Trends and outcomes for non-elective neurosurgical procedures in Central Europe during the COVID-19 pandemic

Lukas Grassner1,34, Ondra Petr1,34, Freda M. Warner2,34, Michaela Dedeciusova3,34, Andrea Maria Mathis4,34, Daniel Pinggera1, Sina Gsellmann5, Laura C. Meiners5, Sascha Freigang6, Michael Mokry6, Alexandra Resch7, Thomas Kretschmer7, Tobias Rossmann9, Francisco Ruiz Navarro9, Andreas Gruber9, Mathias Spende19, Peter A. Winkler9, Franz Marhold10, Camilo Sherif10, Jonathan P. Wais11, Karl Rössler11, Wolfgang Pfisterer11, Manfred Mühlbauer11, Felipe A. Triviño-Barrientos13, Sebastian Rath13, Richard Voldrich1, Lukas Krška14, Radim Lipina14, Martin Kerekanic15, Jiri Fiedler15, Petr Kasik16, Vladimir Priban16, Michal Tichy17, Petr Krupa18, Tomas Cesak18, Robert Kroupa19, Andrej Callo19, Pavel Haníček20, Daniel Pohlodek21, David Krahulik21, Alena Sejkorová22, Martin Sames22, Josef Dvorak22, Petr Suchomel22, Robert Tomas24, Jan Klener24, Vilem Juran25, Martin Smrcka25, Petr Linzer26, Miroslav Kaiser27, Dusan Hrabovsky28, Radim Jancalek28, Vincenc Kálin29, Oliver Bozinov29, Cedric Niggli30, Carlo Serra30, Ramona Guatta31, Dominique E. Kuhlen31, Stefan Wanderer32, Serge Marbacher32, Alexandre Lavé33, Karl Schaller33, Clarinde Esculier4, Andreas Raabe4,35, John L. K. Kramer2,35, Claudius Thomé1,35 & David Netuka3,35

1Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, MZA 3rd floor, 6020 Innsbruck, Austria. 2International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada. 3Department of Neurosurgery and Neuro-Oncology, 1st Medical Faculty, Charles University, Central Military Hospital, Prague, Czech Republic. 4Department of Neurosurgery, Inselspital Bern, Bern University Hospital, Bern, Switzerland. 5Department of Neurosurgery, Landeskrankenhaus Feldkirch, Feldkirch, Austria. 6Department of Neurosurgery, General University Hospital Graz, Graz, Austria. 7Department of Neurosurgery & Neurorestoration Klinikum Klagenfurt, Klagenfurt, Austria. 8Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria. 9Department of Neurosurgery, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria. 10Department of Neurosurgery, University Hospital of St, Karl Landsteiner University of Health Sciences, St. Poelten, Austria. 11Department of Neurosurgery, Medical University of Vienna, Vienna, Austria. 12Department of Neurosurgery, Klinik Donaustadt, Vienna, Austria. 13Department of Neurosurgery, General Hospital Wiener Neustadt, Wiener Neustadt, Austria. 14Department of Neurosurgery, University Hospital Ostrava, Ostrava, Czech Republic. 15Department of Neurosurgery, Ceske Budejovice Hospital, Ceske Budejovice, Czech Republic. 16Department of Neurosurgery, Pilsen University Hospital, Pilsen, Czech Republic. 17Department of Neurosurgery, Motol University Hospital, Motol, Czech Republic. 18Department of Neurosurgery, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic. 19Department of Neurosurgery, Municipal Hospital - Ostrava Fifejdy, Ostrava, Czech Republic. 20Department of Neurosurgery, Usti Nad Labem Hospital, Prague, Czech Republic. 21Department of Neurosurgery, Liberec Hospital, Prague, Czech Republic. 22Department of Neurosurgery, University Hospital Brno and Masaryk University, Prague, Czech Republic. 23Department of Neurosurgery, Zlin Hospital, Prague, Czech Republic. 24Department of Neurosurgery, Pardubice Hospital, Prague, Czech Republic. 25Department of Neurosurgery, St. Anne's University Hospital Brno and Masaryk University, Prague, Czech Republic. 26Department of Neurosurgery, Usti Nad Labem Hospital, Prague, Czech Republic. 27Department of Neurosurgery, University Hospital Olomouc, Olomouc, Czech Republic. 28Department of Neurosurgery, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic. 29Department of Neurosurgery, University Hospital Ostrava, Ostrava, Czech Republic. 30Department of Neurosurgery, Hospital Prague, Czech Republic. 31Department of Neurosurgery, University Hospital Prague, Czech Republic. 32Department of Neurosurgery, Urban University Hospital, Prague, Czech Republic. 33Department of Neurosurgery, University Hospital Prague, Czech Republic. 34These authors contributed equally: Lukas Grassner, Ondra Petr, Freda M. Warner, Michaela Dedeciusova and Andrea Maria Mathis. 35These authors jointly supervised this work: Andreas Raabe, John L. K. Kramer, Claudius Thomé and David Netuka. *email: Lukas.grassner@googlemail.com
The world currently faces the novel severe acute respiratory syndrome coronavirus 2 pandemic. Little is known about the effects of a pandemic on non-elective neurosurgical practices, which have continued under modified conditions to reduce the spread of COVID-19. This knowledge might be critical for the ongoing second coronavirus wave and potential restrictions on health care. We aimed to determine the incidence and 30-day mortality rate of various non-elective neurosurgical procedures during the COVID-19 pandemic. A retrospective, multi-centre observational cohort study among neurosurgical centres within Austria, the Czech Republic, and Switzerland was performed. Incidence of neurosurgical emergencies and related 30-day mortality rates were determined for a period reflecting the peak pandemic of the first wave in all participating countries (i.e. March 16th–April 15th, 2020), and compared to the same period in prior years (2017, 2018, and 2019). A total of 4,752 emergency neurosurgical cases were reviewed over a 4-year period. In 2020, during the COVID-19 pandemic, there was a general decline in the incidence of non-elective neurosurgical cases, which was driven by a reduced number of traumatic brain injuries, spine conditions, and chronic subdural hematomas. Thirty-day mortality did not significantly increase overall or for any of the conditions examined during the peak of the pandemic. The neurosurgical community in these three European countries observed a decrease in the incidence of some neurosurgical emergencies with 30-day mortality rates comparable to previous years (2017–2019). Lower incidence of neurosurgical cases is likely related to restrictions placed on mobility within countries, but may also involve delayed patient presentation.

The world currently faces a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, known as COVID-19. Following the initial outbreak, health care workflow was altered globally in many aspects\(^1\). Many countries placed elective surgical interventions on hold as a precaution to reduce its spread\(^3\). Non-elective, emergency surgeries, however, were continued as needed with revised management practices to protect patients, their families, and health care providers\(^6\). Introduced modifications included changes to work sequences in out- and inpatient services, pre- and perioperative changes, and faculty contingency planning\(^7\). As acute neurosurgical care involves both live-saving procedures and semi-urgent interventions to avoid lasting neurologic deficits, the triage of non-elective neurosurgical indications can pose a particular challenge under unprecedented circumstances, and potentially limited intensive care resources\(^8\).

In response to COVID-19, an abundance of viewpoints, guidelines, and reviews on best surgical practices during a pandemic have been published\(^13\). Comparatively fewer original research studies have documented the impact of the current pandemic on the incidence and surgical outcomes of non-elective cases. They have, to this point, focused on complications arising in patients with COVID-19 following surgery\(^17\). Notably lacking are studies exploring whether the systemic response to COVID-19 altered incidence and outcomes for uninfected patients undergoing non-elective/emergent surgical procedures. This information is critical to evaluate protocols for the ongoing second wave of COVID-19\(^24\).

