Saving endangered species using adaptive management

Robert Serrouya1,2,3, Dale R. Seip3, Dave Hervieux4, Bruce N. McLellan5, R. Scott McNay6, Robin Steenweg7, Doug C. Heard8, Mark Hebblewhite9, Michael Gillingham10, and Stan Boutin1

1Caribou Monitoring Unit, Alberta Biodiversity Monitoring Institute, Edmonton, AB T6G 2E9, Canada; 2Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; 3Conservation Science Section, British Columbia Ministry of Environment, Prince George, BC V2L 3H9, Canada; 4Resource Management–Operations Division, Alberta Environment and Parks, Grande Prairie, AB T8V 6J4, Canada; 5Research Branch, British Columbia Ministry of Forests, Lands and Natural Resource Operations, D’Arcy, BC V0N 1L0, Canada; 6Research Section, Wildlife Informetrics, Mackenzie, BC V0J 2C0, Canada; 7Tithonus Wildlife Research, Prince George, BC V2K 5J4, Canada; 8Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT 59812; 9Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada; and 10Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada

Edited by James A. Estes, University of California, Santa Cruz, CA, and approved February 6, 2019 (received for review October 2, 2018)

Adaptive management is a powerful means of understanding complex ecosystems, but is rarely used for recovering endangered species. Here, we demonstrate how it can benefit woodland caribou, which became the first large mammal extirpated from the contiguous United States in recent history. The continental scale of forest alteration and extended time needed for forest recovery means that relying only on habitat protection and restoration will likely fail. Therefore, population management is also needed as an emergency measure to avoid further extirpation. Reductions of predators and overabundant prey, translocations, and creating safe havens have been applied in a design covering >90,000 km². Combinations of treatments that increased multiple vital rates produced the highest population growth. Moreover, the degree of ecosystem alteration did not influence this pattern. By coordinating recovery involving scientists, governments, and First Nations, treatments were applied across vast scales to benefit this iconic species.

The late Graeme Caughley emphasized that naturally rare yet broadly distributed species are the most challenging to conserve (1). These organisms will overlap with many other valuable natural resources, creating the potential for substantial socio-economic conflict. Such large-landscape species also encompass many ecological scales, inherently leading to increased uncertainty (2). Scientists have increasingly called for management experiments to help resolve such uncertainty (3), but the challenge has been to apply treatments at sufficiently broad scales of space and time to include relevant ecosystem processes. This approach is referred to as adaptive management and is predicated on creating lasting partnerships between scientists and resource managers to test alternative hypotheses using contrasting policies (4–6).

Adaptive management was initially intended to guide the sustainable consumption of natural resources, such as fisheries or wood fiber (4). But can this method be successfully applied to recovering endangered species? Many have argued that it can, but examples are rare (7, 8). We highlight this approach using perhaps the greatest terrestrial conservation challenge in North America: recovering woodland caribou (Rangifer tarandus caribou). These animals live across 3 million km² from Alaska to Newfoundland, and their critical habitat overlaps petroleum deposits and forest stands worth billions of dollars (9). Caribou are also a key umbrella species for boreal biodiversity, and their range covers one of the largest carbon stores on the planet—the boreal forest (10). Most populations are in decline and extirpation is ongoing (11, 12), setting the stage for an unparalleled conflict between conservation and natural-resource economies (9). With three barren females remaining in the only population south of the 49th parallel, caribou are the first large-mammal extirpation in recent history from the contiguous United States (13).

The complexity of this problem is the result of broad alterations to ecosystem dynamics across three trophic levels: vegetation, herbivores, and carnivores (14, 15) (Fig. 1). Even under pristine conditions, caribou are less fecund than deer (Odocoileus virginianus) or moose (Alces alces) (16) and can be more vulnerable once encountered by predators (17). Yet, in human-altered systems, the creation of productive, early seral forests buoy primary prey numbers such as moose and deer (18, 19). Thence, predator numbers are maintained by the more numerous moose and deer (20, 21), creating a decoupling between predator numbers and caribou. Consequently, caribou can decline to extinction while predators are maintained by generalist herbivores (14, 22). This process is referred to as apparent competition (23) and affects many threatened taxa (24), especially as climate and land-use change facilitate the spread of generalist prey. In the well-known case of California’s Channel Island fox (Urocyon littoralis), invasive feral pigs (Sus scrofa) subsidized predatory golden eagles (Aquila chrysaetos), causing declines in this endangered fox (25, 26). Recovery was achieved by the simultaneous reduction of pigs and eagles. In that case, the subsidy of overabundant prey could be reversed relatively quickly. For woodland caribou, however, subsidies of prey will last for decades because of long-term changes to forest age distributions (Fig. 1). Therefore, the classic solution of protecting remaining critical habitat (27) will not save most caribou populations because of the time needed to

