Method of determining cosmological parameter ranges with samples of candles with an intrinsic distribution

Y.-P. Qin1,2, B.-B. Zhang1,3, Y.-M. Dong1,3, F.-W. Zhang2, H.-Z. Li,1,3 L.-W. Jia1,3, L.-S. Mao1,3, R.-J. Lu1,2,3, T.-F. Yi2, X.-H. Cui1,3, and Z.-B. Zhang1,3

1National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, P. O. Box 110, Kunming, Yunnan, 650011, P. R. China
2Physics Department, Guangxi University, Nanning, Guangxi 530004, P. R. China
3The Graduate School of the Chinese Academy of Sciences

Accepted year mon day. Received year mon day; in original form 2005, June, 13th.

ABSTRACT

In this paper, the effect of the intrinsic distribution of cosmological candles is investigated. We find that, in the case of a narrow distribution, the deviation of the observed modulus of sources from the expected central value could be estimated within a certain range. We thus introduce a lower and upper limits of χ^2_{\min} and χ^2_{\max}, to estimate cosmological parameters by applying the conventional minimizing χ^2 method. We apply this method to a gamma-ray burst (GRB) sample as well as to a combined sample including this GRB sample and an SN Ia sample. Our analysis shows that: a) in the case of assuming an intrinsic distribution of candles of the GRB sample, the effect of the distribution is obvious and should not be neglected; b) taking into account this effect would lead to a poorer constraint of the cosmological parameter ranges. The analysis suggests that in the attempt of constraining the cosmological model with current GRB samples, the results tend to be worse than what previously thought if the mentioned intrinsic distribution does exist.

Key words: cosmological parameters — cosmology: observations — distance scale

1 INTRODUCTION

One of the greatest achievements obtained in the past few years in astrophysics is the determination of cosmological parameters with type Ia supernovae (SN Ia), which suggests an accelerating universe at large scales (Riess et al. 1998, Perlmutter et al. 1999, Tonry et al. 2003, Barris et al. 2004, Knop et al. 2003, Riess et al. 2004). The cosmic acceleration was also confirmed, independently of the SN Ia magnitude-redshift relation, by the observations of the cosmic microwave background anisotropies (WMAP: Bennett et al. 2003) and the large scale structure in the distribution of galaxies (SDSS: Tegmark et al. 2004a, 2004b). It is well known that all known types of matter with positive pressure generate attractive (SDSS: Tegmark et al. 2004a, 2004b). It is well known that all known types of matter with positive pressure generate attractive...
verse. In their sample of 12 GRBs, two have redshifts $z > 2$. Soon after their work, the same issue was investigated by many authors (see Ghirlanda et al. 2004a; Friedman and Bloom 2005; Firmani et al. 2005; Xu et al. 2005; Liang and Zhang 2005). It was found that current GRB data which are lack of low redshift sources could be used to marginalize some parameters in their reasonable ranges (see Xu et al. 2005 for a detailed explanation), or they could be employed to constrain the cosmological model with a new Bayesian method (Firmani et al. 2005). Although the size of the current GRB sample is small and low redshift sources are missed, the idea that some high redshift extragalactic sources other than SN Ia might be employed to determine the cosmological model is quite interesting and promising.

It would be natural that, for a kind of source which could serve as candles, one assumes a distribution of luminosity, which is reasonable due to fluctuation. As discussed in Kim et al. (2004), the uncertainty of a source must include both the systematic uncertainty and the magnitude dispersion. We argue that, if there exists a distribution of luminosity of the candles, the expected luminosity itself (or the corresponding deduced luminosity distance) could be different from source to source, which would be due to an intrinsic property rather than to the measurement uncertainty. This raises a topic of finding an appropriate method to estimate cosmological parameter ranges with candles with a certain distribution.

When employing candles such as SN Ia or GRBs to measure the universe, the confidence level associated with the fit of the theoretical curve to the luminosity distance data was described by a statistic χ^2 which is defined under the assumption that the measurement uncertainty is the only cause of the deviation of the data to the curve. The best fit will be obtained when one reaches the minimum value of χ^2. However, for candles with a certain distribution, the deviation of the observed luminosity from the expected curve must be caused by both the measurement uncertainty and the distribution itself. When taking into account the distribution of luminosity, the χ^2 statistic could not be defined if the distribution itself is unknown. The minimizing χ^2 method will not be applicable if the statistic itself cannot be defined.

