Tick Surveillance for Relapsing Fever Spirochete <i>Borrelia miyamotoi</i> in Hokkaido, Japan

Ai Takano¹,²*, Kochi Toyomane³*, Satoru Konnai³, Kazuhiko Ohashi³, Minoru Nakao⁴, Takuya Ito⁵, Masako Andoh⁶, Ken Maeda¹,², Masahisa Watarai¹,², Kozue Sato⁷*, Hiroki Kawabata⁷,⁸

¹Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Yamaguchi, Japan, ²The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan, ³Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan, ⁴Department of Parasitology, Asahikawa Medical College, Asahikawa, Hokkaido, Japan, ⁵Department of Infectious Disease, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan, ⁶Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan, ⁷Department of Bacteriology-I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan, ⁸United Graduate School of Agricultural Science & Veterinary Science, Gifu University, Gifu, Gifu, Japan

Abstract

During 2012–2013, a total of 4325 host-seeking adult ticks belonging to the genus <iIxodes</i> were collected from various localities of Hokkaido, the northernmost island of Japan. Tick lysates were subjected to real-time PCR assay to detect relapsing fever infection. The assay was designed for specific detection of the Relapsing fever spirochete <i>Borrelia miyamotoi</i> and for unspecific detection of Lyme disease-related spirochetes. Overall prevalence of <i>B. miyamotoi</i> was 2% (71/3532) in <i>Ixodes persulcatus</i>, 4.3% (5/117) in <i>Ixodes pavlovskyi</i> and 0.1% (1/676) in <i>Ixodes ovatus</i>. The prevalence in <i>I. persulcatus</i> and <i>I. pavlovskyi</i> ticks was significantly higher than in <i>I. ovatus</i>. Co-infections with Lyme disease-related spirochetes were found in all of the tick species. During this investigation, we obtained 6 isolates of <i>B. miyamotoi</i> from <i>I. persulcatus</i> and <i>I. pavlovskyi</i> by culture in BSK-M medium. Phylogenetic trees of <i>B. miyamotoi</i> inferred from each of 3 housekeeping genes (<i>glpQ</i>, 16S rDNA, and <i>flaB</i>) demonstrated that the Hokkaido isolates were clustered with Russian <i>B. miyamotoi</i>, but were distinguishable from North American and European <i>B. miyamotoi</i>. A multilocus sequence analysis using 8 genes (<i>clpA</i>, <i>clpX</i>, <i>nifS</i>, <i>pepX</i>, <i>pyrG</i>, <i>recG</i>, <i>rplB</i>, and <i>uvrA</i>) suggested that all Japanese <i>B. miyamotoi</i> isolates, including past isolates, were genetically clonal, although they were isolated from different tick and vertebrate sources. From these results, <i>B. miyamotoi</i>-infected ticks are widely distributed throughout Hokkaido. Female <i>I. persulcatus</i> are responsible for most human tick-bites, thereby <i>I. persulcatus</i> is likely the most important vector of indigenous relapsing fever virus from tick bites in Hokkaido.

Introduction

<i>Borrelia miyamotoi</i>, a member of the relapsing fever group (RF) borreliae, was first discovered from <i>Ixodes persulcatus</i> ticks and the rodent, <i>Apodemus argenteus</i>, in Hokkaido, the northernmost island of Japan [1]. Subsequently, <i>B. miyamotoi</i> has been found in <i>Ixodes scapularis</i> and <i>Ixodes pacificus</i> ticks in North America [2,3,4] and <i>Ixodes ricinus</i> in Europe [5,6]. Cases of human infections with <i>B. miyamotoi</i> were initially reported in Russia [7]. Following this report, several human cases have been confirmed as <i>B. miyamotoi</i> infections in North America [8,9] and Europe [10]. Recently, tick surveillance for <i>B. miyamotoi</i> was performed in Europe [11] and Russia [7]. The surveys showed that <i>I. ricinus</i> and <i>I. persulcatus</i> in the Eurasian continent consistently harbor <i>B. miyamotoi</i> with low prevalence. However, large-scale tick surveillance has not been conducted in Asian countries where <i>I. persulcatus</i> is distributed.

In Japan, cases of Lyme disease (LD) are clustered in the northernmost island, Hokkaido, because its principal vector, <i>I. persulcatus</i>, is abundant throughout the island [12,13]. The tick is also a candidate vector for <i>B. miyamotoi</i> [1]. A previous study in Hokkaido detected <i>B. miyamotoi</i> from <i>I. persulcatus</i> ticks and from rodents [14]. However, widespread prevalence data of <i>B. miyamotoi</i> infections are still lacking for populations of ticks, including <i>I. persulcatus</i> and other genus <i>Ixodes</i> species. This basic information on prevalence of <i>B. miyamotoi</i> infections in ticks is urgently required for risk assessment of relapsing fever in Hokkaido.

