Inhomogeneities in superconductors: two component and two band scenarios

Anna Ciechan1, Jaromir Krzyszczak1 and Karol Izydor Wysoki\'nski1,2

1Institute of Physics and Nanotechnology Centre, M. Curie-Sk\l{}odowska University, Radziszewskiego 10, PL 20-031 Lublin
2Max Planck Institut f"ur Physik komplexer Systeme, N"othnitzer Str. 38, D-01187 Dresden, Germany
E-mail: karol@tytan.umcs.lublin.pl

Abstract. The scanning tunnelling microscopy experiments reveal nanoscale electronic inhomogeneities in superconducting materials as \textit{e.g.} \textit{Bi}\textsubscript{2}\textit{Sr}\textsubscript{2}\textit{CaCu}\textsubscript{2}\textit{O}\textsubscript{8+\delta}. In particular, large modulations in amplitude of the spectral gap in local density of states on a scale of a few lattice constants were observed. To understand recently discovered positive correlations between spatial modulations of the measured gap and positions of dopant atoms we use two component, respectively two band description of the material. Using real space Bogolubov-de Gennes equations, we calculate fluctuations of the pairing amplitude and order parameter, local density of states and Bogolubov angle. We discuss correlation between local characteristics of superconductor and note that the experimental data can be understood within the proposed models under reasonable assumptions.

1. Introduction

High temperature superconductors (HTS) still present a challenge and are the objects of intensive experimental [1] and theoretical studies [2]. Of particular interest are recent results obtained by means of scanning tunnelling microscopy [3] (STM). This technique probes local properties of materials with atomic precision. The most reliable data have been obtained for \textit{Bi}\textsubscript{2}\textit{Sr}\textsubscript{2}\textit{CaCu}\textsubscript{2}\textit{O}\textsubscript{8+\delta} family of HTS mainly due to the good quality of their cleaved surfaces. The experiments [4] reveal the existence of small scale (dimensions of few nanometers) inhomogeneities of the order parameter, positive correlation between positions of oxygen dopants and variation of the pairing amplitude [5] and even more advanced correlations [6] between local characteristics measured at different temperatures.

The two dimensional nature and very short coherence length makes the role of intrinsic disorder necessarily present in these doped Mott insulators very important [7]. Like in the previous theoretical work [8] we use the real space approach to calculate the local characteristics of the system. We shall study two different models of superconductivity with local pairing characteristics [9]. First is the two component model which we shall call boson-fermion model (BFM). BFM describes the system of fermions and bosons scattering with each other. It is this scattering which is responsible for superconducting ground state of the model [9, 10]. As the proper quantum chemical description of the electron spectrum in real materials always involves many orbitals [11] we shall also use two orbital model. The many orbital approach has been
argued to be important for HTSs [12]. In a two orbital BCS like model the local pairing of Hubbard negative U variety has been assumed.

The main purpose of this paper is to show the potential and limitations of the above models to describe the observed by STM real space correlations. More detailed analysis and comparison with experiments will be presented elsewhere.

2. The models, approach and results

We use the following Hamiltonian of the boson-fermion model [9]

$$H^{BF} = -\sum_{i,j,\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \sum_{i,\sigma} (V_i - \mu) c_{i\sigma}^\dagger c_{i\sigma} + \sum_i \left(E_i^B - 2\mu\right) b_i^\dagger b_i + \sum_{i,j} g_{ij} \left(b_i^\dagger c_{i1} c_{j1} + b_i c_{i1}^\dagger c_{j1}^\dagger\right),$$

where i,j denote lattice sites of the square lattice, $c_{i\sigma}^\dagger, c_{i\sigma}$ (b_i^\dagger, b_i) stand for creation, respectively annihilation operators of fermion (boson) at the site i. σ is spin index, μ denotes chemical potential and t_{ij} are hopping integrals. We assume that the disorder in the sample modifies local positions of boson levels E_i^B and introduces potential scattering centers V_i for fermions. To proceed we shall decouple the interaction term in the mean field like approximation [13] and solve the resulting boson Hamiltonian exactly and the fermion one with help of canonical Bogolubov-Valatin transformation. The resulting Bogolubov-de Gennes equations are solved self-consistently at all sites of two dimensional $n \times m$ square lattice. It is important to remember that in this model bosonic $< b_i >$ and fermionic Δ_{ij} order parameters are proportional to each other and thus condensation in bosonic subsystem is accompanied by superconducting transition in fermionic one [14].

