Physiotherapy management for COVID-19 in the acute hospital setting and beyond: an update to clinical practice recommendations.

Peter Thomas, Claire Baldwin, Lisa Beach, Bernie Bissett, Ianthe Boden, Rik Gosselink, Catherine L. Granger, Carol Hodgson, Anne Holland, Alice YM. Jones, Michelle E. Kho, Lisa van der Lee, Rachael Moses, George Ntoumenopoulos, Selina M. Parry, Shane Patman.

Journal of Physiotherapy (2022), doi: https://doi.org/10.1016/j.jphys.2021.12.012

Romanian translation

Translation completed by:	Affiliation
Nadina Țărcău	The Order of Physiotherapists in Romania

Contact for this translation: Email

| Nadina Țărcău | administrativ@cfizio.ro |

Open access

https://www.journals.elsevier.com/journal-of-physiotherapy
Endorsements

World Physiotherapy

American Physical Therapy Association

APTA Acute Care

Australian Physiotherapy Association

AXXON, Physical Therapy in Belgium

Canadian Physiotherapy Association (CPA)

L’Association canadienne de physiothérapie (ACP)

CPRG SIG of the SASP

Hong Kong Physiotherapy Association

International Confederation of Cardiorespiratory Physical Therapists (ICCrPT)

Physiotherapy New Zealand

The Association of Chartered Physiotherapists in Respiratory Care

Société de Kinésithérapie de Réanimation (SKR)

The Japanese Society of Physical Therapy for Diabetes Mellitus

The Japanese Society of Intensive Care Medicine

The Japanese Society of Cardiovascular Physical Therapy

The Japanese Society of Respiratory Physical Therapy
Titlu: Managementul COVID-19 prin fizioterapie a cazurilor acute în cadrul spitalului și după externare: o actualizare a recomandărilor de practică clinică.

Autor(i):

1. Peter Thomas, Department of Physiotherapy, Royal Brisbane and Women’s Hospital, Brisbane, Australia. PeterJ.Thomas@health.qld.gov.au
2. Claire Baldwin, Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia. Claire.baldwin@flinders.edu.au
3. Lisa Beach, Department of Physiotherapy, The Royal Melbourne Hospital, Melbourne, Australia. lisa.beach@rmh.org.au
4. Bernie Bissett, Discipline of Physiotherapy, University of Canberra, Canberra, Australia; Physiotherapy Department, Canberra Hospital, Canberra, Australia. Bernie.Bissett@canberra.edu.au
5. Ianthe Boden, Physiotherapy Department, Launceston General Hospital, Launceston, Australia; School of Medicine, University of Tasmania, Launceston, Australia. ianthe.boden@ths.tas.gov.au
6. Sherene Magana Cruz, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia. mjceas@hotmail.com
7. Rik Gosselink, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Department of Critical Care, University Hospitals Leuven, Leuven, Belgium. rik.gosselink@kuleuven.be
8. Catherine L Granger, Department of Physiotherapy, The University of Melbourne, Melbourne, Australia; Department of Physiotherapy, The Royal Melbourne Hospital, Melbourne, Australia. catherine.granger@unimelb.edu.au
9. Carol Hodgson, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia; Alfred Health, Melbourne, Australia; Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia; The George Institute for Global Health, Sydney, Australia. carol.hodgson@monash.edu
10. Anne E Holland, Central Clinical School, Monash University, Melbourne, Australia; Departments of Physiotherapy and Respiratory Medicine, Alfred Health, Melbourne, Australia. anne.holland@monash.edu
11. Alice YM Jones, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia. a.jones15@uq.edu.au
12. Michelle E Kho, School of Rehabilitation Science, McMaster University, Hamilton, Canada; St Joseph’s Healthcare, Hamilton, Canada; The Research Institute of St Joe’s, Hamilton, Canada. khome@mcmaster.ca
13. Lisa van der Lee, Physiotherapy Department, Fiona Stanley Hospital, Perth, Australia. lisa.vanderlee1@my.nd.edu.au
14. Rachael Moses, NHS Leadership Academy, Leadership and Lifelong Learning, People Directorate, NHS England and Improvement, London, UK. rachael.moses2@nhs.net
15. George Ntoumenopoulos, Department of Physiotherapy, St Vincent’s Hospital, Sydney, Australia. georgentou@yahoo.com
16. Selina M Parry, Department of Physiotherapy, The University of Melbourne, Melbourne, Australia. parrys@unimelb.edu.au
17. Shane Patman, Faculty of Medicine, Nursing and Midwifery, Health Sciences & Physiotherapy, The University of Notre Dame Australia, Perth, Australia. shane.patman@nd.edu.au
Note de subsol: Aceste recomandări actualizate sunt destinate utilizării numai în cazurile adulților. Acest document a fost creat folosind ghidurile medicale existente, literatura de specialitate relevantă și opinii ale experților. Autorii au depus eforturi considerabile pentru a se asigura că informațiile conținute sunt corecte la momentul publicării. Informațiile furnizate în acest document nu sunt menite să înlocuiască politicile instituționale locale, să anuleze directivele de sănătate publică sau să înlocuiască raționamentul clinic pentru gestionarea individuală a pacienților. Autorii nu răspund de acuratețea, de informațiile care pot fi percepute ca fiind înșelătoare sau de caracterul complet al informațiilor din acest document.

Aceste recomandări sunt sponsorizate de: World Physiotherapy; American Physical Therapy Association; APTA Acute Care; Australian Physiotherapy Association; AXXON, Physical Therapy in Belgium; Canadian Physiotherapy Association (CPA); L’Association canadienne de physiothérapie (ACP); Hong Kong Physiotherapy Association; International Confederation of Cardiorespiratory Physical Therapists (ICCrPT); Physiotherapy New Zealand; The Association of Chartered Physiotherapists in Respiratory Care; The Cardiopulmonary Rehabilitation Group of the South African Society of Physiotherapy (CPRG SIG of the SASP); The Japanese Society of Physical Therapy for Diabetes Mellitus; The Japanese Society of Cardiovascular Physical Therapy; The Japanese Society of Intensive Care Medicine; The Japanese Society of Respiratory Physical Therapy; Société de Kinésithérapie de Réanimation (SKR).

Aprobare etică: Nu se aplică.

Interese concurente: Toți autorii au completat un formular de conflict de interese al Organizației Mondiale a Sănătății. Nu au fost permise conflictele de interese financiare directe și legate de industrie. Elaborarea acestor recomandări nu a inclus nicio contribuție din partea industriei, finanțare sau contribuție financiară sau nefinanciară. Niciun autor nu a primit onorarii sau remunerații pentru vreun rol în procesul de elaborare.

Surse de sprijin: Niciuna.
Recunoașteri: Niciuna.
Proveniență: Invitați. Revizuit de colegi.
Corespondență: Peter Thomas, Departamentul de fizioterapie, Royal Brisbane and Women's Hospital, Australia. E-mail: PeterJ.Thomas@health.qld.gov.au
Acest document oferă o actualizare a recomandărilor privind managementul fizioterapeutic pentru adulții internați suferinzi de forme acute coronavirus 2019 (COVID-19). Acesta include: planificarea și pregătirea fizioterapeuților; un instrument de screening pentru determinarea necesității fizioterapiei; și recomandări pentru utilizarea fizioterapiei și a echipamentului de protecție personală. Sunt oferite noi sfaturi și recomandări privind: gestionarea volumului de muncă; sănătatea personalului, inclusiv vaccinarea; furnizarea de educație clinică; echipamentul de protecție personală; intervențiiile, inclusiv decubitul și mobilizarea în stare de veghe și reabilitarea pacienților cu hipoxemie. În plus, au fost adăugate recomandări pentru recuperarea după COVID-19, inclusiv rolurile pe care fizioterapia le poate oferi în gestionarea sindromului post-COVID. Ghidurile actualizate sunt destinate utilizării de către fizioterapeuți și alte părți interesate relevante care se ocupă de pacienții adulți cu COVID-19 confirmați sau suspecți în cadrul asistenței cazurilor acute și nu numai.
INTRODUCERE

Recomandări pentru managementul prin fizioterapie a cazurilor acute de coronavirus 2019 (COVID-19) în mediul spitalicesc au fost elaborate în martie 2020 ca răspuns la pandemia emergentă și la nevoia urgentă de îndrumare pentru fizioterapeuții din întreaga lume. De atunci, cazurile COVID-19 au depășit 258 de milioane și numărul deceselor a depășit 5,1 milioane. Experiența furnizorilor de asistență medicală și a factorilor de decizie politică în abordarea pandemiei și a cercetării specifice populației COVID-19 a evoluat rapid. Scopul acestui document este de a informa fizioterapeuții și principalele părți interesate cu privire la schimbările relevante în gestionarea COVID-19 și de a actualiza recomandările pentru practica fizioterapeutică și furnizarea de servicii. Recomandările rămân axate pe pacienții adulți din spitalele de boli acute și sunt structurate în jurul următoarelor aspecte: planificarea și pregătirea fizioterapeuților; furnizarea de intervenții de fizioterapie, inclusiv respiratorii și de mobilizare/reabilitare; și cerințele privind EPP pentru furnizarea de fizioterapie. De asemenea, recomandările au fost extinse pentru a aborda impactul pe termen lung al COVID-19 și implicațiile pe care acesta le are pentru serviciile de fizioterapie din spitalele de boli acute. Aceste recomandări vor mai fi actualizate, după caz, ca răspuns la apariția dovezilor că se necesită o schimbare a abordării adulților spitalizați cu COVID-19.

METODE

Abordarea consensuală

Toți autorii anteriori au fost invitați să contribuie la această actualizare. Competențele și experiența autorilor au fost revizuite și s-a adresat o invitație către doi experți suplimentari în fizioterapie cardiorespiratorie (LB, AEH) care au adus o expertiză suplimentară în domeniul conducerii pandemiei și al modelelor de îngrijire (LB) și al reabilitării pulmonare (AEH). De asemenea, un reprezentant al consumatorilor cu experiență directă a COVID-19 (SMC) a fost invitat să revizuiască recomandările.
Am folosit cadrul AGREE II pentru a ghida raportarea. Pentru a ghida revizuirea recomandărilor originale sau elaborarea de noi recomandări și luarea deciziilor, toți membrii grupului de autori au ajutat studiul literaturii de specialitate și la revizuirea ghidurilor internaționale. Având în vedere evoluția rapidă a dovezilor și domeniul larg de aplicare al ghidului nostru, au fost căutate revizuirii sistematice sau ghiduri pentru fiecare secțiune, ori de câte ori a fost posibil. Cu toate acestea, uneori, am ales cele mai relevante studii primare, folosindu-ne cea mai bună judecată clinică și metodologică.

Toți autorii au revizuit recomandările anterioare și au ales recomandările care ar trebui revizuite sau revocate. Autorul principal (PT) a distribuit un draft care includea recomandările anterioare și elementele care au fost nominalizate pentru a fi revocate, revizuite sau adăugate. Toți autorii au avut posibilitatea de a vota pentru a revoca elementele sau de a aproba recomandări noi sau revizuite, cu un acord de ≥ 70% pentru aprobare. Voturile au fost efectuate în mod independent prin returnarea către autorul principal. Voturile au fost numărate și feedbackul a fost colectionat și de-identificat, apoi prezentat tuturor autorilor. Toate recomandările noi și revizuite au fost discutate în cadrul unei videoconferințe ulterioare, în cadrul căreia au fost făcute modificări minore ale recomandărilor, dacă a fost necesar.

După ce au fost elaborate recomandările, un consumator (SMC) a fost invitat să analizeze toate recomandările și să ofere feedback. Aprobarea recomandărilor revizuite a fost din nou solicitată de la societățile de fizioterapie, grupurile profesionale de fizioterapie și World Physiotherapy.

Epidemiologie și măsuri-cheie de sănătate publică pentru COVID-19

În timp ce numărul global de cazuri de COVID-19 depășește acum 258 de milioane, incidența săptămânală a cazurilor de COVID-19 și a deceselor a scăzut treptat în toate regiunile, cu excepția Europei, de la sfârșitul lunii august 2021. Organizația Mondială a Sănătății (OMS) a definit acum clasificări pentru severitatea bolii (tabelul 1). Clasificări similare sunt încorporate în ghidurile
australiene, care includ descriptori clinici suplimentari. În Australia și în Statele Unite, majoritatea persoanelor cu COVID-19 au forme ușoare. Cu toate acestea, aproximativ 13 % sunt internate în spital, iar 2 % necesită internare la terapie intensivă. Rate similare de forme severe (14%) și critice (5%) au fost raportate în China. Mortalitatea asociată cu COVID-19 pare a fi mai mare în Statele Unite (5%) în comparație cu China (2,3%) și Australia (1%). Acest lucru poate fi explicat de mai mulți factori, inclusiv de diferențele regionale în ceea ce privește demografia populației, răspunsurile locale în domeniul asistenței medicale și robustețea raportării datelor. În timp ce la începutul pandemiei, incidența COVID-19 a fost cea mai mare la persoanele în vârstă de cel puțin 60 de ani, în acest al doilea an pandemic s-a înregistrat o schimbare, cu cele mai multe cazuri la persoanele cu vârste mai mici de 40 de ani. În 2021, cea mai mare rată de infectare în Australia a fost înregistrată în grupul de vârstă 20-29 de ani și o rată ușor mai mare de infectare este observată în rândul bărbaților. În timp ce numărul mai mare de cazuri se înregistrează la persoanele mai tinere, internările rămân predominante la grupele de vârstă mai înaintate. Etnia poate avea, de asemenea, un impact asupra severității COVID-19. De pildă, în Regatul Unit, pacienții de origine indiană și pakistaneză au fost identificați drept un grup de risc ridicat.

Liniile genetice ale COVID-19 au apărut și au circulat în întreaga lume. Mai multe variante clasificate în prezent ca "variante în curs de monitorizare" au înregistrat o reducere semnificativă și susținută a proporțiilor regionale în timp, sau prezintă în prezent un risc mai scăzut pentru public. Printre acestea se numără variantele Alpha, Beta și Gamma. Varianta Delta, care a fost detectată pentru prima dată în India în octombrie 2020, este în prezent "varianta îngrijorătoare". Variantele îngrijorătoare par a fi semnificativ mai transmisibile și sunt asociate cu o încărcătură virală mai mare, perioade de infecție mai lungi, risc crescut de boală severă care necesită spitalizare și mortalitate. Se anticipează că apariția variantelor va continua și va necesita cercetări continue pentru a înțelege consecințele diferitelor variante asupra acuității inițiale de prezentare, a sechelelor pe termen lung și a traiectoriilor de recuperare.
Piatra de temelie a prevenirii bolilor rămâne o combinație de măsuri de sănătate publică pentru controlul infecțiilor și vaccinare. Recomandările privind măsurile de sănătate publică și controlul riscului de expunere au fost modificate de la începutul pandemiei, pe măsură ce au apărut dovezi privind răspândirea COVID-19. La începutul pandemiei, OMS a atenționat că transmiterea virusului între oameni se face în principal prin picături și contact. De atunci, acest sfat s-a schimbat. În prezent, există dovezi substanțiale care susțin transmiterea pe calea aerului a COVID-19. Ulterior, recomandările de sănătate publică privind măsurile de prevenire au evoluat, incluzând utilizarea măștilor faciale în trei straturi și asigurarea ventilației naturale a spațiilor închise, pe lângă mesajele standard de distanțare fizică de cel puțin un metru și evitarea locurilor aglomerate.

Dezvoltarea și testarea siguranței și eficacității vaccinurilor împotriva COVID-19 au fost esențiale în gestionarea COVID-19. Până la 25 noiembrie 2021, peste 7,4 miliarde de doze de vaccin au fost livrate la nivel mondial, 3,1 miliarde de persoane fiind complet vaccinate, ceea ce reflectă aproximativ 39% din populația mondială. Cu toate acestea, au existat și continuă să existe diferențe mari în ceea ce privește accesul la vaccinuri și desfășurarea acestora în diferite țări. De exemplu, în regiunile africane, în medie, aproximativ 12,7% din populație este complet vaccinată, în comparație cu regiunile europene, care au o medie de aproximativ 53,7%. Accesul inechitabil la vaccin sporește riscul apariției unor noi linii genetice ale COVID-19, care pot fi și mai amenințătoare și care necesită dezvoltarea continuă a vaccinurilor pentru a le asigura eficacitatea.

De o importanță critică pentru asistența medicală este faptul că, în mediul spitalicesc, COVID-19 devine o boală care afectează în mod predominant persoanele nevaccinate. Probabilitatea de apariție a unei forme grave sau critice de COVID-19 este ameliorată prin vaccinare, cu rate substanțial mai mici de utilizare a serviciilor de urgență, spitalizare și admitere la terapie intensivă la populațiile vaccinate. Totuși, chiar și după vaccinare, există un risc ridicat de internare și deces din cauza COVID-19 pentru
anumite grupuri. Grupurile cu risc ridicat par să includă: persoanele cu sindromul Down; imunosupresia datorată chimioterapiei, transplantului anterior de organe solide (în special transplantul de rinichi) sau transplantului recent de măduvă osoasă; HIV și SIDA; ciroza hepatică; tulburăriile neurologice, inclusiv demența și Parkinson; și rezidenții din centrele de îngrijire a persoanelor în vârstă.11. O susceptibilitate crescută poate fi observată și în cazul unor afecțiuni precum boala cronică de rinichi, cancerul de sânge, epilepsia, boala pulmonară obstructivă cronică, boala coronariană, accidentul vascular cerebral, fibrilația atrială, insuficiența cardiacă, tromboembolismul, boala vasculară periferică și diabetul de tip 211.

Managementul medical al cazurilor COVID-19 severe și critice

Terapiile pentru gestionarea COVID-19 continuă să fie evaluate. Unele tratamente utilizate inițial s-au dovedit a nu avea niciun beneficiu, inclusiv Azitromicina și Hidroxiclorochina 6. Corticosteroizi (de exemplu, Dexametazona), atunci când sunt administrați pentru o perioadă de până la 10 zile la pacienții care primesc oxigen suplimentar sau sunt ventilați mecanic, pot reduce numărul de zile fără ventilație și mortalitatea28, 29. Alte medicamente, inclusiv Budesonida, Baricitinib, Sarilumab, Remdesivir, Sotrovimab și Tocilizumab pot fi luate în considerare pentru rolul în reducerea progresiei sau severității simptomelor legate de COVID-196. Este important faptul că există variații în jurul indicațiilor acestora, de exemplu, dacă se prescriu pacienților care necesită sau nu oxigen sau ventilație mecanică, pentru anumite grupe de vârstă și/sau necesitatea de a se ține cont de factori precum imunodeficiența6.

