Abstract. A series of novel isolated \(\beta\)-lactams 3a-c and thiazolidinone derivatives 4a-c were successfully synthesized from reactions of new Schiff’s bases 2a-c with chloroacetyl chloride and thioglycolic acid. The chemical structures of the new compounds were confirmed through different spectroscopic techniques including IR, \(^1\)H and \(^13\)C NMR, mass spectrometry and elemental analysis. The antimicrobial activity of the obtained compounds was assessed in vitro against gram-positive \textit{Staphylococcus aureus} and gram-negative \textit{Escherichia coli} bacteria and \textit{Aspergillus flavus} and \textit{Candida albicans} fungi. All compounds exhibited good to excellent antimicrobial activity against the tested strains. Furthermore, a molecular docking study was carried out for the synthesized compounds and the results indicated that compounds 3b and 4b display comparable binding affinity scores as that of glutamate. These two compounds are promising candidates as antibacterial and antifungal agents that would deserve further investigations.

Keywords: heterocycle, \(\beta\)-lactam, quinoxaline, antimicrobial activity, molecular docking.

Introduction

The \(\beta\)-lactam skeleton has attracted much attention from medicinal chemists for the past 60 years due to its numerous biological activities and the mechanism of action of its derivatives has been broadly reviewed [1-3]. As a class of organic molecules, \(\beta\)-lactams constitute more than 65\% of the world antibiotics market in both human and veterinary medicine [4,5]. Since the discovery of penicillin, efforts have been devoted to synthesize various \(\beta\)-lactam derivatives bearing important biological activities [6]. Besides their antibacterial activity, \(\beta\)-lactam derivatives have shown antitumor [7,8], antiviral [9], antihyperglycemic [10], antitubercular [11], antileishmanial and other potent biological activities [12]. However, the evolution of antibiotic-resistant bacteria represents the main obstacle to broad the clinical application of \(\beta\)-lactams despite the exhaustive medicinal chemistry campaigns aiming to vary \(\beta\)-lactam antibiotics. Consequently, the need for new derivatives with efficient biological activities has increased.

During the past years, substituted quinoxaline derivatives have gained attention and have been progressively explored as a result of their broad spectrum of pharmacological properties [13-15]. Therefore, a wide variety of synthetic routes for the design of functionalized quinoxalines has been intensively studied. Quinoxaline derivatives display versatile biological activities such as antiviral [16,17], antimicrobial [18,19], anti-inflammatory [20], antitumor [21] anti-tuberculosis [22], etc. Diverse recent approaches were carried out to the existing drugs to minimize the microbial resistance. These, for the most part, necessitate structural modification of actual antimicrobial agents to improve the microbial intracellular concentration of the drug, and thereby to boost the antimicrobial activity. The throughout literature surveys indicate that some substituents,
particularly chlorine atoms, of structure of the bioactive organic compounds regarded as potential drug, have a promising effect on their specific biological activity. Several previous studies have pointed out that β-lactam derivatives possessing chlorine atoms were endowed with significant biological activities [23-26]. The search for novel synthetic pathways for the design of heterocycles based on the β-lactam skeleton with improved biological derivatives is being actively pursued in our laboratory [27,28].

The aim of this study was to synthesize novel β-lactams 3a-c and to evaluate in vitro their antibacterial and antifungal activity against several strains. Molecular docking studies were carried out to estimate the binding affinities of most active synthesized compounds on a molecular level.

Experimental

Generalities

Unless otherwise mentioned, reagents were purchased from Sigma Aldrich (Bayouni Trading Co. Ltd., Al-Khobar, Saudi Arabia) with high grade of purity and used without further purification. Reaction progress was monitored using thin-layer chromatography on silica gel pre-coated F254Merck plates (Darmstadt, Germany) and spots were visualized by ultraviolet irradiation. Melting point values of the synthesized compounds were determined using a Gallenkamp electro thermal melting point apparatus. IR spectra were measured as KBr pellets on a Pye-Unicam sp 1000 spectrophotometer. 1H NMR spectra were recorded in $[^1]{H}_2$ dimethyl sulphoxide (DMSO) solution at 200 MHz on a Varian Gemini NMR spectrometer using tetramethylsilan as internal reference. 13C NMR spectra were measured on a Varian MercuryVXR-300 NMR spectrometer (Palo Alto, CA) at 400 and 125 MHz using DMSO-d_6 as solvents. Mass spectra were obtained on a Shimadzu GCMS-QP 1000EX mass spectrometer at 70 eV. Elemental analysis was carried out on CE 440 Elemental Analyzer-Automatic Injector (Exeter Analytical, Inc., USA) at the Micro analytical Center of Cairo University.

General procedure for the synthesis of compounds (2a-c)

Compound 1 was prepared according to the reported method [15]. Briefly, compound 1 (0.01 mol) was treated with different aromatic aldehydes in equivalent amount in ethanol 30 mL and the reaction mixture was refluxed for 4 h. Then, the formed solid product was filtered and recrystallized from ethanol to afford the corresponding compounds 2a-c.

Ethyl 3-(benzylideneamino)-1,4-dihydroquinoxaline-2-carboxylate 2a, orange crystals in 79% yield, m.p. 120-122°C. IR (KBr, cm$^{-1}$): 1565 (CH=N), 1730 (CO ester), 3010-3400 (NH). 1H NMR: δ 1.21 (t, 3H, J= 7.52 Hz, CH$_2$CH$_3$), 4.15 (q, 2H, J= 7.51 Hz, CH$_2$CH$_3$), 7.10-8.01 (m, 9H, Ar-H), 8.35 (s, 1H, CH=N), 12.35 (s, 1H, NH$_{quinox}$), 12.62 (s, 1H, N-H). 13C NMR: δ 14.21 (CH$_3$), 61.53 (CH$_3$), 87.15, 119.44, 119.83, 120.35, 131.42, 137.65 (C=C), 164.24, 165.43 (CH=N) and (CO ester).

MS (m/z, %): 307.0 (M$^+$, 55). Calc. for C$_9$H$_7$N$_2$O$_2$ (307.35): C, 67.64; H, 5.68; N, 13.67%. Found: C, 70.22; H, 5.43; N, 13.23%. Ethyl 3-(4-chlorobenzylidene) amino)-1,4-dihydroquinoxaline-2-carboxylate 2b, yellow white crystals in 84% yield; m.p. 110-112°C. IR (KBr, cm$^{-1}$): 1568 (CH=N), 1730 (CO ester), 3100-3400 (NH). 1H NMR: δ 1.25 (t, 3H, J= 7.53 Hz, CH$_2$CH$_3$), 4.18 (q, 2H, J= 7.53 Hz, CH$_2$CH$_3$), 7.10-8.01 (m, 8H, Ar-H), 8.5 (s, 1H, CH=N), 12.37 (s, 1H, N-H$_{quinox}$), 12.65 (s, 1H, N-H). 13C NMR: δ 14.25 (CH$_3$), 61.57 (CH$_3$), 87.17, 119.44, 119.86, 120.33, 131.41, 137.64 (C=C), 164.23, 165.45 (CH=N) and (CO ester).

MS (m/z, %): 310.0 (M$^+$, 55). Calc. for C$_9$H$_7$CIN$_2$O$_2$ (310.79): C, 63.25; H, 4.72; N, 10.37; N, 12.29%. Found: C, 63.17; H, 4.55; N, 10.40; N, 12.18%. Ethyl 3-(4-methoxybenzylidene) amino)-1,4-dihydroquinoxaline-2-carboxylate 2c, red crystals in 65% yield; m.p. 135-137°C. IR (KBr, cm$^{-1}$): 1563 (CH=N), 1730 (CO ester), 3100-3400 (NH). 1H NMR: δ 1.21 (t, 3H, J= 7.52 Hz, CH$_2$CH$_3$), 3.56 (s, 3H, OCH$_3$), 4.15 (q, 2H, J= 7.52 Hz, CH$_2$CH$_3$), 7.10-8.01 (m, 8H, Ar-H), 8.3 (s, 1H, CH=N), 12.35 (s, 1H, N-H$_{quinox}$), 12.63 (s, 1H, N-H). 13C NMR: δ 14.14 (CH$_3$), 61.16 (CH$_3$), 87.15, 119.42, 119.85, 120.37, 131.44, 137.66 (C=C), 164.19, 165.28 (CH=N) and (CO ester).

MS (m/z, %): 337.37 (M$^+$, 38). Calc. for C$_9$H$_7$CINO$_3$ (337.37): C, 67.64; H, 5.68; N, 12.46%. Found: C, 67.64; H, 5.68; N, 12.46%.
Ethyl 3-(3-chloro-2-oxo-4-phenylazetidin-1-yl)-1,4-dihydroquinoxaline-2-carboxylate 3a, reddish brown crystals in 67% yield; m.p. 150-152°C. IR (KBr, cm⁻¹): 1685 (cyclic CO), 1730 (CO ester), 3100-3400 (NH). ¹H NMR: δ 1.21 (t, 3H, J = 7.52 Hz, CH₂(CH₃)), 4.15 (q, 2H, J = 7.52 Hz, CH₂CH₂), 7.10-8.01 (m, 9H, Ar-H), 5.2 (d, 1H, J = 5.59 Hz, CH-N), 5.47 (d, 1H, J = 5.78 Hz, CHCl), 12.35 (s, 1H, N-H₆qunos) and 12.62 (s, 1H, N-H). ¹³C NMR: δ 14.26 (CH₃), 60.73 (CH-N), 61.5 (CH₃), 64.25 (CH-Cl), 87.14, 119.41, 119.86, 120.37, 131.45, 137.62 (C=C), 161.1 (CO cyclic), 165.4 (CO ester). MS (m/z, %): 380.0 (M⁺, 30). Calc. for C₁₉H₁₅ClN₃O₁₇ (383.83): C, 62.58; H, 4.73; Cl, 9.24; N, 10.95%. Found: C, 62.53; H, 4.65; Cl, 9.17; N, 10.79%.

Ethyl 3-(3-chloro-2-(4-chlorophenyl)-4-oxoazetidin-1-yl)-1,4-dihydroquinoxaline-2-carboxylate 3b, white green crystals in 70% yield; m.p. 180-182°C. IR (KBr, cm⁻¹): 1690 (cyclic CO), 1732 (CO ester), 3100-3400 (NH). ¹H NMR: δ 1.21 (t, 3H, J = 7.53 Hz, CH₂(CH₃)), 4.15 (q, 2H, J = 7.53 Hz, CH₂CH₂), 7.10-8.01 (m, 8H, Ar-H), 5.2 (d, 1H, J = 5.61 Hz, CH-N), 5.47 (d, 1H, J = 5.83 Hz, CHCl), 12.35 (s, 1H, N-H₆qunos), 12.62 (s, 1H, N-H). ¹³C NMR: δ 14.24 (CH₃), 60.71 (CH-N), 61.55 (CH₃), 64.23 (CH-Cl), 87.16, 119.43, 119.84, 120.32, 131.45, 137.63 (C=C), 161.15 (cyclic CO), 165.46 (CO ester). MS (m/z, %): 418.0 (M⁺, 42). Calc. for C₁₉H₁₅Cl₃N₃O₁₇ (418.27): C, 57.43; H, 4.10; Cl, 16.95; N, 10.05%. Found: C, 57.35; H, 4.02; Cl, 16.84; N, 10.01%.

Ethyl 3-(3-chloro-2-(4-methoxyphenyl)-4-oxoazetidin-1-yl)-1,4-dihydroquinoxaline-2-carboxylate 3c, violet crystals in 60% yield; m.p. 160-162°C. IR (KBr, cm⁻¹): 1685 (cyclic CO), 1732 (CO ester), 3100-3400 (NH). ¹H NMR: δ 1.21 (t, 3H, J = 7.52 Hz, CH₂(CH₃)), 3.56 (s, 3H, OCH₃), 4.15 (q, 2H, J = 7.52 Hz, CH₂CH₂), 7.10-8.01 (m, 8H, Ar-H), 5.2 (d, 1H, J = 5.78 Hz, CH-N), 5.47 (d, 1H, J = 5.83 Hz, CHCl), 12.35 (s, 1H, N-H₆qunos), 12.62 (s, 1H, N-H). ¹³C NMR: δ 14.25 (CH₃), 60.77 (CH-N), 61.54 (CH₂), 64.28 (CH-Cl), 87.16, 119.44, 119.86, 120.39, 131.44, 137.6 (C=C), 161.14 (CO cyclic), 165.47 (CO ester). MS (m/z, %): 413.0 (M⁺, 25). Calc. for C₁₉H₁₅O₃N₃O₇ (413.85): C, 60.95; H, 4.87; Cl, 8.57; N, 10.15%. Found: C, 60.90; H, 4.72; Cl, 8.53; N, 10.12%.

General procedure for the synthesis of ethyl 3-(4-oxo-3-phenyl substituted 1,2,3-thiazolidin-2-yl)-1,4-dihydroquinoxaline-2-carboxylate (4a-c)

Thioglycolic acid (0.02 mol) was added to compounds 2a-c (0.01 mol) and zinc chloride.
gram-positive bacteria as *Staphylococcus aureus*; gram-negative bacteria as *Escherichia coli*, were incubated at 35-37°C for 24-48 h and *Candida albicans* and *Aspergillus flavus* fungi were incubated at 30°C for a period varying between 24 and 48 h. The standard disks of ampicillin (an antibacterial agent) and amphotericin B (an antifungal agent) served as positive control for antimicrobial activity and filter disks impregnated with 10 μL of solvent (distilled water, chloroform and DMSO) were used as negative controls. All experiments were repeated and carried out in triplicate in the case of a significant difference in the results and the average inhibition diameters were measured in mm/mg sample.

Molecular docking

In this study, molecular simulation and modelling were performed using Molecular Operating Environment software (MOE, Version 2010.08, Canada). Glucosamine-6-phosphate synthase enzyme (GlcN-6-P) (PDB: ID 1gdo) was downloaded from RCSB Protein Data Bank [30]. The novel synthesized compounds 3a-c and 4a-c were subjected to molecular docking via their 2D and 3D structures. Before docking, adequate steps were performed including running conformational analysis using systemic search, 2D protonation of the structures, selecting the least energetic conformer and applying the protocol.

Results and discussion

Synthesis and characterization

The chemical synthesis of the compounds is illustrated in Scheme 1. The synthesis of new Schiff's bases derived from ethyl 3-amino-1,4-dihydroquinazline-2-carboxylate 1 is the fundamental key in the synthesis of the conforming isolated β-lactams 3a-c and thiazolidinone 4a-c derivatives. Thus, the reaction of compound 1 with different aromatic aldehydes in ethanol (30 mL) under reflux for about 4 h [27,31-33] led to the formation of the corresponding Schiff's bases 2a-c in 65-84% yield.

Subsequent cyclocondensation of Schiff's bases 2a-c with chloroacetyl chloride in 1,4-dioxane and trimethylamine [27,31-33] afforded the corresponding β-lactam derivatives 3a-c respectively in 60-70% yield. Similarly, cyclization of Schiff's bases with thioglycolic acid and 1,4-dioxane solvents [27,31-33] gave the corresponding thiazolidinones derivatives 4a-c in 55-62% yield. The chemical structures of products 3a-c and 4a-c were determined based on 1H and 13C NMR, IR spectroscopy as well as mass spectrometry data.

![Scheme 1. Synthesis of the novel β-lactams (3a-c) and thiazolidinone derivatives (4a-c).](image-url)
The IR spectra of compounds 3a-c revealed a N-H stretching band at about 3100-3400 cm⁻¹ and absorption bands at 1685-1690 cm⁻¹ and 1730-1732 cm⁻¹ corresponding to cyclic CO and CO ester, respectively. On the other hand, the IR spectrum of compounds 4a-c exhibited absorption bands at 1760-1766 cm⁻¹ corresponding to CO related to thiazolidinones. The ¹H NMR spectrum of compounds 3a-c displayed a singlet resonate at 12.35 ppm assignable to N-H quinoxaline; the spectrum of compound 3c showed a singlet at 3.56 ppm corresponding to (3H, for OCH₃). Moreover, the ¹H NMR spectrum of compounds 3a-c exhibited a doublet at 5.2 ppm corresponding to -CH-N.

Antimicrobial activity

The synthesized compounds (1, 2a-c, 3a-c and 4a-c) were evaluated for their antimicrobial activity against strains of gram-positive Staphylococcus aureus, gram-negative Escherichia coli, Aspergillus flavus and Candida albicans fungi. The initial screening results of in vitro antibacterial and antifungal activity are presented in Table 1. All tested compounds showed a comparatively promising activity towards gram-negative bacteria than gram-positive bacteria. Moreover, the highest activity of the designed compounds was recorded against the Candida albicans fungi. Thus, the obtained results show that compound 3b exhibited the highest activity against Escherichia coli and Staphylococcus aureus bacteria. By comparing the β-lactam derivatives 3a-c to their corresponding Schiff bases 2a-c, the β-lactam derivatives exhibited better activity and higher growth inhibition for the tested strains including bacteria and fungi.

Structure-activity relationship studies were carried out to better understand the effect of benzene substitution operation on antimicrobial activity. Considering gram-negative bacteria (Escherichia coli) testing results, it is obvious that Schiff base 2b and β-lactam derivative 3b with electron-withdrawing chlorine atoms showed better antibacterial activity than all other tested compounds. Schiff base derivative 2a without substituent on the benzene ring showed good antibacterial activity against Escherichia coli. It is worth noting that all thiazolidinones derivatives exhibited low activity against Escherichia coli compared to the Schiff base parents 2a-c.

Besides, all compounds displaying an electron donating methoxy group on the benzene ring showed the lowest activity against gram-positive and gram-negative bacteria. It can be initially concluded that the presence of chlorine atom as a substituent on the benzene moiety withdraw electrons by induction and give electrons by resonance convey higher antibacterial and antifungal activity to Schiff's base 2b, β-lactam 3b and thiazolidinones derivatives 4b. Whereas, the presence of the methoxy group as a substituent on the benzene ring (2c, 3c, and 4c) donates electrons by induction and reduces the antimicrobial activity of the synthesized compounds against the tested bacterial strains.

Molecular docking study

The most biologically active derivatives 3a-c and 4a-c were subjected to molecular docking study to predict their binding modes on a molecular level. Glucosamine-6-phosphate synthase enzyme (GlcN-6-P), a potential target for antibacterial and antifungal agents, was the enzyme of choice for performing the docking study.

Table 1

Compound no.	Bacteria	Fungi	
	Staphylococcus aureus	Aspergillus flavus	Candida albicans
Control (DMSO)	0	0	0
Ampicillin	23	28	-
Amphotericin B	-	-	14
1	19	21	8
2a	20	23	9
2b	22	24	10
2c	18	20	8
3a	21	24	13
3b	25	26	15
3c	20	20	12
4a	19	17	11
4b	24	19	13
4c	18	16	11

*Mean inhibition zone diameter (mm/mg sample) (n=3).
The target derivatives were re-docked into the binding site of GlcN-6-P enzyme (PDB: ID 1gdo). To do so, first, glutamate was re-docked into GlcN-6-P with a root mean standard deviation (RMSD) of 1.25, the ligand showed score binding energy (S) of -15.11 kcal/mol and hydrogen bonding with Gly99, Trp74, Cys1, His86, Arg73, Thr76, Asp123 (Figure 1). The data of this study including the energy associated with intermolecular interactions (affinity in kcal/mol) of the target compounds 3a-c and 4a-c and hydrogen bonding interactions are presented in Table 2.

![Figure 1](https://example.com/figure1.png)

Figure 1. The 2D predicted binding mode from docking simulation of compound 3b (a) and compound 4b (b) into the active site of GlcN-6-P synthase.

Compound	Affinity, kcal/mol	Number of hydrogen bonds	Distance from main residue, Å	Functional group	
3a	-16.67	4			
			Gly74	2.93	NH
			Gly99	2.12	NH
			Gly99	2.93	C=O
			Cys1	3.11	
3b	-18.95	4			
			Gly74	2.95	NH
			Gly99	2.00	NH
			Gly99	2.89	C=O
			Cys1	3.16	C=O
3c	-16.00	4			
			Thr124	2.23	OCH3
			Arg73	2.15	OCH3
			His86	3.19	OCH3
			Ser176	2.64	C=O
4a	-15.50	2			
			Thr76	2.99	NH
			Cys1	2.67	C=O
4b	-18.50	2			
			Thr76	3.12	NH
			Trp74	2.98	NH
4c	-13.22	1			
			Cys1	2.79	OCH3
Docking results on the compounds 3a-c and 4a-c revealed moderate to strong binding affinity varying from -13.22 to -18.75 kJ/mol compared to -15.11 kJ/mol for the reference drug glutamate, which exhibited ten hydrogen-bonding interactions with the amino acid series Gly99, Trp74, Cys1, His86, Arg73, Thr76, Asp123, respectively (Table 2). Compound 3a recorded the energy docking of -16.67 kcal/mol, and it showed four bonding as following: i) Trp74 with NH, ii) Gly99 with NH, iii) Gly99 with C=O, iv) Cys1 with C=O. Besides, compound 3b registered a docking energy value of -18.95 kcal/mol and was found to perform four hydrogen-bonding interactions: i) Trp74 with NH, ii) Gly99 with NH, iii) Gly99 with C=O, iv) Cys1 with C=O. Moreover, the candidate 3c recorded a docking energy value of -16.00 kcal/mol and four hydrogen-bonding interactions: i) Thr124 with OCH3, ii) Arg73 with OCH3, iii) His86 with OCH3, and iv) Ser176 with C=O. In addition, the target compound 4a displayed two hydrogen bonds with Thr76 and Cys1 via binding with NH and C=O groups. On the other hand, the candidate 4b showed a high docking energy value of -18.50 kcal/mol and two hydrogen-bonding interactions with Thr76 and Trp74. Finally, compound 4c demonstrated the least docking energy score of -13.22 kcal/mol with only one hydrogen bonding interaction with Cys1 amino acid.

It can be concluded that the most active compounds are 3b and 4b since they showed comparable binding affinity scores as that of glutamate. These results are considered in agreement with the experimental results.

Conclusions

Substituted β-lactams 3a-c and thiazolidinone derivatives 4a-c were successfully synthesized from the reaction of new Schiff’s bases 2a-c with chloroacetyl chloride and thioglycolic acid. All reactions were prepared with satisfactory yields and spectral data (IR, 1H and 13C NMR) of the obtained compounds (3a-c, 4a-c) were in full agreement with the proposed structures.

All newly synthesized compounds were evaluated in vitro for their antimicrobial activity against gram-positive and gram-negative bacteria and fungi. All compounds displayed moderate to excellent antimicrobial activity against the tested strains. The biological screening proved compound 3b to be the most active compound against all tested bacteria and fungi. Furthermore, compound 4b showed good antibacterial activity when tested against Staphylococcus aureus bacteria. This behaviour was ascribed to the presence of chlorine withdrawing atom as a substituent on the benzene moiety.

It was found that all compounds carrying an electrondonating methoxy group as a substituent on the benzene ring displayed the least biological activity. Furthermore, the results from the biological testing were in agreement with the molecular docking studies. Therefore, compounds 3b and 4b represent promising candidates as antibacterial and antifungal agents that would deserve further investigations.

References

1. Aranda, M.T.; Perez-Faginas, P.; Gonzalez-Muniz, R. An update on the synthesis of β-lactams. Current Organic Synthesis, 2009, 6(3), pp. 325-341. DOI: 10.2174/157017909788921899

2. Abraham, D.J. Burger’s medicinal chemistry and drug discovery. 6th ed. Richmond: Wiley-Interscience, John Wiley and Sons, 2003, 6416 p. DOI: 10.1002/0471266949

3. Coleman, K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Current Opinion in Microbiology, 2011, 14(5), pp. 550-555. DOI: https://doi.org/10.1016/j.mib.2011.07.026

4. Tipper, D.J; Strominger, J.L. Mechanism of action of penicillins: a proposal based on their structural
similarity to acyl-D-alanyl-D-alanine. PNAS (Proceedings of the National Academy of Sciences of the United States of America), 1965, 54(4), pp. 1133-1141. DOI: https://doi.org/10.1073/pnas.54.4.1133

5. Worthington, R.J.; Melander, C. Overcoming resistance to β-lactam antibiotics. The Journal of Organic Chemistry, 2013, 78(9), pp. 4207-4213. DOI: https://doi.org/10.1021/jo400236f

6. Lee, M.; Hesek, D.; Blázquez, B.; Lastochkin, E.; Boggess, B.; Fisher, J.F.; Mobashery, S. Catalytic spectrum of the penicillin-binding protein 4 of Pseudomonas aeruginosa, a nexus for the induction of β-lactam antibiotic resistance. Journal of the American Chemical Society, 2015, 137(1), pp. 190-200. DOI: https://doi.org/10.1021/ja5111706

7. Giesala, R.; Gangasani, J.K.; Budde, M.; Balasubramanian, S.; Vaidya, J.R.; Das, A. 2-Azetidinones: Synthesis and biological evaluation as potential anti-breast cancer agents. European Journal of Medicinal Chemistry, 2016, 124, pp. 544-558. DOI: https://doi.org/10.1016/j.ejmech.2016.08.041

8. Galletti, P.; Soldati, R.; Pori, M.; Durso, M.; Tolomelli, A.; Gentilucci, L.; Dattoli, S.D.; Baiula, M.; Spampinato, S.; Giacomini, D. Targeting integrins αβ1 and αβ3 with new β-lactam derivatives. European Journal of Medicinal Chemistry, 2014, 83, pp. 284-293. DOI: https://doi.org/10.1016/j.ejmech.2014.06.041

9. D’hooghe, M.; Mollet, K.; De Vreese, R.; Jonckers, T.H.M.; Dams, G.; De Kimpe, N. Design, synthesis, and antiviral evaluation of purine-β-lactam and purine-aminopropanol hybrids. Journal of Medicinal Chemistry, 2012, 55(11), pp. 5637-5641. DOI: https://doi.org/10.1021/jm300383k

10. Hites, M.; Taccone, F.S.; Wolff, F.; Maillart, E.; Beumier, M.; Surin, R.; Cotton, F.; Jacobs, F. Broad-spectrum β-lactams in obese non-critically ill patients. Nutrition & diabetes, 2014, 4, e119, pp. 1-7. DOI: https://doi.org/10.1038/nutd.2014.15

11. Luna-Herrera, J.; Lara-Ramirez, E.E.; Munoz-Duarte, A.R.; Olazaran, F.E.; Chan-Bacab, M.J.; Moo-Puc, R.; Perez-Vazquez, A.M.; Morales-Reyes, C.M.; Rivera, G. In vitro and in silico analysis of β-lactam derivatives as antimycobacterial agents. Letters in Drug Design & Discovery, 2017, 14(7), pp. 782-786. DOI: 10.2174/1570180814666170106111316

12. Jarrahpour, A.; Shirvani, P.; Sinou, V.; Latour, C.; Brunel, J.M. Synthesis and biological evaluation of some new β-lactam-triazole hybrids. Medicinal Chemistry Research, 2016, 25(1), pp. 149-162. DOI: https://doi.org/10.1007/s00044-015-1474-x

13. Cogo, J.; Kaplun, V.; Sangi, D.P.; Ueda-Nakamura, T.; Correa, A.G.; Nakamura, C.V. Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitypanosomal agents. European Journal of Medicinal Chemistry, 2015, 90, pp. 107-123. DOI: https://doi.org/10.1016/j.ejmech.2014.11.018

14. Balsalobre, L.C.; Dropa, M.; Matté, M.H. An overview of antimicrobial resistance and its public health significance. Brazilian Journal of Microbiology, 2014, 45(1), pp. 1-5. DOI: https://doi.org/10.1590/S1517-83822014005000033

15. El Azab, I.H.; Elkanzi, N.A.A.; Gobouri, A.A. Design and synthesis of some new quinoxaline-based heterocycles. Journal of Heterocyclic Chemistry, 2018, 55(1), pp. 65-76. DOI: 10.1002/jhet.2978

16. Tariq, S.; Somakala, R.; Amir, M. Quinoxaline: An insight into the recent pharmacological advances. European Journal of Medicinal Chemistry, 2018, 143, pp. 542-557. DOI: https://doi.org/10.1016/j.ejmech.2017.11.064

17. El-Tombary, A.A.; El-Hawash, S.A.M. Synthesis, antioxidant, anticancer and antiviral activities of novel quinoxaline hydrazine derivatives and their acyclic C-nucleosides. Medicinal Chemistry, 2014, 10(5), pp. 521-532. DOI: 10.2174/15734064113096660069

18. Singh, D.P.; Deivedi, S.K.; Hashim, S.R.; Singhal, R.G. Synthesis and antimicrobial activity of some new quinoxaline derivatives. Pharmaceuticals, 2010, 3(8), pp. 2416-2425. DOI: https://doi.org/10.3390/ph3082416

19. Ishikawa, H.; Sugiyama, T.; Kurita, K.; Yokoyama, A. Synthesis and antimicrobial activity of 2,3-bis(bromomethyl)quinoxaline derivatives. Bioorganic Chemistry, 2012, 41-42, pp. 1-5. DOI: https://doi.org/10.1016/j.bioorg.2011.12.002

20. Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Ancizu, S.; Villar, R.; Solano, B.; Moreno, E.; Torres, E.; Pérez, S.; Aldana, I.; Monge, A. Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chemical Biology & Drug Design, 2011, 77, pp. 255-267. DOI: 10.1111/j.1747-0285.2011.01076.x

21. Pinheiro, A.C.; Mendonça Nogueira, T.C.; de Souza, M.V.N. Quinoxaline nucleus: a promising scaffold in anti-cancer drug discovery. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16(10), pp. 1339-1352. DOI: 10.2174/187152061666616022090839

22. Wang, T.; Tang, Y.; Yang, Y.; An, Q.; Sang, Z.; Yang, T.; Liu, P.; Zhang, T.; Deng, Y.; Luo, Y. Discovery of novel anti tuberculosis agents with pyrrolo[1,2-a]quinoloxine-based scaffold. Bioorganic & Medicinal Chemistry Letters, 2018, 28(11), pp. 2084-2090. DOI: https://doi.org/10.1016/j.bmcl.2018.04.043

23. Bush, K.; Jacoby, G.A. Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 2010, 54(3), pp. 969-976. DOI: 10.1128/AAC.01009-09

24. Hujer, A.M.; Kania, M.; Gerken, T.; Anderson, V.E.; Buynak, J.D.; Ge, X.; Caspers, P.;
Page, M.G.P.; Rice, L.B.; Bonomo, R.A. Structure-activity relationships of different β-lactam antibiotics against a soluble form of Enterococcus faecium php5, a type II bacterial transpeptidase. Antimicrobial Agents and Chemotherapy. 2005, 49(2), pp. 612-618. DOI: 10.1128/AAC.49.2.612-618.2005

25. Konaklieva, M.I. Molecular targets of β-lactam-based antimicrobials: Beyond the usual suspects. Antibiotics. 2014, 3(2), pp. 128-142. DOI: https://doi.org/10.3390/antibiotics3020128

26. Turan, B.; Şendil, K.; Şengül, E.; Gultekin, M.S.; Taslimi, P.; Gulcin, I.; Supuran, C.T. The synthesis of some β-lactams and investigation of their metal-chelating activity, carbonic anhydrase and acetylcholinesterase inhibition profiles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31(sup1), pp. 79-88. DOI: https://doi.org/10.3109/14756366.2016.1170014

27. Elkanzi, N.A.A. Synthesis of some new spiro β-lactams and thiazolidinones compounds containing sulfur incorporating quinon compounds. International Journal of Organic Chemistry, 2012, 2(4), pp. 352-361. DOI: 10.4236/ijoc.2012.24048

28. El-Kanzi, N.A.A.; Khalaflah, A.K.; Younis, M. Effect of iodine on the antimicrobial activity of new spiro and isolated β-lactam thiazolidinone derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements, 2007, 182(5), pp. 1163-1181. DOI: https://doi.org/10.1080/10426500601149929

29. Komykhov, S.A.; Ostras, K.S.; Kostanyan, A.R.; Desenko, S.M.; Orlov, V.D.; Meier, H. The reaction of amino-imidazoles, -pyrazoles and -triazoles with α,β-unsaturated nitriles. Journal of Heterocyclic Chemistry. 2005, 42(6), pp. 1111-1116. DOI: https://doi.org/10.1002/jhet.5570420612

30. Isupov, M.N.; Obmolova, G.; Butterworth, S.; Badet-Denisot, M.A.; Badet, B.; Polikarpov, I.; Littlechild, J.A.; Teplyakov, A. Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure, 1996, 4(7), pp. 801-810. DOI: https://doi.org/10.1016/s0969-2126(96)00087-1

31. Elkanzi, N.A.A. Synthesis of some new isolated/spiro β-lactam and thiazolidinone incorporating fused thiou pyrimidine derivatives. Journal of Applied Chemistry, 2012, 1(1), pp. 1-12. DOI: https://doi.org/10.9790/5736-0110112

32. Elkanzi, N.A.A. Synthesis of new class of (β-lactam, thiazolidinone) derivatives. Journal of Applied Chemistry, 2012, 1(1), pp. 18-30. DOI: https://doi.org/10.9790/5736-0111830

33. Patel, H.; Mishra, L.; Noolvi, M.; Karpoormath, R.; Cameotra, S.S. Synthesis, in vitro evaluation, and molecular docking studies of azetidinones and thiazolidinones of 2-amino-5-cyclopropyl-1,3,4-thiadiazole as antibacterial agents. Archiv der Pharmazie – Chemistry in Life Sciences, 2014, 347(9), pp. 668-684. DOI: https://doi.org/10.1002/ardp.201400140