Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens

Fadi J Najm1−3,5, Christine Strand1,5, Katherine F Donovan1,5, Mudra Hegde1,5, Kendall R Sanson1,5, Emma W Vaimberg1, Meagan E Sullender1,5, Ella Hartenian1, Zohra Kalani1, Nicolo Fusi4, Jennifer Listgarten4, Scott T Younger1, Bradley E Bernstein1−3, David E Root1 & John G Doench1,5

Combinatorial genetic screening using CRISPR–Cas9 is a useful approach to uncover redundant genes and to explore complex gene networks. However, current methods suffer from interference between the single-guide RNAs (sgRNAs) and from limited gene targeting activity. To increase the efficiency of combinatorial screening, we employ orthogonal Cas9 enzymes from Staphylococcus aureus and Streptococcus pyogenes. We used machine learning to establish S. aureus Cas9 sgRNA design rules and paired S. aureus Cas9 with S. pyogenes Cas9 to achieve dual targeting in a high fraction of cells. We also developed a lentiviral vector and cloning strategy to generate high-complexity pooled dual-knockout libraries to identify synthetic lethal and buffering gene pairs across multiple cell types, including MAPK pathway genes and apoptotic genes. Our orthologous approach also enabled a screen combining gene knockouts with transcriptional activation, which revealed genetic interactions with TP53. The “Big Papi” (paired aureus and pyogenes for interactions) approach described here will be widely applicable for the study of combinatorial phenotypes.

Mapping the functional relationships between genes is a critical step toward understanding how disease states arise from gene dysfunction1−3. In yeast, high-throughput methods have enabled the creation of genetic networks, with 23 million double mutants identifying nearly 1 million interactions4. Network complexity is orders of magnitude greater in human cells, with about tenfold more pairwise combinations of protein-coding genes and thousands of distinct cell types in which to examine interactions.

RNA interference (RNAi) and CRISPR technologies can simultaneously perturb two or more genes, and thus represent a promising approach to uncover genetic interactions2,5. Initial combinatorial CRISPR screens4 were performed using lentiviral constructs. However, repetitive elements in lentiviral vectors, including the U6 promoter, lead to high levels of recombination and decrease combinatorial screen efficiency2−10. Two efforts to achieve combinatorial CRISPR screens employed orthologous U6 promoters, from mouse and human2,3, although another study found that multiple copies of the S. pyogenes tracrRNA sequence were likewise prone to recombination11. Finally, because Cpf1 enzymes process their own transcripts, they can deliver multiple sgRNAs from one transcript. However, the reported efficiency of multiple indels in the same cell is less than 10%12, too low for screening applications. In all cases, distinct RNAs may compete for loading into a common effector enzyme, leading to decreased overall efficiency13,14. With this structure we do not need to use “perturbagens.” These design challenges are accentuated when using lentivirus to deliver single copies of reagents for large scale, pooled genetic screens.

We developed an approach that relies on orthogonal Cas9 enzymes, from S. pyogenes and S. aureus (SpCas9 and SaCas9), to overcome practical limitations of previous approaches and to achieve dual-knockout efficiencies that enable robust screening. This approach uncovers synthetic lethal and buffering relationships across multiple cell types with excellent correspondence between unique sgRNA pairs targeting the same gene pairs. As two sgRNAs independently program two different Cas9s, this approach can combine different activities in the same screen, such as knockout and overexpression (CRISPRa)15. We anticipate that screens to interrogate large combinatorial space at scale (dubbed Big Papi screens) will have widespread application in many cellular models.

RESULTS
Generating double knockouts using a dual Cas9 system

We aimed to develop a system with maximal on-target efficiency at two independent genomic sites, postulating that using two independent Cas9 enzymes would mitigate several sources of inefficiency (Supplementary Fig. 1). We designed a lentiviral construct, pPapi, to express SaCas9 and two sgRNAs from the U6 and H1 promoters (Fig. 1a). A flow cytometry assay assessed dual targeting of EGFP and endogenous CD81 in A375 cells engineered to stably express SpCas9 and EGFP, and we measured the effect of varying the promoter and Cas9 ortholog employed by each sgRNA. Partnering SaCas9 and SpCas9 sgRNAs achieved dual knockout in 50–87% of cells with 4 different combinations of sgRNAs (Fig. 1b and Supplementary Fig. 2), indicating a potential for high efficiency.

Received 13 March; accepted 4 November; published online 18 December 2017; doi:10.1038/nbt.4048
To enable efficient construction of pooled, multiplex libraries, we developed a cloning scheme with synthesized oligonucleotides (~140 nt), overlap extension, and a single transformation step of *Escherichia coli* (Fig. 1a). A pool consisting of *M* SpCas9 sgRNAs and *N* SaCas9 sgRNAs, a total of *M* × *N* oligos, generates a pool comprising *M* × *N* pairwise combinations. We generated a Synthetic Lethal (SynLet) library, described below, with 96 unique sgRNAs cloned into each position, totaling 96^2 = 9,216 dual-sgRNA elements. The proximity of the sgRNAs permits them to be amplified and sequenced together in a single NextGen sequencing read. The cumulative distribution function for the pool had an area-under-the-curve (AUC) of 0.62 (Fig. 1c), comparable to our previously described Brunello genome-wide library (AUC of 0.64; AUC = 0.5 for a perfectly uniform distribution)\(^{16}\). We compared this SynLet library to four other published libraries\(^{6-8,17}\), which all rely on two transformation steps into *E. coli*: AUCs for these libraries ranged from 0.68–0.77. Likewise, for the SynLet library, 79% of sgRNA pairs were found in the top 90% of reads, whereas the other four libraries showed more attrition, capturing 53–70% of elements at this threshold (Fig. 1c).

Optimizing sgRNA design for SaCas9

Previously, we determined rules to predict high-performing SpCas9 sgRNAs by coupling experimentation with machine learning\(^{16,18}\). We took a similar approach to optimize the design of SaCas9 sgRNAs. We developed a SaCas9 version of lentiCRISPR-v2, replacing the SpCas9 and tracrRNA scaffold with their *S. aureus* counterparts. We designed a pooled tiling library to compare SpCas9 and SaCas9 by targeting *EEF2*, a common essential gene, with all possible sgRNA sequences regardless of protospacer adjacent motif (PAM), and assayed activity by a viability screen in A375 cells. As expected for SpCas9, the set of sgRNAs using an NGG PAM (*n* = 449) were depleted compared to those using all other PAMs (*n* = 4,087), with a median log₂-fold-change of −2.5 relative to the plasmid DNA (Fig. 2a). For SaCas9, some sgRNAs with an NNGRRT PAM (*n* = 349; R = A or G; V = A, C, or G) were active, but as expected\(^{19,20}\), NNGRRRT (*n* = 47) was most active, with a median log₂-fold-change of −4.3. We compared sgRNAs sharing a common cut site between SaCas9 and SpCas9, and observed that SaCas9 typically had higher activity (Fig. 2b).

