Rapid detection and quantitation of drugs-of-abuse by wooden-tip electrospray ionization mass spectrometry

Tsz-Tsun Ng a,b, Pui-Kin So a,b, Bin Hu a,b,c, Zhong-Ping Yao a,b,*

a State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, Kowloon, China
b State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen, 518057, China
c Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China

Abstract

Determination of drugs-of-abuse in body fluids of drug abusers is important for the law enforcement as well as the treatment and rehabilitation. In this study, wooden-tip electrospray ionization mass spectrometry (WT-ESI-MS), a simple and cost-effective technique, was developed for rapid detection and quantitation of common drugs-of-abuse, including methamphetamine, methylenedioxymethamphetamine (MDMA), cocaine, heroin and tetrahydrocannabinol (THC), in urine and oral fluid, following our previous successful demonstration for rapid and sensitive detection of ketamine and nor-ketamine in urine and oral fluid by this technique. It was found that the limit-of-detection for methamphetamine could fully fulfill the cut-off value requirements of the international standards, and those of MDMA and cocaine could fulfill some of the requirements. The linear range, accuracy and precision for quantitation of the drugs were generally satisfactory, except for THC for which the analytical performance still needs to be improved. Analysis of one sample could typically be completed within minutes. These results indicated that WT-ESI-MS could be used for rapid screening of drugs-of-abuse in urine, oral fluid as well as other body fluids.

Copyright © 2018, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Determination of drugs-of-abuse and their metabolites in body fluid is an essential task for drug abuse control. Drug analysis of a large number of body fluid samples is required for law enforcement and healthcare purposes each year. To deal with this, typically the body fluid samples are firstly analyzed by fast screening methods, such as antibody-based screening devices and immunoassay methods [1–5]. However, these methods have a number of problems, including cross-reactivity [2,3,5,6] and generation of false positive and false negative results [3,5–10]. Therefore, confirmatory analysis by using gas chromatography-mass spectrometry (GC–MS) and liquid chromatography-mass spectrometry (LC–MS) was normally performed afterwards [1,3,5,11–15]. These routine methods typically require extensive sample pre-treatment and chromatographic separation, which can be time-consuming and labor-intensive.

Recently, various efforts have been made to minimize the sample pre-treatment and eliminate the chromatographic separation of drugs analysis. For example, electrospray-assisted laser desorption/ionization mass spectrometry (ELDI-MS) [16], desorption electrospray ionization mass spectrometry (DESI-MS) [17,18], desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) [19], paper spray ionization mass spectrometry (PS-MS) [20,21], probe electrospray ionization mass spectrometry (PESI-MS) [22], pipette-tip electrospray ionization mass spectrometry [23] and touch spray mass spectrometry (TS-MS) [24] were developed for rapid detection of drugs-of-abuse.

Wooden-tip electrospray ionization mass spectrometry (WT-ESI-MS) is a technique that makes use of economical and commonly available wooden toothpicks for sample loading.
and ionization [25]. Typical commercially available wooden tips are directly compatible with the nano-ESI source and thus no hardware modification is needed for the technique, making the technique easily adopted by related researchers. WT-ESI-MS was found to allow analysis of raw biological samples with only simple sample preparation and no column separation. Therefore, analysis of one raw sample could be completed within minutes, and the technique has been proven for various applications [26–32]. We have demonstrated that WT-ESI-MS could be applied for rapid detection and quantitation of ketamine and nor-ketamine in urine and oral fluid [33]. In this study, we further extended the application of WT-ESI-MS for rapid detection and quantitation of other common drugs-of-abuse, including methamphetamine (MA), cocaine (COC), methylenedioxymethamphetamine (MDMA), tetrahydrocannabinol (THC), heroin (HER), 6-acetylmorphine (6-AM) and 6-acetylmorphine-D3 (D-6-AM) standard solutions were purchased from Cerilliant (Round Rock, TX) and morphine (MOR) sulphate salt solution was purchased from Fluka (St. Louis, TX). The molecular structures of these analytes are shown in Fig. 1. HPLC grade methanol was purchased from Tedia (Fairfield, CT) and formic acid was purchased from Sigma (St. Louis, TX).

