Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials

Vincenzo Aquilanti1,2, Dimitri Marinelli3,4 and Annalisa Marzuoli4,5,6

1 Dipartimento di Chimica, Università di Perugia, I-06123 Perugia, Italy
2 Istituto di Metodologie Inorganiche e Plasmi, CNR, I-00016 Roma, Italy
3 Dipartimento di Fisica, Università degli Studi di Pavia, via A Bassi 6, I-27100 Pavia, Italy
4 INFN, Sezione di Pavia, via A Bassi 6, I-27100 Pavia, Italy
5 Dipartimento di Matematica ‘F Casorati’, Università degli Studi di Pavia, via Ferrata 1, I-27100 Pavia, Italy

E-mail: vincenzoaquilanti@yahoo.it, dimitri.marinelli@pv.infn.it and annalisa.marzuoli@pv.infn.it

Received 17 January 2013, in final form 19 March 2013
Published 15 April 2013
Online at stacks.iop.org/JPhysA/46/175303

Abstract

The action of the quantum mechanical volume operator, introduced in connection with a symmetric representation of the three-body problem and recently recognized to play a fundamental role in discretized quantum gravity models, can be given as a second-order difference equation which, by a complex phase change, we turn into a discrete Schrödinger-like equation. The introduction of discrete potential-like functions reveals the surprising crucial role here of hidden symmetries, first discovered by Regge for the quantum mechanical $6j$ symbols; insight is provided into the underlying geometric features. The spectrum and wavefunctions of the volume operator are discussed from the viewpoint of the Hamiltonian evolution of an elementary ‘quantum of space’, and a transparent asymptotic picture of the semiclassical and classical regimes emerges. The definition of coordinates adapted to the Regge symmetry is exploited for the construction of a novel set of discrete orthogonal polynomials, characterizing the oscillatory components of torsion-like modes.

PACS numbers: 03.65.Sq, 31.15.—p, 02.30.Gp, 04.60.Nc

(Some figures may appear in colour only in the online journal)

1. Introduction

An extension of familiar angular momentum theory to describe quantum dynamics as a function of discrete variables is required to cope with

6 Author to whom any correspondence should be addressed.
Figure 1. A quadrilateral and its Regge ‘conjugate’ illustrating the elementary spin network representation of the symmetric coupling scheme: each quadrilateral is dissected into two triangles sharing, as a common side, the diagonal ℓ. The other sides are of length $J_i = j_i + 1/2$ (and $J'_i = j'_i + 1/2$); ℓ, which is the discrete variable in equation (1), is shown as the distance between foci 1 and 3 of the confocal ellipses where the vertices of the quadrilaterals lie. The two sets of four side lengths of the Regge conjugate quadrilaterals are obtained by the reflection with respect to the common semiperimeter s (equation (4)). This relationship can be interpreted either as concerted stretchings and shortenings by the parameter $r = (j_1 - j_2 + j_3 - j_4)/2$ introduced in [22], or by $v = (j_1 - j_2 - j_3 + j_4)/2$ occurring in the projective interpretation of Robinson [23]. The difference between the semimajor axes of the two ellipses, $u = (j_1 + j_2 - j_3 - j_4)/2$, is also shown. Signs are decided according to the choice of primed and unprimed quadrilaterals. Also, u and v would exchange their roles had we chosen the other diagonal $\tilde{\ell}$ as the variable ℓ (see footnote 7).

In equation (11), the orthogonal nature of this set of transformations is exhibited explicitly by the matrix W. The passage to the Regge conjugate configuration $(s, -u, -r, -v)$ is revealed as a quaternionic conjugation, motivating our nomenclature.

(i) structure and reactivity in molecular, atomic and nuclear physics; see [1] and references therein;
(ii) the use in quantum chemistry of elliptic coordinates and orbitals [2, 3], by resorting to algebraic methods (see, e.g., the general references [4–6]) and particularly to the approach provided by dynamical symmetry algebras [7, 8]; and
(iii) spin network approaches to quantum gravity [9, 10].

