AutoMorph: Automated Retinal Vascular Morphology Quantification via a Deep Learning Pipeline.

Author list:

Yukun Zhou\(^{1,2,4}\), Siegfried K. Wagner\(^{2}\), Mark Chia\(^{2}\), An Zhao\(^{1,3}\), Peter Woodward-Court\(^{2,5}\), Moucheng Xu\(^{1,4}\), Robbert Struyven\(^{2,4}\), Daniel C. Alexander\(^*\)\(^{1,3}\), Pearse A. Keane\(^*\)\(^{2}\)

Affiliation:

1. Centre for Medical Image Computing, University College London, London, UK
2. NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
3. Department of Computer Science, University College London, London, UK
4. Department of Medical Physics and Biomedical Engineering, UCL, London, UK
5. Institute of Health Informatics, UCL, London, UK

\(^*\)These authors contributed equally to this work.

Correspondence and reprint requests: Pearse A. Keane, MD FRCOphth, NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, United Kingdom. Tel: +44 207 253 3411 Email: pearse.keane1@nhs.net

Disclosure / Funding:

This work is supported by EPSRC grants EP/M020533/1 EP/R014019/1 and EP/V034537/1 as well as the NIHR UCLH Biomedical Research Centre. Dr Wagner is funded through an MRC Clinical Research Training Fellowship (MR/TR000953/1). Dr Keane is supported by a Moorfields Eye Charity Career Development Award (R190028A) and a UK Research & Innovation Future Leaders Fellowship (MR/T019050/1). Dr. Keane has acted as a consultant for DeepMind, Roche, Novartis, Apellis, and BitFount and is an equity owner in Big Picture Medical. He has received speaker fees from Heidelberg Engineering, Topcon, Allergan, and Bayer.

Running Head: AutoMorph: Automated Retinal Vascular Morphology Quantification

Word count: 5251

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Purpose: To externally validate a deep learning pipeline (AutoMorph) for automated analysis of retinal vascular morphology on fundus photographs. AutoMorph has been made publicly available (https://github.com/rmaphoh/AutoMorph), facilitating widespread research in ophthalmic and systemic diseases.

Methods: AutoMorph consists of four functional modules: image pre-processing, image quality grading, anatomical segmentation (including binary vessel, artery/vein, and optic disc/cup segmentation), and vascular morphology feature measurement. Image quality grading and anatomical segmentation use the most recent deep learning techniques. We employ a model ensemble strategy to achieve robust results and analyse the prediction confidence to rectify falsegradable cases in image quality grading. We externally validate each module’s performance on several independent publicly available datasets.

Results: The EfficientNet-b4 architecture used in the image grading module achieves comparable performance to the state-of-the-art for EyePACS-Q, with an F1-score of 0.86. The confidence analysis reduces the number of images incorrectly assessed as gradable by 76%. Binary vessel segmentation achieves an F1-score of 0.73 on AV-WIDE and 0.78 on DR-HAGIS. Artery/vein scores 0.66 on IOSTAR-AV, and disc segmentation achieves 0.94 in IDRID. Vascular morphology features measured from AutoMorph segmentation map and expert annotation show good to excellent agreement.

Conclusions: AutoMorph modules perform well even when external validation data shows domain differences from training data, e.g., with different imaging devices. This fully automated pipeline can thus allow detailed, efficient and comprehensive analysis of retinal vascular morphology on colour fundus photographs.

Translational Relevance: By making AutoMorph publicly available and open source, we hope to facilitate ophthalmic and systemic disease research, particularly in the emerging field of ‘oculomics’.
Introduction

The widespread availability of rapid, non-invasive retinal imaging has been one of the most notable developments within ophthalmology in recent decades. The significance of the retinal vasculature for assessing ophthalmic disease is well known, however there is also growing interest in its capacity to provide valuable insights into systemic disease, a field which has been termed ‘oculomics.’

Narrowing of the retinal arteries is associated with hypertension and atherosclerosis, whilst dilation of the retinal veins is linked with diabetic retinopathy. Increased tortuosity of the retinal arteries is also associated with hypercholesterolaemia and hypertension. Considering that manual vessel segmentation and feature extraction can be extremely time consuming, as well as poorly reproducible, there has been growing interest in the development of tools which can extract retinal vascular features in a fully-automated manner.

In recent decades, a large body of technical work has focused on retinal vessel map segmentation. Performance has improved dramatically through employing a range of techniques from unsupervised graph- and feature-based methods to supervised deep learning models. Despite this progress, the widespread use of these techniques in clinical research has been limited by a number of factors. Firstly, technical papers often focus on performing a single function whilst ignoring upstream and downstream tasks, such as pre-processing and feature measurement. Secondly, existing techniques often perform poorly when applied to real-world clinical settings limited by poor generalisability outside of the environment in which they were developed.

Although some software has been utilised for clinical research, most are only semi-automated, requiring human intervention for correcting vessel segmentation and artery/vein identification. This limits process efficiency and introduces subjective bias, potentially influencing the final outcomes. Further, most existing software has not integrated the crucial functions needed for such a pipeline, namely image cropping, quality assessment, segmentation, and vascular feature measurement. For example, poor quality images in research cohorts often need to be manually filtered by physicians, which generates a considerable workload. There is also the potential to improve the
performance of underlying segmentation algorithms by employing the most recent advances in machine learning, thus enhancing the accuracy of vascular feature measurements.

In this study, we explore the feasibility of a deep learning pipeline providing automated analysis of retinal vascular morphology from colour fundus photographs. We highlight three unique advantages of the proposed “AutoMorph” pipeline:

1. AutoMorph consists of four functional modules, including: (a) retinal image pre-processing, (b) image quality grading, (c) anatomical segmentation (binary vessel segmentation, artery/vein segmentation, and optic disc segmentation), and (d) morphological feature measurement.

2. AutoMorph alleviates the need for physician intervention by addressing two key areas. Firstly, we employ an ensemble technique with confidence analysis to reduce the number of ungradable images which are incorrectly classified as being gradable (false gradable images). Secondly, accurate binary vessel segmentation and artery/vein identification reduce the need for manual rectification.

3. AutoMorph generates a diverse catalogue of retinal feature measurements that previous work indicates has the potential to be used for the exploration of ocular biomarkers for systemic disease.

Perhaps most importantly, we made AutoMorph publicly available with a view to stimulating breakthroughs in the emerging field of ‘oculomics’.
Methods

The AutoMorph pipeline consists of four modules: 1) image pre-processing, 2) image quality grading, 3) anatomical segmentation, and 4) metric measurement (Figure 1). Source code for this pipeline is available from (https://github.com/rmaphoh/AutoMorph).

Figure 1. Diagram of the proposed AutoMorph pipeline. The input is colour fundus photography and the final output is the measured vascular morphology features. Image quality grading and anatomical segmentation modules use deep learning models. Confidence analysis decreases false gradable images in the image quality grading module.

Datasets

The datasets used for development and external validation of the deep learning models described in this work are summarised in Table 1 and Supplementary Material S1. For model training, we chose publicly available datasets which contain a large quantity of annotated images. Importantly, a diverse combination of public datasets was used in order to enhance external generalisability. To validate the models, we externally evaluated the performance of those trained models on datasets distinct from those on which they were trained (e.g., different imaging devices, country of origin, and types of pathology). All the datasets provide the retinal fundus photographs and the corresponding expert annotation. For image quality grading datasets, using EyePACS-Q as an example, two experts grade each image into three categories: good, usable, and reject quality, determined by image illumination, artefacts, and the diagnosability of the general eye diseases to the experts. For anatomical segmentation datasets, such as the DRIVE dataset for binary vessel segmentation task, two experts annotate each pixel as vessel or background, thus generating a ground truth map with the same
size of the retinal fundus photographs, where white colour indicates vessel pixels and black colour for the background. More details can be referred to Supplementary Material S1.

