Comparative Study between Modified Transverse and Hayman Suture Regarding the Efficacy and Purperium Complications in Thi-Qar

Aseel Mosa Jabber†

†Department of Gynecology and Obstetrics, College of Medicine, University of Thi-Qar, Iraq.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

ABSTRACT

Background: Main causes of death post-partum is the uncontrolled hemorrhage, that managed by different modalities, whereuterine compression suture had different efficacies as a main interventional tools of sever postpartum hemorrhage.

Aim: comparing different sutures types (modified transverse and Hayman suture) regarding their efficacy through its impact and in determining the final outcome and complications of post-partum hemorrhage.

Materials and methods: A prospective comparative analytical study including 122 females, who underwent delivery between march 2017 and December 2019, all of them followed for, 1 week, 6, weeks 6 months. Were the samples collected from Bent-Al-Huda teaching hospital and Al-Rehman private hospital-Thi-Qar, 2 groups of study; 1st one (52) underwent modified B-lynch suturing (Hyman suturing) while the 2nd group (70) underwent transverse sutures of modified Ouahba suture, written consent had taken from all patients, SPSS version 24 used for analysis.

Results: Among 122 delivered women suffer from primary post-partum hemorrhage, 52 (42.63%) were sutured by Hayman suture, and 70 (57.37%) were sutured by transverse suturing. There was significant statistical difference between the types of intervention and blood loss P value <0.05. There was significant statistical difference between the types of intervention and complication.
1. INTRODUCTION

Annually more than hundred twenty five thousand cases of post-partum hemorrhage (PPH) died, world-wide [1], where it complicates nearly 3.7%, 6.4% of normal vaginal and caesarean section deliveries respectively [2].

In India about one quarter (25.6%) of deaths in maternity are caused by hemorrhage [3]. Uterine atony estimate about more than three quarter of "Primary type of post-partum hemorrhage PPH" (75%-90%) [4].

In Iraq the situation is differ, where, Kawakeb et al study illustrate that the occurrence as an incidence rate for primary PPH was only 1.2%, where mainly caused by uterine atony as a causal rate fifty seven percent, and mainly risked by multiparous cause as a 86% [5], other study done in Al-Zahra hospital by Al-Turaihi at 2016 show incidence of uterine atony was 55.5% [6].

The management as a traditional strategy for PPH is conservative one that comprising bimanual compression, balloons with the uterine tamponed, uterotonic agents supplements, and infrequently embolization of artery [7] if there was failure so it mandatory for intervention surgically, that include ligation of major pelvic vessels, which infrequently used skill possessed by a small number of registrars. In occasion when hemorrhage become intratable, in spite of the measures above, hysterectomy is typically the final option.

Continuous uterine atony treated by innovative technique devised by Christopher B-Lynch at 1997 where the used suture enveloping and mechanical compressing uterus in an to hysterectomy avoidance attempt [8]. Hayman suture, the modification of B-Lynch suture, suggestions of the possible benefit that it easy and fast applicable, overcoming the hysterectomy performance(lower segment), when vaginal delivery or caesarian section followed by PPH [9].

A study in UK [10] use the compression suture, before development of evident disseminated intravascular complications(DIC), as soon as possible, avoid the invasive procedure to get hemostasis success rate in united Kingdom(UK) study [10] was lower than other studies, compression sutures remain one of the main tools of hysterectomy prevention(at least more than three quarter of cases). The efficacy of the compression suture is time-tested.

Some institutions might employ the compression suture at the PPH last instant, thus, target consist of PPH women with very severe stage; others institutes apply it in less severe situations. This heterogeneity in the patients leading to various result; compression sutures failure was less oftenth than the successful rate. The efficacy of the compression suture is thus difficult to evaluate. Even though, no reliable data, the success rate previously reported has been 76–100% [11].

The study aimed that to compare different sutures types (modified transverse and Hayman suture) regarding their efficacy through its impact and in determining the final outcome and complications of post-partum hemorrhage.

