Maturation of sheep oocytes with antioxidant α-tocopherol which are activated by parthenogenesis

S Gustina¹, H Hasbi², I Supriatna³, and M A Setiadi²

¹Department of Animal Husbandry, Faculty of Animal Husbandry and Fisheries, Universitas Sulawesi Barat, Jl. Prof. Dr. Baharuddin Lopa, Tande Timur, Majene 91412, Indonesia
²Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Jl. Perintis Kemerdekaan Km.10, Makassar 90245, Indonesia
³Division of Reproduction and Obstetrics, Department of Veterinary Clinic, Reproduction, and Pathology, Bogor Agricultural University, Jl. Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia

E-mail: setiadi03@yahoo.com

Abstract. This study was conducted to investigate the competence of sheep oocytes which are matured with antioxidant α-tocopherol by parthenogenesis activation. Oocytes from slaughterhouse were matured in tissue culture medium (TCM)-199 supplemented with 10% fetal bovine serum (FBS), 10 IU/ml pregnant mare serum gonadotrophin (PMSG), 10 IU/ml human chorionic gonadotrophin (hCG), 1 µg/ml estradiol, 50 µg/ml gentamycin, and with or without 150 µM α-tocopherol supplementation, then were parthenogenetically activated by exposing to 5 µM calcium ionophore for 5 min, and in medium containing 5 µg/ml cytochalasin B for 4 h. Furthermore oocytes were cultured in TCM 199 + 10% FBS either with or without supplementation of 150 µM α-tocopherol. Result of this experiment revealed that the percentages of activated oocytes with supplementation of 150 µM α-tocopherol only in maturation medium (63.41%) significantly higher (P<0.01) than the control group (50.00%) and the supplemented only in culture medium (51.02%). Furthermore, no significantly difference (P>0.05) in the number of oocytes with 1 pronucleus (PN), 2 PN, and more than 2 PN. It is concluded that the supplementation of 150 µM α-tocopherol on the maturation medium could also increase the percentage of activated oocytes optimally.

1. Introduction
In vitro embryo production (IVEP) techniques have long been successfully developed in several mammal species. With the IVEP techniques, sick animals, slaughtered, died suddenly or have reproductive problems, but have high genetic material can still be saved as an effort to preserve germplasm.

Oocyte maturation is the first and most critical stage in determining the success of embryo production in vitro. Oocyte maturation is not only related to the occurrence of GVBD and MII but also related to the ability of oocytes to be fertilized and the early development of preimplantation embryos. The process of oocyte maturation consists of nuclear and cytoplasmic maturation. Nuclear maturation includes various chronological changes in the meiosis stage, whereas cytoplasmic maturation involves the acquisition of oocyte biological competence which includes various structural and biochemistry
In the maturation process, the success level is still strongly influenced by many factors. One such factor is free radicals that are produced from the metabolic processes of an organism aerobically. Reactive oxygen species can cause damage to cell structures such as mitochondria and microtubules, and also disrupt normal cell function when critical concentrations of ROS are abundant. Protection mechanisms against ROS in in vivo systems include enzymes such as superoxide dismutase (SOD), glutaredoxin, and glutathione peroxide and catalase which break down hydrogen peroxide into water \[5\]. α-tocopherol or commonly called vitamin E is one of the main lipid-soluble antioxidants in animal cells \[6\]. The antioxidant reaction of vitamin E can prevent peroxidative tissue damage due to free radicals, and vitamin E is believed to be the main free radical scavenger in mammalian cell membranes \[7\].

Protection of oocyte quality during IVM also determines the ability of fertilization and subsequent embryo development. Therefore, it is necessary to add secondary antioxidants such as α-tocopherol to the maturation medium and culture medium to protect mitochondria and microtubules against oxidative damage so as to improve the quality and competence of oocytes in vitro.

2. Material and methods

2.1. Material

Oocytes used in this study came from sheep ovaries obtained from slaughterhouse, Citaringgul Village, Babakan Madang District, Bogor Regency. Oocyte selection is based on a homogeneous cytoplasmic and compact cumulus cells.

