Recent developments on PET radiotracers for TSPO and their applications in neuroimaging

Lingling Zhang, First Affiliated Hospital of Jinan University
Kuan Hu, National Institute of Radiological Sciences Chiba
Tuo Shao, Harvard Medical School
Lu Hou, First Affiliated Hospital of Jinan University
Shaojuan Zhang, First Affiliated Hospital of Jinan University
Weijian Ye, First Affiliated Hospital of Jinan University
Lee Josephson, Harvard Medical School
Jeffrey H. Meyer, University of Toronto
Ming-Rong Zhang, National Institute of Radiological Sciences Chiba
Neil Vasdev, Harvard Medical School

Only first 10 authors above; see publication for full author list.

Journal Title: Acta Pharmaceutica Sinica B
Volume: Volume 11, Number 2
Publisher: Elsevier | 2021-02-01, Pages 373-393
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1016/j.apsb.2020.08.006
Permanent URL: https://pid.emory.edu/ark:/25593/vpkdn

Final published version: http://dx.doi.org/10.1016/j.apsb.2020.08.006

Copyright information:
© 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.

This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed December 3, 2022 5:20 PM EST
Recent developments on PET radiotracers for TSPO and their applications in neuroimaging

Lingling Zhang¹,², Kuan Hu³,³, Tuo Shao⁴, Lu Hou¹, Shaojuan Zhang¹, Weijian Ye¹, Lee Josephson⁴, Jeffrey H. Meyer⁵, Ming-Rong Zhang⁶, Neil Vasdev⁴,⁶, Jinghao Wang⁷, Hao Xu¹,⁸, Lu Wang¹,⁸, Steven H. Liang⁴,⁸

¹Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
²Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
³Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
⁴Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
⁵Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto ON M5T 1R8, Canada
⁶Department of Pharmacy, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China

Received 17 April 2020; received in revised form 15 July 2020; accepted 29 July 2020

Abstract

Background and Objective: Translocator protein (TSPO) is a constitutively expressed, highly conserved cell-surface protein, and PET radiotracers targeting TSPO provide a unique diagnostic tool for neuroinflammation, which is implicated in multiple brain diseases.

Methods: Recent advances of TSPO PET radiotracers are summarized, and their potential applications in different neurological and psychiatric diseases are discussed.

Results: Currently, there are several TSPO PET radiotracers available for clinical and preclinical use. Their binding characteristics, pharmacokinetics, and binding to TSPO are briefly described. The applications of these radiotracers in various diseases, such as Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, Huntington’s disease, and psychiatric disorders are also reviewed.

Conclusion: The TSPO PET radiotracers hold promise for the diagnosis and management of neurological and psychiatric diseases. Further studies are needed to optimize these radiotracers and to understand their roles in disease processes.

Keywords: Translocator protein (TSPO); PET radiotracers; Neuroinflammation; Neurological diseases; Psychiatric disorders.
1. Introduction

The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is mainly expressed in the outer mitochondrial membrane (OMM), in particular at the interface between OMM and inner mitochondrial membrane (IMM)\(^2\). TSPO has 169 amino acids and consists of five transmembrane α-helix domains, which are joined by two extra-mitochondrial and intramitochondrial loops, an extramitochondrial C-terminal, and an intramitochondrial N-terminal. The first and third loops are located on the cytoplasmic side of the membrane, while the second and fourth loops face the inside of the mitochondria\(^3\) (Fig. 1). Li et al.\(^4\) first described a cholesterol recognition amino acid consensus sequence (CRAC) in the C-terminus of TSPO, which was determined to be helical in conformation from amino acids L144 to S159\(^5\). CRAC, together with a groove in TSPO, can bind a cholesterol molecule and is thus responsible for cholesterol transport\(^6,5\) (Fig. 1). TSPO generally functions as a monomer\(^6\), but it has been demonstrated to form oligomeric compounds with itself (homo-oligomer) or other proteins, such as a 32 kDa voltage-dependent anion channel (VDAC) and a 30 kDa adenine nucleotide transporter (ANT)\(^7\). Additionally, increased levels of reactive oxygen species (ROS) can facilitate covalent binding among TSPO monomers, inducing the formation of TSPO oligomers\(^8\). TSPO monomers can recognize cholesterol, and TSPO homo-oligomers may also play an important role in binding and transporting cholesterol\(^1\). TSPO is rich in tryptophan, a feature that is highly conserved from bacteria to mammals. Guo et al.\(^9\) recently reported the complex crystal structure of Bacillus cereus TSPO (BcTSPO) with its inhibitor, PK11195, at a resolution down to 1.7 Å. These authors also described similar TSPO protoporphyrin IX (PpIX)-directed catalytic activities in both Xenopus and humans, demonstrating the physiological importance of TSPO in protection against oxidative stress. Subsequently, Li et al.\(^10\) described the crystal structures (at 1.8, 2.4, and 2.5 Å resolution) for TSPO from Rhodobacter sphaeroides and a mutant TSPO that simulated the human rs6971 polymorphism (Ala\(^{147}\)→Thr\(^{147}\)). The A147T mutation in humans perturbs the environment around the CRAC site and could transform the TSPO cholesterol-binding surface. Additionally, variation in the tilt of the helices leads to decreased binding with other ligands, indicating that the A147T mutation causes a lower-affinity conformational change.

TSPO is responsible for the translocation of cholesterol from the outer to the inner mitochondrial membrane, thereby limiting the rate of neurosteroid biosynthesis\(^11\). In addition, TSPO is also involved in other physiological functions including immunomodulation\(^12\), mitochondrial metabolism and function\(^13\), apoptosis\(^14\), cell respiration and oxidative processes\(^15\), cell proliferation and differentiation\(^16\), protein import\(^17\), porphyrin transport and heme biosynthesis\(^18\), and ion transport\(^19\) (Fig. 1). Under physiological conditions, TSPO is widely distributed throughout the body with the highest concentrations observed in steroidogenic tissues. It is predominantly expressed in the kidneys, nasal epithelium, adrenal glands, lungs, and heart, while organs such as the brain and liver show relatively low expression\(^1\). However, TSPO has been shown to be involved in brain ischemia-reperfusion injury\(^20\), neurodegenerative diseases\(^21\), and other diseases\(^22,23\). In the central nervous system (CNS), TSPO expression is strongly upregulated in activated microglial cells by inflammatory stimuli\(^24\). Lavisse et al.\(^25\) found that reactive astrocytes also upexpress TSPO. Furthermore, activated peripheral macrophages sometimes express TSPO\(^26\), so in theory, under conditions of compromised blood-brain barrier (BBB) peripheral macrophages could infiltrate the brain. Abnormal TSPO expression in glial cells\(^27,28\) is implicated in the progression of neuropsychiatric disorders involving neuroinflammation including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), multiple sclerosis (MS)\(^27,28\). As a result, TSPO is considered to be a
promising biomarker for neuroinflammation that could be used for monitoring the effectiveness of anti-inflammatory therapies. Positron emission tomography (PET) is a noninvasive imaging technology which can provide quantitative biological information in vivo, and plays an important role in disease diagnosis, therapy assessment and drug development. Unlike anatomical imaging techniques such as X-ray, ultrasound and magnetic resonance imaging (MRI), PET offers the real-time biological processes in molecular level based on a specific ligand bearing a positron-emitting radionuclide ("PET tracer"), which makes this technology with high sensitivity and excellent tissue penetration. The commonly used positron radionuclides consist of 11C ($t_{1/2} = 20.4$ min), 18F ($t_{1/2} = 109.7$ min), 68Ga ($t_{1/2} = 67.6$ min), 64Cu ($t_{1/2} = 12.8$ h) and 89Zr ($t_{1/2} = 78.4$ h). The former two isotopes are most widely used for labeling small organic molecules, while the metal radionuclides are more feasible to label peptide, antibody and nano materials. Another advantage of PET is that the amount of radiotracer used in imaging studies is very low (10^{-6} to 10^{-9} g; microdosing), which is feasible to evaluate the biological process without pharmacological effects, as well as to enable rapidly translation of promising radiotracers from bench work to phase 0 clinical trials.

A number of radioligands have been developed for visualizing TSPO biodistribution and expression in physiological and pathological conditions, as well as for determining the relationship between TSPO quantification and disease progression. Representative TSPO PET tracers advancing into human brain imaging study as well as the clinical data are summarized in Supporting Information Table S1 (the corresponding structures of tracers are depicted in the following figures). $[^{11}$C]PK11195, the first prototypical PET tracer for TSPO, has historically been the most widely used to monitor neuroinflammation in various neurological disorders. However $[^{11}$C]PK11195 has a relatively low signal to noise ratio (SNR) due to high nonspecific binding, and the short half-life of 11C (20.4 min) limits widespread transportation and clinical trials. Therefore, there have been many efforts to develop new radioligands with improved pharmacokinetics and imaging quality, and several next-generation TSPO radioligands have been developed for this purpose.

Figure 1 TSPO structure and function. TSPO is mainly expressed in the OMM with five transmembrane alpha helix domains. The topology of TSPO in the membrane is amplified, with amino acids involved in the binding site of PK11195 highlighted. The PK11195 binding site includes the residues R24, E29, L31, L37, P40, S41, W42, W107 and W161. TSPO generally functions as a monomer, but can also form compounds with itself or other proteins, such as VDAC and ANT. Furthermore, PBR-associated protein 1 (PRAX-1), and PBR and protein kinase A (PKA) regulatory subunit R1a-associated protein (PAP7) are correlated with TSPO. PRAX-1 and PAP7 could also promote compound formation or cholesterol targeting to TSPO. TSPO has four dominating functions: (1) binding and transporting cholesterol, a critical function in neurosteroid synthesis and bile salt biosynthesis; (2) protein transport for membrane biosynthesis and other important physiological functions including cell proliferation, differentiation, and apoptosis; (3) binding and importing porphyrin for heme biosynthesis; and (4) adjusting mitochondrial functions.
developed for more accurate visualization of TSPO. Although these new PET tracers show improved SNR, there is a limitation that there is variability in TSPO binding potential (BP) among individuals due to a single nucleotide polymorphism in the TSPO gene. The human TSPO gene is located on chromosome 22q13.3, consists of four exons, and encodes 169 amino acids. Recent studies discovered a single-nucleotide polymorphism (rs6971) in exon 4 of the human TSPO gene that results in a nonconservative alanine to threonine substitution, influencing the TSPO protein’s ligand binding affinity. The rs6971 polymorphism can lead to three distinct binding statuses: high-, mixed-, and low-affinity binders. The main form, Ala/Ala, is correlated with high-affinity binding (HAB), while the Ala/Thr form has mixed-affinity binding (MAB), and the Thr/Thr form has low-affinity binding (LAB). This gene polymorphism can influence the binding affinities of almost all of the second-generation TSPO tracers, requiring inclusion of the HAB and MAB distinction as a covariate in analyses, and exclusion of LAB participants in human clinical studies. The frequency of the polymorphisms varies by ethnic background such that the LAB frequency ranges from approximately 1 in 10 Caucasians to about 10-fold less in East Asians (http://hapmap.ncbi.nlm.nih.gov/). Therefore, the development of novel radioligand candidates that are insensitive to the rs6971 polymorphism, namely third-generation PET tracers, would enable greater inclusion of participants for TSPO imaging in human studies.

Here, we assess the most recent developments in TSPO PET tracers, as well as recent pharmacological developments, such as new-generation PET tracers. In this review, we will introduce the newest TSPO radioligands and discuss the challenges in TSPO radioligand development. Since there are no clinically approved TSPO PET tracers, we will also focus on new opportunities for radioligand development in alignment with recent drug discovery campaigns.

2. TSPO in the brain

Microglia are resident macrophages in the brain as well as resident CNS immune cells that form the first line of defense against invading pathogens and other harmful agents. Approximately 15% of the non-neuronal cells in the CNS are microglia. They exquisitely monitor the brain milieu and can rapidly produce factors that affect surrounding neurons and astrocytes. Activated microglia and astrocytes are often important participants in neuroinflammation. Under physiological conditions, microglia usually exhibit a resting phenotype in which they are highly sensitive to changes in the brain microenvironment and can quickly switch to an activated phenotype in response to infection or injury. After activation, microglia proliferate and migrate to the injured part, adopting typical morphological and functional properties. The activated microglia exhibit morphological changes which may include shortening and thickening of their cellular processes, undergoing hypertrophy of the cell body or even changing to an ameboid state. In the resting state, microglia can secrete various growth factors and produce factors that support tissue maintenance. When injury and/or inflammatory factors are released, microglia change from a resting state to an activated state. This activated state can include pro-inflammatory or anti-inflammatory functions or a combination of both.

Previous studies have observed increased TSPO expression levels under neuroinflammatory conditions. TSPO is highly expressed in activated microglia, but expressed at much lower levels in “resting” or surveying microglia found mainly in the gray matter. The dramatic upregulation of TSPO has been reported to coincide with microglial activation in response to brain injury or inflammation. Thus, TSPO has been considered a hallmark of neuroinflammation.

The increase of TSPO levels after the injury of brain are mainly occurred in the primary or secondary regions of injury that express activated glial cells. Importantly, TSPO can be visualized and quantified using in vitro and in vivo imaging techniques. TSPO PET tracers have been used to both improve knowledge about the effect of neuroinflammation on CNS disorders and to the efficacy of new anti-inflammatory treatment strategies. Currently, TSPO PET imaging is the most widely used in vivo method for inferring on the status of microglial activation. Direct evidence for an innate inflammatory response in AD was described nearly 20 years ago, and subsequent studies have demonstrated neuroinflammation in PD, ALS, MS, major depressive disorder (MDD), obsessive compulsive disorder (OCD), and a growing number of other nervous system pathologies. Previous studies in rodents after lipopolysaccharide (LPS) or toxins have also reported that dramatic upregulation of TSPO levels are correlated with microglial activation in response to brain injury or neuroinflammation, although in postmortem investigations in humans both activated microglia and astroglia may overexpress TSPO.

3. Development of radioligands targeting TSPO

The development of PET tracers for brain imaging usually commences with medicinal chemistry and pharmacological screening of potential TSPO ligands aimed for high binding affinity and high selectivity. After carefully exploration of the structure–activity relationship (SAR), the candidate PET ligand is selected and amenable for 11C or 18F radiolabeling, specifically focusing on the preparation of precursors, optimization of labeling conditions, as well as translational study using automatic synthesis modules. The radiolabeling reaction of each TSPO PET tracer is depicted in Supporting Information Scheme S1. 11C labeling was conventionally conducted in the presence of base such as NaOH, NaH or tetrabutyl ammonium hydroxide (TBAH), with phenol or amide as the precursor. The labeling was straightforward, and the 11C-labeled PET tracers were obtained in 9%–85% RCYs. In terms of 18F-labeled TSPO PET tracers, Sn2 displacement was often employed, sometimes with radioactive prosthetic group (i.e., BrCH2CH2F and 18F–FCH2I). By now, only two TSPO PET tracers were reported with Csp2–18F motif, in which spirocyclic iodonium ylide method was employed. The radiofluorination yields were comparable with 11C labeling. All TSPO PET tracers possessed good molar activities (Am, > 1 Ci/μmol), which was an essential requirement for brain imaging.

