Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species

Guilherme N Corte Correspond., 1, Thomas A Schlacher 2, Helio H Checon 1, Carlos A M Barboza 3, Eduardo Siegle 4, Ross A Coelman 5, Antonia Cecília Z Amaral 1

1 Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
2 School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
3 Núcleo em Ecologia e Desenvolvimento, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brasil
4 Instituto Oceanográfico, Universidade de São Paulo, São Paulo, São Paulo, Brasil
5 School of Life and Environmental Science, University of Sydney, Sydney, New South Wales, Australia

Corresponding Author: Guilherme N Corte
Email address: guilhermecorte@yahoo.com.br

Climate change is predicted to lead to more extreme weather events, including changes to storm frequency, intensity and location. Yet, the ecological responses to storms are incompletely understood for sandy shorelines, the globe’s longest land-ocean interface. Here we document how storms of different magnitude impacted the invertebrate assemblages on a tidal flat in Brazil. We specifically tested the relationships between wave energy and spatial heterogeneity, both for habitat properties (habitat heterogeneity) and fauna (β-diversity), predicting that larger storms redistribute sediments and hence lead to spatially less variable faunal assemblages. The sediment matrix tended to become less heterogeneous across the flat after high-energy wave events, whereas β-diversity increased after storms. This higher β-diversity was primarily driven by species losses. Significantly fewer species at a significantly lower density occurred within days to weeks after storms. Negative density and biomass responses to storm events were most prominent in crustaceans. Invertebrate assemblages appeared to recover within a short time (weeks to months) after storms, highlighting that most species typical of sedimentary shorelines are, to some degree, resilient to short-term changes in wave energy. Given that storm frequency and intensity are predicted to change in the coming decades, identifying properties that determine resilience and recovery of ecosystems constitute a research priority for sedimentary shorelines and beyond.
Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species

Short title: Storm effects on intertidal invertebrates

Guilherme N. Corte1§*, Thomas A. Schlacher2§, Helio H. Checon1, Carlos A. M. Barboza3, Eduardo Siegle4, Ross A. Coleman5, A. Cecilia Z. Amaral1

1Departamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP), CEP 13083-862, Campinas, SP, Brazil. hchecon@yahoo.com.br, ceamaral@unicamp.br
2School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia. tschlach@usc.edu.au
3Núcleo em Ecologia e Desenvolvimento, Universidade Federal do Rio de Janeiro, CEP, 27965-045Macaé, RJ. carlosambarboza@gmail.com
4Instituto Oceanográfico, Universidade de São Paulo (USP), CEP 05508-120 São Paulo, SP, Brazil. esiegle@usp.br
5Coastal & Marine Ecosystems, School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia. ross.coleman@sydney.edu.au

§ both authors contributed equally to this work
*Corresponding author: guilhermecorte@yahoo.com.br
Climate change is predicted to lead to more extreme weather events, including changes to storm frequency, intensity and location. Yet, the ecological responses to storms are incompletely understood for sandy shorelines, the globe’s longest land-ocean interface. Here we document how storms of different magnitude impacted the invertebrate assemblages on a tidal flat in Brazil. We specifically tested the relationships between wave energy and spatial heterogeneity, both for habitat properties (habitat heterogeneity) and fauna (β-diversity), predicting that larger storms redistribute sediments and hence lead to spatially less variable faunal assemblages. The sediment matrix tended to become less heterogeneous across the flat after high-energy wave events, whereas β-diversity increased after storms. This higher β-diversity was primarily driven by species losses. Significantly fewer species at a significantly lower density occurred within days to weeks after storms. Negative density and biomass responses to storm events were most prominent in crustaceans. Invertebrate assemblages appeared to recover within a short time (weeks to months) after storms, highlighting that most species typical of sedimentary shorelines are, to some degree, resilient to short-term changes in wave energy. Given that storm frequency and intensity are predicted to change in the coming decades, identifying properties that determine resilience and recovery of ecosystems constitute a research priority for sedimentary shorelines and beyond.
1. Introduction

Extreme weather events, including changes to storm frequency and intensity, are predicted to increase over the 21st century (IPCC 2013, Lin and Emanuel 2016, Walsh et al. 2016). These global changes to ecosystem physical and chemical conditions are having numerous and widespread biological impacts in the sea and on land (Weatherdon et al. 2016). In the global oceans, climate change is expected to substantially alter the provision of ecosystems services critical to humankind, such as coastal protection and capture fisheries (Gattuso et al. 2015), but many responses in marine ecosystems still remain incompletely understood (Hauser et al. 2016, Nagelkerken and Munday 2016).

