Cancer immunoediting hypothesis assumes that the immune system guards the host against the incipient cancer, but also “edits” the immunogenicity of surviving neoplastic cells and supports remodeling of tumor microenvironment towards an immunosuppressive and pro-neoplastic state. Local irradiation of tumors during standard radiotherapy, by killing neoplastic cells and generating inflammation, stimulates anti-cancer immunity and/or partially reverses cancer-promoting immunosuppression. These effects are induced by moderate (0.1–2.0 Gy) or high (>2 Gy) doses of ionizing radiation which can also harm normal tissues, impede immune functions, and increase the risk of secondary neoplasms. In contrast, such complications do not occur with exposures to low doses (≤0.1 Gy for acute irradiation or ≤0.1 mGy/min dose rate for chronic exposures) of low-LET ionizing radiation. Furthermore, considerable evidence indicates that such low-level radiation (LLR) exposures retard the development of neoplasms in humans and experimental animals. Here, we review immunosuppressive mechanisms induced by growing tumors as well as immunomodulatory effects of LLR evidently or likely associated with cancer-inhibiting outcomes of such exposures. We also offer suggestions how LLR may restore and/or stimulate effective anti-tumor immunity during the more advanced stages of carcinogenesis. We postulate that, based on epidemiological and experimental data amassed over the last few decades, whole- or half-body irradiations with LLR should be systematically examined for its potential to be a viable immunotherapeutic treatment option for patients with systemic cancer.

Keywords Low-level radiation · Carcinogenesis · Immune suppression · Radio-immunotherapy

Abbreviations
ADCC Antibody-dependent cellular cytotoxicity
DAMP Damage-associated molecular pattern
Gy Gray (the SI unit of absorbed dose defined as the absorption of 1 J of the radiation energy per 1 kg of matter)
HBI Half-body irradiation
HMGB1 High-mobility group box 1 protein
IR Ionizing radiation
LET Linear energy transfer
LLR Low-level radiation
LNT Linear, no threshold
M1, M2 Macrophage phenotypes 1 and 2
MC Mast cell
mGy Milligray (0.001 Gy)
N1, N2 Neutrophil phenotypes 1 and 2
NHL Non-Hodgkin’s lymphoma
NKG2DL Ligand for the natural killer group 2D receptor
Introduction

The immune system is a crucial player in the organism’s control over the development of neoplasms (reviewed in [1]). After years of controversies, the early concept of cancer immunological surveillance [2, 3], whereby specifically stimulated (adaptive) immunity wards off proliferation of neoplastically transformed cells, has now been incorporated into the modern cancer immunoediting process. During the three phases of this process, the anti-neoplastic immune functions and immunogenicity of cancer cells are being gradually “edited”, so that the immune system protects the host against the development of a malignancy during the initial “elimination” phase, but later, during the following “equilibrium” and, especially, “escape” phases, morphs into an active supporter of cancer progression. Consequently, the emerging tumor not only evades immune recognition and destruction, but also actively contributes to remodeling of its microenvironment towards the immunosuppressive and pro-neoplastic state [4–10].

The improved understanding of the relationship between a growing tumor and the immune system has shed new light on the recently acknowledged complex interactions of ionizing radiation (IR) with cancer-related immunity. This, in turn, has led to the development of novel radiotherapeutic schemes based on the notion that local exposures at moderate (between 0.1 and 2.0 Gy absorbed during acute exposures) or even high doses (over 2.0 Gy) of radiation can, especially in combination with standard immunotherapy, stimulate various anti-neoplastic immune reactions, and/or reverse their suppressive state. These effects are thought to result from the radiation-induced immunogenic types of cell death, local inflammation, and tissue injury, all leading to the emergence of “danger signals” which prompt activities of the non-specific (innate) immune system; extensive recapitulation of the immunomodulatory effects of local radiotherapy (RT) has recently been summarized in a number of excellent reviews [11–20]. However, even moderate radiotherapeutic doses are potentially harmful to the surrounding normal tissues, which can cause immunosuppression and/or induce secondary cancers [21–23]. Such complications are highly unlikely after exposures to low doses (≤0.1 Gy absorbed within a short time or ≤0.1 mGy/min dose rate applied during a protracted exposure) of low linear energy transfer (LET) IR, referred to in this paper as low-level radiation (LLR). Indeed, the effects of exposures to LLR, including modulation of the immune functions, can qualitatively and quantitatively differ from those induced by moderate-to-high doses of low-LET radiation [24–29].

The present paper identifies and evaluates epidemiological as well as animal studies which indicate that exposures to LLR can inhibit or retard the development of primary and metastatic cancers [27, 30–91]. This evaluation will include an assessment of possible mechanisms by which such protective effects may be mediated including: LLR-induced scavenging of reactive chemical intermediates, stimulation of the repair of the DNA damage, mitigation of inflammation, triggering of selective apoptosis or senescence of aberrant cells, and the up-regulation of both the innate and adaptive arms of the anti-cancer immune system [25, 92–95]. Since enhancing anti-neoplastic immunity may be an important mechanism of the cancer-inhibitory effects of LLR [93–101], clinical trials of whole- or half-body irradiations (WBI or HBI) with LLR are also evaluated [102–106].

This paper will also assess how LLR can affect and modify advanced phases of cancer development resulting in a reversal of suppressed immune functions and/or restoration of the susceptibility of cancer cells to the assaults by immune effectors. However, in contrast to the extensively reviewed relations between moderate- and high-dose RT and the response of the immune system, recapitulations of the similar effects of LLR in the context of their clinical exploitation are virtually nonexistent. The present paper will complement and extend a recent review of the vast preclinical evidence of the LLR-induced protective/adaptive response in normal but not neoplastic tissues, which provides arguments for the trials of the LLR-based therapy of cancer [29].

