The Effect of the Covid-19 Pandemic on Nutritional Status and Anxiety Levels in Turkish Young Adults

Müberra Yıldız¹, Merve Esra Çitar Dazıroğlu², Gamze Akbulut³

1. Süleyman Demirel University/Faculty of Health Science/Department of Nutrition and Dietetics
2. Gazi University/Faculty of Health Science/Department of Nutrition and Dietetics
3. Gazi University/Faculty of Health Science/Department of Nutrition and Dietetics

*Corresponding Author: Müberra YILDIZ; Email: muberraozturk@sdu.edu.tr

Abstract

Background
The pandemic called “Coronavirus Disease 2019” (COVID-19), which first appeared in China, then spread to the whole world, has had negative consequences in many areas, especially in health. The long-term quarantine process caused by the pandemic and the experienced stress had a great impact on nutritional habits.

Aim
In this study, it was aimed to determine the change in anxiety levels and eating habits of young adults after the COVID-19 pandemic.

Methods
The data were obtained through an online questionnaire between April and July 2020. In the questionnaire, the general and health information of the individuals, their nutritional habits, and anthropometric measurements (height and body weight) were questioned. In addition, the food frequency questionnaire form and Beck Anxiety Inventory were applied.

Results
A total of 823 (174 males and 649 females) participants were included in the study. The median ages of males and females were 27.0 (18.0) and 26.0 (8.0), respectively. According to the results of the food frequency questionnaire; it was found that among females, the consumption of egg, cheese, milk, yogurt, pickles, fruit, onion, garlic, lemon, salad, legumes, pastry, sweets, red meat, turmeric, and herbal tea were increased significantly in the post-pandemic period; and the consumption of milk, yogurt, garlic, and lemon significantly increased in males. It was also found that the anxiety levels of the females increased statistically significantly in the post-pandemic period.

Conclusion
It was determined that during the COVID-19 pandemic, there were statistically significant changes in the food intake patterns and anxiety levels of the participants. It is thought that the results obtained from this study may be a guide for further studies to determine the nutritional habits in the COVID-19 pandemic.

Keywords: Coronavirus; pandemics; eating; food; anxiety.

Introduction
Several local health facilities reported clusters of patients with pneumonia of unknown cause that was epidemiologically linked to seafood and wet animal wholesale market in Wuhan, Hubei Province, China on December 31, 2019. As a result of the examinations, the source of pneumonia was determined, and a new coronavirus called “Coronavirus Disease 2019” (COVID-19) was isolated¹².

The frequent clinical features of COVID-19 include dry cough, fever, diarrhea, vomiting, myalgia, and impaired sense of taste and smell. Individuals with multiple comorbidities are prone to severe infection and may also present with acute kidney injury and features of ARDS⁵⁶. At the same time, the psychological effects of COVID-19 should not be ignored. Significant symptoms of impulsivity, insomnia, depression, anxiety, and post-traumatic stress disorder can be seen in COVID-19 patients⁵. For COVID-19, which also has a fetal course⁶, a total of 192,284,207 cases and 4,136,518 deaths have been reported worldwide as of July 26, 2021⁷.

Most treatments are currently symptomatic and supportive, though anti-inflammatory and antiviral treatments have been employed. For complicated patients, continuous renal replacement therapy, invasive mechanical ventilation, and even extracorporeal membrane oxygenation have been included in the supportive treatment. No specific antiviral drugs have been confirmed effective. Several efforts to develop vaccines are underway, but the World Health Organization (WHO) estimates it will take 18 months for the COVID-19 vaccines to be available⁸.

While all this is happening, COVID-19, which affects the whole world, brings along some health problems besides being infected. As a result of a multi-national study, the psychological effects of the pandemic were examined and it was determined that Poland and the Philippines were the two countries with the highest levels of anxiety, depression, and stress, while Vietnam had the lowest average scores in these areas⁹. As a result of a study covering 7 middle-income countries in Asia, it was stated that Thailand had the highest scores and Vietnam had the lowest anxiety, depression, and stress scores⁹. At this point, the policies followed by governments can also be important. As a result of a meta-analysis and systematic review, it was stated that governments taking strict measures to contain the spread of COVID-19
Food intake patterns in Covid-19 Pandemic

Malawi Medical Journal 34 (2); (95-104) June 2022

Eating habits during the COVID-19 pandemic have been significantly altered, with an increased reliance on unhealthy foods and reduced consumption of healthy foods. This has been associated with increased anxiety and fear due to the pandemic. The importance of nutrition for this pandemic that affects the whole world is quite clear. Therefore, it is emphasized that a healthy diet and living are vital. From this point of view, it is expected that individuals’ eating habits will change depending on various factors in the COVID-19 pandemic process, and it was aimed to determine the nutritional habits of individuals after the COVID-19 pandemic in this study.