Storms may cause massive changes to coastal environments, particularly on sedimentary shorelines (Mateo and Garcia-Rubies 2012), often causing the translocation of sediment from the beach and dunes, and the landwards movement of the coastline (Masselink et al. 2016). These large habitat changes are usually accompanied by impacts to faunal assemblages, best documented for benthic invertebrates, seagrass meadows, and algal communities (Lucrezi et al. 2010, Jaramillo et al. 2012, Mateo and Garcia-Rubies 2012).

The unpredictable nature of storms generally precludes the use of a rigorous experimental design to specifically test for storm effects, meaning that nearly all published ‘storm studies’ are largely opportunistic (Harris et al. 2011). In addition, often only a few or no data points are available immediately before a storm, post-storm sampling can be truncated, and for large storms it is challenging or impossible to find control areas that were not affected by the event (Posey et al. 1996); arguably, this makes attribution of ecological patterns to storm effects somewhat weak. An alternative is to make a priori predictive hypotheses based on knowledge of the biology of species and their likely response to large disturbance events in their habitat (Harris et al. 2011).

Here, we combine oceanographic, sedimentary and biological data to investigate how storms can affect the sedimentary habitat of a tidal flat in Southeast Brazil and the macrobenthic assemblages inhabiting it. Specifically, we tested four complementary, predictive hypotheses:

1. Higher wave energy during storms may translocate and disperse large sediment volumes (Masselink et al. 2016). We therefore predict that habitat heterogeneity (i.e. the spatial variation in seafloor properties amongst sampling sites) would be reduced after storms.

2. Habitat heterogeneity can be a major determinant for ecological assemblages, typically promoting beta diversity (i.e. variability in species composition among sampling units for a given area)
Therefore, we expect that storms lower beta diversity of the fauna.

3. Disturbance caused by storms has been reported to detrimentally affect populations of benthic species (Jaramillo et al. 1987, Mateo and Garcia-Rubies 2012). Accordingly, we expect lower species richness, abundance, and biomass of invertebrates after storms.

4. Given that we expect lower \(\beta \)-diversity (prediction 2) and reduced number of species after storms (prediction 3), we predict that changes in \(\beta \)-diversity may be mainly attributable to species losses rather than species replacement.

2. Material and Methods

2.1 Study area

This study was done on the intertidal flats of Araçá Bay (Brazil, 23º 49’S, 45º 24’W; Fig. 1), a sheltered and heterogeneous intertidal flat adjacent to the São Sebastião Channel, Southeast Brazil (Amaral et al. 2010). The area is relatively small (ca. 750 m wide and long) and protected from the prevailing swell by São Sebastião Island (Fig. 1). It is one of few tide-dominated environments along the southeastern coast of Brazil (Dottori et al. 2015). Hydrographic properties of Araçá Bay are subject to physical forcing by frontal systems, when current speeds can increase eightfold (Fo 1990). At the region, the highest storm waves are associated to cold fronts and reaching offshore significant wave heights of 6.4m (Pianca et al. 2010).
2.2 Field sampling

Field work was done during spring tides on four times, at ca. three month intervals, from September 2011 to July 2012 (25 September 2011, 5 February 2012, 7 May 2012, and 29 July 2012). Three storm events occurred during the study (22 November 2011, 06 May 2012, 18 July 2012; Fig. 2), all accompanied by torrential rain, strong winds, flooding, and building damages. We sampled on the first spring tide after the storms in May and July 2012 (one-day lag in May and 11 days in July).

During each sampling event, field work was done early in the morning of two consecutive days, collecting fauna from 34 sites. The sampling sites were positioned to encompass habitat diversity of the tidal flat (i.e. different sediment types over a range of depths), and to achieve a reasonable dispersion and spatial coverage (Fig. 1). The position of each sampling site was recorded with a GPS (Garmin eTreX Legend, datum WGS84) and the same locations (+/- 1 m) were sampled during each of the four sampling events. Three faunal samples (corer: 20 cm inner diameter, 20 cm depth) and one sediment sample (corer: 3 cm inner diameter, 20 cm deep) were collected per site and event.

2.2 Biological and environmental data

Fauna cores were washed on the same day of collection through a 0.3 mm mesh sieve, and the retained fauna was fixed in 70% ethanol. Sediment granulometric analysis was performed with standard dry sieving described by Suguio (1973). Sediment statistics were calculated with SysGran software (Camargo 2006) using the parameters of Folk and Ward (1957). Organic matter content was determined by weight losses of dried samples (60°C for 24 h) after incineration (550°C for 6 h). Calcium carbonate content was determined by 10% HCl digestion.

