Nonexistence of Global Solutions for Coupled System of Pseudoparabolic Equations with Variable Exponents and Weak Memories

Kh. Zennir, H. Dridi, S. Alodhaibi, and S. Alkhalaf

1Department of Mathematics, College of Sciences and Arts, Qassim University, Ar Rass, Saudi Arabia
2Laboratoire de Mathématiques Appliquées et de Modélisation, Université 8 Mai 1945 Guelma, B.P. 401, Guelma 24000, Algeria
3Laboratory of Applied Mathematics Badji Mokhtar University-Annaba, P.O. Box 12, 23000 Annaba, Algeria
4Computer Department, College of Sciences and Arts, Qassim University, Ar Rass, Saudi Arabia

Correspondence should be addressed to Kh. Zennir; k.zennir@qu.edu.sa

Received 9 January 2021; Accepted 11 February 2021; Published 28 February 2021

The most important behavior for evolution system is the blow-up phenomena because of its wide applications in modern science. The article discusses the finite time blowup that arise under appropriate conditions. The nonsolvability of boundary value problem for damped pseudoparabolic differential equations with variable exponents is investigated. Such problem has been previously studied in the case if \(p \) and \(q \) are constants. New here is the case of variables of nonlinearity \(p \) and \(q \) which make the problem has a scientific interest.

1. Introduction and Overview

Boundary value problems for evolutionary equations of parabolic in degenerate sense are well studied (see, for example, [1–4]). In this article, we study boundary value problems for coupled system of pseudoparabolic equations with \(p(x) \)-Laplacian in the presence of weak viscoelasticities. Such problems have not been studied in depth. To begin with, let \(\Omega \) is an open bounded domain in \(\mathbb{R}^n \) for \(n \geq 2 \) with smooth boundary \(\partial \Omega \); we then consider in \(\Omega \times (0, T) \)

\[
\begin{align*}
\partial_t w - \Delta_{q(x)} w - \Delta_{\sigma(t)} \left(\partial_t w - \sigma(t) \int_0^t \omega_1(t-s) w \, ds \right) & = f_1(w, z), \\
\partial_t z - \Delta_{q(x)} z - \Delta_{\sigma(t)} \left(\partial_t z - \sigma(t) \int_0^t \omega_2(t-s) z \, ds \right) & = f_2(w, z),
\end{align*}
\]

(1) for \(0 < T < \infty \) with initial condition

\[
w(x, 0) = w_0(x) \in W_{0}^{1,q(\cdot)}(\Omega),
\]

(2)

\[
z(x, 0) = z_0(x) \in W_{0}^{1,q(\cdot)}(\Omega),
\]

(3) and boundary condition

\[
w = z = 0 \text{ on } \partial \Omega \times (0, T).
\]

(4)

The lack of stability of solutions of partial differential equations is a huge restriction for qualitative studies. The terms responsible for the blow-up phenomenon in our system (1) is that of more complicated nonlinearities when they dominate the damped terms, especially when it comes with the existence of a large class of Laplacian operator

\[
\Delta_{q(x)} \omega = \text{div} \left(\nabla_x \omega \right)^{q(x)-2} \nabla_x \omega.
\]

(5)
The functions \(f_j : \mathbb{R}^2 \to \mathbb{R}, j = 1, 2 \) are given by the nonlinearities
\[
\begin{align*}
&f_1(\xi_1, \xi_2) = \left[\xi_1 + \xi_2 \right]^{p_1(x)} - 2(\xi_1 + \xi_2) + |\xi_1|^{p_1(x)-2}\xi_1 |\xi_2|^{p_1(x)/2} , \\
&f_2(\xi_1, \xi_2) = \left[\xi_1 + \xi_2 \right]^{p_2(x)} - 2(\xi_1 + \xi_2) + |\xi_2|^{p_2(x)-2}\xi_2 |\xi_1|^{p_2(x)/2} ,
\end{align*}
\]
respectively. The weak-viscoelastic term is \(\sigma \) as operator, in [9], a problem of elliptic equation is considered
\[
\sigma_{\xi_1} f_1(\xi_1, \xi_2) + \sigma_{\xi_2} f_2(\xi_1, \xi_2) = p(x) f(\xi_1, \xi_2), \ \forall (\xi_1, \xi_2) \in \mathbb{R}^2 ,
\]
where \(f_1 = \partial \mathcal{F} / \partial \omega \) and \(f_2 = \partial \mathcal{F} / \partial z \). There exist two positive constants \(c_0 \) and \(c_1 \) such that
\[
c_0 \left(|\xi_1|^{p_1(x)} + |\xi_2|^{p_2(x)} \right) \leq p(x) \mathcal{F}(\xi_1, \xi_2) \leq c_1 \left(|\xi_1|^{p_1(x)} + |\xi_2|^{p_2(x)} \right).
\]
(8)

For more details, see [5–8] and references therein.

With \(p(x) \)-Laplacian, which is nonlinear differential operator, in [9], a problem of elliptic equation is considered as
\[
-\Delta p(x) u - |u|^{p(x)-2} u = f(x, u), x \in \mathbb{R}^n .
\]
(9)

The variable exponents \(q(\cdot) \) and \(p(\cdot) \) are two continuous functions on \(\Omega \) such that
\[
2 < q_- \leq q(x) \leq q_+ < p_- \leq p(x) \leq p_+ < q_+(x) ,
\]
(10)
with
\[
q_+(x) = \begin{cases}
\frac{\log n} {n - q(x)}, & \text{if } n > q(x), \\
\infty, & \text{if } n \leq q(x),
\end{cases}
\]
(11)
\[
p_- = \text{essinf}_{x \in \Omega} p(x),
\]
\[
p_+ = \text{esssup}_{x \in \Omega} p(x).
\]

We assume that \(q(x) \) satisfies the Zhikov-Fan condition, i.e., for all \(x, y \in \Omega \),
\[
|q(x) - q(y)| \leq \frac{K}{-\log |x-y|}, \text{ with } |x-y| < \kappa,
\]
(12)
with \(K > 0, 0 < \kappa < 1 \) and
\[
\text{essinf}_{x \in \Omega} (q_+(x) - p(x)) > 0.
\]
(13)

We state assumptions on \(\omega_j \) and \(\sigma \) as follows:
\[
\sigma, \omega_j \in C^{1}(\mathbb{R}^+, \mathbb{R}^+) \text{ satisfies}
\]
\[
\begin{cases}
0 < \sigma'(t) < \sigma(t), \\
\omega_j(t) < -\omega_j(t) < 0, \int_0^{\infty} \omega_j(t) ds < \left(\frac{1}{q_+} - \frac{1}{p_-} \right) q_-||\sigma||_{\infty},
\end{cases}
\]
(14)

Define positive constants \(a_0, a_1, E_1, \) and \(E_2 \) by
\[
\begin{cases}
a_1 = \left(\frac{q_-}{C_1 p_+} \right)^{q_/-p_-}, E_1 = \frac{p_+ - q_+}{p_+} a_1 - p_1, \\
a_2 = \left(\frac{q_-}{C_2 p_+} \right)^{q_/-p_-}, E_2 = \frac{p_+ - q_+}{p_+} a_2 - p_2,
\end{cases}
\]
(15)
for some constants \(C_1, C_2, p_1, p_2 > 0 \) which will be specified later.

