First hint of non-standard CP violation from $B \to \Phi K_S$ decay

SLAC-PUB-9326

July 2002

Gudrun Hiller a *

a Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

We comment on the implications of the recently measured CP asymmetry in $B \to \Phi K_S$ decay. The data disfavor the Standard Model at 2.7 σ and -if the trend persists in the future with higher statistics - require the existence of CP violation beyond that in the CKM matrix. In particular, the $b \to s\bar{s}s$ decay amplitude would require new contributions of comparable size to the Standard Model ones with an order one phase. While not every model can deliver such a large amount of CP and flavor violation, those with substantial FCNC couplings to the Z can reproduce the experimental findings.

1. INTRODUCTION

The breakdown of CP symmetry in the b-system has been established from measurements of time-dependent asymmetries in $B \to J/\Psi K_S$ decays 12. In the Standard Model (SM) the phenomenon of CP violation originates from the CKM three generation quark mixing matrix 1. It is an impressive success of this CKM picture of CP and flavor violation that the world average of the asymmetry in $B \to J/\Psi K$ decays 4

\[
\sin(2\beta(J/\Psi K_{S,L}))_{\text{world-ave}} = +0.734 \pm 0.054 \quad (1)
\]

agrees with the value extracted from experimental constraints from very different processes such as those in the Kaon sector, $\sin(2\beta(J/\Psi K))_{\text{fit}} = +0.64 \ldots + 0.84$ at 95\% C.L. 3. However, this CKM paradigm is now challenged by the recently reported measurements of CP asymmetries in $B \to \Phi K_S$ decays by BaBar 3 and Belle 5

\[
\sin(2\beta(\Phi K_S))_{\text{BaBar}} = -0.19^{+0.52}_{-0.50} \pm 0.09 \quad (2)
\]

and Belle 5

\[
\sin(2\beta(\Phi K_S))_{\text{Belle}} = -0.73 \pm 0.64 \pm 0.18 \quad (3)
\]

with resulting error weighted average

\[
\sin(2\beta(\Phi K_S))_{\text{ave}} = -0.39 \pm 0.41 \quad . \quad (4)
\]

with errors added in quadrature. The value in (4) corresponds to the coefficient of the sine term in the time dependent CP asymmetry, see e.g. 5. Belle also quotes a value for the direct CP asymmetry, i.e., the cosine term $A_{\Phi K_S} = -0.56 \pm 0.41 \pm 0.12$ 5, which is consistent with zero. In view of the current large experimental uncertainties, we neglect direct CP violating effects on the decay amplitudes in reporting the result of (4).

In the SM the above decay modes are related such that the difference D_{CP} of their asymmetries obeys 10-13

\[
D_{CP} = |\sin(2\beta(\Phi K)) - \sin(2\beta(J/\Psi K))| \lesssim O(\lambda^2) \quad (5)
\]

where $\lambda \simeq 0.2$ appears in Wolfenstein’s parameterization of the CKM matrix. Evaluation of (5), 5 yields $D_{CP} = 1.12 \pm 0.41$ hence violates the SM at 2.7 σ. The impact of these experimental results on the validity of CKM and SM is currently statistics limited. Future prospects at the B-factories are that the statistical error $\sigma_{\Phi K_S}(\text{stat})$ can be expected to improve roughly by a factor of three with an increase of integrated luminosity from $0.1ab^{-1}$ to $1ab^{-1}$ 13 and it will

*Work supported by the Department of Energy, Contract DE-AC03-76SF00515

1Throughout this paper J/Ψ stands for all $c\bar{c}$ states included in the experimental analyses for $\sin(2\beta(J/\Psi K))$.

take some time before we know D_{CP} with sufficient significance to draw final conclusions.

In the following we entertain the possibility of a would-be measurement of $\sin(2\beta(\Phi K_S)) = -0.39$ or a similar value which departs drastically from the SM expectation of 0. We discuss the generic requirements to new physics (NP) models to explain these values in Section 2. In Section 3 we work out and discuss the reach of specific models in the observable $\sin(2\beta(\Phi K_{S,L}))$ and conclude in Section 4.

