APPENDIX

RESISTING REDUCTION: A MANIFESTO

Joichi Ito

Nature’s ecosystem provides us with an elegant example of a complex adaptive system where myriad “currencies” interact and respond to feedback systems that enable both flourishing and regulation. This collaborative model—rather than a model of exponential financial growth or the Singularity, which promises the transcendence of our current human condition through advances in technology—should provide the paradigm for our approach to artificial intelligence. More than sixty years ago, MIT mathematician and philosopher Norbert Wiener warned us that “when human atoms are knit into an organization in which they are used, not in their full right as responsible human beings, but as cogs and levers and rods, it matters little that their raw material is flesh and blood.”1 We should heed Wiener’s warning.

The Whip That Lashes Us

The idea that we exist for the sake of progress, and that progress requires unconstrained and exponential growth, is the whip that lashes us. Modern companies are the natural product of this paradigm in a free market capitalist system. Wiener called corporations “machines of flesh and blood” and automation
“machines of metal.” These machines of bits—the new species of Silicon Valley megacompanies—are developed and run in great part by people who believe in a new religion, Singularity. This new religion is not a fundamental change in the paradigm, but rather the natural evolution of the worship of exponential growth applied to modern computation and science. The asymptote\(^2\) of the exponential growth of computational power is artificial intelligence.

The notion of Singularity—that AI will supercede humans with its exponential growth, and that everything we have done until now and are currently doing is insignificant in comparison—is a religion created by people who have the experience of using computation to solve problems heretofore considered impossibly complex for machines. They have found a perfect partner in digital computation—a seemingly knowable, controllable indeterminate system of thinking and creating that is rapidly increasing in its ability to harness and process complexity, bestowing wealth and power on those who have mastered it. In Silicon Valley, the combination of group-think and the financial success of this cult of technology has created a positive feedback system that has very little capacity for regulating through negative feedback. While they would resist having their beliefs compared to a religion and would argue that their ideas are science- and evidence-based, those who embrace Singularity engage in quite a bit of arm waving and make leaps of faith based more on trajectories than on ground truths to achieve their ultimate vision.

Singularitarians believe that the world is “knowable” and computationally simulatable, and that computers will be able to process the messiness of the real world just as they have every other problem that everyone said couldn’t be solved by computers. To them, this wonderful tool, the computer, has
worked so well for everything so far that it must continue to work for every challenge we throw at it, until we have transcended known limitations and ultimately achieve some sort of reality escape velocity. Artificial intelligence is already displacing humans in driving cars, diagnosing cancers, and researching court documents. The idea is that AI will continue this progress and eventually merge with human brains and become an all-seeing, all-powerful superintelligence. For true believers, computers will augment and extend our thoughts into a kind of “amortality.” (Part of Singularity is a fight for such amortality, the idea that while one may still die, one’s death will not be the result of the grim reaper of aging.)

But if corporations are a precursor to our transcendence, the Singularitarian view that with more computing and biohacking we will somehow solve all of the world’s problems, or that the Singularity will solve us, seems hopelessly naive. As we dream of the day when we have enhanced brains and amortality and can think big, long thoughts, corporations already have a kind of amortality. They persist as long as they are solvent and they are more than a sum of their parts—arguably an amoral superintelligence.

More computation does not makes us more “intelligent,” only more computationally powerful.

For Singularity to have a positive outcome requires a belief that, given enough power, the system would somehow figure out how to regulate itself. The final outcome would be so complex that while we humans couldn’t understand it now, it would understand and solve itself. Some believe in something that looks a bit like the former Soviet Union’s master planning but with full information and unlimited power. Others have a more sophisticated view of a distributed system. But at some level, all Singularitarians believe that with enough power and
control, the world is “tamable.” Not all who believe in Singularity worship it as a positive transcendence bringing immortality and abundance, but they do believe that a judgment day is coming when all curves go vertical.

Whether you are on an S-curve or a bell curve, the beginning of the slope looks a lot like an exponential curve. To systems dynamics people, an exponential curve shows self-reinforcement—that is, a positive feedback curve without limits. Maybe this is what excites Singularitarians and scares systems people. Most people outside the Singularity bubble believe in S-curves: nature adapts and self-regulates, and, for example, when a pandemic has run its course, growth slows and things adapt. They may not be in the same state, and a phase change could occur, but the notion of Singularity—especially as some sort of savior or judgment day that will allow us to transcend the messy, mortal suffering of our human existence—is fundamentally a flawed one.

