Detections of SiO Masers from the Large-Amplitude Variables in the Galactic Nuclear Disk

Hiroshi Imai1,2, Shuji Deguchi3, Takahiro Fujii2,4, Ian S. Glass5, Yoshifusa Ita6, Hideyuki Izumiura7, Osamu Kameya1,2, Atsushi Miyazaki8, Yoshikazu Nakada6 and Jun-ichi Nakashima8

1 Mizusawa Astrogeodynamics Observatory, National Astronomical Observatory, Mizusawa, Iwate 023-0861
2 VERA Project Office, National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588
3 Nobeyama Radio Observatory, National Astronomical Observatory, Minamimaki, Minamisaku, Nagano 384-1305
4 Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065
5 South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa
6 Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015
7 Okayama Astrophysical Observatory, National Astronomical Observatory, Kamogata, Asakuchi, Okayama 719-0232
8 Department of Astronomical Science, The Graduate University for Advanced Studies, Minamimaki, Minamisaku, Nagano 384-1305

(Received 2001 November 14; accepted 2002 January 24)

Abstract

We have surveyed known large-amplitude variables within 15′ of the Galactic center in the SiO $J = 1$–$0 v = 1$ and 2 maser lines at 43 GHz, resulting in 79 detections and 58 non-detections. The detection rate of 58 percent is comparable to that obtained in Bulge IRAS source surveys. SiO lines were also detected from four other sources near the program objects. The SiO detection rate increases steeply with the period, particularly for stars with $P > 500$ d, where it exceeds 80%. We found at a given period that the SiO detection rate is approximately double that for OH. These facts suggest that the large-amplitude variables in the Nuclear Disk region are AGB stars similar in their overall properties to the inner and outer bulge IRAS/SiO sources.

Key words: Galaxy: center, kinematics and dynamics — masers — stars: AGB and post-AGB

1. Introduction

The dynamical behavior of the central region of the Galaxy has attracted much attention. Since the bar-like structure of the Galactic bulge was discovered, it has been recognized that non-circular motions must be taken into account when interpreting observational data, such as the CO gas distribution in the central nuclear disk. Because double bars and nuclear rings have been proposed as efficient mechanisms for feeding gas into the centers of galaxies, it has become additionally important to look for signs of non-circularity in the motions of gas and stars.

As a consequence of interstellar extinction, it is impossible to make measurements of the radial velocities of stars in this region at visible wavelengths. Most such information comes from radio observations of SiO and OH masers which are not affected by interstellar extinction. A considerable amount of data is now available.
In this paper, we report on preliminary results of an SiO maser survey of Large Amplitude Variables (Miras or semiregulars; abbreviated as LAV hereafter) within 15’ of the Galactic center ([cite]cite.lavo98Wood et al. (1998); [cite]cite.lavo01Glass et al. (2001)). Because these stars are located at approximately the same distance (about 8 kpc) from the Sun, they constitute an ideal sample for studying the statistical characteristics of AGB stars and their detectability in the maser lines. In addition, surveying these sources gives accurate radial velocities, and provides basic data for investigating the kinematics of the Galactic nuclear disk.

2. Observations

Simultaneous observations in the SiO J = 1–0, v = 1 and 2 transitions at 42.122 and 42.821 GHz, respectively, were made with the 45-m radio telescope at Nobeyama during 2001 February–May. Details of SiO maser observations using the NRO 45-m telescope have been described elsewhere ([cite]cite.lavo01Glass et al. (2001) ([cite]cite.lavo01Glass et al. (2000a)a), and are not repeated here.

The sources were taken from the Glass et al. (2001) list and were selected for long periods (P > 450 d) and good-quality light curves (Q =3). Additional LAV stars which do not satisfy the above criteria were also chosen because of OH 1612 MHz detections and positional coincidences with MSX sources ([cite]cite.lavo01Glass et al. (2001)). The positions of the stars were taken from table 2 of [cite]cite.lavo01Glass et al. (2001) ([cite]cite.lavo01Glass et al. (2001)), which are sufficiently accurate (~ a few arcsec) for a telescope beam size (HPBW) of about 40″.

In total, 134 LAVs were observed during the winter–spring season of the year 2001, and we detected SiO maser emission towards 76. According to the convention of [cite]cite.lavo01Glass et al. (2001) ([cite]cite.lavo01Glass et al. (2001)), we write their names as the field and star numbers, preceded by “g” for [cite]cite.lavo01Glass et al. (2001) ([cite]cite.lavo01Glass et al. (2001)) ([cite]cite.lavo01Glass et al. (2001)). We tried to observe all of the stars with Q = 3 and P > 450 d in the [cite]cite.lavo01Glass et al. (2001) ([cite]cite.lavo01Glass et al. (2001)) sample, but two sources (g23–3305 and g19–7) were left unobserved because of limited observing time.

The detected sources and their radial velocities (average of the peak radial velocities in the J = 1–0, v = 1 and 2 transitions) are given in table 1. The full line parameters (antenna temperatures, integrated intensities, etc.), as well as null results, will be presented in a future paper.

The high stellar density near the Galactic center occasionally led to the finding of an additional source within the 40″ telescope beam; we saw two peaks in the spectra. The number of detections are, in fact, more than 76. Table 1 lists 7 such sources. Most of these extra peaks can be assigned to nearby OH sources or Glass et al.’s LAVs, except for two (g12–21 and g19–7). Because we can easily find possible counterparts for each component in the doubly peaked cases, we are confident that none of these spectra correspond to single sources similar to the Orion IRC2 SiO masers (see the discussion in [cite]cite.der99Deguchi et al. (1999)). In the case of g9–8, we detected double peaks in the spectra; the star g9–547 is close by (13″ separation). We took another SiO spectrum at a position 15″ offset towards g9–547, and confirmed that the relative intensities of the two peaks changed in the expected manner. Thus, the identifications of these two sources are certain.

We checked the radial velocities of the 36 OH 1612 MHz maser counterparts that are within 5″ of the positions of LAVs. The OH radial velocities (the average of the OH double-peak velocities) of 32 sources were consistent with the SiO radial velocities. For these 32 sources, the average SiO–OH velocity difference was (V_{SiO}−V_{OH})\text{average}=0.59 \text{ km s}^{-1} (with standard deviation of 1.93 km s^{-1}). In addition, we found that one source, g20–136, has $V_{\text{t}} = -85.6 \text{ km s}^{-1}$, which is not inconsistent with the single-peak OH detection at $V_{\text{t}} = -116.8 \text{ km s}^{-1}$.

The SiO radial velocities of three stars were not consistent with the OH velocities: g4–113 (OH 359.855–0.078), g13–200 (OH 0.178–0.055), and g22–274 (OH 359.791–0.081). The positions of two sources coincide with the OH positions within 3″, the exception being g13–200. We also looked at OH sources within 40″ of the SiO sources, but found that none of them had similar radial velocities. These unidentified SiO sources are possibly obscured AGB stars within the telescope beam or, in the case of OH 0.178–0.055, may be an AGB star that is not the OH source; g13–200 is separated from OH 0.178–0.055 by 5″.1 (see table 6 of [cite]cite.lavo01Glass et al. (2001)), which is too large to be a measurement error.

Twenty-three stars in the present sample have MSX source counterparts within 3″ of the MSX positions (a few arcsec) ([cite]cite.lavo01Glass et al. (2001)). They are indicated by “§” signs in table 1. The MSX subset contains 14 detections of SiO and 9 non-detections, giving a 61% SiO detection rate. The rate for the MSX counterparts is similar to the average detection rate, 59%, of SiO in the full sample. These sources have flux densities of 0.3–4 Jy in the MSX band C (∼12 μm) with colors not very different from the IRAS/SiO sources in the Bulge (e.g., [cite]cite.lavo01Glass et al. (2001)).

3. Discussion

3.1. Period–SiO Detection Rate

Figure 1 shows the period distribution of the observed sources and the SiO detection rate (line graph). The sources with P > 450 d (and Q = 3) were preferentially observed in the present survey so that the peak occurs in the 500–600 d bin. Note that the average period of the [cite]cite.lavo01Glass et al. (2001) ([cite]cite.lavo01Glass et al. (2001)) sample is about 430 d. This figure clearly shows that the SiO detection rate increases with the period. The dotted line in figure 1 indicates the OH detection rate, which seems to correlate with the SiO detection rate quite well. The SiO detection rate, however, is twice
Table 1. SiO Radial Velocities of the Detected Sources.

Name	V_{ave} (km s$^{-1}$)	Name	V_{ave} (km s$^{-1}$)	Name	V_{ave} (km s$^{-1}$)
g1–8	79.0	g4–23	3.4	g10–392	94.3*
g1–31	-38.6	g4–113b	-279.03	g11–4503	7.9*
g1–72	21.1	g4–253	-46.0	g12–13	-19.5
g1–1890	23.6*	g4–557	-85.1*	g12–21	33.3,71.55
g2–1	-5.9*	g5–159	-2.4*	g12–51	44.4*
g2–3	-7.5	g5–2856	72.3*	g12–228	-74.3
g2–28	36.0*	g6–25b	-0.8	g13–16	83.2
g2–52	105.5	g6–85	88.1	g13–18b	16.2
g2–697	-52.5*	g6–135	5.8*	g13–33	124.8*
g2–6329	120.4*	g7–13	5.3	g13–55	37.4
g3–5	35.91, 52.6*	g7–20	-55.7	g13–200	23.76
g3–6	22.9	g8–11	-32.4	g14–2b	-58.6
g3–226	134.2a	g8–31b	108.5	g14–6b	-32.5
g3–2752	5.7*	g10–5	70.0	g14–11	-60.1
g3–358	12.8*	g9–8	-4.4, 72.34	g16–1b	-5.27, 22.1
g3–779	-142.3a, -47.6a	g9–9b	23.1	g16–8	-38.9
g3–1003	39.6*	g10–6	39.6*	g16–25	-61.2
g3–1255	-7.5*	g10–84	-27.9*	g16–150b	-131.5*

The SiO radial velocity is consistent with that of OH 1612 MHz counterpart.

a The star has a MSX counterpart (within 3 σ of the MSX position uncertainty).

b The 35.9 km s$^{-1}$ component is from either OH 359.958-0.058 (27$''$.2 away) with $V_{\text{lsr}} = 41.7$ km s$^{-1}$ or OH 359.952-0.058 (32$''$.9 away) with $V_{\text{lsr}} = 36.4$ km s$^{-1}$.

c The -47.6 km s$^{-1}$ component is probably g3-1030* (OH 359.906-0.036, 20$''$.8 away).

d OH 359.855-0.078 at 3$''$.1 separation has a velocity at 4.8 km s$^{-1}$.

e The 72.3 km s$^{-1}$ component is g9-547* (OH 0.040-0.056).

f Close to g12-65 and g12-42, definite assignment impossible.

g OH 0.178-0.055 at 5$''$.1 separation has $V_{\text{lsr}} = -36.6$ km s$^{-1}$.

h The -5 km s$^{-1}$ component is OH 359.867+0.030 with $V_{\text{lsr}} = -3.7$ km s$^{-1}$ (9$''$.6 away).

i The g19-9 is located very close; definite assignment impossible.

j The -53.5 km s$^{-1}$ component is probably g19-128 which is located nearby.

k OH 359.791-0.081 at 0$''$.7 apart has a single peak at -116.8 km s$^{-1}$, not inconsistent with the SiO velocity.

l OH 359.778+0.010 at 3$''$.3 apart has $V_{\text{lsr}} = -27.5$ km s$^{-1}$. The -85.6 km s$^{-1}$ component may possibly be g22-1 at 20$''$.6 away, but this source was not detected in 2001 May (weather conditions poor).

as high as the OH detection rate, indicating that an SiO maser survey can double the number of stars with radial velocity data near the Galactic center.

That the maser detection rate increases with the period of light variation in LAVs has already been suggested by observations of stars near the Sun (e.g., [cite]cite.ben96Benson, Little-Marenin (1996)). However, because of uncertainties in the distances of these stars, the relation was not demonstrated clearly. In the present sample, the distances to the LAV stars are almost equal and the correlation with period is much more striking.

3.2. Velocity Distribution

Figure 2 shows longitude–velocity diagram for the detected sources. Most of the radial velocities fall within ±200 km s$^{-1}$. Two extreme sources at $V_{\text{lsr}} = -279$ and -308 km s$^{-1}$ occupy outlying positions. These sources might be outer bulge objects in highly eccentric orbits.

