Perfıl audiológico de profissıonaıls disc jockeys
Audiological profile of professional disc jockeys

Roseany Alves da Costa¹
https://orcid.org/0000-0003-3562-7922

Dannyelly Torres Araújo¹
https://orcid.org/0000-0003-0360-0194

Darlene Cardoso de Souza¹
https://orcid.org/0000-0002-7054-173X

Gabriela Guenther Ribeiro Novanta¹
https://orcid.org/0000-0003-4494-3353

RESUMO
Objetivo: descrever o perfil audiológico de profissionais disc jockeys atuantes em cidades do Distrito Federal.
Métodos: foram realizados os exames de audiometria, timpanometria, emissões evocadas por estímulo transiente e emissões evocadas - produto de distorção, e entrevista para identificar sintomas auditivos. Foram aplicados os testes estatísticos pertinentes adotando o nível de significância menor que 0,05.
Resultados: foram avaliados 21 disc jockeys com faixa etária entre 20 e 45 anos. As queixas auditivas mais citadas foram sensação de plenitude auricular (86%) e zumbido (57%). Os limiares auditivos mantiveram-se predominantemente dentro da normalidade (90%), mas houve aumento dos limiares nas frequências de 3.000 a 6.000 Hz (38%). Apenas 42% da amostra apresentaram resposta "passa" nas emissões evocadas por estímulo transiente e 81% nas emissões evocadas - produto de distorção em ambas as orelhas.
Conclusão: a pesquisa identificou limiares auditivos predominantemente dentro dos padrões de normalidade, entretanto com aumento das frequências altas, que podem estar associadas à exposição ao ruído. As emissões otoacústicas apresentaram alterações tanto nas transientes quanto nas de produto de distorção.
Descritores: Audição; Perda Auditiva Provocada por Ruído; Ruído Ocupacional

ABSTRACT
Purpose: to describe the audiological profile of professional disc jockeys acting in cities of the Brazilian Federal District.
Methods: audiometry, tympanometry, transient evoked emissions, and distortion product evoked emissions exams were conducted, as well as interviews, in order to identify auditory symptoms. Appropriate statistical tests were applied, adopting a significance level lower than 0.05.
Results: a total of 21 disc jockeys, aged between 20 and 45 years, were evaluated. The most cited auditory complaints were feeling of ear fullness (86%) and tinnitus (57%). Auditory thresholds remained predominantly within normal range (90%), but thresholds were increased in frequencies from 3 KHz to 6 KHz (38%). Only 42% of the sample presented a pass response in transient evoked emissions, and 81% in distortion product evoked emissions, in both ears.
Conclusion: the research identified auditory thresholds predominantly within standards of normality, though with increased high frequencies, that may be associated with noise exposure. The otoacoustic emissions presented alterations both in the transient ones and in the distortion product.
Keywords: Hearing; Noise-Induced Hearing Loss; Occupational Noise
INTRODUÇÃO

Nos últimos anos, uma maior preocupação em relação aos efeitos do ruído e da música em altos volumes pode ser observada na sociedade em geral. Ela pode ser justificada pelo aumento dos níveis de ruído aos quais o homem passou a estar exposto em seu cotidiano, devido ao crescente desenvolvimento científico e tecnológico no mundo moderno. Os efeitos negativos gerados variam principalmente em relação ao nível e à frequência de exposição, nível de pressão sonora e duração do estímulo¹.

A partir da década de 1960, a evolução da eletrônica e o consequente aumento da potência dos amplificadores - acoplados aos instrumentos musicais modernos - levaram à elevação da intensidade da música e do risco de perda auditiva entre os músicos².

A música eletrônica amplificada faz parte do planejamento de vários eventos, incluindo as boates, onde se observa a participação protagonista do Disc Jockey (DJ). No que se refere à saúde auditiva, esse profissional tem estado vulnerável a desenvolver alterações auditivas devido à exposição frequente a níveis de pressão sonora elevados. Outro fator agravante é a resistência por parte de alguns músicos ao uso de protetores auriculares³-⁵.

