TUTORIAL

Unconstrained numerical optimization using real–coded genetic algorithms: a study case using benchmark functions in R from Scratch

Omar Andres Carmona Cortes and Josenildo Costa da Silva

1Departamento de Computação (DComp) – Instituto Federal do Maranhão (IFMA)
*omar@ifma.edu.br; jcsilva@ifma.edu.br

Received: 2019–01–17. Revised: 2019–06–14. Accepted: 2019–08–14.

Abstract

Unconstrained numerical problems are common in solving practical applications that, due to its nature, are usually devised by several design variables, narrowing the kind of technique or algorithm that can deal with them. An interesting way of tackling this kind of issue is to use an evolutionary algorithm named Genetic Algorithm. In this context, this work is a tutorial on using real–coded genetic algorithms for solving unconstrained numerical optimization problems. We present the theory and the implementation in R language. Five benchmarks functions (Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) are used as a study case. Further, four different crossover operators (simple, arithmetical, non–uniform arithmetical, and Linear), two selection mechanisms (roulette wheel and tournament), and two mutation operators (uniform and non–uniform) are shown. Results indicate that non–uniform mutation and tournament selection tend to present better outcomes.

Keywords: Benchmark Functions; Genetic Algorithms; Numerical Optimization; Real–Coded; Unconstrained.

Resumo

Problemas de otimização sem restrições são comuns em aplicações práticas e sendo estes formados normalmente por várias variáveis, limita–se o tipo de técnica ou algoritmo que pode ser utilizado para sua solução. Uma forma interessante de lidar com esse tipo de problema é através do uso de um algoritmo evolutivo chamado Algoritmo Genético. Nesse contexto, este trabalho é um tutorial sobre algoritmos genéticos em código real para solucionar problemas de otimização sem restrições, apresentando tanto a teoria quanto sua implementação em linguagem R. Cinco funções de benchmark ((Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) são utilizadas como estudo de caso. Além disso, são também usados quatro diferentes operadores de cruzamento (simples, aritmético, não–uniforme aritmético e linear), dois mecanismos de seleção (roleta e torneio) e dois operadores de mutação (uniforme e não–uniforme). Os resultados indicam que a mutação não–uniforme e o operador torneio de mutação apresentam os melhores resultados.

Palavras–Chave: Funções de Benchmark; Algoritmos Genéticos; Otimização Numérica; Código Real; Sem Restrições.

1 Introduction

Numerical Optimization problems exist widely in different areas of science research and engineering practice (Zang et al., 2018), i.e., it is an essential tool in decision science and the analysis of physical systems (Nocedal and Wright, 2006). In other words, it is a tool for solving practical problems devised by many variables and no constraints, also known as unconstrained problems. Its primary purpose is to
discover the best values for design variables and/or objective functions that are not known precisely (Muc and Sanetra, 2017). In general, unconstrained problems can be classified into two categories: test functions and real-world problems. Test functions are artificial problems and can be used to evaluate the behavior of an algorithm in sometimes diverse and challenging situations (Jamil and Yang, 2013). On the other hand, real-world problems originate from different fields such as physics, chemistry, engineering, mathematics, etc. In this work, we will focus on five test functions, also known as benchmark functions. A set of real-world problems can be seen in Averick et al. (1992).

Those functions have been used to test different kind of algorithms as we can see in Borges et al. (2018), Mauecc and Brest (2018), Karaboğa and Kaya (2018), Cavalca and Fernandes (2018), etc.

There are several optimization techniques for solving unconstrained numerical problems. The traditional ones aim to discover the optimum solutions of continuous and differentiable functions, i.e., they use analytical methods and calculus to locate the best solutions. In fact, the classical methods are fast; however, they are limited because they can only deal with unconstrained function and a small number of variables. Moreover, practical applications usually deal with non-differentiable functions. Thus, evolutionary algorithms (Eiben and Smith, 2007) appear as a viable solution for optimizing constrained and non-differentiable functions.

In this context, the idea of this work is to present a tutorial on Genetic Algorithms in Numerical Optimization using benchmark function with a study case in R language (RStudio Team, 2018). Then a question can appear: why not using an R package? The main reason is that when we use a package, such as genalg (Willighagen and Ballings, 2015), we are limited to those features offered by the package. Particularly in the genalg package, the user has no control on genetic operators whatsoever. The only control provided by the referred package is mostly concerning parameters, i.e., the user cannot choose different crossover or mutation operators. Regarding the GA package (Scrucca, 2017), which is a more generic and flexible package includes other evolutionary algorithms such as Differential Evolution, present an advantage of using different genetic operators and parallel algorithms. However, having the code made from scratch, the user can quickly implement different operators or even create hybrid algorithms that are fitter to the problem being solved.

