Mapeo de manifestaciones patológicas en revestimientos de mortero (RAF): un estudio de caso en edificios residenciales

R. Dias¹, L. Pagoto¹, N. Tsutsumoto², C. Fioriti³

*Autor de Contacto: rdias07@live.com
DOI: https://doi.org/10.21041/ra.v11i3.538

Recepción: 18/05/2021 | Aceptación: 09/07/2021 | Publicación: 01/09/2021

RESUMEN
Este trabajo tuvo como objetivo identificar, mapear y cuantificar las manifestaciones patológicas (BD) en revestimientos de fachadas de mortero (EMR) de 22 edificios residenciales en Fernandópolis-SP, Brasil. Para cuantificar las BDs se utilizaron los métodos de incidencia (M-INC) e intensidad (M-INT), considerando cinco regiones tipificadas de la fachada: muros continuos (1-OCW), alrededor de huecos (2-OOP), parte superior de parapetos y aleros (3-TOP), debajo de balcones/balcones/voladizos (4-BCP) y esquinas/bordes (5-OCE). Se observaron 4351 y 481 BDs por M-INT y M-INC, respectivamente, realizando mapas estándar de degradación. Los BD más frecuentes fueron manchas y grietas. Las regiones más afectadas por M-INT fueron 2-OOP (34,5%), 1-OCW (23,3%) y 4-BCP (21,6%), y para M-INC fueron 1-OCW (39,9%), 3-TOP (29,3%) y 2-OOP (16,6%).

Palabras clave: recubrimientos de mortero; anomalías; degradación; patología de la edificación; mapeo de defectos.

Citar como: Dias, R., Pagoto, L., Tsutsumoto, N., Fioriti, C. (2021), "Mapeo de manifestaciones patológicas en revestimientos de mortero (RAF): un estudio de caso en edificios residenciales ", Revista ALCONPAT, 11 (3), pp. 88 – 107, DOI: https://doi.org/10.21041/ra.v11i3.538

1Departamento de Engenharia Civil, Faculdade de Engenharia de Ilha Solteira – FEIS/UNESP, Universidade Estadual Paulista, Ilha Solteira, Brasil.
2Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Avançado Ilha Solteira, SP, Brasil
3Universidade Estadual Paulista, Faculdade de Ciências e Tecnologia – FCT/UNESP, Presidente Prudente, Brasil

Contribución de cada autor
Para llevar a cabo este trabajo se realizaron los siguientes pasos: diseño de la investigación, revisión de la literatura, recolección de datos, análisis de los resultados obtenidos en el campo, redacción de manuscritos, traducción, revisión de textos y evaluación de la investigación. El autor R. Dias participó en las etapas de diseño de la investigación (50%), recolección de datos (70%), análisis de resultados (50%), redacción (50%), traducción (34%) y revisión del texto (100%). Los autores L. Pagoto y N. Tsutsumoto participaron en las etapas de recolección de datos (15%), análisis de resultados (15%), redacción (25%), traducción (33%) y evaluación de la investigación (15%). El autor C. Fioriti participó en las etapas, participó en las etapas de diseño de la investigación (50%), revisión de la literatura (50%), análisis de resultados (20%) y evaluación de la investigación (70%).

Licencia Creative Commons
Los derechos de autor (2021) son propiedad de los autores. Este trabajo es un artículo de acceso abierto publicado bajo los términos y condiciones de una licencia internacional Creative Commons Attribution 4.0 International License (CC BY 4.0).

Discusiones y correcciones posteriores a la publicación
Cualquier discusión, incluyendo la réplica de los autores, se publicará en el (primer, segundo o tercer) número del año AAAA siempre y cuando la información se reciba antes del cierre del (primer, segundo o tercer) número del año AAAA.
Mapping External Mortar Render (RAF) defects: case study in multi-storey residential buildings

ABSTRACT
This study aims to identify, map, and quantify the external mortar render (EMR) defects of 22 multi-storey buildings located in the Fernandópolis city, Brazil. Incidence (M-INC) and intensity (M-INT) methods were used to quantify the building defect (BD) of five typified facade regions: continuous wall (1-OCW), around openings (2-OOP), top of parapets and eaves (3-TOP), below balconies, soffits or ledges (4-BCE), and on corners and edges (5-OCE). In addition, three degradation pattern maps were created. We observed 4351 and 481 BDs by M-INT and M-INC, respectively. The most frequent problems were stains and cracks. The most affected regions by M-INT were 2-OOP (34.5%), 1-OCW (23.3%), and 4-BCE (21.6%) while by M-INC were 1-OCW (39.9%), 3-TOP (29.3%), and 2-OOP (16.6%).

Keywords: mortar renders; anomalies; degradation; building pathology; mapping defect.

Mapeamento de manifestações patológicas em revestimentos argamassados de fachada (RAF): estudo de caso em edifícios residenciais

RESUMO
Este trabalho objetivou identificar, mapear e quantificar as manifestações patológicas (MP) em revestimentos argamassados de fachada (EMR), de 22 prédios residenciais de Fernandópolis–SP, Brasil. Para quantificação das MPs foram empregados os métodos da incidência (M-INC) e intensidade (M-INT), considerando a localização em cinco regiões tipificadas da fachada: paredes continuas (1-OCW), entorno de aberturas (2-OOP), topo de parapeitos e beirais (3-TOP), abaixo de varandas/sacadas/ressaltos (4-BCE) e cantos/bordos (5-OCE). Observou-se 4351 e 481 BDs pelo M-INT e M-INC, respectivamente, realizando três mapas padrão de degradação. As BDs mais frequentes foram as manchas e fissuras. As regiões mais afetadas pelo M-INT foram 2-OOP (34,5%), 1-OCW (23,3%), e 4-BCE (21,60%), enquanto para o M-INC foram 1-OCW (39,9%), 3-TOP (29,3%) e 2-OOP (16,6%).

Palavras-chave: revestimentos de argamassa; anomalias; degradação; patologia das edificações; mapeamento.
1. INTRODUCCIÓN

Los muros y sus revestimientos influyen en las condiciones de habitabilidad y salud de las edificaciones, por lo que deben ser un elemento que cumpla con los requisitos mínimos de desempeño y vida útil (TERRA, 2001; SILVA et al., 2013). Las anomalías encontradas en los revestimientos de fachadas con mortero (RAF) a menudo tienen varios orígenes, y la presencia de un MP conduce a una disminución en el rendimiento funcional del RAF, causando daños a los usuarios (BAUER, 2017; DORFMAN; PETRUCCI, 1989).

