Is Cytochrome P-450 Transported from the Endoplasmic Reticulum to the Golgi Apparatus in Rat Hepatocytes?

AKITSUGU YAMAMOTO, RYUICHI MASAKI, and YUTAKA TASHIRO
Department of Physiology, Kansai Medical University, Moriguchi-shi, Osaka 570, Japan

ABSTRACT The Golgi apparatus mediates intracellular transport of not only secretory and lysosomal proteins but also membrane proteins. As a typical marker membrane protein for endoplasmic reticulum (ER) of rat hepatocytes, we have selected phenobarbital (PB)-inducible cytochrome P-450 (P-450(PB)) and investigated whether P-450(PB) is transported to the Golgi apparatus or not by combining biochemical and quantitative ferritin immunoelectron microscopic techniques. We found that P-450(PB) was not detectable on the membrane of Golgi cisternae either when P-450 was maximally induced by phenobarbital treatment or when P-450 content in the microsomes rapidly decreased after cessation of the treatment. The P-450 detected biochemically in the Golgi subcellular fraction can be explained by the contamination of the microsomal vesicles derived from fragmented ER membranes to the Golgi fraction. We conclude that when the transfer vesicles are formed by budding on the transitional elements of ER, P-450 is completely excluded from such regions and is not transported to the Golgi apparatus, and only the membrane proteins destined for the Golgi apparatus, plasma membranes, or lysosomes are selectively collected and transported.

The existence of endoplasmic reticulum (ER) marker enzymes such as P-450, NADPH-cytochrome c reductase, and glucose-6-phosphatase (G-6-Pase) in the Golgi apparatus remains controversial. A small amount of P-450 has been detected in the Golgi fraction by various authors (1–3). Jarasch et al. (4) studied this problem extensively and presented much evidence that P-450 exists not only in the Golgi apparatus but also in the plasma membranes. Howell et al. (5) reported that a significant amount of NADPH-cytochrome c reductase and G-6-Pase are present in isolated Golgi fractions when assayed immediately after their isolation. By immunabsorption, Ito and Palade (6) concluded that NADPH-cytochrome c reductase is a bona fide Golgi membrane enzyme that probably distributed unevenly among the elements of Golgi complex. These observations have lead Rothman (7) to propose a distillation tower model of the Golgi apparatus: that is, the Golgi apparatus is a multistage distillation tower which may act sequentially to refine the protein export of the ER by removing escaped ER proteins.

In the previous papers (8, 9), however, we have presented qualitative immunoelectron microscopic evidence that suggests that P-450 does not exist either on the Golgi apparatus or transport vesicles.

Whether or not P-450 is transported to the Golgi apparatus accompanied by secretory proteins is so important for the consideration of sorting mechanisms that might work in the intracellular transport between the ER and the Golgi apparatus that we have investigated this problem in detail by combining biochemical and quantitative ferritin immunoelectron microscopic techniques.

We found that phenobarbital (PB)-inducible cytochrome P-450 (P-450(PB)) is not detectable on the membranes of Golgi cisternae either when P-450 is maximally induced in rat hepatocytes by PB treatment or when P-450 content in the microsomes rapidly decreased after cessation of the treatment. It is very probable, therefore, that P-450 is sorted out on the membranes of the transitional ER and is not incorporated into the limiting membranes of transport vesicles when they are formed by budding mechanisms, thus is not transported to the Golgi apparatus. A part of this paper has been reported at the 3rd International Congress of Cell Biology (10).

MATERIALS AND METHODS

Abbreviations used in this paper: ER, endoplasmic reticulum; G-6-Pase, glucose-6-phosphatase; PB, phenobarbital; P-450(PB), major form of cytochrome P-450 in hepatic microsomes of PB-treated rats; VLDL, very low density lipoprotein.

Materials: PB was purchased from Sanko Seiyaku Kogyo Co., Ltd., Tokyo. 125I-Labeled protein A (50 mCi/mg protein) was obtained from Amer-
sham International, England. Bio-gel A 1.5 M was from Bio-Rad Laboratories, Richmond, CA. All other chemicals used were of the highest purity commercially available.

