1. INTRODUCTION

In literature the considerable number of works are devoted for computation of plates and shells of various forms. For example the monographies [1] and [2] are to be mentioned. In the monography [3] the orthotropic and isotropic plates of variable thickness, subjected to the action of complicated loads are examined; the analytical methods were applied.

The modern software allows to investigate the similar constructions in detail. The numerical methods, in particular, the finite elements method, are widely used. The work [4] concerns the problem of buckling of orthotropic plates with free and rotationally restrained edges. 3D vibration of cross-ply laminated plates is studied in [5]. The oscillation problems of isotropic and orthotropic rectangular plates of linear thickness are considered in [6]. The work [7] is devoted to the numerical analysis of experimental research on buckling of closed shallow conical shells under external pressure. Free vibration analysis of a rotating varying-thickness-twisted blade with arbitrary boundary conditions is considered in [8].
conditions is examined in [8]. The article [9] considers the optimization of three-dimensional up to yield bending behaviour using the full layer-wise theory for FGM rectangular plate subjected to thermo-mechanical loads. Comparative assessment of finite element modelling techniques for wind turbine rotors blades is represented in [10]. The work [11] concerns nonlinear primary resonance analysis of nanoshells. Geometrical influence on the vibration of layered plates is discussed in [12].

Some problems of statics, vibration and stability of thin-walled constructions are solved in [13] by the use of the equation decomposition method. The elements with piecewise variable thickness occur in modern structures and buildings. First the analytical approach for the solution of similar problems was proposed in the works [14], [15]. In the mentioned works the circular plates resting on an elastic basis are examined. The inner part of these plates has the variable thickness and the outer part has the constant thickness. The conditions of the parts conjugation were fulfilled. The solutions were obtained in terms of Bessel functions. The problems of symmetric flexure of orthotropic and isotropic combined plates with piecewise thickness were considered in [16], [17]. The separate parts of these plates have various laws of cylindrical rigidity variation. In [16], [17] the solutions were obtained in terms of Gegenbauer and Laguerre polynomials.

In the present work the analytical method for the first time is applied for the analysis of the combined circular disks with piecewise variable thickness subjected to an action of expanding loads. The solutions of the problems under study are obtained in closed forms and expressed in terms of Legendre functions; Legendre, Gegenbauer and Laguerre polynomials.

2. THE BASIC SOLUTIONS EXPRESSED IN TERMS OF LEGENDRE FUNCTIONS

As it was mentioned above, the circular disks with piecewise variable thickness subjected to an action of expanding loads are analyzed.

We will write the differential equation, describing the symmetric deformation of the circular isotropic disks with the radially variable thickness and loaded by the surface stretching radial forces with the intensity \(q \):

\[
\frac{d^2 N_r}{dx^2} + \left(\frac{1}{x} \frac{d}{dx} \right) \left(\frac{1}{a_0} \frac{dD}{dx} \right) \frac{dN_r}{dx} - \frac{1 - \sigma}{\alpha_0^2} \frac{1}{a_0} \frac{d}{dx} N_r \frac{r_0}{\alpha_0} \frac{q_r}{x} \times \left(2 + \sigma - \alpha_0 \frac{d}{dx} \right) = 0,
\]

where \(D = \frac{E h(x)}{1 - \sigma^2} \) is the cylindrical rigidity for the tension; \(N_r \) - the normal stress; \(\sigma \) - Poisson’s ratio; \(x = \frac{r}{r_0} \); \(r_0, \alpha_0 \) - the parameters.

