Sacred Alters: The Effects of Ego Network Structure on Religious and Political Beliefs

Matthew Facciani and Matthew E. Brashears

Abstract
Does who we know impact how strongly we believe? The claim seems reasonable, but research linking social network composition to political beliefs has produced conflicting results. We argue that methodological differences in measuring close ties can explain these inconsistencies and that work on the sacred umbrella provides a useful framework for moving forward. The sacred umbrella argues that when people close to you share your religious beliefs, you are shielded from doubt and uncertainty; perhaps the same mechanism also operates for political views. Using General Social Survey data, we find that religious or political discussion network heterogeneity predicts the strength of beliefs associated with one’s religion or political party, respectively. A religiously or politically homogenous network appears to strengthen certain values associated with the belief system.

Keywords
politics, religion, social networks, ego networks, polarization

Introduction
With American society becoming more divided on both politics (Baldassarri and Gelman 2008) and religion (Schnabel and Bock 2017), it is important to understand the impacts of polarization on ideas and behaviors. Political polarization in particular has risen to unprecedented levels in the United States, with about 80 percent of Democrats and Republicans expressing negative feelings toward the opposing political group (Pew Research Center 2016). Additionally, over 40 percent of both Democrats and Republicans considered the opposing group "not just worse for politics—hey are downright evil" (Kalmoe and Mason 2018). Our associates clearly help shape the content of our beliefs (Aral, Muchnik, and Sundararajan 2009; Centola 2010; Kempe, Kleinberg, and Tardos 2003), but less is known about how the strength of those beliefs is determined. Individuals may hold beliefs weakly or strongly, and the degree of belief commitment can profoundly impact the ease with which those beliefs can be changed as well as the likelihood that disagreeing groups can reach a compromise. Belief commitment is especially important in explaining concrete reactions to critical societal issues, (e.g., anthropogenic global warming). Is it the case that our associates help shape not only the content of our beliefs but also our commitment to them?

The literature has revealed mixed results for how an individual’s associates impact their ideological beliefs. Research by Visser and Mirabile (2004) found that greater network homogeneity can increase the strength of beliefs, but other work has shown that exposure to the outgroup has little effect (Robison, Leeper, and Druckman 2018) or can even increase belief strength (Bail et al. 2018). We draw inspiration from Peter Berger’s (1967) concept of the “sacred canopy,” and subsequent elaborations, to help explain the conflicting insights into how networks impact belief commitment. In Berger’s view, life can be confusing and frightening, and so humans take shelter under a sacred canopy, or a set of beliefs that make the world comprehensible. This belief structure, usually regarded as a supernatural religion, is in turn supported by a “plausibility structure,” or a set of like-minded others who give the impression of universal acceptance of those views. An individual’s plausibility structure is established by the amount of shared ideological agreement among his or her close ties; the more associates an individual has who agree or seem to agree with an individual’s sacred canopy, the stronger the individual’s confidence in that canopy will be. More recent work by Smith and colleagues (1998) suggests a plausibility structure can be maintained using only one’s close ties because their views are most important
to the individual. Smith and colleagues (1998) conceptualize this smaller social network as a sacred umbrella. We argue that previous work has measured network ties in an inconsistent manner and that this could explain the conflicting results.

While the sacred canopy/sacred umbrella have been studied almost exclusively in the context of religion, we argue that the process is general and extends to the political domain. Political views may not be existentially meaningful in the same sense as supernatural religion, but they help to organize an individual’s sense of the world and define both good and bad actions (Kay et al. 2008). As such, they are likely to benefit from Berger’s concept of plausibility structures in much the same way as supernatural religions. This is especially important because a strong plausibility structure, in acting to protect individuals from ideological threat, can also act to insulate them from the need to assess their opinions and perhaps change them. When existing beliefs fit well with reality, this stabilization can be seen as a positive, but when ideas are poor fits to reality, this stabilization can become problematic (i.e., ignoring the scientific consensus on climate change and evolution). And, regardless of fit with reality, this preservation of existing ideas inhibits the debate and discussion that is the ideal in a democratic society (De Toqueville 2003).

We use data drawn from the General Social Survey (GSS) to examine whether belief in several characteristic political views (e.g., whether the government should help its citizens) is significantly bolstered by the belief composition of the respondent’s ego network (i.e., plausibility structure). The GSS collects ego network data on individuals with whom the respondent discusses “important matters,” which should capture the most important members of the respondents’ local social world (i.e., their sacred umbrella). We identify support for our hypotheses indicating, consistent with Durkheim’s original conception of religion but somewhat at odds with common usage, that a viable sacred canopy can be constructed from secular rather than supernatural cloth.

Background

How Does Social Network Composition Impact the Strength of Beliefs Associated with an Ideology?

The results of several studies suggest that social connections to those who share an individual’s ideology increase the strength of those shared beliefs (Bienenstock, Bonacich, and Oliver 1990; Hill, 2014). For example, religious individuals who are against premarital sex (Petersen and Donnenwerth 1997) and abortion (Petersen 2001) find it easier to maintain their beliefs when there is shared agreement in their social network. Religious children are more likely to associate with those who share their religious beliefs (Cheadle and Schwadel 2012). Additionally, high religiosity is more predictive of creationist beliefs when respondents are embedded in a network of co-religionists (Hill 2014). Similar results have been obtained for rejecting the facticity of global warming (Kahan et al. 2012; Williams et al. 2015). Using GSS data, Bienenstock et al. (1990) found that an interaction between religious intensity and religious network homogeneity increased the strength of beliefs commonly associated with a specific religion. This is broadly consistent with the previously described findings, but religious intensity does not reveal whether someone shares a specific religious denomination and cannot directly measure the strength of the shared identity. For example, knowing that someone believes strongly in a religion does not tell us whether they believe in the same religion that you do or that you are surrounded by a set of co-religionists. Finally, Stroope (2012) found that greater religious activity was positively related to stronger religiosity; however, the data measured church and devotional activities instead of specifically measuring who the participants associated with.

Consistent with the aforementioned research showing that shared ideology in one’s network structure can strengthen beliefs, an exposure to a multitude of viewpoints can also weaken belief strength. Discussion partners who disagree may be a source of novel information (e.g., Aral and Van Alstyne 2011; Burt 1992; Granovetter 1973); in that novel ideas are, by definition, things one was not previously aware of, such exposure can lead to weaker adherence to existing attitudes (Druckman and Nelson 2003). Indeed, Visser and Mirabile (2004) used both national adult and student samples to show that greater ideological network heterogeneity was associated with decreased conviction. In other words, the more one’s network partners differ in their beliefs, the less strongly the respondent will hold his or her own views. The power of an ideologically diverse social network is also supported by the finding that atheists who converted to Christianity often did so only after forming strong social bonds with Christians (Langston, Albanesi, and Facciani 2019). Additionally, DellaPosta (2018) found that individuals who had at least one homosexual acquaintance would display greater support for same-sex marriage, relative to those with no homosexual acquaintances, when their attitudes were measured again years later.

There is also research suggesting plausibility structures have little or no effect on political beliefs (Ben-Nun Bloom and Levitan 2011; Robison et al. 2018). Many individuals find political conflict to be distasteful, avoiding it when possible (Mutz and Mondak 2006; Rosenberg 1954; Ulbig and Funk 1999), and prefer to discuss politics only with like-minded others (Cowan 2014; Gerber et al. 2012; Huckfeldt 2007). In combination, this suggests that network diversity does not automatically result in challenging ideological exchange. Cowan and Baldassarri (2018) found that individuals withhold information from their associates when they perceive the potential for conflict. Moreover, ideological disagreement in one’s network, even when it is evident, does not necessarily enhance the chances of persuasion when the issue is moral in nature (Ben-Nun Bloom and Levitan 2011; Robison et al. 2018). The upshot is that certain attitudes on
certain topics may be largely unaffected by network structures. In total, these results suggest that network structures may be ineffective in general or are ineffective for political views in particular.

