Immunogenicity of Novel DosR Regulon-Encoded Candidate Antigens of Mycobacterium tuberculosis in Three High-Burden Populations in Africa

Gillian F. Black,1‡* Bonnie A. Thiel,1‡ Martin O. Ota,3 Shreemanta K. Parida,4 Richard Adegbola,3 W. Henry Boom,2,5 Hazel M. Dockrell,6 Kees L. M. C. Franken,7 Annemie H. Friggen,7 Philip C. Hill,3§ Michel R. Klein,7¶ Maeve K. Lalor,6 Harriet Mayanja,5 Gary Schoolnik,8 Kim Stanley,1 Karin Weldingh,9† Stefan H. E. Kaufmann,3 Gerhard Walzl,1 Tom H. M. Ottenhoff,7 and the GCGH Biomarkers for TB Consortium

Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa; Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio; Bacterial Diseases Programme, Medical Research Council, P.O. Box 273, Banjul, The Gambia; Department of Immunology, Max Planck Institute for Infection Biology, D-10117 Berlin, Germany; Department of Medicine, Makerere University, Kampala, Uganda; Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom; Department of Immunohematology and Blood Transfusion, and Department of Infectious Diseases, Leiden University Medical Centre, NL-2300 RC Leiden, The Netherlands; Department of Microbiology and Immunology, Stanford University, Stanford, California; and Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark

Received 11 March 2009/Returned for modification 2 April 2009/Accepted 17 June 2009

Increasing knowledge about DosR regulon-encoded proteins has led us to produce novel *Mycobacterium tuberculosis* antigens for immunogenicity testing in human populations in three countries in Africa to which tuberculosis (TB) is endemic. A total of 131 tuberculin skin test-positive and/or ESAT-6/CFP10-positive, human immunodeficiency virus-negative adult household contacts of active pulmonary TB cases from South Africa (*n* = 56), The Gambia (*n* = 26), and Uganda (*n* = 49) were tested for gamma interferon responses to 7 classical and 51 DosR regulon-encoded *M. tuberculosis* recombinant protein antigens. ESAT-6/CFP10 fusion protein evoked responses in >75% of study participants in all three countries. Of the DosR regulon-encoded antigens tested, Rv1733c was the most commonly recognized by participants from both South Africa and Uganda and the third most commonly recognized antigen in The Gambia. The four most frequently recognized DosR regulon-encoded antigens in Uganda (Rv1733c, Rv0081, Rv1735c, and Rv1737c) included the three most immunogenic antigens in South Africa. In contrast, Rv3131 induced the highest percentage of responders in Gambian contacts (38%), compared to only 3.4% of Ugandan contacts and no South African contacts. Appreciable percentages of TB contacts with a high likelihood of latent *M. tuberculosis* infection responded to several novel DosR regulon-encoded *M. tuberculosis* proteins. In addition to significant similarities in antigen recognition profiles between the three African population groups, there were also disparities, which may stem from genetic differences between both pathogen and host populations. Our findings have implications for the selection of potential TB vaccine candidates and for determining biosignatures of latent *M. tuberculosis* infection, active TB disease, and protective immunity.

Tuberculosis (TB) remains an ongoing health crisis of global dimensions. The African Region has the highest incidence rate per capita (363 per 100,000 population) and includes 10 of the 22 most high-burden countries in the world (38). It has been estimated that one-third of the world’s population is latently infected with *Mycobacterium tuberculosis*. Human immunodeficiency virus type 1 (HIV-1)-infected individuals have a risk of about 5 to 10% per year of progression from latent infection to active TB (4), compared to 2 to 23% in a lifetime for HIV-1-seronegative individuals (24). The only currently licensed vaccine against TB is *Mycobacterium bovis* bacillus Calmette-Guérin (BCG), which has highly variable efficacy against adult pulmonary TB (6). The use of BCG in HIV-1-infected or -exposed infants may be contraindicated (11). The investigation of safe and effective TB vaccines is thus highly prioritized. The discovery of the precise mechanisms underlying protective anti-TB immunity calls for the identification of new biomarkers (17). A clearer understanding of which *M. tuberculosis* antigens evoke effective immune responses and how they are associated with protection or disease is required. Promising

