The Recent non-marine ostracods of Tunisia: an updated checklist with remarks on their regional distribution patterns and ecological preferences

Federico Marrone,1§ Valentina Pieri,2§ Souâd Turki,3 Giampaolo Rossetti2*

1Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Section of Zoology, University of Palermo, 90123 Palermo, Italy; 2Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, 43124 Parma, Italy; 3National Institute of Marine Sciences and Technologies, 2025 Salammbô, Tunisia

§Present address: Iren Laboratori S.p.A., Piacenza, Italy

ABSTRACT

Different lines of investigation have recently contributed to increasing the available knowledge about the invertebrates inhabiting inland waters of north Africa, but a comprehensive synopsis on Tunisian Ostracoda is missing to date. An updated checklist of Recent non-marine ostracods from Tunisia and data on their distribution is thus offered here, representing the most extensive survey on this crustacean group ever carried out in inland waters throughout the country. One-hundred-five sites covering various climate zones, from Mediterranean to desert areas, were sampled between 2002 and 2012. Most of the considered water bodies were temporary or ephemeral habitats, but a few permanent sites were sampled as well. Overall, 18 genera and 32 taxa of putative species rank were collected in the frame of this survey, among which nine species and five genera were new to Tunisian fauna. As a result of this study and based on previous investigations, nine families (Candonidae, Cyprididae, Cytherideidae, Darwinulidae, Ilyocyprididae, Leptocytheridae, Limnochirostidae, Loxoconchidae, Paradoxostomatidae), 29 genera and at least 45 species of non-marine ostracods are currently known for Tunisia, which thus prove to host the most diverse ostracod fauna among north African countries. The number of species occurring in a single sample varied from 1 to 4. The *Eucypris virens* complex was the most widespread taxon (58 records), followed by *Heterocypris barbara* (30 records), *Heterocypris incongruens* (22 records), and *Sarscypridopsis aculeata* (16 records). For some ostracod species, clear distributional gradients associated with different climatic conditions were observed. The affinities with adjacent Maghrebian ostracod faunas are discussed. This study confirms the crucial role played by marginal aquatic habitats for the conservation of biodiversity, in particular in arid and semi-arid regions.

INTRODUCTION

Ostracods are a class of small bivalved crustaceans occurring in almost all aquatic ecosystems (Smith et al., 2015). In inland surface waters, both characterised by temporary and permanent hydroperiods, they abound in the benthic and periphytic habitats. According to Meisch et al. (2019), there are presently 2330 subjective species of non-marine ostracods in 270 genera.

Until a few years ago, information on non-marine ostracods of the Maghreb was largely based on the contributions by Gurney (1909), Gauthier (1928a, 1928b, 1928c), Klie (1943) and, to a lesser extent, on scattered data in the literature. Only recently, new studies have contributed towards increasing the knowledge on their distribution in this area and with the description of new species (among them, Danielopol et al., 1990; Marmonier et al., 2005; Schmit et al., 2013a). Zaibi et al. (2013) reviewed the existing literature on the occurrence of non-marine ostracods in Tunisia and provided new data from a survey carried out in 15 sites from the central and southern part of the country. Overall, 30 non-marine species were recorded by these authors, including *Vestalenula* sp. B (Danielopol, 1980), and additional three taxa were identified at supra-specific level. Later on, Scharf et al. (2014) reported the non-native *Candonopsis novaeezelandiae*, a species previously unknown in Tunisia, from five sites located in the northern part of the country.

In addition to the above mentioned studies on ostracods, other lines of investigation have recently contributed to increasing available knowledge about invertebrates of Tunisian inland waters, such as aquatic beetles (Touaylia et al., 2011), erpobdellid leeches (Ahmed et al., 2013),
branchiopods and copepods (Turki and Turki 2010; Marrone et al., 2016; Stoch et al., 2016), freshwater brachyuran (Marrone et al., 2020), and epigean amphipods (Ayati et al., 2019).

The high diversity of Tunisian landscape and waterbodies (Morgan, 1982; Stoch et al., 2016), the strong gradient observed in its climatic conditions and its geographic position between the eastern and western basins of the Mediterranean, make Tunisia notably interesting as a study area, in particular for biogeographic researches on aquatic fauna.

Here we present an updated checklist of Recent ostracod fauna from Tunisia and data on taxa distribution, which are based on the most extensive survey on this crustacean group ever carried out in inland waters throughout the country.

METHODS

Sampling sites were selected in order to encompass all the climatic areas and the most representative types of natural inland aquatic habitats of Tunisia (Fig. 1; Tab. 1). Some examples of sampling sites investigated in this study are presented in Figs. S1 and S2.