Author contributions: R. Serrouya, D.R.S., B.N.M., D.C.H., M.G., and S.B. designed research; R. Serrouya, D.R.S., D.H., B.N.M., R.S.M., and D.C.H. performed research; R. Serrouya and M.H. analyzed data; and R. Serrouya, D.R.S., D.H., B.N.M., R.S.M., R. Steenweg, D.C.H., M.H., M.G., and S.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Significance

A replicated management experiment was conducted across >90,000 km² to test recovery options for woodland caribou, a species that was functionally extirpated from the contiguous United States in March 2018. Recovery options were reductions of predators, reductions of overabundant prey, translocations, and creating fenced refuges from predators. Population growth was strongest where multiple recovery options were applied simultaneously. This adaptive management study was one of the largest predator-prey manipulations ever conducted and provided positive results for this endangered North American ungulate.

Author contributions: R. Serrouya, D.R.S., B.N.M., D.C.H., M.G., and S.B. designed research; R. Serrouya, D.R.S., D.H., B.N.M., R.S.M., and D.C.H. performed research; R. Serrouya and M.H. analyzed data; and R. Serrouya, D.R.S., D.H., B.N.M., R.S.M., R. Steenweg, D.C.H., M.H., M.G., and S.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

To whom correspondence should be addressed. Email: serrouya@ualberta.ca.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816923116/-/DCSupplemental.

Published online March 11, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1816923116

PNAS March 26, 2019 vol. 116 no. 13 6181–6186
recover old forests and the continental scale of disturbance (28). In such cases, population management is needed until protection and recovery of habitat overcome the legacy of industrial development. Population-based recovery measures include direct predator reductions (29), prey reductions that lead to fewer predators (30, 31), animal translocations, and the creation of short-term safe havens from predators (predator-proof fences, i.e., maternal pens). Reducing predators can produce immediate benefits (29, 32–34) but can be unpopular because it is a proximate, short-term solution (35). Reducing subsidized prey is one trophic level closer to the ultimate cause, and safe havens are small (<10 ha) fenced areas that exclude predators and protect caribou during the calving season.

Here we contrast management experiments designed to reduce uncertainty about how to conserve endangered caribou. The primary hypothesis was that population declines could be reversed by removing the proximate limiting factor, excessive predation, because broad-scale ecosystem restoration would take decades to achieve. We included early seral forests (36) as a covariate to test the alternate hypothesis that the degree of ecosystem alteration would influence population response (27, 37). This design essentially contrasts the proximate limiting factor of predation with the ultimate factor of ecosystem alteration. We also qualitatively evaluated how the intensity of treatments and population size affected recovery. The population treatments covered large areas (3,000–8,500 km²) and included predator removal (wolves; n = 6), subsidized-prey reduction (n = 4), predator removal plus safe havens (n = 1), and translocations of caribou (n = 1). These were compared with six untreated, control populations. Our synthesis revealed three conclusions that credibly inform recovery for caribou and other endangered species. First, an adaptive management framework, with control populations, was critical to determining if population growth increased following a specific treatment. Second, a treatment had to be applied intensively to produce a measurable effect. Third, applying two treatments simultaneously produced an additive effect on caribou population growth.

