Toxicity of orally administered food-grade titanium dioxide nanoparticles

Hyoung-Yun Han1,2 | Mi-Jin Yang3 | Cheolho Yoon4 | Gwang-Hee Lee5 | Dong-Wan Kim5 | Tae-Won Kim2 | Minjeong Kwak6 | Min Beom Heo6 | Tae Geol Lee6 | Soojin Kim1 | Jung-Hwa Oh1 | Hyun-Ji Lim7 | Inkyung Oh7 | Seokjoo Yoon1,8 | Eun-Jung Park7

1Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
2College of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
3Jeonbuk Pathology Research Group, Korea Institute of Toxicology, Jeongeup, Republic of Korea
4Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
5School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
6Nanosafety Metrology Center, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
7East-West Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
8Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea

Correspondence
Eun-Jung Park, East-West Medical Science Research Institute, Kyung Hee University, Seoul 02454, Republic of Korea.
Email: pejtoxic@khu.ac.kr
Seokjoo Yoon, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
Email: sjyoon@kitox.re.kr

Funding information
Kyung Hee University, Grant/Award Number: 20180872 and 20192100; Ministry of Science and ICT, Grant/Award Number: NRF-2015M3A7B6027948 and NRF-2016M3A9C4953144; Korea Institute of Toxicology, Grant/Award Number: KK-2001

Abstract
This year, France banned the application of titanium dioxide nanoparticles as a food additive (hereafter, E171) based on the insufficient oral toxicity data. Here, we investigated the subchronic toxic responses of E171 (0, 10, 100, and 1,000 mg/kg) and tried to elucidate the possible toxic mechanism using AGS cells, a human stomach epithelial cell line. There were no dose-related changes in the Organisation for Economic Cooperation and Development test guideline-related endpoints. Meanwhile, E171 deeply penetrated cells lining the stomach tissues of rats, and the IgM and granulocyte-macrophage colony-stimulating factor levels were significantly lower in the blood from rats exposed to E171 compared with the control. The colonic antioxidant protein level decreased with increasing Ti accumulation. Additionally, after 24-h exposure, E171 located in the perinuclear region of AGS cells and affected expression of endoplasmic reticulum stress-related proteins. However, cell death was not observed up to the used maximum concentration. A gene profile analysis also showed that immune response-related microRNAs were most strongly affected by E171 exposure. Collectively, we concluded that the NOAEL of E171 for 90 days repeated oral administration is between 100 and 1,000 mg/kg for both male and female rats. Additionally, further study is needed to clarify the possible carcinogenesis following the chronic accumulation in the colon.

KEYWORDS
cancer, colon, E171, microRNA, stomach, titanium dioxide nanoparticles, toxicity
1 | INTRODUCTION

Owing to its beneficial properties (i.e., bright white, poorly water soluble, and inactive), titanium dioxide (TiO₂) particles have been used to manufacture a wide range of products including cosmetics, skin care products, paints, and building materials as a pigment (called as Pigment White 6 or CI77891) for about 100 years (European Union, 1994; Weir, Westerhoff, Fabricius, Hristovski, & von Goetz, 2012). Market survey data also suggested that paints, varnishes, paper, and plastics account for ~80% of the global TiO₂ consumption (Brandessence Market Research and Consulting Pvt. Ltd., 2020). In addition, the Joint Food and Agriculture Organization (FAO)/World Health Organization (WHO) Expert Committee of Food Additives (1969) evaluated TiO₂ as a food additive and designated an acceptable daily TiO₂ intake as "not limited except for good manufacturing practice." The Scientific Committee on Food classified TiO₂ as “colours for which an acceptable daily intake was not established but which could be used in food” in 1977 (European Food Safety Authority [EFSA] Panel on Food Additives and Nutrient Sources Added to Food [ANS], 2016). Similarly, the US Food and Drug Administration (FDA) accepted the addition of ≤1% food-grade TiO₂ (called as E171 in EU) to food products without the requirement of ingredient label disclosure (US FDA, 2020). Thus, TiO₂ particles have been extensively used in the production of various foodstuffs such as chocolates, candies, chewing gum, ice cream, donuts, confectionery, and beverages, and they have been also incorporated into toothpaste and pharmaceutical products (Dorier et al., 2019).

Meanwhile, the application of TiO₂ particles in the food industry has been a major public concern for a long period of time regarding the direct exposure, especially in children who tend to like eating sweets, and this concern has been amplified with the growth of the nanotechnology industry. In addition, the International Agency for Research on Cancer (IARC) classified inhaled TiO₂ nanoparticles (NPs) as a Group 2B (potential human carcinogen), particularly for workers (IARC, 2006). France, which worked as a lead sponsor in a sponsorship program of the Organisation for Economic Cooperation and Development (OECD) working party for manufactured nanomaterials, also reviewed the health effects of food-grade TiO₂ NPs (hereafter, E171) in 2017 (The French Agency for Food, Environmental and Occupational Health & Safety, 2020), and France’s National Institute for Agricultural Research (INRA) and its colleagues reported that orally dosed E171 may cross the intestinal wall and translocate to other organs (or tissues) via the bloodstream (Bettini et al., 2017). They demonstrated that the adverse health effects of E171 are attributable to the absorption of the nanoscale but not the microscale particle fraction and that E171 disturbs the homeostasis of the immune system. Similarly, about 36% of the particles obtained from a single source of E171 were less than 100 nm in dimension, indicating a potentially significant dietary exposure to TiO₂ NPs (Tassinari et al., 2014). In addition, chronic intake of foodstuffs containing E171 initiated and promoted the expansion of preneoplastic lesions in the colon and induced a slight inflammatory microenvironment in the mucosa (Dorier et al., 2019). Therefore, France banned the use of TiO₂ as a food additive in 2020 based on inadequate evidence to guarantee its safety to humans. In this study, our objective was to identify the possible adverse health effects of ingested E171. We also investigated the potential toxic mode of action of E171 in AGS cells, a human stomach epithelial cell line.

2 | MATERIALS AND METHODS

2.1 | Characterization

E171 (HOMBITAN® FG; purity 99.5%) was purchased from Venator Germany GmbH (Duisburg, Germany) and suspended in deionized water (DW) (stock concentration of 100 mg/ml). The suspension was added to artificial gastric fluid (AGF) (Marques, Loebenberg, & Almukainzi, 2011) and cell culture medium to evaluate its stability in biological systems. Particle morphology was observed by transmission electron microscope (TEM) images (JEM-3000F, 200 kV, JEOL Ltd., Tokyo, Japan), and particle size distribution and surface charge were measured with a zeta-potential and particle size analyzer (ELSZ-1000 Photal, Otsuka Electronics, Osaka, Japan).

2.2 | Animals and housing

Five-week-old male and female specific pathogen-free Sprague Dawley rats (40 rats per sex and five rats per cage) were obtained from ORIENT BIO Inc. (Seongnam-si, Gyeonggi-do, Korea) and maintained in stainless wire cages (255 × 465 × 200 mm) under controlled environment (12/12 h light/dark cycle with 150–300 lx, temperature of 23 ± 3°C, relative humidity of 50 ± 10%, and air ventilation of 10–20 times/h). Food (PMI Nutrition International, St. Louis, MO, USA) was ad libitum given with tap water, and wood chews were provided for animal welfare. The rats were randomly assigned to one of four groups (0, 10, 100, or 1,000 mg/kg) via Pristima v. 7.4 (Xybion Medical Systems Corporation, Lawrenceville, NJ, USA). The dose levels were selected based on a previous 4-week dose range finding study and 13-week repeated study of a different TiO₂ material (P25) in rats (Heo et al., 2020). According to OECD test guideline no. 408, E171 (10 rats/sex/dose) was administered daily by oral gavage for 90 days. The control group received equal volumes of DW, and the rats were euthanized using isoflurane on necropsy. The experimental design was reviewed and assessed by the Association for the Assessment and Accreditation of Laboratory Animal Care International and the Institutional Animal Care and Use Committee of the Korea Institute of Toxicology.

2.3 | Clinical observations and blood analysis

The health status of all rats was observed daily during the study period. The type, time of occurrence, and severity of abnormal
symptoms were recorded with the Pristima v. 7.4 system. The rats were weighed upon arrival, before randomization, weekly during pretreatment, before dosing during treatment, and before necropsy. Food consumption was recorded weekly and calculated as g/rat/day. Urinalysis was performed during the treatment period on all surviving animals. The urine was collected for ~17 h before necropsy and its volume, specific gravity (SG), color, pH, and protein (PRO), ketone body (KET), occult blood (BLD), glucose (GLU), bilirubin (BIL), nitrate (NIT), and urobinogen (URO) levels were measured with a Cobas U411 urine analyzer (Roche, Basel, Switzerland) and a urine chemical analyzer (TBA 120FR: Toshiba Corp., Tokyo, Japan). The urine was centrifuged (1,500 rpm, 5 min) and its sediment casts (epithelial cells [EPI], erythrocytes [RBC], leucocytes [WBC], and blood [BLO]) were stained and microscopically observed (Nikon Eclipse CI, Nikon, Japan). Upon necropsy, blood was drawn from the venae cavae of all rats and stored in tubes coated with ethylenediaminetetraacetic acid dipotassium and heparin. Hematological and clinical chemistry analyses were performed in an ADVIA 2100i hematology system (Siemens, Washington, DC, USA) and an automatic analyzer (TBA 120FR: Toshiba Corp., Tokyo, Japan), respectively.

