WEAK MASER EMISSION OF METHYL FORMATE TOWARD SAGITTARIUS B2(N) IN THE GREEN BANK TELESCOPE PRIMOS SURVEY

A. FAURE1, A. J. REMIJAN2, K. SZALEDWICZ3, AND L. WIESENFELD1

1 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble F-38041, France
2 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
3 Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

Received 2013 November 15; accepted 2014 January 4; published 2014 February 18

ABSTRACT

A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH3) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5–30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH3–He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumably cold (∼30 K), moderately dense (∼10^4 cm^{-3}), and extended region surrounding Sgr B2(N). The derived column density of ∼4 × 10^{14} cm^{-2} is only a factor of ∼10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex molecular clouds at centimeter wavelengths.

Key words: astrochemistry – ISM: molecules – masers – molecular data – molecular processes

Online-only material: color figures

1. INTRODUCTION

Interstellar methyl formate (HCOOCH3) was discovered almost 40 yr ago in its most stable cis-isomeric form in the spectrum of the giant molecular cloud complex Sagittarius B2 (Brown et al. 1975; Churchwell & Winnewisser 1975). Since its discovery, it has been detected in a great variety of galactic sources including hot molecular cores, comets, and cold prestellar cores (Bottinelli et al. 2007; Favre et al. 2011; Bockelée-Morvan et al. 2000; Bacmann et al. 2012; Cernicharo et al. 2012). Methyl formate is a prolate asymmetric top molecule, isomeric with acetic acid and glycolaldehyde. The latter two have also been identified in space (Mehrerger et al. 1997; Hollis et al. 2000) but they are much less ubiquitous and abundant. This result strongly suggests that the synthesis of methyl formate is controlled by kinetic factors, since acetic acid is thermodynamically the most stable of the three isomers (Dickens et al. 2001). However, the chemical origin of methyl formate is a matter of debate.

Laboratory experiments have shown that methyl formate can be formed in its solid state from the photolysis or radiolysis of methanol-bearing ices (see Modica et al. 2012 and references therein). Gas-grain chemical models have indicated that the surface reaction between the (mobile) HCO and CH3O radicals can provide an association pathway in warm (T ≳ 30 K) environments (Garrod & Herbst 2006). Gas-phase routes involving methanol have also been suggested but none of these were found to produce enough methyl formate to explain its high abundance in hot cores (∼10^{-9}–10^{-8} relative to total hydrogen; Horn et al. 2004). Very recently, a new scenario of the formation of complex organic molecules was proposed by Vasyunin & Herbst (2013) to explain the abundances observed in cold prestellar cores (10^{-11}–10^{-10}). In this scenario, gas-phase reactions are driven by the reactive desorption of precursor species such as methanol and formaldehyde. However, the predicted abundance for methyl formate is lower than observations by two orders of magnitude. Finally, the higher energy trans conformational isomer of methyl formate was recently detected toward the Sgr B2(N) molecular cloud, suggesting again a complex and non-equilibrium chemistry (Neill et al. 2012).

In all previous observational studies of methyl formate at millimeter wavelengths, the determination of the column density was obtained by assuming that the relative distribution of the population over all energy levels can be described by a single Boltzmann temperature, referred to as the “excitation” or “rotational” temperature. It is well known, however, that the low-frequency line 1_{10}−1_{11} at 1.61 GHz, first detected by Brown et al. (1975), is weakly inverted toward Sgr B2. The population of the 110 and 111 states do therefore not attain thermal equilibrium in this region. This was postulated by Brown et al. (1975) and evidenced by Churchwell et al. (1980). In fact, soon after the discovery of complex molecules at radio wavelengths in the 1970s, it was accepted that the many low frequency transitions must be inverted (see Menten 2004 and references therein). In their pioneering work, Brown et al. (1975) assumed a 1% inversion of the 1_{10} and 1_{11} levels of methyl formate to derive the column density. Such a weak inversion, by amplifying the strong background continuum radiation, is sufficient to produce the emission of the otherwise undetectable 1.61 GHz line. The determination of the actual inversion percentage, however, requires one to solve the equations of statistical equilibrium, which in turn necessitates a good knowledge of collisional cross sections. As a result, the accurate determination of column densities from low frequency molecular transitions cannot rely on thermal equilibrium analysis but requires a non-local thermodynamical equilibrium (non-LTE) treatment. This
was recognized in the early years of radio-astronomy (e.g., Gottlieb et al. 1973). However, for all complex molecules, except methanol (see Rabli & Flower 2011 and references therein), such treatments have been hampered by the lack of accurate collisional cross sections.

