Food Supply and Seawater pCO$_2$ Impact Calcification and Internal Shell Dissolution in the Blue Mussel *Mytilus edulis*

Frank Melzner1*, Paul Stange1, Katja Trübenbach1,2, Jörn Thomsen1, Isabel Casties1, Ulrike Panknin1, Stanislav N. Gorb3, Magdalena A. Gutowska4

1 Biological Oceanography, Leibniz-Institute of Marine Sciences (IFM-GEOMAR), Kiel, Germany, 2 Laboratorio Maritimo da Guia, Faculdade de Ciencias da Universidade de Lisboa, Cascais, Portugal, 3 Institute of Zoology, Functional Morphology and Biomechanics, Christian-Albrechts-University, Kiel, Germany, 4 Institute of Physiology, Christian-Albrechts-University, Kiel, Germany

Abstract

Progressive ocean acidification due to anthropogenic CO$_2$ emissions will alter marine ecosystem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to calcification. In the case of the blue mussel *Mytilus edulis*, high body fluid pCO$_2$ causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO$_2$ impacts calcification and inner shell surface integrity we exposed Baltic *M. edulis* to four different seawater pCO$_2$ (39, 142, 240, 405 Pa) and two food algae (310–350 cells mL$^{-1}$ vs. 1600–2000 cells mL$^{-1}$) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO$_2$ values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous (=aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO$_2$ treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO$_2$, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals’ energy budget under conditions of CO$_2$ stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.

Introduction

Progressive ocean acidification due to anthropogenic CO$_2$ emissions will impact marine ecosystems [1–4]. Calcifying organisms may be particularly vulnerable to ocean acidification, as elevated seawater pCO$_2$ shifts the carbonate system speciation towards a decreased concentration of carbonate ions. This leads to a reduced CaCO$_3$ saturation state for aragonite and calcite (Ω_{arag} or Ω_{calc}), which can negatively impact calcification rates in several marine heterotrophic taxa [2,3]. Bivalve molluscs, particularly their early life stages, can react with decreased rates of growth and calcification, as well as decreased shell strength towards elevated seawater pCO$_2$ [5–9]. Changes in growth and calcification performance encountered in bivalve molluscs most likely are related to an altered energy budget allocation, with more energy potentially being consumed by homeostatic processes [10,11]. Exoskeleton dissolution can be observed in some gastropod and bivalve mollusc species when Ω drops < 1 [12–14]. Species vulnerability to external shell dissolution is probably strongly related to the presence or absence of a protective organic cover on the external shell side [15,16] and, potentially, the protein and carbohydrate organic matrix that surrounds CaCO$_3$ crystals within the shell [17–19]. While Ω<1 is rare in the contemporary global surface ocean [20], low Ω is a common feature of temperate coastal habitats, where seasonal hypoxia goes along with dissolved inorganic carbon production. Wind driven upwelling can then bring CO$_2$ enriched waters in contact with shallow water habitats [15,21]. We have recently measured very high and fluctuating summer seawater pCO$_2$ (>100 Pa, >1000 μatm, Ω_{arag}<<1) in habitats in the Western Baltic that are dominated by the blue mussel *Mytilus edulis*. We could also demonstrate that mussels from this population can calcify at high rates even when Ω_{arag}<0.5 when food supply is abundant [10,15]. While high calcification rates in seawater under saturated with CaCO$_3$ already seem remarkable, it needs to be emphasized that the extracellular environment at the inner shell interface is even less favorable for biomineralization: as all heterotrophic marine ectothermic animals maintain pCO$_2$ values in their extracellular fluids (i.e. hemolymph,
extrapallial fluid) between 100–400 Pa (ca. 1000–4000 μatm) in order to drive diffusive excretion of metabolic CO₂ [22], the extracellular carbonate system is shifted further towards decreased [CO₃²⁻]. While it cannot be excluded that the precise site of incipient biomineralization is occluded by an organic matrix sheath or gel to create a microenvironment that is characterized by higher Ωₗim [19,23,24], inner shell regions that are not actively being expanded are in contact with an extracellular fluid that is most likely highly corrosive (low pH and [CO₃²⁻], high pCO₂). Some protection from dissolution may be provided by the chitin buffer the developing acidosis, it also indicates that the inner shell M. edulis succinate [25,26]. While this may be adaptive, as CaCO₃ helps to anoxia), the inner shell surface is corroded in several bivalve necessary to maintain inner shell integrity. It has been previously strongly biological control over the biomineralization process in decision during CO₂ stress are lacking to date. To systematically tested the influence of altered energy supply on energy budget priorities in energy budget allocation [10,31,32]. However, studies are weak acid-base regulators are primarily due to altered on biomineralization in several marine heterotrophic calcifiers that high food density group (HF) and 16 to the low food density group (LF). Each 4 experimental aquarium units were continu- ously equilibrated at each food level with pre-mixed gases containing 390 ppmv, 1120 ppmv, 2400 ppmv, 4000 ppmv CO₂ using a central automatic CO₂ mixing-facility (Linde Gas & HTK Hamburg, Germany). The CO₂ treatment levels were chosen to represent conditions that can be expected to seasonally occur in Kiel Fjord within the next 100 years (see [15] for rationale). Experimental aquaria (ca 18 liters each) were continuously perfused with (50, 20, 5 μm) filtered and UV treated seawater from the fjord at a rate of 50 mL min⁻¹ via gravity feed from two header tanks. Flow rates to the experimental aquaria were checked and adjusted daily. Food algae (Rhodomonas sp.) were cultured as previously described [15] and supplemented continuously to the 16 HF tanks to maintain a cell density of 1600–2000 cells mL⁻¹ in the experimental units (see Table 1 for details). The 16 LF tanks received no additional food in addition to what passed through the filters and cell density was maintained at 310–350 cells mL⁻¹ (see Table 1). Food algae density was measured on four occasions during the experimental incubation using a Coulter counter (cells between 4–10 μm diameter). Salinity, temperature and pH (NBS scale) were measured daily using a WTW 340i pH-meter and a WTW SenTix 81-electrode which was calibrated with Radiometer IUPAC precision pH buffer 7 and 10 (S11M44, S11 M007), the light:dark cycle was adjusted to 12:12 hours. Carbonate chemistry of the seawater was deter- mined twice during the experimental period (week 2, week 7) from pHNBS and by measuring total dissolved inorganic carbon (TCO₃) using an ARLICA autoanalyzer (Marianda GmbH, Kiel, Germany) with a precision of 2–4 μmol kg⁻¹ seawater. Accuracy of CO₂ measurements was ensured by using Certified Reference Material provided by Andrew Dickson of the Scripps Institution of Oceanography [http://andrew.ucsd.edu/co2qc/]. Seawater carbonate system parameters (Ω, pCO₂) were calculated using the CO2SYS program [34]. The carbonate system speciation (pCO₂, Ωcalc and Ωarag) was calculated from pH and alkalinity using CO2SYS [22], Table 1) with dissociation constants from Roy et al. [35].

