I. BACKGROUND AND MOTIVATION

The qubit “pi-over-eight” gate, \(U_{\pi/8} \),

\[
U_{\pi/8} = \begin{pmatrix}
e^{-i\pi/8} & 0 \\
0 & e^{i\pi/8}
\end{pmatrix}
\]

plays a special role in a number of quantum informational tasks. The Gottesman-Knill theorem \[1\] tells us that a circuit using only Clifford gates and Pauli measurements (i.e., a stabilizer circuit) is insufficient for universal quantum computation (UQC). Whilst technically, adding the ability to perform any single-qubit non-Clifford gate is sufficient for obtaining UQC, one typically sees that the \(U_{\pi/8} \) is chosen as the most natural and easiest with which to work \[2\]. In measurement-based scenarios, supplementing Pauli measurement directions with an additional rotated (by \(U_{\pi/8} \)) measurement basis can also enable the performance of new tasks. For example, performing Pauli measurements on the Bell state \(|(00) + |11\rangle)/\sqrt{2}\), or any two-qubit stabilizer state, does not exhibit any better-than-classical performance in a nonlocal CHSH game \[3\] \[4\], whereas the introduction of the new rotated basis enables the optimum quantum advantage. Measurements in the aforementioned rotated basis appear to arise naturally in other quantum-informational tasks too e.g., universal blind quantum computation \[5\], where Pauli measurements and operators would be insufficient.

Arguably, much of the utility of this gate arises from its close relationship with the Clifford group, whilst still not being a member of the group. In fact, \(U_{\pi/8} \) is the simplest meaningful example of a gate from the third level of the Clifford hierarchy (defined later), the first two levels of which correspond to Pauli gates and Clifford gates. Operations from the Clifford hierarchy have properties that make them suitable for teleportation-based UQC \[6\], transversal implementation (see below), learning an unknown gate \[7\], or secure assisted quantum computing. Very recent, independent work by Campbell, Anwar and Browne confirms the correctness of this intuition, and we build upon their work to characterize noise regimes for which noisy implementations of these gates can (or provably cannot) supplement Clifford gates to enable universal quantum computation.
unitary $U \in \text{SU}(2)$ that is farthest outside the convex hull of Clifford operations. The associated single-qubit state $|\psi_{U_{(p/2)}}\rangle$, mentioned previously, is also remarkable in its convex-geometrical relationship with Pauli eigenvectors. Furthermore, these geometrical relationships have ramifications for the amount of noise that can be tolerated by imperfect implementation of $U_{x/8}$ or imperfect preparation of $|\psi_{U_{x/8}}\rangle$, a scenario that arises naturally in any fault-tolerant UQC proposal that uses magic state distillation.

The state $|\psi_{U_{x/8}}\rangle \propto |0\rangle + e^{i\frac{\pi}{p}}|1\rangle$ is already known in quantum information theory as $|H\rangle$ — a qubit magic state as defined in [13,15]. In addition, the most non-stabilizer qubit state $|T\rangle$ [14], in a convex-geometrical sense, is also a magic state. Moreover, both $|H\rangle$ and $|T\rangle$ are eigenvectors of Clifford gates. The importance of geometrically significant states and gates to qubit-based fault-tolerant UQC provided the motivation in [16] to find the most robust qudit states (for all prime dimension) and qudit gates (for $p \in \{2,3,5,7\}$). The maximally robust states (analogous to $|T\rangle$) were also found to be eigenvectors of Clifford gates, whereas the maximally robust gates had a strikingly simple form, which prompted the question whether these gates were related to generalized versions of the $U_{x/8}$ gate. Here, starting from the condition that these gates must be diagonal elements of C_3, we derive generalized versions of $U_{x/8}$, which we call U_c, and show that these are identical, up to an unimportant factor of a Clifford gate, to the maximally robust gates found in [16]. We also show that the associated states $|\psi_{U_c}\rangle = U_c|+\rangle$ are eigenvectors of Clifford gates, and that they obey a similar relationship with respect to stabilizer states as $|H\rangle$ does.

As we completed this work we became aware of very recent results by Campbell, Anwar and Browne [17]. There, the authors prove the existence of magic state distillation protocols (MSD) for all (prime) qudit systems, wherein the non-stabilizer states that are distilled are states that we have called $|\psi_{U_c}\rangle$ here. Moreover, they show that U_c have a transversal implementation in a family of qudit Reed-Muller codes and they explain why this property is useful in MSD. It is hoped that the results presented here might aid in the analysis of such qudit MSD protocols. More generally, it seems likely that the gates U_c will find application in other areas of quantum information theory, particularly in qudit generalizations of qubit-based tasks for which $U_{x/8}$ is known to be helpful.

We begin Sec. [II] by deriving explicit expressions for all qudit U_c, and then proceed to analyze the resulting group structure where we note an interesting difference depending on whether $p = 2$, $p = 3$ or $p > 3$. In Sec. [III] we discuss geometrical features of these gates U_c and associated qudit states $|\psi_{U_c}\rangle$ with a particular eye to applications in quantum computation. We conclude in section Sec. [IV] with some observations on noise thresholds for qudit-based quantum computation.

II. BASIC MATHEMATICAL STRUCTURE

A. Generalized Pauli and Clifford Groups

Throughout, we always assume the dimension p, of a single particle, to be a prime number. Generalized versions of the familiar σ_x and σ_z Pauli operators, are defined [18] for $p > 2$ as

$$X[j] = (j + 1 \mod p) \quad Z[j] = \omega^j|j\rangle$$

(2)

where $\omega = e^{2\pi i/p}$ is a primitive p-th root of unity such that $XZ = \omega^{-1}ZX$. In general, products of these Pauli operators are often called displacement operators,

$$D(_{x[z]} = \tau^{x_1 x^n}Z^z \quad \tau = e^{(p+1)\pi i/p} = \omega^{2^{-1}}$$

(3)

where the format of the subscript $(x[z])$ reminds us of the symplectic form (often used in calculations involving Pauli operators e.g., error-correcting codes). The Weyl-Heisenberg group (or generalized Pauli group) for a single qudit is given by

$$\mathcal{G} = \{\tau^{c X} Z^c \in \mathbb{Z}_p^2, c \in \mathbb{Z}_p \} \quad (\mathbb{Z}_p = \{0,1,\ldots,p-1\}),$$

(4)

where χ is a 2-vector with elements from \mathbb{Z}_p, so that $|\mathcal{G}| = p^2$ in situations where global phases can be ignored. The set of unitary operators that map the Pauli group onto itself under conjugation is called the Clifford group, \mathcal{C},

$$\mathcal{C} = \{C \in U(p)|C\mathcal{G}C\dagger = \mathcal{G}\}.$$

The number of distinct Clifford gates for a single qudit system (ignoring global phases) is $|\mathcal{C}| = p^3(p^2 - 1) - 1$.

