A clinically important cervical spine injury is defined as any fracture, dislocation or ligamentous instability detectable by diagnostic imaging and requiring surgical or specialist follow-up. These injuries can have disastrous consequences including spinal cord injury and death if the diagnosis is delayed or missed. Despite the low prevalence (<3%) of clinically important cervical spinal injury following blunt trauma (e.g., motor vehicle collision), accurate diagnosis is imperative for safe, effective management. Currently, uncertainty exists about the optimal diagnostic approach. Some guidelines advocate using screening tools to identify patients with a higher likelihood of clinically important cervical spinal injury; these patients are then sent for imaging to establish the diagnosis. In other more conservative settings, all patients with blunt trauma are sent for imaging. The first approach, involving screening, is arguably preferable because it optimizes resources and time, while reducing unnecessary costs, radiation exposure and psychological stress for the patient. For screening to be safe and effective, the screening tools must have high sensitivity, a low negative likelihood ratio and a low rate of false positives. This assures clinicians that a clinically important cervical spine injury is unlikely and reduces the number of referrals for imaging.

Clinical decision rules synthesize 3 or more findings from the patient’s history, physical examination or simple diagnostic tests to guide
diagnostic and treatment decisions. Two clinical decision rules, the Canadian C-spine rule and the National Emergency X-Radiography Utilization Study (NEXUS; Box 1), are available to assess the need for imaging in patients with cervical spine injury following blunt trauma. These rules aim to reduce unnecessary imaging by reserving these investigations for patients with a higher likelihood of clinically important cervical spinal injury. Developed independently and validated using large cohorts of patients, these 2 decision rules are recommended in many international guidelines. However, no consensus exists as to which rule should be endorsed. Therefore, the purpose of our systematic review was to describe the quality of research evaluating the Canadian C-spine rule and NEXUS; describe the diagnostic accuracy of the Canadian C-spine rule and NEXUS; and compare the diagnostic accuracy of the Canadian C-spine rule to that of NEXUS.

Methods

Data sources

Three electronic databases (CINAHL, Embase, MEDLINE) were searched from inception until Sept. 12, 2011. The search strategy consisted of terms describing the Canadian C-spine rule and NEXUS (Appendix 1, available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.120675/-/DC1). We did not use a diagnostic search filter because even sensitive filters can miss relevant studies and perform inconsistently. We screened the reference lists of included studies and related systematic reviews to identify diagnostic studies missed by the database search.

Study selection

Two reviewers (Z.M and C.M., A.V., T.R. or C.-W.L.) independently applied selection criteria to titles and abstracts and then full papers. We included articles that met the following criteria: reported on a cohort of patients presenting with symptoms of cervical spine injury following blunt trauma and clinically important cervical spine injury was a differential diagnosis; evaluated the diagnostic performance of the Canadian C-spine rule or NEXUS criteria; confirmed the diagnosis of clinically important spinal injury with an adequate reference standard (e.g., plain radiographs, computed tomography, magnetic resonance imaging); and reported results in sufficient detail to allow reconstruction of contingency tables. No language restriction was applied.

Quality assessment

Two reviewers (Z.M and A.V., T.R. or C.-W.L.) assessed the methodologic quality of studies using the 11-item Quality Assessment of Diagnostic Accuracy Studies (QUADAS) criteria. Studies were included regardless of their risk of bias. Disagreements were resolved first in discussion (Z.M. and A.V., T.R. or C.-W.L.), and then by an independent third reviewer if necessary (C.M.). The inter-rater reliability of the quality assessment was evaluated using percentage agreement and Kappa (κ) statistics.

Data extraction and analysis

Two authors (Z.M and C.M., A.V., T.R. or C.-W.L) independently extracted data, including the number of participants, setting, characteristics of the index test and reference standard, prevalence of clinically important cervical spinal injury, and raw data to enable reconstruction of contingency tables. We added 0.5 to the empty cells in the contingency table when a computational problem existed and calculated sensitivity, specificity, likelihood ratios, post-test probabilities and percentage of true negative test results. We planned to pool sensitivity and specificity using a bivariate model if included studies showed sufficient clinical and statistical homogeneity. We conducted a sensitivity analysis to evaluate the diagnostic performance of the Canadian C-spine rule and NEXUS using studies that assessed the rule prospectively and in their entirety.

