Supplementary Table 1. Clinical characteristics of the enrolled subjects

Clinical characteristics	Control (n = 210)	CAD (n = 180)	P value
Age (years)	58.5 (52.50-69.25)	62 (55.00-67.00)	0.4834
Sex, male (%)	129 (61.40%)	117 (65.00%)	0.4660
Diabetes, yes (%)	17 (8.10%)	39 (21.67%)	<0.0001
Hypertension, yes (%)	53 (25.24%)	116 (64.44%)	<0.0001
FPG (mmol/L)	5.36(5.04-5.77)	5.75(5.14-6.83)	<0.0001
TC (mmol/L)	4.51(4.04-4.85)	4.15(3.51-4.92)	0.0198
TG (mmol/L)	1.08(0.87-1.33)	1.38(0.98-1.87)	<0.0001
LDL-C (mmol/L)	2.66(2.26-3.04)	2.47(1.91-3.16)	0.2029
HDL-C (mmol/L)	1.37(1.21-1.58)	1.12(0.88-1.38)	<0.0001
Hcy (μmol/L)	9.20 (2.93-10.95)	11.52 (3.26-11.52)	<0.0001
Leukocytes (×10⁹)	5.64(4.80-6.41)	5.95(4.96-7.04)	0.0383
Neutrophil (×10⁹)	3.05(2.55-3.60)	3.72(2.98-4.69)	<0.0001
Monocyte (×10⁹)	0.39(0.32-0.47)	0.48(0.38-0.63)	<0.0001
Lymphocyte (×10⁹)	1.92(1.62-2.32)	1.50(1.16-1.83)	<0.0001

Data are presented as median (interquartile range) or n (%).

Abbreviations: FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; Hcy, homocysteine.

Significant P values were in bold.
Supplementary Table 2. Clinical characteristics of the randomly selected subjects

Clinical characteristics	Control (n = 112)	CAD (n = 110)	P value
Age (years)	60 (53.25-70.00)	61 (55.00-67.00)	0.8515
Sex, male (%)	70 (48.95%)	73 (51.05%)	0.5477
Diabetes, yes (%)	5 (4.46%)	22 (20.00%)	**0.0004**
Hypertension, yes (%)	33 (32.35%)	69 (67.65%)	<**0.0001**
FPG (mmol/L)	5.43(5.13-5.76)	5.75(5.15-6.74)	**0.0008**
TC (mmol/L)	4.49(4.02-4.84)	4.16(3.45-4.94)	0.1588
TG (mmol/L)	1.12(0.86-1.36)	1.49(0.97-1.88)	<**0.0001**
LDL-C (mmol/L)	2.68(2.25-3.04)	2.48(1.89-3.15)	0.4028
HDL-C (mmol/L)	1.41(1.24-1.63)	1.12(0.88-1.37)	<**0.0001**
Hcy (μmol/L)	8.94(2.93-8.94)	11.52(3.26-11.52)	<**0.0001**
Leukocytes (×10⁹)	5.69(4.80-6.13)	5.80(4.94-6.75)	0.7891
Neutrophil (×10⁹)	2.99(2.51-3.67)	3.57(2.72-4.33)	**0.0018**
Monocyte (×10⁹)	0.40(0.33-0.48)	0.44(0.37-0.54)	**0.0041**
Lymphocyte (×10⁹)	1.96(1.66-2.33)	1.55(1.23-1.86)	<**0.0001**

Data are presented as median (interquartile range) or n (%). Abbreviations: FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; Hcy, homocysteine. Significant P values were in bold.
Supplementary Table 3. Independent risk factors for CAD

Parameters	Multivariate regressions		
	β(95%CI)	P	
FPG	1.56(1.11 - 2.21)	0.011	
LDL-C	0.55(0.32 - 0.94)	0.028	
TG	3.63(1.53 - 8.63)	0.004	
HDL-C	0.31(0.10 - 0.92)	0.035	
Hcy	1.14(1.05 - 1.24)	0.003	
cg25953130 Methy.	1.03(1.01 - 1.05)	0.012	

Backward multivariate regression analysis was used to analyze the independent risk factors for CAD. Adjust for age, FPG, TC, TG, LDL-C, HDL-C, Hcy and leukocyte count.

Abbreviations: Methy., methylation; FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; Hcy, homocysteine; 95%CI, 95% confidence interval.

