THE SELBERG TRACE FORMULA FOR NON-UNITARY
REPRESENTATIONS OF THE LATTICE

WERNER MÜLLER

Abstract. Let $X = \Gamma \backslash G/K$ be a compact locally symmetric space. In this paper we establish a version of the Selberg trace formula for non-unitary representations of the lattice Γ. On the spectral side appears the spectrum of the “flat Laplacian” $\Delta^\#$, acting in the space of sections of the associated flat bundle. In general, this is a non-self-adjoint operator.

1. Introduction

Let G be a connected real semisimple Lie group with finite center and of non-compact type. Let K be a maximal compact subgroup of G. Then $S = G/K$ is a Riemannian symmetric space of nonpositive curvature. We fix an invariant metric on S which we normalize using the Killing form. Let $\Gamma \subset G$ be a discrete subgroup such that $\Gamma \backslash G$ is compact. For simplicity we assume that Γ is torsion free. Then Γ acts properly discontinuously on S and $X = \Gamma \backslash S$ is a compact locally symmetric manifold.

Let $\chi: \Gamma \to \text{GL}(V_\chi)$ be a finite-dimensional unitary representation. Denote by $E_\chi \to \Gamma \backslash S$ the associated flat vector bundle. It is equipped with a canonical Hermitian fiber metric h_χ and a compatible flat connection ∇^χ. Let $d_\chi: C^\infty(X, E_\chi) \to \Lambda^1(X, E_\chi)$ be the associated exterior derivative and let δ_χ be the formal adjoint of d_χ with respect to the inner products in $C^\infty(X, E_\chi)$ and $C^\infty(X, T^*(X) \otimes E_\chi)$, respectively, induced by the invariant metric on S and the fiber metric h_χ in E_χ. Let $\Delta_\chi = \delta_\chi d_\chi$ be the associated Laplace operator. Then Δ_χ is a second order elliptic, formally self-adjoint, nonnegative differential operator. The Selberg trace formula computes the distributional trace of $\cos t \sqrt{\Delta_\chi}$ in terms of a sum of distributions on G, which are associated to the conjugacy classes of Γ.

The trace formula has many applications. Of particular interest for the present paper are applications to Ruelle and Selberg zeta functions. Especially the analytic continuation and the functional equation of twisted Ruelle and Selberg zeta functions rely on the twisted Selberg trace formula \cite{Bo}, \cite{Sc}. Also spectral invariants of locally symmetric spaces such as analytic torsion and eta invariants can be studied with the help of the trace formula (see \cite{Fr}, \cite{Mi}, \cite{MS1}, \cite{MS2}). So far, these applications are restricted to unitary

Date: June 22, 2009.

1991 Mathematics Subject Classification. Primary: 11F72.

Key words and phrases. Selberg trace formula, spectral theory.
representations of Γ and it this very desirable to extend the scope of the trace formula so
that all finite-dimensional representations are covered. This is the main goal of this paper.

To begin with we recall the trace formula for a unitary representation χ (see [Se1], [Se2]).
Let $\text{spec}(\Delta_\chi)$ be the spectrum of Δ_χ. It consists of a sequence $0 \leq \lambda_1 < \lambda_2 < \cdots$ of

eigenvalues of finite multiplicities. Denote by $m(\lambda_k)$ the multiplicity of λ_k. Let $\varphi \in S(\mathbb{R})$
be even and assume that the Fourier transform $\hat{\varphi}$ of φ belongs to $C^\infty_c(\mathbb{R})$. Then $\varphi((\Delta_\chi)^{1/2})$
is a trace class operator and its trace is given by

\begin{equation}
\sum_{\lambda \in \text{spec}(\Delta_\chi)} m(\lambda) \varphi(\lambda^{1/2}) = \text{vol}(\Gamma \backslash S) \dim V_\chi h_\varphi(e)
\end{equation}

(1.1)

Let $\hat{\Delta}$ be the Laplacian of S, and let h_φ be the kernel of the invariant integral operator
$\varphi(\hat{\Delta}^{1/2})$. It belongs to the space $C^\infty_c(G//K)$ of K-bi-invariant compactly supported smooth
functions on G. Given $\gamma \in \Gamma$ let $\{\gamma\}_\Gamma$ denote its Γ-conjugacy class. Furthermore, let G_γ
and Γ_γ denote the centralizer of γ in G and Γ, respectively. Then the first version of the
trace formula is the following identity.

\begin{equation}
\sum_{\lambda \in \text{spec}(\Delta_\chi)} m(\lambda) \varphi(\lambda^{1/2}) = \text{vol}(\Gamma \backslash S) \dim V_\chi h_\varphi(e)
\end{equation}

+ \sum_{\{\gamma\}_\Gamma \neq e} \text{tr} \chi(\gamma) \text{vol}(\Gamma_\gamma \backslash G_\gamma) \int_{G_\gamma \backslash G} h_\varphi(g^{-1} \gamma g) \, dg.

(1.2)

To make this formula more explicite, one can use the Plancherel formula to express h_φ in
terms of φ. Furthermore, the orbital integrals

$I(g; \varphi) = \int_{G_\gamma \backslash G} h_\varphi(g^{-1} \gamma g) \, dg$

are invariant distributions and therefore, one can use Harish-Chandra’s Fourier inversion
formula to compute them (see [DKV, §4]). In the higher rank case this is rather complicated
and no closed formula is available. In the rank one case, however, the situation is much
better. There is a simple formula expressing the orbital integrals in terms of characters
which leads to an explicit form of the trace formula [Wa, Theorem 6.7].

To extend the Selberg trace formula to all finite-dimensional representations of Γ, we first
note that the sum on the right hand side of (1.2) is finite and therefore, it is well defined
for all finite-dimensional representations χ. The question is what is the appropriate operator
which replaces the Laplacian on the left hand side. In general there is no Hermitian metric
on E_χ which is compatible with the flat connection ∇^χ. A special case has been studied by
Fay [Fa]. He considered the analytic torsion $T_M(\chi)$ of a Riemann surface $M = \Gamma \backslash \mathbb{H}$ of genus
$g > 1$ and a unitary character $\chi \in \text{Hom}(\Gamma, S^1)$ and established the analytic continuation
of $T_M(\chi)$ to all characters $\chi \in \text{Hom}(\Gamma, \mathbb{C}^*)$. To this end he introduced a non-self-adjoint
Laplacian. We use a similar approach in the general case. The operator that replaces Δ_χ
is the “flat Laplacian” $\Delta^\#_\chi$ which is defined as follows. Let $\ast : \Lambda^p(T^*X) \to \Lambda^{n-p}(T^*X)$
be the Hodge star operator associated to the Riemannian metric of X. Extend \ast to an
operator $\ast \chi$ in $\Lambda^p(T^*X) \otimes E_\chi$ by $\ast \chi = \ast \otimes \Id_{E_\chi}$. Define $\delta^\# := (-1)^{n+1} \ast \chi \, d_\chi \ast \chi$. Then the flat Laplacian $\Delta^\#$ is defined as

$$\Delta^\#_\chi = \delta^\#_\chi \, d_\chi.$$

If χ is unitary, $\Delta^\#_\chi$ equals Δ_χ. For an arbitrary χ we pick any Hermitian fiber metric in E_χ and use it together with the Riemannian metric on X to introduce an inner product in $C^\infty(X, E_\chi)$. In general, $\Delta^\#_\chi$ is not self-adjoint w.r.t. this inner product. However, if we define the corresponding Laplace operator Δ_χ as above by $\delta_\chi \, d_\chi$, where the formal adjoint δ_χ is taken w.r.t. to the inner product, then $\Delta^\#_\chi$ has the same principal symbol as Δ_χ. This implies that the operator $\Delta^\#_\chi$ has nice spectral properties. Its spectrum is discrete and contained in a positive cone $C \subset \mathbb{C}$ with $\mathbb{R}^+ \subset C$ (see [Sh]). It follows that an Agmon angle θ exists for $\Delta^\#_\chi$ and we can define $\varphi \left((\Delta^\#_\chi)^{1/2} \right)$ by the usual functional calculus [Sh]. This is a trace class operator. Since φ is assumed to be even, $\varphi \left((\Delta^\#_\chi)^{1/2} \right)$ is independent of θ and we can delete θ from the notation. Lidskii’s theorem [GK, Theorem 8.4] generalizes (1.1). As mentioned above, the spectrum $\text{spec}(\Delta^\#_\chi)$ of $\Delta^\#_\chi$ is discrete and consists of eigenvalues only. For $\lambda \in \text{spec}(\Delta^\#_\chi)$ let $m(\lambda)$ denote the algebraic multiplicity of λ, i.e., $m(\lambda)$ is the dimension of the root space which consists of all $f \in C^\infty(X, E_\chi)$ such that there is $N \in \mathbb{N}$ with $(\Delta^\#_\chi - \lambda I)^N f = 0$. Then by Lidskii’s theorem we have

$$\text{(1.3)} \quad \text{Tr} \, \varphi \left((\Delta^\#_\chi)^{1/2} \right) = \sum_{\lambda \in \text{spec}(\Delta^\#_\chi)} m(\lambda) \varphi(\lambda^{1/2}).$$

The first version of our trace formula generalizes (1.2) with $\text{Tr} \, \varphi \left((\Delta^\#_\chi)^{1/2} \right)$ on the left hand side.

Actually, we prove a more general result. Let τ be an irreducible representation of K and $E_\tau \to \Gamma \backslash S$ the associated locally homogeneous vector bundle, equipped with its canonical invariant connection ∇^τ. Let $\nabla = \nabla^\tau \otimes \nabla^\chi$ be the product connection in $E_\tau \otimes E_\chi$, and let $\Delta^\#_{\tau, \chi} = -\text{Tr}(\nabla^2)$ be the corresponding connection Laplacian. Then for φ as above $\varphi \left((\Delta^\#_{\tau, \chi})^{1/2} \right)$ is a trace class operator and we establish a trace formula for this operator which is similar to the scalar case.

If G has split rank one, we get an explicite version of the trace formula. To describe it we need to introduce some notation. Let $G = KAN$ be an Iwasawa decomposition of G. Then $\dim A = 1$. Let a be the Lie algebra of A. The restriction of the Killing form to a^* defines an inner product on a^*. Let $|\rho|$ denote the norm of the half-sum ρ of positive roots of (G, A). Let $\gamma \in \Gamma \setminus \{e\}$. Then there is a unique closed geodesic γ_τ that corresponds to the Γ-conjugacy class $\{\gamma\}_\Gamma$ of γ. Denote by $l(\gamma)$ the length of γ_τ. Furthermore, let $\gamma_0 \in \Gamma$ be the unique primitive element such that $\gamma = \gamma_0^k$ for some $k \in \mathbb{N}$. Finally let $D(\gamma)$ be the discriminant of γ (see (6.2) for its definition). Let $\beta(\lambda) d\lambda$ be the Plancherel measure for spherical functions on G [He]. We can now state our main result in the scalar case which is the following theorem.
Theorem 1.1. For all even \(\varphi \in S(\mathbb{R}) \) with \(\hat{\varphi} \in C_c^\infty(\mathbb{R}) \) we have
\[
\begin{align*}
\sum_{\lambda \in \mathrm{spec}(\Delta^\#_\chi)} m(\lambda) \varphi \left((\lambda - |\rho|^2)^{1/2} \right) &= \dim(V_\chi) \frac{\mathrm{vol}(\Gamma \backslash S)}{2} \int_{\mathbb{R}} \varphi(\lambda) \beta(\lambda) \, d\lambda \\
&+ \sum_{\{\gamma\}_G \neq e} \mathrm{tr} \chi(\gamma) \frac{l(\gamma_0)}{D(\gamma)} \hat{\varphi}(l(\gamma)).
\end{align*}
\]
(1.4)

Note that for every \(c > 0 \) there are only finitely many conjugacy classes \(\{\gamma\}_G \) with \(l(\gamma) \leq c \). Therefore the sum on the right hand side is finite.

