(F)$.

Let Q be an ABKP for w and suppose that Q has a saturated distinguished chain. In the following result we prove that each member of this chain is also an ABKP for w, further, we also observe that optimal values and main invariants associated with a saturated distinguished chain of polynomials are closely related.

Proposition 2.10. Let (K,v) be a henselian valued field and \bar{v} a unique extension of v to \overline{K}. Let Q be an ABKP for a valuation w of $K(X)$. If $(Q_r = Q, Q_{r-1}, \ldots, Q_0)$ is a saturated distinguished chain for Q. Then

(i) Each Q_i, $0 \leq i \leq r-1$, is an ABKP for w.

(ii) $\delta(Q_r) > \delta(Q_{r-1}) > \cdots > \delta(Q_0)$ and for optimizing roots θ_i of Q_i, $0 \leq i \leq r$,

$$\delta_K(\theta_i) = \delta(Q_{i-1}) \quad \forall \ 1 \leq i \leq r.$$

The following result can be easily deduced from Theorem 1.1 of [19] and Theorem 1.1 of [17], and gives a characterization of valuation-transcendental extensions.

Theorem 2.11. An extension w of v to $K(X)$ is valuation-transcendental if and only if $w = w_Q$, for some ABKP, Q for w. Moreover, if α is an optimizing root of Q, then $(\alpha, \delta(Q))$ is a minimal pair of definition for w and $w = w_Q = w_{\alpha, \delta(Q)}|_{K(X)}$.
It is known that if \(w \) is a valuation-transcendental extension of \(v \) to \(K(X) \) defined by some minimal pair \((\theta, \delta) \in \overline{K} \times \Gamma_\mathcal{M} \), then the minimal polynomial of \(\theta \) over \(K \) is an ABKP for \(w \) (see [19]). Therefore, keeping this in mind the next result follows immediately from Proposition 2.10.

Corollary 2.12. Let \((K, v)\) be a henselian valued field and \(w \) be a valuation-transcendental extension of \(v \) to \(K(X) \) defined by some minimal pair \((\theta, \delta) \in (\overline{K} \setminus K) \times \Gamma_\mathcal{M} \), and let \((\theta = \theta_r, \theta_{r-1}, \ldots, \theta_0)\) be a saturated distinguished chain for \(\theta \). Then the minimal polynomials \(Q_i \) of \(\theta_i \) over \(K \), \(0 \leq i \leq r \), are ABKPs for \(w \).

Definition 2.13. A family \(\Lambda = \{Q_i\}_{i \in \Delta} \) of ABKPs for \(w \) is said to be a complete set of ABKPs for \(w \) if the following conditions are satisfied:

(i) \(\delta(Q_i) \neq \delta(Q_j) \) for every \(i \neq j \in \Delta \).

(ii) \(\Lambda \) is well-ordered with respect to the ordering given by \(Q_i < Q_j \) if and only if \(\delta(Q_i) < \delta(Q_j) \) for every \(i < j \in \Delta \).

(iii) For any \(f \in K[X] \), there exists some \(Q_i \in \Lambda \) such that \(w_{Q_i}(f) = w(f) \).

It is known that [16, Theorem 1.1], every valuation \(w \) on \(K(X) \) admits a complete set of ABKPs. Moreover, there is a complete set \(\Lambda = \{Q_i\}_{i \in \Delta} \) of ABKPs for \(w \) having the following properties (cf. [10, Remark 4.6] and [16, proof of Theorem 1.1]).

Remark 2.14. (i) \(\Delta = \bigcup_{j \in I} \Delta_j \) with \(I = \{0, \ldots, N\} \) or \(\mathbb{N} \cup \{0\} \), and for each \(j \in I \) we have \(\Delta_j = \{j\} \cup \vartheta_j \), where \(\vartheta_j \) is an ordered set without a maximal element or is empty.

(ii) \(Q_0 = X \).

(iii) For all \(j \in I \setminus \{0\} \) we have \(j-1 < i < j \), for all \(i \in \vartheta_{j-1} \).

(iv) All polynomials \(Q_i \) with \(i \in \Delta_j \) have the same degree and have degree strictly less than the degree of the polynomials \(Q_{i'} \) for every \(i' \in \Delta_{j+1} \).

(v) For each \(i < i' \in \Delta \) we have \(w(Q_i) < w(Q_{i'}) \) and \(\delta(Q_i) < \delta(Q_{i'}) \).

(vi) Even though the set \(\{Q_i\}_{i \in \Delta} \) of ABKPs for \(w \) is not unique, the cardinality of \(I \) and the degree of an abstract key polynomial \(Q_i \) for each \(i \in I \) are uniquely determined by \(w \).

(vii) The ordered set \(\Delta \) has a maximal element if and only if the following holds:

(a) the set \(I = \{0, \ldots, N\} \) is finite;

(b) \(\Delta_N = \{N\} \), i.e., \(\vartheta_N = \emptyset \).

From now on, we assume that all complete set of ABKPs in this paper satisfy the properties of Remark 2.14.
Keeping in mind the above notations for a complete set \(\Lambda = \{Q_i\}_{i \in \Delta} \) of ABKPs for \(w \) we have:

Definition 2.15 (Limit key polynomials). For an element \(i \in \Delta \), we say that \(Q_i \) is a limit key polynomial if the following conditions hold:

(i) \(i \in I \setminus \{0\} \).

(ii) \(\vartheta_i - 1 \neq \emptyset \).

In Theorem 1.23 of [11], it is proved that if \(\{Q_i\}_{i \in \Delta} \) is a complete set of ABKPs for \(w \) with \(\vartheta_i = \emptyset \), for every \(i \in I \), then there exist some \(n \in I \setminus \{0\} \) such that \(Q_n \) has a saturated distinguished chain. In the next result, we show that the converse of this result also holds for a valuation-transcendental extension.

Theorem 2.16. Let \((K,v)\) be a henselian valued field and \(w = w_Q \) a valuation-transcendental extension of \(v \) to \(K(X) \). If \((Q_r = Q, Q_{r-1}, \ldots, Q_0) \) is a saturated distinguished chain for \(Q \), then \(\Lambda = \{Q_0\} \cup \{Q_1\} \cup \cdots \cup \{Q_r\} \) is a complete set of ABKPs for \(w \).

The notion of Okutsu frame was introduced by Okutsu in 1982 for local fields [20], and then studied by Nart in [6], which was later generalized to henselian valued field of arbitrary rank in [12] and [13].

To define Okutsu frames, we first recall some notations. Let \((K,v)\) be a henselian valued field of arbitrary rank. Let \(F \) in \(K[X] \) be a monic irreducible polynomial of degree \(n \) and \(\theta \in \overline{K} \) be a root of \(F \). Consider the sequences:

\[m_0 = 1 < m_1 < \cdots < m_r = n \]

\[\mu_0 < \mu_1 < \cdots < \mu_r = \infty, \]

defined in the following recurrent way:

\[\mu_i := \max\{\bar{v}(\theta - \eta) \mid \eta \in \overline{K}, \deg \eta = m_i\} \quad \text{for every } 0 \leq i \leq r - 1,\]

\[m_i := \min\{\deg \eta \mid \eta \in \overline{K}, \bar{v}(\theta - \eta) > \mu_{i-1}\} \quad \text{for every } 1 \leq i \leq r - 1.\]

Since \((K,v)\) is henselian, so these values does not depend upon the choice of the root \(\theta \) of \(F \).

Definition 2.17 (Okutsu frames). For a monic irreducible polynomial \(F \in K[X] \) having a root \(\theta \in \overline{K} \), let \(\theta_i \in \overline{K} \) be such that \(\deg \theta_i = m_i, \bar{v}(\theta - \theta_i) = \mu_i \), for every \(0 \leq i \leq r - 1 \). If \(F_i \) is the minimal polynomial of \(\theta_i \) over \(K \), then the chain \([F_0, F_1, \ldots, F_{r-1}]\) of monic irreducible polynomials is called an Okutsu frame of \(F \).
Remark 2.18. It can be shown that the above definition of an Okutsu frame is equivalent to the one given in [12].

In the next result we give a connection between saturated distinguished chains and Okutsu frames. It may be pointed that a similar result is also proved in Theorem 2.6 of [13] and Corollary 3.5 of [7] but our proof is elementary.

Theorem 2.19. Let (K, v) be a henselian valued field and F in $K[X]$ be a monic irreducible polynomial having a root θ in \overline{K}. Then $(F = F_r, F_{r-1}, \ldots, F_0)$ is a saturated distinguished chain for F if and only if $[F_0, F_1, \ldots, F_{r-1}]$ is an Okutsu frame of F.

We now recall the notion of key polynomials which was first introduced by Maclane in 1936 and later generalized by Vaquié in 2007 (see [9] and [23]).