În rândul pacienților cu COVID-19 sever, evoluția în timp a deteriorării este adesea întârziată, timpul mediu de la debutul bolii până la apariția dispneei fiind de 5 până la 8 zile, iar semnele de sindrom de detresă respiratorie acută (SRDA) de 8 până la 12 zile.30. Acest lucru poate duce la internarea la terapie intensivă la aproximativ 9-12 zile de la debutul bolii.30. Clinicienii ar trebui să fie conștienți de acest interval de timp și de potențialul ca pacienții cu COVID-19 să dezvolte rapid insuficiență respiratorie și septicemie, în special în zilele 5-10 de la debutul simptomelor.6, 30.
Principiile de bază ale asistenței respiratorii pentru a menține sau a atinge obiectivele de saturație a oxigenului sunt aceleasi, deși utilizarea ventilației neinvazive (VNI) este mai larg acceptată.6, 31. Dispozitivele convenționale de oxigenoterapie cu debite mici sunt încă utilizate dacă saturațiile de oxihemoglobină (SpO$_2$) pot fi menținute în limitele dorite. Atunci când este indicat d.p.d.v. clinic contra agravării hipoxemiei, se utilizează adesea VNI și dispozitive de oxigen cu debit mare, pacienții fiind plasați într-o cameră cu presiune negativă oricând este posibil. La nivel internațional, există o variabilitate semnificativă în ceea ce privește recomandările pentru aplicarea VNI și a oxigenului cu debit ridicat32, 33 iar studiile la scară mare care compară utilizarea oxigenului cu debit ridicat cu diferite forme de VNI, inclusiv presiunea pozitivă continuă în căile respiratorii (CPAP) în populațiile COVID-19 au avut rezultate diferite.34, 35. Deoarece pneumonita COVID-19 se prezintă ca o insuficiență respiratorie hipoxemică (fără hipercapnie), CPAP poate fi mai indicată decât alte forme de VNI6. Pe măsură ce apar mai multe studii COVID-19, acestea pot ghida selecția terapiei pentru pacienții cu insuficiență respiratorie acută care se agravează. Pentru cei monitorizați prin pulsoximetră, există o nouă înțelegere a potențialului de subdetectare a hipoxemiei oculte, mai ales în rândul celor cu pielea închisă la culoare36.

Hipoxemia silențioasă sau "fericită" este un termen care a evoluat pentru a descrie un fenomen clinic atipic la pacienții cu COVID-19 sever și critic, în care este prezentă o hipoxemie semnificativă, dar subiectiv pacienții au o senzație de bunăstare, adesea în absența dispneei sau a detresei respiratorii.37. În ciuda hipoxemiei severe, pacienții pot fi calmi, treji, cu o complianță pulmonară aproape normală38. Cauza fiziopatologică a hipoxemiei silențioase este neclară, dar se poate datora șuntului intrapulmonar, pierderii reglării perfuziei pulmonare, leziunilor endoteliale și capacității de difuzie deteriorate.39, 40. Acești pacienți necesită o monitorizare atentă. Desaturarea poate fi tranzitorie, dar este adesea prelungită sau asociată cu o decompensare respiratorie rapidă. Hipoxemia silențioasă pare să fie asociată cu boala cardiacă41 și are o mortalitate mai mare38, 42. În prezent, nu există abordări terapeutice definite pentru
aceasta, în afara de tratamentul de susținere prin creșterea cantității de oxigen suplimentar, utilizarea dispozitivelor de oxigen de debit ridicat și a VNI, poziționarea în decubit ventral și ventilația mecanică folosind principiile comune pentru ventilația SDRA.38, 40 În unele centre, pacienților cu hipoxemie refractară severă li se poate oferi oxigenare cu membrană extracorporală (ECMO).43

Poziționarea în decubit ventral a adulților cu COVID-19 ventilați mecanic este utilizată pentru perioade de 12 - 16 ore.6, 44 În plus, în timpul pandemiei, a evoluat și "poziția în decubit dorsal în stare de veghe", în care pacienții neintubați cu forme severe care necesită oxigen suplimentar sunt încurajați să stea în decubit dorsal pentru perioade prelungite pentru îmbunătățirea oxigenării.44 Metoda a fost utilizată anterior la pacienții cu SDRA45 iar în cazul COVID-19 a fost utilizat cu suporturi respiratorii, ca oxigenul cu debit ridicat46 și CPAP, folosind interfețe de cască47. Deși se recomandă și pare să îmbunătățească oxigenarea fără complicații grave, se necesită o evaluare suplimentară, deoarece există o mare variabilitate în aplicarea sa în cadrul publicațiilor actuale, iar impactul său asupra rezultatelor, ca rata de intubație sau de mortalitate, nu este clar.48-51 Implementarea precoce a decubitului în stare de veghe, de pildă în 24 de ore de când pacientul necesita oxigen cu debit ridicat, poate fi un factor important.52 Totuși, utilizarea poate fi incomodă pentru unii pacienți, ceea ce duce la o aderență scăzută.47

\textit{Afecțiuni post-COVID}

Cunoașterea despre impactul pe termen lung al COVID-19, care sunt denumite afecțiuni post-COVID.53, sindrom post-COVID54 sau Long COVID55 sunt din ce în ce mai multe. Afecțiunile post-COVID pot afecta de la persoanele cu forme ușoare până la cele spitalizate cu forme grave și critice.56 Definiția OMS a afecțiunilor post-COVID este reprezentată de simptome care apar, de obicei, la 3 luni de la debutul COVID-19, care durează \(\geq \) 2 luni și nu pot fi explicate printr-un diagnostic alternativ.57 Simptomele pot fi persistente de la momentul infecriei inițiale cu COVID-19 sau de debut nou și pot fi fluctuante sau remitente în timp. Incidența afecțiunilor post-COVID pare a fi ridicată, iar simptomele pot
avea un impact asupra vieții de zi cu zi⁵⁸. Simptome comune, inclusiv oboseala, dispneea și disfuncția cognitivă⁵⁷,⁵⁹ dar pot fi prezente și alte simptome, inclusiv tuse, pierderea gustului, anomalii cardiache (de exemplu, miocardită, dureri toracice, disfuncție autonomă), probleme de concentrare, tulburări de somn, tulburare de stres post-traumatic, dureri musculare și dureri de cap⁵⁵,⁵⁹. Este dificil de prezis cine va prezenta afecțiuni post-COVID, deși pare să fie mai probabilă la femei, la cei de vârstă mai înaintată sau cu un IMC mai mare și la cei cu mai mult de cinci simptome în prima săptămână⁶⁰.

RECOMANDĂRI

Manuscrisul original¹ cuprindea 66 de recomandări. După revizuirea recomandărilor inițiale, două recomandări au fost revocate (punctul 3.5: BubblePEP nu este recomandată pacienților cu COVID-19 din cauza incertitudinii privind potențialul de aerosolizare, care este similar cu precauția pe care OMS o acordă CPAP cu bule; și punctul 5.4: Pentru toate cazurile confirmate sau suspecte, ar trebui implementate, cel puțin, măsuri de precauție împotriva picăturilor. Personalul trebuie să poarte următoarele elemente: mască chirurgicală; halat cu mânecii lungi rezistent la fluide; ochelari de protecție sau mască de protecție facială; mănuși), au fost revizuite 20 de recomandări și au fost redactate 30 de recomandări noi. După revizuirea și votarea de către toți autorii, toate recomandările au obținut unanimitate. Cele 94 de recomandări finale sunt prezentate în casetele 1-5, iar îndrumările actualizate pentru depistarea pacienților cu COVID-19 sunt prezentate în Anexa 1. Susținerile și traducerile enumerate în Anexa 2 sunt actuale la momentul publicării. Anexele 1 și 2 sunt disponibile în eAddenda.

Planificarea și pregătirea forței de muncă în fizioterapie

Caseta 1 prezintă recomandările legate de planificarea și pregătirea forței de muncă în fizioterapie.
Creșterea numărului de internări din cauza COVID-19 a necesitat schimbări organizaționale semnificative, inclusiv în cadrul serviciilor de fizioterapie, resursele fiind redistribuite în spitale pentru a consolida serviciile în zonele COVID-19 din prima linie. și, în unele cazuri, restructurarea pentru a crea modele de schimburi extinse pentru a îmbunătăți accesul la fizioterapie. Serviciile de fizioterapie pentru pacienții fără COVID-19 au fost în continuare esențiale, contribuind la eficientizarea fluxului de pacienți și la externarea acestora și continuând să furnizeze servicii vitale de îngrijire ambulatorie și în ambulatoriu. Serviciile furnizate de ambulatoriile din spitale au fost afectate și au dus la adoptarea rapidă a serviciilor de telemedicină, care s-au dovedit eficiente în furnizarea de servicii individuale și de grup.

Vaccinarea împotriva COVID-19 este mecanismul cheie pentru controlul bolii și s-au observat reduceri atât în ceea ce privește gravitatea ei, cât și în cererea de servicii medicale. Vaccinarea lucrătorilor din domeniul sănătății din fiecare țară a fost o prioritate-cheie pentru OMS, chiar și în țările și zonele care au raportat puține cazuri până în prezent. Pe măsură ce au fost puse în aplicare vaccinurile, lucrătorii din domeniul sănătății au fost adesea prioritari, inclusiv fizioterapeuții, în special cei din prima linie. În unele țări, a fost impusă vaccinarea completă a lucrătorilor din domeniul sănătății în prezent.

Profesioniștii din domeniul sănătății implicați în îngrijirea pacienților cu COVID-19 își exprimă adesea îngrijorarea cu privire la contractarea COVID-19 și infectarea membrilor familiei. Analiza genomică a infecțiilor cu COVID-19 în rândul personalului medical australian a demonstrat că majoritatea personalului care a contractat COVID-19 a făcut-o la locul de muncă. Principalii factori care au contribuit la îmbolnăvirea personalului cu COVID-19 au fost mobilitatea personalului și a pacienților între secții și facilități, precum și caracteristicile și comportamentele pacienților individuali, în special a celor cu delir sau demență, care sunt adesea foarte mobili din cauza comportamentului de rătăcire și prezintă comportamente generatoare de aerosoli (de exemplu, tuse, strigăte sau cântecce). Un alt beneficiu
al vaccinării poate fi reducerea transmiterii virale, iar vaccinarea lucrătorilor din domeniul sănătății a fost asociată cu o reducere a COVID-19 în rândul membrilor gospodăriilor acestora.

Pentru persoanele însărcinate din domeniul medical, ghidurile continuă să recomande alocarea de sarcini care să reducă expunerea la pacienții cu COVID-19. Aceasta prezintă un risc crescut de a se îmbolnăvi mai grav în urma infecției cu COVID-19 față de populația generală, având un risc crescut de spitalizare, internare la terapie intensivă și deces. S-a observat o ezitare privind vaccinul în rândul persoanelor însărcinate, care sunt deseori îngrijorate de posibilele efecte asupra fătului. Cu toate acestea, vaccinarea pare a fi sigură pentru ele și făt, oferind imunitate umorală prin transferul de imunoglobuline prin placentă și lapte matern și este puternic recomandată. Deciziile privind alocarea resurselor sunt complexe și, atunci când jurisdicțiile locale solicită ca persoane însărcinate să lucreze în zone cu risc ridicat COVID-19, ele ar trebui să fie vaccinate și să aibă acces deplin la EPI. Se recomandă accesul la inițiative de informare, de bunăstare și sprijin concepute special pentru persoanele însărcinate.

În timpul unei pandemii, lucrătorii din domeniul sănătății prezintă un risc mai mare de traume psihice și probleme de sănătate mintală. Cerințele aferente situațiilor de urgență în domeniul sănătății publice de durată nedeterminată pot avea ca rezultat numeroase schimbări, inclusiv volum de lucru crescut, deplasarea în zone noi de lucru, epuizarea compasiunii, pierderea șanselor, izolarea de colegi și familie. De exemplu, în secțiile ATI, 51% dintre medici au suferit de burnout în timpul pandemiei, față de ratele anterioare pandemiei de 25-30%. În Statele Unite, 49% din cei 20.947 de respondenți din 42 de organizații au raportat epuizare în timpul COVID-19. Nivelurile de stres au fost mai ridicate în cazul femeilor, al celor cu mai puțini ani de activitate și al personalului care lucrează în regim de urgență. Și în rândul fizioterapeuților, burnout-ul a crescut semnificativ în timpul pandemiei rapoartele sugérând că fizioterapeuții care se confruntă cu cele mai mari niveluri de epuizare sunt cei care lucrează direct cu pacienții COVID-19 și/sau în secțiile ATI. În timp ce anxietatea poate fi ridicată în rândul celor care
au contact direct cu pacienții, cei care cred că strategiile de răspuns și de sprijinire a personalului din cadrul sistemului lor de sănătate sunt eficiente pot avea niveluri mai scăzute de depresie, anxietate și stres. În plus, personalul care se simte apreciat are niveluri semnificativ mai scăzute de burnout.

Directorii și managerii clinicilor de fizioterapie ar trebui să fie conștienți de impactul volumului de muncă și al stresului asupra echipelor lor și asupra lor înșilile în timpul pandemiei. Sănătatea mintală poate fi protejată dacă se aplică strategii de informare cu privire la răspunsurile serviciilor de sănătate la pandemie. Este importantă comunicarea regulată, eficientă și în timp util a informațiilor. Importanța comunicării în timp util prin informări (zilnic, dacă este necesar), diseminarea informațiilor în timp real prin intermediul mesageriei de grup și a mecanismelor de feedback pentru personal creează un ciclu continuu care este imperativ în timpul pandemiei. Asigurarea faptului că personalul se simte pregătit apare, de asemenea, prin completarea educației, a orientării și a competențelor relevante pentru sarcinile care sunt necesare în timpul pandemiei. Pe măsură ce volumul de muncă crește, personalul poate fi sprijinit prin consolidarea echipelor și prin verificarea faptului că se menține un program de ture adecvat și se pot lua pauze regulate, în special în timpul reproiectării serviciilor.

Trebuie să se utilizeze inițiative de sprijin și bunăstare a personalului, inclusiv oportunități de a dezbate, de a exersa încurajând recunoștința și de a recunoaște și/sau recompenza realizările. Directorii și conducătorii clinicii ar trebui să verifice în mod regulat starea personalului în special a celor care lucrează în prima linie și a celor care și-ar putea pierde jobul. Sprijinul social din partea supraveghetorilor și a colegilor poate contribui la dezvoltarea rezilienței și reducerea stresului. Furnizarea resurselor necesare personalului pentru a gestiona riscul de infectare poate reduce anxietatea, de exemplu, existența unor programe de vaccinare, o formare adecvată pentru EPP și orientări pentru îngrijirea 12emonstră a pacienților. Traumele cauzate de munca în timpul unei pandemii pot persista timp de 2 până la 3 ani.
după apariție.74. Prin urmare, mecanismele de monitorizare și de sprijin ar trebui să continue și după perioada de epidemie.81.

S-a demonstrat că plasamentele studenților din domeniul sănătății au un impact cel puțin neutrul sau chiar pozitiv asupra activității pacienților și a timpului clinic.82. Acestea sunt esențiale pentru asigurarea forței de muncă viitoare și, în plus, inspiră și influențează deciziile privind cariera.83. În timpul pandemiei, plasamentele clinice ale studenților la fizioterapie au fost profund afectate.84. Este posibil ca acestea să fi fost perturbate de cerințele în schimbare ale unităților de asistență medicală, de necesitatea de a limita accesul în spitale a personalului medical, cu excepția celui esențial, și de redistribuirea cadrelor didactice clinice pentru a sprijini rolurile clinice din prima linie. Impactul pierderii plasamentelor clinice nu se cunoaște. În plus față de timpul de plasament, este posibil ca studenții să nu fi putut finaliza sau trece evaluările de competență practică necesare pentru înregistrare. Nu se știe dacă aceste întreruperi vor avea un impact asupra calității serviciilor furnizate de către forța de muncă absolventă în anii următori.

Continuarea plasamentelor clinice necesită o analiză atentă a unor factori cum ar fi siguranța studenților (inclusiv accesul la EPP și la testele de potrivire a măștilor, dacă este necesar), punerea în aplicare a directivelor actuale de sănătate publică (distanțarea fizică, limitarea călătoriilor, conflicte între un loc de muncă simultan sau esențial și plasament), asigurări și implicații pentru planificarea viitoare a forței de muncă.85, 86 Plasarea studenților în zone clinice în care există o probabilitate ridicată de expunere la pacienți suspecți sau confirmăți COVID-19 nu se recomandă, cu excepția cazului în care există un deficit critic de personal.88 Cu toate acestea, se recomandă continuarea plasamentelor în zonele clinice care pot beneficia de prezența studenților.85, 87 Includerea studenților în sistemul de sănătate în timpul pandemiei poate contribui la depășirea deficitului de forță de muncă,85 și asigură faptul că forța de muncă nou absolvită este pregătită pentru răspunsurile la pandemie.86 În cadrul stagiilor clinice de fizioterapie,
studenții au asistat la gestionarea pacienților cu COVID-19. Pe măsură ce răspunsul la pandemie evoluează, contribuția potențială a studenților la îngrijirea directă a pacienților cu COVID-19 și riscurile trebuie să fie evaluate de către universități și furnizorii de asistență medicală.

Ca urmare a COVID-19, este necesară inovarea în modelele de educație și plasament clinic. În cadrul unor discipline de fizioterapie, s-au utilizat plasamente virtuale și telehealth, iar instrumentele care folosite în evaluarea competențelor studenților în cadrul plasamentului clinic au fost modificate pentru a include aceste domenii. Cu toate acestea, telehealth a fost mai puțin aplicabil plasamentelor din spitale și există un potențial de investigare a unor modele alternative de plasament pentru îngrijirea cazurilor acute și formarea competențelor cardiorespiratorii. Menținerea personalului în cadrul zonelor clinice, departe de răspunsul de primă linie COVID-19 este primordial pentru fizioterapia cardiorespiratorie. În cazul în care volumul de muncă și presiunile de personal necesită modele de supervizare diferite, acestea ar trebui să asigure oportunități de învățare și niveluri de supervizare și feedback adecvate, astfel încât studenții să nu se piardă în haosul pandemiei. Noile recomandări legate de educația clinică în fizioterapie sunt prezentate în Caseta 1, punctele 1.28 - 1.30.

Efectuarea intervențiilor de fizioterapie, inclusiv cerințele privind EPP-urile

La debutul pandemiei, când au fost întocmitre recomandările inițiale, se credea că transmiterea bolii se face în principal prin picături și contact, dar existau îngrijorări cu privire la potențialul de răspândire prin aer. Ulterior, recomandările se refereau la precauțiile privind picăturile și la cele privind transmiterea aerobă, în funcție de tipul de fizioterapie practicat. De exemplu, pentru fizioterapia respiratorie s-au recomandat măsuri de precauție privind transmiterea prin aer din cauza apropierii terapeutului de pacient, și utilizarea unor tehnici considerate de obicei generatoare de aerosoli, inclusiv aspirarea căilor respiratorii, VNI, procedurile de traheostomie, ventilația manuală; și generarea incertă, dar posibilă, de aerosoli prin alte tehnici de fizioterapie și tuse. Mai recent, s-a demonstrat că tusea
produce emisii de aerosoli mai mari decât respirația cu CPAP (cu un filtru de expirație insitu) sau prin intermediul unei canule nazale cu debit mare.⁹³. Dovezile privind proprietățile generatoare de aerosoli ale activităților de îngrijire a pacienților și riscul ulterior de transmitere la personalul medical sunt limitate la un număr mic de studii, care sunt, în general, de calitate scăzută⁹³, ⁹⁴. Deși este necesară o evaluare suplimentară a potențialului de generare de aerosoli, inclusiv al fizioterapiei, există în prezent dovezi substanțiale în ceea ce privește transmiterea prin aer a COVID-19¹⁶-²⁰, astfel încât recomandările au fost revizuite pentru a reflecta utilizarea măsurilor de precauție privind transmiterea prin aer în timpul tuturor interacțiunilor directe de fizioterapie cu persoanele confirmate sau suspecțe COVID-19 (caseta 2).

