Evaluation of Resistance to Fluoroquinolones and its Relationship with \textit{parC} Gene Mutation in \textit{Klebsiella pneumoniae} Clinical Isolates

Massoumeh Chanbari, Reza Mirnejad, Ebrahim Babapour

1. Department of Microbiology, Faculty of Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
2. Molecular Biology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
3. Department of Microbiology, Faculty of Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran

\textbf{ABSTRACT}

\textbf{Background:} \textit{Klebsiella pneumoniae} has received attention due to a wide range of diseases and antibiotic resistance. The resistance to fluoroquinolones in gram-negative bacteria is often due to chromosomal mutations in the \textit{gyr} and \textit{par} genes. This research aimed at investigating the pattern of fluoroquinolone resistance and its relation with a mutation in the \textit{parC} gene among clinical isolates of \textit{K. pneumoniae}.

\textbf{Materials & Methods:} In this descriptive-analytical study, 95 \textit{K. pneumoniae}, after biochemical and molecular diagnosis, were evaluated for resistance to different antibiotics by disk diffusion agar according to CLSI recommendations and screening for ciprofloxacin-resistant isolates. Mutation in the ciprofloxacin resistance determinant region of the \textit{parC} gene of \textit{K. pneumoniae} resistant to ciprofloxacin was performed by PCR amplification and then amplified fragment sequencing and finally with the standard bacterial genome sequencing available at NCBI site, became BLAST through online software, Insilico, and Clustalw2.

\textbf{Results:} The result of the antibiogram showed implies an expansion of MDR bacteria. 3.1% of isolates were resistant to all 13 antibiotics studied and 24.2% were ciprofloxacin-resistant. The highest and lowest percentages of antibiotic resistance were determined for ampicillin and amoxicillin (98.9%) and imipenem (13.6%), respectively. Sequence analysis of the \textit{parC} gene showed that of 23 isolates resistant to ciprofloxacin, 16 isolates at codon 80 (I80S), one at codon 84 (E84K) were and 3 isolates also had frame-shift mutations.

\textbf{Conclusion:} Mutations in the \textit{parC} gene can be one of the major contributors to resistance to fluoroquinolones and increased MDR bacteria and nosocomial infections.

\textbf{Keywords:} \textit{Klebsiella pneumoniae}, Fluoroquinolones, \textit{parC} gene, PCR

Introduction

\textit{Klebsiella pneumoniae} (\textit{K. pneumoniae}) is an opportunistic bacterium and an important pathogen is responsible for a wide range of nosocomial acquired from the hospital and is the cause of urinary tract infections, neonatal arthritis, meningitis, wound infections, nosocomial pneumonia, bacteremia, septicemia, and soft tissue infections (1). The microorganism is also a potentially pathogenic community-acquired pathogen (1). Most \textit{K. pneumoniae} isolates are multidrug-resistant (2). Although fluoroquinolones such as ciprofloxacin are often
used to treat *K. pneumoniae* infections, the resistance of this bacterium to this group of antibiotics is increasing (3, 4). The resistance to fluoroquinolones in gram-negative bacteria is often due to chromosomal mutations in the *gyr* and *par* genes (5, 6). This research aimed at investigating the pattern of fluoroquinolone resistance and its relation with a mutation in the *parC* gene among clinical isolates of *K. pneumoniae*.

Materials and Methods

Bacterial identification and Antibacterial susceptibility testing

In this descriptive-analytic study, 95 *K. pneumoniae* isolates were initially identified using standard laboratory methods including growth on MacConkey agar medium (Merck, Germany) at 37 ˚C, showing the purple appearance, Gram stain (Gram-negative coccobacillus), oxidase test (negative), sulfide indole motility (SIM), methyl red-Voges-Proskauer (MR-VP), citrate utilization, urease test, triple sugar iron (lactose fermentative or acid/acid, G+, H2S) and for molecular diagnosis, Presence of 16S rRNA gene was verified using PCR (fig 1). The total genomic DNA was extracted from *K. pneumoniae* colonies grown on LB broth (Merck Co., Germany) by the boiling method. DNA quality and concentrations were determined by Nanodrop spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA) and agarose gel electrophoresis. Whole extracted DNAs were immediately stored at -70°C.

After biochemical and molecular diagnosis screened for resistance to fluoroquinolones and other antibiotics by the Kirby-Bauer disc diffusion technique on Mueller-Hinton Agar (Merck Co., Germany) medium according to the Clinical and Laboratory Standards Institute 2018 (CLSI) strategies.

Figure 1. PCR product electrophoresis results for proliferation of 16S rRNA gene with molecules with a molecular weight of 130 bp, column1, marker100 bp (Sina Clone Company) and column 2, positive control, columns 3-13, product bp130 PCR gene 16S rRNA gene, clinical isolates of *K. pneumoniae* and Column 14 Negative control

Table 1. Primers used in this study

Gene	Seq	Product size	Reference
parC	F 5’-CAGCTCGGCATACTCGAC-3’ \nR 5’-CCTGAACACTCCATGTACGTGAT-3’	340 bp	(4)
16S rRNA	F 5’-ATTTTGAAGAGGTGCAACAGAT-3’ \nR 5’-TTCACCTGAAGTTTCTTGTGTTC-3’	130 bp	(15)
Resistance to *parC* Gene mutation in *Klebsiella pneumoniae*

Table 2. Thermocycler PCR protocol for the 16S rRNA gene

Steps	Temperature	Time
Initial Denaturation	94°C	4 min
Denaturation	94°C	45 sec
Annealing	59°C	45 sec
Extension	72°C	45 sec
Final Extension	72°C	10 min

Table 3. Thermocycler PCR protocol for the *parC* gene

Steps	Temperature	Time
Initial Denaturation	94°C	4 min
Denaturation	94°C	30 sec
Annealing	50°C	30 sec
Extension	72°C	1 min
Final Extension	72°C	7 min

Determination of MIC of ciprofloxacin by microbial dilution method

The MIC of ciprofloxacin was measured by dilution microbial assay at concentrations ranging from 0.25 - 1024 µg / ml.

