Two LcbHLH Transcription Factors Interacting with LcMYB1 in Regulating Late Structural Genes of Anthocyanin Biosynthesis in Nicotiana and Litchi chinensis During Anthocyanin Accumulation

Biao Lai1,2, Li-Na Du1, Rui Liu1,2, Bing Hu1,2, Wen-Bing Su1,2, Yong-Hua Qin1, Jie-Tang Zhao1, Hui-Cong Wang2* and Gui-Bing Hu1,2*

1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China, 2 Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, China

Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs) as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2, and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthocyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, and this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also observed in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

Keywords: anthocyanins, MYB, bHLH, interaction, Litchi chinensis, tobacco
INTRODUCTION

Among the pigments that confer color to plants, anthocyanins are of particular interest because they are not only responsible for most of the red, blue, or black color in plants, but also for the beneficial effects on plant physiological processes and human health (Winkel, 2006). The biosynthetic pathway for anthocyanin biosynthesis has been well characterized and the corresponding genes have been isolated from various plant species (Hichri et al., 2011).

Research on model plants has shown that the expression of structural anthocyanin genes, particularly late genes, are orchestrated by a so-called MBW ternary complex, which is composed of MYB and bHLH transcription factors, together with WD40 repeat proteins (Broun, 2005; Koes et al., 2005; Hichri et al., 2011). In plants, R2R3 MYBs are considered to be key transcription factors known as the regulators of anthocyanin biosynthesis. MYBs in determining anthocyanin biosynthesis have been well characterized in model plants and fruit trees, such as Arabidopsis (Borevitz et al., 2000), antirrhinum (Schwinn et al., 2006), petunia (Quattrocchio et al., 1999), apple (Ban et al., 2007; Chagne et al., 2007, 2013), pear (Feng et al., 2010), grape (Kobayashi et al., 2002), litchi (Lai et al., 2014), mangosteen (Palapol et al., 2009), and Chinese bayberry (Niu et al., 2010). The R3 domain of MYBs suggests protein–protein interaction, especially with the bHLH co-factor, also known as MYC (Grotewold et al., 2000; Zimmermann et al., 2004).

The bHLH proteins are also a large class of transcription factors in plants, and have been divided into 26 subgroups (Pires and Dolan, 2010). bHLH transcription factors regulate many cellular processes such as fate of epidermal cells, hormonal response, metal homeostasis, photomorphogenesis, and development of floral organs (Hichri et al., 2011). Flavonoid related bHLHs have been grouped into subgroup IIf. Maize regulatory gene (R) was the first isolated and characterized as a bHLH transcription factor which encodes a protein regulating anthocyanin accumulation (Ludwig et al., 1989, 1990). In Arabidopsis, bHLH proteins, TT8, GL3, and EGL3, are involved in production of different flavonoids (Shirley et al., 1995; Payne et al., 2000; Zhang et al., 2003). NtAn1a and NtAn1b originate from two ancestors of tobacco (N. sylvestris and N. tomentosiformis) and both enhance anthocyanin accumulation in tobacco flowers (Bai et al., 2011). G to A transition in the bHLH encoding A gene is the main reason for white flower color of pea in Mendel genetic research (Hellens et al., 2010). bHLH transcription factors are essential to anthocyanin biosynthesis in plants.

bHLH proteins function as anthocyanin regulator in cultivated fruit species had been reported so far for grape (Hichri et al., 2010), apple (Espley et al., 2007) and Chinese bayberry (Liu et al., 2013). The grape bHLH transcription factors VvMYC1 and MYCAI, were found to be able to induce anthocyanin and proanthocyanidin production through physically interacts with MYBs and consequent activation of the promoters of genes involved in anthocyanin and/or proanthocyanidin synthesis (Hichri et al., 2010). Efficient induction of anthocyanin biosynthesis in transient assays by MdMYB10 was dependent on the co-expression of two distinct bHLH proteins from apple, Md bHLH3 and Md bHLH33 (Espley et al., 2007). Though MrbHLH1 and MrbHLH2 were clustered in IIIf group, only MrbHLH1 was the essential partner of MrMYB1 during anthocyanin biosynthesis regulation in bayberry, the function of MrbHLH2 still unknown (Liu et al., 2013). However, their role in anthocyanin regulation and how they work have not been fully uncovered and the effects of bHLH co-factors in anthocyanin regulation might differ among species (Montefiori et al., 2015; Xu et al., 2015).

The red pigment of litchi pericarp is due to the accumulation of anthocyanins (Lee and Wicker, 1991). LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi by activating the late structural genes UFGT in particular (Wei et al., 2011; Zhao et al., 2012; Lai et al., 2014). LcMYB1 can strongly induce anthocyanin biosynthesis in tobacco leaves by its own, without requiring co-infiltration with a bHLH partner. However, the upregulation of NtAn1b in response to LcMYB1 overexpression suggested the essential role of bHLH partner in regulating anthocyanin biosynthesis (Lai et al., 2014).

In this study, we isolated three putative litchi bHLH transcription factors, LcbHLH1, LcbHLH2, and LcbHLH3, and analyzed their expression profiles. Phylogenic analysis showed that these three bHLH transcription factors from litchi cluster with bHLH genes related to anthocyanin biosynthesis in other plants. However, expression patterns of these three genes in different litchi tissues and developmental stages do not correlate with anthocyanin contents. BiFC and Y2H assays show that LcbHLH1 and LcbHLH3 can interact in vivo with LcMYB1. Transient assays in tobacco leaves showed that both LcbHLH1 and LcbHLH3 enhanced the induction of anthocyanin accumulation by LcMYB1 with the LcbHLH3 being by far more efficient. Furthermore, dual LUC assays indicate that the high affinity of LcMYB1 for the promoter of ANS induced by LcbHLH3 may associate with enhanced anthocyanin accumulation in tobacco leaves.

