Developmental pathology of congenital kidney and urinary tract anomalies

Sanjay Jain and Feng Chen

Division of Nephrology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA

Correspondence and offprint requests to: Feng Chen; E-mail: fchen@wustl.edu and Sanjay Jain; sanjayjain@wustl.edu

ABSTRACT

Congenital anomalies of the kidneys or lower urinary tract (CAKUT) are the most common causes of renal failure in children and account for 25% of end-stage renal disease in adults. The spectrum of anomalies includes renal agenesis; hypoplasia; dysplasia; supernumerary, ectopic or fused kidneys; duplication; ureteropelvic junction obstruction; primary megaureter or ureterovesical junction obstruction; vesicoureteral reflux; ureterocele; and posterior urethral valves. CAKUT originates from developmental defects and can occur in isolation or as part of other syndromes. In recent decades, along with better understanding of the pathological features of the human congenital urinary tract defects, researchers using animal models have provided valuable insights into the pathogenesis of these diseases. However, the genetic causes and etiology of many CAKUT cases remain unknown, presenting challenges in finding effective treatment. Here we provide an overview of the critical steps of normal development of the urinary system, followed by a description of the pathological features of major types of CAKUT with respect to developmental mechanisms of their etiology.

Keywords: CAKUT, congenital, development, genetics, kidney, urinary tract

INTRODUCTION

The functioning unit of the kidney that produces urine is called the nephron. For the purpose of this article, the proximal nephron comprises the glomerulus, proximal tubules, loop of Henle and distal tubules. The distal nephron harbors the collecting system, mainly consisting of the collecting ducts. The filtrate, namely urine, from the kidney is passed to the lower urinary tract (ureter, bladder and urethra) for expulsion. Development of the urinary system is a highly complex process that depends on precise spatiotemporally regulated events and requires the integration of a variety of progenitor cell populations of different embryonic origins [1–3]. These events culminate in precise anatomical connections between the proximal and distal nephrons in the kidney (upper tract) and the upper and lower urinary tract. Most clinically relevant congenital anomalies of the kidneys or lower urinary tract (CAKUT) originate from the disruption of regulatory circuitry and the progenitor cells involved in these processes, especially in the morphogenesis of the urinary conduit or the functional aspects of the pyeloureteral peristaltic machinery. The power of genetics and molecular biology in model organisms has greatly advanced our knowledge that is directly relevant to CAKUT in humans [4–9]. In this review we will provide an overview of the major steps in nephrogenesis and the development of the lower urinary tract. We will then describe the pathological features of major types of CAKUT and discuss the developmental pathology leading to CAKUT, based on the evidence from human patients and animal disease models, especially murine models.
NORMAL DEVELOPMENT OF THE KIDNEYS AND THE URINARY TRACT

Development of the urinary system occurs in several stages in mammals, culminating in a kidney and a ureter from each half of the body, which are connected to the bladder. For simplicity and to correlate the pathogenesis of CAKUT with specific developmental processes, we categorize the development of the kidney and the urinary tract into the following stages [10, 11].

Preureteric bud induction and Wolffian duct morphogenesis

Most components of the urinary system are derived from the intermediate mesoderm [12] that give rise to the nephrogenic cords at about 3 weeks of gestation (wg) in humans and about embryonic day 8 (E8) in mice. The nephrogenic cord produces three sets of nephric structures: pronephros, mesonephros and metanephros (Figure 1). Pronephros is the cranial most transient structure that emerges at about 3 wg in humans and regresses by 4 wg (E9.5 in mice). Mesonephros development coincides with pronephros regression and caudal extension of the nephrogenic cord that metamorphoses into the mesonephric duct (Wolffian duct) and is surrounded by mesonephric mesenchyme. In mammals, the mesonephros is transient but functional. In humans, the mesonephric tubules are linearly arranged along the Wolffian duct and are directly connected to it (Figure 2). The Wolffian duct joins the cloaca (future bladder), initiating the connection between the upper and lower urinary tracts. In humans, the mesonephros regresses by 16 wg in a caudal-to-cranial manner (by E11.5 in mice) except in males, where the cranial most mesonephric tubules become the epididymis and efferent ductules and the Wolffian duct becomes the vas deferens. The precise regression of the mesonephros is critical for normal kidney development, and this process is regulated by signals in the Wolffian duct [13].

Ureteric bud induction

Metanephoi (definitive kidney) begin to form at 4.5 wg (and become functional at ~10 wg) in humans and E10.5 in mice. Metanephric development starts with the outgrowth of epithelial cells called the ureteric bud (UB) from the caudal Wolffian duct. The UB invasion of the metanephric mesenchyme (MM), in response to inductive signals from the MM, induces MM cells to aggregate around the UB tip. This leads to branching of the tip to form a T-shaped structure. The MM cells coalesce around the branched tips to form the cap mesenchyme hereafter referred to as nephron progenitors. The UB tip cells are the precursors of the collecting ducts. This entire process is called UB induction and indispensable for kidney formation. Thereafter the UB undergoes repetitive branching to form the elaborate collecting duct system through branching morphogenesis.

Branching morphogenesis

Branching morphogenesis requires reciprocal interactions among the UB, MM, stromal cells and endothelial cells. UB tips proliferate and branch to give rise to new UBs. The first few branches give rise to the major and minor calyces in humans, into which the collecting ducts from the respective papillae drain. All major calyces drain into the pelvis, finally leading into the ureter. Branching problems can cause decreased kidney mass (hypoplasia) and defective structures (dysplasia). Nephrogenesis begins when mesenchyme cells coalesce near the junction of the UB stalk and the UB tips and transition into pretubular aggregates. These cells undergo a series of morphogenetic stages to form the proximal nephron, consisting of the glomerulus, the proximal tubules, descending and ascending loops of Henle, distal tubules and connecting tubules. The endothelial progenitors invade the cleft at the distal aspect of the S-shaped body along with the stromal cells to become the glomerular capillaries and mesangium, respectively [14–16]. Since the kidney grows in a centrifugal manner, the oldest glomeruli are toward the cortico-medullary junction and the newest ones toward the periphery. Nephrogenesis completes before birth in humans, but persists in early postnatal days in rodents. At the end, the human kidney has multiple lobes, each comprising the cortex, medulla and papillae that drain into minor and major

FIGURE 1: Illustration shows events in mammalian kidney development using mouse stages as an example. Pronephros, the first stage, begins at about embryonic day 8 (E8) from intermediate cells. Mesonephros includes mesonephric mesenchyme (MesM) and an epithelial tube called the Wolffian duct (WD). By E10.5, the Wolffian duct has inserted into the cloaca, MesM is degenerating and a bulge on the distal aspect of the WD develops into the UB that grows toward the MM. The portion of the Wolffian duct distal to the UB is called the common nephric duct (CND). At E11.5, the UB invades the MM, causing certain cells in the MM to coalesce around the UB tips. These are called cap mesenchyme cells (CaPM). Interactions between CaPM and UB and other cells in the MM initiate recursive branching called branching morphogenesis. At E12.5, the ureter remodeling process starts to insert into the primitive bladder (UGS) and separate from the Wolffian duct through a process of CND apoptosis (yellow).

FIGURE 2: Hematoxylin and eosin-stained section from a human fetus during the mesonephros stage. Note the linearly arranged primitive glomeruli (arrows).
calyces (Figure 3); mice have a single papilla that drains into the pelvis. The peristaltic activity to propel urine through the ureter is initiated from pacemaker cells in the tips of the papillae.

Ascent and rotation

Concurrent to nephrogenesis, kidneys also undergo repositioning through ascent and rotation. The kidneys grow posteriorly (towards the back) during initial development. As development progresses, they rotate anteromedially such that each hilum points medially. Meanwhile, there is apparent ascent due to disproportionate growth of the caudal regions of the embryo such that the final position of the kidneys is retroperitoneal in the abdomen by ~9 wg. The blood supply to the developing kidney is initially via the caudal segments of the descending aorta or its iliac branches. As the kidneys ascend, the blood supply is derived from more cranial branches of the aorta while the caudal vascular connections degenerate. The failure of regression of transient blood vessels or sprouting of additional vessels to ensure adequate perfusion of the kidney may account for the variability seen in vascular supply to the kidney and accessory renal arteries. In some cases, failure of regression of transient vessels may compress the ureters, leading to hydronephrosis. Ascent and rotation defects can also result in fusion or ectopic kidneys.

Ureter maturation and bladder–urethra development

The initial stalk of the UB remains outside the MM, matures into a ureter, elongates and connects to the bladder [10, 17, 18]. Common nephric duct is the part of the Wolffian duct distal to the point where the ureter is initially attached to the Wolffian duct (Figure 1). The initial Wolffian duct–cloaca contact occurs before UB induction. After UB induction, the ureter separates from the Wolffian duct through a process of ureteral remodeling and maturation that leads to insertion of ureter into the bladder, the formation of a single lumen and separation of the Wolffian duct from the ureter. The Wolffian duct inserts in the urethra in males and degenerates in females. Ureteral smooth muscle differentiation within the ureteral mesenchyme commences at E14.5 in mice, following the establishment of a connection between the Wolffian duct and bladder epithelium, with the appearance of the first wave of α smooth muscle actin-positive cells [19]. In humans, ureteral muscularization and development of elastic fibers start at 12 wg [20–23]. Bladder epithelium originates from the cloaca, a hindgut derivative with an endodermal origin, in contrast to the mesodermal origin of the kidney and the ureter epithelium from the Wolffian duct. Male urethra develops as the urogenital sinus extends to the surface of the genital tubercle.

