RELATIVE DERIVED DIMENSIONS FOR COTILTING MODULES

MICHIYO YOSHIWAKI

Abstract. For a Noetherian ring R and a cotilting R-module T of injective dimension at least 1, we prove that the derived dimension of R with respect to the category \mathcal{X}_T is precisely the injective dimension of T by applying Auslander-Buchweitz theory and Ghost Lemma. In particular, when R is a commutative Noetherian local ring with a canonical module ω_R and $\dim R \geq 1$, the derived dimension of R with respect to the category of maximal Cohen-Macaulay modules is precisely $\dim R$.

1. Introduction

The notion of dimension of a triangulated category was introduced by Rouquier [7] based on work of Bondal and Van den Bergh [4] on Brown representability. A relative version of this notion was introduced in [3], which counts how many extensions are needed to build the triangulated category out of a given subcategory. The aim of this paper is to give an explicit value of the relative dimension when the subcategory is associated with a cotilting module.

In this paper, we denote by R a Noetherian ring. All R-modules are finitely generated right R-modules. We denote by mod R the abelian category of R-modules and by $D^b (\text{mod } R)$ the derived category of mod R.

Then our main result is the following, which completes a main result Theorem 5.3 in [1].

Theorem 1.1. Let R be a Noetherian ring and T a cotilting R-module with $\text{inj.dim } T \geq 1$. Then we have an equality

$$\mathcal{X}_T - \text{tri. dim } D^b (\text{mod } R) = \text{inj.dim } T.$$

The inequality \leq was shown in [1, Theorem 5.3]. In this paper, we will prove the converse inequality by applying Auslander-Buchweitz theory and Ghost Lemma.

We apply Theorem 1.1 to the following settings. For a commutative Noetherian local ring R with a canonical module ω_R, we denote by $\text{CM } R$ the category of maximal Cohen-Macaulay modules. We call an R-algebra Λ an R-order if $\Lambda \in \text{CM } R$. We denote by CMA the category of maximal Cohen-Macaulay Λ-modules (i.e. Λ-modules X satisfying $X \in \text{CM } R$). As a special case of Theorem 1.1, we obtain the following results, which completes the inequalities (1.2.1) and (4.2.1) in [1].

Date: November 6, 2018.

2010 Mathematics Subject Classification. 16E10, 16E35, 16G50, 18E30.

Key words and phrases. Dimension of triangulated category; Derived category; Cotilting module; Cohen-Macaulay module.

The author was partially supported by JST (Japan Science and Technology Agency) CREST Mathematics Grant (15656429).
Corollary 1.2. Let R be a commutative Noetherian local ring with a canonical module ω_R and $\dim R \geq 1$. Then

1. We have an equality
 $$(\text{CMR}) - \text{tri.dim } \mathcal{D}^b(\text{mod } R) = \dim R.$$

2. More generally, for an R-order Λ, we have an equality
 $$(\text{CMA}) - \text{tri.dim } \mathcal{D}^b(\text{mod } \Lambda) = \dim R.$$

Proof. Since ω_R (respectively, $\omega_\Lambda := \text{Hom}_R(\Lambda, \omega_R)$) is a cotilting module with injective dimension $\dim R$, the assertion follows from Theorem 1.1. \qed

Remark 1.3. [1, Remark 5.4] If $\text{inj.dim } \omega_\Lambda = \dim R = 0$, then the equality in Corollary 1.2 (2) does not necessarily hold in general. Namely, let Λ be a finite dimensional non-semisimple self-injective algebra over a field. Then the right Λ-module Λ is a cotilting module with $\text{inj.dim } \Lambda = 0$ and $\mathcal{X}_\Lambda = \text{mod } \Lambda$. However, $\langle \text{mod } \Lambda \rangle$ is different from $\mathcal{D}^b(\text{mod } \Lambda)$.

2. Preliminaries

In this section, we will introduce several concepts.

Definition 2.1. (Aihara-Araya-Iyama-Takahashi-Y [1])

Let \mathcal{T} be a triangulated category with shift $[1]$ and \mathcal{X}, \mathcal{Y} full subcategories of \mathcal{T}.

1. The full subcategory $\mathcal{X} \ast \mathcal{Y}$ of \mathcal{T} is defined as follows:
 $$\mathcal{X} \ast \mathcal{Y} := \{ M \in \mathcal{T} \mid \exists \text{ a triangle } : X \to M \to Y \to X[1] \text{ with } X \in \mathcal{X}, Y \in \mathcal{Y} \}.$$

 Note that $(\mathcal{X} \ast \mathcal{Y}) \ast \mathcal{Z} = \mathcal{X} \ast (\mathcal{Y} \ast \mathcal{Z})$ holds by the octahedral axiom.

