Effect of telemonitoring and telerehabilitation on physical activity, exercise capacity, health-related quality of life and healthcare use in patients with chronic lung diseases or COVID-19: A scoping review

Diana C Sanchez-Ramirez1, Margriet Pol2, Hal Loewen3 and Mohamed-Amine Choukou4

Abstract

Background: Telemonitoring and telerehabilitation can support home-based pulmonary rehabilitation (PR) and benefit patients with lung diseases or COVID-19. This study aimed to (1) identify which telemonitoring and telerehabilitation interventions (e.g. videoconferencing) are used to provide telehealth care for people with chronic respiratory conditions or COVID-19, and (2) provide an overview of the effects of telemonitoring and telerehabilitation on exercise capacity, physical activity, health-related QoL (HRQoL), and healthcare use in patients with lung diseases or COVID-19.

Methods: A search was performed in the electronic databases of Ovid MEDLINE, EMBASE, and Cinahl through 15 June 2021. Subject heading and keywords were used to reflect the concepts of telemonitoring, telerehabilitation, chronic lung diseases, and COVID-19. Studies that explored the effect of a telerehabilitation and/or telemonitoring intervention, in patients with a chronic lung disease such as asthma, chronic obstructive pulmonary diseases (COPD), or COVID-19, and reported the effect of the intervention in one or more of our outcomes of interest were included. Excluding criteria included evaluation of new technological components, teleconsultation or one-time patient assessment.

Results: This scoping review included 44 publications reporting the effect of telemonitoring (25 studies), telerehabilitation (8 studies) or both (11 studies) on patients with COPD (35 studies), asthma (5 studies), COPD and asthma (1 study), and COVID-19 (2 studies). Patients who received telemonitoring and/or telerehabilitation had improvements in exercise capacity in 9 out of 11 (82%) articles, better HRQoL in 21 out of 25 (84%), and fewer health care use in 3 out of 3 (100%) articles compared to pre-intervention. Compared to controls, no statistically significant differences were found in the intervention groups’ exercise capacity in 5 out of 6 (83%) articles, physical activity in 3 out of 3 (100%) articles, HRQoL in 21 out of 25 (84%) articles, and healthcare use in 15 out of 20 (75%) articles. The main limitation of the study was the high variability between the characteristics of the studies, such as the number and age of the patients, the outcome measures, the duration of the intervention, the technological components involved, and the additional elements included in the interventions that may influence the generalization of the results.

Conclusion: Telemonitoring and telerehabilitation interventions had a positive effect on patient outcomes and appeared to be as effective as standard care. Therefore, they are promising alternatives to support remote home-based rehabilitation in patients with chronic lung diseases or COVID-19.

Keywords

Telerehabilitation, home telecare, telecare, ehealth, telehealth, telemonitoring, COVID-19, COPD

Date received: 8 March 2022; Date accepted: 4 August 2022
Introduction

Chronic lung diseases and COVID-19 are leading causes of disease, death and disability globally, which entail a substantial burden on the individual and healthcare systems. Pulmonary rehabilitation (PR) is defined by the “National Heart, Lung, And Blood Institute” as a supervised program that includes exercise training, health education, and breathing techniques for people who have certain lung conditions or lung problems due to other conditions is widely recognized as an important treatment for patients suffering from chronic respiratory diseases, and has been recommended as a potential beneficial intervention for post-COVID-19 patients. PR has been shown to provide statistically and clinically significant improvements in physical activity, exercise capacity, self-efficacy, and health-related quality of life (HRQoL), and a decrease in healthcare use in patients with lung diseases. Despite the multiple benefits identified, it has been estimated that less than 3% of people with chronic lung diseases accessed PR programs which are also hampered by low participation, insufficient attendance, and high dropout rates. Home-based PR programs seem to offer a promising alternative to overcome well-known PR barriers including, but not limited to, symptom severity, acute exacerbations, transportation, financial difficulties, disruption of daily routines and access to care in remote locations. In addition, the COVID-19 pandemic has highlighted the need for delivering PR programs remotely, safely, and efficiently.

Advances in technology have boosted at-home health service delivery and popularized telehealth for those with chronic diseases. Telehealth can be described as the use of electronic information and communication technology by professional health care providers to provide and support at-home health care to patients in case of long distances. Evidence indicates that telehealth can enhance healthcare use, especially among the populations who cannot otherwise access care. There are several terms used to describe telehealth systems based on their applications. Telerehabilitation is defined as the delivery of rehabilitation services (e.g. assessment, prevention, treatment, education, and counseling) via information and communication technologies. It has been associated with lower healthcare costs compared with traditional inpatient or person-to-person rehabilitation. Recent advances in sensor technology have also enabled remote patient telemonitoring, which is the transmission of physiological and other noninvasive data (e.g. heart rate, blood pressure, oxygen saturation, weight, symptoms, etc.) directly to care providers via Bluetooth or digital/broadband/wireless. Telemonitoring can be used to recognize and treat changes in the patient’s health status as a stand-alone approach (e.g. early detection) or as part of a telerehabilitation intervention. This paper focuses on telemonitoring and telerehabilitation as types of telehealth that can support home-based PR and benefit patients with lung diseases or COVID-19. The purpose of this paper is to depict the use of telemonitoring and telerehabilitation interventions in patients with chronic lung diseases, such as asthma, chronic obstructive pulmonary diseases (COPD), or COVID-19 patients and their association with patient health outcomes. The objectives of this paper were to (1) identify which telemonitoring and telerehabilitation interventions (e.g. videoconferencing) are used to provide telehealth care for people with chronic respiratory conditions or COVID-19, and (2) provide an overview of the effects of telemonitoring and telerehabilitation on exercise capacity, physical activity, HRQoL, and healthcare use in patients with lung diseases or COVID-19.

Methods

A health sciences librarian (HL), in consultation with the research team, developed and performed a search in the electronic databases of Ovid MEDLINE, EMBASE, and Cinahl through 15 June 2021. Subject heading and keywords were used to reflect the concepts of telemonitoring, telerehabilitation, chronic lung diseases, and COVID-19 (see supplement 1 for the OVID Medline search). The search was limited to full-text articles published in the English language with full text available. This scoping review of the literature, which has not been registered, was conducted using Preferred Items for Systematic Reviews and Meta-Analysis (PRISMA) (Figure 1). The search retrieved 3013 references. After removing the duplicates, two researchers screened 2941 titles and abstracts and...
read in full the text of 227 articles. Both researchers reviewed independently the articles and selected 44 publications that met the inclusion criteria of (1) the study explored the effect of a telerehabilitation and/or telemonitoring intervention, (2) in patients with a chronic lung disease, such as asthma, COPD, or COVID-19 patients, (3) and reported the effect of the intervention in one or more of the following outcomes: exercise capacity, physical activity, HRQoL, or healthcare use. The main reasons for exclusion of the studies included: (1) the study aimed to validate a new technological component instead of evaluating an intervention, (2) the intervention was only teleconsultation or one-time assessment, or the effect of the intervention in one of the (3) populations or (4) outcomes of interest were not reported.

Data extraction and synthesis

Information from the 44 articles was summarized in Table 1, which presented: (1) author(s)’ name, (2) country of the study, (3) type of study, (4) intervention group and control group, (5) technology used in the study, (6) duration of the intervention, (7) participants’ condition, and (8) description of the study population. The effect of telemonitoring and telerehabilitation on physical activity, exercise capacity, health-related quality of life and healthcare use in patients with chronic lung diseases or COVID-19 was extracted and compiled in Tables 2–4.

