Improving Salmonella vector with rec mutation to stabilize the DNA cargoes

Xiangmin Zhang
Arizona State University

Soo-Young Wanda
Arizona State University

Karen Brenneman
Arizona State University

Wei Kong
Arizona State University

Xin Zhang
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Zhang, Xiangmin; Wanda, Soo-Young; Brenneman, Karen; Kong, Wei; Zhang, Xin; Roland, Kenneth; and Curtiss, Roy III, "Improving Salmonella vector with rec mutation to stabilize the DNA cargoes." BMC Microbiology. 11,. 31. (2011).
https://digitalcommons.wustl.edu/open_access_pubs/118

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Improving *Salmonella* vector with *rec* mutation to stabilize the DNA cargoes

Xiangmin Zhang¹, Soo-Young Wanda¹, Karen Brenneman¹, Wei Kong¹, Xin Zhang³,⁴, Kenneth Roland¹, Roy Curtiss III¹,²*

Abstract

Background: *Salmonella* has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in *E. coli* by mutating several genes including the *recA*, *recE*, *recF* and *recJ*. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in *Salmonella enterica*.

Results: The effect of *recA*, *recF* and *recJ* deletions on DNA recombination was examined in three serotypes of *Salmonella enterica*. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a Δ*recA* or Δ*recF* mutation; (2) in all three *Salmonella* serotypes, both Δ*recA* and Δ*recF* mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) Δ*recA* and Δ*recF* mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a Δ*recJ* mutation could reduce plasmid recombination but was less effective than Δ*recA* and Δ*recF* mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec⁺ strains. A Δ*recA* mutation reduced both intrachromosomal recombination and plasmid integration frequencies.

Conclusions: The Δ*recA* and Δ*recF* mutations can reduce plasmid recombination frequencies in *Salmonella enterica*, but the effect can vary between serovars. This information will be useful for developing *Salmonella* delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.

Background

Attenuated *Salmonella* are being developed as vaccines to protect against typhoid fever [1-3]. There are also endeavors employing *Salmonella* as delivery vectors for therapeutic molecules. One strategy utilizes attenuated *Salmonella*, which expresses a gene or gene fragment encoding a protective antigen as vaccine against bacterial pathogens [4-6]. The heterologous genes can be expressed from the *Salmonella* chromosome, or, more often, from a multi-copy plasmid [7,8]. Another strategy exploits *Salmonella* as a delivery vector of DNA vaccine against viral pathogens [4,5,9]. The later strategy is also used to deliver DNA encoding tumor antigen or cytokine for therapeutic applications in oncology [10,11]. In addition, *Salmonella* is used to deliver small interfering RNAs (siRNA) [12], ribozymes [13] and large DNA molecules encoding a viral genome [14]. For instance, in vivo delivery of an artificial bacterial chromosome (BAC) carrying the viral genome of the murine cytomegalovirus (MCMV) by *Salmonella* Typhimurium led to a productive virus infection in mice and resulted in elevated titers of specific antibodies against lethal MCMV challenge [14].

Most vaccine designs utilize *Salmonella* delivery vectors carrying a single plasmid for expression of a single antigen or of a fusion protein carrying epitopes from more than one antigen [15]. To induce broader immunity against a particular pathogen or various pathogens, one might need to express multiple antigens from a
single plasmid carrying different antigen cassettes or from multiple plasmids in a single cell, each expressing one or more relevant antigens. Co-delivery of plasmids encoding tumor antigens and cytokines by Salmonella has been successfully demonstrated to improve protective immunity against cancer [16]. In the case where multiple plasmids are carried in the same Salmonella vector strain, there are most likely regions of homology between the plasmids, since the widely used pUC- and pBR-based plasmids have origins of replication that are nearly identical and both share regions of homology with the p15A ori. Additionally, commonly used promoter sequences, transcriptional terminators and other expression plasmid components may also be present on plasmids coexisting in the same bacterial cell. The presence of these similar or identical DNA sequences would serve to facilitate undesirable interplasmid recombination. In some cases the bacterial vector may intentionally harbor multiple copies of the same DNA sequence, which may lead to plasmid instability. Recently, we encountered such a situation during the development of a bacterial based influenza vaccine. We constructed a single plasmid carrying eight head-to-tail connected influenza cDNA cassettes [17]. The plasmid was intended for delivery into host cells by an attenuated Salmonella strain. The multiple repetitive sequences residing in the plasmid make its stability within the attenuated Salmonella an important concern because any intraplasmid recombination event results in deletion of one or more influenza gene cassettes.

Recent work in our laboratory has focused on developing new strategies for attenuated Salmonella vaccine strains, with features including regulated delayed in vivo attenuation [18,19], regulated delayed in vivo antigen synthesis [18,20-22], and programmed delayed in vivo cell lysis [23,24]. For all of these systems, one or more chromosomal and/or plasmid genes are placed under the control of the araC PBAD promoter. Eventually, our goal is to combine all of these features into a single Salmonella vaccine vector strain. Such a strain will therefore carry multiple chromosomal and plasmid copies of araC PBAD, providing sites for potential recombination, which could lead to unwanted chromosomal or plasmid rearrangements.

However, to our knowledge, there have been no published studies specifically designed to evaluate plasmid recombination in Salmonella enterica. Deletions of several Escherichia coli genes are known to reduce the frequency of plasmid recombination, including the recA, recE, recF and recJ genes [25-30]. The recA gene encodes the general recombinase RecA, involved in nearly all forms of recombination in the cell [31]. The RecE, RecF and RecJ proteins play a role in plasmid recombination and recombination repair [32,33]. The RecA, RecF and RecJ proteins are highly homologous between E. coli and S. enterica, therefore they may play similar roles in DNA recombination. Despite these possible similarities, the recombination systems in the two organisms differ somewhat, as S. enterica does not encode recE [34]. Based on these concerns, we decided to determine the effect of rec gene deletions on intraplasmid recombination, interplasmid recombination, intrachromosomal recombination and plasmid integration in S. enterica.

In this work, we examine the effect of ΔrecA, ΔrecF and ΔrecJ mutations on DNA recombination frequencies in three serovars of Salmonella enterica currently relevant to vaccine development. Our results show that the effect of these mutations on recombination can vary among Salmonella serovars and with previously published results in E. coli.

Results
Plasmid construction
We constructed a series of plasmids (Figure 1 and Table 1) encoding various truncated tetA genes to assay plasmid recombination frequencies using the strategies similar to those described previously [28,35]. Restoration of a functional tetA gene via intra- or intermolecular recombination resulted in a change of the bacterial phenotype from tetracycline sensitive to tetracycline resistant, and served as a marker allowing us to measure the frequency of recombination events (Figure 2).

