In silico identification of potential key regulatory factors in smoking-induced lung cancer

Salem A. El-aarag¹, Amal Mahmoud¹, Medhat H. Hashem³, Hatem Abd Elkader², Alaa E. Hemeida¹ and Mahmoud ElHefnawi⁴,⁵*

Abstract

Background: Lung cancer is a leading cause of cancer-related death worldwide and is the most commonly diagnosed cancer. Like other cancers, it is a complex and highly heterogeneous disease involving multiple signaling pathways. Identifying potential therapeutic targets is critical for the development of effective treatment strategies.

Methods: We used a systems biology approach to identify potential key regulatory factors in smoking-induced lung cancer. We first identified genes that were differentially expressed between smokers with normal lungs and those with cancerous lungs, then integrated these differentially expressed genes (DEGs) with data from a protein-protein interaction database to build a network model with functional modules for pathway analysis. We also carried out a gene set enrichment analysis of DEG lists using the Kinase Enrichment Analysis (KEA), Protein-Protein Interaction (PPI) hubs, and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases.

Results: Twelve transcription factors were identified as having potential significance in lung cancer (CREB1, NUCKS1, HOXB4, MYCN, MYC, PHF8, TRIM28, WT1, CUX1, CRX, GABP, and TCF3); three of these (CRX, GABP, and TCF) have not been previously implicated in lung carcinogenesis. In addition, 11 kinases were found to be potentially related to lung cancer (MAPK1, IGF1R, RPS6KA1, ATR, MAPK14, MAPK3, MAPK4, MAPK8, PRKCZ, and INSR, and PRKAA1). However, PRKAA1 is reported here for the first time. MEPCE, CDK1, PRKCA, COP5S, GSK3B, BRCA1, EP300, and PIN1 were identified as potential hubs in lung cancer-associated signaling. In addition, we found 18 pathways that were potentially related to lung carcinogenesis, of which 12 (mitogen-activated protein kinase, gonadotropin-releasing hormone, Toll-like receptor, ErbB, and insulin signaling; purine and ether lipid metabolism; adherens junctions; regulation of autophagy; snare interactions in vesicular transport; and cell cycle) have been previously identified.

Conclusion: Our systems-based approach identified potential key molecules in lung carcinogenesis and provides a basis for investigations of tumor development as well as novel drug targets for lung cancer treatment.

Keywords: Systems biology, Lung cancer, Network modeling and analysis, Enrichment analysis, Drug targets

* Correspondence: mahef@aucegypt.edu

¹Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Center, Cairo, Egypt
²Center of Informatics, Nile university, Sheikh Zayed City, Giza, Egypt

Full list of author information is available at the end of the article

© The Author(s), 2017. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Lung cancer is a complex and highly heterogeneous disease involving multiple signaling pathways [1]. It is the leading cause of cancer mortality in men and the second leading cause in women worldwide [2]. Small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC) are the main types of lung cancer. The latter represents 80% of lung cancer cases and can be subclassified as squamous cell carcinoma, adenocarcinoma, or large cell carcinoma [3, 4]. Smoking is a major contributor to lung cancer development, being responsible for about 90% of cases [4]. Cigarette smoke induces inflammation and causes oxidative stress and genetic and epigenetic abnormalities that alter gene expression throughout the respiratory tract [5, 6]. Differences in gene expression in large airway epithelial cells between non-smokers and smokers have been analyzed by DNA microarray to determine the effect of smoking on the transcriptome [7]. Tobacco smoke was found to cause lung cancer by inducing of I\(\kappa\)B kinase \(\beta\)- and c-Jun N-terminal kinase 1-dependent inflammation [8].

Spira et al. [9] compared gene expression data from smokers with \((n = 60)\) and without \((n = 69)\) lung cancer. Using a weighted-voting algorithm, these authors identified an 80-biomarker probe set that distinguished these two populations with an accuracy of 83% when validated using an independent test set \((n = 52)\). They selected the 40 most frequently upregulated and downregulated probe sets by internal cross-validation [9]. However, this method—which uses only gene expression profiles—does not provide an integrated view. To address this issue, another study established a set of 40 biomarkers with potentially important roles in lung carcinogenesis using a network-based approach that integrated microarray gene expression profiles and information on protein-protein interactions (PPIs) [10]. Network-based approaches in the study of human disease can elucidate the genes and pathways involved as well as biomarkers and potential drug targets [11]. Network reconstruction and gene-set enrichment analysis (GSEA) have been used to mine masses of complex data obtained from genomics, proteomics, phosphoproteomics, and transcriptomics studies and organize them into a coherent global framework [12].