Significant P values were in bold.
Supplementary Table 4. Bivariate and multivariate association between clinical parameters and the methylation levels of cg25953130

Groups	Parameters	Univariate correlations	Multivariate regressions		
		r	P	β (95%CI)	P
Control	Age	-0.2305	0.0145	-0.24 (-0.59 - -0.10)	0.0059
	FPG	-0.1795	0.0606	-	-
	TC	0.0736	0.4404	-	-
	TG	0.2804	**0.0027**	0.21 (1.06 - 21.25)	**0.0307**
	LDL-C	0.2984	**0.0014**	-	-
	HDL-C	-0.1617	0.0884	-0.03 (-13.70 - 9.50)	0.7206
	Hcy	0.2589	**0.0058**	0.27 (0.45 - 2.04)	**0.0024**
	Leukocytes	-0.1062	0.2649	-	-
CAD	Age	0.0986	0.3054	0.14 (-0.09 - 0.66)	0.1375
	FPG	-0.0504	0.6080	-	-
	TC	-0.0781	0.4354	-	-
	TG	0.0869	0.3848	-0.01 (-2.78 - 2.59)	0.9435
	LDL-C	-0.0775	0.4389	-	-
	HDL-C	-0.2907	**0.0030**	-0.33 (-23.82 - -6.33)	**0.0009**
	Hcy	-0.1118	0.2492	-0.08 (-0.73 - 0.29)	0.3867
	Leukocytes	-0.1000	0.2986	-	-

In order to control the influence of confounding factors on the linear regression model, in the multivariate regression analysis, we first use Stepwise's statistical method to eliminate the variables with collinearity and establish the optimal regression model, in which the age, TG, Hcy and HDL-C parameters are incorporate into the regression model.

Abbreviations: FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; Hcy, homocysteine; 95%CI, 95% confidence interval.

Significant P values were in bold.
Supplementary Table 5. Serum lipids, Hcy and FPG levels of mouse

groups	TC (mmol/L)	TG (mmol/L)	LDL-C (mmol/L)	HDL-C (mmol/L)	FPG (mmol/L)	Hcy (μmol/L)
G1	2.54±0.58	0.65±0.20	0.24±0.08	1.59±0.20	3.14±1.21	15.04±1.75
G2	14.94±2.47	0.75±0.08	2.22±0.44	0.71±0.13	3.24±1.13	13.97±2.10
G3	20.46±7.87	0.97±0.60	4.09±2.46	0.66±0.15	5.21±1.79	9.21±1.14
G4	13.38±2.70	0.65±0.22	1.86±0.42	0.72±0.10	3.98±1.06	12.83±1.27
G5	14.89±2.71	0.95±0.29	2.45 (2.19-2.50)	0.82±0.16	2.78±0.53	28.77±7.85
G6	11.16±1.91	0.66±0.13	1.95±0.17	0.55±0.11	2.57±0.73	19.52±3.95
G7	15.98±3.49	0.77±0.15	2.54±0.67	0.75±0.15	3.82±0.84	30.90±8.14

Data are presented as mean ± SD (standard deviation) or as median (interquartile range).

Mice were divided into seven subgroups: G1, ApoE-WT + ND; G2, ApoE-/- + ND; G3, ApoE-/- + HFD; G4, ApoE-/- + HFD + FA; G5, ApoE-/- + ND + Hcy; G6, ApoE-/- + ND + Hcy + FA; G7, ApoE-/- + HFD + Hcy + FA.