2.4 | Macroscopic and microscopic findings

Forty-two tissues were taken from all rats at necropsy. The tissues were weighed, and relative organ weights were calculated using the body weights measured at necropsy. The eyes with optic nerves were fixed in Davidson’s fixative solution, and all other tissues were preserved in 10% (v/v) neutral buffered formalin. The tissues were embedded in paraffin, sectioned, stained with hematoxylin and eosin, and examined under microscope (Olympus BX53, Olympus America, USA).

2.5 | Accumulation of E171

AGS cells (no. 21739), a human stomach epithelial cell line, was purchased from Korea Cell Line Bank and maintained in 37°C incubator with humidified atmosphere of 5% CO₂ using RPMI1640 media containing 10% fetal bovine and 1% penicillin/streptomycin. The colons obtained from rats administered the maximum dose were chopped, and AGS cells were harvested after 24-h exposure with 40 μg/ml of E171. The stomach tissues and the AGS cells were put in Karnovsky’s fixative solution (Electron Microscopy Sciences, Hatfield, PA, USA) overnight at 4°C. The samples were then fixed in a mixture of 2% (v/v) glutaraldehyde and 0.1-M sodium cacodylate buffer for 2 h, stained with 0.5% (w/v) uranyl acetate, dehydrated in graded ethanol solutions and propylene oxide, and embedded in Spurr’s resin (Electron Microscopy Sciences, Hatfield, PA, USA). The colon tissues and AGS cells were sectioned with an ultramicrotome (MT-X; RMC, Tucson, AZ, USA), stained with 2% (w/v) uranyl acetate and Reynolds’s lead citrate, and imaged with a TEM at 120 (Talos L120C, FEI, Hillsboro, OR, USA) and 80 kV (JEM1010, JEOL, Tokyo, Japan).

2.6 | Trace element determination

The tissues (colons, spleens, and kidneys) were digested in 70% (v/v) nitric acid solution using a microwave digestion system (Milestone, Sorisole, Italy). Finally, concentrations of trace elements in tissues were measured by inductively coupled plasma mass spectrometry (ICP-MS) at the Korean Basic Science Institute (Seoul, Korea).

2.7 | Immunohistochemistry

Paraffin-embedded stomach tissues were dewaxed with xylene and a graded alcohol series (100%, 95%, 70%, and 50%). After washing with phosphate-buffered saline (PBS), the tissues were placed in an antigen retrieval solution (ENZO, Seoul, Korea) and permeabilized with PBS containing Tween-20 (PBST, 1%). After blocking with 5% (v/v) bovine serum albumin in PBST (0.01%), the tissues were incubated overnight with rabbit polyclonal antibody against superoxide dismutase (SOD)-1, SOD-2 (Santa Cruz Biotechnology, Dallas, TX, USA), and cytochrome C (Cell Signaling Technology, Danvers, MA, USA) at 4°C. Following, the tissues were reacted with affinity-purified Alexa Fluor 488-conjugated goat anti-rabbit IgG (Invitrogen, Carlsbad, CA, USA) and mounted with 4′,6-diamidino-2-phenylindole mounting medium. Lastly, the images were captured with an inverted phase-contrast fluorescence microscope (IX51, Olympus, Tokyo, Japan).

2.8 | Enzyme-linked immunosorbent assay

Serum was made by centrifugation (3,000 rpm, 15 min) of whole blood, and the level of immunoglobulin (Ig)A, IgE, IgG (KOMA Biotech, Seoul, Korea), IgM, and granulocyte-macrophage colony-stimulating factor (GM-CSF) (eBioscience, San Diego, CA, USA) was measured according to manufacturer’s instruction. Finally, absorbance (450 nm) was measured using a 96-well microplate reader (PerkinElmer, Waltham, MA, USA), and the concentration in each sample was calculated based on the corresponding standard curve.

2.9 | Western blotting

The AGS cells (70%–80% of confluence) were incubated with E171 (0, 10, 20, and 40 μg/ml) for 24 h. Proteins in the cell lysates were quantified by bicinchoninic acid assay (Sigma-Aldrich, St. Louis, MO, USA), and the same amounts of proteins were electrophoretically separated on sodium dodecyl sulfate-polyacrylamide gel. Then, the proteins were transferred to nitrocellulose membranes (0.45-μm pore, GE Healthcare Life Sciences, Freiburg, Baden-Württemberg, Germany) and blocked with 5% (v/v) skim milk in PBST (0.05%). The membranes
Characterization of E171. E171 was first suspended in DW and then diluted (1:1 of volume ratio) using AGF and cell culture media. (A) Transmission electron microscope images of morphologies and crystal structures, (B) particle size distribution, and (C) zeta potential. AGF, artificial gastric fluid; DW, deionized water [Colour figure can be viewed at wileyonlinelibrary.com]
were reacted overnight at 4°C with primary mouse monoclonal antibodies against lysosome-associated membrane protein (LAMP)-1, β-actin, ER oxidoreductin (ERO)-1α, ferritin (HC), phospho-JNK, protein disulfide isomerase (PDI), eukaryotic translation initiation factor (eIF)2-α, catalase, caspase-1 (Santa Cruz Biotechnology, Dallas, TX, USA), C/EBP homologous protein (CHOP) (Cell Signaling Technology, Danvers, MA, USA), p62 (Abcam, Cambridge, UK), and rabbit monoclonal antibody against protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK), inositol-requiring enzyme (IRE)1-α (Cell Signaling Technology, Danvers, MA, USA), and rabbit polyclonal antibody against SOD-1, SOD-2, interleukin (IL)-18 (Santa Cruz Biotechnology, Dallas, TX, USA), binding immunoglobulin protein (Bip), calnexin, microtubule-associated proteins 1A/1B light chain (LC)3B (Cell Signaling Technology, Danvers, MA, USA), and goat polyclonal antibody against NACHT, LRR, and PYD domain-containing protein (NALP)3 (Abcam, Cambridge, UK). The proteins were then reacted with horseradish peroxidase (HRP)-conjugated mouse and rabbit or goat secondary antibodies (Santa Cruz Biotechnology, Dallas, TX, USA) and blotted in a ChemiDoc XRS+ system (Bio-Rad Laboratories, Hercules, CA, USA).

2.10 | Gene profiling analysis

The AGS cells were incubated with or without E171 (40 μg/ml) for 24 h to evaluate the effects of E171 on the gene profile. Briefly, mRNA was prepared using TRIzol solution (Invitrogen) and the microarray analysis was conducted at Macrogen (Seoul, Korea) using an Affymetrix® human 2.0ST gene chip (Illumina, San Diego, CA, USA). The data were summarized and normalized by the robust multiaverage (RMA) method in Affymetrix® Power Tools. The results of the gene-level RNA analysis were exported to perform a differentially expressed gene (DEG) analysis. For each DEG set, a hierarchical cluster analysis was conducted using complete linkage and Euclidean distance. Gene enrichment and functional annotation analyses of significant probe lists were performed via GO (http://geneontology.org) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (www.genome.jp/kegg/). All data analyses and DEG visualizations were performed in R v. 3.3.3 (www.r-project.org).

2.11 | Statistical analysis

Statistical significance of data were analyzed using Prisitima v. 7.4. Multiple comparison methods, including Bartlett’s test, one-way analysis of variance followed by post hoc Dunnett’s test, Kruskal–Wallis (H) test followed by post hoc Dunn’s rank sum test, and Fisher’s exact test, were used to compare the data of the various treatment groups with those of the control. A p < 0.05 level was considered to be significant.

3 | RESULTS

3.1 | Characterization of E171

E171 had diameter of about 150 nm and a single anatase phase (PDF card no. 21-1272) in DW (Figure 1), and the diameter and shape were not notably altered either in AGF or cell culture media. In addition, in the same condition, E171 had highly crystalline structures with a 0.35-mm lattice spacing corresponding to the (101) plane of the anatase phase (Figure 1A). Meanwhile, the average hydrodynamic

