REVIEW

An updated review about perceptual learning as a treatment for amblyopia

Antonio Rodán *, Elena Candela Marroquín, Laura C. Jara García

Universidad CEU-San Pablo, CEU Universities, Spain

Received 10 February 2020; accepted 16 August 2020

KEYWORDS
Amblyopia; Perceptual learning; Dichoptic therapy; Videogames

Abstract The purpose of our work is to do an update of recent investigations about amblyopia treatment based on perceptual learning, dichoptic training and videogames. Therefore, we conducted a search of the studies published about this subject in the last six years. The review shows that the investigations during that period have used several kinds of treatments regarding their design (e.g., type of stimulus and context used, duration of the training), and in a wider range of age that also include adults. Most of the studies have found an improvement in some mono and binocular visual functions, such as visual acuity, contrast sensitivity and stereopsis, which for now, it seems advisable that these processes could be used, as an alternative or a complement of the traditional passive therapy. Nevertheless, it would be plausible to conduct additional, controlled and random, clinical trials in order to discover in a more deeply way which perceptive learning method of treatment is more effective for the improvement of visual functions and for how long the effects of the treatment could persist.

© 2020 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Amblyopia (from the Greek word ambylos- weak, opia-vision), was defined by Burian in 1956 as a diminution in unilateral or bilateral vision, without any physical cause, detected in the eye exam. This type of dysfunction is the principal cause of preventable children blindness, with a prevalence between 1 and 5% and it is still considered one of the most common causes of unilateral visual impairment that persists in the adulthood. Amblyopia is considered as a neurodevelopmental disorder of the visual system due to an abnormal binocular vision experience in early childhood. Even though amblyopia causes a range of monocular deficit (e.g., visual acuity; VA from now on), it has been proved that one of amblyopia determining characteristics is the loss of binocularity. Nowadays, this has led to increased interest in the development of amblyopia treatments that directly address binocular dysfunction by promoting binoc-
ular vision and reducing inhibitory interactions within the visual cortex.² Perceptual learning (PL from now on) refers to any rather stable change in the perception of a subject as a result of the experience with one or more stimulus.² The repetitive training of a visual task looks forward to develop the perceptive capacity throught the knowledge and the control of the corporal sensations, and in that way, to stimulate the cortical area responsible of the trained function. PL, in some skills (Vernier acuity, position discrimination and contrast sensitivity) seems to transfer, al least partially, to visual acuity improvements and stereoacuity, although it has been suggested that the transfer effect depends on the spatial frequency choice during the training and that the age (at least up to 30 years old) it does not seem to be an important limitation in PL efficacy.³ Nowadays it is believed that the alterations in neuronal responses in the visual cortex at a young age are the main cause of the visual dysfunction in amblyopia, and the possibility to promote the plasticity of the visual cortex by a non-invasive method, such as PL, has opened a very promising field in amblyopia treatment.⁴ With the development of interactive tools, the PL based in visual stimulation is the new center of attention as a new treatment for amblyopia.

One of the approaches most commonly used to induce PL in amblyopia treatment is Dichoptic Therapy (DT from now on). The treatment for binocular vision using antisupression dichoptic training is produced by the reduction of the supression in the visual cortex using stimulus presented simultaneously which are perceived in a separately and different manner in each eye.⁵ Some computerized programs and videogames (VG from now on) have been thoroughly used in the visual cognition field to improve the selective visual attention and some visuospatial skills.⁶⁻¹⁰ In the optometry and ophthalmology field, for more than a decade they have been applied videogames of different types (falling blocks, action and adventure) for amblyopia treatment. The use of VG in the treatment of amblyopia is based in the idea that these can strengthen visual functions such as, VA and stereo acuity.

The conventional treatment for amblyopia is based on the increase of the visual stimulation of the amblyopic eye by occlusion, atropine or the optical penalization of the dominant eye. All of them have been shown effective in the visual improvement, specially in the monocular function. Nevertheless, the management of amblyopia is still a challenge due particularly to problems of compliance and suboptimal results. Recent studies have shown evidence of different types of amblyopia treatments based in PL (monocular training with grating contrast detection tasks, monocular viewing of action movies and videogames, antisupression DT, stereopsis training, etc), specially with the restoration of the binocular functions, although these are still under investigation. The main purpose of this article was to study the most recent investigations about amblyopia treatment based in PL and to try to establish the role that they have in these new kinds of treatment. In addition, the results obtained in last investigations that have compared classical occlusion therapy with new kinds of perceptive treatment were analyzed, in order to envisage if PL approach in amblyopia is necessary.

Material and methods

A bibliographic search was conducted using the data base of PubMED, using the following strategies:
- Strategy 1: Amblyopia[Mesh] AND Perceptual Learning[All Fields].
- Strategy 2: Amblyopia[Mesh] AND Dichoptic Therapy OR Dichoptic Training.
- Strategy 3: Video Games OR ‘‘Virtual Reality’’ [Mesh] AND Amblyopia[Mesh].

First documentary search was conducted on January 2019. In order to recover the most recent investigations, the publication date was limited to the last 5 years (from January 2014 to January 2019). The results were also limited to publications refering to humans and in English or Spanish. Databases were reviewed again on June 2020 in order to recover investigations published from February 2019 to June 2020, including 6 more studies. Article selection was conducted in different steps. Titles and abstracts were reviewed for excluding duplicates and those which were not relevant for this study because they did not fit into our study question. Following that, we proceeded to download the complete texts in order to review them, selecting those that fitted into our investigation, evaluating and extraction results. Fig. 1 shows schematically how the search and the systematic selection of the articles for this review took place.

Additionally, the GRADE system (Grading of Recommendations Assessment, Development, and Evaluation) was used, which is used to define the quality of the evidence in systematic reviews and to qualify the strenght of the recomendations in guidelines, based on a series of considerations.¹¹

Results

In Table 1 the main methodological characteristics of studies in which our review is based are shown. In Table 2 the results, conclusions and limitations from the same studies as before are detailed.
Study	Sample type and size	Intervention	Characteristics of the PL group	Outcome measure
Hess et al., 2014	* N = 14	* VG (*Tetris*) in a dichoptic format with lenticular screen (n = 5) or	* Antisuppression DT (lenticular screen / anaglyphic version)	VA
	* Age range: 13–50 years	anaglyph (n = 9) presentation in iPodTouch at home		Stereo acuity
	* Type of amblyopia: A(n = 7), S(n = 5), C(n = 2)	* Duration of exposure (both): 10 h to 30 h		
		* Home (both)		
Mansourii et al., 2014	* N = 22	* Random dot kinematograms were presented dichoptically to identify the	* Antisuppression DT (video stereo-google)	VA
	* Age range: 5–73	direction of motion of the targets	* Motion identification task (initial contrast of the target and noise dots is 100% and 0%	
	* Mean age: 36.2 ± 20.3 years	* Duration of exposure: 2 h/session, 1000 trials/session, 18 sessions, 6	respectively)	
		weeks (total: 36 h)		
	* Type of amblyopia: A(n = 7), S(n = 15)	* Laboratory / Clinic		
Xi et al., 2014	* N = 11	* Different texture anaglyphs with different disparities with red/green	* Stereopsis (anaglyph textures)	Disparity
	* Mean age: 21.1 ± 5.1 years	glasses		threshold
	* Age range: 11–27 years			Stereo acuity
	* Type of amblyopia: A(n = 8), I(n = 3)			VA
Zhang et al., 2014	* N = 19	* Gabor stimulus. Configurations for contrast, orientation and Vernier	* MT	VA
	* Mean age: 22.5 years	discrimination at one orientation	* Grating contrast detection (Gabor patch)	Stereo acuity
	* Age range: 19–27 years	* 2 stages: low and high spatial frequency		
	* Type of amblyopia: A(n = 12), S(n = 2), C(n = 5)	* Duration of exposure: 2 h/session, 30 sessions (total: 60 h)		CS (untrained
		* Laboratory / Clinic		orthogonal
				orientation)
Birch et al., 2015	* N = 50	* Binocular iPad games + patching (n = 45)	* Antisuppression DT (anaglyphic version)	VA
	* Mean age: 5.6 ± 0.9 years	* Sham iPad games + patching (control) (n = 5)	* PVG (Game pieces: blocks, balloons, balls, paddles)	
	* Type of amblyopia: A(n = 16), S(n = 11), C(n = 23)	* Duration of exposure (both): iPad: 4 h/week, 4 weeks (total: 16 h);		
		patching: 2 h/day at a different time of game		
		* Laboratory / Clinic (both)		
Study	Sample type and size	Intervention	Characteristics of the PL group	Outcome measure
-------------------------------	----------------------	---	--------------------------------	-----------------
Khan et al., 2015¹⁷	• N = 61	• Occlusion therapy of better eye with on near visual task (VG, computers, mobile phone gaming, colouring patterns)	• MT	• VA
	• Age range: 12–30 years	• Duration of exposure: 2–4 h/day, end-point of therapy was considered as stable VA maintained at least three months of occlusion	• Near visual task (VG an others)	
	• Mean age: 17 years	• Home		
	• Type of amblyopia: A(n = 61)	• Duration of exposure: 2–4 h/day, end-point of therapy was considered as stable VA maintained at least three months of occlusion	• Watching 3 dichoptic movies per week, 2 weeks on a passive 3D screen	• Antisuppression DT (polarized version)
Li SL et al., 2015¹⁸	• N = 8	• Duration of exposure: 9.4 ± 0.9 h	• Movie viewing	• V
	• Mean age = 7.4 ± 2.0 years	• Type of amblyopia: A(n = 3), S(n = 1), C(n = 4)		• Stereo acuity
	• Age range = 4–10 years	• Duration of exposure: 9.4 ± 0.9 h		• Interocular suppression
Li J et al., 2015¹⁹	• N = 30	• Dichoptic VG presented on iPod touch equipped with a lenticular overlay screen combined with tDCS (n = 15)	• MT + Antisuppression DT (video goggles)	• VA
	• Mean age = 22.2 ± 3.5 years	• Dichoptic VG viewed through video goggles combined with MT (n = 15)	• tDCS + Antisuppression DT (lenticular screen)	• Stereo acuity
	• Age range = 17–31 years	• Duration of exposure (both): 5 days/week, 2 weeks	• PVG (falling blocks)	• CS
	• Type of amblyopia: A(n = 20), S(n = 9), C(n = 1)	• Laboratory / Clinic (both)		
Verdamurthy et al., 2015a²⁰	• N = 23	• Dichoptic action VG (*Unreal Tournament 2004*) viewed through a stereoscope.	• Antisuppression DT (stereoscope)	• VA
	• Mean age = 39.57 ± 15.74 years	• Duration of exposure: 40 h	• PAVG (first-person shooter with Gabor patch)	• Stereo-sensivity (1/arc seconds)
	• Age range = 19–62 years	• Laboratory / Clinic		• Gabor resolution acuity
	• Type of amblyopia: A(n = 10), S(n = 13)	• Antisuppression DT (stereoscope)		• Index for suppression (IOR):
		• Dichoptic action VG (*Unreal Tournament 2004*) viewed through a stereoscope.	• PAVG (first-person shooter with Gabor patch).	• 0 indicates complete suppression
		• Duration of exposure: 40 h		• 1 indicates no suppression
Study	Sample type and size	Intervention	Characteristics of the PL group	Outcome measure
---	--	--	---	---
Verdamurthy et al., 2015b1	• N = 38 • Mean age = 39.7 ± 15.4 years • Age range = 19–66 years • Type of amblyopia: A(n = 16), S(n = 22)	• Dichoptic VG (n = 23) • Monocular movies with patching (n = 15) • Duration of exposure (both): 40 h, in sessions lasting 1.5–2 h, 2–5 times/week • Laboratory / Clinic (VG group/movie group) • Home (movie group)	• Antisuppression DT (stereoscope) • PAVG (first-person shooter with Gabor patch) • Monocular viewing of action movies	• VA • Stereo acuity • CS • Reading speed • Self-report of amblyopia state
Chen et al., 201622	• N = 13 (PL group) • Mean age = 18.07 ± 7.84 years • Type of amblyopia: A(n = 13) • N = 10 (Patching group, test-retest) • Mean age = 10.46 ± 3.08 years • Type of amblyopia: A(n = 10)	• Psychophysical suprathreshold binocular summation tasks within one log-unit from their cut-off spatial frequencies. • Duration of exposure: 7–12 days, 10 session/day and 70–100 trials/session (total: 5000–10,000 trials, =8 h) • Laboratory / Clinic	• MT • Grating contrast detection	• CS • Binocular function • Binocular phase combination • Dichoptic global motion coherence
Dadeya & Dangda, 201623	• N = 40 • Mean age: 6.03 ± 1.14 years • Type of amblyopia: A(n = 40)	• Group A (control): patching alone (n = 20) • Group B (study): play action VG along with patching (n = 20) • Duration of exposure (both): 30 min/week, 12 weeks (total: 6 h) • Laboratory / Clinic (PAVG group)	• MT • Television PAVG (car racing, Battle City, Mario) with hand-eye coordination	• VA • Stereo acuity
Herbison et al., 201624	• N = 75 • Age range: 4–8 years • Type of amblyopia: A(n = 5), S(n = 24), C(n = 46)	• I-BiTgame • I-BIT DVD • Non-I-BiT game (control group) • Duration of exposure (all): 30 min/week, 6 weeks (total: 3 h) • Laboratory / Clinic	• Antisuppression DT (interactive binocular game, I-BIT game) • PAVG (shooter game) • Antisuppression DT (interactive binocular DVD, I-BIT DVD)	• VA • Stereo acuity
Table 1 (Continued)

