Clinical, molecular and cytogenetic analysis of 46, XX testicular disorder of sex development with SRY-positive

Qiu-Yue Wu1, Na Li1, Wei-Wei Li1, Tian-Fu Li1, Cui Zhang1, Ying-Xia Cui1, Xin-Yi Xia*1 and Jin-Sheng Zhai2*

Abstract

Background: To review the possible mechanisms proposed to explain the etiology of 46, XX sex reversal by investigating the clinical characteristics and their relationships with chromosomal karyotype and the SRY (sex-determining region Y) gene.

Methods: Five untreated 46, XX patients with SRY-positive were referred for infertility. Clinical data were collected, and Karyotype analysis of G-band in lymphocytes and Fluorescence in situ hybridization (FISH) were performed. The three discrete regions, AZFa, AZFb and AZFc, located on the long arm of the Y chromosome, were performed by multiplex PCRs (Polymerase Chain Reaction) amplification. The set of PCR primers for the diagnosis of microdeletion of the AZFa, AZFb and AZFc region included: sY84, sY86, sY127, sY134, sY254, sY255, SRY and ZFX/ZFY.

Results: Our five patients had a lower body height. Physical examination revealed that their testes were small in volume, soft in texture and normal penis. Semen analyses showed azoospermia. All patients had a higher follicle-stimulating hormone (FSH), Luteinizing Hormone (LH) level, lower free testosterone, testosterone level and normal Estradiol, Prolactin level. Karyotype analysis of all patients confirmed 46, XX karyotype, and FISH analysis showed that SRY gene were positive and translocated to Xp. Molecular analysis revealed that the SRY gene were present, and the AZFa, AZFb and AZFc region were absent.

Conclusions: This study adds cases on the five new 46, XX male individuals with SRY-positive and further verifies the view that the presence of SRY gene and the absence of major regions in Y chromosome should lead to the expectance of a completely masculinised phenotype, abnormal hormone levels and infertility.

Keywords: 46, XX testicular disorder of sex development (DSD), SRY-positive, Sexual hormone
are usually translocated to the distal tip of the short arm of X chromosome or autosomal chromosomes. About 10% 46, XX males are negative for SRY gene, which could carry different degrees of masculinization [8,9].

There are several pathogenic mechanisms explaining 46, XX testicular DSD patients: 1. translocation of Y sequences, including the SRY gene, to an X chromosome or to an autosome; 2. a mutation in a gene in the testis-determining pathway triggering testis differentiation in SRY negative XX males; and 3. a hidden Y chromosome mosaicism limited to the gonad [10].

This study aimed to describing five 46, XX male DSD with SRY-positive, investigating the clinical characteristics and their relationships with chromosomal karyotype and the SRY gene.

Methods
Participant and Clinical data
We collected 5 untreated patients with SRY-positive 46, XX, that were referred for infertility. The physical examination included the measurement of height, potential gynecomastia and the inspection of external sex organs. Bilateral volume was calculated as the sum of the volume of both testes. According to guidelines of the World Health Organization, semen analysis was indicated to azoospermia after centrifugation of the ejaculate.

Serum levels of follicle-stimulating hormone (FSH), Luteinizing Hormone (LH), Estradiol, Prolactin, testosterone and free testosterone were assessed.

All procedures used in the study confirmed to the tenets of the Declaration of Helsinki. The Ethics Committee of Jinling Hospital approved the protocols used. All participants have known to participate in the study. Written informed consents were obtained from all participants.

Karyotype analysis of G-banding in lymphocytes and Fluorescence in situ hybridization (FISH)
Karyotypes were performed on peripheral blood lymphocytes in five patients respectively including 100 metaphase cells by conventional operating techniques. X chromosome, Y chromosome and SRY gene was located using FISH with probes of X chromosome centromere, Y chromosome centromere (CEP X with Spectrum Green, CEP Y with Spectrum Orange, Vysis, Downers Grove, IL; item no.32-111051) and SRY gene (SRY with Orange,Vysis, Downers Grove, IL; item no.30-190079).

Molecular analysis
Genomic DNA from peripheral blood of the patients using QIAamp DNA Blood Kits was extracted. The three discrete regions, AZFa, AZFb and AZFc, located on the long arm of the Y chromosome, were performed by multiplex PCRs(Polymerase Chain Reaction) amplification. The set of PCR primers for the diagnosis of microdeletion of the AZFa, AZFb and AZFc region included: sY84, sY86, sY127, sY134, sY254, sY255, SRY and ZFX/ZFY.