Results

We compared the population growth rate (λ) of 12 caribou populations before and after a treatment as well as 6 adjacent populations used as experimental controls. Before treatments, 16 of 18 populations were in decline (λ < 1; Fig. 2). After treatments began, 8 of 12 treated populations showed λ increases of 0.04–0.28, and 6 of these 8 achieved stable or increasing λ (λ ≥ 1). None of the control populations had positive population growth during treatments. The most pronounced increase occurred within the Klinsm-Za (KZA) population (λ = 0.86–1.14), where the combination of wolf removal plus maternal penning resulted in a near-doubling of population size, from 36 to 67 animals between 2013 and 2018 (SI Appendix, Table S1). The adjacent control populations, Graham (GRA) and Wolverine (WOL), continued to decline at λ = 0.65 and 0.86 (Fig. 2).

An ANCOVA revealed that the effect of treatment (five levels; Table 1) explained 44.2% of the variation in change to λ (Δλ), with positive effects for wolf reduction and wolf reduction + penning. Percentage alteration of forest cover explained only 4.2% of the variation in Δλ (SI Appendix, Fig. S1 and Table S2). The ANCOVA with both treatment and forest alteration was less parsimonious and explained less variation (ΔAICc = 4.68, R² = 0.42; see SI Appendix, Table S3) than the effect of treatment alone. Six of the treated populations numbered <50 animals at the start of a treatment, and only one of these (KZA) achieved positive population growth (λ = 1.14) when subjected to two treatments simultaneously. Only two of the larger treated populations (>50 animals) did not achieve an increased λ following treatments: Parsnip (PAR) and À la Pêche (ALP). Both had low intensity of management applied (SI Appendix, Table S1). In PAR, moose were reduced by 40% compared with Columbia North (CON), where moose were reduced by >80% and λ increased by 0.064–1.02. In ALP, wolf reduction was applied only to the winter range during the first eight years of treatment and λ did not increase. The treatment was then expanded to the entire range for three years and λ increased from 0.92 to 1.10 (SI Appendix, Table S1). The US-Canada transboundary South Selkirk’s (SSE) population was small (n = 18) when wolf reduction was initiated and expanded only to the Canadian portion of the range (Fig. 2); the population declined from 18 to 3 barren females as of March 2018. In summary, caribou λ did not respond in the three herds with low treatment intensity (SSE, PAR, and ALP), but when ALP transitioned from low to high intensity, λ increased from 0.92 to 1.10. Finally, the translocation of 20 animals to Purcells South (PUS) in 2012 did not improve λ, with only 4 remaining animals in March 2018.

Discussion

By focusing on the ultimate recovery metric, caribou population growth, we demonstrated clear benefits of an adaptive management framework applied to endangered species over an enormous landscape. Reducing one limiting factor improved λ, but the greatest increase occurred when two limiting factors were reduced simultaneously. The implementation of wolf reductions followed by penning within KZA illustrates the iterative nature of adaptive management. Given that penning is designed to increase recruitment and wolf reduction increases adult survival, implementing both achieved the highest λ. And critically, pairing populations experiencing treatments with controls that received no similar recovery actions strengthened our inferences.

Intensity of treatment, both numerically and spatially, was a key factor in detecting a population response. In all three instances where treatment intensity was limited, no caribou response was observed. These results follow previous studies suggesting that predation rates should not change linearly with prey density,
partially because of density-dependent processes (31, 38, 39). Indeed, caribou in both the PAR moose reduction and the associated Hart South (HAS) control continued to decline, likely because moose were reduced by only 40%. Similarly, when wolves were reduced over just a portion of ALP and SSE, caribou did not improve. But when the treatment was adaptively expanded to the entire range of ALP, increased substantially.

Conclusions from these actions are becoming clear—half measures erode public confidence when the outcome is unlikely to achieve recovery. Resources should be directed strategically and toward recovery treatments of sufficient intensity to achieve results. Finally, as with many translocations (40), moving 20 caribou to PUS was unsuccessful because most of these animals were shortly killed by predators (41), driving home Caughley’s primary message of first removing agents of decline before attempting such actions (1).

The appeal of adaptive management lies with the simple logic of using management actions to test a hypothesis and, if possible, to test alternate hypotheses with contrasting policies (4, 6). These actions should follow detailed modeling of the system to help minimize risks of unintended consequences (3, 31, 42) but also to refute or validate conceptual models of ecosystem dynamics. For example, previous theory suggested caution when removing subsidized prey because of demographic time lags of predators and depensatory predation that can exacerbate declines of rare prey (31, 38). An empirical example occurred within our system when deer populations crashed in 1997 and cougars (Puma concolor) switched to eating caribou (see ref. 31). This information must be adaptively incorporated into recovery.