Fan et al. discussed the existence and multiplicity of solutions of (9) for \(u \in W^{1,p(x)}(\mathbb{R}^n) \), where \(n \geq 2, p(x) \) is a function defined on \(\mathbb{R}^n \).

Regarding nonlinear parabolic equation, we mention the work by [1]. The author proposed the problem.
\[
\begin{cases}
\partial_t u - \Delta_p u - |u|^{p(x)-2} u = f(x, u), \quad x \in \Omega , 0 < t \leq T, \\
u(x, 0) = u_0, \quad x \in \partial \Omega , 0 < t \leq T, \\
u(x, t) = u_0, \quad x \in \Omega,
\end{cases}
\]
(16)

where \(\Omega \) is a bounded domain of \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \) and \(p, q \geq 2 \). Time existence of solutions of system (16) was proved.

Whereas, in [10], nonlinear pseudoparabolic was considered
\[
\begin{align*}
\partial_t w - \Delta |w|^{q(x)} w - \Delta_x \left(\partial_t w - \sigma(t) \int_0^t \omega_1(t-s) w ds \right) &= |w|^{p(x)-2} w ,
\end{align*}
\]
(17)

Global in time nonexistence of (17) was shown under an appropriate conditions on \(\omega_j, p(x), \) and \(q(x) \).

System (1), where the exponents \(q(x) = q \) and \(p(x) = p \), the existence/nonexistence results have been extensively studied (please see [11–15]).

The paper is organized as follows. In Section 2, we state the properties of the \(p(x) \)-growth conditions and present assumptions of the kernel functions. In Section 3, we state our main results and prove some auxiliary lemmas. In Section 4, we prove the global nonexistence of solutions given
The paper is concluded by explanatory commentaries.

2. Preliminary

We try to list here some useful mathematical tools.

First, let \(\Omega \) be an open bounded domain in \(\mathbb{R}^n \) for \(n \geq 2 \) with smooth boundary \(\partial \Omega \) and \(p : \Omega \to [1, \infty) \) be a measurable function. Denoting by

\[
p_\pm = \begin{cases}
\text{essinf} & \text{if } p_+ < 1, \\
\text{esssup} & \text{if } p_+ = 1.
\end{cases}
\]

We define the \(p(\cdot) \) modular of a measurable function \(w : \Omega \to \mathbb{R} \cup \{ \pm \infty \} \) as

\[
Q_{p(\cdot)}(w) = \int_{\Omega} |w|^p(x) \, dx + \text{esssup}_{x \in \Omega} |w(x)|,
\]

where

\[
\Omega_{\infty} = \{ x \in \Omega : p(x) = \infty \}.
\]

The special Orlicz Musielak space \(L^{p(\cdot)}(\Omega) \) is a Lebesgue space with variable-exponent, and it consists of all the measurable function \(w \) defined on \(\Omega \) for which

\[
Q_{p(\cdot)}(\lambda w) < \infty \quad \forall \lambda > 0.
\]

Let

\[
\|w\|_{p(\cdot)} = \inf \left\{ \lambda > 0 : Q_{p(\cdot)}\left(\frac{w}{\lambda}\right) \leq 1 \right\},
\]

be the Luxembourg norm on this space (see [16]).

The Sobolev space \(W^{1,q(\cdot)}(\Omega) \) consists of functions \(w \in L^{q(\cdot)}(\Omega) \) whose distributional gradient \(\nabla w \) exists and satisfies \(|\nabla w| \in L^{q(\cdot)}(\Omega) \). This space is a Banach with respect to the norm

\[
\|w\|_{1,q(\cdot)} = \|w\|_{q(\cdot)} + \|\nabla w\|_{q(\cdot)}.
\]

Lemma 1 (Corollary 8.2.5 in [17]).

(1) If (12) holds with \(q(x) \), then

\[
\|w\|_{q(\cdot)} \leq C\|\nabla w\|_{q(\cdot)}, \forall w \in W^{1,q(\cdot)}(\Omega),
\]

where \(\Omega \) is a bounded domain and \(C \) is a positive constant.

The norm of the space \(W^{1,q(\cdot)}_0(\Omega) \) is given by

\[
\|w\|_{1,q(\cdot)} = \|\nabla_x w\|_{q(\cdot)}, \forall w \in W^{1,q(\cdot)}_0(\Omega).
\]

(2) If

\[
q \in C(\bar{\Omega}), : \Omega \to [1, \infty),
\]

is a measurable function and

\[
\text{essinf}_{x \in \Omega} (q^*(x) - p(x)) > 0,
\]

with

\[
q^* = \frac{q(x)}{(n - q(x))}.
\]

Then

\[
W^{1,q(\cdot)}_0(\Omega) = L^{p(\cdot)}(\Omega),
\]

with a continuous and compact embedding and

\[
\|w\|_{p(\cdot)} \leq C_\varepsilon \|\nabla_x w\|_{q(\cdot)},
\]

where \(C_\varepsilon > 0 \) is an embedding constant.

