A note on scaling asymptotics for
Bohr-Sommerfeld Lagrangian submanifolds

Roberto Paoletti*

1 Introduction

The purpose of this note is to improve an expansion in [DP] for the asymptotics associated to Bohr-Sommerfeld Lagrangian submanifolds of a compact Hodge manifold, in the context of geometric quantization (see e.g. [BW], [BPU], [GS3], [W]). We adopt the general framework for quantizing Bohr-Sommerfeld Lagrangian submanifolds presented in [BPU], based on applying the Szegö kernel of the quantizing line bundle to certain delta functions concentrated along the submanifold.

Let M be a d-dimensional complex projective manifold, with complex structure J; consider an ample line bundle A on it, and let h be an Hermitian metric on A such that the unique compatible connection has curvature $\Omega = -2i\omega$, where ω is a Kähler form. Then the unit circle bundle $X \subseteq A^*$, endowed with the connection one-form α, is a contact manifold. A Bohr-Sommerfeld Lagrangian submanifold of M (or, more precisely, of (M, A, h)) is then simply a Legendrian submanifold $\Lambda \subseteq X$, conceived as an immersed submanifold of M.

In a standard manner, X inherits a Riemannian structure for which the projection $\pi : X \rightarrow M$ is a Riemannian fibration. In view of this, in the following at places we shall implicitly identify (generalized) functions, densities and half-densities on X.

Referring to §2 of [DP] for a more complete description of the preliminaries involved, we recall that if $\Lambda \subseteq X$ is a compact Legendrian submanifold, and λ is a half-density on it, there is a naturally induced generalized half-density $\delta_{\Lambda, \lambda}$ on X supported on Λ; following [BPU], we can then define a sequence of CR functions

$$u_k =: P_k(\delta_{\Lambda, \lambda}) \in \mathcal{H}(X)_k,$$

*Address: Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via R. Cozzi 53, 20125 Milano, Italy; e-mail: roberto.paoletti@unimib.it
where $\mathcal{H}(X)_k$ is the k-th isotype of the Hardy space with respect to the S^1-action, and $P_k : L^2(X) \to \mathcal{H}(X)_k$ is the orthogonal projector (extended to $\mathcal{D}'(X) \to \mathcal{H}(X)_k$). In the present setting there are natural unitary structures on $\mathcal{H}(X)_k$ and the space of global holomorphic sections $H^0(M, A^{\otimes k})$, and a natural unitary isomorphism $\mathcal{H}(X)_k \cong H^0(M, A^{\otimes k})$. One thinks of the u_k’s as representing the quantizations of (Λ, λ) at Planck’s constant $1/k$. It is easily seen that u_k is rapidly decaying as $k \to +\infty$ on the complement of $S^1 \cdot \Lambda = \pi^{-1}(\pi(\Lambda))$; here $\pi : X \to M$ is the projection. On the other hand, the asymptotic concentration of the u_k’s along $S^1 \cdot \Lambda$ poses an interesting problem, already considered in Theorem 3.12 of [BPU].

This theme was revisited in [DP], in a somewhat different technical setting; in particular, Corollary 1.1 of [DP] shows that the scaling asymptotics of u_k (to be defined shortly) near any $x \in S^1 \cdot \Lambda$ admit an asymptotic expansion, and explicitly computes the leading order term. We shall give presently a more precise description of this expansion, as a function on the tangent space of M at $m = \pi(x)$. Namely, we shall show that this asymptotic expansion may be factored as an exponentially decaying term in the component w^\perp of $w \in T_m M$ orthogonal to Λ, times an asymptotic expansion with polynomial coefficients in w (more precisely, the expansion is generally given by a finite sum of terms of this form, one from each branch of Λ projecting to m); the exponential term also contains a symplectic pairing between w^\perp and the component of w along Λ, w^\parallel. Furthermore, we shall give some relevant remainder estimates not mentioned in [DP].

