Quantum simulation of 3He impurities and of 4He interstitials in solid 4He

Keola Wierschem1 and Efstratos Manousakis1,2

1Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA and
2Department of Physics, University of Athens, Panepistimiopolis, Zografos, 157 84 Athens, Greece.

(Dated: September 17, 2010)

We have studied the role of an atomic 3He impurity and an interstitial 4He atom in two- and three-dimensional solid 4He using path integral Monte Carlo (PIMC) simulation. We find that when a substitutional 3He impurity is introduced, the impurity becomes localized and occupies an ideal lattice site. When an interstitial 4He impurity is introduced in the 4He solid, we find that the impurity becomes localized at a substitutional position and, thus, promotes the extra 4He atom to the interstitial space. As a consequence we find that the one-body density matrix (OBDM) and the superfluid fraction, for the case of a 4He solid with an interstitial impurity, are very similar to those calculated for a 4He solid with a 4He interstitial atom. Namely, while the off-diagonal OBDM approaches zero exponentially with increasing particle displacement for the "pure" solid, an interstitial 4He atom or a 3He impurity appear to enhance it at long distances. Finally, the effective mass of the 3He impurity quasiparticle in 2D and 3D crystalline 4He is estimated.

PACS numbers: 05.30.Jp, 67.80.B-, 67.80.bd, 67.80.dj

I. INTRODUCTION

The torsional oscillator experiments of Kim and Chan1, where at low temperature a drop in the moment of inertia is observed, have motivated a number of computational studies$^{2-9}$ of solid 4He as well as various theoretical proposals$^{10-12}$ to explain the observation.

There is evidence of a very strong dependence of the superfluid response on the 3He impurity concentration13 as well as other well known facts13 about the role of impurities in solid 4He$^{14-18}$. Proposals for the possible role of 3He impurities in solid 4He have a long history and date back in the late sixties19 and seventies20,21. In addition, there are several experimental studies of the NMR relaxation of such impurities in solid helium22. It is, therefore, of great interest to study the role of impurities in solid 4He. Boninsegni et al.2 have carried out a path integral Monte Carlo (PIMC) simulation of three-dimensional (3D) solid 4He using the worm algorithm and found that vacancies phase separate. Pollet et al.2 and Boninsegni et al.2 have also used the above PIMC technique to show that grain boundaries in solid 4He and screw dislocations lead to superfluidity. In addition, using the same method Pollet et al.2 have shown that the gap to create vacancies closes by applying a moderate pressure.

In the present paper, motivated by the recent experimental and theoretical activity on the possible role of the 3He impurities in solid 4He, we study the role of a 3He impurity and of an interstitial 4He atom in two-dimensional (2D) and 3D solid 4He using PIMC simulation. In addition to the motivation generated by the previous discussed experimental activity, this problem is of interest in its own right because it is not really known what happens locally when one injects a 3He atom in 2D or 3D solid 4He, and this can be studied by quantum simulation. In particular, we use the worm algorithm2 to simulate the 2D and 3D solid helium in the presence of such crystalline defects. We present results of the radial distribution functions and off-diagonal one-body density matrix (OBDM) for the following cases. (a) Pure solid 4He at somewhat above but near the liquid-solid melting density ($\sigma = 0.070 \text{ Å}^{-3}$ or $\sigma = 0.026 \text{ Å}^{-3}$). (b) A single substitutional 3He impurity in solid 4He. (c) An interstitial 4He atom (defect). This atom is identical to the other 4He atoms and, therefore, it participates in permutation cycles. (d) An interstitial 3He impurity in solid 4He.

