Efficacy of HIV interventions among factory workers in low- and middle-income countries: a systematic review

CURRENT STATUS: UNDER REVIEW

BMC Public Health  •  BMC Series

Dahui Chen
Sun Yat-Sen University

Ganfeng Luo
Sun Yat-Sen University

Zixin Wang
Chinese University of Hong Kong

Yong Cai
Shanghai Jiao Tong University

Xiaojun Meng
Wuxi Center for Disease Control and Prevention

Tanwei Yuan
Sun Yat-Sen University

Yu Xie
Sun Yat-Sen University

Tian Hu
Longhua District Center for Disease Control and Prevention

Zhenyu Wang
Sun Yat-Sen University

Kechun Zhang
Longhua District Center for Disease Control and Prevention

Huachun Zou
Sun Yat-Sen University

zouhuachun@mail.sysu.edu.cn Corresponding Author
Abstract

Background Factory workers in low- and middle-income countries (LMICs) are vulnerable to HIV transmission. Interventions are needed to prevent HIV in this population. We systematically reviewed published literature on the efficacy of various HIV interventions in reducing stigma, risk behaviors and HIV transmission among factory workers.

Methods A systematic review was performed using predefined inclusion and exclusion criteria. Four databases (PubMed, PsycINFO, Scopus and EMBASE) were searched for relevant publications between January 1, 1990 and December 31, 2018. Two independent reviewers assessed the methodological quality of studies.

Results Thirteen articles were included, with 2 randomized controlled trials and 11 cohort studies. Five interventions and their combinations were summarized. Educational intervention increased condom use and reduced the use of recreational drugs and alcohol before sex. Community intervention indicated that workers at high risk behaviors were more likely to go to HIV counselling and testing (HCT), and proactive provision of HCT could increase the detection rate of HIV and sexually transmitted diseases (STDs). Lottery intervention increased HCT uptake and decreased HIV public stigma. Education combined with community intervention reduced the proportion of workers with casual sex and enhanced HIV knowledge. Peer education combined with community intervention increased the proportion of workers who were willing to take their partners to HCT. Policy intervention combined with peer education enhanced HIV knowledge, perceived condom accessibility and condom use with regular partners.

Conclusions Various interventions improved HIV knowledge, decreased HIV stigma and reduced HIV-related risk behaviors among factory workers in LMICs. The combination of multiple interventions tended to achieve better efficacy than a single intervention. Persistent combination interventions are essential to address HIV in this population.

Background

Human immunodeficiency virus (HIV) infection is a major public health challenge and a major disease burden in low- and middle-income countries (LMICs)[1]. According to the United Nations Program on
HIV/AIDS (UNAIDS) in 2016, about 36.7 million people in the world were living with HIV/AIDS, 95% of whom were from LMICs[2]. Existing studies have shown that demographic characteristics which were associated with increased risk of HIV infection included low level of education[3], labor-intensive including factory workers[4, 5], and sexual orientation, such as men who have sex with men (MSM)[6]. Available data indicated that more than 44% of factory workers had less than junior high school education and more than 40% of them had two or more sex partners in one year[7-10], which meant that factory workers were at high risk of HIV infection.

Factories were known as manufacturing plants. A cohort study in Ethiopia showed that 8.5% of workers in factories were infected with HIV, with an incidence of 0.4 per 100 person-years[8]. According to a recent study in 2019, a third of textile factory workers in Lesotho were living with HIV[5]. Various factors influence the susceptibility of factory workers to HIV. According to the literature[8, 10], more than 63% of factory workers were sexually active under the age of 35, and their HIV/AIDS knowledge was largely poor. Furthermore, 13.5% of factory workers had sex with non-regular partners, of which 66.3% used alcohol before sex[9]. Alcohol use is associated with HIV transmission[11]. In addition, just over 40% of this population would like to accept HIV counselling and testing (HCT) when this service is available[12], however HIV-related stigma may prevent them from receiving HCT.

In LMICs, health education and behavioral interventions have been playing an essential role in the control of HIV. A randomized controlled trial (RCT) in Lithuania has shown that health education has a significant impact on improving HIV knowledge among health workers and reducing HIV infection risk behaviors, but has little effect on attitude change[13]. However, another intervention-peer education, not only improved HIV knowledge and changed HIV attitude, but improved HCT uptake[14, 15]. Recently, an RCT in Zimbabwe demonstrated that providing financial incentive could significantly improve HCT uptake among adolescents[16]. These useful interventions, including educational intervention, peer education, and financial incentives, could produce beneficial outcomes in the intervention of factory workers[17-19]. However, there was no relevant review about summarizing and comparing the efficacy of these interventions among factory workers. Thus, we performed a
systematic review to evaluate various interventions reported in published articles involving factory workers in LMICs in reducing HIV infection, changing HIV risk behaviors and attitudes, and decreasing HIV stigma.

Methods
This systematic review followed the guidelines set forth in the 2010 ‘Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)’[20].

Search strategy
The Mesh terms “workplace/industry/acquired immunodeficiency syndrome” and the key word “worker” were combined using the Boolean operator and with the following key words: (enterprise, firm, company, workshop, floor shop, machine shop, mill, factory, manufactory) and (worker, workman, workingman, employee). Key words in parentheses were connected to operators. The search strategy was implemented in the databases PubMed, PsycINFO, Scopus and EMBASE using a date range of January 1, 1990 through December 31, 2018. Details of the search strategies are presented in Additional file 1: Table S1.

Two of the study authors (DC and HZ) each independently searched for relevant articles. Titles, abstracts, full texts and reference lists of all identified reports were reviewed in duplicate by the two authors, and extracted articles were double-checked. Disagreements were resolved by discussion among the three authors (DC, GL and HZ). Reference lists from related main studies and review articles were also checked for additional relevant reports.

Eligibility Criteria
The inclusion criteria were: (1) The scope was formulated using the population, intervention, comparison, outcomes, and study design (PICOS) [21, 22] format, which are listed in Table 1; (2) Study were conducted in LMICs according to the World Bank[23]; (3) Study reported specific intervention time span; (4) Articles were written in English. Additionally, in order to ensure that we were not overlooking relevant studies, we had no restrictions on intervention methods.
Studies were excluded based on the following criteria: (1) participants were not factory workers; (2) no intervention; (3) article published before 1990; (4) study was observational; (5) systematic review, literature review, case series; (6) article published in languages other than English.