To describe our method we restrict attention to the scalar case, i.e., we consider the operator \(\Delta^\#_\chi \). Our method is based on the approach of Bunke and Olbrich [BO] to the Selberg trace formula in the unitary case. We consider the wave equation
\[
\left(\frac{\partial^2}{\partial t^2} + \Delta^\#_\chi \right) u(t) = 0, \quad u(0) = f, \quad u_t(0) = 0,
\]
(1.5)
for any initial conditions \(f \in C^\infty(X, E_\chi) \). Since the principal symbols of \(\Delta^\#_\chi \) is given by \(\sigma(x, \xi) = \| \xi \|^2 \mathrm{Id}_{E_x} \), the operator \(L = \frac{\partial^2}{\partial t^2} + \Delta^\#_\chi \) is strictly hyperbolic in the sense of [Ta1, Chapt. IV, §3]. Therefore (6.2) has a unique solution \(u(t; f) \). Let \(\varphi \in S(\mathbb{R}) \) be even such that \(\hat{\varphi} \in C_c^\infty(\mathbb{R}) \). Then it follows that
\[
\varphi \left((\Delta^\#_\chi)^{1/2} \right) f = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{\varphi}(t) u(t; f) \, dt.
\]
(1.6)

Let \(\tilde{u}(t; f) \) and \(\tilde{f} \) denote the lift of \(u(t, f) \) and \(f \), respectively, to the universal covering \(S \) of \(X \). Then the corresponding wave equation on \(S \) with initial conditions \(u(0) = \tilde{f}, \, u_t(0) = 0 \) is also strictly hyperbolic and by finite propagation speed it follows that it has a unique solution \(u(t; \tilde{f}) \). Thus we obtain \(\tilde{u}(t, \tilde{x}; f) = u(t, \tilde{x}; \tilde{f}) \). Since the lift of \(E_\chi \) to \(S \) is trivial, the lifted operator \(\tilde{\Delta}^\#_\chi \) takes the form \(\tilde{\Delta}^\#_\chi = \tilde{\Delta} \otimes \mathrm{Id}_{V_\chi} \), where \(\tilde{\Delta} \) is the Laplace operator on \(S \). Let \(h_\varphi \in C_c^\infty(G/\Gamma) \) be the kernel of the \(G \)-invariant integral operator \(\varphi \left(\tilde{\Delta}^{1/2} \right) \). Then it follows that the kernel \(K_\varphi(x, y) \) of \(\varphi \left((\Delta^\#_\chi)^{1/2} \right) \) is given by
\[
K_\varphi(x, y) = \sum_{\gamma \in \Gamma} h_\varphi(g_1^{-1} \gamma g_2) \chi(\gamma),
\]
(1.7)
where \(x = \Gamma g_1 K \) and \(y = \Gamma g_2 K \). One can now proceed in the same way as in the case of a unitary representation \(\chi \) and derive the twisted Selberg trace formula.

Besides unitary representations of \(\Gamma \), there is a second class of representations of \(\Gamma \) for which the usual trace formula can be applied. These are representations which are the restriction to \(\Gamma \) of a finite-dimensional representation \(\eta: G \to \mathrm{GL}(E) \). Let \(E_\eta \to X \) be the flat vector bundle associated to \(\eta |_{\Gamma} \). Then \(E_\eta \) is canonically isomorphic to the locally homogeneous vector bundle \(E_\tau \) associated to the principal \(K \)-bundle \(\Gamma \backslash G \to X \) via the representation \(\tau = \eta |_{\Gamma} \). The bundle carries a canonical Hermitian fiber metric and
the Laplacian in $C^\infty(X, E_\eta)$ with respect to this metric is closely related to the Casimir operator acting in $C^\infty(X, E_\tau)$. This brings us back to the usual framework of the Selberg trace formula for locally homogeneous vector bundles. Details will be discussed in section 7.

The paper is organized as follows. In section 2 we collect a number of facts about spectral theory of elliptic operators with leading symbol of Laplace type and we develop some functional calculus for such operators. The kernels of the associated integral operators are studied in section 3. Especially, we prove (1.6) and (1.7). In section 4 we apply these results to the case of twisted Bochner-Laplace operators. In section 5 we turn to the locally symmetric case and we prove the first version of the trace formula which is Theorem 5.1. In section 6 we specialize to the case where G has split rank one and we prove Theorem 1.1. In the final section 7 we are concerned with representations of Γ which are the restriction of a representation of G.

2. Functional calculus

In this section we develop the necessary facts of the functional calculus we are going to use in this paper.

Let X be a closed Riemannian manifold of dimension n and $E \to X$ a Hermitian vector bundle over X. We denote by $C^\infty(X, E)$ the space of smooth sections of E, and by $L^2(X, E)$ the space of L^2-sections of E w.r.t. the metrics on X and E. Let

$$P : C^\infty(X, E) \to C^\infty(X, E)$$

be an elliptic differential operator of order 2 with leading symbol

$$\sigma(P)(x, \xi) = \|\xi\|_x^2 \cdot \text{Id}_{E_x}.$$ \hfill (2.1)

For $I \subset [0, 2\pi]$ let

$$\Lambda_I = \{re^{i\theta} : 0 \leq r < \infty, \theta \in I\},$$

be the solid angle attached to I. The following lemma describes the structure of the spectrum of P.

Lemma 2.1. For every $0 < \varepsilon < \pi/2$ there exists $R > 0$ such that the spectrum of P is contained in the set $B_R(0) \cup \Lambda_{\left[-\varepsilon, \varepsilon\right]}$. Moreover the spectrum of P is discrete.

Proof. The first statement follows from [Sh, Theorem 9.3]. The discreteness of the spectrum follows from [Sh, Theorem 8.4]. □

It follows from Lemma 2.1 that there exists an Agmon angle θ for P and we can define the square root $P^{1/2}$ as in [Sh]. For the convenience of the reader we include some details. Denote by $\text{spec}(P)$ the spectrum of P. Let $\varepsilon > 0$. For simplicity we assume that $0 \notin \sigma(P)$. By Lemma 2.1 there exist $0 < \theta < 2\pi$ and $\varepsilon > 0$ such that

$$\text{spec}(P) \cap \Lambda_{\left[\theta-\varepsilon, \theta+\varepsilon\right]} = \emptyset.$$
\(\theta\) is called an Agmon angle for \(P\). Since \(\text{spec}(P)\) is discrete and \(0 \notin \sigma(P)\), there exists also \(r_0 > 0\) such that
\[
\text{spec}(P) \cap \{z \in \mathbb{C} : |z| < 2r_0\} = \emptyset.
\]
Define the contour \(\Gamma = \Gamma_{\theta,r_0} \subset \mathbb{C}\) as the union of three curves \(\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3\), where
\[
\Gamma_1 = \{re^{i\theta} : r_0 \leq r < \infty\}, \quad \Gamma_2 = \{re^{i\alpha} : \theta \leq \alpha \leq \theta + 2\pi\}, \quad \Gamma_3 = \{re^{i(\theta+2\pi)} : r_0 \leq r < \infty\}.
\]
Put
\[
P_\theta^{-1/2} = \frac{i}{2\pi} \int_{\Gamma_{\theta,r_0}} \lambda^{-1/2}(P - \lambda)^{-1} \, d\lambda.
\]
By [Sh, Corollary 9.2, Chapt. II, \(\S\)(2.2)] we have \(\|(P - \lambda)^{-1}\| \leq C|\lambda|^{-1}\) for \(\lambda \in \Gamma_{\theta,r_0}\). Therefore the integral is absolutely convergent. Put
\[
P_{\theta}^{1/2} = P \cdot P_{\theta}^{-1/2}.
\]
Then \(P_{\theta}^{1/2}\) satisfies \((P_{\theta}^{1/2})^2 = P\). If \(\theta\) is fixed, we simply denote this operator by \(P^{1/2}\). We recall [See, Sh, Theorem 11.2] that \(P^{1/2}\) is a classical pseudo-differential operator with principal symbol
\[
\sigma(P^{1/2})(x, \xi) = \| \xi \|_x \cdot \text{Id}_E.
\]
In any coordinate chart, the complete symbol \(q(x, \xi)\) of \(P^{1/2}\) has an asymptotic expansion
\[
q(x, \xi) \sim \sum_{j=0}^{\infty} q_{1-j}(x, \xi),
\]
where \(q_{1-j}(x, \xi)\) is homogeneous in \(\xi\) of order \(1 - j\). The same holds for \(\Delta_E^{1/2}\). Since the principal symbols coincide, we get
\[
P^{1/2} = \Delta_E^{1/2} + B,
\]
where \(B\) is a pseudo-differential operator of order zero. Especially, \(B\) is a bounded operator in \(L^2(X, E)\).

Let \(R_\lambda(P^{1/2}) = (P^{1/2} - \lambda I)^{-1}\) and \(R_\lambda(\Delta_E^{1/2}) = (\Delta_E^{1/2} - \lambda I)^{-1}\) be the resolvents of \(P^{1/2}\) and \(\Delta_E^{1/2}\), respectively. For \(\lambda \notin \text{spec}(\Delta_E^{1/2})\) we have the following equality
\[
P^{1/2} - \lambda I = (I + BR_\lambda(\Delta_E^{1/2}))(\Delta_E^{1/2} - \lambda I).
\]
Since \(\Delta_E^{1/2}\) is self-adjoint, the resolvent of \(\Delta_E^{1/2}\) satisfies
\[
\| R_\lambda(\Delta_E^{1/2}) \| \leq |\text{Im}(\lambda)|^{-1}
\]
[Ka, Chapt. V, \(\S\)3.5]. Let \(b = 2 \| B \|\). It follows from (2.4) that for \(|\text{Im}(\lambda)| \geq b\) we have \(\| BR_\lambda(\Delta_E^{1/2}) \| \leq 1/2\). Thus in this range of \(\lambda\) the operator \(I + BR_\lambda(\Delta_E^{1/2})\) is invertible and
\[
R_\lambda(P^{1/2}) = R_\lambda(\Delta_E^{1/2})(I + BR_\lambda(\Delta_E^{1/2}))^{-1}.
\]
Combined with (2.4) we get
\[(2.5) \quad \| R_\lambda(P^{1/2}) \| \leq 2 |\text{Im}(\lambda)|^{-1}, \quad |\text{Im}(\lambda)| \geq b. \]

We can now summarize the spectral properties of \(P^{1/2} \).

Lemma 2.2. The resolvent of \(P^{1/2} \) is compact. The spectrum of \(P^{1/2} \) is discrete. There exist \(b > 0 \) and \(c \in \mathbb{R} \) such that the spectrum of \(P^{1/2} \) is contained in the domain
\[(2.6) \quad \Omega_{b,c} = \{ \lambda \in \mathbb{C} : \text{Re}(\lambda) > c, \ |\text{Im}(\lambda)| < b \}. \]

Proof. Since \(P^{1/2} \) is an elliptic pseudo-differential operator of order 1 on a closed manifold, its resolvent is compact and hence, its spectrum is discrete. The remaining statements are a consequence of (2.5). \(\square \)

Though \(P \) is not self-adjoint in general, it still has nice spectral properties [Sh, Chapt. I, §8]. Given \(\lambda_0 \in \text{spec}(P) \), let \(\Gamma_{\lambda_0} \) be a small circle around \(\lambda_0 \) which contains no other points of \(\text{spec}(P) \). Put
\[\Pi_{\lambda_0} = \frac{i}{2\pi} \int_{\Gamma_{\lambda_0}} R_\lambda(P) \, d\lambda. \]

Then \(\Pi_{\lambda_0} \) is the projection onto the root subspace \(V_{\lambda_0} \). This is a finite-dimensional subspace of \(C^\infty(X, E) \) which is invariant under \(P \) and there exists \(N \in \mathbb{N} \) such that \((P - \lambda_0 I)^N V_{\lambda_0} = 0 \). Furthermore, there is a closed complementary subspace \(V'_{\lambda_0} \) to \(V_{\lambda_0} \) in \(L^2(X, E) \) which is invariant under the closure \(\bar{P} \) of \(P \) in \(L^2 \) and the restriction of \((\bar{P} - \lambda_0 I) \) to \(V'_{\lambda_0} \) has a bounded inverse. The *algebraic multiplicity* \(m(\lambda_0) \) of \(\lambda_0 \) is defined as
\[m(\lambda_0) = \dim V_{\lambda_0}. \]

If \(\lambda_1, \lambda_2 \in \text{spec}(P) \) with \(\lambda_1 \neq \lambda_2 \), then the projections \(\Pi_{\lambda_1} \) and \(\Pi_{\lambda_2} \) are disjoint, i.e.,
\[\Pi_{\lambda_1} \Pi_{\lambda_2} = \Pi_{\lambda_2} \Pi_{\lambda_1} = 0. \]

Since the principal symbols of \(P \) and \(\Delta_E \) are the same, we have \(P = \Delta + D \), where \(D \) is a first order differential operator. Let \(\bar{R}_\lambda(\Delta) \) be the resolvent of \(\Delta \). Then \(DR_\lambda(\Delta) \) is a compact operator. This means that \(D \) is compact relative to \(\Delta \) and it follows from [MK, I,§4, Theorem 4.3] that the root vectors are complete. Thus \(L^2(X, E) \) is the closure of the algebraic direct sum of finite-dimensional \(P \)-invariant subspaces \(V_k \)
\[(2.7) \quad L^2(X, E) = \bigoplus_{k \geq 1} V_k \]
such that the restriction of \(P \) to \(V_k \) has a unique eigenvalue \(\lambda_k \) and \(|\lambda_k| \to \infty \). In general, the sum (2.7) is not a sum of mutually orthogonal subspaces.