Results

Our search retrieved 578 articles. Fifteen studies were included after screening (Figure 1) and all were published in English. Eight studies evaluated the Canadian C-spine rule alone and 6 studies evaluated NEXUS alone. We considered only one of the studies to be a direct comparison, because the diagnostic accuracy of both rules were evaluated prospectively in the same patients and by the same physicians. The other comparison was reported in 2 separate
studies and evaluated the rules using different study designs and assessors. We did not consider this to be an accurate direct comparison of the 2 rules, hence we presented these studies individually. The prevalence of clinically important spinal injury ranged from 0.4% to 6% (median 1.95%, interquartile range [IQR] 1.13–2.74) and included injuries such as C1 arch fracture, C2 hangman’s fracture and C6/7 fracture/subluxation, all of which required surgical intervention, specialist follow-up, or both. Table 1 outlines the characteristics of the included studies. Based on visual inspection of forest plots and statistical testing (a statistically significant χ^2 and moderate-to-high I^2 value), we determined that the included studies were too heterogeneous to pool.

The quality, percentage agreement and κ statistic for the QUADAS items are shown in Table 2. Inter-rater reliability was slight to poor for most items, with one item having moderate reliability. No disagreement persisted between reviewers after the consensus meeting. The included studies were of modest quality. Only 6 studies reported enrolment of consecutive patients, highlighting potential selection bias in the remaining 9 studies.

Table 1 outlines the characteristics of the included studies. Based on visual inspection of forest plots and statistical testing (a statistically significant χ^2 and moderate-to-high I^2 value), we determined that the included studies were too heterogeneous to pool.

The quality, percentage agreement and κ statistic for the QUADAS items are shown in Table 2. Inter-rater reliability was slight to poor for most items, with one item having moderate reliability. No disagreement persisted between reviewers after the consensus meeting. The included studies were of modest quality. Only 6 studies reported enrolment of consecutive patients, highlighting potential selection bias in the remaining 9 studies.

Figure 1: Flow diagram of studies selected for inclusion.

Figure 1: Flow diagram of studies selected for inclusion.

The prevalence of clinically important spinal injury ranged from 0.4% to 6% (median 1.95%, interquartile range [IQR] 1.13–2.74) and included injuries such as C1 arch fracture, C2 hangman’s fracture and C6/7 fracture/subluxation, all of which required surgical intervention, specialist follow-up, or both. Table 1 outlines the characteristics of the included studies. Based on visual inspection of forest plots and statistical testing (a statistically significant χ^2 and moderate-to-high I^2 value), we determined that the included studies were too heterogeneous to pool.

The quality, percentage agreement and κ statistic for the QUADAS items are shown in Table 2. Inter-rater reliability was slight to poor for most items, with one item having moderate reliability. No disagreement persisted between reviewers after the consensus meeting. The included studies were of modest quality. Only 6 studies reported enrolment of consecutive patients, highlighting potential selection bias in the remaining 9 studies.

We included 9 studies in the NEXUS analysis. Four studies were included in the sensitivity analysis. This analysis reaffirmed that the Canadian C-spine rule is highly sensitive (range 0.99–1.00) and significantly reduced the range over which specificity spanned (range 0.42–0.45).