In this study, gene expression data from smokers with lung cancer and those without lung cancer were analyzed using a systems biology approach that included network-based and enrichment analysis of differentially
expressed genes (DEGs) between normal and cancerous lung to identify potential key factors contributing to lung cancer progression.

Methods

Our strategy for identifying potential key regulatory factors in smoking-induced lung cancer is shown in Fig. 1. We first identified genes that were differentially expressed between smokers with normal lungs and those with cancerous lungs. We then integrated DEG data with information obtained from a PPI database to build a network model, which we used to identify functional modules and relevant signaling pathways. Finally, we carried out a GSEA of DEGs using ChIP-X Enrichment Analysis (ChEA), Kinase Enrichment Analysis (KEA), Protein-Protein Interaction (PPI) hubs, and KEGG (Kyoto Encyclopedia of Genes and Genomes) gene-set libraries.

Dataset

Gene expression data was obtained from Gene Expression Omnibus database (Dataset Record GDS2771). Spira et al. [9] used Affymetrix HG-U133A microarrays to perform gene-expression profiling of large airway epithelial cells obtained by bronchoscopy of current and former smokers. Each individual was followed after bronchoscopy until a final diagnosis of either presence or absence of lung cancer [9]. Data included in our analysis were from smokers with lung cancer (n = 97) and those with normal lungs (n = 90).

Identifying DEGs

GEO2R and Soft Parser.py analysis tools were used to identify DEGs. GEO2R uses Linear Models for Microarray Analysis R packages for background correction and normalization of gene expression data. Benjamini-Hochberg false discovery rate algorithm was used to correct for multiple testing in GEO2R [13].

Integration of DEGs with PPI database and pathway analysis using atBioNet

atBioNet identifies statistically significant functional modules using a fast network-clustering algorithm called Structural Clustering Algorithm for Networks (SCAN). atBioNet interface is connected to KEGG pathway information to allow assessment of biological functions of the modules through enrichment analysis. Each module has a pathway summary ranked...
according to Fisher’s exact test P value; The pathway with the lowest P value is considered as the most significant [14]. Only large DEG lists such as the combined list, GEO2R lists (top 500, 1000, and 1500 genes) were used as input lists for atBioNet, which was adjusted using the most stringent options that were not appropriate for smaller DEG lists. Of the three options for node addition, we selected the most stringent [“add only nodes directly connected to at least two input nodes (more stringent)”]. From two human PPI databases, we selected a smaller and more robust database (K2 Human Subset Database) obtained by the integration of seven original databases using K-votes approach [14].

GSEA using Enrichr

Enrichr includes 35 gene-set libraries, some of which are unique to this web server [15]. We used ChEA, KEA, PPI hubs, and KEGG gene-set libraries in this study. Enrichment was computed with the z-score method which outperformed the standard Fisher’s exact test and a combined scoring method that computed a combined P value from Fisher’s exact test and the z-score of the deviation from the expected rank [15]. As the enrichment analysis is sensitive to input genes of variable lengths, different input list sizes (from nine lists) were included to ensure that our conclusion was reliable as we concentrated on enriched items with higher overlap in these lists. Up- and downregulated gene lists, the combined list, GEO2R lists of different lengths (top 100, 250, 500, 1000, and 1500 genes) and the spira’s panel of an 80-gene biomarker [9] were used as separate input lists for Enrichr. The Spira’s panel of an 80-gene biomarker [9] was included as an independent list to enrich our study with the results of the enrichment analysis for this valuable list.