Sediment temperature and interstitial water salinity were measured in situ with a digital thermometer and an analog refractometer (precision of 0.01 and 0.1 units, respectively). Wave height and period for the region were obtained for 24.5 S and 45.5 W from the global wave generation model WaveWatch III (NCEP/NOAA). Wave power \(P_w \) was calculated as: \(P_w = \rho g H^2 T / 32\pi \), where \(\rho \) is water density (1,027 kg/m\(^3\)), \(g \) the acceleration due to gravity (9.81 m/s\(^2\)), \(H \) the wave height (m), and \(T \) the wave period (s) (Herbich 2000). We considered wave height and power for the three days before each sampling event. This time lag was found to show the strongest correlation between wave height/power and changes in macrobenthic species in the area (Turra et al. 2016).

All work was done in accordance with permit No. 19887-1 issued by the federal environmental agency, Ministério do Meio Ambiente, Instituto Chico Mendes de Conservação da Biodiversidade (ICM-Bio).
2.3 Data analysis
We tested for differences in habitat heterogeneity and fauna β–diversity amongst times with permutational analysis of multivariate dispersion (PERMDISP, Anderson 2006). In this analysis, higher multivariate dispersion is an indication of higher variability (i.e., higher habitat heterogeneity and β–diversity) among sampling sites (Anderson 2006). For habitat heterogeneity, the test was based on Euclidean distances calculated from normalized sediment data. For fauna β–diversity, the test was based on Hellinger transformation (Legendre and De Cáceres 2013) calculated from abundance data for the full suite of species. PERMDISP analysis was done using Primer 6 software (Clarke and Gorley 2006). Ordination plots (nMDS) were computed with the vegan package in R (Oksanen 2017) to illustrate differences in habitat heterogeneity and β–diversity (i.e. dispersion of sampling sites) between sampling events.

We tested for differences in species richness, abundance and biomass of invertebrate assemblages amongst times using general linear models with ‘Time’ as fixed factors. Models were adjusted using the negative binomial distributions for count data (species richness and abundance) and gamma distributions for continuous data (biomass). We used Tukey post-hoc tests to examine differences among sampling times using the MASS package in R (Ripley et al. 2013). This framework was used to investigate differences in the whole assemblage and also in the main groups of intertidal macrofauna (i.e., molluscs, polychaetes and crustaceans) separately.

We used the Similarity percentage analysis (SIMPER) based on Bray-Curtis distance to investigate the contribution of each individual species to the differences in species assemblages among sampling periods. Data was $\log(x+1)$ transformed before analysis to reduce influence of abundant species. SIMPER was done in Primer 6 software (Clarke and Gorley 2006).

We used the β–diversity partitioning framework of Podani and Schmera (2011) and Carvalho et al. (2012) to investigate compositional changes of macrobenthos (i.e. β–diversity) over time. This framework calculates compositional differences among communities (β_{total}) and partitions it into β diversity attributed to species replacement (β_{repl}) and β diversity attributed to species loss or gain (β_{rich}). This analysis was done with the R package BAT (Cardoso et al. 2015).

3. Results
Seawater temperature varied seasonally, whereas salinity and organic matter content of the sediment changed relatively little over time (Table 1). The silt-, clay-, and fine sand fraction of the sediment increased between Sep. 2011 and July 2012 (Table 1). Waves were higher and more powerful before samplings in May and July 2012 (Table 1, Fig. 2).
Table 1. Environmental parameters recorded.

