Transcriptome Changes Associated with Protective Immunity in T and B Cell-Deficient Rag1-/- Mutant Zebrafish

Aparna Krishnavajhala1, Preeti J. Muire2, Larry Hanson2, Henry Wan2, Fiona McCarthy3,4, Alan Zhou2, Lora Petrie-Hanson2, *

1Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
2Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
3School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, USA
4BIO5 Institute, University of Arizona, Tucson, USA

Email address:
lora@cvm.msstate.edu (L. Petrie-Hanson)

*Corresponding author

To cite this article:
Aparna Krishnavajhala, Preeti J. Muire, Larry Hanson, Henry Wan, Fiona McCarthy, Alan Zhou, Lora Petrie-Hanson. Transcriptome Changes Associated with Protective Immunity in T and B Cell-Deficient Rag1-/- Mutant Zebrafish. International Journal of Immunology. Vol. 5, No. 2, 2017, pp. 20-36. doi: 10.11648/j.iji.20170502.11

Received: January 22, 2017; Accepted: February 21, 2017; Published: March 25, 2017

Abstract: To elucidate the basis of protective immunity in T and B cell deficient rag1-/- mutant zebrafish, we conducted microarray analysis of 15,617 genes from rag1-/- mutant zebrafish 48 hours after a primary response and 48 hours after a secondary response. Following primary exposure, the highest fold expression differences (3.8 to 4.95) were genes for serum amyloid A, chemokine CCL-C5a (CCL-19a), signal transducer and activator of transcription (STAT) 1b, interferon regulatory factor 11, and myxovirus resistance A. Strong induction of these genes demonstrated that primary immune responses and innate immune cells were not impaired in T and B cell deficient mutant zebrafish. Following bacterial re-exposure, the highest fold expression differences (2 to 3 fold) were in chemokine CCL-C5a (CCL-19a), myomegalin, bone morphogenetic protein 4, and relaxin 3a. These genes are involved in the immune response and cell proliferation. Genes for cell receptor activation and signal transduction, cell proliferation and cytotoxic functions were also up-regulated. These findings suggest receptor activation and expansion of a cell population. Increased ifnγ expression at 48 hpi was associated with both primary and secondary immune responses.

Keywords: Rag1-/- Mutant Zebrafish, Edwardsiella ictaluri, Protective Immunity, Transcriptome, Cell-Mediated Immunity

1. Introduction

During early stages of life, fish do not have acquired immunity; there is an adaptive component of innate immunity that protects them during this period. Channel catfish do not orchestrate acquired immunity at 1 to 2 weeks post hatch [1, 2], yet fry are frequently vaccinated at that age with varying success. When channel catfish fry were vaccinated with RE-33®, an attenuated live strain of Edwardsiella ictaluri, protection lasted from 14 days to 4 months post vaccination [3], or from one month to less than 6 months post vaccination in another study [4]. However, the basis of protective immunity in immunologically immature fish fry is not known.

Rag1-/- mutant zebrafish lack mature T and B cells, as do young fish, making them an excellent model to study the adaptive component of innate immunity in fish [5]. When leucocytes from kidneys of RE-33® vaccinated rag1-/- mutant zebrafish were adoptively transferred into naïve rag1-/- mutant zebrafish, the naïve fish demonstrated protective immunity following E. ictaluri challenge [6]. In the rag2-/- mutant mice/murine cytomegalovirus model, NK cells mediated protection in T and B deficient mice [7, 8]. A similar type of response may be occurring in rag1-/- mutant zebrafish. Trained macrophages can also provide protective immunity [9]. Another study analyzing global gene expression in channel catfish fry following immersion exposure of RE-33® or wild type [10] E. ictaluri was
performed [11], but specific conclusions could not be reached.

The purpose of our study was to identify differentially expressed gene transcripts following a primary exposure (vaccination) and secondary bacteria exposure of WT E. ictaluri in rag1-/- mutant zebrafish. The results of this study will help us further elucidate mechanisms underlying non-T and B cell-based protective immunity in fish.

2. Materials and Methods

2.1. Animal Source

Rag1-/- mutant zebrafish were produced and reared in the specific pathogen free fish hatchery in the College of Veterinary Medicine following standard operating procedures [5]. The Institutional Animal Care and Use Committee at Mississippi State University approved all propagation, rearing and experimental animal protocols.

2.2. Fish Challenges

During experiments, fish were maintained in 15 L aerated flow-through tanks with charcoal filtered dechlorinated municipal water at 26°C with a water flow rate of 0.5 L/min. Fish were fed twice daily with Zeigler™ Adult Zebrafish Diet (Aquatic HabitatsTM, Apopka, FL). Adult (6 to 9 month old) rag1-/- mutant zebrafish were anesthetized in 110 mg/L buffered tricaine methanesulfonate (MS222). Each fish was administered an IC (intracerebral) injection on the lateral line above the anal fin. Depending on the treatment schedule, zebrafish were vaccinated with a primary exposure of 1x10⁶ CFU/fish RE-33® (AQUA VAC-ESC Intervet, Inc.), or challenged with 1x10⁴ CFU wild type [10] E. ictaluri. The secondary challenge injection tested if the primary vaccination provided protection. Sham treated groups received 1 µl of PBS inoculation per fish. Vaccinated or challenged groups received 10 µl of bacteria-PBS inoculation per fish. The time interval between primary and secondary inoculations was four weeks. Forty-eight hours following vaccination or challenge, hematopoietic tissues of random fish were swabbed with a sterile loop and streaked on BHI plates to confirm E. ictaluri presence (or absence for control treatments).

2.3. Preparation of Vaccination and Bacterial Cultures

All primary vaccinations were 10⁵ CFU/fish of RE33®, a commercial attenuated E. ictaluri, RE-33® (AQUA VAC-ESC Intervet, Inc.), [3]. The WT E. ictaluri (#93146) was isolated from fish submitted to the Fish Diagnostic Lab at CVM-MSU. Culture identifications were confirmed by biochemical analysis using the BioMerieux api20E strip (BioMerieux, 69280 Marcy l’Etoile, France). Aliquots (0.5 ml) were stored in 20% glycerol at 28°C until needed for trials, at which time one aliquot was thawed and added into Brain Heart Infusion broth and incubated in a shaker incubator at 30°C overnight. Logarithmic phase cultures were obtained by dilution of the overnight culture 1:10 and grown until the optical density was 0.4 at 540 nm which corresponds to 10⁶ colony forming units (CFU) per ml. Culture purities were assessed and bacterial concentrations determined by plating serial dilutions on 5% sheep blood agar plates.

2.4. Experimental Design

The transcriptome study consisted of four treatments that received different combinations of primary exposure to attenuated E. ictaluri RE-33® (AQUA VAC-ESC Intervet, Inc.), as a vaccination (E₁) and/or a secondary bacteria exposure of WT E. ictaluri (E₂) four weeks later. The first treatment was sham vaccinated at day 0 and was challenged with E. ictaluri (E₃) four weeks later. This group was designated SE₂ and represents the primary immune response. The second treatment received a primary vaccination at day 0 and a PBS injection at four weeks post-injection. This group was designated E₃S, and represents a persistent primary response. The third treatment was vaccinated at day 0 and challenged four weeks later with E. ictaluri. This group was designated E₁E₂ for vaccinated and challenged with bacteria and gene expressions of this group represent the secondary (protective) response. The fourth treatment was the control group was not vaccinated and was not challenged with E. ictaluri. This group received PBS injections and was designated SS for sham primary and sham secondary. Fish were euthanized by immersion in 340 mg/L Tricaine Methane Sulfonate (MS222) (Argent Chemical Laboratories, WA) 48 hours after the secondary inoculation. The kidneys from three fish were collected and pooled for each of three replicates per treatment in the microarray analysis.

2.5. Microarray Analysis

Total RNA was isolated from each of three replicates of pooled kidneys (n=3) from each experimental group by homogenizing the tissue in TRIZOL reagent extraction (Invitrogen) according to the manufacturer’s protocol. The quantity of each RNA sample was assessed by measuring RNA integration number (RIN) with the Agilent 2100 Bioanalyzer [12]. The RNA samples used in this experiment had RIN values ranging from 7.3 to 9.4, with most being greater than 9.0. For the qPCR, RNA was extracted from individual kidney samples using RNA direct zol kit (Zymo research, USA). The quantity of RNA was determined by NanoDrop ND-1000 and ND-8000 8-Sample Spectrophotometer and stored at -80°C. 100ng cDNA was prepared from RNA by using Super script III VILO™ cDNA Synthesis Kit (Invitrogen).

The transcriptome of each sample was evaluated using the Affymetrix Zebrafish Array (15, 617 probe sets) according to the manufacturer’s protocols (Affymetrix™). Briefly, total RNA concentrations of 10µg were used to synthesize double-stranded cDNA followed by its clean up using the GeneChip One-Cycle cDNA Synthesis Kit and Clean Up Module respectively. The resulting cDNA was used in a 16 hours in vitro transcription reaction to produce Biotin-labeled cRNA
using IVT Labeling kit and GeneChip clean up module respectively. NanoDrop spectrophotometric analysis was used to measure the final yield of the biotin-labeled cRNA and 20µg of biotin-labeled cRNA was fragmented and then hybridized to the chip and labeled with streptavidin-phycocerythrin using the Affymetrix Fluidic station. Chips were scanned using the Affymetrix scanner and image data for zebrafish. The Genome array was processed using the Affymetrix Microarray Suite version 5.0 software. All gene expression values and normalized to the median measurement for the genes across all the arrays in the dataset.

2.6. Confirming Selected Gene Expression and Analysis of Selected Genes not Present on the Microarray

Expression patterns of four transcripts that were shown to be differentially expressed using the Affymetrix array (stat1b, saa, irf1l, and loc795887) were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) using the RNA samples used for microarray analysis. The total RNA (2ug) samples were reverse transcribed using super script VILO cDNA synthesis kit (Invitrogen) according to the manufacturer’s protocol to generate first strand cDNA. Then qPCR was performed using hydrolysis probe assays (arp) or SYBR green assays using Stratagene Mx3000P instrument (Agilent Technologies). Primers and probes were either published sets or were designed using NCBI Primer BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) according to the manufacturer’s protocol to generate first strand cDNA. All qPCR reactions were 20ul and contained cDNA template derived from 5ng RNA and were performed in triplicate. Hydrolysis probe assays were done as previously described [13, 14]. The cycling parameters consisted of 10 min at 95°C then 40 cycles of 30s at 95°C, and 1 min at 61°C. SYBR green assays used EXPRESS SYBR GreenER qPCR supermix kit (Invitrogen) following manufacturer’s instructions. The cycling parameters for SYBR green assay are 10 min at 95°C then 40 cycles of 30s at 95°C, 1 min at 57°C, and 15s at 72°C. Melting curve analysis was performed on all SYBR Green assays to confirm that signal was due to the specific amplified product. Pearson correlations of qPCR data with microarray data were performed using SAS 9.2 software (SAS Institute Inc., Cary, NC, USA).