We designed a second tiling library with all sgRNAs with an NNGRRV PAM (*n* = 349; R = A or G; V = A, C, or G) were active, but as expected\(^{19,20}\), NNGRRRT (*n* = 47) was most active, with a median log₂-fold-change of −4.3. We compared sgRNAs sharing a common cut site between SaCas9 and SpCas9, and observed that SaCas9 typically had higher activity (Fig. 2b).
with consistent performance across the three cell lines (Fig. 2c), suggesting that predictive sequence features are likely to generalize across cell types.

We first used a classification model to determine sequence features correlated with high activity, examining all single- and dinucleotides. The feature most predictive of high activity was thymine immediately 3’ of the core PAM sequence, NNGRR (Fig. 2d). However, thymine is neither necessary nor sufficient for high activity: of 1,805 sgRNAs with thymine scored in the bottom half of activity, 14% of sgRNAs with thymine scored in the bottom half of activity. In the RR portion of the PAM, we observed that AG is favored over other combinations of purines.

To improve predictions, we used gradient-boosted regression trees on the rank-transformed activity values. Features included position-specific and position-independent single- and dinucleotides, and thermodynamic properties; position-specific dinucleotides proved the most important for predicting activity (Fig. 2e). To illustrate performance, we used a version of the model in which EEF2 sgRNAs were held out of the training set, and compared the predicted scores to the measured activities in A375 cells, observing a Spearman correlation of 0.64 (Fig. 2f). Whereas high-scoring sgRNAs (score > 0.6) represent only 12% of all EEF2 sgRNAs, they are quite likely to be active, with 77% resulting in a greater than fourfold decrease in viability (Fig. 2g). Downsampling the number of genes used for training indicated diminishing returns for model parameter estimation with nine genes (Fig. 2h). The model
A combinatorial gene targeting approach using a dual Cas9 system

We first tested the Big Papi approach by screening for synthetic lethal gene combinations. As few such relationships have been validated across many cell lines, we assembled an ad hoc list of target genes (Supplementary Table 2). BRCA and PARP genes have a clinically appreciated synthetic lethal relationship. Likewise, for anti-apoptotic genes, the ability of expression of one to rescue inhibition of another is well-documented, necessitating combinatorial targeting.

We also selected gene families with known or potential redundancy in their function, including MAPKs, AKTs, and ubiquitins. Finally, we included several genes computationally predicted to engage in multiple synthetic lethal interactions. We designed three sgRNAs against these 25 genes for both SaCas9 and SpCas9 (Supplementary Table 2). Each gene pair was assessed with 18 unique sgRNA combinations (2 Cas9s × 3 gene A sgRNAs × 3 gene B sgRNAs); an ineffective individual sgRNA affects three of the combinations, emphasizing the importance of effective design. We targeted two control genes: EEF2 (3 sgRNAs), a core essential gene, and CD81 (10 sgRNAs), a cell surface marker with no known viability effect in most cells. We added two sets of negative controls, sgRNAs that target introns of HPRT1 (5 sgRNAs), and three expression cassettes that terminate transcription due to a run of six thymidines (6T).

We performed this same analysis for three other dual-knockout combinatorial studies, and found that replicate reproducibility was high for the CRISPR-based double knockout (CDKO) screen (0.98) low for the CombiGem (0.2) and Shen-Mali (0.21–0.42) screens (Fig. 3b).

Our orthologous Cas9 approach seeks to diminish competition between two sgRNAs, which may arise from differences in 182
transcription, RNA stability, or binding affinity to Cas9 (Supplementary Fig. 1). We compared performance of individual targeting sgRNAs in one position when partnered with varying control sgRNAs in the second position (Fig. 3c). For targeting sgRNAs using either Cas9, the average log₂-fold-changes were well-correlated regardless of the control sgRNA (Fig. 3d). In contrast, the effects of individual sgRNAs paired with different controls in the CombiGEM and Shen-Mali libraries were not well-correlated (Fig. 3d). The CDKO library, after removing 31% of sgRNA combinations (read counts below 50), showed much better correlation but the decreased consistency for sgRNAs driven from the mouse U6 promoter, evident in the unfiltered data, remained apparent in the filtered data (Fig. 3d). The Shen-Mali data showed the same trend, suggesting that lower expression from the mouse U6 promoter results in unequal competition for Cas9, an issue avoided by the dual-Cas9 approach.

We next examined phenotypic consistency at the gene level between the two Cas9s and observed good agreement, with Pearson correlations of 0.80–0.89 across the six cell lines (Supplementary Fig. 4a). Combining measurements from both Cas9s, single knockouts of EEF2, CHEK1, MTOR, and WEE1 consistently exhibited viability effects, with stronger depletion at day 21, consistent with their classification as fitness genes, other genes showed cell-line-specific viability effects (Fig. 3e and Supplementary Fig. 4b). Thus, SaCas9 and SpCas9 produced mutually consistent knockout phenotypes across cell lines.

We next assessed synthetic lethal and buffering relationships. We modeled the expected log₂-fold-change from sgRNA pairs as the sum of the log₂-fold-change (LFC) for each individual sgRNA when partnered with controls, and then calculated the difference (dLFC) by comparing this expectation to the measured value (Supplementary Fig. 5a). A positive dLFC represents a buffering relationship and a negative dLFC represents synthetic lethality. The measured data matched the expectation of this model well (Pearson correlation = 0.97), suggesting this is an effective metric for gene interaction (Fig. 4a). We combined information for multiple sgRNA pairs targeting the same gene pairs, and performed the same calculations with randomized input data to generate a null distribution, allowing the calculation of a false discovery rate (FDR, Supplementary Fig. 5b and Supplementary Fig. 5c). Using this framework, we analyzed all six cell lines harvested at the day 21 time point (Fig. 4b and Supplementary Table 4).