Proposition 2 (Section 1 and Lemma 3.2.20 in [17]). Let \(1 < p_- \leq p_+ < +\infty \). The spaces \(L^{p(\cdot)}(\Omega) \) and \(W^{1,p(\cdot)}(\Omega) \) are separable, uniformly convex, and reflexive Banach spaces. The conjugate space of \(L^{p(\cdot)}(\Omega) \) is \(L^{q(\cdot)}(\Omega) \), where

\[
\frac{1}{p(x)} + \frac{1}{q^*(x)} = 1, \forall x \in \Omega.
\]

For \(w \in L^{p(\cdot)}(\Omega) \) and \(v \in L^{q^*(\cdot)}(\Omega) \), we have

\[
\left| \int_{\Omega} w(x)v(x) \, dx \right| \leq \left(\frac{1}{p_1} + \frac{1}{q_1} \right)^\frac{1}{p} \|w\|_{p(\cdot)} \|v\|_{q^*(\cdot)}.
\]

Lemma 3 (Lemma 3.24 in [17]). If \(p \geq 1 \) is a measurable function on \(\Omega \) and \(w \in L^{p(\cdot)}(\Omega) \), then \(\|w\|_{p(\cdot)} \leq 1 \) and \(Q_{p(\cdot)}(w) \leq 1 \) are equivalent. For \(w \in L^{p(\cdot)}(\Omega) \), we have

(1) \(\|w\|_{p(\cdot)} \leq 1 \) implies \(Q_{p(\cdot)}(w) \leq \|w\|_{p(\cdot)} \)

(2) \(\|w\|_{p(\cdot)} > 1 \) implies \(Q_{p(\cdot)}(w) \geq \|w\|_{p(\cdot)} \).
Let \(v \in L^{p_1}(\Omega), \) there is a continuous inclusion
\(\min \{t \mapsto \|L^{p_1}\} \quad \text{for all } w \in L^{p_1}(\Omega). \)

Lemma 5 (Lemma 3.2.20 in [17]). If \(p_1(x) \geq p_2(x) \geq 1 \) a.e. in \(\Omega, \) then

\[
1 \leq \|w\|_{p_2(x)} \leq 2 \|\|w\|_{p_1(x)}\|_{p_1(x)},
\]

(34)

where

\[
\frac{1}{r(x)} \equiv \frac{1}{p_2(x)} - \frac{1}{p_1(x)}.
\]

The following notation will be used throughout this paper

\[
(\partial_t \circ v)(t) = \int_0^t \partial_t(t-s)v(t) - v(s) ds,
\]

(36)

for \(v \in L^2(\Omega) \) and \(t \geq 0. \) We have the following technical lemma.

Lemma 6. Let \(\kappa \in \mathbb{N}. \) For any \(\Delta^\kappa_0 v \in C^j(0, T, H^1_0(\Omega)) \) with \(p = 0, 1, \cdots, \kappa - 1, j = 1, 2, \) we have

\[
\left\langle \sigma(t) \int_0^t \partial_t(t-s)\Delta^\kappa_0 v(s), \partial_t v(t) ds \right\rangle_2 = (-1)^{\kappa+1} \frac{1}{2} \partial_t \left[\sigma(t) \left(\partial_t \circ \nabla^\kappa_0 v \right)(t) \right]
\]

(37)

Proof. Since

\[
\langle \Delta^\kappa_0 v, w \rangle_2 = (-1)^{\kappa} \langle \nabla^\kappa_0 v, \nabla^\kappa_0 w \rangle_2,
\]

holds for any \(\Delta^\kappa_0 v, \Delta^\kappa_0 w \in H^1_0(\Omega), \) we have

\[
\left\langle \sigma(t) \int_0^t \partial_t(t-s)\Delta^\kappa_0 v(s), \partial_t v(t) ds \right\rangle_2 = (-1)^{\kappa+1} \frac{1}{2} \partial_t \left[\sigma(t) \left(\partial_t \circ \nabla^\kappa_0 v \right)(t) \right]
\]

(37)

Using the notation (36), we obtain the desired result.

3. Main Results

Before stating our main theorems, we define the weak solution for the problem (1)--(4).

Definition 7. The pair \((w, z) \) is said to be weak solution to (1)--(4) on \([0, T_0]\) if it satisfies,

\[
\langle \partial_t \omega, \varphi \rangle_2 + \langle \nabla_{\varphi} \omega \nabla (t-s) - \nabla \omega \nabla \varphi \rangle_2 + \langle \partial_z \varphi, \varphi \rangle_2 + \langle \nabla z \nabla (t-s) - \nabla z \nabla \varphi \rangle_2,
\]

(40)

for all test functions \(\varphi, \psi \in W^{1,q}(\Omega), t \in [0, T_0]. \)

Here, we present without proof, the first known result concerning the local existence (in time) for the problem (1)--(4).
Theorem 8. Assume that (10), (12), and (14) hold. Then, the problem (1)–(4) has a unique local solution \((w, z)\) satisfying
\[(w, z) \in \left[C([0, T_0]; W_0^{l, q(I)}(\Omega)) \right]^2,
(\partial_t w, \partial_t z) \in \left[C([0, T_0]; L^2(\Omega)) \right] \cap L^2([0, T_0]; H_0^1(\Omega))^2,
(41)\]
for \(T_0 > 0\) depending on \(\|w_0\|_{L^q(I)}, \|z_0\|_{L^q(I)}\).

To prove the previous theorem, we can adopt the Faedo-Galerkin method which is the same procedure used in [4]. We introduce the main result concerned with the finite time blowup of solutions of the problem (1)–(4).

We define
\[\lambda_1 = \frac{1}{q_+} - \frac{1}{q_-} \|\sigma\|_{L^q} \int_0^\infty \omega_1(s) \, ds,
\]
\[\lambda_2 = \frac{1}{q_+} - \frac{1}{q_-} \|\sigma\|_{L^q} \int_0^\infty \omega_2(s) \, ds,
(42)\]
and find
\[\frac{1}{p_-} < \lambda_1, \lambda_2 < \frac{1}{q_+} < \frac{1}{2},
(43)\]
by (10) and (14).

Theorem 9. Assume that (10)–(14) hold. Given \(w_0, z_0 \in W_0^{l, q(I)}(\Omega)\) satisfying
\[E(0) < (E_1 + E_2) < 0,
(44)\]
\[\left(\int_\Omega |\nabla w_0|^q \, dx, \int_\Omega |\nabla z_0|^q \, dx \right) > \left(\frac{\alpha_1}{\lambda_1}, \frac{\alpha_2}{\lambda_2} \right).
(45)\]
Then, any solution of (1) with (3) and (4) blows up in finite time \(T^* < \infty\), where
\[T^* = \frac{L(0)^{1-(\lambda_1, \lambda_2)}}{((\lambda_1, \lambda_2) - 1)}\text{ for } L(0), \Gamma > 0,
(46)\]
and \(E_1\) and \(E_2\) are given in (66).