S-a demonstrat că măștile care oferă protecție împotriva transportului aerian (de exemplu, N95, FFP3, P2) sunt adecvate împotriva virusurilor respiratorii atunci când se potrivesc și sunt bine etanșate. Din cauza pandemiei, există o conștientizare sporită a rolului testului de potrivire a măștii, iar acesta este din ce în ce mai des recomandat personalului medical, ca un standard necesar de sănătate și siguranță la locul de muncă.⁹⁵. Potrivirea măștii depinde de factori precum forma și dimensiunea feței individului, marca și dimensiunea măștii.⁹⁶, ⁹⁷. În lipsa unei testări adecvate a ajustării, este posibil ca mulți membri ai personalului să nu fie protejați suficient împotriva transportului aerian.⁹⁷. Testarea adecvării implică costuri asociate echipamentului și personalului adecvat de testare, utilizării EPP și timpului alocat testării și educării personalului, dar se consideră că beneficiile depășesc costurile concediilor medicale și de odihnă cauzate de expunerea la virusuri.⁹⁶. Verificarea potrivirii, adică testarea etanșeității măștii după aplicare prin inspirație și expirație rapidă, nu trebuie confundată cu procesul de testare a potrivirii. Verificarea potrivirii este o etapă importantă în aplicarea măștilor, dar nu este un test fiabil pentru a ghida potrivirea măștilor.⁹⁵, ⁹⁶. Este important ca organizațiile și/sau departamentele să cunoască nivelurile de formare a personalului în domeniul EIP și de conformitate cu testele de potrivire pentru a proteja în mod corespunzător personalul, iar testele de potrivire trebuie repetate anual.⁹⁸, ⁹⁹.
Ventilatoarele cu purificare a aerului (PAPR) sunt un tip de mască cu un mic ventilator care preia aerul potențial contaminat, îl trece prin filtre virale de înaltă eficiență care absorb particulele, și furnizează aer curat utilizatorului. Se pot utiliza din mai multe motive, inclusiv ca alternativă pentru asigurarea unui nivel ridicat de protecție respiratorie persoanelor care nu trec testul de potrivire, atunci când se efectuează proceduri generatoare de aerosoli (de exemplu, intubarea) ori atunci când timpul de expunere virală este prelungit (de exemplu, o tură efectuată în cadrul unei camere de izolare COVID-19). Deși PAPR-urile pot fi mai confortabile datorită toleranței crescută la căldură, ele pot restricționa mobilitatea și împiedica comunicarea și nu există dovezi care să indice reducerea expunerii personalului la COVID-19 sau alte boli aeroportate. În plus, sunt necesare teste de potrivire PAPR, iar educația în privința procedurilor de fixare și scoatere este esențială, deoarece există un risc ridicat de autocontaminare în timpul scoaterii dispozitivului. Accesul la PAPR poate fi limitat din cauza costului lor ridicat și a costurilor asociate formării, curățării și întreținerii. Nu s-au raportat variații ale utilizării PAPR între centre și/sau utilizării de către fizioterapeuți. În cazul utilizării de către o unitate sanitară, se recomandă testarea compatibilității fizioterapeuților cu PAPR și asigurarea unei formări adecvate privind utilizarea (Caseta 2, punctul 2.12).

Aplicarea prelungită a EPP și igiena frecventă a mânăilor poate duce la reacții adverse, cum ar fi dermatita de contact, acneea și mâncărimile. Măștile care oferă protecție împotriva transportului aerian cresc riscul de apariție a acestor afecțiuni la nivelul punții nazale și al obrajilor, iar durata de purtare a EPP pare să fie cel mai frecvent factor de risc. Se pot utiliza pansamente hidrocoloide pentru a preveni apariția reacțiilor cutanate adverse cauzate de măști.

Deși limitate, continuă să apară dovezi în sprijinul recomandării inițiale, conform căreia pacienții cu tuse spontană confrunți sau suspecți de COVID-19 ar trebui încurajați să poarte o mască chirurgicală rezistentă la fluide pentru a reduce riscul transmiterii către alte persoane. Acest lucru nu a fost întotdeauna reflectat în ghidurile spitalelor, unde purtarea mășților a fost încurajată cu precădere în
timpul transportului către recuperări sau al deplasărilor între zonele clinice. Cu toate acestea, chiar și pacienții COVID-19 asimptomatice pot avea o încărcătură virală ridicată în tractul respirator superior și inferior107 iar încurajarea acestora să își acopere nasul și gura cu o mască atunci când personalul se află în cameră a fost recomandată de mai multe organizații108, 109. Apar reduceri semnificative ale dispersiei aerosolilor atunci când se poartă măști peste cele convenționale cu oxigen sau peste canula nasală cu debit mare sau atunci când pacienții tușesc105 și se poate îmbunătăți oxigenarea arterială109. Deși pilonul principal de protecție pentru personal rămâne vaccinarea, EPP pentru precauțiile de contact și cele transmise prin aer, testarea aptitudinilor și igiena mâinilor, încurajarea pacienților să poarte și o mască chirurgicală continuă să fie o practică recomandată pentru fizioterapeuți (Caseta 2, punctul 2.21).

Toți pacienții suspecți sau confirmați COVID-19 continuă să fie plasați în camere de izolare sau repartizați în grupuri în zone desemnate COVID-19. Riscul ca pacienții care prezintă alte afecțiuni să devină pozitivi COVID-19 crește atunci când transmiterea în comunitate este ridicată. În aceste momente,modelele de dotare cu personal se pot schimba. De exemplu, fizioterapeuții care lucrează cu pacienții confirmați sau suspecți COVID-19 pot fi instruiți să evite tratarea pacienților non-COVID în aceeași tură, adică să fie stabilite echipe de fizioterapie COVID și non-COVID. Spitalele pot solicita personalului să respecte separarea echipelor COVID și non-COVID, de pildă prin asigurarea unor săli de ceai, de ședință și a unor vestiare separate. Este important să se ia în considerare necesitatea de a menține mixul de competențe între echipele separate, astfel încât, în cazul în care o echipă este concediată, personalul care o înlocuiește să aibă competențele necesare pentru a furniza servicii în zonele critice.

Perioada de izolare pentru persoanele care au fost spitalizate cu COVID-19 formă severă variază în funcție de reglementările locale ale spitalului și de gravitatea bolii. Pentru adulții care nu au necesitat internare, izolarea poate fi întreruptă la 10 zile de la debutul simptomelor și la ≥ 24 de ore de la dispariția febrei împreună cu ameliorarea altor simptome110. În cazul în care a fost necesară spitalizarea, ATI, VNI
sau alt tip de suport de ventilație, sau pacienții sunt grav imunocompromiși, se recomandă o perioadă mai lungă de izolare de până la 20 de zile de la debutul simptomelor și după dispariția febrei și ameliorarea altor simptome. Atunci când pacienții sunt scoși din izolare, deși virusul poate fi încă detectabil la unii pacienți, nu mai sunt necesare EPP-uri pentru transportul aerian, deoarece infecțiozitatea acestuia este considerată imposibilă.

Recomandările privind EPP și protecția mediului continuă să evolueze și este important ca fizioterapeuții să fie la curent cu schimbările și practicile din cadrul mediului lor de lucru. Sistemele de încălzire, ventilație și aer condiționat (HVAC) și ventilația în general sunt considerate ca fiind unul dintre controalele tehnice care pot reduce riscul de transmitere a COVID-19 și multe spitale revizuiesc și/sau modernizează sistemele HVAC. S-a demonstrat că utilizarea filtrelor portabile de aer cu particule de înaltă eficiență (HEPA) reduce în mod semnificativ timpul necesar pentru ca aerosolii să fie eliminați din camera unui pacient. Hotele de ventilație personală au evoluat și ele și s-a demonstrat că reduc numărul de aerosoli cu > 98% în timpul nebulizării și al VNI.

În cazul expunerii directe la COVID-19 sau al unei încălcări a EPP, ar trebui făcută o evaluare a încălcării și o clasificare a riscului, cu înregistrare în sistemul de gestionare a incidentelor al spitalului drept un risc pentru sănătatea și securitatea la locul de muncă. Ar trebui să se ia în considerare bunăstarea personalului și fie oferit sprijin psihosocial, dacă este cazul, pe durata carantinei sau pe durata bolii și a recuperării atât în perioadele de îmbolnăvire sau pentru gestionarea post-expunere. La întoarcere, ar trebui să fie oferit un training de perfecționare pentru controlul și prevenirea infecțiilor.

Recomandări privind principiile de management fizioterapeutic - îngrijiri respiratorii

În timp ce mulți pacienți cu COVID-19 au o tuse neproductivă unii pot dezvolta prezentări supurative cu o încârcătură mare de secreții și/sau secreții respiratorii groase și vâscoase. În cazul unei forme
severe COVID-19, nivelurile plasmatiche crescute ale citokinelor proinflamatorii declanșează și supraexpresia mucinei, care poate duce la hipersecreție de mucus cu modificări ale compoziției și deficit de eliminare mucociliară, ceea ce duce la obstrucția căilor respiratorii și/sau SDRA și tromboză. Un procent mai mare de pacienți cu spută vâscoasă a fost raportat la pacienții în stare critică COVID-19 iar cercetătorii încep să evaluate rolul potențial al unor terapii precum mucolitice.

Intervențiile de fizioterapie respiratorie cu scop de degajare a căilor respiratorii sunt recomandate doar în cazurile severe și critice COVID-19, dacă există dovezi de pneumonie și dificultăți în eliminarea secrețiilor. La evaluarea bronhoscopică a pacienților cu COVID-19, desi secrețiile de mucus au fost frecvente (82%), colmatarea mucoasă a fost mai puțin întâluită (18%). Acest lucru susține teoria că nu toți pacienții cu COVID-19 forme severe sau critice vor avea nevoie de fizioterapie respiratorie și se recomandă o abordare personalizată, cu efectuarea unui screening pentru a determina ce pacienți pot beneficia de fizioterapie (caseta 3 și apendicele 1). Mai multe rapoarte reflectă rolul avut de fizioterapia respiratorie în timpul COVID-19 în mediul spitalic și din ATI.

Fizioterapeuții pot avea un rol activ în poziționarea în decubit ventral a pacienților, inclusiv în stare de veghe. Atunci când se utilizează această metodă, fizioterapeuții ar trebui să examineze pacienții în mod regulat și să îi sfătuiască privitor la poziționare pentru a preveni eventualele efecte adverse, inclusiv leziunile cauzate de presiune și cele neurologice. Pacienții ar trebui examinați după întoarcerea în decubit ventral, să nu aibă leziuni de presiune sau neurologice asociate cu utilizarea poziționării în decubit ventral. Deși această metodă se poate utiliza pentru îmbunătățirea oxigenării arteriale, nu toți pacienții o toleră de la perioade prelungite, iar testarea diferitelor poziții, cum ar fi poziția culcat lateral, semi-reclinață, așezată, înclinată în față, în decubit dorsal și semi înclinat, poate identifica pozițiile care maximizează oxigenarea arterială sau periferică și confortul pacienților.
A fost studiată utilizarea antrenamentului mușchilor inspiratori (IMT) la pacienții cu COVID-19. Într-un studiu pilot, două săptămâni de IMT au îmbunătățit în mod semnificativ dispneea, calitatea vieții și toleranța la exerciții fizice în comparație cu terapia obișnuită. Sunt necesare studii mai ample care să evaluate rolul IMT. Consensul italian privind reabilitarea pulmonară în COVID-19 recomandă ca IMT să nu fie utilizată în mod obișnuit, ci în cazul pacienților cu slăbiciune a mușchilor respiratori și dispnee persistantă. De asemenea, se poate lua în considerare pentru pacienții cu traheostomie, pe măsură ce aceștia progresează spre decanulare. Dispozitivele respiratorii de unică folosință sunt recomandate pentru persoanele cu COVID-19, inclusiv dispozitivele IMT.

Luarea deciziilor clinice privind patologia pulmonară a pacienților în stare critică se bazează adesea pe radiografiile toracice portabile și mai rar pe tomografia computerizată (CT). Ecografia pulmonară (LUS) continuă să fie utilă datorită acurateței în diagnosticarea afecțiunilor pulmonare. În era COVID-19, este posibil ca secțiile ATI să fie reticente la transportul pacienților cu COVID-19 la CT atât din cauza riscului de transmitere, cât și a stării lor. Avantajul LUS este portabilitatea și aplicarea la patul pacientului, ceea ce anulează necesitatea transportului în afara secției ATI pentru CT. LUS poate ajuta la diagnosticarea COVID-19 și la luarea deciziilor de către personal în ceea ce privește terapia, cum ar fi necesitatea poziționării în decubit ventral și a intubației. Mai mult, LUS este utilizat de către fizioterapeuții care au o pregătire corespunzătoare ca instrument de evaluare. În cazul în care fizioterapeuții au pregătirea și competența de a efectua ecografia pulmonară, aceasta poate fi utilizată ca modalitate de evaluare la pacienții cu COVID-19 (Caseta 4, punctul 4.19).

Principii de management fizioterapeutic - mobilizare, exerciții fizice și intervenții de reabilitare

Mobilizarea, exercițiile fizice și reabilitarea continuă să fie recomandate pacienților cu forme severe și critice de COVID-19 și au fost implementate pe scară largă, astfel încât s-a adăugat o singură recomandare nouă (Caseta 5, punctul 5.3). Sedentarismul și dezvoltarea slăbiciunii musculare...
și a limitărilor funcționale par a fi frecvente în rândul pacienților spitalizați cu forme severe și critice de COVID-19. Deși mobilizarea, exercițiile fizice și reabilitarea reprezintă o parte esențială a îngrijirii, nu se cunoaște frecvența, intensitatea, volumul și tipul ideal. Un studiu retrospectiv a sugerat că o frecvență și o durată mai mare a fizioterapiei pentru pacienții spitalizați cu COVID-19 este asociată cu îmbunătățirea nivelului de mobilitate la externare și cu o probabilitate mai mare de a fi externat la domiciliu. Cu toate acestea, este posibil ca frecvența crescută a fizioterapiei să nu influențeze modificările forței musculare și sunt necesare cercetări și evaluări suplimentare.

În secțiile ATI și de îngrijire a cazurilor acute, siguranța și fezabilitatea intervențiilor de mobilizare timpurie, exerciții fizice și reabilitare sunt bine stabilite. Deși există reglementări pentru începerea acestor intervenții, este important să se ia în considerare anumite caracteristici specifice COVID-19.

Disfuncția cardiacă este o complicație cunoscută a COVID-19 și poate include semne de insuficiență cardiacă, șoc cardiogen, aritmie și miocardită. Fizioterapeuții ar trebui ia în calcul faptul că disfuncția cardiacă poate apărea în timpul intervențiilor lor și să o depisteze înainte de a aplica intervențiile de mobilitate, exercițiile fizice și reabilitarea. Aceasta include cunoașterea diagnosticelor provizorii sau finale, anomaliile cardiace și investigațiile în curs (de exemplu, biomarkeri cardiace specifci, cum ar fi troponina, NT-proBNP). În plus, fizioterapeuții ar trebui să practice supravegherea clinică în timpul intervențiilor de fizioterapie pentru a preveni agravarea semnelor și simptomelor cardiaci și/sau pentru a fi conștienți de și a identifica posibilele noi prezentări ale disfuncției cardiac. Disfuncția autonomă și intoleranțele ortostatice pot fi, de asemenea, prezentate. Intervențiile nu ar trebui să împingă pacienții până la agravarea simptomelor (atât în timpul cât și după efort) sau a oboselii.

Prezentarea hipoxemiei silențioase la pacienții cu afecțiuni acute este importantă pentru fizioterapeuți, în special în timpul mobilizării, exercițiilor fizice și intervențiilor de reabilitare. În absența unor ghiduri
bazate pe dovezi care pot îmbunătăți rezultatele pacienților, este necesară prudența și trebuie utilizate strategii pentru atenuarea desaturărilor asociate cu mobilizarea, exercițiile fizice și reabilitarea. Pe lângă identificarea modului în care diferitele poziții, de exemplu, culcat lateral, semi-înclinat, așezat, aplecat înainte, înclinat și semi-înclinat pot afecta oxigenarea arterială sau periferică și confortul persoanelor, activitățile funcționale, mobilitatea și exercițiile fizice ar trebui să fie încercate atunci când sunt considerate sigure. Se recomandă o abordare graduală și/sau ritmată. De exemplu, în cazul unui pacient critic cu COVID-19 care primește oxigen cu debit ridicat, se evaluează mai întâi efectul unui transfer treptat de la pat la scaun asupra dispneii, SpO$_2$ și tensiunii arteriale și se lasă o perioadă de observație sau de recuperare, înainte de a permite pacientului să meargă sau să desfășoare activități mai intense.

La pacienții care au hipoxemie și/sau primesc niveluri ridicate de oxigen, au hipoxemie de efort sau hipoxemie silențioasă, desaturarea se poate preveni în mai multe moduri. Intervențiile trebuie să fie atent gradeate, începând cu activități de intensitate scăzută, de exemplu, exerciții fizice efectuate în pat, exerciții simple ale membrelor sau un transfer pasiv prin intermediul unei planșe de alunecare către un scaun. Concentrația și/sau debitul de oxigen suplimentar pot fi crescute înainte de mobilizare pentru a menține SpO$_2$ în intervalele vizate (de exemplu, 92-96% la majoritatea pacienților, sau 88-92% la pacienții cu hipercapezie datorată unei boli respiratorii cronice). Se pot folosi intervale scurte de exerciții sau de mobilizare și recuperare în detrimentul intervențiilor continue, iar cererea poate fi moderată prin exersarea unei anumite mase musculare (de pildă, exerciții pentru un singur membru). Trebuie luată în considerare ventilația cu VNI, în special dacă este deja utilizată și cu luarea în considerare a mediului și toți pacienții ar trebui să fie informați cu privire la desfășurarea activităților în mod conservator, într-un ritm sigur, gestionabil pentru nivelul lor de energie și în limitele simptomelor actuale.

Efectuarea activităților la marginea patului, în detrimentul îndepărtării de pat, poate fi o strategie de siguranță importantă pentru acest tip de pacienți. Ei ar trebui monitorizați îndeaproape (de pildă pt.
dispnee/exercițiul, SpO₂, TA, ritm cardiac) în timpul exercițiilor fizice, mobilizării și intervențiilor de reabilitare și după acestea, din cauza potențialului de deteriorare ulterioară. Pacienții nu trebuie împinsă până la oboseală. Începerea intervențiilor la pacienții care se află deja sub limitele de SpO vizate ar trebui evitată sau limitată doar la activitățile funcționale esențiale (de exemplu, transferul la o comodă).