Plasmids pYA4463 and pYA4590 were constructed to test intraplasmid recombination (Figure 1 panel A). Plasmid pYA4463 carries two truncated tetA genes (5’ end and 3’end), which have 466-bp of tandemly repeated sequence. An intramolecular recombination event can delete one of the repeats resulting in an intact tetA gene, thereby recreating the structure of plasmid pACYC184 (Figure 1 panel A). Theoretically, intramolecular recombination may occur between two pYA4463 molecules to form a plasmid dimer with a functional tetA gene (Figure 1 panel C). Plasmid pYA4590 contains a 602-bp tetA sequence duplication separated by a 1041-bp kan cassette. The intramolecular recombination product is equivalent to pACYC184. The intermolecular recombination product is a dimer plasmid containing an intact tetA gene (Figure 1 panel C). Plasmids pYA4464 and pYA4465 carry the 3’tet gene and 5’tet gene, respectively (Figure 1). The Rec+ Salmonella strain χ3761 carrying either plasmid individually was sensitive to tetracycline. There is 751-bp of tetA DNA in common between the two truncated tetA genes. Recombination between the two plasmids creates a hybrid plasmid containing an intact tetA gene (Figure 1 panel C).
Intraplasmid recombination products

To verify the recombination products, plasmid DNA was prepared from tetracycline resistant (TcR) single colonies derived from \(\gamma3761(\text{pYA4463})\), \(\gamma3761(\text{pYA4464}, \text{pYA4465})\). Plasmids extracted from TcR clones of \(\gamma3761(\text{pYA4463})\) were digested with XbaI and SalI. Theoretically, XbaI/SalI digestion of pYA4463 will yield two fragments (3524 bp and 1187 bp), pACYC184 will yield two fragments (3524 bp and 721 bp) and pYA4463 dimer will yield four fragments (3524 bp, 3524 bp, 1653 bp and 721 bp). The results (Figure 3A) showed that digestion of all 16 TcR clones yielded a 721-bp band, indicating either a pYA4463 dimer or a plasmid equivalent to pACYC184. Three clones (lane 1, 5 and 10) yielded the pYA4463 dimer-specific 1653-bp band. Therefore, we conclude that the other 13 clones recombined to form the pACYC184-like structure. Of note, several clones (2, 13-16) also yielded the 1187-bp pYA4463-specific band, suggesting that the original plasmid (pYA4463) and its recombination product (pACYC184-like) could coexist in the same bacterial cell.

Plasmids extracted from TcR clones of \(\gamma3761(\text{pYA4460})\) were digested with KpnI and EcoRI. Theoretically, plasmid pYA4450 will be digested into two fragments (3414 bp and 2474 bp), plasmid pACYC184 will...
recombination product specific bands and the 4-kb band expected when each plasmid exists separately in the cell. Four tetracycline sensitive (Tc^S) isolates were examined and only a single band was observed, as expected (Figure 3C). These results suggest that interplasmid recombination occurred in the Tc^S cells and that both dimer and individual monomers corresponding to at least one of the two starting plasmids can coexist in the same bacterial cell. We performed a similar experiment in S. Typhi strain Ty2(pYA4464, pYA4465) and obtained identical results (data not shown).

Construction of rec deletion strains
We constructed a series of strains for these studies carrying deletions in either recA, recF or recJ in S. Typhimurium UK-1, S. Typhi Ty2 and S. Paratyphi A (Table 2). We also constructed ΔrecAΔ recF and ΔrecJΔ recF double mutants in S. Typhimurium. Deletion of recA, recF and recJ results in an increase in sensitivity to UV irradiation [36,37]. To verify the presence of these deletions phenotypically in our strains, the UV sensitivity of the S. Typhimurium mutant strains was measured. The ΔrecF and ΔrecJ mutants showed significantly lower surviving fractions than the wild type strain after the same exposure dose (Figure 4). By contrast, after five seconds of UV exposure (16 J/m²) to 2.2 × 10⁹ CFU of the ΔrecA62 mutant (χ² = 833), we were unable to recover any surviving cells (not shown). UV resistance similar to the wild-type strain χ² = 761 was restored to S. Typhimurium ΔrecA and ΔrecJ mutants strains after introduction of recA plasmid (pYA5002) or either recF plasmid (pYA5005/pYA5006), respectively. Transformation of either mutant strain with vector plasmid pYA5001 did not restore UV resistance (Figure 4 and data not shown for recA mutant).

Effect of rec deletions on intraplasmid recombination
To examine the influence of ΔrecA, ΔrecF and ΔrecJ mutations on intraplasmid recombination frequencies, plasmid pYA4463 (tandem duplication) or pYA4590 (tandem duplication with intervening sequence) were introduced into *Salmonella* rec[−] mutants and their parental strains and analyzed as described in the Methods section. The recombination frequency of plasmid pYA4463 was approximately 1.5-5.0 × 10⁻³ in Rec⁺ Typhimurium, Typhi and Paratyphi A (Table 3). In S. Typhimurium and Paratyphi A, most of the rec deletions had no effect on the intraplasmid recombination frequency of plasmid pYA4463 except that a small, but statistically significant decrease in recombination was observed in the ΔrecA mutant of Paratyphi A. However, in both S. Typhi strains, both ΔrecF mutations resulted in approximately 10-fold decrease in recombination frequency (P < 0.01), while the ΔrecA and ΔrecJ mutations resulted in a 2-3-fold reduction (P < 0.01). In the

Table 1 Plasmids used in this study

Plasmid	Relevant characteristic(s)*	Reference or source
pACYC184	cat, tetA, p15A ori	[59]
pBAD-HisA	amp, pBR ori	Invitrogen
pKD46	Red recombinase expression plasmid	[60]
p15A-PB2-kan	cat, kan, p15A ori	This study
pYA4463	pACYC184, adjacent 5'tet and 3'tet	This study
pYA4464	pACYC184, 3'tet	This study
pYA4465	pBAD-HisA; S'ter	This study
pYA4590	pACYC184, 5'tet-kan-3'tet	This study
pYA4373	cat-sacB	[54]
pRE112	ori, onv, sacB, cat	[61]
pYA3886	pRE112, ΔrecF12	This study
pYA4783	pYA3886, ΔrecF1074	This study
pYA3887	pRE112, ΔrecJ315	This study
pYA4680	pRE112, ΔrecA62	This study
pYA4518	pYA4464, cat, p15A ori, GFP gene	This study
pYA4518- cysG	Two cysG fragments	This study
pYA4689	pYA4518-cysG, 5'ter-kan-3'ter	This study
pYA4690	pYA4518-cysG, 5'ter-kan	This study
pYA5001	aacC1, pSC101 ori, T vector	This study
pYA5002	pYA5001, recA cassette from Typhimurium χ³⁷⁶¹	This study
pYA5004	pYA5001, recA cassette from Typhi Ty2 χ³⁷⁶⁹	This study
pYA5005	pYA5001, recF gene from Typhimurium χ³⁷⁶¹	This study
pYA5006	pYA5001, recF gene from Typhi Ty2 χ³⁷⁶⁹	This study

*cat: chloramphenicol resistance gene; tetA: tetracycline resistance gene; amp: ampicillin resistance gene; kan: kanamycin resistance gene; 3'tet: 3’ portion of the tetA gene; 5'ter: 5’ portion of the tetA gene together with its promoter; aacC1: 3-N-aminoglycoside acetyltransferase.

be linearized (4245 bp) and the pYA4590 plasmid dimer will be digested into four fragments (4245 bp, 3414 bp, 2474 bp and 1643 bp). Examination of the restricted DNA (Figure 3B) showed that only one clone (lane 12) had the pYA4590 dimer-specific 1643-bp band. The most prominent band in the other lanes was a 4245-bp band expected for pACYC184-like recombination products. Nine clones contained a mixture of pACYC184 and pYA4590 (lane 1, 3-5, 8, 9, 14-16).

Interplasmid recombination products
Plasmids extracted from Tc^R clones of χ³⁷⁶¹(pYA4464, pYA4465) were digested with NcoI and BglII. Both pYA4464 and pYA4465 are linearized into a DNA fragment about 4 kb. Therefore, in cells containing each or both monomeric plasmids, the digested product will be a single band. The pYA4464-pYA4465 hybrid will be cut into two fragments (5510 bp and 2481 bp). All four of the Tc^R clones we isolated and examined showed...
complementation test, the recombination frequency of plasmid pYA4463 in S. Typhi c11053 was restored to $2.52 \pm 0.18 \times 10^{-3}$ and $1.71 \pm 0.68 \times 10^{-3}$ by introduction of plasmid pYA5005 encoding S. Typhimurium recF gene and pYA5006 encoding the S. Typhi recF gene, respectively (Table 3).