Results

All 44 manuscripts were original research published between 2005 and 2021. The studies were conducted in Australia (5), Canada (5), USA (5), Denmark (4), Italy (4), Spain (4), UK (4), China (3), the Netherlands (3), Ireland (2), New Zealand (1), Norway (1), Russia (1), Sweden (1), and 1 study in Austria, Germany, and Switzerland. The main characteristics of the included studies are presented in Table 1. Twenty-eight manuscripts reported on randomized controlled studies, 11 pre-post intervention studies, 2 matched population studies, 1 controlled non-randomized study, 1 quasi-randomized clinical trial, and 1 cohort study. Follow-up periods ranged between 10 days and 36 months. The number of participants involved in intervention groups of the studies ranged between 8 and 619 (median: 45). Thirty-five of the studies were conducted in patients with COPD, 5 in patients with asthma, 1 included patients with COPD and/or asthma, and 2 in patients with COVID-19. Two studies were conducted on children and the rest on adult patients (Table 1).

Interventions and technology

Table 1 describes the details of the interventions and the technology used. The effect of telemonitoring (25 studies), telerehabilitation (8 studies) or both interventions combined (11 studies) were reported on the physical activity, exercise capacity, HRQoL, and healthcare use of patients with respiratory diseases or COVID-19. These technology-enabled remote interventions were implemented as a stand-alone approach or in combination with other elements (e.g., standard care). Twenty-seven of the studies involved mobile apps, web pages, or virtual platforms accessed using a laptop, tablet or smartphone. In two studies the intervention was delivered using a teleconference platform, and one social platform. Other transmitting devices/systems used in the studies included the health buddy device, the iRobi robot, a PalmOne, a touch screen telemonitoring equipment, a home health system connected to a phone line, a computer-linked interactive phone tele-system, a tele-modem, a satellite platform, a computer or push-bottom telephone, a handheld monitor connected to a phone line, a digital pen and health dairy paper together with SMS. Portable devices used to monitor patients’ remotely included pulse oximeters (oxygen saturation and heart rate), spirometers (lung function), and accelerometers (physical activity) among others. Sixteen studies used more than one device to collect patient data. Information from the monitoring devices was collected using Bluetooth technology, manually entered, or verbally reported by participants to the research team or healthcare providers.

Exercise capacity and physical activity

A significant improvement in exercise capacity was reported in COVID-19 patients who received home-based telerehabilitation (Table 2). Increased baseline exercise capacity was also found in COPD patients who received telemonitoring, telerehabilitation (3 of 4 studies), or a combination of both. However, only one study that explored the effect of telemonitoring and another that combined telerehabilitation and telerehabilitation found greater improvement in exercise capacity in intervention groups compared to controls. Telerehabilitation alone or in combination with telemonitoring was not associated with changes in physical activity compared to control groups among COPD patients.

HRQoL and/or health status

Overall well-being improved in 83% of COVID-19 patients who participated in an intervention involving telerehabilitation and telemonitoring (Table 3). Telemonitoring interventions were associated with an improvement in HRQoL in patients with asthma and COPD (4 of 6 studies), and no changes in HRQoL were identified in one study that included both asthma and COPD patients combined. Nevertheless, when compared to

Table 1 describes the details of the interventions and the technology used. The effect of telemonitoring and/or telerehabilitation on physical activity, exercise capacity, HRQoL, or healthcare use in patients with respiratory diseases or COVID-19 was extracted and compiled in Tables 2–4.

Results

All 44 manuscripts were original research published between 2005 and 2021. The studies were conducted in Australia (5), Canada (5), USA (5), Denmark (4), Italy (4), Spain (4), UK (4), China (3), the Netherlands (3), Ireland (2), New Zealand (1), Norway (1), Russia (1), Sweden (1), and 1 study in Austria, Germany, and Switzerland. The main characteristics of the included studies are presented in Table 1. Twenty-eight manuscripts reported on randomized controlled studies, 11 pre-post intervention studies, 2 matched population studies, 1 controlled non-randomized study, 1 quasi-randomized clinical trial, and 1 cohort study. Follow-up periods ranged between 10 days and 36 months. The number of participants involved in intervention groups of the studies ranged between 8 and 619 (median: 45). Thirty-five of the studies were conducted in patients with COPD, 5 in patients with asthma, 1 included patients with COPD and/or asthma, and 2 in patients with COVID-19. Two studies were conducted on children and the rest on adult patients (Table 1).

Interventions and technology

Table 1 describes the details of the interventions and the technology used. The effect of telemonitoring and/or telerehabilitation on physical activity, exercise capacity, HRQoL, or healthcare use in patients with respiratory diseases or COVID-19 was extracted and compiled in Tables 2–4.

Exercise capacity and physical activity

A significant improvement in exercise capacity was reported in COVID-19 patients who received home-based telerehabilitation. Increased baseline exercise capacity was also found in COPD patients who received telemonitoring, telerehabilitation, or a combination of both. However, only one study that explored the effect of telemonitoring and another that combined telerehabilitation and telerehabilitation found greater improvement in exercise capacity in intervention groups compared to controls. Telerehabilitation alone or in combination with telemonitoring was not associated with changes in physical activity compared to control groups among COPD patients.

HRQoL and/or health status

Overall well-being improved in 83% of COVID-19 patients who participated in an intervention involving telerehabilitation and telemonitoring. Telemonitoring interventions were associated with an improvement in HRQoL in patients with asthma and COPD, and no changes in HRQoL were identified in one study that included both asthma and COPD patients combined. Nevertheless, when compared to...
Author, Year, Country	Type of study	Intervention Group (IG)	Control Group (CG)	Technology	>1 Monitoring devices involved (Yes/No)	Duration of the intervention	Disease	Number of participants (SD)	Age mean years	Males (N %)	Number of participants (SD)	Age Mean years	Males (N %)
Telemonitoring													
Antoniades, Nick 2012	RCT	IG: Remote In-home monitoring (TeleMedCare) + standard best practice. CG: Standard best practice		Yes		12 Months	COPD	22 (10) 10 (83)			22 (9) 10 (83)		
(Australia)													
Au, David 2015	Matched group design (1:1)	IG: Telehealth system combined with care management program (Health Buddy Program) CG: Matched to similar baseline characteristics		No		3 Years	COPD	619 (75 (8) 338 (55)			619 (74 (10) 338 (55)		
(USA)													
Boer, Lonneke 2019	RCT	IG: Smart mobile health tool for self-management (mHealth tool). CG: Paper action plan		Yes		12 Months	COPD	43 (69 (8) 25 (58)			44 (65 (8) 29 (66)		
(Netherlands)													
Chan, Debora 2007	RCT	IG: Internet-based home monitoring and education. CG: Office-based care		No		52 Weeks	Asthma	60 (10 (3) 38 (63)			60 (9 (3) 37 (62)		
(USA)													
Chau, Janita 2012	RCT	IG: Telecare service (ASTRI) + nurse home visit (education) CG: Only nurse home visit (education)		Yes		2 Months	COPD	22 (73 (6) 21 (95)			22 (72 (6) 18 (82)		
(Hong Kong)													
Cushen, Brenda 2021	Pre-post	IG: Community virtual ward model (patient information transferred to hospital portal)		Yes		Mean 10 (4) days admission to discharge	COPD and/or asthma	20 (64 (13) 7 (35)			N/A N/A N/A		
(Ireland)													