Gottesman and Chuang [9] introduced the so-called Clifford hierarchy, a recursively defined set of gates given by

$$\mathcal{C}_{k+1} = \{U|UC_1U\dagger \subseteq \mathcal{C}_k\}$$

(5)

where C_1 is the Pauli group. One obtains nested sets of operators, the first two sets of which correspond to elements of the Pauli and Clifford groups respectively, i.e.,

$$\mathcal{G} \subseteq \mathcal{C} \subseteq \mathcal{C}_3 \subseteq \ldots$$

(6)

or equivalently in their notation

$$\mathcal{C}_1 \subseteq \mathcal{C}_2 \subseteq \mathcal{C}_3 \subseteq \ldots$$

(7)

It is known [10,11,12] that \mathcal{C}_3 (and above) does not form a group, although the diagonal subset of \mathcal{C}_3, that we study here, does.

The complete set of Clifford unitaries $\mathcal{C} \subset U(p)$ is covered by varying over all $F \in SL(2,\mathbb{Z}_p)$ and $\chi \in \mathbb{Z}_p^2$,

$$\mathcal{C} = \{C_{(F|\chi)} | F \in SL(2,\mathbb{Z}_p), \chi \in \mathbb{Z}_p^2\},$$

(8)
where $SL(2, \mathbb{Z}_p)$ is the group whose elements are 2×2 matrices with unit determinant and matrix elements from \mathbb{Z}_p. The explicit recipe [19] for constructing a Clifford unitary with $F = (\begin{smallmatrix} \alpha & \beta \\ -\beta^* & \alpha^* \end{smallmatrix})$, $\chi = (\begin{smallmatrix} x \\ z \end{smallmatrix})$ is given by

$$
C(F|\chi) = D(x|z) V_F
$$

and $V_F = \left\{ \begin{array}{ll}
\frac{1}{\sqrt{p}} \sum_{j,k=0}^{p-1} \tau^{j\beta^*k^2} |j\rangle \langle k| & \beta \neq 0 \\
\sum_{j=0}^{p-1} \tau^{j^2k^2} |aj\rangle \langle k| & \beta = 0.
\end{array} \right.$

Note that when $F = I_2$ we have $V_F = I_p$. Also

$$
V_F D(x|z) V_F^\dagger = D(\alpha + \beta z | \gamma x + \delta z) \quad (\text{for simplicity and, in analogy with the qubit case, we putative higher-dimensional generalizations of } U_{\pi/8} \text{ to be diagonal in the computational basis, so that } UD(0|1) U^\dagger = D(0|1)).
$$

We claim that, for $p > 3$, U_v can be written in the following form:

$$
U_v = U(v_0, v_1, \ldots, v_{p-1}) \quad (v_k \in \mathbb{Z}_p),
$$

where $\omega = e^{2\pi i/p}$, as usual. Note that $\text{det}(U_v) = \omega^{\sum_{k=0}^{p-1} v_k}$ so that $U_v \in \text{SU}(p)$ if $\sum_{k=0}^{p-1} v_k = 0 \pmod{p}$. Straightforward application of Eq. (2), (3) and (16) gives

$$
U_v D(x|z) U_v^\dagger = D(x|z) \sum_k \omega^{v_k x + v_{k-1}} |k\rangle \langle k|
$$

If U_v is to be a member of C_3 we require the right hand side of (17) to be a Clifford gate. Since $U_v D(0|1)U_v^\dagger = D(0|1)$ trivially, we focus on the case $U_v D(1|0)U_v^\dagger$ in order to derive explicit expressions for U_v.

Define $\gamma', z', e' \in \mathbb{Z}_p$ such that

$$
U_v D(1|0)U_v^\dagger = \omega'^\gamma C \left(\begin{array}{l} 1 \\ -1 \\ 1 \end{array} \right) \left(\begin{array}{l} 1 \\ 1 \end{array} \right)
$$

The fact that the right hand side of the Eq. (18) is the most general form can be seen by reference to Eq. (9) and (17), and also by noting that $U \in SU(p)$ implies $\omega^k U \in SU(p)$, for any integer k.

Note that the right hand side of Eq. (18) represents a Pauli operator if and only if $\gamma' = 0$. Consequently, U_v must, by definition, be a (diagonal) Clifford operation in those cases when $\gamma' = 0$.

To solve the matrix equation Eq. (18), begin by substituting Eq. (17) so that

$$
D(1|0) \sum_k \omega^{v_k x + v_{k-1}} |k\rangle \langle k| = \omega'^\gamma D(1|x') \sum_{k=0}^{p-1} \tau^{\gamma' k^2} |k\rangle \langle k|
$$

and use Eq. (9) to obtain

$$
D(1|0) \sum_k \omega^{v_k x + v_{k-1}} |k\rangle \langle k| = \omega'^\gamma D(1|x') \sum_{k=0}^{p-1} \tau^{\gamma' k^2} |k\rangle \langle k|
$$

After canceling common factors of $D(1|0)$ one is left with an identity between two diagonal matrices, so that

$$
\omega^{v_{k+1} - v_k} = \omega'^\gamma \tau^{\gamma' k^2} (\text{for any integer } k),
$$

or equivalently, using $\tau = \omega^{2-1}$,

$$
v_{k+1} - v_k = e' + 2^{-1} z' + k z' + 2^{-1} k^2 \gamma'.
$$

This gives the recurrence relation

$$
v_{k+1} = v_k + k (2^{-1} k \gamma' + z') + 2^{-1} z' + e'.
$$

With a boundary condition $v_0 = 0$, we can solve to obtain

$$
v_k = \frac{1}{12} k (\gamma' + k (6 z' + (2 k - 3) \gamma')) + k e',
$$

where factors like 12^{-1} are understood to be evaluated modulo p.

For example, with $p = 5$ and choosing $z' = 1$, $\gamma' = 4$ and $e' = 0$, we get

$$
v = (0, 1, 2, 3, 4) = (0, 3, 4, 2, 1)
$$

$\Rightarrow U_v(z', \gamma', e') = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\
0 & e^{2\pi i/5} & 0 & 0 & 0 \\
0 & 0 & e^{2\pi i/5} & 0 & 0 \\
0 & 0 & 0 & e^{2\pi i/5} & 0 \\
0 & 0 & 0 & 0 & e^{2\pi i/5} \end{array} \right)$
It can be shown that the powers of ω along the diagonal of U_v sum to zero modulo p. First use

$$
\sum_{k=1}^{p-1} v_k = \frac{p(p-1)}{24} (25p-1) z' + (p-2)(p^2-1) \gamma',
$$

then note that for primes $p > 3$, we have $24|p^2-1$ and $12|(p-1)(5p-1)$ so that $\sum_{k=0}^{p-1} v_k = 0 \bmod p$. Consequently $\text{det}(U_v) = 1$.

