Evaluation of the Murine Immune Response to Xenopsylla cheopis Flea Saliva and Its Effect on Transmission of Yersinia pestis

Christopher F. Bosio¹, Austin K. Viall¹, Clayton O. Jarrett¹, Donald Gardner², Michael P. Rood³, B. Joseph Hinnebusch¹

1 Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, 2 Veterinary Pathology Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, 3 Los Angeles County Department of Public Health, Baldwin Park, California

Abstract

Background/Aims: Arthropod-borne pathogens are transmitted into a unique intradermal microenvironment that includes the saliva of their vectors. Immunomodulatory factors in the saliva can enhance infectivity; however, in some cases the immune response that develops to saliva from prior uninfected bites can inhibit infectivity. Most rodent reservoirs of Yersinia pestis experience fleabites regularly, but the effect this has on the dynamics of flea-borne transmission of plague has never been investigated. We examined the innate and acquired immune response of mice to bites of Xenopsylla cheopis and its effects on Y. pestis transmission and disease progression in both naïve mice and mice chronically exposed to flea bites.

Methods/Principal Findings: The immune response of C57BL/6 mice to uninfected flea bites was characterized by flow cytometry, histology, and antibody detection methods. In naïve mice, flea bites induced mild inflammation with limited recruitment of neutrophils and macrophages to the bite site. Infectivity and host response in naïve mice exposed to flea bites followed immediately by intradermal injection of Y. pestis did not differ from that of mice infected with Y. pestis without prior flea feeding. With prolonged exposure, an IgG1 antibody response primarily directed to the predominant component of flea saliva, a family of 36–45 kDa phosphatase-like proteins, occurred in both laboratory mice and wild rats naturally exposed to X. cheopis, but a hypersensitivity response never developed. The incidence and progression of terminal plague following challenge by infective blocked fleas were equivalent in naïve mice and mice sensitized to flea saliva by repeated exposure to flea bites over a 10-week period.

Conclusions: Unlike what is observed with many other blood-feeding arthropods, the murine immune response to X. cheopis saliva is mild and continued exposure to flea bites leads more to tolerance than to hypersensitivity. The immune response to flea saliva had no detectable effect on Y. pestis transmission or plague pathogenesis in mice.

Introduction

Yersinia pestis, the etiologic agent of plague, is adapted to fleaborne transmission and is a highly invasive, virulent pathogen. Infected fleas typically transmit small numbers of Y. pestis into the dermis while attempting to feed on a mammalian host. The bacteria are able to rapidly disseminate from the flea bite site to the draining lymph node to cause bubonic plague. After extensive multiplication in the lymph node, the bacteria spread systemically. The high bacteremia level required to infect fleas is typically fatal to the vertebrate host [1,2].

Adaptation to bloodfeeding on vertebrate hosts has independently evolved many times in the arthropods [3,4], and in each case the arthropod had to overcome the hemostatic and other defense efforts of its host. This is accomplished primarily by a multitude of pharmacologically active molecules present in the saliva that are injected into the bite site. Arthropod saliva contains a diversity of anti-hemostatic, anti-inflammatory, and immunomodulatory effectors [5–8]. Vector-borne pathogens are introduced into a unique microenvironment in the skin that includes this salivary cocktail. It is now well-established that the natural transmission route can influence infection dynamics and differs from needle-injection models. For example, injection of Leishmania spp. with sand fly salivary gland extract into naïve mice leads to increased infectivity, higher parasite burdens and increased pathology compared to needle inoculation of parasites.

Citation: Bosio CF, Viall AK, Jarrett CO, Gardner D, Rood MP, et al. (2014) Evaluation of the Murine Immune Response to Xenopsylla cheopis Flea Saliva and Its Effect on Transmission of Yersinia pestis. PLoS Negl Trop Dis 8(9): e3196. doi:10.1371/journal.pntd.0003196

Editor: Pamela L. C. Small, University of Tennessee, United States of America

Received June 4, 2014; Accepted August 18, 2014; Published September 25, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are in the paper.

Funding: This study was funded by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: bosioch@niaid.nih.gov

* Current address: Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
The saliva of blood-feeding arthropods contains a variety of components that prevent blood clotting and interfere with the immune system of the vertebrate host. These properties have been shown to enhance or inhibit the transmission of different pathogens transmitted by arthropods. *Yersinia pestis*, the bacterial agent of plague, is maintained in nature by flea to rodent transmission cycles. Most rodents live in close association with fleas and are constantly being bitten by them, but the influence this has on plague transmission is unknown - previous studies used laboratory animals which have never experienced a flea bite. We found that flea bites caused a mild inflammatory response in mice, and eventually an antibody response to components of flea saliva, but did not significantly affect pathogenesis. The transmission of *Y. pestis* by infected fleas and the incidence rate of bubonic plague mortality were the same in mice that had been exposed to frequent uninfected flea bites and mice with no prior exposure to fleas. Therefore, in contrast to what has been shown for many other arthropod-borne disease systems, vector saliva did not enhance or inhibit *Y. pestis* infection in mice, regardless of the immune status of the host to flea saliva.

Methods

Bacteria

The fully virulent wild-type *Y. pestis* strain 195/P [27] was used in all experiments. Bacteria were grown in brain-heart infusion broth overnight at 28°C, transferred into LB broth and grown for 24 h at 28°C without aeration. The culture was brought to 20% glycerol and stored in aliquots at −80°C. The titer of aliquots used for injections was tested periodically by limiting dilution on tryptose blood agar plates in triplicate and there was no change in colony forming units (CFU)/ml of the stock over the course of the study.

Ethics statement

Specific-pathogen-free, 6–12 week old female C57BL/6 mice (Harlan Laboratories) were used for all experiments. All experiments involving animals were approved by the Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Animal Care and Use Committee and were conducted in accordance with all National Institutes of Health guidelines (Animal Protocol Approval #2010-48).

Salivary gland extract (SGE)

Salivary glands were dissected from adult *X. cheopis* fleas in sterile cell culture grade PBS and transferred to tubes containing PBS, two pairs of salivary glands/μl, and stored at −80°C. Salivary glands were subjected to four freeze/thaw cycles and sonicated on ice (50% power, 5 s on/off pulses for 2 min using a Vibrascell VCX130, Sonics and Materials, Newtown, CT). The SGE was cleared by centrifugation (8000 × g for 5 min) and total protein quantitated by Qubit Quant-iT Protein Assay Kit (Invitrogen, Carlsbad, CA). Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific, Atlanta, GA) was added according to manufacturer’s recommendation and SGE was stored at −80°C.

Flea feeding on mice

Xenopsylla cheopis fleas were from laboratory colonies and maintained as previously described [28]. Capsules used to contain fleas while feeding on mice were constructed by cutting the needle end from 10 ml plastic syringes and covering the open end with nylon mesh. The plunger was removed to put fleas into the syringe and replaced to contain them. Twenty-five fleas starved for 4–7 days were placed in a feeding capsule. Mice were anesthetized by subcutaneous injection of ~70 μg/3 μg ketamine/xylazine per gram body mass. The mesh side of a feeding capsule was secured with tape on the ear pinna of anesthetized mice and fleas were allowed to feed for 30–40 min. Alternatively, a small patch of fur was shaved from the side of the mouse’s abdomen and the flea capsule secured with tape over the skin for feeding.