Further we will determine the laws of cylindrical rigidity variation which allow to receive the solutions in terms of Legendre functions. For this aim we compare the coefficients of the homogeneous differential equation, corresponding to (1), with the coefficients of the Legendre differential equation [3], [18], [19]:

\[
\frac{d^2 u}{dx^2} - \frac{2x}{1 - x^2} \frac{du}{dx} \left[\frac{v(v-1)}{1 - x^2} - \frac{\mu^2}{\left(1 - x^2\right)^2} \right] u = 0,
\]

where \(\mu \) and \(v \) are the parameters of the Legendre functions. Producing the comparision, we have

\[
\frac{1 - \sigma}{\alpha_0^2} \frac{1}{a_0} \frac{d}{dx} N_r \frac{r_0}{\alpha_0} \frac{q_r}{x} \times \left(2 + \sigma - \alpha_0 \frac{d}{dx} \right) = \frac{2x}{1 - x^2},
\]

\[
\frac{1}{\alpha_0^2} \frac{1}{a_0} \frac{d}{dx} \left(\frac{dD}{dx} \right) \frac{dN_r}{dx} = - \frac{v(v+1)}{1 - x^2} \frac{\mu}{\left(1 - x^2\right)^2}.
\]

We get that for the values of the parameters
as a result the thickness of disks is expressed in the form:

\[h - h_0 (1 - x^2)^{\sigma} \quad 0 < x < 1; \]
\[h - h_0 (x^2 - 1)^{\sigma} \quad 1 < x < \infty. \]

In this case the solutions are represented in terms of adjoined Legendre functions:

\[N_\nu = \left[A P_\nu^\alpha(x) + B Q_\nu^\alpha(x) \right] (x^2)^{1/2}. \]

We note that the use of another Legendre equations for the consideration of disks of variable thickness symmetric deformation will not give any results.

Some disks’ profiles for the cases when the solutions are given in terms of the adjoined Legendre functions are shown on the Fig.1.

Figure 1. Some disks’ profiles for the cases when the solutions are obtained in terms of the adjoined Legendre functions.
Analysis of Combined Disks with Piecewise Thickness

\[N_r = AP^\mu_{1/2 + \nu} + BQ^\mu_{-1/2 + \nu} \cdot x \]

(12)

The case of specific interest is when one of the adjoined Legendre functions parameters
\[\mu = \pm \left(\frac{1}{2} + n \right) \], when \(n \) is the positive integer,
then the solutions of the equation (1) for the rigidities (4) and (9) are expressed in terms of Legendre polynomials. For example, the adjoined Legendre functions \(P^\frac{1}{2}_v(x) \), \(P^{-\frac{1}{2}}_v(x) \),
\(Q^\frac{1}{2}_v(x) \), \(Q^{-\frac{1}{2}}_v(x) \) can be represented by the following formulae:

\[P^\frac{1}{2}_v(x) = \frac{1}{\sqrt{2\pi}} \left(x^2 - 1 \right)^{\frac{1}{4}} \times \]
\[\times \left[(x + \sqrt{x^2 - 1})^{\frac{1}{4}} + (x - \sqrt{x^2 - 1})^{\frac{1}{4}} \right] \]
\[Q^\frac{1}{2}_v(x) = i \sqrt{\frac{\pi}{2}} (x^2 - 1)^{\frac{1}{4}} \left(x + \sqrt{x^2 - 1} \right)^{\frac{1}{4}} \]
\[- \left(x - \sqrt{x^2 - 1} \right)^{\frac{1}{4}} \]
\[P^{-\frac{1}{2}}_v(x) = \frac{2}{\sqrt{\pi}} \left(x^2 - 1 \right)^{\frac{1}{4}} \times \]
\[\times \left[(x + \sqrt{x^2 - 1})^{\frac{1}{4}} - (x - \sqrt{x^2 - 1})^{\frac{1}{4}} \right] \]
\[Q^{-\frac{1}{2}}_v(x) = i \sqrt{2\pi} \left(x^2 - 1 \right)^{\frac{1}{4}} \left(x + \sqrt{x^2 - 1} \right)^{\frac{1}{4}} \]

(13)

where \(x \geq 1 \).