In the following, we will study how to deal with this matter and investigate what one can expect from the analysis. A corresponding method will be proposed and will be illustrated with two samples.

2 THE METHOD

In this section, we propose a method to deal with candles with a certain distribution when employing them to constrain the cosmological model. As mentioned above, the statistic χ^2 could not be defined for candles with a certain distribution if the distribution itself is unknown. Even if the distribution is known, the statistic is still undefined since there is no way to know the real luminosity of each source. These difficulties lead to two problems. One is that the well-known minimizing χ^2 method could not be applicable without a definition of the statistic. The other is that the probability associated with the statistic χ^2, if we define it when taking into account the deviation arising from the distribution, is not available (since the real luminosity of each source is unknown).

It is known that the convolution of two Gaussian is still a Gaussian with a width that is given by the quadratic sum of the two widths of the original distributions. That is $\sigma^2 = \sigma_1^2 + \sigma_2^2$, where σ_1^2 and σ_2^2 are the variances of the two Gaussian functions concerned and σ^2 is that of the resulted Gaussian.

Let us consider the deviation of an observed luminosity distance modulus, μ_{ob}, of a source from the real value of the quantity, μ_{th}, which follows

$$
\begin{align*}
(\mu_{ob} \pm \sigma_{ob}) - \mu_{th}(z; H_0, \Omega_m, \Omega_\Lambda) = (\mu_{ob} \pm \sigma_{ob}) - (\mu_{th,0}(z; H_0, \Omega_m, \Omega_\Lambda) + \Delta \mu_{th}),
\end{align*}
$$

where σ_{ob} is the measurement uncertainty of μ_{obs}, $\mu_{th,0}$ is the central value of μ_{th}, which is the real value of the modulus expected in the case when there is no distribution of the candles, and $\Delta \mu_{th}$ represents the deviation of μ_{th} from $\mu_{th,0}$. Suppose that the distribution of candles is narrow enough so that the absolute value of the deviation of μ_{th} from $\mu_{th,0}$, $|\Delta \mu_{th}|$, is small. According to the error transform formula, the uncertainty of μ_{ob} relative to $\mu_{th,0}$ could be determined by

$$
\sigma_{ob,0} = \sqrt{\sigma_{ob}^2 + (\Delta \mu_{th})^2}.
$$

Relative to the expected central moduli, the χ^2 statistic of a sample of the candles could be determined by

$$
\chi^2 = \sum_i \frac{[\mu_{ob,i} - \mu_{th,0,i}(z; H_0, \Omega_m, \Omega_\Lambda)]^2}{\sigma_{ob,i}^2 + (\Delta \mu_{th})^2}.
$$

[Note that, in the case of SN Ia, $\sigma_{ob,0}^2$ should be replaced by $\sigma_{ob,i}^2 + \sigma_\mu^2$, where $\sigma_{ob,i}$ is the uncertainty in the individual distance moduli deduced from the empirical relation between the light-curve shape and luminosity and σ_μ is the uncertainty associated with the dispersion in supernovae redshift (transformed to units of distance moduli) due to peculiar velocities (see Riess et al. 2004)].

It seems that, with equation (3), one might be able to evaluate the χ^2 statistic. But because $\Delta \mu_{th,0}$ is in no way to be known, this is unfortunately not true. However, under the condition that the distribution of candles is narrow, we can estimate $\Delta \mu_{th,0}$ with the width of the distribution. Let σ_{dis} be the width of the distribution of $\mu_{th}/\mu_{th,0}$ called the intrinsic distribution of the relative luminosity distance moduli. (Note that $\mu_{th}/\mu_{th,0}$ should of course become unity when there is no deviation of μ_{th} from $\mu_{th,0}$.) We assume $|\Delta \mu_{th,0}| \approx \sigma_{dis} \mu_{th,0,i}$. Thus the χ^2 statistic could be estimated by

$$
\chi^2 \approx \sum_i \frac{[\mu_{ob,i} - \mu_{th,0,i}(z; H_0, \Omega_m, \Omega_\Lambda)]^2}{\sigma_{ob,i}^2 + \sigma_{dis}^2 \mu_{th,0,i}}.
$$