Definition 2.20 (Key polynomials). For a valuation w on $K(X)$ and polynomials f, g in $K[X]$, we say that

(i) f and g are w-equivalent and write $f \sim_w g$ if $w(f - g) > w(f) = w(g)$.

(ii) g is w-divisible by f or f w-divides g (denoted by $f |_w g$) if there exist some polynomial $h \in K[X]$ such that $g \sim_w fh$.

(iii) f is w-irreducible, if for any $h, q \in K[X]$, whenever $f |_w hq$, then either $f |_w h$ or $f |_w q$.

(iv) f is w-minimal, if for every polynomial $h \in K[X]$, whenever $f |_w h$, then $\deg h \geq \deg f$.

(v) Any monic polynomial f satisfying (iii) and (iv) is called a key polynomial for w.

In view of Proposition 2.10 of [4], any ABKP, Q for w is a key polynomial for w_Q of minimal degree. Let $KP(w)$ denote the set of all key polynomials for valuation w. For any $\phi \in KP(w)$ we denote by $[\phi]_w$ the set of all key polynomials which are w-equivalent to ϕ.

Definition 2.21 (Ordinary augmentation). Let ϕ be a key polynomial for a valuation w and $\gamma > w(\phi)$ be an element of a totally ordered abelian group Γ containing Γ_w as an ordered subgroup. A map $w' : K[X] \rightarrow \Gamma \cup \{\infty\}$ defined by $$w'(f) = \min\{w(f_i) + i\gamma\},$$ where $\sum_{i \geq 0} f_i \phi^i$, $\deg f_i < \deg \phi$, is the ϕ-expansion of $f \in K[X]$, gives a valuation on $K(X)$ (see [9] Theorem 4.2) called the ordinary augmentation of w (or an augmented valuation) and is denoted by $w' = [w; \phi, \gamma]$.
Clearly, $w(\phi) < w'(\phi)$ and the polynomial ϕ is a key polynomial of minimal degree for the augmented valuation w' (see [14, Corollary 7.3]).

Definition 2.22. An extension w of v to $K(X)$ is called *commensurable* if Γ_w / Γ_v is a torsion group; otherwise it is called *incommensurable*.

Note that, if Γ_w / Γ_v is a torsion group, then we have a canonical embedding $\Gamma_w \hookrightarrow \Gamma_v \otimes \mathbb{Q}$.

It is known that any incommensurable extension w of v, is value-transcendental (cf. [14, Theorem 4.2]). Moreover, if $\phi \in K[X]$ is a monic polynomial of minimal degree such that $w(\phi) \notin \Gamma_v \otimes \mathbb{Q}$, then ϕ is a key polynomial for w and the set of all key polynomials for w is given by

$$\{ \phi + g \mid g \in K[X], \deg g < \deg \phi, w(g) > w(\phi) \} = [\phi]_w.$$

In particular, every key polynomial for a value-transcendental extension have the same degree. On the other hand if w is any commensurable extension of v to $K(X)$, then w is either valuation-algebraic or is residually transcendental. In fact any commensurable extension which admits key polynomials are always residually transcendental (see [21, Theorem 4.6]). Hence the set of all key polynomials for a valuation-algebraic extension w is an empty set, i.e., $KP(w) = \emptyset$.

Let w be a valuation on $K(X)$, with value group Γ_w, which admits key polynomials. If ϕ is a key polynomial for w of minimal degree, then we define

$$\deg(w) := \deg \phi.$$

For any valuation w' on $K(X)$ taking values in a subgroup of Γ_w, we say that

$$w' \leq w \text{ if and only if } w'(f) \leq w(f) \forall f \in K[X].$$

Suppose that $w' < w$ and consider the set

$$\overline{\Phi}_{w',w} := \{ f \in K[X] \mid w'(f) < w(f) \}.$$

If d is the smallest degree of a polynomial in $\overline{\Phi}_{w',w}$, then we define

$$\Phi_{w',w} := \{ g \in K[X] \mid g \text{ is monic and } \deg g = d \},$$

i.e., the set of all monic polynomials $g \in K[X]$ of minimal degree such that $w'(g) < w(g)$.

Theorem 2.23 (Theorem 1.15, [23]). Let w be a valuation on $K(X)$ and $w' < w$. Then any $\phi \in \Phi_{w',w}$ is a key polynomial for w' and

$$w' < [w'; \phi, w(\phi)] \leq w.$$
For any non-zero polynomial $f \in K[X]$, the equality $w'(f) = w(f)$ holds if and only if $\phi \vdash_w f$.

Corollary 2.24 (Corollary 2.5, [15]). Let $w' < w$ be as above. Then

(i) $\Phi_{w',w} = [\phi]_{w'}$ for all $\phi \in \Phi_{w',w}$.

(ii) If $w' < \mu < w$ is a chain of valuations, then $\Phi_{w',w} = \Phi_{w',\mu}$. In particular,

$$w'(f) = w(f) \iff w'(f) = \mu(f), \forall f \in K[X].$$

Keeping in mind the above results, we can now define

$$\deg(\Phi_{w',w}) := \deg(\phi) \forall \phi \in \Phi_{w',w}.$$

Remark 2.25. Let w be a valuation of $K(X)$. If $w' = w_{Q'}$, for some ABKP, Q' for w, then $\Phi_{w',w} = \psi(Q')$.

Consider the group $\mathbb{Z} \times (\Gamma_v \otimes \mathbb{Q})$ equipped with the lexicographical ordering containing $\mathbb{Z} \times \Gamma_v$ as an ordered subgroup. Let $w_{-\infty} : K[X] \rightarrow (\mathbb{Z} \times \Gamma_v) \cup \{\infty\}$ be the valuation defined by

$$w_{-\infty}(f) = (-\deg f, \nu(a_n)),$$

where a_n is the leading coefficient of the polynomial $f \in K[X]$. Since the value group, $\mathbb{Z} \times \Gamma_v$ is torsion free over Γ_v, so the extension $w_{-\infty}$ of ν is incommensurable and in view of Lemma 4.1 of [14], the set of all key polynomials for $w_{-\infty}$ is

$$KP(w_{-\infty}) = \{X + a \mid a \in K\} = [X]_{w_{-\infty}}.$$

Fix an order-preserving embedding $\Gamma_v \otimes \mathbb{Q} \hookrightarrow \mathbb{Z} \times (\Gamma_v \otimes \mathbb{Q})$ of ordered abelian groups, mapping $\gamma \mapsto (0, \gamma)$. If w is any incommensurable extension of ν to $K(X)$, then from the above embedding we have $w_{-\infty} < w$, and $w_{-\infty}$ is called the minimal extension of ν to $K(X)$. Moreover the augmentation of $w_{-\infty}$ with respect to the key polynomial $\phi_0 = X + a$ for some $a \in K$, defined in a natural way, is denoted by w_0 (see [12, Subsection 2.2]).

Definition 2.26. A valuation w is said to be inductive if it is attained after a finite number of augmentation steps starting with the minimal valuation:

$$(2.1) \quad w_{-\infty} \xrightarrow{\phi_0, \gamma_0} w_0 \xrightarrow{\phi_1, \gamma_1} w_1 \xrightarrow{\phi_2, \gamma_2} \cdots \xrightarrow{\phi_{r-1}, \gamma_{r-1}} w_r = w,$$

where $\gamma_0, \gamma_1, \ldots, \gamma_r \in \Gamma_v \otimes \mathbb{Q}$ and $w_i = [w_{i-1}, \phi_i, \gamma_i], 1 \leq i \leq r$.

The minimal valuation $w_{-\infty}$ is not considered an inductive valuation and thus, inductive valuations are commensurable which admits key polynomials. In view of Corollary 7.3 of [14], ϕ_i is a key polynomial for w_i of minimal degree.
Definition 2.27 (Optimal Maclane chain). A chain of augmentations of the form (2.1) such that,

\[1 = m_0 \mid m_1 \mid \cdots \mid m_r, \quad m_0 < m_1 < \cdots < m_r, \]

where \(m_i = \deg \phi_i, \quad 0 \leq i \leq r \), is called the optimal Maclane chain of \(w \).

It is known that all inductive valuations admit an optimal Maclane chain \[12\]. These chains are not unique, but

- the intermediate valuations \(w_0, w_1, \ldots, w_{r-1} \),
- the degrees \(m_0, m_1, \ldots, m_r \) of the key polynomials,
- \(\gamma_0, \gamma_1, \ldots, \gamma_r \) satisfies \(\gamma_i = w_i(\phi_i) = w(\phi_i) \) for all \(0 \leq i \leq r \),
- \(\lambda_0 = \gamma_0 = w(\phi_0), \quad \lambda_i = w_i(\phi_i) - w_{i-1}(\phi_i) > 0, \quad 1 \leq i \leq r. \)

are some intrinsic invariants of \(w \).

We now give a relation between optimal Maclane chains and complete set of ABKPs for a valuation \(w \). We first give a precise complete set \(\{Q_i\}_{i \in \Delta} \) of ABKPs using a given optimal Maclane chain.