Immunosuppressive tumor microenvironment

The concept that in vertebrates, elements of the immune system specifically recognize and eliminate incipient neoplastic cells and protect thereby against the development of overt malignancy dates back to late 1950s [2, 3]. In accordance with this “cancer immunosurveillance” hypothesis, it was demonstrated that both immuno-compromised human patients and experimental animals are at increased risk of developing various neoplasms (reviewed in [107]). However, investigations by Stutman showed that chemically induced sarcomas or adenomas do not develop more often in athymic, T-cell-deficient, nude mice than in their wide-type, immunocompetent counterparts [108]. This observation seriously challenged the cancer immunosurveillance
model and almost led to its abandonment [7]. Yet, evidence accumulated in recent years has helped to explain what was wrong with the original cancer immunosurveillance hypothesis and why some neoplasms progress to their clinical stage. Thus, it was found that innate immunity initially senses the presence of transformed cells and exercises the first line of anti-cancer defense. Soon after the activation, elements of the innate immune system promote induction of adaptive (specific) anti-tumor responses. However, owing to genetic and epigenetic changes in the developing neoplastic cells, tumors may become “invisible” to immune effectors through loss or aberrant expression of the MHC class I antigens (reviewed in [109, 110]) or of other molecules on cancer cells involved in triggering of the innate and/or adaptive immune responses [111, 112]. For example, a change in hydrophobicity of tumor cells may lead to suppressed expression of the “damage-associated molecular pattern” (DAMP) molecules necessary to alert the innate immune system to a “danger” incurred by the presence of aberrant cells [113]. Notably, even the “danger signals”, such as high-mobility group box 1 protein (HMGB1), can actually support cancer growth through stimulation of myeloid-derived suppressor cells (MDSCs) [114] or nurse-like cells [115] that create conditions favorable for cancer progression. Furthermore, tumor-associated specific antigens may assume forms similar to those expressed on normal cells and evade recognition as “non-self” by the immune system (reviewed in [116]).

Developing tumors create microenvironments that not only support neoplastic growth and metastasis, but also significantly reduce the effectiveness and corrupt the functions of both the innate and adaptive arms of anti-cancer immunity [10]. Among the immunosuppressive components of tumor microenvironments are various soluble factors such as IL-10, TGF-β, vascular endothelial growth factor (VEGF), prostaglandin E2 (PGE2), HMGB1, indoleamine-2,3-dioxygenase (IDO), as well as soluble forms of phosphatidylinerse, Fas receptors, and MHC class I-related chain A proteins (reviewed in [117, 118]). Another recently recognized immunosuppressive mechanism involves the activation of the so-called immune checkpoints whose function is to prevent overstimulation of the immune system (reviewed in [119, 120]). The two most important immune checkpoint co-inhibitory molecules likely to play a role in induction and maintenance of the immunosuppressive state within tumors are members of the immunoglobulin gene superfamily, the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) whose expression on T helper cells suppresses the activity of cytolytic CD8+ T lymphocytes, and the programmed death 1 (PD-1; CD279) receptor primarily expressed on tumor-infiltrating lymphocytes (TILs) and monocytes which, upon combining with its respective ligands (PDL-1 and PDL-2), negatively regulates the anti-neoplastic function of T cells [121, 122]; in addition, the PD-1:PDL-1 interaction may promote the development and function of regulatory T (Treg) cells [123].

Active immunosuppression is also exerted by many non-specific and specific cellular effectors residing in or attracted to neoplastic tissue. Many different cells capable of inhibiting anti-cancer immunity and promoting cancer growth have now been identified. These include Treg lymphocytes [125, 126], MDSCs [127–130], macrophages [128, 131–133], natural killer T (NKT) [134–136], Th17 [137–139] and B lymphocytes [140–143], but also neutrophils [131, 144–147], dendritic cells (DCs) [148–151], mast cells (MCs) [152], and mesenchymal stem cells [153–155].

It has been finally well established that persistent activation of pro-inflammatory immunity facilitates cellular transformation and promotes tumor advancement. Unlike acute transient inflammatory responses which attract and activate elements of the innate immune system, chronic inflammation not only supports cancer progression, but also prevents the host from mounting effective immune defenses against it [129, 156–162]. An intermediate role in this process of the inflammation-driven type 2 immune response is played by MDSCs which are attracted to inflammatory sites and facilitate tumor growth [163, 164]. Chronic inflammation, as a powerful driver of carcinogenesis, is associated with aberrant signaling mediated by the nucleotide-binding oligomerization domain (NOD)-like receptors expressed on DCs, macrophages, and lymphocytes [165, 166]. Critical immunosuppressive mechanisms operating in the tumor microenvironment during the advanced stages of carcinogenesis are outlined in Fig. 1.

Anti-neoplastic and immunomodulatory effects of LLR

Overview

The development and progression of cancer in both humans and laboratory animals can be suppressed or prevented by exposures to LLR. The results of about 40 epidemiological studies published since 1987 have demonstrated decreased or unaltered cancer incidence or mortality rates in human populations exposed to LLR during medical diagnostic tests and therapy, in the course of professional activities, or as residents of geographical areas and homes with elevated levels of natural background radiation (evidence presented in Supplementary Table 1). Likewise, between 1996 and 2014, at least 27 reports were published from controlled experiments carried out in mice, rats, and dogs, as well as in cultured cells demonstrating that single, multiple, or chronic irradiations with LLR exert anti-neoplastic
activities and markedly inhibit the growth and/or advancement of spontaneous or induced tumors (evidence presented in Supplementary Table 2). In general, the results of both epidemiological and experimental studies indicate or suggest that, in the case of short-term exposures at a high-dose rate, the upper threshold for the control of tumor growth is around 0.1 Gy [25, 61–63, 71, 167–169]. As evidenced by the results of experimental studies conducted in the in vivo and in vitro systems, one of the most important underlying mechanisms of such tumor-inhibitory effects is up-regulation of both the innate and adaptive immunity. Numerous reports published between 1988 and 2014 indicate that exposures to LLR are potent stimulators of various anti-neoplastic functions of the immune system, including inhibition of inflammation and/or up-regulation of anti-inflammatory cytokines (evidence presented in Supplementary Table 3 and reviewed in [74, 80, 94, 170, 171]).

