Abstract. Using Dunkl theory, we introduce into consideration some weighted L^p-spaces on $[-1,1]$ and on the unit Euclidean sphere S^{d-1}, $d \geq 2$. Then we define a family of linear bounded operators $\{V^\kappa_p(x): x \in S^{d-1}\}$ acting from the L^p-space on $[-1,1]$ to the L^p-space on S^{d-1}, $1 \leq p < \infty$. We establish a necessary and sufficient condition for a function g belonging to the L^p-space on $[-1,1]$ such that the family of functions $\{V^\kappa_p(x,g): x \in S^{d-1}\}$ is fundamental in the L^p-space on S^{d-1}.

Key words and phrases: fundamental set, unit sphere, Dunkl theory, Dunkl intertwining operator, Funk–Hecke formula for κ-spherical harmonics

MSC 2010: 42B35, 42C05, 42C10

1. Introduction and preliminaries

In this section we introduce some basic definitions and notions of general Dunkl theory (see, e.g., [2, 6]); for a background on reflection groups and root systems the reader is referred to [6, 8].

Let \(\mathbb{N}_0 \) be the set of nonnegative integers, let \(\mathbb{R}^d \) be the \(d \)-dimensional real Euclidean space of all \(d \)-tuples of real numbers. For \(x \in \mathbb{R}^d \), we write \(x = (x_1, \ldots, x_d) \). The inner product of \(x, y \in \mathbb{R}^d \) is denoted by \(\langle x, y \rangle = \sum_{i=1}^d x_i y_i \), and the norm of \(x \) is denoted by \(\|x\| = \sqrt{\langle x, x \rangle} \).

Let \(S^{d-1} = \{x: \|x\| = 1\} \) be the unit sphere in \(\mathbb{R}^d \), \(d \geq 2 \). Denote by \(d\omega \) the usual Lebesgue measure on \(S^{d-1} \).

For a nonzero vector \(v \in \mathbb{R}^d \), define the reflection \(s_v \) by

\[
s_v(x) = x - 2 \frac{\langle x, v \rangle}{\|v\|^2} v, \quad x \in \mathbb{R}^d.
\]

Each reflection \(s_v \) is contained in the orthogonal group \(O(\mathbb{R}^d) \).

Recall that a finite set \(R \subset \mathbb{R}^d \setminus \{0\} \) is called a root system if the following conditions are satisfied:

1. \(R \cap \mathbb{R}v = \{ \pm v \} \) for all \(v \in R \);
2. \(s_v(R) = R \) for all \(v \in R \).

The subgroup \(G = G(R) \subset O(\mathbb{R}^d) \) which is generated by the reflections \(\{s_v: v \in R\} \) is called the reflection group associated with \(R \). It is known that the reflection group \(G \) is finite and the set of reflections contained in \(G \) is exactly \(\{s_v: v \in R\} \).

Each root system \(R \) can be written as a disjoint union \(R = R_+ \cup (-R_+) \), where \(R_+ \) and \(-R_+ \) are separated by a hyperplane through the origin. Such a set \(R_+ \) is called a positive subsystem. Its choice is not unique.

A nonnegative function \(\kappa \) on a root system \(R \) is called a multiplicity function if it is \(G \)-invariant, i.e. \(\kappa(v) = \kappa(g(v)) \) for all \(v \in R, g \in G \).

Note that definitions given below do not depend on the special choice of \(R_+ \), thanks to the \(G \)-invariance of \(\kappa \).
The Dunkl operators are defined by

\[D_i f(x) = \frac{\partial f(x)}{\partial x_i} + \sum_{v \in R_+} \kappa(v) \frac{f(x) - f(s_v(x))}{\langle v, x \rangle} v_i, \quad 1 \leq i \leq d. \]

In case \(\kappa = 0 \), the Dunkl operators reduce to the corresponding partial derivatives. These operators were introduced and first studied by C. F. Dunkl.