For the $p = 3$ case (because of Eq. (15)) we must do a little more work to solve a matrix equation analogous to Eq. (19). First, we introduce a global phase factor $e^{i\phi}$ so that $\text{det} \left(e^{i\phi} \sum_{k=0}^{p-1} \tau^{-k^2} |k\rangle\langle k| \right) = 1$ i.e., $\phi = \frac{4\pi}{9}$. Denote a primitive ninth root of unity as $\zeta = e^{\frac{2\pi i}{9}}$ so that

$$
\text{det} \left(\zeta^{2z'} C \left(\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \right) = 1
$$

We must permit our qutrit version of $U_{\tau/8}$ to take a more general form than that given in Eq. (16), i.e.,

$$
U_v = U(v_0, v_1, \ldots) = \sum_{k=0}^{2} \zeta^{v_k} |k\rangle\langle k| \quad (v_k \in \mathbb{Z}_3)
$$

A similar calculation as before leads to the general solution (compare with Eq. (23))

$$
v = (0, 6z' + 2\gamma' + 3\epsilon', 6z' + \gamma' + 6\epsilon') \bmod 9 \quad (27)
$$

For example, letting $z' = 1, \gamma' = 2$ and $\epsilon' = 0$

$$
v = (0, 1, 8) \Rightarrow U_v(0,1,8) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \\ e^{\frac{2\pi i}{9}} \end{array} \right)
$$

One can easily check that all 27 solutions for $z', \gamma', \epsilon' \in \mathbb{Z}_p$ obey $\sum_{k=0}^{2} v_k = 0 \bmod 3$. However,

$$
\text{det}(U_v) = \zeta^{\sum_{k=0}^{2} v_k} = \omega(z' + \gamma')
$$

so that $\omega^{-(z' + \gamma')} U_v \in \text{SU}(3)$.

We finish this section by noting that knowledge of $U_v D_{(x|z|)} U_v \dagger$, $U_v D_{(x|0)} U_v$, $U_v D_{(0|z)} U_v$ and Eq. (11) is sufficient to see that the effect (modulo an overall phase) of conjugating an arbitrary Pauli operator by U_v is

$$
U_v D_{(x|z|)} U_v \dagger \propto C \left(\begin{bmatrix} 1 & 0 \\ x & 1 \end{bmatrix} \right) \left| \left| x(z' + 2^{-1} \gamma(x-1) + z) \right| \right|
$$

C. Group Structure

For $p > 3$ the set $\{U_v\} \subset \text{SU}(p)$ with matrix multiplication satisfies all the prerequisites to be a group:

Group	No. elements of order	Min. no. of generators	
$p = 2$	\mathbb{Z}_8	$1, 2, 4, 1$	1
$p = 3$	$\mathbb{Z}_9 \times \mathbb{Z}_3$	$8, 18, 0$	2
$p > 3$	\mathbb{Z}_p^3	$p^3 - 1, 0$	3

The fundamental theorem of finite Abelian groups states that a finite Abelian group is isomorphic to a direct product of cyclic groups of prime-power order. Furthermore, two finite Abelian groups G, G' are isomorphic, $G \cong G'$, if and only if they have identical structure i.e., if G and G' have the same number of elements of each order. We can use this fact to classify the groups that are generated by all diagonal gates $\{U_v\} \subset \text{SU}(p)$ under matrix multiplication (see Table I for a summary). For $p = 2$ the gate $U_{\tau/8}$ is sufficient to generate the entire group isomorphic to \mathbb{Z}_8. For $p > 3$ we have

$$
\{U_v\} \cong (\mathbb{Z}_p^3, +)
$$

which tells us, amongst other things, that the minimal number of generators required to generate this group is 3.

For $p = 3$ one can check explicitly that the gates $U_v(z', \gamma', \epsilon')$ form a group, and that

$$
U_v(z_1, \gamma_1, \epsilon_1) U_v(z_2, \gamma_2, \epsilon_2) =
\begin{cases}
U_v(z_1 + z_2, \gamma_1 + \gamma_2, \epsilon_1 + \epsilon_2) & \text{if } \gamma_1 + \gamma_2 < 3 \\
U_v(z_1 + z_2, \gamma_1 + \gamma_2, \epsilon_1 + \epsilon_2 - 1) & \text{if } \gamma_1 + \gamma_2 \geq 3
\end{cases}
$$

The orders of the individual group elements are

$$
\text{ord}(U_v(0, 0, 0)) = 1 \quad (33)
$$

$$
\text{ord}(U_v(z', 0, \epsilon')) = 3 \quad \text{excluding case (33)} \quad (34)
$$

$$
\text{ord}(U_v(z', \gamma', \epsilon')) = 9 \quad \text{excluding cases (33) and (34)} \quad (35)
$$

In fact, for $p = 3$ we have

$$
\{U_v\} \cong \mathbb{Z}_9 \times \mathbb{Z}_3
$$

i.e., the group is a direct product of cyclic groups of order 9 and 3. This group requires only 2 generators.

The result Eq. (15) has led to an unusual group structure for $p = 3$ compared to other primes. Combined with observations from other authors [19–21] on SIC-POVMs in $p = 3$, perhaps it could be argued that, in the context of quantum information, 3 is the second oddest prime of all [22].
III. GEOMETRICAL FEATURES

In this section we outline various geometrical properties of the gates U_{ψ} and associated states $|\psi_{U_{\psi}}\rangle$ (as defined below in Eq. (37)). Subsection IIIA provides the various definitions required for this section. In IIIB we show that the states $|\psi_{U_{\psi}}\rangle$ are eigenvectors of Clifford gates. This may be of independent interest. In IIIC we relate both U_{ψ} and $|\psi_{U_{\psi}}\rangle$ to the convex hulls of Clifford gates and stabilizer states respectively. The reason we do so is twofold: (i) We will see how U_{ψ} and $|\psi_{U_{\psi}}\rangle$ are singled out as being maximally non-Clifford or non-stabilizer in some sense, which is interesting in and of itself (ii) The preceding geometrical property implies that these gates are optimal in the sense of robustness to depolarizing and phase damping noise. This latter property should prove useful in the context of fault-tolerant quantum computation as we discuss in Sec. IV.

