Diminution of real power loss by novel Galápagos Penguin Algorithm

Lenin Kanagasabai*
Department of EEE, Prasad V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh, 520007, India

ARTICLE INFO
Keywords:
Electrical engineering
Energy
Industrial engineering
Computer-Aided engineering
Optimal reactive power
Transmission loss
Galápagos Penguin

ABSTRACT
In this work Galápagos Penguin Algorithm (GPA) has been applied to solve optimal reactive power problem. Galápagos penguins’ foraging activities are modeled to solve the problem. As a team Galápagos Penguin feed on food and by intra-group communication it communicates each other. Once a Galápagos penguin finds a superior food source then it will act as new-fangled local guide in which Foraging of the team is an autocatalytic procedure. To dive in-depth Galápagos Penguin takes up extra energy to find out about the information of food. Until the oxygen get exhausted Galápagos Penguin execute the recurring dives, subsequently it will move around to another group in search of food. Galápagos penguin modernizes its group membership based on food availability degree of different groups. In standard IEEE 14, 30, 57, 118, 300 bus systems Proposed Galápagos Penguin Algorithm (GPA) is evaluated and simulation results show the GPA reduced the power loss efficiently.

1. Introduction
Reactive power problem plays a key role in secure and economic operations of power system. Optimal reactive power problem has been solved by variety of types of methods like Newton’s method, interior point method, successive quadratic programming method [1, 2, 3, 4, 5, 6] has been utilized to solve the optimal reactive power problem. However many scientific difficulties are found while solving problem due to an assortment of constraints. Evolutionary techniques such as gravitational search, Ant Lion Optimizer, symbiotic organism search algorithm [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] are applied to solve the reactive power problem, but the main problem is many algorithms get stuck in local optimal solution & failed to balance the Exploration & Exploitation during the search of global solution. In this work, Galápagos Penguin Algorithm (GPA) has been applied to solve optimal reactive power problem. Galápagos Penguin is a sea bird [17] and its wings are perfect for swimming; it stays under the water for up to 20 min. Normally Galápagos Penguin feed on krill, small fish, squid, and crustaceans. Galápagos Penguin are forced to come to the surface for air after every foraging journey and is restricted by the oxygen reserves also the speed at which they make use of it. Through intra-group communication Galápagos Penguin communicates each other and when one Galápagos penguin finds a superior food source then it act as new-fangled local guide in which Foraging of the team is an autocatalytic procedure. When there is food shortage in the group Galápagos penguin will transfer to unite another group. Galápagos Penguin modernizes its group membership based on food availability degree of different groups. In the proposed algorithm both the exploration and exploitation has been balanced in order to obtain the optimal solution. Validity of the Proposed Galápagos Penguin Algorithm (GPA) has been tested in standard IEEE 14, 30, 57, 118, 300 bus systems and results show the projected GPA reduced the power loss effectively.

2. Problem formulation
Objective of the problem is to reduce the true power loss:

\[F = P_L = \sum_{i \in \text{Nbr}} g_k \left(V_i^2 + V_j^2 - 2V_iV_j\cos\theta_{ij} \right) \] (1)

where \(F \) - objective function, \(P_L \) - Power loss.
Voltage deviation given as follows:

\[F = P_L + \omega_v \times \text{Voltage Deviation} \] (2)

\(\omega_v \) - Weight factor.
Voltage deviation given by:

\[\text{Voltage Deviation} = \sum_{i=1}^{Npq} |V_i - 1| \] (3)

* Corresponding author.
E-mail address: gklenin@gmail.com.
https://doi.org/10.1016/j.heliyon.2019.e03001
Received 30 August 2019; Received in revised form 30 October 2019; Accepted 4 December 2019
2405-8440/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2.1. Constraint (equality)

\[P_G = P_D + P_L \]

(4)

where \(P_G \) and \(P_D \) indicates the power generation and power demand.

