Semi-classical twists for \mathfrak{sl}_3 and \mathfrak{sl}_4 boundary $r-$matrices of Cremmer-Gervais type

M. Samsonov (samsonov@pink.phys.spbu.ru)
Theoretical Department
Institute of Physics
St. Petersburg State University
198904, St. Petersburg
Russia

Abstract. We obtain explicit formulas for the semi-classical twists deforming the coalgebraic structure of $U(\mathfrak{sl}_3)$ and $U(\mathfrak{sl}_4)$. In rank 2 and 3 the corresponding universal $R-$matrices quantize the boundary $r-$matrices of Cremmer-Gervais type defining Lie Frobenius structures on the maximal parabolic subalgebras in \mathfrak{sl}_n.

Keywords: Generalized Jordanian $r-$matrices, Cremmer-Gervais quantization, semi-classical twists

Mathematics Subject Classifications(2005): 16W30, 17B37, 81R50

1. Introduction

An interesting subclass of the boundary $r-$matrices is given by the generalized Jordanian $r-$matrices of Cremmer-Gervais type which are the boundary points of SL_n adjoint action orbits containing skew-symmetric Cremmer-Gervais $r-$matrices [1, 4]. Explicitly, these boundary points in the \mathfrak{sl}_n Cartan-Weyl basis are the following

$$r_p = \sum_{p=1}^{n-1} D_p \wedge E_{p,p+1} + \sum_{i<j} \sum_{m=1}^{j-i-1} E_{i,j-m+1} \wedge E_{j,i+m},$$

(1)

where

$$D_p = \frac{n-p}{n} (E_{11} + E_{22} + \cdots + E_{pp}) - \frac{p}{n} (E_{p+1,p+1} + E_{p+2,p+2} + \cdots + E_{nn}).$$

Each r_p defines the structure of Lie Frobenius algebra (a Lie algebra with a nondegenerate 2-coboundary [4]) on the maximal parabolic subalgebra $p \subset \mathfrak{sl}_n$ generated by the Cartan subalgebra and all the simple root generators excluding $E_{n,n-1}$. In this letter we construct the twists and the universal R_p-matrices if $n = 3, 4$. The concrete $R-$matrices R^V arise when one restricts $R_p = F_{p21} F_{p-1}$ to a particular \mathfrak{sl}_n representation V. It was observed [1] that if V_n is the linear space...
of polynomials of the degree \(\leq n \) then \(R^V_n \) are related to rational degeneration of the Ueno-Shibukawa operators and one obtains \(R^V_n \) explicitly. Thus this letter gives an answer to the next question what the universal \(R \)-matrices are in two first cases of physical interest, the genuine Cremmer-Gervais case \(n = 3 \) and quantization of the complexified conformal algebra \(o(4,2)_C \approx \mathfrak{sl}_4 \). The relations defining \(U \)

\[
U = \begin{pmatrix} F & 0 \\ 0 & R \end{pmatrix}
\]

explicitly. Thus this letter gives an answer to the next question what the genuine Cremmer-Gervais case \(n = 3 \) and quantization of the complexified conformal algebra \(o(4,2)_C \approx \mathfrak{sl}_4 \). The paths of constructing the parabolic twists, as we name \(F \) following [10], are almost parallel in both cases and below we describe them uniformly. We consider \(U^F_\mathfrak{sl}(\mathfrak{sl}_n-1) \), the Drinfeld-Jimbo quantization \(U_\mathfrak{sl}(\mathfrak{sl}_n-1) \) deformed by the abelian twist \(K \), and propose a method of constructing the affine twists allowing nontrivial specialization in the limit \(q \to 1 \). The construction we follow is based on factorization of a chosen singular trivial twist \(F_{n-1} := (W_{n-1} \otimes W_{n-1}) \Delta_K(W_{n-1}) \), with \(W_{n-1} \in U^F_\mathfrak{sl}(\mathfrak{sl}_n-1) \), into singular \(\Phi^{-1} \) \(W_{n-1} \) and nonsingular \(F_{n-1} \) parts such that \(F_{n-1} = \Phi^{-1} W_{n-1} \). Among all the factorizations we find the one such that \(F_{n-1} \) is a twist equivalent to an affine version of the Cremmer-Gervais twist or its analog \([5, 7, 9]\). The final step in our approach is rational degeneration of \(F_{n-1} \) which we denote \(F_{n-1} \) and construction of a homomorphism \(\tau_{n-1} \) such that \((\tau_{n-1} \otimes \tau_{n-1})(F_{n-1}) \) is a twist on \(U_{\mathfrak{sl}}(\mathfrak{sl}_n) \), where \(\Psi_n \) turns out to be the semi-classical twist found in [8]. The final twist on \(U(\mathfrak{sl}_n) \) is obtained as the composition \((\tau_{n-1} \otimes \tau_{n-1})(F_{n-1}) \cdot \Psi_n \).

2. Quantum affine twists for \(U_q(\mathfrak{sl}_2) \) and \(U_q(\mathfrak{sl}_3) \)

Fix the central charge \(c = 1 \) in the defining relations of \(U_q(\mathfrak{sl}_n) \). Let \(A = \left(\frac{2(a_i | a_j)}{(a_i | a_i)} \right)_{i,j=1}^n \) be the Cartan matrix of \(\mathfrak{sl}_n \) and \(\{\alpha_i\}_{i=0,\ldots,n-1} \) be the set of all simple roots of \(\mathfrak{sl}_n \) with the symmetric scalar product \((\cdot,\cdot)\) on it. With these assumptions the relations defining \(U_q(\mathfrak{sl}_n) \) over the field of rational functions \(\mathbb{Q}(q) \) are the following

\[
\begin{align*}
q^{h_{\alpha_0}}q^{h_{\alpha_1}} \cdots q^{h_{\alpha_{n-1}}} &= 1, \\
q^{h_{\alpha_i}}q^{h_{\alpha_j}} &= q^{h_{\alpha_i}}q^{h_{\alpha_j}} \\
q^{h_{\alpha_i}}e_{\pm\alpha_j}q^{-h_{\alpha_i}} &= q^{\pm(a_i | a_j)}e_{\pm\alpha_j}, \\
[e_{\alpha_i}, e_{-\alpha_j}] &= \delta_{ij} \frac{q^{h_{\alpha_i}} - q^{-h_{\alpha_i}}}{q - q^{-1}} \\
e_{\pm\alpha_i}e_{\pm\alpha_j} &= e_{\pm\alpha_j}e_{\pm\alpha_i} \quad \text{if} \quad |i - j| \not\equiv 1 \pmod{n} \\
[e_{\pm\alpha_i}, [e_{\pm\alpha_i}, e_{\pm\alpha_j}]q] &= 0 \quad \text{if} \quad |i - j| \equiv 1 \pmod{n}, n > 2 \\
[e_{\pm\alpha_i}, [e_{\pm\alpha_i}, [e_{\pm\alpha_i}, e_{\pm\alpha_j}]q^2]] &= 0 \quad \text{if} \quad |i - j| \equiv 1 \pmod{n}, n = 2
\end{align*}
\]
and the $q-$commutator is defined as usual

