A unified resource and configurable model of the synapse proteome and its role in disease

Citation for published version:
Sorokina, O, Mclean, C, Croning, MDR, Heil, KF, Wysocka, E, He, X, Sterrett, D, Grant, SGN, Simpson, TI & Armstrong, JD 2021, 'A unified resource and configurable model of the synapse proteome and its role in disease', Scientific Reports, vol. 11, no. 1. https://doi.org/10.1038/s41598-021-88945-7

Digital Object Identifier (DOI):
10.1038/s41598-021-88945-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Scientific Reports

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A unified resource and configurable model of the synapse proteome and its role in disease

Oksana Sorokina1, Colin Mclean1, Mike D. R. Croning2, Katharina F. Heil1,4, Emilia Wysocka1, Xin He1,6, David Sterratt1, Seth G. N. Grant2,5, Thomas I. Simpson1,5 & J. Douglas Armstrong1,3,5

Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein–protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.

At neuronal synapses, the proteomes in presynaptic and postsynaptic compartments form complex and highly dynamic molecular networks. These networks mediate signal transduction and plasticity processes that underpin normal (and abnormal) information processing in the brain. We systematically curated proteomic datasets dating from 2000 to 2020, to produce a comprehensive index of the proteins (and their genes) expressed at the mammalian synapse (see Methods for details). This resulted in 58 papers, which when combined, describe a landscape of 8087 synaptic genes.

The set includes 29 postsynaptic proteome (PSP) studies (2000 to 2019) contributing a total of 5560 mouse and human unique gene identifiers; 18 presynaptic studies (2004 to 2020) describe 2772 unique human and mouse gene IDs, and 11 studies that span the whole synaptosome and report 7198 unique genes (Table 1, Supplementary Table 1).

Each study was annotated with relevant metadata including GO function, disease association and cross-reference to SynGo. Orthologues were mapped across human, mouse and rat and each mapped onto stable identifiers (MGI, Entrez and Uniprot).

High throughput proteomic techniques are powerful, but they are noisy, and contamination is always a concern. A large number (2091 for PSP and 1434 for presynapse, Fig. 1A,B) of proteins have been observed just once. While single hits may be accounted for lack of sensitivity with low abundance molecules, it could also indicate the presence of false positive components brought in by experimental uncertainty.

The rate of growth with respect to newly discovered proteins for PSP appears to be slowing (Fig. 1C,E) and therefore there is now an opportunity to define a more reliable subset. Following the approach described in11, we selected genes found in two or more independent studies to designate the ‘consensus’ PSP. This resulted in 3,438 genes, which is ~7 times larger than reported by11 and described a subset of synaptic proteins for which we have higher confidence. In this subset we observe the increment of new genes per year decreases after 2008 and drops completely after 2014 (Fig. 1C). Based on this, we predict a total number of consensus PSP genes found to be 3499 (Fig. 1G) by year 2023 which, when compared to the current number indicates that our knowledge on PSP components, based on currently available methodologies, is close to saturation.

It is different for the presynaptic compartment, where the recent trend in newly identified genes indicates that saturation has not been achieved yet (Fig. 1D,F). For instance, the latest study by Taoufiq et al.47 brought in over 400 new genes to our presynaptic list.

To reconstruct protein–protein interaction (PPI) networks for the pre- and postsynaptic proteomes we used human PPI data filtered for the highest confidence direct and physical interactions from BioGRID58, Intact59 and