2.2. Methods

2.2.1. Collection and in vitro maturation of oocytes. Sheep ovaries are brought from the slaughterhouse to the laboratory in 0.9% NaCl medium plus 100 IU/ml penicillin and 100 µg/ml streptomycin. Oocytes collection was done by slicing method in phosphate buffered saline (PBS) with 10% fetal bovine serum (FBS) (Sigma, USA). The collected oocytes were washed in the collection and maturation medium twice of each, then maturation was carried out in tissue culture medium (TCM) 199 (Sigma, USA) supplemented with 10% FBS, 10 IU/ml pregnant mare serum gonadotrophin (PMSG) (Intergonan, Intervet Deutschland GmbH), 10 IU/ml human chorionic gonadotrophin (hCG) (Chorulon, Intervet international BV Booxmeer-Holland), 1 µg/ml estradiol (Intervet international BV Booxmeer-Holland), 50 µg/ml gentamycin (Sigma, USA), with or without 150 µM α-tocopherol which is the best concentration in previous study. Oocytes were matured on petri dishes with Ø 35 mm (Nuncelon, Denmark) in 50 µl drop for 10-15 oocytes and covered with mineral oil (Sigma, USA), in 5% CO\(_2\) incubator 38.5 °C for 24 hours.

2.2.2. Parthenogenesis activation. After 24 hours of maturation, cumulus cells surrounding the oocyte were removed by 0.25% hyaluronidase enzyme and subsequently exposed to TCM 199 + 10% FBS medium containing 5 µM calcium ionophore for 5 minutes \[8\] at room temperature, then continued in a medium of 5 µg/ml cytochalasin B for 4 hours as was done on oocyte mice \[9\]. After activation, oocytes were washed twice and cultured in TCM medium 199 + 10% FBS \[3\] with or without the addition of 150 µM α-tocopherol. Culture was carried out on a petri dish in 50 µl drop for 10-15 oocytes and covered with mineral oil, and placed in incubator of 5% CO\(_2\) at 38.5 °C for 20-24 hours.
2.2.3. Evaluation of activation rate. Cultured oocytes were placed at a drop of 0.7% KCl on glass objects that have paraffin and Vaseline cushion, then fixed by cover glass. The preparation was entered to a fixation solution containing acetic acid and ethanol (1:3) for 3 days. One hour before staining, the preparation soaked first in an absolute ethanol solution, after that it was stained with 2% aceto-orcein for 5 minutes. The staining agent was rinsed with 25% acetic acid and further morphological observed under a contrast phase microscope (Olympus IX 70, Japan). The activation rate was observed by the number of oocytes that form the pronucleus after parthenogenesis, while the number of formed pronuclei (1 PN, 2 PN, >2 PN) was rated based on the ratio of formed PN amount to the overall activated oocytes.

3. Result and discussion

Cytoplasmic maturation can be known indirectly from the amount of blastocysts produced, the content of glutathione in oocytes, and also the percentage of pronucleus formation [10]. Furthermore, Hao et al. [11] and Ducibella et al. [12] reported that activated oocytes are characterized by a series of molecular and morphological changes such as the occurrence of cortical reactions, pronuclear formation, DNA synthesis, and cell division. In this study, observations of oocyte activation rate are based on pronucleus formation after parthenogenesis (figure 1).

Figure 1. Pronucleus formation after parthenogenesis. A. 1 PN, B. 2 PN, and C. >2 PN, PN: pronucleus (arrow).
The level of oocyte activation in various treatment combinations of 150 µM α-tocopherol supplementation in maturation and culture medium after parthenogenesis can be seen in Table 1.

Table 1. Formation of pronucleus after activation in medium with the addition of α-tocopherol

Treatments	Number of Oocytes	0 PN (25)	1 PN (48)	2 PN (28)	>2 PN (24)	Activation Rate (%)
A	50	25 (50.00)	12 (48.00)	7 (28.00)	6 (24.00)	25 (50.00)²
B	41	15 (36.59)	13 (50.00)	8 (30.77)	5 (19.23)	26 (63.41)³
C	49	24 (48.98)	9 (36.00)	9 (36.00)	7 (28.00)	25 (51.02)⁴
D	41	11 (26.83)	12 (40.00)	11 (36.67)	7 (23.33)	30 (73.17)⁵

PN: pronucleus, A: control (without addition of α-tocopherol both on maturation and culture medium), B: addition of α-tocopherol only on maturation medium, C: addition of α-tocopherol only on the culture medium, D: addition of α-tocopherol on maturation and culture medium. Values with different superscripts in the same column differ significantly (P<0.01).

