Graph Streaming Lower Bounds for Parameter Estimation and Property Testing via a Streaming XOR Lemma

Sepehr Assadi
Department of Computer Science
Rutgers University
New Brunswick, NJ, USA
sepehr.assadi@rutgers.edu

Vishvajeet N
Department of Computer Science
Rutgers University
New Brunswick, NJ, USA
vishva.jeet@rutgers.edu

ABSTRACT
We study space-pass tradeoffs in graph streaming algorithms for parameter estimation and property testing problems such as estimating the size of maximum matchings and maximum cuts, weight of minimum spanning trees, or testing if a graph is connected or cycle-free versus being far from these properties. We develop a new lower bound technique that proves that for many problems of interest, including all the above, obtaining a $(1 + o(1))$-approximation requires either $n \Omega(1)$ space or $\Omega(1/\varepsilon)$ passes, even on highly restricted families of graphs such as bounded-degree planar graphs. For multiple of these problems, this bound matches those of existing algorithms and is thus (asymptotically) optimal.

Our results considerably strengthen prior lower bounds even for arbitrary graphs: starting from the influential work of [Verbin, Yu; SODA 2011], there has been a plethora of lower bounds for single-pass algorithms for these problems; however, the only multi-pass lower bounds proven very recently in [Assadi, Kol, Saxena, Yu; FOCS 2020] rules out sublinear-space algorithms with exponentially smaller $o(\log (1/\varepsilon))$ passes for these problems.

One key ingredient of our proofs is a simple streaming XOR Lemma, a generic hardness amplification result, that we prove: informally speaking, if a p-pass s-space streaming algorithm can only solve a decision problem with advantage $\delta > 0$ over random guessing, then it cannot solve XOR of ℓ independent copies of the problem with advantage much better than δ^ℓ. This result can be of independent interest and useful for other streaming lower bounds as well.

CCS CONCEPTS
• Theory of computation → Streaming, sublinear and near linear time algorithms; Lower bounds and information complexity.

KEYWORDS
Graph Streaming, Communication Complexity, XOR lemma, Property Testing, MAXCUT, Pointer Chasing

1 INTRODUCTION
Consider an n-vertex undirected graph $G = (V, E)$ whose edges are arriving one by one in a stream. Suppose we want to process G with a streaming algorithm using small space (e.g., $\text{polylog}(n)$ bits), and in a few passes (e.g., a small constant). How well can we estimate parameters of G such as size of maximum cuts and maximum matchings, weight of minimum spanning trees, or number of short cycles? How well can we perform property testing on G, say, decide whether it is connected or cycle-free versus being far from having these properties? These questions are highly motivated by the growing need in processing massive graphs and have witnessed a flurry of results in recent years: see, e.g., [8, 43–45, 47] on maximum cut, [2, 17, 20, 22, 42, 51, 52] on maximum matching size, [6, 7, 11, 13, 19, 41, 53] on subgraph counting, [18, 33, 34] on CSPs, and [21, 35, 55, 57] on property testing, among others (see also [3, 21, 64]).

Despite this extensive attention, the answer to these questions have remained elusive; except for a handful of problems and almost exclusively for single-pass algorithms, we have not yet found the “right” answers. For instance, consider property testing of connectivity: given a sparse graph G and a constant $\varepsilon > 0$, find if G is connected or requires at least $\varepsilon \cdot n$ more edges to become so. Huang and Peng [35] proved that for single-pass algorithms, $n^{1-o(1)}$ space is sufficient and necessary for this problem. But until very recently, it was even open if one could solve this problem in $O(\log n)$ space and two passes. This question was partially addressed by the first author, Kol, Saxena, and Yu [3] who proved that any algorithm for this problem requires $n^{O(1/\varepsilon)}$ space or $\Omega(\log (1/\varepsilon))$ passes. But this is still far from the only known upper bound of $\text{polylog}(n)$ space and $O(1/\varepsilon)$ passes obtained via a streaming implementation of the algorithm of [16] (see [57]).

Our goal in this paper is to make further progress on understanding the limits of multi-pass graph streaming algorithms for
parameter estimation and property testing. We present a host of new multi-pass streaming lower bounds that in multiple cases such as property testing of connectivity, achieve optimal lower bounds on the space-pass tradeoffs for the given problems. At the core of our results, similar to [3, 64], is a new lower bound for a “gap cycle counting” problem, wherein the goal is to distinguish between graphs consisting of only “short” cycles or only “long” cycles. Our other streaming lower bounds follow by easy reductions from this problem.

