Preoperative Anemia and Thrombocytosis Predict Adverse Prognosis in Non-Metastatic Renal Cell Carcinoma With Tumor Thrombus

Lulin Ma (malulin@bjmu.edu.cn)
Peking University Third Hospital

Xiao Ruotao
Peking University Third Hospital

Xu Chuxiao
Peking University Third Hospital

He Wei
Peking University Third Hospital

Liu Lei
Peking University Third Hospital

Zhang Hongxian
Peking University Third Hospital

Liu Cheng
Peking University Third Hospital

Research article

Keywords: anemia, thrombocytosis, renal cell carcinoma, tumor thrombus, prognosis

Posted Date: October 14th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-73084/v1

License: ☺️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on February 27th, 2021. See the published version at https://doi.org/10.1186/s12894-021-00796-6.
Abstract

Objection: The aim of the study was to determine the prognostic value of preoperative blood parameters in patients with renal cell carcinoma (RCC) and tumor thrombus (TT) treated surgically.

Method: we retrospectively analyzed 152 patients diagnosis with RCC and TT and treated surgically. Clinicopathologic data and blood parameter were obtained. Univariable and multivariable analysis using the Cox regression model were performed to determine risk factors that were associated with progression-free survival (PFS) and overall survival (OS). Kaplan-Meier curve and logistic regression were performed to analyze the risk factors.

Results: Preoperative Hgb≥120g/L (HR=2.48, P=0.024) and lymph node metastasis (HR=3.98, P=0.032) were an independent prognostic factors associated with OS. Preoperative PLT≥300×10^9/L (HR=2.10, P=0.014) and lymph node metastasis (HR=3.42, P=0.021) were an independent prognostic factors associated with PFS. In Kaplan–Meier survival analysis, preoperative anemia had worse OS than without anemia (P=0.003) and thrombocytosis had worse PFS than without thrombocytosis (P=0.001). Preoperative anemia were associated with more symptomatic (P=0.009), surgical time≥6h (P=0.016), Blood loss≥1000ml (P=0.014), transfusion(P=0.012), higher thrombus level (III-IV) (P=0.004) and higher nuclear grade (III-IV) (P=0.002) while thrombocytosis were associated with more symptomatic (P=0.008) and higher nuclear grade (III-IV) (P=0.042)

Conclusions: Preoperative anemia and thrombocytosis was associated with adverse prognosis in patients with non-metastatic RCC with TT. Both preoperative hemoglobin level and platelet count may be clinical useful for risk stratifying patients receiving operation for non-metastatic RCC with TT.

Introduction

Renal cell carcinoma (RCC) accounts for 3% of all malignant tumors worldwide[1]. With improvement of surgical procedures and adjuvant therapy, the long-term prognosis of RCC has favorable outcome with 5-year survival rate of 80%-90% in most of histologic type[2]. Several prognostic factors based on pathologic data have been reported, such as RCC subtype, tumor grade, sarcomatoid and rhabdoid features and TNM classification[3]. Thus some studies have established nomogram or prognostic model systems to predict survival combining these factors, and the usefulness of them have been confirmed in external validated populations[3, 4].

Preoperative blood parameters can reflect patients' inflammatory status and healthy conditions in a cheap and convenient way. As we all known, inflammation is strongly associated with tumor genesis, progression and metastasis[5]. Preoperative Inflammation indicators such as neutrophils, lymphocytes, platelets, neutrophil-lymphocyte ratio (NLR) and the platelet lymphocyte ratio (PLR) have been demonstrated to be prognostic value in some urologic malignancies like prostate cancer and bladder cancer[6, 7]. In RCC, elevated neutrophils, platelets, NLR, PLR and decreased lymphocytes was associated with worse survival in previous study[8–11]. Besides, other preoperative blood parameters like
hemoglobin, AST/ALT, albumin have been reported as prognostic factors in predicting RCC survival[12]. Recently, new prognostic system incorporating preoperative blood parameters have been designed with improved accuracy[13, 14].