(continued)
Author Year Country	Type of study	Intervention Group (IG)	Control Group (CG)	Technology	>1 Monitoring devices involved (Yes/no)	Duration of the intervention	Disease	Number of participants	Age mean (SD)	Males N (%)	Number of participants	Age Mean (SD)	Males N (%)
de Jonge, Johan 2009 Netherlands	RCT	GI: Daily telemonitoring of exhaled nitric oxide + monitoring symptoms	CG: Symptoms monitoring only	PalmOne, airway inflammation monitor (NIOX MINO; Aerocrine, Solna, Sweden) that measures FENO0.05	No	30 Weeks	Asthma	77	11 (2)	46 (60)	74	11 (4)	54 (73)
Deng, Ning 2020 China	Pre-post	GI: Mobile health technology to deliver a community-based closed-loop management system (app)		MHealth system: smartphone (patient app), workstation (doctor), a cloud server, and a simple peak flow meter.	No	6 Months	COPD	39	61 (6)	36 (92)	N/A	N/A	N/A
Ding, Hang 2014 Australia	Pre-post	GI: A mobile-phone-based home monitoring system (app)		Mobile phone to record COPD symptoms and vital signs on portal. Thermometec pulse oximeter.	Yes	6 Months	COPD	10	65 (9)	5 (50)	N/A	N/A	N/A
Farias, Raquel 2019 Canada	Pre-post	GI: Phone interactive telesystem (computer-linked interactive phone telesystem)		Card (PIN) and the Telesystem contact information with automated phone call questions and a callback notification.	No	12 Months	COPD	256	70 (9)	117 (46)	N/A	N/A	N/A
Farmer, Andrew 2017 UK	RCT	GI: Digital health system (EDGE, Self-management, and support proGrammE)		EDGE platform, tablet, and Bluetooth-enabled oximeter.	No	12 Months	COPD	110	69 (9)	68 (62)	56	69 (10)	34 (61)
Jódar-Sánchez, Francisco 2013 Spain	RCT	IG: Home telehealth program (Tele-Modem, Aerotel Medical Systems)	CG: Usual care	Spirometer, a pulse oximeter, heart rate, blood pressure monitor (model UA-767 BT, A&D Company). Data sent via a hub (Tele-Modem, Aerotel Medical Systems) connected to the patient’s home telephone line.	Yes	4 Months	COPD	24	74 (8)	23 (96)	21	71 (10)	20 (95)
Koff, Patricia 2021 USA	Quasi-randomized clinical trial	IG: Proactive iCare (healthcare delivery model that couples integrated care with remote monitoring) CG: Usual care		Health buddy, finger pulse oximeter, handheld spirometer, and pedometer.	Yes	9 Months	COPD	352	68 (8)	205 (58)	159	68 (9)	106 (67)

(continued)
Author	Year	Country	Type of study	Intervention Group (IG)	Technology	>1 Monitoring devices involved (Yes/no)	Duration of the intervention	Disease	Number of participants	Age mean years (SD)	Males N (%)	Number of participants	Age Mean years (SD)	Males N (%)			
Lewis, Keir E	2010	UK	RCT	IG: Home telemonitoring (telemonitoring via the home telephone line) + standard care	Handheld telemonitor connected via telephone line, thermometer, and pulse oximeter probe connected to the monitor.	Yes	6 Months	COPD	20	70 (range 61–73)	10 (50)	20	73 (range 63–79)	10 (50)			
McDowell, Janet	2015	Ireland	RCT	IG: Home-based healthcarer with telemonitoring (telecommunications device connected directly to patient’s phone line)	Home telehealth system (HomMed, Honeywell, USA) self-monitoring to record vital signs (finger probe and blood cuff) and answer questions.	Yes	6 Months	COPD	55	69 (7)	32 (58)	55	70 (7)	30 (54)			
Pare, Guy	2013	Canada	RCT	IG: Home telemonitoring (touchscreen, modem)	Touch screen with an integrated modem (TELUTM) to send clinical data.	No	21.5 Months	COPD	60	67 (6)	19 (32)	60	68 (6)	19 (32)			
Pedone, Claudio	2013	Italy	RCT	IG: Multiparametric telemonitoring of vital signs	Cellular telephone coupled with wristband containing Bluetooth sensors (heart rate, physical activity, body temperature, and a pulse-oximeter).	No	9 Months	COPD	50	74 (6)	36 (72)	49	75 (6)	31 (63)			
Persson, Hans	2020	Sweden	Cohort study	IG: Health Diary Telemetry Monitoring and Hospital-Based Home Care (HBC)	Digital pen and a Health Diary paper form to report daily health status.	No	12 Months	COPD	36	75 (6)	14 (39)	NA	NA	NA			
Pinnock, Hilary	2013	UK	RCT	IG: Touch screen telemonitoring equipment + clinical care.	Touchscreen Telemonitoring equipment to record and transmit daily questionnaires and monitor oxygen.	No	12 Months	COPD	128	69 (8)	53 (41)	128	68 (8)	63 (49)			
Rasmussen, Linda	2005	Denmark	RCT (3 groups)	IG: Internet-based monitoring asthma tool.	Internet diary or push-button phone. Peak flowmeter (Vitalograph, Ltd, Maid Moriton, Buckingham, United Kingdom).	No	6 Months	Asthma	85	28 (range 14–44)	27 (32)	CG1: 88	CG2: 80	CG2: 80			
Author	Year	Country	Type of study	Intervention Group (IG)	Control Group (CG)	Technology	>1 Monitoring devices involved (Yes/no)	Duration of the intervention	Disease	Number of participants	Age mean years (SD)	Males N (%)	Number of participants	Age Mean years (SD)	Males N (%)		
------------------	---------------	-------------	---------------	-------------------------	-------------------	---	--	----------------------------	----------------	----------------------	-------------------	-------------	-----------------------	-------------------	-------------		
Schou, Lone 2013	RCT	Denmark	GI: telemedicine-based treatment	Touch screen PC and additional devices (pulse oximeter, spirometer, and thermometer) for monitoring the vital signs.	No	3 Months	COPD	22	68 (12)	10 (45)	22	73 (10)	8 (36)				
Stamenova, Vess 2020	RCT (3 arms)	Canada	IG: Technology-Enabled remote monitoring program.	Web-based portal and Bluetooth devices: custom tablet computer pulse wave wrist cuff monitor, oximeter, weighing scale, and thermometer.	Yes	6 Months	COPD	41	71 (9)	23 (56)	CG1: 41	CG: 40	CG1: 23	CG2: 71	CG2: 72	CG2: 21	2 (2)
van Gaalen, Johanna 2013	RCT (multicenter nonblinded, pragmatic randomized controlled parallel trial)	Netherlands	IG: Internet-based self-management support.	Website platform. Handheld spirometer and reporting symptom score.	No	30 Months	Asthma	47	36 (8)	12 (26)	60	37 (8)	19 (22)				
Vianello, Andrea 2016	RCT	Italy	IG: Home telemonitoring (Gateway device for data transmission over telephone)	TM system: finger pulse-oximeter and a gateway device for data transmission over a telephone line to a central data management unit located at the Veneto Regional e-Health Centre.	No	12 Months	COPD	230	75 (6)	164 (71)	104	76 (6)	76 (73)				
Zairina, Elida 2015	RCT	Australia	IG: Telehealth program	Mobile application Breathe-easy supported by a Bluetooth-enabled handheld device (COPD-6 R), which was used for self-monitoring of lung function.	No	6 Months	Asthma	36	31 (4)	0	36	31 (4)	0				
Bermejo-Gil, Beatriz 2021	Pre-post	Spain	IG: Home-based telerehabilitation system (RespiraCon Nosotros)	Web application for respiratory exercises and chat function for interaction compatible with computer, tablet, television, and mobile.	No	1 Month	COVID-19	15	range 28–38	8 (53)	NA	NA	NA				
Author Year Country	Type of study	Intervention Group (IG)	Control Group (CG)	Technology	>1 Monitoring devices involved (Yes/no)	Duration of the intervention	Disease	Number of participants	Age mean years (SD)	Males N (%)	Number of participants	Age mean years (SD)	Males N (%)				
---------------------	---------------	-------------------------	--------------------	------------	--	----------------------------	---------	-----------------------	-------------------	-------------	-----------------------	-------------------	-------------				
Burkow, Tatjana 2015 Norway	Pre-post	IG: PR in home-based online groups (videoconference)		Internet-based comprehensive, multidisciplinary pulmonary rehabilitation program + step counter.	No	9 Weeks	COPD	10	61 (range 46–72)	5 (50)	N/A	N/A	N/A	N/A			
Hansen, Henrik 2020 Denmark	RCT	IG: Pulmonary telerehabilitation program (videoconference). CG: Conventional PR program		Videoconference software system installed on a single touch screen.	No	10 Weeks	COPD	67	68 (8)	32 (48)	67	68 (9)	28 (42)				
Yuyu 2020 China	RCT	IG: Pulmonary internet explorer Rehabilitation (PeR) program based on social media (WeChat) CG: Face-to-face PR rehabilitation		PeR includes two ports: the computer end and the WeChat end.	No	3 Months	COPD	53	70 (6)	44 (83)	53	71 (7)	43 (81)				
Jiménez-Reguera, Begoña 2020 Spain	RCT	IG: mHealth Web-Based platform (HappyAir) CG: Hospital scheduled evaluations.		HappyAir app: educational program and data collection related to physical activity and disease, recording medication intake, daily exercise time (minutes), level of tiredness and daily mood.	No	12 Months	COPD	20	68 (6)	9 (41)	24	68 (7)	13 (59)				
Lewis, Adam 2021 UK	pre-post	IG: Online platform delivery of PR		E-learn Moodle platform (videoconference, messaging)	No	6 Weeks	COPD	17	69 (10)	8 (47)	NA	NA	NA	NA			
Stickland, Michael 2011 Canada	RCT	IG: PR delivered via Telehealth CG: PR delivered in person (standard outpatient hospital-based program)		Videoconference	No	8 Weeks	COPD	147	69 (8)	78 (53)	262	69 (9)	125 (44)				
Telemonitoring and telerehabilitation Benzo, Roberto 2021 USA	RCT	IG: Home-based program with video-guided exercises (website) + phone call health coaching CG: Waiting list 8 weeks and the intervention was offered afterwards		Computer tablets: video-guided exercises using an oximeter, an activity monitor and daily self-report of symptoms.	Yes	8 Weeks	COPD	72	69 (8)	34 (47)	74	68 (9)	37 (50)				