2. MATERIALS AND METHODS

2.1 Study Design, Time and Place

A prospective comparative analytical study including 122 females, who underwent delivery between march 2017 and December 2019, all of them followed for, 1 week, 6, weeks 6 months. Were the samples collected from Bent-Al-Huda teaching hospital and Al-Rehman private hospital-Thi-Qar.
Where about 40 cases per years, had recruited, PPPH* 24 hours-loss of blood more than five hundred cubic centimeter*that determined visually by inspection, were they attending specialist in gynecology and obstetrics at the outpatient clinic(whether delivered in the same hospital or in other and received by referral) or admitted to emergency unite as an emergency case. The sample divided into two main groups, 1st one (52) underwent modified B-lynch suturing (Hyman suturing) while the 2nd group (70) underwent transverse sutures of modified Ouahba suture, all the patients recruited with in the study were under the following this Sampling and sample size: sample was a collective convenience sample that fit for the time of the study (3 years) and fitting for the inclusion criteria, which was 122 women complaining from PPPH.

2.2 Inclusion criteria

Going through caesarean sections ending with atonic PPH (where the atony determined by uterine abdominal examination, then bimanual exam under anesthesia) within lower segment caesarian section (LSCS) and failure of management by non-surgical intervention lines, where they were fully term and do elective CS, not completing her family. While PPH after normal vaginal delivery (NVD), secondary type of PPH, APH, cases with history of bleeding tendency, and yearly complicated intraoperatively CS(such urinary bladder(UB) and or intestinal injury), suturing done after failing of all trials(massage, compression bimanually, ergometrine, and misoprostol. The mandatory hysterectomy need was avoided, but ligation for uterine and or ovarian vessels was needed for some cases. Suturing by Gunashila's universal circumferential was done in some cases.

Monofilament strong suture is the ideal, (to reduce conceivable trauma to the friable tissue of the atonic uterus), and absorbed quickly. And riding by needle which is a straight. Ideally the suture require mentsto keep the stretchy strength for 2-3 days.

2.3 The Hayman Suturing Procedure Done as

1. Anesthetized patient appropriately underwent urinary catheterization
2. Asameincision of caesarean section had used appropriately.

3. By abdomen entrance the uterus exteriorizing and checked frequently to identifying any points of bleeding. If bleeding was diffuse as in uterine atony and coagulopathy or profuse placental bleeding where no obvious bleeding point is observed, then compression bimanually was firstly plasticized then technique by Hayman suture assess the potential chances of success. Swabbing of vagina to approve adequate bleeding control.

4. After controlling of vaginal bleeding, using of a straight or curved needle to uterus trans-fixation the from front - back, impartial overhead the bladder reflection then tied at the fundus of the uterus.1 suturing on each side of the uterus of the or more than one suture if broad [12] particularly if uterus was.

2.4 Post Procedure

patients discharged seven days after. Follow up were done for 6 weeks later then six months later to detect the predicted and unpredicted complications, were they underwent full examination after interviewing full written consent was taken from the patient and their husband before the surgical intervention, statistical analysis was done by usage of SPSS version 26v, where percentages, frequency, paired t test and chi-square test were used, correlation analysis for the independent variables also was also assessed.

2. four transverse sutures (modified Ouahba suture) (Fig. 1-B). Four sutures penetrating uterus trans-fixally.4 sutures made trans versus uterus, one in the segment at lower uterus and the other 2 in the uterine body middle part (b). Then, 2–3 cm above the third one and avoiding the latero- medial suturing of the uterine horn transfixing sutures are made to the (1 and 2) to avoide tube blokage. where 95% of the PPH population achieved hemostasis [12] Of these 19, eight women hoped for pregnancy and six subsequently became pregnant, all having a term delivery. Ouahba et al. [12] requested that this type of suturing, as a Cho suture modification, where multiple square suture (Cho suture), through which the needle transfixes the uterus posteriorly rough anterior. Then done in the same manner twice but in “square” manner.4-5 square sutures for an atonic uterus must be done. If the bleeding point is evident, suturing should be performed.
to compress the bleeding site. Cho et al. [13].

A written consent had obtained from all patients before they enter in the study, it also done as routine work in preoperative schedule in Iraq, also the directorate of heath in Thi-Qar, give us the overall agreements to be engaged within this work, the management officers of both hospitals were fully agreed and cooperative to do the research.

2.5 Statistical Analysis

The collected data were fed into SPSS version 24 data sheet for tabulation and analysis. Statistical analysis was performed using multivariate analysis and ANOVA for continuous variables and chi square test and Fischer exact for nominal variables. P values < 0.05 were considered statistically significant

3. RESULTS

Among 122 delivered women suffer from primary post partum hemorrhage, 52 (42.6%) were sutured by Hayman suture, and 70 (57.37%) were sutured by transverse suturing, where significantly differ statistically in their age, parity, mode of deliver and place of delivery with no difference in their gestational age. As shown in table one.