Recently, rotational cross sections for methyl formate colliding with He atoms were computed (Faure et al. 2011). To date, these are the first available cross sections for an asymmetric top with eight atoms. In the present work, the corresponding rate coefficients are deduced in the temperature range 5–30 K. Encouraged by the availability of these rate coefficients, we have (1) searched for all centimeter wave transitions of methyl formate toward the Sgr B2(N) region and (2) performed non-LTE radiative transfer calculations. All observational data are taken as part of the PRebiotic Interstellar MOlecular Survey (PRIMOS). The rate coefficient calculations are presented in Section 2. In Section 3, the PRIMOS observations are detailed. We compare non-LTE calculations with PRIMOS data in Section 4. Conclusions are drawn in Section 5.

2. RATE COEFFICIENT CALCULATIONS

Quantum scattering calculations for helium interacting with methyl formate were performed recently on the high-accuracy potential energy surface (PES) of Faure et al. (2011), where full details can be found. Helium was employed as a substitute for H2, which is five times more abundant than He. Calculations with He are, however, much less extensive and, in first approximation, cross sections with H2 can be assumed to be equal to those for collisions with helium, as discussed below.

The interaction energies were computed at the coupled cluster method with single, double, and noniterative triple excitations, CCSD(T). Symmetry-adapted perturbation theory based on the density-functional description of monomers, SAPT(DFT), was employed to compute the asymptotic, long-range part of the PES. Methyl formate was assumed to be rigid in its experimentally determined geometry. The interaction energies were thus obtained on a three-dimensional (3D) grid and they were fitted by an analytic function of interatomic distances with correct asymptotic behavior for large intermonomer separations. This 3D PES was then refitted using a partial wave expansion adapted to close-coupling scattering calculations.

At the ground torsional level, each rotational level of methyl formate is split by tunneling into a doublet, the nondegenerate A level, and the doubly degenerate E level. However, radiative and collisional transitions from an A sublevel to an E sublevel are not allowed. The coupling between rotation and torsion is weak and a standard, rigid asymmetric top Hamiltonian is adequate to reproduce all levels below the first excited torsional level (i.e., 130 cm$^{-1}$) with an accuracy better than 0.1 cm$^{-1}$. The three rotational constants were taken from Curl (1959) and are listed in Table III of Faure et al. (2011). The lowest seven levels of A-type HCOOCH$_3$ are shown in Figure 1. Scattering calculations, which are extremely demanding owing to the dense spectrum of methyl formate, were performed using the OpenMP version of the MOLSCAT code at the full close-coupling level. The reduced mass of the system is 3.752371 amu. As the A-type and E-type transition energies differ by less than 0.1 cm$^{-1}$, the cross sections for rotational (de)excitation are very similar for the two symmetries, with differences below 5% (Faure et al. 2011). Therefore, only cross sections for the A-type HCOOCH$_3$ were computed and they can be employed for both A-type and E-type HCOOCH$_3$. The coupled-channel equations were integrated using the hybrid modified log-derivative Airy propagator of Alexander & Manolopoulos (1987) with a careful check of all propagation parameters. Calculations were performed for total energies between 0.25 and 130 cm$^{-1}$, i.e., up to the first torsional threshold. The energy grid was adjusted to take into account the presence of low-energy resonances. All calculations also included several energetically closed channels; the basis set incorporated all target states with $J \leq 14$, 225 rotational states with the highest level, $J_{K_a,K_c} = 14,14$, at 133.5 cm$^{-1}$ above the ground state. The cross sections were found to be converged to within 20% (and generally within 5%–10%) for all transitions involving the lowest 65 states, i.e., up to the level $9_{2,8}$ at 19.98 cm$^{-1}$.

Rate coefficients were obtained up to $T = 30$ K by integrating the cross sections σ over Maxwell–Boltzmann distributions of relative velocities:

$$k(T) = \left(\frac{8k_BT}{\pi\mu}\right)^{1/2} \int \sigma(E_{\text{coll}}) \left(\frac{E_{\text{coll}}}{k_BT}\right)^{3/2} e^{-E_{\text{coll}}/k_BT} d\left(\frac{E_{\text{coll}}}{k_BT}\right),$$

(1)

where μ is the reduced mass of the HCOOCH$_3$–H$_2$ system, $\mu = 1.950159$, and $E_{\text{coll}} = \mu v^2/2$ is the collision energy. We thereby assume that the cross sections for He and H$_2$ are identical and that the rate coefficients differ only for the (square root of the) reduced mass ratio. This approximation is most valid for the ground state of para-H$_2$ ($J = 0$) and for heavy molecules, as discussed in Wernli et al. (2007). Larger differences are expected between He and ortho-H$_2$ ($J = 1$), as observed, e.g., in H$_2$CO (Troshcompt et al. 2009) and CH$_3$OH.
(Rabli & Flower 2011). However, since the ortho state \(J = 1 \) lies 170 K above the para state \(J = 0 \), it should not be significantly populated at the temperatures investigated here (see e.g., Faure et al. 2013). The cross sections were extrapolated at total energies higher than 130 cm\(^{-1}\) in order to guarantee the convergence of Equation (1). A total of 2080 transitions were considered for \(A \)-type HCOOCH\(_3\), corresponding to the lowest 65 levels with upper energies below 20 cm\(^{-1}\). This complete set of (de-) excitation rate coefficients is available online from the LAMDA database (Schöier et al. 2005) at home.strw.leidenuniv.nl/~moldata/ and BASECOL database (Dubernet et al. 2013) at www.basecol.obspm.fr. Scattering calculations for higher levels (and therefore temperatures) are in progress in our group.