(continued)
Author	Year	Country	Type of study	Intervention Group (IG)	Control Group (CG)	Technology	>1 Monitoring devices involved (Yes/No)	Duration of the intervention	Disease	Number of participants	Age mean (years, SD) Males (N)	Number of participants	Age mean (years, SD) Males (N)	
Bhatt, Surya	2019	USA	Matched group design (1:2)	IG: Telehealth PR (video conference) *	CG: Contemporaneous subjects who had been hospitalized for a COPD exacerbation but did not receive the intervention	Smartphone with video capabilities to facilitate two-way live videoconferencing, Automatic sphygmomanometers (blood pressure), and a pulse oximeter (heart rate and oxygen saturation).	Yes	12 Weeks	COPD	80	64 (10) 49 (61)	160	63 (11) 92 (57)	
Broadbent, Elizabeth	2018	New Zealand	RCT	IG: iRobi robot (monitor health and prompt medical contact)	CG: Standard care	Robot with Wi-Fi linked smart inhalers: (1) Measure pulse oximetry, forced expiratory volume, heart rate, and symptoms, mental state, and functional status using the Clinical COPD Questionnaire (2) reminding medication and inhalers and record their adherence several times a day; (3) remind rehabilitation exercises (4) provide education about COPD; (5) I am feeling unwell function (6) trends over time health status and adherence.	No	4 Months	COPD	30	70 (10) 11 (37)	30	69 (9) 12 (40)	
Galdiz, Juan	2021	Spain	RCT	IG: Pulmonary telerehabilitation program (web-based platform)	CG: Standard care	Web-based platform, and a telerehabilitation kit (mobile phone, pulse oximeter, dumbbells and exercise cycle).	No	12 Months	COPD	46	62 (8) 30 (65)	48	63 (6) 33 (68)	
Gilmudinova, Ilmira	2021	Russia	pre-post	IG: Telemedicine platform (COVIDREHAB)		A mobile phone, tablet or computer, an Internet connection and an e-mail address on this device. Platform: information and analytical system for remote monitoring of medical rehabilitation.	No	2 Weeks	COVID-19	178	50 (range 32-82)	NA	NA	NA
Author/Year Country	Type of study	Intervention Group (IG)	Control Group (CG)	Technology	>1 Monitoring devices involved	Duration of intervention	Disease	Number of participants	Age mean years (SD)	Males N (%)	Control group			
---------------------	--------------	-------------------------	-------------------	------------	-------------------------------	-------------------------	---------	------------------------	------------------	-------------	----------------			
Holland, Anne 2013 Australia	Pre-post	IG: Telerehabilitation (video collaborative software)		A tablet computer was used for videoconferencing. A pulse oximeter (oxygen saturation and heart rate).	No	8 Weeks	COPD	8	66 (range 56–83)	3 (38%)	NA	NA	NA	
Marquis, Nicole 2015 Canada	Pre-post	IG: In-home PR (video conferencing system)		Videoconferencing system, internet connection with encrypted transmission. Wireless oximeter (oxygen saturation and heart rate).	Yes	6 Months	COPD	23	65 (7.1)	8 (35)	NA	NA	NA	
Paneroni, Mara 2015 Italy	controlled, non-randomized pilot study	IG: Telerehabilitation (satellite platform) CG: Standard outpatient rehabilitation program		Home telemonitoring platform, medical devices (oximeter, steps counter)	Yes	40 Days	COPD	18	65 (10)	16 (89)	18	66 (6)	15 (83)	
Rassouli, Frank 2018 Switzerland, Austria, and Germany	Observational (pre-post)	IG: Digital multidisciplinary PR (App)		Multiplatform smartphone application with exercise videos, Pedometer.	No	20 Days	COPD	34	59 (8)	8 (24)	NA	NA	NA	
Ringbaek, Thomas 2015 Denmark	RCT	IG: Telehealth care (telemonitoring equipment) with the option of video consultation CG: Usual care		Tablet computer with a web camera, a microphone, and measurement equipment (spirometer, pulse oximeter, and bathroom scale)	Yes	6 Months	COPD	141	69 (9)	55 (39)	140	69 (10)	76 (54)	
Tsai, Ling 2017 Australia	RCT	IG: Home-based telerehabilitation (videoconferencing) CG: Usual care without exercise training		Computer with an in-built camera, and a finger-clip pulse oximeter.	Yes	8 Weeks	COPD	19	73 (8)	12 (63)	17	75 (9)	6 (86)	
Vitacca, Michele 2009 Italy	RCT	IG: Télé-assistance program (modern system through telephone line) CG: Standard care		Pulse oximetry device with solid memory card + modem telephne.	No	12 Months	COPD	57	61 (7)	NR	44	61 (17)	NR	

SD: standard deviation; PR: pulmonary rehabilitation; SBP: standard best practice; N/A: not applicable; NR: not reported.
Disease	Study	IG change from pre-intervention	IG effect in comparison with CG	Instrument/tool used to assess the outcome	IG change from baseline	IG effect in comparison with CG	Instrument/tool used to assess the outcome	
Telemonitoring	COPD	Koff, P. 202151	↑	6MWT				
Telerehabilitation	COVID-19	Bermejo-Gil, B. 202164	↑	NA	Borg scale			
	COPD	Hansen, Henrik 202066	↑	=	6MWT, 30 s sit-to-stand test	no	=	Triaxial accelerometer
		Stickland, M. 201170	↑	=	12 min walk test			
		Lewis, A. 202169	↑	NA	1 min sit-to-stand test			
		Jiménez-Reguera, B. 202068	no	=	6MWT			
Telerehabilitation and	COPD	Benzo, R. 202171	↑	↑	Endurance shuttle walk test	NR	=	ActiGraph
telemonitoring		Tsai, L. 201781	↑	=	6MWT	no	=	Triaxial accelerometer
		Paneroni, M. 201578	↑	=	6MWT			
		Holland, A. 201376	↑	NA	6MWT			
		Marquis, N. 201577	↑	NA	6MWT			
		Galdiz, J. 202074	no	=	6MWT			

IG: Intervention group; CG: control group; 6MWT: 6-min walking test; NA: not applicable; ↑: significantly better outcome; =: no significant difference in outcome change between groups; not reported. NR: data and/or significance level not reported.
Table 3. Effect of telemonitoring and/or telerehabilitation on health-related quality of life and/or health status in patients with lung diseases or COVID-19.