Results

Pathway analysis of DEG lists with PPI databases

We identified DEGs using GEO2R and Python script analysis tools. With GEO2R, the top DEGs were divided into different lists according to length (top 100, 250, 500, 1000, and 1500 genes). With the Python script tool, DEG lists were divided into lists of genes that were up- and downregulated as well as a list combining both of these groups. The combined list and GEO2R output lists of different lengths (500, 1000, and 1500 genes) were used as input lists for atBioNet. Top-ranked pathways for the most significant functional modules generated for the combined list and GEO2R output lists of different lengths (500, 1000, and 1500 genes) were used as input lists for atBioNet. Top-ranked pathways for the most significant functional modules generated for

![Fig. 3 Transcription factors enrichment analysis using ChEA gene-set library. The transcription factors CREB1, NUCKS1, HOXB4, and MYCN frequently appeared as top-ranked transcription factors. CRX, TCF3, and GABP were predicted as novel putative transcription factors in lung cancer](image)
Enrichment Analysis

Up- and downregulated gene lists, the combined list, GEO2R lists of different lengths (top 100, 250, 500, 1000, and 1500 genes), and Spiró’s 80-gene panel [9] were used as separate input lists for Enrichr. Top-ranked enriched data generated for each list were ranked according to the frequency percent of their appearance in the top ten (Figs. 3, 4, 5 and 6). The transcription factors CREB1, NUCKS1, HOXB4, and MYCN frequently appeared as top-ranked transcription factors. CRX, TCF3, and GABP were predicted as novel putative transcription factors in lung cancer (Fig. 3). Enrichment analysis of kinases showed that MAPK1, IGFIR, and RPS6KA1 were the top-ranked kinases with frequency percentages of about 80% for MAPK1 and 55% for each of IGFIR and RPS6KA1. PRKAA1 was also predicted as a new putative kinase in lung cancer (Fig. 4). MAPK1, MEPCE, CDK1, MAPK3, and PRKCA frequently appeared in top 10 PPI hubs in about 70% of input lists (Fig. 5). Pathway enrichment analysis revealed MAPK signaling to be in the top ten in about 90% of input lists. Purine and ether lipid metabolism and gonadotropin-releasing hormone (GnRH) and Toll-like receptor (TLR) signaling pathways were highly related to lung cancer. Amino sugar metabolism and N-glycan biosynthesis were predicted to be dysregulated pathways in lung cancer (Fig. 6).

Discussion

Cancer is a complex disease and carcinogenesis in humans is a multistep process that transforms normal Cells into malignant derivatives so that investigation of the carcinogenesis from the systems perspective is inevitable [10]. Many studies have identified potential biomarkers for lung cancer using integrative approaches. Liu et al. [16] identified twelve proteins [p-CREB(Ser133), p-ERK1/2(Thr202/Tyr204), Cyclin B1, p-PDK1(Ser241), CDK4, CDK2, HSP90, CDC2p34, β-catenin, EGFR, XIAP and PCNA] which can distinguish normal and tumor samples with 97% accuracy and four proteins (CDK4, HSP90, p-CREB and CREB) which can be used to calculate the risk score of each individual patient with NSCLC to predict survival. This study identified the top six canonical pathways dysregulated in NSCLC—i.e., ATM signaling, PI3K/AKT signaling, p53 signaling, PTEN signaling, ERK/MAPK signaling, and EGF signaling. Byers et al. [17] found that SCLCs showed lower levels of several receptor tyrosine kinases and decreased activation of phosphoinositide 3-kinase (PI3K) and Ras/mitogen-activated protein

Fig. 4 Kinases enrichment analysis using KEA gene-set library. MAPK1, IGFIR, and RPS6KA1 were the top-ranked kinases with frequency percentages of about 80% for MAPK1 and 55% for each of IGFIR and RPS6KA1. PRKAA1 was also predicted as a new putative kinase in lung cancer.
(MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK) pathways but significantly increased levels of E2F1-regulated factors including enhancer of zeste homolog 2 (EZH2), thymidylate synthase, apoptosis mediators, and DNA repair proteins. These authors also found that PARP1—a DNA repair protein and E2F1 co-activator—was highly expressed at the mRNA and protein levels in SCLCs. In addition, a smoking-associated six-gene signature for predicting lung cancer risk and probability of survival has been established [4].

In this study, nine top-ranked transcription factors (CREB1, NUCKS1, HOXB4, MYCN, MYC, PHF8, TRIM28, WT1, CUX1) (Fig. 2) were found to be significant in lung cancer (Table 1) [18–42], and three (CRX, GABP, and TCF3) were newly identified as potentially significant transcription factors in smoking-induced lung cancer. CRX (Cone-rod homeobox protein) has been proposed as a sensitive and specific clinical marker and potential therapeutic target in retinoblastoma and pineoblastoma [43], and is essential for growth of tumor cells with photoreceptor differentiation [44]. GABP (GA-binding protein) selectively activates the mutant TERT promoter in cancer which in turn enables cells to escape apoptosis, fundamental steps in the initiation of human cancer [45]. A TCF3-PBX1 fusion gene has been detected in adenocarcinoma in situ [46].