PATHOLOGICAL AND CLINICAL FEATURES OF CONGENITAL KIDNEY AND LOWER URINARY TRACT DEFECTS

CAKUT is a term used broadly to describe developmental defects in the urinary system that can occur in isolation, in combination or as part of other syndromes. CAKUT comprises a wide spectrum of congenital defects in the urinary system, ranging from renal agenesis and hypoplasia, structural duplication and mispositioning to defects in the ureter and bladder. Genetic, epigenetic and environmental factors can all cause these abnormalities. The biology of CAKUT is further complicated by the fact that affected family members may exhibit different types of CAKUT [7, 8, 24–29]. We will discuss the clinicopathological features of the most common types of CAKUT in relation to underlying developmental defects and provide a summary of candidate genes, underlying CAKUT and the likely developmental mechanisms contributing to the CAKUT phenotype (Tables 1–3).

Duplication and supernumerary kidneys

In supernumerary kidneys, multiple UBs emerge separately and grow into the MM [162, 163]. Partial duplication, often clinically insignificant, can result from UB stalk bifurcation before invading the MM or prior to initial branching of the primary UB stalk in the MM. In complete duplication, two UBs emerge from the WD, resulting in two complete sets of kidneys and ureters that may insert into the bladder separately (Figure 4). These kidneys may appear fused due to their development in the same MM. In >95% of such cases, the lower ureter will enter the bladder at its normal location but tunnels through it abnormally, leading to reflux [164]. The upper ureter inserts more distally, closer to the reproductive tract or in the urethra and frequently results in an ureterocele. The ureterocele often drains the upper kidney or the upper pole of a duplex kidney. Due to obstruction or reflux, both kidneys may show dysplasia or obstructive nephropathy. These patients may present with hypertension, pain and kidney failure. The incidence of duplication in a clinical setting is 1 in 125 and may be as high as 1 in 25 in postmortem cases [162]. The extra UBs could result from enhanced UB budding signals, failure to repress extraneous budding or aborted regression of mesonephric mesenchyme. For reasons still unknown, duplication is more common in women than in men (2:1) [162].

Agenesis

Failure of the kidneys to develop (agenesis) is frequently caused by defective/delayed WD growth or UB induction. Renal agenesis can be unilateral (1/1000) or bilateral (1/10 000) [165]. Bilateral agenesis is incompatible with life and is more common in males [165]. During embryogenesis, kidney agenesis causes oligohydramnios and abnormal lung development. Oligohydramnios or ahydramnios during fetal development often presents as Potter’s sequence: flat facial features, wide-set eyes, limb...
defects, prominent epicanthal folds, hypoplastic lungs and absent to malformed kidneys [166]. Isolated unilateral agenesis may cause compensatory hypertrophy of the contralateral kidney and is commonly detected during routine sonography examinations. The incidence is equal in males and females but higher on the left than on the right side. About 50–70% of unilateral agenesis may exhibit other urogenital anomalies, including dysplasia, ectopia, reflux and proteinuria, and may present with hypertension. The term ‘solitary kidney’ is frequently used to describe the absence of one kidney in living patients. Without the advantage of serial radiological follow-up from early gestation, it is difficult to determine if agenesis in these patients is due to complete lack of UB induction or due to involution of a dysplastic kidney.

**Hypoplasia**

Hypoplasia refers to small kidneys with a decreased number of nephrons due to reduced branching morphogenesis. These kidneys exhibit preserved architecture with normal organization into cortex and medulla. Unilateral hypoplasia has an incidence of 1/1000, whereas bilateral cases are less frequent (1/4000). Most patients with bilateral hypoplasia develop end-stage renal disease (ESRD) in mid or late childhood and have a higher probability of developing hypertension [165]. Simple unilateral hypoplasia may have no consequence. Hypoplasia may accompany renal artery hypoplasia. Macroscopically they may exhibit oligomeganephronia, decreased renal lobes and secondary glomerulosclerosis.

**Dysplasia**

Dysplastic kidneys have abnormal architectural organization, immature nephrons, undifferentiated stroma and incomplete branching [167]. The signaling cues orchestrating nephrogenesis appear asynchronous and there is a loss of coordinated reciprocal interactions among the UB, MM and stroma during branching morphogenesis. Dysplastic kidneys can be small, normal in size or slightly larger than healthy kidneys and may show cystic changes. Dysplasia can be unilateral (1/4300 in multicystic dysplastic kidneys and 1/1000 in dysplastic kidneys) or bilateral (1/7500) [165, 167]. Bilateral dysplasia is incompatible with life. Although definitive diagnosis of dysplasia requires histological assessment, the clinical diagnosis is often made through antenatal ultrasound. Dysplasia can occur in a portion or the entire kidney. Contralateral kidney defects may be as high as 50–70% in patients with unilateral kidney dysplasia who may also have other CAKUT phenotypes. The prognosis of unilateral dysplasia is usually good if infections and hypertension are well managed. Extreme forms of dysplasia or arrest in branching can result in involution of the kidney or rudiments, also known as aplastic kidneys. Extremely aplastic kidneys may be undetectable on radiological examination, leading to the diagnosis of solitary kidney or unilateral agenesis [168]. Microscopically the dysplastic kidneys show blastema elements; fetal glomeruli; tubular, glomerular or collecting duct cysts; smooth muscle collarettes surrounding primitive collecting ducts and cartilage in ~30% of cases (Figure 5). Multicystic dysplasia is a form of abnormal metanephric differentiation characterized by the presence of renal cysts of varying size and the absence of a normal pelvicaliceal system. Multicystic dysplastic kidneys may persist without noticeable change, increase in size or undergo spontaneous involution [169–174]. Dysplasia can be caused by primary defects in branching morphogenesis or secondary to reflux.

**Position defects (horseshoe kidneys, renal ectopia and malrotation)**

Position defects occur when kidneys are displaced along the anterior–posterior axis in the abdomen or mediolaterally relative to their normal location from the midline. Fusion or apposition of the growing kidneys may occur with position defects and may become clinically significant when there are associated anomalies such as refluxing ureters emanating from the fused kidneys leading to reflux nephropathy (RN). Most fusions occur near the posterior end of the kidneys. The ascent of the fused kidneys may be hindered by crossing blood vessels and other tissues. Thus the fused kidneys may position lower than normal.

**Table 1. Summary of cause and treatment of lower urinary tract defects affecting kidney function**

| Defects       | Definition                                                                 | Etiology                                                                 | Clinical presentation and pathological features                                                                 | Diagnosis                                      | Current treatment                                      |
|---------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| VUR           | Vesico-ureteral reflux                                                   | Ureteral and urogenital sinus malformation                               | Pre- or post-natal HN; febrile UTI                                                                            | VCUG                                          | Observation versus surgical repair (endoscopic injection or ureteral reimplantation) |
| UVJO          | Ureterocele                                                               | Ureteral and urogenital sinus malformation                               | Ectopic location may result in BOO; often associated with complete ureteral duplication                         | Renal US; diuretic renal scan; magnetic resonance urography | Ureteral reimplantation with or without a mega-ureter repair |
| UPJ obstruction| Obstructing valve leaflets at the posterior urethra                      | Urogenital sinus and trigone malformation                               | Bilateral HN, VUR; spectrum of renal demise; UTI                                                            | VCUG                                          | Endoscopic valve ablation                            |
| Ureteroceles  | Balloon dilation of the distal ureter                                    | Ureteral and urogenital sinus malformation                               | Renal US; diuretic renal scan; VCUG; magnetic resonance urography                                           | Renal US; diuretic renal scan; VCUG; magnetic resonance urography | Ureteroceles incision or excision                    |
| Obstructing valve leaflets at the posterior urethra | Urogenital sinus and trigone malformation | High-grade HN (pre- or postnatal), UTI; flank pain | Renal US; diuretic renal scan; magnetic resonance urography | Renal US; diuretic renal scan; magnetic resonance urography | Ureteral reimplantation with or without a mega-ureter repair |
| Ureteral obstruction at the UVJ | Ureteral obstruction at the ureteropelvic junction | Atretic, narrow or aperistatic proximal ureteral segment | High-grade HUN (pre- or postnatal), UTI; flank pain | Renal US; diuretic renal scan; magnetic resonance urography | Ureteral reimplantation with or without a mega-ureter repair |
| Obstructing valve leaflets at the posterior urethra | Urogenital sinus and trigone malformation | Atretic, narrow or aperistatic proximal ureteral segment | High-grade HN (pre- or postnatal), UTI; flank pain | Renal US; diuretic renal scan; magnetic resonance urography | Ureteral reimplantation with or without a mega-ureter repair |