Rate coefficients for the lowest six transitions out of the ground state \(0_00 \) are presented in Figure 2. We first observe that the favored transition is \(0_00 \rightarrow 2_{02} \), corresponding to the propensity rules \(\Delta J = 2 \) and \(\Delta K_a = 0 \). These propensities reflect, respectively, the “even” symmetry of the PES and the conservation of \(K_a \) (the component of \(J \) along the smallest moment of inertia), as discussed in Faure et al. (2011). In addition, for each \(K_a \) doublet in the \(K_a = 1 \) ladder, the lower level (which corresponds to \(J \) preferentially oriented along the direction of the greatest moment of inertia) is found to be favored. It should be noted that this result was shown to explain the anti-inversion of the doublet \(1_{10}–1_{11} \) in interstellar formaldehyde (Townes & Cheung 1969; Troescompt et al. 2009). In the case of methyl formate, however, this doublet is inverted in Sgr B2 (Brown et al. 1975; Churchwell et al. 1980). This disparity is not surprising as the nuclear symmetries and selection rules are different. Thus, in contrast to formaldehyde, both collisional and radiative transitions between the \(K_a = 1 \) and \(K_a = 0 \) ladders are allowed in methyl formate, as detailed below.

In Figure 3, rate coefficients for collisional deexcitation transitions from the \(2_{02} \) level are presented. We note that the largest rate is for the excitation transition \(2_{02} \rightarrow 4_{04} \) (not plotted), as expected from the above propensity rules. It is observed in Figure 3 that the level \(2_{02} \) preferentially deexcites to the level \(1_{01} \). In the case of the \(1_{10}–1_{11} \) doublet, the upper level \(1_{10} \) is favored with a rate which is a factor of 1.7 (at 30 K) larger than the deexcitation rate to the lower level \(1_{11} \). This contrasts with collisions from the ground state \(0_00 \). Thus, following the initial excitation \(0_00 \rightarrow 2_{02} \), the level \(2_{02} \) relaxes preferentially to the upper level of the doublet.

Radiatively, for an asymmetric top with dipole components along the \(a \) and \(b \) inertia axes,\(^6\) the standard (rigorous) selection rules are:

\[
a–type: \Delta J = 0, \pm 1; \Delta K_a = 0; \Delta K_c = \pm 1
\]

\[
b–type: \Delta J = 0; \pm 1, \Delta K_a = \pm 1; \Delta K_c = \pm 1, \pm 3.
\]

The strongest radiative transitions are indicated by arrows in Figure 1. It is shown in particular that the spontaneous decay rate from the \(1_{1,1} \) to \(0_{0,0} \) level is about 3.4 times that from the \(1_{1,0} \) to the \(1_{0,1} \) level. This argument was employed by Brown et al. (1975) to explain that the doublet \(1_{1,0}–1_{1,1} \) is likely inverted and amplifies the continuum emission of Sgr B2. In fact, this radiative effect adds to the preferential collisional deexcitation of \(2_{02} \rightarrow 1_{10} \). As a result, both collisional and radiative transitions are expected to favor the inversion of the doublet \(1_{10}–1_{11} \). As the critical densities\(^7\) for the \(1_{10} \) and \(1_{11} \) levels are about 300 cm\(^{-3}\) and 1500 cm\(^{-3}\), respectively, inversion is expected to occur at low density \((n(H_2) < 10^5 \text{ cm}^{-3})\). Note that the above arguments do not necessarily hold for other lines and only non-LTE radiative transfer calculations can predict which transitions are inverted for a given set of physical conditions.

3. OBSERVATIONS

The PRIMOS survey is a National Radio Astronomy Observatory Robert C. Byrd Green Bank Telescope (GBT) Legacy

\(^6\) The \(a \) and \(b \) inertia axes correspond, respectively, to the \(x \) and \(z \) axes in the plane of the molecule, as defined in Faure et al. (2011).