The top ten kinases in the present study (MAPK1, IGF1R, RPS6KA1, ATR, MAPK14, MAPK3, MAPK4, MAPK8, PRKCI, INSR) have been previously identified (Table 2) [3, 47–63]. However, this is the first report of PRKAA1 as a significant factor in lung carcinogenesis induced by smoking. PRKAA1 (5′-AMP-activated protein kinase catalytic subunit alpha-1) mediates autophagy during differentiation of human monocytes and can potentially serve as a therapeutic target in chronic myelomonocytic leukemia [64].

Eight proteins were significantly related to lung carcinogenesis—i.e., MEPCE, CDK1, PRKCA, COPS5, GSK3B, BRCA1, EP300, and PIN1 (Table 3) [3, 65–76]. Network analysis (Fig. 2) and enrichment analysis (Fig. 6) showed that MAPK signaling is the most significant pathway related to lung cancer in smokers. Both approaches identified that MAPK, TLR, and renal cell carcinoma signaling pathways as being important in smoking-induced lung cancer. In addition, purine and ether lipid metabolism;
GnRH, ErbB, and insulin signaling; adherens junctions; regulation of autophagy; snare interaction in vesicular transport; and cell cycle were also found to play important roles (Table 4) [77–91], whereas six pathways (amino-sugars metabolism, dentatorubropallidoluysian atrophy, melanoma, N-glycan biosynthesis, renal cell carcinoma, and glioma) were predicted here for the first time as being significant pathways in smoking-induced lung cancer.

Increased glycolysis is a metabolic hallmark of cancer [92]. Cancer cells can reprogram glucose metabolism via several mechanisms

Table 1: Predicted novel and known Therapeutic transcription factors

Symbol	Description	Literature evidence
CREB1	Cyclic AMP-responsive element-binding protein 1	[18–21]
NUCKS1	Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1A, P1	[22, 23]
HOXB4	Homeobox protein Hox-B4, HOX2F	[24, 25]
MYCN	N-myc proto-oncogene protein	[26–28]
MYC	Myc proto-oncogene protein	[26, 29]
PHF8	Histone lysine demethylase PHF8	[30, 31]
TRIM28	Transcription intermediary factor 1-beta (TIF1-beta)	[32–34]
WT1	Wilms tumor protein	[35–38]
CRX	Cone-rod homeobox protein	New
CUX1	Homeobox protein cut-like 1	[39–42]
GABP	GA-binding protein	New
TCF3	Transcription factor E2-alpha	New
and hence, energy production by limiting energy metabolism to glycolysis, resulting in an aerobic glycolytic state [93]. Cancer cell metabolism is aimed at increasing biomass (e.g., nucleotides, amino acids, and lipids) to produce a new cell [94]. Melanoma, renal cell carcinoma, and glioma have all been found to be potentially related to lung cancer. Bean et al. [95] identified that targeting MET may be therapeutic target for treatment of a gefitinib/erlotinib-resistant lung tumor cell line with acquired MET amplification. Moreover, dysregulation of MET signaling has been associated with both sporadic and inherited forms of human papillary renal carcinomas [96]. The five components of the dentatorubropallidoluysian atrophy signaling pathway have been shown to have predictive power for breast cancer prognosis [97].

Table 2: Predicted novel and known therapeutic kinases

Symbol	Description	Literature evidence
MAPK1	Mitogen-activated kinase 1 or ERK-2	[47, 48]
IGF1R	Insulin-like growth factor 1 receptor	[49–52]
RPS6KA1	Ribosomal protein S6 kinase alpha-1 or RSK-1	[53, 54]
ATR	Serine/threonine-protein kinase	[55]
MAPK14	Mitogen-activated protein kinase 14 or MAP kinase p38 alpha	[56, 57]
MAPK3	Mitogen-activated protein kinase 3 or Extracellular signal-regulated kinase 1 (ERK-1)	[58, 59]
MAPK4	Mitogen-activated protein kinase 4 or Extracellular signal-regulated kinase 4 (ERK-4)	[60]
MAPK8	Mitogen-activated protein kinase 8 or Stress-activated protein kinase JNK1 or c-Jun N-terminal kinase 1	[61, 62]
PRKCZ	Protein kinase C zeta type	[63]
INSR	Insulin receptor	[3]
PRKAA1	5′-AMP-activated protein kinase catalytic subunit alpha-1	New