Finally, some studies suggest that being confronted with opposing views strengthens existing ideas (Kahan et al. 2012; Sunstein 2002; Taber and Lodge 2006). Bail and colleagues (2018) found that Democrats and Republicans actually increased their political belief strength after following members of opposing political groups on social media for one month. As such, it is clear that contact with dissimilar others is not always broadening.

In the final studies described previously, the disagreeing individuals are almost always relatively distant contacts or the information derives from an impersonal source (Bail et al. 2018; Sunstein 2002; Taber and Lodge 2006). This is significant because, as argued by the sacred canopy (Berger 1967) and sacred umbrella (Smith et al. 1998), opinions and beliefs likely do not change in these cases precisely because ideological positions are most effectively maintained by closer associates.

Applying the Framework from the Sacred Canopy Could Explain These Inconsistencies

Extending Durkheim’s ([1897] 1951) earlier work on suicide, Peter Berger (1967:28) argued that religious ideology is an “audacious attempt to conceive of the entire universe as being humanly significant.” In so conceiving the universe, religion ultimately functions as a sacred canopy, explaining natural events in human terms and thereby protecting the believer from social and existential dread. The sacred canopy is sustained by a plausibility structure, which maintains ideological certainty through social reinforcement; a strong plausibility structure requires that one’s associates share their ideology (Berger 1967:46). Thus, when people around an individual share his or her beliefs, it supports the individual’s sacred canopy, providing meaning and certainty. In contrast, when those around an individual do not share those beliefs, his or her sacred canopy is weakened, leaving the individual vulnerable to doubt and uncertainty.

Berger (1967) introduced the sacred canopy as specifically applying to religious belief, but it should be extended to other areas. While political views rarely possess existential significance for the individual, they still help to impose order on a chaotic world. For example, Hogg and colleagues (2006) found that participants identified more strongly with their political group when they were feeling uncertain. Additionally, McGregor and colleagues (2001) found that political extremism can be reduced if the feelings of self-uncertainty have been resolved. This suggests that political ideologies can function alongside religion to shield us from uncertainty, that political ideology is to some extent co-equal with religion in serving this purpose, and that humans can flexibly emphasize one or the other. Thus, plausibility structures should reinforce both religious and political ideologies.

Berger (1967) argued that one’s sacred canopy is sustained by a broad plausibility structure, but more recent work suggests that individuals do not need all of their associates to share their beliefs (Smith et al. 1998). Instead, the plausibility structure may be supported by a sacred umbrella that requires only close ties, whose views are most important, to share the individual’s ideology (Smith et al. 1998:106). Indeed, prior research comparing the effectiveness of a wider sacred canopy to a narrower sacred umbrella has shown that the umbrella is sufficient to generate a protective effect (e.g., Brashears 2010). This sacred umbrella is consequently more flexible, readily available, and better suited to ideological pluralism. The sacred umbrella argues that close ties that share one’s ideology bolster the beliefs associated with the ideology. We argue that conflicting results from studies that investigated how network structure impacts political belief can be better understood using the sacred umbrella framework. The factor that determines whether dissimilar others weaken one’s own views is whether those dissimilar others are close associates, thereby weakening the sacred umbrella, or distal associates, most often leaving that umbrella intact.

The different types of measures that have given rise to these conflicting findings vary considerably in the closeness of the interpersonal tie. One of the most studied measures of close ties is the “important matters” item (Burt 1984), asking respondents to name those persons with whom they discuss important matters. When asked this question, respondents typically name those who are willing to provide a wide variety of social resources, including loans of money or social interaction (Brashears 2014), as well as individuals with topic-relevant knowledge (Small 2013). In contrast, when subjects are asked about specific topics (e.g., health matters), respondents appear to frequently select alters based on their perceived knowledge of the topic rather than the subjective closeness in the relationship (Perry and Pescosolido 2010; Small 2013). This strongly suggests that items focusing on a specific type of discussion (e.g., politics) sample from a less close set of alters than the more general important matters item. Thus, when you ask someone with whom they discuss politics, you likely hear about those they consider to be knowledgeable but not necessarily those who help to support their sacred umbrella. This is not to say that individuals never discuss politics or health with those who are important to them (they definitely do; Brashears 2014; Small 2013). The point is that by measuring ego networks using questions about specific discussion topics (e.g., politics) rather than the more general important matters item, a substantially larger fraction of the alters named will be those with topic-relevant knowledge but are not close to the respondent.

1 Although in a world where a strategic exchange of thermonuclear weapons is possible, political views may be existentially critical in a literal rather than metaphysical sense (e.g., Kahn [1960] 2017).
The previous discussion provides insight into why similar studies have yielded conflicting results. Robison et al. (2018) found a weak/null effect of heterogeneity on political attitudes, but they specifically examined discussion partners for “government and elections,” which may frequently include alters who are not especially close to the respondent. Because these alters were not especially close, their level of agreement with the respondent was comparatively unimportant. Likewise, following strangers on social media, which was the outgroup exposure manipulation used by Bail and colleagues (2018), hardly creates a close association. Conversely, Visser and Mirabile (2004) asked participants to list those with whom they discuss important issues and events, such as friends, family members, or coworkers, finding that people who are embedded within networks made up of like-minded others are more resistant to attitude change. This approach likely captured their subjects’ close ties, and by extension their plausibility structure, and thus identified the predicted effect. If we interact with those who have different ideologies but are not close associates, it may not impact the strength of our beliefs, but existing research has been insufficiently attentive to this issue.

When researchers study the core discussion network (i.e., using the important matters name generator), they are more likely to capture the plausibility structure and identify an effect on attitude strength. When researchers focus on a different group of alters (e.g., “name people you discuss government issues with”), people tend to report on ties that they view as knowledgeable but do not help to produce the plausibility structure and thus do less to bolster attitude strength. The conflicting results in the existing literature likely stem from inconsistent measurement of the network implicated in producing a plausibility structure. The sacred umbrella offers theoretical support for the importance of one’s close ties, making it essential that researchers measure ego networks with greater precision.

The Present Study

The present study empirically tests whether a plausibility structure, measured using close associates, can affect the strength of both political and religious beliefs. Our core interest is in examining the impact of plausibility structures on political beliefs, but by also examining religious beliefs, we improve the inferential power of our analyses. Put differently, if we were to detect the impact of plausibility structures for religious beliefs but not political beliefs, it suggests that our methodology is sufficient but that political views are not supported by a plausibility structure. If we only examined political beliefs in the absence of religious beliefs, negative results would be more ambiguous. Thus, by examining religious and political beliefs, both potential outcomes become more informative.

The greater the number of close ties an individual has who share his or her ideology, the more certain the individual can feel about those ideological beliefs (Berger 1967). A strong plausibility structure consists of shared ideological agreement among the close ties of an individual. A weak plausibility structure consists of ideological disagreement among the close ties of an individual. Both religious and political ideology have several shared beliefs that should be able to create observable effects from their plausibility structure. Therefore, we hypothesize that:

Hypothesis 1: Strength hypothesis—A strong plausibility structure will be associated with stronger belief(s) accompanying the ideology.

Hypothesis 2: Domain hypothesis—Plausibility structure effects will be seen for both political and religious beliefs.

Methods

Data

We use the 1985 and 1987 General Social Survey data to test our hypotheses. The GSS is a nationally representative probability sample of noninstitutionalized American adults that asks participants a variety of questions ranging from social issues to life habits. In 1985 and 1987, the GSS recorded ego network data for most respondents using the important matters name generator.2 A series of questions were asked about the alters, or persons named in response to this item, including their religious affiliation and political party.

In the 1985 data set, 1,531 participants provided at least some data (response rate = .787) on up to five alters, while the 1987 data set contains responses from 1,800 participants (response rate = .754) on up to three alters. Missing data were handled using listwise deletion, and regression analysis showed missingness was influenced by demographic factors to a trivial degree (models available on request).

We adopted Brashears’s (2010) technique for operationalizing plausibility structures using the GSS ego network data. Specifically, we took the number of alters of the same political party or religious affiliation as the respondent and divided it by the total number of alters, yielding a proportion who agree with the respondent. The 1985 GSS contained religious ego network data while the 1987 GSS contained political party network data, and we are thus able to measure plausibility structures associated with both religious and political ideologies at roughly the same time.