2. Set $\langle \mathcal{X} \rangle := \text{add} \{ X[i] \mid X \in \mathcal{X}, i \in \mathbb{Z} \}$. And, for any positive integer n,
 $$\langle \mathcal{X} \rangle_n := \text{add} \left(\langle \mathcal{X} \rangle \ast \langle \mathcal{X} \rangle \ast \cdots \ast \langle \mathcal{X} \rangle \right).$$

 Clearly, $\langle \mathcal{X} \rangle_n$ is closed under shifts.

3. The dimension of \mathcal{T} with respect to a subcategory \mathcal{X} is defined as follows:
 $$\mathcal{X} - \text{tri.dim } \mathcal{T} := \inf \{ n \geq 0 \mid \mathcal{T} = \langle \mathcal{X} \rangle_{n+1} \}.$$

 When $\mathcal{X} = \text{add } M$ for some object $M \in \mathcal{T}$, one can recover the dimension of triangulated category in the sense of Rouquier [7].

The relative (derived) dimensions realize the several invariants for rings. For instance, we have the following fact, which was proved by Krause and Kussin.

Example 2.2. (Krause-Kussin [5, Lemma 2.4 and 2.5])

$$(\text{proj } R) - \text{tri.dim } \mathcal{D}^b(\text{mod } R) = \text{gl.dim } R,$$

where $\text{proj } R$ is the subcategory of $\text{mod } R$ consisting of projective modules and $\text{gl.dim } R$ is the global dimension of R. This is a special case of our main result.
For an R-module T, we define the full subcategory $\perp T$ of $\text{mod} \ R$ as follows:

$$\perp T := \{ X \in \text{mod} \ R \mid \text{Ext}_R^i(X, T) = 0 \text{ for any } i > 0 \}.$$

Then we will introduce the concept of a cotilting module.

Definition 2.3. An R-module T is called **cotilting** if it satisfies the following three conditions:

1. The injective dimension $\text{inj.dim} \ T$ of T is finite.
2. $T \in \perp T$.
3. For any $X \in \perp T$, there exists a short exact sequence

$$0 \to X \to T' \to X' \to 0$$

with $T' \in \text{add} \ T$, $X' \in \perp T$.

For a cotilting module T, we will write \mathcal{X}_T instead of $\perp T$. Moreover, we set

$$\mathcal{Y}_T := (\mathcal{X}_T)^{\perp} = \{ Y \in \text{mod} \ R \mid \text{Ext}_R^i(X, Y) = 0 \text{ for any } i > 0 \text{ and any } X \in \mathcal{X}_T \}.$$

Then by Auslander-Buchweitz approximation theory \cite{3}, we have the following fact.

Proposition 2.4. Let T be a cotilting R-module with injective dimension d and $M \in \text{mod} \ R$. Then

1. there exists an exact sequence $0 \to Y \to X \to M \to 0$ with $X \in \mathcal{X}_T$ and $Y \in \mathcal{Y}_T$.
2. M belongs to \mathcal{Y}_T if and only if there exists an exact sequence

$$0 \to T_d \to \cdots \to T_1 \to T_0 \to M \to 0$$

with $T_i \in \text{add} \ T$.

A typical example of a cotilting module is the following.

Example 2.5. (1) The canonical module over a commutative Noetherian local ring R is a cotilting R-module.
(2) For a finite dimensional algebra R over a field k and a tilting R^{op}-module T in the sense of \cite{4}, the k-dual of T is a cotilting R-module.

3. **Proof of our result**

We need the following to prove Theorem \ref{thm:main}, which is called the **Ghost Lemma**.

Proposition 3.1. \cite[Lemma 4.11]{7} Let $H_1, H_2, \cdots, H_{n+1}$ be cohomological functors on a triangulated category \mathcal{T} and $f_i : H_i \to H_{i+1}$ morphisms between them. Let \mathcal{X}_i be subcategories of \mathcal{T} such that f_i vanishes on \mathcal{X}_i and $\mathcal{X}_i = \langle \mathcal{X}_i \rangle$. Then the composite $f_n \circ \cdots \circ f_1$ vanishes on $\text{add}(\mathcal{X}_1 \ast \cdots \ast \mathcal{X}_n)$.