**Data Extraction**

The following data were extracted from publications: year of publication, first author, country in which the study took place, study design, sample size, length of follow-up, intervention method, and intervention outcomes. In addition, for studies that did not provide a $c^2$ value, we calculated the $c^2$ value using R version 3.6.0, including $P$ value, if the necessary figures were provided in the paper.

**Quality Assessment of Included Studies**

In order to assess the quality of the included articles, we used the Quality Assessment Tool for Quantitative studies from the Effective Public Health Practice Project[24, 25]. This tool has been widely used in literature to evaluate randomized control trials of HIV research[26, 27], and was recommended by the Cochrane Library in the area of Health Promotion and Public Health[28, 29]. Quality assessment included 6 parts: selection bias, study design, confounders, blinding methods, data collection method, and withdrawals and drop-outs. Quality of study was divided into 3 levels: strong, moderate, and weak. Two authors (DC and HZ) independently conducted quality assessment of included articles. Disagreements were resolved by discussion among the three authors (DC, GL and HZ).

**Results**

**Overview of included studies**

Fig. 1 shows the procedure of study inclusion. We identified 4856 articles using the specified search criteria (PubMed: n=732; EMBASE: n=1612; Scopus: n=2277; PsycINFO: n=235). 940 duplicated papers were removed. Based on the inclusion criteria, 3867 papers were excluded. 49 papers remained for full text review, and 13 papers met inclusion criteria.

Table 2 provides details regarding the 13 studies included in the review. Eight took place in Africa
(three in Zimbabwe[18, 30, 31], two in South African[19, 32], two in Ethiopia[33, 34] and one in Tanzania[35]), while the remaining five were performed in Asia (three in Thailand[17, 36, 37] and two in China[38, 39]). Two were RCTs[30, 36] and eleven were cohort studies[17-19, 31-35, 37-39]. All studies reported a statistically significant effect on one or more outcomes, which were reported as follows: eight reported HIV risk behaviors[17, 33-39], four reported HIV/AIDS knowledge[17, 36, 37, 39], four reported HCT uptake[18, 19, 31, 32], one reported HIV public stigma[19], one reported HIV/AIDS attitude[17] and one reported HIV incidence[30]. Risk behaviors included presence of multiple sex partners, commercial sex, recreational drugs or alcohol use before sex, and condom use, etc. According to the UNAIDS[40], the definition of HIV public stigma was a process of devaluation of people either living with or associated with HIV infection, such as, those who blamed foreigners/migrant workers/prostitutes for spreading HIV/AIDS.

The types and definitions of HIV intervention among factory workers in LMICs are summarized in Table 3. Further details on the risk of bias are reported in Additional file 1: Table S2. Of the cohort studies, five were assessed as strong quality[17, 33, 34, 38, 39], four as moderate quality[19, 31, 35, 37], and two as weak quality[18, 32]. Of the RCTs, two were assessed as weak quality[30, 36].

**Efficacy of different intervention methods among factory workers**

**Educational intervention**

Three studies focused on educational intervention[17, 36, 38]. Two studies indicated that educational intervention could improve condom use (condomless sex in the last 12 months decreased from 6.9% at baseline to 3.8% at month 12, \( P < 0.001 \); use of condom during sexual intercourse in the last 3 months increased from 41% at baseline to 70% at month 3, \( P < 0.05 \))[17, 38]. The other two studies showed that educational intervention could improve HIV/AIDS knowledge[17, 36]. For example, the proportion of workers who knew that antibiotics did not prevent HIV increased from 46.9% to 56.3% \( (P = 0.03) \) and that mother-to-child could spread HIV increased from 82.6% to 93.4% \( (P < 0.05) \). One study showed that educational intervention could reduce the proportion of workers with extra-partners (from 16% to 5%, \( c^2 = 5.32, P = 0.021 \))[36]. One study showed that educational intervention
could reduce the proportion of workers who used recreational drugs (from 2.6% to 0.7%, \( P < 0.01 \)) or alcohol (from 17.0% to 6.3%, \( P < 0.01 \)) before sex[17]. In addition, educational intervention changed HIV attitudes. For example, the proportion of workers who perceived that if they had HIV/AIDS they would not be able to live in society decreased from 46.6% to 30.6% (\( P < 0.05 \))[17].

**Community intervention**

One study conducted community intervention[31]. The study indicated that workers having high risk behaviors were more likely to take HCT, and proactive provision of HCT could increase the detection rate of HIV (relative risk [RR]: 1.87, 95% confidence interval [CI]: 1.01 to 3.61) and sexually transmitted diseases (STDs) (RR: 3.47, 95%CI: 2.51 to 4.89). Moreover, HIV seroconversion was higher among subjects who obtained their test results at the first follow-up visit compared to those who did not (19.5% vs. 16.7%, respectively, \( P = 0.01 \)).

**Combination of lottery intervention and community intervention**

Two studies focused on lottery intervention combined with community intervention, both of which analyzed the changes in HCT uptake before and after the intervention[19, 32]. Moreover, these studies had demonstrated that lottery intervention could improve HCT uptake (from 30% to 85% (\( P < 0.001 \))[32] and from 27.3% to 53.6% (\( P < 0.001 \))[19]). In addition, lottery intervention could also reduce HIV public stigma. For example, the proportion of subjects who thought that foreigners/migrant workers/prostitutes were to blame for spreading HIV/AIDS decreased from 22.2% to 9.6% (\( P < 0.05 \))[19].

**Combination of educational intervention and community intervention**

Four studies conducted educational intervention combined with community intervention[33-35, 39]. Three studies demonstrated that educational intervention combined with community intervention reduced the proportion of workers with casual sex (from 12.0% to 6.1%, \( P = 0.03 \)[33]; from 17.5% to 3.5%, \( P < 0.001 \)[34]; from 8.8% to 4.6%, \( P < 0.01 \)[35]). Two studies showed a decrease in the
proportion of workers having sex with sex workers[33, 34], but only one report[34] had statistically significant result (from 11.2% to 0.75%, P < 0.001[34]). One study reported the proportion of workers with more than one sex partner and indicated that the proportion decreased from 17.6% to 10.2% (P < 0.05) for having two sex partners and from 4.7% to 2.0% (P < 0.05) for having three or more sex partners[35]. In addition, the combination of these two interventions increased condom use (from 7.6% to 27.3%, P = 0.002)[35], reduced premarital sex (10.9% in intervention group, 31.3% in control group, P < 0.001)[39], and improved HIV knowledge (P < 0.05)[39] and the awareness rate of location providing free health educational counselling (from 3.5% to 6.7%, P < 0.001)[39].