An elementary spin network picture is shown schematically in figure 1: alternatively to the traditional sequential coupling of angular momenta, the volume operator $K = \mathbf{J}_1 \cdot \mathbf{J}_2 \times \mathbf{J}_3$, first defined in [11], acts democratically on vectors \mathbf{J}_1, \mathbf{J}_2 and \mathbf{J}_3 plus a fourth one \mathbf{J}_4 which closes a (not necessarily planar) quadrilateral vector diagram $\mathbf{J}_1 + \mathbf{J}_2 + \mathbf{J}_3 + \mathbf{J}_4 = 0$. Matrix elements of K were computed in [12] to provide a Hermitian representation, whose features have been studied by many [13–15] (see also [16] for an approach based on Bohr–Sommerfeld quantization). Carbone et al [17] gave a geometrically based (Ponzano–Regge [18], Schulten–Gordon [19]) WKB asymptotics.

In this work, by a suitable complex change of phase, we transform the imaginary antisymmetric representation of K into a real, time-independent Schrödinger equation, which
governs the Hamiltonian dynamics as a function of a discrete variable denoted ℓ. The Hilbert space spanned by the eigenfunctions of the volume operator [20] is constructed combinatorially and geometrically, applying polygonal relationships to the two quadrilateral vector diagrams in figure 1, which are ‘conjugated’ by a hidden symmetry discovered by Regge [21]. We analyze the consequences of this elusive and other symmetries, providing a perspective geometrical view, helpful for both the characterization of molecular spectra and torsion-like modes and also for the extraction of the polynomial components of rotovibrational wavefunctions.

2. Discrete Schrödinger equation and Regge symmetry

Eigenvalues k and eigenfunctions $\Psi^{(k)}_{\ell}$ of the volume operator are most simply obtained through the three-term recursion relationship first introduced in [12] and analyzed in [17], where analytical expressions of eigenvalues k and eigenvectors $\Psi^{(k)}_{\ell}$ are given for Hilbert spaces up to dimension 5. We follow the notation and units of reference [17] but find it crucial to apply a change of phase $\Psi^{(k)}_{\ell} = (-i)^{s} \Phi^{(k)}_{\ell}$ to obtain a real, finite-difference Schrödinger-like equation:

$$\alpha_{\ell+1} \Phi^{(k)}_{\ell+1} + \alpha_{\ell} \Phi^{(k)}_{\ell-1} = k \Phi^{(k)}_{\ell}. \quad (1)$$

$\Phi^{(k)}_{\ell}$ are the eigenfunctions of the volume operator expanded in the $J_{12} = J_{1} + J_{2}$ basis (with $\ell = j_{12}$). The matrix elements α_{ℓ} in (1) are given in terms of geometric quantities, namely

$$\alpha_{\ell} = \frac{F(\ell; j_{1} + 1/2; j_{2} + 1/2)F(\ell; j_{3} + 1/2; j_{4} + 1/2)}{\sqrt{(2\ell + 1)(2\ell - 1)}}, \quad (2)$$

where $F(A, B, C) = \frac{1}{4}[(A + B + C) (-A + B + C) (A - B + C) (A + B - C)]^{1/4}$ is the Archimedes’ (‘Heron’s’) formula for the area of a triangle with side lengths A, B and C. Thus, α_{ℓ} is proportional to the product of the areas of the two triangles sharing the side of length ℓ and forming a quadrilateral of sides $j_{1} + \frac{1}{2}$, $j_{2} + \frac{1}{2}$, $j_{3} + \frac{1}{2}$ and $j_{4} + \frac{1}{2}$, the parameters entering in equation (2).8 Note that the latter physically correspond to four quantum numbers associated with the quantum angular momenta J_{1}, J_{2}, J_{3} and J_{4}. They appear to be all on the same footing, indicating that the volume operator can be thought of as acting democratically on either a composite system of four objects with vanishing total angular momentum or a system of three objects with total angular momentum J_{4}.

