MULTIPLE REPRESENTATIONS OF REAL NUMBERS ON SELF-SIMILAR SETS WITH OVERLAPS

XIAOMIN REN, JIALI ZHU, LI TIAN, KAN JIANG

Abstract. Let K be the attractor of the following IFS
\[\{ f_1(x) = \lambda x, f_2(x) = \lambda x + c - \lambda, f_3(x) = \lambda x + 1 - \lambda \}, \]
where $f_1(I) \cap f_2(I) \neq \emptyset, (f_1(I) \cup f_2(I)) \cap f_3(I) = \emptyset$, and $I = [0, 1]$ is the convex hull of K. Let $K \ast K = \{ x \ast y : x, y \in K \}$, where $\ast = +, -, \cdot$ or \div (if $\ast = \div$, then $y \neq 0$). The main result of this paper is as follows: if $c \geq (1 - \lambda)^2$, then
\[K \ast K = \{ x \ast y : x, y \in K, y \neq 0 \} = [0, \infty). \]

As a consequence, we also prove that the following conditions are equivalent:
(1) For any $u \in [0, 1]$, there are some $x, y \in K$ such that $u = x \cdot y$;
(2) For any $u \in [0, 1]$, there are some $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \in K$ such that
\[u = x_1 + x_2 = x_3 - x_4 = x_5 \cdot x_6 = x_7 \div x_8; \]
(3) $c \geq (1 - \lambda)^2$.

1. Introduction

There are many methods which can represent real numbers. For instance, the β-expansions \cite{30, 2, 6, 7, 14, 13, 16}, the continued fractions \cite{12, 11}, the Liouville expansions \cite{5}, and so on. In this paper, we shall analyze a new representation, that is, the arithmetic representation of real numbers in terms of some self-similar sets with overlaps. Firstly, let us introduce some fundamental definitions and results. Let $A, B \subset \mathbb{R}$ be two non-empty sets. Define
\[A \ast B = \{ x \ast y : x \in A, y \in B \}, \]
where \ast is $+, -, \cdot$ or \div (if $\ast = \div$, then we assume $y \neq 0$). We call $u = x \ast y$ an arithmetic representation in terms of A and B. Steinhaus \cite{37} proved that
\[C - C = \{ x - y : x, y \in C \} = [-1, 1], \]
where C is the middle-third Cantor set. Recently, Athreya, Reznick and Tyson \cite{3} considered the multiplication on C, and proved that
\[17/21 \leq \mathcal{L}(C \cdot C) \leq 8/9, \]
where \mathcal{L} denotes the Lebesgue measure. In \cite{28}, Jiang and Xi proved that $C \cdot C$ contains countably many intervals. Moreover, they also came up with a sufficient condition such that the image of $C \times C$ under some continuous functions contains a non-empty interior. The readers can find more results in \cite{48, 36, 21, 1, 40, 20, 24}. Athreya, Reznick and Tyson \cite{3} also investigated the division of C, namely the set $C \div C$, and proved that $C \div C$ is precisely the countably union of some closed
intervals. In [27], Jiang and Xi considered the representations of real numbers in $C = C = [-1, 1]$, i.e. let $x \in [-1, 1]$, define

$$S_x = \{(y_1, y_2) : y_1 - y_2 = x, \ (y_1, y_2) \in C \times C\}.$$ and

$$U_r = \{x : x(S_x) = r\}, r \in \mathbb{N}^+.$$ They proved that $\dim_H(U_r) = \frac{\log 2}{\log 3}$ if $r = 2^k$ for some $k \in \mathbb{N}$. Moreover,

$$0 < \mathcal{H}^s(U_1) < \infty, \mathcal{H}^s(U_{2^k}) = \infty, k \in \mathbb{N}^+,$$

where $s = \frac{\log 2}{\log 3}$. $U_{3 \cdot 2^k}$ is an infinitely countable set for any $k \geq 1$, where \dim_H and \mathcal{H}^s denote the Hausdorff dimension and Hausdorff measure, respectively. There are more general results in [27]. In this paper, we shall analyze the following self-similar set with overlaps [23], let K be the attractor generated by the following IFS,

$$\{f_1(x) = \lambda x, f_2(x) = \lambda x + c - \lambda, f_3(x) = \lambda x + 1 - \lambda\},$$

where $f_1(I) \cap f_2(I) \neq \emptyset, (f_1(I) \cup f_2(I)) \cap f_3(I) = \emptyset,$ and $I = [0, 1]$ is the convex hull of K. The self-similar set K is a typical example which allows serious overlaps. Many people analyzed this example from various aspects. Furstenberg conjectured that the following self-similar set with the equation

$$K_1 = \frac{K_1}{3} \cup \frac{K_1 + \alpha}{3} \cup \frac{K_1 + 2}{3}$$

has Hausdorff dimension for any irrational number α. Hochman [22] made use of elegant methods from ergodic theory proving that this conjecture is correct. Keyon [29], Rao and Wen [39] proved that $\mathcal{H}^1(\Lambda) > 0$ if and only if $\lambda = p/q \in \mathbb{Q}$ with $p \equiv q \neq (0 \equiv 3)$. Feng and Lau [15] gave a multifractal analysis of K when K satisfies the weak separation property. Yao and Li [47] analyzed the points in K with finite type condition, and an algorithm that can calculate the Hausdorff dimension of K when K is of finite type. In [9, 10], Dajani et al. analyzed the points in K with multiple codings, and gave some examples such that the set of points with exactly 3 codings can be empty while the set of points with precisely 2 codings has the same Hausdorff dimension of the univoque set. In [18], Guo et al. in terms of some ideas from [35], considered the bi-Lipschitz equivalence of overlapping self-similar sets. In [25], Jiang, Wang and Xi gave a necessary condition that when $c = \lambda - \lambda^2$ the self-similar set K is bi-Lipschitz equivalent to another self-similar set with the strong separation condition. In [38], Tian et al. proved that $K \cdot K = [0, 1]$ and if $c \geq (1 - \lambda)^2$. This result is sharp. Moreover, Jiang and Xi [28] also proved the following result. Suppose that f is a continuous function defined on an open set $U \subset \mathbb{R}^2$. Denote the image