Study	Sample type and size	Intervention	Characteristics of the PL group	Outcome measure
Holmes et al., 2016	• N = 385	• Binocular VG in iPad (n = 190)	• Antisuppression DT (anaglyphic version)	• VA
	• Mean age: 8.5 ± 1.9 years	• Patching (n = 195)	• PVG (falling blocks)	• Stereo acuity
	• Type of amblyopia:	• Duration of exposure: VG: 1 h/day; patching: 2 h/day (both: 16 weeks)		
	A(n = 199), S(n = 66), C(n = 120)	• Home		
Kelly et al., 2016	• N = 28	• Binocular adventure VG iPad (Dig Rush) (n = 14)	• Antisuppression DT (anaglyphic version)	• VA
	• Mean age: 6.7 ± 1.4 years	• Patching group (n = 14)	• PAVG (oriented adventure)	• Stereo acuity
	• Age range: 4.6–9.5 years	• Duration of exposure (both):	• Suppression scotoma	• VA
	• Type of amblyopia:	2 h/day, 7 days/ week, 2 weeks (total: 28 h)		
	A(n = 14), S(n = 9), C(n = 5)	• Home (both)		
Verdamurthy et al., 2016	• N = 11	• Crush a dichoptic virtual insect in an area at an angle, hitting it with a manual physical cylinder	• Antisuppression DT with stereoscopic cues (VR)	• Interocular suppression
	• Mean age: 34.7 years	• Duration of exposure: 360 trials/session, 35 sessions (8–11 weeks)	• PVG (natural visuomotor task: a 'bug squashing' game)	• Stereo acuity
	• Age range: 19–56 years	• Laboratory / Clinic		• VA
	• Type of amblyopia:			• Vergence control
	A(n = 2), S(n = 4), C(n = 5)			
Barollo et al., 2017	• N = 10	• Training in contrast detection (Gabor patch)	• MT	• CS
	• Age range: 7–53 years	• Duration of exposure: 21–93 sessions (16–43 weeks)	• Grating contrast detection (Gabor patch)	• AV
	• Type of amblyopia:	• Laboratory / Clinic + Home		• Foveal crowding
	A(n = 2), S(n = 5), C(n = 1), others (n = 2)			
	• N = 10 (controls, non amblyopic)			
	• Age range: 7.0–51 years			
Bossi et al., 2017	• N = 22	• Viewing of dichoptic movies and gameplay wearing goggles	• Antisuppression DT (shutter glasses)	• VA
	• Age range: 3–11 years	• Group 1: A; Group 2: 5 + C	• Viewing movies	• Stereo acuity
	• Mean age: 6.6 ± 2.9 years	• Duration of exposure: group 1: 8 weeks; group 2: 24 weeks (both: 1 h/day)		• Intercocular suppression
	• Type of amblyopia:	• Home		
	A(n = 7), S(n = 6), C(n = 9)			
Study	Sample type and size	Intervention	Characteristics of the PL group	Outcome measure
-----------------------	--	--	--	---------------------
Singh et al., 2017	N = 68 Mean age: 10 ± 2 years Type of amblyopia: A(n = 68)	VG + occlusion (n = 34) Duratin of exposure: VG: 1 h/day, 1 month (total: 30 h); occlusion: 6 h/day, 3 months (total: 540 h) Home Occclusion (n = 34) Duratin of exposure: 6 h/day, 3 months (total: 540 h) Home	PAVG (Monocular viewing)	VA Stereo acuity CS
Čsik et al., 2017	N = 17 Mean age = 31.2 years Age range = 17–69 years Type of amblyopia: A(n = 17)	2 different DT games Duratin of exposure: 8 sessions, 20 min/game, 40 min/session (total≈5.5 h) Laboratory / Clinic	Antisuppression DT (VR) PAVG (flying spaceship)+PVG (block breaker)	VA Stereo acuity
Gambacorta et al., 2018	N = 21 Age range = 7–17 years Mean age = 9.95 ± 3.14 years Type of amblyopia: A(n = 12), S(n = 9)	Dichoptic VG (n = 10) Monocular VG (n = 11) Duratin of exposure (both): 20 h Laboratory / Clinic (both)	Antisuppression DT (stereoscope) PAVG (game worlds) MT PAVG (game worlds)	VA Stereo acuity
Gao et al., 2018	N = 115 Age range = 7–55 years 7–12 years (n = 45) 13–17 years (n = 17) ≥18 years (n = 53) Active group (n = 56): Mean age = 22.1 ± 13.9 years Placebo (n = 59): Mean age = 21.0 ± 13.4 years Years Type of amblyopia: A(n = 37), S (n = 12), C(n = 61)	Active group (n = 56) Placebo (n = 59): same VG with full contrast (no dichoptic presentation) Duratin of exposure (both): 1 h/day, 6 weeks Home (both)	Antisuppression DT (anaglyphic version) PAVG (falling blocks) on iPod Touch	VA Stereo acuity Interocular suppression Quality of life questionnaire
Study	Sample type and size	Intervention	Characteristics of the PL group	Outcome measure
-----------------------	--	--	--	-------------------------
Jia et al., 2018	N = 19 • Mean age = 18.5 ± 1.26 years • Type of amblyopia: A(n = 19)	MT close to its cut off spatial frequency • Duration of exposure: 630 trials/day, 6–10 days	MT • Grating contrast detection • MT • PAVG (oriented adventure) • Antisuppression DT (polarized version) • Movie viewing	VA • CS • Stereo acuity • Suppression
Kelly et al., 2018	N = 41 • Mean age = 7.0 ± 1.8 years • Age range = 4.4–10.7 years • Type of amblyopia: A(n = 21), S(n = 6), C(n = 14)	Game group: binocular adventure VG iPad (Dig Rush) (n = 20) • Duration of exposure: 1 h/day, 5 days/week, 2 weeks (total: 10 h) • Home • Movie group: watch binocular movie (n = 21) • Duration of exposure: 6 sessions, 2 weeks (total: 9 h) • Laboratory	Antisuppression DT (anaglyphic version) • Antisuppression DT (polarized version) • Movie viewing	VA • Extent of suppression • Depth of suppression
Liu & Zhang, 2018	N = 13 (who completed previous study, Zhang et al., 2014) • Mean age = 24 years • Age range = 21–29 years • Type of amblyopia: A(n = 9), S(n = 1), C(n = 3)	Gabor stimulus. Configurations for contrast, orientation and Vernier discrimination • DT (after MT in previous study) • Duration of exposure: 2 h/session, 9 sessions (total: 18 h) • Laboratory	Antisuppression de-masking DT (stereoscope with Gabor patch)	VA • Stereo acuity • CS
Manh et al., 2018	N = 100 • Mean age: 14.3 ± 1.1 years • Type of amblyopia: A(n = 100)	Binocular VG iPad group (n = 40) • Duration of exposure: 1 h/day (16 weeks) • Home • Patching group (n = 60) • Duration of exposure: 2 h/day (16 weeks) • Home	Antisuppression DT (anaglyphic version) • PVG (falling blocks)	VA
Study	Sample type and size	Intervention	Characteristics of the PL group	Outcome measure
----------------------	----------------------	---	--	-----------------
Mezad-Koursh et al., 2018¹⁸	• N = 27			
• Age range = 4–8 years				
• Mean age: 5 years				
• Type of amblyopia (treatment group): A(n = 7), S(n = 13), C(n = 7)	• BinoVision (training group) (n = 19)			
• Duration of exposure: 60 min/day, 6 days/week, 8–12 weeks (total: 48–72 h)				
• Sham iPad games, equal stimuli for both eyes (control) (n = 8)				
• Duration of exposure: 60 min/day, 6 days/week, 4 weeks (total: 24 h)				
• Home	• Antisuppression DT (BinoVision high-tech goggles)			
• Viewing movies or TV programs	• VA			
• Stereo				
Moret et al., 2018¹⁹	• N = 20			
• Age range = 27–58 years				
• Type of amblyopia: A(n = 20)	• Contrast-detection behavioural training using the lateral masking paradigm +			
• + hf-tRNS (n = 10)				
• + Sham stimulation (control) (n = 10)				
• Duration of exposure (behavioural training): 8 sessions, 45 min/session, 2 weeks (total: 6 h/3840 trials)				
• Duration of exposure (stimulation): 25 min (both groups)				
• Laboratory / Clinic	• MT			
• Grating contrast detection (Gabor patch)	• VA			
• CS				
Portela et al., 2018²⁰	• N = 32			
• Age range = 7–14 years				
• Type of amblyopia: Ani and/or strab				
A(n = 2), S(n = 18), C(n = 10)	• Experimental group (n = 16): initial stimulation interval depended on the value of the stereopsis at baseline.			
• Comparison group (n = 16): stimulation interval was constant from 840 to 750°.				
• Duration of exposure (both): 5 sessions/week, 12 weeks or less, 4800 responses, 60 sessions (total: 8 h)				
• Home (both)	• Stereopsis (Random Dot Stimuli)			
• PVG	• Stereo acuity			
Study	Sample type and size	Intervention	Characteristics of the PL group	Outcome measure
-----------------------------------	---	--	--	----------------------------------
Holmes et al., 2019	* N = 138 * Mean age = 9.6 years * Age range = 7–12 years * Type of amblyopia: A(n = 66), S(n = 26), C(n = 46)	Binocular adventure VG iPad (Dig Rush)+spectacle correction (n = 69) * Spectacle correction alone (control) (n = 69) * Duration of exposure (both): 1 h/day, 5 days/week, 8 weeks (total: 40 h) * Home (both)	Antisuppression DT * PAVG (oriented adventure)	VA * Stereo acuity * Cover test
Law & Backus, 2019	* N = 19 * Mean age = 27.9 years * Age range = 16–50 years * Type of amblyopia: A(n = 17), C(n = 2)	Mixed-contrast (n = 9): higher contrast to the amblyopic eye. * Fixed-contrast (n = 10): contrast was the same in both eyes. * Duration of exposure (both): 10 weeks, 45′/session, 10 sessions, 160 trials/session (total: 1600 trials, 7.5 h) * Laboratory / Clinic (both)	Antisuppression DT with stereoscopic cues (stereoscope)	Composite stereodepth (CSD) score: mapped stereoacuity thresholds and percent correct on highdisparity trials onto a single range of 0–20. Scores from 0 to 13.3 are given over to stereoacuity values, and scores from 13.3–20 are given over to percent correct.
Liu & Zhang, 2019	* N = 11 * Mean age = 23 years * Age range = 19–28 years * Type of amblyopia: A (n = 8), C (n = 3)	Gabor stimulus. Configurations for contrast and orientation discrimination * Group 1 (n = 6): contrast training and then orientation exposure; Group 2 (n = 5): orientation exposure and then contrast training * A subset of participants (n = 6) then performed orientation MT (9 sessions). * Duration of exposure (DT): 2 h/session; 800 1000 trials/session (5 sessions; total: 10 h) * Duration of exposure (MT): 2 h/session; 800 1000 trials/session (9 sessions; total: 18 h) * Laboratory / Clinic (both)	Antisuppression de-masking* DT (stereoscope with Gabor patch) * Antisuppression DT (stereoscope with Gabor patch) + MT * † discounting the masking effect from a noise masker presented to the fellow-eye	VA * Stereo acuity * CS
Table 1 (Continued)

