Regulation of Intestinal Immune System by Dendritic Cells

Hyun-Jeong Ko1 and Sun-Young Chang2*

1Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 200-701, 2Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 443-749, Korea

Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell.

Keywords: Dendritic cells, Gut, Regulatory T cells, Th17, Secretory IgA

INTRODUCTION

Our body is covered with tight physical barriers of skin and mucosal tissues. Mucosal surfaces are constantly exposed to the external environment, which includes commensal microorganisms and exogenous antigens. When pathogenic microbes breach the surface barrier, surveillance systems beneath sense the trespassers and send an alarm to defense headquarters. Mucosal immune tissues comprise lymphoid organs associated with the gastro-intestinal tract (e.g., intestine, oral cavity and pharynx), respiratory tract, and urogenital tract, as well as the glands associated with these tissues, such as the salivary glands and lacrimal glands (1). The lactating breast is also a mucosal immune tissue. Mucosal immunity can maintain peaceful body surface by generating secretory IgA (sIgA) from B cells as well as priming specific T cell immunity. The intestine, especially, harbors an enormous community of commensal microorganisms that may contribute to host defense by enforcing the host’s barrier function (2) or by competing against other microorganisms metabolically (3,4). Dendritic cells (DCs) or other phagocytic cells continuously survey the mucosal environment by using innate pattern recognition receptors and sample antigens prior to integrate adaptive immune system. These cells also can adjust suppressive regulation to innocuous antigens by inducing Tregs and keep distance to commensals by producing sIgA. Moreover, these cells protect against pathogenic invasion by generating various kinds of helper T (Th) and CD8⁺ T cells as well as helping to produce sIgA antibodies. Here, we provide an overview of the gut immune response, focusing on unique functional features of intestinal DCs and other phagocytic cells.
INTESTINAL DCs AND MACROPHAGE SUBSETS

Lamina propria DCs in the small intestine (SI) have been well studied as one of the intestinal DC subsets. CD11c* major histocompatibility (MHC) class II* cells in the gut comprise DCs as well as phagocytic macrophages. Genuine DCs are a CD11c* MHC class II* population, whereas macrophages are a CD11c* MHC class II* population (5). Lamina propria phagocytic cells in the gut have different origins and functions (6). CD103-expressing DCs are widely present in non-lymphoid tissues, CD103* DC subsets are differentiated by Flt3 ligand-dependent manner whereas CX3CR1-expressing phagocytic cells are dependent on CSF-1R (6). Peripheral CD103* CD11b+ DCs are developmentally dependent on Batf3 and are related to CD8α+ conventional DCs (7). DC migration is tightly controlled by the expression of CCR7, and it can be largely classified as non-migratory and migratory (8,9). Non-migratory DCs are generally tissue-resident macrophage-like cells. Migratory DCs travel into draining lymph nodes with sampled antigen and can be infiltrated under inflammation, DC and phagocytic cells in the gut and their functions therein are listed in Table I. In the gut, CD103* CD11b+ DCs has been well reported by the function to induce lymphocytes, Gut CD103* DCs comprise two major subsets, CD103*CD11b+ and CD103*CD11b- DCs (10). CD103* CD11b- DCs are the dominant population of CD103+ DC in the Peyer's patches and colon lamina propria (11). In contrast, CD103*CD11b* DCs are the major DC subset in the SI lamina propria (12). In addition, recent reports regarding resident CX3CR1+ phagocytic cells are increasing, TNF-α/iNOS-producing DCs (Tip DCs) were initially reported in the spleen, where they released large amounts of nitric oxide (NO) after recognizing commensal bacteria through toll-like receptors (TLRs) (13). Several TLR-expressing DCs are reported to induce IgA production. Gut plasmacytoid DCs (pDCs) can induce IgA production and repress inflammation. The detailed function of each subset will be discussed later.

