Left orderability for surgeries on the $[1, 1, 2, 2j]$ two-bridge knots

Khanh Le
March 2021

Abstract

Let M be a \mathbb{Q}-homology solid torus. In this paper, we give a cohomological criterion for the existence of an interval of left-orderable Dehn surgeries on M. We apply this criterion to prove that the two-bridge knot that corresponds to the continued fraction $[1, 1, 2, 2j]$ for $j \geq 1$ admits an interval of left-orderable Dehn surgeries. This family of two-bridge knots gives some positive evidence for a question of Xinghua Gao.

1 Introduction

A group G is left orderable if it admits a strict total ordering on the group elements such that $g < h$ implies that $fg < fg$ for all elements $f, g, h \in G$. Left-orderability arises naturally in the study of low-dimensional topology, foliation theory, and group theory. Well-known examples of left-orderable groups include torsion-free abelian groups, free (non-abelian) groups, surface groups and the group of orientation preserving homeomorphisms of the real line. In 3-manifold topology, left-orderability is an important concept due to its role in the L-space conjecture.

Conjecture 1.1 (The L-space conjecture). For an irreducible \mathbb{Q}-homology 3-sphere M, the following are equivalent

1. $\pi_1(M)$ is left-orderable.
2. M is not an L-space.
3. M admits a coorientable taut foliation.

An L-space is a \mathbb{Q}-homology 3-sphere with $\dim \hat{HF}(M) = |H_1(M; \mathbb{Z})|$ where $\hat{HF}(M)$ is the Heegaard Floer homology of M [OS05, Definition 1.1]. There has been a substantial amount of evidence in favor of this conjecture. For example, the L-space conjecture holds for all graph manifolds [BC17] and [Han+20].

In view of Conjecture 1.1, there have been a lot of ideas developed to study left-orderability of 3-manifold groups. It is a well-known fact that a countable group is left-orderable if and only if it embeds in the group of orientation-preserving homeomorphisms of the real line [Ghy01, Theorem 6.8]. In the case of an irreducible compact 3-manifold, its fundamental group is left-orderable if and only if it admits a non-trivial homomorphism onto a left-orderable group [BRW05, Theorem 1.1]. In particular, all manifolds with positive first Betti number are left-orderable. Therefore, it is interesting to construct left orders on \mathbb{Q}-homology spheres, for example those coming from doing Dehn filling and from taking cyclic branched covering of \mathbb{Q}-homology solid torus.

A fruitful way to build left-orderings on \mathbb{Q}-homology spheres is by lifting $\text{PSL}_2(\mathbb{R})$ representations to $\tilde{\text{PSL}}_2(\mathbb{R})$. This strategy has been employed with a lot of success, for example see [Tra15a, Tra15b, Hu15]. Recently, Dunfield, Culler and independently Gao have introduced the idea of using the extension locus of a compact 3-manifold with torus boundary M to order families of \mathbb{Q}-homology spheres arising by doing Dehn filling on M [CD18, Gao19]. Furthermore, they gave several criteria implying the existence of intervals of left-orderable Dehn fillings on M. To state their results, we need the following definition:
Definition 1.2.
A compact 3-manifold Y has few characters if each positive-dimensional component of the $\text{PSL}_2(\mathbb{C})$-character variety $X(Y)$ consists entirely of characters of reducible representations. An irreducible \mathbb{Q}-homology solid torus M is called longitudinally rigid when $M(0)$ has few characters where $M(0)$ is the closed manifold obtained from M by doing Dehn filling along the homological longitude.

We summarize their results in the following:

Theorem 1.3 ([CD18 Theorem 7.1] and [Gao19 Theorem 5.1]). Suppose that M is longitudinally rigid irreducible \mathbb{Z}-homology solid torus. Then the following are true:

1. If the Alexander polynomial of M has a simple root $\xi \neq 1$ on the unit circle, then there exists $a > 0$ such that for every rational $r \in (-a,0) \cup (0,a)$ the Dehn filling $M(r)$ is orderable.

2. If the Alexander polynomial of M has a simple positive real root $\xi \neq 1$, then there exists a nonempty interval $(-a,0]$ or $[0,a)$ such that for every rational r in the interval, the Dehn filling $M(r)$ is orderable.

Remark 1.4. In fact, their techniques also apply to the case where M is a \mathbb{Q}-homology solid torus with some further hypothesis on ξ in the first statement. The full version of the second statement is stated below in *Theorem 2.11*.

Culler and Dunfield also proved the following criterion for left-orderability:

Theorem 1.5. Suppose that M is a hyperbolic \mathbb{Z}-homology solid torus, whose trace field has a real embedding, then there exists $a > 0$ such that for every rational $r \in (-a,0) \cup (0,a)$ the Dehn filling $M(r)$ is orderable.

In view of *Theorem 1.3* it is natural to ask when a \mathbb{Q}-homology solid torus is longitudinally rigid. Since the character variety is notoriously hard to compute, see for example [BP13; Che20], longitudinal rigidity is difficult to study in a general setting. Culler and Dunfield gave a topological condition which implies longitudinal rigidity. In particular, they introduced the following concept:

Definition 1.6. Let M be a knot exterior. We say that M is lean if the longitudinal Dehn filling $M(0)$ is prime and every closed essential surface in $M(0)$ is a fiber in a fibration over S^1.

For example, the $(-2,3,2s+1)$-pretzel knots were shown to be lean for $s \geq 3$, so there is an interval of about 0 of left-orderable Dehn surgeries on these knot complements [Nie19 Theorem 4]. However as remarked in [CD18 Section 1.6], this leanness condition is rather restrictive. In particular, for a knot complement K in S^3 being lean implies that K fibers. Nevertheless, the first statement of *Theorem 1.3* was proved to be true without the condition of longitudinal rigidity by Herald and Zhang [HZ19 Theorem 1]. Motivated by this result, Xinghua Gao asked:

Question 1.7. [Gao19 Section 7] Can the longitudinal rigidity condition be dropped from the second statement of *Theorem 1.3*? Is it possible to prove $H^1(\pi_1(M(0)); \mathfrak{sl}_2(\mathbb{C})_\rho) = 0$ where ρ is the non-abelian reducible representation of $\pi_1(M)$ coming from the root of the Alexander polynomial?

Following the suggestion in this question, we say that \mathbb{Q}-homology solid torus is locally longitudinal rigid at a root of the Alexander polynomial if $H^1(\pi_1(M(0)); \mathfrak{sl}_2(\mathbb{C})_\rho) = 0$ where ρ is a non-abelian reducible representation coming from this root, see *Definition 2.15* for a precise definition. In fact, we prove that the second item of *Theorem 1.3* still holds true under this weakened hypothesis.

Theorem 1.8. Suppose that M is an irreducible \mathbb{Q}-homology solid torus and that the Alexander polynomial of M has a simple positive real root $\xi \neq 1$. Furthermore, suppose that M locally longitudinally rigid at ξ. Then there exists a nonempty interval $(-a,0]$ or $[0,a)$ such that for every rational r in the interval, the Dehn filling $M(r)$ is orderable.

As an application, we apply this result to produce an interval of left-orderable Dehn surgeries on an infinite family of two-bridge knots complement.

Theorem 1.9. For every two-bridge knot K_j corresponding to the continued fraction $[1,1,2,2,2j]$ where $j \geq 1$, there exists a nonempty interval $(-a,0]$ or $[0,a)$ such that for every rational r in the interval, the Dehn filling $M(r)$ is left-orderable.
Remark 1.10. As we will see in Lemma 3.2, the Alexander polynomial of \(K_j \) has all simple positive real roots that are not 1, and is not monic for \(j \geq 2 \). In particular, the complement of \(K_j \) is not lean for \(j \geq 2 \). Furthermore, the trace field of \(K_j \) for \(1 \leq j \leq 30 \) has no real places, and it is most likely that the trace fields of all knots in this family share this property. Therefore, Theorem 1.9 is not a direct consequence of Theorem 1.3 or Theorem 1.5. The family of two-bridge knots \([1,1,2,2,2] \) is a genuinely new family of knots with an interval left-orderable Dehn surgeries which cannot be obtained from prior techniques.

1.1 Outline

In Section 2, we review some background materials on group cohomology, PSL\(_2\)-representation variety, formal deformation of representation and holonomy extension locus. At the end of this section, we will give a proof of Theorem 1.8. In Section 3, we will carry out the group cohomology calculation and prove that the complement of \(K_j \) is locally longitudinally rigid at all roots of the Alexander polynomial. As a result, Theorem 1.9 will follow from Theorem 1.8.

