Original Research Article

https://doi.org/10.20546/ijcmas.2017.608.082

Standardization of Hydropriming Duration for Enhance Seed Yield and its Quality Parameters in Chickpea (Cicer arietinum L.)

Sarvjeet*, S.C. Vimal and Pankaj Kumar

Department of Genetics and Plant Breeding, N. D. University of Agriculture and Technology, Kumarganj-224 229, Faizabad (U.P.), India

*Corresponding author

A B S T R A C T

The present study were carried out in the Department of Genetics and Plant Breeding, N. D. University of Agriculture and Technology, Kumarganj Faizabad during Rabi season 2014-15 and 2015-16 entitled “Standardization of hydropriming duration for enhance seed yield and its quality parameters in chickpea (Cicer arietinum L.)” The objective of the study was to standardize the hydro priming duration. Seed priming is a simple and cheap method but is acceptable in different areas. In order to the effect of hydropriming treatment on germination percentage in caraway (Carum carvi L.), this experiment was conducted by randomized block design (Factorial) design with three replications. The factor was including hydro priming 13(P1), 16(P2), and 18(P3) hours. The results showed that the effect of hydropriming was significant on germination percentage, seedling length, and seedling vigour index. Mean comparison showed that the highest germination percentage, seedling length were achieved by P2 and also the highest seedling dry weight and seedling vigour were achieved by P2 and lowest germination percentage, seedling length, seedling dry weight and seedling vigour were achieved by P1. The results of this experiment showed that hydro priming method can improve the germination percentage in field condition and lab condition.

Keywords: Chickpea, Biofertilizers, Priming.

Article Info

Accepted: 14 July 2017
Available Online: 10 September 2017

Introduction

Chickpea (Cicer arietinum L.) is the most important pulse crop in India with an average yield of 1500-2000 kg/ha. Chickpea is a diploid species with a chromosome number 2n = 16. It belongs to subfamily Papilionaceae of the family Leguminaceae. It’s seeds contain 16.4-31.2% protein, 3.0% fibre, 38.1-73.3% carbohydrates, 1.6-9.0% cellulose, 0.2% Ca, 0.3% P, 3.0% ash, vitamins (C and B) and minerals (Mg, Zn, K, Fe) (Huda et al., 2003 and Ozer et al., 2010). Combined inoculation of Rhizobium with Pseudomonas striata or Bacillus polymyxa and with Bacillus megaterium have shown increased dry matter, grain yield and phosphorus uptake significantly over the uninoculated control in legumes (Elkoca et al., 2008). Phosphate solubilising bacteria (PSB) plays an important role in making phosphorus available to crop plants.

The present study was undertaken comparative study of biofertilizers and seed priming on seed yield and quality of chickpea (Cicer arietinum L.). Seed priming, several processes including storage, material
handling, activation and synthesis of a number of enzymes and nucleic acids, repair and build up. Several biochemical and physiological changes have been observed in seeds during ageing membrane disruption is one of the main reason of seed deterioration the major cause of membrane disruption are increase in free fatty acid level and free radical productivity by lipid peroxydation. Different techniques could be used to enhance crop yield. Priming is also thought to increase free radical scavenging enzymes activity and counteract the effect of lipid peroxydation and reduce leakage of metabolites. The early improvements may increase the rate of uniformity of seed germination and seedling emergence. (Afzal et al., 2002)

Hydropriming (using distilled water with temperature of 30°C for 18 days) on chickpea germination under 3 different temperatures of 15, 25, and 38°C, coming to conclusion that no significant impact of osmopriming and hydro-priming would be found between 25 and 38°C on seed germination. The beneficial effects of osmo- and hydropriming are associated with increase in radicle and plumule lengths. Chickpea is a short-season edible grain legume grown crop, which cultivated mostly in arid and semi-arid region of the world where salinity, high temperature, rapid soil drying, and crust formation are barriers to good chickpea crop establishment. However, no study has been previously reported in the context of Iran on the effects of different osmopriming on chickpea seed germination and early seedling growth. Consequently, the aim of this study was to elucidate the effects of osmopriming on seed emergence and early seedling growth of chickpea under the pot condition (Nascimento, 2003).

Materials and Methods

The field experiments under present investigation were conducted during Rabi 2014-15 and 2015-16 at Student Instructional Farm and lab experiments were carried out in Seed Testing Laboratory of Seed Technology Section, N. D. University of Agriculture and Technology, Kumarganj, Faizabad (U. P.). Geographically, Narendra Nagar situated between 26.47° N latitude, 82.12° longitude and at an altitude of 113 meters above the mean sea level.

The climate of district Faizabad is semi-arid with hot summer and cold winter. Nearly 80 per cent of total rain fall is received during the monsoon the treatment details are presented in table 1.