As long as σ_{dis} is provided, the χ^2 statistic is then available according to (4). For any kind of candle, quantity σ_{dis} could be estimated when the sample employed is large enough and the measurement uncertainty σ_{ob} is small enough and when the cosmological model is fixed. Obviously, this could not be realized at present since the cosmological model itself is currently a target to be pursued and for interesting candles the measurement uncertainty is always quite large. But this cannot prevent one to estimate the limits of σ_{dis}. As the deviation of μ_{ob} from $\mu_{th,0}$ is caused by both the distribution of μ_{th} and the measurement uncertainty of μ_{obs} itself, σ_{dis} must be smaller than $\sigma_{dis,max}$, where $\sigma_{dis,max}$ is the width of the distribution of $\mu_{obs}/\mu_{th,0}$, which is determined by

$$
\sigma_{dis,max} = \sqrt{\sum_i (\mu_{obs,i}/\mu_{th,0,i} - 1)^2/(N - 1)},
$$

with N being the size of the sample. Let us over estimate the effect of the measurement uncertainty in the opposite way. Within the range of $[\mu_{obs,i} - \sigma_{ob,i}, \mu_{obs,i} + \sigma_{ob,i}]$ we take the value that is the closest one to $\mu_{th,0,i}$ as $\mu_{obs,i}$. Obviously, the distribution of $\mu_{obs,i}/\mu_{th,0}$ would be narrower than the distribution of $\mu_{th}/\mu_{th,0}$ since the deviation caused by the measurement uncertainty is over subtracted. We take
the width of the distribution of \(\mu_{\text{ob}}/\mu_{\text{ex}} \) as \(\sigma_{\text{dis,min}} \), which is calculated with
\[
\sigma_{\text{dis,min}} = \sqrt{\sum (\mu_{\text{ob},i}/\mu_{\text{th},0,i} - 1)^2/(N - 1)}.
\]
Clearly, \(\sigma_{\text{dis}} \) must be larger than \(\sigma_{\text{dis,min}} \). With these two quantities we have
\[
\chi^2_{\text{min}} \approx \sum \frac{(\mu_{\text{ob},i} - \mu_{\text{th},0,i}/\mu_{\text{ex},i})^2}{\sigma_{\text{ob},i}^2 + \sigma_{\text{dis,max}}^2 \mu_{\text{th},0,i}^2}.
\]
and
\[
\chi^2_{\text{max}} \approx \sum \frac{(\mu_{\text{ob},i} - \mu_{\text{th},0,i}/\mu_{\text{ex},i})^2}{\sigma_{\text{ob},i}^2 + \sigma_{\text{dis,min}}^2 \mu_{\text{th},0,i}^2}.
\]
Since \(\sigma_{\text{dis,min}} < \sigma_{\text{dis}} < \sigma_{\text{dis,max}} \), one gets \(\chi^2_{\text{min}} < \chi^2 < \chi^2_{\text{max}} \). With equations (5) and (6), one can calculate the corresponding probability associated with the \(\chi^2 \) statistic and compute the conventional confidence contour. In this way, cosmological parameters would be constrained. With this estimating method, the first problem is largely eased and the second is solved.

3 APPLICATION

Let us consider a GRB sample. The sample was presented and studied in Xu et al. (2005) and Xu (2005) (the XDL GRB sample) which contains 17 GRBs. As suggested in Ghirlanda et al. (2004a), the scatter of the data points of their GRB sample around the correlation of \(E_p - E_v \) found recently (Ghirlanda et al. 2004b) is of a very small order.

