Estimation and Analysis of Costs for Electrical Power Transmission Lines in Iraqi Projects

Wadhah A. Hatem¹, Kadhim R. Erzaij²
¹Baquba Technical Institute, Middle Technical University, Baghdad, Iraq
²College of Engineering, University of Baghdad, Baghdad, Iraq
Email: kadhim1969@yahoo.com, wadhah1970wadhah@gmail.com,

Abstract: With the increased demand for energy and lack of organised strategies in the generation sector, the challenges in this sector in Iraq still negatively affect macro-economic aspects. It is necessary to support the infrastructure of the electrical industry to cover any rising energy demands and the required related transfer process to reliably meet consumer demands. In this paper, the cost of energy-line transfer elements was considered with the aim to optimise the cost of capital. As the majority of economic energy studies have found, power transmission lines that use project management methodologies and scientific predictions for cost achieved reasonable financial savings in capital costs. Improving the process of designing and planning electrical power transmission lines is a complex issue due to diverse factors affecting the established costs. The primary goal of this study is to prepare a cost model of electrical Iraqi projects, including the local required factors related to the implementation costs based on the intensive review of the design areas of power transmission lines and the challenges of erecting and operating these lines. The possible steps and computation model are established to overcome the calculation challenges, where procedures are suitable to the terrain and the local requirements for economic transportation lines.

1. Introduction

Transmission lines in the energy sector play a vital role in efficient and stable energy delivery of power in the transmission network. One of the most important reasons for not benefiting from electric power generation is the delay in establishing power transmission lines. Accordingly, transportation lines must be planned and implemented simultaneously with the generation sector, which ensures the rational use of the substantial required capital. The aim is to provide transportation lines with minimal capital to gain the greatest possible economic efficiency.

Most electricity forecasting refers to the expected global increase in demand based on the assumption of an annual growth rate of 2.4%. In developing countries, this rate is likely to increase to over 4% annually, globally increasing the demand for electric power to an estimated 43% by 2030 [1]. The increase in energy demand requires considerable financial capital to develop energy infrastructure. To keep pace with the growth in energy demand, the amount of capital investment in the developing energy infrastructure is estimated at $11 trillion globally and $5 trillion for developing countries. The average annual investment rate is expected to increase from $450 billion to $630 billion [2].

The design of the power transmission line depends on the identification and appropriate selection of data and parameters because these are very complex aspects. These parameters consist of complex interactions that directly affect the total cost of the transmission-line system. This paper aims to
address issues related to optimal economic planning for establishing power transmission lines with a detailed review of all aspects related to planning, design, modelling, and economic analysis.

2. Literature Review

The following table comprises the most relevant studies on cost estimating, design, transportation losses, and so on.

Table 1. Previous studies of transportation lines

Authors	Contributions
Adam et al. [3]	Discussed the features of design and construction of overhead lines above 132 kV, envisaging the importance of load and strength assessment using statistical means to define the reliability of the system. Important aspects are discussed in detail concerning transmission-line construction via loadings, conductor properties, insulators, insulation levels, tower structures, tower foundations, construction methods depending on terrain, and problems encountered during the design and construction stages.
Orawski [4]	Presented design considerations with various design parameters and construction aspects of overhead transmission-line engineering. The need to calculate the present-day worth of different solutions that consider the cost of the losses and capital invested was emphasised. The conclusions from the study indicate that, according to the CIGRE WG22 report, future changes in design would be based on static and dynamic conductor ratings, meteorological data for system operation, effective use of right of way (ROW), government policies, assessment of the condition and expectancy of aged lines, component diagnostics, and diagnostic techniques.
Peyrot et al. [5]	Developed an integrated computerised model, providing three-dimensional access to the entire line and its ROW. The model provides a complete illustration of the topography under the line, cables, insulators, and structures in all spans. The objective of the integrated and interactive environment for the given topographic data in electronic form is to enable the designer to perform the complete line engineering and acquire all the requisite documents for its construction.
Picard et al. [6]	Developed a knowledge-based system consisting of a record of tower configurations and allied parameters to assess transmission-line costs for various alternating current (AC) voltage levels subjected to environmental constraints.
Ilić et al. [7]	Presented a survey article defining and evaluating transmission capacity, providing economic incentives and the means of increasing the incentives in the changing electric power industry.
Sabharwal [8]	Proposed a procedure incorporating transmission and distribution costs in the electricity supply cost to the rural load centres, which includes the capacity and operating costs of generation, transmission, and distribution.
Fenton & Sutherland [9]	Presented a methodology for the optimum design of transmission lines, considering the uncertainties in both environmental loads and structural resistance to achieve acceptable reliability at a reasonable cost.
Hanson et al. [10]	Presented relative advantages and disadvantages as well as cost comparisons for upgrading existing transmission lines. The case study of four transmission-line projects that were upgraded with an increase in the number of conductors, conductor size, and voltage level with modifications in the tower structure showed that the lines were upgraded successfully with satisfactory performance.
at 50% to 60% of the cost of the new transmission lines.