**Combination of peer education and community intervention**

Two studies focused on peer education combined with community intervention[18, 30]. One studies indicated that peer education reduced incident HIV infection rate (1.51 vs. 2.52 per 100 persons-years, P < 0.05)[30]. Another study concluded that peer education rendered more workers to take their partners to HCT (odds ratio [OR] = 1.37, 95% CI: 1.04-1.79), but statistical significance was not found for individuals to take up HCT (OR = 1.05, 95% CI: 0.92-1.20)[18]. In addition, workers with STDs (OR = 2.78, 95%CI: 2.25-3.43), commercial sex (OR = 1.27, 95%CI:1.09-1.49) and multiple sex partners (OR = 1.31, 95%CI: 1.14-1.50) in the last 6 months were more likely to take up HCT[18].

**Combination of policy intervention and educational intervention**

One study conducted policy intervention combined with educational intervention[37].

This study indicated that combination of these intervention increased HIV/AIDS knowledge (t = 2.84, P = 0.005), perceived condom accessibility (OR = 2.80, 95% CI: 1.13-6.86, P < 0.05), and condom use with regular partners (OR = 1.25, 95% CI: 1.01-1.54, P < 0.05) at the last sex.

**Discussion**

This systematic review identified five types of interventions that addressed low HIV/AIDS knowledge, high risk behaviors of HIV infections, high HIV stigma and low HCT uptake among factory workers in LMICs, namely educational intervention, peer education, community intervention, lottery intervention...
and policy intervention. Educational intervention and policy intervention had a significant effect on improving workers' knowledge of HIV/AIDS and reducing HIV infection risk behaviors. Community intervention, peer education and lottery intervention were effective in reducing HIV public stigma and increasing HCT uptake.

In this review, most of intervention methods from the included studies were in combination. Among them, community intervention was combined with a variety of interventional methods. This intervention focused primarily on the socio-demographic data and HIV serological status of the workers who underwent HCT[41]. Relevant studies showed that most people who attended HCT were at high risk of HIV infection[42]. Individuals infected with HIV were tested earlier than those who were not, and those who were in the early stages of HIV infection were tested earlier than those who were in the late stages[42]. This review also showed that community intervention could find out that workers at high risk behaviors were more likely to go to HCT. Recently, a cohort study in South Africa among adolescents had also reported similar outcomes[43]. These findings suggested that offering HCT services to study subjects could potentially detect HIV infected individuals on a timely basis. In addition, the benefit of HCT could also be improved by active screening for STDs[44].

Although the efficacy of a single community intervention was limited, it was significantly better when combined with different interventions. For example, community intervention combined with lottery intervention could improve HCT uptake and reduce HIV public stigma. This effect mainly came from lottery intervention, which provided factory workers with an opportunity to openly communicate and discuss HIV knowledge and HCT[16, 45]. Social support and encouragement made these workers more willing to improve their HIV knowledge[46]. Social support could promote individual self-esteem and was a key factor in enabling intervention to proceed smoothly and promote effectiveness[47, 48]. Research had shown that increasing social support and personal self-esteem could effectively reduce HIV stigma[48], which are essential for the World Health Organization to implement the three 90% targets by 2030.

Educational intervention was the most widely applied in HIV/AIDS interventions, and had achieved a variety of effective results. A recent systematic review showed that educational intervention was not
only effective for individuals, but for changing the public stigma of HIV[49]. In the future, more attention should be paid to HIV education[50]. This review also pointed out that educational intervention had a significant effect on improving HIV/AIDS knowledge, changing HIV attitudes and reducing the proportion of workers with extra-partners, while it could also change premarital and paid sexual behavior after combined with community intervention. When implementing educational intervention, considering the combination of community intervention could improve efficacy[51]. As far as we know, educational intervention was a desirable method, but few studies have conducted research about its cost-effectiveness. In order to make full use of limited resources, especially in LMICs, it is urgent to design and implement cost-effective approaches for analyzing educational intervention[52]. Cost-effectiveness is the key factor in policy implementation[53], thus we should study how to maximize the use of limited resources.

Peer education was also an important intervention method. In this review, there was no study reporting peer education alone and it was conducted in combination with community intervention in some included studies. Moreover, there was a little analysis about the effect indicators of this combining intervention method, which only showed that this combining intervention could promote workers to bring their partners to HCT and that workers with high risk sexual behaviors were more willing to receive intervention and carried out HCT. Other relevant research showed that peer education could improve HIV knowledge, change HIV attitude and reduce risky sexual behaviors among adolescents, especially in peer groups[54, 55]. Most factory workers are peer groups and are more likely to live together[9, 56]. Therefore, in order to analyze whether peer education can achieve this same effect for factory workers, researchers should increase the relevant research to prove it in the future.

This review summarized two special intervention methods, lottery intervention and policy intervention. These two interventions were actually based on incentives, and their purpose was to encourage workers to access HCT services. Policy intervention is mainly to improve the well-being of respondents from social support[57]. Lottery intervention mainly provided workers with an opportunity to discuss HIV openly in order to motivate more workers to go to HCT[32]. Although this
review summarized some benefits of these two interventions, only three relevant articles had been included. Further investigation and research are needed to explain their specific efficacy and causes. Although this review included relevant articles that we could retrieve, we did not find any research on intervention with multimedia or smart devices in factory workers. Reviews have shown that short message service (SMS) and interventions using mobile phone software can significantly improve HIV testing in high-risk groups[58, 59]. In addition, the use of multimedia or intelligent devices can effectively improve the uptake of intervention measures[58]. Therefore, for factory workers in LMICs, a high-risk group of HIV infection, there is an urgent need to examine the efficacy of multimedia and smart devices-based interventions.