Methods
This cross-sectional study was carried out on 823 adults (174 males and 649 females) between April and July 2020. For the study, “Ethical Commission Approval” numbered 13/178 has been obtained from Suleyman Demirel University Ethics Commission. Individuals were informed about the study, and those who agreed to participate voluntarily were included in the study.

To evaluate the changes in nutritional habits of individuals during the COVID-19 pandemic, an online questionnaire form created over Google was applied to individuals, and the questionnaire forms were collected electronically in this study. Before starting the survey, informed consent was obtained from all subjects involved in the study. Afterwards the questionnaire form was displayed on the screens of the participants who stated that they participated in the study voluntarily.

Data Collection Technique and Tool
In the questionnaire, the general and health information of individuals, their nutritional habits, and anthropometric measurements (height and body weight) were questioned. In addition, the food frequency questionnaire form and Beck Anxiety Inventory were used.

Content of the Survey Form
In the questionnaire, the age, gender, educational status, and occupation of the individuals were questioned within the general information, while the presence of chronic diseases and drug use status were questioned for health information. To determine their nutritional habits, the participants were asked various questions such as the number of meals, bread making at home, the type of flour used in bread making, homemade yogurt, and the type of yeast used in making yogurt. At the same time, information was obtained about the use of nutritional supplements such as probiotics, propolis, cumin extract, beta-glucan, and vitamin C pre and post COVID-19 pandemic. However, body weight changes during the COVID-19 pandemic were questioned by obtaining the individuals’ height (cm) and body weight (kg) information.

Food Frequency Questionnaire
The food frequency questionnaire form, in which various foods are questioned to determine the changing food consumption of individuals, is presented separately for pre and post COVID-19 pandemic. Since the food frequency questionnaire can be changed according to the purpose and can be created by considering food groups or basic nutrients, the form in this study was also prepared by the researchers.

In addition to the bread and cereal group, dairy group, meat group, and fruit and vegetable group, groups such as packaged products and desserts were also questioned in this food frequency questionnaire. It was requested to choose one of the “every day”, “3-5 times a week”, “1-2 times a week” and “1/none per month” options for the consumption frequency of these foods. The consumptions of individuals were grouped as follows: high consumption (every day and 3-5 times a week), modest consumption (1-2 times a week), and low/no consumption (1/none per month).

Beck Anxiety Scale
The Beck Anxiety Scale was used to determine the anxiety situation of those whose risk increased with the epidemic and to examine its effect on nutritional status. This scale was questioned for two separate periods considering the last weeks before and after the COVID-19 pandemic period. Beck Anxiety Scale is a self-report scale developed to measure the severity of anxiety symptoms in 1988 by Beck et al. Its Turkish validity and reliability study was conducted in 1998 by Ulusoy et al. The BAI showed a high internal consistency (alpha = 0.93). The item-total correlations ranged from 0.45 to 0.72. This scale is a Likert-type scale consisting of 21 questions that can be applied to all healthy adolescents and adults, each scored between 0 and 3. When marking symptoms on the scale, 0 means “absent”, 1 “mild”, 2 “moderate” and 3 “severe”. The total score range is 0-63, and the higher the total score, the higher the level of anxiety experienced by the individual. According to this, 0-15 is evaluated as “no anxiety”, 16-22 “mild anxiety”, 23-42 “anxiety”, 43-63 “intense anxiety”.

Statistical Evaluation
SPSS 23.0 program was used to evaluate the data obtained. Qualitative variables are expressed as number (%) and percentage (%), while quantitative variables are expressed as median, Interquartile range (IQR), and min-max. From the answers they gave to the questionnaire for each participant, it was tested with the Kolmogorov-Smirnov method as the number of samples was larger than 30 and it was determined that our data did not show normal distribution. For this reason, the Mann Whitney U test was used for the two-category variables in our dataset. The Chi-square test was used in the analysis of categorical data. McNemar-Bowker Test was used to test the relationship between more than two categorical dependent variables. In all analyzes, p<0.05 was considered as statistically significant difference.
Table 1. General characteristics of the participants.