Disease	Study	IG change from pre-intervention	IG effect in comparison with CG	Instrument/tool used to assess the outcome
Telemonitoring				
Asthma	Rasmussen, L. 2005\(^{58}\)	↑	↑ (than the 2 CGs)	Asthma-related quality of life (AQLQ)
	van Gaalen, J. 2013\(^{61}\)	↑	↑	AQLQ
	Zairina, E. 2015\(^{63}\)	↑	↑	mAQLQ (mini asthma quality of life questionnaire)
	de Jongste, J. 2009\(^{45}\)	↑	=	Pediatric asthma caregiver quality of life questionnaire (PACQLQ)
	Chan, D. 2007\(^{42}\)	↑	NR	Pediatric asthma quality of life questionnaires (PAQLQ) applied to caregiver
COPD and/or asthma				
COPD	Cushen, B. 2021\(^{44}\)	no	NA	EQ-VAS questionnaire
	Koff, P. 2021\(^{51}\)	↑	↑	SGRQ
	Farmer, A. 2017\(^{49}\)	↑	↑	EQ-5D-5L questionnaire
	Stamenova, V. 2020\(^{60}\)	↑	=	SGRQ
	Deng, N. 2020\(^{46}\)	↑	NA	COPD assessment test (CAT)
	Antoniades, N. 2012\(^{39}\)	no	=	Chronic respiratory disease questionnaire (CRDQ), 36-Item short from survey (SF-36)
	Persson, H. 2020\(^{56}\)	no	NA	SGRQ
	McDowell, J. 2015\(^{53}\)	NR	↑	SGRQ
	Boer, L. 2019\(^{41}\)	NR	=	EQ-5D questionnaire, Nijmegen clinical screening instrument (NSCI), Clinical COPD Questionnaire (CCQ)
	Chau, J. 2012\(^{43}\)	NR	=	Chronic respiratory questionnaire (CRQ)
	Jódar-Sánchez, F. 2013\(^{50}\)	NR	=	SGRQ, EuroQol-5D questionnaire
	Lewis, K. 2010\(^{69}\)	NR	=	SGRQ, and EuroQol EQ-5D questionnaire
	Pinnock, H. 2013\(^{57}\)	NR	=	SGRQ
	Schou, L. 2013\(^{59}\)	NR	=	SGRQ
	Vianello, A. 2016\(^{62}\)	NR	=	SF-36
	Stickland, M. 2011\(^{70}\)	↑	=	SGRQ
	Burkow, T. 2015\(^{65}\)	↑	NA	SGRQ
	Lewis, A. 2021\(^{69}\)	↑	NA	CRQ
	Rassouli, F. 2018\(^{79}\)	↑	NA	CAT, CRQ
	Jiang, Y. 2020\(^{57}\)	↑	=	CAT, SGRQ
	Jiménez-Reguera, B. 2020\(^{68}\)	no	=	CAT, EuroQOL-5D questionnaire
	Hansen, H. 2020\(^{66}\)	↑	=	

(continued)
control groups, telemonitoring was associated with a greater improvement in HRQoL only in 75% (3 of 4) of studies in asthma patients \(^{46,49,51,58,60,61,63}\) and in 23% (3 of 13) of studies in COPD patients. \(^{49,51,53}\) Telerehabilitation \(^{65–70,79}\) alone and the combination of telerehabilitation with telemonitoring \(^{76–78,81}\) were associated with improvement in HRQoL in COPD patients. However, no significant difference in HRQoL change was found between the intervention groups and controls. \(^{66–68,70,71,73,74,78,81}\)

Healthcare use

A decrease in pre-intervention hospital admissions, length of hospitalization, and visits to the emergency department and GP’s office were reported in COPD patients who participated in telemonitoring interventions. \(^{51,57,58}\) Furthermore, 6 out of 13 studies reported fewer urgent visits to GP’s office, \(^{51}\) fewer visits to the pulmonary specialist \(^{62}\) and nurse practitioner, \(^{49}\) fewer hospital admissions, \(^{40,55}\) and readmissions, \(^{62}\) fewer days of hospitalization, and fewer ER visits \(^{54}\) in patients with COPD who received telemonitoring compared to control groups. However, 7 of 13 studies found no significant difference in healthcare use between controls and patients with COPD. \(^{39,41,43,50,53,57,60}\)

Discussion

This paper aimed at portraying the use of telemonitoring and telerehabilitation in patients with chronic lung diseases such as asthma, COPD or COVID-19 patients and the effects of these modalities of intervention on physical activity, exercise capacity, health-related quality of life and healthcare use. A scoping review methodology was followed to explore the literature in the field. 27.3% of the studies retrieved were published after 2020 demonstrating the expanding need for technology in PR, especially after the rise of COVID-19. The first objective was to identify the telemonitoring and telerehabilitation interventions that are used to provide telehealth care for people with chronic respiratory conditions or...
Table 4. Effect of telemonitoring and/or telerehabilitation on healthcare use in patients with lung diseases.

Disease	Study	IG change from pre-intervention	IG effect in comparison with CG	Instrument/tool used to assess the outcome	
Telemonitoring	Asthma	NR	=	Number of ED visits, hospitalizations, unscheduled asthma-related visits.	
				Number of unscheduled health-care visits.	
	COPD	Koff, P. 202151	↓	COPD-related urgent office GP visits (decreased only in IG).	
			↓	COPD-related hospitalizations, hospital LOS, ED visits, ICU hospitalization.	
			no	Non-COPD urgent office GP visits, hospitalizations, hospital LOS, ED visits, ICU hospitalizations.	
	Ding, H. 201447	↓	NA	Hospital admissions, ED presentations, and GP visits.	
	Farias, R. 201948	↓	NA	Respiratory-related ER visits, and COPD-related hospitalizations.	
	Au, D. 201540	NR	↓	Quarterly all-cause hospital admissions, respiratory-related hospital admissions.	
	Pare, G. 201354	NR	↓	Number of hospitalization days and visits to ER.	
	Pedone, C. 201355	NR	↓	COPD-related hospitalizations.	
	Farmer, A. 201749	NR	↓	Visits to the GP practice nurses.	
	Vianello, A. 201662	NR	=	Relative risk of hospital admission.	
	Antoniades, N. 201239	NR	=	Readmission rate AECOPD and/or for any cause, appointment with a pulmonary specialist.	
	Boer, L. 201941	NR	=	Hospitalization rate for AECOPD (acute exacerbations of COPD) and/or for any cause.	
	Chau, J. 201243	NR	=	Number of COPD-admission/year, COPD-related length of stay (LOS) days/year, total admission/year, total LOS days/year.	
	Jódar- Sánchez, F. 201350	NR	=	Exacerbation-related hospital admissions, unscheduled respiratory-related healthcare consultations.	
	McDowell, J. 201553	NR	=	Number of ED visits, hospitalizations, or contacts with GP	
	Pinnock, H. 201357	NR	=	Hospital admissions due to COPD or all cause, duration of hospital admission.	
	Stamenova, V. 202050	NR	=	Hospitalizations, ED visits, or clinic visits.	
Telerehabilitation	COPD	Hansen, H. 202066	NR	=	Hospital admission related to COPD exacerbations; all causes of hospitalization.
Telerehabilitation and Telemonitoring	COPD	Bhatt, S. 201972	NR	↓	30-day all-cause readmission and (continued)
COVID-19. The literature review identified various technologies and technology-based approaches used to provide telemonitoring and/or telerehabilitation interventions for patients with asthma, COPD, or COVID-19. The technologies used were classified into two types. The first type included portable and mobile technologies to capture physiological and other non-invasive variables measured by patients themselves at home (e.g., heart rate, oxygen saturation) and the second type included information and communication technologies that allow seamless transfer of health data from the remote location to the healthcare provider. Overall, technologies were diverse, involved various levels of complexity, and were deployed in specific ways depending on the cases used. As such, we have classified the interventions into telemonitoring where only the surveillance of physiological and other non-invasive variables was needed, telerehabilitation where a PR or exercise intervention was administered remotely, or a combination of both.