2. CONTRIBUTIONS TO $b \to s\bar{s}s$ FROM THE WEAK SCALE AND BEYOND

Time dependent measurements in B_0, \bar{B}_0 decays into a CP eigenstate f such as $J/\Psi K_S$, ΦK_S return the value of $\sin(2\beta(f)) = \sin(2\beta_{eff} + \Delta\Phi_f)$. (As commented in the Introduction, we fix $|A/A| = 1$ to first approximation.) Here, β_{eff} is the phase from $B_0 - \bar{B}_0$ mixing and is common to all $B_0, \bar{B}_0 \to f$ decays and $\Delta\Phi_f \equiv \arg(\Delta_f)$ is the phase from the decay amplitudes. In the SM $\beta_{eff} = \beta$ and $\Delta\Phi_J/\Psi K$ and $\Delta\Phi \equiv \Delta\Phi_{\Phi K_S} \simeq O(\lambda^2)$ [10-13]. The “golden-plated” mode $B \to J/\Psi K$ is mediated at the quark level by $b \to c\bar{s}s$ decay and receives a large contribution from tree level W exchange. Hence, we expect $\Delta\Phi_J/\Psi K$ to be subleading even in the presence of NP. On the other hand, the rare $B \to \Phi K$ decay appears in the SM only at the loop level, see Fig. 1, and therefore is generically more susceptible to (new) physics from the weak and higher scales.

Measurements of $\sin(2\beta(\Phi K_S))$ and $\sin(2\beta(J/\Psi K_S))$ fix $\Delta\Phi$ up to a 4-fold ambiguity and in general have 8 pairs $(\beta_{eff}, \Delta\Phi)$ as solutions. For example, let’s take the good $O(10\%)$ agreement between data on $\sin 2\beta(J/\Psi K_{S,L})$ and the SM fit for $\sin 2\beta$ as an indication that the value of β_{eff} extracted is in the same branch as the one from the SM fit, i.e. we assume that $b \to c\bar{s}s$ decays and $B_0 - \bar{B}_0$ mixing are dominated by the SM contribution. (This concerns discrete ambiguities and barring accidental cancellations does not affect our conclusions about large phases in $b \to s\bar{s}s$ decays.) Then, $\beta_{eff} = 24^\circ$ and $\Delta\Phi = -70^\circ, -204^\circ$ using central values. This requires a large source of CP violation in the $b \to s\bar{s}s$ amplitude outside of the SM. We recall that there is no conflict with a small direct CP asymmetry as measured by BaBar $A_{CP}(B^\pm \to \Phi K^\mp) = -0.05 \pm 0.20 \pm 0.03$ [13]. While a large value for A_{CP} would inambiguously indicate the presence of NP, a small or vanishing one could be caused by small or vanishing strong phases.

![Figure 1. SM diagram contributing to $B \to \Phi K$ decay.](image)

Let’s illustrate what kind of scales could be invoked for an interpretation of an $O(1)$ phase in the $b \to s\bar{s}s$ decay amplitude. The measured branching ratio $\mathcal{B}(B_0 \to \Phi K_0) = (8.1^{+3.1}_{-2.5} \pm 0.8) \times 10^{-6}$ [13] is in agreement with the SM assuming factorization [15], which has however substantial errors from hadronic physics. In the absence of a first principle precision calculation of hadronic 2-body B decays into light mesons we will not perform here a detailed study of the $B \to \Phi K$ matrix element. Instead we assume that $b \to s\bar{s}s$ decays proceeds via a single flavor changing neutral current (FCNC) operator with appropriate Dirac structures Γ_i

$$O = \xi_f g_X^2 \frac{s\Gamma_1s\Gamma_2s}{M_X^2} \tag{6}$$

generated from an interaction at scale M_X with coupling g_X and ξ_f contains all flavor mixing information. In the SM, X is the weak scale, i.e. $M_X = M_W$, $g_X = g_W$ and $\xi_f = V_{tb}V_{ts}^\star$ contains the CKM angles. The operator contributes with Wilson coefficient C_O renormalized at the $\sim m_b$ scale of size of a few times 10^{-2} [8-13]. The NP contribution to O has to be roughly of
comparable size to the SM one to explain the observed $B_0 \to \Phi K_0$ branching ratio and has an order one CP phase in the overall mixing coefficient ξ_F to explain a large CP asymmetry induced by the $b \to s\bar{s}s$ decay amplitude.

![Diagram](image)

Figure 2. Examples of beyond the SM contributions to $b \to s\bar{s}s$ decays.

Examples of contributions from physics beyond the SM to $b \to s\bar{s}s$ decays are shown in Fig. 2. The left diagram displays the effect of a new boson X in the FCNC loop with matter q_i in close analogy to the SM mechanism. If $g_X = g_W$, flavor angles $|\xi_F| = 1$ and an $O(1)$ CP phase, and C_O is SM-like, then this requires $M_X \sim 400$ GeV to satisfy the conditions on size and CP breaking discussed above. Assuming a larger Wilson coefficient of order 1 requires $M_X \sim 2-3$ TeV. Another possibility is tree level FCNC at the weak scale, where $M_X = m_Z$, $g_X = g_W$ and $\xi_F = U_{bs}$. This is illustrated in the right diagram of Fig. 2. The sZb coupling has to be dominantly imaginary and satisfy $|U_{bs}| \approx 10^{-3}$ to be in the right ball park.

3. WHICH NEW PHYSICS IN $B \to \Phi K$?

In this section we examine the reach of different models in the phase of the $b \to s\bar{s}s$ decay amplitude. In particular we study the minimal supersymmetric Standard Model (MSSM), a variant of the 2 Higgs doublet model (2HDM) III which contains an extra source of CP violation and a model with a vector-like down quark (VLdQ). The CP reach in $b \to s\bar{s}s$ is estimated using the effective Hamiltonian description and factorization \cite{13}.

While this latter approach contains model dependence it gives the right pattern in which NP enters the rare decays. Our findings are summarized in Table 1. Only those models with $\Delta \Phi \sim O(1)$ are able to reproduce $\sin(2\beta(\Phi K_S)) = -0.39$ or a value similarly different from $\sin(2\beta(J/\bar{J}K_S))$.

What is the explanation in supersymmetry (SUSY) ? To depart significantly from the SM with $\Delta \Phi \lesssim O(\lambda^2)$ one has to go beyond the MSSM with minimal flavor violation (MFV), i.e. allow for more CP and flavor violation than the one present in the SM that is in the Yukawas. Recall that gauge and anomaly mediation are MFV, whereas in general SUSY GUTS \cite{29} and effective SUSY models \cite{30,31} are not.

Allowing for arbitrary mixing in the down squark sector, the effect of gluino contributions in $b \to s\bar{s}s$ decay has been analyzed in Refs. \cite{40,41}. As shown in \cite{42}, an order one NP contribution to the QCD penguins at the weak scale can give at most a 10% contribution at the scale $\mu \sim m_b$. Imposing experimental constraints from $b \to s\gamma$ a range $\Delta \Phi \lesssim 0.7$ has been obtained \cite{43}. A most important contribution in a generic MSSM without MFV stems from up squark mixing between the second and third generation which flips chirality, parametrized by δ_{23}^{ULR}. This parameter is essentially unconstrained $|\delta_{23}^{ULR}| \lesssim O(1)$, can be complex and induces an effective sZb vertex $|Z_{sb}| \lesssim 0.1|\delta_{23}^{ULR}|$ defined as \cite{44}.

$$L_Z = \frac{g^2}{4\pi^2} \frac{g_{\bar{b}L}}{2\cos\theta_W} \bar{b}_L \gamma_{\mu} s_L Z_{sb}$$

These Z penguins are constrained by $b \to s\ell^+\ell^-$ decays $|Z_{sb}| \lesssim 0.1$ \cite{45,46}. The contribution to $b \to \Phi s$ is then $\sim (\mu - \frac{1}{2} \sin^2 \theta_W) \frac{g^2}{4\pi^2} Z_{sb}$. If the penguins are sizeable indicating the presence of large, complex up squark mixing in the MSSM they access values of $\Delta \Phi$ of $O(1)$. The effect of R-parity violating operators $\lambda_{j;j,k}^{ij} \bar{u}_i \bar{d}_j \bar{d}_k$ is small because there are no tree level contributions to the $b \to s\bar{s}s$ operator \cite{13} due to the symmetry properties of the super potential \cite{10}.

We study the 2 HDM III as an example of a NP scenario with an extended Higgs sector. The relevant model parameters are the charged Higgs mass and the “wrong” Higgs couplings of the third generation (we neglect all entries except...
the (3, 3) one) and their relative phase. This new CP phase enters predominantly the dipole operators such as the one with a gluon \(O_8 \simeq \bar{s}\sigma_{\mu\nu}G^{\mu\nu}\), see \[8\] for details. This operator contributes to the \(b \to s\bar{s}s\) amplitude, though in the SM at subleading level compared to the QCD penguins, e.g. \[23\]. The 2HDM III model is constrained by non-observation of the charged Higgs \(m_{H^\pm} > 80\) GeV, the \(b \to s\gamma\) branching ratio, \(B_0 - \bar{B}_0\) mixing, the \(\rho\) parameter and the neutron electric dipole moment. We scan over the allowed parameter space and obtain \(\Delta \Phi \lesssim 0.2\).

