Double–double radio galaxies: remnants of merged supermassive binary black holes

F. K. Liu,1,2* Xue-Bing Wu1⋆ and S. L. Cao3

1National Astronomical Observatory of the Chinese Academy of Sciences & Astronomy Department of Peking University, 100871 Beijing, China
2Department of Astronomy, Göteborg University & Chalmers University of Technology, 41296 Göteborg, Sweden
3Astronomy Department, Beijing Normal University, 100875 Beijing, China

Accepted 2002 October 24. Received 2002 October 16; in original form 2002 July 1

ABSTRACT

The activity of active galaxies may be triggered by the merging of galaxies, and present-day galaxies are probably the product of successive minor mergers. The frequent galactic mergers at high redshift imply that active galaxies harbour supermassive unequal-mass binary black holes at their centre at least once during their lifetime. The secondary black hole interacts and becomes coplanar with the accretion disc around the primary, inwardly spiralling toward their mass centre owing to the loss of orbital angular momentum to the disc mass outside the orbit of the secondary and/or to gravitational radiation. The binary black holes finally merge and form a more massive (post-merged) black hole at the centre. In this paper it is shown that the recently-discovered double-lobed FR II radio galaxies are the remnants of such supermassive binary black holes. The inwardly spiraling secondary black hole opens a gap in the accretion disc that increases with time when the loss of the orbital angular momentum via gravitational radiation becomes dominant. When the supermassive black holes merge, the inner accretion disc disappears and the gap becomes a big hole of several hundreds of Schwarzschild radii in the vicinity of the post-merged supermassive black hole, leading to an interruption of jet formation. When the outer accretion disc slowly refills the big hole on a viscous time-scale, jet formation restarts and the interaction of the recurrent jets and the inter-galactic medium forms a secondary pair of lobes. The model is applied to a particular double-lobed radio source – B1834+620 – which has an interruption time-scale ~1 Myr. It is shown that the orbit of the secondary in B1834+620 is elliptical with a typical eccentricity $e \simeq 0.68$ and that the ratio q of the mass of the secondary to that of the primary is $0.01 \lesssim q \lesssim 0.4$. The accretion disc is a standard α-disc with $0.01 \lesssim \alpha \lesssim 0.04$ and the ratio of disc half height H to radius r is $\delta \simeq 0.01$. The model predicts that double-lobed radio structures form only in FR II or borderline FR I/FR II radio galaxies and that the detection rate of double-lobed radio sources among FR II radio sources is about one per cent.

Key words: accretion, accretion discs – black hole physics – galaxies: active – galaxies: individual: B1834+620 – galaxies: jets – radio continuum: galaxies.

1 INTRODUCTION

Active galactic nuclei (AGNs) consist of a supermassive black hole surrounded by an accretion disc, continuously supplying energy to the extended radio lobes via narrow and relativistic plasma jets. Prominent and continuous large-scale extra-galactic radio jets have been clearly detected in 661 radio sources (Liu & Zhang 2002). Among the extra-galactic radio sources, about ten FR II radio galaxies (Fanaroff & Riley 1974) are very peculiar and consist of a pair of symmetric double-lobed radio structures with one common centre and two extended and edge-brightened inner radio lobes (Schoenmakers et al. 2000a,b; Saripalli, Subrahmanyan & Udaya Shankar 2002). The inner structure has an axis well aligned with the outer lobes and a relatively lower luminosity. These radio sources are called double–double radio galaxies (DDRGs) and their structures are most likely to be due to the interruption and restarting of jet formation in the central engine with an interruption time of the order of Myr (Schoenmakers et al. 2000a). Interruption and recurrent-jet phenomena are also detected in some non-DDRG radio sources, e.g. 3C 288 (Bridle et al. 1989), 3C 219 (Clarke et al. 1996).
While the evolution of recurrent jets in the intergalactic medium (IGM) has been investigated in some detail (Clarke & Burns 1991; Reynolds & Begelman 1997; Kaiser, Schoenmakers & Rötgterginger 2000), the mechanism to interrupt and restart the jet formation in the centre of AGNs is unclear. The proposed scenarios in the literature include a passive magnetic field model (Clarke & Burns 1991), internal instability in the accretion disc due to radiation-pressure-induced warping (Pringle 1997; Natarajan & Pringle 1998), and a large fraction of gas left by the secondary galaxy in a merging or colliding galaxy system (Schoenmakers et al. 2000a). However, the passive magnetic field model is not consistent with the observations of the DDRG source B1834+620 (Lara et al. 1999). The internal warping instability is likely to change the direction of the jet considerably (Natarajan & Pringle 1998). The falling or colliding gas model has difficulty in explaining the abrupt interruption and restarting of jet formation and is not consistent with the lack of observational evidence for galaxy interaction in DDRGs.

