Effects of enzyme replacement therapy in adult patients with Fabry disease on cardiac structure and function: a retrospective cohort study of the Fabry Münster Study (FaMüS) data

Markus A Engelen,1 Eva Brand,2 Timo B Baumeister,1 T Marquardt,3 Thomas Duning,4 Nani Osada,5 Roland M Schaefer,2 Joerg Stypmann1

ABSTRACT

Objective: Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism caused by deficient lysosomal α-galactosidase A activity. Progressive accumulation of globotriaosylceramide and related glycosphingolipids in vascular endothelial lysosomes of the heart, kidneys and brain is responsible for the main disease manifestations. The aim of our study was to assess short-term and long-term effects of enzyme replacement therapy (ERT) on cardiac mass and function.

Design: Retrospective cohort study.

Setting: Hospital outpatient clinic.

Participants: 40 FD patients (21 men, 19 women) receiving agalsidase β-ERT.

Outcome measures: The focus at baseline and follow-up examinations was on structural, functional (Doppler-echocardiography) as well as electrical changes (ECG) and blood pressure.

Results: In the Early Group, systolic and diastolic blood pressures significantly decreased. Left-ventricular (LV) also decreased; however, wall thickness and LV mass index showed no further increase. VE as an indicator for diastolic function significantly improved (64±21 vs 75±27 cm/s, p=0.038). There were no significant changes in ECG parameters. There were few relevant changes in the Late Group, albeit systolic blood pressure significantly decreased and QRS duration significantly increased. In conclusion, echocardiographic left-ventricular mass index, interventricular septum thickness, left-ventricular posterior wall, left-ventricular end-diastolic dimension and diastolic function parameters are valuable for follow-up and guidance of therapy.

Conclusions: The primary positive impact of ERT appears to be an early effect after the start of therapy, and early initiation of ERT should be recommended.

INTRODUCTION

Morus Fabry-Anderson disease (FD) is an X-chromosome-linked (Xq22.1) lysosomal storage disorder caused by the deficiency of α-galactosidase A, resulting in aberrant glycosphingolipid metabolism and accumulation of globotriaosylceramide (Gb3).1–4 This progressive accumulation causes remarkable clinical consequences, mainly related to the involvement of vascular endothelial cells of the kidney, the brain and especially the heart.5 FD is a multiorgan disease with severe effects on cardiac, renal, cerebrovascular, ocular and neural function.5 6 6 Registry data suggests cardiac involvement is associated with increased morbidity.7 Enzyme replacement therapy (ERT) with recombinant α-galactosidase A appears to be one of the most effective current therapies for FD. The replacement of missing or insufficient
α-galactosidase in patients with FD might be a strategy to handle symptoms and overcome the enzyme deficiency in patients. Treatment with infusions of recombinant enzyme preparations aims to attenuate accumulation of the major enzyme substrate globotriaosylceramide (Gb3), particularly from capillary endothelial cells of the heart, kidney and skin.8–13 The heart and cardiovascular system are severely affected structures in FD; left-ventricular hypertrophy, arrhythmias, ischaemia, cardiomyopathy or disturbance of electrical conduction are typical manifestations in most cases.14–17 First signs of FD can appear in early childhood, or during adulthood, and often include acroparasthesia, angiokeratomas and/or hypohidrosis.5 Women can be affected to a similar degree to men, but the onset of disease tends to be later and progression slower.4 18–20 In this retrospective study, we focused on cardiac involvement and improvement under ERT. The aims of this study were to determine short-term and long-term effects of ERT on cardiac structure and function in Fabry patients of the Fabry Münster Study (FaMüS) cohort, to identify potential gender-related differences in this group, and to prove the importance of echocardiographic parameters in diagnosis and therapeutic decision-making.

MATERIALS AND METHODS

Study population and patient groups

FD patients from the Fabry outpatient clinic of the University Hospital of Münster between July 2001 and January 2009, matching the inclusion criteria (genetically proven FD and existing echocardiographic examination) were retrospectively included in this study. Exclusion criteria were patients without genetically proven FD or without echocardiographic examination. Group definitions: the Early Group (E0–E3) comprised 23 FD patients (11 men, 12 women), 22 treated with Fabrazyme (Genzyme GmbH, a Sanofi company, Neu Isenburg, Germany) and one with Replagal in their first 3 years of ERT after initial diagnosis of FD. The Late Group (E3-Late–E7) comprised 17 FD patients (10 men, seven women), 15 treated with Fabrazyme and two with Replagal, from a baseline examination in their first 3 years of ERT to a follow-up examination, which was performed during years 4–7 after starting ERT.

