Spatio-temporal variations of land surface temperature and precipitation due to climate change in the Jhelum river basin, India

DAR HIMAYOUN, THENDIYATH ROSHNI* and FAROOQ MOHSIN

Department of Civil Engineering, National Institute of Technology Patna – 800 005, India

(Received 17 July 2017, Accepted 29 September 2020)

* e mail : roshni@nitp.ac.in

ABSTRACT. The present study investigated the spatio-temporal variations of precipitation and temperature for the projected period (2011-2100) in the Jhelum basin, India. The precipitation and temperature variables are projected under RCP 8.5 scenario using statistical downscaling techniques such as Artificial Neural Network (ANN) and Wavelet Artificial Neural Network (WANN) models. Firstly, the screened predictors were down scaled to predictands using ANN and WANN models for all the study stations. On the basis of the performance criteria, the WANN model is selected as an efficient model for downscaling of precipitation and temperature. The future screened predictor data pertaining to the end of 21st century. The monthly mean temperature also showed an increase of 2-3 °C for all the study stations towards the end of 21st century. The mean seasonal temperature of the projected period is found to be increasing for all the four seasons in most parts of the basin.

Key words – Statistical downscaling, Precipitation, Temperature, Spatio-temporal changes.

1. Introduction

Global circulation models (GCMs) have been widely used for predicting changes in future climate on both regional as well as continental levels. To examine accurately the hydrological as well as environmental impacts of climate change, high resolution scales are required. Although GCMs are able to reproduce reliable atmospheric data; owing to their low resolution, they lack in capability to resolve sub-grid scale land surface processes. Due to this mismatch in resolution between global and regional scales GCMs projections cannot be used directly in catchment scale applications (Farzan et al., 2013; Piras et al., 2016; Reshmidevi et al., 2017).

To use this GCM output directly in any hydrological process downscaling is generally followed. The most commonly used downscaling techniques are statistical and dynamical downscaling techniques. In dynamic downscaling technique a regional climate model of high resolution is nested within coarse grids of GCM (Jones et al., 1993). However, statistical downscaling model (SDSM) has been widely used since last two decades throughout the world (Kannan & Ghosh, 2013; Mahmood & Babel, 2014; Mandal et al., 2016; Chithra & Thampi, 2017). The statistical downscaling technique which creates statistical relationships between coarse scale variables and local scale variables, is much simpler than dynamic downscaling (Mehrotra et al., 2013; Osman &
Abdellatif, 2016). Among the statistical downscaling techniques, regression-based approaches have been widely used for climate downscaling, owing to their simplicity in application. The most commonly used regression-based approaches are Multi Linear Regression (MLR) (Nourani & Farboudfam, 2019; Osman & Abdellatif, 2016), Support Vector Machines (SVM) (Mandal et al., 2016; Sachindra et al., 2018; Sehgal et al., 2016; Tripathi et al., 2006), Artificial Neural Networks (ANN) (La & Pan, 2016; Nourani & Farboudfam, 2019; Sehgal et al., 2016), Multi-Resolution Volterra (MRV) and Multi-scale Wavelet Entropy (MWE) (Sehgal et al., 2016) and Adaptive Neuro-Fuzzy Inference System (ANFIS) (Zare & Koch, 2018). Despite the popularity, some of these techniques like SVM, MRV and ANFIS suffer the major drawback where the relationship between input, output and the model process generally remains unidentified. The potential of ANNs to capture non-linear relationships between predictors and predictand and the capability of simulating time-varying and nonlinear characteristics of atmospheric variables at different scales has gained wide recognition and led to several successful downscaling applications of ANNs. Osman & Abdellatif (2016) employed ANN, Generalized Linear Model (GLM) and Multiple Linear Regressions (MLR) for downscaling large scale atmospheric variables to monthly mean rainfall in north-western England. They concluded that ANN model showed more adaptability than MLR and GLM models by acquiring better overall performance. Sachindra et al. (2018) used ANN, SVM, Genetic Programming (GP) and Relevance Vector Machine (RVM) for downscaling precipitation. Based on the investigation of their results, it was found that ANN outperforms the other three models in downscaling high extremes of precipitation in Victoria Australia. Nourani et al. (2018) employed Least Square Support Vector Machine (LSSVM) and ANN for downscaling rainfall with nonlinear predictor screening approach. They applied ensemble technique to the model outputs and successfully projected the future rainfall up to the end of 21st century in North West Iran. The ANN approach is based on the interconnected structure of brain cells and is faster highly adaptive and robust in noisy and complex environment as compared to the other nonlinear regression models. They have black box properties, hence does not require prior knowledge of the process. Despite these promising results, some other studies reveal inefficiency and drawbacks of ANNs over the other regression models (Sehgal et al., 2016; Wang & Ding, 2003).