We find that an initial interstitial impurity quickly relaxes to a regular lattice site of the 4He solid by creating an interstitial 4He atom as was proposed in Ref.11 Furthermore, we find that introducing such interstitial impurities in 4He solid greatly enhances the long-distance part of the off-diagonal OBDM. This enhancement as well as the calculated superfluid response is comparable to that of interstitial 4He atomic defects. It is quite possible that at a finite density interstitial 4He atoms phase separate as do vacancies12. In such case the enhancement of the OBDM at long distances and of the superfluid density, due to a single interstitial 3He or 4He atom found in the present paper, may disappear when a finite density of such impurities or interstitials is introduced. However, interstitial atoms or impurity atoms can bind to already existing defects, such as dislocations or disclinations (especially in 2D) and this tendency for phase separation may be avoided. In general, it is of great value to know what happens locally in the 2D and in the 3D crystalline 3He when a 3He impurity or an interstitial 4He atom is introduced.

The paper is organized as follows. In Sec. III we briefly describe the PIMC method used to study this system. In Sec. III we present and discuss the pair distribution functions for the case of a 2D and 3D solid with and without the introduction of a 3He impurity and 4He interstitial atom. The energetics of creating such atomic defects in the 2D and 3D solids as well as the calcula-
tion of the effective mass of 3He impurity in solid 4He is discussed in Sec. [VI]. In Sec. [V] we present the results for the one-body density matrix, the superfluid density and a histogram of the number of particles involved in the same permutation cycle for the cases (a-d) above for 2D and 3D solid helium. Finally, the main findings as well as the limitations of the present work are discussed in Sec. [VI].

II. SIMULATION DETAILS

Using an approximation for the density matrix that is accurate to fourth order in τ, we use 320 time slices to reach a simulation temperature of 1K. We have collected data from 2500 continuous iterations for our simulations in 2D, and ~1000 continuous iterations for our simulations in 3D. Each iteration consists of 500 Monte Carlo moves.

All simulated atoms considered in our present studies are isotopes of helium and therefore interact via the same potential. We use the Aziz potential to model both the 4He-4He interaction and the 3He-4He interaction. With the exception of the 3He impurity atom the rest are all 4He atoms which will be treated appropriately to simulate their bosonic nature. The impurity atom is distinguishable from the “background” 4He atoms.

Our simulation cell is designed to accommodate either a 2D 56-site triangular lattice that is very nearly square (25.86 Å × 25.60 Å), or a 3D 180-site hexagonal close-packed lattice (18.35 Å × 19.07 Å × 17.98 Å). In both cases of the 2D and 3D lattices we have used periodic boundary conditions. The density of lattice sites is fixed at 0.086Å$^{-2}$ (2D) and 0.0286Å$^{-3}$ (3D). We will use the term pure solid for the case where there is exactly one 4He atom per lattice site. The term substitutional solid will be used when a single 4He atom is removed from the pure solid and is replaced with an impurity atom. Additionally, the term interstitial solid will be used when a single atom (either 4He or an impurity) is added to the pure solid.