In order to prove Theorem 9, we need to exploit some lemmas. First, we define the modified energy functional \(E(t)\) associated to the problem (1)–(4) by
\[E(t) = \int_\Omega |\nabla w(x, t)|^q(x) dx + \int_\Omega |\nabla z(x, t)|^q(x) dx + \frac{1}{2} \sigma(t)
\cdot \left[(w_1 \ast \nabla w)(t) + (w_2 \ast \nabla z)(t) - \int_0^t \mathcal{F}(w, z) \, ds - \frac{1}{2} \sigma(t)
\cdot \left[\int_0^t \omega_1(s) \, ds |\nabla w|^2 + \int_0^t \omega_2(s) \, ds |\nabla z|^2\right].
(47)\]

Lemma 10. Let \((w, z)\) be the solution of (1)–(4) with
\[\lambda_0 \in (0, 1), coercive in \Omega,\]
which proves the lemma.

Proof. Multiplying (1), \(\partial_t w\), and (1) \(\partial_t z\), integrating by parts over \(\Omega\), summing and using (14) and Lemma 6. Then, it is clear that \(f_1(w, z)\) and \(f_2(w, z)\) are bounded, so the potential \(\mathcal{F}(w, z)\) exists and is given by (85) as follows
\[\mathcal{F}(w, z) = \frac{1}{p(x)} \left[|w + z|^p(x) + 2 |wz|^p(x)/2 \right].
(49)\]
Differentiating (49) with respect to time, it follows that
\[\partial_t \mathcal{F}(w, z) = \{f_1(w, z), \partial_t w\}_2 + \{f_2(w, z), \partial_t z\}_2.
(50)\]
Hence, the proof is finished.

Lemma 11. Let \((w, z)\) be a strong solution of (1)–(4) with
\[\lambda_0 \in (0, 1), coercive in \Omega,\]
which proves the lemma.

Proof. Using Young’s inequality, we obtain
\[|\nabla w|^q \leq \frac{2}{q} |\nabla w|^q + \frac{q - 2}{q} \leq \frac{2}{q_+} |\nabla w|^q + \frac{q_+ - 2}{q_+},
(52)\]
\[|\nabla z|^q \leq \frac{2}{q} |\nabla z|^q + \frac{q - 2}{q} \leq \frac{2}{q_-} |\nabla z|^q + \frac{q_- - 2}{q_-},\]
\[\text{for } \lambda_0 \in (0, 1), \text{ coercive in } \Omega,\]
which proves the lemma.
Lemma 12. Let \((w, z)\) be a strong solution of (1)–(4) with (10)–(14). Then, we have
\[
E(t) \geq \lambda_1 \int_{\Omega} |\nabla_w w|^q \, dx + \lambda_2 \int_{\Omega} |\nabla_z z|^q \, dx - \frac{c_1}{p - \gamma_1} \int_{\Omega} |w|^p \, dx \\
- \frac{c_1}{p - \gamma_1} \int_{\Omega} |z|^p \, dx + \frac{1}{2} \sigma(t) \left(|(\partial_w \circ \nabla_w w)(t)| + |(\partial_z \circ \nabla_z z)(t)| \right) \\
- \frac{q_1 - 2}{2q_1} ||\sigma||_{\infty, \Omega} \left(\int_0^t \omega_1(s) \, ds + \int_0^t \omega_2(s) \, ds \right).
\]

Proof. By using both equivalences (8) and (10), we deduce
\[
- \int_{\Omega} \mathcal{F}(w, z) \geq - \frac{c_1}{p(x)} \left(\int_{\Omega} |w|^{p(x)} \, dx + \int_{\Omega} |z|^{p(x)} \, dx \right) \\
\geq - \frac{c_1}{p - \gamma_1} \left(\int_{\Omega} |w|^p \, dx + \int_{\Omega} |z|^p \, dx \right).
\]

The proof is completed by direct use of (54).

In condition (10), \(\Omega_{\infty} = \emptyset\) holds, which yields
\[
Q_p(w) = \int_{\Omega} |w|^{p(x)} \, dx.
\]

We derive a sharper estimate than that in Lemma 13.

Lemma 13. Let \((w, z)\) be a strong solution of (1)–(4) with (10)–(14). Then, we have
\[
E(t) \geq \lambda_1 \int_{\Omega} |\nabla_w w|^q \, dx + \lambda_2 \int_{\Omega} |\nabla_z z|^q \, dx - \frac{c_1}{p - \gamma_1} \int_{\Omega} |w|^p \, dx \\
+ \frac{1}{2} \sigma(t) \left(|(\partial_w \circ \nabla_w w)(t)| + |(\partial_z \circ \nabla_z z)(t)| \right) - \frac{2c_1}{p - \gamma_1} (C_S + 1) \\
- \frac{q_1 - 2}{2q_1} ||\sigma||_{\infty, \Omega} \left(\int_0^t \omega_1(s) \, ds + \int_0^t \omega_2(s) \, ds \right),
\]

where \(C_S\) is an embedding constant defined in Lemma 1.

Proof. First of all, note that, for \(a \geq 0\),
\[
\max (a^p, a^{p^*}) = \begin{cases}
 a^p & \text{if } a > 1 \\
 a^{p^*} & \text{if } a \leq 1
\end{cases} \leq a^{p^*} + 1.
\]

Then, owing to Lemmas 1 and 4, we have
\[
\begin{aligned}
\int_{\Omega} |w|^p \, dx &= Q_p(w) \leq \max \left(||w||_{p^*}^{p^*} \right) \leq ||w||_{p^*}^{p^*} + 1 \\
\int_{\Omega} |z|^p \, dx &= Q_p(z) \leq \max \left(||z||_{p^*}^{p^*} \right) \leq ||z||_{p^*}^{p^*} + 1.
\end{aligned}
\]

Similarly, for \(a \geq 0\), we have
\[
\begin{aligned}
\& \left\{ \begin{array}{ll}
\min \left(a^{p^*}, a^{p^*} \right) & \text{if } a > 1, \\
\min \left(a^{p^*}, a^{p^*} \right) & \text{if } a \leq 1.
\end{array} \right.
\end{aligned}
\]

Hence, by Lemmas 3 and 4, (58) is estimated as
\[
\begin{aligned}
\int_{\Omega} |w|^p \, dx &\leq C_S ||\nabla_w w||_{p^*} + 1 \leq C_S \left(Q_p(\nabla_w w) \right)^{p^*} + 1, \\
\int_{\Omega} |z|^p \, dx &\leq C_S ||\nabla_z z||_{p^*} + 1 \leq C_S \left(Q_p(\nabla_z z) \right)^{p^*} + 1.
\end{aligned}
\]

The substitution of (60) in the estimate (53) ends the proof.