Specific studies demonstrating anti-tumor effects by LLR

There are also a number of reports dating back to early 1980s which demonstrate association of the LLR-induced up-regulation of anti-neoplastic immunity with inhibition of cancer development:

1. In 1982, Robert Anderson and collaborators [172] were among the first to report retardation of the growth of transplanted tumors in A/J mice following WBI with X-rays at doses ranging from 0.005 to 0.025 Gy immediately prior to s.c. inoculation of Sarcoma I cells. The evidence clearly suggested the involvement of “a very radiosensitive T cell with suppressor activity”.

2. In 1994, Kharazi et al. showed that chronic low-dose WBI with γ-rays (0.04 Gy per exposure, three times per
week for 4 weeks) when combined with caloric restriction enhanced the regression of mammary tumors spontaneously developing in female C3H/He mice. These tumors were massively infiltrated with cytotoxic CD8+ T cells. Such tumor regression did not occur in mice subjected to caloric restriction alone [173].

3. As reported in 1999 by Hashimoto et al., a single WBI at 0.2 Gy of γ-rays of WKHA rats injected with hepatoma cells led to a significant reduction in the number of lung and lymph node metastases accompanied by the markedly stimulated influx of CD8+ lymphocytes into the spleen and the tumor site along with the enhanced expression of mRNAs for IFN-γ and TNF-α and down-regulation of mRNA for TGF-β; no mRNAs for IL-4, IL-6, and IL-10, the Th2-type cytokines that inhibit the anti-tumor Th1 responses, were detected in these tissues [69].

4. The studies by Yu et al. showed that a single exposure of male Kunming mice (a strain similar to C57BL/6 mice) to 0.075 Gy X-rays 6 h before implantation of S180 sarcoma cells significantly inhibited tumor growth accompanied by the influx of TILs as well as enhanced necrosis and down-regulation of the expression of receptors for VEGF in the neoplastic tissue [73, 74].

5. Continuous irradiation of C57BL/6 mice with γ-rays at 1.2 mGy/h for 258 days (up to 7.2 Gy total dose) did not induce thymic lymphomas, whereas the same total dose absorbed during four acute exposures to X-rays at 1.8 Gy resulted in the appearance of the lymphomas in 90% of these animals; in the continuously irradiated mice, the numbers of CD4+ T cells and antibody-producing B cells were significantly enhanced in the spleen [75].

6. Continuous exposure to γ-rays of the lymphoma-prone SJL/J mice at 100 mGy/y dose rate slightly prolonged life span of the animals and the effect was accompanied by the significant increase in the percentages of CD49+ NK cells and decreased percentages of CD4+ and CD8+ lymphocytes in the spleen [174]. When spleens of rats with a diethylnitrosamine-induced liver cancer were irradiated at 0.15 Gy from the 6 MeV β-beam accelerator at 100 mGy/min dose rate, the percentage of CD4+CD25+ Treg cells in the blood significantly decreased and the levels of Foxp3, IL-10, TGF-β, and CTLA-4 were down-regulated in the spleen and the tumor; these changes were accompanied by the suppressed tumor growth [175].

7. Experimental combinations of low-level WBI with the conventional (intermediate- or high-dose) local RT also yielded promising results: using murine tumor models of B16 melanoma and Lewis lung carcinoma, Liu and collaborators demonstrated that when fractionated local X-ray irradiations of the tumors at 2 Gy/fraction were several times substituted for WBI at 0.075 Gy, the cancer control (as judged by the reduced tumor mass and pulmonary metastases as well as by the increased survival of the hosts) was significantly improved compared to local RT alone; this effect was accompanied by up-regulation of the activities of the splenic NK and cytotoxic T lymphocytes which secreted elevated amounts of IFN-γ and TNF-α [77, 78].

Our strategies showing anti-tumor effects by LLR

In a series of our own experiments carried out in the relatively radiosensitive BALB/c mice and the relatively radioresistant C57BL/6 mice, both single and multiple WBI with X-rays at total doses ranging from 0.05 to 0.2 Gy reproducibly suppressed development of the induced neoplastic colonies in the lungs. Since the mice were whole-body irradiated before inoculation of the syngeneic tumor cells, the obvious suggestion was that the low-level X-ray exposures stimulated systemic innate anti-neoplastic reactions. Although we were not able to directly estimate the activities of immune cells in the lungs, a significant stimulation of the cytotoxic activities of NK cells and LPS- and IFN-γ-stimulated macrophages obtained from the spleen and peritoneal cavity, respectively, was detected in the X-ray-exposed mice from both strains. Interestingly, no elevation of the activities of these cells was detected after their in vitro irradiation at the same doses of X-rays indicating that enhancing of the NK- and macrophage-mediated cytolytic functions by LLR depends on the presence of factors occurring in vivo but not the in vitro conditions [81–90, 176–179].

Clinical trials

The above-described epidemiological and experimental observations of anti-neoplastic and immunomodulatory effects of LLR exposures provide grounds for clinical trials with WBI or HBI of oncological patients [101, 180]. Even before the aforementioned evidence gained significance, a few LLR-based therapy trials had been performed. In 1965, Holder reported on positive therapeutic effects of the low-level total-body irradiation of patients with multiple myeloma [181]. In 1975, Kazem described curative effects of WBI (0.15 Gy of γ-rays daily for the first 5 days and thereafter at 0.1–0.15 Gy every other day or at longer intervals to the total doses of 2.0–2.65 Gy applied over 5–12 weeks) of patients with disseminated stage III lymphomas [182]. Likewise, Chaffey et al. obtained complete remissions in 32 out of 40 patients with advanced lymphocytic lymphoma.
after repeated WBI (0.15 Gy twice a week to a total dose of 1.5 Gy) as an initial and only primary therapy [102]. Very promising results of low-level total-body exposures to γ-rays of patients with non-Hodgkin’s lymphoma (NHL) were also reported by Qasim [183] and Choi et al. [103]. In one of the later trials, 24 out of 26 patients with stage IV low grade NHL were in complete remission after two courses of low-dose, total-body irradiation at 0.75 Gy given in five fractions; when the initially pathological lymph node areas of these patients were 1 month later treated with the conventional RT (total dose of 40 Gy applied in 20 fractions), the disease remitted in yet another patient [184]. Similarly, Safwat et al. who used low-level total-body exposures (0.1–0.25 Gy several times a week to the total dose of 1.5–2.0 Gy) obtained complete remissions in 11 out of 35 patients and 2-year progression-free survival in 12 patients with relapsed and/or chemo-resistant NHL; in 14 patients, a significant increase in the percentage of CD4+ T cells in the blood was noted [105]. In addition, as demonstrated by Sakamoto et al., low-dose HBI with X-rays (0.1–0.15 Gy two times a week for 5 weeks) combined with local RT (2 Gy five times a week for 6 weeks) resulted in the 5-year survival of 84% of patients with stage I and II NHL as compared to 65% survival of patients treated solely with local RT (the difference significant at \(p < 0.05 \)); in these patients, percentages of peripheral blood CD4+ T helper lymphocytes were significantly elevated [100].

