Effect of REDD+ projects on local livelihood assets in Keo Seima and Oddar Meanchey, Cambodia

Sereyrotha Ken a,b,*, Tomoe Entani a, Takuji W. Tsusaka c, Nophea Sasaki c

a Graduate School of Applied Informatics, University of Hyogo, Japan
b Wildlife Conservation Society, Phnom Penh, Cambodia
c Natural Resources Management, Asian Institute of Technology, Thailand

ARTICLE INFO

Keywords: Business Economics Livelihood improvement REDD+ Natural capital Physical capital Human capital Financial capital Carbon credit Agricultural policy Agroforestry Ecological restoration Forestry Human geography Natural resource management Sustainable development Ecosystem services Biodiversity

ABSTRACT

Climate-change mitigation projects are expected to improve local livelihoods in targeted areas. Several REDD+ projects aimed at reducing emissions from deforestation and forest degradation, conserving and enhancing forest carbon stocks, and sustainably managing forests have been implemented in Cambodia but few studies have examined the effects on local livelihoods before and during project implementation. Our study applies a sustainable livelihood framework to assess the livelihood assets of local communities in the Oddar Meanchey and Keo Seima REDD+ project sites in Cambodia before and during project implementation. Five capital assets, namely natural, physical, human, financial, and social capital, are assessed and scored on a 1-to-5 Likert scale. Data analysis collected through 252 interviews in Oddar Meanchey and Keo Seima reveals a slight increase in livelihood assets in both sites from project validation to implementation. Generally, the mean scores for local livelihood assets increased from 2.81 ± 0.07 (±is followed by the standard error) and 2.66 ± 0.06 to 3.07 ± 0.09 and 3.06 ± 0.08 in Oddar Meanchey and Keo Seima, respectively. Nevertheless, natural capital assets sharply declined from 3.50 and 3.32 to 2.09 and 2.25, respectively. Respondents mainly blamed illegal logging for the decline, suggesting that strict patrolling and enforcement must be implemented. Furthermore, the scarcity of carbon-credit buyers and the projects’ inability to generate carbon-based revenues has led to dissatisfaction among local communities, inducing avoidable illegal activities in pursuit of short-term benefits. A financial mechanism to ensure sufficient and sustained financial support regardless of carbon-market volatility is urgently needed.

1. Introduction

Deforestation and forest degradation is still the second major source of global carbon emissions 12 years after the adoption of the Bali Action Plan of the United Nations Framework Convention on Climate Change (UNFCCC) in 2007 that adopted policy incentives to reduce carbon emissions from deforestation and forest degradation through conservation, sustainable management, and enhancement of carbon stocks, commonly known as the REDD+ (Reduce Emissions from Deforestation and forest Degradation by conserving forest carbon stocks, sustainably manage forests, and enhance forest carbon stocks) scheme. Recent studies have estimated that global deforestation emitted 4.0 PgCO2 year⁻¹ during 2001–2010 and remained at 2.9 PgCO2 year⁻¹ during 2011–2015 (Federici et al., 2015). Zarín et al. (2016) found similar emissions at 2.3 Pg CO2 year⁻¹ between 2001 and 2013. Apart from carbon emissions, loss of forests reduces ecosystem services, especially the provisioning, supporting, and regulating services (Kim et al., 2018; Barrios et al., 2018) that 1.6 billion people depend on for daily subsistence and livelihood (Erbaugh and Oldekop, 2018). Foreseeing the consequences of deforestation and forest degradation, global leaders signed on to the Paris Climate Agreement and the Sustainable Development Goals in 2015 with both global agreements coming into force in 2016. Among the various strategies for implementing and achieving both agreements, REDD+ is an important mitigation option because of its ability to tackle climate change while safeguarding and improving local benefits and biodiversity (Pfl eps et al., 2012). Currently, there are 359 REDD+ active projects in the tropics (Simonet et al. 2019), although only about 300 have been actually implemented (Simonet et al., 2014).
However, the long-term sustainability of these REDD+ projects in mitigating climate change and safeguarding socioeconomic conditions and biodiversity remain questionable mostly because of low demand for carbon offsets from the projects (Laing et al., 2016; Foster et al., 2017) and lack of specific biodiversity goals (Panfil and Harvey, 2015). Enrici and Hubacek (2018) found that the deforestation rate in Indonesia had neither decreased nor stabilized even though REDD+ had been implemented in 2007. Similar declines in forest cover were seen in Cambodia (MoE 2018) and Myanmar (Cho et al., 2017) even though these countries had actively participated in REDD+ projects. Milne et al. (2019) reviewed REDD+ projects in mainland Southeast Asia and argued that many of the projects created social conflicts and yet failed to address the drivers of deforestation and forest degradation. Some studies, however, have found improvement as a result of REDD+ projects. Simonet et al. (2019), for instance, analyzed data from interviews with 181 farmers in the Brazilian Amazon and found that the REDD+ project reduced deforestation by up to 50%. Using publicly available social and spatial data, Jagger and Rana (2017) found that early REDD+ interventions protected the rights of local communities in Indonesia. Atela et al. (2015) found that the REDD+ project in Kenya improved land rights and local people’s willingness to protect the forest. Furthermore, based on reviews of 80 REDD+ projects, Panfil and Harvey (2015) found some improvement in biodiversity safeguards and related capacity building where REDD+ projects had been implemented within the past 10 years. Moreover, through analysis of links between an agricultural census and remote-sensing data on deforestation and forest degradation, Godar et al. (2014) found that REDD+ areas dominated by smallholders could be protected from fragmentation and degradation. Based on a number of governance indicators tracked in the Maderacre & Maderija Madre de Dios Amazon REDD projects in southeast Peru, Pettenella and Brotto (2012) found that transparency and accountability needed to be carefully addressed if REDD+ projects are to be successfully implemented.