Theorem 2.28. Let \((K, v)\) be a valued field and \(w \) be an extension of \(v \) to \(K(X) \). If \(w \) has an optimal Maclane chain of the form (2.1), then \(\{\phi_0\} \cup \{\phi_1\} \cup \cdots \cup \{\phi_r\} \) is a complete set of ABKPs for \(w \).

In the next result we gives some necessary conditions under which an optimal Maclane chain is obtained using a complete set of ABKPs for \(w \).

Theorem 2.29. Let \((K, v)\) and \((K(X), w)\) be as in the above theorem. Let \(\{Q_i\}_{i \in \Delta} \) be a complete set of ABKPs for \(w \) such that \(\Delta \) has maximal element, say, \(N \) and \(\vartheta_i = \emptyset \) for every \(0 \leq i \leq N \). Then \(w \) has an optimal Maclane chain, if \(w(Q_N) \in \Gamma_v \otimes \mathbb{Q} \).

Let \((K, v)\) be a valued field and \(w \) be an extension of \(v \) to \(K(X) \). We now recall the definition of a continuous family of augmentations of \(w \) \cite{23, 14}.

Definition 2.30. Let \(w \) be a valuation on \(K(X) \) admitting key polynomials. Then a continuous family of augmentations of \(w \) is a family of ordinary augmentations of \(w \)

\[\mathcal{W} = (\rho_i = [w; \chi_i, \gamma_i])_{i \in A}, \]

indexed by a set \(A \), satisfying the following conditions:

(i) The set \(A \) is totally ordered and has no maximal element.
(ii) All key polynomials \(\chi_i \in KP(w) \) have the same degree.
(iii) For all $i < j$ in A, χ_j is a key polynomial for ρ_i and satisfies:

$$\chi_j \not\sim \rho_i \chi_i \text{ and } \rho_j = [\rho_i; \chi_j, \gamma_j].$$

The common degree $m = \deg \chi_i$, for all i, is called the stable degree of the family W and is denoted by $\deg(W)$.

A polynomial f in $K[X]$ is said to be stable with respect to the family $W = (\rho_i)_{i \in A}$ (or is W-stable) if

$$\rho_i(f) = \rho_{i_0}(f), \text{ for every } i \geq i_0$$

for some index $i_0 \in A$. This stable value is denoted by $\rho_W(f)$. By Corollary 2.24 (ii), a polynomial $f \in K[X]$ is W-unstable if and only if

$$\rho_i(f) < \rho_j(f) \forall i < j.$$

The minimal degree of an W-unstable polynomial is denoted by m_∞. If all polynomials are W-stable, then we set $m_\infty = \infty$.

Remark 2.31. The following properties hold for any continuous family $W = (\rho_i)_{i \in A}$ of augmentations (see [15], p. 9):

(i) The mapping defined by $i \to \gamma_i$ and $i \to \rho_i$ are isomorphisms of ordered sets between A and $\{\gamma_i \mid i \in A\}$, $\{\rho_i \mid i \in A\}$, respectively.

(ii) For all $i \in A$, χ_i is a key polynomial for ρ_i of minimal degree.

(iii) For all $i, j \in A$, $\rho_i(\chi_j) = \min\{\gamma_i, \gamma_j\}$. Hence, all the polynomials χ_i are stable.

(iv) $\Phi_{\rho_i, \rho_j} = [\chi_j]_{\rho_i} \forall i < j \in A$.

(v) All valuations ρ_i are residually transcendental.

(vi) All the value groups Γ_{ρ_i} coincide and the common value group is denoted by Γ_W.

Definition 2.32 (Maclane-Vaquié limit key polynomials). Let W be a continuous family of augmentations of a valuation w. A monic W-unstable polynomial of minimal degree is called Maclane-Vaquié limit key polynomial (abbreviated as MLV) for W.

We denote by $KP_\infty(W)$ the set of all MLV limit key polynomials. Since the product of stable polynomials is stable, so all MLV limit key polynomials are irreducible in $K[X]$.

Definition 2.33. We say that W is an essential continuous family of augmentations if $m < m_\infty < \infty$.

Remark 2.34. All essential continuous family of augmentations admit MLV limit key polynomials.
Let \(W \) be an essential continuous family of augmentations of a valuation \(w \) and \(Q \in KP_\infty(W) \) be any MLV limit key polynomial. Then any polynomial \(f \) in \(K[X] \) with \(\deg f < \deg Q \) is \(W \)-stable.

Definition 2.35 (Limit augmentation). Let \(Q \) be any MLV limit key polynomial for an essential continuous family of augmentations \(W = (\rho_i)_{i \in \mathbf{A}} \) and \(\gamma > \rho_i(Q) \), for all \(i \in \mathbf{A} \), be an element of a totally ordered abelian group \(\Gamma \cup \{\infty\} \) containing \(\Gamma_W \) as an ordered subgroup. Then a map \(w' : K[X] \rightarrow K \) defined by

\[
 w'(f) = \min_{i \geq 0} \{\rho_W(f_i) + i\gamma\},
\]

where \(\sum_{i \geq 0} f_i Q^i \), \(\deg f_i < \deg Q \), is the \(Q \)-expansion of \(f \in K[X] \), gives a valuation on \(K(X) \) and is called the limit augmentation of \(W \).

Note that \(w'(Q) = \gamma \) and \(\rho_i < w' \) for all \(i \in \mathbf{A} \). If \(\gamma < \infty \), then \(Q \) is a key polynomial for \(w' \) of minimal degree [14, Corollary 7.13].

We now recall the definition of Maclane-Vaquié chains given by Nart in [15]. For this, we first consider a finite, or countably infinite, chain of mixed augmentations

\[
\begin{array}{cccccccc}
 w_0 & \phi_1,\gamma_1 & w_1 & \phi_2,\gamma_2 & \ldots & w_n & \phi_{n+1},\gamma_{n+1} & w_{n+1} & \ldots \\
\end{array}
\]

in which every valuation is an augmentation of the previous one and is of one of the following type:

- **Ordinary augmentation:** \(w_{n+1} = [w_n; \phi_{n+1},\gamma_{n+1}] \), for some \(\phi_{n+1} \in KP(w_n) \).
- **Limit augmentation:** \(w_{n+1} = [W_n; \phi_{n+1},\gamma_{n+1}] \), for some \(\phi_{n+1} \in KP_\infty(W_n) \),

where \(W_n \) is an essential continuous family of augmentations of \(w_n \).

Let \(\phi_0 \in KP(w_0) \) be a key polynomial of minimal degree and let \(\gamma_0 = w_0(\phi_0) \). Then, in view of Theorem 2.23, Proposition 6.3 of [14], Proposition 2.1, 3.5 of [14] and Corollary 2.24, we have the following properties of a chain (2.2) of augmentations.

Remark 2.36. (i) \(\gamma_n = w_n(\phi_n) < \gamma_{n+1} \).

(ii) For all \(n \geq 0 \) for which \(\gamma_n < \infty \), the polynomial \(\phi_n \) is a key polynomial for \(w_n \) of minimal degree and therefore

\[
 \deg(w_n) = \deg \phi_n \text{ divides } \deg(\Phi_{w_n,w_{n+1}}).
\]

(iii)

\[
\Phi_{w_n,w_{n+1}} = \begin{cases}
 [\phi_{n+1}]_{w_n}, & \text{if } w_n \rightarrow w_{n+1} \text{ is ordinary augmentation} \\
 \Phi_{w_n,W_n} = [X_1]_{w_n}, & \text{if } w_n \rightarrow w_{n+1} \text{ is limit augmentation}
\end{cases}
\]
Let $a \in K$, $\gamma \in \Gamma \cup \{\infty\}$. Then the valuation defined by the pair (a, γ) is called a depth zero valuation.

Definition 2.37 (Maclane-Vaquié chains). A finite, or countably infinite chain of mixed augmentations as in (2.2) is called a Maclane-Vaquié chain (abbreviated as MLV), if every augmentation step satisfies:

- if $w_n \to w_{n+1}$ is ordinary augmentation, then $\deg(w_n) < \deg(\Phi_{w_n, w_{n+1}})$.
- if $w_n \to w_{n+1}$ is limit augmentation, then $\deg(w_n) = \deg(\Phi_{w_n, w_{n+1}})$ and $\phi_n \notin \Phi_{w_n, w_{n+1}}$.

A Maclane-Vaquié chain is said to be complete if w_0 is a depth zero valuation.

In the following result, using complete set of ABKPs for a valuation w, we give a construction of a complete finite MLV chain whose last valuation is w.