Plant to plant distance and row to row distance was 10 and 30 cm, respectively. Fertilizer was applied @ 20:40:40 (kg ha⁻¹) N: P: K at the time of sowing. The chickpea crop was cultivated using standard agronomic practices. The observations were recorded at days to plant height (cm), number of branches per plant, 50% flowering, number of pods per plant, number of seeds per pod, biological yield per plant (g), seed index (g), harvest index (%), seed yield per plant (g), seed yield (q/ha)

Result and Discussion

Mean performance

The data presented in table 2, show mean performance of 27 treatments for 16 characters. The grand mean and range for all the traits are also depicted in table 2.

Days to 50% flowering

Scanning of data presented in table 1 indicates that hydro-priming of seed influenced the flowering period of chickpea and minimum flowering period of 96.70 and 97.61 days was associated with 13 hrs and 16 hrs hydro-priming during 2014-15 and 2015-16 respectively. During 2014-15 flowering
periods were statistically similar in 16 hrs and 18 hrs priming. While during 2015-16 similar flowering period was noted in 13, 16 and 18 hrs priming of seeds.

Days to maturity

Scanning of data presented in table 1 indicates that hydroprimed seed influenced the flowering period of chickpea. Minimum flowering period 146.5 and 145.7 days were associated with 16 hours and 18 hours hydro priming during 2014-15 and 2015-16 respectively. During 2014-15 maturity periods were statistically similar in 13, 16 and 18 hrs priming while during 2015-16 similar maturity period was noted in 13, 16, and 18 hrs priming of seeds.

Plant height (cm) at 30 DAS

Scanning of data presented in table 2 showed due to that hydropriming of seed influenced the plant height of chickpea the maximum plant height of 10.16 and 11.14 cm was associated with 16 hours priming during season first and season second respectively. During season first plant height was statistically similar in 18 hrs priming. 16 hours hydroprimed, priming seed was significantly superior to 13 and 18 hrs were recorded in season second.

Plant height (cm) at 60 DAS

Scanning of data presented in table 2 indicates that plant height of chickpea affected by hydro priming technique. Maximum plant height 18.50 and 18.13 cm was associated with 16 hrs hydro priming during 2014-15 and 2015-16 respectively. During 2014-15 plant height was statistically at par with 18 hrs priming. While during 2015-16, plant height in 16 hrs was statistically at par with 13 and 18 hrs priming of seeds.

Number of branches per plant at 30 DAS

Table 3 indicates that hydro priming of seed influenced the number of branches per plant in chickpea and maximum branches 5.97 and 6.52 was associated with 16 hrs hydro priming during 2014-15 and 2015-16 respectively. During 2014-15 numbers of branches in 16 hrs were significantly superior to 13 and 18 hrs priming. While during 2015-16 numbers of branches were significantly superior with 13 and 18 hrs primed of seeds of chickpea variety (Pant G-186).

Number of branches per plant at 60 DAS

Scanning of data presented in table 3 indicates that hydro priming of seed influenced the number of branches per plant of chickpea and maximum branches 10.20 and 10.71 were associated with 16 hrs hydro priming during 2014-15 and 2015-16 on 60 days, respectively. During 2014-15 number of branches per plant in 16 hrs was hydro priming significantly superior than 13 and 18 hrs. While during 2015-16 number of branches in 16 hrs were significantly superior with 13 hrs priming of seeds.

The increase in number of branches per plant could be due to atmospheric N fixed by Rhizobium and growth promoting substances produced by P-solubilizers. These results are in collaboration with the earlier finding in chickpea (Jain et al., 1999).

Number of pods per plant

Scanning of data in table 4 indicates that hydro priming influenced the number of pods per plant of chickpea and maximum pod 76.69 and 72.19 were associated with 16 hour hydro priming during 2014-15 and 2015-16 respectively. During 2014-15 numbers of pods per pod in 16 hrs were significantly superior to 13 and 18 hrs priming.
Table 1