2. Experimental

2.1. Materials and chemicals

The wooden toothpicks used in this study were BEST-Buy brand purchased from the supermarket in Hong Kong. Methamphetamine (MA), methamphetamine-D5 (D-MA), MDMA, MDMA-D5 (D-MDMA), cocaine (COC), cocaine-D3 (D-COC), benzoylecgonine (BZE), benzoylecgonine-D3 (D-BZE), delta-9-THC (THC), delta-9-THC-D3 (D-THC), 11-nor-9-carboxy-delta-9-THC (THC-COOH), 11-nor-9-carboxy-delta-9-THC-D9 (D-THC-COOH), heroin (HER), 6-acetylmorphine (6-AM) and 6-acetylmorphine-D3 (D-6-AM) standard solutions were prepared by serial dilution of stock standard solutions of each drug with methanol containing 0.1% formic acid. At least five concentrations were prepared for constructing the calibration curves. another set of standard solutions with low, middle and high concentrations was prepared for the method validation. The standard solutions of drugs-of-abuse and the related metabolites were spiked into blank urine and oral fluid to prepare the spiked samples. Finally, the spiked samples, internal standard solutions, and methanol with 0.1% formic acid were mixed in the ratio of 1:1:1 (v/v/v), and the prepared samples were ready for WT-ESI-MS analysis. All the spiked sample solutions were freshly prepared before the analysis.

Fig. 2 – MRM results for detection of (a) cocaine-D3, (b) 500 ng/mL cocaine, (c) benzoylecgonine-D3 and (d) 500 ng/mL benzoylecgonine in urine using WT-ESI-MS.
2.3. **Instrumentation and WT-ESI-MS setup**

The WT-ESI-MS analysis was performed on a Quattro Ultima triple quadrupole mass spectrometer (Waters, Milford, MA) with a nano-ESI source. A sharpened wooden tip with a length of 1.5–1.7 cm was mounted onto the capillary holder and a high voltage (3.5 kV) was applied to the tip directly from the nano-ESI source. An aliquot of 2 μL sample solution was then applied to the tip by pipetting for WT-ESI-MS analysis. Typically, each sample was analyzed three times by using the same wooden tip. The mass spectrometer was operated in positive ion mode, except negative ion mode for the analysis of THC-COOH. The cone gas flow and source temperature were 100 L/hr and 150 °C, respectively. The drugs-of-abuse and their metabolites were detected under multiple reaction monitoring (MRM) mode, and the ion channels, collision energy and cone voltage used are listed in Table 1.

2.4. **Method validation of WT-ESI-MS**

2.4.1. **Calibration curves**

The calibration curves were constructed by averaging three sets of the experimental data with each set of data contained at least five calibration points. The resultant MRM chromatograms were processed using the Mass Lynx 4.1 program (Milford, MA). The MRM chromatograms were smoothed, and the averages of peak height ratios of the analytes and the internal standards were used for constructing the calibration curves.

2.4.2. **Accuracy and precision**

The accuracy and precision of the WT-ESI-MS method were determined by measuring at least three sets of the spiked urine and oral fluid samples at low, medium, and high concentrations, respectively. The sample at each concentration was analyzed at least five times using individual wooden tips. The accuracy was defined as the closeness of the measured concentration \(C_m \) and the actual concentration of the analyte in the sample \(C_a \) [34] and calculated as following: \(\frac{C_m}{C_a} \times 100\% \), and the precision was represented by relative standard deviation (RSD).

2.4.3. **Limits-of-detection and limits-of-quantitation**

Limits-of-detection (LODs) and limits-of-quantitation (LOQs) were determined experimentally by comparing the signals of spiked samples at different concentrations and signals obtained from blank samples. The blank samples for the

Fig. 3 – MS/MS spectra of 1000 ng/mL standard solution of benzoylecgonine (a) and cocaine (c), 250 ng/mL benzoylecgonine in urine (b) and 50 ng/mL cocaine in urine (d).
background signal measurements were prepared by spiking only the internal standards into blank urine and blank oral fluid. The LODs and LOQs were defined as the concentrations of the analytes that could achieve signal-to-noise ratios (S/N) at the factors of three and ten, respectively. The S/N were determined by comparing the signal intensities (in term of peak heights) of the analytes (Ia) and internal standards (Iis) between the spiked samples and the blank samples, and calculated as following: \(\frac{I_a/I_{is}}{\text{spiked}} / \frac{I_a/I_{is}}{\text{blank}} \). At least nine blank measurements were used for the determination of LODs and LOQs.