Before stating the results of this paper, let us recall that for any $x \in X$ we can find a Heisenberg local chart for X centered at x,

$$\rho : B_{2d}(\epsilon) \times (-\pi, \pi) \to X, \quad (p, q, \theta) \mapsto r_{e^{i\theta}}(\epsilon(\rho(p, q)));$$

here $B_{2d}(\epsilon) \subseteq \mathbb{R}^{2d}$ is a ball of radius ϵ centered at the origin, $\rho : B_{2d}(\epsilon) \to M$ is a preferred local chart for M centered at $m =: \pi(x)$, meaning that it trivializes the holomorphic and symplectic structures at m, and ϵ is a unitary local frame of A^*, given by the unitarization of a preferred local frame (complete definitions are in [SZ]). Finally, $r_{e^{i\theta}} : X \to X$ is the diffeomorphism induced by the circle action. It is in this kind of local coordinates that the scaling limits of Szegő kernels exhibit their universal nature (Theorem 3.1 of [SZ]). If ρ is a system of Heisenberg local coordinates centered at x, and $p, q \in \mathbb{R}^d$, $w = p + iq$, one poses

$$x + w =: \rho((p, q), 0).$$

For any θ, we have

$$u_k(\rho(p, q, \theta)) = e^{ik\theta} u_k(\rho(p, q, 0)) = e^{ik\theta} u_k(x + w).$$
Given that a system of Heisenberg local coordinates induces a unitary isomorphism of $T_m M$ and \mathbb{C}^d, with this understanding we can also consider the expression $x + w$ with $w \in T_m M$.

If $x \in S^1 \cdot \Lambda$, there are only finitely many elements $h_1, \ldots, h_{N_x} \in S^1$ such that $x_j := r_{h_j}(x) \in \Lambda$. Since Λ is Legendrian, hence horizontal for the connection, for any j we may naturally identify the tangent space $T_{x_j} \Lambda \subseteq T_{x_j} X$ with a subspace of $T_{\pi(x)} M$. With this in mind, if $w \in T_{\pi(x)} M$ we can write $w = w_j^{\perp} + w_j^{\|}$ for unique $w_j^{\|} \in T_{x_j} \Lambda$ and $w_j^{\perp} \in T_{x_j} \Lambda^{\perp}$; the latter denotes the orthocomplement of $T_{x_j} \Lambda$ in $T_{\pi(x)} M$ in the Riemannian metric of M.

Finally, let $\text{dens}_{\Lambda}^{(1/2)}$ be the Riemannian half-density on Λ (for the induced metric); thus if λ is a C^∞ half-density on Λ we can write $\lambda = F_\lambda \cdot \text{dens}_{\Lambda}^{(1/2)}$ for a unique $F_\lambda \in C^\infty(\Lambda)$.

Theorem 1. Let $\Lambda \subseteq X$ be a compact Legendrian submanifold, and suppose λ is a smooth half-weight on it. For every $k = 1, 2, \ldots$, let $u_k := P_k(\delta_{\Lambda, \lambda})$. Suppose $x \in S^1 \cdot \Lambda$, and choose a system of Heisenberg local coordinates for X centered at x. Let $h_1, \ldots, h_{N_x} \in S^1$ be the finitely many elements such that $r_{h_j}(x) \in \Lambda$. Then:

1. Suppose $a > 0$. Uniformly for $\min_j \{\|w_j^{\perp}\|\} \gtrsim k^a$, we have
 $$u_k \left(x + \frac{w}{\sqrt{k}} \right) = O(k^{-\infty}).$$

2. There exists polynomials a_{ij} on \mathbb{C}^d such that the following holds: for $w \in T_{\pi(x)} M$ and $k, \ell = 1, 2, \ldots$, let us define
 $$R_{k, \ell}(x, w) := u_k \left(x + \frac{w}{\sqrt{k}} \right) - \left(\frac{2k}{\pi} \right)^{d/2} \sum_{j=1}^{N_x} h_j^{-k} e^{-\|w_j^{\perp}\|^2 - i\omega_\pi(x)(w_j^{\perp}, w_j^{\|})} F_\lambda(x_j) \cdot \left(1 + \sum_{l=1}^{\ell} k^{-l/2} a_{lj}(w) \right).$$
 Then uniformly for $\|w\| \lesssim k^{1/6}$ we have
 $$\left| R_{k, \ell}(x, w) \right| \leq C_{\ell} k^{(d-\ell-1)/2} \sum_{j=1}^{N_x} e^{-\frac{1}{k} \|w_j^{\perp}\|^2}. \tag{1}$$