This study has several limitations. Firstly, all studies included in this review were conducted with one or two intervention methods, and no study reported the effect of three or more intervention methods in factory workers. According to recent research, the combination of educational intervention, peer education and community intervention could not only improve HIV/AIDS knowledge, reduce HIV risky behaviors and incidence, but increase HCT uptake in high-risk groups [60, 61]. Therefore, we should consider a combination of multiple interventions to achieve multiple and better outcomes when intervening in HIV high-risk groups to improve HIV status. Secondly, the included article in our study did not analyze the cost-effectiveness and uptake of various methods, which is a key factor to the implementation of intervention. Finally, even if the indicators are the same, the methods of index measurement may be different, such as the setting of HIV/AIDS knowledge and condom use measurement methods, which could cause the detection bias.

Conclusions
This review indicated that various HIV interventions were efficacious in improving HIV knowledge and reducing HIV-related high-risk behaviors among factory workers in LMICs. The effectiveness of one intervention is limited and the combination of multiple interventions could achieve better outcomes. The efficacy of multimedia and smart devices-based interventions is warranted to be examined in the future.

List Of Abbreviations
HIV: Human immunodeficiency virus; LMICs: Low- and middle-income countries; AIDS: Acquired immune deficiency syndrome; UNAIDS: United Nations Program on HIV/AIDS; MSM: Men who have sex with men; HCT: HIV counselling and testing; RCT: randomized controlled trial; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PICOS: Population, intervention, comparison, outcomes, and study design; RR: Relative risk; CI: Confidence interval; STDs: Sexually transmitted diseases; OR: odds ratio; SMS: Short message service

Declarations

Authors’ contributions

This study was conceived and designed by HZ in consultation with the other authors. DC and HZ extracted data and conducted the data analysis. DC drafted the first version of the manuscript and received extensive feedback from all co-authors. GL, KZ, ZW, YC, XM, TH, TY, YX and ZW reviewed and edited the manuscript. All authors have read and approved the final manuscript.

Acknowledgements

The authors are thankful to Dr. Kechun Zhang and Dr. Qihui Lin for assisting with manuscript preparation. The authors are also thankful to all of the participants from a Summit we hosted with our partners ShenZhen LongHua Center for Disease Control and Prevention in September 2018 in which we discussed analytic questions together for this systematic review. The authors are thankful to all authors who were involved in studies included in our review.

Funding

This work is funded by the National Natural Science Foundation of China (grant ID 81703278), the Australian National Health and Medical Research Council Early Career Fellowship (grant ID APP1092621), the Sanming Project of Medicine in Shenzhen, China (grant ID SZSM201811071), and High Level Project of Medicine in Longhua, ShenZhen, China (HLPM201907020105). The funding sources played no part in study design, data collection and analysis, preparation of the manuscript or decision to publish.
Availability of data and materials

All data are provided in the tables, figure, and Additional file presented in the text. The other materials can be made available upon request.

Competing interests

The authors declare that they have no competing interests. Dr. Huachun Zou is a member of the editorial board (Associate Editor) of this journal.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

References

1. Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abersa SF, Aboyans V, Adetokunboh O, Afshin A, Agrawal A et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet 2017, 390(10100):1151-210.

2. Unaids: Global AIDS Update 2016. Geneva, Switzerland: UNAIDS. Accessed 9 March 2019.

3. Zhang X, Yu J, Li M, Sun X, Han Q, Li M, Zhou F, Li X, Yang Y, Xiao D et al. Prevalence and related risk behaviors of HIV, syphilis, and anal HPV infection among men who have sex with men from Beijing, China. AIDS Behav 2013, 17(3):1129-36.

4. Ibrahim SA, Sabitu K, Abubakar A, Poggensee G, Ibrahim S, Riyad M, Bashorun A, Sudawa AU, Ibrahim BS, Mohammed H et al. Demographic factors associated with HIV
infection between low and high prevalence areas in Nigeria, 2015. Pan Afr Med J 2019, 32(Suppl 1):11.

5. Mabathoana RS, Wyk CV, Adefuye AO. Factors influencing HIV risk-taking behaviours amongst textile factory workers living with HIV in Lesotho. Pan Afr Med J 2019, 33:166.

6. Sentis A, Martin-Sanchez M, Arando M, Vall M, Barbera MJ, Ocana I, Gonzalez Cordon A, Alsina M, Martin-Ezquerra G, Knobel H et al. Sexually transmitted infections in young people and factors associated with HIV coinfection: an observational study in a large city. BMJ Open 2019, 9(5):e027245.

7. McFarland W, Gwanzura L, Bassett MT, Machelino R, Latif AS, Ley C, Parsonnet J, Burke RL, Katzenstein D. Prevalence and incidence of herpes simplex virus type 2 infection among male Zimbabwean factory workers. J Infect Dis 1999, 180(5):1459-65.

8. Mekonnen Y, Sanders E, Mesese T, Wolday D, Dorigo W, Schaap A, Mekonnen W, Meless H, Mihret W, Fontanet A et al. Prevalence and incidence of, and risk factors for, HIV-1 infection among factory workers in Ethiopia, 1997-2001. J Health Popul Nutr 2005, 23(4):358-68.

9. Puri M, Cleland J. Sexual behavior and perceived risk of HIV/AIDS among young migrant factory workers in Nepal. J Adolesc Health 2006, 38(3):237-46.

10. Li W, Jiang J, Su J, Liang B, Deng W, Huang J, Qin B, Upur H, Zhong C, Wang Q et al. Commercial Sexual Behaviors Among Male Rural-to-Urban Migrants in Western China: Implications for HIV Prevention. Asia Pac J Public Health 2017, 29(5):388-400.

11. Joseph Davey D, Peters RPH, Kojima N, Mudau M, De Vos L, Olivier D, McIntyre JA, Klausner JD, Medina-Marino A. Sexual Behaviors of Human Immunodeficiency Virus-Infected Pregnant Women and Factors Associated With Sexually Transmitted Infection
in South Africa. Sex Transm Dis 2018, 45(11):754-61.

12. Sasaki Y, Arifin A, Ali M, Kakimoto K. Willingness to undergo HIV testing among factory workers in Surabaya, Indonesia. AIDS Care 2011, 23(10):1305-13.

13. Mockiene V, Suominen T, Valimaki M, Razbadauskas A, Martinkenas A, Caplinskas S. The impact of an education intervention to change nurses' HIV-related knowledge and attitudes in Lithuania: a randomized controlled trial. J Assoc Nurses AIDS Care 2011, 22(2):140-9.

