Collaboration Analysis of Semarang City Dengue Hemorrhagic Fever Health Surveillance Officer with Social Network Analysis

Analisis Kolaborasi Petugas Surveilans Kesehatan Demam Berdarah Dengue Kota Semarang dengan Social Network Analysis

Received: 23 May 2019
Revised: 23 September 2019
Accepted: 16 November 2019

1* Lukman Santoso, 2Danny Manongga, 3Ade Iriani
1,2,3 Magister Sistem Informasi, Universitas Kristen Satya Wacana, Salatiga, Indonesia
E-mail: 1lukman15021981@gmail.com, 2dmanongga@gmail.com, 3adeiriani@gmail.com
*Corresponding Author

Abstract — This study aims to determine the pattern of a network collaboration between dengue hemorrhagic health surveillance personnel in the city of Semarang and to understand the flow of information deeply. The method of social network analysis / SNA (Social Network Analysis) on formal and informal communication networks between surveillance officers aims to produce sociometry and sociogram data so that the centrality of each actor in the network can be known. Interaction between Officers will be known through the analysis of the centrality of levels (degree), closeness (closeness), and intercession (betweenness). The approach used is descriptive quantitative. Data was collected using a research instrument in the form of a questionnaire, while the process of input and data analysis was carried out by looking at intact networks and ego networks carried out using UCINET. The results of the analysis show that officers dominate the centrality of the level and the intermediary with the position of Coordinator both City and District (Id. # 128, # 1, # 2, # 3). Collaboration based on working areas has a strong bond because 71% of the districts have a network density above 50%. While the value of closeness is dominated by surveillance members with id # 54, # 15, # 2, # 214, # 15 and # 10.

Keywords — Social Network Analysis, Gasurkes, Health Surveillance Staff

Abstrak — Penelitian ini dilaksanakan untuk mengetahui pola kolaborasi jaringan (network) antara tenaga surveilans kesehatan demam berdarah dengue di Kota Semarang dan memahami secara mendalam arus informasinya. Metode analisis jaringan sosial / SNA (Social Network Analysis) pada jaringan komunikasi formal maupun informal antara petugas surveilans bertujuan menghasilkan data sociometry dan sociogram sehingga dapat diketahui sentralitas setiap aktor dalam jaringan. Interaksi antara Petugas akan diketahui melalui analisis sentralitas tingkatan (degree), kedekatan (closeness) dan keperantaraan (betweenness). Pendekatan yang digunakan adalah deskriptif kuantitatif. Data dikumpulkan dengan menggunakan instrument penelitian berupa kuesioner, sedangkan proses input dan analisis data dilakukan dengan melihat jaringan utuh dan jaringan ego dilakukan dengan menggunakan UCINET. Hasil analisis menunjukkan bahwa nilai sentralitas tingkatan dan keperantaraan didominasi oleh petugas dengan jabatan Koordinator baik itu Kota maupun Kecamatan (Id.#128,#1,#2,#3). Kolaborasi berdasarkan wilayah wilayah kerja mempunyai ikatan yang kuat dikarenakan 71% kecamatan mempunyai kepadaan jaringan diatas 50%. Sedangkan nilai kedekatan didominasi oleh anggota surveilans dengan id # 54, # 15, # 2, # 214, # 15 dan # 10.

Kata Kunci — Social Network Analysis, Gasurkes, Tenaga Surveylans Kesehatan
I. INTRODUCTION

Semarang City DBD(DHF) Incidence Rate (IR) from 2006 to 2016 is always much higher than Central Java's DBD(DHF) IR and National DBD IR. In 2016, the Semarang City DBD(DHF) IR 25.22 per 100,000 population or 47.5% lower than the Central Java DBD(DHF) IR, which reached 48.22 per 100,000 population. The national target in achieving DHF incidence rates is ≤ 51 per 100,000 population. DHF Incidence Rate Semarang City was ranked 1st in 2010 and ranked 29th IRD DHF in Central Java. One of the success factors in the downgrading of the Semarang DBD IR rank is the efforts of the Semarang City Government to establish a DHF Health Surveillance Officer (Gasurkes) according to Semarang City Regulation Number 5 of 2010 [1]. This study aims to map social networks based on the interaction of DHF Health Surveillance Officers (Gasurkes) using the Social Network Analysis (SNA) method. Based on the network mapping formed and the statistical functions of the SNA can help identify the level of surveillance role in the network and see the relationship to the success of a program.