3.1. The first TSPO PET tracer

The prototypical PET tracer for TSPO was 1-(2-chlorophenyl)-N-[11C]methyl-N-(1-methylpropyl)-3-isquinolinecarboxamide ([11C]PK11195 [11C]I), developed more than 2 decades ago. PK11195 was the first non-benzodiazepine-type compound that was a selective antagonist for TSPO. It is an isoquinoline carboxamide discovered and named by a French company, Pharmaka, in 1984. [11C]I was initially used as a racemate with high...
affinity (inhibition constant \([K_i] = 9.3 \text{ nmol/L}\)) in rat and selectivity to TSPO. However, further studies in rats suggested that the \(R\)-enantiomer \([^{11}\text{C}]\text{Rl}\) binds with a 2-fold greater affinity than the corresponding \(S\)-enantiomer \([^{11}\text{C}]\text{I}\). The binding affinity of \([^{11}\text{C}]\text{Rl}\) is 3.5—4.5 nmol/L in rhesus and 2.1—28.5 nmol/L in human. \([^{11}\text{C}]\text{I}\) has high lipophilicity (log \(D = 3.97\)), which likely results in high levels of non-specific binding and relatively poor specific binding. For example, the ratio of specific to non-specific binding of \([^{11}\text{C}]\text{Rl}\) in human brain was determined to be only about 0.2—0.5. As the first PET tracer for TSPO \([^{11}\text{C}]\text{I}\) has several disadvantages including a short half-life (20 min), relatively low brain uptake, a poor metabolic profile, and high levels of non-specific binding resulting in a low SNR, all of which severely limit its widespread clinical use.

Parbo et al. demonstrated that BP of \([^{11}\text{C}]\text{Rl}\) and the level of amyloid load in AD patients were positively correlated at a voxel level within the frontal, parietal and temporal cortices \([^{11}\text{C}]\text{Rl}\) PET imaging also indicated that cortical distribution of increased inflammation overlapped with amyloid deposition in a multitude of amyloid positive mild cognitive impairment (MCI) patients. In another study, Fan et al. further found that there was significant correlation between increased \([^{11}\text{C}]\text{Rl}\) BP and reduced glucose metabolism in AD, MCI, and PD dementia (PDD) subjects. Cortical BP of \([^{11}\text{C}]\text{Rl}\) were negatively associated with mini-mental state examination (MMSE) in both AD and PDD patients. Kübler et al. also suggested that the BP of \([^{11}\text{C}]\text{Rl}\) was significantly increased within the subregions of the caudate nucleus, putamen, pallidum, precentral gyrus, orbitofrontal cortex, presubgenual anterior cingulate cortex, and the superior parietal gyrus in patients with the parkinsonian phenotype of multiple system atrophy (MSA) compared with healthy controls. Passamonti et al. found that in progressive supranuclear palsy (PSP) patients, the BP of \([^{11}\text{C}]\text{I}\) within the subregions of thalamus, putamen, and pallidum were significantly elevated compared with controls. They also indicated that in AD patients, BP of \([^{11}\text{C}]\text{Rl}\) in the cuneus/precuneus associated with episodic memory impairment, while in PSP patients \([^{11}\text{C}]\text{I}\) binding within the subregions of the pallidum, midbrain, and pontis associated with disease severity. In another study, Gerhard et al. demonstrated that the BP of \([^{11}\text{C}]\text{Rl}\) within the subregions of the caudate nucleus, putamen, substantia nigra, pons, pre- and post-central gyrus, and the frontal lobe was significantly increased in corticobasal degeneration (CBD) patients compared to the healthy controls, which may help to characterize the underlying disease activity in CBD patients. Cagnin et al. further suggested that the increased BP of \([^{11}\text{C}]\text{Rl}\) in frontotemporal dementia (FTD) patients was mainly presented in the typically affected frontotemporal brain regions, which indicated that the presence of microglial activation reflecting progressive neuronal degeneration. Iannaccone et al. further studied \([^{11}\text{C}]\text{Rl}\) PET imaging in Lewy body dementia (DBL) patients. They found that the increased BP of \([^{11}\text{C}]\text{Rl}\) in DBL and PD patients was mainly presented in the substantia nigra and putamen. Moreover, substantial additional microglia activation in several associative cortices was found in the patients with DBL.

3.2. TSPO PET tracers with improved binding specificity and brain uptake

Due to the above-mentioned limitations of \([^{11}\text{C}]\text{I}\), development of novel radioligands with greater binding specificity and higher brain uptake was pursued. More than 50 novel PET tracers for TSPO have been reported, including \([^{11}\text{C}]\text{PBR28}\) \([^{11}\text{C}]\text{DA1106}\) \([^{11}\text{C}]\text{DPAT13}\) \([^{11}\text{C}]\text{vinpocetine}\) \([^{11}\text{C}]\text{DAC}\) \([^{11}\text{F}]\text{PBR60}\) \([^{11}\text{F}]\text{dpA714}\) \([^{11}\text{F}]\text{FEBPA}\), and others. \([^{11}\text{C}]\text{I}\) has high lipophilicity (log \(D = 3.97\)), which likely results in high levels of non-specific binding and relatively poor specific binding. For example, the ratio of specific to non-specific binding of \([^{11}\text{C}]\text{Rl}\) in human brain was determined to be only about 0.2—0.5. As the first PET tracer for TSPO \([^{11}\text{C}]\text{I}\) has several disadvantages including a short half-life (20 min), relatively low brain uptake, a poor metabolic profile, and high levels of non-specific binding resulting in a low SNR, all of which severely limit its widespread clinical use.

In 2012, Wang et al. reported the automatic radiosynthesis and evaluation of a potent and selective TSPO radioligand, \(N(2.5\text{-dimethoxybenzyl})-N(5\text{-fluoro-2-phenoxyl})\)acetamide \([^{11}\text{C}]\text{DAA1106}\) \([^{11}\text{C}]\text{I}\), derived from a novel class of phenoxyacetlamide with high affinity and specificity for TSPO. The binding affinity \((K_i)\) of \([^{11}\text{C}]\text{I}\) toward TSPO was 0.043 nmol/L in rat brain and 0.188 nmol/L in monkey brain. \([^{11}\text{H}]\text{DAA1106}\) dissociation constant \((K_d)\) was 5—6-fold lower than \([^{3}\text{H}]\text{PK11195}\) in different rat brain regions. Because binding affinity is negatively correlated to \(K_d\), these data demonstrate that \([^{11}\text{H}]\text{DAA1106}\) has higher affinity for TSPO than \([^{3}\text{H}]\text{PK11195}\). \([^{11}\text{C}]\text{I}\) also has a reasonable lipophilicity (log \(D = 3.65\)), which could partially contribute to its good BBB penetration. In mice, high \([^{11}\text{C}]\text{I}\) uptake was observed in the brain during scanning (2.1%—3.5% ID/g), about 1.5—2 fold higher than \([^{3}\text{H}]\text{PK11195}\). The highest uptake of \([^{11}\text{C}]\text{I}\) was observed in the olfactory bulb (4.2% ID/g at 30 min post-injection (p.i.)), and is commensurate with the highest density of TSPO in the mouse brain, as well as in the cerebellum (3.5% ID/g at 30 min p.i.). Moreover, additional studies demonstrated that \([^{3}\text{H}]\text{I}\) TSPO binding was specific by pre-treatment with DAA1106 and PK11195 prior to \textit{in vivo} imaging with \([^{11}\text{C}]\text{I}\) in both healthy mice and in kainic acid (KA)-lesioned rats. Zhang et al. found that \([^{11}\text{C}]\text{I}\) plasma radio-metabolites are much more polar than \([^{11}\text{C}]\text{I}\) and may not cross the BBB in mice. \([^{11}\text{C}]\text{I}\) has been widely studied in conditions associated with neuroinflammation. For example, comparing with \([^{11}\text{C}]\text{Rl}\) \([^{11}\text{C}]\text{I}\) showed greater retention period at the region of injury in rats with traumatic brain injury (TBI) as evaluated by \textit{in vitro} autoradiography. These results showed that \([^{11}\text{C}]\text{I}\) binds to TSPO with higher affinity, indicating that \([^{11}\text{C}]\text{I}\) may be a better ligand than \([^{11}\text{C}]\text{Rl}\) for \textit{in vivo} PET imaging of TSPO in TBI.

In 2009, Gulyás et al. used \([^{11}\text{C}]\text{I}\) for \textit{in vitro} autoradiography studies of human postmortem brain slices obtained from AD patients and age-matched controls. They found that specific binding was significantly higher in the hippocampus, the temporal and parietal cortices, the basal ganglia, and the thalamus of AD brains, suggesting that \([^{11}\text{C}]\text{I}\) can effectively label activated microglia with upregulated TSPO in AD. In another study, mean BP was significantly increased in all measured regions, including the dorsal and medial prefrontal cortices, lateral temporal cortex, parietal cortex, occipital cortex, anterior cingulate cortex, striatum, and cerebellum, as compared to healthy controls. \([^{11}\text{C}]\text{I}\) was used to measure an increase in TSPO binding in the brains of AD patients at a relatively early stage, suggesting widespread upregulation of TSPO even in early AD and further supporting the superiority of \([^{11}\text{C}]\text{I}\) over \([^{11}\text{C}]\text{Rl}\). Unfortunately, the study did not directly compare \([^{11}\text{C}]\text{I}\) and \([^{11}\text{C}]\text{I}\) in the same subjects. Similarly, Yasuno et al. demonstrated that \([^{11}\text{C}]\text{I}\)...
binding to TSPO was also markedly increased throughout many brain regions in MCI subjects compared with healthy controls. There was no significant difference in BP between MCI and AD patients. The high \([11C]2\) binding in MCI patients suggested that microglial activation may occur before the onset of clinical dementia symptoms. Further studies are needed to verify this finding.

The chemical composition of DAA1106 includes a fluorine atom. Since \(^{18}\text{F}\) has several favorable properties such as a relatively longer half-life (109.7 min) as well as an excellent decay profile (97% \(\beta^+\) emission) and positron energy (650 keV), labeling DAA1106 with \(^{18}\text{F}\) seems to be a logical step for developing a superior TSPO radioligand for PET imaging. \(^{18}\text{F}\) showed a very high affinity for TSPO in rat brain. Subsequent \(^{18}\text{F}\) biodistribution studies found low radioactivity uptake in bone without serious defluorination in mice. Furthermore, greater than 96% of the total radioactivity in the mouse brain at 60 min after radioligand injection was found to be unmetabolized radioactivity, attributed to parent \(^{18}\text{F}\). High \(^{18}\text{F}\) uptake during PET imaging (1.9 ± 0.3% ID/g) was observed in ischemic areas of rat brains as compared to the contralateral side. Additionally, pretreatment with PK11195 demonstrated that \(^{18}\text{F}\) had higher TSPO specificity in the ischemic brains.

FEDAA1106 (\(N-(5\text{-fluoro-2-phenoxyphenyl})\)-(2-(2-fluoroethoxy)-5-methoxybenzyl) acetamide) is a fluorinated ethyl analogue derivative of DAA1106. Recently \(^{18}\text{F}\) FEDAA1106 (Fig. 2) has been investigated as a potential radioligand to visualize TSPO in vivo using PET imaging. The binding affinity \((K_i)\) of \(^{18}\text{F}\) toward TSPO in rat brain slices was 0.078 nmol/L, and the lipophilicity \((\log D = 3.81)\) was higher than \(^{11}\text{C}\) \((\log D = 2.78)\). Further studies demonstrated high \(^{18}\text{F}\) uptake (2.2%–4.9% ID/g) in the mouse brain, about 1.3–1.6-fold higher than \(^{11}\text{C}\) and 2–3-fold higher than \(^{11}\text{C}\). The \(^{18}\text{F}\) uptake in bone was very low (0.31% dose/g at 30 min after injection).

Figure 2 TSPO radioligands with novel chemical structures.
PET tracer development and neuroimaging application of TSPO

p.i. and 0.09% dose/g at 120 min p.i.), which indicated desired stability of the fluoroethyl group against defluorination in vivo. Additional PET studies in monkey indicated a high activity attributed to [18F]4 in the occipital cortex 2 min after injection that remained at nearly the same level during the entire PET measurement (180 min). This was 1.5 times higher than [11C]2 and 6 times higher than [11C](R)1 (at 30 min p.i.). Additionally, pretreatment with PK11195 showed that the [18F]4 binding in the occipital cortex was specific. Radiometabolite analyses found that only [18F]4 was detected in monkey brain homogenates with no evidence of any radioactive metabolites (at 60 min p.i.). The [18F]4 metabolite profile was similar to [11C]2 in vivo. Another analogue of DAA1106 [18F]FMDAA1106 ([18F]5, Fig. 2) was also synthesized and evaluated. The affinity of [18F]5 for TSPO was found to be similar to [11C]2. However, [18F]5 displayed a high uptake in bone in mice and monkey, indicating that this radioligand was unstable for in vivo defluorination and not a suitable PET radioligand116.

Recently [18F]4 PET imaging has been used to investigate neurological diseases associated with neuroinflammation117. Varonne et al.118 demonstrated that the distribution volume (Vd) and BP of [18F]4 in brains was not significantly different in AD and healthy controls. These data suggested that TSPO imaging with [18F]4 was not a viable tool for monitoring microglial activation in AD. Similarly, another study found no significant differences in the BPND or Vd values between MS patients and controls, demonstrating that [18F]4 could not be used to monitor MS brain lesion sites119. We speculate that the negative results from the above studies are likely due to the high nonspecific binding of [18F]4, as well as genetic variability in TSPO binding in human brains.

PBR28, an analog of DAA1106, is a promising second-generation TSPO radioligand [11C]PBR28 ([11C]6, Fig. 2, N-(2-[11C]methoxybenzyl)-N-(4-phenoxypyridin-3-yl)acetamide) was originally developed by Pike and colleagues120,121. [11C]6 showed a high affinity for TSPO in rat (Kd = 0.680 ± 0.027 nmol/L), monkey (Kd = 0.944 ± 0.101 nmol/L), and human (Kd = 2.47 ± 0.39 nmol/L) mitochondria [11C]6 also displayed high lipopaticity (logD = 3.01 ± 0.11)20 and was very stable; 99.8% was unchanged after incubation with rat brain homogenate in saline for 2 h at 37 °C. The radioactivity of this radioligand was rapidly detected in monkey brain, with peak uptake occurring in all examined TSPO-containing regions at 10 min p.i., and then was quickly washed out to a low level. Maximal uptake was 394% standard uptake volume (SUV) in the choroid plexus of the fourth ventricle120. They also found that [11C]6 radioactivity in all examined regions was rapidly and substantially reduced in monkey brain after administration of PK11195, indicating that [11C]6 binding to TSPO was specific. The specific binding of this ligand was greater than 90% of its total uptake in monkey brain121. Another study demonstrated that the specific binding of [11C]6 in monkey cerebellum was about 80-fold higher than [11C](R)1122.