14. Adeomi AA, Adeoye OA, Asekun-Olarinmoye EO, Abodunrin OL, Olugbenga-Bello AI, Sabageh AO. Evaluation of the Effectiveness of Peer Education in Improving HIV Knowledge, Attitude, and Sexual Behaviours among In-School Adolescents in Osun State, Nigeria. AIDS Res Treat 2014, 2014:131756.

15. Menna T, Ali A, Worku A. Effects of peer education intervention on HIV/AIDS related sexual behaviors of secondary school students in Addis Ababa, Ethiopia: a quasi-experimental study. Reprod Health 2015, 12:84.

16. Kranzer K, Simms V, Bandason T, Dauya E, McHugh G, Munyati S, Chonzi P, Dakshina S, Mujuru H, Weiss HA et al. Economic incentives for HIV testing by adolescents in Zimbabwe: a randomised controlled trial. The Lancet HIV 2018, 5(2):e79-e86.

17. Sakondhavat C, Sittitrai W, Soontharapa S, Werawatanakul Y, Pinitsoontorn P. AIDS education and intervention trials among youths in factories: a pilot project. J Med Assoc Thai 1998, 81(11):872-8.

18. Machekano R, McFarland W, Hudes ES, Bassett MT, Mbizvo MT, David Katzenstein. Correlates of HIV test results seeking and utilization of partner counseling services in a cohort of male factory workers in Zimbabwe. AIDS Behav 2000, 4(1):63-7.

19. Weihs M, Meyer WA, Baasner WF. The influence of lotteries on employees' workplace HIV testing behaviour. Afr J AIDS Res 2018, 17(1):9-21.
20. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010, 8(5):336-41.

21. O’Connor D, Green S, Higgins JP. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 (updated March 2011). In: London, UK: The Cochrane Collaboration. Defining the review question and developing criteria for including studies. 2011. https://handbook-5.1.cochrane.org/chapter_5/5_defining_the_review_question_and_developing_criteria_for.htm. Accessed May 12, 2019.

22. Systematic Reviews. CRD's Guidance for Undertaking Reviews in Health Care. In: Centre for Reviews and Dissemination. 2009. https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf. Accessed May 12, 2019.

23. World Bank Group [US]. Low- and middle-income countries in 2017. In: 2017. https://data.worldbank.org.cn/income-level/low-and-middle-income?view=chart. Accessed May 10, 2019.

24. Project EPHP: Quality assessment tool for quantitative studies. In: 1998. https://merst.ca/ephpp/. Accessed May 10, 2019.

25. Thomas BH, Ciliska D, Dobbins M, Micucci S. A process for systematically reviewing the literature: providing the research evidence for public health nursing interventions. Worldviews Evid Based Nurs 2004, 1(3):176-84.

26. Genberg BL, Shangani S, Sabatino K, Rachlis B, Wachira J, Braitstein P, Operario D. Improving Engagement in the HIV Care Cascade: A Systematic Review of Interventions Involving People Living with HIV/AIDS as Peers. AIDS Behav 2016, 20(10):2452-63.

27. Shangani S, Escudero D, Kirwa K, Harrison A, Marshall B, Operario D. Effectiveness of
peer-led interventions to increase HIV testing among men who have sex with men: a systematic review and meta-analysis. AIDS Care 2017, 29(8):1003-13.

28. Jackson N, Waters E. Criteria for the systematic review of health promotion and public health interventions. Health Promot Int 2005, 20(4):367-74.

29. Armstrong R, Waters E, Jackson N. Guidelines for systematic reviews of health promotion and public health interventions. Version 2 Australia: Melbourne University. In: 2007.
   http://ph.cochrane.org/sites/ph.cochrane.org/files/public/uploads/Guidelines%20HP_PH%20reviews.pdf. Accessed May 10, 2019.

30. Bassett M. Impact of peer education on HIV infection in Zimbabwe. Sex Health Exch 1998, 4:14-5.

31. Machekano R, McFarland W, Mbizvo MT, Bassett MT, Katzenstein D, Latif AS. Impact of HIV counselling and testing on HIV seroconversion and reported STD incidence among male factory workers in Harare, Zimbabwe. Cent Afr J Med 1998, 44(4):98-102.

32. Weihs M, Meyer-Weitz A. A lottery incentive system to facilitate dialogue and social support for workplace HIV counselling and testing: a qualitative inquiry. Sahara j 2014, 11:116-25.

33. Sahlu T, de Wit TR, Tsegaye A, Mekonnen Y, Beyene A, Hailu B. Low incidence of syphilis among factory workers in Ethiopia: effect of an intervention based on education and counselling. Sex Transm Infect 2002, 78(2):123-6.

34. Mekonnen Y, Sanders E, Aklilu M, Tsegaye A, de Wit TFR, Schaap A, Fontanet AL. Evidence of changes in sexual behaviours among male factory workers in Ethiopia. Aids. 2003, 17(2):223-31.

35. Ng'weshemi JZ, Boerma JT, Pool R, Barongo L, Senkoro K, Maswe M. Changes in male
sexual behaviour in response to the AIDS epidemic: evidence from a cohort study in urban Tanzania. AIDS 1996, 10(12):1415-20.

36. Kuchaisit C, Higginbotham N. An education intervention to increase the use of condoms for the prevention of HIV infection among male factory workers in Khon Kaen. Journal of Clinical Epidemiology 1996, 49:S13.

37. Chamratrithirong A, Ford K, Punpuing S, Prasartkul P. A workplace intervention program and the increase in HIV knowledge, perceived accessibility and use of condoms among young factory workers in Thailand. Sahara j 2017, 14(1):132-9.

38. Qian X, Smith H, Huang W, Zhang J, Huang Y, Garner P. Promoting contraceptive use among unmarried female migrants in one factory in Shanghai: a pilot workplace intervention. BMC Health Serv Res 2007, 7:77.

39. Zhu C, Geng Q, Chen L, Yang H, Jiang W. Impact of an educational programme on reproductive health among young migrant female workers in Shenzhen, China: an intervention study. Int J Behav Med 2014, 21(4):710-8.

40. The Joint United Nations Programme on HIV and AIDS (UNAIDS). UNAIDS fact sheet on stigma and discrimination. In.; 2003: Accessed 9 March 2019.

41. Harichund C, Karim QA, Kunene P, Simelane S, Moshabela M. Exploring factors that influence the integration of HIVST with HCT using a qualitative comparative cross-over design in KwaZulu-Natal, South Africa. Glob Public Health 2019, 14(9):1275-87.

