Midazolam Ameliorates the Behavior Deficits of a Rat Posttraumatic Stress Disorder Model through Dual 18 kDa Translocator Protein and Central Benzodiazepine Receptor and Neurosteroidogenesis

Yu-Liang Miao1*, Wen-Zhi Guo2*, Wen-Zhu Shi3*, Wei-Wu Fang1, Yan Liu1, Ji Liu1, Bao-Wei Li4, Wei Wu4*, Yun-Feng Li5

1 Department of Anesthesiology, Chinese PLA No. 306 Hospital, Beijing, P.R. China, 2Department of Anesthesiology, Beijing Military General Hospital of the PLA, Beijing, P.R. China, 3Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Sanya, P.R. China, 4Department of Head and Neck Surgery of Otolaryngology, Chinese PLA No. 306 Hospital, Beijing, P.R. China, 5Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, P.R. China

Abstract

Post-traumatic stress disorder (PTSD) is a debilitating anxiety disorder that may develop after an individual has experienced or witnessed a severe traumatic event. It has been shown that the 18 kDa translocator protein (TSPO) may be correlated with PTSD and that the TSPO ligand improved the behavioral deficits in a mouse model of PTSD. Midazolam, a ligand for TSPO and central benzodiazepine receptor (CBR), induces anxiolytic- and anti-depressant-like effects in animal models. The present study aimed to determine whether midazolam ameliorates PTSD behavior in rats as assessed by the single prolonged stress (SPS) model. The SPS rats received daily Sertraline (Ser) (15 mg/kg, p.o.) and midazolam (0.125, 0.25, 0.5, and 1 mg/kg, p.o.) during the exposure to SPS and behavioral assessments, which included the open field (OF) test, the contextual fear paradigm (CFP), and the elevated plus-maze (EPM). The results showed that, like Ser (15 mg/kg, p.o.), midazolam (0.25 and 0.5 mg/kg, p.o.) significantly reversed the behavioral deficiencies of the SPS rats, including PTSD-associated freezing and anxiety-like behavior but not the effects on spontaneous locomotor activity. In addition, the anti-PTSD effects of midazolam (0.5 mg/kg, p.o.) were antagonized by the TSPO antagonist PK11195 (3 mg/kg, i.p.), the CBR antagonist flumazenil (15 mg/kg, p.o.) and the inhibitor of steroidogenic enzymes finasteride (30 mg/kg, p.o.), which by themselves had no effect on PTSD-associated freezing and anxiety-like behavior. In summary, this study demonstrated that midazolam improves the behavioral deficits in the SPS model through dual TSPO and CBR and neurosteroidogenesis.

Introduction

Post-traumatic stress disorder (PTSD) can develop following severe traumatic events, such as the events that occur during war, after a violent personal assault, or following natural disasters [1]. A majority of PTSD patients exhibit long-lasting re-experience of traumatic events and subsequently avoid the stimuli that link traumatic events, even though they recognize that the traumatic event is no longer occurring. Meanwhile, broad deterioration and impairments of cognitive function have also been reported in PTSD patients [2]. Sufferers continue to re-experience trauma-related anxiety and distress even after the cessation of the trauma [3]. The dysregulation of several biological systems have been implicated in the abnormal response underlying the pathophysiology of PTSD, a complex disorder, and the affected biological pathways may include corticotrophin releasing hormone (CRH) [4], hypothalamic-pituitary-adrenal (HPA) axis abnormalities [5], and dysfunction in the noradrenergic [6], serotonergic [7,8], and glutamatergic systems [9].

As a general principal, the selective serotonin reuptake inhibitors (SSRIs), such as sertraline and paroxetine, are a first-line treatment option for the core PTSD symptoms [10,11]. However, SSRIs have large disadvantages, such as a delayed onset of action, partial response with residual symptoms or non-responsiveness, and severe side effects [12]. Based on these disadvantages, future work needs to search for novel pharmacological targets to provide the next generation of anti-PTSD drugs.

The 18 kDa translocator protein (TSPO), a promising target for treating neurological disorders without benzodiazepine-like side effects [12,13], may be associated with PTSD [14]. The TSPO, which is located mainly in the outer mitochondrial membrane (OMM) in peripheral tissues and the central nervous system (CNS), processes the availability of neurosteroids in the brain by modulating cholesterol [15]. Several studies have shown that
Midazolam Ameliorates the Behavior Deficits in PTSD Rats

TSPO ligands effectively treated depression and anxiety disorders through the modulation of the neurosteroid synthesis [16,17]. Midazolam, a ligand for TSPO and CBR, has also induced anxiolytic-like and antidepressant effects [18,19]. These observations have led to the hypothesis that midazolam may also be effective in improving stress-induced psychiatric conditions, including PTSD.