S.N.	Characters	Days to 50 (%) flowering	Days to maturity										
	Treatments	Rabi 2014-15	Rabi 2015-16	Rabi 2014-15	Rabi 2015-16								
		HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.			
T1	Trichoderma	5g											
		94.00	102.33	96.67	92.67	101.33	96.33	150.33	148.00	147.33	150.00	145.67	147.00
T2	Trichoderma	7.5g											
		91.00	105.67	97.00	94.00	98.13	99.67	151.67	149.67	145.33	150.67	149.33	142.00
T3	Trichoderma	10g											
		95.67	97.00	94.33	106.33	99.00	104.00	146.33	147.33	144.67	144.33	147.67	143.67
T4	PSB 7.5g												
		101.67	94.33	98.67	101.67	100.33	97.67	144.67	146.00	146.67	144.67	144.67	144.67
T5	PSB 10g												
		97.67	97.33	102.00	102.00	96.33	99.00	145.00	143.67	144.67	144.67	144.67	146.00
T6	PSB 12.5g												
		104.67	96.00	106.00	99.67	93.67	104.33	153.67	149.67	153.00	151.33	147.67	148.67
T7	Rhizobium	7.5g											
		96.67	99.33	94.67	96.67	94.00	105.33	145.33	143.33	149.00	146.67	144.00	148.67
T8	Rhizobium	10g											
		93.33	98.00	95.33	94.00	97.67	105.00	141.67	143.67	149.33	142.33	145.00	146.00
T9	Rhizobium	12.5g											
		95.67	93.33	100.33	96.33	98.00	100.67	143.33	148.00	146.67	141.00	144.00	144.67
		96.70	98.15	98.33	98.15	97.61	101.33	146.89	146.59	147.41	146.15	145.85	145.70
	SEM												
Table 2

S.N.	Characters	Plant height (cm) on 30 days	Plant height (cm) on 60 days										
		Rabi 2014-15	Rabi 2015-16	Rabi 2014-15	Rabi 2015-16								
		HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.			
T1	Trichoderma												
	5g	7.68	7.07	9.21	7.68	7.03	7.23	15.99	17.16	18.57	15.28	17.06	17.97
T2	Trichoderma												
	7.5g	6.40	7.77	9.82	6.87	10.17	10.01	18.81	19.30	18.70	18.00	18.73	18.30
T3	Trichoderma												
	10g	7.93	8.92	10.61	9.77	11.36	8.88	17.78	15.55	15.79	18.11	14.98	15.49
T4	PSB 7.5g												
	7.21	10.00	8.67	8.12	9.91	9.23	17.69	16.03	16.30	16.87	15.40	16.03	
T5	PSB 10g												
	8.50	9.70	9.84	10.43	12.20	9.63	16.63	18.51	17.73	16.13	17.84	15.57	
T6	PSB 12.5g												
	9.49	8.78	8.80	9.39	9.80	9.00	20.42	17.80	16.24	19.90	17.07	17.64	
T7	Rhizobium												
	7.5g	7.57	10.88	10.58	11.97	11.29	12.46	18.41	18.99	17.20	17.83	16.95	17.50
T8	Rhizobium												
	10g	8.03	13.14	7.17	7.97	13.49	7.53	16.74	19.90	18.67	15.52	20.67	16.90
T9	Rhizobium												
	12.5g	9.02	15.17	6.83	9.25	15.02	8.17	17.10	23.29	18.47	16.77	24.45	19.04
		7.98	10.16	9.06	9.05	11.14	9.13	17.73	18.50	17.52	17.16	18.13	17.16
	Grand Mean												
	SEM	CD 5%	CD 1%	CD 5%	CD 1%	CD 5%	CD 1%	CD 5%	CD 1%	CD 5%	CD 1%	CD 5%	CD 1%
	Due to Treatment	0.372	1.055	1.407	0.487	1.382	1.842	0.576	1.633	2.176	0.563	1.598	2.131
	Due to Priming	0.215	0.609	0.812	0.281	0.798	1.064	0.332	0.943	1.257	0.325	0.923	1.230
	Due to Interaction												
	P×T	0.644	1.828	2.437	0.844	2.394	3.191	0.997	2.828	3.770	0.976	2.768	3.690
Table 3

S.N	Characters	Number of branches/plant on 30 days	Number of branches/plant on 60 days							
		Rabi 2014-15	Rabi 2015-16	Rabi 2014-15	Rabi 2015-16					
		HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.
T1	*Trichoderma* 5g	4.87	5.77	4.53	4.87	6.80	4.40	8.47	8.60	8.07
T2	*Trichoderma* 7.5g	4.60	5.67	4.27	4.13	5.53	5.13	8.07	9.60	8.93
T3	*Trichoderma* 10g	5.27	4.60	5.00	3.53	6.80	4.27	7.93	7.87	11.20
T4	PSB 7.5g	4.73	5.67	5.40	4.07	5.47	5.40	8.93	9.37	8.40
T5	PSB 10g	4.77	6.00	6.13	5.17	7.07	6.13	10.20	11.47	9.53
T6	PSB 12.5g	4.67	5.40	5.53	4.00	5.73	4.40	8.80	9.13	10.40
T7	*Rhizobium* 7.5g	5.60	5.40	5.03	4.80	5.80	6.40	10.07	8.53	9.27
T8	*Rhizobium* 10g	4.63	7.07	4.53	4.60	7.13	4.80	9.53	12.67	10.47
T9	*Rhizobium* 12.5g	6.53	8.13	5.00	5.93	8.33	4.87	8.87	14.53	8.40
	Grand Mean	5.07	5.97	5.05	4.57	6.52	**5.09**	**8.99**	**10.20**	**9.41**