Examining interactions within the pre-defined gene groups, several expected synthetic lethal relationships emerge (Fig. 4c). For example, the anti-apoptotic genes BCL2L1 (Bcl-xL) and MCL1 scored strongly (FDR < 0.01) in five of six cell lines, with 12 of the 18 sgRNA combinations depleted more than two s.d. from the log₂-fold-change of the individual sgRNAs when paired with controls in Meljuso cells (Fig. 4d). The CDKO approach also found this interaction with strong statistical significance in the filtered data (Supplementary Fig. 6). In the CombiGEM and Shen-Mali screens, few sgRNA pairs exceeded two s.d. versus control pairings, and sets of all sgRNA pairings for the top hit gene pairs showed modest statistical significance across several examples (Supplementary Fig. 6). From this analysis, we conclude that the Big Papi approach can identify hits consistently across sgRNA pairs.

Although some gene pairs, such as MAPK1–MAPK3 and BCL2L1–MCL1, showed strong effects in most cell lines, other interactions scored strongly in one cell line but were modest or absent in others (Fig. 4c). We hypothesized that combining information across cell lines could improve detection of weaker but generalizable interactions, minimizing technical and cell-line-specific sources of variation; this proved an effective strategy (Supplementary Table 4). For
example, in OVCAR8 cells, BRCA1–PARP1 scored with an FDR of 0.18 and the other five individual lines ranged from 0.46–0.94, whereas combining those five lines gave an FDR of 0.22, and all six cell lines gave an FDR of 0.06. The three AKT isoforms had a similar pattern. Conversely, some interactions with modest FDRs in one cell line are not supported in other lines, such as BCL2A1 and BCL2L10, which has an FDR of 0.48 in A375 cells and 1.0 in the combination of the other five lines; such examples may be truly cell-line-specific or could represent false positives. Overall, conducting primary screens across multiple cell lines is an effective strategy for discovering generalizable interactions.

By making some conservative assumptions about the correctness of particular subsets of synthetic lethal or buffering interactions, we were able to estimate in two independent ways true positive rates for the SynLet screens (Supplementary Discussion). Using these models, we calculated the true positive rate at different FDR thresholds for data from both individual cell lines as well as all leave-one-out iterations and obtained similar estimates whether based on synthetic lethal effects or on buffering interactions, suggesting the independent assumptions made for each were reasonable (Fig. 4c). At an FDR threshold of 0.1, the empirically determined true positive rate ranged from 72–85%, not far from the theoretical value of 90% (i.e., 10% false discoveries).

Similarly, we modeled false negative rates based on conservative assumptions about same-gene buffering interactions (Supplementary Note 1). We observed a lower false negative rate when combining information from multiple cell lines (Fig. 4f); for example, at an FDR of 0.1, we determine a false negative rate of 57% when using individual cell lines, whereas combining five lines gives a false negative rate of 33%. Overall, the empirically determined true positive and false negative rates suggest that Big Papi is an efficient screening approach (Supplementary Fig. 7), especially when assayed across multiple cell lines.

Genetic interactions

We examined synthetic lethal interactions within the pre-defined BRCA and PARP genes. We observed a strong interaction between MAPK1 (ERK2) and MAPK3 (ERK1) in A375 (FDR = 0.04), A549 (<0.01), HT29 (<0.01), Meljuso (<0.01), and OVCAR8 (<0.01) (Fig. 4c), all lines with activating mutations in the MAPK pathway (BRAF V600E; KRAS G12S; BRAF V600E; NRAS Q61L and HRAS G13D; and KRAS P121H, respectively). 786O cells, with no known mutations in the MAPK pathway, showed a weaker interaction (FDR = 0.57). MAP2K1 (MEK1) and MAP2K2 (MEK2) synergized in four of the five MAPK pathway mutant cell lines: HT29 (FDR = 0.01), OVCAR8 (0.05), Meljuso (0.06), and A549 (0.11). The exception, A375 (FDR = 1.0), was sensitive to loss of MAP2K1 individually (Fig. 3e).

AKT genes. We saw a strong interaction for AKT1–AKT2 in HT29 cells (FDR < 0.01), the only line with a known PIK3CA mutation (P449T); the CDKO library also detected this interaction4. In contrast to the other five lines, HT29 cells express low levels of AKT3, potentially explaining the strong interaction (Fig. 5a). Likewise, AKT1–AKT3 scored strongly in OVCAR8 cells (FDR = 0.13), which express the lowest levels of AKT2. However, the interaction between AKT2–AKT3 in Meljuso cells (FDR = 0.09) is not predicted based on AKT1 expression. Finally, we observe relationships across all three AKT genes in 786O cells, with moderate FDRs ranging from 0.35–0.46. No AKT isoforms show low expression in this line; thus, expression of one may partially compensate for loss of the other two. The relationships between AKT proteins are well-studied and complex, and they have both redundant and unique activities dependent on cellular context5,36. Despite these differences across cell lines, combining information across all six lines gave FDRs of 0.04–0.12 (Fig. 4c).

BRCA and PARP genes. We observed a relationship between PARP1–PARP2 in four cell lines: OVCAR8 (FDR = 0.06), A549 (0.07), A375 (0.12), and Meljuso (0.13), and across all cell lines (<0.01). Only OVCAR8 showed a strong interaction between BRCA2–PARP1 (FDR < 0.01); BRCA1 expression is lowest in these cells (Fig. 5a). That the interactions across these genes was most pronounced in the ovarian line may have been anticipated, as PARP inhibitors have shown clinical efficacy in BRCA-deficient ovarian cancers3, although the dissimilar strength across cell lines for BRCA1–PARP1 may not have been expected. To further investigate, we performed a competition assay in three cell types: one that originally scored strongly (OVCAR8, FDR = 0.18), weakly (A375, 0.68), or was essentially null (Meljuso, 0.94). Here, EGFP+ cells have dual knockout, whereas EGFP– cells are single knockouts of the gene targeted by the SaCas9 sgRNA; the relative viability of these populations can be monitored over time with flow cytometry (Fig. 5d). In OVCAR8 and A375, double-knockout cells were strongly depleted relative to single knockouts, however, the viability effect on double-knockout cells was notably weaker in Meljuso (Fig. 5e). This result validates the interaction originally
detected with weaker significance in A375 and demonstrates that Meljuso are indeed less sensitive to combinatorial BRCA1–PARP1 loss. Consistent with this, Shen-Mali classified BRCA1–PARP1 as a "private" synthetic lethal interaction in 293T cells but not A549 or Hela cells7, and BRCA mutant cells show varying sensitivity to PARP inhibitors both in cell culture and clinical settings37,38.