Now, we can see that (56) takes the following form
\[
E(t) \geq \lambda_1 \int_{\Omega} |\nabla_w w|^q \, dx + \lambda_2 \int_{\Omega} |\nabla_z z|^q \, dx + \frac{1}{2} \sigma(t) \left(|(\partial_w \circ \nabla_w w)(t)| + |(\partial_z \circ \nabla_z z)(t)| \right) - \frac{2c_1}{p - \gamma_1} (C_S + 1) \\
- \frac{q_1 - 2}{2q_1} ||\sigma||_{\infty, \Omega} \left(\int_0^t \omega_1(s) \, ds + \int_0^t \omega_2(s) \, ds \right),
\]

where
\[
C_1 = \frac{c_1}{p - \gamma_1} \left(\frac{1}{\lambda_1} \right)^{p^*}, \\
C_2 = \frac{c_1}{p - \gamma_1} \left(\frac{1}{\lambda_2} \right)^{p^*}, \\
C_3 = C_1 + C_2.
\]

Let \(f(\cdot, \cdot)\) be a function defined by
\[
(\psi_1, \psi_2) \mapsto \left(\psi_1 - C_1 \psi_1^{p^*} - \rho_1 + \psi_2 - C_2 \psi_2^{p^*} - \rho_2 \right).
\]

Then, \(f(\cdot, \cdot)\) is increasing in \((0, \alpha_1) \times (0, \alpha_2)\) decreasing for \((\psi_1, \psi_2) > (\alpha_1, \alpha_2)\), such that \(f(\psi_1, \psi_2) \rightarrow -\infty\) as
$(\psi_1, \psi_2) \rightarrow (+\infty, +\infty)$, and we have

$$f(\alpha_1, \alpha_2) = \left(\frac{p_+ - q_+ - \rho_1}{p_+} \right) \mathbb{I}_{E_1} + \left(\frac{p_+ - q_+ - \rho_2}{p_+} \right) \mathbb{I}_{E_2},$$

for

$$\alpha_1, \alpha_2 = \left(\frac{q_1}{C_1 p_+}, q_1 \right), \left(\frac{q_2}{C_2 p_+}, q_2 \right).$$

(67)

Since, by the fact (43), i.e., $\{1/\lambda_1, 1/\lambda_2\} > 2$ holds. Then, by (63), we can find

$$\min \{C_1, C_2\} > 2^{p,q} \frac{C_s c_1}{p_-} \quad \text{(68)}$$

for all

$$\max \{\alpha_1, \alpha_2\} < \left(\frac{1}{2} \right)^{p,q} \frac{p_- q_-}{p_+} \left(\frac{1}{C_s c_1} \right)^{q,q}. \quad \text{(69)}$$

Lemma 14. Under the assumptions of Lemma 13. Then, the pair (E_1, E_2) defined in (66) is negative.

Proof. Direct use of (63) and (66). Thus, we obtain

$$E_1 + \frac{q_1 - 2}{2 q_+} \|\sigma\|_{\infty} \|\Omega\| \int_0^{\infty} \omega_1(s) \, ds = \frac{p_+ - q_+ - \rho_1}{p_+} + C_s (C_s + 1) \quad \text{(70)}$$

By considering (68), (69). Then, we use Young’s inequality to get

$$E_1 + \frac{q_1 - 2}{2 q_+} \|\sigma\|_{\infty} \|\Omega\| \int_0^{\infty} \omega_1(s) \, ds < \frac{p_+ - q_+ - \rho_1}{p_+} + \frac{C_s}{p_-} (C_s + 1) \quad \text{(71)}$$

To provide this, we take c_1 sufficiently large and δ_0, δ_1 small enough.

Lemma 15. Let (u, z) be a strong solution of (1)–(4) with (10)–(14) and initial condition satisfying (44) and (45). Then, there exists a constants $\beta_1, \beta_2 > \alpha_1$ and $\beta_2 > \alpha_2$ such that

$$\lambda_1 \int_\Omega |\nabla_x w(t)|^q \, dx + \frac{1}{2} \sigma(t)(\nabla_x w)(t)_2 \int_\Omega |\nabla_x z(t)|^q \, dx + \frac{1}{2} \sigma(t)(\nabla_x z)(t) > (\beta_1, \beta_2). \quad \text{(72)}$$

Proof. Since

$$f(\lambda_1 \int_\Omega |\nabla_x w_0|^q \, dx, \lambda_2 \int_\Omega |\nabla_x z_0|^q \, dx) \leq E(0) < (E_1 + E_2), \quad \text{(73)}$$

holds by (61). Then, there exists $(\beta_1 > \alpha_1$ and $\beta_2 > \alpha_2$ such that $f(\beta_1, \beta_2) = E(0)$. Thus, we have

$$f(\lambda_1 \int_\Omega |\nabla_x w_0|^q \, dx, \lambda_2 \int_\Omega |\nabla_x z_0|^q \, dx) \leq E(0) \equiv f(\beta_1, \beta_2), \quad \text{(74)}$$

which implies that

$$\left(\lambda_1 \int_\Omega |\nabla_x w_0|^q \, dx, \lambda_2 \int_\Omega |\nabla_x z_0|^q \, dx \right) \geq (\beta_1, \beta_2). \quad \text{(75)}$$