Theorem 2.38. Let (K, v) be a valued field and let w be an extension of v to $K(X)$. If $\{Q_i\}_{i \in \Delta}$ is a complete set of ABKPs for w such that N is the last element of Δ, then

$$w_0 \xrightarrow{Q_1, \gamma_1} w_1 \xrightarrow{Q_2, \gamma_2} \cdots \xrightarrow{Q_{N-1}, \gamma_{N-1}} w_N = w,$$

is a complete finite MLV chain of w such that

(i) if $\vartheta_j = \emptyset$, then $w_j \to w_{j+1}$ is an ordinary augmentation. Further, $w_{j+1} = w_{Q_j+1}$, and $\gamma_{j+1} = w(Q_{j+1}).$

(ii) if $\vartheta_j \neq \emptyset$, then $w_j \to w_{j+1}$ is a limit augmentation. Further, $w_{j+1} = w_{Q_{j+1}}$ and $\gamma_{j+1} = w(Q_{j+1}).$

The converse of the above result also holds.

Theorem 2.39. Let (K, v) be a valued field and let w be an extension of v to $K(X)$. If

$$w_0 \xrightarrow{\phi_1, \gamma_1} w_1 \xrightarrow{\phi_2, \gamma_2} \cdots \xrightarrow{\phi_{N-1}, \gamma_{N-1}} w_N = w,$$

is a complete finite MLV chain, then $\{\phi_i\}_{i \in \Delta}$ forms a complete set of ABKPs for w such that

(i) N is the last element of Δ.

(ii) if $w_j \to w_{j+1}$ is an ordinary augmentation, then $\phi_{j+1} \in \psi(\phi_j).$
(iii) if $w_j \rightarrow w_{j+1}$ is a limit augmentation, then ϕ_{j+1} is a limit key polynomial.

Note that if $w_j \rightarrow w_{j+1}$ is an ordinary augmentation for every $0 \leq j \leq N$ and $\gamma_N \in \Gamma_v \otimes \mathbb{Q}$, then the above MLV chain is nothing but an optimal Maclane chain and Theorem 2.39 is an immediate consequence of Theorem 2.28. On the other hand, if $\vartheta_j = \emptyset$ for every j and $w(Q_N) \in \Gamma_v \otimes \mathbb{Q}$, then Theorem 2.38 follows from Theorem 2.29.

It is known that if $\{Q_i\}_{i \in \Delta}$ is a complete set of ABKPs for w, then w is a valuation-transcendental extension of v to $K(X)$ if and only if Δ has a maximal element, say, N, and then $w = w_{Q_N}$ (see [10, Theorem 5.6]). Therefore, as an immediate consequence of Theorems 2.38 and 2.39, we have the following result.

Corollary 2.40. Let (K, v) and $(K(X), w)$ be as above. Then the following are equivalent:

(i) The extension w is valuation-transcendental.

(ii) There exist a complete set $\{Q_i\}_{i \in \Delta}$ of ABKPs for w such that Δ has a maximal element.

(iii) The extension w is the last valuation of a complete finite MLV chain.

3. Preliminaries

Let (K, v) be a valued field and $(\overline{K}, \overline{v})$ be as before. Let w be an extension of v to $K(X)$ and \overline{w} be a common extension of w and \overline{v} to $\overline{K}(X)$. In this section we give some preliminary results which will be used to prove the main results.

We first recall some basic properties of ABKPs for w (see Proposition 2.16 of [11], Proposition 3.8, Corollary 3.13 and Theorem 6.1 of [18]).

Proposition 3.1. For ABKPs, Q and Q' for w the following holds:

(i) If $w_Q < w$, then w_Q is an r. t. extension.

(ii) If $\delta(Q) < \delta(Q')$, then $w_Q(Q') < w(Q')$.

(iii) If $\deg Q = \deg Q'$, then

$$w(Q) < w(Q') \iff w_Q(Q') < w(Q') \iff \delta(Q) < \delta(Q').$$

(iv) Let $\delta(Q) < \delta(Q')$. For any polynomial $f \in K[X]$, if $w_{Q'}(f) < w(f)$, then $w_Q(f) < w_{Q'}(f)$.

(v) If $Q' \in \psi(Q)$, then Q and Q' are key polynomials for w_Q. Moreover, $w_{Q'} = [w_Q; Q', w_{Q'}(Q') = w(Q')]$.

The following result gives a comparison between key polynomials and ABKPs.

Theorem 3.2 (Theorem 2.17, [4]). Suppose that $w' < w$ and Q is a key polynomial for w'. Then Q is an ABKP polynomial for w if and only if it satisfies one of the following two conditions:

(i) $Q \in \Phi_{w', w}$,
(ii) $Q \notin \Phi_{w', w}$ and $\deg Q = \deg w'$.

In the first case $w_Q = [w'; Q, w(Q)]$. In the second case $w_Q = w$.

The next result relates ABKPs with distinguished pairs.

Lemma 3.3. Let (K, v) be a henselian valued field and w be an extension of v to $K(X)$. Let F be an ABKP for w and Q be any polynomial such that (F, Q) is a distinguished pair. Then the following holds:

(i) If θ and α are optimizing roots of F and Q respectively, then (θ, α) is a (K, v)-distinguished pair.
(ii) The polynomial Q is an ABKP for w. Moreover $w_Q < w$.

Proof. (i) The proof follows from Lemma 2.1 of [11].
(ii) Since $\deg Q < \deg F$ and F is an ABKP for w, so $\delta(Q) < \delta(F)$, i.e.,

$$\nu(X - \alpha) = \delta(Q) < \delta(F) = \nu(X - \theta),$$

where θ and α are optimizing roots of F and Q respectively, which in view of strong triangle law implies that

$$\nu(\theta - \alpha) = \delta(Q) < \nu(X - \theta). \tag{3.1}$$

Let g in $K[X]$ be any polynomial with $\deg g < \deg Q$. Then to prove that Q is an ABKP for w we need to show that $\delta(g) < \delta(Q)$. As (F, Q) is a distinguished pair, so by (i), (θ, α) is a (K, v)-distinguished pair. Now for an optimizing root β of g we have $\deg \beta < \deg \alpha$, which in view of the fact that (θ, α) is a (K, v)-distinguished pair implies that

$$\nu(\theta - \beta) < \nu(\theta - \alpha) = \delta(Q).$$

From (3.1) and the above inequality, we have that

$$\delta(g) = \nu(X - \beta) = \min\{\nu(X - \theta), \nu(\theta - \beta)\} = \nu(\theta - \beta) < \delta(Q).$$

Hence Q is an ABKP for w. As $\delta(Q) < \delta(F)$, so by Proposition 3.1 (ii), $w_Q(F) < w(F)$, i.e., $w_Q < w$. \[\square\]

The following result gives some necessary and sufficient conditions under which an ABKP for w has a saturated distinguished chain.
Corollary 3.4 (Corollary 1.18, [11]). Let \(w \) be an extension of \(v \) to \(K(X) \) and \(Q \) be an ABKP for \(w \). Then \(Q \) has a saturated distinguished chain of ABKPs if and only if there exists ABKPs, \(Q_0, Q_1, \ldots, Q_r = Q \) for \(w \), such that \(\deg Q_0 = 1 \), \(\deg Q_{i-1} < \deg Q_i \) and \(Q_i \in \psi(Q_{i-1}) \) for each \(i, 1 \leq i \leq r \).

Lemma 3.5 (Lemma 5.1, [2]). Let \((K, v)\) be henselian valued field. If \((\theta, \theta_1)\) and \((\theta_1, \theta_2)\) are two distinguished pairs of elements of \(K \), then

\[
\delta_K(\theta) > \delta_K(\theta_1) = \bar{v}(\theta_1 - \theta_2) = \bar{v}(\theta - \theta_2).
\]

4. Proof of Main Results

Proof of Proposition 2.10 (i) Since \((Q_r = Q, Q_{r-1}, \ldots, Q_0)\) is a saturated distinguished chain for \(Q \), so \((Q_i, Q_{i-1})\) is a distinguished pair for each \(1 \leq i \leq r \). In particular, for \(i = r \) we have that \((Q, Q_{r-1})\) is a distinguished pair and as \(Q \) is an ABKP for \(w \), so by Lemma 3.3 (ii), \(Q_{r-1} \) is an ABKP for \(w \). Arguing similarly we get that each \(Q_i, i \in \{0, \ldots, r-2\} \) is an ABKP for \(w \).