The similarities between the discrete Schrödinger equation and the three-term recursion occurring for the $6j$ symbol motivated the authors of [17] to carry out the analysis of its semiclassical behavior along the lines of [18, 19]. Another similarity with the case of the $6j$ symbol appears concerning the range of ℓ. As noted in [20], the basic requirement that the four vectors form a (not necessarily planar) quadrilateral leads to identifying the range of ℓ with

$$D = 2 \cdot \min(j_{1}, j_{2}, j_{3}, j_{4}, j_{1}', j_{2}', j_{3}', j_{4}') + 1, \quad (3)$$

which is also the dimension of the Hilbert space where the volume operator acts. Here, j_{i} and j_{i}' are conjugated by the Regge symmetry (figure 1), i.e. connected by $j_{i}' = s - j_{i}$, where

$$s = (j_{1} + j_{2} + j_{3} + j_{4})/2 = (j_{1}' + j_{2}' + j_{3}' + j_{4}')/2 \quad (4)$$

7 The treatment would be analogous had we chosen the $J_{13} = J_{2} + J_{3}$ basis, with $\bar{\ell} = j_{23}$. This construction relies on the properties of the quadratic operator algebra generated by $(J_{12})^{2}$, $(j_{23})^{2}$ and K. Once the eigenbasis of $(J_{12})^{2}$ is chosen, the other two operators are also tridiagonal and have the form of equation (1).

8 In loop quantum gravity, j_{i} labels eigenvalues of the area operator $8\pi L_{P} \gamma \sqrt{\ell(j_{i} + 1)}$, where L_{P} is the Planck length and γ is the Immirzi parameter (see, e.g., [9, 16]).
is the semiperimeter, common to both quadrilaterals. The map between primed and unprimed \(j \) is given by the symmetric \(O(4) \) transformation in

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
\ell_1 \\
\ell_2 \\
\ell_3 \\
\ell_4
\end{pmatrix}
= \begin{pmatrix}
\ell'_1 \\
\ell'_2 \\
\ell'_3 \\
\ell'_4
\end{pmatrix},
\]

denoted \(R \) in the following. This is a striking manifestation of the relevance of the Regge symmetry in the present analysis: indeed, it can be checked that the volume operator is invariant under such symmetry and therefore its spectrum and eigenfunctions are invariant too. The Regge symmetry shows up also to be important to assist in determining ranges of \(\ell \) and of \(j \). From equation (3), one can decide to work with unprimed quantities, label as \(j_1 \) the minimum of the eight entries and order \(j_2 \) and \(j_4 \) according to \(j_1 \leq j_2 \leq j_4 \); then, \(j_2 - j_1 = \ell_n \leq \ell \leq j_1 + j_2 + 1 = \ell_M \) and \(j_4 - j_2 + j_1 \leq j_3 \leq j_4 + j_2 - j_1 \). The lower and upper limits in \(j_3 \) correspond, respectively, to \(u = 0 \) and \(r = 0 \), i.e. cases when the two Regge conjugate quadrilaterals are coincident.

3. Hamiltonian dynamics

Transparent techniques are available to study the semiclassical behavior of difference equations of type (1) (see, e.g., [24, 25] and references therein). The Hamiltonian operator for the discrete Schrödinger equation (1) can be written, in terms of the shift operator \(e^{\pm i\varphi} \), as

\[
\hat{H} = (\alpha_\ell e^{-i\varphi} + \alpha_{\ell+1} e^{i\varphi}) \quad \text{with} \quad \varphi = -i \frac{\partial}{\partial \ell}
\]

representing the variable canonically conjugate to \(\ell \). The two-dimensional phase space \((\ell, \varphi)\) supports the corresponding classical Hamiltonian function given by

\[
H = 2\alpha_{\ell+1/2} \cos \varphi,
\]

as illustrated in figure 2 for the two Regge conjugate quadrilaterals of figure 1, now allowed to fold along \(\ell \) with \(\varphi \) perceived as a torsion angle\(^9\).

The classical regime occurs when quantum numbers \(j \) are large and \(\ell \) can be considered as a continuous variable. This limit for \(\alpha_\ell \) permits us to draw the closed curves in the \((\ell, k)\) plane of figures 3 and 4, obtained when \(\varphi = 0 \) or \(\pi \) in equation (7). These curves have the physical meaning of torsional-like potential functions

\[
U_\ell^+ = -U_\ell^- = 2\alpha_\ell,
\]