This sort of reductionist thinking isn’t new. When B. F. Skinner discovered the principle of reinforcement and was able to describe it, we designed education around his theories. Learning scientists know now that behaviorist approaches work for only a narrow range of learning, but many schools continue to rely on drill and practice. Take, for another example, the eugenics movement, which greatly and incorrectly oversimplified the role of genetics in society. This movement helped fuel the Nazi genocide by providing a reductionist scientific view that we could “fix humanity” by manually pushing natural selection. The echoes of the horrors of eugenics exist today, making almost any research trying to link genetics with things like intelligence taboo.

We should learn from our history of applying over-reductionist science to society and try to, as Wiener says, “cease
to kiss the whip that lashes us.” While it is one of the key drivers
of science—to elegantly explain the complex and reduce confu-
sion to understanding—we must also remember what Albert
Einstein said: “Everything should be made as simple as possi-
ble, but no simpler.”3 We need to embrace the unknowability—
the irreducibility—of the real world that artists, biologists, and
those who work in the messy world of liberal arts and humani-
ties are familiar with.

Introduction: The Cancer of Currency

As the sun beats down on Earth, photosynthesis converts
water, carbon dioxide, and the sun’s energy into oxygen and
glucose. Photosynthesis is one of the many chemical and bio-
logical processes that transform one form of matter and energy
into another. These molecules then get metabolized by other
biological and chemical processes into yet other molecules.
Scientists often call these molecules “currencies” because they
represent a form of power that is transferred between cells or
processes to mutual benefit—“traded,” in effect. The biggest
difference between these and financial currencies is that
there is no “master currency” or “currency exchange.” Rather,
each currency can be used by only certain processes, and the
“market” of these currencies drives the dynamics that are “life.”

As certain currencies became abundant as an output of
a successful process or organism, other organisms evolved to
take that output and convert it into something else. Over bil-
lions of years, this is how Earth’s ecosystem has evolved, cre-
ating vast systems of metabolic pathways and forming highly
complex self-regulating systems that, for example, stabilize our
body temperatures or the temperature of the earth, despite
continuous fluctuations and changes among the individual
elements at every scale—from micro to macro. The output of one process becomes the input of another. Ultimately, everything interconnects.

We live in a civilization in which the primary currencies are money and power—where more often than not, the goal is to accumulate both at the expense of society at large. This is a very simple and fragile system compared to Earth’s ecosystems, where myriads of “currencies” are exchanged among processes to create hugely complex systems of inputs and outputs with feedback systems that adapt and regulate stocks, flows, and connections.

Unfortunately, our current human civilization does not have the built-in resilience of our environment, and the paradigms that set our goals and drive the evolution of society today have set us on a dangerous course that Wiener warned us about decades ago. The paradigm of a single master currency has driven many corporations and institutions to lose sight of their original missions. Values and complexity are focused increasingly on prioritizing exponential financial growth, led by for-profit corporate entities that have gained autonomy, rights, power, and nearly unregulated societal influence. The behavior of these entities is akin to cancer. Healthy cells regulate their growth and respond to their surroundings, even eliminating themselves if they wander into an organ where they don’t belong. Cancerous cells, on the other hand, optimize for unconstrained growth and spread with disregard to their function or context.

We Are All Participants

The Cold War era, when Wiener was writing The Human Use of Human Beings, was defined by the rapid expansion of
capitalism and consumerism, the beginning of the space race, and the coming of age of computation. It was a time when it was easier to believe that systems could be controlled from the outside, and that many of the world's problems would be solved through science and engineering.

The cybernetics that Wiener primarily described during that period were concerned with feedback systems that could be controlled or regulated from an objective perspective. This so-called first-order cybernetics assumed that the scientist as the observer could understand what was going on, thereby enabling the engineer to design systems based on observation or insight from the scientist.

Today, it is much more obvious that most of our problems—climate change, poverty, obesity and chronic disease, and modern terrorism—cannot be solved with simply more resources and greater control. That is because they are the result of complex adaptive systems that are often the result of the tools used to solve problems in the past, such as endlessly increasing productivity and attempts to control things. This is where second-order cybernetics comes into play—the cybernetics of self-adaptive complex systems, where the observer is also part of the system itself. As Kevin Slavin says in “Design as Participation,” “You’re not stuck in traffic you are traffic.”