PCR assay for detection of *parC* genes

The mutation in the determining area for resistance to ciprofloxacin in the *parC* gene of resistant *K. pneumoniae* was performed by the reproduction of this gene using the PCR method and nucleotide sequencing analysis (Figure 2, 3, 4, 5).

The desired genes and their primer sequences used in our study were demonstrated in Table 1. The total volume of reaction per each PCR test was 25 µL in the PCR tube. The reaction mixtures for detection of *parC* gene contained 1 µL DNA (10 pmol/L), 12.5 µL ready 2× PCR Master Mix (SinaClon BioScience Co., Iran), 1 µL of 10 pmol/L of each primer and 9.5 µL of sterile ultrapure water up to 25 µl volumes. Thermal cycling conditions for gene amplification were performed in Table 2 & 3. Finally, the effect of the mutation on the structure of IV topoisomerase enzyme and its possible role in resistance to Ciprofloxacin was investigated using online Blast, Insilico, and Clustalw2 software.

Results

The antimicrobial susceptibility pattern of *K. pneumoniae* isolates was determined by the Kirby-Bauer disc diffusion technique on Mueller-Hinton Agar (Merck Co., Germany) medium. The results showed that 1.3% of isolates were resistant to all 13 antibiotics and 23 isolates were resistant to ciprofloxacin (24.2%). The highest percentage of antibiotic resistance was determined for ampicillin (13.6%). The results of the antimicrobial susceptibility pattern of *K. pneumoniae* isolates showed in table 4. Results showed 67 isolates from 95 isolates studied were Multi-Drug Resistant (MDR) and 8 isolates were Extensive Drug-Resistant (XDR).

Sequencing analysis showed that 16 of 23 isolates resistant to ciprofloxacin had I80S mutations and an isolate also had an E84K mutation in the *parC* gene. According to the results, a mutation in *parC* gene is one of the most important mechanisms of resistance to fluoroquinolones in clinical isolates of *K. pneumoniae*. The mutation in the *parC* gene induces resistance to ciprofloxacin in *K. pneumoniae* by altering the tendency of ciprofloxacin to IV topoisomerase, and this can contribute to the increase of *K. pneumoniae* isolates resistant to common antibiotics and the increased incidence of nosocomial infections.

Figure 1. Electrophoresis results of PCR product for *parC* gene proliferation with bands with a molecular weight of 340 bp, column 1 of 100 bp marker (Sina Clone Company) and column 2 of positive control, columns 3-13 of product 340 bp PCR gene of *parC* gene, clinical isolates of *K. pneumoniae* and Column 14 Negative control.
Table 4. The results of the antimicrobial susceptibility pattern of *K. pneumoniae* isolates

Antibiotics	Susceptible	Intermediate	Resistance
Cefepime 30 μg	67 (70.53%)	1 (1.05%)	27 (28.42%)
Tobramycin 10 μg	72 (75.79%)	8 (8.42%)	15 (15.79%)
Chloramphenicol 30 μg	71 (74.74%)	8 (8.42%)	16 (15.79%)
Ciprofloxacin 5 μg	61 (66.21%)	11 (11.58%)	23 (24.21%)
Nalidixic acid 30 μg	56 (58.95%)	13 (13.68%)	26 (27.37%)
Trimethoprim-sulfamethoxazole 75 μg	62 (65.26%)	0	33 (34.74%)
Piperacillin 100 μg	9 (9.48%)	20 (21.05%)	66 (69.47%)
Tetracycline 30 μg	65 (68.42%)	6 (6.32%)	24 (25.26%)
Imipenem 10 μg	77 (81.05%)	5 (5.26%)	13 (13.69%)
Cefoxitin 5 μg	57 (60%)	3 (3.16%)	35 (36.84%)
Meropenem 10 μg	75 (78.95%)	1 (1.05%)	19 (20%)
Ampicillin 10 μg	1 (1.05%)	0	94 (98.95%)
Amoxicillin 10 μg	1 (1.05%)	0	94 (98.95%)

DNA topoisomerase IV subunit A

Query 11 GCATGGCGGCG---AGATTGGGATCGTCCGCCGCCCCCCAGTTTCCCTGACCATCCACCA 68

| Sbjct 701656 GCATGGCGGCGAAAGATTGGGATCGTCCGCCGCCCCCCAGTTTCCCTGACCATCCACCA 701597 |

Query 69 GCGGATAGCGGTAAGAGAACGGCTGCGCCATCAGCACCATCGCTTCATAGCAGGCGATGT 128

| Sbjct 701596 GCGGATAGCGGTAAGAGAACGGCTGCGCCATCAGCACCATCGCTTCATAGCAGGCGATGT 701537 |

Query 129 CGCCGTGCGGGTGATATTCTACCATGGCGGGCGGACCTTTTTGGAATT 188

| Sbjct 701536 CGCCGTGCGGGTGATATTCTACCATGGCGGGCGGACCTTTTTGGAATT 701477 |

Query 189 TCGCGCTGGCGCTACGACGCTGCGACGACGCGGAGGACTTTTTGGAATT 248

| Sbjct 701476 TCGCGCTGGCGCTACGACGCTGCGACGACGCGGAGGACTTTTTGGAATT 701417 |

Query 249 TTAAGCCATCGCAATAAACGGTAATGGGCCCTGTCATAGTACGCTACAGTATGGAGTATTCCA 308

| Sbjct 701416 TTAAGCCATCGCAATAAACGGTAATGGGCCCTGTCATAGTACGCTACAGTATGGAGTATTCCA 701357 |

Query 309 GG 310

| Sbjct 701356 GG 701355 |
Resistance to *parC* Gene mutation in *Klebsiella pneumoniae*

Figure 3. Examining the presence of mutations in a fragment of a replicated *parC* gene and comparing it with the standard sample available on the NCBI site shows the color of the mutation site in code 80.