42. VanderBorght SF, SchimvanderLoeff MF, Clevenbergh P, Kabarega JP, Kamo E, VanCranenburgh K, Rijckborst H, Lange JM, RinkedeWit TF. Long-term voluntary counseling and testing (VCT) uptake dynamics in a multicountry HIV workplace program in sub-Saharan Africa. AIDS Care 2010, 22(2):195-205.

43. Mendelsohn AS, Gill K, Marcus R, Robbertze D, van de Venter C, Mendel E, Mzukwa L, Bekker LG. Sexual reproductive healthcare utilisation and HIV testing in an
integrated adolescent youth centre clinic in Cape Town, South Africa. South Afr J HIV Med 2018, 19(1):826.

44. Chen Miao Jung, Scheer Susan, Nguyen Trang Q, Kohn Robert P, Schwarcz S. HIV Co-infection among Persons Diagnosed with Sexually Transmitted Diseases, San Francisco, 2007 to 2014. Sex Transm Dis 2018, 45(8):563-72.

45. Choko AT, Corbett EL, Stallard N, Maheswaran H, Lepine A, Johnson CC, Sakala D, Kalua T, Kumwenda M, Hayes R et al. HIV self-testing alone or with additional interventions, including financial incentives, and linkage to care or prevention among male partners of antenatal care clinic attendees in Malawi: An adaptive multi-arm, multi-stage cluster randomised trial. PLoS Med 2019, 16(1):e1002719.

46. Taylor BS, Fornos L, Tarbutton J, Munoz J, Saber JA, Bullock D, Villarreal R, Nijhawan AE. Improving HIV Care Engagement in the South from the Patient and Provider Perspective: The Role of Stigma, Social Support, and Shared Decision-Making. AIDS Patient Care STDS 2018, 32(9):368-78.

47. Kalomo EN. Associations between HIV-related stigma, self-esteem, social support, and depressive symptoms in Namibia. Aging Ment Health 2018, 22(12):1570-6.

48. Yan H, Li X, Li J, Wang W, Yang Y, Yao X, Yang N, Li S. Association between perceived HIV stigma, social support, resilience, self-esteem, and depressive symptoms among HIV-positive men who have sex with men (MSM) in Nanjing, China. AIDS Care 2019, 31(9):1069-76.

49. Geter A, Herron AR, Sutton MY. HIV-Related Stigma by Healthcare Providers in the United States: A Systematic Review. AIDS Patient Care STDS 2018, 32(10):418-24.

50. Aggleton P, Bhana D, Clarke DJ, Crewe M, Race K, Yankah E. HIV education: Reflections on the past, priorities for the future. AIDS Educ Prev 2018, 30(3):254-66.

51. Kesten JM, Davies CF, Gompels M, Crofts M, Billing A, May MT, Horwood J. Qualitative
evaluation of a pilot educational intervention to increase primary care HIV-testing.
BMC Fam Pract 2019, 20(1):74.

52. Kapiriri L, Lee NM, Wallace LJ, Kvesiga B. Beyond cost-effectiveness, morbidity and mortality: a comprehensive evaluation of priority setting for HIV programming in Uganda. BMC Public Health 2019, 19(1):359.

53. Vassall A, Pickles M, Chandrashekar S, Boily M-C, Shetty G, Guinness L, Lowndes CM, Bradley J, Moses S, Alary M et al. Cost-effectiveness of HIV prevention for high-risk groups at scale: an economic evaluation of the Avahan programme in south India. The Lancet Global Health 2014, 2(9):e531-e40.

54. Mahat G, Scoloveno MA. Effectiveness of Adolescent Peer Education Programs on Reducing HIV/STI Risk: An Integrated Review. Res Theory Nurs Pract 2018, 32(2):168-98.

55. Borgia P, Marinacci C, Schifano P, Perucci CA. Is peer education the best approach for HIV prevention in schools? Findings from a randomized controlled trial. J Adolesc Health 2005, 36(6):508-16.

56. Pan X, Zhu Y, Wang Q, Zheng H, Chen X, Su J, Peng Z, Yu R, Wang N. Prevalence of HIV, Syphilis, HCV and Their High Risk Behaviors among Migrant Workers in Eastern China. PLoS ONE 2013, 8(2):e57258.

57. Sholeye O, Omotosho J, Kuponiyi T, Abosed O. Safeguarding the health of the Nigerian worker: the role of a workplace HIV/AIDS policy. Niger J Med 2012, 21(2):134-7.

58. Govender K, Beckett S, Masebo W, Braga C, Zambezi P, Manhique M, George G, Durevall D. Effects of a Short Message Service (SMS) Intervention on Reduction of HIV Risk Behaviours and Improving HIV Testing Rates Among Populations located near Roadside Wellness Clinics: A Cluster Randomised Controlled Trial in South
Africa, Zimbabwe and Mozambique. AIDS Behav. 2019; doi: 10.1007/s10461-019-02427-6.[Epub ahead of print].

59. El-Bassel N, Gilbert L, Goddard-Eckrich D, Chang M, Wu E, Hunt T, Epperson M, Shaw SA, Rowe J, Almonte M et al. Efficacy of a group-based multimedia HIV prevention intervention for drug-involved women under community supervision: project WORTH. PLoS One 2014, 9(11):e111528.

60. Azuogu BN, Ogbonnaya LU, Umeokonkwo CD, Alo C, Ifebunandu NA, Obionu CN, Agu AP, Azuogu VC, Oyari FO, Okedo-Alex IN et al. Effect of multiple intervention models on uptake of HIV testing services and sexual behaviour among residents of military cantonments in south-east Nigeria. Afr J AIDS Res 2019, 18(2):89-94.

61. Solomon SS, Solomon S, McFall AM, Srikrishnan AK, Anand S, Verma V, Vasudevan CK, Balakrishnan P, Ogburn EL, Moulton LH et al. Integrated HIV testing, prevention, and treatment intervention for key populations in India: a cluster-randomised trial. The Lancet HIV 2019, 6(5):e283-e96.