Using the recurrence relations

\[(v - \mu + 1)P^\mu_{v+1}(x) - (v + \mu + 1)xP^\mu_v(x) = \]
\[= \sqrt{x^2 - 1}P^\mu_v(x); \]
\[P^\mu_{v-1}(x) - xP^\mu_v(x) = -(v - \mu + 1)\sqrt{x^2 - 1}P^\mu_{v-1}(x); \]
\[xP^\mu_v(x) - P^\mu_{v+1}(x) = -(v + \mu)\sqrt{x^2 - 1}P^\mu_{v-1}(x), \]

from these formulae the expressions for the functions \(P^3_v(x) \), \(P^5_v(x) \) etc. can be consequently received. For instance, we can write:

\[Q^1,5_v(x) = i \sqrt{\frac{3}{2}} (x^2 - 1)^{\frac{3}{2}} \left(x + \sqrt{x^2 - 1} \right)^{\frac{3}{2}} \times \]
\[\times \left[x + \left(v + \frac{1}{2} \right) \sqrt{x^2 - 1} \right] \]
\[P^1,5_v(x) = \frac{1}{\sqrt{2}} (x^2 - 1)^{\frac{3}{2}} \left(x + \sqrt{x^2 - 1} \right)^{\frac{3}{2}} \times \]
\[\times \left[(v - 1) \left(x + \sqrt{x^2 - 1} \right)^{v + \frac{1}{2}} - x - \right. \]
\[\left. \left(v + 1 \right) \right] \]

Next the particular solution of inhomogeneous equation (1) is to be considered. For this purpose the Cauchy functions for the solution received above are to be obtained.

The Wronskian for the solutions of the Legendre equation is used for this aim:

\[W(x) = K(\mu, v); \]
\[K(\mu, v) = \frac{e^{i\mu x} \Gamma(1 + \frac{1}{2} + \frac{1}{2} \mu) \Gamma(1 + \frac{1}{2} + \frac{1}{2} \mu)}{\Gamma(1 + \frac{1}{2} + \frac{1}{2} \mu) \Gamma(1 + v + \frac{1}{2} + \frac{1}{2} \mu)}, \]

(14)

where \(\Gamma(x) \) - gamma-function.

The Cauchy functions for the solution (6) and the rigidity (4) are:

\[Y_1(x; x) = v \left[x_1 P_v(x_1) - P_v(x_1) \right] \]
\[+ \left[x_1 P_v(x_1) - P_v(x_1) \right] Q_v(x_1) \]
\[- \frac{\partial}{\partial x_1} \{ x_1 P_v(x_1) - P_v(x_1) \} Q_v(x_1) \]
\[Y_2(x; x) = \frac{\partial}{\partial x_1} \{ x_1 P_v(x_1) - P_v(x_1) \} Q_v(x_1) - \]
\[- P_v(x_1) Q_v(x_1) \]

(15)

in this case \(\mu = 0 \) and, hence, \(K(\mu, v) = 1 \).
The Cauchy functions for the solution (11) and the disk’s rigidity (9) are:

\[
Y_1(x_i; x) = \frac{\mu}{K(\mu, v)} \left(x_i^2 - 1 \right)^{\frac{\mu}{2}} \left(x^2 - 1 \right)^{\frac{\mu}{2}}
\times \left\{ \left[(v - \mu) x_i Q_\mu^\nu(x_i) - (v + \mu) Q_{\mu-1}^\nu(x_i) \right] P_\nu^\mu(x) + \left[(v - \mu) x_i P_\mu^\mu(x_i) - (v + \mu) P_{\mu-1}^\mu(x_i) \right] Q_\nu^\nu(x) \right\}
\]

\[
Y_2(x_i; x) = \frac{\mu}{K(\mu, v)} \left(x_i^2 - 1 \right)^{\frac{\mu+1}{2}} \left(x^2 - 1 \right)^{\frac{\mu}{2}}
\times \left\{ Q_\nu^\nu(x_i) P_\nu^\mu(x) - P_\nu^\nu(x_i) Q_\nu^\nu(x) \right\}
\]

For the real \(x, \mu, v \) the Wronskian \(W(x) \) is complex-valued, if \(\mu \neq \frac{n+1}{2} \), where \(n \) is integer. In this case \(W(x) \) contains the factor \(e^{ivx} \). However, the Cauchy functions will be real, because the adjoined Legendre function contains the similar factor.

