Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Mapping of type 2 diabetes proteins to COVID-19 biomarkers: A proteomic analysis

Keywords:
biomarkers
type 2 diabetes
COVID-19
SARS-CoV-2

To the Editor:

To determine predictive biomarkers for COVID-19 disease and infection severity, large scale multi-omic analyses have been undertaken in patients with respiratory disease, with and without COVID-19 disease [1]. Biomarkers involved in vessel damage, platelet degranulation, the coagulation cascade and the acute phase response were identified in COVID-19 disease and shown to differ further with increasing COVID-19 disease severity [1]. However, differences in protein expression may differ between patients with type 2 diabetes (T2D) and controls [2] and T2D patients may have altered markers of coagulation together with altered platelet function resulting in a prothrombotic propensity [3]. Biomarkers, or a combination of biomarkers, specific for COVID-19 disease in T2D would necessarily be independent of differentially expressed proteins in T2D versus controls. Therefore, this proteomic analysis was undertaken in subjects with and without T2D to compare these with the COVID-19 disease-related proteomic biomarkers that have been identified by using shotgun proteomics followed by parallel reaction monitoring [1], and to determine if any of the protein changes were dependent on glycemia.

Type 2 diabetes (T2D) (n = 23) and control subjects (n = 23) were enrolled in a case-controlled study, approved by Yorkshire and Humber Research Ethics Committee. A hyperinsulinemic clamp was performed as reported [4]; all subjects underwent a 10-h fast prior to the clamp. T2D: baseline glucose 7.6 ± 0.4 mmol/l (136.8 ± 7.2 mg/dl), reduced to 4.5 ± 0.07 mmol/l (81 ± 1.2 mg/dl) for 1-h. Controls: 4.9 ± 0.1 mmol/l (88.2 ± 1.8 mg/dl). Proteins that had been reported as biomarkers in COVID-19 disease for vessel damage (16 proteins), platelet degranulation (11 proteins), coagulation cascade (24 proteins) and acute phase response (9 proteins), shown in Table 1, were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement [4]. Statistics were performed using Graphpad Prism 8.0.

Table 1
Proteins identified as being altered in COVID-19 disease categorized according to biological processes: vessel damage (16 proteins), platelet degranulation (11 proteins), coagulation cascade (24 proteins) and acute phase response (9 proteins) in T2D and control subjects.

Target Full Name	Target	UniProt	Entrez Gene Symbol	T-test Baseline Control vs T2D
Vessel Damage				
Angiotensinogen	Angiotensinogen	P01019	AGT	0.0480
Angiopoietin-1	Angiopoietin-1	Q15389	ANGPT1	0.0190
Angiogenin	Angiogenin	P03950	ANG	0.0680
EGF-containing fibulin-like extracellular matrix protein 1	FBLN3	Q12805	EFEMP1	0.2190
Gelsolin	Gelsolin	P06396	GSN	0.0420
Hemopexin	Hemopexin	P02790	HPX	0.3050
Inter-alpha-trypsin inhibitor heavy chain H4	ITIH4	Q14624	ITIH4	0.5620
Lumican	Lumican	P51884	LUM	0.4600
Nidogen-1	Nidogen	P14543	NID1	0.1250
Neuregulin-1	NRPI	Q14786	NRPI	0.8850
Peristin	Peristin	Q15063	POSTN	0.1030
Ras-related C3 botulinum toxin substrate 1	RAC1	P63000	RAC1	0.1550
Kallistatin	Kallistatin	P29622	SERPINA4	0.0790
Pigment epithelium-derived factor	PEDF	P36955	SERPINF1	0.5110
Transforming growth factor-beta-induced protein ig-h3	TGFBI	Q15582	TGFBI	0.4880
Tenasin	Tenasin	P24821	TNC	0.3090
Vitronectin	Vitronectin	P04004	VTN	0.2940
Platelet degranulation				
Alpha-2-macroglobulin	a2-Macroglobulin	P01023	A2M	0.9240
Clusterin	Clusterin	P10099	CLU	0.1590
Fibronectin	Fibronectin	P02751	FN1	0.9950

(continued on next page)
T2D had higher BMI ($p = 0.0012$) with duration of diabetes 4.5 ± 2.9 years.

