RESEARCH ARTICLE

Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction

Rebecca Lyons1*, Anca Rusu1, Jiri Stiller1, Jonathan Powell1, John M. Manners2, Kemal Kazan1,3

1 CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, 4067, Australia, 2 CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT, 2601, Australia, 3 Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia

* rebeccalyons23@hotmail.com

Abstract

Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects.

Introduction

Plants are frequently attacked by pathogens and deploy chemical and structural barriers to defend themselves, diverting plant resources away from growth and development [1]. To ensure
the plant survives to reproduce, the timing of the transition to flowering and the amplitude of the immune response are tightly regulated. Plants often respond to biotic stress by altering flowering time. For instance, susceptible Arabidopsis plants infected by bacterial and oomycete pathogens flower earlier than uninoculated plants [2] while herbivory by the African cotton leafworm Spodoptera littoralis delays flowering in Brassica rapa [3]. Flowering time was also recently shown to be dependent on soil properties and soil microbiota in a wild relative of Arabidopsis [4].

Defense phytohormones and associated signaling pathways have been shown to alter the transition to flowering. For instance, salicylic acid (SA)-deficient Arabidopsis mutants and transgenic plants such as sid2 and eds5 and NahG show delayed flowering [5], while the SA regulators WIN3 and NPR1 repress flowering [6]. Regulators of SA-mediated defenses such as SUMO E3 ligase SIZ1, PLANT U-BOX 13 (PUB13) and MYB30 also regulate flowering time [7–9]. The jasmonate (JA) receptor mutant coi1 is early flowering [10]; plants that are touched repeatedly show a JA-dependent delay in flowering [11] and a subgroup of bHLH transcription factors that negatively regulate JA-mediated defense responses promote flowering [10]. Ethylene (ET)-insensitive mutants are late-flowering [12] and the histone deacetylases HDA6 and HDA19 that are required for JA and ET-mediated defense responses are thought to promote the transition to flowering [13–15].

In Arabidopsis thaliana, the transition from vegetative to reproductive growth is a complex trait regulated by an elaborate network of genetic pathways, including the vernalization, photoperiod, thermosensory, autonomous and gibberellin (GA) pathways [16]. Recent evidence shows defense-associated roles for Arabidopsis genes originally identified as regulators of flowering. For instance, FPA and FLD, members of the autonomous pathway, promote susceptibility to the bacterial pathogen Pseudomonas syringae [17–19] while the floral meristem identity gene LEAFY represses key regulators of basal immunity [20]. More recently, the phytohormones GA and brassinosteroids that regulate flowering time have also been implicated in defense regulation [21].

Fusarium oxysporum is a ubiquitous soil-borne root infecting fungal pathogen that causes vascular wilt diseases of several plant species including A. thaliana [22]. In the F. oxysporum – A. thaliana interaction, resistance is thought to be inherited as a quantitative trait [23–25]. F. oxysporum infects the plant via lateral root initials and enters the xylem where it travels to the shoots [26, 27]. During the early stages of infection, F. oxysporum acts as a biotroph, gaining nutrition from living tissue. As infection progresses, F. oxysporum switches from a biotrophic to necrotrophic lifestyle, in which fungal nutrition is gained from necrotic host tissue. In this stage of infection, the host plant exhibits leaf chlorosis, necrosis and senescence. F. oxysporum produces bioactive JAs, [28], which presumably promote host senescence to accelerate the transition from the biotrophic to necrotrophic phase of infection.

Several late-flowering Arabidopsis mutants including phytochrome and flowering time1 (pft1), mediator 8 (med8), myc2 and auxin response factor 2 (arf2) show enhanced resistance to F. oxysporum [29, 30, 31], suggesting interplay between flowering time and defense in the F. oxysporum-A. thaliana interaction. Quantitative trait loci conferring resistance to Verticillium spp, a hemibiotrophic fungal pathogen causing vascular wilt disease, have not yet been cloned, but map to regions containing flowering-time genes in A. thaliana [32, 33].

In this study, we investigated the relationship between flowering time and defense in the F. oxysporum – A. thaliana interaction. Firstly, we investigated the effect of F. oxysporum infection on the transition to flowering in the host. Secondly, we investigated the response of natural A. thaliana ecotypes and A. thaliana flowering-time mutants to F. oxysporum infection and found a correlation between late flowering time and F. oxysporum resistance. Interestingly, the observed association was independent from vernalization and the flowering repressor FLC in
late-flowering mutants including \textit{fve-3}, leading us to further investigate the mechanism underlying enhanced resistance in \textit{fve-3} using RNA-seq analyses. Finally, we identified \textit{F. oysporum}-responsive flowering-time genes using RNA-seq analyses and found that the photoperiodic pathway regulator GIGANTEA promotes susceptibility to \textit{F. oysporum}.

Materials and Methods

Plant material and growth conditions

Eighty-three \textit{A. thaliana} ecotypes (stock CS22660) were acquired from the Arabidopsis Biological Resource Centre (ABRC). Mutants are in a Col-0 background unless otherwise specified. The following mutants have been previously described: \textit{fpa-8}, \textit{fpa-7}, \textit{fy-2}, \textit{sr45-1}, \textit{fld-1}, \textit{fld-3} and \textit{ref-6-3} \cite{34}; \textit{fve-3}, \textit{fve-2} (Ler) and \textit{fy-1} \cite{35}, \textit{fld-2} (Ler) \cite{36}, \textit{fve-3/ficl-3, fpa-7/ficl-3} and \textit{fcl-3} \cite{37}, \textit{fve-2} (Ler), \textit{fld-2} (Ler), \textit{fy-1} (Ler) and ColFRISP2 \cite{38}, \textit{vin3-4} (ColFRISP2) \cite{39}, \textit{gi-1} (Col-1) and \textit{gi-2} (Col-1) \cite{40}. To compare vernalized and non-vernalized plants, seeds for vernalization were placed on damp soil for 6 weeks in the dark at 4°C. Two days before end of the vernalization period, the non-vernalized control seeds were stratified for 2 days at 4°C. All seedlings were then grown concurrently. Plants were grown under short day conditions (8 h photoperiod, 21°C, photosynthetically active radiation (PAR) 70–85\textmu mol m$^{-2}$ s$^{-1}$ and relative humidity %RH \geq80%).

Flowering time measurement

Flowering time was measured as the number of days taken from germination until emergence of a 1cm bolt in healthy, uninoculated plants. At least two plants were assessed per line. Plants that had not flowered by the termination of the experiment were allocated a ‘flowering time’ equal to the number of days for which the experiment had run. This was either 80 or 200.

\textit{F. oysporum} inoculation and disease assessment

The \textit{F. oysporum} isolate used in this study was strain Fo5176 obtained from Dr Roger Shivas, Queensland Plant Pathology Herbarium, Brisbane, Australia. Inoculations were performed as described previously \cite{41}. Briefly, roots of 4-week-old plants which had been grown under short day conditions (8 h photoperiod) at 21°C were dipped in a \textit{F. oysporum} suspension containing 1×10^{6} spores ml$^{-1}$, replanted and placed under long day growth conditions (16 h photoperiod) at 28°C (PAR = 72-80\textmu mol m$^{-2}$ s$^{-1}$ and relative humidity %RH \geq90%). Disease was measured by visually assessing symptom development on the leaves at 14 dpi either using a scale of 0–5 with 0 being asymptomatic and 5 being dead as described previously \cite{42} or by percentage of diseased leaves \cite{43}. Readings were then normalized back to Col-0 for each tray to account for tray-to-tray variability. Three to 40 plants were assessed per line. Each tray contained the susceptible ecotype Ty-0 as a positive control.