It was found recently that the central black hole masses in active and inactive galaxies have tight correlations with the central velocity dispersions (e.g. Gebhardt et al. 2000; Merritt & Ferrarese 2001a,b) and the bulge luminosities (e.g. Magorrian et al. 1998; McLure & Dunlop 2002) of the host galaxies. These relations imply that the activity of AGNs may be triggered by galaxy merging, and that present-day galaxies are probably the product of successive mergers (Haehnelt & Kauffmann 2000; Kauffmann & Haehnelt 2001). The frequent galactic interactions and the coalescence of supermassive binaries include a passive magnetic field model (Shapiro & Teukolsky 1983) or a slim disc (Abramowicz et al. 1988) and assume that the accretion process and can be as high as 0.4 for a Kerr black hole. Where shrinking of the binary separation is driven by viscous loss of the angular momentum to the disc mass outside the orbit and/or to gravitational radiation (Goldreich & Tremaine 1980; Lin & Papaloizou 1986; Pringle 1997; Artymowicz 1992; Artymowicz & Lubow 1994; Syer & Clarke 1995; Scheuer & Feiler 1996; Ivanov, Papaloizou & Polnarev 1999; Narayan, Haiman & Papaloizou 1996; Menou, Haiman & Narayan 2001). The frequent galactic mergers at high red-shift imply that active galaxies harbour supermassive unequal-mass binary black holes at their centre at least once in their lifetime. Supermassive binary black holes may have been observed, e.g. in the BL Lac object OJ287 (Sillanpää et al. 1988; Liu & Wu 2002). Once the supermassive black hole black holes form, the secondary interacts with the gas in the circumbinary accretion disc and becomes coplanar, sinking towards the mass centre and merging owing to the loss of orbital angular momentum to the disc.

If the orbit of the secondary is coplanar with the accretion disc and becomes coplanar, sinking towards the mass centre and merging owing to the loss of orbital angular momentum to the disc (Collin-Souffrin & Dumont 1990)
\[\delta = \frac{H}{r} \]
which is nearly independent of the radius \(r \) (Collin-Souffrin & Dumont 1990)

\[\delta \simeq 0.01 a^{-1/2} \left(\frac{L}{0.1 L_\odot} \right)^{1/5} \left(\frac{M_8}{0.2} \right)^{-1/5} \left(\frac{r}{10^3 R_\odot} \right)^{1/20}, \]

where \(L_\odot \) is the solar luminosity and \(M_8 = M / (5 \times 10^8 M_\odot) \) is the mass of the secondary and the primary is

\[\varpi = \frac{3}{2} \frac{v}{r} \simeq -\frac{3}{2} \delta^2 \alpha K v_K. \]

where \(v_K \) is the Keplerian velocity and \(H/r \simeq c_s/v_K \). When \(a \) is small, the loss of angular momentum owing to gravitational radiation becomes important. At some critical radius \(a_{\text{cr}} \), the migration speed changes to be comparable with the inwardly spiraling rate due to gravitational radiation (Peters & Mathews 1963):

\[\dot{a}_{\text{cr}} = -\frac{64 G^3 M^2 q(1 + q)}{5 q^2 a^3} f \left(\frac{r_{\text{cr}}}{r} \right)^3 q(1 + q) f_c, \]

where \(r_{\text{cr}} \) is a function of the eccentricity \(e \):

\[f = \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right)^{-3/2}. \]

The orbit of the secondary is circular owing to the binary–disc interaction for a binary system of \(q \lesssim 10^{-2} \) but is elliptical for \(q \gtrsim 10^{-2} \). In equation (1), \(\alpha \) is the mass ratio

\[\alpha = \frac{m}{M}. \]