Results
Our five patients had a lower body height. Physical examination revealed that their testes were small in volume, soft in texture and normal penis. No potential gynecomastia and congenital hypospadias were seen. And they all described that they had normal sexual function. Semen analyses showed azoospermia. Endocrinological data indicated that the patients had a higher FSH, LH level, lower free testosterone, testosterone level and normal Estradiol, Prolactin level. General characteristics and endocrine hormone levels are shown in Table 1.

Karyotype analysis of all patients confirmed 46, XX karyotype, and FISH analysis showed that SRY gene were positive and translocated to Xp (Figure 1). Molecular analysis revealed that the SRY gene was present, and the AZFa, AZFb and AZFc region were absent (Figure 2).

Discussion
46, XX male syndrome is a rare sex reversal syndrome characterized by a female karyotype in discordance with a male phenotype. 90% of 46, XX testicular DSD usually have a normal male phenotypic heterogeneity at birth and are diagnosed after puberty on genital ambiguities, or infertility [8]. Our research reported that five patients had a female karyotype but were phenotypically male (46, XX males). They had normal external genitalia and masculinization, but showed azoospermia. That might be that all males were SRY-positive, which translocated on the short arm of X chromosome, and absent of the spermatogenic factors encoding gene on Yq, such as AZFa, AZFb and AZFc region in Y chromosome.

SRY gene is located in the Y chromosome and encodes a high mobility group(HMG) domain, a conserved motif present in many DNA-binding proteins, which could regulate testicular differentiation [11,12]. SRY protein is expressed in the genital ridge before testis formation, and in the testis during the period of testicular formation early in fetal life, until the development of adult testis [13]. Molecular genetics analysis demonstrated that most 46, XX testicular DSD patients carry SRY gene which translocated to X chromosome [14-16]. There was a report that an SRY gene fragment translocated from Y chromosome to autosomal chromosome [17]. Some patients showed SRY negative, who always had external genital ambiguities and gynecomastia. Despite the fact that SRY gene is considered to be the main regulatory factor for testis determination, phenotypic variability showed in 46, XX sex reversed cases cannot be explained only by whether SRY gene is present. And a number of other genes such as SOX9, DAX-1, WT1,
WNT4, FGF9 and RSPO1 have been involved in the process of gonadal differentiation [8].

The phenotype of the XX male observed in SRY positive 46,XX individuals varies greatly, from normal internal and external male gonads to abnormal secondary sexual characteristics, small testes and hypospadias, to a true hermaphrodite. It has been suggested that the variation in phenotype is primarily dependent on two mechanisms: X chromosome inactivation (XCI) pattern and the amount of Y material including SRY gene that has been translocated to the X chromosome [18]. Reviewing the literature, 46,XX males with true hermaphrodites or gonadal ambiguity have a small portion of the Y chromosome material translocated to the X, presumably allowing for XCI spreading and inactivating the SRY gene [19]. A normal male phenotype is expected to result from a larger Yp SRY bearing fragment being translocated to the X chromosome, where the length of the Yp fragment may protect the SRY gene from silencing by the spread of XCI [19]. In our study, all five cases have normal external genitalia and masculinization, which is expected that more Y chromosome material is present on the X, presumably protecting the SRY gene from the spread of inactivation. Because of the unavailable in specimens from the five cases to further study, we cannot do more molecular analysis to confirm the above point. Till now, both random and non-random XCI patterns have been reported in 46, XX males with a normal male phenotype [18,20]. It is indicated that the XCI pattern may be not associated with the XX male phenotype.

However, another mechanism, known as the position effect, has been reported to explain the observed phenotypic differences. The phenotypic differences are dependent on the proximity of the breakpoint to the SRY gene as well as the presence or absence of cryptic rearrangements affecting the expression of the SRY gene [21]. The rearrangements, may result in transcriptional repression, probably by removing essential regulatory elements or alterations of local chromatin structure [22].

Additionally, phenotypic variability might be associated with variations in genetic polymorphisms and copy

Cases	Body height (cm)	Age at presentation, development of secondary sex (year)	Volume of testes (ml)	Stretched penile length (cm)	Testosterone (nmol/L)	Free testosterone (pmol/L)	FSH (IU/L)	LH (IU/L)	Estradiol (pmol/L)	Prolactin (mIU/L)
1	165	12	6	9	6.8	27.7	35.5	13.8	112	201
2	162	15	3	8	5.4	15.2	29.2	12.9	70	158
3	164	14	4	8.5	8.9	29.4	45.9	25.1	98	78
4	167	11	9	11	8.4	28.1	33.7	22.3	107	232
5	165	12	7	10	7.0	20.5	31.4	19.6	81	167
Normal ranges	≥169	12-14	12-20	8-18	9.4-37.0	30.9-147.6	1-7	2-10	0-250	0-400

Figure 1 Fluorescent in situ hybridization (FISH) on metaphase chromosomes of second case with the LSI SRY/orange)/CEP X (green) probes. Metaphase spread showing a normal X chromosome (green signal for centromeric DXZ1 locus) and the SRY (orange) translocates to the distal end of short arm of chromosome X.
number variation of specific genes on the X chromosome, such as NROB1 and TAF7L [23,24].

Classical 46, XX male have normal testosterone level and free testosterone level during adolescence, but may decrease in adulthood, leading to hypergonadotropic hypogonadism [25]. Our cases had normal genitalia and were diagnosed for infertility after puberty. The level of testosterone and free testosterone is deficiency in five patients. In addition, high levels of FSH and LH are observed. This might explain that even though the 46, XX male have a normal external genitalia and masculinization, and they are lack of spermatogenesis.

The body heights of the patients we reported were all under 169 cm (the average height of Chinese male) and close to that of normal females. There are some phenotypic similarities between 46,XX men and those with Klinefelter syndrome, but 46,XX men tend to be shorter than men with KS [9]. Kirsch et al. indicated that the Y chromosome growth-control gene (GCVY) which next to the centromere had a possible impact on growth [26]. And there were some papers indicating that SHOX gene (short stature homeobox) expression and SHOX enhancer regions played a role in the growth [27]. It has been suggested that specific growth genes in the Y chromosome cannot switched to the patients, which might make them to show a female stature. GH (growth hormone) therapy may have some statural effects in the SHOX haploinsufficiency and may be insufficient to prevent the development of skeletal lesions after puberty [28].

Conclusions
Our reports adds cases on the five new 46, XX male individuals with sex reversal and further verifies the view that the presence of SRY gene and the absence of major regions in Y chromosome should lead to the expectance of a completely masculinised phenotype, abnormal hormone levels and infertility.

Acknowledgements
This work was supported by the Natural Science Foundation of Jiangsu province (BK2011660), Key Foundation of Jiangsu Science and Technology Bureau (BM2013058) and the Natural Science Foundation of China (30901652). We thank all members of the family for their cooperation in the study.