Study	Sample type and size	Intervention	Characteristics of the PL group	Outcome measure
Sauvan et al., 2019⁴⁴	• N = 17	• DT or nonpatched group (n = 10)	• Antisuppression DT (polarized version)	• VA
	• Mean age = 34 years	• Patched group (n = 7) (patching over AE two hours prior to each DT)	• Movie viewing	• Stereo acuity
	• Age range = 9–67 years	• Duration of exposure (both): 6 sessions, 1.5 h/sesión (total: 9 h)	• Intercocular suppression	• Intercocular balance
	• Type of amblyopia: A (n = 11), S (n = 2), C(n = 4)	• Laboratory / Clinic (both)		
Birch et al., 2020⁵⁵	• N = 48	• Game group: binocular adventure VG iPad (Dig Rush) (n = 24)	• Antisuppression DT (anaglyphic version)	• VA
	• Mean age = 6.8 ± 1.8 years	• Duration of exposure: 1 h/day, 5 days/week, 2 weeks (total: 10 h)	• PAVG (oriented adventure)	• Stereo acuity
	• Age range = 4.3–10.8 years	• Home		• Extent of suppression
	• Type of amblyopia: A (n = 27), S + C(n = 21)	• Patching group (n = 24)		
		• Duration of exposure: 2 h/day, 7 days/week, 2 weeks (total: 28 h)		
Gu et al., 2020⁵⁶	• N = 46	• MT + patching (n = 27)	• MT	• VA
	• Mean age = 15.9 ± 4.0 years	• Duration of exposure: MT: 10 sessions/day, 70 100 trials/sessions, 7–14 days (total: 5,000–10,000 trials, 8 h); patching: 2 h/day, 7–14 days.	• Grating contrast detection (Gabor patch)	• CSF
	• Age range = 12–25 years	• Laboratory / Clinic		• Stereo acuity
	• Type of amblyopia: A (n = 46)	• Patching group (n = 5)		• Interocular balance
	• N = 12	• Duration of exposure: patching: 2 h/day, 10–13 days		• SSVEPs
	• Mean age = 24.4 ± 3.2 years	• Home		
	• Age range = 21–30 years			
	• Normal vision			

Note: A: anisometropic amblyopia; AE: amblyopic eye; BIT: binocular treatment; C: combined mechanism amblyopia (i.e., strabismic and anisometropic); cpd: cycles per degree; CS: contrast sensitivity; DT: dichoptic therapy; h: hour / hours; hf-tRNS: high-frequency transcranial random noise stimulation; I: isometropic; IOR: interocular ratio; min: minutes; MT: monocular training; PL: perceptual learning; S: strabismic amblyopia; SSVEPs: Steady-state visually evoked potentials; tDCS: transcranial direct current stimulation; VA: visual acuity; VG: video game; VR: virtual reality. Both refers applied equally to both groups.
Types of training based on PL for amblyopia

Over the last years several investigations have been conducted, in which the effect that different approaches have in amblyopia treatment through PL has been analyzed.12-46 One of the approaches is monocular training (MT), which consists in making tasks while the dominant eye is occluded, the aim is that the amblyopic eye is stimulated. In some studies, MT has been conducted using grating contrast detection (Gabor patch)15,22,28,30,34,39,46 while other studies have used monocular videos playing in order to stimulate the amblyopic eye.17,23,30 It has been seen that both types of treatment improve VA,15,17,22,13,28,30,34,39,46 while contrast sensitivity (CS, from now on) improves when grating patterns are used, more specifically those frequencies near the cutoff frequency.15,34,46 The studies which have analyzed the grade of improvement in stereoaucity with monocular training have positive results,15,22,23,34,46 although it has not been like that when the treatment is used for children and using a similar time of treatment or, even higher, compared with those which have improved stereoscopic function.40

The other treatment approach for amblyopia through PL is the so called DT, which has been used over the last years in several investigations in order to reduce suppression and to improve binocular function using the presentation of different information to each eye.12,13,16,18-21,24-27,29,31,33-35,38,41-45 The basis used in DT are different though different studies using anaglyphs,12,16,25,26,33,35,37,41,45 stereoscopes,20,21,32,36,42-44 lenticular screen,12,19 virtual reality,27,28 polarized lens,18 and other types of mechanisms used to improve binocular vision (e.g., video stereo-googles, liquid crystal shutter glasses).13,19,24,29,38 In general, an improvement in VA has been noticed using this type of dichoptic procedures,12,13,16,18,20,21,24-26,29,31,32,35,38,41-45 though some studies conducted in children41 and in adult patients27,33,36 have failed to show that evidence.

Regarding the improvement in stereopsis, the results are unalike, so some investigations12,20,21,27,29,31,35,36,42,43 have shown an improvement of the binocular function, even though the intervention has been conducted in adult population,12,20,21,27,31,36,42,43 while other investigations have not proved this improvements even though the treatment has been conducted in children.16,18,24,25,26,44 In order to use suppression, which has not always been analyzed, different findings have been obtained, while some authors have obtained a reduction of suppression in children45 and in adults.20,27 other authors have not obtained these improvements.6,18,25,26,44 CS is another function which can be improved using dichoptic therapy.19,20,21,43

In other investigations they have explored if the two types of treatments mentioned (monocular and dichoptic) can have different effects over the improvement of the evaluated visual functions in amblyopic patients. For example, in one of the investigations it has been seen through an action video game in DT format, the improvements in VA are significantly better than monocular viewing of action movies, although both treatments are equally effective in the improvement of CS, stereoaucity and reading speed. In a similar way, in a different investigation32 it has been seen that antisuppression DT produces better increments in VA, although not in stereopsis compared to MT. In other investigations, with a crossover design,19 because improvements were small in the monocular group, this group was crossed over to DT for 10 days longer once the monocular training was completed in order to assess whether additional improvements would occur. Authors found out that DT was more effective at improving CS than monocular training, suggesting that this kind of DT modifies the sensitivity of the neural systems that underpin monocular CS. In other studies, they have compared the effects of occlusion clinical therapy with the ones produced by the use of VG with iPad in a DT format,29,36,45 with the viewing of VG in monocular conditions,13,30 or with grating contrast detection tasks.12,46 While some authors have seen that DT produce higher improvements in VA than occlusion therapy,28,45 other authors have not seen those differences.23,37 Studies which have compared the effectivity obtained in VG viewing in monocular condition compared to the improvements obtained with patching therapy have demonstrated that PL in monocular conditions is more effective.23,30 Meanwhile Chen et al.42 have not concluded if there are differences between both techniques (monocular task of detecting contrast patterns vs. patching) in terms of visual improvements. The gain produced using DT has also been compared to the gain obtained with a simple refractive glasses with glares, finding that increments in VA after 4 weeks of treatment is similar between patients that only wear glasses and those who besides wearing glasses conduct dichoptic therapy using VG.51 Other investigations have been centered in analyze different effects in the improvements produced in VA, CS, stereopsis and suppression when DT is applied by itself or when combined with MT40 or with patching.46 In other studies it has been seen that MT combined with a high-frequency transcranial random noise stimulation is more effective for VA improvement that MT by itself.39

As previously mentioned, there exists some divergence in the results obtained about the improvement that can be achieved in stereopsis in a training based in DT antisuppression. This fact has motivated, at least partially, that some authors have used the paradigm of directly training stereoscopic vision through PL in order to restore depth vision. And it has been suggested that training using stereograms can stimulate neurons that respond to disparity.67 For example, Xi et al.14 using different texture anaglyphs with different disparities found an improvement in disparity threshold, stereoaucity and VA. In a similar way, in another study71 that used DT with stereoscopic cues in a virtual reality environment, that also found a significant reduction of the suppression and an improvement in stereoaucity, even though it is a trend to an improvement in VA. Portela et al.40 using VG in Random Dot stimuli format, and have found a significant improvement of stereocuity in two levels on Wirt Circles and stereocuity 140 s of arc or less, besides stereopsis remained stable after 6 months when it was measured with the Randot Preschool Stereocuity Test.

