To the Editor: Among the 206 serogroups of *Vibrio cholerae*, O1 and O139 are associated with epidemic cholera. Serogroup O1 is classified into 2 biotypes, classical and El Tor. Conventionally, the 2 biotypes can be differentiated on the basis of a set of phenotypic traits. Comparative genomic analysis has shown variations in different genes between these biotypes (1). Cholera toxin (CT), the major toxin responsible for the disease cholera, has 2 epitopes or immunologic forms, CT1 and CT2 (2). Another classification recognizes 3 genotypes on the basis of the ctxB gene sequence variation (3). In the past few years, a new emerging form of *V. cholerae* O1, which possesses traits of both classical and El Tor biotypes, has been isolated in Bangladesh (4,5), Mozambique (6), Vietnam, Hong Kong, Japan, and Zambia (7). These strains were variously labeled as Matlab variants, hybrids, or altered El Tor strains.

Our study analyzed, in chronological order, strains of *V. cholerae* O1 that were isolated over 17 years (1989–2005). We used strains isolated during diarrhea surveillance conducted at the Infectious Diseases Hospital, Kolkata (Calcutta), to determine precisely when the hybrid strains appeared in this region. A total of 171 strains of *V. cholerae* were included in this study, along with 2 reference strains for classical and El Tor biotypes. The strains were variously labeled as Matlab variants, hybrids, or altered El Tor strains. The strains were examined by mismatch amplification mutation assay (MAMA)–based PCR for detecting the ctxB allele; a common forward primer was used for 2 alleles, FW-Com (5′-ACTATCTTCAGCATATGCACATGG-3′); and 2 allele-specific primers, Re-cla (5′-CCTGGTACTTCTAC TTGAACG-3′) and Re-elt (5′-CCTGGTACTTCTAC TTGAA CA-3′), were used for classical and El Tor biotypes, respectively (8). Results of the MAMA-PCR are summarized in the Table. All of the 123 *V. cholerae* O1 strains from 1995 through 2005 yielded only the classical type of ctxB, which indicates that since 1995 the classical type has completely replaced the El Tor type ctxB (Table). To reconfirm our PCR-based results, we selected 25 representative strains for DNA sequencing of the ctxB gene. The deduced amino acid sequences were aligned with theCtxB sequences of reference strains N16961 (El Tor) and O395 (classical). The deduced amino acid sequences of all 25 strains were identical to those of the classical reference strain; histidine was at position 39 and threonine was at position 68. Thus, the results from DNA sequencing of the ctxB gene confirmed the MAMA-PCR results.

Table. Prevalence of different types of ctxB alleles among *Vibrio cholerae* O1 strains, Kolkata, India, 1989–2005

Year isolated	No. strains tested	Classical ctxB	El Tor ctxB	Classical + El Tor ctxB
1989	6	0	6	0
1990	7	4	3	0
1991	10	8	0	2*
1992	10	4	5	1*
1993	6	4	2	0
1994	9	8	1	0
1995	23	23	0	0
1996	10	10	0	0
1997	10	10	0	0
1998	10	10	0	0
1999	10	10	0	0
2000	10	10	0	0
2001	10	10	0	0
2002	10	10	0	0
2003	10	10	0	0
2004	10	10	0	0
2005	10	10	0	0

These strains carry the ctxB gene for El Tor, as well as classical strains.
Our results highlight a noteworthy event in the evolution of recent *V. cholerae* strains. Analysis of type ctxB that had been circulating in Kolkata for 17 years (1989–2005) showed that in 1989 only the El Tor allele of ctxB was present. Our results further indicate that classical type ctxB emerged in 1990, although El Tor type ctxB was still present in almost equal numbers during that year. During 1991, a unique event took place when the classical type became predominant, along with strains having both classical and El Tor type ctxB. In 1994, isolation of strains with El Tor ctxB became rare, and the major ctxB allele was of the classical type. *V. cholerae* O1 strains from 1995 onward were found to carry classical type ctxB, which totally replaced the El Tor type ctxB allele.

Replacement of El Tor type ctxB by the classical allele has been reported in Bangladesh since 2001 (5), but this event seems to have occurred earlier in Kolkata. Perhaps the new type of El Tor strains arose when *V. cholerae* strains with typical seventh pandemic El Tor genetic background were replaced with strains having the ctxB gene, possibly driven by selective pressure to survive and adapt better in host intestines. Considering the increase in the global prevalence of cholera (9), the origin and spread of these new variants of *V. cholerae* strains should be tracked in the population by genome analysis. Finally, this study has described a brief period from February 1991 through December 1992 when El Tor strains had CTX prophages of both classical and El Tor types (data not shown), along with the ctxB of both biotypes. Notably, this period coincided with an unprecedented event in the history of cholera—the genesis of the O139 serogroup. After this serogroup reemerged in 1996, it harbored 2 types of CTX prophages, namely, El Tor and Calcutta (10). Further, these strains with ctxB of both biotypes might also have had a pivotal role behind the emergence of El Tor strains with classical ctxB. Further studies are warranted to determine whether any distinct relationship exists between these overlapping events.

