Identification of miRNAs linked to peanut nodule functional processes

Journal of Bioscience

María Soledad Figueredo¹, Damien Formey², Johan Rodríguez¹, Fernando Ibáñez¹, Georgina Hernández² and Adriana Fabra¹,*

¹Instituto de Investigaciones Agrobiotecnológicas (INIAB)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina.

²Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, 62210, Morelos, México.

*Corresponding author: Adriana Fabra. e-mail: afabra@exa.unrc.edu.ar

Supplementary table 1 Primers used in this work

| Primer Name | Sequence(5'‐3') | Reference               |
|-------------|----------------|-------------------------|
| U6          | CACAAATCGAGAAATGGTCCA | Nova-Franco et al. (2015) |
| miR399      | TGCCAAAGGAGAGTTGCCCTG | Valdés-López et al. (2008) |
| miR159      | TTTGGATTGAAGGGAGCTCTA | Nova-Franco et al. (2015) |
| miR3508     | TAGAGGGTTCCCATGTCTC   | This work               |

References
Nova-Franco B, Íñiguez LP, Valdés-López O, Alvarado-Affantranger X, Leija A, Fuentes SI, Hernández G 2015 The miR172c-AP2-1 node as a key regulator of the common bean-rhizobia nitrogen fixation symbiosis. Plant Physiol pp-114.

Valdés-López O, Arenas-Huertero C, Ramirez M, Girard L, Sanchez F, Vance CP, Hernandez G 2008 Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant Cell Environ 31 1834-1843.