Use of VG as a resource of PL in amblyopia

The investigation about the use of VG has increased over the last years, in an effort to improve the level of
Study	Results	Limitations / recommendations exposed by the authors	Compliance
Hess et al., 201412	- Binocular perception improved in 13 of 14 cases	- Unspecified	- Considerable variability, 9 of 14 (85.7%) achieving close to the expected levels or above expected levels
	- VA: 1.1 lines***		
	- Stereo: 0.61 log units***		
	- The anaglyph and lenticular platforms were equally effective		
Mansouri et al., 201413	- VA: 3.4 lines**	- It would be necessary to determine the number sessions to maximize the result and the minimum number of sessions needed to treatment	- Although no compliance data is provided, pre-post results of the 22 participants are presented, so it is understood that all of them completed the training. Mean 146 sessions over a period of 4-6 weeks
	- Follow-up (6 months): Improvement VA is maintained**		
	- Increased significantly as a function of the number of sessions completed (r² = 0.27°)		
Xi et al., 201414	- VA: 0.9 lines*	- Unspecified	- Although no compliance data is provided, pre-post results of the 11 participants are presented, so it is understood that all of them completed the training
	- Stereo: 200.3° to 81.6° **		
	- Disparity threshold: 776.7° to 490.4° **		
	- 2 of the 3 subjects reevaluated maintained the effects in VA and stereo at 5 months reevaluation		
Zhang et al., 201415	- VA: 1.55 lines***	- Unspecified	- All participants completed the first stage. Only a subset of them (63.15%) completed the second stage. 58.33% completed training at an oblique orientation
	- Stereo: 53%***		
	- CS: specially on high spatial frequencies near the cutoff frequency**		
Birch et al., 201516	- VA: 0.2 lines* (Sham iPad); 0.9 lines*** (Binocular iPad)	- Not a randomized clinical trial, cohort study, Patching at a different time was allowed, which can be a confusion factor	- Binocular iPad game play time of 16 h was reported to be ≥50% by 62% of the participants
	- Stereo acuity: (ns)		
Khan et al., 201517	- VA: 6 lines***	- Small sample size	- Although no compliance data is provided, pre-post results of the 61 participants are presented, so it is understood that all of them completed the training
		- Short follow-up time	
Study	Results	Limitations / recommendations exposed by the authors	Compliance
-------	---------	--	-------------
Li SL et al., 2015¹⁸	• VA: 2.0 lines**¹⁸		
• Suppression^{ns}			
• Stereo^{ns}	• Small sample size		
• Anecdotal nature of the data, it is not possible to draw firm conclusions	• All children completed the study		
Li J et al., 2015¹⁹	• CS: improved across all spatial frequencies tested for both groups		
• No significant correlation between the change in CS and changes in VA or suppression in neither group	• Data were combined from two different studies that used different experimental designs		
• Both groups of participants were not directly matched in terms of age and amblyopic eye VA			
• CS measured at a relatively high mean luminance	• Although no compliance data is provided, pre-post results of the 30 participants are presented, so it is understood that all of them completed the training		
Verdamurthy et al., 2015a²⁰	• VA: 1.4 lines**²⁰		
• Stereo (1/arcsec): 0.007*²⁰			
• CS: 3.07 cpd**²⁰			
• IOR increased by a factor of ≈1.6, indicating a reduction in suppression*²⁰			
• The reduction in suppression was not significantly correlated with the improvement in the visual function			
• Stereopsis improved in 9 subjects (39%), of 200 in 20 arcsec (a 10 factor)	• The participants were "A" and "S" amblyopic patients, it would be necessary to conduct a randomized clinical trial in a large population of amblyopia to determine the most effective method according to the type of amblyopia	• Compliance data unespecificed	
Verdamurthy et al., 2015b²¹	• VA: 1.4 lines***²¹ (game group); 0.7 lines***²¹ (movie group)		
• VA (difference between groups): 0.7 lines²¹			
• Stereo acuity: Overall significant change**, but no difference between groups^{ns}			
• CS: Overall significant change[*], but no difference between groups^{ns}			
• No effect for timeXgroup in reading speed^{ns}			
• Most improvements were largely retained following a 2-month no-contact period	• Dichoptic VG intervention required that subjects receive extensive training (40 h) in the laboratory, which resulted in a large drop-out rate (38%)	• Drop-out rate 38% vs 28% in VG group and movie group, respectively	
Study	Results	Limitations / recommendations exposed by the authors	Compliance
-------------------------------	---	---	---
Chen et al., 2016²²	• VA (PL group): 1.64 lines^{***}	• Test-retest reliability was assessed in a patching group instead of a non-intervention group because of the regulation of clinical practice	• Compliance data unespecificed
	• CS (PL group): Significantly improved^{***} and it varies with frequency^{***}	• There were not well matched in terms of age and interventional periods between both groups	
	• Stereo (PL group): Increases significantly[*]	• Patching could be considered as a confounding factor (too short-term monocular deprivation)	
Dadeya & Dangda, 2016²³	• VA: 2.9 lines^{***} (group A); 4.2 lines^{***} (group B)	• Small sample size	• Compliance to the VG was fully ensured as the examiner was present throughout the session and monitored each child
	• VA (difference between groups): 1.3 lines[*]	• Short duration of exposure	
	• Stereo acuity; (Group A): 5 subjects had 200 arcseg; (group B): 7 subjects had 100 arcseg	• Initial dropouts have been excluded from analysis	
Herbison et al., 2016²⁴	• VA: ≈ 0.7 lines in all three groups at 6 and 10 weeks^{***}	• Lack of objectively recorded compliance at home for both groups	• With each of the treatments was excellent (>90%) with the majority of participants playing the game/watching the DVD for 30 min at each session
	• VA (difference between groups): No difference between I-BiT DVD (1 line) and non-I-BiT games (0.3 lines) compared with I-BiT games (0.6 lines) in terms of gain in vision^{ns}	• Short duration of treatment, and duration and frequency of the sessions	
	• Stereo: No significant changes in any of the three groups^{ns}	• High proportion of patients with strabismic (93%) and residual amblyopia (89%)	
Holmes et al., 2016²⁵	• VA: 1.05 lines (binocular); 1.35 lines (patching)	• Compliance data were monitored by the parent’s report for the patching group and for the time connected to the game for the game group. In both cases there could be errors in compliance monitoring	• 22% achieved greater than 75% compliance. See “limitations”
	• VA (difference between groups): 0.3 lines^{ns}	• Compliance with the use of the red-green glasses required to play the game was not monitored	
	• VA (5 to <7 years without prior amblyopia treatment): 2.5 lines (binocular) and 2.8 lines (patching)	•	
	• Stereo: did not differ significantly between treatment groups for the overall cohort or for participants with no history of strabismus at baseline	•	
Study	Results	Limitations / recommendations exposed by the authors	Compliance
-------------------------------	--	--	---
Kelly et al., 2016²⁶	• VA: 1.5 lines*** (binocular); 0.7 lines** (patching)		
• VA (difference between groups): 0.8 lines*			
• No differences between the binocular game vs patching treatments for change in stereo^{ns}, extent of suppression^{ns} and depth of suppression^{ns}	• Small sample size.		
• Short duration of treatment, it is necessary to analized the effects of treatment in the longer-term			
• Unassessed baseline factors (ie, BCVA, age) that may be important modifiers of treatment effect	• 85% (23 of 27) of children played at least 75% of prescribed treatment		
Verdamurthy et al., 2016²⁷	• VA: just a trend for improved (p = .06)		
• Stereo: Significant change*			
• Suppression: Significantly reduced***. These effects were retained at follow-up**			
• For the stereo-deficient group, no significant differences in noise vergence measured pre-training, post-training and at follow-up (p = .36).			
• Follow-up 2 month post-training: 5 out of 6 subjects maintained improvements in stereo*	• Vergence measure is a subjective measure, and not be sufficiently sensitive to detect very small changes in oculomotor control.		
• Training was carried out in a virtual reality environment, trying to recreate a natural environment.	• Compliance data unespecied		
Barollo et al., 2017²⁸	• VA: 1.8 lines*** (after PL) and 0.9 lines* (follow up 5–7 months post-training)		
• Vernier acuity: just a trend for improved (p = .06)			
• Reduction of crowding*			
• CS: Significant change at intermediate spatial frequencies (7 cpd) after PL* and follow-up*	• A direct comparison can not be made with previous results	• Compliance data unespecied	
Bossi et al., 2017²⁹	• VA (overall): 2.7 lines***		
• VA (group 1): 2.6 lines			
• VA (group 2): 2.7 lines			
• VA (difference between groups)^{ns}			
• Stereo (group 1): Improvement was 165 ± 182*			
• Suppression: no reduction^{ns}	• Treatment duration varied across children		
• Small sample size	• Compliance (calculated as the percentage of days when treatment was received) was 68.0 ± 12.2%. On average, 89.4 ± 24.2% of daily dose (54 /day; total: 75 h)		
Study	Results	Limitations / recommendations exposed by the authors	Compliance
---	---	---	---
Singh et al., 2017³⁰	• VA: 1 line*** (VG + occlusion); 0.5 lines*** (occlusion) at 1 month • VA: 2.1 line*** (VG + occlusion); 1.7 lines*** (occlusion) at 3 months • VA (difference between groups): 0.5 lines** (1 month); 0.4 lines* (3 months) Stereo[™], CS^m	• Long-term studies with weaning of occlusion therapy may be required to assess for the recovery of stereo • Patients who failed to follow-up at 1 month or follow the prescribed therapy or who had poor compliance were excluded. No further data specified	
Žiak et al., 2017³¹	• VA: 1.5 lines** • Stereo: 263.3 ± 135.1−176.7 ± 152.4 arcsec**	• Small sample size • Short follow-up • Absence of a control group • Stereo test used measures values of 400° as max.	
Gambacorta et al., 2018³²	• VA: 1.4 lines (≈38%) (DT group); 0.6 lines (≈15%) (MT group) • VA (difference between groups): 0.8 lines (3.14)ⁱ • VA: 1.1 lines (A) and 0.7 (S) (Cohen’s d = 1.33)[*] • Stereo: improved ≈17% (DT) and ≈15% (MT) (0.1)ⁱ • Follow-up 6–10 weeks post-training: VA and stereo improvements were maintained in 57% of the participants at follow-up***, and improvements did not differ between both groups^{ns}	• General dropout rate of 28% perhaps due to visits to the laboratory (2–3 times per week). • Small sample size • Although no compliance data is provided, pre-post results of the 17 participants are presented, so it is understood that all of them completed the training	
Gao et al., 2018³³	• VA: 0.6 lines^{ns} (active group); 0.7 lines^{ns} (placebo group). • VA (difference between groups)^{ns} • No difference for changes of any secondary outcomes were found between both groups^{ns}	• Unable to monitor participants’ attention to the video game at home or whether they wore anaglyphic glasses correctly.	
			Compliance with more than 25% (≥10.5 h) was achieved in 64% (active group) and 83% (placebo group) of participants
Study	Results	Limitations / recomendations exposed by the authors	Compliance
-----------------------------	--	--	---
Jia et al., 2018	• VA: 1.7 lines** • CS: an improvement of 278.4% at the trained spatial frequency** • Stereo: 929.11” to 80.42” * • Suppression** • Dominance duration ratio (amblyopic eye): 9%-15%*	• Training time too short	• Compliance data unespecifed
Kelly et al., 2018	• VA: 1.4 lines*** (VG group) • Stereo: Significant change* (VG group) • Suppression: Extent/depth of suppression were reduced** (VG group) • Depth of suppression was reduced more in children aged <8 years than in those aged ≥8 years**	• Pooled data from two ongoing studies of binocular treatment and was limited in that there was no control group	• Game group: 87% prescribed treatment time Movie group: 100% prescribed treatment time
Liu & Zhang, 2018	• VA* • Stereo: 146.9” to 103.1” ** • Maximal tolerable noise contrast*** • Improvements persist for 10 months after DT in 54% cases	• Results based on 70% of cases with type A amblyopia • Results may be specific to the training used • Small sample size, and not run a control group	• Although no compliance data is provided, pre-post results of the 13 participants are presented, so it is understood that all of them completed the training
Manh et al., 2018	• VA: 0.74 lines (binocular group); 1.26 lines (patching group) • VA (difference between groups): 0.52 lines*	• Poor treatment adherence	• Binocular group (data from the iPad device for 97% of participants): 13% of participants completed >75% of the prescribed treatment
Mezad-Koursh et al., 2018	• VA (training group, 12 weeks): 2.6 lines** • VA (control group, 4 weeks)* • VA (difference between groups)** • VA (training group, follow-up 24 weeks): remained stable** • Improvement is greater the longer the treatment time	• Nonrandomized study • Small sample size • Most subjects were previously treated and had residual amblyopia • No compare the effectiveness on different types of amblyopia	• All 19 patients in the treatment group completed 8 weeks of treatment; 16 (84%) completed 12 weeks of treatment.
Study	Results	Limitations / recommendations exposed by the authors	Compliance
-----------------------------	--	---	---
Moret et al., 2018³⁹	• VA (training group): 1.9 lines^{***}	• unspecifed	• Although no compliance data is provided, pre-post results of the 20 participants are presented, so it is understood that all of them completed the training.
	• VA (control group)^{ns}		
	• VA (difference between groups)		
	• VA (training group, follow-up 6 months): remained stable^{**}		
	• CS: significantly improved in both groups^{***}		
	• CS (difference between groups)^{ns}		
Portela et al., 2018⁴⁰	• Stereo: Improvement with RPST was 50% (RPST) and 46.42% (Wirt Circles) and it was statistically different when success was considered a gain of two levels on Wirt Circles and stereoaucity 140° or less[*]	• Computer and software settings: stimulation category be set manually, but it should be automatic according to the patient’s evolution³	• 100% compliance was considered if patients finished the training in less than 12 weeks (5 sessions/week). Compliance was excellent, with a median percentage value of 88.36%
	• Stereo remained stable after 6 months when measured with RPST		
Holmes et al., 2019⁴¹	• VA (4 weeks): 0.26 lines (binocular group); 0.34 lines (control group)	• Possible biases due to the lack of correct monitoring (not playing for the entire time that the handheld device recorded, not wear the red-green glasses)	• Spectacle wear (across 8 weeks, >75% of time): 90% (binocular) 98% (control)
	• VA (difference between groups): 0.08 lines^{ns}		• PAVG (across 8 weeks, >75% of time): parent report: 75%; log file data: 56%
	• No difference for changes of any secondary outcomes were found between both groups^{ns}		• Median total hours of game play was 31 h of the intended 40 h at 8 weeks
	• Analyzing possible differential treatment effect by baseline characteristics, no factors were found to be statistically significant, including basal stereo acuity		
Law & Backus, 2019⁴²	• 44% of participants (mixed-contrast group) showed improvement in stereodepth individually³, none (fixed-contrast group) showed improvement individually^{ns}	• Training relatively sparse and only 1–2 sessions per week for a total of 10 sessions. It is possible that learning would be greater with additional or more frequent training	• Although no compliance data is provided, first four and last four sessions results of the 19 participants are presented, so it is understood that all of them completed the training
	• Stereodepth (difference between groups)⁷		
Table 2 (Continued)