It follows from (2.7) that \(P_{\theta}^{1/2} \) has a similar spectral decomposition with eigenvalues \(\lambda_{\theta}^{1/2} \), \(\lambda \in \text{spec}(P) \), and \(m(\lambda_{\theta}^{1/2}) = m(\lambda) \).
Given $r > 0$, let
$$N(r, P) := \sum_{\lambda \in \text{spec}(P), |\lambda| \leq r} m(\lambda).$$
be the counting function of the eigenvalues of P, where eigenvalues are counted with their algebraic multiplicity.

Lemma 2.3. Let $n = \dim X$. We have
$$N(r, P) = \frac{\text{rk}(E) \text{vol}(X)}{(4\pi)^{n/2} \Gamma(n/2 + 1)} r^{n/2} + o(r^{n/2}), \quad r \to \infty.$$

Proof. It is well known that $\text{Tr}(e^{-t\Delta_E})$ has an asymptotic expansion of the form
$$\text{Tr}(e^{-t\Delta_E}) \sim t^{-n/2} \sum_{k \geq 0} a_k t^k, \quad t \to +0$$ (see [Gi, Lemma 1.8.3]), and by [Gi, Lemma 4.1.4] the leading coefficient a_0 is given by $a_0 = (4\pi)^{-n/2} \text{rk}(E) \text{vol}(X)$. Let $N(r, \Delta_E)$ be the counting function of the eigenvalues of Δ_E. Using the Tauberian theorem (see [Sh, Chapt. II, §14]), we get
$$N(r, \Delta_E) = \frac{\text{rk}(E) \text{vol}(X)}{(4\pi)^{n/2} \Gamma(n/2 + 1)} r^{n/2} + o(r^{n/2}), \quad r \to \infty.$$

The lemma follows from [Mk, I, §8, Corollary 8.5]. \qed

Let $h \in C_c^\infty(\mathbb{R})$ be even and set
$$\varphi(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} h(r) \cos(t\lambda) \, dr, \quad \lambda \in \mathbb{C}.$$

Then $\varphi(\lambda)$ is rapidly decreasing in each strip $|\text{Im}(\lambda)| < \delta, \delta > 0$. For $b > 0$ and $d \in \mathbb{R}$ let $\Gamma = \Gamma_{b,d} \subset \mathbb{C}$ be the contour which is union of the two half-lines $L_{\pm b,d} = \{ z \in \mathbb{C} : \text{Im}(z) = \pm b, \text{Re}(z) \geq d \}$ and the semi-circle $S = \{ d + be^{i\theta} : \pi/2 \leq \theta \leq 3\pi/2 \}$. By Lemma 2.2 there exist $b > 0, d \in \mathbb{R}$ such that $\text{spec}(P^{1/2})$ is contained in the interior of $\Gamma_{b,d}$. Put
$$\varphi(P^{1/2}) := \frac{i}{2\pi} \int_{\Gamma} \varphi(\lambda)(P^{1/2} - \lambda I)^{-1} \, d\lambda.$$

It follows from (2.5) that the integral is absolutely convergent.

Lemma 2.4. $\varphi(P^{1/2})$ is an integral operator with a smooth kernel.

Proof. First note that
$$\int_{\Gamma} \varphi(\lambda)(P - \lambda^2)(P^{1/2} - \lambda)^{-1} \, d\lambda = \int_{\Gamma} \varphi(\lambda)(P^{1/2} + \lambda) \, d\lambda = 0.$$

This implies that for $k, l \in \mathbb{N}$ we have
$$P^k \varphi(P^{1/2}) P^l = \frac{i}{2\pi} \int_{\Gamma} \lambda^{2(k+l)} \varphi(\lambda)(P^{1/2} - \lambda)^{-1} \, d\lambda.$$
The function $\lambda \mapsto \lambda^{2(k+l)} \varphi(\lambda)$ is rapidly decreasing on $|\text{Im}(\lambda)| = \pm b$. Hence $P^{k} \varphi(P^{1/2}) P^{l}$ is a bounded operator in L^{2}. Since P is elliptic, it follows that for all $s, r \in \mathbb{R}$, $\varphi(P^{1/2})$ extends to a bounded operator from $H^{s}(X, E)$ to $H^{r}(X, E)$, which shows that $\varphi(P^{1/2})$ is a smoothing operator and hence, it is an integral operator with a smooth kernel. \hfill \square

In order to continue, we need to establish an auxiliary result about smoothing operators. Let

$$A: L^{2}(X, E) \rightarrow L^{2}(X, E)$$

be an integral operator with a smooth kernel $H \in C^{\infty}(X \times X, E \boxtimes E^{*})$.

Proposition 2.5. A is a trace class operator and

$$\text{Tr}(A) = \int_{X} \text{tr} H(x, x) \, d\mu(x).$$

Proof. We generalize the proof of Theorem 1 in [La, Chapt VII, §1]. Let ∇^{E} be a Hermitian connection in E and let $\Delta_{E} = (\nabla^{E})^{*} \nabla^{E}$ be the associated Bochner-Laplace operator. Then Δ_{E} is a second order elliptic operator which is essentially self-adjoint and non-negative. Its spectrum is discrete. Let $\{\phi_{j}\}_{j \in \mathbb{N}}$ be an orthonormal basis of $L^{2}(X, E)$ consisting of eigensections of Δ_{E} with eigenvalues $0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow \infty$. We can expand H in the orthonormal basis as

$$H(x, y) = \sum_{i,j=1}^{\infty} a_{i,j} \phi_{i}(x) \otimes \phi_{j}^{*}(y),$$

where

$$a_{i,j} = \langle A \phi_{i}, \phi_{j} \rangle.$$

Since H is smooth, the coefficients $a_{i,j}$ are rapidly decreasing. Indeed, for every N we have

$$(1 + \lambda_{i} + \lambda_{j})^{N} a_{i,j} = \langle (I + \Delta_{E} \otimes I + I \otimes \Delta_{E})^{N} H, \phi_{i} \otimes \phi_{j}^{*} \rangle.$$

Hence for every $N \in \mathbb{N}$ there exists $C_{N} > 0$ such that

$$|a_{i,j}| \leq C_{N} (1 + \lambda_{i} + \lambda_{j})^{-N}, \quad i, j \in \mathbb{N}.$$

This implies that the series (2.11) converges in the C^{∞} topology. Let $P_{i,j}$ be the integral operator with kernel $\phi_{i} \otimes \phi_{j}^{*}$. Thus

$$P_{i,j}(\phi_{k}) = \begin{cases} 0, & k \neq j; \\ \phi_{i}, & k = j. \end{cases}$$

Let P_{j} be the orthogonal projection of $L^{2}(X, E)$ onto the 1-dimensional subspace $\mathbb{C} \phi_{j}$. Put

$$B = \sum_{i,j} a_{i,j} (1 + \lambda_{j})^{n} P_{i,j}, \quad C = \sum_{j} (1 + \lambda_{j})^{-n} P_{j}.$$
Then $A = BC$ and it follows from (2.8) that B and C are Hilbert-Schmidt operators. Thus A is a trace class operator. Furthermore, by (2.11) and (2.12) we get

$$\int_X \tr H(x,x) \, dx = \sum_{i,j=1}^{\infty} a_{i,j} \int_X \langle \phi_i(x), \phi_j(x) \rangle \, dx \sum_{i=1}^{\infty} a_{i,i} = \Tr(A).$$

Now we apply this result to $\varphi(P_{1/2})$. Let $K_\varphi(x,y)$ be the kernel of $\varphi(P_{1/2})$. Then by Proposition 2.5, $\varphi(P_{1/2})$ is a trace class operator and we have

$$\Tr \varphi(P_{1/2}) = \int_X \tr K_\varphi(x,x) \, d\mu(x).$$

By Lidskii’s theorem [GK, Theorem 8.4] the trace is equal to the sum of the eigenvalues of $\varphi(P_{1/2})$, counted with their algebraic multiplicities. The eigenvalues of $\varphi(P_{1/2})$ and their algebraic multiplicities can be determined as follows. Given $N \in \mathbb{N}$, let Π_N denote the projection onto the direct sum of the root subspaces V_k, $k \leq N$, of P. As explained above, we have

$$P \Pi_N = \sum_{k=1}^{N} (\lambda_k \Pi_k + D_k),$$

where Π_k is the projection onto V_k and D_k is a nilpotent operator in V_k. Then it follows from [Ka, I, (5.50)] that

$$\varphi(P_{1/2}) \Pi_N = \sum_{k=1}^{N} (\varphi(\lambda_k^{1/2}) \Pi_k + D'_k),$$

where D'_k is again a nilpotent operator in V_k. Thus $\varphi(P_{1/2})$ leaves the decomposition (2.7) invariant and the restriction of $\varphi(P_{1/2})$ to V_k has a unique eigenvalue $\varphi(\lambda_k^{1/2})$. Of course, some of the eigenvalues $\varphi(\lambda_k^{1/2})$ may coincide in which case the root space is the sum of the corresponding root spaces V_k. Now, applying Lidskii’s theorem [GK, Theorem 8.4] and (2.13), we get the following proposition.

Proposition 2.6. Let $\varphi \in \mathcal{S}(\mathbb{R})$ be even and suppose that $\hat{\varphi} \in C^\infty_c(\mathbb{R})$. Then we have

$$\sum_{\lambda \in \text{spec}(P)} m(\lambda) \varphi(\lambda^{1/2}) = \int_X \tr K_\varphi(x,x) \, dx.$$

By Lemma 2.3, the series on the left hand side is absolutely convergent.

Remark. Recall that $P^{1/2} = P_{\theta}^{1/2}$ depends on the choice of an Agmon angle θ, and so do the eigenvalues $\lambda_k^{1/2} = (\lambda_k)_{\theta}^{1/2}$. Let $0 < \theta < \theta' < 2\pi$ be two Agmon angles. Then it follows
from Lemma 2.1 that there are only finitely many eigenvalues $\lambda_1, \ldots, \lambda_m$ of P which are contained in $\Lambda[\theta, \theta']$. Therefore for $\lambda \in \text{spec}(P)$ we have

$$(\lambda)^{1/2}_{\theta'} = \begin{cases}
(\lambda)^{1/2}_{\theta}, & \text{if } \lambda \not\in \{\lambda_1, \ldots, \lambda_m\}; \\
-(\lambda)^{1/2}_{\theta}, & \text{if } \lambda \in \{\lambda_1, \ldots, \lambda_m\}.
\end{cases}$$

Since φ is even $\varphi\left((\lambda)^{1/2}_{\theta}\right)$ is independent of θ. This justifies the notation on the left hand side of (2.14).

\[\Box\]

3. The kernel and the wave equation

In this section we give a description of the kernel K_φ of the smoothing operator $\varphi(P^{1/2})$ in terms of the solution of the wave equation. Consider the wave equation

$$\frac{\partial^2 u}{\partial t^2} + Pu = 0, \quad u(0, x) = f(x), \quad u_t(0, x) = 0.$$

Proposition 3.1. For each $f \in C^\infty(X, E)$ there is a unique solution $u(t; f) \in C^\infty(\mathbb{R} \times X, E)$ of the wave equation (3.1) with initial condition f. Moreover for every $T > 0$ and $s \in \mathbb{R}$ there exists $C > 0$ such that for every $f \in C^\infty(X, E)$

$$\|u(t, f)\|_s \leq C \|u(0, f)\|_s, \quad |t| \leq T,$$

where $\| \cdot \|_s$ denotes the s-Sobolev norm.

