On the Systematic Bias in the Estimation of Black Hole Masses in Active Galactic Nuclei

WANG Jianguo1,2,3* & Dong Xiaobo4,5

1National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, China;
2Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China;
3Graduate University of Chinese Academy of Sciences, Beijing 100049, China
4Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China (USTC), Hefei 230026, China
5Center for Astrophysics, USTC, Hefei 230026, China

Received Apr. 26, 2012; accepted 000

In this report, we find the M_{BH} estimated from the formalism of Wang et al. (2009)[1] are more consistent with those from the M_{BH}-σ^* relation than those from previous single-epoch mass estimators, using a large sample of AGNs. Furthermore, we examine the differences between the line widths of Hβ and Mg II in detail by comparing their line profiles. The flux around the line core and that in the wing of both Hβ and Mg II show an opposite variation tendency, which indicates the BLR is multi-componential. The contribution of the wing makes the FWHM deviate from σ_{line}, and thus bias the M_{BH} estimated from previous single-epoch mass estimators. Thus the correction on the formalism suggested by Wang et al. (2009)[1] is crucial to M_{BH} estimation.

Quasars, Galactic nuclei, Masses, Statistical and correlative studies of properties

PACS: 98.54.Aj, 98.62.Js, 98.62.Ck, 98.62.Ve

1 Introduction

Accretion onto super-massive black holes (SMBHs) is generally considered as the energy engine of active galactic nuclei (AGNs). The determination of the mass of SMBH (M_{BH}) is crucial to the understanding of most physical processes associated with SMBH and the cosmological evolution of black holes. The M_{BH} of type I AGNs are usually measured using the virial theorem, $M_{BH} = f R_{BLR} V^2 / G$, if the size of broad line region (R_{BLR}) and the virial velocity (V) of clouds in the BLR are known, where f is a factor of order unity depending on the geometry and kinematics of the BLR. R_{BLR} can be estimated using the reverberation mapping (RM) method[2], which monitors the variability of continuum and emission lines. V can be estimated from the widths of emission lines. Conversely, M_{BH} can also be estimated using the tight correlation between M_{BH} and the stellar velocity dispersion of the galactic bulge (M_{BH}-σ_* relation)[3,4,5]. However, both of these methods cannot be used for large samples of AGNs, because the RM method is time-consuming and the measurements of σ_* are limited by the spectral and spaital resolution of telescopes.

For large samples of AGNs, M_{BH} can be estimated by combining R_{BLR}, which is estimated using the important relationship between R_{BLR} and the monochromatic continuum luminosity (R-L relation)[6,7,8], and the FWHM of emission lines. The single-epoch mass estimators have been studied for various broad lines, such as Hβ [1,9], Hα [10], Mg II λ2800 [1,11,12] and C IV λ1549[13]. If both Hβ and Mg II FWHMs are good tracers of the virial velocity and can be used to estimated the M_{BH}, they should give the same M_{BH} values. Some researchers found they are consistent with each other [11,14,15,16], while others came to an opposite conclusion [1,17,18]. Wang et al. (2009) found that Mg II FWHM is systematically smaller than Hβ FWHM, and that the relationships between Hβ and Mg II FWHM and σ_{line}, which is the best virial velocity tracer measured on the variable part of the spectrum[19], deviate from the 1:1 relationship. The dependance of M_{BH} on FWHM should be $M_{BH}\propto$FWHM$^\gamma$, where γ is smaller than 2 for both Hβ and

*Corresponding author (email: wangjg@ynao.ac.cn)
Mg II. If this is the case, most previous single-epoch mass estimators ($M_{\text{BH}} \propto \text{FWHM}^2$) would introduce systematic biases in M_{BH} estimations [1, 20, 21, 22, 23] and result in many artificial conclusions, as discussed by Rafiee and Hall (2011) [21] and Croom (2011) [22]. Thus, further testing the validity of the formalism of Wang et al. (2009) [1] is critical for eliminating such biases in M_{BH} estimations and many other related relationships in AGNs. The M_{BH} estimated from the Hβ and Mg II formalisms of Wang et al. (2009) are more consistent with those from RM measurements than those from previous single-epoch mass estimators and are consistent with each other for a large sample culled from Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). However, one remaining issue is whether the new M_{BH} estimates are consistent with those derived from the M_{BH}–σ relation, which should be tested using a large sample.

Moreover, the reasons for the systematic deviations between Hβ and Mg II FWHM and σ_{line} are unclear now. The profile of an emission line is determined by the structure and kinematics of the BLR, which are complex. It is possible that the broad lines in most AGNs are generated in multi-regions, including the gravitationally-bound BLR, outflows [24] and the surface of accretion disk (Wang et al. 2005 [25]; Wu et al. 2008 [26]). Different measurements of line width, such as σ_{line} and FWHM, would represent different information about the structure and/or kinematics of the BLR. Special attention must be noted when using in the estimation of M_{BH}. The study of the structure and kinematics of the BLR would be helpful to understand why FWHM deviates from σ_{line} and important for the M_{BH} estimation of AGNs. In this report, we examine whether there are systematic biases between the M_{BH} estimated from the single-epoch mass estimators and those from the M_{BH}–σ relation. We also compare the profiles of Hβ and Mg II in order to understand their differences and why their FWHM deviates from σ_{line}.

2 The Bias in the M_{BH} Estimates

We first verify the consistency between the M_{BH} estimated from the single-epoch mass estimators and those from the M_{BH}–σ relation (Gültekin et al. 2009) [27]. We select 8470 AGNs with $z < 0.35$ from SDSS DR4. The spectrum is corrected for the Galactic extinction using the extinction map of Schlegel et al. (1998) [28] and the reddening curve of Fitzpatrick (1999) [29]. The fitting method is described in Dong et al. (2008) [30] and described below. In the wavelength range 4030-7500 Å, we fit simultaneously the featureless continuum and the Fe II multiplets and other emission lines. Each of the [O III] $\lambda\lambda$ 4959,5007 doublets is modeled with two Gaussians, one for the line core and the other for the possible blue wing. The narrow components of Hα and Hβ are fitted with similar profile to the line core of [O III] λ5007 and the broad components of them are fitted with 1-4 gaussians. M_{BH} can be estimated using the width of the line core of [O III] λ5007 as substitute for σ, [31]. Because Hβ is weak for many objects, we estimate Hβ FWHM from Hα FWHM [10] and then estimate the M_{BH} using the single-epoch mass estimators. We find that the differences between the M_{BH} estimated from the single-epoch mass estimators and those from the M_{BH}–σ relation are correlated with Hα FWHM (Figure 1), if the formalisms from Greene and Ho (2005; hereafter GH05) [10] or Vestergaard and Peterson (2006; hereafter VP06) [9] are used. The correlation would decrease largely, if the formalism of Wang et al. (2009) [1] is adopted. The relationship between the M_{BH} differences and FWHM(Hα) is somewhat linear in log-log space and can be expressed as $\log \frac{M_{\text{BH}}}{M_{\odot}} = k \log \frac{\text{FWHM}(\text{H}\alpha)}{\text{km s}^{-1}} + b$. The (k, b) for the formalisms of GH05, VP06 and Wang et al. (2009) given by the regression method of Kelly (2007) [32] are $(2.05 \pm 0.04, -7.51 \pm 0.13)$, $(1.93 \pm 0.03, -6.73 \pm 0.09)$ and $(0.86 \pm 0.03, -2.99 \pm 0.11)$, respectively. All the intrinsic scatters of these relations are around 0.02 dex. This indicates that the M_{BH} estimated from the formalism of Wang et al. (2009) [1] are less biased than those from previous single-epoch mass estimators (M_{BH}–FWHM2). We attempt to estimate the M_{BH} using the M_{BH}–σ relation from other authors (Xiao et al. 2011 [33]) and find the M_{BH} estimated from the formalism of Wang et al. (2009) are still less biased than those from previous single-epoch mass estimators.

![Figure 1](image-url)

Figure 1 Correlations between FWHM(Hα) and the differences of M_{BH} estimate from single-epoch mass estimators and those from M_{BH}–σ relation [27] for the sample from SDSS DR4. The crosses are the median values and standard deviations of the M_{BH} differences and FWHM in each bin of FWHM. The solid lines show the best-fit relations.

3 Profiles of Hβ and Mg II

The comparison above shows that the method of Wang et al. (2009) [1] is capable of correcting the systematic biases in the
M_{BH} estimations over a large redshift interval. This indicates indirectly that Hβ and Mg II FWHMs are deviating from σ_{line} systematically. The systematic deviation may be caused by the complex structure and kinematics of the BLR. We compare the profiles of Hβ and Mg II using the sample from Wang et al. (2009)[1], which was selected from SDSS DR5. The sample includes 495 AGNs with high signal-to-noise ratio (S/N > 20) in both the Hβ (4600-5100 Å) and the Mg II (2700-2900 Å) regions, which makes it suitable for the comparison. The spectrum is corrected for the Galactic extinction using the extinction map of Schlegel et al. (1998)[28] and the reddening curve of Fitzpatrick (1999)[29]. The redshifts of these quasars are from Hewett and Wild (2010)[34], which were derived by cross-correlating observed spectra with a carefully constructed template. The dependence of emission line shift on luminosity and redshift are corrected and the systematic errors of redshifts are reduced to the level of 30 km/s, which are important to our investigation. We perform the continuum and emission-line fitting using an Interactive Data Language (IDL) code based on MPFIT [35], which performs χ^2-minimization by the Levenberg-Marquardt technique.