2 Preliminaries

2.1 Group cohomology and PSL\(_2\)-representation variety

Following the notation in [CD18] and [Gao19], we set \(G = \text{PSL}_2(\mathbb{R}) \) and \(G_\mathbb{C} = \text{PSL}_2(\mathbb{C}) \) throughout the paper. For a compact manifold \(M \) and a group \(H \), we let \(R_H(M) = \text{Hom}(\pi_1(M), H) \) be the representation variety. When \(H = G_\mathbb{C} \), we denote \(R(M) := R_{G_\mathbb{C}}(M) \). Since \(\pi_1(M) \) is finitely generated, \(R(M) \) can be identified with an algebraic subset in some affine space \(\mathbb{C}^N \). The group \(G \) acts on \(R(M) \) by conjugation. Let us consider the minimal Hausdorff quotient \(X(M) := R(M)//G_\mathbb{C} \) and the quotient map \(\pi : R(M) \to X(M) \).

Given a representation \(\rho \in R(M) \), a character of \(\rho \) is the map \(\chi_{\rho} : \pi(M) \to \mathbb{C} \) defined by \(\chi_{\rho} (\gamma) = \text{tr}^\rho(\gamma) \). By [HP04] Theorem 1.3, there exists a bijection between the points of \(X(M) \) and the characters of representations in \(R(M) \) such that the point \(t(\rho) = [\rho] \) corresponds to \(\chi_{\rho} \). Therefore, we refer to \(X(M) \) as the \(\text{PSL}_2(\mathbb{C}) \)-character variety of \(M \).

Let \(\Gamma \) be a group and \(\rho : \Gamma \to G_\mathbb{C} \) be a representation. The Lie algebra of \(G_\mathbb{C} \) can be identified with the set of trace-less 2-by-2 matrices over \(\mathbb{C} \). Using the adjoint representation, the Lie algebra \(\mathfrak{sl}_2(\mathbb{C}) \) becomes a \(\Gamma \)-module by

\[
\gamma \cdot v = \rho(\gamma)v\rho(\gamma)^{-1}.
\]

We denote this \(\Gamma \)-module by \(\mathfrak{sl}_2(\mathbb{C})_\rho \). The space of 1-cocycles is

\[
Z^1(\Gamma; \mathfrak{sl}_2(\mathbb{C})_\rho) = \{ z : \Gamma \to \mathfrak{sl}_2(\mathbb{C}) | z(\gamma\gamma') = z(\gamma) + \gamma \cdot z(\gamma') \ \forall \gamma, \gamma' \in \Gamma \}.
\]

Alternatively when \(\Gamma \) is a finitely presented group, we can also describe the space of cocycles as maps \(\Gamma \to \mathfrak{sl}_2(\mathbb{C}) \) satisfying the group relations of \(\Gamma \). In particular, suppose that \(\Gamma = \langle \gamma_1, \ldots, \gamma_n | w_1(\gamma_1), \ldots, w_k(\gamma_k) \rangle \) is a finite presentation and that \(z(\gamma_i) = v_i \in \mathfrak{sl}_2(\mathbb{C}) \). Given any element \(w \in \Gamma \), we can express \(w \) as a word \(w(\gamma_i) \) in the generators \(\gamma_i \)'s of \(\Gamma \). The equation

\[z(\gamma\gamma') = z(\gamma) + \gamma \cdot z(\gamma') \ \forall \gamma, \gamma' \in \Gamma \]

(1)

determines the image of \(z(w) \). This gives us a well-defined cocycle on \(\Gamma \) if and only if \(z(\gamma_j) = 0 \) for all relations \(w_j \) of \(\Gamma \), see [Wei64] Equation 4. The space of 1-coboundaries is

\[
B^1(\Gamma; \mathfrak{sl}_2(\mathbb{C})_\rho) = \{ b : \Gamma \to \mathfrak{sl}_2(\mathbb{C}) | \exists v \in \mathfrak{sl}_2(\mathbb{C}), b(\gamma) = (\gamma - 1_\Gamma) \cdot v \}.
\]

(2)

Finally, the group cohomology is defined by

\[
H^1(\Gamma; \mathfrak{sl}_2(\mathbb{C})_\rho) = Z^1(\Gamma; \mathfrak{sl}_2(\mathbb{C})_\rho)/B^1(\Gamma; \mathfrak{sl}_2(\mathbb{C})_\rho).
\]

Definition 2.1. Suppose that \(V \) is an affine algebraic variety in \(\mathbb{C}^n \). Let

\[
I(V) = \{ f \in \mathbb{C}[x_1, \ldots, x_n] | f(x) = 0 \ \forall x \in V \}
\]

3
be the vanishing ideal of \(V \). Define the Zariski tangent space to \(V \) at \(p \) to be the vector space of derivatives of polynomials.

\[
T^\text{Zar}_p(V) = \left\{ \frac{d\gamma}{dt} \bigg|_{t=0} \in \mathbb{C}^n \mid \gamma \in (\mathbb{C}[t])^n, \gamma(0) = p \text{ and } f \circ \gamma \in t^2\mathbb{C}[t] \ \forall f \in I(V) \right\}.
\]

It was observed by Weil in [Wei64] that for any Lie group \(H \) and \(\rho \in R_H(M) \) the Zariski tangent space embeds in the space of 1-cocycles \(Z^1(\pi_1(M); \mathfrak{h}) \) where \(\mathfrak{h} \) is the Lie algebra of \(H \). In particular, we have the following inequalities

\[
\dim Z^1(\Gamma; \mathfrak{sl}_2(\mathbb{C})_\rho) \geq \dim T^\text{Zar}_p (R(\Gamma)).
\]

2.2 Formal deformation of representation

We will review some background materials on formal deformations of representations and integrability of cocycles. The concept of integrable cocycles will be important to building a certain path of representations required in the proof of Theorem 1.8, see also Lemma 2.17. For this discussion, let \(\Gamma \) be a finitely presented group, \(A_k := \mathbb{R}[t]/(t^{k+1}) \) for \(k \in \mathbb{N} \) and \(A_\infty := \mathbb{R}[t] \). Consider the following groups \(G_k := \text{PSL}_2(A_k) \) and \(G_\infty := \text{PSL}_2(A_\infty) \).

Definition 2.2. Let \(\rho : \Gamma \to G \) be a representation. A formal deformation of \(\rho \) is a representation \(\rho_\infty : \Gamma \to G_\infty \) such that \(\rho = p_0 \circ \rho_\infty \) where \(p_0 : G_\infty \to G \) is the homomorphism induced by evaluating the formal power series at \(t = 0 \).

For any formal deformation \(\rho_\infty : \Gamma \to G_\infty \) of \(\rho \), we can write

\[
\rho_\infty(\gamma) = \exp \left(\sum_{i=1}^{\infty} t^i u_i(\gamma) \right) \rho(\gamma)
\]

where \(u_i : \Gamma \to \mathfrak{sl}_2(\mathbb{R}) \) is a cochain. Since \(\rho_\infty \) is a homomorphism, a calculation using the Taylor series for the exponential map implies that \(u_1 \in Z^1(\Gamma; \mathfrak{sl}_2(\mathbb{R})) \). Conversely, we have the following definition:

Definition 2.3. A cochain \(u_1 \in Z^1(\Gamma; \mathfrak{sl}_2(\mathbb{R})) \) is integrable if there exists a formal deformation \(\rho_\infty \) of \(\rho \) given by Equation (3). In this case, we say that \(\rho_\infty \) is a formal deformation of \(\rho \) with leading term \(u_1 \).

Given a representation \(\rho : \Gamma \to G \) and a cochain \(u_1 \in Z^1(\Gamma; \mathfrak{sl}_2(\mathbb{R})) \), the existence of a formal deformation \(\rho \) with leading term \(u_1 \) is equivalent to the vanishing of a series of obstruction classes in \(H^2(\Gamma; \mathfrak{sl}_2(\mathbb{R})) \) [HPS01] Proposition 3.1 and Corollary 3.2]. In particular, we have the following proposition from [HPS01].

Proposition 2.4. Let \(\rho \in R_G(\Gamma) \) and \(u_i \in C^1(\Gamma; \mathfrak{sl}_2(\mathbb{R})) \) for \(1 \leq i \leq k \) be given. Suppose that we have constructed a representation \(\rho_k := \rho_k^{(u_1, \ldots, u_k)} : \Gamma \to G_k \) given by

\[
\rho_k(\gamma) = \exp \left(\sum_{i=1}^{k} t^i u_i(\gamma) \right) \rho(\gamma) \mod t^{k+1}.
\]

There exists an obstruction class \(\zeta_{k+1} := \zeta_{k+1}^{(u_1, \ldots, u_k)} \in H^2(\Gamma; \mathfrak{sl}_2(\mathbb{R})) \) with the following properties:

1. There is a cochain \(u_{k+1} \) such that \(\rho_{k+1}^{(u_1, \ldots, u_{k+1})} : \Gamma \to G_{k+1} \) given by

\[
\rho_{k+1}^{(u_1, \ldots, u_{k+1})}(\gamma) = \exp \left(\sum_{i=1}^{k+1} t^i u_i(\gamma) \right) \rho(\gamma) \mod t^{k+2}
\]

is a homomorphism if and only if \(\zeta_{k+1} = 0 \).

