Microlocal properties of basic operations in
Colombeau algebras

G. Hörmann 1, M. Kunzinger

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien,
Austria, E-mail: Guenther.Hoermann@univie.ac.at,
Michael.Kunzinger@univie.ac.at

Abstract The Colombeau algebra of generalized functions allows to unrestrictedly
carry out products of distributions. We analyze this operation from a microlocal
point of view, deriving a general inclusion relation for wave front sets of products
in the algebra. Furthermore, we give explicit examples showing that the given
result is optimal, i.e. its assumptions cannot be weakened. Finally, we discuss the
interrelation of these results with the concept of pullback under smooth maps.

2000 Mathematics Subject Classification. Primary 46F30, 35A21; Secondary 46F10,
35A27.

1 Introduction

Algebras of generalized functions in the sense of J. F. Colombeau provide an
efficient tool for the treatment of nonlinear problems involving singularities
(cf., e.g. [1], [2], [3], [14], [9] and the literature cited therein). In particular,
unrestricted multiplication (as well as a host of more general nonlin-
ear operations) of distributions can be carried out in Colombeau algebras. Moreover,
starting with [14], regularity theory has been introduced into the Colombeau
framework and was extended to microlocal analysis with applications to prop-
agation of singularities in [4], [13], [11] and [12].

In the present paper we study microlocal properties of multiplication of gen-
eralized functions as well as of related operations (like pullback) in this set-
ing. Since unlike in the case of intrinsic multiplication of distributions the
formation of products in the Colombeau algebra is not subject to regular-
ity conditions (“favorable position of the wave front sets”), new effects can
(and will) occur. Apart from deriving general results on inclusion relations
for wave front sets of products the emphasis of our presentation will be on
providing examples illustrating these new effects. At the same time, the ex-
amples will demonstrate that the mentioned inclusion relations are optimal

1Present address: Center for Wave Phenomena, Colorado School of Mines, Golden, CO
80401-1887, USA
in the sense that the assumptions made to derive them cannot be weakened.

Concerning notation and terminology we basically follow [14]. Thus by $\mathcal{A}_0(\mathbb{R})$ we denote the space of test functions on \mathbb{R} with unit integral. For $1 \leq q$, $\mathcal{A}_q(\mathbb{R})$ is the subspace of $\mathcal{A}_0(\mathbb{R})$ consisting of those elements whose moments up to order q vanish. For $n \geq 1$, $\mathcal{A}_q(\mathbb{R}^n)$ is the space of n-fold tensor products $\phi^{(n)} := \phi \otimes \cdots \otimes \phi$ with $\phi \in \mathcal{A}_0(\mathbb{R})$. If $\phi \in \mathcal{D}(\mathbb{R}^n)$ is any test function we set $\phi_\varepsilon(x) = \phi(x/\varepsilon)/\varepsilon^n$. Then the basic building blocks of the Colombeau algebra of generalized functions are defined as follows:

$\mathcal{E}_M(\mathbb{R}^n)$ is the set of all maps $R : \mathcal{A}_0(\mathbb{R}^n) \times \mathbb{R}^n \to \mathbb{C}$ which are smooth in x and satisfy: $\forall K \subset \subset \mathbb{R}^n \forall \alpha \in \mathbb{N}_0^n \exists N \in \mathbb{N} \forall \phi \in \mathcal{A}_N(\mathbb{R}^n) \exists c > 0 \exists \eta > 0$:

$$\sup_{x \in K} |\partial^\alpha R(\phi_\varepsilon, x)| \leq c\varepsilon^{-N} \quad (0 < \varepsilon < \eta). \quad (1)$$

$\mathcal{N}(\mathbb{R}^n)$ is the subset of $\mathcal{E}_M(\mathbb{R}^n)$ consisting of those R satisfying: $\forall K \subset \subset \mathbb{R}^n \forall \alpha \in \mathbb{N}_0^n \forall q \in \mathbb{N} \exists p \in \mathbb{N} \forall \phi \in \mathcal{A}_p(\mathbb{R}^n) \exists c > 0 \exists \eta > 0$:

$$\sup_{x \in K} |\partial^\alpha R(\phi_\varepsilon, x)| \leq c\varepsilon^q \quad (0 < \varepsilon < \eta). \quad (2)$$

Then the Colombeau algebra $\mathcal{G}(\mathbb{R}^n)$ is defined as the quotient $\mathcal{E}_M(\mathbb{R}^n)/\mathcal{N}(\mathbb{R}^n)$. We note that to characterize \mathcal{N} as a subspace of \mathcal{E}_M it would suffice to suppose (2) only for $\alpha = 0$ (see [3], Th. 13.1). For the definition of $\mathcal{G}(\Omega)$ for $\Omega \subset \subset \mathbb{R}^n$ open we refer to [14]. The subalgebra of compactly supported elements of \mathcal{G} will be denoted by \mathcal{G}_c.

The respective definitions for the space $\mathcal{G}_\tau = \mathcal{E}_{M,\tau}/\mathcal{N}_\tau$ of tempered Colombeau functions read:

$\mathcal{E}_{M,\tau}(\mathbb{R}^n)$ is the set of all maps $R : \mathcal{A}_0(\mathbb{R}^n) \times \mathbb{R}^n \to \mathbb{C}$ which are smooth in x and satisfy: $\forall \alpha \in \mathbb{N}_0^n \exists N \in \mathbb{N} \forall \phi \in \mathcal{A}_N(\mathbb{R}^n) \exists c > 0 \exists \eta > 0$:

$$|\partial^\alpha R(\phi_\varepsilon, x)| \leq c(1 + |x|)^N\varepsilon^{-N} \quad (x \in \mathbb{R}^n, 0 < \varepsilon < \eta) \quad (3)$$

$\mathcal{N}_\tau(\mathbb{R}^n)$ is the subset of $\mathcal{E}_{M,\tau}(\mathbb{R}^n)$ consisting of those R satisfying: $\forall \alpha \in \mathbb{N}_0^n \forall q \in \mathbb{N} \exists p \in \mathbb{N} \forall \phi \in \mathcal{A}_p(\mathbb{R}^n) \exists c > 0 \exists \eta > 0$:

$$|\partial^\alpha R(\phi_\varepsilon, x)| \leq c(1 + |x|)^N\varepsilon^q \quad (x \in \mathbb{R}^n, 0 < \varepsilon < \eta) \quad (4)$$

The canonical embedding of \mathcal{D}' into \mathcal{G} resp. of \mathcal{S}' into \mathcal{G}_τ will consistently be denoted by ι. Also, equivalence classes of elements R of \mathcal{E}_M resp. $\mathcal{E}_{M,\tau}$ will be written as $\text{cl}([(R(\phi, .))_\phi])$.

2
2 Basic definitions, a first example

The starting point for regularity theory and microlocal analysis in Colombeau algebras of generalized functions was the introduction of the subalgebra \mathcal{G}^∞ of \mathcal{G} by M. Oberguggenberger in [14]. \mathcal{G}^∞ consists of those elements of \mathcal{G} displaying uniform ε-growth in all derivatives. By [14], Th. 25.2, $\mathcal{G}^\infty \cap \mathcal{D}' = \mathcal{C}^\infty$, an identity on which all further regularity theory is based. The analogous notion \mathcal{G}^∞_τ for tempered Colombeau functions was introduced in [11] where it was also shown that $\mathcal{G}^\infty_\tau \cap \mathcal{S}' = \mathcal{O}_M$ ([11], Th. 16). Here \mathcal{O}_M denotes the space of smooth functions with at most polynomial growth in each derivative.