Preparation of Golgi and Microsomal Fractions from Rat Livers: Male Sprague-Dawley rats (~150 g body weight) were fed at libitum on laboratory chow and were given an intraperitoneal injection of PB (80 mg/kg body weight) once a day for 4 d.

The animals were killed by a blow to the head. The livers were quickly removed and perfused with 0.25 M sucrose, weighed, and minced with a razor. The Golgi fraction was prepared according to Hino et al. (11).

Briefly, the minced liver was crushed with a wooden spatula through a stainless-steel mesh (100 mesh), and the disrupted cells were suspended in 2 vol of homogenizing medium (H-medium; 0.5 M sucrose containing 50 mM Tris-maleate buffer, pH 6.75 and 1% dextran). The suspension was centrifuged at 1,000 g for 5 min, and the supernatant plus the fluffy layer were further centrifuged at 5,000 g for 10 min. The loosely packed pellet was stirred with a glass rod, and the thick suspension (~1 ml) was loaded onto ~6 ml of 1.2 M sucrose and centrifuged at 90,000 g for 60 min in a Hitachi PRS 40 rotor (equivalent to Beckman SW 40 Ti rotor). The membranes on the 1.2 M sucrose layer were pooled, diluted ~5 times with H-medium, and then placed over a small amount of 1.2 M sucrose, and centrifuged at 5,000 g for 15 min. The washed membranes thus obtained were gently resuspended in H-medium and used as the Golgi fraction.

Total microsome fraction was prepared from the supernatant of the second centrifugation at 5,000 g for 10 min. After further centrifugation at 10,000 g for 20 min, the supernatant was centrifuged at 77,000 g for 80 min, and the pellets were used as total microsomes.

Biochemical Analyses: P-450 was determined by the method of Omura and Sato (12). NADPH-cytochrome c reductase was estimated as described by Omura and Takebe (13). G-6-Pase, galactosyltransferase, cytochrome oxidase, acid phosphatase, and cathepsin D activities were determined by the methods of Leske et al. (14), Fleischer et al. (15), Warton and Tzagoloff (16), Pricer and Ashwell (17), and Yamamoto et al. (18), respectively.

These enzyme activities were assayed immediately after their isolation. Protein was determined by the method of Lowry et al. (19) using bovine serum albumin as the standard.

Purification of P-450(PB) and Preparation of the Antibodies: P-450(PB) was purified from liver microsomes of PB-treated rats according to the procedures of Elshourbagy and Guzelian (20) with some modifications as described previously (21). Anisumem to the cytochrome was elicited in rabbits, and the IgG fraction of the antiserum was purified by repeated ammonium sulfate fractionation followed by DEAE column chromatography (21). The specific antibody was purified by affinity chromatography using Sepharose 4B conjugated with the purified cytochrome.

Characterization of the Specific Antibody by Immunoblotting: The immunological specificity of the antibody was tested by double immunodiffusion analysis as described previously (22) and by immunoblotting of P-450(PB) from microsomal and Golgi membranes according to Burnett (23). Briefly, proteins of the microsomal and Golgi fractions prepared as described above were separated by SDS PAGE and transferred electrophoretically to a nitrocellulose sheet. The sheet was incubated with the antibody specific for P-450(PB) (20 μg/ml) and then with 125I-labeled protein A (1 μCi/ml) and visualized by autoradiography. For quantitative assay, the portion of nitrocellulose sheet corresponding to the radioactive band was cut out, and the radioactivity was measured with a Packard model 5780 autogamma spectrometer. As a control, purified P-450(PB) was analyzed simultaneously.

Preparation of Ferritin Antibody Conjugates and Immuno-
Figure 1 SDS PAGE and immunoblotting of the proteins from the microsomal (M) and the Golgi (G) fractions. The microsomal and the Golgi proteins (24 µg each) were separated on SDS PAGE and stained with Coomassie Brilliant Blue (A), or transferred electrophoretically to a nitrocellulose sheet and analyzed by autoradiography after labeling with 125I-protein A (B). Purified P-450(PB) (~400 ng) was analyzed by immunoblotting simultaneously (P-450[PB]). An arrow indicates the position corresponding to 53 kD.

The amount of P-450(PB) in each fraction was estimated by measuring the radioactivity as described in Materials and Methods. The P-450(PB) content of the Golgi fraction was 24% of that of the microsomal fraction. This ratio was equal to that of the total P-450 content of the two fractions.