The results of this study showed that the activation rate on the addition of α-tocopherol only to the maturation medium (treatment B) was high significant different (P<0.01) compared to control (treatment A). However, the addition of α-tocopherol only to the culture medium (treatment C) was not significantly different from that control (treatment A). While the addition of α-tocopherol to the medium of maturation and culture (treatment D) was also significantly higher compared to control (treatment A) and the addition of α-tocopherol only to the culture medium (treatment C), but it was not significantly different from the addition of α-tocopherol only to medium of maturation (treatment B). This shows that the addition of 150 µM α-tocopherol did not have a major effect when added to the culture medium, although there was a trend towards an increase in the number of activated oocytes. This data proves that 150 µM α-tocopherol more optimally increases the number of activated oocytes when added to the maturation medium. The addition of α-tocopherol to the maturation medium is more optimal to increase the number of activated oocytes compared to the addition to the culture medium, this is thought to be caused because except time of oocytes exposure with α-tocopherol in culture medium relatively short, it is also caused because during maturation the oocytes undergo various changes in both the nucleus and cytoplasm, so protection is needed for the cell structure to maintain its ability. The process of changes includes RNA synthesis activity [13] which is characterized by a nuclear change from the diploent prophase meiosis I stage to metaphase II, where oocytes that reach the MII stage in the presence of polar body I are mature oocytes and are ready to be fertilized [14]. Whereas the cytoplasm experiences an increase in oocyte biological competence which includes various changes in structure and biochemical in the cell that allows the oocyte to express its developmental potential after fertilization and is able to support the formation and development of preimplantation embryos [1]. The process of cytoplasmic maturation is characterized by the accumulation of protein and mRNA, the development of calcium regulatory mechanisms, changes in the activity of maturation promoting factor (MPF) and mitogen activated protein kinase (MAPK) and redistribution of cellular organelles [15].

Roushandeh et al. [16] explained that free radicals (ROS) can cause damage to cell structures such as mitochondria and microtubules, and also disruption of normal cell function. Microtubules play a role in the reconstruction and proper placement of chromatin during the process of maturation of meiosis [1], and are also responsible for the movement and placement of pronuclei in bovine oocytes resulting from parthenogenesis [17]. Furthermore Kitagawa et al. [18] reported that α-tocopherol is able to protect cell membranes from damage caused by ROS, thus increasing the ability of embryonic development.

On the other hand, the addition of 150 µM α-tocopherol in the medium of maturation, culture and both did not show a significant effect (P>0.05) on the number of formed pronuclei. The number of formed pronuclei in oocytes resulting from parthenogenesis varies from 1 PN, 2 PN, and >2 PN. The
diploid embryo (2 PN) produced by parthenogenesis resembles that of a normal fertilized embryo and has a similar developmental ability. Liu et al [19] reported that diploid embryos from parthenogenesis had development capabilities that were almost the same as embryos from in vitro fertilization to the blastocyst stage (87±3% vs 88±4%). Diploid embryos resulting from parthenogenesis usually result from the inhibition of polar body II release by cytochalasin B [20]. Cytochalasin prevents actin polymerization and causes dramatic changes in the cytoskeleton [9], disrupting the microfilament, thereby effectively inhibiting the removal of the second polar body without any influence on the formation and movement of the pronucleus [21].

Whereas haploid embryos (1 PN) have a lower development ability compared to diploid embryos [22, 21] in rat, pig, cattle, and human [19, 11, 23]. Haploid embryos from parthenogenesis are only able to develop to the morula stage (78±5%) and very few are able to reach the blastocyst stage [19, 11] or even none at all [24]. The low development ability of haploid embryos resulting from parthenogenesis is due to the high incidence of apoptosis as indicated by the occurrence of condensation or fragmentation of the nucleus and/or DNA [19] and chromosomal abnormalities [25]. In cows, haploid embryos have few microphiles and lipid droplets so that the availability of nutrients is limited [22]. Likewise, polyploid embryos (>2 PN) have a lower development ability than diploid embryos. Polyploid embryos will usually also experience chromosomal abnormalities [25], develop abnormally and occur irregularities on chromosomes associated with tripolar spindles formation and are not recommended for transfer because there is a great possibility of chromosomal abnormalities in their development. Usually triploid embryos can develop to the stage of blastosis and implantation if transferred but generally experience an abortion or in some cases can cause trophoblastic diseases such as hydatidiform moles [26].

Parthenogenesis is a biological phenomenon in which embryonic development is initiated without passing through the fertilization process by sperm. Embryo parthenogenesis only has the ability to grow until early or mid-pregnancy and in mammals there has never been a natural birth. Embryo parthenogenesis develops abnormally and development stops after organogenesis occurs in the 10th day of mice [27] and the 25th day in sheep [28]. Pregnancy failure is related to genomic imprinting, where all genetic material comes from females and there is no male contribution. This results in the development of extraembrionic tissue including the placenta [29]. Although the ability of development is low, embryo parthenogenesis can be used for stem cells, therapeutic cloning [29, 30], and is also important for nuclear transfer applications [31].