The general Hamiltonian of two orbital model reads

$$H = -\sum_{i,j,\lambda',\sigma} t_{ij} c_{i\lambda\sigma}^\dagger c_{j\lambda'\sigma} + \sum_{i,\lambda,\sigma} (\varepsilon_{\lambda} - \mu) c_{i\lambda\sigma}^\dagger c_{i\lambda\sigma} + \sum_{i,\lambda_1,\lambda_2,\lambda_3,\lambda_4} U_{i,\lambda_1\lambda_2\lambda_3\lambda_4} c_{i\lambda_1\sigma}^\dagger c_{i\lambda_21\sigma}^\dagger c_{i\lambda_3\sigma} c_{i\lambda_4\sigma}$$

in the same notation as above except that $\lambda = 1,2$ is an orbital index. In the two orbital model the disorder is assumed to cause the pair scattering $U_{i,\lambda_1\lambda_2\lambda_3\lambda_4}$.

The order parameters $\Delta_{i\lambda_1\lambda_2}(\vec{r}_i) = -\sum_{\lambda_3,\lambda_4} U_{i,\lambda_1\lambda_2\lambda_3\lambda_4} f_{\lambda_3\lambda_4}(\vec{r}_i)$, the (in general inter-orbital) pairing correlation functions $f_{\lambda_3\lambda_4}(\vec{r}_i) = \frac{1}{2} \sum_{k} (u_{\lambda_3\lambda_4}(\vec{r}_i) v_{\lambda_4}\lambda(\vec{r}_i)(1 - f_k) - u_{\lambda_4\lambda_3}(\vec{r}_i) v_{\lambda_3}\lambda(\vec{r}_i)f_k)$, Hartree term $V_{\lambda}(\vec{r}_m) = \frac{1}{2} \sum_{\lambda} U_{\lambda\lambda'\lambda''\lambda'''} n_{\lambda'}(\vec{r}_m)$ and local number density $n_{\lambda}(\vec{r}_i) = \sum_{k} (|u_{\lambda\lambda'}|^2 f_k + |v_{\lambda\lambda'}(\vec{r}_i)|^2 (1 - f_k))$ are expressed in terms of eigenvectors $u_{\lambda\lambda'}(\vec{r}_i)$ and $v_{\lambda\lambda'}(\vec{r}_i)$ and eigenvalues E_k of BdG equations [15] and evaluated self-consistently. Here $f_k = (\exp(\beta E_k) + 1)^{-1}$ is the Fermi-Dirac distribution function and $\beta = 1/k_B T$.

The amplitudes $u_k(\vec{r}_i)$ and $v_k(\vec{r}_i)$ describe the mixing of particle and hole excitations in the superconducting state. In the normal state $u_k(\vec{r}_i) = 1$ and $u_k(\vec{r}_i) = 0$ for particle-like excitation and take on opposite values for hole-like excitations. Due to normalization of amplitudes the particle-hole mixing in the superconducting state can be characterized by an angle $\theta(\omega, \vec{r}_i)$, known as Bogolubov angle. $\theta(\omega, \vec{r}_i) = \arctan \left(\frac{|u(\omega, \vec{r}_i)|}{|v(\omega, \vec{r}_i)|}\right)$ with $u(\omega, \vec{r}_i)/v(\omega, \vec{r}_i)$ being a weighted average [16] of $u_k(\vec{r}_i)/v_k(\vec{r}_i)$ at energy $(+/-)\omega$.

We concentrate discussion of the results on few aspects related to inhomogeneities observed in superconductors. Our main assumption in this work is that the pairing interaction is intimately connected with impurities which open the boson-fermion scattering channel in the BFM and are the source of negative U centers in the TBM. Thus in both cases we consider disorder in Cooper channel. The models, however, allow for much more subtle effects of impurities on the superconducting state.

In figure (1) we show temperature dependence of the bosonic order parameter as function of temperature calculated for two disconnected clusters of different value of $E_i^B = 0.0t$ or $0.45t$
Figure 1. Temperature dependence of average boson order parameter $|<b_i>|$ in the first (solid red) and second (dashed green) superconducting 7×7 cluster located in 17×37 system. In the left panel the clusters are 13 and in the right one 2 lattice sites apart. The insets show detailed view for temperatures close to T_c. In the first cluster $\bar{E}_B = 0.0$, while in second 0.45t.

Figure 2. Maps of the order parameter $|<\Delta_i>| = |\sum_j(-1)^{i+j}\Delta_{ij}|$ (left panel) in BFM for temperature $T = 0.0$ and system size 37×41 with d-wave symmetry and the Bogolubov angle at $\omega = 0.5t$ (right panel). Other parameters: $\bar{E}_B = 0.6t$, g=t, t=1.0. (all energies are measured in units of hopping t) placed in a nonsuperconducting host. If the distance between clusters is larger than the coherence length (left panel) the two gaps develop independently and there are two different transition temperatures. If the clusters are closer the two gaps still have different magnitude over the whole temperature range up to T_c. However, they both disappear at the same temperature T_c. In our local pairing model aimed at description of short coherence length superconductors this happens for the distance between clusters being of order of 2-3 lattice spacings as is seen in right panel of figure (1). Figure (2) shows the maps of the the local order parameter calculated within BFM for d-wave superconductor as a staggered sum over four bonds to nearest neighbor sites $|<\Delta_i>| = |\sum_j(-1)^{i+j}\Delta_{ij}|$ (left panel) and the local Bogolubov angle (right panel). Similar patterns visible in figures are to be expected as both the order parameter and Bogolubov angle are proportional to the amplitude $u_k(\vec{r}_i)$. It has been argued that this measure of the relative weight of particle and hole amplitudes can be deduced from comparative tunnelling measurements at positive and negative voltages [16].