The secondary black hole opens a gap in the disc and exchanges angular momentum with disc gas via gravitational torques (Lin & Papaloizou 1986). In equation (1), \(\alpha = 0.01 \) is the viscous parameter, \(\delta = 0.1 \lesssim \delta = H/r \) and \(r = 0.5 \) is the thickness of the disc. For a gas-pressure dominated accretion disc, \(\delta \) is nearly independent

\[\varpi \simeq -\frac{3}{2} \frac{v}{r} \simeq -\frac{3}{2} \delta^2 \alpha K v_K. \]

where \(v_K \) is the Keplerian velocity and \(H/r \simeq c_s/v_K \). When \(a \) is small, the loss of angular momentum owing to gravitational radiation becomes important. At some critical radius \(a_{\text{cr}} \), the migration speed changes to be comparable with the inwardly spiraling rate due to gravitational radiation (Peters & Mathews 1963):

\[\dot{a}_{\text{cr}} = -\frac{64 G^3 M^2 q(1 + q)}{5 q^2 a^3} f \left(\frac{r_{\text{cr}}}{r} \right)^3 q(1 + q) f_c, \]

where \(r_{\text{cr}} \) is a function of the eccentricity \(e \):

\[f = \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right)^{-3/2}. \]

The orbit of the secondary is circular owing to the binary–disc interaction for a binary system of \(q \lesssim 10^{-2} \) but is elliptical for \(q \gtrsim 10^{-2} \).
For the typical parameters \(\alpha = 0.01 \) and \(\delta = 0.01 \) and \(M = 5 \times 10^8 \) M\(_\odot\), we have \(a_{\mathrm{ci}} \approx 110 r_G \) and \(t_{\mathrm{ci}} \approx 0.34 \) Myr for \(e = 0.7 \) and \(q = 0.01 \); and \(a_{\mathrm{ci}} \approx 6 r_G \) and \(t_{\mathrm{ci}} \approx 2000 \) yr if \(e = 0 \) and \(q = 5 \times 10^{-5} \).

When \(a < a_{\mathrm{ci}} \), the inwards spiralling secondary black hole begins to push the inner disc inwards on a gravitational radiation time-scale (see also Armitage & Natarajan 2002 for a circular system). When \(a \approx 2r_G \), the radial flow speed \(v \) of the inner disc is at \(r_1 \approx 2r_G \), the inner disc disappears. When \(r_1 = 2r_G \), the radial flow speed \(v_2 \) of the inner disc is the inwardly spiralling speed of the secondary and \(v = \dot{a}_{\mathrm{gw}} = -1.6 \times 10^{-2} q (1 + q)^{1/2} f v_{\mathrm{K}2} \)

\[
\dot{a}_{\mathrm{gw}} = -\frac{128r_G}{15} \frac{\alpha}{q} \frac{1}{(1 + q)^{1/5}} \left(\frac{r_G}{c} \right)^{3/5} \times \left(\frac{M}{6 \times 10^8 M_\odot} \right)^{1/3} \text{Myr}^{-1}.
\]

For typical parameters \(\alpha = 0.01 \) and \(\delta = 0.01 \) and \(M = 5 \times 10^8 \) M\(_\odot\), we have \(a_{\mathrm{ci}} \approx 110 r_G \) and \(t_{\mathrm{ci}} \approx 0.34 \) Myr for \(e = 0.7 \) and \(q = 0.01 \); and \(a_{\mathrm{ci}} \approx 6 r_G \) and \(t_{\mathrm{ci}} \approx 2000 \) yr if \(e = 0 \) and \(q = 5 \times 10^{-5} \).