To check if the data of the XDL GRB sample are consistent with no scatter beyond the measurement errors in terms of statistics, the simplest method is to calculate the mean of the deviation of the deduced luminosity distance moduli from the expected one of the sample and then compare it with the average of the measurement error. The mean of the deviation is defined as
\[
\sigma_{\text{dev}} = \sqrt{\frac{1}{N} \sum (\mu_{\text{ob},i}/\mu_{\text{ex},i})^2/(N - 1)},
\]
where \(\mu_{\text{ex}} \) is the expected value of \(\mu \), while the average of the measurement error is calculated with
\[
\sigma_{\text{err}} = \sqrt{\frac{1}{N} \sum (\sigma_{\text{ob},i}/\mu_{\text{ex},i})^2/(N - 1)}.
\]
(Note that, as redshifts of these sources are not the same, we consider the relative values.) We get the following from the XDL sample: \(\sigma_{\text{dev}} = 0.0122 \) and \(\sigma_{\text{err}} = 0.0116 \), where we adopt \((\Omega_m, \Omega_b, h) = (0.29, 0.71, 0.65) \). It shows that the deviation is slightly larger than the measurement error. (Ignoring the slight difference between the two quantities, the result confirms what suggested in Ghirlanda et al. 2004a, 2004b.) Taking \(\mu_{\text{th},0} \) as \(\mu_{\text{ex}} \) adopted here, one finds that \(\sigma_{\text{dev}} \) is identical with \(\sigma_{\text{dis,max}} \) defined in last section. Thus, for the XDL sample, \(\sigma_{\text{dis}} < 0.0122 \), suggesting that the distribution, if exists, would be quite narrow. Another approach involves a simulation analysis. We assume that there is no intrinsic distribution of the deduced luminosity distance moduli, and thus the deviation observed is due to the measurement uncertainty. Obviously, under this assumption the distribution of \(\mu_{\text{ob}}/\mu_{\text{ex}} \) should peak at unity. According to the null hypothesis, the observed value of \(\mu_{\text{ex}} \) for each source is obtained by chance from a parent population of \(\mu_{\text{ob}}' \) whose distribution obeys a Gaussian with the measurement uncertainty served as the width of the Gaussian. For each source one can create a \(\mu_{\text{ob}} \) via simulation as long as the expected value \(\mu_{\text{ex}} \) and the measurement uncertainty are known. In this way, from the 17 \(\mu_{\text{ex}} \) and the corresponding measurement uncertainties, one can create a set of 17 \(\mu_{\text{ob}} \) data by a Monte-Carlo simulation and then obtain a set of 17 \(\mu_{\text{ob}}/\mu_{\text{ex}} \) data. We perform 100 times of simulation and get 100 sets of 17 \(\mu_{\text{ob}}/\mu_{\text{ex}} \) data. Combining these 100 sets we get a large sample with its size being 1700. The deviation of the relative simulated luminosity distance moduli from the expected one (the unity) is defined as
\[
\sigma_{\text{dev}} = \sqrt{\frac{1}{N} \sum (\mu_{\text{ob},i}/\mu_{\text{ex},i} - 1)^2/(N - 1)},
\]
which could thus be directly compared with \(\sigma_{\text{dev}} \), the deviation of the observed data defined above. From the XDL sample we get \(\sigma_{\text{dev}} = 0.0113 \), which suggests that the deviation associated with observation, denoted by \(\sigma_{\text{dev}} \), is also slightly larger than that expected from the measurement uncertainties. Two methods come to almost the same result, suggesting that there might be an intrinsic distribution of the relative luminosity distance moduli of the XDL sample, although it would be quite narrow (as the difference between \(\sigma_{\text{dev}} \) and \(\sigma_{\text{dev}} \) and that between \(\sigma_{\text{err}} \) and \(\sigma_{\text{dev}} \) are small).

To illustrate how to apply the method proposed above to deal with data with intrinsic distributions, we assume in the following that there is a distribution of the true value of the deduced relative luminosity distance moduli for the XDL sample, although the distribution, if it exists, might be very narrow (see what suggested above). For the sake of comparison, we perform the fit with three \(\chi^2 \) statistics. One is the conventional \(\chi^2 \) which can be determined by (3) when taking \(\Delta \mu_{\text{th},i} = 0 \). The other two are \(\chi^2_{\text{min}} \) and \(\chi^2_{\text{max}} \) which are determined by equations (5) and (6) respectively. Each \(\chi^2 \) statistic is calculated with the XDL GRB sample in many tries. In each try, we adopt a set of parameters and based on these parameters we deduce both the observed and theoretical luminosity distance moduli. With these moduli and the measurement uncertainties, we are able to evaluate \(\sigma_{\text{dis,min}} \) and \(\sigma_{\text{dis,max}} \) (see what proposed in last section), and then the corresponding \(\chi^2 \) statistic would be well determined (\(H_0 = 65 \text{km} \text{s}^{-1} \text{Mpc}^{-1} \) is adopted throughout this paper). For each \(\chi^2 \), the best fit will be obtained when the smallest value is reached.