Fig. 2 shows an electron micrograph of rat liver microsome fraction incubated with ferritin antibody conjugates against P-450 (PB). Since the microsome fraction was prepared from PB-treated rats, the surfaces of most of the microsomal vesicles are completely covered by ferritin particles except for the regions studded with ribosomes. It is to be noted that there are a few smooth vesicles that are hardly labeled at all as shown by star marks in Fig. 2. Such unlabeled vesicles are composed of ~1% of all the microsomal vesicles.

Ferritin Immunochemistry of Liver Microsome Fraction Prepared from PB-treated Rats

FIGURE 2 Electron micrograph of the total microsome fraction incubated with ferritin-antibody conjugates against P-450(PB). Total microsomes of liver were prepared from rats previously treated with PB. Note that the small vesicles presumably derived from ER membranes are wholly covered by ferritin particles, whereas some of the vesicles that are presumably derived from other than ER membranes (stars) are hardly labeled at all. Bar, 0.2 µm. x 96,000.
Fig. 3, A and B show electron micrographs of the Golgi fraction prepared according to the procedure of Hino et al. (11). In this procedure rat livers were crushed with a wooden spatula through a stainless steel mesh, and no strong shearing force was applied throughout the preparation procedure. Most of the Golgi apparatus thus prepared preserved well their original structural organization as shown in Fig. 3. They are composed of stacks of three or four cisternae, usually showing a convex cis or forming face (C) and a concave trans or maturing face (T). The outermost cis-Golgi cisterna is occasionally fenestrated and associated with small vesicles. They sometimes contain very low density lipoprotein (VLDL) particles and presumably correspond to the transport vesicles found between transitional ER and the Golgi apparatus. Occasionally secretory vesicles containing a number of VLDL particles are associated with the trans Golgi cisternae. As shown in Fig. 3, such complex structure of the Golgi apparatus is preserved even after incubation with ferritin antibody conjugates and repeated washing procedures, if carefully treated. Since these profiles of the isolated rat liver Golgi apparatus were quite similar to those in vivo as described previously (9), it is not likely that one or more of the Golgi cisternae, especially the outermost one, were lost during preparation of the Golgi apparatus.

This fraction also contains Golgi elements dissociated in various degrees from the Golgi apparatus such as single Golgi lamellae, transport vesicles, and secretory vesicles. In addition, it also contains a small number of lysosomes, rough and smooth microsomal vesicles, and mitochondria.

It is quite evident from Fig. 3 that not only the Golgi cisternal membrane of the cis side but also that of the trans side are heavily labeled with ferritin particles. Furthermore, neither small vesicles on the cis side, which occasionally contain a VLDL particle (small arrows) and therefore presumably correspond to transport vesicles, nor the secretory vesicles on the trans side were labeled (not shown). Dissociated Golgi cisternae, usually buckled and sometimes containing VLDL particles, are also heavily labeled and at control level.

In marked contrast to these Golgi apparatus, this fraction contains a few small vesicles heavily labeled with ferritin particles (large arrows), occasionally simultaneously studded with ribosomes (Fig. 3A, arrowhead).

We counted ferritin particles on these various membranes and calculated the average particle density of the membranes (Table II). In this table, the membranes in the Golgi fraction are classified into the cis-most and trans-most membranes of the undissociated Golgi apparatus and those of the other vesicles, and the particle densities on these various membranes were shown, together with that of the total microsomal fraction. Golgi cisternae other than the cis-most and the trans-most ones were excluded from the calculation, because the ferritin antibody conjugates could not penetrate into the intercisternal spaces of the Golgi apparatus. The average particle density of all the membrane structures in the Golgi fraction was ~25% of that of the total microsome fraction, and the particle density of both the cis-most and the trans-most Golgi cisternae were at the control level; hardly any ferritin particles were found there when the fraction was incubated either with ferritin–antibody conjugates or control conjugates.

The distribution of ferritin particles on the small vesicles other than those composing the Golgi apparatus was more precisely analyzed by comparing the distribution of the number of profiles in relation to the ferritin load on the vesicles of the Golgi fraction with that of the microsome fractions (Fig. 4). In the Golgi fraction, there are evidently two groups of vesicles; one of which is heavily loaded with ferritin (group B in Fig. 4) and another is hardly loaded (group A in Fig. 4).