Table I. Representative subsets of DCs and phagocytes in the intestine

Name	Phenotype	Characteristic features	Functions	References
CD103* DCs	CD103+	CCR7 expression : migration into LN	CD4+ Foxp3+ Treg generation (17-19, 51)	
CD11b+ DCs	CD11b+	RALDH2 expression : RA production	IgA class switching (41)	
		Antigen uptake by extending long dendrite or goblet cell associated antigen passage (GAP)	Imprinting of lymphocyte gut homing by expression of CCR9 (43, 52)	
		TLR stimulation: IL-6 production	T17 generation (33)	
		TLR5 stimulation: IL-23, IL-22 production	RegIIIγ induction (34)	
CD103* DCs	CD103+	Expression of TLR3, TLR7, and TLR9	T1 response and CTL activity (36)	
CD11b- DCs	CD11b-	Production of IL-6 and IL-12p40		
CX3CR1+ cells	F4/80+	No CCR7 expression: tissue-resident	Bacteria clearance (22)	
CX3CR1* cells	CD11b+	Antigen uptake by extending long dendrite from luminal antigen and bacteria	Generation of regulatory CD8+ T cells (23)	
		Uptake of circulariy antigen	Treg expansion (21)	
		IL-10 production	Enhanced barrier integrity (24)	
		IL-22 induction by ILC3		
Tip DCs	TNF-α/-iNOS+	TGF-β	IgA production (13)	
	CD11b+	APRIL and BAFF production		
TLR5+ DCs	TLR5+CD11c*	IL-6 production	Differentiation of T17 and T11 cells (35)	
	CD11b/F4/80+	RALDH2 expression : RA production	Generation of IgA-producing cells	
	CD103+	Expression of TLR5 and TLR9		
pDCs	CD11c+B220+	Type I IFN receptor expression	T cell-independent IgA production (39)	
	mPDCA1+	APRIL and BAFF production		
		IL-10 induction by CD4+ T cells	Immune suppression (25)	
Regulation of Intestinal Immune System by DCs

Hyun-Jeong Ko and Sun-Young Chang

IMMUNE NETWORK Vol. 15, No. 1: 1-8, February, 2015

Figure 1. Regulatory T cells induced by intestinal DCs. Intestinal DCs can take up antigen indirectly through M cell-dependent (1), Goblet cell-dependent (2), and neonatal Fc receptor (FcRn)-dependent (3), and apoptosis-dependent manner (4). Alternatively, intestinal DCs can sample luminal antigen using intraepithelial dendrites (5). CX3CR1+ phagocytes facilitate the surveillance of circulatory antigens (6). Under steady-state conditions, CD103+ DCs induce Foxp3+ CD4+ Tregs using retinoic acid by delivering luminal innocuous antigen. CX3CR1+ phagocytes can induce CD8+ Tregs to both luminal and circulatory antigens. These cells can expand the Foxp3+CD4+ Treg population by producing IL-10 to harness immune tolerance (21). CX3CR1+ phagocytes can capture Salmonella by extending dendrites across epithelium in a CX3CR1-dependent manner (22). Antigens captured by CX3CR1+ phagocytes can be transferred through gap junctions to CD103+ DCs in the lamina propria to establish oral tolerance (23). In addition to luminal antigen, lamina propria CX3CR1+ cells facilitate the surveillance of circulatory antigens from blood vessels (24). These cells fail to prime naïve CD4+ T cells; however, cross-presentation by these cells can induce priming of and differentiation into CD8+ T cells that express IL-10, IL-13, and IL-9. These CD8+ T cells can suppress pathogen-specific CD4+ T cell activation through IL-10 (24). Finally, these CD8+ T cells act as a regulatory CD8αβ+ TCRαβ+ T cell population in the epithelium, CX3CR1+ cells regulate colonic IL-22 producing group 3 innate lymphoid cells (ILC3) to promote mucosal healing and maintain barrier integrity (25). Therefore, CD103+ DCs and CX3CR1+ phagocytic cells can generate two distinct regulatory T cell subsets by different mechanisms to maintain gut immune homeostasis at steady state (Fig. 1). pDCs may me-
Regulation of Intestinal Immune System by DCs
Hyun-Jeong Ko and Sun-Young Chang

Figure 2. Helper T cell induced by intestinal DCs. CD103+CD11b+ DCs and TLR5+ DCs induce Th17 cells. TLR5+ DCs and CD103+CD11b+ DCs can express high amounts of IL-23 following TLR5 stimuli and then drove IL-22-dependent RegIIIγ production from Paneth cells (35). TLR5+ DCs promote the differentiation of antigen-specific Th17 and Th1 cells following stimulation by flagellin, a TLR5 ligand (36). CD103+CD11b+CD8α+ DCs expressing TLR3, TLR7, and TLR9 can produce IL-6 and IL-12p40 following stimulation of the respective TLR ligands (37). These DCs induce a Th1 response and cytotoxic T lymphocytes (CTL). CX3CR1+ phagocytic cells contribute to intestinal clearance of intracellular bacteria. While their function under conditions of inflammation or infection remains unclear, their suppressive functions are well described at steady state.