Brown et al.123 further suggested that [11C]6 would cause relatively modest radiation burden in humans, similar to several other 11C-radioligands used for brain imaging [11C]6 has been used as a radioligand to study several neurological diseases associated with neuroinflammation. Oh et al.124 reported [11C]6 PET scans from 11 subjects with MS and 7 healthy volunteers. They found that [11C]6 uptake was significantly increased in focal regions of active inflammation, as proven by gadolinium contrast enhancement, in comparison to the contralateral normal-appearing white matter. Furthermore, the increase in [11C]6 uptake exceeded the appearance of contrast enhancement in MRI of some inflammatory lesions, indicating the important role of early glial activation in MS lesion formation and further confirming that TSPO is an informative biomarker of glial activation or neuroinflammation in MS. Global [11C]6 binding was correlated with disease duration, but not with clinical disability. However, the sample size was relatively small, limiting the translation of these data125. Subsequently, Hirvonen et al.126 also performed [11C]6 imaging in patients with unilateral temporal lobe epilepsy (TLE). Their study demonstrated that [11C]6 uptake in TLE patients was higher ipsilateral to the seizure focus, which consisted of the hippocampus, parahippocampal gyrus, amygdala, fusiform gyrus, and choroid plexus, indicating increased TSPO expression. Further, this asymmetry was more obvious in patients with hippocampal sclerosis. However, a larger sample size is needed to determine the generalizability of these results across different types of epilepsy.127. In another study, Gershen et al.128 found that, compared to controls [11C]6 binding in patients with TLE was significantly elevated in both ipsilateral temporal regions and contralateral regions to seizure foci (including hippocampus, amygdala, and temporal pole), suggesting increased TSPO extending beyond the seizure focus and involving both temporal lobes and extratemporal regions. This demonstrated that anti-inflammatory therapy may be important in treating drug-resistant epilepsy. In 2013, Kreisl et al.129 found that [11C]6 binding in patients with AD, but not those with MCI, was significantly higher than controls in cortical brain regions, especially in the parietal and temporal cortices [11C]6 binding inversely correlated with performance in a cognitive function assessment. They demonstrated that neuroinflammation, as defined by elevated [11C]6 binding to TSPO, occurs after conversion of MCI to AD and exacerbates disease progression. However [11C]6 PET imaging in humans is limited due to TSPO binding affinity differences related to genotype. In another study, Lyoo et al.130 used an absolute quantitation method (Vd/fo, plasma free fraction of radioligands (fo)) to confirm that [11C]6 binding was greater in AD patients than healthy controls in temporo-parietal regions, but not in the cerebellum. The authors then explored the use of the cerebellum as a pseudo-reference region and determined the standard uptake volume ratio (SUVR). SUVR demonstrated greater TSPO binding than absolute quantification and identified one additional TSPO upregulated region, indicating that SUVR analysis may have greater sensitivity. This new analysis needs to be replicated in more AD patients before being widely implemented. In 2016, Kreisl et al.131 examined AD clinical progression and demonstrated that the annual rate of elevated [11C]6 binding in temporo-parietal regions was about 5-fold higher in AD with clinical progression than in patients without progress. They suggested that TSPO may be used as a marker of Alzheimer’s progression and response to anti-inflammatory therapies. Since this study had a small sample size the authors subsequently studied TSPO PET imaging in different clinical subtypes of AD, including posterior cortical atrophy (PCA) and amnestic AD132. They found that [11C]6 binding in occipital, posterior parietal, and temporal regions was significantly increased in PCA patients compared with controls. However, in amnestic AD patients [11C]6 binding in inferior and medial temporal cortex was much greater than controls. They suggested that neuroinflammation is also closely correlated with neurodegeneration across different subtypes of AD. However, this study was limited by its relatively low sample size and variability in TSPO binding affinity across subjects.
Recently, TSPO imaging has also been used to investigate other neurodegenerative diseases. For example, Lois et al. used [11C]PET/MR imaging to study neuroinflammation in Huntington’s disease (HD). They reported that [11C] binding in the putamen and pallidum was significantly increased in HD patients compared to controls. They also observed that TSPO binding was significantly elevated in the basal ganglia of pre-symptomatic subjects, indicating that neuroinflammation is an early pathological process correlated with subclinical progression of HD. Further, they showed that, in some HD patients, TSPO binding was greater in thalamic subnuclei and brainstem regions associated with visual function, motor function, and motor coordination. The authors assert that [11C]PET/MR imaging provides a high signal-to-background ratio and has the potential for clinical evaluation of HD progression, albeit the study had a relatively small sample size. Other work demonstrated that patients with ALS had greater [18F] binding in the precentral gyrus compared to controls. Subsequently, Ratai et al. used integrated imaging technologies and found that increased [18F] binding in response to glial activation in the precentral gyrus in patients with ALS was co-localized and related to neuronal injury/loss, as monitored by decreased N-acetylaspartate/creatinine (NAA/Cre).

Another 2nd-generation TSPO ligand, PBR06, was labeled with [18F], [18F]-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline (18F)PBR06 (18F)7, Fig. 2). The half-life of 18F allows for a longer data acquisition period, and may be required to match the pharmacokinetics of the elevated binding density. The binding affinity (K) of [18F]7 toward TSPO was 0.30 ± 0.08 nM in monkey brain mitochondrial homogenates and 1.0 nM in human brain tissue [18F]7 also has a very high lipophilicity (logD = 4.01), greater than [11C]6. Elevated lipophilicity may improve BBB penetration, but also tends to increase nonspecific binding in the brain. However, [18F]7 and [11C]6 have very similar brain uptake, when corrected by Veff [137]. [18F]7 radioactivity was observed in monkey brains with peak uptake occurring in examined TSPO-containing sites at 27 and 72 min after injection. Maximal binding was 371 ± 89% SUV and occurred in the choroid plexus of the fourth ventricle. Subsequently, the radioactivity slowly washed out [18F]7 also showed no obvious evidence of in vivo defluorination. The radioactivity of unchanged [18F]7 in the brain was very high (>90%) at 30 min p.i. Moreover, the radiometabolites were more hydrophilic than [18F]7. This study also demonstrated that [18F]7 had a very low ratio of TSPO-nonspecific to specific binding in monkey. [18F]7 has also been widely studied in many neurological disease models. Larrey et al. found that after stroke [18F]7 accumulation in mouse brain peaked at 5 min p.i., then decreased gradually, remaining significantly higher in infarct regions than in noninfarct sites. Pre-treatment with PK11195 eliminated the difference in [18F]7 binding between infarct and noninfarct regions. This study demonstrated that TSPO is a potential biomarker of neuroinflammation in mouse stroke models. However, further research in monkeys and humans is needed. In another study, James et al. found that [18F]7 binding in 15- to 16-month-old APP23 mice was much higher in the cortex and hippocampus compared with age-matched wild-types and was well correlated with autoradiography and immunostaining results. The authors suggested that [18F]7 could be a viable biomarker for monitoring TSPO/microglia throughout AD progression and treatment, however, these data need to be replicated in higher species. Subsequently, Simons et al. found that [18F]7 could monitor microglial activation in the cortex, striatum, and hippocampus of R6/2 mice treated by vehicle at a late stage of HD and in BACHD mice at an early mid-stage of symptomatic HD. In both HD mouse models [18F]7 binding could reflect the inhibitory effects of LM11A-31, a P75NTR ligand known to reduce neuroinflammation. Thus [18F]7 is also a potential radiotracer of therapeutic efficacy in HD mice.

Fujimura et al. further quantified TSPO using [18F]7 in healthy human brains. They showed that [18F]7 binding could be used to measure TSPO in human brains using 120 min of image acquisition. Although brain radioactivity signal is likely from a mix of radiometabolites, the radio signal of contamination is also very low (<10%). Moreover, Fujimura et al. reported that [18F]7 radioactivity in human bone was very low. The effective dose of [18F]7 was 18.5 µSv/MBq in human subjects, a moderate dose compared to other 18F radioligands. In another study, Singhal et al. found that [18F]7 and [11C]6 correlated with white matter, but not lesion sites, in MS patients. Their results also demonstrated that, compared with [11C]6, MS-correlated leSION changes detected using [18F]7 had higher clinical relevance; however, their sample size was relatively small. Both [11C]PBR01 ([methyl-11C]methyl 2-((N-(2-phenox yphenyl)-acetamido)-methyl)benzoate[11C]8, Fig. 2), and [18F]7 are arylxyanilide compounds [18F]7 has also been evaluated in monkeys as a potential TSPO radioligand. The binding affinity (K) of [11C]8 toward TSPO in monkey brain mitochondrial homogenates was 0.24 ± 0.04 nM, similar to [18F]7. Both radioligands show high brain uptake. Further, pre-block with PK11195 of both [18F]7 and [11C]8 before PET imaging caused rapid washout of radioactivity in monkey brain, suggesting that binding was highly specific. In fact, both radioligands showed similar clearance, time to peak uptake, and washout rates. However [18F]7 may have greater potential for use in human subjects, as demonstrated by brain radioactivity quantified with standard compartmental models and a higher specific binding. [18F]EFEPPA ([N-acetyl-N-(2-[18F]fluoroethoxybenzyl)-2-phenox y-5-pyrindiamine][18F]9, Fig. 2), is a novel 18F-radiolabelled phenox yanilide, the fluoroethoxy analogue of PBR28. FEPPA had a very high binding affinity (K = 0.07 nM/L) for the PBR in rat mitochondrial membrane preparations and displayed a suitable lipophilicity (logP = 2.99). Wilson et al. demonstrated that [18F]9 uptake in rat brain was moderate (SUV 0.6) at 5 min p.i. and slowly washed out (SUV 0.35) at 60 min p.i. The highest radioactivity in rat brain was observed in the hypothalamus and olfactory bulb. [18F]9 was quickly metabolized, but no lipophilic metabolites were present and only 5% radiometabolites were observed in the brain. There was some limitation with the blocking studies to assess specific binding of [18F]9 in rat brain due to elevation of circulating radioligands and the lack of a reference region, however the ratio of tissue to plasma was reduced by approximately 97% with administration of cold PBR28.

[18F]9 was tested in vivo in humans and applied to investigate several neuropsychiatric diseases. Suridjan et al. found that [18F]9 binding was significantly greater in AD patients compared to healthy controls in grey matter areas, including the hippocampus, and the prefrontal, temporal, parietal, and occipital cortices [18F]9 binding was also increased in white matter of AD patients, including the posterior limb of the internal capsule and the cingulum bundle. Setiawan et al. reported elevated TSPO V12 during major depressive episodes in the grey matter regions, including the prefrontal and anterior cingulate cortex, a finding replicated with [18F]9 [136] and [11C]111I in subsequent studies. Attwell et al. reported elevated TSPO V12 in OCD, particularly in the cortico-striatal-thalamic circuit involving the orbitofrontal cortex. Ghadery et al. did not observe activated microglia in gray or white matter using [18F]9 PET imaging in PD although additional studies are required to determine the utility of [18F]9 as a radiotracer of microglial activation in neurodegenerative diseases.
3.2.2. Imidazopyridine acetamides

PBR111(2-(6-chloro-2-(4-(3-fluoropropoxy)phenyl)imidazo[1,2-a]pyridin-3-yl)-N,N-diethylacetamide) is a metabolically stable imidazo pyridineacetamide derivative with high binding affinity and selectivity for TSPO \[13\]. [18F]PBR111 ([18F]P111, Fig. 2) is a potential TSPO radioligand \((K_i = 3.7 \pm 0.4 \text{ nmol/L})\) and has an appropriate lipophilicity \((\log P = 3.2 \pm 0.1)\). The highest [18F]P111 uptake was 0.2%–0.3% ID/g in rat brain at 15 min p.i., which then rapidly washed out. However, [18F]P111 uptake in femur was 0.6% and 2.2% ID/g at 15 min and 4 h p.i., respectively, indicating that it may be unstable and defluorinated in \textit{vivo}. Metabolic analysis demonstrated that, in the rat cortex, 55%–80% of the radioactivity represented [18F]P111 at 15 min p.i., which further decreased to 30% at 4 h p.i. Moreover, Van Camp et al. \[15\] used \textit{in vitro} autoradiography and found that [18F]P111 binding was significantly increased in \alpha-aminooxydi-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-lesioned areas in rat brain compared to the control side. Moreover, blockage with an excess of unlabeled P11195 or PBR111 significantly inhibited binding in the lesioned area. They also observed higher [18F]P111 uptake in AMPA-lesioned rat brains than [11C]P111 uptake using \textit{in vivo} PET imaging. Unlabeled P11195 or PBR111 quickly and fully displaced the radiolabel. However, further preclinical and clinical studies using [18F]P111 as a radiotracer of neuroinflammation are needed. Subsequently, Guo et al. \[16\] further investigated [18F]P111 in human subjects. Using a 2-tissue compartment model, they concluded that [18F]P111 has a high specific binding for TSPO in the healthy human brain \textit{in vivo}.

[11C]CB184(2-[(4-fluoro)-3-methylisoxazol-5-yl]pyridin-2(1H)-yl)acetamide ([11C]CB184, Fig. 2), is a new and improved alternative to [11C]P111. The binding affinity \((K_i)\) of [11C]CB184 toward TSPO was 0.54 nmol/L, as measured in an \textit{in vitro} binding study, and lower lipophilicity \((\log P = 2.06 \pm 0.02)\) compared to [11C]P111 \((\log D = 2.78)\). The highest [11C]CB184 uptake in mouse brain is observed in the olfactory bulb \((1.45 \pm 0.03\% \text{ ID/g})\), cerebellum \((1.384 \pm 0.091\% \text{ ID/g})\), hippocampus \((1.225 \pm 0.067\% \text{ ID/g})\), and pons \((1.045 \pm 0.102\% \text{ ID/g})\). [11C]CB184 uptake in mouse brain was monitored at 30 min p.i., and the uptake levels were nearly stable from 30 to 60 min p.i. After pre-administration with PK11195, the [11C]CB184 uptake level was significantly reduced relative to controls in every brain region, indicating that [11C]CB184 binding specificity is very high in mouse brain tissue. Metabolic analyses demonstrated that the percentage of unchanged parent compound for [11C]CB184 was 92.7 \pm 5.8\% in the brain and 36.2 \pm 15.5\% in the plasma at 30 min p.i. \[17\]. Moreover, Vállez Garcia et al. \[18\] evaluated [11C]CB184 labeling in neuroinflammation. Their study showed greater [11C]CB184 uptake in the amygdala, olfactory bulb, medulla, pons, and striatum in herpes simplex encephalitis (HSE) rats compared to controls. Similarly, the BP of [11C]CB184 in HSE rats was significantly higher \((P < 0.05)\) in the amygdala, hypothalamus, medulla, pons, and septum compared with control rats. Their results indicate that [11C]CB184 is a good alternative radioligand for TSPO PET imaging. However, more studies are needed to determine the utility of [11C]CB184 PET imaging for detection of neuroinflammation in non-human primates and humans.

Subsequently, Toyohara et al. \[19\] found that [11C]CB184 PET imaging in healthy humans showed quick uptake in the brain followed by rapid clearance during a 90-min dynamic scan [11C]CB184 was equally distributed in the gray matter and was greatest in the thalamus, followed closely by the cerebellar cortex and elsewhere. Regional differences in [11C]CB184 binding were small, but the observed [11C]CB184 binding pattern was in agreement with the TSPO distribution in normal human brain. The effective dose of [11C]CB184 was 5.9 ± 0.6 \text{ mSv} / \text{MBq} in human subjects.\[20\]

3.2.3. Dihydro-9H-purinacetamides

AC-5216 \(\text{N-benzyl-N-ethyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-ylacetamide)}\) is an oxopurine labeled with [11C], and is another new candidate TSPO PET tracer ([11C]12, Fig. 2). The binding affinity \((K_i)\) of [11C]12 toward TSPO was 0.297 nmol/L in whole rat brain and the lipophilicity was appropriate \((\log D_{2.4} = 3.3)\). Moreover, the TSPO binding site for AC-5216 may be more similar to PK11195 than to other TSPO ligands. The radioligand was observed to promote BBB penetration and enter mouse brain regions at 1 min p.i. In the olfactory bulb and cerebellum [11C]12 radioactivity was greater than 1.3% ID/g at 5 min p.i. The absorption level peaked at 15 min p.i. and then decreased until 60 min p.i. The greatest uptake of [11C]12 was present in the olfactory bulb (2.5% ID/g at 15 min p.i.), and moderate uptake was observed in the cerebellum (1.5% ID/g at 15 min p.i.). Uptake in the occipital cortex of monkey brain was greater than in other brain structures such as the cerebellum, frontal cortex, striatum, and thalamus. Pre-block with AC-5216 or PK11195 could inhibit the maximum uptake of [11C]12 to 30%–40% of the control uptake, indicating specific binding in the monkey brain \textit{in vivo} [11C]12 radioactivity was also measured in mouse brain homogenate as a minor (<10%) radiometabolite at 60 min p.i.