<i>Ixodes pavlovskyi</i>, a species closely related to <i>I. persulcatus</i>, is also distributed throughout Hokkaido [15,16,17]. Compared to the abundant <i>I. persulcatus</i>, <i>I. pavlovskyi</i> is a minor tick species.

Citation: Takano A, Toyomane K, Konnai S, Ohashi K, Nakao M, et al. (2014) Tick Surveillance for Relapsing Fever Spirochete <i>Borrelia miyamotoi</i> in Hokkaido, Japan. PLoS ONE 9(8): e104532. doi:10.1371/journal.pone.0104532

Editor: Brian Stevenson, University of Kentucky College of Medicine, United States of America

Received April 10, 2014; Accepted July 9, 2014; Published August 11, 2014

Copyright: © 2014 Takano et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All accession number of sequences are deposited in DDBJ/EMBL/GenBank databases as the following accession numbers: AB900797-817 and AB904793.

Funding: This work was supported in part by a grant for research on emerging and reemerging infectious diseases from the Japanese Ministry of Health, Labor, and Welfare (H24-Shinko-Ippan-008) (http://www.mhlw.go.jp/seisakunitsuite/bunya/hokabunya/kenkyujigyou/hojokin-koubo-h25/gaiyo/19.html), and Program to Disseminate Tenure Tracking System, MEXT, Japan (http://www.jst.go.jp/tenure/index.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: a-takano@yamaguchi-u.ac.jp

† These authors contributed equally to this work.
Nevertheless, the close evolutionary relationship among *I. persulcatus* and *I. pavlovskyi* [16,17] raises concerns about their ability to maintain *B. miyamotoi* in nature. In this study, large-scale tick surveillance for *B. miyamotoi* was conducted in Hokkaido to estimate the infection rate of host-seeking adult *Ixodes* ticks. The tick-derived isolates of *B. miyamotoi* established in this surveillance were subjected to molecular analyses to characterize their genetic profile. The resultant field and laboratory data will serve as a baseline in understanding the epidemiology of *B. miyamotoi* in Japan.

Materials and Methods

Tick collection, DNA extraction and borrelial cultivation

During the spring to summer seasons (April to July) of 2012 and 2013, host-seeking adult ticks of *I. persulcatus*, *I. pavlovskyi* and *I. ovatus* were collected by flagging over vegetation from a total of 57 forested areas in Hokkaido (Figure 1). In these areas, no specific permissions were required for collection of ticks, and this study did not involve endangered or protected species. The collection of *I. ovatus* was discontinued in 2013 because of its extremely low prevalence of *B. miyamotoi* infection. The number of ticks examined, and the prevalence of *Borrelia* spp. among them were calculated for each district.

All of the ticks collected were subjected to a quantitative real-time PCR (qPCR) assay to detect spirochete DNA. The DNA for PCR templates was prepared from whole or half bodies of each tick by using sodium hydroxide (NaOH), as described previously [18]. Briefly, tick tissues including bacterial cells were lysed in 50 μL of 25 mM NaOH for 10 minutes at 95°C. After adding 4 μL of Tris-HCL (1 M, pH7.5) for neutralization, the lysate was centrifuged at 4°C, and the resulting supernatant was used as template DNA for qPCR. A preliminary study suggested that the sensitivity of qPCR using the lysate was equal to that using DNA extracted by DNeasy Tissue Kit (Qiagen, CA, USA) (Data not shown).

Parts of ticks collected were used to cultivate *B. miyamotoi* in modified Barbour-Stoenner-Kelly medium (BSK-M: using mini-mal essential medium alpha [BioWest, Germany] as a substitute for CMRL-1066) under microaerophilic conditions [19,20] (Table S1). The surface of ticks was sterilized by washing with 0.1% sodium hypochlorite, then with 80% ethyl alcohol. The washed tick was longitudinally bisected using a disposable knife (ELP No. 10, Akiyama Medical MFG. CO., LTD., Tokyo, Japan), and one half was inoculated into BSK-M medium. The remaining half was used to prepare the PCR template, as described above. Tick samples which were shown by qPCR to be positive for *B. miyamotoi* and negative for LD borreliae, were cultivated at 30°C for 4 weeks, and then the growth of spirochetes was examined by dark-field microscopy every two weeks.