The consistency and efficiency of downscaling models depends upon the quantity and quality of applied data. The crucial step which precedes the model development for efficient downscaling is input preparation. The general approaches employed for input selection in statistical downscaling models are correlation analysis (Hadi et al., 2016; Mahmood & Babel, 2014) and principal component analysis (Kamran & Ghosh, 2013; Maier & Dandy, 2000). However, these techniques do not take into account the underlying distribution and highly heterogeneous nature of the atmospheric variables. The seasonal variation in the climate data significantly affects the modelling processes and hence affects the prediction ability of the model in practical applications (Nourani & Farboudfam, 2019). Wavelet analysis has been extensively used in the fields of time series analysis and provides detailed information about the data by analyzing both frequency and time domains (Mukesh et al., 2010; Wang & Ding, 2003; Zare & Koch, 2018). Wavelet transform is applied to the data set to obtain information that is not readily available in the original data set. Wavelet based models have been extensively used in the recent past for a diverse set of problems. Tiwari & Chatterjee (2011) used ANN, wavelet based ANN, bootstrap based ANN and wavelet bootstrap based ANN for daily discharge forecasting in Mahanadi river basin. They found that wavelet based models (WANN and WBANN) showed better results as compared to ANN and BANN. Wang & Ding (2003) applied ANN and WANN models for the prediction of hydrology. The investigation of the results revealed that WANN shows increase in the forecasting accuracy. Sehgal et al. (2016) compared the downscaling results of wavelet based multi-resolution Volterra model with ANN and MLR. The results showed that wavelet-based multi-resolution Volterra model significantly outperformed the other models.

Several studies could be found in the technical literature regarding the use of SDSM techniques for downscaling temperature and precipitation in the Jhelum basin (Ashiq et al., 2010; Mahmood & Babel, 2013; Mahmood et al., 2015; Rashid et al., 2016). However, most of these studies were restricted to the part of the Jhelum basin in Pakistan. A few studies (Akhter & Ahmad, 2017) were carried out in the Jhelum basin, India. In their study, ANN and MLR modelling approaches were used to downscale monthly temperature and precipitation up to 21st century. However, their research study was carried out without any consideration to spatial and temporal distributions. In the study of (Mahmood & Babel, 2014), SDSM was used to project future changes in temperature extremes in the Jhelum basin India and Pakistan. Mahmood et al. (2015), presented spatial-temporal changes of temperature and precipitation in the Jhelum basin India and Pakistan up to 21st century. However, the spatial analysis presented for future scenarios was provided for only three decades: 2020s, 2050s and 2080s without any consideration for seasonal variations. The obvious research gap in the previous
technical literature is the detailed spatial seasonal analysis of future climate in the Jhelum basin. This will take into account the seasonal variations in temperature and precipitation and narrow down the focus of concerned competent authorities to specific area of the basin in a particular season. This also helps the policy makers to suggest proper mitigation measures for proper basin management. In this study, statistical downscaling models were developed using ANN and WANN approaches to downscale the monthly climate of Jhelum basin, India upto 21st century. We have adopted a robust methodology for screening of predictors, by coupling correlation approach with the wavelet decomposed components of potential predictors to select the dominant predictors. The study extends its contribution to the available literature by presenting mean spatial seasonal analysis as well as mean monthly and mean annual temporal analysis of temperature and precipitation for four periods: 1980-2010, 2011-2040, 2041-2070 and 2071-2100 under RCP 8.5 scenario in the Jhelum basin, India. This integrated analysis paves the way for researchers who wish to investigate the impact climate change on water resources in the Jhelum basin, India.

