Studies on the Interaction of Cefepime Hydrochloride with Bovine Serum Albumin by Fluorescence, Synchronous Fluorescence, Three-Dimensional Fluorescence and Circular Dichroism

Daojin Li*

College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China

Abstract

The investigation on the binding mode between drug and protein is extremely important to understand biopharmaceutics, pharmacokinetics and toxicity of the drug as well as the relationship of structure and function of the protein. It is well proved that biological activity is a function of the chemical structure or structural properties. There is a study on the interaction of cefepime hydrochloride with serum albumin using in-silico molecular docking. But up to date, there is hardly any interaction investigation of cefepime hydrochloride with serum albumin utilizing fluorescence, synchronous fluorescence, three-dimensional fluorescence and circular dichroism. In this study, the interaction of cefepime hydrochloride with bovine serum albumin in aqueous solution has been investigated by molecular spectroscopy under different pH conditions. The quenching rate constant and binding constant calculated at pH 7.4 indicated the static quenching mechanism and medium binding force. The effect of cefepime hydrochloride on the conformation of bovine serum albumin was analyzed using fluorescence, synchronous fluorescence, three-dimensional fluorescence and circular dichroism. In addition, influence of pH on the binding of cefepime hydrochloride to bovine serum albumin was investigated and the binding ability of the drug to bovine serum albumin deceased under other pH conditions (pH 1.9, 3.5, and 9.0) as compared with that at pH 7.4. As compared with the binding ability of cefepime hydrochloride to native bovine serum albumin that of cefepime hydrochloride to denatured bovine serum albumin deceases dramatically. Furthermore, the effect of metal ions on the binding constant of cefepime hydrochloride with bovine serum albumin was investigated.

Keywords: Cefepime hydrochloride; Bovine serum albumin; Fluorescence quenching; Circular dichroism; Three-dimensional fluorescence

Introduction

The interaction of proteins with drugs has attracted great interest among researchers for many years [1-3]. Serum Albumin (SA), the most important transport protein, has been frequently used as a model protein among researchers for many years [1-3]. Serum Albumin (SA), the most important transport protein, has been extensively studied, for investigating the protein folding and ligand-binding mechanism. In this regard, Bovine Serum Albumin (BSA) has been extensively studied, partly due to its structural homology with Human Serum Albumin (HSA) [4-8]. BSA (Figure 1), composed of three linearly arranged, structurally homologous sub-domains (A, B), has two tryptophan residues Trp-134, which is located on the surface of sub-domain IB, and Trp-212, locating within the hydrophobic binding pocket of sub-domain IIA [9]. The principal regions of drugs binding sites of SA are often located in hydrophobic cavities in sub-domains IIA and IIA.

Cefepime hydrochloride (Figure 2) is a type of broad spectrum fourth-generation cephalosporin antibiotic. It has good antimicrobial activity against Gram-negative bacteria, including Enterobacter spp., Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus bacteria grapes. It is more active against some Gram-positive bacteria, such as Streptococcus pyogenes, Streptococcus pneumoniae compared with the three-generation cephalosporin [10].

In addition, investigation on the interaction between drug and protein under various pH conditions would provide information for profoundly understanding the pharmacological actions of the drug and the relationships of their structures and functions [11]. The binding affinity of drug with protein may be weaker when pH-induced conformational changes of the protein occurs [11], which would directly

Figure 1: Structure of bovine serum albumin, with Tryptophan residues shown in green color.

*Corresponding authors: Daojin Li, College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China, Tel: +862583686639, E-mail: lidaojin7910@163.com

Received March 08, 2017; Accepted April 11, 2017; Published April 19, 2017

Citation: Li D (2017) Studies on the Interaction of Cefepime Hydrochloride with Bovine Serum Albumin by Fluorescence, Synchronous Fluorescence, Three-Dimensional Fluorescence and Circular Dichroism. J Bioanal Biomed 9: 107-113.

doi:10.4172/1948-593X.1000162

Copyright: © 2017 Li D. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
influence the concentration of drug in the blood. Thus, the biological actions of the drug can be affected. It is necessary to investigate the interaction of drug with BSA under different pH conditions.