Already a decade ago, Verbin and Yu [64] identified a gap cycle counting problem as an excellent intermediate problem for studying the limitations of graph streaming algorithms for estimation problems: Given a graph G and an integer k, decide if G is a disjoint union of k-cycles or 2k-cycles. By building on [25], they proved that this problem requires $n^{1-O(1/k)}$ space in a single pass and used this to establish lower bounds for several other problems. This work has since been a source of insights and inspirations for numerous other streaming lower bounds, e.g. [2, 10, 14, 18, 22, 33– 35, 40, 43–45, 47, 49]. These lower bounds were all for single-pass algorithms. Very recently, [3] proved that any p-pass streaming algorithm for gap cycle counting—and even a variant wherein the goal is to distinguish union of k-cycles from a Hamiltonian cycle—requires $n^{1-O(k^{-1/p})}$ space; in particular, $\Omega(\log k)$ passes are needed to solve this problem with polylog(n) space. The work of [3] showed that a large body of graph streaming lower bounds for estimation problems can now be extended to multi-pass algorithms using simple reductions from these gap cycle counting problems.

A main question that was left explicitly open by both [3, 64] was to determine the tight space-pass tradeoff for these gap cycle counting problems (and by extension other streaming problems obtained via reductions). We partially resolve this question by proving an asymptotically tight lower bound for a more relaxed variant that allows for some “noise” in the input.

2 OUR CONTRIBUTIONS

Our main contribution is an asymptotically optimal multi-pass streaming lower bound for a noisy version of the gap cycle counting problem, wherein the graph consists of a disjoint union of either k-cycles or 2k-cycles on $\Theta(n)$ vertices, plus vertex-disjoint paths of length $k - 1$ (the “noise”) on the remaining vertices; the goal as before is to distinguish between the two cases. We define the problem formally as follows (see also Figure 1).

Problem 1. Noisy Gap Cycle Counting Problem (NGC)

Let $k, t \in \mathbb{N}^\ast$ and $n = 6t \cdot k$. In NGC$_{n,k,t}$ we have an n-vertex graph G with the promise that G either contains (i) $2t$ vertex-disjoint k-cycles, or (ii) t vertex-disjoint (2k)-cycles; in both cases, the remaining vertices of G are partitioned into $4t$ vertex-disjoint paths of length $k - 1$ (the “noise” part of the graph). The goal is to distinguish between these two cases.

2.1 Gap Cycle Counting with a Little Bit of Noise

We prove the following lower bound for NGC.

Result 1. For any constant $k > 0$, any p-pass streaming algorithm for the noisy gap cycle counting problem requires $n^{1-O(p/k)}$ space to succeed with large constant probability.

Result 1 obtains asymptotically optimal bounds for noisy gap cycle counting: on one end of the tradeoff, one can solve this problem in just one pass by sampling $\approx n^{1-1/k}$ random vertices and storing all their edges to find a k-cycle or a $(k+1)$-path. On the other end, we can simply “chase” the neighborhood of $O(1)$ random vertices in $n = k$ passes to solve the problem. In the middle of these two extremes, there is the algorithm that samples $\approx n^{1-p/k}$ vertices and chase all of them in p passes and “stitch” them together to form k-cycles or $(k+1)$-paths. Result 1 matches all these tradeoffs asymptotically. Moreover, as a corollary, we obtain that any algorithm for this problem requires $n^{1-O(1/p)}$ space or $\Omega(k)$ passes, exponentially improving the bounds of [3].

We remark that Verbin and Yu conjectured that any p-pass algorithm for this problem requires $n^{1-2/k}$ space as long as $k < p/2 - 1$ [64, Conjecture 5.4]. This conjecture as stated is too strong as the $O(n^{1-p/k})$ space algorithm above refutes it already for $p > 2$. However, 1 settles a qualitatively similar form of this conjecture which allows for an $n^{1-O(p/k)}$-space p-pass tradeoff.

2.2 Graph Streaming Lower Bounds from Noisy Gap Cycle Counting

We use our lower bound in Result 1 in a similar manner as prior work to prove several new graph streaming lower bounds. The difference is that we now have to handle the extra noise in the problem; it turns out however that, as expected, this noise does not have a serious effect on the reductions (it also helps that we prove Result 1 in a stronger form where, informally speaking, one endpoint of every noise path is already known to the algorithm. As a result, we can recover all graph streaming lower bounds of [3] with a much stronger guarantee:

Result 2. For any $\epsilon > 0$, any p-pass algorithm for any of the following problems on n-vertex graphs requires $n^{1-O(\epsilon p)}$ space:

1The conjecture of [64] is stated more generally for two-party communication protocols and for the no-noise version of the problem; the statement here is an immediate corollary of this conjecture.
Prior to our work, $n^{-O(1)}$ space lower bounds for single-pass algorithms have been obtained in [43, 47] for maximum cut, [14, 22] for maximum matching, [18, 34] for maximum acyclic subgraph, [23, 35] for minimum spanning tree, and [35] for the property testing problems. These results were recently extended by [3] to p-pass algorithms with the space of $n^{1-\Omega(e^{1/p})}$ and thus $\Omega(\log(1/e))$ passes for $n^{\Omega(1)}$-space algorithms. Our Result 2 exponentially improves the dependence on number of passes in [3], and in particular implies that any $n^{\Omega(1)}$-space streaming algorithm for these problems requires $\Omega(1/e)$ passes. For multiple of these problems, this bound can be matched by already known upper bounds and is thus optimal. We elaborate on these results further in Section 7.