Statistical analyses

To assess the statistical significance of a linear correlation between flowering time or latitude and disease score, data were subjected to Pearson’s product-moment correlation test using ‘R’ version 3.0.3. A Student’s t-test was used to identify \textit{A. thaliana} ecotypes or mutants which were significantly more resistant or susceptible compared to Col-0 or Ler-0 (\textit{fve-2} and \textit{fld-2}) using Excel.
RNA-seq analysis

Leaves and roots from fve-3 and Col-0 plants inoculated with either water (mock treatment) or
F. oxysporum were harvested and total RNA was extracted and DNase treated using the
RNeasy mini kit (Qiagen) according to the manufacturer’s instructions. RNA integrity was
confirmed using the Agilent 2100 bioanalyzer Plant Nano system (Agilent Biotechnologies). Li-

brary preparation and sequencing were performed by the Australian Genome Research Facility
(AGRF). Messenger RNA was selected using Poly-A tail selection prior to preparation of 50bp
single end read libraries. Sequencing was performed on an Illumina HiSeq 2000 system gener-
ating approximately from 6.5 to 16 million raw RNA-seq reads per sample.

Differential expression analysis was performed using the Tuxedo analysis suite [44]. Briefly,
Bowtie2 along with Tophat were used to align generated reads to the TAIR10 A. thaliana refer-
ence genome. After expressed transfrags were assembled, Cufflinks was used to quantify gene
abundance and transcriptome assemblies were then merged using Cuffmerge. Cuffdiff was
then performed to identify genes differentially expressed by F. oxysporum in Col-0 or genes dif-
ferentially expressed in fve-3 relative to Col-0. Statistical analysis was performed within the
Cufflinks analysis with false discovery rate and correction for multiple comparisons applied
using standard run parameters. Genes considered differentially expressed showed a statistically
significant difference in expression values ($P < 0.05$). 0.6–2.2% of reads did not map to the A.
thaliana genome. Sequence data are available from NCBI under Sequence Read Archive (SRA)
accession SRP052276.

Results

F. oxysporum infection accelerates the transition to flowering

To determine whether F. oxysporum affects the timing of the transition to flowering in A. thali-
ana, we infected Col-0 plants with serial dilutions of F. oxysporum spores and recorded disease
severity and the proportion of plants that had bolted two weeks later. As expected, disease se-
verity and plant death increased with the density of inoculum (Fig 1A and 1B). Plants infected
with low to moderate densities of inoculum (10^2–10^4 spores ml$^{-1}$) showed a marked increase
in the number of plants that had undergone the transition to flowering relative to the mock
control (Fig 1C). Although the bolting response of plants inoculated with high inoculum densi-
ties could not be assessed due to plant death, overall these data suggest that the host plant is re-
programmed to accelerate the transition to flowering upon F. oxysporum infection.

Late flowering and a high latitude is associated with enhanced Fusarium
oxysporum resistance in geographically diverse A. thaliana ecotypes

A large variation in flowering time is known to exist within A. thaliana [45]. However, to date,
a detailed analysis comparing the response of geographically diverse A. thaliana ecotypes to F.
oxysporum has not been reported. To determine if an association could be found between flow-
ering time and disease resistance, we obtained 83 publically available A. thaliana ecotypes in
addition to the F. oxysporum susceptible ecotype Ty-0 [23] and assessed their response to F.
oxysporum. The response to F. oxysporum was measured as a disease score relative to Col-0,
with ecotypes showing statistically significantly lower scores than Col-0 considered as resistant
and ecotypes showing significantly greater scores than Col-0 considered as susceptible.
Fig 1. Moderate pathogen stress accelerates reproductive development in Arabidopsis. (A) Col-0 plants were inoculated with varying inoculum levels (Mock-10^6 spores/mL) of the fungal pathogen *Fusarium oxysporum* at the 6–8 leaf rosette stage and photographed 14 days later (14dpi). (B) Percentage of leaves showing symptoms at 14 dpi. (C) Percentage of plants that had bolted at 14dpi in each treatment. Data from B-C show mean and standard error from three biological replicates each containing 10 plants per treatment. Asterisk indicates statistically significant difference from mock treatment (*P*<0.05) using a Student’s t-test.

doi:10.1371/journal.pone.0127699.g001
In total, 22 and 11 ecotypes were significantly more and less resistant than Col-0, respectively, while 50 ecotypes showed a similar disease score to Col-0 (Fig 2A). We found no evidence to suggest that complete immunity or incompatibility exists in the *F. oxysporum*–*A. thaliana* interaction since even the most resistant ecotypes displayed mild vein-clearing symptoms by 14 dpi (See Eden-1 and Tamm-27, Fig 2B).
We recorded the flowering time (days to bolting) of each of the ecotypes and found a wide variation in flowering time, as previously reported [46]. Our flowering time data were generally consistent with publically available flowering-time phenotypes (http://www.arabidopsis.org/).

To determine whether a relationship exists between flowering time and *F. oxysporum* resistance, we plotted flowering time against the *F. oxysporum* disease score for each of the *A. thaliana* ecotypes. This revealed a significant correlation between flowering time and *F. oxysporum* response such that late-flowering ecotypes showed enhanced resistance to *F. oxysporum* and the earlier flowering ecotypes were more susceptible (Fig 3A).

Given that the *A. thaliana* ecotypes used in this study are geographically diverse and have adapted to different environments, we looked for a relationship between the geographical

![Graph A](image1.png)
![Graph B](image2.png)

Fig 3. Correlation between flowering time or latitude and *Arabidopsis thaliana* accession response to *F. oxysporum*. (A) Flowering time was assessed as the number of days from germination until emergence of a 1cm bolt in ≥ 3 non-vernalized plants and was plotted against disease score for each of 83 natural accessions. The correlation using Pearson’s product-moment correlation was significant (*P* = 0.003). (B) The disease score was plotted against latitude of the 83 natural accessions. The correlation using Pearson’s product-moment correlation was significant (*P* = 0.005). Latitude information was obtained from https://easygwas.tuebingen.mpg.de/.

doi:10.1371/journal.pone.0127699.g003
origin and *F. oxysporum* response of the ecotypes by plotting the disease score of each of the ecotypes against latitude or longitude of origin. This analysis revealed that the disease score was not correlated with longitude (S1 Fig), however the disease score was significantly correlated with latitude (Fig 3B) such that enhanced disease resistance was associated with higher latitudes. Flowering time shows a latitudinal cline in *A. thaliana* natural ecotypes [46], and this was the case using our data (S2 Fig).

Vernalization restores flowering time but not *F. oxysporum* response

We noted that vernalization-requiring Arabidopsis ecotypes derived from northern latitudes were highly represented among the resistant group ecotypes. Thirty-seven percent of resistant ecotypes were derived from Scandinavia as compared to 16% and 0% of ‘intermediate’ and susceptible ecotypes, respectively (Table A in S1 File). Since ecotypes adapted to these areas have a strong vernalization requirement, these findings indicated that inability to initiate flowering in the absence of vernalization may contribute to the resistance phenotypes observed in these ecotypes. We therefore asked whether accelerating flowering time by vernalization would render Arabidopsis more susceptible to *F. oxysporum*. We examined ecotypes Eden-1, Bil-7, LI-0 that are both vernalization-sensitive and *F. oxysporum* resistant, ecotype Van-0 that is vernalization-insensitive and *F. oxysporum* resistant, and Sorbo that is vernalization-sensitive and *F. oxysporum* susceptible. Vernalized plants of the Spanish ecotype LI-0 flowered earlier (*P* = 0.06) and were more susceptible to *F. oxysporum* infection than non-vernalized plants, confirming the association between flowering time and *F. oxysporum* defense in this ecotype (Fig 4A). In contrast, although flowering time was accelerated in Swedish ecotypes Eden-1 and Bil-7, vernalized plants were as resistant as non-vernalized plants. Vernalization altered neither the flowering time nor response to *F. oxysporum* in the other ecotypes tested (Fig 4A). These data suggest that flowering time and *F. oxysporum* resistance phenotypes can be uncoupled in some natural Arabidopsis ecotypes.