Although these studies have shed light on the development and implementation of REDD+ projects in the tropics, studies on the effects of project implementation on local livelihoods remain limited. In addition to reducing carbon emissions, successful implementation of the REDD+ projects provides benefits to forest-dependent communities through intensive low-carbon agricultural practices and employment generation in farming, ecotourism, and social enterprises (Peras et al., 2016; CBD and GIZ, 2011). Indigenous and local communities are considered to be key stakeholders in protecting forest ecosystems and supporting the long-term efforts of REDD+ projects (CBD and GIZ, 2011). Local communities, especially indigenous people and forest-dependent communities play a crucial role in protecting and managing forest resources and their ecosystems. Properly designed, REDD+ activities can provide huge non-carbon benefits to locals (Hvalkof, 2013). Nevertheless, not all REDD+ projects have produced the expected results. In the Babati district in north-central Tanzania, Jacob and Brockington (2017) found that local communities were not satisfied with the REDD+ project’s benefit-sharing because they perceived that weak governance resulted in many benefits going to a small group of elites.

Cambodia has suffered from deforestation and forest degradation for years. Studies on REDD+ and its implementation focusing on various aspects of REDD+ implementation from local to national levels have gained attention in recent years. Sasaki et al. (2016) examined the establishment of the forest reference emission level (FREL) while Nhemi et al. (2017) focused on the use of media to improve the effectiveness of the REDD+ policy. Nathan and Pasgaard (2017) analyzed the contributions of the REDD+ project in Oddar Meanchey province to the economic efficiency, environmental effectiveness, and social equity of local communities. They found that carbon revenues from the carbon market alone would not be adequate to realize the REDD+ objectives of improving local livelihoods.

Presently, four REDD+ projects in Cambodia have been validated and implementation of these projects is underway. However, no study on the effects of REDD+ projects on local livelihood assets exists to guide future informed decision-making. This study aims to assess the livelihoods of local people living in two REDD+ project sites in Oddar Meanchey and Ratanakiri provinces using the sustainable livelihood framework. Local livelihoods are assessed in terms of five dimensions of capital assets — natural, physical, financial, social, and human — based on a five-point Likert scale.

2. Materials and methods

All procedures in the field survey and interviews with respondents were performed according to research standards followed at the Graduate School of Applied Informatics, University of Hyogo, in Kobe, Japan.

2.1. Update on the REDD+ projects in Cambodia

The Royal Government of Cambodia submitted its FREL report to the UNFCCC in 2016, which was later approved. The FREL is updated to reflect changes as data becomes available. Based on Cambodia’s Ministry of Environment (2018) report (MoE, 2018), forest cover in Cambodia declined sharply from 57.5% in 2010 to 46.9% in 2014 and further to 45.0% in 2016 (Table 1). Cambodia lost about 2.65 million hectares of forest between 2006 and 2016, representing an annual decrease of about 2.45%.

Four REDD+ projects have been validated by the Verified Carbon Standard (VCS) in Cambodia: community forests in Oddar Meanchey province (OM-REDD+ hereinafter); community forests in Keo Seima Wildlife Sanctuary of the Mondulkiri province (KS-REDD+); Tumrung community forests in Kampong Thom province; and the most recent, the Southern Cardamom REDD+ Project in the Southern Cardamom National Park and Tatai Wildlife Sanctuary. OM-REDD+ has received three gold distinctions for climate, community, and biodiversity benefits while KS-REDD+ received a gold distinction for biodiversity benefits. In addition to these four projects, 13 other REDD and REDD+ projects are at various stages as shown in Table 2.

2.2. Description of the study sites

OM-REDD+ and KS-REDD+ are selected as study sites because project implementation had already been undertaken and subsequently verified in October 2012 and November 2015, respectively. OM-REDD+ is located in the province of Oddar Meanchey in northwestern Cambodia (Figure 1). OM-REDD+ was approved in 2007 by the Cambodian government and its validation period was extended from 2007 to 2012, when it was then validated by the Climate, Community, & Biodiversity Alliance (CCBA) and the VCS. OM-REDD+ is a 30-year project that began on Feb. 28, 2008, and is expected to last until Feb. 28, 2037. It consists of 13 community forests with a combined area of 63,831 ha, 56,050 of which are covered by forests (Terra Global Capital, 2012). OM-REDD+ is expected to generate an estimated 6,143,767 verified carbon units over 30 years.

KS-REDD+ is located in eastern Cambodia, mainly in Mondulkiri Province and partially in Kratie Province. The total area covers 166,983 ha in the Seima Protected Forest. KS-REDD+ consists of 20 villages in three districts (Keo Seima, Orang, and Sen Monorom) (Figure 1) (WCS, 2014). This project was approved in 2008, validated by the CCBA and VCS in November 2015, and verified by the VCS in April 2017. The project is expected to last until Dec. 31, 2069, and reduce carbon emissions of 14,266,485 tCO2e from 2010 to 2020.

To reduce the drivers of deforestation and forest degradation and thus reducing carbon emissions, various activities have been undertaken in both locations. Based on the Project Designed Documents for both REDD+ projects uploaded on the VCS website (https://www.vcsprojectdatabase.org), OM-REDD+ proposed to undertake nine activities while KS-REDD+ proposed to implement six activities (Table 3).
Table 1. Forest cover changes in Cambodia between 2006 to 2016.