\(^7\) The critical density for a particular level is given by the ratio between the sum of all radiative rates and the sum of all deexcitation collisional rates from this level.
Program started in 2007 to provide a complete spectral line survey in frequency ranging from ~300 MHz to ~50 GHz toward the preeminent source of molecular emission in the Galaxy—Sgr B2(N). Of the more than 180 interstellar molecules detected, more than half have been detected first in the Sgr B2 star-forming region. This region contains compact hot molecular cores of arcsecond dimensions (Belloche et al. 2008, 2009; Nummelin et al. 2000; Liu & Snyder 1999), molecular maser emitting regions (see e.g., McGrath et al. 2004; Mehringer et al. 1994, 1997; Gaume & Claussen 1990; McGuire et al. 2012), and ultracompact continuum sources surrounded by larger-scale continuum features as well as molecular material extended on the order of arcminutes (see e.g., Jones et al. 2011 and references therein). In addition, small-scale and large-scale shock phenomena characterize the complex. In particular, for the last 20 yr, the hot molecular core known as the "Large Molecule Heimat" (LMH) has been the first source searched to detect and identify new large interstellar molecules since many of the large organic species have previously been confined to its ~5″ diameter (Miao & Snyder 1997). However, the recent GBT detections of large organic molecules (Neill et al. 2012; Zalleski et al. 2013; Loomis et al. 2013 and references therein), have suggested that prebiotic molecules found toward the Sgr B2(N) complex are extended, perhaps even on the order of a 2° x 2° field. Data were taken in the OFF–ON position switching mode with two-minute scans toward the "ON" pointing position ($\alpha_{J2000} = 17^h 47^m 19.8^s$, $\delta_{J2000} = -28^\circ 22' 17.0''$). Observations continue to expand the frequency range of the PRIMOS survey.

For more details on the PRIMOS survey observations see Neill et al. (2012).

From 300 MHz to 50 GHz, a total of 49 methyl formate transitions with upper levels below 25 K were firmly identified (23 A-type and 26 E-type). We note that about 80% of the detected lines have upper levels below 10 K. Examples of spectral features are illustrated in Figure 4 for both emission and absorption lines. An LSR source velocity of +64 km s$^{-1}$ was assumed. Typical line widths are ~10 km s$^{-1}$. The peak intensities were measured at each observed transition and are reported below in Figures 5 and 6. The authors encourage
the reader to obtain the full set of spectral line data from the PRIMOS Web site in order to perform more detailed analyses.

4. NON-LTE CALCULATIONS

Radiative transfer calculations were performed with the RADEX code (van der Tak et al. 2007), using the large velocity gradient (LVG) approximation for a uniform expanding sphere. The RADEX LVG code was employed to compute the line excitation temperatures \(T_e \) and opacities \(\tau \) for a given column density \(N_{\text{tot}} \), kinetic temperature \(T_{\text{kin}} \), and density of \(\text{H}_2 \) \((n(\text{H}_2)) \). The two symmetries \(A\text{--HCOOCH}_3 \) and \(E\text{--HCOOCH}_3 \) were treated separately and we included 65 rotational levels for both species, with the highest energy level \((9_{2,8}) \) lying at 28.8 K above the ground state. Grids of models were computed for kinetic temperatures of 5–30 K (as constrained by the collisional data), column densities between \(10^{12} \) and \(10^{16} \) cm\(^{-2}\), and \(\text{H}_2 \) densities in the range of \(10^7 \)–\(10^{10} \) cm\(^{-3}\).

For each line in the range 1–49 GHz, the solution of the radiative transfer equation was expressed as the antenna temperature:

\[
\Delta T_a^* = [J_e(T_e) - J_e(T_{\text{cmb}})](1 - e^{-\tau}),
\]

where \(J_e(T) = (h\nu/k_B)/(e^{h\nu/k_BT} - 1) \), \(\nu \) is the frequency of the transition, \(T_e \) and \(\tau \) are the excitation temperature, and the opacity computed by RADEX. \(T_{\text{cmb}} = 2.725 \) K is the temperature of the (local) cosmic microwave background and \(T_e \) is the main beam background continuum temperature of Sgr B2(N), as measured by the GBT, which varies from \(\sim 95 \) K at 1.6 GHz down to \(\sim 1.2 \) K at 49 GHz. This continuum is consistent with optically thin, nonthermal (synchrotron) emission with a flux density spectral index of \(\sim 0.7 \) and a Gaussian source size of \(\sim 143'' \) at 1 GHz that decreases with increasing frequency as \(\nu^{-0.52} \) (Hollis et al. 2007).