	September 2011	February 2012	May 2012	July 2012
Temperature (°C)	21.9 (0.2)	27.4 (0.2)	25.0 (0.2)	20.4 (0.1)
Salinity	32.3 (0.3)	31.7 (0.9)	30.6 (0.7)	29.9 (0.6)
Mean grain size (φ)	2.5 (0.7)	2.7 (0.7)	2.7 (0.5)	2.8 (0.64)
Silt and clay (%)	4.2 (0.6)	4.7 (0.6)	4.8 (0.6)	5.7 (0.9)
Fine sand (%)	68.4 (3.2)	73.5 (3.2)	74.1 (3.8)	74.7 (3.1)
Coarse sand (%)	10.7 (1.6)	9.5 (1.7)	7.9 (1.3)	7.3 (1.6)
Pebbles (%)	6.2 (1.4)	3.7 (1.1)	3.2 (0.9)	3.2 (1.0)
Organic matter (%)	1.6 (0.1)	1.7 (0.2)	1.7 (0.2)	1.9 (0.2)
CaCO₃ (%)	4.9 (0.4)	4.4 (0.4)	3.8 (0.5)	3.5 (0.3)
Height of waves (m)	1.5 (0.06)	1.6 (0.04)	2.1 (0.11)	1.7 (0.04)
Power of waves (10⁴W/s)	20.1 (1.7)	18.1 (7.3)	42.8 (5.3)	30.4 (3.4)
We recorded 126 species from 33,320 individuals during the study (supplementary data). Polychaetes, molluscs and crustaceans made up 94% of species (polychaetes: 67 species; molluscs: 34 species; crustaceans: 18 species). Crustaceans were the most abundant group, comprising 56.5% of all individuals, mainly because of the high number of the tanaidacean *Monokalliapseudes schubartti* (Mañé-Garzón, 1949); polychaetes made up 39.6%, and molluscs 3.7% of catches (supplementary data).

H1: Lower habitat heterogeneity after storms

Sediment properties were spatially more homogeneous after periods of higher wave power (Fig. 3a), but differences between sampling times were not significant (Fig. 4a; PERMDISP $P = 0.586$).
Fig. 3 nMDS biplot of Euclidean distance based normalized environmental data (a) and nMDS biplot of Hellinger disimilarity matrix based on macrobenthic abundance data (b). Samples from September 2011 are located inside the polygon plotted in red, from February 2012 in yellow, from May 2012 in blue, and from July 2012 in green. Stress for these ordination are 0.10 (a) and 0.19 (b).
Fig. 4 Habitat heterogeneity (a) and β-diversity of macrobenthic assemblages (b) during four sampling events associated with significant variation in wave energy preceding each event. Measure of habitat heterogeneity and β-diversity is the distance from centroids across all sites at a time. Letters and colours denote different groups (P<0.05) in permutational analysis of multivariate dispersion (PERMDISP). Error bars denote standard errors.

H2: β-diversity declines after storms due to more homogenous sediment matrix.

Macrobenthic assemblages showed a significantly higher β diversity following periods of higher wave power (Fig. 3b and 4b; PERMDISP P = 0.001). Species that contributed most to differences in macrobenthic assemblages among sampling periods are listed in Table 2 & 3. Storm effects appear to be driven mainly by large declines in the abundance of the tanaid Monokalliapseudes schubarti, whereas polychaetes (i.e. Capitella sp.C, Heteromastus filiformis, Armandia hossfeldi) tended to increase in abundance following storm events (Tables 2 & 3).

Table 2. Similarity percentage (SIMPER) analysis showing the contribution (%) of the five most important species to differences in species assemblages among sampling periods.

	Monokalliapseudes Schubarti	Capitella sp. C	Heteromastus filiformis	Scoloplos sp1	Armandia hossfeldi	Mean dissimilarity
Sep vs. Feb	10.98	4.96	n/a	5.34	n/a	68.1
Sep vs. May	11.14	6.55	n/a	5.46	n/a	74.9
Sep vs. Jul	9.65	6.85	5.51	5.27	6.47	69.3
Feb vs. May	16.03	8.17	5.04	5.44	n/a	75.3
Feb vs. Jul	12.75	7.9	5.9	5.37	7.24	71.6
May vs. Jul	8.29	8.97	6.63	6.22	8.04	69.9
Table 3. Temporal variation in the density (ind.m\(^{-2}\)) of species that accounted for most of the assemblage-wide differences in macrobenthic assemblages among sampling events (cf. Table 2).

Species	September 2011	February 2012	May 2012	July 2012
	mean (se)	mean (se)	mean (se)	mean (se)
Monokalliapeseudes schubartii	2151 (635)	3264 (571)	1776 (79)	538 (276)
Capitella sp.C	114 (68)	521 (257)	667 (428)	768 (336)
Heteromastus filiformis	23 (9)	32 (11)	47 (12)	133 (36)
Scoloplos sp1	112 (30)	63 (14)	35 (10)	87 (19)
Armandia hossfeldi	50 (25)	7 (4)	47 (19)	224 (74)

H3: Storm disturbance results in lower abundance, biomass, and species richness

Abundance, species richness and biomass were significantly lower in samples taken shortly after high-energy wave events (Fig. 5). The mean number of species per site was lowest at 9.82 species after the strongest wave event, compared with 11.82 to 14.35 species at other times (Fig. 5a). Abundance peaked at 4126 ind.m\(^{-2}\) in Feb. 2012, declining to 1195 ind.m\(^{-2}\) after the storm in May 2012 (Fig. 5b). Biomass declined from 6.5 to 3.5 gAFDW.m\(^{-2}\) between September 2011 and May 2012 (Fig. 5c).
Fig. 5 Variation in the mean number of species per site (a), mean abundance (b) and mean biomass (c) of macrobenthic assemblages at four sampling events associated with significant variation in wave energy preceding each event. Letters and colours denote different groups in generalized linear models (P<0.05). Error bars denote standard errors.