Classification	2006		2010		2014		2016	
	Ha	%	Ha	%	Ha	%	Ha	%
Evergreen Forest	3,710,271	20.4%	3,573,925	19.68%	2,973,903	16.38%	2,861,233	15.76%
Semi-evergreen Forest	1,453,441	8.00%	1,391,117	7.66%	1,108,320	6.10%	1,071,947	5.90%
Deciduous Forest	4,613,417	25.40%	4,498,397	24.77%	3,480,532	19.17%	3,336,349	18.37%
Flooded Forest	597,355	3.29%	524,005	2.89%	481,078	2.65%	477,813	2.63%
Forest Regrowth	216,123	1.19%	249,341	1.37%	228,560	1.26%	196,842	1.08%
Bamboo	129,837	0.71%	130,930	0.72%	130,678	0.72%	125,398	0.69%
Mangrove	32,060	0.18%	31,443	0.17%	33,002	0.18%	31,226	0.17%
Rear mangrove	27,519	0.15%	27,371	0.15%	25,906	0.14%	25,906	0.14%
Pine Forest	8,157	0.04%	8,157	0.04%	8,196	0.05%	8,195	0.05%
Pine Plantation	0	0.00%	11	0.00%	3,709	0.02%	3,870	0.02%
Tree Plantation	43,547	0.24%	17,214	0.09%	44,289	0.24%	43,122	0.24%
Forest Area	10,831,727	59.64%	10,451,911	57.55%	8,518,173	46.90%	8,181,901	45.05%
Oil Palm Plantation	35	0.00%	5,055	0.03%	36,311	0.20%	51,276	0.28%
Rubber Plantation	78,148	0.43%	137,307	0.76%	484,316	2.67%	509,224	2.80%
Grassland	600,006	3.30%	473,281	2.61%	351,337	1.93%	341,132	1.88%
Agriculture	1,000,634	5.51%	1,275,444	7.02%	2,787,413	15.35%	3,017,435	16.62%
Paddy Field	3,668,981	20.20%	3,859,452	21.25%	4,133,474	22.76%	4,221,407	23.24%
Rock	219	0.00%	688	0.00%	2,054	0.01%	1,100	0.01%
Sand	8,304	0.05%	10,459	0.06%	40,581	0.22%	41,245	0.23%
Built up area	37,435	0.21%	43,800	0.24%	328,820	1.81%	352,987	1.94%
Village	248,126	1.37%	296,513	1.63%	42,166	0.23%	42,930	0.24%
Water	438,410	2.41%	458,658	2.53%	813,839	4.48%	783,849	4.32%
Wood shrub	1,248,649	6.88%	1,148,126	6.32%	622,190	3.43%	616,177	3.39%
Non-forest	7,328,947	40.36%	7,708,763	42.45%	9,642,501	53.10%	9,978,762	54.95%
Total Area	18,160,674	100.00%	18,160,674	100.00%	18,160,674	100.00%	18,160,674	100.00%

Source: MoE (2018).

Table 2. Current status of REDD and REDD+ initiatives in Cambodia.

No.	Names of REDD+ Initiative	Responsible Authority	Current Status	Annual Reductions reported on VCS Project Database
1.	Oddar Meanchey Community Forest REDD+ Pilot Project (Project ID 904 in VCS Project database)	Forestry Administration (FA)	Validated by VCS and CCBA in October 2012 Verified in June 2014	204,792 CO₂
2.	Reduced Emissions from Deforestation and Degradation in Keo Seima Wildlife Sanctuary (Project ID 1650)	Ministry of Environment (MoE)	Validated by VCS and CCBA in May 2017 Verified in December 2017	1,426,648 CO₂
3.	Southern Cardamom REDD+ Project (Project ID 1748)	MoE	Validated in March 2018 by VCS	3,867,568 CO₂
4.	Tumring REDD+ Project (Project ID 1689)	FA	Validated by VCS in June 2018	378,434 CO₂
5.	Central Cardamom Mountains	FA	Unknown	
6.	Cardamom Mountains REDD+ Project	FA	Unknown	
7.	Siem Reap REDD Project	FA	Unknown	
8.	Prey Lang REDD Project	FA	Under validation for Joint Crediting Mechanism between Japan and Cambodia	
9.	Western Siem Pang Important Bird Area	FA	Unknown	
10.	Samlout REDD+ Project	FA-MoE	Unknown	
11.	Kulen Promtep Wildlife Sanctuary REDD+ Pilot Project	MoE	Unknown	
12.	Phnom Oral REDD+ Project	MoE	Unknown	
13.	Phnom Samkos REDD Project	MoE	Unknown	
14.	Lomphat Wildlife Conservation Area	MoE	Unknown	
15.	Koh Kong Mangrove and Flooded Forest REDD Project	Fisheries Administration (FiA)	Unknown	
16.	Kamppong Chhang REDD Project	FiA	Unknown	
17.	Sihanouk Ville REDD Project	FiA	Unknown	

* The responsible authority may have changed after national elections in 2018 as some lands were reallocated to different ministries. Source: Personal communications; modified from Ngoun (2014).
This study collects and analyzes primary data. Field collection was undertaken in September and November 2018 in OM-REDD+ and KS-REDD+, respectively, using a mixed methods approach (Orr et al., 2016). Quantitative data were collected through a household (HH) survey while qualitative information was collected through key interviews. The questions used in the survey were modified from Qian et al. (2017) who studied on local livelihood under different governances of tourism development in Huangshan mountain area in China. However, some indicators and criteria used in their study were removed, altered or added to fit to the situation and the characteristic of the study sites. Heads (husband or wife who has influential decision and who generate more incomes for the family) of the HH were the intended respondents, however spouses were interviewed when the HH head was not available. Survey respondents and interview participants were asked to recall their livelihoods prior to project implementation (the period prior to verification) and during project implementation. The recall method has limitations because of potential inaccuracies of past memories. Nevertheless, it still provides useful information and tends to be reliable when the questions are closely related to livelihoods and daily activities (Nakano et al. 2018).

The minimum sample size for the HH survey was obtained using Yamane (1973) formula:

$$n = \frac{N}{1 + Ne^2}$$ \hspace{1cm} (1)

where $n =$ suggested minimum sample size for the HH survey in each REDD+ site; $N =$ total household population in each site; and $e =$ accepted margin of error (set at 10% or 0.10; i.e., 90% confidence level).

Since the HH population in OM-REDD+ was 9,893 HHs, Eq. (1) indicated a minimum sample size of 99 HHs. To allow for missing or erroneous observations in data, an additional 21 HHs were covered for a total sample size of 120 HHs. Likewise, the minimum sample size for KS-REDD+ with an HH population of 2,825 was calculated to be 97 HHs and 15 HHs were added for a total sample size of 112 HHs. In terms of interviews, one to three leaders per community forest participated in addition to six non-governmental organization (NGO) staff members and government officials. The breakdowns of sample size for the survey and interviews are presented in Table 4. These community forests were selected because they had implemented the REDD+ project activities since the projects were validated.

We employed the random sampling method for the HH survey to generate a representative sample of the population. However, not all

Table 3. REDD+ activities in both locations as listed in the Project Design Document.