To determine expression levels of ifn, nit1 and t-bet, adult rag1−− zebrafish were exposed to the following treatments: SS, SE1, E1S and E1E2 with sample size (n) of 5 for each treatment. Fish were euthanized at 24hpi and 48hpi with MS-222 (Argent Chemical Laboratories, WA), kidneys were taken from each fish and RNA was extracted using TRIZOL reagent (Zymo research, USA) and stored at -80°C. Primers and probes for qRT-PCR were either published sets or were designed using NCBI Primer BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Table 1). All qPCR reactions were 20ul and contained cDNA template derived from 5ng RNA and were performed

2.7. Data Analysis

Statistical analysis (Student's t-test) was carried out to identify differentially expressed transcripts. The treatment E1S was compared to SS and there were no significantly different gene expression changes. The SE2 (primary) treatment group was compared to SS (control), and genes that were significantly different from SS were evaluated in a pairwise comparison of SE2 (primary) to the E1E2 (secondary). Differentially expressed transcripts were

Gene	Oligonucleotide sequences (5’-3’)	GenBank Accession No.
stat1b	Fwd: TCTCTAGCCATGTCGTTTCC Rev: GATCTCTTTTGGATCGGCTCA	NC_001170599.1
saa	Fwd: GCAAGTCTTCGTTCCAGGAG Rev: AGTTCTGATTTCCCCGGCTCAT	NM_001170599.1
irf1l	Fwd: GATGCACATTATCCACAGGTA Rev: TGTCTGACGGCTGGTGCTCAC	NM_001170599.1
Loc795887	Fwd: TGGGAAAGCAACACTGGA Rev: AGTGGCTTACCATGAGTCAC	NM_001170599.1
arp	Fwd: ACTGAAAGTCGCGTGGG Rev: GTGGAGGCCGACATGTGTCGTAG Probe: [FAM]TTCTGAAAATCACTTCCAACTGCTGGATGACTAC [BHQ1]	NM_001170599.1
ifn	Fwd: TCAGCTCAAAAGACAGCCTTTCC Rev: [FAM]AAGGCTGATGGGCGATCAAAGGGAACGAC [BHQ1]	NM_001170599.1
t-bet	Fwd: GATCGAGGTCGTCCTGTA Rev: GCTAAGTCTAACAGGCTC Probe: [FAM]TTCTGAAAATCACTTCCAACTGCTGGATGACTAC [BHQ1]	NM_001170599.1
nitr9	Fwd: GTGCTCAAAACACGACAGC Rev: GTGCTCAAAACACGACAGC Probe: [FAM]CAAGGTTTGGGAAACGAC [BHQ1]	NM_001170599.1
mapped to UniprotKB and Genbank RefSeq protein accessions. Functional analysis of the differentially expressed transcripts was performed with protein accessions using (pre-existing) GO annotation identification, GO enrichment and pathways and networks. GO annotations of catfish and salmon were identified using Agbase-GORetriever tool [17] and ZFIN GO identified zebrafish genes. GO enrichment analysis was performed using singular enrichment analysis (AgriGO SEA) that computes statistically significant GO term enrichment using Fisher’s exact test for differentially expressed transcripts (DET) compared to their background. Pathways and networks analysis was performed using the Ingenuity pathway analysis (IPA) tool, with parameters of p<0.001 and p<0.05. IPA visualized significant networks and their assigned biological functions from the scientific literature. GO annotations of differentially expressed transcripts compared to the whole array were visualized using the Agbase GOSlim viewer tool [17] with the generic GOSlim set. The percentages of GO terms between the differentially expressed transcripts and the array were compared. GO annotations for the array were obtained from the Affymetrix annotation files. Relative gene expression data was determined using the Delta Delta ct (ΔΔct) analysis method. The data was statistically analyzed by the two-way ANOVA followed by Dunnett’s multiple comparisons test using GraphPad Prism version 7.00 for Windows, GraphPad Software, La Jolla California USA.

3. Results

3.1. Microarray Analysis of Global Gene Expression Following Primary and Secondary E. Ictaluri Infection

There were no significant differences in gene expressions between the SS and E1S treatment groups. Transcriptional profiling in the kidney of rag1^{−/−} mutant zebrafish after the primary exposure (SS and SE₁) demonstrated 129 transcripts that were significantly up-regulated at 95% confidence (Table 1). The differences in increased transcript expression in primary exposed compared to non-exposed fish were 1 to 4.95 fold. The highest fold expression differences (3.8 to 4.95) were SAA, chemokine CCL-C5a, signal transducer and activator of transcription 1b (STAT 1b), interferon regulatory factor 11, and myxovirus resistance A. Gene expressions with 2.1 to 2.7 fold differences were complement components 7 and 1, ceruloplasmin, kappa light polypeptide gene enhancer and inhibitor alpha a, chemokine C-X-C motif receptor 3.1, and calreticulin (like). The majority of the up-regulated transcripts were grouped into acute phase response, complement activation, immune response, response to stimulus, protein degradation and processing, proteasomes and heat shock protein categories. Transcripts that were significantly differentially expressed less than 2.1 fold are shown in the Appendix Table A1.

Table 2. Log2 changes in expression of zebrafish transcripts that were up-regulated (p< 0.05) following primary infection (SE₁) compared to non-infected (SS) controls. The highest fold differences (3.8 to 4.95) of annotated genes are shaded dark gray, while the second highest fold differences (2.1 to 2.7) are shaded light gray. The annotated genes with the highest fold differences are also rated #1 to #12. Zebrafish transcripts that were up-regulated (p< 0.05) following primary infection (SE₁) compared to non-infected (SS) controls less than 2.1 fold are listed in Supplemental Table 1.

Functional classification	Accession number	Putative ID	Log2 difference
Acute phase response			
#1	BI883568	serum amyloid A [15]	4.945338295
#6	AA497156	complement component 7	2.711235993
#7	CD014253	complement component 1, q subcomponent-like 4 like	2.543084809
	BC048037.1	Ceruloplasmin	2.426394913
Immune Response			
#2	BQ479755	chemokine CCL-C5a (CCL-19a)	4.326214098
#3	BC044185.1	stat 1b	4.124193546
#4	BE556864	interferon regulatory factor 11	3.94700698
#8	BC046906.1	calreticulin-like	2.268209135
#10	CD606274	stat 1b	2.220123148
#11	BG085448	calreticulin-like	2.179232528
#12	AW019258	like chemokine (C-X-C motif) receptor 3.1	2.108884501
Response to Stimulus			
#5	AF533769.1	myxovirus (influenza) resistance A (mxA)	3.826118133
#9	AW019105	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha a	2.250052292

To analyze the secondary response, the gene expressions of E₁E₂ and SE₂ were compared. After disregarding genes identified in the primary exposure, 98 significantly differentially expressed transcripts were identified and associated with protective immunity (Table 2). Forty-six transcripts were up-regulated, and 52 transcripts were down-regulated in E₁E₂ compared to SE₂. In annotated genes, the highest fold expression differences (2 to 3 fold) were C-C like chemokine 19, myomegalin, bone morphogenetic protein 4 and relaxin 3a. These genes are involved in the immune response and cell proliferation. Transcripts that were significantly differentially expressed less than 2 fold are shown in the Appendix, Table A2.
Table 3. Log2 changes in expression of zebrafish transcripts that were differentially expressed (p< 0.05) between the secondary (E,E₂) and primary (SE) exposures. The highest fold differences (2.24 to 3.10) of annotated genes are shaded dark gray. The annotated genes with the highest fold differences are also rated #1 to #4. Zebrafish transcripts that were differentially expressed (p< 0.05) between the secondary (E,E₂) and primary (SE) exposures less than 2.1 fold are listed in Supplemental Table 2.

Functional classification	Accession number	Putative ID	Log2 difference
#1	B1476419	chemokine CCL-C5a (CCL-C19a)	3.1044014
#2	B1865907	relaxin 3a	2.2479468
Cell proliferation #3	D49972.1	bone morphogenetic protein 4	2.2685636
Miscellaneous #2	B1980955	myomegalin-like	2.7361798

3.2. ID Mapping

The functional analysis of the differentially expressed transcripts was performed by mapping the transcripts sequence to protein identifiers/accessions of their putative products and were categorized based on the function of the gene product. Of the 98 proteins identified, 64% coded for predicted proteins that had UniProtKB and GenBank RefSeq protein IDs, 46% were up-regulated and 53% were down-regulated. Of the unannotated genes, 26% were expressed sequence tags (ESTs) that did not have connections to predicted known zebrafish genes, and 1% were not listed in NCBI. Annotations for the remaining genes (7%) were not in the NCBI database. However, these genes had UniProtKB and GenBank RefSeq protein accession IDs, so they were included in the analysis along with the 64% predicted proteins. Thus, 71% of the protein identifiers were used in the analysis.

3.3. Functional Analysis

Comparison of the differentially expressed transcripts and the total array transcripts demonstrated that molecular functions such as actin binding, receptor binding, lipid binding and nucleic acid binding were over-represented as 4.75, 4.42, 2.34, and 2.14 fold, respectively. Protein binding, protein kinase activity, and catalytic activity were under-represented by 0.13, 0.25 and 0.48 fold, respectively. Additionally, proteaceous extracellular matrix, extracellular space, cytoplasmic membrane-bound vesicles, nucleolus, cytoskeleton and chromosome components were over-represented in differentially expressed transcripts by 15.65, 5.6, 3.5, 2.7, 2.38 and 1.92 fold respectively, while, various organelles and cytoplasm sub-categories were under-represented by 0.65 and 0.33 fold respectively. In the biological process category, response to endogenous stimulus, cell-cell signaling, and cell proliferation were over-represented in differentially expressed transcripts by 4.63, 1.98, and 1.90 fold respectively, while protein metabolic process, cellular component organization and transport were under-represented by 0.46, 0.26, and 0.21 fold, respectively.