Let

\[\lambda = \gamma + \frac{d - 2}{2}, \quad \gamma = \sum_{v \in R_+} \kappa(v), \]

let \(w_\kappa \) denote the weight function on \(S^{d-1} \) defined by

\[w_\kappa(x) = \prod_{v \in R_+} |\langle v, x \rangle|^{2\kappa(v)}, \quad x \in S^{d-1}. \]

The weight function \(w_\kappa \) is a positively homogeneous \(G \)-invariant function of degree \(2\gamma \). In case \(\kappa = 0 \), \(w_\kappa \) is identically equal to 1.

Suppose \(\Pi^d \) is the space of all polynomials in \(d \) variables with complex coefficients, \(P_n^d \) is the subspace of homogeneous polynomials of degree \(n \in \mathbb{N}_0 \) in \(d \) variables.

C. F. Dunkl has proved in [5] that there exists a unique linear isomorphism \(V_\kappa \) of \(\Pi^d \) such that

\[V_\kappa(P_n^d) = P_n^d, \quad n \in \mathbb{N}_0, \quad V_\kappa 1 = 1, \quad D_i V_\kappa = V_\kappa \frac{\partial}{\partial x_i}, \quad 1 \leq i \leq d. \]

This operator is called the Dunkl intertwining operator. The operator \(V_\kappa \) was studied by many mathematicians (for example, C. F. Dunkl, M. Rösler, K. Trimèche, Y. Xu). If \(\kappa = 0 \), then \(V_\kappa \) is the identity operator.

Throughout this paper, we assume that \(p \in [1, \infty) \) and \(\lambda \) is strictly positive. In particular, it follows that \(\gamma > 0 \) if \(d = 2 \).

To explain our main result of the present paper, we need to introduce some weighted \(L_p \)-spaces and one family of linear operators.

Denote by \(L_{\kappa, p}(S^{d-1}) \) the space of complex-valued Lebesgue measurable functions \(f \) on \(S^{d-1} \) with finite norm

\[\| f \|_{\kappa, p, S^{d-1}} = \left(\int_{S^{d-1}} |f(x)|^p \, d\sigma_\kappa(x) \right)^{1/p}, \quad d\sigma_\kappa(x) = a_\kappa w_\kappa(x) \, d\omega(x), \]

where the normalizing constant \(a_\kappa \) satisfies \(a_\kappa \int_{S^{d-1}} w_\kappa \, d\omega = 1 \). The space \(L_{\kappa, 2}(S^{d-1}) \) is a complex Hilbert space with the inner product

\[\langle f, h \rangle_{\kappa, S^{d-1}} = \int_{S^{d-1}} f(x) \overline{h(x)} \, d\sigma_\kappa(x). \]

We also introduce the space \(L_{\kappa, \infty}(S^{d-1}) \) composed of all complex-valued Lebesgue measurable functions defined on \(S^{d-1} \) which are \(\sigma_\kappa \)-measurable and \(\sigma_\kappa \)-essentially bounded. Because \(w_\kappa \) is \(\omega \)-a.e. nonzero on \(S^{d-1} \), the above notions coincides with the one of \(w_\kappa \)-measurable and \(w_\kappa \)-essentially bounded function, respectively.
Let $\lambda > 0$. Suppose $L_{p,\lambda}[-1,1]$ is the space of complex-valued Lebesgue measurable functions g on the segment $[-1,1]$ with finite norm

$$
\|g\|_{p,\lambda,[-1,1]} = \left(c_\lambda \int_{-1}^{1} |g(t)|^p (1-t^2)^{\lambda-1/2} dt \right)^{1/p}, \quad c_\lambda = \left(\int_{-1}^{1} (1-t^2)^{\lambda-1/2} dt \right)^{-1}.
$$

The Gegenbauer polynomials C_n^λ (see, e.g., [1, p. 302]) are orthogonal with respect to the weight function $(1-t^2)^{\lambda-1/2}$. For a function $g \in L_{p,\lambda}[-1,1]$, its Gegenbauer expansion takes the form

$$
g(t) \sim \sum_{n=0}^{\infty} A_{n,\lambda}(g) \frac{n+\lambda}{\lambda} C_n^\lambda(t) \quad \text{with} \quad A_{n,\lambda}(g) = \frac{c_\lambda}{C_n^\lambda(1)} \int_{-1}^{1} g(t) C_n^\lambda(t)(1-t^2)^{\lambda-1/2} dt, \quad (1)
$$

since $\|C_n^\lambda\|_{2,[-1,1]}^2 = C_n^\lambda(1)\lambda/(n+\lambda)$.