A strong plausibility structure is present when a respondent has a network that is completely homogenous on religion or

2 We do not use the more recent General Social Survey (GSS) networks modules (e.g., 2004, 2010) because they did not collect data on the political affiliation of the alters. Our data from the 1980s are relatively old but should nonetheless remain useful for evaluating the applicability of Berger’s sacred canopy, which itself is not specific to any particular time period.
political party. A weak plausibility structure is present when a respondent reported at least one close tie that does not share his or her religion or political party. Thus, we are measuring the plausibility structure with a dichotomous variable equaling one for a completely homogenous network and zero when the network contains at least one heterogeneous alter. We adopted this approach primarily because it is consistent with the underlying theory; while total homogeneity with close associates provides a powerful shield against doubt, even a single associate with a different ideology creates a hole in one’s sacred umbrella. We would have liked to also assess the fraction of homogenous alters instead of relying on a dichotomous variable, but GSS data are insufficient for us to conduct this analysis. Specifically, about half of the respondents had politically or religiously homogeneous networks, and so the core distinction in the data is between no differences and some differences. Finally, it should be kept in mind that the important matters discussion partners are not the totality of an individual’s close associates; the presence of even one disagreeing alter in this group implies the existence of more among the respondent’s closest companions.

Religion

To examine the influence of plausibility structures on religious conviction, we used data from the GSS that reported the religiosity of the respondent as well as his or her close ties. Most respondents identify as Christian (89 percent), so we focused on beliefs associated with Christianity. Homogeneity effects should apply to other religious groups, but the GSS lacks sufficient data from other religious groups to evaluate this. While we have measures of respondent denomination, they are unavailable for alters (i.e., Christian alters are categorized as either Catholic or Protestant), so we cannot distinguish among the various Christian denominations in our analysis. In other words, while we may be able to tell that the respondent is Baptist, Methodist, or Presbyterian, we have no such information about the alters and so cannot identify matches at this level of detail. The broad distinction between Protestants and Catholics does not significantly impact the results (models available on request), so we rely on a simple Christian versus non-Christian distinction.

A number of Christian denominations have generally strong doctrinal rules opposing homosexuality (Burdette, Ellison, and Hill 2005), abortion (Granberg and Granberg 1980), and atheism (Cragn et al 2015). Thus, we included GSS questions about homosexuality (e.g., whether the respondent approves of homosexual relations), abortion (i.e., whether the respondent would approve of abortion under a series of conditions), and atheism (e.g., whether the respondent approves of an atheist speaking publicly) as dependent variables. We predict that strong plausibility structures will make Christian disapproval toward homosexuals, abortion, and atheists more likely. While there are a range of other variables that we could assess (e.g., attitudes toward the poor) that could be plausibly linked to religious belief, none are as uniform in their association with Christianity (considered broadly) as those we adopt here. Put simply, because the data do not allow us to distinguish religious homophily with greater detail than “both Protestant,” we must select variables that are fairly consistent across denominations.

Politics

The GSS asked respondents “Is (NAME) a Democrat, a Republican, an Independent, or what?,” primarily separating respondents and alters into major political parties. Democrat and Republican ideologies tend to include partisan beliefs about gun control (Smith 1999), government assistance (Fiorina and Abrams 2008), and taxes (Pew Research Center 2015), so we focus on GSS questions in these areas as our dependent variables. The GSS does not have sufficient data on other political parties, so we are unable to investigate their effects on these issues. Likewise, we do not think that one’s position on these issues is determined solely by political party but do note and rely on the strong statistical association between the two. We used questions that asked the participant if he or she approved of more government spending under several conditions (e.g., approval of government spending on health care). We also used a question that asked participants if they approved a law requiring gun permits. Finally, we included a question that asked if the participant thought the wealthy should pay higher taxes. The 1987 GSS asked respondents to report up to three close ties, raising the possibilities that differences between religious and political effects may partly result from instrumentation. However, ancillary analyses revealed that restricting the 1985 data set to three close ties to match the 1987 data set produced substantively identical results. The 1985 collection also lacked the questions on alter political alignment that were included in 1987, thus requiring the use of both data sets to address

3Fifty-five percent of Christians and 26 percent of non-Christians in the 1985 GSS sample reported all their close associated shared their religious identification. Sixty-three percent of Democrats, 43 percent of Republicans, and 33 percent of Independents reported all their close associates shared their political identification.

4The dependent variable names from the 1985 GSS data that we used were: abpoor (approval of woman having an abortion if she is poor), abnomore (approval of woman having an abortion if she doesn’t want any more children), absingle (approval of woman having an abortion if she is single), spkath (approval of antireligionists speaking publicly), and homosex (approval of homosexual relations). The dependent variable names from the 1987 GSS data that we used were: helpblk (approval of government aiding blacks), helpnot (approval of government spending to help country), helpsick (approval of government spending on healthcare), taxshare (approval of rich paying bigger share of taxes), and gunlaw (approval of gun permits).
The government spending question had participants answer on a scale of 1 (people should help themselves) to 5 (government should pay for health care). The more general government spending question had participants answer on a scale of 1 (government does too much) to 5 (government should do more). The question about government spending money to aid black Americans gave participants the choice to answer 1 (government does too little to help black conditions), 2 (government does about the right amount), or 3 (government does too much to help black Americans). The question about taxing the rich gave participants the option to answer on a 1 to 5 scale with 1 meaning the rich should pay much more taxes and 5 meaning the rich pay too much. A logistic regression was used to model the respondent’s support for gun permits. We coded the responses such that 0 represented favoring gun permit laws and 1 represented opposing gun permits. Our political plausibility structure variable was comprised of the interaction term between the alters sharing the respondent’s political identity and identifying as Democrat or Republican.

For clarity, the following text provides effects in the form of odds ratios, while the tables give the raw coefficients generated by the models. In general, we estimate a full model including all covariates, followed by a reduced model eliminating nonsignificant effects. While there are drawbacks to this procedure, the split form design used on the GSS means that not all items are asked of all respondents, reducing statistical power in some analyses. For transparency, we prefer to present both full and reduced models.

Results

Religion

Table 1 shows the descriptive statistics of the variables we used in our regression analyses. Regression models examined the effect of a strong plausibility structure on beliefs associated with Christianity. A significant interaction between Christian religion and network homogeneity would provide evidence that a strong plausibility structure does increase the strength of beliefs associated with the ideology.

We first conducted analyses that only included direct effects to aid in understanding our full model (see Table 2, Model 1) to help with interpretation of the interaction term in our next model. Then we included our plausibility structure interaction term in a subsequent model (see Table 2, Model 2). We also conducted another analysis without the region and religious tradition control variables because they removed statistical power (see Table 3).

Those who identified as Christian were significantly more likely to disapprove of women getting an abortion if they did not want any more children (Table 3: 2.37, p < .01) and if a woman was single (Table 3: 1.55, p < .05; one-tailed). We

5This variable may also capture racial attitudes to a degree, but we still expect differences by political orientation.
also found that a strong plausibility structure exerted a significant independent effect on the respondent’s disapproval toward abortion if the woman was poor (Table 2, Model 2: 9.48, \(p < .05 \); one-tailed) and did not want any more children (Table 3: 2.87, \(p < .05 \); one-tailed) and if a woman was single (Table 3: 3.23, \(p < .05 \)).

Moving on, we found religious attendance (Table 3: 1.21, \(p < .01 \)) but not Christian self-identification significantly predicted disapproval toward homosexuality (Table 3: 2.15, \(p > .05 \)). A strong plausibility structure supported significantly more disapproval toward homosexuality (Table 3: 2.26, \(p < .05 \); one-tailed) but only when not controlling for region and religious tradition, again suggesting a lack of statistical power.6

Finally, we found Christian self-identification significantly predicted disapproval of atheist public speech (Table 4: 2.48, \(p < .01 \)). Moreover, a strong plausibility structure had a significant independent effect on respondent’s disapproval toward atheists being allowed to speak (Table 4: 1.29, \(p < .05 \); one-tailed) but only when the religiosity, network homogeneity, religious tradition, and region terms were excluded, suggesting insufficient statistical power. All of these effects remained significant when we controlled for closeness to God, network homogeneity, number of alters, education, and political views. Predicted probabilities involving the network homogeneity and Christian identity variables were also consistent with our findings for all the aforementioned variables (results available on request). We also added ego network density in our models but failed to find any significant effects. This is consistent with Brashears’s (2014) finding that a denser religious network is unrelated to self-reported happiness.