Figure 1. Tick collection sites in this study. Ticks were collected in the areas shown by black dots. The gray shading shows district where ticks were collected during this investigation (see Table 1).

doi:10.1371/journal.pone.0104532.g001
Table 1. Prevalence of borreliae in ticks.

Location in Hokkaido	Tick species	Tick Number	B. miyamotoi positive No. (%)*	LD borreliae positive No. (%)*						
		Male	Female	Total	Male	Female	Total	Male	Female	Total
North Souya	I. persulcatus	223	266	489	6 (2.7)	5 (1.9)	11 (2.2)	42 (18.8)	61 (22.9)	103 (21.1)
	I. pavlovskyi	1	0	1	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Rumoi	I. persulcatus	13	14	27	0 (0)	0 (0)	0 (0)	4 (30.8)	5 (35.7)	9 (33.3)
	I. ovatus	3	21	24	0 (0)	0 (0)	0 (0)	1 (33.3)	11 (52.4)	12 (50)
Kamikawa	I. persulcatus	499	986	1485	5 (1)	20 (2)	25 (1.7)	165 (33.1)	308 (31.2)	473 (31.9)
	I. pavlovskyi	25	24	49	1 (4)	2 (8.3)	3 (6.1)	7 (28)	4 (16.7)	11 (22.4)
	I. ovatus	40	401	441	1 (2.5)	0 (0)	1 (0.2)	18 (45)	144 (33.9)	162 (36.7)
East Abashiri	I. persulcatus	250	280	530	7 (2.8)	9 (3.2)	16 (3)	107 (42.8)	123 (43.9)	230 (43.4)
	I. pavlovskyi	0	3	3	0 (0)	0 (0)	0 (0)	0 (0)	1 (33.3)	1 (33.3)
	I. ovatus	12	54	66	0 (0)	0 (0)	0 (0)	7 (56.3)	32 (59.3)	39 (59.1)
Nemuro	I. persulcatus	91	95	186	1 (1.1)	2 (2.1)	3 (1.6)	24 (26.4)	23 (24.2)	47 (25.3)
Kushiro	I. persulcatus	143	186	329	0 (0)	6 (3.2)	6 (1.8)	60 (42)	79 (42.5)	139 (42.2)
Tokachi	I. persulcatus	76	72	148	1 (1.3)	3 (4.2)	4 (2.7)	17 (22.4)	21 (29.2)	38 (25.7)
	I. pavlovskyi	0	3	3	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	I. ovatus	44	101	145	0 (0)	0 (0)	0 (0)	26 (59.1)	49 (48.5)	75 (51.7)
Central Sorachi	I. persulcatus	67	73	140	0 (0)	2 (2.7)	2 (1.4)	6 (9)	13 (17.8)	19 (13.6)
Hidaka	I. persulcatus	7	9	16	0 (0)	0 (0)	0 (0)	1 (14.3)	1 (11.1)	2 (12.5)
Ishikari	I. persulcatus	63	116	179	0 (0)	4 (3.4)	4 (2.2)	14 (22.2)	35 (20.2)	49 (27.4)
	I. pavlovskyi	40	21	61	2 (5)	0 (0)	2 (3.3)	3 (7.5)	3 (14.3)	6 (9.8)
South Oshima	I. persulcatus	2	1	3	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Total	I. persulcatus	1434	2098	3532	20 (1.4)	51 (2.4)	71 (2)	444 (31)	674 (32.1)	1118 (31.7)
	I. pavlovskyi	66	51	117	3 (4.5)	2 (3.9)	5 (4.3)	10 (15.2)	8 (15.7)	18 (15.4)
	I. ovatus	99	577	676	1 (1)	0 (0)	1 (0.1)	52 (52.5)	236 (40.9)	288 (42.6)

*The numbers include mixed infections.
doi:10.1371/journal.pone.0104532.t001
Detection of borrelial DNAs from ticks

As described previously [21], borrelial DNA in the tick lysates was detected by multiplex qPCR targeting the 16 S rRNA gene (16 S rDNA). Based on Barbour et al., a minor groove binder probe with an FAM-label (FAM probe) (Life Technologies Corporation, MD, USA) was designed for LD borreliae, while an minor groove binder probe with a VIC-label (VIC probe) was designed for RF borreliae, including *B. miyamotoi*. The qPCR was performed using Premix Ex Taq (Probe qPCR), (Takara Bio Inc., Shiga, Japan) according to the manufacturer's instructions. The qPCR was run on an ABI PRISM 7000 system, ABI StepOne system (Life Technologies Corporation), and LightCycler 480 systemII (Roche Diagnostics, Basel, Switzerland). The PCR cycles were set at 40, and the reaction was performed in 12.5 μL (ABI PRISM 7000 system and StepOne system) or 10 μL (LightCycler 480 systemII) in single tubes or plate wells. The sensitivity and specificity of the qPCR was performed as described in the File S1.

