Invited Comment

Solar coronal electron heating by short-wavelength dispersive shear Alfvén waves

R Bingham¹,², P K Shukla³,⁵, B Eliasson² and A Cairns⁴

¹ STFC, Rutherford-Appleton Laboratory, Chilton Didcot 0X11 OQX, UK
² SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG, Scotland, UK
³ Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany
⁴ School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Fife, KY16 9SS, UK
E-mail: bob.bingham@stfc.ac.uk, bengt.eliasson@strath.ac.uk and rac@st-andrews.ac.uk

Received 5 July 2015, revised 31 July 2015
Accepted for publication 11 August 2015
Published 15 September 2015

Abstract
The electron heating of the solar coronal plasma has remained one of the most important problems in solar physics. An explanation of the electron heating rests on the identification of the energy source and appropriate physical mechanisms via which the energy can be channelled to the electrons. Our objective here is to present an estimate for the electron heating rate in the presence of finite amplitude short-wavelength (in comparison with the ion gyroradius) dispersive shear Alfvén (SWDSA) waves that propagate obliquely to the ambient magnetic field direction in the solar corona. Specifically, it is demonstrated that SWDSA waves can significantly contribute to the solar coronal electron heating via collisionless heating involving SWDSA wave-electron interactions.

Keywords: solar coronal heating, dispersive shear Alfvén waves, electron heating

1. Introduction

A challenging problem in solar physics is to identify appropriate mechanisms responsible for heating charged particles in the solar coronal plasma [1, 2]. Here one requires an input of non-thermal energy to sustain the solar coronal electron temperature at multi-million degrees Kelvin, i.e. much higher than the photospheric temperature of about 10⁴ K. The coronal plasma is tenuous, hot, and collisionless, contrary to the photospheric plasma which is dense, comparatively cool, and collisional. The temperature continues to rise slowly throughout the chromosphere, followed in the transition region by a steep rise to around 1.5–5 million degrees Kelvin in the corona. The energy content of the coronal plasma is approximately 1.6 J m⁻³ with an x-ray brightness of 1 W cm⁻², which is much smaller than that of the photospheric plasma with an energy content of about 3 kJ m⁻³ and a brightness of 6.4 kW cm⁻², which radiates at a temperature of about 6000 K. Detailed measurements of the x-ray emitting corona by past and present satellite missions, such as Skylab [3], SMM [4] and SOHO [5, 6], have significantly contributed to our knowledge of the solar corona, which can be seen only during solar eclipses, when the main radiation from the Sun’s surface is blocked by the passage of the Moon, or with special instruments. From the soft x-ray observations, the solar corona is seen as a highly filamentary, inhomogeneous structure consisting of a complex myriad of magnetic loop-like structures. With the hottest plasmas found in regions of high magnetic field activity, which also contain the largest magnetic fields, thousands of x-ray bright points or blinkers [7] are also seen bubbling on the surface and are associated with cancelation of opposing magnetic fluxes. In closed magnetic field structures, for example, the temperatures in active
regions may reach up to ten million degrees Kelvin, while in open magnetic field regions such as coronal holes, the temperatures are about 1–2 million degrees Kelvin. The forthcoming Solar Orbiter [8] will study fundamental physical processes in the Sun’s heliosphere, including what drives the solar wind and the origin of the coronal magnetic field, the production of energetic particles by solar eruptions, and the solar dynamo.

A number of mechanisms for heating electrons in the solar coronal and solar wind plasmas has been proposed [9–23], involving acoustic, Alfvén and cyclotron wave heating, as well as those associated with microstructures and nanoflares. In deciding which particular model is relevant for explaining observations, it is important to understand the plasma conditions where the heating processes are taking place, as well as to identify the free energy sources available for the plasma heating, how the energy is transported into the region, and how the transported electromagnetic wave energy is dissipated efficiently [24]. In the highly tenuous solar coronal plasma with temperatures of the order of several millions of Kelvin and densities of the order of 10^{19} \text{ cm}^{-3}, the plasma β = 8πn_{e}kB_{e} (T_{e} + T_{i})/B_{b}^2 ranges between 0.1–0.01, where n_{0} is the equilibrium plasma number density, k_{B} is Boltzmann’s constant, T_{e} (T_{i}) is the electron (ion) temperature, and B_{b} is the magnitude of the ambient magnetic field. Hence, the wave magnetic field dominates in this region and there is a strong indication that the heating is correlated with intense magnetic field activities (e.g., associated with the Alfvénic waves) in the filamentary structures. This is supported by the inhomogeneities in the temperature and magnetic field structures; the strength of the magnetic field also correlates well with the coronal temperatures [23] in other stars [25]. Alfvén waves can be excited in the solar corona and solar wind by charged particle beams and ion temperature anisotropy [26]. Given the high temperature and low density, the solar coronal plasma is collisionless and lends support to kinetic wave heating processes.