E0: Baseline examination of the Early Group before ERT.

E3: Follow-up examination of the Early Group in the first 3 years after beginning ERT.

E3-Late: examination in the first 3 years after beginning ERT as baseline examination of the Late Group.

E7: Follow-up examination of the Late Group in years 4–7 after beginning ERT.

A second cohort of FD patients, also from the Fabry outpatient clinic of the University Hospital of Münster, not undergoing ERT, who have partly been examined only once, was included before beginning ERT to check for age-dependent changes in patients with FD independent of ERT.

Informed written consent was obtained from all patients.

Standard Doppler-echocardiographic examination

Doppler-echocardiographic studies were performed using clinical standard echocardiography platforms (General Electrics Vivid 7 (GE HealthcareGmbH, Solingen, Germany), Philips IE 33 (Philips Healthcare, Hamburg, Germany)) by a small number of experienced residents and consultants at the Department of Cardiology and Angiology of the University Hospital of Münster. Examinations were performed according to current guidelines of the American Society of Echocardiography. End-diastolic interventricular septum thickness (IVS), end-diastolic thickness of the posterior wall (LVPW), and left-ventricular end-diastolic and end-systolic dimensions (LVEDD and LVESD) were measured in a B-mode guided M-mode (parasternal long axis). PW Doppler of the mitral inflow was used to measure the ratio of the early-to-late diastolic flow velocity (E/A ratio); ejection fraction (EF) was calculated using standard formulae. Echocardiographic myocardial mass was calculated with the Penn-Cube formula21 and indexed to the body surface area:

\[\text{LV mass index (LVMI)} = \frac{(\text{IVS} + \text{LVEDD}^3)}{\text{LVEDD}^3/\text{BSA}} - 13.6 \]

Electrocardiogram

Standard 12-channel ECG for the measurement of PQ time, QRS time and Sokolow-Lyon index were digitally recorded using clinical electrocardiography platforms and analysed automatically. Analyses were controlled by experienced clinicians.

Statistical analysis

Statistical analysis was performed using SPSS release V16.0 (SPSS, Inc, Chicago, Illinois, USA) and graphics were generated using Microsoft Works Excel 2003 (Microsoft Corp., Redmond, Washington DC, USA). Continuous variables are presented as mean±SD. Before statistical testing, each continuous variable was analysed for normal distribution (Kolmogorov-Smirnov test). The Wilcoxon test was used for the comparison of non-parametric variables between independent study groups. The Mann-Whitney U test was used for the comparison of nonparametric variables between dependent study groups. The Kruskal-Wallis test was used for overall statistical analysis in the age-dependent separated cohort. Statistical significance was defined as p<0.05.

RESULTS

Twenty-three patients were assigned to the Early Group. The mean age of the patients in this group was...
For the second cohort, 67 patients (24 men, 43 women, figure 1), mean age at diagnosis 43±16 years (men 35±13 years; women 49±16 years), were included. They were divided into four different age groups to assess the age-dependent progress of cardiovascular changes without the influence of ERT as follows: group 1, <21 years (nine patients: five men, four women); group 2, 21–40 years (22 patients: 13 men, nine women); group 3, 41–60 years (24 patients: five men, 19 women); group 4, >60 years (12 patients: one man, 11 women).

There was a progressive and considerable increase in IVS thickness with age (group 1 (n=8), 1.0±0.1 cm; group 2 (n=22), 1.1±0.2 cm; group 3 (n=22), 1.3±0.3 cm; group 4 (n=12), 1.7±0.6 cm, figure 1). Left-ventricular mass index also progressively increased with age (<21 years (n=8) 115±40 g/m²; 21–40 years (n=18) 117±33 g/m²; 41–60 years (n=20) 154±43 g/m²; >60 years (n=11) 213±98 g/m², figure 1). The difference between groups 2 and 3 was highly significant (p=0.01 for both values); overall significance (Kruskal-Wallis test): IVS p=0.001, LVMI p=0.001 (figure 1). IVS thickness exceeded normal values in the 21–40 years age group. LVMI exceeded normal values, even in the youngest group, and continuously increased.