Theorem 13.17 in [7] says that $L_{p,\lambda}[-1,1] \subset L_{p,\lambda}[-1,1]$. This fact is formulated and proved in section 3.

Recall that a set \mathcal{F} in a Banach space E is said to be fundamental if the linear span of \mathcal{F} is dense in E. To prove the main result, we use a consequence of the Hahn–Banach theorem related to fundamentality of sets in normed linear spaces. We include it as a separate lemma for convenience.

Lemma 1. Let \mathcal{F} be a subset of a Banach space E. In order that \mathcal{F} be fundamental in E, it is necessary and sufficient that \mathcal{F} not be annihilated by a nonzero bounded linear functional on E.

2. Some facts of Dunkl harmonic analysis on the unit sphere

The Dunkl Laplacian Δ_κ is defined by

$$
\Delta_\kappa = \sum_{i=1}^{d} D_i^2
$$
and it plays the role similar to that of the ordinary Laplacian. It reduces to the ordinary Laplacian provided that $\kappa = 0$.

A κ-harmonic polynomial P of degree $n \in \mathbb{N}_0$ in d variables is a homogeneous polynomial $P \in \mathcal{P}_n^d$ such that $\Delta_\kappa P = 0$. Its restriction to the unit sphere is called the κ-spherical harmonic of degree n in d variables. Denote by $\mathcal{A}_n^d(\kappa)$ the space of κ-spherical harmonics of degree n in d variables. The κ-spherical harmonics of different degrees turn out to be orthogonal with respect to the weighted inner product $\langle \cdot, \cdot \rangle_{\kappa,S^{d-1}}$ [3 Theorem 1.6].

Let $C(S^{d-1})$ be the space of complex-valued continuous functions on S^{d-1}.

Lemma 2. The set $\bigcup_{n=0}^{\infty} \mathcal{A}_n^d(\kappa)$ is fundamental in $C(S^{d-1})$ and in $L_{\kappa,p}(S^{d-1})$, $1 \leq p < \infty$.

Proof. Theorem 3.14 in [11] states that the space $C(S^{d-1})$ is dense in $L_{\kappa,p}(S^{d-1})$ for $1 \leq p < \infty$. So it is sufficient to show that $\bigcup_{n=0}^{\infty} \mathcal{A}_n^d(\kappa)$ is fundamental in $C(S^{d-1})$.

By the Weierstrass approximation theorem, if f is continuous on S^{d-1}, then it can be uniformly approximated by polynomials restricted to S^{d-1}. According to [3 Theorem 1.7], these restrictions belong to the linear span of $\bigcup_{n=0}^{\infty} \mathcal{A}_n^d(\kappa)$. Thus, $\bigcup_{n=0}^{\infty} \mathcal{A}_n^d(\kappa)$ is fundamental in $C(S^{d-1})$.

The above proof is analogous to that of Corollary 2.3 in [12].

Lemma 3. Let $g \in L_{p,\lambda_n}[-1,1]$, $1 \leq p < \infty$. Then for every $Y_n^\kappa \in \mathcal{A}_n^d(\kappa)$,

$$
\int_{S^{d-1}} V_\kappa^p(x; g, y) Y_n^\kappa(y) \, d\sigma_\kappa(y) = \Lambda_{n,\lambda_n}(g) Y_n^\kappa(x), \quad x \in S^{d-1},
$$

(3)

where the constant $\Lambda_{n,\lambda_n}(g)$ is defined from (1).

Equality (3) is the Funk–Hecke formula for κ-spherical harmonics written in our setting and designations (cf. [2 Theorem 7.2.7], [13 Theorem 2.1]).