In this paper, we discuss the possibility of heating electrons by short-wavelength, in comparison with the ion thermal gyroradius \rho_{i} = V_{Ti}/\omega_{ci}, dispersive shear Alfvén (SWDSA) waves, that are supposed to pre-exist in the solar corona. Here, V_{Ti} = (kB_{e}/m_{i}c) is the ion thermal speed, \omega_{ci} = eB_{e}/m_{i}c is the ion gyrofrequency, e the magnitude of the electron charge, m_{i} the ion mass, and c is the speed of light in vacuum. Nonthermal SWDSA waves with sheeted wave magnetic field and finite density fluctuations could be excited by free energy sources contained in electron and proton beams, as well as in magnetic shear. The present investigation is thus complimentary to our previous model [13, 19, 27], which focused on the electron heating in the solar corona by long-wavelength (in comparison with \rho_{i}) dispersive shear Alfvén waves whose parallel wavelength is of the order of the ion-skin-depth \lambda_{A} = c/\omega_{pi}, where \omega_{pi} = (4\pi n_{0}e^{2}/m_{i})^{1/2} is the ion plasma frequency.

The manuscript is organized in the following fashion. In section 2, we discuss the properties of the SWDSA waves and the associated parallel electron current which they carry due to the parallel wave electric field. The electron current is then dissipated on account of the SWDSA wave-electron interactions in the collisionless magnetoplasma of the solar corona. The rise of the electron temperature in the presence of a given electric field spectrum of the SWDSA waves is estimated for the plasma parameters that are representative of the solar corona. Our results are summarized in section 3, where we also highlight the potential of our theoretical model involving resonant interactions between Alfvén waves and electrons.

2. Solar coronal electron heating by finite amplitude short-wavelength dispersive shear Alfvén waves (SWDSA)

We consider the propagation of finite amplitude SWDSA waves in the solar coronal plasma composed of electrons and protons. The SWDSA wave is a mixed mode with a magnetic field-aligned electric field component, and consequently there are density perturbations associated with these waves, which also accompany sheared magnetic fields. To obtain the ion density perturbation \epsilon_{1} as a function of the scalar potential \phi of the SWDSA wave from kinetic theory in a collisionless plasma, we neglect the ion motion along the ambient magnetic field, as the parallel phase speed of the SWDSA waves is assumed to be much larger than the ion thermal and ion-sound speeds. This gives [28]

$$n_{i1} = -\frac{n_{0}e\phi}{kB_{e}T_{i}} \left[1 - \Gamma_{0}(b_{i}) - \frac{2\omega^{2}T_{i}(b_{i})}{\omega^{2} - \omega_{ci}^{2}} \right],$$ \hspace{1cm} (1)

where \Gamma_{0} = I_{0} \exp(-b_{i}), I_{0} is the modified Bessel function of order \nu, b_{i} = k_{l}^{2} \rho_{i}^{2}, k_{l} is the component of the wavevector \mathbf{k} across the ambient magnetic field B_{0}. The unit vector along the z-axis in a Cartesian coordinate-system is denoted by \hat{z}.

The electron density perturbation \epsilon_{2} is obtained by combining the linearized electron continuity equation with the inertial electron momentum equation, supplemented by the parallel component of Ampère’s law \nabla \times \mathbf{E} = -(c/4\pi n_{0}e)^{2}A_{z}, and \nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t, where \nabla \times \mathbf{E} is the parallel component of the electron fluid velocity, \mathbf{E} is the SWDSA wave electric field, and A_{z} is the parallel component of the vector potential. Furthermore, in view of the low-\beta approximation, we neglect the compressional magnetic field perturbation associated with the SWDSA waves. For \omega \ll k_{l}V_{Te}, where V_{Te} = (kB_{e}/m_{e})^{1/2} is the electron thermal speed, k_{l} is the wavevector component along the ambient magnetic field, and m_{e} the electron mass, the electron density perturbation is then obtained as

$$n_{e1} = \frac{n_{0}e\phi}{kB_{e}T_{e}} \frac{k_{l}^{2} e^{2} k_{l}^{2} \lambda_{De}^{3}}{k_{l}^{2} e^{2} k_{l}^{2} \lambda_{De}^{3} - \omega^{2}},$$ \hspace{1cm} (2)

where the wave frequency \omega is much smaller than the electron gyrofrequency \omega_{ce} = eB_{0}/m_{e}c. Here, \lambda_{De} = V_{Te}/\omega_{pe} is the electron Debye radius and \omega_{pe} = (4\pi n_{0}e^{2}/m_{e})^{1/2} is the electron plasma frequency.