![Thread is tied at the fundus](https://obgyn.onlinelibrary.wiley.com/doi/10.1111/aogs.12077)

Fig. 1A. Hayman suture

![Modified Ohiba transverse suture](https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.meduweb.com%2Fimportant-stitches-in-uterus-against-atonyn%2Fpsig=AOvVaw12VLY8g117g7n7mgygwD7z2&ust=1621420200883000&source=images&cd=vfe&ved=2ahUKEwi3pY6Kg9PwAhWT_bslHUpDL00kDkgACh6BA&seq=1&sr=images)

Fig. 1B. Modified Ohiba transverse suture
Table 1. Types of intervention according personal characters as a determinants of post-partum hemorrhage

Factors expected to be as personal character determinants	Type of intervention	Total	Pearson Chi-Square, P value	
	Hayman suture	Transverse suture		
Age by years				
<20	3	16	19	9.083^a
	15.8%	84.2%	100.0%	0.028
20-	8	15	23	
	34.8%	65.2%	100.0%	
26-	20	22	42	
	47.6%	52.4%	100.0%	
30 and more	21	17	38	
	55.3%	44.7%	100.0%	
Parity				
One	5	19	24	11.536^a
	20.8%	79.2%	100.0%	0.009
Two	13	26	39	
	33.3%	66.7%	100.0%	
Three	22	17	39	
	56.4%	43.6%	100.0%	
3 & more	12	8	20	
	60.0%	40.0%	100.0%	
Gestational period				
Term	32	40	72	.238^a
	44.4%	55.6%	100.0%	0.123
Preterm	20	30	50	
	40.0%	60.0%	100.0%	
Mode of delivery				
Lower segment CS	42	38	80	9.270^a
	52.5%	47.5%	100.0%	0.002
NVD	10	32	42	
	23.8%	76.2%	100.0%	
place of Delivery				
Primary cases	40	39	79	5.880^a
	50.6%	49.4%	100.0%	0.015
Referred	12	31	43	
	27.9%	72.1%	100.0%	
Total	Number	Percentage		
	52	70	122	
	42.6%	57.4%	100.0%	
There was significant statistical difference between the types of intervention and blood loss as shown in Table 2, and blood transfusion as in Fig. 2.

There was significant statistical difference between the types of intervention and complication development (p value=0.0001), while follow-up period and time of application of sutures don’t show such association, as shown in Table 3.

There was significant statistical difference between the types of intervention and amount of blood loss (p value<0.05)

Table 2. Blood loss according to type of intervention

Intervention	N	Mean	Std. Deviation	95% Confidence Interval for Mean		
				Lower Bound	Upper Bound	ANOVA, P
Hayman suture	52	1592.307	689.4431	1400.3655	1784.2499	6.6110, 0.011
Transverse suture	70	1297.857	573.789	1161.0418	1434.6724	
Total	12	1423.360	639.8987	1308.6656	1538.0557	

Fig. 2. Blood transfusion (number of pint(s)) according to type of intervention

Fischer Exact test= 11.546, P value= 0.02

Fig. 3. Amount of blood loss according to type of intervention used

Chi square =4.103, p value=0.031
Table 3. Types of intervention according interventional factors as a determinants of post-partum hemorrhage

Factors expected to be as interventional determinants	Type of intervention	Total	F.E, P value	
	Hayman suture	Transverse suture		
1st 24 hours	1	2	3	4.296, 0.494
	33.3%	66.7%	100.0%	
7 days	7	9	16	
	43.8%	56.3%	100.0%	
1-6 weeks	22	34	56	
	39.3%	60.7%	100.0%	
Follow up period				
Till subsequent pregnancy at institute	20	18	38	
	52.6%	47.4%	100.0%	
Coming subsequent pregnancy for ANC	1	6	7	
	14.3%	85.7%	100.0%	
Delivered in subsequent pregnancy at institute	1	1	2	
	50.0%	50.0%	100.0%	
Time to apply suture from detection of PPH				
<10 minutes	20	19	39	1.903
	51.3%	48.7%	100.0%	0.064
11-20 M	20	34	54	
	37.0%	63.0%	100.0%	
>20 M	12	17	29	
	41.4%	58.6%	100.0%	
Complication				
No	6	2	8	37.488
	75.0%	25.0%	100.0%	0.0001
Persistent pain	20	63	83	
	24.1%	75.9%	100.0%	
Hysterectomy	13	4	17	
	76.5%	23.5%	100.0%	
Intestinal obstruction	13	1	14	
	92.9%	7.1%	100.0%	
Total	No.	%		
	52	70	122	
	42.6%	57.4%	100.0%	
Table 4. Intervention type according complication