The physiological and behavioral changes observed in animals exposed to the single prolonged stress (SPS) model can represent the pathophysiological process and core symptomatology of PTSD, including anxiety behavior and cognitive impairments [20,21]. SPS paradigms have been extensively utilized in the investigation of anxiety disorders, especially PTSD [20]. A rat model involving SPS has been developed and employed for PTSD research [22]. Because the behavioral responses observed in rats subjected to SPS resemble the clinical symptoms of PTSD patients, the SPS paradigm has been postulated as an appropriate animal model of PTSD.

Currently, no reports have examined the therapeutic effects of midazolam on PTSD in pre-clinical animal model experiments. Midazolam’s direct interact to CBR and high affinity for TSPO lead to the anxiolytic-like effects and induce the hypothesis [23] that the anti-PTSD effects of midazolam might be mediated by the CBR and TSPO. The present study was conducted to investigate the anti-PTSD effects of midazolam and the underlying mechanism.

Materials and Methods

1 Animals and housing

Male Sprague-Dawley rats were obtained from the Beijing SPF Animal Technology Company (Beijing, China). These animals were selected because Sprague-Dawley rats exhibit PTSD-like symptoms [21]. The animals were housed in a temperature- and humidity-controlled room. All the animals were housed with a 12-h light/dark cycle starting at least 5 days before the experiment and had access to water and food ad libitum. They were group-housed with the same cage-mates throughout the acclimation and testing periods and randomly assigned to the experimental groups (10 animals each). The animal experiments were approved by the animal ethical committee of the academy of military medical sciences. All experiments performed were in compliance with current laws and regulations and adhered to the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH publication No. 86-23, revised 1996).

2 Drugs and drug administration

Based on previous studies, Sertraline (Ser) (St Louis, MO, U.S.A.) was administered at a dose of 15 mg/kg (p.o.) as a positive control in the behavioral tests [17,23]. Midazolam, flumazenil and finasteride were purchased from Sigma-Aldrich. Ser, midazolam, flumazenil and finasteride were dissolved in saline. PK11195 (St Louis, MO, U.S.A.) was suspended for injection (i.p.) in saline containing 2% DMSO and 0.8% Tween 80 [24]. The compounds were administered by gavage at a dose of 2 mL/kg. The drug administration regimen was based on the treatment regimen for PTSD animal models with minor modifications [23]. Ser (15 mg/kg, p.o.) or midazolam (0.125, 0.25, 0.5, and 1 mg/kg, p.o.) was given once daily. The doses of PK11195 (1 and 3 mg/kg, i.p.), flumazenil (5 and 15 mg/kg, i.p.) and finasteride (10 and 30 mg/kg, p.o.) were based on the published literatures with minor modifications [2,25-28]. All of these three antagonists were administered 30 min before testing, respectively. The design of the treatment schedule and behavioral tests is outlined in Fig. 1.

3 The establishment of the SPS model

The SPS model was performed as previously described with minor modifications [29]. SPS was conducted in three stages: restraint (2 h), forced swim (20 min), and ether anesthesia. Each rat was restrained for 2 h by placing it inside a disposable clear polyethylene cone bag (Asahikasei, Tokyo, Japan) with only the tail protruding [30]. The large end of the cone was closed with tape at the base of the tail. The bag size was adjusted according to the size of the rat to achieve complete immobilization. A hole in the small end of the cone allowed the rats to breathe freely. After immobilization, they were individually placed in a clear acrylic cylinder (240 mm diameter, 500 mm height), filled two-thirds with water (24 °C), and forced to swim for 20 min. Following 15 min of recuperation, they were exposed to diethyl ether anesthesia until loss of consciousness and then left in their home cage. Different reagents were administered daily from days 2 to 19. Behavioral experiments were performed at days 14, 16, 17 and 19, respectively (Fig. 1).