viewing the quadrilaterals in figures 1 and 2 as mechanical systems. Noteworthy in figure 3 is the further symmetry along the \(k = 0 \) line (\(\varphi = \pi/2 \)), missing, e.g., in the otherwise similar case of 6j symbol [22], where ‘caustic curves’ are studied in a square of the \((j_{12}, j_{23})\) plane (the ‘screen’). Here, the perfect duality between \(j_{12} \) and \(j_{23} \) is lost and the symmetry along the \(k = 0 \) line appears in the potential functions as the continuous counterpart of the known fact that eigenvalues of the volume operator come in pairs, \(k \) and \(-k\) (plus possibly the \(k = 0 \) eigenvalue when \(D \) is odd). Another manifestation of this symmetry links the eigenfunctions: it is easy to show from equation (1) that \(\Phi^{(k)}_j = (-1)^j \Phi^{(-k)}_{j^\prime} \), and this appears in figure 3 as the striking alternating features in the positive part of the spectrum\(^{10}\).

\(^9 \) Similarly, the dependence on \(\ell \) can be appreciated as a concerted bending mode, for example writing the product of the areas in the numerator of equation (1) as \((j_1 j_2 j_3 j_4 \sin \theta_1 \sin \theta_2)/4 \), where \(\theta_1 \) and \(\theta_2 \) are internal angles in 1 and 3, respectively.

\(^{10} \) The ‘mirror’ symmetry of the 6j enlightened in [22] applies here too. In particular, allowing the negative values of \(\ell \) would permit infinite replicas of figures 3 and 4 on both sides of the \(\ell \) range.
Figure 2. The two quadrilaterals of figure 1, looked at as a mechanical system, evolve creasing the pairs of triangles in which are dissected along ℓ, according to a torsion mode corresponding to the same dihedral angle $\pi/2 + \phi$ in both cases. Adding the edges 24 and $2'4'$, two tetrahedra having the same volume can be visualized. In fact, their volume is proportional to H of equation (7) which is the product of the areas of two triangles divided by the length of the hinging edge times the sine of the dihedral angle. Thus classically, the volume is an energy function which is a constant of motion along the classical trajectories which are solutions of the Hamilton equations $d\ell/dt = \partial H/\partial \phi$; $d\phi/dt = -\partial H/\partial \ell$. Indeed, edges 24 and $2'4'$ would have the same length $\tilde{\ell} = j_23$ had we chosen to expand the volume operator in the basis of $J_{23} = J_2 + J_3$ (footnote 7): two different confocal ellipses would describe the system and vertices 2, 4 would coincide with 2', 4' as the foci of the new ellipses. On the other hand, vertices 1 and 3 would split to give 1' and 3', say, lying on the new ellipses and belonging either to a quadrilateral or to its conjugate.

Figure 3. Two examples of spectra of the volume operator: the horizontal lines represent the eigenvalue k, the curves are the caustics (the turning points of the semiclassical analysis), which limit the classically allowed region (in red U_+^ℓ, in blue U_-^ℓ equation (8)). As can be seen, the eigenvalues are symmetrically distributed with respect to $k = 0$ (which is an eigenvalue if D is odd). In green, the stick graph of three of the eigenfunctions (unnormalized). Left: parameters $j_1, j_2, j_3, j_4 = 8.5, 10.5, 13.5, 14.5$ or $s, u, v, r, v = 23.5, -4.5, 1.5, 0.5$. Right: all four parameters are doubled. The extrema of U_+^ℓ and U_-^ℓ bracket the spectrum, which can be well understood analytically and confirmed by extensive numerical checks. The characteristic features of U_+^ℓ and U_-^ℓ can be compared to those for the caustics for the $6j$ symbol [22].

The phenomenology of caustics presented in [22] can be interestingly translated to this case, but also taking into account such additional symmetries. Remarkably, the Regge symmetry is a key to the classification of the Lissajous type of potential functions given in
Figure 4. Potential functions U^+ and U^- (equation (8)) are shown for two cases where the conjugated tetrahedra coincide. The cases occur when (i) $r = 0$ (i.e. $j_1 + j_3 = j_2 + j_4$) (ii) $u = 0$ ($j_1 + j_2 = j_3 + j_4$). (iii) $v = 0$ ($j_1 + j_4 = j_2 + j_3$). From the viewpoint of figure 2, case (i) would correspond to a 'tangential' quadrilateral, while (ii) and (iii) to 'ex-tangential' ones. In the left panel, case where only one of the r, u, v variables is zero ($j_1, j_2, j_3, j_4 = 100.0, 110.0, 130.0, 140.0, v = 0$), while on the right, all three of them are zero. The latter is the case for an equilateral quadrilateral $j_1 = j_2 = j_3 = j_4 = 120.0$ (compare to [22] for the analogous cases which appear in the discussion of the $6j$ symbol).