Recoverarea după COVID-19

Recomandările privind recuperarea după COVID-19 reprezintă o nouă categorie în cadrul recomandărilor de fizioterapie și reflectă creșterea gradului de conștientizare și evaluare a deficiențelor pe termen lung rezultate din COVID-19 (caseta 6). Mulți pacienți externați din spital după COVID-19 vor avea simptome și deficiențe funcționale continue. Pentru a aborda afecțiunile post-COVID, este important ca pacienții să fie evaluați pentru simptome continue sau noi înainte de externarea din spital pentru a identifica potențiale terapii sau servicii de sănătate care pot fi organizate. Indiferent dacă sunt sau nu spitalizate, persoanele care au avut COVID-19 ar trebui, de asemenea, să fie evaluate la o perioadă adecvată după infecția inițială pentru a monitoriza și aborda simptomele afecțiunilor post-COVID.

Tabelul 2 oferă exemple de impact pe care afecțiunile post-COVID le pot avea asupra funcției și participării. Slăbiciunea musculară, oboseala, scăderea capacității de concentrare și dispneea sunt simptome frecvent raportate. Persoanele pot prezenta afecțiuni post-COVID indiferent dacă au fost spitalizate sau nu. Capacitatea funcțională redusă este frecventă la supraviețuitorii COVID-19 ATI și pentru unele persoane poate fi necesară recuperarea în regim de spitalizare.

La externare, pacienții și apărătorii trebuie să primească sfaturi și informații scrise privind recuperarea după COVID-19, care să includă la ce să se aștepte în timpul recuperării, cum să gestioneze singuri simptomele și cum să contacteze un medic dacă sunt îngrijorați de simptome noi, în curs de desfășurare sau agravare. Examinarea sistematică a pacienților la 6-8 săptămâni după infectare este utilă pentru a
identifica pacienții cu simptome persistente care ar putea necesita tratament suplimentar. Poate fi luat în considerare controlul mai timpuriu al pacienților care au avut forme critice COVID-19, au fost internați la ATI și la cei cu limitări semnificative ale funcției fizice la externare. Simptomele persistente variază foarte mult și nu sunt întotdeauna legate de funcția respiratorie sau fizică (de ex., tulburări de somn, afectarea mirosului, memoriei și concentrării), astfel încât este frecvent necesară o abordare multidisciplinară a îngrijirii. La nivel internațional, au fost create resurse pentru a asista pacienții în procesul de recuperare după COVID-19 și au apărut orientări și instrumente de screening în timpul pandemiei pentru a ghida planificarea resurselor multidisciplinare după externare.

Pentru fizioterapeuți, se prezintă în tabelul 3 o abordare pentru screening pe tot parcursul internării, până la externare și revenirea în comunitate. Managementul fizioterapeutic al pacienților cu deficiențe ale funcției fizice ar trebui să includă trimiteri la servicii de reabilitare în regim de internare sau ambulatoriu, după caz. Programele de reabilitare ar trebui personalizate nevoilor pacientului. În unele cazuri, pot fi necesare servicii specializate de reabilitare (de ex. reabilitarea neurologică). Pacienții se pot integra, de asemenea, în serviciile existente, cum ar fi clinicile de urmărire a pacienților din ATI.

Sunt necesare studii de mare amploare pentru a cerceta impactul formelor severe COVID-19 asupra funcției pulmonare și capacității de exercițiu pe termen lung. Rapoartele arată că impactul asupra acestora este uzual. Când s-au monitorizat pentru perioade de până la 6 luni după infecția cu COVID-19, modificările capacității de difuzie a monoxidului de carbon și/sau ale capacității vitale forțate au fost frecvente iar rezultatele testului de mers în 6 minute au fost mult mai scăzute decât cele așteptate la 23-27 % dintre pacienți. Modificările funcției pulmonare, ale capacității de efort și simptomelor pot fi similare cu cele ale celor cu pneumonie interstițială, iar desaturarea indusă de efort poate fi mai severă decât a celor cu pneumonie obstructivă cronică. Totuși, desaturarea indusă de efort pare să apară doar la o proporție mică (2 - 9%) de supraviețuitori COVID-19 sever.
Modelele de reabilitare pulmonară s-au dovedit a fi eficiente în bolile pulmonare cronice și pot reduce simptome precum dispneea și oboseala, frecvente în cazul afecțiunilor post-COVID. Acestea sunt adesea aplicate în cadrul ambulatoriilor tradiționale, dar evoluează, eficacitatea fiind demonstrată cu modele alternative, inclusiv telehealth. Utilizarea modelelor de recuperare pulmonară care au fost adaptate pentru COVID-19 par să arate un potențial beneficiu, inclusiv punerea în aplicare a modelelor de recuperare pulmonară în staționar și în ambulatoriu. Telehealth după spitalizare s-a dovedit benefic pentru îmbunătățirea capacității de exercițiu, a forței musculare și a componentelor fizice ale calității vieții în COVID-19. Pot fi utilizate și alte modele de reabilitare (de ex., reabilitarea cardiacă) și tipuri de activitate fizică, dar trebuie personalizate (considerând vârsta, accesul la servicii, gradul de handicap și factorii de risc identificați).

Îndrumarea persoanelor care au suferit de COVID la antrenament fizic ar trebui să se facă mereu cu precauție, deoarece este posibil ca simptomele să fie agravate. Ne referim la agravarea oboselii, a disfuncției cognitive sau a oricăror alte simptome experimentate după COVID-19. Dacă se identifică o agravare a simptomelor post-exercitare, adaptările pot include mesajul "Stop. Odihniți-vă. Încetiniți ritmul", gestionarea activității sau stimularea ritmului. Pacienții trebuie încurajați să contacteze echipa de îngrijire a sănătății în cazul în care se confrunță cu orice simptom de tip "semnal de alarmă" în timpul...
exercițiilor fizice, inclusiv dispnee nouă sau înrăutățire, dureri toracice, tahicardie, palpității, confuzie, dificultăți de vorbire sau de înțelegere a vorbirii, sau slăbiciune la nivelul feței, brațului sau piciorului. 173.

Este necesară recunoașterea cerințelor pe care pandemiile respiratorii le pot impune echipelor de reabilitare, pe măsură ce oamenii se deplasează de-a lungul traiectoriei bolii, de la îngrijirea cazurilor acute și spitalizare, la ambulatoriu și apoi în comunitate. 174. Pentru a fi eficiente în reducerea dizabilităților rezultate, intervențiile COVID-19, inclusiv programele de recuperare, trebuie gândite ca parte a planificării timpurii și trebuie alocate resurse suplimentare ca parte a răspunsului la pandemie. 174.

Deși nu face încă parte din niciun ghid de prevenire, este tot mai clar rolul factorilor de risc pentru sănătate și stilul de viață în ceea ce privește susceptibilitatea la infecția cu COVID-19 și gravitatea acesteia. Activitatea fizică este un factor de risc modificabil și un factor care contribuie la povara bolii pentru multiple afecțiuni cronice, iar fizioterapeuții joacă un rol important în promovarea sănătății. Un nivel obișnuit mai ridicat de activitate fizică poate reduce riscul de a contracta boli infecțioase dobândite în comunitate 175. Activitatea fizică regulată înainte de vaccinări poate crește, de asemenea, nivelul ulterior de anticorpi produs 175. Sedentarismul este un factor predictiv puternic al impactului infecției severe cu COVID-19, persoanele care erau inactive înainte de pandemie având un risc mai mare de spitalizare, de internare la ATI și deces. 176. Fizioterapeuții trebuie să promoveze programe eficiente de educație pentru sănătate, inclusiv renunțarea la fumat, nutriție, controlul greutății și activitate fizică, pentru a îmbunătăți sănătatea comunității lor și pentru a minimiza, potențial, impactul pandemiei. 177, 178.

Puncte forte și limitări

Recomandările inițiale au fost elaborate folosind ghidurile de practică clinică COVID-19 din resurse și organizații de încredere, combinate cu expertiza clinică și academică a grupului internațional de autori. Preluarea și distribuirea copleșitoare a publicației este o dovadă a punctelor sale forte și a rezonanței în
cadrul comunității de fizioterapie din întreaga lume. La momentul pregătirii acestui manuscris, cel original fusese descărcat de peste 180.000 de ori, aprobat de 10 organizații și tradus în 26 de limbi.

În timp ce se află mai multe informații despre COVID-19 și se prezintă o creștere exponențială a cercetării specifice COVID-19, publicațiile specifice fizioterapiei sunt limitate și adesea blocate la rapoarte observaționale sau audituri. Informațiile din aceste resurse au fost utilizate ori de câte ori a fost posibil, dar sunt necesare dovezi suplimentare care să descrie rolul fizioterapiei la nivel mondial și/sau studii clinice. O altă limitare este concentrarea recomandărilor pe mediile spitalicești pentru adulți, în regim acut. Există definiții pentru severitatea bolii COVID-19 pentru copii și diferă de cea a adulților. Implicațiile pe termen lung ale COVID-19 sunt, de asemenea, documentate în prezent, devenind evident rolul potențial al reabilitării în ambulatoriu sau în comunitate, iar recomandările specifice în acest context au fost incorporate în recomandările actualizate.
Referințe

1. Thomas P, Baldwin C, Bissett B, Boden I, Gosselink R, Granger CL, et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. *J Physiother.* 2020;66(2): 73-82.

2. World Health Organisation. WHO Coronavirus (COVID-19) Dashboard; 2021. https://covid19.who.int/. Accessed 25 Nov 2021.

3. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. Development of the AGREE II, part 1: performance, usefulness and areas for improvement. *Cmaj.* 2010;182(10): 1045-1052.

4. World Health Organisation. Weekly epidemiological update on COVID-19 - 23 November 2021; 2021. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---13-october-2021. Accessed 25 Nov 2021.

5. World Health Organisation. Clinical management of COVID-19: interim guidance 18 January 2021; 2021. https://app.magicapp.org/#/guideline/j1WBYn. Accessed 14 Oct 2021.

6. National COVID-19 Clinical Evidence Taskforce. Caring for people with COVID-19. Living Guidelines; 2021. https://covid19evidence.net.au/. Accessed 25 Nov 2021.

7. COVID-19 National Incident Room Surveillance Team. COVID-19 Australia: Epidemiology Report 51. *Comunicable Diseases Intelligence.* 2021;45(https://doi.org/10.33321/cdi.2021.45.54).

8. Stokes EK, Zambrano LD, Anderson KN, Marder EP, Raz KM, El Burai Felix S, et al. Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(24): 759-765.

9. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA.* 2020;323(13): 1239-1242.

10. Venkatesan P. The changing demographics of COVID-19. *Lancet Respir Med.* 2020;8(12): e95.

11. Hippisley-Cox J, Coupland CA, Mehta N, Keogh RH, Diaz-Ordaz K, Khunti K, et al. Risk prediction of covid-19 related death and hospital admission in adults after covid-19 vaccination: national prospective cohort study. *BMJ.* 2021;374: n2244.

12. Centers for Disease Control and Prevention. SARS-CoV-2 Variant Classifications and Definitions; 2021. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html#Consequence. Accessed 14 Oct 2021.

13. Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S, et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. *Lancet Infect Dis.* 2021.

14. World Health Organisation. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Scientific brief; 2020. https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations. Accessed 15 Oct 2021.

15. World Health Organisation. Coronavirus disease (COVID-19): How is it transmitted?; 2021. https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted. Accessed 15 Oct 2021.

16. The Lancet Respiratory Medicine. COVID-19 transmission - up in the air. *The Lancet Respiratory Medicine.* 2020;8(12): 1159.

17. Robles-Romero JM, Conde-Guillen G, Safont-Montes JC, Garcia-Padilla FM, Romero-Martín M. Behaviour of aerosols and their role in the transmission of SARS-CoV-2; a scoping review. *Rev Med Virol.* 2021: e2297.
18. Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D, Schooley R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. *Lancet*. 2021;397(10285): 1603-1605.

19. Bahl P, Doolan C, de Silva C, Chughtai AA, Bourouiba L, MacIntyre CR. Airborne or droplet precautions for health workers treating COVID-19? *J Infect Dis*. 2020.

20. Hyde Z, Berger D, Miller A. Australia must act to prevent airborne transmission of SARS-CoV-2. *Med J Aust.* 2021;215(1): 7-9 e1.

21. Wilson NM, Marks GB, Eckhardt A, Clarke AM, Young FP, Garden FL, et al. The effect of respiratory activity, non-invasive respiratory support and facemasks on aerosol generation and its relevance to COVID-19. *Anaesthesia*. 2021;76(11): 1465-1474.

22. MacIntyre CR, Chughtai AA. A rapid systematic review of the efficacy of face masks and respirators against coronaviruses and other respiratory transmissible viruses for the community, healthcare workers and sick patients. *Int J Nurs Stud.* 2020;108: 103629.

23. World Health Organisation. WHO Coronavirus (COVID-19) Dashboard. Vaccination data; 2021. https://covid19.who.int/who-data/vaccination-data.csv. Accessed 25 Nov 2021.

24. Burki T. Global COVID-19 vaccine inequity. *Lancet Infect Dis.* 2021;21(7): 922-923.

25. Fan YJ, Chan KH, Hung IF. Safety and Efficacy of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Different Vaccines at Phase 3. *Vaccines (Basel).* 2021;9(9).

26. Thompson MG, Burgess JL, Naleway AL, Tyner H, Yoon SK, Meece J, et al. Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines. *N Engl J Med.* 2021;385(4): 320-329.

27. Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong TC, et al. Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. *N Engl J Med.* 2021;385(15): 1355-1371.

28. Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. *JAMA*. 2020;324(13): 1307-1316.

29. Group RC, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in Hospitalized Patients with Covid-19. *N Engl J Med.* 2021;384(8): 693-704.

30. Centers for Disease Control and Prevention. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19); 2021. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html. Accessed 15 Oct 2021.

31. Australian and New Zealand Intensive Care Society. ANZICS COVID-19 Guidelines; 2021. https://www.anzics.com.au/coronavirus-guidelines/. Accessed 15 Oct 2021.

32. Azoulay E, de Waele J, Ferrer R, Staudinger T, Borkowska M, Povoa P, et al. International variation in the management of severe COVID-19 patients. *Crit Care*. 2020;24(1): 486.

33. Gorman E, Connolly B, Couper K, Perkins GD, McAuley DF. Non-invasive respiratory support strategies in COVID-19. *Lancet Respir Med.* 2021;9(6): 553-556.

34. Perkins GD, Ji C, Connolly BA, Couper K, Lall R, Baillie JK, et al. An adaptive randomized controlled trial of non-invasive respiratory strategies in acute respiratory failure patients with COVID-19. *medRxiv*. 2021.

35. Grieco DL, Menga LS, Cesarano M, Rosa T, Spadaro S, Bitondo MM, et al. Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial. *JAMA*. 2021;325(17): 1731-1743.

36. Sjoding MW, Dickson RP, Iwashyna TJ, Gay SE, Valley TS. Racial Bias in Pulse Oximetry Measurement. *N Engl J Med.* 2020;383(25): 2477-2478.
37. Garcia-Grimshaw M, Flores-Silva FD, Chiquete E, Cantu-Brito C, Michel-Chavez A, Viguera-Hernandez AP, et al. Characteristics and predictors for silent hypoxemia in a cohort of hospitalized COVID-19 patients. *Auton Neurosci*. 2021;235: 102855.

38. Haryalchi K, Heidarzadeh A, Abedinzade M, Olangian-Tehrani S, Ghazanfar Tehran S. The Importance of Happy Hypoxemia in COVID-19. *Anesth Pain Med*. 2021;11(1): e111872.

39. Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrechts BN. Conceptions of the pathophysiology of happy hypoxemia in COVID-19. *Respir Res*. 2021;22(1): 12.

40. Swenson KE, Ruoss SJ, Swenson ER. The Pathophysiology and Dangers of Silent Hypoxemia in COVID-19 Lung Injury. *Ann Am Thorac Soc*. 2021;18(7): 1098-1105.

41. Alhusain F, Alromaih A, Alhajress G, Alsaghyir A, Alqobaisi A, Alaboodi T, et al. Predictors and clinical outcomes of silent hypoxia in COVID-19 patients, a single-center retrospective cohort study. *J Infect Public Health*. 2021;14(11): 1595-1599.

42. Xie J, Covassin N, Fan Z, Singh P, Gao W, Li G, et al. Association Between Hypoxemia and Mortality in Patients With COVID-19. *Mayo Clin Proc*. 2020;95(6): 1138-1147.

43. Barbaro RP, MacLaren G, Boonstra PS, Combes A, Agerstrand C, Annich G, et al. Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the international Extracorporeal Life Support Organization Registry. *Lancet*. 2021;398(10307): 1230-1238.

44. Nasa P, Azoulay E, Khanna AK, Jain R, Gupta S, Javeri Y, et al. Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method. *Crit Care*. 2021;25(1): 106.

45. Perez-Nieto OR, Guerrero-Gutierrez MA, Deloya-Tomas E, Namendys-Silva SA. Prone positioning combined with high-flow nasal cannula in severe noninfectious ARDS. *Crit Care*. 2020;24(1): 114.

46. Ehrmann S, Li J, Ibarra-Estrada M, Perez Y, Pavlov I, McNicholas B, et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial. *Lancet Respir Med*. 2021.

47. Bastoni D, Poggiali E, Vercelli A, Demichele E, Tinelli V, Iancicelli T, et al. Prone positioning in patients treated with non-invasive ventilation for COVID-19 pneumonia in an Italian emergency department. *Emerg Med J*. 2020;37(9): 565-566.

48. Ponnapa Reddy M, Subramaniam A, Afroz A, Billah B, Lim ZJ, Zubarev A, et al. Prone Positioning of Nonintubated Patients With Coronavirus Disease 2019-A Systematic Review and Meta-Analysis. *Crit Care Med*. 2021;49(10): e1001-e1014.

49. Taboada M, Gonzalez M, Alvarez A, Gonzalez I, Garcia J, Eiras M, et al. Effectiveness of Prone Positioning in Nonintubated Intensive Care Unit Patients With Moderate to Severe Acute Respiratory Distress Syndrome by Coronavirus Disease 2019. *Anesth Analg*. 2019;129(1): 25-30.

50. Wendt C, Mobus K, Weiner D, Esken B, Allegra JR. Prone Positioning of Patients With Coronavirus Disease 2019 Who Are Nonintubated in Hypoxic Respiratory Distress: Single-Site Retrospective Health Records Review. *J Emerg Nurs*. 2021;47(2): 279-287 e271.

51. Fazzini B, Page A, Pease R, Puthucheary Z. Prone position for non-intubated spontaneously breathing patients with hypoxic respiratory failure: a systematic review and meta-analysis. *British Journal of Anaesthesia*. In press.

52. Kaur R, Vines DL, Mirza S, Elshafei A, Jackson JA, Harnois LJ, et al. Early versus late awake prone positioning in non-intubated patients with COVID-19. *Crit Care*. 2021;25(1): 340.

53. Centers for Disease Control and Prevention. Post-COVID Conditions; 2021. https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html. Accessed 22 Oct 2021.

54. Ayoubkhani D, Khunti K, Nafiliyan V, Maddox T, Humberstone B, Diamond I, et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. *BMJ*. 2021;372: n693.

55. Crook H, Raza S, Nowell J, Young M, Edison P. Long covid-mechanisms, risk factors, and management. *BMJ*. 2021;374: n1648.
56. Bell ML, Catalfamo CJ, Farland LV, Ernst KC, Jacobs ET, Klimentidis YC, et al. Post-acute sequelae of COVID-19 in a non-hospitalized cohort: Results from the Arizona CoVHORT. PLoS One. 2021;16(8): e0254347.