SEM

	CD 5%	CD 1%								
Due to Treatment	0.264	0.748	0.997	0.223	0.634		0.845	0.395	1.121	1.495
Due to Priming	0.152	0.432	0.576	0.129	0.366		0.488	0.228	0.647	0.863
Due to Interaction	0.457	1.295	1.727	0.387	1.097		1.463	0.685	1.942	2.589

Due to Interaction

P x T				
0.457	1.295	1.727	0.387	1.097

670
Table 4

S. No.	Characters	Number of pods/plant	Number of seeds/pod										
	Treatments	Rabi 2014-15	Rabi 2015-16										
		HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.						
1	Trichoderma 5g	58.73	73.07	60.27	66.67	77.53	50.40	1.53	1.33	1.33	1.40	1.40	1.20
2	Trichoderma 7.5g	59.73	69.93	71.67	47.80	64.00	57.13	1.60	1.73	1.40	1.00	1.40	1.53
3	Trichoderma 10g	64.07	77.93	59.40	73.97	70.73	62.53	1.40	1.60	1.40	1.40	1.40	1.00
4	PSB 7.5g	57.53	72.67	73.73	53.00	68.97	72.90	1.27	1.47	1.80	1.28	1.60	1.60
5	PSB 10g	71.53	75.67	66.33	58.30	74.57	69.37	1.40	1.60	1.47	1.60	1.60	1.20
6	PSB 12.5g	59.47	66.93	68.20	66.67	59.27	70.33	1.40	1.47	1.47	1.40	1.40	1.40
7	Rhizobium 7.5g	54.00	74.87	62.33	57.43	68.30	57.97	1.27	1.27	1.73	1.20	1.20	1.60
8	Rhizobium 10g	61.27	83.53	74.40	76.67	79.27	68.43	1.73	1.60	1.33	1.40	1.40	1.00
9	Rhizobium 12.5g	71.93	95.57	71.27	65.23	87.10	73.80	1.40	1.87	1.47	1.40	1.67	1.40
	Grand Mean	62.03	76.69	67.51	62.86	72.19	64.76	1.44	1.55	1.49	1.34	1.45	1.33
	SEM	CD 5% 1%	CD 5% 1%	CD 5% 1%	CD 5% 1%	CD 5% 1%	CD 5% 1%						
Due to Treatment	1.535	4.355	5.805	2.770	7.859	10.476	0.047	0.134	0.179	0.052	0.147	0.195	
Due to Priming	0.886	2.514	3.352	1.599	4.538	6.049	0.027	0.077	0.103	0.030	0.085	0.113	
Due to Interaction	Pxt	2.659	2.659	10.055	4.798	13.613	18.146	0.082	0.232	0.309	0.089	0.054	0.338
Table 5

S. N	Characters	Biological yield (g)	Harvest index										
		Rabi 2014-15	Rabi 2015-16	Rabi 2014-15	Rabi 2015-16								
		HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.			
T	Trichoderma 5g	48.67	58.60	50.33	46.57	53.50	45.53	31.52	39.65	31.19	30.08	25.30	
1	Trichoderma 7.5g	52.53	56.53	51.44	45.60	50.90	52.97	38.39	38.37	26.07	30.49	27.39	32.59
2	Trichoderma 10g	56.40	53.44	46.93	47.93	51.57	51.77	27.66	30.77	31.77	34.70	30.99	34.24
T	PSB 7.5g	44.53	63.47	50.00	49.03	56.13	60.30	41.24	27.00	33.66	37.37	36.45	31.19
4	PSB 10g	44.63	59.87	52.10	47.00	49.37	47.73	30.65	35.85	41.94	42.71	33.06	30.14
T	PSB 12.5g	53.33	50.57	55.80	57.47	50.00	49.13	27.38	26.94	36.29	30.24	35.41	27.81
6	Rhizobium 7.5g	61.73	48.03	52.87	48.70	59.47	52.10	32.81	28.06	31.45	33.34	30.03	38.22
T	Rhizobium 10g	44.13	53.63	42.70	54.80	61.37	55.50	45.93	46.15	37.63	29.04	38.80	30.40
7	Rhizobium 12.5g	49.20	75.73	55.40	58.23	64.00	54.00	41.41	42.78	33.41	33.56	44.56	38.56
T	Grand Mean	50.57	57.76	50.84	50.59	55.14	52.11	35.22	35.06	33.71	33.63	34.08	32.05
	SEM	CD 5%	CD 1%										
	Due to Treatment	1.743	4.944	6.590	1.762	4.997	6.662	1.461	4.145	5.526	1.921	5.450	7.265
	Due to Priming	1.006	2.854	3.805	1.017	2.885	3.846	0.844	2.393	3.190	1.109	3.147	4.195
	Due to Interaction	3.018	8.563	11.414	3.051	8.656	11.538	2.531	7.180	9.571	3.328	9.440	12.584
Table 6