However, 4–10% of RCC patients have thrombus in the renal vein or inferior vena cava[15]. Because of the complexity of inflammatory status and the rarity of these populations, the prognostic significance of preoperative blood parameters has not been reported in the previous study. The aim of present study was to determine the prognostic value of preoperative blood parameters in patients with tumor thrombus treated surgically.

Methods

Patient population

After receiving approval from the Peking University Third Hospital Medical Science Research Ethics Committee, we retrospectively analyzed clinicopathologic data of 278 patients’ diagnosis with renal neoplasms and tumor thrombus treated with nephrectomy and thrombectomy at our institute from Jan 2014 to Dec 2019. Exclude criteria include: (1) non renal cell carcinoma; (2) suspicious distant metastasis preoperatively; (3) bilateral tumor or recurrent tumor. The flow chart of patients’ inclusion was shown in Fig.1. Finally we included 152 patients to conduct further research. Clinicopathologic data and blood parameter were collected through medical records and pathologic reports.

Clinical and pathologic evaluation

The clinicopathologic variables recorded included age, gender, body mass index (BMI), symptoms at presentation, American Society of Anesthesiologists (ASA) score, surgical approach, tumor thrombus level (TT), tumor size, nuclear grade and histologic type. Tumor thrombus level were defined according to the Mayo classification by preoperative imaging. Nuclear grade were defined according to Fuhrman grade before 2016 and WHO/IUSP classification after 2016. Laboratory examination were routinely analyzed within a week before surgery in each patient. blood parameter were obtained include neutrophil count (Neu), platelet count (PLT), lymphocyte count (Lym), hemoglobin level (Hgb), albumin level (Alb), serum creatine (SCr), plasma AST and ALT, serum calcium (SCa) and alkaline phosphatase (ALP). NLR and PLR were calculated by dividing the neutrophil count and platelet count by the lymphocyte count respectively. Platelet count ≥300×10⁹/L were defined as thrombocytosis (normal range of platelet counts at our institution were 100~ 300×10⁹/L). Hemoglobin level ≤120g/L were defined as anemia (normal range of Hemoglobin level at our institution were 120~160g/L).

Follow up

After surgery, patients were followed up. Prognostic data were obtained through clinic or telephone by our research secretary until July 2020. We recommend patients to follow up every 3 months for the first years, every 6 months for the next 2 years and yearly thereafter. Laboratory examinations and X-ray, ultrasonic
scan or abdominal CT were performed at each visit. Overall survival (OS) was calculated from the date of surgery to death. Progression free survival (PFS) was calculated from the date of surgery to tumor recurrence or metastasis.

Statistical analysis

We assessed the prognostic value (OS and PFS) of preoperative blood parameters and clinicopathologic data based on univariate and multivariate analysis by Cox's proportional hazards regression model. All blood parameters and clinicopathologic data were transformed to category variable. The cut-off value we determined mainly according the previous published study. OS and PFS were estimated from Kaplan–Meier curves and the log-rank test was used to compare survival differences. Logistic regression model were used to analyze the association of anemia and thrombocytosis with clinicopathologic characteristics. All statistical analyses were conducted with SPSS Statistics 22.0 (IBM Corp, Armonk, NY, USA) and GraphPad prism 8. Two-tailed tests were used for all comparisons, and p < 0.05 was considered statistically significant.

Result

The baseline clinical and pathologic variables of 152 patients treated surgically for RCC with TT were shown in the Table.1. Among these patients, the majority (n = 118, 77.6%) were male. The median age of these patients was 56.6 year (IQR:54 ~ 66.7). Most of these patients were treated in laparoscopic than opened approach (58.6% vs 41.4%). The median surgical time was 320 min (IQR:228 ~ 409.7) and median blood loss was 600 ml (IQR:200 ~ 1950). Of these patients, the majority of TT level were classified to mayo 0-II (n = 122, 80.3%) than mayo III-IV (n = 30, 19.7%). The median tumor size was 8.3 cm (IQR:6.5 ~ 10). Regarding histological subtypes, 129 of patients (84.9%) had clear cell RCC and 16 (10.5%) had papillary RCC. More than half of these patients (n = 90, 59.2%) had III-IV nuclear grade. Lymph node metastasis had pathologically confirmed in 9 (5.9%) cases. At the last follow up, 146 (96.1%) patients received follow up with mean 21 months (IQR:8 ~ 31). The Kaplan-Meier curve of OS and PFS were shown in Fig. 2. Estimated 3-year-OS were 71.6% while estimated 3-year-PFS were 49.2%.