1The School of Informatics, University of Edinburgh, Edinburgh, UK. 2Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. 3Computational Biomedicine Institute (IAS-5 / INM-9), Forschungszentrum Jülich, Jülich, Germany. 4University of Barcelona, Barcelona, Spain. 5Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK. 6Dementia Research Institute, University of Edinburgh, Edinburgh, UK. *email: Oksana.Sorokina@ed.ac.uk; Colin.D.Mclean@ed.ac.uk
Study name	Gene_N	Compartment	Brain region	Species
Husi_2000[1]	77	postsynaptic	forebrain	mouse
Walikonis_2000[2]	29	postsynaptic	forebrain	rat
Peng_2004[3]	237	postsynaptic	forebrain	rat
Satoh_2002[4]	45	postsynaptic	forebrain	mouse
Youshimura_2004[5]	436	postsynaptic	forebrain	rat
Farr_2004[6]	73	postsynaptic	whole brain	rat
Jordan_2004[7]	393	postsynaptic	whole brain	mouse and rat
Li_2004[8]	139	postsynaptic	forebrain	rat
Trinidad_2005[9]	236	postsynaptic	whole brain	mouse
Cheng_2006[10]	289	postsynaptic	forebrain and cerebellum	rat
Collins_2006[11]	620	postsynaptic	forebrain	mouse
Dosemeci_2006[12]	114	postsynaptic	hippocampus	rat
Dosemeci_2007[13]	276	postsynaptic	cerebral cortex	rat
Trinidad_2008[14]	2158	postsynaptic	cortex, midbrain, cerebral cortex, and hippocampus	mouse
Selimi_2009[15]	63	postsynaptic	cerebellum	mouse
Fernandez_2009[16]	113	postsynaptic	forebrain	mouse
Bayes_2011[17]	1443	postsynaptic	cortex	human
Bayes_2012[18]	1552	postsynaptic	cortex	mouse
Schwenk_2013[19]	34	postsynaptic	whole brain	mouse
Distler_2014[20]	3558	postsynaptic	hippocampus	mouse
Bayes_2014[21]	1134	postsynaptic	frontal cortex	human
Uezu_2016[22]	928	postsynaptic	cortex and hippocampus	mouse
Focking_2016[23]	2021	postsynaptic	whole brain	human
Li_2016[24]	1602	postsynaptic	hippocampus CA1	mouse
Fernandez_2017[25]	107	postsynaptic	forebrain	mouse
Roy_2017[26]	1213	postsynaptic	frontal, parietal, temporal and occipital lobes of the neocortex	human
Li_2017[27]	993	postsynaptic	hippocampus CA1	mouse
Roy_2018[28]	1071	postsynaptic	frontal, medial and caudal cortex, right caudate putamen, right hippocampus, whole hypothalamus, and cerebellum (right half)	mouse
Wilson_2019[29]	2134	postsynaptic	cortex	mouse
Coughenour_2004[30]	36	presynaptic	forebrain	rat
Blondeau_2004[31]	209	presynaptic	whole brain	rat
Phillips_2005[32]	110	presynaptic	cortex	rat

Table 1. (continued)
The resulting PSP network contains 4817 nodes and 27,788 edges in the Largest Connected Component (LCC). The presynaptic network is significantly smaller and comprises 2221 nodes and 8678 edges in the LCC. The resulting network model is embedded into a SQLite implementation allowing users to derive custom network models based on meta-data including species, disease association, synaptic compartment, brain region, and method of extraction (Fig. 2). The database with manual is available from Supplementary Materials and from Edinburgh DataShare https://doi.org/10.7488/ds/3017, along with a SQLite Studio manual and Rmd file for querying under the R environment, a screencast walk-through demonstrating use-cases can also be found here https://youtu.be/oaW9Yr9AkJM.

The dataset can be used to answer frequent questions such as “What is known about my favourite gene? Is it pre- or postsynaptic? Which brain region was it identified in?” Beyond that, users can extend these queries to extract custom networks based on bespoke subsets of molecules. Worked examples that are easy to customise are shown in the Supplementary files.

The underlying principle of a systems biology approach is that structural features (pathways and subnetworks) underpin network functionality and given a network, one should be able to extract these features. Clustering algorithms are commonly used to identify local communities within the network under the assumption that shared network topology correlates with shared function (and dysfunction). However, the

