Study to evaluate the etiology of iron deficiency anemia at a teaching hospital in northeastern part of India

Abhishek Kumar¹, Saumya Gupta¹, Lalit P. Meena¹, Mukti P. Meher¹, Madhukar Rai¹, Sandip Kumar², Anju Bharti²

Departments of ¹General Medicine and ²Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Abstract

Introduction: The causes of iron deficiency may be either due to excessive loss or, less frequently, decrease absorption. Data related to etiology are not available from this part of the country. Objective: A study to evaluate the etiology of iron-deficiency anemia at a teaching hospital in the northeastern part of India. Materials and Methods: In this cross-sectional study, cases of iron-deficiency anemia were selected from the OPD and indoor, after taking proper written consent. Iron-deficiency anemia was diagnosed by sending the complete hematological investigations. Other specific investigations including imaging were done in selected patients as per indications. Results: A total of 102 patients of iron-deficiency anemia were included in the study. The age of the selected population was between 18 and 80 years. 37.3% were male and 62.7% were female patients. Upper gastrointestinal endoscopy was done in 56, out of these, 9.7% had antral gastritis and 2.9% had a duodenal ulcer. Lower gastrointestinal endoscopy was done in 30 patients and out of these seven patients had hemorrhoids, one patient had multiple ulcers in the colon, one had ulcers in the sigmoid colon, and one had ulceroproliferative mass in the transverse colon. Biopsy through the upper gastrointestinal endoscopy showed chronic duodenitis in three patients (2.9%), carcinoma stomach in one (0.98%), and periampullary carcinoma in one (0.98%). Biopsy after lower gastrointestinal endoscopy showed one case each of carcinoma colon, ulcerative colitis, nonspecific colitis, and nonspecific enteritis. Conclusion: Diagnosis of iron-deficiency anemia is not sufficient without the diagnosis of underlying etiology. Special concern will be taken to gastrointestinal malignancies like colorectal cancers in which iron-deficiency anemia may be the only manifestation and diagnosis that can be missed if we do not investigate properly.

Keywords: GI bleed, iron-deficiency anemia
severely anemic. The causes of iron deficiency may be either due to excessive loss or, less frequently, decrease absorption. Various studies were done on anemia at various parts of India including Tamil Nadu, Maharashtra, Gujarat, Uttar Pradesh, but they focused on the prevalence of IDA, not on etiologies. In this study, we evaluate the etiology of IDA in OPD and admitted patients at Sir Sunderlal Hospital, Institute of Medical Sciences Banaras Hindu University, Varanasi.

Objectives

Study to evaluate the etiology of IDA at a teaching hospital in the northeastern part of India

Materials and Methods

This is a cross-sectional study conducted at the department of medicine at a tertiary care hospital from June 2018 to June 2019. Cases of IDA were selected both from the OPD and indoor, after taking proper written consent. Inclusion criteria: age >18 years, a patient of IDA with hemoglobin <11 g/dL. Exclusion criteria: age <18 years, a patient who did not give consent, microcytic hypochromic anemia other than IDA. Complete history and physical examination were done and patients were evaluated for etiologies of IDA. IDA was diagnosed by sending the complete hematological investigations including complete blood count, reticuloocyte count, peripheral blood smears, serum iron, total iron-binding capacity (TIBC), ferritin, lactate dehydrogenase, stool for occult blood and ova, cysts, liver and renal function. Proctoscopy, upper gastrointestinal (GI) endoscopy, bone marrow examination including iron staining, X-ray ultrasonography of the abdomen, computed tomography scans of the abdomen were done in selected patients as per indications.

Statistical analysis

Data were extracted and analyzed using SPSS version 16.0. The data were presented as mean ± standard deviation for continuous variables and frequency with their respective percentages for categorical variables. Patient characteristics were described in terms of the median. For categorical data, the Chi-square test and Fischer’s exact test were used and for continuous data student’s t-test was used.

Results

A total of 102 patients of IDA were included in the study. The age of the selected population was between 18 and 80 years. Out of these 102, the majority of the patients (25.5%) belonged to the age group 21–30 years. 37.3% were male and 62.7% were female patients. The majority of females belonged to the age group 21–30 years. The main presenting complaint was weakness and easy fatigability which was present in 91% of patients, the next one was hemorrhoid in 91%. Menorrhagia was present in 23.6% of total female patients, 62.70% of patients were vegetarian and 37.3% were consuming a mixed diet. Four (3.9%) had a history of pica and 2.9% had nonsteroidal anti-inflammatory drugs (NSAIDS) intake for a long period. The mean hemoglobin in male patients was 5.4 ± 1.4 and in female patients was 5.99 ± 2.01. Digital rectal examination and proctoscopy were done in 62 patients, among them 34 patients (33.3%) had hemorrhoid (includes grade I, II, III with one or more than one columns), 25.5% had no abnormal findings and 0.98% had an anal fissure. Stool for occult blood was done in the majority of patients (95.1%) and before documenting it negative three samples of stool were sent. If 1st sample of stool comes positive then the 2nd and 3rd samples were not sent. 2nd and 3rd stool samples were sent of only those patients who had 1st stool sample negative for occult blood. Stool for occult blood was positive in 33.3% of patients in the 1st sample, 2.9% in the 2nd sample, and 1.96% in the 3rd sample.

Table 1: Upper gastrointestinal endoscopy (UGIE) findings

UGIE	Frequency	Percent
Not done	46	45.1
Normal	27	26.5
Antral gastritis	10	9.7
D1 and D2 ulcer	3	2.9
Sliding hiatus hernia with fundal erosion	3	2.9
Erythema and edema of D1 mucosa (duodenitis)	2	1.96
Gastritis with live worms in duodenum	2	1.96
Ucleroproliferative growth at GEJ and fundus	1	0.98
Periampullary mass with active bleeding	1	0.98
Decreased mucosal fold	1	0.98
Esophageal polyp with active bleeding	1	0.98
Gastric nodule	1	0.98
Isolated fundal varix	1	0.98
Pangastritis with D1 erosion	1	0.98
Scalloping of D2 segment	1	0.98
Severe PHG, nodularity of mucosa	1	0.98

Biopsy, after lower GI endoscopy, findings showed one case each of carcinoma colon, Ulcerative colitis, nonspecific colitis, and...
nonspecific enteritis [Table 3]. Lower GI bleeding was the leading cause of IDA present in 39.2% of patients followed by upper GI bleeding (26.4%), menorrhagia (23.4% of total female), unclassified (20.5%), infectious including hookworm in 10.7% and A. lumbricoides in 4.9% of patients, celiac disease in 0.98%.

In upper GI lesion/pathology group, maximum patients were in the age group of 61–70 (6.8%) followed by 51–60 (4.9%), 41–50 (4.9%), 21–30 (3.9%), and then 1.96% each of group 18–20, 31–40, and 71–80 years. In the lower GI lesion group, maximum patients belonged to group 51–60 year (10.7%) followed by 61–70 year (8.8%), 41–50 year (7.8%), 31–40 year (5.8%), 21–30 year (3.9%), and 1.96% in 18–20 year age group. In menorrhagia group, maximum female patients were in the age group 21–30 years (14%) followed by 31–40 years (6.2%), 18–20 years (1.56%), and 41–50 years (1.56%) [Table 4]. Some patients in this study group had multiple etiologies. One patient of 71–80 year age group had upper GI lesions with hookworm infestation, 1 patient in same age group had upper GI lesion with A. lumbricoides infestation. 6 (5.9%) Patients had both upper and lower GI lesion and they belong to two patients from 61–70 year group and one each from 18–20, 21–30, 31–40, 51–60 years. Four patients had lower GI lesions with hookworm infestation and they belong to two from 61–70 years, one from 51–60 and one from 41–50 years. One patient of 31–40 year age group had lower GI lesions with an A. lumbricoides worm infestation. One patient of 18–20 year age group had both upper and lower GI lesions with menorrhagia and in one patient with both upper and lower GI lesions with hookworm infestation. Out of total 38 male patients, 14 (36.8%) had upper GI lesion, 19 (50%) had lower GI lesion, three (7.8%) had hookworm infestation, three (7.8%) had A. lumbricoides infestation, one (2.6%) had celiac disease, and five (13.1%) were unclassified in which cause could not identify. Out of 64 female patients, 13 (20.3%) had upper GI lesions, 21 (32.8%) had lower GI lesions, 15 (23.4%) had menorrhagia, 8 (12.5%) had hookworm infestation, 2 (3.1%) had A. lumbricoides infestation, and 16 (25%) were unclassified in which etiology not found. The etiologies of upper GI lesions include antral gastritis which is seen in 10 patients (9.8%) and out of these 10 patients 3 were (7.89%) and 7 (10.94%) were female. Next include chronic duodenitis which was seen in one male (2.63%) and two female (3.02%) patients, a total of three patients (2.94%). H. pylori gastritis was seen in two patients (2.94%), in one male (2.63% of total male) and one female (1.56%). Hiatus hernia was seen in a total of two patients (1.96%) and both were male. One male patient had NSAIDS-induced gastritis (0.98% of total). Pan gastritis is seen in one male patient (0.98% of total patients). The esophageal polyp was seen in one male patient (0.98% of total). Fundal varix in a patient of chronic liver disease was seen in one patient (0.98% of total). Carcinoma of the stomach was seen in one female patient (0.98% of total), periampullary carcinoma was seen in one male patient (0.98% of total), and one patient of hemophilia had the feature of upper GI bleed. Other than these, on upper GI endoscopy two patients had live worms in the duodenum. One male patient had features of celiac disease. In lower GI pathology, hemorrhoid was the most common cause in both male (44.7% of male) and female (29.6% of female) population. The majority of patients having hemorrhoid belongs to mid to elderly age population. Only 7 out of 35 patients with hemorrhoids were below 40 years of age. Other pathology of lower GI tract includes ulcerative colitis in a 19-year-old female (0.98% of total) which also had features of duodenitis; nonspecific colitis was seen in one female patient (0.98% of total), nonspecific enteritis was seen in one male patient (0.98% of total), and one male patient (0.98% of total) had carcinoma of the colon. Total 15 female patients had menorrhagia, out of these one (6.67%) had fibroid uterus, one (6.67%) had an endometrial polyp, one (6.67%) patient had idiopathic thrombocytopenic purpura which responded after treatment, and one (6.67%) had hypothyroidism, and in other 11 patients (73.3% of menorrhagic female) there was no obvious etiology for menorrhagia and they put into dysfunctional uterine bleeding (unclassified group).

Table 2: Lower gastrointestinal endoscopy findings

LGIE	Frequency	Percent
Not done	72	70.6
Normal	19	18.6
Grade I internal hemorrhoid	4	3.9
Grade II internal hemorrhoid	2	1.96
Grade IV internal hemorrhoid	1	0.98
Multiple ulcers in colon	1	0.98
Small caecal diverticulitis, multiple small ulcers in ileum	1	0.98
Ulcer in sigmoid colon	1	0.98
Ulceroproliferative mass in transverse colon	1	0.98

Table 3: Upper gastrointestinal tract biopsy/lower gastrointestinal biopsy findings

Upper gastrointestinal tract biopsy findings	Frequency	Percent
Chronic duodenitis	3	2.9
H. pylori chronic gastritis	2	1.96
CA stomach	1	0.98
Periampullary carcinoma	1	0.98
Celiac disease	1	0.98
Chronic inflammation of fundus	1	0.98
Lower gastrointestinal biopsy findings		
CA colon	1	0.98
Feature of ulcerative colitis	1	0.98
Nonspecific colitis	1	0.98
Nonspecific enteritis	1	0.98

Discussion

This study was carried out at a tertiary care hospital between June 2018 and June 2019 and it gives us a fair idea of the etiologies of IDA in the eastern part of India. IDA is not a disease itself but a manifestation of an underlying disease, therefore, searching for the underlying disease is more important than replacing iron stores. Blood loss is a major cause of IDA, however, the commonest cause of IDA in developing countries is still nutritional deficiency.[1,12] Upper and lower GI tract...
Kumar, et al.: Etiology of iron deficiency anemia

evaluation is necessary to detect the cause of IDA, particularly in men >50 and in postmenopausal women, in whom iron deficiency is suspected to occur from a bleeding lesion. The majority of studied patients belonged to the reproductive age group and the elderly population. Females in the reproductive age group require more iron and also prone to develop IDA due to loss of blood during menstruation. In the elderly age group, the incidence of IDA was more because of the lesser intake of iron and losses of blood from the GI tract (hemorrhoids, malignancies). This study shows a preponderance of female patients (64 out of 102 patients) and females were predominant in all age groups. WHO also says that 30% of nonpregnant and 42% of the pregnant female have anemia and a majority of them belongs to IDA. Among the occupation of the cases, the maximum belonged to the housewife group (48 out of 102) and next was the student group (19 out of 102 cases). In our study, IDA was more commonly seen in patients who were vegetarian by diet as compared to mix diet. 3.9% of our studied patients had a history of pica. On further investigation, all of these patients have worm infestation also.

Table 4: Age group-wise etiological classification

Age	Etiology major classification	18-20	21-30	31-40	41-50	51-60	61-70	71-80	Total	
Upper GI lesion	n	2	4	2	5	5	7	2	27	
	%	1.96	3.92	1.96	4.90	4.90	6.86	1.96	26.47	
Lower GI lesion	n	2	4	6	8	11	9		40	
	%	1.96	3.92	5.88	7.84	10.78	8.82		39.22	
Menorrhagia	n	1	9	4	1				15	
	%	1.56	14.06	6.25	1.56				23.44	
Infectious	Hookworm	n	3	1	1	2	1	2	1	11
	%	2.94	0.98	0.98	1.96	0.98	1.96	0.98	10.78	
Ascaris	n	2		1		2		1	5	
	%	1.96	0.98	0.98		1.96	0.98		4.9	
Celiac disease	n	1							1	
	%	0.98							0.98	
Unclassified	n	2	6	2	1	5	4	1	21	
	%	1.96	5.86	1.96	0.98	4.90	3.92	0.98	20.5	
ulcerative colitis (0.98%) which was also shown in a study, which had chronic colitis in 3%, inflammatory bowel disease (3%), and carcinoma colon in 1.5% of patients.[17] Another major group in our study was the unclassified group in which we could not find the etiology of IDA. Since the majority of our studied patients were vegans, they had more chances of nutritional deficiency anemia as studied in the literature.[11] In the female of reproductive age group, menorrhagia was also a leading cause of IDA.[11] As observed in our study, total 15 (14.8% of total patients and 23.4% of the total female patients) out of 64 female patients had menorrhagia (causes identified were one each of fibroid uterus, endometrial polyp, idiopathic thrombocytopenic purpura, and hypothyroidism other 11 patients had no identifiable cause) so it is one of the major causes of IDA. Worm infestation was also one of the major causes of IDA. Among worm infestation, hookworm infestation is most common worldwide and it is a common cause of occult GI bleeding and anemia.[19,20] Each worm can suck about 0.1–0.4 mL blood/day which may reach to >250 mL/day in cases of heavy worm infestation and leads to IDA as seen in our study that out of 102 patients 16 (15.7%) had worm infestation (2 patients had live worms detected in upper GI endoscopy). In our study, 11 patients (10.8%) had hookworm infestation and five patients (4.89%) had \textit{A. lumbricoides} infestation.

Limitations of our study were that we could not go for capsule endoscopy because it is not available at our institute so we could not find the lesion between the duodenum and terminal ileum. One another limitation in our study was that we did not advise upper and lower GI endoscopy in all patients and studies show that even in patients who have stool occult blood negative they may have GI lesions so we can miss these GI lesions.

Conclusion

Although the nutritional deficiency is the most common cause of IDA worldwide, the diagnosis of IDA alone without the diagnosis of underlying etiology is insufficient. Special concern will be taken to GI malignancies such as colorectal cancers in which IDA may be the only manifestation and diagnosis that can be missed if we do not investigate properly. Management of underlying pathology after replenishment of iron store is also very important in some specific groups like adolescents, reproductive age group, pregnancy, elderly populations, and patients with comorbidities like coronary artery disease to avoid frequent hospitalization and repeated blood transfusion.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. World Health Organization. Nutritional Anaemias: Tools for Effective Prevention; WHO: Geneva, Switzerland; 2017.
2. Lutter CK. Iron deficiency in young children in low-income countries and new approaches for its prevention. J Nutr 2008;138:2523-8.
3. Gasche C, Lomer MC, Cavill I, Weiss G. Iron, anemia, and inflammatory bowel disease. Gut 2004;53:1190-7.
4. Camaschella, C. Iron deficiency. Blood 2019;133:30-9.
5. Cappellini MD, Musallam KM, Taher AT. Iron deficiency anaemia revisited. J Intern Med 2020;287:153-70.
6. WHO, UNICEF, and UNU, Iron Deficiency Anaemia: Assessment, Prevention and Control, A Guide for Programme Managers,WHO,UNICEF,UNU,Geneva,Switzerland,2001, http://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/WHO_NHD_01.3/en/index.html. [Last accessed on 2020 Mar 24].
7. Sayre JM, Long RG. A perspective on Iron deficiency anaemia. Gut 1993;34:1297-9.
8. Goddard AF, McIntyre AS, Scott BB. Guidelines for the management of iron deficiency anaemia. British Society of Gastroenterology. Gut 2000;46(Suppl 3-4):IV1-IV5.
9. Kumari R, Bharti RK, Singh K, Sinha A, Kumar S, Saran A, et al. Prevalence of iron deficiency and iron deficiency

Table 5: Etiology of upper GI pathology/bleed

Etiology	Male	Female	Total			
n	%	n	%	n	%	
Antral gastritis	3	7.89	7	10.94	10	9.8
Chronic duodenitis	1	2.63	2	3.02	3	2.94
Duodenal ulcer	2	5.26	1	1.56	3	2.94
H. pylori gastritis	1	2.63	1	1.56	2	1.96
Hiatus hernia	2	5.26	0	0.0	2	1.96
NSAIDS-induced gastritis	1	2.63	0	0.0	1	0.98
Pangastrixis	1	2.63	0	0.0	1	0.98
Esophageal polyp	1	2.63	0	0.0	1	0.98
Fundal varix	0	0.0	1	1.56	1	0.98
Carcinoma stomach	0	0.0	1	1.56	1	0.98
Periampillary carcinoma	1	2.63	0	0.0	1	0.98
Hemophilia	1	2.63	0	0.0	1	0.98

Table 6: Etiology of lower GI pathology/bleed

Etiology	Male	Female	Total			
n	%	n	%	n	%	
Hemorrhoid	17	44.74	19	29.69	36	35.3
Ulcerative colitis	0	0.0	1	1.56	1	0.98
Nonspecific enteritis	1	2.63	0	0.0	1	0.98
Carcinoma colon	1	2.63	0	0.0	1	0.98
Nonspecific colitis	0	0.0	1	1.56	1	0.98
anaemia in adolescent girls in a tertiary care hospital. J Clin Diagn Res 2017;11:BC04-BC06.
10. Zhu A, Kaneshiro M, Kaunitz JD. Evaluation and treatment of iron deficiency anemia: A gastroenterological perspective. Dig Dis Sci 2010;55:548-9.
11. Alleyne M, Horne MK, Miller JL. Individualized treatment for iron-deficiency anemia in adults. Am J Med 2008;121:943-8.
12. Ministry of Health and Family Welfare, Government of India. India National Family Health Survey (NFHS4) 2015-16. Mumbai: International Institute for Population Sciences; 2017. Available from: http://rchiips.org/nfhs/NFSH‑4Reports/India.pdf. [Last accessed on 2018 Jan 15].
13. Rockey DC. Occult gastrointestinal bleeding. Gastroenterol Clin North Am 2005;34:699-718.
14. Lindsay JO, Robinson SD, Jackson JE, Walters JR. The investigation of iron deficiency anemia - A hospital based audit. Hepatogastroenterology 1999;46:2887-90.
15. Clark SF. Iron deficiency anemia. Nutr Clin Pract 2008;23:128-41.
16. Kepczyk T, Kadakia SC. Prospective evaluation of gastrointestinal tract in patients with iron-deficiency anemia. Dig Dis Sci 1995;40:1283-9.
17. Serefhanoglu S, Buyukasik Y, Emmungil H, Sayinalp N, Haznedaroglu IC, Goker H, et al. Identification of clinical and simple laboratory variables predicting responsible gastrointestinal lesions in patients with iron deficiency anemia. Int J Med Sci 2010;28:30-8.
18. Jacobs A, Butler EB. Menstrual blood-loss in iron-deficiency anaemia. Lancet 1965;2:407-9.
19. Warren KS, Bundy DA, Anderson RM, Davis AR, Henderson DA, Jamison DT, et al. Helminth infection. In: Jamison DT, Mosley WH, Measham AR, Bobadilla JL, editors. Disease Control Priorities in Developing Countries. Oxford: The World Bank/Oxford University Press; 1993. p. 131-60.
20. Grosby WH. The deadly hookworm. Why did the Puerto Ricans die? Arch Intern Med 1987;147:577-9.