We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RF CMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm².

1. Introduction

Currently, CMOS (complementary metal-oxide semiconductor) devices are the most popular for RFIC (radio frequency integrated circuit) design due to their low cost [1–15]. In particular, CMOS RFICs can more easily be integrated with other analog or digital ICs than with GaAs (gallium arsenide) RFICs [16–21]. Although GaAs devices are regarded as more suitable than CMOS ones, there have been vigorous studies about how to reduce unit costs of CMOS power amplifiers [22–27]. If a successful CMOS power amplifier is developed, the potential for creating a fully integrated, frontend IC should increase. Nevertheless, compared to those using GaAs, CMOS power amplifiers still have drawbacks, including (1) low breakdown voltage, (2) lossy substrate, (3) low linearity, and (4) low gain. The issues related to the breakdown voltage and substrate loss have been successfully investigated and resolved using the distributed active transformer (DAT) proposed by Aoki et al. [22]. Additionally, techniques to solve the low-linearity problem of CMOS power amplifiers have also been intensively studied, and some successful techniques have been introduced [28–31].

Regarding the issue of low gain of CMOS power amplifiers, the mode-locking technique is one of the most successful solutions [32]. Accordingly, the concepts of the mode-locking technique have been vigorously adapted in previous work. In this study, we also focused on the improvement of gain of the CMOS power amplifier. While the mode-locking technique was adapted to a common-source amplifier in previous work, here, we propose a method for the mode-locking technique to be adapted to the cascode structure. The cascode structure is essential to overcome the low breakdown voltage problems of CMOS devices. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier using the proposed structure.

2. Typical Mode-Locking Technique

Figure 1 provides examples of CMOS power amplifiers using typical mode-locking technique. The structure shown in Figure 1(a) is the primary structure of the amplifier using the mode-locking technique. In Figure 1, for the sake of simplicity, the switch to control the oscillation is omitted. As shown in Figure 1(a), the differential structure is essential to adapt the mode-locking technique. Moreover, the differential structure provides an advantage for generating a virtual ground node and hence for minimizing the gain-reduction problems induced by the bond wires. As can be seen in Figure 1(a), the cross-coupled transistors (M_CC) were used to construct the mode-locking structure. Although the input signal enters through the gate of the common-source transistors (M_CS), the M_CC also acts as the amplifier stage.
Accordingly, the mode-locking structure can elevate the gain as compared to a typical common-source amplifier.

Recently, as the CMOS technology has been scaled down, the cascode structure has become the most commonly used one for CMOS power amplifiers, to moderate breakdown voltage problems. Figure 1(b) shows the cascode structure adapted for the mode-locking technique. In Figure 1, the drain voltage of M_{CG} is used as the input of M_{CC}. In a previous work [33], to moderate the excessive voltage swing of input of M_{CC}, the series capacitor was inserted between the drain of M_{CG} and the gate of M_{CC}. However, the conceptual operation principle presented in Figure 1(b) is identical to that in Figure 1(a).

3. Proposed Mode-Locking Method with the Cascode Structure

Although the feasibility of the mode-locking technique merged into the cascode structure was successfully proven in previous work [33], the time delay between input of M_{CS} and input of M_{CC} of the structure shown in Figure 1(b) may obstruct maximization of the advantages of the mode-locking technique. To investigate the time delay problems indicated in Figure 1(b), we simplified the structure shown there with on-resistances as shown in Figure 2. In Figure 2, R_{CS}, R_{CG}, and R_{CC} denote the on-resistances of M_{CS}, M_{CG}, and M_{CC}, respectively. If the time delay between V_{IN+} (or V_{IN-}) and V_{M+} (or V_{M-}) is t_{CS}, the time delay, t_{CC}, between V_{IN+} (or V_{IN-}) and V_{OUT+} (or V_{OUT-}) can then be calculated as follows:

$$t_{CC} \approx t_{CS} + 5\tau \quad (\tau = R_{CG}C_{OUT}). \tag{1}$$

Here, C_{OUT} is the equivalent capacitance at V_{OUT+} or V_{OUT-}. In (1), we ignored effects induced by the load impedances connected to V_{OUT+} and V_{OUT-}. If the effects of load impedances are considered, the time constant, τ, increases. Additionally, we assumed that the C_{OUT} is fully discharged or charged after five time constants. Figure 3 provides the ideal voltage waveforms of the device in Figure 2.