Authors	Nodes	Presynaptic	Region	Species
Morciano_2005[33]	153	presynaptic	whole brain	rat
Burre_2006[34]	165	presynaptic	whole brain	rat
Takamori_2006[35]	410	presynaptic	cerebral cortex	rat
Khamma_2007[36]	104	presynaptic	whole brain	rat
Morciano_2009[37]	369	presynaptic	whole brain	rat
Abul-Husn_2009[38]	138	presynaptic	hippocampus and striatum	mouse
Abul-Husn_2011[39]	145	presynaptic	striatum	rat
Gorini_2010[40]	57	presynaptic	cortex	mouse
Gronborg_2010[41]	618	presynaptic	cerebral cortex	rat
Boyken_2013[42]	414	presynaptic	cerebral cortex	rat
Wilhelm_2014[43]	1169	presynaptic	cortex and cerebellum	rat
Brinkmalm_2014[44]	68	presynaptic	hippocampus	mouse
Weingarten_2014[45]	482	presynaptic	whole brain	mouse
Kokotos_2018[46]	983	presynaptic	cerebellum	rat
Taoufiq_2020[47]	1,466	presynaptic	whole brain	rat
Filiou_2010[48]	2980	synaptosome	whole brain	mouse
Dahlhaus_2011[49]	673	synaptosome	visual cortex	mouse
Cohen_2013[50]	2668	synaptosome	cortex	rat
Biesemann_2014[51]	163	synaptosome	forebrain	mouse
Chang_2015[52]	2077	synaptosome	cortex	human
Liu_2014[53]	1388	synaptosome	hippocampus and prefrontal cortex	mouse
Distler_2014[20]	4417	synaptosome	hippocampus	mouse
Kohansal-Nohed_2016[54]	4961	synaptosome	cerebellum	rat
Gonzalez-Lozano[55]	1560	synaptosome	cortex	mouse
Alfieri_2017[56]	351	synaptosome	telencephalon	mouse
Heo_2018[57]	2272	synaptosome	cortex and hippocampus	mouse
Taoufiq_2020[47]	4,439	synaptosome	whole brain	rat

Table 1. Studies included in the database. Dark grey corresponds to postsynaptic, light grey—to presynaptic, and green—to synaptosomal studies.
more important question is how the different communities are organised to enable a controllable flow of signals across the large network. Using the PSP network as example, we identified 1029 “Bridging” proteins as those known to interact locally with neighbours in the network—helping organise function inside communities they belong to\(^3\)\(^4\), and simultaneously influence other communities in the network (Fig. 3A, Methods). Using graph entropy as a compliment means of ranking a protein's ability to inhibit or enhance information flow\(^6\), we found that proteins with high Bridgeness value have ability to decrease the entropy of the network thus facilitating the signal transmission (Fig. 3B, Methods). Of the 1029 candidate Bridging proteins (see Region 1, Fig. 3C), we found ~ 43% associated with at least one known synaptopathy and ~ 21% linked to multiple diseases including: APP (AD&Epi&ASD&PD&HTN&MS&FTD), VDAC1 (AD&PD&MS), and MAPK14.
(AD&SCH&HD&HTN&MS), which supports the functional/disease importance of “bridging” proteins. Indeed, we found significant overrepresentation for specific diseases, such as AD (P = 3.4 × 10−6), HTN (P = 2.1E−5), HD (P = 5.2E−5), PD (P = 2.6E−3) (Supplementary Table 2).

There are many complex co-morbidities between psychiatric disorders at the population and the genetic level but for most the molecular basis remains elusive. The network perspective can be used to obtain a different view by linking topology and phenotype together. Gene-disease association data is noisy and far from complete, but we can partly compensate by measuring, for each disease, the distance from each protein in the network to its nearest known associated protein, which can be extended to disease pairs66 to dissect how these different neurological diseases coalesce at the synapse.

Using PSP (both full and consensus) and presynaptic networks we found clear evidence of network overlap between well-known co-morbid neuro-psychiatric/developmental disorders in both postsynaptic and presynaptic models (q-values shown for PSP/presynaptic networks), including BD-SCH (P = 2.0E−49/4.39E−16), BD-ASD (P = 7.12E−20/1.28E−7), and ASD/SCH (P = 6.17E−16/1.12E−5). Similarly, overlap was observed for common neurodegenerative diseases/conditions AD and PD (P = 3.04E−6/1.32E−6).

We also observed compartment-specific overlaps for Epilepsy with PD (P = 0.53/2.12E−3) and BD (P = 0.54/9.73E−4), which is significant only in the presynaptic network (Fig. 3E).