4 Long term effects of midazolam on the behavior of SPS-exposed rats

4.1 Open field (OF) test. We investigated whether the SPS model and midazolam treatment affected locomotor activity. The OF test was performed as previously described with minor modifications [31,32]. Rats were placed in the corner of a plastic box (76×76×46 cm) with the base divided into equal squares for a 5-min acclimation period. Subsequently, the number of crossings (all 4 paws placed into a new square), rears (both front paws raised from the floor), and fecal pellets were automatically recorded by the VIDEO-MEX-V image analytic system (Columbus Instruments, USA) in the subsequent 5 min. The OF test and the following experiments were performed in a room with dim light.

4.2 Contextual fear paradigm (CFP). The CFP test is based on previous studies that showed a freezing response upon re-exposure to the traumatic context can be used as a measure of conditioned associative fear memory, which reflects the response to trauma-related cues, a symptom of PTSD [23,33]. CFP was performed as previously described with minor modifications [23]. Each rat was exposed to a 180-s conditioning context without stimulation. Immediately after, a foot shock (0.8 mA, 4 s) through a stainless steel grid floor (Med Associates Inc., USA) was administered. Following the foot shock, the rats remained in the chamber for an additional 1 min before they returned to their
home cages. Each rat was placed in the conditioning chamber, where it had previously received a foot shock, 24 h after the initial foot shock, and the contextual fear response was evaluated by measuring the duration of freezing behavior during a 5-min interval. Freezing was defined as the absence of all movement except those movements necessary for respiration [34]. Motion thresholds (18) and number of frames (30) were selected by the VideoFreeze system (with IEEE 1394 digital video; 8-bit pixel per mm2 @ 30 Hz; Med Associates, INC, USA), and were corroborated by the observers [17,35]. Total cumulative freezing time (total seconds of freezing during each assessment period) was measured and analyzed automatically by the computer software (Med Associates Inc. Video Freeze SOF-843., USA). The percentages of freezing time were calculated by dividing the freezing time by the total time [36].

4.3 Elevated plus maze (EPM). The EPM is one of the most widely used assessments to evaluate the PTSD-associated anxiogenic-like behavior in rodents [23,36,37]. The EPM has been well validated in detecting responses to external stressful stimuli (Liebsch et al., 1998). The rat was placed in the center of the maze (60 cm above the floor) facing an enclosed arm. The time spent in and number of entries into (with all 4 paws) both the open and enclosed arms (60x12 cm) were recorded for 5 min as previously described [37]. In this test, open-arm activity was defined as the time stayed in the open arms relative to the total time spent in and the entries into both arms (open)/total×100) [36]. The tracking software “Viewer 3.0 (Bioserve) was used to record and analyzed the behavior activity. The percentages of time spent in and the entries into the open arms were calculated by dividing the time spent in and the entries into the open arms by the total time spent in and the total arm entries into both arms, respectively.

5 Statistical analysis

Unless otherwise specified, statistical analysis was performed by GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA). All data are presented as the mean±S.E.M. The statistical significance of experimental observations was determined by one-way analysis of variance (ANOVA) or two-way ANOVA followed by Bonferroni’s multiple comparison tests, as indicated in the results section. Differences with p<0.05 were considered significant for all the tests.

Results

1 Effects of midazolam on the locomotor activity of rats

The effects of repeated administration of midazolam on locomotor activity are shown in Fig. 2. There was no significant effect on the number of line crossings (p>0.05, Fig. 2A, 2D, 2G and 2J), rears (p>0.05, Fig. 2B, 2E, 2H and 2K), or fecal pellets (p>0.05, Fig. 2C, 2F, 2I and 2L) between the groups. These results indicated that none of the repeated reagents treatment affected the locomotor activity of rats.

2 Effects of midazolam on the contextual freezing of rats

The effects of midazolam on the contextual freezing behavior of the rats are shown in Fig. 3. After the exposure to SPS, the freezing time was significantly increased in rats, which was significantly reversed by Ser (15 mg/kg, p.o.) or midazolam (0.25 and 0.5 mg/kg, p.o.) (p<0.01, Fig. 3A). In addition, midazolam at a dose of 0.5 mg/kg (p.o.), which was the dose that induced the maximal reduction in the freezing time, was antagonized by PK11195 (3 mg/kg, i.p., p<0.01, Fig. 3B), flumazenil (15 mg/kg, p.o., p<0.01, Fig. 3C) or finasteride (30 mg/kg, p.o., p<0.01, Fig. 3D). These results indicated that repeated midazolam treatment alleviated contextual freezing behavior in these rats, which was mediated by TSPO and CBR and neurosteroidogenesis.