Las fachadas de los edificios presentan un comportamiento diferente debido a su orientación geográfica, por lo que esta distinción de comportamiento se debe a la acción climática (acción del viento, carga solar y lluvia) que afectan a una fachada de manera diferente a otra (FOX et al., 2016). Aún así, se pueden encontrar anomalías de origen térmico en el RAF incluso para aquellas fachadas que no están directamente expuestas a la irradiación solar (sin flujo de calor directo), normalmente identificadas en lugares con presencia de humedad junto con grietas y / o desprendimiento del revestimiento. (TAKEDA; FABRICANTE, 2018).

Existen varias fallas que afectan al RAF, que pueden originarse en diferentes fases de un edificio desencadenadas ya sea por fallas humanas (diseño, construcción, uso y mantenimiento) o efectos climáticos (BAUER, 2017; BAUER et al., 2018). La variación de los efectos climáticos influye en la durabilidad del RAF debido a su interacción constante. En el caso de la temperatura, estas variaciones estacionales y / o diarias pueden generar tensiones internas en el mortero que, con el tiempo, culminarán en la formación paulatina de microgrietas, provocando un descenso en el rendimiento del revestimiento y la consecuente reducción de vida útil (SENTENA et al, 2018).

La radiación solar afecta principalmente a las superficies horizontales y fachadas del edificio, pero, por el contrario, muchos arquitectos y urbanistas prestan más atención a las opciones de diseño, ignorando las actuaciones termodinámicas (FABBRI et al., 2020).

Los diversos factores que afectan la durabilidad de los edificios y sus subsistemas, como el RAF, se pueden subdividir en dos categorías: el primero, relacionado con la durabilidad del sistema y el segundo, relacionado con la agresividad del entorno (SOUZA et al. ., 2018). Dicho esto, los sistemas constructivos de revestimientos exteriores necesitan ser evaluados especialmente en diferentes zonas climáticas (MACIEL; CARVALHO, 2019).

Considerando la distinción de acciones en función de la ubicación geográfica de un edificio, el mapeo de degradación y cualquier otro tipo de anomalía (PM) es una herramienta muy poderosa para ayudar en la construcción de una base de datos entre laboratorio y campo, para transformar datos de investigación. en nociones prácticas útiles que se convertirán en inductores de acciones de conservación apropiadas (RODRIGUES, 2014).

A través de los datos recopilados, es posible establecer conexiones entre diferentes partes de una fachada y los tipos de defectos más probables que se producen en el revestimiento de mortero. Estas conexiones se pueden expresar gráficamente a través de "mapas de patrones de degradación" (GASPAR; BRITO, 2005).

Debido a la gran importancia del RAF para la edificación, es necesario estudiar los PM que puedan contribuir a la degradación a lo largo de su vida útil, los cuales tienden a minimizarse cuando se prevé durante el diseño o ejecución del revestimiento (POSTINGHER et al., 2019).

En los últimos años se han realizado diversas investigaciones con el fin de desarrollar y / o mejorar métodos de predicción de la vida útil de los edificios y / o sus sistemas, así como para aportar técnicas de prevención, diagnóstico y rehabilitación de edificios (FLORES-COLEN ; BRITO, 2010; SILVA et al., 2013; VIEIRA et al., 2015; SILVA et al., 2011; CARVALHO et al., 2016; SILVA et al., 2018; CHARISI et al., 2018; SOUZA et al. ., 2018; FERREIRA et al., 2019; ANSAH et al., 2020; SAVIZ et al., 2020).
En estos estudios, varias variables de los métodos desarrollados se relacionan con los MP encontrados en los edificios de una determinada ubicación o región, sin embargo, el desconocimiento de los profesionales en la cadena productiva se asocia a la ausencia de datos concisos sobre el origen de los problemas patológicos. las formas de manifestación más comunes, así como la ausencia de registro y divulgación de datos, retrasan el desarrollo y mejora de las técnicas de diseño y construcción, no evitando que vuelvan a incurrir en errores repetidos que ocurrieron en el pasado (THOMAZ, 2020).
Así, este trabajo tiene como objetivo identificar, mapear y cuantificar los principales MP que afectan los 22 edificios residenciales de varios pisos en el municipio de Fernandópolis-SP, Brasil, a través de inspecciones de edificios que cumplen con los criterios establecidos.

2. PROCEDIMIENTOS

Fernandópolis-SP, Brasil, es un pequeño municipio ubicado en la región noroeste del Estado de São Paulo. El municipio es relativamente nuevo con aproximadamente 82 años de edad (PREFEITURA DE FERNANDÓPOLIS, 2012). Así, los edificios de varios pisos de la ciudad son mucho más jóvenes que su edad y, en consecuencia, también son edificios muy jóvenes, con edades máximas que oscilan entre los 4 y los 34 años. Así, el estudio de caso se llevó a cabo en todos los edificios de viviendas de más de 5 plantas del municipio de Fernandópolis-SP.
Así, el universo muestral de 22 edificios cumple con este criterio, ordenados en diferentes regiones de la ciudad, como se destaca en la Figura 1. Los edificios se denominaron de la A a la Q y había dos condominios de cuatro y tres torres, que se denominaron A1, A2, A3, A4, L1, L2 y L3, respectivamente. Cabe destacar que, como se seleccionaron todos los edificios del municipio que cumplían con estos requisitos, no se utilizó ninguna técnica ni recomendación para elegir el universo muestral. Los edificios seleccionados tienen sistemas de construcción y arquitectura similares, con variaciones en la forma, dimensión, acabados y elementos arquitectónicos de la fachada, utilizando predominantemente RAF como acabado de la fachada.

2.1 Clasificación climática local
Como clasificación típica del clima se utilizó el sistema global de tipos climáticos Köppen-Geiger, ampliamente utilizado en el área de geografía, climatología y ecología (ALVARES et al, 2013). Esta clasificación se basa en parámetros específicos para cada región del mundo, por lo que la determinación de los tipos climáticos se realiza considerando la estacionalidad así como los valores promedio mensuales o anuales de temperatura del aire y precipitación.