In this study, the matured oocytes were activated with 5 µM calcium ionophore for 5 minutes combined with 5 µg/ml cytochalasin B for 4 hours. According to Heytens et al. [32] that activation can only be done on mature oocytes or those in the MII stage which are characterized by high levels of the cyclin B/cdc1 complex and also the level of maturation promoting factor (MPF). During MII arrest, cytosatic factor (CSF) prevents MPF destruction by maintaining anaphase-promoting complex (APC) in an inactive state.

Oocyte activation with calcium ionophore for 5 minutes can stimulate release of intracellular Ca2+ from storage in endoplasmic reticulum and also helps influx of extracellular Ca2+ ions [33, 24]. Increased intracellular Ca2+ is caused by the activation of diacylglycerol (DG) and inositol 3-phosphate (IP3) induced by G-protein through phospholipase C (PLC). Increased intracellular Ca2+ then stimulates increased protein kinase C (PKC) activity in mouse oocytes, which in turn induces exocytosis of cortex grains [34]. In addition, increasing of Ca2+ ions causes activation of calmodulin-dependent protein kinase II which functions to stimulate damage to cyclin-B, and inactivation of p35cdc2 kinase. As a result, MPF activity decreases, and then meiotic division can restart [35, 3]. This study used a combination of cytochalasin B because in a preliminary study the level of oocytes activation with single calcium ionophore was very low or did not exist at all (unpublished data).

4. Conclusion
Addition of 150 µM α-tocopherol to the maturation medium can increase the number of activated oocytes.
References

[1] Gordon I 2003 Laboratory production of cattle embryos Ed ke-2 (London: CABI Publishing)
[2] Mishra V, Misra A K and Sharma R 2008 A comparative study of parthenogenetic activation and in vitro fertilization of bubaline oocytes Anim. Repro. Sci. 103 249-59
[3] Hosseini S M, Hajian M, Moulavi F, Shahverdi A H and Nasr-Esfahani M H 2008 Optimized combined electrical-chemical parthenogenetic activation for in vitro matured bovine oocytes Anim. Reprod. Sci. 108 122-33
[4] Cevik M, Tas A, Akkoc T, Bagis H and Arat S 2009 A comparative study of parthenogenetic activation and in vitro fertilization of in vitro matured bovine oocytes Turk. J. Vet. Anim. Sci. 33(3) 1-7
[5] Gupta S, Malhotra N, Sharma D, Chandra A and Agarwal A 2009 Oxidative stress and its role in female infertility and assisted reproduction: Clinical implication Int. J. Fertil. Steril. 2(4) 147-64
[6] Hossein M S, Hashem M A, Jeong Y W, Lee M S, Kim S, Kim J H, Koe O J, Park S M, Lee E G, Park S W, Kang S K, Lee B C and Hwang W S 2007 Temporal effects of α-tocopherol and L-ascorbic acid on in vitro fertilized porcine embryo development Anim. Reprod. Sci. 100 107-17
[7] Jeong Y W, Park S W, Hossein M S, Kim S, Kim J H, Lee S H, Kang S K, Lee B C and Hwang W S 2006 Antiapoptotic and embryotrophic effects of α-tocopherol and L-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer Theriogenology 66 2104-12
[8] Nandedkar P, Chohan P, Patwardhan A, Gaikwad S and Bhartiya D 2009 Parthenogenesis and somatic cell nuclear transfer in sheep oocytes using polscope Indian J. Exp. Biol. 47 550-8
[9] Imahie H, Takahashi M, Toyoda Y and Sato E 2002 Differential effects of cytochalasin B on cytokinesis in parthenogenetically activated mouse oocytes J. Reprod. Dev. 48 31-40
[10] de Matos D G and Furnus C C 2000 The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development: Effect of β-mercaptoethanol, cystein and cystin Theriogenology 53 761-71
[11] Hao Y, Lai L, Mao J, Im G S, Bonk A and Prather R S 2004 Apoptosis in parthenogenetic preimplantation porcine embryos Biol. Reprod. 70 1644-49
[12] Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz R M, Kopf G S, Fissoire R, Madoux S and Ozil J P 2002 Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number Dev. Biol. 250 280-91
[13] Chohan K R and Hunter A G 2003 Meiotic competence of bovine fetal oocytes following in vitro maturation Anim. Reprod. Sci. 76 43-51
[14] Pawshe C H, Appa Rao K B C, Jain S K and Totey S M 1994 Biochemical studies on goat oocytes: timing of nuclear progresion, effect of protein inhibitor and pattern of polypeptide synthesis during in vitro maturation Theriogenology 42 307-20
[15] Anguita B, Jimenez-Macedo A R, Izquierdo D, Mogas T and Paramio M T 2007 Effect of oocyte diameter on meiotic competence, embryo development, p34 (cdc2) expression and MPF activity in prepubertal goat oocytes Theriogenology 67 526-36
[16] Roushandeh A M, Pasbakhsh P and Roudkenar M H 2008 Presence of antioxidant in in vitro maturation medium and its effects on glutathione level, spindle area and rate of in vitro fertilization Iran J. Med. Sci. 33(1) 37-43
[17] Morito Y, Terada Y, Nakamura S, Morita J, Yoshimoto T, Murakami, Yaegashi N and Okamura K 2005 Dynamics of microtubules and positioning of female pronucleus during bovine parthenogenesis Biol. Reprod. 73 935-41
[18] Kitagawa Y, Suzuki K, Yoneda A, and Watanabe T 2004 Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos Theriogenology 62 1186-97
[19] Liu L, Trimarchi J R and Keefe D L 2002 Haploidy but not parthenogenetic activation leads to
increased incidence of apoptosis in mouse embryos *Biol. Reprod.* 66 204-10