A simple model beyond the SM with an enlarged matter sector is the one with an additional vector-like down quark \(D_4\). The \((3 \times 4)\) dimensional extended CKM matrix \(V\) includes mixing between \(D_4\) and the SM quark doublets and causes tree level FCNC couplings to the \(Z\) \[3\]. These are given as \(U_{bs} = -V^d_b V^d_s\) for \(b \to s\) transitions, where \(V^d\) diagonalizes the down sector. This gives also the amount of CKM unitarity violation \(U_{bs} = \sum_{i=u,c,t} V^d_i V^d_s\) which vanishes in the SM. Following the discussion for the SUSY models with Z-penguins, we relate \(U_{bs} = -g^2/(4\pi^2)Z_{bs}\) and get \(|U_{bs}| \lesssim 10^{-3}\), slightly better than the bound from \[32\]. The reach of the VLDQ model in \(\Delta \Phi = O(1)\) in agreement with the estimates at the end of Section 2.

4. CONCLUDING REMARKS

We have examined the implications of the experimental results \[3-6\] on CP violation from interference between mixing and decay in \(B \to \Phi K_s\) decays. These data are in conflict with the SM at 2.7\(\sigma\) and with many NP scenarios without \(\Delta \Phi\) of \(O(1)\), as compiled in Table 1, such as the MSSM with MFV. As we find, models with sizeable and complex \(s\bar{Z}b\) couplings do have the required CP reach in \(b \to s\bar{s}s\) decays. Note that anomalous couplings generically lead to large effects in the \(s\bar{Z}b\) vertex \[33\]. The Z-penguins contribute also to \(b \to s\ell^+\ell^-\) decays, \(b \to sW\bar{W}\) decays and \(B_0 - \bar{B}_0\) mixing \[20\].

A new CP violating NP contribution to the operator \[4\] will leak into other decays such as \(B \to K\eta, K\eta'\) which do have a \(s\bar{s}\) admixture. Belle reported for the time-dependent asymmetry parameters \(\sin(2\beta(\eta'K_S)) = 0.76 \pm 0.36^{+0.05}_{-0.06}\) and \(A_{\eta'K_S} = +0.26 \pm 0.22 \pm 0.03\) \[34, 35\]. Due to the anomalously large branching ratio of \(B \to (K, X_s)\eta'\) decays \[38, 39\] the effect of NP in the \(\eta'K_S\) vertex can be diluted in these channels by an enhanced SM contribution. Hence, it is conceivable that \(\sin(2\beta(\eta'K_S))\) is closer to \(\sin(2\beta(\Phi K_S))\) than \(\sin(2\beta(\Phi K_S))\) in agreement with the data and the hypothesis of sizeable NP in \(B \to \Phi K_S\) decays. There might be as well already NP in the CP asymmetry in \(B \to J/\Psi K_{S,L}\) decays \[40\]. Excluding the possibility that NP in \(b \to cs\bar{c}s\) and/or \(B_0 - \bar{B}_0\) mixing conspires such that the fit \(\beta\) lives on a different branch than \(\beta_{\text{eff}}\), this effect is at the 10 percent level. Since \(B(B \to \Phi K)/B(B \to J/\Psi K) \simeq 10^{-2}\) \[41\] and assuming approximate flavor universality an order one NP contribution to \(B \to \Phi K_S\) is roughly a 10\% correction to \(B \to J/\Psi K\) which is within the errors. Sensitivity to NP from measuring \(\beta\) in different decays is limited by the error on \(\sin 2\beta_{\text{fit}}\), which can be improved if the error on \(|V_{ub}|\) decreases and the SM background from \(b \to u\bar{u}s\) contributions to \(B \to \Phi K\) which has been suggested to bound by \(SU(3)\) analysis \[13\].

ACKNOWLEDGEMENTS

It is a pleasure to thank David Atwood, Susan Gardner and Martin Schmaltz for stimulating discussions. I am grateful to Yossi Nir for communication.