We conclude this part by remarking that many of the problems we consider in Result 2 have been also studied in random order streams; see, e.g., [21, 42, 46, 55, 57]. In particular, Monemizadeh et al. [55] showed that $(1+\epsilon)$-approximation of matching size (in bounded-degree graphs) can be done in $O(2^{1/\epsilon})$ space and a single pass if the edges are arriving in a random order; similar bounds were obtained by Peng and Sohler [57] for approximating the weight of minimum spanning tree (in bounded-weight graphs) and property testing of connectedness (see also the work of Czumaj et al. [21] for a recent generalization of these results). Our Result 2 thus demonstrate just how much harder solving these problems is in adversarial-order streams even with almost $1/\epsilon$ passes.

2.3 Streaming XOR Lemma

A key part of our proof of Result 1 is a general hardness amplification step: Let f be a Boolean function over a distribution $x \sim \mu$; for any integer $t > 1$, consider the t-fold-XORσ of f over the distribution of inputs $x_1, \ldots, x_t \sim \mu$, namely, $f^{t\sigma} := \text{XOR}_t \circ f = f(x_1) \oplus \cdots \oplus f(x_t)$. How much harder is to compute $f^{t\sigma}$ compared to f? Notice that if solving f (with certain resources) has success probability $\leq 1/2 + \delta$, and that all the algorithm for $f^{t\sigma}$ does is to solve each $f(x_i)$ independently and take their XOR, then its success probability would be $\approx 1/2 + \delta_t$. This is simply because XOR of t independent random bits with bias δ only has bias $\approx \delta$. Can a more clever strategy (with the same resources) beat this naive way of computing $f^{t\sigma}$?

These questions are generally referred to as XOR Lemmas and have been studied extensively in different settings like circuit complexity [26, 27, 36, 37, 48, 66], communication complexity [26, 62, 65], and query complexity [12, 61, 62]. However, despite the extensive attention that similar hardness amplification questions such as direct sum and direct product have received in the streaming model (see, e.g., [5, 9, 29, 38, 39, 54, 58, 60] and references therein), we are not aware of any type of XOR Lemma for streaming algorithms. Thus, an important contribution of our work is to prove exactly such a result; considering its generality, we believe this result to be of independent interest.

Result 3

Suppose any p-pass s-space streaming algorithm for f over a distribution $x \sim \mu$ succeeds with probability $\leq 1/2 + \delta$. Then, any p-pass s-space algorithm for $f^{t\sigma}$ over the concatenation of streams $\sigma_1, \ldots, \sigma_t \sim \mu$ only succeeds with probability $\leq 1/2 \cdot (1 + (2\delta)^f)$.

Let us now mention how Result 3 is used in the proof of Result 1. Consider the following problem: given a graph G in (noisy) gap cycle counting and a single vertex $v \in G$, “chase” the depth-δ neighborhood of v to see if they form a k-cycle or a $(k + 1)$-path. This problem is quite similar to the pointer chasing problem studied extensively in communication complexity and streaming, e.g., in [1, 4, 15, 24, 28, 30–32, 39, 56, 59, 67] (see Definition 3.3). The gap cycle counting problem then can be thought of as $\approx nk$ instances of this problem that are highly correlated: they are all in the same graph and they all either form a k-cycle or a $(k + 1)$-path. The first step of our lower bound is an argument that “decorrelates” these instances which implies that one of them should be succeed with probability of success $1/2 + \Omega(\kappa/\mu)$, where κ is a threshold for any of the standard pointer chasing lower bounds to kick in. This is where we use our streaming XOR Lema: we give a reduction that embeds XOR of ℓ instances of depth-(k/μ) pointer chasing as a single depth-κ instance; applying our Result 3 then reduces our task to proving a lower bound for pointer chasing with probability of success $1/2 + \Omega(\kappa/\mu)$ (in k/μ passes), which brings us to the “standard” territory. The last step is then to prove this lower bound over our hard instances which are different from standard ones, e.g., in [31, 56, 67].

3 PRELIMINARIES

Notation

For a Boolean function f and integer $\ell \geq 1$, we use $f^{\ell\sigma}$ to denote the composition of f with the ℓ-fold XOR function, i.e.,

$f^{\ell\sigma}(x_1, \ldots, x_\ell) = f(x_1) \oplus \cdots \oplus f(x_\ell)$. Throughout the paper, we denote input stream by σ and $|\sigma|$ denote the length of the stream. For any two streams σ_1, σ_2, we use $|\sigma_1| \ll |\sigma_2|$ to denote the $|\sigma_1| + |\sigma_2|$ length stream obtained by concatenating σ_2 at the end of σ_1. When it comes to confusion, we use sans serif font for random variables (e.g. X) and normal font for their realization (e.g. x). We use supp(X) to denote the support of random variable X. For a 0/1-random variable X, we define the bias of X as bias(X) := $|\Pr(X = 0) - \Pr(X = 1)|$.