Furthermore, weaker interaction of drug with denatured BSA can lead to obvious increase of drug concentration in the blood. Sometimes this effect may cause toxic poisoning or even cause death [12]. Therefore, studies on the binding of drug to denatured BSA can improve interpretation of the metabolism and transporting process of drug, which is extremely helpful to understand the relationship between the structure and the function of the protein.

Moreover, there are also some metal ions present in blood, which can affect the binding of the drugs with protein [13]. They could participate in many biochemical processes. Some proteins have a variety of metal sites and metal ions-BSA binding can cause conformational alteration of BSA. So it can be deduced that metal ions may have obvious effect on the interaction of medicine molecules with BSA, and thus it would influence the distribution, pharmacological property, and metabolism of drug in blood.

Due to great importance on the binding study of drugs with proteins in pharmacy, pharmacology and biochemistry, our group has made many efforts in this direction in current years [13-24]. The interaction between BSA and several small molecules, such as baicalein [13], farrerol [18], B12 [19], rutin [20], chinodimine [21] and nevadensin [24] have been investigated in recent years. However, to date, there is no report on the binding of cefepime hydrochloride to BSA, especially on the effect of pH, urea and metal ions on the interaction of cefepime hydrochloride with BSA.

In this study, the interaction of cefepime hydrochloride with BSA reported was reported at physiological pH conditions. The static fluorescence quenching mechanism and medium binding constant was presented and the conformational change of BSA induced by cefepime hydrochloride was investigated using fluorescence and CD. In addition, influences of pH, urea and metal ions on the interaction of cefepime hydrochloride with BSA were systematically investigated by steady state fluorescence.

Materials and Methods

Materials and preparation of solutions

BSA was purchased from Sigma (USA). Cefepime hydrochloride was of analytical grade, and purchased from Sinopharm Group Chemical Reagent Co., Ltd. (China). All other reagents were of analytical grade. Double-distilled water was used throughout experiments. The pH of the phosphate buffer solution (20 mmol/L) was adjusted to 1.9, 3.5, 7.4 and 9.0. The concentration of BSA in the buffer was prepared using 66.5 kDa as molecular weight, and the final concentration was checked by measuring absorbance with the published value (optical absorbance at 280 nm) 0.531 (1 g/L). The stock solution (2 × 10⁻² mol/L) of cefepime hydrochloride was prepared by dissolving appropriate amount of cefepime hydrochloride in 10 mL anhydrous methanol. For the determination of fluorescence quenching, the quenching rate constants, and binding constants, the concentration of BSA was 4 μM. The molar ratio of metal ions to BSA was 1. Metal chlorides were used in the metal ion binding effect studies.

Apparatus and methods

Fluorescence measurements were performed on an F-4500 spectrophotofluorimeter (Hitachi, Japan) equipped with 1.0 cm quartz cells following an excitation at 295 nm. The widths of both the excitation slit and the emission slit were adjusted at 5 nm. The three-dimensional fluorescence spectra were performed under the following conditions: the emission wavelength scan range was recorded between 240 nm and 440 nm at 1 nm increments, and the excitation wavelength scan range was recorded from 200 to 360 nm at 5 nm increments. The number of scanning curves was 34, and the excitation and emission bandwidths were 5 nm. CD spectral measurements were run on an Olis DSM 1000 automatic recording spectrophotometer in a 1 mm cell.

A 3 mL buffer solution, containing appropriate concentration of BSA under different pH conditions was titrated by successive additions of a 2 mM solution of cefepime hydrochloride. Titrations were performed manually by using trace syringes. The effects of metal ions on the interaction of cefepime hydrochloride with BSA were investigated by the gradual addition of cefepime hydrochloride to the mixture of metal ions and BSA.

Results and Discussion

Binding mechanisms of cefepime hydrochloride with bovine serum albumin

Fluorescence of BSA originates from Tryptophan (Trp), Tyrosine (Tyr) and Phenylalanine (Phe) residues. Because the Phe residue has a relatively low quantum yield and the fluorescence of Tyr is almost totally quenched by nearby an amino group, a carboxyl group, or a Trp [25], the intrinsic fluorescence of BSA is mainly contributed by the Trp residue alone.