2. The obstruction \(\zeta_{k+1} \) is natural in the following sense: if \(f : \Gamma' \to \Gamma \) is a homomorphism then

\[
f^* \rho_k^{(u_1, \ldots, u_k)} = \rho_k^{(f^* u_1, \ldots, f^* u_k)}
\]

is a homomorphism and \(f^* \zeta_{k+1}^{(u_1, \ldots, u_k)} = \zeta_{k+1}^{(f^* u_1, \ldots, f^* u_k)} \).
Consequently, an infinite sequence \(\{u_i\}_{i=1}^{\infty} \subset C^1(\Gamma; \mathfrak{sl}_2(\mathbb{R})) \) defines a formal deformation of \(\rho, \rho_{\infty} : \Gamma \to G_{\infty} \) via Equation (3) if and only if \(u_1 \) is a cocycle and \(\zeta^{(u_1, \ldots, u_k)}_{k+1} = 0 \) for all \(k \geq 1 \).

Remark 2.5. Proposition 2.4 was stated over \(\mathbb{C} \) in [HPS01]. Since the construction of the obstruction \(\zeta_{k+1} \), see [HPS01] Definition 3.4, and the proof of Proposition 2.4 is purely homological, it remains true over \(\mathbb{R} \).

2.3 Holonomy extension locus

Now we recall some definitions and results about the holonomy extension locus from [Gao19]. The group \(G \) acts on \(P^1_\mathbb{C} \) by Mobius transformation leaving \(P^1_\mathbb{R} \) invariant. Any nontrivial abelian subgroup of \(G \) either contains only parabolic elements and has one fixed point in \(P^1_\mathbb{C} \) or contains only hyperbolic or elliptic elements and has two fixed points in \(P^1_\mathbb{C} \). Let \(\tilde{G} = \text{PSL}_2(\mathbb{R}) \) be the universal covering group of \(G \). The group \(\tilde{G} \) also acts on \(P^1_\mathbb{C} \) by pulling back the action of \(G \). We say that an element \(\tilde{g} \in \tilde{G} \) is hyperbolic, parabolic, elliptic, or trivial, respectively.

We denote by \(M \) a compact 3-manifold with a single torus boundary component and define the augmented representation \(R^\text{aug}_G(M) \). Since abelian subgroups of \(G \) act with global fixed points, we define the augmented representation variety \(R^\text{aug}(M) \) to be the subvariety of \(R_G(M) \times P^1_\mathbb{C} \) consisting of pairs \((\rho, z) \) where \(z \) is a fixed point of \(\rho(\pi_1(\partial M)) \). Since the action of \(\tilde{G} \) on \(P^1_\mathbb{C} \) comes from pulling back the action of \(G \), we can also define \(R^\text{aug}_G(M) \) to be the real analytic subvariety of \(R_G(M) \times P^1_\mathbb{C} \) consisting of pairs \((\rho, z) \) where \(z \) is a fixed point of \(\rho(\pi_1(\partial M)) \). Similarly, we define \(R^\text{aug}_G(\partial M) \) to be the real analytic subvariety of \(R_G(\partial M) \times P^1_\mathbb{C} \) consisting of pairs \((\rho, z) \) where \(z \) is a fixed point of \(\rho(\pi_1(\partial M)) \).

Given a hyperbolic, parabolic or central element \(\tilde{g} \in \tilde{G} \) with a fixed point \(v \in P^1_\mathbb{C} \), let \(g \in G \) be the image of \(\tilde{g} \) and \(a \) be a square root of the derivative of \(g \) at \(v \). We define

\[
ev(\tilde{g}, v) := (\ln(|a|), \text{trans}(\tilde{g}))
\]

where \(\text{trans} : \tilde{G} \to \mathbb{R} \) is the translation number given by

\[
\text{trans}(\tilde{g}) = \lim_{n \to \infty} \frac{\tilde{g}^n(0)}{n}.
\]

for some \(x \in \mathbb{R} \). This limit exists for all \(\tilde{g} \in \tilde{G} \), see [Ghy01] Section 5.1. It is shown in [Gao19] Lemma 3.1 that \(\ev(-, v) \) is a homomorphism when restricted to hyperbolic or parabolic abelian subgroups of \(\tilde{G} \) fixing \(v \). We get a group homomorphism

\[
\ev(\tilde{\rho}(-), v) : \pi_1(\partial M) \to \mathbb{R} \times \mathbb{Z}
\]

for \(\tilde{\rho} \in R^\text{aug}_G(\partial M) \) whose image in \(\tilde{G} \) is hyperbolic, parabolic or central. In other words, we can view \(\ev(\tilde{\rho}(-), v) \) as an element of \(\text{Hom}(\pi_1(\partial M), \mathbb{R} \times \mathbb{Z}) \). We are now ready to define the holonomy extension locus.

Definition 2.6. Let \(PH_G(M) \) be the subset of \(R^\text{aug}_G(M) \) whose restriction to \(\pi_1(\partial M) \) is either hyperbolic, parabolic or central. Consider the restriction map \(i^* : R^\text{aug}_G(M) \to R^\text{aug}_G(\partial M) \) induced by the inclusion \(i : \partial M \to M \). Define \(\text{EV} : i^*(PH_G(M)) \to H^1(\partial M; \mathbb{R}) \times H^1(\partial M; \mathbb{Z}) \) by

\[
(\tilde{\rho}, v) \mapsto \ev((\tilde{\rho}(-), v)).
\]

Definition 2.7. Consider the composition

\[
PH_G(M) \subset R^\text{aug}_G(M) \overset{i^*}{\longrightarrow} R^\text{aug}_G(\partial M) \overset{\text{EV}}{\longrightarrow} H^1(\partial M; \mathbb{R}) \times H^1(\partial M; \mathbb{Z})
\]

The closure of \(\text{EV} \circ i^*(PH_G(M)) \) in \(H^1(\partial M; \mathbb{R}) \times H^1(\partial M; \mathbb{Z}) \) is called the holonomy extension locus of \(M \) and denoted \(H\text{L}_G(M) \).

Definition 2.8. We call a point in \(H\text{L}_G(M) \) a hyperbolic/parabolic/central point if it comes from a representation \(\tilde{\rho} \in PH_G(M) \) such that \(i^*(\tilde{\rho}) \) is hyperbolic/parabolic/central. We call points in \(H\text{L}_G(M) \) but not in \(\text{EV} \circ i^*(PH_G(M)) \) ideal points.
To get concrete coordinates on the holonomy extension locus as well as the Dehn surgery space, let us pick a basis \((\mu, \lambda)\) for \(H_1(\partial M; \mathbb{R})\) where \(\lambda\) is the homological longitude of \(M\). We identify \(H^1(\partial M; \mathbb{R})\) with \(\mathbb{R}^2\) using the dual basis \((\mu^*, \lambda^*)\). Let \(L_r\) be the line through the origin in \(\mathbb{R}^2\) of slope \(-r\) where \(r \in \mathbb{Q} \cup \{\infty\}\). In terms of the dual basis \((\mu^*, \lambda^*)\), the line \(L_r\) consists of linear functions that vanish on the primitive element \(\gamma\) representing the slope \(r\) in \(\pi_1(\partial M)\) with respect to the basis \((\mu, \lambda)\). The structure of the holonomy extension locus is summarized as follows:

Theorem 2.9. [Gao19, Theorem 3.1] The holonomy extension locus

\[
 HL_G(M) = \bigcup_{i,j \in \mathbb{Z}} H_{i,j}(M)
\]

is a locally finite union of analytic arcs and isolated points. Each component \(H_{i,j}(M)\) contains at most one parabolic point and has finitely many ideal points locally. The locus \(H_{0,0}\) contains the horizontal axis \(L_0\), which comes from representations to \(G\) with abelian image.

The holonomy extension locus gives a tool to detect left-orderable Dehn surgeries. We have the following lemma:

Lemma 2.10. [Gao19, Lemma 3.8] If \(L_r\) intersects the component \(H_{0,0}(M)\) of \(HL_G(M)\) at non-parabolic and non-ideal points, and assume that \(M(r)\) is irreducible, then \(M(r)\) is left-orderable.

