Sum over topologies and double-scaling limit in 2D Lorentzian quantum gravity

R Loll and W Westra
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE Utrecht, The Netherlands
E-mail: r.loll@phys.uu.nl and w.westra@phys.uu.nl

Received 1 November 2005, in final form 17 November 2005
Published 28 December 2005
Online at stacks.iop.org/CQG/23/465

Abstract
We construct a combined non-perturbative path integral over geometries and topologies for two-dimensional Lorentzian quantum gravity. The Lorentzian structure is used in an essential way to exclude geometries with unacceptably large causality violations. The remaining sum can be performed analytically and possesses a unique and well-defined double-scaling limit, a property which has eluded similar models of Euclidean quantum gravity in the past.

PACS numbers: 04.60.Kz, 04.60.Nc, 04.60.Gw

1. Summing over topologies?

A central question that arises in the construction of a theory of quantum gravity is that of the fundamental, microscopic degrees of freedom whose dynamics the theory should describe. The idea that the information contained in the metric field tensor $g_{\mu\nu}$ may not constitute an adequate description of the geometric properties of spacetime at the very shortest scales goes back all the way to Riemann himself [1]. More recently this has led to the suggestion that at the Planck scale also the topological degrees of freedom of spacetime should become excited. Wheeler is usually credited with coining the notion of a spacetime foam [2], according to which spacetime is a smooth, classical object macroscopically, well described by general relativity, but at the Planck scale presents a scenario of wildly fluctuating geometry and topology.

In the context of the gravitational path integral, this has inspired an extension of the customary integral over all metrics (modulo diffeomorphisms) by an additional sum over spacetime topologies, namely,

$$Z(\kappa, \lambda) = \sum_{\text{topol.}} \int D[g_{\mu\nu}] e^{iS[g_{\mu\nu}]} ,$$

where the square brackets denote diffeomorphism equivalence classes of metrics and S is the gravitational action. We will take the action to include a cosmological term.
\[S = \int \!]+
the causal nature of spacetime, and to perform a non-perturbative summation over Lorentzian geometries. As regards the sum over topologies, the Lorentzian structure will be used to quantify how badly causality is violated by individual contributions to the path integral. We will introduce and solve a model of 2D quantum gravity which at the regularized level amounts to a sum over 2D piecewise linear spacetimes of any genus whose causal properties are ‘not too bad’. For the purposes of this paper, we will adopt a strictly quantum-gravitational point of view, in the sense that we will only be interested in models that do not lead to large-scale causality violations. In particular, we do not think that in this context third-quantized models, whose Hilbert spaces describe multiply connected spatial geometries, can be interpreted in a physically meaningful way. This is different from situations where the geometries appear as imbedded quantities, as they do in the case of string theory, where moreover topology changes of the worldsheet are mandatory, and not optional.

The question is then whether there are any models with topology change that produce a quantum spacetime foam whose non-trivial microstructure leads to a measurable, but not necessarily large, effect at a macroscopic level. The quantum gravity model we are about to construct has exactly this property. Although it is a model whose topological fluctuations are associated with the ‘mildest’ type of causality violation imaginable in two dimensions, it is already at the limit of what is acceptable as a spacetime foam. Namely, we will show that for a sufficiently large value of the renormalized gravitational coupling constant, the effects of topology change become overwhelming and the system enters a phase of ‘handle condensation’.

In order to perform the sum (1) non-perturbatively, we will adopt a Lorentzian version of the regularized sum over piecewise flat 2D spacetimes. For fixed topology $[0, 1] \times S^1$, this model is exactly soluble and leads to a 2D quantum gravity theory inequivalent to Liouville quantum gravity [9], with a well-defined Wick rotation and without a $c = 1$ barrier [10]. The difference can be traced to the absence (in the Lorentzian case) of branching ‘baby universes’, which are incompatible with causality. This method of ‘Lorentzian dynamical triangulations’ has also been applied successfully in dimension 3 [11], leading to a well-behaved quantum ground state, which unlike in the Euclidean theory does not degenerate into a lower-dimensional polymer as a consequence of a dominance of the conformal mode.