Intervention type	No Persistent pain	Hysterectomy	Intestinal obstruction	Total	FE, P value
Hayman suture	5	15	6	32	59.815
62.5%	18.1%	35.3%	42.9%		
Hayman suture + ovarian & uterine vessels ligation	1	5	7	20	0.002
12.5%	6.0%	41.2%	50.0%		
Transverse suture	0	59	2	61	
0.0%	71.1%	11.8%	0.0%		
Transverse suture+ ovarian & uterine vessels ligation	2	4	2	9	
25.0%	4.8%	11.8%	7.1%		
Total % within complication	8	83	17	122	
	100.0%	100.0%	100.0%		

Table 5. Logistic regression analysis of independent factors of the type of intervention

Step 9:	Odd’s ratio	S.E.	Wald	D f	Sig.	Exponential B
Follow up period(1)	.693	1.871	.137	1	.711	2.000
Follow up period(5)	4.730	2.146	4.860	1	.027	113.327
complication(2)	4.674	1.341	12.139	1	.000	107.076
complication(3)	2.210	1.436	2.367	1	.124	9.114
Constant	-4.674-	1.949	5.749	1	.016	.009

- a. Variable(s) removed on step 2: Delivery place
- b. Variable(s) removed on step 3: parity.
- c. Variable(s) removed on step 4: time.
- d. Variable(s) removed on step 5: Gestation period.
- e. Variable(s) removed on step 6: age
- f. Variable(s) removed on step 7: Blood Loss.
- g. Variable(s) removed on step 8: Blood transfusion.
- h. Variable(s) removed on step 9: Mode Of delivery.

Only follow-up period and complication were truly to be correlated with type of intervention, the other variable were confounders.

Complication	B	Sig.	Exp(B)	95% Confidence Interval for Exp(B)		
[age=1.00]	142.677	.882	9.202E+61	.000		
[age=2.00]	-11.970-	.963	6.330E-6	4.672E-227	8.575E+215	
	Odd's ratio	S.E.	Wald	D f	Sig.	Exponential B
---------------------	-------------	------	--------	-----	-------	----------------
[age=3.00]	-1.714-	.526	.180	.001	36.127	
[parity=1.00]	-124.059-	.899	1.324E-54	.000		b
[parity=2.00]	-10.418-	.942	2.989E-5	4.515E-127	1.978E+117	
[parity=3.00]	-.216-	.944	.806	.002	325.491	
[Gestationperiod]	.346	.857	1.413	.033	60.500	
[MOD=1.00]	154.396	.439	1.131E+67	2.048E-103	6.243E+236	
[RBL=1.00]	17.826	.971	55159791.863	.000		b
[RBL=2.00]	1.362	.623	3.905	.017	896.389	
[RBL=3.00]	0^c					
[Bloodtransfusion]	17.829	.999	55315595.657	.000		b
[Bloodtransfusion]	.253	1.000	1.288	.000		b
[time=1.00]	.592	.791	1.808	.023	143.044	
[time=2.00]	.197	.939	1.218	.008	190.145	
[time=3.00]	0^c					
[Followupperiod=1]	-8.862-	.995	.000	.000		b
[Followupperiod=5]	-38.232-	.975	2.490E-17	.000		b
There was no significant independent predictors or determinant for the complication development except the type of intervention.

4. DISCUSSION

4.1 Strength of the study

Comparative interventional study done for the first time in our society.

Limitation: Follow-up for years to know that if getting pregnancy or no.

Other types of management modalities in form of uterine compression sutures was difficult to be assessed, because of unavailability with in the public hospitals

Finding: The current study show that there was differences in some factors, that consider as a determinants in our study.

Among 122 delivered women suffer from primary post-partum hemorrhage, 52 (42.6%) were sutured by Hayman suture, and 70 (57.8%) were sutured by transverse suturing, where significantly differ statistically in their age, parity, mode of deliver and place of delivery with no difference in their gestational age.

There was significant statistical difference between the types of intervention and blood loss. Only follow-up period and complication were truly to be correlated with type of intervention, the other variable were confounders.