Altogether, 106 ostracod samples were collected using a handnet with a mesh size of 200 µm from 103 sites between 2002 and 2012. *Ex situ* rehydration of sediment collected from dry temporary habitats, the so-called “Sars’ method” as described in Marrone et al. (2019), allowed to study the ostracod assemblages from further two sites (Tab. 1). Geographical coordinates were recorded with GPS. Each sampling site was identified by an alphanumeric code consisting of a letter followed by a number, and then assigned to one of the following Köppen-Geiger climate zones according to Beck et al. (2018): Csa (temperate, dry summer, hot summer); Bsk (arid, steppe, cold); Bsh (arid, steppe, hot); Bwk (arid, desert, cold); Bwh (arid, desert, hot). When possible, the following environmental features were recorded: habitat type, estimated hydroperiod, water temperature, water conductivity at 20°C, water turbidity, and macrophyte coverage. Water temperature and electric conductivity were measured *in situ* using portable digital meters. Arbitrary values ranging from 0 to 4 were considered to represent water turbidity (0 = crystal clear water; 4 = extremely turbid water or argillotrophic system) and macrophyte coverage (0 = total absence of vegetation; 4 = absence of open water). The maps were generated using QGIS v. 3.4.15 (QGIS Development Team, 2018).

Ostracods were sorted under a binocular microscope and then fixed in 90% ethanol. The taxonomic identification of the collected material was based on adult specimens. Both soft parts and valves were checked for the identification at the lowest possible level, using Danielopol et al. (1990), Meisch (2000), Rasouli et al. (2016) and Mazzini et al. (2014). Taxonomic nomenclature follows Meisch et al. (2019). Ostracod specimens are housed at the Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy. All species authorships are listed in Tab. 2.

Sample-based rarefaction curves (Gotelli and Colwell, 2001) were computed using EstimateS v. 9.1.0 software (Colwell, 2013) in order to evaluate if sampling effort was exhaustive enough to be representative of the Tunisian inland water ostracod fauna. The non-parametric species richness estimators ICE (Incidence Coverage-based Estimator) and Jack1 (first order Jackknife-based estimator) were calculated. Following the recommendation by Colwell (2013), the Bias-corrected formula of Chao2 estimator of species richness was excluded since the coefficient of variation of the incidence distribution was higher than 0.5, and in this case the estimator became imprecise. For
Non-marine ostracods of Tunisia

this reason, the ICE estimator was preferred over the classical Chao2 estimator, giving higher values, as recommended by Colwell (2013). The rarefaction curve of the mean values of “uniques” (i.e., species present only in a single sample) was also calculated.

RESULTS

A total of 32 taxa belonging to 18 genera in 4 families (Candonidae, Ilyocyprididae, Cyprididae and Limnocytheridae) were identified. Nine species (Candona cf. muelleri, Cyclocypris laevis, Cypria ophthalmica, Eucypris mareotica, Heterocypris reptans, Isocypris beauchampi, Leucocythere cf. algeriensis, Potamocypris smaragdina, Potamocypris variegata) and five genera (Candona, Cy-clocypris, Cypria, Isocypris, Leucocythere) were new to Tunisia (Tab. 2). The number of species reported in a single sample varied from 1 (30 sites) to 4 (9 sites). Figs. 2-5 show the distribution of ostracods found in this study. The Eucypris virens complex was the most widespread taxon (in 58 sites, Fig. 4A), being very common in both Mediterranean and arid areas. It was characterised by a noteworthy morphological variability in the carapace shape, with three distinct morphotypes here annotated as “typical”, “elongate” and “subquadrate” forms, sometimes co-occurring in the same population. The “subquadrate” form was the most common (in 41 sites), followed by the “typical” (31 sites) and the “elongate” (15 sites) forms. The latter was distributed only in the northern part of the country (Fig. 4A). Other species that were commonly identified included Het-

Fig. 2. A) distribution map of Bradleystrandesia sp. (△), Bradleycypris obliqua (★), Cypris bispinosa (●) and Cypris pubera (○) and B) Cypridopsis cf. elongata (△), Cypridopsis hartwigi (★), Cypridopsis vidua (●), Cypridopsis sp. (○) and Plesiocypridopsis newtoni (◆).
erocypris barbara (30 sites), H. incongruens (22 sites), and Sarscypridopsis aculeata (16 sites) (Figs. 3A and 3B). On the other hand, 13 taxa were represented in one site only (Tab. 2). More diverse ostracod assemblages mostly correspond to habitats with a higher vegetation coverage. Heterocypris salina and S. aculeata showed a marked preference for low-turbidity systems.