OM-REDD+	KS-REDD+
1. Reinforcing of land-tenure status	1. Develop, approve, and implement legal and planning documents to reduce forest and wildlife crime through direct law enforcement
2. Sustainable forest and land-use planning	2. Establish sustainable community use of land and natural resources to adapt to climate change
3. Forest protection	3. Support alternative livelihoods that reduce pressure on forest and natural resource
4. Assisted natural regeneration and enrichment planting	4. Effective monitoring
5. Fuel-efficient stoves	5. Effective administration
6. Livestock protection from mosquitoes	6. Fund-raising
7. Agricultural intensification	
8. Natural resource management projects	
9. Fire prevention	

Source: VCS project database available at https://www.vcsprojectdatabase.org
residents were at home when the surveys were conducted. In those cases, an aspect of convenience sampling (Etikan et al., 2016) was adopted. Key interview participants were selected by the purposive sampling technique (Valerio et al., 2016) that is effective in targeting the most relevant respondents and thus the most pertinent information.

2.4. Assessment of the local livelihood assets or capital assets

Our study adopts a sustainable livelihoods framework (SLF) (Scoones, 1998) to assess the capital assets in the two sites. Under an SLF, local livelihood assets are defined as tangible and intangible goods and services owned and used by households or communities for daily subsistence and living. These capital assets represent five broad categories, namely natural, financial, human, social, and physical assets. Atela et al. (2015) employed an SLF to investigate the impacts of REDD+ projects on local livelihood assets in Taita-Taveta county in Kenya. Qian et al. (2017) used the SLF to understand the local livelihood assets under two ecotourism development systems in rural areas of China. An SLF is used in this study because of its ability to capture the complexities of local livelihoods, especially in rural areas (Scoones, 2009).

The five capital assets were assessed based on various indicators, criteria, and principles as shown in Table 5. Both households and key interviewees were asked to rate their perceptions of various indicators during the project validation and project implementation periods on a 1- to-5 Likert scale ranging from 1 (low) to 5 (high). The validation periods for OM-REDD+ and KS-REDD+ were before 2008 and before 2010, respectively. Local perceptions during the REDD+ project implementation period were the local perceptions that had formed prior to our fieldwork in 2018.

It was difficult, and occasionally impossible, to collect information on income directly generated from the forests during our fieldwork because of the sensitivity on forest incomes and illegal logging. Locals were wary of answering freely and we therefore removed indicators of income both related to and not related to forest from our analysis.

2.5. Analysis

Descriptive statistics such as mean and frequency distribution are used to present respondents’ profiles. Mean values are also calculated for indicators of livelihood asset holdings. In general, it is controversial to compute means for ordinal-scale data such as Likert-scale data (Michell, 2014). In our study, however, most of the important analyzed indicators are based on multi-item sub-measurements and thus can generate more than 30 possible outcomes. Therefore, this study treats the main indicators as a semi-continuous measurement for which mean values are presented. An overall indicator is defined per livelihood capital category (e.g., financial, natural, etc.) as the mean over the sub-indicators in each category. The aggregate indicator is the mean over the five overall indicators.

As for inferential analysis, the Wilcoxon signed rank test (Seetha et al., 2019), a nonparametric alternative to the paired t test, is employed to examine the change in livelihood indicators over time. Furthermore,

Table 4. Sample size for the HH survey and key interviews, 2018

Project	Community Forest	Key Interviews	HH Survey
	Key Participants	n	
OM-REDD+	Sorng Roka Vorn	Leader	1
			14
	Samaky	Leader	1
			13
	Prey Seux	Leader	3
			38
	Rolus Thom	Leader	1
			12
	Dung Beng	Leader	1
			43
	Ratanak Ruka	Leader	1
			0
	NGO staff		1
	Total		8
			120
KS-REDD+	Chakchar	Leader	1
			35
	Andoung Kraoeng	Leaders	2
			37
	Pu Char	Leaders	2
			20
	Sre Preah	Leader	1
			20
	NGO staff & govern officials		5
	Total		11
			112

Table 5. Principles, criteria, and indicators for assessing the five capital assets.

Capital Assets	Principle Description	Criterion for Individual Principles	Indicators
Natural Capital	Options for future use are maintained	Biodiversity is conserved or not	Biodiversity
	Quality and quantity of natural resources and services are maintained or improved	Ecosystem function is maintained or not	Forest conservation
Physical Capital	Physical capital is maintained or improved over time	House physical status is maintained or improved	Household fixed assets
Human Capital	Ability to provide added value is improved over time	Education or skill knowledge is improved or not	Technical assistance
	Local people’s physical condition is maintained or improved	Environmental education	Skill and knowledge
		Capacity building	
Financial Capital	Financial capital grows and is equitably distributed	Revenue is improved or not	Household income related to forest
	Financial capital is circulated within the system	Household harvest	Agricultural production
Social Capital	Maintenance of systems of social reciprocity	Economic and other shocks are buffered by system of social activity	Rights in resource management/ control over resources
		Participate in community affair	

Source: Modified from Qian et al. (2017).
3.2.1. Natural capital

3.2.2. Physical capital

Table 6. Demographic profile of surveyed HHs.

Demographic variable	Category	OM-REDD+ (n = 120)	KS-REDD+ (n = 112)		
	Frequency	Percent	Frequency	Percent	
Gender	Male	49	40.8	35	31.3
	Female	71	59.2	77	68.8
Age	17–30	22	18.3	42	37.5
	31–45	39	32.5	45	40.2
	46–60	42	35.0	18	16.1
	>60	17	14.2	7	6.3
Marital status	Single	2	1.7	6	5.4
	Married	115	95.8	103	92.0
	Divorced, Widow, or Widower	3	2.5	3	2.7
Number of HH members	1 to 3	26	21.7	14	12.5
	4 to 6	82	68.3	66	58.9
	More than 6	12	10.0	32	28.6
Completed education level	No education	37	30.8	29	25.9
	Literacy class 3	0	0.0	2	1.8
	Primary school 4	55	45.8	52	46.4
	Secondary school 5	20	16.7	17	15.2
	High school 6	7	5.8	12	10.7
	College or higher 8	1	0.8	0	0.0
Cambodian Rural Development Team (a local NGO) to clean the water system and toilet and from Sedak for ponds and toilets. With support from the different partners, the majority of households at the KS-REDD site now have toilets and clean water.