equation (8). This also includes the limits where some quantities are large, which in the $6j$ case lead to $3j$ [22]. In the present case, this limiting procedure can be shown to lead to the cylindrical or planar spin networks discussed by Neville [26] for unpolarized and polarized gravitational waves.

4. Discrete orthogonal polynomials

The preceding considerations apply to the interesting issue of extracting the polynomial components out of wavefunctions and to this aim, the defining three-term recursion in equation (1) is sufficient according to the Favard theorem [27]. Actually, these polynomials can be obtained from the secular equation once eigenvalues are calculated. However, instead that directly from equation (1), we find it much more insightful: (i) to eliminate the square roots to give an unsymmetrical three-term recursion with polynomial coefficients; this leads at each step to a polynomial proportional to $\Phi^k_\ell(s, u, \ell)$ within a normalizing factor and a phase convention; (ii) to impose Regge invariance as a guideline to obtain an illuminating geometrical interpretation, specifically that of two triangles forming a tetrahedron, the two faces being hinged in the common side ℓ, and having, respectively, s and u, or r and v, as the other sides; (iii) to enforce the requirement of polynomial coefficients (see below) which highlight the role of the new variables s, u, r, v, introduced on a purely geometrical ground in figure 1. After some algebra, we obtain from equation (1) the following unsymmetrical three-term relation, which is manifestly Regge-invariant and has polynomial coefficients

$$\begin{align*}
(2\ell + 1)F^2(s, u, \ell - 1)p^{(k)}_{\ell-1} + (2\ell - 1)F^2(r, v, \ell + 1)p^{(k)}_{\ell+1} &= k(4\ell^2 - 1)p^{(k)}_\ell. \\
(9)
\end{align*}$$

The relation between $p^{(k)}_\ell$ and Φ^k_ℓ of equation (1) is given by

$$\begin{align*}
p^{(k)}_\ell &= N_\ell \Phi^k_\ell \quad \text{and} \quad N_{\ell-1} = \frac{F(s, u, \ell - 1)}{F(r, v, \ell)} N_\ell,
\end{align*}$$

(10)
a two-term relation which can be solved in a closed form; see, e.g., [3]. Normalization can be chosen by setting boundary conditions (e.g., \(p^{(k)}_{\ell n} = 1 \), \(p^{(k)}_{\ell n-1} = 0 \)).

5. Concluding remarks and outlook

In retrospect, we have introduced a linear transformation \(R \) which maps the two Regge conjugated quadrilaterals, equation (5), and another transformation \(W \) which defines the new variables (figure 1)

\[
\frac{1}{2} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
j_1 \\
j_2 \\
j_3 \\
j_4
\end{pmatrix}
= \begin{pmatrix}s \\
u \\
v \\
r
\end{pmatrix}. \tag{11}
\]

The matrix \(W \) is recognized as the famous one which provides atomic ‘hybrids’ of tetrahedral symmetry by combining one \(s \) and three \(p \) hydrogenoid orbitals [28]. Also, the \((s,u,v,r)\) parametrization is reminiscent of kinematic rotations [29] of the quadrilaterals whose edges are interpreted as distances among four equal mass bodies. For application to molecular structure, see [30].

Summarizing, the hidden Regge symmetry acts on the new variables in an interesting way

\[
\begin{pmatrix}
j_1, j_2, j_3, j_4
\end{pmatrix}
\xrightarrow[R]{W}
\begin{pmatrix}
j'_1, j'_2, j'_3, j'_4
\end{pmatrix}
\xrightarrow[W]{W}
\begin{pmatrix}
s, u, r, v
\end{pmatrix}.
\tag{12}
\]

where \(WRW = Q = \text{diag}(1, -1, -1, -1) \). Therefore, the transformation \(W \) and the introduction of new variables permit one to associate a quaternion and its conjugate to the two quadrilaterals twinned by the Regge symmetry. Implications of this remark in the mathematical context of dynamical algebras will be addressed elsewhere.