The aim of the current study was to examine incidence and outcomes for non-elective emergent neurosurgical cases in COVID-19-negative patients during the first wave of the pandemic. A retrospective analysis was performed of most neurosurgical procedures across three European countries (Austria, the Czech Republic, and Switzerland) during the initial height of the COVID-19 pandemic (March 16 to April 15, 2020). The primary analysis addressed incidence and 30-day mortality in non-elective neurosurgical cases compared to three previous years.

Methods

Our analysis included data from all neurosurgical centres in the Czech Republic, and the majority in Austria (10 of 11) and Switzerland (6 of 7), thus covering a population of almost 30 million people. During the outbreak these countries postponed elective surgeries, and intensive care resources were redistributed or reserved. Attempts were made to continue non-elective surgeries; however, in the absence of guidelines, it was unclear which procedures needed to be performed and what time frames were acceptable to initiate intervention. Despite the prevalence of COVID-19 cases in these countries, there were no obvious shortages in intensive care capacities during this time. Notably, the workflow was influenced heavily in the early phase of the pandemic with all related uncertainties. Information on all non-elective, emergent cranial and spinal neurosurgical procedures performed during March 16th–April 15th, 2020 was collected. This period was selected to reflect the culmination of the pandemic in these areas. Noteworthy, similar restrictions were applied in all assessed countries over the selected time period. Cases from identical time periods in 2017–2019 were analysed for reference. Ethical approval was obtained by the coordinating centres from each country (Ethikkommission Nummer der Medizischen Universität Innsbruck 1110/2020 in Austria, Etická komise FN Ostrava 448/2020 in the Czech Republic, and Kantonale Ethikkommission für die Forschung Bern 2020–01,433 in Switzerland). All research was performed in accordance with the local regulations as well as in Accordance with the declaration of Helsinki. Informed consent was waived by the approving committees.

Patients. Demographic and surgical data were retrospectively collected in all participating centres. Demographic data elements included age, sex, and 30-day mortality. Conservatively managed patients were not included in our study. Inclusion/exclusion criteria are shown in Table 1. Cases were defined as: 1) traumatic brain injury (TBI) requiring any emergent neurosurgical intervention (i.e. monitoring for intracranial pressure, decompressive craniectomy, etc.), 2) chronic subdural hematomas (cSDH) in need of surgical evacuation due
Nevertheless, based on data representative of three European countries, this study could still be provided in these three countries.

were adjusted for age (0–18, 18–39, 40–64, 65–74, and 75 + years old) and sex.

d within each condition separately for both countries. Thirty-day mortality were determined for each year, and within each condition separately for both countries. Thirty-day mortality was analysed using logistic regression with year (2020 vs. 2017–2019) as an independent variable. All models and significant differences (p < 0.05) were further examined using standardized residuals. Rates of 30-day mortality were determined for each year, and within each condition separately for both countries. Thirty-day mortality was analysed using logistic regression with year (2020 vs. 2017–2019) as an independent variable. All models were adjusted for age (0–18, 18–39, 40–64, 65–74, and 75 + years old) and sex.

The overall incidence of neurosurgical cases trended downwards in Austria and the Czech Republic in 2020. Chi-square analyses revealed that significant differences in incidence rates occurred for cSDH, spine, acute hydrocephalus, and tumour cases in Austria, and in TBI and cSDH in the Czech Republic. These differences were driven by lower incidences in 2020 for all conditions in Austria, excluding tumours and other intracranial lesions. In the Czech Republic, TBI increased in 2019, then reached a 4 year low in 2020. There were no significant trends for incident cases in Switzerland (Table 2).

Of the recorded cases in Austria and the Czech Republic, 1,616 (99% of total) in Austria, 2,222 (99%) in the Czech Republic, and 875 (97%) in Switzerland, were included in the logical regression analysis of 30-day mortality. Logistic regression models revealed that the year 2020 was not significantly associated with any increased odds of 30-day mortality. In fact, TBI within the Czech Republic had a significant lowered 30-day mortality (Tables 3 and 4).