All major groups of intertidal macrofauna (i.e. molluscs, polychaetes, crustaceans) were affected by storms (Fig. 6). The mean number of species per site of all groups was significantly lower after the strongest wave event (P < 0.05) (Fig. 6a-c). Temporal patterns of changes in abundance and biomass did, however, differ between groups. Crustaceans showed the most pronounced density (Fig. 6f) and biomass (Fig. 6i) response, declining strongly after storms. Molluscs showed a broadly similar density

PeerJ reviewing PDF | (2017:01:15810:2:0:NEW 26 Apr 2017)
245 pattern to crustaceans, albeit being less pronounced (Figs. 6d & 6g), whereas the abundance of
246 polychaetes tended to increase following periods of higher wave energy (Figs. 6e & 6h).

250 Fig. 6 Variation in the mean number of species, abundance, and biomass of molluscs (a, d & g), polychaetes (b, e &
251 h), and crustaceans (c, f & i) at four sampling events associated with significant variation in wave energy preceding
each event. Letters and colours denote different groups in generalized linear models (P<0.05). Error bars denote
standard errors.

255 \textit{H4: Species losses drive most of the change in }\beta\text{-diversity.}
256 Declines in species numbers accounted for most of temporal \(\beta\)-diversity in the macrobenthos, and its
257 contribution was higher shortly after storms (Table 4). By contrast, species replacement was less
258 important.
Table 4 – B–diversity and β–diversity partitioning among sampling periods. Higher values of β–diversity denote greater differences in the composition of species and number of individuals between two consecutive sampling times. Percentages indicate the amount of variation between periods attributable to species losses or species replacement.

	Total β diversity (β_{total})	Species replacement / substitution (β_{repl})	Species loss / gain richness differences (β_{rich})
Sep. vs Feb.	0.45	44.4%	56.4%
Feb. vs May	0.79	16.4%	83.6%
May vs July	0.47	11.7%	89.3%
mean	**0.57**	**24.2%**	**76.4%**

4. Discussion

Significant changes in macrobenthic species richness, abundance and biomass in a tropical tidal flat were associated with storms. This resulted in significant changes to fauna β–diversity over time that was mainly attributable to species losses, but not strongly linked to variation in habitat heterogeneity.

Previous studies about the influence of storms on coastal soft-sediment ecosystems have shown that storms may have stronger impacts on environmental features than on the fauna (e.g. Saloman and Naughton 1984, Cochôa et al. 2006, Alves and Pezzuto 2009, Harris et al. 2011), and that offshore sediment transport is the dominant geo-morphological response of sedimentary shores to increased wave energy (Masselink et al. 2016). These studies were, however, mostly done on exposed ocean beaches, habitats with fewer species that are well adapted to high-energy conditions (Brown 1996, Schlacher et al. 2008). By contrast, our results showed that under more sheltered conditions, storm impacts were more evident for the fauna than for the environment.

The observed decrease in the number of species, individuals and biomass of macrobenthic assemblages may have been caused by accretion and redistribution of sediments, burying fauna at some site and winnowing them from others. Waves and currents may suspend fine-grained sediments (Lohrer et al. 2006), and alongshore sediment distribution within the same system or accretion of sediment in washover deposit can occur after storms (Masselink et al. 2016). Moreover, Alcantara-Carrió et al. (2017) showed that the seaward transport of terrigenous sediment after intense rains in combination with resuspension of sediments by storm waves and transport by wind-driven currents alter the sedimentary features in the São Sebastião Channel. These hypothesized mechanisms of fauna change are functionally supported by studies showing significant changes to the macrobenthos following sediment deposition and substantial
alterations in hydrodynamic regimes (Jaramillo et al. 2012, Cummings et al. 2003, Rodil et al. 2011, Schlacher et al. 2012).