Using the previous lemma, Xinghua Gao gives a criterion in terms of the \(\text{PSL}_2(\mathbb{R})\)-character variety to produce an interval of left-orderable Dehn surgery around the 0-filling.

Theorem 2.11. [Gao19, Theorem 5.1] Suppose that \(M\) is a longitudinally rigid irreducible \(\mathbb{Q}\)-homology solid torus and that the Alexander polynomial of \(M\) has a simple positive real root \(\xi \neq 1\). Then there exists a nonempty interval \((-a, 0]\) or \([0, a)\) such that for every rational \(r\) in the interval, the Dehn filling \(M(r)\) is orderable.

For completeness, we include the proof of this theorem. The key to the proof of **Theorem 2.11** is to produce an arc in \(H_{0,0}(M)\) transverse to the horizontal axis. By construction, this arc does not contain any parabolic or ideal points. **Theorem 2.11** then follows from **Lemma 2.10**. To construct an arc in \(H_{0,0}(M)\), we start by deforming abelian representations coming from the roots of the Alexander polynomial into irreducible representations. In particular, let \(\xi\) be a simple positive real root of the Alexander polynomial and \(\alpha : \pi_1(M) \to \mathbb{R}_+\), the multiplicative group of the real numbers, such that \(\alpha\) factors through \(H_1(M; \mathbb{Z})_{\text{free}} \cong \mathbb{Z}\) and takes a generator of \(H_1(M; \mathbb{Z})_{\text{free}}\) to \(\xi\). We let \(\rho_\alpha : \pi_1(M) \to G_{\mathbb{C}}\) be the associated diagonal representation given by

\[
 \rho_\alpha(\gamma) = \pm \begin{pmatrix} \alpha(\gamma)^{1/2} & 0 \\ 0 & \alpha(\gamma)^{-1/2} \end{pmatrix}
\]

where \(\alpha(\gamma)^{1/2}\) is either square root. The condition on the root of the Alexander polynomial allows one to deform \(\rho_\alpha =: \rho_0\) into an analytic path of representations \(\rho_t : \pi_1(M) \to G\) where \(t \in [-1, 1]\), see **Gao19, Lemma 5.1**. Furthermore this path of representations has the following properties.

Lemma 2.12. [Gao19, Lemma 5.1] The path \(\rho_t : [-1, 1] \to R_G(M)\) constructed above satisfies:

1. The representations \(\rho_t\) are irreducible over \(G_{\mathbb{C}}\) for \(t \neq 0\).
2. The corresponding path \([\rho_t]\) of characters in \(X_G(M)\) is also a non-constant analytic path.
3. The function \(\text{tr}^2(\gamma)\) is nonconstant in \(t\) for some \(\gamma \in \pi_1(\partial M)\).

Proof of Theorem 2.11 Let \(\rho_t\) be the path of representations from **Lemma 2.12**. Using this path, we can produce an arc in \(H_{0,0}(M)\) as follows. Since \(\rho_0\) factors through \(H_1(M; \mathbb{Z})_{\text{free}} \cong \mathbb{Z}\), we can lift this representation to \(\tilde{\rho}_0 : \pi_1(M) \to \tilde{G}\). As the obstruction of lifting a representation from \(G\) to \(\tilde{G}\) has discrete values and is continuous on \(R_G(M)\), we can lift the path \(\rho_t\) to a path \(\tilde{\rho}_t\) in \(R_{\tilde{G}}(M)\). Adjusting \(\tilde{\rho}_0\) by the appropriate central element of \(\tilde{G}\), we can assume that \(\text{trans}(\tilde{\rho}_0(\mu)) = 0\). The image \(\rho_0(\lambda)\) is trivial implies...
Remark 2.13. The condition that M is longitudinally rigid ensures that the representation ρ_t obtained by deforming the abelian representation ρ_0 does not factor through the longitudinal filling. We can weaken this hypothesis by a local condition at the non-abelian reducible representation ρ_ξ^+ that corresponds to a root ξ of the Alexander polynomial.

Recall that, we have the following theorem of Burde and de Rham:

Theorem 2.14 ([Bur67] and [Rha67]). Let $\alpha : \pi_1(M) \to \mathbb{C}^*$ be a representation and define ρ_α as in Equation (4). Then there exists a reducible, non-abelian representation $\rho_\xi^+ : \pi_1(M) \to \text{PSL}_2(\mathbb{C})$ such that $|\rho_\xi^+| = |\rho_\alpha|$ in $X(M)$ if and only if α factors through $H_1(M; \mathbb{Z})_{\text{free}} \cong \mathbb{Z}$ sending a generator to the root ξ of the Alexander polynomial of M.

Definition 2.15. Suppose that M be an irreducible \mathbb{Q}-homology solid torus. Let ξ be a root of the Alexander polynomial of M and ρ_ξ^+ be a non-abelian reducible representation associated to ξ. We say that M is locally longitudinally rigid at ξ if

$$H^1(M(0); \mathfrak{s}_2(\mathbb{C})_{\rho_\xi^+}) = 0.$$

Before proving [Theorem 1.8] we need the following lemmas from [HP05] in the real setting. We include the proof of these lemmas for completeness.

Lemma 2.16. Let ξ be a simple positive real root of the Alexander polynomial that is not 1 and

$$\phi := \rho_\xi^+ : \pi_1(M) \to \text{PSL}_2(\mathbb{R})$$

be a non-abelian reducible representation that corresponds to ξ. Then the map

$$H^2(\pi_1(M); \mathfrak{s}_2(\mathbb{R})_\phi) \to H^2(\pi_1(\partial M); \mathfrak{s}_2(\mathbb{R})_\phi)$$

induced by the inclusion $\pi_1(\partial M) \hookrightarrow \pi_1(M)$ is injective.

Proof. We have $\phi|_{\pi_1(\partial M)}$ is non-trivial since $\text{tr}^2(\phi(\mu)) = \xi^k + 2 + \xi^{-k} > 4$ where k is the index of $[\mu]$ in $H_1(M; \mathbb{Z})_{\text{free}}$. Since ∂M is aspherical, we have $H^*(\partial M; \mathfrak{s}_2(\mathbb{R})_\phi) \cong H^*(\pi_1(\partial M); \mathfrak{s}_2(\mathbb{R})_\phi)$. Since $\phi|_{\pi_1(\partial M)}$ is non-trivial, we have

$$H^0(\partial M; \mathfrak{s}_2(\mathbb{R})_\phi) \cong \mathfrak{s}_2(\mathbb{R})^{\phi(\pi_1(\partial M))} \cong \mathbb{R}.$$

By duality and Euler characteristic, we have

$$H^2(\partial M; \mathfrak{s}_2(\mathbb{R})_\phi) \cong \mathbb{R} \quad \text{and} \quad H^3(\partial M; \mathfrak{s}_2(\mathbb{R})_\phi) \cong \mathbb{R}^2.$$

Since ξ is a simple root of the Alexander polynomial, [HP05] Corollary 5.4 gives that

$$H^1(M; \mathfrak{s}_2(\mathbb{R})_\phi) \cong H^1(\pi_1(M); \mathfrak{s}_2(\mathbb{R})_\phi) \cong \mathbb{R}.$$

By duality, we have

$$H^2(M, \partial M; \mathfrak{s}_2(\mathbb{R})_\phi) \cong H^1(M; \mathfrak{s}_2(\mathbb{R})_\phi) \cong \mathbb{R}.$$

7
Therefore, the following segment of the long exact sequence of pair for \((M, \partial M)\)
\[H^1(M; \mathfrak{sl}_2(\mathbb{R})_\phi) \rightarrow H^1(\partial M; \mathfrak{sl}_2(\mathbb{R})_\phi) \rightarrow H^2(M, \partial M; \mathfrak{sl}_2(\mathbb{R})_\phi) \]
is short exact. Therefore from the long exact sequence of pair for \((M, \partial M)\) we see that the map
\[H^2(M; \mathfrak{sl}_2(\mathbb{R})_\phi) \rightarrow H^2(\partial M; \mathfrak{sl}_2(\mathbb{R})_\phi) \]
is injective. The conclusion of the lemma follows from the following commutative diagram
\[
\begin{array}{ccc}
H^2(M; \mathfrak{sl}_2(\mathbb{R})_\phi) & \rightarrow & H^2(\partial M; \mathfrak{sl}_2(\mathbb{R})_\phi) \\
\uparrow & & \uparrow \\
H^2(\pi_1(M); \mathfrak{sl}_2(\mathbb{R})_\phi) & \rightarrow & H^2(\pi_1(\partial M); \mathfrak{sl}_2(\mathbb{R})_\phi)
\end{array}
\]
and the fact that \(H^2(\pi_1(M); \mathfrak{sl}_2(\mathbb{R})_\phi) \rightarrow H^2(M; \mathfrak{sl}_2(\mathbb{R})_\phi)\) is injective, see [HP05, Lemma 3.1].