While more clinical trials employing WBI or HBI with LLR are needed, they are hampered by radiation safety regulations based on the linear, no threshold (LNT) model of the dose–effect relationship assuming that any absorbed dose of radiation causes a finite increase in cancer risk. There is a growing consensus that the LNT hypothesis lacks a solid experimental foundation and is based largely on ideology rather than science [25, 169, 185–193]. Hopefully, the many recent appeals from radiobiologists, physiicians, and health physicists to various regulatory bodies and authorities to base the radiation protection system on scientific data indicating that there are quantitative and qualitative differences between the effects of low doses delivered at low dose rates and high doses delivered at high-dose rates [171, 187, 188, 190, 192, 194, 195] will lead to a revision of current radiation protection regulations, so that WBI with LLR can be tested in clinical trials.

Suggested effects of LLR on cancer immunoediting process

As reviewed above, both acute and chronic exposures to LLR stimulate various anti-neoplastic immune reactions that are stifled or corrupted within the tumor microenvironment, especially during the later stages of carcinogenesis. Based on evidence indicating that tumor-inhibiting effects of LLR have been observed in both humans and experimental animals exposed in many different ways to single, multiple, and chronic irradiation with LLR, it may be argued that many, if not all, of the above-reviewed tumor-promoting immune mechanisms are likely to be blocked and/or reversed by such exposures (Fig. 2). Indeed, data indicating that LLR exposures may reverse the tumor-associated immune suppression has recently begun to emerge, even though many underlying LLR-induced mechanisms remain to be clarified. Based on the current evidence it may be postulated that, in addition to the direct activation of NK lymphocytes [83, 196, 197] and possibly other antitumor cytotoxic cells, LLR exposures enhance the “visibility” and/or susceptibility of cancer cells to immune assaults through stimulation of the expression by neoplastic and immune cells of molecules and ligands (e.g., CD2, B7, CD28, NKG2D) necessary for triggering of cytotoxic reactions [198–200] and/or turning on “danger signals” in the neoplastic tissue [201, 202]. Furthermore, low-level radiation exposures are likely to alleviate or reverse the tumor-associated immune degeneracy through elimination or inhibition of the multiple cells, cytokines, and other factors associated with immunosuppressive loops induced by the tumor [175, 203–207]. This could result in: (a) shifting of the immune response in favor of the anti-neoplastic phenotypes such as Th1 in the case of CD4+ T cells [97, 208], M1 in the case of macrophages [209, 210], and N1 in the case of neutrophils [211], (b) targeting the Treg-Th17 and Th17-DC interactions conducive to tumor regression [212–214], (c) activation of the Toll-like receptor-mediated signaling in phagocytes and antigen-presenting cells [215–217], (d) attenuation of the chronic inflammation pertinent to cancer initiation, promotion, and progression [94, 95, 170, 218, 219], and/or (e) down-regulation of the immune checkpoint molecules such as the CTLA-4, PD-1, and/or PD-L1 on T cells [198, 220–222]. Indeed, one of the recent reports indicates that hypofractionated γ-ray irradiation of tumors induced in C57BL/6 mice combined with blockade of the PD-1 checkpoint stimulated accumulation of TILs associated with complete eradication of very large neoplasms [222]. In addition, there are numerous non-immune mechanisms triggered by LLR that positively affect normal, but not malignant cells [29]. These include: (a) increased cell proliferation, (b) stimulation of anti-oxidant reactions associated with the reduction of tissue injury, (c) improved repair of the DNA damage, and (d) metabolic shift from oxidative phosphorylation to aerobic glycolysis resulting in increased radioresistance of healthy tissues. Such outcomes are of primary importance for the combination of the LLR-based immunotherapy with classic forms of cancer therapy (i.e., high-dose RT and chemotherapy) that are lethal to normal cells and tissues and promote the formation of
reactive oxygen species and inflammation. It is expected that other LLR-triggered reactions and mechanisms will be detected providing additional grounds for the use of the truly low-level exposures to IR in the treatment of cancer and, possibly, other diseases.

Conclusion and prospects

Cancer immunotherapy has matured from the application of several therapeutic agents, including tumor cell- and dendritic cell-based vaccines, anti-cytokine antibodies, checkpoint inhibitors, and genetically engineered T cells and stem cells, which collectively act to reverse immune suppression in the tumor environment and/or immune resistance of tumor cells (reviewed in [208]). There are also clinical trials combining such agents with local irradiation of tumors at moderate doses (i.e., >0.5–1.0 Gy per fraction) currently used in RT [16]. The recently acknowledged capacity of locally applied moderate or high (radiotherapeutic) doses of radiation to induce immunogenic death of cancer cells and local inflammatory reactions associated with stimulation of dendritic cells and enhancing the suppressed anti-cancer immunity has been employed as an adjuvant to improve the efficacy of existing immunotherapy protocols (reviewed in [11–19, 21]). However, such exposures can also cause persistent inflammation and multiple cell death in normal tissues, impede various immune and other physiological functions, and increase the risk of secondary primary cancers. In contrast, LLR exposures do not kill or impair and actually support functions of normal cells and tissues, selectively eliminate precancerous and transformed cells, attenuate rather than induce chronic inflammation, stimulate various anti-neoplastic reactions of the immune system, and are not associated with the development of secondary malignancies [21, 29, 94, 95, 170]. Finally, as indicated by the above-reviewed results of experimental and epidemiological studies as well as several clinical trials, WBI or HBI with LLR are not likely to induce any
untoward side effects and can thus be used in treatment of patients with systemic or metastatic cancer.