3. Main result: proof and its consequence

We can now state and prove the main theorem.

Theorem 1. Let $d \geq 2$, $1 \leq p < \infty$. Fix a root system R in \mathbb{R}^d and a multiplicity function κ on R. Let $g \in L_{p,\lambda_n}[-1,1]$. In order that the set $\mathcal{M}_n^p(g)$ (2) be fundamental in $L_{\kappa,p}(S^{d-1})$, it is necessary and sufficient that $\Lambda_{n,\lambda_n}(g) \neq 0$ (1) for every $n \in \mathbb{N}_0$.

Proof. We first prove that the condition is sufficient. Let Φ be a bounded linear functional on $L_{\kappa,p}(S^{d-1})$ which annihilates $\mathcal{M}_n^p(g)$. According to the Riesz representation theorem [11 Theorem 6.16], Φ can be written as follows: $\Phi(\cdot) = \langle \cdot, h \rangle_{\kappa,S^{d-1}}$, where $h \in L_{\kappa,q}(S^{d-1})$ and q is the exponent conjugate to p ($p^{-1} + q^{-1} = 1$; $q = \infty$ whenever $p = 1$). Then the annihilating property of Φ reduces to

$$
\int_{S^{d-1}} V_\kappa^p(x; g, y) \overline{h(y)} \, d\sigma_\kappa(y) = 0, \quad x \in S^{d-1}.
$$
Next, we multiply both sides of the previous equality by $Y_n^\kappa(x) \in \mathcal{A}_n^d(\kappa)$, $n \in \mathbb{N}_0$, and integrate the resulting expression with respect to the measure $d\sigma\kappa$. Hölder’s inequality implies that $V_\kappa^p(x; g, y) \overline{h}(y) Y_n^\kappa(x)$ is $\sigma_\kappa \times \sigma_\kappa$-integrable over $\mathbb{S}^{d-1} \times \mathbb{S}^{d-1}$, and hence, using the Fubini theorem to interchange the order of integration, we get

$$
\int_{\mathbb{S}^{d-1}} \overline{h}(y) \left(\int_{\mathbb{S}^{d-1}} V_\kappa^p(x; g, y) Y_n^\kappa(x) \, d\sigma_\kappa(x) \right) \, d\sigma_\kappa(y) = 0.
$$

Using the symmetric relation \[9, \text{formula (7)}\]

$$
V_\kappa [g(\langle x, \cdot \rangle)](y) = V_\kappa [g(\langle y, \cdot \rangle)](x) \quad \sigma_\kappa \times \sigma_\kappa\text{-a.e. on } \mathbb{S}^{d-1} \times \mathbb{S}^{d-1}
$$

and the Funk–Hecke formula \[3\], we obtain

$$
\Lambda_{n,\lambda}(g) \langle Y_n^\kappa, h \rangle_{\kappa,\mathbb{S}^{d-1}} = 0, \quad Y_n^\kappa \in \mathcal{A}_n^d(\kappa), \quad n \in \mathbb{N}_0.
$$

It follows from the condition that

$$
\langle Y_n^\kappa, h \rangle_{\kappa,\mathbb{S}^{d-1}} = 0, \quad Y_n^\kappa \in \mathcal{A}_n^d(\kappa), \quad n \in \mathbb{N}_0.
$$

Thus, Φ annihilates $\bigcup_{n=0}^{\infty} \mathcal{A}_n^d(\kappa)$. By continuity of Φ and Lemma \[2\], $\Phi = 0$ on $L_{\kappa, p}(\mathbb{S}^{d-1})$.

Therefore, the set $\mathcal{M}_p^\kappa(g)$ is fundamental in $L_{\kappa, p}(\mathbb{S}^{d-1})$ by Lemma \[1\].