Figure 4. Chart for electrogram, one of the examples of sequence determination

EMBoss_001 1	---MYVIMRLPPFGDLKPVQRIVYAMS 28
	EMBoss_001 1 MSDAERIALHEFTENAYLNYSMYVIMRLPPFGDLKPVQRIVYAMS 50
EMBoss_001 29	ELGLNASAKFKKSKARTVGDVLKYPHDITYACYEMVIMAQPFSYRYPV 78
	EMBoss_001 51 ELGLNASAKFKKSKARTVGDVLKYPHDYSACYEMVIMAQPFSYRYPV 100
EMBoss_001 79	DGQNWGAPDDPKS---RRHANQ----------------------------- 98
	EMBoss_001 101 DGQNWGAPDDPKSFAAMRYTESRSLKYSELLLSELGQQTADWFPFCT 150
EMBoss_001 99	-- 98
EMBoss_001 151	LQEPKMLPARLPNILNGTGIAVGMATDDPFPNLPSEVQAAALIDQPK 200
EMBoss_001 99	-- 98
EMBoss_001 201	TTDLQQLDLIVGPYPTEAEITRSAEIRKIYENGRGSRKMRVWKKEDG 250

Figure 5. Shows a comparison of the amino acid sequence of a gene amplified with a standard sample and the location of the amino acid change that the catheter shows instead of isoleucine instead of serine.

Discussion

Klebsiella is the cause of a wide range of diseases and one of the most important bacteria that we have witnessed in recent decades due to the indiscriminate and unscientific use of antibiotics (3). Fluoroquinolones are a group of broad-spectrum synthetic antibiotics that are widely used in medicine...
due to their high oral absorption. However, the widespread use of these antibiotics has led to an increase of resistance to them in recent years (17-19). Enzymes, DNA gyrase, and topoisomerase IV, which are essential for replication and transcription, are the targets of fluoroquinolones. The resistance of gram-negative bacteria to fluoroquinolones is often the result of chromosomal mutations and the displacement of certain amino acids in the Quinolone-Resistance Determining Region (QRDR) (20, 21). This study aimed to investigate the pattern of resistance to fluoroquinolones and its association with mutation in the parC gene among the clinical isolates of K. pneumoniae. The results of this study showed an increase in the rate of resistance of K. pneumoniae isolates to various antibiotics, which is compatible with studies conducted by Ahanjan et al, and Hashemi et al (22, 23). The results of this research also showed that 72.6% of the isolates were ESBLs + and 70.5% of the isolates being studied were MDR and 8.4% of the isolates were XDR. No drug-resistant isolate (PDR) was observed in this study; The results of the significant increase in ESBLs + and MDR isolates compared to Pourali Sheshblouki et al study in 2016 (24), but the results of Shivaee et al study are consistent (25). The results also showed that from 95 isolates of K. pneumoniae, 24.2% were resistant to ciprofloxacin; Which was almost consistent with the studies conducted by Norouzi et al in 2014 in Kerman and a study by Pourali Sheshblouki et al in 2016 (24, 26). But the results were not consistent with Molana et al's study in 2010 and Mohammad Alipore et al's study in 2013 in Tabriz (4, 27). This can be due to the different distribution of infections in different provinces, genetic diversity, differences in the location of isolates, the number of isolates, the type of samples collected, the type of discs used, or personnel errors could be the reasons for the differences in various studies. Various studies have suggested a variety of mutations, including mutations in codons 80 and 84 in the parC gene, which include S80I and E84K, and major causes of resistance to ciprofloxacin. The results of the present study showed that all 23 studied isolates in the parC gene had mutations at one or more points, and a comparison of the nucleotide sequence of the parC gene with the parC gene of the standard K. pneumoniae ATCC13883 showed that the mutation changed the amino acid sequence at 20 isolates from 23 being researched isolates; Of these, 16 mutations were observed in codon No. 80, which resulted in the conversion of serine (S) to isoleucine (I), and in a sample in codon No. 84 in which amino acid E (glutamic acid) was mixed with the amino acid K (lysine) was displaced, 3 mutations caused a change in the framework and a wide change in the sequence of the enzyme topoisomerase IV, and in three samples the mutation did not change the amino acid sequence; Therefore, the most common mutation was codon No. 80, which was caused by isoleucine mutation instead of serine. However, the conversion of glutamic acid to lysine amino acids, alanine, and glycine in various studies, including the study of Minarini et al, in Brazil between 2002 and 2005 (27), Brisse et al, in the Netherlands in 2001 (29), Deguchi et al, 1996 in Japan (3) was observed. In the study of Brisse et al, several mutations, including S80I and E84K, were observed in the isolates of K. pneumoniae (29). In a 2015 study by Piekarska et al, both mutations were detected in fluoroquinolone-resistant isolates (30). In the Minarini et al study, S80I mutations were identified in six of the 21 quinolone-resistant isolates obtained, but no E84K mutation was reported (28). In a 2003 study of Chen et al, no mutations in the parC gene were found among the 34 resistant strains of K.pneumoniae studied in Taiwan, but it was found that some resistant strains had mutations in gyrA (32). In the study of Mohammad Alipore et al, in 2015, on 10 isolates of Citrobola pneumoniae resistant to ciprofloxacin, six isolates had mutations in the gyrA gene (27). In the study of Park et al in 2017, of the 42 K. pneumoniae-resistant Ciprofloxacin isolates, 36 isolates had at least one mutation in one of the gyrA, gyrB, and parC genes (31). In various studies such as the study of Brisse and Piekarska, E84K mutations were reported in some fluoroquinolone-resistant isolates (30, 29). In the Norouzi et al study, 6 out of 111 K. pneumoniae isolates had mutations in the parC gene that had only two common S80I mutations but no E84K mutations (26). The E84K mutation is one of the most common mutations in parC that has been reported in fluoroquinolone-resistant isolates. The occurrence of this mutation in a ciprofloxacin-resistant K. pneumoniae isolates in this study indicates its importance in drug resistance. Most of the results studied and also the results of this study show that point mutation in codons 80 and 84 of the parC gene is present in most samples resistant to ciprofloxacin, and in the meantime, point mutations in codon 80 are more important it has.