This work was supported in part by the Indian Council of Medical Research, the Government of India, the Japan International Cooperation Agency (JICA/NICED Project 054-1061-E-O), and the Program of Founding Research Center for Emerging and Reemerging Infectious Diseases, Ministry of Education, Culture, Sports, Science and Technology of Japan.

Amit Raychoudhuri, Tapas Patra, Kausik Ghosh, Thandavaranayam Ramamurthy, Ranjan K. Nandy, Yoshifumi Takeda, G. Balakrish Nair, and Asish K. Mukhopadhyay

Author affiliations: National Institute of Cholera and Enteric Diseases, Kolkata, India (A. Raychoudhuri, T. Patra, K. Ghosh, T. Ramamurthy, R.K. Nandy, G.B. Nair, A.K. Mukhopadhyay); and Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata (Y. Takeda)

DOI: 10.3201/eid1501.080543

References

1. Dziejman M, Balon E, Byod D, Fraser CM, Heidelberg JF, Mekalanos JJ. Comparative genomic analysis of *Vibrio cholerae* genes that correlate with cholera endemic and pandemic diseases. Proc Natl Acad Sci U S A. 2002;99:1556–61. DOI: 10.1073/pnas.042667999

2. Finkelstein RA, Burks F, Zupan A, Dallas WS, Jacob CO, Ludwig DS. Epitopes of the cholera family of enterotoxins. Rev Infect Dis. 1987;9:544–61.

3. Olsvik O, Wahlberg J, Petterson B, Uhlén M, Popovic T, Wachsmuth IK, et al. Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in *Vibrio cholerae* O1 strains. J Clin Microbiol. 1993;31:22–5.

4. Nair GB, Faruque SM, Bhuiyan NA, Kamruzzaman M, Siddique AK, Sack DA. New variants of *Vibrio cholerae* O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol. 2002;40:3296–9. DOI: 10.1128/JCM.40.9.3296-3299.2002

5. Nair GB, Qadri F, Holmgren J, Svennerholm AM, Saif A, Bhuiyan NA, et al. Cholera due to altered El Tor strains of *Vibrio cholerae* O1 in Bangladesh. J Clin Microbiol. 2006;44:4211–3. DOI: 10.1128/JCM.01304-06

6. Ansaruzzaman M, Bhuiyan NA, Nair GB, Sack DA, Lucas M, Deen JL, et al. Cholera in Mozambique, variant of *Vibrio cholerae*. Emerg Infect Dis. 2004;10:2057–9.

7. Saif A, Sultana J, Cam PD, Mwansa JC, Kong RYC. Classical cholera toxin producing *Vibrio cholerae* O1 hybrid El Tor strains in Asia and Africa. Emerg Infect Dis. 2008;14:987–8.

8. Morita M, Ohnishi M, Bhuiyan NA, Nusrin S, Alam M, Siddique AK, et al. Development and validation of a mismatch amplification mutation assay PCR to distinguish between the cholera toxin B subunit of classical and El Tor biotypes of *Vibrio cholerae* O1. Microbiol Immunol. 2008;52:314–7. DOI: 10.1111/j.1348-0421.2008.00641.x

9. World Health Organization. Cholera, 2006. Wkly Epidemiol Rec. 2007:82:273–84.

10. Kimsey HH, Nair GB, Ghosh A, Walder MK. Diverse CTXφs and evolution of new pathogenic *Vibrio cholerae*. Lancet. 1998;352:457–8. DOI: 10.1016/S0140-6736(05)79193-5

Address for correspondence: Asish K. Mukhopadhyay, National Institute of Cholera and Enteric Diseases, P-33, CIT Rd, Scheme XM, Beliaghata, Kolkata–700010, India; email: asish_mukhopadhyay@yahoo.com

Letters

Letters commenting on recent articles as well as letters reporting cases, outbreaks, or original research are welcome. Letters commenting on articles should contain no more than 300 words and 5 references; they are more likely to be published if submitted within 4 weeks of the original article’s publication. Letters reporting cases, outbreaks, or original research should contain no more than 800 words and 10 references. They may have 1 Figure or Table and should not be divided into sections. All letters should contain material not previously published and include a word count.