![Fig. 1. Histogram of period and detection probability (line graph). The shadow and blank in the histogram indicate the SiO detection and nondetection, respectively. The solid and broken lines (unit at the right vertical axis) indicate the detection rate of SiO and OH masers, respectively, for the observed sources.](image-url)
The best fit for the radial velocities gives $V_{\text{lsr}} = -19.2(\pm 7.9) + 0.085(\pm 0.020)(\Delta l / \text{arcsec}) \text{ km s}^{-1}$ and the standard deviation from this line is 69.8 km s$^{-1}$ for the 79 sources. Here, Δl is the Galactic longitude offset from Sgr A*, the dynamical center of the Galaxy (R.A.$=18^h 45^m 40^s.05$, Dec.$=-29^\circ 00^\prime 27^\prime\prime.9$, J2000: Δl) (Deguchi et al. 2002)). If we remove the two sources with $|V_{\text{lsr}}| > 200$ km s$^{-1}$, the best fit gives $V_{\text{lsr}} = -12.1(\pm 6.4) + 0.078(\pm 0.016)(\Delta l / \text{arcsec}) \text{ km s}^{-1}$. The best-fit slope, 0.085 km s$^{-1}$ per arcsec, which corresponds to 306 km s$^{-1}$ per degree, is compatible with the value, ~ 190 km s$^{-1}$ per degree, which was computed from the OH 1612 MHz data within 0.5 degree from the Galactic center (Deguchi et al. (2000b)). Considering the slow rotation of the inner Bulge out to 3$^\circ$ from the Galactic center, ~ 20 km s$^{-1}$ per degree (Deguchi et al. 2000a), we conclude that the nuclear disk is rotating more rapidly than the inner Bulge.

The zero intercept at $\Delta l = 0$ is negative, which is consistent with previous SiO maser observations (Deguchi et al. 2001). This can be interpreted as the motion of the local standard of rest toward the dynamical center of the Galaxy (Deguchi et al. 1995)). The overall structure of the SiO v–l diagram is quite similar to the OH v–l diagram in the same region (see figure 3 of Deguchi et al. 1998)). We can recognize a hole in the SiO distribution at $\Delta l = 150^\prime$, $V_{\text{lsr}} = 80$ km s$^{-1}$ in figure 2. The same hole can be seen in figure 3 of Deguchi et al. 1998) (Deguchi et al. 1998)), though another hole at $\Delta l = 200^\prime$, $V_{\text{lsr}} = 0$ km s$^{-1}$) in figure 3 of Deguchi et al. 1998) (Deguchi et al. 1998)) is not present in figure 2 of the present paper. It is known that a bar potential produces a characteristic pattern in the l–v diagram (Deguchi et al. 1995)). Non-circular streaming motions of stars may be present in the nuclear disk region in our Galaxy, and the hole in the l–v diagram can be a signature of bars within the bar, such as might be found in other galaxies (Deguchi et al. 2001). An alternative interpretation is that the stars within 100$''$ from the Galactic center have a large circular motion (~ 1.1 km s$^{-1}$ per arcsec). This circular motion is comparable with that of the circumnuclear ring revealed by the molecular line observations. It is possible that the rapidly rotating AGB stars near the Galactic center were born as a result of star formation in the circumnuclear ring (Deguchi et al. 1995)).

4. Conclusion

We surveyed 134 large-amplitude variables within 15$'$ of the Galactic center, and obtained 79 detections in the SiO maser lines. The SiO detection rate of $\sim 60\%$ is comparable with the previous SiO survey of color-selected bulge IRAS sources. The SiO detection rate increases with the period of the light variation, and is well correlated with the OH detection rate. The longitude-velocity diagram of the SiO sources has been revealed to be quite similar to the OH v–l diagram. These facts suggest that these large-amplitude variables in the Galactic nuclear disk are mass-losing stars in the AGB phase, quite similar to the IRAS sources in the inner Galactic Bulge.

This research was partly supported by Scientific Research Grant (C2) 12640243 of Japan Society for Promotion of Sciences.