* Corresponding author. Mailing address: Department of Biomedical Sciences, Fison Building, Faculty of Health Sciences, Stellenbosch University, Tygerberg Hospital Campus, Tygerberg, Cape Town 7505, South Africa. Phone: 27 21 938 9065. Fax: 27 21 938 9476. E-mail: gfb@sun.ac.za.
† Supplemental material for this article may be found at http://cvi.asm.org/.
‡ Gillian F. Black and Bonnie A. Thiel contributed equally to the preparation of the manuscript.
§ Present address: Department of Preventive and Social Medicine, University of Otago School of Medicine, Dunedin, New Zealand.
¶ Present address: National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
†† Present address: Novo Nordisk, Maaloev, Denmark.
Published ahead of print on 24 June 2009.
antigens that have been identified as immunodominant include the alpha-crystallin homologue (also known as the *M. tuberculosis* 16-kDa protein; *Rv2031c*, *HspX*) (9), alpha-crystallin 2 (Ac2; *Rv0251*) (36), *Ag85A* (*Rv3804*) (33), *Hsp65* (*Rv0440*) (23), ESAT-6 (*Rv3875*) (5), and CFP10 (*Rv3874*) (32), some of which are currently being tested as potential TB vaccine candidates (28). The search for novel protective antigen(s) has been facilitated by expression profiling of *M. tuberculosis* laboratory strains cultured under conditions of hypoxia and nitric oxide stress, which are thought to resemble conditions that mycobacteria encounter in situ during latent infection (31). Voskuil et al. (35) showed that hypoxia and low concentrations of nitric oxide induced expression of a 48-gene dormancy survival regulon (DosR) believed to be associated with latency. A selection of these proteins has been tested for immunogenicity in relevant mouse models and has established the importance of the regulon in latent infection (26, 29, 34). In addition, human studies of latently *M. tuberculosis*-infected healthy adults living in areas where tuberculosis is not endemic have shown T-cell responses to selected DosR regulon-encoded antigens, suggesting a role in maintenance of the asymptomatic phase of latent infection (18, 30). In order to gain better insight into protection against TB and to expand our current understanding about proteins encoded by the DosR regulon that are targeted by the human immune system, we have tested 51 antigens, spanning the entire 48 genes of the DosR regulon (35), in geographically diverse human populations from three countries in Africa to which TB is endemic. Twenty-five of the antigens studied here have been tested previously (18); however, we report results with an additional 26 new antigens. The immunogenicity of the entire set of DosR regulon-encoded antigen testing (First Response HIV Card 1-2.0; PMC Medical India Pvt. Ltd., Daman, India) in South Africa. Antigens. All antigens were produced, quality controlled, and distributed by Leiden University Medical Center as described previously (18, 19). Briefly, genes were amplified by PCR and cloned by Gateway Technology (Invitrogen, San Diego, CA) in a bacterial expression vector containing an N-terminal histidine tag. The proteins were overexpressed in *Escherichia coli* BL21(DE3) and purified, as described previously (8). Purity and size were checked by gel electrophoresis and Western blotting with anti-His antibodies and anti-E. coli antibodies. Residual endotoxin levels were determined with a Limulus amebocyte lysate assay (Cambrex) and were found to be below 50 IU/mg recombinant protein. Due to size constraints, *Rv0570*, *Rv1730c*, and *Rv1997* were expressed in two parts (C-terminal and N-terminal), giving a total of 51 test antigens. In Table 2, the C- and N-terminal fragments of *Rv0570* are denoted as *Rv0570-C* and *Rv0570-N*, respectively. The same nomenclature is used for the DosR regulon and N-terminal parts of *Rv1730c* and *Rv1997*. Recombinant antigens were freeze-dried and shipped at ambient temperature to the African research sites. Each site obtained aliquots of the same batches of the classical TB control antigens and DosR regulon-encoded proteins (for batch numbers, see Table 2), which were reconstituted (following a detailed protocol provided to all sites by Leiden University Medical Center) in dimethyl sulfoxide and 1× phosphate-buffered saline (10 μl and 1 ml per mg of antigen, respectively) and stored at −80°C until testing in whole-blood assays was done.

Antigen screening.

For the seven classical antigens (*Rv0288* [TB1.04], *Rv0440* [GroEL2/HSP65], *Rv1888c* [Ag85-B], *Rv3019c* [TB1.03], *Rv3804c* [Ag85-A], *Rv3875* [ESAT-6], and a fusion protein of ESAT-6 and CFP-10), 51 *M. tuberculosis* DosR regulon-encoded antigens, and the number of participants tested for each antigen at each site, see Table 2. In The Gambia, 26 study participants were tested with all 51 DosR regulon-encoded antigens. In Uganda, three subgroups were tested: 24 subjects with 16 antigens, 15 subjects with the remaining 35 antigens, and 11 subjects with all 51 antigens. Three subgroups were also tested in South Africa: 18 subjects with 16 antigens, 19 subjects (subgroup A; see Table 2) with a further 16 antigens, and 19 subjects (subgroup B; see Table 2) with the remaining 19 antigens.

Whole-blood assay.

The whole-blood assay and gamma interferon (IFN-γ) ELISA procedures followed were those in use at each of the sites at the time of antigen testing. In South Africa and The Gambia, the whole-blood assay (WBA) was done as described previously (2). The same WBA protocol was followed in Uganda except that diluted blood was added to single wells of 48-well tissue culture plates (as opposed to triplicate wells of 96-well plates) and the final blood dilution after addition to antigen was 1 in 5 (compared to 1 in 10 in South Africa and The Gambia) (25). All recombinant antigens were used at a final concentration of 10 μg/ml. *Ag85A* and *Ag85B* protein antigens were combined for screening to create a single stimulatory condition, with each protein being tested at a final concentration of 10 μg/ml. At all sites the negative control was diluted blood cultured without antigen, and the positive control was phthalamagglutinin (PHA) (lot numbers 22K9395 [MAK]; 115K9819 [MRC], and 01S9813 [SUN]). Secreted RIFNG50; Endogen) curve ranged from 1,000 to 25 pg/ml; the substrate was Fast phenylenediamine dihydrochloride (Sigma). ELISA plates were read at 450 nm, and linear curve fitting was used. The protocol followed in Uganda was similar, with variations as follows: the coating antibody was Endogen M-700A monoclonal antibody, the blocking agent (10 to 15 min) was Pierce Superblock (Pierce 37515), the IFN-γ standard (lot no. DH58587, catalog no. Pierce Endo- gen RIFNG50; Endogen) curve ranged from 1,000 to 25 pg/ml, the secondary biotin-labeled antibody was Endogen M-701b, the enzyme was alkaline-phos- phatase-conjugated streptavidin (016-050-084; Jackson Immuno Research), and the substrate was alkaline phosphatase (N-9389; Sigma) in diethylamino-dihydrochloride buffer (Sigma) at 1:10. The reaction was stopped with 5% EDTA in phosphate-buffered saline (no. E-1644; Sigma), plates were read at 405 nm, and the four-parameter curve fit was used.

Data analysis.

The general distribution of IFN-γ responses in each sample population was highly skewed to the right (indicating positive skewness). Therefore, a log10 transformation was used whenever a summary measure required that the distribution be normalized. The negative control IFN-γ value for each study participant was subtracted from the antigen-induced IFN-γ values so that all response values could be considered over and above the background response. The WBA blood dilution

MATERIALS AND METHODS

Ethical clearance.

Blood samples were collected at all three African sites only after written informed consent was given. Study protocols were approved by the institutional review boards of Stellenbosch University, Case Western Reserve University, the Uganda National Council for Science and Technology, and the Joint Gambian Government/MRC Ethics Committee.

Study population.

The study population included 131 individuals: 49 participants from The Gambia, 26 participants from The Gambia (Medical Research Council), and 56 participants from South Africa (Stellenbosch University). All Ugandan and Gambian participants were of African descent. All South African participants came from the ethnic group known as South African colored. BCG vaccination status was assigned according to the presence or absence of a typical scar over the deltoid region. All 131 study participants had recorded household exposure to a smear-positive adult pulmonary TB index case diagnosed up to 2 months prior to phlebotomy.