A. Useful definitions

As discussed in Sec. IIIC, the set of gates $\{U_{\psi}\}$ forms a finite group. In fact, they form a finite subgroup, $\{U_{\psi}\} \subset \{U_\theta\}$, of the group of diagonal gates $\{U_\theta\}$ defined as

$$U_\theta = \sum_{k=0}^{p-1} e^{i \theta_k} |k\rangle\langle k| \quad (\theta_k \in \mathbb{R})$$ \hspace{1cm} (36)

We will often have reason to refer to a state $|\psi_{U_{\psi}}\rangle \in \mathbb{C}^p$ that is very naturally associated with the gate U_{θ} via

$$|\psi_{U_{\psi}}\rangle = \frac{1}{\sqrt{p}} \text{diag}(U_{\theta}) = U_{\theta} |+\rangle$$ \hspace{1cm} (37)

where $|+\rangle = (1,1,\ldots,1)/\sqrt{p}$. A Jamiołkowski state, $|J_U\rangle \in \mathbb{C}^{p^2}$, corresponding to a unitary operation $U \in U(p)$ is denoted

$$|J_U\rangle = (I \otimes U) \sum_{j,k=0}^{p-1} |j,j\rangle \frac{1}{\sqrt{p}}$$ \hspace{1cm} (38)

A quantum operation, \mathcal{E}, is a superoperator acting upon density operators (i.e., generic quantum states $\rho \in \mathcal{H}_p$) via

$$\mathcal{E} : \rho_{in} \mapsto \rho_{out} \text{ i.e., } \rho_{out} = \mathcal{E} (\rho_{in}).$$ \hspace{1cm} (39)

The well-known Jamiołkowski isomorphism tells us that a complete description of \mathcal{E} is encapsulated in a higher-dimensional state $\varrho_{\mathcal{E}}$ defined as

$$\varrho_{\mathcal{E}} = [I \otimes \mathcal{E}] \left(\sum_{j,k=0}^{p-1} |j,j\rangle\langle k,k| \frac{1}{p} \right)$$ \hspace{1cm} (40)

which is the most general form of the operation-state duality given in Eq. (38).

B. Eigenvectors of Clifford Gates

As discussed in Sec. IIIB, we have an explicit form for p^3 diagonal gates $U_{\psi}(z',\gamma',\epsilon')$ (with $z',\gamma',\epsilon' \in \mathbb{Z}_p$), of which $p^2(p-1)$, corresponding to $\gamma' \neq 0$, are non-Clifford. Here we prove that each associated state $|\psi_{U_{\psi}(z',\gamma',\epsilon')}\rangle$ as defined in Eq. (37) is an eigenvector of the Clifford operator

$$C\left(\left| \frac{1}{\gamma'} \right\rangle \left\langle \frac{1}{\epsilon'} \right| \right)$$

with eigenvalue $\omega^{z'}$. Our intuition was that knowledge of such eigenstates should prove useful since both $|T\rangle$ and $|H\rangle$ (qubit magic states as defined in [14]) are Clifford.
where states that we call $|\psi_{U_p}\rangle$ are shown to be qudit magic states, confirms the correctness of this intuition. In addition, Zauner’s conjecture states that fiducial vectors of a Weyl-Heisenberg-covariant SIC-POVM lie in the eigenspace of a particular class of Clifford gates. While the results obtained here are not directly applicable to the resolution of the SIC-POVM problem, they may still prove useful in this context.

To prove the claim, first use Eq. (18) to perform the following substitution

$$C([\frac{1}{\sqrt{2}} 0] | 1\rangle) |\psi_U(z', \gamma', \epsilon')\rangle = (41)$$

$$\omega^{-\epsilon} U_U D_{1(0)} U_U^\dagger |\psi_U(z', \gamma', \epsilon')\rangle$$

and subsequently use

$$U_U^\dagger |\psi_{U_p}\rangle = U_U^\dagger (U_U|+) = |+\rangle$$

where $|+\rangle$ is the $+1$ eigenstate of $D_{1(0)}$, by definition. Clearly, it follows that

$$C([\frac{1}{\sqrt{2}} 0] | 1\rangle) |\psi_U(z', \gamma', \epsilon')\rangle = \omega^{-\epsilon} U_U^\dagger |\psi_U(z', \gamma', \epsilon')\rangle. (43)$$

C. Noise thresholds for quantum computation using U_p gates and stabilizer operations

In this section we show how the gates U_p and states $|\psi_{U_p}\rangle$ are exceptional with respect to their convex-geometrical relationship to Clifford gates and stabilizer states respectively. We will need to define the stabilizer polytope (the convex hull of stabilizer states), the Clifford polytope (the convex hull of Clifford gates) and a quantity we call negativity (which can be interpreted as a measure of distance outside one of these polytopes). In the present context, a state or gate that is further outside a polytope generally requires more noise (a higher degree of impurity) to enter said polytope. To this end we introduce a quantity called robustness, which measures the amount of noise that can be tolerated before a gate (state) becomes expressible as a mixture of Clifford gates (stabilizer states). Table I summarizes most of the results in this section. How these results were obtained is explored in the remainder of this subsection.

1. Stabilizer Polytope and Clifford Polytope

For a single-qudit system there are exactly $p(p+1)$ distinct eigenstates of Pauli operators. For $p = 2$ these eigenstates correspond to the vertices of the octahedron depicted in Fig. 1(a). The Gottesman-Knill theorem tells us that a supply of stabilizer states, or mixtures of stabilizer states, are useless for the task of promoting a stabilizer circuit to a circuit capable of UQC. As such, the

| $\varepsilon_D^*(U_p)$ | $\varepsilon_{PD}^*(U_p)$ | $N(|\psi_{U_p}\rangle)$ | $N(|J_{U_p}\rangle)$ |
|---------------------|---------------------|---------------------|---------------------|
| $p = 2$ 45.32% 14.65% 0.1036 2(0.1036)=0.2071 |
| $p = 3$ 78.63% 36.73% 0.1363 3(0.1363)=0.4089 |
| $p = 5$ 95.24% 64.00% 0.1600 5(0.1600)=0.8000 |
| $p = 7$ 97.63% 73.27% 0.1202 7(0.1202)=0.8411 |

TABLE II. Robustness and negativity: Robustness to noise (ε_D^* for depolarizing, ε_{PD}^* for phase damping) of a gate U is the noise rate at which a noisy implementation of U enters the Clifford polytope. Negativity can be used as a proxy for distance outside the relevant (stabilizer or Clifford) polytope and is formally defined in Eq. (46) (states) and Eq. (52) (gates). A priori, there is no obvious reason why $N(|\psi_{U_p}\rangle)$ and $N(|J_{U_p}\rangle)$ should obey such a simple relationship with one another. In [16] it was shown that U_p were the most robust to depolarizing noise of all $U \in U(p)$ (in dimensions 2 to 7 and with some cautions regarding an incomplete facet description of the Clifford polytope). Here we show (for $p \in \{2, 3, 5, 7\}$) that U_p are also the most robust to phase damping noise of all U_p. The discussion in Sec. III C 3 shows that this must also imply that $|\psi_{U_p}\rangle$ are the most robust states (to depolarizing) of all states $|\psi_{U_p}\rangle$.
an element of \(STAB \):
\[
\varepsilon_D^* (|\psi_\alpha\rangle) = \min \varepsilon_D (0 \leq \varepsilon_D \leq 1) \text{ such that } (1 - \varepsilon_D)|\psi_\alpha\rangle + \varepsilon_D |\psi_\beta\rangle \in \bigcup \text{STAB}.
\]

The quantities \(N(\rho) \) and \(\varepsilon_D(\rho) \) are (inversely) related, as discussed in [16].