Information theory

For random variables $X, Y, \mathbb{H}(X)$ denotes the Shannon entropy of X, $\mathbb{I}(X; Y)$ denotes the mutual information, $\|X - Y\|_{TV}$ denotes the total variation distance between the distributions of X, Y, and $\mathbb{D}(X \| Y)$ is their KL-divergence.

Streaming algorithms

For the purpose of our lower bounds, we shall work with a more powerful model than what is typically considered the streaming model, which we define as follows:

Definition 3.1 (Streaming algorithms). For any integers $n, p, s \geq 1$, we define a p-pass s-space streaming algorithm working on a length-n stream $\sigma = (x_1, \ldots, x_n)$ as a $(p + 1)$-player communication protocol between players P_0, \ldots, P_n wherein:
We state our main streaming lower bound for the noisy gap cycle problem (although this problem is non-uniform and is defined for each choice of n individually.)

We also need some structure on the family of graphs we work with, in particular the ones defined as follows:

Definition 3.2 (Layered Graph). For any integers $w, d \geq 1$, we define a (w, d)-layered graph, with width w and depth d, as any graph $G = (V, E)$ with the following properties:

1. Vertices V consist of $d + 1$ layers of vertices V_1, \ldots, V_{d+1}, each of size w.
2. Edges E consist of d matchings M_1, \ldots, M_d where M_i is a perfect matching between V_i and V_{i+1}.

For any vertex $v \in V_i$, we use $P(v)$ to denote the unique vertex reachable from v in V_{d+1}. Moreover, by a random layered graph, we mean a layered graph whose matchings are chosen uniformly at random and independently but the partitioning of vertices into the layers is fixed.

In our proof, we also work the pointer chasing problem (although with several non-standard aspects). We define this problem as follows:

Definition 3.3 (Pointer Chasing (PC)). Let $m, b \in \mathbb{N}^+$. In $PC_{m,b}$ we have an (m, b)-layered graph on layers V_1, \ldots, V_{b+1}, an arbitrary vertex $s \in V_1$, and an arbitrary equipartition of X, Y of V_{b+1}. The goal is to decide whether $P(s) \in V_{b+1}$ belongs to X (a X-instance) or Y (a Y-instance).

4 TECHNICAL OVERVIEW

We state our main streaming lower bound for the noisy gap cycle counting problem that formalizes Result 1 and proceed to give an overview of our techniques in this section.

Theorem 4.1. For every $k \in \mathbb{N}^+$, any p-pass streaming algorithm for Noisy Gap Cycle Counting NGC$_{n,k}$ with probability of success at least $2/3$ requires $\Omega \left(\frac{1}{p} \cdot \left(n/k \right)^{1-O(p/k)} \right)$ space.

Note that for this lower bound to be non-trivial, both k needs to be at least some large constant, and p should be smaller than k by a similar factor.

We first design a hard input distribution for NGC$_{n,k}$ and prove its useful properties for our purpose. Our hard input distribution is constructed as follows. We first sample a random (w, d)-layered graph G_0 for parameter $w = 3t$ and $d = \frac{k-2}{2}$ for NGC$_{n,k}$ conditioned on the following event:

- Let $S \subseteq V_1$ be a fixed subset of size t, and X, Y be a fixed equipartition of V_{d+1} (say, both are the lexicographically-first option); then $\{P(v) : v \in S\}$ is either a subset of X or Y.

We construct the final graph G from four identical copies of G_0 (on disjoint sets of vertices), plus some fixed gadget so that it satisfies the following property: when all vertices $v \in S$ have $P(v) \in X$, the resulting graph G has $2t$ cycles of length k each; otherwise, it has t cycles of length $2k$ instead; in both cases, the graph G also has $4t$ paths of length $k - 1$. We now present the formal description of the distribution (see also Figure 2).

Distribution 1. The distribution μ_{NGC} for NGC$_{n,k}$ for given parameters n, k and $t = n/6k$.

1. Let $d = \frac{k-2}{2}$ and sample a random $(3t, d)$-layered graph G_0 on vertices V_1, \ldots, V_{d+1} and matchings M_1, \ldots, M_d conditioned on the following event:

 - Let $S \subseteq V_1$ be a fixed subset of size t, and X, Y be a fixed equipartition of V_{d+1}. Then, $\{P(v) : v \in S\}$ is entirely a subset of X (a X-instance) or a subset of Y (a Y-instance).