NEXUS

Seven studies assessed the NEXUS rule. Of the 5 prospective studies, 4 assessed the rule in its entirety and 1 assessed a modified version (adding 7 questions from the Clinical sobriety

Figure 1: Flow diagram of studies selected for inclusion.
Table 1 (part 1 of 2): Characteristics of the included studies

Study	Design	Country	N	% Male	MOI	Index test	Reference standard	No. of patients lost to follow-up (%)
Hoffman et al., 2000	Prospective cross-sectional	US	34 069	64.8	NR	• Index: NEXUS	• Radiography: minimum 3 views; additional views/investigations ordered at the discretion of treating physician (100)	0
Stiell et al., 2001	Prospective cross-sectional	Canada	8 924	51.5	MVC	• Index: Canadian C-spine rule	• Radiography ordered at the discretion of the treating physician (68.9)	577 (6.5)
Stiell et al., 2003	Prospective cross-sectional	Canada	8 283	52.3	MVC	• Index: Canadian C-spine rule and NEXUS	• Radiography ordered at the discretion of the treating physician (71.7)	854 (10.3)
Dickinson et al., 2004	Retrospective analysis of data from Stiell 2001	Canada	8 924	51.5	MVC	• Index: 5 NEXUS items approximated from 20-items collected prospectively	• Radiography and computed tomography ordered at the discretion of the treating physician (68.9)	577 (6.5)
Miller et al., 2006	Prospective cross-sectional	UK	460	NR	NR	• Index: Canadian C-spine rule for immobilization	• Radiography ordered at the discretion of the treating physician (45)	NR
Rethnam et al., 2008	Retrospective review	UK	114	NR	NR	• Index: Canadian C-spine rule	Only patients who had cervical spine radiographs were included.	N/A, patients were included if radiography was conducted
Mahler et al., 2009	Prospective cross-sectional	US	202	NR	NR	• Index: 4 NEXUS items and clinical sobriety assessment tool (7 questions)	All patients underwent computed tomography (100)	0
Study	Design	Country	N	% Male	MOI	Index test	Reference standard	No. of patients lost to follow-up (%)
-----------------------	-------------------------	---------	------	--------	-----------	---	--	--------------------------------------
Stiell et al, 2009	Prospective cross-sectional	Canada	3 628	51.0	MVC 70.1%	• Index: Canadian C-spine rule	• Radiography ordered at the discretion	
						• Assessors: emergency physicians.	of the treating physician (53.3)	
						• Training: yes	30 day surveillance of ED and neurosurgical centres	
Vaillancourt et al., 2009	Prospective cross-sectional	Canada	2 393	50.2	MVC 62.5%	• Index: Canadian C-spine rule revised for paramedics†	• Radiography ordered at the discretion	444 (18.6)
						• Assessors: paramedics	of the treating physician (52.9)	
						• Training: yes	14-day proxy (28.5)	
Coffey et al., 2010	Prospective cross-sectional	UK	1 420	50.4	MVC 75.8%	• Index: Canadian C-spine rule	• Radiography ordered at the discretion	178 (12.5)
						• Assessors: emergency physicians of all grades	of the treating physician (69.5)	
						• Training: yes	14-day proxy (18)	
Stiell et al., 2010	Prospective cross-sectional	Canada	3 633	46.4	MVC 63%	• Index: Canadian C-spine rule for immobilization	• Radiography ordered at the discretion	Radiography conducted in
						• Assessors: experienced nurses in emergency department	of the treating physician (47.2)	47.2% of patients
						• Training: yes	30-day surveillance of ED and neurosurgical centres	
Duane et al., 2011	Prospective cross-sectional	US	3 201	64	NR	• Index: approximation of Canadian C-spine rule (minus rotation)	• All patients underwent computed tomography (100)	0
Griffith et al., 2011	Retrospective analysis from radiology information record system	US	1 589	59.3	MVC 37.7%	• Index: NEXUS	• Only patients who underwent cervical spine computed tomography were	NA, patients were included if computed
						• Assessors: 2nd and 3rd year radiology students	included.	tomography was conducted
						• Training: evaluation of clinical records		
Migliore et al., 2011	Prospective cross-sectional	US	80	NR	NR	• Index: NEXUS	• Radiography or computed tomography (75)	10 (15)
						• Assessors: physicians, residents		
						• Training: NR		

