Phenotypic, anatomical and phytochemical investigation of Iraqi *Silybum marianum*

Rasha Eldalawy¹, Widad M K Al-Ani² and Wasan Abdul Kareem³

¹Pharmacognosy and Medicinal Plants Department, College of Pharmacy, Mustansiriya University, Baghdad-Iraq.
²Ashur University College, Baghdad, Iraq.
³Clinical Laboratory Science department, College of Pharmacy, Mustansiriya University, Baghdad, Iraq.

E-mail: rashaeldalawy@uomustansiriya.edu.iq

Abstract. Asteraceae (Compositae) famous as the aster, daisy or sunflower family is the biggest flowering family divided into thirteen subfamily that involve approximately two thousand genus, an important member of this family is *Silybum marianum* (Milk thistle). Management of hepatic diseases is the main use of milk thistle in traditional medicine also it has anticancer activity against different type of cancer in addition to antiviral, antioxidant, anti-inflammatory and anti-diabetic activity. This study was designed to investigate the pharmacognostical feature and the phytochemical ingredient of Iraqi *Silybum marianum*. The plant were examined macroscopically to investigate the morphological characters of plant and microscopically to determine the type of stomata and trachoma then flowers, leaves, stems and seeds of the plant were extracted by ethanol in a soxhlet apparatus individually and subjected to standard methods for active constituents identification and that total flaononid, total phenolic and total tannins content were determined using aluminum chloride colorimetric, folin-ciocaltue and acidified vanillin methods respectively. The results shows that *Silybum marianum* leave have a thick cell wall, anomocytic stomata, annual vessel, and unicellular unbranched trichomas. Also an important active constituents have been detected that terpenes, steroid and flavonoids were present in all plant parts, saponin appear only in the leaves and stems while alkalooids and coumarins are not detected in any part. Also the study referred to the seeds as the richest part of the plant with flavonoid and phenolic compounds followed by the flowers, leaves and stems which contain the less amount, while the higher content of tannin were observed in the leaves and stems.

Keywords. *Silybum marianum*, Milk thistle, Stomata, Trachoma, Flavonoid, Phenolic and tannin.

1. Introduction

The Asteraceae (Compositae) is famous as the aster, daisy or sunflower family; this biggest flowering family is divided into thirteen subfamily that involve approximately two thousand genus, *Silybum marianum* is an important member of this family [1]. The famous widespread name for *S. marianum* is...
milk thistle, various other names are also used such as Pig leaves, Royal thistle, Marian thistle, Lady’s thistle, Christ’s crown, Snake milk, Venus thistle, Heal thistle, Variegated thistle, Sow thistle and Wild artichoke [2]. The plant is a high biennial herb of about 5-10 feet, stiff, having greenish shine leaves with barbed margins and a whitish lines along the veins. The flower is purple containing a small seed inside [3]. Its fruits have stiff skin achenes of about six to eight mm long; have a brown color with a white silk at the top which is collected after flowering in May [4]. Management of hepatic disease was the main use of milk thistle in traditional medicine that at early 19th century it was advised and administered for the management of blood and liver problems as well as for intestinal cleansing [5], also it have anticancer activity against different type of cancer in addition to antiviral, antioxidant, anti-inflammatory and anti-diabetic activity [6]. This study was designed to investigate the phenotypic, anatomical and the phytochemical ingredients of Iraqi *Silybum marianum*, with the determination of the total flavonoid, tannin and phenolic content in the seeds, flowers, leaves and stems of the plant.

2. Materials and Methods

2.1. During Plant materials

All the parts of the plants were collected from the College of Pharmacy/ Al-Mustansiriyah University. The plant was authenticated by Dr. Sukaina Abbas/ College of Science/ Baghdad University/ Baghdad/ Iraq, and then it was identified microscopically in College of Pharmacy/ Al-Mustansiriyah University. Leaves, flowers, stems and seeds of the plant were washed thoroughly by tap water, dried in shade, at room temperature from 2 weeks for flowers and seeds up to 1 month for leaves and stems, then grinded to a powder and weight for further investigations.

2.2. Pharmacognostical (phenotypic and anatomical) study

2.2.1. Macroscopic examination

Fresh specimens of *S. marianum* were used to investigate the morphological characters of plant, such as shape, color, size, and margins of leaves, flowers, stems and seeds.