2.2 Encuesta / recopilación de datos
Se adoptó el método práctico y objetivo para el análisis de sistemas de fachada dañados, centrándose exclusivamente en el RAF, por lo que se descuidaron otros elementos arquitectónicos de acabado. La inspección y registro de los MP visibles se realizó a simple vista y con ayuda de binoculares, siguiendo la secuencia de inspección descrita por Antunes (2010), realizando la inspección de izquierda a derecha, de arriba a abajo, piso a piso, tomando cuidado para que se pudieran cubrir todos los niveles y que se pudieran anotar todos los problemas encontrados en el RAF. La información de campo fue debidamente anotada en un formulario de inspección desarrollado específicamente para este trabajo.
2.3 Método de incidencia (M-INC) y método de intensidad (M-INT)
Estos métodos fueron utilizados por Segat (2005) en los que se basan en dos formas diferentes de cuantificar los casos patológicos observados. En el método de incidencia, cada MP se cuenta solo una vez por fachada, incluso si ocurre repetidamente, mientras que en el método de intensidad, se cuenta cada MP, independientemente de la cantidad de repetición.
La importancia de esta forma de encuesta y cuantificación se debe a que el primer método (de incidencia) permite resaltar cuáles son los MP más comunes y frecuentes para el espacio muestral, mientras que el segundo (de intensidad) permite obtener más información concisa sobre los que están presentes en mayor cantidad.

2.4 Cuantificación de manifestaciones patológicas (MP)
La cuantificación total de cada MP se produjo de forma preliminar de forma unitaria, individualmente para cada tipo, fachada y ubicación. Para M-INT, en presencia de manchas y/o grietas corridas, hasta que no hubo separación física del mismo, aunque se extendiera a más de un piso o incluso a toda la fachada, se cuantificó solo una vez. Si hubo separación física (discontinuidad) se agregó cuántos diputados individuales existían. Como forma de convertir la cuantificación al M-INC y la consiguiente separación de los resultados para cada método, se utilizó la siguiente regla lógica: si la cantidad total de un MP dado que ocurre en una fachada dada es igual o mayor que 1, si su cantidad era igual a 1 y, no obstante, si la cantidad total era igual a 0, se admitía si la cantidad era igual a 0, de modo que, para cada fachada y MP, se contaba 0 MP o 1 MP.

2.5 Regiones mecanografiadas de la fachada
Los MPs también se cuantificaron en cada región tipificada de la fachada, es decir, dados por su ubicación. Para asignar la ubicación de los MP, la fachada se dividió en cinco áreas, que son: (1) muros continuos-OCW, (2) alrededor de aberturas-OOP, (3) encima de parapetos y aleros-TOP, (4) debajo de balcones o voladizos-BCP y (5) en esquinas y bordes-OCE, como se muestra en la Figura 2.
2.6 Delimitación

Las manifestaciones patológicas abordadas se refieren a las que ocurren con mayor frecuencia en los edificios inspeccionados. Así, se excluyen las manifestaciones patológicas menos frecuentes y/o más remotas.

No fue objetivo de este trabajo evaluar los materiales constituyentes del mortero, la traza y proporciones empleadas, el método ejecutivo, las propiedades del mortero y el espesor del revestimiento.

El abordaje de las manifestaciones patológicas encontradas se refiere exclusivamente al EMR, ignorando los defectos encontrados en la pintura y/u otro recubrimiento externo que no sea el mortero.

Si bien las edificaciones inspeccionadas están todas constituidas con una estructura principal en hormigón armado y que el daño a esta estructura puede manifestar manifestaciones patológicas en el revestimiento externo de mortero, estas estructuras y sus posibles manifestaciones patológicas no fueron estudiadas.

3. MAPEO DE MPs

El mapeo de los MP observados se llevó a cabo a través de “Mapas de degradación estándar” según lo informado por Gaspar y Brito (2005). Para ello, además de las regiones tipificadas de la fachada, los tipos de MPs objeto de esta investigación fueron: (HC) grieta horizontal, (VC) grieta vertical, (LC) grieta inclinada, (MP) grieta mapeada, (BD) desprendimiento con ampollas, (PD) desprendimiento de placa, (WD) desprendimiento de polvo, (VS) vesículas, (LS) puntos claros, (DS) puntos oscuros y (FA) fantasmas. Cuando se encontraron otros tipos de MP en la RAF, a este se le asignó la designación (OT). Así, con el fin de diferenciar la ubicación de MP similares, se designaron con el número de la región tipificada frente a su tipo, por ejemplo, MPHCl (grieta horizontal tipo MP en la región 1 - muros continuos).
La realización del mapeo consiste en evaluar no solo la ocurrencia de un determinado problema patológico en cada región específica de la fachada, sino también evaluar la importancia de estos problemas, atribuyendo a cada MP un nivel de degradación correspondiente.

En el presente trabajo se realizaron cuatro adaptaciones al método desarrollado por Gaspar y Brito (2005). La primera adaptación se refiere al encuadre de los problemas locales observados en el RAF de las edificaciones estudiadas y el correspondiente nivel de degradación. El segundo, dada la configuración de los edificios estudiados (pocos muros a ras de suelo y muchas plazas de aparcamiento con pilotes), no se observaron problemas patológicos a ras de suelo, lo que motivó un ajuste en las regiones tipificadas de las fachadas. La tercera adaptación se refiere a la evaluación de los resultados por orientación geográfica de fachada y global, siendo que, en el trabajo realizado por Gaspar y Brito (2005), solo se presentan los parámetros globales. El cuarto cambio consiste en la cantidad de mapas producidos, es decir, "mapa de probabilidad", "mapa de sensibilidad" y "mapa de degradación potencial".

3.1 Nivel de degradación

Como destacan Gaspar y Brito (2005), el nivel de degradación de las MP se define con un análisis cualitativo, que clasifica las MP en 5 niveles, a saber, Nivel 0 (sin degradación) a Nivel 4 (degradación muy severa), según la Tabla 1.

