The first case of recurrent small cell neuroendocrine carcinoma of the uterine cervix successfully treated with robotic-assisted super radical hysterectomy

Seiji Mabuchi a,*, Keita Waki b

a Department of Gynecology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka-shi, Osaka 541-8567, Japan
b Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan

ARTICLE INFO

Keywords
Persistent cervical cancer
Recurrent cervical cancer
Robotic surgery
Super radical hysterectomy
Complete resection

ABSTRACT

Recurrent cervical cancer occurring in a previously irradiated field is one of the most complicated challenges for gynecologists. Super-radical hysterectomy is a standard procedure for laterally extended cervical tumors, particularly recurrent cervical cancer in a previously irradiated field. This potentially curative procedure is challenging to perform due to the technical complexities and lack of reproducibility. Thus, it is performed only by skilled surgeons, either via open or laparoscopic approaches wherein the entire paracervix at the pelvic wall and the hypogastric vessels are transected.

In this report, we described the first case of recurrent small cell neuroendocrine carcinoma of the uterine cervix that was successfully treated with robot-assisted super-radical hysterectomy.

1. Introduction

Recurrent cervical cancer occurring in a previously irradiated field is one of the most complicated challenges for gynecologic oncologists. Previous investigations have suggested that recurrence is localized to the pelvis in approximately 40% of patients who have undergone prior definitive radiotherapy (Hong et al., 2004). Another report suggested that up to 17% of these patients develop central pelvic recurrence (Michael et al., 2005).

Patients with recurrent cervical cancer have a dismal prognosis if surgery or radiotherapy cannot be applied, with a reported two-year overall survival rate of approximately 20%, even with chemotherapy (Klaiber-Hakimi, 2015). In such cases with unfavorable histology, as in small cell neuroendocrine carcinoma (SCNEC), the prognosis is usually worse, and long-term survival after salvage treatment is rarely reported (Frumpovitz et al., 2017).

Despite its potential as a curative treatment, re-irradiation has been employed sparingly owing to concerns of severe late toxicity (Mabuchi et al., 2014). Surgical salvage could be another curative treatment option for this patient population. Pelvic exenteration (PE) or radical hysterectomy (RH) has been recommended to select groups of centrally recurrent or persistent cervical cancer patients, and long-term survival rates of 30–60% have been achieved (Chiva et al., 2008; Mabuchi et al., 2017). However, these usually pose surgical difficulties associated with operating on previously irradiated, hard, fibrotic tissue, even in patients with seemingly resectable lesions. Mortality rates of 0–17% after PE and severe complication rates of 30–60% after PE or RH were documented in previous studies (Chiva et al., 2008; Mabuchi et al., 2017). Moreover, these procedures cannot be applied to laterally extended cervical tumors.

For laterally extended diseases, laterally extended endopelvic resection (LEER) or super-radical hysterectomy (SRH) are curative options (Höckel et al., 2012; Kim et al., 2017). However, these procedures are associated with significant mortality, morbidity, and recovery time (Höckel et al., 2012; Kim et al., 2017) and require high competency. A laparoscopic approach has been demonstrated in an attempt to minimize invasiveness and surgery-related complications (Kanao et al., 2021), although the feasibility, safety, and efficacy of the robot-assisted approach have not been evaluated for these procedures.

This report documents the first case of successful robot-assisted SRH.
in a previously irradiated recurrent cervical SCNEC.

2. Materials and methods

2.1. Surgical procedures

A zero-degree endoscope was used for the entire procedure. Robotic surgery was performed using the da Vinci Xi Surgical System (Intuitive Surgical Inc., Sunnydale, CA, USA). To prevent the spillage of tumor cells into the peritoneal cavity, the vaginal wall was circumferentially incised 2 cm distal to the tumor, and a vaginal cuff was created by suturing the vagina over the cervix with a running suture. After this transvaginal procedure, robot-assisted SRH was initiated. The bilateral fallopian tubes were ligated using surgical clips. The round ligaments were cut, and the anterior broad ligament was opened. After the development of paravesical and pararectal spaces using gentle blunt dissection, the bilateral uterine arteries and ureters were identified. The uterine arteries were cut at their origins; subsequently, the ureters were unroofed from the retroperitoneum and ureteric vessels. After identifying the cardinal ligaments, the deep uterine veins, obturator vessels, internal pudendal vessels, inferior gluteal vessels, and internal iliac vessels were identified and transected at least 1 cm away from the tumor (Fig. 2). The ureters were retracted using silicone slings as previously described (Mabuchi et al., 2020) and gently dissociated from the surrounding connective tissue. The anterior and posterior vesicouterine ligaments were then transected.

