practice of medicine, and the SOGC finds it important to disseminate this information to our members. Better for health professionals to receive medical updates from a specialty society rather than directly from industry itself or, worse, direct-to-consumer advertising from industry. The article was independently produced with no input or review from industry. Its dissemination was provided by an unrestricted educational grant. The fact that this article sheds a positive light on a new product does not indicate a conflict of interest. What we at the SOGC advocate for is up-to-date accurate dissemination of information to our members, and this document accomplishes this.

Vytia Senikas
Associate Executive Vice-President
Society of Obstetricians and Gynaecologists of Canada
Ottawa, Ont.

Competing interests: None declared.
DOI:10.1503/cmaj.1050158

Well-water maintenance

We congratulate Erica Weir for having recently drawn attention to well-water maintenance.1 We have some additional information to help physicians interpret the results of reports on well-water quality.

Although we agree with the list of potential contaminants of well water presented by Weir in Box 1, it is worth mentioning that routine monitoring of water microbiological quality entails the detection of the nonpathogenic coliforms, the total and thermotolerant (fecal) coliforms. Nonpathogenic Escherichia coli are the most common coliforms, the total and thermotolerant (fecal) coliforms. Nonpathogenic Escherichia coli and E. coli, a boil-water advisory is advisable until the water is treated and disinfected.

Total coliforms, which might be present in the general environment (in soil and plants) without fecal contamination, are usually considered as an indicator of the vulnerability of groundwater to microbiological contamination. If total coliforms are detected, a boil-water advisory is usually not recommended but inspection of the well and more frequent analysis of the water for E. coli is advisable.

Nonpathogenic intestinal enterococci (a subgroup of fecal streptococci) appear to survive longer in the environment than E. coli and are being proposed as microbiological indicators of groundwater quality. They are also considered to be an index of fecal contamination,6,7 although they are not totally specific to animal or human feces.

Pathogens are rarely measured in drinking water because they are expensive to detect and detection methods have not yet been standardized.6 Nevertheless, pathogen testing is extremely useful for outbreak investigation.7

Patrick Levallois
Direction des risques biologiques, environnementaux et occupationnels
Institut national de santé publique du Québec
Sainte-Foy, Que.

Pierre Payment
Institut Armand-Frappier
Institut national de la recherche scientifique
Laval, Que.

REFERENCES
1. Weir E. Well-water maintenance. CMAJ 2005;172(11):1434-8.
2. Federal–Provincial–Territorial Committee on Drinking Water. Bacteriological quality. guidelines for Canadian drinking water quality: supporting documentation. Ottawa Health Canada; 2002. Available: www.hc-sc.gc.ca/hcs-esc/water/publications /bacteriological_quality/toq.htm (accessed 2005 Jul 7).
3. Ministère du développement durable, environnement et parc. La qualité de l’eau du mon puits. Québec: Gouvernement du Québec; 2002. www .menm.gouv.qc.ca/eau/potable/depliant/index.htm #qualite (accessed 2005 Jul 7).
4. World Health Organization. WHO guidelines for drinking water quality. 3rd ed. Geneva: The Organization; 2004. Available: www.who.int/water_sanitation_health/dwq/guidelines/en/index.html (accessed 2005 Jul 7).
5. Groupe scientifique sur l’eau. Entérococques et streptocoques fécaux. Sainte-Foy (Que): Institut national de santé publique du Québec; 2002. Available: www.inspq.qc.ca/pdf/publications/198-4200.pdf (accessed 2005 Jul 7).
6. Medema GJ, Payment P, Dufour A, Robertson W, Waite M, Hunter P, et al. Safe drinking water: an ongoing challenge. In: Dufour A, Snoozi M, Köster W, Bartram J, Ronchi E, Frewtrull L, editors. Assessing microbial safety of drinking water: improving approaches and methods. WHO drinking water quality series. London: IWA Publishing; 2003. p. 11-46.
7. De Serres G, Cromeans TL, Levesque B, Brassard

HIV/AIDS and leishmaniasis coinfection in Ethiopia

Aranka Anema and Koert Ritmeijer1 describe their practical and effective strategy for treating visceral leishmaniasis (VL) in patients coinfected with HIV/AIDS in Ethiopia. Relying on low serologic titres of ≤ 1:400 to exclude VL is problematic, because titres of ≤ 1:400 might well be the result of patients with leishmaniasis having a grossly inadequate serologic response. Coinfection with HIV and VL is documented to be associated with a poor serologic response. In Spain, among 120 patients with VL, including 80 coinfected with HIV, the serologic response was significantly lower among those coinfected with HIV.2 An identical scenario in Kaffa Humera Woreda would lead to an underdiagnosis of VL and spoil the utility of an efficient decentralized diagnostic and therapeutic service.

It would be worthwhile to investigate at least some of those with serologic titres of ≤ 1:400 for Leishmania donovani in their tissue aspirates. If costs are prohibitive in Ethiopia, then maybe the international community could help with this assay.

Subhash C. Arya
Nirmala Agarwal
Sant Parmanand Hospital
Delhi, India

REFERENCES
1. Anema A, Ritmeijer K. Treating HIV/AIDS and leishmaniasis coinfection in Ethiopia. CMAJ 2005;172(11):1434-5.
2. Pintado V, Martin-Rabada P, Rivera ML, Moeno S, Bouza E. Visceral leishmaniasis in human immuno-deﬁciency virus (HIV)-infected and noninfected patients. A comparative study. Medicine 2001;80:54-73.

DOI:10.1503/cmaj.1050140

The direct agglutination test (DAT) is not the only diagnostic test used