Poucos estudos enfocam a possibilidade de alterações auditivas em músicos e DJs que em sua ocupação, seja profissionalmente ou por hobby, estão expostos à elevada intensidade sonora¹ e muitas vezes são expostos a níveis acima de 85dB⁶.

Sob o ponto de vista ocupacional, a audiometria é o único instrumento utilizado como vigilância epidemiológica de perdas auditivas em trabalhadores expostos a ruído. Porém outros testes, como a timpanometria e as emissões otoacústicas, podem ser aplicados na pesquisa de alterações auditivas ainda em sujeitos com limites audiométricos dentro dos padrões de normalidade⁷.

O uso das emissões evocadas por estímulo transientes (EOAT) no diagnóstico precoce da perda auditiva induzida por níveis elevados de pressão sonora (PAINPSE) pode ser muito eficaz, já que detecta mudanças temporárias do limiar frente a níveis elevados de pressão sonora⁸-⁹.

Alterações na amplitude das emissões evocadas - produto de distorção (EOAPD) podem preceder alterações audiométricas mais graves, sendo um exame recomendado para diagnóstico de perdas auditivas progressivas a fim de que se implementem programas de prevenção das perdas auditivas de origem ocupacional⁸-¹⁰.

Vale ressaltar que os profissionais da música não possuem amparo legal no que se refere à saúde e à segurança no trabalho. A falta de regulamentação dessa profissão torna o estabelecimento de critérios que preservem a saúde desse trabalhador como, por exemplo, determinação da jornada de trabalho, obrigatoriedade de equipamentos de proteção individual (EPI), estabelecimento de exames periódicos de verificação da saúde auditiva¹¹. Esta situação pode remeter a uma ideia errônea de que ser músico não é ser trabalhador ou de que, se a música for agradável, não gera risco à saúde.

O presente estudo tem como objetivo descrever o perfil audiológico de DJs de cidades do Distrito Federal.

MÉTODOS

Trata-se de um estudo observacional transversal aprovado pelo Comitê de Ética em Pesquisa do Centro Universitário do Distrito Federal - UDF sob o parecer no 2.749.134.

Os sujeitos deste estudo foram compostos por profissionais DJs de cidades satélites do Distrito Federal – DF. Os exames de audiometria, imitanciometria e emissões otoacústicas foram realizados em uma Clínica Escola de Fonoaudiologia da instituição de origem.

Os critérios de inclusão para a participação na pesquisa foram: concordância em participar da pesquisa mediante a assinatura do Termo de Consentimento Livre e Esclarecido (TCLE); submeter-se aos exames de audiometria, timpanometria e emissões evocadas por estímulo transiente e produto de distorção foram realizados em uma Clínica Escola de Fonoaudiologia da instituição de origem.

Os critérios de exclusão foram: sujeitos fora da faixa etária supracitada; audição alterada por problemas da orelha externa (presença de cerúmen); relatar histórico de perda auditiva antes de iniciar a profissão; apresentar curva tipo A ou C como resultado do exame de timpanometria e exercer outra atividade laboral exposta a ruído.

O presente estudo tem como objetivo descrever o perfil audiológico de DJs de cidades do Distrito Federal.
sobre os procedimentos a serem realizados, como instruções de posicionamento, rápida execução e o caráter indolor dos procedimentos.

Em continuidade, foi realizado a inspeção do meato acústico externo para visualizar a possível presença de cerúmen e outros agentes que pudessem interferir na prática dos exames.

Diante das considerações estabelecidas, os participantes foram submetidos à Audiometria Tonal Liminar – ATL (Audiômetro da marca Midimate, modelo 622), logoaudiometria e timpanometria em ambas as orelhas (Impedanciometro modelo AZ7). Por fim, foram realizados os exames de emissões evocadas por estímulo transiente (EOAT) e produto de distorção (EOAPD) com aparelho portátil da marca Interacoustics, modelo Oto Read Screening. A avaliação completa durou em torno de 40 minutos.