Out of 71 differentially expressed transcripts that had UniProt IDs, 32 had GO annotations and 21 GO terms associated with these were significant (p<0.05). These were in two categories: (i) molecular function: catalytic activity, binding, nucleic acid binding, DNA binding, cation binding, receptor binding, metal ion binding and transition metal ion binding and (ii) cellular component: extracellular region, cell, cell part, intracellular, intracellular part, organelle, intracellular organelle, membrane-bound organelle, intracellular membrane-bound organelle. The molecular functional group had 8 enriched GO (child/secondary) terms. There were three significantly enriched GO terms in the cellular component category: cellular component, molecular function and biological process. None of these were directly connected to each other.

3.4. Confirming Selected Gene Expression and Analysis of Selected Genes not Present on the Microarray

Relative expression values of stat1b, saa, irf1b, loc795887 from the microarray and qRT-PCR were strongly correlated, with R values >0.95 (Table 4). The analysis of ifnγ, nitr9 and t-bet expressions between SS, SE₁ and E₂ exposures demonstrated significant increases in ifnγ expression (Fig. 1 and Supplemental Table 4). Within treatments, ifnγ expression was significantly greater at 48 hpi, than at 24 hpi. There were no significant differences in nitr9 and t-bet expressions between treatments.

Table 4. Correlation of selected genes used for confirmatory qRT-PCR.

Gene	Accession	Treatment	Microarray relative expression	qRT-PCR relative expression	Correlation [19][19][19][19]
					[19][19][19][19]
					[19][19][86][86]
					[84][84][84][84]
					[84][86][86][86]
					[86][86][87][86]
					[86][85][84][84]
stat1b	BC044185.1	SE₂	6.7	1.72	0.9846
		E₁,E₂	6.7	1.64	
		E₁,S	2.4	0.31	
		SS	3.3	0.74	
Table 1. Microarray and qRT-PCR relative expression of gene transcripts. The correlation (r) is shown for the Log2 data analysis. SE, E, and SS represent the control, treated with and without antibiotics, and non-exposed controls, respectively.

Gene	Accession	Treatment	Microarray relative expression	qRT-PCR relative expression	Correlation
saa	BI883568	SE, E, S	10.8	1.74	0.9839
		SS	6.2	0.01	
irf1b	BE556864	SE, E, S	12.2	13.6	0.9563
		SS	8.2	0.35	
loc795887	AW420565	SE, E, S	11.2	12.2	0.9511
		SS	6.3	0.4	

Figure 1. Fold changes in ifnγ gene expression in kidney 24 and 48 hpi of E. ictaluri, measured by quantitative real-time PCR. Data are presented as mean fold change relative to the PBS control group ± standard deviation based on Log2 data analysis. hpi = hours post injection. *Significant (p<0.05) difference in expression between treatments; treatments with the same letter are not different.

4. Discussion

4.1. Primary Response

There are several studies analyzing the gene responses of catfish to E. ictaluri infection. Differences in responsive genes in blue catfish [20] and channel catfish [11] demonstrate there are species specific responses to the same bacteria. There have not been any studies performed analyzing the gene responses of zebrafish to E. ictaluri. In our study, transcriptome analysis comparing the primary response to non-exposed controls revealed 129 functionally known genes that were significantly up-regulated. These genes were involved in acute phase response, complement activation, immune response, response to stimulus, proteasomes, protein degradation, chaperons, processing and heat shock protein categories. These are normal components of the innate response and cellular injury and indicate activation of the innate immune system. The highest fold expression differences (3.8 to 4.9) were SAA, chemokine CCL-C5a (also named CCL-C19a), signal transducer and activator of transcription 1b (STAT 1b), interferon regulatory factor 11, and myxovirus resistance A. Gene expressions with 2.1 to 2.7 fold differences were complement components 7 and 1, ceruloplasmin, kappa light polypeptide gene enhancer and inhibitor alpha a, chemokine C-X-C motif receptor 3.1, and calreticulin (like).

SAA has multiple isoforms that are expressed during the initial stages of inflammation, and affect cell adhesion, proliferation and migration. Serum amyloid A is also an innate immune opsonin, and binds to some Gram-negative bacteria [21], with the outer membrane protein A [22] being the major ligand. Edwardsiella ictaluri is a gram-negative bacteria, and in our study, SAA could be acting as a pattern recognition protein for the OmpA of E. ictaluri. In rainbow trout, SAA was upregulated 72 and 96 hours post bacterial injection [23]. Another heat shock protein, Hsp 60, was up-regulated in primary exposed fish compared to non-exposed fish. Hsp60 in humans is associated with functional TLR-4 and is involved in ATP-dependent protein folding. Hsp 90 functions as a chaperone and is involved in housekeeping functions such as protein folding and unfolding [24].

Chemokine CCL-C5a (also known as CCL-19 or 19a) was another of the primary response genes that were in the highest up-regulated group. The CCL-C5a gene was expressed in zebrafish embryos at 8 hpi of Salmonella enterica serovar Typhimurium [25]. The zebrafish genome has over 100 chemokine genes, but the functions have not been well studied [26]. CCL-C5a (CCL-19) was the highest up-regulated gene in the secondary response, and is discussed more later.

Chemokines are expressed by various cell types in response to inflammatory stimuli. Chemokines also induce various biological activities such as effects on degranulation, cell division, cell activation and secretion of cytokines in both leukocytic and non-leukocytic cell types [27]. In our study, the presence of cytokines was supported by the up-
regulated expression of 19 chemokine (C-C motif)-like molecules that induce cytokine secretion from leukocytes as well as provides pro-adhesive and migratory signals. CC chemokines promote chemotaxis of anti-tumor NK cells [28]. Zebrafish have increased number of chemokines due to duplication events. Subfamilies such as CXC, CC, XC and CX were found in zebrafish. CX is a novel subfamily found only in zebrafish. It is speculated that these novel chemokine genes are involved specifically in zebrafish development. To cope with environmental challenges, each species has species-specific chemokines during their evolution [26]. Zebrafish have an extensive chemokine system and a well established CC chemokine family [29]. To understand this complex network of molecules further research needs be carried out to in zebrafish [30], with loss of stat3 function resulting in immune disorders in zebrafish [31]. Among the immune response related transcripts, suppressor of cytokine signaling 1, present in multiple forms in fish, is up-regulated in response to infection.

Signal transducer and activator of transcription 1b, or STAT1b, was in the highest up-regulated group of the primary response genes. STAT proteins have important roles in immune cell-cell communication. Stat1, stat3 and stat5 have been identified in zebrafish [32]. Stat1b expression was significantly up-regulated following infection in zebrafish [33]. The up-regulation we observed in our study could have also resulted from increased ifnγ production. Another study suggested that stat1b promotes myeloid development in zebrafish [34].

Interferon regulatory factors (IRFs) are a large family of transcription factors involved in host immune response, haematopoietic differentiation and immunomodulation [35], [32]. Interferon regulatory factors were identified originally as transcription factors in the regulation of interferon expression [36]. There are nine IRF orthologs in mammals, and all of these have been identified in fish, with zebrafish having additional factors: IRF 11 and IRF 12 [37].

MX GTPases play key roles in viral immunity, and myxovirus resistance A genes are up-regulated by ifnγ signaling [38], as are stat1a and stat1b. Vertebrate Mx were compared, and similarities grouped them into fish mx, avian mx, human mx2-like, and human mx1-like [39]. Diverse mx proteins are found in fish [40]. In our study, up-regulated mx probably resulted from increased ifnγ production.

Other genes encoding acute phase proteins that were up-regulated in response to primary infection were ceruloplasmin and major acute phase reactant apolipoprotein of the HDL complex. Ceruloplasmin is involved in iron binding, homeostasis and transport. One important innate defense is the sequestering of iron to limit the availability of this critical nutrient to the invading bacteria.

Nearly 35 transcripts were up-regulated which were associated with proteasomes, protein degradation and processing. Proteasomes are involved in non-lysosomal intracellular protein degradation [41], cell cycle regulation as well as various cellular processes such as proliferation, differentiation, apoptosis and response to external stimuli [42]. Some of the up-regulated transcripts have roles in protein processing and folding such as dolichyl-diphospho oligosaccharide-protein glycosyltransferase, glycosyltransferase-like domain containing 1 and DnaJ 11 protein. The antigenic peptides presented on MHC I molecules are produced by proteolytic degradation in the cytosol by proteasomes, transported to endoplasmic reticulum, and loaded onto MHC I molecules with the help of several other proteins. The upregulation of the ER chaperone calreticulin which is present in various forms, further support the MHC I mediated immune response. Calreticulin is unique in its ability to bind to peptides that are suitable to be loaded on MHC I molecules [43].

At least 6 of the up-regulated transcripts encoded complement components including C1q like genes, C3b, factor B, C7 and C9, indicating the involvement of the complement systems in response to infection. The teleost fish complement system exhibits conserved roles such as sensing and clearing the invading pathogens [44]. The expression of complement system components has been shown to be responsive to infection in other fish. Analysis of complement protein indicated the key involvement of the C7 gene in tissue specificity and pathogen responses [45]. The C7 responses in grass carp were sensitive and rapid in response to a pathogenic bacterial infection and indicates the involvement of C7 in innate immune responses [45]. Complement component C1q like gene is involved in the classical pathway [46].

Fibroblast growth factor (FGF) and FGF receptor (FGFR) gene families in the human and mouse comprise 22 and 4 members, respectively. In zebrafish, the FGF gene family comprises 27 members. The co-evolution of FGF and FGFR gene families enabled the FGF signaling system to acquire functional diversity. This has allowed the involvement of FGF signaling in many physiological and developmental processes. FGF knockout and mutation studies in mice and zebrafish respectively indicated the crucial role of FGFs in various developmental processes [47]. FGF-2 is involved in cytokine interaction networks for positive regulation of hematopoiesis and in the regulation of pathological and physiological hematopoiesis, granulopoiesis, and megakaryocytopoiesis. Granulopoiesis is mediated by FGF-2 though secondary cytokine production, stimulation of granulocytic progenitor growth and differentiation. FGF-2 stimulates proliferation, enhances cytokine secretion and prevents apoptosis. It is also involved in proliferation and/or survival of hematopoietic progenitors [48]. FGF-2 is expressed in stromal cells, macrophages and leukemic cell lines and is involved in physiological and pathological hematopoiesis [48]. FGF4 is vital for the development of visceral organs and is transcriptionally regulated by lymphoid enhancer factor-1 [49] belonging to subfamily of HMG proteins [50]. In our study FGF4 was down regulated in the immunized fish.