Mooney [11] Developed a technique to economically justify transmission-line transposition. The technique is based on cost comparisons of the transposition towers and line losses for a transposed and un-transposed line over the useful life of the line. Procedures for computing three-phase line losses under unbalanced conditions and the net present value of the line losses were presented.

3. Methodology
In this paper, a mathematical model is presented to calculate the capital costs for electrical projects concerning the features of power transmission lines and transportation infrastructure. This was done by calculating the specific costs of transportation equipment and expected costs of the right of passage to the land. Then, the costs were calculated and adjusted to determine the costs of developing the model according to the terrain of the different regions with adjustments to factors that include the type of terrain and other factors.

3.1. Transmission-Line Construction
Transmission-line construction is an arduous and complex task that requires considerable effort in the development of a coordinated plan to implement power transmission lines, which include many individual tower sites at a time. The methodology of constructing the line differs from other construction methodologies, but the changes from site to site according to the terrain and conditions surrounding it should also be considered. Effective planning and management of electrical projects are critical in developing and achieving the required quality and in maximising the economic benefits with the environmental requirements, which reduces environmental damage. Figure 1 shows the flowchart of the transmission-line construction steps.

The establishment of energy transmission lines requires considerable capital because several factors are involved in establishing these lines, including technical, geographical, organisational, and other factors. In addition to the degree of reliability and security stability, which have a key role in increasing the total cost, additional factors include the right of way (ROW) and cost of the land, which varies from one transmission line to another according to the type of land, its owners, its geographical location, the market, labour and material costs, and economic standards. This variation leads to a high level of uncertainty in estimating the cost of capital required to construct the transmission lines [12].

Usually, power transmission lines take a long time to establish due to many regulatory issues, including environmental impact studies, the participation of the project owner, and the justification and treatment of various other factors that include licences and approvals that are required by institutions and regulatory agencies to implement transmission-line construction. The restrictions imposed by the regulatory agencies differ from country to country according to the regional geographic and environmental standards, but most of these countries deal with common advantages in obtaining these approvals and licences [13,14].

1. Feasibility studies, approval and statutory clearances
2. Surveying, trail-pit marking, profiling
3. Building access roads, clearing, and right of way
4. Pit making, excavation, construction of foundations
5. Stub setting, tower erection
6. Stringing of conductor and earth wire
7. Residue work, inspection and commissioning of lines

Figure 1. Transmission-line construction steps.
3.2. Capital Costs of the Electrical Transmission Line

Generally, the capital cost of electrical transmission consists of three main elements. Moreover, each element can be branched to sub-elements as illustrated in Figure 2.

Figure 2. Elements of capital costs of the electrical transmission line.

3.2.1. Cost indices

Many cost indicators reflect the annual price and cost developments for electrical projects. The consumer price index (CPI) is the most important cost indicator for electric utilities. In the United
In the United States, the Handy-Whitman Electric Utility Index includes transportation lines. The importance of the Handy-Whitman Electric Utility Index is due to the following factors:

- It accurately reflects the electrical industry and all its components (generation, transmission, transfer stations, etc.).
- It has been in use since 1912 to allow the extraction of indicators of annual cost increases.
- The primary authorities accredited in the electricity industry, the most important of which are the US Department of Energy and the Electricity Regulatory Authority, have approved this index.
- The index includes increases in the prices of labour, materials, land, equipment, and so on.

Regarding the Handy-Whitman indicator for transmission lines, the evolution of increases in the costs of transmission-line projects during the period from 1968 to 2012 is shown in Figure 3. In addition, Table 2 and Figures 4, 5, and 6 explain several aspects of the Iraqi electrical transmission lines.

![Figure 3. Increases in costs of transmission-line projects over time by index.](image)

In Figure 4, the Handy-Whitman Index for overhead line connectors displays the information for antenna connectors and towers.

![Figure 4. Handy-Whitman Index for overhead line connectors.](image)
Figure 5. Number of transmission lines in Iraq.

Figure 6. Total line length in Iraq.