Whilst storms were followed by decreases in species richness in all major groups of the macrobenthos, changes in species richness were more pronounced in crustaceans, which also declined strongly in abundance and biomass. This was mainly a consequence of massive (-95%) declines of the tanaid *Monokalliapseudes schubarti*. *M. schubarti* is small (ca. 5 mm) and builds tubes that rarely extend for more than 5 cm into the sediment, possibly making it more susceptible to sediment erosion (Nucci et al. 2001). In fact, morphological traits of benthic invertebrates have been suggested to modulate storms impacts (Mateo and Garcia-Rubies 2012), with small-bodied individuals and those with low mobility thought to be more susceptible to storms (Negrello Filho and Lana 2013, Urabe et al. 2013).

Fewer species of polychaetes were recorded at lower biomass after storm events. Some species, mostly small and tubiculous forms such as *Isolda pulchella* (Müller in Grube, 1858), were less numerous after storms. By contrast, opportunistic polychaete species (e.g. *Capitella* spp, *Heteromastus filiformis* (Pearson and Rosenberg 1978)) increased in abundance after storms. We did not record significant changes in the biomass of molluscs, possibly a consequence of heavier, shelled forms of the macrobenthos being less likely to be displaced by turbulent currents associated with storms.

The relationship between wave power and changes in macrobenthic fauna metrics approximated in several cases a bell-shaped curve, suggesting a resemblance with the “intermediate disturbance hypothesis” (IDH, Connel 1978); a core prediction of IDH is that at high disturbance levels species intolerant of the disturbance become locally extirpated whereas more intense competition limits species numbers at low disturbance intensity and frequency. Consequently, the highest number of species is expected to occur at intermediate levels of disturbance (but see Fox (2013), Sheil and Burslem (2013), and Huston (2014) for discussions on the validity of the IDH). Arguably, disturbance by wave energy at intermediate levels may have enhanced species richness and productivity at sedimentary coastal ecosystem by reducing competition. Nevertheless, as pointed out by Huston (2014), the causes of high diversity go beyond the simple effects of disturbances slowing the process of competitive exclusion and must include multiple ecological and evolutionary processes. In sedimentary shorelines, especially in sheltered environments, intermediate disturbance caused by waves is expected to increase water circulation processes and may also enhance biodiversity and productivity of macrobenthic assemblages by increasing the amount of food available in the water column, and/or reducing the concentration of nutrients in the sediment, resulting in lower eutrophication processes (Cloern 2001, Corte et al. 2017).

Storm effects appeared to be influenced by the timing of a storm in relation to the tidal regime. Masselink et al. (2016) found that storms impacts on the south-west coast of England were highest when the peak
storm waves coincided with spring high tides. In our study, this was likely the case in May 2012 when the height of the storm passed during a spring tide. The observed effects of storms on the macrobenthic fauna of Araçá Bay also appeared to be stronger during a short time after storms. We found that differences in environmental and biotic characteristics were most pronounced in May 2012, when samples were taken one day after the storm had passed.

Most species typical of sedimentary shorelines are, to some degree, adapted to high-energy conditions and hence may recover relatively quickly (e.g. within days to weeks) from most storm events (Harris et al. 2011, Schlacher and Thompson 2013; Machado et al. 2016). For example, in a subtropical coastal soft-sediment ecosystem in South Brazil, Gallucci and Netto (2004) found that abundance and number of species of macrobenthic organisms declined during the passage of a cold front, but all values were back to pre-frontal conditions within a day. Similarly, Machado et al. (2016) found recovery of macrobenthic assemblages inhabiting tropical ocean exposed beaches within seven weeks of a storm. It is important to emphasize, however, that recovery depends on the magnitude, spatial scale and return frequency of the disturbance events in soft-sediment environments and other marine systems (Lucrezi et al. 2010, Urabe et al. 2013, McClain and Schlacher 2015, Schlacher et al. 2015). The most powerful storms may cause ecological changes that require years to recover and may compromise the spatial and trophic structure of the ecosystems (Jaramillo et al. 1987, Mateo and Garcia-Rubies 2012).

5. Conclusion

Here we show that storms can cause significant changes to macrobenthic assemblages inhabiting a tidal flat. Decreases in species richness, abundance, and biomass of invertebrate assemblages were related to increases in wave power. Species losses drove changes towards higher β-diversity, but the fauna appeared to recover within a few weeks. Changes in habitat features were comparatively smaller. Given that storm activity, location and intensity are predicted to change over the coming decades in a warming world (Lin and Emanuel 2016, Walsh et al. 2016), ecological changes attributed to altered storm properties are likely. Unfortunately, the functional consequences of altered storm regimes for coastal ecosystems are largely unknown, including the continued provision of ecosystem services such as coastal protection and capture fisheries. Thus, future work shall prioritise investigations of how ecological processes in coastal ecosystems respond to extreme events and which features may determine their resilience and recovery.