RESULTS

Identification and Sequence Analysis of Three Candidate Anthocyanin Related bHLH Transcription Factors

Three putative members of the bHLH family of transcription factors were identified from the litchi pericarp transcriptomic (Lai et al., 2015) and genomic database1, denominated as LcbHLH1, LcbHLH2, and LcbHLH3. The ORFs of LcbHLH1,

Abbreviations: AD, activation domain; ANS, anthocyanidin synthase; bHLH, basic helix-loop-helix; BiFC, bimolecular fluorescence complementation; CHI, chalcone isomerase; CHS, chalcone synthase; DAPI, 4’,6-diamidino-2-phenylindol; DBD, DNA-binding domain; DFR, dihydroflavonol 4-reductase; F3H, flavanone 3-hydroxylase; GFP, green fluorescent protein; LUC, luciferase; MBW, MYB-bHLH-WD40 protein complex; PAL, phenylalanine ammonia lyase; REN, renilla luciferase; UFGT, UDP-glucose:flavonoid 3-O-glucosyltransferase; Y2H, yeast two-hybrid assay; YFP, yellow fluorescent protein.

1http://litchidb.genomics.cn/page/species/index.jsp
LcbHLH2, and LcbHLH3 encoded proteins with 657, 700, and 643 amino acids, respectively. Three conserved motifs are identified by sequence alignments of LcbHLH1, LcbHLH2, LcbHLH3, and other bHLH transcription factor proteins related to plant anthocyanin biosynthesis (Figure 1). The MYB interaction region presented in the N-terminal region of these proteins suggests for all of them protein-protein interaction with MYB transcription factors. A sequence rich in acidic amino acids, containing up to 30 acidic amino acids, is present at the C-terminal region of bHLH proteins (Figure 1). This domain was believed to be the transactivation (ACT) domain which interacts with the RNA polymerase II machinery and then initiates transcription (Pattanaik et al., 2008). All three litchi bHLH proteins contained such ACT-like domain, which has also been proven to be involved in the dimerization of plant basic-helix-loop-helix transcription factors (Feller et al., 2006).

A phylogenetic tree constructed with the neighbor-joining method using full-length amino acid sequences showed that the three litchi bHLHs belong to the group IIIf of Arabidopsis bHLH which contains bHLH factors involved in anthocyanin and other flavonoid biosynthesis (Figure 2) (Heim et al., 2003). The similarity of LcbHLH1 with CsMYC2 (ABR68793.1) and VvMYCA1 (ABM92332) at amino acid level were 67.4 and 60.1%, respectively. LcbHLH2 had 73.1 and 56.2% homology with MrbHLH1 (IX629461) and PhAN1 (AAG25927). LcbHLH3 showed relatively low similarity with AtEGL3 (NP_176552) and VvMYCA1 (NP_001267954.1), 49.9 and 47.7% homology, respectively. The identity between LcbHLH1 and LcbHLH2, LcbHLH1 and LcbHLH3, and LcbHLH2 and LcbHLH3 were 29.6, 47.9 and 28.2%, respectively.

Subcellular Localization of LcMYB1 and Three Litchi bHLH Proteins
Basic helix-loop-helix and MYB proteins are TFs and as such are expected to be localized to the nucleus. However, some bHLH proteins are also cytoplasm associated (Hichri et al., 2010). To analyze the subcellular localizations of LcMYB1 and LcbHLH proteins, their full-length coding sequences were fused in frame with the GFP gene. Transient expression of these constructs in epidermal cells of N. benthamiana leaves by Agrobacterium. As shown in Figure 3 and Supplementary Figure S2, strong YFP fluorescent signal was detected in the nucleus of leaf protoplast and epidermal cells expressing LcMYB1-NYFP and LcbHLH1-CYFP fusion protein or LcMYB1-NYFP and LcbHLH3-CYFP, while no YFP fluorescent signal was observed either in the cells expressing the LcMYB1-NYFP with only CYFP, LcbHLH1-CYFP, or LcbHLH3-CYFP with only NYFP. No YFP signal was observed when transformed with both LcMYB1-NYFP and LcbHLH2-CYFP (data not shown). The BiFC assay not only demonstrated the in vivo interaction among the three proteins tested but also showed the localization of the interacting proteins, which was consistent with the subcellular localization of LcMYB1, LcbHLH1 and LcbHLH3.

Expression of Three Litchi bHLHs in Relation to Anthocyanin Accumulation
The transcription of three bHLHs was compared with the anthocyanin accumulation pattern in different tissues (Figure 6A). Anthocyanin content varies among different tissues in litchi. No anthocyanin is detectable in root, aril, stems and mature leaf of litchi, while mature pericarp and young leaf accumulated significant amount of anthocyanins. The expression patterns of LcbHLH1, LcbHLH2, and LcbHLH3 were not parallel to the accumulation of anthocyanins in any of the analyzed tissues. The transcript amount for all three genes was actually lower in pigmented tissues than non-pigmented tissues.