(ii) As \(\theta_i, 0 \leq i \leq r \), is an optimizing root of \(Q_i \), so by Lemma 3.3 (i), \((\theta = \theta_r, \theta_{r-1}, \ldots, \theta_0)\) is a saturated distinguished chain for \(\theta \) and therefore \((\theta_i, \theta_{i-1})\), \((\theta_{i-1}, \theta_{i-2})\) are distinguished pairs. Then by Lemma 3.5

\[
(4.1) \quad \bar{v}(\theta_i - \theta_{i-1}) = \delta_K(\theta_i) > \delta_K(\theta_{i-1}) = \bar{v}(\theta_{i-1} - \theta_{i-2}).
\]

Since \(Q \) is an ABKP for \(w \), so by (i), each \(Q_i, 0 \leq i \leq r-1 \), is also an ABKP for \(w \) and as \(\deg Q_{i-1} < \deg Q_i \), therefore

\[
\bar{w}(X - \theta_{i-1}) = \delta(Q_{i-1}) < \delta(Q_i) = \bar{w}(X - \theta_i),
\]

which in view of strong triangle law implies that

\[
\delta(Q_{i-1}) = \bar{v}(\theta_i - \theta_{i-1}).
\]

The above equality together with (4.1) gives

\[
\delta_K(\theta_i) = \delta(Q_{i-1}).
\]

Now \(\delta(Q_r) > \delta(Q_{r-1}) > \cdots > \delta(Q_0) \) follows from the definition of an ABKP.

\[\square\]

Proof of Theorem 2.16. By Proposition 2.10 (i), each \(Q_i, 0 \leq i \leq r \) is an ABKP for \(w \). Since \(\deg Q_{i-1} < \deg Q_i \), so \(\delta(Q_{i-1}) < \delta(Q_i) \) and from Corollary 3.4 it follows that \(Q_{i-1} \in \psi(Q_i) \), for each \(1 \leq i \leq r \). Now let \(f \in K[X] \) be any polynomial. If \(\deg f < \deg Q_i \), for some \(0 \leq i \leq r \), then \(w_{Q_i}(f) = w(f) \). On the other hand, if \(\deg f \geq \deg Q_i \), for every \(0 \leq i \leq r \), then by definition of \(w \), \(w_{Q_i}(f) = w(f) \). Hence \(\Lambda = \{Q_0\} \cup \{Q_1\} \cup \cdots \cup \{Q_r\} \) is a complete set of ABKPs for \(w \).

\[\square\]
Therefore from the above inequality and (4.2), Lemma 3.5, we have that which in view of strong triangle law implies that

\[\delta_K(\theta) = \bar{\delta}(\theta - \theta_{r-1}) \geq \delta_K(\theta_{r-1}) = \bar{\delta}(\theta_{r-1} - \theta_{r-2}) = \bar{\delta}(\theta - \theta_{r-2}). \]

Again on applying Lemma 3.5, for distinguished pairs \((\theta_{r-1}, \theta_{r-2})\), and \((\theta_{r-2}, \theta_{r-3})\), we get that

\[\delta_K(\theta_{r-1}) = \bar{\delta}(\theta_{r-1} - \theta_{r-2}) = \bar{\delta}(\theta - \theta_{r-2}) \geq \delta_K(\theta_{r-2}) = \bar{\delta}(\theta - \theta_{r-3}) \]

which in view of strong triangle law implies that

\[\delta_K(\theta_{r-1}) > \delta_K(\theta_{r-2}) = \bar{\delta}(\theta - \theta_{r-3}). \]

On continuing in the similar manner, for every \(1 \leq i \leq r - 1\), we have that

\[\delta_K(\theta_{i+1}) = \bar{\delta}(\theta_{i+1} - \theta_i) = \bar{\delta}(\theta - \theta_i) > \delta_K(\theta_i) \]

Therefore from the above inequality and (4.2), \(\theta_i\) is of minimal degree over \(K\) such that

\[\bar{\delta}(\theta - \theta_i) = \max\{\bar{\delta}(\theta_{i+1} - \eta) \mid \eta \in \overline{K}, \ deg \eta < deg \theta_{i+1}\} \quad \forall \ 0 \leq i \leq r - 1. \]

For any \(\eta \in \overline{K}\) with \(deg \eta < deg \theta_{i+1}\), we now claim that \(\bar{\delta}(\theta_{i+1} - \eta) = \bar{\delta}(\theta - \eta)\). For \(i = r - 1\), this holds trivially. Let \(0 \leq i \leq r - 2\), then as \(deg \eta < deg \theta_{i+1}\) and \((\theta_{i+1}, \theta_i)\) is a distinguished pair, so by (4.3)

\[\bar{\delta}(\theta_{i+1} - \eta) \leq \bar{\delta}(\theta_{i+1} - \theta_i) = \bar{\delta}(\theta - \theta_i) \leq \bar{\delta}(\theta - \theta_{i+1}), \]

which in view of the strong triangle law implies that

\[\bar{\delta}(\theta_{i+1} - \eta) = \bar{\delta}(\theta - \eta). \]

It now follows from (4.4) and the claim that

\[\delta_K(\theta_{i+1}) = \bar{\delta}(\theta - \theta_i) = \max\{\bar{\delta}(\theta_{i+1} - \eta) \mid \eta \in \overline{K}, \ deg \eta < deg \theta_{i+1}\} = \max\{\bar{\delta}(\theta - \eta) \mid \eta \in \overline{K}, \ deg \eta < deg \theta_{i+1}\}. \]

The above equality immediately implies that

\[\bar{\delta}(\theta - \theta_i) = \max\{\bar{\delta}(\theta - \eta) \mid \eta \in \overline{K}, \ deg \eta = deg \theta_i\}, \ for \ all \ 0 \leq i \leq r - 1. \]
In order to prove that \([F_0, F_1, \ldots, F_{r-1}]\) is an Okutsu frame for \(F\), in view of the above equality, and the fact that \(\deg \theta_0 = 1\), it only remains to show that for every \(1 \leq i \leq r - 1\),

\[
\deg \theta_i = \min \{ \deg \eta \mid \eta \in \overline{K}, \, v(\theta - \eta) > v(\theta - \theta_{i-1}) \}.
\]

(4.6)

Let \(\eta \in \overline{K}\) be such that \(\deg \eta < \deg \theta_i\), then as \((\theta_i, \theta_{i-1})\) is a distinguished pair, so

\[
v(\theta_i - \eta) \leq v(\theta_i - \theta_{i-1}) = v(\theta - \theta_{i-1}) < v(\theta - \theta_i),
\]

which together with strong triangle law implies that

\[
v(\theta - \eta) = v(\theta_i - \eta) \leq v(\theta - \theta_{i-1}).
\]

Hence (4.6) follows.

Conversely, let \([F_0, F_1, \ldots, F_{r-1}]\) be an Okutsu frame for \(F\). Then there exist some root \(\theta_i\) of \(F_i\) such that

\[
v(\theta - \theta_i) = \max \{ v(\theta - \eta) \mid \eta \in \overline{K}, \, \deg \eta = \deg \theta_i, \, 0 \leq i \leq r - 1, \, \deg \theta_i = \min \{ \deg \eta \mid \eta \in \overline{K}, \, v(\theta - \eta) > v(\theta - \theta_{i-1}) \}, \quad 1 \leq i \leq r - 1,
\]

and

\[
1 = \deg \theta_0 < \cdots < \deg \theta_i < \deg \theta_{i+1} < \cdots < \deg \theta_r = \deg \theta
\]

(4.7) \(v(\theta - \theta_0) < \cdots < v(\theta - \theta_i) < v(\theta - \theta_{i+1}) < \cdots < v(\theta - \theta_{r-1}) < \infty\).

(4.8)

In order to prove that \((F, F_{r-1}, \ldots, F_0)\) is a saturated distinguished chain for \(F\), it is enough to show that \((\theta = \theta_r, \theta_{r-1}, \ldots, \theta_0)\) is a saturated distinguished chain for \(\theta\). From (4.8), on using strong triangle law we get that

\[
v(\theta - \theta_i) = v(\theta_{i+1} - \theta_i), \quad 0 \leq i \leq r - 1.
\]

(4.9)

Now for any \(\eta \in \overline{K}\) with \(\deg \eta < \deg \theta_{i+1}\), we show that

\[
v(\theta - \eta) = v(\theta_{i+1} - \eta) \text{ and } v(\theta_{i+1} - \theta_i) \geq v(\theta_{i+1} - \eta).
\]

For \(i = r - 1\), first equality holds trivially. If \(\deg \eta = \deg \theta_{r-1}\), then by (4.7),

\[
v(\theta - \eta) \leq v(\theta - \theta_{r-1}), \quad \text{on the other hand, if } \deg \eta \neq \deg \theta_{r-1}, \text{ then by definition of } \deg \theta_{r-1} \text{ and } (4.8) \text{ we have that}
\]

\[
v(\theta - \eta) \leq v(\theta - \theta_{r-2}) < v(\theta - \theta_{r-1}).
\]