The Mantoux skin test was done using 2 tuberculin units of *M. tuberculosis* purified protein derivative (PPD) RT23 for in vivo use (Statens Serum Institute, Denmark) administered intradermally immediately after venous blood collection. At all sites, indurations were read between 48 and 72 h following test administration. In The Gambia and Uganda, sputum examination is not routinely practiced in nonsymptomatic household contacts. In South Africa, physiotherapy-trained nursing assistants used percussion to assist sputum production by all study participants; sputum was cultured, and all cultures were found to be negative for acid-fast bacilli. Chest X-rays were done on recruitment of all contacts at each of the sites. No abnormalities suggestive of TB disease were found.

HIV testing.

All participants were tested for antibodies to HIV-1 and -2 by pre- and posttest counseling: rapid test (Determine HIV-1/2; Abbott/Inverness) in Uganda, enzyme-linked immunosorbent assay (ELISA) (Murex 1.2.0; Abbott-Murex Biotech, Dartford, Kent, United Kingdom), and rapid test (Hexagon HIV; Human Diagnostics GmbH, Wiesbaden, Germany) in The Gambia, and rapid

1204 BLACK ET AL. CLIN. VACCINE IMMUNOL.

Downloaded from http://cvi.asm.org/ on May 7, 2019 by guest
TABLE 1. Demographic characteristics of study participants

Site	% Male	Mean age in yr (range)	Mean TST size in mm (range)	% BCG scar positive
Uganda (49)	27	28 (15–75)	16 (10–24)	67
The Gambia (26)	38	30 (15–52)	18 (0–23)	36
South Africa (56)	31	32 (12–56)	24 (8–38)	68

a Total number of study participants included in DosR regulon-encoded antigen screening at each site.

and the ELISA protocol used in Uganda varied from that used in both The Gambia and South Africa. Therefore, a direct comparison of the geometric means or medians across each of the sites was not feasible. Instead, ranks and frequencies of positive responders were compared within and between sites. The IFN-γ response to each stimulus was categorized as positive or negative for each participant based on whether the stimulus response was greater than a calculated cutoff value. The cutoff value for determining a positive response was calculated separately for each site as means + 2 standard deviations of log-transformed negative control values. Table S1 in the supplemental material shows calculated cutoff values on the log scale and the original pg/ml scale. The horizontal line shows the median response (pg/ml), on a log scale, to the seven classical tuberculosis control antigens and PHA are shown for Uganda (A), The Gambia (B), and South Africa (C). All “0” values were converted to 1 for plotting on the log axis. The horizontal line shows the median response for each condition.

RESULTS

Demographics. Gender, mean age in years, mean tuberculin skin test (TST) size (mm), and BCG scar status of the participants from the three sites are shown in Table 1.

In Uganda, The Gambia, and South Africa, 100%, 84%, and 89% of participants had a TST of >10 mm, respectively. In The Gambia and South Africa, three and two participants, respectively, had no TST data available, but all had a positive whole-blood IFN-γ response to M. tuberculosis-specific ESAT-6/CFP10 fusion protein.

Correlations between antigen responses within each site were assessed with the Pearson correlation coefficient (r) after log-10 transformation of the data. The criteria for significance was set to an r value of ≥0.6 and, to account for multiple estimates, a P value of <0.005 (α = 0.005). Since this was an exploratory study, it was not necessary to make any further adjustments to the data.

FIG. 1. Dot plots of IFN-γ responses (pg/ml) to the seven classical TB control antigens and the positive control (PHA) are shown on a log scale in Fig. 1A (Uganda), B (The Gambia), and C (South Africa). The geometric means, medians, interquartile ranges, and percent positive responses to the seven classical M. tuberculosis control antigens and PHA are shown in Table S2 in the supplemental material. PHA- and ESAT-6/CFP10 fusion protein-specific responses were of highest magnitude in The Gambia, as were the background responses. Thus, the Gambian response cutoff was higher than those at the other two sites (The Gambia cutoff, 163 pg/ml; Uganda cutoff, 62 pg/ml; South Africa cutoff, 29 pg/ml).

The frequency of responses to PHA in both Uganda (63% responders) and South Africa (78% responders) was less than that observed in The Gambia (96%). The one Gambian participant that did not respond to PHA—at least as assessed by IFN-γ production—also showed no response to ESAT-6/CFP10 or TB10.4 but did respond to two DosR regulon-encoded antigens. In Uganda, the 18 study participants that did not respond to PHA, 16 (89%) responded to ESAT-6/CFP10 and/or TB10.4 as well as at least one DosR regulon-encoded antigen. The remaining two Ugandan participants did not respond to PHA, ESAT-6/CFP10, or TB10.4 but did respond to 7 and 15 DosR regulon-encoded antigens, respec-tively. In South Africa, of the 12 nonresponders to PHA, 100% responded to ESAT-6/CFP10 and/or TB10.4, and out of this subgroup only 1 participant did not respond to any DosR regulon-encoded antigens. Thus, despite the reduced percentage of responders to PHA in Uganda and South Africa, none of the participants were anergic.

Responses to the 51 DosR regulon-encoded antigens were ranked by the frequency of responders at each site. The top 10 overall highest-ranked antigens for each site, a total of 19 antigens, are shown in Fig. 2. Antigens are shown in order by Rv code antigen number. Some antigen responses ranked in the top 10 at only a single site, but others ranked in the top 10 at two or three sites, and these are shown by matching box patterns. Rv0081, Rv1733c, Rv1735c, and Rv2006 were among the 10 most frequently recognized antigens in all three population groups. Rv1736c-C, Rv1737c, and Rv1997-C ranked in the top 10 at both Ugandan and South African sites.

For the geometric mean, median, 25th percentile, 75th percentile, and the ELISA protocol used in Uganda varied from that used in both The Gambia and South Africa. Therefore, a direct comparison of the geometric means or medians across each of the sites was not feasible. Instead, ranks and frequencies of positive responders were compared within and between sites. The IFN-γ response to each stimulus was categorized as positive or negative for each participant based on whether the stimulus response was greater than a calculated cutoff value. The cutoff value for determining a positive response was calculated separately for each site as means + 2 standard deviations of log-transformed negative control values. Table S1 in the supplemental material shows calculated cutoff values on the log scale and the original pg/ml scale (10log10 negative control values. The criteria for significance was set to an r value of ≥0.6 and, to account for multiple estimates, a P value of <0.005 (α = 0.005). Since this was an exploratory study, it was not necessary to make any further adjustments to the data.