The developmental patterns of transcript accumulation for the three bHLHs in relation to anthocyanin accumulation were also investigated, specifically in the pericarp of the strongly pigmented cultivar Ziniangxi (ZNX) and of the non-red cultivar Yamulong (YML) (Figure 6B). In agreement with the fruit appearance (Supplementary Figure S3), significant accumulation of anthocyanin occurred during fruit maturation in the cultivar ZNX, while only minute anthocyanin amounts were detected in the pericarp of the cultivar YML at maturity. However, comparable levels of LcbHLH1 and LcbHLH2 expressions were observed in the pericarp of the two cultivars tested with no apparent trend following pigment accumulation during fruit
FIGURE 1 | Protein sequence alignment of three LcbHLH proteins and the known anthocyanin bHLH regulators in other species. Identical residues are shown in black and conserved residues in dark gray. MYB interaction region, bHLH domain and ACT-like domain are conserved among these bHLH transcription factors.

development. Except for the forth developmental stages of ZNX, the expression of LcbHLH3 was low in the pericarp of both cultivars. In the present study, the developmental transcript patterns of three bHLHs in relation to anthocyanin accumulation were also investigated in leaves of the above mention two cultivars.
FIGURE 2 | Phylogenetic relationships between LcbHLH1-3 and anthocyanin-related bHLHs in other species. The tree was constructed using MEGA 5, neighboring-joining phylogeny testing, and 1,000 bootstrap replicates. The accession number of these proteins (or translated products) are as follows in the GenBank database: AtTT8, CAC14865.1; AtGL3, NP_680372; AtEGL3, NP_176552; MdbHLH33, ABB84474.1; PhJAF13, AAC39455; IpIVS, BAD18982.1; VvMYCA1, NP_001267954.1; CsMYC2, ABR68793.1; PhAN1, AAG25927; AmDEL, AAA69926; DvIVS, BAJ33515; DvDEL, BAJ33516; InDEL, BAE94393; ZmB, AGO65322.1; ZmLC, NP_001106339.1; InIVS, BAE94394; ZmIN1, AAB39841; MrbHLH1, JX629461; MrbHLH2, JX629462; AtMYC2, NP_174541.1; AtICE1, NM_113586.3; VvCBF1, AFI49627.1; AtPIF3, NM_179295.2; AtBEE1, AY138253.1.
Transient Expression of Three bHLHs in Combination with LcMYB1

To further characterize the function of three litchi bHLH genes, the ORFs of them were cloned in the transient expression vector pEAQ-HT and transiently transformed into N. tabacum leaves via Agrobacterium infiltration. Significant anthocyanin accumulation was observed 4 days after infiltration in leaf patches with LcMYB1 alone as well as co-infiltration with LcMYB1 or LcbHLHs, while no anthocyanin was detected in leaves infiltrated with LcbHLH1, LcbHLH2, or LcbHLH3 alone (Figure 7). Among the pigmented patches, leaves co-infiltrated with LcMYB1 and LcbHLH3 accumulated significantly higher anthocyanin levels than those infiltrated with LcMYB1 alone and the co-infiltrations of LcMYB1 and any of the other two bHLH factors.

The Biosynthesis of Anthocyanins in LcMYB1 or/and LcbHLH3 Overexpression Tobacco

Since LcHLH3 co-transformed with LcMYB1 display higher efficiency in inducing anthocyanin accumulation in tobacco leaves as compared to LcMYB1-LcbHLH1, we produced LcMYB1-LcbHLH3 ectopic expression tobacco lines by crossing a 35S:LcMYB1 transgenic line with a 35S:LcHLH3 line. Transformed tobacco lines ectopically expressing LcMYB1, LcHLH3, or LcMYB1-LcbHLH3 were grown and used to further investigate the role of these genes in anthocyanin biosynthesis in tobacco. The lines over-expressing LcMYB1-LcbHLH3 accumulated the highest amount of anthocyanin in the leaves, followed by the lines over-expressing LcMYB1, while no anthocyanin was detected in untransformed controls and plants expressing LcbHLH3 (Figures 8A, B). Lines expressing the combination of LcMYB1 and LcbHLH3 accumulate about 10 times more anthocyanins than lines expressing LcMYB1 alone.

Furthermore, the expression levels of the transgenes, LcMYB1 and LcbHLH3, and ten anthocyanin biosynthetic genes, including three tobacco anthocyanin regulators, were investigated (Figure 8C) in the transgenic lines. Clear LcMYB1 or/and LcbHLH3 expression was detected in leaves of the LcMYB1 or/and LcbHLH3 transformant lines, while, as expected, no expression was detected in untransformed controls. This result also confirms the successful transformation of LcMYB1 or/and LcbHLH3. The transcript levels for the two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, were dramatically up-regulated by the combined expression of LcMYB1 and LcbHLH3. Early structural genes including NtPAL, NtCHS, NtCHI, and NtF3H were down-regulated in LcMYB1 or/and LcbHLH3 overexpression leaves, while NtDFR and NtANS were up-regulated dramatically in leaves of LcMYB1-LcbHLH3 transgensics as compared with lines transformed with LcMYB1 only. The transcript levels of NtDFR and NtANS in leaves of LcMYB1-LcbHLH3 transgensics were, respectively, about four and ten times higher than in LcMYB1 transgenic leaves.

LcMYB1 and LcbHLHs Activate the Promoters of Structural Genes

Transcription factors modulate the biosynthesis of flavonoids mainly activating the promoters of structural anthocyanin genes (Nesi et al., 2000; Bai et al., 2011; Liu et al., 2013). E-BOX and MYB-CORE cis-elements were believed to be the target of bHLH and MYB transcription factors (Hichri et al., 2011; Xu et al., 2015). Lots of E-BOX and MYB-CORE cis-elements in the promoter of litchi anthocyanin biosynthesis genes were found (Supplementary Figure S4). In the present study, a dual LUC assay was employed to investigate the downstream target gene of LcMYB1 and LcbHLHs. LcMYB1 or/and LcbHLHs were cloned into pEAQ-HT transient expressing vector as effectors and promoters of structural genes driving LUC gene served as reporters. Different combinations of effector and reporter were transiently expressed in tobacco leaves by Agrobacterium based infiltration. As shown in Figure 9, four (LcF3H, LcF3′H, LcDFR, and LcUFGT promoters) out of the seven investigated promoters

were activated by LcMYB1. LcbHLH1 alone did not activate any promoters, while LcbHLH3 clearly activated LcANS promoters. When LcHLH1 and LcHLH3 were co-transformed with LcMYB1, the activities of LcCHS, LcCHI and LcANS promoter were much higher as compared with transformed LcMYB1 only. The activity of the LcANS promoter in LcHLH3 co-transformed with LcMYB1 was about six or fifty times higher, respectively, compared with LcHLH1 co-transformed with LcMYB1 and LcMYB1 only.