Recall that any (1 + 1)-dimensional Lorentzian spacetime contributing to the regularized path integral is given by a sequence of strips of height $\Delta t = 1$, where each strip in turn is a random sequence of N Minkowskian up- and down-triangles (figure 1), each with two timelike and one spacelike edges of length-squared $\pm a^2$ [9]. We will now generalize these to a class of Lorentzian geometries with holes, where the holes have minimal time duration $\Delta t = 1$. Although this time interval goes to zero in the continuum limit $a \to 0$, their effect is not necessarily negligible, since the triangle density goes to infinity in the limit. The way

2 However, it should be kept in mind that all topology changes in 2D and 3D which do not involve universe creation or annihilation are ‘bad’ according to the classification of Dowker and collaborators [8].

3 By this we mean baby universes that do not return to the ‘mother universe’, and therefore do not change the spacetime topology. We will not consider such configurations in the present work.
in which we create triangulations with holes in a strip \([t, t + 1]\) is as follows. Suppose the geometry has been built up to integer time \(t\), possibly with holes. The spatial geometry at time \(t\) is a closed circle consisting of \(l_t\) spacelike edges. Now, glue on another strip with matching ‘in-geometry’ of length \(l_t\) and some ‘out-geometry’ of length \(l_{t+1}\) (giving rise to a total discrete strip volume of \(N_t = l_t + l_{t+1}\) triangles). Next, glue an even number of the \(N_t\) timelike edges in the strip pairwise to each other, according to an arrow diagram (figure 2), and then cut open the geometry at each of these edges, perpendicular to the direction in which they were glued together. This will result in a spacetime geometry consisting of several cylindrical components between \(t\) and \(t + 1\). In order to obtain back a spatial circle at time \(t + 1\), the cylinders must be cut open at some of their vertices at \(t + 1\) and their spatial boundaries be aligned in some order to form again a single \(S^1\). In this way, one has constructed a strip geometry with some number \(g_t\) of holes.

It is straightforward to show that if arbitrary regluings at time \(t + 1\) are allowed, the number of possible geometries at a given strip volume scales factorially with \(N_t\), just as in the Euclidean case. However, if one looks at the causal properties of the resulting spacetimes, most of them turn out to be extremely ill-behaved, in the sense that even a single hole in the entire spacetime will lead to a global rearrangement of parts of a light front after passing the hole, even if it exists only for an infinitesimal time \(\Delta t\). Fortunately, there is a subclass of geometries for which this does not happen, which are those where the cylinders are reglued without any intermediate relative twisting or rearrangement of the order of the components during the time interval when they are disconnected.

The effect is most easily illustrated by the case of two components. In a ‘regluing without twist’ the two saddle points\(^4\) \(p_t\) and \(p_{t+1}\) at \(t\) and \(t + 1\) where the hole appears and vanishes are connected in each of the two cylinders by a timelike link, which implies that they are nearest lattice neighbours in either of the components. If this is not the case, e.g. if one of the cylinders is twisted before regluing, then \(p_t\) and \(p_{t+1}\) will not appear as nearest neighbours in that component, but \(p_{t+1}\) will have a relative shift \(\Delta l\) along the spatial direction. The resulting spacetime geometry will have the property that a light beam of macroscopic width that passes by the hole will be split into two parts which will emerge with a relative separation of \(\Delta l\) after the hole disappears! By comparison, the only effect of the hole in the ‘untwisted’ case is that a small fraction of the light beam will be scattered into the far-away part of the spacetime to which the hole connects during its infinitesimal lifetime (this effect is of course also present in the twisted case)\(^5\). Since we find it difficult to envisage how a quantum geometry with anything

\(^4\) Note in passing that it is not clear \textit{a priori} how to account for the curvature singularities at the saddle points in the Lorentzian action, and how to treat them in the Wick rotation, see [12] for a related discussion. We will simply use the standard Regge prescription in terms of deficit angles in the Wick-rotated action.

\(^5\) A detailed geometric analysis can be found in [13].
near a macroscopic causal structure could emerge from a superposition of such ill-behaved manifolds, our sum over topologies will contain only geometries with ‘untwisted’ holes.

3. Discrete solution and double-scaling limit

To illustrate that the causality constraints imposed above do lead to a well-defined and soluble model, we will now solve the combinatorics for a single strip $\Delta t = 1$ and look for a scaling behaviour of the two coupling constants that leads to a non-trivial continuum limit. The partition function after Wick-rotating is

$$Z(\lambda, \kappa) = \sum_{l_{in}} \sum_{l_{out}} e^{-\lambda(l_{in}+l_{out})} \sum_{T | l_{in}, l_{out}} e^{-\kappa g(T)},$$

with a sum over the initial and final boundary geometries of length l_{in} and l_{out}, and a sum over triangulations T of a strip with these boundaries. For a given triangulated strip of volume $N = l_{in} + l_{out}$, the counting of geometries with holes according to the procedure of the previous section involves a counting of diagrams like in figure 2 with N vertices and g arrows. Expression (3) can be rearranged as

$$Z(\lambda, \kappa) = \frac{1}{2} \sum_{N=0}^{\infty} \left(\frac{N}{2} \right) \sum_{g=0}^{\infty} \left(\frac{2g}{g!(g+1)!} \right) e^{-2\kappa g} e^{-\lambda - \log 2} N,$$

after which the sums can be performed explicitly, leading to

$$Z(\lambda, \kappa) = \frac{1}{2(1 - e^{-(\lambda - \log 2)})} \frac{1 - \sqrt{1 - 4z}}{2z},$$

where the second term depends only on the combination

$$z := e^{-2\kappa (e^{\lambda - \log 2} - 1)^2}.$$

An infinite-volume limit is obtained by tuning the bare cosmological coupling λ to $\log 2$ from above, as in standard Lorentzian quantum gravity [9],

$$\lambda = \lambda^{\text{crit}} + a^2 \Lambda + O(a^3) \equiv \log 2 + a^2 \Lambda + O(a^3),$$

where Λ denotes the renormalized, dimensionful cosmological constant, as the geodesic cutoff $a \to 0$. As can be seen from equation (5), this is only consistent if simultaneously also the inverse Newton constant κ is renormalized. Such a double-scaling limit is obtained by fixing z to a constant, $z = c < 1/4$, and defining a renormalized coupling K by

$$K = \kappa - 2 \log \frac{1}{a \sqrt{\Lambda}} + O(a), \quad K := \frac{1}{2} \log \frac{1}{c}.$$

Substituting these expansions into the expression for the strip partition function (5), a straightforward computation yields the renormalized partition function in terms of Λ and the gravitational coupling $G = 1/K$,

$$Z^R(\Lambda, G) = \frac{e^{2/G}}{4\Lambda} \left(1 - \sqrt{1 - 4 e^{-2/G}} \right).$$

In the continuum theory, one expects Λ to set the global scale because of $\langle V \rangle = \frac{1}{\Lambda}$ for the expectation value of the spacetime volume. On the other hand, the strength of the gravitational coupling governs the average number $\langle g \rangle$ of holes per slice, which is proportional to the

\[6\] Note that this gives rise to a non-negative renormalized cosmological constant; our approach naturally leads to a de Sitter-like behaviour.
fraction of a light beam that will be scattered by holes in a non-local and causality-violating manner [13]. As illustrated by figure 3, for \(G = 0 \) there are no holes at all. Their number increases for \(G > 0 \), first slowly and then rapidly, until it diverges at the maximum value \(G = 1/\log 2 \), at which point the system undergoes a transition to a phase of ‘condensed handles’.

What we have found therefore is an example of a gravity-inspired statistical model with a well-defined double-scaling limit. As in previous work on non-perturbative gravitational path integrals, the Lorentzian structure of the individual geometries has played a crucial role in the construction. Since the holes of our 2D toy model are of infinitesimal size, it incorporates a particularly mild form of dynamical topology change. Nevertheless, as we have shown, quantum spacetime acquires a non-trivial microstructure as a result, which can be probed by light scattering. Allowing for more general topology changes will clearly have an effect on the final quantum spacetime which is at least as big as the one found here.

In the forthcoming work [14], we will investigate what happens when one keeps the boundaries of the spacetime strip fixed instead of summing over them, as presented here. This more complicated model needs to be solved in order to determine the Hamiltonian and the full propagator of 2D Lorentzian quantum gravity with holes. Interestingly, it turns out that the inclusion of the boundaries leads to a different scaling behaviour of Newton’s constant. This also implies a different behaviour for the number of holes: unlike in the strip model, there is no condensation of handles, and the number of holes per strip stays infinitesimal. Unlike in the pure Lorentzian theory without holes, therefore, the scaling of the ‘bulk’ couplings and the bulk partition function cannot be deduced from solving the simpler strip model with summed-over boundaries. This may teach us an important lesson for higher-dimensional models, where a similar phenomenon may well be present.

Acknowledgments

We thank J Ambjørn, G ’t Hooft and S Zohren for enjoyable discussions. Support through the EU networks EUROGRID (grant HPRN-CT-1999-00161) and ENRAGE (grant MRTN-CT-2004-005616) are gratefully acknowledged.
Sum over topologies and double-scaling limit in 2D Lorentzian quantum gravity

References

[1] http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Grom
[2] Wheeler J A 1957 On the nature of quantum geometrodynamics Ann. Phys. 2 604–14
[3] Giddings S B 1990 The conformal factor and the cosmological constant Int. J. Mod. Phys. A 5 3811–30
[4] Dasgupta A and Loll R 2001 A proper-time cure for the conformal sickness in quantum gravity Nucl. Phys. B 606 357–79 (Preprint hep-th/0103186)
[5] David F 1995 Simplicial quantum gravity and random lattices Gravitation and Quantizations ed J Zinn-Justin and B Julia (Amsterdam: North-Holland) pp 679–750 (Preprint hep-th/9303127)
[6] Freidel L and Louapre D 2003 Nonperturbative summation over 3-d discrete topologies Phys. Rev. D 68 104004 (Preprint hep-th/0211026)
[7] Douglas M R and Shenker S H 1990 Strings in less than one-dimension Nucl. Phys. B 335 635–54
[8] Gross D J and Migdal A A 1990 Nonperturbative two-dimensional quantum gravity Phys. Rev. Lett. 64 127–30
[9] Dowker F 2003 Topology change in quantum gravity The Future of Theoretical Physics and Cosmology ed G W Gibbons, E P S Shellard and S J Rankin (Cambridge: Cambridge University Press) pp 436–52 (Preprint gr-qc/0206020)
[10] Ambjørn J and Loll R 1998 Non-perturbative Lorentzian quantum gravity, causality and topology change Nucl. Phys. B 536 407–34 (Preprint hep-th/9805108)
[11] Ambjørn J, Anagnostopoulos K N and Loll R 2000 Crossing the $c = 1$ barrier in 2d Lorentzian quantum gravity Phys. Rev. D 61 044010 (Preprint hep-lat/9909129)
[12] Ambjørn J, Jurkiewicz J and Loll R 2001 Nonperturbative 3d Lorentzian quantum gravity Phys. Rev. D 64 044011 (Preprint hep-th/0011276)
[13] Louko J and Sorkin R D 1997 Complex actions in two-dimensional topology change Class. Quantum Grav. 14 179–204 (Preprint gr-qc/9511023)
[14] Loll R and Westra W 2003 Space-time foam and the sum over topologies Acta Phys. Pol. B 34 4997–5008 (Preprint hep-th/0309012)
[15] Loll R, Westra W and Zohren S 2005 Taming the cosmological constant in 2D causal quantum gravity with topology change Preprint hep-th/0507012