HN, hydrenephrosis; HUN, hydroureteronephrosis; BOO, bladder outlet obstruction; US, ultrasound.
Table 2. A subset of genetic factors involved in CAKUT and the suspected mechanism based largely on the study of animal models

| Gene/allele symbols | Gene names and functions | Defects in human patients and animal models | Likely mechanism | References |
|---------------------|--------------------------|--------------------------------------------|------------------|------------|
| Ace                 | Angiotensin-converting enzyme (enzyme-converting angiotensin I to angiotensin II) | Ace<sup>-/-</sup> mice: hydrenephrosis, renal parenchymal atrophy | Defective pyeloureteral peristalsis as a result of a ureter differentiation defect, a urine concentration defect/polyuria or both | [19] |
| Adams1              | A disintegrin-like and metalloproteinase with thrombospondin type 1 motif, 1 (metalloproteinase) | Adams1<sup>-/-</sup> mice: UPJO, hydrenephrosis, hydrourerter, other urogenital defects | Unclear. Excessive collagen deposit was found at UPJ | [30] |
| Agt                 | Angiotensinogen (precursor of the peptide hormone angiotensin I) | Agt<sup>-/-</sup> mice: hydrenephrosis, renal parenchymal atrophy | Defective pyeloureteral peristalsis | [31, 32] |
| Agtr1a/b            | Angiotensin II receptor, type 1 (1a and b) (G protein-coupled receptor) | Agtr1a/b<sup>-/-</sup> (1a and b) mice: partial penetration, hydrenephrosis in older mutants, renal parenchymal atrophy | Urinary SMC developmental. Defect, renal pelvis development | [33, 34] |
| Agtr2               | Angiotensin II receptor, type 2 (G protein-coupled receptor) | Agtr2<sup>-/-</sup> mice: limited incidence of hydrenephrosis, megareter, renal parenchymal atrophy | Ectopic and duplicated UB | [24, 35] |
| Aldh1a2             | Aldehyde dehydrogenase family 1 member A2 (encodes Raldh2, an enzyme in retinoic acid synthesis) | Aldh1a2<sup>-/-</sup> mice rescued by maternal retinoic acid: hydrenureter and hydrenephrosis | Defects in ureter maturation, especially the insertion of the ureter into the bladder | [36] |
| Aqp2                | Aquaporin 2 (water channel) | The cph mutants (Aqp2<sup>S256L/S256L</sup>) have polyuria and hydrenephrosis. Other Aqp2 mutations also cause renal damage resembling obstructive nephropathy | Polyuria overwhelms the pyeloureteral peristaltic machinery | [37–39] |
| β-catenin           | Same as Ctnnb1 (adherens junction protein, involved in Wnt signaling) | Hoxb7-Cre<sup>+/−</sup>; β-catenin<sup>flx/flx</sup> mice: hydrenureter and hydrenephrosis | Ectopic and supernumerary UB | [40] |
| BMP4/Bmp4           | Bone morphogenetic protein 4 (ligand in the TGF-β superfamily) | BMP4 mutations found in human patients with anomalous kidney development. Bmp4<sup>-/-</sup> mice: hydrenephrosis, hydrourerter, other urinary tract defects | Ectopic and supernumerary UB | [41–43] |
| Bmp5                | Bone morphogenetic protein 5 (Ligand in the TGF-β superfamily) | Short ear (Bmp5<sup>-/-</sup>) mice have hydrenureter and hydrenephrosis | Spatial constraints in the lower abdominal cavity affect urinary transfer | [44, 45] |
| Bmp7                | Bone morphogenetic protein 7 (Ligand in the TGF-β superfamily) | Renal dysplasia, hypoplasia, hydrenephrosis and other defects are seen in mice deficient for Bmp7 | MM differentiation and growth | [46, 47] |
| Bmpr1a              | Bone morphogenetic protein receptor, type IA (serine/threonine–protein kinase receptor) | Mice deficient for Bmpr1a in the UB or the intermediate mesoderm has renal dysplasia, hypoplasia and other defects | Defective BMP signaling in progenitor populations | [48, 49] |
| CHRM3/Chrom3        | Cholinergic receptor, Muscarinic 3 (G protein-coupled receptor) | A frameshift mutation found in CHRM3 in familial congenital bladder malformation associated with prune belly-like syndrome. Bladder distension in Chrom3 mutant mice, especially in males | Defective detrusor contraction. Present in renal epithelia and bladder muscle with unknown functions | [50, 51] |
| Dlgh1               | Same as Dlg1, Disk-large homolog 1 (scaffolding protein) | Dlgh1<sup>-/-</sup> mice: prenatal hydrenephrosis, short ureter and defects in the ureteral insertion into the bladder | SM differentiation defect, ectopic UB | [52, 53] |
| Emx2                | Empty spiracles homeobox 2 (transcription factor) | Mice deficient for Emx2 lack kidney, ureter, gonads and genital tracts | Defective of UB branching after it invades MM | [54] |
| EYA1/Eya1           | Eyes absent homolog 1 (transcription factor) | Rare mutation in EYA1 found in CAKUT patients. Eya<sup>-/-</sup> mice: kidney agenesis | Absence or reduced Gdnf and six expression | [55, 56] |

(continued)
Table 2. (continued)

| Gene/allele symbols | Gene names and functions | Defects in human patients and animal models | Likely mechanism | References |
|---------------------|--------------------------|---------------------------------------------|------------------|------------|
| **Etv4 and Etv5**   | Ets variants 4 and 5 (transcription factors) | Etv4−/−; Etv5−/− mice: kidney agenesis and severe hypodysplasia. Double homozygotes: complete agenesis | Absence of Etv4 and 5 functions downstream of Ret to promote and control branching | [57] |
| **Fgfr2b and Pdcd1** | Fc receptor, low affinity IIb and programmed cell death 1 (cell surface membrane protein of the immunoglobulin superfamily) | Some Fgfr2b−/−; Pdcd1−/− mice: hydronephrosis | Autoimmune against UPKIIIA | [58] |
| **Fgfr2** | Fibroblast growth factor receptor 2 (receptor tyrosine kinase) | Some Pax3-CreT2+/−; Fgfr2flox/flox mice have hydronephrosis | Supernumerary UB, abnormal ureter connection | [61] |
| **Fgf8** | Fibroblast growth factor 8 (secreted signaling protein) | Mice with MM-specific inactivation of Fgf8 have renal agenesis and hypoplasia | Defective MM differentiation | [59, 60] |
| **Foxa1 and Foxc2** | Forkhead box protein C1/C2 (transcription factor) | Foxa1−/− and Foxa2−/− mice: duplex kidney, ureter duplication, hydroneuter, hydronephrosis | Ectopic and supernumerary UB | [62] |
| **Frem2** | FRAS1/Fras1 Fraser syndrome 1 (extracellular matrix protein) | Mice deficient for Frem2 have renal hypoplasia and fusion, malrotation | Altered signaling in the stroma. Disruption of a key role for renal capsule during kidney development | [63, 64] |
| **Gata2** | GATA-binding protein 2 (transcription factor) | Gata2−/− mice with YAC rescue of hematopoietic defects: hydroneuter, hydronephrosis | Unclear | [65] |
| **Gata3/Gata3** | GATA-binding protein 3 (transcription factor) | Gata3−/− mutations found in HDR (hypoparathyroidism, sensorineural deafness, renal anomaly) syndrome. Gata3−/− mice have kidney agenesis | Defects in nephric duct extension | [66, 67] |
| **Gdnf/Gdfn** | Glial cell-derived neurotrophic factor (ligand for RET) | Mice deficient for Gdnf have renal agenesis | UB induction defect | [70–72] |
| **GFRA1/Gfra1** | GDNF family receptor α1 (glycosyl-phosphatidylino-tol (GPI)-linked cell surface receptor for GDNF) | Mice deficient for Gfra1 have renal agenesis. Deletion of Gfra1 after UB induction causes renal hypoplasia | Defects in UB growth and branching morphogenesis | [73] |
| **Gli3** | Glioma-associated oncogene family zinc finger 3 (transcription factor) | Mice deficient for Gli3 have renal agenesis or malformed kidneys | Defective expression of key kidney patterning genes | [74, 75] |
| **Grem1** | Gremlin 1 (extracellular BMP antagonist) | Mice deficient for Grem1 have renal agenesis | Excessive BMP signaling. Defects in UB outgrowth | [76, 77] |
| **Hnf1α/Hnf1β** | Hepatocyte nuclear factor 1-α/β (transcription factor) | Hnf1β mutant mice have severe hypoplasia and other kidney defects | Broad expression in developing kidney and urinary tract. May affect multiple processes, especially UB outgrowth and branching | [55, 78–83] |
| **Hoxa11, Hoxc11 and Hoxd11** | Homeobox a11, c11 and d11 (transcription factors) | Mice with different combination of mutations in these genes have various kidney and urinary tract defects, including hypoplasia and agenesis | UB induction defect and branching morphogenesis defects | [84–86] |
| **Hoxa13 and Hoxd13** | Homeobox a13 and d13 (transcription factors) | Hoxa13−/−; Hoxd13−/− mice: UVJO, hydronephrosis, hydroneuter, other urogenital defects | Patterning defects. May have homeotic transformation | [87] |
| **Hpse2** | Heparanase 2 (enzyme that degrades heparin sulfate proteoglycans) | Mutations in HPSE2 cause urofacial syndrome | Likely defects in the nerves controlling urinary voiding | [88, 89] |
Table 2. (continued)

