The Strategy of Picornavirus Evading Host Antiviral Responses: Non-structural Proteins Suppress the Production of IFNs

Yining Wang¹, Lina Ma¹, Laszlo Stipkovits², Susan Szathmary², Xuerui Li⁺⁺ and Yongsheng Liu⁺⁺

¹ State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China, ² RT-Europe Research Center Ltd., Budapest, Hungary

Viral infections trigger the innate immune system to produce interferons (IFNs), which play important role in host antiviral responses. Co-evolution of viruses with their hosts has favored development of various strategies to evade the effects of IFNs, enabling viruses to survive inside host cells. One such strategy involves inhibition of IFN signaling pathways by non-structural proteins. In this review, we provide a brief overview of host signaling pathways inducing IFN production and their suppression by picornavirus non-structural proteins. Using this strategy, picornaviruses can evade the host immune response and replicate inside host cells.

Keywords: IFNs, picornaviruses, non-structural proteins, immune evasion, signaling pathways

INTRODUCTION

Picornaviruses are small, non-enveloped, positive-strand RNA viruses that infect diverse animal and human hosts (Ehrenfeld et al., 2010; Feng et al., 2014b). As one of the largest viral families, picornaviruses contain 31 genera and 54 species, including cardioviruses [e.g., encephalomyocarditis virus (EMCV) and Theiler's virus (TEV)], enteroviruses [e.g., enterovirus 71 (EV71); poliovirus (PV); coxsackievirus (CV); and rhinovirus (RV)], hepatitis A virus (HAV), and foot-and-mouth disease virus (FMDV) (Feng et al., 2014b). Picornavirus genomes are single-stranded RNAs (7,000 to 9,000 nucleotides in length) which consist (from 5' to 3') of a 5' untranslated region (UTR), a single open-reading frame (ORF), a 3' UTR, and a poly(A) tail (Figure 1; Feng et al., 2014b). The ORF is translated into a polyprotein, which is processed by viral proteases into structural proteins (VP1–VP4) and non-structural proteins (2A, 2B, 2C, 3A, 3B, 3C, and 3D pro, and in some genera, L pro). Structural proteins are used to assemble viral capsids whereas non-structural proteins replicate the genomic RNA in conjunction with cell proteins (Argos et al., 1984; Buenz and Howe, 2006; Ehrenfeld et al., 2010).

Interferons (IFNs) which play important roles in regulation and activation of host immune responses, were first discovered by Isaacs and Lindenmann in 1950s (Isaacs and Lindenmann, 2015; Klotz et al., 2017). IFNs are classified into three categories according to their antiviral activities, genetic, structural and functional features and their cognate receptors (Nagano and Kojima, 1954): type I (IFN-α, IFN-β, IFN-γ, IFN-ε, IFN-ζ, IFN-τ, and IFN-ω), type II (IFN-γ) (Klotz et al., 2017), and type III (IFN-λ1 or IL-29, IFN-λ-2 or IL-28A, IFN-λ-3 or IL-28B, and IFN-λ-4)
(Schroder et al., 2004; González Navajas et al., 2012). Type I IFNs typically have antiviral effects and are the most broadly expressed, well-known antiviral IFNs. Although type I IFNs can be secreted by most parenchymal cells, the main type I IFN producer is plasmacytoid dendritic cell (pDC) (Coccia and Battistini, 2015; Kindler et al., 2016). Type II IFN is produced by activated T cells and NK cells and predominantly induce macrophage activation stimulating their activity against ingested intracellular non-viral pathogens (Coccia and Battistini, 2015). Type III IFNs are produced by epithelial cells, leukocytes, intestinal eosinophils and pDCs (Ank et al., 2006; Hillyer et al., 2012; Raki et al., 2013; Hernandez et al., 2015; Mahlakoiv et al., 2015; Pervolaraki et al., 2017). Type III IFNs are similar to type I IFNs, and also play roles in regulating the host antiviral response (Reid and Charleston, 2014; Kindler et al., 2016).

Viruses develop various strategies to inhibit secretion of IFNs and promote viral replication inside host cells. Mounting evidence shows that infecting viruses can evade IFN response either by suppressing IFN production or by blocking IFN induction of interferon-stimulated gene factors (ISGs) (Zinzula and Battistini, 2015). Type III IFNs are produced by epithelial cells, leukocytes, intestinal eosinophils and pDCs (Ank et al., 2006; Hillyer et al., 2012; Raki et al., 2013; Hernandez et al., 2015; Mahlakoiv et al., 2015; Pervolaraki et al., 2017). Type III IFNs are similar to type I IFNs, and also play roles in regulating the host antiviral response (Reid and Charleston, 2014; Kindler et al., 2016).

Viruses develop various strategies to inhibit secretion of IFNs and promote viral replication inside host cells. Mounting evidence shows that infecting viruses can evade IFN response either by suppressing IFN production or by blocking IFN induction of interferon-stimulated gene factors (ISGs) (Zinzula and Tramontano, 2013; Fensterl et al., 2015). Viral non-structural proteases play an important role in this process. In this review, we summarize our current knowledge of the role of picornavirus non-structural proteases in antagonizing IFN induction via different signaling pathways to inhibit host antiviral responses.