$$f_U(K, K) = \{f(x, y) : (x, y) \in (K \times K) \cap U\}.$$ If $\partial_x f, \partial_y f$ are continuous on U, and there is a point $(x_0, y_0) \in (K \times K) \cap U$ such that one of the following conditions is satisfied,

$$\max \left\{ \frac{1 - c - \lambda}{\lambda}, \frac{1 - \lambda}{1 - c} \right\} \leq \frac{\partial_y f(x_0, y_0)}{\partial_x f(x_0, y_0)} \leq \frac{1}{1 - c - \lambda}.$$
or
\[
\max \left\{ \frac{1 - c - \lambda}{\lambda}, \frac{1 - \lambda}{1 - c} \right\} < \left| \frac{\partial_x f_1(x_0,y_0)}{\partial_y f_1(x_0,y_0)} \right| < \frac{1}{1 - c - \lambda},
\]
then \(f_U(K,K) \) has a non-empty interior. We emphasize that it is difficult to obtain the above results if one utilizes the Newhouse thinkness theorem \([41]\). The main reason is that it is not easy to calculate the thinkness of \(K \) as there are very complicated overlaps in \(K \). For the Assouad dimension of \(K \) and the geodesic distance on \(K \times K \), we refer to \([32, 34, 46, 45, 33, 49, 42, 44, 43]\).

We have mentioned many results concerning with \(K \) from different perspective. In this paper we shall consider the multiple representations, i.e. addition, substraction, multiplication and division, on \(K \). This is the main motivation of this paper. In fact, similar analysis appears in the setting of \(\beta \)-expansions. For instance, the multiple \(\beta \)-expansions and simultaneous expansions are considered by Komornik, Pedicini, and Pethő \([31]\), Dajani, Jiang and Kempton \([8]\), Hare and Sidorov \([19, 20]\), Dajani et al. \([10, 9]\). The simultaneous expansions are related with the interior of the associated self-affine sets. For more applications of the simultaneous expansions, see \([17]\).

The following are the main results of this paper.

Theorem 1.1. Let \(K \) be the attractors of the following IFS
\[
\{f_1(x) = \lambda x, f_2(x) = \lambda x + c - \lambda, f_3(x) = \lambda x + 1 - \lambda\},
\]
where \(f_1(I) \cap f_2(I) \neq \emptyset, (f_1(I) \cup f_2(I)) \cap f_3(I) = \emptyset \), and \(I = [0,1] \) is the convex hull of \(K \). If \(c \geq (1 - \lambda)^2 \), then
\[
\frac{K}{\bar{K}} = \left\{ \frac{x}{y} : x, y \in K, y \neq 0 \right\} = [0,\infty).
\]

Corollary 1.2. Let \(K \) be the attractors defined in the above theorem. Then the following conditions are equivalent:

1. For any \(u \in [0,1] \), there are some \(x, y \in K \) such that \(u = x \cdot y \);
2. For any \(u \in [0,1] \), there are some \(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \in K \) such that
\[
u = x_1 + x_2 = x_3 - x_4 = x_5 + x_6 = x_7 \div x_8;
\]
3. \(c \geq (1 - \lambda)^2 \).

This paper is arranged as follows. In section 2, we give the proofs of Theorem 1.1 and Corollary 1.2. In section 3, we give some remarks.

2. Proofs of Theorem 1.1 and Corollary 1.2

Let \(H = [0,1] \). For any \((i_1, \cdots, i_n) \in \{1, 2, 3\}^n \), we call \(f_{i_1, \cdots, i_n}(H) = (f_{i_1} \circ \cdots \circ f_{i_n})(H) \) a basic interval of rank \(n \), which has length \(\lambda^n \). Denote by \(H_n \) the collection of all these basic intervals of rank \(n \). Let \(J \in H_n \), then \(\bar{J} = \bigcup_{i=1}^{3} I_{n+1,i} \), where \(I_{n+1,i} \subset H_{n+1} \) and \(I_{n+1,i} \subset J \) for \(i = 1, 2, 3 \). Let \([A,B] \subset [0,1] \), where \(A \) and \(B \) are the left and right endpoints of some basic intervals in \(H_k \) for some \(k \geq 1 \), respectively. \(A \) and \(B \) may not be in the same basic interval. Let \(F_k \) be the collection of all the basic intervals in \([A,B]\) with length \(\lambda^k, k \geq k_0 \) for some \(k_0 \in \mathbb{N}^+ \), i.e. the union of all the elements of \(F_k \) is denoted by \(G_k = \bigcup_{i=1}^{t_k} I_{k,i} \), where \(t_k \in \mathbb{N}^+, I_{k,i} \subset H_k \) and \(I_{k,i} \subset [A,B] \). Clearly, by the definition of \(G_n \), it follows that \(G_{n+1} \subset G_n \) for any \(n \geq k_0 \). Similarly, suppose that \(M \) and \(N \) are the left and right endpoints of some basic intervals in \(H_k \). Denote by \(G'_k \) the union of all the
basic intervals with length λ^k in the interval $[M, N]$, i.e. $G'_k = \bigcup_{j=1}^{t'_k} J_{k,j}$, where $t'_k \in \mathbb{N}^+$, $J_{k,j} \in H_k$ and $J_{k,j} \subset [M, N]$.