Myeloid/lymphoid mixed-lineage leukemia protein (MLL) which is a Drosophila trithorax (trx) G homolog, plays an important role in hematopoietic stem cell (HSC) development in embryos [51]. Embryonic stem cells deficient
in MLL failed to differentiate into any of HSC types in fetal liver or in adult animals [52]. Germline loss-of-function studies have demonstrated that MLL is essential for both development and maintenance of HSC [51, 52]. MLL is maternally supplied, expressed in the adults and is an important transcriptional regulator during the entire lifespan of zebrafish [53].

Alpha-melanin concentrating hormone (MCH) plays an important role in host defense. Alpha-MCH is an ancient anti-inflammatory peptide produced by phagocytes and keratinocytes. Increased expression of α-MCH in the blood indicates infectious and inflammatory disorders. Elevated levels of α-MCH in human plasma have antimicrobial functions [54]. Under inflammatory conditions, MCH receptor (MCHR1) expression was up-regulated on human colonic epithelial cells [49]. In our study fish hematopoietic tissue may have been inflamed due to the injection of E. ictaluri, resulting in up-regulated MCHR1 expression in kidney epithelial cells. In the present study MCH receptor 1 was up-regulated in immunized fish, suggesting that the innate immune system is providing enhanced protection for the immunized fish compared to the non-immunized fish.

4.2. Secondary Response

Transcriptome analysis comparing the E1/E2 (secondary response) and SE2 (primary response) treatment groups demonstrated 98 significantly differentially expressed transcripts that were uniquely associated with the secondary response, and protective immunity. In annotated genes, the highest fold expression differences (2 to 3 fold) were C-C chemokine genes [55]. In our study, up-regulated chemokine genes included CCL-5a, myomegalin, bone morphogenetic protein 4, and relaxin 3a.

The gene for chemokine CCL-5a (CCL-C19) had the highest differential expression (3.1 fold) following the secondary response. This gene was the second highest differentially expressed gene in the primary response (4.3 fold), emphasizing its importance in the immune responses of rag1-/- mutant zebrafish. Inflammatory chemokines are expressed after an immune stimulus, and result in the relocation of leukocytes to the site of inflammation [21], but their functions are not well studied [26]. The CC chemokines have two cysteine residues bound directly to each other and are the largest sub-family of chemokines. One study stated zebrafish have 46 CC chemokine genes [55], and another reported 63 chemokine genes [29]. In our study, up-regulation of CCL-5a suggests significant cell trafficking in the secondary response. In rainbow trout, C5a was shown to enhance antibody response to a viral protein [56].

Myomegalin is also known as phosphodiesterase 4D-interacting protein. Four genes encode over 20 isoforms of this protein, and they are involved in intracellular signaling [57]. Intracellular signaling and cross-talk occurs between cells and between pathways, and between tissues. Pathway interactions operate in multiple directions. The cAMP phosphodiesterases are required for cell signaling and cross-talk [57]. Certain isoforms of myomegalin are necessary for centrosomal microtubule formation [58] and protein trafficking between Golgi and endoplasmic reticulum [59]. These findings suggest heightened cell signaling and pathway cross-talk.

Bone morphogenetic proteins (BMP) are signaling cytokines belonging to the superfamily of TGF-βs and are involved in the regulation of cell proliferation, differentiation, apoptosis and morphogenesis [60-62]. Function and development of specific hematopoietic lineages are mediated by individual BMP’s [63]. They are also involved in blood vessel formation [64].

In our study, bone morphogenetic protein 4 (BMP4) was one of the highest up-regulated genes in the secondary response. In mammals, it is involved in embryonic hematopoiesis [65]. BMP endothelial cell precursor derived regulator (BMPER), is an extracellular BMP modulator that plays an important role in BMP4 function in endothelial cells [66, 67]. Both BMP and BMPER are necessary for endothelial cells to deliver pro-BMP signals [66]. BMPER is also involved in endothelial cell migration [66] by modulating the expression of adhesion molecules [68]. Zebrafish BMP4 shares 68% identity and 80% similarity to that of human, mouse and frog BMP4 [69]. Its expression is associated with the developing pronephric mesoderm in normal zebrafish.

Relaxins (RLN) are a pleiotropic hormone group with a wide range of biological and pathological activities in various tissues and organs in various physiological and pathological conditions [70]. Relaxins are hormones that regulate the migration of leukocyte to sites of inflammation, and increases substrate adhesion [71]. Teleost RLN3a and RLN3b paralogues display similarities in evolution and expression to the mammalian counterparts [72]. Relaxins regulate vasodilation and the movement of macrophages to the site of infection in response to cytokines. Relaxins are involved in wound healing, fibrosis, allergic responses [73] regulation of appetite and feeding in rats [74]. RLN3 acts as a neurotransmitter. Relaxins act on inactivation of contractile machinery leading to cell relaxation. It is also involved in vasodilation in several organs and tissues [70]. Dilation of the blood vessels is a result of the movement of tissue macrophage derived cytokines to the site of injection and/or bacterial presence, which in turn leads to the movement of leukocytes such as neutrophils and monocytes to the site of bacterial infection [75]. Up-regulated expression of RLN3 in immunized fish compared to non-immunized fish suggests enhanced leukocyte migration and adhesion during the secondary memory response.

Go functional analysis demonstrated the over represented transcripts included genes coding molecular processes such as actin binding, receptor binding, lipid binding, nucleic acid binding, proteinaceous extracellular matrix, extracellular space, cytoplasmic membrane bound vesicles, nucleolus, cytoskeleton and chromosome components, response to endogenous stimulus, cell-cell signaling and cell proliferation. The underrepresented categories were comprised of transcripts coding for protein binding, protein kinase activity, catalytic activity, organelles and cytoplasm.
sub-categories, protein metabolic process, cellular component organization and cellular transport. AgriGO:GO enrichment analysis revealed pancreas specific transcription factor 1a (ptf1a), fibroblast growth factor 2, bone morphogenetic protein 4, fibroblast growth factor 4, BMP binding endothelial regulator, spondin 2b, extracellular matrix protein, high-mobility group protein (hmgrp) isoforms I and Y, nuclear receptor subfamily 6, myosin-10-like, collagen triple helix repeat containing 1b, type I collagen, alpha 2 collagen, type XI alpha-2 collagen, 19 (chemokine (C-C motif)-like) and novel immune-type receptor 1(nitr1).

Different categories and GO terms that were over represented in the secondary response compared to the primary response are consistent with a cell mediated protection for vaccinated rag1−/− mutant zebrafish. Cell activation is evidenced by the over representation of cell communication, signal transduction and receptor binding categories. Activated cells were believed to be involved in secreting pro-inflammatory cytokine, effector cytokines and undergoing clonal proliferation, which was evidenced by up-regulated expression of ifnyr and C-C chemokine, and over representation of the cell proliferation category respectively in E1E2 (secondary) compared to SE2 (primary). Activation of leukocytes is a cell differentiation process. Cell differentiation is suggested by the over representation of transport, structural morphogenesis, intracellular membrane bound organelles and cellular metabolic process categories. Functional analysis of differentially expressed transcripts between E1E2 and SE2 associated with specific secondary immune responses corroborate potential heightened and more rapid responses of cells involved in the secondary response.

Over representation of cell communication, signal transduction and receptor binding categories demonstrates receptor activation and its communication with downstream signaling molecules. Upregulation of ptf1a suggests the occurrence of signal transduction because of receptor mediated cellular activation. The function of clonal proliferation is supported by the over representation of the category “cell proliferation” as well as the transcripts such as fibroblast growth factor-2 (gfg-2), gfg-4, bone morphogenetic protein 4 (bmp-4), BMP binding endothelial regulator protein (bmprr), hmgy, and ptf1a which regulate proliferation. Hmgi/y proteins participate in a wide variety of cellular processes including transcriptional regulation and inducing changes in chromatin structure during cell proliferation [76]. Increased expression of hmgy occurs during rapid proliferation of certain cells from rat embryos and from undifferentiated cells of young rat thymi [77]. HMGI/Y binds specifically to A-T rich regions on the double stranded DNA [78], affecting chromatin conformation to regulate gene expression by facilitating the binding of transcription factors to dsDNA [79, 80]. In our experiment, hmgy expression may be associated with rapid expansion of the ‘memory’ cell population following secondary exposure. The rate of transcription of large proportions of immune response related genes such as ifn, e-selectin, mhc-β, il-2 and granulocyte macrophage colony stimulating factor (gm-csf) and certain chemokines are correlated to the presence of hmgy protein [81]. This protein binds with transcription factors and affects its binding to DNA by introducing bends in the DNA [81]. In our study HMGI/Y up-regulation correlates with the over representation of binding, and certain GO terms such as sequence-specific DNA binding transcription factor activity.

To perform cytotoxic functions, cells undergo cytoskeletal remodeling. These functions are suggested by the over representation of the “structural morphogenesis” category and differential expression of the transcripts myosin 10, envoplakin, collagen triple helix repeat containing 1b, collagen type I, collagen type alpha 2, collagen type XI alpha-2 and resistance to inhibitors of cholinesterase 8 proteins (ric-8) that perform structural morphogenesis. Another up-regulated functional group is “proteinaceous extracellular matrix”. Cytoskeletal rearrangement is further supported by up-regulated expression of spondin 2. Spondin 2 (mindin) like lectin is an extracellular matrix (ECM) protein that plays essential roles in innate immunity [82]. Spondin 2 recognizes intracellular pathogens [82]. It acts as a unique pattern recognition moiety [83] for macrophages by direct interaction with LPS components on pathogenic microbes [82] and interacts directly with receptors on neutrophils [84]. E. ictaluri is a facultative intracellular pathogen, and spondin 2 may be playing an important role in recognizing E. ictaluri when they are localized in intracellular compartments. Spondin 2 may also enhance macrophage phagocytosis of E. ictaluri when they are located in extracellular compartments. The extracellular space sub-category was up-regulated 5 fold. The genes included in extracellular space are bone morphogenetic protein - 4 (bmp-4), collagen - 2 (coll-2), fibroblast growth factor - 4 (fgf-4), myosin heavy chain14 (myhc14), and spondin2.