S. No	Characters	Treatments	Seed yield/Plant (g)	Seed yield (Kg/ha)									
			Rabi 2014-15	Rabi 2015-16									
		HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.			
T1	Trichoderma 5g	15.21	23.20	15.67	14.40	16.03	11.50	1741.27	1607.53	1545.07	1772.00	1450.63	1455.03
T2	Trichoderma 7.5g	20.13	21.67	13.31	13.87	13.97	16.83	1544.63	1549.03	1720.33	1581.53	1860.83	1746.90
T3	Trichoderma 10g	15.68	16.41	14.90	16.63	15.97	17.63	1747.67	1845.90	1756.93	1825.10	2005.50	1596.67
T4	PSB 7.5g	18.20	16.90	16.80	18.23	18.83	1682.07	1779.23	1728.83	1625.97	2165.47	1651.33	
T5	PSB 10g	13.63	21.30	21.73	20.07	14.30	1834.97	2138.57	1813.43	2149.83	1692.70	1651.33	
T6	PSB 12.5g	14.57	13.63	19.90	17.33	13.63	1655.10	1987.47	2149.83	1692.70	2165.47	1651.33	
T7	Rhizobium 7.5g	20.17	13.40	16.70	16.40	17.70	19.93	2137.23	2017.27	1757.37	1849.07	1627.00	
T8	Rhizobium 10g	20.13	24.73	16.00	15.90	23.57	16.97	2453.03	2284.63	1610.67	2247.07	1651.33	
T9	Rhizobium 12.5g	20.05	32.40	18.37	18.97	28.53	20.30	1752.87	2579.97	2046.47	2477.03	2106.70	
Grand Mean	17.53	20.40	17.04	16.87	18.87	16.66	1838.76	1976.62	1662.17	1933.04	1685.35		

Due to Treatment: 0.648 1.839 2.451 0.875 2.482
Due to Priming: 0.374 1.062 1.415 0.505 1.433
Due to Interaction: 1.123 3.185 4.245 1.515 4.299

SEM CD 5% CD 1% CD 5% CD 1% CD 5% CD 1% CD 5% CD 1%
Due to Treatment: 0.648 1.839 2.451 0.875 2.482
Due to Priming: 0.374 1.062 1.415 0.505 1.433
Due to Interaction: 1.123 3.185 4.245 1.515 4.299

Due to Treatment: 3.309 50.371 142.897 190.482 41.339 117.274 156.326
Due to Priming: 1.910 29.081 82.502 109.975 23.867 67.708 90.255
Due to Interaction: 5.731 87.244 247.505 329.924 71.600 203.124 270.765
Table 7

S. No	Characters	100-Seed weight (g)	Germination (%)										
		Rabi 2014-15	Rabi 2015-16	Rabi 2014-15	Rabi 2015-16								
		HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.	HP13 Hrs.	HP16 Hrs.	HP18 Hrs.			
1	Trichoderma 5g	17.88	18.91	18.60	17.80	20.90	19.05	86.33	91.42	87.25	85.19	88.37	85.20
2	Trichoderma 7.5g	21.10	18.75	18.53	20.60	18.93	18.61	89.50	86.08	85.50	88.07	84.83	87.57
3	Trichoderma 10g	18.47	20.49	19.02	18.23	18.37	20.70	87.75	87.58	86.75	85.97	85.87	89.03
4	PSB 7.5g	21.10	18.91	18.81	21.03	20.90	19.10	87.92	87.42	86.75	84.93	90.23	85.31
5	PSB 10g	17.30	19.93	20.40	20.90	19.17	21.20	89.50	89.33	87.00	86.37	87.90	90.01
6	PSB 12.5g	19.16	19.89	19.37	20.73	20.07	21.53	88.75	87.25	86.18	89.90	88.75	91.20
7	Rhizobium 7.5g	21.50	17.73	19.75	19.50	20.10	20.90	86.00	85.83	88.42	91.70	85.55	88.03
8	Rhizobium 10g	19.52	20.28	17.89	19.70	19.20	16.88	89.75	88.92	85.83	89.20	87.38	86.09
9	Rhizobium 12.5g	16.93	20.10	17.50	20.20	20.47	19.00	87.75	88.25	87.40	85.53	88.60	85.67
	Grand Mean	19.22	19.45	18.87	19.86	19.79	19.66	88.14	88.01	86.79	87.43	87.50	87.57

SEM	CD 5%	CD 1%											
Due to Treatment	0.360	1.020	1.360	0.439	1.245	1.659	0.646	1.833	2.443	0.701	1.989	2.651	
Due to Priming	0.208	0.589	0.785	0.253	0.719	0.958	0.373	1.058	1.410	0.405	1.148	1.531	
Due to Interaction	PxT	0.623	1.767	2.355	0.760	2.156	2.873	1.119	3.174	4.231	1.014	3.445	4.52
S. No.	Characters	Seedling length (cm)	Seedling vigour index										
--------	------------	----------------------	---------------------										
		Rabi 2014-15 HP15 Hrs.	Rabi 2014-15 HP16 Hrs.	Rabi 2014-15 HP18 Hrs.	Rabi 2015-16 HP15 Hrs.	Rabi 2015-16 HP16 Hrs.	Rabi 2015-16 HP18 Hrs.						
T 1													
1	Trichoderma 5g	14.58	19.73	16.79	13.47	16.80	15.27	1260.14	1804.11	1464.62	1147.60	1485.34	1300.43
T 2													
2	7.5g	16.39	15.73	13.82	15.10	19.83	13.97	1467.06	1355.56	1182.33	1329.10	1681.69	1223.81
T 3	Trichoderma	10g	12.63	16.85	15.10	17.27	16.17	1107.89	1476.55	1310.49	1484.45	1388.06	1439.96
T 4													
4	PSB 7.5g	17.98	17.23	16.64	18.53	18.03	19.10	1580.63	1506.26	1443.65	1575.09	1627.05	1629.43
T 5													
5	PSB 10g	18.06	16.73	11.93	16.07	16.63	16.33	1617.28	1495.69	1037.27	1387.71	1461.33	1471.30
T 6													
6	PSB 12.5g	13.17	19.79	13.47	14.59	15.37	14.87	1168.47	1728.09	1160.20	1312.06	1364.39	1355.97
T 7	Rhizobium 7.5g	17.62	15.59	16.81	15.90	19.60	20.17	1513.28	1337.05	1485.49	1456.95	1677.37	1775.68
T 8													
8	Rhizobium 10g	16.13	17.33	18.40	16.63	19.50	18.00	1446.51	1541.45	1579.08	1482.71	1705.81	1549.23
T 9	Rhizobium 12.5g	17.21	18.21	21.97	15.50	20.67	19.93	1508.11	1608.00	1920.92	1325.86	1832.85	1707.87
Grand Mean	15.97	17.47	16.10	15.90	18.07	17.09	1407.71	1539.20	1398.23	1389.06	1580.43	1494.85	
SEM	CD 5%	0.424	1.203	1.603	0.364	1.032	1.375	39.189	111.175	148.197	35.869	101.756	135.641
	CD 1%	0.245	0.694	0.926	0.210	0.596	0.794	22.626	64.187	85.561	20.709	58.749	78.313

Table 8
Treatments used in this study

Treatment No.	Description
P1	Hydro priming with distilled water 13 hrs
P2	Hydro priming with distilled water 16 hrs
P3	Hydro priming with distilled water 18 hrs
T1	*Trichoderma* 5 gm
T2	*Trichoderma* 7.5 gm
T3	*Trichoderma* 10 gm
T4	PSB 7.5 gm
T5	PSB 10 gm
T6	PSB 12.5 gm
T7	*Rhizobium* 7.5 gm
T8	*Rhizobium* 10 gm
T9	*Rhizobium* 12.5 gm

While during 2015-16 number of pods per plant in 16 hrs was significantly superior to 13 and 18 hrs priming of seeds.

The effects of organic and biologic fertilizers on soybean growth and quality of seed, Mekki and Amel (2005) showed that the number of pods per plant was increased by applying biofertilizer.

Number of seeds per pod

Revealed table 4 hydro priming of seed influenced the number of seeds per pod in chickpea and maximum seeds per pod 1.55 and 1.45 were associated with 16 hours hydro priming during 2014-15 and 2015-16 both seasons, respectively.

During 2014-15 numbers of seeds per pod in 16 hrs were statistically similar with 13 and 18 hrs priming. Besides during 2015-16 numbers of seeds per pod in 16 hrs were statistically similar with 13 and 18 hrs priming of seeds. These results are in confirmation with that of Karadavut and Ozdemir (2001) and Fatima *et al.*, 2008 who reported that inoculation significantly increased grain yield (20% higher than control).

Biological yield per plant (g)

Scanning of data presented in table 5 indicates that hydro priming of seed influenced the biological yield per plant of chickpea and maximum biological yield per plant 57.76 g and 55.14 g were associated with 16 hours hydro priming during *Rabi* 2014-15 and 2015-16, respectively. During first season and second season biological yield per plant for 16 hrs was significantly superior to 13 and 18 hrs priming period.

Harvest index

Scanning of data presented in table 5 indicates that hydro priming of seed influenced the harvest index of chickpea and maximum harvest index 35.2 and 34.08 were associated with 13 hours and 16 hours hydro priming during 2014-15 and 2015-16, respectively.

Seed yield per plant (gm)

Scanning of data presented in table 6 indicates that hydro priming of seed influenced the seed yield per plant of chickpea and the maximum seed yield per plant 20.40 and 18.87 were associated with 16 hours hydro priming duration in both years. During first year seed
yield per plant for 16 hrs was significantly superior to 13 and 18 hrs priming time. While during second year seed yield per plant for 13 hrs priming time was significantly superior to 16 and 18 hrs priming duration.

Bacteria had beneficial effect on plant growth and seed yield, because they fix atmospheric nitrogen and release auxins to the root zone to enhance growth (Rees et al., 2009). Addition of biofertilizer promotes bacterial response to nitrogen fixation and soil fertility. Higher rates of atmospheric nitrogen fixation promote growth and yield (El-Desuki et al., 2010).

Seed yield (Kg/ha)

The maximum seed yield 1976.62 and 1933.04 (Kg/ha) were associated with 16 hours hydropirminghaming during both period respectively. During 2014-15 seed yield (Kg/ha) for 16 hrs was significantly superior to 13 and 18 hrs priming time. While during 2015-16 Seed yield (Kg/ha) in16 hrs was significantly superior than 13 and18 hrs priming period for chickpea seed crop production.

It might be due to the availability of plant nutrients in the vicinity of rhizosphere and less losses of nutrient due to fertilizer banding. These results are in conformity with those of Din et al., (1999) who recorded maximum yield in band placement. Seed inoculation also significantly affected the grain yield of chickpea.

100-seed weight (g)

Revealed of data presented in table 7 indicates that hydro priming of seed influenced the 100-seed weight of chickpea. The maximum 100-seed weight 19.45 and 19.86 g were associated with 16 and 13 hours hydropiming during 2014-15. During 2014-15, 100-seed weight in16 hrs was statistically similar with 13 hrs and 18 hrs priming. However during 2015-16 similar 100 -seed weight was statistically similar in 13, 16 and 18 hrs priming. Period for above mentioned chapter

Germination %

During 2014-15 germination in 13 hrs was statistically similar in 16 and 18 hrs priming. While during 2015-16 germination were statistically similar in 13 and16 hrs priming of seeds

Seedling length

Table 8 data indicates that hydro priming of seeds influenced the seedling length of chickpea and maximum seedling length 17.47 cm and 18.07 cm were associated with 16 hours hydropirminghaming during 2014-15 and 2015-16, respectively. During 2014-15 seedling length for 16 hrs significantly superior than 13 and 18 hrs priming. While during 2015-16 seedling length cm in 18 hrs was significantly superior in 13 and16 hrs priming of seeds.

Vigour index

Scanning of data presented in table 8 showed that hydro priming technique seed influenced the vigour index of chickpea crop seed and maximum vigour index 1539.2 and 1580.4 were associated with 16 hrs hydropirminghaming during both season. Vigour index seed quality parameters for 16 hrs were significantly superior to 13 and 18 hrs priming period for first and second year.

From the present study it was concluded that Seed priming has been used to improve germination, reduce seedling emergence time, and improve stand establishment and yield. The beneficial effects of priming have been
demonstrated for many field crops. It is the best solution of germination related problems especially when crops are grown under unfavorable conditions. Many priming techniques have been evolved which are being utilized in many crops now days. It can enhance rates and percentage of germination and seedling emergence which ensure proper stand establishment under a wide range of environmental conditions.

References

Alagawadi, A. R., and Gaur, A. C. 1998. Association effect of *Rhizobium* and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. *Plant and Soil*, 105:241-246.

Alam, M.J., A. R. M. Solaiman and A. J. M. S. Karim. 1999. Nutrient uptake yield attributes and protein content of Chickpea as influenced by some *Rhizobium* strains. *Annals of Bangladesh Agriculture* 9(2):131-138.

D'alma, M.J., A.R.M. Solaiman and A.J.M.S. Karim. 1999. Nutrient uptake yield attributes and protein content of Chickpea as influenced by some *Rhizobium* strains. *Annals of Bangladesh Agriculture* 9(2):131-138.