Thus, the particular solution of the inhomogeneous equation (1) is:

\[
N = \int_{x_1}^{x} f(z) Y_2(z; x) dz,
\]

where \(f(z) \) is the right part of (1).

It is recommended to determine numerically the values of (17) for the actual parameters.

Next we go to the cases when the solutions are expressed in terms of orthogonal polynomials.

3. THE BASIC SOLUTIONS IN TERMS OF GEGENBAUER POLYNOMIALS

For receiving of the solutions we compare the coefficients of the homogeneous equation, corresponding to (1), with the coefficients of Jacobi equation \([18], [20]\). The analysis shows that the solution is possible, when the parameters \(\alpha = \beta \); it corresponds to the case of the ultraspherical Gegenbauer polynomials \(C_\mu^\lambda(x) \).

The differential equation for the Gegenbauer polynomials is

\[
y'' + \frac{2\lambda + 1}{1 - x^2} xy' + \frac{m(m + 2\lambda)}{1 - x^2} y = 0.
\]

(18)

Fulfilling the above-mentioned comparison, we get the following parameters

\[
a_0 = -2,
\]

\[
m_{1,2} = \lambda \pm \sqrt{\lambda^2 + \frac{(1 - \sigma)}{2}(2\lambda + 1)}
\]

(19)

and the rigidity for the tension is

\[
D = D_0 \left[1 - x^2 \right]^{\left(\lambda + \frac{1}{2} \right)}; 0 \leq x < 1;
\]

\[
D = D_0 \left[x^2 - 1 \right]^{\left(\lambda + \frac{1}{2} \right)}; 0 \leq x < \infty.
\]

(20)

The solution of the homogeneous equation has the following form:

\[
N_1 = AC_\mu^\lambda(x) + B \left[\frac{1 - x}{2} \right]^{\frac{1 - \lambda}{2}}
\]

\[
\times F \left[-n - \lambda + \frac{1}{2}, n + \lambda + \frac{3}{2} - \lambda; \frac{3}{2} - \lambda; \frac{1 - x}{2} \right],
\]

(21)

where \(F(\) \) is the hypergeometric function.

For the disks with the rigidity (20) and the solution (21) the Cauchy functions are to be determined. The expression for Wronskian is

\[
W(x) = \frac{\Gamma(m + 2\lambda)}{m! \Gamma(2\lambda)} \left[\frac{1}{2} - \lambda \right]^{2\lambda + 1} \times
\]

\[
\times \left(1 - x^2 \right)^{-\lambda - \frac{1}{2}}.
\]

(22)

Further we obtain the following formulae for the Cauchy functions:
Analysis of Combined Disks with Piecewise Thickness

\[Y_1(x_1; x) = \frac{m! \Gamma(2\lambda)\left(1-x_1^2\right)^{\lambda-\frac{1}{2}}}{2^{2\lambda+1}\left(1-\lambda\right)\Gamma(m+2\lambda)} \left[\left(\frac{\lambda}{2} - \frac{1}{4}\right) \left(1-x_1^2\right)^{-\frac{\lambda}{2}} F\left(-m-\lambda+\frac{1}{2}, m+\lambda+\frac{3}{2}; -\lambda; \frac{1-x_1}{2}\right) - \left(\frac{1-x_1}{2}\right)^{-\lambda} \right] \]

\[+ \left[\frac{m x_1}{1-x_1^2} C_m^2(x_1) - \frac{m+2\lambda-1}{1-x_1^2} C_{m-1}^2(x_1) \left(\frac{1-x_1}{2}\right)^{-\lambda} F\left(-m-\lambda+\frac{1}{2}, m+\lambda+\frac{3}{2}; -\lambda; \frac{1-x_1}{2}\right) \right] \]