2.2. Constraints (inequality)

\[P_{\text{slack}}^\text{min} \leq P_{\text{slack}} \leq P_{\text{slack}}^\text{max} \]

(5)

\[Q_{gi}^\text{min} \leq Q_{gi} \leq Q_{gi}^\text{max}, \ i \in N_g \]

(6)

\[V_i \leq V_i^\text{max}, \ i \in N \]

(7)

\[T_i \leq T_i^\text{max}, \ i \in N_T \]

(8)

\[Q_i^\text{min} \leq Q_i \leq Q_i^\text{max}, \ i \in N_C \]

(9)

where reactive power compensators indicated by \(Q_i \), dynamic tap setting of transformers –dynamic indicated by \(T_i \), level of the voltage in the generation units given by \(V_i \), slack generator indicated by \(P_{\text{slack}} \), level of voltage on transmission lines symbolized by \(V_i \), generation units reactive power indicated by \(Q_i \), apparent power symbolized by \(S_i \).

3. Galápagos Penguin Algorithm

Galápagos Penguin is a sea bird and its wings are perfect for swimming; it stays under the water for up to 20 min. Normally Galápagos Penguin feed on krill, small fish, squid, and crustaceans. To dive in-depth Galápagos Penguin takes up extra energy to find about the information of food.

Galápagos Penguin are forced to come to the surface for air after every foraging journey and is restricted by the oxygen reserves also the speed at which they make use of it. Galápagos penguins’ foraging activities are modeled as rules as follows;

Rule 1: Galápagos Penguin consists of numerous groups. Depending on food accessibility in the analogous foraging area every group enclose Galápagos penguins.

Rule 2: Based on energy gain each group of Galápagos Penguin starts foraging in an exact depth under the water.

Rule 3: Naturally Galápagos Penguin feed as a team and go behind their local guide. Until the oxygen reserves are depleted they examine the water for food.

Rule 4: Galápagos Penguin comes back on surface to share the information about the locations and abundance of food sources with its local affiliates through intra-group communication.

Rule 5: Through inter-group communication Galápagos Penguin leaves the group to join another group when food availability becomes less.

3.1. Modernization of swimming track

At time \(t+1 \) Galápagos penguin \(j \) swims to a new-fangled location in “\(\Omega \)” as defined by the following equation,

\[y'_j(t + 1) = y'_j(t) + Q'_j(t) \times \text{random}() \times \left(y_{\text{local best}} - y'_j(t) \right) \]

(10)

where \(y'_j(t) \) and \(Q'_j(t) \) indicates the Galápagos Penguin movement and oxygen reserve.

Galápagos Penguin follow local leader and swimming is hasten by the oxygen reserve which replicate its fitness condition.

3.2. Modernization of Oxygen reserve

Oxygen reserve of the Galápagos penguin is modernized subsequent to each dive by,

\[O'_{i+1} = O_i + \left(f(y'_j(t + 1)) - f(y_j(t)) \right) \times \|y'_j(t + 1) - y'_j(t)\| \]

(11)

Modernization of Oxygen reserve is done with reference to objective function. When new-fangled solution is superior to the preceding one then the oxygen reserve augments. Galápagos Penguin executes recurring dives until the oxygen is exhausted, subsequently Galápagos penguin will move around to another group.

3.3. Communication between intra-group

When one Galápagos penguin finds a superior food source then it act as new-fangled local guide in which Foraging of the team is an autocat-alytic procedure.

3.4. Modernization of food plenty available status

Food available status is linked to a group which indicate the energy content of prey captured by the group and it estimated by the capacity of Eaten Fish (CEF), which is computed by,

\[CEF'(t + 1) = CEF'(t) + \sum_{j=1}^{N_G} (O'_j - O_j) \]

(12)

3.5. Modernization of group membership

When there is food shortage in the group Galápagos penguin will transfer to unite another group. Galápagos Penguin modernizes its group membership \(Q_i(t+1) \) based on food availability degree of different groups.

\[Q_i(t+1) = \frac{CEF'(t)}{\sum_{j=1}^{N_G} CEF'(t)} \]