Most of the taxa occurred in the more temperate parts of the country, where temperature and precipitation are more suitable for the formation and persistence of more predictable aquatic habitats, and 19 were exclusively present under a Csa climate. Potamocypris smaragdina and Potamocypris variegata were recorded only in the steppic and desert areas, respectively in Bsh and Bwk climatic zones (Fig. 3A). Other ostracods are adapted to cope with the physically harsh conditions that characterize the southern and inner part of Tunisia, among them Heterocypris barbara, Heterocypris incongruens, Heterocypris salina, Eucypris mareotica, Eucypris virens complex, Cypridopsis vidua and the only records of Cypria optalmica and Ilyocypris bradyi, all of them found in Bwh climatic zone (Figs. 2B, 3B, 4A, 5A and 5B). Five taxa (Eucypris virens complex, Heterocypris barbara, Heterocypris incongruens, Ilyocypris getica and Tonnacypris lutaria), in addition to Csa, were present in at least two other climatic zones (Figs. 4 A,B and 5B).

Fig. 3. A) distribution map of Potamocypris arcuata (△), Potamocypris smaragdina (★), Potamocypris variegata (●) and Sarscypridopsis aculeata (○) and B) Heterocypris barbara (△), Heterocypris incongruens (★), Heterocypris reptans (●) and Heterocypris salina (○).
Except for *Ilyocypris bradyi*, which was collected from permanent pools along river margins (F209), the other 10 taxa found in permanent sites were also present in temporary habitats. The sampled sites showed a wide range of salinity, from freshwater to hypersaline conditions (Tab. 1). Taking into account only the species found in at least four sites, those which solely occurred at low conductivity (<1 mS cm⁻¹) were *Ilyocypris getica* and *Tonnacypris lutaria*; other species seemed to prefer low to medium conductivity, as *Trajancypris clavata* and the “typical” morphotype of the *Eucypris virens* complex, or medium to high conductivity, as *Sarscypridopsis aculeata*. *Eucypris mareotica* and *Heterocypris salina* were exclusively found in sites with conductivity >4 mS cm⁻¹. The ostracods present in a wide range of salinity conditions were the “elongate” and “subquadrate” morphotypes of the *Eucypris virens* complex (between 0.3 and 11.5 mS cm⁻¹ and between 0.2 and 11.5 mS cm⁻¹, respectively), *Heterocypris barbara* (0.4-53.6 mS cm⁻¹) and *Heterocypris incongruens* (0.2-5.6 mS cm⁻¹).

Rarefaction and estimation curves are shown in Fig. 6. The rarefaction curve was increasing, and no plateau could be observed. The ICE curve showed a reduction of its slope above 75 samples, while Jack1 showed a continuous increase. Uniques (species present in a single site) means tended to stabilize their trends at about 14 species (Fig. 6).
DISCUSSION

The water bodies considered in this survey are mainly temporary or even ephemeral, with marked fluctuations in their environmental conditions (see Supplementary Material). The fauna detected is therefore made up of generally euryhaline, widely tolerant taxa that are capable of producing resting stages and tuning their life cycles according to the duration of the wet phase. Notwithstanding the constraints imposed by these severe conditions, the diversity of non-marine ostracod fauna of Tunisia, as revealed from data collected in this study and in previous ones, is rather high, consisting of nine families, 29 genera and at least 45 species (Tab. 2). Certainly the species diversity is still underestimated because in some cases the identification at species level was not achieved due to the preservation state of the collected material, its scarcity or the absence of adult stages. In addition, in some ostracod genera, as in *Eucypris*, there are ill-defined (morpho)species (Meisch, 2000), consequent to the high phenotypic plasticity observed in valve shape and size (Baltanás et al., 2002). *Eucypris virens* was the most frequently encountered ostracod in this study. Bode et al. (2010) indicated the existence of a species complex with more than 40 cryptic taxa, suggesting a revision of the single species status of *Eucypris virens*. More recently, Koenders et al. (2017) demonstrated that genetic species in the *Eucypris virens* complex cannot be recognized morphologically by valve shape. For these reasons, here we reported only the presence of different morphotypes into this species complex, to which no taxonomic significance must be attached; future investigation on genetic and morphological variation among these forms will hope-

Fig. 5. A) distribution map of *Candona cf. muelleri* (△), *Neglecandona neglecta* (●), *Cyclocypris laevis* (●), *Cypria ophtalmica* (○) and *Leucocythere cf. algeriensis* (+) and B) *Ilyocypris bradyi* (△), *Ilyocypris getica* (●), *Ilyocypris cf. getica* (●), *Ilyocypris gibba* (○) *Ilyocypris cf. gibba* (+) and *Ilyocypris sp.* (X).
fully shed light on their taxonomic position. For some ostracod species identified in this study, distributional gradients associated with different climatic conditions were observed. The presence of a large part of the ostracod diversity in the Csa climate zone may be due to less harsh environmental conditions, but it should also be taken into account that most of the samples were collected there. As for the occurrence of *Potamocypris smaragdina* and *Potamocypris variegata* in a single climatic zone (Bsh and Bwk, respectively), the finding of these species in a single site each prevents to draw sound conclusions about their habitat preferences. Gauthier (1928c) had already reported a progressive rarefaction of the ostracod fauna diversity in Tunisia passing from the rainy area (average precipitation >500 mm y⁻¹), to the sub-steppic zone (between 300- and 500-mm y⁻¹) and finally to the steppic zone (<300 mm y⁻¹). The species present in all three areas were *Eucypris virens*, *Ilyocypris getica* and *Tonnacypris lutaria*.