PCR, multilocus sequence analysis (MLSA), and phylogeny reconstruction

Tick-derived isolates of *B. miyamotoi* were characterized by PCR-based DNA sequencing. After DNA extraction, using Wizard genomic DNA purification kit (Promega, WI, USA), Takara Ex Taq (Takara Bio Inc.) and KOD FX (TOYOBO Co., LTD., Osaka, Japan) DNA polymerases were used for all PCR amplifications, as recommended by the manufacturers. Target DNA fragments of the borrelial flagellin gene (*flaB*), glycerolphosphoryl diester phosphodiesterase gene (*glpQ*), and 16 S rRNA were amplified as described previously [22]. MLSA was performed to further characterize the isolates of *B. miyamotoi*. For this purpose, the loci from 8 genes (*clpA*, *clpX*, *nifS*, *pepX*, *pyrG*, *recG*, *rplB*, and *suvA*) were analyzed [23]. These primers were designed by genome assembling of 4 RF borreliae; *Borrelia hermsii* (CP000048), *Borrelia duttonii* (CP000976), *Borrelia turicatae* (CP000049), and *Borrelia recurrentis* (CP000993). The PCR thermal conditions to amplify the 8 genes were as follows: 95°C for 30 s, followed by 35 cycles of 95°C for 10 s, 50°C for 30 s, and 72°C for 60 s. All PCR products were purified by High Pure PCR Product Purification Kit (Roche Diagnostics), then directly sequenced using an ABI Prism 3130 or 3130xl Genetic Analyzer (Life Technologies Corporation). All of the PCR primers used in this study are listed in the Table S2.

Raw sequence data were assembled by Sequencher 5.1 (Gene Codes Corporation, MI, USA). Sequences of each gene were aligned by ClustalW (v.1.6), and Neighbor-joining trees were generated by 1000 bootstrap repetitions under the Kimura 2-parameter by MEGA 5.2 [22,24]. All positions containing alignment gaps and missing nucleotides were eliminated only in pairwise sequence comparisons (the pairwise deletion option was used).

Statistical tests for prevalence data

Prevalence data of borrelial infections in tick groups from different categories (e.g. species, sex and locale) were analyzed by the Fisher’s exact tests. A p-value less than 0.01 was considered to be statistically significant.

Results

Sensitivity and specificity of the qPCR

The sensitivity and specificity of the qPCR were examined, as shown in the supporting information. The limit of the DNA detection consistently observed was a minimum of 10 plasmid copies (data not shown). Regarding the specificity of qPCR, in the case of the FAM probe, 85% (11/13) of LD borreliae were detected, whereas *Borrelia valaisiana* Am501T was barely detectable, *Borrelia lusitaniae* PotiB2T was not detected, and none of the RF borreliae were detected. On the other hand, the VIC probe detected *B. miyamotoi*, *B. hermsii*, and *Borrelia coriaceae* Co53T. However, for species with a 1 bp mismatch with the probe, such as *B. duttonii* Ly and *Borrelia* sp. AGRF [25], amplification was delayed, resulting in a reduced final concentration that just barely reached our threshold. None of the reptile

![Figure 2. The prevalence of *B. miyamotoi* and LD borreliae in *Ixodes* ticks in Hokkaido.](https://doi.org/10.1371/journal.pone.0104532.g002)
associated borreliae were detected by either probe. Therefore, the FAM probe widely detects *B. burgdorferi* sensu lato, which has been isolated from *Ixodes* ticks in Japan, including pathogenic borreliae of humans, such as *B. garinii*, *Borrelia bavariensis* and *Borrelia afzelii*, and non-pathogenic borreliae, *Borrelia japonica*, *Borrelia tanuki* and *Borrelia turdi*, whereas the VIC probe detects a narrow range of relapsing fever borreliae, of which the only one reported in Japan is *B. miyamotoi*.