Table 4: Predicted novel and known dysregulated pathways in lung cancer

Pathways	References
MAPK signalling pathway	[77]
Purine metabolism	[78]
GnRH signaling pathway	[79]
Toll-like receptor signaling pathway	[80, 81]
Ether lipid metabolism	[82]
Adherens junction	[83]
Aminosugars metabolism	New
Dentatorubropallidoluysian atrophy	New
Melanoma	
N-glycan biosynthesis	New
Regulation of autophagy	[84]
Renal cell carcinoma	
Snare interaction in vesicular transport	[85, 86]
Cell cycle	[87]
ErbB signaling pathway	[88]
Glioma	
Insulin signaling pathway	[89–91]

Conclusion

In this study, we used a systems-based approach to identify potential key molecules and pathways contributing to lung cancer progression among smokers. Three transcription factors (CRX, GABP, and TCF3) and one kinase (PRKAA1) were predicted here for the first time as being important in lung carcinogenesis. In addition, various intracellular signaling pathways and metabolic and other cellular processes were found to be closely related to lung cancer. Our findings provide new insight into the mechanisms of lung cancer development as well as potential new drug targets for disease treatment.

Abbreviations

ChEA: ChIP-x enrichment analysis; DEG: Differentially expressed genes; KEA: Kinase enrichment analysis; KEGG: Kyoto encyclopedia of genes and genomes; PPI: Protein-protein interaction

Acknowledgements

We thank the reviewers of our manuscript for careful reading and for giving beneficial suggestions. We would like to thank Editage for English language editing.

Funding

No funding was available for our study.

Availability of data and materials

The data set is publicly available at Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/), under data source accession GSE4115. GEO2R, atBioNet, and Enrichr are online tools. Soft parser.py was created by Ma’ayan Laboratory, Icahn school of medicine at Mount Sinai. Spira’s panel of an 80-gene biomarker is available at (https://drive.google.com/open?id=0B_fmfGy06nfijyZZk9dRid4w5s1E). Data supporting the conclusions of this article are included within the article.
Authors’ contributions
SE and ME designed the methods of this article. SE carried out the data analysis and wrote the paper. SE, ME, AM, and MH have been involved in drafting the manuscript and revising it. AH and HA were in the supervision committee. All the authors approved and agreed to the authorship of the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable because the study is a secondary analysis of existing public data.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, Egypt.
2Information Systems Department, Faculty of Computer and Information, Menoufia University, Al Minufiyah, Egypt.
3Animal biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), University of Sadat City, Sadat City, Egypt.
4Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Center, Cairo, Egypt.
5Center of Informatics, Nile university, Sheikh Zayed City, Giza, Egypt.