(13)

\(a \) Solution space generated
\(b \) Within bounded region Galápagos penguin are generated for each groups
\(c \) while end condition is not reached do
\(d \) for each Galápagos penguin oxygen reserve is initialized
\(e \) For every group “i” do
\(f \) For every Galápagos penguin “j” in this group do
\(g \) Position of the Galápagos penguin enhanced as follows;

Input; solution space, maximum distance
Output; K region centers in the space (solution)
Center of the primary group arbitrarily chosen and indicated by \(C_0 \)
\(i \leftarrow 1 \)
While \(i < Kdo \)
Center \(C_i \) arbitrarily chosen for the subsequent group
\(j \leftarrow 0 \)
While \(j < Kdo \)
When distance \((C_i, C_j) > \text{maximum distance} \) then
\(j \leftarrow j + 1 \)
Otherwise chose Center \(C_i \) again
End if
End while
\(i \leftarrow i + 1 \)

(continued on next page)
(continued)

4. Simulation results

In standard IEEE 14 bus system the validity of the projected Galápagos Penguin Algorithm (GPA) has been tested, Table 1 shows the constraints of control variables. Table 2 shows the limits of reactive power generators and comparison results with particle swarm optimization (PSO), modified particle swarm optimization (MPSO), self-adaptive real coded Genetic algorithm (SAGRA), Evolutionary Programming (EP) are presented in Table 3.

Then the proposed Galápagos Penguin Algorithm (GPA) has been tested, in IEEE 57 Bus system. Table 7 shows the constraints of control variables, Table 8 shows the limits of reactive power generators and comparison results with particle swarm optimization (PSO), modified particle swarm optimization (MPSO), self-adaptive real coded Genetic algorithm (SAGRA), Evolutionary Programming (EP) are presented in Table 6.

Table 1. Constraints of control variables.

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 14 Bus	Generator Voltage	0.95	1.1
	Transformer Tap	0.9	1.1
	VAR	0	0.2

Table 2. Constrains of reactive power generators.

System	Variables Q Minimum (PU)	Q Maximum (PU)
IEEE 14 Bus	1	10
	2	-40
	3	40
	6	-6
	8	-6

Table 3. Simulation results of IEEE – 14 system.

Control variables	Base case	MPSO [19]	PSO [19]	EP [19]	SAGRA [19]	GPA
VG-1	1.060	1.101	1.100	NR*	NR*	1.010
VG-2	1.045	1.085	1.086	1.097	1.094	1.012
VG-3	1.010	1.055	1.056	1.016	1.036	1.017
VG-6	1.070	1.069	1.067	1.097	1.099	1.020
VG-8	1.090	1.074	1.060	1.053	1.078	1.002
Tap 8	0.978	1.018	1.019	1.04	0.95	0.900
Tap 9	0.969	0.975	0.988	0.94	0.95	0.901
Tap 10	0.932	1.024	1.008	1.03	0.96	0.924
QC-9	0.19	14.64	0.185	0.18	0.06	0.146
PG	272.39	271.32	271.32	NR*	NR*	271.64
QC (Mvar)	82.44	75.79	76.79	NR*	NR*	74.79
Reduction in Ploss (%)	0	9.2	9.1	1.5	25.2	24.14
Total Ploss (Mw)	13.550	12.293	12.315	13.346	13.216	10.279

NR* - Not reported.

Then the proposed Galápagos Penguin Algorithm (GPA) has been tested, in IEEE 30 Bus system. Table 4 shows the constraints of control variables, Table 5 shows the limits of reactive power generators and comparison results with particle swarm optimization (PSO), modified particle swarm optimization (MPSO), self-adaptive real coded Genetic algorithm (SAGRA), Evolutionary Programming (EP) are presented in Table 3.

Table 4. Constraints of control variables.

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 30 Bus	Generator Voltage	0.95	1.1
	Transformer Tap	0.9	1.1
	VAR	0	0.2

Table 5. Constrains of reactive power generators.