Study	Results	Limitations / recommendations exposed by the authors	Compliance
Liu & Zhang, 2019⁴³	• VA: 1.2 lines** (clinical E-Chart and single-E computerized); 0.8 lines*		
• Stereo: 60.2 ± 4.9***			
• CS: mainly at higher spatial frequencies**			
• Additional MT did not produce further AV and stereoaucity gains	• Results based on >70% of cases with type A amblyopia		
• Results may be specific to the training used			
• Small sample size			
• No follow-up	• Although no compliance data is provided, pre-post results of the 11 participants are presented, so it is understood that all of them completed the training		
Sauvan et al., 2019⁴⁴	• VA: 0.8 lines** (nonpatched group); 1.9 lines** (patched group)		
• VA (difference between groups): 1.1 lines¹⁵			
• VA (follow-up 1 month): Improvement VA is maintained only in the patched group**			
• CS, stereo, interocular suppression¹⁶	• Non-homogeneous groups		
• Non-randomization			
• Short period of training			
• Better measure of stereopsis			
• More sensitive test of binocular balance			
• Extend the periods of occlusion to see if its benefits for DT can be enhanced	• Although no compliance data is provided, pre-post results of the 17 participants are presented, so it is understood that all of them completed the training		
Birch et al., 2020⁴⁵	• VA: 1.5 lines (game group); 0.7 lines (patching group)		
• VA (difference between groups): 0.8 lines**			
• 35% of children of binocular game had recovered normal VA. Only 8% of the children in the patching group recovered normal VA for age			
• Only in the game group, baseline VA and ocular alignment were associated with response to treatment (p < .001). Age, etiology, prior treatment and baseline stereo were not associated with response to treatment			
• Dose-response: Only in the game group, moderate linear relationship between hours of game with VA improvement. 5 h (50% adherence) improved 0.1 logMAR; 10 h (100%), 0.18 logMAR; 15 h (150%) 0.26 logMAR	• Single-site, small-cohort randomized clinical trial		
• The inclusion/exclusion criteria may limit generalization to other groups of amblyopic children			
• VA testing was not masked			
• Results may be dependent on the criteria chosen to dichotomize each variable			
• The brief duration may limit improvement of VA			
• Possible biases due to the lack of correct monitoring (number of hours of patching objectively, not wear the red-green glasses)	• Parents overestimated the time spent playing the game by 13%		
• Game group completed 10.3 ± 3.0 h (103% prescribed treatment time)			
• Patching group completed 27.7 ± 2.6 h (99% prescribed treatment time)			
Study	Results	Limitations / recommendations exposed by the authors	Compliance
-----------------------	--	--	--
Gu et al., 2020⁴⁶	• VA***, CS***, stereopsis* and interocular difference** improved through behavioral measurements and SSVEP in MT group		
• (Due to the length of the results, it is recommended to see the results section in the original article) | • Control group had only five subjects
• Training effects may be due to the influences of both training and patching
• Effects of patching were not entirely ruled out in this study. Further investigations with more subject and only training (no patching) are necessary | • Although no compliance data is provided, pre-post results of the 32 (out of 46) participants are presented, so it is understood that not everyone completed the training |

Note: A: anisometropic amblyopia; BCVA: Best corrected visual acuity; BIT: binocular treatment; cpd: cycles per degree; CS: contrast sensitivity; DT: dichoptic therapy; h: hour/ hours; IOR: interocular ratio; min: minutes; MT: monocular training; ns: no significance; PL: perceptual learning; S: strabismic amblyopia; SSVEPs: Steady-state visually evoked potentials; VA: visual acuity; VG: video game.

a Cohen’s “d” effect size has been calculated when the p-value is not shown in the study, but means and SD are shown (*d*≥0.80 is considered a large effect size). “Both” refers applied equally to both groups. The average improvement in VA lines is always referred from the baseline.

* p < 0.05;
** p < .01;
*** p < .001.
compliance of the patient and so the therapy for amblyopia will be more effective. Of the 35 studies gathered in this review, 18 of them (51.4%) use PL through several videogames of different contents, such as pieces and falling blocks, and VG based on action or adventure. It is rare that VG are used in a form of PL in a monocular way, but some authors have conducted this type of treatment in order to analyse the visual improvements produced. In these studies with anisomeric amblyopes have compared the interaction with action VG monocularly and occlusion classical therapy, finding in both studies that the first method is more effective in order to improve VA. Nevertheless, the effects produced over stereoposis are not that clear. Dadeya and Dangda found stereopsis improvement in children from 4 to 7 years old, conducting a training with a duration of 6 h in clinic, so the children were supervised constantly and this ensured that the compliance rate was total. On the contrary, Singh et al. did not found improvement in depth perception in their group of children from 6 to 14 years old, in a training method conducted partially at home, even more (30 h in total) than the study of Dadeya & Dangda.

In most of VG, DT has been applied and improvements in VA have been found, even when compared with a control group or with a different group conducting a different strategy (e.g., patching). Several clinical trials have not found home training with VG more effective than a placebo training, occlusion therapy, or optical correction, although it should be pointed out that the rate of compliance of patients in this studies was ~65% and even in the study of Manh and colleagues, compliance rate was really low (~13%). On the contrary, other clinical trials have found VG at home as an useful tool used to improve VA when compliance rate has been nearly or higher than 90% of the duration of the treatment prescribed. Regarding the improvements in stereoaucity, some unalike results have been found using this type of treatment consisting in DT in a gamified context of PL, so some authors have found improvements in this binocular function while others have not. DT in a virtual reality environment has also been applied in a VG context. In the investigation conducted by Verdamurthy et al., a ‘bug squashing’ videogame was used in a VR environment and binocular functions improvements had been found (reduction of the suppression and stereopsis improvement). For their part, Zia et al. used two types of VG (flying spaceship and block breaker games) in a DT with VR format, finding some improvements in VA and in stereoaucity.

In some investigations, as mentioned previously, specific VG have been used in order to improve stereoscopic vision, using tasks with random dot stimuli (RDS), finding satisfactory results in depth vision, even in strabismic amblyopes.

Inclusion of control group

The incorporation of control and/or placebo groups in investigations is an important aspect in order to know the real efficacy of a certain treatment, although this has not always been taken into account in different PL studies. While some investigations have only included an experimental group, other investigations have included two experimental groups which have subjected two different approaches of the treatment related to PL, but there were not a participants group without an intervention or with a different type of treatment which was not related to PL. In other investigations a controlled or comparison group has been included, so the participants in this group have conducted a classical occlusion therapy or used the optical prescription by itself. In other studies, the control or comparison group has consisted in an ineffective type of treatment through stimulation strategies using the dominant eye – instead of the amblyopic eye – or using both eyes equally when using DT, gross stimulation of stereopsis or the inclusion of non amblyopic patients.

Durability and transfer of training

The durability of the effects produced by a treatment using PL has not always been a considered aspect. Just in 12 (34.2%) studies of this review a follow-up has been conducted in order to value if the improvements obtained after the training is completed are maintained through time. Nevertheless, this follow-up sessions are very variable through different studies which have analyzed this longitudinal aspect, varying from 6 weeks to 10 months. In general, it has been seen that the improvements in VA, and in the reduction of the suppression can be maintained over time. It is worth it to say that in one study, the follow-up has been analyzed, like the one conducted by Xi et al. that found that visual improvements were maintained in two of the three patients re-evaluated after 5 months. Other authors have conducted a follow-up at 3 months after the cessation of game play but they have not informed about the obtained results.

In general, it has been seen that training in amblyopic patients using specific skills that imply PL, transfers to an improvement in clinical trials such as VA and stereopsis as mentioned previously. Some investigations have proved the transfer effects that a monocular treatment may produce in binocular functions. Additionally, it has been seen that the binocular training through DT, and in the training through stereopsis leads improvements in monocular functions. Nevertheless, it is not rare that PL produced a higher improvement in the trained skill rather than VA or stereopsis as suggested by Liu and Zhang. Recently, Liu and Zhang have suggested that transfer of learning with training plus exposure through an irrelevant task, is because an improvement in high-level brain processing, and that may strengthen top-down attention to fellow eyes to counter the impacts of attentional bias to fellow eye and/or physiological interocular suppression and improve stereaoicity.