Received: 23 January 2017 Accepted: 28 May 2017

Published online: 07 June 2017

References
1. Mani KM, Lefebvre C, Wang K, Lim WK, Basso K, Dalla-Favera R, et al. A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol. 2008;4:1–9.
2. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomark Prev. 2010;19(8):1893–907.
3. Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y. The new World Health Organization classification of lung tumours. Eur Respir J. 2001;18:1059–68.
4. Guo NL, Wan YW. Pathway-based identification of a smoking associated 6-gene signature predictive of lung cancer risk and survival. Artif Intell Med. 2012;55(1):97–105.
5. Van Dyck E, Nazarov PV, Muller A, Nicot N, Bosseler M, Pierson P, et al. Bronchial airway gene expression in smokers with lung or head and neck cancer. Cancer Med. 2013;2(3):322–36.
6. Gomperts BN, Spira A, Massion PP, Walzer TC, Wistuba II, Minna JD, et al. Evolving concepts in lung carcinogenesis. Semin Respir Crit Care Med. 2011;32:42–43.
7. Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A. 2004;101(10):34–8.
8. Takahashi H, Ogata H, Nishigaki R, Duan Q, Wang Z, et al. Protein signature for non-small cell lung cancer prognosis. Ann J Cancer Res. 2014;4(3):256–69.
9. Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Dis. 2012;2:798–811.
10. Liu W, Wu Y, Wang L, Gao L, Wang Y, Liu X, et al. Prostate signature for non-small cell lung cancer prognosis. Am J Cancer Res. 2014;4(3):256–69.
11. Xiao X, Li BX, Minton B, Ikeda A, Sakamoto KM. Targeting CREB for cancer therapy friend or foe. Curr Cancer Drug Targets. 2010;2:394–91.
12. Lin SH, Wang J, Saintigny P, et al. Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics. 2014;15:1079.
13. Pradhan MP, Desai A, Palakal MJ. Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma. BMC Syst Biol. 2013;7:141.
14. Pistoia V, Morandi F, Pezzolo A, Raggirollo L, Pirigione I. MYCN: from oncprotein to tumor-associated antigen. Front Oncol. 2012;2:174.
15. Xie X, Chen L, Munoz-Antonia T, Cress WD. Trim28 contributes to EMT via regulation of transcription factor- miRNA feed-forward loops identifies regulators in human cancers. Nucleic Acids Res. 2012;40:e135.
16. Diolaiti D, McFerrin L, Carroll PA, Eisenman RN. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. Biochim Biophys Acta. 2015;1849(5):490–500.
17. Lin SH, Zhao X, Sheng Y, et al. Functional analysis of microRNA and transcription factor synergistic regulatory network based on identifying regulatory motifs in non-small cell lung cancer. BMC Syst Biol. 2013;7:122.
18. Shen Y, Pan X, Zhao H. The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer. Biochem Biophys Res Commun. 2014;445(1):119–25.
19. Xiao X, Li BX, Mitton B, Ikeda A, Sakamoto K. Targeting CREB for cancer therapy friend or foe. Curr Cancer Drug Targets. 2010;2:394–91.
20. Pradhan MP, Desai A, Palakal MJ. Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma. BMC Syst Biol. 2013;7:141.
21. Pistoia V, Morandi F, Pezzolo A, Raggirollo L, Pirigione I. MYCN: from oncprotein to tumor-associated antigen. Front Oncol. 2012;2:174.
22. Xie X, Chen L, Munoz-Antonia T, Cress WD. Trim28 contributes to EMT via regulation of E-cadherin and N-cadherin in lung cancer cell lines. PLoS One. 2014;9(7):e101040.
23. Chen Y, Wang J, Saintigny P, et al. Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics. 2014;15:1079.
24. Wang J, Ruppert JM, Eggleston J, Hamilton SR, Baylin SB, Vogelstein B. Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. Science. 1986;233:461–4.
25. Pradhan MP, Desai A, Palakal MJ. Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma. BMC Syst Biol. 2013;7:141.
26. Pistoia V, Morandi F, Pezzolo A, Raggirollo L, Pirigione I. MYCN: from oncprotein to tumor-associated antigen. Front Oncol. 2012;2:174.
27. Xie X, Chen L, Munoz-Antonia T, Cress WD. Trim28 contributes to EMT via regulation of E-cadherin and N-cadherin in lung cancer cell lines. PLoS One. 2014;9(7):e101040.
28. Liu L, Zhao X, Li C, et al. Trim28, a new molecular marker predicting metastasis and survival in early stage non-small cell lung cancer. Cancer Epidemiol. 2013;37:71–8.
29. Chen J, Wang J, Saintigny P, et al. Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics. 2014;15:1079.
39. Wong CC, Martincorena I, Rust AG, Rashid M, Alifrangis C, Alexandrov LB, et al. Inactivating CUX1 mutations promote tumorigenesis. Nat Genet. 2014;46:33–8.

40. Ramdazn ZM, Nepev A. CUX1, a haploinsufficient tumor suppressor gene overexpressed in advanced cancers. Nat Rev Cancer. 2014;14:673–82.

41. Liu KC, Lin BS, Zhao M, Wang KY, Lan XP. Cuxl: a potential target for cancer therapy. Cell Signal. 2012;25(1):349–54.

42. Houle L, Nepev A. CUX1 transcription factors: from biochemical activities and cell-based assays to mouse models and human diseases. Gene. 2012;497:18–26.