57. World Health Organisation. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021; 2021. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post-COVID-19-condition-Clinical_case_definition-2021.1. Accessed 22 Oct 2021.

58. Michelen M, Manoharan L, Elkheir N, Cheng V, Dagens A, Hastie C, et al. Characterising long COVID: a living systematic review. BMJ Glob Health. 2021;6(9).

59. Fernandez-de-Las-Penas C, Palacios-Cena D, Gomez-Mayordomo V, Florencio LL, Cuadrado ML, Plaza-Manzano G, et al. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. Eur J Intern Med. 2021;92: 55-70.

60. Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4): 626-631.

61. Palacios-Cena D, Fernandez-de-Las-Penas C, Florencio LL, Palacios-Cena M, de-la-Llave-Rincon AI. Future Challenges for Physical Therapy during and after the COVID-19 Pandemic: A Qualitative Study on the Experience of Physical Therapists in Spain. Int J Environ Res Public Health. 2021;18(16).

62. McWilliams D, Weblin J, Hodson J, Veenith T, Whitehouse T, Snelson C. Rehabilitation Levels in Patients with COVID-19 Admitted to Intensive Care Requiring Invasive Ventilation. An Observational Study. Ann Am Thorac Soc. 2021;18(1): 122-129.

63. Bennell KL, Lawford BJ, Metcalf B, Mackenzie D, Russell T, van den Berg M, et al. Physiotherapists and patients report positive experiences overall with telehealth during the COVID-19 pandemic: a mixed-methods study. J Physiother. 2021;67(3): 201-209.

64. World Health Organisation. COVID-19 vaccines available for all healthcare workers in the Western Pacific Region; 2021. https://www.who.int/westernpacific/news/detail/06-08-2021-covid-19-vaccines-available-for-all-healthcare-workers-in-the-western-pacific-region. Accessed 17 Oct 2021.

65. Stokel-Walker C. Covid-19: The countries that have mandatory vaccination for health workers. BMJ. 2021;373: n1645.

66. Holton S, Wynter K, Trueman M, Bruce S, Sweeney S, Crowe S, et al. Immediate impact of the COVID-19 pandemic on the work and personal lives of Australian hospital clinical staff. Aust Health Rev. 2021.

67. Watt AE, Sherry NL, Andersson P, Lane CR, Johnson S, Wilmot M, et al. State-wide Genomic Epidemiology Investigations of COVID-19 Infections in Healthcare Workers – Insights for Future Pandemic Preparedness. medRxiv. 2021.

68. Shah ASV, Gribben C, Bishop J, Hanlon P, Caldwell D, Wood R, et al. Effect of Vaccination on Transmission of SARS-CoV-2. N Engl J Med. 2021.

69. The Royal Australian and New Zealand College of Obstetricians and Gynaecologists. COVID-19 and pregnant health care workers and other at-risk workers; 2021. https://ranzcohq.edu.au/news/covid-19-and-pregnant-health-care-workers. Accessed 23 Oct 2021.

70. Centers for Disease Control and Prevention. COVID-19 Vaccine Monitoring Systems for Pregnant People; 2021. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/monitoring-pregnant-people.html. Accessed 23 Oct 2021.

71. Villar J, Ariff S, Gunier RB, Thiruvelgadham R, Rauch S, Kholin A, et al. Maternal and Neonatal Morbidity and Mortality Among Pregnant Women With and Without COVID-19 Infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 2021;175(8): 817-826.

72. Januszek SM, Faryniak-Zuzak A, Barnas E, Lozinski T, Gora T, Siwiec N, et al. The Approach of Pregnant Women to Vaccination Based on a COVID-19 Systematic Review. Medicina (Kaunas). 2021;57(9).

73. Falsaperla R, Leone G, Familiari M, Ruggieri M. COVID-19 vaccination in pregnant and lactating women: a systematic review. Expert Rev Vaccines. 2021: 1-10.
74. Sirois FM, Owens J. Factors Associated With Psychological Distress in Health-Care Workers During an Infectious Disease Outbreak: A Rapid Systematic Review of the Evidence. *Front Psychiatry.* 2020;11: 589545.

75. Gomez S, Anderson BJ, Yu H, Gutsche J, Jablonski J, Martin N, et al. Benchmarking Critical Care Well-Being: Before and After the Coronavirus Disease 2019 Pandemic. *Crit Care Explor.* 2020;2(10): e0233.

76. Azoulay E, De Waele J, Ferrer R, Staudinger T, Borkowska M, Povoa P, et al. Symptoms of burnout in intensive care unit specialists facing the COVID-19 outbreak. *Ann Intensive Care.* 2020;10(1): 110.

77. Prasad K, McLaughlin C, Stillman M, Poplau S, Goelz E, Taylor S, et al. Prevalence and correlates of stress and burnout among U.S. healthcare workers during the COVID-19 pandemic: A national cross-sectional survey study. *EClinicalMedicine.* 2021;35: 100879.

78. Jacome C, Seixas A, Serrao C, Teixeira A, Castro L, Duarte I. Burnout in Portuguese physiotherapists during COVID-19 pandemic. *Physiother Res Int.* 2021;26(3): e1915.

79. Pniak B, Leszczak J, Adamczyk M, Rusek W, Matlosz P, Guzik A. Occupational burnout among active physiotherapists working in clinical hospitals during the COVID-19 pandemic in south-eastern Poland. *Work.* 2021;68(2): 285-295.

80. Ditwiler RE, Swisher LL, Hardwick DD. Professional and Ethical Issues in United States Acute Care Physical Therapists Treating Patients With COVID-19: Stress, Walls, and Uncertainty. *Phys Ther.* 2021;101(8).

81. Greenberg N, Docherty M, Gnanapragasam S, Wessely S. Managing mental health challenges faced by healthcare workers during covid-19 pandemic. *BMJ.* 2020;368: m1211.

82. Bourne E, Short K, McAllister L, Nagarajan S. The quantitative impact of placements on allied health time use and productivity in healthcare facilities: a systematic review with meta-analysis. *Focus on Health Professional Education: A Multi-Professional Journal.* 2019;20(2): https://fohpe.org/FoHPE/article/view/315.

83. Marques A Pt P, Oliveira A Pt M, Machado AP, Jacome C Pt P, Cruz J Pt P, Pinho T Pt M, et al. Cardiorespiratory physiotherapy as a career choice-perspective of students and physiotherapists in Portugal. *Physiother Theory Pract.* 2019;35(11): 1094-1116.

84. Dario A, Simic M. Innovative physiotherapy clinical education in response to the COVID-19 pandemic with a clinical research placement model. *J Physiother.* 2021;67(4): 235-237.

85. Miller DG, Pierson L, Doernberg S. The Role of Medical Students During the COVID-19 Pandemic. *Ann Intern Med.* 2020;173(2): 145-146.

86. Halbert JA, Jones A, Ramsey LP. Clinical placements for medical students in the time of COVID-19. *Med J Aust.* 2020;213(2): 69-69 e61.

87. Australian Health Practitioner Regulation Agency. National principles for clinical education during COVID-19; 2020. file:///C:/Users/peten/Downloads/National-principles-for-clinical-education-during-the-COVID-19-pandemic.PDF. Accessed 24 Oct 2021.

88. Association of American Medical Colleges. Guidance on Medical Students’ Participation in Direct In-person Patient Contact Activities; 2020. https://www.aamc.org/system/files/2020-08/meded-August-14-Guidance-on-Medical-Students-on-Clinical-Rotations.pdf. Accessed 24 Oct 2021.

89. Essex Uo. Our physio students continue vital role on COVID-19 frontline; 2021. https://www.essex.ac.uk/news/2021/01/19/essex-physiotherapy-students-continue-vital-role-on-covid-19-frontline. Accessed 29 Oct 2021.

90. Nahon I, Jeffery L, Peiris C, Dunwoodie R, Corrigan R, Francis-Crackell A. Responding to emerging needs: Development of adapted performance indicators for physiotherpay student assessment in telehealth. *Australian Journal of Clinical Education.* 2021;9(1): https://doi.org/10.53300/53001c.24960.

91. Ulenaers D, Grosemans J, Schrooten W, Bergs J. Clinical placement experience of nursing students during the COVID-19 pandemic: A cross-sectional study. *Nurse Educ Today.* 2021;99: 104746.
92. Jackson T, Deibert D, Wyatt G, Durand-Moreau Q, Adisesh A, Khunti K, et al. Classification of aerosol-generating procedures: a rapid systematic review. BMJ Open Respir Res. 2020;7(1).
93. Hamilton FW, Gregson FKA, Arnold DT, Sheikh S, Ward K, Brown J, et al. Aerosol emission from the respiratory tract: an analysis of aerosol generation from oxygen delivery systems. Thorax. 2021.
94. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7(4): e35797.
95. Regli A, von Ungern-Sternberg BS. Fit testing of N95 or P2 masks to protect health care workers. Med J Aust. 2020;213(7): 293-295 e291.
96. Regli A, Sommerfield A, von Ungern-Sternberg BS. The role of fit testing N95/FFP2/FFP3 masks: a narrative review. Anaesthesia. 2021;76(1): 91-100.
97. Regli A, Thalayasingam P, Bell E, Sommerfield A, von Ungern-Sternberg BS. More than half of frontline healthcare workers unknowingly used an N95/P2 mask without adequate airborne protection: An audit in a tertiary institution. Anaesth Intensive Care. 2021: 310057X211007861.
98. Standards Australia. AS1715:2009. Selection, use and maintenance of respiratory protective equipment; 2009. https://www.standards.org.au/. Accessed 23 Nov 2021.
99. Zhuang Z, Bergman M, Brochu E, Palmiero A, Niezgoda G, He X, et al. Temporal changes in filtering-facepiece respirator fit. J Occup Environ Hyg. 2016;13(4): 265-274.
100. Licina A, Silvers A, Stuart RL. Use of powered air-purifying respirator (PAPR) by healthcare workers for preventing highly infectious viral diseases-a systematic review of evidence. Syst Rev. 2020;9(1): 173.
101. Licina A, Silvers A. Use of powered air-purifying respirator (PAPR) as part of protective equipment against SARS-CoV-2-a narrative review and critical appraisal of evidence. Am J Infect Control. 2021;49(4): 492-499.
102. Lammers MJW, Lea J, Westerberg BD. Guidance for otolaryngology health care workers performing aerosol generating medical procedures during the COVID-19 pandemic. J Otolaryngol Head Neck Surg. 2020;49(1): 36.
103. Montero-Vilchez T, Cuenca-Barrales C, Martinez-Lopez A, Molina-Leyva A, Arias-Santiago S. Skin adverse events related to personal protective equipment: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2021;35(10): 1994-2006.
104. Galanis P, Vraka I, Fragkou D, Bilali A, Kaitelidou D. Impact of personal protective equipment use on health care workers' physical health during the COVID-19 pandemic: A systematic review and meta-analysis. Am J Infect Control. 2021;49(10): 1305-1315.
105. Li J, Fink JB, Elshafei AA, Stewart LM, Barbian HJ, Mirza SH, et al. Placing a mask on COVID-19 patients during high-flow nasal cannula therapy reduces aerosol particle dispersion. ERJ Open Res. 2021;7(1).
106. Leasa D, Cameron P, Honarmand K, Mele T, Bosma KJ, Group LVSfC-W. Knowledge translation tools to guide care of non-intubated patients with acute respiratory illness during the COVID-19 Pandemic. Crit Care. 2021;25(1): 22.
107. Lee S, Meyler P, Mozel M, Tauh T, Merchant R. Asymptomatic carriage and transmission of SARS-CoV-2: What do we know? Can J Anaesth. 2020;67(10): 1424-1430.
108. COVID-19 Critical Intelligence Unit. Surgical masks and oxygen therapy; 2020. https://aci.health.nsw.gov.au/__data/assets/pdf_file/0011/599060/Evidence-Check-Surgical-masks-and-oxygen-therapy.pdf. Accessed 24 Oct 2021.
109. Montiel V, Robert A, Robert A, Nabaoui A, Marie T, Mestre NM, et al. Surgical mask on top of high-flow nasal cannula improves oxygenation in critically ill COVID-19 patients with hypoxemic respiratory failure. Ann Intensive Care. 2020;10(1): 125.
110. Centres for Disease Control and Prevention. Ending Isolation and Precautions for People with COVID-19: Interim Guidance; 2021. https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html. Accessed 29 Oct 2021.

111. World Health Organisation. Coronavirus disease (COVID-19): Ventilation and air conditioning; 2020. https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-ventilation-and-air-conditioning. Accessed 24 Oct 2021.

112. Buising KL, Schofield R, Irving L, Keywood M, Stevens A, Keogh N, et al. Use of portable air cleaners to reduce aerosol transmission on a hospital coronavirus disease 2019 (COVID-19) ward. Infect Control Hosp Epidemiol. 2021: 1-6.

113. McGain F, Bates S, Lee JH, Timms P, Kainer MA, French C, et al. A prospective clinical evaluation of a patient isolation hood during the COVID-19 pandemic. Aust Crit Care. 2021.

114. McGain F, Humphries RS, Lee JH, Schofield R, French C, Keywood MD, et al. Aerosol generation related to respiratory interventions and the effectiveness of a personal ventilation hood. Crit Care Resusc. 2020;22(3): 212-220.

115. Song WJ, Hui CKM, Hull JH, Birring SS, McGarvey L, Mazzone SB, et al. Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir Med. 2021;9(5): 533-544.

116. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491514/?report=printable. Biochemical and Biophysical Characterization of Respiratory Secretions in Severe SARS-CoV-2 (COVID-19) Infections.

117. Desilles JP, Gregoire C, Le Cossec C, Lambert J, Mophawe O, Losser MR, et al. Efficacy and safety of aerosolized intra-tracheal dornase alfa administration in patients with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS): a structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21(1): 548.

118. Fisher J, Mohanty T, Karlsson CAQ, Khademi SMH, Malmstrom E, Frigyesi A, et al. Proteome Profiling of Recombinant DNase Therapy in Reducing NETs and Aiding Recovery in COVID-19 Patients. Mol Cell Proteomics. 2021;20: 100113.

119. Kumar SS, Binu A, Devan AR, Nath LR. Mucus targeting as a plausible approach to improve lung function in COVID-19 patients. Med Hypotheses. 2021;156: 110680.

120. Wang Y, Zhang M, Yu Y, Han T, Zhou J, Bi L. Sputum characteristics and airway clearance methods in patients with severe COVID-19. Medicine (Baltimore). 2020;99(46): e23257.

121. Arenas-De Larriva M, Martin-DeLeon R, Urrutia Royo B, Fernandez-Navamuelt I, Gimenez Velando A, Nunez Garcia L, et al. The role of bronchoscopy in patients with SARS-CoV-2 pneumonia. ERJ Open Res. 2021;7(3).

122. Battaglini D, Robba C, Caiffia S, Ball L, Brunetti I, Locente M, et al. Chest physiotherapy: An important adjuvant in critically ill mechanically ventilated patients with COVID-19. Respir Physiol Neurobiol. 2020;282: 103529.

123. Black C, Klapaukh R, Gordon A, Scott F, Holden N. Unanticipated demand of Physiotherapist-Deployed Airway Clearance during the COVID-19 Surge 2020 a single centre report. Physiotherapy. 2021;113: 138-140.

124. Righetti RF, Onoue MA, Politi FVA, Teixeira DT, Souza PN, Kondo CS, et al. Physiotherapy Care of Patients with Coronavirus Disease 2019 (COVID-19) - A Brazilian Experience. Clinics (Sao Paulo). 2020;75: e2017.

125. Jiandani MP, Salagre SB, Kazi S, Iyer S, Patil P, Khot WY, et al. Preliminary Observations and Experiences of Physiotherapy Practice in Acute Care Setup of COVID 19: A Retrospective Observational Study. J Assoc Physicians India. 2020;68(10): 18-24.

126. Li L, Yu P, Yang M, Xie W, Huang L, He C, et al. Physical Therapist Management of COVID-19 in the Intensive Care Unit: The West China Hospital Experience. Phys Ther. 2021;101(1).
127. Chiu M, Goldberg A, Moses S, Scala P, Fine C, Ryan P. Developing and Implementing a Dedicated Prone Positioning Team for Mechanically Ventilated ARDS Patients During the COVID-19 Crisis. Jt Comm J Qual Patient Saf. 2021;47(6): 347-353.

128. Fourie A, Ahtiala M, Black J, Hevia H, Coyer F, Gefen A, et al. Skin damage prevention in the prone ventilated critically ill patient: A comprehensive review and gap analysis (PRONEtect study). J Tissue Viability. 2021.

129. Barakat-Johnson M, Carey R, Coleman K, Counter K, Hocking K, Leong T, et al. Pressure injury prevention for COVID-19 patients in a prone position. Wound Practice and Research. 2020;28(2): 50-57.

130. Simpson AI, Vaghela KR, Brown H, Adams K, Sinisi M, Fox M, et al. Reducing the Risk and Impact of Brachial Plexus Injury Sustained From Prone Positioning-A Clinical Commentary. J Intensive Care Med. 2020;35(12): 1576-1582.

131. Dong W, Gong Y, Feng J, Bai L, Qing H, Zhou P, et al. Early Awake Prone and Lateral Position in Non-intubated Severe and Critical Patients with COVID-19 in Wuhan: A Respective Cohort Study. medRxiv. 2020: 2020.2005.2009.20091454.

132. Rauseo M, Mirabella L, Caporusso RR, Cantatore LP, Perrini MP, Vetuschi P, et al. SARS-CoV-2 pneumonia successfully treated with cpap and cycles of tripod position: a case report. BMC Anesthesiol. 2021;21(1): 9.

133. Eggmann S, Kindler A, Perren A, Ott N, Johannes F, Vollenweider R, et al. Early Physical Therapist Interventions for Patients With COVID-19 in the Acute Care Hospital: A Case Report Series. Phys Ther. 2021;101(1).

134. Abodonya AM, Abdelbasset WK, Awad EA, Elalfy IE, Salem HA, Elsayed SH. Inspiratory muscle training for recovered COVID-19 patients after weaning from mechanical ventilation: A pilot control clinical study. Medicine (Baltimore). 2021;100(13): e25339.

135. Vitacca M, Lazzeri M, Guffanti E, Frigerio P, D’Abrosca F, Gianola S, et al. An Italian consensus on pulmonary rehabilitation in COVID-19 patients recovering from acute respiratory failure: Results of a Delphi process. Monaldi Archives for Chest Disease. 2020;90(2): 385-393.

136. Wang M, Luo X, Wang L, Estill J, Lv M, Zhu Y, et al. A Comparison of Lung Ultrasound and Computed Tomography in the Diagnosis of Patients with COVID-19: A Systematic Review and Meta-Analysis. Diagnostics (Basel). 2021;11(8).

137. Haak SL, Renken IJ, Jager LC, Lameijer H, van der Kolk BBY. Diagnostic accuracy of point-of-care lung ultrasound in COVID-19. Emerg Med J. 2021;38(2): 94-99.

138. Peixoto AO, Costa RM, Uzun R, Fraga AMA, Ribeiro JD, Marson FAL. Applicability of lung ultrasound in COVID-19 diagnosis and evaluation of the disease progression: A systematic review. Pulmonology. 2021.