Previous prevalence of borreliae in *Ixodes* ticks

A total of 4325 adult ticks were collected from various localities covering 11 out of the total 14 districts of Hokkaido (Figure 1). As shown in Table 1, ticks harboring *B. miyamotoi* were found from 8 districts in northern, eastern and central Hokkaido. There was no significant statistical difference in the prevalence among the 8 localities. Overall prevalence of *B. miyamotoi* in ticks of Hokkaido was 2% in *I. persulcatus*, 4.3% in *I. pacovskyi*, and 0.1% in *I. ovatus*, respectively (Table 1). There was no statistical difference between *I. persulcatus* and *I. pacovskyi*. The prevalences among both of these tick species were statistically higher than that of *I. ovatus* (Figure 2). The overall prevalence of LD borreliae was 31.7% in *I. persulcatus*, 15.4% in *I. pacovskyi*, and 42.6% in *I. ovatus*, respectively (Table 1). Co-infections of *B. miyamotoi* and LD borreliae in adult ticks were observed in 25 of 3532 *I. persulcatus* (0.7%), 1 of 117 *I. pacovskyi* (0.9%), and 1 of 676 *I. ovatus* (0.1%).

Phylogenetic analysis of isolated strains

In this study, 6 isolates of *B. miyamotoi* derived from *I. persulcatus* and *I. pacovskyi* were established in culture using BSK-M medium (Table 2). These isolates were utilized for molecular characterization, together with 5 isolates previously...
Table 2. *Borrelia miyamotoi* strains used in this study.

Strain name	Isolation source	Location	Isolated year	Reference
HT31T	*I. persulcatus*, female	Shiretoko, Hokkaido, Japan	1990	1
HT24	*I. persulcatus*, female	Shiretoko, Hokkaido, Japan	1990	1
FR64b	*Apodemus argenteus*, whole blood	Furano, Hokkaido, Japan	1991	1
HK004	*I. persulcatus*, nymph	Sibecha, Hokkaido, Japan	1993	1
NB103-1	*I. persulcatus*, nymph on *Eimeria spodocephala*	Nemuro, Hokkaido, Japan	1991	1
MYK1	*I. pavlovskyi*, female	Shibetsu, Hokkaido, Japan	2012	in this study
MYK2	*I. persulcatus*, female	Nayoro, Hokkaido, Japan	2012	in this study
MYK3	*I. persulcatus*, female	Obihiro, Hokkaido, Japan	2012	in this study
MYK4	*I. persulcatus*, female	Simukapp, Hokkaido, Japan	2012	in this study
MYK5	*I. persulcatus*, female	Takinoue, Hokkaido, Japan	2012	in this study
Y13T1	*I. persulcatus*, male	Oumu, Hokkaido, Japan	2013	in this study

doi:10.1371/journal.pone.0104532.t002

Discussion

It is known that *I. persulcatus* principally serves as a tick vector for LD borreliae in Hokkaido. Hokkaido has an area of approximately 83,000 km², and the total population of Hokkaido, according to the National Census 2010, is 5.5 million people (http://www.stat.go.jp/english/index.htm). However, 42% of the population inhabits the plains of Ishikari district (Figure 1). Similar to the taiga zone in Russia, *I. persulcatus* ticks are abundant mainly in forested areas of northern and eastern Hokkaido, which are thinly populated. Human tick bites and tick-borne LD, therefore, occur sporadically in Hokkaido [27]. In this study, we conducted large-scale tick surveillance for *B. miyamotoi* in Hokkaido, because human cases of *B. miyamotoi* infections have been confirmed in Russia [7]. Moreover, human *B. miyamotoi* infection, determined through retrospective analysis, has been reported in Hokkaido (http://www.nih.go.jp/niid/ja/relapsing-fever-m/relapsing-fever-iasrs/3877-pr4046.html). Our study demonstrated that *B. miyamotoi* is widely distributed throughout Hokkaido with low prevalence (0–3%) in *I. persulcatus* (Table 1, Figure 2). The prevalence is similar to those reported in Russian and European *I. persulcatus* [7,11]. Besides *I. persulcatus*, *B. miyamotoi* was found from 4.3% (within 0–6.1%) of *I. pavlovskyi*, and this is the first report of detection and isolation of *B. miyamotoi* from *I. pavlovskyi*. Moreover, we detected *B. miyamotoi* from an *I. ovatus* male. However, given that the prevalence in *I. ovatus* was significantly lower than that in *I. persulcatus* and *I. pavlovskyi*, the potential vectors of *B. miyamotoi* in Hokkaido are thought to be *I. persulcatus* and *I. pavlovskyi*. Female ticks of *I. persulcatus* are responsible for most human tick-bites in Hokkaido [27]. The abundance of *B. miyamotoi*-infected female ticks is, therefore, directly linked to human risk. Although the prevalence of *B. miyamotoi* is relatively low in rural communities of Hokkaido, *B. miyamotoi* is important for public health as an agent of fever and variable symptoms. Moreover, *I. pavlovskyi* can serve as an additional vector for *B. miyamotoi*. *I. persulcatus* and *I. pavlovskyi* are closely related morphologically, ecologically and phylogenetically [17,28]. The larvae and nymphs of both tick species have a wide range of feeding hosts, such as small mammals and birds. On the other hand, unlike *I. persulcatus*, adult *I. pavlovskyi* mainly infests birds. The potential for *I. pavlovskyi* to bite humans is still unclear, however, its public health significance is negligible given the far lower abundance.