The dispersion relation for SWDSA waves is obtained by inserting the expressions for the ion and electron density
fluctuations into Poisson’s equation

\[k^2 \phi = 4\pi e (n_i - n_e), \]

which gives

\[\left(\omega^2 - k^2 c^2 k_i^2 \lambda_D^2 - k^2 c^2 k_i^2 \lambda_D^2 e \right) \left[1 + k^2 \lambda_D^2 - \Gamma_0 - \frac{2\omega^2 \Gamma_1}{\omega^2 - \omega_0^2} \right] - k^2 c^2 k_i^2 \lambda_D^2 = 0, \]

where \(\lambda_D = (k_0 T_i / 4 \pi n_i e^2)^{1/2} \) is the ion Debye radius. In the short-wavelength limit, viz \(k_1 \gg 1, \Gamma_0 \) and \(\Gamma_1 \) vanish, and we have from equation (4)

\[\omega = k_i c k_i \left(\lambda_D^2 + \frac{\lambda_D^2}{1 + k^2 \lambda_D^2} \right)^{1/2}. \]

In the following, we derive the parallel electron current density associated with the SWDSA waves, and discuss the associated electron heating rate arising from the dissipation of the electron current due to wave–particle interactions. By using the linearized drift kinetic equation [29] for the perturbed electron distribution function, we obtain an expression for the parallel component of the electron current density \(j_{ce} \) in a Maxwellian plasma. The result is [30]

\[j_{ce} = \frac{\omega E_e}{8\pi k^2 \lambda_D^2} Z'(\xi_e), \]

where \(Z' \) is the derivative of the standard plasma dispersion function [31] with the argument \(\xi_e = \omega / \sqrt{2} k_i V_{Te} \). For \(\xi_e \ll 1 \) equation (6) yields

\[j_{ce} = -\frac{i\omega E_e}{4\pi k^2 \lambda_D^2} \left[1 + i / \pi \xi_e \exp \left(-\xi_e^2 \right) \right], \]

which contains a reactive part.

The electron heating rate in the collisionless regime is governed by the dissipation of the magnetic field-aligned electron current, viz [13]

\[k_0 \frac{dT_e}{dr} = \frac{1}{2n_0} \text{Re} \left(J_{ce} E_e^* \right) = \frac{k_i^2 c^2}{8\sqrt{2} \pi k_i V_{Te}} \left[1 + \frac{T_i / T_e}{1 + k^2 \lambda_D^2} \right] |E_e|^2 n_0, \]

where the asterisk denotes the complex conjugate. Equation (8) demonstrates that electrons are rapidly heated due to the dissipation of the parallel electron current associated with localized SWDSA waves. The localization of the latter could be caused by the self-modulation [19, 27, 32] of SWDSA wave packets by quasi-stationary density fluctuations in the solar coronal magnetoplasma. On the other hand, the localization of nonlinear short wavelength drift-Alfvén waves in the form of two-dimensional vortices has been described using a nonlinear model involving kinetic ions and fluid electrons [33, 34] in an inhomogeneous magnetoplasma, with applications to the magnetopause of the Earth’s magnetosphere and to magnetically confined plasmas. The effects of ion trapping in electron acoustic vortices [35, 36] also provides an alternative localization mechanism which in good agreement with cavities observed in the auroral region.

We now apply the results of our theoretical model to the electron heating in the solar corona, where typical parameter values are \(n_0 = 5 \times 10^9 \text{ cm}^{-3}, T_e = 0.6 \times 10^6 \text{ K}, B_0 = 10 \text{ G}, \) and \(T_i \approx 0.01 T_e \). Thus, we have \(\omega_{pe} = 4 \times 10^7 \text{ s}^{-1}, \omega_{ci} = 1.8 \times 10^8 \text{ s}^{-1}, V_{Te} = 3 \times 10^6 \text{ cm s}^{-1}, \beta = 0.1, \) and \(\rho_i \approx 7 \text{ cm} \). Assuming that the perpendicular (parallel) wavelength of the SWDSA waves is \(5 \times 10^3 \text{ cm} \), we have \(k_i \rho_i \gg 1, \) and for \(|E_e| = 10^{-4} \text{ V cm}^{-1} \) it follows from equation (8) the electron temperature will rise by a few million degrees Kelvin per second. This heating rate is large enough to dominate over cooling losses by conduction or radiation.