2. Create the following graph $G = (V, E)$ on groups of vertices V_i^j for $i \in [4]$ and $j \in [d+1]$ using four identical copies of the graph sampled G_0 above:

 a. For every $j \in [d+1]$, let V_i^j be the copies of V_j in G_0 and define S_i^j, X_i^j, Y_i^j as copies of S, X, Y, respectively (the same for all $i \in [4]$) for any vertex $v \in G_0$ and $i \in [4]$; we use copy(v, i) to denote the copy of v in V_i^j.

 b. Connect V_i^j to V_i^{j+1} for any i, j by a matching M_i^j corresponding to M_i of G_0.

 c. Connect S_i^j to S_i^{j+1} and S_i^j to S_i^{j+1} using identity perfect matchings, respectively. Similarly, connect X_i^j to X_i^{j+1} and X_i^j to X_i^{j+1} using identity perfect matchings, respectively (note the crucial change between the treatment of X_i^j and Y_i^j).

3. The input stream consists of edges inserted in (2c) in some arbitrary order, followed by M_i^j in decreasing order of i and increasing order of j (the order inside each M_i^j is arbitrary), i.e., this part of the stream is $M_1^d \| \cdots \| M_1^1 \| \cdots \| M_d^1 \| \cdots \| M_d^d$.

We present a streamlined overview for proving Theorem 4.1 in the following three steps.

Step one: Decorrelating the distribution. Recall that by our previous discussion, our task at this point is to prove a lower bound for the following problem: Given a $(3t, d)$-layered graph G_0 and a set S of t vertices in the first layer, decide whether following edges of G_0 takes these vertices to X or Y in the last layer. If we look at a single vertex $v \in S$, this problem is a pointer chasing problem along the edges of the d matchings of G_0. The challenge here is
that we are not solving any one pointer chasing problem though, but rather a collection of \(t \) correlated ones. This problem is quite simpler (algorithmically) than original pointer chasing as we only need to get “lucky enough” to chase one of them. Concretely, an algorithm that samples \(\approx t^{1-t/d} \) edges of the graph has a constant probability of finding one complete path and solves the problem.

To bypass this challenge, we consider a generalized version of the distribution \(\mu_{\text{NGC}} \) wherein every vertex in \(S \) has almost the same probability of ending up in the set \(X \) or \(Y \), independent of the choice of other starting vertices. We prove that even though these distributions do not correspond to valid instances of NGC, still, if we run any algorithm for NGC over these inputs, it has to do some “non-trivial work”: informally speaking, it will be able to solve the pointer chasing instance corresponding to one of the starting vertices with a probability of \(1/2 + \tilde{\Omega}(1/t) \) – this time however, this instance is independent of the choice of remaining vertices in \(S \) (owing to the introduction of noise). This hybrid argument allows us to reduce the problem to a low probability [of success] pointer chasing problem, which we tackle in the next step.

It is worth pointing out that this step matches the intuition that to solve NGC, we need to “find” at least one \(k \)-cycle or a \((k + 1) \)-path in the graph.

Step two: Applying the streaming XOR Lemma. The pointer chasing problem we now need to prove a lower bound for requires a really low probability of success, which is way below the threshold for any of the standard lower bounds to kick in. Our next step is then to apply our hardness amplification result in Result 3 to reduce this to a more standard pointer chasing problem with higher probability of success. This requires us to cast our pointer chasing instance as an XOR of several other independent pointer chasing instances.

To do this for \(p \)-pass algorithms, we “chop” the layered graph into \(\approx k/p \) consecutive groups of \(\approx p \) layers. We show how one can carefully connect these groups together to get \(\approx k/p \) independent instances of pointer chasing in each group, so that the XOR of their answers determine the answer to the original problem. This step uses similar ideas as definition of Distribution 1 and some further randomization tricks. We can now apply our streaming XOR Lemma (Result 3) and reduce the problem to proving a lower bound for pointer chasing on depth \(p \) layered graphs with probability of success \(1/2 + 1/f\Theta(p/k) \), which is the content of the next step.

This step also matches the intuition that to solve NGC in \(p \) passes, we need to be able to “create” roughly \(k/p \) paths of length \(p \) inside the same \(k \)-cycle or \((k + 1) \)-path.

Step three: Lower bound for the single-copy problem. We are now in the familiar territory in which the goal is to prove a lower bound for a depth \(p \) pointer chasing problem with probability of success \(1/2 + 1/f\Theta(p/k) \). The main difference is that our distribution do not match that of standard lower bounds, say \([31, 56, 59, 67]\), which can be made to work with layered graphs but need random degree-one graphs instead of random matchings (so higher entropy inputs). Nevertheless, we show that this can be managed with some further crucial modifications.

We prove the following lemma in this section.

Lemma 5.1. Suppose there is a \(p \)-pass \(s \)-space streaming algorithm \(A \) for \(\text{NGC}_{m,k} \) on \(\mu_{\text{NGC}} \) that succeeds with probability at least \(2/3 \). Then, there is a \(p \)-pass \(s \)-space streaming algorithm for \(\text{PC}_{m,b} \) on \(\mu_{\text{PC}} \) for some even \(m := \Theta(n/k) \) and \(b := k^{2/3} \) with probability of success at least \(\frac{1}{2} + \frac{1}{6m} \).

