Suppression of FM-to-AM conversion in third-harmonic generation by tuning the ratio of modulation depth

Yisheng Yang1,2, Yizhou Tan1, Bin Feng2, Fuquan Li2, Wei Han2, and Jichun Tan1
1College of Science, National University of Defense Technology, Changsha 410073, China
2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China

Issues of Frequency-to-Amplitude modulation (FM-to-AM) conversion occurred in phase-modulated third-harmonic generation (THG) process are investigated. An expression about group-velocity is theoretically derived to suppress the FM-to-AM conversion, which appears to be dependant on the ratio of modulation depth of fundamental to second-harmonic when given the same modulation frequencies of them. Simulation results indicate that the induced AM in THG process can be suppressed effectively when the expression about group-velocity is satisfied.

PACS numbers: 42.65.Ky, 42.65.Yj, 42.65.Lm

Third-harmonic generation (THG) is a powerful technique to produce tunable-wavelength laser pulses, which have varieties of applications in fields such as inertial confinement fusion (ICF), photolithography, and biology [1, 2]. To meet the requirement of suppression of stimulated Brillouin scattering or beam smoothing, it is desirable to efficiently frequency-triple laser pulse that has a broad spectrum imposed by phase modulation [3]. Ideally, this phase modulation does not induce any variations in pulse intensity. However, as result of frequency-dependent effects like group-velocity dispersion, frequency modulation (FM) of input fields will be converted into amplitude modulation (AM) of output fields, which is named as FM-to-AM conversion [4]. Generally, the induced AM can lead to some higher-order nonlinear effects or may cause damages to optical elements due to instantaneous ultrahigh intensity in process, and thus needs to be prevented [3, 4]. Recently, the suppression of this FM-to-AM conversion has been attracting increasing interests, and many approaches, such as angular spectral dispersion, dual-tripler scheme, and pre-compensation with gratings or crystals, have been proposed and demonstrated [4-12].

In a previous paper, we reported that the induced AM in THG process could be suppressed at the retracing point of a crystal [13]. Here, the issue of FM-to-AM conversion in THG process is investigated from the viewpoint of modulation properties of laser pulses. An expression about group-velocity, which reveals the intrinsic group-velocity-matched relationship in phase-modulated THG process, is given to guide the suppression of FM-to-AM conversion.

Considering the effect of group-velocity mismatch, nonlinear coupling equations describing the THG process under the plane wave approximation can be written as [14]:

\[\frac{\partial A_1(z, t)}{\partial z} + \frac{1}{v_{g1}} \frac{\partial A_1(z, t)}{\partial t} = \frac{i\omega_{1d_e}}{n_{1c}} A_3 A_2 e^{i\Delta k_0 z}, \quad (1) \]

\[\frac{\partial A_2(z, t)}{\partial z} + \frac{1}{v_{g2}} \frac{\partial A_2(z, t)}{\partial t} = \frac{i\omega_{2d_e}}{n_{2c}} A_3 A_1 e^{i\Delta k_0 z}, \quad (2) \]

where subscripts 1, 2, and 3 refer to fundamental (FH), second-harmonic (SH), and third-harmonic (TH) pulse, respectively. By transforming the coordinate \((z, t)\) to local coordinates \((z, T = t - z/v_{g1})\) and \((z, T' = t - z/v_{g2})\), amplitude of the output TH field in frequency domain can be obtained under the pump undepletion approximation:

\[\tilde{A}_3(z, \omega) = \frac{i\omega_{3d_e}}{n_{3c}} \int_0^z \Re \exp(-i\Delta k_0 \xi) d\xi, \quad (4) \]

where

\[\Re = \int_{-\infty}^{\infty} \exp \left[-a(t + \xi \nu_1)^2 - b(t + \xi \nu_2)^2 \right] \]

\[\cdot \exp \left[i\sigma_1 \sin \left(2\pi \Omega_1(t + \xi \nu_1) \right) + i\sigma_2 \sin \left(2\pi \Omega_2(t + \xi \nu_2) \right) \right] \cdot \exp(i\omega t) dt. \]