Corollary 1. $\forall w \in T_{\pi(x)} M$, the following asymptotic expansion holds as $k \to +\infty$:
 $$u_k \left(x + \frac{w}{\sqrt{k}} \right) \sim \left(\frac{2k}{\pi} \right)^{d/2} \sum_{j=1}^{N_x} h_j^{-k} e^{-\|w_j^{\perp}\|^2 - i\omega_\pi(x)(w_j^{\perp}, w_j^{\|})} F_\lambda(x_j) \cdot \left(1 + \sum_{l=1}^{\ell} k^{-l/2} a_{lj}(w) \right).$$
This agrees with Corollary 1.1 of [DP] to leading order, but gives a clearer picture of the asymptotic expansion, as well as an explicit estimate on the remainder.

The proof of Theorem 1 is based on the scaling asymptotics of Szegő kernels in Theorem 3.1 of [SZ], whereas the proofs in [DP] are based on microlocal arguments that encompass the equivariant setting, involving a direct use of the parametrix developed in [BS]. In view of the scaling asymptotics of equivariant Szegő kernels proved in [P], factorizations akin to Theorem 1 also hold in the equivariant setting; we shall not discuss this here.

2 Proof of Theorem 1

Let us first prove 2. Thus, we want to investigate the asymptotics of

$$u_k \left(x + \frac{w}{\sqrt{k}} \right)$$

as $k \to +\infty$, assuming that $w \in T_{\pi(x)} M$, $\|w\| \leq C k^{1/6}$ for some fixed $C > 0$.

Let $\Pi_k \in C^\infty(X \times X)$ be the Schwartz kernel of P_k; explicitly, if \(\{ s_r^{(k)} \} \) is an orthonormal basis of $H_k(X)$, then

$$\Pi_k(y, y') = \sum_r s_r^{(k)}(y) \cdot \overline{s_r^{(k)}(y')} \quad (y, y' \in X).$$

Let dens_X and dens_Λ denote, respectively, the Riemannian density on X and Λ. Then, in standard distributional short-hand, by definition of $\delta_{\Lambda, \lambda}$ for any $x' \in X$ we have

$$u_k(x') = \int_X \Pi_k(x', y) \delta_{\Lambda, \lambda}(y) \text{dens}_X(y)$$

$$= \langle \delta_{\Lambda, \lambda}, \Pi_k(x', \cdot) \rangle = \int_\Lambda \Pi_k(x', y) F_\lambda(y) \text{dens}_\lambda(y). \quad (2)$$

Let us write dist_M for the Riemannian distance function on M, pulled-back to a smooth function on $X \times X$ by the projection $\pi \times \pi$. Let us set:

$$V_k =: \{ x' \in X : \text{dist}_M(x, x') < 4C k^{-1/3} \},$$

$$V'_k =: \{ x' \in X : \text{dist}_M(x, x') > 3C k^{-1/3} \}.$$

If $y \in V'_k$ and $\|w\| \leq C k^{1/6}$, then $\text{dist}_M \left(x + \frac{w}{\sqrt{k}}, y \right) \geq C k^{-1/3}$ for $k \gg 0$; by the off-diagonal estimates on Szegő kernels in [C], therefore, $\Pi_k \left(x + \frac{w}{\sqrt{k}}, y \right) = O (k^{-\infty})$ uniformly for $y \in V'_k$.\
For \(k \gg 0 \), \(\Lambda \cap V_k \) has \(N_x \) connected components:

\[
\Lambda \cap V_k = \bigcup_{j=1}^{N_x} \Lambda_{kj},
\]

where \(\Lambda_{kj} \) is the connected component containing \(x_j \). Let \(\{s_k, s'_k\} \) be an \(S^1 \)-invariant partition of unity on \(X \), subordinate to the open cover \(\{V_k, V'_k\} \). In view of (2) and the previous discussion, we obtain