DISCUSSION

The aim of this retrospective study was to show the short-term and long-term effects of ERT in FD patients of our FaMiS cohort. Furthermore, the clinical value of echo-cardiographic parameters in diagnosis and therapy control was assessed. In our study, ERT led to a significant reduction of systolic and diastolic blood pressures and LV diameters in the Early Group, while wall thickness and LV mass index did not increase further. VE as an indicator of diastolic function significantly improved. There were no clinically relevant changes in the Late Group.

Table 1 Echo and ECG parameters (mean±SD)

Parameter	Early Group	Late Group						
	n	E0	E3	P	n	E3-Late	E7	p
Blood pressure syst (mm Hg)	23	128±16	121±12	0.02	17	125±13	114±14	0.045
Blood pressure diast (mm Hg)	23	84±8	79±7	0.044	17	79±8	77±8	n.s.
LVEDD (cm)	17	4.9±0.5	4.6±0.7	0.056	16	4.6±0.4	4.6±0.7	n.s.
LVESD (cm)	17	3.1±0.6	2.8±0.5	0.036	16	3.0±0.6	2.9±0.5	n.s.
IVS (cm)	18	1.4±0.4	1.4±0.4	ns	16	1.5±0.4	1.5±0.4	n.s.
LVPW (cm)	15	1.4±0.3	1.4±0.3	ns	16	1.4±0.4	1.4±0.3	n.s.
LVMI (g/m²)	15	179±69	167±57	0.050	15	185±78	198±80	n.s.
LV-EF (%)	17	68±8	64±6	0.049	14	59±9	58±10	n.s.
VE (cm/s)	15	64±21	75±27	0.038	14	73±18	80±12	n.s.
VA (cm/s)	13	56±24	51±21	0.066	12	61±12	60±19	n.s.
E/A ratio	13	1.4±0.9	1.6±0.6	ns	12	1.2±0.5	1.5±0.6	n.s.
PQ-time (ms)	14	143±43	137±37	ns	9	128±23	142±33	0.063
QRS-time (ms)	15	110±33	109±24	ns	9	111±38	118±37	0.008
Sokolow-Lyon-index (mV)	8	32±1.5	29±1.2	0.049	7	30±1.1	30±1.1	n.s.

IVS, interventricular septum thickness; LVEDD, left-ventricular end-diastolic dimension; LV-EF, left-ventricular-ejection fraction; LVESD, left-ventricular end-systolic dimension; LVMI, left-ventricular mass index; LVPW, left-ventricular posterior wall; ns, not significant.
Systolic and diastolic blood pressures significantly decreased in the Early Group; in the Late Group, only the systolic blood pressure significantly decreased. These results are comparable with those of other studies in which a modulation of ACE activity by γ-galactosidase A, leading to decreased blood pressure levels, is suggested.\(^\text{22 23}\)

In our cohort, wall thickness was stable in both Early and Late Group. These results are in agreement with the findings of Koskenvuo \textit{et al}\(^\text{24}\) and Kovacevic-Preradovic \textit{et al}\(^\text{25}\) who also did not observe a decreased wall thickness. Other studies were able to identify a significant decrease in the wall thickness during ERT.\(^\text{26 27}\) The difference between the results of Imbriaco \textit{et al}\(^\text{27}\) and Koskenvuo \textit{et al}\(^\text{24}\) might be explained by the younger mean age of the former study’s patient cohort (35 years (Imbriaco) vs 41 years (Koskenvuo) vs 46 (EG) and 50 (LG) years (our population)).

LVMI tended to decrease in the Early Group, albeit not significantly (\(p=0.173\)). This is consistent with other studies showing a (significant) reduction of LV hypertrophy.\(^\text{25 27-30}\) Regarding these findings, Eng \textit{et al}\(^\text{31}\) could demonstrate a histological clearance of Gb3 in myocardial endothelial cells. Therefore, other authors suggested that the clearance of Gb3 deposits induces a reduction of LV hypertrophy.\(^\text{29}\) By contrast, the Late Group showed a trend towards an increase in the LVMI, which was not significant (\(p=0.125\)).