It is, therefore, time to employ whole- or half-body exposures to LLR (alone or as an adjuvant to conventional therapeutics) to restore the efficacy of systemic anti-cancer functions of the immune system, the most potent guardian against neoplasia. This approach is expected to mediate improved clinical responses in cancer patients, as well as protect normal tissues from the well-known adverse effects associated with standard chemo- and radiotherapy used in contemporary cancer therapeutics.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Corthay A (2014) Does the immune system naturally protect against cancer? Front Immunol 5:197. doi:10.3389/fimmu.2014.00197
2. Burnet M (1957) Cancer: a biological approach III viruses associated with neoplastic conditions IV practical applications. Br Med J 1:841–847. doi:10.1136/bmj.1.5023.841
3. Thomas L (1959) Discussion in: Lawrence HS (ed) Cellular and humoral aspects of the hypersensitive states. Hoeber-Harper, New York, pp 529–532
4. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumour escape. Nat Immunol 3:991–998. doi:10.1038/ni102-991
5. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immuno-surveillance and immunoediting. Immunity 21:137–148. doi:10.1016/j.immuni.2004.07.017
6. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360. doi:10.1146/annurev.immunol.22.012703.104803
7. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi:10.1126/science.1203486
8. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumour microenvironment. Cancer Cell 21:309–322. doi:10.1016/j.ccr.2012.02.022
9. Barcellos-Hoff MH, Lyden D, Wang TC (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13:511–518. doi:10.1038/nrc3536
10. Yasugi T, Kawakami Y (2016) Cancer-induced heterogeneous immunosuppressive tumor microenvironments and their personalized modulation. Int Immunol 28:393–399. doi:10.1093/intimm/dxw030
11. Rödel F, Frey B, Gaipl U, Keilholz L, Fournier C, Manda K et al (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: Molecular mechanisms and clinical applications. Curr Med Chem 19:1741–1750. doi:10.2174/092986712800099866
12. Burnette B, Fu YY, Weichselbaum RR (2012) The confluence of radiotherapy and immunotherapy. Front Oncol 2:143. doi:10.3389/fonc.2012.00143
13. Kaur P, Asea A (2012) Radiation-induced effects and the immune system in cancer. Front Oncol. doi:10.3389/fonc.2012.00191
14. Fornenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 105:256–265. doi:10.1093/jnci/djs629
15. Demaria S, Pilones KA, Vanpouille-Box C, Golden EB, Fornenti SC (2014) The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat Res 182:170–181. doi:10.1667/RR13500.1
16. Draghiciu O, Walczak M, Hoogeboom BN, Franken KL, Melief CJ, Nijman HW, Daemen T (2014) Therapeutic immunization and local low-dose tumour irradiation, a reinforcing combination. Int J Cancer 134:859–872. doi:10.1002/ijc.28418
17. Frey B, Rubner Y, Kulzer L, Werthmüller N, Weiss EM, Fietkau R, Gaipl US (2014) Antitumour immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother 63:29–36. doi:10.1007/s00262-013-1474-y
18. Wattenberg MM, Fahim A, Ahmed MM, Hodge JW (2014) Unlocking the combination: potentiation of radiation-induced antitumour responses with immunotherapy. Radiat Res 182:126–138. doi:10.1667/RR13374.1
19. Golden EB, Apetoh L (2015) Radiotherapy and immunogenic cell death. Semin Radiat Oncol 25:11–15. doi:10.1016/j.sradonc.2014.07.005
20. Kumari A, Simon SS, Moody TD, Garnett-Benson C (2016) Immunomodulatory effects of radiation; what is next for cancer therapy? Future Oncol 12:239–256. doi:10.2217/fon.15.300
21. Tubiana M (2009) Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol 91:4–15. doi:10.1016/j.radonc.2008.12.016
22. Gudowska I, Ardenfors O, Toma-Dasu I, Dasu A (2014) Radiation burden from secondary doses to patients undergoing radiation therapy with photons and light ions and radiation doses from imaging modalities. Radiat Prot Dosim 161:357–362. doi:10.1093/rd/ndt335
23. Ng J, Shuryak I (2015) Minimizing second cancer risk following radiotherapy: current perspectives. Cancer Manag Res 7:1–11. doi:10.2147/CMAR.S47220
24. Albrecht H, Durbin-Johnson B, Yunis R, Kalanetra KM, Wu S, Chen R et al (2012) Transcriptional response of ex vivo human skin to ionizing radiation: comparison between low- and high-dose effects. Radiat Res 177:69–83. doi:10.1667/RR2524.1
25. Feinendegen LE, Pollycove M, Neumann RD (2013) Hormesis by low dose radiation effects: Low-dose cancer risk modeling must recognize up-regulation of protection In: Baum RP (ed) Different responses of tumor and normal cells to low-dose radiation. Contemp Oncol (Pozn) 17:356–362. doi:10.5114/pon.2013.35289
26. Brooks AL, Dauer LT (2014) Advances in radiation biology: effect on nuclear medicine. Semin Nucl Med 44:789–805 doi:10.1053/j.semnuclmed.2014.03.004
27. Wodarz D, Sgorvato S, Komarova NL (2014) Dynamics of cellular responses to radiation. PLoS Comput Biol 10:e1003513. doi:10.1371/journal.pcbi.1003513

© Springer
62. Jaworowski Z (2010) Observations on the Chernobyl disaster and LNT. Dose Response 8:148–171. doi:10.2203/dose-response.09-042.Jaworowski

63. Ivanov VK, Tsyb AF (2013) Thyroid cancer: lessons of Chernobyl and prognosis for Fukushima. Vestn Ross Akad Med Nauk (5):38–44.