\[
u_k \left(x + \frac{w}{\sqrt{k}} \right) = \int_{\Lambda} \Pi_k \left(x + \frac{w}{\sqrt{k}}, y \right) F_{\lambda}(y) \text{dens}_{\Lambda}(y)
\]

\[
\sim \sum_{j=1}^{N_x} \int_{\Lambda_{kj}} \Pi_k \left(x + \frac{w}{\sqrt{k}}, y \right) F_{\lambda}(y) s_k(y) \text{dens}_{\Lambda}(y),
\]

where \(\sim \) means that the two terms have the same asymptotics. Let us now evaluate the asymptotics of the \(j \)-th summand in (3).

To this end, recall that the Heisenberg local chart \(\rho \) centered at \(x \) depends on the choice of the preferred local chart \(\rho \) at \(\pi(x) \), and of the local frame \(e \) of \(A^* \). We obtain a Heisenberg local chart \(\rho_j \) centered at \(x_j \) by setting \(\rho_j(p, q, \theta) =: r_{hj}(\rho(p, q, \theta)) \). By the discussion in §2 of [DP] and (48) of the same paper, we can compose \(\rho_j \) with a suitable transformation in \((p, q) \) (that is, a change of preferred local chart for \(M \)) so as to obtain a Heisenberg local chart \(\rho_j(p, q, \theta) \) centered at \(x_j \) with the following property: \(\Lambda \) is locally defined near \(x_j \) by the conditions \(\theta = f_j(q) \) and \(p = 0 \), where \(f_j \) vanishes to third order at the origin. By construction, we have \(\rho_j(p, q, \theta) = r_{hj}(\rho(p', q', \theta)) \)

for a certain local diffeomorphism \((p, q) \mapsto (p', q') \).

Thus \(\Lambda \) is locally parametrized, near \(x_j \) and in the chart \(\rho_j \), by the imaginary vectors \(iq \); viewing the \(q \)'s as local coordinates on \(\Lambda \) near \(x_j \), locally we have \(\text{dens}_{\Lambda} = D_{\Lambda} \cdot |dq| \), for a unique locally defined smooth function \(D_{\Lambda} \). By construction of Heisenberg local coordinates, \(D_{\Lambda}(0) = 1 \).

Applying a rescaling by \(k^{-1/2} \), we obtain

\[
\int_{\Lambda_{kj}} \Pi_k \left(x + \frac{w}{\sqrt{k}}, y \right) F_{\lambda}(y) s_k(y) \text{dens}_{\Lambda}(y)
\]

\[
= k^{-d/2} \int_{\mathbb{R}^d} \Pi_k \left(x + \frac{w}{\sqrt{k}}, \frac{r_{e^{if_j(q/\sqrt{k})}}(x_j + \frac{iq}{\sqrt{k}})}{\sqrt{k}} \right) F_{\lambda} \left(\frac{q}{\sqrt{k}} \right) s_k \left(\frac{iq}{\sqrt{k}} \right) D_{\Lambda} \left(\frac{q}{\sqrt{k}} \right) dq
\]

\[
= k^{-d/2} \int_{\mathbb{R}^d} e^{-ikf_j(q/\sqrt{k})} \Pi_k \left(x + \frac{w}{\sqrt{k}}, x_j + \frac{iq}{\sqrt{k}} \right) F_{\lambda} \left(\frac{q}{\sqrt{k}} \right) s_k \left(\frac{iq}{\sqrt{k}} \right) D_{\Lambda} \left(\frac{q}{\sqrt{k}} \right) dq.
\]
Here, \(x + \frac{w}{\sqrt{k}} = \rho \left(\frac{\mathcal{R}(w)}{\sqrt{k}}, \frac{\mathcal{I}(w)}{\sqrt{k}}, 0 \right) \) (we use the Heisenberg chart to unitarily identify \(T \mathcal{M} \) with \(\mathbb{C}^d \), and \(x + \frac{iq}{\sqrt{k}} = \rho_j \left(0, \frac{q}{\sqrt{k}}, 0 \right) \). Notice that \(s_k \left(\frac{iq}{\sqrt{k}} \right) = 1 \) for \(\|q\| \lesssim k^{1/6} \), \(s_k \left(\frac{iq}{\sqrt{k}} \right) = 0 \) for \(\|q\| \gtrsim k^{1/6} \). In particular, integration takes place over a ball of radius \(\sim k^{1/6} \). Also, Taylor expanding \(F_\lambda \) and \(f_j \) at the origin we have asymptotic expansions

