Study of Saros cycle and non-partial solar eclipse with Newton mechanics approach

Akhmad Aminuddin Bama¹, M R Tamara²b, Arsali¹, and D Marini¹

¹ Department of Physics, Faculty of Mathematics and Natural Science, Sriwijaya University, South Sumatera, 30662, Indonesia,
² Department of Physics, Faculty of Mathematics and Natural Science, Gadjah Mada University, Yogyakarta, 55281, Indonesia

Corresponding author: aakhmadbama@yahoo.com, bmochrifqitamara@ymail.com

Abstract. We have derived Saros cycle period by Newton mechanics approach using a method that had been used by Chalub. We got the result approximately 6597,1 day; with the error compared to Saros cycle (6585,3 day) of approximately 0,1792%. For non-partial solar eclipse case, we too have derived the equation to relate between this sun eclipse and geometrical parameter of Earth, Moon, and Sun mathematically. This equation indicates that for total sun eclipse, the umbra's radius \(P \) on earth surface must have positive sign, whereas negative sign for annular sun eclipse. To test this equation, we compare it to a recorded (past or predicted) non-partial solar eclipse. The result indicates appropriateness for total and annular sun eclipse, but it does not appropriate for hybrid sun eclipse as we anticipated that is the magnitude of umbra's radius \(P \) for this eclipse must near zero.

1. Introduction

Scientists have analyzed the Earth's, Moon, and Sun motion system. Some results of the analysis provide astronomical data of Earth, Moon, and Sun which are referenced to explain the process of eclipse. However, the prediction of eclipses is still oriented to the period of Saros cycle which does not require such data. The Saros cycle is a periodicity of one exact type of eclipse within a certain time interval. The term "type" above refers to the occurrence of an eclipse and the next eclipse having the same geometry and characteristics. The Saros cycle periodicity has been calculated since the time of ancient Babylonia, which is about 6585.3 days

Chalub¹ has analyzed the calculation of Saros cycle periods based on Newton's mechanical theory, but his final results was indirectly intended to obtain the equation for Saros cycle period, but the period of the Moon that can be attributed to the Saros cycle. Based on that, in this paper, Saros cycle is calculated directly based on Newton's mechanical approach which refers to the Chalub’s method.

In addition to the Saros cycle calculations above, we also observed phenomena of non-partial solar eclipses on the Earth's surface in three circumstances; namely total, annular, and hybrid solar eclipses. These three possible circumstances indicate the dependence of eclipse events on the geometric state which includes Moon’s and Sun’s radius, and distance between Earth, Moon, and the Sun. If such geometric values and its relationship mathematically are known, then comparisons of the calculations with the occurrence of non-partial solar eclipses can be done to test the relation's validity.

2. The Actual Saros Cycle Formulation
The method referred to the calculation of Saros cycle periods is the averaging method in non-linear dynamical motion of system. The method is used by Chalub\cite{1} to calculate the average effect of the Sun's gravitational perturbation on the Moon's trajectory in one year. The result is obtained by the formulation of the angular velocity of Moon’s node (ascending or descending node), so it is subsequently used to obtain the formula of the period of the draconic month. The formulation can be used to calculate the period of the Saros cycle because it’s magnitude is equal to the time interval of the node evolves in one full rotation\cite{2}.

The angular velocity formula which mentioned above has been derived by Chalub\cite{1}:

$$\omega_s = 3GT_0m_S\left(1 - e_M^2\right)^3 \cos \beta \left(8\pi R_{ES}^3\right)^{-1} \quad (1)$$

where ω_s is the angular velocity of the node’s revolution, G is the universal gravitational constant, T_0 is the period of sidereal month, m_S is the mass of the Sun, e_M is the eccentricity of the Moon's revolution path, β is the angle of the orbit between the Earth and the Moon, and R_{ES} is the average distance between the Earth and the Sun. Chalub\cite{1} derived the Equation (1) by assuming that e_M is equal to zero. However, in this study, the value is still taken into account. The node evolves in the time interval of one full rotation or in the period interval of the Saros cycle T_s, \[T_s = 2\pi \omega_s^{-1} = 16\pi^2 R_{ES}^3 \left(3GT_0m_S\left(1 - e_M^2\right)^3 \cos \beta \right)^{-1} \quad (2) \]

Based on Table 1, the calculation using Equation (2) results in 6597.3 days/cycle (6597.3 days for one cycle of eclipses) (error $\cong 0.1792\%$).