Subsequently, Yanamoto et al. \[21\] used [11C]12 as a novel TSPO radioligand in a KA-induced neuroinflammatory rat model. They used \textit{in vitro} and \textit{ex vivo} autoradiography to demonstrate that [11C]12 radioactivity was significantly elevated in the striatum lesions induced by KA (2- to 3-fold higher than the contralateral striatum). Pre-block with AC-5216 or PK11195 abolished the difference in [11C]12 uptake levels between the lesioned and nonlesioned sides, suggesting that [11C]12 has very high specificity for TSPO. However, [11C]12 needs to be further studied in preclinical and clinical trials of many other neuroinflammatory neurological diseases to determine if it is a viable alternative TSPO radioligand.

DAC is a novel derivative of AC-5216 that can be labeled with [11C] by reacting a desmethyl precursor with [11C]CH3I. The binding affinity for [11C]DAC ([11C]13, Fig. 2, \(K_i = 0.23 \pm 0.02 \text{ nmol/L})\) is similar to [11C]12 in rat, however, it has lower lipophilicity \((\log D = 3.0)\) compared with [11C]12, indicating that [11C]13 may have higher specificity and faster kinetics. The greatest observed [11C]13 uptake was 2.24 \pm 0.16\% ID/g at 1 min p.i. in mouse brain, followed by rapid clearance. Low levels of radiometabolites of [11C]13 were detected in the mouse brain (<5%) at 60 min p.i. Yanamoto et al. \[22\] demonstrated that [11C]13 binding in KA-lesioned rats was greater in the lesioned striatum compared to control striatum \textit{in vivo}, similar to [11C]12. Pre-block with DAC or PK11195 significantly decreased [11C]13 uptake in the lesioned striatum to levels similar to the control side. Moreover [11C]13 TSPO binding was 1.8-fold higher in the lesioned striatum than in the contralateral striatum, as measured by \textit{in vitro} autoradiography. In another study, Yui et al. \[23\] reported that early infarction with a slight TSPO expression elevation in ischemic rat brains could be measured with [11C]13 PET imaging with very high molar activity (average 4060 GBq/\text{mmol}). However, binding was not observed with low molar activity of [11C]13 \(37 \text{ GBq/\text{mmol})\}, which is consistent with the \textit{in vitro} autoradiography results. However, neuroinflammation could be observed in the rat brain 4 days after...
ischemia using specific activity (SA) \(^ {[11C]} \text{I} \). Pre-block with AC-5216 or PK11195 diminished the difference in radioactivity between the ipsilateral and contralateral sides, suggesting that the increased radioactivity in the infected regions was specific to TSPO\(^{[1]} \). However, \(^ {[12C]} \text{I} \) imaging for TSPO needs to be confirmed in preclinical and clinical studies.

3.2.4. Pyrazolopyrimidines

\(N.N\)-Diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethyl-pyrazolo[1,5-\(a\)]pyrimidin-3-yl]acetamide (DPA-713) is a novel pyrazolopyrimidine ligand for TSPO. DPA-713 labeling with \(^ {11C} \) can be performed by \(O\)-alkylation of a phenolic derivative (\(N.N\)-diethyl-2-[2-(4-hydroxyphenyl)-5,7-dimethyl-pyrazolo[1,5-\(a\)]pyrimidin-3-yl]acetamide) with \(^ {11C} \)CH\(_3\)I to produce \(^ {11C} \text{DPA-713} \) (\(^ {11C} \text{I} \), Fig. 2). The radioligand displayed high affinity in rat \((K_i = 4.7 \, \text{nmol/L})\), mouse \((K_i = 1.3 \, \text{nmol/L})\), and human \((K_i = 15.0-66.4 \, \text{nmol/L}) \)^{[55,59]} \(^ {11C} \text{I} \) also has high lipophilicity \((\text{log} \, D = 2.4)\). In Pappio anubis baboon brains \(^ {11C} \text{I} \) radioactivity peaked at 20 min and remained constant during scanning. Pre-injection with PK11195 \((5 \, \text{mg/kg})\) successfully decreased the radioactivity by 70\% at 60 min throughout the whole brain, indicating that \(^ {11C} \text{I} \) binding in the baboon was specific for TSPO\(^{[60]} \). \(^ {11C} \text{I} \) has been widely used as a TSPO radioligand to study neuroinflammation. Boutin et al.\(^{[61]} \) found that \(^ {11C} \text{I} \) showed a greater difference between healthy and damaged brain parenchyma compared with \(^ {11C} \text{I} \) \((2.5 \pm 0.14-1.6 \pm 0.05\) fold increase, respectively) in an AMPA induced model of neuroinflammation in rats \(^ {11C} \text{I} \) had a better SNR ratio than \(^ {11C} \text{I} \) due to higher binding specificity\(^{[61,62]} \). Chaney et al.\(^{[63]} \) used PET imaging to demonstrate that \(^ {11C} \text{I} \) uptake was markedly increased in the ipsilateral versus contralateral hemisphere in distal middle cerebral artery occlusion (dMCAO) mice. Elevated radioactivity was also measured in the ipsilateral hemisphere of dMCAO when compared with sham mice. Similarly, using \textit{ex vivo} autoradiograph, elevated \(^ {11C} \text{I} \) radioactivity was observed in infarcted tissue compared to surrounding healthy brain tissue\(^{[63]} \). Recently, Chaney et al.\(^{[64]} \) found that \(^ {11C} \text{I} \) uptake in mice with ischemic stroke was significantly elevated in infarcted brain tissue compared to contralateral brain regions at both acute and chronic time-points. Further, using \textit{in vitro} autoradiography, increased \(^ {11C} \text{I} \) radioactivity was observed in infarcted versus contralateral brain regions. Importantly, microglial activation [determined by CD68 (cluster of differentiation 68) immunostaining] and \(^ {11C} \text{I} \) PET tracer binding were correlated\(^{[65]} \). Further studies in non-human primates and humans are needed.

Endres et al.\(^{[66]} \) first demonstrated that \(^ {11C} \) gives a greater brain signal according to dose-normalized time activity curves, indicating that \(^ {11C} \) is a potential radioligand for evaluating TSPO binding with PET imaging in human subjects. In another study, they found that the distribution of \(^ {11C} \) in human subjects was similar to the known biodistribution of TSPO. Further, dosimetry with \(^ {11C} \) is similar to that of \(^ {11C} \) in humans \(^ {11C} \) also has a similar dose burden compared to other \(^ {11C} \)-labeled PET tracers\(^{[66]} \). Recently, Endres et al.\(^{[66]} \) demonstrated that selective \(^ {11C} \) binding in healthy human brain was much higher than \(^ {11C} \)/(\(K_i > 1 \)). Subsequently, Gershen et al.\(^{[7]} \) found that \(^ {11C} \) radioactivity was greater ipsilateral to seizure foci, as compared to contralateral, in patients with TLE. However, the sample size was relatively small. Although \(^ {11C} \) has good potential as a TSPO radioligand due to its highly specific binding, we have observed an increased \(V_t\) over time, consistent with the accumulation of radiometabolites in the human brain\(^{[10]} \).

\(N.N\)-Diethyl-2-(2-(4-fluoroxyphenyl)-5,7-dimethyl-pyrazolo[1,5-\(a\)]pyrimidin-3-ylacetamide (DPA-714) is a novel 2-phenylpyrazolo[1,5-\(a\)]pyrimidin-1-amine that is a specific TSPO ligand. It was designed with a fluorine atom in its chemical structure, allowing for labeling with fluorine-18 \(^ {18F}\). DPA-714 is a close derivative of \(^ {11C} \). The affinity of DPA-714 for TSPO \((K_i = 7.0 \pm 0.4 \, \text{nmol/L})\) is lower than DPA-713 in rat. DPA-714 also has a high lipophilicity \((\text{log} \, D = 2.44)\), similar to DPA-713\(^{[76]} \). James et al.\(^{[77]} \) evaluated the biodistribution of \(^ {18F} \) in rodents and baboon and found that \(^ {18F} \) uptake in rat bone was very low, indicating this radioligand is stable against defluorination \textit{in vivo}. Similarly \(^ {18F} \) is capable of penetrating the BBB and accumulating in the baboon brain. The binding of \(^ {18F} \) in baboon brain could also be successfully blocked by PK11195, indicating TSPO specific binding. Further \(^ {18F} \) radio-}

metabolites were negligible in rat brain \((<3\% \text{ at 30 min p.i.})\). James et al.\(^{[78]} \) found that \(^ {18F} \) uptake in a quinolinic acid (QA)-lesioned rat brain model was significantly increased in the ipsilateral striatum and reduced after pre-block with PK11195. In one study, Doorduin et al.\(^{[79]} \) compared the radioactivity of \(^ {18F} \) and \(^ {11C} \) in a rat model of herpes encephalitis. They showed that specific uptake of \(^ {18F} \) was higher than \(^ {11C} \) in infected brain areas. Chauveau et al.\(^{[80]} \) further directly compared the uptake of \(^ {18F} \) and \(^ {11C} \) in a unilateral, striatal AMPA-lesioned rat model. They reported that \(^ {18F} \) performed better than \(^ {11C} \) and \(^ {11C} \) due to the greatest ipsilateral to contralateral uptake ratio and the highest BP. Moreover, the ability to label DPA-714 with \(^ {18F} \), the preferred PET isotope, supports its dissemination and clinical use\(^{[82]} \). Thomas et al.\(^{[83]} \) demonstrated that \(^ {18F} \) PET signal in a rat model of subarachnoid hemorrhage (SAH) was correlated to the degree of bleeding, suggesting that \(^ {18F} \) PET imaging could be used to improve SAH management in human patients. In another study, Gargiulo et al.\(^{[84]} \) used high-resolution PET/CT imaging and reported increased \(^ {18F} \) binding in the brainstem of transgenic SOD1\(^{[85]} \) mice, an ALS mouse model. The brainstem is a region known to have significant degeneration and activated microglia in ALS. Thus \(^ {18F} \) might be a suitable marker to evaluate microglial activation in the SOD1\(^{[85]} \) mouse model\(^{[71]} \). \(^ {18F} \) PET imaging was also investigated in other neurological diseases associated with neuroinflammation. Miyajima et al.\(^{[72]} \) monitored \(^ {18F} \) uptake with PET imaging and found that it was markedly increased before selective neuronal loss (SNL) in an ischemic stroke rat model, a change that was also observed by \textit{ex vivo} autoradiography. Tan et al.\(^{[73]} \) used \(^ {18F} \) PET/CT imaging to monitor neuroinflammation and evaluate the therapeutical effect of bone marrow stromal cells (BMSC) in an ischemic stroke rat model, indicating that \(^ {18F} \) has high potential for clinical application. Additionally, Nguyen et al.\(^{[74]} \) reported that \(^ {18F} \) binding in a mouse model with mesial TLE peaked on Day 7, which is mostly correlated with microglial activation, whereas reactive astrocytes become the main TSPO expression cells after 14 days. They demonstrated that TSPO has great potential as a longitudinal imaging biomarker and could be used to determine the therapeutic window in epilepsy, as well as to monitor the response to therapy\(^{[78]} \).

In healthy human subjects, Aricic et al. measured the highest cerebral \(^ {18F} \) uptake at 5 min p.i., followed by two decreasing phases: a promoted washout (5–30 min) and then a slower phase. They concluded that \(^ {18F} \) is a potential PET tracer with good \textit{in vivo} stability and biodistribution and an acceptable estimated effective dose\(^{[75]} \). Recently \(^ {18F} \) PET imaging has been widely used to study AD. Golla et al.\(^{[76]} \) demonstrated a small but significant difference in \(^ {18F} \) BP\(_{ND}\)
PET tracer development and neuroimaging application of TSPO

between AD patients and healthy subjects; however, the sample size was very small. Subsequently, Hamelin et al.177 performed \(^{18F}\)F15 PET imaging in more AD patients. They found that temporo-parietal cortex \(^{18F}\)F15 uptake was greater in AD patients that were high and mixed affinity binders as compared to controls, particularly at the prodromal stage. Moreover, TSPO binding was related with MMSE scores and grey matter volume, and with Pittsburgh compound B binding.177 Similarly, Hamelin et al.171 found that \(^{18F}\)F15 binding was significantly increased in patients with AD compared to controls both at prodromal and demented stages. They also observed that the change in \(^{18F}\)F15 uptake over time was positively correlated with three clinical outcome measures (Clinical Dementia Rating, MMSE, hippocampal atrophy), indicating that increased neuroinflammation (compared to the initial PET imaging) was associated with negative clinical AD progression. However, various factors may influence disease progression differently among different patients rather than across disease stages.161 Subsequently, Hagens et al.178 further demonstrated that \(^{18F}\)F15 could be used to monitor increased focal and diffuse neuroinflammation in progressive MS patients, but observed that the differences were most pronounced in high-affinity binders.

\(N,N\)-Diethyl-2-(2-(4-[18F]fluorophenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-yl)-acetamide (\(^{18F}\)FDPA \[^{18F}\]F16, Fig. 2), is a fluoro-containing pyrazolopyrimidine and fluoroaryl derivative of \(^{18F}\)F15 that has a fluorine atom located on the aromatic moiety, and is also a potential PET tracer. FDPA has a higher binding affinity (\(K_d = 2.0 \pm 0.8 \text{ mol/L}\)) than DPA-714, and \(^{18F}\)F16 also has appropriate lipophilicity (\(\log D = 2.34 \pm 0.05\)). \(^{18F}\)F15 uptake in mouse brain was moderate (3.69% ID/g) at 2 min p.i., and the radioactivity washout was also reasonable (1.15% ID/g) at 60 min p.i. Moreover, bone uptake was negligible (<1% ID/g), indicating that little or no defluorination occurred in vivo in mice. Wang et al.179 further studied \(^{18F}\)F16 PET imaging in neuroinflammation models. Using a rat ischemia model, they demonstrated that maximum \(^{18F}\)F16 uptake occurred at the ischemic site and reached a peak of 1.20 SUV at 10 min p.i. After pre-treatment with PK11195, the PET signal was significantly reduced by ca. 80%, indicating high specificity of \(^{18F}\)F16 binding in vivo. Moreover, they found that \(^{18F}\)F16 could easily cross the BBB. In the APP/PS1 mouse model, they found that \(^{18F}\)F16 increased to 1.50 ± 0.13 SUV at 3 min p.i., indicating 1.6-fold higher uptake and slow washout compared to age-matched controls. They obtained similar results in ischemic rat brains and APP/PS1 mouse brains using in vitro autoradiography.179 In another study, Keller et al.180 showed that \(^{18F}\)F16 radioactivity in APP/PS1 mouse brains was substantially elevated with age using in vivo PET imaging and in vitro brain autoradiography. They also observed significant differences in binding between wildtype and transgenic animals in vivo at 9 months and ex vivo at 4.5 months. After pre-block with PK11195 \(^{18F}\)F16 uptake was significantly decreased in all brain regions studied. PET imaging of \(^{18F}\)F16 has not yet been translated to higher species.