Thus, this tutorial is divided as follows: Section 2 presents some basics on numerical optimization and benchmark functions; Section 3 shows the theory of real-coded genetic algorithms and their operators; Section 4 explains important concepts in R that are essential to understand the code; Section 5 implements all GA concepts in R; Section 6 illustrates how the GA works in five benchmark functions; finally, Section 7 draws the conclusions of this tutorial.

2 Numerical Optimization and Benchmarks

The unconstrained optimization aims to minimize or maximize an objective function that depends on real variables, with no restrictions at all on the values of these variables (Nocedal and Wright, 2006).

Mathematically, it is min or maxf(x), where x ∈ R^n and n ≥ 1. Thus, a solution x∗ is a global solution of a minimization problem if f(x∗) < f(x) ∀ x; analogously, it is a solution of a maximization problem if f(x∗) > f(x) ∀ x.

Regardless of the kind of optimization, if we want to use a GA for this kind of problem, it is mandatory n > 1. Actually, n regards to the dimensionality of the search space, which is an important factor in the problem complexity, since the higher the dimension, the higher the probability of getting trapped in a local optima (Cortes et al., 2012). A study of the dimensionality problem and its features was carried out by Friedman (1994).

Two other properties are essential in numerical optimization: separability and multi-modality. The separability concerns the possibility of dividing f(x) into two or more functions. Consequently, non-separable functions are harder to optimize than separable ones. Multi-modality regards to the existence of many local optima. In this context, non-separable and multi-modal functions are harder to solve than the other ones.

We will test our code using four unconstrained continuous numerical benchmarks functions: Rosenbrock (1960), Griewank (1981), Ackley (1987), Schwefel (1981), and Rahnamayan et al. (2007) as presented in Table 1.

Table 2 presents the benchmarks properties (Separability, Modality, and Differentiability), the domain, and the global optima. The domain is a constraint for each gene, i.e., the lower and upper bounds. The optimal solution is the minimum value that the benchmark can reach. The separability represents if the function is separable, i.e., if the function can be split into two or more functions. In other words, a function of p variables is called separable, if it can be written as a sum of p functions of just one variable (Boyer et al., 2005). Finally, the modality regards to the existence of many local optima. In this context, non-separable and multi-modal functions are harder to solve than the other ones.

3 Real-Coded Genetic Algorithms

Fig. 1 shows the pseudo code for a GA. Firstly, the GA creates a random population, then evaluates it to select individuals undergoing genetic operators. Usually, methods such as the roulette wheel or tournament, for example, select the new population. Afterward, the crossover exchanges information (genes) between two parents based on the probability of mutation (p_c), creating one or more offspring. Then, the mutation operator can change zero or more genes on
each chromosome. Finally, if elitism is TRUE, the algorithm guarantees that the best individual remains in the population. Following subsections detail how to represent individuals, also called chromosomes, and how these operators work.

Name	Function		
Rosenbrock	\(f_1(x) = \sum_{i=1}^{n} [100(x_i^2 - x_i)^2 + (x_i - 1)^2] \)		
Griewank	\(f_2(x) = \frac{1}{4000} \sum_{i=1}^{n} x_i^2 - \prod_{i=1}^{n} \cos(x_i) \)		
Ackley	\(f_3(x) = -20 \exp(-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2} - \exp(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i))) + 20 + \exp(1) \)		
Schwefel	\(f_4(x) = \sum_{i=1}^{n} -x_i \sin	x_i	\)
Alpine	\(f_5(x) = \sum_{i=1}^{n}	x_i	\sin(x_i) + 0.1x_i \)

3.2 Crossover

The main purpose of the crossover operator is to exchange information (genes) between parents, creating one or more offspring. In real-coded representation, there are several ways of doing that. A thorough list of operators can be seen in Herrera et al. (1998). In this tutorial, we describe four of them: simple, arithmetical, non-uniform arithmetical, and Linear. In the simple crossover, a cut point is randomly chosen, then the offspring are formed, making a combination of parts. Considering that \(p_1 = c_1, c_1, \ldots, c_i \) and \(p_2 = c_1, c_2, \ldots, c_j \) are two parents, and \(j \) is the cutting point, the first offspring is \(o_1 = c_1, c_1, c_1, \ldots, c_i, c_2 \), and the second one is \(o_2 = c_1, c_2, \ldots, c_j, c_1, \ldots, c_i \).