An explicit definition for individual facets \(A(u) \) is given by
\[
A(u) = \frac{1}{p} \left(\Pi\{0|1|a|u_1\} + \sum_{j=1}^{p} \Pi\{1|j-1|a|u_j\} - I \right)
\]
where \(\Pi(a|b|k) \) is the projector onto the \(\omega^k \) eigenspace of \(X^a Z^b \) i.e.,
\[
\Pi(a|b|k) = \frac{1}{d} \left(I + \omega^{-k} X^a Z^b + \ldots + \omega^{-(p-1)k}(X^a Z^b)^{p-1} \right)
\]

Using the Jamiołkowski isomorphisms of Eq. (38) and Eq. (40) we can construct an object (polytope) that is analogous to \(\bigcup STAB \), but where the vertices now correspond to Clifford gates rather than stabilizer states. As before, quantum operations that are expressible as a mixture of Clifford operations are useless for the task of promoting a stabilizer circuit to a circuit that is capable of UQC. We denote this so-called Clifford polytope as \(\bigcup\text{CLIFF} \) [16] [28]

\[
\text{CLIFF} = \left\{ \varrho_\mathcal{E} \right\}_{\mathcal{E}} \\
\varrho_\mathcal{E} = \sum_{j=1,k=1}^{p(p^2-1),k=p^2} q_{j,k} |J_{C(r_j,s_k)}\rangle\langle J_{C(r_j,s_k)}| \\
\text{with } 0 \leq q_{j,k} \leq 1, \sum_{j=1,k=1}^{p(p^2-1),k=p^2} q_{j,k} = 1
\]

Testing an arbitrary quantum operation \(\mathcal{E} \) for membership of the Clifford polytope requires construction of the associated Jamiołkowski state \(\varrho_\mathcal{E} \) (as described in Eq. (40)) and then using
\[
\varrho_\mathcal{E} \in \text{CLIFF} \Leftrightarrow \text{Tr}(W \varrho_\mathcal{E}) \geq 0 \quad \forall W \in \mathcal{W},
\]

where \(\mathcal{W} \) is a finite set of facets describing \(\text{CLIFF} \). Analogously to Eq. (40), we define the negativity of an operation \(\mathcal{E} \) as
\[
N(\varrho_\mathcal{E}) = |\min_{W \in \mathcal{W}} \text{Tr}[W \varrho_\mathcal{E}]|.
\]

The threshold depolarizing rate, \(\varepsilon_D^*(U_\theta) \), of a gate, \(U_\theta \), is the minimum value of \(\varepsilon_D \) required to make \(U_\theta \) an element of \(\text{CLIFF} \):
\[
\varepsilon_D^*(U_\theta) = \min \varepsilon_D (0 \leq \varepsilon_D \leq 1) \text{ such that } (1 - \varepsilon_D)|U_\theta\rangle\langle U_\theta| + \varepsilon_D \frac{1}{p^2} \in \text{CLIFF}.
\]

While \(W \) is known to exist, and be finite, the complexity of halfspace enumeration is such that we can only claim to have derived in [16] (at least) a subset of \(\mathcal{W} \). Nevertheless, if a given \(\varrho_\mathcal{E} \) (encoding an operation \(\mathcal{E} \)) satisfies \(\text{Tr}(W \varrho_\mathcal{E}) < 0 \) for some \(W \in \mathcal{W} \), then this operation is unambiguously outside the Clifford polytope.

2. Robustness to Depolarizing Noise i.e., Maximally Non-Clifford Gates

In [16] a gate \(U_{\text{opt}} \in U(p) \) was found, for each of \(p \in \{2, 3, 5, 7\} \), which required very high amounts of depolarizing noise to become expressible as a mixture of Clifford gates. There, it was suggested that the simple form of \(U_{\text{opt}} \) and their high robustness to noise (i.e., high \(\varepsilon_D^* \) in Eq. (55)) made them analogous to the qubit \(U_{\pi/8} \) gate in some sense. Here we strengthen the analogy by showing that \(U_{\text{opt}} \) are actually equivalent (i.e., the same up to a factor of a Clifford gate) to the gates \(U_\alpha \) that we have derived by enforcing that they should be diagonal elements of \(\mathcal{C}_3 \).

The state \(|U_{\text{opt}}\rangle \) that is farthest outside \(\text{CLIFF} \) (i.e. the convex polytope whose vertices are Clifford gates) is that state which achieves
\[
\min_{W \in \mathcal{W}, \alpha \in SU(p)} \text{Tr}(W |J_{U_\alpha}\rangle \langle J_{U_\alpha}|)
\]

where \(\mathcal{W} \) is the bounding set of facets that describes \(\text{CLIFF} \). Here we give the explicit relationship between highly (and maybe maximally) robust gates given in [16] and the generalized versions of \(U_{\pi/8} \) that we have described in Sec. IIIB

\[
p = 2: \quad U_{\text{opt}} = U_{\pi/8}
\]
\[
p = 3: \quad U_{\text{opt}} = U_{\nu} C([\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}]) U_{\nu} \text{ in Eq. (29)}
\]
\[
p = 5: \quad U_{\text{opt}} = U_{\nu} C([\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}]) U_{\nu} \text{ in Eq. (29)}
\]
\[
p = 7: \quad U_{\text{opt}} = U_{\nu} C([\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}]) \text{ with } U_{\nu} = U_{\nu}(\nu' = 1, \nu' = 2, \nu' = 0)
\]

The Clifford gates that relate \(U_{\text{opt}} \) and \(U_{\nu} \) can be absorbed into \(W \), creating another \(W' \in \mathcal{W} \) with the same spectrum, and
\[
\text{Tr}(W' |J_{U_{\nu}}\rangle \langle J_{U_{\nu}}|) = \text{Tr}(W |J_{U_{\nu}}\rangle \langle J_{U_{\nu}}|)
\]
so that the negativity and robustness results from [16] apply here too.

3. Phase Damping Thresholds via Simplified Jamiołkowski Isomorphism

Phase damping is a physically well-motivated noise process (often interpreted as resulting from so-called
phase kicks), whose overall effect on a state ρ is to uniformly decrease the amplitude of all off-diagonal elements in ρ (see e.g., [33]). The implementation of a diagonal gate U_θ while suffering phase damping noise (with noise rate ε_{PD}), results in an overall operation

$$
\mathcal{E}(\rho) = (1 - \varepsilon_{PD})U_\theta\rho U_\theta^\dagger + \frac{\varepsilon_{PD}}{p-1} \sum_{k=1}^{p-1} (Z^k U_\theta \rho (Z^k U_\theta)^\dagger,
$$

(56)

$$
= (1 - \varepsilon_{PD})U_\theta\rho U_\theta^\dagger + \frac{\varepsilon_{PD}}{p-1} \left(\mathbb{I} - U_\theta \rho U_\theta^\dagger \right)
$$

(57)

so that the robustness to phase damping noise, $\varepsilon_{PD}(U_\theta)$, of a gate, U_θ, is

$$
\varepsilon_{PD}(U_\theta) = \min_{\rho \in \text{CLASS}} \{ \varepsilon_{PD} \; (0 \leq \varepsilon_{PD} \leq 1) \; \text{such that} \; \mathcal{E} \; \text{as in Eq. (56)} \}
$$

(58)

where A are the facets of STAB as defined in Eq. (48).