Naïve mouse challenges

Aliquots of *Y. pestis* were thawed and diluted in PBS to the desired concentration. There were four treatment groups: 1) mice injected intradermally (i.d) in the ear pinna with ~250 CFU *Y. pestis* in a total volume of 10 μl (F. pestis-only group); 2) mice that received just the flea feeding procedure described above (fleas-only group); 3) mice that received flea feeding on the ear followed by early events in pathogenesis in an intradermal injection model of bubonic plague and characterized the murine immune response to flea saliva. We also evaluated whether pre-exposure to uninfected flea bites and pre-existing immunity to components of flea saliva influence the transmission and disease progression of flea-borne plague.
immediately by id injection in the same ear with ~250 CFU Y. pestis in a total volume of 10 µl (flea + Y. pestis group); and 4) mice injected id in the ear with 10 µl PBS (control group). Samples of 5–10 mice from each group were euthanized at 3, 6, 12, and 24 h post-infection (pi). Ears were collected into tubes with 70% EtOH [29]. Superficial parotid lymph nodes (using the nomenclature of Van den Broeck et al [30]) were collected into tubes with 2 ml PBS without Ca²⁺ or Mg²⁺.

In a separate experiment, fleas were allowed to feed both on the ear and side of naive mice as described above. At 3, 6, 12, 24 and 48 h after feeding, three mice were euthanized. The ear and a skin biopsy from the feeding site on the side of each mouse was collected and fixed in 10% neutral buffered formalin (NBF) for histological staining. The contralateral ear and skin biopsy were taken as controls.

Isolation of cells

Ears were removed from EtOH and blotted dry. Ears were carefully peeled apart, separating the two skin layers, and floated dermal side down in a 6-well non-tissue culture treated plate. Wells contained 3 ml RPMI medium (Sigma, Atlanta, GA) with 25 mM HEPES pH 7.5, 1.5% NaHCO₃, 50 µg/ml DNase I (Worthington Biochemical Corporation, Newark, NJ) and 26 U/ml Liberase TM (Roche Diagnostics, Chicago, IL). Preparation of single cell suspensions from ear and superficial parotid lymph node samples and determination of bacterial load numbers were done as previously described [31].

Flow cytometry

Aliquots of 50 µl of single cell suspensions from each sample were dispensed into 96-well round bottom microtiter plates and stained with 1:200 dilutions of antibodies (BD Pharmingen or eBioscience): anti-Ly6-G (clone 1A8, FITC labeled), anti-CD11b (clone M1/70, labeled with phycoerythrin-Cy7), and anti-F4/80 (clone BM8, allophtocyanin labeled). Rat IgG2a and IgG2b were used as isotype controls. Cells were stained for 30 min at 4°C, spun at 650 x g for 1 min and fixed with IC Fixation Buffer (eBioscience, San Diego, CA) for 1 h at 4°C. Cells were spun at 650 x g for 1 min and resuspended in PBS with 1% fetal bovine serum. Cell phenotype data were acquired on a Partec CyFlow ML flow cytometer and analyzed with FloMax (Partec) and FloJo software. Gating strategies were as previously described [31–35]. Macrophages were defined as activated neutrophils [31–35].

Sensitization of mice to flea bites

Three groups of five mice each received three different flea exposure regimens for ten weeks. Group A mice were fed on by 25 fleas once per week; Group B were exposed to 50 fleas once per week; and Group C 25 fleas twice per week. All flea feeds were done on a shaved area on the side of the mouse. After each exposure, fleas were individually examined under a dissecting microscope, and the number of fleas that had fed (containing fresh blood in the midgut) was recorded. Mice were tracked individually to determine the total number of flea bites for each mouse. After five weeks of exposure, blood samples were taken to collect serum for detection of antibody to salivary proteins (5-week sera). At the end of the 10-week exposure period, mice were exposed a final time on each ear, 25 fleas per ear; 12 h later the mice were euthanized. For each mouse, one ear was removed and processed for flow cytometry analysis as described; the other ear and a skin biopsy from the feeding site on the side of the mouse was fixed in NBF for histological staining (Group A mice were not sampled for histology). Blood samples were taken to collect serum for detection of antibody to salivary proteins (final sera).

Histology

Tissue samples fixed in NBF were embedded in paraffin, sectioned, and stained with hematoxylin and eosin. For each tissue sample, 4–12 sections were examined and subjectively categorized by a board-certified veterinary pathologist (D. Gardner) and assigned a numerical inflammation severity score from 0 to 2: 0 = within normal limits (i.e., not different from unblotted controls); 1 = minimal inflammation: very few to low numbers of inflammatory cells in the dermis and/or subcutis; 2 = mild inflammation: low to moderate numbers of inflammatory cells within the dermis and/or subcutis; inflammatory cells are detectable at 4–10X magnification and may aggregate together.

Detection of antibody to flea salivary proteins

Sera collected from flea-exposed mice were screened for IgG response to flea salivary proteins by Western blot. SGE (5 µg/ lane) was separated by SDS-PAGE on 4–20% polyacrylamide gradient gels and transferred to 0.2 µm nitrocellulose using a Criterion blotting apparatus (BioRad, Richmond, CA). Blots were blocked in 5% dried skim milk in Tris-buffered saline (TBS) overnight at 4°C. Blots were cut into strips and incubated with serum samples diluted 1:250 in 2% dried skim milk in TBS with 0.05% Tween 20 for 2 h at room temperature with gentle agitation. Blots were washed in TBS-Tween then incubated with goat anti-mouse IgG (Invitrogen) at 1:10,000 for 1 h at room temperature. Blots were washed again in TBS-Tween and developed using the BCIP/NBT liquid substrate (Sigma Life Science, Atlanta, GA). A polyclonal antibody raised to SGE in mice (prepared by Lampire Biological Laboratories, Pipersville, PA) was used at 1:10,000 as a positive control; naive mouse serum at 1:250 served as a negative control.

To quantitate the IgG response to SGE, an ELISA was developed. Costar 96-well flat bottom high-binding EIA plates (Fisher Scientific, Pittsburgh, PA) were coated with SGE in 0.05 M carbonate/bicarbonate buffer, pH 9.6 (100 µl/well at 0.5 µg/ml) overnight at 4°C. Plates were blocked with 5% dried skim milk in PBS-0.05% Tween-20 for at least 2 h at 28°C, then incubated with unknown sample sera or naive mouse serum at 1:250 in 2% dried skim milk in TBS with 0.05% Tween 20 for 2 h at room temperature with gentle agitation. Blots were washed in TBS-Tween then incubated with goat anti-mouse IgG (Invitrogen) at 1:10,000 for 1 h at room temperature. Blots were washed again in TBS-Tween and developed using the BCIP/NBT liquid substrate (Sigma Life Science, Atlanta, GA). A polyclonal antibody raised to SGE in mice (prepared by Lampire Biological Laboratories, Pipersville, PA) was used at 1:10,000 as a positive control; naive mouse serum at 1:250 served as a negative control.