Using ego network data from the 1985 GSS, we find that a strong plausibility structure significantly strengthened disapproval toward abortion and homosexuality. Having a strong plausibility structure also significantly increased the respondent’s disapproval of public atheist speech but only when belief in God was not controlled for (suggesting insufficient statistical power). Overall, network homogeneity was associated with stronger beliefs often associated with Christian self-identification, supporting our strength hypothesis.

Politics

We evaluated whether a strong political plausibility structure impacts beliefs commonly associated with Democrats and Republicans. Table 5 shows the descriptive statistics we used in our analyses. A significant interaction effect would provide evidence that a strong plausibility structure does increase the strength of beliefs associated with the ideology. For ease of interpretation of our interaction term, we have included a model only with direct effects (see Table 6, Model 1) and a full model with our plausibility interaction term (see Table 6, Model 2). Finally, we included another model without the race of respondent variable (see Table 7) to show significant

6A Brant test showed the plausibility structure variable (\(p > .05 \)) did not violate the parallel regression assumption for our models involving religion.
Table 2. Predicting Belief Strength as a Function of Religious Plausibility Structures: Reduced and Full Regression Models.

Model 1: Reduced religious belief regression model only showing direct effects	Disapproval toward Abortion if Mother Doesn’t Want More Children	Disapproval toward Abortion if Mother Is Poor	Disapproval toward Abortion if Woman Is Single	Disapproval toward Atheists Speaking Publicly	Disapproval toward Homosexuality
Close to God	.316**	.473**	.396**	.097	.194~
	(3.13)	(4.60)	(3.88)	(.93)	(1.67)
Network homogeneity	.099	.301*	.279~	.044	.603***
	(.69)	(2.11)	(1.95)	(.30)	(3.52)
Number of alters	−.066	−.069	−.107*	−.067	−.064
	(−1.31)	(−1.38)	(−2.09)	(−1.33)	(−1.07)
Higher education	−.106**	−.091**	−.113***	−.193***	−.226**
	(−4.14)	(−3.58)	(−4.42)	(−6.99)	(−7.18)
Higher conservatism	.180**	1.557**	.141***	.013	.243**
	(3.45)	(3.01)	(2.72)	(.26)	(3.87)
Christian identification	1.915***	1.654*	2.354***	.055	.916*
	(2.85)	(2.48)	(2.99)	(.09)	(1.97)
Religious attendance	.224**	.212**	.214***	.073*	.178**
	(7.75)	(7.39)	(7.39)	(2.56)	(5.07)
Age	−.007~	−.015**	−.013***	.013**	.018**
	(−1.78)	(−3.64)	(−3.29)	(3.43)	(3.45)
Sex	−.098	−.148	−.201	.225	−.391*
	(−.73)	(−1.10)	(−1.47)	(1.63)	(−2.40)
Race	−.389~	−.136	−.264	.585**	.455
	(−1.76)	(−.61)	(−1.19)	(2.69)	(1.51)
Region South	−.174	−.310*	−.217	.250~	.586**
	(−1.21)	(−2.15)	(−1.50)	(1.74)	(3.21)
Evangelical Protestant	.140	.376*	.160	.601**	.941***
	(.94)	(2.48)	(1.06)	(4.10)	(4.51)
Constant	−1.880	−2.557***	−2.033~	−1.699	
	(−1.91)	(−2.60)	(−1.91)	(−1.79)	
Cut 1	.781				
Cut 2	1.462				
Cut 3	1.797				
N	1,155	1,147	1,146	1,170	1,149

Model 2: Full regression model predicting belief strength as a function of religious plausibility structures

Model 2: Full regression model predicting belief strength as a function of religious plausibility structures	Disapproval toward Abortion if Mother Doesn’t Want More Children	Disapproval toward Abortion if Mother Is Poor	Disapproval toward Abortion if Woman Is Single	Disapproval toward Atheists Speaking Publicly	Disapproval toward Homosexuality
Close to God	.321***	.479***	.404***	.096	.199~
	(3.18)	(4.64)	(3.95)	(.93)	(1.71)
Network homogeneity	−2.083	−1.926	−13.77	.350	−.695
	(−1.53)	(−1.42)	(−.04)	(.27)	(−.80)
Number of alters	−.066	−.069	−.107*	−.067	−.064
	(−1.31)	(−1.38)	(−2.10)	(−1.33)	(−1.06)
Higher education	−.107***	−.092**	−1.15***	−.192***	−.225**
	(−4.18)	(−3.61)	(−4.47)	(−6.98)	(−7.15)
Higher conservatism	.184**	.160***	.148**	.012	.250**
	(3.53)	(3.10)	(2.84)	(.25)	(3.97)
Christian identification	.758	.452	.605	.258	.151
	(.92)	(.55)	(.73)	(.24)	(.23)
Interaction between	2.201	2.249*	14.08	−.310	1.345
Christian identification	(1.61)	(1.65)	(.04)	(−.24)	(1.53)
and network homogeneity	.224**	.213***	.215***	.073*	.178**
	(7.76)	(7.40)	(7.41)	(2.56)	(5.06)
Age	−.007~	−.149**	−.013***	.013*	.018**
	(−1.74)	(−3.61)	(−3.24)	(3.42)	(3.49)
Sex	−.101	−.152	−.206	.225	−.388*
	(−.75)	(−1.12)	(−1.51)	(1.64)	(−2.38)

(continued)
Table 2. (continued)

	Disapproval toward Abortion if Mother Doesn’t Want More Children	Disapproval toward Abortion if Mother Is Poor	Disapproval toward Abortion if Woman Is Single	Disapproval toward Atheists Speaking Publicly	Disapproval toward Homosexuality
Race	-0.392~ (-1.77)	-0.139 (-0.62)	-0.268 (-1.20)	0.585** (2.89)	0.453 (-1.51)
Region South	-0.178 (-1.24)	-0.315* (-2.17)	-0.223 (-1.54)	0.251~ (1.74)	0.579*** (3.17)
Evangelical Protestant	0.138 (0.92)	0.374* (2.46)	0.156 (1.03)	0.601*** (4.10)	0.944*** (4.51)
Constant	-1.284 (-1.29)	-1.616 (-1.62)	-0.857 (-0.85)	-0.234 (-0.19)	
Cut 1					-1.483
Cut 2					-0.801
Cut 3					-0.466
N	1,155	1,147	1,146	1,170	1,149

Note: The figures in parentheses refer to the standardized regression coefficients.

Table 3. Reduced Regression Model That Removed Region and Religious Tradition Variables That Predict Belief Strength as a Function of Religious Plausibility Structures.