SIGNALING PATHWAYS INDUCING IFN PRODUCTION

When viruses infect organisms, the host innate immune system detects the presence of pathogen-associated molecular patterns via host pattern recognition receptors (PRRs) (Vaccari et al., 2014; Coccia and Battistini, 2015). These include transmembrane PRRs such as Toll-like receptors (TLRs), cytosolic RIG-like RNA helicases such as melanoma differentiation-associated gene (MDA-5), retinoic acid induced gene-I (RIG-I), and other molecules (Barbé et al., 2014; Wu and Chen, 2014). PRRs recruit a number of specific adpoter proteins to trigger a downstream signaling cascade and activate three major pathways to produce IFNs: the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) (Coccia and Battistini, 2015), the mitogen-activated protein kinase (MAPK), and the IFN regulatory factor (IRF) pathways (Akira et al., 2006; Honda and Taniguchi, 2006). IFNs can signal in an autocrine or paracrine manner to induce hundreds of ISGs that fortify host defenses (Figure 2; Pham et al., 2016).
interferons are produced mainly by antigen-presenting cells and epithelial cells (Chasset and Arnaud, 2017), while the major cell type responsible for type I IFN production is the pDC (Mackern-Oberti et al., 2015; Chasset and Arnaud, 2017). Type I IFNs are induced by mitochondrial-associated MAVS, whereas type III IFNs are stimulated by peroxisome-associated MAVS (Odendall et al., 2014). In addition, IRF1 plays a unique role in type III IFN induction while IRF3 and IRF7 play vital roles in type I IFN production (Österlund et al., 2007).

PICORNAVIRUS NON-STRUCTURAL PROTEINS INHIBIT IFN PRODUCTION TO COUNTERACT HOST ANTIVIRAL RESPONSES

While the host secretes IFNs to defend against viral infection, viruses have also developed effective immune evasion mechanisms to counteract the host’s antiviral responses. Numerous studies have demonstrated that picornavirus proteases can cleave adaptors, receptors and regulators involved in the signaling pathways controlling IFN induction to inhibit production of type I IFNs (Wang et al., 2012; Lei et al., 2013). Besides, picornavirus non-structural proteins play important roles in the suppression of IFNs by down-regulating host gene expression and blocking the secretory pathway (Table 1).

However, in some picornaviruses, cooperation between non-structural proteins leads to inhibition of IFN induction (Sim et al., 2005; Chase and Semler, 2012).

Lpro

Lpro of FMDV

Foot-and-mouth disease virus Lpro is a kind of papain-like cysteine protease, which was first identified by Strebel and Beck (1986). FMDV’s RNA genome encodes a polypeptide, Lpro is located near its N-terminus (residue ~2330) and there are two forms of FMDV Lpro, Laboratory (201 aa) and Lb (173 aa) (Kirchweger et al., 1994). FMDV infection selectively induces IFN-α1 mRNA, and IFN-β mRNA levels become elevated only after a significant duration of infection (24 h) (de Los Santos et al., 2006). By inhibiting IFN production (including type I and type III IFNs) at the transcriptional and translational levels, FMDV Lpro down regulates the host innate immune response to FMDV infection. FMDV Lpro can repress IFN-β transcription by reducing IFN-stimulated gene products (Li D. et al., 2016) decreasing IFN-β mRNA levels during early infection and inhibiting activation of NF-κB via degradation of the NF-κB subunit p65/RelA and ubiquitination of RIG-I, TBK1, and TRAF3/6, resulting decreased IRF-3/7 protein expression (de Los Santos et al., 2007; Wang et al., 2011). Additionally, Lpro contributes to induce the cleavage of host eukaryotic translation initiation factor 4γ (eIF4G) (Devaney et al., 1988; Belsham et al., 2000), shutting off host cap-dependent mRNA translation, thus
Non-structural Proteases	Virus	Involved signaling pathways/structure	Type of IFN	Reference
Lpro	FMDV	Cleaving eIF4G, shutting off host cap-dependent mRNA translation, limiting the synthesis of host proteins	Type I IFNs	Devaney et al., 1988; Belsham et al., 2000; de Los Santos et al., 2006
		Degrading NF-κB subunit p65/RelA, ubiquitinating RIG-I, TBK1, and TRAF3/6, decreasing IRF-3/7, inhibiting NF-κB	IFN-β	de Los Santos et al., 2007; Wang et al., 2011
		Via Lpro’s catalytic activity and SAP domain	IFN-λ1	Wang et al., 2011
		Disrupting NF-κB and IRF via RIG-I/MDA5	IFN-λ1	Shi et al., 2011; Wang et al., 2011
EMCV		Lpro hinge domain interacting with Ran and disrupting the Ran GDP-GTP gradient, inhibiting nucleocytoplasmic transport	Unclear	Porter et al., 2006; Ma, 2007; Bacoldtav and Palmenberg, 2013
TMEV		Interfering IRF3	IFN-α/β	Hato et al., 2010
2A	EV71	Cleaving MAVS and MDA5, preventing IRF3 phosphorylation	Type I IFNs	Feng et al., 2014a
		Inhibiting induction of downstream IFN-stimulated genes, the detailed mechanism is controversial	Unclear	Lu et al., 2012; Liu et al., 2014
		Downregulating KPNA1, reducing formation of the STAT/karyopherin-α1 (KPNA1) complex	Unclear	Wang et al., 2017
		Reducing serine phosphorylation of STAT1 and inactivating extracellular signal-regulated kinases	IFN-γ	Morrison and Racaniello, 2009
RV		Cleaving MAVS	Unclear	Mukherjee et al., 2011
CVB3/PV		Cleaving MAVS and MDA5	Type I IFNs	Feng et al., 2014a
2B	HAV	Influencing MAVS function	IFN-β	Ashutosh et al., 2015
		Interfering TBK1/IKKε kinase complex, inhibiting RIG-I/MDA-5 and IRF3	IFN-β	Paulmann et al., 2008
2C	EV71	Inhibiting IKKβ phosphorylation and NF-κB activation via PP1 binding NF-κB	Unclear	Zheng et al., 2011; Li Q. et al., 2016
		Suppressing p65/p50 dimerization by competing p65 IPT domain, suppressing the activation of NF-κB	Unclear	Du et al., 2015
	CVA16/CVB3	Inhibiting IKKβ phosphorylation and NF-κB activation via PP1 binding	Unclear	Paulmann et al., 2008; Du et al., 2015
3A	FMDV	Reducing expression of MDA5, RIG-I and VISA by decreasing their mRNA levels, inhibiting RLR pathway	IFN-β	Li D. et al., 2016
	EV71	Cleaving TRIF and TBK1, inhibiting TLR3 and RIG-I, preventing activation of IRF3 and IRF7	IFN-β	Lei et al., 2010
		Inhibiting IRF7 and IRF9	Type I IFNs	Hung et al., 2011; Lei et al., 2013
		Cleaving TAK1/TAB1/TAB2/TAB3 complex, NF-κB	Unclear	Lei et al., 2014
		Binding with RIG-I, impairing RIG-I’s interaction with MAVS	Type I IFNs	Xu et al., 2014
		Cleaving TAK1 to inhibit the NF-κB response	Unclear	Rui et al., 2017
	CV-A16, CV-A6, EV-D68	Binding with MDA5, inhibiting the interaction with MAVS	Type I IFNs	Rui et al., 2017
	CVB3	Cleaving MAVS and TRIF	Type I IFNs	Mukherjee et al., 2011
	EMCV	Cleaving TANK, disrupting the formation of the TANK–TBK1–IKKε–IRF3 tetramer, decreasing TBK1- and IKKε-mediated IRF3 phosphorylation, impeding the ability of TANK to inhibit TRAF6-mediated NF-κB signaling	Type I IFNs	Huang et al., 2015, 2017
		Blocking formation of SG	Unclear	
		Cleaving IRF3-5D, inhibits JAK-STAT signaling	Type I IFNs	
		Suppressing STAT1 or IRF3 binding to the IFN-β promoter	Type I IFNs	
	FMDV	Cleaving NEMO	Unclear	Zhao et al., 2007
		Cleaving TANK, generating a 15-kDa N-terminal fragment and impeding TANK’s ability to suppress TRAF6-mediated NF-κB signaling	Unclear	Fan et al., 2017
αIRF3-mediated IFN-α interferes with the transactivation function of IRF3 suppressing GTPase (Bacotdavis and Palmenberg, 2013). EMCV Lpro hinge domain plays a major role in the interaction with Ran (Ma, 2007), suppressing the production of IFN. EMCV Lpro inhibition of nucleocytoplasmic transport (Porter et al., 2006; Ran and disrupts the RanGDP-GTP gradient leading to the Ran-GTPase system. EMCV Lpro directly interacts with nucleocytoplasmic transport of RNA and protein relies on translation whose function is quite similar to Lpro in FMDV.