Examples of the use of the SNA method in several studies, including research [2] in Batik Winda Sari UKM in Sragen City, concluded that individual brokers influence the relationship that occurs in these UKMs. In Research [3] [4] SNA shows that the relationship between students is not always based on academic issues, but also non-academic, the position of students in the network also determines success in examinations/studies. Research [5]. See the process of disseminating information about the "Wonderful Indonesia" country branding on the top platforms of the social networking sites Google Plus, Twitter and Facebook to become later input for the Ministry of Tourism of the Republic of Indonesia to increase the spread of country branding and the "Wonderful Indonesia" tourism campaign. Research [6] uses social network analysis to explore patterns created by the interactions of online users on Facebook during a disaster response. The study results show that social networks consist of three entities: individuals, emergency agencies, and organizations to share information in a state of disaster emergency. SNA research [7] was used by the European Commission to look at stakeholders who influence land-use decisions related to greening infrastructure at local and regional levels.

The SNA method can also be used to see collaborative research between lecturers in tertiary institutions. The resulting analysis can provide recommendations to improve the quality of research [8] as well as increase the Chancellor's expertise in recognizing the perspectives of others to anticipate emerging and systemic changes. Identify who is involved in discussions about teaching and learning and topics covered [9].

Social Network Analysis (SNA) is one of the most popular methods used to view social networks. SNA is used to analyze and map the interactions of individuals or institutions so that it
can be seen patterns of communication, collaboration, or actors involved in it so that the background of interests and motivations can be identified [10] [11] [12]. The SNA method is also used to analyze the network of sea container transport routes at the South Korean port of Incheon [13], analyze communication structures, interpersonal communication networks and the relationship of individual characteristics with interpersonal networks in social networks [14] [15] as well as distribution patterns and find key players in the distribution of pornographic content on Social Media [16].

The SNA method can also be used to study liaison organizations or actors who have the highest centrality and are well-positioned to bridge health and community services [17], collaboration between scientists, research centers, institutional network research, centers of excellence [18], e-learning studies [19], government programs in agriculture [20], viral events on social media [21], use of technology [22] and SME support institutions [23].

Based on previous research, this research was conducted because no research studies the collaboration of surveillance personnel / gasurkes in the city of Semarang. As for the studies on surveillance / gasurkes personnel, including:

Research [24] which aims to determine the effectiveness of DHF surveillance officers in determining larval free rates (ABJ) in Semarang City. This study concludes that the DBD Gasurkes program in Semarang City has been effective by looking at the results of the value of effectiveness in each aspect compared to the percentage table of program effectiveness. Where the input aspect is effective (71%), the process aspect is very effective (92%), and the output aspect is effective (77%), although, in every aspect, there are still obstacles.

Research [25] aims to look for factors that influence the behavior of jumantik cadres in the early awareness system of DHF in Sendangmulyo Village, where someone who behaves well to the officers, has a significant influence and will realize good practices/behaviors in preventing DHF.

Research [26] focuses on analyzing the performance of Gasurkes in efforts to tackle DHF in endemic villages, where the results of the study showed that Gasurkes's knowledge was not good, there were good perceptions, lack of motivation, not yet enforced rewards, support of socio-economic and political environment that was not optimal, the leadership process that has not been optimal, the workload that has not been evenly distributed, insufficient labor and sufficient facilities. The conclusion of the research shows that the performance of Gasurkes in the efforts to overcome DHF in endemic villages is not optimal.

From the results of the above study, no research has been found on collaboration between the gasurkes / DHF surveillance officers in Semarang City.
II. RESEARCH METHOD

Based on the description above, this study aims to analyze patterns of network collaboration or relationships between surveillance personnel / Gasurkes in Semarang City and to understand in depth the flow of information. SNA is used in this research to produce sociometry and sociogram data so that the centrality of each actor and its influence on the network can be known. A sociogram is a graph that illustrates the pattern of relationships and interests in social networks. A sociogram can describe the pattern of interaction between actors in a social network or the sociometric status of an actor in a social network or the overall state of actors in a social network [27].

Based on this, a mindset was formed, which later became the mechanism that would be used in the conduct of this research. The mechanism is illustrated in the following steps:

![Research Stages Diagram]

Figure 1. Research Stages

a. Identification of problems / phenomena
 Problem identification is taken through phenomena that occur, which are then continued by formulating the problem, determining research objectives, and determining the object/target of research.

b. Data collection
 Primary data collection was taken through an interview process to competent parties, in this case, the Control of Communicable Diseases, especially Dengue Hemorrhagic Fever, TB and HIV, Semarang City Health Office, and the distribution of questionnaires to all DHF surveillance / gasurkes personnel in Semarang city of 215 people. Attribute data in the form of the work area, position, and educational background of each surveillance
personnel. In table 1, the attributes of the work area of Semarang city surveillance staff are divided into 17 subdistricts, including:

Table 1. DATA ATTRIBUTE OF WORK AREA SURVEYLANSD

No.	DISTRICT	CODE
1	City Coordinator	1
2	Centre Semarang	2
3	North Semarang	3
4	East Semarang	4
5	South Semarang	5
6	West Semarang	6
7	Gayamsari	7
8	Candisari	8
9	Gajahmungkur	9
10	Genuk	10
11	Pedurungan	11
12	Tembalang	12
13	Banyumanik	13
14	Gunungpati	14
15	Mijen	15
16	Ngaliyan	16
17	Tugu	17

While the occupational attribute data and educational background attributes of Semarang city surveillance staff in tables 2 and 3 are divided into three categories, including:

Table 2. ARTIBURE DATA OF MANPOWER SURVEYLANSD POSITION

No.	DISTRICT	CODE
1	Coordinator	1
2	Vice Coordinator	2
3	Member	3

Table 3. ARTIBURE DATA OF MANPOWER SURVEYLANSD EDUCATION BACKGROUND
c. Data Filtration and Tabulation

Data collected from the results of the questionnaire are then converted into symmetric metrics to become relational data so that they can be processed in the UCINET and Netdraw programs. Relational data to show the relationship between one actor (surveillance officer) with another actor.

d. Analysis.

The process of data analysis uses the SNA method to measure centrality between officers, namely degree centrality, closeness, betweenness, and eigenvector. The attribute data is used to describe the collaborative relationship between surveillance personnel / gasurkes — relational data in the form of symmetric metrics containing columns and rows containing the names of officers. Researchers put a relation number 1 if there is a link. Otherwise, the number 0 is given if there is no link between the name in line and the name in the column. The data illustrations in Table 4 in the symmetrical form are as follows;

No.	DISTRICT	CODE
1	Bachelor of Public Health (SKM)	1
2	Nurse	2
3	Environmental Health	3

Table 4. RELATIONAL DATA ILLUSTRATION IN SYNTHETIC FORM

	1	2	3	4	5
1		1	1	1	1
2	1		1	1	0
3	0	1		1	0
4	1	1	1		1
5	1	1	1	1	

Degree centrality shows the popularity of officers in social networks where the degree is the number of links to and from officers. Theoretically, the maximum number of levels for officers is N-1 [28]. If in the population there are 215 surveillance officers, then the link for an officer is 215-1 or 214. The formula for the level of centrality is as follows:

\[c_d = \sum \frac{d_i}{N - 1} \]

.........(1)

Where \(c_d \) is the degree centrality, \(d \) is the number of links to and from the actor, and \(N \) is the number of members of the population.
Whereas Closeness Centrality illustrates how close an officer is to all other officers in the network. Proximity is measured by the number of steps (path/path) an officer can contact or be contacted by other officers in the network. The formula calculates proximity centrality as follows:

\[C_c = \frac{N - 1}{\sum D_{ij}} \]
\[\text{(2)} \]

Where \(C_c \) is the centrality of closeness (Closeness Centrality), \(d \) is the shortest path to other actors, and \(N \) is the number of members of the population.

The last is the centrality of the intermediary (Betweenness Centrality), which shows the position of an officer as an intermediary of the act of acting through the actor or one with other actors in a network. Can officers contact other actors directly, or do they have to contact certain officers. The formula is as follows:

\[C_b = \frac{\sum g_{ij} P_k}{g_{ij}} \]
\[N^2 - 3n + 2 \]
\[\text{(3)} \]

Where \(C_b \) is Intermediary (Betweenness Centrality), \(g_{ij} P_k \) is the shortest number of stages of the actor, and \(g_{ij} \) is the number of paths in the network, while \(N^2 - 3n + 2 \) is the maximum value.

e. Results and Discussion.

The results of the analysis are then used to describe the collaboration between the surveillance personnel / gasurkes based on the work area, position, educational background (title), and overall relationship (overall) between the surveillance personnel / gasurkes.

f. Conclusion

The conclusion bases on the results of the previous discussion. The conclusion uses as an evaluation material for the follow-up of the management of surveillance / gasurkes program in the field of Controlling Disease, especially Dengue Hemorrhagic Fever, TB and HIV, Semarang City Health Office in the following year.
III. RESULT AND DISCUSSION

A. Network Density

Network structure can be seen through the calculation of network density. Network density is the comparison between the number of links (ties) with the number of links that might appear. Table 5 data shows that the overall network density (density) of the Semarang City Surveillance Network is 0.053 or 5.3%.

Densitas/Average Matrix Value
Density
No. of Ties
Std.Dev
Avg Degree
Alpha

The data shows the characteristics of the Semarang city surveillance network where each actor/officer is connected to a small group. The density of the surveillance / gasurkes power network in the city of Semarang is seen in a low category because surveillance personnel is divided into each work area / Sub District, with a percentage of less than 50%, whereas the relationship between surveillance officers is 2485 relations. This number is still very small compared to the possibility of relations formed by \(\frac{215 \times (215-1)}{2} = 46,010\).