| Gene/allele symbols | Gene names and functions | Defects in human patients and animal models | Likely mechanism | References |
|---------------------|--------------------------|-------------------------------------------|-----------------|------------|
| Hspa4l               | Heat-shock protein 4 like (chaperone?) | Some Hspa4l−/− mice have genetic background-dependent hydroureter | Unclear | [90] |
| Id2                 | Inhibitor of DNA binding 2 | Id2−/− and Id2±/− mice have hydroureter | UPJ development | [91] |
| IL-9                | Interleukin 9 (cytokine) | Overexpressing IL-9 by its own promoter in mice: hydroureter | Likely autoantibodies against urinary tract components | [92] |
| Kcnj1               | Potassium inwardly rectifying channel, subfamily J, member 1 | Same as Kcnj1; Kcnj1−/− mice: vesicoureteral reflux and renal agenesis | Abnormal UB elongation and branching, Reduction of expression | [93] |
| Isl1                | Islet1 (transcription factor) | Hoxb6-Cre+/−; Isl1flox/flox mice have kidney agenesis, hydroureter and cryptorchidism | Abnormal UB elongation and branching. Reduction of expression | [94] |
| L1cam               | L1 cell adhesion molecule (transcription factor) | L1cam−/− mice: hydroureter and hydronephrosis | Ectopic UB | [26] |
| Lim1                | Same as Lmx1 – Lim homeobox protein 1 (transmembrane protein) | Hoxb7-Cre+/−; Lim1flox/flox mice (with Lim1 deletion in the UB derivatives): hydroureter and hydronephrosis | Ureter differentiation. | [95–97] |
| Limp-2 (Lgp85)      | Same as Scarb2 (scavenger receptor) | Limp-2−−/− mice: kidney and ureter duplication, UPJ, hydronephrosis and hydrourachy | Ectopic and supernumerary UB | [98] |
| Mdm2                | Murine double minute-2 (nuclear phosphoprotein that binds p53) | Mice deficient for Mdm2 in the UB develop renal hypoplasia | Aberrant proliferation and apoptosis of UB cells | [99] |
| NFIA/Nfia           | Nuclear factor I/A (transcription factor) | Nfia−/− and Nfia−/− mice: vesicoureteral reflux, hydroureter and hydronephrosis | Abnormal development of the UPJ and UVJ | [100] |
| Osr1                | Odd-skipped related 1 (transcription factor) | Mice deficient for Osr1 have complete renal agenesis | Establish of MM from intermediate mesoderm | [101–103] |
| PAX2/Pax2           | Paired box gene 2 (transcription factor) | Pax−/− mice: vesicoureteral reflux. Other mutant alleles also cause vesicoureteral reflux in addition to renal agenesis | Delay in urinary tract maturation in the Pax2−/− mice | [104–111] |
| Pbx1                | Pre-B-cell leukemia homeobox 1 (transcription factor) | Kidney mispositioning, renal hypoplasia and renal agenesis | MM dysfunction | [112] |
| Ppp3r1              | Protein phosphatase 3. Same as calcineurin (serine/threonine protein phosphatase) | The Ppx3-Cre+/−; Cnb1flox/flox mice (with calcineurin inactivation in the metanephrine and ureteral mesenchyme): early postnatal hydroureterosis and hydronedet | Pyeloureteral peristaltic defect, defect in urinary tract SMC development | [113] |
| Ptprs and Ptprf     | Protein tyrosine phosphatase, receptor type S & F (protein tyrosine phosphatase) | Ptprs; Ptprf double-mutant have hydroureterosis, hydronephrosis, and ureteroceles | Defects in ureter maturation | [114] |
| Rara and Rarb2      | Retinoic acid receptor α/retnoic acid receptor β 2 (nuclear receptors) | Rara−/−; Rarb2−/− mice have hydroureterosis, hydronephrosis, and ureteroceles | Defective differentiation of the MM | [115] |
| Renin               | Same as Ren1 (enzyme in the rennin–angiotension system) | Renin−− mice: hydroureterosis, renal parenchymal atrophy | Possibly by polyuria. It is also possible that the mutation disrupts SM differentiation | [116] |
| RET/Ret             | Ret proto-oncogene (receptor tyrosine kinase, receptor for Gdnf) | Ret/− mice: renal agenesis, defective WD insertion into the cloaca | UB initiation defect, distal WD growth | [117–119] |

(continued)
| Gene/allele symbols | Gene names and functions | Defects in human patients and animal models | Likely mechanism | References |
|---------------------|-------------------------|------------------------------------------|----------------|-----------|
| Mice carrying Ret alleles with specific mutation of the key tyrosines: CAKUT (hydronephrosis, hydroureter, vesicoureteral reflux, dysplasia, hypoplasia, duplication, agenesis) | Cell survival, proliferation, migration, Wolffian duct patterning, UB induction, ureteral maturation | [13, 73, 120–123, 124] |
| ROBO2/Robo2 | Roundabout homolog 2 (SLIT2 receptor) | Mice overexpressing Ret in UB: vesicoureteral reflux | Ureter maturation defect | [125] |
| SALL1/Sall1 | SAL-like 1 (transcription factor) | Heterozygous mutations in SALL1 in cause Townes-Brocks syndrome with renal involvement. Mice deficient for Sall1 have renal agenesis or severe dysgenesis | Disruption of UB initiation | [129–131] |
| SIX1/Six1 | SIX homeobox 1 (transcription factor) | SIX1 mutations cause certain types of bronchio-oto-renal syndrome. Mice deficient for Six1 lack kidneys. | Failure of UB invasion into MM | [132, 133] |
| SIX2/Six2 | SIX homeobox 2 (transcription factor) | Mice deficient for Six2 have severe renal hypoplasia | Premature and ectopic differentiation of mesenchymal cells into epithelia; depletion of the progenitor cell population within the MM | [43, 134, 135] |
| Shh | Sonic hedgehog (secreted signaling molecule) | Hoxb7-Cre+/−; Shhflox/flox mice (Shh−/− in UB derivatives): hydroureter and hydrenephrosis | Mesenchymal proliferation, SMC differentiation | [136] |
| Skl2 | Slit homolog 2 (ROBO2 ligand) | Slit2−−/− mice: hydroureter and hydrenephrosis | Ectopic and supernumerary UB | [126] |
| Smad4 | MAD homolog 4 (TGF-β signal transducer) | BMP7-Cre+/−; Smad4−−/−/− mice: hydrenephrosis | Defective MM differentiation | [138, 139] |
| Spry1 | Sprouty homolog 1 (RTK/ERK antagonist) | Spry1−−/− mice: hydroureter and hydrenephrosis | Ectopic and supernumerary UB | [140] |
| Spry2 | Sprouty homolog 2 (RTK/ERK antagonist) | Spry2−−/− mice: renal agenesis, hydroureter and hydrenephrosis | Ectopic and supernumerary UB | [141] |
| Tbx18 | T-box transcription factor 18 (transcription factor) | Tbx18−−/− mice: hydrenephrosis, hydroureter and short ureters | Ureteral SM defects due to ureteric mesenchyme differentiation anomalies | [142] |
| Tensin | Same as Tns1 (actin-binding protein) | Tensin−−/− mice: cystic and hydrenephrotic kidney at a few months of age | Unclear. May involve cell-cell, cell-matrix interaction | [143] |
| Tshz3 | Teashirt zinc finger family member 3 (transcription factor) | Tshz3−−/− mice: hydrenephrosis and hydroureter | Defects in ureteral SM differentiation | [144] |
| UpkII | Uroplakin II (glycosylated transmembrane protein) | UpkII−−/− mice: hydrenephrosis, hydroureter, vesicoureteral reflux | Urothelial hyperplasia may block the urinary path. Alternatively, the urothelium defects may affect SM development | [115] |
| UpkIIIA | Uroplakin III (glycosylated transmembrane protein) | UpkIIIA−−/− mice: hydrenephrosis, hydroureter, vesicoureteral reflux | Urothelial hyperplasia may block the urinary path. Alternatively, the urothelium defects may affect SM development | [145] |
| Wnt4 | Wingless-type MMTV integration site family, member 4 (secreted signaling protein) | Mice deficient for Wnt4 have renal agenesis and hydyplasia | Failure in mesenchymal to epithelial transition | [146, 147] |
Table 2. (continued)

| Gene/allele symbols | Gene names and functions | Defects in human patients and animal models | Likely mechanism | References |
|---------------------|--------------------------|--------------------------------------------|-----------------|-----------|
| Wnt9b               | Wingless-type MMTV integration site family, member 9b (secreted signaling protein) | Mice deficient for Wnt9b have renal agenesis and hypoplasia | Defective early inductive response in MM | [148] |
| Wnt11               | Wingless-type MMTV integration site family, member 11 (secreted signaling protein) | Mice deficient for Wnt9b have renal hypoplasia | Defects in branching morphogenesis | [149] |

There are many more genes than those listed involved in congenital anomalies of the kidney and urinary tract. The information presented in this table is not meant to be complete but is an example of genes known to be involved in various types of kidney and urinary tract anomalies. We apologize to the many researchers whose work is not cited in this table due to space constraints. SMC, smooth muscle cells; BMP, Bone morphogenetic protein; YAC, yeast artificial chromosome.

