Polymorphisms of VEGFA gene and susceptibility to hemorrhage risk of brain arteriovenous malformations in a Chinese population

Zhi-ping GONG1, Ni-dan QIAO2, Yu-xiang GU2, Jian-ping SONG2, Pei-liang Li2, Hui-jia QIU2, Wei-wei FAN3, Ying MAO2, Hong-yan CHEN3, *, Yao ZHAO2, *

1Operation Room, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; 2Department of Neurosurgery, HuaShan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; 3State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China

Aim: To evaluate the influence of the vascular endothelial growth factor A (VEGFA) polymorphisms on risk of presentation with intracerebral hemorrhage (ICH).

Methods: Nine selected VEGFA single-nucleotide polymorphisms (SNPs) were genotyped in 311 patients with brain arteriovenous malformations (BAVM) in a Chinese population. Associations between individual SNPs/haplotypes and the hemorrhage risk of BAVMs were evaluated using logistic regression analysis.

Results: In the single-locus analysis, rs1547651 was associated with increased risk of ICH (adjusted OR=2.11, 95% CI=1.01–4.42 compared with the AA genotype). In particular, an increased risk for ICH was associated with this variant in female patients (adjusted OR=3.21, and 95% CI=0.99–10.36). Haplotype-based analyses revealed that haplotype ‘GC’ in block 1 and haplotype ‘ACC’ in block 2 were associated with a 30%–38% reduction in the risk of ICH in patients with BAVMs compared to the most common haplotype (Psim=0.033 and Psim=0.005, respectively). The protective effect of haplotype ‘ACC’ in block 2 was more evident in male patients and subjects with BAVMs of a size ≥3 cm (adjusted OR=0.57, 95% CI=0.34–0.97 and adjusted OR=0.57, 95% CI=0.31–0.86, respectively).

Conclusion: The results suggest that VEGFA gene variants may contribute to ICH risk of BAVM.

Keywords: brain arteriovenous malformations; cerebral hemorrhage; vascular endothelial growth factor A (VEGFA); single-nucleotide polymorphism (SNPs)
in the region of the VEGFA. To date, several case-control studies have confirmed the association of VEGFA SNPs with a risk of developing several types of tumors\cite{10-13} and other diseases\cite{14, 15}; however, to our knowledge, there is little data on the role of VEGFA SNPs in relation to ICH risk in patients with BAVMs, in spite of the importance of VEGFA gene in the hemorrhagic tendency of BAVMs. Because of the dearth of knowledge in this area, we evaluated both potential functional SNPs and tag SNPs spanning the VEGFA for effects on the risk of presentation with ICH.

Materials and methods

BAVM sample population

Using the same recruitment method as described previously\cite{16}, we recruited 311 patients diagnosed with incident BAVM (as demonstrated by pathology or angiography), all of whom were genetically unrelated ethnic Han Chinese. These patients were recruited between January 2004 and December 2007 at Huashan Hospital, Fudan University (Shanghai, China). Patients with a family history or diagnosis of hereditary hemorrhagic telangiectasia (HHT) were excluded. Patients with signs of new intracranial hemorrhage on computed tomography (CT) or magnetic resonance imaging (MRI) were defined as ICH. Patients (symptomatic or not), who had non-hemorrhagic intracranial lesions initially detected by CT scan or MRI and were proven to harbor BAVMs by angiography were coded as unruptured cases. The BAVM size and venous drainage pattern were determined by angiography and were classified using standard guidelines\cite{17}. Each participant provided informed consent, and the studies were approved by the Human Subjects Review Committee of Huashan Hospital, Fudan University.

Polymorphism selection and genotyping

We selected tagging SNPs (tSNPs) in the VEGFA gene (6p21.3, NT_007592.14) with genotype data of Han Chinese from the International HapMap Project (HAPMAP), Public Release#20/Phase II on April 7th, 2007 (http://www.hapmap.org). tSNPs were selected to cover the whole VEGFA gene. tSNPs with a minor allele frequency (MAF) greater than 0.05 (based on pairwise LD analysis) were selected to capture unmeasured SNPs with a LD coefficient $D' > 0.8$. In addition, four potentially functional SNPs (rs1547651, rs2010963, rs1413711, and rs3025039) in VEGFA that were identified in previous reports were also included in this study. As a result, nine SNPs of the VEGFA were investigated.

