Physical and Chemical Properties of Soil in the Sahelian Region: Case Study in Nioro du Rip, Senegal

Landing Biaye1*, Fary Diome2, Seybatou Diop2, Modou Mbaye2,3, Djibril Tine2, Dome Tine2, Ndeye Penda Diene Diene4 and Gayane Faye2

1Department of Geology, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal.
2Institute of Earth Sciences, Faculty of Science and Technology, B. P. 5396, Dakar-Fann Senegal.
3Department of Physics, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal.
4Head of the Analysis Laboratories (GLA) group of the Mining Exploration and Promotion Directorate, Senegal.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors LB and FD designed the study. Author MM performed the statistical analysis. Authors Dome Tine and Djibril Tine made the maps. Authors LB, SD and GF wrote the protocol and wrote the first draft of the manuscript. Authors LB and NPDD managed the analyses of the samples. Authors LB, SD and MM managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI:10.9734/JGEESI/2020/v24i530229

Editors:
(1) Dr. Suvendu Roy, Kalipada Ghosh Tarai Mahavidyalaya, India.
(2) Dr. Teresa Lopez-Lara, Autonomous University of Queretaro, Mexico.

Reviewers:
(1) R. B. Meena, ICAR-Indian Institute of Soil and Water Conservation Research Centre, India.
(2) Kadhim Naief Kadhim, University of Babylon, Iraq.

Complete Peer review History: http://www.sdiarticle4.com/review-history/59373

Received 14 May 2020
Accepted 21 July 2020
Published 25 July 2020

ABSTRACT

The locality of Nioro du Rip is facing intense erosion, loss of agricultural land, soil pollution and soil degradation. Today, there is limited information about the soil physical and chemical properties in the locality. In this work, we describe the main essential factors or mechanism that control the evolution of the soil in the study area. The physical and chemical properties of soils encountered along a NE-SW transect in are analyzed in this paper. The statistical analysis results revealed low structural stability of soils in general, due to their low organic matter content and exchangeable bases and their predominantly silty texture. A
The Nioro du Rip department is in the Kaolack region. It covers an area of 2296.5 km² and is limited to the north by the departments of Kaolack and Kaffrine, to the west by the department of Foundiougne (Fatick region), to the south and southeast by the Republic of Gambia (Fig. 1). From a geological point of view, the soils of the study area developed on the sandstones of the Continental Terminal. These are, for the most part, soils with sesquioxide, hylomorphic soils and hydromorphic soils forming, from a geomorphological point of view: Plateau 15 to 20 meters above sea level, with armor outcropping at the periphery and border. Convex-concave convex connecting glazes noted in laterites. Terraces that are thick formations of colluvionnement and alluvial, and finally shallows that are beds of dead valleys and old beds of the tributaries of the Baobolong [10]. The study of the study area was based on the measurement of soil and geomorphological parameters.

The transect used in the study was selected after surveying the area for recognition of soil surface conditions. The path of this north-east/southwest direction transect is as materialized in Fig. 2. The height difference is 13 m for 2 km on its route. Field observations have allowed us to identify a significant phenomenon of water erosion from the ridgeline of the basin, becoming increasingly pronounced towards the southwest. A direction in which the slopes become much stronger, thus promoting an intensive runoff of rainwater. The ability to infiltrate stormwater is reduced, due to the low permeable nature of the soil and the dilapidated vegetation cover, which has been greatly undermined by agricultural practices, deforestation, and anarchic urbanization.

The fieldwork consisted first of identifying the different surface soil units (Fig. 3), then digging pits to make a description of the soil profile (Fig. 4), before taking samples for laboratory analysis.
In total, four soil pits, known as P1 to P4, were dug along the transect and a few fifteen (15) soil samples taken from sachets. The samples were carefully referenced, before being sent to the laboratory for a series of physical and chemical analyses; the determinations made on each sample are as follows [11,12]:

- pH-water, pH-KCl and electrical conductivity (CE) horizons from soil suspension solutions.
- Granulometry, sifting and decanting of fines using Robinson’s method.
- The tradable bases (Calcium, magnesium, sodium, and potassium), using ammonium acetate and sodium acetate methods.
- Cationic exchange capacity (CEC), by the saturation method at NH$_4$$^+$.
- Organic carbon (C), by Anne's method.
- Nitrogen (N), by the method of Kjeldahl.

The behavior of organic matter has been studied by dosing the C/N ratio, which allows the ability of organic matter to decompose in the soil. This C/N ratio makes it possible to characterize the organic matter present in the soil [13].