Natural variation in flowering time and the vernalization requirement is largely mediated by allelic variation at FLOWERING LOCUS C (FLC) and FRIGIDA (FRI) [47]. *A. thaliana* ecotypes have generally evolved one of two life history strategies: ‘rapid cycling’ ecotypes, which can flower without vernalization and ‘winter’ ecotypes, which require vernalization to flower [48]. Most winter ecotypes contain functional FRI and FLC alleles, whereas many rapid cycling ecotypes have independently evolved null alleles at FRI or FLC [49–51]. Col-FRI^{SF2} contains the FRI allele from the vernalization-sensitive *A. thaliana* ecotype San Feliu-2 introgressed into the Col-0 background, switching Col-0 from a rapid-cycling to a winter, vernalization-requiring ecotype [38]. To further explore the link between vernalization and disease resistance, we assessed the response of vernalized vs non-vernalized Col-FRI^{SF2} plants to *F. oxysporum*. To account for potential crosstalk between cold exposure and defense, we included the *vin3-4* mutant unable to respond to vernalization in the Col-FRI^{SF2} background [52]. As expected, vernalization accelerated flowering time in the late-flowering lines Col-FRI^{SF2} but failed to alter flowering in the vernalization insensitive mutant *vin3-4*, which remained late flowering (Fig 4B). Similarly to the response of Eden-1 and Bil-7, subjecting Col-FRI^{SF2} to vernalization prior to inoculations did not increase susceptibility to *F. oxysporum*. The vernalization-insensitive mutant *vin3-4* exhibited a WT (Col-FRI^{SF2}) response to *F. oxysporum* both before and after vernalization, suggesting that the prolonged cold exposure did not significantly influence disease progression in the Col-FRI^{SF2} background. Furthermore, Col-FRI^{SF2} plants were not more resistant to *F. oxysporum* than Col-0 plants, suggesting that presence of a functional FRI does not contribute to resistance to *F. oxysporum*.
Autonomous pathway mutants exhibit enhanced resistance to *F. oxysporum*

Members of the autonomous pathway promote flowering by down-regulating the floral repressor FLC independently of vernalization [53]. Thirteen loss-of-function mutants corresponding to nine members of the autonomous pathway were assessed for their response to *F. oxysporum* by comparing their disease score to the WT ecotype background. Under our growth conditions, *fve-2, fld-2, fve-3, flowering locus d-3, fca-9, flowering late kh motif-1 (flk-1), fy-2, fpa-8* and *fpa-7* exhibited delayed flowering, whereas *relative of early flowering 6-3 (ref6-3), pcf11p-similar protein 4-1 (pcsf4-1)* and *serine arginine rich 45-1 (sr45-1)* flowered at a similar time and *fy-1* showed an early flowering phenotype relative to their respective WTs (Col-0 or Ler-0) (Fig 5A). Seven mutants corresponding to five autonomous regulatory proteins: *fpa-7, fve-3, fve-2, sr45-1, fca-9, fld-2* and *fld-3* showed a resistant *F. oxysporum* phenotype relative to their respective WTs (Fig 5A and 5B). We plotted the relative disease score against the flowering time for each of the mutant and WT plants and found a positive correlation between late...
Fig 5. Response to *F. oxysporum* in autonomous pathway mutants. (A) *F. oxysporum* response (black bars) was quantified by a disease score of 0–5 normalised to the disease score of the reference ecotype Col-0. Disease score (black bars) show mean relative disease score at 14 days post inoculation (dpi) and...
standard error from at least 24 plants. Flowering time (white bars) was assessed as number of days taken from germination until emergence of a 1cm bolt. Plants that had not flowered at the conclusion of the experiment at 80 days post germination were given a value of 80. Data shown are mean and SE from ≥ 5 plants. Asterisks indicate significantly different values to WT (P<0.05) using a Student’s t-test. All mutants are in Col-0 background except those indicated (Ler). This experiment was conducted twice and similar results were obtained. (B) Representative F. oxysporum inoculated plants at 14 dpi. (C) Flowering time plotted against relative disease score for the 15 autonomous pathway mutant lines tested. Filled circles indicate Col-0 background, open dots indicate Ler background. The correlation using Pearson’s product-moment correlation was significant (P = 0.0002). Experiments were conducted twice and similar results were obtained each time.

doi:10.1371/journal.pone.0127699.g005

flowering via the autonomous pathway and a low disease score (Fig 5C). These data support the hypothesis that late flowering and F. oxysporum resistance are associated. Furthermore, given the absence of a latitude variable in this experiment, these data suggest that the association between flowering time and F. oxysporum response in natural ecotypes is unlikely to be caused by an indirect association between latitude and flowering time.

A functional FLOWERING LOCUS C is not required for F. oxysporum resistance

Given the importance of FLC in the mode of action of autonomous pathway genes, we specifically assessed the role of FLC in the F. oxysporum response using the FLC null mutant flc-3. The flc-3 mutant flowered slightly but significantly earlier than Col-0 but showed a WT response to F. oxysporum infection (Fig 6). ColFRI3F2 exhibited a late-flowering phenotype relative to Col-0 under our conditions, but similarly to flc-3, showed WT response to F. oxysporum infection (Fig 4B).

We next investigated whether the late-flowering phenotype and elevated FLC levels of two autonomous pathway mutants fve-3 and fpa-7 are required for F. oxysporum resistance. The late-flowering phenotype of autonomous pathway mutants can be rescued by vernalization or loss of function of FLC. We compared the flowering time and disease response of single fve-3 and fpa-7 mutants with fve-3 flc-3 and fpa-7 flc-3 double mutants. As expected, loss of flc-3 restored the WT flowering time of fve-3 and fpa-7 mutants (Fig 6A). However, loss of flc-3 in the fve-3 or fpa-7 background did not restore the WT susceptibility phenotype to F. oxysporum: double and single mutants were both more resistant to F. oxysporum than WT (Col-0) plants. Similarly, exposing fve-3 plants to vernalization prior to infection accelerated flowering time but did not alter the response to F. oxysporum (Fig 4B).

These data, together with the vernalization experiments (Fig 4) suggest that the association between autonomously-controlled flowering time and F. oxysporum resistance can be uncoupled. They also indicate that neither FLC nor FRI regulate the response to F. oxysporum in the Col-0 background.

FVE shows altered transcription of defense-related genes

The data presented above suggest that the effects of FPA and FVE on disease resistance or susceptibility most likely occur independently of FLC. Both FPA and FVE cause widespread epigenetic remodeling and transcriptional reprogramming in A. thaliana [34, 54, 55], so we reasoned that the enhanced F. oxysporum resistance phenotype seen in fpa-7 and fve-3 mutants could be pleiotrophic effect of processes other than flowering time. Indeed, FPA has previously been implicated in plant defense [17], but the role of FVE in plant defense has not been characterized. Given that fve mutants showed the strongest F. oxysporum resistance phenotypes of
the autonomous mutants tested (Fig 5A and 5B), we investigated fve-3 mediated resistance to *F. oxysporum* in more detail.