Note: CT = computed tomography, ED = Emergency department, MOI = Mechanism of injury, MVC = motor vehicle collision, NA = not applicable; NEXUS = National X-radiography Utilization Study low risk criteria, NR = not reported.
†The item “delayed onset of neck pain” was excluded because paramedics would assess patients before such delay.
‡Residents received a 5-min explanation as to using a standardized data collection form.
Study	Selection bias*	Reference test†‡	Disease progression§	Partial verification bias¶	Differential verification bias**	Incorporation bias††	Reference reviewer bias‡‡	Index reviewer bias§§	Clinical review bias¶¶	Uninterpretable results***	Withdrawals†††
Hoffman et al., 2000	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Stiell et al., 2001	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	Yes
Stiell et al., 2003	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Dickinson et al., 2004	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Miller et al., 2006	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Rethnam et al., 2008	No	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	NA	No
Mahler et al., 2009	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Stiell et al., 2009	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	No	No
Vaillancourt et al., 2009	No	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Coffey et al., 2010	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Stiell et al., 2010	Yes	No	No	No	Yes	No	Unclear	Yes	Yes	Yes	Yes
Duane et al., 2011	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Duane et al., 2011	Unclear	Yes	Unclear	Yes	Yes	Yes	Unclear	Yes	Yes	Yes	Yes
Griffith et al., 2011	No	Yes	Unclear	Yes	Yes	Yes	Unclear	Yes	Yes	Yes	Yes
Migliore et al., 2011	No	Yes	Unclear	No	No	Yes	Yes	Yes	Yes	No	No
Inter-rater reliability, κ	0.54	0.00	0.15	−0.13	0.21	0.47	0.39	0.17	−0.03	−0.02	0.00
Percentage agreement, %	73	87	53	47	53	80	67	53	87	53	33

Note: NA = not applicable.

*Was the spectrum of patients representative of the patients who will receive the test in practice? Is it a selective sample of patients?
†Was the reference standard likely to classify the target condition correctly?
‡The 14-day proxy method was deemed to be an adequate reference standard because the outcome for all patients could be accounted for by either the 14-day proxy method or radiography. This mirrors clinical practice. However, the 21-day surveillance strategy was deemed to be an inadequate reference standard because it assumes that patients with fractures missed at the initial presentation would be subsequently captured in patient logs. We found no data about the accuracy of the 21-day surveillance strategy to support its use as a reference standard.
§Is the time between the reference standard and the index test short enough to be reasonably sure that the target condition did not change between the 2 tests?
¶Did the whole sample, or a random selection of the sample, receive verification using a reference standard of diagnosis?
**Did patients receive the same reference standard regardless of the index test result?
††Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?
‡‡Were the reference standard results interpreted without knowledge of the results of the index test?
§§Were the index test results interpreted without knowledge of the results of the reference standard?
¶¶Were the same clinical data available when the index test results were interpreted as would be available when the test is used in practice?
***Were uninterpretable and/or intermediate test results reported?
†††Were withdrawals from the study explained?
Study	TP	FP	FN	TN	Sensitivity	Specificity
Canadian C-Spine rule						
Stiell et al., 2001	151	5041	0	3732	1.00 (0.98–1.00)	0.43 (0.42–0.44)
Stiell et al., 2003	161	3995	1	3281	0.99 (0.97–1.00)	0.45 (0.44–0.46)
Miller et al., 2006	3	214	0	227	1.00 (0.29–1.00)	0.51 (0.47–0.56)
Rethnam et al., 2008	2	26	0	86	1.00 (0.16–1.00)	0.77 (0.68–0.84)
Stiell et al., 2009	23	0	0	0	1.00 (0.85–1.00)	Not estimable
Vaillancourt et al., 2009	12	1204	0	731	1.00 (0.74–1.00)	0.38 (0.36–0.40)
Coffey et al., 2010	8	701	0	509	1.00 (063–1.00)	0.42 (0.39–0.45)
Stiell et al., 2010	37	1958	4	1535	0.90 (0.77–0.97)	0.44 (0.42–0.46)
Duane et al., 2011	192	2991	0	18	1.00 (0.98–1.00)	0.01 (0.00–0.01)