The spectrum is fitted in two wavelength range: Hβ range (4200-5600Å) and Mg II range (2200-3500 Å). For the Hβ range, the fitting method is similar to that described above. For the Mg II range, the method is described in Wang et al. (2009)[1]. The featureless continuum and Fe II multiplets were modeled simultaneously. The broad component of each of the Mg II λλ 2796,2803 doublets is modeled with a Gaussian. Usually, the shift and asymmetry of lines are studied separately, while they may be caused by the same process[24]. The blueshift and asymmetry index (BAI), which is defined as the flux ratio of the blue part to the total profile, measures their combined effects[24]. For Hβ and Mg II, the blue part is the part at wavelength short than 4862.68 and 2800.26 Å, respectively. The distributions of BAI are showed in Figure 2. The median value of the BAI distribution of Mg II is around 0.5, while that of Hβ is smaller than 0.5. Because both Hβ and Mg II show no evidence of shift (see Figure 3), the BAI is primarily caused by the line asymmetry. This indicates that Mg II profile is quite symmetrical in that there are more flux in the red part of Hβ than that in the blue part, which are consistent with the conclusion if the shift and asymmetry of lines are measured separately.

![Figure 2](image-url)

Figure 2 BAI distributions of Hβ (solid line) and Mg II (dotted line).

A direct comparison between the profiles of Hβ and Mg II is showed in Figure 3. The spectra are normalized at the emission-line-free window 3030 – 3090 Å and the continuum and Fe II multiplets were subtracted. The last panel shows the line ratios of Hβ and Mg II. Black: FWHM(Hβ) < 3000 km/s; Red: 3000 km/s < FWHM(Hβ) < 4000 km/s; Green: 4000 km/s < FWHM(Hβ) < 5500 km/s; Cyan: FWHM(Hβ) > 5500 km/s.

![Figure 3](image-url)

Figure 3 Composite profiles of Hβ and Mg II of four sub-sample divided by their Hβ FWHM, as well as their difference in velocity space. First two panels are Hβ and Mg II profiles. All these flux are normalized at the emission-line-free window 3030 – 3090 Å and the continuum and Fe II multiplets were subtracted. The last panel shows the line ratios of Hβ and Mg II. Black: FWHM(Hβ) < 3000 km/s; Red: 3000 km/s < FWHM(Hβ) < 4000 km/s; Green: 4000 km/s < FWHM(Hβ) < 5500 km/s; Cyan: FWHM(Hβ) > 5500 km/s.

For the Mg II multiplets are subtracted. The sample is divided into four sub-samples according to Hβ FWHM. The composite Hβ and Mg II profiles of each sub-sample, as well as their line ratio, are showed in Figure 3. The peaks of both Hβ and Mg II do not show evident shift. The flux in the wings increases with the increase of FWHM, while the flux around the line core decreases with the increase of FWHM. The change of Hβ is more rapid than that of Mg II. This indicates that Hβ and Mg II are not cospatial in BLR and the BLR in AGNs is multi-componential. At least two emitting regions are needed: an intermediate line region (ILR) producing the line core and a very broad line region (VBLR) producing the
line wings[36]. The emission in ILR makes larger contribution to the Mg II lines, while the emission in the VBLR makes larger contribution to the Balmer lines[36].

4 Discussion

Different structures of the BLR have been proposed to explain the profiles of emission lines. These models include: a rotating accretion disk, binary black holes, bipolar outflow and anisotropically illuminated spherical BLR (see Eracleous and Halpern 2003 and reference therein)[37], as well as the gravitationally-bound BLR-outflow model of Wang et al. (2011)[24]. The gravitationally-bound BLR-outflow model has succeeded in explaining the profiles of the high ionization C IV line[24], but is not suitable to explain the profile of low ionization Hβ line. This is because Hβ shows a systematically small BAI (<0.5) opposed to the expectation of the model (BAI=0.5). Eracleous and Halpern (2003) found the accretion disk emission could explain the double-peak profile and other spectroscopic properties of AGNs presenting the double-peaked Balmer lines, while other structures are unsatisfactory[37]. They attempted to explain the profiles of Hβ and Mg II using the accretion disk emission, but the model predicts lower Mg II flux than the observed flux. One of the possible reasons is that the BLR is two-componential. The contribution of the ILR to Mg II is critical but is not included in their model.