Eqs. (1) and (2) illustrates how to perform the arithmetical crossover for two descendants, in which \(r \) is a random number in the range \([0,1]\).

\[
o_1^r = r \times c_1^r + (1 - r)c_2^r \tag{1}
\]

\[
o_2^r = (1 - r) \times c_1^r + (r)c_2^r \tag{2}
\]

The difference between arithmetical and non-uniform arithmetical crossover relies on the fact that the variable \(r \) is not random anymore but computed by dividing the current generation \(t \) by the maximum number of generations (\(T_{max} \)) as shown in Eq. (3).

\[
r = \frac{t}{T_{max}} \tag{3}
\]

Finally, the Linear Crossover creates three offspring as presented in Eqs. (4) to (6). The first one is similar to the arithmetical crossover with \(r = 0.5 \). The other ones explore the outer limits of \(c_1 \) and \(c_2 \), respectively.

\[
o_1^r = 0.5 \times c_1^r + 0.5 \times c_2^r \tag{4}
\]
which(2015) and Crawley (2012) books.

The mutation operator changes genes from a chromosome. Concerning real–coded individuals, the uniform mutation, also known as a random mutation, randomly replaces a gene inside its domain based on a parameter known as probability of mutation \(p_m \).

Another well–known mutation in the literature is the non–uniform mutation operator, in which the selected genes are mutated according to Eqs. (7) and (8), in which \(s_i \) is the gene being mutated, \(t \) represents the current generation, LB and UB are the lower and the upper bound of the variable \(i \), respectively, \(r \) is a random number between 0 and 1, \(T \) is the maximal number of generations, and \(b \) is the degree of dependency (usually \(b = 5 \)).

\[
\begin{align*}
 s'_i &= \begin{cases}
 s_i + \Delta(t, UB_i - s_i), & \text{if } \theta = 0 \\
 s_i - \Delta(t, s_i - LB_i), & \text{if } \theta = 1
 \end{cases} \\
 \Delta(t, y) &= y \times (1 - r^{(1-\frac{t}{T})^b})
\end{align*}
\]

(7)

The non–uniform mutation is one of the operators responsible for the fine–tuning capabilities of the system (Michalewicz, 1999).

3.3 Mutation

The other concept we have to know how to deal with is the logical indexing. The concept is quite similar to the indirect indexing; however, in this case, all indexes are logical values. Let us suppose that we have a matrix \(Mat \) of integer numbers randomly created as presented in Fig. 5. Then we want to replace all values less than 10 with the lower bound 10. The instruction \(idx < - Mat < 10 \) returns a matrix in which all positions obeys the condition are true. Afterward, all values are replaced. This operation makes things easier when the domain is the same for all genes, which is common in numerical optimization. On the other hand, if the domain is different for each gene, then we have to use the instruction \(\text{which}(idx, \text{arr.ind} = \text{TRUE}) \) to locate the positions that fulfill the condition.

The third important concept we have to tackle is called group operations or group functions. This kind of instruction, as the name suggests, executes in a group of data. Moreover, we preferably execute group operations instead of for loops because the first one is usually faster than loops. The first set of group functions is: \(\text{sum}() \), \(\text{mean}() \), and \(\text{sd}() \). These functions receive a vector or a matrix as a parameter and return the sum, the mean, and the standard deviation of the entrance data, respectively. If the parameter is a matrix and ones wants to perform row or column based operations, we have to use, for example, the functions \(\text{rowSum}() \) or \(\text{colSum}() \).

On the other hand, if we want to perform row or column–based operations using a pre–existed function, we have to use the function \(\text{apply}() \), which the syntax is \(\text{apply}(\text{obj}, \text{margin}, \text{function}, \text{parameters}) \), where \(\text{obj} \) is a data structure, usually, a matrix, \(\text{margin} \) sets the kind of operation \((1 - \text{row–based}, 2 - \text{column based}) \), \(\text{function} \) is an implemented function, and \(\text{parameters} \) are the parameters required by the implemented function. An indispensable extension of this function is the \(\text{lapply}() \) function in which \(\text{obj} \) has to be a list. Next, we present some general remarks about R that are important to the correct implementation of GAs.