Table 1. Characteristics of the training and external validation data. External validation data is unseen for model training and purely used to evaluate the trained model performance on out-of-distribution data with different countries of origin and imaging devices. EyePACS-Q, a subset of EyePACS with image quality grading annotation. a, image quantity indicates the image number used in this work and the brackets list the proportion of macula-centred images. b, evaluating on disc due to no cup annotation. c, although we have evaluated the binary vessel segmentation model on ultra-widefield retinal fundus dataset AV-WIDE, we recommend using AutoMorph on retinal fundus photographs with a 25-60 field of view (FOV), as all the deep learning models are trained using images with FOV equals to 25-60 degree, and the pre-processing step is tailored for images with this FOV. NR, not reported.
Dataset name	Country of origin	Image quantity	Device (manufacturer)
Image quality grading			
Training data	EyePACS-Q-train	USA	12543 (NR, more than 99%)
			Centervue DRS (Centervue, Italy), Optovue iCam (Optovue, USA), Canon CR1/DGi/CR2 (Canon), and Topcon NW (Topcon)
Internal validation data	EyePACS-Q-test	USA	16249 (NR, more than 99%)
External validation data	DDR-test	China	4105 (100%)
			42 types of fundus cameras, mainly Topcon D7000, Topcon TRC NW48, Nikon D5200 and Canon CR 2 cameras.
Binary vessel segmentation			
Training data	DRIVE	Netherlands	40 (100%)
	STARE	USA	20 (100%)
	CHASEDBI	UK	28 (0%)
	HRF	Germany and Czech Republic	45 (100%)
	IOSTAR	Netherlands and China	30 (53.3%)
	LES-AV	NR	22 (0%)
External validation data	AV-WIDE	USA	30 (100%)
	DR-HAGIS	UK	39 (100%)
Artery/vein segmentation			

Note: NR denotes normal reading.
Training data	IOSTAR-AV³⁷,⁴³	Netherlands and China	30 (53.3%)	EasyScan camera (i-Optics, Netherlands)
External validation data	REFUGE⁴⁴	China	800 (100%)	Visucam 500 fundus camera (ZEISS) and Canon CR-2 camera (Canon)
External validation data	GAMMA⁴⁵,⁴⁶	China	100 (100%)	CR-2 camera (Canon)
External validation data	IDRID⁴⁷	India	81 (100%)	VX-10 alpha digital fundus camera (Kowa, USA)
Modules

Image pre-processing: Retinal fundus photographs often contain superfluous background, resulting in dimensions that deviate from a geometric square. To account for this, we employed a technique that combines thresholding, morphological image operations, and cropping\(^1\) to remove the background so that the resulting image conforms to a geometric square (examples shown in Supplementary Material S2).

Image quality grading: To filter out ungradable images which often fail in segmentation and measurement modules, AutoMorph incorporates a classification model to identify ungradable images. The model classifies each image as good, usable, or reject quality. In our study, good and usable images were considered to be gradable, however this decision may be modified in scenarios where there is sufficient data to include only good quality images. We employed EfficientNet-B4\(^{48}\) as the model architecture and performed transfer learning on EyePACS-Q. Further details are outlined in Supplementary Material S2.

Anatomical segmentation: Vascular structure is thin and elusive especially against low-contrast backgrounds. To enhance binary vessel segmentation performance, AutoMorph uses an adversarial segmentation network\(^{23}\). Six public datasets were used for model training (Table 1). Accurate artery/vein segmentation is a long-standing challenge. To address this, we employed an information fusion network\(^{22}\) which is tailored for artery/vein segmentation. Three datasets were used for training. Parapapillary atrophic changes, which can be a hallmark of myopia or glaucoma, can cause large errors in disc localisation and segmentation. To counter this, AutoMorph employs a coarse-to-fine deep learning network\(^{49}\), which has achieved first place for disc segmentation in the MICCAI 2021 GAMMA challenge\(^{45,46}\). Two public datasets were utilised in model training. Further detailed information is provided in Supplementary Material S3.
Vascular morphology feature measurement: AutoMorph measures a series of clinically-relevant vascular features, as summarised in Figure 2 (comprehensive list in Supplementary Material S5). Three different calculation methods for vessel tortuosity are provided including distance measurement tortuosity, squared curvature tortuosity \[^{50}\] , and tortuosity density \[^{51}\]. The fractal dimension value (Minkowski-Bouligand dimension) \[^{52}\] provides a measurement of vessel complexity. The vessel density indicates the ratio between the area of vessels to the whole image. For vessel calibre, AutoMorph calculates the central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE), as well as the arteriolar-venular ratio (AVR) \[^{53-55}\]. AutoMorph measures the features in standard regions, including ZONE B (the annulus 0.5-1 optic disc diameter from the disc margin) and ZONE C (the annulus 0.5-2 optic disc diameter from the disc margin) \[^{29}\]. Considering ZONE B and ZONE C of macular-centred images may be out of the circular fundus, the features for the whole image are also measured.

![Feature measurement diagram](image.png)

Figure 2. Features measured by AutoMorph, including tortuosity, vessel calibre, disc/cup, and others. For each image, the optic disc/cup information is measured, including the height and width, as well as cup-to-disc ratio. For binary vessels, the tortuosity, fractal dimension, vessel density, and average width are measured. Besides these features, arteries/veins are also used for measuring calibre features CRAE, CRVE, and AVR by Hubbard and Knudtson methods.
Ensemble and confidence analysis

In model training, 80% of training data is for model training and 20% of it is used to tune the training hyperparameters, such as scheduling the learning rate. In retinal image grading, we ensemble the output from eight trained models with different subsets of training data, as it generally gives a more robust result. Moreover, the average value and standard deviation (SD) of the eight possibilities are calculated for confidence analysis. Average probability indicates the average confidence of prediction. Low average cases are prone to false predictions, such as Figure 3(c). Meanwhile, SD represents the inconsistency between models. High inconsistency likely corresponds to a false prediction, as shown in Figure 3(d). The images with either low average probability or high SD are automatically recognised as low confidence images and rectified as ungradable. False gradable images can fail the anatomical segmentation module thus generating a large error in vascular feature measurement. The confidence analysis economises physician intervention and increases the reliability of AutoMorph. To our knowledge, this is the first report of a confidence analysis combined with the model ensemble integrated within the vessel analysis pipeline. An average threshold corresponds to a change of operating point and SD threshold involved in uncertainty theory. In this work, we set an average threshold of 0.75 and a SD threshold of 0.1 to filter out false gradable images. Specifically, the average probability lower than 0.75 or SD larger than 0.1 will be rectified as ungradable images. The rationale for selecting threshold values is based on the probability distribution histogram on tuning data. More details are described in Supplementary Material S2.
Figure 3. Confidence analysis for image quality grading. M1-M8 represents the eight ensemble models. For each image, the predicted category is transferred as gradable or ungradable (good and usable are as gradable, reject as ungradable). The average probability and SD are calculated for the predicted category. (a) and (b) are two image cases with high confidence in prediction. The case (c) is classified as gradable quality in low average probability of 0.619 while (d) is in high SD 0.191, which are defined as low confidence images in our work. Although (c) and (d) are preliminarily classified as gradable, the final classification is rectified as ungradable with the confidence threshold.