NEXUS						
Hoffman et al., 2000	576	29184	2	4307	1.00 (0.99–1.00)	0.13 (0.13–0.13)
Stiell et al., 2003	147	4599	15	2677	0.91 (0.85–0.95)	0.37 (0.36–0.38)
Dickinson et al., 2004	140	5461	11	3312	0.93 (0.87–0.96)	0.38 (0.37–0.39)
Mahler et al., 2009	3	115	0	84	1.00 (0.29–1.00)	0.42 (0.35–0.49)
Duane et al., 2011	130	1331	27	1118	0.83 (0.76–0.88)	0.46 (0.44–0.48)
Griffith et al., 2011	37	1160	4	364	0.90 (0.77–0.97)	0.24 (0.22–0.26)
Migliore et al., 2011	1	46	0	14	1.00 (0.03–1.00)	0.23 (0.13–0.36)

Direct comparison						
Stiell et al., 2003	161	3995	1	3281	0.99 (0.97–1.00)	0.45 (0.44–0.46)
Stiell et al., 2003	147	4599	15	2677	0.91 (0.85–0.95)	0.37 (0.36–0.38)

Figure 2: Sensitivity and specificity of the Canadian C-spine rule (CCR) and National Emergency X-radiography Utilization Study (NEXUS) criteria. For Stiell and colleagues, we were only able to calculate sensitivity, because we were unable to acquire additional information from the authors. Note: FN = false negative, FP = false positive, TN = true negative, TP = true positive.
Two were retrospective studies. The sensitivity of NEXUS ranged from 0.83 to 1.0, while the specificity ranged from 0.13 to 0.46 (Figure 2). Similar to the Canadian C-spine rule, the negative likelihood ratio (median 0.30, IQR 0.19–0.41) was more informative than the positive likelihood ratio (median 1.44, IQR 1.14–1.52) (Figure 3). In contrast, most of the NEXUS studies did not report large shifts in the post-test probability of clinically important injury from the prevalence (median 1.95%) with a positive test result (median post-test probability 3.10%, IQR 2.50%–3.10%) or negative test result (median post-test probability 0.60%, IQR 0.30%–2.40%). False negatives for NEXUS ranged from 0% to 1.0%, and imaging rates would have been reduced by an average of 30.9% (range 12.6% to 42.9%) without missing a clinically important cervical spine injury.

The findings by Migliore and colleagues should be interpreted with caution because this small study was of low methodologic quality and the data yield counterintuitive likelihood ratios (positive likelihood ratio < 1.0, negative likelihood ratio > 1.0). Only data for the residents, and not emergency physicians, were reported because these 2 groups are not statistically independent and the results for the emergency physicians appeared unreliable because all study participants were sent for imaging. Four studies were included in the sensitivity analysis, and these results were consistent with the primary analysis.

Direct comparison of the Canadian C-spine rule and NEXUS

The only direct comparison of the 2 rules indicates that the Canadian C-spine rule has better diagnostic accuracy, as shown by nonoverlapping 95% confidence intervals for sensitivity, specificity and the likelihood ratios (Figures 2 and 3). The Canadian C-spine rule would have reduced imaging rates by 44%, while NEXUS would have reduced the rates by 36%.

Likelihood ratio (95% CI)

Canadian C-spine rule	Positive	Negative	Probability
Stiell et al., 2001	1.74 (1.70–1.77)	0.01 (0.00–0.12)	
Stiell et al., 2003	1.81 (1.77–1.85)	0.01 (0.00–0.10)	
Miller et al., 2006	1.80 (1.23–2.64)	0.24 (0.02–3.25)	
Rethnam et al., 2008	3.55 (1.94–6.50)	0.22 (0.02–2.74)	
Vaillancourt et al., 2009	1.55 (1.38–1.73)	0.10 (0.01–1.54)	
Coffey et al., 2010	1.63 (1.38–1.92)	0.13 (0.01–2.00)	
Stiell et al., 2010	1.61 (1.45–1.79)	0.22 (0.09–0.56)	
Duane et al., 2011	1.00 (1.00–1.01)	0.42 (0.03–6.97)	