For the 60 protein biomarkers reported [1], 11 were found to differ in T2D: for vessel damage, 3 of 16 proteins differed (Angiotensinogen, Angiopoietin-1 and Gelsolin ($p < 0.05$)); for platelet degranulation, 1 of 11 proteins differed (Neutrophil-activating peptide 2 ($p < 0.014$)); for the coagulation cascade, 6 of 24 proteins differed (Coagulation factor IX, Kininogen-1, Vitamin K-dependent protein S, Vitamin K-dependent protein C ($p < 0.05$); Heparin cofactor 2 and Plasminogen activator inhibitor 1 ($p < 0.01$); and for the acute phase response, 1 of 9 proteins differed (Serum albumin ($p < 0.03$)) (Table 1). None of the 11 proteins that differed between T2D and controls altered in response to glucose normalization in the T2D cohort. The functions of the proteins that differed between subjects with and without type 2 diabetes (T2D) are shown in Table 2.

Eleven of the 60 potential biomarkers reported for COVID-19 differed between subjects with T2D and controls, indicating that these potential biomarkers of COVID-19 disease and its severity need to be validated before they can be said to be specifically related to COVID-19 disease. It perhaps is not surprising that significant protein biomarkers described for COVID-19 patients and its disease severity were also found in T2D, affecting biological processes resulting in vessel damage, platelet degranulation, coagulation cascade dysregulation and the acute phase response, perhaps indicating why patients with T2D may be at higher risk for severe COVID-19 disease [5]. The proteins that differed appeared to be independent of changes in glycemia.

Limitations of the study include the small number of subjects and that a different method of proteomic analysis was undertaken compared to others and these may not be directly comparable [1].

In conclusion, of the 60 protein biomarkers that may be of interest in COVID-19 disease and its severity, 11 were found to differ between T2D and controls, and these were unaffected by glycemic changes. These results indicate that stringent validation of proposed biomarkers must be undertaken.

Table 1 (continued)
Target Full Name
Platelet glycoprotein Ib alpha chain
Histidine-rich glycoprotein
Integrin alpha-1b: beta-3 complex
Neutrophil-activating peptide 2
Plasma serine protease inhibitor
Corticosteroid-binding globulin
Thromboglobulin
Transgelin-2
von Willebrand factor
Coagulation Cascade
Carboxypeptidase B2
Prothrombin
Coagulation Factor V
Coagulation factor VII
Coagulation factor IX
Coagulation factor Xa
Coagulation Factor XI
Fibrinogen
D-dimer
Fibrinogen gamma chain
Hepatocyte growth factor activator
Plasma kallikrein
Kininogen-1
Plasminogen
Vitamin K-dependent protein S
Vitamin K-dependent protein C
Alpha-1-antitrypsin
Protein Z-dependent protease inhibitor
Antithrombin-III
Heparin cofactor 2
Plasminogen activator inhibitor 1
Alpha-2-antiplasmin
Acute Phase Response
Serum albumin
Macrophage mannose receptor 1
Hepatocyte growth factor-like protein
Protein S100-A9
Serum amyloid A-1 protein
Alpha-1-antichymotrypsin
Superoxide dismutase [Cu-Zn]
Serum transferrin
Transketolase
Table 2
The functions of the proteins that differed between subjects with and without type 2 diabetes (T2D).