Enterovirus 71 2A cleaves MAVS from the outer membrane of mitochondria. The cleaved fragments are released into the cytoplasm where they effectively inactivate downstream signaling and cleave MDA5, thus preventing IRF3 phosphorylation, down regulating production of type I IFNs and increasing viral replication (as it was shown in Figure 2; Wang et al., 2013). During this process, EV71 2A cleaves at MAVS residues Gly209, Gly251, and Gly265, with a strong preference for cleavage at Gly251 (Wang et al., 2013). Similarly, Influenza A virus 2A inhibits the production of IFN by cleaving MAVS (Mukherjee et al., 2011). CVB3 (coxackievirus B3) 2A and poliovirus (PV) also mediate the cleavage of MAVS and MDA5, exerting the same functions in inhibiting type I IFNs (Feng et al., 2014a).

Foot-and-mouth disease virus Lpro also antagonizes IFN-λ-1: Lpro’s catalytic activity and SAP domain are involved in the suppression of IFN-λ-1 induction (Wang et al., 2011). In addition, by disrupting activation of NF-κB and IRFs and inhibiting IFN-λ-1 expression induced by RIG-I/MDA5, FMDV Lpro inhibits IFN-λ-1 promoter activation (Wang et al., 2011).

Lpro of Cardiovirus
Cardiovirus polyproteins begin with short N-terminal Leader (L) sequences, EMCV Lpro (~67 residues) and TMEV Lpro (~76 residues) contains common zinc-finger and acidic domains. Although cardiovirus Lpro is different from FMDV Lpro and does not function as a protease, it represses IFN-α/β synthesis during viral infection. In eukaryotes, nucleocytoplasmic transport of RNA and protein relies on the Ran-GTPase system. EMCV Lpro directly interacts with Ran and disrupts the RanGDP-GTP gradient leading to inhibition of nucleocytoplasmic transport (Porter et al., 2006; Ma, 2007), suppressing the production of IFN. EMCV Lpro hinge domain plays a major role in the interaction with Ran GTPase (Bacotdavis and Palmenberg, 2013). EMCV Lpro interferes with the transactivation function of IRF3 suppressing IRF3-mediated IFN-α/β production (Hato et al., 2010). Studies have demonstrated that TMEV Lpro can block the production of type I IFN at the transcriptional level (Van et al., 2001), this transcriptional inhibition is correlated with inhibition of IRF-3 dimerization (Ricour et al., 2009).

2A of Enteroviruses
Enteroviruses 2A has protease activity (Racaniello, 2007), which can not only process the viral polyprotein (Toyoda et al., 1986), but also cleave a variety of host proteins and inhibit the host translation whose function is quite similar to Lpro in FMDV.