Tables

Table 1 Population, intervention, comparison, outcome, and study design (PICOS) criteria for study inclusion

| Criteria        | Definition                                                                 |
|-----------------|-----------------------------------------------------------------------------|
| Population      | Factory workers                                                            |
| Intervention    | Interventions aimed at reducing HIV incidence, stigma, risk behaviors, changing HIV attitude and increasing HIV/AIDS knowledge and HIV counseling and testing (HCT) uptake |
| Comparison      | Comparison between pre- and post-intervention periods or between intervention and control groups |
| Outcome         | HIV incidence, stigma, knowledge, attitude, risk behaviors, uptake of HCT |
| Study Design    | Pre- and post-intervention study design, randomized controlled trial, and quasi-experiment |

Table 2 Characteristics of 13 studies of HIV interventions among factory workers in LMICs

| First author | Published year | Study design | Region   | Length of follow-up |
|--------------|----------------|--------------|----------|---------------------|
| Kuchaisit C  | 1996           | RCT          | Thailand | 12 m                |

Sample size

- Intervention group: 153 workers/133 workers; Control group: 148 workers/127 workers

Intervention

1. Health workers organized a 20-minute presentation of HIV every two weeks, using slides, brochures, and two-way presentations.
2. Communication regarding AIDS, correct use of condoms, and posters exhibition.
### Intervention

1. Health workers provided cartoons, posters, radios, television, lectures and brochures about HIV.
2. Over the past 12 months, three in-depth interviews were conducted with workers to understand knowledge, attitudes and high-risk behavior.
3. In the intervention group, the proportion of workers who drank alcohol before sex decreased from 16% to 5%, \( P = 0.02 \).
4. Unprotected sex in the past 12 months (slight decrease, 3% in control, 6% in education group, \( P < 0.05 \)).
5. Knowledge of HIV were found significantly higher in the education group compared to the control group.

| Outcome | Sakondhavat C | 1998 | Cohort | Thailand | 12 m |
|---------|---------------|------|--------|----------|------|
| Sample size (before/after) | 305 workers / 288 workers |
| Intervention | 1. Health workers provided cartoons, posters, radios, television, lectures and brochures about HIV.  
2. Over the past 12 months, three in-depth interviews were conducted with workers to understand knowledge, attitudes and high-risk behavior. |
| Outcome | 1. In the past 12 months, the proportion of workers who drank alcohol before sex decreased from 16% to 5%, \( P = 0.02 \).  
2. The proportion of workers who did not use condoms during extramarital or premarital sex in the intervention group was lower than in the control group (10.9% vs. 21.9% \( P < 0.05 \)).  
3. HIV/AIDS prevention and transmission knowledge improved (\( P < 0.05 \)). |

| Sample size (before/after) | Intervention group: 20 factories (2219 workers / 1731 workers)  
Control group: 20 factories (NR) |
| Intervention | 1. Providing HCT services and Sexually Transmitted Disease (STD) treatment.  
2. One peer educator trained 100 workers, maintained a continuous supply of free condoms at work one drama and two presentations by persons living with HIV/AIDS, including one man and one woman.  
3. Peer educators led discussions, showed videos and slide shows. |
| Outcome | HIV infection rates in the intervention group were 40% lower than in the control group (1.51 vs. 2.52 per 100 person-years, \( P = 0.05 \)). |

| Sample size (before/after) | 2414 workers / 2060 workers |
| Intervention | Provide HCT (during recruitment and follow-up period), including individual risk assessment, discussion modes of transmission, the meaning of test results and preventing HIV, and availability of treatment. |
| Outcome | 1. Workers at high risk behaviors were more likely to go to HCT, and proactive provision of HCT col. of HIV (relative risk (RR): 1.87, 95% confidence interval (CI): 1.01 to 3.61) and STD (RR: 3.47, 95% CI: 2.51 to 4.89).  
2. After 28 months, among men who went to HCT, a non-significant 40% decrease in HIV seroconversion per-person-years, \( P = 0.18 \) and 30% increase in STDs incidence (10.84 vs. 14.79 per 100 person-year) compared to before.  
3. In the second follow-up, HIV seroconversion was higher among subjects who obtained their test compared to those who did not (19.5% vs. 16.7%, respectively, \( P = 0.01 \)). |

| Sample size (before/after) | Intervention group: 340 workers / 258 workers  
Control group: 257 workers / 168 workers |
| Intervention | 1. Health workers disseminated knowledge and information about contraceptive and condom use to workers in three different settings (1. Lecture given by experts, content about STD prevention.  
2. Distributing free condoms and contraceptives and providing HIV/STD counselling service. |
| Outcome | 1. Contraception use has increased from 70% to 93% in the past three months (\( P < 0.05 \)).  
2. Condom use has increased from 41% to 70% in the past three months (\( P < 0.05 \)). |

| Sample size (before/after) | Intervention group: (2980 workers / 1425 workers)  
Control group: (1060 workers / 2139 workers) |
| Intervention | 1. Health workers provided sexual health education (Knowledge about healthy sexual activities: STI effects, prevention, symptoms; appropriate ways to obtain health care for STD, HIV/AIDS).  
2. Providing HCT services and promoting mental and physical health, such as mental health, reasons for Disease and injury prevention, such as influenza or workplace injury prevention. |
| Outcome | 1. The rate of change of the intervention group who gave correct answers to the HIV/AIDS knowledge test of control group (3.5% vs 1.1%, \( P < 0.05 \)).  
2. In the intervention group, the proportion of workers who knew where provided free educational materials to 6.7%, \( P < 0.001 \)).  
3. The proportion of workers who had premarital sexual behaviors in intervention group was lower (31.3%, \( P < 0.001 \)). |

| Ng’weshemi | 1996 | Cohort | Tanzania | 22 m |

---
| Sample size (before/after) | 1433 workers /752 workers |
|---------------------------|---------------------------|
| Intervention              | 1. Health workers provided free and effective treatment of STD and testing HIV antibody every 5.5 months. 2. Health workers provided free condoms and HCT services in study clinic and factory. 3. Health workers provided health education activities, including information about HIV/AIDS, dram |
| Outcome                   | 1. Sexual partners: At a total of four follow-up at 22 months, the proportion of workers with sexual one sexual partner (97.6, 98.4, 97.5, 76.4, and 72.9%, P = 0.001), having three or more sexual partners (4.7, 4.1, 3.1, 2.3, and 2.0%, P = 0.012), and having two or more sex (P < 0.001), having three or more sexual partners (4.7, 4.1, 3.1, 2.3, and 2.0%, P = 0.012), and having two or more sexual partners (P < 0.001). 2. Condom use: At a total of four follow-up at 22 months, the proportion of workers who reported intercourse with casual partners were 7.6, 23.5, 41.0%, 25.8%, 27.3%, P = 0.002. 3. Sex behavior change: Low risk behavior (defined as one sexual partner) and high-risk behavior (defined as more than one sexual partner): With regard to the last month, 61.7% reported low risk behavior at both the beginning and the end, 19.0% had continued high risk behavior, and 7.1% changed from low to high. |