The final element that is required is to realize that an operation U_θ that is maximally robust to phase damping noise is exactly the operation for which $\vert \psi_{u_p} \rangle$ is most resistant to depolarizing noise before entering the $p(p-1)$-dimensional polytope discussed above. In fact, a simple calculation shows that

$$
\varepsilon_{PD}^*(U_\theta) = \frac{p-1}{p} \varepsilon_{PD}(\vert \psi_{u_p} \rangle)
$$

(59)

where $\varepsilon_{PD}^*(U_\theta)$ is the phase-damping noise rate required to make U_θ enter the convex hull of diagonal Clifford gates, and $\varepsilon_{PD}(\vert \psi_{u_p} \rangle)$ is the depolarizing noise rate required to make $\vert \psi_{u_p} \rangle$ enter the convex hull of stabilizer states.

Any facet A_{edge} can be decomposed as

$$
A_{edge} = \sum_j \lambda_j \vert \lambda_j \rangle \langle \lambda_j \vert \; (\lambda_1 \leq \lambda_2 \ldots),
$$

(60)

and the state $\vert \lambda_1 \rangle$ is the state that, out of all qudit states ρ, maximally violates $\text{Tr} \{ A_{edge} \rho \} \geq 0$. A simple calculation shows that the minimum eigenvalue of A_{edge} (over all possible A_{edge}) is $\lambda_1(A_{edge}) = -(p-1)/p^2$, where p is an odd prime. Consequently, if $\lambda_1 = -(p-1)/p^2$, and $\vert \lambda_1 \rangle$ is of the form $\vert \psi_{u_p} \rangle$, then $\vert \lambda_1 \rangle$ is maximally robust to depolarizing noise and the operation U_θ that $\vert \lambda_1 \rangle$ represents is maximally robust to phase-damping noise. This is the case for $p \in \{ 2, 5 \}$ in our current investigation. For $p \in \{ 3, 7 \}$, the states $\vert \lambda_1 \rangle$ that achieve $\lambda_1 = -(p-1)/p^2$ are not of the form $\vert \psi_{u_p} \rangle$ and so we had to resort to a numerical optimization over all A_{edge} and all states $\vert \psi_{u_p} \rangle$.

For $p = 3$ there are two distinct types of edge, as classified by spectrum:

$$
\lambda(A_{edge}) = \{-\frac{2}{9}, \frac{1}{3}, \frac{4}{9} \}
$$

or

$$
\lambda(A_{edge}) = \left\{ \frac{1}{9} \left(3 \sin \frac{\pi}{18} - \sqrt{3} \cos \frac{\pi}{18} \right), \right.
\frac{1}{9} \left(1 + 3 \sin \frac{\pi}{18} - \sqrt{3} \cos \frac{\pi}{18} \right), \right.
\frac{1}{9} \left(1 + 2 \sqrt{3} \cos \frac{\pi}{18} \right) \}
$$

(61)

There are $p^2(p-1) = 18$ of the latter A_{edge}, where the minimizing eigenvector for each distinct facet corresponds to a distinct non-Clifford U_θ. In $p = 5$ there are exactly $p^2(p-1) = 100$ edges with spectrum

$$
\lambda(A_{edge}) = \{-0.16, -0.08361, 0.04, 0.04, 0.36361 \}
and these correspond to the 100 non-Clifford U_v. In $p = 7$ there are at least $2(7^2) = 98$ facets A_{edge} with minimal eigenvalue -0.12016, whose corresponding eigenvector is of the form $|\psi_{U_v}\rangle$. These were the most robust states of all $|\psi_{U_v}\rangle$ that we could find by optimization, but it is possible that we became trapped in a local minimum.

As a final comment, we note that qubit form of this argument (simplified Jamiołkowski isomorphism etc.) was presented by Virmani et al. [29] (see also [30]) where an adversarial phase damping model was used to obtain upper bounds on the quantum fault-tolerance threshold. In that case it was found that

$$[14.7\% \approx \varepsilon_{PD}(U_{\pi/8})] = \frac{1}{2} \left[\varepsilon_{PD}(|\psi_{U_{\pi/8}}\rangle) \right] \approx 29.3\%,$$

(63)

which implies that the $U_{\pi/8}$ gate, whilst maximally robust amongst all diagonal gates, requires about 15% phase damping noise before it becomes expressible as a mixture of (diagonal) Clifford gates.

IV. APPLICATIONS IN FAULT-TOLERANT QUANTUM COMPUTING

In [17] Campbell et al. quote results by Nebe, Rains and Sloane [31, 33] which show that the gate set

$$|C, \text{CSUM}, U\rangle$$

(64)

is dense in SU(p^n), where C is the set of single-qudit Cliffords, CSUM is the generalized version of the CNOT gate and U is a non-Clifford single-qudit gate,

$$\text{CSUM} : |a\rangle |b\rangle \mapsto |a\rangle |a+b \mod p\rangle$$

$$U \in \text{SU}(p) \setminus C.$$

(65)

In particular, U_v is sufficient to promote multi-qudit Clifford gates to a universal gate set. We expect that U_v possesses all the additional qualities that makes $U_{\pi/8}$ the preferred non-Clifford gate in qubit-based universal gate sets.

In [2, 18] it is argued, for the qubit case, that creation of a Clifford eigenstate should be easier to do in a fault-tolerant manner than fault-tolerant implementation of U_v, directly. It is easy to see that, for an arbitrary qudit state $|\psi_{\text{arb}}\rangle$,

$$\Pi_{(0,0),1-d-1} |0\rangle \langle 0| (|\psi_{U_v}\rangle \otimes |\psi_{\text{arb}}\rangle) = (U_v |\psi_{\text{arb}}\rangle) \otimes |0\rangle$$

where $\Pi_{(0,0),1-d-1} |0\rangle \langle 0|$ denotes a rank-p projector onto the ω^0 eigenspace of the operator $Z \otimes Z^{-1}$ (i.e., a stabilizer measurement). Clearly, creation of Clifford eigenstates $|\psi_{U_v}\rangle$ (see Sec. III.B) is sufficient to promote a stabilizer circuit to UQC in the qudit case too.