Proof. We proceed in the same way as in [1a1] Chapt. IV, §§1,2 and replace (3.1) by a first order system. Let Δ_E be the Bochner-Laplace operator associated to the connection ∇^E in E. Put $\Lambda = (\Delta_E + \text{Id})^{1/2}$ and

$$L := \begin{pmatrix} 0 & \Lambda \\ -P\Lambda^{-1} & 0 \end{pmatrix} : C^\infty(X, E) \oplus C^\infty(X, E) \rightarrow C^\infty(X, E) \oplus C^\infty(X, E).$$

Then L is a pseudo-differential operator of order 1. Let u be a solution of (3.1). Put $u_1 = \Lambda u, \quad u_2 = \frac{\partial}{\partial t} u$.

Then (u_1, u_2) satisfies

$$\frac{\partial}{\partial t} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = L \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \quad u_1(0) = \Lambda f, \quad u_2(0) = 0.$$

On the other hand, let (u_1, u_2) be a solution of the initial value problem (3.4). Put $u = \Lambda^{-1}u_1$. Then u is a solution of (3.1). Thus it suffices to consider (3.4). By (2.1) it follows that $P = \Delta_E + D$ where D is a differential operator of order ≤ 1. Therefore we get

$$PA^{-1} = (\Delta_E + \text{Id})\Lambda^{-1} + (D - \text{Id})\Lambda^{-1} = \Lambda + B_1,$$
where \(B_1 \) is a pseudo-differential operator of order 0. Therefore
\[
L + L^* = \begin{pmatrix} 0 & \Lambda \\ -\Lambda - B_1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -\Lambda - B_1^* \\ \Lambda & 0 \end{pmatrix} = -\begin{pmatrix} 0 & B_1^* \\ B_1 & 0 \end{pmatrix},
\]
is a pseudo-differential operator of order zero. Hence (3.4) is a symmetric hyperbolic system in the sense of [Ta1, Chapt. IV, §2]. So we can proceed as in the proof of Theorem 2.3 in [Ta1, Chapt. IV, §2] to establish existence and uniqueness of solutions of (3.1). The estimation (3.2) follows from the proof using Cronwall’s inequality. □

Proposition 3.2. Let \(\varphi \in \mathcal{S}(\mathbb{R}) \) be even such that \(\hat{\varphi} \in C_c(\mathbb{R}) \). Then for every \(f \in C^\infty(X,E) \) we have
\[
\varphi(P^{1/2})f = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{\varphi}(t) u(t; f) \, dt.
\]

Proof. Let \(\Gamma \subset \mathbb{C} \) be as in (2.3). Let \(c \geq 0 \) be such that the spectrum of \(P + c \) is contained in \(\text{Re}(z) > 0 \). For \(\sigma > 0 \) define the operator \(\cos(tP^{1/2})e^{-\sigma(P+c)} \) by the functional integral
\[
\cos(tP^{1/2})e^{-\sigma(P+c)} = \frac{i}{2\pi} \int_{\Gamma} \cos(t\lambda)e^{-\sigma(\lambda^2+c)}(P^{1/2} - \lambda)^{-1} \, d\lambda.
\]
By (2.5) the integral is absolutely convergent. For \(f \in C^\infty(X,E) \) and \(\sigma > 0 \) put
\[
(3.5) \quad u(t; \sigma, f) := \cos(tP^{1/2})e^{-\sigma(P+c)}f.
\]
Then \(u(t; \sigma, f) \) satisfies
\[
\left(\frac{\partial^2}{\partial t^2} + P \right) u(t; \sigma, f) = \frac{i}{2\pi} \int_{\Gamma} \cos(t\lambda)e^{-\sigma(\lambda^2+c)}(P - \lambda^2)(P^{1/2} - \lambda)^{-1} \, d\lambda
\]
\[
= \frac{i}{2\pi} \int_{\Gamma} \cos(t\lambda)e^{-\sigma(\lambda^2+c)}(P^{1/2} + \lambda) \, d\lambda = 0.
\]
and \(u(0; \sigma, f) = e^{-\sigma(P+c)}f \). Thus \(u(t; \sigma, f) \) is the unique solution of (3.1) with initial condition \(e^{-\sigma(P+c)}f \). Then \(u(t; f) - u(t; \sigma, f) \) is the solution of (3.1) with initial condition \(f - e^{-(P+c)}f \). Hence by (3.2) we get for all \(s \in \mathbb{R} \)
\[
(3.6) \quad \| u(t; f) - u(t; \sigma, f) \|_{H^s} \leq C \| f - e^{-\sigma(P+c)}f \|_{H^s}, \quad |t| \leq T.
\]

Now note that for every \(f \in C^\infty(X,E) \) we have
\[
\lim_{\sigma \to 0} \| e^{-\sigma(P+c)}f - f \| = 0.
\]
This follows from the parametrix construction. Hence we get
\[
\| f - e^{-\sigma(P+c)}f \|_{H^s} = \| (P + c)^{s/2}f - e^{-\sigma(P+c)}(P + c)^{s/2}f \|_{L^2} \to 0
\]
as \(\sigma \to 0 \). Combined with (3.6) we get
\[
(3.7) \quad \lim_{\sigma \to 0} \| u(t; f) - u(t; \sigma, f) \|_{H^s} = 0.
\]
Furthermore we have
\[
\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \tilde{\varphi}(t) u(t; \sigma, f) \, dt = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \varphi(t) \frac{i}{2\pi} \int_{\Gamma} \cos(t\lambda) e^{-\sigma(\lambda^2 + c)(P^{1/2} - \lambda)^{-1}} f \, d\lambda \, dt
\]
\[
= \frac{i}{2\pi} \int_{\Gamma} \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \tilde{\varphi}(t) \cos(t\lambda) \, dt \right) e^{-\sigma(\lambda^2 + c)(P^{1/2} - \lambda)^{-1}} f \, d\lambda
\]
\[
= \frac{i}{2\pi} \int_{\Gamma} \varphi(t) e^{-\sigma(\lambda^2 + c)(P^{1/2} - \lambda)^{-1}} f \, d\lambda.
\]
For \(\sigma \to 0\), the right hand side converges to \(\varphi(P^{1/2})f\). By (3.7) the left hand side converges to \((2\pi)^{-1/2} \int_{\mathbb{R}} \tilde{\varphi}(t) u(t; f) \, dt\).

Let \(p: \widetilde{X} \to X\) be the universal covering of \(X\), \(\widetilde{E} = p^* E\), and \(\widetilde{P}: C^\infty(\widetilde{X}, \widetilde{E}) \to C^\infty(\widetilde{X}, \widetilde{E})\) the lift of \(P\) to \(\widetilde{X}\). Let \(\widetilde{u}(t, \tilde{x}, f)\) and \(\widetilde{f}\) be the pull back to \(\widetilde{X}\) of \(u(t, x; f)\) and \(f\), respectively. Then \(\widetilde{u}(t, f)\) satisfies
\[
(3.8) \quad \left(\frac{\partial^2}{\partial t^2} + \widetilde{P} \right) \widetilde{u}(t; f) = 0, \quad \widetilde{u}(0; f) = \widetilde{f}, \quad \frac{\partial \widetilde{u}}{\partial t}(0, f) = 0.
\]

By (2.1) we have \(\widetilde{P} = \widetilde{\Delta}_E + \tilde{D}\), where \(\tilde{D}\) is a differential operator of order \(\leq 1\). Then it follows from energy estimates as in [12] Chapt. 2, §8] that solutions of \((\frac{\partial^2}{\partial t^2} + \widetilde{P})u = 0\) have finite propagation speed. This implies that for every \(\psi \in C^\infty(\widetilde{X}, \widetilde{E})\) the wave equation
\[
(3.9) \quad \left(\frac{\partial^2}{\partial t^2} + \widetilde{P} \right) u(t; \psi) = 0, \quad u(0; \psi) = \psi, \quad \frac{\partial u}{\partial t}(0; \psi) = 0,
\]
has a unique solution. Hence we get
\[
\widetilde{u}(t; f) = u(t, \widetilde{f}).
\]

Let \(d(x, y)\) denote the geodesic distance of \(x, y \in \widetilde{X}\). For \(\delta > 0\) let
\[
U_\delta = \{(x, y) \in \widetilde{X} \times \widetilde{X}: d(x, y) < \delta\}.
\]

Proposition 3.3. There exist \(\delta > 0\) and \(H_\varphi \in C^\infty(\widetilde{X} \times \widetilde{X}, \text{Hom}(\widetilde{E}, \widetilde{E}))\) with \(\text{supp} H_\varphi \subset U_\delta\) such that for all \(\psi \in C^\infty(\widetilde{X}, \widetilde{E})\) we have
\[
\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \tilde{\varphi}(t) u(t, \tilde{x}; \psi) \, dt = \int_{\widetilde{X}} H_\varphi(\widetilde{x}, \widetilde{y})(\psi(\widetilde{y})) \, d\widetilde{y}.
\]

Proof. Suppose that \(\text{supp} \tilde{\varphi} \subset [-T, T]\). Let \(V \subset \widetilde{X}\) be an open relatively compact subset. For \(r > 0\) let
\[
V_r = \{y \in V: d(y, V) < r\}.
\]
Let \(\chi \in C_c^\infty(V_{2T})\) such that \(\chi \equiv 1\) on \(V_T\). By finite propagation speed, we have
\[
u(t, \tilde{x}; \psi) = u(t, \tilde{x}; \chi \psi), \quad \tilde{x} \in V, \quad |t| < T,
\]
for all \(\psi \in C^\infty(\widetilde{X}, \widetilde{E})\). Thus we are reduced to the case of a compact manifold and the proof follows from Lemma 2.4 and Proposition 3.2. \(\square\)
Using Proposition 3.3 together with (3.9) and Proposition 3.2, we obtain

\[(3.10) \quad \phi(P^{1/2})f(\tilde{x}) = \int_{\tilde{X}} H_{\phi}(\tilde{x}, \tilde{y})(\tilde{f}(\tilde{y})) \, d\tilde{y} \]

for all \(f \in C^\infty(X, E) \). Let \(F \subset \tilde{X} \) be a fundamental domain for \(\Gamma \). Given \(\gamma \in \Gamma \), let \(R_\gamma: \tilde{E} \to \tilde{E} \) be the induced bundle map. Thus for each \(\tilde{y} \in \tilde{X} \), we have a linear isomorphism \(R_\gamma: \tilde{E}_{\tilde{y}} \to \tilde{E}_{\gamma \tilde{y}} \). Note that \(\tilde{f} \) satisfies

\[\tilde{f}(\gamma \tilde{y}) = R_\gamma(\tilde{f}(\tilde{y})), \quad \gamma \in \Gamma. \]

Then we get

\[
\int_{\tilde{X}} H_{\phi}(\tilde{x}, \tilde{y})(\tilde{f}(\tilde{y})) \, d\tilde{y} = \sum_{\gamma \in \Gamma} \int_{\gamma F} H_{\phi}(\tilde{x}, \gamma \tilde{y})(\tilde{f}(\tilde{y})) \, d\tilde{y} \\
= \int_{F} \left(\sum_{\gamma \in \Gamma} H_{\phi}(\tilde{x}, \gamma \tilde{y}) \circ R_\gamma \right)(\tilde{f}(\tilde{y})) \, d\tilde{y}. \]

Combining this expression with (3.10), it follows that the kernel \(K_\phi \) of \(\phi(P^{1/2}) \) is given by

\[(3.11) \quad K_\phi(x, y) = \sum_{\gamma \in \Gamma} H_{\phi}(\tilde{x}, \gamma \tilde{y}) \circ R_\gamma, \]

where \(\tilde{x} \) and \(\tilde{y} \) are any lifts of \(x \) and \(y \) to the fundamental domain \(F \). So by Proposition 2.6 we get

Proposition 3.4. Let \(\phi \in S(\mathbb{R}) \) be even and suppose that \(\hat{\phi} \in C^\infty_c(\mathbb{R}) \). Then we have

\[\sum_{\lambda \in \text{spec}(P)} m(\lambda) \phi(\lambda^{1/2}) = \sum_{\gamma \in \Gamma} \int_{F} \text{tr}(H_{\phi}(\tilde{x}, \gamma \tilde{x}) \circ R_\gamma) \, d\tilde{x}. \]

Note that the sum on the right is finite.