	Disapproval toward Abortion if Mother Doesn’t Want More Children	Disapproval toward Abortion if Mother Is Poor	Disapproval toward Abortion if Woman Is Single	Disapproval toward Atheists Speaking Publicly	Disapproval toward Homosexuality
Close to God	0.321** (3.56)	0.488** (5.28)	0.404*** (4.25)	0.155 (1.62)	0.112 (-1.23)
Network homogeneity	-0.931~ (-1.68)	-1.503* (-2.41)	-0.868 (-1.57)	1.110* (-1.97)	-0.039 (-0.10)
Number of alters	-0.067 (-1.40)	-0.076 (-1.59)	-0.114* (-2.37)	-0.067 (-1.39)	-0.093~ (-1.70)
Higher education	-0.127*** (-5.25)	-0.117** (-4.85)	-0.131*** (-5.43)	-0.215** (-8.13)	-0.262** (-9.27)
Higher conservativism	0.196*** (4.02)	0.182*** (3.74)	0.162*** (3.32)	0.032 (0.65)	0.289** (5.23)
Christian identification	0.588* (2.18)	0.287 (1.06)	0.441*** (1.65)	0.957* (2.42)	0.294 (1.27)
Interaction between	1.056~ (1.86)	1.805*** (2.85)	1.172* (2.08)	-0.018~ (-1.76)	0.764~ (1.79)
Christian identification and network homogeneity	0.229** (8.39)	0.213*** (7.89)	0.213*** (7.81)	0.085** (3.11)	0.193** (6.03)
Religious attendance					
Age	-0.097 (-2.49)	-0.017** (-4.32)	-0.016** (-4.15)	0.011** (2.93)	0.015** (3.21)
Sex	-0.096 (-7.5)	-0.221~ (-1.72)	-0.256* (-1.98)	0.187 (1.42)	-0.354* (-2.44)
Race	-0.290 (-1.40)	-0.149 (-0.71)	-0.104 (-0.50)	0.553*** (2.65)	0.384 (1.48)
Constant	-0.871 (-1.51)	-1.120 (-1.92)	-0.420 (-0.73)	-0.631 (-0.95)	
Cut 1					-2.516
Cut 2					-1.854
Cut 3					-1.531
N	1,307	1,300	1,298	1,325	1,303

Note: The figures in parentheses refer to the standardized regression coefficients.

*p < .05, **p < .01, ~ p < .05, one-tailed.
Disapproval toward Atheists.

Variable	Coefficient	Standard Error
Number of alters	-0.059	(1.27)
Higher education	-0.234**	(-9.37)
Higher conservatism	0.051	(1.08)
Christian identification	0.909**	(3.22)
Interaction between	0.260~	
Christian identification	(1.94)	
and network homogeneity		
Constant	1.155*	(2.60)
N	1,338	

Note: The figures in parentheses refer to the standardized regression coefficients.

*p < .05. **p < .01. ~p < .05, one-tailed.

plausibility structure effects because of the lack of statistical power.

Identifying as a Democrat significantly predicted approval of government assistance (Table 6, Model 2: 1.48, *p < .01*). Additionally, a strong plausibility structure for Democrats had a significant independent effect on respondent’s approval toward government assistance (Table 7: 1.64, *p < .05*); however, this only became significant once we removed the race of respondent variable, suggesting a lack of statistical power (which was also the case with one other variable). In our data, black respondents make up just 3.9 percent of Republicans, so there is a robust overlap between party identification and race. Thus, as a Democrat respondent increases the strength of his or her political plausibility structure, the respondent seems to increase the likelihood of having positive attitudes toward government assistance. Identifying as a Democrat did not significantly predict approval of the government paying for health care (Table 6, Model 2: 1.03, *p > .05*). However, a strong plausibility structure for Democrats had a significant independent effect on respondent’s approval toward the government paying for health care (Table 6, Model 2: 2.65, *p < .01*).

Moving on, a strong plausibility structure for Republicans significantly increased the respondent’s disapproval toward taxing the wealthy (Table 6, Model 2: 2.11, *p < .01*). We did not identify a main effect for being Republican but did find one for conservative ideology (Table 6: 1.14, *p < .01*). Thus, it seems Republican self-identification accounted for a significant amount of variance in determining a respondent’s views toward taxation. We also found that a strong plausibility structure for Republicans had a significant independent effect on respondent’s disapproval on government spending to aid black Americans (Table 7: 1.89, *p < .05*) when the race of respondent was removed from our model. Again, given the strong overlap of race and party identification, we wanted to include models with and without race. Identifying as a Republican was also significant for disapproval toward the government helping black Americans (Table 6, Model 2: 1.63, *p < .05*).7

Finally, identifying as a Republican significantly predicted disapproval toward gun permits (Table 6, Model 2: 1.34, *p < .05*; one-tailed). However, a strong plausibility structure for Republicans was not significant in the direction we predicted (Table 6, Model 2: .46, *p < .01*). All these effects were significant while controlling for network homogeneity, number of alters reported, education, political views, age, sex, and income (for the taxation question). We also included a measure of ego network density for political alters, but consistent with our results for religious belief, we failed to identify any significant effects.

Using ego network data from the 1987 GSS, we find that a strong Democrat plausibility structure made participants significantly more likely to believe that the government needs to provide more help to its citizens. Having a strong Republican plausibility structure significantly increased disapproval toward taxing the wealthy and spending toward helping black Americans. Thus, network homogeneity also seems to impact the strength of beliefs associated with politics, which supports our domain hypothesis.

The Impact of Political and Religious Acquaintances with More Recent Data and Robustness Checks

The aforementioned analyses show that stronger plausibility structures are associated with stronger adherence to associated but not definitional opinions (e.g., disapproval of homosexuality is not definitional to Christianity). Our data so far support our hypotheses but are also over 30 years old. We would like to use more recent data, but unfortunately, modern data such as that found in the 2004 GSS, American National Election Study, and Portraits of American Life Study do not use the same types of important matters measure we think best captures one’s plausibility structure. However, using the 2006 GSS data, we conducted several ancillary analyses that relied on data on the respondent’s political and religious acquaintances collected via a less detailed series of items rather than their important matters discussants.

In particular, we measured the composition of their networks using items asking how many church attenders they were acquainted with and created an interaction term between one’s closeness to God and this variable. For politics, we created an interaction term between one’s political views and

7A Brant test showed the plausibility structure variable (p > .05) did not violate the parallel regression assumption for any of the ordinal regressions previously described for our models involving politics.
the number of Democrats/Republicans they were acquainted with. In both cases, the relationships counted are likely to be considerably less close than those in our main analyses and so may show weaker effects but still capture at least something of the connection between network homogeneity and belief strength. Additionally, both of these new variables are explicit estimates rather than an enumerated set of alters, and so the values are more vulnerable to recall and estimation biases. Nevertheless, they do provide some additional insight into the respondent’s local social environment.

For religion, we did not find any significant results for variables measuring attitudes toward abortion, homosexuality, or atheists using our closeness to God and church attendee acquaintance interaction term. For politics, we did find that the political views and Democrat acquaintance interaction term was significant for believing gun laws should be tougher than drug laws (1.11, \(p < .05 \)).

We conducted additional robustness checks for religion using a similar approach to Bienenstock et al.’s 1990 method. Using the 1985 GSS data, we created an interaction term with closeness to God (instead of denomination) and religious homogeneity of alters. This interaction term also found significant results for opposing an abortion if the woman is poor (1.52, \(p < .01 \)), opposing abortion if the woman doesn’t want any more children (1.51, \(p < .01 \)), opposing abortion if the woman is single, (1.37, \(p < .05 \)), and opposing homosexuality (1.35, \(p < .05 \); one-tailed) as our aforementioned Christian plausibility structure term did. Furthermore, we also identified significant effects for disapproval of public atheist speech (1.48, \(p < .01 \)) but only when the closeness to God variable was not included in the model. However, as noted previously, religious intensity is not an adequate measure of plausibility structure. Our analysis using shared

\[\text{Table 5. Descriptive Statistics of Variables Used in Political Analyses.} \]

Variable	Number of Observations	Mean	Standard Deviation	Minimum	Maximum
Approval of government spending more	1,706	3.137	1.249	1	5
Approval of government paying for health care	1,774	3.602	1.194	1	5
Disapproval of government helping black people	1,104	1.807	.744	1	3
Disapproval of higher taxes for wealthy	1,447	2.089	.770	1	4
Disapprove of gun permit law	1,780	.267	.442	0	1
Network homogeneity	1,479	.539	.498	0	1
Number of alters	1,800	2.529	1.239	0	6
Education	1,809	12.326	3.275	0	20
Higher conservativism	1,679	3.996	1.359	1	7
Age	1,807	44.923	17.705	18	89
Sex	1,819	.572	.494	0	1
Race	1,819	.328	.469	0	1
Income	1,165	9.720	2.953	1	12
Republican identification	1,809	.313	.464	0	1
Interaction between Republican identification and network homogeneity	1,475				
Democrat identification	1,809	.568	.495	0	1
Interaction between Democrat identification and network homogeneity	1,475				

\[^{8}\text{We carried out analyses with the 1985 data using only the first three alters named, matching the 1987 protocol. All of our religion dependent variables remained significant with our religiosity by network homogeneity interaction term except for the atheist variable. However, the interaction term was significant when the Christian denomination and network homogeneity terms were not included, suggesting a possible lack of power.} \]
Table 6. Predicting Belief Strength as a Function of Political Plausibility Structures: Reduced and Full Regression Models.