MLSA is an efficient tool to resolve phylogenetic relationships of LD borreliae on an intraspecies level [23]. In this study, we obtained for MLSA, 11 isolates, including 5 strains isolated in the far lower abundance. For this purpose, we selected as a representative for phylogenetic analysis. Neighbor-joining phylogenetic trees inferred from each of the housekeeping genes clearly showed that HT31 was clustered with *B. miyamotoi* from Russia, but was distinguishable from *B. miyamotoi* found in North America and *B. miyamotoi* detected from most *I. ricinus* ticks in Europe (Figures 3, S1, and S2). These three clusters of *B. miyamotoi* were temporally designated as “Siberian,” “American” and “European” types, in this study (Figure 3).

The molecular typing by MLSA using 8 genes (gltA, 16S rDNA, and flaB) were determined for all of the Hokkaido isolates, and there were no nucleotide substitutions in all 11 isolates. Therefore, the isolate HT31 (the type strain of *B. miyamotoi*) was selected as a representative for phylogenetic analysis. Neighbor-joining phylogenetic trees inferred from each of the housekeeping genes clearly showed that HT31 was clustered with *B. miyamotoi* from Russia, but was distinguishable from *B. miyamotoi* found in North American and *B. miyamotoi* detected from most *I. ricinus* ticks in Europe (Figures 3, S1, and S2). These three clusters of *B. miyamotoi* were temporally designated as “Siberian,” “American” and “European” types, in this study (Figure 3).

The molecular typing by MLSA using 8 genes (gltA, 16S rDNA, and flaB) were determined for all of the Hokkaido isolates, and there were no nucleotide substitutions in all 11 isolates. Therefore, the isolate HT31 (the type strain of *B. miyamotoi*) was selected as a representative for phylogenetic analysis. Neighbor-joining phylogenetic trees inferred from each of the housekeeping genes clearly showed that HT31 was clustered with *B. miyamotoi* from Russia, but was distinguishable from *B. miyamotoi* found in North American and *B. miyamotoi* detected from most *I. ricinus* ticks in Europe (Figures 3, S1, and S2). These three clusters of *B. miyamotoi* were temporally designated as “Siberian,” “American” and “European” types, in this study (Figure 3).

The molecular typing by MLSA using 8 genes (gltA, 16S rDNA, and flaB) were determined for all of the Hokkaido isolates, and there were no nucleotide substitutions in all 11 isolates. Therefore, the isolate HT31 (the type strain of *B. miyamotoi*) was selected as a representative for phylogenetic analysis. Neighbor-joining phylogenetic trees inferred from each of the housekeeping genes clearly showed that HT31 was clustered with *B. miyamotoi* from Russia, but was distinguishable from *B. miyamotoi* found in North American and *B. miyamotoi* detected from most *I. ricinus* ticks in Europe (Figures 3, S1, and S2). These three clusters of *B. miyamotoi* were temporally designated as “Siberian,” “American” and “European” types, in this study (Figure 3).

The molecular typing by MLSA using 8 genes (gltA, 16S rDNA, and flaB) were determined for all of the Hokkaido isolates, and there were no nucleotide substitutions in all 11 isolates. Therefore, the isolate HT31 (the type strain of *B. miyamotoi*) was selected as a representative for phylogenetic analysis. Neighbor-joining phylogenetic trees inferred from each of the housekeeping genes clearly showed that HT31 was clustered with *B. miyamotoi* from Russia, but was distinguishable from *B. miyamotoi* found in North American and *B. miyamotoi* detected from most *I. ricinus* ticks in Europe (Figures 3, S1, and S2). These three clusters of *B. miyamotoi* were temporally designated as “Siberian,” “American” and “European” types, in this study (Figure 3).