We identified genes differentially regulated >2 fold in fve-3 plants relative to WT (Col-0) plants 6 days following inoculation either with water (mock treatment) or *F. oxysporum* (see complete list of differentially regulated genes (DEGs) in Table B in S1 File). FVE and FLC expression was down- and up-regulated, respectively, in fve-3 in all tissues and treatments sampled, confirming the robustness of the experimental setup. Four hundred and eighty nine and 288 genes were differentially regulated in fve-3 roots and shoots, respectively, after mock treatment, while 212 and 782 genes were differentially regulated in fve-3 roots and shoots,

Fig 6. Role of FLC in the *F. oxysporum* response. (A) Flowering time data displayed are the number of days from germination to a 1cm bolt. Data shown are mean and standard error from ≥5 plants per line. Plants that had not flowered at the conclusion of the experiment at 80 days post germination were given a value of 80. Asterisk indicates significant difference to Col-0 (*P*<0.05) using a Student’s *t*-test. (B) *F. oxysporum* response was quantified by a disease score of 0–5 normalised to the disease score of the reference accession Col-0. Data show mean relative disease score at 14 days post inoculation and standard error from at least 24 plants. Asterisks indicate significantly different values to WT (*P* < 0.05) using a Student’s *t*-test. The experiment was conducted twice and similar results were obtained each time.

doi:10.1371/journal.pone.0127699.g006
respectively, after *F. oxysporum* treatment (Table 1). To understand the functionality of genes differentially regulated in *fve-3*, Gene Ontology (GO) term singular enrichment analysis was applied to DEGS in roots and shoots (Table C in S1 File). Among the genes that were differentially expressed in *fve-3* plants compared to Col-0 plants, genes involved in defense related functions were overrepresented. This was the case following either mock inoculation or *F. oxysporum* inoculation. The most highly overrepresented GO term among genes up-regulated in mock inoculated *fve-3* roots was ’response to chitin’. Included in the chitin-responsive genes are ethylene response factors such as ERF2, which was previously implicated in *F. oxysporum* resistance [43] and several WRKY transcription factors that regulate defense [56, 57] (Table 2).

The most highly overrepresented GO terms in genes up-regulated in mock inoculated *fve-3* leaves were related to phenylpropanoid and flavonoid biosynthesis and metabolism. Such compounds play important defensive roles in plants [58].

Several genes known to confer resistance in other plant-pathogen interactions were up-regulated in *fve-3* plants relative to Col-0 plants after *F. oxysporum* infection. Examples include GDSL LIPASE 1 (AT5G40990) that promotes ethylene-dependent resistance against fungal and bacterial pathogens [59], RECOGNITION OF PERONOSPORA PARASITICA 8 (AT5g42470) that promotes resistance against fungal and viral pathogens [60, 61], MLO12 and PEN2 that are required for resistance against powdery mildew [62] and NON RACE-SPECIFIC DISEASE RESISTANCE 1 that mediates resistance to *Pseudomonas syringae* [63]. Similarly, regulators of basal immunity including PROPEP2, PROPEP3, FRK1 and PUB12 were up-regulated in *fve-3* compared to Col-0 after *F. oxysporum* inoculation (Table 2).

pEARLI1 (AT4G12480) has antifungal properties against *F. oxysporum* [64] and was differentially expressed in *fve-3*. Interestingly pEARLI1 was previously shown to be differentially expressed in a number of late-flowering mutants from different floral promotion pathways [65]. AT1G72300 which encodes a leucine rich repeat receptor kinase involved in the perception of PSY1 that promotes susceptibility to *F. oxysporum* [66] was up-regulated >4-fold in leaves of mock and *F. oxysporum*–treated *fve-3* relative to Col-0 plants (Table 2).

Receptor-like proteins (RLPS) encode cell surface receptors that include components of innate immunity [66–68]. Nineteen of the 57 RLPS present in the Arabidopsis genome were up-regulated in *fve-3* plants after *F. oxysporum* infection, while six putative resistance gene homologues were up-regulated in *fve-3* plants after *F. oxysporum* infection (Table D in S1 File).

F. oxysporum triggered transcriptional reprogramming of flowering-time regulators

To understand mechanisms underlying *F. oxysporum*-triggered acceleration of flowering time, we next asked if *F. oxysporum* infection alters the expression of flowering-time genes in the

doi:10.1371/journal.pone.0127699.t001

Inoculation	Mock		F. oxysporum	
Tissue	Roots	Leaves	Roots	Leaves
fve-3/Col-0	Up	Down	Up	Down
DEGS *fve-3/ Col-0*	306	183	127	160
Regulated by *F. oxysporum*	121	85	38	69
% *F. oxysporum* regulated	40	46	30	43

1 Differentially expressed genes (DEGs): genes that are >2 fold induced or repressed in *fve-3* plants compared to Col-0 plants.

2 *fve-3* DEGs that are regulated >2 fold by *F. oxysporum* in Col-0 plants at 6 dpi (data deposited in SRA accession SRP052276).
To achieve this aim, we mined RNA-seq data available from *F. oxysporum*-infected plants (data available at NCBI SRA, accession no. SRP052276) and identified plant floral regulator genes differentially expressed by *F. oxysporum* (Table 3). *FLOWERING LOCUS T* (*FT*) encodes a component of the mobile signal florigen that travels from the leaf to the meristem to initiate flowering and was induced by *F. oxysporum* infection. FLC, which represses *FT*, was also induced by *F. oxysporum* infection suggesting that *F. oxysporum*-mediated *FT* induction occurs independently of FLC. Floral promoters and repressors were both up- and down-regulated by *F. oxysporum*, suggesting that floral transition reprogramming in response to *F. oxysporum* infection undergoes fine-tuning and is under complex genetic control. Stress conditions often affect flowering through modulation of the photoperiodic pathway [69] and many of the *F. oxysporum*-regulated flowering-time genes belong to the photoperiodic pathway. The majority

Locus	Description	Mock Roots	Leaf	F. oxysporum Roots	Leaves
AT5G47220	ERF2	2.3	-	1.5	-
AT3G44260	CAF1a	3.0	0.3	2.1	1.4
AT2G39200	MLO12	-	-	-	2.3
AT3G45290	MLO3	-	-	-	2.0
AT2G30020	AP2C1	2.6	-	-	-
AT2G35980	NHL10 / YLS9	-	-	1.5	3.0
AT1G61340	FBS1	2.6	-	-	2.1
AT3G20600	NDR1	1.9	-	2.2	2.0
AT5G40990	GDSL LIPASE 1	-	-	2.2	2.0
AT5G43470	PPR8	-	-	5.0	-
AT4G12480	pEARLI 1	0.4	-	-	3.3
AT2G44490	PENETRATION 2	-	-	1.4	2.1
AT5G64905	PROPEP3	-	-	1.7	2.1
AT5G64890	PROPEP2	-	-	-	2.1
AT2G28830	PUB12	-	-	-	2.1
AT2G19190	FLG22-INDUCED RECEPTOR-LIKE KINASE 1	-	-	-	2.5
AT4G23190	CRK11	-	-	-	2.8
AT1G72300	LRR-RK	-	4.2	-	4.8
AT1G02450	NIMIN1	-	-	-	2.2
AT2G14610	PR1	-	-	-	3.6
AT2G19990	PR1-LIKE	2.6	-	-	-
AT1G75040	PR5	0.3	0.5	2.6	1.4
AT3G63360	DEF1-like	-	-	-	2.1
AT1G19610	PDF1.4	-	-	2.4	2.0
AT5G01900	WRKY62	7.4	-	1.7	-
AT5G22570	WRKSY38	4.7	-	-	1.9
AT1G80840	WRKSY40	2.0	0.5	1.6	1.8
AT4G23810	WRKSY53	-	-	2.0	2.3
AT5G49520	WRKSY48	1.5	-	-	3.2

Number indicates fold induction or repression in fve-3 roots or shoots relative to WT roots or shoots, respectively, 6 days after mock or *F. oxysporum* inoculation.

doi:10.1371/journal.pone.0127699.t002

Table 2. Defense associated genes up or down-regulated >2 fold in fve-3 plants relative to WT plants.
of these genes are also associated with the circadian clock which has been implicated in plant immune function [70].