Effect of Flea Saliva on Transmission of Y. pestis

Detection of antibody to flea salivary proteins by Western blot. SGE (5 µg/ lane) was separated by SDS-PAGE on 4–20% polyacrylamide gradient gels and transferred to 0.2 µm nitrocellulose using a Criterion blotting apparatus (BioRad, Richmond, CA). Blots were blocked in 5% dried skim milk in Tris-buffered saline (TBS) overnight at 4°C. Blots were cut into strips and incubated with serum samples diluted 1:250 in 2% dried skim milk in TBS with 0.05% Tween 20 for 2 h at room temperature with gentle agitation. Blots were washed in TBS-Tween then incubated with goat anti-mouse IgG (Invitrogen) at 1:10,000 for 1 h at room temperature. Blots were washed again in TBS-Tween and developed using the BCIP/NBT liquid substrate (Sigma Life Science, Atlanta, GA). A polyclonal antibody raised to SGE in mice (prepared by Lampire Biological Laboratories, Pipersville, PA) was used at 1:10,000 as a positive control; naive mouse serum at 1:250 served as a negative control.

To quantitate the IgG response to SGE, an ELISA was developed. Costar 96-well flat bottom high-binding EIA plates (Fisher Scientific, Pittsburgh, PA) were coated with SGE in 0.05 M carbonate/bicarbonate buffer, pH 9.6 (100 µl/well at 0.5 µg/ml) overnight at 4°C. Plates were blocked with 5% dried skim milk in PBS-0.05% Tween-20 for at least 2 h at 28°C, then incubated with unknown sample sera or naive mouse serum at 1:250 in 2% dried skim milk in TBS with 0.05% Tween 20 for 2 h at 28°C. After washing with PBS, goat anti-mouse IgG horseradish peroxidase conjugate (Thermo Scientific) was added at 1:20,000 in 2% dried milk in PBS-Tween and incubated for 1 h at 28°C. Plates were washed with PBS-Tween and developed using the Ultra TMB-ELISA substrate (Thermo Scientific). Color development was stopped with 2 M H₂SO₄ and absorbance of wells read at 450 nm on a Synergy 2 microplate reader (Bio Tek Instruments, Winooski, VT). Sera were tested in triplicate. For each ELISA run a standard curve was built in triplicate. A standard curve of log 10(U) plotted against A₅₄₀ was fitted to the 4-parameter logistic regression model in GraphPad Prism v.5.01 (GraphPad Software, Inc., La Jolla, CA), with the hill slope constrained to 1.0 and bottom parameter constrained to the average negative control value. The log₁₀(U) of unknown sera was interpolated from the standard curve. Sera with values > mean of the negative controls +2 SD were considered positive. Similar ELISAs were developed to quantitate the IgG1, IgG2a, IgG2c, IgM, and IgE responses. Anti-mouse secondary antibodies to these antibody isotypes were...
IgG response in wild rats to X. cheopis salivary proteins

Sera from 20 wild Rattus norvegicus from Los Angeles, CA were obtained during surveys conducted in 2003. Rats were combed for ectoparasites and the only species found was X. cheopis. Sera were tested for antibodies against SGE by Western blot as described above.

Challenge experiments using infective (blocked) fleas

Two groups of 20 mice each received contrasting exposure regimens to uninfected fleas. One group was fed on by 25 fleas once per week for 5 weeks (low exposure); the second group was fed on by 25 fleas twice per week for ten weeks (high exposure). After five weeks of exposure a serum sample was taken from both groups. X. cheopis fleas were infected with Y. pestis by using an artificial feeding device [36] and monitored for proventricular blockage as previously described [37]. Three blocked fleas were used to challenge individual mice for 1 h on a shaved area on the side of the abdomen. After the 1 h feeding period the fleas were examined microscopically and the number that attempted to feed (fresh blood in the esophagus) was recorded. Naïve (not pre-exposed to fleas) mouse controls were similarly challenged by blocked fleas. Mice were monitored for the appearance of illness (lethargy, ruffled fur, hunched posture, reluctance to respond to external stimuli) and euthanized; time to terminal disease in hours was recorded. Triturated spleen and blood samples recovered from each mouse after euthanasia were cultured on blood agar plates to confirm Y. pestis infection. Final sera were taken from all survivors at the end of the experiment.

Statistical analyses

Bacterial loads in infected mice and IgG responses in mice from the challenge experiments were compared using Student’s t test. The association between bacterial loads and neutrophil recruitment in the ear and draining lymph node, and the association between number of flea bites and IgG response, was tested by Pearson correlation analysis. For flow cytometric data, groups were compared by Kruskal-Wallis nonparametric ANOVA, followed by Dunn’s multiple comparison test to detect differences between treatments or timepoints. Survival curves in the challenge experiment were compared by the Mantel-Cox log rank test. Analyses were done using GraphPad Prism software (version 5.01).

Results

X. cheopis flea bites induce mild inflammation in the skin of naïve mice

Insect bites often cause local cutaneous inflammatory reactions, ranging from mild erythema to papule formation and edema, largely determined by salivary components [38–41]. The only obvious dermal sign after 22–28 X. cheopis fleas fed on the ear and abdominal skin of naïve mice were occasional small discrete eryhematosum spots, with no swelling or papule formation. Figure 1 shows representative histological examples of inflammation observed in mouse skin within 48 hrs of flea feeding. Three mice showed minimal inflammation (severity score = 1) in the dermis of the ear (Fig. 1C or abdomen (Fig. 1D) compared to controls (Fig. 1A and B). One mouse had a focus of moderate inflammation (severity score = 2) in the ear (Fig. 1E). In ten of 15 mice examined, skin from flea-fed areas was indistinguishable from unbiten control skin.

Exposure of naïve mice to flea bites does not affect the kinetics of innate immune cell recruitment to Y. pestis infection or bacterial survival

Arthropod saliva can modulate the migration and defense responses of innate immune cells. Consequently, in naïve animals (with no prior exposure to the vector), injection of a pathogen into the skin where an uninfected vector has recently fed, or coinjection of the pathogen with vector SGE, often results in enhanced disease progression compared to injection of the pathogen alone [7,9,12–16]. We compared neutrophil and macrophage recruitment following id injection of fully virulent, wild-type Y. pestis 195/P into the ear of two groups of naïve mice, one of which had received 11–22 flea bites on the ear immediately before injection (fleas + Y. pestis group) and one which had not (Y. pestis-only group). Two other groups of mice received flea bites only or id injection of PBS.

The mean ± standard deviation of inocula for all mice infected with Y. pestis was 281±62 CFU. Bacterial loads were measured in the ear (Fig. 2A) and draining lymph node (Fig. 2B) of mice at different times after id infection with Y. pestis, with and without the presence of flea feeding. The Y. pestis-only and fleas + Y. pestis groups did not differ significantly from each other in the number of CFU recovered at any timepoint.