Lemma 2.17. Let \(\xi\) be a simple positive real root of the Alexander polynomial that is not 1 and
\[\phi := \rho^+_{\xi} : \pi_1(M) \rightarrow \text{PSL}_2(\mathbb{R}) \]
be a non-abelian reducible representation that corresponds to \(\xi\). All cocycles in \(Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{R})_\phi)\) are integrable.

Proof. As noted in the proof of [Lemma 2.16] \(\phi_{|_\pi(\partial M)}\) is non-trivial. Since \(\phi(\pi_1(\partial M)) \subset \text{PSL}_2(\mathbb{R})\), the image \(\phi(\pi_1(\partial M))\) cannot be the Klein 4-group. By [HP05, Lemma 7.4], \(\phi_{|_\pi(\partial M)}\) is a smooth point of an irreducible component of \(R_G(\mathbb{Z}^2)\) with local dimension four.

Let \(i : \pi_1(\partial M) \rightarrow \pi_1(M)\) be an inclusion map and \(u_1 : \pi_1(M) \rightarrow \mathfrak{sl}_2(\mathbb{R})\) be a cocycle. Suppose we have cocycles \(u_2, \ldots, u_k : \pi_1(M) \rightarrow \mathfrak{sl}_2(\mathbb{R})\) such that
\[\phi_k(\gamma) = \exp \left(\sum_{i=1}^{k} t^i u_i(\gamma) \right) \phi(\gamma) \]
is a homomorphism modulo \(t^{k+1}\). From [Proposition 2.4], we get an obstruction class
\[\zeta^{(u_1, \ldots, u_k)}_{k+1} \in H^2(\pi_1(M); \mathfrak{sl}(\mathbb{R})_\phi), \]
which vanishes if and only if \(\phi_k\) can be extended to a homomorphism modulo \(t^{k+2}\).

The restriction \(\phi_k \circ i\) is a homomorphism modulo \(t^{k+1}\). Since \(\phi \circ i\) is a smooth point of \(R_G(\mathbb{Z}^2)\), \(\phi_k \circ i\) extends to a homomorphism modulo \(t^{k+2}\), see [HPS01, Lemma 3.7]. Therefore, the order \(k+1\) obstruction vanishes on the boundary:
\[i^* \zeta^{(u_1, \ldots, u_k)}_{k+1} = \zeta^{(\iota^* u_1, \ldots, \iota^* u_k)}_{k+1} = 0. \]

By [Lemma 2.16], \(\iota^*\) is injective, and so the obstruction \(\zeta^{(u_1, \ldots, u_k)}_{k+1}\) vanishes for \(\pi_1(M)\) as well. Iterating this process starting with \(u_1\), we get an infinite sequence of cocycles \(\{u_i\}_{i=1}^{\infty}\) such that \(u_1\) is a cocycle and the obstruction
\[\zeta^{(u_1, \ldots, u_k)}_{k+1} = 0 \]
for all \(k \geq 1\). By [Proposition 2.4], we get a representation \(\phi_\infty : \pi_1(M) \rightarrow \text{PSL}_2(\mathbb{R}[t])\)
\[\phi_\infty(\gamma) = \exp \left(\sum_{i=1}^{\infty} t^i u_i(\gamma) \right) \phi(\gamma) \]
for all cocycle \(u_1\). Therefore, all cocycles of \(Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{R}))\) are integrable. \(\square\)
Remark 2.18. This strategy of proving that all cocycles are integrable was carried out over \(\mathbb{C}\) in [HP05, Lemma 7.5]. The key tool is [HP05, Lemma 3.7] which uses the formal implicit function theorem. Since the formal implicit function theorem holds over \(\mathbb{R}\), we can also carry out this strategy over \(\mathbb{R}\). The same strategy to prove that certain cocycles are integrable over \(\mathbb{R}\) was also carried out in the proof of [HP05, Proposition 10.2].

Proof of Theorem 1.8. Following the proof of [Theorem 2.11], it suffices to prove that the arc \(A\) constructed in the proof of [Theorem 2.11] is not contained in \(L_0\). Arguing by contradiction, suppose this arc is contained in \(L_0\). As in the proof of [Theorem 2.11], this would imply that the path of representation \(\rho_t\) factors through \(M(0)\). Since \(\rho_t\) is irreducible for all \(t \neq 0\), we obtain an arc in \(X(M(0))\) that contains \([\rho_0] = [\rho^+_\xi]\).

On the other hand, we claim that there exists a path \(\phi_t : [-1, 1] \to R_G(M)\) such that \(\phi_0 = \rho^+_\xi\), the non-abelian reducible representation that corresponds to \(\xi\). For convenience, we let \(\phi := \rho^+_\xi\). We have the following isomorphism of cohomology groups

\[
H^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{C})_\phi) = H^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{R})_\phi) \otimes \mathbb{R} \mathbb{C}.
\]

Since \(\xi\) is a simple root of the Alexander polynomial, [HP05, Corollary 5.4] gives that \(H^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{R})_\phi)\) is one-dimensional. Therefore, \(Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{R})_\phi)\) is four-dimensional. By Lemma 2.17, all cocycles in \(Z^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{R})_\phi)\) are integrable. Therefore, \(\phi\) is a smooth point of \(R_G(M)\) with local dimension 4. Integrating a cocycle that generates \(H^1(\pi_1(M); \mathfrak{sl}_2(\mathbb{R})_\phi)\), we obtain a path \(\phi_t : [-1, 1] \to R_G(M)\) which has \(\phi_0 = \phi\) and is transverse to the orbit of \(\phi\) at \(t = 0\).

We note that since \(\phi\) is a smooth point of \(R_G(M)\), it is contained in a unique irreducible component of \(R_G(M)\). Since the abelian representations of \(\pi_1(M)\) form an irreducible component of dimension 3, \(\phi\) is locally four-dimensional. In the proof of Theorem 2.11, it suffices to prove that the arc \(\phi_t\) is contained in \(X_G(M)\) which contains the character \([\rho_0] = [\rho^+_\xi]\) coming from an abelian representation. By [HP05, Proposition 10.2], \([\rho_0] = [\rho^+_\xi]\) is contained in precisely two real curves of characters. One of the curves is associated with abelian representations, and the other one with irreducible representations. Since \(\phi_t\) is non-abelian representation for all \(t\), the path \([\phi_t]\) is contained in the curve of irreducible characters.

Therefore, for \(t \neq 0\), the character \([\phi_t]\) is the character of some irreducible representation. Up to shrinking either \(\rho_t\) or \(\phi_t\), we may assume that \([\phi_t] = [\rho_t]\) for all \(t\). Since \(\phi_t\) has the same character as an irreducible representation \(\rho_t\) for \(t \neq 0\), the representation \(\phi_t\) is conjugate to \(\rho_t\) for all \(t \neq 0\) by [CS83, Proposition 1.5.2]. Since \(\rho_t\) factors through \(M(0)\) for all \(t\) we also get that \(\phi_t\) factors through \(M(0)\) for all \(t\). We obtain a path \([\phi_t]\) in \(R_G(M(0))\) going through \(\phi = \rho^+_\xi\) that is transverse to the orbit of \(\rho^+_\xi\). The existence of this path implies that

\[
\dim \mathbb{R} Z^1(G(0), \mathfrak{sl}_2(\mathbb{R})_{\rho^+_\xi}) \geq \dim \mathbb{R} Z^1_{\text{zar}}(R(G(0))) \geq 1 + \dim \mathbb{R} B^1(G(0), \mathfrak{sl}_2(\mathbb{R})_{\rho^+_\xi}) = 4.
\]

This would imply that \(\dim \mathbb{R} H^1(G(0), \mathfrak{sl}_2(\mathbb{R})_{\rho^+_\xi}) \geq 1\). Since \(\mathfrak{sl}_2(\mathbb{C}) = \mathfrak{sl}_2(\mathbb{R}) \otimes \mathbb{C}\), we have

\[
H^1(G(0), \mathfrak{sl}_2(\mathbb{C})_{\rho^+_\xi}) = H^1(G(0), \mathfrak{sl}_2(\mathbb{R})_{\rho^+_\xi}) \otimes \mathbb{C}.
\]

Therefore, the dimension of \(H^1(G(0), \mathfrak{sl}_2(\mathbb{C})_{\rho^+_\xi})\) is at least 1. This gives a desired contradiction to the condition that \(M\) is locally longitudinally rigid at \(\xi\).