\[
F_\lambda \left(\frac{q}{\sqrt{k}} \right) \sim F_\lambda (x_j) + \sum_{r \geq 1} k^{-r/2} b_r(q), \quad D_\lambda \left(\frac{q}{\sqrt{k}} \right) \sim 1 + \sum_{r \geq 1} k^{-r/2} c_r(q),
\]

and, since \(f_j \) vanishes to third order at the origin,

\[
f_j \left(\frac{q}{\sqrt{k}} \right) \sim \sum_{r \geq 0} k^{-(3+r)/2} d_r(q), \quad e^{-ikf_j \left(\frac{q}{\sqrt{k}} \right)} \sim 1 + \sum_{r \geq 1} k^{-r/2} e_r(q),
\]

for suitable polynomials \(b_r, c_r, d_r, e_r \).

Let \(w_j \in \mathbb{C}^d \) correspond to \(w \) in the Heisenberg local coordinates \(\rho_j \). By the above, Taylor expanding the transformation \((p, q) \mapsto (p', q') \), we obtain \(x + \frac{w}{\sqrt{k}} = r_{h_j^{-1}} \left(x_j + \frac{w_j}{\sqrt{k}} + H(w, k) \right) \), where \(H(w, k) \sim \sum_{j \geq 2} k^{-f_j/2} h_j(w) \). Without affecting the leading order term of the resulting asymptotic expansion, we may pretend for simplicity that \(x + \frac{w}{\sqrt{k}} = r_{h_j^{-1}} \left(x_j + \frac{w_j}{\sqrt{k}} \right) \).

Write \(w_j = p_j + iq_j \), with \(p_j, q_j \in \mathbb{R}^d \). Thus \(w_j^\perp = p_j, w_j^\parallel = iq_j \). In view of Theorem 3.1 of [SZ], we have

\[
\Pi_k \left(x + \frac{w}{\sqrt{k}}, x_j + \frac{iq}{\sqrt{k}} \right) = \Pi_k \left(r^{-1}_{h_j} \left(x_j + \frac{w_j}{\sqrt{k}} \right), x_j + \frac{iq}{\sqrt{k}} \right) = h_j^{-k} \Pi_k \left(x_j + \frac{w_j}{\sqrt{k}}, x_j + \frac{iq}{\sqrt{k}} \right) \sim h_j^{-k} \left(\frac{k}{\pi} \right)^d e^{-ip_j \cdot q - \frac{1}{2} \|p_j\|^2 - \frac{1}{2} \|q_j\|^2} \left(1 + \sum_{r \geq 1} k^{-r/2} R_j(w, q) \right),
\]

for certain polynomials \(R_j \) in \(w \) and \(q \). Furthermore, by the large ball estimate on the remainder discussed in §5 of [SZ], the remainder after summing over \(1 \leq r \leq R \) is bounded by

\[
C_R k^{d-(R+1)} e^{-\frac{1}{4R} (\|p_j\|^2 + \|q_j\|^2)}.
\]

It follows that the product of these asymptotic expansions can be integrated term by term; given this, we only lose a contribution which is \(O(k^{-\infty}) \) by setting \(s_k = 1 \) and integrating over all of \(\mathbb{R}^d \).
We have
\[\int_{\mathbb{R}^d} e^{-ip_j \cdot q - \frac{1}{2}||q||^2} dq = e^{-ip_j \cdot q_j} \int_{\mathbb{R}^d} e^{-ip_j \cdot s - \frac{1}{2}||s||^2} ds = (2\pi)^{d/2} e^{-ip_j \cdot q_j - \frac{1}{2}||p_j||^2}. \]