NEXUS	Positive	Negative	Probability
Hoffman et al., 2000	1.14 (1.14–1.15)	0.03 (0.01–0.11)	
Stiell et al., 2003	1.44 (1.36–1.51)	0.25 (0.16–0.41)	
Dickinson et al., 2004	1.49 (1.42–1.56)	0.19 (0.11–0.34)	
Mahler et al., 2009	1.52 (1.03–2.24)	0.30 (0.02–3.98)	
Duane et al., 2011	1.52 (1.41–1.65)	0.38 (0.27–0.53)	
Griffith et al., 2011	1.19 (1.07–1.32)	0.41 (0.16–1.04)	
Migliore et al., 2011	0.98 (0.44–2.22)	1.05 (0.09–12.09)	

Direct comparison	Positive	Negative	Probability
Stiell et al., 2003 (C-spine)	1.81 (1.77–1.85)	0.01 (0.00–0.10)	
Stiell et al., 2003 (Nexus)	1.44 (1.36–1.51)	0.25 (0.16–0.41)	

Figure 3: Probability of clinically important cervical spinal injury and likelihood ratios for the Canadian C-spine rule and National Emergency X-Radiography Utilization Study (NEXUS) criteria. For Stiell and colleagues, we were only able to calculate sensitivity, because we were unable to acquire additional information from the authors.
Interpretation

We found 15 studies of modest methodologic quality that evaluated the diagnostic accuracy of the Canadian C-spine rule and NEXUS. We found that both rules had consistently high sensitivity, indicating that a negative test result is highly informative in excluding a clinically important cervical spine injury and, therefore, the need for radiographic examination. The value of a negative test result is further shown by the low negative likelihood ratio and post-test probability. In the only direct comparison, the Canadian C-spine rule had higher sensitivity, and thus gives fewer false negative results. Because both rules are based on imaging all patients with positive results, the low specificity and high false positive rate means that many people without injury will undergo unnecessary imaging. The results of the sensitivity analysis reinforced the primary findings. However, for the Canadian C-spine rule, the range over which specificity spanned was significantly reduced. This suggests that the diagnostic accuracy of the Canadian C-spine rule is superior when the rule is used in its entirety.

The findings of this review are consistent with a previous meta-analysis and 2 literature reviews. However, our review used a larger and more sensitive search strategy, which resulted in a larger number of primary studies identified for inclusion. In addition, we considered the methodologic quality of the included studies when interpreting the diagnostic accuracy. As a result, we have outlined an optimal diagnostic study design for future studies in this area.

Clinically, our review highlights the effectiveness of the Canadian C-spine rule and NEXUS in clearing the cervical spine without the need for imaging, while maintaining patient safety. Although most of the studies included in this review are validation studies, only the Canadian C-Spine rule has been evaluated in an impact analysis study, which further supports its use in practice. Despite these findings, there is a more liberal use of imaging in current clinical practice, which may reflect patient preference, physicians’ fear of litigation or missing a fracture, or uncertainty of the application or accuracy of the screening tools. Improved education of physicians may facilitate greater use of these rules. In particular, educational content should focus on the subjective components of the Canadian C-spine rule (e.g., dangerous mechanism of injury, range of motion assessment) and NEXUS (e.g., distracting injuries, intoxication) because these components were most frequently misinterpreted.

Educating patients may also improve the utilization of these screening tools. In the absence of any clinical indication of a clinically important cervical spinal injury, routine imaging is not associated with psychological benefits or improved outcomes. Patients knowledge of this, together with knowledge about the accuracy of these screening tools weighed against the potential harms of unnecessary radiation exposure, would allow for more informed decisions to be made. To ease the concerns of patients discharged without imaging, further evaluation of alternate follow-up strategies, such as the 14-day proxy, would be beneficial for both clinical practice and research. Currently there is only limited data to support the use of the 14-day proxy as a reference standard and there is no data on the accuracy of the 21-day surveillance strategy.