Using the GOSlim Viewer resulted in three categories of GO annotations: cellular components, molecular functions and biological process. The over represented sub-categories from the cellular component category are (i) cell part, (ii) cell organelle, (iii) intracellular, (iv) plasma membrane, (v) cellular component in general and (vi) protein complex. In our study a sub-category of cell part, cytoplasmic membrane bound vesicles, was over represented. These genes are involved in transportation of macromolecules to their cellular destinations. Macromolecules are exchanged between endoplasmic reticulum, golgi apparatus, lysosomes and plasma membrane through vesicular transport [85]. In addition, sub-category “intracellular” is also overrepresented which may be due to efforts to eliminate the E. ictaluri, an intracellular pathogen. This idea is further substantiated by the over representation of the sub-category ‘transporter activity’ from ‘molecular function’ category and ‘transport’ from ‘biological process’ category.

FGF2 is involved in granulopoiesis in response to bacterial infection. Up-regulated expression of FGF2 and bone morphogenetic protein BMP4 suggests increased hematopoiesis.

Neuropilin (NP) 1 is a receptor expressed on endothelial
cells that selectively binds to vascular endothelial growth factor (VEGF) [86]. NP-1 supports the protective mechanisms of VEGF on glomerular endothelial cells, preventing damage and apoptosis. NP-1 expression in glomeruli is correlated with damage [87]. It was also reported that NP-1 is involved in the initiation of the primary immune response [88]. Expression of NP1 in the immunized fish was lower compared to non-immunized fish, suggesting that the immune system protected kidney tubules from damage by the bacteria. MLL was down-regulated, while FGF2 and BMP4 were up-regulated in immunized fish compared to the non-immunized fish after bacterial challenge, suggesting dynamic regulation of hematopoiesis in the vaccinated fish.

RIC-8 is a unique non-receptor [89] guanine nucleotide exchange factor that enhances the exchange of GDP-GTP in the absence of receptor binding to the membrane [90] and is involved in PGDFR mediated actin cytoskeletal rearrangements [91]. Upregulation of RIC-8A in the immunized fish suggests involvement in cell differentiation.

The signals that are involved in the induction of immune responses often suppress other processes. The immune response in zebrafish had increased expression of cytokines and interferon induced genes and dynamic regulation of factors that control hematopoiesis. Other factors that are more vegetative in nature were significantly down-regulated, which include nuclear receptor subfamily 6, group A, member 1 (NR6A1), envoplakin, collagen triple helix containing-1, collagen I and collagen XI, myosin binding protein C, Myosin 10, A-kinase anchoring proteins, synaptotagmin, pancreatic transcription factor 1a, ceramide synthases proteins (TLC domain containing 1 and Na\(^{+}\) K\(^{+}\) ATPase), and genes involved in gonadal development (doublesex- and mab-3-related transcription factor 1). Further, cellular migration is supported by the differential expression of spodin 2, bmp-4 and fgf-2.

Another large functional category with up-regulated transcripts is the “immune response” category. Some of these included up-regulated transcripts such as chemokine CCL-C5a, signal transducer and activator of transcription 1b (STAT1b), interferon regulatory factor 11, colony stimulating factor 1 receptor alpha, TNF receptor-associated factor, TNF ligand superfamily member 10, TNF receptor-associated factor 2a, coagulation factor V, lipopolysaccharide-induced TNF factor, interleukin enhancer binding factor 2 and nuclear factor kappa light polypeptide gene enhancer in B-cells inhibitor, alpha.

Ifnγ expression was significantly greater in exposed than control fish. In both the primary and secondary responses, *Ifnγ* expression was significantly greater at 48 hpi than 24 hpi. However, *Ifnγ* expression was the same in the primary and the secondary responses.

5. Conclusion

Our findings suggest the primary immune response and innate immune cells are not impaired in T and B cell deficient mutant zebrafish. Acute phase proteins play the predominate role in the primary response, and cell trafficking proteins play a dominant role.

In the secondary response, cell trafficking proteins play the predominate role. Up-regulation of genes involved in cell signaling and cell cross-talk suggest receptor recognition and activation. Cell proliferation and cytotoxic functions were significantly up-regulated, suggesting expansion of cell populations. Up-regulation of genes involved in structural morphogenesis, intracellular transport and cellular metabolic processes suggest cell functions are occurring at a heightened level.

Significantly increased *Ifnγ* expression is associated with primary and secondary protective responses in *rag l\(^{−/−}\)* mutant zebrafish. This expression is significantly greater at 48 hpi than 24 hpi, but is the same in primary and secondary responses.

Appendix Supplementary Data

Table A1. Log2 changes in expression of zebrafish transcripts that were up-regulated (p< 0.05) less than 2 fold differences following primary infection (SE\(_{2}\)) compared to non-infected (SS) controls.

Functional classification	Accession number	Putative ID	Log2 difference
Acute phase response			
	NM_131338.1	complement factor B zge:153240	1.941949535
	BQ284848	complement component 9	1.941177194
	BM778002	complement component 9	1.896008966
	BR786414	complement component 3b	1.891921911
	BB45861	CXC chemokine 46	1.585600317
	BB45737	C1q and tnf related protein 4	1.379582099
Immune Response			
	BG985448	calreticulin-like	2.059551719
	BC049424.1	interferon regulatory factor 7	1.863780175
	BG302583	calreticulin, like 2	1.83177963
	BM095893	interferon regulatory factor 9	1.81895559
	BB45861	CXC chemokine 46	1.585600317
	BG985449	calreticulin-like	1.54697111
	NM_131672.1	colony stimulating factor 1 receptor, a	1.482921894
	BM082447	TNF receptor-associated factor 7	1.451537876
Functional classification

Acute phase response

Accession number	Putative ID	Log2 difference
Z46776.1	MHC class I gene	1.453299417
BM775009	tnf (ligand) superfamily, member 10 like 4	1.44493285
BR83290	calreticulin, like 2	1.37740169
CA474845	Tnf receptor-associated factor 2a	1.32678832
AF515275.1	coagulation factor V	1.32844583
AW232141	LPS-induced TNF factor	1.31859685
AW232141	LPS-induced TNF factor	1.31859685
NM_131047.1	calreticulin	1.2629577
BM102177	like CC chemokine SCYA103	1.063116385

Response to Stimulus

Accession number	Putative ID	Log2 difference
AF510108.1	HSP 90, beta (grp94), member 1	1.839962141
NM_153657.1	prostaglandin-endoperoxide synthase 2a	1.829305794
NM_131157.1	crystallin, alpha B, a	1.799110338
BM102177	like CC chemokine SCYA103	1.548966166

Protein degradation

Accession number	Putative ID	Log2 difference
AI878703	proteasome (prosome, macropain) 26S subunit, non-ATPase, 12	1.882078969
NM_131678.1	proteasome (prosome, macropain) subunit, beta type, 9b	1.547871834
AW2420599	proteasome (prosome, macropain) subunit, alpha type, 2	1.530763194
NM_131795.1	proteasome (prosome, macropain) subunit, alpha type, 6b	1.465710587
BM776726	proteasome (prosome, macropain) subunit, alpha type, 5	1.46080581
NM_131375.1	proteasome activator subunit 1	1.456107519
BC040901.0	proteasome (prosome, macropain) subunit, beta type, 3	1.361401934
NM_153655.1	proteasome (prosome, macropain) subunit, alpha type, 6a	1.299223747
BI534099	proteasome (prosome, macropain) subunit, beta type, 2	1.209112514
BM037579	proteasome (prosome, macropain) subunit, beta type, 1	1.200739227
AI477254	proteasome (prosome, macropain) 26S subunit, ATPase, 3	1.117589576
AA658796	proteasome (prosome, macropain) subunit, alpha type, 8	1.158533387
BR678787	proteasome (prosome, macropain) assembly chaperone 1	1.155346818
BC044358.1	proteasome (prosome, macropain) 26S subunit, non-ATPase, 7	1.117427693
BM859971	proteasome (prosome, macropain) subunit, beta type, 4	1.11095754
BG305906	proteasome (prosome, macropain) 26S subunit, ATPase, 1b	1.110038362
BC049471.1	proteasome (prosome, macropain) 26S subunit, ATPase, 1a	1.083525261
A1943154	proteasome (prosome, macropain) 26S subunit, ATPase, 6	1.036215752
BM102205	proteasome (prosome, macropain) subunit, ATPase, 3	1.032558884
BC045970.1	proteasome (prosome, macropain) subunit, alpha type, 4	1.024664144
BR676749	proteasome (prosome, macropain) 26S subunit, ATPase, 4	1.022923298
BC042325.1	proteasome (prosome, macropain) 26S subunit, non-ATPase, 12	1.015459136

Miscellaneous

Accession number	Putative ID	Log2 difference
CA472784	ubiquitin carboxyl-terminal hydrolase L5	1.22027282
BI672243	translocase of inner mitochondrial membrane 8 homolog A (yeast)	1.228679678
AW171078	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5	1.247599938
AI965054	NSF1L (p97) cofactor (p47)	1.225614645
AL925726	fatty acid binding protein 1b-like	1.243418783
AL925726	fatty acid binding protein 1b-like	1.243418783
BQ450267	IMP4, U3 small nuclear ribonucleoprotein, homolog (yeast)	1.242436608
BR665765	CDP-diacylglycerol-inositol 3-phosphatidyltransferase (phosphatidylinositol synthase)	1.242263428
BM186551	protein O-fucosyltransferase 2	1.236996416
BC053310.1	iroquois homeobox protein 4a	1.235529787
CD605135	NHa-ras Harvey rat sarcoma viral oncogene homolog b	1.23394081
BG305942	Novel protein like vertebrate cyclic nucleotide gated channel protein family centrosomal protein 55 like	1.231240895
AW171596	tyrosyl-tRNA synthetase	1.231240895
AW7077876	vaccinia related kinase 2	1.231240895
BC049319.1	nuclear factor of kappa light polypeptide gene enhancer in B-cells, p49/p100	1.20850041

Unannotated

Accession number	Putative ID	Log2 difference
CD283149	asparagine synthetase	1.20485812
BI981317	calcineurin-like phosphoesterase domain containing 1	1.201518532
AW174559	wu:fj0505	7.30717037
AI496375	---	4.373735771
AI496738	wu:fb64b08	3.866031518
BQ616817	---	3.619344164
AL725462	---	3.039137573
Table A2. Log2 changes in expression of zebrafish transcripts that were differentially expressed (p < 0.05) between the secondary (E1E2) and primary (SE2) exposures less than 2.24 fold differences.

Functional classification	Accession number	Putative ID	Log2 difference
Acute phase response			
BM186508	zgc:152945		2.830896542
BL672165			2.69760939
BB78415			2.601745091
AI617721			2.530152336
BR64822	zgc:158271		2.516612853
BQ75086	st:rp71-1c23.2		2.482899493
CD605001			2.466878713
BR65858			2.438501226
BM777312	st:ch211-20b12.2		2.430396283
BI64002	zgc:92903		2.377660001
BB78750	st:dkey-53p21.1		2.185374681
AI974163	st:ch1073-126c3.2		2.180037946
AI331661	wu:fa99f01		2.174633072
AI584672	wu:fb82a05		2.167623349
AI397316	wu:fb09h07		2.122730272
AI84591	wu:fb10g08		2.057605963
AI477763	zgc:103710		2.050630963
BM277076	si:dkey-2716.2		2.043607942
CD015330	zgc:152809		2.040389333
AW232318	wu:i17f10		2.040389333
BM777295	Zgc:172136		2.020805737

Table A2. Log2 changes in expression of zebrafish transcripts that were differentially expressed (p < 0.05) between the secondary (E1E2) and primary (SE2) exposures less than 2.24 fold differences.

Functional classification	Accession number	Putative ID	Log2 difference
Immune Response			
NM_131385.1	recombination activating gene 2	1.5715873	
BQ450131	Myeloid/lymphoid or mixed-lineage leukemia 3a	-1.325213	
Cell proliferation			
AY269790.1	fibroblast growth factor 2	1.2784336	
BG985627	BMP binding endothelial regulator	-1.0152304	
NM_131635.1	fibroblast growth factor 4	-1.9751336	
Receptor Binding			
AF318394.1	novel immune-type receptor 1k*	1.533402	
Signal Transduction			
AY245546.1	pancreas specific transcription factor, 1a	1.4248564	
Intracellular			
NM_131008.1	spodin 2b, extracellular matrix protein	1.2243558	
NM_131256.1	nuclear receptor subfamily 6, group A, member 1a	-1.9057999	
Cell Metabolic process			
AL715408	High-mobility group protein isoforms I and Y	1.0482427	
Structural Morphogenesis			
AI331605	collagen, type I alpha 2	-1.0141198	
AL672176	collagen type XI alpha-2	-1.0306758	
AL922076	collagen triple helix repeat containing 1b	-2.1751793	
AL723844	myosin-10-like	-2.8897076	
Miscellaneous			
BC051151.1	like mucin	1.491553	
BG3035271	resistance to inhibitors of cholinesterase 8 homolog A	1.4264007	
NM_131669.1	ATPase, Na+/K+ transporting, beta 2a polypeptide	1.2700753	
AV161857.1	melanin-concentrating hormone receptor 1a	1.2491383	
AB097825.1	trophoblast glycoprotein-like	1.2555278	
BG884560	Zinc finger protein 347-like	1.2162185	
AL724232	LSM14 homolog A (SCD6, S. cerevisiae)	1.0996213	
BQ132362	like MGC107856 protein	1.0679448	
BM777899	like MGC107856 protein	-1.0957169	
BB42004	synaptotagmin IV	-1.1001618	
AJ286843	hypothetical protein LOC100331174	-1.1235053	
AI397227	envoplakin	-1.1430245	
BQ878258	like CG14142-PA	-1.1469466	
AF495875.1	estrogen-related receptor gamma a	-1.3828564	
BB485673	protein kinase (cAMP-dependent) inhibitor beta	-1.5030164	
NM_181497.2	Neuropilin 1a-like // neuropilin 1a	-1.578668	
NM_131287.1	SRY-box containing gene 17	-1.584243	
AI331287	TLC domain containing 1	-1.671343	

Aparna Krishnavajhala et al.: Transcriptome Changes Associated with Protective Immunity in T and B Cell-Deficient Rag1^{-/-} Mutant Zebrafish
Functional classification	Accession number	Putative ID	Log2 difference
Immune Response			
	BI983629	mCG142610-like	-1.8298359
	BG3003134	DEAD (Asp-Glu-Ala-Asp) box polypeptide 51	-2.0876298
	BQ074821	doublesex and mab-3 related transcription factor	-2.3731684
	CD606487	SET domain, bifurcated 2	-2.8538423
	AT793605	wu:fc49d07	2.6504161
	BF710320	---	2.3408558
	BM187461	zgc:92035	2.2996033
	AW281782	---	2.2427615
	BG883314	---	2.2250069
	AW018957	---	2.2219393
	AW035176	---	2.1737237
	BB883324	---	2.1613121
	BQ419619	---	2.0832168
	BB67354	si:ch211-147m20.1	1.9192022
	AA497170	---	1.8085751
	BG3033757	si:dkey-4c15.6	1.5619177
	BF709723	zgc:165508	1.4714972
	CD606304	zgc:158366	1.4309018
	BB891762	---	1.424723
	BQ092536	---	1.1144797
	BM005167	wu:fb77d09	1.3832316
	AL731009	---	1.3729446
	BM186516	---	1.3577334
	BB684110	---	1.3536182
	AL719663	wu:fc11a05	1.2914202
	AL913138	---	1.2142156
	BB777608	zgc:152863	1.1144797
	AW233702	wu:fc40e09	1.0867881
	AFFX-Dr-pAsRed2	---	1.0407045
	BG728511	---	1.0332313
	CD283215	wu:fb81e07	-1.0924965
	BI318519	---	-1.1600338
	BB845653	---	-1.1832179
	BP982110	---	-1.3152468
	AW279002	si:ch73-46j18.5	-1.5061064
	BB847022	---	-1.5484224
	BM186526	---	-1.6606248
	BM571195	si:ch211-266a5.1	-1.6830505
	AI959658	wu:fd12e04	-1.7118405
	BM005010	---	-1.7141458
	BE605275	wu:fb15e04	-1.8103463
	BG303530	---	-1.8852786
	AL719266	zgc:110283	-1.9695472
	AJ444465	wu:fb39e08	-1.9698771
	BE201957	zgc:194138	-1.9842097
	BI673395	---	-1.9922919
	BI982878	---	-2.0579275
	BI671488	---	-2.1208847
	AW280135	wu:fc11a11	-2.2341451
	AL927596	---	-2.3347106
	AF721504	wu:fc44b05	-2.4008245
	AL722000	---	-2.4113868
	AF794137	hypothetical protein LOC100332904	-2.439278
	BM154625	wu:fc12e09	-2.4814408
	AI878410	wu:fc57f08	-2.5580451
	BM025943	Si:ch211-261e8.5	-2.5911717
	BB979237	---	-2.6889276
	AI667492	---	-2.8792889
	AL724042	---	-3.0855005
Unannotated	CD606487	---	-3.321485

* Mammalian ortholog
Table A3. Comparison of ifnγ gene expression between treatments at 24 hpi and 48 hpi. hpi= hours post injection. *Significance (p<0.05) and ns=no significance.

Gene	Treatment	Time	Adjusted P Value	Significance
ifnγ	SS vs. SE2	24 hpi	0.100	ns
ifnγ	SS vs. E1E2	24 hpi	0.0045	**
ifnγ	SE2 vs. E1E2	24 hpi	0.5988	ns
ifnγ	SS vs. SE2	48 hpi	<0.0001	****
ifnγ	SS vs. E1E2	48 hpi	<0.0001	****
ifnγ	SE2 vs. E1E2	48 hpi	0.4722	ns
ifnγ	SS vs. SS	24 hpi vs 48 hpi	0.4206	ns
ifnγ	SE2 vs SE2	24 hpi vs 48 hpi	0.0079	**
ifnγ	E1E2 vs SE2	24 hpi vs 48 hpi	0.0317	*

References

[1] Petrie-Hanson, Lora, and A. Jerald Ainsworth. "Humoral immune responses of channel catfish (Ictalurus punctatus) fry and fingerlings exposed to Edwardsiella ictaluri." *Fish & Shellfish Immunology* 9, no. 8 (1999): 579-589.

[2] Petrie-Hanson, Lora, and A. Jerald Ainsworth. "Ontogeny of channel catfish lymphoid organs." *Veterinary Immunology and Immunopathology* 81, no. 1 (2001): 113-127.

[3] Klesius, Phillip H., and Craig A. Shoemaker. "Development and use of modified live Edwardsiella ictaluri vaccine against enteric septicemia of catfish." *Advances in veterinary medicine* 41 (1999): 523-537.

[4] M. R. B. M., Specificity of the developing channel catfish immune response to heterotypic bacterial challenge by Mary Rebecca Bivings Mackey. 2002.

[5] Petrie-Hanson, Lora, Claudia Hohn, and Larry Hanson. "Characterization of rag1 mutant zebrafish leukocytes." *BMC immunology* 10, no. 1 (2009): 8.

[6] Hohn, Claudia, and Lora Petrie-Hanson. "Rag1−/− mutant zebrafish demonstrate specific protection following bacterial re-exposure." *PloS one* 7, no. 9 (2012): e44451.

[7] Sun, Joseph C., Joshua N. Beilke, and Lewis L. Lanier. "Inductive immune features of natural killer cells." *Nature* 457, no. 7229 (2009): 557-561.

[8] O'Leary, Jacqueline G., Mahmoud Goodarzi, Danielle L. Drayton, and Ulrich H. von Andrian. "T cell–and B cell–independent adaptive immunity mediated by natural killer cells." *Nature immunology* 7, no. 5 (2006): 507-516.

[9] Netea, Mihai G. "Training innate immunity: the changing concept of immunological memory in innate host defence." *European journal of clinical investigation* 43, no. 8 (2013): 881-884.

[10] Baldwin, Thomas J., and Joseph C. Newton. "Pathogenesis of enteric septicemia of channel catfish, caused by Edwardsiella ictaluri: bacteriologic and light and electron microscopic findings." *Journal of Aquatic Animal Health* 5, no. 3 (1993): 189-198.

[11] Pidgeon, Julia W., Hung-Yueh Yeh, Craig A. Shoemaker, Xingjiang Mu, and Phillip H. Klesius. "Global gene expression in channel catfish after vaccination with an attenuated Edwardsiella ictaluri." *Fish & shellfish immunology* 32, no. 4 (2012): 524-533.

[12] Raman, T., O'Connor, T. P., Hackett, N. R., Wang, W., Harvey, B. G., Attiyah, M. A., Dang, D. T., Teater, M. and Crystal, R. G., 2009. Quality control in microarray assessment of gene expression in human airway epithelium. *BMC genomics*, 10(1), p.493.

[13] Flemming, Banu Elibol. Effects of Edwardsiella Ictaluri Infection on Transcriptional Expression of Selected Immune Relevant Genes in Channel Catfish, Ictalurus Punctatus. 2006.

[14] Elibol-Flemming, Banu, Geoffrey C. Waldbieser, William R. Wolters, Carolyn R. Boyle, and Larry A. Hanson. "Expression analysis of selected immune-relevant genes in channel catfish during Edwardsiella ictaluri infection." *Journal of aquatic animal health* 21, no. 1 (2009): 23-35.

[15] Untergasser, Andreas, Ioana Cutcutache, Triinu Korresaar, Jian Ye, Brant C. Faircloth, Maito Remm, and Steven G. Rozen. "Primer3—new capabilities and interfaces." *Nucleic acids research* 40, no. 15 (2012): e115-e115.

[16] Ju, Bensheng, Yanfei Xu, Ji Lianghe, Ji Liao, Tie Yan, Choy L. Hew, Toong Jin Lam, and Zhiyuan Gong. "Faithful expression of green fluorescent protein(GFP) in fish infection during pathogenesis." *Molecular Immunology* 45, no. 2 (2008): 2085-2092.

[17] Vojtech, Lucia N., George E. Sanders, Carla Conway, Vaughn Ostland, and John D. Hansen. "Host immune response and acute disease in a zebrafish model of Francisella pathogenesis." *Infection and immunity* 77, no. 2 (2009): 914-925.

[18] Shah, Radhika N., Ivan Rodriguez-Nunez, Donna D. Eason, Robert N. Haire, Julien Y. Bertrand, Valérie Wittamer, David Traver, Shila K. Nordone, Gary W. Litman, and Jeffrey A. Yoder. "Development and characterization of anti-nitri9 antibodies." *Advances in hematology* 2012 (2012).

[19] Ebralidze, Alexander K., Florence C. Guibal, Ulrich Steidl, Pu Zhang, Sanghoon Lee, Boris Bartholdy, Meritxell Alberich-Jorda et al. "PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element." *Genes & development* 22, no. 15 (2008): 2085-2092.

[20] Peatman, Eric, Jeffery Terhune, Puttharat Baoprasertkul, Peng Xu, Samiran Nandi, Shaolin Wang, Benjaporn Somrithivej et al. "Microarray analysis of gene expression in the blue catfish liver reveals early activation of the MHC class I pathway after infection with Edwardsiella ictaluri." *Molecular Immunology* 45, no. 2 (2008): 553-566.
[21] Shah, Chandrabala, Ranjeeta Hari-Dass, and John G. Raynes. "Serum amyloid A is an innate immune opsonin for Gram-negative bacteria." Blood 108, no. 5 (2006): 1751-1757. [22] Paust, S., et al., Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of hapten and viruses. Nature immunology, 2010. 11(12): p. 1127-1135.

[23] Kania, Per W., Jiwan K. Chettiri, and Kurt Buchmann. "Characterization of serum amyloid A (SAA) in rainbow trout using a new monoclonal antibody." Fish & shellfish immunology 40, no. 2 (2014): 648-658.

[24] Stockhammer, Oliver W., Anna Zakrzewska, Zoltán Hegedüs, Herman P. Spanik, and Annemarie H. Meijer. "Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection." The Journal of Immunology 182, no. 9 (2009): 5641-5653.

[25] Nomiyama, Hisayuki, Kunio Hieshima, Naoki Osada, Yoko Alejo, Alí, and Carolina Tafalla. "Chemokines in teleost fish species." BMC immunology 11, no. 1 (2010): 22.

[26] Taub, Dennis D., Susan M. Turcovsky-Corrales, Michael L. Key, Dan L. Longo, and William J. Murphy. "Chemokines and T lymphocyte activation: I. Beta chemokines costimulate human T lymphocyte activation in vitro." The Journal of Immunology 156, no. 6 (1996): 2095-2103.

[27] Mahgazachi, Azzam A., Ala Al-Aoukaty, and Thomas J. Schall. "CC chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins." The Journal of Immunology 153, no. 11 (1994): 4969-4977.

[28] DeVries, Mark E., Alyson A. Kelvin, Luoling Xu, Longsi Ran, John Robinson, and David J. Kelvin. "Defining the origins and evolution of the chemokine/chemokine receptor system." The Journal of Immunology 176, no. 1 (2006): 401-415.

[29] Alejo, Ali, and Carolina Tafalla. "Chemokines in teleost fish species." Developmental & Comparative Immunology 35, no. 12 (2011): 1215-1222.

[30] Xiong, Shuting, Junjie Wu, Peipei Huang, Zhi Li, Jie Mei, and Jian-Fang Gui. "Loss of stat3 function leads to spine malformation and immune disorder in zebrafish." Science Bulletin (2017).

[31] Oates, Andrew C., Patrik Wollberg, Stephen J. Pratt, Barry H. Paw, Stephen L. Johnson, Robert K. Ho, John H. Postlethwait, Leonard I. Zon, and Andrew F. Wilks. "Zebrafish stat3 is expressed in restricted tissues during embryogenesis and stat1 rescues cytokine signaling in a STAT1 - deficient human cell line." Developmental Dynamics 215, no. 4 (1999): 352-370.

[32] Briolat, Valérie, Luc Jouneau, Ralph Carvalho, Nuno Palha, Christelle Langevin, Philippe Herbolom, Olivier Schwartz, Herman P. Spanik, Jean-Pierre Levraud, and Pierre Boudinot. "Contrasted innate responses to two viruses in zebrafish: insights into the ancestral repertoire of vertebrate IFN-stimulated genes." The Journal of Immunology 192, no. 9 (2014): 4328-4341.

[33] Song, Hao, Yi-lin Yan, Tom Titus, Xinjun He, and John H. Postlethwait. "The role of stat1b in zebrafish hematopoiesis." Mechanisms of development 128, no. 7 (2011): 442-456.

[34] Taniguchi, Tadatsugu, and Akinori Takaoka. "A weak signal for strong responses: interferon-alpha/beta revisited." Nature reviews Molecular cell biology 2, no. 5 (2001): 378-386.

[35] Mamane, Yael, Christophe Heylbroeck, Pierre Génin, Michele Algarté, Marc J. Servant, Cécile LePage, Carmela DeLuca, Hakju Kwon, Rongtuan Lin, and John Hiscott. "Interferon regulatory factors: the next generation." Gene 237, no. 1 (1999): 1-14.

[36] Huang, Bei, Zhi T. Qi, Zhen Xu, and Pin Nie. "Global characterization of interferon regulatory factor (IRF) genes in vertebrates: glimpse of the diversification in evolution." BMC immunology 11, no. 1 (2010): 22.

[37] Holzinger, Dirk, Carl Jorns, Silke Stertz, Stéphanie Boisson-Dupuis, Robert Thimme, Manfred Weidmann, Jean-Laurent Casanova, Otto Haller, and Georg Kochs. "Induction of MXA gene expression by influenza A virus requires type I or type III interferon signaling." Journal of virology 81, no. 14 (2007): 7776-7785.

[38] Haller, Otto, Peter Stachelin, Martin Schwenmelle, and Georg Kochs. "Mx GT/Pases: dynamin-like antiviral machines of innate immunity." Trends in microbiology 23, no. 3 (2015): 154-163.

[39] González-Mariscal, J. A., J. B. Gallardo-Gálvez, T. Méndez, M. C. Alvarez, and J. Bejar. "Cloning and characterization of the Mx1, Mx2 and Mx3 promoters from gilthead seabream (Sparus aurata)." Fish & shellfish immunology 38, no. 2 (2014): 311-317.

[40] Coux, Olivier, Keiji Tanaka, and Alfred L. Goldberg. "Structure and functions of the 20S and 26S proteasomes." Annual review of biochemistry 65, no. 1 (1996): 801-847.

[41] Ciechanover, Aaron, and Alan L. Schwartz. "The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death." Proceedings of the National Academy of Sciences 95, no. 6 (1998): 2727-2730.

[42] Reed, ROBYN C., and CHRISTOPHER V. Nicchitta. "Chaperone-mediated cross-priming: a hitchhiker’s guide to vesicle transport Review." Int J Mol Med 6, no. 3 (2000): 259-64.

[43] Boshra, H., J. Li and J. O. Sunyer. "Recent advances on the complement system of teleost fish." Fish & shellfish immunology 20, no. 2 (2006): 239-262.

[44] Shen, Yubang, Junbin Zhang, Xiaoyan Xu, Jianjun Fu and Jiale Li. "Expression of complement component C7 and involvement in innate immune responses to bacteria in grass carp." Fish & shellfish immunology 33, no. 2 (2012): 448-454.

[45] Hu, Yu-Lan, Xin-Min Pan, Li-Xin Xiang, and Jian-Zhong Shao. "Characterization of C1q in teleosts insight into the molecular and functional evolution of C1q family and classical pathway." Journal of Biological Chemistry 285, no. 37 (2010): 28777-28786.

[46] Ito, Tomomi, Rumi Sawada, Yoko Fujiiwara, Yousuke Seyama, and Toshie Tsuchiya. "FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-β2." Biochemical and biophysical research communications 359, no. 1 (2007): 108-114.
[47] Allouche, Michele, and Andreas Bikfalvi. "The role of fibroblast growth factor-2 (FGF-2) in hematopoiesis." Progress in growth factor research 6, no. 1 (1995): 35-48.

[48] Kokkotou, Ef, Alan C. Moss, Daniel Torres, Iordanes Karagiannides, Adam Cheifetz, Sumei Liu, Michael O'Brien, Eleftheria Maratos-Flier, and Charalabos Pothoulakis. "Melamin-concentrating hormone as a mediator of intestinal inflammation." Proceedings of the National Academy of Sciences 105, no. 30 (2008): 10613-10618.