	Females (n=649)	Males (n=174)	p
	Median;IQR(min-max)	Median;IQR(min-max)	
Age (years)	26.0;8.0 (18.0-66.0)	27.0;18.0 (18.0-62.0)	<0.001*
Current Body Weight (kg)	60.0;15.0 (40.0-125.0)	80.0;18.0 (55.0-120.0)	<0.001*
Pre-Pandemic Weight (kg)	60.0;14.0 (40.0-120.0)	81.0;19.0 (54.0-120.0)	<0.001*
Height (m)	163.0;8.0 (156.0-185.0)	178.0;10.0 (160.0-200.0)	<0.001*
Current BMI (kg/m^2)	22.6;5.1 (16.2-40.8)	25.7;4.8 (17.6-39.2)	<0.001*
Pre-pandemic BMI (kg/m^2)	22.5;5.1 (15.9-40.8)	25.7;4.5 (17.6-39.2)	<0.001*
Education Status			
Primary school	9 (1.4)		
Middle School	15 (2.3)	4 (2.3)	
High school	70 (10.8)	22 (12.6)	0.659
Undergraduate	37 (5.7)	8 (4.6)	
License	421 (64.9)	112 (64.4)	
Postgraduate	97 (14.9)	28 (16.1)	
Working Status			
Working	276 (42.5)	112 (64.4)	<0.001*
Not working	373 (57.5)	62 (35.6)	
Profession			
Public	81 (43.3)	66 (37.9)	
Student	193 (29.7)	45 (25.9)	
Retired	5 (0.8)	2 (1.1)	<0.001*
Housewife	58 (8.9)		
Private sector	97 (14.9)	56 (32.2)	
Not working	15 (2.3)	5 (2.9)	
Disease Presence			
No Disease	499 (76.9)	145 (83.3)	
Cardiovascular Diseases	8 (1.2)	4 (2.3)	
Respiratory Diseases	24 (3.7)	6 (3.4)	
Digestive System Diseases	9 (1.4)	1 (0.6)	
Thyroid Disease	13 (2.0)	1 (0.6)	
Migraine	7 (1.1)	1 (0.6)	
Allergy	1 (0.2)		
Eye diseases	4 (0.6)	2 (1.1)	
Psychiatric Diseases	9 (1.4)	3 (1.7)	
Hypertension	7 (1.1)	1 (0.6)	
Diabetes Mellitus	7 (1.1)		
Thalassemia	8 (1.2)	2 (1.1)	
Joint Diseases	21 (3.2)	5 (2.9)	
Other			

Data are given as a percentage. *Mann Whitney U Test and Chi-Square Test p<0,05.
Results

Sample Characteristics

The total number of participants who completed the questionnaire was 823 (174 males (21.14%) and 649 females (78.86%). The median ages of males and females were 27.0 (18.0) and 26.0 (8.0) years, respectively. The median value of current BMI was 25.7 (4.8) and 22.6 (5.1) kg/m2; the median value of pre-pandemic BMI was 25.7 (4.5) and 22.5 (5.1) kg/m2 for males and females, respectively (p<0.05). Most of the females (64.9%) and males (64.4%) had license education status. However, most of the females (57.5%) weren’t working whereas most of the males (64.4%) were working. It has been found that the 43.3% of the females and the 37.9% of the males were working in a public institution. When the disease status of the participants was examined, it was seen that 76.9% of females and 83.3% of males did not have any disease. The most common disease was thyroid diseases (4.9%) in females and respiratory diseases (3.4%) in males. It has been reported that the 79.8% of females and the 89.1% of males do not use drugs regularly, 1.2% of females who use drugs increased the drug dose, and 1.1% of males decreased the drug dose in the post-pandemic period. While 86.6% of females and 67.8% of males did not smoke, both females and males who smoke have increased the number of cigarettes in the post-pandemic period. Table 1 shows the characteristics of the participants at baseline.

Table 2. Changes in eating habits in male and female participants due to the pandemic.

	Females (n=649)	Males (n=174)	P		
	Median;IQR(min-max)	n (%)	Median;IQR(min-max)	n (%)	
Pre-pandemic snack consumption	2.0;1.0 (0-3)	197 (30.4)	45 (25.9)	0.498	
Post-pandemic snack consumption	2.0;2.0 (0-6)	413 (63.6)	117 (67.2)	0.472	
Pre-pandemic main meal consumption	3.0;1.0 (0-6)	39 (6.0)	12 (6.9)	0.082	
Post-pandemic main meal consumption	2.0;1.0 (0-4)	77 (11.9)	23 (13.2)	0.472	

Starting to make bread at home post-pandemic

	Females (n=649)	Males (n=174)	P
	n (%)	n (%)	
Yes	197 (30.4)	45 (25.9)	0.498
No	413 (63.6)	117 (67.2)	0.472
Doing it before	39 (6.0)	12 (6.9)	0.082

Using sourdough for bread making post-pandemic

	Females (n=649)	Males (n=174)	P
	n (%)	n (%)	
Yes	77 (11.9)	23 (13.2)	0.472
No	162 (25.0)	42 (24.1)	0.472
Using before	51 (7.9)	9 (5.2)	0.082

Using other flour instead of white flour in bread making post-pandemic

	Females (n=649)	Males (n=174)	P
	n (%)	n (%)	
Yes	48 (7.4)	16 (9.2)	0.213
No	426 (65.6)	122 (70.1)	0.213
Using before	175 (27.0)	36 (20.7)	0.213