DISCUSSION

Characteristics of Litchi bHLH Transcription Factors

MYBs and bHLHs that regulate the anthocyanin biosynthetic pathway have been extensively described in many plant species (Hichri et al., 2011; Jaakola, 2013; Xu et al., 2015). In litchi, LcMYB1 has been identified as the key regulator of anthocyanin biosynthesis (Lai et al., 2014). However, bHLH interaction partners of this MYB factor have so far not been described in litchi. In the present study, three putative LcbHLH transcription factors were isolated from litchi pericarp (Figure 1). The three transcription factors were quite different from each other, with the highest sequence similarity 47.9% between LcbHLH1 and LcbHLH3 at the amino acid level. Based on domain comparison and sequence similarity, these three putative LcbHLHs belong to the IIIf subgroup, which related to regulation of anthocyanin and proanthocyanidin biosynthesis and trichome development in plants (Heim et al., 2003). The three isolated putative LcbHLHs showed high similarity in the conserved motifs of bHLHs regulating pigmentation in other plant species (Figure 2).

More than one bHLH factor is known in most plants to regulate anthocyanin or proanthocyanidin biosynthesis, i.e., TT8, GL3, and EGL3 in Arabidopsis (Nesi et al., 2000; Payne et al., 2000; Zhang et al., 2003), JAF13 and PhAN1 in petunia (Quattrocchio et al., 1998; Spelt et al., 2002), NtAn1a and NtAn1b in tobacco (Bai et al., 2011), VvMYC1 and VvMYCA1 in grape (Hichri et al., 2010; Matus et al., 2010), MdbHLH3 and MdbHLH33 in apple (Espley et al., 2007). There is increasing evidence of specialization of function for the different bHLH proteins within a single species. In Arabidopsis, TT8 is involved in regulation of proanthocyanidin biosynthesis, while GL3 and EGL3 are required for seed coat mucilage production, trichomes and root hair spacing (Shirley et al., 1995; Payne et al., 2000; Zhang et al., 2003). In petunia, JAF13 gene is homologous to DELILA (DEL) from snapdragon and R from maize which has been shown to regulate anthocyanin accumulation (Quattrocchio et al., 1998). AN1, another bHLH factor from petunia does not only control pigment synthesis but also vacuolar pH and seed coat development (Quattrocchio et al., 1993; Spelt et al., 2000).

Although all the three identified LcbHLHs contained MYB interaction region, only LcbHLH1 and LcbHLH3 localized...
both yeast two-hybrid and BiFC assays showed no interaction with MrMYB1 in bayberry (Liu et al., 2013). But, transcription factor regulating anthocyanin biosynthesis through

in nucleus and displayed physical interaction with LcMYB1 (Figures 4–6). LcbHLH2 clustered with MrbHLH1, a key bHLH transcription factor regulating anthocyanin biosynthesis through interaction with MrMYB1 in bayberry (Liu et al., 2013). But, both yeast two-hybrid and BiFC assays showed no interaction between LcbHLH2 and LcMYB1 (Figures 4 and 5). These results suggest that LcbHLH1 and LcbHLH3 maybe, interaction partners of LcMYB1 and could play a role in regulating litchi anthocyanin biosynthesis, while LcbHLH2 is possibly not involved in this pathway.

The LcMYB1-LcbHLH Complex Enhanced Anthocyanin Accumulation by Activating Transcription of ANS and DFR

Significant accumulation of anthocyanin in the lines of LcMYB1-LcbHLH3 was accompanied by dramatically up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b (Figure 8C). Bai et al. (2011) indicated that NtAn1 and NtAn2 complex activates the promoters of two key structural genes of the anthocyanin pathway, DFR and CHS. In the present study, the accumulation of anthocyanin in an LcMYB1-LcbHLH3 tobacco ectopic-expression line is associated with the upregulation of endogenous bHLHs, NtAn1a and NtAn1b. In tobacco, exogenous MYB requires NtAn1 to activate NtJAF13 then to regulate anthocyanin biosynthesis (Montefiori et al., 2015). These results suggest that the regulation of anthocyanin in tobacco might involve multiple bHLH in a hierarchic fashion.

In petunia, the transport of the bHLH protein AN1 factor to the nucleus is necessary for the activation of the transcription of the DFR gene and this is directly induced by the AN1 protein, as shown by the fact that it takes place in the presence of translation inhibitors (Spelt et al., 2000). The expression of the Dahlia DvF3H, DvDFR, and DvANS are repressed by the insertion of a transposon in the bHLH gene DvIVS (Ohno et al., 2011). In apple, MdbHLH3 binds to the promoters of anthocyanin biosynthesis genes MdDFR and MdUFGT and the regulatory gene MdMYB1 to activate their expression (Xie et al., 2012). MrMYB1–MrbHLH1 complex activated MrCHL, MrF3’H, MrDFR1, MrANS, and MrUFGT promoters of Chinese bayberry (Liu et al., 2013). In the present study, however, the expressions of NtCHS, NtCHI, and NtF3H were almost diminished in the pigmented transformed control leaves (Figure 8C). These early structural genes leads to the formation of the dihydro-flavonols, but not necessarily related
FIGURE 6 | Expression of three litchi bHLH in relation to anthocyanin accumulation. (A) The transcript patterns of three litchi bHLHs in relation to anthocyanin accumulation among tissues. (B) The developmental transcript patterns of three litchi bHLHs in relation to anthocyanin accumulation in the pericarp of ‘Ziniangxi’ and ‘Yamulong’. (C) The developmental transcript patterns of three litchi bHLHs in relation to anthocyanin accumulation in leaves of ‘Ziniangxi’ and ‘Yamulong’. The vertical bars represent the standard error of triplicate experiments. Different letters on the top of columns indicate significant difference at $p < 0.05$.