Mussels were sacrificed after an incubation time of 7 weeks. Shell length was determined using a caliper (precision 0.1 mm). Mussels were carefully opened with a scalpel and the soft body was dissected without injury of the inner shell layers. Somatic tissue was dried at 80°C for 24 h and weighed on a precision scale (Sartorius TE64, Sartorius AG, Germany). Shell dry mass was determined following 24 h of drying at 60°C. Shell length growth was directly obtained from initial and final length measurements, while shell mass growth and somatic growth were estimated from the difference between final measurements and estimates of initial shell- and somatic mass, obtained using a shell length vs. somatic mass and a shell length vs. shell mass relationships from a subsample of mussels (N = 10 mussels, shell length range: 13–23 mm) sampled on 2010-02-22 from the pool of animals intended for this experiment:

\[
SM = 0.0299SL^{1.0331} \tag{1}
\]

where SM = shell mass in mg, SL = shell length in mm, \(R^2 = 0.98, p<0.01.\)

\[
SDM = 0.0002SL^{3.9273} \tag{2}
\]

where SDM = somatic dry mass in mg, SL = shell length in mm, \(R^2 = 0.95, p<0.01.\)
Shell analysis

One valve from each experimental mussel (i.e. 4 shells per replicate aquarium) was analyzed under the stereomicroscope (Wild Heerbrugg, Leica Microsystems, Wetzlar, Germany) at 8–40× magnification and images were taken using a digital camera (ProgRes CF, Jenoptik, Jena, Germany) and ProgRes Picture Pro 2.7 software (Jenoptik) at 10× magnification. Most shells from the higher pCO2 treatments were characterized by partial corrosion of the nacre, the innermost shell layer. Corroded regions lose the typical glossy appearance of nacre and appear white when viewed under a light source (see Fig. 2a). We thus were able to distinguish between corroded parts of the shell and intact regions using the freeware ImageJ Version 1.43 (http://rsbweb.nih.gov/ij/) based on differences in grey scale. Grey scale thresholds were adjusted for each valve based on grey scale intensity differences of visually confirmed corroded vs. uncorroded areas of the particular shell image (uncorroded nacre reflects visible light). Corroded areas were marked and set in relation to the total inner surface area of the valve:

\[DA(\%) = \frac{(SA - CA)}{SA} \times 100 \]

where DA(%) = dissolved nacre area in % of the total inner shell area, SA = inner shell area, i.e. all pixels enclosed by the shell circumference, CA = corroded area, i.e. nacre pixels above a set grey scale threshold. The curvature of the shell was ignored for area calculations. All shells were similar in phenotype; total shell growth (1–3 mm) during the experimental incubation was small enough relative to shell length at the end of the experiment (18–21 mm) in order to neglect potential differences in shell curvature between treatments.

Table 1. Water parameters and mussel growth.