$U \in \mathcal{G}_c$ is an element of \mathcal{G}^∞ iff its Fourier transform (with respect to any damping measure) is rapidly decreasing ([11], Th. 18). Based on this observation the concept of wave front set in \mathcal{G}, first introduced in [4], has been (equivalently) stated in [11] along the lines of [10], Sect. 8.1. Thus for $U \in \mathcal{G}_c$ by $\Sigma_g(U)$ we denote the cone (in $\mathbb{R}^n \setminus 0$) which is the complement of those points possessing open conic neighborhoods on which the Fourier transform of U is rapidly decreasing. This notion is again independent of the damping measure used in the definition of Fourier transform in \mathcal{G}_τ. Then for $U \in \mathcal{G}(\Omega)$ and $x_0 \in \Omega$, the cone of irregular directions at x_0 is

$$\Sigma_{g,x_0}(U) = \bigcap_{\varphi \in \mathcal{D}(\Omega), \varphi(x_0) \neq 0} \Sigma_g(\varphi U) \quad (5)$$

The wave front set of U is given by

$$\text{WF}(U) = \{ (x, \xi) \in \Omega \times \mathbb{R}^n \setminus 0 \mid \xi \in \Sigma_{g,x}(U) \}. \quad (6)$$

Finally, we shall make use of the concept of characteristic set of a linear differential operator (introduced in [4] for the case of the special Colombeau algebra):

Definition 1. Let $P = \sum_{|\alpha| \leq m} a_\alpha(x) \partial^\alpha$ be a linear differential operator on Ω with coefficients in $\mathcal{G}(\Omega)$. $(x_0, \xi_0) \in \Omega \times \mathbb{R}^n \setminus \{0\}$ is not in the characteristic set of P if there exists a neighborhood V_{x_0} of x_0, a neighborhood Γ_{ξ_0} of ξ_0, some $r \in \mathbb{R}$ and some $m \in \mathbb{N}_0$ such that $\forall \phi \in \mathcal{A}_m(\mathbb{R}^n)$ $\exists \eta > 0 \exists C > 0$ with

$$|P_m(\phi_\varepsilon, x, \xi)| \geq C\varepsilon^r |\xi|^m, \quad x \in V_{x_0}, \xi \in \Gamma_{\xi_0}, \varepsilon \in (0, \eta). \quad (7)$$

The following example, which was first introduced in [4], gives a first application of these concepts and introduces some methods that will repeatedly be used in the following sections.
Example 2. We want to calculate the wave front set of the solution to

$$
(\partial_t + a \partial_x)U = 0 \\
U |_{t=0} = U_0
$$

(8)

where a denotes a bounded generalized constant and U_0 is allowed to be singular. Thus let $(a_\varepsilon)_{\varepsilon > 0}$ be such that $|a_\varepsilon|$ is bounded and denote by a the generalized constant with representative $a(\phi) = a_{d(\phi)}$ (where $d(\phi)$ is the diameter of the support of ϕ). Then for any $U_0 \in \mathcal{G}(\mathbb{R})$ the solution U of (8) is given by the class of $U(\phi^{(2)}, x, t) = u_0(\phi, x - a(\phi)t)$. Denote by B the set of limit points for $\varepsilon \to 0$ of $(a_\varepsilon)_{\varepsilon > 0}$. As was noted in [7],

$$
\text{singsupp}(U) \subseteq S := \{(x, t) \mid \exists b \in B \text{ s.t. } x - bt \in K\}
$$

(9)

where $K = \text{singsupp}(U_0)$. In fact, let $(x_0, t_0) \not\in S$. Then by differentiating $u_0(\phi_\varepsilon, x - a(\phi_\varepsilon)t)$ and employing the boundedness of a it follows that it suffices to show $x - a_{\varepsilon}t \not\in K$ for (x, t) in a neighborhood of (x_0, t_0) and ε small which is obviously satisfied.

To begin with, let us determine the wave front set of U for the particular initial value $U_0 = \delta = \text{cl}[(\phi)_{\phi \in A_0(\mathbb{R})}]$, so $K = \{0\}$. Let $(x_0, t_0) \in S$ and let $\psi \in \mathcal{D}(\mathbb{R}^2)$, $\psi(x_0, t_0) \neq 0$. Then

$$
(\psi u(\phi^{(2)}_\varepsilon, \cdot))(\xi, \tau) = \int e^{-i(\xi x + \tau t)}\psi(x, t)\varepsilon^{-1}\phi\left(\frac{x - a_{d(\phi)}t}{\varepsilon}\right) d(x, t)
$$

$$
= \int e^{-i(\xi(x + a_{d(\phi)}t) + \tau t)}\psi(\varepsilon x + a_{d(\phi)}t, t)\phi(x) dx dt
$$

Setting $(\xi, \tau) = \omega(\xi_0, \tau_0)$ this equals

$$
\int e^{i\omega f_\varepsilon(x, t)}\psi(\varepsilon x + a_{d(\phi)}t, t)\phi(x) dx dt.
$$

(10)

where $f_\varepsilon(x, t) = -(a_{d(\phi)}\xi_0 + \tau_0)t - \varepsilon\xi_0 x$. By [10], Th. 7.7.1, for any $k \in \mathbb{N}$ we obtain a constant C independent of ε such that

$$
|\psi u(\phi^{(2)}_\varepsilon, \cdot))(\xi, \tau)| \leq C \omega^{-k} \cdot \sum_{|\alpha| \leq k} \sup(|D^\alpha(\psi(\varepsilon x + a_{d(\phi)}t, t)\phi(x))| |Df_\varepsilon(x, t)|^{\alpha_2} - 2k).
$$

(11)

Here $|Df_\varepsilon(x, t)|^2 = \varepsilon^2|\xi_0|^2 + |\tau_0 + a_{d(\phi)}\varepsilon\xi_0|^2$, which remains bounded away from 0 (uniformly in ε) for $\tau_0 \not\in -B\xi_0$. Then from (11) we conclude that any such pair (ξ_0, τ_0) is not contained in $\Sigma_g(x_0, t_0)(U)$. Denoting by Γ_B the cone $\{(x, \tau) \mid \exists b \in B \text{ with } \tau = -b\xi\}$ we have shown that

$$
WF_g(U) \subseteq S \times \Gamma_B.
$$

(12)
Conversely, let $\tau_0 = -b\xi_0$ for some $b \in B$, fix $\phi \in A_0(\mathbb{R})$ and choose a sequence $\varepsilon_k \to 0$ with $d(\phi(\varepsilon_k)) \to b$. Then from (10) we have $(\psi u(\phi_\varepsilon^{(2)}), \wedge(\xi, \tau) \to \int \psi(bt, t) \, dt$ which for an appropriate choice of ψ is nonzero. Thus $(\psi u(\phi_\varepsilon^{(2)}), \wedge$ is not rapidly decreasing in the direction (ξ_0, τ_0), so we also obtain the reverse inclusion of (12). Summing up,

$$WF_g(U) = S \times \Gamma_B.$$ \hspace{1cm} (13)

We note that inclusion (12) can even be obtained for general initial data in $\mathcal{G}(\mathbb{R})$ by propagation of singularities: in fact, by Th. 4 of [4] we have

$$WF_g(U) \subseteq \text{Char} P \cup WF_g(P)(U) \quad (U \in G(\Omega))$$ \hspace{1cm} (14)

for any linear differential operator with coefficients in $G^\infty(\Omega)$. Since the right hand side of (3) is 0 it therefore remains to determine the characteristic directions of the operator $P = \partial_t + a\partial_x$. Fix $\phi \in A_0(\mathbb{R})$ and set $P_{\varepsilon}(x, t; \xi, \tau) = P(\phi_\varepsilon^{(2)}(x, t; \xi, \tau)) = i(\tau + a\varepsilon\xi)$ (to simplify notation we assume $d(\phi) = 1$). To show that $(x_0, t_0, \xi_0, \tau_0)$ is non-characteristic it suffices to prove the existence of a neighborhood V of (x_0, t_0), a conic neighborhood of (ξ_0, τ_0) and constants $r \in \mathbb{R}$ (independent of ϕ), $C > 0$ and $\eta > 0$ such that

$$|P_{\varepsilon}(x, t; \xi, \tau)| \geq C\varepsilon^r(|\xi| + |\tau|) \quad ((x, t) \in V, (\xi, \tau) \in \Gamma, 0 < \varepsilon < \eta)$$ \hspace{1cm} (15)