Table 1. Several values of constants used in this study

Symbol	Value	
Universal gravitational constant	G	$6.674 \times 10^{-11} \text{Nm}^2\text{kg}^{-2}\text{[1]}$
Period of sidereal month	T_0	$2.3606 \times 10^6\text{[1]}$
Mass of the Sun	m_S	$1.9884 \times 10^{30} \text{kg}\text{[1]}$
Eccentricity of the Moon's revolution path	e_M	0.0549[1]
Eccentricity of the Earth's revolution path	e_E	0.0167086[3]
Angle of the orbit between the Earth and the Moon	β	5.145°[1]
Average distance between the Earth and the Sun	R_{ES}	$149,597,870,700 \text{km}\text{[4]}$
Average distance between the Earth and the Moon	R_{EM}	$384,402 \text{km}\text{[5]}$
Moon’s radius	R_M	$1,738.1 \text{km}\text{[6]}$
Earth’s radius	R_E	$6,378.137 \text{km}\text{[6]}$
Sun’s radius	R_S	$695,700 \text{km}\text{[7]}$

3. Relation Between Non-partial Solar Eclipse and Geometrical Value Of Earth, Moon, and Sun

Relation between non-partial solar eclipse and geometrical value of earth, moon and sun can be obtained by analyzing the radius of the umbra on the surface of the Earth. Based on Figure 1, the following mathematical formulas are obtained:

$$\tan \theta = \left(R_S - R_M\right) r_M^{-1} = R_S X^{-1} \quad (3)$$

$$X = R_S r_M \left(R_S - R_M\right)^{-1} \quad (4)$$
Figure 1. Illustration of position between the Earth, the Moon, and the Sun during eclipse. In this picture, r_{MS} is the distance between the Moon and the Sun, r_{EM} is the distance between the Earth and the Moon, S is the distance between the point of intersection of the umbra and the surface of the Earth facing to the Moon, X is the distance between the point of intersection of the umbra and the center of the Sun, P is the umbra’s radius on the surface of the Earth (which in this case is positive upward).

\[
S = X - r_{MS} - r_{EM}
\]

And

\[
P = S \tan \theta
\]

The physical interpretation of Equation (3) to (6) can be seen in the Figure 1. Setting the Equation (3) to (6) in such way as to eventually obtain the following formula

\[
P = R_M - r_{EM} (R_S - R_M)(r_{ES} - r_{EM})^{-1}
\]

where r_{ES} is the distance between the center of the Earth and the Sun. The calculation results of the Equation (7) may contain positive or negative values. If the sign is positive, it means that total eclipse currently occurs; whereas according to Figure 1, the Earth's surface is subjected to the umbra. But if the sign is negative, it means an annular eclipse currently occurs; because the P's lead downward so that the shadow intersection will not pass through the Earth's surface (in other words, Earth is a subject to the antumbra). For the case of a hybrid solar eclipse, the magnitude P must be close to zero because it is the closeness between the total and annular solar eclipse phase.

Validity of Equation (7) can be tested by comparing it to the recorded non-partial solar eclipse previously. To do that, geometrical values are required when the eclipse that being referenced occurs. The value of R_S and R_M is fixed and can be referenced through the data that validity have been accepted, while r_{EM} and r_{ES} are variables (according to Kepler's law) which can be determined by finding their relation to the time of the eclipse that being referenced occurs. The relation is represented by eccentric anomaly E as a function of time, which is derived by knowing the solution of Kepler's equation \[8\]

\[
E(t_g, T_{gs}) = 2 \pi t_g T_{gs}^{-1} + \sum_{n=1}^{\infty} 2 n^{-1} J_n(ne) \sin(n 2 \pi t_g T_{gs}^{-1})
\]

where t_g is the time of the solar eclipse which referred from the last perihelion or perigee, T_{gs} is the sidereal period just when the solar eclipse occurs, and $J_n(ne)$ is Bessel function of the first kind.

Values of t_g and T_{gs} in this study were referenced from Espenak and Meeus’ calculations\[9\][10]. Relation between Equation (8) and distance r (based on ellipse theory) is

\[
r(t_g, T_{gs}) = 1 - e \cos[E(t_g, T_{gs})]
\]
with \(e \) is the eccentricity of the orbit of the Moon or Earth depending on the distance observed, which values can be found in the table 1 sequentially denoted by \(e_M \) and \(e_E \). Equation (9) is used to determine the distance when the observed eclipse occurs, while \(r_{EM} \) and \(r_{ES} \) are determined by subtracting the result of the Equation (9) with the \(R_E \) Earth’s radius (since \(r_{EM} \) and \(r_{ES} \) are viewed from the surface of the Earth). The result of calculation \(P \) for some non-partial solar eclipse occurrence can be seen in Table 3.

Table 2. Data on the value of \(P \) for each non-partial solar eclipse that referenced

Date	Eclipse Type	\(P \) (km)
21 June 2001	Total	94,685
14 December 2001	Annular	−77,013
10 June 2002	Annular	−41,979
4 December 2002	Total	44,159
31 May 2003	Annular	−83,680
23 November 2003	Total	57,261
8 April 2005	Hybrid	34,781
3 October 2005	Annular	−96,294
29 March 2006	Total	72,542
22 December 2006	Annular	−37,257
7 February 2008	Annular	−56,434
1 August 2008	Total	81,545
26 January 2009	Annular	−137,868
22 July 2009	Total	102,298
15 January 2010	Annular	−148,789
11 July 2010	Total	95,962
20 May 2012	Annular	−96,735
13 November 2012	Total	57,657
10 May 2013	Annular	−95,409
3 November 2013	Hybrid	41,500
29 April 2014	Annular	−2,245
20 April 2015	Total	64,224
9 March 2016	Total	63,903
1 September 2016	Annular	−71,353
26 February 2017	Annular	−7,441
21 August 2017	Total	72,837

4. Conclusion

The period of Saros cycle which is calculated through Newton's mechanical approach is 6596.8 days; compared to the experimental Saros cycle (6585.3 days) that produced an error of 0.1792%.

The results of comparison between non-partial solar eclipses and geometric values of the Earth, Moon, and Sun through the calculations of the \(P \) umbra’s radius shows suitability, except for hybrid solar eclipse who does not appropriate as we anticipated, that is the magnitude of umbra’s radius \(P \) for must near zero.
References

[1] Chalub FACC 2009 The Saros Cycle: Obtaining Eclipses Periodicity from Newton’s Laws Revista Brasileira de Ensino de Fisica 31 pp 1-6

[2] Stavinschi M 1999 Proc. of the NATO Advanced Study Institutes on Advance in Solar Research at Eclipses from Ground and from Space 558 Zahn J and Stvinschi M (Bucharest: Springer) pp 1-22

[3] Simon JL Bretnagon P Chapront J Chapront-Touze M Francou G and Laskar 1994 Numerical Expressions for precession formulae and mean elements for the moon and the planets Astronomy and Astrophysics 282 pp 2663-83

[4] IAU Division I 2012 Resolution B2 on the re-definition of the astronomical unit of length Website (http://www.iau.org/administration/resolutions/general_assemblies.html) accessed 2017-6-12

[5] Battat JBR Murphy TW Adelberger EG Gillespie B Hoyle CD McMillan RJ Michelsen EL Nordtvedt K Orin AE Stubbs CW and Swanson HE 2009 The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): Two Years of Milimeter Precision Measurements of the Earth Moon Range Publications of the Astronomical Society of the Pacific 121 875 29

[6] William DR 2016 Moon Fact Sheet Website (https://nssdc.gsfc.nasa.gov/planetary/factsehet/moonfact/html) accessed on 2017-06-12

[7] Mamajek E E Prsa A Torres G Harmanec P Asplund M Bennett PD Capitaine N Christensen-Dalsgaard J Depagne E Folker W M Haberer M Hekker S Hilton JL Kostov V Kurtz DW Laskar J Mason BD Milone EF Montgomery MM Richards M T Schou J and Stewart SG 2015 IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties website: (https://arxiv.org/abs/1510.07674) accessed on 2017-6-12

[8] Colwell P 1992 Bessel Functions and Kepler’s Equation The American Mathematical Monthly 99 1 pp 45-8

[9] Espenak F and Meeus J 2009 Five Millenium Catalog of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)-Revised, National Aeronautics and Space Flight Administration, NASA Goddard Space Flight Center (Greenbelt Maryland: NASA)

[10] Meeus J 1998 Astronomical Algorithms (Virginia: Willman-Bell, Inc.)