Table 1

Day	Male	10 mg/kg/day	100 mg/kg/day	1,000 mg/kg/day	Female	Control	10 mg/kg/day	100 mg/kg/day	1,000 mg/kg/day
5	30.7 ± 1.88	32.1 ± 1.11	30.0 ± 1.15	31.4 ± 1.32	22.8 ± 1.11	23.6 ± 2.08	22.8 ± 1.45	22.0 ± 0.82	
11	33.3 ± 1.23	35.8 ± 0.89**	33.5 ± 1.76	35.7 ± 1.89**	24.0 ± 1.45	23.9 ± 2.17	24.1 ± 1.28	23.2 ± 0.75	
18	35.9 ± 1.42	37.8 ± 1.94*	36.2 ± 2.05	39.1 ± 1.55**	26.5 ± 1.27	26.9 ± 2.35	26.5 ± 2.19	25.1 ± 1.28	
25	36.4 ± 1.25	37.9 ± 2.18	36.5 ± 2.08	40.0 ± 2.8**	26.7 ± 1.53	26.6 ± 2.40	26.6 ± 2.42	25.7 ± 1.12	
32	36.4 ± 0.79	36.9 ± 1.81	36.7 ± 2.21	39.5 ± 2.76**	27.2 ± 1.81	27.1 ± 2.34	27.2 ± 3.81	26.2 ± 1.55	
39	36.6 ± 1.04	38.1 ± 2.6	37.7 ± 2.19	38.7 ± 3.97	27.6 ± 2.20	27.1 ± 2.17	26.5 ± 2.75	25.7 ± 1.86	
46	36.8 ± 0.85	38.4 ± 2.47	37.7 ± 1.90	40.4 ± 3.04**	27.7 ± 1.63	28.3 ± 2.75	27.3 ± 2.88	26.4 ± 1.49	
53	36.5 ± 1.74	37.7 ± 2.28	37.4 ± 2.73	40.1 ± 3.07**	27.8 ± 2.19	27.6 ± 2.63	27.2 ± 2.58	26.3 ± 1.16	
60	35.8 ± 1.26	37.5 ± 2.32	36.9 ± 1.94	38.4 ± 2.42**	26.5 ± 2.17	26.0 ± 1.91	26.0 ± 1.82	24.7 ± 1.88	
67	35.8 ± 0.81	37.9 ± 2.38	37.1 ± 2.33	38.0 ± 2.91*	27.0 ± 2.74	26.2 ± 1.81	26.0 ± 1.99	24.8 ± 1.27	
74	36.1 ± 0.90	37.6 ± 2.43	37.1 ± 1.85	38.1 ± 2.25	26.6 ± 1.80	26.1 ± 1.77	25.5 ± 1.91	24.9 ± 1.60	
81	36.2 ± 1.10	37.3 ± 2.18	36.7 ± 1.88	38.6 ± 2.33**	25.6 ± 2.24	24.7 ± 1.44	24.2 ± 1.66	24.9 ± 1.19	
88	35.1 ± 0.89	37.7 ± 1.82**	36.2 ± 2.30	38.5 ± 2.16**	25.4 ± 1.58	23.7 ± 1.77	24.3 ± 1.82	24.1 ± 1.47	

Note. Data are represented as mean ± SD.
*Significant differences from control group (p < 0.05).**Significant differences from control group (p < 0.01).
TABLE 2 Summary of hematological changes after dosing E171 for 90 days

Unit	Male	Female		
	Control	10 mg/kg/day	100 mg/kg/day	1,000 mg/kg/day
RBC (×10^6/μl)	8.8 ± 0.34	8.8 ± 0.50	8.7 ± 0.41	8.8 ± 0.35
HGB (g/dl)	15.3 ± 0.52	15.5 ± 0.73	15.6 ± 0.62	15.5 ± 0.49
HCT (%)	48.9 ± 1.60	49.6 ± 2.40	49.7 ± 1.66	49.3 ± 1.57
MCV (fl)	55.5 ± 1.09	56.4 ± 1.59	57.1 ± 1.72	56.2 ± 1.30
MCH (pg)	17.3 ± 0.40	17.7 ± 0.78	18.0 ± 0.68	17.6 ± 0.58
MCHC (g/dl)	31.2 ± 0.37	31.2 ± 0.60	31.5 ± 0.32	31.4 ± 0.36
RET (%)	2.0 ± 0.18	2.0 ± 0.26	2.1 ± 0.34	2.1 ± 0.23
RETA (10^9/L)	174.0 ± 19.30	179.1 ± 23.54	185.3 ± 27.26	181.8 ± 19.75
PLT (10^3/μl)	1021.4 ± 132.04	983.0 ± 165.33	900.2 ± 211.36	964.1 ± 130.45
NEU (%)	12.9 ± 4.34	18.7 ± 6.34	15.3 ± 4.57	18.7 ± 6.64
LYM (%)	82.0 ± 4.71	75.2 ± 5.89*	79.3 ± 4.75	75.2 ± 6.39*
EOS (%)	1.4 ± 0.45	1.5 ± 0.60	1.3 ± 0.41	1.4 ± 0.27
MON (%)	2.7 ± 0.92	3.5 ± 1.13	3.1 ± 0.82	3.4 ± 0.49
BAS (%)	0.3 ± 0.07	0.4 ± 0.14	0.4 ± 0.10	0.3 ± 0.11
LUC (%)	0.7 ± 0.57	0.7 ± 0.36	0.7 ± 0.23	0.9 ± 0.74
WBC (×10^3/μl)	10.2 ± 1.58	11.6 ± 3.13	11.2 ± 2.40	9.9 ± 2.63

Note. Data are represented as mean ± SD.

*Significant differences from control group (*p* < 0.05).
Unit	Male			Female				
	Control	10 mg/kg/day	100 mg/kg/day	1,000 mg/kg/day	Control	10 mg/kg/day	100 mg/kg/day	1,000 mg/kg/day
GLU (mg/dl)	102.2 ± 18.18	113.5 ± 25.27	121.4 ± 22.60	110.6 ± 32.01	131.6 ± 29.97	125.2 ± 19.61	123.5 ± 15.81	133.1 ± 18.23
BUN (mg/dl)	16.0 ± 2.13	17.4 ± 1.21	16.6 ± 1.37	16.7 ± 0.70	18.9 ± 2.94	20.2 ± 3.29	20.0 ± 3.79	20.9 ± 2.73
CREA (mg/dl)	0.5 ± 0.03	0.5 ± 0.03	0.5 ± 0.06	0.5 ± 0.02	0.6 ± 0.07	0.6 ± 0.08	0.6 ± 0.08	0.6 ± 0.05
TP (g/dl)	6.6 ± 0.28	6.5 ± 0.28	6.4 ± 0.24	6.6 ± 0.28	7.3 ± 0.41	7.2 ± 0.27	7.4 ± 0.49	7.3 ± 0.51
ALB (g/dl)	4.2 ± 0.16	4.1 ± 0.16	4.1 ± 0.15	4.2 ± 0.16	4.7 ± 0.31	4.7 ± 0.17	4.8 ± 0.32	4.7 ± 0.34
A/G (ratio)	1.8 ± 0.08	1.7 ± 0.07	1.8 ± 0.14	1.8 ± 0.10	1.9 ± 0.11	1.9 ± 0.13	1.9 ± 0.15	1.8 ± 0.15
AST (IU/L)	112.0 ± 15.04	112.7 ± 11.22	117.8 ± 21.85	111.6 ± 14.52	122.5 ± 10.08	124.2 ± 23.55	123.0 ± 38.43	120.5 ± 14.49
ALT (IU/L)	26.0 ± 4.44	27.6 ± 3.16	30.9 ± 5.16	26.3 ± 3.21	33.5 ± 11.40	32.2 ± 14.81	28.6 ± 12.84	41.4 ± 21.00
TBIL (mg/dl)	0.1 ± 0.02	0.1 ± 0.01	0.1 ± 0.01	0.1 ± 0.01	0.1 ± 0.01	0.1 ± 0.02	0.1 ± 0.02	0.1 ± 0.02
GGT (IU/L)	0.6 ± 0.23	0.7 ± 0.23	0.7 ± 0.15	0.6 ± 0.31	1.1 ± 0.50	0.8 ± 0.44	0.8 ± 0.42	1.1 ± 0.41
ALP (IU/L)	241.5 ± 48.68	231.9 ± 45.50	315.0 ± 78.00	248.7 ± 48.63	172.9 ± 44.99	133.8 ± 24.81	163.0 ± 36.61	141.3 ± 29.71
TCHO (mg/dl)	69.1 ± 15.91	69.2 ± 11.27	63.3 ± 18.06	69.4 ± 11.00	86.5 ± 26.34	76.2 ± 10.89	91.4 ± 18.61	88.0 ± 19.24
TG (mg/dl)	38.2 ± 19.32	55.0 ± 24.07	43.5 ± 13.43	50.5 ± 21.66	40.0 ± 25.48	32.2 ± 11.11	32.0 ± 15.08	30.6 ± 6.43
Ca (mg/dl)	10.6 ± 0.35	10.9 ± 0.39	10.8 ± 0.32	10.9 ± 0.46	11.4 ± 0.44	11.4 ± 0.32	11.5 ± 0.46	11.6 ± 0.44
IP (mg/dl)	9.3 ± 1.19	9.5 ± 1.16	9.7 ± 0.80	9.9 ± 1.02	8.3 ± 0.91	8.0 ± 0.64	7.7 ± 1.02	7.9 ± 1.25
K (mmol/L)	7.6 ± 2.02	7.7 ± 1.35	8.0 ± 1.27	8.0 ± 1.28	7.2 ± 0.74	6.8 ± 1.26	6.5 ± 0.86	7.3 ± 0.71
CK (IU/L)	694.6 ± 182.76	631.7 ± 152.11	646.7 ± 233.09	699.3 ± 181.56	553.4 ± 133.95	639.7 ± 165.06	581.1 ± 200.46	519.2 ± 156.93
PL (mg/dl)	99.3 ± 18.92	106.2 ± 15.60	98.2 ± 20.94	105.4 ± 17.04	160.5 ± 43.99	140.1 ± 15.29	167.5 ± 28.55	158.1 ± 24.52
Na (mmol/L)	143.6 ± 2.12	144.2 ± 2.15	143.5 ± 1.78	144.9 ± 1.60	143.7 ± 1.42	143.9 ± 1.45	144.7 ± 1.16	144.9 ± 1.60
Cl (mmol/L)	100.0 ± 1.25	101.0 ± 1.63	100.7 ± 1.57	100.8 ± 1.23	102.3 ± 1.77	102.6 ± 1.35	102.3 ± 1.16	102.7 ± 1.57