SECRETORY IgA AND INTESTINAL DCs

A unique feature of the mucosal immune system is local production of sIgA from plasma cells differentiated from B cells. IgA class switching generally occurs in gut-associated lymphoid tissues including Peyer’s patches, MLNs, and ILFs within the lamina propria. SFB stimulates the postnatal develop-
Regulation of Intestinal Immune System by DCs
Hyun-Jeong Ko and Sun-Young Chang

Figure 3. Intestinal DCs support secretory IgA generation. Gut CD103^+CD11b^+ DCs, Tip DCs, and TLRS^+ DCs express RALDH2 that is converted into retinoic acid from dietary vitamin A and can be used for IgA production. Gut pDCs and Tip DCs induce IgA generation from B cells by expressing BAFF and APRIL. Eosinophils promote IgA production by expressing BAFF and APRIL or support the function of CD103^+ DCs.

CONCLUSION AND FUTURE PERSPECTIVE
In this review, we focused on the integral role of intestinal DCs in shaping the unique intestinal immunity. The advent of advanced experimental techniques for surveying mucosal tissues and analyzing metagenomic data of commensals, along with the wide availability of germ-free mice has facilitated a growing understanding of this unique mucosal immune environment. Diverse microbiota can drive microbe-dependent CD4 effector T-cell programs. For example, Clostridium strains provide a rich environment of TGF-β and induce...
Foxp3+ Treg in the colon (50,51), and SFB induce the generation of TGFβ1 cell by IL-6 production from DCs (32). Some pathogens (e.g., Listeria spp.) specifically induce Th1 cells (33). Thus, microbial signals may induce polarizing cytokine secretion from DCs, other innate cells or stromal cells. Assembling combined information, DCs may coordinate to establish gut immune system.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2014R1A1A1002129, NRF-2014R1A2A2A01002576).

CONFLICTS OF INTEREST

The authors have no financial conflict of interest.