Apoptosis screen

Interaction networks for pro- and anti-apoptotic genes have been assembled by biochemical approaches, and although some interactions are consistently detected, others show less consistent results39. Because pro-apoptotic genes were robust and reproducible hits in our initial screen, we investigated the apoptotic network further with a Big Papi screen. We selected 32 genes implicated in apoptosis and our initial screen, we investigated the apoptotic network further with because pro-apoptotic genes were robust and reproducible hits in our initial screen, we investigated the apoptotic network further with a Big Papi screen. We selected 32 genes implicated in apoptosis and targeted them each with four sgRNAs, for a total of 20,736 perturbations including controls (Supplementary Table 5); sequencing of plasmid DNA gave an AUC of 0.67, with 73% of combinations present in the top 90% of reads.

We screened this library in Meljuso and OVCAR8 in duplicate in the top 90% of reads.

Figure 5 Validation of synthetic lethal interactions. (a) Gene expression values from the Cancer Cell Line Encyclopedia. (b) Validation of genetic interactions with individual gene knockout combined with small molecules. Seven days after transduction with lentivirus expressing individual sgRNAs, cells were incubated with small molecules for 3 d before assaying viability by Cell Titer Glo (top). Bliss independence scores were then calculated (bottom).
challenged the population with various inhibitors of anti-apoptotic proteins (Fig. 6a and Supplementary Table 6). Knockout of some anti-apoptotic genes had minor growth effects, whereas knockout of pro-apoptotic genes did not decrease cell viability (Fig. 6b). We analyzed these screens for synthetic lethal and buffering interactions, and confirmed a strong synthetic lethal interaction between BCL2L1 and both MCL1 and BCL2L2 (Supplementary Fig. 9 and Supplementary Table 7; this interaction was also observed above, Fig. 4). In both cell lines, we observed buffering interactions between pro- and anti-apoptotic genes (Fig. 6c). The strongest interactions were detected between BCL2L1 and both BAK1 and BAX (FDR < 0.01 for combined data), multi-BH-domain proteins that direct mitochondrial outer membrane permeabilization (MOMP); interactions between these proteins have been detected biochemically39. BOK did not engage in strong interactions, potentially expected based on its low expression (Fig. 6d).

We next analyzed Meljuso cells screened with inhibitors, first examining single-gene effects. As expected, navitoclax and S63845 synergized with MCL1 and BCL2L1 knockout, respectively (Fig. 6e). Knockout of BCL2A1, which did not show strong interactions when screened in standard growth conditions (Fig. 4c and Supplementary Fig. 9), sensitized the cells to navitoclax. Conversely, knockout of BAX and PMAIP1
(Noxa) led to navitoclax resistance (Fig. 6e). Thus, these screening conditions identified both sensitization and resistance phenotypes.

To examine combinatorial phenotypes, we combined data across the three BCL2L1 inhibitors, to minimize effects due to molecule-specific mechanism of action. Whereas BAX–PMAIP1 knockout showed a minimal buffering interaction in standard growth conditions (FDR = 0.89), they synergized strongly to protect cells from death when treated with anti-apoptotic inhibitors (FDR < 0.01) (Fig. 6f). Similarly, caspase–pro-apoptotic knockouts produced modest buffering interactions in standard growth conditions; only PMAIP1–CASP6 scored strongly (FDR = 0.12) (Fig. 6g). However, inhibitors led to clearer detection of specific interactions. For example, the strongest initiator and effector caspases to interact with BAK1 were CASP8 (FDR = 0.10) and CASP9 (FDR = 0.01), respectively. These two caspases directly interact with each other40. Although caspase interactions are complex, CASP8 is generally associated with the extrinsic cell death pathway41. Conversely, BAX interacted strongly with CASP9 (FDR < 0.01) and CASP3 (FDR = 0.04), caspases with a well-established relationship42, with CASP9 associated most strongly with the mitochondrial cell death pathway. Although BAK1 and BAX are generally considered functionally redundant, differences in localization and binding partners have been documented43,44; to our knowledge this is the first report of differences in genetic interactions with downstream caspases in human cells.

Orthogonal activities

The Big Papi approach is readily applied to concomitant screening of orthogonal modalities (Fig. 7a), for example, repressing one gene while activating another. To test the ability to combine distinct gene-targeting activities, we designed a Big Papi library to overexpress, which is lethal, and SaCas9 sgRNAs targeting TP53 for overexpression, which is lethal, and SaCas9 sgRNAs targeting TP53 for knockout, which buffered this lethality. This effect was stronger in low attachment conditions, and serves as technical validation that overexpression and knockout are co-active in cells (Fig. 7e). Several other interactions with TP53 overexpression were likewise more apparent in the stringent, low attachment conditions. Knockouts of both ZFHX3 (ATBF1) and CUX1, which had minimal effects on viability on their own, partially rescued the lethality caused by TP53 overexpression (Fig. 7f) and Supplementary Fig. 11). ZFHX3 directly interacts with TP53 to activate the CDKN1A promoter (p21(CIP1)), leading to cell cycle arrest, and thus ZFHX3 loss buffers this TP53 activity47. Likewise, CUX1 deficiency activates PISK signaling48, consistent with this observation, knockout of PTEN increased proliferation, an effect that persisted in cells overexpressing TP53. Conversely, although KEAP1 knockout generally led to increased cell viability, this effect was muted upon employed SaCas9 to knockout 45 tumor suppressor genes, also with three sgRNAs each (Supplementary Table 8). With controls, the TsgOnco library totaled 19,250 constructs; pDNA sequencing gave an AUC of 0.63, and 77% of constructs were detected in the top 90% of reads. We screened HA1E cells, a kidney line immortalized by large T antigen, which inactivates TP53. After infection, cells were grown in standard conditions and on low-attachment culture plates (Fig. 7b); the latter are a surrogate for soft agar and select for transformation phenotypes46. We first examined performance of targeting sgRNAs paired with control sgRNAs, and observed good consistency, with overexpression of TP53 dramatically reducing viability with all three sgRNAs (Fig. 7c and Supplementary Table 9). Likewise, SaCas9-mediated knockout of EEF2, CDK12, and ERCC2 decreased cell viability with all three sgRNAs for each gene (Fig. 7d).