to the anthocyanin accumulation. This result consistent with previous reports that late structural genes but not early structural genes determined the anthocyanin accumulation (Niu et al., 2010; Liu et al., 2013; Lai et al., 2014). LcMYB1 control the biosynthesis of anthocyanins in tobacco leaves by activating the expression of NtDFR, NtANS, and NtUFGT (Lai et al., 2014). In the present study, remarkable up regulation of these three late structural genes were notice in LcMYB1 transformed line, but only NtDFR and NtANS were upregulated in paralleling with higher anthocyanins in LcMYB1-LcbHLH3 overexpression line as compared with LcMYB1 overexpression line (Figure 8C). All this wealth of data suggests that the target genes of LcMYB1 or/and LcbHLH1 and LcbHLH3 are in litchi the homologous genes of the anthocyanin pathway.
were cotransformed with the combination of regulators.

LcF3H activates the promoters of their activation by different combinations of factors. LcMYB1 and LcbHLHs are required for the expression of two flavonoid late biosynthetic structural genes, R and BAN, in Arabidopsis. In N. benthamiana, no expression of IpDFR and IpANS was detected in seed coats of ivos mutants in Ipomoea purpurea, indicating they could be the target of the bHLH protein IVS (Park et al., 2007). We measured activity of the ANS promoter as induced by LcMYB1-LcbHLH1 and LcMYB1-LcbHLH3 in transient assay, while we could only detect minute activity of the same promoter upon expression of LcMYB1. LcbHLHs seems therefore to be required for the high expression of LcANS. In conclusion, these results indicated that LcMYB1-LcbHLH complex induces anthocyanin biosynthesis by activating transcription of ANS and DFR, late structural genes in anthocyanin biosynthesis pathway.

MATERIALS AND METHODS

Plant Materials

Five developmental stage fruits of red litchi cultivars ‘Ziniangxi’ (ZNX) and one non-red cultivar ‘Yamulong’ (YML) were used in this study. These trees were grown in the experimental orchard of Hainan academy of agricultural sciences (Haikou, China) received standard horticultural practices, and disease and insect control. Root, young stem, aril, young leaf, and mature leaf were collected from cultivar ‘ZNX’. Pericarp disks of ‘YML’ were collected between May 28th, 2013 and June 17th, 2013 at 5 days intervals. Pericarp disks of ‘ZNX’ were collected between May 8th, 2013 and May 28th, 2013 at 5 days intervals. Different developmental leaves were sampled at 7 days interval from leaf flushing to mature as reflecting by net photosynthetic rate. All samples were immediately frozen in liquid nitrogen and stored at −80°C until use.

Tobacco (N. tabacum) was used for transient expression, N. benthamiana plants were used for subcellular localization and BiFC assays. Tobacco plants were grown in green houses at 28°C using natural light. N. benthamiana plants were grown in green houses at 25°C.

Anthocyanin Analysis

The total anthocyanin content was determined according to the method developed by Wei et al. (2011), which involves measuring the absorbance (520 nm) of extracts that have been diluted with pH 1.0 and 4.5 buffers.

RNA Extraction and cDNA Synthesis

Total RNA was extracted from different tissues of litchi and tobacco using the RNAQUick kit (Tianz, Beijing, China). Contaminating DNA was removed from RNA preparations using TURBO DNA-freeTM (Ambion, USA). cDNA was synthesized from total RNA (2 μg) using oligo (dT) primers according to the manufacturer’s instructions of M-MLV (Invitrogen, USA) in 20 μL of total volume.

Gene Cloning and Sequence Analysis

The cDNAs were synthesized from the total RNA of the mature pericarp of cultivar ‘ZNX’ and used as the PCR templates. PCR-amplified products of appropriate length were cloned into T/A cloning vector pMD®-20-T (TaKaRa, Japan) and then transformed into Escherichia coli DH5α Max Efficiency® Chemically Competent Cells (TaKaRa, Japan). Primers are listed in Supplementary Table S1. Plasmid DNA was isolated from positive E. coli cells and then sent to Beijing Genomics Institute for sequencing. Multiple sequence alignment was performed using ClustalX 1.832 and MEGA5 (Tamura et al., 2011).

2http://www.ebi.ac.uk
Real-Time Quantitative PCR
Total RNA was extracted from the pericarp of litchi and tobacco leaves and first strand cDNA was synthesized as described above. The transcription levels of both the litchi and tobacco anthocyanin biosynthetic genes were analyzed using quantitative real-time PCR (qRT-PCR) as described previously (Lai et al., 2014). The specific qRT-PCR primers were designed using a BatchPrimer3 program listed in Supplementary Table S2 (You et al., 2008). Using these gene-specific primers, each assay amplified a single product of the correct size and demonstrated an acceptable PCR efficiency (approximately 90%). qRT-PCR reactions were normalized to the Ct values for LcACTIN (HQ615689) and LcGAPDH (JF759907) in litchi (Zhong et al., 2011), and NtACTIN (GQ281246) for tobacco. The relative expression levels of the target genes were calculated using the formula $2^{-\Delta\Delta Ct}$ (Livak and Schmittgen, 2001). All biological replicates were measured in triplicate.