REFERENCES

1. B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 87, 091801 (2001) arXiv:hep-ex/0107013; B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0207012.
2. K. Abe et al. [BELLE Collaboration], Phys. Rev. Lett. 87, 091802 (2001) arXiv:hep-ex/0107061; T. Higuchi [Belle Collaboration], arXiv:hep-ex/0205020.
3. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963), M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
4. Y. Nir, talk given at ICHEP 2002, Amsterdam, July 24-31, 2002.
5. A. Höcker, talk given at FBCP May 16-18, 2002, Philadelphia, USA.
Table 1
Reach of the SM and models beyond in $\Delta \Phi = \arg(\bar{A}/A)$ in $b \to s\bar{s}s$ decays.

$\Delta \Phi$	$\mathcal{O}(\lambda^2)$	$\mathcal{O}(1)$	$\lesssim 0.2$	$\mathcal{O}(1)$
SM, MSSM with MFV	generic MSSM	2HDM III	VLdQ	

6. Aubert et al. (BABAR Collaboration), hep-ex/0207070.
7. T. Aubichev, talk given at ICHEP 2002 (Belle Collaboration), BELLE-CONF-0232; Abe et al., BELLE-CONF-0201 hep-ex/0207098.
8. K. Anikeev et al., arXiv:hep-ph/0210714.
9. R. Fleischer and T. Mannel, Phys. Lett. B 511, 240 (2001) [arXiv:hep-ph/0103121].
10. Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997) [arXiv:hep-ph/9612269].
11. R. Fleischer, Int. J. Mod. Phys. A 12, 2459 (1997) [arXiv:hep-ph/9612440].
12. D. London and A. Soni, Phys. Lett. B 407, 61 (1997) [arXiv:hep-ph/9704277].
13. Y. Grossman, G. Isidori and M. P. Worah, Phys. Rev. D 58, 057504 (1998) [arXiv:hep-ph/9708305].
14. R. Fleischer and T. Mannel, Phys. Lett. B 506, 311 (2001) [arXiv:hep-ph/0101276].
15. G. Eigen et al., in Proc. of Snowmass 2001, hep-ph/0112312.
16. B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 65, 051101 (2002) [arXiv:hep-ex/0111087].
17. K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002).
18. A. Ali, G. Kramer and C. D. Lu, Phys. Rev. D 58, 094009 (1998) [arXiv:hep-ph/9804363].
19. G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996) [arXiv:hep-ph/9512380].
20. R. Barbieri, L. J. Hall and A. Strumia, Nucl. Phys. B 449, 437 (1995) [hep-ph/9504373].
21. A. G. Cohen et al., Phys. Rev. Lett. 78, 2300 (1997) [hep-ph/9610254].
22. J. Hisano, K. Kurowsawa and Y. Nomura, Nucl. Phys. B 584, 3 (2000) [hep-ph/0002280].
23. S. Bertolini, F. Borzumati and A. Masiero, Nucl. Phys. B 294, 321 (1987).
24. M. Ciuchini et al., Phys. Rev. Lett. 79, 978 (1997) [arXiv:hep-ph/9704274].
25. E. Lunghi and D. Wyler, Phys. Lett. B 521, 320 (2001) [hep-ph/0109143].
26. G. Buchalla, G. Hiller and G. Isidori, Phys. Rev. D 63, 014015 (2001) [hep-ph/0006136].
27. E. Lunghi, A. Masiero, I. Scimeni and L. Silvestrini, Nucl. Phys. B 568, 120 (2000) [arXiv:hep-ph/9906286].
28. A. Ali et al., Phys. Rev. D 61, 074024 (2000), hep-ph/9910221.
29. A. Ali et al., hep-ph/0112300, to appear in Phys. Rev. D.
30. D. Bowser-Chao, K. m. Cheung and W. Y. Keung, Phys. Rev. D 59, 115006 (1999), hep-ph/9811233.
31. Y. Nir, arXiv:hep-ph/9911321.
32. G. Barenboim, F. J. Botella and O. Vives, Nucl. Phys. B 613, 285 (2001) [arXiv:hep-ph/0010530].
33. G. Burdman, M. C. Gonzalez-Garcia and S. F. Novaes, Phys. Rev. D 61, 114016 (2000), hep-ph/9906329.
34. K. F. Chen et al., arXiv:hep-ex/0207033.
35. See, for example, D. Atwood and A. Soni, Phys. Lett. B 405, 150 (1997) [hep-ph/9704357]; A. Ali, J. Chay, C. Greub and P. Ko, Phys. Lett. B 424, 161 (1998) [arXiv:hep-ph/9712372].