Nivel de degradación	Problemas observados	Acción para ser tomada
Nivel 0: sin síntomas (situación deseable)	No se observa degradación visual	No requiere atención
Nivel 1: síntomas muy leves (condición adecuada)	Tinción superficial ligera, sin presencia de eflorescencias	Evaluación visual periódica
Nivel 2: síntomas leves de degradación (condición aceptable)	Grietas lineales (verticales, horizontales o lineales) aisladas o muy espaciadas, con pocas repeticiones a lo largo de la fachada, Tinción superficial aguda, con leves signos de eflorescencia o presencia de humedad, Presencia localizada de moho o hongos	Limpieza de superficies mediante cepillado y lavado
Nivel 3: degradación amplia (condición mínima aceptable)	Grietas lineales intensas (verticales, horizontales o lineales), que ocurren en varias partes, pero espaciadas, Grietas mapeadas aisladas, Esquinas o bordes dañados, Infiltraciones localizadas, Manchas de luz (eflorescencias), Fántomes, Cambio de tono y textura de la superficie	Reparación y protección
Nivel 4: degradación muy grave (peor condición / no aceptable)	Grietas lineales muy intensas y poco espaciadas (aglomeradas), Grietas mapeadas agrupadas o con muchas repeticiones, Destacamentos, Vesículas	Reemplazo parcial o completo del elemento dañado

Fuente: Gaspar y Brito (2005) - modificado por el autor
3.2 Mapa de Probabilidad
Con los datos observados, es posible establecer una conexión entre una región de fachada tipificada y la probabilidad de ocurrencia de algún MP. A partir de esta conexión, se establece una relación probabilística, que puede ser objeto de la elaboración de un “mapa de probabilidad”, que se obtiene mediante el cálculo matemático consonante en la Ecuación (1). El parámetro resultante 0 representa que no hay probabilidad de que ocurra MP, mientras que el parámetro 1 expresa que el caso patológico ciertamente ocurrirá en la región.

\[
S_{(G,IT)} = \frac{\sum MP_{RG,IT}}{\sum MP_{G,IT} } \text{ ou } S_{(G,IC)} = \frac{\sum MP_{RG,IC}}{\sum MP_{G,IC} } \quad (1)
\]

En que:
- \(S_{(G)}\) corresponde a la sensibilidad de la fachada a la manifestación de un grupo específico \(G\) de MP (varía entre 0 y 1), donde 0 representa ninguna sensibilidad a la formación de MPs al grupo específico y 1 representa completamente sensible a la manifestación de defectos;
- \(MP_{RG}\) representa la cantidad de todos los MP del grupo \(G\) que ocurren en la región \(R\);
- \(R\) corresponde a la región de incidencia (1 a 5);
- \(IC, IT\) corresponden a la forma de cuantificación de MP, incidencia e intensidad, respectivamente.

3.3 Mapa de Sensibilidad
Además de la probabilidad de ocurrencia del caso patológico, es posible establecer una conexión entre cada región tipificada de la fachada y la posibilidad de aparición de un caso patológico específico. A partir de esta conexión, se establece una relación que expresa qué tan sensible es la región tipificada para un PM específico, en el cual se puede elaborar un “mapa de sensibilidad” o mapa de distribución de PM, que es el objeto de la expresión resultante de la Ecuación (2). El parámetro resultante con un valor de 0 representa que la región no tiene sensibilidad a la manifestación de este caso patológico, mientras que el valor resultante de 1 representa que la región es totalmente sensible a la manifestación del caso patológico.

\[
S_{(G,IT)} = \frac{\sum MP_{RG,IT}}{\sum MP_{G,IT} } \text{ ou } S_{(G,IC)} = \frac{\sum MP_{RG,IC}}{\sum MP_{G,IC} } \quad (2)
\]

En que:
- \(S_{(G)}\) corresponde a la sensibilidad de la fachada a la manifestación de un grupo específico \(G\) de MP (varía entre 0 y 1), donde 0 representa ninguna sensibilidad a la formación de MPs al grupo específico y 1 representa completamente sensible a la manifestación de defectos;
- \(MP_{RG}\) representa la cantidad de todos los MP del grupo \(G\) que ocurren en la región \(R\);
- \(R\) corresponde a la región de incidencia (1 a 5);
- \(MPG\) corresponde a la cantidad de todos los MP del grupo \(G\) (grietas, manchas o desprendimientos);
- \(IC, IT\) corresponden a la forma de cuantificación de MP, incidencia e intensidad, respectivamente.

3.4 Mapa de Degradación Potencial
Al ponderar los MPs por su correspondiente nivel de degradación, es posible trazar el mapa de potencial de degradación, es decir, qué región está más o menos degradada, de acuerdo con los parámetros de degradación cualitativos resaltados en la Tabla 1, según la Ecuación (3).
Mapeo de manifestaciones patológicas en revestimientos de mortero (RAF): un estudio de caso en edificios residenciales

Dias, R., Pagoto, L., Tsutsumoto, N., Fioriti, C.

\[DP_{(R,IT)} = \frac{\sum MP_{R,IT} \cdot l_{MP,IT}}{\sum MP_{IT} \cdot l_{MP,IT}} \quad \text{ou} \quad DP_{(R,IC)} = \frac{\sum MP_{R,IC} \cdot l_{MP,IC}}{\sum MP_{IC} \cdot l_{MP,IC}} \]

En que:
- \(DP_{(R)} \) corresponde al potencial de degradación de una determinada región de la fachada (varía entre 0 y 1), donde 0 representa ningún potencial y 1 máximo potencial de degradación;
- \(MP_r \) corresponde a la cantidad de MP que ocurre en la región \(R \);
- \(l_{MP,R} \) corresponde al nivel de degradación de MP que ocurre en la región \(R \);
- \(R \) corresponde a la región de incidencia (1 a 5);
- \(MP \) corresponde a la cantidad de todos los MPs;
- \(l_{MP} \) corresponde al nivel de degradación general considerando todos los MPs;
- \(IC, IT \) corresponden a la forma de cuantificación de PM, incidencia e intensidad, respectivamente.

4. RESULTADOS

4.1 Condiciones climáticas locales
El clima local se clasifica como Aw de acuerdo con la categorización global de los tipos climáticos Köppen y Geiger, por lo que la letra A mayúscula se refiere al Grupo A - Tropical y la letra w minúscula representa el clima de sabana con invierno seco. Con base en los registros de eventos climáticos observados en el periodo de enero / 2015 a mayo / 2020 proporcionados por los portales climáticos de INMET y CLIMATEMPO, en relación a la temperatura, el clima se caracteriza por altas temperaturas diarias, con picos máximos y mínimos de aproximadamente 40 y 5 °C, respectivamente. La temperatura media anual obtenida ronda los 25ºC, mientras que la amplitud térmica obtenida para el mismo periodo varía entre 10 y 15ºC. Para el mismo periodo, también se consultaron los datos de precipitación, la presión atmosférica, así como la dirección y velocidad del viento. En cuanto a las precipitaciones, hubo una mayor concentración de precipitación en verano (estación cálida) y menor concentración en invierno (estación fría), caracterizando la estacionalidad como lo destaca la clasificación de Köppen y Geiger. La presión atmosférica local sufre poca variación diaria, destacando los valores promedio de 950 a 960 hPa, con picos máximos de presión atmosférica después de la temporada más seca (invierno), mientras que la mínima la temporada más húmeda (verano). En cuanto a los vientos predominantes, estos están bastante presentes para las direcciones cardinales combinadas con la dirección este y prácticamente inexistentes en las otras direcciones.