Let \(0 \leq i \leq r - 2\). Since \(\deg \eta < \deg \theta_{i+1}\), so by definition of \(\deg \theta_{i+1}\) and (4.8), we get

\[
v(\theta - \eta) \leq v(\theta - \theta_i) < v(\theta - \theta_{i+1})
\]

which in view of strong triangle law and (4.9) implies that

\[
v(\theta_{i+1} - \eta) = v(\theta - \eta) \leq v(\theta - \theta_i) = v(\theta_{i+1} - \theta_i).
\]
Hence
\[\tilde{v}(\theta_{i+1} - \theta_i) = \max\{\tilde{v}(\theta_{i+1} - \eta) \mid \eta \in \overline{K}, \ \deg \eta < \deg \theta_{i+1}\} = \delta_K(\theta_{i+1}) \]
and \(\deg \theta_i \) is minimal with this property, because if there exist some \(\beta \in \overline{K} \) with \(\deg \beta < \deg \theta_i \), then by definition of \(\deg \theta_i \) and (1.8),
\[\tilde{v}(\theta - \beta) \leq \tilde{v}(\theta - \theta_{i-1}) < \tilde{v}(\theta - \theta_i) = \tilde{v}(\theta_{i+1} - \theta_i), \]
which on using strong triangle law gives
\[\tilde{v}(\theta_{i+1} - \beta) = \min\{\tilde{v}(\theta_{i+1} - \theta_i), \tilde{v}(\theta_i - \theta), \tilde{v}(\theta - \beta)\} = \tilde{v}(\theta - \beta) < \tilde{v}(\theta - \theta_i) = \tilde{v}(\theta_{i+1} - \theta_i) = \delta_K(\theta_{i+1}), \]
i.e., \(\tilde{v}(\theta_{i+1} - \beta) < \delta_K(\theta_{i+1}) \). As \(\deg \theta_0 = 1 \), so \(\theta_0 \in K \). Hence \(\theta = (\theta_r, \theta_{r-1}, \ldots, \theta_0) \) is a saturated distinguished chain for \(\theta \).

Remark 4.1. From proof of the above theorem, we can conclude that \([F_0, F_1, \ldots, F_{r-1}] \)
is an Okutsu frame for a monic irreducible polynomial \(F \in K[X] \), if there exist some root \(\theta_i \) of \(F_i \) such that
\[\tilde{v}(\theta - \theta_i) = \max\{\tilde{v}(\theta - \eta) \mid \eta \in \overline{K}, \ \deg \eta < \deg \theta_{i+1}\} \text{ for all } 0 \leq i \leq r - 1, \]
de\(\deg \theta_i \) is minimal with this property and \(\deg \theta_0 = 1 \).

Proof of Theorem 2.28. Let
\[w_{-\infty} \xrightarrow{\phi_0, \gamma_0} w_0 \xrightarrow{\phi_1, \gamma_1} w_1 \xrightarrow{\phi_2, \gamma_2} \cdots \xrightarrow{\phi_{r-1}, \gamma_{r-1}} w_r = w, \]
be an optimal Maclane chain of \(w \). If \(r = 0 \), then \(w_{-\infty} \xrightarrow{\phi_0, \gamma_0} w_0 = w \) is an optimal Maclane chain of \(w \). Since \(w_0 = [w_{-\infty}; \phi_0, \gamma_0] \) and \(\gamma_0 = w_0(\phi_0) = w(\phi_0) \), so for any polynomial \(f \in K[X] \), with \(\phi_0 \)-expansion \(\sum_{i \geq 0} a_i \phi_0^i \), we have
\[w_{\phi_0}(f) = \min\{w(a_i \phi_0^i)\} = \min\{v(a_i) + iw(\phi_0)\} = w_0(f) = w(f). \]
Therefore, \(\{\phi_0\} \) is a complete set of ABKP for \(w_0 = w \). Assume now that \(r \geq 1 \). Since \(\phi_i \) is a key polynomial of minimal degree for \(w_i \), i.e., \(\deg \phi_i = \deg w_i \), and \(w_i(\phi_i) = w(\phi_i) \), so \(\phi_i \notin \Phi_{w_i, w} \) which in view of Theorem 3.2 implies that \(\phi_i \) is an ABKP for \(w \). Moreover,
\[(4.10) \]
\[w_i = w_{\phi_i}, \ 0 \leq i \leq r. \]
As \(\deg \phi_{i-1} < \deg \phi_i \), and \(\phi_i \) is an ABKP for \(w \), so
\[\delta(\phi_{i-1}) < \delta(\phi_i). \]
Since \(w_{\phi_{i-1}} < w \), \(\phi_i \) is a key polynomial for \(w_{\phi_{i-1}} \) which is also an ABKP for \(w \), and \(\deg(w_{\phi_{i-1}}) = \deg \phi_{i-1} < \deg \phi_i \), so by Theorem 3.2 we have that
\[\phi_i \in \Phi_{w_{\psi_i-1}}, w. \] Therefore, by Remark 2.25 we get that
\[(4.11) \quad \phi_i \in \psi(\phi_{i-1}), \ 1 \leq i \leq r. \]

Let \(f \) in \(K[X] \) be any polynomial. If \(\deg f < \deg \phi_i \) for some \(i \), then \(w_{\phi_i}(f) = w(f) \). Otherwise, if \(\deg f \geq \deg \phi_i \) for all \(0 \leq i \leq r \), then from (4.10) and the fact that \(w_r = w \), we have \(w_{\phi_i} = w \). Hence \(w_{\phi_i}(f) = w(f) \). Thus \(\Lambda = \{ \phi_0 \} \cup \{ \phi_1 \} \cup \cdots \cup \{ \phi_r \} \) is a complete set of ABKPs for \(w \) such that \(\psi_i = \emptyset \), for every \(0 \leq i \leq r \) (by 4.11) and \(r \) is the maximal element of \(\Delta \).

Proof of Theorem 2.29. Suppose \(\Lambda = \{ Q_i \}_{i \in \Delta} \) is a complete set of ABKPs for \(w \) such that \(N \) is the maximal element of \(\Delta \). If \(N = 0 \), then \(w \) is a depth zero valuation \(w_{Q_0} = w \) and by the hypothesis that \(w(Q_0) \in \Gamma_v \otimes \mathbb{Q} \), the extension \(w \) is commensurable. Since \(Q_0 \) is a monic polynomial of degree one, so \(Q_0 \) is a key polynomial for \(w_{-\infty} \), and by definition of \(w_{-\infty} \) we have that \(w_{-\infty}(Q_0) < w_{Q_0}(Q_0) = w(Q_0) \). Therefore \(w_{Q_0} = [w_{-\infty}, Q_0, w(Q_0)] \) is the augmentation of \(w_{-\infty} \) and the result holds in this case. Assume now that \(N \geq 1 \). Since each \(\psi_i = \emptyset \), so \(Q_i \in \psi(Q_{i-1}) \) for every \(1 \leq i \leq N \), which in view of Proposition 3.1 (v) implies that \(Q_{i-1}, Q_i \) are key polynomials for \(w_{Q_{i-1}} \) and

\[w_{Q_i} = [w_{Q_{i-1}}; Q_i, w_{Q_i}(Q_i) = w(Q_i)] \]

is the augmentation of \(w_{Q_{i-1}} \). Now from Proposition 3.1 (i), and the assumption that \(w(Q_N) \in \Gamma_v \otimes \mathbb{Q} \), we get that

\[\gamma_i = w_{Q_i}(Q_i) = w(Q_i) \in \Gamma_v \otimes \mathbb{Q}, \ 0 \leq i \leq N. \]

By Remark 2.14 (iv), \(\deg Q_{i-1} < \deg Q_i \) for every \(1 \leq i \leq N \) and as \(Q_i \in \psi(Q_{i-1}) \), so by [11] Theorem 1.12 (ii), we have that \(\deg Q_{i-1} | \deg Q_i \). Arguing similarly as in the case \(N = 0 \), we have that \(w_{Q_0} = [w_{-\infty}, Q_0, w(Q_0)] \) is the augmentation of \(w_{-\infty} \). Hence

\[w_{-\infty} \overset{Q_0}{\rightarrow} w_{Q_0} \overset{Q_1}{\rightarrow} w_{Q_1} \overset{Q_2}{\rightarrow} \cdots \overset{Q_N}{\rightarrow} w_{Q_N} = w \]

is an optimal Maclane chain of \(w \).

Proof of Theorem 2.38. Let \(\{ Q_i \}_{i \in \Delta} \) be a complete set of ABKPs for \(w \) with \(N \) the maximal element of \(\Delta \). If \(N = 0 \), then \(w = w_{Q_0} \) is a depth zero valuation and result holds trivially. Assume now that \(N \geq 1 \). Then by Remark 2.14 (i), \(\Delta = \bigcup_{j=0}^{N} \Delta_j \), where \(\Delta_j = \{ j \} \cup \{ \psi_j \} \) and \(\psi_j \) is either empty or an ordered set without a maximal element. Since for each \(i \in \Delta \), \(Q_i \) is an ABKP for \(w \), so \(w_{Q_i} \) is a valuation on \(K(X) \) and we denote it by \(w_i \).