We used white blood cell fractions from whole blood samples for the extraction of genomic DNA using the Qiagen Blood Kit (Qiagen, Chatsworth, CA, USA). Genotyping was performed with the MassARRAY iPLEX platform (Sequenom, San Diego, CA, USA) using an allele-specific MALDI-TOF mass spectrometry assay\cite{18}. Primers for amplification and extension reactions were designed using the MassARRAY Assay Design Version 3.1 software (Sequenom), and SNP genotypes were obtained according to the iPLEX protocol provided by the manufacturer. We examined the quality of the genotyping with a detailed QC procedure that ensured a $>95\%$ successful call rate with duplicate calling of genotypes, internal positive control samples and Hardy-Weinberg Equilibrium (HWE) testing. The consistency rate observed in these duplicated samples was 100%.

Statistical analyses

Genotype frequencies in ICH and unruptured cases were compared using a χ^2-test. Estimate odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression with adjustments for age and gender. Akaike’s information criterion (AIC) was employed to determine the best fitting model for each SNP\cite{19}. The issue of multiple tests was controlled with 10000 time permutation tests. Pairwise linkage disequilibrium (LD) among the markers was examined using Lewontin’s standardized coefficient D' and LD coefficient r^2\cite{20}. Haplotype blocks were defined by Haploview V4.1, as detailed by Gabriel et al\cite{21}. PHASE 2.0 was used to infer the haplotype frequencies based on the observed genotypes\cite{22}. All the statistical analyses were performed using SPSS17.0 software with two-sided tests and a significance level set at 0.05, unless otherwise indicated.

Results

Characteristics of study participants

Demographic and clinical characteristics of the patients with BAVMs are shown in Table 1. Of the 311 patients genotyped, 58.2% presented with hemorrhage, and 41.8% presented with unruptured BAVMs. The ages (mean±SD) of the patients were 33±14 years in unruptured cases and 30±15 years in ICH cases, with males accounting for 61.5% of unruptured cases and 55.8% of ICH cases. ICH presentation was not significantly associated with gender (χ^2, $P=0.312$) or age at diagnosis (t test, $P=0.063$), but it was associated with deep venous drainage (χ^2, $P<0.001$) and small BAVM size (χ^2, $P<0.001$).

Table 1. Demographics and BAVM characteristics.

	Unruptured	%	ICH	%	Total	%	P
Demographics							
Total BAVM cases	130	41.8	181	58.2	311		
Age at diagnosis							
Mean age±SD, year	33±14		30±15		31±15	0.063	
n	130	181	311				
Gender							
Female	50	38.5	80	44.2	130	0.312	
Male	80	61.5	101	55.8	181		
BAVM characteristics							
BAVM size	19	18.6	83	81.4	102	7.2×10^{-9}	
	111	53.1	98	46.9	209		
Venous drainage							
Exclusively deep	25	19.2	108	59.7	133	8.78×10^{-24}	
Any superficial	105	80.8	73	40.3	178		
Analysis of single SNPs association with ICH risk in patients with BAVMs

In the single locus analysis, the genotype frequency of the rs1547651 and rs3025030 SNPs was significantly different between unruptured cases and ICH cases (χ^2, uncorrected $P=0.049$ and $P=0.047$, respectively); the association of rs1547651 still remained after the logistic regression analysis was adjusted for age and gender (adjusted OR=2.11; 95% CI=1.01 to 4.42 compared with the AA genotype). The remaining 7 SNPs did not reach the statistically significant level (Table 2).

Table 2. Frequency of the distribution of VEGFA SNP genotypes and their association with risk of hemorrhagic presentation.