Statistical analyses and compared methods

For deep learning functional modules, the well-established expert annotation is used as reference standard to quantitatively evaluate the module performance. We calculated Sensitivity, Specificity, Positive predictive value (Precision), Accuracy, Area-Under-Curve Receiver Operating Characteristic (AUC-ROC), F1-score, and IoU metrics to verify the model performance. These metric definitions are

\[
\text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN},
\]

\[
\text{Sensitivity} = \frac{TP}{TP + FN},
\]

\[
\text{Specificity} = \frac{TN}{TN + FP},
\]
\[
\text{Precision} = \frac{TP}{TP + FP},
\]

\[
F1 = \frac{2 \times \text{Sensitivity} \times \text{Precision}}{\text{Sensitivity} + \text{Precision}},
\]

where TP, TN, FP, and FN respectively indicate true positive, true negative, false positive, and false negative. AUC-ROC curve is a performance measurement for classification problems at various threshold settings. It tells how much the model is capable of distinguishing between classes. In segmentation tasks, Intersection of Union (IoU) measures the overlap degree between ground truth maps and segmentation maps. Following the same setting31,39,57–59, we set the ungradable images as the positive class in image quality grading. The probability of the ungradable category equals that of reject quality, and the probability of the gradable category is the sum of good quality and usable quality. As introduced in confidence analysis, we use a mean value of 0.75 and SD of 0.1 as thresholds to get the final rectified gradable and ungradable categories. For binary vessel segmentation, each pixel of the retinal fundus photograph corresponds to a binary classification task. The vessel pixel is positive class and the background pixel is negative. The probability range for each pixel is from 0 to 1, where a larger value indicates a higher probability of being a vessel pixel. We threshold the segmentation map with 0.5 which is a standard threshold for binary medical image segmentation tasks. Optic disc segmentation is similar to binary vessel segmentation, the difference is that the positive class is the optic disc pixel. For artery/vein segmentation, each pixel has a four-class probability of artery, vein, uncertain pixel, and background. Following standard settings for multi-class segmentation tasks, the category with the largest probability across the four classes is the thresholded pixel category. More information is listed in Supplementary Material S3.

We conducted the quantitative comparison to other competitive methods to characterise the generalisabibility of AutoMorph using external validation. We used internal validation results from other published work to provide a benchmark for a well-performing model. These methods used a reasonable proportion of data for model training and the remainder for internal validation (e.g., five-fold validation that means 80% of images are used for training and tuning, while 20% are used for validating the trained model), and claimed that they have achieved state-of-the-art performance. As
introduced in Table 1, the models of AutoMorph are trained on several public datasets and externally validated on separate datasets, while the compared methods39,57–59 are trained in the same domain data as the validation data, but with fewer training images. The goal of the comparison was not to prove the technical strengths of AutoMorph over recent methods, since this has already been verified in previously published work22,23,47,48. Rather, we aim to demonstrate that due to the diversity of its training data, Automorph performs well on external datasets, even when these datasets include pathology and show large domain differences from the training data. Additionally, to compare method’s technical superiority, we have provided the internal validation of AutoMorph in Supplementary Material S3.

Considering we employ standard formulas29,50–52 to measure vascular morphology features, the measurement error only comes from inaccuracy of anatomical segmentation. In order to evaluate measurement error that occurs as a result of vessel segmentation, we respectively measure the vascular features based on AutoMorph segmentation and expert vessel annotation, and then draw Bland-Altman plots. Following the same evaluation3,60, intraclass correlation coefficients (ICC) are calculated to quantitatively show agreement. Additionally, the boxplots of difference between the vascular features from AutoMorph segmentation and expert annotation are listed in Supplementary Material S4.
Results

Results for external validation of AutoMorph are summarized in Table 2.

Table 2. Validation of functional modules and comparison with other methods. NR, not reported. “Internal” indicates the validation and training data are from the same dataset but isolated. “External” means that validation data is from external datasets. The comparisons are with competitive methods of image quality grading, binary vessel segmentation, artery/vein segmentation, and optic disc segmentation. * Due to no comparison method on the DDR test, we compare AutoMorph (external) to the same architecture EfficientNet-b4 which is trained with DDR train data (internal).

	Image Quality Grading		Artery/vein Segmentation			
	EyePACS-Q test	DDR test	IOSTAR-AV			
	AutoMorph (internal)	Comparison\(^{31}\)	AutoMorph (external)	Comparison\(^{*}\)	AutoMorph (external)	Comparison\(^{58}\)
Sensitivity	0.85	0.85	1	0.93	0.64	0.79
Specificity	0.93	NR	0.89	0.97	0.98	0.76
Precision	0.87	0.87	0.6	0.73	0.68	NR
Accuracy	0.92	0.92	0.91	0.99	0.96	0.78
AUC-ROC	0.97	NR	0.99	0.99	0.95	NR
F1-score	0.86	0.86	0.75	0.82	0.66	NR
IoU	/	/	/	/	0.53	NR

	Binary Vessel Segmentation	Optic disc				
	Ultra-wide field: AV-WIDE	Standard field: DR-HAGIS	IDRID			
	AutoMorph (external)	Comparison\(^{39}\)	AutoMorph (external)	Comparison\(^{57}\)	AutoMorph (external)	Comparison\(^{59}\)
Sensitivity	0.71	0.78	0.84	0.67	0.9	0.9
Specificity	0.98	NR	0.98	0.98	0.95	NR
Precision	0.75	0.82	0.73	NR	0.94	NR
Accuracy	0.96	0.97	0.97	0.97	0.99	0.99
Metric	Score 1	Score 2	Score 3	Score 4	Score 5	Score 6
------------	---------	---------	---------	---------	---------	---------
AUC-ROC	0.96	NR	0.98	NR	0.95	NR
F1-score	0.73	0.8	0.78	0.71	0.94	NR
IoU	0.57	NR	0.64	NR	0.91	0.85

Image quality grading

The internal validation is on EyePACS-Q test data. For fair comparison to method 31, we evaluate the image quality grading performance of categorising good, usable, and reject quality. The quantitative results are listed in Table 2. The classification F1-score has achieved 0.86, in par with the state-of-the-art method with F1-score of 0.86 31. After transferring the prediction to gradable (good and usable quality) and ungradable (reject quality), the confusion matrix of validation on the EyePACS-Q test is listed in Figure 4. We can learn that the confidence thresholding brings a trade-off in performance metrics, suppressing false gradable ratio but simultaneously increasing false negative. False gradable images are prone to fail the anatomical segmentation module and generate large errors and outliers in vascular feature measurement. Although this thresholding filters out some adequate quality images, it maintains the reliability of AutoMorph.

![Figure 4](https://example.com/figure4.png)

Figure 4. The confusion matrix of the grading results on EyePACS-Q test data. (a) shows the results before confidence thresholding while (b) is the results after it. The value is normalised in rows. The diagonal includes the correct classification ratio, while the red box indicates false gradable (i.e., ungradable images are wrongly classified as gradable) and the green box shows the percentage of false ungradable (i.e., gradable images are...
wrongly categorised as ungradable). The false gradable of (b) is reduced by 76.2% compared with that of (a), while the false ungradable increases in (b).