3. Results and discussions

3.1. Detection of drugs-of-abuse

Typical MRM results for the detection of cocaine and its metabolite benzoylecgonine in urine are shown in Fig. 2. The signals of the analytes were generated directly after applying the sample solution to the wooden tip connected with a high voltage. Deuterium-labeled internal standards of the corresponding analytes were added to compensate the signal fluctuations caused by different wooden tips and other variations. The targeted drugs, metabolites and internal standards were detected simultaneously under the MRM detection without chromatographic separation. Each signal could typically maintain 10–30 s, and each sample was applied onto the same wooden tip three times. Signals were considered as positive if the S/N values were larger than 3 as compared with the blank (see the later part for further discussion). The identities of the analytes could be further confirmed by tandem mass spectrometry (MS/MS) analysis. Examples of MS/MS analysis are shown in Fig. 3. The MS/MS spectrum of standard solution of benzoylecgonine (Fig. 3a) is similar to that of benzoylecgonine in urine (Fig. 3b). Both spectra showed major product ions of benzoylecgonine including \(m/z \) 168, \(m/z \) 105 and \(m/z \) 150. Similarly, the major product ion of cocaine, i.e., \(m/z \) 182, could be observed in both the MS/MS of cocaine standard (Fig. 3c) and cocaine in the urine sample (Fig. 3d).

3.2. Reproducibility of the detection

The reproducibility of the WT-ESI-MS method was examined by measuring the same sample solution repeatedly using individual wooden tips at the same and different day. Typical results are shown in Fig. 4, using methamphetamine as an example. The absolute intensities of the measurements using different wooden tips varied but were within an acceptable range. The precision of all the measurements (i.e., data from four individual wooden tips, \(n = 12 \)) was 15.0%. The precisions of the measurements were improved after the addition of the internal standards. The precisions of the measurements, in term of relative peak height (i.e., the peak heights of the

![Fig. 4](image-url) — MRM results for detection of 500 ng/mL methamphetamine in urine using (a–c) three individual wooden tips within the same day and (d) individual wooden tip on another day.
3.3. Quantitation of targeted analytes

3.3.1. Calibration curves

The calibration curves used for quantitative analysis were obtained by correlating the signals of at least five spiked samples with different concentrations. The constructed calibration plots of different analytes in urine and oral fluid are shown in Figs. 5 and 6, respectively. Deuterated heroin and morphine were not available during the study period, and D-6-AM was used as the internal standards of heroin and morphine instead. The linear range of most of the analytes could cover three orders of magnitude (typically 50–5000 ng/mL) except for heroin and its metabolites (typically 250–10,000 ng/mL), and benzoylecgonine in urine (125–5000 ng/mL). The R^2 values of all the calibration curves were greater than 0.99, indicating the good linearity of the calibration plots. The precisions of the

Fig. 5 – Calibration plots for quantitation of (a) methamphetamine, (b) MDMA, (c) cocaine, (d) benzoylecgonine, (e) heroin, (f) 6-acetylmorphine and (g) morphine in urine.
calibration points were better than 20%, except for morphine with the average RSD of 25.9% and 52.6% in urine and oral fluid, respectively. This was believed to be due to the fact that the signals of morphine were much lower and unstable when compared with those of other analytes. It was also found that the ionization of THC and THC-COOH was poor with the present method, and their signals could only be produced at significantly high concentrations. Therefore, no corresponding calibration curves could be constructed for THC and THC-COOH.