Table 2. Transmission lines in Iraq

Year	Voltage (KV)	Number of transmission lines	Total line length (KM)
2010	132	388	12608
	400	48	4353
2011	132	391	12073
	400	48	4356
2012	132	418	12870
	400	48	4458
2013	132	502	13358
	400	53	5716
2014	132	451	13295
	400	59	4593
2015	132	461	13187
	400	63	4945
2016	132	923	23088
	400	70	6271
2017	132	495	11882
	400	61	5505
2018	132	425	11567
	400	65	4306
3.3 First: Materials and costs

3.3.1. Tower costs

The cost of towers is related to the price of steel and the specification type of tower formation. It also depends on tower height. Table 3 and Figure 7 show the material costs and prices for the supply of towers for the voltage of 132 kV (for double circuit) and 400 kV (for single circuit; prices are without installation).

Table 3. Tower costs for 132 kV and 400 kV

No	Voltage (kV)	Tower weight (kg)	Tower type	Price in Iraq $/unit	Price in USD/unit
1	132	6402	Suspension tower 2S2 +3	9285	27700
		14400	Tension strength 2T2 +3	21655	83100
		16777	Terminal tower 2E2 +3	25230	48474
		9220	Suspension tower XA (+6+0)	14580	31850
3	400	19154	Tension strength XC (+6+0)	28685	95550
		24447	Terminal tower XD (+6+0)	38030	55736

Figure 7. Costs of materials for towers.

3.3.2. Other item costs

The following figures display prices for supplies, which include connectors, accessories, and other add-ons (e.g. earth, insulators, floor cables, and spacers) for a voltage of 132 kV for a double circuit and 400 kV for a single circuit (prices are without installation). Conductor costs depend on the price of aluminium because most of the connections are made of aluminium. Figure 8 shows the difference in the price of conductors in Iraq and the United States by voltage type.

Figure 9 illustrates the difference in the price of the land in Iraq and in the US according to voltage type. The price of land depends on the price of wire and the voltage type because the type of wire differs according to the voltage type. The voltage type with 132 kV contains only OPGW, whereas the voltage of 400 kV contains OPGW in addition to working.

Insulator prices vary according to voltage and tower type (i.e., suspended or tension) and the load strength of the cable. Figure 10 shows the difference in the price of the insulators in Iraq and the US according to the type of voltage and load strength.
Figure 8. Conductor costs.

Figure 9. Ground costs.

Figure 10. Insulator costs.
3.4. Second: Installation Costs

3.4.1. Tower installation costs

Tower installation costs generally constitute 15% to 30% of the total cost. The cost of installing 1 kg of a tower is estimated at one dollar as illustrated in Table 4.

Table 4. Installing towers costs

No.	Voltage (KV)	Tower weight (kg)	Tower type	Assembling	Installation	Price in Iraq $/unit	Price in USD/u nit
1	132	6402	Suspension tower 2S2 +3	1458	1042	2500	3661
		14400	Tension strength 2T2 +3	3125	1458	4583	10983
		16777	Terminal tower 2E2 +3	3333	1667	5000	6408
		26230	2SP2	4167	2500	6667	NA
		15132	2R2	3333	2500	5833	NA
		14189	2K2	2083	1250	3333	NA
2	400	9220	Suspension towerXA (+6+0)	2083	1042	3125	4550
		16006	XB (+0,+6)	2917	1250	4167	NA
			XB (+12,+18)	5000	6667	11667	NA
			XB (+24,+30,+36)	6667	10000	16667	NA
		19154	Tension strength XC (+6+0)	3333	1459	4792	13650
			Terminal tower XD (+6+0)	3750	1667	5417	7962
		24447	XE	3750	1667	5417	NA
		20100					

3.4.2. Other item installation (conductor stringing costs)

The conductor cost is directly related to its size. The per-kilometre conductor cost in terms of the design variables can be computed by obtaining the relation between the conductor weight and diameter [15] [16]. Table 5 and Figure 11 show conductor stringing costs.

Table 5. Conductor stringing costs

Conductor stringing	Voltage	Cost $/km
Acts as a connecting line using phase wires with OPGW & DORKING including transferring materials from the project site to work site, laying wires, hanging pulleys and insulators, installing all attachments, returning rollers and wire scraps to the project site. This includes the price of machinery, tools, workers, and space.	132 kV	6667
	400 kV	5000

Figure 11. Conductor stringing cost.
3.5. Third: Other Costs

Civil engineering costs include preparing the ground for the line and foundations. Table 6 and Figures 12, 13, 14, 15, and 16 explain many aspects of the electrical project costs, such as the excavation costs, painting by bitumen and filling costs, reinforcement costs, template work costs, and concrete costs.

