Variability for Ascorbic Acid, Beta Carotene and Minerals Content (Phosphorous, Potassium and Calcium) in Knolkhol (Brassica oleracea var. gongylodes L.) Genotypes

Rinchan Dolkar*, R.K. Samnotra, Sanjeev Kumar, R.K. Gupta and Vijayakumar

Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha J&K, India

*Corresponding author

A B S T R A C T

An experiment was conducted to study the variability for ascorbic acid, beta carotene and minerals content (phosphorous, potassium and calcium) in knolkhol (Brassica oleracea var. gongylodes L.) genotypes under sub-tropical condition of Jammu, at Vegetable Research Farm, SKUAST-J, Main campus, during the year 2016-17. High heritability (>70%) was estimated for all the quality traits and moderate for marketable knob weight/plant. High genetic advance as percentage of mean coupled with moderate to high heritability were obtained for beta carotene contents of knob, calcium contents of knob and marketable knob weight/plant indicating thereby that the selection based on phenotypic performance could be effectively utilized for isolation of superior genotypes. Moderate to high heritability and moderate genetic advance was observed for calcium contents of leaves, phosphorous contents of knob, ascorbic acid contents of knob and leaves and beta carotene contents of leaves indicates the involvement of both additive and non-additive genes.

Keywords
Heritability, Quality and variability

Introduction

Knolkhol (Brassica oleracea var. gongyloides L.) is an important cole crop widely grown in Jammu and Kashmir, West Bengal and to a limited extent as a rare exotic vegetable in some parts of Maharashtra, Assam, Uttar Pradesh and Punjab (Thamburaj and Singh, 2010). The vegetable Brassicas are consumed for their nutritional values, namely minerals, carotenoids and vitamins content (Farnham et al., 2000). The carotenoids, vitamin C and E are now firmly established as protective dietary antioxidants (Sies and Stahl, 1995). Significant variability was reported for calcium and magnesium content among broccoli cultivars (Farnham et al., 2000), but with respect to the mineral content in knolkhol only meager information is available on the genetic variability of minerals in cole crops and none of the studies describe the genetic diversity in knolkhol. Mineral concentration in head of cabbage varied highly significantly among the cultivar and germplasm indicating the presence of sufficient variability (Singh et al., 2010). To the best of our knowledge, only meagre information is available on the variability, heritability, inheritance in
knolkhol. It is thus important to ascertain the ascorbic acid content, beta carotene content and mineral nutrition characteristics of knolkhol for identifying and developing superior cultivars rich with quality parameters.

Materials and Methods

The present investigation was carried out under subtropical conditions of Jammu at Vegetable Experimental Farm, Division of Vegetable Science and Floriculture, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Main Campus, Chatha, Jammu (J&K) during during (Sept–Oct) of the year 2016-17. The experimental field of Division of Vegetable Science and Floriculture, SKUAST, Jammu is situated at 32° 40’ N latitude and 74° 58’ E longitude and has an elevation of 332 m above mean sea level. The experimental material comprised of 30 diverse genotypes of knolkhol collected from diverse agro-climatic regions of J&K along with two genotypes from IARI, Katrain, one from CSKHPKV, Palampur and three hybrids. The details of the genotypes along with their source are given below in Table 1. The experimental was laid out in Randomized Block Design with three replications during (Sept–Oct) of the year 2016-17. The sowing of all genotypes was done in nursery bed and 25 days old seedlings were transplanted at the spacing of 30 cm between rows and 30 cm between plants within the rows. The package and practices to raise successful crop of knolkhol was followed. Five plants were randomly selected from each replication per genotype for recording the various growth and yield attributing traits. The mean value was used as the replicated data and was subjected to statistical analysis using INDOSTAT software package. The data of quality traits were statistically analyzed as per methods out lined by Panse and Sukhatme (1967) for estimating the analysis of variance (ANOVA), heritability in a broad sense (Burton and De Vane 1953), genetic advance (Johnson et al., 1955), Leaf and knob sample of each genotype in replication was taken at fresh marketable stage and used to estimate ascorbic acid content of knob and leaves as per method suggested by (Sadasivam and Theymoli, 1987) and beta carotenet content of knob and leaves by as per method of (Sadasivam and Manickam, 1992). The fresh marketable knob and leaves was chopped, air dried and kept in hot air oven at 60-65 °C for drying.

These dried samples were powdered by using stainless steel blade mixer and finally stored in airtight container for the analysis of minerals. 0.5 g of dried tissues was digested with a mixture of perchloric acid and nitric acid (1:4). Dried tissues (0.5 g) and 10 ml of acid mixture were put in 100 ml conical flask, allowed over-night for pre-digestion, and then heated at 100 °C for an hour and 250 °C until the solution turned colourless and volume was reduced to 2-3 ml. The digested plant material was made up to 50ml with double distilled water and filtered. The filtrate was used for determination of calcium, potassium and phosphorous concentration as per the methods suggested by Prasad et al., (2006).

Results and Discussion

The mean squares (Table 2) revealed highly significant differences among the genotypes for the content of ascorbic acid, beta carotene and the minerals such as P, K and Ca as well as head weight indicating the presence of sufficient natural variation, which could be exploited through various breeding approaches. Singh et al., (2009) also reported sufficient amount of variability for minerals content in cultivars and hybrids of cabbage. The extent of variability for all the quality traits (Table 3) was estimated in terms of phenotypic and genotypic coefficient of variation (PCV and GCV).
Table 1: List of genotypes along with the source

Sl. No.	Code	Genotype	Source
1. G1	G40	SKUAST-J	SKUAST-J
2. G2	SIJK-02	SKUAST-J	SKUAST-J
3. G3	SIJK-03	SKUAST-J	SKUAST-J
4. G4	SIJK-04	SKUAST-J	SKUAST-J
5. G5	SIJK-05	SKUAST-J	SKUAST-J
6. G6	SJKK-01	SKUAST-K	SKUAST-K
7. G7	SJKK-02	SKUAST-K	SKUAST-K
8. G8	SJKK-03	SKUAST-K	SKUAST-K

S. No.	Code	Genotype	Source
9. G9	Early White Vienna	Directorate of Agriculture, Jammu	
10. G10	King of Market-I	Directorate of Agriculture, Jammu	
11. G11	Early SWV	NFCC, Jammu	
12. G12	Kargil Local	Kargil	
13. G13	Purple Vienna-I	JK Krishi Vikas Cooperative Ltd, Pulwama	
14. G14	Knolkhol White	JK Krishi Vikas Cooperative Ltd, Pulwama	
15. G15	King of Market-II	Sultan Seeds, Munwarabad	
16. G16	Purple Vienna-II	Sultan Seeds, Munwarabad	
17. G17	Pusa Virat	IARI, Katrain (HP)	
18. G18	White Vienna	IARI, Katrain (HP)	
19. G19	Palam Tender Knob	CSKHPKV, Palampur	

S. No.	Code	Genotype	Source
20. G20	Farashi Lajwari Local	Sopore	
21. G21	Farashi Safed Local	Sopore	
22. G22	Sopore Local	Sopore	
23. G23	Baramullah Local	Baramullah	
24. G24	Ganderbal Local	Ganderbal	
25. G25	Leh Local	Leh	
26. G26	Rajouri Local	Rajouri	
27. G27	Nowpora Local	Nowpora	

Sl. No.	Source of variation/Characters	Genotypes	Error	CD (5%)
Quality traits	Ascorbic acid content of knob (mg/100g)	23.17**	1.22	1.26
	Ascorbic acid content of leaves (mg/100g)	56.26**	3.42	2.10
	Beta carotene content of knob (mg/100g)	0.62**	0.02	0.15
	Beta carotene content of leaves (mg/100g)	0.97**	0.32	0.64
	Calcium content of knob (mg/100g)	136.74**	14.83	5.82
	Calcium content of leaves (mg/100g)	187.81**	10.28	4.85
	Potassium content of knob (mg/100g)	136.74**	187.81	3.09
	Potassium content of leaves (mg/100g)	67.50**	3.73	2.92
	Phosphorous content of knob (mg/100g)	13.07**	1.16	1.63
	Phosphorous content of leaves (mg/100g)	10.74**	0.28	0.79
Table 3 Estimates of variability parameters for various traits in knolkhol (*Brassica oleracea var. gongylodes* L.)

Characters	Mean ± SE	Range	Coefficient of variation (%)	Heritability % (Broad sense)	Genetic Advance	Genetic Advance as % age of mean	
		PCV	GCV				
Beta carotene content of knob	2.15 ± 0.08	1.55-3.47	21.68	20.81	92.13	1.13	52.73
Beta carotene content of leaves	7.34 ± 0.33	5.95-8.37	9.97	6.36	80.66	0.79	10.70
Ascorbic acid content of knob	53.87 ± 0.64	49.84-59.00	5.42	5.02	85.70	6.61	12.27
Ascorbic acid content of leaves	92.69 ± 1.07	81.33-100.37	4.95	4.53	83.73	10.14	10.94
Calcium content of knob	59.68 ± 2.22	50.00-69.33	12.48	10.68	73.26	11.53	20.33
Calcium content of leaves	101.77 ± 1.85	88.33-117.43	8.19	7.56	85.20	14.63	14.37
Potassium content of knob	353.82 ± 1.18	346.84-360.07	1.11	0.94	72.76	7.52	2.13
Potassium content of leaves	267.23 ± 1.11	253.37-274.00	1.87	1.73	85.08	11.23	4.20
Phosphorous content of knob	33.55 ± 0.62	29.71-39.08	6.75	5.94	77.45	4.63	13.80
Phosphorous content of leaves	50.77 ± 0.30	47.26-56.80	3.82	3.68	92.68	4.75	9.35
Marketable knob weight per plant	360.61 ± 24.14	280.65-447.29	15.95	10.96	47.19	72.66	20.13
The magnitude of PCV was slightly higher than the corresponding GCV for ascorbic acid and beta carotene content and minerals contents indicating lesser influence of environment on accumulation of minerals in knob. The result is in accordance with the findings of Hakala et al., (2003) and Singh et al., (2010). Heritable portion of variation can be estimate by computing the heritability and genetic advance as percentage of mean. High heritability (>70%) was estimated for all the quality traits (Table 3). A high heritability for the traits indicates that a large portion of phenotypic variance is contributed through genotypic variance and therefore a reliable selection can be made for these traits, but moderate heritability for marketable knob weight (47.19%) indicates a considerable influence of environment. Similar findings have been reported by Santhosha et al., (2015) for ascorbic acid content and marketable knob weight/plant in cauliflower, Singh and Singh (2013) for calcium and potassium content in cabbage, Singh et al., (2013) for phosphorous and calcium contents in cabbage.

High heritability alone is not enough to make sufficient improvement through selection generally in advance generations, unless accompanied by substantial amount of genetic advance (Bhargava et al., 2003). Genetic advance as percentage of mean varied from 2.13 to 52.73 %. It was estimated high for beta carotene contents of knob (52.73%), calcium contents of knob (20.33) and marketable knob weight (20.13), while it was moderate for calcium contents of leaves (14.37 %), phosphorous contents of knob (13.80 %), ascorbic acid contents of knob and leaves (12.27 %) and 10.94 %), beta carotene contents of leaves (10.70 %) and low for potassium contents of knob and leaves (2.13 % and 4.20 %)), phosphorous contents of leaves (9.35 %). Heritability estimates along with genetic advance as percentage of mean coupled with moderate to high heritability were obtained for beta carotene contents of knob, calcium contents of knob and marketable knob weight/plant indicating thereby that the selection based on phenotypic performance could be effectively utilized for isolation of superior genotypes for these traits as these are controlled by additive gene action (Panse, 1957). Moderate to high heritability and moderate genetic advance was observed for calcium contents of leaves, phosphorous contents of knob, ascorbic acid contents of knob and leaves and beta carotene contents of leaves indicates the involvement of both additive and non-additive genes. Similar findings have been observed by Singh et al., (2013) in cabbage for head weight/plant and potassium content in cabbage; Singh and Singh (2013) in cabbage for calcium and potassium content. Ghebramlak et al., (2004) for calcium and potassium content in cabbage who reported moderate to high heritability and moderate genetic advance for these traits.

References

Bhargava, A., Shukla, S., Katiyar, R. S. and Ohri, D. 2003. Selection parameters for genetic improvement in Chenopodium grain on sodic soil. Journal of Applied Horticulture, 5: 45-48.

Burton, G. W. 1952. Quantitative inheritance in grasses. Proceedings of the 6th International Grassland Congress, 1: 227-283.

Burton, G. W. and Dewane, C. H. 1953. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agronomy Journal, 45: 478-481

Chittora, A. and Singh, D. K. 2015. Genetic variability studies in early cauliflower (Brassica oleracea var. botrytis L.). Electronic Journal of Plant Breeding, 6(3): 842-847.

Chura, A., Negi, P. S., Pandey, V. 2016. Assessment of heritability and genetic advancement for yield and yield attributing traits in cabbage (Brassica
oleracea var capitata L.). International Journal of agricultural Innovation and Research, 5(1): 2319-1473.

Hakala M., Lapvetelainen A., Huopalahti R., Kallio H., Tahvonen R. 2003. Effects of varieties and cultivation conditions on the composition of strawberries. Journal of Food Composition and Analysis. 16: 67-80.

Johnson, H.W., Robinson, H.F. and Comstock, R.E. 1955. Estimation of genetic and environmental variability in soya beans. Agronomy Journal, 47: 314-318.

Kumar, V., Singh, D. K. and Panchbhaiya, A. 2017. Genetic variability studies in mid-season cauliflower (Brassica oleracea var. botrytis L.). Bulletin of Environment, Pharmacology and Life Sciences, 6(9): 99-104.

Manaware, D., Naidu, A. K. and Lal, N. 2017. Genetic diversity assessment for growth and yield traits in cauliflower. International Journal of Current Microbiology and Applied Science, 6(8): 3016-3027.

Mehra, D. and Singh, D. K. 2013. Studies on genetic variability for yield and its contributing attributes in early cauliflower (Brassica oleracea var. botrytis L.). Pantnagar Journal of Research, 11(2): 261-265.

Panse, V. G. 1957. Genetics of quantitative characters in relation to plant breeding. Indian Journal of Genetics and Plant Breeding, 47: 318-325.

Panse, V. G. and Sukhatme, P. V. (eds.). 1967. Statistical Methods for Agricultural Workers, pp. 361. ICAR, New Delhi, India.

Prasas, R., Shivay, Y. S., Kumar, D. And Sharma, S. N. 2006. Learning by doing exercise in soil fertility (A practical manual for soil fertility). Division of Agronomy, IARI, New Delhi. pp. 25-33.

Sadasivam and Manickam. 1992. Biochemical methods (2nd edition). New age international (p) limited.

Sadasivam, S. and Theymol, B. 1987. Biochemical methods. In Practical Manual in Biochemistry, 14: 178-179. Tamil Nadu Agricultural University Coimbatore.

Santhosha, H. M., Varalakshmi, B. and Manohar, R. K. 2015. Evaluation of early cauliflower (Brassica oleracea var. botrytis L.) germplasm under tropical conditions for various horticultural traits. The bioscan, 10(4): 1631-1635.

Sies, H., Stahl, W., 1995. Vitamins E and C, b-carotene and other carotenoids as antioxidants. American Journal of Clinical Nutrition, 62: 1315–1321.

Singh, B. K., Sharma, S. R. and Singh, B. 2010. Variation in mineral concentrations among cultivars and germplasm of cabbage. Journal of Plant Nutrition, 33(1): 95–104.

Singh B.K., Sharma S.R., Singh B. 2009. Heterosis for mineral elements in single cross-hybrids of cabbage (Brassica oleracea var. capitata L.). Scientia Horticulture, 122 (1): 32-36.

Singh, B. K., Sharma, S. R. and Singh, B. 2013. Genetic variability inheritance and correlation for mineral contents in cabbage (Brassica oleracea var. capitata L.). Journal of Horticultural Research, 21(1): 91-97.

Singh, R. H. and Chaudhary, B. D. 1977. Biometrical Methods in Quantitative Genetics Analysis, Kalyani Publishers, Ludhiana.

Thamburaj, S. and Singh, N. 2010. Text book of vegetables, tuber crops and spices. ICAR, New Delhi, pp. 142.

How to cite this article:

Rinchan Dolkar, R.K. Samnotra, Sanjeev Kumar, R.K. Gupta and Vijayakumar. 2018. Variability for Ascorbic Acid, Beta Carotene and Minerals Content (Phosphorous, Potassium and Calcium) in Knolkhol (Brassica oleracea var. gongylodes L.) Genotypes. Int.J.Curr.Microbiol.App.Sci. 7(06): 1020-1025. doi: https://doi.org/10.20546/ijcmas.2018.706.120