Liver-related effects of chronic hepatitis C antiviral treatment

Tea L Laursen, Thomas D Sandahl, Konstantin Kazankov, Jacob George, Henning Grønbæk

ORCID number: Tea L Laursen (0000-0003-2494-0526); Thomas D Sandahl (0000-0001-9807-6852); Konstantin Kazankov (0000-0002-9111-213X); Jacob George (0000-0002-8421-5476); Henning Grønbæk (0000-0001-8998-7910).

Author contributions: Laursen TL, Sandahl TD, Kazankov K, George J, and Grønbæk H designed the study; Laursen TL wrote the paper and Sandahl TD, Kazankov K, George J, and Grønbæk H critically revised it; all authors approved the final manuscript.

Conflict-of-interest statement: George J is supported by the Robert W Storr Bequest to the Sydney Medical Foundation, University of Sydney; a National Health and Medical Research Council of Australia (NHMRC) Program Grant, No. APP1053206 and APP1149976 and Project grants, No. APP1107178 and APP1108422 and is on the advisory boards of Gilead, AbbVie, Novo Nordisk, MSD, Intercept, and Janssen; Grønbæk H received grants from the NOVO Nordisk Foundation, “Savværksjejre Jeppe Juhl og hustru Ovita Juhls mindelegat”, AbbVie, and Intercept and is on the advisory boards of Ipsen and Novartis; Laursen TL, Sandahl TD, and Kazankov K have no conflicts of interest to declare.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0)

Abstract

More than five years ago, the treatment of hepatitis C virus infection was revolutionized with the introduction of all-oral direct-acting antiviral (DAA) drugs. They proved highly efficient in curing patients with chronic hepatitis C (CHC), including patients with cirrhosis. The new DAA treatments were alleged to induce significant improvements in clinical outcome and prognosis, but the exact cause of the expected benefit was unclear. Further, little was known about how the underlying liver disease would be affected during and after viral clearance. In this review, we describe and discuss the liver-related effects of the new treatments in regards to both pathophysiological aspects, such as macrophage activation, and the time-dependent effects of therapy, with specific emphasis on inflammation, structural liver changes, and liver function, as these factors are all related to morbidity and mortality in CHC patients. It seems clear that antiviral therapy, especially the achievement of a sustained virologic response has several beneficial effects on liver-related parameters in CHC patients with advanced liver fibrosis or cirrhosis. There seems to be a time-dependent effect of DAA therapy with viral clearance and the resolution of liver inflammation followed by more discrete changes in structural liver lesions. These improvements lead to favorable effects on liver function, followed by an improvement in cognitive dysfunction and portal hypertension. Overall, the data provide knowledge on the several beneficial effects of DAA therapy on liver-related parameters in CHC patients suggesting short- and long-term improvements in the underlying disease with the promise of an improved long-term prognosis.

Key words: Chronic hepatitis C; Antiviral treatment; Inflammation; Liver fibrosis; Liver cirrhosis; Metabolic liver function; Galactose elimination capacity; Urea synthesis capacity; Portal hypertension; Hepatic encephalopathy

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
Hepatitis C virus (HCV) was isolated and named in 1989[9], and in 2015, more than 170 million people were infected worldwide with approximately 70 million chronically infected[10-12]. The primary mode of virus transmission in Western countries is via percutaneous exposure to blood, and the major infection route is unsafe drug injections[4-6]. At transmission, an acute HCV infection occurs, which is often asymptomatic[7]. In 60%-80% of patients, the infection becomes chronic[8,9], and chronic hepatitis C (CHC) is defined as positive HCV RNA for at least 6 mo. CHC holds the potential for inducing fibrosis and 10%-30% of those infected develop cirrhosis over decades, with the potential risk of complications and early death[10-12].

HCV is a hepatotropic positive single-stranded RNA virus that translates into a single polyprotein consisting of 3011 amino acids. The HCV genome is highly diverse and is separated into seven genotypes with several subtypes[13]. HCV circulates as a lipo-viro-particle consisting of the nucleocapsid surrounded by the envelope proteins E1 and E2, and several host lipoproteins[14]. HCV is cleaved by viral and host proteases into 10 proteins with diverse functions: 3 structural proteins (i.e., E1 and E2) and 7 nonstructural (NS) proteins (i.e., p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B)[15,16]. The two viral proteases, NS2 and NS3/4A, are involved in the process of producing nonstructural proteins. Replication itself is catalyzed by the RNA polymerase NS5B, while NS5A and NS3 are important regulatory proteins. NS4B participates in membrane rearrangements, leading to the formation of a membranous web that supports continued HCV replication[16,17].

HCV is a major challenge for the immune system, and host factors play important roles in the potential clearance of HCV and long-term disease progression[18,19]. An initial vigorous immune response is considered crucial, and both initial and consistent innate and adaptive immune responses are important determinants of whether the infection can be cleared or becomes chronic. The innate immune responses include the activation of proinflammatory pathways[20-25], and adaptive immune factors include weak or absent HCV-specific T-cell responses[26-28]. If HCV infection is not cleared, these mechanisms lead to sustained liver inflammation with the activation of macrophages, which subsequently activate or transdifferentiate hepatic stellate cells into myofibroblast-like cells with proinflammatory, contractile, and profibrogenic properties. This may initiate a vicious cycle where inflammatory and fibrogenic cells consistently stimulate each other[29], resulting in the accumulation of excessive extracellular matrix proteins and fibrosis progression[30].

TREATMENT OF CHRONIC HEPATITIS C

The ultimate treatment goal of CHC is a sustained virologic response (SVR), defined as undetectable HCV RNA 12-24 wk after treatment cessation, corresponding to “cure” or, in other words, HCV eradication. The treatment has evolved drastically over the last decades. For years, CHC treatment was based on subcutaneous interferon treatments that had inadequate efficacy and severe adverse effects, leaving this type of treatment intolerable for many patients, especially those with cirrhosis[28-30]. Interferon treatment acts via a direct immune-stimulating mechanism and has several derivative effects on innate and adaptive immunity[31]. In 2001,
Inflammation to lasting structural changes, often in combination with fibrosis and hepatic fibrosis. Moreover, a liver biopsy from CHC patients covers a wide spectrum of abnormalities, from acute inflammation and fibrosis as well as potential differential diagnoses. Liver histology choice as it brings insight into the exact structure of the liver and yields information on the progression of the disease. Historically, liver biopsy has been the method of choice for assessing liver disease severity, but its complications and mortality have been recognized. Fibrosis staging is important in CHC patients, as fibrosis stage is a strong predictor of outcomes and mortality.

Fibrosis staging in CHC indicates the extent of fibrosis, which is a key factor in determining the prognosis of the disease. After antiviral therapy of chronic hepatitis B and interferon treatment of CHC, fibrosis stage has been observed to improve in CHC patients. Furthermore, significant associations between macrophage activation and fibrosis have been observed in CHC patients, highlighting the importance of macrophage activation in the development of fibrosis.

Assessment of liver disease severity is crucial in CHC as it is related to morbidity and mortality. Several components affect the prognosis of chronic liver disease and the three major factors are inflammation, fibrosis, and liver function. As described above, the presence of inflammation drives the process of fibrogenesis, with structural changes leading to portal hypertension. In addition, liver function may be compromised, probably due to both ongoing hepatic inflammation and structural liver changes, with the loss of functional liver mass.

Macrophage activation

In CHC infection, hepatocytes release viral particles and components, which may bind directly to surface or endosomal macrophage receptors or interfere indirectly with these receptors. In addition, other factors may act on macrophage receptors, such as pathogen-associated molecular patterns, including lipopolysaccharide, which may enter the circulation from the gut due to increased intestinal permeability, and damage-associated molecular patterns released from damaged hepatocytes. These factors activate macrophages, causing an altered proinflammatory phenotype and amplifying hepatic inflammation. One way to assess hepatic inflammation noninvasively is to evaluate the presence of specific macrophage activation markers in the blood. Two such markers are soluble (s)CD163 and soluble mannose receptor (sMR).

Fibrosis staging

Fibrosis staging is important in CHC patients, as fibrosis stage is a strong predictor of complications and mortality. Historically, liver biopsy has been the method of choice as it brings insight into the exact structure of the liver and yields information on inflammation and fibrosis as well as potential differential diagnoses. Liver histology from CHC patients covers a wide spectrum of abnormalities, from acute inflammation to lasting structural changes, often in combination. Moreover, a liver biopsy can provide a detailed assessment of the extent of fibrosis, which is a key factor in determining the prognosis of the disease.
biopsy may be used to assess fibrosis progression over time[11]. However, the biopsy represents a small portion of the liver, which may be heterogeneous. Some studies have shown sampling error in up to 30% of biopsies[78,79], with adequate biopsy length being of primary importance[80]. Liver biopsy may further be limited by inter- and intraobserver variation in histological assessment[81]; is invasive, with a small but significant risk of complications (e.g., pain, bleeding, and even mortality)[82]; and is disliked by many patients, which limits its use in follow-up studies. The lack of histological verification of structural liver changes is one of the major limitations in many studies.

Due to the limitations of liver biopsy, noninvasive methods for grading and staging liver inflammation and fibrosis have become increasingly sought and used. Noninvasive methods include biomarkers and imaging techniques, many of which were developed and validated in CHC patients. The biomarkers include scores such as the aspartate aminotransferase-to-platelet ratio index (APRI) based on aspartate transaminase (AST) and platelets[83]; the fibrosis-4 (FIB-4) index based on age, AST, alanine transaminase (ALT), and platelets[84]; the enhanced liver fibrosis test[85]; and the FibroTest[86], which have all been extensively investigated in CHC patients, yielding “good or decent” prediction of fibrosis and especially cirrhosis[85,87-92]. In addition, the APRI and FIB-4 predict HCV liver-related death[93].

The majority of the imaging techniques used for liver fibrosis assessment are based on the detection of the velocity of a propagating wave through liver tissue, where the velocity of the shear wave reflects tissue stiffness, with the highest velocity in the stiffest tissue. Many methods have been developed and tested, including transient elastography (TE) using the FibroScan\textregistered device (Echosens, Paris, France) and shear-wave elastographies (SWE), divided into point (p)-SWE, also known as acoustic radiation force impulse (ARFI) scans, and 2D-, and 3D-SWE. Last, magnetic resonance imaging elastography has been used in CHC patients[94]. FibroScan TE provides a measure of liver stiffness by Young’s modulus of elasticity and is expressed in kPa, whereas the ARFI scans yield the velocity of the shear wave reported in m/s.