References

[Benson, Little-Marenin (1996)] Benson, P. J., & Little-Marenin, I. R. 1996, ApJS, 106, 579
[Binney et al. (1991)] Binney, J., Gerhard, O. E., Stark, A. A., Bally, J., & Uchida, K. I. 1991, MNRAS, 252, 210
[Blitz, Spergel (1991)] Blitz, L., & Spergel, D. N. 1991, ApJ, 379, 631
[Deguchi et al. (2000a)] Deguchi, S., Fujii, T., Izumiura, H., Kameya, O., Nakada, Y., Nakashima, J., Otsubo, T., & Ukita, N., 2000a, ApJS, 128, 571
[Deguchi et al. (2000b)] Deguchi, S., Fujii, T., Izumiura, H., Kameya, O., Nakada, Y., & Nakashima, J. 2000b, ApJS, 130, 351
[Deguchi et al. (1999)] Deguchi, S., Fujii, T., Izumiura, H., Matsumoto, S. Nakada, Y., Wood, P., & Yamamura, I. 1999, PASJ, 51, 355
[Deguchi et al. (2002)] Deguchi, S., Fujii, T., Miyoshi, M., & Nakashima, J. 2002, PASJ, 54, 61
[Dwek et al. (1995)] Dwek, E., Arendt, R. G., Hauser, M. G., Kelsall, T., Lisse, C. M., Moseley, S. H., Silverberg, R. F., Sodroski, T. J., & Weiland, J. L. 1995, ApJ, 445, 716
[Erwin et al. (2001)] Erwin, P., Vega Beltrán, J.C., Beckman,
J., & Sparke, L.S., 2001, in ASP Conf. Ser. 249, The Central Kiloparsec of Starbursts and AGN: the La Palma connection, ed. J. H. Knapen, J. E. Beckman, I. Shlosman & T. J. Mahoney (San Francisco; ASP), 85

[Glass et al. (2001)] Glass, I. S., Matsumoto, S., Carter, B. S., & Sekiguchi, K. 2001, MNRAS 321, 77

[Izumiura et al. (1995)] Izumiura, H., Deguchi, S., Hashimoto, O., Nakada, Y., Onaka, T., Ono, T., Ukita, N., & Yamamura, I. 1995, ApJ, 453, 837

[Kuijken, Merrifield (1995)] Kuijken, K. & Merrifield, M.R. 1995, ApJ, 443, L13

[Lindqvist et al. (1992)] Lindqvist, M., Habing, H. J., & Winnberg, A. 1992, A&A, 259, 118

[Levine et al. (1995)] Levine, D., Figuer, D. F., Morris, M., & McLean, I. S., 1995, ApJ, 447, L101

[Miyazaki et al. (2001)] Miyazaki, A., Deguchi, S., Tsuboi, M., Kasuga, T., & Takano, S., 2001, PASJ, 53, 501

[Morris, Serabyn (1996)] Morris, M., & Serabyn, E. 1996, ARA&A, 34, 645

[Nakada et al. (1991)] Nakada, Y., Deguchi, S., Hashimoto, O., Izumiura, H., Onaka, T., Sekiguchi, K., & Yamamura, I. 1991, Nature, 353, 140

[Omont et al. (1999)] Omont, A., Ganesh, S., Alard, C., Blommaert, J. A. D. L., Caillaud, B., Copet, E., Fouqué, P., Gilmore, G., et al. 1999, A&A, 348, 755

[Price et al. (2001)] Price, S. D., Egan, M. P., Carey, S. J., Mizuno, D. R., & Kuchar, T. A. 2001, AJ, 121, 2819

[Rogers et al. (1994)] Rogers, A. E. E., Doeleman, S., Wright, M. C. H., Bower, G. C., Backer, D. C., Padin, S., Philips, J. A., Emerson, D. T., et al. 1994, ApJ, 434, L59

[Shiki et al. (1997)] Shiki, S., Ohishi, M., & Deguchi, S. 1997, ApJ, 478, 206

[Shlosman et al. (1989)] Shlosman, I., Frank, J., & Begelman, M. C. 1989, Nature, 338, 45

[Sjouwerman et al. (1998)] Sjouwerman, L. O., van Langevelde, H. J., Winnberg, A., & Habing, H. J. 1998, A&A, 128, 35

[van Langevelde et al. (1992)] van Langevelde, H. J., Brown, A. G. A., Lindqvist, M., Habing, H. J., & de Zeeuw, P. T. 1992, A&A, 261, L17

[Wood et al. (1998)] Wood, P. R., Habing, H. J., & McGregor, P. J. 1998, A&A, 336, 925

[Wright et al. (2001)] Wright, M. C. H., Coil, A. L., McGary, R. S., Ho, P. T. P., & Harris, A. I. 2001, ApJ, 551, 254