Suppose first that \(\psi_j = \emptyset \) for some \(0 \leq j \leq N \), then \(Q_{j+1} \) is not a limit key polynomial, i.e., \(Q_{j+1} \in \psi(Q_{j}) \) which in view of Proposition 3.1 (v), implies
that Q_{j+1} and Q_j are key polynomials for w_j and

$$w_{Q_{j+1}}(= w_{j+1}) = [w_j; Q_{j+1}, w_{Q_{j+1}}(Q_{j+1}) = w(Q_{j+1})]$$

is an ordinary augmentation of w_j and Q_{j+1}, i.e., $w_j \rightarrow w_{j+1}$ is an ordinary augmentation. In fact Q_j is a key polynomial of minimal degree for w_j, i.e.,

$$\deg Q_j = \deg(w_j)$$

and as $\Phi_{w_j, w_{j+1}} = [Q_{j+1}]w_j$, so

$$\deg w_j < \deg Q_{j+1} = \deg(\Phi_{w_j, w_{j+1}}).$$

Assume now that $\vartheta_j \neq \emptyset$ for some $0 \leq j \leq N$. Then by Remark 2.14, for each $i \in \vartheta_j$ there exists an ABKP, Q_i for w such that $Q_i \in \psi(Q_j)$ and

$$\deg Q_i = \deg Q_j = m_j \text{ (say)},$$

where Q_j is the ABKP corresponding to $\{j\}$. From Proposition 3.1 (v), it follows that each Q_i is a key polynomial for w_j and w_Q, is an ordinary augmentation of w_j with respect to $w(Q_i)$, i.e.,

$$w_{Q_i}(= w_i) = [w_j; Q_i, w(Q_i)].$$

Therefore, for each $i \in \vartheta_j$, w_i is an ordinary augmentation of w_j. Now for any $i < i' \in \vartheta_j$, since $\delta(Q_i) < \delta(Q_{i'})$, so by Proposition 3.1 (ii), we have that $w_i(Q_{i'}) < w(Q_{i'})$, which together with $\deg Q_i = \deg Q_{i'}$ implies that $Q_{i'} \in \psi(Q_i)$. On using Proposition 3.1 (v), we get that $Q_{i'}$ is a key polynomial for w_i, and

$$w_{i'} = [w_i; Q_{i'}, w(Q_{i'})],$$

i.e., $w_{i'}$ is an ordinary augmentation of w_i with respect to $w(Q_{i'})$ for every $i < i' \in \vartheta_j$. From Corollary 2.24 and Remark 2.25, we have $\psi(Q_i) = \Phi_{w_i, w} = \Phi_{w_i, w', \vartheta}$, and as $Q_i \notin \psi(Q_i)$, so

\begin{equation}
(4.12) \quad w_i(Q_i) = w_{i'}(Q_i), \quad \forall \ i' > i \in \vartheta_j,
\end{equation}

which in view of Theorem 2.23 implies that $Q_{i'} \not\in w_i Q_i$. Hence $W_j := \{w_i\}_{i \in \vartheta_j}$ is a continuous family of augmentations such that for each $i \in \vartheta_j$, w_i is an ordinary augmentation of w_j with respect to $w(Q_i)$ and from (4.12), Q_i is W_j-stable with stability degree m_j. As $\vartheta_j \neq \emptyset$, so by Definition 2.15, Q_{j+1} is a limit key polynomial. Since $\delta(Q_i) < \delta(Q_{i'})$, for every $i < i' \in \vartheta_j$, and $w_{i'}(Q_{j+1}) < w(Q_{j+1})$ for every $i' \in \vartheta_j$, (because $i' < j + 1 \in \Delta$), so in view of Proposition 3.1 (iv), we have that

$$w_i(Q_{j+1}) < w_{i'}(Q_{j+1}) \text{ for every } i < i' \in \vartheta_j.$$
Let \(\gamma_{j+1} \) denotes the valuation \(w(Q_{j+1}) \). Clearly, \(\gamma_{j+1} > w_i(Q_{j+1}) \), for all \(i \in \vartheta_j \). Let \(f \) be any polynomial in \(K[X] \) with \(Q_{j+1} \)-expansion \(\sum_{s \geq 0} f_s Q_{j+1}^s \). As \(\deg f_s < \deg Q_{j+1} = m_{j+1} \), so all coefficients are \(\mathcal{W}_j \)-stable, i.e., \(w_i(f_s) = w_i(f_s) \) for all \(i' > i \) in \(\vartheta_j \) and we denote these stable values by \(\rho_{\mathcal{W}_j}(f_s) \). Then

\[\rho_{j+1}(f) = \min_{s \geq 0} \{ \rho_{\mathcal{W}_j}(f_s) + s\gamma_{j+1} \} \]

is a valuation on \(K[X] \), which implies that \(\rho_{j+1} = [\mathcal{W}_j; Q_{j+1}, \gamma_{j+1}] \) is a limit augmentation of an essential continuous family of augmentations of \(w_j \), or \(w_j \to \rho_{j+1} \) is a limit augmentation. Therefore \(\rho_{j+1}(Q_{j+1}) = \gamma_{j+1} = w(Q_{j+1}) \), i.e., \(Q_{j+1} \notin \Phi_{\rho_{j+1}, w} \). Since \(Q_{j+1} \) is a key polynomial of minimal degree for \(\rho_{j+1} \), so \(\deg Q_{j+1} = \deg(\rho_{j+1}) \) and hence in view of Theorem 3.2, we have that

\[\rho_{j+1} = w_{Q_{j+1}} (= w_{j+1}). \]

As \(w_j < w_{j+1} \leq w \), so if \(w_{j+1} = w \), then by Remark 2.25, \(\Phi_{w_j, w_{j+1}} = \Phi_{w_j, w} = \psi(Q_j) \), otherwise this equality holds in view of Corollary 2.24 (ii) and Remark 2.25. By Remark 2.31 (ii), we have that \(\deg(w_j) = \deg(Q_j) = \deg(\psi(Q_j)) = \deg(\Phi_{w_j, w_{j+1}}) \). In fact, \(Q_{j+1} \notin \Phi_{w_j, w_{j+1}} = \psi(Q_j) \), because \(\deg Q_j < \deg Q_{j+1} \).

Clearly, \(w_{Q_N} = w \), for if there exist some polynomial \(f \in K[X] \) such that \(w_{Q_N}(f) < w(f) \), then as \(\Lambda \) is a complete set, so \(w_{Q_i}(f) = w(f) \) for some \(0 \leq i < N \). But this will imply that \(w(f) = w_{Q_i}(f) \leq w_{Q_N}(f) < w(f) \).

Thus from the above arguments it follows that

\[w_0 \xrightarrow{Q_1, \gamma_1} w_1 \xrightarrow{Q_2, \gamma_2} \cdots \xrightarrow{Q_{n-1}, \gamma_{n-1}} w_{N-1} \xrightarrow{Q_N, \gamma_N} w_N = w, \]

where \(w_i = w_{Q_i} \), \(\gamma_i = w(Q_i) \) for every \(0 \leq i \leq N \), is a MLV chain whose last valuation is \(w_N = w \), such that:

- if \(\vartheta_j = \emptyset \), then \(w_j \to w_{j+1} \) is an ordinary augmentation.
- if \(\vartheta_j \neq \emptyset \), then \(w_j \to w_{j+1} \) is a limit augmentation of an essential continuous family of augmentations of \(w_j \).

Finally the chain is complete because \(w_0 = w_{Q_0} \), where \(Q_0 = X \), is defined by the pair \((0, w_0(X)) \) and is a depth zero valuation.

\[\square \]

Proof of Theorem 2.39. Let

\[w_0 \xrightarrow{\phi_1, \gamma_1} w_1 \xrightarrow{\phi_2, \gamma_2} \cdots \xrightarrow{\phi_{N-1}, \gamma_{N-1}} w_{N-1} \xrightarrow{\phi_N, \gamma_N} w_N = w, \]

be a complete finite MLV chain of \(w \). If \(N = 0 \), then \(w_0 = w \) is a depth zero valuation and the result holds trivially. Assume now that \(N \geq 1 \). Then each \(\phi_j \) is a key polynomial for \(w_j \) of minimal degree, i.e., \(\deg \phi_j = \deg(w_j) \), and...
Suppose first that $w_j \rightarrow w_{j+1}$ is an ordinary augmentation. Then by definition of MLV chain of w, we have that $\phi_{j+1} \in \Phi_{w_j, w_{j+1}}$. As $w_j < w_{j+1} \leq w$, so if $w_{j+1} < w$, then by Corollary 2.21, $\Phi_{w_j, w_{j+1}} = \Phi_{w_j, w}$, i.e., $w_j(\phi_{j+1}) < w(\phi_{j+1})$, otherwise this holds trivially. Now from (4.13), we get that $w_{\phi_j}(\phi_{j+1}) < w(\phi_{j+1})$ which together with the minimality of $\deg \phi_{j+1}$, implies that $\phi_{j+1} \notin \psi(\phi_j)$ and hence from Lemma 2.9 it follows that
\[
\delta(\phi_j) < \delta(\phi_{j+1}).
\]