The major quality of noninvasive fibrosis assessment inherently lies in the term noninvasive. In addition, the methods overall have practical advantages, including high applicability and good reproducibility and availability[94-97]. However, the methods also have several limitations. The performance of noninvasive methods to diagnose fibrosis or cirrhosis will depend on the prevalence of the disease stage in the cohort. This is known as spectrum bias and is especially relevant when comparing methods between cohorts. In addition, the use of noninvasive methods may be limited because most are not liver specific, and may be influenced by other factors[98-104].

Currently, the best validated method in CHC patients is TE using the FibroScan.
device. Several studies have shown good concordance between liver stiffness by FibroScan and histological stage, with good reproducibility, especially in patients with higher stages of fibrosis. The ARFI method is becoming widely used and is in good agreement with liver histology in CHC patients.

Metabolic liver function

The liver is an extraordinary organ with numerous and highly complex functions, several of which are exclusive to the liver. In routine clinical practice, standard blood parameters such as albumin and coagulation factors are often used to assess liver function. However, a more detailed analysis can be obtained by using other methods. Some metabolic liver functions are decreased in patients with chronic hepatitis, but data on improvements after interferon therapy are conflicting. Assessment of these functions can provide insight into CHC by linking pathophysiological events such as inflammation and fibrosis with changes in liver function and can aid understanding of how prognosis is affected after antiviral treatment.

One exclusive liver function is galactose elimination, which depends on the enzyme galactokinase, primarily located in the hepatocyte cytoplasm. The test evaluates the total functional capacity of the liver to eliminate galactose from the bloodstream, reflecting functional liver cell mass; and therefore, is decreased in patients with cirrhosis.

Another exclusive, and in addition vital liver function is ureagenesis, which covers the final and irreversible transformation of amino nitrogen to urea nitrogen. Ureagenesis plays a key regulatory role in whole-body nitrogen homeostasis, and disturbances in ureagenesis are associated with hepatic encephalopathy due to reduced nitrogen clearance. The ureagenesis capacity also depends on functional liver mass and is compromised in cirrhosis patients.

In addition, several other methods may be used to investigate diverse liver functions. The C-aminopyrine breath test assesses microsomal cytochrome P450 activity of the liver, whereas excretory liver function may be assessed through the measurement of plasma elimination of indocyanine green (ICG).

Complications of CHC infection

Complications of CHC infection include cirrhosis development with esophageal varices that may bleed, ascites and hepatorenal syndrome, hepatic encephalopathy (HE), and hepatocellular carcinoma (HCC). Portal hypertension is a major risk factor for an unfavorable disease course.

Portal hypertension may be assessed by liver vein catheterization, where wedged hepatic venous pressure is obtained in a hepatic vein and free hepatic venous pressure is measured in the right hepatic vein close to the inferior vena cava. The hepatic venous pressure gradient (HVPG) is thus determined as the difference between wedged hepatic venous pressure and free hepatic venous pressure. Portal hypertension is then defined as HVPG > 5 mmHg and clinically significant portal hypertension by HVPG > 10 mmHg, which comes with a significantly increased risk of varices.

The presence of even minimal HE affects the quality of life, poses an increased risk of developing clinically manifest HE and is associated with a more unfavorable prognosis. It should be noted that CHC in itself may affect cognition irrespective of HE. The detection of minimal HE relies on psychometric testing, and to evaluate cognitive function in a quantitative way, several methods may be applied. The major limitation of any test to assess HE is the fact that it is only one test. Minimal HE represents complex cognitive disturbances with no single manifestation, and one test will not be able to encompass the entire spectrum of deficits in patients with HE. This is mirrored in studies showing low concordance between the continuous reaction time test and the psychometric hepatic encephalopathy score or critical-flicker frequency.

HEPATIC EFFECTS OF ANTIVIRAL TREATMENT

Amelioration of inflammation

Amelioration of inflammation is the first critical step in stopping the vicious cycle of fibrosis progression in any chronic liver disease. With viral clearance, inflammation diminishes, and this is probably required before the reversal of fibrosis and improved function can occur. Currently, it is well established that antiviral therapies, interferon- or DAA-based resolve inflammation, as indicated by biomarkers and liver biopsies. In addition, liver damage diminishes with reductions in ALT levels following DAA therapy, but liver-specific enhanced macrophage activation resolves rapidly with treatment (Figure 2). This is supported by results from chronic liver disease.
Laursen TL et al. Effects of chronic hepatitis C antivirals

hepatitis B patients, where a treatment-induced decrease in circulating sCD163 parallels diminished CD163 expression in liver biopsies\(^{[22]}\). In addition, it is not the effect of the treatment per se or the different mechanisms of action of the respective treatments but the clearance of the virus that reduces inflammation, as only patients who achieve an SVR have a decrease in sCD163\(^{[139]}\) and achieve inflammation resolution in liver biopsies\(^{[33,130]}\).

Subtle changes in liver fibrosis

To date, many studies have assessed changes in noninvasive measures after DAA therapy; improvements in several biomarker-based fibrosis panels have been shown, including APRI and FIB-4\(^{[111-114]}\). Several studies have also shown decreasing liver stiffness with DAA therapy\(^{[115,116,112,113]}\). In a 2018 review and meta-analysis of liver stiffness changes after interferon or DAA therapy, the authors showed a mean decrease of 2.4 kPa at the end of treatment, 3.1 kPa within the first 6 mo after the end of treatment, and 4.1 kPa more than 1 year after treatment. The authors speculate that the initial decrease is due partly to the resolution of inflammation and that the subsequent decrease pertains to fibrosis regression, which is supported by a larger decrease in patients with high baseline inflammation\(^{[110]}\). However, a consistent decrease from the end of treatment to the 1-year follow-up may represent fibrosis regression (Figure 2).

After the introduction of DAA therapy, there are only limited data from paired biopsies assessing fibrosis regression. In one study, cirrhosis resolved in seven of 14 patients\(^{[137]}\). In another study evaluating 10 patients with paired biopsies and liver stiffness measurements after DAA therapy, the results indicated that fibrosis regression occurs but is not as prominent as liver stiffness measurements might indicate\(^{[49]}\). Thus, data on changes in liver fibrosis after DAA therapy are scarce, and follow-up is still relatively short. Therefore, one can only speculate on the real effect based on the relevant literature from interferon-based studies and those using noninvasive measures. As shown by data from the interferon era, fibrosis regression or resolution takes place but is a slow process taking years\(^{[13,21,123,116]}\), and the regression of cirrhosis is less common\(^{[111,114,116]}\). Additionally, it is known that fibrosis will progress without treatment\(^{[115]}\), and progression holds an increased risk of clinical decompensation and HCC\(^{[111]}\).

Improved metabolic liver function

Data on the effects of interferon treatment on galactose metabolism are conflicting. In one study where disease severity at baseline was unclear, the galactose elimination capacity (GEC) improved 3 mo after the initiation of interferon therapy\(^{[108]}\). This was paralleled by findings in another study with GEC improvement after 3 mo of interferon treatment, although only in responders to treatment\(^{[110]}\), whereas others have found no effect of treatment response on the GEC\(^{[112,113]}\).

Data on the GEC after successful DAA therapy are limited but the GEC seems to improve 12 wk post-treatment\(^{[139]}\) (Figure 2). In these patients, GEC reflects liver disease severity and fibrosis but not inflammation\(^{[111,139]}\).

Conversely, the amelioration of inflammation seems to improve the capacity for ureagenesis, as has also been shown in acute alcoholic hepatitis\(^{[115]}\), which also seems to be the case in CHC patients after DAA therapy (Authors’ unpublished data). Other data concerning treatment effects on functional hepatic nitrogen clearance (FHNC) are limited, but the acceleration of the urea cycle after successful interferon therapy was demonstrated in a metabolomics study\(^{[145]}\).

Regarding the aminopyrine breath test and ICG, no data are available after DAA therapy. However, some studies have shown improvements after interferon therapy, while others could not detect any differences\(^{[111,115]}\).

IMPLICATIONS FOR CLINICAL OUTCOME AND PROGNOSIS

Treatment-naïve CHC patients have a higher risk of death compared with the background population\(^{[111-114]}\), and the risk may be even higher in patients consuming moderate or excessive amounts of alcohol\(^{[145]}\). The achievement of an SVR with interferon-based treatments was associated with reduced mortality\(^{[129]}\), in some studies, to a level comparable to the background population\(^{[119,130]}\); however, others find that it is still significantly higher\(^{[106]}\). Some have suggested that any potential outcome advantage wanes when patients are matched for liver function at baseline\(^{[122]}\). However, in one study in patients matched for liver function at baseline, the SVR was still associated with better survival\(^{[156]}\). After the development of cirrhosis, mortality is increased, and in one study of patients with CHC cirrhosis who achieved an SVR by interferon treatment, the authors showed a substantial remaining risk of HCC and...
clinical disease progression\cite{104}. DAA therapy is still “new” on the market, and long-term follow-up studies are limited. Based on the first studies, it seems that DAA therapy leads to an improved prognosis with decreased mortality\cite{105-107}, potentially with a significant survival benefit as soon as 18 mo post-treatment\cite{108}. Interestingly, patients without advanced liver disease also experience reduced mortality after DAA therapy\cite{109}, while potential issues including increases in MELD scores were observed after treatment of, e.g., decompensated cirrhosis patients\cite{110}. From these studies, there seems to be a prognostic benefit in CHC patients following an SVR induced by DAA therapy, although the reasons for the benefit are not entirely clear. The available data do not provide causality; however, there are some indices suggesting that the beneficial effects of treatment on different aspects of liver disease and function may in fact lead to improved outcome.

First, low liver stiffness is a predictor of a good prognosis in patients with CHC, at least prior to therapy\cite{111,112}, but studies of noninvasive measures and associations with prognosis after DAA therapy are lacking.

Second, several studies have indicated that metabolic liver function is associated with prognosis. In one study, patients with a severely compromised GEC had a high risk of liver-related clinical outcomes\cite{113}. Others have shown that the GEC is a strong predictor of mortality\cite{114,115} and has prognostic value additive to the use of the Child-Pugh score\cite{116}. Conversely, the GEC does not outperform established scores for the prediction of prognosis\cite{115}, even though the GEC was shown to be significantly higher in survivors of acute liver failure\cite{117}. Disturbances in the urea cycle and related enzymes are associated with the severity of liver disease and potentially precede histological deterioration in chronic hepatitis\cite{117-119}. On the basis of these results and the higher FHNC in survivors of alcoholic hepatitis\cite{117}, we speculate that improvements in metabolic liver functions may be succeeded by a better outcome in CHC patients.