The second objective of this paper was to provide an overview of the effects of telemonitoring and telerehabilitation on exercise capacity, physical activity, HRQoL, and healthcare use in patients with lung diseases or COVID-19. Results indicated that telemonitoring and telerehabilitation were associated with an improvement in exercise capacity, higher HRQoL, and lower healthcare use in these patients. Furthermore, these interventions produced outcomes comparable to standard care, which aligns with previous evidence that reported similar benefits of telerehabilitation to traditional in-person outpatient PR programs.84,85 Previous evidence has also suggested that telemonitoring interventions can contribute to better disease management, higher patient empowerment, higher patient engagement and satisfaction, facilitate communication between the patient and healthcare team, and facilitate data collection and data access in patients with COPD.86 Some potential barriers associated with these interventions included heterogeneity of care, lack of patient comfort with technology, patient resistance, time-consuming, increased workload for healthcare providers and staff shortages.86 From the cost-effective perspective, evidence suggested that although technology-based interventions require an initial financial investment, they will substantially reduce costs in the long-term, potentially due to a reduction in healthcare use and travel costs.87

Overall, evidence suggested that telemonitoring and telerehabilitation are potentially valuable mechanisms to improve patient care and access, especially in rural areas,88 and do not increase mortality rates.89 Therefore, policy and decision-makers should consider supporting the implementation of telemonitoring and telerehabilitation interventions by providing an initial investment associated with the cost of the equipment, regulating the practice of telerehabilitation including protected time for healthcare providers, and involving in-institution information and technology services to support data transmission and enable secure remote sessions.90,91 Future studies should explore mechanisms to reduce potential barriers associated with the use of technology-based interventions, such as lack of standardization and cost-effectiveness analyses.

Strengths and limitations

The results of this study contribute to filling a significant knowledge gap about the value of telemonitoring and telerehabilitation in the management of patients with chronic lung

Table 4. Continued.

Disease	Study	IG change from pre-intervention	IG effect in comparison with CG	Instrument/tool used to assess the outcome
AECOPD (acute exacerbation of COPD) readmission.	Vitacca, M. 200982	NR	↓	Hospitalizations, ER admissions and urgent GP calls.
	Ringbaek, T. 201580	NR	↓	Visits to the respiratory outpatient clinic.
	Broadbent, E. 201883	NR	=	Number of hospital admissions (for COPD or all causes), time to first admission, length of stay, visit to ER.

IG: Intervention group; CG: control group; ED: emergency department; ER: emergency room; GP: general practitioner; ↓ significantly lower; = no significant difference between groups. NA: not applicable. NR: data and/or significance level not reported.
diseases or COVID-19. This knowledge is needed among the first priorities identified by the patients and clinicians after COVID-19 widely affected the delivery of rehabilitation services.92,93 63.6\% of the retrieved manuscript reported on randomized controlled trials demonstrating the current need for evidence about the effectiveness of telemonitoring and telerehabilitation in patients with chronic lung diseases or COVID-19. This paper presented the evidence available as of June 2021. The generalizability of the results of this study may be influenced by the higher variability between the characteristics of the studies included such as the number and age of the patients, outcome measurements, length of the intervention, technological components involved, and additional elements included (e.g. education components, type and numbers of healthcare providers involved, etc.). Due to this heterogeneity, authors suggested a cautious interpretation of the results and compiled the studies characteristics in Table 1 to facilitate the readers’ interpretation.

Conclusion

Telemonitoring and telerehabilitation interventions had a positive effect on patient exercise capacity and HRQoL and are associated with fewer healthcare use in patients with chronic lung diseases such as asthma, COPD, or post COVID-19. Furthermore, the results indicated that the outcomes of these interventions are comparable to standard care. Therefore, they are promising alternatives to support remote home-based rehabilitation in this group of patients that should be supported by policy and decision-making.

Acknowledgements

The authors would like to thank Yang Zhaoyun, Rachel Adodo, and Amarzish Qadeer for their contribution to article screening and data extraction.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

This work was supported by the start-up funds provided to Dr Sanchez-Ramirez by the University of Manitoba.

ORCID iDs

Diana C Sanchez-Ramirez \(\text{https://orcid.org/0000-0003-1637-4309}\)

Hal Loewen \(\text{https://orcid.org/0000-0003-3621-1304}\)

Mohamed-Amine Choukou \(\text{https://orcid.org/0000-0001-9477-2412}\)

References

1. Forum of International Respiratory Societies. The Global Impact of Respiratory Disease-Second Edition Sheffield: European Respiratory Society; 2017 [Available from: https://www.who.int/gard/publications/The_Global_Impact_of_Respiratory_Disease.pdf].

2. Johns Hopkins University of Medicine. COVID-19 Case Tracker. 2022 [Available from: Available from: https://coronavirus.jhu.edu/].

3. Hodgson CL, Higgins AM, Bailey MJ, et al. The impact of COVID-19 critical illness on new disability, functional outcomes and return to work at 6 months: A prospective cohort study. Crit Care 2021; 25: 382.

4. Sanchez-Ramirez DC, Normand K, Zhaoyun Y, et al. Long-term impact of COVID-19: A systematic review of the literature and meta-analysis. Biomedicines 2021; 9: 900.

5. DiBonaventura M, Paulose-Ram R, Su J, et al. The burden of chronic obstructive pulmonary disease among employed adults. Int J Chron Obstruct Pulmon Dis 2012; 7: 211–219.

6. Alghamdi F, Ashour A, Adeyemi L, et al. The psychological impacts of COVID-19 pandemic among emerging adults: An observational cross-sectional study. Int J Environ Res Public Health 2022; 19: 1445.

7. Corlade-Andrei M, Märea C, Nedelea P, et al. Burnout syndrome among staff at an emergency department during the COVID-19 pandemic. Healthcare 2022; 10: 258.

8. Mapel DW, Dutro MP, Marton JP, et al. Identifying and characterizing COPD patients in US managed care. A retrospective, cross-sectional analysis of administrative claims data. BMC Health Serv Res 2011; 11: 43.

9. Mulpuru S, McKay J, Ronksley PE, et al. Factors contributing to high-cost hospital care for patients with COPD. Int J Chron Obstruct Pulmon Dis 2017; 12: 989–995.

10. NHLBI. National Heart, Lung, and Blood Institute/Pulmonary Rehabilitation [Available from: https://www.nhlbi.nih.gov/health-topics/pulmonary-rehabilitation].

11. Sanchez-Ramirez DC. Impact of pulmonary rehabilitation services in patients with different lung diseases. J Clin Med 2022; 11: 407.

12. Zhang H, Hu D, Xu Y, et al. Effect of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis of randomized controlled trials. Ann Med 2022; 54: 262–273.

13. Siddiq MAB, Rathore FA, Clegg D, et al. Pulmonary rehabilitation in COVID-19 patients: A scoping review of current practice and its application during the pandemic. Turk J Phys Med Rehabil 2020; 66: 480–494.

14. Corhay JL, Dung DN, Van Cauwenberge H, et al. Pulmonary rehabilitation and COPD: providing patients a good environment for optimizing therapy. Int J Chron Obstruct Pulmon Dis 2014; 9: 27–39.

15. Lahham A and Holland AE. The need for expanding pulmonary rehabilitation services. Life (Basel) 2021; 11: 1236.

16. Milner SC, Boruff JT, Bearerepaire C, et al. Rate of, and barriers and enablers to, pulmonary rehabilitation referral in COPD: A systematic scoring review. Respir Med 2018; 137: 103–114.

17. Fischer MJ, Scharloo M, Abbink JJ, et al. Drop-out and attendance in pulmonary rehabilitation: The role of clinical and psychosocial variables. Respir Med 2009; 103: 1564–1571.

18. Keating A, Lee A and Holland AE. What prevents people with chronic obstructive pulmonary disease from attending pulmonary rehabilitation? A systematic review. Chron Respir Dis 2011; 8: 89–99.
19. Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. *Am J Respir Crit Care Med* 2013; 188: e13–e64.