The results with plasmid pYA4590 were also variable among strains. The recombination frequency in Rec+ S. Typhimurium and S. Paratyphi A strains was approximately $2-3 \times 10^{-3}$ and in both S. Typhi strains, the frequency was 3-fold higher, at 1.16×10^{-2} (Ty2) and 1.31×10^{-2} (ISP1820). In S. Typhimurium and S. Typhi Ty2, the Δ recA and Δ recF mutations reduced the recombination frequency of plasmid pYA4590 by 5-20-fold ($P < 0.01$; Table 3). The results were similar for S. Paratyphi A, though the Δ recF mutation only led to 3-fold lower plasmid pYA4590 recombination ($P < 0.01$). The Δ recA mutation had no effect in S. Typhimurium and resulted in a 2-3-fold decrease in recombination in both S. Typhi Ty2 and S. Paratyphi A. Combining the Δ recA Δ recF mutations in S. Typhimurium led to a recombination frequency similar to the frequencies observed for both mutations individually, indicating no additive effect. In the complementation test, plasmid pYA5002, which encodes S. Typhimurium recA, was transformed into S. Typhimurium Δ recA mutant c9833 (pYA4590) and S. Typhi Δ recA mutant c11159(pYA4590). Their respective recombination frequencies were $2.50 \pm 0.42 \times 10^{-3}$ and $14.35 \pm 2.44 \times 10^{-3}$, which were comparable to the corresponding wild type strains ($P > 0.05$) (Table 3). The recF-encoding plasmids pYA5005 and pYA5006 were transformed into recF mutant strains c9070(pYA4590) and c11053(pYA4590), respectively. The respective recombination frequencies were increased to $2.00 \pm 0.24 \times 10^{-3}$ and $2.86 \pm 0.59 \times 10^{-3}$.

Effect of rec deletions on interplasmid recombination

To evaluate interplasmid recombination, plasmids pYA4464 and pYA4465 were co-electroporated into the wild-type and rec deletion strains. Electroporants from each test strain were grown in LB broth containing both ampicillin and chloramphenicol to maintain selection for both plasmids. The frequency of recombination was determined as described in the Methods section. The interplasmid recombination frequency was $1-4 \times 10^{-3}$ for Rec+ S. Typhimurium, S. Typhi and S. Paratyphi A strains (Table 3). For Typhimurium and Paratyphi A,
the ΔrecA and each ΔrecF mutation reduced the interplasmid recombination frequency by about 3-10-fold (P < 0.01). In contrast, the ΔrecA mutation had no effect on interplasmid recombination in S. Typhi Ty2. The ΔrecF mutations did not reduce interplasmid recombination in either of the Typhi strains. Surprisingly, introduction of the ΔrecF1074 mutation into S. Typhi Ty2 resulted in significantly higher interplasmid recombination (P < 0.01). Note that we performed this analysis in eight independent experiments and observed a higher recombination frequency of interplasmid recombination each time. The ΔrecI mutation had no significant effect in S. Typhi, and a small (< 3-fold) but significant effect in S. Typhimurium and S. Paratyphi A. The recombination frequencies were also determined in S. Typhimurium strains ΔrecA ΔrecF and ΔrecF ΔrecI double deletions. No additive effect between the two mutations was observed with respect to each single mutation.

Effect of rec deletions on chromosome related recombination

To measure intrachromosomal recombination frequencies, we introduced the pYA4590-derived DNA sequence containing two truncated tetA genes (5’tet-kan-3’tet) into the S. Typhimurium chromosome at cysG. The two truncated tetA genes had 602 bp of overlapping sequence.
Intrachromosomal recombination deletes the kanamycin resistance cassette and restores one intact copy of the tetA gene (Figure 2C). Deletion of recA resulted in a 5-fold reduced recombination frequency compared to the Rec+ strain \(\chi 9931 \) \((P < 0.01) \), while the recF or recJ deletions had no effect, indicating that RecF and RecJ are not involved in this process (Table 4).

To examine plasmid integration, the S‘tet gene was introduced into the S. Typhimurium chromosome at cysG. The resulting strains were transformed with plasmid pYA4464 (3‘tet) (Figure 1B). The 789 bp of overlapping sequence between 5‘tet on the chromosome and the 3‘tet on the plasmid could result in plasmid integration into the chromosome, generating an intact tetA gene (Figure 2B). Deletion of recA had a profound effect, reducing the integration frequency to less than \(7 \times 10^{-10} \), which was below the limits of detection in this assay \((P < 0.01) \), indicating a strict requirement for RecA in this process. Introduction of plasmid pKD46, which encodes the \(\lambda \) Red recombinase, into \(\chi 9938 \) (\(\Delta \text{recA} \)) carrying pYA4464 restored the integration frequency to the level of the Rec+ strain \(\chi 9935 \). Deletion of recF reduced the frequency of integration less than 3-fold \((P < 0.01) \); Table 4) and the \(\Delta \text{recF} \) deletion had no effect.

Effect of rec deletions on the virulence of S. Typhimurium

BALB/c mice were orally inoculated with the highly virulent S. Typhimurium strain \(\chi 3761 \) and its rec mutant derivatives. The LD\(_{50}\) of \(\chi 3761 \), \(\chi 9070 \) (\(\Delta \text{recF} \)) and \(\chi 9072 \) (\(\Delta \text{recF} \)) were similar, \(3.2 \times 10^5 \), \(6.8 \times 10^4 \) and \(1.5 \times 10^5 \) CFU, respectively (Table 5). The LD\(_{50}\) of the \(\Delta \text{recF} \) double mutant was approximately 100-fold higher than \(\chi 3761 \), at \(2.2 \times 10^5 \) CFU. All mice inoculated with \(1.3 \times 10^5 \) CFU of the \(\Delta \text{recA} \) mutant survived, indicating that the LD\(_{50}\) was \(> 1.3 \times 10^5 \) CFU. Two months following the initial inoculation with the \(\Delta \text{recA} \) mutant strain, surviving mice were challenged with either \(1.5 \times 10^8 \) or \(1.5 \times 10^9 \) CFU of wild-type strain \(\chi 3761 \). All mice survived the challenge, indicating that \(\Delta \text{recA} \) mutant strain \(\chi 9833 \) was both attenuated and immunogenic.

Discussion

We began our studies using information gathered in *E. coli* as a reference point. In *E. coli*, recA-dependent homologous recombination relies on the RecBCD pathway, the RecFOR pathway (originally designated the RecF pathway) and the RecF pathway [38]. The RecBCD pathway is important in conjugal and transductional recombination [39], and may also be involved in the recombination of plasmids containing one or more Chi sites [40]. Recombination in small plasmids lacking a Chi sequence is primarily catalyzed by the RecFOR pathway [41]. RecF, RecO, and RecR bind to gaps of ssDNA and displace the single-strand DNA binding proteins to allow RecA to bind [42,43]. The RecJ ssDNA exonuclease acts in concert with RecFOR to enlarge the ssDNA region when needed. Strand exchange is then catalyzed by RecA [44]. Because of their prominent role in plasmid recombination in *E. coli*, we analyzed the effect of mutations in recF, recJ and recA on plasmid recombination in *Salmonella*.

