Effect of BaF$_2$ Variation on Spectroscopic Properties of Tm$^{3+}$ Doped Gallium Tellurite Glasses for Efficient 2.0 μm Laser

Jian Yuan1,2, Weichao Wang2, Yichen Ye2, Tingting Deng1, Deqian Ou1, Junyang Cheng1, Shengjin Yuan1 and Peng Xiao*

1 Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China, 2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China

The effects of substitution of BaF$_2$ for BaO on physical properties and 1.8 μm emission have been systematically investigated to improve spectroscopic properties in Tm$^{3+}$ doped gallium tellurite glasses for efficient 2.0 μm fiber laser. It is found that refractive index and density gradually decrease with increasing BaF$_2$ content from 0 to 9 mol.%, due to the generation of more non-bridging oxygens. Furthermore, OH$^-$ absorption coefficient (α_{OH}) reduces monotonically from 3.4 to 2.2 cm$^{-1}$ and thus emission intensity near 1.8 μm in gallium tellurite glass with 9 mol.% BaF$_2$ is 1.6 times as large as that without BaF$_2$ while the lifetime becomes 1.7 times as long as the one without BaF$_2$. Relative energy transfer mechanism is proposed. The maximum emission cross section and gain coefficient at around 1.8 μm of gallium tellurite glass containing 9 mol.% BaF$_2$ are 8.8 × 10$^{-21}$ cm2 and 3.3 cm$^{-1}$, respectively. These results indicate that Tm$^{3+}$ doped gallium tellurite glasses containing BaF$_2$ appear to be an excellent host material for efficient 2.0 μm fiber laser development.

Keywords: gallium tellurite glass, Tm$^{3+}$ doped, OH$^-$, 1.8 μm emission, BaF$_2$

INTRODUCTION

Over the past few decades, fiber lasers operating in eye-safe 2.0 μm spectral region have attracted a great deal of attention due to strong absorption band of several chemical compounds (H$_2$O, CO$_2$, N$_2$O, etc.) in this region (Chen et al., 2010). Therefore, there are some potential applications in eye-safe laser radar, material processing, laser surgery, remote sensing and effective pump sources as mid-infrared lasers and optical parametric oscillators (Geng et al., 2011; Geng and Jiang, 2014; Slimen et al., 2019; Wang et al., 2019). Up to now, active ions for 2.0 μm laser have been mainly focused on Tm$^{3+}$ and Ho$^{3+}$ ions arising from Tm$^{3+}$: 3F$_4$ → 3H$_6$ and Ho$^{3+}$: 5I$_7$ → 5I$_8$ transition. Compared with Ho$^{3+}$, Tm$^{3+}$ owns very strong absorption band of 3H$_6$→3H$_4$ transition and thus can be effectively pumped by commercial high-power 808 nm laser diode. Under the pump scheme, a quantum efficiency of 200% can be expected from “two-for-one” cross relaxation process (3H$_4$ + 3H$_6$ → 23F$_4$) (Richards et al., 2010). In addition, broad emission bandwidth of Tm$^{3+}$: 3F$_4$→3H$_6$ transition about 300 nm is advantageous to the generation of femtosecond pulse (Agger et al., 2004).
In pursuit of efficient 2.0 μm laser, different glass hosts have been extensively investigated and the laser operation has been demonstrated in silicate, fluoride, germanate and tellurite glasses (Richards et al., 2010; He et al., 2013; Wang et al., 2019). Among these glass hosts, tellurite glasses own a lot of advantage such as broad infrared transmission region, lower phonon energy, high rare-earth ion solubility, high refractive index (~2) and easy fabrication with low melting temperature (Richards et al., 2010). Recently, our groups have exploited several new tellurite glass systems such as TeO$_2$-Ga$_2$O$_3$-BaO (TGB) and TeO$_2$-Ga$_2$O$_3$-ZnO (TGZ) with excellent glass-forming ability, thermal stability and 2.0 μm spectroscopic properties (Li et al., 2019; Mao et al., 2020). To further improve 2.0 μm emission properties, it is very essential to reduce the hydroxyl content in glasses because OH$^-$ groups are the main energy loss channels for active ions and can result in strong 2.0 μm fluorescence quenching (Terra et al., 2006). We found that the strength of interaction between Tm$^{3+}$ and OH$^-$ (12.9 × 10$^{-19}$ cm4/s) was stronger than that between Er$^{3+}$ and OH$^-$ (1.9 × 10$^{-19}$ cm4/s) (Yuan et al., 2014).

Herein, based on the composition of TGB glass with good thermal stability, we systematically investigate the effects of substitution of BaF$_2$ for BaO on physical properties and 1.8 μm emission properties. Density, refractive index, Raman spectra, absorption spectra and emission spectra were measured along with the lifetime of Tm$^{3+}$:F4_4 energy level. Moreover, energy transfer mechanism is proposed and emission cross section and gain coefficient of Tm$^{3+}$:F4_4 →H$_6$ transition in TGB glass with 9 mol.% BaF$_2$ are determined.

MATERIALS AND METHODS

Tm$^{3+}$ doped gallium tellurite glasses (TGB) with the molar compositions of 80TeO$_2$-10Ga$_2$O$_3$-(9-x)BaO-xBaF$_2$-1Tm$_2$O$_3$ (x = 0, 3, 6, and 9) were prepared by the conventional melt-quenching method. TeO$_2$, Ga$_2$O$_3$, BaO, BaF$_2$ and Tm$_2$O$_3$ with 99.99% purity (Aladdin) were used as raw chemicals. Appropriate amounts of these chemicals (~20 g) were well mixed and then melted in an alumina crucible with an alumina lid at ~950°C for 30 min. Afterwards, the melts were poured onto a preheated graphite mold and further annealed at 330°C for 2 h, after which they were cooled slowly inside the furnace to room temperature. The annealed samples for the optical property measurements need to be double-sided polishing into 10 × 10 × 1.5 mm3 cylinders. Densities of glasses were determined by the Archimedes’ principle using the distilled water as the medium. The refractive index of all the samples was measured by the prism coupling method (Mettricon Model 2010) at 633, 1,309, and 1,533 nm with an error of ±5 × 10$^{-4}$. The infrared transmittance spectra were obtained using Vector 33 Fourier transform infrared (FTIR) spectrophotometer (Bruker, Switzerland). The Raman spectra were measured by Raman spectrometer (Renishaw Via, Gloucestershire, UK) and 532 nm laser as the excitation source. Optical absorption spectra measurements were performed on a Perkin-Elmer Lambda 900/UV/VIS/NIR spectrophotometer. The fluorescence spectra were recorded by a computer-controlled Triax 320 type spectrofluorimeter (Jobin-Yvon Corp.) equipped with an InAs detector upon the excitation of an 808 nm LD. After exciting the samples with an 808 nm LD, InAs detector was used to detect the lifetime of Tm$^{3+}$:F4_4 energy level (1.8 μm) along with a digital phosphor oscilloscope (TDS3012C, Tektronix, America) and signal generator. All of the measurements were carried out at room temperature.

RESULTS AND DISCUSSION

Table 1 presents the refractive index (n) and density (ρ) of TGB glasses with different BaF$_2$ contents. It is found that the refractive index and density monotonously decrease when BaF$_2$ content increases from 0 to 9 mol.% in step of 3 mol.%. This indicates that the addition of BaF$_2$ makes glass network looser (Yang et al., 2017), which is demonstrated by the Raman spectra as shown Figure 1. It is noted that three major bands appear in TGB glasses with different BaF$_2$ amounts. The peak A at ~466 cm$^{-1}$ is assigned to the symmetrical stretching or bending vibrations of Te-O-Te linkages at corner sharing sites (Murugan and Ohishi, 2004; Jose et al., 2007). The peak B at ~682 cm$^{-1}$ is ascribed to the anti-symmetric stretching vibrations of Te-O-Te linkages constructed by two un-equivalent Te-O bonds containing bridging oxygens (BO) in TeO$_4$ trigonal bipyramid and the peak C is due to the symmetrical stretching vibrations of Te-O$^-$ and Te=O

Sample	n (633 nm)	n (1309 nm)	n (1533 nm)	ρ (g/cm3)
x = 0	1.9723	1.9324	1.9289	5.265
x = 3	1.9490	1.9097	1.908	5.219
x = 6	1.9281	1.8920	1.8904	5.140
x = 9	1.9132	1.8792	1.8769	5.128

FIGURE 1 | Normalized Raman spectra of TGB glasses with different BaF$_2$ amounts.
bonds with non-bridging oxygens (NBO) in TeO\textsubscript{3} trigonal pyramid and TeO\textsubscript{3}+\textsubscript{1} polyhedra (Murugan and Ohishi, 2004; Jose et al., 2007). It is worth noting that the position of peak C slightly shifts from 769 to 787 cm-1 and normalized intensity of peak B declines with the increment of BaF\textsubscript{2} from 0 to 9 mol.%, revealing that glass network structure is broken and more non-bridging oxygens arise. Such low phonon energy of TGB glasses is able to effectively decrease non-radiative relaxation in favor of the enhancement of 2.0 \mu m emission intensity.

Figure 2 shows the typical absorption spectra of TGB glasses in the wavelength range from 350 to 2,100 nm. The absorption spectrum consists of five absorption bands of Tm3+ centered at 473, 687, 794, 1,214, and 1,700 nm, corresponding to respective transitions from the 3H\textsubscript{4} ground state to excited states 5G\textsubscript{4}, 3F\textsubscript{2}, 3H\textsubscript{5}, and 3F\textsubscript{4}. Energy levels above 1G\textsubscript{4} energy level are not clearly identified because of strong intrinsic bandgap absorption in the host glass. It is also found that the position and shape of five absorption peaks are almost constant with the addition of BaF\textsubscript{2}.

When BaF\textsubscript{2} is added, F- ions crack O-H bond in glass network and produce HF gas so that OH- content is reduced. OH- content is reflected by OH- absorption coefficient (α_{OH}) (Wang et al., 2013).

\[
\alpha_{OH} = \frac{\ln(T_0/T)}{l}
\]

where l represents the thickness of glass samples, T_0 and T are the incident and transmitted intensity, respectively. According to FTIR spectra, OH- absorption coefficient of TGB glasses is determined and presented in Figure 3. There are two absorption bands centered at 3.1 and 4.4 \mu m, corresponding to stretching mode of free Te-OH groups and/or stretching mode of molecular water and stretching mode of strong hydrogen-bonded Te-OH groups, respectively (Wang et al., 2019). α_{OH} at 3.1 \mu m is obviously higher than the value at 4.4 \mu m. Moreover, α_{OH} monotonically decreases from 3.4 to 2.2 cm-1 with increasing BaF\textsubscript{2} content from 0 to 9 mol.% in step of 3 mol.%, which is beneficial to improve 1.8 \mu m emission properties of Tm3+ ions.

Figure 4 compares the fluorescence spectra and decay curves of Tm3+,3F\textsubscript{4} \rightarrow 3H\textsubscript{6} transition in TGB glasses with different BaF\textsubscript{2} amounts pumped by 808 nm LD. From Figure 4A, it is clear that the spectra are characterized by two emission peaks located at 1,488 and 1,808 nm, corresponding to 5H\textsubscript{4} \rightarrow 5F\textsubscript{4} and 3F\textsubscript{4} \rightarrow 3H\textsubscript{6} transitions, respectively. Emission intensity at 1,488 nm is obviously weaker than that at 1,808 nm, which is attributed to effective cross relaxation process (3H\textsubscript{4} \rightarrow 3H\textsubscript{6} \rightarrow 5F\textsubscript{4}). Moreover, emission intensity at 1,488 nm remains almost unchanged and that near 1.8 \mu m gradually increases with the increment of BaF\textsubscript{2} concentration. The peak value near 1.8 \mu m in TGB glasses with 9 mol.% BaF\textsubscript{2} is 1.6 times as high as that without BaF\textsubscript{2} because the reduction of OH- content weakens the interaction between Tm3+ and OH- and thus enhances radiative transition probability of 3F\textsubscript{4} \rightarrow 3H\textsubscript{6} transition. Figure 4B depicts fluorescence decay curves of Tm3+,3F\textsubscript{4} energy level monitored at 1,808 nm in TGB glasses with different proportions of BaF\textsubscript{2}. It is clearly noted that the lifetime of 3F\textsubscript{4} energy level gradually prolongs from 337.4 to 577.8 \mu s when BaF\textsubscript{2} content increases from 0 to 9 mol.% in step of 3 mol.%. The lifetime in TGB glass with 9 mol.% BaF\textsubscript{2} is 1.7 times as long as the value without BaF\textsubscript{2}. These results mean that the addition of BaF\textsubscript{2} can greatly improve 1.8 \mu m emission properties.

In general, the total decay rate (W) of Tm3+,3F\textsubscript{4} energy level is defined as the reciprocal of the measured decay lifetime (τ_m) and is described by the following equations (Zhou et al., 2010).

\[
W = 1/\tau_m = A_r + W_{OH} + W_{MP} + W_{ET}
\]

\[
W_{OH} = k_{OH-\tau_m} N_{Tm} \alpha_{OH}
\]

where A_r represents the radiative decay rate, W_{OH} is the energy transfer rate between Tm3+ and OH-, W_{MP} is the multiphonon decay rate, W_{ET} is the energy transfer rate between Tm3+ ions, N_{Tm} is the total concentration of Tm3+ ions and α_{OH} is OH- absorption coefficient. $k_{OH-\tau_m}$ is defined as the strength of interaction between Tm3+ and OH- and doesn't rely on the
FIGURE 4 | (A) Fluorescence spectra and (B) decay curves of Tm$^{3+}$:3F$_4$ energy level in TGB glasses with different proportions of BaF$_2$ pumped by 808 nm LD.

FIGURE 5 | The dependence of the total decay rate on α_{OH} along with the red fitting curve.

concentrations of Tm$^{3+}$ and OH$^-$. Figure 5 represents a good linear relationship between the total decay rate and α_{OH}. From this fit, k_{OH-Tm} is determined and equals to 2.82×10^{-18} cm4/s, which is larger than k_{OH-Er} (1.9×10^{-19} cm4/s) (Zhou et al., 2010) and lower than k_{OH-Tm} (7.89×10^{-18} cm4/s) in germanate glasses (Wang et al., 2014).

Based on above-mentioned results, Figure 6 shows energy transfer mechanism. Under excitation at 808 nm LD, Tm$^{3+}$ ions are motivated to 3H$_4$ state from the 3H$_6$ ground state. Then, a few Tm$^{3+}$ ions return radiatively to 3F$_4$ state with 1,488 nm photon. However, the majority of ions relax nonradiatively to 3F$_4$ state via muliphonon relaxation process and efficient cross relaxation process (CR) between two adjacent Tm$^{3+}$ ions (3H$_4$ + 3H$_6$ → 3F$_4$). Finally, Tm$^{3+}$ ions in the excited 3F$_4$ state return to the 3H$_6$ ground state, emitting fluorescence at 1.8 μm. Significantly, the residual OH$^-$ in TGB glasses can impair 1.8 μm emission via two OH$^-$ ions, indicating that it is essential to decrease the hydroxyl content for improving 1.8 μm emission.

Both absorption and emission cross sections of Tm$^{3+}$ ions are very crucial parameters to evaluate the potential of TGB glasses as 2 μm laser material. Based on the Beer-Lambert equation and Fuchtbauer-Ladenburg equation (Chen et al., 2007), absorption and emission cross sections of Tm$^{3+}$:3H$_6$ → 3F$_4$ transition in TGB glass with 9 mol.% BaF$_2$ are calculated and presented in Figure 7A. The maximum absorption cross section of Tm$^{3+}$ reaches 5.3 \times 10$^{-21}$ cm2 at 1,706 nm, which is higher than that of silicate glass (1.5×10^{-21} cm2) (Li et al., 2012), fluorophosphate glass (3.0×10^{-21} cm2) (Li et al., 2015), tellurium germanate glass (3.2×10^{-21} cm2) (Gao et al., 2015) and germanate glass (4.1×10^{-21} cm2) (Yu et al., 2009). Moreover, corresponding maximum emission cross section is 8.8 \times 10$^{-21}$ cm2 at 1.814 nm, which is higher than that of silicate glass (3.6×10^{-21} cm2) (Li et al., 2012), fluorophosphate glass (5.5×10^{-21} cm2) (Li et al., 2015), tellurium germanate glass (6.8×10^{-21} cm2) (Gao et al., 2015), germanate glass (5.5×10^{-21} cm2) (Yu et al., 2009) and zinc tellurite glass (7.3×10^{-21} cm2) (Yuan and Xiao, 2018). The
high emission cross section of TGB glass with 9 mol.% BaF$_2$ is helpful to provide high laser gain.

Once absorption and emission cross sections are determined and it is supposed that Tm$^{3+}$ ions are only in either the 3H$_6$ or 3F$_4$ state, the gain coefficient $G(\lambda)$ of Tm$^{3+}$ near 1.8 μm can be obtained by the following equation (Zou and Toratani, 1996).

$$G(\lambda) = N[p\sigma_e - (1-p)\sigma_a]$$ \hspace{1cm} (4)

where N represents the total concentration of Tm$^{3+}$ ions and p is the inversion factor given by the ratio between the population of lasing upper level (3F$_4$) and the total concentration that ranges from 0 to 1. Figure 7B shows gain coefficient spectrum of TGB glass with 9 mol.% BaF$_2$. It is found that the gain peak shifts to shorter wavelength with increasing p, which is a typical feature of the quasi-three-level system. Moreover, gain coefficient starts to be greater than zero in the wavelength range from 1.824 to 2.100 nm when $p \geq 0.2$ and the maximum value is 3.3 cm$^{-1}$ at 1.814 nm. As a result, TGB glass with 9 mol.% BaF$_2$ appears to be a highly promising host material for efficient 2.0 μm fiber laser development.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JY, PX, and WW conceived the idea. JY and PX wrote the paper. TD, YY, DO, JC, and SY advised the paper. All authors contributed to the article and approved the submitted version.

FUNDING

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51902053 and 61804029), Natural Science Foundation of Guangdong province (Grant Nos. 2019A1515011988 and 2018A030310353), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110002), the Foundation for Distinguished Young Talents in Higher Education of Guangdong (Grant No. 2019KQNCCX172), the Project of Foshan Education Bureau (Grant No. 2019XJZZ02), Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory (Grant No. 2020B1212030010), and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, Grant No. 2020-skllmd-13).
REFERENCES

Agger, S., Povlsen, J. H., and Varming, P. (2004). Single-frequency thulium-doped distributed-feedback fiber laser. Opt. Lett. 29, 1503–1505. doi: 10.1364/OL.29.001503

Chen, G. X., Zhang, Q. Y., Yang, G. F., and Jiang, Z. H. (2007). Mid-infrared emission characteristic and energy transfer of Ho3+ doped tellurite glass sensitized by Tm3+. J. Fluoresc. 17, 301–307. doi: 10.1007/s10895-007-0173-5

Chen, Y. J., Lin, Y. F., Gong, X. H., Zhu, H. M., Luo, Z. D., and Huang, Y. D. (2010). 805-nm diode-pumped continuous-wave 2-μm laser performance of Tm3+ :BaGd2(MoO4)3 cleavage plate. Appl. Phys. B 98, 55–60. doi: 10.1007/s00340-009-3704-8

Gao, S., Kuan, P. W., Liu, X. Q., Chen, D. P., Liao, M. S., and Hu, F. (2004). Raman spectroscopic studies of TeO2 codoped barium gallo-germanate glass fabricated with efficient dehydration methods. J. Non-Cryst. Solids 398, 15–20. doi: 10.1016/j.jnoncrysol.2018.12.018

Li, M., Bai, G. X., Guo, Y. Y., Hu, L. L., and Zhang, J. J. (2012). Investigation on Tm3+-doped silicate glass for 1.8 μm emission. J. Lumin. 132, 1830–1835. doi: 10.1016/j.jlumin.2012.02.022

Li, R. B., Tian, Y., Yang, X. L., Wang, W. C., and Zhang, Q. Y. (2017). BaF2 modified Cr3+/Ho3+ co-doped germanate glass for efficient 2.0 μm fiber lasers. J. Non Cryst. Solids 482, 147–153. doi: 10.1016/j.jnoncrysol.2017.12.031

Yuan, J., Wang, W. C., Chen, D. D., Peng, M. Y., Zhang, Q. Y., and Jiang, Z. H. (2014). Enhanced 1.8 μm emission in Yb3+/Tm3+ codoped tungsten tellurite glasses for a diode-pump 2.0 μm laser. J. Non Cryst. Solids 402, 223–230. doi: 10.1016/j.jnoncrysol.2014.06.008

Yuan, J., and Xiao, P. (2018). Compositional effects of Na2O, GeO2, and Bi2O3 on 1.8 μm spectroscopic properties of Tm3+ doped zinc tellurite glasses. J. Lumin. 196, 281–284. doi: 10.1016/j.jlumin.2017.12.054

Zhou, Y. X., Gai, N., Chen, F., and Yang, G. B. (2010). Effect of hydroxyl groups in erbium-doped tellurite- and bismuth-based glasses. Opt. Fiber Technol. 16, 318–322. doi: 10.1016/j.yoite.2010.08.002

Zou, X. L., and Toratani, H. (1996). Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses. J. Non Cryst. Solids 195, 113–124. doi: 10.1016/0022-3093(95)00522-6

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Yuan, Wang, Ye, Deng, Ou, Cheng, Yuan and Xiao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.