Flowering-time regulator GI acts as a susceptibility factor for *F. oxysporum* infection

One of the photoperiodic pathway flowering-time regulators responsive to *F. oxysporum* was GIGANTEA (GI) and this factor promotes flowering by directly activating FT [71]. To determine if GI affects disease resistance, we inoculated two independent gi mutants with *F. oxysporum* and scored disease development. Both gi mutants showed increased resistance to *F. oxysporum* (Fig 7), suggesting that GI acts as a susceptibility factor in this interaction.

Discussion

Increasingly, studies are reporting cross-talk between stress response and the transition to flowering [72–74], but mechanisms underlying stress-induced flowering changes or modulation of stress responses by flowering-time integrators are poorly understood. The objective of this study was to investigate the relationship between defense and flowering time using the *F. oxysporum* – Arabidopsis interaction. The key findings of this study are summarized in the working model proposed in Fig 8.

F. oxysporum inoculation causes transcriptional reprogramming of flowering-time genes, particularly those in the photoperiod pathway, with the net effect of accelerating flowering time. Arrows from *F. oxysporum* to flowering-time genes indicate transcriptional regulation as

Locus	Description	F1/M1 Roots	F1/M1 Shoots	F6/M6 Roots	F6/M6 Shoots
AT1G68050	FLAVIN-BINDING, KELCH REPEAT, F BOX 1	-	0.05	-	-
AT5G24470	PSEUDO-RESPONSE REGULATOR 5 (PRR5)	0.6	0.1	-	-
AT2G21660	GRP7	-	0.2	-	1.7
AT2G40080	EARLY FLOWERING 4 (ELF4)	-	0.3	-	-
AT3G07650	CONSTANS-LIKE 9 (COL9)	0.7	0.4	-	-
AT1G22770	GIGANTEA	0.7	0.4	1.5	2.5
AT5G39860	BASIC HELIX-LOOP-HELIX PROTEIN 136 (BHLH136)	-	0.6	-	0.4
AT2G30140	UDP-GLUCOSYL TRANSFERASE 87A2 (UGT87A2)	-	1.6	2.2	2.0
AT2G39250	SCHNARCHZAPFEN (SNZ)	-	2.1	-	2.8
AT5G23730	EARLY FLOWERING BY OVEREXPRESSION 2 (EFO2)	-	2.1	-	-
AT5G10140	FLOWERING LOCUS C	2.2	2.7	0.6	-
AT2G46830	CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)	1.7	3.1	0.6	-
AT1G65480	FLOWERING LOCUS T (FT)	-	3.8	-	-
AT5G01040	LACCASE 8 (LAC8)	-	-	2.4	-
AT2G24790	COL3	-	-	0.4	-
AT4G14900	FRIGIDA-like	-	-	0.2	-
AT1G09570	PHYA	-	-	-	0.4
AT1G71692	AGAMOUS-LIKE 12 (AGL12)	-	-	1.7	5.7
AT5G63980	HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 2	1.4	-	-	2.7
AT5G24860	ARABIDOPSIS FLOWERING PROMOTING FACTOR 1 (ATFPF1)	2.3	-	-	-

Number indicates fold induction or repression by *F. oxysporum* relative to mock treatment in Col-0 tissue at 1 (F1/M1) or 6 days (F6/M6) after inoculation.

doi:10.1371/journal.pone.0127699.t003
shown in Table 3. Autonomous pathway floral regulators that regulate flowering time by repressing FLC, are not transcriptionally responsive to *F. oxysporum* infection, but several members of this pathway promote susceptibility to *F. oxysporum*. *fve-3* shows altered defense gene transcription, suggesting that FVE and potentially other autonomous pathway mutants are compromised in defense against *F. oxysporum*. GIGANTEA (GI), which promotes flowering time independently of FLC, promotes susceptibility to *F. oxysporum*.

FLC is responsive to *F. oxysporum* infection, however FLC *per se* does not seem to modulate the *F. oxysporum* response. FRI and members of the vernalization pathway are not transcriptionally regulated by *F. oxysporum* and do not appear to regulate the *A. thaliana* response to *F. oxysporum*.

We discovered a negative association between flowering time and resistance to *F. oxysporum* using natural ecotypes and mutant lines of *A. thaliana* and hypothesized that the correlation between delayed flowering and *F. oxysporum* resistance could be due to a pleiotrophic effect of delayed senescence in late-flowering lines, minimizing the disease symptoms caused during the necrotrophic phase of infection. Indeed an association between enhanced senescence and disease susceptibility has been reported in the *F. oxysporum—A. thaliana* interaction [75, 76]. An overabundance of vernalization-requiring ecotypes were resistant to *F. oxysporum*, so we investigated the role of vernalization, and vernalization-associated genes FRI and FLC, in the response to *F. oxysporum*. When flowering time was accelerated in late-flowering lines by FLC knockout or vernalization, or delayed by the addition of FRI in Col-0, the *F. oxysporum* response phenotype was unchanged, suggesting that neither the late-flowering phenotype nor FLC or FRI are required for resistance to *F. oxysporum*. These findings challenge the hypothesis that *F. oxysporum* resistance in late-flowering lines is a pleiotrophic effect of delayed senescence. Rather, they suggest that genes controlling flowering time may have dual functionality in defense regulation via genetically distinct pathways.
The fpa-7 and fve-3 mutants exhibit F. oxysporum resistance independently of FLC. FPA is an RNA binding protein and loss of function of FPA results in genome-wide RNA processing changes [34, 77]. FVE is a WD40 scaffold protein that is a component of several nucleoprotein complexes that mediate epigenetic modifications on a genome-wide scale [78–80]. FVE and FPA therefore play general roles in transcriptional regulation and are likely to have a broad target range which includes FLC as well as other genes. We reasoned that the F. oxysporum resistance phenotype observed in fve-3 could be a pleiotrophic effect of a process other than flowering modulated by FVE. FVE is known to regulate the cold acclimation response [81] and several cold responsive genes were recently shown to be transcriptionally regulated by F. oxysporum in Col-0 plants (data available in SRA accession SRP052276). However, cross-talk between the cold acclimation pathway and F. oxysporum response is not well understood and requires further investigation. Using RNA-seq, we were able to ascertain that fve-3 mutants show up-regulation of chitin responsive and glucosinolate-associated genes (Table C in S1 File) even in the absence of pathogen stress, suggesting that these plants are primed to respond more quickly to fungal attackers. Six days after inoculation with F. oxysporum, fve-3 plants also exhibited up-regulation of key defense regulators relative to Col-0 plants (Table 2), suggesting a higher amplitude of the defense response.

Similarly to our findings that FLC and late flowering can be uncoupled from resistance in autonomous pathway mutants fpa-7 and fve-3, it was recently shown that enhanced downy mildew2 (edm2) and fld mutants require FLC for late flowering but not disease resistance phenotypes [18, 82]. The authors proposed that EDM may have evolved to perform functions in
addition to its role in flowering-time regulation [82] and such a scenario is also plausible in the case of FVE or FPA. Increasingly in the literature, flowering-time mutants are being shown to have vegetative phenotypes related to defense [17, 18, 65, 82]. Indeed, FLC itself targets hundreds of genes unrelated to flowering such as JAZ proteins, which mediate JA signaling [83].

In addition to FLC and FRI, members of the photoperiod pathway also contribute to natural variation in flowering time in *A. thaliana* [84–87]. We found that a number of flowering regulators from the photoperiod pathway respond to *F. oxysporum* infection. Of these, GI, together with CO and FT promotes flowering in a circadian-clock controlled manner [88]. Our mutant analyses indicate that GI promotes susceptibility to *F. oxysporum*. Further research is required to determine whether gi-mediated resistance is due to delayed flowering or a result of a pleiotropic effect of other processes regulated by GI such as cytokinin signaling [89], oxidative stress response [91], salinity tolerance [92], freezing tolerance [93], drought escape response [74] or response to viral pathogens [94].