3.3.2. Accuracy and precision
The accuracy and precision of the WT-ESI-MS method for quantitation of targeted analytes were evaluated using the spiked samples at low, middle and high concentrations in urine and oral fluid, and the results are summarized in Table 2. The accuracies of the WT-ESI-MS method for analysis of all analytes were in the range of 83.8–117.1%, except 78.2–113.7% and 75.2–109.9% for heroin and morphine, respectively. The differences between the spiked values and measured values were generally within ±20%. The precisions of

![Calibration plots for quantitation of (a) methamphetamine, (b) MDMA, (c) cocaine, (d) benzoylecgonine, (e) heroin, (f) 6-acetylmorphine and (g) morphine in oral fluid.](image-url)
methamphetamine, MDMA, cocaine, and benzoylecgonine were generally within 15%, except 17.0% for methamphetamine in urine. The precisions of heroin and its metabolites were generally slightly greater than the values of other analytes but the RSD was still within 20%. The results obtained from morphine were generally the worst, with the accuracy of only 75.2% and the values of precision higher than 20% even at high concentrations. The data of accuracy and precision of THC and THC-COOH were not available because of the poor sensitivity of the detection. In general, the accuracy and precision for quantitation of most of the targeted analytes, except morphine, THC, and THC-COOH, were satisfactory using the WT-ESI-MS method.

3.3.3. LODs and LOQs
An example for the determination of LOD and LOQ of methamphetamine in urine is shown in Fig. 7. The LOD and LOQ of methamphetamine in urine were determined as 25 ng/mL and 50 ng/mL, which could give S/N with the factors of three and ten respectively when compared with the blank samples.

The LODs and LOQs of the targeted analytes determined were compared with the cut-off values of the international authorities, including Substance Abuse and Mental Health Services (SAMHSA) in USA [35], European Workplace Drug Testing Society (EWDTS) [36,37] and Driving under the Influence of Drugs, Alcohol and Medicines (DRUID) project in European Union [38]. The results are summarized in Table 3. The LODs and LOQs of the targeted analytes determined were within the recommended cut-off values of all the three guidelines. The LODs of MDMA could generally fulfill the requirements but the LOD of oral fluid was slightly higher than the cut-off values of SAMHSA and EWDTS guidelines. For the detection of cocaine, the LOD for analysis of the oral fluid samples could fulfill the requirement of DRUID but was slightly higher than the cut-off values of SAMHSA and EWDTS guidelines. The accuracy and precision were generally slightly greater than the values of other analytes. The precisions of heroin and related compounds, and THC and THC-COOH, were satisfactory using the WT-ESI-MS method.

Table 2 – Accuracy and precision for analysis of various drugs in urine (U) and oral fluid (OF).

Compound	Spiked quantity (ng/mL)	Determined quantity± SD (ng/mL) (n = 5)	Accuracy (%)	RSD (%)			
	U	OF					
MA	100	105 ± 18	114 ± 7	105.7	114.3	17.0	6.3
	500	498 ± 16	508 ± 64	88.4	97.2	5.5	5.0
	1250	1105 ± 60	1206 ± 61	121.1	117.1	6.8	4.6
	2500	2536 ± 151	2518 ± 169	104.1	100.7	6.0	6.7
MDMA	100	112 ± 8	117 ± 5	110.4	106.7	6.0	6.7
	500	520 ± 56	474 ± 28	110.2	106.3	9.6	7.9
	1250	1186 ± 106	1219 ± 82	86.3	92.1	8.6	13.2
	2500	2492 ± 216	2601 ± 392	99.7	104.8	8.7	15.1
COC	100	103 ± 11	114 ± 11	102.7	114.4	10.9	9.2
	500	510 ± 46	489 ± 58	102.1	97.8	9.0	11.8
	1250	1366 ± 79	1296 ± 166	109.3	103.7	5.8	12.8
	2500	2517 ± 116	2551 ± 319	100.7	102.4	4.6	12.5
BZE	100	432 ± 37	461 ± 61	83.8	106.4	7.9	10.3
	500	1047 ± 83	1331 ± 137	92.6	106.3	9.6	7.9
HER	100	569 ± 71	551 ± 47	113.7	103.1	12.4	9.2
	500	1349 ± 247	977 ± 75	110.7	78.2	18.3	7.7
6-AM	100	2585 ± 412	2346 ± 174	103.0	93.8	15.9	7.4
	500	441 ± 84	467 ± 30	88.1	93.3	19.0	6.4
MOR	100	1220 ± 62	1024 ± 48	97.6	81.9	5.1	4.7
	500	1343 ± 342	940 ± 60	107.4	75.2	25.5	6.3
	1250	2678 ± 267	2822 ± 159	107.1	112.9	10.0	5.6
	2500	2456 ± 399	1880 ± 175	98.2	75.2	16.3	9.3
the increase of carboxyl group and hydroxyl group, which might have more interactions with the hydroxyl group on the wooden-tip surface. Second, as no chromatographic separation was performed with WT-ESI-MS, signal suppression of the poorly ionized analytes by the easily ionized analytes could also cause the sensitivity differences between the analytes. In fact, the results obtained from the direct infusion of the same concentration of cocaine and benzoylecgonine, and