Regarding the quadrilaterals in figures 1 and 2 as mechanical devices, note that the \(u, v \) and \(r \) coordinates are interestingly analogous to parameters occurring in the Grashof classification of four-bar linkages [31], the elementary moving mechanism of engines. For example, the conditions for the identification of Regge conjugates, namely that at least one of them be zero, are those for the full folding of the mechanism.

Geometric properties of the \((n\text{-bar})\) linkages have been addressed in [32]. It would be interesting to discuss such an approach in the light of discrete Regge symmetry at least in the four-bar linkage case.

The educated guess that equivolume Regge conjugated tetrahedra are scissor-congruent eluded a constructive proof so far [33]: our construction (figure 2) works by creasing along a diagonal the two-plane isoperimetric quadrilaterals of figure 1, concertedly stretched or contracted by either \(r \) or \(u \), or by \(v \). Note however that the quadrilaterals are not scissor-congruent but rather each of them can be dissected into two triangles, with congruency with respect to the product, not the sum, of their areas.

The discrete orthogonal family of polynomials of section 4 is not ‘classical’, i.e. does not belong to the hypergeometric families of the Askey schemes (see [34] for relevance in applied quantum mechanics). Suitable generalizations would be interesting to be developed: indeed, the situation is similar to that encountered for the Mathieu, Ince, Lamè and Heun
families occurring for the separation of variables in elliptic coordinates for the action of the Laplacian operator on compact manifolds; see, e.g., [3, 35]. Limiting cases can be formulated accordingly, such as the cylindrical or planar spin networks [26], or the q extensions\footnote{The q extensions can be conveniently based on the formulation of α_ℓ in equation (2) as a product of two $6j$s \cite{12} for which the q-extension is well established.}.

This set of issues, besides the cases outlined here, appears to be relevant to special function theory, with particular reference to the development of orthogonal basis sets of interest in applied quantum mechanics, and specifically in atomic and molecular physics, and in quantum chemistry.

Acknowledgments

We are grateful to Mauro Carfora, Hal Haggard and Robert Littlejohn for useful discussions. DM and AM acknowledge partial support from PRIN 2010-11 Geometrical and analytical theories of finite and infinite dimensional Hamiltonian systems.

References

\begin{enumerate}
\item Aquilanti V, Bitencourt A, da S Ferreira Cristiane, Marzuoli A and Ragni M 2009 Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications Theor. Chem. Acc. 123 237–47
\item Aquilanti V, Cavalli S and Coletti C 1998 Hyperspherical symmetry of hydrogenic orbitals and recoupling coefficients among alternative bases Phys. Rev. Lett. 80 3209–12
\item Aquilanti V, Caligiana A and Cavalli S 2003 Hydrogenic elliptic orbitals, Coulomb Sturmian sets, and recoupling coefficients among alternative bases Int. J. Quantum Chem. 92 99–117
\item Cordero P and Ghiarardi G C 1972 Realizations of Lie algebras and the algebraic treatment of quantum problems Fortschr. Phys. 20 105–33
\item Iachello F and Levine R D 1995 Algebraic Theory of Molecules 1st edn (Topics in Physical Chemistry) (Oxford: Oxford University Press)
\item Aquilanti V, Bitencourt A C P, da S Ferreira C, Marzuoli A and Ragni M 2008 Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity Phys. Scr. 78 058103
\item Granovskii Y I, Lutzenko I M and Zhedanov A S 1992 Mutual integrability, quadratic algebras, and dynamical symmetry Ann. Phys. 217 1–20
\item Odake S and Sasaki R 2011 Discrete quantum mechanics J. Phys. A: Math. Theor. 44 353001 (arXiv:1104.0473)
\item Rovelli C 2007 Quantum Gravity (Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press)
\item Carfora M and Marzuoli A 2012 Quantum Triangulations (Lecture Notes in Physics vol 845) (Berlin: Springer)
\item Chakrabarti A 1964 On the coupling of 3 angular momenta Ann. Inst. Henri Poincaré A I 301–27
\item Lévy-Leblond J-M and Lévy-Nahas M 1965 Symmetrical coupling of three angular momenta J. Math. Phys. 6 1372–80
\item Rovelli C and Smolin L 1994 Discreteness of area and volume in quantum gravity Nucl. Phys. B 442 593–619 (arXiv:gr-qc/9411005)
\item Rovelli C and Smolin L 1995 Discreteness of area and volume in quantum gravity Nucl. Phys. B 456 753–4 (erratum)
\item De Pietri R and Rovelli C 1996 Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity Phys. Rev. D 54 2664–90 (arXiv:gr-qc/9602023)
\item Ashok A and Lewandowski J 1997 Quantum theory of geometry II: volume operators Adv. Theor. Math. Phys. 1 388–429 (arXiv:gr-qc/9711031)
\item Loll R 1995 Volume operator in discretized quantum gravity Phys. Rev. Lett. 75 3048–51 (arXiv:gr-qc/9506014v1)
\item Brunnemann J and Thiemann T 2006 Simplification of the spectral analysis of the volume operator in loop quantum gravity Class. Quantum Grav. 23 1289–346 (arXiv:gr-qc/0405060)
\item Brunnemann J and Rideout D 2008 Properties of the volume operator in loop quantum gravity: II. Detailed presentation Class. Quantum Grav. 25 065002 (arXiv:0706.0382)
\end{enumerate}
Brunnemann J and Rideout D 2008 Properties of the volume operator in loop quantum gravity: I. Results Class. Quantum Grav. 25 065001 (arXiv:0706.0469)