139. European Society of R. The role of lung ultrasound in COVID-19 disease. Insights Imaging. 2021;12(1): 81.

140. Leech M, Bissett B, Kot M, Ntoumenopoulos G. Lung ultrasound for critical care physiotherapists: a narrative review. Physiother Res Int. 2015;20(2): 69-76.

141. Lee AJY, Chung CLH, Young BE, Ling LM, Ho BCH, Puah SH, et al. Clinical course and physiotherapy intervention in 9 patients with COVID-19. Physiotherapy. 2020;109: 1-3.

142. Johnson JK, Lapin B, Green K, Stilphen M. Frequency of Physical Therapist Intervention Is Associated With Mobility Status and Disposition at Hospital Discharge for Patients With COVID-19. Phys Ther. 2021;101(1).

143. Spielmanns M, Pekacka-Egli AM, Schoendorf S, Windisch W, Hermann M. Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients. Int J Environ Res Public Health. 2021;18(5).

144. Medrinal C, Prieur G, Bonnevie T, Gravier FE, Mayard D, Desmalles E, et al. Muscle weakness, functional capacities and recovery for COVID-19 ICU survivors. BMC Anesthesiol. 2021;21(1): 64.
145. Musheyev B, Borg L, Janowicz R, Matarlo M, Boyle H, Singh G, et al. Functional status of mechanically ventilated COVID-19 survivors at ICU and hospital discharge. *J Intensive Care.* 2021;9(1): 31.

146. Nydahl P, Sricharoenchai T, Chandra S, Kundt FS, Huang M, Fischill M, et al. Safety of Patient Mobilization and Rehabilitation in the Intensive Care Unit. Systematic Review with Meta-Analysis. *Ann Am Thorac Soc.* 2017;14(5): 766-777.

147. Hodgson CL, Stillker, Needham DM, Tipping CJ, Harrold M, Baldwin CE, et al. Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. *Crit Care.* 2014;18(6): 658.

148. Shaﬁ AMA, Shaikh SA, Shirke MM, Iddawela S, Harky A. Cardiac manifestations in COVID-19 patients-A systematic review. *J Card Surg.* 2020;35(8): 1988-2008.

149. World Physiotherapy. World Physiotherapy response to COVID-19. Briefing paper 9. Safe rehabilitation approaches for people living with long covid: physical activity and exercise; 2021. https://world.physio/sites/default/files/2021-07/Briefing-Paper-9-Long-Covid-FINAL-English-202107.pdf. Accessed 25 Oct 2021.

150. Dolmage TE, Reilly T, Greening NJ, Majd S, Popat B, Agarwal S, et al. Cardiorespiratory Responses between One-legged and Two-legged Cycling in Patients with Idiopathic Pulmonary Fibrosis. *Ann Am Thorac Soc.* 2020;17(2): 240-243.

151. Iqbal FM, Lam K, Sounderajah V, Clarke JM, Ashrafian H, Darzi A. Characteristics and predictors of acute and chronic post-COVID syndrome: A systematic review and meta-analysis. *EClinicalMedicine.* 2021;36: 100899.

152. Hodgson CL, Higgins AM, Bailey MJ, Mather AM, Beach L, Bellomo R, et al. The impact of COVID-19 critical illness on new disability, functional outcomes and return to work at 6 months: a prospective cohort study. *Crit Care.* 2021;25(1): 382.

153. National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19; 2020. https://www.nice.org.uk/guidance/ng188. Accessed 28 Oct 2021.

154. Spruit MA, Holland AE, Singh SJ, Tonia T, Wilson KC, Troosters T. COVID-19: Interim Guidance on Rehabilitation in the Hospital and Post-Hospital Phase from a European Respiratory Society and American Thoracic Society-coordinated International Task Force. *Eur Respir J.* 2020.

155. National Health Service. Your COVID Recovery; 2021. https://www.yourcovidrecovery.nhs.uk/. Accessed 24 Oct 2021.

156. Royal Australian College of General Practitioners. Patient resource: Managing post-COVID-19 symptoms; 2020. https://www.racgp.org.au/FSDEDEV/media/documents/Clinical%20Resources/Guidelines/Managing-post-COVID-19.pdf. Accessed 17 Oct 2021.

157. Canadian Physiotherapy Association. Rehabilitation for Clients with Post COVID-19 Condition (Long COVID); 2021. https://physiotherapy.ca/rehabilitation-clients-post-covid-19-condition-long-covid. Accessed 29 Oct 2021.

158. Long COVID Physio; 2021. https://longcovid.physio/about. Accessed 31 Oct 2021.

159. Puthucheary Z, Brown C, Corner E, Wallace S, Highfield J, Bear D, et al. The Post-ICU presentation screen (PICUPS) and rehabilitation prescription (RP) for intensive care survivors part II: Clinical engagement and future directions for the national Post-Intensive care Rehabilitation Collaborative. *Journal of the Intensive Care Society.* 0(0): 1751143720988708.

160. Bardakci MI, Ozturk EN, Ozkaraﬁkili MA, Ozkurt H, Yanc U, Yildiz Seygi D. Evaluation of long-term radiological findings, pulmonary functions, and health-related quality of life in survivors of severe COVID-19. *J Med Virol.* 2021;93(9): 5574-5581.

161. Strumiliene E, Zeleckiene I, Blidzius R, Samuolis A, Zvirblis T, Zablockiene B, et al. Follow-Up Analysis of Pulmonary Function, Exercise Capacity, Radiological Changes, and Quality of Life Two Months after Recovery from SARS-CoV-2 Pneumonia. *Medicina (Kaunas).* 2021;57(6).
162. Blanco JR, Cobos-Ceballos MJ, Navarro F, Sanjoaquin I, Arnaiz de Las Revillas F, Bernal E, et al. Pulmonary long-term consequences of COVID-19 infections after hospital discharge. *Clin Microbiol Infect.* 2021;27(6): 892-896.

163. Gonzalez J, Benitez ID, Carmona P, Santistevie S, Monge A, Moncusi-Moix A, et al. Pulmonary Function and Radiologic Features in Survivors of Critical COVID-19: A 3-Month Prospective Cohort. *Chest.* 2021;160(1): 187-198.

164. Vitacca M, Paneroni M, Brunetti G, Carlucci A, Balbi B, Spanevello A, et al. Characteristics of COVID-19 Pneumonia Survivors With Resting Normoxemia and Exercise-Induced Desaturation. *Respir Care.* 2021;66(11): 1657-1664.

165. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. *Cochrane Database Syst Rev.* 2015(2): CD003793.

166. Puhan MA, Gimeno-Santos E, Cates CJ, Troosters T. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. *Cochrane Database Syst Rev.* 2016;12: CD005305.

167. Dowman L, Hill CJ, May A, Holland AE. Pulmonary rehabilitation for interstitial lung disease. *Cochrane Database Syst Rev.* 2021;2: CD006322.

168. Cox NS, Dal Corso S, Hansen H, McDonald CF, Hill CJ, Zanaboni P, et al. Telerehabilitation for chronic respiratory disease. *Cochrane Database Syst Rev.* 2021;1: CD013040.

169. Hayden MC, Limbach M, Schuler M, Merkl S, Schwarzl G, Jakab K, et al. Effectiveness of a Three-Week Inpatient Pulmonary Rehabilitation Program for Patients after COVID-19: A Prospective Observational Study. *Int J Environ Res Public Health.* 2021;18(17).

170. Daynes E, Gerlis C, Singh SJ. The demand for rehabilitation following COVID-19: a call to service providers. *Physiotherapy.* 2021.

171. Everaerts S, Heyns A, Langer D, Beyens H, Hermans G, Troosters T, et al. COVID-19 recovery: benefits of multidisciplinary respiratory rehabilitation. *BMJ Open Respir Res.* 2021;8(1).

172. Li J, Xia W, Zhan C, Liu S, Yin Z, Wang J, et al. A telerehabilitation programme in post-discharge COVID-19 patients (TERECO): a randomised controlled trial. *Thorax.* 2021.

173. World Health Organisation. Support for rehabilitation: self-management after COVID-19-related illness; 2021. https://www.euro.who.int/en/health-topics/Life-stages/disability-and-rehabilitation/publications/support-for-rehabilitation-self-management-after-covid-19-related-illness,-2nd-ed. Accessed 24 Nov 2021.

174. Landry MD, Geddes L, Park Moseman A, Lefler JP, Raman SR, Wijchen JV. Early reflection on the global impact of COVID19, and implications for physiotherapy. *Physiotherapy.* 2020;107: A1-A3.

175. Chastin SFM, Abaraogu U, Bourgeois JG, Dall PM, Darnborough J, Duncan E, et al. Effects of Regular Physical Activity on the Immune System, Vaccination and Risk of Community-Acquired Infectious Disease in the General Population: Systematic Review and Meta-Analysis. *Sports Med.* 2021;51(8): 1673-1686.

176. Sallis R, Young DR, Tartof SY, Sallis JF, Sall J, Li Q, et al. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. *Br J Sports Med.* 2021;55(19): 1099-1105.

177. Dean E, Jones A, Yu HP, Gosselink R, Skinner M. Translating COVID-19 Evidence to Maximize Physical Therapists' Impact and Public Health Response. *Phys Ther.* 2020;100(9): 1458-1464.

178. Dean E, Skinner M, Yu HP, Jones AY, Gosselink R, Soderlund A. Why COVID-19 strengthens the case to scale up assault on non-communicable diseases: role of health professionals including physical therapists in mitigating pandemic waves. *AIMS Public Health.* 2021;8(2): 369-375.

179. Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. *JAMA.* 2012;307(23): 2526-2533.

180. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. *Crit Care Med.* 2021;49(11): e1063-e1143.
181. World Health Organisation. Clinical management of COVID-19 patients: living guidance, 25 January 2021; 2021. https://app.magicapp.org/#/guideline/j1WBYn. Accessed 14 Oct 2021.
182. Won HK, Song WJ. Impact and disease burden of chronic cough. Asia Pac Allergy. 2021;11(2): e22.
183. Siracusa C, Gray A. Pelvic Floor Considerations in COVID-19. J Womens Health Phys Therap. 2020;44(4): 144-151.
Tabelul 1. Categoriile Organizației Mondiale a Sănătății de severitate a bolii COVID-19 la adulți

Categoria	Definiție
Non-severă	Pacienți simptomatici fără semne de pneumonie virală (adică fără febră, tuse, dispnee sau hiperpnee) și fără hipoxie (adică SpO₂ ≥ 90% la aerul ambiental).
Severă	Semne clinice de pneumonie (febră, tuse, dispnee sau hiperpnee) cu cel puțin unul dintre următoarele:
- frecvență respiratorie > 30 respirații/minut
- detresă respiratorie severă
- SpO₂ < 90% la aerul ambiental |
| Critică | Necesită furnizarea de terapii de menținere a vieții, cum ar fi ventilația mecanică (invazivă sau neinvazivă) sau vasopresoare, cu prezentări care includ:
- Sindromul de detresă respiratorie acută\(^{179}\)
- Sepsis\(^{180}\)
- Șoc septic\(^{180}\) |

COVID-19 = boala coronavirus 2019, CT = tomografie computerizată, SpO₂ = saturăția oxihemoglobinei.

\(^{a}\) Adaplat din Managementul clinic al pacienților cu COVID-19: ghid de viață\(^{181}\)

\(^{b}\) În timp ce diagnosticul poate fi pus pe baze clinice, imagistica toracică (radiografie, tomografie computerizată, ecografie) poate ajuta la diagnosticare.
Structura și funcția corpului	Activități (exemple)	Participare (exemple)
Dispnee	Incapabil să parcurgă distanțe lungi	Imposibilitatea de a efectua activitățile de zi cu zi și/sau de a reveni la locul de muncă
Tuse persistență	Imposibilitatea de a efectua activități care declanșează tusea	Impact emoțional, izolare socială, productivitate redușă182
Slăbiciune	Incapabil să stea în picioare pentru perioade lungi de timp	Calitatea redușă a vieții legate de sănătate
Oboseală	Imposibilitatea de a îndeplini sarcini casnice (curățenie, cumpărături)	Dificultăți în efectuarea activităților comunitare
Durere (dureri de cap, dureri toracice și musculo-scheletale)	Imposibilitatea de a participa la activități fizice și recreative	Roluri și relații familiale modificate
Memorie slabă, funcționare executivă și rezolvarea problemelor	Incapabil să se concentreze asupra unei sarcini și incapabil să facă mai multe lucruri în același timp	Revenirea la locul de muncă sau la studii (școală, universitate, cursuri de dezvoltare personală) poate fi limitată sau imposibilă
Coșmaruri, flashback-uri către ATI, anxietate, depresie	Incapabil să dormi	Impactul emoțional; imposibilitatea de a se bucura de activitățile obișnuite, de muncă sau de rolurile din comunitate

ATI = Anestezie și terapie intensivă

a Adaptat din Ghidul COVID-19 al Societății de terapie intensivă din Australia și Noua Zeelandă31
Tabelul 3. Evaluări care pot fi luate în considerare de către fizioterapeuti pentru pacienții cu COVID-19 în timpul tranzițiilor de îngrijire: Externarea din USI a, externarea din bspital și 6-8 săptămâni după infecția cu cCOVID-19.

Zona clinică	Elemente de evaluare
Respirator	Cerințe privind terapia cu oxigen
SpO₂ în repaus și cu exerciții fizice	
Dispnee în repaus și la efort	
Tuse	
Prezența sputei și indicații pentru tehnici de degajare a căilor respiratorii	
Fizic	Disfuncție autonomă și intoleranțe ortostatice
Exacerbarea simptomelor post-efort	
Forța musculară	
Functia fizičă	
Capacitate de exercițiul/rezistență, de exemplu, testul de mers în 6 minute	
Nivelul de mobilitate, ajutoarele de mers necesare, distanța de mers și asistență necesară	
Balanță	
Siguranța pe scări	
Nevoi de reabilitare în curs de desfășurare	
Durere	
Podeaua pelviană și continența	
Altele	Oboseală - legată de activitate sau stare generală de rău
 Somnul
 Delir
 Funcția cognitivă, inclusiv memoria și concentrarea
 Suporturi sociale
 Revenirea la locul de muncă, la rolurile familiale și la activitățile recreative
 Luați în considerare trimiterea către alții profesioniști din domeniul sănătății, dacă este indicat |

SpO₂ = saturația oxihemoglobinei.

a Ar trebui să se facă un schimb de informații clinice cu personalul din secție cu privire la preocupările în curs de desfășurare la externarea din UPU.
b Pregățiți o scrisoare de externare către medicul de familie dacă pacienții au nevoie de sprijin permanent.
c Persoanele cu simptome persistenta după COVID-19 ar trebui să fie revizuite, fie personal, fie prin intermediul telehealth. Comunicați cu medicul de îngrijire primară în ceea ce privește nevoile de reabilitare și sprijinul continuu.
Caseta 1. Recomandări privind planificarea și pregătirea forței de muncă în fizioterapie.

Capacitate
1.1 Planificarea unei creșteri a personalului necesar în domeniul fizioterapiei. De exemplu:
• să permită ture suplimentare pentru personalul cu fracțiune de normă
• să ofere personalului posibilitatea de a anula în mod electiv concediul
• să recruteze un grup de personal ocazional
• să recruteze personal academic și de cercetare, personal care a ieșit recent la pensie sau care lucrează în prezent în roluri non-clinice
• să lucreze în schimburi diferite (de ex., schimburi de 12 ore, schimburi prelungite de seară)
1.2 Identificarea personalului potențial suplimentar care ar putea fi repartizat în zonele cu activitate mai intensă asociate cu internările COVID-19 (de exemplu, secția de boli infețioase, secția ATI și/sau unitatea de înaltă dependență și alte zone pentru cazuri acute). Acordați priorităte personalului pentru desfășurare care are experiență anterioară în domeniul cardio-respirator și al îngrijirii cazurilor critice.
1.3 Planificarea forței de muncă ar trebui să ia în considerare cerințele specifice unei pandemii, cum ar fi volumul de muncă suplimentar generat de punerea și scoaterea EPI-urilor și necesitatea de a aloca personal pentru sarcini cheie neclinice, cum ar fi aplicarea procedurilor de control al infecțiilor.
1.4 Identificați planurile la nivelul spitalului pentru alocarea/gruparea pacienților cu COVID-19. Utilizați aceste planuri pentru a pregăți planurile de resurse care pot fi necesare. Consultați manuscrisul original pentru un exemplu de plan de resurse pentru fizioterapie în terapie intensivă.
1.5 Luați în considerare organizarea forței de muncă în echipe care vor gestiona pacienții cu COVID-19 confirmat sau suspectat față de pacienții neinfectați.
• Reducerea la minimum sau împiedicarea deplasării personalului între echipe
• Luați în considerare rotația echipelor după perioade între îngrijirea persoanelor cu COVID-19 și cele care nu au COVID-19.
• Asigurați-vă că echipele au o distribuție uniformă a competențelor.
• Limitarea circulației personalului între secțiile din cadrul spitalului sau între campusurile spitalului
1.6 Departamentele de fizioterapie ar trebui să planifice potențialele modificări ale gestionării volumului de muncă, inclusiv:
• Concediile personalului diagnosticat cu COVID-19 sau care a fost expus la un contact apropiat cu o persoană cu COVID-19 în comunitate sau la locul de muncă (fără EPI adecvat).
• Protejarea personalului, care prezintă un risc mai mare de COVID-19 și care necesită planuri de reducere a expunerii la pacienții cu COVID-19 confirmat sau suspectat.
1.7 În cazul în care personalul este suspendat, luați în considerare capacitatea de a oferi servicii de telesănătate sau alte modalități de acces de la distanță pentru a oferi sprijin
clinica și/sau administrativ și pentru a reduce volumul de muncă al personalului de fizioterapie din cadrul spitalului.

1.8 Fizioterapeuții cu experiență ar trebui să fie implicați în determinarea caracterului adecvat al intervențiilor de fizioterapie pentru pacienții suspecți sau confirmați COVID-19, în consultare cu personalul medical superior și în conformitate cu un ghid de trimitere.

Formare și educație

1.9 Fizioterapeuților li se cere să aibă cunoștințe, abilități și un proces decizional specializat pentru a lucra în cadrul secției ATI. Fizioterapeuții cu experiență anterioară în terapie intensivă ar trebui să fie identificați de spital și să își se faciliteze revenirea in ATI.

1.10 Fizioterapeuții care nu au o experiență recentă în fizioterapie cardiorespiratorie ar trebui să fie identificați de spital și să își se faciliteze întoarcerea pentru a sprijini serviciile spitalicești suplimentare. De exemplu, personalul care nu are pregătire în spitalele de boli acute sau în secțiile de terapie intensivă poate facilita reabilitarea, căile de externare sau evitarea spitalizării pentru pacienții fără COVID-19.

1.11 Personalul cu abilități avansate de fizioterapie în terapie intensivă ar trebui să fie sprijinit pentru a depista pacienții cu COVID-19 repartizați pe sarcini de fizioterapie și pentru a oferi personalului debutant din terapie intensivă o supraveghere și un sprijin adecvat, în special în ceea ce privește luarea deciziilor pentru pacienții complecși cu COVID-19. Spitalele ar trebui să identifice liderii clinici de fizioterapie corespunzători pentru a pune în aplicare această recomandare.