\(2-(7\text{-Butyl}-2-(4-[18F]fluorophenoxy)phenyl)-5\text{-methylpyrazolo[1,5-a]pyrimidin-3-yl}-N,N\)-diethy-lacetamide (\(^{18F}\)VUIIS1018A \[^{18F}\]F17, Fig. 2), is a novel analog of \(^{18F}\)F15 that features a 700-fold higher in vitro binding affinity for TSPO than \(^{18F}\)F15. \(^{18F}\)F17 exhibits an exceptional high TSPO binding affinity in vitro study (IC\(_{50} = 16.2 \text{ pmol/L}\)). \(^{18F}\)F17 has a high lipophilicity (\(\log D = 3.74 \pm 0.01\)), but, unlike \(^{18F}\)F15, its lipophilicity is slightly higher than the appropriate range (\(\log D = 1.0-3.5\)). The lipophilicity of \(^{18F}\)F17 needs to be reduced for PET imaging in the brain. Low \(^{18F}\)F17 radioactivity was observed (<1.0% ID/g) in healthy mouse brains at all time points, which is consistent with the normal TSPO distribution. Low uptake (1.6% ID/g) was also observed in the femur at 1 min p.i., which increased slightly (2.1% ID/g) at 60 min p.i., indicating that there was no significant defluorination in vivo. Metabolite analysis showed that 95.7 ± 3.0% and 86.2 ± 2.1% of intact \(^{18F}\)F17 remained in the brain at 30 and 60 min p.i., respectively, which is greater than the ratio of intact \(^{18F}\)F15 observed in brain. They further evaluated the radioligand using a focal cerebral ischemic rat model. The results demonstrated that \(^{18F}\)F17 uptake substantially increased on the ischemic side compared to the contralateral side. After blocking with unlabeled VUIIS1018A and PK11195, the radioactivity on the ischemic side of the brain was markedly decreased. They observed the same trend using in vitro autoradiography.180 No translational imaging data has been reported in primates or humans.

3.2.5. Vinca alkaloids

Vinpocetine is a vinca alkaloid compound widely utilized in the prevention and therapy of cerebrovascular disorders. It was developed as a PET tracer labeled with \(^{11C}\) and has good pharmacokinetic characteristics and high affinity to TSPO. Gulyás et al.181 performed a distribution study of \(^{11C}\)Vinpocetine \(^{11C}\)VUI (Fig. 2) in a cynomolgous monkey and showed that \(^{11C}\)VUI could rapidly enter the brain \(^{11C}\)VUI radioactivity was heterogeneously distributed among different brain regions and was greatest in the thalamus, the basal ganglia, and certain neocortical regions.

\(^{11C}\)VUI binds to TSPO in brain tissue with low affinity (IC\(_{50} = 0.2 \mu\text{mol/L}\)). Subsequently, Gulyás et al.182 performed \(^{11C}\)VUI imaging in healthy human subjects and reported rapid \(^{11C}\)VUI uptake in the brain. Radioactivity varied among different brain regions, with the greatest regional uptake in the thalamus, upper brain stem, striatum, and cortex, suggesting that \(^{11C}\)VUI binding was specific for TSPO. A PET imaging study in four MS patients demonstrated that global brain \(^{11C}\)VUI uptake significantly surpassed \(^{11C}\)VUI radioactivity, indicating that \(^{11C}\)VUI is superior to \(^{11C}\)VUI. In contrast, Gulyás et al.183 observed no significant differences in \(^{11C}\)VUI signal between AD patients and age-matched control subjects. In another study, Gulyás et al.184 suggested that \(^{11C}\)VUI uptake in post-stroke patients was higher in the peri-infarct zone compared with the ischemic core; however, the difference was not significant. Additionally, no significant differences in BP were observed between \(^{11C}\)VUI and \(^{11C}\)VUI in any of the standard regions. This is likely due to the low binding affinity of \(^{11C}\)VUI for TSPO, which may limit further clinical use.

3.2.6. Oxopurine analogs

\(N\)-Benzyl-N-methyl-2-[7,8-dihydro-7-(2-[18F]fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl] acetamide (\(^{18F}\)FDAC \[^{18F}\]F19, Fig. 2), is an \(^{18F}\)F-labeled oxopurine analog. The binding affinity (\(K_d\)) of \(^{18F}\)F19 toward TSPO was 1.34 ± 0.15 nmol/L in vitro, and \(^{18F}\)F19 had an appropriate lipophilicity (\(\log D = 3.1\)). \(^{18F}\)F19 showed high uptake (>1% ID/g) in the mouse brain, and \(^{18F}\)F19 radioactivity ranged from 1.33 ± 0.13 to 2.18 ± 0.33 in mouse brain, suggesting that little or no defluorination occurred. The maximum \(^{18F}\)F19 uptake in the monkey brain was in the occipital cortex at about 20 min p.i., similar to \(^{11C}\)VUI, and low accumulation of radioactivity was observed in the skull, suggesting little or no defluorination occurred in vivo. Metabolic analysis in brain homogenate demonstrated that 75% of \(^{18F}\)F19 was intact at 30 min p.i.185. Yamamoto et al.186 found that \(^{18F}\)F19...
uptake in rat brain was substantially elevated in KA-lesioned striatum compared with non-lesioned striatum, indicating that [^{18}F]19 is a potential PET tracer for TSPO imaging. Subsequently, Yui et al.187 evaluated [^{18}F]19 in the ischemic rat brain. They found that [^{18}F]19 binding in the ischemic rat brain in vivo was significantly increased on the ipsilateral side compared with the contralateral side. Blocking studies with an excess of AC-5216 or PK11195 abolished the difference in radioactivity between the contralateral and ipsilateral sides. Similar results were also obtained by ex vivo autoradiography of infarcted rat brains187. Further investigation into the use of [^{18}F]19 imaging to detect neuroinflammation in the primate and human brain is currently underway.

3.2.7. Acetamidobenzoxazolone
2-[5-(4-Methoxyphenyl)-2-oxo-1,3-benzoxazol-3(2H)-yl]-N-methyl-N-phenylacetamide (MBMP) is an acetamidobenzoxazolone skeleton labeled with \(^{11}\)C and is a new candidate TSPO PET tracer (\([^{11}C]20, \text{Fig. 2}\)). The binding affinity (\(K_i\)) of \([^{11}C]20\) toward TSPO was 0.29 nmol/L, and \([^{11}C]20\) had appropriate lipophilicity (\(\text{cllog}D = 3.5\)189). \([^{11}C]20\) rapidly entered the mouse brain. Initial brain uptake was more than 2.0% ID/g at 1 min p.i. in mice, and the maximum uptake was observed in the cerebellum. Metabolism analysis showed that 98.6 ± 0.5% of \([^{11}C]20\) was intact at 5 min p.i. with one polar metabolite. However, at 60 min p.i., only 65.7 ± 2.7% of \([^{11}C]20\) in the brain was intact. Subsequently, Tiwari et al.189 evaluated TSPO binding ligands in an ischemic rat model. Using PET imaging, they observed that \([^{11}C]20\) and \([^{11}C](R)1\) binding were obviously higher on the ipsilateral side than on the contralateral side. Blocking with unlabeled MBMP or PK11195 substantially decreased \([^{11}C]20\) binding on the ipsilateral side. In vitro autoradiography yielded similar results. This suggested that \([^{11}C]20\) was superior to \([^{11}C](R)1\) for imaging. Critically, however, 35% of the \([^{11}C]20\) signal observed in the mouse brain at 60 min p.i. came from radio-metabolites, which is markedly higher than other TSPO radioligands (<10%)79,138,168. This is likely to limit the clinical use of \([^{11}C]-\text{MBMP}\). Thus, further evaluation of \([^{11}C]20\) was not warranted.

3.2.8. Aryloxy pyridylamide
\(N-[2-[2-(\text{5-[2-(18F)fluoroethoxy]-5-methoxybenzyl]-N-[2-(4-methoxy-phenoxy)pyridin-3-yl]acetamide (\[^{18}F\]FEMPA (\[^{18}F\]21, \text{Fig. 2})\), is an arylpyridylamide derivative, and is a potential novel second-generation TSPO radioligand. Preclinical results suggested that \([^{18}F]21\) could be rapidly eliminated from the brain and had a good SNR in nonhuman primates. Varrone et al.190 demonstrated a markedly greater \(V_T\) for \([^{18}F]21\) in the medial temporal cortex in AD patients compared with controls when the TSPO binding status was used as a covariate. They also observed a substantially higher \(V_T\) for \([^{18}F]21\) in the medial and lateral temporal cortex, posterior cingulate, cingulate, putamen, thalamus, and cerebellum in AD patients compared to controls. Their study suggested that \([^{18}F]21\) could be used as a potential TSPO probe in AD patients if binding status is taken into account.

The second-generation TSPO radioligand properties and PET imaging studies are summarized in Supporting Information Table S2. Most of these PET tracers showed high affinity and high selectivity to TSPO and better SNR compared with \([^{11}C]1\). Thus, they have the potential to significantly contribute to clinical investigation of the relationship between TSPO and neurological disorders.

3.3. TSPO PET tracers with low binding sensitivity to rs6971 polymorphism
As mentioned above, a major limitation of aforementioned TSPO radioligands is TSPO binding affinity variability in the human brain186,191,192. This binding status variability is influenced by the single nucleotide polymorphism rs6971 in the human TSPO gene, which has been classified as HAB (A/A; ~70%), LAB (A/T; ~21%), and LAB (T/T; ~9%)193. This polymorphism makes it difficult to generate consistent preclinical results with aforementioned TSPO radioligands. New radioligands that are insensitive to the rs6971 polymorphism are needed (Fig. 3).

2-[5-(4-Fluoroethoxy-2-oxo-1,3-benzoxazol-3(2H)-yl)-N-methyl-N-phenylacetamide (FEMBP) is a novel TSPO ligand that can be labeled with \(^{18}\)F for use as a radioligand (\([^{18}F]22, \text{Fig. 3}\)194). The binding affinity (\(K_i\)) of \([^{18}F]22\) toward TSPO was 6.6 ± 0.7 nmol/L, and \([^{18}F]22\) had a suitable lipophilicity (\(\text{log}D = 3.43\) in vitro194). A biodistribution study in mice demonstrated a relatively high initial \([^{18}F]22\) radioactivity (approximately 2.7% ID/g) in the mouse brain at 1 min p.i. High uptake (approximately 3.8% ID/g) was also measured in mouse bone, which is not negligible. However, in the ischemic rat brain, there was very little \([^{18}F]22\) accumulation in the skull. The investigators speculated that the uptake in mouse bone samples may have resulted from \([^{18}F]22\) binding to marrow instead of \([^{18}F]\)FP trapped in bones. Metabolic analysis showed that parent \([^{18}F]22\) remained at 76.4 ± 2.1% at 60 min p.i. in the mouse brain192. Subsequently, in a PET imaging study, Tiwari et al.195 demonstrated that \([^{18}F]22\) radioactivity in the ischemic rat brain was significantly increased in the ipsilateral striatum compared with the contralateral side. After pre-treatment with unlabeled MBMP or PK11195, the \([^{18}F]22\) uptake was markedly decreased on the ipsilateral side of the brain, indicating that the \([^{18}F]22\) signal was specific for TSPO.

Tiwari et al.196 used \([^{18}F]22\) to demonstrate the association of TSPO genotype with binding variability. In vitro autoradiographic analysis of postmortem human brains suggested that the \([^{18}F]22\) \(K_i\) ratio for LAB to HAB (\(R_{LAB/HAB}\)) was 0.9. The ratio of TSPO binding for LAB to HAB (\(R_{LAB/HAB}\)) was also about 0.90. Thus, the ratio of specific binding for \([^{18}F]22\) in both the HAB and LAB groups was similar, suggesting that the rs6971 polymorphism didn’t affect \([^{18}F]22\) binding status. Further, their findings suggest that \([^{18}F]22\) is a promising new tool for visualizing neuroinflammation195. However, in vivo results may differ from in vivo findings. Thus, further investigation of in vivo \([^{18}F]22\) binding affinity in human subjects with different genotypes is needed.

(S-[\text{3-N,N-Diethyl-9-[2-(18F)fluoroethoxy]-5-methoxy-2,3,4,9-tetrahydro-1H-carbazole-4-carboxamide (\([^{18}F]\)FGE-180 (\([^{18}F]23, \text{Fig. 3})\), is another promising TSPO radioligand used for human PET imaging196). \([^{18}F]23\) has a very high affinity for TSPO (\(K_i = 2.4\) nmol/L) in rat heart and metabolic analysis showed that 94% of \([^{18}F]23\) was intact in the brain at 60 min p.i.197, suggesting that \([^{18}F]23\) is a very promising TSPO radioligand. In recent years, it has been widely used to study neuroinflammation. Wadsworth et al.197 reported that \([^{18}F]23\) had very good affinity, high brain absorption, and higher specific binding in a neuroinflammation model, and Dickens et al.198 demonstrated that \([^{18}F]23\) could identify sites of activated microglia in both gray and white matter in a LPS-induced model of acute neuroinflammation. They also suggested that \([^{18}F]23\) could be
used to monitor activated microglia better than $^{[11}C](R)I$ because of its higher BP and, as a fluorinated radioligand, its longer half-life. Similarly, Boutin et al.199 reported that $^{[18}F]23$ radioactivity in ischemic rat brains displayed a better SNR than $^{[11}C]PK11195$ due to its very low nonspecific binding. In another study, Liu et al.200 showed that $^{[18}F]23$ PET imaging could be used to monitor neuroinflammation during AD progression and treatment. Subsequently, López-Picón et al.201 demonstrated that $^{[15}F]23$ could be used to monitor neuroinflammation and therapeutic modulation of microglial activation in an AD mouse model. Moreover $^{[15}F]23$ imaging could also be used as a potential tool to study epileptogenesis in a rat model of TLE202.

Feeney et al.203 further demonstrated that the total V_T of $^{[18}F]23$ were no significant correlations in either HAB and MAB. In one study of MS patients, Vomacka et al.204 found that $^{[18}F]23$ PET imaging could semi-quantitatively evaluate neuroinflammation in patients with relapsing remitting multiple sclerosis (RRMS). In a subsequent human study, Unterrainer et al.205 demonstrated that $^{[18}F]23$ PET imaging could detect areas of focal microglia activation in RRMS patient lesions that were not associated with the patient’s binding genotype. They found that the SUVR of $^{[18}F]23$ in the focal lesions of RRMS patients with different TSPO binding genotypes were 1.87 ± 0.43 (HAB), 1.95 ± 0.48 (MAB), and 1.86 ± 0.80 (LAB). However, another recent study showed that $^{[18}F]23$ had very low brain uptake in human subjects, hindering its translation to human PET imaging206.

Another new TSPO radioligand $^{[11}C](R)-N$-sec-butyl-4-(2-chlorophenyl)-N-methylquinazoline-2-carboxamide ($^{[11}C]ER176$ (Fig. 3)), is a novel quinazoline analog of $^{[11}C](R)1$ $^{[11}C]24$, Fig. 3), has adequately high binding affinity for all TSPO rs6971 genotypes207. The ratio of radioligand binding in HAB to LAB was only 1.3 to 1 for ER176 in human brain tissue208, whereas the comparable ratio was 55 to 1 for PBR28209. Nevertheless, the clinical relevance of this compound remains to be confirmed.