[20] Yi Y J and Park C S 2005 Parthenogenetic development of porcine oocytes treated by ethanol, cycloheximide, cytochalasin B and 6-dimethylaminopurine *Anim. Reprod. Sci.* 86 297-04

[21] Somfai T, Ozawa M, Noguchi J, Kaneko H, Ohnuma K, Karja N W K, Fahrudin M, Maedomari N, Dinnyes A, Nagai T and Kikuchi K 2006 Diploid porcine parthenotes produced by inhibition of first polar body extrusion during in vitro maturation of follicular oocytes *Reproduction* 132 559-570

[22] Kawarsky S J, Basrur P K, Stubbings R B, Hansen P J and King W A 1996 Chromosomal abnormalities in bovine embryos and their influence on development *Biol. Rep.* 54 53-59

[23] Paffoni A, Brevini T A L, Somigliana E, Restelli L, Gandolfi F and Ragni G 2007 In vitro development of human oocytes after parthenogenetic activation or intracytoplasmic sperm injection *Fertil. Steril.* 87(1) 77-82

[24] Liu C T, Chen C H, Cheng S P and Ju J C 2002 Parthenogenesis of rabbit oocytes activated by different stimuli *Anim. Reprod. Sci.* 70 267-76

[25] Wang Z, Wang W, Yu S and Xu Z 2008 Effects of different activation protocols on preimplantation development, apoptosis and ploidy of bovine parthenogenetic embryos *Anim. Reprod. Sci.* 105 292-01

[26] Trounson A O and Gardner D K 2000 *In vitro fertilization* Second ed. (Florida: CRC Press)

[27] Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park E S, Seo J S and Ogawa H 2004 Birth of parthenogenetic mice that can develop to adulthood *Nature* 428 860

[28] Loi P, Ledda S, Fulka P Jr, Cappai P and Moor R M 1998 Development of parthenogenetic and cloned ovine embryos: effect of activation protocols *Biol. Reprod.* 58 1177-87

[29] Rougier N and Werb Z 2001 Minireview: Parthenogenesis in mammals *Mol. Reprod. Dev.* 59 468-74

[30] Fangerau H 2005 Can artificial parthenogenesis sidestep ethical pitfalls in human therapeutic cloning: An historical perspective *J. Med. Ethics.* 31 733-35

[31] Hou Y P, Liu Y, Dai Y P, Li R, Shi W Q, Wang H P, Wang L I, Li N and Zhu S E 2009 Improved parthenogenetic development of vitrified-warmed bovine oocytes activated with 9% ethanol plus 6-DMAP *Theriogenology* 72 643-49

[32] Heytens E, Soleimani R and Sutter P D 2008 Oocytes activation: The impact of calcium signals on fertilization: Review article *Iran J. Reprod. Med.* 6(4) 171-74

[33] Alberio R, Zakhartchenko V, Motlik J and Wolf E 2001 Mammalian oocyte activation: Lessons from the sperm and implications for nuclear transfer *Int. J. Dev. Biol.* 45 797-09

[34] Ito J, Shimada M and Terada T 2003 Effect of protein kinase C activator on mitogen-activated protein kinase and p34cdc2 kinase activity during parthenogenetic activation of porcine oocytes by calcium ionophore *Biol. Reprod.* 69 1675-82

[35] Ongeri E M, Bormann C L, Butler R E, Melican D, Gavin W G, Echelard Y, Krisher R L and Behboodi E 2001 Development of goat embryos after in vitro fertilization and parthenogenetic activation by different methods *Theriogenology* 15 1933-45