An essential point of a treatment whatever the method of training chosen, is the impact that the improvements can have in real-life. For example, Vedamurthy et al. found out that two of the eleven patients trained reported better distance judgement during driving, and one was able to appreciate depth from autostereograms for the first time. It would be plausible that the improvements produced in
Table 3 GRADE evidence profile.

Study	Design of study	Level of evidence	A priori quality level	Detected criteria lowering and raising	Quality of the evidence
Hess et al., 2014\(^1\)	Case-series study	IV	low	• Indirectness: wide age range	very low
				• Imprecision: small sample size (per group / condition)	
Mansouri et al., 2014\(^3\)	Case-series study	IV	low	• Indirectness: wide age range	very low
				• Imprecision: small sample size (per group / condition)	
Xi et al., 2014\(^4\)	Case-series study	IV	low	• Indirectness: wide age range	very low
				• Imprecision: small sample size (per group / condition)	
Zhang et al., 2014\(^5\)	Case-series study	IV	low	• Indirectness: wide age range	very low
				• Imprecision: small sample size (per group / condition)	
Birch et al., 2015\(^6\)	Cohort study (crossover design)	III-2	low	• Risk of bias: non randomized, non making	low
				• Indirectness: patching at a different time	
Khan et al., 2015\(^7\)	Case-series study	IV	low	• Indirectness: wide age range	very low
Li SL et al., 2015\(^8\)	Case-series study	IV	low	• Indirectness: wide age range	very low
				• Imprecision: small sample size (per group / condition)	
Li J et al., 2015\(^9\)	Cohort study (crossover design)	III-2	low	• Risk of bias: non randomized, non making	very low
				• Indirectness: data were combined from two different studies that used different experimental designs; comparison group performs another type of PL—not a true control group-	
				• Imprecision: small sample size (per group / condition)	
Verdamurthy et al., 2015\(^a\)	Case-series study	IV	low	• Indirectness: wide age range	very low
Study	Design of study	Level of evidence	A priori quality level	Detected criteria lowering and raising† ‡	Quality of the evidence
-------------------------------	--	-------------------	------------------------	---	------------------------
Verdamurthy et al., 2015b²¹	Cohort study	III-2	low	Risk of bias: non randomized, non making	low
				Indirectness: wide age range; comparison	
				group performs another type of PL—not a	
				true control group	
Chen et al., 2016²²	Cohort study	III-2	low	Risk of bias: pseudo-randomized, non making	very low
				Indirectness: wide age range	
				Publication bias: Unreported intergroup	
				results (control vs PL)	
Dadeya & Dangda, 2016²³	Clinical trial (parallel, randomized,	II	high	Risk of bias: non making	high
	no masking)			‡ Dosis-response gradient	
Herbison et al., 2016²⁴	Clinical trial (parallel, randomized,	II	high	No highlights	high
	simple-blind)				
Holmes et al., 2016²⁵	Clinical trial (parallel, randomized,	II	high	Indirectness: duration of exposure in both	high
	simple-blind)			groups is different	
Kelly et al., 2016²⁶	Clinical trial (cross-over, randomized,	II	high	Risk of bias: non making	high
	no masking)			‡ Dosis-response gradient	
				Imprecision: small sample size (per group /	
				condition)	
				‡ Dosis-response gradient	
Verdamurthy et al., 2016²⁷	Case-series study	IV	low	Indirectness: wide age range	very low
				Imprecision: small sample size (per group /	
				condition)	
Barollo et al., 2017²⁸	Cohort study	III-2	low	Indirectness: wide age range	low
				Imprecision: small sample size (per group /	
				condition)	
				‡ Dosis-response gradient	
Study	Design of study	Level of evidence†	A priori quality level	Detected criteria lowering and raising‡ **“a priori quality level”**	Quality of the evidence
-----------------------------	-----------------	--------------------	------------------------	---	-------------------------
Bossi et al., 2017²⁹	Cohort study	III-2	low	• Risk of bias: non randomized, non making	very low
				• Indirectness: wide age range; duration of exposure in both groups is different; both groups receive the same type of treatment—not a true control group—	
				• Indirectness: data were pooled from two ongoing studies (clinical trials, NTC02365090) of binocular treatment for childhood amblyopia (Kelly et al., 2016; Li et al, 2015b); comparison group performs another type of PL—not a true control group—	
				• Imprecision: small sample size (per group / condition)	
Singh et al., 2017³⁰	Clinical trial (parallel, randomized, no masking)	II	high	• Risk of bias: non making	high
				• Indirectness: duration of exposure in both groups is different	
				• ‡ Dosis-response gradient	
Žiak et al., 2017³¹	Case-series study	IV	low	• Indirectness: wide age range	very low
Gambacorta et al., 2018³²	Clinical trial (parallel, randomized, no masking)	II	high	• Indirectness: wide age range; comparison group performs another type of PL—not a true control group—	moderate
Gao et al., 2018³³	Clinical trial (parallel, randomized, double-blind)	II	high	No highlights	high
Jia et al., 2018³⁴	Case-series study	IV	low	No highlights	low
	Clinical trial (cross-over, randomized, no masking)	II	high	• Risk of bias: non making	moderate
				• Indirectness: data were pooled from two ongoing studies (clinical trials, NTC02365090) of binocular treatment for childhood amblyopia (Kelly et al., 2016; Li et al, 2015b); comparison group performs another type of PL—not a true control group—	
				• Imprecision: small sample size (per group / condition)	
Liu & Zhang, 2018³⁶	Case-series study	IV	low	• Imprecision: small sample size (per group / condition)	very low
Study	Design of study	Level of evidence†	A priori quality level	Detected criteria lowering and raising‡ “a priori quality level”	Quality of the evidence
------------------------------	----------------------------------	--------------------	------------------------	---	--------------------------
Manh et al., 2018	Clinical trial (parallel, randomized, simple-blind)	II	high	• Indirectness: duration of exposure in both groups is different	high
Mezad-Koursh et al., 2018	Cohort study	III-2	low	• Risk of bias: non randomized, non making • Indirectness: duration of exposure in both groups is different • Imprecision: small sample size (per group / condition)	very low
Moret et al., 2018	Cohort study	III-2	low	• Risk of bias: non making • Indirectness: wide age range • Imprecision: small sample size (per group / condition) • ‡ Dosis-response gradient	low
Portela et al., 2018	Clinical trial (parallel, randomized, double-blind)	II	high	• Indirectness: wide age range • Imprecision: small sample size (per group / condition) • ‡ Dosis-response gradient	high
Holmes et al., 2019	Clinical trial (parallel, randomized, simple-blind)	II	high	No highlights	high
Law & Backus 2019	Cohort study	III-2	low	• Risk of bias: non making • Indirectness: wide age range; comparison group performs another type of PL—not a true control group--; Test, retest and training with the same type of task • Imprecision: small sample size (per group / condition)	very low
Study	Design of study	Level of evidence	A priori quality level	Detected criteria lowering and raising	Quality of the evidence
---------------------	--	-------------------	------------------------	---------------------------------------	-------------------------
Liu & Zhang, 2019	Cohort study	III-2	low	• Risk of bias: non making	very low
				• Indirectness: Comparison group performs another type of PL—not a true control group-	
				• Imprecision: small sample size (per group / condition)	
Sauvan et al., 2019	Cohort study	III-2	low	• Risk of bias: non randomized, non making	very low
				• Indirectness: wide age range; duration of exposure in every participant is different; comparison group performs another type of PL—not a true control group-	
				• Imprecision: small sample size (per group / condition)	
Birch et al., 2020	Clinical trial (cross-over, randomized, no masking)	II	high	• Risk of bias: non making	moderate
				• Indirectness: enrolling two pre-planned cohorts (Kelly et al., 2016; clinical trial NTC02365090) and an additional 20 children to be combined with the primary cohort to allow for evaluation of factors that may affect treatment outcomes including baseline factors.	
				• Imprecision: small sample size (per group / condition)	
				• ‡ Dosis-response gradient	
Gu et al., 2020	Cohort study	III-2	low	• Risk of bias: non randomized, non making	very low
				• Indirectness: wide age range; it is possible that the observed training effects were due to the influences of both training and patching	
				• Imprecision: small sample size (per group / condition), specially in control group	

Note: † National Health & Medical Research Council clinical evidence hierarchies.
some activities in real-life were evaluated through questionnaires or questions regarding the quality of life after the treatment.

Quality of evidence
In many investigations, the conclusions obtained are limited by the desiring of the study (e.g. absence of a control group or the application of a method of masking [i.e., blinding] in order to reduce the risk of bias). The procedures used to organize the evidence hierarchically and to establish the recommendation are the basis for the development of the clinical practice guidelines. GRADE provides explicit criteria for rating the quality of evidence that include limitations in the study design (risk of bias), inconsistency of the results (inconsistency), uncertainty of the evidence being direct (indirectness), inaccuracy for wide confidence intervals (CI), small samples or small events (imprecision), bias of publication or notification (publication bias). Table 3 shows the GRADE evidence profile of the different studies included in this review.

Of the 35 studies included, 23 of them (65.7%) are of the observational type, and eleven of those (31.4%) are case-series study and twelve (34.3%) are cohort study. The other twelve (34.3%) remaining investigations are experimental or clinical trial, that vary in their design (see column “Design of the study in Table 3). After making a series of decisions based on the criteria for rating the quality of evidence (see “Discussion” section for a more thorough explanation), nine (25.7%) present “high” quality (a lot of confidence that the true effect is similar to the estimated effect), three (8.6%) in a “moderate”level (the true effect is probably close to the estimated effect), five (14.3%) in a “low” level (the true effect might be markedly different from the estimated effect) and 18 (51.4%) in a “very low” level (the true effect is probably markedly different from the estimated effect).

Discussion
Impact of PL in the visual improvement in amblyopes
As a result, the trials published in the last 6 years state some consistent aspects regarding the idea that amblyopia treatment might be aimed to restore visual functions (improvements in VA, CS or stereopsis and reduction in interocular suppression) using new active strategies such as perceptive learning taking advantage of technological resources that we now have, like videogames or virtual reality. Regarding the gain of one of the key visual functions, VA, different clinical trials22,26,30,32,35,45 have shown that a notorious increase can be achieved through an extent range of stimulus, tasks and duration of the training based in PL. The augmentation degree in VA varies from one study to another, but the increment found was from 1 and 2 lines in a logMAR chart. Even in a study conducted in 6 years old children it has been seen that the group who conducted a PL training for a small amount of time (6 h) gained an average of 4.2 lines.22 Also in some cohort studies9,21,22,28,39,43,44,46 conducted in adults it has been seen that the gain produced in VA breaks the theory that was established that the visual deficiency of amblyopic people, more concretely the VA, could just be recovered if the treatment was implemented before the end of the critical period. In some of these studies conducted in adult population, even the depth vision it is possible to restore.23,42,43,46 This opens an encouraging path for this kind of population or group of age, for those whose treatment was reduced to surgery or, directly, those who were relegated to not being able to do any treatment.