Displayed in Fig. 1 are the Hubble diagram and the confidence contour plot of the XDL GRB sample. As concluded previously by other authors (see Ghirlanda et al. 2004a; Friedman and Bloom 2005; Xu et al. 2005), currently, employing GRB samples alone cannot tightly constrain the cosmological model. Fig. 1 shows that, the parameter ranges are indeed poorly constrained even there is no intrinsic distribution of the relative luminosity distance moduli (see solid lines in Fig. 1b). Taking into account an intrinsic distribution of the moduli leads to much poorer results. This indicates that if there indeed exists an intrinsic distribution of the moduli, the effect arising from the distribution should not be ignored.

Shown in Table 1 are the best fit cosmological parameters for the three kinds of universe, obtained by applying the minimizing \(\chi^2 \) method to the three \(\chi^2 \) statistics, where the 1σ errors are estimated from the corresponding 1σ contours in Fig. 1b. As shown in Fig. 1b, the 1σ contours are not closed within the ranges of the plot. This leads a poor constraint to the limits of the parameters. Some limits are therefore not able to be determined, which are denoted by \(\sigma_{\text{unc}} \) in Table 1.

The fact that the parameter ranges are poorly constrained (even when the intrinsic distribution of the relative luminosity distance moduli is ignored) might probably be due to the lack of low redshift sources, as it is already known that low redshift sources are important when employing a GRB sample to constrain the cosmological parameters (see Firmani et al. 2005). We thus follow what were done previously (see Ghirlanda et al. 2004a) to combine an SN Ia sample and the XDL sample to constrain the cosmological parameters...
Table 1. Best-fit parameters obtained by the least square method

Sample	Universe	\((\Omega_M, \Omega_{\Lambda}, \chi_{\theta}^2_{\nu})\)^a	\((\Omega_M, \Omega_{\Lambda}, \chi^2_{\text{max}, \nu})\)	\((\Omega_M, \Omega_{\Lambda}, \chi^2_{\text{min}, \nu})\)
SN+GRB	flat	\((0.288^{+0.0134}_{-0.0228}, 0.717, 197.9)\)	\((0.288^{+0.134}_{-0.2021}, 0.712, 193.1)\)	\((0.288^{+0.0134}_{-0.0228}, 0.717, 185.4)\)
	open	\((0.368^{+0.127}_{-0.114}, 0.857^{+0.231}_{-0.170}, 197.0)\)	\((0.284^{+0.0201}_{-0.0196}, 0.717^{+0.0353}_{-0.0351}, 193.2)\)	\((0.281^{+0.0134}_{-0.0201}, 0.717^{+0.0104}_{-0.0100}, 185.4)\)
SN+GRB	cloud	\((0.281^{+0.0334}_{-0.0489}, 0.711^{+0.0206}_{-0.0084}, 108.0)\)	\((0.428^{+0.147}_{-0.161}, 0.942^{+0.206}_{-0.026}, 191.3)\)	\((0.441^{+0.147}_{-0.0206}, 0.967^{+0.0206}_{-0.0354}, 183.1)\)
GRB	flat	\((0.188^{+0.200}_{-0.114}, 0.812, 19.69)\)	\((0.188^{+1.176}_{-0.157}, 0.812, 15.14)\)	\((0.188^{+0.539}_{-0.333}, 0.812, 7.43)\)
	open	\((0.187^{+0.221}_{-0.0201}, 0.682^{+0.221}_{-0.206}, 19.67)\)	\((0.187^{+1.097}_{-0.206}, 0.506^{+0.221}_{-0.26}, 14.96)\)	\((0.187^{+0.391}_{-0.206}, 0.391^{+0.221}_{-0.26}, 7.40)\)
GRB	cloud	\((0.187^{+0.201}_{-0.114}, 0.817^{+0.041}_{-0.206}, 19.67)\)	\((0.187^{+1.177}_{-0.206}, 0.817^{+0.531}_{-0.206}, 15.14)\)	\((0.187^{+0.54}_{-0.206}, 0.817^{+0.59}_{-0.206}, 7.44)\)

\(a\) \(\chi^2_{0,\nu}\) is the reduced \(\chi^2\) calculated with equation (4) when assigning \(\hat{\sigma}_{\text{dis}} = 0\).

4 DISCUSSION AND CONCLUSIONS

The effect of the intrinsic distribution of cosmological candles is investigated in this paper. Due to fluctuation, it is natural that a property (say, the luminosity) of sources served as a cosmological candle might form a distribution and scatter around a central value. If the distribution does exist, the statistic \(\chi^2\) cannot be defined since the distribution itself is unclear and the real value of the property for each source is unknown. However, when the distribution is narrow, the deviation of the observed modulus of each source from the central value could be estimated within a certain range. We accordingly define a lower and upper limits of \(\chi^2, \chi^2_{\text{min}}\), and \(\chi^2_{\text{max}}\), to estimate cosmological parameters via the conventional minimizing \(\chi^2\) method. The confidence contours of these two \(\chi^2\) statistics can then be plotted in the conventional way, and with these curves the ranges of the parameters could be determined as long as a confidence level is assigned.

With this method, a sample bearing a relatively small width of the intrinsic distribution of the deduced relative luminosity distance moduli would be applicable to constraining the cosmological parameters. To illustrate this method we employ a GRB sample alone and later combine this GRB sample with the gold SN Ia sample, assuming that this GRB sample (the XDL sample) has an intrinsic distribution of the deduced relative luminosity distance moduli while the SN Ia sample has not. The analysis suggests that: a) the effect of the intrinsic distribution of the relative luminosity distance moduli is obvious and therefore should not be neglected if the distribution itself does exist; b) taking into account this effect would lead to a poorer constraint of the ranges of cosmological parameters. This indicates that in the attempt of constraining the cosmological model with GRB samples, the results tend to be worse than what previously thought if the mentioned intrinsic distribution exists, although the distribution is very narrow.

As revealed recently by Wang et al. (2005), there is a clear evidence for a tight linear correlation between peak luminosities of SN Ia and their \(B - V\) colors at \(\sim 12\) days after the \(B\) maximum. They found that this empirical correlation allows one to reduce scatters in estimating their peak luminosities from \(\sim 0.5\) mag to the levels of 0.18 and 0.12 mag in the \(V\) and \(I\) bands, respectively. We wonder if taking into account this effect can reduce the measurement uncertainty of the luminosity distance of the SN Ia sources. If so, the ranges of the cosmological parameters might be better constrained (when compared with Fig. 2) (this will be investigated later).

As encountered in other cases, our method suffers from possible evolution of candles. Quite recently, Firmani et al. (2004) found evidence supporting an evolving luminosity function of long GRBs, where the luminosity scales as \((1 + z)^{2.10^{+0.2}}\). It is unclear if the corrected gamma-ray energy, from which the luminosity distance moduli of the adopted GRB sample are deduced, evolves with redshift. If so, the question if the GRB sample can still be used to constrain the cosmological model should be answered. This deserves a detailed investigation. (It could be done only when the size of the sample is large enough).
Figure 1. (a) Hubble diagram of the XDL GRB sample, where the two edge curves (the dotted and dashed lines) of the flat universe are also represented. (b) Confident contour plot for the XDL GRB sample, where three dashed lines from the innermost curves to the outmost one represent the 1, 2, and 3 σ levels of confidence calculated with the statistic χ^2_{min} respectively, while the three dotted lines represent those associated with the statistic χ^2_{max} respectively. For the sake of comparison, the confidence levels calculated without considering the distribution of $\tilde{\mu}_{\text{obs}}/\mu_{\text{th}}$ are also plotted (the solid lines). The straight line denotes the flat universe and the plus represents the best fit parameters of the flat universe obtained by the conventional minimizing χ^2 method.

Figure 2. (a) Hubble diagram of the combined sample, where the empty circle represents the XDL GRB sample and the filled circle stands for the gold SN Ia sample. Symbols of lines are the same as those denoted in panel (a) of Fig. 1. (b) Confident contour plot for the combined sample, where the symbols are the same as those denoted in panel (b) of Fig. 1.

ACKNOWLEDGMENTS

We thank Profs. K. S. Cheng, C. Firmani, Z. G. Dai, Y.-Q. Lou, Y.-F. Huang, and Z.-H. Zhu for their helpful suggestions and comments. This work was supported by the Special Funds for Major State Basic Research Projects ("973") and National Natural Science Foundation of China (No. 10273019).
REFERENCES

Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N. et al. 2003, ApJS, 148, 1
Bento, M. C., Bertolami, O and Sen, A. A. 2002, PhRvD, 66, 043507
Caldwell, R. 2002, Phys.Lett.B, 545, 23
Caldwell, R., Dave, R., and Steinhardt, P. J. 1998, PhRvL, 80, 1582
Carroll, S., Press, W. H. and Turner, E. L. 1992, ARA&A , 30, 499
Dai, Z. G., Liang, E. W., and Xu, D 2004, ApJ, 612, L101
Deffayet, C., Dvali, G. and Gabadadze, G. 2002, PhRvD., 65, 044023
Freese, K. and Lewis, M. 2002, Phys.Lett.B, 540, 1
Firmani, C., Avila-Reese, V., Ghisellini, G., Tutukov, A. V. 2004, ApJ, 611, 1033
Firmani, C., Ghisellini, G., Ghirlanda, G. and Avila-Reese,V. 2005, MNRAS, in press
Friedman, A. S., Bloom, J. S. 2005, ApJ, in press
Ghirlanda, G., Ghisellini, G., Lazzati, D., Firmani, C. 2004a, ApJ, 613, L13
Ghirlanda, G., Ghisellini, G., Lazzati, D. 2004b, ApJ, 616, 331
Kamenshchik, A., Moschella, U. and Pasquier, V. 2001, Phys.Lett.B, 511, 265
Kim, A. G., Linder, E. V., Miquel, R., Mostek, N. 2004, MNRAS, 347, 909
Knop, R. A.,Aldering, G.; Amanullah, R.; Astier, P. et al. 2003, ApJ, 598, 102
Liang, E., Zhang, B. 2005, ApJ, in press
Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P. et al. 1999, ApJ, 517, 565
Ratra, B. and Peebles, P. J. E. 1988, PhRvD., 37, 3406
Randall, L. and Sundrum, R. 1999a, PhRvL, 83, 3370
Randall, L. and Sundrum, R. 1999b, PhRvL, 83, 4690,
Riess, A. G., Filippenko, A. V., Challis, P., Clocchiati, A., Diercks, A. et al. 1998, AJ, 116, 1009
Riess, A. G., Strolger, L.-G., Tonry, J., Casertano, S., Ferguson, H. C. et al. 2004, ApJ, 607, 665
Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E., Nolta, M. R. et al. 2003, ApJS, 148, 175
Tegmark, M., Strauss, M. A., Blanton, M. R., Abazajian, K. et al. 2004a, PhRvD, 69, 103501
Tegmark, M. B., Michael R., Strauss, M. A., Hoyle, F. et al.2004b, ApJ, 606, 702
Tonry, J. L., Schmidt, B. P., Barris, B., Candia, P. et al. 2003, ApJ, 594, 1
Turner, M. S. and White, M. 1997, PhRvD., 56, R4439
Wang, X., Wang, L., Zhou, X., Lou, Y.-Q., Li, Z. 2005, ApJ, inppress
Xu, D. 2005, astro-ph/0504052
Xu, D, Dai, Z. G., Liang, E. W. 2005, ApJ, accepted
Zhu, Z.-H. 1998 A&A, 338, 777
Zhu, Z.-H. 2004 A&A, 423, 421
Zhu, Z.-H. and Fujimoto, M. -K. 2002, ApJ, 581, 1
Zhu, Z.-H. and Fujimoto, M. -K. 2003, ApJ, 585, 52
Zhu, Z.-H. and Fujimoto, M. -K. 2004, ApJ, 602, 12
Zhu, Z.-H., Fujimoto, M. -K. and He, X. -T. 2004a, ApJ, 603, 365.
Zhu, Z.-H., Fujimoto, M.-K. and He, X. -T. 2004b A&A, 417, 833.
Zhu, Z.-H., Fujimoto, M. -K. and Tatsumi, D. 2001, A&A, 372, 377

This paper has been typeset from a \LaTeX file prepared by the author.