At 3 h pi, both groups of infected mice had significantly greater neutrophil recruitment (total Ly-6G+ cells) in the ear than control mice receiving only flea feeding (fleas-only) or an id injection of PBS (Fig. 3A and B). At 6 h pi the number of neutrophils in mice infected with Y. pestis (with or without prior flea feeding) decreased, but increased in the fleas-only treatment group. At 12 h pi, the fleas-only group had significantly higher % total neutrophils (P<0.05) compared to the PBS controls (Fig. 3A). By 24 h pi, neutrophils returned to PBS control level in the fleas-only group, but showed a variable response in the Y. pestis infected groups, with some mice similar to controls and some mice showing an influx of activated (Ly-6G+CD11b+high) neutrophils. Overall, the Y. pestis-only and fleas + Y. pestis groups had the same kinetics: both showed early neutrophil recruitment at 3 h, which decreased significantly through 12 h pi and began to increase at 24 h as disease progressed. These treatments did not differ significantly from each other at any timepoint. In contrast, the fleas-only treatment showed a significant increase in neutrophils peaking at 6–12 h and declining to control levels by 24 h.

In the draining lymph node, there were some differences among treatments in total neutrophils, but these mostly fell within the range of values seen in completely unmanipulated controls (Fig. 3C and D). The exception to this was at 24 h, where some individuals in the Y. pestis-only and fleas + Y. pestis groups showed an increased influx of neutrophils, while other individuals were still in the range of control mice. This variation likely reflects differences in the progression of bubonic plague among individual mice [29]. In the fleas-only group, neutrophils in the lymph node remained in the range of control mice throughout the experiment.

The reduction in neutrophils before 24 h pi in mice infected with Y. pestis is represented again in the graph of % total neutrophils vs. bacterial load (Fig. 2). In the ear, at 3 and 6 h, there was detectable neutrophil recruitment which was reduced to PBS control level by 12 h. This occurred whether or not mice were exposed to flea bites before infection (Fig. 2C and D). Only after bacterial loads exceeded 4 log10 CFU in ear or lymph node did we again observe some mice with neutrophil responses greater than PBS controls. There was no correlation between log10 CFU and % Ly-6G+ cells in the ear in either treatment (Y. pestis-only: r = −0.21, P = 0.21; fleas + Y. pestis: r = −0.17, P = 0.28). In the draining lymph node, neutrophil numbers did not begin to exceed...
those in PBS controls until 24 h pi, even in mice with 4–5 log_{10} bacteria (Fig. 2E and F), with or without flea feeding. In the Y. pestis-only group, there was no correlation between log_{10} CFU and % Ly-6G^{+} cells (r = 0.08, P = 0.70). In the fleas + Y. pestis group there was a significant positive correlation between log_{10} CFU and % Ly-6G^{+} cells (P = 0.007), but with a low r^{2} (0.354). The correlation was dependent on the three mice at 24 h pi with an influx of neutrophils well above those seen in PBS.
Figure 2. Injection of *Y. pestis* at a flea feeding site does not affect bacterial survival or dissemination kinetics in naïve mice. Mice were infected intradermally in the ear with ~250 CFU *Y. pestis*, with or without prior flea feeding at the injection site. Bacterial load in the ear (A) and draining superficial parotid lymph node (B) were not significantly different at any timepoint after infection. Horizontal black lines indicate mean CFU per group; dashed lines indicate the lower limit of detection of the assay. A general lack of correlation between bacterial load and neutrophils recruited in the ear (C, D) and lymph node (E, F) was seen for both the *Y. pestis*-only (C, E) and fleas + *Y. pestis* (D, F) mouse groups. The shaded areas represent the range of % neutrophils obtained from the PBS injected controls. Each symbol represents an individual mouse. Data are pooled from two independent experiments per timepoint.

doi:10.1371/journal.pntd.0003196.g002
controls (Fig. 3D); removing these outliers resulted in a non-significant correlation ($P = 0.061$).

In both groups infected with *Y. pestis* macrophage recruitment in the ear was similar to that of neutrophils: at 3 h pi these mice had significantly greater macrophage recruitment compared to fleas-only mice ($P = 0.002$), which decreased to PBS control level by 12 h pi (Fig. 3E). The *Y. pestis*-only and fleas + *Y. pestis* groups did not differ significantly from each other at any timepoint. In the fleas-only group, the presence of macrophages was not different from controls at 3 h pi but rose significantly at 6 h pi ($P < 0.01$) and remained elevated for the rest of the experiment, significantly greater than the *Y. pestis*-only group at 24 h pi ($P < 0.001$). In the lymph node, there were some statistically significant differences between groups, but macrophages made up a very small percentage of cells, generally less than 1% in all treatments (Fig. 3F). Also, median percentages of F4/80$^+$ cells of all treatments were within the range of values seen in unmanipulated mouse controls.

Figure 3. Timecourse of neutrophil and macrophage responses in the ear and draining lymph node of naïve mice. Total neutrophils, expressed as the percentage of Ly-6G$^+$ cells out of all events counted (A, C); activated neutrophils, expressed as the percentage of Ly-6G$^+$CD11bhigh cells out of all events counted (B, D); and total macrophages, expressed as the percentage of F4/80$^+$ cells out of all events counted (E, F) in the ear and lymph node at different times after infection were determined by flow cytometry. The four different treatment groups are indicated; each symbol represents an individual. Horizontal bars indicate the median and the shaded area represents the range of values measured from a group of 6 uninjected control C57BL/6 mice. Median percentages were compared by Kruskal-Wallis nonparametric ANOVA followed by Dunn’s multiple comparison test. *, $0.01 < P < 0.05$; #, $0.001 < P = 0.01$; $\$, $P = 0.001$.

doi:10.1371/journal.pntd.0003196.g003
Antibody responses of mice to flea salivary gland extract after exposure to uninfected flea bites.

Table 1.

Mice used for	Total flea bites (mean ± s.d.)	5-week sera	10-week sera	10-week sera
Sensitization				
Group A	25 fleas once/wk for 10 weeks	289 ± 14	6	6
	10 weeks	2.87 ± 1.3	0.91	0.91
	10 weeks	2.82 ± 1.0	2.95	2.95
	10 weeks	3.03 ± 0.4	0.62	0.62
Group B	50 fleas once/wk for 10 weeks	416 ± 34	1/5	1.46
	10 weeks	2.11 ± 0.6	5/5	2.82
	10 weeks	3.03 ± 0.4	0.62	0.62
Group C	25 fleas twice/wk for 10 weeks	441 ± 34	4/5	2.11
	10 weeks	2.11 ± 0.6	3/5	2.82
	10 weeks	3.03 ± 0.4	0.62	0.62
Challenge	25 fleas twice/wk for 5 weeks	110 ± 10	0/20	0/20
	10 weeks	2.47 ± 0.8	7/14	0/17
	10 weeks	4.73 ± 0.8	16/17	0/17
	10 weeks	2.33 ± 0.7	0/17	0/17

ELISA results: number positive out of total (No. +) and the mean log$_{10}$ (U) ± s.d. of the positive samples are shown. Positive samples defined as having a mean log$_{10}$ (U) ≥ 2 s.d. above negative control sera. Sensitivity was determined by ELISA a week prior to harvest. The IgG response to flea saliva was also surveyed in the sera of wild brown Norway rats (R. norvegicus) trapped in Los Angeles, where the sole ectoparasitic flea species is X. cheopis. As with the C57BL/6 mice, rat serum IgG reactivity to SGE proteins was variable, with the flea phosphatases being immunodominant (Fig. 5). A band at about 100 kDa seen in three mice also appeared in the rat samples; the 100 kDa band was clearly present in only one of the rats. Rats were trapped during August and November, representing seasons of high and low flea index, respectively. There was no discernable correlation between immunoblot results and date trapped or rat age (adult, subadult, or juvenile) or weight (55–370 g).