The relatively low number (26) of samples in which ostracods were present and the poor sampling coverage in the driest part of Tunisia in the Gauthier’s study (1928c) probably account for the limited concordance with our data on ostracod distribution in relation to climatic conditions. The 15 sampling sites selected by Zaibi *et al.* (2013) for a survey conducted in November 2010 did not include the rainiest part of the country, and lotic environments were mainly sampled, making a comparison with our data difficult. On the other hand, the results in Zaibi *et al.* (2013) show that Tunisian running waters host a rich ostracod diversity and species that are conceivably absent, or much rarer, in standing waters, such as *Darwinula stevensoni* and *Psychrodromus tunisicus*.

The only non-native ostracod species found in Tunisia is *Candonocypris novaezelandiae* (Zaibi *et al.*, 2013), first described for New Zealand and subsequently reported from different biogeographic areas (Scharf *et al.*, 2014). *Isocypris beauchampi*, a species of Afrotropical origin first reported for Tunisia in this study, has been also found in Canada, South America and several European countries (Meisch, 2000). According to the latter author, although *Isocypris beauchampi* is unrecorded from subsaharian Africa where the genus *Isocypris* is represented by several species, it has probably been introduced in Europe from this same area by migrating birds. Therefore its occurrence in Northern Africa could be seen as the natural expansion of the species’ range northward. Of particular biogeographic interest is the occurrence of two ostracod taxa. *Leucocythere* cf. *algeriensis*, recorded from a single site (F071, a temporary marsh) in the study area; *Leucocythere algeriensis* is currently known for its type locality only in southern Algeria (Danielopol *et al.*, 1990). *Ilyocypris* sp. from F198 shows affinities with *Ilyocypris biplicata anomala* described by Gauthier (1938) from North Africa. Although other related, possibly conspecific, specimens have been found in Italy (Mazzini *et al.*, 2014), Greece (unpublished data), and in several Spanish localities (Escrivà *et al.*, 2009; 2010; Schmit *et al.*, 2013b; Martínez-García *et al.*, 2019), its taxonomic position is still somewhat uncertain.

The sample-based rarefaction curve of mean species richness based on the collected data did not reach a
plateau, thus confirming that the species richness recorded is below the real ostracod diversity occurring in Tunisian inland waters. The trend of unique means is stable above 14 species; in this context, increasing sampling effort did not allow to increase species richness per site, maybe indicating a low sampling efficiency for single sites as a possible cause of the low overall non-exhaustiveness. The ICE and Jack1 means show an expected overall species richness between 48 and 52 species in the study area; these values are slightly higher than the cumulative species richness obtained by integrating all the ostracod occurrence data published to date for the country (Tab. 2), i.e., at least 42 species. Such results further stress the need for carrying out further sampling surveys that take into account the heterogeneity of Tunisian surface waters both at a regional scale and at a local (single site) scale.

To date, except for Algeria and Tunisia, few studies have been published on non-marine ostracods from Maghreb. The scant available information from other parts of north-western Africa derives from occasional surveys and often from dated literature. For example, Ghigi (1932), Masi (1932) and Ramdani (1982) collected material and described new ostracod species from Morocco, and Klie (1943) described new species from Morocco and Mauritania. The only meaningful comparison that can be carried out is between Tunisian and North Algerian (Danielopol et al., 1990; Ghouaci et al., 2017) ostracod faunas, being both relatively well known and resulting from commensurate sampling effort in a similar latitudinal range. Based on currently available data, the number of recorded genera is slightly higher in Tunisia than in Algeria (29 vs 25 genera), of which 21 are shared by the two countries; Martenscypridopsis, Notodromas, Physocypris and Prionocypris were found only in Algeria, whilst Bradleystrandesia, Candona, Cythereois, Cytheromorpha, Darwinula, Leptocythere, Psychodromus and Vestalenula exclusively occurred in Tunisia. Six families were recorded in both countries (Candoniidae, Cyprididae, Cytherideidae, Ilyocryptidae, Limnocytheridae, Loxoconchidae), Notodromadidae only in Algeria, and Darwinulidae, Leptocytheridae, Paradoxostomatidae only in Tunisia.