1.12 b Identificați resursele de învățare existente pentru personalul care ar putea fi repartizat în zonele de critică, de ATI sau de reabilitare din spital. De exemplu:
- Training EPP
- Programe locale de orientare în ATI
- Pachete de eLearning Cardiorespirator și/sau ATI
- Resurse educaționale de la organismele profesionale
- Ghiduri și resurse pentru reabilitarea pulmonară.

1.13 a În perioadele de transmitere redusă a COVID-19 în comunitate, personalul de fizioterapie din spitalele de boli acute ar trebui să mențină gradul de pregătire prin educație continuă, simulare și revizuire a protoalelor COVID-19.

Comunicare și bunăstare

1.14 Țineți personalul informat cu privire la planuri. Comunicarea este esențială pentru furnizarea cu succes a unor servicii clinice sigure și eficiente.

1.15 a Managerii de fizioterapie și liderii clinici ar trebui să se angajeze în mod regulat cu personalul pentru a menține o conștientizare a bunăstării personalului (de exemplu, sănătatea mentală și fizică) în timpul și după pandemie.

1.16 b Ar trebui să se recunoască faptul că personalul va avea probabil un volum de muncă sporit și un risc crescut de anxietate atât la locul de muncă, cât și acasă. Personalul ar
trebui să fie sprijinit în timpul pandemiei și după pandemie (de exemplu, prin acces la programe de asistență pentru angajați, consiliere, sesiuni de debriefing).

1.17 Luați în considerare și/sau promovați ședințele de bilanț și sprijinul psihologic; moralul personalului poate fi afectat negativ din cauza volumului de muncă sporit, a anxietății legate de siguranța personală și de sănătatea membrilor familiei.

Vaccinarea și sănătatea personalului

1.18 Toți fizioterapeuții ar trebui să fie vaccinați pentru COVID-19 (cu excepția cazului în care se aplică o scutire medicală aprobată), inclusiv rapeluri, după caz.

1.19 Fizioterapeuții care oferă îngrijire directă pacienților suspecți sau confirmați COVID-19 sau care trebuie să mențină alte servicii de fizioterapie în perioadele de transmitere comunitară ridicată a COVID-19 (de exemplu, servicii în secțiile medicale sau în serviciile ambulatorii) ar trebui să se numere printre furnizorii de asistență medicală care au acces prioritatar la programele de vaccinare împotriva COVID-19.

1.20 În cazul în care un membru al personalului de fizioterapie nu poate fi vaccinat din cauza unei scutiri medicale aprobate, acesta ar trebui să fie redistribuit în zone care nu sunt acoperite de vaccinarea COVID.

1.21 Fizioterapeuții ar trebui să urmeze și să ofere un model de urmat în ceea ce privește metodele de limitare a transmiterii COVID-19, inclusiv igiena regulată a mâinilor, distanța fizică și purtarea unei măști, în conformitate cu recomandările de sănătate publică.

1.22 Toți fizioterapeuții ar trebui să participe la testele de supraveghere la locul de muncă în conformitate cu procedurile locale. De exemplu, testarea rapidă a antigenului din salivă după ce lucrează cu pacienți cu pacienții suspecți sau confirmați COVID-19.

1.23 Personalul care se consideră că prezintă un risc ridicat nu ar trebui să intre în zonele COVID-19. Atunci când se planifică personalul și listele de personal, următoarele persoane pot prezenta un risc mai mare de a dezvolta o boală mai gravă din cauza COVID-19 și ar trebui să evite expunerea la pacienții cu COVID-19. Aceasta include persoanele care:
- sunt însărcinate
- au boli respiratorii cronicse semnificative
- sunt imunodeficienți
- sunt mai în vârstă (de exemplu, >60 de ani)
- au afecțiuni cronice grave, cum ar fi boli de inimă, boli pulmonare, diabet zaharat
- au o afecțiune care provoacă imunodeficiență.

1.24 Să cunoască și să respecte orientările internaționale, naționale, de stat și/sau spitalicești relevante pentru controlul infețiiilor în unitățile sanitare.

1.25 Serviciile spitalicești sau departamentele de fizioterapie ar trebui să colecteze și să păstreze înregistrări cu privire la:
- Statutul de vaccinare al personalului
- Personalul care trebuie să se protejeze de expunere
- Formarea și competența în domeniul PPE
- Testul de potrivire a măștii
- Personalul instruit în terapie intensivă
- Altă pregătire (de exemplu, pentru poziționarea în decubit ventral, VNI/CPAP, oxigenoterapie)

Echipament

| 1.26 | Identificați resursele fizice suplimentare care pot fi necesare pentru intervențiile de fizioterapie și modul în care poate fi reusit la minimum riscul de infecție încrucișată (de exemplu, echipamente respiratorii, echipamente de mobilizare, de exerciții și de reabilitare, precum și de depozitare a echipamentelor). |
| 1.27 | a) Stabilirea și dezvoltarea unui inventar al instalatiiilor de echipamente respiratorii, de mobilizare, de exerciții și de reabilitare și determinarea procesului de alocare a echipamentelor pe măsură ce nivelul pandemiei crește.
 • Dacă resursele permit, limitați deplasarea echipamentelor între zonele infecțioase și cele neinfectioase.
 • În cazul în care resursele sunt limitate, echipamentele pot fi mutate între zone cu o curățare corespunzătoare. |

Educație clinică

| 1.28 | a) Plasamentele studenților la fizioterapie ar trebui să continue acolo unde acest lucru este sigur și posibil, echilibrând riscurile și beneficiile pe termen scurt și pe termen lung pentru studenți și pentru personalul medical. |
| 1.29 | a) Cerințele studenților la fizioterapie în materie de vaccinare și de EPP ar trebui să se alinieze cu cerințele personalului de fizioterapie. |

| 1.30 | a) În cazul în care cerințele răspunsului la pandemie necesită modificări ale plasamentelor clinice tradiționale pentru studenții la fizioterapie și sunt oferite opțiuni clinice alternative, aceștia ar trebui să se asigure că pot fi oferite oportunități de învățare adecvate, niveluri de supraveghere și feedback, asigurând respectarea standardelor de acreditare. |

COVID-19 = boala coronavirus 2019, ATI = Anestezie și terapie intensivă, EPP = echipament de protecție personală.

a Recomandare nouă
b Recomandare revizuită

Caseta 2. Recomandări privind echipamentul de protecție personală pentru fizioterapeuți.

| 2.1 | a) Educația și formarea personalului ar trebui să fie reactive pentru a asigura conformitatea cu modificările recomandărilor privind EPP, după caz. |
| 2.2 | a) Numai personalul care a fost instruit în aplicarea corectă a EPP trebuie să îngrijiască pacienții suspecți sau confirmați cu COVID-19. |
2.3 **a** Se recomandă testarea potrivirii măștilor care oferă protecție împotriva transmitterii prin aer (de exemplu, N95, FFP3, P2), pentru a se asigura că personalul poate identifica dimensiunea și stilul de mască care li se potrivește.

2.4 Toți membrii personalului trebuie să fie instruiți în ceea ce privește punerea și scoaterea corectă a PPE, inclusiv efectuarea unei "verificări de potrivire" pentru măștile care oferă protecție împotriva transportului aerian (de exemplu, N95, FFP3, P2). Ar trebui să se țină un registru al personalului care a absolvit cursuri de formare și teste de potrivire a PPE.

2.5 **b** Măștile care oferă protecție împotriva transportului aerian (de exemplu, N95, FFP3, P2) se bazează pe o bună etanșare. Bărbolele compromit capacitatea de a realiza o etanșare adecvată și de a menține protecția împotriva aerosolilor. Personalul ar trebui să își îndepărteze părul facial și să fie bărbitit pentru a asigura o bună potrivire a măștii.

2.6 **a** Fizioterapeuții ar trebui să fie conștienți de evenimentele adverse cutanate comune cauzate de efectele spălării frecvente a mâinilor și de aplicarea prelungită a EPP, inclusiv dermatita de contact, acneea, mâncărime și leziunile de presiune cauzate de măști. Ar trebui să fie disponibile opțiuni pentru reducerea evenimentelor adverse.

2.7 **a** În cazul în care personalul nu reușește să efectueze un test de potrivire cu măștile disponibile care oferă protecție împotriva transmitterii prin aer, atunci personalul ar trebui redistribuit în zone care nu sunt conforme cu normele COVID.

2.8 **b** Pentru pacienții suspecți și confirmați cu COVID-19 trebuie să se utilizeze EPP pentru precauțiile de contact și de transmitere prin aer. Aceasta include:

- o mască de față care oferă protecție împotriva transmitterii prin aer (de ex., N95, FFP3, P2)
- un halat cu mâneci lungi rezistent la fluide
- ochelari de protecție/ecran facial
- mânusi

2.9 În plus, pot fi luate în considerare următoarele:

- bonetă de protecție pentru procedurile generatoare de aerosoli
- încălțăminte impermeabilă la lichide și care poate fi ștearsă.

Nu se recomandă utilizarea de huse pentru încălțăminte, deoarece îndepărtarea repetată poate crește riscul de contaminare a personalului.

2.10 EPP trebuie să rămână la locul lor și să fie purtate corect pe toată durata expunerii la zonele potențial contaminate. EPP (în special măștile) nu trebuie ajustate în timpul îngrijirii pacienților.

2.11 Folosiți un proces pas cu pas pentru a vă echipa și a vă scoate EPP, în conformitate cu reglementările locale.
| 2.12 | Atunci când spitalele utilizează ventilatoare cu purificare a aerului (PAPR) în zonele clinice COVID-19, fizioterapeuții ar trebui să beneficieze de un training corespunzător privind utilizarea acestor aparate. |
| 2.13 | În cazul în care fizioterapeuții se confruntă cu o încălcare a EPP sau cu o expunere la COVID-19
- gestionarea expunerii se va face în conformitate cu procesele organizaționale definite
- ar trebui să fie înregistrat în sistemul de gestionare a incidentelor al organizației ca un risc pentru sănătatea și securitatea la locul de muncă
- bunătarea fizioterapeutului ar trebui să fie luată în considerare, în special în momentul incidentului și pe durata carantinei sau pe durata bolii și a recuperării sale
- la întoarcerea la locul de muncă, membrului personalului ar trebui să i se ofere un training în domeniul controlului și prevenirii infecțiilor |
| 2.14 | Verificați reglementările locale pentru informații privind spălarea uniformelor și/sau purtarea uniformelor în afara locului de muncă în cazul expunerii la COVID-19. De exemplu, în ghidurile locale se poate recomanda schimbarea în halate și/sau personalul poate fi încurajat să se schimbe de uniformă înainte de a părăsi locul de muncă și să transporte acasă uniformele uzate într-o pungă de plastic pentru a le spăla acasă. |
| 2.15 | Reduceți la minimum efectele personale la locul de muncă. Toate obiectele personale trebuie îndepărtate înainte de a intra în zonele clinice și de a îmbrăca EPP. Aceasta include cercei, ceasuri, lânțioare, telefoane mobile, pagere, pixuri etc. Utilizarea stetoscopului trebuie redusă la minimum. Dacă este necesar, folosiți stetoscoape dedicate în zonele de izolare. Părul trebuie să fie legat la spate, departe de față și de ochi. |
| 2.16 | Personalul care se ocupă de pacienții infecțioși trebuie să se echipzeze cu EPP corect, indiferent de izolarea fizică. De exemplu, în cadrul secției ATI, dacă pacienții sunt repartizați într-o zonă cu camere deschise, personalul care lucrează în limitele zonei de terapie intensivă, dar care nu este implicat direct în îngrijirea pacienților, trebuie să poarte, de asemenea, EPP. Același lucru se aplică odată ce pacienții infecțioși sunt îngriși într-o secție deschisă. Personalul folosește atunci șorturi de plastic, un schimb de mănuși și igiena mâinilor atunci când se deplasează între pacienții din zonele deschise. |
| 2.17 | În cazul în care o unitate îngrijește un pacient cu COVID-19 confirmat sau suspectat, se recomandă ca toate operațiunile de îmbrăcare și dezbrăcare să fie supravegheate de un membru al personalului suplimentar cu pregătire corespunzătoare. |
| 2.18 | Evitați utilizarea în comun a echipamentelor. Folosiți doar echipamente de unică folosință. |
2.19
Purtați un șort de plastic suplimentar dacă se așteaptă un volum mare de expunere la fluide.

2.20
În cazul în care se folosesc elemente de EPP reutilizabile (de exemplu, ochelari de protecție), acestea trebuie curățate și dezinfectate înainte de reutilizare.

2.21 a
Atunci când pacienții suspecți sau confirmați COVID-19 primesc terapii generatoare de aerosoli (de exemplu, oxigen de debit mare) sau manifestă comportamente generatoare de aerosoli (de exemplu, tuse, strigăte, plâns), ar trebui să se ia în considerare capacitatea pacientului de a purta o mască chirurgicală rezistentă la fluide pe față și un dispozitiv de administrare a oxigenului, în special atunci când personalul oferă tratament în imediata apropiere a pacientului.

COVID-19 = boala coronavirus 2019, ATI = Anestezie și terapie intensivă, EPP = echipament de protecție personală.

a Recomandare nouă
b Recomandare revizuită

Caseta 3. Pe cine ar trebui să trateze fizioterapeuții?

3.1 b
Infeția respiratorie asociată cu COVID-19 este în principal asociată cu tuse uscată și neproductivă; implicarea tractului respirator inferior implică de obicei pneumonită mai degrabă decât consolidare exsudativă. În aceste cazuri, nu sunt indicate intervențiile de fizioterapie respiratorie pentru eliberarea căilor respiratorii.

3.2
Intervențiile de fizioterapie respiratorie în secțiile de spital sau în terapie intensivă pot fi indicate pentru pacienții care au confirmat sau suspectat COVID-19 și care dezvoltă concomitent sau ulterior consolidare exsudativă, hipersecreție mucoasă și/sau dificultăți în eliminarea secrețiilor.

3.3 a
Fizioterapeuții au un rol în identificarea pacienților cu COVID-19 care ar putea avea nevoie de asistență respiratorie suplimentară, inclusiv oxigen nazal cu debit mare, VNI/CPAP sau utilizarea poziției în decubit ventral. Rolul lor poate include, de asemenea, inițierea și gestionarea acestor intervenții.

3.4
Fizioterapeuții vor avea un rol permanent în furnizarea de intervenții pentru mobilizare, exerciții fizice și reabilitare (de exemplu, la pacienții cu comorbidități care creează un declin funcțional semnificativ și/sau (cu risc de) slăbiciune dobândită în ATI).

3.5 b
Intervențiile de fizioterapie ar trebui furnizate numai atunci când există indicatori clinici, astfel încât expunerea personalului la pacienții cu COVID-19 să fie redusă la minimum.

- Revizuirea inutilă a pacienților cu COVID-19 în camera/zonele de izolare a acestora poate crește riscul de transmitere.
- În situațiile în care aprovizionarea cu EPP este limitată, aceasta poate avea, de asemenea, un impact negativ asupra aprovizionării cu EIP.
3.6 Fizioterapeuții ar trebui să se întâlnească în mod regulat cu personalul medical superior pentru a determina indicațiile pentru examinarea fizioterapeutică la pacienții cu COVID-19 confirmat sau suspectat și pentru a face un screening în conformitate cu orientările stabilite/acordate (apendicele 1 oferă un cadru sugerat).

3.7 Resursele ar trebui să fie pregătite de către fizioterapeuți pentru pacienții cu COVID-19 (de exemplu, pliante, fișe de informare), ținând cont de grupurile culturale și/sau lingvistice din cadrul unei comunități, iar traducerile ar trebui să fie disponibile.

3.8 Personalul de fizioterapie nu ar trebui să intre în mod obișnuit în camerele de izolare, în care pacienții cu COVID-19 confirmată sau suspectată sunt izolați sau cohortați, doar pentru a face un screening pentru trimiteri.

3.9 Opțiunile de depistare a pacienților prin examinare subiectivă și evaluare de bază fără a fi în contact direct cu pacientul ar trebui să fie încercate mai întâi, ori de câte ori este posibil (de exemplu, apelarea telefonului din camera de izolare a pacienților și efectuarea unei evaluări subiective pentru informații privind mobilitatea și/sau oferirea de educație privind tehnicile de eliberare a căilor respiratorii).

CPAP = presiune pozitivă continuă în căile respiratorii, COVID-19 = boală coronavirus 2019, ATI = Anestezie și terapie intensivă, VNI = ventilație neinvazivă.

Caseta 4. Recomandări pentru intervențiile de fizioterapie respiratorie.
Echipament de protecție personală
4.1 b Se recomandă cu tărie utilizarea măsurilor de precauție standard și a celor împotriva transmițerii prin aer în timpul intervențiilor de fizioterapie respiratorie pentru pacienții cu COVID-19 confirmat sau suspectat.
Eticheta tusei
4.2 Atât pacienții, cât și personalul ar trebui să practice eticheta și igiena tusei.
În timpul tehnicilor care pot provoca tuse, ar trebui să se ofere educație pentru a îmbunătăți eticheta și igiena tusei;
• Rugați pacientul să își acopere tusea tușind în cot sau în mâncă sau într-un șervețel. șervețel. țesăturile ar trebui apoi aruncate și ar trebui să se procedeze la igiena mâinilor.
• În plus, dacă este posibil, fizioterapeuții ar trebui să se poziționeze la ≥2 m de pacient și în afara traseului probabil de dispersie.
Generarea de aerosoli
4.3 Multe intervenții de fizioterapie respiratorie sunt proceduri care pot genera aerosoli. Deși nu există suficiente investigații care să confirme procedurile generatoare de aerosoli ale diferitelor intervenții de fizioterapie, combinația cu tusea pentru eliberarea căilor respiratorii face ca toate tehnicile să fie proceduri potențial generatoare de aerosoli.
Printre acestea se numără:
- proceduri care generează tuse (de exemplu, tuse sau pufnitură în timpul tratamentului)
- tehnici de poziționare sau tehnici de drenaj asistate de gravitație și tehnici manuale (de exemplu, vibrații expiratorii, percuție și tuse asistată manuală) care pot declanșa tusea și expectorația de spută
- utilizarea dispozitivelor de respirație cu presiune pozitivă (de exemplu, respirație cu presiune pozitivă inspiratorie, dispozitive de insuflare-exsuflare mecanică, dispozitive de oscilații intra/extra pulmonare de înaltă frecvență (de exemplu, The Vest, MetaNeb, Percussionaire))
- Dispozitive PEP și dispozitive PEP oscilante
- bule PEP
- aspirarea nazofaringiană sau orofaringiană
- hiperinflație manuală
- aspirație deschisă
- instilarea de soluție salină prin intermediul unui tub endotraheal cu circuit deschis
- antrenamentul mușchilor inspiratori, în special dacă se utilizează la pacienții care sunt ventilați și este necesară deconectarea de la un circuit respirator
- inducții de spută
- orice mobilizare sau terapie care poate duce la tuse și expectorație de mucus

Prin urmare, există riscul de a crea o transmitere a COVID-19 prin aer în timpul tratamentelor. Fizioterapeuții ar trebui să cântără riscul în raport cu beneficiile în realizarea acestor intervenții și să aplice precauțiile standard și pe cele privind transmiterea prin aer.