System	Variables Q Minimum (PU)	Q Maximum (PU)
IEEE 30 Bus	1	10
	2	-40
	5	-40
	8	-10
	11	-6
	13	-6

Table 6. Simulation results of IEEE – 30 system.

Control variables	Base case	MPSO [19]	PSO [19]	EP [19]	SAGRA [19]	GPA
VG-1	1.060	1.101	1.100	NR*	NR*	1.010
VG-2	1.045	1.086	1.072	1.097	1.094	1.012
VG-5	1.010	1.047	1.038	1.048	1.053	1.063
VG-8	1.010	1.057	1.048	1.033	1.059	1.001
VG-12	1.082	1.048	1.058	1.092	1.099	1.020
VG-13	1.071	1.068	1.080	1.091	1.099	1.041
Tap11	0.978	0.983	0.987	1.01	0.99	0.902
Tap12	0.969	1.023	1.015	1.03	1.03	0.910
Tap15	0.932	1.020	1.020	1.07	0.98	0.900
Tap36	0.968	0.988	1.012	0.99	0.96	0.901
QC10	0.19	0.077	0.077	0.19	0.19	0.063
QC24	0.043	0.119	0.128	0.04	0.04	0.109
PG (MW)	306.9	299.54	299.54	NR*	NR*	298.67
QC (Mvar)	133.9	130.83	130.94	NR*	NR*	130.73
Reduction in Ploss (%)	0	8.4	7.4	6.6	8.3	18.18
Total Ploss (Mw)	17.55	16.07	16.25	16.38	16.09	14.358

NR* - Not reported.
Table 7. Constraints of control variables.

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 57 Bus	Generator Voltage	0.95	1.1
Transformer Tap	1.0	1.1	
VAR Source	0	0.20	

Table 8. Constraints of reactive power generators.

System	Variables	Q Minimum (PU)	Q Maximum (PU)
IEEE 57 Bus	1	-140	200
2	-17	50	
3	-10	60	
6	-8	25	
8	-140	200	
9	-3	9	
12	-150	155	

Table 9. Simulation results of IEEE – 57 system.

Control variables	Base case	MPSO [19]	PSO [19]	CGA [19]	AGA [19]	GPA
VG 1	1.040	1.093	1.083	0.968	1.027	1.020
VG 2	1.010	1.086	1.071	1.049	1.011	1.012
VG 3	0.985	1.056	1.055	1.056	1.033	1.031
VG 4	0.980	1.038	1.036	0.987	1.001	1.010
VG 5	1.005	1.066	1.059	1.022	1.051	1.023
VG 6	0.980	1.054	1.048	0.991	1.051	1.010
VG 7	1.015	1.054	1.046	1.004	1.057	1.043
VG 8	0.970	0.975	0.987	0.920	1.030	0.954
VG 9	0.978	0.982	0.983	0.920	1.020	0.932
VG 10	1.043	0.975	0.981	0.970	1.060	0.921
VG 11	1.000	1.025	1.003	NR*	NR*	1.014
VG 12	1.000	1.020	0.985	NR*	NR*	1.002
VG 13	1.043	1.007	1.009	0.900	0.990	1.003
VG 14	0.967	0.994	1.007	0.910	1.100	0.991
VG 15	0.975	1.013	1.018	1.100	0.980	1.012
VG 16	0.955	0.988	0.986	0.940	1.010	0.970
VG 17	0.955	0.979	0.992	0.950	1.080	0.961
VG 18	0.900	0.983	0.990	1.030	0.940	0.960
VG 19	0.930	1.015	0.997	1.090	0.950	1.002
VG 20	0.985	0.975	0.984	0.900	1.050	0.951
VG 21	0.958	1.020	0.990	0.900	0.950	1.000
VG 22	0.958	1.001	0.988	1.000	1.010	1.002
VG 23	0.980	0.979	0.980	0.960	0.940	0.960
VG 24	0.940	1.002	1.017	1.000	1.000	1.001
VG 25	0.1	0.179	0.131	0.084	0.016	0.173
VG 26	0.059	0.176	0.144	0.008	0.015	0.161
VG 27	0.063	0.141	0.162	0.053	0.038	0.141
VG 28	1278.6	1274.4	1274.8	1276	1275	1270.10
VG 29	321.08	272.27	276.58	309.1	304.4	272.32
Reduction in PLoss (%)	0	15.4	14.1	9.2	11.6	23.69
Total PLoss (MW)	27.8	23.51	23.86	25.24	24.56	21.213