Table III indicates that the surface area of the vesicles heavily loaded with ferritin was composed of ~22% of that of the total membrane profiles in the Golgi fraction. The particle density of the former (78.0) was exactly similar to that of the total microsomes (75.6). These results strongly suggest that the vesicles heavily studded with ferritin particles are exclusively derived from the ER membranes, and P-450(PB) detectable in the Golgi fraction, therefore, can be explained by these contaminated ER membranes.

Biochemical and Immunoelectron Microscopical Analyses of P-450 after Cessation of PB Treatment

After cessation of PB treatment, the P-450 content of both the microsome and Golgi fraction decreases rapidly to the control level in 1 wk as shown in Fig. 5. We investigated whether or not P-450 is transported to the Golgi apparatus in this regression phase.
Additionally segregated into the intracisternal space of ER and time the two membranes establish continuity (31, 37).

...two membranes in the pancreas and in the liver are different. As shuttles between the two compartments (31-33).

...the membrane vesicles that are removed from the rims of cis-Golgi cisternae by budding vesicles that then fuse with ER. The Golgi apparatus, especially the cis compartment, thus functions as a multistage fractional distillator by removing escaped ER proteins.

The vesicles that were loaded with <25 ferritin particles/μm membrane were named as group A, and the others were named as group B.

Table III. Density of Ferritin Particles on Group A and B Vesicles in Golgi Fraction*

Conjugates	Anti-P-450(PB)	Control	Specific binding
Group A	62.8	1.0	0.2
Group B	22.2	79.2	78.0

* No. of ferritin particles bound per micrometer of membranes. In this Table the total surface area of the vesicles analyzed was 260 μm², and about 500 vesicles were analyzed.

As shown in Fig. 6 and Table IV, the cisternal membranes of the Golgi apparatus were not stained with ferritin throughout this regression phase.

DISCUSSION

It has been well established (31) that secretory proteins synthesized on the membrane-bound ribosomes are co-translationally segregated into the intracisternal space of ER and transported to the transitional portion of the ER (transitional ER), where secretory proteins are packaged in transport vesicles. These vesicles presumably fuse with the outermost cisternae of the Golgi apparatus, and thus the secretory proteins are transported in the intracisternal space of the Golgi apparatus. It is further suggested that the membrane vesicles that serve to ferry secretory protein pinch off from the Golgi cisternae and recycle back to the transitional ER, thus serving as shuttles between the two compartments (31-33).

Biochemical analyses of the ER and Golgi membranes indicated that the lipid (34, 35) or the protein (3, 36) of the two membranes in the pancreas and in the liver are different. It was suggested that there is no mixing among either the lipid or the protein components of the ER and Golgi membranes. Existence of marker enzymes specific for the two membranes also imposes severe restrictions on the exchange of molecular components between the ER and the Golgi membranes at the time the two membranes establish continuity (31, 37).

TABLE III. Density of Ferritin Particles on Group A and B Vesicles in Golgi Fraction*

Conjugates	Anti-P-450(PB)	Control	Specific binding
Group A	62.8	1.0	0.2
Group B	22.2	79.2	78.0

* No. of ferritin particles bound per micrometer of membranes. In this Table the total surface area of the vesicles analyzed was 260 μm², and about 500 vesicles were analyzed.

As shown in Fig. 6 and Table IV, the cisternal membranes of the Golgi apparatus were not stained with ferritin throughout this regression phase.

DISCUSSION

It has been well established (31) that secretory proteins synthesized on the membrane-bound ribosomes are co-translationally segregated into the intracisternal space of ER and transported to the transitional portion of the ER (transitional ER), where secretory proteins are packaged in transport vesicles. These vesicles presumably fuse with the outermost cisternae of the Golgi apparatus, and thus the secretory proteins are transported in the intracisternal space of the Golgi apparatus. It is further suggested that the membrane vesicles that serve to ferry secretory protein pinch off from the Golgi cisternae and recycle back to the transitional ER, thus serving as shuttles between the two compartments (31-33).