In both postsynaptic and presynaptic models, we found overlap for Hypertension (HTN) with AD (P = 8.6E−4/1.0E−2, and with MS (P = 8.79E−5/2.12E−3) (Fig. 3E). The AD-HTN link is not, in itself, new but commonly considered as a cardiovascular mechanism with a neurological impact. However, the network view reveals a new potential mechanistic link at the synapse. Although we found significant overlaps between AD-HTN and AD-PD, we did not see evidence for a PD-HTN link (P = 0.17/0.36), which indicates the potential shared mechanistic pathway between AD and HTN, which is different to the pathways shared between AD and PD (Fig. 3E).

To further dissect the potential sharing of pathways between AD and HTN in the PSP network (Fig. 3F), we employed Belief Propagation to propagate these GDAs through the network's edges, and a Degree-Corrected Block Model (DC-SBM) to model its effect on network clustering67. Under a prior assumption of no correlation between the GDAs and the network communities, we found evidence for the co-localization of AD and HTN (C = 31 P = 4.69E−5 and C = 43 P = 1.6E−11). Functionally, these communities are enriched for synaptic transmission, axon guidance (C = 31, GO:0007268 = 5.8E−3, GO:0007411 = 7.46E−5), stress activated MAPK cascade and response to oxidative stress (C = 43, GO:0051403 = 1.92E−5, GO:0006979 = 5.34E−5).

The presented synapse proteome dataset is the largest, most complete and up to date and is freely available with lightweight tools to allow anyone to extract relevant subsets. It compliments previously published curated dataset of synaptic genes SynGO64, and both resources could be used jointly as we have cross-referenced the...
Figure 3. (A) Community structure of the PSP network using the Spectral modularity method. Communities are coloured using the average gene-community probability values: bluer coloured a community is, the more probable the genes are of belonging to that community on average. Nodes coloured magenta highlight the core PSD95 interactors\(^\text{25}\), which is also highlighted magenta in the Bridgeness plot in (C). (B) Graph entropy plots: (main) Global graph entropy rate (SR) plot comparing the structure of the PSP network (0.668) against 1000 randomised Erdős-Rényi (E-R = 0.989 + 0.0005) and Power-Law (P-L = 0.9127 + 0.0032, \(\alpha_{\text{PSP}} = 2.41\)) models of similar size. (Enlarged) Evidence for scale-free structure in PSP network using a perturbation analysis [10], plotted is the SR values after each protein is perturbed through over-expression (SR_UP = red) and under-expression (SR_OWN = green), against the log of the proteins degree. (C) Bridging proteins, estimated using the Spectral clustering algorithm are plotted against semi-local centrality (Methods), allowing their categorisation: Region 1, proteins having a ‘global’ rather than ‘local’ influence in the network (also been called bottle-neck bridges, connector or kinless hubs\(^\text{12}\) (DLG4, GRIN2B, CAMK2A, etc.). Region 2, proteins having ‘global’ and ‘local’ influence (EGFR, HRAS, NRAS, etc.). Region 3, proteins centred within the community they belong to, but also communicating with a few other specific communities (GRIN1, GRIA2-4). Region 4, proteins with ‘local’ impact, primarily within one or two communities (local or party hubs\(^\text{9}\). (D) Correlation plot for different centrality measures estimated for PSP network.: SP - a protein’s shortest path value, SR_UP-Entropy rate when protein is over expressed, SR_DOWN—entropy rate when protein is under expressed, COUNT - number of protein identifications in the studies, Bet - protein’s betweenness centrality value, Degree—protein degree, PR - Page Rank, BRIDGESpectral —protein Bridgeness value, CNorm - Protein’s local centrality value, Closeness - protein’s closeness value; correlation between SR_UP and Bridgeness indicates that genes with higher Bridgeness values also lower the graphs entropy when active/overexpressed, which allows the signal to pass more freely (Supplementary Table 2). (E) left: Disease-disease relationship for presynaptic (red) and PSD full (blue) and PSD consensus (green) interactome. Where significance q-values < 0.05 is delineated by the dashed line. Schizophrenia (SCH), Autistic Spectrum Disorder (ASD), Autistic Disorder (AUT), Bipolar Disorder (BD), Intellectual Disability (ID), Alzheimer disease (AD), Epilepsy Syndrome (Epi), Parkinson’s Disease (PD), Frontotemporal Dementia (FTD), Huntington’s Disease (HD) and Multiple Sclerosis (MS) are considered; right: randomisation studies for disease-disease pairs overlap, yellow arrow shows the measured value of Z-score compared to 10,000 AD-HTN, PD-HTN and AD-PD random models. (F) Colocalization of AD and HTN on the PSP network by propagating these gene-disease associations (GDA) through the network using the Belief Propagation DC-SBM algorithm\(^\text{13}\). The colocalization of AD and HTN shared common molecular pathways in communities 31 and 43, which were also found enriched for axon guidance, stress-activated MAPK cascade and response to oxidative stress GO BP terms.
common genes. By mirroring the methods used it would be straightforward for any user to add in their own datasets for comparison.