![Graphs showing the determination of LOD and LOQ of methamphetamine in urine.]

Fig. 7 Determination of (a) LOD and (b) LOQ of methamphetamine in urine.

Compound	LOD (ng/mL)	LOQ (ng/mL)	SAMHSA cut-off (ng/mL)	EWDT cut-off (ng/mL)	DRUID cut-off (ng/mL)	
	U	OF	U	OF	U	OF
KET	20	20	50	50	NA	NA
Nor-K	20	20	50	50	NA	NA
MA	25	12.5	50	50	250	15
MDMA	50	50	250	125	250	15
COC	12.5	12.5	50	50	8	8
BZE	250	125	500	250	100	8
THC	40,000	40,000	NA	NA	2	2
THC-COOH	NA	NA	NA	NA	15	NA
HER	250	125	500	250	NA	NA
6-AM	500	125	1000	250	10	2
MOR	1000	500	10,000	10,000	2000	15

a Results adopted from the previous study [33].
heroin and its metabolites showed some degree of signal suppression, with both the signals of cocaine and heroin higher than those of their metabolites. On the other hand, THC is a phenolic compound which is relatively hard to become protonated and thus tends to generate poorer signals. THC-COOH is a carboxylic acid which was supposed to generate better signals at negative ion mode. However, no obvious improvement was found with negative ion WT-ESI-MS in the present study.

3.3.4. Further confirmation of the drug identities by tandem mass spectrometry

Detection and quantitation of drugs-of-abuse using MRM are generally specific enough to identify the presence of drugs. The identities of detected drugs could be further confirmed by MS/MS analysis. For example, the identification of methamphetamine in urine is shown in Fig. 8. The presence of fragment ions of m/z 91 and m/z 119 could confirm the presence of methamphetamine.

4. Conclusions

Following our previous successful demonstration of WT-ESI-MS for rapid detection and quantitation of ketamine and norketamine [33], WT-ESI-MS has been extended to a rapid analysis of five more drugs in urine and oral fluid in this study. Analysis of one sample could be finished within minutes using WT-ESI-MS as only little sample preparation and no chromatographic separation was required. The good linearity and wide linear range for the targeted analytes enabled quantitative analysis using WT-ESI-MS. The accuracy and precision were generally satisfactory for quantitation of the targeted drugs except for morphine, THC, and THC-COOH. The LODs of the targeted analytes obtained by the present method were compared with the cut-off values of the three international guidelines. The detection of methamphetamine could fulfill the requirements of all the guidelines while detection of MDMA and cocaine could partially fulfill the requirements.

Further improvement in sensitivity, such as by using surface-modified wooden tips, is required for the analysis of benzoylcegonine, heroin-related compounds, THC and THC-COOH. To conclude, the development of the present WT-ESI-MS could significantly reduce the time and labor required in drug analysis. Further development of this technique could be highly beneficial to the area of drug analysis as well as other fields demanding rapid and reliable detection and quantitation of molecules in complex mixtures.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This work was supported by Beat Drugs Fund (BDF120020). The supports from the University Research Facility in Chemical and Environmental Analysis (UCEA) and the University Research Facility in Life Sciences (ULS) of Hong Kong Polytechnic University are also acknowledged.