Now, to establish (72), we suppose by contradiction that

$$\left(\lambda_1 \int_\Omega |\nabla_x w(t_0)|^q \, dx + \frac{1}{2} \sigma(t_0)(\nabla_x w)(t_0)_2 \int_\Omega |\nabla_x z(t_0)|^q \, dx + \frac{1}{2} \sigma(t_0)(\nabla_x z)(t_0) \right) < (\beta_1, \beta_2), \quad \text{(76)}$$

for some $t_0 \geq 0$ and by continuity of $f(\cdot, \cdot)$, we can choose t_0
such that
\[
\left(\lambda_1 \int_{\Omega} |\nabla_x w(t_0)|^q \, dx + \frac{1}{2} \sigma(t_0)(\partial_1 \circ \nabla_x w(t_0)) \lambda_2 \int_{\Omega} |\nabla_x z(t_0)|^q \, dx + \frac{1}{2} \sigma(t_0)(\partial_2 \circ \nabla_x z)(t_0) \right) > (\alpha_1, \alpha_2).
\]
Again, the use of (61) leads to
\[
E(t_0) \geq f \left(\lambda_1 \int_{\Omega} |\nabla_x w(t_0)|^q \, dx + \frac{1}{2} \sigma(t_0)(\partial_1 \circ \nabla_x w) \cdot (t_0), \lambda_2 \int_{\Omega} |\nabla_x w(t_0)|^q \, dx + \frac{1}{2} \sigma(t_0)(\partial_2 \circ \nabla_x z)(t_0) \right) > f(\beta_1, \beta_2) = E(0).
\]
This is impossible, since
\[
E(t) < E(0), \forall t \in [0, T_0).
\]
Hence, (72) established.

Lemma 16. Let \((w, z)\) be a strong solution of (1)–(4) with (10)–(14) and (44). Then, we have
\[
\int_{\Omega} |w|^p \, dx + \int_{\Omega} |z|^p \, dx \geq 2(C_5 + 1) + \frac{p}{c_1} \left(C_4 \beta_1^{p/q} + C_2 \beta_2^{p/q} \right),
\]
for all \(t \in [0, T_0)\).

Proof. To prove (80), we exploit Lemmas 10 and 13 to obtain
\[
\left\{ \frac{c_1}{p-1} \left(\int_{\Omega} |w|^p \, dx + \int_{\Omega} |z|^p \, dx \right) = I(t) \geq \lambda_1 \int_{\Omega} |\nabla_x w|^q \, dx + \lambda_2 \int_{\Omega} |\nabla_x z|^q \, dx - E(0) + \frac{1}{2} \sigma(t) \times \left((\partial_1 \circ \nabla_x w)(t) + \partial_2 \circ \nabla_x z(t) \right) - \frac{q-2}{2q} \|\sigma\|_{\infty, \Omega} \min \left\{ \int_0^\infty \partial_1(s) \, ds, \int_0^\infty \partial_2(s) \, ds \right\}. \right.
\]
(82) can be estimated as follows
\[
I(t) \geq \lambda_1 \int_{\Omega} |\nabla_x w|^q \, dx + \lambda_2 \int_{\Omega} |\nabla_x z|^q \, dx - f(\beta_1, \beta_2) - \frac{q_2-2}{2q} \|\sigma\|_{\infty, \Omega} \left(\int_0^\infty \partial_1(s) \, ds + \int_0^\infty \partial_2(s) \, ds \right)
\]
\[
\geq \lambda_1 \int_{\Omega} |\nabla_x w|^q \, dx - \frac{q_2-2}{2q} \|\sigma\|_{\infty, \Omega} \int_0^\infty \partial_1(s) \, ds
\]
\[
- \left(\beta_1 - C_1 \beta_1^{p/q} - \rho_1 \right) + \lambda_2 \int_{\Omega} |\nabla_x z|^q \, dx - \frac{q_2-2}{2q} \|\sigma\|_{\infty, \Omega} \int_0^\infty \partial_2(s) \, ds - \left(\beta_2 - C_2 \beta_2^{p/q} - \rho_2 \right)
\]
\[
\geq \lambda_1 \int_{\Omega} |\nabla_x w|^q \, dx + \lambda_2 \int_{\Omega} |\nabla_x z|^q \, dx + \frac{2C_1}{p-1} (C_5 + 1)
\]
\[
+ C_4 \beta_1^{p/q} - \beta_2 - C_2 \beta_2^{p/q} - \beta_2.
\]
(83)

From the previous estimate, we deduce
\[
I(t) \geq \beta_1 - \frac{q-2}{2q} \|\sigma\|_{\infty, \Omega} \int_0^\infty \partial_1(s) \, ds - \left(\beta_1 - C_1 \beta_1^{p/q} - \rho_1 \right) + \beta_2 - \frac{q-2}{2q} \|\sigma\|_{\infty, \Omega} \int_0^\infty \partial_2(s) \, ds - \left(\beta_2 - C_2 \beta_2^{p/q} - \rho_2 \right)
\]
\[
\geq \frac{2C_1}{p-1} (C_5 + 1) + C_4 \beta_1^{p/q} + C_2 \beta_2^{p/q}.
\]
(84)

Thanks to (72) and (84) and the definition of different constants, then the desired results are proved.

4. Proof of Theorem 9

We are now ready to prove Theorem 9.

Proof. Let the auxiliary function defined as
\[
L(t) = \frac{1}{2} \left(\|w(t)\|_2^2 + \|z(t)\|_2^2 + \|\nabla_x w(t)\|_2^2 + \|\nabla_x z(t)\|_2^2 \right).
\]
(85)

By differentiating the functional \(L\), we get
\[
\partial_t L(t) = \int_{\Omega} \nabla_x w \partial_t w \, dx + \int_{\Omega} \nabla_x z \partial_t z \, dx + \int_{\Omega} \nabla_x w \nabla_x \partial_t w \, dx + \int_{\Omega} \nabla_x z \nabla_x \partial_t z \, dx
\]
\[
= \int_{\Omega} \nabla_x w \partial_t \left(|\nabla_x w|^{p-2} \nabla_x w \right) + \partial_t z \partial_1 \partial_2 \left(\int_{\Omega} \nabla_x w \partial_1 \partial_2 \partial_3 \, dx \right) \partial_2 \partial_3 \partial_4 \left(\int_{\Omega} \nabla_x w \partial_1 \partial_2 \partial_3 \, dx \right) \partial_2 \partial_3 \partial_4 \left(\int_{\Omega} \nabla_x w \partial_1 \partial_2 \partial_3 \, dx \right)
\]
\[
= \int_{\Omega} |\nabla_x w(t)|^q \, dx - \int_{\Omega} |\nabla_x z(t)|^q \, dx + \int_{\Omega} |w(t) + z(t)|^p \, dx + \int_{\Omega} |w(t) + z(t)|^p \, dx
\]
\[
\int_{\Omega} \sigma(t) \partial_t \left(\int_{\Omega} |\nabla_x w(t)|^q \, dx \right) + \int_{\Omega} \sigma(t) \partial_t \partial_2 \left(\int_{\Omega} |\nabla_x z(t)|^q \, dx \right) \partial_1 \partial_2 \partial_3 \partial_4 \left(\int_{\Omega} \nabla_x w \partial_1 \partial_2 \partial_3 \, dx \right) \partial_2 \partial_3 \partial_4 \left(\int_{\Omega} \nabla_x w \partial_1 \partial_2 \partial_3 \, dx \right)
\]
(86)
By using (8), we get
\[
\partial_t L(t) \geq - \int_{\Omega} \nabla_x w(t)^d x - \int_{\Omega} |\nabla_z(t)|^d x + c_0 \\
\cdot \left(\int_{\Omega} |w(t)|^d x + \int_{\Omega} |z(t)|^d x \right) \\
\geq \int_{\Omega} \sigma(t) \int_{0}^{t} \omega_1(s - t) \nabla_x w(s) \cdot \nabla_x w(t) \, ds \\
+ \int_{\Omega} \sigma(t) \int_{0}^{t} \omega_2(s - t) \nabla_z z(s) \cdot \nabla_z z(t) \, ds.
\] (87)