Correlations between antigen responses within each site were assessed with the Pearson correlation coefficient (r) after log-10 transformation of the data. The criteria for significance was set to an r value of ≥0.6 and, to account for multiple estimates, a P value of <0.005 (α = 0.005). Since this was an exploratory study, it was not necessary to make any further adjustments to the data.

FIG. 1. Dot plots of IFN-γ responses (pg/ml) to the seven classical TB control antigens and the positive control (PHA) are shown on a log scale in Fig. 1A (Uganda), B (The Gambia), and C (South Africa). The geometric means, medians, interquartile ranges, and percent positive responses to the seven classical M. tuberculosis control antigens and PHA are shown in Table S2 in the supplemental material. PHA- and ESAT-6/CFP10 fusion protein-specific responses were of highest magnitude in The Gambia, as were the background responses. Thus, the Gambian response cutoff was higher than those at the other two sites (The Gambia cutoff, 163 pg/ml; Uganda cutoff, 62 pg/ml; South Africa cutoff, 29 pg/ml).

The frequency of responses to PHA in both Uganda (63% responders) and South Africa (78% responders) was less than that observed in The Gambia (96%). The one Gambian participant that did not respond to PHA—at least as assessed by IFN-γ production—also showed no response to ESAT-6/CFP10 or TB10.4 but did respond to two DosR regulon-encoded antigens. In Uganda, the 18 study participants that did not respond to PHA, 16 (89%) responded to ESAT-6/CFP10 and/or TB10.4 as well as at least one DosR regulon-encoded antigen. The remaining two Ugandan participants did not respond to PHA, ESAT-6/CFP10, or TB10.4 but did respond to 7 and 15 DosR regulon-encoded antigens, respec-
tile, and percent positive responses for the 10 most immunogenic antigens at each site, listed in antigen number order, see Table 3.

In order to investigate associations between the IFN-γ response and the TST size, the data were analyzed using the Pearson correlation coefficient (r). TST induration was significantly correlated with the cytokine response to TB10.3 in Uganda ($P = 0.01$) and with the response to the ESAT6/CFP10 fusion protein in South Africa ($P = 0.003$). None of the
responses to the classical TB antigens correlated with TST size in The Gambia; the same observation was made for *M. tuberculosis* PPD (*r* = 0.173), which was tested as an additional culture condition in The Gambia (data not shown) but was not included as an antigen in Uganda or South Africa.

Next, data were analyzed for associations between the magnitude of the responses to the classical TB antigens and the 51 DosR regulon-encoded antigens. Significant associations were observed at each of the sites for a small number of comparisons. Responses to TB10.4 were significantly correlated with responses to Rv2628 in Uganda (*P* < 0.0001) and with responses to Rv0574c in South Africa (*P* = 0.0015). No correlations between TB10.4 and any DosR regulon-encoded antigens were observed in The Gambia. Responses to the ESAT-6/CFP10 fusion protein were significantly associated with responses to Rv2623 in Uganda (*P* = 0.0017); however, no significant correlations between the ESAT-6/CFP10 fusion protein and any DosR regulon-encoded antigens were observed in The Gambia or South Africa. There were no significant associations between IFN-γ responses to any of the DosR regulon-encoded antigens and TST size at any of the sites.

Finally, an exploratory analysis was done to investigate associations between the DosR regulon-encoded antigens. In Uganda and South Africa, subgroups of study participants were tested with subsets of the DosR regulon-encoded antigens. Therefore in order for pairwise associations between antigen responses to be evaluated across all three study populations, it was necessary to do the Pearson analysis within antigen clusters. Antigens were clustered together if they had pairwise data available at each African site and were also included in the top 19 most frequently recognized antigens shown in Tables 2 and 3. Clusters 1 (Rv0081, Rv0569, Rv1733c, Rv2029c, Rv2626c, and Rv2628) and 2 (Rv0573c, Rv1735c, Rv1736c-C, Rv1737c, Rv1997-C, and Rv1998) each contain six antigens, and cluster 3 (Rv0081, Rv1735c, Rv2029c, Rv2626c, and Rv2628) and 2 (Rv0573c, Rv1735c, Rv1736c-C, Rv1737c, Rv1997-C, and Rv1998) each contain six antigens (see Tables S3A, B, and C in the supplemental material). Due to the number of comparisons made, *P* values could not be used to judge whether the adjusted probability of type I error is <0.05.

For antigen cluster 1, IFN-γ responses to Rv0081 and Rv1733c were positively associated (*r* > 0.6) at all three sites (see Table S3A, M/M/S, in the supplemental material). In both South Africa and Uganda, a strong correlation was observed between Rv0081 and Rv0569. Other significant pairwise correlations between antigens in cluster 1 were observed at a single site only. Overall, antigen cluster 1 had the smallest number of positive pairwise associations across all sites.

For antigen cluster 2, all three sites showed strong correlations between Rv1997-C and each of Rv1735c, Rv1736c-C, and Rv1737c. In both South Africa and Uganda, positive associations were observed for four pairwise comparisons (Rv1736c-C versus both Rv0573 and Rv1735c, Rv1737 versus Rv1735c, and Rv1997-C versus Rv0573). Other positive pairwise correlations between antigens in cluster 2 were observed in either Uganda or South Africa only.

For antigen cluster 3, all three sites showed positive associations when responses to Rv2006 versus those to Rv2625c were measured. In Uganda and The Gambia, correlation coefficients of >0.6 were observed for pairwise evaluations between the antigens Rv2028c and Rv3129 and between Rv2625c and Rv2032. The Ugandan and South African groups showed associations between Rv2006 and Rv3129. Positive correlations were observed in The Gambian and South African groups between Rv2028c and each of Rv2006, Rv2625c, and Rv2629 and between Rv2629 and both Rv2032 and Rv2625c. Other pairwise correlation coefficients of >0.6 between antigens in cluster 3 were observed at single sites only.

DISCUSSION

Effective vaccines against TB are urgently required, but progress is hampered by our lack of knowledge about which antigens of *M. tuberculosis* are immunogenic in relevant human populations and should therefore be included in new vaccines (15, 22). Additionally, there are no reliable predictive biomarkers of latent *M. tuberculosis* infection, active TB disease, or vaccine-induced protection against TB. In a large-scale attempt to begin to address these issues, we have screened 7 classical and 51 candidate antigens, spanning the entire DosR regulon, for their ability to induce IFN-γ responses in whole-blood cultures from *M. tuberculosis*-exposed contacts of smear-positive TB patients in three TB-endemic settings in Africa. None of the study participants at any site had evidence of active TB disease. Although the duration of infection may have influenced the extent of reactivity to the DosR regulon-encoded antigens, the point in time at which the TB index cases became infectious, which is likely to be prior to the date of diagnosis, remains unknown, such that it is not possible to be certain about the true duration of infection in the contacts. However, the range and mean time of exposure to the index cases were comparable for the three population groups due to the application of a 2-month limit between index case diagnosis and contact recruitment.

The WBA was selected since this has been widely used as a tool for measuring cytokine production in response to antigenic stimulation. Although the source of IFN-γ in the long-term (6- to 7-day) WBA has not been fully characterized, a recent infant BCG study indicates that this assay detects an antigen-specific T-cell-mediated immune response rather than nonspecific cytokine production (16).

Although the percentage with positive BCG scar status was different in The Gambia (36%) from those in Uganda (67%) and South Africa (68%), it has been shown (19) that BCG vaccination in adults fails to induce significant responses to many of the latency proteins tested here and is therefore unlikely to affect the antigen recognition preferences of the study participants.

From this study, Rv1733c came out as one of the most frequently recognized DosR regulon-encoded antigens in all three African sites. Of interest, it has also been shown to induce IFN-γ responses in both T-cell lines and peripheral blood mononuclear cells from a majority of TST-positive individuals in a Dutch study (18). Thus, there is a shared ability for T cells from different populations to respond to this antigen. In this descriptive study, we have investigated response patterns across population groups but have made no attempt to directly compare assay performances at the different sites. The striking similarity in recognition profiles of a select number of antigens is clear, regardless of different blood dilutions and possible
Classical TB antigens	Antigen name	aa size (gene)	Name/description	Batch no.	No. tested	Previously published
Rv0288	96 (esxH)	Low-molecular-wt protein antigen 7 (ESXH; TB10.4)	041111	49 26 56	Yes	
Rv0440	540 (groEL2)	60 kDa chaperonin 2 GROEL2—heat shock protein 65	051016	49 26 56	Yes	
Rv1886c	325 (fbpB)	Secreted antigen 85-B (FBPB)^d	050409	49 0 56	Yes	
Rv3019c	96 (exK)	Secreted ESAT-6 like protein (ESXR; TB10.3)	030411	26 26 19	Yes	
Rv3804c	338 (fhpA)	Secreted antigen 85-A (FBPA)^d	041007	49 0 56	Yes	
Rv3875	95 (exA)	6-kDa early secretory antigenic target (ESXA; ESAT-6)	051202	0 0 38	Yes	
Rv3874	98 (exB)	ESAT-6 (N-terminal) and CFP10 (C-terminal) fusion protein	040101	49 26 56	Yes	

DosR regulon-encoded antigens^e	Antigen name	aa size (gene)	Name/description	Batch no.	No. tested	Previously published
Rv0079	273	Hypothetical protein	030515	35 26	Yes^g	
Rv0080	152	Conserved hypothetical protein	050209	35 26	Yes^g	
Rv0081	114	Probable transcriptional regulatory protein	050212	35 26	Yes^g	
Rv0569	88	Conserved hypothetical protein	051104	35 26	Yes^g	
Rv0570	692 (nrzL)	Probable ribonucleoside-diaphoshate reductase	050611	26 26	No	
Rv0570-C	354	Rv0570 C-term part (aa 1–354)	050604	26 26	No	
Rv0570-N	360	Rv0570 N-term part (aa 333–692)	050604	26 26	No	
Rv0571c	443	Conserved hypothetical protein	050601	35 26	Yes^g	
Rv0572c	113	Hypothetical protein	030403	35 26	Yes^g	
Rv0573c	463	Conserved hypothetical protein	050307	26 26	Yes^g	
Rv0574c	380	Conserved hypothetical protein	050509	26 26	Yes^g	
Rv1733c	210	Probable conserved transmembrane protein	051105	35 26	Yes^g	
Rv1734c	80	Conserved hypothetical protein	050306	26 26	No	
Rv1735c	165	Hypothetical membrane protein	051012	26 26	Yes^g	
Rv1736c	652 (narX)	Probable nitrate reductase	050065	26 26	No	
Rv1736c-C	380	Rv1736c C-term part (aa 1–380)	050702	26 26	No	
Rv1736c-N	308	Rv1736c N-term part (aa 345–652)	051201	26 26	No	
Rv1737c	395 (narK2)	Possible nitrate/nitrite transporter	030210	35 26	Yes^g	
Rv1738	94	Conserved hypothetical protein	050416	35 26	Yes^g	
Rv1812c	400	Probable dehydrogenase	050706	35 26	Yes^g	
Rv1813c	143	Conserved hypothetical protein	050809	26 26	Yes^g	
Rv1896c	317	Probable conserved hypothetical protein	050311	26 26	Yes^g	
Rv1997	905 (cypF)	P-type ATPase A	050703	26 26	No	
Rv1997-C	430	Rv1997 C-term part (aa 1–430)	050703	26 26	No	
Rv1997-N	504	Rv1997 N-term part (aa 402–905)	050603	26 26	No	
Rv1998	258	Conserved hypothetical protein	050501	26 26	Yes^g	
Rv2003c	285	Conserved hypothetical protein	050411	26 26	Yes^g	
Rv2004c	498	Conserved hypothetical protein	050416	26 26	Yes^g	
Rv2005c	295	Conserved hypothetical protein	050410	26 26	Yes^g	
Rv2006	1327 (otsB1)	Probable trehalose-6-phosphate phosphatase	050406	26 26	No	
Rv2007c	114 (fdxA)	Probable ferredoxin	041206	26 26	Yes^g	
Rv2026c	279	Probable ferredoxin	050412	26 26	Yes^g	
Rv2029c	339 (pfkB)	Probable phosphohexokinase	050714	35 26	Yes^g	
Rv2030c	681	Conserved hypothetical protein	030128	26 26	Yes^g	
Rv2031c	144 (acr)	Heat shock protein X (Hspx; alpha-crystallin homolog)	050706	35 26	Yes^g	
Rv2032c	331 (arcA)	Conserved hypothetical protein	020199	26 26	Yes^g	
Rv2023c	297 (TB31.7)	Conserved hypothetical protein	030312	35 26	Yes^g	
Rv2024c	272	Conserved hypothetical protein	030308	26 26	Yes^g	
Rv2025c	393	Probable conserved transmembrane protein	050610	26 26	No	
Rv2026c	143	Conserved hypothetical protein	030299	35 26	Yes^g	
Rv2027c	413	Conserved hypothetical protein	050705	35 26	Yes^g	
Rv2028c	120	Hypothetical protein	050713	35 26	Yes^g	