Figure 3 showed the fluorescence emission spectra of native BSA with various amount of cefepime hydrochloride at the excitation wavelength of 295 nm. It could be observed that the fluorescence intensity decreases regularly with the increase of cefepime hydrochloride concentration, indicating that the fluorescence quenching mechanism may be rationalized in terms of a static quenching process.

To confirm the quenching mechanism induced by cefepime hydrochloride, fluorescence quenching data are analyzed with the Stern–Volmer equation (Equation 1) [26-37]:

\[F_0/F = 1 + k_q \tau_0 [Q] = 1 + K_{SV} [Q] \] (1)

where \(F_0 \) and \(F \) are the relative fluorescence intensities in the absence and presence of quencher, respectively, [Q] the concentration of quencher, \(k_q \) the biomolecular quenching rate constant, \(\tau_0 \) the average bimolecular life-time in the absence of quencher evaluated at about 5 ns [26] and \(K_{SV} \), the Stern–Volmer dynamic quenching constant that was determined by linear regression of a plot of \(F_0/F \) against [Q]. A plot of \(F_0/F \) versus [Q] was shown in Figure 4. The values for \(K_{SV} \) and \(k_q \) were presented in Table 1. The calculated \(k_q \) value is greater than the maximum dynamic...
collisional quenching constant \((2.0 \times 10^{10} \text{ L mol}^{-1} \text{s}^{-1})\) of quenchers with biopolymers \([38,39]\). The result implies that the fluorescence quenching was controlled by a static quenching mechanism.

For the static quenching process, the equilibrium between free and bound molecule is given by the following equation (Equation 2) \([40,41]\):

\[
\log \left(\frac{F_0 - F}{F} \right) = \log K + n \log [Q]
\]

Where \(K\) is the binding constant and \(n\) the number of binding sites. The values for \(K\) and \(n\) can be calculated by a plot of \(\log (F_0 - F)/F\) versus \(\log [Q]\) (Figure 5) and presented in Table 1. The value of \(n\) indicates that one molecule of BSA combined with one molecule of the drug. The values for \(K\) and \(n\) indicated that cefepime hydrochloride was able to bind to BSA via medium binding force.

Effect of cefepime hydrochloride on the conformation of bovine serum albumin

Fluorescence and synchronous fluorescence spectroscopic studies of bovine serum albumin: In addition to the proximity of bound cefepime hydrochloride to Trp residue, fluorescence quenching might result from structural change of BSA upon cefepime hydrochloride binding \([42]\). As is well known, the maximum fluorescence emission wavelength \((\lambda_{em})\) of Trp residues is closely related to the polarity of the microenvironment around Trp residues. Therefore, the changes in \(\lambda_{em}\) of BSA will reflect the conformation changes of BSA. It was observed from Figure 3 that \(\lambda_{em}\) of BSA shifted from 343 nm to 351 nm after the addition of cefepime hydrochloride. It implies that the interaction of cefepime hydrochloride with BSA resulted in a significant conformational change of Trp residues micro-regions.

In addition, the change of BSA conformation upon addition of cefepime hydrochloride can be also demonstrated by synchronous fluorescence spectra. As is known, synchronous fluorescence spectroscopy is a very useful method to investigate the microenvironment of amino acid residues by measuring the emission wavelength \([43,44]\) and has several advantages such as sensitivity, spectral simplification, and spectral bandwidth reduction \([45]\).

As is known, synchronous fluorescence spectra show Trp residues of BSA only at the wavelength interval \((\Delta \lambda)\) of 60 nm and Tyr residues of BSA only at \(\Delta \lambda\) of 15 nm. As such, Figure 6A and 6B showed the effect of cefepime hydrochloride on the synchronous fluorescence spectra of Trp and Tyr residues in BSA, respectively. It can be observed from Figure 6 that emission maximum of Trp residues was red shifted while the emission maximum of Tyr residues kept constant at the investigated concentrations range. It indicated that the polarity around tryptophan residues increased, which suggested that tryptophan residues were

![Figure 3: Fluorescence emission spectra of bovine serum albumin in the presence of various concentrations of cefepime hydrochloride at pH 7.4. (1–6) The concentrations of cefepime hydrochloride are (μM): 0, 4, 12, 20, 28 and 36; [bovine serum albumin]=4 μM. λ_{em}=295 nm.](image)