The results of UCINET calculations. Table 6 illustrates the overall network statistics. The total number of relationships formed in the entire network is 2485, with 215 employees. A maximum value of 76 indicates the number of actors who contacted or were contacted by each actor.

UNIVARIATE STATISTICS
Observation
Mean
Standard Deviation
Sum
Variance
Minimum
Maximum
N of Observation
Density-based in the work area can be seen in Figure 2. The density of the work area shows the intensity between network members in communication. High-density networks are networks where members interact with one another. On the other hand, a network with low density is characterized by a lack of interaction between its members or uneven interaction with all officers, which is possible to be dominated only by certain officers. Based on the figure, the network density # 1 is in the Central Semarang area, # 2 in the Gajah Mungkur area, # 3 in the Gunungpati area, # 4 in the Banyumanik area and # 5 in the Candisari region, followed by other sub-district areas.

Figure 2. DENSITY BASED ON THE WORK AREA

Whereas density based on the position can be seen in Figure 3 where the highest network density is density between coordinators, it shows the relationship and communication between district coordinators are going well, while the lowest coordination relationship is between fellow surveillance officer members and deputy coordinators. It is possible because the deputy coordinator and members-only served in one village area.

Figure 3. DENSITY BASED ON POSITION

While the density based on educational background can be seen in Figure 4, although the percentage is small, we see that the highest network density is in the surveillance background of public health graduates (SKM) followed by surveillance personnel with a nurse background,
while the network density between health workers with an environmental health background is absent.

![Figure 4. Density Based on Education Background](image)

After knowing the structure of the network through density/density based on the region, position, and educational background. Analysis of the position of the actor/officer and his role in a network can be known by UCINET analysis to determine the level (degree), intercession (betweenness), eigenvector, and closeness (closeness). The analysis aims to see a close picture of the relationship between surveillance officers and other officers.

A. Degree Centrality

Based on Table 7 shows ten actors with the highest degree of centrality value, where officer # 128 is the most popular central actor/actor in the surveillance network / gasurkes with 78 links, followed by actor # 1 with 65 links, actor # 2 with 63 links, actors # 3 with 53 links, actor # 55 with 43 links and followed by other actors. The implication is that the above actors have stronger capabilities in connecting other officers in the network.

No	Actor	Degree	NrmDegree	Officer
1	128	78	36.279	Tembalang Coordinator
2	1	65	30.233	City Coordinator
3	2	63	29.302	City Coordinator
4	3	53	24.651	City Coordinator
5	55	43	20	West Semarang Coordinator
6	4	40	18.605	South and Center Semarang coordinator
7	137	36	16.744	Tembalang Surveylans
8	150	34	15.814	Banyumanik Coordinator
9	148	32	14.884	Tembalang Surveylans
10	111	30	13.953	Pedurungan Surveylans

Statistics Descriptive statistics of degree centrality in table 8 show the average link for each actor is 15.34, while the smallest link is one link, and the maximum link is 78 links. The number
of actors in the link is 215, while the overall link/collaboration on the actor-network is 3298 links. The network centralization value of 29.56% shows the lack of strong collaboration in the surveillance / gasurkes network in the city of Semarang.

The sociogram of the degree of centrality in the surveillance / gasurkes power network in Semarang city in Figure 5 where the red circle (O) shows the actors as coordinators, the square nodes (□) select the actors as coordinators and triangles (∆). The color rendering is based on the attributes of the actor sub-district area. The higher the officer score, the greater the symbol and label image of an officer. From figure 4, actors number 128, 1, 2, 3, 55, and 4 appear dominant with the biggest symbols and labels of other actors, because this actor has the highest value of centrality. The actors in table 3 are the Coordinators from the Tembalang sub-district area, the City Coordinator, the West Semarang Coordinator, and the Central and South Semarang Coordinators.

	Degree	NrmDegree
Mean	15.34	7.135
Std Dev	10.716	4.984
Sum	3298	1533.953
Variance	114.829	24.841
SSQ	75278	16285.127
MCSSQ	24688.215	5340.879
Euc Norm	274.368	127.613
Minimum	1	0.465
Maximum	78	36.279
N of Obs	215	215

Network Centralization = 29.56%
B. Closeness

The next data that can be taken is closeness, where the lower the value of closeness, the better it will be because it shows the low distance each actor has to deal with other actors. The shortest distance into (in fairness) is the shortest distance reached by the officer in sending information to other officers in the network. Table 9 shows that the officer who has the shortest distance in sending information to the surveillance network is officers number 54, 15, 2, 3, 167, 1, 145, 103, 4, and 55. Whereas the shortest outbound distance is the closest distance reached by officers in receiving information from other officers in an individual, table 5 shows that officers who have the closest distance in receiving information from other officers are officers number 214, 15, 10, 9, 3, 6, 137, 25, 4 and 11.