When \(a < a_{\mathrm{ci}} \), the inwardly spiralling secondary black hole begins to push the inner disc inwards on a gravitational radiation time-scale (see also Armitage & Natarajan 2002 for a circular system). When the semimajor axis \(a \) is at \(r_1 \approx 2r_G \), the inward disc disappears. When \(r_1 = 2r_G \), the radial flow speed \(v \) of the inner disc is the inwardly spiralling speed of the secondary and \(v = \dot{a}_{\mathrm{gw}} = -1.6 \times 10^{-2} q (1 + q)^{1/2} f v_{\mathrm{K}2} \)

\[
\dot{a}_{\mathrm{gw}} = -\frac{128r_G}{15} \frac{\alpha}{q} \frac{1}{(1 + q)^{1/5}} \left(\frac{r_G}{c} \right)^{3/5} \times \left(\frac{M}{6 \times 10^8 M_\odot} \right)^{1/3} \text{Myr}^{-1}.
\]

For typical parameters \(\alpha = 0.01 \) and \(\delta = 0.01 \) and \(M = 5 \times 10^8 \) M\(_\odot\), we have \(a_{\mathrm{ci}} \approx 110 r_G \) and \(t_{\mathrm{ci}} \approx 0.34 \) Myr for \(e = 0.7 \) and \(q = 0.01 \); and \(a_{\mathrm{ci}} \approx 6 r_G \) and \(t_{\mathrm{ci}} \approx 2000 \) yr if \(e = 0 \) and \(q = 5 \times 10^{-5} \).

When \(a < a_{\mathrm{ci}} \), the inwardly spiralling secondary black hole begins to push the inner disc inwards on a gravitational radiation time-scale (see also Armitage & Natarajan 2002 for a circular system). When the semimajor axis \(a \) is at \(r_1 \approx 2r_G \), the inward disc disappears. When \(r_1 = 2r_G \), the radial flow speed \(v \) of the inner disc is the inwardly spiralling speed of the secondary and \(v = \dot{a}_{\mathrm{gw}} = -1.6 \times 10^{-2} q (1 + q)^{1/2} f v_{\mathrm{K}2} \)

\[
\dot{a}_{\mathrm{gw}} = -\frac{128r_G}{15} \frac{\alpha}{q} \frac{1}{(1 + q)^{1/5}} \left(\frac{r_G}{c} \right)^{3/5} \times \left(\frac{M}{6 \times 10^8 M_\odot} \right)^{1/3} \text{Myr}^{-1}.
\]

For typical parameters \(\alpha = 0.01 \) and \(\delta = 0.01 \) and \(M = 5 \times 10^8 \) M\(_\odot\), we have \(a_{\mathrm{ci}} \approx 110 r_G \) and \(t_{\mathrm{ci}} \approx 0.34 \) Myr for \(e = 0.7 \) and \(q = 0.01 \); and \(a_{\mathrm{ci}} \approx 6 r_G \) and \(t_{\mathrm{ci}} \approx 2000 \) yr if \(e = 0 \) and \(q = 5 \times 10^{-5} \).

When \(a < a_{\mathrm{ci}} \), the inwardly spiralling secondary black hole begins to push the inner disc inwards on a gravitational radiation time-scale (see also Armitage & Natarajan 2002 for a circular system). When the semimajor axis \(a \) is at \(r_1 \approx 2r_G \), the inward disc disappears. When \(r_1 = 2r_G \), the radial flow speed \(v \) of the inner disc is the inwardly spiralling speed of the secondary and \(v = \dot{a}_{\mathrm{gw}} = -1.6 \times 10^{-2} q (1 + q)^{1/2} f v_{\mathrm{K}2} \)

\[
\dot{a}_{\mathrm{gw}} = -\frac{128r_G}{15} \frac{\alpha}{q} \frac{1}{(1 + q)^{1/5}} \left(\frac{r_G}{c} \right)^{3/5} \times \left(\frac{M}{6 \times 10^8 M_\odot} \right)^{1/3} \text{Myr}^{-1}.
\]

For typical parameters \(\alpha = 0.01 \) and \(\delta = 0.01 \) and \(M = 5 \times 10^8 \) M\(_\odot\), we have \(a_{\mathrm{ci}} \approx 110 r_G \) and \(t_{\mathrm{ci}} \approx 0.34 \) Myr for \(e = 0.7 \) and \(q = 0.01 \); and \(a_{\mathrm{ci}} \approx 6 r_G \) and \(t_{\mathrm{ci}} \approx 2000 \) yr if \(e = 0 \) and \(q = 5 \times 10^{-5} \).