Após os procedimentos serem finalizados, os profissionais receberam os resultados das avaliações e foram fornecidas as devidas orientações sobre os dados. Aqueles que apresentaram alteração nos exames foram encaminhados ao médico otorrinolaringologista.

Critérios para análise dos resultados
Para análise da audiometria foi utilizada a classificação descrita no Manual de Procedimentos em Audiometria Tonal, Logoaudiometria e Medidas de Imitância Acústica do Sistema de Conselhos Federal e Regionais de Fonoaudiologia (2013). Para o teste de EOAT foram considerados normais e/ou “PASSA” os resultados obtidos com amplitude igual ou superior a -5dB e relação sinal/ruído igual ou superior a 6 dB em pelo menos três das quatro frequências testadas (2kHz, 3kHz, 4kHz e 5kHz). Foram considerados alterados (com comprometimento das células ciliadas externas do órgão de Corti) os resultados que apresentaram dados inferiores diante dos parâmetros supracitados em pelo menos duas frequências. Os critérios utilizados foram elaborados com base em estudos prévios.

Na análise estatística as variáveis foram submetidas aos seguintes testes estatísticos: Qui quadrado de Pearson e o teste de Fisher. Para análises com variáveis em X categórico e Y quantitativa foi utilizada a análise ANOVA. O nível de confiança adotado foi de 5% (p < 0,05).

RESULTADOS
Participaram deste estudo 21 DJs do sexo masculino, com idades entre 20 e 45 anos e média de 32,1 anos (DP ±7,30). Em relação à prática musical, o tempo de atuação variou entre 2 e 27 anos, com média de 12,6 anos (DP ±7,79). Trinta e três por cento dos profissionais têm entre 2 e 6 anos de atuação, 24% entre 7 e 12 anos, 29% entre 13 e 20 anos e 14% acima de 20 anos. A média do tempo de exposição ao ruído semanal obtido foi 14,3 horas (DP ±11,96). O tempo mínimo foi de 3 horas e o máximo, de 56 horas/semanais. Já cerca de 40% responderam que trabalhavam de 3 a 6 horas semanalmente.

Os sintomas auditivos mais relatados pelos profissionais foram plenitude auricular (86%), zumbido (57%) e desconforto a sons de alta intensidade (48%), como mostra a Figura 1.
Na Figura 2 estão descritas as médias dos limiares audiométricos de via aérea. É possível observar que o traçado demonstra um aumento dos limiares nas frequências de 3.000, 4.000 e 6.000 Hz, mesmo diante de limiares auditivos predominantemente normais.

Com relação aos limiares obtidos na audiometria tonal limiar foram encontrados 90% (N=19) dos sujeitos com audiometria dentro da normalidade (todos os limiares iguais ou inferiores a 25dB NA) e 10% (N= 2) apresentaram alteração nos limiares auditivos na faixa de frequência de 3 a 6 KHz.

Figura 1. Distribuição das queixas auditivas encontradas no grupo estudado

Figura 2. Média dos limiares auditivos distribuídos por frequência da Orelha Direita e Orelha Esquerda
A média geral da amostra para as frequências de 500Hz, 1000Hz e 2000Hz foi de aproximadamente 6 dB para ambas as orelhas e a média para as frequências 3.000 Hz, 4.000 Hz e 6.000 Hz foi de 9 dB para a orelha direita e 10 dB para a esquerda (Figura 3).

![Gráfico de médias tritonais](image)

Legenda: MT = média tritonal; OD = orelha direita; OE = orelha esquerda

Figura 3. Médias tritonais de 500, 1.000 e 2.000 Hz em comparativo com as médias de 3.000, 4.000 e 6.000 Hz

Não houve diferença estatisticamente significante comparando o tempo de profissão com os limiares auditivos por via aérea na frequência de 6.000Hz à direita (p = 0,5) e/ou à esquerda (p = 0,9).