The latest TSPO radioligand $^{[18}F]GE387$ ($^{[18}F]25$, Fig. 3), was recently reported by Qiao et al.209. More importantly, the binding affinities of $^{[18}F]S)25$ to LAB and HAB were evaluated using an assay based on human embryonic kidney cell lines, and the LAB/HAB ratio was determined to be 1.3, which was similar to that of $^{[11}C](R)1$. This suggests that $^{[18}F]25$ TSPO binding affinity is not influenced by TSPO genotype. Moreover, they also showed that the racemic analogue of $^{[18}F]25$ could enter the brain in wild-type rats. Thus $^{[18}F]25$ has high potential as a TSPO radioligand due to its long half-life and probably low sensitivity to the human rs6971 polymorphism209. However, further $^{[18}F]25$ PET imaging studies need to be performed in non-human primates and humans. These new TSPO radioligands properties and PET imaging studies are summarized in Supporting Information Table S3. Although these TSPO radioligands are less sensitive TSPO binding variability compared with aforementioned radioligands, their detection was still inconsistent, limiting further comparisons. Further clinical studies are needed to evaluate these new third-generation TSPO radioligands.

4. Conclusions and perspectives

A candidate PET radioligand must meet a wide array of chemical and biochemical requirements210, including (i) high binding affinity represented by K_i or half-maximal inhibitory concentration (IC$\textsubscript{50}$)—the ligands should generally have high affinity for imaging brain targets in the nanomolar or subnanomolar range; (ii) selectivity for target binding—the ligand should bind only to the biomarker, and possesses weak affinity for off-target sites; (iii) ability to pass the BBB [generally molecular weight $\text{MW} < 400$ Da, appropriate lipophilicity ($\log D_{7.4}$ of 1–3)]; (iv) amenability to be labeled with carbon-11 or fluorine-18. When the ligand is optimized and radiolabeled, the corresponding radioactive PET tracer should (v) have relatively high radiochemical yields (ideally >10%); (vi) show high BP, low nonspecific binding (or low nondisplicable place) and rapid clearance for nonspecific binding; (vii) be lack of accumulation of radiometabolites in the brain or radiodefluorination in skull. Specificity for TSPO, receptor binding assays at the cellular level derived from human192,209 would facilitate the discovery of novel ligands with low sensitive or insensitive to genotype, which would be helpful to develop next-generation TSPO PET tracers since traditional PET imaging in rodents or monkeys could not distinguish this rs6971 polymorphism.

However, the rational design of TSPO PET radiotracers with low sensitivity to the A147T variant encounter challenges. So far, only one crystal structure of TSPO with PK11195 was disclosed (Fig. 1), and A147T TSPO was capable of retaining the uniform structural and dynamic profile of TSPO and thus binds PK11195 with similar affinity211, making this ligand as a promising scaffold for further rs6971-polymorphism-insensitive tracer development10,212. Scarf et al.213 proposed that this is due to a poor understanding of how ligands bind with TSPO and a lack of knowledge about how the protein changes in disease states. Thus, a more comprehensive understanding of binding mode of the ligand to TSPO, and biological structure changes of TSPO in disease states are necessary to enable the development of more specific PET radiotracers that provide significant insights into the role of TSPO in neuroinflammation.

Although great efforts have been made over the past decades to develop new TSPO radioligands for visualizing neuroinflammation in clinical research, there are a number of nuances that influence the interpretation of TSPO. These issues are not specific to TSPO, and are typical of neuroinflammatory markers in brain, however, they do illustrate that it would be useful to have additional markers of gliosis for \textit{in vivo} imaging.

While it is well described that TSPO is overexpressed in a number of diseases with microglial and astroglial activation, TSPO is located on the mitochondria. Hence, it is theoretically

![Figure 3](image-url) Chemical structures of new TSPO radioligands with insensitivity to rs6971.
possible that mitochondrial loss could result in a reduction in signal in some diseases and obscure a positive finding if the magnitude of signal loss due to lower mitochondrial density matched the greater expression of TSPO from gliosis. Also, it is possible that as more is learned about TSPO, other factors will be determined that might affect its expression since TSPO has a number of roles as discussed in the introduction. In addition, TSPO expression is not fully selective to activated microglia. Inflammatory cells of different types may adopt similar mechanisms and protein expression for common cellular functions. In disease states, TSPO may be found in activated microglia, astrocytes, and sometimes peripheral macrophages. In health, TSPO may be found in endothelial cells and undifferentiated glial cells.

These findings suggest that TSPO binding between health and disease is typically viewed as reflecting microglial and astroglial activation.

To address these issues other radiotracers are being developed for novel targets. New radiotracers for the membrane purinergic receptor P2X (P2X R) are under development. Recent studies have compared PET imaging using [18F]15 (a second-generation TSPO radioligand) and [11C]JNJ717 (a novel PET tracer for P2X-R) in patients with ALS. The results indicated that [18F]15 uptake in motor cortex was visually enhanced and could co-localize with Iba1 staining, but not GFAP staining, in ALS. However, they didn’t monitor the regional increase in [11C]JNJ717 binding or the co-localization of [11C] JNJ717 and Iba1/GFAP staining. These findings suggest that TSPO imaging may be superior to P2X-R imaging in early symptomatic ALS patients. Other cautions of the P2X radiotracers is that they also bind to astrocytes, and the variability of their binding in healthy humans is high. However, it has been proposed that identification of genotypes associated with this variance might be applied as a similar strategy as with TSPO radioligands. Monoamine oxidase B (MAO-B) is overexpressed in activated microglia in neurodegenerative diseases such as AD and several MAO-B radioligands have been modeled in humans, of which SL25.1188 has been shown to have the best properties of reversibility, brain uptake, and lack of brain penetrant metabolites. To date SL2511.88 has been applied in MDD for which greater MAO-B V T was identified in the prefrontal cortex, and greater MAO-B V T was found with age, the latter which was attributed to greater astrogliosis with disease progression in MDD. Thus, radioligands development for studying neuroinflammation remains to be further explored.

5. Future directions

TSPO is widely distributed throughout the whole body and is especially enriched in tissues that synthesize steroids. TSPO is mainly located in the OMM, linking signaling between the OMM and the IMM at the subcellular level. A dramatic upregulation of TSPO is associated with microglial activation in response to brain injury and neuroinflammation. Therefore, elevated TSPO expression is considered a hallmark of gliosis and microglial activation. TSPO radioligands may be utilized to assess gliosis in neuropsychiatric diseases and, in the future, their treatment. Currently, many TSPO PET tracers have been developed and widely used, however, because of the rs6971 TSPO polymorphism, there is not yet a suitable TSPO PET tracer for patients with a genetically determined low binding affinity. In addition, it would be ideal if more specific radioligands as well as biomarkers for activated microglia were developed. Additional studies are needed to conduct preclinical and early clinical assessment of these PET tracers, especially those radiolabeled with 15F, in order to establish their usefulness as research and clinical tools. There is great potential for the future use of these radioligands as diagnostic and prognostic tools, as well as for assessing therapeutic interventions for neurologic diseases.

Acknowledgments

We thank Dr. Jeffrey H. Meyer, Neil Vasdev, and Steven H. Liang for modifying the paper. The authors gratefully acknowledge the support of K.C. Wong Education Foundation (China), and the Project of Innovative Team for the Guangdong Universities (2018KCXTD001, China). This work was financially supported by the National Natural Science Foundation of China (Nos. 81701751 and 81871383) and Guangdong Basic and Applied Basic Research Foundation (2020A1515011192, China).

Author contributions

Lingling Zhang and Kuan Hu contributed to the writing of the manuscript. Lu Hou and Shaojuan Zhang constructed the Figures and Tables. Jinghao Wang and Hao Xu provided constructive suggestions. Tuo Shao and Weijian Ye contributed to the English language editing. Lee Josephson, Jeffrey H. Meyer, Ming-Rong Zhang and Neil Vasdev modified the paper. Lu Wang and Steven H. Liang conceived the project and modified the paper.

Conflicts of interest

The authors declare no conflicts of interest.

Appendix A. Supporting information

Supporting data to this article can be found online at https://doi.org/10.1016/j.apsb.2020.08.006.

References

1. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 2006;27:402–9.
2. Guilarte TR. TSPO in diverse CNS pathologies and psychiatric disease: a critical review and a way forward. Pharmaco Ther 2019;194:44–58.
3. Liu GJ, Middleton RJ, Hatty CR, Kam WW, Chan R, Pham T, et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 2014;24:631–53.
4. Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 1998;139:4991–7.
5. Jamin N, Neumann IM, Ostuni MA, Vu TK, Yao ZX, Murail S, et al. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol 2005;19:588–94.
6. Lacapère JJ, Delavoie F, Li H, Péranzi G, Maccario J, Papadopoulos V, et al. Structural and functional study of reconstituted peripheral benzodiazepine receptor. Biochem Biophys Res Commun 2001;284:536–41.
PET tracer development and neuroimaging application of TSPO

7. Gatliiff J, Campanella M. TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria. Biochem J 2016;473:107–21.

8. Gatliiff J, East D, Crosby J, Abeti R, Harvey R, Craigen W, et al. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy 2014;10:2279–96.

9. Guo Y, Kalathur RC, Liu Q, Kloss B, Bruni R, Ginter C, et al. Protein structure. Structure and activity of tryptophan-rich TSPO proteins. Science 2015;347:551–5.

10. Li F, Liu J, Zheng Y, Garavito RM, Ferguson-Miller S. Protein structure. Crystal structures of translocator protein (TSPO) and pseudomimic of human polymorphism. Science 2015;347:555–8.

11. Santoro A, Mattace Raso G, Taliani S, Da Pozzo E, Simorini F, Costa B, et al. TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis. Eur J Pharmacol 2016;88:124–31.

12. Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmac Ther 2006;110:503–24.

13. Larcher JC, Vayssiere JL, Le Marquer FJ, Cordeau LR, Keane PE, Schumacher M, et al. Ro5-4864, a synthetic ligand of peripheral benzodiazepine receptor (PBR) protein components in the rat brain. Mol Endocrinol 2005;19:540–54.

14. O’Hara MF, Nibbio BJ, Craig RC, Nemeth KR, Charlap JH, Knudsen TB. Mitochondrial benzodiazepine receptors regulate oxygen homeostasis in the early mouse embryo. Reprod Toxicol 2003;17:365–75.

15. Galilègue S, Casellas P, Kramar A, Tinel N, Simony-Lafontaine J. Immunohistochemical assessment of the peripheral benzodiazepine receptor in breast cancer and its relationship with survival. Clin Cancer Res 2004;10:2058–64.

16. Hauet T, Yao ZX, Bose HS, Wall CT, Han Z, Li W, et al. Peripheral-type benzodiazepine receptor-mediated action of a steroidalogenic acute regulatory protein on cholesterol entry into leydig cell mitochondria. Mol Endocrinol 2005;19:540–54.

17. O’Hara MF, Charlap JH, Craig RC, Knudsen TB. Mitochondrial transduction of ocular teratogenesis during methylmercury exposure. Teratology 2002;65:131–44.

18. Ostuni MA, Marazova K, Peranzini G, Vidic B, Papadopoulos V, Ducroc R, et al. Functional characterization and expression of PBR in rat gastric mucosa: stimulation of chloride secretion by PBR ligands. Am J Physiol Gastrointest Liver Physiol 2004;286:G1069–80.

19. Pulagam KR, Colás L, Padra D, Plaza-Garcia S, Gómez-Velarde J, Higuchi M, et al. Evaluation of the novel TSPO radiotracer [18F]VU11008 in a preclinical model of cerebral ischemia in rats. EJNMMI Res 2017;7:93.

20. Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neurophatology and neurological disorders. Neuroscience 2006;138:749–56.

21. Veenman L, Leschper S, Spanier I, Weisinger G, Weizman A, Gavish M. PK11195 attenuates kainic acid-induced seizures and alterations in peripheral-type benzodiazepine receptor (PBR) protein components in the rat brain. J Neurochem 2002;80:917–27.

22. Leonelli E, Yague JG, Ballabio M, Azoitio I, Magnaghi V, Schumacher M, et al. R55-4864, a synthetic ligand of peripheral benzodiazepine receptor, reduces aging-associated myelin degeneration in the sciatic nerve of male rats. Mech Ageing Dev 2005;126:1159–63.

23. Knezevic D, Mizrahi R. Molecular imaging of neuroinflammation in Alzheimer’s disease and mild cognitive impairment. Prog Neuro-Psychopharmacol Biol Psychiatry 2018;80:123–31.

24. Lavisse S, Guillermier M, Héard AS, Petit F, Delahaye M, Van Camp N, et al. Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci 2012;32:10809–18.

25. Dupont AC, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Trolel C, Aricor N. Translocator protein-18 kDa (TSPO) positron emission tomography (PET) imaging and its clinical impact in neurodegenerative diseases. Int J Mol Sci 2017;18:785.

26. Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2009;35:306–28.

27. Venneti S, Wang G, Nguyen J, Wiley CA. The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol 2008;67:1001–10.

28. Gershen LD, Zanotti-Fregonara P, Dustin IH, Lion JS, Hirvonen J, Kreisl WC, et al. Neuroinflammation in temporal lobe epilepsy measured using positron emission tomographic imaging of translocator protein. JAMA Neurol 2015;72:882–8.

29. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miller L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 2015;72:268–75.

30. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 2000;97:9226–33.

31. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov 2008;7:591–607.

32. Ametamy SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev 2008;108:1501–16.

33. Huang H, Zhu H, Xie Q, Tian X, Yang X, Feng F, et al. Evaluation of 124I-JS001 for hPD1 immuno-PET imaging using sarcoma cell homografts in humanized mice. Acta Pharm Sin B 2020;10:1321–30.

34. Suridjan I, Comley RA, Rahiner EA. The application of positron emission tomography (PET) imaging in CNS drug development. Brain Imaging Behav 2019;13:354–65.

35. Deng X, Rong J, Wang L, Vasdev N, Zhang J, Josephson L, et al. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 15N-, and 15O-labeling reactions. Angew Chem Int Ed Engl 2019;58:2580–605.

36. Lan Y, Bai P, Chen Z, Neelamgaram R, Placzek MS, Wang H, et al. Novel radioligands for imaging sigma-1 receptor in brain using positron emission tomography (PET). Acta Pharm Sin B 2019;9:1204–15.

37. Park SY, Zacharias C, Harrison C, Fan RE, Kuderer C, Hatami N, et al. Gallium 68 PSMA-11 PET/MR imaging in patients with intermediate- or high-risk prostate cancer. Radiology 2018;288:495–505.

38. Hou K, Shang J, Xie L, Hanyu M, Zhang Y, Yang Z, et al. PET Imaging of VEGFR with a novel 186Cu-labeled peptide. ACS Omega 2020:5:8508–14.

39. Bensch F, van der Veen EL, Lub-de Hooge MN, Joorsma-Smit A, Boellaard R, Kok IC, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 2018;24:1852–8.

40. Li D, Cheng S, Zou S, Zhu D, Zhu T, Wang P, et al. Immuno-PET imaging of 89Zr labeled anti-PD-L1 domain antibody. Mol Pharm 2018;15:1674–81.