Abbreviations: FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; Hcy, homocysteine; WT, wild type; ND, normal diet; HFD, high fat diet; FA, folic acid.
Species	Gene Name	Primers (5' to 3')
Human	GAPDH	Forward: GAAGGTGAAGGTCGGAGTC
Reverse: GAAGATGGGTAGGGATTTG		
	DNMT1	Forward: ACCGCTTCTCTTCTCAGGCACTTA
Reverse: GTTCAGTCTCTGTGAACACTGTGG		
	ARID5B	Forward: GAATTAGGCGGTAATCTGGGAG
Reverse: TCCGAGGTTTGGATTGGAGCCAG		
	MCP-1	Forward: AAGTGTCCTCAAAGAGCTGTC
Reverse: AGTTTGGGTTTGCTTGTCAG		
	CCR2	Forward: TACGGTGCTCCCTGTCAATAAA
Reverse: TAAGATGAGGACGACCGAGCAT		
	CD86	Forward: CTGCTCATCTATACACGGTTACC
Reverse: GAAACGTCGTACAGTTCTGTG		
	IL-10	Forward: GACTTTAAGGGTTACCTGGTTG
Reverse: TCACATGCGCCTTGATGTCTG		
	Arg-1	Forward: TGGACAGACTAGGAATTGGCA
Reverse: CCAGTCCGTAACATCAAAAACT		
	TNF-α	Forward: AGAAGCTCAGGGGCGCTACA
Reverse: GCTCCGTGTCTCAAGGAAAGT		
Mouse	GAPDH	Forward: AGGTCGGGTGTAACGGGATTG
Reverse: TGTAGACCAGTGTAGGGGTCA		
	DNMT1	Forward: AAGATGGGTGTGGTCTACCC
Reverse: CATCCAGGTTGCTCCCTTG		
	ARID5B	Forward: TTCCCTCCCAAGAGCACTCC
Reverse: CTGCCGTTTCTCCCGAGAG		
	MCP-1	Forward: TAAAAACCTGGAGACGAAACCT
Reverse: GCATTAGCCTGAGGATGACG		
	TNF-α	Forward: CCTCAACACTGATCTTCCTTCT
Reverse: GCTACGACGTGGGTACGAG |
Supplementary Fig. 1. Spearman correlation analysis. (A, B) Spearman correlation between the methylation levels of cg25953130 and the expression of ARID5B in the CAD and control groups. (C) Spearman correlation between Hcy levels and the expression of CCR2 on classical monocytes in the control group. (D) Spearman correlation between HDL-C levels and the expression of CCR2 on classical monocytes in the CAD group. Abbreviations: m1, classical monocytes; Con, control.
Supplementary Fig. 2. The effects of Hcy, ox-LDL and FA on DNMT1 and ARID5B expression in primary monocytes. (A, B) The effect of folic acid on the expression of DNMT1 and ARID5B in Hcy-treated primary monocytes. (C, D) The effect of folic acid on the expression of DNMT1 and ARID5B in ox-LDL-treated primary monocytes. All plotted values are the mean ± SE values of at least 3 independent experiments.

Abbreviations: FA, folic acid; Hcy, homocysteine; ox-LDL, oxidized low density lipoprotein.

* P < 0.05, ** P < 0.01, **** P < 0.0001.
Supplementary Fig. 3. The effect of folic acid on the lipid and Hcy metabolism in mice. (A-D) The effect of folic acid on serum TC, LDL-C, HDL-C and TG in mice. (E) The effect of folic acid on serum Hcy in mice. (F) The effect of folic acid on serum FPG in mice. Mice were divided into seven subgroups: G1, ApoE-WT + ND; G2, ApoE-/- + ND; G3, ApoE-/- + HFD; G4, ApoE-/- + HFD + FA; G5, ApoE-/- + ND + Hcy; G6, ApoE-/- + ND + Hcy + FA; G7, ApoE-/- + HFD + Hcy + FA. Abbreviations: FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; Hcy, homocysteine; WT, wild type; ND, normal diet; HFD, high fat diet; FA, folic acid.

#, the G1 group was statistically different from the other 6 groups; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.
Supplementary Fig. 4. Gating strategy for human monocyte subsets. Circulating leukocytes in FSC/SSC dot plot were presented in supplementary Fig. 4A. In CD86/SSC dot plot, CD86 positive monocytes were firstly gated (P2, B). Subsequently, in the CD14/CD16 dot plot (C), based on the expression of CD14 and CD16, the identified monocytes were divided into classical (P2, CD14++CD16-), intermediate (P3, CD14++CD16+) and nonclassical (P4, CD14+CD16++) subsets.
Supplementary Fig. 5. Gating strategy for mouse monocyte subsets. Circulating mouse leukocytes in FSC/SSC dot plot were presented in supplementary Fig. 5A. In SSC/CD115 dot plot, CD115 positive monocytes were firstly gated (P1, B). Subsequently, in the Ly6C/CD43 dot plot (C), based on the expression of Ly6C and CD43, the identified monocytes were divided into classical (P2, Ly6C++CD43+), intermediate (P3, Ly6C++CD43++) and nonclassical (P4, Ly6C+CD43++) subsets.
Supplementary Fig. 6. Gating strategy for monocyte subsets sorting and purity identification. Circulating monocytes in FSC/SSC dot plot were presented in supplementary Fig. 6A (P1). In CD86/SSC dot plot, CD86 positive monocytes were firstly gated (P2, B). Subsequently, in the CD14/CD16 dot plot, based on the expression of CD14 and CD16 (C), the identified monocytes were divided into classical (P3, CD14++CD16-), intermediate (P4, CD14++CD16+) and nonclassical (P5, CD14+CD16++) subsets. The monocyte subsets obtained by FCM sorting had good purity (D-F).
Supplementary Fig. 7. Purity identification for CD14+ monocytes. Flow cytometry was used to identify the purity of the obtained monocytes labeled with CD14 monoclonal fluorochrome-conjugated antibody. (A) Gating strategy for monocyte CD14+ monocytes. (B) Purity of the CD14+ monocytes.