In [17] Campbell et al. introduce a qudit gate M of the form

$$M^{(p)} = \sum_{j=0}^{p-1} e^{2\pi i j} \lambda_j |j\rangle \langle j|$$

(67)

with $\lambda_j = p \left(\frac{j}{3} - j \left(\frac{p}{3} \right) + \left(\frac{p+1}{4} \right) \right)$

(68)

Note that

$$M^{(3)} = U_v(z' = 1, \gamma' = 1, \epsilon' = 0)$$

(69)

$$M^{(5)} = U_v(z' = 2, \gamma' = 1, \epsilon' = 2)$$

(70)

$$M^{(7)} = U_v(z' = 3, \gamma' = 1, \epsilon' = 4)$$

(71)

in our notation. They showed that $|M_0^{(p)}\rangle$, which correspond to $|\psi_{U_v}\rangle$ defined in Eq. (37), are distillable for all prime dimensions and hence are magic states. For $p = 3$ a distillation routine with remarkably good performance was found and we use this result in the discussion below.

If we have access to a superoperator $\mathcal{E}_{(|\psi_{U_v}\rangle, \epsilon)}$ defined as

$$\mathcal{E}_{(|\psi_{U_v}\rangle, \epsilon)}(\rho) = (1 - \epsilon)U_v |\rho| U_v^\dagger + \epsilon \frac{1}{p}$$

(72)

then it can be used to create noisy versions of $|\psi_{U_v}\rangle$ in a straightforward way, as depicted in Fig. 2(a). However, a simple circuit given in Fig. 2(b) shows how a less noisy version of $|\psi_{U_v}\rangle$ can be created by using the same operation $\mathcal{E}_{(|\psi_{U_v}\rangle, \epsilon)}$ as well as some additional stabilizer operations. The straightforward method produces a state $|\psi_{U_v}\rangle$ with effective depolarization rate ϵ whereas the postselected version produces $|\psi_{U_v}\rangle$ with effective depolarization rate $\epsilon'(< \epsilon)$. The relationship between the effective noise rates is

$$\epsilon = \frac{p\epsilon'}{1 + (p-1)\epsilon'}$$

(73)

and, inverted,

$$\epsilon' = \frac{\epsilon}{p - (p-1)\epsilon}.$$

(74)

In [17] it was shown that, for $p = 3$, depolarized versions of $|\psi_{U_v}\rangle$ could be distilled for noise rates up to about 32%. The implication is that a superoperator $\mathcal{E}_{(|\psi_{U_v}\rangle, \epsilon)}$ enables universal quantum computation (via MSD) up to noise rates of around 58%. This is found by solving

$$\frac{\epsilon}{3 - 2\epsilon} = 0.3165$$

(75)

$$\Rightarrow \epsilon = 0.5815.$$

(76)

Our results in Sec. III.C and [16] indicate that $\mathcal{E}_{(|\psi_{U_v}\rangle, \epsilon)}$ can never enable universal quantum computation (by supplementing Clifford gates) for noise rates $\epsilon \geq 78.6\%$. In the qubit case it was shown, using similar arguments, by Reichardt [31] and Buhrman et al. [28] (and more generally in [32]), that the noise rates for which
FIG. 2. Dilution of Noise in Magic State Preparation: (a) Straightforward Magic State Preparation: Using the superoperator $\mathcal{E}_{\psi U_\psi}$ to prepare an imperfect (depolarized) version of a magic state $|\psi U_\psi\rangle$. (b) Postselected Magic State Preparation: Using the same superoperator $\mathcal{E}_{\psi U_\psi}$ to create a less imperfect ($\epsilon' < \epsilon$) version of the magic state $|\psi U_\psi\rangle$. The Pauli measurement operator Π stands for postselection on receiving the outcome +1 using the measurement $\Pi (0, 0, p, -1) |0\rangle$ (see Eq. (67)). The circuit elements to the left of Π implement the creation of the Jamiołkowski state ρ_U (see Eq. (40)) describing $\mathcal{E}_{\psi U_\psi}$.

Table III: Noise thresholds for universal quantum computation: When supplementing the set of Clifford gates, which are presumed to be perfect, with a depolarized version of U_ψ (as in Eq. (72)), then there exist regimes of the noise parameter, ϵ, for which UQC is either provably possible or provable impossible. Noise rates between these two bounds are those for which we currently have no proof regarding the utility of depolarized U_ψ when supplementing stabilizer operations. Lower bounds are evaluated by using the results of Campbell et al. [17], along with the noise dilution protocol of Fig. 2 and Eq. (74). Upper bounds are established via geometrical arguments in Sec. III C 2 and [16].

Motivated by the utility and geometric prominence of the qubit $U_{\pi/8}$ gate, we provided an explicit solution for all diagonal qudit gates that displayed the same relationship with the Clifford group (i.e., we constructed diagonal gates from the third level of the Clifford hierarchy). We saw that these diagonal gates generated a finite group whose structure depended upon whether $p = 2$, $p = 3$ or $p > 3$. It might be interesting to fully enumerate all the single-qudit elements of C_k, or analyze the structure of the diagonal subset of C_k (particularly for $p = 3$). Geometrically, these generalized $U_{\pi/8}$ gates, which we have called U_ψ, appear to display the same relationship with the set of Clifford gates – a relationship which makes them maximally non-Clifford in some sense. The state $|\psi U_\psi\rangle \in \mathbb{C}^p$, defined as $|\psi U_\psi\rangle = U_\psi |+\rangle$, was already known to be useful and geometrically significant in the $p = 2$ case (where it is widely known as the $|H\rangle$-type magic state), and we discussed some properties of the general qudit case which led us to believe they could also be useful. As we completed this work we became aware of results by Campbell et al. [17] which show that states $|\psi U_\psi\rangle$ are indeed magic states for all prime dimensions. In the final section we use the results of Campbell et al. to show noise rates for which noisy versions of U_ψ can and cannot provide UQC (when supplementing the full set of Clifford gates). A very interesting problem is to further close the gap between these noise regimes, a gap that is non-existent in the qubit case.
VI. ACKNOWLEDGEMENTS

We thank E. Campbell for helpful comments on a previous version of this manuscript. M.H. was supported by the Irish Research Council as an Empower Fellow. J.V. acknowledges support from Science Foundation Ireland under the Principal Investigator Award 10/IN.1/I3013.

[1] D. Gottesman, “Theory of fault-tolerant quantum computation” Phys. Rev. A 57, 127 (1998). http://dx.doi.org/10.1103/PhysRevA.57.127.

[2] P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury and F. Vatan, “A new universal and fault-tolerant quantum basis” Information Processing Letters 75, 3 pp. 101–107, (2000). http://dx.doi.org/10.1016/S0020-0190(00)00084-3.

[3] H. Buhrman, R. Cleve and W. van Dam, “Quantum entanglement and communication complexity” SIAM 30, 6 pp. 1829–1841, (2001). http://dx.doi.org/10.1137/S0036139997324886.

[4] M. Howard and J. Vala, “Nonlocality as a benchmark for universal quantum computation in Ising anyon topological quantum computers” Phys. Rev. A 85, 022304 (2012). http://dx.doi.org/10.1103/PhysRevA.85.022304.