Non-structural Proteases	Virus	Involved signaling pathways/structure	Type of IFN	Reference
SVV		Suppressing IRF3 by degrading autophagy-related protein	Unclear	Fan et al., 2017
		Degrading KPNA1, blocking STAT1/STAT2 nuclear translocation	Unclear	Du et al., 2014
		Reducing the expression of IRF3 and IRF7 and phosphorylating them	Type I IFNs	Qian et al., 2017
HAV		Cleaving MAVS, TRIF, and TANK	IFN-α1, IFN-α4, and IFN-β	Xue et al., 2018
		Reducing the expression of IRF3 and IRF7 and phosphorylating them	IFN-α1, IFN-α4, and IFN-β	Xue et al., 2018
3ABC		Cleaving MAVS and disrupting activation of IRF3 through the RLR pathway	Unclear	Lei et al., 2013, 2014
3CD		Disrupting RIGI/MDA5, inhibiting dimerization of IRF-3 and translocation of IRF-3 to the nucleus	IFN-β	Qu et al., 2011
3D	EV71	Attenuating STAT1 tyrosine phosphorylation	IFN-γ	Wang et al., 2015

limiting the synthesis of host proteins (de Los Santos et al., 2006), which may possibly include type I IFNs.

TABLE 1 | Continued
unable to replicate in IFN-pretreated cells. Their 2A might not have function on evading the host immune response (Morrison and Racaniello, 2009).

2B
2B of HAV
Hepatitis A virus 2B is a peripheral membrane protein, its coding region has variants (Emerson et al., 1991, 1992, 1993), which makes it significantly larger than 2B in other picornaviruses. HAV 2B was found in close vicinity to the tubular interconnected network of mitochondrial membranes through its ability induce membrane rearrangements resulting in the influence of the production of IFNs (Gosert et al., 2000). HAV 2B suppresses MAVS signaling more effectively with the cooperation of HAV 3A (Ashutosh et al., 2015). HAV 2B appears to influence MAVS function without directly affecting the antigenic structure of MAVS (Paulmann et al., 2008); it also interferes with the TBK1/IKKe kinase complex. Consequently, RIG-I/MDA-5-mediated activation is inhibited and inhibition of IRF-3 signaling results in efficient suppression of IFN-β synthesis (Paulmann et al., 2008).

2C
2C of Enteroviruses
Enteroviruses 2C (329 aa and 37.5 kDa), such as EV71 and CVA16 2C ATPase, is not only an RNA helicase but also an ATP-independent RNA chaperone, which is critical for RNA replication and viability of enteroviruses (Xia et al., 2015; Guan et al., 2017). EV71 2C is localized both to the cytoplasm and the nucleus. EV71 2C interacts with protein phosphatase 1 (PP1) catalytic subunit through PP1-docking motifs (residues 1 to 47) located near the N-terminus of EV71 2C. Interactions with IKKβ are formed through a motif (residues 105 to 121) located within N-terminal region of EV71 2C, resulting in formation of a complex between PP1 and IKKβ (Li Q. et al., 2016). PP1 binding is crucial for EV71 2C-mediated inhibition of IKKβ phosphorylation. EV71 2C-mediated PP1 recruitment inhibits IKKβ phosphorylation, NF-κB activation and NF-κB signaling pathway-induced IFN production (Zheng et al., 2011; Li Q. et al., 2016). Other enteroviruses, such as PV, coxsackie A virus 16 (CVA16), and coxsackie B virus 3 (CVB3) also exploit this mechanism to inhibit the production of IFN (Li Q. et al., 2016).

Additionally, EV71 2C (residues 105–125 and 126–263) is capable to suppress p65/p50 dimerization by competing p65 IPT domain in association with p50, suppressing the activation of NF-κB and IFN (Du et al., 2015).

3A
3A of FMDV
Foot-and-mouth disease virus 3A is a partially conserved protein, it has no homologous sequence to any other known proteases, which is unique among the picornaviruses. A recent study revealed that FMDV 3A down regulates FMDV-associated IFN-β induction via FMDV 3A inhibition of RLR-mediated IFN-β induction (Li D. et al., 2016). Residues 103–153 near 3A's N-terminus interact with MDA5, RIG-I and VISA, and a 102-residue region near the N-terminus mediates inhibition of the IFN-β signaling pathway (Li D. et al., 2016). FMDV 3A reduces expression of MDA5, RIG-I and VISA by decreasing their mRNA levels (Li D. et al., 2016). This finding not only reveals a novel mechanism of FMDV 3A-mediated evasion of host innate immunity but also provide a new thought to explore this kind of non-structural proteins in other picornaviruses.

3C
Picornavirus 3C is a unique cysteine protease that combines features of both serine and cysteine proteases (Di et al., 2016). Although 3C has similar spatial structures among all picornviruses, and can inhibit IFN expression through similar pathways, including the NF-κB, Jak/STAT and IRF pathways, its specific sites of action are different.

3C of Enteroviruses
Enterovirus 71 3C is one of the most common functional proteins, which has been most widely studied in enteroviruses. EV71 3C inhibits induction of IFN by RIG-I or TLR3 and prevents activation of IRF3 and IRF7. Upon viral infection, TLR3 recruits TRIF (TIR domain-containing adaptor inducing IFN-β) and TBK1, which phosphorylate IRF3 and IRF7 (Lei et al., 2010). The TRIF Q312–S313 junction is critical for its cleavage by EV71 3C. EV71 3C-induced TRIF cleavage blocks IFN-β and NF-κB activation by TRIF (Lei et al., 2011). EV 71 3C can directly inhibit IRF7 and IRF9, repressing type I IFN production (Hung et al., 2011; Lei et al., 2013). EV71 3C protease activity is necessary to cleave IRF7. EV71 3C cleaves IRF7 at the Q189–S190 junction, yielding two fragments that are unable to stimulate IFN production (Lei et al., 2013).