Genetic model	Location in gene region	Genotype	BAVM presentation	Logistic regression				
			Unruptured No (%)	ICH No (%)	P value	χ^2 test	Adjusted OR (95% CI)d	P value
rs1547651	Promoter	A/A	115 (91.3%)	149 (83.2%)	0.049		1.00 (reference)	
		A/T	11 (8.7%)	30 (16.8%)			2.11 (1.01–4.42)	0.047
rs2010963	5' UTR	CC	40 (32.0%)	52 (30.1%)	0.260		1.00 (reference)	
Codominant		GG	66 (52.8%)	82 (47.4%)			0.95 (0.56–1.61)	0.845
Dominant		GG/CC	106 (84.8%)	134 (77.5%)	0.282		0.63 (0.34–1.16)	0.535
rs1413711	Intron_1	GG	78 (61.4%)	98 (54.4%)	0.859		1.00 (reference)	
Codominant		AG	43 (33.9%)	73 (40.6%)			1.35 (0.83–2.2)	0.221
Dominant		AA	6 (4.7%)	9 (5.0%)			1.22 (0.41–3.63)	0.715
rs833069	Intron_2	AA	36 (29.8%)	44 (25.6%)	0.117		1.00 (reference)	
Codominant		AG	67 (55.4%)	88 (51.2%)			1.05 (0.61–1.82)	0.856
Recessive		GG	18 (14.8%)	40 (23.2%)			1.78 (0.87–3.63)	0.116
rs3024994	Intron_2	GG	78 (61.4%)	98 (54.4%)	0.203		1.00 (reference)	
Codominant		GA	43 (33.9%)	73 (40.6%)			1.35 (0.83–2.2)	0.221
Recessive		AA	6 (4.7%)	9 (5.0%)			1.22 (0.41–3.63)	0.715
rs3025010	Intron_5	TT	67 (52.8%)	97 (53.9%)	0.999		1.00 (reference)	
Codominant		GC	54 (42.5%)	72 (40.02%)			0.92 (0.57–1.47)	0.715
Recessive		CC	6 (4.7%)	11 (6.1%)			1.31 (0.46–3.74)	0.616
rs3025030	Intron_7	GG	81 (64.3%)	131 (74.0%)	0.047		1.00 (reference)	
Codominant		GC	39 (30.9%)	42 (23.7%)			0.70 (0.41–1.18)	0.181
Log-additive		CC	6 (4.8%)	4 (2.3%)			0.42 (0.11–1.55)	0.194
rs3025035	Intron_7	GG	95 (75.4%)	122 (70.1)	0.211		1.00 (reference)	
Codominant		GC	30 (23.8%)	47 (27.0%)			1.19 (0.70–2.03)	0.523
Recessive		CC	1 (0.8%)	5 (2.9%)			3.84 (0.44–33.96)	0.226
rs3025039	Exon_8	CC	83 (67.4%)	129 (73.7%)	0.188		1.00 (reference)	
Codominant		CT	35 (28.5%)	42 (24.0%)			0.81 (0.48–1.39)	0.449
Recessive		TT	5 (4.1%)	4 (2.3%)			0.53 (0.14–2.06)	0.36
Log-additive		–	–	–			1.28 (0.82–1.99)	0.27
Analysis of haplotype association with ICH risk in patients with BAVMs

The reconstructed LD plot of the nine SNPs in the 333 controls was described in our previous report [20]. Three blocks were defined by the nine SNPs in VEGFA. Block 1 covered the region of VEGFA from the 5' UTR to the first intron with a length of 2 kb (SNPs 2–3). Block 2 extended 4 kb (SNPs 4–6) and encompassed the middle part of the gene from intron 2 to intron 5. Block 3 contained the terminal section of the gene, ranging mainly from intron 7 to the 3' UTR (SNPs 7–9, size=1 kb). The overall distribution of haplotypes in block 2 was significantly different between unruptured cases and ICH cases (Table 3). Haplotype-specific analysis revealed the haplotype ‘GC’ in block 1 (Psim=0.033) and the haplotype ‘ACC’ in block 2 (Psim=0.005) correlated with a significant protective effect against ICH risk in patients with BAVMs (adjusted OR=0.70; 95% CI=0.49–1.02 and adjusted OR=0.62, 95% CI=0.40–0.93, respectively) compared to the most common haplotype.

Association analysis with stratification

We further evaluated whether the rs1547651 variant and haplotype ‘ACC’ in block 2 were associated with ICH risk in patients with BAVMs, as stratified by age, sex, BAVM size and venous drainage status. As shown in Table 4, compared with the common wild-type homozygous genotype, the increased risk associated with genotype AT of rs1547651 was more pronounced in female subjects (adjusted OR=3.21, 95% CI=0.99–10.36). Moreover, the protective effect of haplotype ‘ACC’ in block 2 was more evident in males and subjects with BAVMs of a size ≥3 cm (adjusted OR=0.57, 95% CI=0.34–0.97 and adjusted OR=0.57, 95% CI=0.31–0.86, respectively).