Conclusion

Drug resistance is still increasing in K. pneumoniae. Considering that ciprofloxacin is one of the effective antibiotics in the treatment of nosocomial infections caused by K. pneumoniae, the presence of 23 ciprofloxacin-resistant isolates from 95 isolates as well as resistance to high doses of ciprofloxacin antidepressants in this study increased the risk of silent resistance. Also, the occurrence of point mutations in the parC gene in all ciprofloxacin-resistant isolates indicates the importance of these mutations in the resistance to ciprofloxacin resistance in this bacterium.
Acknowledgment

This research article is taken from a Master’s Degree in Microbiology.

The authors of this article are grateful to the Honorable President of Molecular Laboratory and Expert of Microbiology Research Laboratory, Islamic Azad University, Karaj Branch.

Conflict of Interest

Authors declared no conflict of interests.
پارسی مقاومت به فلوروکوپنولون ها و ارتباط آن با موتاسیون در زن parC در جدایی های کلینیکی کلسیپلا پنومونیه

مقدمه

گروه میکروب شناسی، دانشکده علوم، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

1. گروه میکروب شناسی، دانشکده علوم، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
2. مرکز تحقیقات زیست شناسی مولکولی، استیتوی زیست‌شناسی و مسوم‌شناسی، دانشگاه علوم پزشکی شهید بهشتی، ایران
3. گروه میکروب شناسی، دانشکده علوم، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

چکیده

زمینه و اهداف: کلسیپلا پنومونیه به دلیل ایجاد علائم و یکی از بیماری‌های مقاومت آنتی‌بیوتیک می‌باشد. مقاومت به فلوروکوپنولون‌ها از قبیل آنتی‌بیوتیک‌های سایر میکرو‌مزودی‌ها در زن parC باشند. هدف از این مطالعه بررسی اگو پارسی مقاومت به فلوروکوپنولون‌ها ارتباط آن با موتاسیون در زن parC می‌باشد.

مواد و روش: نتایج این مطالعه توصیفی-تخمینی تعداد 95 کلسیپلا پنومونیه پس از تدریج کل‌کلیک و مولکولی، انزوی، مارک‌سیسته‌ی مافیا، مدل گالسی، بررسی و جدایی‌های parC با سیرو‌فلوکسانسان‌های منابع بیماری در parC می‌باشد. نتایج این مطالعه نشان داده که در سایت parC از طریق تکثیر این دسته به روش PCR از طریق نرم‌افزار آنالیز، ردای در نتایج ایجاد شده به نمود. در نتایج ایجاد انتقال CRISPR به نتیجه‌گیری زناد نیاز به اجرای آزمونات پژوهشی به نمود.

مقدمة

کلسیپلا پنومونیه، مهم‌ترین گونه جنس کلسیپلا و از خانواده بزرگ انتراپیکره‌ای است. این باکتری، یک پاتوژن فرض‌طلب و مهم بسیاری از بیماری‌های عامل عفونت‌های مجاری آدریو، از آرتریت ورزان، منشیت، عفونت زخم‌ها، پنومونی، بیماری‌های باکتری‌ای، سیتیس و عفونت‌های پلاستیکی در حال حاضر به عنوان هست کلسیپلا پنومونیه همچنین پاتوژن باکتری‌ای کلسیپلا مورد توجه باشد. این باکتری از جمله است (1). بیشتر ایزوله‌های کلسیپلا پنومونیه مقاوم به چندین دارو
روش پژوهش

جمع‌آوری، جدایسازی و تشخیص نمونه‌ها:

این مطالعه در سال 1397 و بهصورت توصیفی-تحلیلی بر روی نمونه‌های کلیینیکی جمع‌آوری شده از بیماران نوروزی در بخش‌های مرگ و میر، جراحی، مغز و اعصاب و نوروزی از بیمارستان‌های بیمار عمومی ایران، از بیماران مراجعه‌کننده به آزمایش‌گاه موسسه توان انجام شد. تمام ابزارهای مورد استفاده از بررسی‌های موردنظیر با پروتئین‌های PCR و 16S rRNA منطقه‌بندی شدند. سپس از مکان‌های مختلف، نمونه‌های کلیینیکی و سایر نمونه‌های موجود در بخش‌های مختلف بیمارستان‌ها در تعداد ممکن جمع‌آوری شدند. موانع اصلی و غیر اصلی استفاده از این چنین نمونه‌گیری شامل عوامل مختلفی بود که در جدول‌های 1 و 2 نشان داده شدند. لازم است ذکر شود که هر گونه موانع و عوامل آزمایشگاهی در این مطالعه به‌کار رفته در طراحی و اجرای آزمایشات به‌طور کامل در محدوده‌های مورد نیاز قرار گرفته است.