	Females (n=649)	Males (n=174)	P
	n (%)	n (%)	
White flour	200 (30.9)	52 (29.9)	0.213
Whole wheat flour	119 (18.3)	26 (14.9)	0.213
Rye flour	6 (0.9)	3 (1.7)	0.213
Siyez Flour	25 (3.9)	4 (2.3)	0.213
Bran flour	21 (3.2)	3 (1.7)	0.213
Oat flour	2 (0.3)	1 (0.6)	0.213

* Mann Whitney U Test, p<0.05. **More than one option was marked in the questionnaire form.
Table 3. Consumption of food groups pre- and post-pandemic

Food Group Consumption	Females (n=649)						
	Pre-Pandemic	Post-Pandemic	p	Pre-Pandemic	Post-Pandemic	p	
Egg							
High	203 (31.3%)	283 (43.6%)	<0.001*	70 (40.2%)	77 (44.3%)	0.282	
Modest	407 (62.7%)	335 (51.6%)		96 (55.2%)	88 (50.6%)		
Low/No	39 (6.0%)	31 (4.8%)		8 (4.6%)	9 (5.2%)		
Cheese							
High	422 (65.0%)	471 (72.6%)	<0.001*	100 (57.5%)	102 (58.6%)	0.773	
Modest	214 (33.0%)	163 (25.1%)		66 (37.9%)	65 (37.4%)		
Low/No	13 (2.0%)	15 (2.3%)		8 (4.6%)	7 (4.0%)		
Milk							
High	110 (16.9%)	143 (22.0%)	<0.001*	30 (17.2%)	35 (20.1%)	0.001*	
Modest	416 (64.1%)	411 (63.3%)		92 (52.9%)	103 (59.2%)		
Low/No	123 (19.0%)	95 (14.6%)		52 (29.9%)	36 (20.7%)		
Yogurt							
High	199 (30.7%)	252 (38.8%)	<0.001*	53 (30.5%)	63 (36.2%)	0.014*	
Modest	433 (66.7%)	387 (59.6%)		113 (64.9%)	107 (61.5%)		
Low/No	17 (2.6%)	10 (1.5%)		8 (4.6%)	4 (2.3%)		
Kefir							
High	14 (2.2%)	16 (2.5%)	0.251	5 (2.9%)	4 (2.3%)	0.659	
Modest	216 (33.3%)	228 (35.1%)	0.035*	49 (28.1%)	53 (30.5%)	0.274	
Low/No	419 (64.6%)	405 (62.4%)		120 (69.0%)	117 (67.2%)		
Pickle							
High	36 (5.5%)	48 (7.4%)	0.035*	12 (6.9%)	7 (4.0%)	0.274	
Modest	398 (61.3%)	406 (62.1%)		107 (61.5%)	113 (64.9%)		
Low/No	215 (33.1%)	198 (30.5%)		55 (31.6%)	54 (31.0%)		
Fruit							
High	270 (41.6%)	319 (49.2%)	<0.001*	59 (33.9%)	61 (35.1%)	0.392	
Modest	359 (55.3%)	310 (47.8%)		109 (62.6%)	108 (62.1%)		
Low/No	20 (3.1%)	20 (3.1%)		6 (3.4%)	5 (2.9%)		
Vegetables							
High	138 (21.3%)	148 (22.8%)	0.120	30 (17.2%)	26 (14.9%)	0.442	
Modest	492 (75.8%)	491 (75.7%)		137 (78.7%)	139 (79.9%)		
Low/No	19 (2.9%)	10 (1.5%)		7 (4.0%)	9 (5.2%)		
Onion							
High	255 (39.3%)	297 (45.8%)	<0.001*	37 (21.3%)	45 (25.9%)	0.183	
Modest	346 (53.3%)	328 (50.5%)		127 (73.0%)	119 (68.4%)		
Low/No	48 (7.4%)	24 (3.7%)		10 (5.7%)	10 (5.7%)		

https://dx.doi.org/10.4314/mmj.v34i2.4
Food	High (%)	Modest (%)	Low/No (%)	p-value
Garlic	133 (20.5%)	176 (27.1%)	<0.001*	0.037*
Lemon	225 (34.7%)	268 (41.3%)	<0.001*	0.012*
Salad	261 (40.2%)	315 (48.5%)	<0.001*	0.120
Legumes	25 (3.9%)	43 (6.6%)	<0.001*	0.905
Pastry	27 (4.2%)	53 (8.2%)	<0.001*	0.185
Bread	437 (67.3%)	456 (70.3%)	0.159	0.607
Dessert	71 (10.9%)	109 (16.8%)	<0.001*	0.108
Junk food	95 (14.6%)	108 (16.6%)	0.327	0.086
Red Meat	21 (3.2%)	34 (5.2%)	0.008*	0.741

*p<0.05

McNemar-Bowker Test
In this study, the change in eating habits of males and females in the post-pandemic period were investigated. It was observed that 30.4% of the females and the 25.9% of the males started to make their bread at home in the post-pandemic period. Furthermore, it was found that 11.9% of the females and 13.2% of males started to use sourdough in bread making in the post-pandemic period; 7.4% of females and 9.2% of males used functional flour instead of white flour, considering its beneficial effect. It was observed that whole wheat flour was the most preferred flour after white flour in both females and males.