Table 1. Analysis of covariance explaining change in λ ($\Delta \lambda$) based on treatments for woodland caribou

Factor	Estimate	SE	t value	P value
Intercept	-0.093	0.056	-1.642	0.125
Treatment level				
Moose reduction	0.079	0.089	0.891	0.389
Wolf reduction	0.220	0.080	2.763	0.016
Wolf reduction and Penning	0.372	0.149	2.496	0.027
Translocation	-0.232	0.149	-1.553	0.144

Intercept represents control populations. Multiple $R^2 = 0.57$; adjusted $R^2 = 0.44$. Analysis was performed on change in r, where $r = \ln(\lambda)$. Less parsimonious models are presented in the SI Appendix, Tables S2 and S3.
plans, but can create imbalances in study designs and implementation. In our case, the lack of replication for some treatments— for example, translocations—may weaken inferences. However, when considered in light of independent studies indicating that animal translocations often fail (40), even with caribou (43), inferences are consistent. Similarly, the combination of treatments (penning and wolf reduction in KZA) can make it challenging to definitively conclude which treatment was strongest. Indeed, balanced and replicated factorial experiments are a laudable goal, but we agree with Krebs’ (44) synthesis of Caughley’s perspective on uncertainty in conservation (1): “Several suspected agents of decline may have to be removed at once. . . . It is better to save the species than to achieve scientific purity.” We hope this approach will encourage others to pursue a priori planned designs or retrospective approaches to adaptive management. Nonetheless, social and logistical barriers to implementation are immense, primarily due to real or perceived impacts on human values (4). Consequently, according to Westgate et al. (7), only 1% of studies that have attempted adaptive management report any response metrics. The plight of woodland caribou has likely reduced these barriers, enabling partnerships across political jurisdictions, among academics, First Nations, managers, industry, and conservationists (45).

The global spread of generalist species through habitat modification and climate change (46) will continue to exacerbate the endangerment and extirpation of species via complex ecological mechanisms such as apparent competition. In many cases, recovery will involve the reduction of expanding prey or abundant native predators. Although six caribou populations grew within highly disturbed landscapes, intensive management was required to achieve this outcome. Support for direct predator reduction is likely to wane (35) unless the ultimate cause of decline, habitat alteration, is addressed. In the case of caribou, like many other endangered species, anthropogenic alterations of forested ecosystems are the ultimate cause of declines. Habitat protection for caribou varies considerably across jurisdictions, but is greatest within the Southern Mountain ecotype, where 22,000 km² of remaining old forest have been protected from forest cutting in legal land reserves (47). This protection has resulted in 5 of 18 caribou ranges in this study having similar or higher levels of forest gain than forest loss (36) (SI Appendix, Table S1). In such areas, the delay in intensive population recovery is expected to diminish over time. However, in areas where habitat loss exceeds habitat recovery, intensive population treatments will have to be ongoing until there is a change in how natural resources are valued.

Methods

Our study included 18 caribou populations in Alberta, British Columbia, and Idaho, of which 12 were subjected to government-led management actions (hereafter referred to as treatments in an adaptive management context) and 6 were controls. We chose only 6 control populations to be conservative in matching ecological conditions as closely as possible to the treatment populations. However, almost all caribou populations in western Canada were rapidly declining; for example, during the same period, populations in Alberta were declining at a mean rate of 8% per year (48). The 12 treated populations in our study were subjected to four recovery actions; (i) predator reductions, (ii) prey reductions, (iii) translocation, and (or) (iv) maternal penning (Fig. 2).