Limitations

Limitations of this review included the selected use of data sources, the moderate methodologic quality of the included studies and the heterogeneity, which prevented pooling. Although a sensitive search strategy including citation tracking was used to identify eligible studies, we did not search for grey literature (e.g., contacting key authors to identify unpublished data). The inability to pool results means that the findings of this review are based on individual studies and only one direct comparison. Factors contributing to the heterogeneity identified included between trial variations in methodologic quality, clinical characteristics (e.g., professions applying the rules, their experience and training) and within-trial variations in how rules were interpreted and applied.

Conclusion

Based on studies with modest methodologic quality, we found that both the Canadian C-spine rule and NEXUS were highly sensitive rules that have the potential to reduce imaging rates. However, the lower specificity and false-positive results indicate that many people will continue to undergo unnecessary imaging. In the only direct comparison, the Canadian C-spine rule appeared to have better diagnostic accuracy, and it should be used over NEXUS to assess the need for cervical spine imaging. Future studies of diagnostic test accuracy need to ensure that rigorous methodologic procedures are followed to reduce bias. Furthermore, the evaluation of these tools in settings outside of emergency departments, in pediatric and older populations and by primary care physicians, such as general practitioners and physiotherapists, is also required.
References

1. Stiell I, Lesiuk H, Vanderheem K, et al. Obtaining consensus for a definition of “clinically important cervical spine injury” in the CCC Study. Acad Emerg Med 1999;6:435.
2. Stiell IG, Wells GA, Vanderheem KL, et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA 2001;286:1841-8.
3. Davis JW, Phreaner DL, Hoyt DB, et al. The etiology of missed cervical spine injuries. J Trauma 1993;34:342-6.
4. Pimentel L, Diegelmann L. Evaluation and management of acute cervical spine trauma. Emerg Med Clin North Am 2010;28:719-38.
5. Clinical guidelines for the best practice management of acute and chronic whiplash-associated disorders. Adelaide (South Australia): TRACsa; 2008.
6. Guidelines for the management of acute whiplash-associated disorders for health professionals. 2nd ed. Sydney (Australia): Motor Vehicle Accidents Authority; 2007. Available: www.mva.nsw.gov.au/default.aspx?MenuID=115 (accessed 2012 Sept. 26).
7. Griffith B, Bolton C, Goyal N, et al. Screening cervical spine CT in a level I trauma center: Overutilization? J Trauma 2011;197:463-7.
8. Laupacis A, Sekar N. IG S. Clinical prediction rules: a review and suggested modifications of methodological standards. JAMA 1997;277:488-94.
9. Stiell IG, Bennett C. Implementation of clinical decision rules in the emergency department. Acad Emerg Med 2007;14:955-9.
10. Hoffman JR, Mower WR, Wolfson AB, et al. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. National Emergency X-Radiography Utilization Study Group. N Engl J Med 2000;343:94-9.
11. National Health and Medical Research Council. Evidence-based management of acute musculoskeletal pain. Canberra (AU): The Council; 2003.
12. American College of Radiology. ACR appropriateness criteria: suspected spinal trauma. Reston (VA): The College; 1999. Available: www.acr.org~/media/ACR/Documents/AppCriteria/Diagnosis/SuspectedSpineTrauma.pdf (accessed 2012 Sept. 25).
13. Stiell IG, Clement M, McKnight RD, et al. The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with acute alcohol or drug use: a pilot study. Emerg Med 2009;54:S26-7.
14. Anderson PA, Muchrow RD, Munoz A, et al. Clearance of the asymptomatic cervical spine: a meta-analysis. J Orthop Trauma 2010;24:100-6.