Assume now that $w_j \rightarrow w_{j+1}$ is a limit augmentation. Then ϕ_{j+1} is a MLV limit key polynomial for an essential continuous family (say) W_j of augmentations of w_j. Let $W_j = \{\rho_i\}_{i \in A_j}$, where A_j is some totally ordered set without a maximal element and for each $i \in A_j$, $\rho_i = [w_j, \phi_i, \gamma_i]$ is an ordinary augmentation of w_j with stability degree, (say) $m_j = \deg \phi_j = \deg \phi_i$. Also, for all $i < i' \in A_j$, $\phi_{i'}$ is a key polynomial for ρ_i such that
\[
\phi_{i'} \not\in \rho_i, \phi_i, \text{ i.e., } \phi_{i'} \not\in \rho_i, \phi_i \text{ and } \rho_{i'} = [\rho_{i}, \phi_{i'}, \gamma_{i'}].
\]

Since $\rho_i < w$ and $\phi_{i'} \not\in \rho_i$, so by Theorem 2.21 $\rho_i(\phi_i) = w(\phi_i)$, which together with Corollary 2.21 gives
\[
(4.14) \quad \phi_i \notin \Phi_{\rho_i, w} = \Phi_{\rho_i, \rho_{i'}} = [\phi_{i'}]_{\rho_i}.
\]

Now by Remark 2.31 (ii), for each $i \in A_j$, ϕ_i is a key polynomial for ρ_i of minimal degree, i.e., $\deg \phi_i = \deg \rho_i$, therefore keeping in mind that $\rho_i < w$, equation (4.14) in view of Theorem 3.2 (ii), implies that each ϕ_i is an ABKP for w and
\[
\rho_i = w_{\phi_i}, \text{ for all } i \in A_j.
\]

Hence for each $i < i' \in A_j$, ϕ_i and $\phi_{i'}$ are ABKPs for w such that
\[
w(\phi_i) = w_{\phi_i}(\phi_i) < w_{\phi_i}(\phi_{i'}) = w(\phi_{i'}) \text{ and } \deg \phi_i = \deg \phi_{i'},
\]
which in view of Proposition 3.1 (iii), implies that $w_{\phi_i}(\phi_{i'}) < w(\phi_{i'})$. Therefore, by Lemma 2.9 we get that
\[
\phi_{i'} \in \psi(\phi_i) \text{ and } \delta(\phi_i) < \delta(\phi_{i'}) \text{ for every } i < i' \in A_j.
\]

As $\deg \phi_j = \deg \phi_i$, for every $i \in A_j$ and $w(\phi_j) < w(\phi_i)$, so again by Proposition 3.1 (iii), we have that $\phi_i \in \psi(\phi_j)$ and then
\[
\delta(\phi_j) < \delta(\phi_i) \forall \ i \in A_j,
\]
follows from Lemma 2.9. Since W_j is essential, so $\deg \phi_j = \deg \phi_i < \deg \phi_{j+1}$, for every $i \in A_j$, this together with the fact that ϕ_{j+1} is an ABKP for w, implies that

$$\delta(\phi_i) < \delta(\phi_{j+1}), \delta(\phi_i) < \delta(\phi_{j+1}) \text{ and } \phi_{j+1} \notin \psi(\phi_j).$$

For every $0 \leq j \leq N$, let $\Delta_j = \{j\} \cup A_j$, and $\Delta = \bigcup_{j=0}^N \Delta_j$. We now show that $\Lambda = \{\phi_i\}_{i \in \Delta}$ is a complete set of ABKPs for w. Clearly, as shown above for every $i < i' \in \Delta$, we have $\delta(\phi_i) < \delta(\phi_{i'})$. Therefore the set Λ is well-ordered with respect to the ordering given by $\phi_i < \phi_{i'}$ if and only if $\delta(\phi_i) < \delta(\phi_{i'})$ for every $i < i' \in \Delta$. It only remains to prove that for any polynomial $f \in K[X]$, there exist some $i \in \Delta$ such that $w_{\phi_i}(f) = w(f)$. If $\deg f < \deg \phi_i$ for some $i \in \Delta$, then $w_{\phi_i}(f) = w(f)$. On the other hand, if $\deg f \geq \deg \phi_i$ for all $i \in \Delta$, then using the fact that $w_N = w$ and (4.13), we get $w_{\phi_N} = w$. Hence $w_{\phi_N}(f) = w(f)$. Thus $\{\phi_i\}_{i \in \Delta}$ is a complete set of ABKPs for w such that

- if $w_j \rightarrow w_{j+1}$ is an ordinary augmentation, then $\phi_{j+1} \in \psi(\phi_j)$,
- if $w_j \rightarrow w_{j+1}$ is a limit augmentation, then $\phi_{j+1} \notin \psi(\phi_j)$ and therefore, $A_j \neq \emptyset$ implies that ϕ_{j+1} is a limit key polynomial.

\[\square\]

Acknowledgement

Research of the first author is supported by CSIR (grant no. 09/045(1747)/2019-EMR-I).

References

[1] K. Aghigh and S. K. Khanduja, On the main invariant of elements algebraic over a Henselian valued field. *Proc. Edinb. Math. Soc.* 45 (2002), no. 1, 219-227.

[2] K. Aghigh and S. K. Khanduja, On chains associated with elements algebraic over a Henselian valued field. *Algebra Colloq.* 12 (2005), no. 4, 607-616.

[3] K. Aghigh and A. Nikseresht, Characterizing distinguished pairs by using liftings of irreducible polynomials. *Canad. Math. Bull.* 58 (2015), no. 2, 225-232.

[4] M. Alberich-Carraminána, A. F. F. Boix, J. Fernández, J. Guàrdia, E. Nart and J. Roé, Of limit key polynomials. *Illinois J. Math.* 65 (2021), no. 1, 201–229.

[5] A. J. Engler and A. Prestel, *Valued Fields*. Springer-Verlag, Berlin, 2005.
[6] J. Guàrdia, J. Montes and E. Nart, Okutsu invariants and Newton polygons, *Acta Arith.* **145** (2010), no. 1, 83–108.

[7] A. Jakhar and N. Sangwan, Key polynomials and distinguished pairs. *Commun. Algebra* **49** (2020), no. 7, 2952-2960.

[8] F. -V. Kuhlmann, Value groups, residue fields, and bad places of rational function fields. *Trans. Amer. Math. Soc.* **356** (2004), no. 11, 4559-4600.

[9] S. Maclane, A construction for absolute values in polynomial rings. *Trans. Amer. Math. Soc.* **40** (1936), no. 3, 363-395.

[10] W. Mahboub, A. Mansour and M. Spivakovsky, On common extensions of valued fields. *J. Algebra* **584** (2021), 1-18.

[11] S. Mavi and A. Bishnoi, Abstract key polynomials and distinguished pairs. *arXiv:2112.15123 [math.AC]* (2021).

[12] N. Moraes de Oliveira and E. Nart, Defectless polynomials over Henselian fields and inductive valuations. *J. Algebra* **541** (2020), 270–307.

[13] N. Moraes de Oliveira, Invariants of algebraic elements over Henselian fields. *Commun. Algebra* **49** (2021), 5435-5448.

[14] E. Nart, Key polynomials over valued fields. *Publ. Mat.* **64** (2020), No. 1, 195–232.

[15] E. Nart, MacLane-Vaquie chains of valuations on a polynomial ring. *Pac. J. Math.* **311** (2021), 165-195.

[16] J. Novacoski and M. Spivakovsky, Key polynomials and pseudo-convergent sequences. *J. Algebra* **495** (2018), 199-219.

[17] J. Novacoski, Key polynomials and minimal pairs. *J. Algebra* **523** (2019), 1-14.

[18] J. Novacoski, On MacLane-Vaquie key polynomials. *J. Pure Appl. Algebra* **225** (2021), no. 8, 1-20.

[19] J. Novacoski and C. H. Silva De Souza, On truncations of valuations. *J. Pure and Appl. Algebra* **226** (2022), 1-20.

[20] K. Okutsu, Construction of integral basis I-II, *Proc. Jpn. Acad. Ser.* **58** (1982), no. 2, 87-89.

[21] L. Popescu and N. Popescu, On the residual transcendental extensions of a valuation. Key polynomials and augmented valuation. *Tsukuba J. Math.* **15** (1991), no. 1, 57-78.

[22] N. Popescu and A. Zaharescu, On the structure of the irreducible polynomials over local fields. *J. Number Theory* **52** (1995), no. 1, 98-118.

[23] M. Vaquié, Extension d’une valuation. *Trans. Amer. Math. Soc.* **359** (2007), no. 7, 3439-3481
Department of Mathematics, University of Delhi, Delhi-110007, India.
Email address: mavisneha@gmail.com

Department of Mathematics, University of Delhi, Delhi-110007, India.
Email address: abishnoi@maths.du.ac.in