In Equation (4), it is assumed that the methyl formate cloud is extended and fills the GBT half-power beamwidth \((\theta_B \approx 740''/\nu, \text{where } \nu \text{ is in units of GHz}) \) with a unit filling factor. This approximation is reasonable for transitions above \(\sim 5 \) GHz since many complex molecules like, e.g., glycolaldehyde have significant spatial scales on the order of arcminutes (Hollis et al. 2004). At lower frequencies, the hypothesis of a unit filling factor is questionable. However, in this frequency range, both \(J_e(T_e) \) and \(J_e(T_{\text{cmb}}) \) are much smaller than \(T_e \) (see below) so that beam dilution effects are small and Equation (4) reduces to:

\[
\Delta T_a^* \approx -T_e(1 - e^{-\tau}),
\]

and for an optically thin line:

\[
\Delta T_a^* \approx -T_e \tau.
\]

It should be noted that according to Equation (5), a low frequency transition will be observed in emission only if it is inverted (i.e., has a negative opacity), otherwise it will be in absorption.

An unweighted least-squares fit was performed to determine the physical parameters that best reproduce the emission intensities in the PRIMOS spectrum. All 49 detected transitions of methyl formate were employed in the minimization procedure.

A good agreement was found between predicted and observed values, as shown in Figures 5 and 6 where line intensities from our best non-LTE model are compared to the PRIMOS data in the frequency range 1–49 GHz. Lines with computed intensities below 10 mK are not displayed. It is observed that the intensities of the 10 strongest lines (those above 100 mK) are reproduced to within 25\% by our non-LTE model. The average error between the data and the model is 20 mK. We also notice that the two PRIMOS absorption lines at 22.83 GHz (displayed in Figure 4) are predicted in emission by our model. Inversely, a few lines are predicted in absorption in our model but they are not detected. As discussed below, these differences likely reflect density and temperature inhomogeneities. We also note that some predicted lines are not observed in the PRIMOS spectrum owing to contamination by other species, e.g., the \(A\text{--}E \) transition at 19.3 GHz which coincides with a recombination line.

The physical parameters from the best fit model are listed in Table 1. We note that they are identical for \(A\text{--HCOOCH}_3 \) and \(E\text{--HCOOCH}_3 \), as expected. As a result, the \(A/E \) ratio is found to be equal to unity, and the total column density of HCOOCH\(_3\) is \(4 \times 10^{14} \) cm\(^{-2}\). The goodness of the fit can be judged by the reduced chi-squared values of 1.8–1.9 and the corresponding root mean square deviations of 27 mK. Thus, the fit is surprisingly good given the simplicity of the physical model employed (uniform sphere) compared to the complexity of the Sgr B2 source. Error limits on the physical parameters \((\pm 20\%) \) are typically a factor of two. As shown above, however, the lowest-frequency transitions are much more sensitive to the density of \(\text{H}_2 \) than the highest-frequency ones.

We have also reported in Figures 5 and 6 (bottom panels) the predicted spectrum for LTE conditions where all HCOOCH\(_3\) lines are thermalized at the kinetic temperature, i.e., \(T_{\text{kin}} = 30 \) K, keeping the column density fixed at the best fit value. We observed that all line intensities are significantly underestimated, especially those at the lowest frequencies. This plot thus clearly illustrates the non-LTE nature of the GBT methyl formate spectrum.

In Figures 5 and 6, all transitions marked with an asterisk are (weak) masers, i.e., their excitation temperature and opacity are negative. We thus observe that all detected emission lines with a frequency below 30 GHz are masers. Inversion was of course expected for the lowest 1.61 GHz transition, as anticipated by Brown et al. (1975). These authors employed Equation (6) above, from which they derived the (negative) apparent opacity \(\tau = -\Delta T_a^*/T_e \). They chose an arbitrary 1\%
above a few 10^4 cm$^{-3}$ approaches the kinetic temperature of 30 K (i.e., thermalization) \sim (i.e., respectively.

In our best model (H$_2$) from 50 to 3×10^5 cm$^{-3}$, n(H$_2$) = 1.3×10^4 cm$^{-3}$, the excitation temperature is -2.3 K, corresponding to $\sim 1.7\%$ inversion, which is close to the guessed value of Brown et al. (1975).

The density range where inversion occurs is much shorter for other transitions, however. For example, the line at 23.56 GHz (medium panel in Figure 7) is inverted over the range n(H$_2$) from 3×10^3 to 10^5 cm$^{-3}$, with $T_{\text{ex}} = -13.4$ K in our best model (i.e., $\sim 4\%$ inversion). In fact, this density range tends to decrease with increasing frequency and above 30 GHz, most transitions cannot be inverted. For these lines, the excitation temperature approaches the kinetic temperature of 30 K (i.e., thermalization) above a few 10^4 cm$^{-3}$. An example is given with the line at 47.54 GHz plotted in the bottom panel of Figure 7. We note that the critical densities are typically 10^3--10^4 cm$^{-3}$ for all levels below 30 K. Thermalization of the rotational lines is therefore expected at densities above 10^4 cm$^{-3}$, as shown in Figure 7, but the occurrence of population inversion is difficult to predict as it is very sensitive to the collisional rates. We note in particular that non-inverted transitions should appear in absorption against the continuum, as predicted by our model for the lines at 4.55, 8.57, and 14.27 GHz (see Figures 5 and 6). However, these

The population inversion percentage is defined as $(n_u - n_l)/(n_u + n_l)$ where n_u and n_l are the populations of the upper and lower level of the transition, respectively.