The external validation is on the DDR test data. As DDR only includes two categories in image quality annotation – gradable and ungradable, we firstly transfer the AutoMorph prediction of good and usable quality as gradable, and reject quality as ungradable, and then evaluate the quantitative results. Although the difference in the annotation might underestimate the AutoMorph image quality grading capability, the performance is satisfactory compared to the internal group, as shown in Table 2. The confusion matrix and AUC-ROC curve are shown in Supplementary Material S2. All ungradable images are correctly identified, which is significant for AutoMorph’s reliability.

Anatomical segmentation

Visualisation results are presented in Figure 5 and quantitative results are listed in Table 2. For binary vessel segmentation, the two public datasets AV-WIDE and DR-HAGIS are employed in model validation. The binary vessel segmentation model works comparably to SOTA performance on the fundus photography data (DR-HAGIS) and moderately so on ultra-widefield data (AV-WIDE). For artery/vein segmentation, the performance is validated on the IOSTAR-AV dataset. Compared with the most recent method 58, AutoMorph achieves lower sensitivity but much higher specificity. The visualisation results of two challenging cases from Moorfields Eye Hospital and ORIGA are shown in Supplementary Material S3. For optic disc segmentation, we validated the performance on the dataset IDRID. The performance is on the par with the compared method 59 and the F1-score is slightly higher. Although pathology disturbs, the segmentation disc shows robustness.
Vascular feature measurement

The ICCs between AutoMorph features and expert features are listed in Table 3. For binary vessel morphology, the fractal dimension, vessel density, and average width metrics all achieve excellent reliability (ICC>0.9). The other metrics show good consistency. Bland-Altman plots for ZONE B are shown in Figure 6. All features show agreement (Fractal dimension: mean difference (MD) is -0.01 and 95% limits of agreement (LOA) is -0.05 to 0.03; Vessel density: MD 0.001 and LOA from 0 to 0.002; Average width: MD 1.32 pixels and LOA from 0.44 to 2.19; Distance tortuosity: MD 0.02 and LOA from -2.18 to 2.22; Squared curvature tortuosity: MD -1.02 and LOA from -14.59 to 12.56; Tortuosity density: MD 0.02 and LOA from -0.09 to 0.13; CRAE Hubbard: MD -0.13 and LOA from -2.49 to 2.24; CRVE Hubbard: MD 0 and LOA from -2.9 to 2.9; AVR Hubbard: MD -0.03 and LOA from -0.17 to 0.11). The results at ZONE C and the whole image are listed in Supplementary Material S4. Note that for the metrics CRAE, CRVE, and average width, measurements are presented in pixels, as resolution information is unknown. Some images with large errors are listed in Supplementary Material S4.
Table 3. Agreement calculation of measured vascular features between AutoMorph and expert annotation. The agreement of vessel calibre is validated on IOSTAR-AV dataset and other metrics are with DR-HAGIS dataset. Since calibre features rely on six largest arteries and veins in ZONE B and ZONE C, there is no calibre feature in the whole image level.

	ZONE B	ZONE C	Whole Image
	ICC (95% CI)	ICC (95% CI)	ICC (95% CI)
DR-HAGIS			
Fractal dimension	0.94 (0.88-0.97)	0.98 (0.95-0.99)	0.94 (0.88-0.97)
Vessel density	0.98 (0.96-0.99)	0.97 (0.94-0.99)	0.94 (0.88-0.97)
Average width	0.95 (0.89-0.98)	0.96 (0.93-0.98)	0.97 (0.95-0.99)
Distance tortuosity	0.80 (0.59-0.91)	0.85 (0.69-0.93)	0.86 (0.73-0.93)
Squared curvature tortuosity	0.68 (0.34-0.85)	0.88 (0.75-0.94)	0.84 (0.68-0.92)
tortuosity density	0.89 (0.77-0.95)	0.70 (0.38-0.86)	0.87 (0.74-0.93)
IOSTAR-AV			
CRAE(Hubbard)	0.81 (0.56-0.92)	0.82 (0.57-0.91)	/
CRVE(Hubbard)	0.8 (0.54-0.91)	0.78 (0.52-0.89)	/
AVR(Hubbard)	0.87 (0.69-0.94)	0.81 (0.66-0.92)	/
CRAE(Knuutson)	0.76 (0.45-0.9)	0.75 (0.44-0.89)	/
CRVE(Knuutson)	0.85 (0.67-0.94)	0.86 (0.58-0.9)	/
AVR(Knuutson)	0.85 (0.66-0.94)	0.82 (0.51-0.91)	/
Figure 6. Bland-Altman plots of vascular feature agreement between expert annotation and AutoMorph segmentation at ZONE B. The first two rows features (tortuosity, fractal dimension, etc.) are calculated with binary vessel segmentation map from DR-HAGIS, while the last row features (calibre) are measured with artery/vein segmentation map from IOSTAR-AV. In each subplot, the central line indicates the mean difference and two dash lines represent 95% limits of agreement. The unit of average width, CRAE, and CRVE is pixel as resolution is unknown.

Running efficiency and interface

The average running time for one image is about 20 seconds using a single GPU Tesla T4, from pre-processing to feature measurement. To ensure accessibility for researchers without coding experience, we make AutoMorph compatible with Google Colaboratory (free GPU) (Figure 7). The process involves placing images in a specified folder and then clicking the ‘run’ command. All results will be stored including segmentation maps and a file containing all measured features.
Figure 7. Interface of AutoMorph on Google Colab. After uploading images and clicking the ‘run’ button, all processes are executed and results stored, requiring no human intervention. Left side shows files directory and the right bottom lists five examples with parts of features.
Discussion

In this report, the four functional modules of the AutoMorph pipeline achieve comparable, or better, performance compared with state-of-the-art for both image quality grading and anatomical segmentation. Furthermore, our approach to confidence analysis decreases the number of false gradable images by 76%, greatly enhancing the reliability of our pipeline. Hence, we learn that by a tailored combination of deep learning techniques, it is practical to accurately analyse the retinal vascular morphology in a fully automated way. Although we have evaluated the binary vessel segmentation model on ultra-widefield retinal fundus dataset AV-WIDE, we recommend using AutoMorph on retinal fundus photographs with a 25-60 field of view (FOV), as all the deep learning models are trained using images with FOV equals to 25-60 degree, and the pre-processing step is tailored for images with this FOV.

AutoMorph maintains computation transparency despite the use of deep learning techniques. Recently, similar systems have used deep learning models to skip intermediary steps and instead directly predict morphology features. For example, SIVA-DLS predicts vessel calibre from retinal fundus images without optic disc localisation or artery/vein segmentation\(^3\). Another work directly predicts CVD factors from retinal fundus images in an end-to-end manner\(^61\). Although these designs provide some insight into the applications of deep learning to ophthalmology, the end-to-end pipeline sacrifices transparency and raises interpretability concerns, representing a potential barrier to clinical implementation\(^62,63\). Specifically, considering that some formulas are empirically defined (e.g. CRAE and CRVE are calculated based on the six widest arteries and veins), it is hard to verify whether a model can learn this type of derivation. In contrast, the AutoMorph pipeline maintains transparency as the individual processes can be decomposed. Models are initially employed for anatomical segmentation, before vascular features are measured with traditional formulas. This process is consistent with the typical pipeline of human computation, thus improving the credibility of feature measurements.
The study cohort is selected by the image quality grading module. In this work, being different from previous work with only good quality images, we tried to explore the effectiveness of usable images. Although purely including good quality images can avoid potentially challenging cases for anatomic segmentation models (e.g., images with gloomy illumination), it filtered out the usable images which can contribute to a more general conclusion with a larger study cohort. Also, in clinical practice, a considerable number of images are usable quality but may not qualify as perfectly good quality. The pipeline developed in an environment similar to clinical reality is more prone to be deployed in the clinic. In image quality grading, the confidence analysis has recognised a considerable proportion of false gradable images and corrected them as reject quality by thresholding, as shown in Figure 3 and Figure 4. This avoids some reject quality images failing the anatomical segmentation and then generating large errors in feature measurement. Although this thresholding increased the false ungradable cases (green box in Figure 4(b)), the priority of recognising the false gradable images is secured. Of course, it is acceptable to only include the good quality images in the research cohorts, as the same as previous work, when the quantity of good quality images is large.