No	Closeness Centrality	Surveillance Officer Id
1	Infarness	54, 15, 2, 3, 167, 1, 145, 103, 4, 55
2	outFarness	214, 15, 10, 9, 3, 6, 137, 25, 4, 11
3	inCloseness	55, 15, 2, 3, 167, 1, 145, 103, 4, 5
4	outCloseness	188, 128, 55, 4, 2, 1, 137, 81, 3, 150

In Closeness value is interpreted as an indicator to measure the influence of an officer in the network, where the measure is a measure of how far information can be spread from one officer to another officer. Table 9 shows that officers who easily accept the distribution of information flow from other officers are officers number 55, 15, 2, 3, 167, 1, 145, 103, 4, and 5. While the value of OutCloseness measures the extent to which officers can convey information to other officers in the network. In table 5 shows that officers who easily convey to other officers are officers number 188, 128, 55, 4, 2, 1, 137, 81, 3 and 150.
Figure 6. Sociogram Closeness Centrality Network Labor Surveylans

The sociogram of closeness centrality is shown in Figure 6. The size of the symbols and labels is based on the closeness value of each actor/officer, the smaller the value of the closeness of an officer, the smaller the symbols and labels.

C. Eigenvector

The eigenvector approach is an attempt to find the most central actor in the network as a whole. Eigenvectors see the aspect of distance (distance) globally among actors. In table 10, we can see ten officers who have eigenvalue values in the network. From the table, it can be seen that the coordinators carry out their duties well concerning their role as central figures in the network. What is interesting is the dominance besides the coordinator, namely members of the Tembalang sub-district, who are part of the actors with the highest scores.

Table 10. 10th Rate of Eigenvector Centrality Values

No.	Officer	Eigenvector	Officer
1	128	0.273	Tembalang Coordinator
2	2	0.234	City Coordinator
3	1	0.197	City Coordinator
4	3	0.193	City Coordinator
5	4	0.169	Center Semarang Coordinator
6	137	0.162	Tembalang Surveylans
7	55	0.145	West Semarang Coordinator
8	146	0.136	Tembalang Surveylans
9	150	0.135	Banyumanik Coordinator
10	143	0.131	Tembalang Surveylans
The statistical picture of eigenvector centrality is shown in table 11, where the average value of eigenvector centrality is 0.052. While the percentage value is 33.72%, indicating the low distance of the central actors in the overall network.

Table 11. Descriptive Statistics of Eigenvector Centrality

Descriptive Statistics Eigenvector	
Minimum	0.001
Average	0.052
Maximum	0.273
Sum	11.155
Standard Deviation	0.044
Variance	0.002
Observations	215
Missing	0

Eigen vector centralization percentages

Centralization 33.72

D. Betweenness

The value of betweenness centrality indicates that the officer has a role as a link (bridge) between two communities. The more value betweeness of the officer, the more important is his role as a liaison. From the data in table 11, it can be seen that the central role of the liaison officers in the Semarang city surveillance network is the Coordinating Officer of Tembalang District (id.128) with a value of 8681.335, followed by the three city Coordinators (Id.1,3,2) respectively with values 7495.048, 6771.141 and 6554.828, followed by the coordinator of West Semarang with a value of 5153.066 and so on.

From this table, there are several important things to deliver: (1) The dominance of the betwenes value is the coordinator officer. It means that the coordinating officer becomes an important actor in facilitating interaction between actors who connected in the Semarang City surveillance network. (2) City Coordinator Officers can carry out their role as liaison between sub-district coordinators, while sub-district coordinators can carry out their duties properly by becoming a communication bridge between members of the surveillance level at the village level.
The statistical picture of Betweenness Centrality is shown in Table 12, where the average value of Betweenness is 382.726; the total overall value of 82286 is normalized to 180,523. The network center index value of 18.29% shows the low relationship of intermediary officers in the overall network.

Table 12. DESCRIPTIVE STATISTICS FROM BETWEENNESS CENTRALITY

No.	ID	Betweeness	nBetweenness	Officers
1	128	8681.335	19.046	Tembalang Coordinator
2	1	7495.048	16.443	City Coordinator
3	3	6771.141	14.855	City Coordinator
4	2	6554.828	14.38	City Coordinator
5	55	5153.066	11.305	Wesr Semarang Coordinator
6	99	3747.097	8.221	Genuk Coordinator
7	191	3318.738	7.281	Ngaliyan Coordinator
8	111	3229.598	7.085	Pedurungan Coordinator
9	150	2844.379	6.24	Banyumanik Coordinator
10	4	2797.527	6.137	Center Semarang Coordinator

The sociogram of betweenness centrality is shown in Figure 7, where the size of symbols and labels is based on the betweenness value of each actor/officer. In the picture, the actor in charge as coordinator (128, 1,3,2, and 55) has a greater symbol and label than the other actors. It
illustrates the function of the coordinator plays an important role as an intermediary/information bridge.