REFERENCES

1. Murphy, K., P. Travers, M. Walport, and C. Janeway. 2012. Janeway's immunobiology. Garland Science, New York. p. 460-468.
2. Giordana, M. A., T. E. Riehl, M. S. Rao, C. Moon, X. Ee, G. M. Nava, M. R. Walker, J. M. Marinshaw, T. S. Stappenbeck, and W. F. Serson. 2012. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gastroenterology 143: 1029-1039.
3. Fukuda, S., H. Toh, K. Hase, K. Oshima, Y. Nakashima, K. Yoshimura, T. Tobe, J. M. Clarke, D. L. Topping, T. Suzuki, T. D. Taylor, K. Itoh, J. Kikuchi, H. Morita, M. Hattori, and W. F. Stenson. 2012. Lactobacillus probiotic protects intestinal epithelium from radiation injury through production of acetate. Immunity 31: 513-525.
4. Pickard, J. M., C. F. Maurice, M. A. Kinnebrew, M. C. Aht, D. Schenten, T. V. Gelovkina, S. R. Bogatyrev, R. F. Ismagilov, E. G. Parner, P. J. Turnbaugh, and A. V. Chervonsky. 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514: 638-641.
5. Denning, T. L., B. A. Norris, O. Medina-Conreras, S. Manicasayar, D. Geem, R. Mardin, C. L. Karp, and B. Pulendran. 2011. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 187: 735-747.
6. Varol, C., A. Vallon-Eberhard, E. Elinav, T. Ayychek, Y. Shapira, H. Luche, H. J. Fehling, W. D. Hardt, G. Shakhar, and S. Jung. 2009. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31: 502-512.
7. Edelson, B. T., W. KC, R. Juang, M. Kohyama, I. A. Benoit, P. A. Kleikota, C. Moon, J. C. Albring, W. Ise, D. G. Michael, D. Bhattacharya, T. S. Stappenbeck, M. J. Holtzman, S. S. Sung, T. L. Murphy, K. Hilchler, and K. M. Murphy. 2010. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD11c+ conventional dendritic cells. J. Exp. Med. 207: 829-836.
8. Forster, R., A. Schubel, D. Breitfeld, E. Kremmer, I. Renner-Muller, E. Wolf, and M. Lipp, 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99: 23-33.
9. Jiang, M. H., N. Soujaga, T. Tanaka, T. Hirata, T. Hiroi, K. Tofuya, Z. Guo, E. Umemoto, Y. Ebiunso, B. G. Yang, J. Y. Scol, M. Lipp, H. Kiyono, and M. Miyake, 2006. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J. Immunol. 176: 803-810.
10. Perras, J. F., K. E. Jaensson, and W. W. Agace, 2010. The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets. Immunobiology 215: 692-697.
11. Helft, J., F. Ginhoux, M. Bogunovic, and M. Merad, 2010. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice, ImmunoL Rev. 234: 55-75.
12. Bogunovic, M., F. Ginhoux, J. Helft, L. Shang, D. Hashimoto, M. Greter, K. Liu, C. Jakubzick, M. A. Ingensoll, M. Leboeuf, E. R. Stanley, M. Nussenzweig, S. A. Lin, G. J. Randolph, and M. Merad, 2009. Origin of the lamina propria dendritic cell network, Immunity 31: 513-525.
13. Tezuka, H., Y. Abe, M. Iwata, H. Takeuchi, H. Ishikawa, M. Matsushita, T. Shiohara, S. Akira, and T. Ohteki, 2007. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448: 929-933.
14. Mucida, D., N. Kutchukhidze, A. Erazo, M. Russo, J. J. Lafaille, and T. D. Taylor, 2007. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Invest. 115: 2193-1933.
15. McDoale, J. R., L. W. Wheeler, K. G. McDonald, B. Wang, K. Konjuca, K. A. Knoop, R. D. Newberry, and M. J. Miller, 2012. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483: 345-349.
16. Farache, J., I. Koren, I. Milo, I. Gurevich, K. Kim, E. Zigmond, G. C. Furtado, S. A. Lina, and G. Shakhar, 2013. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation, Immunity 38: 581-595.
17. Goomes, J. L., K. R. Siddiqui, C. V. ranchia-Garcamo, J. Hall, C. M. Sun, Y. Belsaid, and F. Powrie, 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism, J. Exp. Med. 204: 1757-1764.
18. Sun, C. M., J. A. Hall, R. B. Blank, N. Bouladoux, M. Ouda, J. R. Moa, and Y. Belsaid, 2007. Small intestinal lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid, J. Exp. Med. 204: 1775-1785.
regulatory T cell differentiation mediated by retinoic acid, Science 317: 256-260.

20. Denning, T. L., Y. C. Wang, S. R. Patel, I. R. Williams, and B. Pulendran, 2007. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin-17-producing T cell responses, Nat. Immunol. 8: 1085-1094.

21. Hadis, U., B. Wahl, O. Schulz, M. Hardtke-Wolenski, A. Schippers, N. Wagner, W. Muller, T. Spaarwasser, R. Forster, and O. Pabst, 2011. Intestinal tolerance requires gut homing and expansion of Foxp3+ regulatory T cells in the lamina propria, Immunity 34: 37-46.

22. Niess, J. H., S. Brand, X. Gu, I. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance, Science 307: 254-258.

23. Mazzini, E., L. Massimiliano, G. Penna, and M. Rescigno, 2014. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells, Immunity 40: 248-261.

24. Chang, S. Y., J. H. Song, B. Guleng, C. A. Cotoner, S. Anhiro, H. Zhao, H. S. Chiang, M. O'Keefe, G. Liao, C. I. Karp, M. N. Kweon, A. H. Sharpe, A. Bihan, C. Terhorst, and H. C. Reinecker, 2013. Circulatory antigen processing by mucosal dendritic cells controls CD8+ T cell activation, Immunity 38: 153-165.

25. Longman, R. S., G. E. Diehl, D. A. Victorio, J. R. Huh, C. Galan, E. R. Mraldi, A. Swaminath, R. Bonneau, E. J. Scherl, and D. R. Littman, 2014. CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22, J. Exp. Med. 211: 1571-1583.