$$[C, D]_q = CD - qDC, \quad [C, D] = [C, D]_1.$$

$U_q(\hat{\mathfrak{sl}}_n)$ is a Hopf algebra. The comultiplication is uniquely defined by fixing its value on $q-$Chevalley generators

$$\Delta(e_{\alpha_i}) = q^{-h_{\alpha_i}} \otimes e_{\alpha_i} + e_{\alpha_i} \otimes 1, \quad \Delta(e_{-\alpha_i}) = e_{-\alpha_i} \otimes q^{h_{\alpha_i}} + 1 \otimes e_{-\alpha_i}$$

$$\Delta(q^{h_{\alpha_i}}) = q^{h_{\alpha_i}} \otimes q^{h_{\alpha_i}}.$$

It is convenient to use the following notation

$$(x)_{(1)} := x \otimes 1, \quad (x)_{(2)} := 1 \otimes x$$

and its modified version

$$(x)_{(1)} := (\text{id} \otimes \text{pr}_{K_{n-1}}) \Delta(x), \quad (x)_{(2)} := (\text{pr}_{K_{n-1}} \otimes \text{id}) \Delta(x)$$

$$(x)_{(3)} := ((\text{id} - \text{pr}_{K_{n-1}}) \otimes (\text{id} - \text{pr}_{K_{n-1}})) \Delta(x)$$

where $\text{pr}_{K_{n-1}}$ the $U_q(\hat{\mathfrak{sl}}_n)$ projector to $K_{n-1} := \mathbb{Q}(q)\{q^{\pm h_{\alpha_i}}\}_{i=1,\ldots,n-1}.$

2.1. An affine twist for $U_q(\hat{\mathfrak{sl}}_2)$

Introduce a topological Hopf algebra $D^{(2)}[[\zeta]]$ as a completion in the formal series topology of the following subalgebra

$$D^{(2)} := \left\{ \sum_{l_1,l_2,l_3 \geq 0} c_{l_1,l_2,l_3}(e_{-\alpha_i})^{l_1} q^{\pm l_2 h_{\alpha_i}} (e_{\delta-\alpha_i})^{l_3} | c_{l_1,l_2,l_3} \in \mathbb{Q}(q) \right\} \subset U_q(\hat{\mathfrak{sl}}_2)$$

and consider a trivial twist F_2:

$$F_2 = (W_2 \otimes W_2) \Delta(W_2^{-1}),$$

$$W_2 = \exp_q^2\left(\frac{\zeta}{1 - q^2} e_{\delta - \alpha_i}\right) \exp_q^{-2}\left(-\frac{\zeta^2}{1 - q^2} q^{-h_{\alpha_i}} e_{-\alpha_i}\right) \in D^{(2)}[[\zeta]];$$

$$\exp_q^2(z) := \sum_{k \geq 0} \frac{z^k}{(k)q^2}, \quad (k)q^2! = \frac{1 - q^2}{1 - q^2} \cdots \frac{1 - q^{2n}}{1 - q^2}$$

where $\delta = \alpha_0 + \alpha.$ Along with the nonsingular $q-$exponent we make use of its singular version $e_q^2(z) := \exp_q^2\left(\frac{1}{1 - q^2} z\right)$ and of several results of $q-$calculus [3, 6] concerning its properties:

- If $[x, y]_{q^2} = 0$ then

$$e_{q^2}(x + y) = e_{q^2}(y) \cdot e_{q^2}(x), \quad (e_{q^2}(x))^{-1} = e_{q^{-2}}(q^{-2} x).$$ (2)
Proposition 1.

Let us focus on the following product

\[(1 - u)^{(v)} = e_q^2(u)(e_q^2(uq^{-2v}))^{-1} \]

where \((-v + l)q^2 = (q^{-2v+2l} - 1)/(q^2 - 1).\)

where \((-v + l)q^2 = (q^{-2v+2l} - 1)/(q^2 - 1).\)

\[e_q^2(u) \cdot e_q^2(v) = e_q^2(v) \cdot e_q^2(\frac{1}{1 - q^2}[u, v]) \cdot e_q^2(u). \] (3)

The Heine’s formula holds

\[(1 - u)^{(v)} = e_q^2(u)(e_q^2(uq^{-2v}))^{-1} \]

where \((-v + l)q^2 = (q^{-2v+2l} - 1)/(q^2 - 1).\)

The final step in the proof is application of the Heine’s formula that leads to an explicit form of \(F_2-aff\).
that satisfies the Drinfeld equation according to [7].

Remark. By Proposition 1 $F_\mathfrak{p}^{\text{aff}}$ is equivalent to Φ_2 and the latter is the Cremmer-Gervais twist as it is seen from [9]. In Proposition 2 we give a proof for the case $U_q(\mathfrak{sl}_3)$ and indicate what are the simplifications one needs to take into consideration to adopt it for $U_q(\mathfrak{sl}_2)$.

2.2. An affine twist for $U_q(\mathfrak{sl}_3)$

Let us deform the coalgebraic structure of $U_q(\mathfrak{sl}_3)$ by the following abelian twist

\[\mathcal{K} = q^{\frac{2}{3}h_\alpha \otimes h_\alpha + \frac{2}{9}h_\alpha \otimes h_\beta + \frac{2}{9}h_\beta \otimes h_\alpha + \frac{2}{9}h_\beta \otimes h_\beta} \]

the convenience of this choice will be justified by Proposition 2 (see also [5])

\[\Delta_K(\hat{e}_{-\beta}) = q^{h_\alpha + \beta} \otimes \hat{e}_{-\beta} + \hat{e}_{-\beta} \otimes 1, \quad \Delta_K(\hat{e}_{-\alpha}) = q^{-h_\beta} \otimes \hat{e}_{-\alpha} + \hat{e}_{-\alpha} \otimes 1 \]

\[\Delta_K(\hat{e}_\alpha) = \hat{e}_\alpha \otimes q^{h_\alpha + \beta} + 1 \otimes \hat{e}_\alpha \]

\[\Delta_K(\hat{e}_{\delta - \alpha - \beta}) = \hat{e}_{\delta - \alpha - \beta} \otimes q^{-h_\beta} + 1 \otimes \hat{e}_{\delta - \alpha - \beta} \]

\[\Delta_K(\hat{e}_{\delta - \beta}) = \hat{e}_{\delta - \beta} \otimes q^{-h_\alpha} + 1 \otimes \hat{e}_{\delta - \beta} + (1 - q^2) \hat{e}_\delta \otimes \hat{e}_{\delta - \alpha - \beta} q^{h_\alpha + \beta} \]

\[\Delta_K(\hat{e}_{-\alpha - \beta}) = q^{-h_\alpha} \otimes \hat{e}_{-\alpha - \beta} + \hat{e}_{-\alpha - \beta} \otimes 1 + (1 - q^{-2}) \hat{e}_{-\beta} q^{-h_\beta} \otimes \hat{e}_{-\alpha} \]