NR* - Not reported.

Table 10. Constraints of control variables.

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 118 Bus	Generator Voltage	0.95	1.1
Transformer Tap	0.9	1.1	
VAR Source	0	0.20	

(continued on next page)
Table 11 (continued)

Control variables	Base case	MPSO [19]	PSO [19]	PSO [19]	CLPSO [19]	GPA
Tap 93	0.960	1.000	0.997	1.008	0.992	1.000
Tap 95	0.985	0.995	1.020	1.032	1.007	0.971
Tap 102	0.935	1.024	1.004	0.944	1.061	1.000
Tap 107	0.935	0.989	1.008	0.906	0.930	0.943
Tap 127	0.935	1.010	1.009	0.967	0.957	1.002
QC 34	0.140	0.049	0.048	0.093	0.117	0.003
QC 44	0.100	0.026	0.026	0.093	0.098	0.022
QC 45	0.100	0.196	0.197	0.086	0.094	0.160
QC 46	0.100	0.117	0.118	0.089	0.026	0.122
QC 49	0.150	0.056	0.056	0.118	0.028	0.041
QC 74	0.120	0.120	0.120	0.046	0.005	0.112
QC 79	0.200	0.139	0.140	0.105	0.148	0.101
QC 82	0.200	0.180	0.180	0.164	0.194	0.152
QC 83	0.100	0.166	0.166	0.096	0.069	0.124
QC 105	0.200	0.189	0.190	0.089	0.090	0.152
QC 107	0.060	0.128	0.129	0.050	0.049	0.130
QC 110	0.060	0.014	0.014	0.055	0.022	0.002
PG(MW)	4374.8	4359.3	4361.4	NR*	NR*	4362.14
QG(MVAR)	795.6	604.3	653.5	NR*	NR*	610.10
Reduction in PLOSS(%)	0	11.7	10.1	0.6	1.3	13.89
Total PLOSS (Mw)	132.8	117.19	119.34	131.99	130.96	114.347

NR* - Not reported.

Table 12. Comparison of real power loss.

Parameter	Method EGA [21]	Method EEA [21]	Method CSA [20]	GPA
PLOSS (MW)	646.2998	650.6027	635.8942	610.1509

5. Conclusion

In this work Galapagos Penguin Algorithm (GPA) successfully solved the optimal reactive power problem. Through intra-group communication Galapagos Penguin communicates each other and when one Galapagos penguin finds a superior food source then it acts as a newborn leader in which Foraging of the team is an autocatalytic procedure. When there is food shortage in the group Galapagos Penguin will transfer to unite another group. Deeds Galapagos Penguin is modeled to solve the problem effectively. In standard IEEE 14, 30, 57, 300 bus systems Galapagos Penguin Algorithm (GPA) have been tested and power loss has been reduced efficiently. Percentage of the power loss reduction has been improved. In future this work can be expanded to application of the proposed GPA algorithm to multi-objective reactive power optimization problem. Also to practical systems the projected algorithm can be applied in real time systems.