Figure 7. **SOCIOMGRAM BETWEENNESS CENTRALITY OF SURVEYLANCS OFFICER OF SEMARANG**

The collaboration of officers based on the Work Area

The success of the collaboration between officers in a sub-district area depends on the density of the network, where the denser a network/group, it will facilitate the information or knowledge spread within the group, it can be concluded the more relations are formed, the interaction between officers runs smoothly.

Table 13. NUMBER OF SURVEYLANCS RELATIONS BASED ON WORK AREA

No	Information	Member	The possibility of a relationship forming	Formed Relationship	%
1	Center Semarang	16	240	219	91
2	Gajahmungkur	9	72	65	90
3	Gunungpati	16	240	213	89
4	Banyumanik	13	156	136	87
5	Candisari	9	72	62	86
6	City Coordinator	3	6	5	83
7	Tembalang	22	462	381	82
8	West Semarang	18	306	239	78
9	East Semarang	11	110	79	72
10	Pedurungan	17	272	193	71
11	Ngalian	17	272	176	65
12	Tugu	8	56	34	61
13	South Semarang	11	110	46	42
14	Gayamsari	8	56	16	29
15	Genuk	12	132	21	16
16	Mijen	12	132	11	8
17	North Semarang	13	156	12	8
Collaboration calculations are based on the number of possible collaborations formed between officers in each sub-district area with the formula n x (n-1), where n is an officer. Based on tables 13 and 14 we can find the collaboration between surveillance officers based on the attributes of the highest work area in the districts of Central Semarang, Gajahmungkur, Gunungpati, Banyumanik, and Candisari, followed by the city coordinator and other sub-districts.

District ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	5	18	3	13	13	3	10	4	2	3	2	2	3	3	2	2	2
2	40	219	8	4	11	5	2	3	2	1	7	7	2	2	1	5	4
3	3	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2	0	0	79	2	0	0	0	0	0	0	0	0	0	1	0	1
5	0	8	0	1	46	1	0	0	1	0	1	0	0	1	0	1	0
6	11	1	1	3	3	239	1	5	3	2	1	2	5	2	6	17	1
7	3	1	1	5	1	1	16	1	0	0	3	1	1	0	1	0	0
8	10	2	2	1	0	6	0	62	4	3	1	2	6	1	0	1	1
9	6	0	0	0	0	0	0	0	65	0	0	0	0	0	0	0	0
10	3	0	0	0	0	0	0	0	1	0	21	0	0	0	0	0	1
11	14	9	0	1	0	0	4	1	0	1	193	1	1	1	1	1	0
12	10	4	4	3	3	3	1	6	7	3	11	381	16	17	7	7	5
13	12	1	3	1	1	0	1	2	1	0	1	1	136	1	1	1	0
14	7	0	1	3	2	3	0	0	0	1	0	0	4	213	1	0	0
15	3	0	0	0	0	0	0	0	0	0	0	0	0	0	11	2	0
16	13	3	1	0	1	4	0	0	1	0	0	2	1	0	1	176	0
17	3	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	34

Collaboration Based on Position

Based on Tables 15 and 16, collaboration is dominated by collaboration between coordinators. It is indicated by the Coordinator density value reaching 62%. This percentage shows that collaboration between sub-district coordinators is going well. Whereas collaboration between surveillance members-only reached 4%. That is because surveillance members work based on the area of the district that is their territory, so intense collaboration can only be done during routine meetings/evaluations.
Table 15. NUMBER OF SURVEYLANES RELATIONS BASED ON Occupation

No	Information	Member	The possibility of a relationship forming	Formed Relationship	%
1	Coordinator	15	210	131	62
2	Vice Coordinator	4	12	3	25
3	Member	196	38220	1723	5

Table 16. COLLABORATION OF SURVEYLANES BASED ON OCCUPATION

Position	Coordinator	Vice	Member
Coordinator	131	29	230
Vice Coordinator	27	3	21
Member	278	43	1723

The collaboration of officers based on educational background

Based on table 14, collaboration is dominated by collaboration between surveillance officers titled Bachelor of Public Health (SKM). It is indicated by the density value reaching 62%. Whereas collaboration between surveillance members entitled Nurses reached 47%, and collaboration between officers with environmental health standards did not exist.