Third, improvements of neurocognitive dysfunction are observed after interferon-based SVR\cite{120}. This finding is corroborated by DAA-induced improvements in brain MR spectroscopy\cite{121} and continuous reaction time (CRT)\cite{122} but is not corroborated by the findings of others\cite{123}. These discrepancies may reflect the different modalities used to assess cognitive dysfunction and the timing of the tests, e.g., the CRT was not significantly improved until 1 yr after treatment cessation (Figure 2). Another factor in favor of improvement in cognitive functions is self-reported mood outcomes, which are indeed improved after antiviral therapy\cite{124}.

Fourth, one of the strong predictors of adverse outcomes in cirrhosis patients is portal hypertension, and thus, its reduction is warranted. In a small study of eight patients treated with pegylated interferon, ribavirin, and boceprevir, there was a significant improvement in HVPG at 24 wk of follow-up after treatment\cite{125}. Whereas some did not observe an improvement in HVPG at the end of DAA treatment\cite{126}, other studies indicate that DAA therapies ameliorate portal hypertension at least in long-term follow-up\cite{127,128} (Figure 2). In addition, follow-up HVPG measurements may predict the risk of hepatic decompensation\cite{129}.

Last, the development of HCC is a risk in CHC patients, especially in those with cirrhosis\cite{130}, and the risk increases in parallel with cirrhosis severity and portal hypertension\cite{131}. In recent years, an intense debate regarding HCC risk after successful DAA therapy has flourished. In 2016, a study showed a greatly increased risk of HCC after DAA therapy, especially HCC recurrence\cite{132}. This was followed by other studies with similar results\cite{133,134}. However, over recent years, more data have appeared, and the general consensus is that DAA therapy does not increase the risk of HCC\cite{135,136}, but probably decreases the risk similar to interferon-based treatments\cite{137}.

At the same time, it seems clear that the risk of HCC does not disappear after treatment and that continued and probably life-long surveillance is needed at least in

Figure 2 Proposed time-line for liver-related effects of direct-acting antiviral therapy. DAA: Direct-acting antiviral; EOT: End of treatment; SVR12: Sustained virologic response at 12 wk post-treatment; SVR52: Sustained virologic response 1 year after treatment.
cirrhosis patients or until studies have defined which patients remain at risk.\[196,197\]

Taken together, the evidence suggests a health benefit in patients who achieve an SVR. In our opinion, causality between the improvements and improved prognosis cannot be established from the available literature. However, as reviewed above, several studies indicate such associations. The magnitude and timing of the benefit, as well as its mechanisms, remain elusive, but the data indicate that there is an association between improvements in liver inflammation, fibrosis, and metabolic function and improved outcome after an SVR.

FUTURE ASPECTS

Several questions to be addressed in future studies can be raised. A major question discussed in this review is whether the beneficial effects of DAA therapy on the liver in fact lead to improvements in prognosis. We speculate that liver-related improvements precede clinical benefits and improve prognosis, but confirmation is needed. Such studies require long-term follow-up and large cohorts for high enough power in terms of achieving “enough” events.

Next, one could ask: how good does it get? It would be very interesting to evaluate metabolic liver function after longer follow-up to see, first, whether the improvements are sustained and second, whether further improvement occurs. Such a study would also be useful in terms of the associations between improvements in liver function and liver-related events/clinical benefit.

In addition, it is not entirely clear what happens with structural liver damage. A large study with liver biopsies after DAA therapy is warranted. In addition, such a study should include a noninvasive method to determine the degree of fibrosis. The results might enable clinicians to predict the severity of liver fibrosis after DAA therapy without the need for liver biopsies.

Another very interesting aspect is the determination of cirrhosis severity without the use of invasive methods. There is a large gap between the mere presence of cirrhosis (compensated cirrhosis) and the more severe decompensated cirrhosis, with the occurrence of clinical events. These two groups may respond differently to treatment in regard to the amelioration of liver-related effects. This needs further clarification in a study including decompensated cirrhosis patients.

Portal hypertension is a good predictor of liver-related events in cirrhosis, and a large study with liver vein catheterizations before and at long-term follow-up after DAA therapy to assess the timing and extent of improvement in portal hypertension is also in high demand.

Future studies should be designed with the usual major limitations in mind, thereby trying to minimize these limitations. They include lack of histological verification of the disease severity before treatment but especially after treatment, and in addition, the metabolic studies are often limited by sample size, as this study type is often logistically comprehensive and time-consuming.

CONCLUSION

From the literature, it seems clear that antiviral therapy, especially the achievement of an SVR, has several beneficial effects on liver-related parameters in CHC patients. There seems to be a time-dependent effect of DAA therapy. Initially, liver inflammation ameliorates, followed by more discrete changes in structural liver lesions. These improvements are followed by beneficial effects on metabolic liver function, cognitive disturbances, and portal hypertension (Figure 2).

In conclusion, the published data suggest short- and long-term improvements in the underlying liver disease with the promise of an improved prognosis after DAA therapy in patients with CHC and advanced liver disease.

REFERENCES

1 Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. *Science* 1989; 244: 359-362 [PMID: 2523562 DOI: 10.1126/science.2523562]

2 Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. *Lancet Gastroenterol Hepatol* 2017; 2: 161-176 [PMID: 28404132 DOI: 10.1016/S2468-1253(16)30181-9]

3 Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H. Global epidemiology and genotype distribution of the hepatitis C virus infection. *J Hepatol* 2014; 61: S45-S57 [PMID: 25086286 DOI: 2938 June 14, 2020 | Volume 26 | Issue 22 |
Dalgaard O, Egeland A, Ervik R, Vilimas K, Skaug K, Steen TW. [Risk factors for hepatitis C among injecting drug users in Oslo]. Tidsskr Nor Laegeforen 2009; 129: 101-104 [PMID: 19151801]. DOI: 10.4055/tidsskr.09.3502

Duberg A, Janzon R, Bäck E, Ekdahl K, Blaxhult A. The epidemiology of hepatitis C virus infection in Sweden. Euro Surveill 2008; 13: 18882 [PMID: 18761966 DOI: 10.2807/eus.13.21.18882-en]

Christensen PB, Hay G, Jepsen P, Omland LH, Just SA, Krarup HH, Weis N, Obel N, Cowan S. Hepatitis C prevalence in Denmark - an estimate based on multiple national registers. BMC Infect Dis 2012; 12: 178 [PMID: 22669025 DOI: 10.1186/1471-2334-12-178]

Wiese M, Grünigreiff K, Gutholf W, Lafrenz M, Oesen U, Porst H; East German Hepatitis C Study Group. Outcome in a hepatitis C (genotype 1b) single source outbreak in Germany - a 25-year multicenter study. J Hepatol 2005; 43: 590-598 [PMID: 16237783 DOI: 10.1016/j.jhep.2005.04.007]

Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies. J Viral Hepat 2006; 13: 34-41 [PMID: 16364080 DOI: 10.1111/j.1365-2893.2005.00651.x]

Thomas DL, Astemborski J, Rai RM, Anania FA, Schaeffer M, Galani N, Nolt K, Nelson KE, Strathdee SA, Johnson L, Laeongdecker O, Boitnott J, Wilson LE, Vlahov D. The natural history of hepatitis C virus infection: host, viral, and environmental factors. JAMA 2000; 284: 450-456 [PMID: 10904508 DOI: 10.1001/jama.284.4.450]

Freeman AJ, Dore GJ, Law MG, Thorpe M, Von Overbeck J, Lloyd AR, Marinos G, Kaldor JM. Estimating progression to cirrhosis in chronic hepatitis C virus infection. Hepatology 2001; 34: 809-816 [PMID: 11584380 DOI: 10.1053/jhep.2001.27831]

Poyard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAIVIRC, CLINIVIRC, and DOSVIRC groups. Lancet 1997; 349: 825-832 [PMID: 9121257 DOI: 10.1016/S0140-6736(97)06764-8]

Ikeda K, Saito T, Suzuki Y, Kobayashi M, Tsutoba A, Koida I, Arase Y, Fukuda M, Chayama K, Murashima N, Kumada H. Disease progression and hepatocellular carcinogenesis in patients with chronic viral hepatitis: a prospective observation of 2215 patients. J Hepatol 1998; 29: 930-938 [PMID: 9672166 DOI: 10.1016/S0168-8278(98)03393-2]

Simmonds P. The origin of hepatitis C virus. Curr Top Microbiol Immunol 2013; 369: 1-15 [PMID: 23463195 DOI: 10.1007/978-3-642-72347-0_7.1]

André P, Komurian-Pradel F, Deforges S, Perret M, Berland JL, Sodoyer M, Pol S, Bréchot C, Paranhos-Baccalá G, Lotteau V. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 2002; 76: 6919-6928 [PMID: 12072493 DOI: 10.1128/jvi.76.14.6919-6928.2002]

Pien F, Duboisson J, Rey FA, Moradpour D, Pawlotsky JM. Structural biology of hepatitis C virus. Hepatology 2004; 39: 5-19 [PMID: 14752815 DOI: 10.1002/hep.20032]

Moradpour D, Pien F. Hepatitis C virus proteins: from structure to function. Curr Top Microbiol Immunol 2013; 369: 113-142 [PMID: 23463199 DOI: 10.1007/978-3-642-72348-7_5]

Lohmann H. Hepatitis C virus RNA replication. Curr Top Microbiol Immunol 2013; 369: 167-198 [PMID: 23463201 DOI: 10.1007/978-3-642-72349-4_7.7]

Kim YJ, Kuntzen T, Timm J, Nolan BE, Baca MA, Reyor LL, Berical AC, Feller AJ, Johnson KL, Schulze zur Wiesch J, Allen TM, Lauer GM. Spontaneous control of HCV is associated with expression of HLA-B 57 and preservation of targeted epitopes. Gastroenterology 2011; 140: 686-696.e1 [PMID: 20875418 DOI: 10.1053/j.gastro.2010.09.042]

Grebel Y, Page K, Sacks-Davis R, van der Loef MS, Rice TM, Bruneau J, Morris MD, Hajarizadeh B, Armin J, Cox AL, Kim AJ, McGovern BH, Schinkel J, George J, Shoukry NH, Lauer GM, Maher L, Lloyd AR, Hallard M, Dore GJ, Prins M, Inf3 Study Group. The effects of female sex, viral genotypes, and IL28B polymorphisms on spontaneous clearance of acute hepatitis C virus infection. Hepatology 2014; 59: 109-120 [PMID: 23908124 DOI: 10.1002/hep.26639]