Tunisia is separated from Sicily and surrounding small islands, i.e. the southernmost part of Italy, only by a narrow sea strait (the distance between the coastlines of Tunisia and mainland Sicily is about 150 km, and those from Tunisia and Pantelleria and Pelagie Islands about 70 and 110 km, respectively). The non-marine ostracod faunas of these two areas show many similarities, but also some differences in their generic composition: 22 genera are in common, eight genera are exclusively found in Tunisia (Bradleystrandesia, Bradleycypris, Candona, Cythereois, Cytheromorpha, Leptocythere, Leucocythere and Loxoconcha) and seven only in Sicily (Fabaeformiscandona, Mistacandona, Notodromas, Physocypris, Prionocypris, Pseudocandona and Tyrrhenocythere) (Pieri et al., 2020; Mazzini et al., 2017). In both areas, typically temperate ostracods, possibly except for few isolated records (e.g., Negleandona neglecta in M034 in Tunisia), are absent even in the most humid and coolest parts of the investigated regions. A likely reason for this can be found in the scarcity of deep lakes and, in general, of permanent lentic waters. A similar pattern, as well as the close zoogeographic affinities with adjacent faunas of the Maghreb, were observed for Tunisian “large branchiopods” (Marrone et al., 2016) and diaptomid copepods (Marrone et al., 2017).

CONCLUSIONS

Although likely not exhaustive, this study is the most comprehensive survey ever conducted on non-marine ostracods of Tunisia. It contributes to update and significantly increase the knowledge on the diversity and distribution of this ecologically important invertebrate group in Tunisia and, more broadly, in the Maghreb. The obtained results show the presence of one of the most diversified ostracod fauna among North African countries. The number of taxa reported here for Tunisia is certainly underestimated, since in our study most of the sites were visited only once, and relatively few permanent or lotic aquatic habitat were sampled. In addition, a greater taxonomic detail is desirable, also using molecular techniques for those taxa whose identification is not conclusive when based on a morphological approach only. We hope that the newly collected data presented here will provide a reference for further comparative faunal studies aimed at investigating the distribution, affinities and origins of the circum-Mediterranean and north Africa inland water ostracod faunas.

Our results confirm the key role of temporary habitats and, more broadly, of marginal aquatic systems for biodiversity conservation in arid and semi-arid circum-Mediterranean areas. It is therefore essential to implement conservation measures for these systems that are seriously threatened by different types of impact, such as urban sprawl, the transformation of natural areas into cultivated land, and the effects of climate change (Zacharias and Zamparas, 2010).

ACKNOWLEDGMENTS

We are deeply indebted to an anonymous referee for very insightful comments and suggestions. Michael Korn and Brahim Turki kindly provided ostracod samples and dry sediment collected in Tunisia. Mara Anichini Tanzi and Letizia Bricchi helped with the identification of some ostracod species. VP was supported by a grant from ISPALEM – Interregional Association for Participation and Study in Agribusiness, Landscape and Environment Management.
Code	Date	Latitude	Longitude	CZ	Habitat type	H	Cond	Temp	Turb	MC
F064	02/02/2005	36.90177	10.49709	Csa	Canal	T	3710	15.2	0	0
F065	09/02/2006	36.90975	10.54716	Csa	Marsh	T	385	15.6	2	0
F066	09/02/2006	36.90729	10.54991	Csa	Roadside ditch	T	547	17.0	0	2
F067	09/02/2006	36.99492	10.461404	Csa	Marsh	T	11540	16.1	0	0
F071	13/02/2006	35.796014	10.14636	Bsh	Marsh	T	2480	11.0	1	1
F072	13/02/2006	35.765742	9.982058	Bsh	Pool in a streambed	T	614	11.7	3	0
F073	13/02/2006	36.041103	10.058864	Bsh	Pool	T	347	11.2	0	1
F074	13/02/2006	36.040990	10.058329	Bsh	Pool	T	230	11.2	0	0
F076	15/02/2006	36.791206	10.274467	Csa	Marsh	T	1380	12.3	0	2
F077	15/02/2006	36.786548	10.275925	Csa	Marsh	T	9000	14.3	0	0
F078	15/02/2006	36.781577	10.273724	Csa	Roadside ditch	T	1880	13.1	0	3
F079	15/02/2006	36.769772	10.263266	Csa	Marsh	T	47800	12.4	0	1
F080	15/02/2006	36.769772	10.263266	Csa	Marsh	T	31500	14.1	0	1
F081	15/02/2006	36.769453	10.264426	Csa	Pool	T	7700	16.7	0	3
F082	15/02/2006	36.956236	10.220210	Csa	Marsh	T	1250	15.0	3	1

To be continued on next page
To be continued on next page
Tab. 1. Continued from previous page.