Although this work demonstrates the effectiveness of a deep learning pipeline for analysing retinal vascular morphology, there are some challenges remaining regarding technique and standardisation. Firstly, annotating retinal image quality is subjective and lacks strict guidelines, therefore it is hard to benchmark external validation performance. Secondly, there is still room for improving anatomical segmentation, especially for artery/vein segmentation. Thirdly, considering the agreement varies across various vascular features (Table 3), it is required to compare the robustness of these features and understand the pros and cons of each one. Finally, a uniform protocol for validating retinal analysis pipelines is required, considering existing software (RA28, IVAN6, SIVA29, and VAMPIRE25, etc.) shows high variation in feature measurement64,65. These four challenges exist in the field of ‘oculomics’, presenting an impediment to more extensive research.

We have made AutoMorph publicly available to benefit research in the field of ‘oculomics’ which studies the association between ocular biomarkers and systemic disease. We have designed
AutoMorph’s interface using Google Colaboratory to facilitate its use by clinicians without coding experience. In future work, we will investigate the solution dedicated to the above challenges in ‘oculomics’ research. Also, the feasibility of automatic pipeline can be extended to other modalities, e.g., optical coherence tomography (OCT) and OCT angiography.
References

1. Wagner, S. K. et al. Insights into Systemic Disease through Retinal Imaging-Based Oculomics. *Transl. Vis. Sci. Technol.* **9**, 6 (2020).

2. Rizzoni, D. & Muiesan, M. L. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. *Journal of hypertension* vol. 32 225–227 (2014).

3. Cheung, C. Y. et al. A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. *Nat Biomed Eng* **5**, 498–508 (2021).

4. Wong, T. Y. & Mitchell, P. Hypertensive Retinopathy. *New England Journal of Medicine* vol. 351 2310–2317 (2004).

5. Cheung, N. et al. Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis. *J. Am. Coll. Cardiol.* **50**, 48–55 (2007).

6. Wong, T. Y. et al. Retinal Vascular Caliber, Cardiovascular Risk Factors, and Inflammation: The Multi-Ethnic Study of Atherosclerosis (MESA). *Investigative Ophthalmology & Visual Science* vol. 47 2341 (2006).

7. Wong, T. Y. et al. Retinal arteriolar diameter and risk for hypertension. *Ann. Intern. Med.* **140**, 248–255 (2004).

8. Wong, T. Y., Shankar, A., Klein, R., Klein, B. E. K. & Hubbard, L. D. Prospective cohort study of retinal vessel diameters and risk of hypertension. *BMJ* **329**, 79 (2004).

9. Jaulim, A., Ahmed, B., Khanam, T. & Chatziralli, I. P. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. *Retina* **33**, 901–910 (2013).

10. Yau, J. W. Y., Lee, P., Wong, T. Y., Best, J. & Jenkins, A. Retinal vein occlusion: an approach to diagnosis, systemic risk factors and management. *Intern. Med. J.* **38**, 904–910 (2008).

11. Wong, T. Y. Retinal vessel diameter as a clinical predictor of diabetic retinopathy progression: time to take out the measuring tape. *Archives of ophthalmology* vol. 129 95–96 (2011).

12. Owen, C. G. et al. Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children; the Child Heart and Health Study in England (CHASE). *Arterioscler. Thromb. Vasc. Biol.* **31**, 1933–1938 (2011).

13. Cheung, C. Y.-L. et al. Retinal vascular tortuosity, blood pressure, and cardiovascular risk factors. *Ophthalmology* **118**, 812–818 (2011).
14. Owen, C. G. *et al.* Measuring retinal vessel tortuosity in 10-year-old children: validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) program. *Invest. Ophthalmol. Vis. Sci.* **50**, 2004–2010 (2009).

15. Couper, D. J. *et al.* Reliability of retinal photography in the assessment of retinal microvascular characteristics: the Atherosclerosis Risk in Communities Study. *Am. J. Ophthalmol.* **133**, 78–88 (2002).

16. Huang, F., Dashtbozorg, B. & ter Haar Romeny, B. M. Artery/vein classification using reflection features in retina fundus images. *Machine Vision and Applications* vol. 29 23–34 (2018).

17. Mirsharif, Q., Tajeripour, F. & Pourreza, H. Automated characterization of blood vessels as arteries and veins in retinal images. *Comput. Med. Imaging Graph.* **37**, 607–617 (2013).

18. Dashtbozorg, B., Mendonça, A. M. & Campilho, A. An automatic graph-based approach for artery/vein classification in retinal images. *IEEE Trans. Image Process.* **23**, 1073–1083 (2014).

19. Estrada, R. *et al.* Retinal Artery-Vein Classification via Topology Estimation. *IEEE Trans. Med. Imaging* **34**, 2518–2534 (2015).

20. Srinidhi, C. L., P, A. & Rajan, J. Automated Method for Retinal Artery/Vein Separation via Graph Search Metaheuristic Approach. *IEEE Trans. Image Process.* (2019) doi:10.1109/TIP.2018.2889534.

21. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. in *Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015* 234–241 (Springer International Publishing, 2015).

22. Zhou, Y. *et al.* Learning to Address Intra-segment Misclassification in Retinal Imaging. in *Medical Image Computing and Computer Assisted Intervention – MICCAI 2021* 482–492 (Springer International Publishing, 2021).

23. Zhou, Y. *et al.* A refined equilibrium generative adversarial network for retinal vessel segmentation. *Neurocomputing* vol. 437 118–130 (2021).

24. Fraz, M. M. *et al.* QUARTZ: Quantitative Analysis of Retinal Vessel Topology and size – An automated system for quantification of retinal vessels morphology. *Expert Systems with Applications* vol. 42 7221–7234 (2015).

25. Perez-Rovira, A. *et al.* VAMPIRE: Vessel assessment and measurement platform for images of the REtina. *2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society* (2011) doi:10.1109/iembs.2011.6090918.

26. Futoma, J., Simons, M., Panch, T., Doshi-Velez, F. & Celi, L. A. The myth of generalisability in clinical
research and machine learning in health care. The Lancet Digital Health vol. 2 e489–e492 (2020).

27. Mårtensson, G. et al. The reliability of a deep learning model in clinical out-of-distribution MRI data: A multicohort study. Medical Image Analysis vol. 66 101714 (2020).

28. Wong, T. Y., Shankar, A., Klein, R. & Klein, B. E. K. Retinal vessel diameters and the incidence of gross proteinuria and renal insufficiency in people with type 1 diabetes. Diabetes 53, 179–184 (2004).

29. Cheung, C. Y. et al. Quantitative and qualitative retinal microvascular characteristics and blood pressure. J. Hypertens. 29, 1380–1391 (2011).