In Eq. (4), \(a = 1/2T_1^2\) and \(b = 1/2T_2^2\) are parameters determined by pulse-duration of FH and SH pulses, while \(\nu_1 = 1/v_{g3} - 1/v_{g1}\) and \(\nu_2 = 1/v_{g3} - 1/v_{g2}\) are so-called group-velocity mismatches. The pulse-duration term \(\exp[-a(t + \xi \nu_1)^2 - b(t + \xi \nu_2)^2]\), as analyzed in Ref. [15], is significantly crucial for ultrashort (e.g., picosecond, femtosecond, or even shorter) laser pulses. However, for phase-modulated broadband THG, pulse duration is generally around nanosecond [4], and the effect of that pulse-duration term is negligible.

Since the pulse-duration term can be neglected, Eq. (4) turns out to be the Fourier transformation of

\[\exp \left[i\sigma_1 \sin \left(2\pi \Omega_1(t + \xi \nu_1) \right) + i\sigma_2 \sin \left(2\pi \Omega_2(t + \xi \nu_2) \right) \right]. \quad (6) \]
For simplicity, we initially apply Fourier transforms on
\[\exp \left[i \sigma_1 \sin \left(2 \pi \Omega_1 (t + \xi \nu_1) \right) \right], \]
and achieve
\[\sum_{n=-\infty}^{\infty} J_n(\sigma_1) \delta(\omega - 2 \pi n \Omega_1) \exp(i \omega \xi \nu_1). \]
(7)
Substituting (7) into (4), results show that the intensity of
TH pulse in frequency domain possesses the characteristic of
\[|\tilde{A}_3(z, \omega)|^2 \propto \text{sinc}^2(\omega \nu_1 z), \]
(8)
which implies that the output TH pulse will become
intensity-modulated if \(\nu_1 \neq 0 \). Since \(\nu_1 \neq 0 \) means no
group-velocity mismatch between FH and TH pulses, we
could conclude that the FM-to-AM conversion in process
is basically caused by group-velocity mismatches between
interacting phase-modulated pulses.

Similarly, for Eq.(6), we assume modulation frequencies
of FH and SH pulses to be the same (\(\Omega_1 = \Omega_2 = \Omega \)),
since random or unequal relations between \(\Omega_1 \) and \(\Omega_2 \)
makes analysis complicated. Let \(x = \sigma_2/\sigma_1 \), and reorganize
Eq.(6) as below
\[\exp i \sigma_1 \left[\sin(2 \pi \Omega_1 \nu_1) \cos(2 \pi \Omega_1 \nu_2) + \cos(2 \pi \Omega_1 \nu_1) \sin(2 \pi \Omega_1 \nu_2) \right]. \]
(9)
Obviously, if group-velocity mismatches \(\nu_1 \) and \(\nu_2 \) satisfy
\[\sin(2 \pi \Omega_1 \nu_1) + \sin(2 \pi \Omega_1 \nu_2) = 0, \]
(10)
Eq.(9) could be simplified to \(\exp \left[i \sigma' \sin(2 \pi \Omega t) \right] \), just with
the new modulation depth changing to \(\sigma' \) which is equivalent
to \(\sigma_1 \left[\cos(2 \pi \Omega \nu_1) + \cos(2 \pi \Omega \nu_2) \right] \). Compared
with analysis ahead, this indicates that no amplitude
modulation will be induced on output TH pulse.