Table 3. Human gene mutations, associated syndromic and nonsyndromic CAKUT and potential developmental processes contributing to the phenotype

| CAKUT phenotype | Developmental process affected | Genes and genetic mechanism |
|-----------------|-------------------------------|-----------------------------|
| Agenesis        | Wolffian duct growth, pre-UB development | Autosomal dominant: LIM1, PAX2, PAX8, GATA3, EYA1, FOXC1, RET [5, 7, 8, 25, 150–157] |
| Ectopic ureters, duplex collecting system, dysplasia | Maintaining single UB | Autosomal dominant: RET, GDNF, ROBO2, LIM1, GATA3, EYA1, BMP4 [5, 7, 8, 25, 150–152, 154] |
| Agenesis, hypoplasia | UB induction | Autosomal dominant: RET, GDNF, SALL1, SIX1 [5, 7, 8, 25, 150–152, 154] |
| Hypoplasia, dysplasia | Branching morphogenesis, nephrogenesis | Autosomal recessive: ITGA8 [158] |
| | | | Genomic disorders: 4p deletion, rare CNVs (16p13, 17q12, 22q11 and others) [159–161] |
| | | X-linked: KAL1, GPC3 [5, 7, 8, 25, 150–152] |
| Urter defects (vesico-coureteral reflux, UPJO, ureterocele) | Urter maturation, Wolffian duct–cloaca fusion | Autosomal dominant: RET, GREM1, EYA1, ROBO2, PAX2, UPK3A, NF1A, AT [5, 7, 8, 25, 150–157] |
| | | Genomic disorders: rare CNVs [159–161] |
| | | X-linked: AGT2 [24, 35] |

or even asymmetrically to one side of the body. The fusion may also affect rotation of the kidney. These changes can lead to tortuous ureters, predisposing to urinary tract obstruction and subsequent kidney damage. Major subtypes of positional anomalies include the following.

**Horseshoe kidneys.** Horseshoe kidneys are the most common fusion abnormality (1/400), resulting from abnormal positioning of the mesenchyme or the WDs. The fusion tends to affect the normal ascent of the kidneys to the upper abdomen. The kidney parenchyma may be histologically normal unless affected by reflux or obstruction during development.

**Crossed fused renal ectopia.** In this second most common position anomaly (1/2000), the kidney has crossed the midline and fused with the contralateral kidney. The crossed kidney is usually smaller compared with the orthotopic kidney.

**Ectopia.** Ectopic kidneys are not located in the renal fossa. Ectopia can be simple (ipsilateral to the pelvis) or crossed (contralateral to the ureter entry site into the bladder) [175]. This could be due to defects in ascent or an abnormal UB budding site. The incidence of simple ectopia in clinical settings is 1/10000, but it is much higher in autopsies (1/1000). Solitary crossed renal ectopia is much rarer (1/1 500 000) and the ureter crosses over and lies contralateral to its entry site into the bladder. Ectopia and fusion defects may coexist, such as in pelvic horseshoe kidneys.

**Malrotation.** Malrotated kidneys are abnormally rotated along their long axis. These could be due to a failure of medial rotation during ascent. As a result, the hilum is often facing anteriorly. The incidence rate is 1/500. Malrotated kidneys usually do not cause any symptoms unless accompanied by other anomalies.

**Hydronephrosis**

Hydronephrosis is distension and dilatation of the renal pelvis and calyces, usually caused by interruption of the free flow of urine away from the kidney. Lower urinary tract defects may block the urinary path or affect pyeloureteral peristalsis for effective urine transport, leading to hydronephrosis [176]. Defects within the kidney, such as urine concentration problems, can lead to severe polyuria that overwhelms the pyeloureteral peristalsis, leading to eventual disruption of urinary flow. Cystinuria can lead to kidney stones, which can both block urine outflow and affect ureteral peristalsis, leading to obstruction [177–179]. Thus hydronephrosis is the outcome of direct
and indirect effects of conditions affecting the urinary conduit and is not a distinct disease entity by itself.

**Obstructive nephropathy and obstructive uropathy**

Persistence of hydronephrosis can result in tubular atrophy, inflammation and fibrosis (Figure 6) [180–182]. These pathological changes are collectively referred to as ‘obstructive nephropathy’ and ‘obstructive uropathy’. These terms have similar meanings, with slight emphasis on pathological changes within the kidney (obstructive nephropathy) or with additional reference to involvement of the lower urinary tract (obstructive uropathy). Damage to kidney architecture and function by urinary tract obstruction is especially devastating to the developing kidneys. Even mild prenatal urinary tract obstruction can greatly affect the number of nephrons formed. Severe prenatal urinary tract obstruction can lead to the arrest of kidney development and total loss of its function. In fact, congenital obstructive nephropathy is the most common cause of chronic kidney diseases in the pediatric population. Elevated hydrostatic pressure associated with obstruction results in radial dilatation of the tubules and ducts, leading to increased epithelial apoptosis and tubular atrophy, and causes a reduction in the glomerular filtration rate. Infiltration of immune cells has been frequently reported as obstructive nephropathy progresses. Disruption of the renal architecture usually correlates with the increased severity of fibrosis [183–185]. Complete obstruction of the urinary tract is relatively rare, but when it happens, timely intervention to release the obstruction is critical for preserving kidney function. Partial obstruction is more common in the clinical setting and even partial obstruction can lead to progressive obstructive nephropathy, ESRD and mortality, especially when obstruction is bilateral.

**Ureteropelvic junction obstruction**

Ureteropelvic junction obstruction (UPJO) is the junction between the kidney pelvis and the ureters. UPJO is defined as an obstruction of urine flow through the UPJ, causing progressive renal damage (Figure 7) [186, 187]. UPJ is a location where progenitor cells of different embryonic origins coalesce to form the ureter muscular layer. Due to its anatomical position and the complexity of the integration of separate progenitor cell populations, UPJO accounts for ~50% of all antenatal hydronephrosis cases and is the most common cause of congenital obstructive nephropathy [186, 187]. Approximately, 1/100 pregnancies show fetal upper urinary tract dilation by ultrasound. Although most of these dilatations resolve spontaneously, 1/500 remains clinically significant. UPJO occurs far more frequently in males than in females (3–4:1) and more frequently on the left side. Crossing blood vessels in some patients can also cause UPJO. Currently surgical intervention remains the only option for UPJO due to intrinsic causes. In children, the procedure of choice is an Anderson–Hynes dismembered pyeloplasty in which the obstructed segment is resected and the remaining ureter is reanastomosed.

**Vesicoureteral reflux**

Vesicoureteral reflux (VUR) is the retrograde flow of urine from the bladder to the ureter [188]. VUR is generally diagnosed by the retrograde flow of radioopaque contrast material during a voiding cystourethrogram (VCUG) (Figure 8) [189, 190]. VUR has been observed in ~0.1–1% of children [191–193]. This may be underestimated due to limited use of the invasive VCUG [194]. Although many patients with VUR show no kidney injury, other VUR patients develop RN, with pathological changes in advanced stages similar to obstructive nephropathy. As much as 8% of ESRD may be caused by VUR [188]. The pathophysiology of RN may be different than obstructive nephropathy, and early stages show segmental scarring of the renal parenchyma due to the propensity of reflux to damage superior and inferior lobes of the kidney. This is because these regions have compound papillae with a round orifice that facilitates retrograde flow. If untreated, the adjacent simple papillae transform into compound papillae and gradually affect the entire kidney. The scarred regions show thinning of the overlying cortex. If VUR is the only urinary tract anomaly found, then it is referred to as primary VUR. VUR is often associated with, and likely secondary to, other types of urinary tract defects, such as neurogenic bladder, posterior urethral valves (PUV) or ureterocele [195–197]. VUR can also occur as part of extrarenal syndromes [194]. VUR is frequently associated with urinary tract infection (UTI). UTIs in the setting of VUR may affect kidney function by providing access to bacteria from the bladder into the ureter and kidney and causing scarring (RN). By VCUG, ~25–40% of screened children with UTI have VUR [198].

**Ureterovesical junction obstruction and hydroureter**

The ureterovesical junction (UVJ) is the site where the ureter enters the bladder. Back pressure associated with physical obstruction at the UVJ usually causes dilation of the ureter (hydroureter or megaureter) and eventually hydronephrosis. Although less common than UPJO, persistent UVJ obstruction (UVJO) is as damaging to kidney function as UPJO. UVJO can be
caused by a poorly peristalsing ureteral segment near the bladder, abnormal insertion of the ureter into the bladder, a short intravesical ureteral segment, infection, scar tissues, kidney stones and other factors. If an obstructed segment or anatomic ureteral anomalies are present, then resection of the affected segment and refitting the ureter into the bladder is the current treatment option.

Ureterocele, ectopic ureter and duplicated ureter

Ureterocele is a sacular dilation of the terminal portion of the ureter inside the bladder (Figure 9) [176, 199]. The clinical effects of ureteroceles range from being asymptomatic to causing urinary tract obstruction and kidney damage. The normal site of ureter entry into the bladder is near the base of the bladder. The bladder trigone (a thickened muscular pad on the back of the bladder) helps to secure the intravesical segment of the ureter to prevent kinking and reflux. An abnormal ureter entry site and angle tend to nullify the function of the trigone, leading to reflux or obstruction. In rare cases, the distal ureter connects to the reproductive organs, such as the uterus, the vagina or the
Epididymis [200–203]. The resulting fistulae between the ureter and the reproductive organs tend to be obstructed, leading to hydroureter, hydronephrosis and kidney damage.