30. Khan, S. M. et al. A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. Lancet Digit Health 3, e51–e66 (2021).

31. Fu, H. et al. Evaluation of Retinal Image Quality Assessment Networks in Different Color-Spaces. Lecture Notes in Computer Science 48–56 (2019) doi:10.1007/978-3-030-32239-7_6.

32. Li, T. et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Information Sciences vol. 501 511–522 (2019).

33. Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A. & van Ginneken, B. Ridge-Based Vessel Segmentation in Color Images of the Retina. IEEE Transactions on Medical Imaging vol. 23 501–509 (2004).

34. Hoover, A., Kouznetsova, V. & Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19, 203–210 (2000).

35. Fraz, M. M. et al. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59, 2538–2548 (2012).

36. Budai, A., Bock, R., Maier, A., Hornegger, J. & Michelson, G. Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013, 154860 (2013).

37. Zhang, J. et al. Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores. IEEE Trans. Med. Imaging 35, 2631–2644 (2016).

38. Orlando, J. I. et al. Towards a Glaucoma Risk Index Based on Simulated Hemodynamics from Fundus Images. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 65–73 (Springer International Publishing, 2018).

39. Khanal, A. & Estrada, R. Dynamic Deep Networks for Retinal Vessel Segmentation. Frontiers in Computer Science 2, 35 (2020).

40. Holm, S., Russell, G., Nourrit, V. & McLoughlin, N. DR HAGIS—a fundus image database for the
automatic extraction of retinal surface vessels from diabetic patients. Journal of Medical Imaging vol. 4 014503 (2017).

41. Hu, Q., Abrà moff, M. D. & Garvin, M. K. Automated separation of binary overlapping trees in low-contrast color retinal images. Med. Image Comput. Comput. Assist. Interv. 16, 436–443 (2013).

42. Hemelings, R. et al. Artery–vein segmentation in fundus images using a fully convolutional network. Computerized Medical Imaging and Graphics vol. 76 101636 (2019).

43. Abbasi-Sureshjani, S., Smit-Ockeloen, I., Zhang, J. & Ter Haar Romeny, B. Biologically-Inspired Supervised Vasculature Segmentation in SLO Retinal Fundus Images. Lecture Notes in Computer Science 325–334 (2015) doi:10.1007/978-3-319-20801-5_35.

44. Orlando, J. I. et al. REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020).

45. OMIA8: 8th MICCAI Workshop on Ophthalmic Medical Image Analysis. https://sites.google.com/view/omia8.

46. Wu, J. et al. GAMMA Challenge:Glaucoma grA ding from Multi-Modality imAges. arXiv [cs.CV] (2022).

47. Porwal, P. et al. Indian Diabetic Retinopathy Image Dataset (IDRiD): A Database for Diabetic Retinopathy Screening Research. Brown Univ. Dig. Addict. Theory Appl. 3, 25 (2018).

48. Tan, M. & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. in International Conference on Machine Learning 6105–6114 (PMLR, 2019).

49. Galdran, A. et al. The Little W-Net That Could: State-of-the-Art Retinal Vessel Segmentation with Minimalistic Models. arXiv [eess.IV] (2020).

50. Hart, W. E., Goldbaum, M., Cô té , B., Kube, P. & Nelson, M. R. Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 53, 239–252 (1999).

51. Grisan, E., Foracchia, M. & Ruggeri, A. A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans. Med. Imaging 27, 310–319 (2008).

52. Falconer, K. Fractal Geometry: Mathematical Foundations and Applications. (John Wiley & Sons, 2004).

53. Wong, T. Y., Klein, R., Klein, B. E. K., Meuer, S. M. & Hubbard, L. D. Retinal vessel diameters and their associations with age and blood pressure. Invest. Ophthal mol. Vis. Sci. 44, 4644–4650 (2003).

54. Parr, J. C. & Spears, G. F. General caliber of the retinal arteries expressed as the equivalent width of the central retinal artery. Am. J. Ophthal mol. 77, 472–477 (1974).

55. Parr, J. C. & Spears, G. F. S. Mathematic Relationships Between the width of a Retinal Artery and the
Widths of its Branches. *Am. J. Ophthalmol.* **77**, 478–483 (1974).

56. Hansen, L. K. & Salamon, P. Neural network ensembles. *IEEE Trans. Pattern Anal. Mach. Intell.* **12**, 993–1001 (1990).

57. Sarhan, A., Rokne, J., Alhajj, R. & Crichton, A. Transfer Learning Through Weighted Loss Function and Group Normalization for Vessel Segmentation from Retinal Images. 2020 *25th International Conference on Pattern Recognition (ICPR)* (2021) doi:10.1109/icpr48806.2021.9412378.

58. Shin, S. Y., Lee, S., Yun, I. D. & Lee, K. M. Topology-Aware Retinal Artery–Vein Classification via Deep Vascular Connectivity Prediction. *Applied Sciences* vol. 11 320 (2020).

59. Hasan, M. K., Alam, M. A., Elahi, M. T. E., Roy, S. & Martí, R. DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image. *Artif. Intell. Med.* **111**, 102001 (2021).

60. Cheung, C. Y.-L. *et al.* A new method to measure peripheral retinal vascular caliber over an extended area. *Microcirculation* **17**, 495–503 (2010).

61. Poplin, R. *et al.* Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. *Nat Biomed Eng* **2**, 158–164 (2018).

62. Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G. & King, D. Key challenges for delivering clinical impact with artificial intelligence. *BMC Med.* **17**, 195 (2019).

63. Singh, R. P. *et al.* Current Challenges and Barriers to Real-World Artificial Intelligence Adoption for the Healthcare System, Provider, and the Patient. *Transl. Vis. Sci. Technol.* **9**, 45 (2020).

64. Yip, W. *et al.* Comparison of Common Retinal Vessel Caliber Measurement Software and a Conversion Algorithm. *Translational Vision Science & Technology* vol. 5 11 (2016).

65. McGrory, S. *et al.* Towards Standardization of Quantitative Retinal Vascular Parameters: Comparison of SIVA and VAMPIRE Measurements in the Lothian Birth Cohort 1936. *Transl. Vis. Sci. Technol.* **7**, 12 (2018).

Supplementary material: Feasibility of Analysing Retinal Vascular Morphology via a Deep Learning Pipeline

S1. Datasets

Dataset and ground truth
All the datasets for model training and external validation are publicly available. Each dataset consists of a number of retinal fundus photographs and corresponding ground truth. We summarise the characteristic of each dataset as well as the information of the ground truth.

Image quality grading datasets include EyePACS-Q and DDR-test. EyePACS-Q is based on EyePACS, which contains a large set of images collected by different imaging devices during diabetic retinopathy screening. During EyePACS-Q construction, two experts were asked to grade the image quality into three categories: good, usable, and reject. Good quality images have no low-quality factors, such as uneven illumination and blur, and all retinopathy characteristics are clearly visible. Usable quality images show some slight low-quality factors, but the optic disc, macula region, and lesions are clear enough to be identified by ophthalmologists. Reject quality has a serious quality issue and cannot be used to provide a full and reliable diagnosis, even by ophthalmologists. For the DDR-test dataset, there are two categories for image quality grading, gradable and ungradable. Images with a blurring area of more than 70% and without clearly visible diabetic retinopathy lesions are considered ungradable. Seven professional graders have been trained by ophthalmologists. The seven graders vote to evaluate the images in question, and the final classification was determined by majority voting. If the seven graders could not determine a classification result, they will consult more experienced experts. The EyePACS-Q and DDR datasets indeed establish the ground truth based on the expert assessment of the image’s gradability/diagnosability. This can help identify retinal fundus photographs with serious artefacts, uneven illumination, and low contrast, which are also challenging cases for the deep learning segmentation methods (anatomical segmentation modules). In this case, by filtering the ungradable images, we can get a more accurate segmentation map as well as a precise vascular feature estimation.