Na análise dos resultados das EOAT em relação ao critério “Passa/Falha” observou-se que 42,9% (9) dos participantes passaram em ambas as orelhas (Tabela 1).

Tabela 1. Ocorrência de alterações das emissões evocadas por estímulo transiente segundo o resultado do teste e a lateralidade

Resultado	Prevalência de alterações das EOAT					
	Orelha Direita	Orelha Esquerda	Ambas as Orelhas			
Passa	N	%	N	%	N	%
Falha	9	42,9	11	52,4	10	47,6
Total	21	100	21	100	-	-

Legenda: N = número; % = porcentagem; EOAT = emissões evocadas por estímulo transiente.

Os participantes foram divididos em três grupos, de acordo com os limiares apresentados na via aérea da audiometria, sendo eles de 0 a 15 dB; 20 e 25 dB e limiares superiores a 25 dB (orelha direita e esquerda). Com a aplicação do teste Qui-quadrado (nível de significância 0,05), foi possível observar uma correlação entre os resultados na audiometria e nas EOAT (p: 0,002 OD e p:0.0006 OE). Portanto, pode-se afirmar que estatisticamente a classificação do limiares auditivos afetam os resultados das EOAT (Tabelas 2 e 3).
Tabela 2. Correlação entre os limiares audiométrico e os resultados das emissões evocadas por estímulo transiente para orelha direita

Classificação da Audiometria	Falha	Passa	Total Geral
0 - 15dB	3	4	7
20 dB e 25 dB	4	8	12
Acima de 25 dB	2	0	2
Total Geral	9	12	21

p-value 0.002484

Legenda: dB = decibel Teste estatístico = Qui-quadrado de Pearson.

Tabela 3. Correlação entre os limiares audiométrico e os resultados das emissões evocadas por estímulo transiente para orelha esquerda

Classificação da Audiometria	Falha	Passa	Total Geral
0 - 15dB	3	4	7
20 dB e 25 dB	4	8	12
Acima de 25 dB	2	0	2
Total Geral	9	12	21

p-value 0.002484

Legenda: dB = decibel Teste estatístico = Qui-quadrado de Pearson.

Na análise dos resultados das EOAPD em relação ao critério “Passa/Falha” observou-se que 81,0% (17) dos participantes passaram em ambas as orelhas (Tabela 4).

Tabela 4. Ocorrência de alterações das emissões evocadas - produto de distorção segundo o resultado do teste e a lateralidade

Resultado	Orelha Direita	Orelha Esquerda	Ambas as Orelhas
	N %	N %	N %
Passa	13 61,9	17 81	17 81
Falha	8 38,1	4 19	2 9,5

Legenda: N = número; % = porcentagem; EOAPD = emissões evocadas - produto de distorção

Na análise das EOAPD por frequência específica foi observado uma maior porcentagem de falhas para as frequências mais altas, de 4 e 5 KHz (Tabela 5).

Tabela 5. Porcentagem de "passa" e "falha" por frequência na análise de emissões otoacústicas produto de distorção

Freqüência (KHz)	Orelha Direita	Orelha Esquerda	Ambas as Orelhas	
	Passa	Falha	Passa	Falha
2	95%	5%	81%	19%
3	67%	33%	59%	41%
4	43%	57%	55%	45%
5	38%	62%	51%	49%

Legenda: OD = orelha direita; OE = orelha esquerda; KHz = quilohertz
Para a análise de uma dependência entre o tempo de exposição ao ruído e os resultados com o critério de amplitude e relação sinal/ruído foi utilizado o teste ANOVA de fator único. O valor de significância foi de 5% ou 0,05.