Although controversial in many conservation settings, there is a long history of predator (and prey) reduction to recover endangered species (34, 49), from removing feral goats (Capra sp.), to recover endangered island fauna (50), to removal of golden eagles on the Channel Islands, to recover the endangered Channel Island fox (25). Population reduction of wolves, however, is especially controversial given their heightened conservation status in the United States, and important trophic role (51). Nonetheless, wolves are now rare in Montana or threatened in Canada and are widely distributed there, and conservative population estimates are >14,000 wolves in just Alberta and British Columbia (52). Field studies confirm that wolves are a leading cause of mortality and are the proximate cause of caribou declines (14, 22, 32, 53–56). Moreover, federal and provincial policies and legislation explicitly list predator and prey reduction as a required response, along with habitat recovery, to recover woodland caribou under Canada’s Species at Risk Act (37, 57, 58). Finally, predator removal was coordinated by provincial agencies usually via helicopter shooting (similar to the removal of feral goats on Galapagos, for example (50)) under the authority of the respective provincial wildlife acts (59). Prey reductions were conducted through licensed hunting of moose by sport hunters, also through the authority of provincial wildlife acts and policies. Thus, despite the ethical issues surrounding removal of vertebrates (wolves, moose) to recover caribou (60), methods were permitted and enabled by federal and provincial legislation and policies. No university personnel were involved in planning or conducting predator reductions, thus obviating the need for university animal care review or approvals (see ref. 60). Similarly, caribou translocations in British Columbia were conducted exclusively by government staff supervised by the provincial wildlife veterinarians.

Caribou populations were monitored for responses to treatments between 2004 and 2018, whereas pretreatment monitoring dated back to 1994 (SI Appendix, Table S1). The 18 populations spanned four recognized caribou ecotypes: boreal, northern mountain, central mountain, and southern mountain (61). Boreal are classified by COSEWIC (Committee on the Status of Endangered Wildlife in Canada (62) as threatened (n = 1 population); northern (n = 2), as of special concern; central (n = 6) and southern (n = 9), as endangered (61). Despite the differences in their listed status, caribou populations were endangered; thus, we use the term endangered to refer to the status of caribou throughout. Our response metric was the finite rate of population change (λ) (63) or, more specifically, the change in λ (Δλ) before and after treatments. There are two approaches to estimating λ of caribou populations depending on behavioral and habitat differences among ecosystems. The first approach is to assume populations have reached a steady state and use population surveys in areas where aerial sightability is high (64). In these cases, λ was calculated as λserial = (N/N₀)°(1/λ) (63). The second uses survival of radio-collared animals and population-level recruitment rates to estimate λ using a simple unstructured population model, the recruitment-mortality equation (65): λλ = S(1 – R), where S is annual survival of adult females and R is recruitment.

For populations in British Columbia (n = 15), there are three ecotypes of woodland caribou (central, southern, and northern), and aerial survey methods differ slightly due to ecological differences. For the southern mountain ecotype (n = 9), survey estimates have been validated with 153 radio-collared animals. When snow depth exceeds 300 cm (3) in the upper subalpine, where the caribou dwell during late winter surveys, sightability is greater than 90%. Surveys were conducted only under such conditions, making population estimation straightforward. For the other six populations in British Columbia (central and northern ecotypes), mark-resight (54) with radio-marked caribou was used to correct population sizes, or all individuals were marked or identified through camera traps (66). Populations in Alberta (n = 3) are difficult to aerially survey because caribou live in dense coniferous forest, so population trend and associated uncertainty were estimated based on λλ (48), using the adjustment of ref. 67 to account for the delayed age at first reproduction of caribou. DerSimonian and Laird’s (67) showed that the λλ equation is algebraically identical to a Leftokvich stage matrix with three stages and thus provides identical results, but λλ is the convention used for monitoring woodland caribou. Although population estimates were not available in Alberta, minimum caribou observed indicated that all three populations had >50 animals at the start of treatments (57). Calibration and validation of the two approaches to estimating λ, have been extensive (64, 67, 68). Serrouya et al. (64) compared λ for populations where both data sources (λserial or λ) were available, and found the correlation to be 0.78. This suggests that both metrics were comparable and that any biases within a population would be minimal over time because the same method (λserial or λ) was always used for each population. Additional details on the reliability of λ estimates presented in previously published studies can be found in the SI Appendix.