Regarding the time employed in order to achieve some improvements, the results seem to be encouraging, due to the improvements found in a relatively small period of time. In some of the clinical trials of this review, training with PL took place that have varied from 6 to 30 h of training, in order to improve VA or stereopsis. In general, it is estimated that therapy with patching requires 120 h of training in order to achieve a 1-line gain in amblyopic children that were previously treated with glasses.46 In a recent investigation it has been seen that in just 2 weeks (10 h) of PL with a binocular adventure VG are enough to produce a gain in VA of 1.5 lines, a result which is a remarkably result when compared to previous findings in which 16 weeks of occlusion were needed (224 h in total) in order to produce improvements in VA of more than one line.25,37 If the satisfactory results obtained in this controlled clinical trials are confirmed throughout other trials so the rate of gain of visual functions can be analyzed like stereopsis in adults with amblyopia, it could be confirmed that perceptual learning could be useful as a primary, complementary or maintenance treatment, obtaining improvement in a relatively brief period of time.

Empirical evidence of PL in amblyopia
Regarding the level and quality of evidence, it is important to point out that several investigations included in this review have case-series study design, this fact makes a lower level of evidence. Even when cohort studies are conducted, when a control group inclusion is considered, it has been suggested that a randomized clinical trial is needed to evaluate the effectiveness of a potential amblyopia treatment in routine clinical practice16,18 and to compare its effectiveness with the current standard of care.46 It seems that over the last few years, the number of experimental studies have increased (clinical trials) in the context of perceptual learning as a treatment for amblyopia.13,24,42,46,30,32,35,37,40,41 This type of experimental investigations are characterized for the high level of evidence, because systematic mistakes or bias can be minimized considering the existence of a comparison or control group, that allows to prove if the intervention is better (or not) than the existing ones. Nevertheless, in the investigations there are presented some relative criteria for risk of bias (non making), imprecision (small sample size per group or per condition [i.e., stype of amblyopia]) and indirectness (wide age range, duration of exposure in both groups is different), and all of them lower the quality level of the study, and could affect negatively to their evidence rate. It is not usual in this kind of studies to inform about risk ratio (RR) or dose-response gradient, criteria that are used to improve the quality of the evidence. In fact, none of the studies provide RR, while the dose-response gradient was
informed in two of the studies, where it can be seen that the effects produced improve when the duration of the treatment is longer. In other cases, we have considered the dose-response gradient when significant gain has been obtained with a training that has implied a substantial training with a duration and intensity (number of trials) enough to produce that gain. In this case, in order to have the certainty that the training effects were not related to a learning effect, we just consider the dose-gradient response in those studies that had a control group who did not conduct a therapy related to PL. Furthermore, this criteria was only considered when both treatment and control groups had the same dosage (duration and intensity) of treatment.

Of all of the studies included in this review, just the 34.3% are clinical trials, and the 25.7% of those have a “high” evidence quality, and the 8.6% have a “moderate” clinical evidence. In spite of that, it is interesting to remark that the investigation about PL (and the use of VG) is promising. Currently there are 15 clinical trials in process about this types of treatment for amblyopia and that are registered in ClinicalTrials.gov (http://www.clinicaltrials.gov), a database maintained by the National Library of Medicine (NLM) at the National Institutes of Health (NIH) where there are privately and publicly funded clinical studies conducted around the world.

Guidelines for home training and compliance rate of the patient

Some authors have proposed a protocol or a viable and detailed therapy guideline, based on the results of a clinical trial about PL using random-dot stimuli in a video game format to improve stereoaucity. This type of protocol can help the clinician in the decision making and the optimal management of the amblyopic patient who is treated with this type of training based on perceptual learning. In the first face-to-face session in the consult it is essential to provide to the patient/parents some guidelines such as the suitable distance to the monitor where the stimulus is presented, the correct position of the monitor in order to avoid light reflections, the previous configuration of the game or the appropriate position of the dissociative filters so the amblyopic eye is stimulated correctly. Evidently, it is not less important the realization of frequent follow-ups that serve to analyze the development and value if this type of treatment is being effective.

Compliance or compromise rate that the patient has with the treatment will also determine the usefulness of the treatment. Most of the studies included in this review have been conducted in a laboratory or a clinic (see Table 1) using tasks that can be more or less tedious for the patient, but at the same time assures that the compliance rate of the patient increases because the clinician is keeping the patient under observation (in order to have a more detailed information about compliance rate, see Table 2). The use of serious VG, that have a series of qualities and mechanics of the game can help to benefit neuronal plasticity and a learning experience to the patient. Moreover, the VG used have to be attractive in order to increase compliance rate of the patient, although it has been seen that is not always that way when training has been conducted at home. In the study conducted by Holmes et al. compliance percentage was at first optimal according to the information provided by parents/patients (66.7%), but analyzing the database registered generated by iPad, the rate of compliance reported was significantly lower (22.2%). In a similar way, Manh et al. also found a poor adherence to the treatment with a VG using the iPad at home, so only 13% of participants completed more than 75% of the prescribed treatment. The use of VG at home as a way of amblyopia treatment could be an interesting resource, specially for those patients that have serious difficulties to go regularly to the consult, but in order to achieve that the program or the VG should allow the clinician to do a follow-up in a remotely and reliable manner about the duration and frequency of use by the patient.

Altogether, previous guidelines, compliance rate evaluation and frequent follow-ups to the patient, could be three important foundations so the success rate and the effectiveness of the treatment can be increased when using the VG method from home.

Limitations and future research

The PL studies reviewed show some limitations that sometimes their authors have acknowledge in the studies (see Table 2). Doubtlessly, one of the more important limitation is the small amount of subjects, so when analyzing by group segmentation (e.g., treatment groups, kind of amblyopia, group of age), the results could be spurious and inconclusive. Furthermore, some factors such as age of the patient, previous treatments (e.g., patching) in residual amblyopia, the modification or adaptation of the refraction using lenses during the training period, or the baseline of VA and stereopsis could have influence in the effects produced by the training. That is why, it would be plausible that in future investigations this differential factors are taken into account, something that has not been considered, or when considered dissimilar results have been obtained in different studies. Other limitation that affects to the quality of an investigation, as we have seen previously, could be the absence of a control group an aspect that is determining if you pretend to evaluate the truly effects of the training. The evaluation of the compliance rate of the patient regarding the training, short-medium term follow-ups in order to analyze the duration of the effects or the dose-response gradient (which has been thoroughly analyzed in occlusion therapy) are limitations that have been found in this review, and that are also key pieces in order to determine if therapy is effective or not.

Regarding the evident of PL using VG, some encouraging discoveries have been found, due to the fact that it seems to have obtained better and quicker results than with occlusion. When VG have been combined with occlusion, it has been seen more benefits than occlusion by itself, that is why nowadays it could be recommended to use both types of treatments in a combined manner. Some authors have suggested that a home treatment based in PL could provide compliance rates higher that other treatments, like occlusion. However additional studies are needed, because some investigations where has not been found that the use of VG is more effective than optical correction or than occlusion therapy, a low compliance rate has been obtained.
In this case, it could be encouraging to determine how to transform binocular games in an amblyopia treatment that could be comfortable and enjoyable in order to achieve a better adhesion. In this regard, it would be plausible to implement attractive VG, that have goals and rewards, in order to maintain the attention for longer periods of treatments maintaining an optimal compliance rate. Regarding that, Holmes y colleagues\(^1\) have proposed new studies with the goal of analyzing if the incorporation of longer periods of time with the game before increasing the contrast or carrying out shorter contrast steps in the fellow eye could generate better improvements in the visual functions. Regarding VG, nowadays some of the VG used in investigations, like Dig Rush, are in process of being authorized and commercialized, and other, like Tetris, are easily accessible in a simplified version for computer, smartphone and tablet. Another very useful PL tool (Gabor patches, DT and Random Dot stimuli for stereopsis) that is currently being commercialized is Visionary (https://www.visionarytool.com/). This tool has proven effective for working from home with amblyopic children.\(^4\)

The limitations detailed until now are related to the ones found throughout the studies included in this review. But we also want to mention some limitations of the review itself. Although we think that the level of evidence showed in Table 3 could be precise, it needs to be said that we only have considered some criteria (risk of bias, indirectness, imprecision, publication bias) that low the “a priori quality level”\(^5\). Regarding the criteria that could increase the “a priori quality level” these are more limited, considering that just the existence of the dose-response gradient, from the small studies which reflected this aspect. In the investigations in which this gradient has not been provided, we have applied this criteria in those studies when significant gain has been obtained using a training that has implied –to our judgement- a substantial training duration or intensity. Nevertheless, this criteria application should be considered cautiously. Another limitation of this study is that it has not considered doing a statistical analysis for the evaluation of the size of the medium effect throughout different studies about the improvements of visual functions (e.g., VA). This could be considered in future meta-analysis about this subject.

Conclusions

This systematic review of recent studies has found evidence of the new kind of amblyopia treatment, that pretends to stimulate the binocular system by perceptive training, using the dichoptic treatment with or without the use of videogames. In general, the studies conducted until now expose that this kind of treatment is effective, improving some visual functions such as VA even in adults that have exceeded the critical period. This could be, partially at least, due to the format used in this type of active therapy, and is that some authors have suggested that gamification has been used to enhance patient motivation and compliance.\(^6\) Nevertheless, it would be plausible to conduct additional controlled and random clinical trials in order to know more deeply in which visuals functions they are more efficient and how long the effects that this kind of treatment based in perceptual learning would persist over time. Based on the results obtained through different studies, for the moment, it seems reasonable to recommend this kind of active therapy as a complementary procedure to the different options of passive therapy like optic correction, occlusion or the penalization with atropine.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

The authors would like to thank Agustín Martínez Molina (Universidad Autónoma de Madrid) and Montaňa Vivas Jiménez (Hospital San Pedro de Alcántara, Cáceres) for their methodological suggestions to improve this manuscript. Furthermore, thank the reviewers for all the corrections and advice they have given us throughout the process of drawing up.