In order to effectively respond to the significant scientific challenges of our times, I believe we must view the world as many interconnected, complex, self-adaptive systems across scales and dimensions that are unknowable and largely inextricable from the observer and the designer. In other words, we are participants in multiple evolutionary systems with different fitness landscapes at different scales, from our microbes to our individual identities to society and our species. Individuals themselves are systems composed of systems of systems,
such as the cells in our bodies that behave more like system-level designers than we do.

While Wiener does discuss biological evolution and the evolution of language, he doesn’t explore the idea of harnessing evolutionary dynamics for science. Reproduction and survival have driven the biological evolution of individual species (genetic evolution), instilling in us goals and yearnings to procreate and grow. That system continually evolves to regulate growth, increase diversity and complexity, and enhance its own resilience, adaptability, and sustainability. As designers with growing awareness of these broader systems, we have goals and methodologies defined by the evolutionary and environmental inputs from our biological and societal contexts. But machines with emergent intelligence have discernibly different goals and methodologies. As we introduce machines into the system, they will augment not only individual humans but also—and more importantly—complex systems as a whole.

Here is where the problematic formulation of “artificial intelligence” becomes evident, as it suggests forms, goals, and methods that stand outside interaction with other complex adaptive systems. Instead of thinking about machine intelligence in terms of humans versus machines, we should consider the system that integrates humans and machines—not artificial intelligence, but extended intelligence. Instead of trying to control or design or even understand systems, it is more important to design systems that participate as responsible, aware, and robust elements of even more complex systems. And we must question and adapt our own purpose and sensibilities as designers and components of the system with a much more humble approach: humility over control.

We could call it “participant design”—design of systems as and by participants—that is more akin to the increase of a
flourishing function, where flourishing is a measure of vigor and health rather than scale or power. We can measure the ability of systems to adapt creatively, in addition to their resilience and their ability to use resources in interesting ways.

Better interventions are less about solving or optimizing and more about developing a sensibility appropriate to the environment and the time. In this way, they are more like music and less like an algorithm. Music is about a sensibility or “taste,” with many elements coming together into a kind of emergent order. Instrumentation can nudge or cause the system to adapt or move in an unpredictable and unprogrammed manner, while still making sense and holding together. Using music itself as an intervention is not a new idea; in 1707, Andrew Fletcher, a Scottish writer and politician, said, “Let me make the songs of a nation, and I care not who makes its laws.”

If writing songs instead of laws feels frivolous, remember that songs typically last longer than laws, have played key roles in various hard and soft revolutions, and end up being transmitted person-to-person along with the values they carry. It’s not about music or code. It’s about trying to effect change by operating at the level songs do. Donella Meadows, among others, articulates this in her book *Thinking in Systems*.

Meadows, in her chapter “Leverage Points: Places to Inter-vene in a System,” describes how we can intervene in a complex, self-adaptive system. For her, interventions that involve changing parameters or even changing the rules are not nearly as powerful or as fundamental as changes in a system’s goals and paradigms.7

When Wiener discussed our worship of progress, he said: “Those who uphold the idea of progress as an ethical principle regard this unlimited and quasi-spontaneous process of change as a Good Thing, and as the basis on which they
PLACES TO INTERVENE IN A SYSTEM
(in increasing order of effectiveness)

12.	Constants, parameters, numbers (such as subsidies, taxes, standards).
11.	The sizes of buffers and other stabilizing stocks, relative to their flows.
10.	The structure of material stocks and flows (such as transport networks, population age structures).
9.	The lengths of delays, relative to the rate of system change.
8.	The strength of negative feedback loops, relative to the impacts they are trying to correct against.
7.	The gain around driving positive feedback loops.
6.	The structure of information flows (who does and does not have access to information).
5.	The rules of the system (such as incentives, punishments, constraints).
4.	The power to add, change, evolve, or self-organize system structure.
3.	The goals of the system.
2.	The mindset or paradigm out of which the system — its goals, structure, rules, delays, parameters — arises.
1.	The power to transcend paradigms.
guarantee to future generations a Heaven on Earth. It is possible to believe in progress as a fact without believing in progress as an ethical principle; but in the catechism of many Americans, the one goes with the other. Instead of discussing the lack of “sustainability” as something to be “solved” in the context of a world where bigger is still better and more than enough is not too much, perhaps we should examine the values and the currencies of the fitness functions and consider whether they are suitable and appropriate for the systems in which we participate.