^a Number of aa size (gene).
^b Name/description.
^c Batch number.
^d Previously published.
^e DosR regulon-encoded antigens.
^f Classical TB antigens.

Continued on following page
TABLE 2—Continued

Antigen name	aa size (gene)	Name/description	Batch no.	No. tested \(\text{MAK} \text{MRC} \text{SUN}^\text{a} \text{Total}	Previously published
Rv2629	374	Conserved hypothetrical protein	050417	26 26 18 71	No
Rv2630	179	Hypothetical protein	050701	26 26 18 71	No
Rv2631	432	Conserved hypothetrical protein	050510	26 26 18 71	No
Rv3126c	104	Hypothetical protein	030304	26 26 18 71	Yes*
Rv3127	344	Conserved hypothetrical protein	030231	26 26 18 71	Yes*
Rv3132c	337	Conserved hypothetrical protein	050502	26 26 18 71	No
Rv3134c	110	Conserved hypothetrical protein	030129	26 26 18 71	Yes*
Rv3136c	463	Conserved hypothetrical protein	030706	26 26 18 71	Yes*
Rv3143c	332	Conserved hypothetrical protein	021003	26 26 18 71	Yes*
Rv3146c	578 (devS)	Two-component sensor histidine kinase	030612	35 26 19A 80	Yes*
Rv3313c	217 (dosR)	Two-component transcriptional regulatory protein	030404	35 26 19A 80	Yes*
Rv3145c	268	Conserved hypothetrical protein	041208	35 26 19A 80	Yes*

\(\text{aa, amino acid.} \quad \text{b C-term, C-terminal; N-term, N-terminal.} \quad \text{c MAK, Uganda; MRC, The Gambia; SUN, South Africa.} \quad \text{d The Ag85A and Ag85B protein antigens were combined for screening to create a single stimulatory condition, with each protein being tested at a final concentration of 10 \(\mu\text{g/ml.} \quad \text{e For DosR regulon-encoded antigens, bold type indicates where proteins were expressed in two parts due to size constraints.} \quad \text{f “A” indicates the first group and “B” the second group of 19 subjects (each) tested at SUN.} \quad \text{g See reference 18.} \)

The observed differences in ELISA sensitivity. These observations give hope for the inclusion of antigens such as these in future vaccines and immunologic biomarker assays. Moreover, they also provide a rational basis for identifying relevant epitopes targeted by the immune system that may achieve protection against TB (10, 21). Rv1733c, Rv1735c, and Rv1737c were ranked in the top 10 most frequently recognized antigens across all three African countries. IFN-\(\gamma\) responses to Rv1735c and Rv1737c were highly correlated in Uganda and South Africa and positively correlated in The Gambia. A strong association was also observed between Rv1733c and Rv1735c and between Rv1733c and Rv1737c in The Gambia. However, due to the study design, these pairwise comparisons were not available for Uganda or South Africa. The genes encoding these three proteins share close chromosomal proximity (35), and our findings indicate that they might constitute an “immunogenicity island.” In this study, correlations were not strong enough to conclude that one antigen could provide as much information as a pair or a cluster of antigens. If further larger studies indicate strong associations in responsiveness to Rv1733c, Rv1735c, and Rv1737c or the same pattern is found for other potential “immunogenicity islands,” then the information obtained from one protein could be representative of multiple antigens. Such subselection of proteins may eliminate redundancy and maximize efficiency in future vaccine trials, although the impact of excluding potentially useful antigens would need careful investigation.

Rv1736c (C-terminal) (narx) and Rv1737c (narK2) ranked among the top 10 most frequently recognized antigens in Uganda and South Africa. It has been reported (13) that these two genes are not expressed by BCG vaccine strains, although they are present in BCG’s genome(s), suggesting that responses induced by these two antigens may be \(M.\) \(\text{tuberculosis}\)-specific and that they could be of potential interest as immunodiagnostic reagents. However, in our study we did not observe significant correlations between either Rv1736c C-term or Rv1737c and any of the classical TB-specific antigens tested.

In contrast, prominent differences in antigen recognition, such as the case of Rv3131, highlight the importance of including a well-defined set of antigens when investigating anti-TB immunity in populations from geographically distinct locations. The observed differences may be human population related (host genetic, including HLA) (12, 20) and/or \(M.\) \(\text{tuberculosis}\) lineage related (pathogen genetic) (7). During hypoxia, \(M.\) \(\text{tuberculosis}\) upregulates the expression of the 16-kDa protein (\(\alpha\)-crystallin, Rv2031c, HspX) (39), which has been shown in other studies to induce both CD4+ and CD8+ T-cell responses in latently infected individuals (3, 9, 37). The lack of recognition of this antigen in any of the three TB-endemic populations studied here might be related to the dormant state of the bacilli in its resting form. The conditions that \(M.\) \(\text{tuberculosis}\) is exposed to while residing in human hosts may not fully reflect those encountered under hypoxia in vitro. Of note, an earlier study also showed that Rv2031c was less potently recognized than other DosR regulon-encoded antigens, although it was highly antigenic in \(M.\) \(\text{tuberculosis}\)-stimulated short-term T-cell lines (18). Alternatively, the Rv2031c antigen might activate non-IFN-\(\gamma\)-producing cells, such as Th17 or Treg cells, which would not be detected in our current study design (14). This issue will be addressed in future studies, in which we will test multiple cytokines in response to DosR regulon-encoded antigens.