| Sample size (before/after) | 1124 workers /921 workers |
|---------------------------|---------------------------|
| Intervention              | 1. Health workers provided health education and HCT services. 2. Health workers offered free medical care to factory workers and their families. |
| Outcome                   | Declined in the proportion of workers reporting recent casual sex (from 17.5 to 3.5%, P < 0.001), and declined in the proportion of females reporting recent casual sex (from 12.2 to 0.75%, P < 0.001), and genital discharge (from 2.1 to 0.6%, P = 0.004). |

| Sample size (before/after) | 757 workers /538 workers |
|---------------------------|---------------------------|
| Intervention              | Health workers provided HIV/AIDS health education, HCT services and free condoms in the factory. |
| Outcome                   | 1. Declined in the proportion of males reporting recent casual sex (from 12 to 6.1%, P = 0.03), sex 1.0%, P = 0.07), genital discharge (from 2.1 to 1.5%, P > 0.05), and genital ulcer (from 0.4 to 1.0% declines. 2. Declined in the proportion of females reporting recent casual sex (from 2.2 to 0%, P = 0.03), genital discharge (from 3.6 to 2.1%, P > 0.05) in the last 25 months. |

| Sample size (before/after) | 3383 workers /NR |
|---------------------------|-------------------|
| Intervention              | 1. Providing HCT services, including individual risk assessment. 2. Peer educator provided free condoms in the workplace, organized HIV/AIDS prevention drama, and distributed education materials. 3. Peer educators led group discussions, distributed education materials, put up posters, and arranged video shows. |
| Outcome                   | 1. Whether to give peer education or not has no statistical significance for individuals whether to a (OR)=1.05, 95%CI: 0.92-1.20, P = 0.484. 2. Workers who received peer education were more willing to take their partners to HCT. (OR=1.37). 3. Workers with STDs were more likely to accept HCT (OR=2.78, 95%CI: 2.25 to 3.43) and took the 95%CI: 2.90 to 4.63. 4. Workers who used to have ever paid for sex were more willing to go to HCT (OR=1.27, 95%CI: 1.14 to 1.50). 5. Worker with multiple sex partners were more likely to go to HCT (OR=1.31, 95%CI: 1.11 to 1.92). |

| Sample size (before/after) | 203 workers /NR |
|---------------------------|------------------|
| Intervention              | 1. The first step of the experimental intervention was the announcement of the lottery incentive system (LIS). A leaflet was distributed to all workers approximately two weeks before workplace HCT services. 3. Workers who participated in workplace HCT would receive free t-shirts and would be entered into a company lottery which afforded opportunities to win gift cards (a first prize of 2000 South African rand (ZAR), a second prize of 500 ZAR, and a third prize of 2000 ZAR). |
| Outcome                   | Compared with the pre- and post-intervention, the uptake rate of HCT increased from 30% to 85%. |
### Table 3 Categories of HIV interventions among factory workers

| Sample size (before/after) | Intervention group: 17 factories (NR/424 workers) | Control group: 11 factories (NR/275 workers) |
|----------------------------|--------------------------------------------------|---------------------------------------------|
| Intervention               | 1. Policy intervention: To issue ASO certificates to factories, these factories must have non-discriminatory confidentiality procedures for HIV-positive workers, support and care programs for HIV-infected workers, etc. 2. Distribution of free condoms and installation of vending machines. 3. Setting up HIV/AIDS exhibitions. |
| Outcome                    | This intervention method was significantly and positively related to HIV/AIDS knowledge (t=2.834, accessibility (OR=2.788 95%CI: 1.134 to 6.855, P < 0.05), and condom use with regular partners (t=1.540, P < 0.05). |

Weihs M 2018 Cohort South Africa 10 months

| Sample size (before/after) | Intervention group: 110 workers /101 workers | Control group: 88 workers /84 workers |
|----------------------------|---------------------------------------------|---------------------------------------------|
| Intervention               | 1. Firstly, educating all workers about HIV transmission, treatment, testing, and the importance of HCT; 2. Second, setting up HCT service points and issuing brochures for the intervention factories; 3. After 2 weeks, workers who participated in the workplace HCT could enter a lottery and had a chance to win money. |
| Outcome                    | 1. Lottery intervention reduced HIV stigma among factory workers. (22.2% in intervention group, 9.6% in control group, P < 0.001). 2. HCT uptake in intervention group was higher than that in control group (53.6% in intervention group, 27.3% in control group, P < 0.001). |

*R=R=Not report; CT=Randomized control trial*
| Intervention categories | Definition | 1. Health workers provide Cartoons, posters, radio programs, lectures and drama about HIV/AIDS. |
|-------------------------|------------|--------------------------------------------------------------------------------------------------|
|                         |            | 2. Health workers organize group discussions about condom use skills.                             |
|                         |            | 3. Health workers manage and provide free condoms and contraceptives in the workplace.           |
| Peer education          | Peer educators intervene through peer communication                                             |
|                         |            | 1. Peer educators provide free condoms in the workplace.                                         |
|                         |            | 2. Peer educators organize plays, speeches and discussions about HIV.                            |
| Community intervention  | Intervention through active provision of HCT services and/or physical and mental health knowledge. | 1. Individual risk assessment and blood test for HIV seroconversions.                            |
|                         |            | 2. Reasonable diet, exercise, and injury prevention, such as influenza or workplace injury prevention. |
| Lottery intervention    | Improvement of HIV testing behavior of workers through lottery drawing.                          |
|                         |            | Setting HIV can                                                                                  |
| Policy intervention     | Encourage workers to acquire HIV/AIDS knowledge and reduce HIV discrimination by issuing certificates. | Factories receive ASO certification.                                                             |

Figures
Figure 1

Systematic search procedure and results

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Additional file 1.docx
Additional file 2  PRISMA 2009 checklist.doc