III. DISTRIBUTION FUNCTIONS

A. Two-dimensional solid 4He

How does the impurity atom affect the pair distribution function g_{44} of the 4He atoms of the underlying solid? We find that when a substitutional impurity is introduced it becomes localized and occupies an ideal lattice position with its own zero-point motion determined by its different mass. In Fig. 1 we present the calculated $g_{44}(r)$ radial distribution for pairs of 4He atoms for the four different case systems studied: (a) pure solid 4He (dashed line) (b) the 4He solid with a substitutional 3He impurity (also dashed line) (c) the 4He solid with an interstitial 4He defect (solid line), and (d) the 4He solid with an interstitial 3He impurity (also solid line). Within the accuracy of our results we cannot discern any difference in the g_{44} distribution function for the cases of the pure solid and the substitutional impurities. When an interstitial impurity is present in the 4He solid, we find that the impurity becomes localized at a substitutional position, thereby promoting the extra 4He atom to the interstitial band. This is shown by the snapshot space-time configuration shown in Fig. 2. Notice that while the
initial configuration has an interstitial 3He impurity, in the configuration obtained after thermalization (shown in Fig. 2) the 3He becomes substitutional by promoting an interstitial 4He atom. Namely, in the equilibrium configuration, shown in Fig. 2 the 3He atom, in our lattice with periodic boundary conditions, is located in a regular triangular lattice position surrounded by six 4He atoms. In addition, a 4He atom has been promoted to the interstitial space which creates larger density fluctuations in the crystalline arrangement in some parts of the system. As a consequence of this fact $g_{44}(r)$, in Fig. 3 is less peaked at the lattice positions. In Fig. 3 (top) the calculated pair distribution function $g_{44}(x, y)$ for pure 2D solid 4He is shown and in Fig. 3 (middle) we present the contour plot of the same $g_{44}(x, y)$. This function is nearly identical for the substitutional solid (which is not shown, as it looks exactly alike). This implies that the introduced substitutional impurity becomes localized and it only affects its neighboring atoms. In the case of an interstitial impurity the difference in the g_{44} distribution function, as discussed above and shown in Fig. 1 and Fig. 3 (bottom), is significant because the added impurity takes the position of a 4He atom and, thus, there is an extra 4He atom that necessarily becomes interstitial. In the bottom panel of Fig. 3 we plot $\delta g_{44}(x, y)$, the difference between $g_{44}(x, y)$ of the pure solid and the solid with a single in-
The organizational structure of the 4He atoms does not change in the presence of a substitutional impurity. However, when an interstitial defect or impurity is present, by looking at $\Delta g_{44}(r)$ (scale on the right) we can see that $g_{44}(r)$ becomes less peaked at the nearest-neighbor distance lattice positions.

Our finding that the interstitial impurity becomes localized at regular lattice sites can be further illustrated by comparing the contour plots of the $g_{44}(x, y)$ and $g_{34}(x, y)$ for the case where we have a 4He solid with an interstitial impurity. In the top panel of Fig. 4 we present the contour plot of the distribution function $g_{44}(x, y)$ for the case of a 4He solid with an interstitial impurity. Within the accuracy of the discretization of the probability density of the contour plot this function is independent of the type of defect or impurity. In the lower panel is the distribution function $g_{34}(x, y)$ for pairs consisting of the impurity atom and one 4He atom. Because the contour plots for both $g_{34}(x, y)$ and $g_{44}(x, y)$ are identical in shape and in form, we may surmise that the impurity atoms are located at lattice sites.

B. Three-dimensional solid 4He

In Fig. 5 we show $g_{44}(r)$ for the 3D system. As in 2D, we find that the pure solid and the substitutional solid are nearly identical in structure, as are the two interstitial solids. Also shown is the difference, $\Delta g_{44}(r)$, between $g_{44}(r)$ the pure solid and the interstitial solid. As expected, $g_{44}(r)$ for both interstitial solids is less peaked at lattice positions compared to the pure and substitutional solids. This indicates that the 4He interstitial solid really does have a 4He atom in the interstitial space, and also that the interstitial 3He solid has relaxed into a space where the 3He interstitial atom has become substitutional, and in doing so promoted a 4He atom to the interstitial band.

FIG. 5: The radial distribution function for pairs of 4He atoms in the three-dimensional HCP lattice simulation cell, $g_{44}(r)$. The organizational structure of the 4He atoms does not change in the presence of a substitutional impurity. However, when an interstitial defect or impurity is present, by looking at $\Delta g_{44}(r)$ (scale on the right) we can see that $g_{44}(r)$ becomes less peaked at the nearest-neighbor distance lattice positions.

FIG. 6: Potential energy of a 3He atom placed either substitutionally solid line (blue in the online version) or interstitially dashed line (green in the online version) into triangular solid 4He. After a brief relaxation, both energy values remain close except for occasional “blips” in the potential energy of the initially interstitial 3He atom.