It is possible that immune recognition of the antigens tested here is partially primed by exposure to or infection with microorganisms or mycobacteria other than \(M.\) \(\text{tuberculosis}\) (1, 6). It has been shown that Rv1733c also induces responses in T cells from \(M.\) \(\text{tuberculosis}\)-unexposed but PPD-responsive persons (18; M. Y. Lin and T. H. M. Ottenhoff, submitted). Further studies will be needed to elucidate the impact of antigenic cross-reactivity in the immune recognition of the DosR regulon-encoded antigens. A recent study by Rustad et al. (27)
suggested that the extended in vitro response of *M. tuberculosis* to hypoxia presumably involves additional genes next to the DosR regulon, and this enduring hypoxic response regulon was shown to involve more than 200 genes. These findings suggest that so-called latency antigens additional to those described to involve more than 200 genes. These findings suggest that so-called latency antigens additional to those described here may become available for immunogenicity screening in human populations. The procedures used for the whole-blood and ELISA assays have undergone further harmonization, which will add strength to future data emerging from this work.

By studying genetically and geographically diverse human populations and different *M. tuberculosis* lineages, it will be possible to capture potential correlates of protection in the context of various genetic backgrounds of host and *M. tuberculosis* populations. Such insights will allow us to define immune correlates and host markers of disease that can predict whether or not new TB vaccines will be effective and facilitate the iterative process of optimization during clinical vaccine trials (15).

ACKNOWLEDGMENTS

This research is supported by the Bill and Melinda Gates Foundation through Grand Challenges in Global Health (GCGH), grant no. 37772.

We have no conflict of interest to declare.

We acknowledge the invaluable contribution to this study made by Sarah Salwango, Pierre Peters, Joy Baseke, Keith Chervenak, Ifedayo Adetifa, Simon Donkor, Jayne Sutherland, Martin Antonio, Susan van Zyl, Danie Bester, Esmé Paulsen, and Hawa Golakai, as well as the medical officers, health visitors, data, and other laboratory personnel of the Uganda-Case Western Reserve University Research Collaboration in Kampala, Uganda, The Faculty of Health Sciences, Stellenbosch University, Cape Town, and The MRC Laboratories in the Gambia. We are indebted to all the study participants at the African field sites for their contributions.

The principal investigator of the GCGH Biomarkers for TB Consortium is Stefan H. E. Kaufmann, and the coordinator is Shreemanta Parida, both at the Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany. The consortium consists of 15 partner institutions, including 7 from Africa, 5 from Europe and 3 from the United States, represented by the following members: Gerhard Walzl, Gillian Black, Kim Stanley, Andre Loxton, Hawa Golakai, Neltia Du Plessis, and Gian van der Spuy of Stellenbosch University, Tygerberg, South Africa; Martin Ota, Ifedayo Adetifa, Jayne Sutherland, and Richard Adegbola of MRC Labs, The Gambia; Henry Boom, Keith

TABLE 3. IFN-γ responses to the 10 most immunogenic antigens in Uganda, The Gambia, and South Africa

Antigen name	Geometric mean	Median	P25b	P75c	% Respondersd	Rankd										
	MAK	MRC	SUN													
Rv0081	136	27	15	128	21	10	43	0	0	369	92	36	70	16	26	
Rv0569	54	45	12	45	12	45	45	45	45	267	45	45	45	45	45	
Rv0573	23	8	0	0	0	0	0	0	0	0	0	0	0	0	0	
Rv1733c	236	41	24	501	46	14	69	0	0	1045	159	71	79	24	47	2
Rv1735e	93	18	22	145	10	0	21	0	0	297	72	159	61	16	42	3
Rv1736e-C	38	16	32	0	7	0	123	0	0	38	38	38	38	38	38	38
Rv1737e-C	66	22	96	14	11	0	329	0	0	84	50	37	4	37	4	3
Rv1997-C	32	12	20	0	0	0	135	12	35	21	8	7	21	8	7	7
Rv1998	26	25	0	0	0	0	104	0	0	104	104	104	104	104	104	
Rv2006	30	17	22	12	12	10	0	78	116	29	31	13	22	9	6	6
Rv2028e	27	26	0	0	0	0	120	12	17	17	17	17	17	17	17	17
Rv2029e	43	40	4	0	4	0	162	162	162	162	162	162	162	162	162	162
Rv2032	44	59	10	10	10	10	101	101	101	101	101	101	101	101	101	101
Rv2625c	27	24	0	0	0	0	138	138	138	138	138	138	138	138	138	138
Rv2626c	23	16	0	0	0	0	107	107	107	107	107	107	107	107	107	107
Rv2628c	26	4	0	0	0	0	26	26	26	26	26	26	26	26	26	26
Rv2629c	17	15	0	0	0	0	17	17	17	17	17	17	17	17	17	17
Rv3129	48	65	6	6	6	6	207	207	207	207	207	207	207	207	207	207
Rv3131	97	38	7	7	7	7	7	7	7	7	7	7	7	7	7	7

a Data are shown for the 19 DosR regulon-encoded antigens that represent the 10 most immunogenic antigens at each African site. The order of antigens is the same as that shown in Fig. 2. MAK, Uganda; MRC, The Gambia; SUN, South Africa.

b P25, 25th percentile.

c P75, 75th percentile.

d Percent responders was calculated based on the site-specific cutoffs for a positive response as shown in Table S1 in the supplemental material.

For each site, data are not shown (—) for antigens that did not rank in the top 10.
REFERENCES

1. Black, G., H. Dockrell, A. Crampin, S. Floyd, R. Weir, L. Bliss, L. Sichiali, L. Mwaungulu, C. J. Watt, N. Walker, D. Maher, B. G. Williams, M. C. Fletcher, P. Owiafe, P. C. Hill, R. Brookes, G. Rook, A. Zumla, S. M. Arend, R. Hammond, A. S., M. R. Klein, T. Corrah, A. Fox, A. Jaye, K. P. McAdam, G. Black, G., P. Fine, D. Warndorff, S. Floyd, R. Weir, J. Blackwell, L. Bliss, L. Voskuil. 2014. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy region of Mycobacterium tuberculosis. Microbes Infect. 16:979–980.