D’Souza, P.S., 1996. Efficacy of phosphate solubilizing biofertilizers with different sources and levels of phosphorous in chickpea. *M.Sc. (Agri.) Thesis, University of Agriculture Science, Dharwad, Karnataka (India).*

Dilip Kumar, S.B., I. Berggen and A.M. Martensson 2001. Potential for improving pea production by co-inoculation with *Pseudomonas* *fluorescence* and *Rhizobium*. *Plant and Soil*, 229:25-34.

Din, J., Rashid, A. and Ahmed, A.I. 1999. Diagnosis and correlation of phosphorus deficiency in chickpea grown in rainfed calcareous soils of Pakistan. *Journal of Indian Soil Sci*. 477(3):504-509.

El-Deshukhi, M., M. Hafiz. M, R. Mahmoud. A. and S. Abd El-Al, 2010. Effect of organic and biofertilizer on the plant growth. Green pod yield, quality of Pea. *International Journal of Academic Research*, 2(1):87-92.

El-Hadi, E.A., EL-Sheikh, E. 1999. Effect of *Rhizobium* inoculation and nitrogen fertilization on yield and protein contents of six chickpea cultivars in marginal soils under irrigation nutrient cycling in agro ecosystem. 54(1):57-63.

Elko, E., Kantar, F. and Sahin, F. 2008. Influence of nitrogen fixing and phosphate solubilizing bacteria on nodulation, plant growth and yield of chickpea. *Journal of Plant Nutrition*. 33:157-171.

Fatima, Z., A. Bano, R. Sial and Aslam, M. 2008. Response of chickpea to plant growth regulators on nitrogen fixation and yield. *Pakistan Journal of Botany* 40(5):2005-2013.

Giri, Nishita, and Joshi, N. C. 2010. Growth and yield response of chick pea (*Cicer arietinum*) to seed inoculation with *Rhizobium* spp. *Nature and Science*, 8(9).

Huda, S., Siddique, N.A., Khatun, N., Rahman, M.H. and Morshed, M. 2003. Regeneration of shoot from cotyledon derived callus of chickpea (*Cicer arietinum* L.). *Pakistan journal of Biological Sciences*, 6:1310-1313.

Jain, P.C., and Kushwaha, PS., Dhakal, US, Khan, H. and Trivedi, SM. 1999. Response of chickpea to phosphorus and biofertilizer. *Legume Research*, 22:241-244.

Karadavut, U., and Ozdemir. S. 2001. Effect of *Rhizobium* inoculation and nitrogen application on yield and yield characters of chickpea. *Anadolu*.11 (1):14-22.

Kaur, S., Gupta, A.K. and Kaur, N. 2005. Seed Priming Increases Crop Yield
Possibly by Modulating Enzymes of Sucrose Metabolism in Chickpea. *Journal of Agronomy and Crop Science*, 191: 81-87.

Kaur, S., Gupta, A.K. and Kaur, N. 2005. Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in Chickpea. *Journal of Agronomy and Crop Science* 191:81-87.

Kennedy, I.R., Choudhury, A.T.M.A. and Kecskes, M.L. 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: Can their potential for plant growth promotion be better exploited. *Soil Biology and Biochemistry* 36:1229–1244.

Meena, K N., Pareek, R.G. and Jat, R.S. 2001. Effect of phosphorus and biofertilizers on yield and quality of chickpea. *Annals of agriculture Research* 22(3):388-390.

Mekki, B.B., and Amel, A.G. 2005. Growth, yield and seed quality of soybean as effected by organic, biofertilizer and its application. *Agriculture and Biological Science*, 1:320-324.

Ozer, S., Karakoy, T., Toklu, F., Baloch, S.F., Kilian, B. and Ozkan, H. 2010. Nutrition and physic chemical variation in Turkish, Kabuli chickpea (*Cicer arietinum* L.) land races. *Euphytica*, 175:237-249.

Rupela, O.P., 1987. Nodulation and nitrogen fixation in Chickpea. *Wallingford, U.K: CAB International*. 196-206

Singh, R.S., and Yadav, M.K., 2008. Effect of phosphorus and biofertilizers on growth, yield and nutrient uptake of long duration Pigeon pea under rainfed condition. *Journal of Food Legume, 21*(1): 46-48.

Timmons, D.R., R.E. Burwell and Holt. R.F. 1973. Nitrogen and phosphorus losses in surface runoff from Agricultural land as influenced by placement of broad cost fertilizer. *Water Resource Research*, 9:658-667.

How to cite this article:

Sarvjeet, S.C. Vimal and Pankaj Kumar. 2017. Standardization of Hydropriming Duration for Enhance Seed Yield and Its Quality Parameters in Chickpea (*Cicer arietinum* L.). *Int.J.Curr.Microbiol.App.Sci*. 6(9): 665-679. doi: https://doi.org/10.20546/ijcemas.2017.609.082