	Approval of Government Spending More	Approval of Government Paying for Health Care	Disapproval of Government Helping Black People	Disapproval of Higher Taxes for Wealthy	Disapproving of Gun Permit Law
Model 1: Reduced political belief regression model only showing direct effects					
Network homogeneity	.023	-.097	-.132	-.048	-.155
	(.23)	(−.93)	(−.92)	(−.41)	(−1.20)
Number of alters	.003	.003	.063	-.074	-.051
	(.07)	(−.08)	(−1.02)	(−1.40)	(−.86)
Higher education	-.077***	-.052***	-.071***	.014	-.057*
	(−4.23)	(−2.88)	(−2.78)	(3.15)	(−2.56)
Higher conservativism	-.231***	-.242**	.179**	.141*	.070
	(−5.90)	(−6.27)	(3.33)	(3.15)	(1.49)
Age	-.010***	.005~	.002	-.168**	.003
	(−3.22)	(−1.78)	(5.2)	(−4.58)	(9.2)
Sex	.215*	.010	−.177	−.119	−.679**
	(2.14)	(−7.11)	(−3.16)	(−4.04)	(−5.48)
Race	1.04***	7.67**	−2.489**	−2.557**	−5.24**
	(8.36)	(6.27)	(12.81)	(13.83)	(3.41)
Democrat identification	.452**	.349**	.448*	.101	−1.152
	(3.95)	(3.12)	(2.86)	(7.7)	(−1.07)
Republican identification	.491*	-.205	.145	.239	.746**
	(2.42)	(−1.22)	(2.98)	(1.32)	(−3.44)

Model 2: Full regression model predicting belief strength as a function of political plausibility structures

	Approval of Government Spending More	Approval of Government Paying for Health Care	Disapproval of Government Helping Black People	Disapproval of Higher Taxes for Wealthy	Disapproving of Gun Permit Law
Network homogeneity	.056	−.534**	−.093	−.308**	.171
	(−.35)	(−3.37)	(−.50)	(−2.10)	(1.07)
Number of alters	.004	.002	−.063	−.075	−.047
	(−.09)	(−.05)	(−1.01)	(−1.41)	(−.79)
Higher education	−.077***	−.049***	−.070**	.010	−.053*
	(−4.20)	(−2.74)	(−2.73)	(4.6)	(−2.35)
Higher conservativism	−.229***	−.233**	.181**	.131**	.084−
	(−5.83)	(−6.02)	(3.35)	(2.93)	(1.77)
Age	−.01**	.005~	.002	−.017**	.003
	(−3.23)	(−1.80)	(.52)	(−4.62)	(9.9)
Sex	.214*	−.022	−.178	−.116	−.684**
	(2.13)	(−2.93)	(−1.27)	(−1.01)	(−5.49)
Race	1.02**	.668**	−2.501**	−.488**	−.611***
	(8.05)	(5.34)	(12.67)	(3.30)	(−3.92)
Democrat identification	.391**	.014	.431	.239	.746**
	(2.67)	(.10)	(2.42)	(1.32)	(−3.44)
Interaction between	.140	.774**	−.990	.746**	−.953**
Democrat identification	.663	(3.67)	(−.33)	(2.98)	(−3.44)
and network homogeneity					

(continued)
Table 6. (continued)

	Approval of Government Spending More	Approval of Government Paying for Health Care	Disapproval of Government Helping Black People	Disapproval of Higher Taxes for Wealthy	Disapprove of Gun Permit Law
Higher income					
Constant					
Cut 1	−3.811	−4.460	−1.525	−1.796	
Cut 2	−2.804	−3.551	.869	.344	
Cut 3	−.901	−1.652	3.512		
N	1,343	1,382	864	1,103	1,381

Note: The figures in parentheses refer to the standardized regression coefficients.
*p < .05, **p < .01, ~ p < .05, one-tailed.

Table 7. Reduced Regression Models without Race Variable Showing Significant Plausibility Structure Effects for Beliefs Regarding Approval of the Government Spending More and Disapproval of the Government Helping Black People.

	Approval of Government Spending More	Disapproval of Government Helping Black People
Network homogeneity	−.123	−.597**
	(−.78)	(−3.53)
Number of alters	−.029	.033
	(−.64)	(57)
Higher education	−.085**	−.044~
	(−4.69)	(−1.85)
Higher conservatism	−.232**	.142**
	(−5.94)	(2.83)
Age	−.015**	.012**
	(−4.72)	(3.04)
Sex	.215*	−.173
	(2.16)	(−1.32)
Democrat identification	.475**	
	(3.26)	
Interaction between	.497*	
Democrat identification	(2.41)	
network homogeneity	.660**	
	(3.42)	
Republican identification		
Interaction between	.636*	
Republican identification	(2.30)	
network homogeneity		
Higher income		
Constant		
Cut 1	−4.322	−.021
Cut 2	−3.325	2.101
Cut 3	−1.478	
N	1,343	864

Note: The figures in parentheses refer to the standardized regression coefficients.
*p < .05, **p < .01, ~ p < .05, one-tailed.

Discussion

Does the structure of our social networks impact how strongly we believe? In line with Berger’s plausibility structure theory, we used the GSS to assess the shared ideological agreement of respondent ego networks and their effects on beliefs. We found that a strong plausibility structure (indicated by a homogenous group of close ties) does help to support a variety of political and religious beliefs.

We found that Christians with a strong religious plausibility structure were more likely to hold negative views about abortion, homosexuality, and atheists. Similarly, we found that Democrats with a strong political plausibility structure were more likely to think that the government does not provide too much assistance. Republicans with a strong political plausibility structure were more likely to oppose higher taxation of the wealthy and government spending to aid black Americans. Collectively, we demonstrate both the operation of religious plausibility structures and the existence of non-religious plausibility structures as well. This is an important step toward generalizing plausibility structures, pointing both to their importance in human society even as it challenges the uniqueness of supernatural religion in providing meaning to humankind.

Our findings are important because they provide insight into the necessary social forces that can create and maintain polarizing political and religious attitudes. We find that having just one close tie who differs from your ideology can...
significantly affect attitude strength relating to that identity. Importantly, we observed this for both political and religious ideologies, suggesting a general mechanism that is not unique to particular belief structures. If more people could maintain close relationships with those outside of their ideological group, we might see reduced polarization. This finding is consistent with prior research showing how intergroup contact under certain conditions can reduce outgroup prejudice (Gaertner et al. 1994). Research suggests cultural diversity can help improve decision making and innovation (Galinsky et al. 2015). Additionally, severe political polarization may create economic issues (McConnell et al. 2018). Thus, there are practical applications for reducing ideological polarization in society.

As is typical when using large secondary data sets, we are limited to only the items available in the 1985 and 1987 General Social Surveys. As such, we are unable to explore how specific denominational memberships impact belief commitment. However, it is not clear how more specific denominational affiliation data would result in falsification of our hypotheses as we would be able to distinguish between groups most and least likely to support these particular ideas. In other words, the lack of specificity in our current models should work to punish our hypotheses rather than support them. Additionally, respondents sometimes overestimate the similarity of their alters to themselves (Ross, Greene, and House 1977), calling the validity of our measures of alter religion and political opinions into question. But so long as individuals believe their sacred umbrella to be intact, it likely functions as though it is, and so this issue is not critical. Another limitation of our data set is that the sample of both political parties is overwhelmingly Christian, depriving us of the statistical power necessary for cross-domain analyses. Finally, the religious and political identity measure in the ego network does not capture identity prominence of the alters. However, this limitation would only make it more difficult to find an effect.