As showed in Figure 3, the contribution of the VBLR to Hβ and Mg II flux becomes more important with the increase of Hβ FWHM. However, the contribution of the VBLR to σ_{line} may be small, because clouds in the VBLR might be optically thin to the ionization continuum[38]. The emission from the VBLR does not vary with the variability of continuum and contributes little to the variable part of the spectrum. This may be the reason of the systematic deviations between Hβ and Mg II FWHM and σ_{line}. Moreover, the fraction of the contribution of the VBLR to Mg II is much smaller than that to Hβ, which makes the Mg II FWHM systematically smaller than Hβ FWHM. The contribution of the VBLR makes FWHM deviate from σ_{line} systematically and bias the M_{BH} estimation from previous single-epoch mass estimators (M_{BH} ∝ FWHM^2). When estimating the M_{BH} using FWHM as the tracer of the virial velocity, it is crucial to correct the biases by using the fitted index of the M_{BH}∝ FWHM^2 relation, rather than the assumed γ = 2, as suggested by Wang et al. (2009).

We thank the anonymous referees for their helpful suggestions that improved the paper. We acknowledge useful comments and suggestions from Weinmin Yuan and Chang You. This work was supported by Chinese NSF (grant Nos. 11073019, 10973034, 11033007, 11133006 and 11103071) and the National Basic Research Program of (973 Program) 2009CB824800.
WANG Jianguo, et al. Sci China Phys Mech Astron 000 (2012) Vol. 000 No. 000

22 Croom S M. Do Quasar Broad-line Velocity Widths Add Any Information to Virial Black Hole Mass Estimates? Astrophys J, 2011, 736: 161
23 Peterson B M. Masses of Black Holes in Active Galactic Nuclei: Implications for NLS1s. arXiv:1109.4181
24 Wang H Y, Wang T G, Zhou H Y, et al. Coexistence of Gravitationally-bound and Radiation-driven C IV Emission Line Regions in Active Galactic Nuclei. Astrophys J, 2011, 738: 85
25 Wang T G, Dong X B, Zhang X G, et al. Two Extreme Double-peaked Line Emitters in the Sloan Digital Sky Survey. Astrophys J, 2005, 625: L35–L38
26 Wu S M, Wang T G, Dong X B. Broad reprocessed Balmer emission from warped accretion discs. Mon Not Roy Astron Soc, 2008, 389: 213–222
27 Gultekin K, Richstone D O, Gebhardt K, et al. The M-σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. Astrophys J, 2009, 698: 198–221
28 Schlegel D J, Finkbeiner D P, Davis M. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. Astrophys J, 1998, 500: 525
29 Fitzpatrick E L. Correcting for the Effects of Interstellar Extinction. Publ Astron Soc Pac, 1999, 111: 63–75
30 Dong X B, Wang T G, Wang J G, et al. Broad-line Balmer decrements in blue active galactic nuclei. Mon Not Roy Astron Soc, 2008, 383: 581–592
31 Komossa S, Xu D. Narrow-Line Seyfert 1 Galaxies and the MBH-σ Relation. Astrophys J, 2007, 667: L33–L36
32 Kelly B C. Some Aspects of Measurement Error in Linear Regression of Astronomical Data. Astrophys J, 2007, 665: 1489–1506
33 Xiao T, Barth A J, Greene J E, et al. Exploring the Low-mass End of the M_BH-σ Relation with Active Galaxies. Astrophys J, 2011, 739: 28
34 Hewett P C, Wild V. Improved redshifts for SDSS quasar spectra. Mon Not Roy Astron Soc, 2010, 405: 2302–2316
35 Markwardt C B. Non-linear Least-squares Fitting in IDL with MPFIT. In: David A, Bohlender D D, Patrick D, eds. Proceedings of the conference held 2-5 November 2008 at Hotel Le Concorde, Quebec City, QC, Canada, 2009, 411: 251–254
36 Popović L Č, Mediavilla E, Bon E, et al. Contribution of the disk emission to the broad emission lines in AGNs: Two-component model. Astron & Astrophys, 2004, 423: 909–918
37 Eracleous M, Halpern J P. Completion of a Survey and Detailed Study of Double-peaked Emission Lines in Radio-loud Active Galactic Nuclei. Astrophys J, 2003, 599: 886–908
38 Ferland G J, Korista K T, Peterson B M. Optically thin thermal emission as the origin of the big bump in the spectra of active galactic nuclei. Astrophys J, 1990, 363: L21–L25