![Figure 4: Plots of \(F_0/F\) for bovine serum albumin against cefepime hydrochloride concentration ranging from 4 to 36 μM; [bovine serum albumin]=4 μM.](image)

Table 1: Fluorescence quenching constant and binding constant of bovine serum albumin–cefepime hydrochloride system under different pH conditions.

pH	Lys state	\(K\) (×10^4 L/mol)	\(n\)	\(R\)	\(K_{SV}\) (×10^4 L/mol)	\(k_q\) (×10^12 L/mol/s)	\(K_{SV}\) (×10^4 L/mol)	\(k_q\) (×10^12 L/mol/s)	\(R\)
7.4	Native	2.36	0.99	0.99	2.50	5.00	0.99	2.50	5.00
	Denatured	0.10	0.79	0.99	0.76	1.52	0.99	0.76	1.52
1.9	Native	0.10	0.80	0.99	0.99	0.97	-	-	-
3.5	Native	0.72	0.93	0.99	-	-	-	-	-
9.0	Native	1.38	0.79	0.99	0.94	-	-	-	-

![Figure 5: Plot of \(\log (F_0/F)\) for bovine serum albumin vs. \(\log [Q]\) [bovine serum albumin]=4 μM.](image)
that binding of cefepime hydrochloride to BSA causes a conformational change around Trp residues micro-regions while it did not affect significantly the conformational change around Tyr residues micro regions.

Three-dimensional fluorescence spectroscopic studies: Three-dimensional fluorescence is a popular fluorescence analysis technique in current years [46] since the three-dimensional fluorescence spectrum can provide more detailed information on the change of the configuration of proteins. In addition, the contour map can also provide much important information. Figure 7 showed the three-dimensional fluorescence spectra and contour ones of BSA or cefepime hydrochloride-BSA. Two typical fluorescence peaks (peak 1 and peak 2) of BSA could be observed in isometric three-dimensional projection or three-dimensional fluorescence contour map. As depicted in Figure 7, peak 1 mainly reveals the spectral characteristic of tryptophan and tyrosine residues. The fluorescence intensity of the peak decreased and the maximum emission wavelength resulted in red shift after the addition of cefepime hydrochloride (Table 2). This red shift effect indicates that conformational changes of BSA occurred since red shift led to the increase of the polarity around the Trp residues, which was in good agreement with the result obtained from fluorescence and synchronous fluorescence spectroscopy.

The excitation wavelength of peak 2 is 235 nm, being related to the conformation of the peptide backbone associated with the helix-coil. The emission intensity of BSA decreased and the emission wavelength has a little red shift upon addition of cefepime hydrochloride, which implied that the interaction of cefepime hydrochloride with BSA changed the polypeptide backbone structures of BSA.

Circular dichroism spectroscopic studies: CD is a sensitive technique to investigate the conformational changes of proteins upon the interaction with a ligand. Figure 8 displays the CD spectra of BSA before and after the addition of cefepime hydrochloride. They exhibit two negative bands at 209 nm and 222 nm, which is a typical characteristic of the α-helix structure of proteins [47]. As we know, the solvent used for CD studies has no CD signal. The negative bands at 208 nm and 222 nm are contributed by the n-π transition in the peptide bond [48]. It can be observed that there was an apparent reduction in both bands without any significant shift of the peaks, which implied that binding of cefepime hydrochloride to BSA causes a conformational change of the protein.

Influence of pH on the interaction of cefepime hydrochloride with bovine serum albumin

It is well known that the fluorescence of BSA is related to pH in located in a less hydrophobic environment. It implies that the interaction of cefepime hydrochloride with BSA led to a conformational change of the configuration of proteins. In addition, the contour map can also provide much important information. Figure 7 showed the three-dimensional fluorescence spectra and contour ones of BSA or cefepime hydrochloride-BSA. Two typical fluorescence peaks (peak 1 and peak 2) of BSA could be observed in isometric three-dimensional projection or three-dimensional fluorescence contour map. As depicted in Figure 7, peak 1 mainly reveals the spectral characteristic of tryptophan and tyrosine residues. The fluorescence intensity of the peak decreased and the maximum emission wavelength resulted in red shift after the addition of cefepime hydrochloride (Table 2). This red shift effect indicates that conformational changes of BSA occurred since red shift led to the increase of the polarity around the Trp residues, which was in good agreement with the result obtained from fluorescence and synchronous fluorescence spectroscopy.