2.2.2. Microscopic examinations

Fresh and dried leaves powder is used for the microscopic examination. The type of stomata and trachoma were observed by taking the outer epidermal layer of fresh leaf on a slide and added few drops of chloral hydrate solution to obtain a clear section and observed under a microscope. Then the powder of the dried leaves were placed on slide and 2 drops of chloral hydrate were added and discarded (2 to 3 times) to bleach the color and clarify the picture then heated at a heater, finally examined under microscope after covering the slide [7]. The photographers were obtained by using digital camera and diagnosis the different cell components.

2.3. Extraction method

Each part of the plant was put in a thimble and extracted by absolute ethanol using Soxhlet apparatus for 3 days and then the extract were completely evaporated by a rotary evaporator, the total dried extract of each part was weight to subsequently determine the amount of the contents in the dry weight and then labeled for further investigation [8].
2.4. Phytochemical study

2.4.1. Preliminary phytochemical screening

The plant extract was phytochemically screened for the qualitative investigation of major classes of secondary metabolites.

2.4.1.1. Flavonoids

A positive result is recorded when a yellow color is observed after the addition of 2ml ethanolic KOH to 1ml alcoholic extract of plant [9].

2.4.1.2. Tannins

Few drops of alcoholic extract were diluted to 10 times its volume, filtered and mixed with 1% aqueous ferric chloride, formation of dark green-blue color ensure tannin presence [10].

2.4.1.3. Saponin

Froth assay is used for saponin identification that by shaking distilled water vigorously with few ml of plant extract for fifteen minute. A persistent froth is an indication for saponins presence [11].

2.4.1.4. Terpenoids

4ml of the plant extract was treated with 1ml of equal quantity of acetic anhydride and chloroform. Then concerted solution of sulphuric acid was added gradually and red violet color was seen for terpenoids [12].

2.4.1.5. Sterols and steroids

Liebermann reaction was used to indicate the presence of steroids. Dried ethanolic extract was diluted with 0.5ml of hot acetic anhydride and filtered, then treated with Liebermann burrachardt. The appearance of a blue-green ring at the interphase indicated sterol nucleus presence [13].

2.4.1.6. Coumarins

A few spot from a mixture of 0.5ml 10% NH4OH and 5ml of ethanolic extract was added on a filter paper and examined under U.V light. Coumarins give intense fluorescence under UV [14].

2.4.1.7. Alkaloids

Extracts were dissolved individually in 8ml of 1% hydrochloric acid and filtered. The filtrate was divided into two parts; the first one was reacted with Mayer's reagent, a positive result is indicated by white precipitate. The second part was reacted with Dragendroff's reagent. A red precipitate refers to alkaloid existence [15].

2.4.2. Estimation of total phenolic content

Total phenolic content was measured by adding 1ml of deionized water and 1ml of folin-ciocalteu reagent to 1ml of probably diluted extract sample, 5 minute later 1ml of 10% NaCO₃ was added and
the mixture was kept at room temperature for at least 90 min, the absorbance was measured at 760nm by UV spectrophotometer, the process was repeated three times for each sample and the average was recorded [16]. Calibration curve was done by measuring different concentration of gallic acid by the same procedure, and the result was expressed as mg gallic acid equivalent/g of dry plant material.

2.4.3. Estimation of total tannins content

0.05 ml of diluted alcoholic extract were reacted with 3ml of 4% methanolic vanillin solution and 1.5ml H2SO4, that condensed tannin will react with vanillin solution and form anthocyanidols in the presence of concentrated sulphuric acid, the absorbance was measured at 500nm after fifteen minute for three replicate of each sample, the result was expressed in mg equivalent of gallic acid/ g of dry plant material [17].

2.4.5. Estimation of total flavonoid content

0.5 ml of diluted extract was mixed with 0.15 ml of 7% NaNO2 solution, after 7 minute 0.3 ml of 10% AlCl3 solution was added, later after 6 minute 1 ml of NaOH was added to the mixture and the volume was completed to5 ml by distilled water, the absorbance was measured at 510 nm and the result was recorded as mg quercetin equivalent /g of dry weight [18].

3. Results and Discussion

3.1. Macroscopic identification

Silybum marianum range from 25 cm to 2 m in height and from 5 cm to 1.5 m base diameter, the stem is green, grooved, branched, rigid and contain multiple leaves, large stem have a hollow in the middle. The leaves are lanceolate, lobate, and pinnate with spinny margin, they are hairless, greenish with milk-white veins, growing only on the base of the plants; they are small at December when they start growing and reach their maximum size at the end of March and April. Flowers are 4 to 13 cm long and wide, pale yellow to white at summer and purple at the end of winter and during spring; they are round, solitary at the apex of the stem or its branches, surrounded by needle like bracts, The seeds (fruits) are about 1 cm long, smooth, shiny with a simple long very fine pappus, surrounded by a yellow basal ring, it have a white color surrounded by a hard brownish to black achenes. Figure1. These morphologicel characteristic are identical to the plant characteristic prescribed at world health organization monograph [19], a guide of medicinal plants in Africa [20] and many papers around the worlds [21, 22, 23, 24].
Figure 1. *Silybum marianum* picture. A- purple flower, B- white flower, C- seed, D- whole plant.