For the rest of this section, we fix the algorithm \(A \) in Lemma 5.1 to use it in a reduction. Our reduction uses a hybrid argument...
and thus is going to be algorithm-dependent, i.e., use A in a non-black-box way. To do so, we first need to define a family of hybrid distributions.

Recall the parameters $t = (n/sk)$ and $d = \frac{(k-2)}{2}$ in the definition of μ_{NGC}. For any vector $f = (f_1, \ldots, f_t) \in \{0, 1\}^t$, we define the distribution $\mu(f)$ as follows:

- **Hybrid distribution $\mu(f)$**: Sample a random $(3t, d)$-layered graph G_0 (with fixed $S \subseteq V_1$ and equipartition X, Y of V_{d+1}) conditioned on the following event: “for any vertex $v_i \in S$, $P(v_i)$ belongs to X if $f_i = 0$ and belongs to Y if $f_i = 1$.” Plug this graph G_0 in Distribution 1 instead and return the resulting stream for the created graph G.

With this definition, we have that $\mu_{NGC} = \frac{1}{2} \cdot \mu(0^t) + \frac{1}{2} \cdot \mu(1^t)$. The problem of working with $\mu(0^t)$ and $\mu(1^t)$ directly is that their PC instances are highly correlated (all vertices in S either go to X or to Y). Thus, it is unclear which instance is actually “solved”. On the other hand, remaining distributions $\mu(f)$ may generate graphs that are not in the support of μ_{NGC} or even well-defined for NGC. Nevertheless, we will show that A still needs to do something non-trivial over these distributions: there is a pair of neighboring vectors g, h that differ in exactly one coordinate such that A is still able to distinguish between them, namely, “solve” the pointer chasing instance on their differing index (although with a much lower probability). We now formalize this.

Let $\text{mem}(A)$ denote the final content of the memory of A. Let $\mu(g)$ and $\mu(h)$ be any two distributions in the family above. With a slight abuse of notation, we say that A distinguishes between $\mu(g)$ and $\mu(h)$ with probability $p > 0$, if given a sample from either $\mu(g)$ or $\mu(h)$, we can run A over the sample and use maximum likelihood estimation of $\text{mem}(A)$ to decide which distribution it was sampled from with probability at least p. Define the following $t + 1$ vectors:

\[
\begin{align*}
f^0 &= (0, \ldots, 0) \\
f^1 &= (1, 0, \ldots, 0) \\
& \vdots \\
f^i &= (1, \ldots, 1, 0, \ldots, 0) \\
& \vdots \\
f^t &= (1, \ldots, 1)
\end{align*}
\]

We prove that A distinguishes between two consecutive distributions in this sequence.

Claim 5.2. There is an index $i^* \in [t]$ such that A distinguishes between $\mu(f^{i-1})$ and $\mu(f^i)$ with probability at least $\frac{1}{2} + \frac{1}{3t}$.

Proof. Since A can solve NGC on instances drawn from $\mu_{NGC} = \frac{1}{2} \cdot \mu(0^t) + \frac{1}{2} \cdot \mu(1^t)$ with probability of success at least $2/3$, we have that,

\[
\| \text{mem}(A) | \mu(f^0) \|_{tvd} - \| \text{mem}(A) | \mu(f^t) \|_{tvd} \geq \frac{1}{3}, \quad (1)
\]

Thus, A distinguishes between $\mu(f^{i-1})$ and $\mu(f^i)$ with probability $\geq \frac{1}{2} + \frac{1}{3t}$.

Let us define our final distribution $\mu^* = \frac{1}{2} \cdot \mu(f^{i-1}) + \frac{1}{2} \cdot \mu(f^i)$.

Claim 5.2. suggests a way of solving instances of PC by embedding them in the index i^* of μ^* and running A over the resulting input. We now give a process for sampling from μ^* which is crucial for this embedding.

Claim 5.3. The following process samples a $(3t, d)$-layered graph G_0 from the distribution of μ^*:

1. **Sample** $(t - 1)$ vertex-disjoint paths from vertices in $S \setminus v_{ij}$ to vertices in V_{d+1} conditioned on the event that “for any vertex $v_i \in S \setminus v_{ij}$, $P(v_i)$ is in X if $f_i^{i'} = 0$ and in Y if $f_i^{i'} = 1$.”
2. **Let** $c := (i^* - 1) - (t - i^*)$, the discrepancy in the number of 0’s and 1’s in both vectors $f^{i'-1}, f^{i'}$ when we ignore index i^*.
3. **Sample** c random vertex-disjoint path starting from $V_1 \setminus S$ to the remaining vertices of X in V_{d+1} if 0’s of $f^{i'}$ are fewer that 1’s, and to Y otherwise.