We next examined the data for genetic interactions (Supplementary Fig. 10). A strong interaction was observed between dSpCas9-VPR sgRNAs targeting TP53 for overexpression, which is lethal, and SaCas9 sgRNAs targeting TP53 for knockout, which buffered this lethality. This effect was stronger in low attachment conditions, and serves as technical validation that overexpression and knockout are co-active in cells (Fig. 7e). Several other interactions with TP53 overexpression were likewise more apparent in the stringent, low attachment conditions. Knockouts of both ZFHX3 (ATBF1) and CUX1, which had minimal effects on viability on their own, partially rescued the lethality caused by TP53 overexpression (Fig. 7f) and Supplementary Fig. 11). ZFHX3 directly interacts with TP53 to activate the CDKN1A promoter (p21(CIP1)), leading to cell cycle arrest, and thus ZFHX3 loss buffers this TP53 activity47. Likewise, CUX1 deficiency activates PISK signaling48, consistent with this observation, knockout of PTEN increased proliferation, an effect that persisted in cells overexpressing TP53. Conversely, although KEAP1 knockout generally led to increased cell viability, this effect was muted upon

Figure 7 Big Papi screen with two Cas9 activities. (a) In addition to using either or both Cas9s as DNA endonucleases to inactivate genes, nuclease dead versions of Cas9 (dCas9) can be used with appended domains to manipulate DNA with multiple activities. (b) Schematic of the screen for the TsgOnco Big Papi library. (c) For the TsgOnco library in high attachment conditions in HA1E cells, comparison of the activity of CRISPRa sgRNAs when paired with control SaCas9 sgRNAs. (d) Comparison of the activity of CRISPR-ko knock-out sgRNAs when paired with control dSpCas9-VPR sgRNAs in high attachment conditions. (e) Buffering interaction observed in HA1E cells, where knockout of TP53 protects the cells from loss of viability caused by overexpression of TP53. Data for both low- and high-attachment conditions are shown. P-values for depletion of the dual-targeting sets of sgRNA pairs are based on the Mann–Whitney test; **P < 0.01; ****P < 0.0001. (f) Knockout of tumor suppressor genes, comparing viability upon TP53 overexpression to the average viability of all other CRISPRa target genes. Genes of interest are labeled and colored.
TP53 overexpression (Fig. 7f), which is consistent with the opposing actions of KEAP1 and TP53 on the transcription factor NFE2L2 (Nrf2). Normally, KEAP1 degrades NFE2L2, so KEAP1 loss leads to NFE2L2 stabilization; TP53 suppresses the metabolic target genes of NFE2L2, thereby nullifying the effect of KEAP1 knockout. Notably, knockout of both CDKN2A (p16) and RB1 gave increased viability in the absence of TP53, but overexpression of TP53 reversed this phenotype. That these two genes are immediately upstream and downstream, respectively, of the cell cycle kinases CDK4 and CDK6 suggests this counterintuitive observation merits further exploration. These results serve as proof-of-principle demonstration that the Big Papi approach can combine multiple Cas9 activities in a single screen to reveal genetic interactions.

DISCUSSION

We developed a dual-Cas9 system to identify genetic interactions. This system is efficient, cost effective, and supports pooled library generation and screening. Synthetic lethal screens using our system identified interactions within several groups of functionally related genes, including the MAPK pathway, AKT signaling, DNA damage repair, and apoptosis, with high statistical confidence. We also applied this system to map buffering interactions between genes involved in apoptosis, both in standard growth conditions and in the presence of small molecules, which revealed additional genetic interactions. Finally, we combined CRISPR-mediated knockout and overexpression to uncover interactions with TP53.

SaCas9 has been used previously for in vivo gene editing and in an orthologous, chemically induced CRISPRa and CRISPRi system, although it was noted to have lower efficiency than SpCas9 in that study, most likely due to suboptimal sgRNA selection. To increase SaCas9 utility, we assessed the activity of thousands of sgRNAs to define rules enabling selection of highly active sgRNAs. GUIDE-seq results have shown that SaCas9 has fewer off-target effects than SpCas9, based on the modest sampling of sgRNAs assessed thus far by this technique. These performance properties and the design rules provided here, coupled with its smaller size (~1 kilobase shorter than SpCas9), highlight SaCas9 as an attractive genome editing tool.

The number of genes that can be screened is typically limited by the scale of cell culture, which dictates the size of the library; generally, genome-wide single-gene sgRNA libraries contain ~100,000 perturbations and require 1,000 cells per perturbation. The Big Papi approach achieves reasonable performance with only two sgRNAs per gene (Supplementary Fig. 12), and thus a screen to examine pairwise combinations of 158 genes with two sgRNAs per gene would have a similar number of perturbations: \((158 \times 2) \times (158 \times 2) = 99,856\).

Our results highlight the importance of cell context in detecting interactions. With the SynLet library, no gene pair scored strongly (FDR < 0.01) in all six cell lines, and some showed strong interactions in only one line. One outlier was 786O, a renal clear cell carcinoma line with VHL deletion, in which we identified no synthetic lethal gene pairs at an FDR < 0.01. Biological replicates of the 786O screen were well-correlated, and we also detected buffering interactions when targeting the same gene with both Cas9s, suggesting that the screen was well-executed and the reagents were active. Heterogeneity of small molecules on different cell lines is well-documented and it is reasonable to expect the same heterogeneity across cell lines for genetic interactions. Although mutation status and mRNA expression could be used post facto to rationalize why some interactions were detected more strongly in some lines compared to others, combining information across cell lines proved a useful strategy for detecting generalizable interactions with increased confidence.

In summary, the Big Papi approach described here for dual-gene perturbation screens represents a powerful means to map genetic interactions in mammalian cells that can be applied across many biological questions and model systems.

METHODS

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We thank S. Elmore and G. Wei for helpful discussions; E. Sukharevsky, R. Hanna, and I. Sebenius for experimental assistance and comments on the manuscript; D. Ortiz for emotional uplift. We thank T. Hart and other anonymous referees for helpful comments during the review process. F.J.N. is supported by a cellular and developmental biology training grant (NIH T32GM007226-41). J.G.D. is supported by the Next Generation Fund at the Broad Institute of MIT and Harvard. This work was supported by the Functional Genomics Consortium (D.E.R.), Starr Cancer Consortium (B.E.B.), and National Cancer Institute–NIH Common Fund (DP1CA216873) (B.E.B.).

AUTHOR CONTRIBUTIONS

F.J.N., C.S., K.F.D., K.R.S., Z.K., E.W.V., M.E.S., E.H., and J.G.D. designed and performed experiments. N.F. and J.L. performed the computational modeling of SaCas9 activity. M.H., S.T.Y., and J.G.D. analyzed screening data. B.E.B. and D.E.R. provided senior guidance. F.J.N., D.E.R., and J.G.D. wrote the manuscript with assistance from other authors.

COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details are available in the online version of the paper.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ARTICLES

1. Roguev, A. et al. Quantitative genetic-interaction mapping in mammalian cells. Nat. Methods 10, 432–437 (2013).
2. Horn, T. et al. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat. Methods 8, 341–346 (2011).
3. Tong, A.H.Y. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).
4. Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aa1420 (2016).
5. Bassik, M.C. et al. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152, 909–922 (2013).
6. Wong, A.S.L. et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombIGEM. Proc. Natl. Acad. Sci. USA 113, 2544–2549 (2016).
7. Shen, J.P. et al. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).
8. Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35, 463–474 (2017).
9. ter Brake, G. et al. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol. Ther. 16, 557–564 (2008).
10. Vidigal, J.A. & Ventura, A. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nat. Commun. 6, 8083 (2015).
11. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).
12. Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).
13. McIntyre, G.J., Arndt, A.J., Gillespie, K.M., Mak, W.M. & Fanning, G.C. A comparison of multiple shRNA expression methods for combinatorial RNAi. Genet. Vaccines Ther. 9, 9 (2011).
14. Stockman, V.B. et al. A high-throughput strategy for dissecting mammalian genetic interactions. PLoS One 11, e0167617–e13 (2016).
15. Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).
16. Doench, J.G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).
17. Zhu, S. et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol. 34, 1279–1286 (2016).
18. Doench, J.G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9- mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).
26. Uzgare, A.R. & Isaacs, J.T. Enhanced redundancy in Akt and mitogen-activated signaling: relevance to cancer therapies. *Nature* 434, 917–921 (2005).
23. van Delft, M.F. Overlapping roles or Functional Redundancy? *Nature* 432, 389–399 (2006).
24. Sun, C. & Bernard, R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. *Trends Biochem. Sci.* 39, 465–474 (2014).
25. Buscà, R., Pouysségur, J. & Lenormand, P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? *Front. Cell Dev. Biol.* 4, 53 (2016).
26. Uzgare, A.R. & Issacs, J.T. Enhanced redundancy in Akt and mitogen-activated protein kinase-induced survival of malignant versus normal prostate epithelial cells. *Cancer Res.* 64, 6190–6199 (2004).
27. Srivas, R. et al. A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. *Mol. Cell* 63, 514–525 (2016).
28. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. *Cell* 163, 1515–1526 (2015).
29. Chaudhuri, L. et al. CHK1 and WEEl inhibition combine synergistically to enhance therapeutic efficacy in acute myeloid leukemia ex vivo. *Haematologica* 99, 688–696 (2014).
30. Suche, A.J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. *Nat. Med.* 19, 202–208 (2013).
31. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. *Nature* 435, 677–681 (2005).
32. Leverson, J.D. et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. *Sci. Transl. Med.* 7, 279ra40 (2015).
33. Lessene, G. et al. Structure-guided design of a selective BCL-X(L) inhibitor. *Nat. Chem. Biol.* 9, 390–397 (2013).
34. Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. *Nature* 538, 477–482 (2016).
35. Dummill, B. et al. Life with a single isoform of Akt: mice lacking Ak2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. *Mol. Cell. Biol.* 26, 8042–8051 (2006).
36. Nüttelmann, G.M. et al. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). *Int. J. Oncol.* 48, 869–885 (2016).
37. Stordal, B. et al. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation. *Mol. Oncol.* 7, 567–579 (2013).
38. Helleday, T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. *Mol. Oncol.* 5, 387–393 (2011).
39. Rooswinkel, R.W. et al. Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. *Blood* 123, 2806–2815 (2014).
40. Cowling, V. & Downward, J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. *Cell Death Differ.* 9, 1046–1056 (2002).
41. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. *Physiol. Rev.* 87, 99–163 (2007).
42. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. *Cell* 91, 479–489 (1997).
43. Ma, S.B. et al. Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. *Cell Death Differ.* 21, 1925–1935 (2014).
44. Sarosiek, K.A. et al. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. *Mol. Cell* 51, 751–765 (2013).
45. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. *Nat. Methods* 12, 326–328 (2015).
46. Rotem, A. et al. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation. *Proc. Natl. Acad. Sci. USA* 112, 5708–5713 (2015).
47. Miura, Y. et al. Susceptibility to killer T cells of gastric cancer cells enhanced by Mitomycin-C involves induction of ATBF1 and activation of p21 (Waf1/Cip1) promoter. *Microbiol. Immunol.* 48, 137–145 (2004).
48. Wong, C.C. et al. Inactivating CUX1 mutations promote tumorigenesis. *Nat. Genet.* 46, 33–38 (2014).
49. Faraonio, R. et al. Highly efficient Cas9-mediated transcriptional programming. *Nat. Methods* 12, 326–328 (2015).
50. Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. *Nat. Methods* 13, 1043–1049 (2016).
51. Kleinsteve, B.P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. *Nat. Biotechnol.* 33, 1293–1298 (2015).
ONLINE METHODS

Vectors. Plasmids were cloned by synthesis and assembly (Genscript) and are available to the academic research community through Addgene:

- pPapi (also known as pXPR_207): U6 and H1 promoters express two sgRNAs; short EF1a promoter (EFS) expresses SaCas9-2A-PuromycinR (Addgene 96921).
- pXPR_034: U6 promoter expresses SaCas9 sgRNAs; EFS expresses SaCas9-2A-PuromycinR. An updated version of this plasmid with more convenient restriction sites, pXPR_026, has been deposited in Addgene (96920).
- pLX_311-Cas9: SV40 promoter expresses blasticidin resistance; EF1a promoter expresses SpCas9 (generated by Seifi Rosenbluh, Hahn lab, Addgene 96924).
- pXPR_120: EF1a promoter expresses dSpCas9-VPR-2A-BlasticidinR (Addgene 96917).