Thanks to Cauchy Schwarz’s inequality, we get
\[
\int_{\Omega} \nabla_x w(s) \cdot \nabla_x w(t) \, dx \geq \frac{2C_0^2 - 1}{2C_0} \|\nabla_x w(t)\|_2^2 - \frac{c_0^2}{2} \|\nabla_x w(t) - \nabla_x w(s)\|_2^2.
\] (88)

\[
\int_{\Omega} \nabla_z z(s) \cdot \nabla_z z(t) \, dx \geq \frac{2C_0^2 - 1}{2C_0} \|\nabla_z z(t)\|_2^2 - \frac{c_0^2}{2} \|\nabla_z z(t) - \nabla_z z(s)\|_2^2.
\] (89)

holds for some positive constant \(C_0 > 0 \) to be determined later.

Substituting (89) in (86) to get
\[
\partial_t L(t) \geq - \int_{\Omega} \nabla_x w(t)^d x - \int_{\Omega} |\nabla_z(t)|^d x + c_0 \\
\cdot \left(\int_{\Omega} |w(t)|^d x + \int_{\Omega} |z(t)|^d x \right) \\
\geq \frac{2C_0^2 - 1}{2C_0} \|\nabla_x w(t)\|_2^2 - \frac{c_0^2}{2} \|\nabla_x w(t) - \nabla_x w(s)\|_2^2 \\
\cdot \int_{0}^{t} \omega_1(s) \|\nabla_x w(t)\|_2^2 + \int_{0}^{t} \omega_2(s) \|\nabla_z z(t)\|_2^2 \\
- \frac{C_0^2}{2} \sigma(t) ((\omega_1 \circ \nabla_x w)(t) + (\omega_2 \circ \nabla_z z)(t)).
\] (90)

Using Lemma 12 to estimate the terms \((\omega_1 \circ \nabla_x w)\) and \((\omega_2 \circ \nabla_z z)\), we get
\[
\partial_t L(t) \geq \left(C_0^2 \lambda_1 - 1 \right) Q_q(\nabla_x w) + \left(C_0^2 \lambda_2 - 1 \right) Q_q(\nabla_z z) \\
+ \left(c_0 - \frac{1}{C_0^2} \right) \left(Q_q(\nabla_x w) + Q_q(\nabla_z z) \right) \\
+ \frac{2C_0^2 - 1}{2C_0} \sigma(t) \\
\cdot \int_{0}^{t} \omega_1(s) \|\nabla_x w(t)\|_2^2 + \int_{0}^{t} \omega_2(s) \|\nabla_z z(t)\|_2^2 \\
+ C_0 \left(- E_1 - \frac{q_s - 2}{2q_s} \|\sigma\|_\infty \Omega \int_{0}^{t} \omega_1(s) \, ds \right) \\
+ C_0 \left(- E_2 - \frac{q_s - 2}{2q_s} \|\sigma\|_\infty \Omega \int_{0}^{t} \omega_2(s) \, ds \right).
\] (91)

Owing to (43), we can choose \(C_0 \) as
\[
2 < \frac{1}{\lambda_1}, \frac{1}{\lambda_2} < C_0^2 < p_-, \tag{92}
\]
where \(c_0 \) is sufficiently large such that \(c_0 > C_0^2 c_1/p_- \). By Lemma 14, we have
\[
\partial_t L(t) > \left(C_0^2 \lambda_1 - 1 \right) Q_q(\nabla_x w) + \left(C_0^2 \lambda_2 - 1 \right) Q_q(\nabla_z z) \\
+ \left(c_0 - \frac{1}{C_0^2} \right) \left(Q_q(\nabla_x w) + Q_q(\nabla_z z) \right) \\
+ \frac{2C_0^2 - 1}{2C_0} \sigma(t) \left(Q_q(\nabla_x w) + Q_q(\nabla_z z) \right) > 0,
\] (93)

where \(\lambda_{\min} = \min \{ \lambda_1, \lambda_2 \} \).

We derive the differential inequality from (93). First, owing to Poincaré’s inequality, we have
\[
\|w\|_2 \leq C_p \|\nabla_x w\|_2, \\
\|\bar{z}\|_2 \leq C_p \|\nabla_z \bar{z}\|_2.
\] (94)

holds. For some constant \(C_p > 0 \), we have
\[
L(t) \leq 1 + \frac{C_p}{2} \left(\|\nabla_x w(t)\|_2^2 + \|\nabla_z z(t)\|_2^2 \right) \\
\leq 2 \left(1 + C_p \right) \|\nabla_x w(t)\|_q^2 + \|\nabla_z z(t)\|_q^2.
\] (95)

By using the following Minkowski’s inequality
\[
(a + b)^p \leq 2^{p-1} (a^p + b^p),
\] (96)

we can obtain
\[
\int_{\Omega} |\nabla_x w|^d x + \int_{\Omega} |\nabla_z z|^d x \\
\geq 2^{1-\frac{q}{d}} \left(\|\nabla_x w(t)\|_q^2 + \|\nabla_z z(t)\|_q^2 \right)^{\frac{q}{d}} \\
\geq 2^{1-\frac{q}{d}} \left(\frac{L(t)}{2 \left(1 + C_p \right) \|\nabla_x w(t)\|_q^2 + \|\nabla_z z(t)\|_q^2} \right)^{\frac{q}{d}}.
\] (97)