It was observed that 10.8% of the females and 9.8% of the males started to make their yogurt at home in the post-pandemic period. In addition, it was found that 3.1% of females and 5.2% of males started to use probiotic yeast in making yogurt in the post-pandemic. Food groups whose consumption was increased considering the beneficial effects in the post-pandemic have been researched, and the food groups whose consumption increased the most in females are fruits (14.3%), ginger/turmeric (7.9%), and vinegar (7.4%); in males, fruit (17.8%), ginger/turmeric (8.6%), and vinegar (8.0%) were found. Also, in the post-pandemic period, females started to use vitamin C (12.3%), vitamin D (11.6%) and propolis (4.9%) supplements, while males started to use vitamin C (9.8%), vitamin D (6.3%), and multivitamin (5.1%) (Table 2).

According to the results of the food frequency questionnaire; it was found that the consumption of egg, cheese, milk, yogurt, pickles, fruit, onion, garlic, lemon, salad, legumes, pastry, sweets, red meat, turmeric, and herbal tea increased significantly in the post-pandemic period among females; the consumption of milk, yogurt, garlic, and lemon significantly increased in males (Table 3).

Nutritional Habits

In this study, the change in eating habits of males and females in the post-pandemic period was examined, and it was found that the anxiety levels of the females increased significantly. While mild anxiety was seen in 10.8% in the pre-pandemic period, it was seen in 13.6% of the females in the post-pandemic period (Table 4).

Emotional Changes

The change in the anxiety levels of the participants in the post-pandemic period was examined, and it was found that the anxiety levels of the females increased significantly. While mild anxiety was seen in 10.8% in the pre-pandemic period, it was seen in 13.6% of the females in the post-pandemic period (Table 4).

Discussion

Coronavirus has struck concern into populations throughout the world and horrified the global medical community. In the world and Turkey, very vigorous and staggering changes happened in the lifestyles, nutritional habits, education, economy, and politics because of the rapid spread of the pandemic which is called COVID-19. The most important impact of the COVID-19 was on nutritional habits. Renzo et al., reported in an Italian survey, the increase of homemade recipes (e.g. sweets, pizza, and bread), cereals, legumes, white meat, and hot beverages consumption, and a decrease of fresh fish, packaging sweets, and baked products, delivery food and alcoholics intake during COVID 19 emergency. Also, during the COVID-19 quarantine, more than 37.4% of the participants reported consuming unhealthy foods (fruit, vegetables, nuts, and legumes)21. Sidor and Rzymski reported that 43.5% of the participants declared eating more during COVID-19 quarantine, and 51.8% consumed snacks more frequently in Poland. During the quarantine in Poland, about one-third of those participants did not consume fresh vegetables and fruits daily, while the same proportion to accepted consuming sweets at least every day22. Scarmozzino and Visio reported in an Italian sample that 49.6% of the participants did not essentially modify their diet during the quarantine; however, 52.9% of them declared that they were eating more during the quarantine, and 19.5% gained weight. Especially, they declared an increase in “comfort food” consumption, notably chocolate, ice cream, desserts (42.5%), and salty snacks (23.5%). Additionally, 21.2% of participants increased their consumption of fresh fruit and vegetables. In this study, it was found that the consumption of egg, cheese, milk, yogurt, pickles, fruit, onion, garlic, lemon, salad, legumes, pastry, sweets, red meat, turmeric, and herbal tea increased significantly in the post-pandemic period among females; the consumption of milk, yogurt, garlic, and lemon significantly increased in males. Gender-related preference differences may also have been effective in the change in these dietary habits. It is thought that the fact that males were much less than females in this study may have affected the results. In this regard, in a very recent study, it was emphasized that males’ desire to consume meat and females’ desire to consume sweets were more.
that foods could be beneficial in protecting against the pandemic COVID 19, and these foods were mostly garlic (76.1%), ginger (53.1%), kefir (42%), and vinegar (41.2%). Also, they reported that the most commonly used nutritional supplements were vitamin C (19.6%), vitamin D (15.6%), multivitamin (13.9%), probiotic-prebiotic (10.5%), fish oil (7.4%)30. It is reported that vitamin C is a well-known antiviral, especially for influenza virus26. It is also emphasized that vitamin C can play an auxiliary role in the treatment of various viral infections. It has been reported that patients with life-threatening respiratory failure due to influenza A infection were treated with hydrocortisone, vitamin C, thiamine (without corticosteroids), and consequently, a rapid improvement was observed in these patients27. It is suggested that vitamin C may alleviate or prevent infections caused by bacteria, viruses, and protozoa. In addition, it has been determined that regularly administered vitamin C shortens the duration of the common cold28. However, the effect of vitamin C on viral infections is not clear. It is also emphasized that high-dose intravenous vitamin C administration in the treatment of COVID-19 may have a pro-oxidant effect rather than its antioxidant effect, depending on the dose29. Similarly, vitamin D is known to act as an important regulator of the immune system and induce immune responses to viral infections. It has been reported that vitamin D deficiency can create a risk for influenza and respiratory system infections30. It is suggested that this effect of vitamin D occurs because of its immunoregulatory properties, its interaction with cellular and viral factors, induction of autophagy and apoptosis, and genetic and epigenetic changes31. Propolis is also a product widely used in traditional medicine due to its anti-viral and anti-bacterial effects32. It is suggested that the use of propolis together with IFN-α inhalation, ribavirin, chloroquine phosphate, and arbidol in the treatment of COVID-19 can create a promising synergistic effect33. In this study, in the post-pandemic period, females started to use vitamin C (12.3%), vitamin D (11.6%), and propolis (4.9%) supplements, while males started to use vitamin C (9.8%), vitamin D (6.3%), and multivitamin (5.1%). These findings show that the participants chose the supplements they started to use during this pandemic period, considering their anti-viral effects.