Table 3. Frequency of the distribution of haplotypes in the VEGFA gene and their association with risk of hemorrhagic presentation.

Block	Haplotype	Total	ICH (%)	Unruptured (%)	P value	Psim valueb	Adjusted OR (95% CI)c	P valued
Block 1	CC	277	168	46.4	41.9	0.277	0.283	1.00 (reference)
	GC	199	103	28.5	36.9	0.030	0.033	0.70 (0.49–1.02)
	GA	146	91	25.1	21.2	0.288	0.324	1.09 (0.72–1.65)
						0.662	0.665	1.00 (reference)
	Global-stat=4.79	df=2	P=0.091					
Block 2	GCT	285	174	48.1	111	0.115	0.114	1.00 (reference)
	ACT	160	94	26	26.4	0.993	0.985	0.92 (0.62–1.37)
	ACC	141	69	19.1	19.1	0.007	0.005	0.62 (0.41–0.93)
	Othersd	36	25	6.9	11	0.424	0.231	1.43 (0.68–3.07)
	Global-stat=9.32	df=4	P=0.054					
Block 3	GCC	428	252	69.8	67.7	0.662	0.665	1.00 (reference)
	CCT	100	51	14.1	18.8	0.105	0.117	0.75 (0.48–1.17)
	GTC	89	57	15.7	12.3	0.165	0.169	1.23 (0.76–1.99)
	Othersd	5	2	0.6	1.2	0.328	0.288	0.48 (0.08–2.95)
	Global-stat=5.01	df=4	P=0.286					

a Polymorphic bases were in 5'–3' order, as listed in Table 2. Loci chosen for block 1: SNPs 2–3, Loci chosen for block 2: SNPs 4–6, Loci chosen for block 3: SNPs 7–9.
b Generated by permutation test with 10 000 times simulation.
c Adjusted for age and gender.
d Haplotypes with a frequency of less than 0.1 were pooled into one mixed group.

Discussion

VEGFA has the ability to increase vascular permeability and cause vasodilatation, and it has been shown to be associated with various hemorrhagic disorders. Overexpression of VEGFA was reported recently in patients with brain tumor-associated ICH [23]. In this study, we reported the association between multiple common VEGFA polymorphisms and the hemorrhagic risk of BAVMs in a Han Chinese population. We found that one SNP out of nine selected SNPs showed a significant association with ICH risk. Moreover, haplotype analyses revealed that the haplotype ‘GC’ in block 1 (Psim=0.033), and the haplotype ‘ACC’ in block 2 (Psim=0.005) showed a decreased ICH risk in patients with BAVMs compared with those of the common haplotype. Our findings suggested that VEGFA gene variants might contribute to an increased ICH risk in patients with BAVMs.

Genetic variants within the conventional regulatory region, such as the 5' UTR and the 3' UTR, were analyzed as a priority in several previous studies. rs1547651, which is located in the promoter region, was reported to be significantly associated with bladder cancer; moreover, the TT genotype was linked to a three-fold increased risk for bladder cancer [24]. In our study, the heterozygous genotype was significantly associated with increased ICH risk (adjusted OR=2.11, 95% CI =1.01–4.42) compared with the AA genotype. Moreover, our stratified analyses revealed that the AT genotype had a three-fold increased risk of ICH compared with the AA genotype in females (adjusted OR=3.21, 95% CI=0.99–10.36). Despite the fact that the single SNP association of rs1547651 was not significant after using the stringent Bonferroni correction, the association might still be noteworthy. Using the TFSEARCH
program (http://mbs.cbrc.jp/research/db/TFSEARCH.html), we found that two possible transcriptional factors, GATA-1 and GATA-3, could bind to the A allele of rs1547651. We hypothesized that this polymorphism variation may affect the expression of \textit{VEGFA} by changing the binding affinity of factors to the mRNA.