When \(a < a_{\mathrm{ci}} \), the inwardly spiralling secondary black hole begins to push the inner disc inwards on a gravitational radiation time-scale (see also Armitage & Natarajan 2002 for a circular system). When the semimajor axis \(a \) is at \(r_1 \approx 2r_G \), the inward disc disappears. When \(r_1 = 2r_G \), the radial flow speed \(v \) of the inner disc is the inwardly spiralling speed of the secondary and \(v = \dot{a}_{\mathrm{gw}} = -1.6 \times 10^{-2} q (1 + q)^{1/2} f v_{\mathrm{K}2} \)

\[
\dot{a}_{\mathrm{gw}} = -\frac{128r_G}{15} \frac{\alpha}{q} \frac{1}{(1 + q)^{1/5}} \left(\frac{r_G}{c} \right)^{3/5} \times \left(\frac{M}{6 \times 10^8 M_\odot} \right)^{1/3} \text{Myr}^{-1}.
\]
Equation (10) indicates that the interruption time t_m is sensitive to disc parameters α and δ. Fig. 2 gives q as a function of α and e for B1834+620. For $0.01 \lesssim q \lesssim 0.1$ and $0.3 \lesssim e \lesssim 0.75$, α is in the range $3.5 \times 10^{-3} \lesssim \alpha \lesssim 4.0 \times 10^{-2}$. If $\delta = 0.01$ and $e = 0.68$, the mass of the secondary black hole in B1834+620 is $m \approx 5 \times 10^6$ M$_\odot$ for $\alpha = 0.01$; $m \approx 3 \times 10^5$ M$_\odot$ for $\alpha = 0.02$; and $m \approx 1 \times 10^6$ M$_\odot$ for $\alpha = 0.03$, respectively.

As the central black hole masses in AGNs are in the ranges $10^{7.3}$ M$_\odot \lesssim M \lesssim 10^{8.3}$ M$_\odot$ (see, for example, Wu, Liu & Zhang 2002), the possible interruption time of jet formation is $50 \text{ Kyr} \lesssim t_m \lesssim 5 \text{ Myr}$, if the disc–binary system is typical with $\alpha = 0.02$, $\delta = 0.01$, $q = 0.05$ and $e = 0.68$. When the interruption time-scale t_m is of order 106 yr, warm clouds of gas embedded in the hot intergalactic medium can fill the old outer cocoon and the new jets may give rise to two new radio lobes in FR II radio galaxies (Kaiser et al.

3.2 FR II radio morphology and detection rate of DDRGs

One requirement for the massive secondary to open a gap in the accretion disc and to migrate inwards on a viscous time-scale at large separation of the binary is $M_\delta \gtrsim m$ (Syer & Clarke 1995; Ivanov et al.

The size of a thin standard accretion disc $r_d \sim 10^4 r_G$ may be determined by star formation in the outermost regions of the disc or by the specific angular momentum of the gas that enters the disc. For a simple α-disc (Shakura & Sunyaev 1973), the steady-state disc surface density is given by

$$\Sigma \approx 3.5 \times 10^4 \alpha^{-3/4} M_\odot^{3/4} \delta^{-3/3} r_d^{-3/4} \text{ cm}^{-2},$$

where $r_d = r_d / 10^4 r_G$ and $\dot{m} = M / \dot{M}_{\text{Edd}} = 10^{-2} \dot{m}_{-2}$ with the Eddington accretion rate $\dot{M}_{\text{Edd}} = 1.2 M_8$ (M$_\odot$ yr$^{-1}$). From equation (11), we have

$$M_\delta / m = 10^7 \Sigma r_d^2 / m \approx 7 \alpha^{-1/4} M_8^{6/5} \delta^{3/5} r_d^{7/5} \left(q / 0.05 \right)^{-1}.$$

FR I and FR II radio galaxies can be separated clearly according to their radio power (Fanaroff & Riley 1974) and/or to the optical luminosity of the host galaxy in the sense of increasing radio luminosity with increasing optical luminosity of the host galaxy (Ledlow & Owen 1996). The dividing line in the radio power–host galaxy optical luminosity plane corresponds to a critical accretion rate (Ghisellini & Celotti 2001):

$$m_{\text{cr}} = M / \dot{M}_{\text{Edd}} \approx 3 \times 10^{-2} \left(\frac{q}{0.2} \right)^{-1}.$$