Proof. For any vertex $v \in V_1$, define $\mathcal{P}(v)$ as the path starting from v and ending in V_{d+1}. Considering G_0 is a $(3t, d)$-layered graph consisting of perfect matchings between the layers, the paths $\mathcal{P}(v)$ are vertex-disjoint and of length $d + 1$. As such, we can think of the process of sampling G_0 in μ^* as sampling these vertex-disjoint paths.

In step (1), we are sampling $\mathcal{P}(v)$ for all $v \in S \setminus v_{ij}$. As $f^{i'-1}_j = f^{i'}_j$ for all $j \neq i^*$, this step can just sample these paths uniformly at random conditioned on an appropriate endpoint in X and Y for them. Thus far, the sampling process is the same as μ^*.

Let us now examine what happens to the choice of $\mathcal{P}(v_{ij})$ at this point. Since μ^* is a uniform mixture of $f^{i'-1}, f^{i'}$, the path $\mathcal{P}(v_{ij})$ should end up at either X or Y with the same probability. However, considering we already conditioned on $\mathcal{P}(v_j)$ for $j \neq i^*$, the number of remaining X and Y vertices are not equal. This means that $\mathcal{P}(v_{ij})$ is not a uniformly random path in the rest of the graph.
The goal of step (2) is to fix this\(^2\). We can first sample \(\mathcal{P}(v)\) for \(c\) vertices in \(V_1 \setminus S\) so that they all end up in an \(X\) or \(Y\) vertex, depending on which of the sets has more remaining vertices. This equalizes the size of the remaining \(X\) and \(Y\) vertices, while keeping the distribution intact, using the randomness in choices of these \(c\) vertices.

Finally, at this point, we need to sample \(\mathcal{P}(v)\) for remaining vertices conditioned on \(\mathcal{P}(v)\) having the same probability of landing in \(X\) or \(Y\). Considering sizes of remainder of \(X\) and \(Y\) are equal, this can be done by sampling a uniform set of vertex-disjoint paths, or alternatively, a random layered graph on the remaining vertices which are \(3t - (t - 1) - c = 2t + 1 - c\). This is precisely what is done in step (3), concluding the proof.

A simple corollary of the process in Claim 5.3 is the following conditional independence: let \(R_1, R_2, R_3\) denote the random variables for choices in steps (1), (2), (3) of this process; then, conditioned on any choice \(R_1, R_2\) of \(R_1, R_2\), the variable \(R_3\) is distributed as a random \((2t + 1 - c, d)\)-layered graph on the remaining vertices, with independent choice of edges, now that we conditioned on its vertices. Let \(H_0 \subseteq G_0\), denote this subgraph. By Claim 5.2 and an averaging argument, there is a choice of \(R_1, R_2\) such that,

\[
\Pr_{H_0 \sim R_1} \left(A \text{ distinguishes between } \mu(f_{i-1}), \mu(f_i) \mid R_1, R_2 \right) \geq \frac{1}{2} + \frac{1}{6t}.
\]

Distinguishing between \(\mu(f_{i-1}), \mu(f_i)\) is to decide whether \(v_i \in V_1\), has \(P(v_i)\) in \(X\) or \(Y\) – this is equivalent to solving \(\text{PC}\) over the graph \(H_0\) for \(s = 0\). We now use this to finalize our reduction and prove Lemma 5.1.

Proof of Lemma 5.1. Let \(c\) be the parameter in Claim 5.3 and note that since \(t\) is even (by construction of \(\rho_{\text{NGC}}\), \(c\) should be odd (as \(c = |t - 2t^* + 1|\)). Let \(m := 2t + 1 - c\), which is an even number as desired and \(b := d = \frac{(k-2)}{2}\); moreover note that since \(c \leq t - 1\), \(m \geq t + 2 = \Theta(n/k)\). We design a streaming algorithm \(B\) from \(A\) for \(\text{PC}_{m,b}\) over the distribution \(\mu_{PC}\).

Given \(G \sim \mu_{PC}\), algorithm \(B\) uses Claim 5.3 to create the graph

\[G_0 \sim \mu_{PC}^* \mid R_1 = R_1, R_2 = R_2, H_0 = G,\]

where \(R_1, R_2\) are the choices in Equation (3). To be precise, by setting \(H_0 = G\), we mean that the players of \(B\) pick a canonical mapping between vertices of \(G\) and \(H_0\) such that \(s = v_i\), the \(X\)-vertices (resp. \(Y\)-vertices) of \(G\) are mapped to \(X\)-vertices (\(Y\)-vertices), and each player in \(A\) with \(c \in H_0\) has a unique player in \(B\) that simulates it. The players then run \(A\) over \(G_0\) to distinguish \(\mu(f_{i-1})\) from \(\mu(f_i)\) and output \(P(s) \in X\) if the answer of \(A\) was \(\mu(f_{i-1})\) and otherwise output \(P(s) \in Y\).