Let $\tau_0 \not\in -B\xi_0$ and suppose $\xi_0 \neq 0$ to begin with. Then there exists some $c > 0$ such that $|\tau_0/\xi_0 + a\varepsilon| \geq c$ for ε small. Let

$$\Gamma = \{(\xi, \tau) \mid |\frac{\tau - \tau_0}{\xi} - \frac{c}{2}\}$$

For $(\xi, \tau) \in \Gamma$ we get

$$|\tau + a\varepsilon\xi| \geq |\xi|(\frac{\tau_0}{\xi_0} + a\varepsilon) - |\frac{\tau}{\xi} - \frac{\tau_0}{\xi_0}| \geq \frac{c}{2}|\xi| \geq \tilde{c}(|\xi| + |\tau|)$$

so (ξ, τ) is noncharacteristic. On the other hand, if $\xi_0 = 0$ then we choose c such that $c|a\varepsilon| < 1/2$ for all ε and set $\Gamma = \{(\xi, \tau) \mid |\xi/\tau| < c\}$. Then again

$$|\tau + a\varepsilon\xi| \geq |\tau|(1 - |a\varepsilon|\frac{|\xi|}{|\tau|}) \geq \frac{1}{2}|\tau| \geq \tilde{c}(|\xi| + |\tau|)$$

for $(\xi, \tau) \in \Gamma$. Thus $\text{Char} P \subseteq \mathbb{R}^2 \times \Gamma_B$ which by (9) and (14) implies (12).

Remark 3. In [7] it is shown that inclusion (9) — and consequently also (12) — may be strict.
3 The wave front set of a product

In order to give a concise presentation of the following results we first collect a few facts on cones in \(\mathbb{R}^n\) resp. \(\mathbb{R}^n \setminus 0\).

Lemma 4.

(i) If \(\Sigma_1, \Sigma_2\) are closed cones in \(\mathbb{R}^n\) such that \(\Sigma_1 \cap \Sigma_2 = \{0\}\) then \(\exists \alpha > 0:\ |\xi - \eta| \geq \alpha |\eta|\ \forall \xi \in \Sigma_1, \forall \eta \in \Sigma_2\).

Let \(\Gamma_1, \Gamma_2\) be closed cones in \(\mathbb{R}^n \setminus 0\) such that \(0 \not\in \Gamma_1 + \Gamma_2\). Then

(ii) \(\Gamma_1 + \Gamma_2 \cup \mathbb{R}^n \setminus 0 = (\Gamma_1 + \Gamma_2) \cup \Gamma_1 \cup \Gamma_2\).

(iii) For any open conic neighborhood \(W\) of \(\Gamma_1 + \Gamma_2\) in \(\mathbb{R}^n \setminus 0\) one can choose open conic neighborhoods \(W_1, W_2\) in \(\mathbb{R}^n \setminus 0\) of \(\Gamma_1, \Gamma_2\), respectively such that \(W_1 + W_2 \subseteq W\).

Remark 5.

(i) the second assertion is false (in gen.) if \(0 \in \Gamma_1 + \Gamma_2\) by the following example (in \(\mathbb{R}^2\)) due to M. Grosser: Let \(K_1 = \{\lambda \cdot (-1, t, t^2) \mid 0 \leq t \leq 1, \lambda \geq 0\}\), \(K_2 = \{\lambda \cdot (1, t, t^2) \mid 0 \leq t \leq 1, \lambda \geq 0\}\). Then \(\Gamma_i \cap \mathbb{R}^2 \neq 0\) \((i = 1, 2)\) are closed cones in \(\mathbb{R}^3 \setminus 0\). The sequence \(\Gamma_1 + \Gamma_2 \ni \xi_n = n \cdot (-1, 1/n, 1/n^2) + n \cdot (1, 1/n, 1/n^2) = (0, 2, 2/n)\) tends to \((0, 2, 0)\) as \(n \to \infty\). But \((0, 2, 0) \not\in (\Gamma_1 + \Gamma_2) \cup \Gamma_1 \cup \Gamma_2\): first, \((0, 2, 0) = \lambda(-1, t, t^2) + \mu(1, s, s^2)\) implies \(\lambda = \mu, \lambda \neq 0\) and \(s = t = 0\), yielding \(0 = 2\) in the second component, so \((0, 2, 0) \not\in \Gamma_1 + \Gamma_2\). Also, \((0, 2, 0) \not\in \Gamma_i\) \((i = 1, 2)\) by construction.

(ii) the third assertion is false (in gen.) if \(0 \in \Gamma_1 + \Gamma_2\) by the following example in \(\mathbb{R}^2\): Let \(\Gamma_1 = \{(x, 0) \mid x > 0\}\), \(\Gamma_2 = \{(x, 0) \mid x < 0\}\). Then the sum of any two open conic neighborhoods of \(\Gamma_1, \Gamma_2\) is \(\mathbb{R}^2\).

Proof.

(i): Otherwise there would be sequences \(\xi_j \in \Sigma_1\) and \(\eta_j \in \Sigma_2\) \((j \in \mathbb{N})\) such that \(|\xi_j - \eta_j| < |\eta_j|/j\) for all \(j \in \mathbb{N}\); this implies \(|\xi_j/|\eta_j| - \eta_j/|\eta_j|| < 1/j\) which shows that \(\xi_j/|\eta_j|\) has an accumulation point \(\xi_0 \in \Sigma_1\) with \(|\xi_0| = 1\); but then \(\xi_0\) is also an accumulation point of \(\eta_j/|\eta_j|\) and therefore an element of \(\Sigma_2\) — a contradiction.
(ii): See [3], proof of Th. 1.3.6.

Assume that (iii) does not hold; for each \(k \) choose conic neighborhoods \(W_j^k \) \((j = 1, 2)\) in \(\mathbb{R}^n \) \(\setminus \) 0 with the following property: \(\forall \eta \in W_j^k \) the projection \(\eta/|\eta| \) to \(S^{n-1} \) has distance less than \(1/k \) to the compact set \(\Gamma_j \cap S^{n-1} \).

By assumption we can choose \(\eta_j^k \in W_j^k \) such that \(\eta_j^k + \eta_2^k \not\in W \). In particular, \(\Gamma = \mathbb{R}^n \setminus W \) is a nonempty closed cone in \(\mathbb{R}^n \) and therefore also \(\eta^k = (\eta_1^k + \eta_2^k)/\beta_k \) with \(\beta_k = |\eta_1^k| + |\eta_2^k| \) is contained in \(\Gamma \).

Now we choose \(\xi_{j,0}^k \in \Gamma_j \cap S^{n-1} \) such that \(|\xi_{j,0}^k - \eta_j^k/|\eta_j^k|| < 1/k \) and set

\[
\xi^k = \frac{|\eta_1^k|}{\beta_k} \xi_{1,0}^k + \frac{|\eta_2^k|}{\beta_k} \xi_{2,0}^k \in \Gamma_1 + \Gamma_2.
\]

By (ii) of the current lemma \((\Gamma_1 \cup \{0\}) + (\Gamma_2 \cup \{0\}) \) is a closed cone in \(\mathbb{R}^n \); it intersects \(\Gamma \) only in 0, so we can apply (i): for all \(k \in \mathbb{N} \) we have for some \(\alpha > 0 \)

\[
0 < \alpha |\xi^k| \leq |\xi^k - \eta^k| = \frac{1}{\beta_k} \left(|\eta_1^k|(|\xi_{1,0}^k - \eta_1^k/|\eta_1^k|) + |\eta_2^k|(|\xi_{2,0}^k - \eta_2^k/|\eta_2^k|) \right) < \frac{1}{k}.
\]

Sending \(k \to \infty \) we conclude that \(\xi^k \to 0 \). By construction the summands of \(\xi^k \) are bounded: \(|\xi_j^k| \leq 1 \) \((j = 1, 2)\). If \(\xi_{j,0}^k \) would tend to 0 then so would \(\xi_{j}^k = \xi^k - \xi_{j,0}^k \). But since \(\xi_{j,0}^k \) are normalized this would imply that both \(|\eta_j^k|/\beta_k \) \((j = 1, 2)\) tend to zero yielding the contradiction \(1 = (|\eta_1^k| + |\eta_2^k|)/\beta_k \to 0 \).