Transient Assays and Stable Transformation of Tobacco
The plasmids used in the transient expression assay were constructed by ligating full-length LcbHLH1-3 to pEAQ-HT using Nru I and Xho I. The primers used to amplify the encoding region were listed in Supplementary Table S3. The product was recombinated with the linearized vector pEAQ-HT (In-Fusion™ Advantage PCR Cloning Kits; Clontech). pEAQ-MYB1 was constructed previously (Lai et al., 2014). The constructs (pEAQ-LcbHLH1-3) were maintained in Agrobacterium tumefaciens strain GV3101. Agrobacterium cultures containing the different constructs were infiltrated into the abaxial leaf surface of N. tabacum, as described in Sainsbury et al. (2009). Control was infiltrated with empty vector (pEAQ-HT) at the same time. Digital photographs were taken 5 days after infiltration. Full-length of LcbHLH3 was amplified and then ligated with pBI121 vector. The resulting construct (pBI121- LcbHLH3) was introduced into A. tumefaciens strain EHA105. The recombinant strains were used to transform N. tabacum K326 using the leaf disk method (Horsch et al., 1985).

Subcellular Localization Analysis
The coding sequences of LcMYB1 and LcbHLH1-3 without the stop codon were amplified by PCR (primers are listed in Supplementary Table S4), and recombined into the pEAQ-HT-GFP vector using Age I in frame with the GFP sequence.
FIGURE 9 | *In vivo* interactions between litchi transcriptional factors and promoters of anthocyanin biosynthetic genes in litchi studied by dual luciferase assay in *N. benthamiana* leaves. *In vivo* associations of MYB, bHLHs and anthocyanin biosynthetic gene promoters as revealed by transient assays. The vertical bars represent the standard error of four replicate reactions. Different letters on the top of columns indicate significant difference at \(p < 0.05 \).

(Sainsbury et al., 2009). The fusion constructs and the control GFP vector were transformed into *Agrobacterium* strain GV3101 by freeze-thaw method. *Agrobacterium* cultures containing the 35S: LcMYB1-GFP, 35S: LcbHLH1-GFP, 35S: bHLH2-GFP, and 35S: LcbHLH3-GFP constructs were infiltrated into *N. benthamiana* leaves. Two days after infiltration, leaf protoplasts were isolated according to Schweiger and Schwenkert (2014). The protoplasts were incubated with 0.1 \(\mu \text{g ml}^{-1} \) DAPI for 10 min. GFP and DAPI fluorescence were observed with a fluorescence microscope (Zeiss Axio Observer D1). All transient expression assays were repeated at least three times.

Yeast Two-Hybrid Assay

Yeast two-hybrid assays were performed using the Matchmaker™ Gold Yeast Two-Hybrid System (Clontech). The coding regions of *LcbHLH1* and *LcMYB1* with different 3'-deletion were cloned into pGADT7 and pGBK7 to fuse with the AD and DBD, respectively, to create different baits and preys (primers are shown in Supplementary Table S5). Full length of LcMYB1 showed autoactivation in yeast cells. Partial clones of LcMYB1 (LcMYB1D) on the contrary did not show any transcriptional activation activity in yeast cells. Different pairs of bait and prey constructs were co-transformed into yeast strain Gold Y2H using the lithium acetate method, and yeast cells were grown on a (SD/–Leu/–Trp) according to the manufacturer’s protocol (Clontech) for 3 days. Transformed colonies were then plated onto minimal medium quadruple dropout (SD medium with –Leu/–Trp/–His/–Ade) containing 125 \(\mu \text{M} \) Aureobasidin A and 4 mg ml\(^{-1}\) X-\(\alpha \)-Gal at 30°C to test for possible interactions between LcbHLH1-LcbHLH3 and LcMYB1 according to their growth status and the activity of \(\alpha \)-galactosidase.

BIFC Assays

NYFP (175-end) and CYFP (175-end) were amplified from pSAT5(A)-DEST-cEYFP and pSAT5(A)-DEST-cEYFP-N1 which were purchased from TAIR. pEAQ-NYFP-F CAAATTC GCGACCGGTATGGTGAGCAAGGGCGAGG and pEAQ-NYFP-R: AGTTAAAGGCCTCGAGTCCTCGGAGG.
GG were used for amplify NYFP, pEAQ-CYFP-F: CAAA TCCTCGACCCGTTGGCAAGGCTGTCGAC and pEAQ-CYFP-R: AGTAAAGGCCTCGAGTCAATTGTACGTCGTCGTCGTCG were used for amplify CYFP. The products were recombined with the vector pEAQ-HT linearized using Age I and Xho I, and the obtained fragments were named pEAQ-NYFP and pEAQ-CYFP. The coding sequences of LeMYB1 and LcbHLH1-3 were amplified without stop codon by PCR (primers are listed in Supplementary Table S6) and then subcloned into pEAQ-NYFP and pEAQ-CYFP using Age I (In-Fusion™ Advantage PCR Cloning Kits; Clontech), respectively. All constructed vectors were then transformed in Agrobacterium (strain GV3101). Two days after infiltration, leaf protoplasts were isolated as described above. YFP fluorescence was observed 2 days after infiltration with a fluorescence microscope. Expression of target genes alone was used as negative controls. All transient expression assays were repeated at least three times.

Dual Luciferase Assay of Transiently Transformed Tobacco Leaves

Specific primers were designed based on litchi whole genome sequence to amplify the promoters of anthocyanin biosynthetic genes *LcCHS*, *LcCHI*, *LcF3H*, *LcF3′H*, *LcANS*, *LcDFR*, and *LcUGT* (primers are shown in Supplementary Table S7). Conserved cis-element motifs located in promoters were searched by online software New PLACE3 (Higo et al., 1999). The promoters of anthocyanin biosynthetic genes were inserted into the pGreenII 0800-LUC vector at the 5′ end of a LUC gene (Hellens et al., 2005). All constructs were transformed into Agrobacterium *tumefaciens* GV3101. Activation of promoters by TF was measured as ratio of the enzyme activity of firefly LUC, driven by the promoter under investigation, and the REN, driven by CaMV:35S. Six to eight leaves old *N. benthamiana* plants were used for infiltration. Infiltrations, transient expression analysis, and enzyme activity determination of LUC and REN were conducted as described by Hellens et al. (2005).