Bladder outlet obstruction and posterior urethral valves

Bladder outlet obstruction is the blockage of urine passage from the bladder to the urethra caused by benign prostate hyperplasia, bladder tumor, bladder stones, PUV or other causes. PUV, a congenital blockage of the posterior urethra [204, 205], is a common cause of urinary tract obstruction in male infants, with an estimated incidence rate of 1/5000–8000 male births and may account for 10% of all prenatally detected hydronephrosis [206–208]. PUVs can cause bilateral kidney damage, kidney failure and even death. It is one of the leading causes of kidney failure in children. PUV is typically detected by prenatal ultrasound and subsequently diagnosed definitively after birth. Fetuses with PUV can have bilateral hydrourerter/hydronephrosis with a thick trabeculated bladder wall and keyhole sign in the bladder neck (Figure 10). A VCUG and/or cystoscopic evaluation can be
used to demonstrate the presence of the ‘valves’ or ‘membranes’ that block urine passage. Although a bladder catheter can provide immediate relief, endoscopic ablation can be performed to permanently correct the defects.

CONCLUSIONS

A prominent feature of the development of the urinary system is the dynamic temporal and spatial integration of progenitor tissues of distinct embryonic origins. Such integration requires precise control of proliferation, apoptosis, migration and differentiation of all the progenitor cells involved to create junctional complexes, which if malformed result in bottlenecks for urine passage [9]. Research in animal models, especially transgenic mouse models, has contributed to a better understanding of the genetic factors and mechanisms of the pathogenesis of CAKUT (Table 2) that help us understand the genotype–phenotype association and mechanism in CAKUT patients (Table 3). Of note, many CAKUT cases have a developmental basis even before the metanephric kidney begins to develop. A deeper understanding of the embryonic processes underlying normal and abnormal development of the urinary tract will inform potential targetable therapies with small molecules and provide necessary knowledge to build kidneys that can be transplanted into patients. Genetic studies have taught us that CAKUT is a genetically heterogeneous disorder and the phenotype is influenced by gene interactions and epigenetic pathways. A major challenge in patient care is determining the pathogenicity of potentially deleterious variants identified in patients. Advancements in the field of genome editing and induced pluripotent cell-derived kidney organoids will surely overcome this hurdle in the near future and ultimately bring precision medicine to patients with CAKUT.

ACKNOWLEDGEMENTS

We thank Dr Helen Liapis and Paul Austin for constructive suggestions and other contributions.

FUNDING

F.C. is supported in part by National Institutes of Health grants HG009711, CA224083 and CA180006. S.J. is supported in part by R01DK082531.

CONFLICT OF INTEREST STATEMENT

None declared. The content presented in this article has not been published previously in whole or part.

REFERENCES

1. Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 2012; 4: a008300
2. Faa G, Gerosa C, Fanni C et al. Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol 2012; 227: 1257–1268
3. Saxen L. Inductive interactions in kidney development. Symp Soc Exp Biol 1971; 25: 207–221
4. Weber S. Novel genetic aspects of congenital anomalies of kidney and urinary tract. Curr Opin Pediatr 2012; 24: 212–218
5. Renkema KJ, Winyard PJ, Skovorodkin IN et al. Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT). Nephrol Dial Transplant 2011; 26: 3843–3851
6. Song R, Yosypiv IV. Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2011; 26: 353–364
7. Nakanishi K, Yoshikawa N. Genetic disorders of human congenital anomalies of the kidney and urinary tract (CAKUT). Pediatr Int 2003; 45: 610–616
8. Ichikawa I, Kuwayama F, Pope Jc et al. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 2002; 61: 889–898
9. Chen F. Genetic and developmental basis for urinary tract obstruction. Pediatr Nephrol 2009; 24: 1621–1632
10. Schell A. Renal abnormalities and their developmental origin. Nat Rev Genet 2007; 8: 791–802
11. Jain S. Overview of congenital anomalies of the kidney and urinary tract. In: Colvin RB, Chang AC (eds.). Diagnostic Pathology: Kidney Diseases, 2nd edn. Philadelphia: Elsevier, 2016, 828–831
12. Dressler GR. Advances in early kidney specification, development and patterning. Development 2009; 136: 3863–3874
13. Hoshi M, Batourina E, Mendelsohn C et al. Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice. Development. 2012; 139: 2405–2415
14. Kreidberg JA. Podocyte differentiation and glomerulogenesis. J Am Soc Nephrol 2003; 14: 806–814
15. Miner JH. Organogenesis of the kidney glomerulus: focus on the glomerular basement membrane. Organogenesis 2011; 7: 75–82
16. Quaggini SE, Kreidberg JA. Development of the renal glomerulus: good neighbors and good fences. Development 2008; 135: 609–620
17. Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol 2006; 22: 509–529
18. Costantini F, Shakyra R. GDNF/Ret signaling and the development of the kidney. Bioessays 2006; 28: 117–127
19. Esther CR Jr, Howard TE, Marino EM et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 1996; 74: 953–965
20. Baker LA, Gomez RA. Embryonic development of the ureter. Semin Nephrol 1998; 18: 569–584
21. Baker LA, Gomez RA. Embryonic development of the ureter and bladder: acquisition of smooth muscle. J Urol 1998; 160: 545–550
22. Matsuno T, Tokunaka S, Koyanagi T. Muscular development in the urinary tract. J Urol 1989; 141: 969–973
23. Escala JM, Keating MA, Boyd G et al. Development of elastic fibres in the upper urinary tract. J Urol 1989; 141: 969–973
24. Nishimura H, Yerkes E, Hohenfellner K et al. Development and patterning. Annu Rev Cell Dev Biol 2009; 136: 3863–3874
25. Pope JC, Brock JW, Adams MC et al. Role of the renin-angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 1999; 3: 1–10
26. Matsuura T, Tokunaka S, Koyanagi T. Muscular development in the urinary tract. J Urol 1984; 132: 148–152
27. Miyazaki Y, Ichikawa I. Ontogeny of congenital anomalies of the kidney and urinary tract, CAKUT. Pediatr Int 2003; 45: 598–604
28. Nakai H, Asanuma H, Shishido S et al. Changing concepts in urological management of the congenital anomalies of kidney and urinary tract. CAKUT. Pediatr Int 2003; 45: 634–641
29. Stahl DA, Koul HK, Chacko JK et al. Congenital anomalies of the kidney and urinary tract (CAKUT): a current review of cell signaling processes in ureteral development. J Pediatr Urol 2006; 2: 2–9
30. Shindo T, Kurihara H, Kuno K et al. ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J Clin Invest 2000; 105: 1345–1352
31. Nagata M, Tanimoto K, Fukamizu A et al. Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 1996; 75: 745–753
32. Niimura F, Labosky PA, Kakuchi J et al. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 1995; 96: 2947–2954
33. Oliverio MF, Kim HS, Itô M et al. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 1998; 95: 15496–15501
34. Miyazaki Y, Tsuchida S, Nishimura H et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 1998; 102: 1489–1497.
35. Oshima K, Miyazaki Y, Brock JW et al. Angiotensin type II receptor expression and ureteral budding. J Urol 2001; 166: 1848–1852
36. Batourina K, Tsai S, Lambert S et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 2005; 37: 1082–1089
37. McDill BW, Li SZ, Kovach PA et al. Congenital progressive hydrourephrosis (CPH) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA 2006; 103: 6952–6957
38. Yang B, Gillespie A, Carlson EJ et al. Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 2001; 276: 2775–2779
39. Lloyd DJ, Hall FW, Tarantino LM et al. Diabetes insipidus in mice with a mutation in aquaporin-2. PLoS Genet 2005; 1: e20
40. Marose TD, Merkel CE, McMahon AP et al. Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 2008; 314: 112–126
41. Dunn NR, Winnier GE, Hargett LR et al. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 1997; 188: 235–247
42. Miyazaki Y, Oshima K, Fogo A et al. Bone morphogenetic protein 4 regulates the budding site and elongation of the ureter. J Clin Invest 2000; 105: 863–873
43. Weber S, Taylor JC, Winyard P et al. SIX2 and BMP4 mutations associate with abnormal kidney development. J Am Soc Nephrol 2008; 19: 891–903
44. Green M. Further morphological effects of the short ear gene in the mouse house. J Morphol 1951; 88: 1–22
45. King JA, Marker PC, Seung KJ et al. BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 1994; 166: 112–122
46. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 1995; 9: 2795–2807
47. Luo G, Hofmann C, Bronckers AL et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 1995; 9: 2808–2820
48. Hartwig S, Bridgewater D, Di Giovanni V et al. BMP receptor ALK3 controls collecting system development. J Am Soc Nephrol 2008; 19: 117–124
49. Di Giovanni V, Alday A, Chi L et al. Alk3 controls nephron number and androgen production via lineage-specific effects in intermediate mesoderm. Development 2011; 138: 2717–2727
50. Weber S, Thiele H, Mir S et al. Muscarinic acetylcholine receptor M3 mutation causes urinary bladder disease and a prune-belly-like syndrome. Am J Hum Genet 2011; 89: 668–674
51. Matsu I, Motomura D, Karasawa H et al. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 2000; 97: 9579–9584
52. Mahoney ZH, Sammut B, Xavier RJ et al. Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc Natl Acad Sci USA 2006; 103: 19872–19877
53. Iizuka-Kogo A, Ishidao T, Akiyama T et al. Abnormal development of urogenital organs in Dhh1-deficient mice. Development 2007; 134: 1799–1807
54. Miyamoto N, Yoshida M, Kuratani S et al. Defects of urogenital development in mice lacking Emx2. Development 1997; 124: 1653–1664
55. Hoskins BE, Cramer CH, Tasic V et al. Missense mutations in EYA1 and TCF2 are a rare cause of urinary tract malformations. Nephrol Dial Transplant 2008; 23: 777–779
56. Xu PX, Adams J, Peters H et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 1999; 23: 113–117
57. Lu BC, Cebrian C, Chi X et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 2009; 41: 1295–1302
58. Okazaki T, Otaka Y, Wang J et al. Hydrourephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b−/−Pdc1−/− mice. J Exp Med 2005; 202: 1643–1648
59. Grieshammer U, Cebrian C, Ilagan R et al. FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 2005; 132: 3847–3857
60. Perantoni AO, Timofeeva O, Naillat F et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 2005; 132: 3859–3871
61. Hains D, Sims-Lucas S, Kish K et al. Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 2008; 64: 592–598
62. Kume T, Deng K, Horgan BL. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 2000; 127: 1387–1395
63. Hatini V, Huh SO, Herzlinger D et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 1995; 9: 2808–2820
64. Levison RS, Batourina E, Choi C et al. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 2005; 132: 529–539
65. Saisawat P, Tasic V, Vega-Warner V. Identification of two novel CAKUT-causing genes by massively parallel exon
resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int 2011; 81: 196–200
66. Pitera JE, Scambler PJ, Woolf AS. Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli. Hum Mol Genet 2008; 17: 3953–3964
67. Zhou Y, Lim KC, Onodera K. Rescue of the embryonic lethal hematopoietic defect reveals a critical role for GATA-2 in urogenital development. EMBO J 1998; 17: 6689–6700
68. Van Esch H, Groenen P, Nesbit MA et al. GATA3 haploinsufficiency causes human HDR syndrome. Nature 2000; 406: 419–422
69. Grote D, Boualia SK, Souabni A et al. Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 2008; 4: e1000316
70. Sanchez MP, Silos-Santiago I, Frisen J et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382: 70–73
71. Pichel JS, Shen L, Sheng HZ, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382: 73–76
72. Moore MW, Klein RD, Fariñas I et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996; 382: 76–79
73. Keefe Davis T, Hoshi M, Jain S. Stage specific requirement of Gfrα1 in the ureteric epithelium during kidney development. Mech Dev 2013; 130: 506–518
74. Hu MC, Mo R, Bhella S et al. GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 2006; 133: 569–578
75. Bose J, Grotewold L, Rutherford U. Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 2002; 11: 1129–1135
76. Michos O, Panman I, Vintersten K et al. Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 2004; 131: 3401–3410
77. Michos O, Gonçaalves A, Lopez-Rios J et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 2007; 134: 2397–2405
78. Bingham C, Ellard S, Cole TRP et al. Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1β mutations. Kidney Int 2002; 61: 1243–1251
79. Bingham C, Bullman MP, Ellard S et al. Mutations in the hepatocyte nuclear factor-1β gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 2001; 68: 219–224
80. Bingham C, Ellard S, Allen L et al. Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 β. Kidney Int 2000; 57: 898–907
81. Lindner TH, Njolstad PR, Horikawa Y et al. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1β. Hum Mol Genet 1999; 8: 2001–2008
82. Kolati-Joannou M, Bingham C, Ellard S. Hepatocyte nuclear factor-1β: a new kindred with renal cysts and diabetes and gene expression in normal human development. J Am Soc Nephrol 2001; 12: 2175–2180
83. Lokmani L, Heliot C, Garcia-Villalba P et al. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis. Development 2010; 137: 347–357
84. Wellik DM, Hawkes PJ, Capecchi MR. Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 2002; 16: 1423–1432
85. Patterson LT, Pembaur M, Potter SS. Hoxa11 and Hoxd11 regulate branching morphogenesis of the ureteric bud in the developing kidney. Development 2001; 128: 2153–2161
86. Mugford JW, Sipila P, Kobayashi A et al. Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. Dev Biol 2008; 319: 396–405
87. Warot X, Fromental-Ramain C, Fraulob V et al. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 1997; 124: 4781–4791
88. Daly SB, Urquhart JE, Hilton E et al. Mutations in HPSE2 cause urofacial syndrome. Am J Hum Genet 2010; 86: 963–969
89. Gu C, Kaneko S, Sun Y et al. A mouse model of urofacial syndrome with dysfunctional urination. Hum Mol Genet 2015; 24: 1991–1999
90. Held T, Paprotta I, Khulan J et al. Hspa4l-deficient mice display increased incidence of male infertility and hydrenephrosis development. Mol Cell Biol 2006; 26: 8099–8108
91. Aoki Y, Mori S, Kitajima K et al. Id2 haploinsufficiency in mice leads to congenital hydrenephrosis resembling that in humans. Genes Cells 2004; 9: 1287–1296
92. Lauder AJ, Jolin HE, Smith P et al. Lymphomagenesis, hydrenephrosis, and autoantibodies result from dysregulation of IL-9 and are differentially dependent on Th2 cytokines. J Immunol 2004; 173: 113–122
93. Lorenz JN, Baird NR, Judd LM et al. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem 2002; 277: 37871–37880
94. Kaku Y, Ohmori T, Kudo K et al. Islet1 deletion causes kidney agenesis and hydroureter resembling CAKUT. J Am Soc Nephrol 2013; 24: 1242–1249
95. Shawlot W, Behringer RR. Requirement for Lim1 in head and peripheral neuropathy in mice. J Biol Chem 1998; 223: 77–90
96. Kobayashi A, Kwan KM, Carroll TJ et al. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 2001; 128: 2153–2161
97. Golf AC, Tanaka Y, Lullmann-Rauch R. LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum Mol Genet 2003; 12: 631–646
98. Hilliard S, Aboudehen K, Yao X et al. Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching. Dev Biol 2011; 353: 354–366
99. Lu W, Quintero-Rivera F, Fan Y et al. NFIA haploinsufficiency is associated with a CNS malformation syndrome and urinary tract defects. PLoS Genet 2007; 3: e80
100. Mugford JW, Sipila P, McMahon JA et al. Osr1 expression demarcates a multi-potent population of intermediate
mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 2008; 324: 88–98