Then, by Lemma 5, we have \(L(0) \geq 0 \) and
\[
\partial_t L(t) > \left(c_0 - \frac{1}{C_0^2} \right) \left(2(C_0^2 + 1) + \frac{p_-}{c_1} \left(C_1 p_1^{\alpha_1} q_1 + C_2 p_2^{\alpha_2} q_2 \right) \right) > 0,
\] (98)

by (82) and (93), we can assume that \(L(t) \) is sufficiently large for \(t \in [0, T_0] \). Hence, thanks to (95), \(\|\nabla_x w(t)\|_q > 1 \) and \(\|\nabla_z z(t)\|_q > 1 \) hold for \(t \in [0, T_0] \). Then, using Lemma 4 to get
\[\| \nabla_x w(t) \|_{q}^q = \min \left(\| \nabla_x w(t) \|_{q}^q, \| \nabla_z w(t) \|_{q}^q \right) \leq Q_p(\nabla_x w), \]
\[\| \nabla_z z(t) \|_{q}^q = \min \left(\| \nabla_x z(t) \|_{q}^q, \| \nabla_z z(t) \|_{q}^q \right) \leq Q_p(\nabla_z z), \]
which gives
\[\partial_t L(t) > \Gamma(L(t))^{q/2} \text{ for all } t > 0, \]
where
\[\Gamma = \left(C_0^2 A_{\min} - 1 \right) \left(\frac{2^{(2-q)/q} \gamma - \gamma}{2(1 + C_p^2)} \| 1 \|_{2/2q-2}^{-2} \right)^{q/2} > 0. \]
A direct integration of (100) over \([0, t]\) then yields, which implies that
\[L(t) > \frac{1}{\left((L(0))^{1-(q/2)} - ((q/2) - 1) \Gamma t \right)^{2((q/2)-1)}}, \]
along with \(1 - (q/2) < 0\). Finally, we have
\[L(t) \to +\infty \text{ when } t \to T^+, \]
where
\[T^* = \frac{L(0)^{1-(q/2)}}{((q/2) - 1) \Gamma}. \]
Then, the proof is now completed.

5. Conclusion

In the present paper, we examined the global nonexistence of solutions for a class of coupled pseudoparabolic equations with weak memories. In fact, the influence of the memory terms are unable to guarantee the stability of our problem. More precisely, we derived some conditions on the functions \(f_j : \mathbb{R}^3 \to \mathbb{R}, j = 1, 2\) are given in more complicated nonlinearities. We used a large class of Laplacian operator, with variable exponents.

After restriction on initial data, we found that when the sources dominate, we get a blow-up finite time, even though the existence of the damping terms which well known to ensure the stability of solutions.

Data Availability

No data were used in this study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

References

[1] G. Akagi, “Local existence of solutions to some degenerate parabolic equation associated with the \(p\)-Laplacian,” Journal of Differential Equations, vol. 241, no. 2, pp. 359–385, 2007.
[2] P. A. Y. Erhan and F. Ekinci, “Blow up, exponential growth of solution for a reaction-diffusion equation with multiple nonlinearities,” Tbilisi Mathematical Journal, vol. 12, no. 4, pp. 61–70, 2019.
[3] P. Erhan and F. Ekinci, “Nonexistence and growth of solutions for a parabolic \(p\)-Laplacian system,” Sigma Journal of Engineering and Natural Sciences, vol. 10, no. 3, pp. 301–307, 2019.
[4] F. Sun, L. Liu, and Y. Wu, “Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term,” Applicable Analysis, vol. 98, pp. 735–755, 2017.
[5] B. Feng, Y. Qin, and M. Zhang, “General decay for a system of nonlinear viscoelastic wave equations with weak damping,” Boundary Value Problems, vol. 164, 11 pages, 2012.
[6] E. Piskin, “Blow up of positive initial-energy solutions for coupled nonlinear wave equations with degenerate damping and source terms,” Boundary Value Problems, vol. 2015, no. 43, 11 pages, 2015.
[7] J. Wu and S. Li, “Blow-up for coupled nonlinear wave equations with damping and source,” Applied Mathematics Letters, vol. 24, no. 7, pp. 1093–1098, 2011.
[8] K. Zennir and S. Aloodhahi, “A novel decay rate for a coupled system of nonlinear viscoelastic wave equations,” Mathematics, vol. 203, no. 8, pp. 1–12, 2020.
[9] X. Fan and X. Han, “Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(\mathbb{R}^N\),” Nonlinear Analysis: Theory, Methods & Applications, vol. 59, pp. 173–188, 2004.
[10] K. Zennir and T. Miyasita, “Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory,” Alexandria Engineering Journal, vol. 59, no. 2, pp. 957–964, 2020.
[11] A. Benissa, D. Ouchenane, and K. Zennir, “Blow up of positive initial-energy solutions to systems of nonlinear wave
equations with degenerate damping and source terms,” *Non-linear Studies*, vol. 19, pp. 523–535, 2012.

[12] H. Fujita, “On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$,” *Journal of the Faculty of Science, University of Tokyo, Section I*, vol. 13, pp. 109–124, 1966.

[13] L. Ma and Z. B. Fang, “Blow-up phenomena for a semilinear parabolic equation with weighted inner absorption under nonlinear boundary flux,” *Mathematical Methods in the Applied Sciences*, vol. 40, no. 1, pp. 115–128, 2017.

[14] D. Ouchenane, K. Zennir, and M. Bayoud, “Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms,” *Ukrainian Mathematical Journal*, vol. 65, no. 5, pp. 723–739, 2013.

[15] K. Zennir, “Growth of solutions with positive initial energy to system of degenerately damped wave equations with memory,” *Lobachevskii Journal of Mathematics*, vol. 35, no. 2, pp. 147–156, 2014.

[16] O. Kováčik and J. Rákosník, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$,” *Czechoslovak Mathematical Journal*, vol. 41, no. 116, pp. 592–618, 1991.

[17] L. Diening, P. Harjulehto, P. Hästö, and M. Ružička, *Lebesgue and Sobolev Spaces With Variable Exponents, Lecture Notes in Math.*, 2017, Springer, Heidelberg, 2011.

[18] S. Antontsev, “Wave equation with $p(x,t)$-Laplacian and damping term: existence and blow-up,” *Differential Equations & Applications*, vol. 3, pp. 503–525, 2009.