\[Y_2(x_1; x) = \frac{n! \Gamma(2\lambda)\left(1-x_1^2\right)^{\lambda-\frac{1}{2}}}{2^{2\lambda+1}\left(1-\lambda\right)\Gamma(m+2\lambda)} \left[\left(\frac{\lambda}{2} - \frac{1}{4}\right) \left(1-x_1^2\right)^{-\lambda} F\left(-m-\lambda+\frac{1}{2}, m+\lambda+\frac{3}{2}; -\lambda; \frac{1-x_1}{2}\right) \right] \]

\[+ C_m^2(x_1) \left(\frac{1-x_1}{2}\right)^{-\lambda} F\left(-m-\lambda+\frac{1}{2}, m+\lambda+\frac{3}{2}; -\lambda; \frac{1-x_1}{2}\right) \]

The particular solution of the inhomogeneous equation is determined by means of the expression (17).

4. THE BASIC SOLUTIONS IN TERMS OF LAGUERRE POLYNOMIALS

Let us determine the possibility to obtain the solutions in terms of Laguerre polynomials \(L_m^{(\alpha)}(x) \) [18], [20]. The differential equation for these polynomials is

\[y'' + \frac{\alpha+1-x}{x} y' + \frac{m}{x} y = 0. \] (24)

After the described above transformations we get the following parameters:

\[\alpha_0 = -\frac{2}{\alpha}, \quad \alpha = \frac{2m}{1-\sigma}. \] (25)

The rigidity for the tension is

\[D = D_0 e^x. \] (26)

The general solution of the homogeneous equation for the case under study is

\[N_r = A L_m^{(\alpha)}(x) + B x^{-\alpha} \Gamma(-n-\alpha; 1-\alpha; x), \] (27)

where \(\Gamma(x) \) is the confluent hypergeometric function.

The Wronskian for the solution (27) is determined by the following formula:

\[W(x) = \left(\frac{m+\alpha}{m}\right) x^{-\alpha-1} e^x, \]

where

\[m! \left(\frac{m+\alpha-m+1}{m}\right) = \left(\frac{m+1}{m}\right) \left(\alpha+1\right)_m; \]

\[(\alpha+1)_m = (\alpha+1)(\alpha+2)...(\alpha+m). \] (28)

The Cauchy functions for the solutions (27) are
Here, the particular solution is also determined with the use of the formula (17), where the function \(Y_2(x_1; x) \) is determined by means the expression (29).

5. THE STATEMENT OF THE COMPUTATION PROBLEM OF THE CIRCULAR DISK WITH PIECEWISE THICKNESS

The disks, subjected to an action of the stretching loads and consisting of two sections with different laws of thickness variation, are under study. The disks’ profile has a gap in the place of these parts conjugation (fig.2).

\[
Y_1(x_1; x) = \left(\frac{m + \alpha}{m} \right) ^{-1} \alpha ^{-1} x_1 e^{-x_1 \alpha} \times \left[\frac{-x_1^{-1} F_1(-m - \alpha; 1 - \alpha; x_1) + + x_1^{-1} F_1(-m - \alpha; 1 - \alpha; x_1) L_{m-1}^\alpha(x_1)}{1 - \alpha} \right] \times x^{-\alpha} F(-m - \alpha; 1 - \alpha; x) \right) \times \left[\frac{-1}{L_m^\alpha(x_1)} \right] \times F(x_1; x) = \left(\frac{m + \alpha}{m} \right) ^{-1} \alpha ^{-1} x_1 e^{-x_1 \alpha} \times \left[\frac{-x_1^{-1} F_1(-m - \alpha; 1 - \alpha; x_1) + + x_1^{-1} F_1(-m - \alpha; 1 - \alpha; x_1) L_{m-1}^\alpha(x_1)}{1 - \alpha} \right] \times x^{-\alpha} F(-m - \alpha; 1 - \alpha; x) \right)
\]

(29)

\[
N_r^{(1)} = A_1 L_m^\alpha(x) + B_1 x^{-\alpha} F_1(-n - \alpha; 1 - \alpha; x) + + N_r^{(1)}(x).
\]

The rigidity for the tension in the first section is approximated by the formula (9). We have when \(0.5 \leq x \leq 0.9 \):

\[
N_r^{(2)} = N_r^{(1)} + \left[A_2 P_\alpha(x) + B_2 Q_\alpha(x) \right] \times \left(x^2 - 1 \right) \frac{\mu}{2} + N_r^{(2)}(x),
\]

where \(N_r^{(1)} \), \(N_r^{(2)} \) are the particular solutions determined by means the expression (17).

6. THE CONCLUSION

In the present work the exact analytical solutions of computational problems of circular disks with piecewise variable thickness, subjected to an action of expanding loads, are obtained. The constructions under study consist of two or several sections. Each of the mentioned parts has its own law of thickness variation. These sections can be made from the same or from the different materials, which can be homogeneous or inhomogeneous, isotropic and anisotropic. In the places of conjugation the disk’s thickness can be continuous or discontinuous. The received solutions are obtained in terms of Legendre functions and Legendre, Gegenbauer and Laguerre polynomials.

REFERENCES

1. Kovalenko A.D. Izbrannye Trudy [Selected Memoirs], Kiev, Naukova Dumka, 1976, 703 pages (in Russian).

2. Korenev B.G. Nekotoryye Zadachi Teorii Uprugosti i Teploprovodnosti, Reshaemyye v Besselevych Funktsiyakh [Some Problems of the Theory of Elasticity and Heat Conductivity, Solved in Terms of Bessel Functions]. Moscow, Fizmatgiz, 1960, 458 pages (in Russian).
3. **Koreneva E.B.** Analiticheskie Metody Rascheta Plastin Peremennoj Tolschiny ih Practicheskije Prilozhenija [Analytical Methods for Calculation of Plates with Varying Thickness and Their Practical Application]. Moscow, ASV, 2009, 240 pages (in Russian).

4. **Bank L.C. and Yin J.** Buckling of Orthotropic Plates with Free and Rotationally Restrained Unloaded Edges. // Thin-Walled Structures. 1996. 24. Pp. 83–96.

5. **Chen W.Q., Lüe C.F.** 3D Free Vibration Analysis of Cross-Ply Laminated Plates with One Pair of Opposite Edges Simply Supported. // Composite Structures. 2005. 69. Pp. 77–87.

6. **Civalek Öm.** Fundamental Frequency of Isotropic and Orthotropic Rectangular Plates with Linearly Varying Thickness by Discrete Singular Convolution Method. // Applied Mathematical Modelling. 2009. 33. Pp. 3825–3835.

7. **Karasev Al., Varianychko M., Bessmertyi Ya., Krasovsky V., Karasev G.** Numerical Analysis on Experimental Research on Buckling of Closed Shallow Conical Shells under External Pressure. // Journal of Theoretical and Applied Mechanics. Warsaw. 2020. 58(1). Pp. 117–126.

8. **Li C., Cheng H.** Free Vibration Analysis of a Rotating Varying-Thickness-Twisted Blade with Arbitrary Boundary Conditions. // Journal of Sound and Vibration. https://doi.org/10.1016/j.jsv.2020.11579/

9. **Khakpour Komarsofla M. et al.** Optimization of Three-Dimensional up to Yield Bending Behaviour Using the Full Layer-Wise Theory for FGM Rectangular Plate Subjected to Thermo-Mechanical Loads. // Compos. Struct. https://doi.org/10.1016/j.compstruct.2020.113172.

10. **VanSkike W.P., Hale R.D.** Comparative Assessment of Finite Element Modelling Techniques for Wind Turbine Rotors Blades. American Institute of Aeronautics and Astronautics. // Downloaded by University of Texas at Austin on January 8. 2020 // http://arc.aiaa.org. Pp. 1–18.

11. **Sarafraz A., Sahmani S. and Aghdam M.M.** Nonlinear Primary Resonance Analysis of Nanoshells Including Vibrational Mode Interaction Based on the Surface Elasticity Theory. // Applied Mathematics and Mechanics (English Edition). 2020. https://doi.org/10.1007/10483-020-2564-5.

12. **Saira Javed, F.H.H. Al Mukahal and S.B.A. El Sayed.** Geometrical Influence on the Vibration of Layered Plates. Hindawi. // Shock and Vibration. V.2021. Article ID 8843358. Pp. 1–17. https://doi.org/10.1155/2021/8843358.

13. **Koreneva E.B., Grosman V.R.** Equation Decomposition Method for Solving of Problems of Statics, Vibration and Stability of Thin-Walled Constructions. // International Journal for Computational Civil and Structural Engineering. 2020. 16(2). Pp. 63–70.

14. **Koreneva E.B.** Usovershenstvovannyi Raschet Kombinirovannoj Fundamentnoj Plity Spetsialnogo Sooruzhenija [The Refined Computation of the Combined Foundation Plate of the Special Structure]. Sb. Trudov Natsionalnoj Nauchno-Tehnicheskoy Konferentsii s Inostrannym Uchastiyem “Mehanika Gruntov v Geotehnike i Fundamentstroenii”, g. Novocherkassk, Rostovskaja obl., 29-31 maja, 2018. Pp. 193–197 (in Russian).

15. **Koreneva E.B.** Analysis of Combined Plates with Allowance for Contact with Elastic Foundation. // International Journal for Computational Civil and Structural Engineering. 2019. 16(2). Pp. 83–87.

16. **Koreneva E.B., Grosman V.R.** Analiticheskij Raschet Kombinirovannych Konstruktsij [Analytical Computation of Combined Constructions]. // Stroitelnaya Mehanika i Konstruktsiy, 2020, 2, pp. 28–32 (in Russian).

17. **Koreneva E.B., Grosman V.R.** The Problems of Computation of Combined Plates with Piece-Wise Variable Thickness. Solution in Orthogonal Polynomials. // International
18. Abramovitz M., Stigan I.A. Handbook of Mathematical Functions. National Bureau of Standarts. 10th Edition. 1972. 820 pages (in Russian).

19. Kamke E. Spravochnik po Obyknovennym Differentsialnym Uravneniyam [The Handbook for Ordinary Differential Equations]. Moscow, Nauka, 1965, 703 pages (in Russian).

20. Bateman G., Erdelyi A. Vysshije Transzendentnyje Funktsiji. T. 1. Gipergeometricheskaia Funktsija. Funktsija Lezhandra [The Higher Transcendental Functions. Hypergeometric Function. Legendre Function]. Moscow, Nauka, 1965, 294 pages (in Russian).

21. Sege G. Ortogonalnyje Mnogochleny [Orthogonal Polynomials]. Moscow, Fizmatgiz, 1962, 500 pages (in Russian).

СПИСОК ЛИТЕРАТУРЫ

1. Коваленко А.Д. Избранные труды. – Киев: Наукова думка, 1976. – 703 с.

2. Коренев Б.Г. Некоторые задачи теории упругости и теплопроводности, решаемые в бесселевых функциях. – М.: Физматгиз, 1960. – 458 с.

3. Коренева Е.Б. Аналитические методы расчета пластин переменной толщины и их практические приложения. – М.: АСВ, 2009. – 240 с.

4. Bank L.C. and Yin J. Buckling of orthotropic plates with free and rotationally restrained unloaded edges. // Thin-Walled Structures. – 1996. – 24. – Pp. 83–96.

5. Chen W.Q., Lüe C.F. 3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported. // Composite Structures. – 2005. – 69. – Pp. 77–87.

6. Civalek Öm. Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. // Applied Mathematical Modelling. – 2009. – 33. – Pp. 3825–3835.