3 Effects of midazolam on rat EPM performance

As shown in Fig. 4, the percentage of the time spent in and the entries into the open arms of the EPM was significantly reduced in SPS-exposed rats, but repeated administration of Ser (15 mg/kg, p.o.) or midazolam significantly increased the percentage of the time spent in (0.25 and 0.5 mg/kg, p.o.) (p<0.05; Fig. 4A) and the entries (0.5 mg/kg, p.o.) (p<0.01; Fig. 4B) into the open arms. In addition, there was no significant difference in the total time spent in (p>0.05; Fig. 4C) and total arm entries (p>0.05; Fig. 4D) into the arms of the EPM between the groups. Meanwhile, 0.5 mg/kg of midazolam, which induced the maximal increase in the percentage of the time spent in (p<0.01; Fig. 4E, 4F and 4M) and entries (p<0.01; Fig. 4F, 4J and 4N) into the open arms, was antagonized by PK11195 (3 mg/kg, i.p.), flumazenil (15 mg/kg, p.o.) or finasteride (30 mg/kg, p.o.) respectively, without affecting the total time spent in (p>0.05; Fig. 4G, 4K and 4O) and total entries (p>0.05; Fig. 4H, 4L and 4P) into the EPM arms. These results indicated that exposure to SPS elicited PTSD-associated anxiogenic-like behavior in rats and that similar to Ser, midazolam ameliorated PTSD-associated anxiogenic-like behavior. These effects were mediated by TSPO, CBR and neurosteroidogenesis.

Discussion

The present study was performed to investigate the possible mechanism of the anti-PTSD effects of repeated midazolam treatment using the SPS model. Similar to Ser, midazolam significantly ameliorated the PTSD-associated freezing and anxiety-like behaviors without affecting spontaneous locomotor activity, and these effects were antagonized by PK11195, flumazenil or finasteride. We found that the anti-PTSD effects of midazolam were mediated by TSPO, CBR and neurosteroidogenesis.

Furthermore, the results in the present study indicate that SPS-induced freezing and anxiety, which is consistent with previous studies showing that the SPS model produces enhanced contextual freezing and increases anxiety-like behavior in the elevated plus maze (EPM) test and stress-induced analgesia compared with rats subjected to a sham treatment [21,23,38]. In addition, these results are also supported by other animal models with similar behavioral deficits [17,36]. The SPS-induced freezing behavior is also supported by studies showing that PTSD is characterized by an exaggerated reaction to a mild stressor or the reminder of the trauma to which the response is appropriate for the original traumatic situation. Moreover, the decrease in open arm exploration of the EPM after SPS-exposure resembled the observation in PTSD patients who showed enhanced anxiety and fear in response to stimuli unrelated to trauma [3]. The underlying mechanism may be that SPS elicited the acquisition of conditioned fear responses to trauma-related and trauma-unrelated stimuli [23]. The behavioral deficits of PTSD might be associated with the prefrontal cortex, hippocampal dysfunction, and structural abnormalities [23], which are the brain regions that play an important role in the process of fear conditioning, emotional processing, and explicit memory. Additionally, consistent with a previous study [23], the SPS model induced behavioral deficits without effects on the locomotor activity, suggesting that freezing and PTSD-associated anxiogenic-like behavior may be not generated through changes in locomotor activity that correlate with physiological changes. The data
presented in this study support the idea that this PTSD model resembles some of the clinical manifestations of PTSD.

We also found that Ser improved the behavioral deficits of this SPS model, which is consistent with a previous study [23]. Similar to Ser, midazolam reduced the freezing in the CFP test and increased open arm exploration in the EPM, which indicated that midazolam significantly ameliorated the contextual fear and PTSD-associated anxiogenic-like behavior in rats. The range of the doses was similar to previous studies examining the anxiolytic-like effects of midazolam [39,40]. Unlike other benzodiazepines such as diazepam and clonazepam only weakly interacting with TSPO [25,26], midazolam has high affinity to TSPO. In the present study, the anti-PTSD effects induced by midazolam were mediated at least partially by TSPO, which is evidenced by the antagonism of the anxiolytic-like effects of PK11195 and the lack of significant effects on freezing and PTSD-associated anxiogenic-like behavior. Similar to the anxiolytic-like effects of other TSPO ligands, such as AC-5216, our results were consistent with a previous study that showed the anxiolytic-like effects of AC-5216 were antagonized by PK11195, which itself had no significant effect on the number of shocks in the Vogel-type conflict test [24]. Moreover, the findings that the anti-PTSD effects of midazolam are not mediated by a change in locomotor activity supported the anti-PTSD- [17], anxiolytic- [22,26], and anti-panic effects [41] of AC-5216. The lack of effects on spontaneous locomotor activity might be associated with the selective affinity of midazolam for TSPO [42], and the dose of midazolam applied in our study was not enough to induce significant locomotor activities, which was consistent with previous reports [25,26].