While we rely on data from over 30 years ago, we do not consider this to be a serious limitation. Berger’s theory is not specific to any particular timeframe and so can be assessed with adequate data from any timeframe. Additionally, political polarization has significantly increased from the 1980s (Baldassarri and Gelman 2008; Pew Research Center 2016). Thus, if we were able to find significant effects with these data, it suggests that we would find even stronger effects today when partisan positions are even more distinct.

The data we used do not allow us to make strong inferences about the direction of causality. Do individuals first form a strong ideology and then associate with like-minded people? Or does associating with individuals impact one’s ideological framework? We are unable to tell for certain, although some research suggests cultural worldviews can influence network composition (Vaisey and Lizardo 2010). However it forms, a plausibility structure should shield the individual from challenges to his or her ideas, and thus at any given time, fewer people so supported should be experiencing a crisis of confidence. In cross-section, therefore, we ought to observe precisely what we do. A longitudinal study could potentially parse out causality, but it is not clear that reciprocal causation does not predominate here. Alternatively, a laboratory experiment could artificially produce belief networks and determine if belief strength decreases as heterogeneity rises. Obviously, it would be challenging to manipulate these factors successfully, but the rewards from a successful protocol would be substantial.

Conclusion

Our research has shown that a strong plausibility structure can bolster both religious and political beliefs. Beyond one’s close ties, we found that the number of political and religious acquaintances one knows can impact the strength of one’s beliefs as well, but this effect is not as strong or consistent. This difference in consistency likely helps to explain prior contradictory findings; plausibility structures are primarily supported by one’s important associates rather than those with specific domain knowledge. Additional work remains to be done, but it nonetheless appears that who you know impacts how strongly you believe.

Acknowledgments

Thanks to Zoe Zhong, Chan Suh, and Fedor Dokshin for their help developing the project. We would also like to thank Dr. Andrea Henderson for her helpful comments on our manuscript.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by a grant from the Defense Threat Reduction Agency (HDTRA-10-1-0043).

ORCID iDs

Matthew Facciani [i] https://orcid.org/0000-0002-3695-4100

Matthew E. Brashears [i] https://orcid.org/0000-0003-1029-4682

References

Aral, Sinan, and Marshall Van Alstyne. 2011. “The Diversity-Bandwidth Trade-Off.” *American Journal of Sociology* 117(1):90–171.

Aral, Sinan, Lev Muchnik, and Arun Sundararajan. 2009. “Distinguishing Influence-Based Contagion from Homophily-Driven Diffusion in Dynamic Networks.” *Proceedings of the National Academy of Sciences* 106(51):21544–49.

Baldassarri, Delia, and Andrew Gelman. 2008. “Partisans without Constraint: Political Polarization and Trends in American Public Opinion.” *American Journal of Sociology* 114(2):408–46.

Bail, Christopher A., Lisa P. Argyle, Taylor W. Brown, John P. Bumpus, Haohan Chen, M. B. Fallin Hunzaker, Jaemin Lee,
Marcus Mann, Friedolin Merhout, and Alexander Volfovsky. 2018. “Exposure to Opposing Views on Social Media Can Increase Political Polarization.” Proceedings of the National Academy of Sciences 115(37):9216–21.

Bell, David C., Benedetta Belli-McQueen, and Ali Haider. 2007. “Partner Naming and Forgetting: Recall of Network Members.” Social Networks 29(2):279–99.

Berger, Peter L. 1967. The Sacred Canon: Elements of a Sociological Theory of Religion. New York: Anchor Books.

Ben-Nun Bloom, Pazit, and Lindsey C. Levitan. 2011. “We’re Closer Than I Thought: Social Network Heterogeneity, Morality, and Political Persuasion.” Political Psychology 32(4):643–65.

Bienenstock, Elisa Jayne, Phillip Bonacich, and Melvin Oliver. 1990. “The Effect of Network Density and Homogeneity on Attitude Polarization.” Social Networks 12(2):153–72.

Brashears, Matthew E. 2010. “Anomia and the Sacred Canon: Testing a Network Theory.” Social Networks 32:187–96.

Brashears, Matthew E. 2011. “Small Networks and High Isolation? A Reexamination of American Discussion Networks.” Social Networks 33(4):331–41.

Brashears, Matthew E. 2014. “‘Trivial’ Topics and Rich Ties: The Relationship between Discussion Topic, Alter Role, and Resource Availability Using the ‘Important Matters’ Name Generator.” Sociological Science 1:493–511.

Burdette, Amy M., Christopher G. Ellison, and Terrence D. Hill. 2005. “Conservative Protestantism and Tolerance toward Homosexuals: An Examination of Potential Mechanisms.” Sociological Inquiry 75(2):177–96.

Burt, R. S. 1984. “Network Items and the General Social Survey.” Social Networks 6(4):293–339.

Burt, Ronald S. 1992. Structural Holes: The Social Structure of Competition. Cambridge, MA: Harvard University Press.

Centola, Damon. 2010. “The Spread of Behavior in an Online Social Network Experiment.” Science 329(5996):1194–97.

Cheadle, Jacob E., and Philip Schwadlof. 2012. “The ‘Friendship Dynamics of Religion,’ or the ‘Religious Dynamics of Friendship?’ A Social Network Analysis of Adolescents Who Attend Small Schools.” Social Science Research 41(5):1198–212.

Cowan, Sarah K. 2014. “Secrets and Misperceptions: The Creation of Self-Fulfilling Illusions.” Sociological Science 1:466–92.

Cowan, Sarah K., and Delia Baldassarri. 2018. “ ‘It Could Turn Ugly’: Selective Disclosure of Attitudes in Political Discussion Networks.” Social Networks 52:1–17.

Cragun, Ryan T., Barry Kosmin, Ariela Keysar, Joseph H. Hammer, and Michael Nielsen. 2012. “On the Receiving End: Discrimination toward the Non-religious in the United States.” Journal of Contemporary Religion 27(1):105–27.

De Tocqueville, Alexis. 2003. Democracy in America. Vol. 10. Washington, DC: Regnery Publishing.

DellaPosta, Daniel. 2018. “Gay Acquaintanceship and Attitudes toward Homosexuality: A Conservative Test.” Socios 4. doi:10.378023118798959.

Druckman, James N., and Kjersten R. Nelson. 2003. “Frameing and Deliberation: How Citizens’ Conversations Limit Elite Influence.” American Journal of Political Science 47(4):729–45.

Durkheim, Emile. [1897] 1951. Suicide: A Study in Sociology. Translated by John A. Spaulding, and George Simpson. Glencoe, IL: Free Press.

Fiorina, Morris P., and Samuel J. Abrams. 2008. “Political Polarization in the American Public.” Annual Review of Political Science 11:563–88.

Galinsky, Adam D., Andrew R. Todd, Astrid C. Homan, Katherine W. Phillips, Evan P. Apfelbaum, Stacey J. Sasaki, Jennifer A. Richeson, Jennifer B. Olasyon, and William W. Maddux. 2015. “Maximizing the Gains and Minimizing the Pains of Diversity: A Policy Perspective.” Perspectives on Psychological Science 10(6):742–48.

Gaertner, Samuel L., Mary C. Rust, John F. Dovidio, Betty A. Bachman, and Phyllis A. Anastasio. 1994. “The Contact Hypothesis: The Role of a Common Ingroup Identity on Reducing Intergroup Bias.” Small Group Research 25(2):224–49.

Gerber, Alan S., Gregory A. Huber, David Doherty, and Conor M. Dowling. 2012. “Disagreement and the Avoidance of Political Discussion: Aggregate Relationships and Differences across Personality Traits.” American Journal of Political Science 56(4):849–74.

Granberg, Donald, and Beth Wellman Granberg. 1980. “Abortion Attitudes, 1965–1980: Trends and Determinants.” Family Planning Perspectives 12(5):250–61.

Granovetter, Mark S. 1973. “The Strength of Weak Ties.” American Journal of Sociology 78(6):1360–80.

Hill, Jonathan P. 2014. “Rejecting Evolution: The Role of Religion, Education, and social Networks.” Journal for the Scientific Study of Religion 53(3):575–94.