Table 6. Other installation costs

Tower type	Excavation with ground-water withdrawal $/m³	Painting by bitumen, filling, and compaction with tower site levelling $/m³	Template work $/tower	Reinforcement $/tons	Concrete $/m³
132 kV					
2S2	4.2	4.6	437.5	1042	139
2T2	4.2	1.5	604	1083	140
2E2	4.2	1.3	625	1083	140
2SP2	4.2	1.3	667	1083	140
2R2	4.2	2.7	646	1083	140
2K2	2.2	1.8	562.5	1083	139
XA	4.2	6.4	437.5	1042	139
XB	4.2	3.5	521	1083	139
XB (high)	4.2	2.4	792	1083	141
400 kV					
XB	4.2	2.4	792	1083	141
XC	4.2	2.6	646	1083	141
XD	4.2	1.9	667	1083	141
XE	4.2	3.8	646	1083	138
Tower in the US	6	2	60	2800	182

Figure 12. Excavation cost.

Figure 13. Painting by bitumen and filling costs.
3.6. Mathematical Model Method

These models were developed based on studies using technical, financial, and economic information about transmission lines created with the aim of developing a model to link the basic costs (per unit of length) and other elements of capital costs. Line costs were studied and analysed for varying voltages, single or dual circuits, and AC or DC. Multiple options are analysed regarding tower type, connectors, and line lengths. Furthermore, the construction of new connection (or re-conductor) lines was considered. The study and analysis of different line locations were also considered.

The following criteria were considered from the capital cost perspective:

1. Voltage class
 - AC - 132 kV and 400 kV (single and double circuit)
2. Line characteristics
 - Conductor type
 - Pole structure
 - Length of line
3. New construction or re-conductor
4. Terrain type
5. Location

The foundations for deriving the mathematical model for two lines with the coefficients for different variables [17] are shown below.

3.6.1. First: Baseline transmission cost

Table 7. Available costs approved for lines

Line no.	Line description	Supply cost $/km	Implementation cost $/km	Total basic capital costs $/km
L1	132 KV double circuit	94755	141878	236633
L2	400 KV single circuit	94755	141878	236633

3.6.2. Second: Developing parameters for conductors

Based on the basic costs in fourth, transactions were entered to consider the changing conductors and changing line costs as shown in Table 8.

Table 8. Changing line costs

Connector Type	L1	L2
ACSR	1	1
ACSS	1.08	1.08

3.6.3. Third: Tower structure transactions

Cost-change coefficients were entered when the tower structure changed, as shown in Table 9.

Table 9. Cost-change coefficients

Connector Type	L1	L2
Lattice	0.9	0.9
Tubular Steel	1	1

3.6.4. Fourth: Coefficients of the change in total line length

Whenever the line length increases, the average cost per kilometre is reduced (Table 10).

Table 10. Coefficients of the total length change

Length	L1	L2
Longer than 15 km	1	1
3–15 km	1.2	1.2
Less than 3 km	1.5	1.5

3.6.5. Fifth: Line development transactions instead of creating a new line (re-conductor)

The line developing concept is to replace the connectors of the existing old line instead of creating a new line to increase the capacity (this means not changing towers and insulators). The methods, assumptions, and costs of developing an existing and operating line are shown in Table 11.
Table 11. Costs of developing existing and operating lines

No.	Conductor voltage	Conductor no.	Costs
1	132 KV	+ 2 conductors per phase	+ conductor cost is (55%) of total capital cost
2	400KV	+ 3 conductors per phase	+ conductor cost is (55%) of total capital cost

3.6.6. Sixth: Terrain coefficients
The least expensive areas in terms of development costs are flat areas, and the most expensive are critical areas (forested). Table 12 shows the coefficients of the adjusted cost factor for five regions in Iraq.

Table 12. Coefficients of adjusted cost factor for regions

No.	Area Type	Zone 1	Zone 2
1	Desert	1	1
2	Flat	1	1
3	Farmland	1.1	1.1
4	Forested	1.15	1.15
5	Gradient hills, rolling hills	1.25	1.25
6	Wetlands	1.25	1.25

3.6.7. Seven: Right of way (ROW) costs
This aspect covers land acquisition costs in which the ROW line will be built if purchased. The cost of land may reach 4% of the total line cost, which includes implant compensation and agricultural crops and trees. It is necessary to derive transactions for the right of traffic (line forbidden), technical information about the width of the land for each effort (the required area can be calculated), and the purchase price of the land (dollars per square metre) in the line area, and the path information is required.