Protein	Function
Angiotensinogen	Precursor protein of all angiotensin peptides and therefore central to the renin-angiotensin system (RAS) that is primarily involved in the regulation of blood pressure and sodium-water balance. Cleavage of angiotensinogen by renin is the rate limiting step to release Angiotensin I.
Angiopoietin-I	A member of the angiopoietin family of growth factors; required for proper development and maturation of newly forming vessels.
Gelsolin	Promotes vessel survival, inhibits vascular leakage and suppresses inflammation.
Neutrophil-activating peptide 2 (NAP-2)	A cytokine that promotes neutrophil degranulation and chemotaxis. NAP-2 precursors are found in platelets and in the circulation.
Coagulation factor IX (Christmas factor)	A vitamin K-dependent plasma protein involved in the intrinsic blood coagulation pathway; converts factor X to its active form in the presence of Ca$^{2+}$ ions, phospholipids, and factor VIIIa. Factor IX deficiency (haemophilia B) is X-linked and causes a bleeding tendency
Kininogen–1 (HMWK-kallikrein factor)	Part of the blood coagulation system and the kinin-kallikrein system. Kininogen–1 is the precursor protein for high molecular weight kininogen (HMWK), low molecular weight kininogen (LMWK), and bradykinin. HMWK is essential for blood coagulation and in the kallikrein-kinin system. Bradykinin, released from HMWK, influences smooth muscle contraction and is a mediator of inflammation causing increased vascular permeability, stimulation of nucleopores and release of other inflammatory mediators such as prostaglandins; it is cardioprotective and shows antibacterial and antifungal activity.
Vitamin K-dependent protein S	An essential antiocoagulant protein. Cofactor for activating protein C (APC) to inactivate coagulation factors Va and Vila. Mutations in the PROS1 gene cause thrombophilia, with impaired regulation of blood coagulation and a tendency for recurrent venous thrombosis.
Vitamin K-dependent protein C	An essential antiocoagulant protein, it regulates blood coagulation by inactivating factors Va and Vila. Mutations cause thrombophilia, with impaired regulation of blood coagulation and a tendency for recurrent venous thrombosis.
Heparin cofactor II	An anti-coagulation factor that inhibits Factor IIa; a cofactor for heparin and dermatan sulfate. Deficiency causes increased thrombin generation and a hypercoagulable state.
Plasminogen activator inhibitor 1	A serine protein inhibitor secreted in response to inflammatory reactions. Platelets contain large amounts, and release it during vascular injury; assists in fibrin clot stability. PAI-1 is the main inhibitor of tissue-type plasminogen activator (tPA) and urokinase plasminogen activator (uPA), therefore it is important in regulation of fibrinolysis. Elevated levels of PAI-1 cause deficient plasminogen activation and are associated with a thrombotic tendency.
Albumin	The most abundant serum protein; transports hormones, fatty acids, and other compounds, buffers pH, maintains oncotic pressure. Low albumin is caused by liver disease, nephrotic syndrome, burns, protein-losing enteropathy, malabsorption, malnutrition, late pregnancy and malignancy. High albumin is usually caused by dehydration.

Ethics approval and consent to participate
Yorkshire and Humber Research Ethics Committee approved this study that was conducted according to the Declaration of Helsinki. All study participants signed an informed consent form prior to participation.

Consent for publication
All authors gave their consent for publication.

Availability of data and materials
All the data for this study will be made available upon reasonable request to the corresponding author.

Funding
No funding was received to perform this study.

Author contributions
ASMM and AEB analyzed the data and wrote the manuscript. AAQ contributed to study design, performed experiments, collected, analyzed, and interpreted data and edited the manuscript. TS supervised clinical studies and edited the manuscript. SLA contributed to study design, data interpretation and the writing of the manuscript. All authors reviewed and approved the final version of the manuscript. Alexandra E Butler is the guarantor of this work.

Declaration of competing interest
No authors have any conflict of interest or competing interests to declare.