Biochemical analyses of the ER and Golgi membranes indicated that the lipid (34, 35) or the protein (3, 36) of the two membranes in the pancreas and in the liver are different. It was suggested that there is no mixing among either the lipid or the protein components of the ER and Golgi membranes. Existence of marker enzymes specific for the two membranes also imposes severe restrictions on the exchange of molecular components between the ER and the Golgi membranes at the time the two membranes establish continuity (31, 37).

If ER marker enzymes such as P-450, NADPH-cytochrome c reductase, and G-6-Pase, however, do exist in significant amounts in the Golgi membranes as described in the Introduction, the restriction imposed on the interaction between the ER and the Golgi membrane may be not so stringent. In fact, it is suggested by Rothman (7) that these ER marker proteins are transported together with secretory proteins but are removed from the rims of cis-Golgi cisternae by budding vesicles that then fuse with ER. The Golgi apparatus, especially the cis compartment, thus functions as a multistage fractional distillator by removing escaped ER proteins.

To investigate precisely whether or not the ER membrane proteins are transported to the Golgi apparatus, P-450(PB) appears to be the best ER marker enzyme, because it is certainly the most abundant membrane protein of the ER when maximally induced by PB treatment; the amount of P-450(PB) of rat liver smooth microsomes arrives at the level of ~1.0 nmol/mg microsomal protein (21). Since the membrane proteins represent 85-90% of the total microsomal proteins (38), it is estimated that ~6% of all the ER membrane proteins is P-450(PB). This membrane protein presumably exists mainly on the cytoplasmic domain of the ER membranes (39, 40), and it is suggested that ~10% of all the cytoplasmic surface of the ER membrane is occupied by P-450(PB) under such conditions.

After cessation of the PB treatment, both the content of total P-450 and of P-450(PB) in the microsome fraction decreases rapidly to the control level within several days (21, 41). If P-450(PB) is transported to the Golgi apparatus accompanied by secretory proteins or transported further to the lysosomes to be degraded, P-450(PB) should be detectable at least on the cis side of the Golgi membranes.

A biochemical approach to this problem by assaying P-450 in the Golgi fraction is not favorable, because it is not possible to prepare the Golgi membranes without contamination of the ER membranes (microsomes). We therefore applied quan-
FIGURE 6 Rat liver Golgi fraction prepared at day 5 after cessation of PB treatment and incubated with ferritin antibody conjugates against P-450(PB). C and T indicates cis and trans sides of the Golgi apparatus, respectively. Bar, 0.2 μm. × 75,000.

TABLE IV. Binding of Ferritin Anti-P-450 Antibody Conjugates to Microsomes and Golgi Cisternae after Cessation of Treatment with PB

Time after PB treatment	Microsomes	Cis	Trans
d	75.6	0.1	0.1
1	70.2	0.6	0
3	66.8	0.3	0
5	37.8*	0	0

* No. of ferritin particles bound per micrometer of membrane. The total number of microsomal vesicles and Golgi apparatus analyzed at each time point were ~100.

* This value was equal to the particle density of the liver microsomes from control rats (not treated with PB).

We have shown that no significant amount of P-450 was detectable on the Golgi cisternal membranes either when P-450 was maximally induced by PB treatment or during the rapid decrease in the amount of P-450 after cessation of the PB treatment. The Golgi fraction, however, did contain small vesicles heavily labeled with ferritin particles. The particle density of these vesicles, however, was exactly similar to that of the microsomal vesicles in the microsome fraction (Fig. 4), and we suggested that these heavily labeled vesicles were derived from ER membrane, because the ratio in the length of heavily labeled vesicles to the total membrane of the Golgi fraction was ~22% (Table III), which was equal to the ratio in the content of P-450(PB) in the Golgi fraction to that of the microsomal fraction as shown by immunoblotting analysis. It is very probable, therefore, that P-450(PB) detected in the Golgi fraction can be exclusively attributed to the contamination of the fragmented ER membranes to the Golgi fraction.

Table II indicates that the particle density of the microsomes (~80/μm) was much higher than that of the Golgi cisternae, which was equal to the control level. This particle density on the microsomes is presumably underestimated; by PB treatment specific contents of P-450(PB) in liver microsomes increased 10-20 times (21, 44, 45), whereas the increase in the particle density was only ~2 times. After cessation of PB treatment, the P-450(PB) content decreased rapidly and markedly (21), whereas the number of ferritin particles on the microsomal membranes decreased more slowly to the level of only one half of the maximal level (Table IV).

At least two factors should be considered. One is the decrease in the apparent particle density due to the overlapping of ferritin particles on the cross-sectional profiles. Since experimental estimation of this effect on the microsomal vesicles is quite difficult, we simply estimated the overlapping effect...
REFERENCES

1. Fleischer, S., B. Fleischer, A. Azzi, and B. Chance. 1971. Cytochrome b and P-450 in liver cell fractions. Biochim. Biophys. Acta 225:194-200.

2. Ikeda, K., and T. Yamamoto. 1970. Cytochrome b and CO-binding cytochromes in the Golgi membranes of mammalian liver. Biochim. Biophys. Acta 240:297-305.

3. Bergeron, J. M., J. H. Ehrenreich, P. Siekevitz, and G. E. Palade. 1973. Golgi fractions—What does this mean? J. Cell Biol. 30:5.

4. Burnett, W. N. 1981. Immunoelectron microscopy and its applications in cell biology. J. Cell Biol. 89:237-253.

5. Mosesson, M. W., and A. J. Tischer. 1979. Immunofluorescent localization of cytochrome b and P-450 in rat liver Golgi membranes. J. Cell Biol. 89:581-589.

6. Tashiro, Y., H. Nakada, R. Masaki, and A. Yamamoto. 1984. Transport of membrane proteins in rat liver Golgi apparatus. 3rd International Cell Biology. 1984, S. Seno and Y. Okada, editors. The Japan Society for Cell Biology. 98.

7. Hino, Y., A. Asano, R. Sato, and S. Shimizu. 1978. Biochemical studies on rat liver Golgi apparatus. I. Isolation and preliminary characterization. J. Biochem. (Tokyo) 92:909-923.

8. Oomura, T., and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J. Biol. Chem. 239:2379-2385.

9. Oomura, T., and S. Takeda. 1964. A new method for simultaneous purification of cytochrome b and NADPH-cytochrome c reductase from rat liver microsomes. J. Biochem. (Tokyo) 67:249-257.

10. Leske, A., P. Siekeritz, and G. E. Palade. 1971. Differentiation of endoplasmic reticulum in hepatocytes. 1. Glucose-6-phosphatase distribution in situ. J. Biol. Chem. 249:294-287.

11. Fleischer, B. S. Fleischer, and H. Otsuka. 1969. Isolation and characterization of Golgi membranes from bovine liver. J. Biol. Chem. 243:59-79.

12. Wharton, D. C., and A. Tzagoloff. 1967. Cytochrome oxidase from beef heart mitochondria. J. Biol. Chem. 242:2823-2825.

13. Price, W. E., Jr., and G. Ashwell. 1976. Subcellular distribution of a mammalian hepatic-binding protein specific for asialoglycoprotein. J. Biol. Chem. 251:7339-7344.

14. Matsuura, K., N. Kanada, M. Himeono, and K. Kato. 1979. Cathodaphosphate d in rat liver. Eur. J. Biochem. 95:459-467.

15. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.

16. Elsborg, N. A., and P. S. Guzelian. 1980. Separation, purification, and characterization of a novel form of hepatic cytochrome P-450 from rats treated with pregnenolone-20-carboxylate. J. Biol. Chem. 255:1279-1285.

17. Masaki, R., S. Matsuura, and Y. Tashiro. 1984. A biochemical and electron microscopic study of changes in the content of cytochrome P-450 in rat liver after cessation of treatment with phenobarbital, 3-methylcholanthrene, and 3-methylcholanthrene. Cell Struct. Func. 9:53-66.

18. Matsuura-Mikawa, R., Y. Fuji-Kyriyama, M. Negishi, and Y. Tashiro. 1979. Purification and partial characterization of hepatic microsomal cytochrome P-450 from phenobarbital- and 3-methylcholanthrene-treated rats. J. Biochem. 86:1383-1394.

19. Kishida, Y., B. R. Olsen, A. R. Berg, and D. J. Prockop. 1975. Two improved methods for preparing ferritin-protein conjugates for electron microscopy. J. Cell Biol. 64:331-339.