The above non-LTE calculations have demonstrated that the GBT methyl formate observations are sampling a presumably cold ($T_{\text{kin}} \sim 30$ K) and moderately dense (n(H$_2$) $\sim 10^4$ cm$^{-3}$) extended region surrounding Sgr B2(N). This result is consistent with recent PRIMOS studies showing that many of the lines are not detected. The only detected absorption lines are those at 22.83 GHz (2$_{12}$--1$_{11}$), which are predicted in emission by our best model. These discrepancies might simply reflect density and temperature inhomogeneities in front of Sgr B2(N). Indeed, at densities higher than $\sim 5 \times 10^4$ cm$^{-3}$, the predicted absorption lines disappear (their intensities fall below 10 mK). Inversely, the population inversion of the 22.83 GHz transitions is quenched at densities lower than $\sim 5 \times 10^4$ cm$^{-3}$ where the two lines are predicted in absorption.

The opacities of the three above transitions (at 1.61, 23.56, and 47.54 GHz) are plotted in Figure 8. For the two maser lines, the largest opacities (in absolute value) are found close to the critical densities of the corresponding levels, i.e., $\sim 10^3$ cm$^{-3}$ for the line at 1.61 GHz and $\sim 10^4$ cm$^{-3}$ for the line at 23.56 GHz. For the non-inverted transition at 47.54 GHz, the opacity is found to increase significantly with decreasing H$_2$ density below $\sim 10^4$ cm$^{-3}$. In contrast to the lowest frequency (1--5 GHz) transitions, where the line intensity depends only on T_e and τ (see Equation (5)), the three terms $J_e(T_{\text{ex}})$, $J_e(T_{\text{cmb}})$, and T_e are in competition at higher frequencies. In this regime, the value of the excitation temperature is crucial.

This point is clearly illustrated in Figure 9 where the intensities of the three lines are found to peak at around their critical densities (the 1.61 GHz line has a maximum of ~ 1.5 K at n(H$_2$) $\sim 10^3$ cm$^{-3}$). Finally, Figure 9 also shows that the GBT intensities of the three lines (blue hatched zones) are reproduced for n(H$_2$) $\sim 10^4$ cm$^{-3}$, as expected from the best fit results. We also note that the 1.61 GHz line gives the strongest constraint on the H$_2$ density.

5. DISCUSSION

The above non-LTE calculations have demonstrated that the GBT methyl formate observations are sampling a presumably cold ($T_{\text{kin}} \sim 30$ K) and moderately dense (n(H$_2$) $\sim 10^4$ cm$^{-3}$) extended region surrounding Sgr B2(N). This result is consistent with recent PRIMOS studies showing that many of the
large molecules identified toward Sgr B2(N) have cold rotational temperatures (∼10 K; see Zaleski et al. 2013 and references therein). This is also in agreement with older millimeter-wave studies of methyl formate in Sgr B2. Thus, Churchwell et al. (1986) found the rotational temperatures of methyl formate originate from a hot gas. On the other hand, our results are in sharp contrast with the LMH hot core and very similar to the abundances derived by Bacmann et al. (2012) in the cold (≤10 K) protostellar core L1689B. This result also supports low kinetic temperatures.

The detection of methyl formate and other complex molecules in the cold interstellar gas (Tkin ≲ 30 K) challenges our current understanding of interstellar chemistry. Indeed, reactive heavy radicals like HCO and CH3O cannot easily diffuse on cold grain surfaces. Non-thermal processing of the grain mantles, such as cosmic-ray bombardment or ultraviolet radiation, are therefore required to induce diffusion, reaction, and evaporation. Post-evaporation gas-phase chemistry may also be crucial in producing larger species from precursors formed on grains like formaldehyde and methanol. An interesting constraint on the chemistry of methyl formate is possibly provided by the recent (tentative) detection of trans-methyl formate in absorption toward Sgr B2(N) using the PRIMOS survey (Neill et al. 2012). These authors have determined a column density of 3.1 ± 1.2 × 10^{13} cm^{-2} and a rotational temperature of 7.6 ± 1.5 K, suggesting that the trans conformer also traces the cold envelope surrounding Sgr B2(N). Assuming the two conformers have the same spatial distribution, the cis/trans ratio is thus found to be ~10 in the cold gas, indicating strongly non-equilibrium processes. Indeed, as the trans conformer is less stable than cis by about 2900 K, the thermal equilibrium ratio at 30 K is about 10^{21}. A discussion on the gas-phase chemical processes that could lead to a large abundance of the trans conformer can be found in Neill et al. (2012) and Cole et al. (2012).