Library production. Pooled libraries for expression of single sgRNAs were made as previously described, with oligonucleotide pools obtained from CustomArray. For cloning of Big Papi pools, oligonucleotide inserts (Ultramers) were designed with 5’ BsmBI sites followed by 20 or 21 nt crRNA, 82 nt tracrRNA, 6 nt barcode, and 17 nt complementary sequence (Fig. 1a and Supplementary Note 1). The oligonucleotides for SpCas9 sgRNAs and SaCas9 sgRNAs were separately mixed together at a concentration of 5 μM each. 10 μL of each pool of oligonucleotides was then combined in a 100 μL reaction and extended using NEBNext (New England Biolabs) with an annealing temperature of 48 °C. The resulting dsDNA was purified by spin-column then ligated into the BsmBI-digested pPapi vector using 100 ng insert and 500 ng vector using Esp3I and T7 ligase, as we have done previously for single sgRNA pools. The DNA was isopropyl alcohol precipitated and electroporated into STBL4 cells. A zero-generation (G0) plasmid DNA pool was then amplified by a second cycle of Golden Gate assembly with 100 ng insert and 500 ng vector using Esp3I and T7 ligase, as we have done previously for single sgRNA pools. The resulting dsDNA was purified by spin-column then ligated into the BsmBI-digested pPapi vector using 100 ng insert and 500 ng vector using Esp3I and T7 ligase, as we have done previously for single sgRNA pools. The resulting dsDNA was purified by spin-column then ligated into the BsmBI-digested pPapi vector using 100 ng insert and 500 ng vector using Esp3I and T7 ligase, as we have done previously for single sgRNA pools. The resulting dsDNA was purified by spin-column then ligated into the BsmBI-digested pPapi vector using 100 ng insert and 500 ng vector using Esp3I and T7 ligase, as we have done previously for single sgRNA pools. The resulting dsDNA was purified by spin-column then ligated into the BsmBI-digested pPapi vector using 100 ng insert and 500 ng vector using Esp3I and T7 ligase, as we have done previously for single sgRNA pools. The resulting dsDNA was purified by spin-column then ligated into the BsmBI-digested pPapi vector using 100 ng insert and 500 ng vector using Esp3I and T7 ligase, as we have done previously for single sgRNA pools. The resulting dsDNA was purified by spin-column then ligated into the BsmBI-digested pPapi vector using 100 ng insert and 500 ng vector using Esp3I and T7 ligase, as we have done previously for single sgRNA pools.

DNA. Deconvolution of single sgRNA expressing vectors was as described previously. The following list includes, respectively, cell line, media, and concentration of puromycin, blasticidin, and polybrene: A375: RPMI +10% FBS; 1 μg/mL; 5 μg/mL; 1 μg/mL. HEK293T: DMEM +10% FBS; 1 μg/mL; 5 μg/mL; 1 μg/mL. HT29: DMEM +10% FBS; 2 μg/mL; 5 μg/mL; 1 μg/mL. MOLM13: RPMI +10% FBS; 2 μg/mL; 5 μg/mL; 4 μg/mL. Meljuso: RPMI +10% FBS; 1 μg/mL; 2 μg/mL; 4 μg/mL. A549: DMEM +10% FBS; 1.5 μg/mL; 5 μg/mL; 1 μg/mL. OVCAR8: RPMI +10% FBS; 2 μg/mL; 3 μg/mL; 4 μg/mL. 786O: RPMI +10% FBS; 1 μg/mL; 2 μg/mL; 4 μg/mL. HA1E; MEM-alpha +10% FBS; 1 μg/mL; 8 μg/mL; 4 μg/mL.

Flow cytometry. For experiments carried out in Figure 1 and Supplementary Figure 2, A375 cells stably expressing SpCas9 and GFP were transduced at an MOI of ~1 in 12-well plates. Two days after transduction, cells were selected with puromycin (1μg/mL) for 5 d. Cells were stained with APC-conjugated CD81 antibody (Biolegend 349510) diluted 1:100 in flow buffer (PBS, 2% FBS, 5μM EDTA) for 30 min on ice. Residual antibody was removed with two flow buffer washes, and cells were re-suspended in flow buffer. Flow cytometry was performed on the BDAccuri C6 Sampler system. Live cell populations were gated using forward and side scatter to exclude debris. CD81+ and EGFP+ gates were set using non-transduced A375-SpCas9-EGFP cells.

SaCas9 activity rules. Computational modeling for SaCas9 activity was done as previously for SpCas9. In contrast to our previous work, we did not use the NGGX interaction feature (which is SpCas9 PAM-specific). Also, previously we generated two models for SpCas9, one which used gene positional features (nucleotide cut, percent peptide), and one that omitted them. We have since found the latter to be used more frequently, as it does not assume the target DNA encodes a protein, and thus we did not use gene positional features for the derivation of the SaCas9 activity model.

SynLet library screening. To determine lentiviral titer, cell lines were transduced in 12-well plates with 150, 300, 500, and 800 μL virus with 3.0 × 10^6 cells per well in the presence of polybrene. The plates were centrifuged at 640 g for 2 h then transferred to a 37 °C incubator for 4–6 h. Each well was then trypsinized, and an equal number of cells seeded into each of two wells of a 6-well dish. Two days post-transduction, puromycin was added to one well out of the pair. After 5 d, both wells were counted for viability by trypan exclusion. A viral dose resulting in 30–50% transduction efficiency, corresponding to an MOI of ~0.35–0.70, was used for subsequent library screening. Prior to screening-scale transduction, Cas9-expressing cell lines were selected with puromycin then transduced in two or three biological replicates; puromycin selection began 2 d post-transduction. Transductions were performed with enough cells to achieve a representation of at least 500 cells per sgRNA per replicate, taking into account a 30–50% transduction efficiency. Puromycin selection was maintained for 5–7 d. Throughout the screen, cells were split at a density to maintain a representation of at least 500 cells per sgRNA. Cell counts were taken at each passage to monitor growth. After this screen, cells were pelleted by centrifugation, resuspended in PBS, and frozen promptly for genomic DNA isolation.

Genomic DNA preparation and sequencing. Genomic DNA (gDNA) was isolated using the QIAamp DNA Blood Midi Kit (Qiagen) as per the manufacturer’s instructions. The concentration of these preparations was determined by UV spectroscopy (Nanodrop). PCR of single sgRNA expressing vectors was as described. For the pPapi vector, dual sgRNA cassettes and plasmid DNA were PCR-amplified and barcoded with sequencing adaptors using ExTaq DNA Polymerase (Clontech), following the same procedure. Primer sequences (IDT) can be found in Supplementary Note 1. Amplified samples were then purified with Agencourt AMPure XP SPRI beads (Beckman Coulter, A63880) according to manufacturer’s instructions and sequenced on a NextSeq sequencer (Illumina) with 300 nt single-end reads, with a 10% spike-in of PhiX DNA. Deconvolution of single sgRNA expressing vectors was as described. For the pPapi vector, reads of the first sgRNA were counted by first searching in the sequencing read for CACCG, the part of the vector sequence that immediately precedes the 20-nucleotide U6 promoter-driven SpCas9 sgRNA.
The sgRNA sequence following this search string was mapped to a reference file with all sgRNAs in the library. To find the H1 promoter-driven SaCas9 sgRNA, two 21-nucleotide sequences were compared: the sequence beginning 194 nucleotides after the SpCas9 sgRNA and the sequence following the S. aureus tracer sequence (CTTAAAC). If the sequences matched, the 21 nt sequence was then mapped to the reference file with all SaCas9 sgRNA. For some sequencing lanes with poorer quality, the reference file with the SaCas9 sgRNAs sequences was shortened, such that fewer than 21 nts were needed to match in order to determine the identity of the sgRNA in that position. See also Supplementary Note 1. Reads were then assigned to the appropriate experimental condition based on the 8-nucleotide P7 appended barcode. The resulting matrix of read counts was normalized to reads per million (r.p.m.) within each condition by the following formula: reads per sgRNA/total reads per condition × 10^6. A pseudocount of 1 was added, and the r.p.m. was then log2-transformed.