Received: 5 February 2021; Accepted: 15 April 2021
Published online: 11 May 2021

References
1. Huss, H. et al. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3(7), 661–669 (2000).
2. Walikonis, R. S. et al. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci. 20(11), 4069–4080 (2000).
3. Peng, J. et al. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem. 279(20), 21003–21101 (2004).
4. Satoh, K. et al. Identification of activity-regulated proteins in the postsynaptic density fraction. Genes Cells 7(2), 187–197 (2002).
5. Yoshimura, Y. et al. Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography–tandem mass spectrometry. J. Neurochem. 88(3), 759–768 (2004).
6. Farr, C. D. et al. Proteomic analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituents. J. Neurochem. 91(2), 438–450 (2004).
7. Jordan, B. A. et al. Identification and verification of novel rodent postsynaptic density proteins. Mol. Cell Proteom. 3(9), 857–871 (2004).
8. Li, K. W. et al. Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J. Biol. Chem. 279(2), 987–1002 (2004).
9. Trinidad, J. C. et al. Phosphorylation state of postsynaptic density proteins. J. Neurochem. 92(6), 1306–1316 (2005).
10. Cheng, D. et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell Proteom. 5(6), 1158–1170 (2006).
11. Collins, M. O. et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J. Neurochem. 97(Suppl 1), 16–23 (2006).
12. Dosemeci, A. et al. Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochem. Biophys. Res. Commun. 339(2), 687–694 (2006).
13. Dosemeci, A. et al. Composition of the postsynaptic PSD-95 complex. Mol. Cell Proteom. 6(10), 1749–1760 (2007).
14. Trinidad, J. C. et al. Quantitative analysis of synaptic phosphorylation and protein expression. Mol. Cell Proteom. 7(4), 684–696 (2008).
15. Selimi, F. et al. Proteomic studies of a single CNS synapse type: The parallel fiber/purkinje cell synapse. PLoS Biol. 7(4), e83 (2009).
16. Fernandez, E. et al. Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol. Syst. Biol. 5, 269 (2009).
17. Bayes, A. et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat. Neurosci. 14(1), 19–21 (2011).
18. Bayes, A. et al. Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS ONE 7(10), e4683 (2012).
19. Schwenk, J. et al. High-resolution proteomics unravels architecture and molecular diversity of native AMPA receptor complexes. Neuron 74(4), 621–633 (2012).
20. Distler, U. et al. In-depth protein profiling of the postsynaptic density from mouse hippocampus using data-independent acquisition techniques. Proteomics 14(21–22), 2687–2693 (2014).
41. Gronborg, M. et al. Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. *J. Neurosci.* **30**(1), 2–12 (2010).
42. Boyken, J. et al. Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. *Neuron* **78**(2), 285–297 (2013).
43. Wilhelm, B. G. et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. *Science* **344**(6187), 1023–1028 (2014).
44. Brinkmalm, A. et al. Targeting synaptic pathology with a novel affinity mass spectrometry approach. *Mol. Cell Proteom.* **13**(10), 2584–2592 (2014).
45. Weingarten, J. et al. The proteome of the presynaptic active zone from mouse brain. *Mol. Cell Neurosci.* **59**, 106–118 (2014).
46. Kokotos, A. C. et al. Metabolic turnover of synaptic proteins: Kinetics, interdependencies and implications for synaptic maintenance. *PLoS ONE* **8**(5), e63191 (2013).