Long-term prior exposure to fleas attenuates the dermal inflammatory response to flea bites

In naive mice after a first exposure to fleas, recruitment of neutrophils and macrophages peaked at 6–12 hours in ear tissue
At the end of their 10-week flea exposure regimen (Table 1), Group A, B and C mice were exposed to flea bites a final time on the ear. Twelve hours later the presence of neutrophils and macrophages was assessed by flow cytometry and compared to the naïve mouse 12 h timepoint (Fig. 3). Total neutrophils (Ly-6G+ cells) from Group C mice, a high exposure treatment, was significantly less (P < 0.05) than the response seen in the low exposure Group A (Fig. 6A). In addition, fewer activated neutrophils (Ly-6G+CD11bhigh cells) were present in Groups B and C than in Group A, with a statistically significant difference between Group A and B (P < 0.05, Fig. 6B). Figure 6C shows % neutrophils activated, the percentage of Ly-6G+ cells also CD11bhigh. Group B was significantly less than both Group A (P < 0.01) and the naïve mice group (P < 0.05). Finally, mice with higher exposure to fleas (Groups B and C) had a much lower macrophage response than Group A (vs. Group C: P < 0.05) or naïve mice (vs. Group B: P < 0.05; vs. Group C: P < 0.001) (Fig. 6D). Overall this indicates a reduction in neutrophil and macrophage recruitment 12 h after flea feeding in experimentally exposed mice compared to naïve mice receiving flea bites for the first time.

Prior repeated exposure of mice to flea bites does not affect transmission rate of Y. pestis by flea bite or disease progression

To determine if a history of exposure to flea bites and the resulting immune response to flea saliva affects transmission dynamics, progression, or severity of disease, we challenged naïve and sensitized mice with Y. pestis by the natural, flea-borne infection route. Two such experiments were done (Table 3), comparing naïve mice to mice exposed to 25 fleas once per week for 5 weeks (low exposure group) or twice per week for 10 weeks (high exposure group). By immunoblot, mice from the low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1). The low and high exposure groups had qualitatively very different serum IgG levels to X. cheopis SGE (Fig. 7A, B). These sera were also quantitatively analyzed by ELISA (Table 1).
in the challenge experiments. Survival curves (Fig. 7C, D) of the low and high group did not differ from their naïve control group by logrank test (low: \(P = 0.50 \), high: \(P = 0.92 \)). Exposed mice also did not differ in time to terminal disease compared to control mice (t-test; low: \(P = 0.96 \), high: \(P = 0.32 \)).

Discussion

The immune sensitization of humans and other mammals to mosquito, sandfly, and flea bites often follows a characteristic five-stage sequence that evolves with repeated exposure [42,44]. The initial bites experienced by a naïve animal usually do not produce any observable skin reaction (stage I). After a week or so of continued exposure, a delayed-type hypersensitivity response develops, typified by pruritic papules or vesicles that appear \(\sim 24 \) hours after the bite (stage II). As exposure continues, an immediate-type hypersensitivity response is seen within 30 minutes of the bite, which subsides but is followed by a delayed-type reaction (stage III). With prolonged frequent exposure to bites, the delayed-type response no longer develops, leaving only the immediate-type response (stage IV). Finally, desensitization or tolerance to the saliva develops, with no further skin reactivity (stage V). Histologically, an influx of mononuclear cells is seen at stage II; in later stages neutrophils, eosinophils and basophils are also prominent [45,46]. Serum IgG and IgE antibodies specific to vector salivary proteins can be demonstrated [47–51]. This reactivity syndrome is indicative of an allergic or hypersensitivity response to insect bites. It has been described in guinea pigs [52] and dogs [46] following exposure to the cat flea *Ctenocephalides felis*, and allergic dermatitis in dogs and cats due to flea-bite hypersensitivity is an important veterinary concern [53].

In this study we found that C57/BL6 mice exposed to *X. cheopis* flea bites did not follow the stereotypical pattern described above.
Table 2. Th2 bias of antibody response to flea saliva in mice exposed to flea bites.

Mice used for b	5-week sera	10-week sera	5-week sera	10-week sera	5-week sera	10-week sera
Sensitization	IgG1 response	IgG2a response	IgG2c response	IgG1 response	IgG2a response	IgG2c response
6	0.5	0.37	0.5	0.37	0.5	0.37
6	1/2	0.84	0.5	0.2	0.5	0.2
6	Low exposure	0.34	0.34	0.34	0.34	0.34
6	High exposure	0.34	0.34	0.34	0.34	0.34

*aELISA results; number positive out of total (No.) and the mean units of antibody (log10 (U) ± s.d.) of the positive samples are shown. Positive samples defined as having a mean log10 (U) > 2 U.

bSee Table 1 for exposure history of the mouse groups.

cThree sera in this group were above the range of the standard curve.

doi:10.1371/journal.pntd.0003196.t002

During the ten-week period in which a total of 35 mice received an average of 27–56 flea bites per week, no evidence of an immediate- or delayed-type hypersensitivity response was observed. The only dermal sign, regardless of the duration of exposure, was a transient non-papular, non-edematous erythematous area that was sometimes present on the skin immediately after feeding, probably the result of minor blood leakage due to anticoagulant effects of flea saliva. Flow cytometry data showed that flea bites elicited only a mild inflammatory response, evidenced by a small increase in neutrophil and macrophage recruitment that tended to subside after prolonged exposure (Fig. 3, 5, 6). No obvious mononuclear cell, eosinophil, basophil, or mast cell response was ever detected by histopathology (Fig. 1, 4). Identical results were seen in BALB/c mice exposed to ~20 fleas per week for 10 weeks (Table S1, Fig. S1). Our results with mice are consistent with a previous study of the response of Sprague-Dawley rats (*R. norvegicus*) to *X. cheopis* flea bites over a four-week period, which also reported no obvious skin reaction and only a slight increase in neutrophils and mononuclear cells noted by histopathology [34].

In addition to monitoring the local immune response at the dermal bite site, we also characterized the murine adaptive immune response to flea saliva after prolonged exposure to flea bites. Mice produced antibodies to salivary proteins after different intensities of exposure to *X. cheopis*, with a general trend of increasing IgG with increasing total number of flea bites (Fig. 5; Tables 1, 2). The IgG subtype production (mostly IgG1 with very little IgG2a or IgG2c) indicates a strong Th2 polarization in response to flea saliva. Most studies of exposure to salivary antigens from ticks [55], sand flies [56], tsetse [48], and mosquitoes [57] also have shown a Th2 bias by isotype antibody production and cytokine profile.