Very useful is the following lemma. It comes from [3] and [38]. For the convenience of readers, we give the detailed proof.

Lemma 2.1. Suppose $U \subset \mathbb{R}^2$ is a non-empty open set. Let $F : U \to \mathbb{R}$ be a continuous function. Suppose A and B (M and N) are the left and right endpoints of some basic intervals in H_{k_0} for some $k_0 \geq 1$ respectively such that $[A, B] \times [M, N] \subset U$. Then $K \cap [A, B] = \cap_{n=k_0} G_n$, and $K \cap [M, N] = \cap_{n=k_0} G'_n$. Moreover, if for any $n \geq k_0$ and any two basic intervals $I \subset G_n$, $J \subset G'_n$ such that

$$F(I, J) = F(\tilde{I}, \tilde{J}),$$

then $F(K \cap [A, B], K \cap [M, N]) = F(G_{k_0}, G'_{k_0})$.

Proof. By the construction of G_n (G'_n), i.e. $G_{n+1} \subset G_n$ ($G'_{n+1} \subset G'_n$) for any $n \geq k_0$, it follows that

$$K \cap [A, B] = \cap_{n=k_0} G_n \text{ and } K \cap [M, N] = \cap_{n=k_0} G'_n.$$

The continuity of F yields that

$$F(K \cap [A, B], K \cap [M, N]) = \cap_{n=k_0} F(G_n, G'_n).$$

In terms of the relation $G_{n+1} = \tilde{G}_n$, $G'_{n+1} = \tilde{G}'_n$ and the condition in the lemma, it follows that

$$F(G_n, G'_n) = \cup_{1 \leq i \leq t_n} \cup_{1 \leq j \leq t'_n} F(I_{n,i}, J_{n,j}) = \cup_{1 \leq i \leq t_n} \cup_{1 \leq j \leq t'_n} F(\tilde{I}_{n,i}, \tilde{J}_{n,j}) = F(\cup_{1 \leq i \leq t_n} \tilde{I}_{n,i}, \cup_{1 \leq j \leq t'_n} \tilde{J}_{n,j}) = F(G_{n+1}, G'_{n+1}).$$

Therefore, $F(K \cap [A, B], K \cap [M, N]) = F(G_{k_0}, G'_{k_0}).$ \hfill \qedsymbol

The following two lemmas are trivial. We shall use them frequently in the remaining paper.

Lemma 2.2. Let K be the attractors of the following IFS

$$\{ f_1(x) = \lambda x, f_2(x) = \lambda x + c - \lambda, f_3(x) = \lambda x + 1 - \lambda \},$$

where $f_1(I) \cap f_2(I) \neq \emptyset$, $(f_1(I) \cup f_2(I)) \cap f_3(I) = \emptyset$, and $I = [0, 1]$ is the convex hull of K. Then $\lambda \leq c \leq 2\lambda, c + \lambda < 1$.

Lemma 2.3. The region satisfies the condition

$$\left\{ \begin{array}{c} (1 - \lambda)^2 \leq c < 1 - \lambda \\ \lambda \leq c \leq 2\lambda \end{array} \right.$$

is the orange region in Figure 1. Moreover, for any (λ, c) in the orange region,

$$2c + \lambda - 1 \geq 0, 2\lambda + c - 1 \geq 0,$$

see the right picture in Figure 1.

Lemma 2.4. Let $I = [a, a + t], J = [b, b + t]$ be two basic intervals, where $b \geq a$. Suppose $a \geq 1 - c - \lambda$, if $c \geq (1 - \lambda)^2$, then $f(I, J) = f(\tilde{I}, \tilde{J})$, where $f(x, y) = \frac{x}{y}$.

Proof. Note that \(\tilde{I} = [a, a+c] \cup [a+(1-\lambda)t, a+t], \tilde{J} = [b, b+c] \cup [b+(1-\lambda)t, b+t] \).

Clearly, \(f(I, J) = \left[\frac{a}{b} + \frac{a + t}{b} \right] \),

\(f(\tilde{I}_1, \tilde{J}) = J_1 \cup J_2 \cup J_3 \cup J_4, \)

where

\[
J_1 = \left[\frac{a}{b+c} \frac{a+c}{b+(1-\lambda)t} \right] = [e_1, h_1],
\]

\[
J_2 = \left[\frac{a}{b+c} \frac{a+c}{b} \right] = [e_2, h_2],
\]

\[
J_3 = \left[\frac{a+(1-\lambda)t}{b} \frac{a+t}{b+(1-\lambda)t} \right] = [e_3, h_3],
\]

\[
J_4 = \left[\frac{a+(1-\lambda)t}{b+c} \frac{a+t}{b} \right] = [e_4, h_4].
\]

Since \(b \geq a \), it follows that

\[
e_3 - e_2 = \frac{t}{(b+c)(b+t)}(-a(1-c) + (b+c)(1-\lambda)) \geq 0,
\]

Note that \(f(I, J) = f(\tilde{I}, \tilde{J}) \) if and only if

\[
\begin{align*}
h_1 - e_2 & \geq 0, \\
h_2 - e_3 & \geq 0, \\
h_3 - e_4 & \geq 0.
\end{align*}
\]

Now we prove these inequalities.
Case 1.

\[h_1 - e_2 = \frac{t}{(b+ct)(b+t-\lambda t)}(a\lambda - a + c^2 t + ac + bc) \]
\[\geq \frac{t}{(b+ct)(b+t-\lambda t)}(a\lambda - a + c^2 t + ac + ac) \]
\[= \frac{t}{(b+ct)(b+t-\lambda t)}(a(\lambda + 2c - 1) + c^2 t). \]

Therefore, we need to assume \(\lambda + 2c - 1 \geq 0. \)