4. **The twisted Bochner-Laplace operator**

Let \(E \to X \) be a complex vector bundle with covariant derivative \(\nabla \). Define the invariant second covariant derivative \(\nabla^2 \) by

\[\nabla^2_{U,V} = \nabla_U \nabla_V - \nabla_{\nabla_U V}, \]

where \(U, V \) are any two vector fields on \(X \). Then the connection Laplacian \(\Delta^\# \) is defined by

\[\Delta^\# = -\text{Tr}(\nabla^2). \]
Let \((e_1, ..., e_n)\) be a local frame field. Then
\[
\Delta^\# = - \sum_j \nabla^2_{e_j, e_j}.
\]

This formula implies that the principal symbol of \(\Delta^\#\) is given by
\[
\sigma(\Delta^\#)(x, \xi) = \|\xi\|^2_id_{E_x}.
\]

Thus the results of the previous section can be applied to \(\Delta^\#\).

Assume that \(E\) is equipped with a Hermitian fiber metric and \(\nabla\) is compatible with the metric. Then it follows that
\[
\nabla^*\nabla = - \text{Tr} \nabla^2, \quad \text{[LM, p.154]},
\]
i.e., the connection Laplacian equals the Bochner-Laplace operator \(\Delta_E = \nabla^*\nabla\).

Now let \(\rho: \pi_1(X) \to \text{GL}(V)\) be a finite-dimensional complex representation of \(\pi_1(X)\). Let \(F \to X\) be the associated flat vector bundle with connection \(\nabla^F\). Let \(E\) be a Hermitian vector bundle with Hermitian connection \(\nabla^E\). We equip \(E \otimes F\) with the product connection \(\nabla^{E \otimes F}\), which is defined by
\[
\nabla^{E \otimes F}_Y = \nabla^E_Y \otimes 1 + 1 \otimes \nabla^F_Y,
\]
for \(Y \in C^\infty(X, TX)\). Let \(\Delta^\#_{E, \rho}\) be the connection Laplacian associated to \(\nabla^{E \otimes F}\). Locally it can be described as follows. Let \(U \subset X\) be an open subset such that \(F|_U\) is trivial. Then \((E \otimes F)|_U\) is isomorphic to the direct sum of \(m = \text{rank}(F)\) copies of \(E|_U\):
\[
(E \otimes F)|_U \cong \oplus_{i=1}^m E|_U.
\]
Let \(e_1, ..., e_m\) be a basis of flat sections of \(F|_U\). Then each \(\varphi \in C^\infty(U, (E \otimes F)|_U)\) can be written as
\[
\varphi = \sum_{j=1}^m \varphi_j \otimes e_j,
\]
where \(\varphi_i \in C^\infty(U, E|_U), i = 1, ..., m\). Then
\[
\nabla^{E \otimes F}_Y(\varphi) = \sum_j (\nabla^E_Y \varphi_j) \otimes e_j.
\]

Let \(\Delta_E = (\nabla^E)^*\nabla^E\) be the Bochner-Laplace operator associated to \(\nabla^E\). Using (4.1), we get
\[
(4.2) \quad \Delta^\#_{E, \rho} \varphi = \sum_j (\Delta_E \varphi_j) \otimes e_j.
\]

Let \(\tilde{E}\) and \(\tilde{F}\) be the pullback to \(\tilde{X}\) of \(E\) and \(F\), respectively. Then \(\tilde{F} \cong \tilde{X} \times V\) and
\[
C^\infty(\tilde{X}, \tilde{E} \otimes \tilde{F}) \cong C^\infty(\tilde{X}, \tilde{E}) \otimes V.
\]
It follows from (4.2) that with respect to this isomorphism, the lift \(\tilde{\Delta}_{E,\rho} \) of \(\Delta_{E,\rho} \) to \(\tilde{X} \) takes the form

\[
\tilde{\Delta}_{E,\rho} = \tilde{\Delta}_E \otimes \text{Id},
\]

where \(\tilde{\Delta}_E \) is the lift of \(\Delta_E \) to \(\tilde{X} \). Let \(\psi \in C_\infty^c(\tilde{X}, \tilde{E}) \otimes V \). Then the unique solution of the wave equation

\[
\left(\frac{\partial^2}{\partial t^2} + \tilde{\Delta}_{E,\rho}^\# \right) u(t; \psi) = 0, \quad u(0; \psi) = \psi, \quad u_t(0; \psi) = 0,
\]

is given by

\[
u(t; \psi) = \left(\cos \left(t(\tilde{\Delta}_E)^{1/2} \right) \otimes \text{Id} \right) \psi.
\]

Let \(\varphi \) be as above and let \(k_\varphi(\tilde{x}, \tilde{y}) \) be the kernel of

\[
\varphi \left((\tilde{\Delta}_E)^{1/2} \right) = \frac{1}{\sqrt{2\pi}} \int_\mathbb{R} \tilde{\varphi}(t) \cos \left(t(\tilde{\Delta}_E)^{1/2} \right) dt.
\]

Then the kernel \(H_\varphi \) of Proposition 3.3 is given by \(H_\varphi(\tilde{x}, \tilde{y}) = k_\varphi(\tilde{x}, \tilde{y}) \otimes \text{Id} \). Let \(R_\gamma : \tilde{E}_{\tilde{y}} \to \tilde{E}_{\gamma \tilde{y}} \) be the canonical isomorphism. Then it follows from (3.14) that the kernel of the operator \(\varphi \left((\Delta_{E,\rho}^\#)^{1/2} \right) \) is given by

\[
K_\varphi(x, y) = \sum_{\gamma \in \Gamma} k_\varphi(\tilde{x}, \gamma \tilde{y}) \circ (R_\gamma \otimes \rho(\gamma)).
\]

Combined with (4.4) we get

Proposition 4.1. Let \(F_\rho \) be a flat vector bundle over \(X \), associated to a finite-dimensional complex representation \(\rho : \pi_1(X) \to \text{GL}(V) \). Let \(\Delta_{E,\rho}^\# \) be the twisted connection Laplacian acting in \(C_\infty^\infty(X, E \otimes F_\rho) \). Let \(\varphi \in \mathcal{S}(\mathbb{R}) \) be even with \(\tilde{\varphi} \in C_\infty^\infty(\mathbb{R}) \) and denote by \(k_\varphi(\tilde{x}, \tilde{y}) \) the kernel of \(\varphi \left((\Delta_{E,\rho}^\#)^{1/2} \right) \). Then we have

\[
\sum_{\lambda \in \text{spec}(\Delta_{E,\rho}^\#)} m(\lambda) \varphi(\lambda^{1/2}) = \sum_{\gamma \in \Gamma} \text{tr} \rho(\gamma) \int_F \text{tr} (k_\varphi(\tilde{x}, \gamma \tilde{x}) \circ R_\gamma) \, d\tilde{x}.
\]

5. **Locally symmetric spaces**

In this section we specialize to the case where \(X \) is a locally symmetric manifold. Let \(G \) be a connected semisimple real Lie group of non-compact type with finite center. Let \(K \subset G \) be a maximal compact subgroup of \(G \). Denote by \(\mathfrak{g} \) and \(\mathfrak{k} \) the Lie algebras of \(G \) and \(K \), respectively. Let

\[
\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}
\]

be the Cartan decomposition. Put \(S = G/K \). This is a Riemannian symmetric space of non-positive curvature. The invariant metric is obtained by translation of the restriction of the Killing form to \(\mathfrak{p} \cong T_e(G/K) \). Let \(\Gamma \subset G \) be a discrete, torsion free, cocompact
subgroup. Then \(\Gamma \) acts freely on \(S \) by isometries and \(X = \Gamma \backslash S \) is a compact locally symmetric manifold.

Let \(\tau : K \to \text{GL}(V_\tau) \) be a finite-dimensional unitary representation of \(K \), and let
\[
\widetilde{E}_\tau = (G \times V_\tau) / K \to G / K
\]
be the associated homogeneous vector bundle, where \(K \) acts on the right as usual by
\[
(g, v)k = (gk, \tau(k^{-1})v), \quad g \in G, k \in K, v \in V_\tau.
\]
Let
\[
(5.2) \quad C_\infty(G; \tau) := \left\{ f : G \to V_\tau \mid f \in C_\infty, f(gk) = \tau(k^{-1})f(g), g \in G, k \in K \right\}.
\]
Similarly, by \(C_\infty^c(G; \tau) \) we denote the subspace of \(C_\infty(G; \tau) \) of compactly supported functions and by \(L^2(G; \tau) \) the completion of \(C_\infty^c(G; \tau) \) with respect to the inner product
\[
\langle f_1, f_2 \rangle = \int_{G/K} \langle f_1(g), f_2(g) \rangle \, dg.
\]
There is a canonical isomorphism
\[
(5.3) \quad C_\infty(S, \widetilde{E}_\tau) \cong C_\infty(G; \tau).
\]
\[\text{[Mi, p.4].}\] Similarly, there are isomorphisms \(C_\infty^c(S, \widetilde{E}_\tau) \cong C_\infty^c(G; \tau) \) and \(L^2(S, \widetilde{E}_\tau) \cong L^2(G; \tau) \).

Let \(\nabla^\tau \) be the canonical \(G \)-invariant connection on \(\widetilde{E}_\tau \). It is defined by
\[
\nabla^\tau_{g,Y}f(gK) = \left. \frac{d}{dt} \right|_{t=0} (g \exp(tY))^{-1} f(g \exp(tY)K),
\]
where \(f \in C_\infty(G; \tau) \) and \(Y \in \mathfrak{p} \). Let \(\tilde{\Delta}_\tau \) be the associated Bochner-Laplace operator. Then \(\tilde{\Delta}_\tau \) is \(G \)-invariant, i.e., \(\tilde{\Delta}_\tau \) commutes with the right action of \(G \) on \(C_\infty(S, \widetilde{E}_\tau) \). Let \(\Omega \in Z(g_\mathfrak{c}) \) and \(\Omega_K \in Z(k_\mathfrak{c}) \) be the Casimir elements of \(G \) and \(K \), respectively. Assume that \(\tau \) is irreducible. Then with respect to (5.3), we have
\[
(5.4) \quad \tilde{\Delta}_\tau = -R(\Omega) + \lambda_\tau \text{Id},
\]
where \(\lambda_\tau = \tau(\Omega_K) \) is the Casimir eigenvalue of \(\tau \) [Mi Proposition 1.1]. We note that \(\lambda_\tau \geq 0 \).