26. Dasgupta, S., D. Erturk-Hasdemir, J. Ochoi-Reparraz, H. C. Reinecker, and D. L. Kaspar, 2014. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms, Cell Microbe 15: 413-423.

27. Lee, S. E., X. Li, J. Kim, J. Lee, J. M. Gonzalez-Navajas, S. H. Hong, I. K. Park, J. H. Rhee, and E. Raz, 2012. Type I interferons maintain Foxp3 expression and T-regulatory cell functions under inflammatory conditions in mice, Gastroenterology 143: 145-154.

28. Kole, A., J. He, A. Rivollier, D. D. Silveira, K. Kitamura, K. J. Maloy, and B. L. Kelsall, 2013. Type I IFN's regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis, J. Immunol. 191: 2771-2779.

29. Schulz, O., F. Jaersson, E. K. Persson, X. Liu, T. Worbs, W. W. Agace, and O. Pabst, 2009. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions, J. Exp. Med. 206: 3101-3114.

30. Jaersson, E., H. Uronen-Hansson, O. Pabst, B. Els€tzen, J. Tian, J. I. Coombes, P. I. Berg, T. Davidson, F. Powrie, B. Johansson-Lindholm, and W. W. Agace, 2008. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans, J. Exp. Med. 205: 2139-2149.

31. Ivanov, I. I., K. Atarashi, N. Manel, E. L. Brodie, T. Shima, U. Karaoz, D. Wei, K. C. Goldfarb, C. A. Santee, S. V. Lynch, T. Tanoue, A. Imakou, K. Itoh, K. Takeda, Y. Umesaki, K. Honda, and D. R. Littman, 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria, Cell 139: 485-498.

32. Goto, Y., C. Panca, G. Nakato, A. Cebula, C. Lee, M. G. Diez, T. M. Laufer, L. Ignatowicz, and I. I. Ivanov, 2014. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation, Immunity 40: 594-607.

33. Yang, Y., M. B. Torchinsky, M. Gobert, H. Xiong, M. Xu, J. I. Linehan, F. Alaroco, C. Ng, A. Chen, X. Lin, A. Soznek, J. J. Liao, V. J. Torres, M. K. Jenkins, J. J. Lafaille, and D. R. Littman, 2014. Focused specificity of intestinal Th17 cells towards commensal bacterial antigens, Nature 510: 152-156.

34. Persson, E. K., H. Uronen-Hansson, M. Semmrich, A. Rivollier, K. Hagerbrand, J. Marsal, S. Gudjonsson, U. Hakansson, B. Reizis, K. Kotansky, and W. W. Agace, 2013. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation, Immunity 38: 958-969.

35. Kinnebrew, M. A., C. G. Buffie, G. E. Diehl, I. A. Zenewicz, I. Leiner, T. M. Hohl, R. A. Flavell, D. R. Littman, and E. G. Pummer, 2012. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense, Immunity 36: 276-287.

36. Uematsu, S., K. Fujimoto, M. H. Jiang, B. G. Yang, Y. J. Jung, M. Nishiyama, S. Sato, T. Tsujimura, M. Yamamoto, Y. Yokota, H. Kiyono, M. Miyasaka, J. K. Ishii, and S. Akira, 2008. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5, Nat. Immunol. 9: 769-776.

37. Fujimoto, K., T. Karuppuchamy, N. Takemura, M. Shimohigoshi, T. Machida, Y. Haseda, T. Aoshi, K. J. Ishii, S. Akira, and S. Uematsu, 2011. A new subset of CD103+CD11b+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity, J. Immunol. 186: 6287-6295.

38. Lecuyer, E., S. Rakotobe, H. Lengline-Garnier, C. Lebrerton, M. Picard, C. Juste, R. Fritzen, G. Eberl, K. D. McCoy, A. J. Macpherson, C. A. Reynaud, N. Cerf-Bensussan, and V. Gaboriau-Routhiau, 2014. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses, Immunity 40: 608-620.