Validation of hits in the apoptosis pathway. Gene pairs associated with a synthetic lethal phenotype in the library screen were validated using combinatorial viability screening of sgRNA perturbations with five small-molecule inhibitors: navitoclax (ABT-263, Active Biochem A-1001), A1331852 (Active Biochem A-6048); venetoclax (ABT-199, Active Biochem A-1231); WEHI539 (MedChem Express, HY-15607A); and the MCL1 inhibitor S63845 (a gift from Guo Wei, Golub lab). Meljuso cells were transduced in 12-well plates, as described above, with lentivirus containing a single sgRNA targeting one of the anti-apoptotic genes (BCL2L1, BCL2L2, MCL1) or a control sgRNA either targeting CD81 or containing a run of 6 thymidines. Two days after transduction, cells were selected using puromycin at 1 μg/mL for 5 d. After puromycin selection, 3,000 cells were seeded into 96-well plates. Across each row of the 96-well plate, a different small molecule was added at 11 log2-dilutions ranging from 1 μM to approximately 1 nM in duplicate for each of the cell lines. The last well in the row did not receive small molecule. After 3 d in the presence of the small molecule, viability of the cell population was assayed by CellTiterGlo (Promega) according to the manufacturer's instructions.

BRCA1/PARP1 competition assay. A375, OVCAR8, and Meljuso cells were transduced with in a 24-well plate with 10 μL Cas9-2A-EGFP virus (Dharmacon, VCAS11862), with 2.0 × 10^5 cells per well with 1 μg/mL of polybrene. The plates were centrifuged at 2,250 r.p.m. for 2 h and then transferred to a 37 °C incubator for 4 h before changing media. The day after transduction, each well was trypsinized and passed into a T75 flask. Across each row of the 96-well plate, a different small molecule was added at 11 log2-dilutions ranging from 1 μM to approximately 1 nM in duplicate for each of the cell lines. The last well in the row did not receive small molecule. After 3 d in the presence of the small molecule, viability of the cell population was assayed by CellTiterGlo (Promega) according to the manufacturer's instructions.
Experimental design

1. Sample size
 Describe how sample size was determined.
 The number of samples used for genetic screens (2 or 3) is standard in the field, and the replicate correlation of the samples shows the reproducibility.

2. Data exclusions
 Describe any data exclusions.
 No data were excluded.

3. Replication
 Describe whether the experimental findings were reliably reproduced.
 All screens were performed in duplicate or triplicate, with good correspondence between replicates. Small scale experiments were performed in at least duplicate, as indicated in figure legends.

4. Randomization
 Describe how samples/organisms/participants were allocated into experimental groups.
 Samples were not randomized.

5. Blinding
 Describe whether the investigators were blinded to group allocation during data collection and/or analysis.
 Samples were not blinded.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6. Statistical parameters
 For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the Methods section if additional space is needed).

 n/a Confirmed
 - The exact sample size \(n \) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)
 - A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
 - A statement indicating how many times each experiment was replicated
 - The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more complex techniques should be described in the Methods section)
 - A description of any assumptions or corrections, such as an adjustment for multiple comparisons
 - The test results (e.g. \(P \) values) given as exact values whenever possible and with confidence intervals noted
 - A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)
 - Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study.

False discovery rates of screens were determined using customized code that is made available on Github. GraphPad PRISM was used for small-scale comparisons between groups (e.g. Fig. 7e, and similar).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for providing algorithms and software for publication provides further information on this topic.

Materials and reagents

Policy information about availability of materials

8. Materials availability

Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a for-profit company.

All generally-useful plasmids are available via Addgene.

9. Antibodies

Describe the antibodies used and how they were validated for use in the system under study (i.e. assay and species).

All antibodies were first compared to unstained cells. A reduction in signal after application of CRISPR technology is an excellent way to confirm the specificity of an antibody.

10. Eukaryotic cell lines

a. State the source of each eukaryotic cell line used.

Cell line sources are provided in Online Methods

b. Describe the method of cell line authentication used.

Cell lines were authenticated by SNP profiling

c. Report whether the cell lines were tested for mycoplasma contamination.

Cell lines were routinely tested for mycoplasma (~bimonthly)
d. If any of the cell lines used are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use.

No cell lines used are in this database.

Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived materials used in the study.

No animals

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population characteristics of the human research participants.

No humans
Flow Cytometry Reporting Summary

Form fields will expand as needed. Please do not leave fields blank.

Data presentation

For all flow cytometry data, confirm that:

1. The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
2. The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
3. All plots are contour plots with outliers or pseudocolor plots.
4. A numerical value for number of cells or percentage (with statistics) is provided.

Methodological details

5. Describe the sample preparation. All experiments were done on well-established cell culture lines that were consistently tested to be free of mycoplasma and contaminants. Cells were lifted by enzymatic treatment (trypsin) and suspended in either PBS or PBS supplemented with 0.5% BSA and 2mM EDTA.

6. Identify the instrument used for data collection. Specific instrument used can be found in the methods section pertaining to each particular experiment.

7. Describe the software used to collect and analyze the flow cytometry data. The BD Accuri™ C6 Plus software was used to collect and analyze flow cytometry data collected on that instrument. Data were then re-analyzed using FloJo software.

8. Describe the abundance of the relevant cell populations within post-sort fractions. Samples were only analyzed, not collected in post-sort fractions.

9. Describe the gating strategy used. Forward and side scatter gates were regularly used to establish live cell populations. GFP+ or APC+ gates were established by first analyzing cells negative for the marker of interest and setting the gate at no more than 1% of this population.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information. ☑