Hypertension could not have caused this process or the observed cardiac hypertrophy at the initial status, considering the normal blood pressure of the FD patients (\text{table 1}).\(^\text{23 31}\) Mehta \textit{et al}\(^\text{23}\) demonstrated a slowing down of regression of LVMI during ERT from year-2-to-year-5 of therapy, which is consistent with the results of our Early and Late Groups. The increase in the LVMI in the Late Group in comparison to the results of Mehta \textit{et al} could be explained by the higher age of our cohort (50 years) and by the longer duration of therapy, which may indicate a decrease of therapy impact with regard to the late therapy process.

LV diameters decreased in the Early Group, indicating improved systolic function, whereas they did not change in the Late Group. Spinelli \textit{et al}\(^\text{26}\) could not find any significant changes regarding LV internal diameters.

In the Early Group, the velocity of the early inflow into the LV significantly increased, indicating improved diastolic function. Toro \textit{et al}\(^\text{32}\) demonstrated that FD patients exhibited a reduction in VE velocity compared with that of normal control subjects. Therefore, velocity parameters should have particular significance, because they seem to have positive effects on FD-typical low contraction and relaxation Doppler velocities, as described in other studies.\(^\text{32 33}\) There was no significant change in the Late Group.
QRS duration significantly, and PQ duration insignificantly, increased in the Late Group. ECG parameters did not change significantly in the Early Group. The significant increase of QRS duration in the Late Group could be due to a further accumulation of substrate in myocardial cells.34

The second cohort showed that diagnosis of FD was established more than 10 years later in women than in men (p=0.001). These results are consistent with the literature.3 The majority of female patients were older (40–60 years) when diagnosed with FD than male patients, who were commonly diagnosed at the age of 30–40 years. Progression of LVMI and wall thickness mainly took place in patients in FD centres is necessary to increase knowledge and to allow treatment of these patients according to the latest available level of knowledge.17 37 Besides ERT, gene transfer could become a promising alternative treatment strategy in the future.38 39

REFERENCES

1. Brady RO, Gal AE, Bradley RM, et al. Enzymatic defect in Fabry’s disease. Ceramide trihexosidase deficiency. N Engl J Med 1967;276:1163–7.
2. Kirn JA. Fabry’s disease: alpha-galactosidase deficiency. Science 1970;167:1268–9.
3. Eng CM, Desnick RJ. Molecular basis of Fabry disease: mutations and polymorphisms in the human alpha-galactosidase A gene. Hum Mutat 1994;3:103–11.
4. Eng CM, Fletcher J, Wilcox WR. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis 2007;30:184–92.
5. Desnick RJ, Brady R, Barranger J, et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Am J Hum Genet 2003;138:338–46.
6. Sodi A, Ioannidis AS, Mehta A, et al. Ocular manifestations of Fabry’s disease: data from the Fabry Outcome Survey. Br J Ophthalmol 2007;91:210–14.
7. Mehta A, Clarke JT, Giugliani R, et al. Natural course of Fabry disease: changing pattern of causes of death in FOS—Fabry Outcome Survey. J Med Genet 2009;46:548–52.
8. Wilcox WR, Banikazemi M, Guffon N, et al. Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am J Hum Genet 2004;75:65–74.
9. Banikazemi M, Bultas J, Waldek S, et al. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med 2007;146:77–86.
10. Eng CM, Banikazemi M, Gordon RE, et al. A phase 1/2 clinical trial of enzyme replacement in fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 2001;68:711–22.
ERT and heart function in patients with Fabry disease

11. Eng CM, Guffon N, Wilcox WR, et al. Safety and efficacy of recombinant human alpha-galactosidase A—replacement therapy in Fabry’s disease. N Engl J Med 2001;345:9–16.

12. Thury-Bielfeldt BL, Randolf Hovers H, Glanzmann SR, et al. Monitoring the 3-year efficacy of enzyme replacement therapy in fabry disease by repeated skin biopsies. J Invest Dermatol 2004;122:900–8.