Code	Date	Latitude	Longitude	CZ	Habitat type	H	Cond	Temp	Turb	MC
F208	28/12/2004	36.883036	10.302282	Csa	Pool	T	n.d.	n.d.	2	1
F209	26/07/2002	34.376482	7.912122	Bwh	Lateral pools along river margins	P	n.d.	n.d.	1	2
F210	31/12/2007	37.119058	9.673126	Csa	Pool	T	133	15.0	2	1
F231	01/01/2008	37.110325	9.697821	Csa	Pool	T	400	14.8	2	2
F232	01/01/2008	37.206117	9.520817	Csa	Pool	T	270	16.2	4	2
F233	31/12/2007	37.138077	9.375803	Csa	Roadside ditch	T	297	14.0	2	2
F234	31/12/2007	37.138865	9.338640	Csa	Marsh	T	348	16.8	4	1
F235	31/12/2007	36.967102	8.846171	Csa	Marsh	T	960	12.5	0	4
F248	02/01/2012	37.086655	9.199651	Csa	Marsh	T	360	13.1	4	1
F249	02/01/2012	36.936295	8.761124	Csa	Marsh	T	286	12.0	0	3
M029	29/06/2004	37.154742	9.761400	Csa	Roadside ditch	T	n.d.	n.d.	n.d.	n.d.
M034	SRL	37.201350	9.258189	Csa	Pool	T	n.a.	n.a.	n.a.	n.a.
M053	SRL	35.484819	10.643233	Bsh	Pool in a streambed	T	n.a.	n.a.	n.a.	n.a.

CZ, climate zone as in Fig. 1; H, hydroperiod (T = temporary, P = permanent); Cond, electric conductivity at 20°C (µS cm⁻¹); Temp, water temperature (°C); Turb, turbidity (see text); MC, macrophyte coverage (see text); SRL, sediment re-hydrated in the laboratory; n.d., not determined; n.a., not available.

Tab. 2. Updated checklist of Recent non-marine ostracod taxa from Tunisia based on Zaibi et al. (2013) and references therein, Scharf et al. (2014), and present study. For the taxa found in the present study (marked with an asterisk), the sites in which they occurred are also reported (codes as in Tab. 1). New species and genera for the Tunisian fauna are reported in bold. Cythere sp. listed in Zaibi et al. (2013) was omitted because it is regarded here as a marine taxon.

Class Ostracoda Latreille, 1802
Subclass Podocopa G.O. Sars, 1866
Order Podocopida G.O. Sars, 1866
Suborder Cypridocopina Baird, 1845
Superfamily Cypridoidea Baird, 1845
Family Cyprididae Baird, 1845
 Subfamily Cypricercinae McKenzie, 1971
 Tribe Bradleystrandesini
 Genus Bradleystrandesia Broodbakker, 1983
 * Bradleystrandesia sp.
 F171
 Tribe Cypricercini McKenzie, 1971
 Genus Bradleycypris McKenzie, 1984
 * Bradleycypris obliqua (Brady, 1868)
 F235
 Subfamily Cypridinae Baird, 1845
 Genus Cypris O.F. Müller, 1776
 * Cypris bispinosa Lucas, 1849
 F036, F096, F170, F171, F235
 * Cypris pubera O.F. Müller, 1776
 F084
 Subfamily Cypridopsinae Kaufmann, 1900
 Genus Cypridopsis Brady, 1867
 * Cypridopsis cf. elongata (Kaufmann, 1900)
 F232
 * Cypridopsis hartwigi G. W. Müller, 1900
 F103, F170
 * Cypridopsis vidua (O.F. Müller, 1776)
 F138, F170
 * Cypridopsis sp.
 F231, F235
 Genus Plesiocypridopsis Rome, 1965
 * Plesiocypridopsis newtoni (Brady and Robertson, 1870)
 F047, F053, F085
 Genus Potamocypris Brady, 1870
 * Potamocypris arctica (Sars, 1903)
 F104, F232

To be continued on next page
Tab. 2. Continued from previous page.

