Optimal equilibrium for a reformulated Samuelson economical model

Fernando Ortega1, Maria Philomena Barros1, Grigoris Kalogeropoulos2

1 Universitat Autonoma de Barcelona, Spain
2 National and Kapodistrian University of Athens, Greece

\textbf{Abstract:} This paper studies the equilibrium of an extended case of the classical Samuelson’s multiplier-accelerator model for national economy. This case has incorporated some kind of memory into the system. We assume that total consumption and private investment depend upon the national income values. Then, delayed difference equations of third order are employed to describe the model, while the respective solutions of third order polynomial, correspond to the typical observed business cycles of real economy. We focus on the case that the equilibrium is not unique and provide a method to obtain the optimal equilibrium.

\textbf{Keywords:} Economic Modelling, Samuelson model, Difference Equations, Equilibrium, Optimal.

1 Introduction

Keynesian macroeconomics inspired the seminal work of Samuelson, who actually introduced the business cycle theory. Although primitive and using only the demand point of view, the Samuelson’s prospect still provides an excellent insight into the problem and justification of business cycles appearing in national economies. In the past decades, other models have been proposed and studied by other researchers for several applications, see [1–18]. All these models use mechanisms involving monetary aspects, inventory issues, business expectation, borrowing constraints, welfare gains and multi-country consumption correlations. Some of the previous articles also contribute to the discussion for the inadequacies of Samuelson’s model. The basic shortcoming of the original model is: the incapability to produce a stable path for the national income when realistic values for the different parameters (multiplier and accelerator parameters) are entered into the system of equations. Of course, this statement contradicts with the empirical evidence which supports temporary or long-lasting business cycles. In this article, we propose a special case, i.e. a modification of the typical model incorporating delayed variables into the system of equations and focusing on consumption and investments.

Actually, the proposed modification succeeds to provide a more comprehensive explanation for the emergence of business cycles while also produce a stable trajectory for national income. The final model is a discrete time system of first order and its equilibrium, i.e. equilibrium of the proposed reformulated Samuelson economical model, is not always unique. For the case that we have infinite equilibriums we provide an optimal equilibrium for the model.
2 The Model

The original version of Samuelson’s model is based on the following assumptions:

Assumption 2.1. National income \(T_k \) at time \(k \), equals to the summation of three elements: consumption, \(C_k \), private investment, \(I_k \), and governmental expenditure \(G_k \)

\[
T_k = C_k + I_k + G_k
\]

Assumption 2.2. Consumption \(C_k \) at time \(k \), depends on past income (only on last year’s value) and on marginal tendency to consume, modelled with a, the multiplier parameter, where \(0 < a < 1 \),

\[
C_k = aT_{k-1}
\]

Assumption 2.3. Private investment at time \(k \), depends on consumption changes and on the accelerator factor \(b \), where \(b > 0 \). Consequently, \(I_k \) depends on national income changes,

\[
I_k = b(C_k - C_{k-1}) = ab(T_{k-1} - T_{k-2})
\]

Assumption 2.4. Governmental expenditure \(G_k \) at time \(k \), remains constant

\[
G_k = \bar{G}
\]

Hence, the national income is determined via the following second-order linear difference equation

\[
T_{k+2} - a(1 + b)T_{k+1} + abT_k = \bar{G}
\]

Our reformulated (delayed) version of Samuelson’s model is based on the following assumptions:

Assumption 2.5. National income \(T_k \) at time \(k \), equals to the summation of two elements: consumption, \(C_k \) and private investment, \(I_k \).

\[
T_k = C_k + I_k
\]

Assumption 2.6. Consumption \(C_k \) at time \(k \), is a linear function of the incomes of the two preceding periods. The governmental expenditures in our model are included in the consumption \(C_k' \).

\[
C_k = c_1T_{k-1} + c_2T_{k-2} + P
\]

or, equivalently,

\[
C_{k+3} = c_1T_{k+2} + c_2T_{k+1} + P
\]

Where \(P, c_1, c_2 \) are constant and \(c_1 > 0, c_2 > 0, 0 < c_1 + c_2 < 1 \).

Assumption 2.7. Private investment \(I_k \) at time \(k \), depends on consumption changes and on the positive accelerator factors \(b \). Consequently, \(I_k \) depends on the respective national income changes,

\[
I_k = b(C_k - C_{k-1})
\]
or, by using (2), we get
\[I_k = bc_1 T_{k-1} + b(c_2 - c_1) T_{k-2} - bc_2 T_{k-3} \]

or, equivalently,
\[I_{k+3} = bc_1 T_{k+2} + b(c_2 - c_1) T_{k+1} - bc_2 T_k \] \hspace{1cm} (3)

Hence, by using (2) and (3) into (1), the national income is determined via the following high-order linear difference equation
\[T_{k+3} - c_1 (1 + b) T_{k+2} - [c_2 + b(c_2 - c_1)] T_{k+1} + bc_2 T_k = P \] \hspace{1cm} (4)

3 The equilibrium

Consumption \(C_k \), depends only on past year’s income value while private investment \(I_k \), depends on consumption changes within the last two years and governmental expenditure \(G_k \), depends on past year’s income value. From (4), the national income is then determined via the following third-order linear difference equation,
\[T_{k+3} - c_1 (1 + b) T_{k+2} - [c_2 + b(c_2 - c_1)] T_{k+1} + bc_2 T_k = P. \]

Lemma 3.1. The difference equation (4) is equivalent to the following matrix difference equation
\[Y_{k+1} = F Y_k + V. \] \hspace{1cm} (5)

Where
\[F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -bc_2 & c_2 + b(c_2 - c_1) & c_1 (1 + b) \end{bmatrix}, \quad V = \begin{bmatrix} 0 \\ 0 \\ P \end{bmatrix}. \] \hspace{1cm} (6)

and
\[Y_k = \begin{bmatrix} Y_{k,1} \\ Y_{k,2} \\ Y_{k,3} \end{bmatrix}, \quad Y_{k,1} = T_k. \]

Proof. We consider (4) and adopt the following notations
\[Y_{k,1} = T_k, \]
\[Y_{k,2} = T_{k+1}, \]
\[Y_{k,3} = T_{k+3}, \]

and
\[Y_{k+1,1} = T_{k+1} = Y_{k,2}, \]
\[Y_{k+1,2} = T_{k+2} = Y_{k,3}, \]
\[Y_{k+1,3} = T_{k+3} = c_1 (1 + b) T_{k+2} + [c_2 + b(c_2 - c_1)] T_{k+1} - bc_2 T_k + P. \]

Then
\[\begin{bmatrix} Y_{k+1,1} \\ Y_{k+1,2} \\ Y_{k+1,3} \end{bmatrix} = \begin{bmatrix} Y_{k,2} \\ Y_{k,3} \\ c_1 (1 + b) T_{k+2} + [c_2 + b(c_2 - c_1)] T_{k+1} - bc_2 T_k + P \end{bmatrix}. \]
or, equivalently,

\[
\begin{bmatrix}
Y_{k+1,1} \\
Y_{k+1,2} \\
Y_{k+1,3}
\end{bmatrix} =
\begin{bmatrix}
Y_{k,2} \\
Y_{k,3}
\end{bmatrix} +
\begin{bmatrix}
c_1(1+b)T_{k+2} + [c_2 + b(c_2 - c_1)]T_{k+1} - bc_2T_k + P \\
0 \\
0
\end{bmatrix},
\]

or, equivalently,

\[
\begin{bmatrix}
Y_{k+1,1} \\
Y_{k+1,2} \\
Y_{k+1,3}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-bc_2 & c_2 + b(c_2 - c_1) & c_1(1+b)
\end{bmatrix}
\begin{bmatrix}
Y_{k,1} \\
Y_{k,2} \\
Y_{k,3}
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
P
\end{bmatrix}.
\]

or, equivalently,

\[
Y_{k+1} = FY_k + V.
\]

The proof is completed.

The discrete time system of first order can be studied in terms of solutions, stability and control, see [18-37]. Next, we provide a Lemma for the equilibrium of this system.

Lemma 3.2. The equilibrium(s) \(s_e\) of the reformulated Samuelson economical model (4) is given by the solution of the following algebraic system:

\[
(I_3 - F)Y^* = V,
\]

where

\[
Y^* = \begin{bmatrix}
s_e \\
s_2 \\
s_3
\end{bmatrix}.
\]

Proof. From Lemma 3.1, the reformulated Samuelson economical model (4) is equivalent to (5). Then, in order to find the equilibrium state of this matrix difference equation we have:

\[
\lim_{k \to +\infty} Y_k = Y^*,
\]

i.e.,

\[
\lim_{k \to +\infty} \begin{bmatrix}
Y_{k,1} \\
Y_{k,2} \\
Y_{k,3}
\end{bmatrix} = \begin{bmatrix}
s_e \\
s_2 \\
s_3
\end{bmatrix},
\]

and hence,

\[
Y^* = FY^* + V.
\]

or, equivalently,

\[
(I_3 - F)Y^* = V.
\]

The proof is completed.

If the equilibrium is unique, we can study its stability based on the eigenvalues of matrix \(F\), see [38-46]. Next we provide a Lemma which determines when the equilibrium of (5)
and consequently of (4) is unique.

Lemma 3.3. Consider the system (5) and let \(G = I_3 - F \). Then \(G \) is a regular matrix if and only if
\[
1 - c_1 - c_2 \neq 0
\]

Proof. We consider (5), then
\[
G = \begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
bc_2 & -c_2 - b(c_2 - c_1) & 1 - c_1(1 + b)
\end{bmatrix}.
\] (7)
The determinant of \(G \) is equal to
\[
det(G) = bc_2 - c_2 - b(c_2 - c_1) + 1 - c_1(1 + b),
\]
or, equivalently,
\[
det(G) = -c_2 + 1 - c_1.
\]
Hence the matrix \(G \) is regular if and only if
\[
det(G) \neq 0,
\]
or, equivalently,
\[
1 - c_2 - c_1 \neq 0.
\]
The proof is completed.

We are now ready to state our main Theorem:

Theorem 3.1. Consider the system (5) and the matrices \(F, V \) and \(G \) as defined in (6), (7) respectively, i.e. let \(G = I_3 - F \). Then

(a) If \(G \) is full rank, the solution \(Y^* \) of (5), is given by
\[
Y^* = (I_3 - F)^{-1}V
\]
and consequently the unique equilibrium of the reformulated Samuelson economical model (4) is given by
\[
s_e = (1 - c_2 - c_1)^{-1}P.
\]

(b) If \(G \) is rank deficient, then an optimal solution \(\hat{Y}^* \) of (5), is given by
\[
\hat{Y}^* = (G^T G + E^T E)^{-1}G^T V.
\] (8)

Where \(E \) is a matrix such that \(G^T G + E^T E \) is invertible and \(\|E\|_2 = \theta, \, 0 < \theta << 1 \). Where \(\|\cdot\|_2 \) is the Euclidean norm.
Proof. Let $G = I_3 - F$. For the proof of (a), since G is full rank, from Lemma 3.3 we have $1 - c_2 - c_1 \neq 0$. Then, where G is equal to

$$G = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ bc_2 & -c_2 - b(c_2 - c_1) & 1 - c_1(1 + b) \end{bmatrix}.$$

Hence the equilibrium Y^* is given by the unique solution of system (5), i.e.

$$Y^* = G^{-1} V,$$

or, equivalently, since

$$G^{-1} = \frac{1}{1 - c_1 - c_2} \begin{bmatrix} -c_2 + bc_1 & 1 - c_1(1 + b) & 1 \\ -bc_2 & 1 - c_1(1 + b) & 1 \\ -bc_2 & c_2 - bc_1 & 1 \end{bmatrix},$$

we have

$$Y^* = \frac{1}{1 - c_1 - c_2} \begin{bmatrix} -c_2 + bc_1 & 1 - c_1(1 + b) & 1 \\ -bc_2 & 1 - c_1(1 + b) & 1 \\ -bc_2 & c_2 - bc_1 & 1 \end{bmatrix} \begin{bmatrix} P \\ P \\ P \end{bmatrix},$$

or, equivalently,

$$Y^* = \frac{1}{1 - c_1 - c_2} \begin{bmatrix} P \\ P \\ P \end{bmatrix},$$

or, equivalently,

$$Y^* = \frac{P}{1 - c_1 - c_2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

For the proof of (b), since G is rank deficient, if $V \notin \text{colspan} G$ system (5) has no solutions and if $V \in \text{colspan} G$ system (5) has infinite solutions. Let

$$\hat{V}(\hat{Y}^*_n) = \hat{V} + E\hat{Y}^*_n,$$

such that the linear system

$$G\hat{Y}^*_n = \hat{V}(\hat{Y}^*_n),$$

or, equivalently the system

$$(G - E)\hat{Y}^*_n = \hat{V},$$

has a unique solution. Where E is a matrix such that $G^TG + E^TE$ is invertible, $\|E\|_2 = \theta$, $0 < \theta << 1$ and $E\hat{Y}^*_n$ is orthogonal to $\hat{V} - G\hat{Y}^*_n$. We use E because G is rank deficient, i.e. the matrix G^TG is singular and not invertible. We want to solve the following optimization problem

$$\min \| V - \hat{V} \|_2^2,$$

s.t. $$(G - E)\hat{Y}^*_n = \hat{V},$$
or, equivalently,
\[
\min \left\| V - (G - E)\hat{Y}_n^* \right\|_2^2,
\]
or, equivalently,
\[
\min \left\| V - G\hat{Y}_n^* \right\|_2^2 + \left\| E\hat{Y}_n^* \right\|_2^2.
\]
To sum up, we seek a solution \(\hat{Y}_n^* \) minimizing the functional
\[
D_1(\hat{Y}_n^*) = \left\| V - G\hat{Y}_n^* \right\|_2^2 + \left\| E\hat{Y}_n^* \right\|_2^2.
\]
Expanding \(D_1(\hat{Y}_n^*) \) gives
\[
D_1(\hat{Y}_n^*) = (V - G\hat{Y}_n^*)^T (V - G\hat{Y}_n^*) + (E\hat{Y}_n^*)^T E\hat{Y}_n^*.
\]
or, equivalently,
\[
D_1(\hat{Y}_n^*) = V^T V - 2V^T G\hat{Y}_n^* + (\hat{Y}_n^*)^T G^T G\hat{Y}_n^* + (\hat{Y}_n^*)^T E^T E\hat{Y}_n^*.
\]
because \(V^T G\hat{Y}_n^* = (\hat{Y}_n^*)^T G^T V \). Furthermore
\[
\frac{\partial}{\partial \hat{Y}_n^*} D_1(\hat{Y}_n^*) = -2G^T V + 2G^T G\hat{Y}_n^* + 2E^T E\hat{Y}_n^*.
\]
Setting the derivative to zero, \(\frac{\partial}{\partial \hat{Y}_n^*} D_1(\hat{Y}_n^*) = 0 \), we get
\[
(G^T G + E^T E)\hat{Y}_n^* = G^T V.
\]
The solution is then given by
\[
\hat{Y}_n^* = (G^T G + E^T E)^{-1} G^T V.
\]
Hence the optimal equilibrium is given by \(\text{(8)} \). Note that similar techniques have been applied to several problems of this type of algebraic systems, see [47-61]. The proof is completed.

4 Conclusions

Closing this paper, we may argue that it is not only a theoretical extension of the basic version of Samuelson’s model, but also a practical guide for obtaining the optimal equilibrium of this model in the case we have infinite many equilibriums. Further research is carried out for even higher order equations investigating qualitative results. For this purpose we may use an interesting tools applied for difference equations with many delays, the fractional nabla operator, see [51-57]. For all this there is already some ongoing research.
References

[1] Apostolopoulos, N., Ortega, F. and Kalogeropoulos, G., The Samuelson’s model as a singular discrete time system. arXiv preprint arXiv:1705.01350 (2017).

[2] Chari, V. V., Optimal Fiscal Policy in a Business Cycle Model. Journal of Political Economy, Vol. 102, issue 4, p. 52-61, (1994).

[3] Chow, G. C., A model of Chinese National Income Determination, Journal of Political Economy, vol 93, No 4, p.782-792, (1985).

[4] Dassios I, Kontzalis C: On the stability of equilibrium for a foreign trade model. Proceedings of the 32nd IASTED international conference 2012.

[5] Dassios I, Kontzalis C, Kalogeropoulos G: A stability result on a reformulated Samuelson economical model. Proceedings of the 32nd IASTED international conference 2012.

[6] I. Dassios, A. Zimbidis, The classical Samuelson’s model in a multi-country context under a delayed framework with interaction, Dynamics of continuous, discrete and impulsive systems Series B: Applications & Algorithms, Volume 21, Number 4-5b pp. 261–274 (2014).

[7] I. Dassios, A. Zimbidis, C. Kontzalis. The Delay Effect in a Stochastic Multiplier-Accelerator Model. Journal of Economic Structures 2014, 3:7.

[8] I. Dassios, G. Kalogeropoulos, On the stability of equilibrium for a reformulated foreign trade model of three countries. Journal of Industrial Engineering International, Springer, Volume 10, Issue 3, pp. 1-9 (2014). 10:71 DOI 10.1007/s40092-014-0071-9.

[9] I. Dassios, M. Devine. A macroeconomic mathematical model for the national income of a union of countries with interaction and trade. Journal of Economic Structures 2016, 5:18.

[10] Dorf, R. C., Modern Control Systems. Addison-Wesley, 3rd Edition, (1983).

[11] F. Milano; I. Dassios, Small-Signal Stability Analysis for Non-Index 1 Hessenberg Form Systems of Delay Differential-Algebraic Equations, Circuits and Systems I: Regular Papers, IEEE Transactions on 63(9):1521-1530 (2016).

[12] Kuo, B. C., Automatic Control Systems. Prentice Hall, 5th Edition, (1996).

[13] Puu, T., Gardini, L. and Sushko, I. A Hicksian multiplier-accelerator model with floor determined by capital stock. Journal of Economic Behavior and Organization, Vol. 56, (2004).

[14] Rosser, J. B., From Catastrophe to Chaos: A General Theory of Economic Discontinuities. Academic Publishers, Boston, (2000).

[15] Samuelson, P. Interactions between the multiplier analysis and the principle of acceleration. Review of Economic Statistics, (1939).

[16] Westerhoff, F. H., Samuelson’s multiplier-accelerator model revisited. Applied Economics Letters, Vol. 56, p. 86-92, (2006).
[17] Wincoop, E. A multi-country real business cycle model. *Scand. journal of economics* vol. 23, p. 233–251, (1996).

[18] A. P. Schinnar, *The Leontief dynamic generalized inverse*. The Quarterly Journal of Economics 92.4 pp. 641-652 (1978).

[19] Apostolopoulos, N., Ortega, F. and Kalogeropoulos, G., 2015. *Causality of singular linear discrete time systems*. arXiv preprint arXiv:1512.04740.

[20] Apostolopoulos, N., Ortega, F. and Kalogeropoulos, G., *On stability of generalised systems of difference equation with non-consistent initial conditions*. arXiv preprint arXiv:1612.04120 (2016).

[21] Apostolopoulos, N., Ortega, F. and Kalogeropoulos, G., *A boundary value problem of a generalised linear discrete time system with no solutions and infinitely many solutions*. arXiv preprint arXiv:1610.08277 (2016).

[22] Apostolopoulos, N., Ortega, F. and Kalogeropoulos, G., *The case of a generalised linear discrete time system with infinite many solutions*. arXiv preprint arXiv:1610.00927 (2016).

[23] L. Dai, *Singular Control Systems*, Lecture Notes in Control and Information Sciences Edited by M.Thoma and A.Wyner (1988).

[24] I. Dassios, *On solutions and algebraic duality of generalized linear discrete time systems*, Discrete Mathematics and Applications, Volume 22, No. 5-6, 665–682 (2012).

[25] I. Dassios, *On stability and state feedback stabilization of singular linear matrix difference equations*, Advances in difference equations, 2012:75 (2012).

[26] I. Dassios, *On robust stability of autonomous singular linear matrix difference equations*, Applied Mathematics and Computation, Volume 218, Issue 12, 6912–6920 (2012).

[27] I.K. Dassios, G. Kalogeropoulos, *On a non-homogeneous singular linear discrete time system with a singular matrix pencil*, Circuits systems and signal processing, Volume 32, Issue 4, 1615–1635 (2013).

[28] I. Dassios, G. Kalogeropoulos, *On the relation between consistent and non consistent initial conditions of singular discrete time systems*, Dynamics of continuous, discrete and impulsive systems Series A: Mathematical Analysis, Volume 20, Number 4a, pp. 447–458 (2013).

[29] Dassios I., *On a Boundary Value Problem of a Singular Discrete Time System with a Singular Pencil*, Dynamics of continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 22(3): 211-231 (2015).

[30] I. K. Dassios, K. Szajowski, *A non-autonomous stochastic discrete time system with uniform disturbances*. arXiv preprint arXiv:1612.05044 2016.

[31] Kalogeropoulos, Grigoris, and Charalambos Kontzalis, *Solutions of Higher Order Homogeneous Linear Matrix Differential Equations: Singular Case*. arXiv preprint arXiv:1501.05667 (2015).
[32] I. E. Leonard; The matrix exponential, SIAM Review Vol. 38, No. 3 (1996), pp. 507-512.

[33] Ogata, K: Discrete Time Control Systems. Prentice Hall, (1987)

[34] W.J. Rugh; Linear system theory, Prentice Hall International (Uk), London (1996).

[35] J.T. Sandefur; Discrete Dynamical Systems, Academic Press, (1990).

[36] G.W. Steward and J.G. Sun; Matrix Perturbation Theory, Oxford University Press, (1990).

[37] L. Verde-Star; Operator identities and the solution of linear matrix difference and differential equations, Studies in Applied Mathematics 91 (1994), pp. 153-177.

[38] Boutarfa, Bariza, Ioannis K. Dassios, A stability result for a network of two triple junctions on the plane, Mathematical Methods in the Applied Sciences (2016).

[39] H.-W. Cheng and S. S.-T. Yau; More explicit formulas for the matrix exponential, Linear Algebra Appl. 262 (1997), pp. 131–163.

[40] B.N. Datta; Numerical Linear Algebra and Applications, Cole Publishing Company, 1995.

[41] I. Dassios, Stability of triple junctions on the plane, Bull. Greek Math. Soc. 54 (2007) 281–300.

[42] I. Dassios, Stability of basic steady states of networks in bounded domains, Computers & Mathematics with Applications, 70(9), 2177–2196 (2015).

[43] F. Milano; I. Dassios, Primal and Dual Generalized Eigenvalue Problems for Power Systems Small-Signal Stability Analysis, IEEE Transactions on Power Systems (2017).

[44] F. L. Lewis; A survey of linear singular systems, Circuits Syst. Signal Process. 5, 3-36, (1986).

[45] F.L. Lewis; Recent work in singular systems, Proc. Int. Symp. Singular systems, pp. 20-24, Atlanta, GA, (1987).

[46] F. L. Lewis; A review of 2D implicit systems, Automatica (Journal of IFAC), v.28 n.2, p.345-354, (1992).

[47] I. Dassios, K. Fountoulakis, J. Gondzio A preconditioner for a primal-dual newton conjugate gradients method for compressed sensing problems SIAM J. Sci. Comput., 37 (2015), pp. A2783-A2812

[48] I. Dassios, K. Fountoulakis, and J. Gondzio, A second-order method for compressed sensing problems with coherent and redundant dictionaries, arXiv preprint arXiv:1405.4146, 2014.

[49] I. Dassios, A. Jivkov, A. Abu-Muharib and P. James. A mathematical model for plasticity and damage: A discrete calculus formulation. Journal of Computational and Applied Mathematics, 2015. DOI 10.1016/j.cam.2015.08.017.
[50] I.K. Dassios, *Optimal solutions for non-consistent singular linear systems of fractional nabla difference equations*, Circuits, Systems and Signal Processing, Springer, Volume 34, Issue 6, pp. 1769-1797 (2015). DOI 10.1007/s00034-014-9930-2

[51] I. K. Dassios, K. Szajowski, *Bayesian optimal control for a non-autonomous stochastic discrete time system*, Applied Mathematics and Computation, Volume 274, 556–564 (2016).

[52] F. M. Atici, P.W. Eloe, *Linear systems of fractional nabla difference equations*, The Rocky Mountain Journal of Mathematics, vol. 41, no. 2, pp. 353370, (2011).

[53] I.K. Dassios, D. Baleanu, *On a singular system of fractional nabla difference equations with boundary conditions*, Boundary Value Problems, 2013:148 (2013).

[54] I.K. Dassios, D.I. Baleanu. *Duality of singular linear systems of fractional nabla difference equations*. Applied Mathematical Modeling, Elsevier, Volume 39, Issue 14, pp. 4180-4195 (2015). DOI 10.1016/j.apm.2014.12.039

[55] I. Dassios, D. Baleanu, G. Kalogeropoulos, *On non-homogeneous singular systems of fractional nabla difference equations*, Applied Mathematics and Computation, Volume 227, 112–131 (2014).

[56] I. Dassios, *Geometric relation between two different types of initial conditions of singular systems of fractional nabla difference equations*, Math. Meth. Appl. Sci., 2015, doi: 10.1002/mma.3771.

[57] I. Dassios, *Stability and robustness of singular systems of fractional nabla difference equations*. Circuits, Systems and Signal Processing (2016). doi:10.1007/s00034-016-0291-x

[58] J. Klamka, J. Wyrwa, *Controllability of second-order infinite-dimensional systems*. Syst. Control Lett. 57, No. 5, 386–391 (2008).

[59] J. Klamka, *Controllability and minimum energy control problem of fractional discrete-time systems*, Chapter in monograph New Trends in Nanotechnology and Fractional Calculus. Springer-Verlag. New York. pp. 503–509 (2010).

[60] Charalambos Kontzalis, Kalogeropoulos, Grigoris, *A note on the relation between a singular linear discrete time system and a singular linear system of fractional nabla difference equations*, arXiv preprint arXiv:1412.2380 (2014).

[61] I. Podlubny, *Fractional Differential Equations, Mathematics in Science and Engineering*, p. xxiv+340. Academic Press, San Diego, Calif, USA (1999).