41. Hu K, Xie L, Zhang Y, Hanyu M, Yang Z, Nagatsu K, et al. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat Commun 2020;11:2778.

42. Hou L, Wang L, Wang J, Ye W, Wu X, Zheng Z, et al. Positron emission tomography (PET) application in the phase 0 clinical trials in drug development. Pharm Today 2020;30:99–105.

43. Coughlin JM, Wang Y, Minn I, Bienko N, Amfinder EG, Xu X, et al. Imaging of glial cell activation and white matter integrity in brains of...
active and recently retired national football league players. JAMA Neurol 2017;74:67–74.

45. Sack dorff M, Riss anen E, Tius ku J, Nuutinen S, Paavilainen T, Rokka J, et al. Evaluation of the effect of fingolimod treatment on microglial activation using serial PET imaging in multiple sclerosis. J Nucl Med 2017;58:1646–51.

46. Morris RS, Simon Jones P, Alawneh JA, Hong YT, Fryer TD, Aigbirihio FL, et al. Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man. Brain 2018;141: 2908–111.

47. Yokokura M, Terada T, Bunai T, Nakaizumi K, Takebayashi K, Iwata Y, et al. Depiction of microglial activation in aging and dementia: positron emission tomography with [11C]DPA713 versus [11C](R)PK11195. J Cerebr Blood Flow Metabol 2017;37:877–89.

48. Politis M, Lahiru N, Niccolini F, Su P, Wu K, Giannetti P, et al. Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington’s disease gene carriers. Neurol Dis 2015;53:115–21.

49. Datta G, Colasanti A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O, et al. Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 2017;140:2927–38.

50. Kobayashi M, Jiang T, Telu S, Zoghbi SS, Gunn RN, Rabiner EA, et al. [11C]-DPA-713 has much greater specific binding to translocator protein 18 kDa (TSPO) in human brain than [11C]-(R)-PK11195. J Cerebr Blood Flow Metabol 2018;38:593–403.

51. Datta G, Colasanti A, Kalk N, Owen D, Scott G, Rabiner EA, et al. [11C]-PB28 and [18F]-PB111 detect white matter inflammatory heterogeneity in multiple sclerosis. J Nucl Med 2017;58:1477–82.

52. Brody AL, Hubert R, Ensori R, Garcia LY, Mamoun MS, Okita K, et al. Effect of cigarette smoking on a marker for neuroinflammation: [11C]DPA-714 in a rat model of active and recently retired national football league players. JAMA Neurol 2017;141: 2908–111.

53. Vignal N, Cisternino S, Rizzo-Padoin N, San C, Hontonnou F, Vignal A, et al. A genetic polymorphism for translocator protein 18 kDa affects neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 2017;140:2927–38.

54. Kobayashi M, Jiang T, Telu S, Zoghbi SS, Gunn RN, Rabiner EA, et al. [11C]-DPA-713 has much greater specific binding to translocator protein 18 kDa (TSPO) in human brain than [11C]-(R)-PK11195. J Cerebr Blood Flow Metabol 2018;38:593–403.

55. Vignal N, Cisternino S, Rizzo-Padoin N, San C, Hontonnou F, Gelé T, et al. [18F]-FEPPA a TSPO radioligand: optimized radiosynthesis and evaluation as a PET radiotracer for brain inflammation in a peripheral LPS-injected mouse model. Molecules 2018;23:1375.

56. Fan Z, Harold D, Pasqualetti G, Williams J, Brooks DJ, Edison P. Can neuroinflammation in a TSPO genetic subgroup (HAB or MAB) be applied to the entire AD cohort?. J Nucl Med 2015;56: 707–13.

57. Lin D, Chang YJ, Strauss 3rd JF, Miller WL. The human peripheral benzodiazepine receptor gene: cloning and characterization of alternative splice in normal tissues and in a patient with congenital lipoid adrenal hyperplasia. Genomics 1993;18:643–50.

58. Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Garcia LY, Mamoun MS, Okita K, et al. Effect of cigarette smoking on a marker for neuroinflammation: a [18F]DPA1106 positron emission tomography study. Neuropsychopharmacology 2018;43:925.

59. Vignal N, Cisternino S, Rizzo-Padoin N, San C, Hontonnou F, Gelé T, et al. [18F]-FEPPA a TSPO radioligand: optimized radiosynthesis and evaluation as a PET radiotracer for brain inflammation in a peripheral LPS-injected mouse model. Molecules 2018;23:1375.

60. Fan Z, Harold D, Pasqualetti G, Williams J, Brooks DJ, Edison P. Can neuroinflammation in a TSPO genetic subgroup (HAB or MAB) be applied to the entire AD cohort?. J Nucl Med 2015;56: 707–13.

61. Lin D, Chang YJ, Strauss 3rd JF, Miller WL. The human peripheral benzodiazepine receptor gene: cloning and characterization of alternative splice in normal tissues and in a patient with congenital lipoid adrenal hyperplasia. Genomics 1993;18:643–50.

62. Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Garcia LY, Mamoun MS, Okita K, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cerebr Blood Flow Metabol 2013;33:53–8.

63. Sandiego CM, Gallezot JD, Pittman B, Nabolusi N, Lim K, Lin SF, et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A 2015; 112:12468–73.

64. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015;14:388–405.

65. Kreisl WC, Lyoo CH, McGiewer M, Snow J, Jenko KJ, Kimura N, et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 2013;136: 2228–38.

66. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Therapeut 2003;304:1–7.

67. McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 2010;19:355–61.
81. Rotstein BH, Wang L, Liu RY, Patteson J, Kwan EE, Vasdev N, et al. Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic Iodonium (III) ylides. Chem Sci 2016;7:4407–17.

82. Camssonne R, Crouzel C, Comar D, Mazière M, Prenant C, Sastre J, et al. Synthesis of \(^{11}C\)PK11195: a new ligand for peripheral benzodiazepine receptors. J Label Compd Radiopharm 1984;21:985–91.

83. Cagnin A, Gerhard A, Banati RB. In vivo imaging of neuroinflammation. Eur Neuropsychopharmacol 2002;12:581–6.

84. Shah F, Hume SP, Pike VW, Ashworth S, McDermott J. Synthesis of the enantiomers of \([\text{N}-\text{methyl}-^{11}C\]PK11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol 1994;21:573–81.

85. Scarf AM, Kassion M. The translocator protein. J Nucl Med 2011;52:677–80.

86. Kropholler MA, Boellaard R, Schuitemaker A, Folkersma H, van Terada T, Yokokura M, Yoshikawa E, Futatsubashi M, Kono S, et al. Microglial activation in Parkinson’s disease using \([\text{18F}]\)-FEPPA. Disord with Lewy bodies, comparison with Parkinson’s disease. Parkinson Relat Dis 2016;26:581–6.

87. Parbo P, Ismail R, Hansen KV, Amidi A, Márup FH, Gottrup H, et al. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer’s disease. Brain 2017;140:2002–11.

88. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, et al. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement 2015;11:609–621.e7.

89. Kübler D, Wächter T, Cabanel N, Su Z, Turkheimer FE, Dodel R, et al. Widespread microglial activation in multiple system atrophy. Mov Disord 2019;34:564–8.

90. Passamonti L, Rodríguez PV, Hong YT, Allinson KSI, Bevan-Jones WR, Williamson D, et al. \([\text{11C}]\)PK11195 binding in Alzheimer disease and progressive supranuclear palsy. Neurology 2018;90:e1989–96.

91. Gerhard A, Watts J, Trender-Gerhard I, Turkheimer F, Banati RB, Bhatia K, et al. In vivo imaging of microglial activation with \([\text{11C}]\)PK11195 PET in corticobasal degeneration. Mov Disord 2004;19:1221–6.

92. Cagnin A, Rossor M, Sampson EL, Mackinnon T, Banati RB. In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol 2004;56:894–7.

93. Lammaccone S, Serami C, Alessio M, Gairibotto V, Panzacchi A, Olivieri S, et al. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Park Relat Disord 2013;19:47–52.

94. Ghaderi C, Koshimori Y, Coakeley S, Harris M, Rusjan P, Kim J, et al. Microglial activation in Parkinson’s disease using \([\text{11C}]\)-FEPPA. J Neuroinflammation 2017:14:8.

95. Plavén-Sigur P, Schain M, Zanderigo F, Rabiner EA, Gunn RN, Ogden RT, et al. Accuracy and reliability of \([\text{11C}]\)PBR28 specific binding estimated without the use of a reference region. Neuroimage 2019;188:102–10.

96. Brody AL, Gehlbach D, Garcia LY, Enoki R, Hoh C, Vera D, et al. Effect of overnight smoking abstinence on a marker for microglial activation: a \([\text{11C}]\)DAA1106 positron emission tomography study. Psychopharmacology (Berl) 2018;235:3525–34.

97. Terada T, Yokokura M, Yoshikawa E, Futatsubashi M, Kono S, Konishi T, et al. Extrastriatal spreading of microglial activation in Parkinson’s disease: a positron emission tomography study. Ann Nucl Med 2016;30:579–87.

98. Gulyás B, Toth M, Vas A, Shchukin E, Kostulas K, Hillert J, et al. Visualising neuroinflammation in post-stroke patients: a comparative PET study with the TSPO molecular imaging biomarkers \([\text{11C}]\)PK11195 and \([\text{11C}]\)Civopocetine. Curr Radiol 2012;5:19–28.

99. Yui J, Hatori A, Kawamura K, Yamamoto K, Yamazaki T, Ogawa M, et al. Visualization of early infarction in rat brain after ischemia using a translocator protein (18 kDa) PET ligand \([\text{11C}]\)DAC with ultra-high specific activity. Neuroimage 2011;54:123–30.

100. Singhal T, O’Connor K, Dubey S, Belanger AP, Hurwitz S, Chu R, et al. \([\text{18F}]\)PBR06 versus \([\text{11C}]\)PBR28 PET for assessing white matter translocator protein binding in multiple sclerosis. Clin Nucl Med 2018;43:e289–95.

101. Hamelin L, Lagarde J, Dorothe R, Corlier F, Kuhnast B, et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain 2018;141:1555–70.

102. Colasanti A, Guo Q, Giannetti P, Wall MB, Newbould RD, Bishop C, et al. Hippocampal neuroinflammation, functional connectivity, and depressive symptoms in multiple sclerosis. Biol Psychiatry 2016;80:62–72.

103. Vivash L, O’Brien TJ. Imaging microglial activation with TSPO PET: lighting up neurologic diseases?. J Nucl Med 2016;57:165–8.

104. Alam MM, Lee J, Lee SY. Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases. Nucl Med Mol Imaging 2017;51:283–96.

105. Wang M, Gao M, Zheng QH. Fully automated synthesis of PET TSPO radioligands \([\text{11C}]\)DAA1106 and \([\text{18F}]\)FEDA1106. Appl Radiat Isot 2012;70:965–73.

106. Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, et al. A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 2007;102:2118–31.

107. Chaki S, Funakoshi T, Yoshikawa R, Okuyama S, Okubo T, Nakazato A, et al. Binding characteristics of \([\text{18F}]\)DAA1106, a novel and selective ligand for peripheral benzodiazepine receptors. Eur J Pharmacol 1999;371:197–204.

108. Maeda J, Suhara T, Zhang MR, Okauchi T, Yasuno F, Ikoma Y, et al. Novel peripheral benzodiazepine receptor ligand \([\text{11C}]\)DAA1106 for PET: an imaging tool for glial cells in the brain. Synapse 2004;52:283–91.

109. Zhang MR, Kida T, Noguchi J, Furutsuka K, Maeda J, Suhara T, et al. \([\text{11C}]\)DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain. Nucl Med Biol 2003;30:513–9.

110. Venneti S, Wagner AK, Wang G, Slagel SL, Chen X, Lopresti BJ, et al. The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: implications for PET imaging. Exp Neurol 2007;203:118–27.

111. Gulyás B, Makkai B, Kása P, Gulya B, Bakota L, Várzei S, et al. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system. Neurochem Int 2009;54:28–36.

112. Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, et al. Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with \([\text{11C}]\)DAA1106. Biol Psychiatry 2008;64:635–41.

113. Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y, et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with \([\text{11C}]\)DAA1106. Psychiatr Res 2012;203:67–74.

114. Kumata K, Zhang Y, Fujinaga M, Okubo T, Mori W, Yamasaki T, et al. \([\text{18F}]\)DAA1106: automated radiosynthesis using spirocyclic iodonium ylide and preclinical evaluation for positron emission tomography imaging of translocator protein (18kDa). Bioorg Med Chem 2018;26:4817–22.

115. Zhang MR, Maeda J, Furutsuka K, Yoshida Y, Ogawa M, Suhara T, et al. \([\text{18F}]\)MDAA1106 and \([\text{18F}]\)FEDA1106: two positron-emitter labeled ligands for peripheral benzodiazepine receptor (PBR). Bioorg Med Chem Lett 2003;13:201–4.
In vivo [18F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease enabled by positron emission tomography. *J Neurosci* 2007;27:10957–68.

Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Gulyás B, et al. Development of a new radioligand, N-(5-fluoro-2-phenoxynyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain. *J Med Chem* 2004;47:2228–35.

Maeda J, Ji B, Irie T, Tomiyama T, Maruyama M, Okacchi T, et al. Longitudinal, quantitative assessment of amyloid, neuro-inflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. *J Neurosci* 2007;27:10957–68.

Brown AK, Fujita M, Fujimura Y, Liow JS, Stabin M, Ryu YH, et al. PET imaging of stroke-induced neuroinflammation in mice using [18F]PBR06. *Mol Imag Biol* 2014;16:109–17.

James ML, Belichenko NP, Nguyen TV, Andrews LE, Ding Z, Liu H, et al. PET imaging of translocator protein (18 kDa) in a mouse model of Alzheimer’s disease using N-(2,5-dimethoxyphenyl)-2-[18F]-fluoro-N-2-phenoxynaphthylacetamide. *J Nucl Med* 2015;56:311–6.

Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, et al. Detection and whole-body imaging in nonhuman primates of [11C]PBR28, a promising PET radioligand for peripheral benzodiazepine receptors. *Neuroimage* 2008;39:1289–98.

Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, et al. Comparison of [11C]- and [18F]-PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. *Neuroimage* 2010;49:2924–32.

Brown AK, Fujita M, Fujimura Y, Liow JS, Stabin M, Ryu YH, et al. Radiation dosimetry and biodistribution in monkey and human of [11C]-PBR28: a PET radioligand to image inflammation. *J Nucl Med* 2007;48:2072–9.

Oh U, Fujita M, Ikonomidou VN, Evangelou IE, Matsuura E, et al. Translocator protein PET imaging for glial activation in multiple sclerosis. *J Neuroimmunol* 2011;23:354–61.

Hirvonen J, Kreisl WC, Fujita M, Dustin I, Khan O, Appel S, et al. Increased in vivo expression of an inflammatory marker in temporal lobe epilepsy. *J Nucl Med* 2012;53:234–40.

Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW, et al. Elevated translocator protein binding to translocator protein. *J Nucl Med* 2015;56:701–6.

Kreisl WC, Lyoo CH, Liow JS, Wei M, Snow J, Page E, et al. [11C]-PBR28 binding to translocator protein increases with progression of Alzheimer’s disease. *Neurobiol Aging* 2016;44:53–61.

Kreisl WC, Lyoo CH, Liow JS, Snow J, Page E, Jenko KJ, et al. Distinct patterns of increased translocator protein in posterior cortical atrophy and amnestic Alzheimer’s disease. *Neurobiol Aging* 2017;51:132–40.