A

F1	F2	cell density header (cells mL\(^{-1}\))	cell density aquaria (cells mL\(^{-1}\))	pH\(_{\text{NBS}}\)	T (°C)	S
HF	39	5688 (4200)	1655 (242)	8.01 (0.04)	4.8 (0.7)	16.0 (1.3)
HF	112	1575 (53)	7.69 (0.04)	4.7 (0.7)	16.0 (1.3)	
HF	240	1747 (323)	7.35 (0.05)	4.8 (0.7)	16.0 (1.3)	
HF	405	1962 (166)	7.15 (0.04)	4.9 (0.7)	16.0 (1.4)	
LF	39	575 (307)	8.01 (0.04)	5.4 (0.6)	16.0 (1.3)	
LF	112	335 (13)	7.70 (0.04)	5.1 (0.5)	16.0 (1.3)	
LF	240	347 (25)	7.40 (0.04)	5.0 (0.6)	16.0 (1.3)	
LF	405	346 (18)	7.19 (0.04)	4.9 (0.5)	16.0 (1.3)	

B

F1	F2	C\(_{\text{a}}\) (\text{\textmu}mol kg\(^{-1}\))	\(A\(_{\text{T}}\) (\text{\textmu}mol kg\(^{-1}\))	\(\rho\text{CO}_2\) (Pa)	\(\Omega_{\text{calc}}\)	\(\Omega_{\text{arag}}\)
HF	39	1881.9 (13.7)	8.05 (0.01)	1915.2 (13.8)	53 (2)	1.23 (0.05)
HF	112	1951.8 (11.0)	7.72 (0.03)	1914.7 (10.2)	119 (8)	0.58 (0.04)
HF	240	2033.4 (9.4)	7.37 (0.02)	1897.8 (10.5)	262 (14)	0.26 (0.02)
HF	405	2097.3 (13.3)	7.19 (0.03)	1880.9 (10.3)	396 (23)	0.17 (0.01)
LF	39	1896.6 (38.9)	8.05 (0.04)	1933.8 (36.8)	55 (5)	1.26 (0.13)
LF	112	1929.0 (3.5)	7.73 (0.04)	1896.3 (9.2)	114 (10)	0.61 (0.08)
LF	240	2015.1 (7.3)	7.43 (0.05)	1898.3 (17.7)	234 (27)	0.30 (0.05)
LF	405	2084.5 (11.1)	7.18 (0.03)	1862.4 (17.3)	401 (28)	0.17 (0.01)

C

F1	F2	initial shell length (mm)	length growth (mm)	shell mass growth (mg)	somatic mass growth (mg DM)	nacre dissolution (% shell area)
HF	39	16.8 (1.4)	2.6 (1.2)	70.4 (61.9)	34.7 (27.2)	0.0 (0.0)
HF	112	17.6 (1.1)	3.0 (0.8)	72.6 (53.0)	40.7 (30.5)	0.3 (0.2)
HF	240	16.8 (0.7)	2.5 (0.4)	39.9 (20.1)	29.8 (14.8)	4.0 (5.3)
HF	405	16.7 (0.5)	1.8 (0.5)	44.2 (18.8)	36.5 (12.1)	13.5 (5.2)
LF	39	16.6 (0.5)	1.2 (0.3)	24.3 (4.8)	5.0 (6.1)	3.8 (6.7)
LF	112	17.3 (0.9)	1.5 (0.4)	21.8 (11.2)	7.0 (9.4)	3.9 (3.8)
LF	240	17.4 (1.0)	1.1 (0.3)	39.5 (13.5)	17.4 (16.1)	8.2 (3.7)
LF	405	16.7 (0.9)	0.6 (0.2)	8.9 (8.2)	8.5 (17.2)	34.1 (6.9)

(A) seawater parameters during the experimental incubation, daily measurements (T, S, pH) and averages of four determinations (cell densities in aquaria and header tanks); (B) carbonate system speciation calculated from pH\(_{\text{NBS}}\) and total dissolved inorganic carbon (C\(_{\text{a}}\)) measurements, mean values of two determinations in all 32 experimental tanks; (C) mussel growth trial results. Means and standard deviations (in brackets). F1 = factor 1, food level; F2 = factor 2, pCO2, A\(_{\text{T}}\) = total alkalinity. A seawater pCO2 of 100 Pascal (Pa) corresponds to 987 µatm. doi:10.1371/journal.pone.0024223.t001
SEM images were generated from select shells to confirm our classification into control and corroded nacre regions. Valves were broken along defined trajectories and 2 cm long shell fractions were mounted on SEM pedestal stubs. Sections were coated with gold-palladium and examined using scanning electron microscopes (Nanolab 7, Zeiss, Oberkochen, Germany and Hitachi S4800, Hitachi High - Technologies Europe, Krefeld, Germany).

Viscosity and filtration calculations

Seawater kinematic viscosity (v, 10^{-6} m^2 s^{-1}) was calculated for experimental conditions (mean temperature and salinity) for this and two previous experiments [10,15]. Viscosity in relation to temperature was calculated (>10°C) and extrapolated (<10°C) from values published by El-Dessouky and Ettouny [36]. Filtration rates (FR) of 9.6 ml min^{-1} were calculated for a standard mussel of 18 mm shell length and 29.1 mg dry mass at 15°C and a corresponding viscosity of 1.15 10^{-6} m^2 s^{-1} according to Røisgard and Mohlenberg [37]. The obtained rate resembles FR for mussel sizes used in our experiments. Røisgard and Larsen [38] described a linear decrease of FR with increasing viscosity. Assuming a decrease of 10% per 0.1 10^6 m^2 s^{-1} viscosity increase (calculated from experimental data in [38] and references therein), FR was recalculated for the mean viscosity in the experimental aquaria.

Statistics

Measurements from the four mussels of each replicate aquarium were averaged. Two-factorial ANOVA was used to analyze shell length, mass growth, somatic mass growth and internal shell corrosion in response to food supply (2 levels, 4 replicate aquaria each) and seawater pCO2 (4 levels, 4 replicate aquaria each) using Statistica 8. Relative quantities (i.e. % shell corrosion area) were arcsine transformed prior to statistical analysis.

Results

Following seven weeks of acclimation to 2 food and 4 CO2 treatment levels, experimental animals were sampled. Shell length growth was significantly reduced by low algae cell density and by high seawater pCO2, with no significant interaction between factors (Fig. 1, Table 1, 2). With respect to controls at each food level, shell length growth was significantly reduced in the highest pCO2 treatment (405 Pa, p<0.001). Shell mass growth and somatic growth were significantly reduced in the LF treatment (Table 2). However, no significant differences in shell mass and somatic growth were found with respect to seawater pCO2. It needs to be mentioned that absolute rates of growth were low in this experiment in comparison to previous experiments at higher temperatures (see Table 3). While shell length growth was based on direct initial and final measurements, initial shell and somatic mass were interpolated (see Methods). Owing to large variability of shell length vs. shell mass relationships (see e.g. [15]), shell and somatic growth rates estimated in this experiment should be viewed with caution.

Kinematic viscosity was ca. 30% higher at the low temperatures in this experiment than in our summer experiment (Table 3), this should have decreased filtration rates and food intake of the experimental mussels by 35%. This could partially explain lower shell growth rates observed in the present experiment under HF conditions: shell length growth during 8 week growth trials at warmer temperatures [10,15] vs. that observed in the present experiment (Table 3), this was calculated for a standard mussel of 18 mm shell length and 29.1 mg dry mass at 15°C and a corresponding viscosity of 1.15 10^{-6} m^2 s^{-1} according to Røisgard and Mohlenberg [37]. The obtained rate resembles FR for mussel sizes used in our experiments. Røisgard and Larsen [38] described a linear decrease of FR with increasing viscosity. Assuming a decrease of 10% per 0.1 10^6 m^2 s^{-1} viscosity increase (calculated from experimental data in [38] and references therein), FR was recalculated for the mean viscosity in the experimental aquaria.

Internal shell corrosion was visible in HF mussels only at the two highest CO2 treatment levels, while in the LF treatment, inner shell corrosion was observed in all four treatments (Fig. 2). The white color of corroded shell surfaces resulted from dissolution of nacre tablets and the resulting changes in light refraction due to the remaining organic material (Fig. 2). Shell cross sections illustrated that a visible dissolution zone extended ca. 3–5 μm into the nacreous layer (N = 6 shells studied, Fig. 3). Below the thin dissolution zone, nacre tablet layers appeared to be intact (Fig. 3b, c). The extent of inner shell surface corrosion was significantly influenced by both, pCO2 and food density (Fig. 1, Table 2). At the highest pCO2, all LF mussels were heavily corroded, with >30% of total inner shell area being affected.

Circular blue spots on the dissolved nacre surface appeared to be characteristic for heavily corroded shells (Fig. 4a). SEM revealed that these spots correspond to nacre regions that are covered by (transparent) organic material, which seems to protect the underlying nacre and its characteristic light refraction patterns (Fig. 4b, c). Fig. 4c illustrates an extreme case, where such a circular, organic covered spot extends several μm above the

![Figure 1. Shell length growth (A) and internal shell surface dissolution (B) vs. seawater pCO2.](image-url)
Table 2. Two-factorial ANOVA results. Significant results in bold.

Experiment	S	T	Ω_{avg}	Kinematic viscosity	Calculated filtration rate	Cell density (aquaria)	Shell length growth
	g kg$^{-1}$	°C	control	10^{-6} m2 s$^{-1}$	ml min$^{-1}$	n ml$^{-1}$	% initial
Thomsen et al. (2010)	15.0 ± 0.6	13.8 ± 0.6	1.14 ± 0.04	1.19 ± 0.019	9.2	820 ± 315	64.8 ± 3.8
Thomsen and Melzner (2010)	18.1 ± 0.6	9.1 ± 0.6	1.11 ± 0.12	1.36 ± 0.017	7.6	2330 ± 482	53.0 ± 2.0
this study HF	16.0 ± 1.3	4.9 ± 0.7	0.72 ± 0.03	1.53 ± 0.003	6.0	1734 ± 167	15.2 ± 7.3
this study LF	16.0 ± 1.3	5.4 ± 0.6	0.73 ± 0.07	1.51 ± 0.009	6.1	336 ± 16	7.0 ± 1.8

The summer and autumn experiments lasted 8 weeks [10,15], the present winter experiment 7 weeks. Filtration rates were calculated for a standard 18 mm mussel (see methods) to illustrate the impact of temperature dependent changes in seawater viscosity. As M. edulis has a retention rate of ca. 100% for particles with a diameter >4 μm, reduced filtration rates at low temperatures directly translate into reduced energy uptake, even if aquarium algae concentrations are similar. See Methods for calculation of filtration rates in response to seawater viscosity. Means and standard deviations (in brackets). Shell length growth corresponds to growth during the entire experimental period of the respective experiments. Cell density refers to the average Rhodomonas cell density in the experimental aquaria. Ω_{avg} refers to the aragonite saturation states in the experimental aquaria.

doi:10.1371/journal.pone.0024223.t002

Table 3. Comparison of control pCO$_2$ treatments of M. edulis growth trials conducted in our laboratory.

Experiment	S	T	Ω_{avg}	Kinematic viscosity	Calculated filtration rate	Cell density (aquaria)	Shell length growth
	g kg$^{-1}$	°C	control	10^{-6} m2 s$^{-1}$	ml min$^{-1}$	n ml$^{-1}$	% initial
Thomsen et al. (2010)	15.0 ± 0.6	13.8 ± 0.6	1.14 ± 0.04	1.19 ± 0.019	9.2	820 ± 315	64.8 ± 3.8
Thomsen and Melzner (2010)	18.1 ± 0.6	9.1 ± 0.6	1.11 ± 0.12	1.36 ± 0.017	7.6	2330 ± 482	53.0 ± 2.0
this study HF	16.0 ± 1.3	4.9 ± 0.7	0.72 ± 0.03	1.53 ± 0.003	6.0	1734 ± 167	15.2 ± 7.3
this study LF	16.0 ± 1.3	5.4 ± 0.6	0.73 ± 0.07	1.51 ± 0.009	6.1	336 ± 16	7.0 ± 1.8

The summer and autumn experiments lasted 8 weeks [10,15], the present winter experiment 7 weeks. Filtration rates were calculated for a standard 18 mm mussel (see methods) to illustrate the impact of temperature dependent changes in seawater viscosity. As M. edulis has a retention rate of ca. 100% for particles with a diameter >4 μm, reduced filtration rates at low temperatures directly translate into reduced energy uptake, even if aquarium algae concentrations are similar. See Methods for calculation of filtration rates in response to seawater viscosity. Means and standard deviations (in brackets). Shell length growth corresponds to growth during the entire experimental period of the respective experiments. Cell density refers to the average Rhodomonas cell density in the experimental aquaria. Ω_{avg} refers to the aragonite saturation states in the experimental aquaria.

doi:10.1371/journal.pone.0024223.t003
otherwise corroded nacre surface. Using SEM, multiple of such organic covered spots of 10–100 μm diameter could be demonstrated on N = 6 heavily corroded shells.

Discussion

We acclimated blue mussels to four different seawater pCO_2 values and two food concentrations at low temperatures and found effects of both factors on shell length growth. In addition, we were able to demonstrate internal shell corrosion in bivalves as a consequence of high seawater pCO_2. We also found that internal shell corrosion is highly dependent on food concentration. Our results demonstrate the high degree of control that bivalves can exert over the structural integrity of the inner shell surface and suggest that shell corrosion is related to energy budget reallocations.
Shell and somatic growth

While there was positive shell and somatic growth in all experimental groups during the experimental period, shell length and mass growth as well as somatic growth rates were lower than rates observed in previous summer and autumn experiments using experimental animals of comparable size from the same mussel population (Table 3) [10,15]. While food supply was abundant in all three experiments, temperature was significantly lower (ca. 5°C) in the present experiment (Table 3). Temperature influences key processes that can impair growth and calcification in mytilid bivalves: (i) temperature induced reductions in metabolic rates are not fully compensated for by thermal acclimation of key physiological functions in mussels (e.g., cardiovascular function), [39]. In addition, (ii) seawater kinematic viscosity is strongly temperature dependent and was much higher in this experiment (by ca. 27%) than in the summer experiment (Table 3). Viscosity impacts mussel energy budgets as the lateral gill cilia that generate the feeding current are mechanically limited when working under conditions of high viscosity; Rübsäger & Larsen [38] could demonstrate that temperature induced reductions in \(M. edulis \) filtration rate are exclusively due to increases in viscosity that go along with low temperature. We estimate that the mussels in this experiment filtered, on average, 34% less water than those in our summer experiment (Table 3) [15]. As food retention of particles >4 \(\mu \)m is almost 100% [40], reduced filtration equates to reduced energy intake. Finally, (iii) \(\text{CO}_2 \) solubility is higher in cold waters and \(\text{CaCO}_3 \) saturation states are lower (see Table 1), which led to low \(\Omega_{\text{aragonite}} \) in all treatments in the present experiment. This might also increase costs for calcification and shell maintenance. Low rates of shell length growth of <0.5 mm week\(^{-1}\) in winter animals (vs. >1 mm week\(^{-1}\) in summer) have also been detected in situ in Kiel Fjord mussels (see Fig. 2 in [15]). Food concentrations utilized in our experiments approximately correspond to Chl \(a \) values that can be expected in Kiel Fjord: assuming a Chl \(a \) content of 1–2 pg cell\(^{-1}\) \textit{Rhodomonas} sp. [41], the HF treatment contained ca. 2–4 \(\mu \)g Chl \(a \) L\(^{-1}\) while the LF treatment contained 0.3–0.7 \(\mu \)g Chl \(a \) L\(^{-1}\). Kiel Fjord Chl \(a \) concentrations can be >10 \(\mu \)g L\(^{-1}\) during August and are typically below 1 \(\mu \)g L\(^{-1}\) in the winter months [42].