Flowering time is a highly complex trait mediated by multiple genetic pathways. This study focused on the role of the photoperiodic and FLC-dependent flowering-time pathways in the *A. thaliana*—*F. oxysporum* interaction but was not an exhaustive examination of flowering-time regulators. Members of the GA flowering pathway are known to regulate JA/SA signaling [21] while SVP, a member of the thermosensory flowering pathway, modulates age-related resistance to *P. syringae* [95] and the roles of these genes in the response to *F. oxysporum* were not tested here.

Providing adequate disease protection in order to maintain reproductive success is paramount to achieving agricultural productivity. We have demonstrated that inoculation with a moderate concentration of *F. oxysporum*, which may represent the situation in nature, can accelerate flowering time in Arabidopsis. Evidence suggests that global warming has already affected the flowering time of many plant species [96–98]. Simulated future seasonal warming accelerated flowering and even prompted switching of life history strategies from ‘winter’ to ‘rapid cycling’ in *A. thaliana* natural ecotypes [99]. Climate change is also predicted to alter the severity of plant disease epidemics [100]. An increased knowledge of genetic mechanisms underlying the interaction between flowering time and defense in crop plants will assist breeders to manage these two traits to accomplish the best agricultural outcomes in the future.

Supporting Information

S1 Fig. Correlation between longitude and disease score in *Arabidopsis thaliana* natural ecotypes. The disease score was plotted against longitude of the 97 natural accessions. The correlation using Pearson's product-moment correlation was not significant (*P* = 0.08). Longitude information was obtained from https://easygwas.tuebingen.mpg.de/.

(PDF)

S2 Fig. Correlation between flowering time and latitude in *Arabidopsis thaliana* natural ecotype. Flowering time was assessed as number of days taken from germination until emergence of a 1cm bolt in ≥ 2 non-vernalized plants and was plotted against latitude each of 97 natural accessions. The correlation using Pearson’s product-moment correlation was significant (*P* = 2.844e-05).

(PDF)

S1 File. Table A. Number of *F. oxysporum*-resistant, intermediate and susceptible genotypes originating from Scandinavia. Table B. Genes that are differentially regulated >2 fold in *fve-3* plants relative to Col-0 plants after mock and/or *F. oxysporum* treatment. Table C. Results of gene ontology (GO) singular enrichment analysis (SEA) showing the five most significantly
overrepresented functional gene ontology categories in fve-3 relative to WT (Col-0) plants in roots or shoots after mock or F. oxysporum inoculation. Table D. Receptor like proteins (RLPs) and NBS-LRR genes differentially expressed in fve-3 plants relative to WT plants. Number indicates fold induction or repression in fve-3 roots or shoots relative to WT roots or shoots, respectively, 6 days after mock or F. oxysporum inoculation.

(XLSX)

Acknowledgments

We thank Prof. G. Simpson, University of Dundee, Scotland, for providing fld-3, sr45-1, fve-3, fca-9, fpa-7, ftc-3 fpa-8, pcsf4-1, flk-1, ref6-3 and fpa-7/flc-3 seeds, Prof. Richard Amasino, University of Wisconsin for providing vin3-4 and ColFRISF2 seeds, Prof. Scott Micheals, University of Illinois for providing the fve-3/flc-3 seed and the ABRC for providing gi-1 and gi-2, fy-1, fld-2 mutant and A. thaliana ecotype seeds.

Author Contributions

Conceived and designed the experiments: RL JS JM KK. Performed the experiments: RL AR. Analyzed the data: JP JS RL. Wrote the paper: RL KK JM.

References

1. Wang W, Wang ZY. At the intersection of plant growth and immunity. Cell Host Microbe. 2014; 15: 400–2. doi:10.1016/j.chom.2014.03.014 PMID: 24721568
2. Korves TM, Bergelson J. A developmental response to pathogen infection in Arabidopsis. Plant Physiol. 2003; 133: 339–47. PMID: 12970499
3. Schiestl FP, Kirk H, Bigler L, Cozzolino S, Desurmont GA. Herbivory and floral signaling: phenotypic plasticity and tradeoffs between reproduction and indirect defense. New Phytol. 2014; 203: 257–66. doi: 10.1111/nph.12783 PMID: 24684288
4. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbes alter flowering phenotype and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett. 2014; 17: 717–26. doi: 10.1111/ele.12276 PMID: 24698177
5. Martínez CE, Pons E, Prats G, León J. Salicylic acid regulates flowering time and links defense responses and reproductive development. Plant J. 2004; 37: 209–217. PMID: 14690505
6. Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, Lu H. Multiple Roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiol. 2011; 156: 1508–19. doi: 10.1104/pp.110.176776 PMID: 21543726
7. Lee J, Nam J, Park HC, Na G, Miura K, Jin JB et al. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J. 2007; 49: 79–90. PMID: 17163880
8. Li W, Dai L, Wang GL. The U-Box/ARM E3 Ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis. Plant Physiol. 2012; 159: 239–250. doi: 10.1104/pp.111.192617 PMID: 22383540
9. Liu L, Zhang J, Adrian J, Gissot L, Coupland G, Yu D, et al. Elevated Levels of MYB30 in the phloem accelerate flowering in Arabidopsis through the regulation of FLOWERING LOCUS T. PLoS One. 2014; 9:e89799. doi: 10.1371/journal.pone.0089799 PMID: 24587042
10. Song S, Qi T, Fan M, Zhang X, Gao Y, Huang H, et al. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 2013; 9: e1003653. doi: 10.1371/journal.pgen.1003653 PMID: 23935516
11. Chehab EW, Yao C, Henderson Z, Kim S, Bram J. Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol. 2012; 22: 701–706. doi: 10.1016/j.cub.2012.02.061 PMID: 22489339
12. Ogawara T, Hitagashki K, Kamada H, Ezura H. Ethylene advances the transition from vegetative growth to flowering in Arabidopsis thaliana. J Plant Physiol. 2003; 160: 1335–1340. PMID: 14658386
13. Zhou C, Zhang L, Duan J, Mi K, Wu K. HISTONE DEACETYLASE 19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell. 2005; 17: 1196–1204. PMID: 15749761
14. Wu K, Zhang L, Zhou C, Yu CW and Chaikam V. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot. 2008; 59: 225–234. doi:10.1093/jxb/erm300 PMID: 18212027

15. Yu CW, Liu X, Luo M, Chen C, Lin X, Tian G, et al. HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol. 2011; 156: 173–184. doi: 10.1104/pp.111.174417 PMID: 21982527

16. Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012; 13: 627–639. doi:10.1038/nrg3291 PMID: 22898651

17. Lyons R, Iwase A, Gänsewig T, Sherstnev A, Duc C, Barton GJ, et al. The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Sci Rep. 2013; 3: 2866. doi:10.1038/srep02866 PMID: 24104185

18. Singh V, Roy S, Giri MK, Chaturvedi R, Chowdhury Z, Shah J, et al. Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance. Mol Plant Microbe Interact. 2013; 9: 1079–88. doi:10.1094/MPMI-04-13-0096-R PMID: 23745676

19. Singh V, Roy S, Singh D, Nandi AK. Arabidopsis FLOWERING LOCUS D influences systemic-acquired-resistance-induced expression and histone modifications of WRKY genes. J Biosci. 2014; 39: 119–126. PMID: 24499796

20. Winter CM, Austin RS, Blanvillain-Baufumé S, Reback MA, Monniaux M, Wu MF, et al. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell. 2011; 20: 430–443. doi:10.1016/j.devcel.2011.03.019 PMID: 21497757

21. De Bruyne L, Höfte M, De Vleesschauwer D. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant. 2014; 7: 943–959. doi:10.1093/mp/ssu050 PMID: 24777987

22. Michielse CB, Rep M. Pathogen profile update: Fusarium oxysporum. Mol Plant Path. 2009; 10: 311–324.

23. Diener AC, Ausubel FM. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics. 2005; 171: 305–321. PMID: 15965251

24. Cole SJ, Diener AC. Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp.matthioli. New Phytol. 2013; 200: 172–184. doi:10.1111/nph.12368 PMID: 23790083

25. Diener AC. Routine mapping of Fusarium wilt resistance in BC1 populations of Arabidopsis thaliana. BMC Plant Biol. 2013; 13: e171.

26. Czymmek KJ, Fogg M, Powell DH, Sweigard J, Park SY, Kang S. In vivo time-lapse documentation using confocal and multi-photon microscopy reveals the mechanisms of invasion into the Arabidopsis root vascular system by Fusarium oxysporum. Fungal Genet Biol. 2007; 44: 1011–1023. PMID: 17379550

27. Kidd BN, Kadoo NY, Dombrecht B, Tekeoğlu M, Gardiner DM, Thatcher LF, et al. Auxin signalling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Mol Plant Microbe Interact. 2011; 24: 733–748. doi:10.1094/MPMI-08-10-0194 PMID: 21281113

28. Cole SJ, Yoon AJ, Faull KF, Diener AC. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates. Mol Plant Pathol. 2014; 15: 589–600. doi:10.1111/mpp.12117 PMID: 24387225

29. Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, et al. The Mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell. 2009; 21: 2237–2252. doi:10.1105/tpc.109.066910 PMID: 19671879

30. Gangappa SN, Chattopadhyay S. MYC2, a bHLH transcription factor, modulates the adult phenotype of SPA1. Plant Signal Behav. 2010; 5: 1650–2. doi: 10.4161/psb.5.12.13981 PMID: 21521237

31. Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS ONE 2015; 10: e0121902. doi: 10.1371/journal.pone.0121902 PMID: 25849296

32. Veronese P, Narasimhan ML, Stevenson RA, Zhu JK, Weller SC, Subbarao KV, et al. Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant J. 2003; 35: 574–587. PMID: 12940951

33. Haffner E, Karlovsky P, Diederichsen E. Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana. BMC Plant Biol. 2010; 10: 235. doi: 10.1186/1471-2229-10-235 PMID: 21044310
34. Duc C, Sherstnev A, Cole C, Barton GJ, Simpson GG. Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA. PLoS Genet. 2013; 9: e1003867. doi: 10.1371/journal.pgen.1003867 PMID: 24204292

35. Ausín I, Alonso-Blanco C, Jarillo JA, Ruiz-García L, Martínez-Zapater JM. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet. 2004; 36: 162–6. PMID: 14745447

36. Yang CH, Chou ML. FLD interacts with CO to affect both flowering time and floral initiation in Arabidopsis thaliana. Plant Cell Physiol. 1999; 40: 647–50. PMID: 10483125

37. Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell. 2001; 13: 935–941. PMID: 11283346

38. Lee I, Amasino RM. Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiol. 1995; 108: 157–162. PMID: 12228459

39. Sung S, Schmitz RJ, Amasino RM. A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev. 2006; 20: 3244–3248. PMID: 17114575

40. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 1999; 18: 4679–88. PMID: 10469647

41. Anderson JP, Badruzzaefar E, Schenk PM, Manners JM, Desmond OJ, Ehrtl C, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signalling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell. 2004; 16: 3460–3479. PMID: 15548743

42. Thatcher LF, Powell JJ, Aitken EA, Kazan K, Manners JM. LBD20 functions in Fusarium wilt and JA-signaling. Plant Physiol. 2012; 160: 407–18. doi: 10.1104/pp.112.199067 PMID: 22786889

43. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, et al. Repressor- and activator-type Ethylene Response Factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 2005; 139: 949–959. PMID: 16183832

44. Trapnell C, Williams BA, Pertea G, Mortazavi AM, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotech. 2010; 28: 511–515.

45. Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucl Acids Res. 2010; 38:W64–W70. doi: 10.1093/nar/gkq310 PMID: 20435677

46. Lempe J, Balasubramanian S, Sureshkumar S, Singh A, Schmid M, Weigel D. Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet. 2005; 1: 109–118. PMID: 16103920

47. Li P, Filiault D, Box MS, Kerdaffrec C, Wilczek AM, et al. Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana. Genes Dev. 2014; 28: 1635–1640. doi: 10.1101/gad.245993.114 PMID: 25035417

48. Gazzani SA, Gendall R, Lister C, Dean C. Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol. 2003; 132: 1107–1114. PMID: 12805638

49. Stinchcombe JR, Caicedo AL, Hopkins R, Mays C, Boyd EW, Purugganan MD, et al. Vernalization sensitivity in Arabidopsis thaliana (brassicaceae): The effects of latitude and FLC variation. Am J Bot. 2005; 92: 1701–1707. doi: 10.3732/ajb.92.10.1701 PMID: 21646087

50. Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, Mays C, Halldorsdottir SS, et al. A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci U S A. 2004; 101: 4712–4717. PMID: 15070783

51. Strange A, Li P, Lister C, Anderson J, Warthmann N, Shindo C, et al. Major-effect alleles at relatively few loci underlie distinct vernalization and flowering time variation in Arabidopsis accessions. PLoS One. 2011; 6: e19949. doi: 10.1371/journal.pone.0019949 PMID: 21625501

52. Sung SB, Amasino RM. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature. 2004; 427: 159–164. PMID: 14712276

53. Simpson GG. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol. 2004; 7: 570–574. PMID: 15337100

54. Gu X, Jiang D, Yang W, Jacob Y, Michaels SD, He Y. Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLoS Genet. 2011; 7: e1002366. doi: 10.1371/journal.pgen.1002366 PMID: 22102827

55. Bäurle I, Dean C. Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets. PLoS One. 2008; 3: e2733. doi: 10.1371/journal.pone.0002735 PMID: 18628965
56. Pandey SP, Roccaro M, Schön M, Logemann E, Somssich IE. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J. 2010; 64: 912–23. doi: 10.1111/j.1365-313X.2010.04387.x PMID: 21143673

57. Kim KC, Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell. 2008; 20: 2357–71. doi: 10.1105/tpc.107.055566 PMID: 18776063

58. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L. The phenylpropanoid pathway and plant defense-a genomics perspective. Mol Plant Pathol. 2002; 1: 371–90.

59. Kim HG, Kwon SJ, Jang YJ, Chung JH, Nam MH, Park OK. GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis. FEBS Lett. 2014; 588: 1652–8. doi: 10.1016/j.febslet.2014.02.062 PMID: 24631536

60. Takahashi H, Shoji H, Ando S, Kanayama Y, Kusano T, Takeshita M, et al. RCY1-mediated resistance to Cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. Mol Plant Microbe Interact. 2012; 9: 1171–85. doi: 10.1094/MPMI-04-12-0076-R PMID: 22852808

61. McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S, Holub EB, et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell. 1998; 10: 1861–74. PMID: 9811794

62. Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, et al. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet. 2006; 38: 716–720. PMID: 16732289

63. Coppinger P, Repetti PP, Day B, Dahlbeck D, Mehlert A, Staskawicz BJ. Overexpression of the plant membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. Plant J. 2004; 40: 225–237. PMID: 15447649

64. Li L, Zhang C, Xu D, Schläppi M, Xu Q. Expression of recombinant EARLI1, a hybrid proline-rich protein of Arabidopsis, in Escherichia coli and its inhibition effect to the growth of fungal pathogens and Saccharomyces cerevisiae. Gene. 2012; 506: 50–61. doi: 10.1016/j.gene.2012.06.070 PMID: 22759515

65. Wilson IW, Kennedy GC, Peacock JW, Dennis ES. Microarray analysis reveals vegetative molecular phenotypes of Arabidopsis flowering-time mutants. Plant Cell Physiol. 2005; 46: 1190–201. PMID: 15908439

66. Shen Y, Diener AC. Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genet. 2013; 9: e1003525. doi: 10.1371/journal.pgen.1003525 PMID: 23717215

67. Yang X, Deng F, Ramonell KM. Receptor-like kinases and receptor-like proteins: Keys to pathogen recognition and defense signaling in plant innate immunity. Front Biol. 2010; 7: 155–166.

68. Zhang W, Fraiture M, Kolb D, Löffelhardt B, Desaki Y, Boutrot FF, et al. Arabidopsis receptor-like protein 30 and receptor-like kinase suppressor of BIR1-1/EVERSHELD mediate innate immunity to necrotrophic fungi. Plant Cell. 2013; 25: 4227–41. doi: 10.1105/tpc.113.117010 PMID: 24104566

69. Ribon M, Robustelli Test A, Galbiati M, Tonelli C, Conti L. Environmental stress and flowering time: The photoperiodic connection. Plant Signal Behav. 2014; 9: e29036. doi: 10.4161/psb.29036 PMID: 25763486

70. Hua J. Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol. 2013; 4: 406–13. doi: 10.1016/j.pbi.2013.06.017 PMID: 23856082

71. Sawa M, Kay SA. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2011; 108: 11698–703. doi: 10.1073/pnas.1106771108 PMID: 21709243

72. Chin K, DeFalco TA, Moeder W, Yoshioka K. The Arabidopsis cyclic nucleotide-gated ion channels ATCNCG2 and ATCNCG4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiol. 2013; 163: 611–24. doi: 10.1104/pp.113.225680 PMID: 24027242

73. Yang Y, Ma C, Xu Y, Wei Q, Imliaz M, Lan H, et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell. 2014; 26: 2038–2054. PMID: 24858937

74. Ribon M, Galbiati M, Tonelli C, Conti L. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigen and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol. 2013; 162:1706–19. doi: 10.1104/pp.113.217729 PMID: 23719890

75. Schenk PM, Kazan K, Rusu AG, Manners JM, Maclean DJ. The SEN1 gene of Arabidopsis is regulated by signals that link plant defense responses and senescence. Plant Physiol Biochem. 2005; 43: 997–1005. PMID: 16325410
The Association between Flowering Time and Defense in Arabidopsis

76. Thatcher LF, Manners JM, Kazan K. *Fusarium oxysporum* hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J. 2009; 58: 927–939. doi: 10.1111/j.1365-313X.2009.03831.x PMID: 19220788

77. Sonmez C, Bäurle I, Magusin A, Drees R, Laubinger S, Weigel D, et al. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription. Proc Natl Acad Sci USA. 2011; 108: 8506–13. doi: 10.1073/pnas.1105334108 PMID: 21536901

78. Jeon J, Kim J. FVE, an Arabidopsis homologue of the retinoblastoma-associated protein that regulates flowering time and cold response, binds to chromatin as a large multiprotein complex. Mol Cells. 2011; 32: 227–234. doi: 10.1007/s10059-011-1022-6 PMID: 21710206

79. Kenzior A, Folk WR. *Arabidopsis thaliana* MSI4/FVE associates with members of a novel family of plant specific PWWP/RRM domain proteins. Plant Mol Biol. 2015; 87: 329–339. doi: 10.1007/s11103-014-0280-z PMID: 25600937

80. Pazhouhandeh M, Molinier J, Berr A, Genschik P. MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in *Arabidopsis*. Proc Natl Acad Sci USA. 2011; 108: 3430–3435. doi: 10.1073/pnas.1018242108 PMID: 21282611

81. Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, et al. A genetic link between cold responses and flowering time through FVE in *Arabidopsis thaliana*. Nat Genet. 2004; 36: 167–171. PMID: 14745450

82. Tsuchiya T, Eulgem T. The Arabidopsis defense component EDM2 affects the floral transition in an FLC-dependent manner. Plant J. 2010; 62: 518–528. doi: 10.1111/j.1365-313X.2010.04169.x PMID: 20149132

83. Deng W, Ying H., Hellwell CA, Taylor JM, Peacock WJ, Dennis ES. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci USA. 2011; 108: 6680–6685. doi: 10.1073/pnas.1103175108 PMID: 21464308

84. Schwartz C, Balasubramanian S, Warthmann N, Michael TP, Lempe J, Sureshkumar S, et al. Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of *Arabidopsis thaliana*. Genetics. 2009; 183: 723–732. doi: 10.1534/genetics.109.104984 PMID: 19652183

85. Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, et al. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun. 2013; 4.: 1478

86. Martin-Tryon EL, Kreps JA, Harmer SL. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol. 2007; 143: 473–86. PMID: 17098855

87. Ei-Assal SED, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet. 2001; 29: 435–440. PMID: 11726930

88. Balasubramanian S, Sureshkumar S, Agrawal M, Michael TP, Wessinger C, Maloof JN, et al. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of *Arabidopsis thaliana*. Nat Genet. 2006; 38: 711–715. PMID: 16732287

89. Rosas U, Mei Y, Xie Q, Banta JA, Zhou RW, Seufferheld G, et al. Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS. Nat Commun. 2014; 5: 3651. doi: 10.1038/ncomms4651 PMID: 24736505

90. Putarjunan A, Rodermel S. *gigantea* suppresses *immutans* variegation by interactions with cytokinin and gibberellin signaling pathways. Plant Physiol. 2014; 166: 2115–32. doi: 10.1104/pp.114.250647 PMID: 25349324

91. Dalchau N, Baek SJ, Briggs HM, Robertson F, Dodd AN, Gardner MJ, et al. The circadian oscillator gene GIGANTEA mediates a long-term response of the *Arabidopsis thaliana* circadian clock to sucrose. Proc Natl Acad Sci USA. 2011; 108: 5104–5109. doi: 10.1073/pnas.1015452108 PMID: 21383174

92. Kurepa J, Smaile J, Van Montagu M, Inze D. Effects of sucrose supply on growth and pararatus tolerance of the late-flowering gi-3 mutant. Plant Growth Reg. 1998; 26: 91–96.

93. Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, et al. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun. 2013; 4: 1352. doi: 10.1038/ncomms2357 PMID: 23320240

94. Cecchini E, Geri C, Love AJ, Coupland G, Croy SN, Milner JJ. Mutations that delay flowering in Arabidopsis de-couple symptom response from cauliflower mosaic virus accumulation during infection. Mol Plant Pathol. 2002; 3: 81–90. doi: 10.1046/j.1464-6722.2001.00097.x PMID: 12069312

95. Wilson DC, Carella P, Isaacs M, Cameron RK. The floral transition is not the developmental switch that confers competence for the Arabidopsis age-related resistance response to *Pseudomonas*.
syringae pv. tomato. Plant Mol Biol. 2013; 83: 235–246. doi: 10.1007/s11103-013-0083-7 PMID: 23722504

96. Fitter AH, Fitter RSR. Rapid changes in flowering time in British plants. Science. 2002; 296: 1689–1691. PMID: 12040195

97. Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst. 2006; 37: 637–669.

98. Keatley MR, Hudson IL. Detecting change in an Australian flowering record: Comparisons of linear regression and cumulative sum analysis change point analysis. Austral Ecology. 2012; 37: 825–835.

99. Li Y, Cheng RY, Spokas KA, Palmer AA, Borevitz JO. Genetic variation for life history sensitivity to seasonal warming in Arabidopsis thaliana. Genetics. 2014; 196: 569–77. doi: 10.1534/genetics.113.157628 PMID: 24281156

100. Zhang X, Halder J, White RP, Hughes DJ, Ye Z, Wang C, et al. Climate change increases risk of Fusarium ear blight on wheat in central China. Ann Appl Biol. 2014; 164: 384–395.