Figure 2. Effects of midazolam on the locomotor activity of rats. None of the treatments altered the number of line crossings (A, D, G and J), rears (B, E, H and K), and fecal pallets (C, F, I and L) in the OF test (n = 10).
doi:10.1371/journal.pone.0101450.g002

Figure 3. Effects of midazolam on the freezing behavior of rats subjected to SPS. The freezing time was reduced by midazolam (0.25 and 0.5 mg/kg, p.o.) (A), which was reversed by PK11195 (3 mg/kg, i.p.) (B), flumazenil (15 mg/kg, p.o.) (C), or finasteride (30 mg/kg, p.o.) (D). ### p < 0.001 vs. vehicle-treated SPS (-) group; ** p < 0.01 vs. vehicle-treated foot shock (+) group; * p < 0.05, ** p < 0.01 vs. vehicle-treated foot shock (+) group; $ p < 0.01 vs. midazolam-treated group (0.5 mg/kg, p.o.) (n = 10).
doi:10.1371/journal.pone.0101450.g003
Midazolam Ameliorates the Behavior Deficits in PTSD Rats
The production of allopregnanolone [25,26]. This result agreed with the aforementioned studies. These actions may represent the underlying mechanism of the anti-PTSD effects of midazolam.

On the other hand, as a typical benzodiazepines drug, midazolam was known as enhancing GABA_A receptor inhibition by direct actions on central benzodiazepines receptor. Therefore a specific antagonist of the central benzodiazepines receptor, flumazenil [28], was used to examine whether this receptor was involved in the anti-PTSD effects induced by midazolam. Our present study demonstrated that flumazenil reversed the anti-PTSD effects of midazolam. This result was consistent with previous reports that through both central benzodiazepine receptor and TSPO activation, midazolam inhibited hippocampal long-term potentiation [25].

Conclusion

The present study demonstrated that repeated administration of midazolam ameliorated behavioral deficits in the SPS model without affecting spontaneous motor activity. The anti-PTSD effects of midazolam were mediated at least partially by TSPO and CBR and neurosteroidogenesis.

Acknowledgments

We would like to thank Dr. YanPing Zhai, Dr. Paulina Rok and Dr. Malgorzata Zienowicz for editing the manuscript.

Author Contributions

Conceived and designed the experiments: Y-LM W-ZS W-ZG JL. Performed the experiments: Y-LM W-ZS W-ZG. Analyzed the data: B-YL Y-WF WW Y-FL. Contributed reagents/materials/analysis tools: B-YL Y-WF WW Y-FL. Wrote the paper: Y-LM W-ZS W-ZG.