[5] A. Broadbent, J. Fitzsimons and E. Kashefi, “Universal blind quantum computation”, Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526, (2009). http://dx.doi.org/10.1109/FOCS.2009.36.

[6] D. Gottesman and T. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations” Nature 402, 6760 pp. 390–393, (1999). http://dx.doi.org/10.1038/46503.

[7] R. Low, “Learning and testing algorithms for the Clifford group” Phys. Rev. A 80, 052314 (2009). http://dx.doi.org/10.1103/PhysRevA.80.052314.

[8] A. M. Childs, “Secure assisted quantum computation” Quantum Info. Comput. 5, pp. 456, (2005). http://dl.acm.org/citation.cfm?id=2011674.

[9] S. Beigi and P.W. Shor, “C3, semi-clifford and generalized semi-clifford operations” Quantum Info. Comput. 10, 1 pp. 41–59, (2010). http://dx.doi.org/10.1016/S0020-0190(00)00084-3.

[10] Zeng, Bei and Chen, Xie and Chuang, Isaac, “Semi-Clifford operations, structure of Ck hierarchy, and gate complexity for fault-tolerant quantum computation”, Phys. Rev. A, 77, 042313 (2008). http://dx.doi.org/10.1103/PhysRevA.77.042313.

[11] D. Gross and M. van den Nest, “The LU-LC conjecture, diagonal local operations and quadratic forms over GF(2)” Quantum Info. Comput. 8, 1 pp. 263–281, (2008). http://portal.acm.org/citation.cfm?id=2011766.

[12] B. Eastin and E. Knill, “Restrictions on Transversal Encoded Quantum Gate Sets” Phys. Rev. Lett. 102, 110502 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.110502.

[13] B. Zeng, H. Chung, A. Cross and I. Chuang, “Local unitary versus local Clifford equivalence of stabilizer and graph states”, Phys. Rev. A 75, 032325 (2007). http://link.aps.org/doi/10.1103/PhysRevA.75.032325.

[14] S. Bravyi and A. Kitaev, “Universal quantum computation ideal Clifford gates and noisy ancillas”, Phys. Rev. A 71, 022316 (2005). http://dx.doi.org/10.1103/PhysRevA.71.022316.

[15] E. Knill, “Quantum Computing with Realistically Noisy Devices” Nature 434, pp. 39–44, (2005). http://dx.doi.org/10.1038/nature03550.

[16] W. van Dam and M. Howard, “Noise thresholds for higher-dimensional systems using the discrete Wigner function” Phys. Rev. A 83, 032310, (2011). http://dx.doi.org/10.1103/PhysRevA.83.032310.

[17] E. T. Campbell, H. Anwar and D. E. Browne “Magic state distillation in all prime dimensions using quantum Reed-Muller codes”, arXiv:1205.3104v1, (2012).

[18] D. Gottesman, “Fault-Tolerant Quantum Computation with Higher-Dimensional Systems”, in Quantum Computing and Quantum Communications, (editor: Colin Williams), Lecture Notes in Computer Science, Volume 1509, (Springer Berlin / Heidelberg, 1999), pp. 302–313. http://dx.doi.org/10.1016/S0960-0779(98)00218-5.

[19] D. M. Appleby, “Properties of the extended Clifford group with applications to SIC-POVMs and MUBs”, arXiv:quant-ph/0909.5233, (2009).

[20] H. Zhu, “SIC POVMs and Clifford groups in prime dimensions” J. Phys. A 43, 305305, (2010). http://dx.doi.org/10.1088/1751-8113/43/30/305305.

[21] J. M. Renes, R. Blume-Kohout, A. J. Scott and C. M. Caves, “Symmetric informationally complete quantum measurements” J. Math. Phys. 45, 2171, (2004). http://link.aip.org/link/doi/10.1063/1.1737053.

[22] Recall the aphorism “All primes are odd except two, which is the oddest prime of all”.

[23] Gerhard Zauner, “Grundzuge einer nichtkommutativen Designtheorie” or “Foundations of a non-commutative Design Theory”, Ph. D. Thesis, University of Vienna (1999). English translation available at IJQI 9, 1 pp. 445–507, (2004). http://dx.doi.org/10.1142/S0219749911006779.

[24] C. Cormick, E. F. Galvao, D. Gottesman, J. Pablo Paz, and A. O. Pittenger , “Classicality in discrete Wigner functions” Phys. Rev. A, 73, 012301, (2006). http://dx.doi.org/10.1103/PhysRevA.73.012301.

[25] D. Gross, “Hudson’s theorem for finite-dimensional quantum systems” J. Math. Phys. 47, number 12, 122107, (2006). http://link.aip.org/link/doi/10.1063/1.2393152.

[26] V. Veitch, C. Ferrie, J. Emerson “Negative Quasi-Bell inequalities” in “Quantum Computation and Quantum Communication”, (editor: Colin Williams), Lecture Notes in Computer Science, Volume 4573, (Springer Berlin / Heidelberg, 2007), pp. 411–419. http://dx.doi.org/10.1007/978-3-540-74533-2_33.

[27] Note that the definition of negativity used here is given in [25, 26].
putation thresholds, Phys. Rev. A 71, 042328 (2005). http://dx.doi.org/10.1103/PhysRevA.71.042328

[30] M. B. Plenio and S. Virmani, “Upper bounds on fault tolerance thresholds of noisy Clifford-based quantum computers” New Journal of Physics 12, number 3, 033012 , (2010). http://dx.doi.org/10.1088/1367-2630/12/3/033012

[31] B. Reichardt, “Quantum universality by state distillation” Quantum Inf. Comput. 9, pp. 1030–1052 (2009). http://dx.doi.org/10.1007/s11128-005-7654-8

[32] W. van Dam and M. Howard, “Tight Noise Thresholds for Quantum Computation with Perfect Stabilizer Operations” Phys. Rev. Lett. 103, 170504, (2009). http://dx.doi.org/10.1103/PhysRevLett.103.170504

[33] M. Byrd, C. Bishop and Y. Ou, “General open-system quantum evolution in terms of affine maps of the polarization vector” Phys. Rev. A. 83, 012301, (2011). http://dx.doi.org/10.1103/PhysRevA.83.012301

[34] G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-Dual Codes and Invariant Theory (Springer: Berlin, 2006).

[35] G. Nebe, E. M. Rains and N. J. A. Sloane, “The Invariants of the Clifford Groups”, Designs, Codes and Cryptography 24, 1 99–122 (2001). http://dx.doi.org/10.1023/A:1011233615437

[36] E. T. Campbell and D. E. Browne, “Bound States for Magic State Distillation in Fault-Tolerant Quantum Computation” Phys. Rev. Lett. 104, 030503, (2010). http://dx.doi.org/10.1103/PhysRevLett.104.030503