The baseline preoperative blood parameter of study cohort were shown in Table.2. In the univariate analysis, Hgb≥120 g/L (HR = 3.12, P = 0.005), ALT ≥ 30u/L (HR = 2.19, P = 0.045), AST ≥ 25u/L (HR = 2.63, P = 0.010) and lymph node metastasis (HR = 3.98, P = 0.026) were a significant predictor of OS. In the multivariate analysis, Hgb≥120 g/L (HR = 2.48, P = 0.024) and lymph node metastasis (HR = 3.98, P = 0.032) were an independent prognostic factors associated with OS (shown in Table.3). Besides. Univariable analysis demonstrated that PLT ≥ 300 × 10⁹/L(HR = 2.45, P = 0.002), nuclear grade (III-IV)(HR = 2.01, P = 0.018), lymph node metastasis(HR = 2.87, P = 0.018) were significant predictors of PFS. Stepwise multivariable analysis showed that PLT ≥ 300 × 10⁹/L (HR = 2.10, P = 0.014) was an independent predictor of PFS, along with lymph node metastasis (HR = 3.42, P = 0.021) (shown in Table.4). In Kaplan–Meier survival analysis, patients with preoperative anemia had an increased risk of mortality compared to those who without. (shown in Fig. 3, P = 0.003). Besides, preoperative
thrombocytosis was associated with an increased the risk of earlier recurrence or metastasis than that without thrombocytosis. (shown in Fig. 4, p = 0.001).

To determine the association of anemia and thrombocytosis with clinicopathologic characteristics., we found that preoperative anemia were associated with more symptomatic (OR = 3.14, P = 0.009), surgical time ≥ 6 h (OR = 2.28, P = 0.016), Blood loss ≥ 1000 ml (OR = 2.32, P = 0.014), transfusion(OR = 2.34, P = 0.012), higher TT level (III-IV) (OR = 3.41, P = 0.004) and higher nuclear grade (III-IV) (OR = 3.13, P = 0.002). Besides, Patients with thrombocytosis were associated with more symptomatic (OR = 7.33, P = 0.008) and higher nuclear grade (III-IV) (OR = 2.39, P = 0.042) (shown in Table 5).

Discussion

This study examined the 152 patients with RCC and TT treated surgically from a high volume center and found patients with preoperative anemia had significantly adverse OS than that without anemia. Besides, patients with thrombocytosis was associated with worse PFS than those without thrombocytosis. In multivariable analysis, we found preoperative anemia and thrombocytosis was an independent worse prognostic factor even adjusting for other known pathologic prognostic factors. To our knowledge, this is the first study of the preoperative blood parameters specically focused on the population of RCC and TT.

In the previous study, anemia could be used as a prognostic factors in RCC. Kim SH et al retrospectively analyzed 4,260 patients with non-metastatic RCC and found factors include anemia were associated with worse recurrence-free survival (RFS), cancer-specific survival (CSS), and overall survival (OS)[16]. Jiwei Huang et al analyzed 352 patients with papillary RCC and found patients with preoperative anemia had significantly worse RFS, CSS, and OS than patients without anemia (P < 0.001). Multivariable analysis revealed that anemia was an independent prognostic factor in terms of RFS, CSS, and OS (P < 0.001)[17]. Xia L et al conducted a meta-analysis and found preoperative anemia was associated with increased all-cause mortality, cancer-specific mortality, and disease recurrence[18]. Combine with previous study, our study found preoperative anemia was an independent predictor of worse OS compared to those without anemia in RCC with TT populations. We suspected reason may as follows: Anemia was strongly related to more aggressive cancer biology and worse pathologic characteristics. Combined with our study, patients with preoperative anemia had higher TT level and higher nuclear grade, which may cause a worse prognosis. As is shown in our study, preoperative anemia had higher rate of blood transfusion during operation. Some research have already confirmed transfusion had a worse impact on RCC patients after surgery[19]. Patients with anemia preoperatively may suffered from chronic blood loss, which can cause a worse nutrition status. Despite we need further study to verify our hypothesis, anemia was not a negligible prognostic factor associated with worse survival.

Thrombocytosis had been found as a worse prognostic predictor in different kind of cancer, include nasopharyngeal carcinoma[20], gynecologic malignancies[21], melanoma[22] and colorectal cancer[23]. In RCC, thrombocytosis also could be regard as a prognostic indicator. Several study had already shown patients with preoperative thrombocytosis had a worse survival than those who
Although none of these study had confirmed the thrombocytosis had worse prognosis in population of RCC with TT, previous study had found that bland thrombus in RCC with TT was associated with adverse survival\cite{27}. Combine with our study, patients with thrombocytosis had an increased recurrence or metastasis risk than those who without. Besides, our study had confirmed that thrombocytosis is an independent prognostic factor predicting PFS. Interestingly, previously we thought the function of platelets were mainly in limiting blood loss and promoting wound healing. Recently, preclinical and clinical studies showed that platelets can promote tumorigenesis and metastasis through a wide variety of crosstalk between platelets and cancer cells\cite{28}. This may explain why preoperative thrombocytosis had high risk of recurrence or metastasis after surgery. Therefore, follow up plan should be given more closely in populations with RCC and TT when we found thrombocytosis preoperatively.

Although some researcher found NLR, PLR and AST/ALT and Alb level could be used as prognostic factors in RCC \cite{8–12}, in population of RCC with TT we could not found any statistically significant difference. Firstly, we supposed in patients of RCC with TT, the inflammatory status could be more complex, thus these kinds of blood marker may not suitable for specific kind of populations. Secondly, the number of patients included in the study may not sufficient to obtain statistical differences. Owing to the rarity of these population, multi-institutional study should be conducted to further investigate the prognostic value of blood parameter in this certain kind of population.

This retrospective study has several limitations. Firstly, our research is single-institutional retrospective review, which inherently include missing data and confounding bias that we could not control. Secondly, we did not collect the information about concomitant drugs, which may have an influencing on blood counts (e.g., steroids). Despite these limitations, our study is significant because we are the only research focus on the impact of preoperative blood parameter on the patients with RCC and TT.

Conclusion

Both preoperative anemia and thrombocytosis are an important independent prognostic factor for patients with RCC and TT. Anemia is associated with an increased risk of mortality while thrombocytosis is associated with an increased risk of earlier recurrence or metastasis. Both preoperative hemoglobin level and platelet count may be clinical useful for risk stratifying patients receiving operation for non-metastatic RCC with TT.

Abbreviations

RCC: renal cell carcinoma; TT: tumor thrombus; SCr: serum creatinine; Alb: albumin; Hgb: hemoglobin; NLR: neutrophil-lymphocyte ratio; PLR: platelet lymphocyte ratio; Neu: neutrophil count; PLT: platelet count; Lym: lymphocyte count; Alb: albumin level; SCa: serum calcium; ALP: alkaline phosphatase; BMI: body mass index; ASA: American Society of Anesthesiologists score; OS: overall survival; PFS: Progression free survival.
Declarations

Ethics approval and consent to participate
The study was approved by the Peking University Third Hospital Medical Science Research Ethics Committee. All of the procedures were performed in accordance with the Declaration of Helsinki and relevant policies in China. Because of the retrospective nature of the study, patient consent for inclusion was waived.

Consent to publish
Not applicable.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
Not applicable.

Authors’ Contributions
RX collected and analyzed the data and wrote the manuscript. CX, WH, LL, HZ made substantial contributions to the design of this work. LM and CL substantially revised the work and manuscript. All authors have read and approved the manuscript.

Acknowledgements
Not applicable.

Author details
1Peking University Health Science Centre, Beijing, 100191, China. 2Department of Urology, Peking University Third Hospital, Beijing 100191, China

References
1. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F: Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018.
2. Keegan KA, Schupp CW, Chamie K, Hellenthal NJ, Evans CP, Koppie TM: Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage. *J Urol* 2012, 188(2):391-397.

3. Sun M, Shariat SF, Cheng C, Ficarra V, Murai M, Oudard S, Pantuck AJ, Zigeuner R, Karakiewicz PI: Prognostic factors and predictive models in renal cell carcinoma: a contemporary review. *Eur Urol* 2011, 60(4):644-661.

4. Zisman A, Pantuck AJ, Dorey F, Said JW, Shvarts O, Quintana D, Gitlitz BJ, deKernion JB, Figlin RA, Belldegrun AS: Improved Prognostication of Renal Cell Carcinoma Using an Integrated Staging System. 2001, 19(6):1649-1657.

5. Greten FR, Grivennikov SI: Inflammation and Cancer: Triggers, Mechanisms, and Consequences. *Immunity* 2019, 51(1):27-41.

6. Bahig H, Taussky D, Delouya G, Nadiri A, Gagnon-Jacques A, Bodson-Clermont P, Soulieres D: Neutrophil count is associated with survival in localized prostate cancer. *BMC Cancer* 2015, 15:594.

7. Zhang J, Zhou X, Ding H, Wang L, Liu S, Liu Y, Chen Z: The prognostic value of routine preoperative blood parameters in muscle-invasive bladder cancer. *BMC Urol* 2020, 20(1):31.

8. Hu H, Yao X, Xie X, Wu X, Zheng C, Xia W, Ma S: Prognostic value of preoperative NLR, dNLR, PLR and CRP in surgical renal cell carcinoma patients. *World J Urol* 2017, 35(2):261-270.

9. Huszno J, Kolosza Z, Mrochem-Kwaciak J, Rutkowski T, Skladowski K: The Role of Neutrophil-Lymphocyte Ratio, Platelet-Lymphocyte Ratio, and Platelets in the Prognosis of Metastatic Renal Cell Carcinoma. *Oncology* 2019, 97(1):7-17.

10. Kim TW, Lee JH, Shim KH, Choo SH, Choi JB, Ahn HS, Kim SJ, Kim SI: Prognostic significance of preoperative and follow-up neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with non-metastatic clear cell renal cell carcinoma. *Investig Clin Urol* 2019, 60(1):14-20.

11. Caliskan S: Elevated neutrophil to lymphocyte and platelet to lymphocyte ratios predict high grade and advanced stage renal cell carcinoma. *Int J Biol Markers* 2019, 34(1):15-19.

12. Bezan A, Mrsic E, Krieger D, Stojakovic T, Pummer K, Zigeuner R, Hutterer GC, Pichler M: The Preoperative AST/ALT (De Ritis) Ratio Represents a Poor Prognostic Factor in a Cohort of Patients with Nonmetastatic Renal Cell Carcinoma. *J Urol* 2015, 194(1):30-35.

13. Chrom P, Stec R, Bodnar L, Szczylik C: Incorporating Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio in Place of Neutrophil Count and Platelet Count Improves Prognostic Accuracy of the International Metastatic Renal Cell Carcinoma Database Consortium Model. *Cancer Res Treat* 2018, 50(1):103-110.

14. Heng DYC, Xie W, Regan MM, Harshman LC, Bjarnason GA, Vaishampayan UN, Mackenzie M, Wood L, Donskov F, Tan M-H et al.: External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. *The Lancet Oncology* 2013, 14(2):141-148.

15. Lardas M, Stewart F, Scrimgeour D, Hofmann F, Marconi L, Dabestani S, Bex A, Volpe A, Canfield SE, Staehler M et al.: Systematic Review of Surgical Management of Nonmetastatic Renal Cell
Carcinoma with Vena Caval Thrombus. *Eur Urol* 2016, 70(2):265-280.

16. Kim SH, Park B, Hwang EC, Hong SH, Jeong CW, Kwak C, Byun SS, Chung J: *Retrospective Multicenter Long-Term Follow-up Analysis of Prognostic Risk Factors for Recurrence-Free, Metastasis-Free, Cancer-Specific, and Overall Survival After Curative Nephrectomy in Non-metastatic Renal Cell Carcinoma*. *Frontiers in oncology* 2019, 9:859.

17. Huang J, Feldman AS, Dong L, Cornejo K, Liu Q, Dahl DM, Wu S, Blute ML, Huang Y, Wu CL: *Preoperative Anemia as an Independent Prognostic Indicator of Papillary Renal Cell Carcinoma*. *Clin Genitourin Cancer* 2015, 13(5):859.

18. Xia L, Hu G, Guzzo TJ: *Prognostic Significance of Preoperative Anemia in Patients Undergoing Surgery for Renal Cell Carcinoma: A Meta-analysis*. *Anticancer research* 2017, 37(6):3175-3181.

19. Linder BJ, Thompson RH, Leibovich BC, Cheville JC, Lohse CM, Gastineau DA, Boorjian SA: *The impact of perioperative blood transfusion on survival after nephrectomy for non-metastatic renal cell carcinoma (RCC)*. *BJU international* 2014, 114(3):368-374.

20. Chen YP, Zhao BC, Chen C, Shen LJ, Gao J, Mai ZY, Chen MK, Chen G, Yan F, Liu S et al: *Pretreatment platelet count improves the prognostic performance of the TNM staging system and aids in planning therapeutic regimens for nasopharyngeal carcinoma: a single-institutional study of 2,626 patients*. *Chin J Cancer* 2015, 34(3):137-146.

21. Menczer J: *Preoperative elevated platelet count and thrombocytosis in gynecologic malignancies*. *Arch Gynecol Obstet* 2017, 295(1):9-15.

22. Rachidi S Md P, Kaur MM, Lautenschlaeger TM, Li Z Md P: *Platelet count correlates with stage and predicts survival in melanoma*. *Platelets* 2019, 30(8):1042-1046.

23. Zhu X, Cao Y, Lu P, Kang Y, Lin Z, Hao T, Song Y: *Evaluation of platelet indices as diagnostic biomarkers for colorectal cancer*. *Sci Rep* 2018, 8(1):11814.

24. Życzkowski M, Prokopowicz G, Taborowski P, Nowakowski K, Rajwa P, Stelmach P, Paradysz A: *Basic Parameters of Blood Count, Serum Sodium, and Creatinine as Prognostic Factors for Renal Cell Carcinoma at Five-Year Follow-Up*. *Medical science monitor : international medical journal of experimental and clinical research* 2018, 24:3895-3902.

25. Choi JY, Ko YH, Song PH: *Clinical significance of preoperative thrombocytosis in patients who underwent radical nephrectomy for nonmetastatic renal cell carcinoma*. *Investig Clin Urol* 2016, 57(5):324-329.

26. Hutterer GC, Krieger D, Mrscic E, Pohlmann K, Bezan A, Stojakovic T, Pummer K, Zigeuner R, Pichler M: *Preoperative Leucocytosis, Thrombocytosis and Anemia as Potential Prognostic Factors in Non-metastatic Renal Cell Carcinoma*. *Anticancer research* 2015, 35(6):3463-3469.

27. Hutchinson R, Rew C, Chen G, Woldu S, Krabbe LM, Meissner M, Sheth K, Singla N, Shakir N, Master VA et al: *The Adverse Survival Implications of Bland Thrombus in Renal Cell Carcinoma With Venous Tumor Thrombus*. *Urology* 2018, 115:119-124.

28. Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK: *The Platelet Lifeline to Cancer: Challenges and Opportunities*. *Cancer Cell* 2018, 33(6):965-983.
Tables

Table 1: Clinical and pathologic features of patients with RCC and TT treated surgically.
Characteristics	All cohort (n=152)
Age, y, median. (IQR)	59.6 (54~66.7)
Gender, no. (%)	
Male	118 (77.6)
Female	34 (22.3)
BMI, no. (%)	
≥28	26 (17.2)
<28	126 (82.9)
Symptoms, no. (%)	
Incidental	38 (25)
Symptomatic	114 (75)
ASA, no. (%)	
I-II	134 (88.1)
III-IV	18 (11.9)
Approach, no. (%)	
Open	63 (41.4)
Laparoscopic	89 (58.6)
Surgical time, min, median. (IQR)	320 (228~409.7)
Blood loss, ml, median. (IQR)	600 (200~1950)
Transfusion, no. (%)	75 (49.3)
segmental resection of vena cava, no. (%)	28 (18.4)
Side, no. (%)	
Left	54 (35.5)
Right	98 (64.5)
Size, cm, median. (IQR)	8.3 (6.5~10)
Tumor thrombus level, no. (%)	
0-II	122 (80.3)
III-IV	30 (19.7)
*Adhesion, no. (%)	56 (36.8)
Histology type, no. (%)

Type	No. (%)
Clear cell	129(84.9)
Papillary	16(10.5)
Other type	7(4.6)

Nuclear grade, no. (%)

Grade	No. (%)
I-II	62(40.8)
III-IV	90(59.2)

Lymph node metastasis, no. (%)

Metastasis	No. (%)
	9(5.9)

*tumor thrombus adhesion to the vena cava wall

Table 2: Preoperative blood parameters of patients with RCC and TT treated surgically.

Blood parameters (unit)	Mean (IQR)
Neu (×10⁹/L)	4.6(3.6~5.1)
Lym (×10⁹/L)	1.3(1~1.6)
PLT (×10⁹/L)	248.9(186~297)
Hgb (g/L)	123.3(111~138)
Alb (g/L)	38.8(35.8~43)
SCr (umol/L)	99(80~107)
ALT (u/L)	25.1(11.2~27)
AST(u/L)	23.9(14.7~24.2)
SCa (mmol/L)	2.3(2.2~2.4)
ALP (u/L)	92.4(66~103)
NLR	3.5(2.4~4.5)
PLR	187.9(124~272)
AST/ALT	1.1(0.8~1.5)

Table 3: Univariate and multivariate analysis of prognostic factors of overall survival by Cox regression model.
Variable	Univariate analysis				Multivariate analysis		
		HR	95%CL	P-value	HR	95%CL	P-value
Neu ≥ 5.5×10⁹/L	1.68	0.71~3.95	0.232	1.68	0.71~3.95	0.232	
Lym ≥ 1×10⁹/L	1.23	0.54~2.79	0.622	1.23	0.54~2.79	0.622	
PLT ≥ 300×10⁹/L	1.62	0.69~3.82	0.266	1.62	0.69~3.82	0.266	
NLR ≥ 4	1.68	0.81~3.50	0.168	1.68	0.81~3.50	0.168	
PLR ≥ 250	1.77	0.83~3.75	0.137	1.77	0.83~3.75	0.137	
Hgb ≥ 120g/L	3.12	1.39~6.15	0.005	2.48	1.12~5.48	0.024	
Alb ≥ 35g/L	1.39	0.61~3.15	0.432		1.39	0.61~3.15	0.432
SCr ≥ 110umol/L	0.92	0.39~2.15	0.848		0.92	0.39~2.15	0.848
ALT ≥ 30u/L	2.19	1.01~4.73	0.045	1.07	0.44~2.61	0.870	
AST ≥ 25u/L	2.63	1.26~5.49	0.010	1.95	0.83~4.54	0.123	
AST/ALT ≥ 1.3	1.27	0.59~2.70	0.530		1.27	0.59~2.70	0.530
SCa ≥ 2.4mmol/L	0.91	0.31~2.63	0.864		0.91	0.31~2.63	0.864
ALP ≥ 90u/L	1.68	0.81~3.52	0.166		1.68	0.81~3.52	0.166
Tumor thrombosis level (III-IV)	1.97	0.91~4.26	0.084		1.97	0.91~4.26	0.084
Tumor size ≥ 10cm	1.35	0.61~3.01	0.457		1.35	0.61~3.01	0.457
With adhesion	1.61	0.77~3.34	0.205		1.61	0.77~3.34	0.205
Nuclear grade (III-IV)	2.14	0.94~4.85	0.067		2.14	0.94~4.85	0.067
lymph node metastasis	3.98	1.18~13.48	0.026	3.98	1.12~14.10	0.032	

Table 4: Univariate and multivariate analysis of prognostic factors of progression free survival by Cox regression model.
Variable	Univariate analysis	Multivariate analysis				
	HR	95%CL	P-value	HR	95%CL	P-value
Neu≥5.5×10^9/L	1.37	0.71~2.65	0.345			
Lym≥1×10^9/L	0.88	0.47~1.64	0.696			
PLT≥300×10^9/L	**2.45**	**1.40~4.31**	**0.002**	**2.10**	**1.16~3.78**	**0.014**
NLR≥4	1.09	0.59~1.78	0.916			
PLR≥250	1.57	0.91~2.69	0.100			
Hgb≥120g/L	1.64	0.97~2.76	0.062			
Alb≥35g/L	1.42	0.81~2.52	0.222			
SCr≥110umol/L	0.92	0.51~1.69	0.798			
ALT≥30u/L	1.51	0.85~2.65	0.157			
AST≥25u/L	1.33	0.75~2.36	0.316			
AST/ALT≥1.3	0.86	0.49~1.49	0.597			
SCA≥2.4mmol/L	1.72	0.91~3.29	0.096			
ALP≥90u/L	1.04	0.61~1.78	0.880			
Tumor thrombosis level (III-IV)	1.21	0.67~2.18	0.532			
Tumor size≥10cm	1.11	0.61~2.01	0.743			
With adhesion	1.43	0.84~2.42	0.180			
Nuclear grade (III-IV)	**2.01**	**1.13~3.58**	**0.018**	1.75	0.95~3.23	0.070
lymph node metastasis	**2.87**	**1.02~8.05**	**0.018**	**3.42**	**1.20~9.77**	**0.021**

Table 5 Odds ratios and 95 % confidence interval for the association of anemia and thrombocytosis with clinicopathologic characteristics.
	Anemia (Hgb≤120g/L)	Thrombocytosis (PLT≥300×10⁹/L)				
	OR	95%CL	P-value	OR	95%CL	P-value
Age≥70yr	1.02	0.42~2.46	0.953	1.74	0.68~4.47	0.248
Symptomatic	3.14	1.32~7.45	0.009	7.33	1.66~32.22	0.008
Surgical time≥6h	2.28	1.16~4.48	0.016	0.68	0.30~1.52	0.352
Blood loss≥1000ml	2.32	1.18~4.54	0.014	0.63	0.28~1.41	0.269
Transfusion	2.34	1.20~4.54	0.012	1.26	0.59~2.69	0.542
segmental resection of vena cava	0.49	0.21~1.13	0.095	0.87	0.33~2.27	0.784
Tumor thrombosis level (III-IV)	3.41	1.48~7.84	0.004	1.27	0.51~3.19	0.598
Larger than 10cm	0.76	0.36~1.58	0.468	1.71	0.76~3.81	0.188
With adhesion	1.58	0.81~3.09	0.182	0.73	0.32~1.64	0.450
Nuclear grade (III-IV)	3.13	1.53~6.39	0.002	2.39	1.03~5.54	0.042
lymph node metastasis	1.24	0.32~4.82	0.754	0.95	0.18~4.81	0.953

Figures
Figure 1

Flow chart of patients who met study inclusion/exclusion criteria.
Figure 2

Kaplan-Meier curves for patients with RCC and TT. (A) overall survival; (B) Progression-free survival.
Figure 3

Kaplan-Meier curves of overall survival for patients with RCC and TT categorized by anemia.

log-rank P=0.003

[Graph showing overall survival over time for non-anemia and anemia categories]

log-rank P=0.001

[Graph showing progression-free survival over time for non-thrombocytosis and thrombocytosis categories]
Figure 4

Kaplan-Meier curves of progression-free survival for patients with RCC and TT categorized by thrombocytosis.