Let \(\varphi \in \mathcal{S}(\mathbb{R}) \) be even with \(\hat{\varphi} \in C_\infty^c(\mathbb{R}) \). Then \(\varphi(\tilde{\Delta}_\tau^{1/2}) \) is a \(G \)-invariant integral operator. Therefore its kernel \(k_\varphi \) satisfies
\[
k_\varphi(g\tilde{x}, g\tilde{y}) = k_\varphi(\tilde{x}, \tilde{y}), \quad g \in G.
\]
With respect to the isomorphism (5.3) it can be identified with a compactly supported \(C_\infty \)-function
\[
h_\varphi : G \to \text{End}(V_\tau),
\]
which satisfies
\[
h_\varphi(k_1gk_2) = \tau(k_1) \circ h_\varphi(g) \circ \tau(k_2), \quad k_1, k_2 \in K.
\]
Then $\varphi(\tilde{\Delta}^{1/2})$ acts by convolution
\begin{equation}
(\varphi(\tilde{\Delta}^{1/2}f))(g_1) = \int_{G} h_{\varphi}(g_1^{-1}g_2)(f(g_2)) \, dg_2.
\end{equation}

Let
\[E_{\tau} = \Gamma \backslash \tilde{E}_{\tau} \]
be the locally homogeneous vector bundle over $\Gamma \backslash S$ induced by \tilde{E}_{τ}. Let $\chi: \Gamma \to \text{GL}(V_\chi)$ be a finite-dimensional complex representation and let F_{χ} be the associated flat vector bundle over $\Gamma \backslash S$. Let $\Delta^#_{r,\chi}$ be the twisted connection Laplacian acting in $C^\infty(\Gamma \backslash S, E_{\tau} \otimes F_{\chi})$. Then it follows from (4.3) that the kernel K_{φ} of $\varphi(\tilde{\Delta}^{1/2})$ is given by
\[K_{\varphi}(g_1K, g_2K) = \sum_{\gamma \in \Gamma} h_{\varphi}(g_1^{-1}\gamma g_2) \otimes \chi(\gamma). \]

By Proposition 4.1 we get
\begin{equation}
\text{Tr} \varphi((\Delta^#_{r,\chi})^{1/2}) = \dim(V_\chi) \text{vol}(\Gamma \backslash S) \text{tr} h_{\varphi}(e) + \sum_{\{\gamma\}_\Gamma \neq e} \text{tr} \chi(\gamma) \int_{\Gamma \backslash G} \text{tr} h_{\varphi}(g^{-1}\gamma g) \, dg.
\end{equation}

We now proceed in the usual way, grouping terms together into conjugacy classes. Given $\gamma \in \Gamma$, denote by $\{\gamma\}_\Gamma$, Γ_{γ}, and G_{γ} the Γ-conjugacy class of γ, the centralizer of γ in Γ, and the centralizer of γ in G, respectively. With the conjugacy class $\{e\}_\Gamma$ separated from the others as usual, we get a first version of the trace formula.

Proposition 5.1. For all even $\varphi \in S(\mathbb{R})$ with $\hat{\varphi} \in C^\infty_c(\mathbb{R})$ we have
\begin{equation}
\text{Tr} \varphi((\Delta^#_{r,\chi})^{1/2}) = \dim(V_\chi) \text{vol}(\Gamma \backslash S) \text{tr} h_{\varphi}(e) + \sum_{\{\gamma\}_\Gamma \neq e} \text{tr} \chi(\gamma) \int_{\Gamma \backslash G} \text{tr} h_{\varphi}(g^{-1}\gamma g) \, dg.
\end{equation}

In order to make this formula more explicit, one needs to express the kernel h_{φ} in terms of φ, and to evaluate the orbital integrals on the right hand side. The kernel h_{φ} can be determined using Harish-Chandra’s Plancherel formula. The orbital integrals can be computed using the Fourier inversion formula. However, both formulae are pretty complicated in the higher rank case. A sufficiently explicit formula can be obtained in the rank one case which we discuss in the next section.

6. **The rank one case**

Let G and K be as above. We introduce some notation following [Wa]. Let $G = KAN$ be an Iwasawa decomposition of G (see [He]). Then A is a maximal vector subgroup of G and N is a maximal unipotent subgroup of G. In this section we assume that G has split rank one, i.e., $\dim A = 1$. Let M be the centralizer of A in K. We set $P = MAN$. Then P is a parabolic subgroup of G. Since G has split rank 1, every proper parabolic subgroup of G is conjugate to P.
Denote by \hat{G} and \hat{M} the set of equivalence classes of irreducible unitary representations of G and M, respectively. For $\pi \in \hat{G}$ we denote by \mathcal{H}_π the Hilbert space in which π operates.

Let \mathfrak{a} and \mathfrak{n} be the Lie algebras of A and N, respectively. Choose $H \in \mathfrak{a}$ such that $\text{ad}(H)|_\mathfrak{n}$ has eigenvalues 1 and possibly 2. Then $\mathfrak{a} = \mathbb{R}H$. For $t \in \mathbb{R}$ we set $a_t = \exp(tH)$ and $\log a_t = t$. Let $A^+ = \{a_t : t > 0\}$.

Let ρ be the half-sum of positive roots of $(\mathfrak{g}, \mathfrak{a})$. Its norm $|\rho|$ with respect to the normalized Killing form is given as follows. Let p and q be the dimensions of the eigenspaces of $\text{ad}(H)|_\mathfrak{n}$ with eigenvalues 1 and 2, respectively. Then $p > 0$ and $0 \leq q < p$. Then

$$|\rho| = \frac{1}{2}(p + 2q).$$

For $\sigma \in \hat{M}$ and $\lambda \in \mathbb{R}$ let $\pi_{\sigma, \lambda}$ be the unitarily induced representation from P to G which is defined as in [Wa, p. 177]. Let $\Theta_{\sigma, \lambda}$ denote the character of $\pi_{\sigma, \lambda}$.

If $\gamma \in \Gamma$, $\gamma \neq e$, then there exists $g \in G$ such that $g\gamma g^{-1} \in MA^+$. Thus there are $m_\gamma \in M$ and $a_\gamma \in A^+$ such that $g\gamma g^{-1} = m_\gamma a_\gamma$. By [Wa, Lemma 6.6], a_γ depends only on γ and m_γ is determined by γ up to conjugacy in M. Let $l(\gamma) = \log a_\gamma$.

Then $l(\gamma)$ is the length of the unique closed geodesic of $\Gamma \backslash S$ determined by $\{\gamma\}_\Gamma$. Furthermore, by the above remark

$$D(\gamma) := e^{-l(\gamma)|\rho|} \det (\text{Ad}(m_\gamma a_\gamma)|_\mathfrak{n} - \text{Id})$$

is well defined. Let

$$u(\gamma) = \text{vol}(G_{m_\gamma a_\gamma}/A).$$

Let $h \in C^\infty_c(G)$ be K-finite. Then by [Wa, pp. 177-178] (correcting a misprint) we have

$$\int_{G,\gamma \backslash G} h(g\gamma g^{-1}) \, dg = \frac{1}{2\pi} u(\gamma) D(\gamma) \sum_{\sigma \in \hat{M}} \overline{\text{tr} \sigma(\gamma)} \int_{\mathbb{R}} \Theta_{\sigma, \lambda}(h) \cdot e^{-il(\gamma)\lambda} \, d\lambda.$$

Since h is K-finite, $\Theta_{\sigma, \lambda}(h) \neq 0$ only for finitely many σ. Thus the sum over $\sigma \in \hat{M}$ is finite. The volume factors in (5.7) are computed as follows. Since G has rank one, Γ_γ is infinite cyclic [DKV, Proposition 5.16]. Thus there is $\gamma_0 \in \Gamma_\gamma$ such that γ_0 generates Γ_γ and $\gamma = \gamma_0^{n(\gamma)}$ for some integer $n(\gamma) \geq 1$. Then

$$\frac{\text{vol}(\Gamma_\gamma \backslash G_\gamma)}{u(\gamma)} = l(\gamma_0).$$

Inserting (6.3) and (6.4) into (5.7), we get the following form of the trace formula in the rank one case.
Proposition 6.1. Let $\varphi \in S(\mathbb{R})$ be even with $\hat{\varphi} \in C^\infty_c(\mathbb{R})$. Then
\[
\text{Tr } \varphi \left((\Delta^k_{\tau,\lambda})^{1/2} \right) = \dim(V_{\chi}) \text{vol}(\Gamma \backslash S) \text{tr } h_{\varphi}(e)
\]
\[+ \sum_{\{\gamma_1\neq e\}} \text{tr } \chi(\gamma) \frac{1}{2\pi} \int_{\mathbb{R}} \Theta_{\pi,\lambda}(h_{\varphi}) \cdot e^{-il(\gamma)\lambda} \ d\lambda.
\]

The right hand side is still not in an explicit form. First of all we can use the Plancherel formula \[Kn\] to express $\text{tr } h_{\varphi}(e)$ in terms of characters. In this way we are reduced to the computation of the characters Θ_{π} for each $\pi \in \hat{G}$, evaluated on $\text{tr } h_{\varphi}$. This is our next goal.

For simplicity we assume that K is multiplicity free in G, i.e., for each $\tau \in \hat{K}$ and $\pi \in \hat{G}$, we have $[\pi|_K : \tau] \leq 1$. By \[Ko\] this condition is satisfied for $G = SO_0(n, 1)$ and $G = SU(n, 1)$. Let $\hat{G}(\tau) = \{\pi \in \hat{G} : [\pi|_K : \tau] = 1\}$.

Then for each $\pi \in \hat{G}(\tau)$ we can identify the τ-isotypical subspace $H_{\pi}(\tau)$ of τ in H_{π} with V_{τ}. Let P_{τ} be the orthogonal projection of H_{π} onto $H_{\pi}(\tau)$. Define the τ-spherical function Φ_{π}^{τ} on G by
\[
\Phi_{\pi}^{\tau}(g) := P_{\tau}\pi(g)P_{\tau}, \quad g \in G.
\]
Then Φ_{π}^{τ} is a C^∞-map
\[
\Phi_{\pi}^{\tau} : G \rightarrow \text{End}(V_{\tau})
\]
which satisfies
\[
\Phi_{\pi}^{\tau}(g)^* = \Phi_{\pi}^{\tau}(g^{-1})
\]
\[
\Phi_{\pi}^{\tau}(k_1gk_2) = \tau(k_1)\Phi_{\pi}^{\tau}(g)\tau(k_2), \quad g \in G, \ k_1, k_2 \in K.
\]

Let $v \in V_{\tau}$ and set
\[
f_{\pi,v}^{\tau}(g) = \Phi_{\pi}^{\tau}(g^{-1})(v).
\]
Then $f_{\pi,v}^{\tau} \in C^\infty(G; \tau)$ and it follows from \[5.4\] that
\[
\tilde{\Delta}_{\tau} f_{\pi,v}^{\tau} = (-\pi(\Omega) + \lambda_{\tau}) f_{\pi,v}^{\tau}.
\]

Let $u(t, x; f_{\pi,v}^{\tau})$ be the unique solution of
\[
\left(\frac{\partial^2}{\partial t^2} + \tilde{\Delta}_{\tau} \right) u(t) = 0, \quad u(0) = f_{\pi,v}^{\tau}, \ u_t(0) = 0.
\]

Lemma 6.2. For $t \in \mathbb{R}$, $\tau \in \hat{K}$ and $\pi \in \hat{G}(\tau)$, we have $-\pi(\Omega) + \lambda_{\tau} \geq 0$ and
\[
\cos \left(t\sqrt{-\pi(\Omega) + \lambda_{\tau}} \right) f_{\pi,v}^{\tau}(x).
\]
Proof. Let \(\langle \cdot, \cdot \rangle \) be the Killing form on \(g \). Its restriction to \(p \) (resp. \(t \)) is positive (resp. negative) definite. Let \(X_1, \ldots, X_d \in p \) and \(Y_1, \ldots, Y_m \in t \) be bases of \(p \) and \(t \), respectively, such that \(\langle X_i, X_j \rangle = \delta_{ij}, \langle Y_i, Y_j \rangle = -\delta_{ij} \). Then \(\Omega = \sum_i X_i^2 - \sum_j Y_j^2 \) and \(\Omega_K = -\sum_j Y_j^2 \). Let \(v \in \mathcal{H}_\pi(\tau), \|v\| = 1 \). Then we get

\[
-\pi(\Omega) + \lambda_r = -\langle \pi(\Omega)v, v \rangle + \lambda_r = \sum_i \| \pi(X_i)v \|^2 \geq 0,
\]

which proves the first statement. For the second statement, we note that by definition, we have

\[
(6.9) \quad \frac{\partial^2}{\partial t^2} u(t, x; f_{\tau,v}^\pi) = -\Delta_r u(t, x; f_{\tau,v}^\pi).
\]