We start the discussion of the results obtained in TBM with the remark that maps of local values of the order parameter $\Delta(\vec{r}_i)$ in band 1 and 2 (not shown) are similar despite different amplitudes of the two gaps. Due to short range paring interaction there is also very large positive correlation between the positions of impurities (negative U centers) and the value of the gap. The total and projected onto the bands local densities of states along the line X=7 are shown as function of energy in figure (3). The consecutive curves calculated at T=0K correspond to Y ranging from -13 up to 9. Marked in red are the curves for those values of Y, where U-centers exist, while blue are for sites without interaction. Note, however that the local density
of states at the sites without interaction show much higher coherence peaks (characteristic of a superconductor) than those obtained for a site with interaction. It is interesting that these features are mainly observed at the energies corresponding to the lower value of the two gaps.

In conclusion, our studies demonstrate the potential of both models to describe the observed correlations between various local properties of high temperature superconductors measured with STM. The sharp superconducting like features observed at sites with no attractive interaction are due to proximity and remind the effect discussed by Fang et al. [17]. The observation of similar features in STM spectra may indicate dependence of tunnelling matrix elements on orbitals and/or energy.

Acknowledgments
This work has been partially supported by the Ministry of Science and Education under the grant No. N202 1878 33. The authors thank Prof. T Domański for helpful discussions.

References
[1] Damascelli A et al. (2003) Rev. Mod. Phys. 75 473; Devereaux T P and Hackl R 2007 Rev. Mod. Phys. 79 175; Sonier J E 2007 Rep. Prog. Phys. 70 1717; Basov D N and Timusk T 2005 Rev. Mod. Phys. 77 721
[2] Norman M R et al. 2005 Adv. Phys. 54 715; Lee P A et al. 2006 Rev. Mod. Phys. 78 17; Ogata M and Fukuyama H 2008 Rep. Prog. Phys 71 03650; Lee P A 2008 Rep. Prog. Phys. 71 012501
[3] Fisher O et al. 2007 Rev. Mod. Phys. 79 353
[4] Cren T et al., 2000 Phys. Rev. Lett. 84 147; Pan S H et al. 2001 Nature 413 282; Howald C et al. 2001 Phys. Rev. B 64 100504(R); Lang K M et al. 2002 Nature 415 412
[5] McElroy K et al. 2005 Science 309; Kinoda H et al. 2005 Phys. Rev. B 71 020502
[6] Pasupathy A N et al. 2008 Science 320 196; Jamiel R et al. 2006 Phys. Rev. B 74 174521
[7] Balatsky A V et al. 2006 Rev. Mod. Phys 78 373
[8] Nunner T S et al. 2005 Phys. Rev. Lett. 95, 17703; Maska M M et al. 2007 Phys. Rev. Lett. 99 147006; Anderson B M et al. 2006 Phys. Rev. B 74, 060501
[9] Micnas R et al. 1990 Rev. Mod. Phys 62 113; Raninger J and Robaszkiewicz S 1985 Physica B 135 468; Domański T and Raninger J 2004 Phys. Rev. B 70 184503
[10] Piegarini E nad Caprara S 2003 Phys. Rev. B 67 214503
[11] Fulde P 1995 Electron Correlations in Molecules and Solids, 3rd ed., in Solid State Sciences, Vol. 100 (Springer, Berlin)
[12] Grilli M et al. 1991 Phys. Rev. Lett. 67 260
[13] Domański T and Wysokiński K I, 2002 Phys. Rev. B 66 064517
[14] Kostyrko T and Raninger J 1997 Acta Phys. Pol. A 91 399
[15] Ciechan A and Wysokiński K I 2008 Acta Phys. Pol. A 114 73; Krzyszczak J et al 2008 Acta Phys. Pol. A 114 123
[16] Fujita K et al. 2007 Preprint arXiv:0709.0632
[17] Fang A C et al. 2006 Phys. Rev. Lett. 96 017007

Figure 3. The local density of states (left) and projected onto band 1 (middle) and band 2 (right) are plotted as function of energy along the X=7 line of our 21×27 s-wave superconductor. The red lines mark the positions of negative U centers: U_{11}=-3.5, U_{22}=-1.5, t=1.