References
[1] Overmyer KA, Shishkova E, Miller J, Balnis J, Bernstein MN, Peters-Clarke TM, Meyer JC, Quan Q, Mussihuber LK, Trujillo EA, He Y, Chopra A, Chueng HC, Tiwari A, Judson MA, Paulson B, Brademan DR, Zhu Y, Serrano LR, Linke V, Drake LA, Adam AP, Schwartz BS, Singer HA, Swanson S, Mosher DF, Stewart R, Coon J, Jaitovich A. Large-scale multi-omic analysis of COVID-19 severity. Cell Syst. 2020 Oct 8;S2405-4712(20):30371–9. https://doi.org/10.1016/j.cels.2020.10.003. Epub ahead of print. PMID: 33096026; PMCID: PMC7543771.
[2] Moos A, AI-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Do biomarkers of COVID-19 severity simply reflect a stress response in type 2 diabetes; biomarker response to hypoglycemia. Metab, Clin Exp 2020:154417.
[3] Kahal H, Aburima A, Spurgeon B, Wraith KS, Rigby AS, Sathyapalan T, et al. Platelet function following induced hypoglycaemia in type 2 diabetes. Diabet Med 2018;44:431–6.
[4] Kahal H, Halama A, Aburima A, Bhagwat AM, Butler AE, Grauman J, et al. Effect of induced hypoglycaemia on inflammation and oxidative stress in type 2 diabetes. Hypertens Res 2016;39(7):492–500.
[5] Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr 2020;14(4):303–10.
[6] Lu H, Cassis LA, Koo CW, Daugherthy A. Structure and functions of angiotensinogen. Hypertens Res 2016;39(7):492–500.
[7] Brindle NP, Saharinen P, Altalro K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 2006;98(8):1014–23.
[8] Pikel E, Levental I, Duruss B, Janney BA, Bucki R, Plasma Gelsolin: indicator of inflammation and its potential as a diagnostic tool and therapeutic target. Int J Mol Sci 2018;19(9).
[9] Cohen AB, Stevens MD, Miller EJ, Atkinson MA, Mullenchbach G. Generation of the neutrophil-activating peptide-2 by cathepsin G and cathepsin G-treated
human platelets. Am J Physiol 1992;263(2 Pt 1):L249–56.

[10] Smith C, Damas JK, Otterdal K, Oie E, Sandberg WJ, Yndestad A, et al. Increased levels of neutrophil-activating peptide-2 in acute coronary syndromes: possible role of platelet-mediated vascular inflammation. J Am Coll Cardiol 2006;48(8):1591–9.

[11] Taylor SA, Duffin J, Cameron C, Teitel J, Garvey B, Lillicrap DP. Characterization of the original Christmas disease mutation (cysteine 206→—serine): from clinical recognition to molecular pathogenesis. Thromb Haemostasis 1992;67(1):63–5.

[12] Kerbiriou DM, Griffin JH. Human high molecular weight kininogen. Studies of structure-function relationships and of proteolysis of the molecule occurring during contact activation of plasma. J Biol Chem 1979;254(23):12020–7.

[13] Heeb MJ. Role of the PROS1 gene in thrombosis: lessons and controversies. Expert Rev Hematol 2008;1(1):9–12.

[14] Gomez E, Poort SR, Bertina RM, Reitsma PH. Identification of eight point mutations in protein S deficiency type I-analysis of 15 pedigrees. Thromb Haemostasis 1995;73(5):750–5.

[15] Kovacs KB, Pataki I, Bardos H, Fekete A, Pfiegl G, Haramura G, et al. Molecular characterization of p.Asp77Gly and the novel p.Ala163Val and p.Ala163-Glu mutations causing protein C deficiency. Thromb Res 2015;135(4):718–26.

[16] Salem HH, Thompson EA. The role of heparin cofactor II in the modulation of hemostasis. Dev Biol Stand 1987;67:67–72.

[17] Kruthoff EK, Gudinchet A, Rachmann F. Plasminogen activator inhibitor 1 and plasminogen activator inhibitor 2 in various disease states. Thromb Haemostasis 1988;59(1):7–12.

[18] Busher JT. Serum albumin and globulin. In: rd, Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. Boston1990.

Abu Saleh Md Moin
Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
E-mail address: amoin@hbku.edu.qa.