4.2 Uterine Compression Sutures Efficacy

Success Rate: Neither controlled trials or Randomized Cont. Trials had been determined which suture of uterine compression is best, in achieving hemostasis [14-15]. Eleven original papers and articles showing that average hemostasis rate was very high(97%), varies from three quarter to full percent (76 - 100%), various suturing process exhibit various success rate, where, suture of B-Lynch that most performed widely. Showing response 99.5% [10].

A systematic review at 2007 [16] exhibited (91.7%) uterine compression sutures success rate (not confined to the B-Lynch suture). A Kayem G study of [10] showing a lower success rate. This UK prospectivestudy (2007 – 2009) with success rate of75% [10].

Our study showing full success rate for both group, it was of high similarity to many studies listed above [10] also similar to eleven original articles that were showing 76– 100% a success rate of. Considering the small numbers of each study, this difference may not be clinically significant. Astudy in United Kingdom [10] also show no significant difference in the rate of success among various compression sutures. A more recent study from Argentina [17] demonstrated interesting data. All four sutures used (B-Lynch, Hayman, Cho, and Pereira suture) achieved a >94% success rate for uterine;

Time of Suture Application: In our study there was no significant statistical differences between the time of application of transverse suture and Hayman, Which study had no role in complication development, that differ from other studies, where delay of between 2-6 hours from delivery to uterine compression suture was associated independently with a 4 folds increase in the risk of hysterectomy [18]. This differ from our results, where, there was no significant independent predictors or determinant for the complication development except the type of intervention.

Complication Development: There was significant statistical difference between the types of intervention and complication development (p value=0.0001), while follow-up period and time of application of sutures don't show such association

There was significant statistical difference between the types of intervention and amount of blood loss (p value<0.05)

Comparison of efficacy among various sutures nevertheless,for bleeding from the cervix or upper vagina (85% consisting of placenta previa or placenta accreta), only theCho square suture was in employment, at a success rate of93%. It was concluded that the Cho suture was useful to regulator lower genital bleeding [17]. Although Haymanet al. [19] devised transverse cervico-isthmic sutures forlower segment bleeding, B-Lynch, Hayman and Pereirasutures were essentially devised to compress the uterine body. The Cho suture [13] used for bleeding from sites other than the uterine body and its compression istight, that may explain why it achieved better hemostasis of the lower segment bleeding. There have been no RCTs or organized trials to determine the best procedure
to achieve hemostasis. Obstetricians like to use “accustomed” or “experienced” procedures, principally in an emergency setting. Thus, in the future RCT be difficult to perform. The presence of various procedures itself may indicate that there is no one consider as best procedure at present: if an optimalone happened, the others have been uncontrolled. Further observational studies may be needed, taking into account characteristics and backgrounds of the patients. Complications and future fertility there have no reports of maternal mortality unpaid to uterine compression sutures. Somea 2013 The Authors 85 complications have been reported [16], including uterine necrosis [20], pyometra [18] and uterine synechiae [21]. Even if no definite data are available, the Cho sutures seems to be associated more commonly with complications compared with other sutures. This is rational because complications may be associated with “compression tightness” and “uterine penetration.” As labeled, the needle transfixes the anterior and posterior walls 16–20 times in the Cho suture, which not only lead to tight compression but furthermore withdraw the site of blood supply. The tight firmness of the Cho suture provide good hemostasis but, sequentially, also lead to some complications possibly related to the compression. Williams textbook [22] designates, “reports of complications from compression sutures have been slowly emerging. At this while, their incidence is unknown but is likely low.” Exclusive of the studies in which patients did not desire future pregnancies [23–24], the rate of future pregnancy was 11–75%, with an average rate of 32% (18/57). On the other hand, In no study, was the follow-up long enough to define future fertility. Additionally, many women having received compression sutures and, having qualified a life-threatening delivery, may less commonly wish for future pregnancies, and this made the analysis difficult. To our information, there are no large population studies available regarding future pregnancy. A latest article in this Journal [25] summarized complications after the use of firmness sutures. They determined that, overall, the use of uterine compression suture may be safe, but that development with hysteroscopy and image technique seems useful, seeing reported complications after the suture.

5. CONCLUSION

Even though the hemostasis had been achieved in both maneuver with excellent success rate, the transvers suture carrying high rate of persistent pain but the Hayman suture carry higher rate of serious complication such hysterectomy and intestinal obstruction. several factors determine the choosing of the suture type such as site, severity and cause of bleeding and the surgeon experience.