13. Thurberg BL, Renkhe H, Colvin RB, et al. Glucosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int 2002;62:1933–46.

14. MacDermot KD, Holmes A, Miners AH. Natural history of Fabry disease in affected males and obligate carrier females. J Inherit Metab Dis 2001;24(Suppl 2):13–14; discussion 11–12.

15. MacDermot KD, Holmes A, Miners AH. Anderson-Fabry disease: long-term echocardiographic follow-up under enzyme replacement therapy. Eur J Echocardiogr 2008;9:729–35.

16. MacDermot KD, Holmes A, Miners AH. Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet 2001;38:750–60.

17. MacDermot KD, Holmes A, Miners AH. Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet 2001;38:769–75.

18. Zarate YA, Hopkin RJ, Fabry’s disease. Lancet 2008;372:1427–35.

19. Mehta A, Ricci R, Widmer U, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest 2004;34:236–42.

20. Wang RX, Leis 1, Mirocha J, et al. Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genet Med 2007;9:34–45.

21. Wilcox WR, Oliveira JP, Hopkin RJ, et al. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 2008;93:112–28.

22. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450–8.

23. Batista EC, Carvalho LR, Casarin DE, et al. ACE activity is modulated by the enzyme alpha-galactosidase A. J Mol Med (Berl) 2011;89:65–74.

24. Mehta A, Beck M, Elliott P, et al. Enzyme replacement therapy with agalsidase beta improves cardiac involvement in Fabry’s disease. Clin Genet 2004;66:158–65.

25. Imbriaco-McAdoo JR, Carvalho LR, Casarini DE, et al. Monitoring the 3-year efficacy of enzyme replacement therapy in fabry disease by repeated skin biopsies. J Invest Dermatol 2004;122:900–8.

26. Spinnelli L, Pisani A, Sabbatini M, et al. Enzyme replacement therapy with agalsidase beta improves cardiac involvement in Fabry’s disease. Clin Genet 2004;66:158–65.

27. Baehner F, Kampmann C, Whybra C, et al. Enzyme replacement therapy in heterozygous females with Fabry disease: results of a phase IIIB study. J Inherit Metab Dis 2003;26:617–27.

28. Weidemann F, Breunig F, Beer M, et al. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: a prospective strain rate imaging study. Circulation 2003;108:3299–301.

29. Weidemann F, Niemann M, Breunig F, et al. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation 2009;119:524–9.

30. Hoigne P, Attenhofer Jost CH, Durr F, et al. Simple criteria for differentiation of Fabry disease from amyloid heart disease and other causes of left ventricular hypertrophy. Int J Cardiol 2006;111:413–22.

31. Toro R, Perez-Isla L, Doxastaquis G, et al. Clinical usefulness of tissue Doppler imaging in predicting preclinical Fabry cardiomyopathy. Int J Cardiol 2009;132:38–44.

32. Pieroni M, Chimienti C, Ricci R, et al. Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation 2003;107:1978–84.

33. Takenaka T, Teraguchi H, Yoshida A, et al. Terminal stage cardiac findings in patients with cardiac Fabry disease: an electrocardiographic, echocardiographic, and autopsy study. J Cardiol 2008;51:50–9.

34. Weidemann F, Linhart A, Monserrat L, et al. Cardiac challenges in patients with Fabry disease. Int J Cardiol 2010;141:3–10.

35. Kampmann C, Linhart A, Baehner F, et al. Onset and progression of the Anderson-Fabry disease related cardiomyopathy. Int J Cardiol 2008;130:367–73.

36. Mehta A, Beck M, Eyskens F, et al. Fabry disease: a review of current management strategies. QJM 2010;103:641–59.

37. Lee CJ, Fan X, Guo X, et al. Promoter-specific lentivectors for long-term, cardiac-directed therapy of Fabry disease. J Cardiovasc Pharmacol 2011;57:115–22.

38. Choi JG, Lee MH, Park HY, et al. Characterization of Fabry mice treated with recombinant adeno-associated virus 2/8-mediated gene transfer. J Biomed Sci 2010;17:26.

39. Engelen MA, Brand E, Baumeister TB, et al. BMJ Open 2012;2:e000879. doi:10.1136/bmjopen-2012-000879