2.1 Data Processing

In addition to statistical description, the interpretation of the results was based on the main component analysis (PCA) of the data, to look for possible relationships between the different parameters measured on soil samples [14]. Indeed, these parameters very often correlate with each other, due to the same control mechanism (“phenomenon or associated factor”), responsible for their dependence or inter-correlation. The PCA method is a statistical mathematical process that makes possible the search for correlation between the parameters studied and thus makes it possible to systematize the information they contain [15]. In doing so, it allows us a better understanding of their structure and thus facilitates their interpretation. It focused here on the 16 parameters (or variables) that are: the S sand content, L silt, clay A, calcium Ca$^{2+}$, magnesium Mg$^{2+}$, sodium Na+, potassium K$^+$, total carbon-C, nitrogen N, organic matter OM, S exchangeable bases, CEC cation exchange capacity, saturation rate (V), pH water, acid pH and electrical conductivity-CE.

Fig. 1. Geographical location of Nioro du Rip
2.2 Principal Component Analysis

To properly characterize a soil, one usually needs to measure several of its physical-chemical parameters (or properties). But very often, the different parameters measured are not independent. They show a certain level of correlation between them, due to the same control mechanism. The PCA method allows for a grouping of intercorrelated parameters (or variables) in the form of new mathematical magnitudes, commonly referred to as "factors" or "principal components," at which each influenced variable marks or scores a weight (a factor weight) in terms of variance explained by the factor that influences it. Seen from this perspective, the PCA is a tool for synthesizing (compression) of information contained in a database [16] and the factor weight of a given variable on a factor provides an idea of its degree of correlation with it [17]. The PCA was operated here using R software [18].
3. RESULTS AND DISCUSSION

3.1 Descriptive Analysis of Physical and Chemical Parameters

3.1.1 Granulometry

The granulometric composition of the samples taken is given in the (Table 1). The soils of the plateau are sandy-luminous in the first horizon, limono-sablo-clayey in the second and third horizon. The soils of the sandy, limono-sand and limono-sablo-clayey slope. The terrace floors are either limono-sandy or sandy. Hydromorphic soils are sandy. At the plateau and slope level, the percentage of sand decreases with depth (Table 1). The percentage of silt decreases in the second horizon, before increasing in depth. The percentage of clays increases with depth. At the terrace level, the percentages of silts, sands and clays are not constant in different horizons. Those of silts and clays increase in the early horizons, they are stable in the intermediate and lower horizons. At the bottom, the percentage of sands and silt decreases with depth while the percentage of clays increases.

3.1.2 pH

The soils of the plateau and slope show acid pH in the upper horizons, with values between 5.1 and 5.6 and between 5.2 and 5.8, respectively. Values then decrease in the second horizon, before increasing in depth (Table 1). On the terrace, the floors are slightly acidic to neutral (6.4 (pH 7.4) while the low-bottom soils are slightly acidic (pH 6.5) acidic (pH 5.7). The pH increases deeply on most of the terrace floors, but it decreases with depth in the shallows. Along the time of the time pH values are not constant in the superficial horizons.

3.2 Electrical Conductivity (EC)

According to the classification established by Durand in 1983 (Baize, 2000), the soils of the plateau, slope, terrace, and shallows are unsalted (EC ≤ 500μS/cm). Their salinity varies between 11.08μS/cm at the plateau and 111.8μS/cm at the bottom. The electrical conductivity of soils varies, and it is lower at the plateau and slope (11.08 μS/cm ≤ EC ≤ 15.51 μS/cm) than at the terrace and bottom (39.98 μS/cm ≤ EC ≤ 111.8 μS/cm).

3.3 Organic Matter Content and C/N Ratio

Except for the first horizon of the terrace (having a C/N ratio - 11.4%), all the floors of the plateau, slope, terrace, and bottom, have a C/N - 12. This indicates that mineralization is slowed by conditions of anaerobic and excessive acidity [15]. The value of the C/N ratio ranging from 19.65% to 12% indicates excess carbon due to poor degradation of organic matter and lack of oxygen (anaerobic conditions). The evolution of organic matter according to depth is the same in all geomorphological units: it decreases with
Table 1. Results of physical and chemical analyses of samples