Although the project-implementation period thus far has been relatively short, the findings of an increase in physical capital stock (Table 8) are consistent with those of Atela et al. (2015) in Kenya, who found that REDD+ had improved community-level physical capital such as clinics and schools.

3.2.3. Human capital

Mean overall scores for human capital holdings in the OM-REDD+ site were 2.50 ± 0.05 before implementation and rose to 3.80 ± 0.05 during implementation, an increase of 52%. Likewise, the overall scores for human capital holdings in KS-REDD+ increased by 56% from 2.36 ± 0.06 before implementation to 3.67 ± 0.05 during implementation (Table 9).

The results show that all indicators of human capital increased during project implementation. In both locations, the progress in environmental education was particularly pronounced, while the progress in capacity building was relatively slow. The environmental education indicator achieved a higher score since during project formulation and development, local households receive training on different aspects of natural resources and environmental management through repeated consultative workshops. The workshops are forums to provide updated information, listen to farmers’ concerns, and propose REDD+ activities for implementation. Technical assistance and skills and knowledge indicators also achieved higher scores in both locations. Our results are consistent with those of previous studies that found positive effects of REDD+ projects on human capital in Kenya (Atela et al., 2015) and in the tropics based on a review of 45 articles (Duchelle et al., 2018). Where there were conflicts and natural disasters, human capital growth has tended to stagnate as the use of resources are focused on maintaining peace and stability.

As the demand for OM-REDD+ carbon credits became less attractive due to border conflicts and the collapse of carbon markets, carbon-based financial incentives were not available for human capital. Instead, the communities were supported by the SIDO for swine- and poultry-raising training and high-production rice and vegetable farming. The Cambodian Department of Women’s Affairs also provided training on processing non-timber forest products (NFTP) for long-term storage. In addition, Prey Srors had a savings and rice bank where local farmers could borrow and deposit money. The rice bank allowed farmers to borrow rice and repay...
the borrowed amount in rice. This is found to be practiced and successfully implemented in Scheidel and Farrell (2015), Author links open overlay panel (Farrell and Silva-Macher, 2017). The rice bank can also help avoid potential conflicts of interests, especially when the price of rice varies season to season.

At KS-REDD+, carbon financing from the project helped provide capacity building for local committees. Thus, local communities were able to create their own three-year development plan. The committees held open meetings and identified areas that needed support such as clean water systems, wells, meeting halls, water holes, and bridges. However, the WCS has also provided agricultural training, especially for fruit growing in six villages, namely P Nu chef, Sree Prah, Ou Rona, Sree Lyea, Pu Char, and Ou Chra.

3.2.4. Financial capital

At the OM-REDD+ site, the mean overall indicator for financial capital asset holding increased by 24% from 2.04 ± 0.06 before REDD+ to 2.53 ± 0.06 during REDD+ (Table 10). Likewise, at the KS-REDD+ site, it increased by 31% from 1.09 ± 0.06 before REDD+ to 2.48 ± 0.06 during REDD+. The scores for financial capital are generally lower compared to the other types of livelihood assets. Particularly low is the sub-indicator for agricultural production with a mean of 1.37 and 1.63 in OM-REDD+ and KS-REDD+, respectively. Furthermore, the same sub-indicator did not improve from the pre-project period to the implementation period as shown by the result of the WSR test. In both sites, the indicator for forestry income exhibits higher values than the one for non-forestry income, which is understandable as both sites have substantial areas covered by forests. On the other hand, the sub-indicator for non-forestry income registered higher growth rates in both sites than the sub-indicator for forestry-related income.

Table 11 identifies the occupations workers in local communities were engaged in, whether as a main income source or as a supplement. Crop farming was the main occupation for 95% of HHs at OM-REDD+ and 85% of HHs at KS-REDD+. Second was livestock farming (50% of HHs at OM and 47% of HHs at KS), followed by NTFP harvesting (17% at OM and 27% at KS).

Hvalkof (2013) and Poudel et al. (2015) found that REDD+ could contribute to maintaining sustainable livelihoods, food security, dynamic subsistence, income generation, and employment opportunities. Our findings in both locations confirm that REDD+ projects have contributed to maintaining sustainable livelihoods and food security. To achieve long-term sustainable development in both locations, greater emphasis should be placed on improving soil fertility, conserving underground water, and storing water for agricultural cultivation since the majority of locals are farmers who depend almost entirely on rainfall and soil fertility. In addition, as healthy forests can provide various ecosystem services to locals, REDD+ activities must urgently include restoration of degraded forests through planting, fire prevention, and prevention of unauthorized exploitation of fuelwood. Only 22 families (7.2% of respondents) in OM-REDD+ and 33 families (11.8%) in KS-REDD+ collected NTFP for their daily livelihood, either as direct or indirect sources of income. Of particular interest, only one family in each area was involved in NTFP collection as the main source of income. Therefore, forest products are not the main direct income source for local communities in either province.

3.2.5. Social capital

At OM-REDD+, the mean overall indicator of social capital asset holding increased by 7% from 2.43 before REDD+ to 2.60 during REDD+ (Table 12). Likewise, at KS-REDD+ site, it increased by 11% from 2.28 to 2.52. These increases were statistically significant in both sites. The differences between the two sites in terms of social capital levels as well as their changes were generally minor. However, the scores varied widely across sub-indicators. The sub-indicators on Q40, Q41, and participation in community affairs had low scores while those on Q36 and control over resources showed relatively high scores. It is noteworthy that the sub-indicator for control over resources has registered no improvement since the REDD+ project began.

3.2.6. Multivariate analysis of livelihood capital assets, REDD+ implementation, and respondents’ characteristics

Table 13 presents the result of the random effect regressions including all relevant factor variables. We consider the coefficient as statistically significant when the corresponding p-value is smaller than 0.10. The levels of physical, financial, social, and aggregate capital were higher in the OM-REDD+ site than in the KS-REDD+ site before project implementation. For instance, the aggregate capital score was higher in OM-

Table 10. Mean scores for financial capital asset holding in OM-REDD+ and KS-REDD+ project sites: sub-indicators and overall indicator.