102. James RG, Kamei CN, Wang Q et al. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development. 2006; 133: 2995–3004

103. Wang Q, Lan Y, Cho ES et al. Odd-skipped related 1 (Odd1) is an essential regulator of heart and urogenital development. Dev Biol 2005; 288: 582–594

104. Murawski IJ, Myburgh DB, Favor J et al. Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu−/− mouse. Am J Physiol Renal Physiol 2007; 293: F1736–F1745

105. Sanyanusin P, McNoe LA et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 1995; 9: 358–364

106. Choi KL, McNoe LA, French MC et al. Absence of PAX2 gene mutations in patients with primary familial vesicoureteric reflux. J Med Genet 1998; 35: 338–339

107. Favor J, Sandulache R, Neuhauser-Klaus A et al. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in two siblings with renal-coloboma syndrome. Hum Mol Genet 1995; 4: 2183–2184

108. Keller SA, Jones JM, Boyle A. Kidney and retinal defects in renal anomalies and vesicoureteral reflux. J Am Soc Nephrol 2008; 19: 2027–2034

109. Hoshi M, Regginensi A, Joens MS et al. Reciprocal spatiotemporally controlled apoptosis regulates Wolfian duct cloaca fusion. J Am Soc Nephrol 2018; 29: 775–783

110. Yu OH, Murawski IJ, Myburgh DB et al. Overexpression of RET leads to vesicoureteric reflux in mice. Am J Physiol Renal Physiol 2004; 287: F1123–F1130

111. Grieshammer U, Le M, Flump AS. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 2004; 6: 709–717

112. Lu W, van Erde AM, Fan X et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 2007; 80: 616–632

113. Bertolli-Avella AM, Conte ML, Punzo F et al. ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol 2008; 19: 825–831

114. Kiefer SM, Ohlemiller KK, Yang J et al. Expression of a truncated Sall1 transcriptional repressor is responsible for Townes-Brocks syndrome birth defects. Hum Mol Genet 2003; 12: 2221–2227

115. Nishinakamura R, Matsumoto Y, Nakao K et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 2001; 128: 3105–3115

116. Kohlhase J. SALL1 mutations in Townes-Brocks syndrome and related disorders. Hum Mutat 2000; 16: 460–466

117. Ruf RG, Xu P-X, Silvius D et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci USA 2004; 101: 8090–8095

118. Xu PX, Zheng W, Huang L et al. SIX1 is required for the early organogenesis of mammalian kidney. Development 2003; 130: 3085–3094

119. Kobayashi A, Valerius MT, Mugford JW et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 2008; 3: 169–181

120. Self M, Lagutin OV, Bowling B et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 2006; 25: 5214–5228

121. Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 2002; 129: 5301–5312

122. Takahashi N, Chernavsky DR, Gomez RA et al. Uncompensated polyuria in a mouse model of Barter’s syndrome. Proc Natl Acad Sci USA 2000; 97: 5434–5439

