Laurent Expansions for Vertex Operators

Wojtek Slowikowski
Department of Mathematical Sciences, Aarhus University, Denmark

Abstract
A method is presented for using coherent vectors to calculate the explicit form of Schur polynomials which are the coefficients of Laurent expansion of a vertex operator.

1 Preliminaries

Let $\Gamma_0 D$ be a Bose algebra (cf. [4]) i.e. a commutative graded algebra generated by a pre-Hilbert space $D, \langle \cdot, \cdot \rangle$ (the so-called one-particle space) and the unity ϕ (the vacuum) provided with the extension $\langle \cdot, \cdot \rangle$ of the scalar product of D making ϕ a unit vector and fulfilling the property that for every $x \in D$, the adjoint x^* to the operator of multiplication by x is defined on the whole $\Gamma_0 D$ and constitutes a derivation (i.e. fulfils the Leibniz rule). We make the space $\tilde{\Gamma} D$ of all antilinear functionals on $\Gamma_0 D$ the extension of $\Gamma_0 D$ by identifying $f \in \Gamma_0 D$ with the antilinear functional $\langle \cdot, f \rangle$. The space $\tilde{\Gamma} D$ can be naturally made into an algebra containing $\Gamma_0 D$ as a subalgebra. We consider $\tilde{\Gamma} D$ as a locally convex space with the weak topology $\sigma (\tilde{\Gamma} D, \Gamma_0 D)$. The weak closure \tilde{D} of D is a subspace of $\tilde{\Gamma} D$. It is easy to show that $\Gamma_0 D, \langle \cdot, \cdot \rangle$ admits the completion $\Gamma \tilde{D}$ within $\tilde{\Gamma} D$.

We shall use the exponentials of elements $w \in D$,

$$e^w = \sum_{n=0}^{\infty} \frac{1}{n!} w^n \in \Gamma \tilde{D},$$

which are called coherent vectors. In [4] the following relations are verified:

$$\langle a, b \rangle^j = \frac{1}{j!} \langle a^j, b \rangle$$

(1)
\[(x^n)^* e^w = \langle x, w \rangle^n e^w \]
\[\langle e^u, fg \rangle = \langle e^u, f \rangle \langle e^u, g \rangle \]
\[e^{a(w)} e^v = e^{(w,v)} e^v. \]

Also a proof that the set \(\{ e^x : x \in \mathcal{D} \} \) of coherent vectors is total in \(\Gamma \overline{\mathcal{D}} \) can be found in [4].

2 The Laurent Expansion for a Vertex operator

Let \(\mathcal{D} \) be spanned by an orthonormal system \(\{ f_n \} \) and by an orthonormal system \(\{ g_n \} \) as well. The operator valued functions of \(z \)
\[V(z) = e^{\sum_{n=1}^{\infty} z^n f_n} e^{\sum_{n=1}^{\infty} z^{-n} g_n^*} : \Gamma_0 \mathcal{D} \to \overline{\Gamma} \mathcal{D}, \]
shall be called a vertex operator (cf. [2], [3], [1]).

Write \((p, q) \) for tuples of non-negative integers
\[(p, q) = (p_1, q_1, p_2, q_2, \ldots, p_k, q_k, \ldots) \]
and define
\[\mathcal{N}_m = \left\{ (p, q) : \sum_{k=1}^{\infty} (p_k + q_k) = m \right\} \]
and
\[\mathcal{N}^w = \left\{ (p, q) : \sum_{k=1}^{\infty} (p_k + q_k) < \infty, \sum_{j=1}^{\infty} j (p_j - q_j) = w \right\} \]
For \(s = (s_1, s_2, \ldots) \), write
\[s! = \prod_{k=1}^{\infty} s_k! \]

We prove the following
THEOREM Vertex operators admit the weak evaluation on $\Gamma_0 D$ and the weak convergent Laurent expansion

$$V(z) = e^{\sum_{n=1}^{\infty} z^n f_n} e^{\sum_{n=1}^{\infty} z^{-n} g^*_n} = \sum_{w \in \mathbb{Z}} S_w \{ f_n, g^*_n \} z^w$$

with coefficients

$$S_w \{ f_n, g^*_n \} = \sum_{m=0}^{\infty} \sum_{(p,q) \in \mathbb{N}_m \cap \mathbb{N}_w} \frac{1}{p!q!} \left(\prod_{k=1}^{\infty} f_k^{p_k} \right) \left(\prod_{k=1}^{\infty} g_k^{q_k} \right)^*$$

called the Schur polynomials (cf. [3]).