The excitation wavelength of peak 2 is 235 nm, being related to the conformation of the peptide backbone associated with the helix-coil. The emission intensity of BSA decreased and the emission wavelength has a little red shift upon addition of cefepime hydrochloride, which implied that the interaction of cefepime hydrochloride with BSA changed the polypeptide backbone structures of BSA.

Circular dichroism spectroscopic studies: CD is a sensitive technique to investigate the conformational changes of proteins upon the interaction with a ligand. Figure 8 displays the CD spectra of BSA before and after the addition of cefepime hydrochloride. They exhibit two negative bands at 209 nm and 222 nm, which is a typical characteristic of the α-helix structure of proteins [47]. As we know, the solvent used for CD studies has no CD signal. The negative bands at 208 nm and 222 nm are contributed by the n-π transition in the peptide bond [48]. It can be observed that there was an apparent reduction in both bands without any significant shift of the peaks, which implied that binding of cefepime hydrochloride to BSA causes a conformational change of the protein.

Influence of pH on the interaction of cefepime hydrochloride with bovine serum albumin

It is well known that the fluorescence of BSA is related to pH in

Figure 6: Synchronous fluorescence spectra of bovine serum albumin with various amounts of cefepime hydrochloride. (1–6) The concentrations of cefepime hydrochloride are (μM): 0, 4, 12, 20, 28 and 36; [bovine serum albumin]=4 μM; (A): Δλ=15 nm and (B): Δλ=60 nm.

Figure 7: The three-dimensional fluorescence projections and three-dimensional fluorescence contour map of bovine serum albumin before (A) and after (B) cefepime hydrochloride addition. (A): [bovine serum albumin]=4 μM; (B): [bovine serum albumin]=4 μM; [Cefepime hydrochloride]=16 μM.

Table 2: Three-dimensional fluorescence characteristics of bovine serum albumin and bovine serum albumin–cefepime hydrochloride system at pH 7.4.

System	Peak 1	Peak 2
BSA	280/342	235/343
Cefepime hydrochloride/BSA (4:1)	280/345	235/344

Figure 8: Circular dichroism spectra of the cefepime hydrochloride–bovine serum albumin system at pH 7.40 at 298 K: [bovine serum albumin]=4 μM; Cefepime hydrochloride to bovine serum albumin ratios: (a) 0.1, (b) 8.1.
Where F_0 and F represent the relative fluorescence intensities of BSA before and after binding of cefepime hydrochloride to BSA under various pH conditions. Clearly, the extent of the fluorescence quenching can be well reflected using Q. Figure 9 shows the effect of pH on the fluorescence quenching fractions of BSA induced by cefepime hydrochloride at the molar ratio of the drug to protein was 1, 4 and 8, respectively. It was observed that the fluorescence quenching extent at pH 7.4 is the greatest in all the four pHs, which implies that the binding affinity of BSA for cefepime hydrochloride at pH 7.4 may be greater than that at the other pHs. This result can be successfully confirmed by the determination of binding constant (K) of cefepime hydrochloride with BSA under four different pH conditions (Figure 10). The values for K at pH 1.9, 3.5, 7.4 and 9.0 are also listed in Table 1, which indicated that BSA indeed exhibited the highest binding force toward cefepime hydrochloride at pH 7.4. This phenomenon may result from two aspects, protein and drug. As depicted in Figure 11, the maximum emission wavelengths of BSA shift from 343 to 335 nm and 338 nm when pH 7.4 changes into 3.5 and 1.9, respectively. In addition, the fluorescence intensity of BSA was greater than that at pH 1.9, 3.5, or 9.0. The above results indicate that the influence of pH on the structure of BSA is relatively great, thus impacting binding capacity of drug to BSA [49,50]. Moreover, the drug may be a little sensitive to the pH because it would cause different concentration of ionization state. Thus, the binding ability of drug to BSA would be affected.