*Significant differences from control group (p < 0.05).
TABLE 4 Absolute organ weights after E171 treatment at 10, 100, and 1,000 mg/kg/day for 90 days

Unit (g)	Male	Female													
	Control 10 mg/kg/day 100 mg/kg/day 1,000 mg/kg/day	Control 10 mg/kg/day 100 mg/kg/day 1,000 mg/kg/day													
	Adrenal glands	Brain	Heart	Kidneys	Liver	Spleen	Thymus	Thyroid and parathyroid glands	Lung	Testes	Ovaries	Uterus/cervix			
	0.066 ± 0.0071 0.071 ± 0.0044 0.064 ± 0.0061 0.061 ± 0.0085	2.234 ± 0.1488 2.249 ± 0.0753 2.205 ± 0.0561 2.325 ± 0.0952	1.705 ± 0.1833 1.761 ± 0.1180 1.726 ± 0.1538 1.819 ± 0.0881	4.174 ± 0.5196 4.288 ± 0.5575 3.870 ± 0.4626 4.241 ± 0.3319	16.675 ± 2.1430 17.514 ± 2.4145 16.330 ± 2.4597 18.297 ± 2.8235	0.923 ± 0.1256 0.970 ± 0.1492 0.964 ± 0.1673 0.997 ± 0.1510	0.433 ± 0.0761 0.427 ± 0.0568 0.454 ± 0.1055 0.426 ± 0.0701	0.025 ± 0.0059 0.032 ± 0.0068 0.028 ± 0.0050 0.029 ± 0.0057	1.835 ± 0.2212 1.891 ± 0.1013 1.892 ± 0.2010 1.905 ± 0.1292	3.690 ± 0.3563 3.851 ± 0.1839 3.532 ± 0.4235 3.735 ± 0.4352	-	-	-	-	-

Note. Data are represented as mean ± SD.

TABLE 5 Relative organ weights after E171 treatment at 10, 100, and 1,000 mg/kg/day for 90 days

Unit (%body)	Male	Female													
	Control 10 mg/kg/day 100 mg/kg/day 1,000 mg/kg/day	Control 10 mg/kg/day 100 mg/kg/day 1,000 mg/kg/day													
	Adrenal glands	Brain	Heart	Kidneys	Liver	Spleen	Thymus	Thyroid and parathyroid glands	Lung	Testes	Ovaries	Uterus/cervix			
	0.011 ± 0.0017 0.012 ± 0.0012 0.011 ± 0.0009 0.010 ± 0.0014*	0.384 ± 0.0342 0.379 ± 0.0306 0.379 ± 0.0380 0.371 ± 0.0345	0.292 ± 0.0158 0.296 ± 0.0201 0.295 ± 0.0156 0.289 ± 0.0159	0.714 ± 0.0618 0.717 ± 0.0524 0.660 ± 0.0536 0.674 ± 0.0432	2.846 ± 0.1569 2.926 ± 0.1890 2.774 ± 0.2335 2.886 ± 0.2117	0.158 ± 0.0210 0.163 ± 0.0228 0.164 ± 0.0187 0.158 ± 0.0217	0.075 ± 0.0144 0.072 ± 0.0119 0.077 ± 0.0164 0.068 ± 0.0125	0.004 ± 0.0013 0.005 ± 0.0014 0.005 ± 0.0007 0.005 ± 0.0010	0.314 ± 0.0213 0.319 ± 0.0330 0.324 ± 0.0387 0.303 ± 0.0163	0.635 ± 0.0819 0.649 ± 0.0590 0.603 ± 0.0595 0.593 ± 0.0638	-	-	-	-	-

Note. Data are represented as mean ± SD.

*Significant differences from control group (p < 0.05).
TABLE 6	Summary of microscopic findings at control and 1,000 mg/kg/day dosed rat for 90 days				
	Males (N = 10)	Females (N = 10)			
	Control	1,000 mg/kg	Control	1,000 mg/kg	
Adrenal glands	Vacuolation, zona fasciculata	2 (1>)	3 (1>)	-	-
	Granuloma	3 (2>)	2 (2>)	-	1 (1>)
Epididymis	Vacuolation, tubular epithelium	1 (1>)	-	-	-
Eyes	Atrophy, retina	-	1 (2>)	-	1 (2>)
	Folds, retina	-	1 (2>)	-	1 (1>)
Heart	Infiltration, mononuclear cell	7 (1>)	9 (1>)	1 (1>)	-
Jejunum	Granuloma, Peyer's patch	1 (1>)	-	-	-
Kidneys	Basophilia, tubules	5 (1>)	6 (1>)	2 (1>)	2 (1>)
	1 (2>)	1 (2>)	-	-	
	Casts, hyaline	1 (1>)	2 (1>)	1 (1>)	-
	Cyst (s)	2 (1>)	2 (1>)	-	1 (1>)
	Dilation, pelvis	-	-	-	1 (2>)
	Dilation, tubules	2 (1>)	-	2 (1>)	1 (1>)
	Fibrosis, interstitial	2 (1>)	1 (1>)	3 (1>)	1 (1>)
	-	1 (2>)	-	-	
	Hyperplasia, urothelial cell	-	1 (1>)	-	-
	Infiltration, mononuclear cell, interstitial	6 (1>)	5 (1>)	5 (1>)	5 (1>)
	Mineralization, corticomedullary junction	-	-	2 (1>)	4 (1>)
	Mineralization, medulla	-	-	1 (1>)	1 (1>)
Liver	Fibrosis	1 (1>)	-	-	-
	Infiltration, mononuclear cell	6 (1>)	10 (1>)	8 (1>)	8 (1>)
	-	2 (2>)	1 (2>)	-	
	Necrosis, focal	1 (1>)	3 (1>)	2 (1>)	1 (1>)
	Vacuolated area	2 (1>)	1 (1>)	-	-
	-	1 (2>)	1 (2>)	-	
Lung	Aggregation, foamy macrophage	1 (1>)	3 (1>)	2 (1>)	6 (1>)
	Eosinophilic crystal	-	1 (1>)	-	-
	Infiltration, mononuclear cell	-	-	2 (1>)	-
	Infiltration, mixed cell	1 (1>)	2 (1>)	-	1 (1>)
	Pigment, alveolar duct	-	2 (2>)	-	-
Pancreas	Atrophy, acinar cell	-	1 (1>)	-	-
	Fibrosis, islet	-	2 (1>)	-	-
	Infiltration, fat	-	2 (1>)	-	-
	Infiltration, mononuclear cell	-	1 (1>)	2 (1>)	1 (1>)
	Necrosis, single cell, acinar	1 (1>)	-	2 (1>)	1 (1>)
	-	1 (2>)	1 (2>)	-	
Pituitary gland	Cyst(s), pars distalis	-	1 (2>)	-	-
	Vacuolation	5 (1>)	5 (1>)	-	-
Prostate	Infiltration, mononuclear cell	5 (1>)	2 (1>)	-	-
	-	2 (2>)	-	-	
Skin, inguinal	Dermatitis	-	-	1 (2>)	-
	Hyperplasia, epidermal	-	-	1 (1>)	-
Spleen	Extramedullary hemopoiesis	1 (1>)	1 (1>)	1 (1>)	1 (1>)
Testes	Atrophy, tubules	1 (1>)	-	-	-
Thymus	Hyperplasia, epithelial cell	-	2 (1>)	6 (1>)	6 (1>)

Continues
diameters (Figure 1B) and the average surface charge values were quite different in the DW, AGF, and cell culture media (Figure 1C).

3.2 | Clinical observations

There were no treatment-related deaths. Abnormal clinical signs such as fur loss, scabs, scars, scratch wounds, swelling, and discolored urine were observed in the E171-dosed rats, but these effects were not dose dependent. Whereas body weight did not significantly differ among groups (Table S1), a significant increase in food consumption was observed only in male rats dosed at 1,000 mg/kg (Table 1).

3.3 | Blood analysis

As shown in Table 2, the proportion of lymphocytes in WBC slightly decreased in male rats administered the maximum E171 dose. There were no dose-related changes in any hematological (Table 2) and biochemical (Table 3) parameters, absolute organ weight (Table 4), and organ weight relative to body weight (Table 5).

3.4 | E171 accumulation in the stomach wall

There are no remarkable changes in macroscopic finding (data not shown), and dose-related histopathological lesions were also not detected (Table 6 and Figure S1). Meanwhile, we found E171 accumulation in the stomach wall of rats administered with 1,000 mg/kg of E171 for 90 days (Figures 2 and S2).