4.2 Panorama geral das MPs
En total se detectaron 4.351 MP para el método de intensidad y 316 MP para el método de incidencia, sumando todos los tipos, localizaciones y edificaciones. La Tabla 2 muestra la cuantificación total para cada tipo de MP, mientras que la Tabla 3 muestra el resumen general de la cantidad de MP por grupo y el número promedio de repeticiones. La Figura 3 muestra el total de cada edificio. De manera análoga a lo observado por Gaspar y Brito (2005) en el que se encontró que gran parte de las edificaciones (93%) de las fachadas presentaban algún signo de degradación, los PM de este caso de estudio se observaron en total (100%). De las muestras. Utilizando el Método de Incidencia, las mayores ocurrencias fueron grietas y manchas, con igual cantidad y porcentaje, seguidas de desprendimientos, según la Tabla 3. Sobre el mismo tapete, Terra (2001), Padaratz et al. (2002) obtuvieron resultados similares, con mayor representación de grietas, seguidas de manchas y finalmente desprendimientos.
Segat (2005) y Mazer et al. (2013) observaron un predominio de grietas para este método, seguido de desprendimientos y manchas. Un factor a destacar es la ubicación de los estudios en los trabajos mencionados, y en los estudios cuyos resultados fueron similares tienen una característica común, a saber, veranos más calurosos y húmedos. Sin embargo, la diferencia climática no cambió el predominio de grietas para ese método.

Los puntos son mucho más frecuentes que otros parlamentarios. Sin embargo, las manchas y las grietas tienen la misma recurrencia. Realizando una evaluación climatológica regional, además de la dirección preferencial de los vientos, la variación cíclica diaria de temperatura, observada notablemente por la gran amplitud térmica diaria, es un factor muy significativo. En cuanto a la orientación solar, en relación al Método de Incidencia, las fachadas Este y Norte fueron las que presentaron más problemas, seguidas de las Fachadas Sur y Oeste con prácticamente la misma cantidad y porcentaje. En el trabajo realizado por Mazer et al. (2013) predominaron los problemas en las fachadas norte y oeste, seguidas de las fachadas este y sur. En cuanto al Método de Intensidad, las fachadas este y oeste fueron las más significativas, seguidas de las fachadas norte y sur con prácticamente la misma cantidad y porcentaje. La cantidad de MPs por orientación solar y método se destaca en la Tabla 4. En el trabajo realizado por Antunes (2010) la distribución de los problemas ocurrió en orden descendente en las fachadas Norte, Sur, Oeste y Este, mientras que Consoli (2006) observó mayor ocurrencia en la fachada sur, seguida de las fachadas este, oeste y norte.

En cuanto a la ubicación de los PM por el Método de Intensidad, hubo predominio de manchas cerca de aberturas, cimas y debajo de balcones, balcones o voladizos, mientras que en muros continuos y en esquinas predominaron las grietas. Los resultados obtenidos se acercan a los parámetros encontrados por Gaspar y Brito (2005) y Freitas (2012), aunque la región de estudio se encuentra en clima diferente según la clasificación de Köppen y Geiger, es decir, Fernando-SP (Aw), Lisboa, Alcochete y Tavira (Csa) y Goiânia (Aw). Los mismos parámetros y representatividad de los problemas también se verificaron por el Método de Incidencia, a excepción de las manchas en paredes continuas, que superaron los desprendimientos. En las Figuras 4. y 5. se presentan los resultados de ubicación por grupo de MP y ubicación.

MP	CUANTIFICACIÓN A TRAVÉS DE M-INC	CUANTIFICACIÓN A TRAVÉS DE M-INC								
	NORTE	SUR	ESTE	OESTE	MP TOTAL	NORTE	SUR	ESTE	OESTE	MP TOTAL
MPHC1	11	8	13	13	45	52	74	36	53	215
MPHC2	2	0	5	2	9	2	0	8	4	14
MPHC3	6	4	2	3	15	26	18	2	14	60
MPHC4	0	1	2	1	4	0	1	15	45	61
MPHC5	3	0	0	0	3	4	0	0	0	4
MPVC1	5	6	5	1	17	30	19	14	2	65
MPVC2	3	1	5	1	10	5	2	43	14	64
MPVC3	1	1	1	1	4	1	7	1	3	12
MPVC4	0	0	0	0	0	0	0	0	0	0
MPVC5	5	3	2	2	12	15	6	4	7	32
MPLC1	4	7	8	5	24	21	66	30	18	135
MPLC2	1	1	5	3	10	4	2	80	35	121
MPLC3	3	2	1	1	7	4	3	2	1	10
MPLC4	2	1	0	0	3	13	100	0	0	113
MPLC5	0	0	0	2	2	0	0	0	3	3
PMC1	6	6	9	7	28	72	8	30	57	167
PMC2	1	1	1	0	3	1	4	1	0	6
PMC3	1	1	1	1	4	1	1	2	4	8
Mapeo de manifestaciones patológicas en revestimientos de mortero (RAF): un estudio de caso en edificios residenciales

Dias, R., Pagoto, L., Tsutsumoto, N., Fioriti, C.

GRUPO MP	M-INT ABSOLUTO	M-INT RELATIVO	M-INC ABSOLUTO	M-INC RELATIVO	CANTIDAD PROMEDIO DE REPETICIONES (M-INT / M-INC)
Grietas	1116	25,65%	206	42,83%	5,42
Desprendimiento	156	3,59%	68	14,14%	2,29
Manchas	3078	70,74%	206	42,83%	14,94
Otros MPs	1	0,02%	1	0,21%	1,00
Total	4351	100,00%	481	100,00%	-

Tabela 3. Número de MP por grupo y método de cuantificación

GRUPO MP	M-INT ABSOLUTO	M-INT RELATIVO	M-INC ABSOLUTO	M-INC RELATIVO
Grietas	1116	25,65%	206	42,83%
Desprendimiento	156	3,59%	68	14,14%
Manchas	3078	70,74%	206	42,83%
Otros MPs	1	0,02%	1	0,21%
Total	4351	100,00%	481	100,00%
Mapeo de manifestaciones patológicas en revestimientos de mortero (RAF): un estudio de caso en edificios residenciales

Dias, R., Pagoto, L., Tsutsumoto, N., Fioriti, C.