For binary vessel segmentation, the ground truth map has the same size as the retinal fundus photographs. The vessel pixels are white colour and the background pixels are black. The DRIVE dataset consists of a total of 40 retinal fundus photographs, including 7 diabetic retinopathy lesions. These images were labelled by an ophthalmological expert. For the STARE dataset, ten of the
images are of patients with no pathology and ten of the images contain pathology that obscures or confuses the blood vessel appearance in varying portions of the image. CHASEDB1 is acquired from multiethnic school children, being a part of a cardiovascular health survey in 200 primary schools in London, Birmingham, and Leicester, and labelled by two experts. The ground truth of the HRF dataset is generated by a group of experts working in the field of retinal image analysis and clinicians from the cooperated ophthalmology clinics. The IOSTAR dataset is annotated by a group of experts working in the field of retinal image analysis. The LES-AV comprises 22 fundus photographs with available manual segmentations of the retinal vessels and their expert classification into arteries and veins. The external validation data includes DR-HAGIS and AV-WIDE. DR-HAGIS has 39 fundus images with four subgroups, glaucoma, hypertension, diabetic retinopathy, and age-related macular degeneration. The manual segmentation is provided by an expert grader. AV-WIDE provides the graph-based annotations by an expert ophthalmologist and AV-WIDE is a widefield retinal fundus dataset.

The artery/vein ground truth map is characterised by four colours: red for arteries, blue for veins, green for uncertain pixels (unidentifiable vessels at intersections of arteries and veins), and black for the background. We use three training datasets, the DRIVE-AV, LES-AV, and HRF-AV, and one external validation dataset IOSTAR-AV. The DRIVE-AV dataset supplements the artery/vein ground truth by an expert to the DRIVE dataset. HRF-AV’s initial labelling was carried out by an expert in retinal image analysis, and then carefully corrected by an ophthalmologist. IOSTAR-AV is annotated by a group of experts working in the field of retinal image analysis.

Optic disc segmentation is a binary segmentation task that classifies each pixel as the optic disc pixel or the background. The ground truth includes the white colour pixels for the optic disc and black colour for the background. For the REFUGE dataset, the ground truths of the optic disc were provided by seven independent glaucoma specialists from the Zhongshan Ophthalmic Center (Sun Yat-sen University, China). All the ophthalmologists independently reviewed and a single segmentation per image was afterwards obtained by taking the majority voting of the annotations of the seven experts.
A senior specialist with more than 10 years of experience in glaucoma performed a quality check afterwards, analyzing the resulting masks to account for potential mistakes \(^{44}\). For the GAMMA dataset, four clinical ophthalmologists manually annotated the initial segmentation region of the optic disc for each fundus image. The senior ophthalmologist then fused the results of the four initial segmentation results and selected the intersection of the annotated results of several ophthalmologists as the final ground truth \(^{46,45}\). For the external validation dataset IDRID, all observers were trained by expert ophthalmologists for the identification of individual lesions and optic discs. Later the markings on each of these images were reviewed by two retinal specialists, and they were finalized when the necessary consensus was reached \(^{47}\).

Some examples are shown in Figure S1 to depict the visualisation difference brought by different imaging devices and research studies.
Figure S1. Image examples of training data and external validation data for the image quality grading, binary vessel segmentation, artery/vein segmentation, and optic disc segmentation.

Training data	External validation
Image quality	![Image Examples](#)
Binary vessel	![Image Examples](#)
Artery/vein	![Image Examples](#)
Optic disc	![Image Examples](#)

S2. Image quality grading module

Image pre-processing

The images are squared as Figure S2.
Model structure selection

We compared the classification performance with different classification backbones, namely ResNeXt101-32x8d, EfficientNet-B4, and EfficientNet-B5. The models are pretrained on the ImageNet dataset, and the final classifier neurons are substituted from 1000 to 3, respectively corresponding to the category of good, usable, and reject image quality. The training epoch is 30 and batch size is 8. The initial learning rate is 0.0002 and the optimiser is Adam. The learning rate schedule and early stopping are employed to avoid model overfitting. The cross entropy loss function is used and the checkpoint with lowest loss is stored for inference. We use four Tesla T4 GPUs to train the model. As shown in Figure S3, the performance of the three backbones shows no statistical difference (p>0.05). In this case, we use the EfficientNet-b4 as the backbone considering its lower parameters compared with EfficientNet-b5 and ResNeXt101-32x8d.
Figure S3. Performance comparison of the quality grading models with different backbones. (a) verifies there is no significant difference between the three backbones and (b) shows that the AUC-ROC curves highly overlap. For each backbone, eight models are trained on different subsets of EyePACS-Q training data, and then validated on EyePACS-Q validation data. Acc, accuracy. AUC-ROC, Area-under-curve Receiver operating characteristic. AUC-PR, Area-under-curve Precision-Recall. F1, F1-score.

Confidence analysis threshold

We calculate the mean value and SD of ensemble probability in confidence analysis. Depicted in Figure S4, comparing the distribution of true gradable and false gradable in the tuning data (20% of training data used to tune the training hyperparameters during training), we found the FP cases have lower mean value and higher SD. Threshold choices were made by inspecting average probability histograms and standard deviation histograms. We selected thresholds that resulted in a desirable trade-off, i.e., reduced a large proportion of false gradables whilst introducing an acceptable number of false ungradables. The average threshold of 0.75 and SD threshold of 0.1 are employed.
Figure S4. (a-d) show the average probability histogram, respectively indicating true gradable, false ungradable, false gradable, and true ungradable. (e-h) are corresponding SD histograms. Comparing the true gradable and false gradable, it’s observed that the average probability of true gradable (a) concentrates to 1 and SD (e) is closer to 0. By thresholding on an average probability 0.75 and SD threshold 0.1 (red dash line), lots of false gradable images can be rectified as the ungradable images and then being filtered out, depicted in regions with green slash lines.

Confusion matrix on DDR

The confusion matrix and AUC-ROC curve on DDR are listed in Figure S5.

![Confusion matrix and AUC-ROC curve](image)

Figure S5. The confusion matrix (a) and AUC-ROC curve (b) showing the performance of AutoMorph on the external DDR test. The ratio of FP-gradable is 0 which says all ungradable images are correctly recognised, thus
remaining no false gradable images for the following anatomical segmentation steps. The AUC-ROC curve indicates good performance of AutoMorph on the DDR test data.

S3. Anatomical segmentation modules

Binary vessel segmentation: SEGAN is a variant of U-Net with enhanced performance in multi-scale information learning. It consists of a segmenter and a discriminator, which are trained in adversarial learning strategy. The input of the network is the retinal fundus photographs and the output is a segmentation map with the same size of the input. The pre-processed images are resized to (912, 912) to ease the computational stress. The segmentation map will be resized to the original size for feature measurement. Each pixel of the segmentation map shows the probability of being vessel. After thresholding with 0.5, the pixels with values of 1 are vessels. The training epoch is 600 and batch size is 2. The initial learning rate is 0.0002 and the optimiser is Adam. The learning rate schedule is employed for robust convergence. Three loss functions are utilised, namely adversarial loss, mean square error, and cross entropy loss. The checkpoint with the highest F1-score is stored. We use one Tesla T4 GPUs to train the model.