Given that M_{CC} should perform the identical function of the M_{CS} in general, the value of t_{CC} needs to be minimized.
to maximize the advantage of the mode-locking technique. Undesired, excessive time delay, t_{CC}, may cause the undesired effects, even harmonics. Additionally, the excessive value of t_{CC} may prevent switching conditions that would be ideal for high efficiency of the switching-mode power amplifier.

Here, we proposed a modified, mode-locking technique for the cascode structure to minimize the time delay, t_{CC} of (1). In the proposed structure (Figure 4), the input of the M_{CC} is connected to the drain of M_{CS}. The time delay between input of M_{CS} and input of M_{CC} is reduced to t_{CS}.

Compared to the typical structure shown in Figure 1(b), the time delay is reduced with amount of 5τ of (1). Although the time delay, t_{CS}, still exists, the undesired effects induced by the excessive time delay may be minimized with the proposed structure.

4. Experimental Results: Design and Measured Results of 2.4 GHz CMOS Power Amplifier with Proposed Mode-Locking Technique

To verify the feasibility of the proposed structure, we designed a 2.4 GHz power amplifier using 0.18μm RF CMOS technology with one poly, and six metal layers. Top metal layer was composed of aluminum 2.3μm thick. The power amplifier is designed as switching mode amplifier for polar transmitter, or sensor network, applications. All of the input and output matching networks are fully integrated, including test PADS and transformers. Important design parameters, including the transistor size, are provided in Figure 5. The input and output transformer were designed using an electromagnetic simulator. To minimize the loss induced by the resistance of the output transformer, the width of the output transformer is wider than that of the input transformer. The supply voltage of the amplifier enters through the center tap of the primary part of the output transformer. To minimize the gain reduction problems induced by the bond wires, a differential structure was adapted. All of the resistors for the bias are 2 kΩ. Figure 6 shows the chip photograph of the newly designed power amplifier. The chip size is 1.4×0.6 mm2.

Figure 7 shows the measured output power and power added efficiency (PAE), according to the operating frequency, with a fixed supply voltage (V_{DD}) of 3.3 V. As provided in Figure 7, the output power and PAE at 2.4 GHz were 23.32 dBm and 34.9%, respectively. Figure 8 shows the PAE versus the output power according to V_{DD} ranging from 0.5 V to 3.3 V.

5. Conclusions

In this study, we proposed a mode-locking technique for a cascode CMOS power amplifier. Using the drain voltage of
a common-source transistor as the input of the cross-coupled transistor, the time delay between the common-source and cross-coupled transistors was minimized to maximize the advantage of the mode-locking technique. To prove the feasibility of the proposed technique, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RF CMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The size of the newly designed chip was 1.4 × 0.6 mm².

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-044627).