Potamocypris smaragdina (Vávra, 1891)
F073

Potamocypris variagata (Brady & Norman, 1889)
F135

Genus *Sarscypridopsis* McKenzie, 1977
Sarscypridopsis aculeata (Costa, 1847)
F004, F033, F053, F059, F060, F061, F067, F071, F076, F077, F078, F084, F107, F110, M034

Subfamily Cyprinotinae Bronshtein, 1947
Genus *Potamocypris* variegata (Brady & Norman, 1889)
F135

Genus *Heterocypris* Claus, 1892
Heterocypris barbara (Gauthier and Brehm, 1928)
F004, F008, F016b, F017, F032, F037, F038, F047, F060, F064, F077, F078, F081, F084, F088, F094, F106, F107, F112, F114, F115, F119, F122, F124, F131, F153, F201, F233

Heterocypris exigua (Gauthier and Brehm, 1928)
F001, F002, F022, F034, F053, F061, F063, F066, F071, F074, F078, F104, F129, F146, F196, F203, F208, F210, F233, M029, M053

Heterocypris reptans (Kaufmann, 1900)
F009

Heterocypris salina (Brady, 1868)
F021, F022, F024, F049, F067, F081, F195

Subfamily Eucypridinae Bronshtein, 1947
Genus *Heterocypris* complex (Jurine, 1820)
F001, F002, F003, F006, F008, F011, F032, F034, F053, F061, F063, F066, F067, F071, F072, F073, F074, F076, F077, F078, F081, F084, F085, F088, F091, F092, F096, F101, F103, F104, F106, F107, F108, F109, F110, F116, F139, F147, F160, F164, F166, F168, F171, F185, F196, F210, F231, F232, F233, F234, F248, F249, M034

Genus *Tonnacypris* Diebel and Pietrzeniuk, 1975
Tonnacypris lutaria (Koch, 1838)
F074, F136, F139, F210

Genus *Trowancypris* Martens, 1989
Trowancypris clavata (Baird, 1838)
F135, F153, F154, F206

Subfamily Herpetocypridinae Martens, 2001
Genus *Herpetocypris* complex (Jurine, 1820)
F135, F153, F154, F206

Genus *Herpetocypris* variegata (Brady & Norman, 1889)
F135

Genus *Candonocypris* Sars, 1894
Candonocypris novaezelandiae (Baird, 1843)

Genus *Herpetocypris* Brady and Norman, 1889
Herpetocypris chevreuxi (Sars, 1896)

Genus *Herpetocypris* sp.
F112

Subfamily Psychrodromini Martens, 2001
Genus *Psychrodromus* Danielpol and McKenzie, 1977
Psychrodromus tunisicus Zaibi et al., 2013

Subfamily Isocypridinae Hartmann and Puri, 1974
Genus *Isocypris* G.W. Müller, 1908
Isocypris beauchampi (Paris, 1920)
F231, F232

Family Candonidae Kaufmann, 1900
Subfamily Candoninae Kaufmann, 1900
Genus *Candona* Baird, 1845
Candona cf. muelleri Hartwig, 1899
F234

Candona spp.

Genus *Neglecandona* Krstić, 2006
Neglecandona neglecta (Sars, 1887)
M034

Subfamily Cyclocypridinae Kaufmann, 1900
Genus *Cyclocypris* Brady and Norman, 1889
Cyclocypris laevis (O.F. Müller, 1776)
F234

Genus *Cypria* Zenker, 1854
Cypria ophtalmica (Jurine, 1820)
F124, F129

To be continued on next page
Tab. 2. Continued from previous page.

Family Ilyocyprididae Kaufmann, 1900
Subfamily Ilyocypridinae Kaufmann, 1900
Genus Ilyocypris Brady and Norman, 1889
Ilyocypris bradyi Sars, 1890 F209
Ilyocypris getica Masi, 1906 F032, F047, F072, F092, F136, F206, F210
Ilyocypris cf. getica Masi, 1906 F091
Ilyocypris gibba (Ramdohr, 1808) F021, F081
Ilyocypris cf. gibba (Ramdohr, 1808) F168
Ilyocypris spp. F008, F059, F093, F147, F171, F198

Superfamily Darwinuloidea Brady and Robertson, 1885
Family Darwinulidae Brady and Robertson, 1885
Genus *Darwinula* Brady and Robertson, 1885
Darwinula stevensoni Brady and Robertson, 1870
Genus *Vestalenula* Rossetti and Martens, 1998
Vestalenula sp. B (Danielopol, 1980)

Superfamily Cytheroidea Baird, 1850
Family Cytherideidae Sars, 1925
Subfamily Cytherideinae
Genus *Cyprideis* Jones, 1857
Cyprideis torosa (Jones, 1850)
Cyprideis sp.

Family Leptocytheridae Sars, 1925
Genus *Leucocythere* Sars, 1867
Leucocythere cf. *algeriensis* Martens, 1990 F071

Tribe Limnoctherini Klie, 1938
Genus *Limnoctythere* Brady, 1867
Limnoctythere sp.