15. de Vet HCW, Eisinga R, Aphiagon B, Aeger te B, Pewzer D. Chapter 7: Searching for studies. In: Cochrane handbook for systematic reviews of diagnostic test accuracy version 0.4 [updated September 2008]: The Cochrane Collaboration; 2008: 60p. Available: http://srdta.cochrane.org/sites/srdta.cochrane.org/files/uploads/Chapter07-Sarching%28September-2008%29.pdf (accessed 2012 Sept. 27).
16. Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;3:25.
17. van der Windt D, Simons E, Riphagen I, et al. Physical examination for lumbar radiculopathy due to disc herniation in patients with low-back pain. Cochrane Data Syst Rev 2010; (2):CD007431.
18. Lijmer JG, Bossuyt PM, Heisterkamp SH. Exploring sources of heterogeneity in systematic reviews of diagnostic tests. Stat Med 2002;21:1525-37.
19. Miller P, Colley F, Reid AM, et al. Can emergency nurses use the Canadian cervical spine rule to reduce unnecessary patient immobilisation? Accid Emerg Nurs 2006;14:133-40.
20. Rentham U, Yesupalan R, Gandham G. Does applying the Canadian Cervical Spine rule reduce cervical spine radiography rates in alert patients with blunt trauma to the neck? A retrospective analysis. BMC Med Imaging 2008;8:12.
21. Stiell IG, Clement CM, Grimshaw J, et al. Implementation of the Canadian C-Spine Rule: prospective 12 centre cluster randomised trial. BMJ 2009;339:b4146.
22. Vaillancourt C, Stiell IG, Beaudoin T, et al. The out-of-hospital validation of the Canadian C-Spine Rule by paramedics. Ann Emerg Med 2009;54:665-71.
23. Coffey F, Hewitt S, Stiell I, et al. Validation of the Canadian c-spine rule in the UK emergency department setting. Emerg Med J 2011; 28:873-6.
24. Stiell IG, Clement CM, O’Connor A, et al. Multicentre prospective validation of use of the Canadian C-Spine Rule by triage nurses in the emergency department. CMAJ 2010;182:1173-9.
25. Duane TM, Wilson SP, Maygrothling J, et al. Canadian Cervical Spine rule compared with computed tomography: a prospective analysis. J Trauma 2011;71:352-5.
26. Dickinson G, Stiell I, Schull M, et al. Retrospective application of the NEXUS low-risk criteria for cervical spine radiography in Canadian emergency departments. Ann Emerg Med 2004;43:507-14.
27. Mahler S, Pettani S, Caldino G, et al. Use of a clinical sobriety assessment tool with the NEXUS low-risk cervical spine criteria to reduce cervical spine imaging in blunt trauma patients with acute alcohol or drug use: a pilot study. Emerg Med 2009;54:S26-7.
28. Vandermarel RM. Radiology of the cervical spine in trauma patients: practice, pitfalls and recommendations for improving efficiency and communication. J Am J Roentgenol 1990;155:465-72.
29. Flynn T, Smith B, Chiu R. Appropriate use of diagnostic imaging in low back pain: a reminder that unnecessary imaging may do as much harm as good. J Orthop Sports Phys Ther 2011;41:838-46.
30. Vanderheem K, Stiell I, Beson R, et al. Validity Evaluation of the Cervical Spine Injury Proxy Outcome Assessment Tool in the CCC Study [abstract]. Acad Emerg Med 1999;6:434-5.

Affiliations: From the George Institute for Global Health (Michaelfeld, Maher, Lin), The University of Sydney, Sydney, Australia; the Department of General Practice (Verhagen), Erasmus MC, University Medical Center, Rotterdam, the Netherlands; and the Discipline of Physiotherapy (Rebbek), Faculty of Health Sciences, The University of Sydney, Sydney, Australia.

Contributors: All authors were involved and contributed to the design of the study, title screening, data extraction, interpretation and drafting of the manuscript. All authors approved the final version submitted for publication.

Acknowledgements: Zoe Michaleff holds an Australian Postgraduate Award from the Australian Government. Chung-Wei Christine Lin holds a fellowship funded by the National Health and Medical Research Council of Australia. Chris Maher holds a fellowship funded by the Australian Research Council. Adrienne Verhagen is supported by the Department of General Practice, Erasmus University.