Small-Q^2 extension of DGLAP-constrained Regge residues

G. Soyez*

October 30, 2018

Abstract

In a previous paper, we have shown that it was possible to use the DGLAP evolution equation to constrain the high-Q^2 ($Q^2 \geq 10$ GeV2) behaviour of the residues of a high-energy Regge model, and we applied the developed method to the triple-pole pomeron model. We show here that one can obtain a description of the low-Q^2 $\gamma^{(*)}p$ data matching the high-Q^2 results at $Q^2 = 10$ GeV2.

We know that one can use Regge theory \cite{1} to describe high-energy hadronic interactions. Particularly, using a triple-pole pomeron model \cite{2,3,4}, one can reproduce the hadronic total cross-sections, the γp and $\gamma\gamma$ cross-sections, and also the proton and photon structure functions F_2^p and F_2^γ. In the latter case, one must point out that Regge theory is applied at all values of Q^2.

On the other hand, it is well known that the high-Q^2 behaviour of the proton structure function can be reproduced using the DGLAP evolution equation \cite{5}. Therefore, we would like to find a model compatible both with Regge theory and with DGLAP evolution at high Q^2. We have shown \cite{6} that it is possible to extract the behaviour of the triple-pole pomeron residues at high Q^2 from DGLAP evolution. In such an analysis, we need information not only on F_2 but also on parton distributions. One easily shows that the minimal number of quark distributions needed to reproduce F_2^p is 2: one flavour-non-singlet distribution

$$T(x,Q^2) = x \left[(u^+ + c^+ + t^+) - (d^+ + s^+ + b^+) \right],$$

*e-mail: g.soyez@ulg.ac.be
with \(q^+ = q + \bar{q} \), evolving alone with \(xP_{qq} \) as splitting function, and one flavour-singlet distribution

\[
\Sigma(x, Q^2) = x \left[(u^+ + c^+ + t^+) + (d^+ + s^+ + b^+) \right],
\]

coupled with the gluon distribution \(xg(x, Q^2) \) and evolving with the full splitting matrix. Before going into the main subject of this paper, we shall summarise the techniques developed in this previous paper [6] and show how we can extend the results down to \(Q^2 = 0 \).

First of all, given that \(F_2 \) can be parametrised at small \(x \) by a \(\log^2(1/x) \) term, we have parametrised the quark content of the proton in the most natural way i.e. using a triple-pole pomeron term and an \(f/a_2 \) reggeon terms. After a few manipulations, we end up with the following functions

\[
T(x, Q_0^2) = d^τ x^η (1-x)^{b_2},
\]

\[
Σ(x, Q_0^2) = a_Σ \log^2(1/x) + b_Σ \log(1/x) + c_Σ^*(1-x)^{b_1} + d_Σ x^η (1-x)^{b_2},
\]

\[
xg(x, Q_0^2) = a_G \log^2(1/x) + b_G \log(1/x) + c_G^*(1-x)^{b_1}. \tag{1}
\]

Since Regge theory does not extend up to \(x = 1 \), we used the GRV parametrisation for \(x \geq x_{\text{Regge}} = 0.15 \) and imposed that our distributions match GRV’s at \(x = x_{\text{Regge}} \). This requirement constrains the parameters marked with a superscript * in eq. (1). Thus, the 7 parameters \(a_Σ, b_Σ, d_Σ, a_G, b_G, b_1 \) and \(b_2 \) need to be extracted from DGLAP evolution.

Since DGLAP evolution generates an essential singularity in the complex-\(j \) plane at \(j = 1 \), the only place where we can use the Regge model is in the initial distributions at \(Q^2 = Q_0^2 \). In such a case, we shall not worry about the presence of an essential singularity for \(Q^2 \neq Q_0^2 \) and consider the result of DGLAP evolution as a numerical approximation to a triple-pole pomeron. One can therefore extract the residues of the Regge model at high \(Q^2 \) using the following method:

1. choose an initial scale \(Q_0^2 \),
2. choose a value for the parameters in the initial distribution,
3. compute the parton distributions for \(Q_0^2 \leq Q^2 \leq Q_{\text{max}}^2 \) using forward DGLAP evolution and for \(Q_{\text{min}}^2 \leq Q^2 \leq Q_0^2 \) using backward DGLAP evolution,
4. repeat \(2 \) and \(3 \) until the value of the parameters reproducing the \(F_2 \) data for \(Q^2 > Q_{\text{min}}^2 \) and \(x \leq x_{\text{Regge}} \) is found.
5. This gives the residues at the scale Q_0^2 and steps 1 to 4 are repeated in order to obtain the residues at all Q^2 values.