64. Jargin SV (2014) Chernobyl-related cancer and precancerous lesions: incidence increase vs late diagnostics. Dose Response 12:404–415. doi:10.1080/15543984.2016.1140217

65. Tubiana M, Diaolo I, Chaunaud J, Lefkopoulos D, Bourjis H, Girinsky T et al (2011) A new method of assessing the dose-carcinogenic effect relationship in patients exposed to ionizing radiation: A concise presentation of preliminary data. Health Phys 100:296–299. doi:10.1097/HP.0b013e318201b35

66. Lehrer S, Rosenzweig KE (2015) Lung cancer hormesis in high impact States where nuclear testing occurred. Clin Lung Cancer 16:152–155. doi:10.1016/j.cllc.2014.09.010

67. Bhattacharjee D (1996) Role of radioadaptation on radiation-induced thymic lymphoma in mice. Mutat Res 358:231–235. doi:10.1016/S0041-2414(96)80025-0

68. Hashimoto S (1997) Effects of low-dose total body irradiation (TBI) on tumor-bearing rats. Nihon Igaku Hoshasen Gakkai Zasshi 57:418–424

69. Hashimoto S, Shirato H, Hosokawa M, Nishioka T, Kuramitsu Y, Matushita K et al (1999) The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumour-bearing rats. Radiat Res 151:717–724. doi:10.1667/S0036-6021(98)80033-7

70. Mitchel RE, Jackson JS, McCann RA, Boreham DR (1999) The adaptive response modifies latency for radiation-induced myeloid leukemia in CBA/H mice. Radiat Res 152:273–279. doi:10.3109/09553009909152573

71. Mitchel RE, Jackson JS, Morrison DP, Carlisle SM (2003) Low doses of radiation increase the latency of spontaneous lymphomas and spinal osteosarcomas in cancer-prone, radiation-sensitive Trp53 heterozygous mice. Radiat Res 159:320–327. doi:10.1667/0033-7587(2003)159[0320:LDORIT]2.0.CO;2

72. Redpath JL, Lu Q, Lao X, Molloi S, Elmore E (2003) Low-dose radiation induces antitumour effects and erythrocyte immune function and SOD activity in tumour-bearing mice. Clin Med J (Engl) 117:1036–1039

73. Yu HS, Song AQ, Lu YD, Qiu WS, Shen FZ (2004) Effects of low-dose radiation on tumour growth, erythrocyte immune function and SOD activity in tumour-bearing mice. Clin Med J (Engl) 117:1036–1039

74. Nowosielska EM, Wrembel-Wargocka J, Cheda A, Lisiak E, Bilski M (2004) Single low doses of X rays inhibit the development of experimental tumour metastases and trigger the activities of NK cells in mice. Radiat Res 161:335–340. doi:10.1667/RR3123

75. Cheda A, Wrembel-Wargocka J, Nowosielska EM, Janiak MK (2006) Immune mechanism of the retarded growth of tumour nodules in mice exposed to single low-level irradiations with X-rays. Centr. Eur J Immunol 31:44–50

76. Fischer DR, Weller RE (2010) Carcinogenesis from inhaled (239)PuO(2) in beagles: Evidence for radiation homeostasis at low doses? Health Phys 99:357–362. doi:10.1097/HP.0b013e3181ba16b

77. Ishii K, Hosoi Y, Yamada S, Ono T, Sakamoto K (1996) Decreased incidence of thymic lymphoma induction by life-long low-level irradiation. Int J Radiat Biol 84:201–210. doi:10.1080/095530096318201b35

78. Wu N, Jin SZ, Pan XN, Liu SZ (2008) Increase in efficacy of cancer radiotherapy by combination with whole-body low dose irradiation. Int J Radiat Biol 84:201–210. doi:10.1080/09553000801902133

79. Ogura K, Magae J, Kawakami Y, Koana T (2009) Reduction in mutation frequency by very low-dose gamma irradiation of Drosophila melanogaster germ cells. Radiat Res 171:1–8. doi:10.1667/RR1288.1

80. Nowosielska EM, Cheda A, Marciniak M, Nowosielska EM, Janiak MK (2004) Inhibition of the development of pulmonary tumour nodules and stimulation of the activity of NK cells and macrophages in mice by single low doses of low-LET radiation. Int J Low Radiat 1:171–179. doi:10.1504/IJLR.2000.003868

81. Cheda A, Wrembel-Wargocka J, Lisiak E, Marciniak M, Nowosielska EM, Janiak MK (2004) Single low doses of X rays inhibit the development of experimental tumour metastases and trigger the activities of NK cells in mice. Radiat Res 161:335–340. doi:10.1667/RR3123

82. Scott BR (2008) Low-dose-radiation stimulated natural chemical and biological protection against lung cancer. Dose Response 6:299–318. doi:10.2203/dose-response.07-025.S.
94. Scott BR (2014) Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy. J Cell Commun Signal 8:341–352. doi:10.1007/s12079-014-0250-x

95. Shao M, Lu X, Cong W, Xing X, Tan Y, Li Y et al (2014) Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress. PLoS One 9(3):e92574. doi:10.1371/journal.pone.0092574

96. Safwat A (2000) The immunobiology of low-dose total-body irradiation: more questions than answers. Radiat Res 153:599–604. doi:10.1666/0033-7587(2000)153<0599:TIOLDT2.0.CO;2

97. Liu SZ (2003) On radiation hormesis expressed in the immune system. Crit Rev Toxicol 33:431–441. doi:10.1080/713611045

98. Liu XD, Ma SM, Liu SZ (2003) Effects of 0.075 Gy X-ray irradiation on the expression of IL-10 and IL-12 in mice. Phys Med Biol 48:2041–2049. doi:10.1088/0031-9155/48/13/315

99. Liu SZ (2006) Cancer control related to stimulation of immunity by low-dose radiation. Dose Response 5:39–47. doi:10.2203/dose-response.06-108.1 Liu

100. Sakamoto K (2004) Radiobiological basis for cancer therapy by total or half-body irradiation. Nonlinearity Biol Toxicol Med 2:293–316. doi:10.1080/15401420490000254