Therefore the norms of (suitable subsequences of) \(\xi_{j}^k \) are bounded away from zero and above. There are subsequences \(\xi_{j,i}^k \) \((i \in \mathbb{N})\) such that \(\xi_{j,i}^k \to \xi_j \neq 0 \); then \(\Gamma_1 + \Gamma_2 \ni \xi_1 + \xi_2 = 0 \) and therefore \(0 \in \Gamma_1 + \Gamma_2 \) — a contradiction. \(\square \)

An essential new feature of microlocal analysis in the Colombeau setting is the precise quantification of decrease properties in terms of powers of the regularization parameter \(\varepsilon \). Recall from [11], Def. 17 that \(R \in \mathcal{G}_r \) is called rapidly decreasing in a cone \(\Gamma \) if \(\exists N \forall \eta \in \mathbb{N}_0 \exists M \in \mathbb{N}_0 \forall \phi \in \mathcal{A}_M \exists c > 0 \forall \eta > 0 \):

\[
|R(\phi_\varepsilon, x)| \leq c\varepsilon^{-N}(1 + |x|)^{-p} \quad (x \in \Gamma, 0 < \varepsilon < \eta).
\]

The following lemma shows that on closed cones in the complement of the cone of irregular directions of \(U \in \mathcal{G}_c \), the order \(N \) in (14) of rapid decrease of the Fourier transform of \(U \) can be chosen uniformly.
Lemma 6. Let \(U \in \mathcal{G}_c(\Omega) \) and let \(\Gamma \) be a closed cone in the complement of \(\Sigma_g(U) \). Then \(\exists N \forall p \in \mathbb{N}_0 \exists M \in \mathbb{N}_0 \forall \phi \in \mathcal{A}_M \exists c > 0 \exists \varepsilon > 0 \) such that

\[
|F(U(\phi, \cdot))(\xi)| \leq c \varepsilon^{-N} (1 + |\xi|)^{-p} \quad (\xi \in \Gamma, 0 < \varepsilon < \varepsilon_0).
\] (17)

Proof. For any \(\eta \in \Gamma \) there exists an open conic neighborhood \(\Gamma(\eta) \) such that \(\exists N(\eta) \forall p \in \mathbb{N}_0 \exists M(\eta, p) \in \mathbb{N}_0 \forall \phi \in \mathcal{A}_M \exists c(\eta, p, \phi) > 0 \exists \varepsilon_0(\eta, p, \phi) > 0 \) such that (17) holds with this set of constants on \(\Gamma(\eta) \). The sets \(\Gamma(\eta) \cap S^{n-1} \) are open in \(S^{n-1} \) and form a covering of the compact set \(\Gamma \cap S^{n-1} \). Thus there exist \(\eta_1, \ldots, \eta_m \in \Gamma \) such that

\[
\Gamma \cap S^{n-1} \subseteq \bigcup_{j=1}^{m} (\Gamma(\eta_j) \cap S^{n-1}).
\]

Consequently, \(\Gamma \) is contained in the union of the \(\Gamma(\eta_j) \) (\(1 \leq j \leq m \)). Now set \(N = \max_{1 \leq j \leq m} N(\eta_j) \) to finish the proof. \(\square \)

Following the terminology of [14] we will say that the wave front sets of two elements \(V_1, V_2 \) of \(\mathcal{G} \) are in favorable position if \(\WF_g(V_1) + \WF_g(V_2) \) does not contain any zero direction (i.e. any element of the form \((x, 0) \)). For \(V_1 = \iota(v_1), V_2 = \iota(v_2) \) distributions (in which case \(\WF(v_i) \) and \(\WF_g(\iota(v_i)) \) coincide by [13], Th. 3.8 and [14], Cor. 24) this condition ensures that the Fourier product \(v_1 v_2 \) of \(v_1 \) and \(v_2 \) exists in \(\mathcal{D}' \) ([14], Prop. 6.3). Also, by [14], Prop. 10.3, \(V_1 V_2 \) is associated with \(v_1 v_2 \) in this case. Moreover, the wave front sets of \(v_1, v_2 \) and \(v_1 v_2 \) are related by (see [14], Th. 8.2.10)

\[
\WF(v_1 v_2) \subseteq (\WF(v_1) + \WF(v_2)) \cup \WF(v_1) \cup \WF(v_2).
\] (18)

Our aim in the remainder of this section is to prove the analog of relation (18) for elements of \(\mathcal{G} \) whose generalized wave front sets are in favorable position, where the product is to be taken in the algebra \(\mathcal{G} \). In the following section it will turn out that the inclusion will in general break down if the assumption of a favorable position of the wave front sets is dropped.

Proposition 7. Let \(V_1, V_2 \in \mathcal{G}_c(\mathbb{R}^n) \) and suppose that \(0 \not\in \Sigma_g(V_1) + \Sigma_g(V_2) \). Then

\[
\Sigma_g(V_1 V_2) \subseteq \Sigma_g(V_1) + \Sigma_g(V_2) = (\Sigma_g(V_1) + \Sigma_g(V_2)) \cup \Sigma_g(V_1) \cup \Sigma_g(V_2).
\] (19)
Proof. Choose representatives \(v_1, v_2\) with compact support; with the short hand notation \(w_j^\varepsilon(\eta) = \mathcal{F}(v_j(\phi_\varepsilon, \cdot))(\eta)\) we have to estimate

\[
(2\pi)^n \mathcal{F}(v_1(\phi_\varepsilon, \cdot) v_2(\phi_\varepsilon, \cdot))(\xi) = w_1^\varepsilon \ast w_2^\varepsilon (\xi) = \int_{\mathbb{R}^n} w_1^\varepsilon(\xi - \eta)w_2^\varepsilon(\eta) \, d\eta
\]

in a suitable conic neighborhood of any point \(\xi_0\) in the complement of the right hand side of (19).

Let \(\Gamma_0\) be an open cone containing \(\Sigma_\varphi(V_1) + \Sigma_\varphi(V_2)\) such that \(\xi_0 \notin \Gamma_0\). By Lemma 4 (iii) there exist open cones \(\Gamma_j \supseteq \Sigma_\varphi(V_j)\) \((j = 1, 2)\) such that \(\Gamma_1 + \Gamma_2 \subseteq \Gamma_0\). Further, we set \(\Gamma = \mathbb{R}^n \setminus \Gamma_0\). We claim that \(w_1^\varepsilon \ast w_2^\varepsilon\) is rapidly decreasing in \(\Gamma\).

To show this we write

\[
w_1^\varepsilon \ast w_2^\varepsilon (\xi) = \int_{\Gamma_1} w_1^\varepsilon(\xi - \eta)w_2^\varepsilon(\eta) \, d\eta + \int_{\Gamma_2} w_1^\varepsilon(\xi - \eta)w_2^\varepsilon(\eta) \, d\eta
\]

and estimate the summands individually.