Likewise, EV71 3C reduces IFN production by inhibiting activation of NF-κB (Lei et al., 2014). Transforming growth factor-β-activated kinase 1 (TAK1), TAK1-binding protein (TAB)1, TAB2, and TAB3 are all required for activation of downstream NF-κB. In mammalian cells, TAB1 binds to TAB1, forming TAB1-TAB1 complex. Thereafter, TAB2 and TAB3 are recruited to TAB1-TAB1 complex forming TAB1/TAB1/TAB2/TAB3 complex. This complex activates p38, IKKα/β and c-Jun N-terminal kinase (JNK), thus inducing IFN production (Li et al., 2014). EV71 3C cleaves TAB1 at the Q360–S361 junction yielding smaller products of about 30 kDa. The TAB1 Q414–G415 and Q451–S452 junctions are EV71 3C cleavage sites; cleavage results in about 45 kDa and 50 kDa products. EV71 3C cleaves TAB2 at the Q113–S114 junction. EV71 3C cleaves TAB3 at the Q173–G174 and Q343–G344 junctions, resulting in about 45 kDa and 60 kDa products. Cleavage disrupts the TAB1/TAB1/TAB2/TAB3 complex and reduces IFN production. It should be noted that TAB2 has NF-κB-activating function, but cleavage by EV71 3C impairs this activity (Lei et al., 2014). On the other hand, CVA-16, CV-A6, and EV-D68 3C cleave TAB1 to inhibit the NF-κB response (Rui et al., 2017).

Upon viral infection, EV71 3C can directly bind to RIG-I, impairing RIG-I interaction with MAVS and inhibiting RIG-I-mediated type I IFN responses. It has been reported that...
ubiquitination of RIG-I is controlled by a tumor suppressor called CYLD (Xu et al., 2014). CYLD is a target of miR-526a, a potent IFN-β inducer, and miR-526a upregulation during viral infection is partially mediated by IRF7. By suppressing CYLD expression, miR-526a positively regulates VSV-associated type I IFN production. EV71 3C inhibits production of type I IFN by blocking miR-526a upregulation and CYLD downregulation.

CV-A16, CV-A6, and EV-D68 3C can bind to MDA5 and inhibit the interaction with MAVS, thus blocking the production of type I IFN (Rui et al., 2017). CVB3 3C also cleaves MAVS and Toll/IL-1 receptor domain-containing adaptor inducing interferon-beta (TRIF) at specific sites and inhibits the induction of type I IFN (Mukherjee et al., 2011).

3C of EMCV
Encephalomyocarditis virus 3C is the only cysteine protease encoded by the viral genome, and it has a high degree of substrate specificity, besides Lpro, EMCV 3C is another antagonist. TANK is an NF-κB activator, TRAF6 serves as a platform to recruit the IKK complex and kinase TAK1, and TANK negatively regulates this function (Papon et al., 2009). EMCV 3C can cleave TANK at Gln291 and Gln197 (Huang et al., 2015), disrupting formation of the TANK–TBK1–IKKe–IRF3 tetramer, decreasing TBK1- and IKKe-mediated IRF3 phosphorylation, impairing the ability of TANK to inhibit TRAF6-mediated NF-κB signaling, and reducing type I IFN production (Huang et al., 2015, 2017). SG is the location for efficient interaction between viral RNA and RLRs; EMCV 3C can also block formation of SG to inhibit activation of IFN genes (Huang et al., 2017). By cleaving IRF3-5D and other key proteins, EMCV 3C inhibits JAK-STAT signaling, suppressing type I IFN production (Huang et al., 2017). EMCV 3C may also suppress STAT1 or IRF3 binding to the IFN-β promoter to inhibit type I IFN production (Huang et al., 2017).

3C of FMDV
Foot-and-mouth disease virus 3C plays important roles in disrupting the translational system of the host and can negatively regulate innate immune signaling by degrading essential molecules in different pathways (Ma et al., 2018a). FMDV 3C has the ability to cleave NEMO at Gln383 (Zhao et al., 2007); cleavage impairs NEMO-mediated IFN production and its ability to act as a signaling adaptor in the RIG-I/MDA5 pathway (Wang et al., 2012). Moreover, FMDV 3C cleaves TANK, generating a 15-kDa N-terminal fragment and impairing TANK's ability to suppress TRAF6-mediated NF-κB signaling (Fan et al., 2017).

Under normal conditions, ATG5-ATG12 promotes activation of IRF3 and phosphorylation of TBK1 by preventing TRAF3 degradation, resulting in enhanced expression of IFN-β (Fan et al., 2017). FMDV suppresses IRF3 by degradation of autophagy-related protein ATG5-ATG12 to attenuate production of IFN via 3C (Fan et al., 2017).

Karyopherin α1 (KPNα1) is the nuclear localization signal receptor for STAT1. FMDV 3C interferes with the JAK-STAT signaling pathway by degrading KPNα1, blocking STAT1/STAT2 nuclear translocation and inhibiting IFN signaling (Du et al., 2014).

3C of SVV
Seneca Valley virus (SVV) is most closely related to *Cardiovirus* (Hales et al., 2008). SVV 3C has a conserved catalytic box with His and Cys residues (Qian et al., 2016), which is similar to FMDV Lpro. SVV 3C can inhibit the production of type I IFN by directly cleaving MAVS, TRIF, and TANK (Qian et al., 2016). In addition, a recent result indicates that SVV 3C reduces the expression of IRF3 and IRF7 and phosphorylates them and then blocks the transcription of IFN-β, IFN-α1, IFN-α4, and ISG54 (Xue et al., 2018).

3C of HAV
Hepatitis A virus 3C is a cysteine protease which is responsible for most cleavages within the viral polyprotein (Schultheiss et al., 1994, 1995). HAV 3C cleaves MAVS at Gln428 to inhibit type I IFN production (Yang et al., 2007). Similar to FMDV 3C, HAV 3C also cleaves NEMO, impairing NEMO-mediated IFN production and its ability to act as a signaling adaptor in the RIG-I/MDA5 pathway (Wang et al., 2014; Xu et al., 2014). Moreover, HAV 3C inhibits NF-κB activation through cleavage of the TAK1/TAB1/TAB2/TAB3 complex, inhibiting the induction of IFNs (Lei et al., 2013, 2014).