2. Study area and data analysis

2.1. Study area

The whole Jhelum basin is located in India and Pakistan, it stretches between 33°-35° N and 73°-76° E. The total catchment area of the basin is 33,342 km². The Jhelum River is one of largest tributaries of Indus river and the Indus basin is one of the largest basins in the world (Ashiq et al., 2010; Mahmood & Babel, 2013). The Jhelum basin has a drainage area of 17622 km² up to Indian boarder, with an average elevation of 708 to 5353 m above mean sea level. The Indian part of the basin is bounded by the Pir-Panjal from east and great Himalayan mountain ranges from west (Akhter & Ahmad, 2017; Himayoun et al., 2019; Mahmood et al., 2015). Fig. 1 shows the digital elevation of the Jhelum basin, India along with the location of Jhelum River. The basin has four meteorological stations (Gulmarg, Srinagar, Quazigund and Pahalgam) and three runoff gauging stations (Sangam, Baramulla and Rammunshibagh). The climate of the basin consist of moist winters and mild temperature in summers Himayoun & Roshni, 2020. The maximum rise in temperature occurs in the month of July. The basin receives most of the precipitation (about 40%) during spring season in the form of rainfall, followed by winters in the form of snowfall. The reason for the pre monsoon precipitation is the western disturbance which first hits the Pir Panjal (Dar et al., 2019; Romshoo et al., 2018).

2.2. Data analysis

The regional climate is governed by the circulation pattern of large scale climate variables. These climate variables are selected as predictors for downscaling. Predictors should be readily available and strongly correlated with the predictand. Keeping in view these condition, geopotential height, surface temperature, specific humidity, relative humidity, meridional wind, zonal wind and omega at five pressure levels (1000 hPa, 700 hPa, 500 hPa, 300 hPa and 100 hPa) were selected as predictors. Statistical downscaling models develop statistical relationship between predictor and the predictand. Here we use observed precipitation and temperature data as predictand and large scale reanalysis data as predictor. Predictor data has been extracted from National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR) reanalysis dataset at spatial resolution of 2.5° x 2.5° and at temporal resolution of one month. Monthly observed mean precipitation and temperature data for Quazigund, Srinagar, Pahalgam and Gulmarg was obtained from Indian meteorological department (IMD) Pune for a period from January 1979 to Dec 2010. The detail statistics of the data as well as information about the stations is presented in Table 1 and Figs. 2(a&b).

In this study the output of CanESM2 GCM model developed by Canadian Centre for Climate Modelling and Analysis at spatial resolution of 2.8° x 2.8° has been used for downscaling precipitation and temperature for future emission scenario RCP8.5. CanESM2 is developed by the Canadian Centre for Climate Modeling and Analysis and is an earth system model of second generation from the Coupled Model Inter-comparison Project (CMIP5). Datasets from both NCEP/NCAR and GCM were interpolated to the gauge site (station location) using bilinear interpolation.

3. Theory of models used

3.1. Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are information processing systems that are inspired by the function of biological neural networks like human brain. They are composed of processing units called neurons which are interconnected by weighted synaptic connections (Maier & Dandy, 2000). Each neuron has five components: input, output, activation function, summation function and weight. ANNs have ability to model complex relationships between data of predictors and predictand. Being essentially nonlinear regression models, they can solve highly complex problems like downscaling of temperature and precipitation. The multilayer artificial neural networks consists of an arrangement of an input
Figs. 2(a & b). (a) Histogram of the observed precipitation from 1979-2010 from all the study stations and (b) histogram of the observed temperature from 1979-2010 from all the study stations
TABLE 1
Location and data statistics of meteorological stations in the Jhelum basin, India

IMD stations	Period of record	Latitude	Longitude	Maximum	Minimum	Mean	St. dev.
	Precipitation (mm)						
Gulmarg	1979-2010	34.15	74.15	693.4	0	117.62	102.46
Quazigund	1979-2010	33.63	75.15	625.4	0	99.14	85.3
Srinagar	1979-2010	34.09	74.79	365	0	57.78	49.48
Pahalgam	1979-2010	34.01	75.19	421.43	0	90.25	71.67