Under pump undepletion (\(\xi \to 0 \)) and accordingly
\(\sin \theta \approx \theta \) approximations, by substituting \(\nu_1 \) and \(\nu_2 \),
Eq.(10) transforms to
\[\frac{1 + x}{v_{g3}} = \frac{1}{v_{g1}} + \frac{x}{v_{g2}} \quad (x = \sigma_2/\sigma_1, \Omega_2 = \Omega_1). \]
(11)
This expression about group-velocity gives guidance for
suppression of FM-to-AM conversion occurred in phase-modulated
THG process. Coincidentally, Eq.(11) looks exactly the same with Eq.(19) in Ref.[12], the only difference
between them is the physical meaning of parameter \(x \). \(x \) here represents the ratio of modulation depth of
SH to FH pulse, while \(x \) in Ref.[12] represents the ratio
of pulse duration of FH to SH pulse. Meanwhile,
on the other hand, the two equations are consistent with
each other, as frequency bandwidth of sinusoidally phase-modulated pulse is determined by \(2 \sigma \Omega \), while bandwidth of transform-limited ultrashort pulse is determined by the reciprocal of pulse duration.

Based on the split-step Fourier transform and the
fourth-order Runge-Kutta algorithm, the THG process

Wavelength	Pulse Duration	Modulation Frequency	Group-velocity Peak
1\(\omega/1.053\mu m\)	1	10	2.02\(\times 10^8\)
2\(\omega/0.527\mu m\)	1	10	1.94\(\times 10^8\)

Table I. Basic Parameters of Input 1\(\omega\) and 2\(\omega\) pulses

This work was partially supported by the National Natural Science Foundation of China (Grant No. 60708007), and the Science and Technology Foundation of Chinese State Key Laboratory of High Temperature and Density Plasma Physics (Grant No. 9140C6803010802).
FIG. 1. Temporal profiles with different x.

(a) $x=1$

(b) $x=2$

(c) $x=3$

(d) $x=4$
FIG. 2. Practical temporal profiles in KDP crystal

FIG. 3. Temporal profiles with $x = 1$ and $\sigma_1 = \sigma_2 = 15$

[1] P. J. Wegner, M. A. Henesian, D. R. Speck, C. Bibeau, R. B. Ehrlich, C. W. Laumann, J. K. Lawson, and T. L. Weiland, Appl. Opt. 31, 6414 (1992).
[2] M. Chen, Y. Chen, W. Hsiao, and Z. Gu, Thin Solid Films 515, 8515 (2007).
[3] D. Eimerl, J. M. Auerbach, C. E. Barker, D. Milam, and P. W. Milonni, Opt. Lett. 22, 1208 (1997).
[4] S. Hocquet, D. Penninckx, E. Bordenave, C. Gouedard, and Y. Jaouen, Appl. Opt. 47, 3338 (2008).
[5] J. A. Marozas, J. Opt. Soc. Am. B 19, 75 (2002).
[6] S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3434926 (1989).
[7] S. Hocquet, G. Lacroix, and D. Penninckx, Appl. Opt. 48, 2515 (2009).
[8] S. Vidal, J. Luce, and D. Penninckx, Opt. Lett. 36, 3494 (2011).
[9] S. Vidal, J. Luce, and D. Penninckx, Opt. Lett. 36, 88 (2011).
[10] H. Cao, X. Lu, L. Li, X. Yin, W. Ma, J. Zhu, and D. Fan, Appl. Opt. 50, 3609 (2011).
[11] Chen Y., Qian L., Zhu H., Fan D., Chin. Phys. Lett. 28, 044209 (2011).
[12] W. Wang, W. Han, F. Wang, J. Wang, L. Zhou, H. Jia, Y. Xiang, K. Li, F. Li, L. Wang, W. Zhong, X. Zhang, S. Zhao, and B. Feng, J. Opt. Soc. Am. B 28, 475 (2011).
[13] Y. Yang, B. Feng, W. Han, W. Zheng, F. Li, and J. Tan, Opt. Lett. 34, 3848 (2009).
[14] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[15] Y. Yang, W. Han, W. Zheng, J. Tan, F. Li, F. Wang, Y. Xiang, K. Li, B. Feng, H. Jia, D. Cao, and J. Dong, Phys. Rev. A 78, 053801 (2008).
[16] K. W. Kirby and L. G. DeShazer, J. Opt. Soc. Am. B 4,
1072 (1987).