Acknowledgements
We thank Elizabeth Eddy, Daniel Martin, Paulo Paiva, André Garraffoni, Maikon Di Domenico, David Schoeman, and Ronaldo Christofololetti for comments and suggestions. We are also grateful to two anonymous referees that provided very constructive comments on the manuscript. Special thanks to Angélica Godoy, Camila Silva, Nathalia Padovanni, Rachel Daolio, Décio Filho, and Renata Alitto who helped with field work and species identifications.

References

Alcântara-Carrió J, Sasaki DK, de Mahique MM, Taborda R, and de Souza LAP (2017) Sedimentary constraints on the development of a narrow deep strait (São Sebastião Channel, SE Brazil). Geo-Marine Letters, 1-14.

Alves ES, and Pezzuto PR (2009) Effect of cold fronts on the benthic macrofauna of exposed sandy beaches with contrasting morphodynamics. Brazilian Journal of Oceanography 57:73-94.

Amaral, A. C. Z., A. E. Migotto, A. Turra & Y. Schaeffer-Novelli, 2010. Araçá: biodiversidade, impactos e ameaças. Biota Neotropica 10: 219−264.

Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245-253.

Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology letters, 9: 683-693.

Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology letters 14:19-28.

Brown AC (1996) Behavioural plasticity as a key factor in the survival and evolution of the macrofauna on exposed sandy beaches. Revista Chilena de Historia Natural 69:469-474.

Camargo MG (2006) Sysgran: um sistema de código aberto para análises granulométricas do sedimento. Revista Brasileira de Geociências 36: 371−378.

Cardoso P, Rigal F, and Carvalho JC (2015) BAT - Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods in Ecology and Evolution 6:232-236.

Carvalho JC, Cardoso P, and Gomes P (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography 21:760-771.

Clarke KR, Gorley RN (2006) PRIMER V6: user manual-tutorial. Plymouth Marine Laboratory

Clore MJ, Coleman RA, Amaral AC (2017) Environmental influence on population dynamics of the bivalve Anomalocardia brasiliana. Estuarine, Coastal and Shelf Science 187:241-8.

Cummings V, Thrush S, Hewitt J, Norkko A, and Pickmere S (2003) Terrestrial deposits on intertidal sandflats: Sediment characteristics as indicators of habitat suitability for recolonising macrofauna. Marine Ecology Progress Series 253:39-54.
Dottori M, Siegle E, and Castro BM (2015). Hydrodynamics and water properties at the entrance of Araçá Bay, Brazil. *Ocean Dynamics* 65: 1731-1741.

Fo C (1990) Wind driven currents in the Channel of São Sebastião: winter, 1979. *Boletim do Instituto Oceanográfico* 38:111-132.

Folk, RL and Ward WC (1957) Brazos River Bar: a study in the significance of grain-size parameters. *Journal of Sedimentary Petrology* 27: 3-26.

Fox, J. W. 2013. The intermediate disturbance hypothesis should be abandoned. *Trends in Ecology and Evolution* 28:86–92.

Gallucci F, and Netto SA (2004) Effects of the passage of cold fronts over a coastal site: An ecosystem approach. *Marine Ecology Progress Series* 281:79-92.

Gattuso JP, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner HO, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, and Turley C (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. *Science* 349.

Harris L, Nel R, Smale M, and Schoeman D (2011) Swashed away? Storm impacts on sandy beach macrofaunal communities. *Estuarine Coastal and Shelf Science* 94:210-221.

Hauser DDW, Tobin ED, Feifel KM, Shah V, and Pietri DM (2016) Disciplinary reporting affects the interpretation of climate change impacts in global oceans. *Global Change Biology* 22:25-43.

Herbich JB (2000) Handbook of coastal engineering. McGraw-Hill, New York

Huston MA (2014). Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. *Ecology*, 95:2382-2396.

IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK

Jaramillo E, Croker RA, and Hatfield EB (1987) Long-term structure, disturbance, and recolonization of macrofauna in a New Hampshire sand beach. *Canadian Journal of Zoology* 65:3024-3031.

Jaramillo E, Dugan JE, Hubbard DM, Melnick D, Manzano M, Duarte C, Campos C, and Sanchez R (2012) Ecological implications of extreme events: Footprints of the 2010 earthquake along the Chilean coast. *PLoS ONE* 7:e35348. doi:10.1371/journal.pone.0035348.