Conclusion: A Culture of Flourishing

Developing a sensibility and a culture of flourishing—a term that has taken on special significance since the field of virtue ethics arose from Elizabeth Anscombe’s 1958 essay—and embracing a diverse array of measures of “success” depend less on the accumulation of power and resources and more on diversity and the richness of experience. This is the paradigm shift we need. This will provide us with a wealth of technological and cultural patterns to draw from to create a highly adaptable society. This diversity also allows the elements of the system to feed each other without the exploitation and extraction ethos created by a monoculture with a single currency. It is likely that this new culture will spread as spirituality, fashion, music, or other forms of art.

As a native of Japan, I am heartened by a group of junior high school students I spoke to there recently who, when I challenged them about what they thought we should do about the environment, asked questions about the meaning of happiness and the role of humans in nature. I am likewise heartened to see many of my students at the MIT Media Lab
and in the Principles of Awareness class that I co-teach with the Venerable Tenzin Priyadarshi using a variety of metrics (currencies) to measure their success and meaning and grappling directly with the complexity of finding one’s place in our complex world.

I’m also heartened by organizations such as the IEEE, which is initiating design guidelines for the development of artificial intelligence around human well-being instead of around economic impact. The work by Peter Seligmann, Christopher Filardi, and Margarita Mora from Conservation International is creative and exciting because it approaches conservation by supporting the flourishing of Indigenous people—not undermining it. Another heartening example is that of the Shinto priests at the Ise Grand Shrine, who have been planting and rebuilding the shrine every twenty years for the last 1,300 years in celebration of the renewal and the cyclical quality of nature.

In the 1960s and 1970s, the hippie movement tried to pull together a Whole Earth movement, but then the world swung back toward the consumer and consumption culture of today. I hope and believe that a new awakening will happen and that a new sensibility will cause a nonlinear change in our behavior through a cultural transformation. While we can and should continue to work at every layer of the system to create a more resilient world, I believe the cultural layer is the layer with the most potential for a fundamental correction away from the self-destructive path that we are currently on. I think that it will yet again be about the music and the arts of young people reflecting and amplifying a new sensibility: a turn away from greed to a world where “more than enough is too much,” and in which we can flourish in harmony with nature rather than through the control of it.
Notes

1. Norbert Wiener, *The Human Use of Human Beings: Cybernetics and Society* (Boston: Houghton Mifflin, 1954), 185.

2. An asymptote is a line that continually approaches a given curve but does not meet it at any finite distance. In Singularity, this is the vertical line that occurs when the exponential growth curve approaches a vertical line. There are more arguments about where this asymptote is among believers than about whether it is actually coming.

3. This is a common paraphrase. What Einstein actually said was, “It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience.” See Andrew Robinson, “Did Einstein Really Say That?,” *Nature*, April 30, 2018, https://www.nature.com/articles/d41586-018-05004-4.

4. Western philosophy and science is dualistic as opposed to the more “Eastern” nondualistic approach. A whole essay could be written about this, but the idea of a subject/object or a designer/designee is partially linked to the notion of self in Western philosophy and religion. See Kevin Slavin, “Design as Participation,” *Journal of Design and Science*, no. 1 (February 2016), https://jods.mitpress.mit.edu/pub/design-as-participation. The phrase originated in a drive-time conversation about contemporary design with Joi Ito.

5. Fitness landscapes arise when you assign a fitness value for every genotype. The genotypes are arranged in a high-dimensional sequence space. The fitness landscape is a function of that sequence space. In evolutionary dynamics, a biological population moves over a fitness landscape driven by mutation, selection and random drift. See M. A. Nowak, *Evolutionary Dynamics: Exploring the Equations of Life* (Cambridge, MA: Harvard University Press, 2006).

6. Nowak, *Evolutionary Dynamics*.

7. Donella H. Meadows, “Leverage Points: Places to Intervene in a System,” in *Thinking in Systems: A Primer*, ed. Diana Wright (White River Junction, VT: Chelsea Green Publishing, 2008), 145–165.

8. Wiener, *The Human Use of Human Beings*, 42.
9. A fitness function is a function that is used to summarize, as a measure of merit, how close a solution is to a particular aim. It is used to describe and design evolutionary systems.

10. G. E. M. Anscombe, “Modern Moral Philosophy,” *Philosophy* 33, no. 124 (January 1958): 1–19. This article is usually taken as the start of modern virtue ethics that has revived Aristotelian ethics. Virtue ethics asks what makes a good life: how can we blossom, grow, flourish?