References

1. Burian HM. Thoughts on the nature of amblyopia ex anopsia. Am Orthop J. 1956;6:5–12, http://dx.doi.org/10.1080/0065955x.1956.11981153.
2. Papageorgiou E, Asproudis I, Maconachie G, Tsironi EE, Gottlob I. The treatment of amblyopia: Current practice and emerging trends. Graefes Arch Clin Exp Ophthalmol. 2019;257(6):1061–1078, http://dx.doi.org/10.1007/s00417-019-04254-w.
3. Hess RF, Thompson B. Amblyopia and the binocular approach to its therapy. Vision Res. 2015;114:4–16, http://dx.doi.org/10.1016/j.visres.2015.02.009.
4. Gibson EJ. Perceptual learning. Ann Rev Psychol. 1963;14(1):29–56, http://dx.doi.org/10.1146/annurev.ps.14.020163.000333.
5. Levi DM, Li RW. Improving the performance of the ambyloptic visual system. Philos Trans R Soc Lond B Biol Sci. 2009;364(1515):399–407, http://dx.doi.org/10.1098/rstb.2008.0203.
6. Polat U, Ma-Naim T, Spierer A. Treatment of children with amblyopia by perceptual learning. Vision Res. 2009;49(21):2599–2603, http://dx.doi.org/10.1016/j.visres.2009.07.008.
7. Hess RF, Thompson B, Baker DH. Binocular vision in amblyopia: Structure, suppression and plasticity. Ophthalmic Physiol Opt. 2014;34(2):146–162, http://dx.doi.org/10.1111/opo.12123.
8. Green C, Bavelier D. Action video game modifies visual selective attention. Nature. 2003;423:534–537, http://dx.doi.org/10.1038/nature01647.
9. Rodán A, Contreras MJ, Elóuña MR, Gimeno P. Experimental but not sex differences of a mental rotation training program on adolescents. Front Psychol. 2016;7:1050, http://dx.doi.org/10.3389/fpsyg.2016.01050.
10. Rodán A, Gimeno P, Elóuña MR, Montoro PR, Contreras MJ. Boys and girls gain in spatial, but not in mathematical ability after mental rotation training in
primary education. Learn Individ Differ. 2019;70:1–11, http://dx.doi.org/10.1016/j.lindif.2019.01.001.
11. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 13. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–406, http://dx.doi.org/10.1016/j.jclinepi.2010.07.015.
12. Hess RF, Babu RJ, Clavagnier S, Black J, Bobier W, Thompson B. The iPOD binocular home-based treatment for amblyopia in adults: Efficacy and compliance. Clin Exp Optom. 2014;97(5):389–398, http://dx.doi.org/10.1111/cxo.12192.
13. Mansouri B, Singh P, Gibb A, Pearson P. Binocular training reduces amblyopic visual acuity impairment. Strabismus. 2014;22(1):1–6, http://dx.doi.org/10.1016/j.stra.2013.07.012.
14. Xi J, Jia WL, Feng LX, Lu ZL, Huang CB. Perceptual learning improves stereoscopic vision in amblyopia. Invest Ophthalmol Vis Sci. 2014;55(4):2384–2391, http://dx.doi.org/10.1167/iovs.13-12627.
15. Zhang JY, Cong LJ, Klein SA, Levi DM, Yu C. Perceptual learning improves adult amblyopic vision through rule-based cognitive compensation. Invest Ophthalmol Vis Sci. 2014;55(4):2020–2030, http://dx.doi.org/10.1167/iovs.13-13739.
16. Birch EE, Li SL, Jost RM, Morale SE, De La Cruz A, Stager DR. Binocular iPAD treatment for amblyopia in preschool children. J AAPOS. 2015;19(1):6–11, http://dx.doi.org/10.1016/j.jaapos.2014.09.009.
17. Khan T. Is there a critical period for amblyopia therapy? Results of a study on older anisometropic amblyopes. J Clin Diagn Res. 2015;9(8), http://dx.doi.org/10.7860/JCDR/2015/13277.6288. NC01, 2015.
18. Li SL, Reynaud A, Hess RF, et al. Dichoptic movie viewing treats childhood amblyopia. J AAPOS. 2015;19(5):401–405, http://dx.doi.org/10.1016/j.jaapos.2015.08.003.
19. Li J, Spiegel DP, Hess RF, et al. Dichoptic training improves contrast sensitivity in adults with amblyopia. Vision Res. 2015;114:161–172, http://dx.doi.org/10.1016/j.visres.2015.01.017.
20. Vedamurthy I, Nahum M, Bavelier D, Levi DM. Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game. Sci Rep. 2015;5:8482, http://dx.doi.org/10.1038/srep08482.
21. Vedamurthy I, Nahum M, Huang SJ, et al. A dichoptic custom-made action video game as a treatment for adult amblyopia. Vision Res. 2015;114:173–187, http://dx.doi.org/10.1016/j.visres.2015.04.008.
22. Chen Z, Li J, Liu J, et al. Monocular perceptual learning of contrast detection facilitates binocular combination in adults with anisotropic amblyopia. Sci Rep. 2016;6:20187, http://dx.doi.org/10.1038/srep20187.
23. Dadeya S, Dangda S. Television video games in the treatment of amblyopia in children aged 4–7 years. Strabismus. 2016;24(4):146–152, http://dx.doi.org/10.1080/09273992.2016.1242637.
24. Herbison N, MacKeith D, Vivian A, et al. Randomised controlled trial of video clips and interactive games to improve vision in children with amblyopia using the I-BIT system. Br J Ophthalmol. 2016;100(11):1511–1516, http://dx.doi.org/10.1136/bjophthalmol-2015-307798.
25. Holmes JM, Manh VM, Lazar EL, et al. Effect of a binocular iPad game vs part-time patching in children aged 5 to 12 years with amblyopia: A randomized clinical trial. JAMA Ophthalmol. 2016;134(12):1391–1400, http://dx.doi.org/10.1001/jamaophthalmol.2016.4262.
26. Kelly KR, Jost RM, Dao L, Beauchamp CL, Leffler JN, Birch EE. Binocular iPad game vs patching for treatment of amblyopia in children: A randomized clinical trial. JAMA Ophthalmol. 2016;134(12):1402–1408, http://dx.doi.org/10.1001/jamaophthalmol.2016.4224.
27. Vedamurthy I, Knill DC, Huang SJ, et al. Recovering stereo vision by squashing virtual bugs in a virtual reality environment. Philos Trans R Soc Lond B Biol Sci. 2016;371(1697):20150264, http://dx.doi.org/10.1098/rstb.2015.0264.
28. Barollo M, Contemori G, Battaglini L, Pavan A, Casco C. Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia. Restor Neurol Sci. 2017;35(5):483–496, http://dx.doi.org/10.3233/RNS-170731.
29. Bossi M, Tailor VK, Anderson EJ, et al. Binocular therapy for childhood amblyopia improves vision without breaking interocular suppression. Invest Ophthalmol Vis Sci. 2017;58:3031–3043, http://dx.doi.org/10.1167/iovs.16-20913.
30. Singh A, Sharma P, Saxena R. Evaluation of the role of monocular video game play as an adjuvant to occlusion therapy in the management of anisometropic amblyopia. J Pediatr Ophthalmol Strabismus. 2017;54(4):244–249, http://dx.doi.org/10.3928/01913913-20170320-04.
31. Žiak P, Holm A, Halíčka J, Mojiší P, Piňero DP. Amblyopia treatment of adults with dichoptic training using the virtual reality Oculus rift head mounted display: Preliminary results. BMC Ophthalmol. 2017;17(1):1–8, http://dx.doi.org/10.1186/s12886-017-0501-8.
32. Gamba corta C, Nahum M, Vedamurthy I, et al. An action video game for the treatment of amblyopia in children: A feasibility study. Vision Res. 2018;148:1–14, http://dx.doi.org/10.1016/j.visres.2018.04.005.
33. Gao TY, Guo CX, Babu RJ, et al. Effectiveness of a binocular video game vs placebo video game for improving visual functions in older children, teenagers, and adults with amblyopia: A randomized clinical trial. JAMA Ophthalmol. 2018;136(2):172–181, http://dx.doi.org/10.1001/jamaophthalmol.2017.6690.
34. Jia W, Lan F, Zhao X, et al. The effects of monocular training on binocular functions in anisometropic amblyopia. Vision Res. 2018;152:74–83, http://dx.doi.org/10.1016/j.visres.2017.02.008.
35. Kelly KR, Jost RM, Wang Y-Z, et al. Improved binocular outcomes following binocular treatment for childhood amblyopia. Invest Ophthalmol Vis Sci. 2018;59:1221–1228, http://dx.doi.org/10.1167/iovs.17-23235.
36. Liu YY, Zhang JY. Dichoptic training in adults with amblyopia: Additional stereorecognition gains over monocular training. Vision Res. 2018;152:84–90, http://dx.doi.org/10.1016/j.visres.2017.07.002.
37. Manh VM, Holmes JM, Lazar EL, et al. Pediatric Eye Disease Investigator Group. A randomized trial of a binocular iPad game versus part-time patching in children aged 13 to 16 years with amblyopia. Am J Ophthalmol. 2018;186:104–115, http://dx.doi.org/10.1016/j.ajo.2017.11.017.
38. Mezrad-Koursch D, Rosenblatt A, Newman H, Stolovitch C. Home use of binocular dichoptic video content device for treatment of amblyopia: A pilot study. J AAPOS. 2018;22(2):134–138, http://dx.doi.org/10.1016/j.jaapos.2017.12.012.
39. Moret B, Camilleri R, Pavan A, et al. Differential effects of high-frequency transcranial random noise stimulation (hf-tRNS) on contrast sensitivity and visual acuity when combined with a short perceptual training in adults with amblyopia. Neuropsychologia. 2018;114:125–133, http://dx.doi.org/10.1016/j.neuropsychologia.2018.04.017.
40. Portela-Camino JA, Martín-González S, Ruiz-Alcocer J, Illarramendi-Mendicute I, Garrido-Mercado R. A random dot computer video game improves stereopsis. Optom Vis Sci. 2018;95(6):523–535, http://dx.doi.org/10.1097/OPX.0000000000001222.
41. Holmes JM, Manny RE, Lazar EL, et al. A randomized trial of binocular dig rush game treatment for amblyopia in children aged 7 to 12 years. Ophthalmology. 2019;126(3):456-466, http://dx.doi.org/10.1016/j.ophtha.2018.10.032.

42. Law CL, Backus BT. Use of a new composite index to demonstrate improved stereoaucity after training on stimuli with dichoptically asymmetric contrast. Vision Res. 2019;171:73-83, http://dx.doi.org/10.1016/j.visres.2019.10.005.

43. Liu X-Y, Zhang J-Y. Dichoptic de-masking learning in adults with amblyopia and its mechanisms. Invest Ophthalmol Vis Sci. 2019;60:2968-2977, http://dx.doi.org/10.1167/iovs.18-26483.

44. Sauvan L, Stolowy N, Denis D, et al. Contribution of short-time occlusion of the amblyopic eye to a passive dichoptic video treatment for amblyopia beyond the critical period. Neural Plast. 2019:6208414, http://dx.doi.org/10.1155/2019/6208414.

45. Birch EE, Jost RM, Kelly KR, Leffler JN, Dao L, Beauchamp CL. Baseline and clinical factors associated with response to amblyopia treatment in a randomized clinical trial. Optom Vis Sci. 2020;97(5):316-323, http://dx.doi.org/10.1097/OPX.0000000000001514, 2020.

46. Gu L, Deng S, Feng L, et al. Effects of monocular perceptual learning on binocular visual processing in adolescent and adult amblyopia. iScience. 2020;23(2):100875, http://dx.doi.org/10.1016/j.isci.2020.100875.

47. Gantz L, Bedell HE. Transfer of perceptual learning of depth discrimination between local and global stereograms. Vision Res. 2010;50:1891-1899, http://dx.doi.org/10.1016/j.visres.2010.06.011.

48. Stewart CE, Stephens DA, Fielder AR, Moseley MJ. Modeling dose-response in amblyopia: Toward a child-specific treatment plan. Invest Ophthalmol Vis Sci. 2007;48(6):2589-2594, http://dx.doi.org/10.1167/iovs.05-051243.

49. Martín-González S, Portela-Camino J, Ruiz-Alcocer J, Illarramendi-Mendicute I, Garrido-Mercado R. Stereoaucity improvement using random-dot video games. JoVE. 2020;155:e60236, http://dx.doi.org/10.1016/0042-6989(77)90009-8.

50. Holmes JM. Lessons from recent randomized clinical trials of binocular treatment for amblyopia. JAMA Ophthalmol. 2018;136(2):181-183, http://dx.doi.org/10.1001/jamaophthalmol.2017.5938.