To prove the Theorem we shall need the following

LEMMA Take any pair of elements $u, v \in D$. Then the element $V(z) e^u$ is well defined in $\tilde{\Gamma} D$ and we have

$$\langle e^u, V(z) e^v \rangle = e^{\sum_{w \in \mathbb{Z}} S_w \{ f_n, g^*_n \} z^w} e^v,$$

where

$$S_w \{ f_n, g^*_n \} = \sum_{m=0}^{\infty} \sum_{(p,q) \in \mathbb{N}_m \cap \mathbb{N}_w} \frac{1}{p!q!} \left(\prod_{k=1}^{\infty} f_k^{p_k} \right) \left(\prod_{k=1}^{\infty} g_k^{q_k} \right)^*.$$

Proof. Take $u,v \in D$. By virtue of (4) we get

$$\langle e^u, e^x e^y \rangle = e^{\sum_{w \in \mathbb{Z}} S_w \{ f_n, g^*_n \} z^w} e^v,$$

and consequently

$$\langle e^u, V(z) e^v \rangle = e^{\sum_{w \in \mathbb{Z}} S_w \{ f_n, g^*_n \} z^w} e^{\sum_{n=1}^{\infty} \langle f_n, u \rangle z^n + \langle v, g_n \rangle z^{-n}}.$$

Since u and v are linear combinations of f_k and g_k respectively, $\langle f_n, u \rangle z^n = \langle v, g_n \rangle z^{-n} = 0$ for large n. Due to (2) we get

$$\langle e^u, \left(\prod_{k=1}^{\infty} f_k^{p_k} \right) \left(\prod_{k=1}^{\infty} g_k^{q_k} \right)^* e^v \rangle = \langle \left(\prod_{k=1}^{\infty} f_k^{p_k} \right) \left(\prod_{k=1}^{\infty} g_k^{q_k} \right)^* \rangle e^{\sum_{n=1}^{\infty} \langle f_k, u \rangle^{p_k} \langle v, g_k \rangle^{q_k}} e^{\langle u, v \rangle}.$$
where all the products are finite and they are non-zero only when p_k and q_k are zeros for f_k and g_k orthogonal to v and u respectively. Consequently

$$\frac{1}{m!} \left(\sum_{n=1}^{\infty} \langle f_n, u \rangle z^n + \sum_{n=1}^{\infty} \langle v, g_n \rangle z^{-n} \right)^m$$

$$= \sum_{(p,q) \in \mathcal{N}_m} \frac{1}{p!q!} \prod_{k=1}^{\infty} \left(\langle f_k, u \rangle^{p_k} \langle v, g_k \rangle^{q_k} z^{k(p_k-q_k)} \right)$$

$$= \sum_{w \in \mathbb{Z}} \sum_{(p,q) \in \mathcal{N}_m \cap \mathcal{N}_w} \frac{1}{p!q!} \left(\prod_{k=1}^{\infty} \langle f_k, u \rangle^{p_k} \langle v, g_k \rangle^{q_k} \right) z^w$$

$$= \left\langle e^u, \sum_{w \in \mathbb{Z}} \left(\sum_{(p,q) \in \mathcal{N}_m \cap \mathcal{N}_w} \frac{1}{p!q!} \left(\prod_{k=1}^{\infty} f_k^{p_k} \right) \left(\prod_{k=1}^{\infty} g_k^{q_k} \right)^* \right) z^w e^v \right\rangle e^{-(u,v)}.$$

Hence

$$\frac{1}{m!} \left(\sum_{n=1}^{\infty} \langle f_n, u \rangle z^n + \sum_{n=1}^{\infty} \langle v, g_n \rangle z^{-n} \right)^m$$

$$= \left\langle e^u, \sum_{w \in \mathbb{Z}} \sum_{m=0}^{\infty} \sum_{w \in \mathbb{Z}} \frac{1}{p!q!} \left(\prod_{k=1}^{\infty} f_k^{p_k} \right) \left(\prod_{k=1}^{\infty} g_k^{q_k} \right)^* \right) z^w e^v \right\rangle e^{-(u,v)},$$

and finally

$$\langle e^u, V(z) e^v \rangle = e^{(u,v)} \sum_{n=1}^{\infty} \left(\langle f_n, u \rangle z^n + \langle v, g_n \rangle z^{-n} \right)$$

$$= \left\langle e^u, \sum_{w \in \mathbb{Z}} \sum_{m=0}^{\infty} \sum_{w \in \mathbb{Z}} \frac{1}{p!q!} \left(\prod_{k=1}^{\infty} f_k^{p_k} \right) \left(\prod_{k=1}^{\infty} g_k^{q_k} \right)^* \right) z^w e^v \right\rangle$$

which concludes the proof of the Lemma.

Proof of the Theorem

Since $\Gamma_0 D$ is the linear span of the set $\{ x^k : x \in D, k = 1, 2, \ldots \}$ (cf. [1]), it is sufficient to show that for any $u, v \in D$ and any natural numbers k, j we have

$$\langle u^k, V(z) v^j \rangle = \left\langle u^k, \left(\sum_{w \in \mathbb{Z}} S_w \{ f_n, g_n^* \} z^w \right) v^j \right\rangle$$

which follows by differentiating respectively k and j times at 0 the variables t and s of the identity [3] with tu and sv substituted for u and $v.$ ■
References

[1] Frenkel, I., Lepowsky, J., Meurman, A., *Vertex operator algebras and the Monster*, Academic Press (1988).

[2] Jing, N., *Vertex Operators, Symmetric Functions and the Spin Group Γ_n*, Journal of Algebra 138 (1991)340-398.

[3] Kac, V.G., *Infinite Dimensional Lie Algebras*, Cambridge University Press, Cambridge - New York (1995).

[4] Nielsen, T.T., *The Complex and Real Wave Representations*, Lecture Notes in Math. 1472, Springer 1991.