New type Stirling like numbers - an email style letter

A. Krzysztof Kwaśniewski
High School of Mathematics and Applied Informatics
Kamienna 17, PL-15-021 Bialystok, Poland
e-mail: kwandr@wp.pl
AMS Classification Numbers: 05C20, 11C08, 17B56

Key Words: prefab, cobweb poset, Whitney numbers, Fibonacci like sequences

The notion of the Fibonacci cobweb poset from [1] has been naturally extended to any admissible sequence \(F \) in [2] where it was also recognized that the celebrated prefab notion of Bender and Goldman [3] - (see also [4,5]) - admits such an extension so as to encompass the new type combinatorial objects from [2] as leading examples. Recently the present author had introduced also [6] two natural partial orders in there: one \(\leq \) in grading-natural subsets of cobweb's prefabs sets [2] and in the second proposal one endows the set sums of the so called "prefabians" with such another partial order that one arrives at Bell-like numbers including Fibonacci triad sequences introduced by the present author in [7]. Here we quote the basic observations concerning the new type Stirling like numbers as they appear in [6]. For more on notation, Stirling like numbers of the first kind and for proofs - see [6].

The overall \(F \)-independent class of p.o. set structure. Let the family \(S \) of combinatorial objects \(\text{(prefabians)} \) consists of all layers \(\langle \Phi_k \rightarrow \Phi_n \rangle \), \(k \leq n \), \(k,n \in N \cup \{0\} \equiv Z_\geq \) and an empty prefabiant \(i \). The set \(\varphi \) of prime objects consists of all subposets \(\langle \Phi_0 \rightarrow \Phi_m \rangle \) i.e. all \(P_m \)’s \(m \in N \cup \{0\} \equiv Z_\geq \) constitute from now on a family of prime prefabians [2]. Layer is considered here to be the set of all max-disjoint isomorphic copies (iso-copies) of \(P_m \). Consider then now the partially ordered family \(S \) of these layers considered to be sets of all max-disjoint isomorphic copies (iso-copies) of prime prefabians \(P_m = P_{n-k} \). For any \(F \)-sequence determining cobweb poset [2] let us define in \(S \) the same partial order relation as follows.

Definition 1
\[
\langle \Phi_k \rightarrow \Phi_n \rangle \leq \langle \Phi_k \triangleright \rightarrow \Phi_n \triangleright \rangle \quad \equiv \quad k \leq k \triangleright \quad \land \quad n \leq n \triangleright .
\]

For convenience reasons we shall also adopt and use the following notation:
\[
\langle \Phi_k \rightarrow \Phi_n \rangle = p_{k,n}.
\]

In what follows we shall consider the subposet \(\langle P_{k,n}, \leq \rangle \) where \(P_{k,n} = [p_{0,o},p_{k,n}] \). Then according to [6] we observe the following.

Observation 1. The size \(|P_{k,n}| \) of \(P_{k,n} \) is \(\{ \{l,m\}, \quad 0 \leq l \leq k \quad \land \quad 0 \leq m \leq n \quad \land \quad k \leq n \} = (n-k)(k+1) + \frac{k(k+1)}{2} \).

Observation 2. The number of maximal chains in \(\langle P_{k,n}, \leq \rangle \) is equal to the number \(d(k,n) \) of 0 - dominated strings of binary sequences
\[
d(k,n) = \frac{n+1-k}{n}\binom{k+n}{n}.
\]

Recall that \((d(k,n)) \) infinite matrix’s diagonal elements are equal to the Catalan numbers \(C(n) \). The poset \(\langle P_{k,n}, \leq \rangle \) is naturally graded. \(\langle P_{k,n}, \leq \rangle \) poset’s maximal chains are all of equal size (Dedekind -Jordan property) therefore the range function is defined.
Observation 3. The range \(r(P_{k,n}) \) of \(P_{k,n} \) = number of elements in maximal chains \(P_{k,n} \) minus one = \(k + n - 1 \). The range \(r(p_{l,m}) \) of \(\pi = p_{l,m} \in P_{k,n} \) is defined accordingly: \(r(p_{l,m}) = l + m - 1 \).

Accordingly Whitney numbers \(W_k(P_{l,m}) \) of the second kind are defined as follows (association: \(n \leftrightarrow (l, m) \))

Definition 2

\[
W_k(P_{l,m}) = \sum_{\pi \in P_{l,m}, r(\pi) = k} 1 = S(k, (l, m)).
\]

We shall identify \(W_k(P_{l,m}) \) with \(S(k, (l, m)) \) called and viewed as Stirling-like numbers of the second kind of the naturally graded poset \(\langle P_{k,n}, \leq \rangle \).

We shall define also the corresponding Bell-like numbers \(B((l, m)) \) of the naturally graded poset \(\langle P_{k,n}, \leq \rangle \).

Definition 3

\[
B((l, m)) = \sum_{k=0}^{l+m} S(k, (l, m)).
\]

Observation 4.

\[
B((l, m)) = |P_{l,m}| = \frac{k(k + 1)}{2} + (n - k)(k + 1).
\]

The \(F \)-dependent, \(F \)-labelled class of p.o. set structures. Let us consider now prefabrians’ set sums with an appropriate another partial order so as to arrive at Bell-like numbers including Fibonacci triad sequences introduced recently by the present author in [7]. Let \(F \) be any ”GCD-morphic” sequence [2]. This means that \(GCD[F_n, F_m] = F_{GCD[n,m]} \) where GCD stays for Greatest Common Divisor mapping. We define the \(F \)-dependent finite partial ordered set \(P(n, F) \) as the set of prime prefabrians \(P_l \) given by the sum below.

Definition 4

\[
P(n, F) = \bigcup_{0 \leq p \leq n-l} \{ \Phi_p \rightarrow \Phi_{n-p} \} = \bigcup_{0 \leq l} P_{n-l}
\]

with the partial order relation defined for \(n - 2l \leq 0 \) according to

Definition 5

\[
P_l \leq P_l \quad \equiv \quad l \leq \hat{l}, \quad P_l, P_l \in \{ \Phi_l \rightarrow \Phi_{n-l} \}.
\]

Recall that rang of \(P_l \) is \(l \). Note that \(\{ \Phi_l \rightarrow \Phi_{n-l} \} = \emptyset \) for \(n - 2l \leq 0 \). The Whitney numbers of the second kind are introduce accordingly.

Definition 6

\[
W_k(P_{n,F}) = \sum_{\pi \in P(n,F), r(\pi) = k} 1 = S(n, n-k, F).
\]

Right from the definitions above we infer that:

Observation 5.

\[
W_k(P_{n,F}) = \sum_{\pi \in P(n,F), r(\pi) = k} 1 = S(n, n-k, F) = \binom{n-k}{k}_F.
\]
Referring to the classical examples from [8] we identify \(W_k(P(n, F)) \) with \(S(n, n - k, F) \) called the Stirling-like numbers of the second kind of the \(P \). \(P \) by construction displays self-similarity property with respect to its prime prefabint sub-posets \(P_n = P(n, F) \). Consequently for any \(\text{GCD} \)-morphic sequence \(F \) (see: [2]) we define the corresponding Bell-like numbers \(B_n(F) \) of the poset \(P(n, F) \) as follows.

Definition 7

\[
B_n(F) = \sum_{k \geq 0} S(n, k, F).
\]

Due to the investigation in [7] we have right now at our disposal all corresponding results of [7] as the following identification with special case of \(\langle \alpha, \beta, \gamma \rangle \) - Fibonacci sequence \(\langle F_n^{[\alpha, \beta, \gamma]} \rangle_{n \geq 0} \) defined in [7] holds.

Observation 6.

\[
B_n(F) \equiv F_{n+1}^{[0,0,0]}.
\]

Proof: See the Definition 2.2. from [7].

Recurrence relations. Recurrence relations for \(\langle \alpha, \beta, \gamma \rangle \) - Fibonacci sequences \(F_n^{[\alpha, \beta, \gamma]} \) are to be found in [7] - formula (9). Compare also with the special case formula (7) in [9].

Remark. As seen from the identification Observation 6. the special cases of \(\langle \alpha, \beta, \gamma \rangle \) - Fibonacci sequences \(F_n^{[\alpha, \beta, \gamma]} \) gain additional with respect to [7] combinatorial interpretation in terms Bell-like numbers as just sums of Whitney numbers of the poset \(P(n, F) \). This adjective ”additional” applies spectacularly to Newton binomial connection constants between bases \(\langle x-1 \rangle_k \rangle_{k \geq 0} \) and \(\langle x^n \rangle_{n \geq 0} \) as these are Whitney numbers of the numbers from \([n]_k \) chain i.e. Whitney numbers of the poset \(\langle [n], \leq \rangle \). For other elementary ”shining brightly” examples see Joni, Rota and Sagan excellent presentation in [8].

References

[1] A. K. Kwaśniewski, *Comments on combinatorial interpretation of fibonomial coefficients - an email style letter* Bulletin of the Institute of Combinatorics and its Applications **42** (2004), 10-11.

[2] A. K. Kwaśniewski, *Cobweb posets as noncommutative prefabs* submitted for publication ArXiv : math.CO/0503286 (2005)

[3] E. Bender, J. Goldman *Enumerative uses of generating functions*, Indiana Univ. Math.J. **20** (1971), 753-765.

[4] D. Foata and M. Schützenberger, Théorie géométrique des polynomes euleriens, *(Lecture Notes in Math., No. 138)*, Springer-Verlag, Berlin and New York, 1970.

[5] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, 2nd ed., Academic Press, New York, 1978.

[6] A.K. Kwaśniewski, *Prefab posets’ Whitney numbers* ArXiv: math.CO/0510027, 3 Oct 2005

[7] A. K. Kwaśniewski, *Fibonacci-triad sequences* Advan. Stud. Contemp. Math. **9** (2004),109-118.

[8] S.A. Joni, G.C. Rota, B. Sagan *From sets to functions: three elementary examples* Discrete Mathematics **37** (1981), 193-202.