In cases requiring bilateral salpingo-oophorectomy, the infundibulopelvic ligaments were isolated, coagulated, and transected. After the uterosacral ligaments are transected, the rectum was carefully separated from the vagina. The remaining connective tissues surrounding the vagina were excised, and the uterus was disconnected. All surgical specimens were removed through the vagina.

2.2. Informed consent statement

A written informed consent was obtained from the patient for publication of this case report and accompanying images.

2.3. Case presentation

A 69-year-old Japanese woman, gravida 4 and para 2, was referred to our hospital due to abnormal vaginal bleeding. Her past medical history was remarkable for a subarachnoid hemorrhage one year ago. She underwent no previous surgical procedures. On evaluation, she was found to have a bulky cervical tumor that extended to the lower third of the vagina. Biopsies of the cervical and vaginal lesions demonstrated SCNEC. Pelvic magnetic resonance imaging (MRI) and computed tomography (CT) of the abdomen and pelvis revealed a 65 mm cervical mass with proximal parametrial extension as well as swelling of the right obturator node. The diagnosis of International Federation of Gynecology and Obstetrics stage III cervical cancer was confirmed and treated with concurrent chemoradiotherapy (CCRT) consisting of external beam radiotherapy (50 Gy in 25 fractions), high-dose rate brachytherapy (6 Gy in 3 fractions), and weekly cisplatin (40 mg/m²), which achieved a complete response.

Twelve months after CCRT, pelvic examination revealed a cervical mass with parametrial invasion. Pelvic MRI demonstrated a 35 mm pelvic tumor extending from the uterine cervix to the right inferior iliac vessels (Fig. 1A). On the left side, parametrial invasion was not evident. Fluorine-18-fluorodeoxyglucose positron emission tomography/CT (FDG-PET/CT) demonstrated significant FDG uptake in the laterally extended mass in the patient, but no other FDG uptake was noted (Fig. 1B). The diagnosis of locally recurrent cervical cancer was confirmed, and a super-radical hysterectomy was planned as a salvage treatment. A robot-assisted super-radical hysterectomy plus bilateral salpingo-oophorectomy was performed as the patient desired a minimally invasive approach. Although performing SRH on previously irradiated, hard, fibrotic tissue was technically challenging, the recurrent cervical tumor was completely removed using SRH on the right side and type C1 RH on the left side, without any intraoperative complications (Fig. 2 and Supplemental Video). The surgery duration was 405 min and blood loss was 130 mL; blood transfusion was not needed. Due to the postoperative peritonitis requiring antibiotic treatment, her hospitalization was prolonged, and the patient was discharged after 20 days. The resected tumor specimen showed a recurrent tumor located at the...
parametrium extending to the inferior iliac vessels (measured 45 × 41 × 30 cm), and recurrent SCNEC was observed (Fig. 1C). The surgical margin was disease-free. The patient was alive and free of disease 8 months after surgery.

3. Discussion

In this report, we presented a case of recurrent cervical small cell carcinoma successfully treated with robot-assisted SRH. To our knowledge, this is the first report of robotic SRH.

Both SRH and LEER are Type D hysterectomies in the Querleu Morrow classification (Querleu et al., 2017). SRH is classified as Type D1 hysterectomy or the resection of the entire paracervix at the pelvic sidewall together with the hypogastric vessels, exposing the roots of the sciatic nerve. Meanwhile, Type D2 (LEER) is the resection of the entire paracervix with the hypogastric vessels and adjacent fascial or muscular structures (Fig. 2).

Although SRH was introduced by Ryukichi Mibayashi in 1941 (Kim et al., 2017), due to technical complexities, lack of reproducibility, and concern for procedural safety, this procedure has been performed only by skilled surgical oncologists (Kim et al., 2017; Kanao et al., 2021). In our review of literature, this procedure was described only in two studies on cervical cancer patients: one was performed using the open approach (Kim et al., 2017); and the remaining two were performed via the laparoscopic approach (Kanao et al., 2021).