1 https://sogo.dna.affrc.go.jp/cgi-bin/sogo.cgi

REFERENCES

Bai, Y., Pattanaik, S., Patra, B., Werkman, J. R., Xie, C. H., and Yuan, L. (2011). Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. *Planta* 234, 363–375. doi: 10.1007/s00425-011-1407-y

Ban, Y., Honda, C., Hatsuyama, Y., Igarashi, M., Bessho, H., and Moriguchi, T. (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. *Plant Cell Physiol.* 48, 938–970. doi: 10.1093/pchp/pcm066

Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., and Lamb, C. (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. *Plant Cell* 12, 2383–2394. doi: 10.1105/tpc.12071236

Broun, P. (2005). Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in *Arabidopsis*. *Curr. Opin. Plant Biol.* 8, 272–279. doi: 10.1016/j.pbi.2005.03.006

Chagne, D., Carlisle, M. C., Blond, C., Volz, R. K., Whitworth, C. J., Oraguzie, N. C., et al. (2007). Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. *BMC Genomics* 8:212. doi: 10.1186/1471-2164-8-212

Chagne, D., Lin-Wang, K., Espley, R. V., Volz, R. K., How, N. M., Rouse, S., et al. (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. *Plant Physiol.* 161, 225–239. doi: 10.1104/pp.112.206771

D’Amelia, V., Aversano, R., Batelli, G., Caruso, I., Castellano, M. M., Castro-Sanz, A. B., et al. (2014). High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. *Plant J.* 80, 527–540. doi: 10.1111/tpj.12653

Espley, R. V., Hellens, R. P., Putterill, J., Stevenson, D. E., Kutty-Amma, S., and Allan, A. C. (2007). Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. *Plant J.* 49, 414–427. doi: 10.1111/j.1365-313X.2006.02964.x

Feller, A., Hernandez, J. M., and Grotewold, E. (2006). An ACT-like domain participates in the dimerization of several plant basic-helix-loop-helix transcription factors. *J. Biol. Chem.* 281, 28964–28974. doi: 10.1074/jbc.M603262200

Feng, S., Wang, Y., Yang, S., Xu, Y., and Chen, X. (2010). Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. *Planta* 232, 245–255. doi: 10.1007/s00425-010-1170-5

AUTHOR CONTRIBUTIONS

BL performed most of the experiments and data analysis, and wrote the draft of the paper. L-ND, BH, RL, and W-BS carried out part of material collection, RNA extraction and data analysis. Y-HQ and J-TZ participated in the preparation of the manuscript. H-CW and G-BH conceived, designed and coordinated the studies. All authors have read and approved the final manuscript.

FUNDING

The project was supported by the China Litchi and Longan Industry Technology Research System (Project No. CARS-33), the National Natural Science Fund of China (Project No. 30971985), the Ministry of Agriculture, China, and the Key Laboratory of Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China of Guangdong Higher Education Institutes, South China Agricultural University (No. KBL11008).

ACKNOWLEDGMENTS

We thank Francesca Quattrocchio for critical revision of the Manuscript (Swammerdam Institute of Life Sciences, University of Amsterdam, The Netherlands). We are grateful to Dr. George P. Lomonossoff (Department of Biological Chemistry, John Innes Centre) for providing pEAQ-HT vector and encouraging us to construct the BiFC vectors. Thank Dr. Roger P. Hellens (The New Zealand Institute of Plant and Food Research) for providing pGreenII 0800-LUC vector used in this study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2016.00166

Chagne, D., Lin-Wang, K., Espley, R. V., Volz, R. K., How, N. M., Rouse, S., et al. (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. *Plant Physiol.* 161, 225–239. doi: 10.1104/pp.112.206771

D’Amelia, V., Aversano, R., Batelli, G., Caruso, I., Castellano, M. M., Castro-Sanz, A. B., et al. (2014). High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. *Plant J.* 80, 527–540. doi: 10.1111/tpj.12653

Espley, R. V., Hellens, R. P., Putterill, J., Stevenson, D. E., Kutty-Amma, S., and Allan, A. C. (2007). Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. *Plant J.* 49, 414–427. doi: 10.1111/j.1365-313X.2006.02964.x

Feller, A., Hernandez, J. M., and Grotewold, E. (2006). An ACT-like domain participates in the dimerization of several plant basic-helix-loop-helix transcription factors. *J. Biol. Chem.* 281, 28964–28974. doi: 10.1074/jbc.M603262200

Feng, S., Wang, Y., Yang, S., Xu, Y., and Chen, X. (2010). Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. *Planta* 232, 245–255. doi: 10.1007/s00425-010-1170-5
Grotewold, E., Sainz, M. B., Tagliani, L., Hernandez, J. M., Bowen, B., and Chandler, V. L. (2000). Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. *Proc. Natl. Acad. Sci. U.S.A.* 97, 13579–13584. doi: 10.1073/pnas.97.25.13579

Heim, M. A., Jakoby, M., Werbet, M., Martin, C., Weisshaar, B., and Bailey, P. C. (2003). The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. *Mol. Biol. Evol.* 20, 735–747. doi: 10.1093/molbev/msg088

Hellens, R. P., Allan, A. C., Friel, E. N., Bolitho, K., Grafton, K., Templeton, M. D., et al. (2005). Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. *Plant Methods* 1:13. doi: 10.1186/1746-4811-1-13