Substituting \(\eta' = \xi - \eta\), \(I_1^\varepsilon\) takes the form

\[
I_1^\varepsilon(\xi) = \int_{(\{\xi\} - \Gamma_2) \cap \Gamma_1} w_2^\varepsilon(\xi - \eta')w_1^\varepsilon(\eta') \, d\eta' + \int_{(\{\xi\} - \Gamma_2) \cap \Gamma_1} w_2^\varepsilon(\xi - \eta')w_1^\varepsilon(\eta') \, d\eta'
\]

\(I_{12}\) By Lemma 3 \(\exists N \forall p \in \mathbb{N}_0 \exists M \in \mathbb{N}_0 \forall \phi \in \mathcal{A}_M \exists c > 0 \exists \varepsilon_0 > 0\):

\[
|w_2^\varepsilon(\xi - \eta')| \leq c(1 + |\xi - \eta'|^2)^{-p}\varepsilon^{-N} \quad (\eta' \in \{\xi\} - \Gamma_2, \varepsilon \in (0, \varepsilon_0))
\]

and \(\exists N' \forall p' \in \mathbb{N}_0 \exists M' \in \mathbb{N}_0 \forall \phi \in \mathcal{A}_{M'} \exists c' > 0 \exists \varepsilon'_0 > 0\):

\[
|w_1^\varepsilon(\eta')| \leq c'(1 + |\eta'|^2)^{-p'}\varepsilon^{-N'} \quad (\eta' \in \Gamma_1, \varepsilon \in (0, \varepsilon'_0))
\]

Thus by Peetre’s inequality we obtain (for \(\varepsilon\) small and \(\phi \in \mathcal{A}_{\max(M,M')}\)):

\[
|I_{12}^\varepsilon(\xi)| \leq c'' \varepsilon^{-N - N'}(1 + |\xi|^2)^{-p} \int_{\mathbb{R}^n} (1 + |\eta'|^2)^{p-p'} \, d\eta'.
\]

This last integral is convergent for \(p' > p + \frac{n}{2}\), so \(I_{12}^\varepsilon\) is rapidly decreasing in \(\Gamma\).
We abbreviate the domain of integration by $B_\xi = \Gamma_1 \cap (\{\xi\} - \Gamma_2)$. For $\eta' \in B_\xi$, w_ξ is tempered in η' and w_ξ is rapidly decreasing in $\xi - \eta'$. (For later use we note here that since $\Gamma_1 \subseteq (\Gamma - \Gamma_2)^c$, the same decrease properties for w_ξ and w_ξ in fact hold on all of Γ_1. The following estimates thus remain valid upon replacing B_ξ by Γ_1.) Hence

$$|I_{11}(\xi)| \leq c_\varepsilon^{-N} \int_{B_\xi} (1 + |\xi - \eta'|)^{-p} (1 + |\eta'|)^M \, d\eta'.$$

Supposing $|\xi| \geq 1$ and setting $\xi_0 = \frac{\xi}{|\xi|}$ this equals

$$c_\varepsilon^{-N} |\xi|^{M-p} \int_{B_\xi} \left(\frac{1}{|\xi|} + \frac{1}{|\xi|} \right)^{-p} \left(\frac{1}{|\xi|} \right)^M \, d\eta' \leq c_\varepsilon^{-N} |\xi|^{M-n-p} \int_{B_\xi} \left(\frac{1}{|\xi|} \right)^{-p} \left(1 + |\eta| \right)^M \, d\eta.$$

Since $\Gamma \cap \Gamma_1 = \{0\}$, by (i) of Lemma 4 we have

$$\exists \alpha > 0 : \quad |\xi_0 - \eta| \geq \alpha |\eta| \quad \forall \xi_0 \in S^{n-1} \cap \Gamma, \forall \eta \in \Gamma_1 \quad (21)$$

$$\exists \beta > 0 : \quad |\xi_0 - \eta| \geq \beta |\xi_0| = \beta \quad \forall \xi_0 \in S^{n-1} \cap \Gamma, \forall \eta \in \Gamma_1 \quad (22)$$

We now split the domain of integration in (24) into the parts $B_1 = \frac{1}{|\xi|}B_\xi \cap \{|\eta| \leq \frac{1}{2}\}$ and $B_2 = \frac{1}{|\xi|}B_\xi \cap \{|\eta| > \frac{1}{2}\}$. Then by (22)

$$\int_{B_1} \left(\frac{1}{|\xi|} + |\xi_0 - \eta| \right)^{-p} (1 + |\eta|)^M \, d\eta \leq \beta^{-p} \int_{B_1} (1 + |\eta|)^M \, d\eta \leq \text{const}.$$

Also, by (21),

$$\int_{B_2} \left(\frac{1}{|\xi|} + |\xi_0 - \eta| \right)^{-p} (1 + |\eta|)^M \, d\eta \leq \alpha^{-p} \int_{B_2} |\eta|^{-p} (1 + |\eta|)^M \, d\eta \leq \text{const}$$

for $p > M - n$. It follows that I_{11} and hence also I_1 is rapidly decreasing in Γ.

Turning now to I_2, we first note that w_2 is tempered on the domain of integration. Moreover, since $\Gamma_2 \subseteq (\Gamma - \Gamma_1)^c$ it follows that w_2 is rapidly decreasing in $\xi - \eta$ in said domain (again by Lemma 1). Thus the same reasoning as in the case of I_{11} (cf. the above remark) shows that I_2 is rapidly decreasing in Γ as well, which completes the proof. \(\square\)
Theorem 8. Let U_1, U_2 be elements of $G(\Omega)$ whose wave front sets are in favorable position. Then

$$\text{WF}_g(U_1 U_2) \subseteq (\text{WF}_g(U_1) + \text{WF}_g(U_2)) \cup \text{WF}_g(U_1) \cup \text{WF}_g(U_2).$$

(23)

Proof. Let $(x, \xi) \notin \text{r.h.s.}$. Then for any $\varphi \in \mathcal{D}(\Omega)$ with $\varphi(x) \neq 0$ and support sufficiently close to x we have $\xi \notin \Sigma_g(\varphi U_i)$ $(i = 1, 2)$. Also, by Lemma 4 (ii) and (iii), since ξ is not contained in

$$\Sigma_{g,x}(U_1) + \Sigma_{g,x}(U_2) \mathbb{R}^n \setminus \{0\},$$

there exist open conic neighborhoods Γ_i of $\Sigma_{g,x}(U_i)$ in $\mathbb{R}^n \setminus \{0\}$ such that $\xi \notin \Gamma_1 + \Gamma_2$ and $0 \notin \Gamma_1 + \Gamma_2$. Thus, by [11], (13), if the support of φ is close enough to x we also have

$$\xi \notin \Sigma_g(\varphi U_1) + \Sigma_g(\varphi U_2) \subseteq \Gamma_1 + \Gamma_2.$$

Since $0 \notin \Sigma_g(\varphi U_1) + \Sigma_g(\varphi U_2)$,

$$\xi \notin \Sigma_g(\varphi U_1) + \Sigma_g(\varphi U_2) \mathbb{R}^n \setminus \{0\} = (\Sigma_g(\varphi U_1) + \Sigma_g(\varphi U_2)) \cup \Sigma_g(\varphi U_1) \cup \Sigma_g(\varphi U_2).$$

Thus by Proposition 4, $\xi \notin \Sigma_g(\varphi^2 U_1 U_2)$. Again from [11], (13) the claim follows.

4 Examples

In the previous section we have extended the validity of the wave front inclusion relation (18) to the product in the algebra G, provided that the generalized wave front sets of the factors are in favorable position. Contrary to the distributional situation, however, a favorable position of the wave front sets is of course not a prerequisite for forming the product in the algebra. Thus the question arises whether a further extension of the classical result to arbitrary products in G is possible. The second example in this section will demonstrate that this is not the case. Before we turn to this matter, we first give an example illustrating some genuinely non-distributional effects in the application of Theorem 3.