Increasing evidence indicates the importance of intronic \textit{VEGFA} polymorphisms as markers of disease susceptibility\cite{24–26}. One Canadian study suggested that rs3025030 was associated with a higher risk of retinopathy. In our study, the genotype distribution of rs3025030 was significantly different between cases and controls (P=0.047). Furthermore, no association was found via logistic regression analyses after adjustment for age and sex. Although the variants of rs3025030 were predicted to cause changes in the binding sites of transcription factors, which may result in the dysfunction of \textit{VEGFA} expression using FASTSNP\cite{27}, the effects of this variant needed to be validated in further studies.

Because we were confident that haplotype-based analysis is more powerful than single-marker analysis\cite{28, 29}, we performed this type of analysis to elucidate which haplotype was associated with an increased or a diminished risk of ICH. Although a few studies have been conducted regarding the involvement of \textit{VEGFA} haplotypes in certain diseases\cite{30-32}, the haplotypes analyzed in those studies are not comparable with ours because they genotyped different SNPs. In our study, we found that the ‘GC’ haplotype in block 1 and the ‘ACC’ haplotype in block 2 were significantly associated with ICH risk (adjusted OR=0.70, 95% CI=0.49–1.02, $P_{\text{sim}}=0.033$ and adjusted OR=0.62, 95% CI=0.41–0.93, $P_{\text{sim}}=0.005$, respectively); moreover, we observed a protective effect of the haplotype ‘ACC’ derived from rs833069, rs3024994, and rs3025010 in females and those with BAVMs of a size \geq3 cm. We did not, however, see an independent association with the individual SNP present in the haplotype associated with ICH risk. Our hypothesis is that a combined haplotype, rather than a single SNP, is important for ICH.

Despite the fact that our study has several strengths, including a haplotype-based design and a homogeneous population of the same ethnicity, some inherent limitations must be noted. Some selection bias due to hospital-based controls cannot be ruled out. To limit the potential selection bias, we recruited patients by matching the controls to the individuals with BAVMs on the categories of age, sex, and residential area. Only nine out of the exhaustive list of SNPs in \textit{VEGFA} were genotyped in this study, and therefore, it is possible that we did not fully capture or represent the genetic variability of the gene; however, SNPs with high priority were selected for this

\begin{table}[h]
\centering
\caption{Stratified analyses of the associations between the \textit{VEGFA} rs1547651 genotypes and haplotypes in block 2 with risk of hemorrhagic presentation by selected variables.}
\begin{tabular}{llllll}
\hline
Variables & rs1547651 & & & Block2 & \\
 & Unruptured/ICH & OR (95% CI)a & & Unruptured/ICH & OR (95% CI)a \\
 & & & & & \\
\hline
Age at diagnosis & & & & & \\
>30 & 63 (87.5)/7 (9.7)/ & 1.00 (reference) & 1.96 (0.74–5.15) & 61 (42.4)/ & 1.00 (reference) \\
& 68 (81.9) & & & 42 (29.2)/ & 0.59 (0.33–1.05) \\
\leq 30 & 52 (89.7)/4 (6.9)/ & 1.00 (reference) & 2.42 (0.76–7.73) & 50 (43.1)/ & 1.00 (reference) \\
& 81 (82.7) & & & 30 (25.9)/ & 0.66 (0.37–1.20) \\
Gender & & & & & \\
Female & 44 (88.0)/ & 1.00 (reference) & 3.21 (0.99–10.36) & 43 (43.0)/ & 1.00 (reference) \\
& 63 (78.8) & & & 27 (27.0)/ & 0.68 (0.35–1.29) \\
Male & 71 (88.8)/ & 1.00 (reference) & 1.53 (0.58–4.04) & 68 (42.5)/ & 1.00 (reference) \\
& 86 (85.1) & & & 45 (28.1)/ & 0.57 (0.34–0.97) \\
BAVM size & & & & & \\
<3 cm & 17 (89.5)/ & 1.00 (reference) & 2.11 (0.43–10.35) & 16 (42.1)/ & 1.00 (reference) \\
& 66 (79.5) & & & 23 (23.7)/ & 0.90 (0.36–2.28) \\
\geq 3 cm & 98 (88.3)/ & 1.00 (reference) & 1.95 (0.80–4.72) & 95 (42.8)/ & 1.00 (reference) \\
& 83 (84.7) & & & 63 (28.4)/ & 0.52 (0.31–0.86) \\
Venous drainage & & & & & \\
Exclusively deep & 23 (92.0)/ & 1.00 (reference) & 2.88 (0.62–13.4.2) & 22 (44.0)/ & 1.00 (reference) \\
& 86 (79.6) & & & 13 (26.0)/ & 0.63 (0.29–1.40) \\
Any superficial & 92 (87.6)/ & 1.00 (reference) & 1.52 (0.58–4.01) & 89 (42.4)/ & 1.00 (reference) \\
& 63 (86.3) & & & 59 (28.1)/ & 0.62 (0.36–1.06) \\
\hline
\end{tabular}
\footnotesize{aAdjusted for age and gender.}
\end{table}
study based on a careful review of previous functional analyses and association studies of VEGFA variation.