39. Palm, N. W., M. R. de Zoete, T. W. Cullen, N. A. Barry, J. Stefanowski, L. Hao, P. H. Dogman, J. Hu, I. Peter, W. Zhang, E. Raggiiero, J. H. Cho, A. L. Goodman, and R. A. Flavell, 2014. Immunoglobulin A coating identifies colitogenic bacteria in intestinal inflammatory bowel disease, Cell 158: 1000-1010.

40. Tsezika, H., Y. Abe, J. Asano, T. Sato, J. Liu, M. Iwata, and T. Ohteki, 2011. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction, Immunity 34: 247-257.

41. Molemaa, R., M. Knippenberg, G. Gouverse, B. J. Olivier, A. F. de Vos, T. O'Toole, and R. E. Mebius, 2011. Expression of retinaldehyde dehydrogenase enzymes in mucosal dendritic cells and gut-draining lymph node stromal cells is controlled by dietary vitamin A, J. Immunol. 186: 1934-1942.
42. Mora, J. R., M. Iwata, B. Eksteen, S. Y. Song, T. Junt, B. Sennan, K. I., Otipoby, A. Yokota, H. Takeuchi, P. Ricciardi-Castagnoli, K. Rajewsky, D. H. Adams, and U. H. von Andrian. 2000. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314: 1157-1160.

43. Chang, S. Y., H. R. Cha, O. Igarashi, P. D. Rennert, A. Kissenpfennig, B. Malissen, M. Nanno, H. Kiyono, and M. N. Kweon. 2008. Cutting edge: Langerin+ dendritic cells in the mesenteric lymph node set the stage for skin and gut immune system cross-talk. J. Immunol. 180: 4361-4365.

44. Iwata, M., A. Hirakiyama, Y. Eshima, H. Kagechika, C. Kato, and S. Y. Song. 2004. Retinoic acid implants gut-homing specificity on T cells. Immunity 21: 527-538.

45. Chang, S. Y., H. R. Cha, J. H. Chang, H. J. Ko, H. Yang, B. Malissen, M. Iwata, and M. N. Kweon. 2010. Lack of retinoic acid leads to increased langerin-expressing dendritic cells in gut-associated lymphoid tissues. Gastroenterology 138: 1468-1478, e6.

46. Chang, S. Y., and M. N. Kweon. 2010. Langerin-expressing dendritic cells in gut-associated lymphoid tissues. Immunol. Rev. 234: 233-246.

47. Sutherland, D. B., and S. Fagarasan. 2014. Gut reactions: Eosinophils add another string to their bow. Immunity 40: 455-457.

48. Chu, V. T., A. Beller, S. Rausch, J. Strandmark, M. Zanker, O. Arbach, A. Kruglov, and C. Berek. 2014. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40: 582-593.

49. Chu, D. K., R. Jimenez-Saiz, C. P. Verschoor, T. D. Walker, S. Goncharova, A. Llop-Guevara, P. Shen, M. E. Gordon, N. G. Barra, J. D. Bassett, J. Kong, R. Fattouh, K. D. McCoy, D. M. Bowdish, J. S. Erjefalt, O. Palos, A. A. Humble, R. Kolbeck, S. Waseda, and M. Jordana. 2014. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J. Exp. Med. 211: 1657-1672.

50. Atarashi, K., T. Tanoue, T. Shimizu, A. Izuka, T. Kawai, Y. Momose, G. Cheng, S. Yamasaki, T. Saito, Y. Ohnita, T. Taniguchi, K. Takeda, S. Hori, I. I. Ivanov, Y. Umesaki, K. Itoh, and K. Honda. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331: 337-341.

51. Atarashi, K., T. Tanoue, K. Oshima, W. Suda, Y. Nagano, H. Nishikawa, S. Fukuda, T. Saito, S. Narashima, K. Hase, S. Kim, J. V. Fritz, P. Wilmes, S. Ueha, K. Matsushima, H. Ohno, B. Olle, S. Sakauchi, H. Taniguchi, H. Momo, and K. Honda. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232-236.

52. Benson, M. J., K. Pino-Lagos, M. Rosembatt, and R. J. Noelle. 2007. All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204: 1765-1774.

53. Mora, J. R., M. R. Bono, N. Manjunath, W. Weninger, L. L. Cavanagh, T. Rosenblatt, and U. H. von Andrian. 2008. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424: 88-93.