Table.14. NUMBER OF RELATIONSHIP ON SURVEILLANCE BASED ON EDUCATIONAL BACKGROUND

No	Information	Member	The possibility of a relationship forming	Formed Relationship	%
1	SKM	128	16256	1010	62
2	Nurse	84	6972	331	47
3	Public Health	3	6	0	0

In table 15, we can find out that the most dominant collaboration / # 1 is a collaboration between surveillance officers titled Bachelor of Public Health (SKM) with peers who have the same title, followed by collaboration # 2 is a collaboration between nurses and SKM while collaboration between nurses and nurses is ranked # 3. Whereas collaboration between environmental health officers and other colleagues with the same degree was absent.
Table 15 **COLLABORATION OF SURVEYLANES BASED ON EDUCATION BACKGROUND**

Education Background	SKM	Nurse	Public Healthy
SKM	1010	518	28
Nurse	550	331	16
Public Health	19	13	0

IV. CONCLUSION

This research shows that the collaboration pattern among health surveillance personnel in Semarang city is dominated by the City and District Coordinators, although in some areas such as Tembalang and Pedurungan Districts, the communication center is held by surveillance members. The results of the analysis show that officers dominate the centrality of the level and the intermediary with the position of Coordinator both City and District (Id. # 128, # 1, # 2, # 3). Collaboration based on working areas has a strong bond because 71% of the districts have a network density above 50%. While the value of closeness is dominated by surveillance members with id # 54, # 15, # 2, # 214, # 15 and # 10. It is an evaluation material for the management of surveillance staff / gasurkes program in the field of Controlling Disease, especially Dengue Hemorrhagic Fever, TB, and HIV Semarang City Health Office to determine the officer who becomes the Coordinator.

Secondly, seen from the analysis of collaboration between sub-district work areas, several sub-district areas tend to have components that have weak ties. Namely South Semarang, Gayamsari, Mijen, and North Semarang. Where it is an evaluation material for the Coordinator in each of these districts, because the success of the work area is very dependent on the density of communication in the region because the denser the area, the easier information or knowledge is spread within the region. If the area density is high so there is a large amount of communication between officers. The third, looking at the results of surveillance based on educational background, it is necessary to evaluate the recruitment of surveillance personnel because there is an imbalance in the number of personnel with an environmental health education background.

REFERENCE

[1] Dinas Kesehatan Kota Semarang, “Profil kesehatan kota semarang 2016,” 2016.
[2] A. Iriani, “Using Social Network Analysis to Analyze Collaboration in Batik Smes,” *J. Knowl. Manag. Econ. Inf. Technol.*, vol. III, no. 6, pp. 1–18, 2013.
[3] B. E. Giri, A. Iriani, and Dany Manongga, “Using Social Networking Analysis (SNA) to Analyze Collaboration between Students (Case Study : Students of Open University in Kupang),” *Int. J. Comput. Appl. (0975 – 8887)*, vol. 85, no. January, pp. 44–49, 2014.
D. Z. Grunspan, B. L. Wiggins, and S. M. Goodreau, “Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research,” CBE-Life Sci. Educ., vol. 13, pp. 167–178, 2014.

D. Setatama, Mahdi Shiddieqy; Tricayhono, “Implementasi Social Network Analysis dalam Penyebaran Country Branding ‘Wonderful Indonesia,’” Ind. Journal Comput., vol. 2, no. 2, pp. 91–104, 2017.

J. Kim and M. Hastak, “International Journal of Information Management Social network analysis: Characteristics of online social networks after a disaster,” Int. J. Inf. Manag. 38, vol. 38, no. June 2017, pp. 86–96, 2018.

J. Hauck, J. Schmidt, and A. Werner, “Using social network analysis to identify key stakeholders in agricultural biodiversity governance and related land-use decisions at regional and local,” Ecol. Soc., vol. 21, no. 2, 2016.

H. Tuhuteru and A. Iriani, “Analisis Kolaborasi Penelitian Ilmiah Dosen Fakultas X dengan Social Network Analysis (SNA),” J. Teh. Inform. dan Sist. Inf., vol. 4, no. April, pp. 149–158, 2018.

K. Q. Fisher, A. Sitomer, J. Bouwma-gearhart, and M. Koretsky, “Using social network analysis to develop relational expertise for an instructional change initiative,” Int. J. STEM Educ., vol. 6, no. 17, 2019.

R. C. Shelton et al., “Social Science & Medicine Use of social network analysis in the development, dissemination, implementation, and sustainability of health behavior interventions for adults: A systematic review,” Soc. Sci. Med., vol. 220, no. February 2018, pp. 81–101, 2019.

M. Wicki, “Explaining socially motivated travel with social network analysis: survey method and results from a study Switzerland Explaining socially motivated travel with in social network analysis: survey method and results from a study in Zurich,” Transp. Res. Procedia, vol. 32, pp. 99–109, 2018.