In conclusion, the results from our case-control study in a Chinese population suggest that the genetic variants of the VEGFA gene may modulate ICH risk in patients with BAVMs. In particular, we found two haplotypes with a significantly protective effect with respect to ICH risk in patients with BAVMs. Large-scale studies with ethnically diverse populations and functional evaluation of these studies are warranted to confirm our findings.

Acknowledgements
This study was supported by the National Natural Science Foundation of China (No. 30500524, 30973103, 81070936, 30800622, and 81001114), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars.

Author contribution
Dr Hong-yan CHEN and Dr Yao ZHAO designed the research and revised the paper; Zhi-ping GONG conducted the experiments and wrote the paper; Ni-dan QIAO, Yu-xiang GU, Jian-ping SONG, Pei-liang LI, and Hui-jia QIU performed the experiments; Wei-wei FAN analyzed the data; and Ying MAO designed the research.

References
1 Arteriovenous Malformation Study Group. Arteriovenous malformations of the brain in adults. N Engl J Med 1999; 340: 1812–8.
2 Pawlikowska L, Tran MN, Achrol AS, McCulloch CE, Ha C, Lind DL, et al. UCSF BAVM Study Project: Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke 2004; 35: 2294–300.
3 Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989; 84: 1470–8.
4 Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4–25.
5 Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001; 280: C1358–66.
6 Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vasc Pharmacol 2002; 39: 225–37.
7 Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 2004; 9: 2–10.
8 Hashimoto T, Lawton MT, Wen G, Yang GY, Chały T Jr, Stewart CL, et al. Gene microarray analysis of human brain arteriovenous malformations. Neurosurgery 2004; 54: 410–23.
9 Lee CZ, Xue Z, Zhu Y, Yang GY, Young WL. Matrix metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracranial hemorrhage. Stroke 2007; 38: 2563–8.
10 Sfar S, Hassen E, Saad H, Mosbah F, Chouchane L. Association of VEGF genetic polymorphisms with prostate carcinoma risk and clinical outcome. Cytokine 2006; 35: 21–8.
11 Howell WM, Bateman AC, Turner SJ, Collins A, Theaker JM. Influence of vascular endothelial growth factor single nucleotide polymorphisms on tumour development in cutaneous malignant melanoma. Genes Immum 2002; 3: 229–32.
28 Clark AG. The role of haplotypes in candidate gene studies. Genet Epidemiol 2004; 27: 321–33.

29 Han SW, Kim GW, Seo JS, Kim SJ, Sa KH, Park JY, et al. VEGF gene polymorphisms and susceptibility to rheumatoid arthritis. Rheumatology (Oxford) 2004; 43: 1173–7.

30 Churchill AJ, Carter JG, Lovell HC, Ramsden C, Turner SJ, Yeung A, et al. VEGF polymorphisms are associated with neovascular age-related macular degeneration. Hum Mol Genet 2006; 15: 2955–61.

31 Churchill AJ, Carter JG, Ramsden C, Turner SJ, Yeung A, Brenchley PE, et al. VEGF polymorphisms are associated with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci 2008; 49: 3611–6.

32 Tsai SJ, Hong CJ, Liou YJ, Chen TJ, Chen ML, Hou SJ, et al. Haplotype analysis of single nucleotide polymorphisms in the vascular endothelial growth factor (VEGFA) gene and antidepressant treatment response in major depressive disorder. Psychiatry Res 2009; 169: 113–7.