The molecular typing by MLSA using 8 genes (gltA, 16S rDNA, and flaB) were determined for all of the Hokkaido isolates, and there were no nucleotide substitutions in all 11 isolates. Therefore, the isolate HT31 (the type strain of *B. miyamotoi*) was selected as a representative for phylogenetic analysis. Neighbor-joining phylogenetic trees inferred from each of the housekeeping genes clearly showed that HT31 was clustered with *B. miyamotoi* from Russia, but was distinguishable from *B. miyamotoi* found in North American and *B. miyamotoi* detected from most *I. ricinus* ticks in Europe (Figures 3, S1, and S2). These three clusters of *B. miyamotoi* were temporally designated as “Siberian,” “American” and “European” types, in this study (Figure 3).
during feeding. *B. miyamotoi* is transmitted to vertebrates through saliva. Whereas LD borreliae are known to require several days (~40 hours) for transmission from ticks to vertebrates [29], soft tick-borne RF borreliae were efficiently transmitted through saliva within minutes [30]. In a previous study, we demonstrated that *Borrelia* sp. AGRF, which is phylogenetically related to *B. miyamotoi*, is maintained in the salivary gland of unfed hard-ticks, suggesting that the borrelial transmission to vertebrate hosts occurs rapidly when the ticks start to feed blood [25]. Thus, we speculate that *B. miyamotoi* may be transmitted to humans more rapidly than LD borreliae, thereby increasing the risk of infection. Further studies will be required to confirm this.

In conclusion, the present surveillance showed that *B. miyamotoi*-infected ticks are widely distributed throughout Hokkaido, and that *I. persulcatus* is likely the most important vector of indigenous relapsing fever-like spirochetes transmitted by ticks in Hokkaido. Our subsequent genetic analyses also demonstrated that the Hokkaido isolates of *B. miyamotoi* are clonal.

Supporting Information

Figure S1 Phylogenetic analysis of RF borreliae based on *flaB* of *Borrelia* spp. The phylogenetic branches were supported in >70% by the bootstrap analysis. The bar indicates the percentage of sequence divergence. Sequences in this study are shown in bold type. The number in parentheses indicates Accession Number in GenBank. (TIF)

Figure S2 Phylogenetic analysis of RF borreliae based on *glpQ* of *Borrelia* spp. The phylogenetic branches were supported in >70% by the bootstrap analysis. The bar indicates the percentage of sequence divergence. Sequences in this study are shown in bold type. The number in parentheses indicates Accession Number in GenBank. (TIF)

Figure S3 Bayesian phylogenetic inference of concatenated housekeeping gene sequences of RF borreliae. The phylogenetic tree was constructed based on Bayesian phylogenetic inference as previously described by Margos et al [23]. The posterior probability values of the clades are provided. Bars labeled 0.02 depict 2% divergence. The LD borreliae (ST1 [*B. burgdorferi* B31], ST94 [*B. garinii* P11], ST70 [*B. afzelii* VS461]) were downloaded from the MLST website; www.mlst.net were used as outgroups (data not indicated). The number in parentheses indicates Accession Number in GenBank. (TIF)

Table S1 The composition of BSK-M medium. (DOC)

Table S2 The Primer list used in this study. (DOC)

File S1 The sensitivity and specificity of the qPCR. (DOC)

Acknowledgments

We would like to thank M. Fukunaga (Fukuyama University) and T. Masuzawa (Chiba Institute of Science) for providing *Borrelia* strains, C. Miyoshi, R. Sakai, A. Naniwa and A. Okuda (Field Science Center for Northern Biosphere, Hokkaido University) for providing information about collecting ticks, Y. Ito (Yamaguchi University) for her excellent technical assistance, and S. Yamamoto (Miyazaki prefectural Institute for Public Health and Environment) for technical advice on DNA extraction from ticks. We appreciate K. R. Taylor (University of Florida, Department of Infectious Diseases and Pathology) for his critical comments on this manuscript. The authors would like to acknowledge the technical expertise of The DNA Core facility of the Center for Gene Research, Yamaguchi University, supported by a grant-in-aid from the Ministry of Education, Science, Sports and Culture of Japan.

Author Contributions

Conceived and designed the experiments: AT SK KO KM MW HK. Performed the experiments: AT KT SK KS HK. Analyzed the data: AT KT SK HK. Contributed reagents/materials/analysis tools: AT SK MN TI MA MW HK. Contributed to the writing of the manuscript: AT KT SK MN TI HK.