Now we will prove Theorem \ref{thm:main}.

Proof of Theorem 4.7. In the rest, we show the converse inequality.

Set $\text{inj.dim } T =: d \geq 1$. Then we have $\mathbb{D}^b(\text{mod } R)(M, T[d]) \cong \text{Ext}^d_R(M, T) \neq 0$ for some $M \in \text{mod } R$. We will identify $\mathbb{D}^b(\text{mod } R)(-, -[i])$ with $\text{Ext}^i_R(-, -)$ for any integer i under the natural isomorphism. By Proposition 2.4, we have an exact sequence

$$[\xi_M: 0 \to T_d \xrightarrow{\phi_d} \cdots \xrightarrow{\phi_2} T_1 \xrightarrow{\phi_1} T_0 \xrightarrow{\phi_0} M \to 0] \in \text{Ext}^d_R(M, T),$$

where $T_0 \in \mathcal{X}_T$ and $T_i \in \text{add } T = \mathcal{X}_T \cap \mathcal{Y}_T$ for all $i = 1, \cdots, d$. Note that $\xi_M \neq 0$ since $\text{Ext}^d_R(M, T) \neq 0$. Put $K_i := \text{Im } \phi_i$ for each $i = 0, \cdots, d$. Then for any $i = 1, \cdots, d$, $K_i \in \mathcal{Y}_T$ and we have a short exact sequence

$$\xi_i: 0 \to K_i \to T_{i-1} \to K_{i-1} \to 0.$$

Regarding ξ_M (respectively, ξ_i) as a morphism from $K_0 = M$ to $K_d[d] = T_d[d]$ (respectively, from $K_{i-1}[i-1]$ to $K_i[i]$) in $\mathbb{D}^b(\text{mod } R)$, we have an equality

$$\xi_M = \xi_d \circ \cdots \circ \xi_1.$$

For any $i = 1, \cdots, d$, the morphism ξ_i induces a morphism

$$f_i: \mathbb{D}^b(\text{mod } R)(-, K_{i-1}[i-1]) \to \mathbb{D}^b(\text{mod } R)(-, K_i[i]).$$

Clearly $\mathbb{D}^b(\text{mod } R)(\mathcal{X}_T, K_i[j]) = 0$ holds if (i, j) belongs to $\{0, \cdots, d-1\} \times \mathbb{Z}_{<0}$ or $\{1, \cdots, d\} \times \mathbb{Z}_{>0}$. Therefore $\mathbb{D}^b(\text{mod } R)(\mathcal{X}_T, \xi_i[j]) = 0$ holds for any $i = 1, \cdots, d$ and $j \in \mathbb{Z}$. Namely, f_i vanishes on $\langle \mathcal{X}_T \rangle$. By Proposition 3.1, the composite $f_d \circ \cdots \circ f_1$ vanishes on $\langle \mathcal{X}_T \rangle_d$. But the composite $f_d \circ \cdots \circ f_1$ sends the identity morphism of $K_0 = M$ to $\xi_M = \xi_d \circ \cdots \circ \xi_1 \neq 0$ and hence $M \not\in \langle \mathcal{X}_T \rangle_d$. Namely, we have the inequality

$$\mathcal{X}_T\text{-tri.dim } \mathbb{D}^b(\text{mod } R) \geq \text{inj.dim } T,$$

as desired. \qed

References

[1] T. Aihara, T. Araya, O. Iyama, R. Takahashi and M. Yoshiwaki, Dimensions of triangulated categories with respect to subcategories, J. Algebra 399 (2014), 205–219.

[2] M. Auslander and R.-O. Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, (French summary) Colloque en l’honneur de Pierre Samuel (Orsay, 1987). Mémoire Soc. Math. France (N.S.) No. 38 (1989), 5–37.

[3] L.L. Avramov, R.-O. Buchweitz, S.B. Iyengar and C. Miller, Homology of perfect complexes, Adv. Math. 223 (2010), no. 5, 1731–1781 and corrigendum, Adv. Math. 225 (2010), no. 6, 3576–3578.

[4] A. Bondal and M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.

[5] H. Krause and D. Kussin, Rouquier’s theorem on representation dimension, Trends in representation theory of algebras and related topics, 95-103, Contemp. Math., 406, Amer. Math. Soc., Providence, RI, 2006.

[6] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146.

[7] R. Rouquier, Dimensions of triangulated categories, J. K-theory 1 (2008), no. 2, 193–256 and errata, 257–258.