Received: 12 March 2014 Accepted: 16 August 2014
Published: 28 August 2014

References
1. Chapple A, Hortling H, Niemi M, Wennström J: XX sex chromosomes in a human male. Acta Medica Scandinavica 1964, 175(Suppl 412):25–28.
2. Chang HS, Wu YN, Wu CC, Hwang JL: Cytogenic and molecular analyses of 46,XX male syndrome with clinical comparison to other groups with testicular azoospermia of genetic origin. J Formos Med Assoc 2013, 112(2):72–78.
3. Lee GM, Ko JM, Shin CH, Yang SW: A Korean boy with 46,XX testicular disorder of sex development caused by SOX9 duplication. Ann Pediatr Endocrinol Metab 2014, 19(2):108–112.
4. Alves C, Brad Z, Coeli FB, Mello MF: 46, XX Male Testicular Disorder of Sexual Differentiation (DSD): hormonal, molecular and cytogenetic studies. Arq Bras Endocrinol Metabol 2007(2):545–689.
5. Vilain EJ: 46, XX testicular disorder of sex development. Washington University Press: Seattle (WA); 1993.
6. Anik A, Çàli G, Abao a, Böber E: 46, XX Male Disorder of Sexual Development: A Case Report. J clin res pediatr endocrinol 2013, 4(4):258–260.
7. Jain M, Chaudhary J, Haldar A: The Sertoli Cell Only Syndrome and Glucocorticoid in a Sex-Determining Region Y (SRY) Positive XX Infertile Male. J Clin Diagn Res 2013, 7(7):1677–1459.
8. Ergun-Longmire B, Vinci G, Alonso L, Matthew S, Tansil S, Lin-Su M, McElreavey K, New MI: Clinical, hormonal and cytogenetic evaluation of 46, XX males and review of the literature. J Clin Endocrinol Metab 2005, 18(8):739–748.
9. Vorona E, Ettmann M, Gromoll J, Schüring AN, Nieschlag E, Clinical, endocrinological, and epigenetic features of the 46, XX male syndrome, compared with 47, XXY Klinefelter patients. Journal of Clinical Endocrinology & Metabolism 2007, 92(9):3458–3465.
10. Zenteno-Ruiz JC, Kokman-Alfaro S, Méndez JP: 46, XX sex reversal. Arch Med Res 2001, 32(6):559–565.
11. Jiang T, Hou CC, She ZY, Yang WX: The SOX gene family: function and regulation in testis determination and male fertility maintenance. Mol Biol Rep 2013, 40(3):2187–2194.
12. Zhao L, Koopman P: SRY protein function in sex determination: thinking outside the box. Chromosom Res 2012, 20(1):153–162.
13. Sekido R, SRY: A transcriptional activator of mammalian testis determination. Int J Biochem Cell Biol 2010, 42(3):417–420.
14. Rate AA: 46, XX man with SRY gene translocation: cytogenetic characteristics, clinical features and management. Am J Med Sci 2008, 335(6):307–309.
15. Chernykh V, Kurilo L, Shilova N, Zolotukhina T, Ryzhkova O, Bliznetz E, Polyakov A, Hidden X chromosomal mosaicism in a 46, XX male. Sex Dev 2009, 3(4):183–187.
16. Beaulieu Bergeron M, Lemery E, Lemieux N: Identification of new susceptibility regions for X: Y translocations in patients with testicular disorder of sex development. Sex Dev 2010, 4(1):1–6.
17. Daweers JG, Hansson KB, Brouwers AA, Peters DJ, Breuning MH: An XX male with the sex-determining region Y gene inserted in the long arm of chromosome 16. Fertil Steril 2006, 86(2):463. e461–463. e465.
18. Minor A, Mohammed F, Farouk A, Hatakeyama C, Johnson K, Chow V, Ma S: Genetic characterization of two 46, XX males without gonadal ambiguities. J Assist Reprod Genet 2008, 25(1–12):547–552.
19. Kurz K, Kotecki M, Wojda A, Szarasz-Czaprak M, Latos-Bielenka A, Warenik-Szymankiewicz A, Ruszczynska-Wolska A, Jaruzelska J: Incomplete masculinisation of XX subjects carrying the SRY gene on an inactive X chromosome. J Med Genet 1999, 36(6):452–456.
20. Alikobovski L, Jezierskowska A, Constantino N, Helmku Z, Baumstark A, Vogel W, Mikiewicz-Sygula D, Kaufl-zewski B, Xp Y chromosomal isolation from the father in anSRY, RBM, and TSPY positive true hermaphrodite with oligozoospermia. J Med Genet 2000, 37(10):E28.
21. Gunes S, Asri R, Okten G, Atac F, Onat OE, Ongur G, Aydin O, Oczelik T, Bagci H: Two males with SRY-positive 46, XX testicular disorder of sex development. Systems Bio Reprod Med 2013, 59(1):42–47.
22. Sharp A, Kusz K, Jaruzelska J, Tapper W, Szaras-Czapnik M, Wolski J, Jacobs P: Variability of sexual phenotype in 46, XX (SRY+) patients: the influence of spreading X inactivation versus position effects. J Med Genet 2005, 42(5):420–427.

23. White S, Ohnesorg T, Notini A, Roeszler K, Hewitt J, Daggag H, Smith C, Turbitt E, Gustin S, van den Bergen J, Miles D, Western P, Arboleda V, Schumacher V, Gordon L, Bell K, Bengtsson H, Speed T, Hutton J, Warne G, Harley V, Koopman P, Vilain E, Sinclair A: Copy number variation in patients with disorders of sex development due to 46, XY gonadal dysgenesis. PLoS One 2011, 6(3):e17793.

24. Akinloye O, Gromoll J, Callies C, Nieschlag E, Simoni M: Mutation analysis of the X-chromosome linked, testis-specific TAF7L gene in spermatogenic failure. Andrologia 2007, 39(5):190–195.

25. Velasco G, Savarese V, Sandfort N, Jimenez SA, Jabbour S: 46, XX SRY-positive male syndrome presenting with primary hypogonadism in the setting of scleroderma. Endocr Pract 2011, 17(1):95–98.

26. Kirsch S, Weiss B, Schöns K, Rappold GA: The definition of the Y chromosome growth-control gene (GCY) critical region: relevance of terminal and interstitial deletions. Journal of pediatric endocrinology & metabolism: JPEM 2002, 15:1295–1300.

27. Chen J, Wildhardt G, Zhong Z, Roth R, Weiss B, Steinberger D, Decker J, Blum WF, Rappold G: Enhancer deletions of the SHOX gene as a frequent cause of short stature: the essential role of a 250 kb downstream regulatory domain. J Med Genet 2009, 46(12):834–839.

28. Binder G: Short stature due to SHOX deficiency: genotype, phenotype, and therapy. Horm Res Paediatr 2011, 75(2):81–89.

Cite this article as: Wu et al: Clinical, molecular and cytogenetic analysis of 46, XX testicular disorder of sex development with SRY-positive. BMC Urology 2014 14:70.