4 Important Concepts in R

The purpose of this chapter is not to provide a thorough vision of R programming but gives concepts that are essential to understanding the code in the next sections. Details of how to program in R can be found in Lander (2015) and Crawley (2012) books.

The first essential concept is the notion of indirect indexing. Programming languages, such as C and Java, access elements in a matrix using a specific index devised by row and column. If the programmer wants to access a set of elements, it is necessary to use a for loop and work on them element–by–element. In R, the indexes of a matrix can also be a matrix. For example, suppose that we have to replace some elements obeys a condition by a random number in a matrix \(Mat \), Fig. 3 illustrates how to perform this task. The \(\text{which()} \) function returns a matrix containing two columns (row and column) of the elements that satisfy the condition. Then, a vector operation (line 2) replaces the corresponding elements. We have to note that the number of elements created by the \(\text{runif()} \) function has to be the same number of rows in \(idx \), therefore, we have to use the \(\text{nrow()} \) function. Fig. 4 illustrates how the operation works.

Remarks

- Vectors and matrices start with 1 instead of 0;
- Operations between matrices are element–wise. If a traditional multiplication matrix is required, we have to use the symbol \(\%\%\% \);
- Avoid for loops;
within the domain \[lb \] corresponding to lines 1 and 2 from Fig. 1.

/first population and the /fitness for each chromosome, initialization function returns a list containing the objective function as a parameter. Finally, the population using the apply() function that initializes the population, in which each gene is crossover, and mutation. Thus, Fig. 6 shows the code that initializes the population, in which each gene is within the domain \([lb, ub]\). Then, we evaluate the population using the apply() function that receives the objective function as a parameter. Finally, the initialization function returns a list containing the first population and the fitness for each chromosome, corresponding to lines 1 and 2 from Fig. 1.

The next step is the selection method that chooses which chromosomes will try to participate in the crossover stage. Two selection mechanisms, roulette wheel and tournament, are presented in Figs. 7 and 8, respectively.

In the roulette function, the variables new.pop and new.fit will contain the new population and its fitness, respectively. Then q will contain the cumulative probability matrix that is the wheel. Afterward, the vector r will contain one random number in the domain \([0,1]\) for each chromosome, and the for loop will check which one will form the temporary population undergoes the crossover process.

In the selection by tournament method, the variable t.size is responsible for setting the tournament size, i.e.,
how many individuals will participate in each round. Then the winner of each round is chosen to undergo mutation. It is a simple but effective form of selection.

5.3 Crossover

The next step in the GA algorithm is to apply the crossover operation on the new population. Fig. 9 shows the code for this task. The main parameters of this function are the selected population and pc (probability of crossover). Why is pc so important? Because not every single chromosome will undergo crossover, only those ones which a random number r is less than pc, i.e., r < pc. Lines 2 to 5 perform this selection. Then the for loop produces two offspring using the cross point as a divisor, returning only the population because the evaluation is necessary only after mutation.

```
1 simple. cross <- function(lb, ub, pop.size, dimension, pop, pc)
2 new.pop <- matrix(rep(NULL, pop.size*dimension), nrow = pop.size)
3 r <- runif(pop.size)
4 idx <- (r < pc)
5 pop <- pop[idx,]
6 tmp.pop.size <- nrow(pop)
7 for(i in seq(1, pop.size, by = 2))
8 indivs <- sample(1:tmp.pop.size, 2, replace = TRUE)
9 cross.point <- sample(2:dimension - 1, 1)
10 offspring1 <- c(pop[indivs[1], cross.point], pop[indivs[2], cross.point + 1:dimension])
11 offspring2 <- c(pop[indivs[2], cross.point], pop[indivs[1], cross.point + 1:dimension])
12 new.pop[i,] <- offspring1
13 new.pop[i + 1,] <- offspring2
14 return(pop = new.pop)
15 }  
```

Figure 9: Simple crossover

The arithmetical crossover, also known as uniform arithmetical crossover, is an interesting crossover method because it explores the search space between two genes and does not create invalid individuals, i.e., all genes are within their domain. Fig. 10 presents the implementation in which we can see that l controls how further from a gene the crossover goes, i.e., closer to the gene of the first or second parent.

The arithmetical crossover, also known as a uniform arithmetical crossover, is an interesting crossover method because it explores the search space between two genes and does not create invalid individuals, i.e., all genes are within their domain. Fig. 10 presents the implementation in which we can see that l controls how further from a gene the crossover goes, i.e., closer to the gene of the first or second parent.

Finally, linear crossover generates three individuals as previously explained; however, only the best two will form the next population. Also, because of the Eqs. (5) and (6), we have to control the boundaries of the new individuals. Thus, the instruction nrow(idx) > 0 means that a gene is out of its limits. After correcting the chromosome boundaries, the concern is how to select the best two chromosomes elegantly. The answer is to sort out together the new fitness and the respective chromosomes, choosing then the two smaller ones.

```
1 arith. crossover <- function(lb, ub, pop.size, dimension, pop, pc)
2 new.pop <- matrix(rep(NULL, pop.size*dimension), nrow = pop.size)
3 r <- runif(pop.size)
4 idx <- (r < pc)
5 pop <- pop[idx,]
6 tmp.pop.size <- nrow(pop)
7 for(i in seq(1, pop.size, by = 2))
8 l <- runif(1)
9 indivs <- sample(1:tmp.pop.size, 2, replace = FALSE)
10 new.pop[i,] <- (1 - l)*pop[indivs[1],] + l*pop[indivs[2],]
11 new.pop[i + 1,] <- (1 - l)*pop[indivs[1],] + l*pop[indivs[2],]
12 return(pop = new.pop)
13 }  
```

Figure 11: Non-Uniform Arithmetical crossover

```
1 linear. crossover <- function(lb, ub, pop.size, dimension, pop, pc, func)
2 new.indiv <- matrix(rep(NULL, pop.size*dimension), nrow = pop.size)
3 new.fit <- rep(NA, 3)
4 new.pop <- matrix(rep(NULL, pop.size*dimension), nrow = pop.size)
5 r <- runif(pop.size)
6 idx <- (r < pc)
7 pop <- pop[idx,]
8 tmp.pop.size <- nrow(pop)
9 for(i in seq(1, pop.size, by = 2))
10 indivs <- sample(1:tmp.pop.size, 2, replace = FALSE)
11 new.indiv[i,] <- (lb[indivs[1],] - ub[indivs[2],]) * 0.5 + pop[indivs[1],]
12 new.indiv[i + 1,] <- (lb[indivs[1],] - ub[indivs[2],]) * 0.5 + pop[indivs[2],]
13 new.indiv[i + 2,] <- (lb[indivs[1],] - ub[indivs[2],]) * 0.5 + pop[indivs[1],]
14 return(pop = new.pop)
15 }  
```

Figure 12: Linear crossover
5.4 Mutation

Fig. 13 shows the listing for the mutation operator that receives two essential parameters: the new population and the probability of mutation pm. Then, line 4 identifies which genes, row, and column, will undergo mutation in the whole population. Finally, line 7 evaluates the new population.

Now, it is time to get all functions together as presented in Fig. 15. As we can see, the code is pretty similar to the algorithm presented previously in Fig. 1. To test other operators, we only need to use the respective functions replacing the symbol “#”. Moreover, if someone wants to test everything at once, it is trivial to add control structures to execute all operators.

5.5 Main Function and Elitism

Regarding the elitism, having the final population, we have to identify whether the elitism is set or not. If so, we have to check in which population the best individual is. In case the best individual is in the new population, the current one replaces the old one. Otherwise, we swap the worst individual from the current population by the best one from the previous one; thus, we guarantee that the best individual will always be in the population.

6 Experiments

All experiments have been conducted in a Windows 10, 64 bits, 16 GB of RAM, 500 GB of SSD, R version 1.0.4. 1.0.4
24 with uniform mutation and roulette wheel, uniform mutation which are stored in a vector of lists. Changing the code
Algorithms to solve unconstrained numerical problems in R from scratch. As we could see, the code is concise and straightforward, allowing anyone to implement new GA variations or even hybrid algorithms. We explore the ability to perform vectorial operations and group functions in R. Either, we implemented the GA code to be easily extended to functions in which all genes have different domains in the same individual. Implementing the code using a single scalar to control the boundaries of each gene could simplify parts of the code by using logical indexing; however, extend it for multiples domains in the same chromosome would be much harder. We expect that this tutorial is an incentive to those who want to explore the numerical optimization capability of GAs and/or to those who crave to enter in the R language world. In this context, we also incentive all interested people to implement different operators or apply the presented code to different kind of numerical problems, especially those involving the
3.3.3 (Project, 2018), and RStudio 1.0.136 (RStudio Team, 2018). The GA configuration is: \(p_c = 0.6 \), \(p_m = 0.01 \), pop_size = 50, and dimension = 30. In the case of tournament selection, we use four individuals in the competition. Further, we set a seed for random numbers; thus, the result of the experiment will be the same in all computers in terms of the quality of solutions. Furthermore, all experiments have been performed using 30 trials; then, we are able to present the best result, the mean, and the standard deviation. Fig. 17 presents the main script used for testing the code. Firstly, we load all functions presented previously utilizing the instruction source(). The file 'crossover.R', for instance, contains all crossover operators. The other R files follow the same principle. Either, we automatized the test only for the benchmark functions, which are stored in a vector of lists. Changing the code for executing all operators or adding new operators will be a trivial task. Tables 3 to 6 show the results for 1000 iterations with uniform mutation and roulette wheel, uniform mutation and tournament, non-uniform mutation and roulette wheel, and non-uniform mutation and tournament, respectively. As we can see, the best combinations for those parameters is the non-uniform mutation and tournament selection, possibly because of the fine-tuning capability of the non-uniform mutation. On the other hand, Schwefel function presented the best combination using uniform mutation and tournament. Other combinations using arithmetical crossover presented good results in Griewank, Ackley, and Alpine functions; however, they are not the best ones.

7 Conclusions
This tutorial presented how to implement Genetic Algorithms to solve unconstrained numerical optimization problems in R from scratch. As we could see, the code is concise and straightforward, allowing anyone to implement new GA variations or even hybrid algorithms. We explore the ability to perform vectorial operations and group functions in R. Either, we implemented the GA code to be easily extended to functions in which all genes have different domains in the same individual. Implementing the code using a single scalar to control the boundaries of each gene could simplify parts of the code by using logical indexing; however, extend it for multiples domains in the same chromosome would be much harder.

We expect that this tutorial is an incentive to those who want to explore the numerical optimization capability of GAs and/or to those who crave to enter in the R language world. In this context, we also incentive all interested people to implement different operators or apply the presented code to different kind of numerical problems, especially those involving the optimization of real-world problems.

Acknowledgment
All codes are available on GitLab in the address https://gitlab.com/omar.carmona/
real-coded-genetic-algorithm.

References
Ackley, D. H. (1987). A connectionist machine for genetic
hillclimbing, PhD thesis, Kluwer Academic Publishers, Boston – MA – USA.

Figure 16: Benchmark functions

```
1 Rosenbrock <- function(x){
2 x1 <- x[1]:length(x)-1
3 x2 <- x[2:length(x)]
4 return(sum(100 * (x1 - x^2)^2 + (x1-1)^2))
5 }
6
7 Griewank <- function(x)
8 i <- sqrt(1:length(x))
9 return(1/(4000 * sum(x^2/2) - prod(cos(x)/i))
10 }
11
12 Ackley <- function(x)
13 n <- length(x)
14 return(-20 * exp(-0.2 * sqrt(sum(x^2/n)))
15 - exp(1/n * sum(cos(2*pi*x/i))) + 20 - exp(1))
16 }
17
18 Schwefel <- function(x)
19 return(sum(x^2 - 10*cos(2*pi*x) + 10))
20 }
21
22 Alpine <- function(x)
23 return(sum(abs(x*sin(x) + 0.1*pi))
24 }
```

Figure 17: Testing
Table 3: Results of the optimization of the five benchmarks functions using the following parameters: $it = 1000$, uniform mutation, roulette wheel

	Simple	Arithmetical	NU-Arithmetical	Linear
Rosenbrock				
Best	2451.071	28.8555	1799.662	1981.851
Mean	22845.126	28.9317	62775.681	20196.216
Std.Dev	24138.263	0.0277	108947.817	19196.078
Griewank				
Best	17.7753	0.0000	1.3368	15.7905
Mean	51.5129	0.0000	14.2834	57.9918
Std.Dev	21.3925	0.0000	12.7659	36.948
Ackley				
Best	11.3481	0.0000	6.1106	10.5472
Mean	13.9118	0.0000	12.1561	13.2214
Std.Dev	1.6119	0.0000	3.9350	1.3538
Schwefel				
Best	-10466.583	-6595.6807	-10990.016	-10514.9026
Mean	-9300.963	-5299.0428	-6991.304	-9332.6928
Std.Dev	21.3925	0.0000	12.7659	36.948
Alpine				
Best	6.0369	0.0000	14.629	5.9545
Mean	12.4687	0.0000	21.7172	11.0664
Std.Dev	4.1682	0.0000	4.3794	3.4686

Table 4: Results of the optimization of the five benchmarks functions using the following parameters: $it = 1000$, uniform mutation, tournament

	Simple	Arithmetical	NU-Arithmetical	Linear
Rosenbrock				
Best	29.9325	28.7685	28.8501	14.3187
Mean	114.5754	28.8765	29.6603	71.867
Std.Dev	53.6304	0.0369	2.9696	47.0512
Griewank				
Best	0.0196	0.0000	0.0000	0.0008
Mean	0.0613	0.0000	0.0000	0.0008
Std.Dev	0.0227	0.0000	0.0023	0.0052
Ackley				
Best	0.6155	0.0000	0.0000	0.0521
Mean	1.2127	0.0000	0.0243	0.2132
Std.Dev	0.3100	0.0000	0.1115	0.1280
Schwefel				
Best	-12501.7277	-11405.9518	-12517.9301	-12493.683
Mean	-12549.7999	-10630.1371	-12375.2697	-11776.073
Std.Dev	7.0971	0.0000	0.0115	0.1280
Alpine				
Best	0.0652	0.0000	0.0000	0.0000
Mean	0.1221	0.0000	0.5505	0.0000
Std.Dev	0.0354	0.0000	0.3037	0.0001

Table 5: Results of the optimization of the five benchmarks functions using the following parameters: $it = 1000$, non-uniform mutation, roulette wheel

	Simple	Arithmetical	NU-Arithmetical	Linear
Rosenbrock				
Best	7328.555	28.7887	189.7441	23308.46
Mean	99085.142	28.8885	522987.7591	97250.44
Std.Dev	80313.989	0.0409	647674.0747	64585.29
Griewank				
Best	39.1963	0.0000	0.3928	42.0673
Mean	155.8243	0.0000	15.9252	128.9777
Std.Dev	54.6358	0.0000	35.3703	58.9784
Ackley				
Best	16.1601	0.0000	15.8141	16.3923
Mean	16.1601	0.0000	15.8141	16.3923
Std.Dev	1.9112	0.0000	5.7599	1.6873
Schwefel				
Best	-8711.5960	-4844.5211	-9238.946	-8424.8316
Mean	-6873.0373	-3817.1849	-5272.697	-6758.1992
Std.Dev	737.8165	579.3688	1393.787	951.6584
Alpine				
Best	10.0562	0.0000	19.4486	11.5562
Mean	20.6185	0.0000	30.9157	21.3603
Std.Dev	6.4831	0.0002	8.6855	5.0837

Averick, B. M., Carter, R. G., Moré, J. J. and Xue, G. L. (1992). The minpack–2 test problem collection. Available at http://ftp.mcs.anl.gov/pub/tech_reports/reports/P153.pdf.

Borges, H. P., Cortes, O. A. C. and Vieira, D. (2018). An adaptive metaheuristic for unconstrained multimodal numerical optimization, in P. Korošec, N. Melab and E.-G. Talbi (eds), Bioinspired Optimization Methods and Their Applications, Springer International Publishing, Cham, pp. 26–37. https://doi.org/10.1007/978-3-319-91641-5_3.
Table 6: Results of the optimization of the five benchmarks functions using the following parameters: it = 1000, non-uniform mutation, tournament

	Simple	Arithmetical	NU-Arithmetical	Linear	
Rosenbrock	Best	17.2019	28.6645	27.7665	0.0559
	Mean	95.5899	28.0691	34.0667	39.5028
	Std.Dev	63.1179	0.0114	20.3872	45.8229
Griewank	Best	0.0000	0.0000	0.0000	0.0000
	Mean	0.0000	0.0000	0.0000	0.0000
	Std.Dev	0.0000	0.0000	0.0000	0.0000
Ackley	Best	0.0002	0.0000	0.0000	0.0000
	Mean	0.0001	0.0000	0.0000	0.0000
	Std.Dev	0.0001	0.0000	0.0000	0.0000
Schwefel	Best	-12451.0483	-10073.945	-11621.6337	-10910.802
	Mean	-11914.1278	-9503.5918	-10910.802	-9576.9437
	Std.Dev	272.4585	669.6221	341.0773	669.6221
Alpine	Best	0.0000	0.0000	0.0000	0.0000
	Mean	0.0244	0.0000	0.4728	0.0000
	Std.Dev	0.0012	0.0000	0.4105	0.0000

Boyer, D. O., Martínez, C. H. and Pedrajas, N. G. (2005). Cixl2: A crossover operator for evolutionary algorithms based on population features, Journal of Artificial Intelligence Research 24: 1–48. https://doi.org/10.1613/jair.1660.