Dolganiuc A, Chang S, Kody K, Mandrekar P, Bakis G, Cormier M, Szabo G. Hepatitis C virus (HCV) core protein-induced, monocyte-mediated mechanisms of reduced IFN-alpha and plasmacytoid dendritic cell loss in chronic HCV infection. J Immunol 2006; 177: 6758-6768 [PMID: 17082589 DOI: 10.4049/jimmunol.177.10.6758]

Dolganiuc A, Kody K, Kopasz A, Marshall C, Do T, Romics L Jr, Mandrekar P, Zapp M, Szabo G. Hepatitis C virus core protein and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J Immunol 2003; 170: 5615-5624 [PMID: 12759441 DOI: 10.4049/jimmunol.170.11.5615]

McGuinness PH, Painter D, Davies S, McCaughan GW. Increases in intrahepatic CD68 positive cells, MAC387 positive cells, and proinflammatory cytokines (particularly interleukin 18) in chronic hepatitis C infection. Gut 2000; 46: 260-269 [PMID: 10444323 DOI: 10.1136/gut.46.2.260]

Shrivastava S, Mukherjee A, Ray R, Ray RB. Hepatitis C virus infection in liver cirrhosis and resident liver macrophages. J Clin Virol 2013; 78: 12284-12290 [PMID: 24006444 DOI: 10.1016/j.jvivl.2013.10.001]

Wedemeyer H, He XS, Nascimbeni M, Davis AR, Greenberg HB, Hoofnagle JH, Liang TJ, Alter H, Rehermann B. Impaired effecter function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J Immunol 2002; 169: 3447-3458 [PMID: 12218168 DOI: 10.4049/jimmunol.169.6.3447]

Massale G, Bertoni R, Lamonaca V, Valli A, Massari M, Mori C, Rumi MG, Houghton M, Faccioradi F, Ferrari C. Different clinical behaviors of acute hepatitis C virus infection are associated with different vigor of the anti-viral cell-mediated immune response. J Clin Invest 1996; 98: 706-714 [PMID: 8698862 DOI: 10.1172/JCI18842]

Maier JJ. Interactions between hepatic stellate cells and the immune system. Semin Liver Dis 2001; 21: 417-426 [PMID: 11586460 DOI: 10.1055/s-2001-17555]

Bataller R, Bremer DA. Liver fibrosis. J Clin Invest 2005; 115: 209-218 [PMID: 15690074 DOI: 10.1172/JCI24282]

Poyard T, Marcellin P, Lee SS, Neeley C, Minak GS, Ideo G, Bain V, Heathcote J, Zeuzem S, Trepo C, Albrecht J. Randomised trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. International Hepatitis Interventional Therapy Group (IHTT). Lancet 1998; 352: 1426-1432 [PMID: 9807989 DOI: 10.1016/S0140-6736(98)07124-4]

Shiffman ML, Hofmann CM, Luketic VA, Sanyal AJ, Contos MJ, Mills AS. Improved sustained response following treatment of chronic hepatitis C by gradual reduction in the interferon dose. Hepatology 1996;
Laursen TL et al. Effects of chronic hepatitis C antivirals

24: 21-26 [PMID: 8707264 DOI: 10.1002/hep.510240105]

30 Idlidman R, De Maria N, Colantoni A, Dokmeci A, Van Thiel DH. Interferon treatment of cirrhotic patients with chronic hepatitis C. J Viral Hepat 1997; 4: 81-91 [PMID: 9097263 DOI: 10.1111/j.1356-2893.1997.00020.x]

31 Feld JJ, Hoofngale JJ. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 2005; 436: 967-972 [PMID: 16107837 DOI: 10.1038/nature04082]

32 Glue P, Fang JW, Rouzier-Panis R, Rafanell C, Sabo R, Gupta SK, Salfi M, Jacobs S. Pegylated interferon-alpha-2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Hepatitis C Intervention Therapy Group. Clin Pharmacol Ther 2000; 68: 556-567 [PMID: 11103758 DOI: 10.1016/S0009-9236(00)00905-3]

33 Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, Goodman ZD, Koury K, Ling M, Albrecht JK. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 2001; 358: 958-965 [PMID: 11587349 DOI: 10.1016/S0140-6736(01)06100-5]

34 Fried MW, Shiffman ML, Reddy KR, Smith C, Marinis G, Gonçalves FL Jr, Häussinger D, Diago M, Carosi G, Dhamneaux D, Crazi A, Lin A, Hoffman J, Yu J. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 2002; 347: 975-982 [PMID: 12324553 DOI: 10.1056/NEJMoa020947]

35 Thomas E, Ghany MG, Liang TJ. The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir Chem Chemother 2012; 23: 1-12 [PMID: 22592135 DOI: 10.3851/IMP2122]

36 Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, Sulkowski MS, Jacobson IM, Reddy KR, Goodman ZD, Boparai N, DiNubile MJ, Stuikenve R, Brass CA, Albrecht JK, Bronowicki JP, SPRINT-2 Investigators. Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 2011; 364: 1195-1206 [PMID: 21494784 DOI: 10.1056/NEJMoa1010494]

37 Bacon BR, Gordon SC, Lawitz E, Marcellin P, Vierling JM, Zeuzem S, Poordad F, Goodman ZD, Sings HL, Boparai N, Burroughs M, Brass CA, Albrecht JK, Esteban R; HCV RESPOND-2 Investigators. Boceprevir for previously treated chronic HCV genotype 1 infection. N Engl J Med 2011; 364: 1207-1217 [PMID: 21494784 DOI: 10.1056/NEJMoa1010494]

38 Jacobson IM, McHutchison JG, Dusheiko G, Di Bisceggl AM, Reddy KR, Bzowej NH, Marcellin P, Mairu AF, Ferenci P, Flisiak R, George J, Rizzetto M, Shouval D, Sola R, Terg RA, Yoshida EM, Adda N, Bengtsson L, Sanoh AH, Kieffer TL, George J, Saffman KL, Reddy S, ADVENT Study Team. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011; 364: 2405-2416 [PMID: 21696308 DOI: 10.1056/NEJMoa1101912]

39 Zeuzem S, Andreou P, Pol S, Lawitz E, Diago M, Roberts R, Focaccia R, Younossi Z, Foster GR, Horban A, Ferenci P, Nevens F, Müller B, Pockors T, Terg R, Shouval D, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Pichigio G, Beumont M; REALII Study Team. Telaprevir for retreatment of HCV infection. N Engl J Med 2011; 364: 2417-2428 [PMID: 21696308 DOI: 10.1056/NEJMoa1101906]

40 Gentile I, Marabola AE, Buonomo AR, Zappulo E, Borgia G. The discovery of sofosbuvir: a revolution for therapy of chronic hepatitis C. Expert Opin Drug Discov 2015; 10: 1363-1377 [PMID: 26563720 DOI: 10.1517/17460441.2015.1094051]

41 Reddy KR, Lim JK, Kuo A, Di Bisceggl AM, Galati JS, Morelli G, Everson GT, Kwo PY, Brown RS Jr, Sulkowski MS, Akuschevich L, Lok AS, Pockors PJ, Vajravan M, Terrault NA, Nelson DR, Fried MW, Manns MP. HCV-TARGET Study Group. All-oral direct-acting antiviral therapy in HCV-advanced liver disease is effective in real-world practice: observations through HCV-TARGET database. Aliment Pharmacol Ther 2017; 45: 115-126 [PMID: 27790729 DOI: 10.1111/apt.14382]

42 Afdhal N, Reddy KR, Nelson L, Lawitz E, Gordon SC, Schiff E, Nahass R, Gulbin R, Gitan N, Herring R, Lañarezi J, Yohnes ZH, Pockors PJ, Di Bisceggl AM, Arora S, Subramanian GM, Zhu Y, Dvory-Sobol H, Yang JC, Pang PS, Symonds WT, McHutchison JG, Bzowej N, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Pichigio G, Beumont M; REALIZE Study Team. Telaprevir for retreatment of HCV infection. N Engl J Med 2011; 364: 2417-2428 [PMID: 21696308 DOI: 10.1056/NEJMoa1101912]

43 Gentile I, Marabola A, Buonomo AR, Zappulo E, Borgia G. The discovery of sofosbuvir: a revolution for therapy of chronic hepatitis C. Expert Opin Drug Discov 2015; 10: 1363-1377 [PMID: 26563720 DOI: 10.1517/17460441.2015.1094051]

44 Reddy KR, Lim JK, Kuo A, Di Bisceggl AM, Galati JS, Morelli G, Everson GT, Kwo PY, Brown RS Jr, Sulkowski MS, Akuschevich L, Lok AS, Pockors PJ, Vajravan M, Terrault NA, Nelson DR, Fried MW, Manns MP. HCV-TARGET Study Group. All-oral direct-acting antiviral therapy in HCV-advanced liver disease is effective in real-world practice: observations through HCV-TARGET database. Aliment Pharmacol Ther 2017; 45: 115-126 [PMID: 27790729 DOI: 10.1111/apt.14382]

45 Afdhal N, Reddy KR, Nelson L, Lawitz E, Gordon SC, Schiff E, Nahass R, Gulbin R, Gitan N, Herring R, Lañarezi J, Yohnes ZH, Pockors PJ, Di Bisceggl AM, Arora S, Subramanian GM, Zhu Y, Dvory-Sobol H, Yang JC, Pang PS, Symonds WT, McHutchison JG, Bzowej N, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Pichigio G, Beumont M; REALIZE Study Team. Telaprevir for retreatment of HCV infection. N Engl J Med 2011; 364: 2417-2428 [PMID: 21696308 DOI: 10.1056/NEJMoa1101912]
Almasio PL, Maisonneuve P. Predicting mortality risk in patients with compensated HCV-induced cirrhosis: a long-term prospective study. Am J Gastroenterol 2009; 104: 1147-1158 [PMID: 19352340 DOI: 10.1038/ajg.2009.31]

Marcellin P, Asselah T, Boyer N. Fibrosis and disease progression in hepatitis C. Hepatology 2002; 36: S47-S56 [PMID: 12407576 DOI: 10.1053/jhep.2002.36993]

Heydmann M, Pham, G, Rupp LB, Lu M, Teshale EH, Spradling PR, Boscarino JA, Xia J, Schmidt MA, Holberg SD, Chronic Hepatitis Cohort Study (CHeCS) Investigators.

Trinacty CM, Schmidt MA, Holmberg SD; Chronic Hepatitis Cohort Study (CHeCS) Investigators, Xu F, Moorman AC, Tong X, Gordon SC, Rupp LB, Lu M, Teshale EH, Spradling PR, Boscarino JA, Trinciya CM, Schmidt MA, Holberg SD; Chronic Hepatitis Cohort Study (CHeCS) Investigators.
Laursen TL et al. Effects of chronic hepatitis C antivirals

Holmberg SD, Teshale EH, Spradling PR, Moorman AC, Xing J, Tong X, Xu F, Gordon SC, Nerenz DR, Lu M, Lamerato L, Wang Y, Rupp LB, Akkerman N, Oja-Tebbe N, Zhang T, Li J, Sitarik A, Larkin D, Boscarino JA, Daar ZS, Curry PJ, Smith RE, Vijayadeva V, Parker JV, Schmidt MA, Donald JL, Keast EM. All-Cause Mortality and Progression Risks to Hepatic Decompensation and Hepatocellular Carcinoma in Patients Infected With Hepatitis C Virus. Clin Infect Dis 2016; 62: 289-297 [PMID: 26417034 DOI: 10.1093/cid/c680]

75 Bruden DJT, McMahon BJ, Townshend-Bulson L, Gounder P, Gove J, Plottom J, Homan C, Hewitt A, Barbout Y, Spradling PR, Simons BC, McArdule S, Bruce M. Risk of end-stage liver disease, hepatocellular carcinoma, and liver-related death by fibrosis stage in the hepatitis C Alaska Cohort. Hepatology 2017; 66: 37-45 [PMID: 28195349 DOI: 10.1002/hep.29115]

76 Scheuer PJ, Ashrafzadeh P, Sherlock S, Brown D, Dusheiko GM. The pathology of hepatitis C. Hepatology 1992; 15: 567-571 [PMID: 1551631 DOI: 10.1002/hep.1840150402]

77 Dienes HP, Poppert H, Arnold W, Lobeck H. Histologic observations in chronic hepatitis non-A, non-B. Hepatology 1982; 2: 562-571 [PMID: 6811393 DOI: 184018009]

78 Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Prysoupolos NT, Feng ZZ, Reddy KR, Schiff ER. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 2002; 97: 2614-2618 [PMID: 12385448 DOI: 10.1111/j.1572-0241.2002.06038.x]

79 Maharaj B, Maharaj R, Leary WP, Cooppan RM, Naran AD, Pirie D, Padfin DJ. Sampling variability and its influence on the diagnostic yield of percutaneous needle biopsy of the liver. Lancet 1986; 1: 523-525 [PMID: 2869260 DOI: 10.1016/s1467-6177(86)90883-4]

80 Bedossa P, Dargère D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 2003; 38: 1449-1457 [PMID: 14647506 DOI: 10.1002/hec.670]

81 Cholongitas E, Senzolo M, Standish R, Marelli L, Quaglia A, Patch D, Dhillon AP, Burroughs AK. A systematic review of the quality of liver biopsy specimens. Am J Clin Pathol 2006; 125: 710-721 [PMID: 16703732 DOI: 10.1093/ajcp/x2w024]

82 Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med 2001; 344: 495-500 [PMID: 11172192 DOI: 10.1056/NEJM200101153440406]

83 Wai CT, Greenstein JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevarass HS, Lok AS. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003; 38: 518-526 [PMID: 12883497 DOI: 10.1053/jhep.2003.50346]

84 Sterling RK, Lissen E, Chunme N, Sola R, Corea MC, Montaner J, Sulkowski M, Torriani FJ, Dieterich DT, Thomas DL, Messinger D, Nelson M, APRICOT Clinical Investigators. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006; 43: 1317-1325 [PMID: 16729097 DOI: 10.1002/hep.21178]

85 Lichtinghagen R, Peitsch D, Bantel H, Manns MP, Brand K, Bahr MJ. The Enhanced Liver Fibrosis (ELF) score: normal values, influence factors and proposed cut-off values. J Hepatol 2013; 59: 236-242 [PMID: 23523343 DOI: 10.1016/j.jhep.2013.03.016]

86 Imbert-Bisson F, Ratziu V, Pierioni L, Charlotte F, Benhamou Y, Poynard T; MULTIVIRC Group. Biochemical markers of liver fibrosis in patients with hepatitis C virus infection: a prospective study. Lancet 2001; 357: 1069-1075 [PMID: 11297957 DOI: 10.1016/s0140-6736(00)04258-6]

87 Shaheen AA, Myers RP. Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis C-related fibrosis: a systematic review. Hepatology 2007; 46: 912-921 [PMID: 17705266 DOI: 10.1002/hep.21835]

88 Poynard T, Morra R, Halpon P, Castro L, Ratziu V, Imbert-Bisson F, Naveau S, Thabut D, Lebre D, Zoulam F, Bourilere M, Cacoub P, Messouss M, Manteuned M, de Ledinghen V. Meta-analyses of FibroTest and FIB-4 in the evaluation of liver fibrosis. J Hepatol 2004; 40: 1317-1325 [PMID: 15247777 DOI: 10.1016/j.jhep.2004.03.005]

89 Zoulim F, Bourliere M, Cacoub P, Messous D, Munteanu M, de Ledinghen V. Meta-analyses of FibroTest and FIB-4, a validation study. Clinics (Sao Paulo) 2015; 70: 710-721 [PMID: 25911335 DOI: 10.6061/clinics/2015(09)01]

90 Shaheen AA, Gazzeri R, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevarass HS, Lok AS. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. J Hepatol 2015; 62: 289-297 [PMID: 24054524 DOI: 10.1016/j.jchep.2013.08.007]

91 Regev A, Socolovsky M, Friedman SL, Shouval D, Eshghi F, et al. Risk of end-stage liver disease, hepatocellular carcinoma, and liver-related death in a cohort of HCV-infected individuals with and without HIV infection. Aliment Pharmacol Ther 2010; 32: 1261-1268 [PMID: 19982302 DOI: 10.1111/j.1365-2036.2010.04500.x]

92 Martinez SM, Fernández-Varo G, Gonzáles P, Sampson E, Bruguera M, Navasa M, Jiménez W, Sánchez-Tapias JM, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol 2015; 63: 237-246 [PMID: 25911335 DOI: 10.1016/j.jhep.2015.03.006]

93 Cañete L, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol 2008; 48: 835-847 [PMID: 18334275 DOI: 10.1016/j.jhep.2008.02.008]

94 Castera L, Foucher J, Bernard PH, Carvalho F, Aliax D, Merrouche W, Courzigou P, de Lédinghen V. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 2009; 49: 1406-1415 [PMID: 19064644 DOI: 10.1002/hep.22863]

95 Foucher J, Bernard PH, Carvalho F, Aliax D, Merrouche W, Courzigou P, de Lédinghen V. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 2009; 49: 1406-1415 [PMID: 19064644 DOI: 10.1002/hep.22863]

96 Foucher J, Bernard PH, Carvalho F, Aliax D, Merrouche W, Courzigou P, de Lédinghen V. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 2009; 49: 1406-1415 [PMID: 19064644 DOI: 10.1002/hep.22863]

97 Foucher J, Bernard PH, Carvalho F, Aliax D, Merrouche W, Courzigou P, de Lédinghen V. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 2009; 49: 1406-1415 [PMID: 19064644 DOI: 10.1002/hep.22863]
Patients with cirrhosis. Liver Int 2008; 48: 1718-1723 [PMID: 18836992 DOI: 10.1002/22577].

Kjaergaard M, Thiele M, Jansen C, Stahr Madsen B, Götzsche J, Strassburg C, Trebibka J, Krag A. High risk of misinterpreting liver and spleen stiffness using 2D shear-wave and transient elastography after a moderate or high calorie meal. PLoS One 2017; 12: e0173992 [PMID: 28376114 DOI: 10.1371/journal.pone.0173992].

Popescu A, Bota S, Sporea I, Sirli R, Danila M, Racané S, Suseanu D, Gradinaru O, Ivascu Siegfried C. The influence of food intake on liver stiffness values assessed by acoustic radiation force impulse elastography-preliminary results. Ultrasound Med Biol 2013; 39: 579-584 [PMID: 23415282 DOI: 10.1016/j.ultrasmedbio.2012.11.013].

Bota S, Sporea I, Peck-Radosavljevic M, Sirli R, Tanaka H, Jijima H, Saito H, Ebiniuma H, Lupsor M, Badea F, Fierbinteanu-Braticevici C, Petrisor A, Fischer-Rust M, Sarrazin C, Takahashi H, Ono N, pisciglia F, Marinelli S, D’Onofrio M, Gallotti A, Saliz P, Popescu A, Danila M. The influence of aminotransferase levels on liver stiffness assessed by Acoustic Radiation Force Impulse Elastography: a retrospective multicenter study. Dig Liver Dis 2013; 45: 762-768 [PMID: 23310533 DOI: 10.1016/j.dld.2013.02.008].

Castéra L, Vergniol J, Foucher J, Le Bail B, Chanteloup E, Hauser M, Darriet M, Courioux P, De Lédinghen V. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 2005; 128: 343-350 [PMID: 15685546 DOI: 10.1053/j.gastro.2004.11.015].

Zioł M, Handra-Luca A, Kettaneh A, Christidis C, Mal F, Kazemi F, de Lédinghen V, Marcellin P, Dhumeaux D, Trinchet JC, Beauprand M. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005; 41: 48-54 [PMID: 15690481 DOI: 10.1002/hep.20506].

Fraquelli M, Rigamonti G, Casazza G, Conte D, Donato MF, Ronchi G, Colombo M. Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut 2007; 56: 968-973 [PMID: 17252218 DOI: 10.1136/gut.2006.111302].

Fierbinteanu-Braticevici C, Andronescu D, Uscat R, Cretoiu D, Baicus C, Marinoschi G. Acoustic radiation force imaging sonoelastography for noninvasive staging of liver fibrosis. World J Gastroenterol 2009; 15: 5525-5532 [PMID: 19938190 DOI: 10.3748/wjg.v15.i15.5525].

Friedrich-Rust M, Wunder K, Kröner S, Sotoudh F, Richter S, Bojunga J, Herrmann E, Poynard T, Dietrich CF, Vermehren J, Zeuzem S, Sarrazin C. Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 2009; 252: 595-604 [PMID: 19703889 DOI: 10.1148/rad.2523081298].

Ocker M, Ganslmayer M, Zopf S, Gahr S, Jansen C, Hahn EG, Herold C. Improvement of quantitative testing of liver function in patients with chronic hepatitis C after installation of antiviral therapy. World J Gastroenterol 2005; 11: 5521-5524 [PMID: 16222747 DOI: 10.3748/wjg.v11.i15.5521].