E. Zusrony, H. D. Purnomo, S. Yulianto, and J. Prasetyo, “Analisis Pemetaan Jaringan Komunikasi Karyawan Menggunakan Social Network Analysis Pada Perusahaan Multifinance,” Intensif, vol. 3, no. 2, pp. 145–158, 2019.

W. Lu, S. Hoon, J. Gyuen, and G. Tae, “Network Connection Strategy for Small and Medium-sized Ports (SMPs),” Asian J. Shipp. Logist., vol. 34, no. 1, pp. 19–26, 2018.

K. Tani, G. Tani, A. Sulistiawati, D. P. Lubis, and S. Mulyani, “Analisis Jaringan Sosial Dalam Gabungan Kelompok Tani (GAPOKTAN) TANI BERKAH,” Sodality J. Sosiol. Pedesaan, vol. 02, no. 02, pp. 76–82, 2014.

R. Wölfer, N. S. Faber, and M. Hewstone, “Social Network Analysis in the Science of Groups: Cross-Sectional and Longitudinal Applications for Studying Intra- and Intergroup Behavior,” vol. 19, no. 1, pp. 45–61, 2015.

M. T. Anwar, A. Iriani, D. Herman, and F. Manongga, “Analisis Pola Persebaran Pornografi pada Media Sosial dengan Social Network Analysis,” J. Buana Inform., vol. 9, no. 1, pp. 43–52, 2018.

A. L. Leppin, J. M. Okamoto, P. W. Organick, and A. D. Thota, “Applying Social Network Analysis to Evaluate Implementation of a Multi-sector Population Health Collaborative That Uses a Bridging Hub Organization,” Front. Publich Heal., vol. 6, no. November, pp. 1–9, 2018.

S. Schlattmann, “Capturing the collaboration intensity of research institutions using social network analysis,” Procedia - Procedia Comput. Sci., vol. 106, no. June 2016, pp. 25–31, 2017.

K. L. Cela, M. Á. Sicilia, and S. Sánchez, “Social Network Analysis in E-Learning Environments: A Preliminary Systematic Review,” Educ Psychol Rev, vol. 27, pp. 219–246, 2015.

B. Priyopradono, D. Manongga, and W. H. Utomo, “Spatial Social Network Analysis: Program Pengembangan Usaha Agribisnis Perdesaan (PUAP) or an Exertion Development Program in Supporting the Region Revitalization Development,” Soc.
[21] A. Oktora, Rio. Alamsyah, “Pola Interaksi dan Aktor Yang Paling Berperan Pada Event JGTC 2013 Melalui Media Social Twitter (Studi Menggunakan Metode Social Network Analysis),” J. Manaj. Indones., vol. 14, no. 3, pp. 2011–209, 2014.

[22] P. Rangachari, “Network analysis of the structure of inter- professional knowledge exchange related to Electronic Health Record Medication Reconciliation within a Social Knowledge Networking system,” J. Healthc. Leadersh., vol. 11, pp. 87–100, 2019.

[23] A. Yaman, “Analisis Jaringan Sosial Pada artikel Terkait Usaha Kecil dan Menengah di Indonesia,” J. Dokumentasi dan Inf., vol. 2, no. 38, pp. 15–26, 2017.

[24] C. R. L. Putri and B. dan Laksono, “Keeffektifan Petugas Surveilans Kesehatan Demam Berdarah Dengue Dalam Menentukan Angka Bebas Jentik,” Unnes J. Public Heal., vol. 6, no. 1, 2017.

[25] T. L. Pangestika, K. Cahyo, B. Tirto, and P. Nugraha, “Faktor-Faktor yang Mempengaruhi Perilaku Jumantik dalam Sistem Kewaspadaan Dini Demam Berdarah Dengue di Kelurahan Sendangmulyo,” J. Kesehat. Masy., vol. 5, no. 5, pp. 1113–1122, 2017.

[26] B. B. Salsabila, Nurina & Raharjo, “Kinerja Petugas Surveilans Kesehatan Dalam Upaya Penanggulangan Demam Berdarah Dengue,” HIGEIA J. PUBLIC Heal. Res. Dev., vol. 2, no. 1, pp. 23–32, 2018.

[27] D. Yesi Monika Manik, Heri Sutanta, “Menggunakan Metode Social Network Analysis (Analyzing Stakeholders and Their Roles in Geospatial Information Utilization in local Government using Social Network Analysis Method),” ResearchGate, no. February, 2018.

[28] Eriyanto, ANALISIS JARINGAN KOMUNIKASI : Strategi Baru Dalam Penelitian Ilmu Komunikasi dan Ilmu Sosial Lainnya. Jakarta: Kencana Prenada Media Group, 2014.