References

[1] Cheng PS, Fu CY, Lee CH, Liu CR, Chien CS. GC-MS quantification of ketamine, norketamine, and dehydronorketamine in urine specimens and comparative study using ELISA as the preliminary test methodology. J Chromatogr B 2007;852:443–9.
[2] Huang MH, Wu MY, Wu CH, Tsai JL, Lee HH, Liu RH. Performance characteristics of ELISAs for monitoring ketamine exposure. Clin Chim Acta 2007;379:59–65.
[3] Kacinko SL, Barnes AJ, Kim I, Moolchan ET, Wilson L, Cooper GA, et al. Performance characteristics of the cozart RapiScan oral fluid drug testing system for opiates in comparison to ELISA and GC/MS following controlled codeine administration. Forensic Sci Int 2004;141:41–8.
[4] Pujol ML, Cirimele V, Tritsch Pj, Villain M, Kintz P. Evaluation of the IFS One-Step (TM) ELISA kits for the detection of illicit drugs in hair. Forensic Sci Int 2007;170:189–92.

[5] Strano-Rossi S, Castrignano E, Anzilliotti L, Serpelloni G, Mollica R, Tagliaro F, et al. Evaluation of four oral fluid devices (DDS (R), Drugtest 5000 (R), Drugwipe 5+ (R) and RapidSTAT (R)) for on-site monitoring drugged driving in comparison with UHLPLC–MS/MS analysis. Forensic Sci Int 2012;221:70–6.

[6] Vanstechelman S, Isalberti C, Van der Linden T, Pil K, Legrand SA, Verstraete AG. Analytical evaluation of four on-site oral fluid drug testing devices. J Anal Toxicol 2012;36:136–40.

[7] Manchikanti L, Mailia Y, W argo BW, Fellows B. Comparative evaluation of the accuracy of immunoassay with liquid chromatography tandem mass spectrometry (LC/MS/MS) of urine drug testing (UJT) opioids and illicit drugs in chronic pain patients. Pain Physician 2011;14:175–87.

[8] Pehrsson A, Blencowe T, Vimpari K, Langel K, Engblom C, Wille SMR, Samyn N, Ramirez-Fernandez MDM, De Boeck G, Vanstechelman S, Isalberti C, Van der Linden T, Pil K, Legrand SA, Verstraete AG. Analytical evaluation of four on-site oral fluid drug testing devices. J Anal Toxicol 2011;35:211–8.

[9] Attema-de Jonge ME, Peeters SYG, Fransen EJF. Performance of three-point-of-care urinalysis test devices for drugs of abuse and therapeutic drugs applied in the emergency department. J Emerg Med 2012;42:682–91.

[10] Chen CY, Lee MR, Cheng FC, Wu GJ. Determination of ketamine and metabolites in urine by liquid chromatography-mass spectrometry. Talanta 2007;72:1217–22.

[11] Huang MK, Liu C, Li JH, Huang SD. Quantitative detection of ketamine, norketamine, and dehydronorketamine in urine using chemical derivatization followed by gas chromatography-mass spectrometry. J Chromatogr B 2005;820:365–73.

[12] Wang KC, Shih TS, Cheng SG. Use of SPE and LC/TIS/MS/MS for rapid detection and quantitation of ketamine and its metabolite, norketamine, in urine. Forensic Sci Int 2005;147:81–8.

[13] Kim EM, Lee JS, Choi SK, Lim MA, Chung HS. Analysis of ketamine and norketamine in urine by automatic solid-phase extraction (SPE) and positive ion chemical ionization-gas chromatography-mass spectrometry (PCI–GC–MS). Forensic Sci Int 2008;174:197–202.

[14] Badawi N, Simonsen KW, Steentoft A, Bernhoft IM, Linnet K. Simultaneous screening and quantification of 29 drugs of abuse in oral fluid by solid-phase extraction and ultraperformance LC–MS/MS. Clin Chem 2009;55:2004–18.

[15] Shiea J, Huang MZ, Hsu HJ, Lee CY, Yuan CH, Beech I, et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Spectrom 2005;19:3701–4.

[16] Kauppila TJ, Talaty N, Kuuranne T, Kotiaho T, Kostiainen R, Cooks RG. Rapid analysis of metabolites and drugs of abuse from urine samples by desorption electrospray ionization-mass spectrometry. Analyst 2007;132:868–75.