The interaction of urea-induced bovine serum albumin with cefepime hydrochloride

The denaturation of protein can be induced chemically by using urea, SDS, or acetone, etc. [38]. As is well known, higher than 8 M urea would lead to the complete denaturation of BSA [21]. To explore the interaction of completely denatured BSA caused by urea with cefepime hydrochloride, we investigated the fluorescence of denatured BSA with various amount of cefepime hydrochloride. The values for

![Figure 9: The effect of pH on the fluorescence quenching fractions Q of bovine serum albumin induced by cefepime hydrochloride: (A) the drug to protein molar ratio is 1, (B) the drug to protein molar ratio is 4, (C) the drug to protein molar ratio is 8.](image)

![Figure 10: Plots of log (F_0-F)/F vs. log $[Q]$ under different pH conditions; [bovine serum albumin]=4 μM.](image)

![Figure 11: Fluorescence emission spectra of bovine serum albumin in different pHs: (a) 7.4, (b) 9.0, (c) 3.5, and (d) 1.9; [bovine serum albumin]=4.0 μM.](image)

![Figure 12: Plot of F/F_0 for denatured bovine serum albumin against $[Q]$ of cefepime hydrochloride ranging from 4 to 36 μM under different pH conditions; [bovine serum albumin]=4 μM.](image)
of Zn2+ or Fe3+, the binding constant of cefepime hydrochloride–BSA was reduced and the values for K_{SV} increased a conformational change in BSA, being more favorable for cefepime hydrochloride binding to BSA. Thus, the increase in binding constant of cefepime hydrochloride–BSA in presence of the above ions prolongs storage compared with that without these ions. The higher binding constant may result from the fact that Zn2+ or Fe3+ induced period of cefepime hydrochloride in blood and weaken its maximum medicinal effects.

Conclusion

In the paper, influences of pH, urea, and metal ions on the interaction of cefepime hydrochloride with BSA were characterized by molecular spectroscopy. It can be elicited that the binding reaction of cefepime hydrochloride with the protein in blood is sensitive to the change in pH. The pH 7.4 is the optimal acidity. In addition, the denatured BSA resulted in weaker binding affinity of the protein towards cefepime hydrochloride. The effect of metal ions on the binding constant of cefepime hydrochloride with BSA was studied. This study can also provide important insight into the interactions of the physiologically important protein with drugs. This study will be also helpful to structure-based drug design.

References

1. Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, et al. (2006) Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J Pharm Biomed Anal 41: 393-399.
2. Zhu X, Sun J, Hu Y (2007) Determination of protein by hydroxypropyl-beta-cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe. Anal Chim Acta 596: 298-302.
3. Wang YQ, Zhang HM, Zhang GC (2006) Studies of the interaction between palmitine hydrochloride and human serum albumin by fluorescence quenching method. J Pharm Biomed Anal 41: 1041-1046.
4. Wang YQ, Zhang HM, Zhang GC, Tao WH, Fei ZH, et al. (2007) Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin. J Pharm Biomed Anal 43: 1869-1875.
5. Zhou N, Liang YZ, Wang PJ (2007) 18β-Glycyrrhetinic acid interaction with bovine serum albumin. Photochem Photobiol A 175: 271-276.
6. Bertucci C, Cimitan S, Riva A, Morazzoni P (2006) Binding studies of taxanes towards human serum albumin by bioaffinity chromatography and circular dichroism. J Pharm Biomed Anal 42: 81-87.
7. Hu YJ, Liu Y, Zhao RM, Dong JX, Qu SS (2006) Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J Photochem Photobiol A Chem 179: 324-329.
8. Wang YP, Wei YL, Dong C (2006) Study on the interaction of 3,3-bis(4-hydroxy-1-naphthyl)-phthalide with bovine serum albumin by fluorescence spectroscopy. J Photochem Photobiol A 177: 6-11.
9. Anbazhagan V, Renganathan R (2006) Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J Photochem Photobiol A 185: 271-276.
10. Dąbrowska M, Starek M, Krzek J (2006) Study of the interaction of an anticancer drug with human and bovine serum albumin. Biochromatographe A 41: 393-399.
11. Ahmad B, Parveen S, Khan RH (2006) Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromolecules 7: 1350-1356.
12. Rownicka J, Sulkowska A, Pozyczka J, Boiko B, Sulkowski WW (2006) Stability of the complex BSA-s-prolyl-2-thiouracil in the presence of Gu HCl and urea. J Mol Struct 792-793: 243-246.
13. Li D, Zhu M, Xu C, Ji B (2011) Characterization of the Baicalein-Bovine Serum Albumin Complex Without or With Cu2+ or Fe3+ by Spectroscopic Approaches. Eur J Med Chem 46:588-599.
14. Li D, Yang YM, Cao XX, Xu C, Ji B (2012) Investigation on the pH-dependent binding of vitamin B12 and lysozyme by fluorescence and absorbance. J Mol Struct 1007: 102-112.