Shell length growth was significantly reduced in LF treatments and by high seawater \(\rho \text{CO}_2 \), effects of both factors were more or less additive. No significant \(\text{CO}_2 \) effects could be found with regard to shell mass and somatic mass growth, while food supply had a strong effect on both parameters. Variability of shell and somatic mass growth rate was high (Table 2, see methods), this might have potentially obscured more subtle \(\text{CO}_2 \) effects. Similarly, other studies that recorded little total net shell and somatic growth also were unable to detect significant effects of \(\rho \text{CO}_2 \) on calcification performance in juvenile/adult mytilid mussels at seawater \(\rho \text{CO}_2 \) up to 300–500 Pa [3,43]. Under elevated feeding conditions and at higher temperatures >9°C, strong reductions in shell length and mass accretion of >30% were found at high seawater \(\rho \text{CO}_2 \) of >400–500 Pa, in both, brackish and fully marine mytilid populations [10,15,44].

Internal shell dissolution

It has long been recognized that the inner bivalve shell surface is plastic and prone to dissolution. Dugal [45] was among the first to measure internal \(\text{CaCO}_3 \) dissolution during emersion in the bivalve \textit{Mercenaria mercenaria}, other studies followed by demonstrating that \(^{15}\)Ca that is incorporated into the shell appears in the extrapallial fluid during emersion [25,46]. Akbarali et al. [47] studied SEM images of inner shell surfaces of freshly exposed intertidal bivalves (\textit{Scrobicularia plana}) and could demonstrate visible changes in the structural integrity of the inner shell layers during a single low tide event, leading the authors to conclude that dissolution and re-calcification are cyclic events on a daily basis. Further, these authors could also demonstrate that during abrupt 3 week - long exposure to dilute seawater (20%), shell mass...
decreased by 10% due to valve closure and subsequent internal dissolution. While Crenshaw & Neff [25] suggested that shell dissolution is primarily due to acidification caused by accumulation of the anaerobic endproduct succinate, Jokumsen & Fyhun [48] measured increases in extracellular [Ca^{2+}] during aerial exposure in M. edulis, but also increases in extracellular pHCO₂, which they attributed to frequent brief valve opening to enhance residual aerobic metabolism. Thus, pHCO₂ induced corrosion of the inner shell surface might be a common feature of mytilid physiology that is adaptive to life in intertidal habitats.

Long-term exposure to elevated pHCO₂ in our experiment induced shell corrosion of aragonite platelets that form the nacreous inner layer of the shell (Figure 2, 3, 4). This effect was more pronounced when mussels were food limited. It has been shown that bivalves do not control pH in haemolymph and extrapallial fluid [15,49]. Increases in seawater pHCO₂ lead to equivalent increases in extrapallial fluid and haemolymph pHCO₂ in order to maintain diffusion gradients to excrete metabolic CO₂ (see [22] for a discussion). High pHCO₂ values of extracellular fluids constrain the carbonate system towards CO₂ concentrations that are even lower than in the surrounding seawater (see Table 2), causing extremely low Ω_{carb} and low pH, thus progressively more corrosive conditions at the mantle shell interface. It is therefore likely that maintenance of inner shell integrity requires continuous energy investment. The strong effects of food availability and pHCO₂ (Table 2) point in this direction. Increased effort for inner shell maintenance might explain part of the surplus metabolism observed in bivalves exposed to elevated seawater pHCO₂ [5,10,11].

In highly corroded shells we also found regions that appeared to be covered with organic material (Fig. 3, 4). While these structures deserve further research attention with regards to their composition, it is intriguing to speculate that M. edulis may need to invest additional energy into synthesizing organic material in order to stabilize sites of dissolution. This is particularly relevant, as it has been suggested by Palmer [50] that the main costs of shell formation are those for organic matrix (i.e. the energetic value of the organic fraction within the shell and the biosynthesis costs for this material), with 29 J mg⁻¹ shell in comparison to only 1–2 J mg⁻¹ shell for CaCO₃ deposition. Based on these results, an increase in the organic fraction of a shell from e.g. 1.5 to 5% would increase the relative costs for the organic fraction from 22% to almost 50% of shell formation costs (c.f. [50]). Thus, repair and protective mechanisms based on organic coatings might have a strong impact on the energy budget of mussels with corroded inner shell surfaces. Whether inner shell repair and maintenance is provided by the mantle tissue, or whether circulating hemocytes are involved in material deposition at sites of repair is also unclear at present [51–54]. We have not found indications (on a stereomicroscopic level, i.e. 40x magnification) for internal shell corrosion in our previous experiments at higher temperatures and high densities of food algae [10,15], although thickness of aragonite platelets in shell cross-sections was reduced in the summer experiment [15].

While external shell dissolution in high pHCO₂ waters has been described for several marine echinoderm animals with heavily calcified exoskeletons e.g. [12–15,53], internal shell dissolution has, to our knowledge, only been documented in one other study: Clark et al. [56], using SEM, reported pitting of the spicules of echinolophiidae when raised at a pHCO₂ of ca. 130 Pa. The larval skeleton of echinoid larvae is secreted by a primary mesenchyme cell syncytium and is thought to be in contact with the surrounding extracellular (coelomic) fluid [57,58]. Assuming that pluteus larvae are as weak acid-base regulators as adult echinoids studied so far [59] it is likely that larval spicules are also in contact with extracellular fluids highly undersaturated with regard to calcium carbonate. It is unknown, whether spicule corrosion in pluteus larvae observed by Clark et al. [56] was related to food supply. This option should be investigated in future studies on echinoderm early life stages.

Conclusion

We conclude that internal shell dissolution in the bivalve M. edulis from the Baltic Sea is tightly coupled to the energy budget: effects of food algae density in the treatment aquarium have a strong impact on inner shell integrity. These results demonstrate that maintenance of an intact nacre surface in an extrapallial fluid that is corrosive (even under control conditions, see [15]) requires energy input. We hypothesize that during strong pHCO₂ stress coupled to food limitation typical for the winter months, M. edulis might allocate resources towards conservation of somatic mass, thereby partially sacrificing nacre, thus utilizing an evolutionarily conserved plastic mechanism originating from the extreme requirements of life in an intertidal habitat. Our results also indicate that it is extremely difficult to infer rates of shell dissolution from empty shells subjected to corrosive seawater (e.g. [60]) to constrain calcification budgets (i.e. net vs. gross calcification), as there is great biological control over inner shell surface integrity. Elucidation of the fraction of the energy budget that is devoted to inner shell maintenance mechanisms under adverse carbonate system speciation states awaits investigation.

Author Contributions

Conceived and designed the experiments: FM MAG PS. Performed the experiments: FM MAG PS JT KT IC SNG UP. Analyzed the data: FM MAG PS JT KT IC SNG. Contributed reagents/materials/analysis tools: FM SNG MAG. Wrote the paper: FM MAG JT.

References

1. Doney SC, Balch WM, Fabry VJ, Feely RA (2009) Ocean acidification: A critical emerging problem for the ocean sciences. Oceanography 22(4): 16–25.
2. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13: 1419–1434.
3. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO₂ induced ocean acidification. Geology 37: 1131–1134.
4. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65: 414–432.
5. Benshah I, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea gigas. Mar Ecol Prog Ser 419: 95–108.
6. Gaylord B, Hill TM, Sanford E, Lenz EA, Jacobs LA, et al. (2011) Functional impacts of ocean acidification in an ecologically critical foundation species. J Exp Biol 214: 2586–2594.
7. Gaedeau F, Gattuso JP, Dawber C, Prosner AE, Peene F, et al. (2010) Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7: 2031–2060.
8. Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO₂ on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4: 225–233.
9. Talmage SC, Gobler CJ (2010) Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc Natl Acad Sci USA 107: 17246–17251.
10. Thomsen J, Melzner F (2010) Seawater acidification does not elicit metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157: 2667–2676.
11. Lunug R, Eders S, Pointer HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas – Changes in metabolic pathways and thermal response. Mar Drugs 8: 2318–2339.
34. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations.
32. Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont S (2011) CO2 induced
17. Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a
16. Tunnicliffe V, Davies KTA, Butterfield DA, Embley RW, Rose JM, et al. (2009)
19. Rousseau M, Lopez E, Coute A, Mascarel G, Smith DC, et al. (2005) Sheet
15. Thomsen J, Gutowska MA, Sapho¨rster J, Heinemann A, Fietzke J, et al. (2010)
29. Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, et al. (2010)
28. Gutowska MA, Melzner F, Po¨rtner HO, Meier S (2010) Cuttlebone calcification
27. Waite JH (1983) Quinone-tanned scleroproteins. In: Hochachka PW, ed. The
26. Burnett LE (1988) Physiological responses to air exposure: acid-base balance and
25. Crenshaw MA, Neff JM (1969) Decalcification at the mantle-shell interface in
24. Weiss IM (2010) Jewels in the pearl. ChemBioChem 11: 297–300.
23. Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, et al. (2009)
22. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lacassen M, et al. (2009)
13. Marshall DJ, Santos JH, Leung KMY, Chak WH (2008) Correlations between
12. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, et al.
36. El-Dessouky HT, Ettouney HM (2002) Fundamentals of saltwater desalination
35. Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, et al. (1993) The
20. Howard RS, Kohler P, Cooper D, Stal G (1996) Mechanisms of C4 photosynthesis
7. Napierska D, Afonina N, Kuznetsova M, Kuznetsov A, Flenström C, et al. (2008)
47. Akberali HB, Brear K, Currey JD (1983) Mechanical and morphological
49. Lindinger MI, Lauren DJ, McDonald DG (1984) Acid-base-balance in the sea
48. Jokumsen A, Fyhn HJ (1982) The influence of aerial exposure upon respiratory
47. Furtado-Costa N, Hoares D, Turner RC, Ruardy J, Pickard DS, et al. (2010) Nutritional
45. Diamond J, Hooper AD, Shimizu M, Takahashi Y, Nishizawa M, et al. (2007) Sulfur
44. Goddard AM, Jones RE (1984) Incidence of soft-tissue disease in brown-shelled
43. Gamperl AM, Dunker NL, Smith BE, et al. (2002) The complement system of Mytilus
42. Gocke K, Rheinheimer G (1991) Influence of eutrophication on bacteria in two
41. Kuckler J, Juricek O, Zemanek M (1989) Macromolecular structure and dissolution
40. Mendes de Sá JN, de Almeida Freitas M, Bedia R, et al. (2015) Carbonate system
39. Hornick VL, Trembath N (2006) The influence of water temperature on the gas exchange
38. Riisga˚rd HU, Larsen PS (2007) Viscosity of seawater controls beat frequency of
37. Rink¨agard HU, Mohlenberg F (1979) An improved automatic recording apparatus
36. Rohde KD, McPherson AO, Gentili O, et al. (2010) The influence of changes in CO2
35. Neff JM (1972) Ultrastructure of the outer epithelium of the mantle in the clam
34. Weiss IM (1989) Physiological responses to air exposure: acid-base balance and
33. Suzuki M, Watanabe T, Koike K, Shindo K, Koda Y, et al. (2006) Photosynthesis and
32. Satake M, Ichikawa S, Nishitani K, et al. (1998) Influence of temperature and salinity
31. Rose JC, Fife BM, Christensen RD, et al. (1996) Carbon cycling in the Southern
30. Rose JC, Fife BM, Christensen RD, et al. (1995) Carbon cycling in the Southern
29. Gutowska MA, Melzner F, Langenbuch M, Dupont S, Lacassen M, et al. (2009)
28. Golladay SD, Chmelo SM, Liu SQ, et al. (2004) Carbon and nitrogen cycling
27. Fernández PA, Santos C, Díaz DR, et al. (2010) Impact of anthropogenic CO2
26. Burnett LE (1988) Physiological responses to air exposure: acid-base balance and
25. Crenshaw MA, Neff JM (1969) Decalcification at the mantle-shell interface in molluscs. A. Merol Zool 3(3): 801–885.
24. Weiss IM (2009) Acid-base balance in marine invertebrates. In: Capuzzo M, ed. Acid-base
23. Suzuki M, Watanabe T, Koike K, Shindo K, Koda Y, et al. (2006) Photosynthesis and
22. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lacassen M, et al. (2009)
21. Lehmann A, Krauss W, Hinrichsen HH (2002) Effects of remote and local
20. Howard RS, Kohler P, Cooper D, Stal G (1996) Mechanisms of C4 photosynthesis
19. Rousseau M, Lopez E, Coute A, Mascarel G, Smith DC, et al. (2005) Sheet
18. Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a
17. Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a
16. Tunnicliffe V, Davies KTA, Butterfield DA, Embley RW, Rose JM, et al. (2009)
15. Thomsen J, Gutowska MA, Sapho¨rster J, Heinemann A, Fietzke J, et al. (2010)
14. Golladay SD, Chmelo SM, Liu SQ, et al. (2004) Carbon and nitrogen cycling
13. Marshall DJ, Santos JH, Leung KMY, Chak WH (2008) Correlations between
12. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, et al.
11. Ramenofsky ME, Mather JT, Sehgal A, et al. (2002) Comparison of shallow and
10. Hedges SB (2006) The Earth system: an integrated approach. Upper Saddle River, Prentice Hall.
9. Howard RS, Kohler P, Cooper D, Stal G (1996) Mechanisms of C4 photosynthesis
8. Fujimori M, Kato K, Fujita T, et al. (2008) A short-term incubation experiment on the influence of pH changes on the primary productivity of a subtidal intertidal mussel bed in Japan.
7. Napierska D, Afonina N, Kuznetsova M, Kuznetsov A, Flenström C, et al. (2008)
6. Golladay SD, Chmelo SM, Liu SQ, et al. (2004) Carbon and nitrogen cycling
5. Golladay SD, Chmelo SM, Liu SQ, et al. (2004) Carbon and nitrogen cycling
4. Golladay SD, Chmelo SM, Liu SQ, et al. (2004) Carbon and nitrogen cycling
3. Golladay SD, Chmelo SM, Liu SQ, et al. (2004) Carbon and nitrogen cycling
2. Golladay SD, Chmelo SM, Liu SQ, et al. (2004) Carbon and nitrogen cycling
1. Golladay SD, Chmelo SM, Liu SQ, et al. (2004) Carbon and nitrogen cycling