	Temperature (°C)						
Gulmarg	1979-2010	34.15	74.15	18.8	-7.5	7.09	7.14
Quazigund	1979-2010	33.63	75.15	23.8	-3.45	12.63	7.19
Srinagar	1979-2010	34.09	74.79	25.9	-3.05	13.8	7.57
Pahalgam	1979-2010	34.01	75.19	42.01	-4.01	11.31	7.34

layer, one or more hidden layers of nodes and an at least one output layer (Nourani et al., 2018; Sachindra et al., 2018; Sehgal et al., 2016; Zare & Koch, 2018). The input layer receives and processes the signal and passes it to the output layer through neurons present in each layer.

3.2. Wavelet transform (WT)

Wavelet is a special kind of waveform which oscillates and decays within a short period of time. It decomposes a given function into different components at different resolution levels. Its shape can be chosen to match the outline of time series signal. The mother wavelet called wavelet function $\psi(t)$ has finite energy and is mathematically defined (Tiwari & Chatterjee, 2011) as follows:

$$\int_{-\infty}^{\infty} \psi(t) dt = 0$$

where, $\psi(t)$ is mother wavelet.

The continuous wavelet transform (CWT) is obtained by rolling together a signal with an infinite number of functions, generated by translating and scaling a mother wavelet function. However discrete wavelet transform (DWT) is a sampled version of CWT. Discrete wavelet transform decomposes time series data into non-sinusoidal components which provide adequate information both for synthesis and analysis of the original time series data. The decomposition generally develops a tree called Mallat’s wavelet decomposition tree (Mallat, 1989). The input signal passes through two filters : low pass and high pass filter. We get a decomposed signal of Approximation (A1) and Detail (D1). The signal A1 is further decomposed by passing through these two filters and the process repeats until the required amount of approximations and details are obtained.

3.3. Evaluation criteria

The comparison between the observed and model simulated values is one of the simplest form of model calibration and validation. A number of performance indices are available to evaluate the model performance. The most commonly used are Correlation coefficient (R), Coefficient of determination (R^2), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)

(i) Correlation coefficient (R)

$$R = \frac{\sum_{i=1}^{n} (O_i - \bar{O})(P_i - \bar{P})}{\sqrt{\sum_{i=1}^{n} (O_i - \bar{O})^2} \sqrt{\sum_{i=1}^{n} (P_i - \bar{P})^2}}$$

(ii) Coefficient of Determination (R^2)

$$R^2 = \left[\frac{\sum_{i=1}^{n} (O_i - \bar{O})(P_i - \bar{P})}{\sqrt{\sum_{i=1}^{n} (O_i - \bar{O})^2} \sqrt{\sum_{i=1}^{n} (P_i - \bar{P})^2}} \right]^2$$

(iii) Root mean square error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (O_i - P_i)^2}$$
Mean absolute error (MAE)

\[
\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |O_i - P_i|
\]

where, \(n \), \(O_i \), \(P_i \), \(\overline{O} \) and \(\overline{P} \) are the sample number, observed values, calculated values, mean of the observed values and mean of calculated values respectively. The RMSE value shows the discrepancy between the observed and predicted values. Its value increases as the difference between the observed and predicted value increases. Mean absolute error (MAE) provides information about the prediction ability of the model and evaluates all deviations from observed values irrespective of the sign. Higher value of \(R \) and \(R^2 \) up to one is an indication of higher efficiency.

4. Methodology

4.1. Screening of predictors

The selection of significant input variables is the foremost task for developing a model. In this study, we have used two approaches for the screening of predictors. The first approach is used for the selection of dominant predictors for the ANN model. In this approach, dominant predictors were selected on the basis of simple correlation analysis. The predictors which pass the screening procedure were selected as inputs for the development of ANN model. The second approach consists of applying correlation analysis on the wavelet decomposed components of the predictors. This approach is used for the selection of dominant predictors for the WANN model. This approach takes into account the temporal features as well as seasonal attributes and the underlying distribution and highly heterogeneous nature of the atmospheric variables.

4.2. Downscaling models

The predictors previously screened are subjected to standardization prior to downscaling. These standardized dominant predictors are used to train ANN and WANN models for downscaling. Standardization reduces the systematic bias from NCEP/NCAR and GCM predictors. This procedure is carried out by subtracting the mean from data and dividing by the standard deviation. This procedure removes the units of the predictor variables and scales down the variables to a single uniform scale (Kannan & Ghosh, 2013; Mandal et al., 2016; Mehrotra et al., 2013; Nourani et al., 2018; Tripathi et al., 2006).

4.3. Future climate

In this step monthly precipitation and monthly temperature is downscaled for four stations for three periods: 2011-2040, 2041-2070 and 2071-2100 under RCP8.5 emission scenario using WANN model. RCP scenarios demonstrates distinct greenhouse gas concentration pathways adopted by the IPCC in fifth Assessment Report. The RCP 8.5 scenario was selected for this study, since it corresponds to the pathway with the highest greenhouse gas concentrations and emissions. The methodology adopted for this research study is demonstrated in Fig. 3.

5. Results and discussion

5.1. Model evaluation

The proposed screening approaches for the selection of dominant predictors were applied to NCEP predictors. For each model, 7 atmospheric variables (at 5 pressure levels) were selected for the selection of dominant predictors. Those predictors showing correlation
The validation of both the ANN and WANN models in temperature and precipitation downscaling is summarized in Table 3. The model performance is evaluated for the four stations on the basis of selected evaluation criteria. The model which displays minimum NRMSE, minimum NMAE, maximum R and R^2 was chosen as the efficient downscaling model. Therefore, it was concluded from the Table 3, that WANN modelling approaches outperform the ANN approaches for all the four study stations, in both the temperature and the precipitation downscaling. In addition to this, the model performance was also evaluated from the Taylor diagrams and the random walk test. Figs. 4&5 show the Taylor diagrams for all the study stations. It gives an idea about the resemblance of model results to that of observed data (Taylor, 2001). The similarity between the observed and the model simulated is quantified in terms of their RMSE, standard deviations and correlation. The models are compared by observing it position on the plot. It is observed that WANN models show overall better performance for all the stations by displaying its position at minimum RMSE and maximum correlation coefficient. Figs. 6(a&b) shows the random walk test for (a) precipitation and (b) temperature downscaling results of the ANN and the WANN models for the four selected study stations. It is based on the sign test and is independent of distributional assumptions about the simulation errors (DelSole & Tippett, 2015). The model results are compared at every step, the path moves up by one step if WANN performs better otherwise it moves down by one step. The 95% confidence interval represents that both the modelling approaches are equally skillful. The path followed by the WANN modelling results is out of the confidence interval, continuously moving in upward direction. This indicates that WANN modeling approach is more skillful than ANN approach for all the study stations.

5.2. Future projections of temperature and precipitation

The standardized predictor data pertaining to RCP 8.5 of CanESM2 model were downscaled to monthly precipitation and monthly mean temperature for three future periods : 2011-2040, 2041-2070 and 2071-2100, using WANN modeling approach. These three periods were selected as they represent the beginning, the mid and the end of the 21st century.
TABLE 3

Performance indices for precipitation and temperature downscaled by ANN and WANN models during the validation period

Models	Indices	Gulmarg	Quazigund	Srinagar	Pahalgam
	Precipitation				
ANN	NRMSE	1	0.66	0	0.26
	NMAE	1	0.6	0	0.2
	R	0.71	0.69	0.67	0.72
	R²	0.51	0.48	0.45	0.52
WANN	NRMSE	1	0.67	0	0.12
	NMAE	1	0.61	0	0.09
	R	0.82	0.79	0.76	0.84
	R²	0.68	0.63	0.58	0.71
	Temperature				
ANN	NRMSE	1	0.1	0	0.38
	NMAE	1	0.03	0	0.13
	R	0.65	0.72	0.74	0.68
	R²	0.43	0.52	0.55	0.47
WANN	NRMSE	0.14	1	0.48	0
	NMAE	0.12	1	0.43	0
	R	0.96	0.91	0.78	0.95
	R²	0.93	0.83	0.61	0.91

Fig. 4. Model comparison by Taylor diagram for downscaled precipitation
Fig. 5. Model comparison by Taylor diagram for downscaled temperature

Fig. 6(a&b). (a) Model comparison by random walk test for downscaled precipitation and (b) model comparison by random walk test for downscaled temperature

5.2.1. Temporal analysis

Fig. 7 shows the mean annual changes in precipitation for the study stations for the three future periods: 2011-2040, 2041-2070 and 2071-2100 under RCP 8.5 scenario. The mean annual precipitation is showing an increasing tendency for all the study stations. According to the simulation results (Fig. 7) an average increase of 200-300 mm (17-25%) in the mean annual precipitation is observed in the mid and the end of 21st century. Quazigund and Srinagar stations are the most affected yielding 30-40% increase in the beginning and end of the 21st century respectively. Mahmood & Babel (2013) also reported this increasing trend in the mean annual precipitation. However, the study was conducted for only two future decades: 2050s and 2080s under A2 and B2 scenarios.

Figs. 8(a&b) shows the changes in mean monthly temperature and mean monthly precipitation for all the study stations in the future periods: 2011-2040, 2041-2070
Fig. 7. The base line and future downscaled precipitation by WANN model for all the selected stations

Figs. 8(a&b). (a) The base line and future downscaled precipitation by WANN model and (b) the base line and future downscaled temperature by WANN model.
The monthly mean precipitation is showing an increase tendency in most of the months for all the study stations. The monthly mean temperature also projected an increasing tendency in all months except November and December for all the study stations. However, there is an increase in overall temperature over the basin. An increase of 40-50% in the months of July and August and an overall average increase of 20-25% in monthly mean precipitation is observed in the basin near the end of 21st century. In the months of May, April and June an increase of 3-4 °C is projected and in the months of November and December an increase of 2-3 °C in the monthly mean temperature is projected for all the stations near the end of 21st century. However, the overall monthly mean temperature is projected to increase by 2-3 °C over the basin near end of the 21st century. The results of this study are in agreement with (Akhter & Ahmad, 2017; Mahmood & Babel, 2013), who also reported an overall increase in temperature as well as precipitation in future over the Jhelum basin.

5.2.2. Spatial analysis

The spatial changes in the mean seasonal temperature and mean seasonal precipitation were also analyzed for the future periods: 2011-2040, 2041-2070 and 2071-2100 with respect to baseline period (1980-2010) under RCP 8.5 scenario using Kriging interpolation method. Kriging is an advanced spatial analyst geoprocessing tool of ArcGIS. Fig. 9 shows the spatial
distribution of the mean seasonal precipitation in the four seasons for the selected future periods. The mean seasonal precipitation is projected to be increasing for all the seasons in most parts of the basin. In autumn, summer and spring seasons, the whole basin is predicted to be affected with the significant increase in precipitation near the end of the 21st century. However, east part of the basin is projected to be most affected by spring precipitation near the end of 21st century.

Fig. 10 presents the spatial changes in the mean seasonal temperature in the four seasons for the selected future periods. The mean seasonal temperature is predicted to be increasing for all the seasons in most parts of the basin. In autumn and spring seasons, the whole basin is found to be affected with the significant increase in temperature near the mid and end of the 21st century. During the summer season, the south east part is projected to be affected near the end of 21st century. However, during winter season only a small part on the east side of the basin is predicted to be affected by the end of the 21st century. Ashiq et al., (2010) also reported that most part of the Jhelum basin observes an overall increase in precipitation during winter and spring seasons under future A2 and B2 scenarios. In the study of (Mahmood et al., 2015) most part of the Jhelum basin showed an increase in future projected temperature and precipitation under A2 and B2 scenarios. However some patches display a slight decrease in overall temperature and precipitation.
6. Conclusions

In this research study, statistical downscaling models were developed using ANN and WANN modelling approaches to downscale the future projections of temperature and precipitation over the Jhelum basin, India under RCP 8.5 emission scenario. The potential predictors were screened by two approaches: correlation and correlation coupled with the wavelet decomposed components of potential predictors. The screened predictors were downscaled to predictand using ANN and WANN models for all the study stations. The WANN model is selected as an efficient model based on performance. The future screened predictor data pertaining to RCP 8.5 of CanESM2 model were downscaled to monthly temperature and precipitation for three future periods: 2011-2040, 2041-2070 and 2071-2100, using WANN modeling approach. The analysis of the temporal changes revealed an average increase of 17-25% in the mean annual precipitation in the mid and the end of 21st century. Quazigund and Srinagar stations are the most affected yielding 30-40% increase in the beginning and end of the 21st century respectively. The monthly mean precipitation projected an average increase of 20-25% for all the study stations near the end of 21st century. The monthly mean temperature also showed an increase of 2-3 °C for all the study stations towards the end of 21st century.

Kriging interpolation method was used to investigate the spatial variations in future projected temperature in the study area. The spatial distribution of precipitation showed that mean seasonal precipitation is projected to be increasing for all the seasons in most parts of the basin. In the spring season east part of the basin is predicted to be most affected near the end of 21st century. However in autumn, summer and spring seasons, the whole basin is predicted to be affected with the significant increase in precipitation near the mid and end of the 21st century. However, east part of the basin is predicted to be most affected near the end of 21st century. Therefore, from the spatial temporal analysis of the future projections, it is concluded that the temperature increases and the precipitation becomes more intensified in the whole Jhelum basin, India near the end of the 21st century under RCP 8.5 scenario.

Disclaimer

The contents and views expressed in this research paper are the views of the authors and do not necessarily reflect the views of the organizations they belong to.

References

Akhter, M. and Ahmad, A. M., 2017, “Climate Modeling of Jhelum River Basin - A Comparative Study”, Environment Pollution and Climate Change, 1, 2, 1-14.

Ashiq, M. W., Zhao, C., Ni, J. and Akhtar, M., 2010, “GIS-based high-resolution spatial interpolation of precipitation in mountain-plain areas of Upper Pakistan for regional climate change impact studies”, Theoretical and Applied Climatology, 99, 3, 239-253.

Chithra, N. R. and Thampi, S. G., 2017, “Downscaling future projections of monthly precipitation in a catchment with varying physiography”, ISH Journal of Hydraulic Engineering, 23, 2, 144-156.

Dar, R. A., Mir, S. A. and Romshoo, S. A., 2019, “Influence of geomorphic and anthropogenic activities on channel morphology of River Jhelum in Kashmir Valley, NW Himalayas”, Quaternary International, https://doi.org/10.1016/j.quaint.2018.12.014

DelSole, T. and Tippett, M. K., 2015, “Forecast Comparison Based on Random Walks”, Monthly Weather Review, 144, 2, 615-626.

Farzan, K., Wang, G., Silander, J., Wilson, A. M., Allen, J. M., Horton, R. and Anyah, R., 2013, “Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U. S. northeast”, Global and Planetary Change, 100, 320-332.

Hadi, S., Shahid, S. and Chung, E., 2016, “A hybrid model for statistical downscaling of daily rainfall”, Procedia Engineering, 154, 1424-1430.

Himayoun, D. and Roshni, T., 2020. “Geomorphic changes in the Jhelum river due to an extreme flood event: a case study”, Arabian Journal of Geosciences, 13, 2, 1-15

Himayoun, D., Mohsin, F. and Roshni, T., 2019, “Efficacy in simulating the peak discharge response using soft computing techniques in the Jhelum river basin, India”, Int. J. River Basin Management, 18, 1, 81-93.

Jones, P. D., Hulme, M. and Brifka, K. R., 1993, “A comparison of Lamb circulation types with an objective classification scheme”, International Journal of Climatology, 13, 6, 655-663.

Kannan, S. and Ghosh, S., 2013, “A nonparametric kernel regression model for downscaling multisite daily precipitation in the Mahanadi basin”, Water Resources Research, 49, 3, 1360-1385.

La, E. M., Linder, E. and Pan, Y., 2016, “Statistical downscaling of regional climate model output to achieve projections of precipitation extremes”, Nature and Science, 12, 15-23.

Mahmood, R. and Babel, M. S., 2013, “Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India”, Theoretical and Applied Climatology, 113, 1-2, 27-44.

Mahmood, R. and Babel, M. S., 2014, “Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum river basin”, Journal of Hydrology, 6, 56-66.
Mahmood, R., Babel, M. S. and Jia, S., 2015, “Assessment of temporal and spatial changes of future climate in the Jhelum river basin, Pakistan and India”, Journal of hydrology, 10, 40-55.

Maier, H. R. and Dandy, G. C., 2000, “Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications”, Environmental Modelling and Software, 15, 1, 101-124.

Mallat, S. G., 1989, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 7, 674-693.

Mandal, S., Srivastav, R. K. and Simonovic, S. P., 2016, “Use of Beta Regression for Statistical Downscaling of Precipitation in the Campbell River Basin, British Columbia, Canada”, Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2016.04.009.

Mehrotra, R., Sharma, A., Kumar, D. N. and Reshmidevi, T. V., 2013, “Assessing future rainfall projections using multiple GCMs and a multi-site stochastic downscaling model”, Water Resources Research, 488, 84-100.

Mukesh K. and Tiwari, C. C., 2010, “Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap (WBANN) hybrid approach”, Natural Hazards and Risk, 9, 1, 224-248.

Nourani, V. and Farboudfam, N., 2019, “Rainfall time series disaggregation in mountainous regions using hybrid wavelet-artificial intelligence methods”, Environmental Research, 168, 3, 306-318.

Nourani, V., Baghanam, A. H. and Gokcekus, H., 2018, “Data-driven ensemble model to statistically downscale rainfall using nonlinear predictor screening approach”, Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2018.08.049.

Osman, Y. Z. and Abdellatif, M. E., 2016, “Improving accuracy of downscaling rainfall by combining predictions of different statistical downscale models”, Water Science, 30, 2, 61-75.

Piras, M., Mascaro, G., Deidda, R. and Vivoni, E. R., 2016, “Science of the Total Environment Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin”, Science of the Total Environment, 543, 1, 952-964.

Rashid, M., Beecham, S. and Chowdhury, R. K., 2016, “Science of the Total Environment Statistical downscaling of CMIP5 outputs for projecting future changes in rainfall in the Onkaparinga catchment”, Science of the Total Environment, 530-531, 2, 171-182.

Reshmidevi, T. V., Kumar, D. N., Mehrotra, R., Sharma, A. and Kumar, N., 2017, “Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs”, Water Resources Research, 49, 3, 1360-1385.

Roshnai, S. A., Altaf, S., Rashid, I. and Ahmad Dar, R., 2018, “Climatic, geomorphic and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir”, India Geomatics, Natural Hazards and Risk, 9, 1, 224-248.

Sachindra, D. A., Ahmed, K., Rashid, M., Shahid, S. and Perera, B. J. C., 2018, “Statistical downscaling of precipitation using machine learning techniques”, Atmospheric Research, 212, 5, 240-258.

Sehgal, V., Lakhanpal, A., Maheswaran, R., Khosa, R. and Sridhar, V., 2016, “Application of multi scale wavelet entropy and multi-resolution Volterra models for climatic downscaling”, Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2016.10.048.

Taylor, K. E., 2001, “Summarizing multiple aspects of model performance in a single diagram”, J. Geophys. Res., 106, 7183-7192.

Tiwari, M. K. and Chatterjee, C., 2011, “A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting”, Journal of Hydroinformatics, 13, 3, 500.

Tripathi, S., Srinivas, V. V. and Nanjundiah, R. S., 2006, “Downscaling of precipitation for climate change scenarios: A support vector machine approach”, Journal of Hydrology, 330, 3-4, 621-640.

Wang, W. and Ding, J., 2003, “Wavelet network model and its application to the prediction of hydrology”, Nature and Science, 1, 1, 67-71.

Zare, M. and Koch, M., 2018, “Groundwater level fluctuations simulation and prediction by ANFIS - and hybrid Wavelet - ANFIS/Fuzzy C-Means (FCM) clustering models : Application to the Miandarband plain”, Journal of Hydro-Environment Research, 18, 4, 63-76.