where $\delta = \alpha_0 + \alpha + \beta$

\[h_\alpha^\perp = \frac{2}{3}h_\alpha + \frac{4}{3}h_\beta, \quad h_\beta^\perp = \frac{4}{3}h_\alpha + \frac{2}{3}h_\beta, \quad h_{\alpha + \beta}^\perp = h_\beta^\perp - h_\alpha^\perp \]

\[\hat{e}_{-\alpha} = q^{\frac{1}{2} h_\alpha^\perp} e_{-\alpha}, \quad \hat{e}_\alpha = e_\alpha q^{\frac{1}{2} h_\alpha^\perp}, \quad \hat{e}_{\delta - \alpha - \beta} = q^{-\frac{1}{2} h_\alpha^\perp} e_{\delta - \alpha - \beta} \]

\[\hat{e}_{\delta - \beta} = \hat{e}_\alpha e_{\delta - \alpha - \beta} - q^2 \hat{e}_{\delta - \alpha - \beta} e_\alpha, \quad \hat{e}_{-\alpha - \beta} = \hat{e}_{-\beta} \hat{e}_{-\alpha} - q^{-2} e_{-\alpha} \hat{e}_{-\beta}. \]

Remark. \mathcal{K} preserves the composite root generators in the sense that

\[\hat{e}_{\delta - \alpha} = e_\alpha e_{\delta - \alpha - \beta} - q e_{\delta - \alpha - \beta} e_\alpha, \quad \hat{e}_{-\alpha - \beta} = e_{-\beta} e_{-\alpha} - q^{-1} e_{-\alpha} e_{-\beta}. \]

Denote by K_2' the minimal algebra containing $K_2 \cup \{ \hat{e}_\alpha \}$ over $\mathbb{Q}(q)$. Introduce a subalgebra $D^{[3]} \subset U_q(\mathfrak{sl}_3)$ generated by all finite linear combinations with coefficients in $\mathbb{Q}(q)$:

\[\sum_{l_1, \ldots, l_5 \geq 0} a_{l_1, \ldots, l_5} (\hat{e}_{-\beta})^{l_1} (\hat{e}_{-\alpha - \beta})^{l_2} (\hat{e}_{-\alpha})^{l_3} K_2'(\hat{e}_{\delta - \beta})^{l_4} (\hat{e}_{\delta - \alpha - \beta})^{l_5}. \]
If we complete $D^{(3)}$ up to $D^{(3)}[[\zeta]]$ and choose the following element

$$W_3 = e_q^2(\zeta \cdot q^{h_{\alpha+\beta}/2} \cdot \hat{\delta}_{-\beta}) e_q^2(\cdot - q^{2/3} \cdot q^{h_{\delta-\alpha-\beta}/2} (e_q^2(-\zeta^2 \cdot \hat{\epsilon}_{-\beta}) e_q^2(-\zeta \cdot \hat{\epsilon}_{-\alpha}) e_q^2(-\zeta^2 \cdot \hat{\epsilon}_{-\beta}))^{-1}
$$

defining the trivial twist

$$F_3 = (W_3 \otimes W_3) \Delta_K(W_3^{-1})$$

then similarly to Proposition 1 we can formulate

Proposition 2.

$$F_3 = \Phi_{W_3}^{-1} \cdot F_3^{\text{aff}}$$

where $F_3^{\text{aff}} \in (K_3 \otimes D^{(3)})[[\zeta]]$ is a twist and $\Phi_{W_3} = \text{Ad}(W_3 \otimes W_3)(\Lambda_1 \Lambda_2 \Lambda_3)$

$$\Lambda_1 = \exp_q^2\left(-\frac{q^{-1} \zeta^4}{1 - q^2} \cdot \hat{\delta}_{-\alpha-\beta} \otimes \hat{\delta}_{-\alpha-\beta}\right) \cdot \exp_q^2\left(-\frac{q^{-1} \zeta^3}{1 - q^2} \cdot \hat{\delta}_{-\alpha-\beta} \otimes \hat{\delta}_{-\alpha-\beta}\right)$$

$$\Lambda_2 = \exp_q^2\left(\frac{q^4}{1 - q^2} \cdot \hat{\epsilon}_{-\beta} \otimes \hat{\epsilon}_{-\alpha-\beta}\right) \cdot \hat{\epsilon}_{-\beta} = [\hat{e}_\alpha, \hat{e}_{-\alpha-\beta}]$$

$$\Lambda_3 = \exp_q^2(-\zeta(q - q^{-1}) \cdot \hat{e}_\alpha \otimes \hat{\epsilon}_{-\beta}).$$

Proof. A general idea of factorization of F_3 is to move factors from $\Delta_K(W_3^{-1})$ containing identity in the second tensor factor to the left in order to form $\Phi_{W_3}^{-1}$. Using explicit form of the coproducts and the commutation relations $[\hat{e}_\alpha, \hat{e}_{-\beta}] = [\hat{e}_{-\alpha-\beta}, \hat{e}_{-\beta}] = 0$, we expand $\Delta_K(W_3^{-1})$ into the product of q-exponents using (2). According to the strategy of factorization we follow, first we flip the following two q-exponents from $\Delta_K(W_3^{-1})$ by introducing the factor Λ_3:

$$e_q^2(-\zeta^2(\hat{\epsilon}_{-\beta})_{<2>}) \cdot e_q^2(-\zeta(\hat{\epsilon}_{-\alpha})_{<1>}) =$$

$$\text{Ad}(\Lambda_3)^{-1}\left(e_q^2(-\zeta(\hat{\epsilon}_{-\alpha})_{<1>}) \cdot e_q^2(-\zeta^2 q^{-h_{\beta}/2} \otimes \hat{\epsilon}_{-\beta})\right).$$

The latter is seen from the relation

$$\zeta^2 q^{h_{\alpha+\beta}/2} \cdot \hat{\epsilon}_{-\beta} + \zeta \hat{\epsilon}_{-\alpha} \otimes 1 = \text{Ad}(\Lambda_3)^{-1}\left(\zeta \cdot \hat{\epsilon}_{-\alpha} \otimes 1 + \zeta^2 q^{-h_{\beta}/2} \otimes \hat{\epsilon}_{-\beta}\right)$$

if one notices

$$[\hat{e}_\alpha, \hat{e}_{-\alpha}] = \frac{q^{h_{\alpha+\beta}/2} - q^{-h_{\beta}/2}}{q - q^{-1}}$$

and applies (2). Then we move Λ_3 to the right of $\Delta_K(W_3^{-1})$ by applying (3) and the commutation relations

$$[\hat{e}_{-\alpha}, \hat{e}_\alpha] = 0, \ [\hat{e}_{-\beta}, \hat{e}_\alpha] = 0, \ [\hat{e}_{-\beta}, \hat{e}_{-\alpha-\beta}] = 0$$
until we arrive at the following form of \(F_3 \)