Hogg, Michael A., David K. Sherman, Joel Dierselhuis, Angela T. Maitner, and Graham Moffitt. 2007. “Uncertainty, Entitativity, and Group Identification.” Journal of Experimental Social Psychology 43:135–42.

Huckfeldt, Robert. 2007. “Unanimity, Discord, and the Communication of Public Opinion.” American Journal of Political Science 51(4):978–95.

Kahan, Dan M., Ellen Peters, Maggie Wittlin, Paul Slovic, Lisa Larrimore Ouellette, Donald Braman, and Gregory Mandel. 2012. “The Polarizing Impact of Science Literacy and Numeracy on Perceived Climate Change Risks.” Nature Climate Change 2(10):732–35.

Kahn, Herman. [1960] 2017. On Thermonuclear War. New York, NY: Routledge.

Kalman, Nathan P., and Lillianna Mason. 2018. “Lethal Mass Partisanship: Prevalence, Correlates, and Electoral Contingencies.” Paper presented at the 2018 American Political Science Association’s Annual Meeting, Boston, MA.

Kay, Aaron C., Danielle Gaucher, Jamie L. Napier, Mitchell J. Callan, and Kristin Laurin. 2008. “God and the Government: Testing a Compensatory Control Mechanism for the Support of External Systems.” Journal of Personality and Social Psychology 95(1):18–35.

Kempe, David, Evan P. Apfelbaum, Stacey J. Sasaki, Jennifer A. Richeson, Jennifer B. Olasyon, and William W. Maddux. 2015. “Maximizing the Gains and Minimizing the Pains of Diversity: A Policy Perspective.” Perspectives on Psychological Science 10(6):742–48.

Kempe, David, Jon Kleinberg, and Éva Tardos. 2003. “Maximizing the Spread of Influence through a Social Network.” Pp. 137–46 in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM.

Langston, Joseph, Heather Albaneis, and Matthew Facciani. 2019. “Toward Faith: A Qualitative Study of How Atheists Convert to Christianity.” Journal of Religion & Society 21:1–21.

McConnell, Christopher, Yotam Margalit, Neil Malhotra, and Matthew Levendusky. 2018. “The Economic Consequences of Partisanship in a Polarized Era.” American Journal of Political Science 62(1):5–18.

McGregor, Ian, Mark P. Zanna, John G. Holmes, and Steven J. Spencer. 2001. “Compensatory Conviction in the Face of Personal Uncertainty: Going to Extremes and Being Oneself.” Journal of Personality and Social Psychology 80(3):472–88.
Mutz, Diana C., and Jeffery J. Mondak. 2006. “The Workplace as a Context for Cross-cutting Political Discourse.” *Journal of Politics* 68(1):140–55.

Perry, Brea L., and Bernice A. Pescosolido. 2010. “Functional Specificity in Discussion Networks: The Influence of General and Problem-Specific Networks on Health Outcomes.” *Social Networks* 32(4):345–57.

Petersen, Larry R., and Gregory V. Donnenwerth. 1997. “Secularization and the Influence of Religion on Beliefs about Premarital Sex.” *Social Forces* 75:1071–88.

Petersen, Larry R. 2001. “Religion, Plausibility Structures, and Education’s Effect on Attitudes toward Elective Abortion.” *Journal for the Scientific Study of Religion* 40(2):187–204.

Pew Research Center. 2007. “Trends in Attitudes toward Religion and Social Issues: 1987–2007.” http://www.pewresearch.org/2007/10/15/trends-in-attitudes-toward-religion-and-social-issues-19872007/

Pew Research Center. 2015. “5 Facts on How Americans View Taxes.” http://www.pewresearch.org/fact-tank/2015/04/10/5-facts-on-how-americans-view-taxes/.

Pew Research Center. 2016. “Partisanship and Political Animosity in 2016.” http://www.people-press.org/2016/06/22/partisanship-and-political-animosity-in-2016/

Robison, Joshua, Thomas J. Leeper, and James N. Druckman. 2018. “Do Disagreeable Political Discussion Networks Undermine Attitude Strength?” *Political Psychology* 39:479–94.

Rosenberg, Morris. 1954. “Some Determinants of Political Apathy.” *Public Opinion Quarterly* 18(4):349–66.

Ross, Lee, David Greene, and Pamela House. 1977. “The ‘False Consensus Effect’: An Egocentric Bias in Social Perception and Attribution Processes.” *Journal of Experimental Social Psychology* 13(3):279–301.

Schnabel, Landon, and Sean Bock. 2017. “The Persistent and Exceptional Intensity of American Religion: A Response to Recent Research.” *Sociological Science* 4:686–700.

Small, Mario Luis. 2013. “Weak Ties and the Core Discussion Network: Why People Regularly Discuss Important Matters with Unimportant Alterns.” *Social Networks* 35(3):470–83.

Smith, Tom W. 1999. *1998 National Gun Policy Survey of the National Opinion Research Center: Research Findings*. Chicago: National Opinion Research Center, University of Chicago.

Smith, Christian, Michael Emerson, Sally Gallagher, Paul Kennedy, and David Sikkink. 1998. *American Evangelicalism: Embattled and Thriving*. Chicago: University of Chicago Press.

Steensland, Brian, Lynn D. Robinson, W. Bradford Wilcox, Jerry Z. Park, Mark D. Regnerus, and Robert D. Woodberry. 2000. “The Measure of American Religion: Toward Improving the State of the Art.” *Social Forces* 79(1):291–318.

Stroope, Samuel. 2012. “Social Networks and Religion: The Role of Congregational Social Embeddedness in Religious Belief and Practice.” *Sociology of Religion* 73(3):273–98.

Sunstein, Cass R. 2002. “The Law of Group Polarization.” *Journal of Political Philosophy* 10(2):175–95.

Taber, Charles S., and Milton Lodge. 2006. “Motivated Skepticism in the Evaluation of Political Beliefs.” *American Journal of Political Science* 50(3):755–69.

Ulbig, Stacy G., and Carolyn L. Funk. 1999. “Conflict Avoidance and Political Participation.” *Political Behavior* 21(3):265–82.

Vaisey, Stephen, and Omar Lizardo. 2010. “Can Cultural Worldviews Influence Network Composition?” *Social Forces* 88(4):1595–618.

Visser, Penny S., and Robert R. Mirabile. 2004. “Attitudes in the Social Context: The Impact of Social Network Composition on Individual-Level Attitude Strength.” *Journal of Personality and Social Psychology* 87(6):779–95.

Williams, Hywel T. P., James R. McMurray, Tim Kurz, and F. Hugo Lambert. 2015. “Network Analysis Reveals Open Forums and Echo Chambers in Social Media Discussions of Climate Change.” *Global Environmental Change* 32:126–38.

Author Biographies

Matthew Facciani is a PhD candidate in sociology at the University of South Carolina. Facciani’s academic interests include identity, social networks, emotions, and research methods. For his dissertation, Facciani is studying how self-evaluations and social network composition influence political bias. Facciani is also working on a project funded by the Army Research Institute that investigates different methodologies for studying cultural scripts. Facciani has also published work using content-analysis and thematic-analysis techniques, which have been published in *Race, Gender, and Class* and the *Journal of Religion & Society*. Additionally, Facciani has published research on quantitative methodology, which can be found in *The Quantitative Methods for Psychology and Human Brain Mapping*.

Matthew E. Brashears is an associate professor of sociology at the University of South Carolina. His work integrates ideas from evolutionary theory, social networks, organizational theory, and neurosciences. His current research focuses on linking cognition to social network structure, studying the effects of error and error correction on diffusion dynamics, and using ecological models to connect individual behavior to collective dynamics. His work has appeared or is forthcoming in *Nature Scientific Reports*, the *American Sociological Review*, the *American Journal of Sociology*, *Social Networks, Advances in Group Processes*, and *Frontiers in Cognitive Psychology*, among others. He has received grants from the National Science Foundation, the Defense Threat Reduction Agency, the Army Research Institute, the Army Research Office, and the Office of Naval Research. He is currently serving a term as co-editor for the journal *Social Psychology Quarterly* and currently serves as an officer in the American Sociological Association’s Social Psychology Section.