Case 2.

\[h_2 - e_3 = \frac{t}{b(b+ct)}(a+b(c+\lambda-1)+ct) \geq 0 \text{ as } b \geq a \geq 1 - c - \lambda. \]

Case 3.

\[h_3 - e_4 = \frac{a+t}{b+(1-\lambda)t} - \frac{a+(1-\lambda)t}{b+ct} \]
\[= \frac{t}{(b+ct)(b+t-t\lambda)}(a\lambda - t - a + b\lambda + 2t\lambda - t\lambda^2 + ac + ct) \]
\[\geq \frac{t}{(b+ct)(b+t-t\lambda)}(tc - (1-\lambda)^2) + a(2\lambda + c - 1)). \]

If \(c - (1-\lambda)^2 \geq 0 \) and \(2\lambda + c - 1 \geq 0 \), then \(h_3 - e_4 \geq 0. \) By Lemmas 2.2 and 2.3 and the condition \(c - (1-\lambda)^2 \geq 0 \), it follows that if \(c - (1-\lambda)^2 \geq 0 \), then \(2\lambda + c - 1 \geq 0, \lambda + 2c - 1 \geq 0. \)

Lemma 2.5. If \(\frac{3-\sqrt{5}}{2} \leq \lambda < 1 \), then \(\frac{K}{K} = [0, \infty). \)

Proof. Note that \(1 - \lambda \geq 1 - c - \lambda \), by Lemma 2.4 we may take \(I = J = [1-\lambda, 1]. \)

Therefore, by Lemma 2.1

\[\frac{K}{K} \supset f([1-\lambda, 1], [1-\lambda, 1]) = \left[1 - \lambda, \frac{1}{1-\lambda} \right]. \]

Since \(\frac{3-\sqrt{5}}{2} \leq \lambda \leq 1/2 \), it follows that \(\frac{\lambda}{1-\lambda} \geq 1 - \lambda. \) Therefore,

\[[0, \infty) = \{0\} \cup \bigcup_{\lambda=-\infty}^{\infty} \lambda \left[1 - \lambda, \frac{1}{1-\lambda} \right] \subset \frac{K}{K} \subset [0, \infty). \]

Note that in the orange region (see Figure 1), we have

\[c - \lambda^2 \geq 1 - c - \lambda. \]

In fact, \(y = \frac{1}{2}(x^2 - x + 1) \) takes the minimum value at \(\frac{3-\sqrt{5}}{2} \) on the interval \([0, 1]\), i.e. \(c_{\text{min}} \geq \frac{3-\sqrt{5}}{2} \) if \((\lambda, c)\) is in the orange region of Figure 1. Therefore, we can make use of Lemma 2.4. Let

\[I = J = J_1 \cup J_2 \cup J_3. \]
where

\[J_1 = [c - \lambda^2, c] \]
\[J_2 = [1 - \lambda, 1 - \lambda + \lambda c] \]
\[J_3 = [1 - \lambda^2, 1] \).

Then it is easy to check that \(f(I, J) = \bigcup_{i=1}^{9} L_i \), where

\[L_1 = \left[c - \lambda^2, \frac{c}{1 - \lambda^2} \right], L_2 = \left[\frac{c - \lambda^2}{1 - \lambda + c\lambda}, \frac{c}{1 - \lambda} \right], L_3 = \left[1 - \lambda, \frac{1 - \lambda + \lambda c}{1 - \lambda^2} \right] \]
\[L_4 = [*, *], L_5 = [*, *], L_6 = \left[1 - \lambda^2, \frac{1}{1 - \lambda^2} \right] \]
\[L_7 = \left[1 - \frac{\lambda^2}{1 - \lambda + c\lambda}, \frac{1}{1 - \lambda} \right], L_8 = \left[\frac{1 - \lambda}{c}, \frac{1 - \lambda + \lambda c}{c - \lambda^2} \right], L_9 = \left[\frac{1 - \lambda^2}{c}, \frac{1}{c - \lambda^2} \right]. \]

We arrange \(L_i = [i_l, i_r], 1 \leq i \leq 9 \) from left to right, where “l”, “r” denote the words left and right, respectively. Here

\[L_4 = \left[\frac{c - \lambda^2}{c}, \frac{c}{1 - \lambda^2} \right], L_5 = \left[\frac{1 - \lambda}{1 - \lambda + c\lambda}, \frac{1 - \lambda + \lambda c}{1 - \lambda} \right], \]

provided that \(\frac{1 - \lambda}{1 - \lambda + c\lambda} \geq \frac{c - \lambda^2}{c} \). If \(\frac{1 - \lambda}{1 - \lambda + c\lambda} < \frac{c - \lambda^2}{c} \), then

\[L_4 = \left[\frac{1 - \lambda}{1 - \lambda + c\lambda}, \frac{1 - \lambda + \lambda c}{1 - \lambda} \right], L_5 = \left[\frac{c - \lambda^2}{c}, \frac{c}{1 - \lambda^2} \right]. \]

The reason why \(i_l < (i + 1)_l, i = 1, 2, 3, 5, 6, 7, 8 \) is due to following lemma.

Lemma 2.6. Let \(L_i = [i_l, i_r], 1 \leq i \leq 9 \) be the intervals defined as above. Then

1. \(2_l < 3_t \) if and only if \(c \leq \frac{\lambda^2 + (1 - \lambda)^2}{1 - (1 - \lambda)^2} \).
2. \(\max \{4_t, 5_l\} < 6_t \) if and only if \(\max \left\{ \frac{c - \lambda^2}{c}, \frac{1 - \lambda}{1 - \lambda + c\lambda} \right\} < 1 - \lambda^2 \).
3. \(7_l < 8_t \) if and only if \(\lambda + c < 1 \).
4. \(\frac{1}{1 - \lambda + c\lambda} > 1, c \geq 1 \).