Artery/vein segmentation: BFN decomposes the multi-class task into multi binary tasks, followed by a binary-to-multi-class information fusion, so as to correct the information around the intersections. Different segmenters share the same discriminator. The input of the network is the retinal fundus photographs and the output is a multi-class segmentation map with the same size of the input. The pre-processed images are resized to (720, 720) to ease the computational stress. The multi-class segmentation map will be resized to the original size for feature measurement. Each pixel of the segmentation map shows the four-element probability of being artery, vein, uncertain pixels, and background. After selecting the maximised probability as the final category, the pixels with values of 0 are background, 1 for arteries, 2 for veins, and 3 for uncertain pixels. The red, blue, green, and black colours are transformed visualisation. The training epoch is 1500 and batch size is 2. The initial learning rate is 0.0008 and the optimiser is Adam. The learning rate schedule is employed. Three loss
functions are utilised, namely adversarial loss, mean square error, and cross entropy loss. The checkpoint with the highest F1-score is stored. One Tesla T4 GPU is employed to train the model.

Optic disc segmentation: LW-Net consists of two simplified U-Net, where the first part generates a coarse segmentation result and the second part polishes the segmentation detail. This cooperated regularisation between the two parts enhances model segmentation performance when pathology is present. The overall model is light-weight in terms of parameter numbers. The input of the network is the retinal fundus photographs and the output is a segmentation map with the same size of the input. The pre-processed images are resized to (512, 512) to enable a large batch size. The segmentation map will be resized to the original size for feature measurement and the definition of the pre-defined zones. Each pixel of the segmentation map shows the probability of being optic disc. After thresholding with 0.5, the pixels with values of 1 are optic disc. The training epoch is 1000 and batch size is 16. The initial learning rate is 0.01 and the optimiser is Adam. The learning rate schedule is employed. The cross entropy loss is used and the checkpoint with the highest AUC-ROC is stored. One Tesla T4 GPU is employed to train the model.

![Image](image_url)

Figure S6. Artery/vein segmentation visualisation examples of challenging cases (blur and poor illumination) from Moorfields Eye Hospital and ORIGA dataset. The uncertainty map is overlaid on the retinal fundus image. Brighter white indicates higher uncertainty.
In order to give a direct technical comparison between our segmentation methods and those compared methods, we have listed the technically fair comparison in Table S1. All models are trained on the same training dataset and internally validated. As we don’t have multiple groups of results for the compared methods, we cannot test if a statistically significant difference exists. But our results show clearly better performance. We compare all the metrics they have provided. We follow the same splitting of training and testing data of the compared methods.

Table S1. Internal validation of AutoMorph and comparison to competitive methods. All models are trained and validated on the same data to compare the technical superiority.

	Internal validation on DR-HAGIS (binary vessel segmentation)	Internal validation on WIDE (binary vessel segmentation)	Internal validation on IOSTAR-AV (artery/vein segmentation)	Internal validation on IDRID (optic disc segmentation)								
	Sensitivity	Specificity	F1-score	Accuracy	Sensitivity	Precision	F1-score	Accuracy	Sensitivity	Specificity	Accuracy	IoU
AutoMorph	0.74±0.02	0.99±0.01	0.77±0.01	0.97±0.01	0.81±0.02	0.85±0.02	0.83±0.02	0.98±0.01	0.74±0.04	0.98±0.01	0.97±0.02	0.93±0.02
Compared 57	0.67	0.98	0.71	0.97	0.78	0.82	0.8	0.97	0.79	0.76	0.78	0.85
Compared 39,57	0.67	0.98	0.71	0.97	0.78	0.82	0.8	0.97	0.79	0.76	0.78	0.85

S4. Vascular feature in ZONE C and whole image
Bland-Altman plots for parts of vascular morphology features at ZONE B and whole image.

Figure S7. Bland-Altman plots of vascular feature agreement between expert annotation segmentation map and AutoMorph segmentation at ZONE C. The first two rows features (tortuosity, fractal dimension, etc.) are calculated with binary vessel segmentation map from DR-HAGIS, while the last row features (calibre) are measured with artery/vein segmentation map from IOSTAR-AV. In each subplot, the central line indicates the mean difference and two dash lines represent 95% limits of agreement.
Figure S8. Bland-Altman plots of vascular feature agreement between expert annotation segmentation map and AutoMorph segmentation at the whole image.

Figure S9. Boxplot of vascular feature difference between expert annotation segmentation map and AutoMorph segmentation at the ZONE B. The first two rows features (tortuosity, fractal dimension, etc.) are calculated with
binary vessel segmentation map from DR-HAGIS, while the last row features (calibre) are measured with artery/vein segmentation map from IOSTAR-AV. In each subplot, the orange line indicates the mean difference and the box includes data distribution between 25 percentile to 75 percentile. Circles are outliers.

Figure S10. Boxplot of vascular feature difference between expert annotation segmentation map and AutoMorph segmentation at the ZONE C.
Figure S11. Boxplot of vascular feature difference between expert annotation segmentation map and AutoMorph segmentation at the whole image.

Figure S12. Examples with large vascular features’ error. Comparing the two cases, we can understand that different vascular features are sensitive to specific kinds of segmentation error according to the calculation process. Distance tortuosity and squared curvature tortuosity usually show large errors when vessels show extra junctions or miss junctions, while the fractal dimension shows errors when overall vasculature shape is considerably different to expert annotation (e.g., missing some distal vessels).

S5. Detailed list of measured features

All measured features are listed in Figure S13.
#	Column	Non-Null Count	Dtype
0	index	31 non-null	int64
1	Name	31 non-null	object
2	Disc_height	31 non-null	int64
3	Disc_width	31 non-null	int64
4	Cup_height	31 non-null	int64
5	Cup_width	31 non-null	int64
6	CDR_vertical	31 non-null	float64
7	CDR_horizontal	31 non-null	float64
8	Fractal_dimension	31 non-null	float64
9	Vessel density	31 non-null	float64
10	Average_width	31 non-null	float64
11	Distance_tortuosity	31 non-null	float64
12	Squared_curvature_tortuosity	31 non-null	float64
13	Tortuosity_density	31 non-null	float64
14	Artery_Fractal_dimension	31 non-null	float64
15	Artery_Vessel_density	31 non-null	float64
16	Artery_Average_width	31 non-null	float64
17	Artery_Distance_tortuosity	31 non-null	float64
18	Artery_Squared_curvature_tortuosity	31 non-null	float64
19	Artery_Tortuosity_density	31 non-null	float64
20	Vein_Fractal_dimension	31 non-null	float64
21	Vein_Vessel_density	31 non-null	float64
22	Vein_Average_width	31 non-null	float64
23	Vein_Distance_tortuosity	31 non-null	float64
24	Vein_Squared_curvature_tortuosity	31 non-null	float64
25	Vein_Tortuosity_density	31 non-null	float64
26	CRAE_Hubbard	31 non-null	float64
27	CRVE_Hubbard	31 non-null	float64
28	AVH_Hubbard	31 non-null	float64
29	CFAE_Knudtson	31 non-null	float64
30	CRVE_Knudtson	31 non-null	float64
31	AVR_Knudtson	31 non-null	float64

dtypes: float64(20), int64(5), object(1)

Figure S13. This is a comprehensive list for measured vascular features.