had a KPS score of 100, and an elevated D-dimer level (7.59 μg/mL), revealing pulmonary embolism and deep vein thrombosis. She was started on a DOAC and underwent surgical removal of the tumor via craniotomy. She was diagnosed with glioblastoma and underwent radiation therapy in combination with chemotherapy. Approximately 20% of the patients with glioblastomas suffer concurrent symptomatic venous thromboembolism. The incidence of venous thromboembolism is further elevated in patients with a poor KPS score or elderly people. Many patients with glioblastomas suffer asymptomatic venous thromboembolism in patients with a good KPS score. In glioblastoma patients, it is necessary to test for venous thromboembolism by measuring D-dimer levels before surgery.

COT-19

TREATMENT EXPERIENCE OF AND TIPS FOR ADMINISTERING NOVO-TTF
Daisuke Shimada1, Keichi Kobayashi1, Kunaki Saito1, Yoshihito Sasaki1, Motoo Nagane1,2; Kyorin University Faculty of Medicine

BACKGROUND: Current standard of care for glioblastoma, consists of postoperative temozolomide (TMZ) concomitant with radiotherapy, followed by adjuvant TMZ monotherapy. Recently, an international phase 3 trial (EF-14) demonstrated that addition of tumor-treating fields (TTF) to adjuvant TMZ after completion of chemoradiotherapy extended median progression-free survival and overall survival by 2.7 months and 4.8 months, respectively, compared with TMZ alone in patients with newly diagnosed glioblastoma. TTF is now considered as a part of its initial treatment in the guideline in Japan (Guideline for Brain Tumor). However, many patients with anaplastic glioma have been known or experienced using TTF as a therapeutic device so far, especially in management and handling. METHODS: First six patients with newly diagnosed glioblastoma who undergo TTF were analyzed with special interest in medical and social supports to execute TTF at home. RESULTS: TTF was first introduced in our institution in May 2016, but no patients were treated because of no coverage by medical insurance until December 2017. We further needed to wait to initiate TTF treatment until January 2019 when the contract to use TTF systems was finally made between the company and institution. Since then six patients were registered in five months. For its introduction to clinical practice, it is essential to establish new in-house environment with medical professionals division in the facility including documentations and the risk of tumor progression should be considered. CONCLUSIONS: Introducing TTF into clinical practice should accompany improvement of management in not only medical equipment and documentations but also patient care in hospital and home.

COT-20

PERIOPERATIVE STATUS OF SERUM D-DIMER LEVEL AND VENOUS THROMBOSIS IN PATIENTS WITH MALIGNANT BRAIN TUMORS
Daisuke Shimada1, Keichi Kobayashi1, Kunaki Saito1, Yoshihito Sasaki1, Motoo Nagane1,2; Kyorin University Faculty of Medicine

BACKGROUND: The patients with malignant brain tumors frequently show the hypercoagulability state and a decrease in fibrinolysis ability with an elevation in D-dimer. This is partially due to tumor-related hemiparesis or stress including long-term bedridden position during and after operation, which could lead to development and extension of deep venous thrombosis (DVT) in lower extremities and eventually fatal pulmonary embolism. METHODS: We retrospectively examined the pre- and postoperative serum D-dimer levels and DVT status in 75 consecutive patients with malignant brain tumors (i.e., glioma, malignant lymphoma; mean age 64.9 ± 28.8 females) operated on by our team from January 2015 to April 2017. Serial D-dimer levels were measured with the latex agglutination method (Roche) at 2 days before and right after operation, postoperative day (POD) 1, 3, and 7. Lower limb venous ultrasound (LVUS) or contrast CT was performed if preoperative D-dimer was 0.5 μg/mL or higher.

RESULTS: Average BMI was 21.3; nine patients with diabetes mellitus, 10 had recurrent diseases after chemotherapy, and 10 presented paresis in the lower extremities preoperatively while two developed transient paresis postoperatively. While two patients had prior DVT history, central and calf DVTs were identified preoperatively in one and 12 (15%) patients, respectively. Among four patients with re-elevation of D-dimer after POD 7, infection (2 patients), new DVT (2), and hemorrhagic events (gastrintestinal 2, including 1 death; epistaxis 2) developed, where a cut-off value D-dimer > 1.69 yielded sensitivity 100% and specificity 80%. Intraoperative intermittent calf compression prevented perioperative pulmonary embolism in those with calf DVT. CONCLUSIONS: Appropriate perioperative DVT management could prevent development of pulmonary embolisms in all patients with “high-risk” malignant brain tumors. Not only D-dimer > 1.5, but also age 80 or older, high preoperative D-dimer levels with calf DVT and taking DOAC may be risk factors for postoperative venous thromboembolism.