References

1. Akg G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, et al. (2005) Neurosteroid access to the GABA_A receptor. J Neurosci 25: 11605–11613.
2. Leskin LP, White PM (2007) Attentional networks reveal executive function deficits in posttraumatic stress disorder. Neuropsychology 21: 275–294.
3. Hopper JW, Frewen PA, van der Kolk BA, Lanius RA (2007) Neural correlates of reexperiencing, avoidance, and dissociation in PTSD: symptom dimensions and emotion dysregulation in responses to script-driven trauma imagery. J Trauma Stress 20: 713–725.
4. Chang FC, Opp MR (2001) Corticotropin-releasing hormone (CRH) as a regulator of waking. Neurosci Biobehav Rev 25: 445–453.
5. Gahr RW, Bürkle DL, Azzaro AJ (1995) Stimulation of the amygdala by glutamate facilitates corticotropin-releasing factor release from the median eminence and activation of the hypothalamic-pituitary-adrenal axis in stressed rats. Neuroendocrinology 62: 335–339.
6. Debeer J, Ledoux JE (2004) Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129: 267–277.
7. Davidson JR, Weiner RH, Malik ML, Connor KM (1998) Treatment of posttraumatic stress disorder with nefazodone. Int Clin Psychopharmacol 13: 111–113.
8. Saloo ST, de Montigny C, Blery P (1999) Modulation of noradrenergic neuronal firing by selective serotonin reuptake blockers. Br J Pharmacol 129: 568–571.
9. Yamada J, Saitow F, Satake S, Kiyohara T, Konishi S (1999) GABA_A receptor-mediated presynaptic inhibition of glutamatergic and GABAergic transmission in the basolateral amygdala. Neuropharmacology 38: 1743–1753.
10. Brady KT, Clary CM (2003) Afffective and anxiety comorbidity in post-traumatic stress disorder treatment trials of sertraline. Compr Psychiatry 44: 360–369.
11. Ravindran LN, Stein MB (2009) Pharmacotherapy of PTSD: premises, principles, and priorities. Brain Res 1293: 24–39.
12. Nothdurfter C, Rammes G, Baghai TC, Schuch M, Schumacher M, et al. (2012) Translocator protein (18 kDa) as a target for novel anxiolytics with a favourable side-effect profile. J Neuroendocrinol 24: 82–92.
13. Maeda J, Hijachi M, Inaji M, Ji R, Hamed E, et al. (2007) Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res 1157: 100–111.
14. Dell’Omo I, Da Pozzo E, Carmassi C, Trincafelli ML, Giapparelli A, et al. (2010) Lifetime manic-hypomanic symptoms in post-traumatic stress disorder: relationship with the 18 kDa mitochondrial translocator protein density. Psychiatry Res 177: 139–143.
15. Papadopoulos V, Baraldi M, Guillet TR, Knudsen TB, Lacapere JJ, et al. (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27: 402–409.
16. Costa B, Da Pozzo E, Martini C (2012) Translocator protein as a promising target for novel anxiolytics. Curr Top Med Chem 12: 270–285.
17. Qin ZK, Zhang LM, Zhan N, Chen HX, Zhang YZ, et al. (2013) Repeated administration of AC-5216, a ligand for the 18 kDa translocator protein, improves behavioral deficits in a mouse model of post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 45: 40–46.
18. Senses E, Agan A, Kose EA, Oz G, Rezaei H (2013) The effects of midazolam and dexametomidine infusion on perioperative anxiety in regional anesthesia. Middle East J Anesthesiol 22: 35–40.
19. Treccani-Venzi M, Borgati A, Fuchs-Butler T, Gachoud JP, Suter PM (1996) Overnight sedation with midazolam or propofol in the ICU: effects on sleep quality, anxiety and depression. Intensive Care Med 22: 1186–1190.
20. Armario A, Escorihuela RM, Nadal R (2000) Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals. Neurosci Biobehav Rev 25: 1121–1135.
21. Takahashi T, Morinobu S, Ieamoto Y, Yamawaki S (2006) Effect of paroxetine on enhanced contextual fear induced by single prolonged stress in rats. Psychopharmacology (Berl) 189: 163–173.

22. Khan S, Liberson I (2004) Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology 172: 225–229.

23. Zhang LM, Yao JZ, Li Y, Li K, Chen HX, et al. (2012) Anxiolytic effects of flavonoids in animal models of posttraumatic stress disorder. Evid Based Complement Alternat Med 2012: 623753.

24. Kita A, Kobayakawa H, Kinoshita T, Ochi Y, Nakamichi K, et al. (2004) Antinociception and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand. Br J Pharmacol 142: 1059–1072.

25. Tokuda K, O'Dell KA, Izumi Y, Zorumski CF (2010) Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis. J Neurosci 30: 16788–16795.

26. Kita A, Furukawa K (2008) Involvement of neurosteroids in the anxiolytic-like effects of AC-5216 in mice. Pharmacol Biochem Behav 89: 171–178.

27. Paez-Martinez N, Aldrete-Audiffred J, Gallardo-Tenorio A, Castro-Garcia M, Estrada-Camarena E, et al. (2013) Participation of GABAA, GABA(B) receptors and neurosteroids in tolaurine-induced hypothermia: evidence of concentration-dependent differences in the mechanism of action. Eur J Pharmacol 698: 178–185.

28. Brot MD, Akwa Y, Purdy RH, Koob GF, Britton KT (1997) The anxiolytic-like effects of the neurosteroid allopregnanolone: interactions with GABA(A) receptors. Eur J Pharmacol 325: 1–7.