Profile	pH water	pH KCl	EC µS/cm	C ppm	P ppm	N ppm	C/N	OM %	Clay %	Limon %	Sand %	Ca²⁺ %	Mg²⁺ %	K⁺ %	Na⁺ %	EB	CEC	
11.5	5.4	5.1	13.5	0.4	23.9	0.027	0.7	14.4	6.4	3.8	89.7	2.5	0.2	0.1	0.1	2.8	3.3	84.5
11.5-60	5.1	5.0	11.1	0.3	13.5	0.018	0.4	13.9	12.9	3.4	83.6	1.4	0.1	0.1	0.1	1.8	3.9	45.3
60-135	5.6	5.2	14.7	0.2	8.9	0.017	0.4	13.3	17.6	4.3	78.1	1.9	0.2	0.1	0.1	2.3	5.2	44.8
18.5	5.8	5.6	17.2	0.4	136.5	0.030	0.7	12.9	3.4	2.6	93.9	2.3	0.1	0.1	0.1	2.5	3.1	82.4
18.5-60	5.3	5.1	14.9	0.2	36.1	0.012	0.4	19.6	12.9	2.8	84.3	1.7	0.2	0.1	0.1	2.1	3.6	56.1
60-125	5.5	5.4	15.5	0.2	24.2	0.013	0.4	17.6	16.9	3.5	79.5	1.6	0.4	0.1	0.1	2.3	6.5	34.8
30	6.6	6.4	56.8	0.7	8.1	0.065	1.3	11.4	8.3	4.9	86.7	2.8	0.6	0.2	0.1	3.6	6.1	60.0
30-62	7.0	6.9	48.9	0.7	8.4	0.052	1.3	14.4	10.7	6.1	83.2	3.8	0.1	0.4	0.1	4.4	7.6	57.8
62-82	6.9	6.7	39.9	0.3	6.9	0.015	0.5	17.5	3.2	1.5	95.3	1.8	0.3	0.2	0.1	2.3	2.7	84.4
82-98	6.9	6.9	41.4	0.3	12.1	0.017	0.5	14.9	3.4	1.4	95.2	2.3	0.1	0.1	0.1	2.6	2.7	96.7
98-110	6.9	6.8	63.6	0.3	5.7	0.018	0.5	17.6	3.4	1.5	95.2	2.2	0.7	0.1	0.1	3.1	3.9	78.1
110-129	7.3	7.1	48.2	0.2	4.0	0.021	0.4	11.9	5.9	3.7	90.4	2.4	0.3	0.1	0.1	2.8	2.9	95.9
129-170	7.4	7.1	47.6	0.2	4.9	0.016	0.4	12.9	7.6	4.6	87.8	2.2	0.3	0.1	0.1	2.7	3.9	69.8
25	6.5	6.4	111.8	0.4	5.4	0.022	0.7	18.9	2.6	1.9	95.5	2.4	0.3	0.1	0.1	2.9	2.9	98.8
70	5.7	5.6	42.7	0.3	3.1	0.018	0.5	14.3	3.4	1.8	94.7	1.8	0.1	0.1	0.1	2.2	2.3	94.8
depth (Table 1). This low organic matter content can result in low soil reserves, low structural stability and low biological activity.

3.4 Tradeable Base Grades and Cationic Exchange Capacity

The content of tradable bases (Table 1) is higher in the upper horizons of the plateau, slope, terrace, and shallows. This indicates according a low level of organic matter. Surface horizons have a much lower CEC than depth horizons. This could be related to the low clay content in these horizons. Mg/K reports point to a shortage of exchangeable potassium (K ≤ 0.2 meq/100 g). The exchangeable Ca content is significantly higher than the K, Mg and Na levels and represents almost two-thirds of the tradable bases, thus demonstrating the acidity of these horizons. It varies on average between 1.4 and 3.8 meq/100 g. The Cationic Exchange Capacity (CEC) not only assesses the degree of saturation (V) which is a valuable indication for the potential fertility of soil bases but also gives an idea of the nature of clay minerals. Several classifications can be determined by the saturation level (S/T).

Saturation (S/T > 95%) at intermediate horizons of the terrace and the horizons of the lower depth. sub-saturation » (80% ≤ S/T ≤95%) at higher horizons of the plateau and slope and the intermediate horizons of the terrace. meso-saturation » (50 ≤ S/T ≤ 80%) at intermediate horizons of the terrace and the second horizon of the slope and Oligo-saturation (20 ≤ S/T ≤ 50) for the deep horizons of the plateau, the slope, and the terrace.

All the stages of saturation are found at the level of the terrace floors which thus form, with the deep horizons of the plateau and the slope, the areas with low saturation rate. The latter are characterized by significant acidity, low fertilizer reserves and low microbiological activity.

3.5 Phosphorus Content

On the shelf, the assimilable phosphorus content ranges from 8.9 to 23.9 g/kg. On the slope, it varies between 24.2 and 136.5 g/kg; in terraces between 4 and 12.1 g/kg and in the shallows between 3.1 and 5.4 g/kg. The soils on the slopes therefore have the highest assimilable P content. But, this content decreases with depth, with increased pH and reduced organic matter content. On the slopes, the assimilable P content may be related to the presence of Al³⁺ and Fe²⁺ cations or drainage processes.

3.6 Principal Component Analysis Results

The PCA allowed us to find the specific values of the linear correlation coefficient matrix between the different variables, to determine the specific components or variables responsible for these own values, but also to see the level of correlation between the starting variables and "associated factors." The results are shown in Table 2 which provides the specific values of the correlation coefficient matrix, as well as the percentage of variance explained by each main component of the resulting statistical model. There are 4 essential components (PC1, PC2, PC3 and PC4), totaling more than 92% of the variance described by the model; other factors (PC5 to PC14) participating only very timidly in the description of the information contained in the starting variables.

3.7 Interpretation of the Model

PC1 expressing the highest percentage of variance (42.94%) is well correlated with the variables Ca²⁺, K⁺, C, N, MO, and S (Table 2). It can therefore be considered as the axis highlighting mineral decomposition and soil structure. PC2 (32.54% of variance) that correlates well with clay, sand, V saturation and T CEC reflects granulometric soil differentiation. With scores around 10% of the variance explained by the model, the PC3 components (10.22% of variance and grouping the variables Mg²⁺, pH water and acid pH) and PC4 (variance 6.73% and discriminating EC variables, pH KCl) are quite poorly expressed in the model. This makes it difficult to interpret them. However, PC3 could be perceived as a factor in acidification and degradation of soil structure by magnesium salt accumulation, while PC4 could be considered a factor in soil salinization (total mineralization).

The projection of variables and individuals (soil samples) in the plane formed by the PC1 and PC2 components that are sufficient to explain nearly 75% of total inertia (Fig. 5) makes it possible to notice two things: A clear tendency of the terrace floors to distinguish itself from the soils of the plateau and the slope through the mineralization process (PC2 component) at the origin of the accumulation in MO, K, N, C and Ca²⁺; spatial grouping by textural affinity and degree of acidity of the lower and terrace soils on the one hand (in the upper left dial of the plot) and the floors of the plateau and slope on the other hand (in the lower left dial) linked to the
Fig. 5. Clouds of variables and individuals in the factor plane PC1-PC2

Table 2. Results of the principal component analysis

Factor	Eigenvalue	%Variance	% Cumulative variance	pH-water	PC1	PC2	PC3	PC4
PC1	6.44	42.94	42.94	4.16	7.45	15.17	9.77	
PC2	4.88	32.54	75.48	4.15	8.14	13.71	11.52	
PC3	1.53	10.22	85.69	2.75	9.02	4.19	43.53	
PC4	1.01	6.73	92.42	12.13	0.02	9.12	5.84	
PC5	0.39	2.63	95.05	12.36	0.37	3.67	5.87	
PC6	0.37	2.47	97.52	13.29	0.11	5.73	4.25	
PC7	0.20	1.30	98.83	0.15	18.35	3.88	0.54	
PC8	0.09	0.59	99.41	5.58	8.44	0.56	5.98	
PC9	0.05	0.33	99.74	0.05	18.67	3.22	1.37	
PC10	0.02	0.15	99.89	13.29	0.30	1.12	3.47	
PC11	0.01	0.05	99.94	0.84	0.47	29.74	5.27	
PC12	0.01	0.04	99.98	10.80	0.59	0.88	6.40	
PC13	0.00	0.02	99.99	0.00	0.00	0.00	0.00	
PC14	0.00	0.01	100.00	14.48	0.18	0.34	0.04	

Variables	PC1	PC2	PC3	PC4
pH-KCl	4.15	8.14	13.71	11.52
EC	2.75	9.02	4.19	43.53
C	12.13	0.02	9.12	5.84
N	12.36	0.37	3.57	5.67
OM	13.29	0.11	5.73	4.25
OM	13.29	0.11	5.73	4.25
Clay	0.15	18.35	3.88	0.54
Limon	5.58	8.44	0.56	5.98
Sand	0.05	18.67	3.22	1.37
Ca	13.29	0.30	1.12	3.47
Mg	0.84	0.47	29.74	5.27
K	10.80	0.59	0.88	6.40
Na	0.00	0.00	0.00	0.00
S	14.48	0.18	0.34	0.04
T	5.97	10.04	4.44	0.24
V	0.01	17.84	4.33	1.11

effect of the PC2 factor. Contrary to what might be expected, samples collected at the plateau and watershed cover show a more argillo-limonous texture as opposed to those taken at the low-bottom level and the terrace with a sandier texture. Through this anomaly, we find the impact of significant water erosion in the basin that appears to be responsible for this granulometric inversion.
4. CONCLUSION