Lois C, González I, Izquierdo-García D, Zürcher NR, Wilkens P, Loggia ML, et al. Neuroinflammation in Huntington’s disease: new insights with [11C]PBR28 PET/MRI. *ACS Chem Neurosci* 2018;9:2563–71.

Ashikho MJ, Zürcher NR, Loggia ML, Cernasov P, Reynolds B, Pijanowski O, et al. Integrated magnetic resonance imaging and [11C]-PBR28 positron emission tomographic imaging in amyotrophic lateral sclerosis. *Ann Neurol* 2018;83:1186–97.

Zürcher NR, Loggia ML, Lawson R, Chonde DB, Izquierdo-García D, Yasek JE, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [11C]-PBR28. *Neuroimage Clin* 2015;5:409–14.

Rataj EM, Ashikho MJ, Zürcher NR, Loggia ML, Cebulla CL, Cernasov P, et al. Integrated imaging of [11C]-PBR28 PET. MR diffusion and magnetic resonance spectroscopy [1H-MRS] in amyotrophic lateral sclerosis. *Neuroimage Clin* 2018;20:357–64.

Dickstein LP, Zoghbi SS, Fujimura Y, Imaiizumi M, Zhang Y, Pique VW, et al. Comparison of [18F]- and [11C]-labeled arylxoxanilide analogs to measure translocator protein in human brain using positron emission tomography. *Eur J Nucl Med Mol Imag* 2011;38:352–7.

Imaiizumi M, Briard E, Zoghbi SS, Gourley JP, Hong J, Muschol J, et al. Kinetic evaluation in nonhuman primate of two new PET ligands for peripheral benzodiazepine receptors in brain. *Synapse* 2007;61:595–605.

Larrey FM, Ahn GO, Shen B, Cord KT, Smith T, Chua JY, et al. PET imaging of stroke-induced neuroinflammation in mice using [18F]PBR06. *Mol Imaging Biol* 2014;16:109–17.
peripheral benzodiazepine receptor using positron emission tomography. J Med Chem 2008;51:3700–12.

149. Van Camp N, Boisgard R, Kuhnast B, Thézé B, Viel T, Grégoire MC, et al. In vivo imaging of neuroinflammation: a comparative study between [18F]PBR111, [11C]CIL1MN and [11C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imag 2010;37:962–72.

150. Guo Q, Colasanti A, Owen DR, Onega M, Kamakarakan A, Bennacef I, et al. Quantification of the specific translocator protein signal of [18F]PBR112 in healthy humans: a genetic polymorphism effect on in vivo binding. J Nucl Med 2013;54:1915–23.

151. Hatano K, Sekimata K, Yamada T, Abe J, Ito K, Ogawa M, et al. Radiosynthesis and in vivo evaluation of two imidazopyridineacetamides, [11C]CB184 and [11C]CB190, as a PET tracer for 18 kDa translocator protein: direct comparison with [11C]PK11195. Ann Nucl Med 2015;29:325–35.

152. Vázquez García D, de Vries EF, Toyohara J, Ishiwata K, Hatano K, Dierckx RA, et al. Evaluation of [11C]CB184 for imaging and quantification of TSPO overexpression in a rat model of herpes encephalitis. J Nucl Med Mol Imag 2015;42:1106–18.

153. Toyohara J, Sakata M, Hatano K, Yani S, Endo I, Ishibashi K, et al. Preclinical and first-in-man studies of [11C]CB184 for imaging the 18-kDa translocator protein receptor by positron emission tomography. Ann Nucl Med 2016;30:534–43.

154. Sakata M, Ishibashi K, Imai M, Wagatsuma K, Ishii K, Hatano K, et al. Assessment of safety, efficacy, and dosimetry of a novel 18-kDa translocator protein receptor ligand, [11C]CB184, in healthy volunteers. EJNMMI Res 2017;7:26.

155. Yanamoto K, Zhang MR, N-Benzyl-N-ethyl-2-(7-[11C]-methyll-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide. In: Molecular imaging and contrast agent database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. Available from: https://pubmed.ncbi.nlm.nih.gov/200641683.

156. Kita A, Kohayakawa H, Kinoshita T, Ochi Y, Nakamichi K, Kuriyama S, et al. Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand. Br J Pharmacol 2004;142:1059–72.

157. Yanamoto K, Zhang MR, Kumata K, Hatori A, Okada M, Suzuki K. In vitro and ex vivo autoradiography studies on peripheral-type benzodiazepine receptor binding using [11C]AC-5216 in normal and kainic acid-lesioned rats. Neurosci Lett 2007;428:59–63.

158. Yanamoto K, Yamasaki T, Kumata K, Yui J, Odawara C, Kawamura K, et al. Evaluation of N-benzyl-N-[(2-[11C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetoamido][11C]DAC as a novel translocator protein (18 kDa) radioligand in kainic acid-lesioned rat. Synapse 2009;63:961–71.

159. Trapani A, Palazzo C, de Candia M, Lasorsa FM, Trapani G. Targeting of the translocator protein 18 kDa (TSPO) by 18F-DPA-714 in a mouse model of mesial temporal lobe epilepsy: toward identification of optimal treatment windows. Epilepsia 2018;59:1234–44.

160. Tan C, Zhao S, Higashikawa K, Wang Z, Kabowari M, Asumiya T, et al. [11C]DPA-714 PET imaging shows immunomodulatory effect of intravenous administration of bone marrow stromal cells after transient focal ischaemia. EJNMMI Res 2018;8:35.

161. Nguyen DL, Wimberley C, Truillet C, Jego B, Caillé F, Pottier G, et al. Longitudinal positron emission tomography imaging of glial cell activation in a mouse model of mesial temporal lobe epilepsy: toward identification of optimal treatment windows. Epilepsia 2018;59:1234–44.

162. Aribic N, Vercouli J, Ribeiro MJ, Tauber C, Velin Y, Baulieu JL, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol 2012;39:570–8.

163. Golla SS, Boellaard R, Oikonen V, Hoffmann A, van Berckel BN, Golla SV, et al. Parametric binding images of the TSPO ligand [18F]DPA-714. J Nucl Med 2016;57:1543–7.

164. Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, et al. Early and protective microglial activation in Alzheimer’s disease: a prospective study using [18F]DPA-714 PET imaging. Brain 2016;139:1252–64.

165. Hagens MHJ, Golla SV, Wijburg MT, Yaqub M, Heijtjel D, Steenwijk MD, et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [18F]DPA714 PET. J Neuroinflammation 2018;15:314.

166. Wang L, Cheng R, Fujinaga M, Yang J, Zhang Y, Hatori A, et al. A facile radiolabeling of [18F]DPA via spirocyclic iodonium ylides: preliminary PET imaging studies in preclinical models of neuroinflammation. J Med Chem 2017;60:5222–7.

167. Keller T, López-Picon FR, Krzychmonik A, Forsback S, Krijnvainen AK, Takkinnen JS, et al. [18F]F-DPA for the detection of activated microglia in a mouse model of Alzheimer’s disease. Nucl Med Biol 2018;45:1–9.

168. Tang D, Li J, Nicholas ML, Huang G, Cohen AS, Manning HC. Preclinical evaluation of a novel TSPO PET ligand 2-(7-[18F]fluoroethyl)-5-methylpyrazol[1,5-a]pyrimidin-3-
187. Fujinaga M, Kumata K, Kawamura K, Yanamoto K, Hatori A, et al. Synthesis of two novel [18F]fluorobenzene-containing radioligands for imaging of translocator protein (18 kDa) in the infarcted rat brain. J Neurochem 2014;130:1970–10.

188. Tiwari AK, Yui J, Fujinaga M, Kumata K, Shimoda Y, Yamashita T, et al. Characterization of a novel acetylamidobenzoazolone-based PET ligand for translocator protein (18 kDa) imaging of neuroinflammation in the brain. J Neurochem 2014;129:712–20.

189. Varrone A, Oikonen V, Forsberg A, Joutsa J, Takano A, Solin O, et al. Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer’s disease patients and control subjects. Eur J Nucl Med Mol Imaging 2015;42:438–46.

190. Owen DR, Gunn RN, Rabiner EA, Bennacel I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 2011;52:24–32.

191. Zanotti-Fregonara P, Zhang Y, Jenko KJ, Gladding RL, Zoghbi SS, Fujita M, et al. Synthesis and evaluation of translocator protein (18 kDa) (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem Neurosci 2014;5:963–71.

192. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 2012;32:1–5.

193. Tiwari AK, Fujinaga M, Yui J, Yamashita T, Xie L, Kumata K, et al. Synthesis and evaluation of new [18F]-labelled acetylamidobenzoazolone-based radioligands for imaging of the translocator protein (18 kDa, TSPO) in the brain. Org Biomol Chem 2014;12:9621–30.

194. Tiwari AK, Ji B, Yui J, Fujinaga M, Yamashita T, Xie L, et al. [18F]FEBMP: positron emission tomography imaging of TSPO in a model of neuroinflammation in rats, and in vitro autoradiograms of the human brain. Theranostics 2015;5:961–9.

195. Fan Z, Calsoar V, Atkinson RA, Femminella GD, Waldman A, Buckley C, et al. Fluorociclamide ([18F]-GE180) PET: first-in-human PET study of novel third-generation in vivo marker of human translocator protein. J Nucl Med 2016;57:1753–9.

196. Wadsworth H, Jones PA, Chau WF, Durrant C, Foulds N, Passmore J, et al. [18F]GE-180: a novel fluorine-18 labelled PET tracer for imaging translocator protein 18 kDa (TSPO). Bioorg Med Chem Lett 2012;22:1308–13.

197. Dickens AM, Vainio S, Marjamaki P, Johansson J, Lehtiniemi P, Rokka J, et al. Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers [11C-(R)-PK11195 and [18F]-GE-180. J Nucl Med 2014;55:466–72.

198. Boutin H, Murray K, Pradillo J, Maroy R, Smigova A, Gerhard A, et al. [18F]-GE-180: a novel TSPO radiotracer compared to [18C]-CR-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging 2015;42:503–11.

199. Liu B, Le KK, Park MA, Wang S, Belanger AP, Dubey S, et al. In vivo detection of age- and disease-related increases in neuroinflammation by [18F]GE180 TSPO microPET imaging in wild-type and Alzheimer’s transgenic mice. J Neurosci 2015;35:15716–30.

200. Lópezm-Picón FR, Snelman A, Eskola O, Helin S, Solin O, Haapanta-Solin M, et al. Neuroinflammation appears early on PET imaging and then plateaus in a mouse model of Alzheimer disease. J Nucl Med 2018;59:509–15.

201. Russmann V, Brendel M, Mille E, Helm-Viciomidou A, Beck R, Günther L, et al. Identification of brain regions predicting epileptogenesis by serial [18F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe epilepsy. Neuroimage Clin 2017;15:35–44.

202. Feeney C, Scott G, Raffel J, Roberts S, Coello C, Jolly A, et al. Kinetic analysis of the translocator protein positron emission tomography ligand [18F]GE-180 in the human brain. Eur J Nucl Med Mol Imaging 2016;43:2201–10.

203. Vomacka L, Albert NL, Lindner S, Unterrainer M, Mahler C, Brendel M, et al. TSPO imaging using the novel PET ligand [18F]GE-180: quantification approaches in patients with multiple sclerosis. EJNMMI Res 2017;7:89.

204. Unterrainer M, Mahler C, Vomacka L, Lindner S, Havel J, Brendel M, et al. TSPO PET with [18F]GE-180 sensitively detects focal neuroinflammation in patients with relapsing-remitting multiple sclerosis. Eur J Nucl Med Mol Imaging 2018;45:1423–31.

205. Zanotti-Fregonara P, Pascual B, Rizzo G, Yu M, Pal N, Beers D, et al. GE-180: quantification approaches in patients with multiple sclerosis. J Neuroimag Biol 2019;42:1111–21.

206. Fujinaga M, Kumata K, Zhang Y, Hatori A, Yamashita T, Mori W, et al. Synthesis of two novel [18F]fluorobenzene-containing radiotracers via spirocyclic iodonium ylides and positron emission tomography imaging of translocator protein (18 kDa) in ischemic brain. Org Biomol Chem 2018;16:8325–35.

207. Yui J, Maeda J, Kumata K, Kawamura K, Yanamato K, Hatori A, et al. [18F]-FEAC and [18F]-FEDAC: PET of the monkey brain and imaging of translocator protein (18 kDa) in the infracted rat brain. J Nucl Med 2010;51:1301–9.

208. Yanamato K, Kumata K, Yamashita T, Odawara C, Kawamura K, Yui J, et al. [18F]-FEAC and [18F]-FEDAC: two novel positron emission tomography ligands for peripheral-type benzodiazepine receptor in the brain. Bioorg Med Chem Lett 2009;19:1707–10.

209. Varrone A, Oikonen V, Forsberg A, Joutsa J, Takano A, Solin O, et al. Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer’s disease patients and control subjects. Eur J Nucl Med Mol Imaging 2015;42:438–46.

210. Owen DR, Gunn RN, Rabiner EA, Bennacel I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 2011;52:24–32.

211. Zanotti-Fregonara P, Zhang Y, Jenko KJ, Gladding RL, Zoghbi SS, Fujita M, et al. Synthesis and evaluation of translocator protein (18 kDa) (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem Neurosci 2014;5:963–71.

212. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 2012;32:1–5.
imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO. *Mol Imag* 2018;17:1536012118792317.

215. Horti AG, Naik R, Foss CA, Minn I, Misheneva V, Du Y, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). *Proc Natl Acad Sci U S A* 2019;116:1686–91.

216. Cumming P, Burgher B, Patkar O, Breakspear M, Vasdev N, Thomas P, et al. Sifting through the surfeit of neuroinflammation tracers. *J Cerebr Blood Flow Metabol* 2018;38:204–24.

217. Berdyyeva T, Xia C, Taylor N, He Y, Chen G, Huang C, et al. PET imaging of the P2X7 ion channel with a novel tracer [18F]JNJ-64413739 in a rat model of neuroinflammation. *Mol Imag Biol* 2019;21:871–8.

218. Van Weehaeghe D, Van Schoor E, De Vocht J, Koole M, Attili B, Celen S, et al. TSPO versus P2X7 as target for neuroinflammation: an in vitro and in vivo study. *J Nucl Med* 2019;61:604–7.

219. Van Weehaeghe D, Koole M, Schmidt ME, Deman S, Jacobs AH, Souche E, et al. [11C]JNJ54173717, a novel P2X7 receptor radioligand as marker for neuroinflammation: human biodistribution, dosimetry, brain kinetic modelling and quantification of brain P2X7 receptors in patients with Parkinson’s disease and healthy volunteers. *Eur J Nucl Med Mol Imag* 2019;46:2051–64.

220. Vasdev N, Sadovski O, Garcia A, Dollé F, Meyer JH, Houle S, et al. Radiosynthesis of [11C]SL25.1188 via [11C]CO2 fixation for imaging monoamine oxidase B. *J Label Compd Radiopharm* 2011;54:678–80.

221. Moriguchi S, Wilson AA, Miler L, Rusjan PM, Vasdev N, Kish SJ, et al. Monoamine oxidase B total distribution volume in the prefrontal cortex of major depressive disorder: an [11C] SL25.1188 positron emission tomography study. *JAMA Psychiatry* 2019;76:634–41.