In FR I radio galaxies, the accretion rate $\dot{m} < m_{\text{cr}}$, while in FR II radio galaxies $\dot{m} > m_{\text{cr}}$. A low accretion rate $\dot{m} \lesssim 10^{-2}$ in FR I radio galaxies and a high accretion rate $\dot{m} \gg 10^{-2}$ in FR II radio galaxies are also suggested by Böttcher & Dermer (2002) and Cavaliere & D’Elia (2002). From equations (12) and (13), $M_\delta / m \gtrsim 1$ in FR II radio galaxies, while $M_\delta / m \lesssim 1$ in FR I radio galaxies. For an accretion disc with $\dot{m} \lesssim 10^{-2}$, the accretion does not appear in a thin or slim disc but possibly in ADAF (Narayan & Yi 1994; Abramowicz et al.

4 DISCUSSIONS AND CONCLUSIONS

We present a supermasive binary black hole scenario to explain the interruption and restarting of jet formation, and DDRGs should have FR II or borderline FR I/FR II radio morphology. Since in our model the primary, the secondary and the accretion disc are roughly coplanar with one another, the rotating post-merged supermassive black hole is thus roughly aligned with the rotating primary and the new-born jets in DDRGs should restart symmetrically and roughly in the same direction as former jets.

When the secondary migrates from a_{in} to r_c, and pushes the gas in the inner accretion disc inwards with a velocity $|\dot{a}_{\text{in}}| > |\dot{a}_{\text{in}}|$ (Armitage & Natarajan 2002), the mass accreting into the primary black hole and down to the jets increases dramatically. The jets become extremely strong and the extremely large (giant) outer lobes of DDRGs thus formed have relatively high luminosity as compared with the inner radio structure formed by the recurrent jets. As the lifetime of a binary system in AGNs is very long (Begelman et al.

The time for jet material to travel from the central nuclei to the extended radio lobes in DDRGs is \sim Myr (Kaiser et al.

The possible time t_{100} to detect a radio galaxy with a DDRG is the total time of the interruption (\sim Myr) and the travelling time (\sim Myr) of jet plasma from the central core to radio lobe. If every FR II radio galaxy harbours a supermassive binary once in its lifetime of $\sim 10^9$ yr and we take $t_{100} \sim 10^5$ yr, the possibility of detecting an FR II radio source with a DDRG is \sim1 per cent. This is consistent with the observations of a low detection rate of DDRGs.
jet produced is very strong. Thus, the outer radio structures formed are very large (giant), with relatively high luminosity as compared with the inner structure formed by the recurrent jets. As the merging of binary black holes does not change the direction of the spinning axis of the central supermassive black hole, the inner radio structure should align with the outer lobes. We also show that only in FR II or borderline FR I/FR II radio galaxies could the accretion disc strongly interact with the supermassive binary black holes, and DDRGs should have FR II radio morphology.

The binary orbit in the model is elliptical. Gravitational wave emission is very effective for eccentric binaries. A high eccentricity significantly shortens the evolutionary time-scale of the binary and enlarges the big hole as compared to that dug by a circular binary. The interruption time of a circular orbit system is too short to explain the observations of DDRGs. In the course of binary evolution, dynamical friction with stars in the cluster around the central black hole is unlikely to lead to a substantial increase of the eccentricity (Polnarev & Rees 1994), but the eccentricity of a binary system changes with time due to the interaction of the disc to the secondary (Artymowicz 1992). For a secondary with \(q \lesssim 10^{-2} \), the orbit is circularized at the initial stage when the binary–disc system forms. For a massive secondary of \(10^{1} \), the time-scale for the second change happens on a short time-scale \(\sim t_{\alpha 2} \) when \(10^{3} \ll a \ll t_{\alpha 1} (Liu 2003) \). At the same time, the orientation of the binary orbital plane slowly changes with time and has a tendency to become vertical with respect to the outer accretion disc on a much longer time-scale \(t_{\alpha 3} \) (Ivanov et al. 1999). The time-scale \(t_{\alpha 3} \) depends on \(\alpha \) and accretion rate \(M \) for \(q > 10^{-3} \). For an accretion disc with \(\alpha \approx 1 \), the time-scale \(t_{\alpha 3} \) with \(t_{\alpha 3} \gg t_{\alpha 2} \approx t_{\alpha 1} \) (Liu 2003) is much smaller than the lifetime of a typical active galaxy, while for binary systems like those in DDRGs with \(10^{-2} \lesssim q \lesssim 1 \) and \(\alpha \ll 1 \), the situation is more complicated (Scheuer & Feiler 1996; Ivanov et al. 1999). But it is still possible for the orbital plane of the secondary to be coplanar with the accretion disc within a reasonable time-scale, as the vertical shear of the twisted disc may be much stronger than its azimuthal counterpart (Papaloizou & Pringle 1983; Kumar & Pringle 1985; Natarajan & Pringle 1998).

When the primary, the secondary and the accretion disc become coplanar with one another, the orientation of the spinning axis of the primary dramatically changes twice, and so does the orientation of the jets. The first change happens on a short time-scale \(\sim t_{\alpha 2} \), while the second does so on a much longer time-scale \(t_{\alpha 3} \). When jets change their orientations, X-shaped radio structure forms (Liu 2003). As the rapid realignment happens only when the accretion disc is a thin \(\alpha \)-disc with \(M_{\alpha}/m \gtrsim 1 \), X-shaped radio structures, like the double–double radio lobes in DDRGs, can be detected only in FR II or extremely-luminous FR I radio galaxies. Detailed discussion of how our model works for X-shaped radio galaxies (Dennett-Thorpe et al. 2002), and of the relation between X-shaped radio galaxies and DDRGs, is beyond the scope of the present paper and will be presented in a further work (Liu 2003).

When the semimajor axis of the orbit is smaller than the critical radius, the gap rapidly increases with decreasing separation. When the binary is close and almost ready to merge, the inner accretion disc becomes extremely hot and strong outflow might form. The sources may become extremely bright in X-rays. The gravitational wave radiation of the binary system is very strong and the system becomes a very good target for monitoring by gravitational wave detectors. However, such strong X-ray and gravitational radiation sources may be difficult to discover, because their lifetime is less than a few thousand years. When two supermassive black holes become merged, the inner region of the accretion disc becomes empty and no X-ray or radio radiation comes from the accretion disc or jets. It is possible in a large sky survey to detect some sources with luminous radio lobes and bright jet-fragments, but with a weak central nucleus in radio and X-ray wavebands.

ACKNOWLEDGMENTS

We thank Professor D. N. C. Lin for helpful comments and Dr Xuelei Chen for interesting discussions. This work is supported by NSFC (No. 10203001) and the Swedish Natural Science Research Council (NFR).

REFERENCES

Abramowicz M. A., Czerny B., Lasota J. P., Szuszkiewicz E., 1988, ApJ, 332, 646
Abramowicz M. A., Chen X., Kato S., Lasota J.-P., Regev O., 1995, ApJ, 438, L37
Armitage P. J., Natarajan P., 2002, ApJ, 567, L9
Artymowicz P., 1992, PASP, 104, 769
Artymowicz P., Lubow S. H., 1994, ApJ, 421, 651
Baum S. A., O’Dea C. P., de Bruyn A. G., Murphy D. W., 1990, A&A, 232, 19
Begelman M. C., Meier D. L., 1982, ApJ, 253, 873
Begelman M. C., Blandford R. D., Rees M. J., 1980, Nat, 287, 307
Böttcher M., Dermer C. D., 2002, ApJ, 564, 86
Bridle A. H., Fomalont E. B., Byrd G. G., Valtonen M. J., 1989, AJ, 97, 674
Cavaliere A., D’Elia V., 2002, ApJ, 571, 226
Clarke D. A., Burns J. O., 1991, MNRAS, 369, 308
Clarke D. A., Bridle A. H., Burns J. O., Perley R. A., Norman M. L., 1992, ApJ, 385, 173
Collin-Souffrin S., Dumont A. M., 1990, A&A, 229, 292
Dennett-Thorpe J., Scheuer P. A. G., Laing R. A., Bridle A. H., Pooley G. G., Reich W., 2002, MNRAS, 330, 609
Fanaroff B. L., Riley J. M., 1974, MNRAS, 167, 31
Gehardy K., Bender R., Bower G., Dressler A., Faber S. M., Filippenko A. V., Green R., Grillmair C., 2000, ApJ, 539, L13
Ghisellini G., Celotti A., 2001, A&A, 379, L1
Goldreich P., Tremaine S., 1980, ApJ, 241, 425
Gould A., Rix H. -W., 2000, ApJ, 532, L29
Haehnelt M. G., Kauffmann G., 2000, MNRAS, 318, L35

© 2003 RAS, MNRAS 340, 411–416

DDRGs as remnants of binary black holes 415
Ivanov P. B., Papaloizou J. C. B., Polnarev A. G., 1999, MNRAS, 307, 79
Kaiser C. R., Schoenmakers A. P., Röttgering H. J. A., 2000, MNRAS, 315, 381
Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576
Kumar S., Pringle J. E., 1985, MNRAS, 213, 435
Kaiser C. R., Schoenmakers A. P., Röttgering H. J. A., 2000, MNRAS, 315, 381
Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576
Kumar S., Pringle J. E., 1985, MNRAS, 213, 435
Lara L., Marquez I., Cotton W. D., Feretti L., Giovannini G., Marcaide J. M., Venturi T., 1999, A&A, 348, 699
Ledlow M. J., Owen F. N., 1996, AJ, 112, 9
Lin D. N. C., Papaloizou J., 1986, ApJ, 309, 846
Liu F. K., Wu X.-B., 2002, A&A, 388, L48
Liu F. K., Zhang Y. H., 2002, A&A, 381, 757
Liu F. K., 2003, MNRAS, submitted
Magorrian J., Tremaine S., Richstone D., Bender R., Bower G., Dressler A., Faber S. M., Gebhardt K., 1998, AJ, 115, 2285
McLure R. J., Dunlop J. S., 2002, MNRAS, 331, 795
Menou K., Haiman Z., Narayan V. K., 2001, ApJ, 558, 535
Merritt D., Ferrarese L., 2001a, MNRAS, 320, L30
Merritt D., Ferrarese L., 2001b, ApJ, 547, 140
Narayan R., 2000, ApJ, 536, 663
Narayan R., Yi I., 1994, ApJ, 428, L13
Natarajan P., Pringle J. E., 1998, ApJ, 506, L97
Oswianik I., Conway J. E., Polatidis A. G., 1998, A&A, 336, 37
Papaloizou J. C. B., Pringle J. E., 1983, MNRAS, 202, 1181
Peters P. C., Mathews J., 1963, Phys. Rev., 131, 435
Polnarev A. G., Rees M. J., 1994, A&A, 283, 301
Pringle J. E., 1991, MNRAS, 248, 754
Pringle J. E., 1997, MNRAS, 292, 136
Quinlan G. D., Hernquist L., 1997, NewA, 2, 533
Reynolds C. S., Begelman M. C., 1997, ApJ, 487, 135
Saripalli L., Subrahmanyan R., Udaya Shankar N., 2002, ApJ, 565, 256
Scheuer P. A. G., Feiler R., 1996, MNRAS, 282, 291
Schoenmakers A. P., de Bruyn A. G., Röttgering H. J. A., van der Laan H., 1999, A&A, 341, 44
Schoenmakers A. P., de Bruyn A. G., Röttgering H. J. A., van der Laan H., Kaiser C. R., 2000a, MNRAS, 315, 371
Schoenmakers A. P., de Bruyn A. G., Röttgering H. J. A., van der Laan H., 2000b, MNRAS, 315, 395
Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Sillanpää A., Haarala S., Valtonen M. J., Sundelius B., Byrd G. G., 1988, ApJ, 325, 628
Syer D., Clarke C. J., 1995, MNRAS, 277, 758
Vokrouhlicky D., Karas V., 1998, MNRAS, 293, L1
Wu X. B., Liu F. K., Zhang T. Z., 2002, A&A, 389, 742
Zhao H., Haehnelt M. G., Rees M. J., 2002, NewA, 7, 385
This paper has been typeset from a TeX/LaTeX file prepared by the author.