\[
(W_3 \otimes W_3) \Lambda_3^{-1}(e_{q^2}(-\zeta^2 \hat{e}_{-\beta}) \cdot e_{q^2}(-\zeta \hat{e}_{-\alpha}) \cdot e_{q^2}(-\zeta^2 \hat{e}_{-\beta}))_{<1>} \cdot \\
e_{q^2}(-\zeta^2 q^{-h_{\beta}^+} \otimes \hat{e}_{-\beta}) \cdot e_{q^2}(-\zeta (\hat{e}_{-\alpha})_{<2>}) \cdot \exp_{q^2}(-q^{-1}\zeta^2 \hat{e}_{\alpha} q^{-h_{\beta}^+} \otimes \hat{e}_{-\alpha-\beta}) \cdot \\
e_{q^{-2}}(-\frac{q^{-1}\zeta^2}{1-q^2} (q^{h_{\beta}^+} \hat{e}_{\delta-\alpha-\beta})_{<1>}) \cdot \Lambda_3 \cdot e_{q^{-2}}(q^{-2}\zeta (q^{h_{\alpha}^+} \hat{e}_{\delta-\beta})_{<1>}) \cdot \\
e_{q^{-2}}(-\zeta^2 (\hat{e}_{-\beta})_{<2>}) \cdot e_{q^{-2}}(-\frac{q^{-1}\zeta^2}{1-q^2} (q^{h_{\beta}^+} \hat{e}_{\delta-\alpha-\beta})_{<2>}) \cdot \\
e_{q^{-2}}(q^{-2}\zeta (q^{h_{\alpha}^+} \hat{e}_{\delta-\beta})_{<2>}).
\]

Next step is the appearance of \(\Lambda_2^{-1} \) from the relation

\[
\exp_{q^2}(-q^{-1}\zeta^2 \hat{e}_{\alpha} q^{-h_{\beta}^+} \otimes \hat{e}_{-\alpha-\beta}) \cdot e_{q^{-2}}(-\frac{q^{-1}\zeta^2}{1-q^2} (q^{h_{\beta}^+} \hat{e}_{\delta-\alpha-\beta})_{<1>}) = \\
\Lambda_2^{-1} \cdot e_{q^{-2}}(-\frac{q^{-1}\zeta^2}{1-q^2} (q^{h_{\beta}^+} \hat{e}_{\delta-\alpha-\beta})_{<1>}) \cdot \exp_{q^2}(-q^{-1}\zeta^2 \hat{e}_{\alpha} q^{-h_{\beta}^+} \otimes \hat{e}_{-\alpha-\beta})
\]

holding by \(\hat{e}_{\delta-\alpha-\beta}, \hat{e}_{\delta-\beta}' \) \(q^{-2} = [\hat{e}_{\alpha}, \hat{e}_{\delta-\beta}'] q^2 = 0 \) and by (3). We move \(\Lambda_2^{-1} \) to the left of \(F_3 \) using (3) and the necessary for it relations

\[
[\hat{e}_{-\alpha}, \hat{e}_{-\alpha-\beta}] = [\hat{e}_{-\beta}, \hat{e}_{-\alpha-\beta}] = 0, \quad [\hat{e}_{\delta-\beta}', \hat{e}_{-\alpha}] = -q \hat{e}_{\delta-\alpha-\beta} q^{-h_{\beta}^+}
\]

and form \(\Phi_{W_3}^{-1} \) which leads to appearance of \(\Lambda_1^{-1} \) and results in the following form of \(F_3 \)

\[
F_3 =
\]

\[
\Phi_{W_3}^{-1}(1 \otimes W_3) \cdot e_{q^2}(-\zeta^2 q^{-h_{\beta}^+} \otimes \hat{e}_{-\beta}) \cdot e_{q^2}(-\zeta (\hat{e}_{-\alpha})_{<2>}) \cdot \\
\exp_{q^2}(-q^{-1}\zeta^2 \hat{e}_{\alpha} q^{-h_{\beta}^+} \otimes \hat{e}_{-\alpha-\beta}) \cdot \Lambda_3 \cdot e_{q^2}(-\zeta^2 (\hat{e}_{-\beta})_{<2>}) \cdot \\
e_{q^{-2}}(-\frac{q^{-1}\zeta^2}{1-q^2} (q^{h_{\beta}^+} \hat{e}_{\delta-\alpha-\beta})_{<2>}) \cdot e_{q^{-2}}(q^{-2}\zeta (q^{h_{\alpha}^+} \hat{e}_{\delta-\beta})_{<3>}) \cdot \\
e_{q^{-2}}(q^{-2}\zeta (q^{h_{\alpha}^+} \hat{e}_{\delta-\beta})_{<2>}).
\]

The last steps will be to note that

\[
[\left(e_{q^{-2}}(-q^{-2}\zeta \hat{e}_{-\alpha}) \cdot e_{q^{-2}}(-q^{-2}\zeta^2 \hat{e}_{-\beta}) \right)_{(2)}, \\
e_{q^2}(-\zeta^2 q^{-h_{\beta}^+} \otimes \hat{e}_{-\beta}) \cdot e_{q^2}(-\zeta (\hat{e}_{-\alpha})_{<2>})] = 0
\]
and rewrite \(F_3 \) in the following form with the help of (3):

\[
\Phi_{W_3}^{-1} \cdot \left(e_{q^2}(\zeta q^{h_2^+} \hat{e}_{\hat{\delta} - \beta}) \cdot e_{q^{-2}}(-q^{-2} \zeta^2 \hat{e}_{\hat{\beta}}) \right) (2) \cdot \\
e_{q^2}(-\zeta^2 q^{-h_2^+} \hat{e}_{\hat{\beta}}) \cdot e_{q^{-2}}(q^{-2} \zeta q^{h_2^+} \hat{e}_{\hat{\delta} - \beta}) .
\]

\[
e_{q^2}(\zeta q^{h_2^+} \hat{e}_{\hat{\delta} - \beta}) \cdot e_{q^2}(-\frac{q^2}{1-q^2} q^{h_2^+} \hat{e}_{\hat{\delta} - \alpha - \beta}) (2) \cdot e_{q^2}(-\zeta (\hat{e}_{\hat{\alpha}})_2) \cdot e_{q^{-2}}(-q^{-2} \zeta (\hat{e}_{\hat{\beta}}) (2)) \cdot \\
e_{q^{-2}}(q^{-2} \zeta^2 q^{h_2^+} \hat{e}_{\hat{\delta} - \beta}) .
\]

where we have inserted

\[
e_{q^2}(q^{-2} \zeta^2 q^{h_2^+} \hat{e}_{\hat{\delta} - \beta}) \cdot e_{q^2}(\zeta^2 q^{h_2^+} \hat{e}_{\hat{\delta} - \beta}) = 1 \] (10)