Proof. It suffices to show that \(c \leq \frac{\lambda^2 + (1 - \lambda)^2}{1 - (1 - \lambda)^2} \). Note that the above inequality is equivalent to

\[\lambda^2(c - 1) \leq (1 - \lambda)(1 - c - \lambda). \]

The left side is negative while the right is positive. \(\square \)

Lemma 2.7. Let \(K \) be the attractors of the following IFS

\[\{ f_1(x) = \lambda x, f_2(x) = \lambda x + c - \lambda, f_3(x) = \lambda x + 1 - \lambda \}, \]

where \(f_1(I) \cap f_2(I) \neq \emptyset, (f_1(I) \cup f_2(I)) \cap f_3(I) = \emptyset, \) and \(I = [0, 1] \) is the convex hull of \(K \). If \(c \geq (1 - \lambda)^2 \) and \(0 < \lambda \leq \frac{3 - \sqrt{5}}{2} \), then

\[\frac{K}{K} \supset \left[c - \lambda^2, \frac{1}{c - \lambda^2} \right]. \]
Lemma 2.8. Suppose \((\lambda, c)\) satisfies the conditions in Lemma 2.7. If

\[
\frac{1 - \lambda}{1 - \lambda + \lambda c} \geq \frac{c - \lambda^2}{c},
\]

then \(L_i \cap L_{i+1} \neq \emptyset, 1 \leq i \leq 8.\)

Proof. Note that

\[L_4 = \left[\frac{c - \lambda^2}{c}, \frac{c}{c - \lambda^2} \right], L_5 = \left[\frac{1 - \lambda}{1 - \lambda + \lambda c}, \frac{1 - \lambda + \lambda c}{1 - \lambda} \right],\]

if \(\frac{1 - \lambda}{1 - \lambda + \lambda c} \geq \frac{c - \lambda^2}{c}.

Case 1.

\[1_r - 2_t = \frac{c}{1 - \lambda^2} - \frac{c - \lambda^2}{1 - \lambda + \lambda c} = -\frac{\lambda}{(\lambda^2 - 1) (c\lambda - \lambda + 1)} (c^2 + c\lambda - c - \lambda^3 + \lambda) \geq 0.\]

Note that \(c < 1 - \lambda < 1 - \lambda^2\) and \(\lambda \geq (1 - c - \lambda)\) (Lemma 2.3), therefore,

\[
\lambda(1 - \lambda^2) \geq c(1 - c - \lambda) \iff c^2 + c\lambda - c - \lambda^3 + \lambda \geq 0.
\]

Case 2.

\[2_r - 3_t = \frac{c}{1 - \lambda} - (1 - \lambda) = \frac{1}{1 - \lambda} (-\lambda^2 + 2\lambda + c - 1) = \frac{1}{1 - \lambda} (c - (1 - \lambda)^2) \geq 0.
\]

Case 3.

\[3_r - 4_t = \frac{1 - \lambda + \lambda c}{1 - \lambda^2} - \frac{c - \lambda^2}{c} = -\frac{1}{c \lambda^2 - 1} \left(c^2 + c\lambda - c - \lambda^3 + \lambda \right) \geq 0.
\]

Case 4.

\[4_r - 5_t = \frac{c}{c - \lambda^2} - \frac{1 - \lambda}{1 - \lambda + \lambda c} = \frac{\lambda}{c^2 \lambda - c\lambda^3 - c\lambda + c + \lambda^3 - \lambda^2} \geq 0.
\]

Case 5.

\[5_r - 6_t = \frac{1 - \lambda + \lambda c}{1 - \lambda} - (1 - \lambda^2) = -\frac{\lambda}{\lambda - 1} (-\lambda^2 + \lambda + c) \geq 0.
\]

Case 6.

\[6_r - 7_t = \frac{1}{1 - \lambda^2} - \frac{1 - \lambda^2}{1 - \lambda + \lambda c} = -\frac{\lambda}{(\lambda^2 - 1) (c\lambda - \lambda + 1)} (-\lambda^3 + 2\lambda + c - 1) \geq 0.
\]

Here \(-\lambda^3 + 2\lambda + c - 1 \geq -\lambda^2 + 2\lambda + c - 1 = c - (1 - \lambda)^2.

Case 7.

\[7_r - 8_t = \frac{1}{1 - \lambda} - \frac{1 - \lambda}{c} = -\frac{1}{c (\lambda - 1)} (-\lambda^2 + 2\lambda + c - 1) \geq 0.
\]

Case 8.

\[8_r - 9_t = \frac{1 - \lambda + \lambda c}{c - \lambda^2} - \frac{1 - \lambda^2}{c} = \frac{\lambda}{c c - \lambda^2} (c^2 + c\lambda - c - \lambda^3 + \lambda) \geq 0.
\]
Lemma 2.9. Suppose (λ, c) satisfies the conditions in Lemma 2.7. If
\[
\frac{1 - \lambda}{1 - \lambda + \lambda c} < \frac{c - \lambda^2}{c},
\]
then $L_i \cap L_{i+1} \neq \emptyset, 1 \leq i \leq 8$.

Proof. If \(\frac{1 - \lambda}{1 - \lambda + \lambda c} < \frac{c - \lambda^2}{c} \), then
\[
L_4 = \left[\frac{1 - \lambda}{1 - \lambda + \lambda c}, \frac{1 - \lambda + \lambda c}{1 - \lambda} \right], \quad L_5 = \left[\frac{c - \lambda^2}{c}, \frac{c}{c - \lambda^2} \right].
\]

With a similar discussion of Lemma 2.8 it suffices to prove the following three cases.