3ABC and 3CD of HAV
Processing intermediate HAV 3ABC and 3CD are both unique and have proteolytically activities in particle assembly (Probst et al., 1998). HAV 3ABC is a precursor cysteine protease. 3ABC cleaves MAVS and disrupts activation of IRF3 through the RLR pathway in mitochondria (Yang et al., 2007; Debing et al., 2014). With the help of the transmembrane domain of 3A, 3ABC localizes to mitochondria. MAVS cleavage also requires the protease activity of 3C (Yang et al., 2007). This feature of 3ABC is unique among picornviruses.

Hepatitis A virus 3CD is the processing intermediate of 3ABCD. HAV 3CD disrupts RIGI/MDA5, inhibits dimerization of IRF-3 and translocation of IRF-3 to the nucleus, and impairs IFN-β promoter activation (Qu et al., 2011).

3D

3D of EV71
Enterovirus 71 3D is a kind of RNA-dependent RNA polymerase (Jiang et al., 2011; Sun et al., 2012). Wang et al. (2015) found that without interfering with IFN-γ receptor expression, EV71 3D can attenuate STAT1 tyrosine phosphorylation resulting in defective IFN-γ signaling. The detailed signaling pathway how 3D regulate STAT1 need further investigation, Wang et al. (2015) guess that the function of EV71 3D may similar to EV71 2A, as a viral factor for immune-editing.

OUTLOOK

The interactions between picornviruses and host defenses are complex and diverse. Moreover, viruses have developed multiple strategies to evade the host's innate immune system. To date, some of these strategies have been uncovered and significant progress has been achieved in understanding signaling pathways...
related to immune evasion. For example, the mechanism underpinning inhibition by some non-structural proteins of IFN production in picornaviruses has been well studied. However, what we know today just represent a drop in the bucket, and we still need to understand the viral strategies involved in antagonizing the host's innate immune system. For example, SVV 3C has similar conserved catalytic box and similar function to FMDV Lpro in antagonizing the innate immune response and whether SVV 3C has other similar function to FMDV Lpro need further research. In addition, there are many similarities between different genera of picornaviruses. However, further efforts should be made to explore key mechanisms underlying inhibition by some non-structural proteins of IFN production, such as 2B, 2C, 3A, and 3D, across all picornavirus.

Recently, it has been discovered that some picornaviruses only cause an acute and self-limiting infection without major pathogenesis in hosts requiring more research on therapeutic approach (Weinberg and Morris, 2016; Ma et al., 2018b). The role of non-structural proteins in such picornaviruses may make contributions to better understand not only the therapeutic antiviral activity of IFNs, but also may reveal how these proteins (with or without protease activities) influence and control the IFN signaling transduction in vivo.

AUTHOR CONTRIBUTIONS

YW is the first author of this article and wrote the manuscript. LM, LS, and SS had made contributions to this article. XL and YL had revised this article.

FUNDING

This work was supported by Gansu Province Scientific and Technical Supporting Program (17YF1WA170).

ACKNOWLEDGMENTS

The authors thank Jianhua Zhou and Meera Prajapati for providing many useful suggestions for this article.
Emerson, S. U., McRill, C., Rosenblum, B., Feinstone, S. M., and Purcell, R. H. (1991). Mutations responsible for adaptation of hepatitis A virus to efficient growth in cell culture. J. Virol. 65, 4882–4886.

Fan, X., Han, S., Yan, D., Gao, Y., Wei, Y., Liu, X., et al. (2017). Foot-and-mouth disease virus infection suppresses autophagy and NF-κB cell antiviral responses via degradation of ATG5–ATG12 by Jcpro. Cell Death Dis. 8:e2561. doi:10.1038/cddis.2016.489

Feng, Q., Langereis, M. A., Lork, M., Mai, N., Hato, S. V., Lanke, K., et al. (2014a). Enterovirus 2Apro targets MDA5 and MAVS in infected cells. J. Virol. 88, 3369–3378. doi:10.1128/JVI.02712-13

Feng, Q., Langereis, M. A., and van Kuppeveld, F. J. (2014b). Induction and suppression of innate antiviral responses by picornviruses. Cytoskeleton Growth Factor Rev. 25, 577–585. doi:10.1080/17588200.2014.907003

Fensterl, V., Chattopadhyay, S., and Sen, G. (2015). No love lost between viruses and interferons. Annu. Rev. Virol. 2, 549–572. doi:10.1146/annurev-virology-100114-055249

Gonzáleznavajas, J. M., Lee, J., David, M., and Raz, E. (2012). Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135. doi:10.1038/nri3133

Hillyer, P., Mane, V. P., Schramm, L. M., Puig, M., Verthelyi, D., Chen, A., et al. (2013). Type I interferons in the type I interferon induced and antagonized by foot-and-mouth disease virus non-structural protein 3A inhibits IFN-γ signaling. Front. Immunol. 4, 650. doi:10.3389/fimmu.2013.00632

Iversen, M. B., and Paludan, S. R. (2010). Mechanisms of type III interferon signaling. J. Interferon Cytokine Res. 30, 573–578. doi:10.1089/jir.2010.0063

Hung, H. C., Wang, H. C., Shih, S. R., Teng, I., Tseng, C. P., and Hsu, J. T. A. (2015). Activation of dendritic cell maturation by picornavirus non-structural proteins 3A and 2B. J. Virol. 89(Pt 5), 1265–1275. doi:10.1128/JVI.02712-13

Klotz, D., Baumgärtner, W., and Gerhauser, I. (2017). Type I interferons in the pathogenesis and treatment of canine diseases. Vet. Immunol. Immunopathol. 191, 80–93. doi:10.1016/j.vetimm.2017.08.006

Kirschiger, R., Ziegler, E., Lampeah, B. J., Waters, D., Liebig, H. B., Sommergruber, W., et al. (1994). Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on elf-4 gamma. J. Virol. 68, 5677–5684.