Hellens, R. P., Moreau, C., Lin-Wang, K., Schwinn, K. E., Thomson, S. J., Fiers, M. W. E. J., et al. (2010). Identification of Mendel's white flower character. *PLoS ONE* 5, 12330. doi: 10.1371/journal.pone.0012330

Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S., and Lauvergeat, V. (2011). A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (*Garcinia mangostana* L.) fruit during ripening. *Plant* 229, 1333–1334. doi: 10.1007/s11103-009-0917-3

Park, K. I., Ishikawa, N., Morita, Y., Choi, J. D., Hoshino, A., and Iida, S. (2007). A BHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. *Plant J.* 49, 641–654. doi: 10.1111/j.1365-313X.2006.02988.x

Pattanaik, S., Xie, C. H., and Yuan, L. (2008). The interaction domains of the plant Myc-like BHLH transcription factors can regulate the transcriptase strength. *Plant Cell* 20, 707–715. doi: 10.1006/mpbe.2001.1262

Payne, C. T., Zhang, F., and Lloyd, A. M. (2000). GL3 encodes a BHLH protein that regulates trichome development in *Arabidopsis* through interaction with GL1 and TTG1. *Genetics* 156, 1349–1362.

Pires, N., and Dolan, L. (2010). Origin and diversification of basic-helix-loop-helix proteins in plants. *Mol. Biol. Evol.* 27, 862–874. doi: 10.1093/molbev/msp288

Quattrocchio, F., Wing, J. F., and Koes, R. E. (1993). Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. *Plant Cell* 5, 1497–1512. doi: 10.2307/3869734

Sainsbury, F., Thuenemann, E. C., and Lomonossoff, G. P. (2009). pEAG versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. *Plant Biotech.* 7. 682–693. doi: 10.1111/j.1467-7652.2009.00434.x

Schweiger, R., and Schwenkert, S. (2014). Protein–protein interactions visualized by bimolecular fluorescence complementation in tobacco protoplasts and leaves. *J. Vis. Exp.* 51327. doi: 10.3791/51327

Schwin, K., Venail, J., Shang, Y., Mackay, S., Alm, V., Butelli, E., et al. (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus *Antirrhinum*. *Plant Cell* 18, 831–851. doi: 10.1105/tpc.105.039255

Shirley, R. W., Kubasek, W. L., Storz, G., Brugemann, E., Koornneef, M., Ausubel, F. M., et al. (1995). Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. *Plant J.* 8, 569–671. doi: 10.1046/j.1365-313X.1995.0080569.x

Spelt, C., Quattrocchio, F., Mol, J. N., and Koes, R. (2000). Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. *Plant Cell* 12, 1619–1632. doi: 10.1105/tpc.12.9.1619

Spelt, C., Quattrocchio, F., Mol, J. N., and Koes, R. (2002). ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. *Plant Cell* 14, 2121–2135. doi: 10.1105/tpc.003772

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood,
evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28, 2731–2739. doi: 10.1093/molbev/msr121

Wei, Y. Z., Hu, F. C., Hu, G. B., Li, X. J., Huang, X. M., and Wang, H. C. (2011). Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of *Litchi chinensis* Sonn. *PLoS ONE* 6:e19455. doi: 10.1371/journal.pone.0019455

Winkel, B. S. (2006). "The biosynthesis of flavonoids," in *The Science of Flavonoids*, ed. E. Grotewold (New York, NY: Springer), 233.

Wei, Y. Z., Hu, F. C., Hu, G. B., Li, X. J., Huang, X. M., and Wang, H. C. (2011). Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of *Litchi chinensis* Sonn. *PLoS ONE* 6:e19455. doi: 10.1371/journal.pone.0019455

Xie, X. B., Li, S., Zhang, R. F., Zhao, J., Chen, Y. C., Zhao, Q., et al. (2012). The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. *Plant Cell Environ.* 35, 1884–1897. doi: 10.1111/j.1365-3040.2012.02523.x

Xu, W., Dubos, C., and Lepiniec, L. (2015). Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. *Trends Plant Sci.* 20, 176–185. doi: 10.1016/j.tplants.2014.12.001

You, F. M., Huo, N., Gu, Y. Q., Luo, M. C., Ma, Y., Hane, D., et al. (2008). BatchPrimer3: a high throughput web application for PCR and sequencing primer design. *BMC Bioinformatics* 9:253. doi: 10.1186/1471-2105-9-253

Zhang, F., Gonzalez, A., Zhao, M., Payne, C. T., and Lloyd, A. (2003). A network of redundant bHLH proteins functions in all TTG1-dependent pathways of *Arabidopsis*. *Development* 130, 4859–4869. doi: 10.1242/dev.00681

Zhao, Z. C., Hu, G. B., Hu, F. C., Wang, H. C., Yang, Z. Y., and Lai, B. (2012). The UDP glucose:flavonoid-3-O-glucosyltransferase (UGFT) gene regulates anthocyanin biosynthesis in litchi (*Litchi chinensis* Sonn.) during fruit coloration. *Mol. Biol. Rep.* 39, 6409–6415. doi: 10.1007/s11033-011-1303-3

Zhong, H. Y., Chen, J. W., Li, C. Q., Chen, L., Wu, J. Y., Chen, J. Y., et al. (2011). Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. *Plant Cell Rep.* 30, 641–653. doi: 10.1007/s00299-010-0992-8

Zimmermann, I. M., Heim, M. A., Weissshaar, B., and Uhrig, J. F. (2004). Comprehensive identification of *Arabidopsis thaliana* MYB transcription factors interacting with R/B-like BHLH proteins. *Plant J.* 40, 22–34. doi: 10.1111/j.1365-313X.2004.02183.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.