Attenuated S. Typhi strains have been developed as antigen delivery vectors for human vaccine use. Due to the host restriction phenotype of S. Typhi, preliminary work is typically done in *S. Typhimurium* using mice as

Table 2 The bacterial strains used in this study

Strain	Genotype* [parental strain]	Reference or source
S. Typhimurium		
\(\chi 3761 \)	wild type	[62]
\(\chi 9833 \)	\(\Delta \text{recA} \) \([\chi 3761] \)	This study
\(\chi 9070 \)	\(\Delta \text{recF} \) \([\chi 3761] \)	This study
\(\chi 9072 \)	\(\Delta \text{recJ} \) \([\chi 3761] \)	This study
\(\chi 9081 \)	\(\Delta \text{recJ} \) \([\chi 9072] \)	This study
\(\chi 9931 \)	\(\text{cysG} \) \([\chi 3761] \)	This study
\(\chi 9932 \)	\(\text{cysG} \) \([\chi 9070] \)	This study
\(\chi 9933 \)	\(\text{cysG} \) \([\chi 9072] \)	This study
\(\chi 9934 \)	\(\text{cysG} \) \([\chi 9833] \)	This study
\(\chi 9935 \)	\(\text{cysG} \) \([\chi 3761] \)	This study
\(\chi 9936 \)	\(\text{cysG} \) \([\chi 9070] \)	This study
\(\chi 9937 \)	\(\text{cysG} \) \([\chi 9072] \)	This study
\(\chi 9938 \)	\(\text{cysG} \) \([\chi 9833] \)	This study
\(\chi 9939 \)	\(\text{cysG} \) \([\chi 9070] \)	This study
S. Typhi Ty2		
\(\chi 3769 \)	wild type	[63]
\(\chi 11053 \)	\(\Delta \text{recF} \) \([\chi 3769] \)	This study
\(\chi 11134 \)	\(\Delta \text{recF} \) \([\chi 3769] \)	This study
\(\chi 11159 \)	\(\Delta \text{recJ} \) \([\chi 3769] \)	This study
\(\chi 11194 \)	\(\Delta \text{recJ} \) \([\chi 3769] \)	This study
S. Paratyphi A		
\(\chi 8387 \)	Plasmid pSPA1 was cured from wt isolate ATCC 9281	This study
\(\chi 11243 \)	\(\text{cysG} \) \([\chi 8387] \)	This study
\(\chi 11244 \)	\(\text{cysG} \) \([\chi 8387] \)	This study
\(\chi 11245 \)	\(\text{cysG} \) \([\chi 8387] \)	This study
E. coli K-12		
EP1300	F' \(\text{recA} \) \(\Delta (\text{mrr-hsdRMS-mcrBC}) \Phi80dcolA2 \) \(\Delta M15 \) \(\Delta \text{lacZ} \) \(\text{recA} \) \(\text{endA1 araD139} \) \(\Delta \text{(ara, leu)}769 \text{gal}^+\text{galk}^+\text{rpm}^+\text{nupG} \text{trfA} \text{dhfr} \)	Epicentre
\(\chi 7213 \)	thi-1 thr-1 leuB6 glnA44 \(\text{tufA21 lacY1 \text{recA1 RP4-2-Tc-MuApir 3dadA4 3dhf-2: Tn10} [55] \)	[55]

* kan: kanamycin resistance gene; S‘tet: 5’ portion of the tetA gene together with its promoter; 3‘tet: 3’ portion of the tetA gene.

Table 2 The bacterial strains used in this study

Table 2 The bacterial strains used in this study
the model system to work out attenuation and antigen expression strategies. Recently, we have also been investigating attenuated derivatives of the host-restricted strain *S. Paratyphi A* as a human vaccine vector. Therefore, it was of interest to evaluate and compare the effects of rec mutations in these three *Salmonella* serovars. We selected *S. Typhi* strain Ty2 as exemplary of this serovar because most of the vaccines tested in clinical trials to date have been derived from this strain [45]. *S. Typhi* strain ISP1820 has also been evaluated in clinical trials [46,47] and we therefore included it in some of our analyses. We found that, for some DNA substrates, the effects of ΔrecA and ΔrecF deletion mutations differed among *Salmonella enterica* serotypes. In particular, we found that deleting recA, recF or recJ in *S. Typhi* Ty2 and deleting recF in strain ISP1820 had significant effects (3-10 fold) on the recombination frequency of our direct repeat substrate, pYA4463 (Table 3). No or very limited effect (< 2 fold) was observed for our *S. Typhimurium* and *S. Paratyphi A* strains, consistent with results reported for *E. coli* indicating that recombination of this type of substrate is recA-independent [35]. In contrast, the ΔrecA and ΔrecF mutations resulted in lower interplasmid recombination in *Typhimurium* and *Paratyphi A* but not in *Typhi* strains. Deletion of recF led to a reduction in intraplasmid recombination frequencies in *S. Typhi*, while no effect was seen in *S. Typhimurium*. The ΔrecF mutation also affected plasmid recombination frequencies for two of the three substrates tested in *S. Paratyphi A*. Taken together, these results suggest that the recombination system in *S. Typhi*, or at least in strains Ty2 and ISP1820, is not identical to the recombination system in *S. Typhimurium* and *S. Paratyphi A*.

To investigate the mechanism responsible for the observed differences, we analyzed the genome sequences of *S. Typhimurium* UK-1 (Luo, Kong, Golden and Curtiss, unpublished whole genome sequence), *S. Paratyphi A* (NC_006511) [48] and *S. Typhi* Ty2 (NC_004631) [49]. No paralogs of the recA, recF and recJ genes were found in the three strains. *S. Typhimurium* UK-1 has RecA, RecO and RecR protein sequences identical to *Typhi* Ty2, and RecF and RecJ protein sequences with over 99% identity. Plasmids expressing *Typhimurium* recF or *Typhi* recF complemented the ΔrecF126 mutation in *Typhi*, as evidenced by the UV sensitivity profile (Figure 4) and intraplasmid recombination of pYA4463 (Table 3). Therefore, the basis for these

![Figure 4 UV sensitivity of *S. Typhimurium* rec mutants](image-url)
differences are not clear and indicates that there may be other genes or gene products involved. A more detailed analysis of this phenomenon is under investigation.

Plasmid recombination frequencies were higher in our Salmonella strains than those reported in E. coli. We observed intra- and interplasmid recombination frequencies on the order of 1×10^{-3} in Rec$^+$ Salmonella, whereas measurements made in E. coli strain AB1157 using a similar plasmid system (equivalent to our substrates pYA4590 and pYA4464 + pYA4465) revealed a basal frequency around 10-fold lower, approximately 1×10^{-4} for both types of substrates [26]. Interestingly, the effect of a recF mutation in E. coli was to reduce the recombination frequency of intra- and interplasmid recombination approximately 30-fold, to roughly the same frequencies we observed for S. Typhimurium (Table 3). However, consistent with the results in E. coli, the effects of recA, recF, and recA recF mutations were similar, indicating that the mutations are epistatic.

RecF has been shown previously to play a role in recombinational repair of chromosomal DNA in response to DNA damaging agents [50], including a major role in homologous recombination between direct repeats in the chromosome of S. Typhimurium. In our

Table 3 Plasmid recombination frequency (Mean ± STD, $\times 10^{-3}$)

Strain	rec deletion	pYA4463a	pYA4590b	pYA4464+pYA4465c
S. Typhimurium				
χ3761	None	1.55 ± 0.31	2.40 ± 0.54	2.88 ± 0.85
χ9833	ΔrecA62	1.07 ± 0.24	0.22 ± 0.07	0.27 ± 0.07
χ9070	ΔrecF126	1.14 ± 0.15	0.52 ± 0.07	0.33 ± 0.09
χ9072	ΔrecJ1315	1.87 ± 0.44	2.37 ± 0.21	1.10 ± 0.20
χ9081	ΔrecJ1315 ΔrecF126	NAd	NA	0.35 ± 0.08
χ9939	ΔrecF126 ΔrecA62	NA	0.41 ± 0.09	0.35 ± 0.08
χ9833(pYA5002)	ΔrecA62	RecA$^+$	NA	
χ9070(pYA5005)	ΔrecF126	RecF$^+$	NA	

aIntraplasmid recombination without intervening sequence (5' tet-3' tet).
bIntraplasmid recombination with a 1041-bp intervening sequence (5' tet-kan-3' tet).
cInterplasmid recombination.
dNot assayed.