[49] Yamauchi, Hajime, Noriko Miyakawa, Ayumi Miyake, and Nobuyuki Itoh. "Fgf4 is required for left–right patterning of visceral organs in zebrafish." Developmental biology 332, no. 1 (2009): 177-185.

[50] Jude, Craig D., Leslie Climer, Diyong Xu, Erika Artinger, Jill K. Fisher, and Patricia Ernst. "Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors." Cell stem cell 1, no. 3 (2007): 324-337.

[51] Ernst, Patricia, Jill K. Fisher, William Avery, Stacey Wade, Daniel Foy, and Stanley J. Korsmeyer. "Definitive hematopoiesis requires the mixed-lineage leukemia gene." Developmental cell 6, no. 3 (2004): 437-443.

[52] Robinson, Blaine W., Giuseppe Germano, Yuanquan Song, Joshua Abrams, Marion Scott, Ilaria Guariento, Natascia Tiso et al. "All ortholog containing functional domains of human MLL is expressed throughout the zebrafish lifespan and in haematopoietic tissues." British journal of haematology 152, no. 3 (2011): 307-321.

[53] Catania, Anna, Lorena Airaghi, Gualtiero Colombo, and James M. Lipton. "α-Melanocyte-stimulating hormone in normal human physiology and disease states." Trends in endocrinology & metabolism 11, no. 8 (2000): 304-308.

[54] Peatman, Eric, and Zhanjiang Liu. "CC chemokines in zebrafish: evidence for extensive intrachromosomal gene duplications." Genomics 88, no. 3 (2006): 381-385.

[55] Wu, Nan, Scott E. LaPatra, Jun Li, J. Oriol Sunyer, and Yong-An Zhang. "Complement C5a acts as molecular adjuvant in fish by enhancing antibody response to soluble antigen." Fish & shellfish immunology 40, no. 2 (2014): 616-623.

[56] Houslay, Miles D., and David R. Adams. "PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization." Biochemical Journal 370, no. 1 (2003): 1-18.

[57] Roubin, Régine, Claire Acquaviva, Véronique Chevrier, Fatima Sedjali, Déborah Zyss, Daniel Birnbaum, and Olivier Rosnet. "Myosegulin is necessary for the formation of centrosomal and Golgi-derived microtubules." Biology open 2, no. 2 (2013): 238-250.

[58] Wang, Yichen, Huayu Yang, Haifeng Xu, Xin Lu, Xinting Sang, Shouxian Zhong, Jiefu Huang, and Yilei Mao. "Golgi protein 73, not Glycan - 3, may be a tumor marker complementary to α - Fetoprotein for hepatocellular carcinoma diagnosis." Journal of gastroenterology and hepatology 29, no. 3 (2014): 597-602.

[59] Kingsley, David M. "The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms." Genes & development 8, no. 2 (1994): 133-146.

[60] Hogan, B. L. "Bone morphogenetic proteins: multifunctional regulators of vertebrate development." Genes & development 10, no. 13 (1996): 1580-1594.

[61] Chan, Eva Y. "Gene Expression Patterns of Bone Morphogenetic Proteins (BMPs) During Early Embryonic Development in The Annual Killifish Austrofundulus Linnaeus." PSU McNair Scholars Online Journal 10, no. 1 (2016): 3.

[62] Detmer, Kristina, Timothy A. Steele, Mark A. Shoop, and Hassan Dannawi. "Lineage-restricted expression of bone morphogenetic protein genes in human hematopoietic cell lines." Blood Cells, Molecules, and Diseases 25, no. 6 (1999): 310-323.

[63] Ten Dijke, Peter, and Helen M. Arthur. "Extracellular control of TGFβ signalling in vascular development and disease." Nature reviews Molecular cell biology 8, no. 11 (2007): 857-869.

[64] Johansson, Britt M., and Michael V. Wiles. "Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development." Molecular and Cellular Biology 15, no. 1 (1995): 141-151.

[65] Heinke, Jennifer, Leonie Wehofsits, Qian Zhou, Christoph Zoeller, Kim-Miriam Baar, Thomas Helbing, Anna Laib et al. "BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4–dependent angiogenesis." Circulation research 103, no. 8 (2008): 804-812.

[66] Kelley, Rusty, Rongqin Ren, Xinchun Pi, Yaxu Wu, Isabel Moreno, Monte Willis, Martin Moser et al. "A concentration-dependent endocytic trap and sink mechanism converts Bmpper from an activator to an inhibitor of Bmp signaling." The Journal of cell biology 184, no. 4 (2009): 597-609.

[67] Helbing, Thomas, René Rothweiler, Jennifer Heinke, Lena Goetz, Philipp Diehl, Andreas Zirlik, Cam Patterson, Christoph Bode, and Martin Moser. "BMPER Is Upregulated by Statins and Modulates Endothelial Inflammation by Intercellular Adhesion Molecule–1." Arteriosclerosis, thrombosis, and vascular biology 30, no. 3 (2010): 554-560.

[68] Amir, Nader, Geri Weber, Courtney Beard, Jessica Bomyea, and Charles T. Taylor. "The effect of a single-session attention modification program on response to a public-speaking challenge in socially anxious individuals." Journal of abnormal psychology 117, no. 4 (2008): 860.

[69] Bani, Daniele. "Relaxin: a pleiotropic hormone." General Pharmacology: The Vascular System 28, no. 1 (1997): 13-22.

[70] Figuieredo, Kevin A., Alice L. Mui, Colleen C. Nelson, and Michael E. Cox. "Relaxin stimulates leukocyte adhesion and migration through a relaxin receptor LGR7-dependent mechanism." Journal of Biological Chemistry 281, no. 6 (2006): 3030-3039.

[71] Good-Avila, Sara V., Sergey Yegorov, Scott Harron, Jan Bogerd, Peter Glen, James Ozon, and Brian C. Wilson. "Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, andexpression analysis." BMC evolutionary biology 9, no. 1 (2009): 293.

[72] Sherwood, O. David. "Relaxin’s physiological roles and other diverse actions." Endocrine reviews 25, no. 2 (2004): 205-234.
McGowan, B. M., S. A. Stanley, K. L. Smith, J. S. Minnion, J. Donovan, E. L. Thompson, M. Patterson et al. "Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats." Regulatory peptides 136, no. 1 (2006): 72-77.

Murphy, Kenneth, Paul Travers, Mark Walport, and Janeway'S. Immunobiology. "Garland Science." New York (2008).

Shannon, M. F., S. R. Himes, and J. Attema. "A role for the architectural transcription factors HMG (Y) in cytokine gene transcription in T cells." Immunology and cell biology 76, no. 5 (1998): 461-466.

Goodwin, Graham H., Peter N. Cockerill, Stephen Kellam, and Carol A. Wright. "Fractionation by high - performance liquid chromatography of the low - molecular - mass high - mobility - group (HMG) chromosomal proteins present in proliferating rat cells and an investigation of the HMG proteins present in virus transformed cells." European Journal of Biochemistry 149, no. 1 (1985): 47-51.

Tomai, Mark A., Linda M. Imbertson, Tamara L. Stanczak, Lorraine T. Tygrett, and Thomas J. Waldschmidt. "The immune response modifiers imiquimod and R-848 are potent activators of B lymphocytes." Cellular immunology 203, no. 1 (2000): 55-65.

Solomon, Mark J., F. R. A. N. O. I. S. Strauss, and Alexander Varshavsky. "A mammalian high mobility group protein recognizes any stretch of six A T base pairs in duplex DNA." Proceedings of the National Academy of Sciences 83, no. 5 (1986): 1276-1280.

Russnak, R. H., E. P. Candido, and C. R. Astell. "Interaction of the mouse chromosomal protein HMG-I with the 3'ends of genes in vitro." Journal of Biological Chemistry 263, no. 13 (1988): 6392-6399.

Bustin, Michael, and Raymond Reeves. "High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function." Progress in nucleic acid research and molecular biology 54 (1996): 35-100b.

He, You-Wen, Hong Li, Jun Zhang, Chia-Lin Hsu, Emily Lin, Nu Zhang, Jian Guo, Katherine A. Forbush, and Michael J. Bevan. "The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens." Nature immunology 5, no. 1 (2004): 88-97.

Maki, Tomohito, Hiroaki Kura, Hiroyasu Ishida, Toshiro Kaneko, Rikizo Hatakeyama, Migaku Takahashi, and Tomoyuki Ogawa. "Effect of nitrogen–hydrogen mixed plasma on nitridation process of iron nanoparticles." Thin Solid Films 519, no. 23 (2011): 8351-8354.

Jia, Wei, Hong Li, and You-Wen He. "The extracellular matrix protein mindin serves as an integrin ligand and is critical for inflammatory cell recruitment." Blood 106, no. 12 (2005): 3854-3859.

Cooper, G. M., and R. E. Hausman. "The complexity of eukaryotic genomes." The cell: A molecular Approach. Sinauer Associates Sunderland (2000).

Ferrara, Napoleone, Hans-Peter Gerber, and Jennifer LeCouter. "The biology of VEGF and its receptors." Nature medicine 9, no. 6 (2003): 669-676.

Vadasz, Z., O. Ben-Izhak, J. Bejar, E. Sabo, A. Kessel, S.储ch, and E. Toubi. "The involvement of immune semaphorins and neuropilin-1 in lupus nephritis." Lupus 20, no. 14 (2011): 1466-1473.

Tordjman, Rafaële, Yves Lepelletier, Valérie Lemarchandel, Marie Cambot, Philippe Gaulard, Olivier Hermine, and Paul-Henri Roméo. "A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response." Nature immunology 3, no. 5 (2002): 477-482.

Tall, Gregory G., Andrejs M. Krumins, and Alfred G. Gilman. "Mammalian Ric-8A (synembryn) is a heterotrimeric Gα protein guanine nucleotide exchange factor." Journal of Biological Chemistry 278, no. 10 (2003): 8356-8362.

Willard, Francis S., Randall J. Kimple, and David P. Siderovski. "Return of the GDI: the GoLoco motif in cell division." Annual review of biochemistry 73, no. 1 (2004): 925-951.

Wang, Limin, Dagang Guo, Bowen Xing, J. Jillian Zhang, Hong-Bing Shu, Lin Guo, and Xin-Yun Huang. "Resistance to inhibitors of cholinesterase-8A (Ric-8A) is critical for growth factor receptor-induced actin cytoskeletal reorganization." Journal of Biological Chemistry 286, no. 35 (2011): 31055-31061.