References

[1] J.-N. Chang and Y.-S. Lin, “A high-performance CMOS power amplifier for 60 GHz short-range communication systems,” Microwave and Optical Technology Letters, vol. 55, no. 5, pp. 1155–1160, 2013.
[2] J. Oh, H. Kim, M.-S. Kim et al., “Integrated CMOS RF transmitter with a single-ended power amplifier,” Microwave and Optical Technology Letters, vol. 55, no. 1, pp. 205–210, 2013.
[3] J. Kong and J. Jeong, “Linearization of stacked-FET RF CMOS power amplifier using diode-integrated bias circuit,” Microwave and Optical Technology Letters, vol. 55, no. 5, pp. 1011–1014, 2013.
[4] J. Oh, B. Ku, and S. Hong, “A 77-GHz CMOS power amplifier with a parallel power combiner based on transmission-line transformer,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2662–2669, 2013.
[5] K. Yousef, H. Jia, R. Pokharel et al., “CMOS ultra-wideband low noise amplifier design,” International Journal of Microwave Science and Technology, vol. 2013, Article ID 328406, 6 pages, 2013.
[6] B. Koo, Y. Na, and S. Hong, “Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 2, pp. 340–351, 2012.
[7] M. Voicu, D. Pepe, and D. Zito, “Performance and trends in millimetre-wave CMOS oscillators for emerging wireless applications,” International Journal of Microwave Science and Technology, vol. 2013, Article ID 312618, 6 pages, 2013.
[8] S.-Y. Lee, H. Ito, S. Amakawa, N. Ishihara, and K. Masu, “An inductorless cascaded phase-locked loop with pulse injection locking technique in 90 nm CMOS,” International Journal of Microwave Science and Technology, vol. 2013, Article ID 584341, 11 pages, 2013.
[9] C. Park, J. Han, H. Kim, and S. Hong, “A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 4, pp. 782–792, 2008.
[10] C. Park, Y. Kim, H. Kim, and S. Hong, “A 1.9-GHz triple-mode class-E power amplifier for a polar transmitter,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, pp. 148–150, 2007.
[11] W. Tangsrirat, “Gm-realization of controlled-gain current follower transconductance amplifier,” The Scientific World Journal, vol. 2013, Article ID 201565, 8 pages, 2013.
[12] J. Jalil, M. B. I. Reaz, M. A. S. Bluwian, L. F. Rahman, and T. G. Chang, “Designing a ring-VCO for RFID transponders in 0.18 μm CMOS process,” The Scientific World Journal, vol. 2014, Article ID 580385, 6 pages, 2014.
[13] F. Tang, A. Bermak, A. Amira, M. A. Benamar, D. He, and X. Zhao, “Two-step single slope/SAR ADC with error correction for CMOS image sensor,” The Scientific World Journal, vol. 2014, Article ID 861278, 6 pages, 2014.
[14] H. Aljarajreh, M. B. I. Reaz, M. S. Amin, and H. Husain, “An active inductor based low noise amplifier for RF receive,” Elektronika ir Elektrotechnika, vol. 19, no. 5, pp. 49–52, 2013.
[15] I. Guerra-Gomez and E. Tlelo-Cuautle, “Sizing analog integrated circuits by current-branches-bias assignments with heuristics,” Elektronika ir Elektrotechnika, vol. 19, no. 10, pp. 81–86, 2013.

[16] Y. Lee and S. Hong, “A dual-power-mode output matching network for digitally modulated CMOS power amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1570–1579, 2013.

[17] J. Kim, D. Kim, Y. Cho, D. Kang, B. Park, and B. Kim, “Envelope-tracking two-stage power amplifier with dual-mode supply modulator for LTE applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 543–552, 2013.

[18] K. Y. Kao, Y. C. Hsu, K. W. Chen, and K. Y. Lin, “Phase-delay cold-FET pre-distortion linearizer for millimeter-wave CMOS power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4505–4519, 2013.

[19] A. F. Aref and R. Negra, “A fully integrated adaptive multiband multimode switching-mode CMOS power amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2549–2561, 2012.

[20] K. Y. Son, B. Koo, and S. Hong, “A CMOS power amplifier with a built-in RF predistorter for handset applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2571–2580, 2012.

[21] S. Aloui, B. Leite, N. Demirel, R. Plana, D. Belot, and E. Kerherve, “High-gain and linear 60-GHz power amplifier with a thin digital 65-nm CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 6, pp. 2425–2437, 2013.

[22] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer—a new power-combining and impedance-transformation technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316–331, 2002.

[23] J. Park, C. Lee, and C. Park, “A brief review: stage-convertible power amplifier using differential line inductor,” Wireless Engineering and Technology, vol. 3, no. 4, pp. 189–194, 2012.

[24] T. Joo, H. Lee, S. Shim, and S. Hong, “CMOS RF power amplifier for UHF stationary RFID reader,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 106–108, 2010.

[25] S. J. Wilk, W. Lepkowski, and T. J. Thornton, “32 dBm power amplifier on 45 nm SOI CMOS,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 3, pp. 161–163, 2013.

[26] J. H. Chen, S. R. Helmi, A. Y. S. Jou, and S. Mohammadi, “A wideband power amplifier in 45 nm CMOS SOI technology for X-Band applications,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 11, pp. 587–589, 2013.

[27] J.-H. Chen, S. R. Helmi, H. Pajouhi, Y. Sim, and S. Mohammadi, “A wideband RF power amplifier in 45-nm CMOS SOI technology with substrate transferred to AlN,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4089–4096, 2012.

[28] H.-Y. Chung, C.-W. Kuo, and H.-K. Chiou, “A full X-band power amplifier with an integrated guanella-type transformer and a predistortion linearizer in 0.18-μm CMOS,” Microwave and Optical Technology Letters, vol. 55, no. 9, pp. 2229–2232, 2013.

[29] K. Kwon and I. Nam, “A linearization technique for a transconductor using vertical bipolar junction transistors in a CMOS process,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 195–203, 2013.