20. Holland AE, Mahal A, Hill CJ, et al. Home-based rehabilitation for COPD using minimal resources: A randomised, controlled equivalence trial. *Thorax* 2017; 72: 57–65.

21. Liu XL, Tan JY, Wang T, et al. Effectiveness of home-based pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: A meta-analysis of randomized controlled trials. *Rehabil Nurs* 2014; 39: 36–59.

22. Rochester CL, Vogiatzis I, Holland AE, et al. An official American Thoracic Society/European Respiratory Society policy statement: Enhancing implementation, use, and delivery of pulmonary rehabilitation. *Am J Respir Crit Care Med* 2015; 192: 1373–1386.

23. Vitacca M, Montini A and Comini L. How will telemedicine change clinical practice in chronic obstructive pulmonary disease? *Thorax Adv Respir Dis* 2018; 12: 1753465818754778.

24. Bjørnshave B, Korsgaard J and Nielsen CV. Does pulmonary rehabilitation work in clinical practice? A review on selection and dropout in randomized controlled trials on pulmonary rehabilitation. *Clin Epidemiol* 2010; 2: 73–83.

25. Bjørnshave B, Korsgaard J, Jensen C, et al. Participation in pulmonary rehabilitation in routine clinical practice. *Clin Respir J* 2011; 5: 235–244.

26. Maeder A. Telehealth and remote access. *Stud Health Technol Inform* 2010; 151: 239–254.

27. Murray E. Internet-delivered treatments for long-term conditions: Strategies, efficiency and cost-effectiveness. *Expert Rev Pharmacoecon Outcomes Res* 2008; 8: 261–272.

28. Polisena J, Tran K, Cimon K, et al. Home telehealth for chronic obstructive pulmonary disease: A systematic review and meta-analysis. *J Telemed Telecare* 2010; 16: 120–127.

29. Darkins A, Ryan P, Kobb R, et al. Care coordination/home telehealth: The systematic implementation of health informatics, home telehealth, and disease management to support the care of veteran patients with chronic conditions. *Telemed J E Health* 2008; 14: 1118–1126.

30. Kobb R, Chumbler NR, Brennan DM, et al. Home telehealth: Mainstreaming what we do well. *Telemed J E Health* 2008; 14: 977–981.

31. Field MJ. Telemedicine: A guide to assessing telecommunications in healthcare. *J Digit Imaging* 1997; 10: 28.

32. Schneider NM. Managing congestive heart failure using home telehealth. *Home Healthc Nurse* 2004; 22: 719–722.

33. Waqas A, Teoh SH, Lapão LV, et al. Harnessing telemedicine for the provision of health care: Bibliometric and sciento-metric analysis. *J Med Internet Res* 2020; 22: e18835.

34. Jong M, Mendez I and Jong R. Enhancing access to care in northern rural communities via telehealth. *Int J Circumpolar Health* 2019; 78: 1554174.

35. Brennan D, Tindall L, Theodoros D, et al. A blueprint for telerehabilitation guidelines. *Int J Telerehabil* 2010; 2: 31–34.

36. Ambrosino N, Vagheggi G, Mazzoleni S, et al. Telemedicine in chronic obstructive pulmonary disease. *Breathe (Sheff)* 2016; 12: 350–356.

37. Peretti A, Amenta F, Tayebati SK, et al. Telerehabilitation: Review of the state-of-the-art and areas of application. *JMIR Rehabil Assist Technol* 2017; 4: e7.

38. Andreu-Perez J, Leff DR, Ip HM, et al. From wearable sensors to smart implants—toward pervasive and personalized healthcare. *IEEE Trans Biomed Eng* 2015; 62: 2750–2762.

39. Antoniades NC, Rochford PD, Prettto JJ, et al. Pilot study of remote telemonitoring in COPD. *Telemed J E Health* 2012; 18: 634–640.

40. Au DH, Macaulay DS, Jarvis JL, et al. Impact of a telehealth and care management program for patients with chronic obstructive pulmonary disease. *Ann Am Thorac Soc* 2015; 12: 323–331.

41. Boer L, Bischoff E, van der Heijden M, et al. A smart Mobile health tool versus a paper action plan to support self-management of chronic obstructive pulmonary disease exacerbations: Randomized controlled trial. *JMIR Mhealth Uhealth* 2019; 7: e14408.

42. Chan DS, Callahan CW, Hatch-Pigott VB, et al. Internet-based home monitoring and education of children with asthma is comparable to ideal office-based care: Results of a 1-year asthma in-home monitoring trial. *Pediatrics* 2007; 119: 569–578.

43. Chau JP-C, Lee DT-F, Yu DS-F, et al. A feasibility study to investigate the acceptability and potential effectiveness of a telecare service for older people with chronic obstructive pulmonary disease. *Int J Med Inf* 2012; 81: 674–682.

44. Cussen B, Madden A, Long D, et al. Integrating hospital and community care: using a community virtual ward model to deliver combined specialist and generalist care to patients with severe chronic respiratory disease in their homes. *Ir J Med Sci* 2022; 191: 615–621.

45. de Jongste JC, Carraro S, Hop WC, et al. Daily telemonitoring of exhaled nitric oxide and symptoms in the treatment of childhood asthma. *American Journal of Respiratory & Critical Care Medicine* 2009; 179: 93–97.

46. Deng N, Chen J, Liu Y, et al. Using Mobile health technology to deliver a community-based closed-loop management system for chronic obstructive pulmonary disease patients in remote areas of China: Development and prospective observational study. *JMIR Mhealth Uhealth* 2020; 8: e15978.

47. Ding H, Karanamithi M, Kanagasigam Y, et al. A pilot study of a mobile-phone-based home monitoring system to assist in remote interventions in cases of acute exacerbation of COPD. *J Telemed Telecare* 2014; 20: 128–134.

48. Farias R, Sedeno M, Beaucage D, et al. Innovating the treatment of COPD exacerbations: A phone interactive telesystem to increase COPD action plan adherence. *BMJ Open Respir Res* 2019; 6: e000379.

49. Farmer A, Williams V, Velardo C, et al. Self-Management support using a digital health system compared with usual care for chronic obstructive pulmonary disease: Randomized controlled trial. *J Med Internet Res* 2017; 19: e144.

50. Jódar-Sánchez F, Ortega F, Parra C, et al. Implementation of a telehealth programme for patients with severe chronic obstructive pulmonary disease treated with long-term oxygen therapy. *Journal of Telemedicine & Telecare* 2013; 19: 11–17.

51. Koff PB, Min S-J, Freitag TJ, et al. Impact of proactive integrated care on chronic obstructive pulmonary disease. *Chronic Obstructive Pulmonary Diseases (Miami, Fla)* 2021; 8: 100–116.
52. Lewis KE, Annandale JA, Warm DL, et al. Home telemonitoring and quality of life in stable, optimised chronic obstructive pulmonary disease. *J Telemed Telecare* 2010; 16: 253–259.

53. McDowell JE, McClean S, FitzGibbon F, et al. A randomised clinical trial of the effectiveness of home-based health care with telemonitoring in patients with COPD. *J Telemed Telecare* 2015; 21: 80–87.

54. Pare G, Poba-Nzaou P, Sicotte C, et al. Comparing the costs of home telemonitoring and usual care of chronic obstructive pulmonary disease patients: A randomised controlled trial. *European Research in Telemedicine* 2013; 2: 35–47.

55. Pedone C, Chiurco D, Scarlata S, et al. Efficacy of multiparametric telemonitoring on respiratory outcomes in elderly people with COPD: A randomised controlled trial. *BMC Health Serv Res* 2013; 13: 82.

56. Persson HI, Lyth J and Lind L. The health diary telemonitoring and hospital-based home care improve quality of life among elderly multimorbid COPD and chronic heart failure subjects. *Int J Chron Obstruct Pulmon Dis* 2020; 15: 527–541.