Family Loxoconchidae Sars, 1925
Genus *Cytheromorpha* Hirschmann, 1909
Cytheromorpha fuscata (Brady, 1869)
Genus *Loxoconcha* Sars, 1866
Loxoconcha elliptica Brady, 1868

Family Paradoxostomatidae Brady & Norman, 1989
Genus *Cytherois* G.W. Müller, 1884
Cytherois fischeri (Sars, 1866)

REFERENCES

Ahmed RB, Bielecki A, Cichocka JM, Tekaya S, Gorzel M, Har-rath HH, 2013. Erpobdellid leeches (Annelida, Clitellata, Hirudinida) from Tunisia: New records with the description of a new *Trocheta* species. Zootaxa 3681:440-454.

Ayati K, Hadjab R, Khammar H, Dhaouadi S, Piscart C, Mah-moudi E, 2019. Origin, diversity and distribution of fresh-water epigean amphipods in Maghreb. Ann. Limnol. – Int. J. Lim. 55, 13.

Baltanás A., Alcorlo P., Danielopol DL, 2002. Morphological disparity in populations with and without sexual reproduc-
tion: a case study in *Eucypris virens* (Crustacea: Ostracoda). Biol. J. Linn. Soc. 75:9-19.

Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF, 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5:180214.

Bode SNS, Adolfsson, S, Lamatsch DK, Martins MJF, Schmit O, Vandelkerkhove J, Mezquita F, Namiotko T, Rossetti G, Schön I, Butlin RK, Martens K, 2010. Exceptional cryptic diversity and multiple origins of parthenogenesis in a fresh-water ostracod. Mol. Phylogenet. Evol. 54:542-552.

Colwell RK, 2013. EstimateS 9.1.0 User’s Guide. Revised June 14, 2013. Available from: http://viceroy.eeb.uconn.edu/Es-
Klie W, 1943. [Ostracoden aus Marokko und Mauretanien]. [Article in French]. Teruel 92:165-192.

Escrivá A, Armengol J, Mezquita F, 2010. Microcrustacean and rotiferan communities of two close Mediterranean mountain ponds, lagunas de Bezas and Rubiales (Spain). J. Freshwater Ecol. 25:427-435.

Gauthier H, 1928a. [Ostracodes et Cladocères de l’Afrique du Nord, première note].[Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gauthier H, 1928b. Ostracodes et Cladocères de l’Afrique du Nord, deuxième note.[Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:69-79.

Gauthier H, 1928c. [Recherches sur la faune des eaux continentales de l’Algérie et de la Tunisie].[Book in French]. Imprimerie Minerva, Alger: 416 pp.

Gauthier H, 1938. [Ostracodes continentéaux récoltés par M. Monod au Sahara occidental et en Mauritanie].[Article in French]. Bull. Soc. Sci. nat. Maroc 18:39-61.

Ghaucai S, Yuvazmatmaca M, Kükölyögülo O, Amorayuache M, 2017. An annotated checklist of the non-marine Ostracods (Crustacea) of Algeria with some ecological notes. Zootaxa 4290:1-159.

Ghi G, 1932. [Escursione zoologica all’oasi di Marrakesch nell’aprile 1930: Ostracodi].[Article in Italian]. B. Zool. 3:197-208.

Gotelli N, Colwell RK, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4:379-391.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.

Gurney R, 1909. X. - On the Freshwater Crustacea of Algeria. [Article in French]. Bull. Soc. Hist. nat. Afr. Nord 19:10-19.
Mesquita-Joanes F. 2013b. The distribution of sexual reproduction of the geographic parthenogen *Eucypris virens* (Crustacea: Ostracoda) matches environmental gradients in a temporary lake. Can. J. Zool. 91:660-671.

Smith AJ, Horne DJ, Martens K, Schön I, 2015. Class Ostracoda, p. 757-780. In: J. Thorp and D.C. Rogers (eds.), Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates. Academic Press.

Stoch F, Korn M, Turki S, Naselli-Flores L, Marrone F, 2016. The role of spatial environmental factors as determinants of large branchiopod distribution in Tunisian temporary ponds. Hydrobiologia 782:37-51.

Touaylia S, Garrido J, Bejaoui M, Boumaiza M, 2011. Altitudinal distribution of aquatic beetles (Coleoptera) in northern Tunisia: relationship between species richness and altitude. Coleopt. Bull. 65:53-62.

Turki S, Turki B, 2010. Copepoda and Branchiopoda from Tunisian temporary waters. Int. J. Biodivers. Conserv. 2:86-97.

Zacharias I, Zamparas M, 2010. Mediterranean temporary ponds. A disappearing ecosystem. Biod. Cons. 19:3827-3834.

Zaibi C, Scharf B, Viehberg FA, Keyser D, Kamoun F, 2013. Preliminary report on the living non-marine Ostracoda (Crustacea) from Tunisia with the description of a new *Psychrodromus* species. Zootaxa 3626:499-516.