**$P < 0.01$, relative to the parental rec$^+$ strain.

Table 4 Chromosome related recombination in S. Typhimurium

rec deletion	Intrachromosomal recombination	Plasmid integration
	Strain Frequency (10^{-5})	Strain Frequency (10^{-6})
None	χ9931 6.02 ± 0.38	χ9935 5.59 ± 0.94
ΔrecF126	χ9932 7.05 ± 1.40	χ9936 2.13 ± 0.60b
ΔrecJ1315	χ9933 9.18 ± 2.18	χ9937 4.89 ± 0.41
ΔrecA62	χ9934 1.29 ± 0.51b	χ9938b <0.00071b

aMean ± STD from 3-5 assays were shown in the table.
bUpon introduction of pKD46 (30°C, 0.2% arabinose), the frequency was 6.41 ± 8×10^{-6} ($P = 0.425$).

**$P < 0.01$, relative to the parental rec$^+$ strain.
study, we did not observe any effect of recF on intrachromosomal recombination, although it did have an effect on the frequency of plasmid integration (Table 4). This discrepancy can be explained by the fact that we did not use DNA damaging agents in our study. These agents lead to single stranded stretches of DNA that did not use DNA damaging agents in our study. These effect on the frequency of plasmid integration (Table 4).

chromosomal recombination, although it did have an effect on reducing various classes of recombination and it clearly had an effect on virulence. This result was disappointing, since the majority of human trials with live Salmonella vaccines have focused on S. Typhi. In the case of S. Typhi, it appears that the best approach to preventing intraplasmid recombination will be in the careful design of each plasmid, avoiding any stretches of homology. However, for vaccines based on S. Typhimurium or S. Paratyphi A, introduction of a ΔrecF mutation into attenuated Salmonella vaccine strains carrying multiple plasmids is a useful approach to reduce unwanted plasmid/plasmid or plasmid/chromosome recombination without further attenuating the strain or negatively influencing its immunogenicity. The ΔrecA mutation had a similar or more pronounced effect on reducing various classes of recombination and it clearly had an effect on virulence. We did not examine the effect of a ΔrecA mutation on the immunogenicity of a vectored antigen. Based on its effect on virulence, it may affect the immunogenicity of the vectored antigen in some attenuation backgrounds and therefore may not be applicable for all attenuation strategies.

Conclusions
In this study we showed that ΔrecA and ΔrecF mutations reduce intraplasmid recombination in S. Typhimurium, S. Typhi and S. Paratyphi while there is an intervening sequence between the duplicated sequences. The ΔrecA and ΔrecF mutations reduce interplasmid recombination in S. Typhimurium and S. Paratyphi but not in S. Typhi. The ΔrecF mutations also sharply reduce intraplasmid recombination between direct duplications in S. Typhi. Since ΔrecA mutation results in an avirulent Salmonella strain, the ΔrecF mutation is ideal for reducing plasmid recombination in Salmonella delivery vectors without impairing the virulence. The intrachromosomal recombination and plasmid integration are 2-3 orders lower than plasmid recombination, therefore are less concerned. These information help

Table 5 Virulence of S. Typhimurium rec mutants in BALB/c mice (oral inoculation)

Strain	rec deletion	Dose (CFU)	Survivor/total	LD50 (CFU)
χ3761	None	1.5 × 10^{6}	0/4	3.2 × 10^{5}
		1.5 × 10^{5}	1/4	
		1.5 × 10^{4}	3/4	
		1.5 × 10^{3}	4/4	
χ9070	ΔrecF126	1.0 × 10^{7}	0/4	6.8 × 10^{4}
		1.0 × 10^{6}	1/4	
		1.0 × 10^{5}	1/4	
		1.0 × 10^{4}	4/4	
χ9072	ΔrecJ1315	1.0 × 10^{7}	0/4	1.5 × 10^{5}
		1.0 × 10^{6}	0/4	
		1.0 × 10^{5}	3/4	
		1.0 × 10^{4}	3/4	
χ9081	ΔrecJ1315 ΔrecF126	1.0 × 10^{7}	1/4	2.2 × 10^{6}
		1.0 × 10^{6}	3/4	
		1.0 × 10^{5}	4/4	
		1.0 × 10^{4}	3/4	
χ9833	ΔrecA62	1.3 × 10^{3}	10/10	>1.3 × 10^{5}
develop *Salmonella* delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.

Methods

Bacterial strains and media

E. coli K-12 strain EPI300™ was used for cloning and stable maintenance of plasmids. All *Salmonella* strains used in this work were derived from *Salmonella enterica* serovar Typhimurium wild-type (wt) strain χ3761 (UK-1), serovar Typhi strains Ty2 and ISP1820 or serovar Paratyphi A strain χ8387. Their origin and relevant genotypes are presented in Table 2. Bacteria were grown in LB broth [53].

Plasmid construction

All plasmids used in this study and their relevant characteristics are presented in Table 1. Primers used for plasmid construction are shown in Table 6. All enzymes were obtained from New England Biolabs or Promega.

To construct plasmid pYA4463 (Figure 1 panel A), a *Xba*I-*HinClI* fragment containing the *tetA* promoter and 568 bp of the 5’ end of *tetA*, was excised from pACYC184 and ligated into *XbaI*-*EcoRV* digested pACYC184.

To generate plasmid pYA4590 (Figure 1 panel A), the 5’ end of *tetA* gene together with its promoter was amplified from pACYC184 with primers P1 and P2, which contain engineered *XbaI* and *KpnI* restriction sites, respectively. The resulting PCR fragment was digested with *XbaI* and *KpnI*. The *kan* gene was amplified from plasmid p15A-PB2-kan, a pACYC184 derivative carrying a influenza virus PB2 gene and a *kan* cassette, with primers P3 and P4, which were engineered to contain *KpnI* and *BamHI* sites, respectively. The resulting PCR fragment was digested with *KpnI* and *BamHI*. The two digested PCR fragments were ligated into pACYC184 digested with *XbaI* and *BamHI*. The resulting plasmid, pYA4590, contains the *tetA* promoter and 891 bp of the 5’ end of *tetA*, a 1041-bp fragment encoding *kan* and its promoter followed by 902 bp of the 3’end of *tetA*.

To construct plasmid pYA4464 (Figure 1 panel B), plasmid pACYC184 was digested with *XbaI* and *EcoRV* to remove the 5’ 102 bp of the *tetA* gene and the *tetA* promoter. The cohesive ends were filled using the Klenow large fragment of DNA polymerase and the linear plasmid was self-ligated to yield plasmid pYA4464.

To construct plasmid pYA4465 (Figure 1 panel B), the 5’ 853 bp of *tetA* together with its promoter was amplified from pACYC184 using primers P5 and P6, which were engineered with *SmaI* and *BglII* sites, respectively. The resulting PCR fragment was digested with *SmaI* and *BglII*, and ligated to *EcoRV* and *BglII* digested pBAD-HisA.