در نهایت، گونه‌های بالینی بین بررسی‌های PCR و 16S rRNA بالا گرفته شدند. همچنین، نمونه‌های کلیینیکی و سایر نمونه‌های موجود در بخش‌های مختلف بیمارستان‌ها در تعداد ممکن جمع‌آوری شدند. موانع اصلی و غیر اصلی استفاده از این چنین نمونه‌گیری شامل عوامل مختلفی بود که در جدول‌های 1 و 2 نشان داده شدند. لازم است ذکر شود که هر گونه موانع و عوامل آزمایشگاهی در این مطالعه به‌کار رفته در طراحی و اجرای آزمایشات به‌طور کامل در محدوده‌های مورد نیاز قرار گرفته است.
زمان تولید ماکولولی از DNA 16s

جدول 1. برنامه اجرای PCR برای زن DNA 16s

Gene	Seq	Product size	Reference
parC	F 5′-CACGCTCGGATACCTCA TGCAC-3′ R 5′-CCGAGAAGTGGTGAC-3′	440 bp	(15)
16S rRNA	F 5′-ATTGGAAGAGGTCAGGA CCAGT-3′ R 5′-TTCCTCTGAAGTTTCTTGTTCC-3′	130 bp	(16)

آزمون آنتی‌بیوتیک

بعد از تعیین هویت نمونه‌های کلیسیال تیمکری، بررسی میزان مقاوت چندیها به آنتی‌بیوتیک‌ها، با انجام آزمون آنتی‌بیوتیک و با استفاده از دیسک‌سایزر آنتی‌بیوتیک: آمپیکلین 30 میکروگرم، امپیکلین 10 میکروگرم، بیپماسول 100 میکروگرم، امپیکلین، سلفاماتوکسول 10 میکروگرم، سلفاماتوکسول 100 میکروگرم، سلفاماتوکسول 100 میکروگرم، تودومایسین 10 میکروگرم، تودومایسین 10 میکروگرم، نتراسایکلین 30 میکروگرم، نتراسایکلین 10 میکروگرم، نتراسایکلین 10 میکروگرم، و نتراسایکلین 10 میکروگرم.
عنوان: استفاده و تعریف parC در کلسترول

در ژن parC میکروب‌های سپیدیورفلوکسیسین در حساسیت رهگیری نشون داده‌اند. این ژن در سایت ATCC 13883 و ATCC 27853 میکروب‌های سپیدیورفلوکسیسین استفاده شد.

سنجش میکروب‌های سپیدیورفلوکسیسین با استفاده از روش MIC:

میکروبرای دیلواشون

برای این منظور انتهای رقابتی از سپیدیورفلوکسیسین (مرک آلمن)، در محیط مول هیپتن برات (مرک آلمن) خالص، تهیه گردید. سپس از کشت خالص و ۴۲ ساعت باکتری‌های رشد پایه در محیط نتوانی آگر اسپرسینو میکروبی با کد مول مک فارلند (حاوی ۱۰۰x۱۵۱ باکتری در هر میلی‌لیتر) در لوله حاوی سرم فیزولوژی استریل تهیه شد. سپس مقدار ۲۹۷ µl از محیط مول هیپتن برات حاوی رقابتی مخفف از سپیدیورفلوکسیسین به هر یک از چاه‌های میکروبیت بُنیت اضافه شد و به هریک از چاهک حاوی رقت‌ها، میکروبرای مختلف سپیدیورفلوکسیسین، مقدار ۳ µl از سپرسینو میکروبی با کد مول مک فارلند اضافه نموده و یک چاهک به عنوان کنترل مثبت (محیط کشت به همراه باکتری مورد آزمایش) و یک چاهک هم به عنوان کنترل منفی (فقط حاوی محیط کشت خالص) در نظر گرفته شد. سپس میکروبیت‌ها به مدت ۱۸ یا ۲۴ ساعت در دمای ۳۷ درجه سلسیوس آبی‌گردن شدند.

در نهایت کمترین غلفتی از آنتی‌بیوتیک که فاقد کود کَب قابل مشاهده بود، به عنوان میکروب فلوکسیسین تعبیه گردید.

آزمون تعبیه وجود آنزیم‌های بالاکتانازه‌ها و سیلوطی (ESBLs)

آزمون گیانگاری أولیه برای شناسایی احتمال تولید ESBLs در جادو‌های کلیسیلا پنومئین به استفاده از روش دیسک ترکیبی و با آنتی‌بیوتیک‌های أمی‌سیلین و آمی‌سیلیپین به همراه

پارامتر	حساسیت	زمان
حمایت	از	نورسای

در جدول ۳، برای اجرای پرایکسیل ژن PCR در ژن parC
پاندروگریزت (PDR) و Multi-drug Resistant (MDR) ها را مقاوم به سیپروفلولاسین محسوب می‌کنند. این نتایج نشان می‌دهد که در صورت مقایسه آزمون‌های PDR و MDR با هم، نتایج آن‌ها مشابه است. در عین حال، این نتایج نشان می‌دهد که PDR و MDR، بیشترین میزان مقاومت را به همراه دارند و باید به‌عنوان ژنتیک‌های مقاوم به‌شمار شوند.

نتایج حاصل از آزمایش‌های کلبدولاری

نتایج کلبدولاری ها نشان می‌دهد که ۹۸٪ از آزمایش‌های کلبدولاری مقاوم به سیپروفلولاسین محسوب می‌شوند. این نتایج نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)

نتایج حاصل از آزمایش‌های کلبدولاری (XDR) نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)

نتایج حاصل از آزمایش‌های کلبدولاری (XDR) نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)

نتایج حاصل از آزمایش‌های کلبدولاری (XDR) نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)

نتایج حاصل از آزمایش‌های کلبدولاری (XDR) نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)

نتایج حاصل از آزمایش‌های کلبدولاری (XDR) نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)

نتایج حاصل از آزمایش‌های کلبدولاری (XDR) نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)

نتایج حاصل از آزمایش‌های کلبدولاری (XDR) نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)

نتایج حاصل از آزمایش‌های کلبدولاری (XDR) نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)

نتایج حاصل از آزمایش‌های کلبدولاری (XDR) نشان می‌دهد که در صورت استفاده از ژنتیک‌های مقاوم به سیپروفلولاسین، نتایج آن‌ها با نتایج آزمایش‌های PDR و MDR متفاوت خواهد بود.