FIG. 7: Snapshot of a space-time configuration of the 3He interstitial solid in a “blip” of elevated potential energy that appears after thermalization. Red crosses represent the 4He atoms at each imaginary time slice, while blue circles represent the 3He impurity. The 3He atom can be seen to be at a region of local disorder.
IV. ENERGETICS OF IMPURITY AND INTERSTITIAL

If a ^3He atom, initially placed in the interstitial region of a triangular solid of ^4He atoms, relaxes onto a lattice site by promotion of a ^4He atom to the interstitial space, this should be seen in the energy values of the simulated atoms. In Fig. 6 we show the potential energy of a ^3He atom in the substitutional and interstitial ^3He solids. A short relaxation time can be seen for the interstitial solid, as the ^3He atom relaxes onto the lattice. After that, the potential energy of a ^3He atom in both systems is almost the same. After 600 iterations, a small bump is seen in the energy of the (initially) interstitial ^3He atom. A snapshot of the atomic configuration at this elevated energy value is shown in Fig. 7. The ^3He atom is no longer at an equilibrium lattice position, but rather at what appears to be a possible edge dislocation. This is not entirely unexpected, as a ^3He atom in solid ^4He exhibits a high rate of diffusion. Such “blips” in the energy of the ^3He in the interstitial solid occur occasionally throughout our simulation, but account for no more than 5% of configurations.

System	Energy (K)
2D Int. ^4He - Pure ^4He	50.27 ± 0.54
2D Int. ^3He - Sub. ^4He	50.41 ± 0.55
3D Int. ^4He - Pure ^4He	22.4 ± 1.3
3D Int. ^3He - Sub. ^4He	24.1 ± 1.2

TABLE I: Excitation energy of an interstitial ^4He atom, as calculated by the difference in energy between (1) the pure solid and the interstitial ^4He solid, and (2) the substitutional solid and the interstitial ^4He solid.

In Table I we show the activation energy of an interstitial ^4He atomic defect. This is calculated by subtracting the total energy of the pure solid from the total energy of the interstitial ^4He solid. If the interstitial ^3He solid is actually the substitutional solid with an added interstitial ^4He atom, as we propose it is based on the distribution functions above, then the activation energy can also be calculated by subtracting the total energy of the substitutional solid from the total energy of the interstitial ^3He solid. We find that both methods give activation energies in agreement with one another.

We have also estimated the effective mass of the ^3He impurity in solid 2D and 3D ^4He using our data on the imaginary time diffusion following Ref. 25. Namely, we approximate the low-energy (which dominates the dispersion near the Γ point of the Brillouin zone of both the triangular 2D solid and of the hexagonal closed packed 3D lattice)

$$E(k) = \Delta + \frac{\hbar^2k^2}{2m^*}. \quad (1)$$

It is straightforward to carry out the imaginary-time evolution for this spectrum and to calculate the average of $(r(0) - r(\tau))^2$, where $r(\tau)$ is the impurity coordinate in imaginary time. We find that,

$$\frac{m}{m^*} = \lim_{\tau \to \beta/2} \frac{\langle (r(0) - r(\tau))^2 \rangle}{2d\lambda} \frac{\beta}{\tau(\beta - \tau)}, \quad (2)$$

where $\lambda = \hbar^2/(2m)$ and d is the dimensionality. In Fig. 8 we plot the right-hand-side of the above equation as calculated from our simulation for the 2D (Fig. 8(top)) and 3D (Fig. 8(bottom)) case. We find that in the 2D case the effective mass ratio of the ^3He impurity at $T = 1K$ is 5.10 ± 0.02 while at $T = 0.5 K$ it increases to 9.06 ± 0.04.

In the 3D case we have available results only for $T = 1 K$, where the substitutional and the interstitial impurity masses are found to be 5.67 ± 0.03 and 5.47 ± 0.04 respectively.
FIG. 9: The one-body density matrix, $n(r)$. Although no difference is observed between the pure solid and the substitutional solid, the interstitial solid clearly shows a significant enhancement of $n(r)$ quantity.

V. OFF-DIAGONAL ONE-BODY DENSITY MATRIX

In Fig. 9 we compare the one-body density matrix $n(r)$ for (a) defect-free solid ^4He (solid line), (b) solid ^4He with a substitutional ^3He impurity (dotted line), (c) solid ^4He with an interstitial ^4He defect (long-dashed line), (d) solid ^4He with an interstitial ^3He impurity (dashed line), and Notice that the substitutional ^3He impurity and the pure solid have similar one-body density matrices. On the contrary, a ^4He solid with interstitial ^3He impurity and a ^4He solid with interstitial ^4He atoms have one-body density matrices which are significantly enhanced at long distances. This result agrees with the fact that winding numbers (and hence superflow) are observed in the interstitial solid (see Table II). Notice that these superfluid fractions are very high considering that the simulation was carried out at 1K. The reason for these high su-

2D	3D	
Interstitial ^3He	0.021(7)	0.007(4)
Interstitial ^4He	0.011(6)	0.012(5)

TABLE II: Supersolid fraction, ρ_s/ρ, in the presence of an interstitial atom. No global permutations were observed for the perfect lattice and the substitutional impurity.
superfluid fractions is finite size effects. These results for the superfluid fraction are presented in order to make the case that a interstitial impurity has a very similar effect on the superfluid fraction and OBDM as an interstitial 4He atom.

In Fig. 3 we compare the one-body density matrix for the 3D results. As in 2D, both the pure solid and the substitutional solid show exponential decay of $n(r)$. Although the enhancement of $n(r)$ at large distance is not obvious for the interstitial 3He solid, it is very obvious for the interstitial 4He solid. This may be due to a shorter MC run as compared to the 2D data. In any case, once again both interstitial solids display superfluidity, while the pure and substitutional solids do not (see Table II).

In Fig. 4 (for 2D) and in Fig. 5 (for 3D) we present a histogram of cycles (i.e., how often in the simulation we encounter cycles of exchanges involving a given number of particles). Notice that both 2D and 3D case, the pure solid and the 3He substitutional solid has only one or two particle permutation cycles, while when an interstitial 3He or 4He atom is introduced, it gives rise to permutations involving up to a 10 atom chain, which is as long as the longest possible distance in our lattice. This indicates that the results may not be a finite-size effect.

VI. DISCUSSION

One of the main conclusions of the present paper is that the added interstitial impurity in both 2D and 3D 4He becomes solid by creating a interstitial 4He defect; we believe that this result is firm and it is not subject to finite size effects. Furthermore, we find that the effective mass of a 3He impurity atom in both 2D and 3D solid 3He is large at $T = 1$ K ($m^*/m \sim 5$) and at a lower temperature of 500 mK in 2D it becomes even larger ($m^*/m \sim 9$).

In addition, we find that the above mentioned effect (i.e., the promotion of a 4He atom to the interstitial band by the impurity) gives rise to a non-zero superfluid response and a significant enhancement of the OBDM at long-distances. This suggests that, provided that this effect persists when a finite density of 3He impurities is present and, provided that such a metastable state can be created and maintained, 4He solid with such impurities should be a supersolid. However, this can not be established by the present calculation done for a single impurity in a pure 4He solid and it depends on a number of other factors. For example, while we have clearly demonstrated that a single 3He impurity acts as a donor of 4He atoms to the interstitial (“conduction”) band, the fate of these freed bosonic “carriers” is not certain when there is a finite density of 3He impurities. In this case the created interstitial 4He atoms can phase-separate in a similar way as vacancies do, or they may bind to existing defects, such as, dislocations, domain walls, or grain boundaries or even remain free. It is not clear that such interstitial defects exist in the 4He solid caused by 3He or other impurities. This is an issue which could depend on the process of the crystal growth.

A 2D 4He solid only exists as films on substrates, such as on graphite. The phase diagrams of first, second, third and fourth layer of 4He on graphite, as a function coverage, has been studied by PIMC simulation. The role of substrate corrugations, which is missing from the present simulation of the ideal 2D 4He, is important and the interplay of these substrate potential corrugations with the helium-helium interaction gives rise to a wealth of interesting phases. It is quite possible, however, that the main conclusion of the present paper, that introducing an interstitial 3He impurity is solid 4He leads to the promotion of a 4He atom to an interstitial position while the 3He impurity becomes substitutional, may remain valid even in the case of substrate corrugations.

The superfluid response which was calculated at 1 K and is given in Table II is very large considering the fact that the calculation was done at such a high temperature. This is a finite-size effect but at a much lower temperature the superfluid response is expected to be greater. A calculation of the superfluid density at a significantly lower temperature requires much larger computational time scales in order to be able to accurately sample it. In the 3D case, the zero temperature condensate fraction obtained as the asymptotic value (infinite distance value) of the off-diagonal OBDM at zero temperature, is much smaller by at least two orders of magnitude (as seen from Fig. 10). Therefore, as is well-known, there is a large factor relating the superfluid response and the actual condensate fraction. It is clear that introducing just a single impurity and taking the infinite volume limit (or infinite area limit in 2D), the superfluid density and the condensate fraction should vanish. It is interesting, however, the fact that the ratio of the values of both these two quantities to the impurity fraction (the impurity fraction is $1/N$, where N is the total number of 4He atoms considered) is a number of order unity. These reported results on the off-diagonal OBDM and superfluid density, have only a qualitative value and one cannot draw firm conclusions because of a) finite size effects and b) they refer to the case of a single 3He impurity or single 4He interstitial.

VII. ACKNOWLEDGMENTS

This work was partially supported by a NASA grant NAG3-2867 and the calculations were performed on the Florida State University High-Performance-Computing cluster.
1. E. Kim and M. H. W. Chan, Nature 427, 225 (2004); Science 305, 1941 (2004)
2. N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. 94, 155302 (2005). E. Burovski, et al., Phys. Rev. Lett. 94, 165301 (2005).
3. D. M. Ceperley and B. Bernu, Phys. Rev. Lett. 93, 155303 (2004). B. K. Clark and D. M. Ceperley, Phys. Rev. Lett. 96, 105302 (2006). M. Boninsegni et al., Phys. Rev. Lett. 96, 105301 (2006).
4. D. M. Ceperley and B. Bernu, Phys. Rev. Lett. 93, 155303 (2004). B. K. Clark and D. M. Ceperley, Phys. Rev. Lett. 96, 105303 (2004).
5. M. Boninsegni and N. V. Prokof'ev, Phys. Rev. Lett. 95, 237204 (2005).
6. M. Boninsegni, N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 96, 070601 (2006); Phys. Rev. E 74, 036701 (2006).
7. M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokof'ev, B. V. Svitsunov, and M. Troyer, Phys. Rev. Lett. 97, 0804101 (2006).
8. L. Pollet, M. Boninsegni, A. B. Kuklov, N. V. Prokof'ev, B. V. Svitsunov, and M. Troyer, Phys. Rev. Lett. 98, 135301 (2007).
9. M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokof'ev, B. V. Svitsunov, and M. Troyer, Phys. Rev. Lett. 99, 035301 (2007).
10. L. Pollet, M. Boninsegni, A. B. Kuklov, N. V. Prokof'ev, B. V. Svitsunov, and M. Troyer, Phys. Rev. Lett. 101, 097202 (2008).
11. A. T. Dorsey, P. M. Goldbart, and J. Toner, Phys. Rev. Lett. 96, 056301 (2006).
12. E. Manousakis, Europhys. Lett. 78, 36002 (2007).
13. J. Toner, Phys. Rev. Lett. 100, 035302 (2008).
14. A.S.C. Rittner and J.D. Reppy, Phys. Rev. Lett., 97, 165301 (2006); 98, 175302 (2007).