Creation of rec deletions

The *recA62* deletion, which deletes 1062 bp, encompassing the entire *recA* open reading frame, introduced into the bacterial chromosome using either λ. Red recombination-mediated recombination [54], or conjugation with *E. coli* strain χ7213(pYA4680) followed by selection/counterselection with chloramphenicol and sucrose, respectively [55]. The *cat-sacB* cassette was amplified from plasmid pYA4373 by PCR with primers P7 and P8 to add flanking sequence. The PCR product was further amplified with primer P9 and P10 to extend the flanking sequence. Those two steps of amplification resulted in the *cat-sacB* cassette flanked by 100 bp of *recA* flanking sequences at both ends. The PCR product was purified with QIAquick Gel Extraction Kit (QIAGEN) and electroporated into *Salmonella* strains carrying plasmid pKD46 to facilitate replacement of the *recA* gene with the *cat-sacB* cassette. Electroporants containing the *cat-sacB* cassette were selected on LB plates containing 12.5 μg chloramphenicol ml⁻¹. From S. Typhimurium chromosome, a 500-bp sequence upstream *recA* gene was amplified with primers P11 and primer P12 and a 500-bp sequence downstream *recA* gene was amplified with primers P13 and P14. Primers P12 and P13 were engineered with a *KpnI* site. The two PCR fragments were digested with *KpnI*, ligated and amplified with primers P11 and P14. The resulting PCR product was digested with isocaudameric *SpeI* and *XbaI* and ligated into *XbaI*-digested pRE112 to yield plasmid pYA4680. In addition, undigested, agarose-gel purified PCR product was electroporated into the *cat-sacB* *Salmonella* strains carrying plasmid pKD46 and spread onto LB plates containing 5% sucrose to select for deletion of the *cat-sacB* cassette. Chloramphenicol-sensitive isolates were verified as *ΔrecA62* by PCR using primers P15 and P16 (ΔrecA62: 1360 bp; wt: 2412 bp). S. Typhimurium strains χ9833 and χ9939 were constructed by this method (Table 2). For construction of a *ΔrecA62* mutant of S. Typhi, wild-type strain Ty2 was mated with *E. coli* strain χ7213 (pYA4680). Transconjugants were selected on LB plates containing chloramphenicol, followed by counterselection on sucrose plates as described above. The resulting ΔrecA62 strain was designated χ11159. The S. Paratyphi A strain χ11243 was generated from wild-type strain χ8387 using the same strategy.

The ΔrecF deletion strains were constructed using suicide vectors pYA3886 and pYA4783. From the S. Typhimurium chromosome, a 397-bp sequence upstream of the *recF* gene was amplified with primers P17 and P18, which were engineered with *XbaI* and *KpnI* sites, respectively. The downstream 296-bp sequence (including 78 bp from the 3’ ORF of *recF*) was amplified with primers P19 and P20 containing *KpnI* and *SphiI* sites, respectively. The two fragments were digested and
inserted into XbaI-SphI digested pRE112, resulting in plasmid pYA3886. The corresponding deletion was designated ΔrecF126. Strains c9070, c9081 and c11244 were generated by conjugation using *E. coli* strain c7213 (pYA3886). Phage P22HTint mediated transduction was used to construct Typhi strain χ11053 [56]. The ΔrecF126 deleted 996 bp from the 5’end of recF in serovars Typhimurium and Paratyphi. The upstream flanking sequence of *S. Typhi* is different with the other serotypes. To construct a serovar Typhi-specific ΔrecF

Primer	Sequencea	Directionb
P1	tattctaaccttcagtgcaat	F
P2	ttaggaccgcagcggccgcgaacgcga	R
P3	taagttccggaatgctgcagctgcttg	F
P4	ttaggatctccgagcaccattcccccg	R
P5	taaccgggagattccccagttgcag	F
P6	ttaggatctcatccgagcagctgtcaggg	F
P7	tgggctcaacagtgatcctactacgcgttttgcctgctccaccacactgcctgcagggcgcg	F
P8	ggccagaacatctcacaacactgcgtgatcaagcataattgcgcggcatcagtgagaatcagctcaaaatc	F
P9	cgagggacgccgagacgcggagacgcgcag	R
P10	cgccgagacgccgagacgcggagacgcgcag	F
P11	taaacagctacagctacagctacagc	F
P12	ttaggatctcatccgagcagctgtcaggg	F
P13	taagttccggaatgctgcagctgcttg	F
P14	ttaggatctcatccgagcagctgtcaggg	F
P15	gatagcagctgcagctgcag	F
P16	tgcggtcacagcagctgtcaggg	F
P17	cgagggacgccgagacgcggagacgcgcag	R
P18	cgagggacgccgagacgcggagacgcgcag	F
P19	cgagggacgccgagacgcggagacgcgcag	F
P20	cgagggacgccgagacgcggagacgcgcag	F
P21	cgagggacgccgagacgcggagacgcgcag	F
P22	cgagggacgccgagacgcggagacgcgcag	F
P23	cgagggacgccgagacgcggagacgcgcag	F
P24	cgagggacgccgagacgcggagacgcgcag	F
P25	cgagggacgccgagacgcggagacgcgcag	F
P26	cgagggacgccgagacgcggagacgcgcag	F
P27	cgagggacgccgagacgcggagacgcgcag	F
P28	cgagggacgccgagacgcggagacgcgcag	F
P29	cgagggacgccgagacgcggagacgcgcag	F
P30	cgagggacgccgagacgcggagacgcgcag	F
P31	cgagggacgccgagacgcggagacgcgcag	F
P32	cgagggacgccgagacgcggagacgcgcag	F
P33	cgagggacgccgagacgcggagacgcgcag	F
P34	cgagggacgccgagacgcggagacgcgcag	F
P35	cgagggacgccgagacgcggagacgcgcag	F
P36	cgagggacgccgagacgcggagacgcgcag	F
P37	cgagggacgccgagacgcggagacgcgcag	F
P38	cgagggacgccgagacgcggagacgcgcag	F
P39	cgagggacgccgagacgcggagacgcgcag	F
P40	cgagggacgccgagacgcggagacgcgcag	F
P41	cgagggacgccgagacgcggagacgcgcag	F
P42	cgagggacgccgagacgcggagacgcgcag	F
P43	cgagggacgccgagacgcggagacgcgcag	F

*The underlined sequences are enzyme sites mentioned in the text.

* Forward (F) or reverse (R) primers.
mutation, we constructed a new suicide vector. The \textit{recF} upstream flanking sequence in plasmid pYA3886 was replaced with the corresponding DNA sequence (447 bp) from \textit{S. Typhi} Ty2. Primers P21 and P22 were used for this modification. The resulting plasmid was designated as pYA4783. The \textit{Typhi}-specific \textit{RecF}I074 mutation was introduced into \textit{S. Typhi} strains ISP1820 and Ty2 by conjugation with \textit{E. coli} strain \textit{q}2713(pYA4783) to yield strains \textit{q}11133 and \textit{q}11134, respectively. Primers P23 and P24 were used to verify the \textit{recF}I074 deletions.

Similar strategies were used to construct the \textit{Δ recJ1315} deletion with suicide vector pYA3887. From the \textit{S. Typhimurium} chromosome, 330 bp upstream of the \textit{recJ} gene was amplified with primers P25 and P26, which were engineered with \textit{XbaI} and \textit{KpnI} sites, respectively. The 299-bp downstream sequence was amplified with primers P27 and P28, engineered with \textit{KpnI} and \textit{SphI} sites, respectively. The two fragments were digested and ligated with \textit{XbaI}-\textit{SphI} digested pRE112. The resulting plasmid was designated pYA3887 and the corresponding deletion was named \textit{Δ recJ1315}. Strains \textit{χ}9072 and \textit{χ}11245 were generated by conjugating the parental strains with \textit{E. coli} strain \textit{q}7213 (pYA3887). Strain \textit{χ}11194 was constructed by phage P22HTint mediated transduction. The \textit{Δ recJ1315} mutation is a deletion of the entire \textit{recJ} gene (1734 bp). Primers P29 and P30 were used to verify the \textit{recJ1315} deletion (\textit{Δ recJ1315}: 736 bp; wt: 2461 bp).