Kriz, P., Ratschbacher, L., and Strohner, H. (2001). Bystander activation of CD8+ T cells contributes to the rapid production of IFN-γ in response to bacterial pathogens. J. Immunol. 166, 1097–1105. doi:10.4049/jimmunol.166.2.1097

Kumar, N., Lou, S., Zhang, L., Fan, X., Liu, Z., Liu, Y., et al. (2014). Enterovirus 71 inhibits nuclear acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J. Virol. 84, 8051–8061. doi:10.1128/JVI.02491-09

Kumar, N., Lou, S., Liu, Z., Liu, Q., He, X., Kang, J., et al. (2011). Cleavage of the adaptor protein TRIF by Enterovirus 71 3C inhibits antiviral responses mediated by toll-like receptor 3. J. Virol. 85, 8811–8818. doi:10.1128/JVI.00447-11

Kumar, N., Lou, S., Xue, Q., Qin, J., He, B., and Wang, J. (2013). Cleavage of interferon regulatory factor 7 by Enterovirus 71 3C suppresses cellular responses. J. Virol. 87, 1690–1698. doi:10.1128/JVI.01855-12

Lykens, J. E., Terrell, C. E., Zoller, E. E., Divanovic, S., Trompette, A., Karp, C. L., et al. (2010). Mice with a selective impairment of IFN-γ signaling in macrophage lineage cells demonstrate the critical role of IFN-γ-mediated macrophages for the control of protozoan parasitic infections in vivo. J. Immunol. 184, 877–885. doi:10.4049/jimmunol.0902346

Ma, Q. H. (2007). Small GTP-binding proteins and their functions in plants. J. Plant Growth Regul. 26, 369–388. doi:10.1007/s00344-007-9022-7

Mackern-Oberti, J. P., Llanos, C., Vega, F., Salazar-Onfray, F., and Staehehi, P. (2015). Leukocyte-derived IFN-α/β and epithelial IFN-λ2/3 constitute a compartmentalized mucosal defense system that restricts enteric virus infections. PLoS Pathog. 11:e1004782. doi:10.1371/journal.ppat.1004782

Morrison, J. M., and Racanelli, V. R. (2009). Proteinase 2Apro is essential for Enterovirus replication in type I interferon-treated cells. J. Virol. 83, 4412–4422. doi:10.1128/JVI.02177-08

Mühlthaler-Mottet, A., Di, B. W., Atta, L. A., and Mach, B. (1998). Activation of the MHC class II transactivator CITA by interferon-γ requires cooperative interaction between Stat1 and USF-1. Immunity 8, 157–166. doi:10.1016/S1074-7613(00)00468-9

Mulder, J., Morosky, S. A., Delomez-Axford, E., Dybdahl-Sissoko, N., Oberste, M. S., Wang, T., et al. (2011). The coxsackievirus B 3C proteinase cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog. 7:e1001311. doi:10.1371/journal.ppat.1001311
Nagano, Y., and Kojima, Y. (1954). Immunizing property of vaccinia virus inactivated by ultraviolet rays. C. R. Seances Soc. Biol. Fil. 148, 1700–1702.

Numasaki, M. (2009). “IL-28 and IL-29 in regulation of antitumor immune response and induction of tumor regression,” in Targeted Cancer Immune Therapy, eds J. Lustgarten, Y. Cui, and S. Li (New York, NY: Springer-Verlag New York), 75–95. doi: 10.1007/978-1-4419-0170-5_5

Odendall, C., Dixit, E., Stavru, F., Bierne, H., Franz, K. M., Durbin, A. F., et al. (2014). Diverse intracellular pathogens activate type III interferon expression by peroxisomes. Nat. Immunol. 15, 717–726. doi: 10.1038/ni.2915

Olière, S., Douville, R., Sze, A., Belgnoua, S. M., and Hiscott, J. (2011). Modulation of innate immune responses during human T-cell leukemia virus (HTLV-I) pathogenesis. Cytokine Growth Factor Rev. 22, 197–210. doi: 10.1016/j.cytogfr.2011.08.002

Onoguchi, K., Yoneyama, M., Takemura, A., Akira, S., Taniguchi, T., Namiki, H., et al. (2007). Viral infections activate types I and III interferon genes through a common mechanism. J. Biol. Chem. 282, 7576–7581. doi: 10.1074/jbc.M608618200

Österlund, P. I., Pietilä, T. E., Veckman, V., Kotenko, S. V., and Julkunen, I. (2007). MAVS, TRIF, and TANK for cleavage.

Papon, L., Oteiza, A., Imaizumi, T., Kato, H., Brocchi, E., Lawson, T. G., Numasaki, M. (2009). “IL-28 and IL-29 in regulation of antitumor immune response to RNA viruses.” J. Interferon Cytokine Res. 34, 649–658. doi: 10.1089/jir.2014.0066

Ricour, C., Delhaye, S., Hato, S. V., Olencyt, T. D., Michel, B., van Kuppeveld, F. J., et al. (2009). Inhibition of mRNA export and dimerization of interferon regulatory factor 3 by Thelen’s virus leader protein. J. Gen. Virol. 90, 177–186. doi: 10.1099/vir.0.09576-0

Rui, Y., Su, J., Wang, H., Chang, J., Wang, S., Zheng, W., et al. (2017). Disruption of MDA5 mediated innate immune responses by the 3C proteins of Coxackievirus A16, Coxackievirus A6, and Enterovirus D68. J. Virol. 91:e00546-17. doi: 10.1128/JVI.00546-17