CONSENT

As per international standard or university standard, patients’ written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. Sotunsa JO, Adeniyi AA, Imaralu JO, et al. Maternal near-miss and death among women with postpartum haemorrhage: a secondary analysis of the Nigeria Near-miss and Maternal Death Survey. International journal of obstetrics and gynecology; 2019. Available: https://doi.org/10.1111/1471-0528.15624.
2. Coombs CA, Murphy EI, LarosRK. Factors associated with postpartum hemorrhage with vaginal birth. Obstet Gynecol. 1991;77:69–76.
3. KaurtzAM, Hugues JM, Grinies DA, et al. Causes of maternal mortality in United States. Obstet Gynecol. 1985;65:605–82.
4. Koh E, Devendra K, Tan RK. B-Lynch suture for the treatment of uterine atony. Singapore Med J. 2009;50(7):693–69.
5. Kawakeb N Abdulla, Anwar Ahmed Mohammed. Primary postpartum hemorrhage: Incidence, risk factors, and outcomes in Al Sader teaching hospital; medical science. 2020;24(102):359–364.
6. Al-Turaihi AM, Sadiqa AM, Abbas E. A. The incidence of postpartum hemorrhage after spontaneous and induced vaginal delivery versus elective and emergency caesarean section. American Journal of Bio Medicine. 2016;4:81–90.
7. B-Lynch C, Coker A, Lawal AH, Abuj,
Cowen MJ. The B-Lynch surgical technique for control of massive postpartum hemorrhage: an alternative to hysterectomy? Five cases reported. Br j Obstet Gynaecol. 1997;104:372-5.

Ghezzi F, Cromi A, Uccella S, Raio L, Bolis P, Surbek D. The Hayman technique: a simple method to treat postpartum hemorrhage. BJOG 2007; 114:362-5.

Ghodake VB, Pandit SN, Umbardand SM. Role of modified B-Lynch sutures: a simple method for the management of severe postpartum hemorrhage. Obstet Gynecol. 2000;96:129-31.

MallappaSaroja CS, Nankani A, El-Hamamy E. Uterine compression sutures, an update: review of efficacy, safety and complications of B-Lynch suture and other uterine compression techniques for postpartum haemorrhage. Arch Gynecol Obstet. 2010;281:581-8.

Doumouchtsis SK, Papageorgiou AT, Arulkumaran S. Systematic review of conservative management of postpartum hemorrhage: what to do when medical treatment fails. Obstet Gynecol Surv. 2007;62:540–7.

Palacios-Jaraquemada JM. Efficacy of surgical techniques: control of obstetric hemorrhage: analysis of 539 cases. Acta Obstet Gynecol Scand. 2011;90:1036–42.

Ochoa M, Allaire AD, Stitely ML. Pyometra after hemostatic square suture technique. Obstet Gynecol. 2002;99:506–9.

Hayman RG, Arulkumaran S, Steer PJ. Uterine compression sutures; Surgical management of postpartum hemorrhage. Obstet Gynecol. 2002;99:2–6.

Joshi VM, Shrivastava M. Partial ischemic necrosis of the uterus following a uterine brace compression suture. Br J Obstet Gynaecol. 2004;111:279–80.

Wu HH, Yeh GP. Uterine cavity synechiae after hemostatic square suturing technique. Obstet Gynecol. 2005;105:1176–8.

Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY. Obstetric hemorrhage. In: Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY (eds). Williams Obstetrics, 23rd edn. New York: McGraw. Hill Medical. 2010;757–803.

Hackethal A, Brueggmann D, Oehmke F, Tinneberg HR, Zygmont MT, Muenstedt K. Uterine compression sutures in primary postpartum hemorrhage after Cesarean section: fertility preservation with a simple and effective technique. Hum Reprod. 2008;23:74–9.

Meydanli MM, Turker MM, Engin-Ustun Y, Cakir-Lice Q, Kafkasli A. Meydanli compression suture: new surgical procedure for postpartum hemorrhage due to uterine atony associated with abnormal placental adherence. J Obstet Gynaecol Res. 2008;34:964–70.

Amorim-Costa C, Mota R, Rebelo C, Silva PT. Uterine compression sutures for postpartum hemorrhage: is routine postoperative cavity evaluation needed? Acta Obstet Gynecol Scand. 2011;90:701–6.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/68780