Case 1.
\[
3r - 4l = \frac{1 - \lambda + \lambda c}{1 - \lambda^2} - \frac{1 - \lambda}{1 - \lambda + \lambda c} = -\frac{\lambda}{(\lambda^2 - 1)(c\lambda - \lambda + 1)} (c^2\lambda - 2c\lambda + 2c - \lambda^2 + 2\lambda - 1) \geq 0.
\]

Here
\[
c^2\lambda - 2c\lambda + 2c - \lambda^2 + 2\lambda - 1 \geq 0
\]
is equivalent to $c(c\lambda - 2\lambda + 2) \geq (1 - \lambda)^2$. Since $c \geq (1 - \lambda)^2$, it suffices to prove that
\[
c\lambda - 2\lambda + 2 \geq 1.
\]
By the assumption $0 < \lambda \leq \frac{3 - \sqrt{5}}{2}$, the above inequality holds.

Case 2.
\[
4r - 5l = \frac{1 - \lambda + \lambda c}{1 - \lambda} - \frac{c - \lambda^2}{c} = -\frac{1}{c\lambda - 1} (c^2 - \lambda^2 + \lambda) \geq 0.
\]

Case 3.
\[
5r - 6l = \frac{c}{c - \lambda^2} - (1 - \lambda^2) = \frac{\lambda^2}{c - \lambda^2} (-\lambda^2 + c + 1) \geq 0.
\]

Proof of Lemma 2.7. Lemma 2.7 follows from Lemmas 2.8, 2.9, 2.4, and 2.1.

Theorem 2.10. If $c \geq (1 - \lambda)^2$, then $\frac{K}{K} = [0, \infty)$.

Proof. If $\frac{3 - \sqrt{5}}{2} \leq \lambda < 1$, then by Lemma 2.5 $\frac{K}{K} = [0, \infty)$. If $0 < \lambda < \frac{3 - \sqrt{5}}{2}$ and $c \geq (1 - \lambda)^2$, in terms of Lemma 2.7 we have $\frac{K}{K} \supset [c - \lambda^2, \frac{1}{c - \lambda^2}]$. We prove
\[
\frac{\lambda}{c - \lambda^2} - (c - \lambda^2) \geq 0.
\]
Recall $c \leq 2\lambda$, if we can show $2\lambda \leq \lambda^2 + \sqrt{\lambda}$, then we prove

$$\frac{\lambda}{c - \lambda^2} - (c - \lambda^2) \geq 0.$$

However, $2\lambda \leq \lambda^2 + \sqrt{\lambda}$ is equivalent to

$$\lambda^3 - 4\lambda^2 + 4\lambda - 1 = (\lambda - 1)(\lambda^2 - 3\lambda + 1) \leq 0,$$

which is a consequence of $0 < \lambda < \frac{3 - \sqrt{5}}{2}$. Therefore, in terms of

$$\frac{\lambda}{c - \lambda^2} - (c - \lambda^2) \geq 0,$$

we conclude that

$$[0, \infty) = \{0\} \cup \cup_{K=\infty}^{\infty} \lambda^k [c - \lambda^2, \frac{1}{c - \lambda^2}] \subset \frac{K}{K} \subset [0, \infty).$$

\[\square\]

Lemma 2.11. Let $I = [a, a + t], J = [b, b + t]$ be two basic intervals, where $b \geq a$.
If $c \geq (1 - \lambda)^2$, then $f(I, J) = f(\tilde{I}, \tilde{J})$, where $f(x, y) = x + y$.

Proof. Note that $\tilde{I} = [a, a + ct] \cup [a + (1 - \lambda)t, a + t], \tilde{J} = [b, b + ct] \cup [b + (1 - \lambda)t, b + t]$.
Clearly,

$$f(\tilde{I}, \tilde{J}) = J_1 \cup J_2 \cup J_3,$$

where

$$J_1 = [a + b, a + b + 2ct] = [1_1, 1_r],$$

$$J_2 = [a + b + (1 - \lambda)t, a + ct + b + t] = [2_l, 2_r],$$

$$J_3 = [a + b + 2(1 - \lambda)t, a + b + 2t] = [3_l, 3_r].$$

By virtue of Lemma 2.3 it follows that

$$1_r - 2_l = a + b + 2ct - (a + b + (1 - \lambda)t) = t(2c + \lambda - 1) \geq 0,$$

$$2_r - 3_l = a + ct + b + t - (a + b + 2(1 - \lambda)t) = t(c + 2\lambda - 1) \geq 0.$$

\[\square\]

Lemma 2.12. If $c \geq (1 - \lambda)^2$, then $K + K = [0, 2]$.

Proof. By Lemmas 2.1 and 2.11. Take $I = J = [c - \lambda, c] \cup [1 - \lambda, 1]$. Therefore, for $f(x, y) = x + y$, we have

$$f(I, J) = [2(c - \lambda), 2c] \cup [c + 1 - 2\lambda, 1 + c] \cup [2(1 - \lambda), 2].$$

By Lemma 2.3 we conclude that

$$2c - (c + 1 - 2\lambda) = c + 2\lambda - 1 \geq 0, 1 + c - (2(1 - \lambda)) = c + 2\lambda - 1 \geq 0.$$

Since $c \leq 2\lambda$, it follows that

$$[0, 2] = \{0\} \cup \cup_{K=0}^{\infty} \lambda^k [2(c - \lambda), 2] \subset \frac{K}{K} \subset [0, 2].$$

\[\square\]
Remark 2.13. We may give another proof of this result. Note that $K + K$ is a self-similar set, namely,

$$K + K = \left\{ \sum_{i=1}^{\infty} \frac{a_i}{q^i} : a_i \in \{0, d_1, d_2, 2d_1, d_1 + d_2, 2d_2\} \right\},$$

where $d_1 = \frac{c}{\lambda} - 1$, $d_2 = \frac{1}{\lambda} - 1$, $q = \frac{1}{\lambda}$. The IFS of $K + K$ is $\{g_i\}_{i=1}^6$, where

$$g_1(x) = \frac{x}{q}, g_2(x) = \frac{x + d_1}{q}, g_3(x) = \frac{x + d_2}{q},$$

$$g_4(x) = \frac{x + 2d_1}{q}, g_5(x) = \frac{x + d_1 + d_2}{q}, g_6(x) = \frac{x + 2d_2}{q}.$$

Let $E = [0, 2]$. It is easy to check that if $2 \lambda + c - 1 \geq 0$ and $2c + \lambda - 1 \geq 0$, then

$$\bigcup_{i=1}^{6} g_i(E) = [0, 2].$$

Therefore, if $c \geq (1 - \lambda)^2$ (Lemma 2.3), then $K + K = [0, 2]$.

We shall use this idea to prove the following result.

Lemma 2.14. If $c \geq (1 - \lambda)^2$, then $K - K = [-1, 1]$.

Proof. First,

$$K - K = \left\{ \sum_{i=1}^{\infty} \frac{a_i}{q^i} : a_i \in \{-d_2, -d_1, d_1 - d_2, 0, d_2, d_1, d_2\} \right\},$$

where $d_1 = \frac{c}{\lambda} - 1$, $d_2 = \frac{1}{\lambda} - 1$, $q = \frac{1}{\lambda}$. The IFS of $K + K$ is $\{h_i\}_{i=1}^7$, where

$$h_1(x) = \frac{x - d_2}{q}, h_2(x) = \frac{x - d_1}{q}, h_3(x) = \frac{x + d_1 - d_2}{q},$$

$$h_4(x) = \frac{x}{q}, h_5(x) = \frac{x + d_2 - d_1}{q}, h_6(x) = \frac{x + d_1}{q}, h_7(x) = \frac{x + d_2}{q}.$$

Let $M = [-1, 1]$. It is not difficult to check that if $2c + \lambda - 1 \geq 0$ and $2 \lambda + c - 1 \geq 0$, then

$$\bigcup_{i=1}^{7} h_i(M) = [-1, 1].$$

In other words, if $c \geq (1 - \lambda)^2$ (which implies $2c + \lambda - 1 \geq 0$ and $2 \lambda + c - 1 \geq 0$), then $K - K = [-1, 1]$.

Proof of Corollary 1.2. First, in [38], Tian et al. proved

$$K \cdot K = [0, 1]$$

if and only if $c \geq (1 - \lambda)^2$.

Therefore, (2) \Rightarrow (1) \Leftrightarrow (3). By Lemmas 2.12, 2.14 and Theorem 1.1, (3) \Rightarrow (2), we are done.
3. Final remarks

We pose the following questions

Question 3.1. Let K be the attractor of the following IFS
$$\{f_1(x) = \lambda x, f_2(x) = \lambda x + c - \lambda, f_3(x) = \lambda x + 1 - \lambda\},$$
where $f_1(I) \cap f_2(I) \neq \emptyset$, $(f_1(I) \cup f_2(I)) \cap f_3(I) = \emptyset$, and $I = [0, 1]$ is the convex hull of K. Then whether the following two conditions are equivalent

1. For any $u \in [0, 1]$, there are some $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10} \in K$ such that
 $$u = x_1 + x_2 = x_3 - x_4 = x_5 \cdot x_6 = x_7 \div x_8 = \sqrt{x_9} + \sqrt{x_{10}};$$
2. $c \geq (1 - \lambda)^2$.

Question 3.2. Give a necessary and sufficient condition such that $\frac{K}{K} = [0, \infty)$.

Question 3.3. Give a necessary and sufficient condition such that $\sqrt{K} + \sqrt{K} = [0, 2]$.

Acknowledgements

The work is supported by National Natural Science Foundation of China (Nos. 11701302, 11671147). The work is also supported by K.C. Wong Magna Fund in Ningbo University.

References

[1] Carlos Gustavo T. de A. Moreira and Jean-Christophe Yoccoz. Stable intersections of regular Cantor sets with large Hausdorff dimensions. *Ann. of Math. (2)*, 154(1):45–96, 2001.
[2] Shigeki Akiyama and Klaus Scheicher. From number systems to shift radix systems. *Nihonkai Math. J.*, 16(2):95–106, 2005.
[3] Jayadev S. Athreya, Bruce Reznick, and Jeremy T. Tyson. Cantor set arithmetic. *To appear in American Mathematical Monthly*, 2018.
[4] Simon Baker. Generalized golden ratios over integer alphabets. *Integers*, 14:Paper No. A15, 28, 2014.
[5] Jose Barrionuevo, Robert M. Burton, Karma Dajani, and Cor Kraaikamp. Ergodic properties of generalized Lüroth series. *Acta Arith.*, 74(4):311–327, 1996.
[6] Karma Dajani and Martijn de Vries. Measures of maximal entropy for random β-expansions. *J. Eur. Math. Soc. (JEMS)*, 7(1):51–68, 2005.
[7] Karma Dajani and Martijn de Vries. Invariant densities for random β-expansions. *J. Eur. Math. Soc. (JEMS)*, 9(1):157–176, 2007.
[8] Karma Dajani, Kan Jiang, and Tom Kempton. Self-affine sets with positive Lebesgue measure. *Indag. Math. (N.S.)*, 25(4):774–784, 2014.
[9] Karma Dajani, Kan Jiang, Derong Kong, and Wenzia Li. Multiple expansions of real numbers with digits set $\{0, 1, q\}$. *To appear in Math.Z.*, 2018.
[10] Karma Dajani, Kan Jiang, Derong Kong, and Wenzia Li. Multiple codings for self-similar sets with overlaps. *arXiv:1603.09304*, 2016.
[11] Karma Dajani and Cor Kraaikamp. *Ergodic theory of numbers*, volume 29 of *Carus Mathematical Monographs*. Mathematical Association of America, Washington, DC, 2002.
[12] Karma Dajani and Margriet Oomen. Random N-continued fraction expansions. *J. Approx. Theory*, 227:1–26, 2018.
[13] Martijn de Vries and Vilmos Komornik. Unique expansions of real numbers. *Adv. Math.*, 221(2):390–427, 2009.
[14] P. Erdős, M. Horváth, and I. Joó. On the uniqueness of the expansions $1 = \sum q^{-ni}$. *Acta Math. Hungar.*, 58(3-4):333–342, 1991.
[15] De-Jun Feng and Ka-Sing Lau. Multifractal formalism for self-similar measures with weak separation condition. *J. Math. Pures Appl. (9)*, 92(4):407–428, 2009.
[16] Paul Glendinning and Nikita Sidorov. Unique representations of real numbers in non-integer bases. *Math. Res. Lett.*, 8(4):535–543, 2001.

[17] C. Güntürk. Simultaneous and hybrid beta-encodings. *42nd Annual Conference on Information Sciences and Systems*, pages 743–748, 2008.

[18] Qiuli Guo, Hao Li, Qin Wang, and Lifeng Xi. Lipschitz equivalence of a class of self-similar sets with complete overlaps. *Ann. Acad. Sci. Fenn. Math.*, 37(1):229–243, 2012.

[19] Kevin G. Hare and Nikita Sidorov. Two-dimensional self-affine sets with interior points, and the set of uniqueness. *Nonlinearity*, 29(1):1–26, 2016.

[20] Kevin G. Hare and Nikita Sidorov. On a family of self-affine sets: topology, uniqueness, simultaneous expansions. *Ergodic Theory Dynam. Systems*, 37(1):193–227, 2017.

[21] Michael Hochman and Pablo Shmerkin. Local entropy averages and projections of fractal measures. *Ann. of Math. (2)*, 175(3):1001–1059, 2012.

[22] Michael Hochman. On self-similar sets with overlaps and inverse theorems for entropy. *Ann. of Math. (2)*, 180(2):773–822, 2014.

[23] John E. Hutchinson. Fractals and self-similarity. *Indiana Univ. Math. J.*, 30(5):713–747, 1981.

[24] Kan Jiang. Hausdorff dimension of the arithmetic sum of self-similar sets. *Indag. Math. (N.S.)*, 27(3):684–701, 2016.

[25] Kan Jiang, Songjing Wang, and Li-Feng Xi. Lipschitz equivalence of self-similar sets with exact overlaps. *Accepted by Ann. Acad. Sci. Fenn. Math.*, 2017.

[26] Kan Jiang. Projections of cartesian products of the self-similar sets without the irrationality assumption. [arXiv:1806.01080](https://arxiv.org/abs/1806.01080), 2018.

[27] Kan Jiang and Lifeng Xi. Arithmetic representations of real numbers in terms of self-similar sets. [arXiv:1808.09724](https://arxiv.org/abs/1808.09724), 2018.

[28] Kan Jiang and Lifeng Xi. Interiors of continuous images of the middle-third cantor set. [arXiv:1809.01880](https://arxiv.org/abs/1809.01880), 2018.

[29] R. Keyon. Projecting the one-dimensional sierpinski gasket. *Israel J. Math.*, 97(1):221–238, 1997.

[30] Vilmos Komornik. Expansions in noninteger bases. *Integers*, 11B:Paper No. A9, 30, 2011.

[31] Vilmos Komornik, Marco Pedicini, and Attila Pethő. Multiple common expansions in non-integer bases. *Acta Sci. Math. (Szeged)*, 83(1-2):51–60, 2017.

[32] Ziyu Li, Zhouyu Yu, and Lifeng Xi. Scale-free effect of substitution networks. *Phys. A*, 492:1449–1455, 2018.

[33] Tingting Li, Kan Jiang, and Lifeng Xi. Average distance of self-similar fractal trees. *Fractals*, 26(1):1850016, 6, 2018.

[34] Yiming Li and Lifeng Xi. Manhattan property of geodesic paths on self-affine carpets. *Arch. Math. (Basel)*, 113(3):279–285, 2018.

[35] Yuval Peres and Pablo Shmerkin. Resonance between Cantor sets. *Ergodic Theory Dynam. Systems*, 29(1):201–221, 2009.

[36] Hugo Steinhaus. *Mowa Wlasnosć Mnogości Cantora*. *Wector*, 1-3. English translation in: *STENHAUS, H.D.* 1985.
[46] Qianqian Ye, Long He, Qin Wang, and Lifeng Xi. Asymptotic formula of eccentric distance sum for Vicsek network. *Fractals*, 26(3):1850027, 8, 2018.

[47] Yuanyuan Yao and Wenxia Li. Generating iterated function systems for a class of self-similar sets with complete overlap. *Publ. Math. Debrecen*, 87(1-2):23–33, 2015.

[48] Yuki Takahashi. Products of two Cantor sets. *Nonlinearity*, 30(5):2114–2137, 2017.

[49] Luming Zhao, Songjing Wang, and Lifeng Xi. Average geodesic distance of Sierpinski carpet. *Fractals*, 25(6):1750061, 8, 2017.

Department of Mathematics, Ningbo University, Ningbo, Zhejiang, People’s Republic of China

E-mail address: kanjiangbunnik@yahoo.com, jiangkan@nbu.edu.cn