Our observations indicate a general trend toward reduced numbers of non-elective, emergency neurosurgical cases during the COVID-19 pandemic in Austria, Switzerland and the Czech Republic. This was primarily driven by a decreased incidence of conditions commonly associated with traumatic aetiologies, including brain injuries, spine conditions, and chronic subdural hematomas. Although variable across the study period (2017–2020), 30-day mortality during COVID-19 in Austria, the Czech Republic, and Switzerland did not significantly increase overall or for any condition compared to recent prior years. Despite the challenges of delivering health services and intensive care during the COVID-19 pandemic, our data indicate that emergency neurosurgical care could still be provided in these three countries.

The decreased incidence of selected neurosurgical conditions does not come as a surprise during a time when Austria the Czech Republic and Switzerland imposed relatively similar societal “lock down” measures to reduce the spread of COVID-19. Nevertheless, based on data representative of three European countries, this study is the first to quantify the extent to which COVID-19 impacted emergent surgical practice. The most obvious

Inclusion and exclusion criteria.

Inclusion	Exclusion
Any traumatic brain injury requiring surgical intervention	Conservative care
Chronic subdural hematoma requiring surgical evacuation	Elective surgeries
(Aneurysmal and non-aneurysmal) Subarachnoid haemorrhage and other neurovascular pathologies (arteriovenous malformation, dural arteriovenous fistula, cavernoma) requiring endovascular and/or neurosurgical intervention	Any procedure not meeting predefined inclusion criteria
Any (degenerative, traumatic, infectious, tumour) spine pathology requiring non-elective neurosurgical intervention	
New-onset or acute worsening in patients with hydrocephalus	
Intracranial lesions (including low- and high-grade gliomas, meningiomas, metastasis, infarction, intracranial hematoma, abscess) requiring non-elective surgical intervention	
Inclusion Exclusion	
(Aneurysmal and non-aneurysmal) Subarachnoid haemorrhage and other neurovascular pathologies (arteriovenous malformation, dural arteriovenous fistula, cavernoma) requiring endovascular and/or neurosurgical intervention	
Any traumatic brain injury requiring surgical intervention	
Chronic subdural hematoma requiring surgical evacuation	
(Aneurysmal and non-aneurysmal) Subarachnoid haemorrhage and other neurovascular pathologies (arteriovenous malformation, dural arteriovenous fistula, cavernoma) requiring endovascular and/or neurosurgical intervention	
Any (degenerative, traumatic, infectious, tumour) spine pathology requiring non-elective neurosurgical intervention	
New-onset or acute worsening in patients with hydrocephalus	
Intracranial lesions (including low- and high-grade gliomas, meningiomas, metastasis, infarction, intracranial hematoma, abscess) requiring non-elective surgical intervention	

Table 1.

Results

The participating centres in Austria, the Czech Republic, and Switzerland recorded 1,631, 2,234, and 887 non-elective neurosurgical cases, respectively. Female patients represented 44% of the sample in Austria and Switzerland, and 41% in the Czech Republic. The median age in Austria and the Czech Republic was 61 years (range: 0–95 in Austria, 0–96 in the Czech Republic), and 65 for Switzerland (17–96), One Austrian centre could only provide information on spine cases for 2019 and 2020, and thus was removed from descriptions and analyses of total cases and spine cases, but was included for the other conditions.