123. Oxburgh L, Chu GC, Michael SK et al. TGFβ superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population. Development 2004; 131: 4593–4605
139. Tripathi P, Wang Y, Casey AM, et al. Absence of canonical Smad signaling in ureteral and bladder mesenchyme causes ureteropelvic junction obstruction. J Am Soc Nephrol 2012; 23: 618–628

140. Basson MA, Akbulut S, Watson-Johnson J et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 2005; 8: 229–239

141. Lo SH, Yu QC, Deng F-M, et al. Progressive kidney degeneration in mice lacking tensin. J Cell Biol 1997; 136: 1349–1361

142. Carroll TJ, Park JS, Hayashi S et al. Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest 2006; 116: 663–674

143. Majumdar A, Vainio S, Kispert A et al. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 2004; 131: 3345–3356

144. Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 2004; 200: 151: 961–972

145. Hu P, Deng F-M, Liang F-X et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Clin Invest 2006; 125: 4225–4234

146. Carroll TJ, Park JS, Hayashi S et al. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 2005; 9: 283–292

147. Stark K, Vainio S, Vassileva G et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994; 372: 679–683

148. Carroll TJ, Park JS, Hayashi S et al. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 2005; 9: 283–292

149. Majumdar A, Vainio S, Kispert A et al. Wnt11 and vesicoureteral reflux. J Am Soc Nephrol

150. Rodriguez MM. Congenital anomalies of the kidney and urinary tract: a re- view. Clin J Am Soc Nephrol 2013; 8: 1179–1187

151. Davis TK, Hoshi M, Jain S. To bud or not to bud: the RET per- mission. Pediatr Nephrol 2014; 29: 597–608

152. Allison SJ. Basic research: Ret signaling reveals insights into the pathogenesis of CAKUT. Nat Rev Nephrol 2012; 8: 432

153. Harshman LA, Brophy PD. PAx2 in human kidney malforma- tions and disease. Pediatr Nephrol 2012; 27: 1265–1275

154. Kohl S, Hwang D-Y, Dworschak GC et al. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 2014; 25: 1917–1922

155. Sanna-Cherchi S, Kiryluk K, Burgess KE et al. Copy-number disorders are a common cause of congenital kidney malfor- mations. Am J Hum Genet 2012; 91: 987–997

156. Verbitsky M, Sanna-Cherchi S, Fasel DA et al. Genomic imbalances in pediatric patients with chronic kidney disease. J Clin Invest 2015; 125: 2171–2178

157. Westland R, Verbitsky M, Vukojevic K et al. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int 2015; 88: 1402–1410

158. Harshman LA, Brophy PD. PAx2 in human kidney malfor- mations and disease. Pediatr Nephrol 2014; 29: 597–608

159. Hans SS, Griffin EE. II The Weigert-Meyer law demysti- fied. J Islamic Med Assoc 1996; 28: 16–19

160. terreteral smooth muscle differentiation downsteam of SHH and BMP4. Development 2008; 135: 3301–3310

161. Hu P, Deng F-M, Liang F-X et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Clin Invest 2005; 151: 961–972

162. Grattan-Smith JD, Jones RA, Little S. Unilateral multicystic kidney. J Urol 1997; 136: 57–63

163. Potter EL. Facial characteristics of infants with bilateral renal agenesis. Am J Obstet Gynecol 1946; 51: 885–888

164. Hiraoka M, Tsukahara H, Ohshima Y et al. Renal aplasia is the predominant cause of congenital solitary kidneys. Kidney Int 2002; 61: 1840–1844

165. Mansoor O, Chandar J, Rodriguez MM et al. Long-term risk of chronic kidney disease in unilateral multicystic dysplastic kidney. Pediatr Nephrol 2011; 26: 597–603

166. Grattan-Smith JD, Jones RA, Little S et al. Bilateral congenital midureteric strictures associated with multicystic dysplastic kidney and hydrenephrosis: evaluation with MR urography. Pediatr Radiol 2011; 41: 117–120

167. Singh JK, Kanojia RP, Narasimhan KL. Multicystic dysplastic kidney in children — a need for conservative and long term approach. Indian J Pediatr 2009; 76: 809–812

168. Hains DS, Bates CM, Ingraham S et al. Management and etiology of the unilateral multicystic dysplastic kidney: a meta-analysis of observational studies on the incidence, associated urinary tract malformations and the contralateral kidney. Nephrol Dial Transplant 2009; 24: 1810–1818

169. Kiyak A, Yilmaz A, Turhan P et al. Unilateral multicystic dysplastic kidney: single-center experience. Pediatr Nephrol 2009; 24: 99–104

170. van den Bosch CMA, van Wijk JAE, Beckers GMA et al. Unilateral multicystic dysplastic kidney: a re- view. Pediatr Nephrol 2009; 24: 233–241

171. Haddad FS, Griffin EE. II The Weigert-Meyer law demysti- fied. J Islamic Med Assoc 1996; 28: 16–19

172. Harshman LA, Brophy PD. PAx2 in human kidney malfor- mations and disease. Pediatr Nephrol 2012; 27: 1265–1275

173. Shreuder MF, Westland R, van Wijk JA. Unilateral multicystic dysplastic kidney: a meta-analysis of observational studies on the incidence, associated urinary tract malformations and the contralateral kidney. Nephrol Dial Transplant 2009; 24: 1810–1818

174. Shreuder MF, Westland R, van Wijk JA. Unilateral multicystic dysplastic kidney: a meta-analysis of observational studies on the incidence, associated urinary tract malformations and the contralateral kidney. Nephrol Dial Transplant 2009; 24: 1810–1818

175. Stephens FD, Smith ED, Hutson JM. Congenital Anomalies of the Kidney, Urinary and Genital Tracts: London: Martin Dunitz, 2002
181. Ingraham SE, McHugh KM. Current perspectives on congenital obstructive nephropathy. Pediatr Nephrol 2011; 26: 1453–1461
182. Liapis H. Biology of congenital obstructive nephropathy. Nephron Exp Nephrol 2003; 93: e87–e91
183. Duffield JS. Epithelial to mesenchymal transition in injury of solid organs: fact or artifact? Gastroenterology 2010; 139: 1081–1083
184. Humphreys BD, Lin SL, Kobayashi A et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010; 176: 85–97
185. LeBleu VS, Taduri G, O’Connell J et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med 2013; 19: 1047–1053
186. Klein J, Gonzalez J, Miravete M et al. Congenital ureteropelvic junction obstruction: human disease and animal models. Int J Exp Pathol 2011; 92: 168–192
187. Yiee JH, Johnson-Welch S, Baker LA et al. Histologic differences between extrinsic and intrinsic ureteropelvic junction obstruction. Urology 2010; 76: 181–184
188. Murawski IJ, Gupta IR. Vesicoureteric reflux and renal malformations: a developmental problem. Clin Genet 2006; 69: 105–117
189. Hensle TW, Grogg AL. Part 1: vesicoureteral reflux treatment: the past, present, and future. Curr Med Res Opin 2007; 23: S1–S5
190. Gargollo PC, Diamond DA. Therapy insight: what nephrologists need to know about primary vesicoureteral reflux. Nat Clin Pract Nephrol 2006; 2: 354–359
191. Krishnan A, de Souza A, Konijeti R et al. The anatomy and embryology of posterior urethral valves. J Urol 2006; 175: 1214–1220
192. Lopez Pereira P, Martinez Urrutia MJ, Jaureguizar E. Initial and long-term management of posterior urethral valves. World J Urol 2004; 22: 119–123
193. Yohannes P, Hanna M. Current trends in the management of posterior urethral valves in the pediatric population. Urology 2002; 60: 947–953
194. Puri P, Kumar R. Endoscopic correction of vesicoureteral reflux secondary to posterior urethral valves. J Urol 1996; 156: 680–682
195. Hassan JM, Pope JC, Brock JW et al. Vesicoureteral reflux in patients with posterior urethral valves. J Urol 2003; 170: 677–680
196. Upadhyay J, Bolduc S, Braga L et al. Impact of prenatal diagnosis on the morbidity associated with ureterocele management. J Urol 2002; 167: 2560–2565
197. Tullus K. Vesicoureteric reflux in children. Lancet 2015; 385: 371–379
198. Coplen DE, Duckett JW. The modern approach to ureteroceles. J Urol 1995; 153: 166–171
199. Avritscher R, Madoff DC, Ramirez PT et al. Fistulas of the lower urinary tract: percutaneous approaches for the management of a difficult clinical entity. Radiographics 2004; 24: S217–S236
200. Yu NC, Raman SS, Patel M et al. Fistulas of the genitourinary tract: a radiologic review. Radiographics 2004; 24: 1331–1352
201. Baird DR, Orangio GR, Lucas GW. A complex ileovaginal fistula associated with obstructive uropathy in a patient with Crohn’s disease: technical considerations and review of the literature. South Med J 1991; 84: 389–391
202. Dwyer PL, Rosamilia A. Congenital urogenital anomalies that are associated with the persistence of Gartner’s duct: a review. Am J Obstet Gynecol 2006; 195: 354–359
203. Hodges SJ, Patel B, McLorie G et al. Posterior urethral valves. ScientificWorldJournal 2009; 9: 1119–1126
204. Lopez Pereira P, Martinez Urrutia MJ, Jaureguizar E. Initial and long-term management of posterior urethral valves. World J Urol 2004; 22: 418–424
205. Agarwal S. Urethral valves. BJU Int 1999; 84: 570–578