Legendre P, Câceres M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. *Ecology Letters*. 2013 Aug 1;16(8):951-63.

Lin N, and Emanuel K (2016) Grey swan tropical cyclones. *Nature Climate Change* 6:106-111.

Lohrer A M, Hewitt JE, and Thrush SF (2006). Assessing far-field effects of terrigenous sediment loading in the coastal marine environment. *Marine Ecology Progress Series* 315:13-18.

Lucrezi S, Schlacher TA, and Robinson W (2010) Can storms and shore armouring exert additive effects on sandy-beach habitats and biota? *Marine and Freshwater Research* 61:951-962.

Machado PM, Costa LL, Suciu MC, Tavares DC, and Salmond IR (2016) Extreme storm wave influence on sandy beach macrofauna with distinct human pressures. *Marine Pollution Bulletin*.
Masselink G, Scott T, Poate T, Russell P, Davidson M, and Conley D (2016) The extreme 2013/2014 winter storms: Hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surface Processes and Landforms 41:378-391.

Mateo MA and Garcia-Rubies T (2012). Assessment of the ecological impact of the extreme storm of Sant Esteve’s Day (26 December 2008) on the littoral ecosystems of the north Mediterranean Spanish coasts. Final Report (PIEC 200430E599).

McClain CR, Barry JP (2010) Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91:964-76.

McClain CR, and Schlacher TA (2015) On some hypotheses of diversity of animal life at great depths on the sea floor. Marine Ecology 36:849-872.

Meager J, Schlacher TA, and Green M (2011) Topographic complexity and landscape temperature patterns create a dynamic habitat structure on a rocky intertidal shore. Marine Ecology Progress Series 428:1–12.

Nagelkerken I, and Munday PL (2016) Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Global Change Biology 22:974-989.

Negrello Filho OA, and Lana PC (2013) Short-term stability of estuarine benthic assemblages: Are storms pattern-defining events? Zoologia 30:266-272.

Pianca C, Mazzini PL, Siegle E (2010) Brazilian offshore wave climate based on NWW3 reanalysis. Brazilian Journal of Oceanography 58:53–70

Podani J, and Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence - absence data. Oikos 120:1625-1638.

Posey M, Lindberg W, Alphin T, and Vose F (1996) Influence of storm disturbance on an offshore benthic community. Bulletin of Marine Science 59:523-529.

Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2013) Package ‘MASS’. Cran R.

Rodil IF, Lohrer AM, Chiaroni LD, Hewitt JE, and Thrush SF (2011) Disturbance of sandflats by thin terrigenous sediment deposits: Consequences for primary production and nutrient cycling. Ecological Applications 21:416-426.

Saloman CH, and Naughton SP (1984) Beach restoration with offshore dredged sand: effects on nearshore macroinfauna. NOOA Technical Memorandum NMFS-SEFC-133

Schlacher TA, and Thompson L (2013) Environmental control of community organisation on ocean-exposed sandy beaches. Marine and Freshwater Research 64:119-129.

Schlacher TA, Schoeman DS, Dugan JE, Lastra M, Jones A, Scapini F, and McLachlan A (2008) Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Marine Ecology 29 (S1):70–90.

Schlacher TA, Noriega R, Jones A, and Dye T (2012) The effects of beach nourishment on benthic invertebrates in eastern Australia: Impacts and variable recovery. Science of the Total Environment 435:411-417.

Schlacher TA, Weston MA, Schoeman DS, Olds AD, Huijbers CM, and Connolly RM (2015) Golden opportunities: A horizon scan to expand sandy beach ecology. Estuarine, Coastal and Shelf Science 157:1-6.
Sheil D, Burslem DF (2013) Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends in Ecology and Evolution 28:571-2.

Turra A, Pombo M, Petracco M, Siegle E, Fonseca M, Denadai MR (2016) Frequency, Magnitude, and Possible Causes of Stranding and Mass-Mortality Events of the Beach Clam Tivela mactroides (Bivalvia: Veneridae). PLoS ONE 11(1): e0146323. doi:10.1371/journal.pone.0146323

Urabe J, Suzuki T, Nishita T, and Makino W (2013) Immediate Ecological Impacts of the 2011 Tohoku Earthquake Tsunami on Intertidal Flat Communities. PLoS ONE 8.

Walsh KJE, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ, Holland G, Knutson TR, Kossin JP, Lee Tc, Sobel A, and Sugi M (2016) Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change 7:65-89.

Weatherdon LV, Magnan AK, Rogers AD, Sumaila UR, and Cheung WWL (2016) Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: An update. Frontiers in Marine Science 3.