نتایج حاصل از آزمایش‌های کلبدولاری (XDR)
جدول ۴ نتایج آنتی‌بیوگرام ارولا های بررسی‌شده در این مطالعه

آنتی‌بیوگرام	حد وسط	حساس	آنتی‌بیوگرام				
n (%)	n (%)	n (%)	n (%)				
۲۷ (۱۸/۳۳)	۲ (۱/۱۰)	۴۷ (۱/۸۹)	سپیروفل کاسین ۵۰ میکروگرم	نورامایسین ۱۰ میکروگرم	کلرامفیکل ۵۰ میکروگرم	سپیروفل کاسین ۵ میکروگرم	نالیدیکسیکاسید ۳۰ میکروگرم
۱۵ (۹/۷۸)	۱ (۰/۵۸)	۷۸ (۰/۴۷)	پیرایشیلین ۱۰۰ میکروگرم				
۱۴ (۸/۴۳)	۲ (۰/۱۱)	۶۷ (۴/۴۴)	۵۱۲ - ۲۵/۰۰				
۱۳ (۸/۴۹)	۳ (۰/۱۸)	۹۶ (۵/۳۶)	۲۵/۰۰ - ۵/۰۰				
۲۳ (۱۶/۸۲)	۵ (۳/۲۳)	۴۳ (۲/۶۲)	۱۰۲۴ - ۵۱۲				
۱۹ (۱۳/۳۹)	۱ (۰/۶)	۷۲ (۴/۵۹)	۵۱۲ - ۲۵/۰۰				
۴۴ (۳۰/۴۵)	۱ (۰/۶)	۹۶ (۵/۳۶)	۱۰۲۴ - ۵۱۲				
۴۴ (۳۰/۴۵)	۱ (۰/۶)	۹۶ (۵/۳۶)	۱۰۲۴ - ۵۱۲				

جدول ۵ میزان MIC ۵۰ میکروگرم/میلی‌لیتر

MIC (µg/ml)	آنتی‌بیوگرام
تعداد آنتی‌بیوگرام ۵۰ میکروگرم/میلی‌لیتر	
میزان MIC (µg/ml)	
۱۰۲۴	۵۱۲
سپیروفل کاسین	
تعداد آنتی‌بیوگرام ها	

شکل ۲ نتایج اکتیو فورز محصول PCR برای تکثیر زن parC.

شکل ۳ تکثیر زن parC در کلیسیلا نیمی نمونه PCR ۴۴۰ bp.
نتایج حاصل از تعیین توالی \(parC \)

نتایج نشان داد که، در توالی انترنی توبوپرمز IV، نوع ژن \(parC \) موجود در موجب ژن و جایگزینی آن در شرایط مختلف می‌باشد. همچنین، در مطالعه انجام شده، تغییر توالی \(parC \) در ژن \(topo IV \) مشاهده شده است.

DNA topoisomerase IV subunit A

Query	Sbjct
11	68
69	128
129	188
189	248
309	310

NCBI

تشکل 3. وجوه موتاژین در قطعه از ژن \(parC \) که در مطالعه انجام شده، به طور مطلوبی ایجاد شده است.

نتایج نشان داد که، در توالی انترنی توبوپرمز IV، نوع ژن \(parC \) موجود در موجب ژن و جایگزینی آن در شرایط مختلف می‌باشد. همچنین، در مطالعه انجام شده، تغییر توالی \(parC \) در ژن \(topo IV \) مشاهده شده است.
مشخصات کاربردی و همکاران | مقاومت به فلوکوکینولونهای و موتاسیون در زن parC در کلیسلا پنومیه

شکل ۴. مربوط به نمودار مربوط به الکتروگرام‌ها که از نمونه‌های تعیین توالی شده.

شکل ۵. مربوط به مقایسه توالی آمیتاپیدی زن تکثیرشده با نمونه استاندارد و مشخص نمودن محل تغییر آمیتاپیدی که منجر به جایگزینی ابرولوسین بجای سرین شده را نشان می‌دهد.

۲۸۴
کلیسلا عامل طیف وسیعی از بیماری‌ها شامل باکتری‌های پنیونه و عفونت‌های ادراری بوده و یکی از مهم‌ترین باکتری‌های است که در جوامع ایزوله شده و گسترده سویه‌های با مقاومت دارویی است هستند. فلوریپنیولون‌ها، هدستی از آنتی‌بیوتیک‌های وسیع‌اکثر هستند که به دلیل جدی خودکا بالا کاربرد گسترشده در بیماری‌های ادراری و باعث ایجاد مقاومت در بیماری‌های ادراری و سویه‌های کلیسلا می‌شود. در این مطالعه، نتایج از آنتی‌بیوتیک‌های شناسایی و یکی از نحوه‌های مقاومت‌پذیری باشند. نتایج این تحقیق نشان داد که از این آنتی‌بیوتیک‌ها نوروزی و رزیگنش در موارد مقاومت‌پذیری نشان دادند. نتایج این تحقیق نشان داد که از این آنتی‌بیوتیک‌ها نوروزی و رزیگنش در موارد مقاومت‌پذیری نشان دادند. نتایج این تحقیق نشان داد که از این آنتی‌بیوتیک‌ها نوروزی و رزیگنش در موارد مقاومت‌پذیری نشان دادند.
مقدمه

ترکیبی در ایجاد مقاومت در ایین فنوتوکسینها، نقاطه‌ای در موضوع جمع‌آوری جهانی ایجاد می‌کند. این اتنوزیمها ویژه این موضوع را می‌تواند در حال افزایش است. با توجه به اینکه سپروفلدیپاسیون جزء این پیوسته مدت در درمان این فنوتوکسینها به‌نتیجه‌ای مؤثر در درمان، جدایی مقاوم به سپروفلدیپاسیون 95 درصد این مطالعه خطر کرده‌است.