This work shows that the soils studied are characterized by low structural stability because of their low organic content, exchangeable bases, and silt-dominant texture. The PCA results identified four major processes of soil evolution, two of which appear to be the most important: a primary process of decomposition of organic matter and a secondary process of deterioration of soil texture/structure. These two observations are consistent with those of Betardand Bourgeon [4]. The second process (granulometric factor) is decisive since dominant clay-limestone fraction soils have low cohesion; this facilitates their detachment and facilitates the transport of soil fertilizers. It precedes the acidification of the watershed soils and their gradual salinization. These four main factors confirm the work Cisse [2] and are consistent with the observations of authors such as Teixeira [5], and Ndiaye [6]. This study also shows a greater acidification at the terrace and shallows where acid sulphate soils with jarosite stains developed by Diop [3]. Compared to plant needs, our results indicate a serious deficiency of soils in chemical fertility (S, CEC, and OM).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Bielders L, Rajot, Jean-Louis, Michels, Karlheinz. Wind erosion in the Niger Sahel: Influence of current farming practices and control methods. Drought. 2004;15(1):19-32.
2. CISSE, A. Impact of the Ravin on The Dynamics in Nioro du Rip. Memory, Cheikh Anta Diop University of Dakar; 2013.
3. DIOP O. Fight against runoff, gullying and salinization in Mount Rolland: Impact on the rehabilitation of Lake Tamma, Graduate Memory, 34th promotion, ENEA, Dakar, Department of Planning environment and urban management; 2008.
4. Betard F, Bourgeon G. Morphopedic mapping: From land assessment to geomorphology research. Geomorphology and Environment. 2009;15(3):187-198.
5. Teixeira V. Urban development of the middle cities of the Brazilian coast: Spatial dynamics of the municipality of Araruama in the Regio dos Lagos of the State of Rio de Janeiro. Confins. Franco-Brazilian Geography Review/Revista Franco-brasileria de geografia; 2017.
6. Ndiaye C. Study of the documentary system of the Institute for Research for Development (IRD): case of Representation in Senegal; 2006.
7. Faye E, Diatta M, Masse D. The wood and management of the Sudan fallows of the arachidier basin in Senegal. floret Ch. and Pontonier r. eds. Fallow does tropical Africa: Roles, landscaping, alternatives. 2000;20-29
8. Brouwers M. Morpho and hydrogeological studies in the Thysse-Kaymor region (Siné Saloum, Senegal). CIRAD, DRM IL-PM. 1987;5:40-49.
9. BOGIE A, Bayala R, Diedhiou I. Temporal and Spatial Separation of Water Use Averts Competition for Soil Water Resources in a Sahelian Agroforestry System. AGUFM. 2016;H31E-1437.
10. Baize D, Saby N, Deslais W. Total, and pseudo-total analyses of trace elements in soils. Key results and lessons from a national collection. Soil Study and Management. 2006;13(3):181-200.
11. Mathieu C, Pieltain F. Chemical soil analyses (selected methods). Ed. Tec and Doc, Lavoisier. 2003;388-410.
12. Fall RD, Bocoum M. Local soil classification in Senegal. National Institute of Pedology editions. 2010;9-70.
13. Beguin M, Pomain D. The representation of geographical data: Statistics and mapping, Coll. Cursus Geography, Paris. 2000;192-200.
14. Touaibia B, Achite M. Contribution to mapping the specific erosion of the Oued Mina watershed in the semi-arid zone of northern Algeria. Hydrological Sciences Journal. 2003;48(2):235-242.
15. Zouagui Anis, Mohamed N, Mustapha P. Modelling of the risk of water erosion by the universal equation of land losses in the Western Rif: Case of the Moulay Bouchta watershed (Morocco). EUR Scientific Journal. 2018;14(3):1857-788.
16. Duby Camille, Robin S. Analysis in key components. National Agricultural Institute, Paris-Grignon. 2006;80-86.
17. Jun D, Kim Y, Hafeznezami S. Biologically induced mineralization in anaerobic membrane bioreactors: Assessment of membrane scaling mechanisms in a long-term pilot study. Journal of Membrane Science. 2017;543:342-350.

18. WICKHAM, Hadley. ggplot2: Elegant graphics for data analysis. Springer; 2016.

© 2020 Biaye et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/59373