6. CONCLUSION

In this work we have presented the first set of collisional rate coefficients for the rotational excitation of cis-methyl formate by H2 in the temperature range 5–30 K. The scattering calculations were performed on the HCOOCH3–He PES of Faure et al. (2011). Collisional propensity rules were shown to differ from the radiative selection rules, with ΔJ = 2 transitions being favored. These collisional coefficients were employed in a non-LTE radiative transfer treatment of methyl formate rotational lines and the results were compared with the PRIMOS survey GBT observations toward Sgr B2(N). A total of 49 rotational transitions of methyl formate, with upper levels below 25 K, were identified in the PRIMOS data. Our best fit model suggests that these transitions sample a cold (Tkin ≲ 30 K), moderately dense (n(H2) ~ 10^{4} cm^{-3}), and extended (~arcminutes) region surrounding Sgr B2(N). In addition, our calculations indicate that all detected emission lines with a frequency below 30 GHz are collisionally pumped, weak masers amplifying the

Figure 9. Antenna temperatures T_A of A-HCOOCH3 rotational transitions at 1.61 GHz (110–111), 23.56 GHz (413–404), and 47.54 GHz (404–303) as a function of H2 density. The GBT intensities are represented by the blue hatched zone. The dashed vertical lines denote the density of the best model, n(H2) = 1.3 × 10^{5} cm^{-3}. The kinetic temperature and column density of A-HCOOCH3 are 30 K and 2.0 × 10^{14} cm^{-2}, respectively. A discussion on the gas-phase chemical processes that could lead to a large abundance of the trans conformer can be found in Neill et al. (2012) and Cole et al. (2012).
background of Sgr B2(N). This result confirms the pioneering interpretation of Brown et al. (1975) based on the 1.61 GHz line and demonstrates the generality of the inversion mechanism for the low-lying transitions of methyl formate. This collisional process, combined with a relatively strong and extended continuum background, could thus explain the emission spectra of many complex organics. On the other hand, if the inversion cannot be established (or is quenched), then absorption lines are expected. This is indeed observed for the cis-methyl formate lines at 22.83 GHz and for other species like, e.g., trans-methyl formate for which all observed features are in absorption (Neill et al. 2012). As a result, emission spectra do not necessarily reflect higher kinetic temperatures or densities but rather the possibility of population inversions.

We have derived a column density for cis-methyl formate of $\sim 4 \times 10^{14}$ cm$^{-2}$, in good agreement with previous estimates based on millimeter-wave studies. This value is only a factor of ~ 10 larger than the column density deduced by Neill et al. (2012) for the trans conformer in the same source. The origin of the different conformers and isomers of methyl formate in low temperature interstellar environments is still matter of debate (see Cole et al. 2012 and references therein) but such a low cis/trans ratio certainly provides a very strong constraint on chemical models (provided that the two conformers are located in the same spatial region). We note in this context the recent experimental evidence of quantum tunneling in the gas-phase reaction between CH$_3$OH and OH (Shannon et al. 2013) suggesting that, in contrast to the usual assumption, neutral–neutral reactions with an activation barrier could play an important role in the cold post-evaporation gas-phase chemistry.

Finally, it should be noted that collisional rate coefficients for other heavy molecules are urgently needed in order to both accurately determine the abundance and excitation of complex organics via radiative transfer models and quantitatively investigate the occurrence, or absence, of maser action.

This work has been supported by the French INSU/CNRS Program “Physique et Chimie du Milieu Intersidéral” (PCMI) and by the Agence Nationale de la Recherche (ANR-FORCOMS), contract ANR-08-BLAN-022. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. K.S. acknowledges support by NSF grant CHE-1152899. Aurore Bacmann, Cecilia Ceccarelli, Pierre Hily-Blant, Sébastien Maret, and Céline Toubin are acknowledged for useful discussions.