Na análise dos resultados das EOAPD com relação a médias das amplitudes observou-se na frequência de 2KHz uma média de 2,85 para OD e de 4,67 para OE. Na frequência de 3KHz a média foi de -1,75 para OD e de -2,10 para OE. Já na frequência de 4KHz a média ficou em -4,14 para OD e de -3,67 para OE. E na frequência de 5KHz a média foi de -9,00 para OD e de -5,86 para OE.

Na comparação entre as médias das amplitudes e o tempo que o profissional fica exposto semanalmente foi encontrada uma evidência estatística em todas as frequências testadas, exceto 2KHz na OD (Tabela 6). Isso significa que o tempo que o profissional fica exposto faz com que os resultados do teste com critério amplitude sejam alterados para ambas orelhas.

Já com relação à média do parâmetro relação sinal/ruído observou-se na frequência de 2KHz média de 18,90 para OD e 20,48 para OE. Na frequência de 3KHz a média ficou em 17,71 para OD e 17,24 para OE. Já na frequência de 4KHz a média foi de 15,86 para OD e 15,86 para OE. Por fim, na frequência de 5KHz a média foi de 11,00 para OD e 14,90 para OE.

Tabela 6. Resultado final das correlações pelo critério amplitude

Frequência	2KHz	3KHz	4KHz	5KHz
Orelha Direita	(p = 0,090)	(p = 0,000005*)	(p = 0,000004*)	(p = 0,00000002*)
Orelha Esquerda	(p = 0,000009*)	(p = 0,000009*)	(p = 0,000006*)	(p = 0,000006*)

Legenda: KHz = quilohertz Teste estatístico = one-way ANOVA

A análise revelou que, estatisticamente, o tempo que o profissional fica exposto não faz com que os resultados do teste com critério sinal/ruído sejam alterados para ambas orelhas. Contudo, foi notado que na frequência de 2kHz há uma possível correlação que poderia ser melhor analisada com a expansão do número de amostras (Tabela 7).

Tabela 7. Resultado final das correlações pelo critério sinal/ruído

Frequência	2KHz	3KHz	4KHz	5KHz
Orelha Direita	(p = 0,092)	(p = 0,236)	(p = 0,576)	(p = 0,577)
Orelha Esquerda	(p = 0,029)	(p = 0,321)	(p = 0,585)	(p = 0,585)

Legenda: KHz = quilohertz Teste estatístico = one-way ANOVA

DISCUSSÃO

No início da profissão de Disc Jockey, o papel deste profissional era o de não deixar a música parar, trocando discos e utilizando um repertório vasto. Apenas nos anos 1980 é que esse profissional no Brasil deixou de ser visto como discotecário e assumiu o papel de DJ, considerado um profissional essencial em eventos.

Na presente pesquisa os resultados relacionados às queixas auditivas demonstraram que 86% dos participantes referiram apresentar sensação de plenitude auricular e 57% de zumbido. Estes achados servem de alerta pois, segundo alguns autores, o zumbido e a sensação de plenitude auricular após a exposição ao ruído podem ser os primeiros sinais da perda auditiva induzida pela música.

Com relação ao sintoma mais citado pelos entrevistados - a plenitude auricular - os achados foram diferentes de outras pesquisas realizadas com indivíduos expostos ao ruído ocupacional, onde a queixa de zumbido foi a mais recorrente. Uma das possibilidades que pode ter influenciado o sintoma de...
plenitude auricular na população do presente estudo é o constante uso de fones de ouvido em pelo menos uma das orelhas durante a atuação profissional.

O zumbido, definido como uma percepção de som na cabeça sem uma fonte acústica externa, e que tem efeito adverso sobre a qualidade da vida cotidiana\(^2\), também esteve presente em mais da metade da amostra pesquisada (57%). Um estudo demonstrou que trabalhadores com tempo médio de serviço de 6,8 anos já possuem queixa de zumbido, com ocorrência deste sintoma em 70% dos indivíduos com limiares normais expostos ao ruído ocupacional. Neste estudo 67% da amostra possuem tempo de atuação superior a essa média e referem queixa de zumbido\(^2\).

As audiometrias realizadas apontaram limiares auditivos normais em todas as frequências para 90% dos indivíduos. Apenas dois sujeitos apresentaram perda auditiva neurosensorial (três orelhas). Entretanto, houve uma parcela (38%) que apresentou aumento nas frequências de 3KHz a 6KHz, com pior média encontrada na frequência de 6KHz, mesmo diante de limiares auditivos dentro dos padrões de normalidade. O mesmo ocorreu em outros estudos que avaliaram a audição de indivíduos expostos ao ruído\(^17,23\). Já outros estudos referiram que a frequência de 4.000 Hz é a mais comprometida\(^6,24\).

Destaca-se ainda que este aumento dos limiares nas frequências na faixa de 3KHz a 6KHz pode ser considerado como um sinal de alerta importante, uma vez que pode indicar uma tendência ao desencadeamento da perda auditiva induzida por níveis elevados de pressão sonora ao longo do tempo, levando em consideração fatores como a faixa etária dessa amostra (20 a 45 anos) e o tempo de exposição ao ruído, elementos importantes para o desenvolvimento da PAINPSE\(^24\).

Um fator relevante que pode justificar limiares auditivos predominantemente normais é a exposição do músico por períodos mais curtos, com períodos de pico e pausas entre eles, nos quais o ouvido pode recuperar-se, diferentemente de trabalhadores da indústria que permanecem expostos a ruído contínuo por quase todo o dia\(^25\). De acordo com o mesmo autor, a música tem períodos intensos seguidos por períodos de silêncio, e é esta intermitência que muitas vezes sentem ser a razão do porquê a exposição à música pode ser menos perigosa que uma equivalente exposição ao ruído industrial. No entanto, deve-se levar em conta que o músico será exposto a intensos níveis de pressão sonora (música) durante toda a sua carreira profissional, sendo fundamental que apresente audição dentro dos padrões de normalidade.

Os dados apresentados demonstram que a população analisada apresenta maior risco para o desenvolvimento de uma perda auditiva induzida pelo ruído. Informações do Comitê Nacional de Ruído e Conservação Auditiva (1994)\(^26\) indicam que a PAIR é caracterizada pelo audiograma com perda auditiva nas altas frequências, com curva descendente, neurosensorial, assim como a apresentação de queixas audiológicas, entre as mais frequentes a de zumbido.

A justificativa para o uso do teste de emissões otoacústicas é pelo fato do ruído muito intenso causar lesões nas estruturas do Órgão de Corti, degenerando inicialmente as Céluas Ciliadas Externas (CCE) em maior quantidade e, posteriormente, as Céluas Ciliadas Internas (CCI)\(^27\). Como o exame das EOAT capta o funcionamento da cóclea pelas respostas das células externas, o teste pode revelar a integridade ou a alteração dessas estruturas antes das mesmas apontarem irregularidade no exame de audiometria tonal.

Diante de uma amostra composta por maioria de participantes com audição normal, esperava-se um número menor de alterações, logo a sensibilidade da avaliação das EOAT foi um fator considerável.

Os percentuais encontrados mostraram que a ausência de EOAT pode ocorrer mesmo com limiares auditivos supostamente normais, como foi observado em uma pesquisa com músicos de rock and roll\(^6\) em que estes sujeitos, apesar de não apresentarem perda auditiva diagnosticada à audiometria, já possuíam alteração coclear percebida às emissões otoacústicas (EOA), mostrando que, apesar da audiometria ainda não revelar perda auditiva, estes sujeitos já apresentavam lesão coclear.

Portanto, pode-se sugerir que a avaliação auditiva realizada apenas pela audiometria tonal pode não retratar a real situação do funcionamento da cóclea dos indivíduos expostos ao ruído\(^6\).

Na comparação entre as frequências do teste EOAPD observa-se que a frequência de 5.000 Hz apresentou amplitude e relação sinal/ruído diminuídos - e maior número de falhas - na comparação com as outras frequências. Dado semelhante foi encontrado em um estudo realizado com indivíduos expostos à bateria universitária, que demonstrou na frequência de 6000 Hz em ambas as orelhas uma tendência do grupo controle apresentar melhor resposta do que o grupo exposto\(^14\). A amplitude das emissões otoacústicas
Perfil audiológico de DJ

representa a quantidade de células ciliadas externas que estão íntegras. Desta forma, a redução da amplitude pode predizer possíveis alterações auditivas.\(^9,^{27}\)

Destaca-se que foi encontrada uma evidência estatística na comparação entre a média das amplitudes e o tempo de exposição semanal dos entrevistado. Isso significa que o tempo que o profissional fica exposto faz com que os resultados do teste com critério amplitude sejam alterados para ambas orelhas. A diminuição na amplitude das emissões otoacústicas transientes e produto de distorção pode ser decorrente a exposição ao ruído em trabalhadores industriais ou músicos.\(^1,^{14}\)

Considerando tais fatos, sendo a PAINPSE irreversível mas passível de prevenção, as EOAT podem ser de grande utilidade na detecção precoce das alterações cocleares associadas ao ruído. Podem ser utilizadas como um método preventivo no monitoramento da função coclear em indivíduos expostos a ruído, no caso pelos níveis elevados de pressão sonora gerados pela música, detectando alterações de forma antecipatória aos resultados audiométricos.

Por fim, conclui-se que programas para prevenção de perdas auditivas são necessários, pois a perda da audição nesses casos é irreversível, podendo afetar o desempenho e qualidade de vida destes profissionais.

CONCLUSÃO

O perfil audiológico dos profissionais avaliados caracteriza-se por limiares auditivos predominantemente dentro dos padrões de normalidade, com aumento dos limiares nas frequências de 3KHz, 4KHz e 6KHz, justamente as primeiras a serem acometidas no processo de desencadeamento da PAINPSE.

As EOAT estiveram ausentes em maior número de respostas comparadas aos registros das EOAPD nesta amostra, mesmo diante de limiares auditivos dentro dos padrões de normalidade.

A música excessivamente amplificada em atividade profissional pode desencadear queixas auditiva em músicos, como zumbido e sensação de plenitude auricular, identificados no presente estudo.

REFERÊNCIAS

1. Macedo EMB, Andrade WTL. Queixas auditivas de Disc Jockeys da cidade de Recife. Rev. CEFAC. 2011;13(3):452-9.
2. Russo ICP, Santos TMM, Busgaib BB, Osterne FJV. Um estudo comparativo sobre os efeitos da exposição à música em músicos de trios elétricos. Rev. bras. otorrinolaringol. 1995;61(6):477-84.
3. Jorge Junior JJ, Alegre ACM, Greco MC, Angelini MCA, Barros PM. Hábitos e limiares auditivos de jovens em relação à música eletronicamente amplificada em discotecas. Rev. bras. otorrinolaringol. 2001;67(3):297-304.
4. Munhoz GS. Proposta de programa de prevenção de perdas auditivas para músicos. [Dissertação] Bauru (SP): Faculdade de Odontologia de Bauru; 2016.
5. Schink T, Kreutz G, Busch V, Pigeot I, Ahrens W. Incidence and relative risk of hearing disorders in professional musicians. Occup. Environ. Med. 2014;71(7):472-6.
6. Maia JRF, Russo ICP. Estudo da audição de músicos de rock and roll. Pró-Fono R. Atual. Cientif. 2008;20(1):49-54.
7. Fiorini AC, Fischer FM. Expostos e não expostos a ruído ocupacional: estudos dos hábitos sonoros, entalhe audiométrico e teste de emissões otoacústicas evocadas por estímulo transiente. Distúrb. Comum. 2004;16(3):371-83.
8. Gattaz G, Wazen SRG. O Registro das Emissões Otoacústicas Evocadas – Produto de Distorção em pacientes com Perda Auditiva Induzida pelo Ruído. Rev. bras. otorrinolaringol. 2001;67(2):213-8.
9. Barros SMS, Frota S, Atherino CCT, Osterne F. A eficiência das emissões otoacústicas transientes e audiometria tonal na detecção de mudanças temporárias nos limiares auditivos após exposição a níveis elevados de pressão sonora. Rev. bras. otorhinolaringol. 2007;73(5):592-8.
10. Lopes Filho O, Carlos R, Redondo MC. Produto de Distorção das Emissões Otoacústicas. Rev. bras. otorrinolaringol. 1995;61(6):485-94.
11. Ottoni AO, Barbosa BA, Boger ME, Garavelli SL. Study of the noise spectrum on high frequency thresholds in workers exposed to noise. Braz. j. otorhinolaryngol. 2012;78(4):108-14.
12. Sistema de Conselhos Federal e Regionais de Fonoaudiologia. Manual de Procedimentos em Audiometria Tonal Limiar, Logoaudiometria e Medidas de Imitância Acústica. 2013:13-27.
13. Gorga M, Norton SJ, Siningey YS, Cone-Wesson B, Folsom RC, Vohr BR et al. Identification of neonatal hearing impairment: distortion product otoacoustic
emissions during the perinatal period. Ear hear. 2000;21(5):400-24.

14. Silva PB, Fiorini AC, Azevedo MF. Otoacoustic emissions in young adults exposed to drums noise of a college band. Rev. CEFA. 2017;19(5):645-53.

15. Assef C. Todo DJ já sambou: a história do disc-jóquei no Brasil. 2ª Ed. São Paulo: Conrad, 2008.

16. Gonçalves VSB, Lacerda JMV, Brito LKB, Oliveira NCM. Estudo dos hábitos auditivos em estudantes de escola privadas na cidade de João Pessoa. In: XVIII Congresso Brasileiro de Fonoaudiologia. Anais; 2009. Salvador (BA); 21 a 24 de outubro. p. 2417.

17. Luders D, Gonçalves CGO, Lacerda ABM, Schettini SRL, Silva LSG, Albizu EJ et al. Hearing and quality of life in musicians of a symphony orchestra. Audiol., Commun. res. 2016;21:e1688.

18. Silva VG. Avaliação da possível associação de lesão de células ciliadas externas cocleares com a exposição à música amplificada em adolescentes. [Tese] Brasilia (DF): Universidade de Brasilia; 2017.

19. Gelardi VC, Fiorini AC. Auditory effects and communication disorders in an aerial patrol group. Distúrb. Comum. 2016;8(4):709-17.

20. Lacerda A, Figueiredo G, Massarolo Neto J, Marques JM. Achados audiológicos e queixas relacionadas à audição dos motoristas de ônibus urbano. Rev. Soc. Bras. Fonoaudiol. 2010;15(2):161-6.

21. Oliveira RC, Santos JN, Rabelo ATV, Magalhães MC. The impact of noise exposure on workers in Mobile Support Units. CoDAS. 2015;27(3):215-22.

22. Steinmetz LG, Zeigelboim BS, Lacerda AB, Morata TC, Marques JM. Características do zumbido em trabalhadores expostos a ruído. Rev. bras. otorrinolaringol. 2009;75(1):7-14.

23. Munhoz G, Lopes A. Programa de Prevenção de Perdas Auditivas (PPPA) para músicos. Revista Portuguesa de Saúde Ocupacional. 2016;1:72-81. DOI:10.31252/RPSO.22.06.2016

24. Lopes AC, Nelli MP, Lauris JRP, Amorim RB, Melo ADP. Condições de saúde auditiva no trabalho: investigação dos efeitos auditivos em trabalhadores expostos ao ruído ocupacional. Arq. int. otorrinolaringol. 2009;13(1):49-54.

25. Chasin M. Musicians and the prevention of hearing loss. San Diego: Singular Publishing Group, 1996.