References

1. Fukunaga M, Takahashi Y, Tsuruta Y, Matsushita O, Ralph D, et al. (1995) Genetic and phenotypic analysis of *Borrelia miyamotoi* sp. nov., isolated from the indigenous tick *Ixodes persulcatus*, the vector for Lyme disease in Japan. Int J Syst Bacteriol 45: 804–810.
2. Scopes GA, Papero M, Beati L, Fish D (2001) A relapsing fever group spirochete transmitted by *Ixodes scapularis* ticks. Vector Borne Zoonotic Dis 1: 21–34.
3. Mun J, Eisen RJ, Eisen L, Lane RS (2006) Detection of a *Borrelia miyamotoi* sensu lato relapsing-fever group spirochete from *Ixodes pacificus* in California. J Med Entomol 43: 120–123.
4. Salkeld DJ, Cinkovich S, Nieto NC (2014) Tick-borne Pathogens in Northwestern California, USA. Emerg Infect Dis 20: 493–494.
5. Fraenkel CJ, Garpuno U, Bergh JD (2002) Determination of novel *Borrelia* genospecies in Swedish *Ixodes ricinus* ticks. J Clin Microbiol 40: 3308–3312.
6. Richter D, Schler DB, Matsuchka FR (2003) Relapsing fever-like spirochetes infecting European vector tick of Lyme disease agent. Emerg Infect Dis 9: 697–701.
7. Platonov AE, Karan LS, Kolyasnikova NM, Makhleneva NA, Toporkova MG, et al. (2011) Humans infected with relapsing fever spirochete *Borrelia miyamotoi*, Russia. Emerg Infect Dis 17: 1816–1823.
8. Chowdhri HK, Guigliotta JL, Bezdahl VP, Grothert HK, Molloy P, et al. (2013) *Borrelia miyamotoi* infection presenting as human granulocytic anaplasmosis: a case report. Ann Intern Med 159: 21–27.
9. Guigliotta JL, Grothert HK, Bezdahl VP, Telford SR 3rd. (2013) Meningoencephalitis from *Borrelia miyamotoi* in an immunocompromised patient. N Engl J Med 368: 240–245.
10. Hovius JW, de Wever B, Sohne M, Bronner MC, Comoume J, et al. (2013) A case of meningocerebritis in the relapsing fever spirochaete *Borrelia miyamotoi* in Europe. Lancet Neurol 12: 650–651.
11. Geller J, Nazarova I, Katargina O, Jarvekull L, Fomenko N, et al. (2012) Detection and genetic characterization of relapsing fever spirochete *Borrelia miyamotoi* in Estonian ticks. PLoS One 7: e151941.
tick vector and mammalian reservoir species. Am J Trop Med Hyg 81: 1120–1131.
22. Takano A, Fujita H, Kadosaka T, Konnai S, Tajima T, et al. (2011) Characterization of reptile-associated Borrelia sp. in the vector tick, Amblyomma geopelmus, and its association with Lyme disease and Relapsing fever Borrelia spp. Environ Microbiol Rep 3: 632–637.
23. Margos G, Gateswood AG, Aanensen DM, Hanincová K, Terekhova D, et al. (2008) MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A 105: 8730–8735.
24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731–2739.
25. Takano A, Sugimori C, Fujita H, Kadosaka T, Taylor KR, et al. (2012) A novel relapsing fever Borrelia sp. infects the salivary glands of the molted hard tick, Amblyomma geopelmus. Ticks Tick Borne Dis 3: 259–261.
26. Hue F, Langenoussi AG, Barbour AG (2013) Chromosome Sequence of Borrelia miyamotoi, an Uncultivable Tick-Borne Agent of Human Infection. Genome Announc 1: e00713–13.
27. Hashimoto Y, Kimouchi M, Takahashi H, Kawauchi N, Kashiwabara K, et al. (2002) An epidemic study of 700 cases with tick bites in Hokkaido prefecture during the past 6 years: Relationship to Lyme Disease. Jpn J Dermatol 112: 1467–1473. (In Japanese)
28. Korenberg EI, Nefedova VV, Romanenko VN, Gorelova NB (2010) The tick Ixodes pavlovskyi as a host of spirochetes pathogenic for humans and its possible role in the epizootiology and epidemiology of borrelioses. Vector Borne Zoonotic Dis 10: 453–458.
29. Schwan TG, Piesman J (2002) Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg Infect Dis 8: 453–458.
30. Barbour AG (2005) Relapsing fever. In: Goodman JL, Dennis DT, Sonenshine DE, editors. Tick-borne diseases of humans. ASM Press. pp. 260–291.