3.2. Microscopic examination

Powdered leaves of *Silybum* were diagnosed under microscope by a thick cell wall, anomocytic stomata, annual vessel, and unicellular unbranched trichomes as shown in Figure 2.
Figure 2. A-Thick cell wall, B- Anomocytic stomata, C- Annual vessel, D- Annual vessel 40X. E- fiber 10X, F- fiber 40X. G- Unicellular unbranched trichomas, H- Unicellular unbranched trichomas 40X.

3.3. Phytochemical results

3.3.1. Qualitative identification of Silybum marianum
Various qualitative phytochemical screening tests were done to establish the chemical composition of each extract; these tests provide important information regarding the type of secondary metabolites present in plant to establish a suitable procedure for isolation of these metabolites from different extracts. Primary chemical experiments for the extract of flowers, leaves, seeds and stems revealed the presence of terpenes, steroid and flavonoids while saponin appear only in the leaves and stems and the extract of flowers and seeds give a negative result. Alkaloids and coumarins are not detected in any part as shown in Table 1.

Part of the plant	Alkaloid	Terpenoid	Steroid	Flavonoid	Saponin	Coumarin
Leave	-ve	+ve	+ve	+ve	+ve	-ve
Flower	-ve	+ve	+ve	+ve	-ve	-ve
Seed	-ve	+ve	+ve	+ve	-ve	-ve
Stem	-ve	+ve	+ve	+ve	+ve	-ve

3.4. Quantitative assessment of S. marianum

Different concentration of gallic acid, tannic acid and quercetin was used for calibration curve calculation of phenolic, tannins, and flavonoids respectively as shown in Figure 3, 4 and 5. Different phytochemical ingredients vary considerably among different parts of the plant and affected by different biological stress and environmental conditions [25], therefore flavonoid, phenolic, and tannin content were determined in different parts of the plant and each measurement were repeated three times to reduce error and the results are documented in table 2.

![Figure 3](image3.png)

Figure 3. Standard curve for the determination of total phenolic content.

![Figure 4](image4.png)

Figure 4. Standard curve for the determination of total tannin content.
Figure 5. Standard curve for the determination of total flavonoid content.

Table 2. Total phenolic, flavonoid and tannin content in different parts of Iraqi *Silybum marianum*.

Part of the plant	Total phenolic content as μg gallic acid /mg dry plant	Total flavonoid content as μg quercetin /mg dry plant	Total tannin content as μg tannic acid /mg dry plant
Flowers	22.64±0.07	9.08±0.3	17.7±0.05
Seeds	67.03±0.56	12.32±0.45	15.6±0.43
Leaves	12.6±0.5	10.02±0.09	74±0.63
Stems	11.03±0.45	7.5±0.2	66.34±0.35

From the information above it is obvious that the seeds are the richest part of the plant with flavonoid and phenolic compounds followed by the flowers then the leaves, the stems contain the less amount, while the higher content of tannin were observed in the leaves and stems.

4. Conclusion

Silybum marianum which is distributed widely in Iraq is an important medicinal plant and contain highly valuable active constituents in all the plant parts such as terpenes, flavonoids, steroids and saponins, and this is the first study that describes the microscopic feature of Iraqi *Silybum* and
compare between the phytochemical components of the plants parts, further fractionation and isolation of this constituents are required.

5. Acknowledgement

The authors would like to thank Mustansiriyah University (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.