101. Pollycove M (2006) Radiobiological basis of low-dose radiation in prevention and therapy of cancer. Dose Response 5:26–38. doi:10.2203/dose-response.06-112.Pollycove

102. Chaffey JT, Rosenthal DS, Moloney WC, Hellman S (1976) Total body irradiation as treatment for lymphosarcoma. Int J Radiat Oncol Biol Phys 1:399–405. doi:10.1016/0360-3016(76)90004-3

103. Choi NC, Timothy AR, Kaufman SD, Carey RW, Aisenberg JS et al (2012) Cancer exome analysis reveals a multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress. PLoS One 9(3):e92574. doi:10.1371/journal.pone.0092574

104. Scott BR (2014) Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy. J Cell Commun Signal 8:341–352. doi:10.1007/s12079-014-0250-x

105. Liu SZ (2003) On radiation hormesis expressed in the immune system. Crit Rev Toxicol 33:431–441. doi:10.1080/713611045

106. Liu XD, Ma SM, Liu SZ (2003) Effects of 0.075 Gy X-ray irradiation on the expression of IL-10 and IL-12 in mice. Phys Med Biol 48:2041–2049. doi:10.1088/0031-9155/48/13/315

107. Liu SZ (2006) Cancer control related to stimulation of immunity by low-dose radiation. Dose Response 5:39–47. doi:10.2203/dose-response.06-108.1 Liu

108. Sakamoto K (2004) Radiobiological basis for cancer therapy by total or half-body irradiation. Nonlinearity Biol Toxicol Med 2:293–316. doi:10.1080/15401420490000254

109. Pollycove M (2006) Radiobiological basis of low-dose radiation in prevention and therapy of cancer. Dose Response 5:26–38. doi:10.2203/dose-response.06-112.Pollycove

110. Chaffey JT, Rosenthal DS, Moloney WC, Hellman S (1976) Total body irradiation as treatment for lymphosarcoma. Int J Radiat Oncol Biol Phys 1:399–405. doi:10.1016/0360-3016(76)90004-3

111. Choi NC, Timothy AR, Kaufman SD, Carey RW, Aisenberg JS et al (2012) Cancer exome analysis reveals a
166. Saxena M, Yeretsian G (2014) NOD-like receptors: master regulators of inflammation and cancer. Front Immunol 5:327–342. doi:10.3389/fimmu.2014.00327

167. Feinendegen LE, Pollycove M, Neumann RD (2009) Low-dose cancer risk modeling must recognize up-regulation of protection. Dose Response 8:227–252. doi:10.2203/dose-response.09-035.Feinendegen

168. Mitchell RE, Jackson JS, Carlisle SM (2004) Upper dose threshold for radiation-induced adaptive response against cancer in high-dose-exposed, cancer-prone, radiation-sensitive Trp53 heterozygous mice. Radiat Res 162:20–30. doi:10.1667/RR3190

169. Taylor LS (1980) Some nonscientific influences on radiation protection standards and practice. The 1980 Sievert Lecture. Health Phys 39:851–874

170. Zhang C, Jin S, Guo W, Li C, Li X, Rane MJ et al (2011) Attenuation of diabetes-induced cardiac inflammation and pathological remodeling by low-dose radiation. Radiat Res 175:307–321. doi:10.1667/RR1950.1

171. Calabrese EJ (2015) An abuse of risk assessment: how regulatory agencies improperly adopted LNT for cancer risk assessment. Arch Toxicol 89:647–648. doi:10.1007/s00204-015-1454-4

172. Anderson RE, Tokuda S, Williams WL, Warner NL (1982) Radiation-induced augmentation of the response of A/J mice to Salmonella tumor cells. Am J Pathol 108:24–37

173. Kharazi AI, James SJ, Taylor JM, Lubinski JM, Nakamura LT, Makinodan T (1994) Combined chronic low dose radiation-caloric restriction: a model for regression of spontaneous mammary tumor. Int J Radiat Oncol Biol Phys 28:641–647. doi:10.1016/0360-3016(94)90189-9

174. Lacoste-Collin L, Jozan S, Cances-Lauwers V, Pipy B, Gasset S (2009) Origin of the linearity no threshold (LNT) dose-response concept. Arch Toxicol 83:1621–1633. doi:10.1007/s00204-008-0491-9

175. Liu SZ, Jin SZ, Liu XD, Sun YM (2001) Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes. BMC Immunol 2:8. doi:10.1186/1471-2172-2-8

176. Cheda A, Wrembel-Wargocka J, Nowosielska EM, Janiak MK (2005) Stimulatory effects of a single low-level irradiation with X-rays on functions of murine peritoneal macrophages. Nukleonika 50(suppl 2):13–16.

177. Cheda A, Nowosielska EM, Wrembel-Wargocka J, Janiak MK (2008) Production of cytokines by peritoneal macrophages and splenocytes after exposures of mice to low doses of X-rays. Radiat Environ Biophys 47:275–283. doi:10.1007/s00411-007-0147-7

178. Cheda A, Nowosielska EM, Wrembel-Wargocka J, Janiak MK (2009) Single or fractionated irradiations of mice with low doses of X-rays stimulate innate immune mechanisms. Int J Low Radiat 6:325–342. doi:10.1504/IJLR.2009.029312

179. Nowosielska EM, Wrembel-Wargocka J, Cheda A, Janiak MK (2006) A single low-dose irradiation with X-rays stimulates NK cells and macrophages to release factors related to the cytotoxic functions of these cells. Centr Eur J Immunol 31:51–56

180. Pollycove M, Feinendegen LE (2011) Low-dose radiotherapy of disease. Health Phys 100:322–324. doi:10.1097/HP0b013e318208423b