Although we were not able to simulate continuous infestation with fleas, as occurs in nature, serum from wild rats collected in Los Angeles, where *X. cheopis* is the only important flea ectoparasite, showed an antibody profile similar to our flea-exposed mouse sera. Thus, the detected murine response is not an artifact of exposure schedule, the use of laboratory-colonized *X. cheopis* or an inbred mouse strain. For both laboratory mice and wild rats, the immunodominant antigen was the family of 36–45 kDa acid phosphatase-like proteins, the predominant component of flea saliva. Antibodies to SGE proteins of *C. felis* were observed in mice exposed to cat flea (*C. felis*) bites [58]. The function of the phosphatase-like family is unknown. There are ten identified transcripts, all with amino acid changes in their catalytic sites that presumably eliminate phosphatase activity [25]. However, they all have a basic pI >8.5 and still may be able to bind negatively charged substrates. One possibility is that they bind polyphosphate released by activated platelets [59]. If flea saliva is able to locally deplete polyphosphate this would inhibit platelet aggregation and blood coagulation [60,61].

An IgE response to salivary components is commonly associated with the allergic response described above to arthropod bites in lab animals as well as natural hosts [47–50,62]. In contrast, we did not detect serum IgE in any of the mice in our experiments, in keeping with the lack of any obvious allergic reaction at the flea bite sites. Similarly, a study of dogs found that animals allergic to flea bites produced high levels of flea antigen-specific IgE, but a group of dogs exposed to fleas constantly from a young age that showed no reaction to flea bites had IgE levels not significantly different from that of unexposed controls [63]. The authors concluded that chronic exposure to fleas resulted in tolerance in these animals to flea allergens.
Overall the innate, adaptive and hypersensitivity immune responses of mice to *X. cheopis* saliva appear to be quite limited. As suggested by Vaughan et al. (1989) with rats [54], mice may have a sort of adaptive tolerance to *X. cheopis* that is not seen in unnatural hosts such as guinea pigs [45]. In addition, because they live in close association with their hosts and require frequent blood meals, *X. cheopis* may have coevolved to not induce resistance in their usual hosts. We observed no reduction in feeding success of fleas used in any of the mouse sensitization trials, even in groups feeding on mice after twenty previous exposures that had strong antibody responses to SGE. This is consistent with the Vaughan et al. (1989) rat study in which no differences in the number of fleas that fed, blood meal size, or flea longevity was observed between fleas that fed on naive rats compared to fleas fed on rats that had been sensitized to *X. cheopis* [54]. Thus, the immune response of mice and rats to *X. cheopis* appears to be one of tolerance rather than resistance. This can be contrasted to the strong hypersensitivity responses that develop to the bites of sandflies and hard ticks, which act to deter blood-feeding [64–67]. Unlike *X. cheopis*, sandflies and most hard ticks do not live in close contact with or feed repeatedly on an individual host.

The dermal microenvironment into which arthropod-borne pathogens are transmitted is acutely influenced by the pharmacological and immunomodulatory effects of vector saliva. Added to...
Table 3. Disease outcome of individual mice challenged by blocked flea bites.

Experiment 1	Experiment 2		
Naïve control group	**Low exposure group**	**Naïve control group**	**High exposure group**

mouse	blocked flea bites	TTD	mouse	blocked flea bites	TTD	mouse	blocked flea bites	TTD
1	2	S	1	2	S	1	3	70.0
2	2	70.5	2	1	S	2	1	5
3	3	88.5	3	3	S	3	1	48.0
4	2	S	4	2	73.0	4	1	S
5	1	S	5	3	90.5	5	1	S
6	1	S	6	2	S	6	1	S
7	1	S	7	1	S	7	1	57.0
8	3	S	8	1	S	8	3	S
9	1	S	9	1	S	9	1	S
10	2	S	10	1	S	10	1	S
11	2	67.0	11	1	S	11	1	5
12	1	S	12	1	76.5	12	1	S
13	2	S	13	1	54.0	13	1	S
14	1	S	14	1	S	14	1	S
15	1	S	15	2	S	15	1	S
16	2	S	16	1	75.0	16	1	56.0
17	1	S	17	1	43.5	17	1	76.5
18	3	51.0	18	2	S	18	2	67.0
19	1	S	19	2	S	19	1	S
20	1	S	20	2	S	20	1	S

- **mean** 1.65 69.2 1.55 68.8 mean 1.40 58.3 1.45 65.9
- **median** 1.50 68.8 1.00 74.0 median 1.00 57.0 1.00 68.5
- **SD** 0.74 15.4 0.89 17.0 SD 0.84 11.1 0.69 9.4

a naïve mice had no prior exposure to flea bites; low- and high-exposure mouse groups had received uninfected flea bites for 5 or 10 weeks, respectively, prior to challenge (see Table 1).

b number of the three blocked fleas used for challenge that attempted to feed.

ctime to terminal disease; **S = survivor (no disease).**

doi:10.1371/journal.pntd.0003196.t003
this is the anti-saliva immune response of hosts with previous exposure to uninfected bites. There is now substantial evidence that this unique context, bypassed by needle-injection models, can significantly influence the infectivity of arthropod-transmitted pathogens. For example, in naïve animals the infectivity of both the sandfly-borne parasite *Leishmania* and the tick-borne bacterium *Borrelia* is enhanced by the immunomodulatory properties of the vector’s saliva, but in sensitized animals the delayed-type hypersensitivity reaction at the bite site and acquired immune response to saliva are detrimental to pathogenesis [17,18]. In the case of West Nile virus infection, uninfected *Culex tarsalis* mosquitoes feeding on the footpads of mice followed immediately by needle injection of virus resulted in higher viremia at 24 and 48 h pi compared to needle infection alone [24]. This enhancement of infection was the same in mice presensitized to *Culex tarsalis* saliva.

Unlike other vector-pathogen systems, repeated prior exposure of mice to uninfected flea bites had no significant effect on transmission, mortality, or time to disease after challenge with *Y. pestis*-infected fleas compared to naïve controls (Fig. 7, Table 3). Injection of *Y. pestis*, either associated with flea bites or not, stimulated innate cell recruitment at 3 h which subsided at later time points despite concurrent bacterial replication. This is consistent with several studies showing that *Y. pestis* inhibits the inflammatory response until late in the disease progression [31,68–70]. In addition, injection of *Y. pestis* in association with flea bites did not enhance or inhibit bacterial replication or dissemination, in keeping with a previous study which reported no difference in bubonic plague pathogenesis following id injection of BALB/c mice with or without the presence of *X. cheopis* SGE in the inoculum [71]. In summary, by all parameters tested here, previous exposure to flea bites had no effect on *Y. pestis* infection in mice, and the inflammation observed in naïve mice exposed to flea saliva was not significantly different from naïve mouse controls. Inset numbers indicate time to terminal disease in hours (mean ± SD).