REFERENCES

Alexander, M. H., & Manolopoulos, D. E. 1987, JChPh, 86, 2044
Bacmann, A., Taquet, V., Faure, A., Kahane, C., & Ceccarelli, C. 2012, A&A, 541, L12
Belloche, A., Garrod, R. T., Müller, H. S. P., et al. 2009, A&A, 499, 215
Belloche, A., Menten, K. M., Comito, C., et al. 2008, A&A, 482, 179
Belloche, A., Müller, H. S. P., Menten, K. M., Schilke, P., & Comito, C. 2013, A&A, 559, A47
Bockelée-Morvan, D., Lis, D. C., Wink, J. E., et al. 2000, A&A, 353, 1101
Bottinelli, S., Ceccarelli, C., Williams, J. P., & Lefloch, B. 2007, A&A, 463, 601
Brown, R. D., Crofts, J. G., Godfrey, P. D., et al. 1975, ApJL, 197, L29
Ceccarelli, C., Baluteau, J.-P., Walmsley, M., et al. 2002, A&A, 383, 603
Cernicharo, J., Marcelino, N., Roueff, E., et al. 2012, ApJL, 759, L43
Churchwell, E., Nish, A., Rabei, J., et al. 1980, ApJL, 241, L169
Churchwell, E., & Winnewisser, G. 1975, A&A, 45, 229
Cole, C. A., Wehres, N., Yang, Z., et al. 2012, ApJL, 754, L5
Cummins, S. E., Linke, R. A., & Thaddeus, P. 1986, ApJS, 60, 819
Curi, R. F., Jr. 1959, JChPh, 30, 1529
Dickens, J. E., Irvine, W. M., Nummelin, A., et al. 2001, AcSpA, 57, 643
Dubernet, M.-L., Alexander, M. H., Ba, Y. A., et al. 2013, A&A, 553, A50
Faure, A., Hily-Blant, P., Le Gal, R., Rist, C., & Pineau des Forêts, G. 2013, ApJL, 770, L2
Faure, A., Szalewicz, K., & Wiesenfeld, L. 2011, JChPh, 135, 024301
Faure, C., Despois, D., Brouillet, N., et al. 2011, A&A, 532, A32
Garrod, R. T., & Herbst, E. 2006, A&A, 457, 927
Gaume, R. A., & Claussen, M. J. 1990, ApJ, 351, L38
Gottlieb, C. A., Palmer, P., Rickard, L. J., & Zuckerman, B. 1973, ApJ, 182, 699
Hollis, J. M., Jewell, P. R., Lovas, F. J., Remijan, A., & Mollendal, H. 2004, ApJL, 610, L21
Hollis, J. M., Jewell, P. R., Remijan, A. J., & Lovas, F. J. 2007, ApJL, 660, L125
Hollis, J. M., Lovas, F. J., & Jewell, P. R. 2000, ApJL, 540, L107
Horn, A., Mollendal, H., Sekiguchi, O., et al. 2004, ApJL, 611, 605
Huettemeister, S., Wilson, T. L., Mauersberger, R., et al. 1995, A&A, 294, 667
Jones, P. A., Burton, M. G., Tothill, N. F. H., & Cunningham, M. R. 2011, MNRAS, 411, 2293
Lis, D. C., & Goldsmith, P. F. 1991, ApJ, 369, 157
Liu, S.-Y., & Snyder, L. E. 1999, ApJL, 523, 683
Loomis, R. A., Zaleski, D. P., Steber, A. L., et al. 2013, ApJL, 765, L9
McGrath, E. J., Goss, W. M., & De Pree, C. G. 2004, ApJ, 611, 2293
McGuire, B. A., Loomis, R. A., Charness, C. M., et al. 2012, ApJL, 758, L33
Mehringer, D. M., Goss, W. M., & Palmer, P. 1994, ApJL, 434, 237
Mehringer, D. M., Snyder, L. E., Miao, Y., & Lovas, F. J. 1997, ApJL, 480, L71
Menten, K. M. 2004, in The Dense Interstellar Medium in Galaxies, ed. S. Pfalzner, C. Kramer, C. Staubmeier, & A. Heithausen (Berlin: Springer), 69
Miao, Y., Mehringer, D. M., Kuan, Y.-J., & Snyder, L. E. 1995, ApJL, 445, L59
Modica, P., Palumbo, M. E., & Strazzulla, G. 2012, P&SS, 73, 425
Neill, J. L., Muckle, M. T., Zaleski, D. P., et al. 2012, ApJL, 755, 153
Nummelin, A., Bergman, P., Hjalmarson, Å., et al. 2000, ApJS, 128, 213
Pickett, H. M., Poynter, R. L., Cohen, E. A., et al. 1998, JQSRT, 60, 883
Rabli, D., & Flower, D. R. 2011, MNRAS, 411, 2093
Remijan, A. J., & Markwick-Kemper, A. 2007, BAA, 39, 132,11
Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., & Black, J. H. 2005, A&A, 432, 369
Shannon, R. J., Blitz, M. A., Goddard, A., & Heard, D. E. 2013, NatCh, 5, 745
Townes, C. H., & Cheung, A. C. 1969, ApJL, 157, L103
Troscompt, N., Faure, A., Maret, S., et al. 2009, A&A, 506, 1243
van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J., & van Dishoeck, E. F. 2007, A&A, 468, 627
Vasyunin, A. I., & Herbst, E. 2013, ApJ, 769, 34
Wernli, M., Wiesenfeld, L., Faure, A., & Valiron, P. 2007, A&A, 464, 1147
Zaleski, D. P., Seifert, N. A., Steber, A. L., et al. 2013, ApJL, 765, L10