Like many ecosystem management cases (32), the intensity of treatments varied across areas. For example, neither prey nor predator reductions were ever 100%. In the SSE population, wolf removal occurred only on the Canadian portion of the range (Fig. 2). For the ALP population, treatment occurred on the winter range from 2007 to 2014 and then expanded to the winter and summer range from 2015 to 2017 (SI Appendix, Table S1). To index the intensity of treatment, we reported the number of wolves per 1,000 km² removed per year; for moose, we reported the percentage reduction from the peak population size. The CON population also had a maternal penning trial that began in 2014, although this was a pilot study that was designed not to affect λ; but to test the concept on a low number of
animals (<20% of females). To isolate the effect of theoose reduction treatment, and to avoid a confound caused by maternal penning for caribou, comparisons in the Revelstoke (REVI) study area (Si Appendix, Table S1) were ended in 2013 for the treated populations—CON, Columbia South (COS), Frisky-Quest (FQ)—and the adjacent control populations (WGS and GHR). Isolating the effect of theoose reduction was important because this recovery tool had not been used before (30) in the context of apparent competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of caribou occurred in the Kennedy Siding (KSI) population from 2014 to 2018, but was not formally considered a treatment. Results indicated no effect on λ, but some improvement to body condition was noted (66).

It was not just treatments that varied between populations, as the ultimate cause of population declines is habitat alteration (37, 58). We used an index of habitat alteration from remotely sensed forest loss data derived from Landsat (36) to control for the ultimate driver of caribou population trends: habitat alteration. The covariate was the proportion disturbed (early seral forest caused primarily by logging or petroleum development, ref. 36) within a population range, which was converted using the logit link. The proportion of early seral forest was included to test the hypothesis that less altered areas were more likely to have increased λ as a result of a treatment. Previous analyses showed that more early seral forests predicted lower caribou occurred in the Kennedy Siding (KSI) population from 2014 to 2018, consequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies). Similarly, localized winter feeding of competition (unlike wolf reductions, which have been applied more frequently in this and other studies).

1. Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244.
2. Carpenter SR (2002) Ecological futures: Building an ecology of the long now. Ecology 83:2069–2083.
3. Doak DF, et al. (2008) Understanding and predicting ecological dynamics: Are major surprises inevitable? Ecology 89:952–961.
4. Walters J, Holling CS (1990) Large-scale management experiments and learning by doing. Ecology 71:2060–2068.
5. Fujitani M, McFall A, Randler C, Arlinghaus R (2017) Participatory adaptive management leads to environmental learning outcomes extending beyond the sphere of science. Sci Adv 3:e1602516.
6. McCook LJ, et al. (2010) Adaptive management of the Great Barrier Reef: A globally significant demonstration of the benefits of networks of marine reserves. Proc Natl Acad Sci USA 107:18278–18285.
7. Westgate MJ, Likens GE, Lindemayer DB (2013) Adaptive management of biological systems: A review. Biol Conserv 158:128–139.
8. Johnson CN, et al. (2017) Biodiversity losses and conservation responses in the Anthropocene. Science 356:270–275.
9. Hebblewhite M (2017) Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol Conserv 206:102–111.
10. Bradshaw CJ, Weltz MM, Sodhi NS (2009) Urgent preservation of boreal forest stocks and biodiversity. Trends Ecol Evol 24:541–548.
11. Hebblewhite M, White C, Musiani M (2010) Revisiting extinction in national parks: Mountain caribou in Banff. Conserv Biol 24:341–344.
12. Festa-Bianchet M, Ray JC, Boutin S, Cote S, Gunn A (2011) Conservation of caribou (Rangifer tarandus) in Canada: An uncertain future. Can J Zool 89:419–434.
13. Newmark WD (1995) Extinction of mammal populations in western North American national parks. Conserv Biol 9:512–526.
14. Wittmer HU, Sinclair AR, McLellan BN (2005) The role of predation in the decline and extirpation of woodland caribou. Oecologia 144:257–267.
15. Wittmer HU, McLellan BN, Serrouya R, Apps CD (2007) Changes in landscape composition influence the decline of a threatened woodland caribou population. J Anim Ecol 76:568–579.
16. Shackleton D (1999) Hoofed Mammals of British Columbia (University of British Columbia Press, Victoria, BC).
17. Haber GC (1977) Socio-ecological dynamics of wolves and prey in a subsarctic ecosystem. Ph.D dissertation (Univ. of British Columbia, Vancouver).
18. Rempel RS, Elkie PC, Rodgers AR, Gluck MJ (1997) Timber-management and natural-scale manipulations and independent validation. J Anim Ecol 84:1600–1609.
19. Perez I, et al. (2012) What is wrong with current translocations? A review and a decision-making proposal. Front Ecol Environ 10:494–501.
20. Leech H, Jelinski DE, DeGroot L, Kuzyk G (2017) The temporal niche and seasonal differences in predation risk to translocated and resident woodland caribou (Rangifer tarandus caribou). Can J Zool 95:809–820.
21. Serrouya R, McLellan BN, Boutin S (2015) Testing predator-prey theory using broad-scale manipulations and independent validation. J Anim Ecol 84:1600–1609.
47. British Columbia Ministry of Environment, Species at Risk Coordination, Victoria (2009) A review of management actions to recover mountain caribou in British Columbia (BCMOE, Species at Risk Coordination, Victoria, BC), Number 2913682.
48. Hervieux D, et al. (2013) Widespread declines in woodland caribou (Rangifer tarandus caribou) continue in Alberta. Can J Zool 91:872–882.
49. Goodrich J, Buskirk S (1995) Control of abundant native vertebrates for conservation of endangered species. Conserv Biol 9:1357–1364.
50. Campbell K, Donlan CJ (2000) Feral goat eradication on islands. Conserv Biol 19:1362–1374.
51. Ripples WJ, et al. (2014) Status and ecological effects of the world’s largest carnivores. Science 342:1241484.
52. Kuzyk GW, Hatter IW (2014) Using ungulate biomass to estimate abundance of wolves in British Columbia. Wildl Soc Bull 38:878–883.
53. Whittington J, et al. (2011) Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J Appl Ecol 48:1535–1542.
54. Wittmer HU, et al. (2005) Population dynamics of the endangered mountain ecotype of woodland caribou (Rangifer tarandus caribou) in British Columbia, Canada. Can J Zool 83:407–418.
55. Edmonds EJ (1988) Population status, distribution, and movements of woodland caribou in west central Alberta. Can J Zool 66:817–826.
56. Rettie WJ, Messier F (1998) Dynamics of woodland caribou populations at the southern limit of their range in Saskatchewan. Can J Zool 76:251–259.
57. Environmental Services Association of Alberta (2014) Recovery strategy for the woodland caribou, southern mountain population (Rangifer tarandus caribou) in Canada. Species at Risk Act Recovery Strategy Series (Environment Canada, Ottawa).
58. Albert Go (2006) Wildlife act. In Revised Statutes of Alberta 2000, Chapter W-10 (Government of Alberta, Edmonton, AB).
59. Hervieux D, Hebblewhite M, Steppinsky D, Bacon M, Boutin S (2015) Addendum to “Managing wolves (Canis lupus) to recover threatened woodland caribou (Rangifer tarandus caribou) in Alberta”. Can J Zool 93:245–247.
60. Ray JC, et al. (2015) Conservation status of caribou in the western mountains of Canada: Protections under the Species at Risk Act, 2002–2014. Rangifer 35: 49–80.
61. Committee on the Status of Endangered Wildlife in Canada (2011) Designatable units for caribou (Rangifer tarandus) in Canada (COSEWIC, Ottawa).
62. Caughley G (1977) Analysis of Vertebrate Populations (Wiley, New York).
63. Serrouya R, et al. (2017) Comparing population growth rates between census and recruitment-mortality models. J Wildl Manage 81:297–305.
64. Hatter IW, Bergerud WA (1991) Moose recruitment, adult mortality and rate of change. Alces 27:65–73.
65. Seip D, Jones E (2018) Population status of Central Mountain caribou herds in British Columbia and response to recovery management actions, 2018 (British Columbia Ministry of Environment, Prince George, BC).
66. DeCesare NJ, et al. (2012) Estimating ungulate recruitment and growth rates using age ratios. J Wildl Manage 76:144–153.
67. DeCesare NJ, Hebblewhite M, Lukacs PM, Hervieux D (2016) Evaluating sources of censoring and truncation in telemetry-based survival data. J Wildl Manage 80: 138–148.
68. R Core Team (2018) R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna).