Hereditary Hemorrhagic Telangiectasia Induced Portosystemic Encephalopathy: A Case Report and Literature Review

Hiroyuki Kawabata¹, Yasuhiko Hamada², Aiji Hattori¹ and Kyosuke Tanaka³

Abstract:
Hereditary hemorrhagic telangiectasia (HHT) is a rare disorder characterized by telangiectasias and arteriovenous malformations (AVMs), which can involve multiple organ systems. Although hepatic involvement is common, the development of portosystemic encephalopathy is extremely rare. We herein report a 72-year-old woman with HHT-induced portosystemic encephalopathy secondary to hepatic arteriovenous malformations. She presented with disturbance of consciousness, and her serum ammonia level was elevated at 270 mg/dL. Color Doppler ultrasonography and contrast-enhanced computed tomography showed hepatic AVMs and shunts, which were useful for making the definite diagnosis. Portosystemic encephalopathy should be considered as a differential diagnosis in HHT patients presenting with disturbance of consciousness.

Key words: hereditary hemorrhagic telangiectasia, portosystemic encephalopathy, arteriovenous malformation

(Intern Med 60: 1541-1545, 2021) (DOI: 10.2169/internalmedicine.5670-20)

Introduction

Hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu disease, is a rare autosomal disorder characterized by telangiectasias and arteriovenous malformations (AVMs). The criteria of international guidelines are used to diagnose HHT: (i) recurrent and spontaneous epistaxis, (ii) mucocutaneous telangiectasias, (iii) visceral involvement, and (iv) a first-degree relative with HHT (1). If three or four are met, the patient has definite HHT. The prevalence has been reported to be between 1 in 5,000 and 1 in 10,000. HHT can involve the skin, mucous membranes of the head and upper extremities, respiratory tract, digestive tract, and liver (1, 2).

HHT patients with liver involvement are mostly asymptomatic, and a few have been reported to have high-output cardiac failure, portal hypertension, or biliary disease. Hepatic encephalopathy secondary to portosystemic shunts is an extremely rare complication (1, 3).

We herein report an HHT patient with portosystemic encephalopathy (PSE) secondary to hepatic AVMs.

Case Report

A 72-year-old woman with no remarkable family medical history was admitted to our hospital because of a disturbance of consciousness. The patient had a history of intermittent epistaxis and mild anemia. She had no other relevant medical history causing portal vein thrombosis, such as cholecystitis, cholangitis, pancreatitis, or abdominal surgery.

The patient had become less responsive and more confused two hours before her admission. The Glasgow Coma Scale score was 6 (E1V1M4), but other vital signs were normal. A physical examination showed cutaneous telangiectasias on the fingers (Fig. 1, arrows). Laboratory results on admission showed a slight elevation of hepatobiliary enzymes and mild anemia (Table 1). Serological testing for hepatitis B and C viruses was negative. Among hepatic fibrosis markers, only her hyaluronic acid level was slightly elevated. However, the serum ammonia level was elevated at 270 mg/dL. Brain magnetic resonance imaging (MRI) and magnetic

¹Department of Gastroenterology, Sai seikai Matsu saka General Hospital, Japan, ²Department of Gastroenterology and Hepatology, Mie University Hospital, Japan and ³Department of Endoscopy, Mie University Hospital, Japan

Received: June 21, 2020; Accepted: November 6, 2020; Advance Publication by J-STAGE: December 22, 2020
Correspondence to Dr. Yasuhiko Hamada, y-hamada@clin.medic.mie-u.ac.jp
Figure 1. Cutaneous telangiectasias were seen on the fingers (arrows).

Table 1. Laboratory Results on Admission.

Laboratory item	Value	Normal range	Laboratory item	Value	Normal range
White blood cell counts (μL)	3,300	3,300-8,600	Total protein (g/dL)	6.2	6.6-8.1
Red blood cell counts (μL)	372	386-492×10^4	Albumin (g/dL)	3.3	4.1-5.1
Hemoglobin (g/dL)	10.9	11.6-14.8	Total bilirubin (mg/dL)	2.2	0.4-1.5
Platelet count (μL)	18.1	15.8-34.8×10^4	Aspartate aminotransferase (IU/L)	27	13-30
			Alanine aminotransferase (IU/L)	33	10-42
Prothrombin time (s)	12.8	11-14	Lactate dehydrogenase (IU/L)	238	124-222
Activated prothrombin time (s)	31	25-35	Alkaline phosphatase (IU/L)	383	106-322
Hyaluronic acid (ng/mL)	71.1	0-50	Urea nitrogen (mg/dL)	14.6	8-20
Type IV collagen (ng/mL)	119	0-140	Creatinine (mg/dL)	0.53	0.46-0.79
Type IV collagen 7S (ng/mL)	5.3	0-6	C-reactive protein (mg/dL)	0.099	0-0.15

Discussion

The clinical symptoms of HHT are usually associated with bleeding, such as epistaxis or gastrointestinal hemorrhaging from telangiectasias. A previous report suggested that 32-78% of HHT patients have liver involvement, as the AVMs affect the destination of the portal venous and hepatic arterial blood flow (1). Three types of intrahepatic shunt may be attributable to the hepatic AVMs: hepatic artery to portal vein, hepatic artery to hepatic vein, and portal vein to hepatic vein. These shunts often co-exist and can result in several complications, such as high out-put cardiac failure, portal hypertension, biliary necrosis, encephalopathy, and mesenteric ischemia (4).

Among these three types of shunts, portal vein to hepatic vein shunts leading to hepatic encephalopathy are extremely rare (3). To our knowledge, only 12 cases of HHT patients with PSE have been reported, including our case (Table 2) (5-15). Reviewing these reports, there were 6 men
and 5 women including our case (case 4 was not described in detail and is not available), with ages ranging from 57 to 86 (median, 67) years old. Although HHT is a genetic and congenital disease, no cases of PSE have been reported at a young age. This suggests that hepatic AVMs are present early in life, but their symptoms do not appear until middle age or later, as vascular abnormalities progress with aging, and the shunt volume also increases (16). The HHT patients in all reported cases were treated with osmotic laxatives, such as lactulose, and there have been no reports of liver

Figure 2. Abdominal ultrasonography showed multiple anechoic structures in the liver (a). Flow was confirmed on color Doppler imaging, and the anechoic structures were considered to be dilated and tortuous vessels (b). Color Doppler imaging showed hepatic arteriovenous shunts with a turbulent flow (c, arrow).

Figure 3. Contrast-enhanced computed tomography showed dilation and tortuousness of the intrahepatic and extrahepatic arteries (a, arrows) and early enhancement of the hepatic vein in the early arterial phase (b, arrow). These findings were consistent with AVMs. AVMs: arteriovenous malformations.
Figure 4. Esophagogastroduodenoscopy showed multiple telangiectasias in the stomach.

Table 2. Literature Review of Hereditary Hemorrhagic Telangiectasia Induced Portosystemic Encephalopathy.

Case number	Reference number	Age (years)	Sex	Symptom	Ammonia level (μg/dL)	Diagnostic study	Treatment
1	5	57	Male	disturbance of consciousness	124	Ultrasonography	Lactulose
						Computed tomography Angiography	Branched-chain amino acids
2	6	64	Female	abnormal behaviors	229	Angiography	Not available
3	7	78	Female	stupor	198	Ultrasonography	Lactulose
						Computed tomography Angiography	Branched-chain amino acids
4	8		Not available	abnormal behaviors	Not available	Not available	
5	9	71	Female	abnormal behaviors	162	Computed tomography	Lactulose
							Branched-chain amino acids
6	10	68	Male	disturbance of consciousness	190	Ultrasonography	Osmotic laxatives
						Computed tomography Angiography	Branched-chain amino acids
7	11	78	Male	disturbance of consciousness	224	Computed tomography	Branched-chain amino acids
8	12	75	Female	altered mentality	137	Computed tomography	Lactulose
9	13	64	Male	confusion	182	Ultrasonography	Not available
						Computed tomography Angiography	Branched-chain amino acids
10	14	86	Male	disturbance of consciousness	128	Ultrasonography	Lactulose
						Computed tomography Angiography	Branched-chain amino acids
11	15	85	Male	altered mentality	68	Ultrasonography	Lactulose
				disturbance of consciousness		Computed tomography Angiography	Branched-chain amino acids
12	Our case	73	Female	disturbance of consciousness	270	Ultrasonography	Lactulose
						Computed tomography Angiography	Branched-chain amino acids Antibiotics

transplants having been performed.

Hepatic angiography can be the best method of diagnosing hepatic AVMs, but less invasive modalities, such as Doppler US, CE-CT, and MRI, usually have been used for the diagnosis of hepatic AVMs in HHT patients (3). Doppler US is the optimal first-line investigation for the assessment of liver AVMs in HHT patients because of its safety, tolerability, low cost, and accuracy for detection. The caliber, course, and flow characteristics of the hepatic vessels evaluated by Doppler US support the diagnosis of hepatic AVMs and staging of their severity (17). A diagnosis using CE-CT can be achieved through diffuse liver telangiectasias and dilated hepatic vessels (3). However, the identification of portovenous shunts is usually difficult with these imaging mo-
The authors state that they have no Conflict of Interest (COI).

References

1. Faughnan ME, Palda VA, Garcia-Tsao G, et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet 48: 73-87, 2011.

2. Guttmacher AE, Marchuk DA, White RJ Jr. Hereditary hemorrhagic telangiectasia. N Engl J Med 333: 918-924, 1995.

3. Garcia-Tsao G. Liver involvement in hereditary hemorrhagic telangiectasia (HHT). J Hepatol 46: 499-507, 2007.

4. Gincul R, Lesca G, Gelas-Dore B, et al. Evaluation of previously nonscreened hereditary hemorrhagic telangiectasia patients shows frequent liver involvement and early cardiac consequences. Hepatology 48: 1570-1576, 2008.

5. Okabe H, Ishibashi H, Kimura H, et al. Rendu-Osler-Weber disease with portosystemic encephalopathy. Jpn J Med 26: 396-400, 1987.

6. Arakawa S, Tanaka Y, Nakamura K, Oita J, Yamaguchi T. A case of Rendu-Osler-Weber disease with brain hemorrhages and portal-systemic shunting. Rinsho Shinkeigaku (Clin Neurol) 34: 817-822, 1994 (in Japanese, Abstract in English).

7. Sawabe M, Arai T, Esaki Y, Tsuura M, Fukazawa T, Takubo K. Three-dimensional organization of the hepatic microvasculature in hereditary hemorrhagic telangiectasia. Arch Pathol Lab Med 125: 1219-1223, 2001.

8. Matsumoto S, Mori H, Yamada Y, Hayashida T, Hori Y, Kiyosue H. Intrahepatic porto-hepatic venous shunts in Rendu-Osler-Weber disease: imaging demonstration. Eur Radiol 14: 592-596, 2004.

9. Fukunaga M, Fujiki R, Santa Y, Kato A, Yoshimura T. Elderly hereditary hemorrhagic telangiectasia female with portosystemic encephalopathy. Rinsho Shinkeigaku (Clin Neurol) 49: 271-274, 2009 (in Japanese, Abstract in English).

10. Ford TJ, Fong MW, Cheah BC, Alexopoulos C. Pulmonary hypertension and hepatic encephalopathy: lethal complications of Rendu-Osler-Weber disease. J R Coll Physicians Edinb 44: 126-129, 2014.

11. Kato Y, Maruyama H, Uchino A, Tanahashi N. Late-onset portosystemic encephalopathy in a patient with Rendu-Osler-Weber disease. Intern Med 53: 2653-2654, 2014.

12. Ha J, Son BK, Ahn SB, et al. Osler-Weber-Rendu disease presenting as recurrent portosystemic encephalopathy in a 75-year-old female patient. Korean J Gastroenterol 65: 57-61, 2015 (in Korean, Abstract in English).

13. Dumont R, Loly JP, Delwaide J, Louis ER. Rendu-Osler disease: a rare cause of ammonia encephalopathy. Rev Med Liege 71: 83-89, 2016 (in French, Abstract in English).

14. Ono K, Obara T, Takeshita M, et al. A case of hereditary hemorrhagic telangiectasia with hepatic encephalopathy due to portal hepatic venous shunt. Nihon Ronen Igakkai Zasshi (Jpn J Geriatrics) 54: 179-185, 2017 (in Japanese, Abstract in English).

15. Shah RN, Makar M, Akhtar N, Forster E. Lactulose to the rescue: a case of toxic hepatic encephalopathy caused by portosystemic shunting and epistaxis in a patient with hereditary hemorrhagic telangiectasia. Case Rep Hepatol 71: 83-89, 2019.

16. Plauchu H, de Chadarevian JP, Bideau A, Robert JM. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet 32: 291-297, 1989.

17. Buscarini E, Plauchu H, Garcia-Tsao G, et al. Liver involvement in hereditary hemorrhagic telangiectasia: consensus recommendations. Liver International 26: 1040-1046, 2006.

18. Matsuo M, Kanematsu M, Kato H, Kondo H, Sugisaki K, Hoshi H. Osler-Weber-Rendu disease: visualizing portovenous shunting with three-dimensional sonography. Am J Roentgenol 176: 919-920, 2001.

19. Vázquez C, Gonzalez ML, Ferraris A, Bandi JC, Serra MM. Bevacizumab for treating Hereditary Hemorrhagic Telangiectasia patients with severe hepatic involvement or refractory anemia. PLoS One 7: 15, e0228486, 2020.

20. Dupuis-Girod S, Ginon I, Saurin JC, et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 307: 948-955, 2012.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).