Let us now prove that the condition described in the theorem is necessary. Assume, to reach a contradiction, that there exists an index $m \in \mathbb{N}_0$ such that $\Lambda_{m,\lambda}(g) = 0$. Select any nontrivial κ-spherical harmonic $Y_m^\kappa \in \mathcal{A}_m^d(\kappa)$ and consider a measure μ defined on the Lebesgue subsets \mathcal{L} of \mathbb{S}^{d-1} by the rule

$$
\mu(B) = \int_B Y_m^\kappa(x) \, \sigma_\kappa(x), \quad B \in \mathcal{L}.
$$

This measure is nontrivial by its definition.

Using the Funk–Hecke formula \[3\], we obtain

$$
\int_{\mathbb{S}^{d-1}} V_\kappa^p(x; g, y) \, d\mu(y) = \int_{\mathbb{S}^{d-1}} V_\kappa^p(x; g, y) Y_m^\kappa(y) \, d\sigma_\kappa(y) = \Lambda_{m,\lambda}(g) Y_m^\kappa(x) = 0, \quad x \in \mathbb{S}^{d-1}.
$$

Thus, the nontrivial bounded linear functional Φ_1 on $L_{\kappa, p}(\mathbb{S}^{d-1})$ given by $\Phi_1(f) = \int_{\mathbb{S}^{d-1}} f \, d\mu$ annihilates $\mathcal{M}_p^\kappa(g)$. By Lemma \[1\], $\mathcal{M}_p^\kappa(g)$ is not fundamental in $L_{\kappa, p}(\mathbb{S}^{d-1})$. This contradicts our assumption.

The above proof is exactly like that of Theorem 2.4 in \[10\]. Using the scheme of the proof of the theorem, one can prove the following result.

Corollary 1. Let $d \geq 2$, $s \geq 1$, $1 \leq p < \infty$. Fix a root system R in \mathbb{R}^d and a multiplicity function κ on R. Let $g_1, \ldots, g_s \in L_{p, \lambda}[\mathbb{S}^d]$. In order that the set $\bigcup_{i=1}^{s} \mathcal{M}_p^\kappa(g_i)$ be fundamental in $L_{\kappa, p}(\mathbb{S}^{d-1})$, it is necessary and sufficient that $\sum_{i=1}^{s} |\Lambda_{n,\lambda}(g_i)| \neq 0$ for every $n \in \mathbb{N}_0$.
REFERENCES

1. Andrews, G.E., Askey, R. and Roy, R., *Special functions*. Cambridge University Press, 1999.
2. Dai, F. and Xu, Y., *Approximation theory and harmonic analysis on spheres and balls*. Springer, Berlin–New York, 2013.
3. Dunkl, C.F., Reflection groups and orthogonal polynomials on the sphere. *Math. Z.* 197: 33–60, 1988.
4. Dunkl, C.F., Differential-difference operators associated to reflection groups. *Trans. Amer. Math. Soc.* 311(1): 167–183, 1989.
5. Dunkl, C.F., Integral kernels with reflection group invariance. *Can. J. Math.* 43(6): 1213–1227, 1991.
6. Dunkl, C.F. and Xu, Y., *Orthogonal polynomials of several variables*. 2nd ed., Cambridge University Press, 2014.
7. Hewitt, E. and Stromberg, K., *Real and abstract analysis*. Springer-Verlag, New York, 1965.
8. Humphreys, J.E., *Reflection groups and Coxeter groups*. Cambridge University Press, 1990.
9. Li, Zh., Song, F., Inversion formulas for the spherical Radon–Dunkl transform. *SIGMA.* 5: 025, 15 pages, 2009.
10. Menegatto, V.A., Fundamental sets of functions on spheres. *Methods Appl. Anal.* 5(4): 387–398, 1998.
11. Rudin, W., *Real and complex analysis*. 3rd ed., McGraw-Hill, New York, 1987.
12. Stein, E.M. and Weiss, G., *Introduction to Fourier analysis on Euclidean spaces*. Princeton University Press, Princeton, 1971.
13. Xu, Y., Funk–Hecke formula for orthogonal polynomials on spheres and on balls. *Bull. London Math. Soc.* 32: 447–457, 2000.

INDEPENDENT RESEARCHER, UZLOVAYA, RUSSIA

E-mail address: veprintsevroma@gmail.com