To test chromosome-related recombination, the 5\textit{tet} and 3\textit{tet} fragments were inserted into the \textit{cysG} gene of each \textit{S. Typhimurium} strain using the \textit{λ} Red system. The 460-bp fragment of the \textit{cysG} gene was amplified using primers P29 and P26, which were engineered with \textit{BglII} and \textit{SalI} sites, respectively. The PCR product was digested with \textit{HindIII} and \textit{BglII} sites. A 480 bp adjoining fragment of \textit{cysG} was amplified with primers P33 and P34. Primer P33 was engineered with \textit{BglII} and \textit{PstI} sites and primer P34 was engineered with a \textit{Sall} site. The PCR product was digested with \textit{BglII} and \textit{SalI}. The two digested PCR fragments were ligated into \textit{HindIII} and \textit{SacI} digested pYA4518, deleting green fluorescent protein (GFP) gene. The resulting plasmid pYA4518-\textit{cysG} has \textit{BssHI} and \textit{PstI} sites between the two \textit{cysG}-fragments. This plasmid was digested with \textit{BssHI}, followed by treatment with the Klenow large fragment. The linear plasmid was further digested with \textit{PstI} for insertion of truncated \textit{tetA} genes. The 5\textit{tet}-\textit{kan}-3\textit{tet} cassette was amplified from pYA4590 with primers P35 and P36. Primer P36 was engineered with a \textit{PstI} site. The PCR product was digested with \textit{PstI} and inserted between the \textit{cysG} fragments in pYA4518-\textit{cysG} to yield plasmid pYA4689. The 5\textit{tet}-\textit{kan} cassette was amplified from pYA4590 with primers P35 and P37. Primer P37 was engineered with a \textit{PstI} site. The PCR product was digested with \textit{PstI} and inserted into treated pYA4518-\textit{cysG} to obtain plasmid pYA4690. The 5\textit{tet}-\textit{kan}-3\textit{tet} cassette, together with \textit{cysG} flanking sequences, was amplified from pYA4689 using primers P31 and P34. The PCR product was electroporated into strains \textit{χ}3761 (pKD46), \textit{χ}9070(pKD46), \textit{χ}9072(pKD46) and \textit{χ}9833 (pKD46) with selection on LB plates containing 25 \textit{μg}/ml chloramphenicol. After growth at 37°C to cure plasmid pKD46, the resulting strains containing chromosomal copies of the 5\textit{tet}-\textit{kan}-3\textit{tet} cassette in \textit{cysG} were designated \textit{χ}9931 (Rec\textsuperscript*), \textit{χ}9932 (\textit{Δ recF}), \textit{χ}9933 (\textit{Δ recf}) and \textit{χ}9934 (\textit{Δ recA}), respectively. Primers P38 and P39 were used to verify insertion in the \textit{cysG} gene. The 5\textit{tet}-\textit{kan} cassette together with \textit{cysG} flanking sequences was amplified from pYA4690 with primers P31 and P34. Using the same strategy, the PCR product was electroporated into pKD46 transformants of strains \textit{χ}3761, \textit{χ}9070, \textit{χ}9072 and \textit{χ}9833 to yield strains \textit{χ}9935 (Rec\textsuperscript*), \textit{χ}9936 (\textit{Δ recF}), \textit{χ}9937 (\textit{Δ recL}) and \textit{χ}9938 (\textit{Δ recA}), respectively, each containing the 5\textit{tet}-\textit{kan} cassette inserted into \textit{cysG}. These strains were transformed with plasmid pYA4464 to test plasmid integration based on the 789-bp of \textit{tetA} sequence common to both the plasmid and the bacterial chromosome.

Analysis of recombination frequency

To examine plasmid recombination and plasmid integration, plasmid(s) containing truncated \textit{tetA} genes were introduced into \textit{Salmonella} strains with or without \textit{rec} mutations. The resulting strains were inoculated into 3 ml of LB broth supplemented with 100 \textit{μg}/ml ampicillin and/or 25 \textit{μg}/ml chloramphenicol, as needed. After 8 h growth at 37°C, bacteria were serially diluted in 10-fold steps. 100 \textit{μl} of the 10-2, 10-3 or 10-4 dilution were spread onto LB-agar plates supplemented with 10 \textit{μg} tetracycline \textit{ml}-1 and 100 \textit{μl} of the 10-5, 10-6 or 10-7 dilutions were spread onto LB-agar plates with or without the addition of antibiotics, as needed. Plates were incubated overnight at 37°C. The ratio of tetracycline resistant colonies to total colonies was calculated as the recombination frequency. The average mean frequency was calculated using the frequencies obtained from 3-10 assays for each strain. Following one-way ANOVA, the Dunnett’s test was used to compare multiple groups against the control. The Student’s \textit{t}-test was used to analyze two independent samples.

Complementation of \textit{rec} mutation

Plasmid pYA5001 has a pSC101 \textit{ori}, a gentamicin resistance marker and a prokaryotic green fluorescent protein (GFP) gene cassette flanked by two \textit{AhdI} sites. A linearized T vector for cloning PCR products can be obtained by removing the GFP cassette by \textit{AhdI}
digestion. The recA genes from S. Typhimurium and S. Typhi were amplified using their respective chromosomal DNAs as template with primers P40 and P41. The recF genes were amplified similarly using primers P42 and P43. The forward primer P42 was engineered to include the S. Typhimurium lpp promoter sequence ttctcaacataaaaaagtttgtgttaact (the -35 and -10 boxes are underlined). Amplified DNA fragment were treated with Taq DNA polymerase in the presence of dATP to add 3’ A overhangs. Then the treated PCR products were cloned into pYA5001-derived T vector to yield recA plasmids pYA5002 (Typhimurium) and pYA5004 (Typhi), and recF plasmids pYA5005 (Typhimurium) and pYA5006 (Typhi). The recA plasmids, recF plasmids or empty vector plasmid pYA5001 were transformed into S. Typhimurium recA or recF mutants, respectively for complementation studies. The recA and recF plasmids were also introduced into Salmonella strains carrying pYA4590 or pYA4463 to complement the rec mutation and measure the plasmid recombination frequency.

UV sensitivity test
Quantitative UV killing curves were measured as described previously [57]. Briefly, cells were grown in 3 ml of LB broth at 37°C with vigorous shaking to mid-log phase. The cells were then 10 fold serially diluted in buffered saline with gelatin (BSG) and spread on LB agar plates. Multiple dilutions were exposed to 254 nm UV in a dark room at each designated dose. Then the plates were wrapped with aluminum foil and placed at 37°C overnight. The 10^-6 dilutions were not exposed to UV to determine the total bacterial cell numbers present in the culture. Surviving fractions were calculated as the CFU remaining after UV exposure/total CFU present.

Virulence determination of the rec mutants
Eight-week old BALB/c female mice were purchased from Charles River Laboratories (Wilmington, MA). Mice were held in quarantine for 1 week before use in experiments. Food and water were deprived 6 h before administration of bacteria. Each mouse was orally inoculated with 20 μl of Salmonella suspended in buffered saline with gelatin (BSG) by pipet feeding. Food and water were returned 30 min after inoculation. All mice were observed for a month to record mortality. The 50% lethal dose (LD50) was determined via the Reed and Muench method [58]. Surviving mice were challenged orally with wild-type Salmonella χ3761 two months after the first inoculation.

Acknowledgements
This work was supported by grants from the National Institutes of Health (AI065779) and the Bill & Melinda Gates Foundation (no. 37863).

Author details
1The Bodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
2School of Life Science, Arizona State University, Tempe, AZ 85287, USA.
3Department of Biology, Washington University, St. Louis, MO 63130, USA.
4Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.

Competing interests
The authors declare that they have no competing interests.

Received: 4 November 2010 Accepted: 8 February 2011
Published: 8 February 2011

References
1. Levine MM, Ferreccio C, Abrego P, Martin OS, Ortiz E, Cryz S: Duration of efficacy of Ty21a, attenuated Salmonella Typhi live oral vaccine. Vaccine 1999, 17(Suppl 2):S22-27.
2. Curtiss R III: Bacterial infectious disease control by vaccine development. J Clin Invest 2002, 110(8):1061-1066.
3. Tacket CO, Levine MM: CVD 908, CVD 908-htrA, and CVD 909 live oral typhoid vaccines: a logical progression. Clin Infect Dis 2007, 45(Suppl 1):S20-23.
4. Lewis GK: Live-attenuated Salmonella as a prototype vaccine vector for passenger immunogens in humans: are we there yet? Expert Rev Vaccines 2007, 6(3):431-440.
5. Darji A, Guzman CA, Gerstel B, Wachholz P, Timmis KN, Wehland J, Chakrborty T, Weiss S: Oral somatic transgene vaccination using attenuated S. Typhimurium. Cell 1997, 91(6):765-775.
6. Mollenkopf H, Dietrich G, Kaufmann SH: Intracellular bacteria as targets and carriers for vaccination. Biol Chem 2001, 382(4):521-532.
7. Cheminay C, Hensel M: Rational design of Salmonella recombinant vaccines. Int J Med Microbiol 2008, 298(1-2):87-98.
8. Kwon YM, Cox MM, Calhoun LN: Salmonella-based vaccines for infectious diseases. Expert Rev Vaccines 2007, 6(2):147-152.
9. Schoen C, Stitzker J, Goebel W, Pilgrim S: Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 2004, 294(3):199-206.
10. Vassaux G, Nitchou J, Kozard S, Lemoine NR: Bacterial gene therapy strategies. J Pathol 2006, 208(2):200-208.
11. Moreno M, Kramer MG, Yim L, Chabalgoity JA: Salmonella as live trojan horse for vaccine development and cancer therapy. Curr Gene Ther 2010, 10(1):56-76.
12. Zhang L, Gao L, Zhao L, Guo B, Ji K, Tian Y, Wang J, Yu H, Hu J, Kalvakolanu DV, et al: Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar Typhimurium carrying plasmid-based small interfering RNAs. Cancer Res 2007, 67(12):5859-5864.
13. Bai Y, Li H, Yu GP, Gong H, Uramoto S, Zhou T, Lu S, Liu F: Salmonella-mediated delivery of RNase P-based ribozymes for inhibition of viral gene expression and replication in human cells. Proc Natl Acad Sci USA 2010, 107(16):7269-7274.
14. Cicin-Sain L, Brune W, Bubic I, Jonjic S, Koszinowski UH: Vaccination of mice with bacteria carrying a cloned herpesvirus genome reconstituted in vivo. J Virol 2003, 77(15):8249-8255.
15. Curtiss R III: Antigen delivery systems: Development of live recombinant attenuated bacterial antigen and DNA vaccine delivery vector vaccines. In Mucosal Immunology Edited by: Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer L. San Diego: Elsevier Academic Press; 2001:1099-1037.
16. Luo Y, Zhou H, Muzutani M, Muzutani N, Reifeld RA, Xiang R: Transcription factor fos-related antigen 1 is an effective target for a breast cancer vaccine. Proc Natl Acad Sci USA 2003, 100(15):8890-8895.
17. Zhang X, Kong W, Ashraf S, Curtiss R III: A one-plasmid system to generate influenza virus in cultured chicken cells for potential use in influenza vaccine. J Virol 2009, 83(18):9296-9303.
18. Li, Y., Wang, S., Scarpellini, G., Gunn, B., Xin, W., Wanda Sy, Roland, K., Curtis, R. III: Evaluation of new generation Salmonella enterica serovar Typhimurium vaccines with regulated delayed attenuation to induce immune responses against PspA. Proc Natl Acad Sci USA 2009, 106(2):593-598.

19. Curtiss R III, Wanda Sy, Gunn BM, Zhang X, Tinge SA, Ananthnarayan V, Mo H, Wang S, Kong W: Salmonella enterica serovar Typhimurium strains with regulated delayed attenuation in vivo. Infect Immun 2009, 77(3):1071-1082.

20. Konjuva V, Jenkins M, Wang S, Juarez-Rodriguez MD, Curtis R III: Immunogenicity of recombinant attenuated Salmonella enterica serovar Typhimurium vaccine strains carrying a gene that encodes Eimeria tenella antigen S07. Infect Immun 2008, 76(12):5745-5753.

21. Xin W, Wanda Sy, Li Y, Wang S, Mo H, Curtis R III: Analysis of type II secretion of recombinant pneumococcal PspA and PspC in a Salmonella enterica serovar Typhimurium vaccine with regulated delayed attenuation. Infect Immun 2008, 76(11):3241-3248.

22. Wang S, Li Y, Scarpellini G, Kong W, Sh H, Baek CH, Gunn B, Wanda Sy, Roland KL, Zhang X, et al: Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity. Infect Immun 2010, 78(9):3969-3980.

23. Kong W, Wanda Sy, Zhang X, Bollen W, Tinge SA, Roland KL, Curtis RIII: Regulation of programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proc Natl Acad Sci USA 2008, 105(27):9361-9366.

24. Ameiss K, Ashraf S, Kong W, Pekosz A, Wu WH, Milich D, Bildau JN, Curtiss R III: Delivery of woodchuck hepatitis virus-like particle presented influenza M2e by recombinant attenuated Salmonella displaying a delayed lysis phenotype. Vaccine 20(41):6704-6713.

25. Laban A, Cohen A: Interspersed and intraplasmodic recombination in Escherichia coli K12. Mol Gen Genet 1981, 184(2):200-207.

26. Cohen A, Laban A: Plasmidic recombination in Escherichia coli K12: the role of recF gene function. Mol Gen Genet 1983, 189(3):471-474.

27. Fishel RA, James AA, Kolodner R: recA-independent general genetic recombination of plasmids. Nature 1981, 294(5837):184-186.

28. Matfield M, Badawi R, Brammar WJ: Rec-dependent and Rec-independent recombination of plasmid-borne duplications in Escherichia coli K12. Mol Gen Genet 1985, 199(3):518-523.

29. James AA, Morrison PT, Kolodner R: Genetic recombination of bacterial plasmid DNA. Analysis of the effect of recombination-deficient mutations on plasmid recombination. J Mol Biol 1981, 156(3):411-430.

30. Kolodner R, Fishel RA, Howard M: Genetic recombination of bacterial plasmid DNA: effect of recF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 1985, 163(3):1060-1066.

31. Smith GR: Homologous recombination in procaroytes. Microbiol Rev 1988, 52(1):1-28.

32. Kolodner R, Fishel RA, Howard M: Genetic recombination of bacterial plasmid DNA: effect of recF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 1985, 163(3):1060-1066.

33. Cox MM: A broadening view of recombinational DNA repair in bacteria. Genes Cells 1998, 3(2):65-78.

34. McClelland M, Sanderson KE, Sprey J, Clifton SW, Lateille P, Courtoy L, Porwollik S, Ali J, Danze M, Du F, et al: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413(6858):852-856.

35. Bi X, Liu LF: recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J Mol Biol 1994, 235(2):414-423.

36. Kato T, Rothman RH, Clark AJ: Analysis of the role of recombination and repair in mutagenesis of Escherichia coli by UV irradiation. Genetics 1977, 87(1):1-18.

37. Mahn MJ, Casadeus J, Roth JR: The Salmonella Typhimurium RecF function permits growth of P22 abc phage on recBCD hosts. Mol Gen Genet 1992, 233(2):470-478.

38. Clark AJ: rec genes and homologous recombination proteins in Escherichia coli. Bacteriol Rev 1991, 53(4):532-553.

39. Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM: Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994, 58(3):401-465.

40. Zaman MM, Boles TC: Plasmid recombination by the RecBCD pathway of Escherichia coli. J Bacteriol 1996, 178(13):3840-3845.

41. Persky NS, Lovett SF: Mechanisms of recombination: lessons from E. coli. Crit Rev Biochem Mol Biol 2008, 43(6):347-370.

42. Webb BL, Cox MM, Inman RB: Recombinant DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 1997, 91(3):347-356.