43. Santagata S, Maire CL, Idbaih A, Geffers L, Correll M, et al. CRX is a diagnostic marker of retinal and pineal lineage tumors. PLoS One. 2009;4(11):e7932.

44. Garris VM, Strippoli S, De Summa S, Pinto R, Perrone A, Guida G, et al. Proteomic Profile and In Silico Analysis in Metastatic Melanoma with and without BRAF Mutation. PLoS One. 2014;9(12):e112025.

45. Bell RJ, Hube RT, Kreig A, Mancini A, Fouse SD, Nagarajan RP, et al. Detection of E2A-PBX1 fusion transcripts in human non-small-cell lung cancer. J Exp Clin Cancer Res. 2013;32:29.

46. Buonato JM, Lazzara MJ. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res. 2014;74:309–19. doi:10.1158/0008-5472.CAN-12-4271.

47. Yang L, Su T, Lu D, Xie F, Liu W, Cao J, et al. ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin-13. Acta Biochim Biophys Sin. Shanghai. 2014;46(2):100–11.

48. Min H-Y, Yun HJ, Lee J-S, Lee H-J, Cho J, et al. Targeting the insulin-like growth factor receptor and Src signaling network in the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:1113.

49. Kim JS, Kim ES, Liu D, Lee JI, Bemhe C, Lippman SM, et al. Activation of insulin-like growth factor 1 receptor in patients with non-small cell lung cancer. Oncotarget. 2015;6:1627–1646.

50. Fidler MJ, Shersher DD, Borgia JA, Bonomi P. Targeting the insulin-like growth factor receptor pathway in lung cancer: problems and pitfalls. Therapeutic Advances in Medical Oncology. 2012;4:51–60.

51. Bianconi F, Baldelli E, Ludovini V, Cinó L, Valigi P. Computational model of EGFR and IGF1R pathways in lung cancer: A systems biology approach for translational oncology. Biotechnol Adv. 2012;30(1):42–53.

52. Statterey ML, Lundgreen A, Herrick J, Wolff RK. Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, and RPS6KB2 and risk of colon or rectal cancer. Mutat Res. 2011;707:63–100.

53. Eisinger-Mathason TS, Andrade J, Lannigan DA. RSK in tumorigenesis: a potential therapeutic strategy for cancer. Cell Death and Disease. 2014;5:104710.

54. Slattery ML, Lundgreen A, Herrick JS, Wolff RK. Genetic variation in RPS6KA1, RPS6KA2, RPS6KA3, and RPS6KB1: a potential target for cancer therapy. Cancer Prev Res (Phila). 2011;4(11):e7932.

55. Rodríguez-Ulloa A, Gil J, Ramos Y, Hernández-Álvarez L, Flores L, Oliva B, et al. Targeting lung cancer through the atypical MAP kinase signalling pathway ERK3/4-MK5. J Mol Signal. 2015;10:378–87.

56. Santagata S, Maire CL, Idbaih A, Geffers L, Correll M, et al. CRX is a haploinsufficient tumour suppressor gene in human non-small cell lung cancer cells. J Pathol. 2012;228:267–74.

57. Sato A, Yamada N, Ogawa Y, Ikegami M. CCAAT/enhancer-binding protein-α (C/EBPα) overexpression identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet. 2012;44(10):1104–10.

58. Remsing R, Lerner MM, Xu J, Remilly-Wood E, Kinose F, Wright G, et al. GSK3 alpha and beta are new functionally relevant targets ofivantinib in lung cancer cells. ACS Chem Biol. 2014;9:355–363.

59. Li Z, Qing Y, Guan W, Li M, Peng Y, Zhang S, et al. Predictive value of APE1, BRCa1, ERcC1 and TBUB3 expression in patients with advanced non-small cell lung cancer (NSCLC) receiving first-line platinum-paclitaxel chemotherapy. Cancer Chemother Pharmacol. 2014;74:777–86.

60. Rosell R, Skrzypski M, Jassern E, Taron M, Bartolucci R, Sanchez JJ, et al. BRCa1: a novel prognostic factor in resected non-small-cell lung cancer. PLoS One. 2007;2:e1129.

61. Cao JX, Lu Y, Qi JI, An GS, Mao ZB, Jia HT, et al. MIR-630 inhibits proliferation by targeting CDCK7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells. Cell Death Dis. 2014;5:e1426.