We have applied this method to the parametrisation (1) within the domain
\[
\begin{cases}
10 \leq Q^2 \leq 1000 \text{ GeV}^2, \\
\cos(\theta_t) = \frac{\sqrt{Q^2}}{2m_p} \geq \frac{49 \text{ GeV}^2}{2m_p},
\end{cases}
\]
(2)
ensuring that both Regge theory and DGLAP evolution can be applied, and required $x < 0.15$. Using the residues of the triple-pole pomeron obtained in this way, we have a description of F_2^n for $Q^2 \geq 10$ GeV2 with a χ^2/nop of 1.02 for 560 experimental points.

Since the method explained here gives us the Regge residues at large scales, one may ask if it is possible to extend the results down to $Q^2 = 0$. The main problem here is that, instead of using x and Q^2, we must use ν and Q^2 if we want to obtain a relevant expression for the total cross section. Of course, we shall only extend the F_2^n predictions instead of the parton distributions T and Σ.

As a starting point, we shall not consider the powers of $(1-x)$ since, at low Q^2, there are no point inside the Regge domain beyond $x = 0.003$, which means that it is just a correction of a few percents. At low Q^2, we require that F_2^n has the same form as used in [2]
\[
F_2(\nu, Q^2) = \frac{Q^2}{4\pi^2 \alpha_e} \left\{ A(Q^2) [\log(2\nu) - B(Q^2)]^2 + C(Q^2) + D(Q^2)(2\nu)^{-\eta} \right\}.
\]
(3)
The total γp cross-section is then
\[
\sigma_{\gamma p} = A(0) [\log(s) - B(0)]^2 + C(0) + D(0)s^{-\eta}.
\]
(4)
At $Q^2 = Q_0^2$, the form factors A, B, C and D are related to the parametrisation (1) by the relations
\[
\begin{align*}
A(Q_0^2) &= \frac{4\pi^2 \alpha_e}{Q_0^2} a_0, \\
B(Q_0^2) &= \log(Q_0^2) - \frac{b_0}{2a_0}, \\
C(Q_0^2) &= \frac{4\pi^2 \alpha_e}{Q_0^2} \left(c_0 - \frac{b_0^2}{4a_0} \right), \\
D(Q_0^2) &= \frac{4\pi^2 \alpha_e}{Q_0^2} d_0(Q_0^2)^{\eta}.
\end{align*}
\]
(5)
\footnote{This limit is only effective at large Q^2.}
where the subscript 0 to refer to the form factors obtained at $Q^2 = Q^2_0$ from
DGLAP evolution.

At small Q^2, the unknown functions A, B, C and $D(Q^2)$ are parametrised
in the same way as in [2]

\begin{align*}
A(Q^2) &= a \left(\frac{Q^2}{Q^2_a + Q^2} \right)^{\varepsilon_a}, \\
B(Q^2) &= b \left(\frac{Q^2}{Q^2 + Q^2_b} \right)^{\varepsilon_b} + A', \\
C(Q^2) &= c \left(\frac{Q^2}{Q^2 + Q^2_c} \right)^{\varepsilon_c}, \\
D(Q^2) &= d \left(\frac{Q^2}{Q^2 + Q^2_d} \right)^{\varepsilon_d}.
\end{align*}

(6)

If we use the relations [3] to fix the parameters A_a, A_b, A_c and A_d in [6], we find the final form of the small-Q^2 form factors:

\begin{align*}
A(Q^2) &= \frac{4\pi^2 \alpha_e}{Q^2_0} a \left(\frac{Q^2_0 + Q^2}{Q^2_a + Q^2} \right)^{\varepsilon_a}, \\
B(Q^2) &= \log(Q^2_0) - \frac{b_0}{2a_0} + A_b \left(\left(\frac{Q^2}{Q^2 + Q^2_b} \right)^{\varepsilon_b} - \left(\frac{Q^2_0}{Q^2_0 + Q^2} \right)^{\varepsilon_b} \right), \\
C(Q^2) &= \frac{4\pi^2 \alpha_e}{Q^2_0} \left(c_0 - \frac{b_0^2}{4a_0} \right) \left(\frac{Q^2_0}{Q^2 + Q^2} \right)^{\varepsilon_c}, \\
D(Q^2) &= \frac{4\pi^2 \alpha_e}{Q^2_0} d_0(Q^2_0)^{\eta} \left(\frac{Q^2_0 + Q^2}{Q^2_a + Q^2} \right)^{\varepsilon_d}.
\end{align*}

(7)