6. References

[1] Samah NA, Hend MF and Azza MS 2019 Comparative botanical studies two varieties of *Silybum marianum* (L.) Gaertn. (Asteraceae) in Egypt *Int. J. Adv. Res. Biol. Sci.* **6** 154.
[2] Silybin MB 2017 a major bioactive component of milk thistle (*Silybum marianum* L. Gaertn.). *Chem. Bioavail. Metabol. Molec.* **22** 1942.
[3] Ajit KK, Wahi AK, Brijesh K, Anil B and Neelkant P 2011 Milk thistle (*Silybum marianum*): A review *Int. J. Pharma Res. Develop.* **3** 974.
[4] A Guide to Medicinal Plants in North Africa 2005 2-8317-0893.
[5] Fei X and Yong-Song G 2017 Cautiously using natural medicine to treat liver problems *World J. Gastroenterol.* **23** 3388–3395.
[6] Al-Ezzi MI and Jasim GA 2020 Pharmacological and pharmacogностical activity of Silybum marianum (A review article). *Almustansiriyah J. Pharmacy. Sci.* **20** 72.
[7] Jasim TM, Nasser NM, Baderden SQ and Hasan H A 2019 Pharmacogностical and phytochemical studies of Iraqi *Hibiscus-rosa sinensis* The *7th* international conference on applied science and technology. *AIP Conference proceedings* **2144**, 040002-1-040002-6.
[8] Mehdi A, Al-ani WMK and Raoof A 2018 Isolation of *Astragalin* from Iraqi *Chenopodium album*. *Asian J. Pharmacy. Clin. Res.* **11** 530.
[9] Zahraa AA, Huda KA, Fatima MS and Shahad QI 2019 GC-Mass and phytochemical investigation of *Cymbopogon citrates* *Res. J. Pharm. Technol.* **12** 67.
[10] Gul R, Jan SU, Faridullah S, Sherani S and Jahan N 2017 Preliminary phytochemical screening, quantitative analysis of alkaloids and antioxidant activity of crude plant extracts from *Ephedra intermedia* indigenous to Balochistan *Sci. World Res.* **2017** 5873648.
[11] Auwal MS, Saka S, Mairiga IA, Sanda KA, Shuaibu A and Ibrahim A 2014 Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of *Acacia nilotica* (Thorn mimosa). *Veterin. Res. Forum* **5** 95.
[12] Doss A 2009 Preliminary phytochemical screening of some Indian medicinal plants *Ancient Sci. Life* **29** 12.
[13] Rasha E, Noor MN and Zahraa AA 2020 Antimicrobial and antioxidant activity of Iraqi *Cupressuss emperverines* cones *AIP Conference* **2213**, 020006-1-020006-5.
[14] Yadav M, Chatterji S, Gupta SK and Watal G 2014 Preliminary phytochemical screening of six medicinal plants used in traditional medicine *Int. J. Pharm. Pharmacy. Sci.* **6** 539.
[15] Ingle KP, Padole DA and Khelurkar VC 2017 Preliminary phytochemical screening of methanolic extract from different parts of *Jatropha curcas* (L.). An international refereed, per reviewed and indexed *Quart. J. Science, Agric. Eng.* **6** 111.
[16] Jing S, Xinhua L and Xiaolei Y. 2016 Antioxidant activities, total flavonoids and phenolics content in different parts of *Silybum marianum* L plants *Chem. Eng. Transact.* **55** 37.
[17] Baya M, Fetan A, Abderrazak S, Chedly A, and Brahim M 2016 Fatty acids, essential oil and phenolics composition of *Silybum marianum* seeds and their antioxidant activities *Pak. J. Pharm. Sci.* **29** 951.
[18] Eldalawy R 2017 Quantitative estimation of rutin in Rue (*Ruta graveolens* L.) cultivated in Iraq wuth the evaluation of its antioxidant activity. *Asian J. Pharmac. Clin. Res.* **10** 353.
[19] Who 2012 *Monograph on selected medicinal plants- volume 2*, who health system library.
[20] Pedro M 2005 A guide to medicinal plants in North Africa. *Int. Union Convers. Nat. Nat. Sour.* **1**: 255.

[21] Veronica V, Hana D, Jana B and Miroslav H 2020 Milk thistle (*Silybum marianum*): A valuable medicinal plant with several therapeutic purposes *J. Microbiol. Biotechnol. Food Sci.* **9** 836.

[22] None 1999 Monograph *Silybum marianum* (Milk thistle). *Altern. Med. Rev.* **4** 272.

[23] Farhat AK, Muhammad Z, Nassem U, Shazeb K, Muhammad K, Sartaj K and Javid A 2014 A general introduction to medicinal plants and *Silybum marianum* Life Sci. J. **11** 471.

[24] Nassrin Q, Hassanali NB, Mohammad RL and Ali M 2013 A review on pharmacological, cultivation and biotechnology aspect of milk thistle (*Silybum marianum*) L. Gaertn *J. Med. Plants* **12** 19.

[25] Liu W, Yin D, Li N, Hou X, Wang D, Li D and Liu J 2016 Influence of environmental factors on the active substance production and antioxidant activity in *Potentilla fruticosa* L. and its quality assessment *Science reports* **6** 28591.