29. Liberzon I, Kestow M, Young EA (1997) Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 22: 443–453.

30. Suenaga T, Morinobu S, Kawano K, Sawada T, Yamawaki S (2004) Influence of immobilization stress on the levels of CaMKII and phospho-CaMKII in the rat hippocampus. Int J Neuropsychopharmacol 7: 299–309.

31. Bai M, Zhu X, Zhang Y, Zhang S, Zhang L, et al. (2012) Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behavior induced by stress during early life. PLoS One 7: e69291.

32. Imanaka A, Morinobu S, Toki S, Yamawaki S (2006) Importance of early social isolation in the socially-isolated mouse: a model to study the putative role of allopregnanolone in the mechanisms of social isolation stress. Psychoneuroendocrinology 31: 1040–1045.

33. Wang HN, Peng Y, Tan QR, Wang HH, Chen YC, et al. (2009) Free and Easy Wanderer Plus (FEWP), a polyherbal preparation, ameliorates PTSD-like behavior and cognitive impairments in stressed rats. Prog Neuropsychopharmacol Biol Psychiatry 33: 1458–1463.

34. Imanaka A, Morinobu S, Toki S, Yamawaki S (2006) Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav Brain Res 173: 129–137.

35. Cao J, Shi X, Xiao X, Xu J (2009) Effects of premedication of midazolam or clonidine on perioperative anxiety and pain in children. Biorei Trends 3: 115–118.

36. Kain ZN, MacLaren J, McClain BC, Saadat H, Wang SM, et al. (2007) Effects of age and emotionality on the effectiveness of midazolam administered preoperatively to children. Anesthology 107: 543–552.

37. Rupprecht R, Rammes G, Eser D, Baghai TC, Schule C, et al. (2009) Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 325: 490–493.

38. Kita A, Kinoshita T, Kobayakawa H, Furukawa K, Akaike A (2009) Lack of tolerance to anxiolysis and withdrawal symptoms in mice repeatedly treated with AC-5216, a selective TSPO ligand. Prog Neuropsychopharmacol Biol Psychiatry 33: 1040–1045.

39. Lambert JJ, Cooper MA, Simmons RD, Weir CJ, Belelli D (2009) Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 34 Suppl 1: S48–S50.

40. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6: 363–375.

41. Pinna G, Costa E, Guidotti A (2009) SSRIs act as selective brain steroidogenic stimulators (SSBSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol 9: 24–30.

42. Piñero F, Nelson M, Guidotti A, Costa E, Pinna G (2008) Decreased corticobilic allopregnanolone expression during social isolation enhances contextual fear: A model relevant for posttraumatic stress disorder. Proc Natl Acad Sci U S A 105: 5567–5572.

43. Rasmussen AM, Pinna G, Paliwal P, Weisman D, Gotti C, Gottschalk C, et al. (2006) Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol Psychiatry 60: 704–713.

44. Rosenkranz JA, Moore H, Grace AA (2003) The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 23: 11054–11064.

45. Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, et al. (2001) The prefrontal cortex regulates hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation. Neuron 33: 1458–1463.

46. Pibiri F, Nelson M, Guidotti A, Costa E, Pinna G (2009) SSRIs act as selective brain steroidogenic stimulators (SSBSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol 9: 24–30.

47. Rupprecht R, Rammes G, Eser D, Baghai TC, Schule C, et al. (2009) Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 325: 490–493.

48. Kita A, Kinoshita T, Kobayakawa H, Furukawa K, Akaike A (2009) Lack of tolerance to anxiolysis and withdrawal symptoms in mice repeatedly treated with AC-5216, a selective TSPO ligand. Prog Neuropsychopharmacol Biol Psychiatry 33: 1040–1045.

49. Lambert JJ, Cooper MA, Simmons RD, Weir CJ, Belelli D (2009) Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 34 Suppl 1: S48–S50.

50. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6: 363–375.

51. Imanaka A, Morinobu S, Toki S, Yamawaki S (2006) Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav Brain Res 173: 129–137.

52. Cao J, Shi X, Xiao X, Xu J (2009) Effects of premedication of midazolam or clonidine on perioperative anxiety and pain in children. Biorei Trends 3: 115–118.

53. Kain ZN, MacLaren J, McClain BC, Saadat H, Wang SM, et al. (2007) Effects of age and emotionality on the effectiveness of midazolam administered preoperatively to children. Anesthology 107: 543–552.

54. Rupprecht R, Rammes G, Eser D, Baghai TC, Schule C, et al. (2009) Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 325: 490–493.