Adequate and balanced nutrition with appropriate energy, vitamin, and mineral are very important in maintaining a healthy continuity of the immune system. For this reason, the nutritional status of each COVID-19 patient should be evaluated before starting treatment. It is suggested that nutritional support should form the basis of the treatment of any infected individual34. It is emphasized that the increased consumption of diets rich in saturated fat, sugar, and refined carbohydrates (western diet) worldwide can contribute to the prevalence of obesity and type II diabetes, thereby increasing the COVID-19 mortality rate. It has been reported that Western diets impair adaptive immunity and lead to impaired host defense against chronic inflammation and viruses. It is also reported that this kind of diet worsens the peripheral inflammation caused by COVID-19 infection and may lead to chronic diseases such as neurodegenerative diseases35. It is suggested that the Mediterranean diet, which has limited consumption of processed food and high consumption of fruits and vegetables, is important in the management of COVID-19. Various foods associated with the Mediterranean diet and other healthy eating patterns are known to contain bioactive phenolic compounds, polar lipids, and peptides with powerful anti-inflammatory, antithrombotic, and antioxidant properties36.

This pandemic can cause psychological effects on people by laying fear due to both the uncertainty of the disease and the quarantine. These psychological effects are; post-traumatic stress disorder, depression, anxiety, panic disorders, and behavioral disorders37. Choi et al.37 reported of the 500 participants, 19% had depression and 14% had anxiety. Also, 25.4% declared that their mental health got worse because of the COVID-19 pandemic37. Özdin and Bayrak Özdin38 reported in a Turkish survey 23.6% of the participants had depression, and 45.1% had anxiety. In addition, they reported that females were most psychologically affected by the COVID-19 pandemic38. In this study, the change in the anxiety levels of the participants in the post-pandemic period was examined, and it was found that the anxiety levels of the females increased statistically significantly. While mild anxiety was seen in 10.8% of females in the pre-pandemic period, it started to be seen in 13.6% in the post-pandemic period. Therefore, our findings are consistent with other studies in the literature.

Internet-delivered cognitive behavior therapy (iCBT), which is expressed as the internet over the presentation of cognitive behavior therapy (CBT), one of the most widely researched and proven evidence-based treatments for psychological disorders, has developed in parallel with the latest technological developments. By using the iCBT service, individuals can enjoy the benefits of cognitive behavior therapy flexibly, with or without support. iCBT interventions have become a method for popularizing evidence-based treatments for a wide variety of psychological disorders, including depression and anxiety. Also, iCBT is used to prevent psychological impairment associated with the management of long-term conditions in individuals with diabetes, coronary artery disease, and chronic pain39. This therapy will also be useful to promote mental wellness and provide psychological intervention during the COVID-19 pandemic39. Individually tailored iCBT is seen as a way to reduce psychological problems associated with the COVID-19 pandemic. In a related pilot study, it was determined that iCBT treatment provided moderate or high reductions in depression, anxiety, and stress symptoms39. However, it is known that the cost of such internet-based applications is high. Moodle, a commonly known open-source learning platform, can be a cost-effective solution for practicing and delivering such therapies40.