The advantage of robot-assisted surgery is that it offers three-dimensional vision, a human arm simulation system, and a tremor filtration system, which allow safe, stable operations and may reduce the dimensional vision, a human arm simulation system, and a tremor (Kim et al., 2017); and the remaining two were performed via the laparoscopic approach (Kanao et al., 2021).

In conclusion, we have described the first case of recurrent cervical cancer successfully treated with robotic-assisted SRH. With careful patient selection, robot-assisted SRH may represent an effective alternative to SRH via an open approach as a curative intervention for recurrent cervical cancer in a previously irradiated field.
Ethical approval status

The Ethics Committee of Nara Medical University decided that this case report does not require IRB approval due to the nature of this study: a report describing the treatment of a single patient and thus does not meet the definition of human subjects research.

CRediT authorship contribution statement

Seiji Mabuchi: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Writing – original draft, Writing – review & editing. Keita Waki: Conceptualization, Data curation, Visualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This study was supported by a Grant-in-Aid for General Scientific Research (20K07596) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gore.2021.100882.

References

Chiva, L.M., Lapuente, F., Gonzalez-Cortijo, L., Gonzalez-Martín, A., Rojo, A., García, J. P., Carballis, N., 2008. Surgical treatment of recurrent cervical cancer: state of the art and new achievements. Gynecol. Oncol. 110, 560–566.

Frumovitz, M., Munsell, M.F., Burzawa, J.K., Byers, L.A., Ramalingam, P., Brown, J., et al., 2017. Combination therapy with topotecan, paclitaxel, and bevacizumab improves progression-free survival in recurrent small cell neuroendocrine carcinoma of the cervix. Gynecol. Oncol. 144, 46–50.

Höckel, M., Horn, L.C., Einenkel, J., 2012 Nov. (Laterally) extended endopelvic resection: surgical treatment of locally advanced and recurrent cancer of the uterine cervix and vagina based on ontogenetic anatomy. Gynecol. Oncol. 127 (2), 297–302.

Hong, J.H., Tsai, C.S., Lai, C.H., Chang, T.C., Wang, C.C., Chou, H.H., et al., 2004. Recurrent squamous cell carcinoma of cervix after definitive radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 60, 249–257.

Kanazawa, T., Kurita, T., Tanaka, Y., Funeji, A., Aski, Y., Nomura, H., 2021 Feb. Differences between laparoscopic super-radical hysterectomy and laterally extended endopelvic resection. Gynecol. Oncol. Rep. 13 (36), 100728 https://doi.org/10.1016/j.gore.2021.100728.

Kim, H.S., Kim, R., Lee, M., 2017 Dec. Super-radical hysterectomy for recurrent cervical cancer. Surg. Oncol. 26 (4), 331–332.

Klaiber-Hakimi, M., 2015. Advanced cervical cancer: Improved survival with bevacizumab. Onkologie 21, 67–68.

Mabuchi, S., Takahashi, R., Inohashi, F., Yokoi, T., Okazawa, M., Sasano, T., Maruoka, S., Anzai, M., Yoshioka, Y., Ogawa, K., Kimura, T., 2014. Reirradiation using high-dose-rate interstitial brachytherapy for locally recurrent cervical cancer: a single institutional experience. Int. J. Gynecol. Cancer 24, 141–148.

Mabuchi, S., Kozasa, K., Kimura, T., 2017. Radical hysterectomy after radiotherapy for recurrent or persistent cervical cancer. Int. J. Gynecol. Obstet. 139, 185–191.

Mabuchi, S., Matsumoto, Y., Matsubara, S., 2020. A new silicon sling device for traction during robotic gynecologic surgery. J. Soc. Laparoendosc. Surg. 24, 1–5.

Michael, Wilkin, et al., 2005. Long-term complications associated with the Indiana pouch urinary diversion in patients with recurrent gynecologic cancers after high-dose radiation. Urol. Oncol. 23 (1), 12–15.

Querleu, D., Ghalb, D., Abu-Rustum, N.R., 2017. 2017 Update on the Querleu-Morrow Classification of Radical Hysterectomy. Ann. Surg. Oncol. 24, 3406–3412.

Ramirez, P.T., Frumovitz, M., Pareja, R., Lopez, A., Vieira, M., Ribeiro, R., et al., 2018. Minimally Invasive versus Abdominal Radical Hysterectomy for Cervical Cancer. N. Engl. J. Med. 379, 1895-1904.