Cavalcá, D. L. and Fernandes, R. A. S. (2018). Gradient-based mechanism for pso algorithm: A comparative study on numerical benchmarks, 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. https://doi.org/10.1109/CEC.2018.8477798.

Cortes, O. A. C., Rau-Chaplin, A. and Lopes, R. F. (2012). A pso–based algorithm with local search for multimodal optimization without constraints, XXXVIII Conferencia Latinoamericana En Informatica (CLEI), pp. 1–7.

Crawley, M. J. (ed.) (2012). The R Book, 2 edn, Wiley.

Eiben, A. E. and Smith, J. E. (eds) (2007). Introduction to Evolutionary Computing, 2nd printing edn, Springer, New York.

Friedman, J. H. (1994). An overview of predictive learning and function approximation, in V. Cherkassky, J. H. Friedman and H. Wechsler (eds), From Statistics to Neural Networks, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–61. https://doi.org/10.1007/978-3-642-79119-2_1.

Griewank, A. O. (1981). Generalized descent for global optimization, Journal of Optimization Theory and Applications 34(1): 11–39. https://doi.org/10.1007/BF00933356.

Herrera, F., Lozano, M. and Verdegay, J. L. (1998). Tackling real–coded genetic algorithms: Operators and tools for behavioural analysis, Artificial Intelligence Review 12(4): 265–319. https://doi.org/10.1023/A:1006604901164.

Jamil, M. and Yang, X.-S. (2013). A literature survey of benchmark functions for global optimisation problems, International Journal of Mathematical Modelling and Numerical Optimisation 4(2): 1–47. https://doi.org/10.1504/IJMMNO.2013.055204.

Karaboğa, D. and Kaya, E. (2018). Evaluation of performance of adaptive and hybrid abc (aabc) algorithm in solution of numerical optimization problems, 2018 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1–5. https://doi.org/10.1109/ASYU.2018.8554009.

Lander, J. P. (ed.) (2015). R for Everyone: Advanced Analytics and Graphics, Addison–Wesley Professional.

Maucec, M. S. and Brest, J. (2018). A review of the recent use of differential evolution for large-scale global optimization: An analysis of selected algorithms on the cec 2013 Isgo benchmark suite, Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2018.08.005.

Michalewicz, Z. (ed.) (1999). Genetic Algorithms + Data Structures = Evolution Programs, 3 edn, Springer, New York.

Muc, A. and Sanetra, I. (2017). The effectiveness of optimization algorithms in shape and topology discrete optimisation of 2-d composite structures, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), pp. 1–5. https://doi.org/10.1109/ICMSAO.2017.7994871.

Nocedal, J. and Wright, S. (eds) (2006). Numerical Optimization, Springer, New York – USA.

Project, R. (2018). The R project for statistical computing. Available at http://www.r-project.org/.

Rahnamayan, S., Tizhoosh, H. R. and Salama, N. M. M. (2007). A novel population initialization method for accelerating evolutionary algorithms, Computers and Mathematics with Applications 53(10): 1605–1614. https://doi.org/10.1016/j.camwa.2006.07.013.

Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least value of a function, Computer Journal 3(3): 175–184. https://doi.org/10.1093/comjnl/3.3.175.
RStudio Team (2018). Rstudio: Integrated development environment for R. Available at http://www.rstudio.com/.

Schwefel, H.-P. (ed.) (1981). Numerical optimization of computer models, Wiley.

Scrucca, L. (2017). On some extensions to ga package: hybrid optimisation, parallelisation and islands evolution., The R Journal 1(9): 187–206. Available at https://journal.r-project.org/archive/2017/RJ-2017-008.

Willighagen, E. and Ballings, M. (2015). genalg: R Based Genetic Algorithm. R package version 0.2.0. Available at https://CRAN.R-project.org/package=genalg.

Zang, W., Ren, L., Zhang, W. and Liu, X. (2018). A cloud model based dna genetic algorithm for numerical optimization problems, Future Generation Computer Systems 81: 465–477. https://doi.org/10.1016/j.future.2017.07.036.