3 The \([1,1,2,2,2,2]\) two-bridge knots

In this section, we apply [Theorem 1.8] to study left-orderability on the family of two-bridge knots \(K_j\) associated to the continued fraction \([1, 1, 2, 2, 2, 2]\) for \(j \geq 1\) and prove [Theorem 1.9] We first make some remarks about this family of two-bridge knot complements.

These knot complements are obtained by doing \(1/j\) Dehn filling on the unknot component of the link \(L_{25}^j\), see Figure 1. The first two members of the family are the knots \(8_{12}\) and \(10_{13}\) in Rolfsen’s table. As we will see in Lemma 3.2, the Alexander polynomial of \(K_j\) has all simple positive real roots, that are not 1, and is not monic for \(j \geq 2\). In particular, the complement of \(K_j\) is not lean for \(j \geq 2\). Furthermore, the trace field of \(K_j\) for \(1 \leq j \leq 30\) has no real places, and it is most likely that the trace fields of all knots in this family share this property. Therefore, [Theorem 1.9] is not a direct consequence of [Theorem 1.3] or [Theorem 1.5].
The family of two-bridge knots \([1, 1, 2, 2, 2j]\) is a new family of knots with an interval left-orderable Dehn surgeries which cannot be obtained from prior techniques.

3.1 Group presentation

We will denote by \(\Gamma \) the fundamental group of the complement of the knot \(K_j \). The knot corresponding to the continued fraction \([1, 1, 2, 2, 2j]\) has the associated fraction

\[
[1, 1, 2, 2, 2j] = \frac{1}{1 + \frac{1}{2 + \frac{1}{x + \frac{1}{y + \frac{1}{\cdots}}}}} = \frac{24j + 5}{14j + 3}.
\]

By [Ril72 Proposition 1], the knot group \(\Gamma \) has the presentation \(\Gamma = \langle x, y | tw = wt \rangle \). The word \(w \) is given by

\[
w = y^{e_1}x^{e_2}\ldots y^{e_{24j+3}}x^{e_{24j+4}}
\]

where \(e_i = (-1)^{i(14j+3)/(24j+5)} \). Also by [Ril72 Proposition 1], the homological longitude of \(K_j \) that commutes with \(x \) is given by \(\ell = wv \) where

\[
v = x^{e_{24j+4}}y^{e_{24j+3}}\ldots x^{e_2}y^{e_1}.
\]

We first give an explicit description of \(w \) in terms of \(x \) and \(y \) by giving a formula for the right-hand sides of Equation (5) and Equation (6). We have the following lemma.

Lemma 3.1. In the terms of the generators \(x, y \) of \(\Gamma \), the word \(w \) has the form

\[
w = (yx^{-1}y^{-1}x)u^{j}\quad \text{and} \quad v = s^{j}(xy^{-1}x^{-1}y)
\]

where

\[
u = (yx^{-1}yx)(y^{-1}x^{-1}yx)^{-1}(y^{-1}yx)^{-1}(y^{-1}x^{-1}y^{-1})(y^{-1}y^{-1}x)(yx^{-1}y^{-1}x)
\]

and \(s \) is \(u \) spelled backwards.

Proof. Since \(v \) is \(w \) spelled backwards, it suffices to prove the lemma for \(w \). Let us consider

\[
k_{i,j} = \frac{i(14j+3)}{24j+5}
\]

for \(1 \leq i \leq 24j + 4 \). We first claim that

\[
[k_{i,j}] = [k_{i,m}] = \left\lfloor \frac{7i}{12} \right\rfloor
\]

\[10\]
for all \(j \geq m \) and \(\varepsilon_m \leq i \leq 24m + 4 \) where \(\varepsilon_m = \max\{1, 24(m - 1) + 5\} \). Fixing \(i \), we can view \(k_{i,j} \) as a continuous function in the variable \(j \). Since \(i \geq 1 \), the derivative of \(k_{i,j} \) with respect to \(j \) is

\[
\frac{dk_{i,j}}{dj} = -\frac{2i}{(24j + 5)^2} < 0.
\]

The function \(k_{i,j} \) is strictly decreasing with and has a horizontal asymptote at \(7i/12 \) as \(j \to +\infty \). Therefore, we have the following chain of inequalities

\[
\frac{7i}{12} < k_{i,j} < k_{i,m} = \frac{(14m + 3)i}{24m + 5}
\]

for all \(j \geq m \) and \(\varepsilon_m \leq i \leq 24m + 4 \). We have

\[
0 < k_{i,m} - \left\lfloor \frac{7i}{12} \right\rfloor \leq k_{i,m} - \frac{7i}{12} + \frac{11}{12} = \frac{264m + 55 + i}{288m + 60} < 1
\]

for all \(\varepsilon_m \leq i \leq 24m + 4 \). It follows that \(k_{i,j} \) is contained in the interval \((\lfloor \frac{7i}{12} \rfloor, \lfloor \frac{7i}{12} \rfloor + 1) \) for all \(j \geq m \) and \(\varepsilon_m \leq i \leq 24m + 4 \). To verify \([\text{Equation } (8)]\) it remains to show that \(k_{i,m} \) is not an integer for all \(\varepsilon_m \leq i \leq 24m + 4 \). Since \(14m + 3 \) and \(24m + 5 \) are relatively prime, \(k_{i,m} \) is an integer if and only if \(24m + 5 \) divides \(i \). But this is not possible since \(i \leq 24m + 5 \).

By a direct computation, we can verify \([\text{Equation } (7)]\) when \(j = 1 \). From \([\text{Equation } (8)]\) we see that the right-hand side of \([\text{Equation } (5)]\) has prefix \(w_1 = yx^{-1}y^{-1}xu \) for all \(j \geq 1 \). We write \(w = w_1w'_j = (yx^{-1}y^{-1}x)uw'_j \). It remains to show that \(w'_j = w^{j-1} \). Using \([\text{Equation } (8)]\) we have

\[
|k_{i+24n,j}| = \left\lfloor \frac{7i}{12} + 14n \right\rfloor = \frac{7i}{12} + 14n = |k_{i,j}| + 14n
\]

for all \(5 \leq i \leq 28 \) and \(5 \leq i + 24n \leq 24j + 4 \). We have

\[
|k_{i,j}| \equiv |k_{i+24n,j}| \mod 2 \tag{9}
\]

for all \(5 \leq i \leq 28 \) and \(5 \leq i + 24n \leq 24j + 4 \). \([\text{Equation } (9)]\) implies that the parity of \(|k_{i,j}| \) repeats with period 24 when \(i \geq 5 \). Since the word for \(w \) in \(x \) and \(y \) only depends on this parity, the word \(w \) is given by \([\text{Equation } (7)]\) as claimed. This completes the proof of the lemma.

\[\square\]

3.2 The Alexander polynomial of \(K_j \)

Now we will compute the Alexander polynomial of \(K_j \) using non-abelian reducible representations. Let \(\rho : \Gamma \to \text{SL}_2(\mathbb{C}) \) be a non-abelian reducible representation of \(\Gamma \). Since \(\Gamma \) is generated by two conjugate meridians \(x \) and \(y \), the representation \(\rho \) can be conjugated to have the form

\[
x \mapsto \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, \quad y \mapsto \begin{pmatrix} t & 1 \\ 0 & t^{-1} \end{pmatrix}
\tag{10}
\]

where \(t \neq \pm 1 \). By \([\text{Theorem } 2.14]\) for a knot group \(\Gamma \) the assignment in \([\text{Equation } (10)]\) defines a representation of \(\Gamma \) if and only if \(t^2 \) is a root of the Alexander polynomial \(\Delta(\tau) \in \mathbb{Z}[[\tau^{\pm 1}]] \). Consequently, we can use this fact to compute the Alexander polynomial of the knot \(K_j \) as follows.

Let \(F_2 \) be the free group on two letters \(X \) and \(Y \). Consider the representation \(P : F_2 \to \text{SL}_2(\mathbb{Z}[[\tau^{\pm 1}]]) \)

\[
X \mapsto \begin{pmatrix} \tau & 0 \\ 0 & \tau^{-1} \end{pmatrix}, \quad Y \mapsto \begin{pmatrix} \tau & 1 \\ 0 & \tau^{-1} \end{pmatrix}.
\]

Let \(W \) be the word in \(X \) and \(Y \) given by \([\text{Equation } (7)]\) A direct calculation shows that

\[
P(W) = \begin{pmatrix} 1 & -j\tau^3 + (5j + 1)\tau - (5j + 1)\tau^{-1} + j\tau^{-3} \\ 0 & 1 \end{pmatrix}
\]

11
The representation P factors through the natural projection $F_2 \to \Gamma$ if and only if $P(XW) = P(WY)$. Or equivalently, we have
\[j\tau^4 - (6j + 1)\tau^2 + (10j + 3) - (6j + 1)\tau^{-2} + j\tau^{-4} = 0. \]
The expression above is the Alexander polynomial of K_j evaluated at τ^2. As a convention, we will normalize the Alexander polynomial so that the lowest term of $\Delta(\tau)$ is a non-zero constant term. We have the following lemma.

Lemma 3.2. The Alexander polynomial of K_j has the form
\[\Delta(\tau) = j\tau^4 - (6j + 1)\tau^3 + (10j + 3)\tau^2 - (6j + 1)\tau + j. \] Furthermore, $\Delta(\tau)$ has exactly 4 simple real roots.

Proof. The discussion prior to the lemma implies that
\[\Delta(\tau^2) = j\tau^8 - (6j + 1)\tau^6 + (10j + 3)\tau^4 - (6j + 1)\tau^2 + j. \]
This gives us Equation (11) as claimed. For the claim about the roots of Δ, we consider $\delta(\tau) = \Delta(\tau)/j$. We note that
\[\delta_j(0) = 1, \quad \delta_j(1/2) = \frac{-3j + 2}{16j}, \quad \delta_j(1) = \frac{1}{j}, \quad \delta_j(2) = \frac{-3j + 2}{j}, \quad \delta_j(5) = \frac{96j - 55}{j}. \]
For all $j \geq 1$, we see that δ_j changes signs 4 times in the interval $[0, 5]$. By continuity, $\delta_j(\tau)$ has 4 distinct real roots in the interval $[0, 5]$. Therefore, $\Delta(\tau)$ has at least 4 positive real roots. Since Δ has degree 4, Δ has precisely 4 simple positive real roots for all $j \geq 1$.

3.3 The group cohomology $H^1(\Gamma(0); \mathfrak{sl}_2(\mathbb{C}))$

In this section, we will prove that the knots K_j are locally longitudinal rigid by directly computing the group cohomology with coefficients in $\mathfrak{sl}_2(\mathbb{C})$. We first identify $\mathfrak{sl}_2(\mathbb{C})$ with \mathbb{C}^3 by choosing the following basis
\[v_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad v_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \text{and} \quad v_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \]
With respect to this basis, the adjoint representation $\text{Ad} : \text{SL}_2(\mathbb{C}) \to \text{SL}_3(\mathbb{C})$ becomes
\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a^2 & -2ab & -b^2 \\ -ac & ad + bc & bd \\ -c^2 & 2cd & d^2 \end{pmatrix}. \]

By Lemma 3.2, we can choose $t \in \mathbb{R}$ such that t^2 is a simple root of the Alexander polynomial $\Delta(\tau)$. Since the longitude t belongs to the second commutator subgroup of Γ, any non-abelian reducible representation on Γ factors through $\Gamma(0)$. We get a non-abelian reducible representation $\rho : \Gamma(0) \to \text{SL}_2(\mathbb{C})$ given by Equation (10). For convenience, we will write
\[\rho(w) = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \]
where $f = -jt^3 + (5j + 1)t - (5j + 1)t^{-1} + jt^{-3}$. The action of $\Gamma(0)$ on $\mathfrak{sl}_2(\mathbb{C})$ is given by
\[x \mapsto \begin{pmatrix} t^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & t^{-2} \end{pmatrix} \quad \text{and} \quad y \mapsto \begin{pmatrix} t^2 & -2t & -1 \\ 0 & 1 & t^{-1} \\ 0 & 0 & t^{-2} \end{pmatrix}. \]
Using Equation (2), we see that the space of coboundaries can be parametrized by $d : \Gamma(0) \to \mathfrak{sl}_2(\mathbb{C})_\rho$ such that
\[d(x) = \begin{pmatrix} (t^2 - 1)a & 0 \\ 0 & (t^2 - 1)c \end{pmatrix} \quad \text{and} \quad d(y) = \begin{pmatrix} (t^2 - 1)a - 2tb - c \\ t^{-1}c \\ (t^{-2} - 1)c \end{pmatrix}. \]
Proposition 3.3. Any cohomology class in $H^1(\Gamma(0); sl_2(\mathbb{C})_\rho)$ can be represented by a 1-cocycle $z \in Z^1(\Gamma(0); sl_2(\mathbb{C})_\rho)$ such that

$$z(x) = \begin{pmatrix} 0 \\ \alpha \\ \beta \end{pmatrix} \quad \text{and} \quad z(y) = \begin{pmatrix} 0 \\ \alpha \\ 0 \end{pmatrix}.$$ \tag{13}

Proof. Let $z \in Z^1(\Gamma(0); sl_2(\mathbb{C})_\rho)$ be a 1-cocycle. Since $t^2 \neq 1$, by an appropriate choice of $a, b, c \in \mathbb{C}$ for a coboundary d in Equation (12), we can assume that

$$z(x) = \begin{pmatrix} 0 \\ \alpha \\ \beta \end{pmatrix} \quad \text{and} \quad z(y) = \begin{pmatrix} 0 \\ \delta \\ 0 \end{pmatrix}.$$

The relation $z(wx) = z(xy)$ implies that

$$z(x) + (x-1) \cdot z(w) - w \cdot z(y) = 0.$$

Or equivalently, we have

$$\begin{pmatrix} 0 \\ \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} t^2 - 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & t^{-2} - 1 \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} - \begin{pmatrix} 1 & -2f & -f^2 \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \delta \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The second coordinate of the previous equation implies that $\delta = \alpha$. \qed

We will need the following lemma

Lemma 3.4. Let $z \in Z^1(\Gamma(0); sl_2(\mathbb{C})_\rho)$ be given by Equation (13). Suppose that

$$z(w) = \omega_1 v_+ + \omega_2 v_0 + \omega_3 v_- \quad \text{and} \quad z(v) = \nu_1 v_+ + \nu_2 v_0 + \nu_3 v_-.$$

Then

$$\omega_1 = \alpha(-4jt^3 + (10j + 2)t^2 - 2jt^{-3}) + \beta h,$$

$$\omega_2 = \left(\frac{1}{2}j(j+1)t^7 - 5j(j+1)t^5 + \frac{1}{2}(35j^2 + 31j + 2)t^3 - \frac{1}{2}(52j^2 + 28j + 4)t \right. \right.$$

$$+ \frac{1}{2}j(35j - 3)t^{-1} - \frac{1}{2}j(10j - 6)t^{-3} + \frac{1}{2}j(j - 1)t^{-5}\left.\beta \right)$$

$$\nu_2 = \left(\frac{1}{2}j(j+1)t^7 - 5j(j+1)t^5 + \frac{1}{2}(35j^2 + 27j + 2)t^3 - \frac{1}{2}(52j^2 + 12j)t \right. \right.$$

$$+ \frac{1}{2}j(35j - 7)t^{-1} - \frac{1}{2}j(10j - 6)t^{-3} + \frac{1}{2}j(j - 1)t^{-5}\left.\beta \right)$$

$$\omega_3 = -\nu_3 = tf\beta$$

where $h \in \mathbb{C}$.

Proof. The proof of this lemma is a direct calculation. By a repeat application of the cocycle relation in Equation (1) we have

$$z(w) = z(xy^{-1}y^{-1}x) + (y^{-1}y^{-1}x) \cdot \sum_{i=0}^{j-1} u^i \cdot z(u),$$