Example 9. Denote by U be the class in $G(\mathbb{R}^2)$ of $U(\phi(2), x, y) = \frac{1}{d(\phi)} \phi\left(\frac{x}{d(\phi)} - \frac{y}{\sqrt{d(\phi)}}\right)$. As the results of the following calculations are independent of the
concrete value of \(d(\phi) \) we will for simplicity assume that \(d(\phi) = 1 \) and we will abbreviate \(U(\phi^{(2)}, x, y) \) by \(u_\varepsilon(x, y) = \frac{1}{\varepsilon} \phi \left(\frac{x}{\varepsilon} - \frac{y}{\sqrt{\varepsilon}} \right) \). As a matter of fact, this assumption effectively transfers the problem into the setting of the special Colombeau algebra. It is easily seen that \(U \approx \delta(x) \otimes 1(y) \).

Further, let \(A = \iota(\frac{1}{x + y}) \in \mathcal{G}(\mathbb{R}) \) and define \(B \in \mathcal{G}(\mathbb{R}^2) \) by \(B(\phi^{(2)}, x, y) = A(\phi, \sqrt{d(\phi)}x + y) \). Employing the same simplification as above we will write \(b_\varepsilon(x, y) \) for

\[
B(\phi^{(2)}, x, y) = \int_0^\infty \frac{\phi(\sqrt{\varepsilon}x + y - z) - \phi(\sqrt{\varepsilon}x + y + z)}{z} \, dz - i\pi \phi(\sqrt{\varepsilon}x + y).
\]

Let us first determine \(\text{WF}_g(U) \). To begin with, we claim that \(\text{supp}(U) = \{0\} \times \mathbb{R} \). Indeed, the inclusion \(\subseteq \) is obvious. Conversely, let \((0, a) \in \{0\} \times \mathbb{R} \) and set \(x_\varepsilon = \varepsilon + a\sqrt{\varepsilon}, \, y_\varepsilon = \sqrt{\varepsilon} + a \). Then \((x_\varepsilon, y_\varepsilon)\) is the representative of a compactly supported generalized point (cf. [14]) supported in any ball \(B_r((0, a)) \) \((r > 0 \text{ arbitrary})\). Since \(u_\varepsilon(x_\varepsilon, y_\varepsilon) = \frac{1}{\varepsilon} \phi(0) \), the claim follows from [14], Th. 2.4. To determine an upper bound for \(\text{WF}_g(U) \) we note that setting \(P_\varepsilon = \partial_y + \sqrt{\varepsilon} \partial_x \) we have \(P_\varepsilon u_\varepsilon = 0 \). Thus by (14) the set of characteristic directions of \(P \) provides such an upper bound. By Example 2, \(\text{Char}(P) \subseteq \mathbb{R}^2 \times \{(\xi, 0) \mid \xi \neq 0\} \). Next, we show that \(\{(\xi, 0) \mid \xi \neq 0\} \subseteq \Sigma_{g,(0, a)}(U) \) for any \(a \in \mathbb{R} \). To this end, let \(\psi(x, y) = f(x)g(y) \in \mathcal{D}(\mathbb{R}^2) \), \(f(x) \equiv 1, \, g(y) \equiv 1 \) near \(x = 0 \) resp. \(y = 0 \), and \(g \) positive. For \(\varepsilon \) sufficiently small, \(\{x \mid g(y)\phi_\varepsilon(x - \sqrt{\varepsilon}y) \neq 0\} \subseteq \{x \mid f(x) = 1\} \), so \(\psi u = gu \). Hence

\[
\mathcal{F}(\psi u_\varepsilon)(\xi, 0) = \int e^{-ix\xi} \phi_\varepsilon(x - \sqrt{\varepsilon}y)g(y) \, dx \, dy = \hat{\phi}_\varepsilon(\xi) \hat{g}(\sqrt{\varepsilon}\xi)
\]

which shows that \(\mathcal{F}(\psi u_\varepsilon) \) is not rapidly decreasing in the direction \((\xi, 0)\).

Replacing \(g \) by \(\tau_\varepsilon g = g(\cdot - a) \) and setting \(\psi_a(x, y) = f(x)\tau_\varepsilon g(y) \) we obtain \(\mathcal{F}(\psi_a u_\varepsilon) = \hat{\phi}(\varepsilon\xi)\hat{g}(\sqrt{\varepsilon}\xi)e^{-iux} \), so the same reasoning gives \(\{(\xi, 0) \mid \xi \neq 0\} \subseteq \Sigma_{g,(0, a)}(U) \). Summing up, we have shown

\[
\text{WF}_g(U) = \{0\} \times \mathbb{R} \times \mathbb{R} \setminus 0 \times \{0\}.
\]

Turning now to \(B \), we first show that \(\text{singsupp}(B) = \{(0, 0)\} \). Let \((x, y) \in K \subseteq \mathbb{R}^2 \setminus 0 \). Since \(\phi(\frac{x}{\sqrt{\varepsilon}} + \frac{y + z}{\varepsilon}) \equiv 0 \) near \(z = 0 \) for \(\varepsilon \) small, we can write

\[
b_\varepsilon(x, y) = \frac{1}{\varepsilon} \int_0^\infty \frac{\phi(\frac{x}{\sqrt{\varepsilon}} + \frac{y + z}{\varepsilon})}{z} \, dz - \frac{1}{\varepsilon} \int_0^\infty \frac{\phi(\frac{x}{\sqrt{\varepsilon}} + \frac{y + z}{\varepsilon})}{z} \, dz
\]

\[
= \left\{ \begin{array}{ll} \frac{1}{\varepsilon} \int_{-\infty}^\infty \frac{\phi(s)}{\sqrt{\varepsilon}y} \, ds & \frac{x}{\sqrt{\varepsilon}} + \frac{y}{\varepsilon} > d(\phi) \\ -\frac{1}{\varepsilon} \int_{-\infty}^\infty \frac{\phi(s)}{\sqrt{\varepsilon}y} \, ds & \frac{x}{\sqrt{\varepsilon}} + \frac{y}{\varepsilon} < -d(\phi) \end{array} \right.
\]
In any case,

$$\partial_y^k \partial_x^l (\varepsilon b) = \pm \frac{1}{\varepsilon^{\frac{k}{2}}} \int_{-\infty}^{\infty} \frac{\phi(t) \, dt}{(-\varepsilon t \pm (y + \sqrt{\varepsilon} x))^{k+l+1}} = O\left(\frac{1}{\varepsilon}\right),$$

so B is an element of G^∞ off $(x, y) = (0, 0)$ (but clearly not in any neighborhood of $(0, 0)$ itself). Setting $P_\varepsilon = \partial_x - \sqrt{\varepsilon} \partial_y$ we have $P_\varepsilon b_\varepsilon = 0,$ so by the same reasoning as above we have $WF_g(B) \subseteq \text{Char}_g(P) = \mathbb{R}^2 \times \{\xi = 0\}$. To determine $\Sigma_{g, (0,0)} B$ it therefore remains to estimate (with ψ as above)

$$\mathcal{F}(\psi b_\varepsilon)(0, \eta) = \int e^{-i\eta y} \int_0^\infty \frac{\phi_\varepsilon(\sqrt{\varepsilon} x + y - z) - \phi_\varepsilon(\sqrt{\varepsilon} x + y + z)}{z} \, dz \cdot f(x) g(y) \, dx \, dy - \frac{2i}{\pi} \int f(x) (\mathcal{F}_{y \to \eta'}((\text{vp}(\frac{1}{x}) - i\pi\delta) * \phi_\varepsilon(\sqrt{\varepsilon} x + y) * \hat{g})(\eta)) \, dx$$

$$= \mathcal{I}_\varepsilon(x, \eta)$$

Using $\mathcal{F}(\text{vp}(\frac{1}{x}) - i\pi\delta) = cH$ (with H the Heaviside function) we have

$$\mathcal{I}_\varepsilon(x, \eta) = \int_0^\infty \hat{g}(\eta - \eta') e^{i\eta' \sqrt{\varepsilon} \hat{x}} \phi_\varepsilon(\varepsilon \eta') \, d\eta'$$

Suppose now that $\eta < 0$. Then in the domain of integration of $I_\varepsilon, |\eta - \eta'| \geq |\eta|$. Thus for any $l \in \mathbb{N}$ we get

$$|\hat{g}(\eta - \eta')| \leq c_l (1 + |\eta - \eta'|)^{-2l} \leq c_l (1 + |\eta|)^{-l} (1 + |\eta - \eta'|)^{-l}.$$

But then for l sufficiently large $|I_\varepsilon(x, \eta)| \leq c'(1 + |\eta|)^{-l},$ implying $\Sigma_{g, (0,0)} (B) \subseteq \{(0, \eta) \mid \eta > 0\}$. Since we have seen above that $\Sigma_{g, (0,0)} \neq \emptyset$, this implies

$$WF_g(B) = \{(0, 0)\} \times \{0\} \times \mathbb{R}^+.$$ \hspace{1cm} (25)

By (24) and (25), the wave front sets of U and B are in favorable position, so Theorem 8 gives

$$\Sigma_{g, (0,0)} (BU) \subseteq \mathbb{R} \times \mathbb{R}^+.$$ \hspace{1cm} (26)

We are now going to establish also the inverse inclusion to (26). With ψ as above, we have to analyze

$$\mathcal{F}(\psi b_\varepsilon u_\varepsilon)(\xi, \eta) = \mathcal{F}_{x \to \xi}(\mathcal{F}_{y \to \eta}(g(y) b_\varepsilon(x, y) u_\varepsilon(x, y)) \, f(x)).$$
Here, \((2\pi)^2 J^\varepsilon(x, \eta) = (\hat{g} \ast F_{y \to \eta'}(b_\varepsilon(x, y)) \ast F_{y \to \eta'}(u_\varepsilon(x, y)))(\eta)\), and a short calculation gives:

\[
F_{y \to \eta'}(b_\varepsilon(x, y))(\eta') = -2\pi i e^{i\eta'\sqrt{\varepsilon}x} H(\eta') \hat{\phi}(\varepsilon\eta')
\]

\[
F_{y \to \eta'}(u_\varepsilon(x, y))(\eta') = \frac{1}{\sqrt{\varepsilon}} e^{-i\eta' \frac{x}{\varepsilon}} \hat{\phi}(-\sqrt{\varepsilon}\eta')
\]

Inserting this and substituting \(x' = \frac{x}{\sqrt{\varepsilon}}\) we obtain

\[
\mathcal{F}(\psi b_\varepsilon u_\varepsilon)(\xi, \eta) = \frac{1}{2\pi} \int \int_{0}^{\infty} e^{-i\xi \sqrt{\varepsilon}x' + ix'(\varepsilon\eta'' - \eta')} \hat{g}(\eta - \eta' - \eta'') \hat{\phi}(\varepsilon\eta'') d\eta'' d\eta' df(\sqrt{\varepsilon}x') dx'.
\] (27)

For \(\varepsilon \to 0\) this converges to

\[
\mathcal{F}(\psi b_\varepsilon u_\varepsilon)(\xi, \eta) = \frac{1}{2\pi} \int \int_{-\infty}^{\infty} e^{-i\xi' \eta' \hat{g}(\eta - \eta' - \eta'')} d\eta'' d\eta' dx'.
\]

It follows that for \(\eta > 0\) and any \(\xi\), \(\mathcal{F}(\psi b_\varepsilon u_\varepsilon)\) is not rapidly deceasing in the direction \((\xi, \eta)\). Thus, in fact

\[
\Sigma_{\eta, (0, 0)}(BU) = \mathbb{R} \times \mathbb{R}^+.
\] (28)

Example 10. Let \(U\) as in Example 9 and set \(v = u(\phi^{(2)}, x, y) = \frac{1}{a(d\phi)^2} \hat{\phi}\left(\frac{x}{d\phi} - \frac{y}{\sqrt{d\phi}}\right)\). Employing the same notational simplifications as in the previous example we have \(u_\varepsilon(x, y) = \frac{1}{\varepsilon} \phi\left(\frac{x}{\varepsilon} + \frac{y}{\sqrt{\varepsilon}x}\right)\). Again, \(\text{supp}(V) = \{0\} \times \mathbb{R}, \ V \approx \delta(x) \otimes 1(y)\), and

\[
\WF_{\eta}(V) = \{0\} \times \mathbb{R} \times \mathbb{R} \setminus 0 \times \{0\}.
\] (29)

Thus the wave front sets of \(U\) and \(V\) are not in favorable position and we shall demonstrate that in fact the conclusion of Theorem 8 is violated for the product \(W = UV\).

We first show that \(\text{supp}(W) = \{(0, 0)\}\). To this end we again utilize [13], Th. 2.4. We only have to show that \(W\) vanishes in a suitable neighborhood of any point \((0, a)\) with \(a \neq 0\). We shall assume \(a > 0\) (the other case being analogous) and we choose some \(r > 0\) such that \(B_r((0, a))\) does not contain
Now let \((x_\varepsilon, y_\varepsilon)\) be a representative of any generalized point supported in \(B_r((0,a))\). Then if \(x_\varepsilon \geq 0\) and \(\varepsilon\) is sufficiently small we have

\[
\frac{x_\varepsilon}{\varepsilon} + \frac{y_\varepsilon}{\sqrt{\varepsilon}} \geq \frac{a - r}{\sqrt{\varepsilon}}
\]

and similarly, for \(x_\varepsilon \leq 0\), \(\frac{x_\varepsilon}{\varepsilon} - \frac{y_\varepsilon}{\sqrt{\varepsilon}} \leq -\frac{a - r}{\sqrt{\varepsilon}}\). Thus, for small \(\varepsilon\), one of the factors of \(w_\varepsilon\) always vanishes. This means that \(W\) vanishes on all compactly supported points in \(B_r((0,a))\), so \(W = 0\) on \(B_r((0,a))\).

It remains to determine \(\Sigma_{g,(0,0)}(W)\), to which end we choose \(f, g\) as in Example 9. As above, \(f^2(x)y^2(y)u_\varepsilon(x, y)v_\varepsilon(x, y) = g^2(y)u_\varepsilon(x, y)v_\varepsilon(x, y)\) for \(\varepsilon\) small. Thus it suffices to consider

\[
\mathcal{F}(gu_\varepsilon gv_\varepsilon)(\xi, \eta) = \int \int \hat{\phi}(\varepsilon\xi')\hat{\phi}(\xi - \xi')\hat{g}(\eta' + \sqrt{\varepsilon}\xi')\hat{g}(\eta - \eta')
- \sqrt{\varepsilon}(\xi - \xi') d\xi' d\eta' = \int \int \hat{\phi}(\varepsilon\xi')\hat{\phi}(\xi - \xi')\hat{g} * \hat{g}(\eta + 2\sqrt{\varepsilon}\xi' - \sqrt{\varepsilon}\xi) d\xi'
\]

\[
= \frac{1}{\sqrt{\varepsilon}} \int \hat{\phi}(\sqrt{\varepsilon}\xi'')\hat{\phi}(\xi - \sqrt{\varepsilon}\xi'')\hat{g} * \hat{g}(\eta + 2\xi'' - \sqrt{\varepsilon}\xi) d\xi''
\]