doi:10.1371/journal.pntd.0003196.g007

Figure 7. Previous exposure to uninfected flea bites does not affect the incidence or progression of bubonic plague in mice challenged by infective (blocked) fleas. Immunoblots showing IgG responses to *X. cheopis* salivary gland extract of 8 representative individuals from each of the low-exposure (A, 25 fleas once per week for 5 weeks) and high-exposure (B, 25 fleas twice per week for 10 weeks) group (see Table 1). Molecular weights (kDa) of protein standards are indicated at left; bracket at right indicates the position of the 36–45 kDa phosphatase-like SGE proteins. Sera were used at a dilution of 1:250, negative control serum from an unexposed C57BL/6 mouse at 1:250; +, positive control mouse serum at 1:10K. The incidence and time to development of terminal plague in mice challenged with *Y. pestis*-blocked fleas after low- (C) or high-level (D) prior exposure to uninfected fleas were not significantly different from naïve mouse controls. Inset numbers indicate time to terminal disease in hours (mean ± SD).
Supporting Information

Figure S1 Histological changes in skin of flea-exposed Balb/c mice 3 days after flea bites. Representative examples of skin showing minimal inflammation (A, score = 1), and mild inflammation (B, score = 2); (C), uninfected control skin (score = 0). 2/5 and 3/5 ear samples had a score of 1 or 2, respectively. Mice were exposed to 20 fleas once per week for 10 weeks. Mean number of total flea bites per mouse ± s.e.m. = 101±21. Scale bars = 50 um. (TIF)

Table S1 Serum antibody responses to salivary gland extract in a group of 5 Balb/c mice exposed to 20 fleas 1x/week for 10 weeks. (DOCX)

References

1. Lorange EA, Race BL, Sebanye F, Hinnebusch BJ (2005) Poor vector competence of fleas and the evolution of hypervirulence in *Yersinia pestis*. Infect Dis 191: 1907–1912.
2. Hinnebusch BJ (2005) The evolution of flea-borne transmission in *Yersinia pestis*. Current Issues in Molecular Biology 7: 197–212.
3. Bergman DK (1996) Mouthparts and feeding mechanics of haematophagous arthropods. Wallingford, UK: CAB International.
4. Waage JK (1979) The evolution of insect/vertebrate associations. Biol J Linnean Soc 12: 187–224.
5. Ribeiro JM, Arca B (2009) From sialomes to the sialoverse: an insight into the saliva of blood-feeding insects. Advances in Insect Physiology 37: 59–118.
6. Chamagne DE (2004) Antinematodist strategies of blood-feeding arthropods. Current Drug Targets - Cardiovascular and Haematological Disorders 5: 373–383.
7. Titus RG, Bishop JV, Mejia JS (2006) The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol 28: 131–141.
8. Wikel SK (1999) Modulation of the host immune response by ectoparasitic arthropods. BioScience 49: 311–320.
9. Titus RG, Ribeiro, JM (1988) Salivary gland lysates from the sand fly *Lutzomyia longipalpis* enhance *Leishmania* infectivity. Science 239: 1306–1308.
10. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, et al. (1998) Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva preexposure on the long-term outcome of *Leishmania major* infection in the mouse ear dermis. J Exp Med 188: 1941–1953.
11. Norwestory NB, Sun J, Elhaiem D, Lanzaro G, Soong L (2004) Sand fly saliva enhances *Leishmania* amastigotes infection by modulating interleukin-10 production. Infect Immun 72: 1240–1247.
12. Ziedner NS, Schneider BS, Nunez MS, Gern L, Piesman J (2002) Coinoculation of *Borrelia* spp. with tick salivary gland lyase enhances spirochete load in the bee species-specific, J Parasitol 88: 1276–1278.
13. Edwards JF, Higgs S, Beatty BJ (1998) Mosquito feeding-induced enhancement of *Cache Valley* virus (Bunyaviridae) infection in mice. J Med Entomol 35: 261–265.
14. Labuda M, Jones LD, Williams T, Nuttall PA (1993) Enhancement of tick-borne encephalitis transmission by tick salivary gland extracts. Med Vet Entomol 7: 193–196.
15. Limesand KH, Higgs S, Pearson LD, Beatty BJ (2000) Potentiation of vesicular stomatitis New Jersey virus infection on mice by mosquito saliva. Parasite Immunol 22: 461–467.
16. Vaughan JA, Schelley LF, Wirtz RA, Azad AF (1999) Infectivity of *Plasmodium berghei* sporozoites delivered by intravenous inoculation versus mosquito bite: implications for sporozoite vaccine trials. Infect Immun 67: 4285–4289.
17. Kamhawi S, Belkaid Y, Modi G, Roseton E, Sacks D (2000) Protection against cutaneous leishmaniasis resulting from bites of unfected sandflies. Science 289: 1351–1354.
18. Wikel S, Ramachandra RN, Bergman DK, Burクト TR, Pesman J (1997) Infection with pathogen-free ticks of the tick *Ixodes scapularis* induces host resistance to transmission of *Borrelia burgdorferi* by ticks. Infection and Immunity 65: 335–338.
19. Donovon MJ, Messmore AS, Scrafford DA, Sacks DL, Kamhawi S, et al. (2007) Uninfected mosquito bites confer protection against infection with malaria parasites. Infect Immun 75: 2523–2530.
20. Schneider BS, McGee CE, Jordan JM, Stevenson HL, Soong L, et al. (2007) Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted West Nile virus infection. PLoS ONE 2: e1171.
21. Calon G, Abbece J, Stijlemans B, Cossemans M, Baertelier PE, et al. (2006) Tsetse fly saliva accelerates the onset of *Trypanosoma brucei* infection in a mouse model associated with a reduced inflammatory response. Infect Immun 74: 6324–6330.

Acknowledgments

We thank Dan Long, Rebecca Rosenke and Greg Satterfield, RML Veterinary Pathology Section, for help with histology, and Catharine Bosio, Laboratory of Intracellular Pathogens, NIH, for help with flow cytometry. We also thank Justin Spinner, Jeff Shannon, Iman Chouikha, Tom Schwan and Shelly Robertson for critical review of the manuscript.

Author Contributions

Conceived and designed the experiments: CFB COJ BJH. Performed the experiments: CFB AKV COJ DG MPR. Analyzed the data: CFB DJH. Contributed reagents/materials/analysis tools: DG MPR. Contributed to the writing of the manuscript: CFB BJH. Critiqued manuscript: AKV AKV DG MPR.
55. Merji N, Franscini N, Rutti B, Brossard M (2001) Th2 polarization of the
54. Vaughan JA, Jerse AE, Azad AF (1989) Rat leucocyte response to the bites of rat
53. Hudson BW, Feingold BF, Kartman L (1960) Allergy to flea bites. I.
52. Peng Z, Yang M, Simons FER (1996) Immunologic mechanisms in mosquito
51. Hostomska J, Rohousova I, Volfova V, Stanneck D, Mencke N, et al. (2008)
50. Cross ML, Cupp MS, Cupp EW, Ramberg FB, Enriquez FJ (1993) Antibody
49. Caljon G, Van Den Abbeele J, Sternberg JM, Coosemans M, De Baetselier P,
48. Konishi E (1990) Distribution of immunoglobulin G and E antibody levels to
47. Johnston CM, Brown SJ (1985)
46. Wuersch K, Brachelente C, Doherr M, Reist M, Sattler U, et al. (2006) Immune
45. Oliveira F, Kamhawi S, Seitz AE, Pham VM, Guigal PM, et al. (2006) From
44. Larrivee DH, Benjamini E, Feingold BF, Shimizu M (1964) Histologic studies of
43. Milleron RS, Ribeiro JM, Elnaime D, Soong L, Lanzaro GC (2004) Negative
42. Feingold BF, Benjamini E, Michaeli D (1968) The allergic responses to insect
41. Reinhardt K, Kemple D, Naylor RA, Siva-Jothy MT (2009) Sensitivity to bites
40. Wiersch K, Brachelecete C, Doherr M, Reist M, Santler U, et al. (2006) Immune
dysregulation on flea allergy dermatitis - a model for the immunopathogenesis of
different dog populations. Vet Immunol Immunopathol 8: 215–223.
39. Bowers JD, Bressard M, Aeschlimann A (1977) Effects and duration of
38. Greene WK, Carnegie RJ, Shaw SE, Thompson RCA, Penhale WJ (1993) Characterization of allergens of the cat flea, *Ctenocephalides felis*; detection and frequency of IgE antibodies in canine sera. Parasite Immunol 15: 69–74.
37. Williams AJ, Elnaime D, Soong L, Lanzaro GC (2004) Negative effect of antibodies against maxadilan on the fitness of the sand fly vector of American visceral leishmaniasis. Am J Trop Med Hyg 70: 278–283.
36. Wikel SK (1982) Immune responses to arthropods and their products. Ann Rev Entomol 27: 21–48.
35. Bowessidjaou J, Brossard M, Aeschlimann A (1977) Effects and duration of resistance acquired by rabbits on feeding and egglaying in *Lutzomyia longipalpis*. Vector Borne Zoonotic Dis 8: 1–7.
34. Feng Z, Yang M, Simon FER (1996) Immunologic mechanisms in mosquito allergy: correlation of skin reactions with specific IgE and IgG antibodies and lymphocyte proliferation response to mosquito antigens. Ann Allergy Asthma Immunol 77: 238–244.
33. Hudson BW, Feingold BF, Kartman L (1960) Allergy to flea bites. I. Experimental induction of flea-bite sensitivity in guinea pigs. Exp Parasitol 9: 18–24.
32. Lam A, Yu A (2009) Overview of flea allergy dermatitis. Compend Contin Educ Vet 31: E1–E10.
31. Vaughn JA, Jerse AE, Azad AF (1989) Rat leucocyte response to the bites of rat fleas *Siphonaptera: Pulicidae*. J Med Entomol 26: 449–453.
30. Merzi N, Franscini N, Rutti B, Brossard M (2001) Th2 polarization of the immune response of BALB/c mice to *Ixodes ricinus* instars, importance of several allergens in activation of specific Th2 subpopulations. Parasite Immunol 23: 61–69.
29. Schneider BS, Soong L, Zeidner NS, Higgs S (2004) *Aedes aegypti* salivary gland extracts modulate antiviral and Th1/Th2 cytokine responses to Sindbis virus infection. Viral Immunol 17: 565–573.
28. Lee SE, Jackson LA, Opelebeck JP (1997) Salivary antigens of the cat flea, *Ctenocephalides felis*. Parasite Immunol 19: 13–19.
27. Muller F, Match NJ, Schenck WA, Smith SA, Esterl I, et al. (2009) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139: 1143–1156.
26. Smith SA, Match NJ, Baskar D, Rohlloff P, Docampo R, et al. (2006) Polyphosphates modulate blood coagulation and fibrinolysis. PNAS 103: 903–908.
25. Morrissey JH, Choi SH, Smith SA (2012) Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 119: 5972–5979.
24. Greene WK, Carnegie RJ, Shaw SE, Thompson RCA, Penhale WJ (1993) Characterization of allergens of the cat flea, *Ctenocephalides felis*: detection and frequency of IgE antibodies in canine sera. Parasite Immunol 15: 69–74.
23. Comer JE, Sturdevant DE, Carmody AB, Virtaneva K, Gardner D, et al. (2010) Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment. Int J Parasitol 40: 1025–1035.
22. Gross ML, Cupp MS, Cupp EW, Ramberg FB, Enriquez FJ (1993) Antibody responses of BALB/c mice to salivary antigens of hematophagous black flies (Diptera: Simuliidae). J Med Entomol 30: 725–734.
21. Hostomski J, Rohousova I, Volfova V, Stanneck D, Merucke N, et al. (2008) kinetics of canine antibody response to saliva of the sand fly *Lutzomyia longipalpis*. Vector Borne Zoonotic Dis 8: 1–7.
20. Peng Z, Yang M, Simon FER (1996) Immunologic mechanisms in mosquito allergy: correlation of skin reactions with specific IgE and IgG antibodies and lymphocyte proliferation response to mosquito antigens. Ann Allergy Asthma Immunol 77: 238–244.
19. Hudson BW, Feingold BF, Kartman L (1960) Allergy to flea bites. I. Experimental induction of flea-bite sensitivity in guinea pigs. Exp Parasitol 9: 18–24.
18. Lam A, Yu A (2009) Overview of flea allergy dermatitis. Compend Contin Educ Vet 31: E1–E10.
17. Vaughn JA, Jerse AE, Azad AF (1989) Rat leucocyte response to the bites of rat fleas *Siphonaptera: Pulicidae*. J Med Entomol 26: 449–453.
16. Merzi N, Franscini N, Rutti B, Brossard M (2001) Th2 polarization of the immune response of BALB/c mice to *Ixodes ricinus* instars, importance of several allergens in activation of specific Th2 subpopulations. Parasite Immunol 23: 61–69.
15. Mbow ML, Bleyenberg JA, Hall LR, Titus RG (1998) *Phlebotomus papatasi* sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with *Leishmania major*. J Immunol 161: 5571–5577.
14. Schneider BS, Soong L, Zeidner NS, Higgs S (2004) *Aedes aegypti* salivary gland extracts modulate antiviral and Th1/Th2 cytokine responses to Sindbis virus infection. Viral Immunol 17: 565–573.
13. Shannon JG, Hasenkrug AM, Dorward DW, Nair V, Carmody AB, et al. (2010) Transcriptomic and innate immune responses to *V. pestis* in the lymph node during bubonic plague. Infect Immun 78: 5086–5090.
12. Sherrard CM, Hasenkam AM, Dorward DW, Nair V, Carmody AB, et al. (2013) *V. pestis* subverts the dermal neutrophil response in a mouse model of bubonic plague. mBio 4: e00170–00113.
11. Sebbane F, Jarrett CO, Gardner D, Long D, Hinnebusch BJ (2006) Role of the *V. pestis* *plasminogen activator* in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci USA 103: 5526–5530.