Table 3: Effects of metal ions on binding constants of cefepime hydrochloride-bovine serum albumin.
Li D (2017) Studies on the Interaction of Cefepime Hydrochloride with Bovine Serum Albumin by Fluorescence, Synchronous Fluorescence, Three-Dimensional Fluorescence and Circular Dichroism. J Bioanal Biomed 9: 107-113. doi:10.4172/1948-593X.1000162

15. Li D, Zhang T, Xu C, Ji B (2011) Effect of pH on the interaction of baicaline with lysozyme by spectroscopic approaches. J Photochem Photobiol B 104: 414-424.

16. Li SH, Li D (2011) Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance. Spectrochim Acta A Mol Biomol Spectrosc 82: 396-405.

17. Li D, Hong D, Guo H, Chen J, Ji B (2012) Probing the influences of urea on the interaction of sinomenine with human serum albumin by steady-state fluorescence. J Photochem Photobiol B 117: 126-131.

18. Li D, Wang Y, Chen J, Ji B (2011) Characterization of the interaction between farrerol and bovine serum albumin by fluorescence and circular dichroism. Spectrochim Acta A Mol Biomol Spectrosc 79: 680-686.

19. Li DJ, Zhang T, Xu C, Ji B (2011) Effect of pH on the interaction of vitamin B12 with bovine serum albumin by spectroscopic approaches. Spectrochim Acta A Mol Biomol Spectrosc 83: 598-608.

20. Li D, Zhu M, Xu C, Chen J, Ji B (2011) The effect of Cu²⁺ or Fe³⁺ on the noncovalent binding of rutin with bovine serum albumin by spectroscopic analysis. Spectrochim Acta A Mol Biomol Spectrosc 79: 74-79.

21. Zhang T, Li D (2013) Influences of urea and pH on the interaction of cinchonidine with bovine serum albumin by steady state fluorescence spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 112: 15-20.

22. Li D, Ji B, Jin J (2008) Spectrophotometric studies on the binding of Vitamin C to lysozyme and bovine liver catalase. J Lumin 128: 1399-1406.

23. Li D, Cao X, Ji B (2010) Spectrophotometric studies on the interaction between myricetin and lysozyme in the absence or presence of Cu²⁺ or Fe³⁺. J Lumin 130: 1893-1900.

24. Yu Z, Li D, Ji B, Chen J (2008) Characterization of the binding of nevadensin to bovine serum albumin by optical spectroscopic technique. J Mol Struct 889: 422-428.

25. Sulikowska A (2002) Interaction of drugs with bovine and human serum albumin. J Mol Struct 614: 227-232.

26. Xie MX, Long M, Liu Y, Qin C, Wang YD (2006) Characterization of the interaction between human serum albumin and morin. Biochim Biophys Acta 1760: 1184-1188.

27. Zhang X, Zhai H, Gao R, Zhang J, Zhang Y, et al. (2014) Study on the interaction between 4-thio-5-methyluridine and human serum albumin by spectroscopy and molecular modeling. Spectrochim Acta A Mol Biomol Spectrosc 121: 724-731.

28. Fu L, Liu XF, Zhou GX, Zhang JX, Dong JY, et al. (2014) Characterization of the interactions of human serum albumin (HSA), galactoxacin, and metronidazole using spectroscopic and electrochemical methods. J Lumin 149: 208-214.

29. Shababadi N, Hadidi S (2014) Molecular modeling and spectroscopic studies on the interaction of the chiral drug verlafaxine hydrochloride with bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 122: 100-106.