Schultheiss, T., Kusov, Y. Y., and Gauss-Muller, V. (1994). Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B. Virology 198, 275–281. doi: 10.1006/viro.1994.1030

Sim, A. C., Luhur, A., Tan, T. M., Chow, V. T., and Poh, C. L. (2005). RNA interference against Enterovirus 71 infection. Virology 341, 72–79. doi: 10.1016/j.virol.2011.02.023

Stavrou, S., Feng, Z., Lemon, S. M., and Roos, R. P. (2010). Different strains of Thelen’s murine encephalomyelitis virus antagonize different sites in the type I interferon pathway. J. Virol. 84, 9181–9189. doi: 10.1128/JVI.00563-10

Strebel, K., and Beck, E. (1986). A second protease of foot-and-mouth disease virus. J. Virol. 58, 893–899.

Sun, Y., Wang, Y., Shan, C., Chen, C., Xu, P., Song, M., et al. (2012). Enterovirus 71 VPg uridylation uses a two-molecular mechanism of 3D polymerase. J. Virol. 86, 13662–13671. doi: 10.1128/JVI.01712-12

Toyoda, H. M. J., Nicklin, M. G., Murray, C. W., Anderson, J. J., Dunn, F. W., Studier, F. W., et al. (1986). A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45, 761–770. doi: 10.1016/0092-8674(86)90790-7

Vaccari, J. P. D. R., Dietrich, W. D., and Keane, R. W. (2014). Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J. Cereb. Blood Flow Metab. 34, 369–375. doi: 10.1038/jcbfm.2013.227

Van, P. V., Van, E. O., and Michiels, T. (2001). The leader protein of Thelen’s virus inhibits immediate-early alpha/beta interferon production. J. Virol. 75, 7811–7817. doi: 10.1128/JVI.75.17.7811-7817.2001

Wang, B., Xi, L., Le, X., Zhang, X., Cui, S., Wang, J., et al. (2013). Enterovirus 71 proteinase [2A.sup.pro] targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog. 9.e1003231. doi: 10.1371/journal.ppat.1003231

Wang, C., Sun, M., Yuan, J., Li, L., Jin, Y., Cardona, C. J., et al. (2017). Enterovirus 71 suppresses interferon responses by blocking Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling through inducing karyopherin-α1 degradation. J. Biol. Chem. 292, 10262–10274. doi: 10.1074/jbc.M116.745729

Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., et al. (2011). Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. J. Virol. 86, 9311–9322. doi: 10.1128/JVI.00869-11

Wang, D., Fang, L., Liu, L., Zhong, H., Chen, Q., Luo, R., et al. (2011). Foot-and-mouth disease virus (FMVD) leader protease negatively regulates the porcine interferon-λ1 pathway. Mol. Immunol. 49, 407–412. doi: 10.1016/j.molimm.2011.09.009
Wang, D., Fang, L., Wei, D., Zhang, H., Luo, R., Chen, H., et al. (2014). Hepatitis A virus 3C protease cleaves NEMO to impair induction of beta interferon. J. Virol. 88, 10252–10258. doi: 10.1128/JVI.00869-14

Wang, L., Chen, S., Chang, S., Lee, Y., Yu, C., Chen, C., et al. (2015). Enterovirus 71 proteins 2A and 3D antagonize the antiviral activity of gamma interferon via signaling attenuation. J. Virol. 89, 7028–7037. doi: 10.1128/JVI.00205-15

Weinberg, M. S., and Morris, K. V. (2016). Transcriptional gene silencing in humans. Nucleic Acids Res. 44, 6505–6517. doi: 10.1093/nar/gkw139

Wu, J., and Chen, Z. J. (2014). Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461–488. doi: 10.1146/annurev-immunol-032713-120156

Xia, H., Wang, P., Wang, G. C., Yang, J., Sun, X., Wu, W., et al. (2015). Human Enterovirus nonstructural protein 2CATPase functions as both an RNA helicase and ATP-independent RNA chaperone. PLoS Pathog. 11:e1005067. doi: 10.1371/journal.ppat.1005067

Xu, C., He, X., Zheng, Z., Zhang, Z., Wei, C., Guan, K., et al. (2014). Downregulation of MicroRNA miR-526a by Enterovirus inhibits RIG-1-dependent innate immune response. J. Virol. 88, 11356–11368. doi: 10.1128/JVI.01400-14

Xue, Q., Liu, H., Zhu, Z., Yang, F., Ma, L., Cai, X., et al. (2018). Seneca Valley Virus 3Cpro abrogates the IRF3- and IRF7-mediated innate immune response by degrading IRF3 and IRF7. Virology 518, 1–7. doi: 10.1016/j.virol.2018.01.028

Yang, Y., Liang, Y., Qu, L., Chen, Z., Yi, M., Li, K., et al. (2007). Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl. Acad. Sci. U.S.A. 104, 7253–7258. doi: 10.1073/pnas.061506104

Zhao, T., Yang, L., Sun, Q., Arguello, M., Ballard, D. W., Hiscott, J., et al. (2007). The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat. Immunol. 8, 592–600. doi: 10.1038/ni1465

Zheng, Z., Li, H., Zhang, Z., Meng, J., Mao, D., Bai, B., et al. (2011). Enterovirus 71 2C protein inhibits TNF-α-mediated activation of NF-κB by suppressing IκB kinase β phosphorylation. J. Immunol. 187, 2202–2212. doi: 10.4049/jimmunol.1100285

Zinzula, L., and Tramontano, E. (2013). Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res. 100, 615–635. doi: 10.1016/j.antiviral.2013.10.002

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Wang, Ma, Stipkovits, Szathmary, Li and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.