Determination of V_{us} at the KLOE experiment: present results and future perspectives

Erika De Lucia for the KLOE and KLOE-2 Collaborations

Laboratori Nazionali di Frascati dell’Istituto Nazionale di Fisica Nucleare, 00044 Frascati (RM), ITALY

Precise measurements of semileptonic kaon decay rates at KLOE provide the measurement of the CKM mixing matrix element V_{us} and information about lepton universality. Leptonic kaon decays provide an independent measurement of $|V_{us}|^2 / |V_{ud}|^2$, through the ratio $\Gamma(K \rightarrow \mu\nu)/\Gamma(\pi \rightarrow \mu\nu)$. These measurements, together with the result of $|V_{ud}|$ from nuclear β transitions, provide the most precise test of CKM unitarity, allowing the universality of lepton and quark weak couplings to be tested. After the completion of the KLOE data taking, the proposal of a new run with an upgraded KLOE detector, KLOE-2, at an upgraded DAΦNE machine has been accepted by INFN and it is now starting. Present results from KLOE and future perspectives from KLOE-2 are reported.

Proceedings of CKM2010, the 6th International Workshop on the CKM Unitarity Triangle, University of Warwick, UK, 6-10 September 2010
1 Introduction

The KLOE experiment \[1\] collected an integrated luminosity $\int L \, dt \sim 2.5 \text{fb}^{-1}$ at the Frascati $\phi-$factory DAFNE, an e^+e^- collider operated at the energy of 1020 MeV, the ϕ-meson mass. With its general purpose detector, consisting of a large cylindrical drift chamber surrounded by a lead-scintillating fiber electromagnetic calorimeter entirely immersed in an axial magnetic field, KLOE produced the most comprehensive set of results on kaon physics from a single experiment using the unique availability of pure K_S, K_L and K^\pm beams at a $\phi-$factory. After the completion of the KLOE data taking, the proposal of a new run with an upgraded KLOE detector, KLOE-2 \[2\], at an upgraded DAFNE machine has been accepted and it is now starting.

An overview of KLOE results for K_L, K_S and K^\pm used to extract V_{us} is presented (sec. 2) together with the future perspectives within the KLOE-2 project (sec. 3).

2 V_{us} from kaon decays: unitarity and universality

The most precise test of CKM unitarity is given by the constraint on its first row $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ with $|V_{ud}|$ measured from superallowed $0^+ \rightarrow 0^+$ nuclear β transitions, $|V_{us}|$ from semileptonic kaon decays and $|V_{ub}|^2$ being negligible. The kaon semileptonic decay rate is given by:

$$\Gamma(K_{l3}) = \frac{C_K^2 G_F^2 M_K^5}{192\pi^3} S_{EW}|V_{us}|^2 |f_+(0)|^2 I_{K,l}(\lambda)(1 + 2\Delta_{SU}^{SU(2)} + 2\Delta_{EM}^{EM})$$

(1)

where $K = K^0, K^\pm, l = e, \mu$ and C_K is a Clebsch-Gordan coefficient, equal to $1/2$ and 1 for K^\pm and K^0, respectively. The decay width $\Gamma(K_{l3})$ is experimentally determined by measuring the kaon lifetime and the semileptonic BRs, inclusive of radiation. The theoretical inputs are: the universal short-distance electroweak correction $S_{EW} = 1.0232$, the $SU(2)$-breaking $\Delta_{SU}^{SU(2)}$ and the long-distance electromagnetic corrections Δ_{EM}^{EM}, and the form factor $f_+(0) \equiv f_+^{0\pi\pi}(0)$ evaluated at zero momentum transfer. The form factor dependence on the momentum transfer can be described by one or more slope parameters λ, measured from the decay spectra, and enters in the phase space integral $I_{K,l}(\lambda)$.

All the relevant inputs to extract V_{us} from K_{l3} decay rates have been measured at KLOE \[1\]: branching ratios (BRs), lifetimes and form factors (Table 1). Complementary to K_{l3} decays, the measurement of BR($K^\pm \rightarrow \mu^\pm \nu$) allowed us to extract V_{us}/V_{ud} and the result of BR($K^+ \rightarrow \pi^+\pi^0(\gamma)$) improved the accuracy. Recently KLOE has also measured the K_S lifetime from the fit to the proper time distribution obtained with a sample of ~ 20 million $K_S \rightarrow \pi^+\pi^-$ decays. The final result, presently the most precise, is $\tau_S = 89.562 \pm 9.029_{\text{stat}} \pm 0.043_{\text{syst}} \text{ps}$ \[3\]. To extract $V_{us}f_+(0)$ we use eq. 1 together with the $SU(2)$-breaking and long distance EM corrections to the full
The measured values of $V_{us}f_+(0)$ are \([5]\): 0.2155(7) for $K_L\rho$$3$, 0.2167(9) for $K_L\mu$$3$, 0.2153(14) for $K_S\rho$$3$, 0.2152(13) for $K^\pm\rho$$3$, and 0.2132(15) for $K^\pm\nu$$3$ decays. Their average is $V_{us}f_+(0) = 0.2157(6)$ ($\chi^2/ndf = 7.0/4$, Prob=13\%), with 0.28\% accuracy to be compared with the 0.23\% of the world average $V_{us}f_+(0) = 0.2165(5)$ \([6]\). Defining $r_{\mu e} = |f_+(0) V_{us}|^2 / |f_+(0) V_{us}|^2 = g_\mu^2/g_e^2$, with g_μ the coupling strength at the $W \to \ell\nu$ vertex, lepton universality can be tested comparing the measured value with its Standard Model (SM) prediction $r_{\mu e}^{SM} = 1$. We obtain $r_{\mu e} = 1.000(8)$, averaging between charged and neutral modes, to be compared with $(r_{\mu e})_\pi = 1.0042(33)$ from leptonic pion decays, and $(r_{\mu e})_\tau = 1.0005(41)$ from leptonic τ decays \([7]\). Using $V_{us}f_+(0)$ from $K_{3\tau}$ decays and $f_+(0) = 0.964(5)$ \([8]\), we get $V_{us} = 0.2237(13)$. Furthermore V_{us}/V_{ud} can be measured using the radiative inclusive decay rates of $K^\pm \to \mu^\pm\nu(\gamma)$ and $\pi^\pm \to \mu^\pm\nu(\gamma)$, combined with a lattice calculation of f_K/f_π. Using $BR(K^\pm \to \mu^\pm\nu) = 0.6366(17)$ from KLOE \([9]\) and $f_K/f_\pi = 1.189(7)$ \([10]\), we get $V_{us}/V_{ud} = 0.2323(15)$. Combining this result with V_{us} from $K_{3\tau}$ decays and $V_{ud} = 0.97418(26)$ \([11]\), CKM unitarity has been verified to the level of $1 - V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 4(7) \times 10^{-4}$. We then obtained $G_{\text{CKM}} = G_F(V_{ud}^2 + V_{us}^2 + V_{ub}^2)^{1/2} = 1.16614(40) \times 10^{-5}$ GeV$^{-2}$, is in perfect agreement with the measurement from the muon lifetime $G_F = 1.166371(6) \times 10^{-5}$ GeV$^{-2}$. This result significantly improves the accuracy obtained with evaluations from tau-lepton decays and electroweak precision tests.

Table 1: Summary of KLOE results useful for V_{us} measurement

Branching ratios	Lifetimes and Form factors (dispersive approach)
$K_L \to \pi e\nu$	V_{us} = 0.4008 ± 0.0015
$K_L \to \pi \mu\nu$	0.2699 ± 0.0014
$K_S \to \pi^+\pi^-$	0.60196 ± 0.00051
$K_S \to \pi^0\pi^0$	0.30687 ± 0.00051
$K^+ \to \mu^+\nu(\gamma)$	0.6366 ± 0.0017
$K^+ \to \pi^+\pi^0(\gamma)$	0.2067 ± 0.0012
$K^+ \to \pi^0e^+\nu(\gamma)$	0.04972 ± 0.00053
$K^+ \to \pi^0\mu^+\nu(\gamma)$	0.03237 ± 0.00039

The KLOE-2 project aims at improving the successful and fruitful results achieved by the KLOE Collaboration in Kaon and Hadron Physics and extending the physics program \([12]\) to: $\gamma\gamma$-physics from $e^+e^- \to e^+e^- \gamma^\ast \gamma^\ast \to e^+e^- + X$ and search for particles

3 The KLOE-2 project

The KLOE-2 project aims at improving the successful and fruitful results achieved by the KLOE Collaboration in Kaon and Hadron Physics and extending the physics program \([12]\) to: $\gamma\gamma$-physics from $e^+e^- \to e^+e^- \gamma^\ast \gamma^\ast \to e^+e^- + X$ and search for particles
from hidden sectors that might explain dark matter. The project will exploit the new interaction scheme implemented and tested on the Frascati DAΦNE collider with the SIDDHARTA experiment in 2009 [13] with larger beam crossing angle and crab-waist sextupoles. This allowed a luminosity increase of factor of ∼3 to be reached with a peak luminosity $L = 4.5 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ and an integrated luminosity $\int L dt \sim 1 \text{pb}^{-1}/\text{h}$. With this new configuration $\int L dt \sim 5 \text{fb}^{-1}/\text{y}$ can be delivered.

After a first phase with the installation of the low-energy e^+e^- (LET) [14, 15] and high-energy e^+e^- (HET) [14, 16] tagging systems for the identification and study of $\gamma\gamma$ events, the detector will be upgraded with the insertion of an Inner Tracker (IT) [17, 18], between the beam pipe and the Drift Chamber (DC) inner wall, and with crystal calorimeters (CCALT) [19], covering the low θ region, and two new tile calorimeters (QCALT) [20] instrumenting the DAΦNE focusing system.

Using KLOE present data set together with the 5 fb$^{-1}$ KLOE-2/step0 foreseen statistics, we can improve the accuracy with respect to present world average [6] on the measurement of K_L, K^\pm lifetimes and $K_{S\pi3}$ branching ratio, presently the main contributors to $f_\pi(0)V_{us}$ uncertainties. Statistical uncertainties on BRs and lifetimes have been obtained scaling present statistics to 7.5 fb$^{-1}$ total integrated luminosity and a conservative estimate of systematic errors has been obtained based on KLOE published analyses, without improvements from detector upgrades. Systematic errors in KLOE are partially statistical in nature, efficiencies are measured with data control samples, then also these contributions to the total uncertainty decrease with statistics.

The accuracy on the measurement of τ_L from the fit to the proper time distribution of $K_L \to 3\pi^0$ decays is expected to be reduced to 0.27% and furthermore below 0.2% with the QCALT insertion, improving photon reconstruction and control of systematic effects. With 7.5 fb$^{-1}$ total integrated luminosity a 0.1% accuracy on the τ_π measurement is expected to be reached and a factor of ∼2 improvement with the IT detection of K^\pm tracks closer to the interaction point, improving the accuracy of the decay length technique.

The branching ratio of $K_{S\pi3}$ decays is expected to be measured with 0.6% accuracy and further improved to 0.3% with the IT. As a matter of fact the measurement of K_{i3} decay rates will strongly benefit from the insertion of the IT detector: this upgrade will increase the acceptance for decays close to the interaction point with low momentum tracks and improve the resolution on their track and vertex parameters.

In conclusion, a significant reduction of the present experimental uncertainty on $V_{us}f_\pi(0)$ is expected: the present 0.23% fractional uncertainty on $V_{us}f_\pi(0)$ can be reduced to 0.14%, using KLOE present data set together with the KLOE-2/step0 statistics. Detector upgrades have not been considered in this evaluation. This, together with more precise measurements of $f_\pi(0)$ and V_{ud} would allow us to reach the level of precision of a few 10^{-4} in the test on the unitarity relation thus improving the potential to investigate new physics within SM extensions with gauge universality breaking.
References

[1] F. Bossi, E. De Lucia, J. Lee-Franzini, S. Miscetti, M. Palutan and KLOE Collaboration, *Precision Kaon and Hadron Physics with KLOE*, Rivista del Nuovo Cimento Vol.31, N.10 (2008).

[2] R. Beck et al, KLOE-2 collaboration, *Expression of interest for the continuation of the KLOE physics program at DAΦNE upgraded in luminosity and in energy*, KLOE-2 Public Documents K2PD-1, http://www.lnf.infn.it/kloe2/ and *A proposal for the roll-in of the KLOE-2 detector*, LNF-07/19(IR), INFN-LNF, Frascati, 2007.

[3] KLOE Collaboration, F. Ambrosino et al., arXiv:1011.2668 and submitted to *Eur. Phys. J. C*.

[4] V. Cirigliano et al., *Eur. Phys. J. C* 23, 121 (2002) and S. Descotes-Genon and B. Moussallam, *Eur. Phys. J. C* 42, 403 (2005)

[5] KLOE Collaboration, F. Ambrosino et al., JHEP 04 (2008), 059.

[6] FlaviaNet Kaon Working Group, M. Antonelli et al., arXiv:0801.1817 and arXiv:1005.2323.

[7] M.J. Ramsey-Musolf, S. Su and S. Tulin, *Phys. Rev. D* 76, 095017 (2007) and M. Davier, A. Hocker and Z. Zang, *Rev. Mod. Phys.* 78, 1043 (2006).

[8] UKQCD/RBC Collaboration, *Phys. Rev. Lett.* 100, 141601 (2008).

[9] KLOE Collaboration, F. Ambrosino et al., *Phys. Lett. B* 632, 76 (2006).

[10] HPQCD and UKQCD Collaborations, *Phys. Rev. Lett.* 100, 062002 (2008).

[11] I. S. Towner and J. C. Hardy *Phys. Rev. C* 77, 025501 (2008).

[12] G. Amelino Camelia et al., *Eur. Phys. J. C* 68, 619 (2010).

[13] M. Zobov et al., *Phys. Rev. Lett.* 104, 174801 (2010).

[14] KLOE-2 Collaboration, F. Archilli et al., *Technical Design Report of the gamma gamma Taggers for the KLOE-2 Experiment*, LNF - 10/14(P)

[15] D. Babusci et al., *Nucl. Instr. & Meth. A* 617, 81 (2010).

[16] F. Archilli et al., *Nucl. Instr. & Meth. A* 617, 266 (2010).
[17] KLOE-2 Collaboration, F. Archilli et al., *Technical Design Report of the Inner Tracker for the KLOE-2 experiment*, arXiv:1002.2572v1 and LNF-10/3(P) INFN-LNF

[18] A. Balla et al., *Nucl. Instr. & Meth. A* 604, (2009) and M. Alfonsi et al., *Nucl. Instr. & Meth. A* 617, 151 (2010) and A. Balla et al., DOI 10.1016/j.nima.2010.06.315.

[19] M. Cordelli et al., *Nucl. Instr. & Meth. A* 617, 109 (2010).

[20] M. Cordelli et al., *Nucl. Instr. & Meth. A* 617, 105 (2010).