3. Summary and conclusions

Summing up, we have presented an investigation of the electron heating caused by short-wavelength SWDSA waves that are generated due to nano-flares in the solar corona and in fast solar wind. Specifically, we have shown that electron heating in collisionless solar coronal magnetoplasmas is caused by the SWDSA wave-electron interactions, since the SWDSA waves have parallel electric fields and finite density fluctuations. Thus, the present results are complementary to those reported earlier [13, 19, 27]. Our theoretical model suggests that the powerful Alfvén waves observed in the corona of the Sun [20, 23] play a very important role in heating solar coronal electrons and for producing the high speeds of the solar wind. Furthermore, we stress that besides the Alfvén wave-electron interaction model for heating electrons in the collisionless magnetoplasma of the solar corona, one has also to evaluate the potential of heating electrons by the magnetic field fluctuations associated by superposition of an infinite number of nanoflares that are triggered by magnetic field expulsions.

Acknowledgments

This work was partially supported by the STFC through the Centre for Fundamental Physics (CFP) at Rutherford Appleton Laboratory, Chilton, Didcot, UK BE acknowledges support by the Engineering and Physical Sciences Research Council (EPSRC), UK, Grant no EP/M009386/1. This article is dedicated to Professor Lennart Stenflo’s 75th birthday. Professor Padma Kant Shukla unexpectedly passed away during the preparation of this work.

References

[1] Klimchuk J A 2006 Sol. Phys. 234 41
[2] Reale F 2010 Living Rev. Sol. Phys. 7 5
[3] Shayler D 2001 Skylab: America’s Space Station (New York: Springer)
[4] Strong K T 1991 Phil. Trans. R. Soc. London A 336 327
[5] Domingo V, Fleck B and Poland A I 1995 Sol. Phys. 162 1
[6] Domingo V 2002 Astrophys. Space Sci. 282 171
[7] Harrison L 1997 Sol. Phys. 175 467
[8] Müller D, Marsden R G St, Cyr O C and Gilbert H R 2013 Sol. Phys. 285 25
[9] Laing G B and Edwin P M 1995 Sol. Phys. 161 269
[10] Edwin P M and Murawski K 1995 Sol. Phys. 158 227
[11] Narain U and Ulmschneider P 1996 Space Sci. Rev. 75 453
[12] Tu C Y and Marsch E 1997 Sol. Phys. 171 363
[13] Shukla P K, Bingham R, McKenzie J F and Axford W I 1999 Sol. Phys. 186 61
[14] del Zanna L and Velli M 2002 Adv. Space Res. 30 471
[15] Satoshi M, Kudoh T, Yokoyama T and Shibata K 2004 Astrophys. J. 601 L107
[16] Tsiklauri D 2006 New J. Phys. 8 79
[17] Shukla P K, Bingham R, Eliasson E, Dieckmann M E and Stenflo L 2006 Plasma Phys. Control. Fusion 48 B249–55
[18] Mendonça J T and Shukla P K 2007 Phys. Plasmas 14 122304
[19] Shukla P K, Eliasson V, Stenflo L and Bingham R 2007 Recent Research Developments in Plasmas Physics ed J Weiland (Trivendrum, India: Transworld Research Network)
[20] Tomczyk S, McIntosh S W, Keil S L, Judge P G, Schad T, Seeley D H and Edmondson J 2007 Science 317 1192
[21] Shukla P K and Eliasson B 2008 Phys. Lett. A 372 4478
[22] Chaston C C, Salem C, Bonnell J W, Carlson C W, Ergun R E, Strangeway R J and McFadden J P 2013 Phys. Rev. Lett. 100 175003
[23] Klimchuck J A 2006 Sol. Phys. 234 41
[24] McIntosh S W, Pontieu B D, Carlsson M, Hansteen V, Boerner P and Goosens M 2011 Nature 475 477
[25] Kellet B J and Tsiokoudi V 1997 Mon. Not. R. Astron. Soc. 288 411
[26] Marsch E 2006 Living Rev. Sol. Phys. 3 1
[27] Bingham R, Shukla P K, Eliasson B and Stenflo L 2009 J. Plasma Phys. 76 135
[28] Brambilla M 1998 Kinetic Theory of Plasma Waves (Oxford: Clarendon) p 333
[29] Hasegawa A and Mima K 1978 J. Geophys. Res. 83 1117
[30] Bellan P M 1998 Phys. Plasmas 5 3081
[31] Fried B D and Conte S D 1961 The Plasma Dispersion Function (New York: Academic)
[32] Shukla P K, Bingham R and Dendy R O 1998 Phys. Lett. A 239 369
[33] Shukla P K, Pecseli H L and Rasmussen J J 1986 Phys. Scr. 34 171
[34] Jovanovic D 1988 Phys. Scr. 38 400
[35] Jovanovic D, Shukla P K and Schamel H 2000 Phys. Plasmas 7 3247
[36] Jovanovic D and Krasnoeseksikh V V 2009 Phys. Plasmas 16 102902