3.5 | The main routes of excretion

TiO$_2$ has low water solubility but can be dissolved in the acidic conditions such as gastric juice and lysozyme. NPs can also penetrate into

TABLE 6 (Continued)

	Males (N = 10)	Females (N = 10)		
	Control	1,000 mg/kg	Control	1,000 mg/kg
Thyroid glands				
Hypertrophy, follicular cell	2 (1>) 3 (1>)	1 (1>) 5 (1>)		
	3 (2>) 4 (2>)	2 (2>) 1 (2>)		

Note. Ten rats per group were analyzed, and data were expressed as number of animals showing histological abnormalities (number of findings in individual).

FIGURE 2 Microscopic findings in the stomach wall after treatment of E171. No remarkable findings were obtained from the 0 mg/kg dosed rat (control), whereas E171 accumulation was found at 1,000 mg/kg dosed rat.
Elements	Tissues	Male	Control	10 mg/kg/day	100 mg/kg/day	1,000 mg/kg/day	Female	Control	10 mg/kg/day	100 mg/kg/day	1,000 mg/kg/day
Ti	Colon	23.77 ± 11.12	15.88 ± 2.30	15.09 ± 5.43	88.36 ± 68.06		13.94 ± 1.07	19.19 ± 3.04	22.93 ± 15.92	69.55 ± 56.95	
		12.61 ± 3.78	9.06 ± 1.77	7.75 ± 1.30	10.46 ± 1.76		8.04 ± 0.71	4.59 ± 4.39	8.30 ± 0.99	12.47 ± 4.16	
	Spleen	7.96 ± 1.18	8.04 ± 1.25	8.66 ± 1.45	9.89 ± 1.66		14.90 ± 2.27	20.08 ± 6.59	9.25 ± 8.58	13.73 ± 2.40	
Cu	Colon	58.80 ± 14.37	47.34 ± 3.64	76.35 ± 71.18	50.36 ± 16.16		45.09 ± 4.43	55.29 ± 7.54	51.10 ± 4.28	57.47 ± 7.60	
	Kidney	278.11 ± 103.50	238.06 ± 69.65	217.14 ± 32.48	295.57 ± 70.45		222.71 ± 70.10	183.85 ± 70.88	412.00 ± 151.31	215.23 ± 51.48	
	Spleen	35.76 ± 2.07	36.53 ± 2.38	35.61 ± 1.75	40.73 ± 1.89		45.34 ± 10.54	57.15 ± 19.99	44.93 ± 5.44	42.86 ± 3.39	
Zn	Colon	760.24 ± 144.80	910.06 ± 377.72	696.52 ± 96.71	671.09 ± 216.05		596.62 ± 39.06	728.81 ± 30.65	717.20 ± 49.86	754.97 ± 40.86	
	Kidney	1011.85 ± 282.96	1057.20 ± 302.94	976.61 ± 436.19	914.13 ± 343.48		821.49 ± 144.23	652.90 ± 117.79	840.28 ± 129.40	657.12 ± 52.68	
	Spleen	632.37 ± 122.70	515.70 ± 78.48	537.50 ± 87.79	522.81 ± 45.71		654.56 ± 219.42	734.65 ± 275.96	592.65 ± 97.92	566.02 ± 39.74	
Mn	Colon	87.40 ± 56.83	59.85 ± 15.08	62.65 ± 32.41	98.20 ± 77.90		54.41 ± 6.45	70.36 ± 49.15	52.77 ± 21.20	71.06 ± 34.11	
	Kidney	22.52 ± 3.83	22.00 ± 2.85	21.96 ± 3.52	22.53 ± 1.59		21.38 ± 4.15	17.76 ± 5.62	21.56 ± 3.15	20.99 ± 3.87	
	Spleen	3.06 ± 4.55	0.00 ± 0.00	0.00 ± 0.00	5.23 ± 11.69		8.96 ± 2.48	8.37 ± 5.56	4.95 ± 4.60	7.56 ± 0.59	
Fe	Colon	557.43 ± 249.13	516.72 ± 144.24	487.96 ± 169.00	631.65 ± 216.66		552.75 ± 96.13	594.99 ± 139.47	723.53 ± 195.85	685.56 ± 197.22	
	Kidney	2637.77 ± 786.48	3076.00 ± 278.06	2532.63 ± 301.48	2671.22 ± 369.98		3409.95 ± 931.98	2738.79 ± 1021.02	3669.08 ± 1026.18	3189.61 ± 589.94	
	Spleen	4565.20 ± 14827.78	4097.14 ± 6214.30	4122.01 ± 12560.41	3772.32 ± 8055.82		101149.21 ± 15471.51	102838.33 ± 45252.36	85368.19 ± 16217.55	79027.45 ± 4611.15	
Al	Colon	366.51 ± 87.04	336.16 ± 62.58	316.55 ± 87.90	421.37 ± 165.21		264.36 ± 53.29	290.99 ± 110.45	292.61 ± 29.18	324.16 ± 83.37	
	Kidney	348.47 ± 103.00	363.93 ± 123.26	252.40 ± 31.65	297.47 ± 44.71		327.22 ± 31.03	336.02 ± 86.53	339.19 ± 47.30	285.81 ± 32.00	
	Spleen	353.85 ± 45.61	325.20 ± 73.09	382.98 ± 79.61	524.26 ± 349.04		291.33 ± 61.33	358.79 ± 108.06	334.39 ± 44.73	289.92 ± 41.56	

Note. The values are expressed as mean ± SD.
cells in the bloodstream, and the damaged red blood cells are eliminated via the spleen. In the current study, we measured Ti concentrations in the colons, kidneys, and spleens harvested from all rats at necropsy. Importantly, the Ti concentration clearly increased only in the colons of both sexes administered with 1,000 mg/kg of E171 compared with the control, indicating that the colon is the main excretion route (Table 7). In addition, TEM images revealed that E171 accumulates in the cytosol and nuclei of various cells comprising the colon tissue and forms lamella-like structures (Figure 3). Ti accumulation can also affect the distribution of elements cross-binding with it or participating in the antioxidant response, and we found here that the colonic zinc (Zn) concentration increases in female rats exposed to E171 compared with the control. In addition, SOD proteins play a central role in inhibiting xenobiotic-induced oxidative damage and subsequent apoptosis (Fukai & Ushio-Fukai, 2011); thus, we assessed the effects of E171 on expression of SOD-1, SOD-2, and cytochrome C protein in the colonic tissues of rats in control and the maximum-dosed group. Interestingly, the expression of SOD-1 and SOD-2 proteins was clearly downregulated in the colonic tissues of both sexes and female rats, respectively. However, that of cytochrome C protein was not significantly different between groups (Figure 4).

3.6 | Effects of E171 on systemic immune response

Given that the proportion of lymphocytes in WBC decreased in rats administered with the maximum dose compared with control, we measured the GM-CSF and immunoglobulin concentrations in the blood. Importantly, the levels of GM-CSF (female) and IgM (both sexes) significantly reduced in rats administered with 1,000 mg/kg of E171 for 90 days compared with the control (Figure 5), whereas IgG, IgA, or IgE levels were not different between groups. The GM-CSF level was 46.3 ± 12.1 and 27.3 ± 9.3 pg/ml in the control and the maximum-dosed female group, respectively. The IgM level was 2,123.6 ± 176.3 and 1,926.6 ± 77.3 ng/ml in the male and female rats of the control group, respectively, whereas it was 1,886.9 ± 87.7 and

FIGURE 3 Transmission electron microscope images of the colon tissue after treatment with 1,000 mg/kg of E171. Accumulation in cytosol (A, B) and the formation of lamella-like structure (B). E171 was also found in cytosol (C) and intracellular organelle such as mitochondria (D) [Colour figure can be viewed at wileyonlinelibrary.com]
1,696.5 ± 152.7 ng/ml for the male and female rats in the maximum-dosed group, respectively.

3.7 | Cellular response following accumulation of E171

E171 accumulated in cells lining the stomach wall of rats administered at a 1,000 mg/kg dose for 90 days; thus, we investigated the possible toxic mechanism following accumulation of E171 using AGS cells, a human stomach epithelial cell line. We first confirmed that E171 localizes in the perinuclear region of the AGS cells on 24 h after treatment (40 μg/ml) (Figures 6 and S2). The expression of the ER stress- (calnexin, IRE-1a, Bip, PERK, and Ero-1a), pyroptosis- (caspase-1, IL-18, and NALP3), autophagy- (p62 and LAMP-1), and iron metabolism-related (ferritin heavy chain) (Mumbauer, Pascual, Kolotuev, & Hamaratoglu, 2019) proteins was enhanced in the E171-treated cells compared with control accompanied by the peroxisomal (catalase) and...
FIGURE 5 (A) Effects on secretion of GM-CSF and (B) immunoglobulin (IgG, IgA, IgE, and IgM) in serum. All experiments were performed independently three times using two wells per sample, and the results were represented as mean ± SD. GM-CSF, granulocyte-macrophage colony-stimulating factor [Colour figure can be viewed at wileyonlinelibrary.com]
mitochondrial antioxidant (SOD-2) (Pias et al., 2003; Walton & Pizzitelli, 2012). Meanwhile, there were no significant changes in both the level of CHOP and phospho-JNK (which play in ER stress-triggered apoptosis; Mozzini, Cominacini, Garbin, & Fratta Pasini, 2017; Müller-Taubenberger et al., 2011) and the cytosolic antioxidant protein (SOD-1) and conversion of LC3B-I into LC3B-II (completion of autophagosome) (Figure 7). In addition, the expression levels of various microRNAs and unknown genes were markedly altered in the E171-exposed cells relative to the control (Table 8). More interestingly, cell death was not observed even at the highest concentration tested (40 μg/ml).

4 | DISCUSSION

The potential risks of nanoscale particles on the environment and human health have been continuously issued along with the great importance in future industry, and thus, nanotechnology has often been compared with a double-edged sword (Kashanian, Habibi-Rezaei, Bagherpour, Seyedarabi, & Moosavi-Movahedi, 2017; Patni & Bhatia, 2008; Solaiman et al., 2019). Meanwhile, all substance is potentially harmful to human health when it accumulates at sufficiently high concentrations, which can disturb biological homeostasis, as was first expressed by Paracelsus, a Swiss physician. Furthermore, nanoscale particles have unique physicochemical properties that differ from those of the bulk forms of the same materials. Therefore, although available information for the microscale particles is enough, biostability, interactions with biological systems, biodistributions, health effects, and the possible toxic mechanism should be carefully re-evaluated for the nanoscale particles (Fadeel & Garcia-Bennett, 2010). Here, we found that E171 is insoluble in DW, a vehicle used for dosing, and the physicochemical properties were not substantially altered in AGF or cell culture media. In addition, when orally dosed 10, 100, and 1,000 mg/kg to rats for 90 days in accordance with an OECD test guideline (OECD, 2018), any significant tissue damage was not found even in the maximum dose. Meanwhile, contrary to the
Gene_Symbol	mRNA accession	1st	2nd	3rd	AV	SD
NONHSAT092002	1.48	2.04	2.73	2.08	0.62	
NONHSAT118330	2.34	2.36	1.09	1.93	0.73	
NONHSAT118330	2.34	2.36	1.09	1.93	0.73	
NONHSAT118330	2.34	2.36	1.09	1.93	0.73	
ENST00000516096	1.25	3.36	1.08	1.90	1.27	
ENST00000458982	1.38	2.61	1.68	1.89	0.64	
ENST0000364752	1.60	1.41	2.65	1.89	0.67	
NONHSAT024019	1.27	1.64	2.69	1.87	0.73	
1.06	3.33	1.16	1.85	1.28		
ENST00000410533	2.00	1.99	1.56	1.85	0.25	
ENST0000391025	2.54	1.79	1.05	1.79	0.74	
ENST00000516920	1.41	2.03	1.90	1.78	0.33	
NONHSAT027452	1.83	2.20	1.25	1.76	0.48	
ENST0000431432	1.29	1.21	2.77	1.76	0.88	
ENST0000383927	1.15	2.96	1.16	1.75	1.04	
ENST0000527159	1.15	2.84	1.22	1.74	0.95	
TAS2R50	NM_176890	2.10	1.71	1.37	1.73	0.37
NonHSAT025494	2.21	1.06	1.89	1.72	0.60	
Vcx3b	NM_001001888	2.62	1.16	1.36	1.72	0.79
ENST0000426812	1.77	1.88	1.44	1.70	0.23	
NonHSAT112940	1.38	1.72	1.97	1.69	0.30	
NonHSAT021981	1.24	1.65	2.18	1.69	0.47	
ENST0000611160	1.80	2.18	1.06	1.68	0.57	
Rny4p13	OTTHUMT00000448959	1.37	1.43	2.24	1.68	0.49
ENST0000362700	1.17	1.81	2.00	1.66	0.43	
M1R1293	NR_031625	1.46	1.65	1.88	1.66	0.21
M1R4755	NR_039911	1.28	2.41	1.29	1.66	0.65
ENST0000435608	2.42	1.48	1.07	1.66	0.69	
NonHSAT023929	1.65	1.51	1.78	1.64	0.14	
C1Qtnf9	NM_001303137	1.57	1.93	1.42	1.64	0.26
ENST0000516908	1.43	1.76	1.73	1.64	0.18	
Loc105378702	Xr_947304	1.16	2.22	1.54	1.64	0.54
NonHSAT008674	1.87	1.15	1.88	1.63	0.42	
ENST0000560378	2.09	1.71	1.08	1.63	0.51	
ENST0000459031	2.39	1.36	1.13	1.62	0.67	
NonHSAT063651	1.50	1.80	1.58	1.62	0.15	
ENST0000459498	1.39	2.22	1.24	1.62	0.53	
Sdcbpp2	BC030617	1.32	1.03	2.49	1.61	0.77
Loc105374104	Xr_924474	1.47	1.90	1.48	1.61	0.25
NonHSAT028951	1.37	1.13	2.33	1.61	0.63	
NonHSAT017609	1.28	1.66	1.86	1.60	0.29	
ENST0000516132	1.25	1.06	2.47	1.59	0.76	
NonHSAT108903	1.12	1.96	1.67	1.59	0.43	
uc021rjm.1	1.74	1.17	1.84	1.59	0.36	
ENST0000627818	1.17	1.17	2.42	1.58	0.72	

(Continues)
Gene Symbol	mRNA accession	1st	2nd	3rd	AV	SD	
NONHSAT119100	1.56	1.80	1.39	1.58	0.21		
ENST00000408283	1.61	1.91	1.21	1.58	0.35		
ENST00000516422	1.21	1.48	2.02	1.57	0.41		
NONHSAT141442	1.46	1.63	1.60	1.56	0.09		
NR_039783	1.27	1.81	1.61	1.56	0.28		
NR_039783	1.27	1.81	1.61	1.56	0.28		
NR_039783	1.27	1.81	1.61	1.56	0.28		
NR_039783	1.27	1.81	1.61	1.56	0.28		
NR_039783	1.27	1.81	1.61	1.56	0.28		
ENST00000411051	1.57	1.84	1.25	1.55	0.29		
CYP4F3	NM_000896	1.55	1.59	1.52	1.55	0.03	
ENST00000391122	1.50	1.08	2.07	1.55	0.50		
NONHSAT072183	1.10	1.95	1.59	1.55	0.43		
LOC284412	NR_029390	1.15	2.04	1.42	1.54	0.46	
LOC100652833	XM_011543783	1.54	1.96	1.10	1.53	0.43	
LOC101927522	XR_430235	1.27	1.31	2.00	1.53	0.41	
POTEH	NM_001136213	1.00	2.07	1.51	1.53	0.53	
KRTAP1-4	NM_001257305	1.31	1.68	1.58	1.52	0.19	
LINCO00240	NR_026775	1.20	1.84	1.53	1.52	0.32	
ENST00000410638	1.20	2.12	1.23	1.52	0.53		
ENST00000362665	1.62	1.11	1.81	1.51	0.36		
SNORA14A	NR_002955	1.39	1.92	1.23	1.51	0.36	
LOC105375112	XR_430235	1.27	1.31	2.00	1.53	0.41	
LOC105375112	XR_430235	1.27	1.31	2.00	1.53	0.41	
LOC105375112	XR_430235	1.27	1.31	2.00	1.53	0.41	
KGF2	POTEH	NM_001136213	1.00	2.07	1.51	1.53	0.53
LINCO00240	NR_026775	1.20	1.84	1.53	1.52	0.32	
SNORA14A	NR_002955	1.39	1.92	1.23	1.51	0.36	
LOC105375112	XR_430235	1.27	1.31	2.00	1.53	0.41	
LOC105375112	XR_430235	1.27	1.31	2.00	1.53	0.41	
LOC105375112	XR_430235	1.27	1.31	2.00	1.53	0.41	
KGF2	POTEH	NM_001136213	1.00	2.07	1.51	1.53	0.53
LINCO00240	NR_026775	1.20	1.84	1.53	1.52	0.32	
SNORA14A	NR_002955	1.39	1.92	1.23	1.51	0.36	
LOC105375112	XR_430235	1.27	1.31	2.00	1.53	0.41	
LOC105375112	XR_430235	1.27	1.31	2.00	1.53	0.41	
LOC105375112	XR_430235	1.27	1.31	2.00	1.53	0.41	

List of genes that downregulated >1.5-fold compared with control

Gene Symbol	mRNA accession	1st	2nd	3rd	AV	SD
ENST0000051605	−1.63	−1.14	−5.04	−2.60	2.12	
MIR3908	NR_037470	−1.02	−2.18	−4.25	−2.48	1.63
ENST00000408512	−1.06	−2.64	−2.39	−2.03	0.85	
KGF2	NR_003670	−1.25	−3.30	−1.40	−1.99	1.14
ENST00000416861	−1.20	−1.71	−2.88	−1.93	0.86	
ENST00000362381	−2.13	−2.50	−1.16	−1.93	0.69	
ENST00000362715	−1.82	−2.28	−1.62	−1.91	0.34	
MIR4302	NR_036188	−2.42	−2.16	−1.12	−1.90	0.69
ENST00000384211	−1.22	−2.37	−2.07	−1.89	0.60	
NONHSAT099609	−1.06	−1.92	−2.65	−1.88	0.79	
ENST00000517233	−1.40	−1.95	−2.10	−1.82	0.36	
NONHSAT073976	−1.29	−2.10	−2.02	−1.80	0.45	
ENST00000411039	−1.04	−2.32	−2.00	−1.78	0.67	
ENST00000391324	−1.63	−2.12	−1.59	−1.78	0.30	
ENST00000411248	−1.25	−2.47	−1.61	−1.78	0.63	
ENST00000384451	−1.82	−1.82	−1.62	−1.75	0.11	

(Continues)
Titanium Dioxide Manufacturers’ Association’s claim that it is not readily absorbed by the human body, E171 markedly penetrated and accumulated in the stomach walls of rats exposed to 1,000 mg/kg of E171. Moreover, E171 penetrated the plasma membranes of AGS cells derived from stomach epithelial tissue and also formed lamella-like structures (Cheong et al., 2007) and autophagosome-like vacuoles in the colon and the AGS cells, respectively. Lysosomes serve for both degradation of materials taken up from outside the cells and digestion of the cell’s own components with enzymes that are active at the acidic conditions. In addition, lamella bodies and autophagosomes are

Table 8 (Continued)

Gene Symbol	mRNA accession	1st	2nd	3rd	AV	SD
ENST0000408498	NONHSAT016100	−1.06	−1.71	−2.47	−1.75	0.71
IGL5	OTTHUMT00000321640	−1.38	−2.46	−1.39	−1.74	0.62
NONHSAT040114	ENST0000459100	−1.03	−2.07	−2.02	−1.71	0.59
ENST0000517232	NONHSAT104835	−1.96	−1.71	−1.42	−1.70	0.27
NONHSAT126341	ENST0000517038	−1.04	−1.86	−2.10	−1.67	0.56
MIR4718	NR_039869	−1.51	−1.11	−2.34	−1.65	0.63
ANKRD30BP2	ENST0000507630	−1.11	−2.12	−1.72	−1.65	0.51
MIR811A1	NONHSAT121656	−1.19	−1.51	−2.17	−1.63	0.50
LINCO1372	NR_108104	−1.68	−1.15	−2.04	−1.62	0.45
MIR1203	NONHSAT118989	−1.28	−1.23	−2.32	−1.61	0.60
MIR1203	NONHSAT112144	−1.77	−1.60	−1.41	−1.59	0.18
MIR811A1	NM_001256532	−1.88	−1.62	−1.26	−1.59	0.31
MIR1203	ENST0000516265	−1.32	−1.07	−2.36	−1.58	0.69
CEP152	XM_011521374	−1.26	−1.33	−2.14	−1.58	0.49
MIR3160-1	NONHSAT088447	−1.36	−1.77	−1.58	−1.57	0.21
MIR3160-1	NR_036117	−1.38	−1.45	−1.86	−1.56	0.26
MIR3160-1	NONHSAT126341	−1.24	−1.14	−2.31	−1.56	0.65
HNRNPA3	NM_194247	−1.04	−2.56	−1.06	−1.56	0.44
MIR3663	NONHSAT137860	−1.09	−1.69	−1.86	−1.55	0.41
LOC10193818	ENST00005383917	−1.33	−2.04	−1.26	−1.54	0.43
ARHGEF25	ENST00005464602	−1.04	−2.06	−1.53	−1.54	0.51
LOC102724571	ENST00004365420	−1.01	−1.61	−2.00	−1.54	0.50
NR_037436	NR_132738	−1.39	−1.48	−1.73	−1.53	0.19
ARHGEF25	ENST0000442086	−1.48	−1.47	−1.65	−1.53	0.10
NONHSAT087882	NONHSAT087882	−1.30	−1.78	−1.50	−1.53	0.24

Note. Data indicate the values of three independent experiments, average (AV), and SD.
associated with early defense mechanisms against foreign bodies and are characteristic of various lysosomal storage diseases. Therefore, we propose that the NOAEL of E171 for 90-day repeated oral dosing is less than 1,000 mg/kg.

According to epidemiological evidence, the incidences of colorectal and gastric cancer are globally increasing. Moreover, as mentioned above, inhaled TiO2 NPs were classified as a Group B2 carcinogen by IARC, and France has banned the use of E171 as a food additive until the safety has been empirically and clinically verified. Although ingested NPs are excreted mainly via the feces, they can be resorbed from the kidney depending on their biostability, and NPs that have entered immune cells in the bloodstream can accumulate in the spleen. A previous study suggested that 90-day orally dosed TiO2 NPs caused inflammatory response and liver dysfunction via oxidative stress accompanying notable accumulation in the liver (Cui et al., 2012). A 100-day repeated dosed E171 also promoted microinflammation and initiated preneoplastic lesions in the colon, and it altered the expression of genes involved in innate and adaptive immune response and oxidative stress (Blevins et al., 2019). In the current study, Ti concentrations clearly increased in the colonic tissues, altering the tissue level of the antioxidant protein (SOD-1 and SOD-2). We also found that the proportion of lymphocytes in WBC was clearly lower in rats exposed to E171 compared with the control and that the GM-CSF and IgM levels notably reduced in the blood of rats in the same group. GM-CSF regulates myelopoiesis in physiological steady state and modulates immunity under inflammatory conditions including autoimmune disease (Becher, Tugues, & Greter, 2016; Bhattacharya et al., 2015). In addition, IgM is the antibody that is produced mainly in the spleen in response to initial antigen exposures. Hence, we hypothesize that part of E171 may be dissolved under the acidic conditions of the stomach and that the rest may form aggregates with diet or other particles. Also, it may affect antioxidant capacity being resorbed during the stay in the colon (Lomer, Thompson, & Powell, 2002; Park, Yoon, Choi, Yi, & Park, 2009; Proquin et al., 2017). In addition, we hypothesize that chronic E171 intake might impair host’s defense function against foreign bodies.

The reassessment of E171 as a putative carcinogen may be crucial in the determination and establishment of its safety (Armand et al., 2016; Falck et al., 2009; Kang, Kim, Lee, & Chung, 2008; Warheit, Brown, & Donner, 2015). Accumulated clinical and empirical evidence has demonstrated that TiO2 NPs induce ER stress by promoting oxidative stress. In addition, chronic ER stress may be associated with tumor development by triggering inflammatory responses (Lin, Jiang, Chen, Zhao, & Wei, 2019), and it could also be involved in immunosuppression (Salminen, Kaarniranta, & Kauppinen, 2020). In this study, we found that E171 did not affect the expression of SOD-1 and SOD-2 proteins in AGS cells. In addition, E171 penetrated the cells comprising the colon tissue and localized to the perinuclear regions of AGS cells. Meanwhile, dead cells were not observed even in cells treated at the maximum concentration (40 μg/ml). Furthermore, the expression of ER stress-related proteins increased in E171-treated cells compared with control, and microarray analysis demonstrated that expression of several microRNAs is the most affected following exposure to E171. In particular, the expression of microRNA 3908 was the most downregulated. More interestingly, many of the affected genes were those whose function is unknown. MicroRNAs are noncoding RNAs that are involved in post-transcriptional regulation by affecting both the stability and translation of mRNA. Previous studies have suggested that microRNA 3908 inhibits cancer progression by inducing apoptosis (Liu, Chen, & Zhang, 2017) and that bitter-taste receptor genes (such as TAS2R50) can be involved in progression of colorectal neoplasia (Schembre, Cheng, Wilkens, Albright, & Marchand, 2013). In addition, SOD-2 transforms toxic mitochondrial superoxide into nontoxic products, inhibiting apoptosis, and ferritin heavy chain also protects cells against free radical accumulation (Mumbauer, Pascual, Kolotuev, & Hamaratoglu, 2019). Furthermore, ER stress can initiate pyroptosis and inflammasome formation (Lebeauin et al., 2015). Therefore, further study is required to elucidate the adverse health effects following chronic accumulation in the stomach and colons (Proquin et al., 2017).

In conclusion, we suggest that NOAEL of 90-day repeated orally dosed E171 is between 100 and 1,000 mg/kg for both sexes of rats and that further study is needed to clarify the possible carcinogenesis following the chronic accumulation in the colons.

ACKNOWLEDGEMENTS

This work was supported by a grant from Ministry of Science and ICT (NRF-2015M3A7B6027948 and NRF-2016M3A9C4953144), Kyung Hee University (20180872 and 20192100), and the Korea Institute of Toxicology (KK-2001).

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

ORCID

Hyoung-Yun Han https://orcid.org/0000-0002-7957-7448

Eun-Jung Park https://orcid.org/0000-0002-3723-5351

REFERENCES

Armand, L., Tarantini, A., Beal, D., Biola-Clier, M., Bobjyk, L., Sorieul, S., ... Carriere, M. (2016). Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology, 10, 913–923. https://doi.org/10.3109/17435390.2016.1141338

Becher, B., Tugues, S., & Greter, M. (2016). GM-CSF: From growth factor to central mediator of tissue inflammation. Immunity, 45, 963–973. https://doi.org/10.1016/j.immuni.2016.10.026

Bettini, S., Boutet-Robinet, E., Cartier, C., Coméra, C., Gautier, E., Dupuy, J., ... Houdear, E. (2017). Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Scientific Reports, 20, 40373. https://doi.org/10.1038/srep40373

Bhattacharya, P., Thiruppathi, M., Elshabrawy, H. A., Alhashwai, K., Kumar, P., & Prabhakar, B. S. (2015). GM-CSF: An immune modulatory cytokine that can suppress autoimmunity. Cytokine, 75, 261–271. https://doi.org/10.1016/j.cyto.2015.05.030

Blevins, L. K., Crawford, R. B., Bach, A., Rizzo, M. D., Zhou, J., Henriquez, J. E., ... Kaminski, N. E. (2019). Evaluation of immunologic
and intestinal effects in rats administered an E 171-containing diet, a food grade titanium dioxide (TiO2). Food and Chemical Toxicology, 133, 110793. https://doi.org/10.1016/j.fct.2019.110793

Brandessence Market Research and Consulting Pvt. Ltd. (2020). Titanium Dioxide Market 2019 Industry Size, Share, Trends, Growth, Opportunities, Competitive Analysis and Forecast to 2025. https://www.medgadget.com/2020/04/titanium-dioxide-market-2019-industry-size-share-trends-growth-opportunities-competitive-analysis-and-forecast-to-2025.html. Accessed at 31 May.

Cheong, N., Zhang, H., Madesh, M., Zhao, M., Yu, K., Dodia, C., ... Shuman, H. (2007). ABCA3 is critical for lamellar body biogenesis in vivo. The Journal of Biological Chemistry, 282, 23811–23817. https://doi.org/10.1074/jbc.M703972200

Cui, Y., Liu, H., Ze, Y., Zengli, Z., Hu, Y., Cheng, Z., ... Hong, F. (2012). Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicological Sciences, 128(1), 171–185. https://doi.org/10.1093/toxsci/kfs153

Dorier, M., Tisseyre, C., Dussert, F., Béal, A., Arnal, M. E., Douki, T., ... Carrière, M. (2019). Toxicological impact of acute exposure to E171 food additive and TiO2 nanoparticles on a co-culture of Caco-2 and HT29-MTX intestinal cells. Mutation Research, 845, 402980. https://doi.org/10.1016/j.mrgentox.2018.11.004

EPSA panel on food additives and nutritive sources added to food (ANS). (2016). Re-evaluation of titanium dioxide (E 171) as a food additive. EPSA Journal, 149(9), 4545. https://doi.org/10.2903/jepsa.2016.4545

European Union. (1994). European Parliament and Council Directive 94/36/EC of 30 June 1994 on colours for use in foodstuffs. In: Official Journal of the European Communities. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:94/36/EC of 30 June 1994 on colours for use in foodstuffs. In: Official Journal of the European Communities. 17 April 2020. https://doi.org/10.1317/journal.pgen.1008396

Falck, C. M., Lindberg, H. K., Suhonen, S., Vippola, M., Vanhala, E., Catalán, J., ... Norppa, H. (2009). Genotoxic effects of nanosized and fine TiO2. Human & Experimental Toxicology, 28, 339–352. https://doi.org/10.1177/0960327109101516

Fukai, T., & Ushio-Fukai, M. (2011). Superoxide dismutases: Role in redox homeostasis. Annual Review of Nutrition, 31, 493–516. https://doi.org/10.1146/annurev-nutr-092610-105312

Heo, M. B., Kwak, M., An, K. S., Kim, H. J., Ryu, H. Y., Lee, S. M., … Hong, F. (2012). Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicological Sciences, 128(1), 171–185. https://doi.org/10.1093/toxsci/kfs153

Lin, Y., Jiang, M., Chen, W., Zhao, T., & Wei, Y. (2019). Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomedicine & Pharmacotherapy, 118, 109249. https://doi.org/10.1016/j.biopharma.2019.109249

Liu, X., Chen, J., & Zhang, J. (2017). Adipor1-mediated miR-3908 inhibits glioblastoma tumorigenicity through downregulation of STAT2 associated with the AMPK/SIRT1 pathway. Oncology Reports, 37, 3387–3396. https://doi.org/10.3892/or.2017.5389

Lomer, M. C. E., Thompson, R. P. H., & Powell, J. J. (2002). Fine and ultrafine particles of the diet: Influence on the mucosal immune response and association with Crohn’s disease. Proceedings of the Nutrition Society, 61, 123–130. https://doi.org/10.1079/pns2001134

Marques, M. R., Loebenberg, R., & Alumkaizni, M. (2011). Simulated biological fluids with possible application in dissolution testing. Dissolution Technologies, 18, 15–28. https://doi.org/10.14227/DT180311P15

Mozzini, C., Cominacini, L., Garbin, U., & Fratta Pasini, A. M. (2017). Endoplasmic reticulum stress, NRF2 signalling and cardiovascular diseases in a nutshell. Current Atherosclerosis Reports, 19, 33. https://doi.org/10.1007/s11883-017-0669-7

Müller-Taubenberger, A., Lupsa, A. N., Li, H., Ecke, M., Simmeth, E., & Gerisch, G. (2011). Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. The EMBO Journal, 20, 6772–6782. https://doi.org/10.1039/emboj2010.23.6772

Mumbauer, S., Pascaul, J., Kolotuev, I., & Hamafragou, F. (2019). Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genetics, 15, e1008396. https://doi.org/10.1371/journal.pgen.1008396

Organisation for Economic Cooperation and Development. (2018). Test no. 408: Repeated dose 90-day oral toxicity study in rodents. In: OECD guidelines for the testing of chemicals, section 4. OECD Publishing. https://doi.org/10.1787/9789264070707-en Accessed 25 April 2020

Park, E. J., Yoon, J., Choi, K., Yi, J., & Park, K. (2009). Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intrachoroidal instillation. Toxicology, 260, 37–46. https://doi.org/10.1016/j.tox.2009.03.005

Patri, S., & Bhata, A. L. (2008). Nanotechnology: A double edged sword. Asian Journal of Experimental Sciences, 22, 153–166.

Plakidou, Y., Eshkeyan, O. Y., Rhoads, C. A., Fuseler, J., Harrison, L., & Aw, T. Y. (2003). Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. The Journal of Biological Chemistry, 278, 13294–13301. https://doi.org/10.1074/jbc.M208670200

Proquin, H., Rodriguez-Ibarra, C., Moonen, C. G., Urrutia Ortega, I. M., Briede, J. J., de Kok, T. M., ... Chirino, Y. I. (2017). Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: Contribution of micro and nano-sized fractions. Mutagenesis, 32, 139–149. https://doi.org/10.1093/mutage/gew051

Salminen, A., Kaarniranta, K., & Kauppinen, A. (2020). ER stress activates immunosuppressive network: Implications for aging and Alzheimer’s disease. Journal of Molecular Medicine (Berlin, Germany), 98, 633–650. https://doi.org/10.1007/s00109-020-01904-z

Schembre, S. M., Cheng, I. W., Lightman, A. S., Martin, W. D., Carlson, L. S., & Marchand, L. L. (2013). Variations in bitter-taste receptor genes, dietary intake, and colorectal adenoma risk. Nutrition and Cancer, 65, 982–990. https://doi.org/10.1080/01635581.2013.807934

Solaiman, S. M., Algie, J., Bakand, S., Sluyter, R., Sencadas, V., Lerch, M., ... Huang, X. F. (2019). Nano-sunscreens—A double-edged sword in protecting consumers from harm: Viewing Australian regulatory policies through the lenses of the European Union. Critical Reviews in Toxicology, 49, 122–139. https://doi.org/10.1080/10408444.2019.1579780

Tassinari, R., Cubbada, F., Moracci, G., Aureli, F., D’Amato, M., Valeri, M., ... Maranghi, F. (2014). Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: Focus on reproductive and
endocrine systems and spleen. *Nanotoxicology, 8*, 654–662. https://doi.org/10.3109/17435390.2013.822114

The French Agency for Food, Environmental and Occupational Health & Safety. (2020). Titanium dioxide nanoparticles in food (additive E171): biological effects need to be confirmed. https://www.anses.fr/en/content/titanium-dioxide-nanoparticles-food-additive-e171-biological-effects-need-be-confirmed. Accessed at 31 May

U. S. FDA. (2020). Summary of Color Additives for Use in the United States in Foods, Drugs, Cosmetics, and Medical Devices. https://www.fda.gov/industry/color-additive-inventories/summary-color-additives-use-united-states-foods-drugs-cosmetics-and-medical-devices. Accessed 26 April.

Walton, P. A., & Pizzitelli, M. (2012). Effects of peroxisomal catalase inhibition on mitochondrial function. *Frontiers in Physiology, 3*, 108. https://doi.org/10.3389/fphys.2012.00108

Warheit, D. B., Brown, S. C., & Donner, E. M. (2015). Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. *Food and Chemical Toxicology, 84*, 208–224. https://doi.org/10.1016/j.fct.2015.08.026

Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. *Environmental Science & Technology, 46*, 2242–2250. https://doi.org/10.1021/es204168d

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Han H-Y, Yang M-J, Yoon C, et al. Toxicity of orally administered food-grade titanium dioxide nanoparticles. *J Appl Toxicol*. 2021;41:1127–1147. https://doi.org/10.1002/jat.4099