The integral in this equation converges to \(\int \hat{g} * \hat{g}(2\xi'') d\xi''\), so \(\mathcal{F}(gu_\varepsilon gv_\varepsilon)(\xi, \eta) \sim O(\frac{1}{\sqrt{\varepsilon}})\). In particular, \(\mathcal{F}(gu_\varepsilon gv_\varepsilon)\) is not rapidly decreasing in any direction \((\xi, \eta)\). Thus

\[
WF_g(UV) = \{(0,0)\} \times \mathbb{R}^2 \setminus \{0\} \times \mathbb{R} \times \mathbb{R} \setminus \{0\} \times \{0\} = (WF_g(U) + WF_g(V)) \cup WF_g(U) \cup WF_g(V).
\]

5 Consequences for microlocal properties of pullbacks

In this final section we are going to compare our previous considerations with an alternative (classical) approach to products of distributions and their microlocal properties ([1], section 8.2). In this approach, one considers the product of two distributions \(u\) and \(v\) (provided it exists) as the restriction of their tensor product to the diagonal, i.e., as the pullback of \(u \otimes v\) under \(d : x \rightarrow (x, x)\). The basic properties of this operation then follow directly from the general theorem about microlocal transformation under composition with smooth maps ([1], Th. 8.2.4)

As a first step, we note that the tensor product of Colombeau generalized functions is “well behaved” from a microlocal point of view. Recall that
for open subsets $\Omega \subseteq \mathbb{R}^m$, $\Omega' \subseteq \mathbb{R}^n$ and $U \in \mathcal{G}(\Omega)$, $V \in \mathcal{G}(\Omega')$, $U \otimes V$ is represented by $(\phi^{(m)} \otimes \phi^{(n)}, x, y) \rightarrow u(\phi^{(m)}, x)v(\phi^{(n)}, y)$.

Lemma 11.

$$WF_g(U \otimes V) \subseteq \left(WF_g(U) \boxtimes WF_g(V) \right) \cup \left(\left(\supp U \times \{0\} \right) \boxtimes WF_g(V) \right) \cup \left(WF_g(U) \boxtimes \left(\supp V \times \{0\} \right) \right)$$

(31)

where $\Gamma_1 \boxtimes \Gamma_2 := \{(x, y, \xi, \eta) \mid (x, \xi) \in \Gamma_1, (y, \eta) \in \Gamma_2\}$ for arbitrary subsets $\Gamma_1 \subseteq \Omega \times \mathbb{R}^m$, $\Gamma_2 \subseteq \Omega' \times \mathbb{R}^n$.

Proof. This is a straightforward adaptation of the proof of the corresponding distributional result (see e.g. [6], Th. 11.2.1). \qed

If $f : \Omega_1 \rightarrow \Omega_2$ is a smooth map between open subsets $\Omega_i \subseteq \mathbb{R}^{n_i}$ and $u \in \mathcal{D}'(\Omega_2)$ then the classical condition ensuring existence of f^*u is

$$WF(u) \cap N_f = \emptyset$$

where $N_f = \{(f(x_1), \xi_2) \in \Omega_2 \times \mathbb{R}^{n_2} \mid \xi^t f'(x_1) \xi_2 = 0\}$ (cf. [10], Th. 8.2.4).

Furthermore, in this case

$$WF(f^*u) \subseteq f^*WF(u)$$

(32)

where $f^*\Gamma = \{(x_1, f^t(x_1) \xi_2) \mid (f(x_1), \xi_2) \in \Gamma\}$ for $\Gamma \subseteq \Omega_2 \times \mathbb{R}^{n_2}$.

Just as the product of generalized functions can be carried out unrestrictedly in the Colombeau algebra, it is also possible to form pullbacks of Colombeau generalized functions under arbitrary smooth maps: For $U \in \mathcal{G}$ and f smooth, $U \circ f$ is defined by componentwise composition. Moreover, for U, V in $\mathcal{G}(\Omega)$ we have $UV = (U \otimes V) \circ d$ with $d : \Omega \rightarrow \Omega \times \Omega$, $x \mapsto (x, x)$ (simply observe that UV and $(U \otimes V) \circ d$ have identical representatives). We are thus in a position to review our previous examples in this picture:

Example 12. Let U and V as in Example 10 and set $T = U \otimes V$. By Lemma 11,

$$WF_g(T) \subseteq \left\{ (0, x_2, 0, x_4, (\xi_1, 0, \xi_3, 0)) \mid x_2, x_4 \in \mathbb{R}, (\xi_1, \xi_3) \in \mathbb{R}^2 \setminus \{(0, 0)\} \right\}$$

In fact, we have equality in the above relation since by using cutoff functions of tensor product form the reasoning leading to (24) can be carried out in parallel in the independent factors corresponding to U and V. In the notation of Example 10 we have $W = T \circ d$ and $WF_g(W) = \{(0, 0)\} \times \mathbb{R}^2 \setminus 0$. A
simple computation shows that $d^*\text{WF}_g(T) = \{((0, r), (\mu, 0)) \mid r, \mu \in \mathbb{R}\}$ which implies that

$$\text{WF}_g(d^*T) \not\subseteq d^*\text{WF}_g(T).$$

Note that $N_d \cap \text{WF}_g(T) \neq \emptyset$ in Example [12]. We conclude that the validity (32) cannot be extended to arbitrary pullbacks of Colombeau functions under smooth maps.

Remark 13. We note that a common feature of the examples introduced in Section [4] is that they are formed as pullbacks of (canonical images of) distributions under generalized maps. Thus the fact that — contrary to the distributional setting — composition of generalized functions can be carried out in \mathcal{G} (subject to certain growth conditions) can be viewed as one of the causes of the new microlocal effects presented there.

Acknowledgements: We would like to thank Michael Oberguggenberger for suggesting the concrete form of Example [10] to us, as well as for several discussions that importantly contributed to the final form of the manuscript.

References

[1] J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North Holland, Amsterdam, 1984.

[2] J. F. Colombeau, Elementary Introduction to New Generalized Functions, North Holland, Amsterdam, 1985.

[3] J. F. Colombeau, Multiplication of Distributions. A Tool in Mathematics, Numerical Engineering and Theoretical Physics, Lecture Notes in Math. 1532, Springer, New York, 1992.

[4] N. Dapić, S. Pilipović, D. Scarpalézos, Microlocal analysis of Colombeau’s generalized functions: propagation of singularities, *J. d’Analyse Math.* 75, 51–66 (1998).

[5] J. J. Duistermaat, Fourier Integral Operators, Birkhäuser, Boston 1996.

[6] G. Friedlander, M. Joshi, Introduction to the theory of distributions, 2nd ed., Cambridge 1998.
[7] T. Gramchev, M. Oberguggenberger, Regularity theory and pseudodifferential operators in algebras of generalized functions, in preparation.

[8] M. Grosser, On the foundations of nonlinear generalized functions II, *Memoirs AMS*, to appear.

[9] M. Grosser, G. Hörmann, M. Kunzinger, M. Oberguggenberger (Eds.), *Nonlinear Theory of Generalized Functions*, Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999.

[10] L. Hörmander, The Analysis of Linear Partial Differential Operators, Volume I, Springer-Verlag, Berlin–Heidelberg 1983, 2nd Ed. 1990.

[11] G. Hörmann, Integration and microlocal analysis in Colombeau algebras, *J. Math. Anal. Appl.* 239, 332-348 (1999).

[12] G. Hörmann, M. V. de Hoop, Microlocal analysis and global solutions of some hyperbolic equations with discontinuous coefficients, Center for Wave Phenomena, Colorado School of Mines, Preprint (2000).

[13] M. Nedeljkov, S. Pilipović, D. Scarpalézos, The Linear Theory of Colombeau Generalized Functions, Pitman Research Notes in Mathematics 385, Longman Scientific & Technical 1998.

[14] M. Oberguggenberger, Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Research Notes in Mathematics 259, Longman 1992.

[15] M. Oberguggenberger, M. Kunzinger, Characterization of Colombeau generalized functions by their point values, *Math. Nachr.* 203, 147-157 (1999).