4.3 Probabilidad de ocurrencia de MP y su potencial de degradación
La probabilidad de ocurrencia de defectos en cada región tipificada del edificio se presenta en las Figuras 6 y 7, para cada orientación solar específica y general, para los Métodos de Intensidad e Incidencia. Los valores de la derecha indican el nivel medio de degradación para cada región tipificada de la fachada. En general, para ambos métodos de cuantificación, la mayor probabilidad de ocurrencia de PM ocurre en las Regiones 1 - en muros continuos, Región 2 - alrededor de aberturas y Región 3 - en la parte superior (parapetos y aleros), como lo observaron Gaspar y Brito (2005), Antunes (2010), Freitas (2012) y Souza et al. (2019). Sin embargo, los niveles de degradación también fueron más significativos en estas regiones. La excepción a los parámetros obtenidos por Gaspar y Brito (2005) se refieren a los niveles de degradación en la Región 2 y la Región 4 que fueron más significativos en este estudio.
Mapeo de manifestaciones patológicas en revestimientos de mortero (RAF): un estudio de caso en edificios residenciales

Figura 4. Ubicación de MP por grupo y ubicación - Método de intensidad

Grupo	OCW	OOP	TOP	BCP	OCE
Grietas	582	205	90	174	65
Desprendimientos	80	22	49	0	5
Manchas	351	1273	654	765	35
Otros MPs	0	1	0	0	0
TOTAL	1013	1501	793	939	105

Figura 5. Ubicación de MP por grupo y ubicación - Método de incidencia

Grupo	OCW	OOP	TOP	BCP	OCE
Grietas	114	32	30	7	23
Desprendimientos	34	8	23	0	3
Manchas	44	39	88	24	11
Otros MPs	0	1	0	0	0
TOTAL	192	80	141	31	37
En general, existen diferencias muy importantes entre los resultados de cada método aplicado en la cuantificación para determinar el Potencial de Degradación (DP). Esto ocurre, por tanto, la recurrencia de efectos para cada método específico ocurre de manera diferente, es decir, uno por el número total de repeticiones y el otro por el número de veces que ocurre, sin considerar las repeticiones para la misma fachada. Por tanto, se puede identificar la potenciación de los efectos para cada método y MP. Por ejemplo, como se destaca en la Tabla 3, aunque existe la misma recurrencia para manchas y grietas, existe un número mucho mayor de repeticiones de las manchas contra las grietas, de ahí la importancia de considerarlas de forma independiente y, no obstante, interpretar sus resultados.

En este tapete, considerando todas las orientaciones solares, existe mayor potencial de degradación en la Región 1 - en muros continuos, que en la Región 3 - en la parte superior (parapetos y aleros) para el Método de Incidencia. En cuanto al Método de Intensidad, existe un mayor potencial de degradación en la Región 2 - alrededor de las aberturas, seguida de la Región 1 - en muros continuos. Gaspar y Brito (2005) también observaron una degradación más importante en la Región 1, en paredes continuas.

El Potencial de Degradación (DP) en cada región tipificada del edificio se presenta en las Figuras 8 y 9, para cada orientación solar específica y general, para los Métodos de Intensidad e Incidencia.
4.4 Sensibilidad a la formación de MP
La sensibilidad a la formación de MP se refiere a la sensibilidad de cada región tipificada a la formación de un tipo específico de MP, que se presenta en el “Mapa de Sensibilidad”.

4.4.1 Sensibilidad a la formación de Grietas
En orden descendente, existe una mayor predisposición a la formación de grietas en las Regiones 1, 2 y 5. Las matrices de cemento se ven fácilmente afectadas por movimientos higrotérmicos debido a importantes variaciones de temperatura y humedad. En presencia de grandes masas o restricciones de deformación, el agrietamiento es inevitable si el mortero utilizado no tiene propiedades específicas para este propósito.

En el presente estudio de caso se observó un amplio rango de temperatura diaria (alrededor de 15°C), variaciones cíclicas de humedad y presión atmosférica con pequeñas variaciones diarias y estacionales (prácticamente constantes por un corto periodo). Estas particularidades ciertamente contribuyen al movimiento higrotérmico del RAF, especialmente en los muros continuos, que están restringidos a la libre deformación por el propio mortero, además de representar la mayor superficie expuesta, por lo tanto, más sujeta a los efectos de la temperatura y la humedad, justificando ser la región más afectada.

Cabe señalar también que, aunque no existiera una amplitud térmica diaria tan importante, las temperaturas entre RAF y el aire son diferentes y, en presencia de presión atmosférica constante, hay un aporte a la condensación del vapor de agua en el interior de la matriz del mortero, provocando movimientos higrotérmicos.

Las fisuras presentes en estas regiones tienden a tener niveles de degradación por encima de 2,00, destacando niveles medios por encima de 3,00, que es el mínimo aceptable. Esta observación también fue reportada por Gaspar y Brito (2005), Antunes (2010), Freitas (2012) y Souza et al. (2019). En las Figuras 10. y 11. Se presentan los mapas de sensibilidad a la formación de grietas para los dos métodos de cuantificación.
4.4.2 Sensibilidad a la formación de manchas
En orden descendente, existe una mayor predisposición a la formación de manchas oscuras en las Regiones 3, 1 y 2. Las manchas claras son poco frecuentes y recurrentes, por lo que existe un gran predominio de las manchas oscuras. Hay demasiadas manchas en las fachadas con una orientación solar frente a las dimensiones del viento predominante (combinado con la dirección cardinal este). Esta situación puede ser un indicio de que el aire atmosférico de la región puede tener una gran cantidad de partículas sólidas en suspensión y de ahí la "fácil sensibilidad" a esta predisposición. Las regiones mencionadas tienen particularidad y similitud en cuanto a los mecanismos de acción en la formación de MP y, sin embargo, existe el mismo tipo de sensibilidad. Gaspar y Brito (2005) reportaron esta sensibilidad debido a la acción de la lluvia dirigida, especialmente aquellas que están mal protegidas por techos y aleros. Ninguno de los edificios estudiados tiene revestimientos adicionales de los paneles de fachada y esta situación también puede ser una indicación de la motivación de tal problema. Las figuras 12. y 13. muestran los mapas de sensibilidad para la formación de manchas, para cada método de cuantificación utilizado.