Fix \(x_0 \in S \). Let \(\chi \in C_c^\infty(S) \) be such that

\[
\chi(y) = \begin{cases}
1, & y \in B_{2\ell}(x); \\
0, & y \in S \setminus B_{3\ell}(x).
\end{cases}
\]

Then by finite propagation speed we have

\[
u(t, x; f_{\tau,v}^\pi) = u(t, x; \chi f_{\tau,v}^\pi), \quad x \in B_{\ell}(x_0).
\]

Since \(\chi f_{\tau,v}^\pi \in C_c^\infty(S, \tilde{E}_r) \), we have

\[
u(t, x; f_{\tau,v}^\pi) = \left(\cos \left(t(\Delta_r)^{1/2} \right) (\chi f_{\tau,v}^\pi) \right)(x), \quad x \in B_{\ell}(x_0).
\]

Using that \(\Delta_r \) commutes with \(\cos \left(t(\Delta_r)^{1/2} \right) \), and finite propagation speed, we get

\[
\Delta_r u(t, x; f_{\tau,v}^\pi) = u(t, x; \Delta_r f_{\tau,v}^\pi).
\]

By (6.8) it follows that

\[
u(t, x; \Delta_r f_{\tau,v}^\pi) = -(-\pi(\Omega) + \lambda_r) u(t, x; f_{\tau,v}^\pi).
\]

Combined with (6.9) it follows that for every \(x \in S \), \(u(t, x; f_{\tau,v}^\pi) \) satisfies the following differential equation in \(t \)

\[
\left(-\frac{d^2}{dt^2} + \pi(\Omega) + \lambda_r \right) u(t, x; f_{\tau,v}^\pi) = 0, \quad u(0, x; f_{\tau,v}^\pi) = f_{\tau,v}^\pi(x), \quad u_t(0, x; \phi_{\lambda}) = 0.
\]

This implies the claimed equality. \(\square \)

Let \(\varphi \in \mathcal{S}(\mathbb{R}) \) be even with \(\hat{\varphi} \in C_c^\infty(\mathbb{R}) \). Since the kernel of the integral operator \(\varphi((\Delta_r)^{1/2}) \) is given by \(h_\varphi \in C_c^\infty(G) \), \(\varphi((\Delta_r)^{1/2}) f_{\tau,v}^\pi \) is well defined and it follows from Lemma 6.2 that

\[
\varphi((\Delta_r)^{1/2}) f_{\tau,v}^\pi = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{\varphi}(t) u(t; f_{\tau,v}^\pi) \, dt = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{\varphi}(t) \cos(t\sqrt{-\pi(\Omega) + \lambda_r}) f_{\tau,v}^\pi dt
\]

\[
= \varphi \left(\sqrt{-\pi(\Omega) + \lambda_r} \right) f_{\tau,v}^\pi.
\]
If we rewrite this equality in terms of the kernel h_φ and use the definition of $f^\pi_{\tau,v}$, we get

\[(6.10) \int_G h_\varphi(g^{-1}g_1)\Phi^\pi_\tau(g_1^{-1})v \, dg_1 = \varphi\left(\sqrt{-\pi(\Omega)} + \lambda_\tau\right)\Phi^\pi_\tau(g^{-1})v.\]

Let $d_\tau := \dim V_\tau$. Putting $g = 1$ and taking the trace of both sides, we get

\[\int_G \text{Tr}[h_\varphi(g)\Phi^\pi_\tau(g^{-1})] \, dg = d_\tau \varphi\left(\sqrt{-\pi(\Omega)} + \lambda_\tau\right).\]

We continue by rewriting the left hand side. To this end put

\[\phi^\pi_\tau(g) := \text{tr} \Phi^\pi_\tau(g), \quad g \in G.\]

Note that ϕ^π_τ satisfies $\phi^\pi_\tau(g) = \phi^\pi_\tau(g^{-1})$. Using the Schur orthogonality relations (see [Kn, Chapt. I, §5]), we get

\[\Phi^\pi_\tau(g) = d_\tau \int_K \text{Tr}[\tau(k^{-1})\Phi^\pi_\tau(g)]\tau(k) \, dk = d_\tau \int_K \phi^\pi_\tau(k^{-1}g)\tau(k) \, dk.\]

Using (6.11), we get

\[\int_G \text{Tr}[h_\varphi(g)\Phi^\pi_\tau(g^{-1})] \, dg = d_\tau \int_K \int_G \phi^\pi_\tau(gk) \text{tr} h_\varphi(gk) \, dgdk\]
\[= d_\tau \int_K \int_G \phi^\pi_\tau(g) \text{tr} h_\varphi(g) \, dg.\]

Together with (6.10) we obtain

\[\int_G \text{tr} h_\varphi(g)\phi^\pi_\tau(g) \, dg = \varphi\left(\sqrt{-\pi(\Omega)} + \lambda_\tau\right).\]

Now let $\tau' \in \hat{K}$ be any other representation which occurs in $\pi|_K$. Repeating the argument used in (6.12), we get

\[\int_G \text{tr} h_\varphi(g)\phi^\pi_{\tau'}(g) \, dg = \int_G \text{Tr} \left[\left(\int_K \phi^\pi_{\tau'}(k^{-1}g^{-1})\tau(k) \, dk\right) h_\varphi(g)\right] \, dg.\]

Again by the Schur orthogonality relations, we have

\[\int_K \phi^\pi_{\tau'}(k^{-1}g^{-1})\tau(k) \, dk = 0,\]

if $\tau' \not\sim \tau$. Hence we get

\[\int_G \text{tr} h_\varphi(g)\phi^\pi_{\tau'}(g) \, dg = 0, \quad \tau' \in \hat{K}, \tau' \not\sim \tau.\]
Choose an orthonormal basis of \mathcal{H}_π which is adapted to the decomposition of $\pi|_K$ into irreducible representations of K. Then it follows from (6.14) that

$$\Theta_\pi(\text{tr } h_\varphi) = \text{Tr} \left[\int_G \text{tr } h_\varphi(g) \pi(g) \, dg \right] = \sum_{\tau'} \int_G \text{tr } h_\varphi(g) \phi^\tau_{\tau'}(g) \, dg$$

(6.15)

$$= \int_G \text{tr } h_\varphi(g) \phi^\tau(\tau) \, dg.$$

Combined with (6.13) we obtain the following lemma.

Proposition 6.3. Let $\varphi \in S(\mathbb{R})$ be even with $\hat{\varphi} \in C^\infty_c(\mathbb{R})$. Let h_φ be the kernel of $\varphi((\Delta_\tau)^{1/2})$. Then for all $\pi \in \hat{G}(\tau)$ we have

$$\Theta_\pi(\text{tr } h_\varphi) = \varphi \left(\sqrt{-\pi(\Omega)} + \lambda_\tau \right).$$

Since G has split rank one, the tempered dual of G (which is the support of the Plancherel measure) is the union of the unitarily induced representations $\pi_{\sigma,\lambda}, \sigma \in \hat{M}, \lambda \in \mathbb{R}$, and the discrete series, where the latter exists only if rank $G = \text{rank } K$. First consider the induced representation $\pi_{\sigma,\lambda}$. Let $T \subset M$ be a maximal torus and t the Lie algebra of T. Let $\Lambda_\sigma \in i t$ be the infinitesimal character of $\sigma \in \hat{M}$ and ρ_M the half-sum of positive roots of (M, T). Then by [Kn, Proposition 8.22]

$$\pi_{\sigma,\lambda}(\Omega) = -\lambda^2 - |\rho|^2 + |\Lambda_\sigma + \rho_M|^2 - |\rho_M|^2,$$

(6.16)

where $|\rho|$ is given by (6.1). Let $\tau \in \hat{K}$. By Frobenius reciprocity [Kn, p.208] we have

$$[\pi_{\sigma,\lambda}|_K : \tau] = [\tau|_M : \sigma], \quad \sigma \in \hat{M}.$$

(6.17)

Since we are assuming that K is multiplicity free in G, it follows that $[\tau|_K : \sigma] \leq 1$. Let

$$\hat{M}(\tau) = \{ \sigma \in \hat{M} : [\tau|_M : \sigma] = 1 \}.$$

Then by (6.17) it follows that $\pi_{\sigma,\lambda} \in \hat{G}(\tau)$ if and only if $\sigma \in \hat{M}(\tau)$, and by Proposition 6.3 we get

$$\Theta_{\sigma,\lambda}(\text{tr } h_\varphi) = \varphi \left(\sqrt{\lambda^2 + |\rho|^2 + |\rho_M|^2} - |\Lambda_\sigma + \rho_M|^2 + \lambda_\tau \right), \quad \sigma \in \hat{M}(\tau), \lambda \in \mathbb{R}.$$

(6.18)

Now suppose that rank $G = \text{rank } K$. Then G has a non-empty discrete series. Let $H \subset G$ be a compact Cartan subgroup with Lie algebra \mathfrak{h}. Let $L \subset i \mathfrak{h}$ be the lattice of all $\mu \in i \mathfrak{h}$ such that $\xi_\mu(\exp Y) = e^{\mu(Y)}, Y \in \mathfrak{h}_C$ exists. Let $L' \subset L$ be the subset of regular elements. According to Harish-Chandra the discrete series of G is parameterized by L', i.e., for each $\mu \in L'$ there is a discrete series representation π_μ. Moreover $\pi_\mu \cong \pi_{\mu'}$ iff there exists $w \in W$ such that $\mu = w\mu'$, and each discrete series representation is of the form π_μ for some $\mu \in L'$. Then by [At, (6.8)] we have

$$\pi_\mu(\Omega) = |\mu + \rho|^2 - |\rho|^2, \quad \mu \in L'.$$

(6.19)
So Proposition 6.3 gives in this case

\[(6.20) \quad \Theta_{\pi_\mu}(\text{tr} h_\varphi) = \varphi \left(\sqrt{|\mu + \rho|^2 - |\rho|^2 + \lambda^2} \right), \quad \mu \in L', \pi_\mu \in \hat{G}(\tau). \]

Using the Plancherel formula, (6.18) and (6.20), we get an explicit form of the trace formula (6.5).

Now we consider the case $\tau = 1$, where 1 denotes the trivial representation. Then the h_φ belongs to the space $C_\infty^\infty(G//K)$ of K-bi-invariant, smooth, compactly supported functions on G. Let $c(\lambda)$ be Harish-Chandra’s c-function. Then the Plancherel measure for the spherical Fourier transform is given by $|c(\lambda)|^{-2}d\lambda$, and the Plancherel formula for spherical functions (see [He]) gives

\[(6.21) \quad h_\varphi(e) = \frac{1}{2} \int_\mathbb{R} \varphi \left(\sqrt{\lambda^2 + |\rho|^2} \right) |c(\lambda)|^{-2} d\lambda. \]

Furthermore, note that by Frobenius reciprocity $\hat{M}(1)$ consists only of the trivial representation 1 of M, and by (6.18) we have

\[(6.22) \quad \Theta_{1,\lambda}(\text{tr} h_\varphi) = \varphi \left(\sqrt{\lambda^2 + |\rho|^2} \right), \quad \lambda \in \mathbb{R}. \]

Inserting (6.10) and (6.22) into (6.5) we get the final trace formula for the Laplacian on functions. If we replace $\Delta^\#_\chi$ by $\Delta^\#_\chi - |\rho|^2$, then Theorem 1.1 follows.

7. Restrictions of representations of G

In this section we consider representations of Γ which are the restriction of a finite-dimensional complex representation $\eta: G \to \text{GL}(E)$ of G. For such representations there exists another approach to the Selberg trace formula.

Denote the flat bundle associated to $\eta|_{\Gamma}$ by E_η. There is a different description of E_η as follows. Let $E_\tau = \Gamma \backslash E_\tau$ be the locally homogeneous vector bundle associated to the restriction τ of η to K. Then there is a canonical isomorphism

\[(7.1) \quad E_\eta \cong E_\tau. \]

[MM Proposition 3.1]. Note that the space of C^∞-sections of E_τ can be identified with the space $(C^\infty(\Gamma \backslash G) \otimes E)^K$ of K-invariant vectors in $(C^\infty(\Gamma \backslash G) \otimes E)$, where K acts by $k \mapsto R(k) \otimes \eta(k)$, $k \in K$. Thus there is a canonical isomorphism

\[(7.2) \quad \phi: C^\infty(X, E_\eta) \cong (C^\infty(\Gamma \backslash G) \otimes E)^K. \]

Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition. By [MM Lemma 3.1] there exists a Hermitian inner product $\langle \cdot, \cdot \rangle_E$ in E which satisfies the following properties.

\[\langle \eta(Y)u, v \rangle_E = -\langle u, \eta(Y)v \rangle_E, \quad \text{for } Y \in \mathfrak{k}, u, v \in E;\]
\[\langle \eta(Y)u, v \rangle_E = \langle u, \eta(Y)v \rangle_E, \quad \text{for } Y \in \mathfrak{p}, u, v \in E.\]
In particular, \(\langle \cdot, \cdot \rangle_E \) is \(K \)-invariant. Therefore, it defines a \(G \)-invariant Hermitian fiber metric in \(\mathcal{E}_\tau \) which descends to a fiber metric in \(E_\eta \). By (7.1) it corresponds to a fiber metric in \(E_\eta \). Let \(\Delta_\eta = (\nabla^n)^* \nabla^n \) be the associated Laplacian in \(C^\infty(X, E_\eta) \). It is a formally self-adjoint operator. Its spectral decomposition can be determined as follows. By Kuga’s lemma [MM (6.9)] we have

(7.3) \[
\Delta_\eta = -R(\Omega) + \eta(\Omega) \text{Id}.
\]

Assume that \(\eta \) is absolutely irreducible. Then there is a scalar \(\lambda_\eta \geq 0 \) such that \(\eta(\Omega) = \lambda_\eta \text{Id} \).

Let \(R_\Gamma \) be the right regular representation of \(G \) in \(L^2(\Gamma\backslash G) \). Let

(7.4) \[
L^2(\Gamma\backslash G) = \bigoplus_{\pi, \in \hat{G}} m_\Gamma(\pi) \mathcal{H}_\pi
\]

be the decomposition of \(R_\Gamma \) into irreducible subrepresentations, where \(\mathcal{H}_\pi \) denotes the Hilbert space of the representation \(\pi \). Denote by \((\mathcal{H}_\pi \otimes E)^K \) the space of \(K \) invariant vectors of \(\mathcal{H}_\pi \otimes E \), where the action of \(K \) is given by \(k \mapsto \pi(k) \otimes \eta(k) \). By (7.1) and (7.4) we get

(7.5) \[
L^2(X, E_\eta) \cong (L^2(\Gamma\backslash G) \otimes E)^K \cong \bigoplus_{\pi, \in \hat{G}} m_\Gamma(\pi)(\mathcal{H}_\pi \otimes E)^K.
\]

For \(\pi \in \hat{G} \) let

\[
\lambda_\pi = \pi(\Omega)
\]

be the Casimir eigenvalue of \(\pi \). Then \(R(\Omega) \) acts in \((\mathcal{H}_\pi \otimes E)^K \) by \(\lambda_\pi \). By (7.3) it follows that w.r.t. the isomorphism (7.5), \(\Delta_\eta \) acts in \((\mathcal{H}_\pi \otimes E)^K \) as \((-\lambda_\pi + \lambda_\eta) \text{Id} \). Thus (7.5) is the eigenspace decomposition of \(\Delta_\eta \).

Let \(\varphi \in \mathcal{S}(\mathbb{R}) \) be even. By Lemma 2.4 \(\varphi(\Delta_\eta)^{1/2} \) is a smoothing operator. So it is a trace class operator. It acts in \((\mathcal{H}_\pi \otimes E)^K \) by \(\varphi(\lambda_\pi + \lambda_\eta)^{1/2} \). Then it follows from (7.3) that

(7.6) \[
\text{Tr} \varphi(\Delta_\eta)^{1/2} = \sum_{\pi, \in \hat{G}} m_\Gamma(\pi) \dim(\mathcal{H}_\pi \otimes E)^K \varphi((-\lambda_\pi + \lambda_\eta)^{1/2}).
\]

To derive the trace formula, we can proceed as in section 5. The lift \(\hat{\Delta}_\eta \) of \(\Delta_\eta \) to \(S \) is a \(G \)-invariant elliptic differential operator which is symmetric and non-negative. Let \(h_{\eta, \varphi} : \Gamma\backslash G \to \text{End}(E) \) be the kernel of \(\varphi(\hat{\Delta}_\eta)^{1/2} \). Applying Proposition 5.1 with \(\chi = 1 \) and (7.6), we get

(7.7) \[
\sum_{\pi, \in \hat{G}} m_\Gamma(\pi) \dim(\mathcal{H}_\pi \otimes E)^K \varphi((-\lambda_\pi + \lambda_\eta)^{1/2}) = \text{vol}(\Gamma\backslash S) \text{tr} h_{\eta, \varphi}(e)
\]

\[
+ \sum_{\{\gamma\} \neq e} \text{vol}(\Gamma\gamma \backslash G) \int_{\Gamma\gamma \backslash G} \text{tr} h_{\eta, \varphi}(g^{-1}\gamma g) \, dg.
\]

Remark. Let \(\chi = \eta|_\Gamma \). Then we also have the trace formula of Proposition 5.1 with \(\tau = 1 \). The two formulas are, of course, different, since the operators are different. In the present
case, the advantage is that we can work with self-adjoint operators. On the other hand, the formula (5.7) is more suitable for applications to Ruelle- and Selberg zeta functions.

If the split rank of G is 1, we can use (6.3) to express the orbital integrals in terms of characters. This gives

Proposition 7.1. Assume that the split rank of G is 1. Let $\eta: G \to \text{GL}(E)$ be an absolutely irreducible finite-dimensional complex representation of G. Let $\varphi \in \mathcal{S}(\mathbb{R})$ be even with $\hat{\varphi} \in C^\infty_c(\mathbb{R})$. Then with the same notation as above we have

$$\sum_{\pi \in \mathcal{B}G} m_\Gamma(\pi) \dim(\mathcal{H}_\pi \otimes E)^K \varphi\left((-\lambda_\pi + \lambda_\eta)^{1/2}\right) = \operatorname{vol}(\Gamma\backslash S) \operatorname{tr} h_{\eta,\varphi}(e)
$$

(7.8)

$$+ \sum_{\{\gamma\}_{\gamma \neq e}} \frac{1}{2\pi} \frac{l(\gamma_0)}{D(\gamma)} \sum_{\sigma \in \mathcal{M}} \operatorname{tr} \sigma(\gamma) \int_{\mathbb{R}} \Theta_{\sigma,\lambda}(h_{\eta,\varphi}) \cdot e^{-il(\gamma)} d\lambda.$$

The characters $\Theta_{\sigma,\lambda}(h_{\eta,\varphi})$ can be computed by the method explained in section 6.

So there are two classes of finite-dimensional representations of Γ for which we can work with self-adjoint operators and apply the usual Selberg trace formula. These are unitary representations and restrictions of rational representations of G. In general, not every representation of Γ belongs to one of these classes. However, if $\text{rank}(G) \geq 2$, the superrigidity theorem of Margulis [Ma, Chapt. VII, §5] implies that a general representation of Γ is not to far from a representation which is either unitary or the restriction of a rational representation. See [BW, p. 245] for more details.

References

[Ar] Arthur, J., *Harmonic analysis of tempered distributions on semisimple Lie groups of real rank one.*

[BW] Borel, A., Wallach, N., *Continuous cohomology, discrete subgroups, and representations of reductive groups.* Second edition. Amer. Math. Soc., Providence, RI, 2000.

[BO] Bunke, U., Olbrich, M. *Selberg zeta and theta functions.* Akademie Verlag, Berlin, 1995.

[DKV] Duistermaat, J. J., Kolk, J. A. C.; Varadarajan, V. S. *Spectra of compact locally symmetric manifolds of negative curvature.* Invent. Math. 52 (1979), no. 1, 27–93.

[Fa] Fay, J., *Analytic torsion and Prym differentials.* In: Riemann surfaces and related topics, pp. 107–122, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981.

[Fr] Fried, D., *Analytic torsion and closed geodesics on hyperbolic manifolds.* Invent. Math. 84 (1986), 523–540.

[Gi] Gilkey, P.B., *Invariance theory, the heat equation, and the Atiyah-Singer index theorem.* Second edition. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.

[GK] Gohberg, Krein, M., *Introduction to spectral theory*.

[He] Helgason, S., *Groups and geometric analysis,* Mathematical Surveys and Monographs, vol. 83, American Mathematical Society, Providence, RI, 2000.

[Ho] Hörmander, L., *The spectral function of an elliptic operator.* Acta Math. 121 (1968), 193–218.

[Ka] Kato, T., *Perturbation theory for linear operators,* Springer-Verlag, Berlin, 1966.

[Kn] Knapp, A.W., *Representation theory of semisimple groups,* Princeton University Press, Princeton, New Jersey 1986.
[Ko] Koornwinder, Tom H., *A note on the multiplicity free reduction of certain orthogonal and unitary groups.* Nederl. Akad. Wetensch. Indag. Math. 44 (1982).

[La] Lang, S., *SL₂(R),* Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975.

[LM] Lawson, Michelson, *Spin geometry.*

[Ma] Margulis, G.A., *Discrete subgroups of semisimple Lie groups,* Springer-Verlag, Berlin, 1991.

[Mk] Markus, A.S., *Introduction to the spectral theory of polynomial operator pencils,* Translation of Math. Monogr. Vol. 71, Providence, RI, 1988.

[MM] Matsushima, Y., Murakami, S., *On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds.* Ann. of Math. (2) 78 1963 365–416.

[Mi] Miatello, R., *The Minakshisundaram-Pleijel coefficients for the vector-valued heat kernel on compact locally symmetric spaces of negative curvature.* Trans. Amer. Math. Soc. 260 (1980), no. 1, 1–33.

[Mi1] Millson, J., *Closed geodesics and the η-invariant.* Ann. of Math. (2) 108 (1978), 1–39.

[MS1] Moscovici, H., Stanton, R., *Eta invariants of Dirac operators on locally symmetric manifolds,* Invent. Math. 95 (1989), 629–666.

[MS2] Moscovici, H., Stanton, R., *R-torsion and zeta functions for locally symmetric manifolds.* Invent. Math. 105 (1991), 185–216.

[Se] Seeley, R. T., *Complex powers of an elliptic operator.* In: Proc. Sympos. Pure Math., Vol. 10, pp. 288–307, Amer. Math. Soc., Providence, R.I., 1967.

[Se1] Selberg, A., *Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series.* J. Indian Math. Soc. (N.S.) 20 (1956), 47–87.

[Se2] Selberg, A., *Harmonic analysis,* in "Collected Papers", Vol. I, Springer-Verlag, Berlin-Heidelberg-New York (1989), 626–674.

[Sh] Shubin, M. A., *Pseudodifferential operators and spectral theory.* Springer-Verlag, Berlin, 1987.

[Ta1] Taylor, M., *Pseudo-differential operators,* Princeton University Press, Princeton, NJ, 1981.

[Ta2] Taylor, M., *Partial differential equations. I. Basic theory.* Applied Mathematical Sciences, 115. Springer-Verlag, New York, 1996.

[Wa] Wallach, N., *On the Selberg trace formula in the case of compact quotient,* Bull. Amer. Math. Soc. 82 (1976), 171–195.

Universität Bonn, Mathematisches Institut, Beringstrasse 1, D – 53115 Bonn, Germany

E-mail address: mueller@math.uni-bonn.de