نتیجه‌گیری

مقاومت دوگانه همچنان در حال افزایش است. با توجه به اینکه سپروفلدیپاسیون جزء این پیوسته مدت در درمان این فنوتوکسینها به‌نتیجه‌ای مؤثر در درمان، جدایی مقاوم به سپروفلدیپاسیون 95 درصد این مطالعه خطر کرده‌است.

مراجع

1. Minarini et al. اثرات قبلش بر کاهش سپروفلدیپاسیون در ایین فنوتوکسینها. در JAMA 2015، 310 (24)، 2668.
2. Brisse et al. اثرات قبلش بر کاهش سپروفلدیپاسیون در ایین فنوتوکسینها. در JAMA 2015، 310 (24)، 2668.
3. Deguchi et al. اثرات قبلش بر کاهش سپروفلدیپاسیون در ایین فنوتوکسینها. در JAMA 2015، 310 (24)، 2668.
4. Norouzi et al. اثرات قبلش بر کاهش سپروفلدیپاسیون در ایین فنوتوکسینها. در JAMA 2015، 310 (24)، 2668.
محترم آزمایشگاه تحقیقاتی میکروب‌شناسی دانشگاه آزاد اسلامی واحد کرج نهایت تشکر و قدردانی رادراند.

توجه در منافع
در انجام مطالعه حاضر، نویسنده‌گان هیچ‌گونه تضاد منافع نداشتند.

منابع مالی
منابع مالی این مطالعه توسط نویسنده‌گان تامین شده است.

Reference

1. Alves MS, Dias RC, De Castro AC, Riley LW, Moreira BM. Identification of clinical isolates of indole-positive and indole-negative Klebsiella spp. J Clin Microbiol. 2006 October;44(10):3646-3640. [DOI:10.1128/JCM.00940-06] [PMID] [PMCID]

2. Babypadmini S, Appalaraju B. Extended spectrum-lactamases in urinary isolates of Escherichia coli and Klebsiella pneumoniae prevalence and susceptibility pattern in a tertiary care hospital. Indian Journal of Medical Microbiology. 2004;22(3):172.

3. Deguchi T, Fukuoka A, Yasuda M, Nakano M, Ozeki S, Kanematsu E, et al. Alterations in the gyrA subunit of DNA gyrase and the parC subunit of topoisomerase IV in quinolone-resistant clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1997;41(3):699. [DOI:10.1128/AAC.41.3.699] [PMID] [PMCID]

4. Molana Z, Ferdosi Shahandashi E, Gharavi S, Shafii M, Norkhomami S, Ahangarkani F, et al. Molecular investigation of class I integron in Klebsiella pneumoniae isolated from intensive care unit (Shahid Beheshti Hospital of Babol 2010). J Babol Univ Med Sci 2011;13(6):7-13.

5. Ferragut C, Izard D, Gavini F, Kersters K, De Ley J, Leclerc H. Klebsiella trevisanii: a new species from water and soil. Int J Syst Bacteriol. 1983; 33(2):133-42. [DOI:10.1099/00207713-33-2-133]

6. Izard D, Ferragut C, Gavini F, Kersters K, De Ley J, Leclerc H. Klebsiella terrigena, a new species from soil and water. Int J Syst Bacteriol. 1981; 31(2):116-27. [DOI:10.1099/00207713-31-2-116]

7. Drancourt M, Bollet C, Carta A, Rousselier P. Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with 201 description of R. orinthinolytica comb. nov., R. terrigena comb. nov. and R. planticola comb. nov. Int J Syst Evol Microbiol. 2001;51(3): 925-32. [DOI:10.1099/00207713-51-3-925] [PMID]

8. Ko WC, Paterson DL, Sagnimieni AJ, Hansen DS, Von Gottberg A, Mohapatra S, et al. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis. 2002;8(2):160-6. [DOI:10.3201/eid0802.010025] [PMID] [PMCID]

9. Rahmati Roodsari R, Fallah F, Taherpour A, Hakemi M, Hashemi A. Carbapenem-Resistant Bacteria and Laboratory Detection Methods. Archives of Pediatric Infectiou Diseases. 2013; 1(4): 191-188. [DOI:10.5812/pedinfect.5193]

10. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008; 21(3): 538-582. [DOI:10.1128/CMR.00058-07] [PMID] [PMCID]

11. Perez F, Hujer AM, Hujer KM, Dacker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007; 51(10): 3471-84. [DOI:10.1128/AAC.01464-06] [PMID] [PMCID]

12. Chien ST, Lin CH, Hsueh JC, Lip L, Hsu CH, Chang SH, et al. Mutation of gyrA and parC in clinical isolates of Acinetobacter baumannii and its relationship with antimicrobial drugs resistance in Taiwan. Annals of Microbiology. 2009; 59(2): 369-372. [DOI:10.1007/BF03178341]

13. Hamouda A, Amyes SG. Novel gyrA and parC point mutations in two strains of Acinetobacter baumannii resistant to ciprofloxacin. J Antibiotic Chemother. 2004; 54(3): 695-6. [DOI:10.1093/jac/dkh368] [PMID]
14. Chiu CH, Lee HY, Tseng LY, Chen CL, Chia JH, Su LH, et al. Mechanisms of resistance to ciprofloxacin, ampicillin/sulbactam and imipenem in Acinetobacter baumannii clinical isolates in Taiwan. Int J Antimicrob Agents. 2010; 35(4): 382-6. [DOI:10.1016/j.ijantimicag.2009.12.009] [PMID]

15. Hujer K, Hujer A, Hulten E, Bajaksouzian S, Adams J, Donskey C, et al. "Analysis of Antibiotic Resistance Genes in Multidrug-Resistant Acinetobacter sp. Isolates from Military and Civilian Patients treated at the Walter Reed Army Medical Center." Antimicrob. Agents Chemother. 2006; 50(12): 4114-23. [DOI:10.1128/AAC.00778-06] [PMID]

16. Mohammad Alipour Z, Asadpour L, Ranji N. Fluoroquinolone resistance and mutation in gyrA gene in clinical isolates of Klebsiella pneumoniae. Iran J Med Microbiol 2016;10(5): 31-7.

17. Fallah F, Taherpour A, Hakemi Vala MH, Hashemi A. Global spread of New Delhi Metallo - beta - lactamase -1 (NDM -1) Archives of Clinical Infectious Diseases. 2012; 6(4):177-181.

18. Chander Y, Ramakrishman M, Jindal N, Hanson K, Goyal SM. Differentiation of Klebsiella pneumoniae and K.oxytoca by multiplex polymerase chain reaction. International Journal of Applied Research in Veterinary Medicine. 2011;9(2):138.

19. Conejo MC, Dominguez MC, Lopez-Cerero L, Serrano L, Rodriguez-Baño J, Pascual A. Isolation of multidrug-resistant Klebsiella oxytoca carrying bla IMP-8, associated with OXY hyperproduction, in the intensive care unit of a community hospital in Spain. Journal of antimicrobial chemotherapy. 2010;3-1071: 65(5). [DOI:10.1093/jac/dkq063] [PMID]

20. Mahmood A, Al Hakawati MI. Non-beta-lactam Antimicrobials versus Extended Spectrum Beta-lactamase Producing Gram Negative Bacteria: In vitro Susceptibility Study. Infect Dis Soc of Pak. 2011;43(5): 507-11.

21. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences. 2015;112(27): E3574-E81. [DOI:10.1073/pnas.1501049112] [PMID]

22. Ahanjan M, Naderi F, Solimannisii A. Prevalence of Beta-lactamases genes and antibiotic resistance pattern of Klebsiella pneumoniae isolated from teaching hospitals, Sari, Iran, 2014. J Mazandaran Univ Med Sci 2017; 27 (149):79-87 (Persian).

23. Hashemi A, Fallah F, Taherpour A, Goudarzi H, Erfanianesh S, Taki E. Evaluation of genetic pattern and determination of oqxA gene expression levels among clinical isolates of Klebsiella pneumoniae strains. Journal of Mazandaran University of Medical Sciences. 2014;24(119):48-61.

24. Pourali Sheshbouki G, Mardaneh J, Hosseinzadeh Z. Klebsiella pneumoniae Infections in Hospitalized Patients: Characterization of Antibiotic Cross-resistance and Detection of Cefepime Susceptible-dose Dependent (SDD) Strains. J Fasa Univ Med Sci 2016;6(1): 52-9.

25. Shivaei A, Meskini M, Shabhazi Sh, Hasani D, Masjedian Jazi F, Zargar M. Prevalence of f1mA, f1mH, mrrA, ecpA, and mrrD virulence genes affecting biofilm formation in clinical isolates of K. pneumonia. Feyz, Journal of Kashan University of Medical Sciences. 2019; 23, (2): 168-176.

26. Norouzi A, Azzizi O, Hosseini H, Shakibaie S, Shakibaie Mr. Amino acid substitution mutations analysis of gyrA and parC genes in clonal lineage of Klebsiella pneumoniae conferring high-level quinolone resistance. J Med Microbiol Infectious Diseases 2014;2(3): 109-17.

27. Mohammad Alipor AH, Shams F, Aghazadeh M. Assessment of episometer test over 3 molecular detection for quinolone resistance in Escherichia coli and Klebsiella pneumoniae clinical isolates: A predictable schedaule on routine basis. Life Sci J 2014;11(12s): 1027-31.

28. Minarini LA, Darini ALC. Mutations in the quinolone resistance-determining regions of gyrA and parC in Enterobacteriaceae isolates from Brazil. Braz J Microbiol. 2012 Oct;43(4):1309-14. [DOI:10.1590/S1517-838220120000400010] [PMID]

29. Brisse S, Verhoef J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 2001;51(Pt 3):915-24. [DOI:10.1099/00207713-51-3-915] [PMID]

30. Piekarska K, Wolkowicz T, Zacharczuk K, Rzeckowska M, Chrost A, Berae E, et al. Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland. Int J Antimicrob Agents 2015;45(3):238-43. [DOI:10.1016/j.ijantimicag.2014.09.019] [PMID]

31. Park KS, Yang HS, Nam YS, Lee HJ. Mutations in DNA Gyrase and Topoisomerase IV in Ciprofloxacin-Non-susceptible Extended-Spectrum -
Lactamase-Producing *Escherichia coli* and *Klebsiella pneumoniae*. Clin lab 2017;63(3): 535-41. [DOI:10.7754/Clin.Lab.2016.160924] [PMID]

32. Chen FJ, Lauderdale TL, Ho M, Lo HJ. The roles of mutations in gyrA, *parC*, and ompK35 in fluoroquinolone resistance in *Klebsiella pneumoniae*. Microb Drug Resist. 2003;9(3):265-71. [DOI:10.1089/107662903322286472] [PMID]