4.4 În cazul în care procedurile generatoare de aerosoli sunt indicate și considerate esențiale, acestea ar trebui efectuate într-o cameră cu presiune negativă.

Este posibil ca accesul la camere cu presiune negativă să nu fie disponibil atunci când este necesară gruparea din cauza volumului de pacienți care se prezintă cu COVID-19. Fizioterapeuții ar trebui să cântără riscul în raport cu beneficiile în realizarea acestor intervenții în cadrul zonelor de cohortă.

4.5 Decizia de a începe umidificarea, VNI, oxigenul de debit ridicat sau alte proceduri generatoare de aerosoli trebuie luată de comun acord cu echipa multiprofesională și trebuie să se reducă la minimum riscurile potențiale. Acest lucru poate include consultarea pentru a dezvolta instrucțiuni/proceduri ale unității de lucru pentru a ghida tratamentele de fizioterapie, reducând necesitatea de a obține aprobarea medicală pentru fiecare pacient în parte.

4.6 Nu utilizați nebulizarea cu soluție salină. Nebulizarea este considerată generatoare de aerosoli.

Tehnici de eliberare a căilor respiratorii

4.7 Poziționarea, inclusiv drenajul asistat de gravitație:
- Fizioterapeuții pot continua să ofere consiliere cu privire la cerințele de poziționare pentru pacienți.
4.8 Echipament respirator pentru eliberarea căilor respiratorii:
- În cazul în care se utilizează echipamente respiratorii, utilizați, ori de câte ori este posibil, opțiuni de unică folosință pentru pacienți (de exemplu, dispozitive PEP de unică folosință pentru pacienți).
- Echipamentul respirator reutilizabil ar trebui evitat pe cât posibil.

4.9 Nu există dovezi în sprijinul spirometriei stimulativă la pacienții cu COVID-19.

4.10 b Mijloacele mecanice pentru eliberarea căilor respiratorii:
- Respirația mecanică, VNI, dispozitivele de respirație cu presiune pozitivă inspiratorie și dispozitivele de oscilație intra/extra pulmonară de înaltă frecvență pot fi utilizate, dacă sunt indicate clinice și dacă opțiunile alternative au fost ineficiente.
- Consultați atât personalul medical superior, cât și serviciile de prevenire și monitorizare a infecțiilor din cadrul unităților locale înainte de utilizare.
- Dacă se utilizează, asigurați-vă că aparatele pot fi decontaminate după utilizare și protejați aparatelor cu filtre virale la capetele de circuit ale aparatului și pacientului):
 - Utilizați circuite de unică folosință pentru aceste dispozitive.
 - Mențineți un jurnal al dispozitivelor care să includă detaliiile pacientului pentru urmărire și monitorizarea infecțiilor (dacă este necesar).
 - Luați măsuri de precauție în caz de contact și de transmitere prin aer.

4.11 b Hiperinflația pentru eliberarea căilor respiratorii la pacienții aflați în ventilatie mecanică și/sau cu traheostomie:
- Tehnicile de hiperinflație ar trebui utilizate numai dacă sunt indicate (de exemplu, pentru prezentările supurative în ATI).
- Aplicarea tehnicilor de hiperinflație trebuie să țină cont cu atenție de prezentarea pacientului și de managementul clinic (de exemplu, ventilarea de protecție pulmonară pentru sindromul de detresă respiratorie acută).
- Dacă este indicat, utilizați hiperinflația prin ventilator mai degrabă decât hiperinflația manuală, care implică desconectarea/deschiderea unui circuit de ventilare.
- Asigurați-vă că există proceduri locale pentru tehnicile de hiperinflație.

Tehnic de gestionare a hipoxemiei

4.12 a Fizioterapeuții pot fi implicați în inițierea și gestionarea oxigenului nazal cu debit mare, a VNI și a respirației cu presiune pozitivă continuă pentru gestionarea hipoxemiei. Aplicarea acestor dispozitive de către fizioterapeuți ar trebui să fie în conformitate cu orientările locale pentru luarea deciziilor privind asistența respiratorie, controlul infecțiilor și procedurile de escaladare în caz de deteriorare.

4.13 Poziționarea în decubit ventral:
- Fizioterapeuții pot avea un rol în implementarea poziționării în decubit ventral în terapie intensivă. Acest lucru poate include conducerea în cadrul "echipelor de poziționare în decubit ventral" din cadrul ATI, furnizarea de educație a personalului
cu privire la poziționarea în decubit ventral (de exemplu, sesiuni de educație bazate pe simulări) sau asistarea la ture ca parte a echipei ATI.

4.14 a • Când se utilizează poziționarea în decubit ventral, fizioterapeuții ar trebui să examineze pacienții în mod regulat pentru a-i sfăți cu privire la strategiile de poziționare, pentru a preveni potențialele efecte adverse ale poziției decubit ventral, inclusiv leziuni de presiune și leziuni neurologice. Pacienții ar trebui examinați după întoarcerea în decubit ventral și la externarea din terapie intensivă pentru depistarea potențialelor leziuni neurologice asociate cu utilizarea acestei poziții.

4.15 a • La pacienții care nu au fost încă intubați, fizioterapeuții pot facilita așezarea în decubit în stare de veghe atunci când este indicat (de exemplu, la pacienții cu COVID-19 sever care primesc orice formă de terapie cu oxigen suplimentar).

Cerere de probe de spută

4.16 Inducțiile de spută nu trebuie efectuate la pacienții suspecți sau confirmați COVID-19.

4.17 Pentru probele de spută de la pacienții neintubați, verificați mai întâi dacă pacientul este productiv de spută și dacă este capabil să elimine sputa în mod independent. În caz afirmativ, fizioterapia nu este necesară pentru o probă de spută.

În cazul în care sunt necesare intervenții de fizioterapie pentru a facilita prelevarea unei probe de spută, trebuie să se poarte EPP pentru evitarea contactului și transmiterii prin aer.

Manipularea probelor de spută trebuie să respecte politicile locale. În general, odată ce a fost obținută o probă de spută, trebuie respectate următoarele puncte:
- Toate probele de spută și formularele de cerere trebuie să fie marcate cu o etichetă de risc biologic.
- Specimenul trebuie ambalat în dublu sac. Specimenul trebuie plasat în prima pungă în camera de izolare de către un membru al personalului care poartă EPP recomandat.
- Specimenele ar trebui să fie predate manual la laborator de către o persoană care înțelege natura specimenei. Sistemele de tuburi pneumatice nu trebuie să fie utilizate pentru transportul specimenei.

Managementul traheostomiei

4.18 b Prezența unei traheostomii și a procedurilor aferente sunt potențial generatoare de aerosoli. Acestea includ:
- Aspirarea deschisă a traheostomiei
- Hiperinflația manuală ca tehnică de eliberare a căilor respiratorii
- Întreruperea ventilației mecanice la circuitele de oxigen umidificat
- Încercări de dezumflare a manșetei
- Schimbarea/curățarea tubului interior al canulei
- Utilizarea supapelor de vorbire și a vorbelor de scurgere
- Utilizarea IMT
În timpul perioadei de infecție, pacienții cu COVID-19 și traheostomie trebuie să fie gestionați într-o cameră de izolare.

- Este necesar un echipament de protecție individuală (PPE) pentru precauții în caz de contact și de transmitere prin aer.
- Se recomandă o aspirație închisă, în linie.
- În cazul în care procedurile legate de traheostomie sunt indicate clinic (de exemplu, pentru eliberarea căilor respiratorii, pentru a facilita înțărcarea sau comunicarea), atunci trebuie luate în considerare riscurile în raport cu beneficiile. Este important să se ia în considerare rolul pe care aceste proceduri il au pentru a facilita înțărcarea și deconalizarea.
- Atunci când pacienții sunt deconectați de la ventilator, luați în considerare utilizarea unei măști chirurgicale rezistente la fluide plasate peste traheostomie și orice dispozitiv de administrare a oxigenului pentru a reduce dispersia aerosolilor și a picăturilor.

Atunci când pacienții cu traheostomie încheie perioada de izolare, sunt considerați neinfectați și nu mai sunt necesare măsuri de precauție pentru COVID-19 în aer.

Ecografie pulmonară

4.19 a În cazul în care fizioterapeuții au educația și competența de a efectua ecografii pulmonare, acestea pot fi utilizate ca modalitate de evaluare la pacienții cu COVID-19.

COVID-19 = boală coronavirus 2019, ATI = unitate de terapie intensivă, IMT = antrenament al mușchilor inspiratori, VNI = ventilație neinvazivă, PEP = presiune expiratorie pozitivă, PPE = echipament de protecție personală.

a Recomandare nouă

b Recomandare revizuită

Caseta 5. Recomandări pentru mobilizarea fizioterapeutică, exerciții fizice și intervenții de reabilitare.

Echipament de protecție personală

5.1 b La mobilizare, exerciții fizice și reabilitare ar trebui să se utilizeze EPP pentru precauții de contact și de transmitere prin aer.

Este probabil ca fizioterapeuții să fie în contact strâns cu pacientul (de exemplu, pentru mobilizare, exerciții fizice sau intervenții de reabilitare care necesită asistență). Mobilizarea și exercițiile fizice pot, de asemenea, să determine pacientul să tușească sau să expectoreze mucus, iar în cazul pacienților ventilați pot exista deconectări de circuit.

Consultați reglementările locale privind capacitatea de mobilizare a pacienților în afara camerei de izolare. În cazul mobilizării în afara camerei de izolare, asigurați-vă că pacientul poartă o mască chirurgicală rezistentă la fluide.

Screening

5.2 Fizioterapeuții vor selecta în mod activ și/sau vor accepta trimiteri pentru mobilizare, exerciții fizice și reabilitare.
La screening, se recomandă o discuție cu personalul de îngrijire, cu pacientul (de exemplu, prin telefon) sau cu familia înainte de a decide să intre în camera de izolare a pacientului. De exemplu, pentru a încerca să se reducă la minimum personalul care intră în contact cu pacienții cu COVID-19, fizioterapeuții pot face screening pentru a determina un ajutor adecvat pentru testare. O încercare de acordare a ajutorului poate fi apoi efectuată de către personalul de îngrijire care se află deja într-o cameră de izolare, cu îndrumarea oferită, dacă este necesar, de către fizioterapeutul care se află în afara camerei.

5.3 a Evaluarea fizică, inclusiv (dar fără a se limita la) testarea manuală a mușchilor, evaluarea funcțională a mobilității la pat, a transferurilor și a mersului ar trebui să fie luată în considerare la pacienții care au avut o boală severă cu repaus la pat prelungit și/sau o boală critică în care prezența slăbiciunii și a limitării funcționale poate fi crescută.

5.4 b Intervențiile de fizioterapie ar trebui să fie luate în considerare atunci când există o indicație clinică (de exemplu, pentru a aborda declinul funcțional datorat bolii sau rănilor, fragilității, comorbidităților multiple, vârstei înaintate; sau prevenirea sau recuperarea slăbiciunii dobândite la terapie intensivă).

Mobilizare și recomandare de exerciții fizice

5.5 Este încurajată mobilizarea timpurie. Mobilizați activ pacientul la începutul evoluției bolii, atunci când acest lucru se poate face în condiții de siguranță.

5.6 Pacienții ar trebui încurajați să își mențină funcțiile pe cât posibil în camerele lor:
- Coborârea din pat.
- Efectuarea de exerciții simple și de activități cotidiene.

5.7 b Mobilizarea și prescrierea exercițiilor fizice trebuie să implice o analiză atentă a stării fiziologice și a rezervei pacienților (de exemplu, gradul de disfuncție respiratorie și hemodinamică). Aceasta include luarea în considerare a:
- prezența și gravitatea hipoxemiei
- hipoxemie de efort
- afecțiuni cardioale
- disfuncție autonomă și intoleranța ortostatică
- agravarea simptomelor post-efort

Echipamente de mobilitate și exerciții fizice

5.8 Utilizarea echipamentelor trebuie analizată cu atenție și discutată cu personalul serviciului local de monitorizare și prevenire a infecțiilor înainte de a fi utilizate cu pacienții cu COVID-19, pentru a se asigura că acestea pot fi dezinfectate corespunzător.

5.9 Folosiți echipamente care pot fi utilizate de un singur pacient. De exemplu, folosiți benzi elastice de rezistență în loc să distribuiți greutăți de mână.

5.10 Echipamentele mai mari (de ex., ajutoarele de mobilitate, ergometrele, scaunele, mesele basculante) trebuie să fie ușor de decontaminat. Evitați utilizarea de echipamente specializate, cu excepția cazului în care este necesar, pentru sarcini
funcționale de bază. De exemplu, scaunele cu targă sau mesele basculante pot fi considerate adecvate dacă pot fi decontaminate cu o curățare corespunzătoare și sunt indicate pentru progresia de ședere / ridicare în picioare.

5.11 Atunci când sunt indicate intervențiile de mobilizare, exercițiile fizice sau de reabilitare:
- Planificați bine.
- Identificați/utilizați numărul minim de personal pentru a efectua activitatea în condiții de siguranță.
- Asigurați-vă că toate echipamentele sunt disponibile și funcționează înainte de a intra în încăperi.
- Asigurați-vă că toate echipamentele sunt curățate sau dezinfecțate corespunzător.
- Dacă echipamentul trebuie împărțit între pacienți, curățați și dezinfecțați-l între fiecare utilizare de către pacienți diferiți.
- Poate fi necesară o formare specifică a personalului pentru curățarea echipamentelor din camerele de izolare.
- Împiedicați deplasarea echipamentelor între zonele infecțioase și cele neinfecțioase.
- Păstrați echipamentul dedicat în zonele de izolare, dar evitați să depozitați echipamente străine în camera pacientului ori de câte ori este posibil.

5.12 Atunci când efectuați activități cu pacienți ventilați sau cu pacienți cu traheostomie, asigurați-vă că se ia în considerare și se menține securitatea căilor respiratorii (de exemplu, având o persoană care monitorizează căile respiratorii pentru a preveni deconectarea accidentală a conexiunilor/tuburilor de ventilație).

COVID-19 = boala coronavirus 2019, ATI = unitate de terapie intensivă, PPE = echipament de protecție personală.

a Recomandare nouă
b Recomandare revizuită

Caseta 6. Recomandări pentru redresare după COVID-19.

6.1 a Fizioterapeuții ar trebui să încurajeze activitatea fizică și să sprijine programele de stil de viață sănătos pentru pacienții, pentru comunitatea generală și pentru persoanele care se recuperează după COVID-19.

6.2 a Fizioterapeuții ar trebui să sprijine programele de reabilitare multiprofesionale pentru persoanele care se recuperează de la COVID-19 de-a lungul traiectoriei de la boala acută, până la mediile ambulatorii și apoi în comunitate.

6.3 a Ar trebui anticipată o cerere crescută de servicii de reabilitare în ambulatoriu și în comunitate, în special programe de reabilitare pulmonară și cardiacă, iar serviciile de sănătate ar trebui să urmărească să crească modalitățile de acces pentru a le pune la dispoziția populației după COVID-19.

COVID-19 = boala coronavirus 2019.

a Recomandare nouă
Intervenție de fizioterapie	Prezentarea pacientului COVID-19 (confirmat sau suspect)	Referat de fizioterapie
Respirator	Simptome ușoare fără compromisuri respiratorii semnificative (de exemplu, febră, tuse uscată, fără modificări ale radiografiei toracice)	Intervențiile de fizioterapie nu sunt indicate pentru eliberarea căilor respiratorii sau pentru probele de spută Niciun contact de fizioterapie cu pacientul.
	Pneumonie care prezintă caracteristici:	Fizioterapia poate fi indicată pentru gestionarea hipoxemiei (de exemplu, oxigenoterapie, VNI, poziția de veghe).
	- un nivel scăzut al necesarului de oxigen (de exemplu, debit de oxigen ≤5L/min pentru SpO₂ ≥ 90%)	
	- tuse neproductivă	
	- sau pacientul tușește și este capabil să elimine secrețiile în mod independent	
	Simptome ușoare și/sau pneumonie ŞI comorbiditate respiratorie sau neuromusculară coexistentă (de exemplu, fibroză chistică, boală neuromusculară, leziuni ale măduvei spinării, bronșiectazie, boală pulmonară obstructivă cronică) ŞI dificultăți actuale sau anticipate în ceea ce privește eliminarea secrețiilor	Fizioterapia indicată pentru eliberarea căilor respiratorii și/sau gestionarea hipoxemiei
		Personalul utilizează măsuri de precauție prin contact și prin aer
		Dacă nu sunt ventilați, dacă este posibil, pacienții trebuie să poarte o mască chirurgicală în timpul oricărei fizioterapii.
	Simptome ușoare și/sau pneumonie ŞI dovezii de consolidare exsudativă cu dificultăți de eliminare sau incapacitatea de a elimina secrețiile în mod independent (de exemplu, tuse slabă, ineficientă și cu sunet umed, freamât tactil pe peretele toracic, voce cu sunet umed, sunete transmise audibile)	Fizioterapia indicată pentru eliberarea căilor respiratorii și/sau gestionarea hipoxemiei
		Personalul utilizează măsuri de precauție prin contact și prin aer
		Dacă nu sunt ventilați, dacă este posibil, pacienții trebuie să poarte o mască chirurgicală în timpul oricărei fizioterapii.
	Simptome severe care sugerează o pneumonie/infecrie a tractului respirator inferior (de exemplu, creșterea necesarului de oxigen; febră; dificultăți	Luați în considerare indicațiile de fizioterapie pentru eliberarea căilor respiratorii
de respirație; episoade de tuse frecvente, severe sau productive; modificări ale radiografiei toracice, ale tomografiei computerizate sau ale ecografiei LUS compatibile cu consolidarea).

Fizioterapia poate fi indicată, în special dacă tusea este slabă, productive, dacă există dovezi de pneumonie pe imagistică și/sau retenție de secreții

Fizioterapia poate fi indicată pentru gestionarea hipoxemiei (de exemplu, oxigenoterapie, VNI, poziționare în decubit ventral).

Personalul utilizează măsuri de precauție prin contact și prin aer

Dacă nu sunt ventilați și este posibil, pacienții trebuie să poarte o mască chirurgicală în timpul oricărei fizioterapii.

Se recomandă optimizarea timpurie a îngrijirii și implicarea secției de terapie intensivă.

| Mobilizare, exerciții fizice și reabilitare | Orice pacient cu risc semnificativ de a dezvolta sau cu dovezi de limitări funcționale semnificative
- de exemplu, pacienții care sunt fragili sau care au comorbidități multiple care au un impact asupra independenței lor.
- de exemplu, mobilizare, exerciții fizice și reabilitare la pacienții din USI cu declin funcțional semnificativ și/sau (cu risc de) slăbiciune dobândită în USI | Fizioterapia indicată
Folosiți măsuri de precauție pentru contact și aer
Dacă nu sunt ventilați, pacienții trebuie să poarte o mască chirurgicală în timpul fizioterapiei, ori de câte ori este posibil. |

COVID-19 = boala coronavirus 2019, **CT** = tomografie computerizată, **ATI** = unitate de terapie intensivă, **LUS** = ecografie pulmonară, **VNI** = ventilație neinvazivă, **SpO₂** = saturația oxihemoglobinei.
Anexa 2. Traduceri