Herold C, Heinz R, Radespiel-Tröger M, Schneider HT, Schuppam H, Ehn EG. Quantitative testing of liver function in patients with cirrhosis due to chronic hepatitis C to assess disease severity. Liver 2001; 21: 26-30 [PMID: 11109069 DOI: 10.1046/j.1060-0676.2001.210104.x].

Reichen J, Soliz M, Bühler H, Gonvers JJ, Knoblach M, Lavanchy D, Malé PJ, Meyer B, Schmid M, Bianchi L. Low-dose interferon in chronic hepatitis non-A/non-B: effects on quantitative liver function and structure in a randomized, controlled multicenter trial. Clin Investig 1993; 71: 888-893 [PMID: 7508773 DOI: 10.1007/BF00185591].

Bianchi G, Marchesini G, Vilstrup H, Fabbri A, De Mitri MS, Zoli M, Pisi E. Hepatic amino-nitrogen metabolism and mortality in 781 Danish patients with newly-diagnosed liver cirrhosis: a cohort study. BMC Gastroenterol 2009; 9: 50 [PMID: 19566919 DOI: 10.1186/1471-230X-9-50].

Merkel C, Marchesini G, Fabbri A, Bianco S, Bianchi G, Enzo E, Sacerdoti D, Zoli M, Gatta A. The course of galactose elimination capacity in patients with alcoholic cirrhosis: possible use as a surrogate marker for death. Hepatology 1996; 24: 820-823 [PMID: 8855183 DOI: 10.1001/jhep.1996.v24.pm0008855183].

Schmidt LE, Ott P, Tystrup N. Galactose elimination capacity as a prognostic marker in patients with severe acetaminophen-induced hepatotoxicity: 10 years’ experience. Clin Gastroenterol Hepatol 2004; 2: 418-424 [PMID: 15118981 DOI: 10.1016/S1542-3565(04)00128-4].

Glavind E, Aagaard NK, Gronbaek H, Orntoft NW, Vilstrup H, Rasmussen KL. Time course of compromised urea synthesis in patients with alcoholic cirrhosis. Scand J Gastroenterol 2018; 53: 592-597 [PMID: 29113530 DOI: 10.1080/00365521.2017.1399163].

Frey PA. The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 1996; 10: 461-470 [PMID: 8647345].

Tystrup N. The galactose elimination capacity in control subjects and patients with cirrhosis of the liver. Acta Med Scand 1966; 175: 281-289 [PMID: 14136247 DOI: 10.1111/j.1600-0676.1966.tb05576.x].

Vilstrup H. Synthesis of urea after stimulation with amino acids: relation to liver function. Gut 1980; 21: 996-999 [PMID: 7450364 DOI: 10.1136/gut.21.11.990].

Meijer AJ, Lammers WH, Charnelle RA. Nitrogen metabolism and ornithine cycle function. Physiol Rev 1990; 70: 701-748 [PMID: 2104222 DOI: 10.1152/physrev.1990.70.3.701].

Rafoth RJ, Onstad GR. Urea synthesis after oral protein ingestion in man. J Clin Invest 1975; 56: 1170-1174 [PMID: 1184743 DOI: 10.1172/JCI108193].

Sandahl TD, Aagaard NK, Thomsen KL, Grofle T, Greisen J, Christiansen JS, Vilstrup H. Effects of insulin-like growth factor-I administration on in vivo regulation of urea synthesis in normal subjects and patients with cirrhosis. Liver Int 2001; 31: 132-137 [PMID: 1190412 DOI: 10.1111/j.1478-3231.2001.tb02629.x].
Laursen TL et al. Effects of chronic hepatitis C antivirals

Laursen TL, Siggaard CB, Kazankov K, Ishii A, Takashima T, Sakai Y, Aizawa N, Nishikawa H, Ikeda N, Iwata Y, Enomoto H, Hirota S, Kobayashi N, 2017; 32, J Gastroenterol Hepatol: 994-1002 [PMID: 27500382 DOI: 10.1111/jvh.12578]

Elsharkawy A, Alem SA, Fouad R, El Raziky M, El Akel W, Abdo M, Tantawi O, AbdAllah M, Elsharkawy A, 2016; 107, Hepatology: 126-133 [PMID: 12614469 DOI: 10.1002/hee.25024]

Lem S, Alvarado-Tapia E, Mártil Z, Londoño MC, Llop E, Martínez J, Fortes JI, Ibarz LA, Artiza X, Baiges A, Gallego A, Bañeres F, Puente A, Albillos A, Calleja JL, Torras X, Hernández-Gea V, Bosch J, Villanueva C, Forns X, García-Pagán JC. Effects of All-Oral Anti-Viral Therapy on HVPG and Systemic Hemodynamics in Patients With Hepatitis C Virus-Associated Cirrhosis. J Gastroenterol Hepatol 2018; 33: 986-993 [PMID: 29987061 DOI: 10.1111/jgh.13758]

Knop V, Hoppe D, Welzel T, Vermehren J, Hermann E, Vermehren A, Friedrich-Rust M, Sarrazin C, Zeezem S, Welker MW. Regression of fibrosis and portal hypertension in HCV-associated cirrhosis and sustained virologic response after interferon-free antiviral therapy. J Viral Hepat 2016; 23: 994-1002 [PMID: 27500382 DOI: 10.1111/jgh.12578]

Elsharkawy A, Alem SA, Fouad R, El Raziky M, El Akel W, Abdo M, Tantawi O, AbdAllah M, Bourliere M, Esnat G. Changes in liver stiffness measurements and fibrosis scores following sofosbuvir based treatment regimens without interferon. J Gastroenterol Hepatol 2017; 32: 1624-1630 [PMID: 28377543 DOI: 10.1111/jgh.13758]

Kobayashi N, Iijima H, Tada T, Kumada T, Yoshida M, Aski T, Nishimura T, Nakano C, Takata R, Yoh K, Ishii A, Takashima T, Sakai Y, Aizawa N, Nishikawa H, Ikeda N, Iwata Y, Enomoto H, Hirota S, Fujimoto J, Nishiguchi S. Changes in liver stiffness and steatosis among patients with hepatitis C virus infection who received direct-acting antiviral therapy and achieved sustained virological response. Eur J Gastroenterol Hepatol 2018; 30: 546-551 [PMID: 29494353 DOI: 10.1097/MEG.0000000000001106]

Lemi S, Alvarado-Tapia E, Mártil Z, Londoño MC, Llop E, Martínez J, Fortes JI, Ibarz LA, Artiza X, Baiges A, Gallego A, Bañeres F, Puente A, Albillos A, Calleja JL, Torras X, Hernández-Gea V, Bosch J, Villanueva C, Forns X, Garcia-Pagán JC. Effects of All-Oral Anti-Viral Therapy on HVPG and Systemic Hemodynamics in Patients With Hepatitis C Virus-Associated Cirrhosis. Gastroenterology 2017; 153: 1273-1283.e1 [PMID: 28734821 DOI: 10.1053/j.gastro.2017.07.016]

Singh S, Facchinni A, Looma R, Falck-Ytter YT. Magnitude and Kinetics of Decrease in Liver Stiffness After Antiviral Therapy in Patients With Chronic Hepatitis C: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2018; 16: 27-38.e4 [PMID: 28479504 DOI: 10.1016/j.cgh.2017.04.038]

Pockros P, Crissien-Martinez AM, Furnette C, Skilloin C, Bao F, Du E, Pan JI, Wadlen J. Degree of liver fibrosis regression predicted by transient elastography after cure of chronic hepatitis C with direct acting antivirals. J Viral Hepat 2016; 23: 994-1002 [PMID: 27500382 DOI: 10.1111/jgh.12578]

Knop V, Hoppe D, Welzel T, Vermehren J, Hermann E, Vermehren A, Friedrich-Rust M, Sarrazin C, Zeezem S, Welker MW. Regression of fibrosis and portal hypertension in HCV-associated cirrhosis and sustained virologic response after interferon-free antiviral therapy. J Viral Hepat 2016; 23: 994-1002 [PMID: 27500382 DOI: 10.1111/jgh.12578]

Elsharkawy A, Alem SA, Fouad R, El Raziky M, El Akel W, Abdo M, Tantawi O, AbdAllah M, Bourliere M, Esnat G. Changes in liver stiffness measurements and fibrosis scores following sofosbuvir based treatment regimens without interferon. J Gastroenterol Hepatol 2017; 32: 1624-1630 [PMID: 28377543 DOI: 10.1111/jgh.13758]

Kobayashi N, Iijima H, Tada T, Kumada T, Yoshida M, Aski T, Nishimura T, Nakano C, Takata R, Yoh K, Ishii A, Takashima T, Sakai Y, Aizawa N, Nishikawa H, Ikeda N, Iwata Y, Enomoto H, Hirota S, Fujimoto J, Nishiguchi S. Changes in liver stiffness and steatosis among patients with hepatitis C virus infection who received direct-acting antiviral therapy and achieved sustained virological response. Eur J Gastroenterol Hepatol 2018; 30: 546-551 [PMID: 29494353 DOI: 10.1097/MEG.0000000000001106]

Lemi S, Alvarado-Tapia E, Mártil Z, Londoño MC, Llop E, Martínez J, Fortes JI, Ibarz LA, Artiza X, Baiges A, Gallego A, Bañeres F, Puente A, Albillos A, Calleja JL, Torras X, Hernández-Gea V, Bosch J, Villanueva C, Forns X, Garcia-Pagán JC. Effects of All-Oral Anti-Viral Therapy on HVPG and Systemic Hemodynamics in Patients With Hepatitis C Virus-Associated Cirrhosis. Gastroenterology 2017; 153: 1273-1283.e1 [PMID: 28734821 DOI: 10.1053/j.gastro.2017.07.016]

Singh S, Facchinni A, Looma R, Falck-Ytter YT. Magnitude and Kinetics of Decrease in Liver Stiffness After Antiviral Therapy in Patients With Chronic Hepatitis C: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2018; 16: 27-38.e4 [PMID: 28479504 DOI: 10.1016/j.cgh.2017.04.038]

Pockros P, Crissien-Martinez AM, Furnette C, Skilloin C, Bao F, Du E, Pan JI, Wadlen J. Degree of liver fibrosis regression predicted by transient elastography after cure of chronic hepatitis C with direct acting
antivirals is overestimated but confirmed by liver biopsy. J Hepatol 2017; 66: S108 [DOI: 10.1016/S0140-6736(17)30475-0]

146 Poussard T, McHutchison J, Manns M, Trepo C, Lindsay K, Goodman Z, Ling MH, Albrecht J. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology 2002; 122: 1303-1313 [PMID: 11984517 DOI: 10.1016/gast.2002.33023]

147 D’Ambrosio R, Aghemo A, Rumi MG, Ronchi G, Donato MF, Paradis V, Colombo M, Bedossa P. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology 2012; 56: 532-543 [PMID: 22271347 DOI: 10.1002/hep.25690]

148 Manne V, Akhtar E, Saab S. Cirrhosis regression in patients with viral hepatitis B and C: a systematic review. J Clin Gastroenterol 2014; 48: e76-e84 [PMID: 24921210 DOI: 10.1097/MCG.0000000000000162]

149 Ghany MG, Kleiner DE, Alter H, Doo E, Khokar F, Promrat K, Herion D, Park Y, Liang TJ, Hoofnagle JH. Progression of fibrosis in chronic hepatitis C. Gastroenterology 2003; 124: 97-104 [PMID: 12512034 DOI: 10.1053/gast.2003.50018]

150 Hoefs JC, Shiffman ML, Goodman ZD, Kleiner DE, Dienstag JL, Stoddard AM; HALT-C Trial Group. Rate of progression of hepatic fibrosis in patients with chronic hepatitis C: results from the HALT-C Trial. Gastroenterology 2011; 141: 900-908.e1-2 [PMID: 21699786 DOI: 10.1053/gastro.2011.06.007]

151 Stintzing S, Schmitt C, Ocker M, Ganslmayer M, Zopf S, Gahr S, Hahn EG, Herold C. Liver function under interferon/ribavirin therapy of chronic hepatitis C. Hepatogastroenterology 2009; 56: 462-465 [PMID: 19579621]

152 Everston SL, Shiffman ML, Hoefs JC, Morgan TR, Sterling RK, Wagner DA, Lauriski S, Curto TM, Stoddard A, Wright EG; HALT-C Trial Group. Quantitative liver function tests improve the prediction of clinical outcomes in chronic hepatitis C: results from the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis Trial. Hepatology 2012; 55: 1019-1029 [PMID: 22030902 DOI: 10.1002/hep.24752]

153 Herold C, Heinz R, Niedobitek G, Schneider T, Hahn EG, Schuppach D. Quantitative testing of liver function in relation to fibrosis in patients with chronic hepatitis B and C. Liver 2001; 21: 260-265 [PMID: 11454180 DOI: 10.1016/s0166-0677(01)21004-5]

154 Chang ML, Cheng ML, Chang SW, Tang HY, Chiu CT, Yeh CT, Shiao MS. Recovery of pan-genotypic and genotype-specific amino acid alterations in chronic hepatitis C after viral clearance: transition at the crossroad of metabolism and immunity. Amino Acids 2017; 49: 291-302 [PMID: 27830380 DOI: 10.1007/s00726-016-2360-7]

155 El-Kamary SS, Jhaiveri R, Sharradell MD. All-cause, liver-related, and non-liver-related mortality among HCV-infected individuals in the general US population. Clin Infect Dis 2011; 53: 150-157 [PMID: 21665807 DOI: 10.1093/cid/cir306]

156 Omland LH, Krapap H, Jepsen P, Georgsen J, Harristdal LH, Riisom K, Jacobsen SE, Schoenborg P, Christensen PB, Sorensen HT, Obel N; DANVIR Cohort Study. Mortality in patients with chronic and cleared hepatitis C viral infection: a nationwide cohort study. J Hepatol 2010; 53: 36-42 [PMID: 20040197 DOI: 10.1016/j.jhep.2009.10.033]

157 Younossi ZM, Zheng L, Stepanova M, Venkatasek C, Mir HM. Moderate, excessive or heavy alcohol consumption: each is significantly associated with increased mortality in patients with chronic hepatitis C. Aliment Pharmacol Ther 2013; 37: 703-709 [PMID: 23432437 DOI: 10.1111/apt.12265]

158 van der Meer AJ, Veldt BJ, Feldt JJJ, Wedemeyer H, Dufour J, Lammert F, Duarte-Rojo A, Heathcote EJ, Manns MP, Kukse L, Zeuzem S, Hofmann WP, de Krijg R, Hansen BE, Janssen HL. Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fibrosis. JAMA 2012; 308: 2584-2593 [PMID: 23268517 DOI: 10.1001/jama.2012.144878]

159 Bruno S, Di Marco V, Iavarone M, Rigoli F, Cossignani A, Calvaruso V, Aghemo A, Calibbi G, Viganò M, Boccaccio V, Craxi A, Colombo M, Maisonneuve P. Survival of patients with HCV cirrhosis and sustained virologic response is similar to the general population. J Hepatol 2016; 64: 1217-1223 [PMID: 27859129 DOI: 10.1016/j.jhep.2016.01.034]

160 Bruno S, Maisonneuve P. Reply to: "Methodological considerations when calculating person-time at risk for patients with chronic hepatitis C undergoing antiviral treatment". J Hepatol 2017; 67: 428-429 [PMID: 28435040 DOI: 10.1016/j.jhep.2017.04.005]

161 Innes H, McDonald S, Hayes P, Dillon JF, Allen S, Goldberg D, Mills PR, Barclay ST, Wilks D, Valerio H, Fox R, Bhattacharyya D, Kenny P, N Morris J, Fraser A, Stanley E. Mortality in hepatitis C patients who achieve a sustained virologic response compared to the general population. J Hepatol 2017; 66: 19-27 [PMID: 27545496 DOI: 10.1016/j.jhep.2016.08.004]

162 Fattovich G, Giustina G, Degos F, Diodati G, Degos F, Diodati G, Tremolada F, Nevens F, Almasio P, Solinas A, Brouwer JT, Thomas H, Realdi G, Corrocher R, Schmahl SW. Effectiveness of interferon alfa on incidence of hepatocellular carcinoma and decomposition in cirrhosis type C. European Concerted Action on Viral Hepatitis (EUROHEP). J Hepatol 1997; 27: 201-205 [PMID: 9252096 DOI: 10.1016/s0168-8278(97)80302-9]

163 Jacoblissi A, Siciliano M, Petti F, Acciacciaro BE, Leandro G, Caruso N, Accadia L, Bombardieri G, Andruilli A. Peginterferon alfa-2b and ribavirin in patients with hepatitis C virus and decompressed cirrhosis: a controlled study. J Hepatol 2007; 46: 206-212 [PMID: 17128370 DOI: 10.1016/j.jhep.2006.08.020]

164 van der Meer AJ, Feld JJJ, Hofer H, Almasio PL, Calvaruso V, Fernandez-Rodriguez CM, Alemans S, Ganne-Carrière N, D’Ambrosio R, Pol S, Trapeje-Marugan M, Maan R, Moreno-Otero R, Mallet V, Hultcrantz R, Weiland M, Rutter K, Di Marco V, Alonso S, Bruno S, Colombo M, de Krijg R, Veldt BJ, Hansen BE, Janssen HL. Risk of cirrhosis-related complications in patients with advanced fibrosis following hepatitis C virus eradication. J Hepatol 2017; 66: 485-493 [PMID: 27780714 DOI: 10.1016/j.jhep.2016.10.017]

165 Carrat F, Fontaine H, Dorival C, Simony M, Diallo A, Hezode C, De Ledeghin V, Larrey D, Haour G, Bronowicki JP, Zoulim F, Asselah T, Marcellin P, Saadat F, Samuel D, Guyader D, Chazouillères O, Mathuri P, Metivier S, Alric L, Rachi G, Gournay J, Abegael A, Cales P, Ganne N, Loustaud-Ratti V, D’Alerchere L, Causse X, Geist C, Minella A, Rosa I, Guel-Simeone M, Portal I, Raffi F, Bourliere M, Pol S; French ANRS CO22 Hepather cohort. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: a prospective cohort study. Lancet 2019; 393: 1453-1464 [PMID: 30765123 DOI: 10.1016/s0140-6736(18)3211-1]

166 Backus LL, Belserio PS, Stournian TA, Mole LA. Impact of Sustained Virologic Response with Direct-
Acting Antiviral Treatment on Mortality in Patients with Advanced Liver Disease. Hepatology 2019; 69: 487-497 [PMID: 30749564 DOI: 10.1002/hep.29408]

Košťal K, Moser S, Al-Zouari R, Schwarzer R, Data C, Stauber R, Laferl H, Strasser M, Beinhart S, Stättemayer AF, Gschwantler M, Zoller H, Mairer O, Graziadei I, Trauner M, Steindl-Munda P, Hofer H, Ferenci P. Follow-up of sustained virological responders with hepatitis C and advanced liver disease after interferon/ribavirin-free treatment. Liver Int 2018; 38: 1028-1035 [PMID: 29136329 DOI: 10.1111/liv.13629]

Butt AA, Yan P, Simon TG, Abou Samra AB. Effect of Paritaprevir/Ritonavir/Ombitasvir/Dasabuvir and Ledipasvir/Sofosbuvir Regimens on Survival Compared With Untreated Hepatitis C Virus-Infected Persons: Results From ERCHIVES. Clin Infect Dis 2017; 65: 1006-1011 [PMID: 28903580 DOI: 10.1093/cid/cx2364]

Backus L, Belperto PS, Shahoumanian TA, Mole LA. Direct-acting antiviral sustained virologic response: Impact on mortality in patients without advanced liver disease. Hepatology 2018; 68: 827-838 [PMID: 29377196 DOI: 10.1002/hep.29811]

Fernández Carrillo C, Lenz S, Llop E, Pascaiso JM, Crespo J, Arenas J, Fernández I, Bañeras C, Carrió JA, de la Mata M, Buti M, Castells L, Albillos A, Romero M, Turnes J, Pons C, Moreno-Planas JM, Moreno-Palomares JJ, Fernández-Rodríguez C, García-Samaniego J, Prieto M, Fernández Bermejo M, Salmerón J, Badia E, Salcedo M, Herrero J, Granados R, Bé M, Maríño Z, Calleja JL. Treatment of hepatitis C virus infection in patients with cirrhosis and predictive value of model for end-stage liver disease: Analysis of data from the Hepa-C registry. Hepatology 2017; 65: 1810-1822 [PMID: 28170112 DOI: 10.1002/hep.29097]

Verghl J, Foucher J, Terrebonne E, Bernard PH, le Bail B, Merrouche W, Couzigou P, de Ledisinghen V. Noninvasive tests for fibrosis and liver stiffness predict 5-year mortality in patients with chronic hepatitis C. Gastroenterology 2011; 140: 1970-1979, 1979.e1-1979.e3 [PMID: 21376047 DOI: 10.1053/j.gastro.2011.02.058]

Cepeda JA, Thomas DL, Astemborski J, Sulkowski MS, Kirk GD, Mehta SH. Increased Mortality Among Persons With Chronic Hepatitis C With Moderate or Severe Liver Disease: A Cohort Study. Clin Infect Dis 2017; 65: 235-243 [PMID: 28329108 DOI: 10.1093/cid/cix1027]

Salturro F, Bonorini G, Moser P, Sanguinovv A, Almasio P, Budillon G, Capuano G, Muraca M, Marchesini G, Bernardi M, Marenco G, Molino G, Rossaro L, Solanis A, Asadnie A. Prognostic value of the galactose test in predicting survival of patients with cirrhosis evaluated for liver transplantation. A prospective multicenter Italian study. AJIF Group for the Study of Liver Transplantation. Associazione Italiana per lo Studio del Fegato. J Hepatol 1996; 25: 474-480 [PMID: 921246 DOI: 10.1016/s0168-8278(96)80206-6]

Merkel C, Gatta A, Zoli M, Bolognesi M, Angeli P, Iervese T, Marchesini G, Ruol A. Prognostic value of galactose elimination capacity, aminoxyacetic breath test, and ICG clearance in patients with cirrhosis. Comparison with the Pugh score. Dig Dis Sci 1991; 36: 1197-1203 [PMID: 1893084 DOI: 10.1007/BF01307508]

Albers I, Hartmann H, Bircher J, Creutzfeldt W. Superiority of the Child-Pugh classification to quantitative function tests for assessing prognosis of liver cirrhosis. Scand J Gastroenterol 1989; 24: 269-276 [PMID: 2734358 DOI: 10.3109/0036552890930045]

Addario L, Scaglione G, Trito G, Di Costanzo OG, Di Luca M, Lambassi F, Galeotta Lanza A, Picciotto FP, Tartaglione MT, Utech W, Mac M, Giannelli E, Asadnie A. Prognostic value of quantitative liver function tests in viral cirrhosis: a prospective study. Eur J Gastroenterol Hepatol 2006; 18: 713-720 [PMID: 16772827 DOI: 10.1097/01.meg.0000219104.40435.43]

Ohnishi M, Higuchi A, Matsunuma H, Arakawa Y, Nakamura H, Nirei K, Yamamoto T, Yamagami H, Ogawa M, Gotoda T, Matsuoka S, Nakajima N, Sugita M, Montoya M, Murayama H. Involvement of Ornithine Carbamoyltransferase in the Progression of Chronic Hepatitis C and Liver Cirrhosis. Int J Med Sci 2017; 14: 629-638 [PMID: 28824294 DOI: 10.7150/ijms.17641]

Maier KP, Talke H, Gerok W. Activities of urea-cycle enzymes in chronic liver disease. Klin Wochenschr 1979; 57: 661-665 [PMID: 222605 DOI: 10.1007/bf01476665]

El-Shiekham RM, Marny SS, Nessim IG, Hosni HN, El Hindawi A, Hassanein MH, AbdelFattah AS. Carbamoyl phosphate synthetase 1 (CPS1) as a prognostic marker in chronic hepatitis C infection. APMIS 2019; 127: 93-105 [PMID: 30693808 DOI: 10.1111/apm.12917]

Byrnes V, Miller A, Lowry D, Hill E, Weinstein C, Aloup D, Lenkinski R, Afdhal NH. Effects of anti-viral therapy and HCV clearance on cerebral metabolism and cognition. J Hepatol 2012; 56: 549-556 [PMID: 22027578 DOI: 10.1016/j.jhep.2011.09.015]

Aloup D, Younossi Z, Stepanova M, Afdhal NH. Cerebral MR spectroscopy and patient-reported mental health outcomes in hepatitis C genotype 1 naive patients treated with ledipasvir and sofosbuvir. Hepatology 2014; 60: 221a-221a

Curry MP, Moczyngski NP, Liu L, Stamm L, Yun C, Brainard DM, McHutchinson JG, Aloup D, Afdhal NH. The Effect of Supported Virological Response on Cerebral Metabolism and Neurocognition in Patients with Chronic Genotype 1 HCV Infection. J Hepatol 2016; 64: S797-S797

Dusheiko G. The impact of antiviral therapy for hepatitis C on the quality of life: a perspective. Liver Int 2017; 37 Suppl 1: 7-12 [PMID: 28052638 DOI: 10.1111/liv.13292]

Puente A, Cabezas I, López Arias MJ, Fortea J, Arias MT, Esteban琮, A, Casafont F, Fábrega E, Crespo I. Influence of sustained viral response on the regression of fibrosis and portal hypertension in cirrhotic HCV patients treated with antiviral triple therapy. Rev Esp Enferm Dig 2017; 109: 17-25 [PMID: 27990835 DOI: 10.17235/med.2016.4235.2016]

Afdhal N, Everson GT, Calleja JL, McCaughan C, Bosch J, Denning J, Brainard DM, McHutchinson JG, Brando-Sarf T, An D, Clarkson M, Reddy KR, Asselah T, Gane E, Fu J. Effect of long-term viral suppression with sofosbuvir plus ribavirin on hepatic venous pressure gradient in HCV-infected patients with cirrhosis and portal hypertension. J Hepatol 2015; 62: S269-S270 [DOI: 10.1016/S0168-8278(15)31677-7]

Mandorfer M, Košťal K, Schwabl P, Freiselmuth C, Schwarzer R, Stern R, Chromy D, Stättemayer AF, Reiberger T, Beinhart S, Sieghart W, Trauner M, Hofer H, Ferlitsch A, Ferenci P, Peck-Radosavljevic M. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension. J Hepatol 2016; 65: 692-699 [PMID: 27242316 DOI: 10.1016/j.jhep.2016.05.027]

Mauro E, Crespo G, Montironi C, Londoño MC, Hernández-Gea V, Ruiz P, Sastre L, Lombardo J, Maríño Z, Díaz A, Colmenero J, Rimola A, García-Pagán JC, Brunet M, Foros X, Navasa M. Portal pressure and liver stiffness measurements in the prediction of fibrosis regression after sustained virological
response in recurrent hepatitis C. *Hepatology* 2018; 67: 1683-1694 [PMID: 28960366 DOI: 10.1002/hep.29557]

188 Mandorfer M, Kozbial K, Schwabl P, Chromy D, Semmler G, Stättermayer AF, Pinter M, Hernández-Gea V, Fritzer-Szrekeres M, Steindl-Munda P, Trauner M, Peck-Radosavljevic M, García-Pagán JC, Ferenci P, Reiberger T. Changes in Hepatic Venous Pressure Gradient Predict Hepatic Decompensation in Patients Who Achieved Sustained Virologic Response to Interferon-Free Therapy. *Hepatology* 2020; 71: 1023-1036 [PMID: 31365764 DOI: 10.1002/hep.29557]

189 Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. *Gastroenterology* 2004; 127: 535-550 [PMID: 15508101 DOI: 10.1053/j.gastro.2004.09.014]

190 Gaone-Carrié N, Chastang C, Chapel F, Munz C, Pateron D, Sibony M, Dény P, Trinchet JC, Callard P, Guettier C, Beaufragard M. Predictive score for the development of hepatocellular carcinoma and additional value of liver large cell dysplasia in Western patients with cirrhosis. *Hepatology* 1996; 23: 1112-1118 [PMID: 8621142 DOI: 10.1002/hep.510230527]

191 Reig M, Mariño Z, Perolló C, Illarriarenaq M, Ribeiro A, Lens S, Díaz A, Vilam R, Darnell A, Varela M, Sangro B, Calleja JL, Forns X, Bruix J. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. *J Hepatol* 2016; 65: 719-726 [PMID: 27084592 DOI: 10.1016/j.jhep.2016.04.008]

192 Conti F, Buonfiglioli F, Scuteri A, Cespi C, Bolondi L, Galanetti P, Foschi FG, Lenzi M, Maizella G, Verucchi G, Andreone P, Brillanti S. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. *J Hepatol* 2016; 65: 727-733 [PMID: 27349488 DOI: 10.1016/j.jhep.2016.06.015]

193 Kozbial K, Moser S, Schwarzer R, Laferl H, Al-Zoairy R, Stauber R, Stättermayer AF, Beinhardt S, Graziadei I, Freissmuth C, Maierson A, Ghawanlou M, Strasser M, Peck-Radosavljevic M, Trauner M, Hofer F, Ferenci P. Unexpected high incidence of hepatocellular carcinoma in cirrhotic patients with sustained virologic response following interferon-free direct-acting antiviral treatment. *J Hepatol* 2016; 65: 856-858 [PMID: 27318327 DOI: 10.1016/j.jhep.2016.06.009]

194 Cheung MCC, Walker AJ, Hudson BE, Verma S, McLauchlan J, Mutimer DJ, Brown A, Gelson WTH, MacDonald DC, Agarwal K, Foster GR, Irving WL. Outcomes after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decompensated cirrhosis. *J Hepatol* 2016; 65: 741-747 [PMID: 27388925 DOI: 10.1016/j.jhep.2016.06.019]

195 ANRS collaborative study group on hepatocellular carcinoma (ANRS CO22 HEPATHER, CO12 CirVir and CO23 CUPILT cohorts). Lack of evidence of an effect of direct-acting antivirals on the recurrence of hepatocellular carcinoma: Data from three ANRS cohorts. *J Hepatol* 2016; 65: 734-740 [PMID: 27288051 DOI: 10.1016/j.jhep.2016.05.045]

196 D’Ambrosio R, Colombo M. Should surveillance for liver cancer be modified in hepatitis C patients after treatment-related cirrhosis regression? *Liver Int* 2016; 36: 783-790 [PMID: 26936383 DOI: 10.1111/liv.13106]

197 Ioannou GN, Beste LA, Green PK, Singal AG, Tapper EB, Waijee AK, Sterling RK, Feld JJ, Kaplan DE, Taddei TH, Berry K. Increased Risk for Hepatocellular Carcinoma Persists Up to 10 Years After HCV Eradication in Patients With Baseline Cirrhosis or High FIB-4 Scores. *Gastroenterology* 2019; 157: 1264-1278.e4 [PMID: 31356807 DOI: 10.1053/j.gastro.2019.07.033]