$$z(v) = s^j \cdot z(xy^{-1}y^{-1}y) + \sum_{i=0}^{j-1} s^i \cdot z(s).$$

13
We also have
\[\sum_{i=0}^{j-1} (\mathrm{Ad} \circ \rho)(u^i) = \begin{pmatrix} j & (j^2 - j)(t^3 - 5t + 5t^{-1} - t^{-3}) & -\frac{1}{6}(2j^3 - 3j^2 + j)(t^3 - 5t + 5t^{-1} - t^{-3})^2 \\ 0 & j & -\frac{1}{2}(j^2 - j)(t^3 - 5t + 5t^{-1} - t^{-3}) \\ 0 & 0 & j \end{pmatrix}, \]
\[\sum_{i=0}^{j-1} (\mathrm{Ad} \circ \rho)(s^i) = \begin{pmatrix} j & -(j^2 - j)(t^3 - 5t + 5t^{-1} - t^{-3}) & -\frac{1}{6}(2j^3 - 3j^2 + j)(t^3 - 5t + 5t^{-1} - t^{-3})^2 \\ 0 & j & -\frac{1}{2}(j^2 - j)(t^3 - 5t + 5t^{-1} - t^{-3}) \\ 0 & 0 & j \end{pmatrix}, \]
and
\[z(u) = \begin{pmatrix} -(4t^3 + 10t - 2t^{-3})\alpha + h'\beta \\ (t^7 - 9t^5 + 27t^3 - 30t + 10t^{-1} - t^{-3})\beta \\ -(t^4 + 5t^2 - 5 + t^{-2})\beta \end{pmatrix} \quad \text{and} \quad z(s) = \begin{pmatrix} (4t^3 - 10t + 2t^{-3})\alpha + h''\beta \\ (t^7 - 9t^5 + 27t^3 - 22t + 8t^{-1} - t^{-3})\beta \\ (t^4 - 5t^2 + 5 - t^{-2})\beta \end{pmatrix}. \]
for some $h', h'' \in \mathbb{C}$. The lemma will follow once we note that
\[z(yx^{-1}y^{-1}x) = \begin{pmatrix} 2t\alpha - (t^4 - 3t^2 + 1)\beta \\ (t^3 - 2t)\beta \\ (t^2 - 1)\beta \end{pmatrix} \quad \text{and} \quad z(xy^{-1}x^{-1}y) = \begin{pmatrix} (-6t + 2t^{-1})\alpha + t^4\beta \\ t^3\beta \\ (-t^2 + 1)\beta \end{pmatrix}. \]

Now we are ready to show that $H^1(\Gamma(0); \mathfrak{s}_{\mathbb{C}}(\rho)) = 0$.

Proof of Theorem 1.9. Now we will show that K_j is locally longitudinally rigid for all $j \geq 1$ at any root of the Alexander polynomial. Let $[z] \in H^1(\Gamma(0); \mathfrak{s}_{\mathbb{C}}(\rho))$. By Proposition 3.3, we can assume that z satisfies Equation (13). Since $z(\ell) = 0$, we must have
\[z(w) + w \cdot z(v) = 0. \]

Let us write $z(w) = \omega_1v_+ + \omega_2v_0 + \omega_3v_-$ and $z(v) = \nu_1v_+ + \nu_2v_0 + \nu_3v_-$. The second coordinate of this equation implies that $\omega_2 + \nu_2 + f\nu_3 = 0$. Using Lemma 3.4, we have
\[\frac{(t^4 - 1)(t^4 + j(t^4 - 4t^2 + 1)^2)}{t^5} \beta = 0. \]

Suppose that $\beta \neq 0$. Since $t \in \mathbb{R} \setminus \{ \pm 1 \}$, we have
\[t^4 + j(t^4 - 4t^2 + 1)^2 = 0. \]

Since $t \in \mathbb{R}$ and $j \geq 1$, the above equation holds if and only if
\[t = 0 \quad \text{and} \quad t^4 - 4t^2 + 1 = 0. \]

This is the desired contradiction. Therefore, we must have $\beta = 0$.

From the first coordinate of the relation $z(xw) = z(wy)$, we have $(t^2 - 1)\omega_1 + 2f\alpha = 0$. Using $\beta = 0$ and Lemma 3.4, this equation is equivalent to
\[(t^4 - 1)(2jt^4 - (6j + 1)t^2 + 2j))\alpha = 0. \]
Similarly, if $\alpha \neq 0$, we must have $(2jt^4 - (6j + 1)t^2 + 2j) = 0$. It follows that t^2 is a root of both
\[\Delta(\tau) \quad \text{and} \quad h(\tau) := (2jt^2 - (6j + 1)\tau + 2j). \]

Note that the roots of $h(\tau)$ are reciprocal of each other. Since $\Delta(\tau)$ is a reciprocal polynomial, the roots of $\Delta(\tau)$ come in reciprocal pairs. Therefore, $h(\tau)$ divides $\Delta(\tau)$. By Gauss’s lemma, we can write $\Delta(\tau) = h\kappa(\tau)$ for $\kappa(\tau) \in \mathbb{Z}[\tau]$. This implies that $\Delta(0) = h(0)k(0)$ or $j = 2k(0)$. This contradicts the fact that $j \geq 1$ and $k(0) \in \mathbb{Z}$. Therefore, $\alpha = 0$ and z can only be the zero cocycle. Consequently, $H^1(\Gamma(0); \mathfrak{s}_{\mathbb{C}}(\rho)) = 0$ where ρ is any non-abelian reducible representation of $\Gamma(0)$. In other words, the knot K_j is locally longitudinally rigid at any root of the Alexander polynomial. By Theorem 1.8, there exists an interval of left-orderable Dehn surgeries near 0.
\[\square \]
References

[BP13] Kenneth L. Baker and Kathleen L. Petersen. “Character varieties of once-punctured torus bundles with tunnel number one”. In: *Internat. J. Math.* 24.6 (2013), pp. 1350048, 57.

[BC17] Steven Boyer and Adam Clay. “Foliations, orders, representations, L-spaces and graph manifolds”. In: *Adv. Math.* 310 (2017), pp. 159–234.

[BRW05] Steven Boyer, Dale Rolfsen, and Bert Wiest. “Orderable 3-manifold groups”. In: *Ann. Inst. Fourier (Grenoble)* 55.1 (2005), pp. 243–288.

[Bur67] Gerhard Burde. “Darstellungen von Knotengruppen”. In: *Math. Ann.* 173 (1967), pp. 24–33.

[Che20] Eric Chesebro. “Farey recursion and the character varieties for 2-bridge knots”. In: *Characters in low-dimensional topology*. Vol. 760. Contemp. Math. Amer. Math. Soc., Providence, RI, 2020, ©2020, pp. 9–33.

[CD18] Marc Culler and Nathan M. Dunfield. “Orderability and Dehn filling”. In: *Geom. Topol.* 22.3 (2018), pp. 1405–1457.

[CS83] Marc Culler and Peter B. Shalen. “Varieties of group representations and splittings of 3-manifolds”. In: *Ann. of Math. (2)* 117.1 (1983), pp. 109–146.

[Gao19] Xinghua Gao. *Orderability of Homology Spheres Obtained by Dehn Filling*. 2019. arXiv:181011202.

[Ghy01] Étienne Ghys. “Groups acting on the circle”. In: *Enseign. Math. (2)* 47.3-4 (2001), pp. 329–407.

[Han+20] Jonathan Hanselman et al. “L-spaces, taut foliations, and graph manifolds”. In: *Compos. Math.* 156.3 (2020), pp. 604–612.

[HZ19] Christopher Herald and Xingru Zhang. “A note on orderability and Dehn filling”. In: *Proc. Amer. Math. Soc.* 147.7 (2019), pp. 2815–2819.

[HP05] Michael Heusener and Joan Porti. “Deformations of reducible representations of 3-manifold groups into $\text{PSL}_2(\mathbb{C})$”. In: *Algebr. Geom. Topol.* 5 (2005), pp. 965–997.

[HP04] Michael Heusener and Joan Porti. “The variety of characters in $\text{PSL}_2(\mathbb{C})$”. In: *Bol. Soc. Mat. Mexicana (3)* 10.Special Issue (2004), pp. 221–237.

[HPS01] Michael Heusener, Joan Porti, and Eva Suárez Peiró. “Deformations of reducible representations of 3-manifold groups into $\text{SL}_2(\mathbb{C})$”. In: *J. Reine Angew. Math.* 530 (2001), pp. 191–227.

[Hu15] Ying Hu. “Left-orderability and cyclic branched coverings”. In: *Algebr. Geom. Topol.* 15.1 (2015), pp. 399–413.

[Nie19] Zipei Nie. “Left-orderability for surgeries on $(-2,3,2s+1)$-pretzel knots”. In: *Topology Appl.* 261 (2019), pp. 1–6.

[OS05] Peter Ozsváth and Zoltán Szabó. “On knot Floer homology and lens space surgeries”. In: *Topology* 44.6 (2005), pp. 1281–1300.

[Rha67] Georges de Rham. “Introduction aux polynômes d’un nœud”. In: *Enseign. Math. (2)* 13 (1967), 187–194 (1968).

[Ril72] Robert Riley. “Parabolic representations of knot groups. I”. In: *Proc. London Math. Soc. (3)* 24 (1972), pp. 217–242.

[Tra15a] Anh T. Tran. “On left-orderability and cyclic branched coverings”. In: *J. Math. Soc. Japan* 67.3 (2015), pp. 1169–1178.

[Tra15b] Anh T. Tran. “On left-orderable fundamental groups and Dehn surgeries on knots”. In: *J. Math. Soc. Japan* 67.1 (2015), pp. 319–338.

[Wei64] André Weil. “Remarks on the cohomology of groups”. In: *Ann. of Math. (2)* 80 (1964), pp. 149–157.