and \(\cdots \) means third, forth and fifth lines in (9). The final transformation is to move the second \(q \)-exponent in (10) to the right of \(F_3 \) so that to apply the Heine’s formula by the same trick as we did for \(F_2 \). \(F_3 = \)

\[
\Phi_{W_3}^{-1} \cdot (1 - \zeta (q^{h_2^+} \hat{e}_{\hat{\delta} - \beta}) (2) + \zeta^2 q^{-(h_2^+)(1)} (\hat{e}_{\hat{\beta}}) (2) q^{2} (\hat{e}_{\hat{\alpha} - \beta} (2)) q^{-2} \cdot (1 + q^{-2} \zeta (\hat{e}_{\hat{\alpha}}) (2)) q^{-2} (\hat{e}_{\hat{\beta}} (1)) .
\]

\[
\exp_q^2(-q^{-2} \zeta^2 \hat{e}_\alpha q^{-h_2^+} \hat{e}_{\hat{\alpha} - \beta}) \cdot \Lambda_3 \cdot e_{q^{-2}}(q^{-2} \zeta (q^{h_2^+} \hat{e}_{\hat{\delta} - \beta}) \cdot \Lambda_3 .
\]

\[
(1 - q^{-2} \zeta (q^{h_2^+} \hat{e}_{\hat{\delta} - \beta}) < 2) + q^{-2} \zeta^2 (\hat{e}_{\hat{\beta}} (2)) q^{-2} (\hat{e}_{\hat{\beta}} (1)) .
\]

Once we have factored \(F_3 \) we can give a simple proof of the Drinfeld equation

\[
(F_{3}^{aff})_{12}(\Delta \otimes \text{id})(F_{3}^{aff}) = (F_{3}^{aff})_{23}(\text{id} \otimes \Delta)(F_{3}^{aff}) .
\]

From the factorization we know that

\[
(F_{3}^{aff}) = (W_3 \otimes W_3) \Phi_3 \Delta_K(W_3^{-1}) \] (11)

where \(\Phi_3 := \Lambda_1 \Lambda_2 \Lambda_3 \). Let us consider the Drinfeld associator

\[
\text{Assoc}(F_{3}^{aff}) \equiv (F_{3}^{aff})_{23}(\text{id} \otimes \Delta)(F_{3}^{aff})((F_{3}^{aff})_{12}(\Delta \otimes \text{id})(F_{3}^{aff}))^{-1}
\]

then

\[
\text{Assoc}(F_{3}^{aff}) \in (K_2' \otimes \mathcal{D}^{(3)} \otimes \mathcal{D}^{(3)})(\mathcal{C}) .
\]

On the other hand by (11) we have

\[
\text{Assoc}(F_{3}^{aff}) = (W_3 \otimes W_3 \otimes W_3) \text{Assoc}(\Phi_3)(W_3^{-1} \otimes W_3^{-1} \otimes W_3^{-1}) \] (14)

Denote by \(\text{pr}_{K_2'} \) the projection of \(\mathcal{D}^{(3)}(\mathcal{C}) \) to \(K_2'[[\mathcal{C}]] \). Thus by (13)

\[
\text{Assoc}(F_{3}^{aff}) = (\text{pr}_{K_2'} \otimes \text{id} \otimes \text{id})(\text{Assoc}(F_{3}^{aff}))
\]
and using explicit form of Φ_3 and W_3 we deduce that $\text{Assoc}(F_3^{\text{aff}})$ is equal to

$$(\text{pr}_{K_2} \otimes \text{id} \otimes \text{id}) \left(W_3^{\otimes 3} (\Phi_3)_{23} (\text{id} \otimes \Delta) (\Lambda_3) ((\Lambda_3)_{12} (\Lambda_1)_{23} (\Lambda_2)_{23} (\Delta \otimes \text{id}) (\Lambda_3))^{-1} W_3^{-\otimes 3} \right)$$

and the latter is $1 \otimes 1 \otimes 1$.

Remark. In the case of F_2^{aff} the proof of the Drinfeld equation is similar and one needs to use projection to K_1 and follow the same lines as we did for F_3^{aff}.

3. Rational degeneration of F_n-1, $n = 3, 4$

3.1. Rational degeneration of F_2^{aff}

Introduce $\mathcal{D}_A^{(2)}[[\zeta]]$ as a completion in the formal series topology of the following Hopf subalgebra in $U_q(\hat{sl}_2)$

$$\mathcal{D}_A^{(2)} := \left\{ \sum_{l_1,l_2,l_3 \geq 0} c_{l_1,l_2,l_3} (e_{-\alpha})^{l_1} \left(\frac{q^{\pm h_\alpha} - 1}{q - 1} \right)^{l_2} (e_{\delta - \alpha})^{l_3} | c_{l_1,l_2,l_3} \in A \right\}$$

where $A := \mathbb{Q}[q, q^{-1}]$ be the ring $\mathbb{Q}[q, q^{-1}]$ localized at $(q - 1)$ (the subring of rational functions nonsingular at $q = 1$). Then consider the subalgebra $\mathcal{F}_A^{(2)}[\zeta]$ generated over $A[\zeta]$ by the following elements

$$H_{\pm \alpha} = \frac{q^{\pm h_\alpha} - 1}{q - 1}, \quad f_0 = (q^{-2} - 1) q^{-h_\alpha} e_{-\alpha}, \quad f_1 = e_{\delta - \alpha} + \zeta q^{-h_\alpha} e_{-\alpha}$$

where $q^{-h_\alpha} = 1 + (q - 1) \left(\frac{q^{-h_\alpha} - 1}{q - 1} \right)$.

The specialization $\mathcal{F}_{A,q=1}^{(2)}[\zeta] = \mathcal{F}_A^{(2)}[\zeta] / (q - 1)$ is a Hopf algebra with the following structure

$$[H_\alpha, f_1] = -2f_1, \quad [H_\alpha, f_0] = -2f_0, \quad f_1 f_0 - f_0 f_1 = -\zeta f_0^2 \quad (15)$$

$$\Delta(f_1) = f_1 \otimes 1 + 1 \otimes f_1 + H_\alpha \otimes f_0, \quad (16)$$

and $H_{-\alpha} = -H_{-\alpha}, f_0$ are primitive. The relations (15) define $\mathcal{F}_{A,q=1}^{(2)}[\zeta]$ as an associative algebra with the basis $\{ f_0^k H_\alpha^l f_0^m \}_{k,l,m \geq 0}$ over $\mathbb{Q}[\zeta]$ obtained by specialization $q = 1$ from its quantum version. Comparing the semi-classical basis with its quantum analog $\{ (f_0)^k (H_\alpha)^l f_0^m \}_{k,l,m \geq 0}$
we deduce that (15) are the only relations defining $\mathcal{F}_{\mathcal{A}, q=1}[\zeta]$. Completing $\mathcal{F}_{\mathcal{A}, q=1}[\zeta]$ up to a topological Hopf algebra $\mathcal{F}_{\mathcal{A}, q=1}[\zeta] := (\mathcal{F}_{\mathcal{A}, q=1}[\zeta])[\zeta]$ we see that F_2^{aff} given by

$$F_2^{\text{aff}} = (1 \otimes 1 - \zeta \otimes f_1 - \zeta^2 (h_\alpha/2)_q \otimes f_0) (-\frac{1}{2} h_\alpha \otimes 1)$$

can be specialized to a twist of $\mathcal{F}_{\mathcal{A}, q=1}[\zeta]$ where it is given by the formula of [7]

$$\overline{F}_2^{\text{aff}} = (1 \otimes 1 - \zeta \otimes \overline{f}_1 - \zeta^2 (H_\alpha/2) \otimes \overline{f}_0) - \frac{1}{2} H_\alpha \otimes 1. \quad (17)$$

3.2. Rational degeneration of F_3^{aff}

Let

$$\mathcal{D}_A^{(3)} := \sum_{l_1, \ldots, l_5 \geq 0} c_{l_1, \ldots, l_5} (\hat{e}_-\beta)^{l_1} (\hat{e}_{-\alpha-\beta})^{l_2} (\hat{e}_-\alpha)^{l_3} K_2''(\hat{e}_{\delta-\beta})^{l_4} (\hat{e}_{\delta-\alpha-\beta})^{l_5}$$

where $c_{l_1, \ldots, l_5} \in A$. K_2'' is an algebra generated by $H_{\pm, \alpha} = \frac{q^{\pm h_\beta}}{q-1} - 1$, $H_{\pm, \beta} = \frac{q^{\pm h_\beta}}{q-1}$, and \hat{e}_α over A. Complete $\mathcal{D}_A^{(3)}$ up to $\mathcal{D}_A^{(3)}[[\zeta]]$ and consider the Hopf subalgebra

$$\mathcal{F}_A^{(3)}[\zeta] := \{ \sum_{l_1, \ldots, l_5 \geq 0} c_{l_1, \ldots, l_5} (f_2)^{l_1} (f_0)^{l_2} (\hat{e}_{-\alpha})^{l_3} K_2''(f_3)^{l_4} (f_1)^{l_5} | c_{l_1, \ldots, l_5} \in A[\zeta] \}$$

where

$$f_0 = (q - q^{-1}) \hat{e}_{-\alpha-\beta}, \quad f_1 = q^{h_\alpha} \hat{e}_{\delta-\alpha-\beta} + q^{-1} \zeta \hat{e}_{-\alpha-\beta}$$
$$f_2 = (1 - q^{-2}) \hat{e}_{-\beta}, \quad f_3 = q^{h_\alpha} \hat{e}_{\delta-\beta} - \zeta \hat{e}_{-\beta}.$$

Proposition 3. F_2^{aff} restricts to a twist of $\mathcal{F}_A^{(3)}[[\zeta]] := (\mathcal{F}_A^{(3)}[\zeta])[\zeta]$.

Proof. Note that by (2) we have the following identity

$$\exp_{q^2}(-q^{-1} \zeta^2 \hat{e}_\alpha q^{h_\beta} \otimes \hat{e}_{-\alpha-\beta}) = \exp_{q^2}(\zeta^2 \hat{e}_\alpha \frac{H_{\alpha}^+ - H_{\beta}^-}{1+q} \otimes f_0) \exp_{q^{-2}}(-q^{-1} \zeta^2 q^{h_\alpha} \hat{e}_\alpha \otimes \hat{e}_{-\alpha-\beta})$$
which allows to bring F^{aff}_3 to the following form
\[
(1 \otimes 1 - \zeta 1 \otimes f_3 - \zeta^2 (h_1^+ / 2) q_2 \otimes f_2)_{q^2}^{(-\frac{1}{2} h_3^+ \otimes 1)}.
\]
\[
(1 \otimes 1 + q^{-2} \zeta 1 \otimes \bar{e}_\alpha)_{q_2}^{(-\frac{1}{2} h_3^+ \otimes 1)} \cdot \exp_{q^2}(\zeta^2 \bar{e}_\alpha \frac{H_\alpha^+ - H_\beta^+}{1 + q} \otimes f_0).
\]
\[
\exp_{q^2}(-\zeta q h_\alpha^+ \epsilon_\alpha \otimes f_1) \cdot \exp_{q^2}(-q \zeta \bar{e}_\alpha \otimes f_2).
\]
\[
(1 \otimes 1 - q^{-2} \zeta q h_\alpha^+ \otimes f_3 - \zeta^2 (h_\alpha^+ / 2) q_2 \otimes f_2)_{q^{-2}}^{(\frac{1}{2} h_3^+ \otimes 1)}.
\]
correctly defined on $\mathcal{F}_A^{(3)}[[\zeta]]$.

The semi-classical twist F^{aff}_3 is obtained by specializing $q = 1$:
\[
(1 \otimes 1 - \zeta 1 \otimes \bar{f}_3 - \frac{1}{2} \zeta^2 \bar{H}_\beta^+ \otimes \bar{f}_2)_{1}^{(-\frac{1}{2} h_3^+ \otimes 1)} \cdot (1 \otimes 1 + \zeta 1 \otimes e_\alpha)_{1}^{(-\frac{1}{2} h_3^+ \otimes 1)}.
\]
\[
\exp\left(\frac{1}{2} \zeta^2 \bar{e}_\alpha (H_\alpha^+ + H_\beta^+) \otimes \bar{f}_0 \right) \cdot \exp\left(-\zeta \bar{e}_\alpha \otimes \bar{f}_1 \right) \cdot \exp\left(-\zeta e_\alpha \otimes \bar{f}_2 \right) \cdot (1 \otimes 1 - \zeta 1 \otimes \bar{f}_3 - \frac{1}{2} \zeta^2 \bar{H}_\alpha^+ \otimes \bar{f}_2)_{1}^{(\frac{1}{2} h_3^+ \otimes 1)}.
\]

4. Universal quantization of $n = 3, 4$ generalized Jordanian r–matrices

Let us denote by $U^{\Psi_n}(\mathfrak{s}l_n)[[\zeta]]$ the completed universal enveloping algebra $U(\mathfrak{s}l_n)[[\zeta]]$ with the twisted coproduct
\[
\Delta_{\psi_n}(\cdot) = \psi_n \Delta(\cdot) \psi_n^{-1}.
\]

Proposition 4. There exists a twist Ψ_n in $U(\mathfrak{s}l_n)[[\zeta]]$ and a homomorphism ι_{n-1} such that
\[
\iota_{n-1} : \mathcal{F}_A^{(n-1)}[[\zeta]] \rightarrow U^{\Psi_n}(\mathfrak{s}l_n)[[\zeta]].
\]

Proof. If $n = 3$, then choose the extended Jordanian twist [8]
\[
\Psi_3 = \exp(\zeta E_{32} \otimes E_{13} e^{-\sigma_{12}^\zeta} \cdot \exp(D_1 \otimes \sigma_{12}^\zeta)
\]
where $\sigma_{12}^\zeta = \ln(1 - \zeta E_{12})$ and E_{ij} are the elements of $U(\mathfrak{s}l_n)$ corresponding to the elements of Cartan-Weyl basis of $\mathfrak{s}l_n$. In the deformed $U^{\Psi_3}(\mathfrak{s}l_3)[[\zeta]]$ we find the following elements and their coproducts
\[
\Delta_{\psi_3}(E_{23}) = E_{23} \otimes 1 + 1 \otimes E_{23} - 2 \zeta D_1 \otimes E_{13} e^{-\sigma_{12}^\zeta}
\]
and D_1, $E_{13}e^{-\sigma_{12}\zeta}$ with primitive coproducts. Define ι_2 by its values on the generators of $\mathcal{F}_{\mathcal{A},q=1}^{(2)}[[\zeta]]$:

$$\iota_2(\overline{H}_\alpha) = -2D_1, \quad \iota_2(\overline{f}_0) = E_{13}e^{-\sigma_{12}}, \quad \iota_2(\overline{f}_1) = E_{23}$$

and extend it to $\mathcal{F}_{\mathcal{A},q=1}^{(2)}[[\zeta]]$ as a homomorphism into $U^{\Psi_4}(\mathfrak{sl}_3)[[\zeta]]$. The defining relations (15) and coproducts (16) are preserved by ι_2, thus the statement holds in this case. Next, if $n = 4$ then take

$$\Psi_4 = \exp(\zeta E_{32} \otimes E_{13}e^{-\sigma_{12}\zeta} + \zeta E_{42} \otimes E_{14}e^{-\sigma_{12}\zeta}) \cdot \exp(D_1 \otimes \sigma_{12}^{-\zeta})$$

and define $\iota_3 : \mathcal{F}_{\mathcal{A},q=1}^{(3)}[[\zeta]] \to U^{\Psi_4}(\mathfrak{sl}_3)[[\zeta]]$ by the following relations

$$\begin{align*}
\iota_3(\overline{H}_\alpha) &= D_2 - 2D_3, \quad \iota_3(\overline{H}_\beta) = D_3 - 2D_2, \quad \iota_3(\overline{f}_0) = -E_{14}e^{-\sigma_{12}\zeta} \\
\iota_3(\overline{f}_1) &= E_{24}, \quad \iota_3(\overline{f}_2) = E_{13}e^{-\sigma_{12}\zeta}, \quad \iota_3(\overline{f}_3) = E_{23} \\
\iota_3(\overline{e}_\alpha) &= -E_{43}, \quad \iota_3(\overline{e}_{-\alpha}) = -E_{34}
\end{align*}$$

where $E_{24} = E_{24} - \zeta E_{34}E_{13}e^{-\sigma_{12}\zeta}$. The only nonprimitive coproducts of the generators in $\iota_3(\mathcal{F}_{\mathcal{A},q=1}^{(3)})[[\zeta]]$ are the following

$$\Delta_{\Psi_4}(E_{23}) = E_{23} \otimes 1 + 1 \otimes E_{23} + \zeta (D_3 - 2D_2) \otimes E_{13}e^{-\sigma_{12}\zeta} + \zeta E_{43} \otimes E_{14}e^{-\sigma_{12}\zeta}$$

$$\Delta_{\Psi_4}(E_{24}') = E_{24}' \otimes 1 + 1 \otimes E_{24}' - \zeta (D_2 + D_3) \otimes E_{14}e^{-\sigma_{12}\zeta} - \zeta E_{13}e^{-\sigma_{12}\zeta} \otimes E_{34}.$$

Let us consider the structure of $\mathcal{F}_{\mathcal{A},q=1}^{(3)}[[\zeta]]$. As a topological Hopf algebra it is the completion of $\mathcal{F}_{\mathcal{A},q=1}^{(3)}[[\zeta]] := \{ \sum_{l_1, \ldots, l_s \geq 0} c_{l_1, \ldots, l_s} (\overline{f}_2)^{l_1} (\overline{f}_0)^{l_2} (\overline{e}_{-\alpha})^{l_3} (\overline{H}_\alpha)^{l_4} (\overline{H}_\beta)^{l_5} (\overline{e}_\alpha)^{l_6} (\overline{f}_3)^{l_7} (\overline{f}_1)^{l_s} \}$.

The coproducts of the generators and the commutation relations are obtained from their quantum counterparts

$$\begin{align*}
\Delta(\overline{f}_1) &= \overline{f}_1 \otimes 1 + 1 \otimes \overline{f}_1 - \zeta (\overline{H}_\alpha + \overline{H}_\beta) \otimes \overline{f}_0 + \zeta \overline{f}_2 \otimes \overline{e}_{-\alpha} \\
\Delta(\overline{f}_3) &= \overline{f}_3 \otimes 1 + 1 \otimes \overline{f}_3 + \zeta \overline{H}_\beta \otimes \overline{f}_2 + \zeta \overline{e}_\alpha \otimes \overline{f}_0,
\end{align*}$$
where we have written only the generators with nonprimitive coproducts,
\[
[\overline{e}_\alpha, \overline{e}_{-\alpha}] = \overline{H}_\alpha, \quad [\overline{e}_\alpha, \overline{f}_0] = -\overline{f}_2, \quad [\overline{e}_\alpha, \overline{f}_1] = \zeta \overline{f}_2 + \overline{f}_3 + \zeta \overline{f}_2 \overline{H}_\alpha
\]
\[
\overline{e}_\alpha, \overline{f}_2 = 0, \quad [\overline{e}_\alpha, \overline{f}_3] = 0, \quad [\overline{f}_0, \overline{e}_{-\alpha}] = 0
\]
\[
[\overline{f}_1, \overline{e}_{-\alpha}] = \zeta \overline{f}_0 \overline{e}_{-\alpha}, \quad [\overline{f}_2, \overline{e}_{-\alpha}] = \overline{f}_0, \quad [\overline{f}_3, \overline{e}_{-\alpha}] = -\zeta \overline{f}_0 - \overline{f}_1 + \zeta \overline{f}_2 \overline{e}_{-\alpha}
\]
\[
[\overline{f}_0, \overline{f}_1] = -\zeta \overline{f}_0^2, \quad [\overline{f}_0, \overline{f}_2] = 0, \quad [\overline{f}_0, \overline{f}_3] = \zeta \overline{f}_2 \overline{f}_0
\]
\[
[\overline{f}_1, \overline{f}_2] = 0, \quad [\overline{f}_1, \overline{f}_3] = \zeta \overline{f}_2 \overline{f}_1, \quad [\overline{f}_2, \overline{f}_3] = \zeta \overline{f}_2^2.
\]
To see that any other relation in \(\mathcal{F}_{\mathcal{A}, q=1}^{(3)}[[\zeta]] \) follows from the introduced ones, we consider the quantum analogues of the commutation relations as the ordering rules in \(\mathcal{F}_{\mathcal{A}}^{(3)}[[\zeta]] \) with the normal ordering \(f_2 < f_0 < \hat{e}_{-\alpha} < H_\alpha < H_\beta < \hat{e}_\alpha < f_3 < f_1 \), then by the Diamond lemma [2] any monomial \(m \in \mathcal{F}_{\mathcal{A}}^{(3)}[[\zeta]] \) can be brought to the form (18), indeed otherwise there would exist a nontrivial relation between the ordered monomials and any such relation must have zero coefficients as the normal ordering in \(\mathcal{F}_{\mathcal{A}}^{(3)}[[\zeta]] \) compatible with the ordering in \(\mathcal{D}_{\mathcal{A}}^{(3)}[[\zeta]] \): \(\hat{e}_{-\beta} < \hat{e}_{-\alpha-\beta} < \hat{e}_{-\alpha} < H_\alpha < H_\beta < \hat{e}_\alpha < \hat{e}_{\delta-\beta} < \hat{e}_{\delta-\alpha-\beta} \). Thus any monomial in \(\mathcal{F}_{\mathcal{A}, q=1}^{(3)}[[\zeta]] \) can be uniquely ordered as well and no additional relations come from \(\mathcal{F}_{\mathcal{A}}^{(3)}[[\zeta]] \). Now it is direct to check that the extension of \(\iota_3 \) to a homomorphism preserves the coproducts and relations in \(\mathcal{F}_{\mathcal{A}}^{(3)}[[\zeta]] \).

The main new result of this paper is an explicit form of \(F_p \) when \(n = 4 \) is obtained as \(F_p = (\iota_3 \otimes \iota_3)(\overline{F}_p^{3\mathbb{Z}}) \cdot \Psi_4 \) and is the following
\[
(1 \otimes 1 - \zeta \otimes E_{23} + \zeta^2 D_3 \otimes E_{13} e^{-\sigma_{12}^\zeta})^{(D_3 \otimes 1)} \cdot (1 \otimes 1 - \zeta \otimes E_{34})^{(D_4 \otimes 1)},
\]
\[
\exp(-\zeta^2 E_{43}(D_2 + D_3) \otimes E_{14} e^{-\sigma_{12}^\zeta}) \cdot \exp(\zeta E_{43} \otimes (E_{24} - \zeta E_{34} E_{13} e^{-\sigma_{12}^\zeta})).
\]
\[
\exp(\zeta E_{43} \otimes E_{13} e^{-\sigma_{12}^\zeta}) \cdot (1 \otimes 1 - \zeta \otimes E_{23} + \zeta^2 D_2 \otimes E_{13} e^{-\sigma_{12}^\zeta})^{(D_2 - D_3 \otimes 1)}.
\]
\[
\exp(\zeta E_{32} \otimes E_{13} e^{-\sigma_{12}^\zeta} + \zeta E_{42} \otimes E_{14} e^{-\sigma_{12}^\zeta}) \cdot \exp(D_1 \otimes \sigma_{12}^\zeta).
\]
Forming the universal \(R \)-matrix \(R_p = F_{p_{21}} F_p^{-1} \) we obtain in the first order in \(\zeta \) the Gerstenhaber-Giaquinto \(n = 4 \) \(r_p \)-matrix:
\[
D_1 \wedge E_{12} + E_{14} \wedge E_{42} + E_{13} \wedge E_{32} + D_2 \wedge E_{23} + E_{24} \wedge E_{43} + D_3 \wedge E_{34} + E_{13} \wedge E_{43}.
\]
Note that there is a whole family of homomorphisms \(\iota_3^{(a)} \):

\[
\iota_3^{(a)}(H_{\alpha}) = D_2 - 2D_3, \quad \iota_3^{(a)}(H_{\beta}) = D_3 - 2D_2, \quad \iota_3^{(a)}(f_0) = \frac{1}{a} E_{14} e^{-\sigma_{12}^{-\xi}}
\]

\[
\iota_3^{(a)}(f_1) = -\frac{1}{a} E_{24}, \quad \iota_3^{(a)}(f_2) = E_{13} e^{-\sigma_{12}^{-\xi}}, \quad \iota_3^{(a)}(f_3) = E_{23}
\]

\[
\iota_3^{(a)}(\bar{e}_\alpha) = a E_{45}, \quad \iota_3^{(a)}(\bar{e}_{-\alpha}) = \frac{1}{a} E_{34}
\]

and thus \((\iota_3^{(a)} \otimes \iota_3^{(a)})(F_{\text{aff}})^* \Psi_4\) for any \(a \neq 0 \) leads to quantization of

\[
D_1 \wedge E_{12} + E_{13} \wedge E_{32} + E_{14} \wedge E_{42} + D_2 \wedge E_{23} + E_{24} \wedge E_{43} + \frac{1}{a} D_3 \wedge E_{34} + a E_{13} \wedge E_{43}.
\]

Acknowledgements

I would like to express my gratitude to V. Lyakhovsky, A. Stolin and V. Tolstoy for the valuable discussions at the different stages of the work.

References

1. Endelman, R. and Hodges, T.: Generalized Jordanian \(R \)-matrices of Cremmer-Gervais type, Lett. Math. Phys. 52(3) (2000), 225-237, math.QA/0003066.
2. Bergman, G.M.: The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218.
3. Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), 427-434, hep-th/9310070.
4. Gerstenhaber, M. and Giaquinto, A.: Boundary solutions of the classical Yang-Baxter equation, Lett. Math. Phys. 40(4) (1997) 337-353, math.QA/9609014.
5. Isaev, A.P. and Ogievetsky, O.V.: On Quantization of \(r \)-Matrices for Belavin-Drinfeld Triples, Physics of Atomic Nuclei 64(12) (2001), 2126-2130, math.QA/0010190.
6. Kulish, P.P., Lyakhovsky, V.D. and Mudrov, A.I.: Extended Jordanian twists for Lie algebras, Journ. Math. Phys. 40 (1999), 4569-4586, math.QA/9806014.
7. Khoroshkin, S.M., Stolin, A.A. and Tolstoy, V.N.: q–Power Function over \(q \)-Commuting Variables and Deformed XXX and XXZ chains, Physics of Atomic Nuclei 64(12) (2001), 2173-2178, math.QA/0012207.
8. Kulish, P.P., Lyakhovsky, V.D. and Mudrov, A.I.: Extended Jordanian twists for Lie algebras, Journ. Math. Phys. 40 (1999), 4569-4586, math.QA/9806014.
9. Kulish, P.P. and Mudrov, A.I.: Universal \(R \)-matrix for esoteric quantum group, Lett. Math. Phys. 47(2) (1999), 139-148, math.QA/9804006.
10. Lyakhovsky, V.D. and Samsonov, M.E.: Elementary parabolic twist, Journal of Algebra and Its Applications, 1(4) (2002), 413-424, math.QA/0107034.
Semi-classical twists for \mathfrak{sl}_3 and \mathfrak{sl}_4 boundary r–matrices

Address for Offprints: Theoretical Department
Institute of Physics
198904, St. Petersburg
Russia