2. LaValni, A., A. K. Millington. 2008. T cells and tuberculosis: beyond interferon-gamma. J. Infect. Dis. 197:941–943.

3. Leyten, E. M. S., M. Y. Lin, K. L. M. C. Franken, A. H. Friggren, C. Prins, K. L. M. I. Van Meijgaarden, M. I. Voskuil, K. Vellinga, P. Andersen, G. K. Schoolnik, S. M. Arend, T. H. M. Ottenhoff, and M. R. Klein. 2006. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy region of Mycobacterium tuberculosis. Microbes Infect. 8:2052–2060.

4. Lin, M. Y., A. Geluk, S. G. Smith, A. L. Stewart, A. H. Friggren, K. L. M. C. Franken, M. J. C. Verduyn, K. L. M. Van Meijgaarden, M. I. Voskuil, H. M. Dockrell, K. Huygen, T. H. M. Ottenhoff, and M. R. Klein. 2007. Lack of immune responses to Mycobacterium tuberculosis DstR regulon proteins following Mycobacterium bovis BCG vaccination. Infect. Immun. 75:3523–3530.

5. Rojas, R. E., K. A. Chervenak, J. Thomas, J. Morrow, N. Nuttall, S. Zalwang, R. D. Mugerwa, R. A. Thiel, C. C. Whalen, and W. H. Boom. 2005. V desirable b 65-kd heat shock protein of Mycobacterium bovis bacillus Calmette-Guerin/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J. Exp. Med. 196:1947–1952.

6. Parrish, N. M., J. D. Dick, and W. R. Bishai. 1998. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 6:107–112.

7. Moise, L., J. J. McMurray, D. S. Rivera, E. J. Carter, J. Lee, H. Kornfeld, W. D. Martin, and A. S. De Groo. 2007. Progress towards a genome-derived, epitope-driven vaccine for latent TB infection. Med. Health R. I. 9:1901–303.

8. Ottenhoff, T. H. M. 2009. Overcoming the global crisis: “Yes, we can,” but also: “No, we cannot!” Eur. J. Immunol. in press.

9. Ottenhoff, T. H., B. R. Ab, J. D. Van Embden, J. E. Thole, and R. Kiessling. 2009. The recombinant 65-kd heat shock protein of Mycobacterium bovis bacillus Calmette-Guerin/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J. Exp. Med. 196:1947–1952.

10. Rustad, T. R., M. I. Harrell, R. Liao, and D. R. Sherman. 2008. The enduring response of Mycobacterium tuberculosis. PLoS ONE 3:e1502.

11. Sander, C., and H. McShane. 2007. Translational mini-review series on vaccines: development and evaluation of improved vaccines against tuberculosis. Clin. Exp. Immunol. 147:601–611.

12. Schnappinger, D., S. Ehrnt, M. I. Voskuil, Y. Liu, J. A. Mangan, I. M. Monahan, G. Dolganov, B. Efren, P. D. Butcher, C. Nathan, and G. K. Schoolnik. 2005. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198:693–704.

13. Schuck, S. D., H. Mueller, F. Kunitz, A. Neher, H. Hoffmann, K. L. C. Franken, D. Repsilber, T. H. M. Ottenhoff, S. H. E. Kaufmann, and M. Jacobsen. 2009. T cell responses against subdominant antigens indicate latent Mycobacterium tuberculosis infection. PLoS ONE 4:e5590.

14. Sherman, D. R., M. Voskuil, D. Schnappinger, R. Liao, M. I. Harrell, and G. K. Schoolnik. 2001. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc. Natl. Acad. Sci. USA 98:7534–7539.

15. Skjøt, R. L., T. Oettinger, I. Rosenkrands, P. Ravn, I. Brock, S. Jacobsen, and L. Bornman. 2007. The enduring response gene encoding alpha-crystallin. Proc. Natl. Acad. Sci. USA 98:7534–7539.

16. Slavkin, A. V. Hill, and H. M. Dockrell. 2000. Human CD8+ CTL specific for the mycobacterial major secreted antigen 85A. J. Immunol. 165:7088–7094.

17. Timm, J. F., A. F. Post, L. Bekker, G. B. Balter, H. C. Wainwright, R. Manganelli, W. Chan, L. Tsenova, B. Gold, I. Smith, G. Kaplan, and J. D. McKinney. 2003. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc. Natl. Acad. Sci. USA 100:14321–14326.

18. Voskuil, M. I., D. Schnappinger, K. C. Visconti, M. I. Harrell, G. M. Dolganov, D. R. Sherman, and G. K. Schoolnik. 2003. Inhibition of respiration...
by nitric oxide induces a *Mycobacterium tuberculosis* dormancy program. J. Exp. Med. 198:705–713.

36. Wilkinson, K. A., G. R. Stewart, S. M. Newton, H. M. Vordermeier, J. R. Wain, H. N. Murphy, K. Horner, D. R. Young, and R. J. Wilkinson. 2005. Infection biology of a novel alpha-crystallin of *Mycobacterium tuberculosis*: acr2. J. Immunol. 174:4237–4243.

37. Wilkinson, R. J., K. A. Wilkinson, K. A. De Smet, K. Haslov, G. Pasvol, M. Singh, I. Svarcova, and J. Ivanyi. 1998. Human T- and B-cell reactivity to the 16kDa alpha-crystallin protein of *Mycobacterium tuberculosis*. Scand. J. Immunol. 48:403–409.

38. World Health Organization. 2008. Global tuberculosis control—surveillance, planning, financing. World Health Organization, Geneva, Switzerland.

39. Yuan, Y., D. D. Crane, and C. E. Barry III. 1996. Stationary phase-associated protein expression in *Mycobacterium tuberculosis*: function of the mycobacterial alpha-crystallin homolog. J. Bacteriol. 178:4484–4492.