Conclusion
This pandemic has caused many changes in human life. One of these important changes is on the nutritional habits. In conclusion, the consumption of egg, cheese, milk, yogurt, pickle, fruit, onion, garlic, lemon, salad, legumes, pasty, sweets, red meat, turmeric, and herbal tea increased significantly in the post-pandemic period among females; the consumption of milk, yogurt, garlic, and lemon significantly increased in males. At the same time, some of the participants started to make their own bread and yogurt after the pandemic, and there was an increase in the use of some nutritional supplements. It is thought that the participants applied these changes to be healthier during the pandemic. Also, it was found that the anxiety levels of the females increased significantly in the post-pandemic period. It is thought that the results of this study will provide data in determining the nutritional orientation of people in the post-pandemic period.
COVID-19 pandemic and will lay the groundwork for an intervention-based study. Our study is among the first studies on this subject. For this reason, it contributes to the literature.

Acknowledgments

We thank Gazi University Academic Writing Application and Research Center for this study is doing the language editing. The authors’ responsibilities were as follows-MY: Literature review, design of the study, interpretation of results, article writing, data collection, and publishing process; MEÇD: Literature review, design of the study, interpretation of results, article writing, and data collection. GA: Creation of study idea, literature review, contributed to the content, and all authors: read and approved the final manuscript.

Author Disclosure

The authors declare that there are no conflicts of interest. The authors declare that there is no financial support for the study.

References

1. Gralinski LE, Menachery VD. Return of the Coronavirus: 2019- nCoV. Viruses. 2020; 12 (2): 135. doi: 10.3390/v12020135
2. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. 2019. New N Engl J Med. 2020; 382 (8): 727-733. doi: 10.1056/NEJMoa2001017
3. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhu, China: a descriptive study. Lancet. 2020; 395 (10223): 507-513. doi: 10.1016/S0140-6736(20)30211-7
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 95 (10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5
5. Hao F, Tam W, Hu X, et al. A quantitative and qualitative study on the neuropsychiatric sequelae of acutely ill COVID-19 inpatients in isolation facilities Transl Psychiatry. 2020; 10: 355. doi: 10.1038/s41398-020-01039-2
6. Du Y, Tu L, Zhu P, et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. Am J Respir Crit Care Med. 2020; 201 (11): 1372-1379. doi: 10.1164/rcrm.202003-0540OC
7. World Health Organization. Coronavirus Disease 2019 Situation Reports. [cited 2021 July 26]. Available from: https://covid19.who.int/
8. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med. 2020; 35 (5): 1545-1549. doi: 10.1007/s11606-020-05762-w
9. Wang C, Chudzicka-Czupala A, Tee ML, et al. A chain mediation model on COVID-19 symptoms and mental health outcomes in Americans, Asians, and Europeans. Sci Rep. 2021; 11: 6481. doi: 10.1038/s41598-021-85943-7
10. Wang C, Tee M, Roy AE, et al. The impact of COVID-19 pandemic on physical and mental health of Asians: A study of seven middle-income countries in Asia. PLoS One. 2021; 16 (2): e0246824. doi: 10.1371/journal.pone.0246824
11. Lee Y, Lui LMW, Chen-Li D, et al. Government response moderates the mental health impact of COVID-19: A systematic review and meta-analysis of depression outcomes across countries. J Affect Disord. 2021; 290: 364-377. doi: 10.1016/j.jad.2021.04.050
12. Anton SD, Miller PM. Do negative emotions predict alcohol consumption, saturated fat intake, and physical activity in older adults? Behav Modif. 2005; 29 (4): 677-88. doi: 10.1177/0145445503261164
13. Naja F, Hamadeh R. Nutrition amid the COVID-19 pandemic: a multi-level framework for action. Eur J Clin Nutr. 2020; 74 (8): 1117-1121. doi: 10.1038/s41430-020-0634-3
14. Laviano A, Koverech A, Zanetti M. Nutrition support in the time of SARS-CoV-2 (COVID-19). J Nutr. 2020; 74: 110834. doi: 10.1016/j.jnut.2020.110834
15. Zabetakis I, Torand N, Norton C, Tsoutras A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients. 2020; 12 (5): 1466. doi: 10.3390/nu12051466
16. Baysal A, Aksoy M, Besler T, et al. eds. In: Diyet El Kitabi. Pekcan G, Determination of Nutritional Status, p: 67-142. Hatıboğlu Publisher, 8th Edition, Turkey.
17. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988; 56 (6): 893-897. doi: 10.1037/0022-006x.56.6.893
18. Ulusoy, M, Sahin NH, Erkmen H. Turkish Version of the Beck Anxiety Inventory: Psychometric Properties. J Cogn Psychother. 1998; 12 (2): 163-72.
19. Kim KH. COVID-19. Int Neurourol J. 2020; 24 (1): 1-1. doi: https://doi.org/10.5213/inj.2020edi.001
20. Say A, Çağır D. Research of the effect of the COVID-19 quarantine period on the mental status of the people. 2020
21. Di Renzo L, Gualiier P, Pivari F, et al. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med. 2020; 18 (1): 229. doi: 10.1186/s12967-020-02399-5
22. Siddor A, Rzymski P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients. 2020; 12 (6): 1657. doi: 10.3390/nu12061657
23. Scarmozzino F, Viscioli F. Covid-19 and the Subsequent Lockdown Modified Dietary Habits of Almost Half the Population in an Italian Sample. Foods. 2020; 9 (5): 675. doi: 10.3390/foods9050675
24. Skolmowska D, Głąbska D, Guzek D. Association between Food Preferences and Food Habits in a Polish Adolescents’ COVID-19 Experience (PLACE-19) Study. Nutrients. 2021; 13 (9): 3003. doi: 10.3390/nu13093003
25. Garipoğlu G, Bozár N. Changes to the nutritional habit of the individuals in social isolation in the covid-19 pandemic. Journal of Social Sciences and Humanities. 2020; 6 (6): 100-113. doi: 10.46872/jssh.103
26. Kim Y, Kim H, Bae S, et al. Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-α/β at the initial stage of influenza A virus (H3N2) infection. Immune Netw. 2013; 13 (2): 70-74. doi: 10.4110/in.2013.13.2.70
27. Colunga Biancatti RML, Berrill M, Marik PE. The antiviral properties of vitamin C. Expert Rev Anti Infect Ther. 2020;18(2):99-101. doi: 10.1080/14787210.2020.1706483
28. Hemili H. Vitamin C and infections. Nutrients. 2017; 9 (4): 339. doi: 10.3390/nu9040339.
29. Koçyiğit A. Is the Use of High-Dose Intravenous Vitamin C Safe in the Treatment of SARS-COV-2? Bezmialem Science. 2020; 8: 126-130. doi: 10.14235/bas.galenos.2020.4542
30. Beard JA, Bearden A, Striker R. Vitamin D and the anti-viral state. J Respir Crit Care Med. 2020; 201 (11): 229. doi: 10.1186/s12967-020-02399-5
31. Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol. 2019; 29 (2): 163-202.
doi: 10.1002/rmv.2032
32. Simonic IC, Aguiar B, de Araujo Navarro AM, et al. In vitro antiviral activity of propolis and Baccharis sp. extracts on animal herpesviruses. Arq Inst Biol. 2018; 85: 1-7. doi: 10.1590/1808-1657000972016