62. Pfeifer M, Fernandez-Cuesta L, Sox ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44(10):1104–10.

63. Yoon HE, Kim SA, Choi HS, Ahn MY, Yoon JH, Ahn SG. Inhibition of Plk1 and P11 by S3′-induced nitrobinoxime suppresses human lung cancer cells. Cancer Lett. 2011;316(1):97–104.

64. Tan X, Zhou F, Wan J, Jiang H, Chen Z, Li B, et al. P11 expression contributes to lung cancer: Prognosis and carcinogenesis. Cancer Biol Ther. 2010;9(2):111–9.

65. Rosell R, Skrzypski M, Jassern E, Taron M, Bartolucci R, Sanchez JJ, et al. BRCa1: a novel prognostic factor in resected non-small-cell lung cancer. PLoS One. 2007;2:e1129.

66. Scott CC, Heckman A, Nettesheim P, Snyder F. Metabolism of ether-linked cholesterol: A comparison of human and rat small cell lung cancer cell lines. J Biol Chem. 1983;258:57–63.

67. Chohn AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.

68. Weber G. Enzymes of purine metabolism in cancer. Clin Biochem. 1983;16:57–63.

69. Lu C, Huang T, Chen W, Lu H. GNRH participates in the self-renewal of A549-derived lung cancer stem-like cells through upregulation of the JNK signaling pathway. Oncol Rep. 2015;34(1):1244–50.

70. Ke X, Wu M, Lou J, Zhang J, Huang P, Sun R, et al. Activation of Toll-like receptors signaling in non-small cell lung cancer cell line induced by tumor-associated macrophages. Chin J Cancer Res. 2015;27(2):181–9.

71. Yang LS, Wu WS, Zhang F, Jiang Y, Fan Y, Fang HK, et al. Role of toll-like receptors in lung cancer. J Recept Signal Transduct Res. 2013;34(4):342–4.

72. Scott CC, Heckett AM, Nettleship S, Snyder F. Metabolism of ether-linked glycerolipids in cultures of normal and neoplastic rat respiratory tract epithelium. Cancer Res. 1979;39(12):2074–14.

73. Xing C, Zhang R, Cui J, et al. Pathway crosstalk analysis of non-small cell lung cancer based on microarray gene expression profiling. Tumour Journal. 2015;10(1):111–6.

74. Hasima N, Ospolat B. Regulation of autophagy by polyphosphonic compounds as a potential therapeutic strategy for cancer. Cell Death and Disease. 2014;5(11) doi:10.1038/cddis.2014.467.e1509.

75. Lan Q, Hisung CA, Matsuo K, et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet. 2012;44(13):389–96.

76. Jiang J, Inamdar SM, Tiwari A, Choudhury A. Regulation of intracellular membrane trafficking and cell dynamics by syntxin-6. Biosci Rep. 2012;32:383–91.

77. Vincenzi B, Schiavon G, Silletta M, Santini D, Perrone G, Di Marino M, et al. Cell cycle alterations and lung cancer. Histol Histopathol. 2006;21(4):423–35.
88. Hoque MO, Brait M, Rosenbaum E, Poeta ML, Pal P, Begum S, et al. Genetic and epigenetic analysis of erbB signaling pathway genes in lung cancer. J Thorac Oncol. 2010;5:1887–93.
89. Ray A, Alalem M, Ray BK. Insulin signaling network in cancer. Indian J Biochem Biophys. 2014;51(6):493–8.
90. Singh S, Prakash YS, Linneberg A, Agrawal A. Insulin and the Lung: Connecting Asthma and Metabolic Syndrome. J Allergy (Cairo). 2013;2013:627384.
91. Petridou ET, Sergentanis TN, Antonopoulos CN, et al. Insulin resistance: an independent risk factor for lung cancer? Metab Clin Exp. 2011;60(8):1100–6.
92. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
93. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.
94. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.
95. Bean J, Brennan C, Shih JY, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104(52):20932–7.
96. Giubellino A, Linehan WM, Bottaro DP. Targeting the Met signaling pathway in renal cancer. Expert Rev Anticancer Ther. 2009;9:785–93.
97. Ma S, Kosorok MR. Detection of gene pathways with predictive power for breast cancer prognosis. BMC Bioinformatics. 2010;11:1.

Submit your next manuscript to BioMed Central and we will help you at every step:
- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit