An Immune System Inspired Theory for Crime and Violence in Cities: Media Summary

Article · August 2017

1 author:

Soumya Banerjee
University of Oxford
55 PUBLICATIONS 264 CITATIONS

Some of the authors of this publication are also working on these related projects:

Project
Quantitative theory of violence View project

All content following this page was uploaded by Soumya Banerjee on 28 August 2017.

The user has requested enhancement of the downloaded file.
An Immune System Inspired Theory for Crime and Violence in Cities: Media Summary

Soumya Banerjee1,2,3*

1University of Oxford
Oxford, UK
2Ronin Institute
Montclair, USA
3Complex Biological Systems Alliance
North Andover, USA
MEDIA SUMMARY

Taxation and death may be inevitable but what about crime? It is ubiquitous and seems to have been around for as long as human beings themselves. A disease we cannot shake. However, therein lies an idea, one that Oxford Mathematician Souyma Banerjee and colleagues have used as the basis for an understanding and quantifying crime.

Their starting-point is that crime is analogous to a pathogenic infection and the police response to it is similar to an immune response. Moreover, the biological immune system is also engaged in an arms race with pathogens. These analogies enable an immune system inspired theory of crime and violence in human societies, especially in large agglomerations like cities.

An immune system inspired theory of crime can provide a new perspective on the dynamics of violence in societies. The competitive dynamics between police and criminals has similarities to how the immune system is involved in an arms race with invading pathogens. Cities have properties similar to biological organisms - the police and military forces would be the immune system that protects against invading internal and external forces.

The arms race between immune system and pathogens is similar to the competitive dynamics between police and criminals. Cities have properties similar to biological organisms and in this theory the police and military would be the immune system that protects against both internal and external forces. The system is depicted in Fig. 1.

Police are activated by crime just like immune system cells are activated by specialized cells called dendritic cells. Non-criminals are turned to criminals in the presence of crime. Hence crime is like a virus. This specifically simulates a spread of disorder. The police is analogous to the immune system and criminals are like infected cells. Police also remove criminals similar to how T-cells kill and remove infected cells. The analogies between the immune system and police are summarized in Table 1.

Table 1: Analogies for an Immunological Theory of Crime

Human Societies	Immune System
Crime	Virus
Non-Criminals	Susceptible normal cells
Criminals	Infected cells
Police	Immune System
Police first responders	Innate immune system (dendritic cells)
Specialized police forces	Adaptive immune system (T-cells and B-cells)
Police taking out criminals	T-cells killing infected cells
Police removing crime	Clearance of virus by B-cells
Crime database	Immune memory
Police crimes against innocent people	Immune system attacking itself
Police stations	Lymph nodes
Patrolling police	Circulating T-cells
Figure 1. A simplified depiction of the arms race between police and criminals. The interaction between criminals and normal people (non-criminals) causes crime. Crime triggers a police response. Police in turn respond by removing crime and removing criminals (adapted from [2]).

The model is diagrammatically represented in Fig. 1.

This model can be simplified under conditions of steady state (holds during normal peaceful time periods and not during times of violence) to yield an equation for crime [2]:

\[C_{ss} = \frac{\alpha \cdot D_C \cdot D_{NC}}{\beta \cdot D_{LE}} \]

(2)

where \(C_{ss} \) is the number of crimes in cities at steady state, \(N_{criminals} \) is the number of criminals, \(N_{non-criminals} \) are the number of non-criminal people, \(N_{police} \) denotes the number of police in cities and \(\alpha, \beta \) refer to constants of proportionality in the relationship. Equation (2) is a general equation which unites crime in different contexts: from crime in cities to crime in universities [2].

The work has implications for public policy, ranging from how much financial resource to invest in crime fighting, to optimal policing strategies, pre-placement of police, the number of police to be allocated to different cities, and how to tackle sensitive issues like immigration. The research can also be applied to other forms of violence in human societies (like terrorism) and violence in other primate societies and social insects like ants.
The work is a first step towards a deterministic theory of human behavior and violence in societies. Isaac Asimov had written imaginatively about a field of predictive human behavior which he called psychohistory. Although this remains an extremely ambitious goal, in the era of big data we may be able to predict behaviours of large ensembles of people without being able predict actions of individuals.

The researchers hope this will be the first step towards a quantitative theory of violence and conflict in human societies, one that contributes further to the pressing debate about how to design smarter and more efficient cities that can scale and be sustainable despite population increase - a debate that mathematicians, especially in Oxford, are fully engaged in.

Acknowledgements
The author thanks Dyrol Lumbard in editing and proofreading this text.

References

[1] Bettencourt L, Lobo J, Helbing D, Kühnert C and West G (2007) Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America; 104 (17): 7301–7306.

[2] Soumya Banerjee, Pascal van Hentenryck and Manuel Cebrian. Competitive dynamics between criminals and law enforcement explains the super-linear scaling of crime in cities. Palgrave Communications, doi:10.1057/palcomms.2015.22, 2015

[3] Soumya Banerjee and Melanie Moses. Scale invariance of immune system response rates and times: perspectives on immune system architecture and implications for artificial immune systems. Swarm Intelligence, 2010

[4] Soumya Banerjee, Scaling in the Immune System, PhD Thesis, University of New Mexico, USA, 2013

[5] Soumya Banerjee and Melanie Moses (2010) Modular RADAR: An immune system inspired search and response strategy for distributed systems. In: E. Hart et al. (eds) Artificial Immune Systems, 9th International Conference, ICARIS, 2010, Lecture Notes in Computer Science, Springer Verlag: Berlin, Germany, vol 6209, pp 116–129.

[6] Melanie Moses and Soumya Banerjee, Biologically Inspired Design Principles for Scalable, Robust, Adaptive, Decentralized Search and Automated Response (RADAR), Proceedings of the 2011 IEEE Conference on Artificial Life, 30-37, 2011

[7] Soumya Banerjee and Melanie Moses, Immune System Inspired Strategies for Distributed Systems. arXiv preprint arXiv:1008.2799, 2010

[8] Soumya Banerjee, Drew Levin, Melanie Moses, Fred Koster and Stephanie Forrest. The value of inflammatory signals in adaptive immune responses. In: Lio, Pietro et al. (eds.) Artificial Immune Systems, 10th International Conference, ICARIS, Lecture Notes in Computer Science, Springer Verlag: Berlin, Germany, vol 6825, pp 1–14, 2011

[9] Soumya Banerjee and Melanie Moses (2009) A hybrid agent based and differential equation model of body size effects on pathogen replication and immune system response. In: P.S. Andrews et al. (eds) Artificial Immune Systems, 8th International Conference, ICARIS, 2009, Lecture Notes in Computer Science, Springer Verlag, Berlin: Germany, vol 5666, pp 14–18.

[10] Soumya Banerjee and Joshua Hecker. A Multi-Agent System Approach to Load-Balancing and Resource Allocation for Distributed Computing, Complex Systems Digital Campus 2015, World e-Conference, Conference on Complex Systems, 2015
[11] Soumya Banerjee. Analysis of a Planetary Scale Scientific Collaboration Dataset Reveals Novel Patterns. arXiv preprint arXiv:1509.07313, 2015
[12] Soumya Banerjee. An Immune System Inspired Approach to Automated Program Verification. arXiv preprint arXiv:0905.2649. 2009
[13] Drew Levin, Stephanie Forrest, Soumya Banerjee, Candice Clay, Judy Cannon, et al. 2016, A spatial model of the efficiency of T cell search in the influenza-infected lung. Journal of Theoretical Biology.
[14] Banerjee S, Levin D, Moses M, Koster F, Forrest S (2011) The Value of Inflammatory Signals in Adaptive Immune Responses. In: ICARIS 2011. Springer, pp. 1–14. URL http://www.springerlink.com/content/u634hj83w62w5383/.
[15] Soumya Banerjee. A Biologically Inspired Model of Distributed Online Communication Supporting Efficient Search and Diffusion of Innovation. Interdisciplinary Description of Complex Systems 14: 10–22, 2016
[16] Charles A. Janeway and Paul Travers. Immunobiology: the Immune System in Health and Disease. Garland Publishing Inc., New York, second edition edition, 1996.
[17] Soumya Banerjee, Jeremie Guedj, Ruy Ribeiro, Melanie Moses, Alan Perelson, 2016, Estimating Biologically Relevant Parameters under Uncertainty for Experimental Within-Host Murine West Nile Virus Infection. Journal of the Royal Society Interface 13: 20160130.
[18] Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, et al. (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373: 123–6.
[19] Soumya Banerjee, A Stage Structured Hybrid Model for Disease Dynamics Modelling. In: 5th Student Conference on Complexity Science, (2015) (accepted). pp. 1–5. doi:10.13140/RG.2.1.1465.6087. URL https://www.researchgate.net/publication/288445964_A_Stage_Structured_Hybrid_Model_for_Disease_Dynamics_Modelling, 2015
[20] Davies T P, Fry H M, Wilson A G and Bishop S R. A mathematical model of the London riots and their policing. Scientific Reports; 3: 1303, 2013.
[21] Keizer K, Lindenberg S and Steg L, 2008, The spreading of disorder. Science; 322 (5908): 1681–1685.
[22] Song, Chaoming and Koren, Tal and Wang, Pu and Barabasi, Laszlo Nature Physics, Modelling the scaling properties of human mobility, 10(6), 818−823, 2010
[23] Wiegel, F.W., Perelson, A.W.: Some Scaling Principles for the Immune System. Immunology and Cell Biology 82, 127–131, 2004
[24] Isaac Asimov, Foundation, Everyman's Library, 2010.
[25] Rangel-Moreno, Javier and Hartson, Louise and Navarro, Carmen and Gaxiola, Miguel and Selman, Moises and Randall, Troy D. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis, The Journal of clinical investigation, 116(12), 3183–3194, 2006.
[26] http://www.ted.com/talks/marc_goodman_a_vision_of_crimes_in_the_future. URL Accessed February 2016.
[27] Ellison, Sara Fisher and Mullin, Wallace P, Diversity, social goods provision, and performance in the firm, Journal of Economics and Management Strategy, 23(2), 465-481, 2014.
[28] Johnson N et al. Pattern in escalations in insurgent and terrorist activity. Science; 333 (6038): 81–84, 2011.
[29] DeDeo, Simon and Krakauer, David C and Flack, Jessica C. Inductive game theory and the dynamics of animal conflict, PLoS Computational Biology, 6(5),e1000782, 2010.
[30] Letendre, Kenneth, Variation and organization in social behavior: infectious disease and human intergroup conflict and warfare; and the organization of foraging behavior in harvester ants, PhD Thesis, The University of New Mexico, 2012.
[31] P Liu, A Calderon, G Konstantinidis, J Hou, S Voss, X Chen, F Li, S Banerjee, J Hoffmann, C Theiss, L Dehmelt, Yao-Wen Wu, A Bioorthogonal Small-Molecule- Switch System for Controlling Protein Function in Live Cells. Angewandte Chemie – International Edition, 1–8, 2014

[32] Curt Balch, Hugo Arias-Pulido, Soumya Banerjee, Alex Lancaster, Kevin B Clark, Michael Perilstein, Brian Hawkins, John Rhodes, Piotr Sliz, Jon Wilkins, Thomas W. Chittenden. Science and technology consortia in U.S. biomedical research: a paradigm shift in response to unsustainable academic growth. BioEssays 37: 119–22, 2015.

[33] Soumya Banerjee. Citizen Data Science for Social Good: Case Studies and Vignettes from Recent Projects. doi:10.13140/RG.2.1.1846.6002. URL https://www.researchgate.net/publication/283119007_Citizen_Data_Science_for_Social_Good_Case_Studies_and_Vignettes_from_Recent_Projects, 2015

[34] Glaeser E, 2011, Triumph of the City: How Our Greatest Invention Makes us Richer, Smarter, Greener, Healthier and Happier. Pan Macmillan: London.

[35] MATLAB and Statistics Toolbox Release, 2012, The MathWorks, Inc., Natick, Massachusetts, United States.

[36] Pettigrew, Thomas F. Intergroup contact theory, Annual review of psychology, 49(1), 65-85,1998.

[37] http://chronicle.com/article/The-Science-of-Hatred/143157, URL accessed March 2016.

[38] Soumya Banerjee, Analysis of a Planetary Scale Scientific Collaboration Dataset Reveals Novel Patterns, First Complex Systems Digital Campus World E-Conference 2015, Springer, 85-90, 2017

[39] Soumya Banerjee, A Roadmap for a Computational Theory of the Value of Information in Origin of Life Questions, Interdisciplinary Description of Complex Systems, 14(3), 314-321, 2016