[15] Meissner K A 2006 Eigenvalues of the volume operator in loop quantum gravity Class. Quantum Grav. 23 617–26 (arXiv:gr-qc/0509049 [gr-qc])

[16] Bianchi E and Haggard H M 2011 Discreteness of the volume of space from Bohr–Sommerfeld quantization Phys. Rev. Lett. 107 011301 (arXiv:1102.5439)

Bianchi E and Haggard H M 2012 Bohr–Sommerfeld quantization of space Phys. Rev. D 86 124010 (arXiv:1208.2228)

[17] Carbone G, Carfora M and Marzuoli A 2002 Quantum states of elementary three-geometry Class. Quantum Grav. 19 3761–74 (arXiv:gr-qc/0112043)

[18] Ponzano G and Regge T 1968 Semiclassical limit of Racah coefficients Spectroscopic and Group Theoretical Methods in Physics ed F Bloch et al (Amsterdam: North-Holland) pp 1–98

Schulten K and Gordon R G 1975 Semiclassical approximations to 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta J. Math. Phys. 16 1971–88

Aquilanti V, Haggard H M, Hedeman A, Jeevanjee N, Littlejohn R G and Liang Y 2012 Semiclassical mechanics of the Wigner 6j-symbol J. Phys. A: Math. Theor. 45 065209 (arXiv:1009.2811)

[21] Regge T 1959 Symmetry properties of Racah’s coefficients Nuovo Cimento 11 116–7

Bitencourt A C, Marzuoli A, Ragni M, Anderson R W and Aquilanti V 2011 Exact and Asymptotic Computations of Elementary Spin Networks: Classification of the Quantum-Classical Boundaries (Lecture Notes in Computer Science vol 7333) (Berlin: Springer) pp 723–37 (arXiv:1211.4993)

[23] Robinson G d B 1970 Group representations and geometry J. Math. Phys. 11 3428–32

[24] Braun P A 1993 Discrete semiclassical methods in the theory of Rydberg atoms in external fields Rev. Mod. Phys. 65 115–61

[25] Neville D E 2006 Volume operator for singly polarized gravity waves with planar or cylindrical symmetry Phys. Rev. D 73 124005 (arXiv:gr-qc/0511006)

[26] Neville D E 2006 Volume operator for spin networks with planar or cylindrical symmetry Phys. Rev. D 73 124004 (arXiv:gr-qc/0511005)

[27] Hartenberg R S and Denavit J 1964 Kinematic Synthesis of Linkages 1st edn (Mechanical Engineering Series) (New York: McGraw-Hill)