7. Karasev Al., Varianychko M., Bessmertnyi Ya., Krasovsky V., Karasev G. Numerical analysis on experimental research on buckling of closed shallow conical shells under external pressure. // Journal of Theoretical and Applied Mechanics. – Warsaw. – 2020. – 58. – 1. – Pp. 117–126.

8. Li C., Cheng H. Free vibration analysis of a rotating varying-thickness-twisted blade with arbitrary boundary conditions. // Journal of Sound and Vibration. – https://doi.org/10.1016/j.jsv. – 2020. – 11579/

9. Khakpour Komarosofa M. et al. Optimization of three-dimensional up to yield bending behaviour using the full layer-wise theory for FGM rectangular plate subjected to thermomechanical loads. // Compos. Struct. – 2020. - https://doi.org/10.1016/j.compstruct. - 2020. - 113172.

10. VanSkike W.P., Hale R.D. Comparative assessment of finite element modelling techniques for wind turbine rotors blades. // American Institute of Aeronautics and Astronautics. – Downloaded by University of Texas at Austin on January 8. – 2020 // http://arc.aiaa.org. – Pp. 1–18.

11. Sarafraz A., Sahmani S. and Aghdam M.M. Nonlinear primary resonance analysis of nanoshells including vibrational mode interaction based on the surface elasticity theory. // Applied Mathematics and Mechanics (English Edition). – 2020. – https://doi.org/10.1007/10483-020-2564-5.

12. Saira Javed, F.H.H. Al Mukahal and S.B.A. El Sayed. Geometrical influence on the vibration of layered plates. // Hindawi. – Shock and Vibration. – V. 2021. – Article ID – 8843358. – Pp. 1–17. https://doi.org/10.1155/2021/8843358.

13. Koreneva E.B., Grosman V.R. Equation decomposition method for solving of problems of static, vibration and stability of thin-walled constructions. // International
Journal for Computational Civil and Structural Engineering. – 2020. – 16(2). – Pp. 63–70.

14. Коренева Е.Б. Усовершенствованный расчет комбинированной фундаментной плиты специального сооружения. // Сб. трудов Национальной научно-технической Конференции с иностранным участием «Механика грунтов в геотехнике и фундаментостроении». – Новочеркасск, Ростовская обл., 29–31 мая, 2018. – С. 193–197.

15. Koreneva E.B. Analysis of combined plates with allowance for contact with elastic foundation. // International Journal for Computational Civil and Structural Engineering. - 2019. – Vol. 15. – Issue 4. – Pp. 83–87.

16. Коренева Е.Б., Гросман В.Р. Аналитический расчет комбинированных конструкций. // Строительная механика и расчет сооружений. – 2020. – № 2. – С. 28–32.

17. Koreneva E.B., Grosman V.R. The problems of computation of combined plates with piece-wise variable thickness. Solution in orthogonal polynomials. // International Journal for Computational Civil and Structural Engineering. – 2020. – Vol. 16. – Issue 2. – Pp. 30–34.

18. Abramovitz M., Stigan I.A. Handbook of mathematical functions. – National bureau of Standards. – 10th Edition. – 1972. – 820 p.

19. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. – М.: Наука, 1965. – 703 с.

20. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 1. Гипергеометрическая функция. Функция Лежанда. – М.: Наука, 1965. – 294 с.

21. Сегё Г. Ортогональные многочлены. – М.: Физматгиз, 1962. – 500 с.

Elena B. Koreneva, Dr.Sc., Professor, Moscow Higher Combined-Arms Command Academy; 2, ul. Golovacheva, Moscow, 109380, Russia; tel.: +7(499)175-82-45, e-mail: elena.koreneva2010@yandex.ru.

Коренева Елена Борисовна, доктор технических наук, профессор, Московское высшее общевойсковое командное орденоносное училище Жукова, Ленина и Октябрьской Революции Краснознаменное училище; ул. Головачева, д.2; тел.: +7(499)175-82-45, e-mail: elena.koreneva2010@yandex.ru.