4.4.3 Sensibilidad a la formación de desprendimientos
La predisposición a la formación de desprendimientos está más presente en las Regiones 1, 3 y 2. Esta condición también fue verificada por Antunes (2010) y Souza et al. (2019). El
desprendimiento presente en todas las regiones más sensibles son aquellas con polvo. Esta PM se produce por varios motivos, pero algo muy específico que merece atención es su aplicación a altas temperaturas. Según un relevamiento del clima local, las temperaturas en la región son normalmente altas en todas las épocas del año, además de tener un rango de temperatura diaria alto en torno a los 15ºC. Por tanto, esta condición a la hora de aplicar o mejorar la propiedad del mortero para eliminar estos efectos es algo relevante que hay que tener en cuenta.

Paralelamente al desprendimiento, las fisuras son más recurrentes y frecuentes también en la Región 1 que, cuando están presentes, contribuyen a la acumulación de agentes agresivos en esta ubicación, favoreciendo la potencialización de problemas traducidos en formación de desprendimientos (mayor posible degradación).

Además del desprendimiento pulverulento, también predomina el desprendimiento de vesículas y placa, manifestaciones que se asocian comúnmente a reacciones expansivas tardías, ya sea por deficiencia en la composición de la traza de mortero o por presencia de impurezas. Cabe señalar que estos MP en la vecindad de las Regiones 2 y 3 ocurren en lugares supuestamente más húmedos y con predominio de tinciones superficiales.

En las Figuras 14. y 15 se presentan los mapas de sensibilidad para la formación de desplazamientos, para cada región tipificada de la fachada y método de cuantificación.

![Figura 14. Sensibilidad a la formación de desprendimientos - Método de incidencia](image1)

NOTA: los valores de la derecha representan el nivel medio de degradación de cada región tipificada

![Figura 15. Sensibilidad a la formación de desprendimientos - Método de intensidad](image2)

NOTA: los valores de la derecha representan el nivel medio de degradación de cada región tipificada

5. **CONCLUSIONES**

A la vista de los resultados obtenidos, se observaron algunas conclusiones destacando los parámetros de clima y MPs:

- El clima local se caracteriza por una gran amplitud térmica diaria (del orden de 15ºC) en promedio;
 - El aumento de la humedad y las lluvias acompañan a la estación más calurosa (verano);
 - Los vientos son más frecuentes y rápidos en las direcciones cardinales combinadas con la dirección Este (E);
 - La presión atmosférica local es prácticamente constante en todas las estaciones del año;
• Hay una disminución de la humedad relativa del aire al mismo tiempo que la disminución de las temperaturas diarias, con un clima más seco en invierno y un clima más húmedo en verano;
• En todos los edificios observados, se encontró la presencia de MP;
• Existe la misma recurrencia de manchas y grietas, sin embargo, las manchas se repiten de manera más significativa, siendo luego más intensas en comparación con las grietas;
• Los destacamentos son menos recurrentes y frecuentes que los otros parlamentarios estudiados en este estudio de caso;
• La cuantificación de MPs considerando dos métodos distintos, a saber, el Método de Incidencia y el Método de Intensidad demostró ser bastante eficaz;
• Comparar la cantidad de PM's entre un método de cuantificación y otro nos permite observar aquellos que son más recurrentes y con más repeticiones de problemas, indicando la posibilidad de problemas ubicados en edificios específicos;
• Se observó la misma recurrencia de manchas y grietas, aunque las manchas se repiten con mucha más significación, provocando una cantidad excesivamente alta de manchas, que predominan en el sentido Este y Oeste;
• Existe una fuerte evidencia de que la dirección local de los vientos (combinada con la dirección cardinal este) favorece la formación de manchas para estas fachadas;
• El amplio rango de temperatura diaria es también otro fuerte indicio de que el clima local favorece la formación de grietas y desprendimientos, ya sea por movimientos higrotérmicos o incluso por la temperatura a la que se aplica el mortero;
• Los resultados fueron más similares a los estudios con climas de la misma particularidad (invierno seco y verano húmedo);
• Relativamente al número de problemas, dado el número de repeticiones de manchas en las direcciones Este y Oeste, para el Método de Intensidad hubo una mayor cantidad de anomalías en las fachadas antes mencionadas, seguido de las fachadas Norte y Sur, mientras que para la Incidencia Método, el predominio fue en la fachada Este, seguida de la Norte, Sur y Oeste.
• En cuanto a las regiones tipificadas de la fachada, se observó una mayor probabilidad de ocurrencia de PM en las Regiones 1, 2 y 3 que en las Regiones 2, 4 y 5;
• El potencial de degradación de cada una de las regiones varía según el método, cabe señalar que las degradaciones más significativas se encuentran en las Regiones 1, 2 y 3;
• Las Regiones 1, 2 y 5 fueron más sensibles a la formación de grietas y fisuras que las otras regiones;
• En las Regiones 3, 1 y 2, hay mayor sensibilidad a la formación de manchas que en las otras Regiones;
• En las Regiones 1, 3 y 2, se observó una mayor sensibilidad a la formación de desprendimientos que en las otras Regiones;

6. AGRADECIMIENTOS

La empresa Dias & Cardozo por financiar los gastos de realización de esta investigación, una iniciativa privada muy importante en el fomento de la investigación.

7. REFERENCIAS

Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., Sparovek, G. (2013), Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. 22(6):711-728. https://www.doi.org/10.1127/0941-2948/2013/0507.
Mapeo de manifestaciones patológicas en revestimientos de mortero (RAF): un estudio de caso en edificios residenciales

Dias, R., Pagoto, L., Tsutsumoto, N., Fioriti, C.

Ansah, M. K., Chen, X., Yang, H., Lu, L., Lam, P. T. I. (2020), An integrated life cycle assessment of different façade systems for a typical residential building in Ghana. Sustainable Cities and Society. 53:1-13. https://doi.org/10.1016/j.scs.2019.101974.

Antunes, G. R. (2010), “Estudo de manifestações patológicas em revestimentos de fachada de Brasília – Sistematização da incidência de casos”, Dissertação (Mestrado em Engenharia Civil), Faculdade de Tecnologia, Universidade de Brasília.

Bauer, L. A. F. (2017), “Materiais de Construção”. Volume 2. 5ª ed. Revisada. LTC Editora. Rio de Janeiro. 538p.

Bauer, E., Milhomem, P. M., Aidar, L. A. G. (2018), Evaluating the damage degree of cracking in facades using infrared thermography. Journal of Civil Structural Health Monitoring. 8:517-528. https://doi.org/10.1007/s13349-018-0289-0.