30. Bi S, Pang B, Wang T, Zhao T, Yu W (2014) Investigation on the interactions of clenbuterol to bovine serum albumin and lysozyme by molecular fluorescence technique. Spectrochim Acta A Mol Biomol Spectrosc 120: 456-461.

31. Shi JH, Wang J, Zhu YY, Chen J (2014) Characterization of interaction between isoliquiritigenin and bovine serum albumin: Spectroscopic and molecular docking methods. J Lumin 145: 643-650.

32. Cahyana Y, Gordon MH (2013) Interaction of anthocyanins with human serum albumin: Influence of pH and chemical structure on binding. Food Chem 141: 2278-2285.

33. Yao Q, Yu X, Zheng T, Liu H, Yang Y, et al. (2013) Spectroscopic studies on the interaction of carteolol hydrochloride and urea-induced bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 113: 447-451.

34. Hierrezuelo JM, Nieto-Ortega B, Rui CC (2014) Assessing the interaction of Hecameg® with Bovine Serum Albumin and its effect on protein conformation: A spectroscopic study. J Lumin 147: 15-22.

35. Li J, Wang S (2013) Molecular spectroscopic on interaction between Methyl hesperidin and Buman serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 120: 200-204.

36. Kaboudin B, Moradi K, Faghhi MR, Mohammadi F (2013) The fluorescence spectroscopic studies on the interaction of novel aminophosphinic acids with bovine serum albumin. J Lumin 139: 104-112.

37. Wang J, Li S, Peng X, Yu Q, Bian H, et al. (2013) Multi-spectroscopic studies on the interaction of human serum albumin with astilbin: binding characteristics and structural analysis. J Lumin 136: 422-429.

38. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer, New York, USA.

39. Qin C, Xie MX, Liu Y (2007) Characterization of the myricetin–human serum albumin complex by spectroscopic and molecular modeling approaches. Biomacromolecules 8: 2162-2189.

40. Ackermann T (1987) KA Connors: Binding constants—the measurement of molecular complex stability. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore 1987. 411 Seiten, Preis: £ 64.15 91: 987-1398.

41. Xie MX, Xu YX, Wang YD (2005) Interaction between hesperetin and human serum albumin revealed by spectroscopic methods. Biochim Biophys Acta 1724: 215-224.

42. Johansson JS (1997) Binding of the volatile anesthetic chloraliform to albumin demonstrated using tryptophan fluorescence quenching. J Biol Chem 272: 17961-17965.

43. Chen GZ, Huang ZX, Zheng Z, Xu JG, Wang ZB (1990) Fluorescence Analytical Method (2nd ed.), Science Press, Beijing, China. p: 117.

44. Abert WC, Gregory WM, Allan GS (1993) The binding interaction of Coomassie blue with proteins. Anal Biochem 213: 407-413.

45. Ashoka S, Seetharamappa J, Kandagal PB, Shaikh SMT (2006) Investigation of the interaction between trazadone hydrochloride and bovine serum albumin. J Lumin 121: 179-186.

46. Weber G (1961) Enumeration of Components in Complex Systems by Fluorescence Spectrophotometry. Nature 190: 27-29.

47. He W, Li Y, Xue C, Hu Z, Chen X, et al. (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg Med Chem 13: 1837-1845.

48. Yang P, Gao F (2002) The Principle of Bioinorganic Chemistry. Science Press, Beijing, China p: 349.

49. Bos OJ, Fischer MJ, Wilting J, Janssen LH (1989) Mechanism by which warfarin binds to human serum albumin: Stopped-flow kinetic experiments with two large fragments of albumin. Biochem Pharmacol 38: 1979-1984.

50. Bos OJ, Fischer MJ, Wilting J, Janssen LH (1988) Drug-binding and other physicochemical properties of a large tryptic and a large peptic fragment of human serum albumin. Biochim Biophys Acta 953: 37-47.

51. Sulikowska A, Rownicka J, Bojko B, Pozyczka J, Zubik-Skupien I, et al. (2004) Effect of guanidine hydrochloride on bovine serum albumin complex with antithyroid drugs: fluorescence study. J Mol Struct 704: 291-295.