47. Biesemann, C. et al. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. *En Vivo* **33**(2), 157–170 (2014).
48. Chang, R. Y. et al. SWATH analysis of the synaptic proteome in Alzheimer’s disease. *Neurochem. Int.* **87**, 1–12 (2015).
49. Liu, X. A. et al. New approach to capture and characterize synaptic proteome. *Proc. Natl. Acad. Sci. U.S.A.* **111**(45), 16154–16159 (2014).
50. Kohansal-Nodehi, M. et al. Analysis of synaptic phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis. *Elife* **5**, 2 (2016).
51. González-Lozano, M. A. et al. Dynamics of the mouse brain cortical synaptic proteome during postnatal brain development. *Sci. Rep.* **6**, 35456 (2016).
52. Alfieri, A. et al. Synaptic interactome mining reveals p140Cap as a new hub for PSD proteins involved in psychiatric and neurological disorders. *Front. Mol. Neurosci.* **10**, 212 (2017).
53. Heo, S. et al. Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. *Proc. Natl. Acad. Sci. U.S.A.* **115**(16), E3827–E3836 (2018).
54. Oughtred, R. et al. The BioGRID interaction database: 2019 update. *Nucleic Acids Res.* **47**(D1), D529–D541 (2019).
55. Kerrien, S. et al. The IntAct molecular interaction database in 2012. *Nucleic Acids Res.* **40**, 841–846 (2012).
56. Xenarios, I. et al. DIP, the database of interacting proteins: A research tool for studying cellular networks of protein interactions. *Nucleic Acids Res.* **30**(1), 303–305 (2002).
57. Newman, M. E. Modularity and community structure in networks. *Proc. Natl. Acad. Sci. U.S.A.* **103**(23), 8577–8582 (2006).
58. McLean, C. et al. Improved functional enrichment analysis of biological networks using scalable modularity based clustering. *J. Proteom. Bioinform.* **9**(1), 9–18 (2016).
59. Han, J. D. et al. Evidence for dynamically organized modularity in the yeast protein–protein interaction network. *Nature* **430**(6995), 88–93 (2004).
60. Nepusz, T., Yu, H. & Paccanaro, A. Detecting overlapping protein complexes in protein–protein interaction networks. *Nat. Methods* **9**(5), 471–472 (2012).
61. Teschendorff, A. E. et al. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. *Sci. Rep.* **5**, 9646 (2015).
62. Menche, J. et al. Disease networks. Uncovering disease–disease relationships through the incomplete interactome. *Science* **347**(6224), 1257601 (2015).
63. Newman, M. E. & Clauset, A. Structure and inference in annotated networks. *Nat. Commun.* **7**, 11863 (2016).
64. Koppmans, F. et al. SynGO: An evidence-based, expert-curated knowledge base for the synapse. *Neuron* **103**(2), 217–234.e4 (2019).

Acknowledgements

We would like to thank Anatoly Sorokin for help with the database. This research has received funding from the European Union’s Horizon 2020 Programme for Research and Innovation under the Specific Grant Agreement Nos. 695568, 785907, 945539 (SYNNOVAE, Human Brain Project SGA02 and Human Brain Project SGA3), Wellcome Trust (Technology Development Grant 202932) and the Simons Initiative for the Developing Brain (SFARI—529085).

Author contributions

O.S., C.M., E.W., K.H., D.S., T.I.S. collected, reviewed and combined the datasets. C.M., O.S., X.H. performed the analysis. O.S. built the database. O.S., C.M. prepared Figs. 1, 2, 3. O.S., C.M., S.G. and J.D.A. wrote the manuscript. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-88945-7.

Correspondence and requests for materials should be addressed to O.S. or C.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