COT-21

EFFECT OF BEVACIZUMAB FOR PEDIATRIC HIGH GRADE GLIOMA
Yoshitaka Tsukamoto1, Manabu Natsumeda1, Masayasu Okada1, Takeyoshi Eda1, Junichi Yoshimura1, Kouichirou Okamoto1, Makoto Oishi1, Yukiko Fujii1; 1Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Japan

INTRODUCTION: Bevacizumab (BEV) therapy has been used for pediatric high grade glioma, however the evidence and effectiveness are not understood yet. METHODS: We report 7 cases (age 2 to 10 years old) of pediatric high grade glioma treated with BEV. One case is thalamic diffuse midline glioma H3K27 mutant (DMGH3K27M), one case is cerebellar high grade glioma, and 4 cases are diffuse intrinsic pontine glioma (DIPG) diagnosed clinically without biopsy. 5 cases were treated with BEV when diagnosed as recurrence after chemoradiotherapy. One case was treated for rapid tumor progression during radiotherapy. One case was started on BEV therapy with radiation and concomitant temozolomide therapy. RESULTS: The number of times of BEV was 2 to 10 (median 7 times). The period of BEV was 1 to 9 months (median 4 months). One case which was treated with BEV at rapid progression during radiation showed good response on imaging and improvement of symptoms. 4 of 5 cases who were treated at recurrence clinically showed mild symptom improvement. One case treated with BEV and radiotherapy initially was not evaluated. The adverse effects of BEV included wound complication of tracheostomy and rash. CONCLUSION: BEV showed good response for rapid progression during radiotherapy, and mild response for recurrence cases. BEV is thought to be an effective therapeutic agent for pediatric HGG at recurrence and rapid tumor progression during radiotherapy.

COT-22

TIMING OF SURGERY AND BEVACIZUMAB THERAPY FOR MALIGNANT GliOMA
Yoshihisa Matsubara1, Genshin Mouri1, Tomoki Ishigaki1, Munenari Ikezawa1, Hidenori Suzuki1; 1Department of Neurosurgery, University of Mie, Tsu, Japan

BACKGROUND: The drug manufacturer recommends postponing initiation of bevacizumab for malignant gliomas at least 4 weeks later postoperatively. Malignant glioma patients with significant neurological deficits due to postoperative residual tumors are preferably needed earlier bevacizumab therapy that was thought to be an alternative of neurological state and brain edema. There is a literature review indicating that the timing for administration of postoperative bevacizumab was at least 2 weeks. The authors assessed the safety, tolerability, efficacy for bevacizumab therapy less than 4 weeks later postoperatively. METHODS: Six patients of malignant gliomas with residual tumors and neurological deficits were treated by bevacizumab (10mg/kg every 2 weeks) therapy 2-3 weeks later postoperatively with chemoradiotherapy. Patients included 31-year-old female with thalamic-midbrain glioblastoma (initial), 11-year-old female with anaplastic ependymoma (recurrent), 71-year-old female with initial cervical cord anaplastic astrocytoma (initial), 88-year-old female bilateral frontal glioblastoma (initial), 27-year-old female with thalamic-midbrain glioblastoma (recurrent), and 3-year-old female with brain stem glioblastoma (initial). RESULTS: All the patients did not experience hemorrhage and impaired wound healing. Every patient neurological state and perifocal edema during and after operation. Postoperative bevacizumab therapy did not delay and cease postoperative chemoradiotherapy. CONCLUSIONS: Initiation of bevacizumab therapy 2-3 weeks later postoperatively seems to be safe and effective for malignant glioma patients with worse neurological state due to residual tumor and perifocal edema. The optimal interval which balances the risk of complications and the risk of tumor progression should be considered.

COT-23

INITIAL EXPERIENCE OF TREATMENT FOR GliOBlastOMA BY NOvo-TTF
Takaki Omura1, Yasuji Miyakita1, Makoto Ohno1, Masamichi Takahashi1, Natsumu Satomi1, Kenji Fujimoto1, Tomoko Omura1, Yoshitaka Narita1; 1The National Cancer Hospital, Tokyo, Japan

PURPOSE: In 2018, Optune (TTF) became available covered by public insurance for patients with glioblastoma, based on the effectiveness of the US