57. Pinnock H, Hanley J, McClooughan L, et al. Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: researcher blind, multicentre, randomised controlled trial. *BMJ (Clinical Research ed)* 2013; 347: f6070.

58. Rasmussen LM, Phanareth K, Nolte H, et al. Internet-based monitoring of asthma: A long-term, randomised clinical study of 300 asthmatic subjects. *J Allergy Clin Immunol* 2005; 115: 1137–1142.

59. Schou L, Ostergaard B, Rydhall-Hansen S, et al. A randomised trial of telemedicine-based treatment versus conventional hospitalisation in patients with severe COPD and exacerbation - effect on self-reported outcome. *J Telemed Telecare* 2013; 19: 160–165.

60. Stamenova V, Liang K, Yang R, et al. Technology-Enabled self-management of chronic obstructive pulmonary disease with or without asynchronous remote monitoring: Randomized controlled trial. *J Med Internet Res* 2020; 22: e18598.

61. van Gaalen JL, Beerthuizen T, van der Meer V, et al. Long-term outcomes of internet-based self-management support in adults with asthma: Randomized controlled trial. *J Med Internet Res* 2013; 15: e188.

62. Vianello A, Fusello M, Gubian L, et al. Home telemonitoring for patients with acute exacerbation of chronic obstructive pulmonary disease: A randomised controlled trial. *BMC Pulm Med* 2016; 16: 157.

63. Zafrina E, Abramson MJ, McDonald CF, et al. Telehealth to improve asthma control in pregnancy: A randomized controlled trial. *Respirology (Carlton, Vic)* 2016; 21: 867–874.

64. Bermejo-Gil BM, Perez-Robledo F, Llamas-Ramos R, et al. Respiraconnosotros: A viable home-based telerehabilitation system for respiratory patients. *Sensors (Basel, Switzerland)* 2021; 21: 3318.

65. Burkow TM, Vognild JK, Johnsen E, et al. Comprehensive pulmonary rehabilitation in home-based online groups: A mixed method pilot study in COPD. *BMC Res Notes* 2015; 8: 766.

66. Hansen H, Bieler T, Beyer N, et al. Supervised pulmonary tele-rehabilitation versus pulmonary rehabilitation in severe COPD: A randomised multicentre trial. *Thorax* 2020; 75: 413–421.

67. Jiang Y, Liu F, Guo J, et al. Evaluating an intervention program using WeChat for patients with chronic obstructive pulmonary disease: Randomized controlled trial. *J Med Internet Res* 2020; 22: e17089.

68. Jimenez-Reguera B, Maroto Lopez E, Fitch S, et al. Development and preliminary evaluation of the effects of an mHealth web-based platform (HappyAir) on adherence to a maintenance program after pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: Randomized controlled trial. *JMIR Mhealth Uhealth* 2020; 8: e18465.

69. Lewis A, Knight E, Bland M, et al. Feasibility of an online platform delivery of pulmonary rehabilitation for individuals with chronic respiratory disease. *BMJ Open Respir Res* 2021; 8.

70. Stickland M, Jourdain T, Wong EY, et al. Using telehealth technology to deliver pulmonary rehabilitation in chronic obstructive pulmonary disease patients. *Can Respir J* 2011; 18: 216–220.

71. Benzo RP, Ridgeway J, Hoult JP, et al. Feasibility of a health coaching and home-based rehabilitation intervention with remote monitoring for COPD. *Respir Care* 2021; 66: 960–971.

72. Bhatt SP, Patel SB, Anderson EM, et al. Video telehealth pulmonary rehabilitation intervention in chronic obstructive pulmonary disease reduces 30-day readmissions. *New York, New York*: American Thoracic Society, 2019, pp.511–513.

73. Broadbent E, Garrett J, Jepsen N, et al. Using robots at home to support patients with chronic obstructive pulmonary disease: Pilot randomized controlled trial. *J Med Internet Res* 2018; 20: e45.

74. Galdiz JB, Gomez A, Rodriguez D, et al. Telerehabilitation programme as a maintenance strategy for COPD patients: A 12-month randomized clinical trial. *Arch Bronconeumol* 2021; 57: 195–204.

75. Gilmudtinova IR, Kolyshenkov VA, Lapickaya KA, et al. Telemedicine platform COVIDREHAB for remote rehabilitation of patients after COVID-19. *Eur J Transl Myol* 2021; 31: 9783.

76. Holland AE, Hill CJ, Rochford P, et al. Telerehabilitation for people with chronic obstructive pulmonary disease: Feasibility of a simple, real time model of supervised exercise training. *J Telemed Telecare* 2013; 19: 222–226.

77. Marquis N, Larivee P, Saey D, et al. Preliminary pulmonary telerehabilitation in COPD: A Pre-experimental study on effectiveness, satisfaction, and adherence. *Telemed J E Health* 2015; 21: 870–879.

78. Paneroni M, Saleri M, Vitacca M, et al. Is telerehabilitation a safe and viable option for patients with COPD? A feasibility study. *COPD: Journal of Chronic Obstructive Pulmonary Disease* 2015; 12: 217–225.

79. Rassoul F, Boutellier D, Duss J, et al. Digitalizing multidisciplinary pulmonary rehabilitation in COPD with a smartphone application: An international observational pilot study. *Int J Chron Obstruct Pulmon Dis* 2018; 13: 3831–3836.
81. Tsai LLY, McNamara RJ, Moddel C, et al. Home-based telerehabilitation via real-time videoconferencing improves endurance exercise capacity in patients with COPD: The randomized controlled TeleR study. *Respirology (Carlton, Vic)* 2017; 22: 699–707.

82. Vitacca M, Bianchi L, Guerra A, et al. Tele-assistance in chronic respiratory failure patients: A randomised clinical trial. *Eur Respir J* 2009; 33: 411–418.

83. Paneroni M, Simonelli C, Vitacca M, et al. Aerobic exercise training in very severe chronic obstructive pulmonary disease: A systematic review and meta-analysis. *Am J Phys Med Rehabil* 2017; 96: 541–548.

84. Cox NS, Dal Corso S, Hansen H, et al. Telerehabilitation for chronic respiratory disease. *Cochrane Database Syst Rev* 2021; 1 : CD013040.

85. Snoswell CL, Chelberg G, De Guzman KR, et al. The clinical effectiveness of telehealth: a systematic review of meta-analyses from 2010 to 2019. *J Telemed Telecare* 2021. DOI: 10.1177/1357633X211022907.

86. Kruse C, Pesek B, Anderson M, et al. Telerehabilitation to manage chronic obstructive pulmonary disease: systematic literature review. *JMIR Med Inform* 2019; 7: e11496.

87. Seto E. Cost comparison between telerehabilitation and usual care of heart failure: A systematic review. *Telemed J E Health* 2008; 14: 679–686.

88. Venter A, Burns R, Hefford M, et al. Results of a telehealth-enabled chronic care management service to support people with long-term conditions at home. *J Telemed Telecare* 2012; 18: 172–175.

89. Snoswell CL, Stringer H, Taylor ML, et al. An overview of the effect of telehealth on mortality: A systematic review of meta-analyses. *J Telemed Telecare* 2021. DOI. 10.1177/1357633X211023700.

90. Smith AC, Thomas E, Snoswell CL, et al. Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). *J Telemed Telecare* 2020; 26: 309–313.

91. Thomas EE, Haydon HM, Mehrotra A, et al. Building on the momentum: Sustaining telehealth beyond COVID-19. *J Telemed Telecare* 2022; 28: 301–308.

92. Leochico CFD, Rey-Matias BMV and Rey-Matias RR. Telerehabilitation perceptions and experiences of physiatrists in a lower-middle-income country during the COVID-19 pandemic. *Pm r* 2022; 14: 210–216.

93. Werneke MW, Deutscher D, Grigsby D, et al. Telerehabilitation during the COVID-19 pandemic in outpatient rehabilitation settings: A descriptive study. *Phys Ther* 2021; 101: pzab110.