Given (5), this implies that (4) is given by an asymptotic expansion, with leading order term
\[h_j^{-k} \left(\frac{2k}{\pi} \right)^{d/2} e^{-\|w_j^+\|^2 - i\omega_x(x)(w_j^+ \cdot w_j^+)} F_\lambda(x_j). \]

To determine the general term of the expansion, on the other hand, we are led to computing integrals of the form
\[\int_{\mathbb{R}^d} q^\beta e^{-ip_j \cdot q - \frac{1}{2}||q||^2} dq = e^{-ip_j \cdot q_j} \int_{\mathbb{R}^d} (s + q_j)^\beta e^{-ip_j \cdot s - \frac{1}{2}||s||^2} ds. \]

where \(q^\beta \) is some monomial. Thus we led to a sum of terms of the form
\[e^{-ip_j \cdot q_j} C_\gamma(q_j) \int_{\mathbb{R}^d} s^\gamma e^{-ip_j \cdot s - \frac{1}{2}||s||^2} ds, \]
and the integral is the evaluation at \(p_j \) of the Fourier transform of \(s^\gamma e^{-\frac{1}{2}||s||^2} \). Up to a scalar factor, the latter is an iterated derivative to \(e^{-\frac{1}{2}||s||^2} \); therefore we are left with a summand of the form \(e^{-ip_j \cdot q_j} T(q_j, q_j) e^{-\frac{1}{2}||p_j||^2} ds \), where \(T \) is a polynomial in \(p_j, q_j \). Given (5), this implies that the general term of the asymptotic expansion for (4) has the form
\[h_j^{-k} \left(\frac{2k}{\pi} \right)^{d/2} k^{-l/2} e^{-\|w_j^+\|^2 - i\omega_x(x)(w_j^+ \cdot w_j^+)} F_\lambda(x_j) \cdot a_{ij}(w) \]
for an appropriate polynomial \(a_{ij}(w) \). Finally, (11) (at \(x_j \)) follows by integrating (11).

To complete the proof of 2., we need only sum over \(j \).

Turning to the proof of 1., by definition of preferred local coordinates, if \(w_j^+ \geq C k^a \), say, then
\[\text{dist}_M \left(x + \frac{w}{\sqrt{k}}, \Lambda_{kj} \right) \geq C' k^{a-\frac{1}{2}}, \]
for all \(k \gg 0 \). By the off-diagonal estimates of [C], \(\Pi_k \left(x + \frac{w}{\sqrt{k}}, y \right) = O(k^{-\infty}) \) uniformly for \(y \in \Lambda_{kj} \).

Q.E.D.
References

[BW] S. Bates, A. Weinstein, *Lectures on the geometry of quantization*, Berkeley Mathematics Lecture Notes 8, AMS 1997

[BPU] D. Borthwick, T. Paul, A. Uribe, *Legendrian distributions with applications to relative Poincaré series*, Invent. Math. 122 (1995), no. 2, 359–402

[BS] L. Boutet de Monvel, J. Sjöstrand, *Sur la singularité des noyaux de Bergman et de Szegő*, Astérisque 34-35 (1976), 123–164

[C] M. Christ, *Slow off-diagonal decay for Szegő kernels associated to smooth Hermitian line bundles*, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), 77–89, Contemp. Math. 320, Amer. Math. Soc., Providence, RI, 2003

[DP] M. Debernardi, R. Paoletti, *Equivariant asymptotics for Bohr-Sommerfeld Lagrangian submanifolds*, Comm. Math. Phys. 267 (2006), no. 1, 227–263

[GS3] V. Guillemin, S. Sternberg, *The Gelfand-Cetlin system and quantization of the complex flag manifold*, J. Func. Anal. 52 (1983), 106-128

[P] R. Paoletti, *Scaling limits for equivariant Szegő kernels*, accepted for publication in The journal of symplectic geometry

[SZ] B. Shiffman, S. Zelditch, *Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds*, J. Reine Angew. Math. 544 (2002), 181–222

[W] A. Weinstein, *Symplectic geometry*, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 1, 1–13