Carvalho, C. G., Flores-Colen, I. e Faria, P. (2015), Rehabilitation of renders of old buildings in Portugal: Survey, supporting methodology proposal and case study. Structural Survey. 33(4/5):337-353. https://doi.org/10.1108/SS-04-2015-0024.

Charisi, S., Thiis, T. K., Stefansson, P., Burud, I. (2018), Prediction model of microclimatic surface conditions on building façades. Building and Environment. 128:46-54. https://doi.org/10.1016/j.buildenv.2017.11.017.

Consoli, O. J. (2006), “Análise da durabilidade dos componentes das fachadas de edifícios sob a ótica do projeto arquitetônico”, Dissertação (Mestrado em Engenharia Civil), Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Catarina.

Dorfman, G., Petrucci, H. M. (1989), “Recomendações para fachadas com vistas a sua maior durabilidade e facilidade de manutenção”, Simpósio Sobre Patologia das Edificações, CPGEC/UFRGS, Porto Alegre: RS(BR), pp. 251-261.

Fabbri, K., Gaspari, J., Bartoletti, S., Antonini, E. (2020), Effect of facade reflectance on outdoor microclimate: An Italian case study. Sustainable Cities and Society. 54:1-12. https://doi.org/10.1016/j.scs.2019.101984.

Ferreira, C., Canhoto, L., Silva, A., Brito, J. (2019), Stochastic Petri-net models to predict the degradation of ceramic claddings. Building Research & Information. 47(6):697-715. https://doi.org/10.1080/09613218.2018.1501873.

Flores-Colen, I. e Brito, J. (2010), A systematic approach for maintenance budgeting of buildings façades based on predictive and preventive strategies. Construction and Building Materials. 24(9):1718-1729. https://doi.org/10.1016/j.conbuildmat.2010.02.017.

Maciel, A. C. F., Carvalho, M. T. (2019), Operational energy of opaque ventilated façades in Brazil. Journal of Building Engineering. 25:1-10. https://doi.org/10.1016/j.jobe.2019.100775.

Mazer, W., Silva, L. M. R., Lucas, E., Santos, F. M. C. (2016), Evaluation of pathological manifestations in buildings in terms of geographical orientation. Revista ALCONPAT. 6(2):145-156. https://doi.org/10.21041/ra_v6i2.135.

Padaratz, I. J., Canova, J. A., de Mori, L. M., Botter, R. R. (2002), “Incidências patológicas em fachadas e áreas comuns de edificações para ensino - caso do campus da Universidade Estadual de Maringá”, Encontro Nacional de Tecnologia do Ambiente Construído, Foz do Iguaçu: PR(BR), pp. 1453–458.
Postinger, C. M., Kremer, B. M., Rossatto, F. C., Pacheco, F., Christ, R. (2019), “Avaliação das manifestações patológicas em revestimentos argamassados externos com VANT: estudo de caso em edificação multifamiliar do município de Garibaldi-RS”, XV Congresso Latinoamericano de Patología de Construcción y XVII Congreso de Control de Calidad en la Construcción, CONPAT. 2:1-15. https://doi.org/10.21041/CONPAT2019/V2PAT296.

Prefeitura de Fernandópolis (2012), “Fernandópolis – nossa história nossa gente”. Vol. II. Ed. Anglo. Santo Amaro.

Rodrigues, J. D. (2014), Defining, mapping and assessing deterioration patterns in stone conservation projects. Journal of Cultural Heritage. 16(3):267-275.

Saviz, M., Luc E, C., Saeed, M. M. (2020), Design strategies using multi-criteria decision-making tools to enhance the performance of building façades. Journal of Building Engineering. 30:1-28.

Segat, G. T. (2005), Manifestações patológicas observadas em revestimentos de argamassa: estudo de caso em conjunto habitacional popular na cidade de Caxias do Sul (RS). Dissertação (Mestrado Profissionalizante em Engenharia), Universidade Federal do Rio Grande do Sul.

Sentena, J. A. A., Kazmierczak, C. de S., Krein, L. A. (2018), Degradação de revestimentos de argamassa com finos de resíduos de concreto por ciclos térmicos. Ambiente Construído. 18(1):211-224. https://doi.org/10.1590/s1678-86212018000100217.

Silva, A. Dias, J. L., Gaspar, P. L., Brito, J. (2013), Statistical models applied to service life prediction of rendered façades. Automation in Construction. 30:151-160.

Silva, A., Brito, J. de, Gaspar, P. L. (2011), Service life prediction model applied to natural stone wall claddings (directly adhered to the substrate). Construction and Building Materials. 25(9): 3674-3684. https://doi.org/10.1016/j.conbuildmat.2011.03.064.

Silva, A., Brito, J, Gaspar, P. L. (2018), A comparative multi-criteria decision analysis of service life prediction methodologies for rendered façades. Journal of Building Engineering. 20:476-487. https://doi.org/10.1016/j.jobe.2018.08.009.

Souza, J. Silva A., Britó, J. Bauer, E. Service life prediction of ceramic tiling systems in Brasilia-Brazil using the factor method. Construction and Building Materials. 192:38-49. https://doi.org/10.1016/j.conbuildmat.2018.10.084.

Souza, J. S., Piazzarollo, C. B., Bauer, E. (2019), “Degradação nas diferentes zonas de fachadas em sistemas de revestimento”, Simpósio Brasileiro de Tecnologia das Argamassas, XIII STBA, Goiania: GO(BR), pp. 136-144.

Takeda, O. T., Mazer, W. (2018), Potential of thermographic analysis to evaluate pathological manifestations in façade cladding systems. Revista ALCONPAT. 8(1):38-50. https://doi.org/10.21041/ra.v8i1.181.

Terra, R. C. (2001), “Levantamento de manifestações patológicas em revestimentos de fachada de edificações da cidade de Pelotas”, Dissertação (Mestrado em Engenharia), Universidade Federal do Rio Grande do Sul.

Thomaz, E. (2020), “Trincas em edifícios: causas, prevenção e recuperação”. 2. ed. 1ª reimp. São Paulo, Ed. Oficina de Textos.

Vieira, S. M., Silva, A., Sousa, J. M. C., Brito, J., Gaspar, P. L. (2015), Modelling the service life of rendered facades using fuzzy systems. Automation in Construction. 51:1-7. https://doi.org/10.1016/j.autcon.2014.12.011.