https://dx.doi.org/10.4314/mmj.v34i2.4
33. Mohamed SS-e. Propolis anti-viral activity towards CODIV-19: is it effective? 2020. doi: 10.13140/RG.2.2.22635.36649

34. Khaled MB, Benajiba N. The role of nutrition in strengthening immune system against newly emerging viral diseases: case of SARS-CoV-2. 2020. doi: 10.5281/zenodo.3749406

35. Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun. 2020; 87: 53–54. doi: 10.1016/j.bbi.2020.04.040

36. Sood S. Psychological effects of the Coronavirus disease-2019 pandemic. Research & Humanities in Medical Education. 2020; 7: 23-26

37. Choi EPH, Hui BPH, Wan EYF. Depression and anxiety in Hong Kong during COVID-19. Int J Environ Res Public Health. 2020; 17 (10): 3740. doi: 10.3390/ijerph17103740

38. Özdin S, Bayrak Özdin Ş. Levels and predictors of anxiety, depression and health anxiety during COVID-19 pandemic in Turkish society: The importance of gender. Int J Soc Psychiatry. 2020; 66 (5): 504-511. doi: 10.1177/0020764020927051.2

39. Richards D, Enrique A, Palacios JE, Duffy D. Internet-Delivered Cognitive Behaviour Therapy. In: Cognitive Behavioral Therapy and Clinical Applications. 2018. doi: 10.5772/intechopen.71412

40. Ho CS, Chee CY, Ho RC. Mental Health Strategies to Combat the Psychological Impact of COVID-19 Beyond Paranoia and Panic. Ann Acad Med Singapore. 2020; 49 (3): 155-160

41. Aminoff V, Sellen M, Sörliden E, Ludvigsson M, Berg M, Andersson G. Internet-Based Cognitive Behavioral Therapy for Psychological Distress Associated With the COVID-19 Pandemic: A Pilot Randomized Controlled Trial. Front Psychol. 2021; 12: 684540. doi: 10.3389/fpsyg.2021.684540

42. Zhang MWB, Ho RCM. Moodle: The cost effective solution for internet cognitive behavioral therapy (I-CBT) interventions. Technol Health Care. 2017; 25 (1): 163-165. doi: 10.3233/THC-161261