3.6.8. Eighth: Mathematical model
Considering the information and data shown above, the mathematical model developed for use in Iraq is as follows:

\[
TLC = [(BTC) \times (CC) \times (SC) \times (ReC) \times (TC) \times Number of kilometres] + [ROWC \times Number of kilometres],
\]

\[
ROWC = (ROW \frac{acre}{kilometre}) \times (land cost/acre),
\]

where

- \(TLC \) = Transmission-line cost
- \(BTC \) = Base transmission cost
- \(CC \) = Conductor coefficient
- \(SC \) = Structure coefficient
- \(ReC \) = Re-conductor coefficient
- \(TC \) = Terrain coefficient
- \(ROWC \) = Right of way cost
Table 13. Summary of cost estimates for each kilometre and the coefficients according to variables

Cost category	132 kV double	400 kV single
Base cost $/km	236633	236633
Conductors		
ACSR	1	1
ACSS	1.08	1.08
Complications		
Lattice tubular steel	1	1
Line length		
Longer than 15 km	1	1
3–15 km	1.2	1.2
Less than 3 km	1.5	1.5
Line lifetime		
New	1	1
Line development Re-conductor	0.55	0.55
Project area terrain		
Desert	1	1
Flat	1	1
Farmland	1.1	1.1
Heavy farmland	1.15	1.15
Slope hills 2%-8%	1.15	1.15
Mountains over 8% slope	1.25	1.25
Wetlands	1.25	1.25

4. Conclusion
The results reflect the adequacy and success of applying the estimation producer supported by the equations to determine and predict the estimated costs of constructing several electrical transmission lines. The conclusion is summarised as follows:

- The mathematical model assists decision-makers in determining the costs of establishing electric power transmission lines and implementing future projects.
- Research and development in transmission projects promotes the economic development of Iraq’s electric power and energy industry.

References
[1] Electricity Market Trends, 2014. [Online]. Available: http://www.iaea.org/Publications/Magazines/Bulletin/Bull461/power_to_the_people.html#electricity.
[2] P. sector investment Needs, 2014. [Online]. Available: http://www.iaea.org/Publications/Magazines/Bulletin/Bull461/power_to_the_people.html#electricity.
[3] J.F. Adam, J. Bradbury, W.R. Charman, G. Oranski, M.J. Vanner, 1984 Overhead lines – some aspects of design and construction, Proc. IEEE Gener. Transm. Distrib., 131(5), pp. 149–87.
[4] G. Oranski, 1993 Overhead lines-the state of the art, Power Eng. Journal, 7, doi:10.1049/pe:19930057.
[5] A.H. Peyrot, E.M. Peyrot, T. Carton, 1993 Computer-aided design of transmission lines, Eng. Struct., 15(4), pp. 229–237.
[6] B. Picard, 1999 A knowledge-based system for the structural design of high-voltage lines 1 introduction, pp. 1229–1233.
[7] M. Ilić, F. Galiana, L. Fink, A. Bose, P. Mallet, H. Othman, 1998 Transmission capacity in
power networks, p. 2179.

[8] S. Sabharwal, 1990 Rural electrification cost including transmission and distribution losses and investments, *IEEE Trans. Energy Convers.*, 5(3), pp. 493–500.

[9] G.A. Fenton, N. Sutherland, 2009 Reliability-based transmission line design, *IEEE Trans. Power Deliv.*, 26(2), doi:10.1109/TPWRD.2009.2036625.

[10] J.G. Hanson, 1991 Upgrading transmission lines, *IEEE Power Eng. Soc. Transm. Distrib. Conf.*, pp. 824–827. doi:10.1109/TDC.1991.169599.

[11] J.B. Mooney, 2011 Economic analysis and justification for transmission line transposition, *IEEE PES T&D*. doi:10.1109/TDC.2010.5484296, 2010.

[12] ‘Technical and Economic characteristics of HVAC and HVDC transmissions with overhead lines’, 1997.

[13] C. SC22WG14, Environmental concerns, procedures, impacts and mitigations’, *CIGRE SC22 WG14. Paris*.

[14] C. Management, I. Pandemic, H. Referral, G. Management, G. Investigations, and S. Appendices, ‘Chapter 9 Table of Contents 9’, Heal. San Fr., no. November, p. 43, 2008.

[15] D.A. Douglass, Economic measures of bare overhead conductor characteristics, *IEEE Trans. Power Deliv.*, 3(2).

[16] I.S. Grant, V.J. Longo, ‘Campany 77’, no. 9, 1981.

[17] R. Pletka, J. Khangura, A. Rawlins, E. Waldren, D. Wilson, 2014 Capital costs for transmission and substations, *West. Electr. Coord. Councl.*, February, p. 35.