181. Holder DL (1965) Total body irradiation in multiple myeloma. Radiology 84:82–86

182. Kazem I (1975) Total body irradiation in the management of malignant lymphoma. Radiol Clin 44:457–463.

183. Qasim MM (1975) Total body irradiation in non-Hodgkin lymphoma. Strahlentherapie 149:364–367.

184. Richaud PM, Soubeyran P, Eghbali H, Chacon B, Marit G, Broustet A, Hoerni B (1998) Place of low-dose total body irradiation in the treatment of localized follicular non-Hodgkin's lymphoma: results of a pilot study. Int J Radiat Oncol Biol Phys 40:387–390. doi:10.1016/S0360-3016(97)00722-0

185. Jaworowski Z (1999) Radiation risk and ethics. Phys Today 52:24–29

186. Tanooka H (2001) Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non-tumour doses. Int J Radiat Biol 77:541–551. doi:10.1080/09553009910034612

187. Scott BR (2008) It's time for a new low-dose-radiation risk assessment paradigm—one that acknowledges hormesis. Dose Response 6:333–351. doi:10.2203/dose-response.07-005.Scott

188. Tubiana M, Feinendegen LE, Yang C, Kaminski JM (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22. doi:10.1148/radiol.251080671

189. Calabrese EJ (2013) Origin of the linearity no threshold (LNT) dose-response concept. Arch Toxicol 87:1621–1633. doi:10.1007/s00204-013-1104-7

190. Socol Y, Dobrzyński L, Doss M, Feinendegen LE, Janiak MK, Miller ML et al (2013) Commentary: ethical issues of current health-protection policies on low-dose ionizing radiation. Dose Response 12:342–348. doi:10.2203/dose-response.13-044.Socol

191. Kesavan PC (2014) Linear, no threshold response at low doses of ionizing radiation: ideology, prejudice and science. Curr Sci India 107:46–53.

192. Mitchell REJ (2007) Cancer and low dose responses in vivo: implications for radiation protection. Dose Response 5:284–291. doi:10.2203/dose-response.07-014.Mitchel

193. Marcus CS (2015) Time to reject the linear-no threshold hypothesis and accept thresholds and hormesis: a petition to the U.S. Nuclear Regulatory Commission. Clin Nucl Med 40:617–619. doi:10.1097/RLU.0000000000000835

194. Sonn CH, Choi JR, Kim TJ, Yu YB, Kim K, Shin SC et al (2012) Augmentation of natural cytotoxicity by chronic low-dose ionizing radiation in murine natural killer cells primed by IL-2. J Radiat Res 53:823–829. doi:10.1093/jrr/rrs037

195. Fang G, Kong Q, Wang G, Jin H, Zhou L, Yu D et al (2012) Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother Radiopharm 29:428–434. doi:10.1089/cbr.2014.1702

196. Liu SZ, Jin SZ, Liu XD, Sun YM (2001) Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes. BMC Immunol 2:48. doi:10.1186/1471-2172-2-8

197. Sambani C, Thomou H, Kitsiou P (1996) Stimulatory effect of ionizing radiation: ideology, prejudice and science. Curr Sci 77:541–551. doi:10.1080/09553009610034612

198. Broustet A, Hoerni B (1998) Place of low-dose total body irradiation in multiple myeloma. Strahlentherapie 149:364–367.
Int J Radiat Oncol Biol Phys 83:1306–1310. doi:10.1016/j.ijrobp.2011.09.049

202. Hellweg CE (2015) The nuclear factor κB pathway: a link to the immune system in the radiation response. Cancer Lett 368:275–289. doi:10.1016/j.canlet.2015.02.019

203. Chen Y, Chen X, Li Y, Zhang H, Xie Y, Zhang X et al (2011) Early effects of low dose C ion or X-ray irradiation on peripheral blood lymphocytes of patients with alimentary tract cancer. Dose Response 9:356–368. doi:10.2203/dose-response.10-015. Chen

204. Chen Y, Wang C, He M, Zhang H, Chen X (2014) Effect of low dose heavy ion irradiation on subset percentage and cytokines expression of peripheral blood lymphocytes in patients with pancreatic cancer. Zhonghua Zhong Liu Za Zhi 36:435–439

205. Awuah SG, Zheng YR, Bruno PM, Hemann MT, Lippard SJ (2015) A Pt(IV) pro-drug preferentially targets indoleamine-2,3-dioxygenase, providing enhanced ovarian cancer immunotherapy. J Am Chem Soc 137:14854–14857. doi:10.1021/jacs.5b10182

206. Xiao P, Wan X, Cui B, Liu Y, Qiu C, Rong J et al (2015) Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. Oncoimmunology 5:e1063772. doi:10.1080/2162402X.2015.1063772

207. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24:589–602. doi:10.1016/j.ccr.2013.09.014

208. De Palma M, Lewis CE (2013) Macrophage regulation of tumour responses to anticancer therapies. Cancer Cell 23:277–286. doi:10.1016/j.ccr.2013.02.013

209. Tazzyman S, Niaz H, Murdoch C (2013) Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Semin Cancer Biol 23:149–158. doi:10.1016/j.semcancer.2013.02.003

210. Duan MC, Zhong XN, Liu GN, Wei JR (2014) The Treg/Th17 paradigm in lung cancer. J Immunol Res 2014:730380. doi:10.1155/2014/730380

211. Zhou J, He LL, Ding XF, Yuan QQ, Zhang JX, Liu SC, Chen G (2016) Combinatorial antitumor effect of rapamycin and β-elemene in follicular thyroid cancer cells. Biomed Res Int 2016:6723807. doi:10.1155/2016/6723807

212. Matsuo K, Itoh T, Koyama A, Imamura R, Kawai S, Nishiwaki K et al (2016) CCR4 is critically involved in effective antitumor immunity in mice bearing intradermal B16 melanoma. Cancer Lett 378:16–22. doi:10.1016/j.canlet.2016.04.039

213. Shan YX, Jin SZ, Liu XD, Liu Y, Liu SZ (2007) Ionizing radiation stimulates secretion of pro-inflammatory cytokines: dose-response relationship, mechanisms and implications. Radiat Environ Biophys 46:21–29. doi:10.1007/s00411-006-0076-x

214. Duan MC, Zhong XN, Liu GN, Wei JR (2014) The Treg/Th17 paradigm in lung cancer. J Immunol Res 2014:730380. doi:10.1155/2014/730380