20. Matsuura, S., Y. Fuji-Kyriyama, and Y. Tashiro. 1979. Quantitative immunoelectron microscopic analysis of the distribution of cytochrome P-450 molecules on rat liver microsomes. J. Cell Biol. 36:413-435.

21. Matsuura, S., H. Nakada, T. Sawamura, and Y. Tashiro. 1982. Distribution of an asialoglycoprotein receptor on rat hepatocyte cell surface. J. Cell Biol. 95:844-875.

22. Ryan, D. E. P., E. Thomas, and W. Levin. 1982. Purification and characterization of a minor form of hepatic microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls. Arch. Biochem. Biophys. 216:275-285.

23. Thomas, P. E., L. M. Reid, D. E. Ryan, and W. Levin. 1981. Regulation of three forms of cytochrome P-450 and epoxide hydrolase in rat liver microsomes. J. Biol. Chem. 256:1029-1032.

24. Palade, D. E. 1975. Intracellular aspects of the process of protein synthesis. Science (Wash. DC). 189:347-358.

25. Tanaka, K. G., and H. E. Palade. 1954—1951—from artifact to central stage. J. Cell Biol. 19 (1, Pt. 2): 77s-103s.

26. Jamieson, J. D., and G. E. Palade. 1967. Intracellular transport of secretory proteins by the exocytotic exocrine cell. I. The peripheral region of the Golgi complex. J. Cell Biol. 34:57-596.

27. Kozlowski, T. W., and D. J. Morris. 1970. Phospholipid class and fatty acid composition of Golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry. 9:19-25.

28. Meldolesi, J. D., J. D. Jamieson, and G. E. Palade. 1971. Composition of cellular membranes in the pancreas of the guinea pig. II. Lactides. J. Cell Biol. 49:130-149.

29. Van Gelder, L. M. G., B. Fleischer, and S. Fleischer. 1971. Some studies on the metabolism of phospholipids in Golgi complex from bovine and rat liver in comparison to other subcellular fractions. Biochim. Biophys. Acta. 249:318-330.

30. Palade, G. E. 1982. Problems in intracellular membrane traffic. In Membrane Recycling. Ciba Foundation Symposium. Volume 92. Pitman Publishing Inc., Mansfield, MA. 1-14.

31. Kreibich, G. A. L. Hubbard, and D. S. Sabatini. 1974. On the spatial arrangement of proteins in microsomal membranes from rat liver. J. Cell Biol. 60:616-627.

32. Matsuura, S., R. Masada, K. Omori, M. Negishi, and Y. Tashiro. 1981. Distribution and induction of cytochrome P-450 in rat liver nuclear envelope. J. Cell Biol. 91:212-226.

33. Matsuura, S., R. Masada, O. Sakai, and Y. Tashiro. 1983. Immunoelectron microscopy of the outer membrane of rat hepatic cytochrome nuclear envelopes in relation to the rough endoplasmic reticulum. Cell Struct. Funct. 8:1-9.

34. Ernst, L., and S. Orrenius. 1965. Substrate-induced synthesis of the hydroxyating enzyme system of liver microsomes. Fed. Proc. 24:1190-1199.

35. Matsuura, S., S. Eto, K. Kato, and Y. Tashiro. 1984. Ferritin immunoelectron microscopic localization of 5'-nucleotidase on rat liver cell surface. J. Cell Biol. 99:166-173.

36. Takemura, S., K. Omori, K. Tanaka, K. Omori, S. Matsuura, and Y. Tashiro. 1984. Quantitative immunofluorescent localization of cytochrome b and P-450 in rat liver cell surface. J. Cell Biol. 99:1502-1510.

37. Matsuura, S., T. Omura, and T. Omura. 1979. Quantitative induction of two different molecular species of cytochrome P-450 by phenobarbital and 3-methylcholanthrene. J. Biochem. 89:237-248.

38. Znami, M., S. Bar-Nun, F. Maucho, M. Zschunck, A. Lipmann, and E. Bard. 1981. Mechanism of induction of cytochrome P-450 by phenobarbital. J. Biol. Chem. 256:10340-10345.

39. Small, J. V. 1968. Measurements of section thickness. Proc. 4th Eur. Congress Electron Micros. 1:569.