[17] Miao ZX, Chen H. Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J Am Soc Mass Spectrom 2009;20:10–9.

[18] Sunti NM, Limpras P, Laine O, Ostman P, Quinpera I, Kotiaho T, et al. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS). Anal Chim Acta 2011;699:73–80.

[19] Su Y, Wang H, Liu Jj, Wei P, Cooks RG, Ouyang Z. Quantitative paper spray mass spectrometry analysis of drugs of abuse. Analyst 2013;138:4443–7.

[20] Domingos E, de Carvalho TC, Pereira I, Vasconcelos GA, Thompson CJ, Augusti R, et al. Paper spray ionization mass spectrometry applied to forensic chemistry - drugs of abuse, inks and questioned documents. Anal Methods 2017;9:4400–9.

[21] Saha S, Mandal MK, Hiraoka K. Direct detection of trace level illicit drugs in human body fluids by probe electrospray ionization mass spectrometry (PESI-MS). Anal Methods UK 2013;5:4731–8.

[22] Wang HX, So PK, Ng TT, Yao ZP. Rapid analysis of raw solution samples by C18 pipette-tip electrospray ionization mass spectrometry. Anal Chim Acta 2014;844:1–7.

[23] Pirro V, Jarmusch AK, Vincenti M, Cooks RG. Direct analysis of oral fluid from medical swab touch spray mass spectrometry. Anal Chim Acta 2015;861:47–54.

[24] Hu B, So PK, Chen HW, Yao ZP. Electrospray ionization using wooden tips. Anal Chem 2011;83:8201–7.

[25] Hu B, Huang YY, Yin G, Zhang GF, Zhang LY, Wang TJ, et al. Rapid detection of adulterated drugs in herbal dietary supplements by wooden-tip electrospray ionization mass spectrometry. Anal Methods 2016;8:6840–6.

[26] Hu B, Yao ZP. Detection of native proteins using solid-substrate electrospray ionization mass spectrometry with nonpolar solvents. Anal Chim Acta 2018;1004:51–7.

[27] So PK, Hu B, Yao ZP. Mass spectrometry: towards in vivo analysis of biological systems. Mol Biosyst 2013;9:915–29.

[28] So PK, Hu B, Yao ZP. Electrospray ionization on solid substrates. Mass Spectrom 2014;3:50028.

[29] Xiong GZ, Hu B, Shi ZQ, Lam YC, Dong TT, Li P, et al. Rapid identification of plant materials by wooden-tip electrospray ionization mass spectrometry and a strategy to differentiate the bulbs of Fritillaria. Anal Chim Acta 2014;820:84–91.

[30] Yang Y, Deng J, Yao ZP. Pharmaceutical analysis by solid-substrate electrospray ionization mass spectrometry with wooden tips. J Am Soc Mass Spectrom 2014;25:37–47.

[31] Yang YY, Deng JW, Yao ZP. Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines. Anal Chim Acta 2015;887:127–37.

[32] Xiong GZ, Hu B, Shi ZQ, Lam YC, Dong TT, Li P, et al. Rapid identification of plant materials by wooden-tip electrospray ionization mass spectrometry. Anal Chim Acta 2013;138:2239–43.

[33] Compendium of chemical terminology gold book. International Union of Pure and Applied Chemistry (IUPAC); 2014.

[34] Mandatory guidelines for federal workplace drug testing program. Substance Abuse and Mental Health Services Administration, U.S.; 2015.

[35] European guidelines for workplace in oral fluid. European Workplace Drug Testing Society; 2015.

[36] European guidelines for workplace drug testing in urine. European Workplace Drug Testing Society; 2015.

[37] Driving under the influence of drugs, alcohol and medicines in europe - finding from the DRUID project. European Monitoring Centre for Drugs and Drug Addiction; 2012.

[38] Hu B, So PK, Yang YY, Deng JW, Choi YC, Luan TG, et al. Surface-modified wooden-tip electrospray ionization mass spectrometry for enhanced detection of analytes in complex samples. Anal Chem 2018;90:1759–66.