Discussion

The decreased incidence of selected neurosurgical conditions does not come as a surprise during a time when Austria the Czech Republic and Switzerland imposed relatively similar societal “lock down” measures to reduce the spread of COVID-19. Nevertheless, based on data representative of three European countries, this study is the first to quantify the extent to which COVID-19 impacted emergent surgical practice. The most obvious...
explanation is restricted mobility and outdoor activity within countries. This, in turn, led to fewer traumatic accidents (e.g., motor vehicle) and a subsequent reduction in brain and spinal cord injuries. On the other hand, the lower incidence of acute hydrocephalus and spine cases in Austria plus the reduced number of interventions for cSDH warrants further attention. Chronic SDH is thought to result from minor trauma weeks or months earlier in the elderly and may thus not reflect traumatic injuries in the lock-down period but rather delayed presentation of patients to health care providers. This may be particularly applicable for an insidious disease like cSDH. Thus, there is the possibility that individuals with signs of symptoms of these conditions were hesitant to seek medical care during COVID-19. This was reported as a potential factor in Northern Italy in patients with acute coronary syndrome. Faced with concerns and uncertainty regarding transmission of COVID-19, staying home may reasonably have been perceived as a safer alternative to treatment for symptoms such as headaches, dizziness, and confusion related to trauma. While this is a difficult hypothesis to explicitly test with our data, the incidence of non-traumatic cases did not significantly decrease in 2020 compared to reference years in either Austria, the Czech Republic or Switzerland (2017–2019). This is particularly notable for the incidence of tumours, which paradoxically increased in Austria in 2020. Had a reduction in the incidence of tumours been observed, one might reasonably speculate that reluctance to seek medical care served as a contributing factor; in the absence of such an effect, reduced incidence is most likely attributable to mobility restrictions imposed at the societal level that led to fewer traumatic injuries requiring neurosurgical intervention. Importantly, all analysed countries were not as severely hit by the pandemic as others, and intensive care capacities were available across all regions. Further, most non-elective cases need intensive care measures postoperatively. Neurological manifestations of the COVID-19 pandemic need to be kept in mind as well.

From a health care delivery standpoint, it was very encouraging to find that the odds of 30-day mortality did not increase in 2020 in these countries, for any condition. Due to altered management practices, issues related to the quality of care for patients with neurooncological diseases during the pandemic have been raised.

Condition	2017	2018	2019	2020	P-value*
Austria					
Total cases	400	417	392	345	0.06
Condition					
TBI	42	43	26	27	0.06
cSDH	72	63	62	38	0.01
SAH	26	47	37	41	0.10
Spine	104	110	111	71	0.01
Acute hydrocephalus	59	42	58	28	0.003
Tumour and other intracranial lesions	105	126	105	152	0.007
Czech Republic					
Total cases	586	551	584	513	0.10
Condition					
TBI	74	68	98	48	< 0.001
cSDH	87	110	84	53	0.002
SAH	59	59	66	63	0.90
Spine	175	139	135	153	0.09
Acute hydrocephalus	53	42	59	45	0.31
Tumour and other intracranial lesions	138	133	142	151	0.74
Switzerland					
Total cases	243	220	208	216	0.38
Condition					
TBI	22	24	16	18	0.57
cSDH	38	37	36	41	0.95
SAH	30	14	21	18	0.08
Spine	61	64	47	49	0.27
Acute hydrocephalus	24	27	24	26	0.97
Tumour and other intracranial lesions	68	54	64	64	0.63

Table 2. The incidence of non-elective neurosurgical cases in Austria, Czech Republic and Switzerland from March 16th until April 15th 2017–2020. TBI: Traumatic brain injury, cSDH: chronic subdural hematoma, SAH: subarachnoid hemorrhage and other vascular pathologies. *P-values derived from chi-square tests.
results, however, suggest that methods imposed to deliver care during COVID-19 in Austria, the Czech Republic, and Switzerland did not have major negative consequences.

Major strengths of this study were the large sample size, inclusion of multiple reference periods (2017–2019) for comparison to COVID-19, and representation of nearly all neurosurgical centres in Austria, the Czech Republic, and Switzerland. The interpretation of our data is limited, however, by the observational and retrospective nature of the study. Further, only patients that received surgical care were analysed. Future studies should consider the extent to which societal measures associated with COVID-19 may have influenced access to health care services by exploring other outcomes, including disease severity. Additionally, lengthening the duration of data acquisition beyond the 1-month window would allow the detection of a “rebound” in cases that were reduced by the pandemic. Hence, surgical prioritization after the pandemic is important too34. Further, one should keep in mind that COVID-19 per se causes significant neurological manifestations35,36 and some patients might need surgical care.

Conclusion

The world continues to face major challenges in managing COVID-19, which also include potential restrictions of health care services. Hence, it is uplifting to know that the neurosurgical community’s response to the initial phase of the pandemic, in at least three European countries, maintained high standards of care and low rates of acute mortality. Nevertheless, the potential of delayed patient presentation warrants further investigation as emergent neurosurgical care needs to be provided at all times.

Table 3. The 30-day mortality rates from non-elective neurosurgical cases in Austria, Czech Republic and Switzerland from 2017–2020. TBI Traumatic brain injury, cSDH chronic subdural hematoma, SAH subarachnoid haemorrhage and other vascular pathologies.
Table 4. Logistical regression of 30-day mortality in non-elective neurosurgical cases in Austria, Czech Republic and Switzerland. Effects estimates reflection 2020 compared to aggregate of reference years (2017–2019). CI confidence interval, TBI Traumatic brain injury, cSDH chronic subdural hematoma, SAH subarachnoid haemorrhage and other vascular pathologies. *All models adjusted for age and sex.

Country	Condition	Effect (95% CI)	P-value*
Austria	All	1.25 (0.74–2.03)	0.38
	TBI	0.67 (0.10–2.77)	0.62
	cSDH	4.06 (0.50–27.79)	0.15
	SAH	0.72 (0.19–2.17)	0.58
	Spine	4.94 (0.19–128.30)	0.26
	Acute hydrocephalus	2.19 (0.30–10.39)	0.36
	Tumour and other intracranial	1.02 (0.49–2.02)	0.95
	lesions		
Czech Republic	All	0.65 (0.40–1.02)	0.07
	TBI	0.20 (0.03–0.70)	0.03
	cSDH	1.25 (0.27–4.20)	0.74
	SAH	1.17 (0.40–3.02)	0.75
	Spine	0.52 (0.08–1.97)	0.39
	Acute hydrocephalus	0.74 (0.16–2.54)	0.66
	Tumour and other intracranial	0.73 (0.28–1.67)	0.49
	lesions		
Switzerland	All	1.12 (0.63–1.91)	0.68
	TBI	1.80 (0.34–8.15)	0.45
	cSDH	3.46 (0.13–91.7)	0.39
	SAH	0.39 (0.07–1.67)	0.24
	Spine	5.08 (0.88–28.55)	0.06
	Acute hydrocephalus	1.53 (0.37–5.59)	0.53
	Tumour and other intracranial	1.00 (0.31–2.77)	1.00
	lesions		

Received: 15 October 2020; Accepted: 19 February 2021
Published online: 17 March 2021

References

1. Jindal, V., Sahu, K. K., Gaikazian, S., Siddiqui, A. D. & Jaiyesimi, I. Cancer treatment during COVID-19 pandemic. Med. Oncol. 37, 58. https://doi.org/10.1007/s12032-020-01382-w (2020).
2. Subramaniam, A., Haji, J. Y., Kumar, P., Ramanathan, K. & Rajamani, A. Noninvasive oxygen strategies to manage confirmed COVID-19 Patients in Indian intensive care units: a survey. Indian J. Crit. Care Med. 37, 926–931. https://doi.org/10.1007/s12032-020-01382-w (2020).
3. Livingston, E. H. Surgery in a time of uncertainty: a need for universal respiratory precautions in the operating room. JAMA J. Am. Med. Assoc. https://doi.org/10.1001/jama.2020.7903 (2020).
4. Iacobucci, G. Covid-19: all non-urgent elective surgery is suspended for at least three months in England.
5. Jean, W. C., Ironside, N. T., Sack, K. D., Felbaum, D. R. & Syed, H. R. The impact of COVID-19 on neurosurgeons and the strategy for triaging non-emergent operations: a global neurosurgery study. JAMA Neurosurgery 162, 1229–1240. https://doi.org/10.1001/jama-neuro.2020.04305 (2020).
6. Placella, G., Salvato, D., Delmastro, E., Bettinelli, G. & Salini, V. Covid-19 and ortho and trauma surgery: the Italian experience. Injury https://doi.org/10.1016/j.injury.2020.04.012 (2020).
7. Arnaout, O., Patel, A., Carter, B. & Chiocca, E. A. Letter: adaptation under fire: two harvard neurosurgical services during the COVID-19 pandemic. Neurosurgery 87, E220–E221. https://doi.org/10.1093/neuros/nyaa146 (2020).
8. Tsirrion, C., Zisakis, A., Flint, G. & Belli, A. Challenges to neurosurgery during the coronavirus disease 2019 (COVID-19) pandemic. World Neurosurg. 139, 519–525. https://doi.org/10.1016/j.wneu.2020.05.108 (2020).
9. Bryan, A. F., Milner, R., Roggin, K. K., Angelos, P. & Matthews, J. B. Unknown unknowns: surgical consent during the COVID-19 pandemic. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003995 (2020).
10. Service, B. C. et al. Medically Necessary Orthopaedic Surgery During the COVID-19 Pandemic: Safe Surgical Practices and a Classification to Guide Treatment. J. Bone Joint Surg. https://doi.org/10.1099/jbjs.1162162 (2020).
11. Ross, S. W. et al. Maximizing the calm before the storm: tiered surgical response plan for novel coronavirus (COVID-19). J. Am. Coll. Surg. 220, 1080 https://doi.org/10.1016/j.jamcollsurg.2020.03.019 (2020).
12. Zuoia, C. et al. Neurosurgery during the COVID-19 pandemic: update from Lombardy, northern Italy. Acta Neurochir. 162, 1221–1222. https://doi.org/10.1007/s00701-020-04305-w (2020).
13. Germano, A., Raffa, G., Anglieri, F. F., Cardali, S. M. & Tomasselli, F. Coronavirus disease (COVID-19) and Neurosurgery: literature and Neurosurgical Societies Recommendations Update. World Neurosurg. https://doi.org/10.1016/j.wneu.2020.04.181 (2020).
14. Collaborative, C. O. Global guidance for surgical care during the COVID-19 pandemic. Br. J. Surg. https://doi.org/10.1002/bjs.11646 (2020).
15. Jarman, M. P. et al. The surgical health services research agenda for the COVID-19 pandemic. Ann. Surg. https://doi.org/10.1097/SLA.0000000000004126 (2020).
16. Muhammad, S., Tanikawa, R., Lawton, M. T., Niemela, M. & Hanggi, D. Letter: safety instructions for neurosurgeons during COVID-19 pandemic based on recent knowledge and experience. Neurosurgery 87, E220–E221. https://doi.org/10.1093/neuros/nyaa184 (2020).
17. Lei, S. et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine, 100331, doi:https://doi.org/10.1016/j.eclinm.2020.100331 (2020).

18. Aminian, A., Safari, S., Razeghian-Jahromi, A., Ghorbani, M. & Delaney, C. P. COVID-19 outbreak and surgical practice: unexpected fatality in perioperative period. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003925 (2020).

19. Carrabba, G., Tariciotti, L., Guez, S., Calderini, E. & Locatelli, M. Neurosurgery in an infant with COVID-19. Lancet 395, e76, https://doi.org/10.1016/S0140-6736(20)30927-2 (2020).

20. Chen, R. et al. Safety and efficacy of different anesthetic regimens for parturients with COVID-19 undergoing Cesarean delivery: a case series of 17 patients. Can. J. Anaesthesia 67, 655–663, https://doi.org/10.1001/jama.2020.01630-7 (2020).

21. Panciani, P. P. et al. Letter: COVID-19 infection affects surgical outcome of chronic subdural hematoma. Neurosurgery https://doi.org/10.1093/neuros/nyya140 (2020).

22. Zhong, Q. et al. Spinal anesthesia for patients with coronavirus disease 2019 and possible transmission rates in anaesthetists: retrospective, single-centre, observational cohort study. Br J Anaesth 124, 670–675, https://doi.org/10.1016/j.bja.2020.03.007 (2020).

23. Lin, E. E. et al. Incidence of COVID-19 in pediatric surgical patients among 3 US Children's Hospitals. JAMA Surg. https://doi.org/10.1001/jamasurg.2020.2588 (2020).

24. Leung, K., Wu, J. T., Liu, D. & Leung, G. M. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. Lancet 395, 1382–1393, https://doi.org/10.1016/S0140-6736(20)30746-7 (2020).

25. Lurie, N., Saville, M., Hatchett, R. & Halton, J. Developing covid-19 vaccines at pandemic speed. N. Engl. J. Med. 382, 1969–1973. https://doi.org/10.1056/NEJMoa2005630 (2020).

26. Pearce, N., Lawlor, D. A. & Brickley, E. B. Comparisons between countries are essential for the control of COVID-19. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyaa108 (2020).

27. Injury, G. B. D. T. B. & Spinal Cord Injury, C. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 56–87, https://doi.org/10.1016/S1474-4422(18)30415-0 (2019).

28. Robinson, R. G. Chronic subdural hematoma: surgical management in 133 patients. J. Neurosurg. 61, 263–268. https://doi.org/10.3171/jns.1984.61.2.0263 (1984).

29. Ponggera, D., Klein, B., Thome, C. & Grassner, L. The influence of the COVID-19 pandemic on traumatic brain injuries in Tyrol: experiences from a state under lockdown. Eur. J. Trauma Emerg. Surg. https://doi.org/10.1007/s00068-020-01445-7 (2020).

30. De Filippo, O. et al. Reduced rate of hospital admissions for ACS during covid-19 outbreak in Northern Italy. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2009166 (2020).

31. Liu, K., Pan, M., Xiao, Z. & Xu, X. Neurological manifestations of the coronavirus (SARS-CoV-2) pandemic 2019–2020. J. Neurol. Neurosurg. Psychiatr. 91, 669–670. https://doi.org/10.1136/jnnp-2020-33377 (2020).

32. Beyrouti, R. et al. Characteristics of ischaemic stroke associated with COVID-19. J. Neurol. Neurosurg. Psychiatr. https://doi.org/10.1136/jnnp-2020-332586 (2020).

33. Perin, A., Servadei, F., DiMeco, F., Hub & Spoke’ Lombardy Neurosurgery, G. May we deliver neuro-oncology in difficult times (e.g. COVID-19)? J. Neurooncol. 148, 203–205, https://doi.org/10.1007/s11060-020-03496-7 (2020).

34. Brindle, M. E., Doherty, G., Lillemoe, K. & Gawande, A. Approaching surgical triage during the COVID-19 pandemic. JAMA Surg. https://doi.org/10.1001/jamasurg.2020.2065 (2020).

35. Zubair, A. S. et al. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.2065 (2020).

36. Pleasure, S. J., Green, A. J. & Josephson, S. A. The spectrum of neurologic disease in the severe acute respiratory syndrome coronavirus 2 pandemic infection: neurologists move to the frontlines. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.1065 (2020).

Acknowledgments
Special thanks to all the centres that agreed to participate and Dr. Larry Kramer for editing the manuscript.

Author contributions
L.G., O.P., M.D., F.W., K.K., C.T., A.R., D.N. wrote the manuscript All authors collected data from their respective departments. F.W. and K.K. performed the statistical analysis. All authors approved to the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021