Cognitive inflexibility in a young woman with pyromania

AUSTIN W. BLUM1*, BRIAN L. ODLAUG2,3 and JON E. GRANT1

1Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
2Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
3H. Lundbeck A/S, Valby, Denmark

(Received: October 6, 2017; accepted: January 21, 2018)

BACKGROUND

Pyromania is a disorder characterized in DSM-5 by repetitive and deliberate fire-setting that is unrelated to external reward and not better explained by another diagnosis or behavior (e.g., drug use) (American Psychiatric Association, 2013). Although fire-setting is a common behavior and many people are fascinated by fire, pyromania is a rare disorder associated with loss of control over the behavior and often legal consequences (Burton, McNiel, & Binder, 2012; Grant & Odlaug, 2011). Like those with other putative impulse control disorders (ICDs), people with pyromania have strong urges to engage in harmful behaviors and experience an intense high or “rush” from the behavior.

It is hypothesized that pyromania may share a pathophysiological basis with other urge-driven behaviors (Grant & Odlaug, 2011). The neurobiological underpinnings of pyromania, however, are poorly understood. In one case report, neuroimaging – using single photon emission computed tomography – found a left inferior frontal perfusion deficit in an 18-year-old male with pyromania (Grant, 2006). In another case report, neuropsychological assessment revealed impairments in attention, verbal/visual memory, and executive functioning (but intact visuospatial skills) in an individual with pyromania (Parks et al., 2005). No study, to our knowledge, however, has examined dissociable cognitive functions in pyromania using previously validated computerized paradigms. Neurocognitive assessments may be useful in understanding the neural substrates of pyromania and subsequently treating the disorder. We hypothesized that the patient with pyromania described here would show deficits in impulse control and decision-making as compared with healthy controls.

CASE PRESENTATION/STUDY

The patient is a 24-year-old college-educated female with a history of alcohol abuse (in remission) who self-referred for management of fire-setting that had resulted in legal problems. She had set innumerable fires beginning from childhood and continued to have moderate-to-severe urges to set fires daily upon presentation to our clinic. She had been arrested for setting multiple fires in trash cans and for manufacturing and igniting incendiary devices. The diagnosis of pyromania was confirmed by a structured clinical interview with a board-certified psychiatrist with extensive experience in the diagnosis and treatment of ICDs. She had no current or lifetime history of other psychiatric disorders.

After making initial treatment recommendations and obtaining written informed consent, we performed cognitive testing using well-validated translational paradigms from the Cambridge Neuropsychological Test Automated Battery (www.cambridgecognition.com), including the Intra–Extra Dimensional Set Shift task (IED) (examining adaptability to rule changes), Stop Signal Task (assessing control...
over pre-potent motor responses), One Touch Stockings of Cambridge task (measuring executive planning), Cambridge Gambling Task (testing decision-making abilities and risk-taking actions), and Spatial Working Memory task (assessing errors incurred and strategy use during a visual search task). Raw scores on tasks were transformed to standardized \(z \) scores.

The results of the assessments are summarized in Table 1. Cognitive performance was comparable with normative data from a sample of 19 healthy control subjects, except that the patient made more total errors (\(z = 1.69 \)) and extra-dimensional or shifting errors (\(z = 1.63 \)) on the IED.

DISCUSSION

Pyromania is currently categorized as an ICD in DSM-5 based on phenomenological similarities between these conditions (in this case, rising tension before the act of fire-setting, followed by relief or pleasure after fire-setting or watching the aftermath). Neurocognitive data from this case report, however, suggest that impairments in planning and decision-making, common in other ICDs, may not characterize the behavior of all patients with pyromania. Contrary to our expectations, our participant showed deficits in cognitive flexibility – a feature of compulsivity – that resemble findings seen in obsessive–compulsive disorder (Chamberlain, Leppink, Redden, & Grant, 2016). Some additional evidence for pyromania as a compulsive behavior comes from a case report in which an 18-year-old male with pyromania was successfully treated with cognitive behavioral therapy including imaginal exposure with response prevention and cognitive restructuring of fire-setting urges (Grant, 2006).

Although we have presented data only from a single participant, these findings raise the question of how best to conceptualize pyromania. Is pyromania related to the obsessive–compulsive spectrum of disorders, as proposed by McElroy and colleagues (McElroy, Hudson, Pope, & Keck, 1991; McElroy, Hudson, Pope, Keck, & Aizley, 1992; McElroy, Keck, & Phillips, 1995) and Hollander and Wong (1995)? It is also possible that certain disorders historically characterized as impulsive, such as pyromania, may exhibit features of compulsivity as well, suggestive of a heterogeneous neurobiology (Grant & Potenza, 2006). Future studies are needed to investigate the possible relationship between compulsivity and impulsivity in pyromania and examine its implications for prevention and treatment strategies.

CONCLUSIONS

The neurobiological basis of pyromania is poorly understood. These neurocognitive data – albeit from a single patient – suggest that pyromania may have compulsive features. Further research, incorporating larger patient samples, is needed to understand the neurobiology of pyromania and its relationship with other disorders.

Table 1. Cambridge Neuropsychological Test Automated Battery (CANTAB) performance in a 24-year-old woman with pyromania compared with age-and gender-matched normative data

Task measure	Raw score	\(z \)
Intra–Extra Dimensional Set Shift task, total errors (adjusted)	57	1.69
Intra–Extra Dimensional Set Shift task, ED shift errors	26	1.63
Stop Signal Task, SSRT (ms)	142.5	−0.84
One Touch Stockings of Cambridge task, problems solved	20	−0.82
Cambridge Gambling Task, risk adjustment	0.87	0.31
Cambridge Gambling Task, overall proportion bet	0.59	0.60
Cambridge Gambling Task, quality of decision-making	1.00	−0.91
Spatial Working Memory task, strategy use	27	0.71
Spatial Working Memory task, total errors	26	0.28

Note. Bold indicates \(z > 1.5 \). In all cases, positive \(z \) scores indicate worse performance versus healthy controls. ED: extra-dimensional; SSRT: stop-signal reaction time.

*Normative data are derived from an unpublished database of participants with no current or lifetime psychiatric disorders (\(n = 19 \)).

REFERENCES

American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders* (5th ed.). Arlington, VA: American Psychiatric Association.
Cognitive inflexibility in a woman with pyromania

Burton, P. R. S., McNiel, D. E., & Binder, R. L. (2012). Firesetting, arson, pyromania, and the forensic mental health expert. *The Journal of the American Academy of Psychiatry and the Law, 40*(3), 355–365.

Chamberlain, S. R., Leppink, E. W., Redden, S. A., & Grant, J. E. (2016). Are obsessive-compulsive symptoms impulsive, compulsive or both? *Comprehensive Psychiatry, 68*, 111–118. doi:10.1016/j.comppsych.2016.04.010

Grant, J. E. (2006). SPECT imaging and treatment of pyromania. *The Journal of Clinical Psychiatry, 67*(6), 998. doi:10.4088/JCP.v67n0619f

Grant, J. E., & Odlaug, B. L. (2011). Assessment and treatment of pyromania. In P. E. Nathan (Series Ed.), J. E. Grant & M. N. Potenza (Vol. Eds.), *The Oxford library of psychology: Oxford handbook of impulse control disorders* (pp. 353–359). New York, NY: Oxford University Press.

Grant, J. E., & Potenza, M. N. (2006). Compulsive aspects of impulse-control disorders. *The Psychiatric Clinics of North America, 29*(2), 539–551. doi:10.1016/j.psc.2006.02.002

Hollander, E., & Wong, C. M. (1995). Obsessive-compulsive spectrum disorders. *The Journal of Clinical Psychiatry, 56*(Suppl. 4), 3–6; discussion 53–55.

McElroy, S. L., Hudson, J. I., Pope, H. G., & Keck, P. E. (1991). Kleptomania: Clinical characteristics and associated psychopathology. *Psychological Medicine, 21*(1), 93–108. doi:10.1017/S0033291700014690

McElroy, S. L., Hudson, J. I., Pope, H. G., Keck, P. E., & Aizley, H. G. (1992). The DSM-III-R impulsive control disorders not elsewhere classified: Clinical characteristics and relationship to other psychiatric disorders. *The American Journal of Psychiatry, 149*(3), 318–327. doi:10.1176/appi.ajp.149.3.318

McElroy, S. L., Keck, P. E., & Phillips, K. A. (1995). Kleptomania, compulsive buying, and binge-eating disorder. *The Journal of Clinical Psychiatry, 56*(Suppl. 4), 14–26; discussion 27.

Parks, R. W., Green, R. D., Girgis, S., Hunter, M. D., Woodruff, P. W., & Spence, S. A. (2005). Response of pyromania to biological treatment in a homeless person. *Neuropsychiatric Disease and Treatment, 1*(3), 277–280.