If we now want to reinsert the large-x corrections, we need to multiply
c and d by some power of $(1-x)$. This gives

\begin{align*}
\frac{4\pi^2 \alpha_e}{Q^2} F_2(x, Q^2) &= A(Q^2) \log(1/x) \left\{ \log(1/x) + 2 \left[\log(Q^2) - B(Q^2) \right] \right\} \\
&\quad + \left\{ A(Q^2) \left[\log(Q^2) - B(Q^2) \right]^2 + C(Q^2) \right\} (1-x)^{b_1} \\
&\quad + D(Q^2) \left(\frac{Q^2}{x} \right)^{-\eta} (1-x)^{b_2}.
\end{align*}

These large-x corrections do not modify the expression of the total cross
section since, when $Q^2 \to 0$

\begin{align*}
1 - x &= 1 - \frac{2\nu}{Q^2} \to 1.
\end{align*}
Parameter	value	error
A_b	69.151	0.055
Q^2_a	25.099	0.088
Q^2_b	4.943	0.086
Q^2_c	0.002468	0.000042
Q^2_d	0.01292	0.00074
ε_a	1.5745	0.0046
ε_b	0.08370	0.00052
ε_c	0.92266	0.00019
ε_d	0.3336	0.0029

Table 1: Values of the parameters for the low-Q^2 fit ($0 \leq Q^2 \leq Q^2_0$).

Experiment	n	χ^2	χ^2/n
E665	69	59.811	0.867
H1	99	104.924	1.060
NMC	37	28.392	0.767
ZEUS	216	201.790	0.934
F^p_2	421	394.916	0.938
$\sigma_{\gamma p}$	30	17.171	0.572
Total	451	412.086	0.914

Table 2: χ^2 resulting from the small-Q^2 Regge fit. The results are given for all F^p_2 experiments and for the total cross-section.

Moreover, since the large-x corrections are only a few percents effects, we shall keep the exponents b_1 and b_2 constant and equal to their value at $Q^2 = Q^2_0$.

Now, we may adjust the parameters in the form factors by fitting F^p_2 in the Regge domain

\[
\begin{align*}
\nu & \geq 49 \text{ GeV}^2, \\
\cos(\theta_t) & = \sqrt{\frac{Q^2}{2m_p}} \geq \frac{49 \text{ GeV}^2}{2m_p}, \\
Q^2 & \leq 10 \text{ GeV}^2,
\end{align*}
\]

(8)

together with the total cross-section for $\sqrt{s} \geq 7$ GeV. The resulting parameters are presented in Table 2 and the form factor are plotted in Figure 1.
As we can see from Table 2 and from Figures 2 and 3, this gives a very good extension in the soft region (see Table 2).

To conclude, we have seen that, using a triple-pole-pomeron model, one can obtain a description of the $\gamma^*(p)$ interactions at all values of Q^2 compatible with the DGLAP equation at large Q^2. It should be interesting, in the future, to test this method with other Regge models and to see if the results are compatible with the t-channel unitarity relations obtained in [7] and if they can give useful information on how to link perturbative and non-perturbative QCD.

Acknowledgments
REFERENCES

I would like to thanks J.-R. Cudell for useful discussions. This work is supported by the National Fund for Scientific Research (FNRS), Belgium.

References

[1] The reader who wants a modern overview of Regge theory and diffraction can read the books by S. Donnachie, G. Dosch, P. Landshoff and O. Nachtmann, *Pomeron Physics and QCD* (Cambridge University Press, Cambridge, 2002), and by V. Barone and E. Predazzi, *High-Energy Particle Diffraction* (Springer, Berlin Heidelberg, 2002).

[2] J. R. Cudell and G. Soyez, Phys. Lett. B 516 (2001) 77 [arXiv:hep-ph/0106307].

[3] P. Desgrolard and E. Martynov, Eur. Phys. J. C 22 (2001) 479 [arXiv:hep-ph/0105277].

[4] J. R. Cudell et al. [COMPETE Collaboration], Phys. Rev. Lett. 89 (2002) 201801 [arXiv:hep-ph/0206172].
[5] V.N. Gribov and L.N. Lipatov, *Sov. J. Nucl. Phys.* **15** (1972) 438. G. Altarelli and G. Parisi, *Nucl. Phys.* **B126** (1977) 298. Yu.L. Dokshitzer, *Sov. Phys. JETP* **46** (1977) 641.

[6] G. Soyez, [arXiv:hep-ph/0306113](http://arxiv.org/abs/hep-ph/0306113)

[7] J. R. Cudell, E. Martynov and G. Soyez, [arXiv:hep-ph/0207196](http://arxiv.org/abs/hep-ph/0207196)
Figure 3: Fit for the F_2^b at low Q^2. Only the most populated Q^2 bins are shown.