Indicators	OM-REDD+ project site (n = 120)	KS-REDD+ project site (n = 112)	Change (%)	
	Before	During	WSR test (p-value)	
Household income related to forest	2.73	3.46	0.000	+27
Household income not related to forest	2.03	2.78	0.000	+37
Agricultural production	1.37	1.32	0.599	-4
Overall	2.04	2.53	0.000	+24
Household income related to forest	2.38	3.25	0.000	+37
Household income not related to forest	1.69	2.63	0.000	+56
Agricultural production	1.63	1.55	0.141	-5
Overall	1.90	2.48	0.000	+31

Note: WSR test = Wilcoxon Signed-Rank test.
Table 12. Mean scores for financial capital asset holding in OM-REDD+ and KS-REDD+ project sites: sub-indicators and overall indicator.

Indicators Before During	WSR test (p-value)	Change (%)
OM-REDD+ project site (n = 120)		
Q34 2.09 2.57 0.000 23		
Q36 3.50 3.12 0.004 -11		
Q37 2.67 3.06 0.043 15		
Rights in resources management/control over resources 3.69 3.70 0.617 0		
Q39 1.82 1.83 0.638 1		
Q40 1.62 1.70 0.046 3		
Q41 1.62 1.67 0.177 3		
Participate in community affairs 1.93 2.20 0.005 14		
Q43 2.27 2.67 0.000 18		
Q44 3.04 3.50 0.000 15		
Overall 2.43 2.60 0.000 7		
KS-REDD+ project site (n = 112)		
Q34 1.53 1.95 0.000 27		
Q36 3.46 2.72 0.000 -21		
Q37 2.53 3.50 0.000 38		
Rights in resources management/control over resources 3.36 3.33 0.694 -1		
Q39 1.92 2.38 0.000 24		
Q40 1.72 1.95 0.004 13		
Q41 1.78 2.09 0.000 17		
Participate in community affairs 1.54 1.87 0.001 21		
Q43 1.80 2.35 0.000 31		
Q44 3.17 3.03 0.515 -4		
Overall 2.28 2.52 0.000 11		

Note: WSR test = Wilcoxon Signed-Rank test.

Table 13. Random effect regression analysis of determinants of livelihood capital assets.

Independent Variable	Marginal effects of independent variables (p-value)					
Baseline difference:	Natural Capital (0.702)	Physical Capital (0.012)	Human Capital (0.375)	Financial Capital (0.039)	Social Capital (0.066)	Aggregate Livelihood Capital (0.001)
OM vs. KS	0.076	0.638	0.105	0.271	0.161	0.250
Difference in change:	Natural Capital (0.061)	Physical Capital (0.016)	Human Capital (0.957)	Financial Capital (0.371)	Social Capital (0.310)	Aggregate Livelihood Capital (0.000)
OM vs. KS	-0.334	-0.542	0.006	-0.092	-0.662	-0.205
Change in OM:	Natural Capital (0.061)	Physical Capital (0.016)	Human Capital (0.000)	Financial Capital (0.000)	Social Capital (0.000)	Aggregate Livelihood Capital (0.000)
During vs. Before 1	-1.408	0.583	1.301	0.579	0.226	0.228
Change in KS:	Natural Capital (0.000)	Physical Capital (0.000)	Human Capital (0.000)	Financial Capital (0.000)	Social Capital (0.000)	Aggregate Livelihood Capital (0.000)
During vs. Before 1	-1.074	1.125	1.301	0.579	0.236	0.236
Livestock income 2	Natural Capital (0.009)	Physical Capital (0.105)	Human Capital (0.300)	Financial Capital (0.731)	Social Capital (0.001)	Aggregate Livelihood Capital (0.345)
if Yes, 0 otherwise	-0.282	0.225	0.007	0.025	0.159	0.439
NTFP income 3	Natural Capital (0.501)	Physical Capital (0.804)	Human Capital (0.947)	Financial Capital (0.008)	Social Capital (0.840)	Aggregate Livelihood Capital (0.536)
if Yes, 0 otherwise	-0.086	0.022	-0.005	0.233	-0.012	0.030
Ranger income 2	Natural Capital (0.019)	Physical Capital (0.389)	Human Capital (0.980)	Financial Capital (0.002)	Social Capital (0.030)	Aggregate Livelihood Capital (0.062)
if Yes, 0 otherwise	0.213	-0.147	-0.002	0.274	0.133	0.994
Hunting income 2	Natural Capital (0.105)	Physical Capital (0.076)	Human Capital (0.619)	Financial Capital (0.090)	Social Capital (0.573)	Aggregate Livelihood Capital (0.021)
if Yes, 0 otherwise	0.225	-0.949	0.123	-0.481	-0.109	-0.366
Fishery income 2	Natural Capital (0.454)	Physical Capital (0.177)	Human Capital (0.071)	Financial Capital (0.432)	Social Capital (0.341)	Aggregate Livelihood Capital (0.300)
if Yes, 0 otherwise	-0.111	0.257	0.160	-0.079	0.066	0.0584
Business income 2	Natural Capital (0.161)	Physical Capital (0.098)	Human Capital (0.031)	Financial Capital (0.581)	Social Capital (0.828)	Aggregate Livelihood Capital (0.229)
if Yes, 0 otherwise	-0.193	0.293	0.177	0.052	-0.014	0.0629
Seven other variables 4	Natural Capital	Physical Capital	Human Capital	Financial Capital	Social Capital	Aggregate Livelihood Capital
insig	insig	insig	insig	insig		
Wald χ² (d.f. = 20)	225.12	87.82	631.81	152.50	96.62	186.52
R²	0.337	0.164	0.588	0.244	0.184	0.274

Notes: n (number of observations) = 464. Number of respondents = 232.

1) The sum of “change in KS” and “difference in change (OM vs. KS).” The p-values presented are the lower of the two original coefficient p-values.

2) Dummy variables that take the value of one when the respondent has income from the respective source and zero otherwise.

3) Seven variables that were statistically insignificant (i.e., p > 0.10) for all six capital assets are not presented in the table though they are included in the analyses as control variables. “insig” stands for statistically insignificant. The seven variables are: respondent’s sex, age, age squared, marital status, education level, and origin and whether the respondent worked as a civil servant, for an NGO, whether the HH had crop income, and family size.
REDD+ by 0.250 than in KS-REDD+ before implementation. In both sites, natural capital levels significantly decreased during implementation while all other types of capital including aggregate capital significantly increased. For instance, the physical capital score increased in OM-REDD+ by 0.583 and in KS-REDD+ by 1.125 during implementation. The aggregate livelihood capital score increased 0.205 faster in KS-REDD+ than in OM-REDD+.

Some respondent characteristics have significant effects on livelihood capital assets. Forest rangers had an aggregate capital level 0.094 higher on average than non-rangers while hunters had an aggregate capital level 0.366 lower on average than non-hunters. At a disaggregate level, livestock farmers tended to have lower levels of natural capital and higher levels of social capital than non-livestock holders. NTFP gatherers had higher levels of financial capital than non-gatherers. Fishers had higher levels of human capital than non-fishers. Those who ran their own business tended to have higher levels of physical and human capital. Finally, basic demographic variables such as age, sex, education, marital status, and family size have no significant effects on livelihood capital holdings.

4. Discussions

Although the overall scores have improved during the implementation period for both locations, some indicators have performed poorly (Tables 6, 7, 8, 9, 10, and 11). For example, the scores for access to forest management information, access to information on the implementation
budget, and access to information on forest management planning have improved but remain below the neutral levels of 2.5. There are various reasons that could lead to these stagnant scores. Many community forests in Cambodia do not have forest management plans and a related budget. Even if written documentation exists, locals are often excluded from decision-making because they are illiterate or because they are not motivated to take management planning seriously unless there are monetary incentives. As information on REDD+ as a source of carbon-based income generation spread, local were motivated to learn more about issues such as budgets for forest management. However, since this information was not made available, local communities tended to develop negative perceptions. Previous studies (Husseini et al., 2016; Acheampong et al., 2018) have found that involving local communities in the planning of forest management activities can encourage active participation in project implementation and monitoring.

For both locations, the indicator ‘participate in any meeting for community or natural resources development and management’ performs well (3.38 before, 4.11 during; with 3.81 and 4.25, respectively for both locations). This is probably due to the fact that since both locations are REDD+ project sites, more stakeholder consultations are required to have projects validated and verified.

As REDD+ adds social value to forests, it can also maintain cultures and communities (Hvalkof, 2013). In both REDD+ areas, the scores for the social capitals of participation and decision-making are above average and improved during implementation. This is a positive sign that a REDD+ project benefits social capital (see Figure 2).

A main objective of OM-REDD+ activities regarding livelihood is agricultural intensification while for KS-REDD+ it is to support alternative livelihoods that reduce pressures on forests and natural resources. The proposed agricultural intensification is to be implemented in the Oddar Meanchey REDD+ community only if there is carbon financing. However, there is no carbon finance generated from REDD+ and the activity has not been implemented. In KSWS REDD+, with its full support from WCS as well as from carbon finance revenue (USD $2.6 million) in 2016, alternative livelihood activities such as training for vegetable growing and animal husbandry have been implemented.

At the OM-REDD+ site, local communities were initially motivated by carbon-based incentives for forest protection because it was the first in Cambodia. However, the inability of the REDD+ project developer (the forestry administration) to deliver carbon revenues as promised led to a loss of trust from local communities and has encouraged some to pursue a business-as-usual scenario.

At the KS-REDD+ site, local communities were not as interested in forest protection because they had heard about the inability of the project developer to deliver the promised revenues. Nonetheless, KS-REDD+ was able to generate carbon revenues and local communities received benefits in various forms. Therefore, local communities regained trust in the REDD+ project and are highly motivated.

Many local residents are illiterate and their trust and motivation depend mostly on the ability of the project developer to deliver on promises. Forestry has been a sensitive issue due to illegal logging and land clearing for personal gain remained and contributed to the decline in forests. This is a critical for the long-term success of REDD+ activities.

For both locations, the indicator ‘participate in any meeting for community or natural resources development and management’ performs well (3.38 before, 4.11 during; with 3.81 and 4.25, respectively for both locations). This is probably due to the fact that since both locations are REDD+ project sites, more stakeholder consultations are required to have projects validated and verified.

As REDD+ adds social value to forests, it can also maintain cultures and communities (Hvalkof, 2013). In both REDD+ areas, the scores for the social capitals of participation and decision-making are above average and improved during implementation. This is a positive sign that a REDD+ project benefits social capital (see Figure 2).

A main objective of OM-REDD+ activities regarding livelihood is agricultural intensification while for KS-REDD+ it is to support alternative livelihoods that reduce pressures on forests and natural resources. The proposed agricultural intensification is to be implemented in the Oddar Meanchey REDD+ community only if there is carbon financing. However, there is no carbon finance generated from REDD+ and the activity has not been implemented. In KSWS REDD+, with its full support from WCS as well as from carbon finance revenue (USD $2.6 million) in 2016, alternative livelihood activities such as training for vegetable growing and animal husbandry have been implemented.

At the OM-REDD+ site, local communities were initially motivated by carbon-based incentives for forest protection because it was the first in Cambodia. However, the inability of the REDD+ project developer (the forestry administration) to deliver carbon revenues as promised led to a loss of trust from local communities and has encouraged some to pursue a business-as-usual scenario.

At the KS-REDD+ site, local communities were not as interested in forest protection because they had heard about the inability of the project developer to deliver the promised revenues. Nonetheless, KS-REDD+ was able to generate carbon revenues and local communities received benefits in various forms. Therefore, local communities regained trust in the REDD+ project and are highly motivated.

Many local residents are illiterate and their trust and motivation depend mostly on the ability of the project developer to deliver on promises. Forestry has been a sensitive issue due to illegal logging and land clearing for personal gain remained and contributed to the decline in forests. This is critical for the long-term success of REDD+ activities.
Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2020.e03802.

Acknowledgements

Authors would like to thank Sokna Kry of World Wildlife Fund for assisting in data collection and processing.

References

Acheampong, E.O., Agyeman, K.O., Ampomah, O., 2018. The motivation for community participation in forest management: the case of Seko-Wiawso forest district, Ghana. Int. For. Rev. 20 (1), 1–17.

Atha, J.O., Minang, P.A., Quinn, C.H., Duguma, L.A., 2015. Implementing REDD+ at the local level: assessing the key enablers for credible mitigation and sustainable livelihood outcomes. J. Environ. Manage. 157, 238–249.

Barrios, E., Valencia, V., Jonsson, M., Brauman, A., Hairiah, K.I., 2018. Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Int. J. Biodiv. Sci. Ecol. Serv. Manag. 14, 1–16.

Bond, P., 2010. Maintaining momentum after Copenhagen’s collapse: seal the deal or “seattle” the deal? J. Capit. Nat. Social. 21, 14–27. https://doi.org/10.1080/10455751003675839.

CBD, GIZ (Secretariat for the Conservation on Biological Diversity, & Deutsche Gesellschaft für Internationale Zusammenarbeit (giz) GmbH)., 2011. Biodiversity and livelihoods: REDD-plus benefits. In: Montreal and Eschborn: Secretariat for the Convention on Biological Diversity and Deutsche Gesellschaft für Internationale Zusammenarbeit (giz) GmbH.

Cho, B., Naing, A.K., Sapkota, L., Thang, L., 2017. Stabilizing and Rebuilding Myanmar’s Working Forests: Multiple Stakeholders and Multiple Choices. Bangkok, the Nature Conservancy and RECOFTC: The Center for People and Forests.

Duchelle, A.E., Simonet, G., Sunderlin, W.D., Wunder, S., 2018. What is REDD+ achieving on the ground? Curr. Opin. Environ. Sustain. 32, 134–140.

Enrici, A.M., Hubacek, K., 2018. Challenges for REDD+ in Indonesia: a case study of three project sites. Ecol. Soc. 23 (2), 7: https://dx.doi.org/10.5751/ES-09085-23.2.

Erbach, J.T., Oldeker, J.A., 2018. Forest landscape restoration for livelihoods and well-being. Curr. Opin. Environ. Sustain. 32, 76–83.

Etkin, I., Masa, S.A., Alkassim, R.S., 2016. Comparison of convenience sampling and purposive sampling. Am. J. Theor. Appl. Stat. 5 (1), 1–4.

Farrell, K.N., Silva-Macher, J.C., 2017. Exploring futures for Amazonia’s Sierra del divisor: pre- and post-harvest crop management to mitigate aflatoxin contamination in small farms. J. Peasant Stud. 36 (4), 716. https://doi.org/10.1080/03066150.2017.1347139.

Jacob, T., Brockington, D., 2017. Learning from the other: beneﬁts and fallacies of REDD+ in Tanzania. Land 7, 119. https://doi.org/10.3390/land7040119.

Schofield, A., Farewell, K.N., 2015. Small-scale cooperative banking and the production of capital: reflecting on the role of institutional agreements in supporting rural livelihood in Kampt, Cambodia. Econ. Soc. 119, 230–240.

Scoones, I., 1998. Sustainable Rural Livelihoods: a Framework for Analysis. Institute of Development. Studies Working Paper No 72, UK (1998). [online]. http://www.ids.ac.uk/files/dmfile/Wp72.pdf.

Scoones, I., 2009. Livelihoods perspectives and rural development. J. Peasant Stud. 36 (1), 171–196.

Seetha, A., Tsusaka, T.W., Munthali, W., Musukwa, M., Mwangwela, A., Kalumikiza, Z., Manani, T., Kachulu, L., Kumwenda, N., Musoke, M., Okori, P., 2018. How immediate and significant is the outcome of training on diversified diets, hygiene, and food safety? An effort to mitigate child undernutrition in rural Malawi. Publ. Health Nutr. 21 (6), 1156–1166.

Seetha, A., Tsusaka, T.W., Njorge, S.M.C., Kumwenda, N., Kachulu, L., Marumo, J., Machinjiri, N., Botha, R., Merwe, H.W., Masumba, J., Tavares, A., Heinrich, J.M., Simonet, G., Okori, P., 2019. Knowledge, attitude and practice of Malawian farmers on pre- and post-harvest crop management to mitigate aflatoxin contamination in groundnut, maize and sorghum—implication for behavioral change. Toxins 11 (12), 716. https://doi.org/10.3390/toxins11120716.

Simonet, G., Kansentym, A., de Perthuis, C., Newton, P., Schaap, B., 2014. REDD+ Projects in 2014: an Overview Based on a New Database and Typology. Cahiers de la Chaire Environnement du Climat—Information and Debates Series, p. 32.

Simonet, G., Suberie, J., Ezinie-de-Blas, D., Cromberg, M., Duchelle, A.E., 2019. Effectiveness of a REDD+ project in reducing deforestation in the Brazilian Amazon. Am. J. Agric. Econ 101 (1), 211–229.

Terra Global Capital. 2012. Reduced Emissions from Deforestation and Degradation in Community Forests—Oddar Meanchey, Cambodia. era Global Capital, San Francisco. Tsusaka, T.W., Otuoka, K. 2013. The declining impacts of climate on crop yields during the Green Revolution in India: 1972 to 2002. In: Otuoka, K., Larson, D.F. (Eds.), An African Green Revolution: Finding Ways to Boost Productivity on Small Farms. Springer, Dordrecht, pp. 71–94. Chapter 4.

Valero, M.A., Rodriguez, N., Winkler, P., Lopez, J., Dennison, M., Liang, Y., Turner, B.J., 2016. Comparing two sampling methods to engage hard-to-reach communities in research priority setting. BMC Med. Res. Methodol. 16 (1), 146.

WCS, 2014. Reduced Emissions from Deforestation and Degradation in Seima Protection Forest, Cambodia. Phnom Penh: Wildlife Conservation Society.

Yamane, T., 1973. Statistics - an Introductory Analysis, third ed. Harper and Row, New York.

Zarin, D.J., Harris, N.L., Baccini, A., Aksenov, D., Hansen, M.C., Azevedo-Ramos, C., et al., 2016. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Global Change Biol. 22, 1336–1347.