Declarations

Author contribution statement

Kanagasabai Lenin: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] K.Y. Lee, Fuel-cost minimisation for both real and reactive-power dispatches, Proc. Gener. Transm Distrib Conf 131 (3) (1984) 85-93.
[2] K. Aski, A. Nishikiori, R.T. Yokoyama, Constrained load flow using recursive quadratic programming, IEEE Trans. Power Syst. 2 (1) (1987) 8-16.
[3] D.S. Kirschen, H.P. Van Meeteren, MW/voltage control in a linear programming based optimal power flow, IEEE Trans. Power Syst. 3 (2) (1988) 481-489.
[4] W.H.E. Liu, A.D. Papalexopoulos, W.F. Tinney, Discrete shunt controls in a Newton optimal power flow, IEEE Trans. Power Syst. 7 (4) (1992) 1509-1518.
[5] V.H. Quintera, M. Santos-Nieto, Reactive-power dispatch by successive quadratic programming, IEEE Trans. Energy Convers. 4 (3) (1989) 425-435.
[6] V. de Sousa, E. Batista, G. da Costa, Optimal reactive power flow via the modified barrier Lagrangian function approach, Electr. Power Syst. Res. 84 (1) (2012) 159-164.
[7] Y. Li, X. Li, Z. Li, Reactive power optimization using hybrid CABC-DE algorithm, Electr. Power Compon. Syst. 45 (9) (2017) 980-989.
[8] Provas Kumar Roy, Sananta Dutta, Economic load dispatch: optimal power flow and optimal reactive power dispatch concept, in: Optimal Power Flow Using Evolutionary Algorithms. IGI Global, 2019, pp. 46-64. Web. 21.
[9] Christian Bingane, Miguel F. Anjos, Sebastien Le Digabel, Tight-and-cheap conic relaxations for the optimal reactive power dispatch problem, IEEE Trans. Power Syst. (2019), 03040 arXiv:1810.
[10] Dharmir Prasad, Vivekananda Mukherjee, Solution of optimal reactive power dispatch by symbiotic organism search algorithm incorporating FACTS devices, IEEE J. Res. 64 (1) (2018) 149-160.
[11] M.T. Aljohani, A.F. Ebrahim, O. Mohammed Single, “Multiobjective optimal reactive power dispatch based on hybrid artificial physics–particle swarm optimization”, Energies 12 (12) (2019) 2333.
[12] Ram Kishan Mahate, Himmat Singh, Multi-objective optimal reactive power dispatch using differential evolution, International Journal of Engineering Technologies and Management Research 6 (2) (2019) 27–38.
[13] E. Yalçın, M. Toplamacioglu, E. Cam, The adaptive chaotic symbiotic organisms search algorithm proposal for optimal reactive power dispatch problem in power systems, Electriva 19 (2019) 37-47.
[14] S. Mouassa, T. Bouktir, Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem, COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 38 (1) (2019) 304-324.
[15] Tawfiq M. Aljohani, Ahmed F. Ebrahim, Osama Mohammed, Single and multiobjective optimal reactive power dispatch based on hybrid artificial physics–particle swarm optimization, Energies, MDPI, Open Access Journal 12 (12) (2019) 1-24.
[16] G. Chen, Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints, Appl. Soft Comput. 50 (2017) 58-70.
[17] Y. Gheraitla, A. Moussawi, Y. Djennouri, S. Kabir, P.Y. Yin, S. Maouzi, Penguin search optimization algorithm for finding optimal spaced seeds, Int. J. Softw. Sci. Comput. Intell. 7 (2) (2015) 85-99.
[18] IEEE, ‘The IEEE-Test Systems’, 1993. www.ee.washington.edu/research/pstca/.
[19] Ali Nasser Hussain, Ali Abdulabbas Abdullah, Omar Mohammed Neda, Modified particle swarm optimization for solution of reactive power dispatch, Res. J. Appl. Sci. Eng. Technol. 15 (8) (2018) 316–327.
[20] S. Surender Reddy, Optimal reactive power scheduling using cuckoo search algorithm, Int. J. Electr. Comput. Eng. 7 (5) (2017) 2349-2356.
[21] S.S. Reddy, et al., Faster evolutionary algorithm based optimal power flow using incremental variables, Electrical Power and Energy Systems 54 (2014) 198-210.