The algorithm \(B\) is still a \(p\)-pass \(s\)-space algorithm (recall that in Definition 3.1, the players are computationally unbounded and so can do their part of creating the graph \(G_0\) without any communication). By the independence property argued for Equation 3, the distribution of graphs \(G_0\) above matches that of this equation. As

\(^2\)A simple analogy may help here: suppose we have four red balls and two green balls and we want to sample a ball uniformly so that its color is red or green with the same probability. We can first sample two red balls uniformly and throw them out and then sample a ball uniformly from the rest.

such, \(B\) outputs the correct answer with probability \(\frac{1}{2} + \frac{1}{6t} \geq \frac{1}{2} + \frac{1}{6m}\), finalizing the proof.

5.2 Step Two: Applying the Streaming XOR Lemma

By Lemma 5.1, our task is reduced to proving a low-probability lower bound for \(\text{PC}_{m,b}\) over the distribution \(\mu_{PC}\). Our goal in this step is to use our streaming XOR Lemma in Result 3, to reduce this problem to another \(\text{PC}_{m,b}\) problem over distribution \(\mu_{PC}\) (for choices of \(m, b\) as functions of \(m, b\)). We prove the following lemma in this section, which realizes our goal.

Lemma 5.4. For every \(m, b, t \in \mathbb{N}^+\) such that \(m\) is even and \(2t\) divides \(b - 1\), the following holds. Suppose there is a \(p\)-pass \(s\)-space algorithm \(A\) for \(\text{PC}_{m,b}\) that succeeds with probability at least \(1/2 + \delta\) on \(\mu_{PC}\). Then, there is a \(p\)-pass \(s\)-space algorithm for \(\text{PC}_{m,b}\) over \(\mu_{PC}\), for some \(\tilde{m} = \frac{m}{2}\) and \(\tilde{b} = \frac{b - 1}{2t} - 1\), that succeeds with probability at least \(\frac{1}{2} \cdot (1 - (2\delta)^{1/t})\).

The key to the proof of Lemma 5.4 is the streaming XOR Lemma; however, to be able to apply the XOR Lemma, we first need to cast \(\text{PC}_{m,b}\) as an XOR problem, which we do in the following, using a simple graph product.

Let us start by defining a simple graph product, which we call the XOR product: Given \(t\)-layered graphs \(G_1, \ldots, G_t\) as instances of \(\text{PC}\) problem, this product generates a graph \(H \coloneqq @_{i=1}^t G_i\) such that the answer to a \(\text{PC}\) problem on \(H\) is equal to XOR of answers to \(\text{PC}\) on \(G_1, \ldots, G_t\). We define this product formally as follows.

XOR product. Suppose we have a set of \(V := (V_1, \ldots, V_{d+1})\) of vertices, each of size \(w\), and an equipartition \(X, Y\) of \(V_{d+1}\). Consider \(t\) different \((w, d)\)-layered graphs \(G_1, \ldots, G_t\) on these sets of vertices. The XOR product graph \(H := @_{i=1}^t G_i\) is the following graph (see also Figure 3):

- **Vertex-set:** Create vertex-sets \(U_{j,i}^r\) for \(r \in \{1, \ldots, 4\}\), \(j \in \{d + 1\}\), such that for every choice of \(r, i\), \(U_{j,i}^r\) is a copy of \(V_j\). For any \(v \in V_j\), \(\text{copy}(v, r, i)\) denotes the copy of \(v\) in \(U_{j,i}^r\). Additionally, we define \(X^r, Y^r\) as copies of \(X, Y\) in \(U_{d+1}^r\).
- **Edge-set:** The first part creates four identical copies of each \(G_r\) on \(U_{j,i}^r\)-vertices for \(i \in \{4\}\). More formally, for any edge \((u, v)\) in \(G_r\), we connect \(\text{copy}(u, r, i)\) to \(\text{copy}(v, r, i)\) for all \(i \in \{4\}\).

The second part connects these separate graphs. For every \(r \in \{1, \ldots, t\}\), connect \(X^{r-1}\) to \(X^r\) and \(Y^{r-1}\) to \(Y^r\) using identity perfect matchings. Conversely, connect \(Y^{r-1}\) to \(Y^r\) and \(Y^{r-1}\) to \(Y^r\) using identity perfect matchings. Finally, for every \(r \in \{1, \ldots, t\}\), connect \(U_{j,i}^{r-1}\) to \(U_{j,i}^{r+1}\) and \(U_{j,i}^{r}\) to \(U_{j,i}^{r+2}\) using identity perfect matchings.

The outcome of this product is another layered graph with width \(2w\) and depth \(t \cdot (2 \cdot d + 1) + t - 1\). This concludes the description of the XOR product.

We now state the main property of this product. In the following, for an instance \(G\) of the PC problem, we write \(\text{PC}(G) \in \{0, 1\}\) to
Figure 3: An illustration of the XOR product H of two graphs G_1, G_2. Here, the $X^{r,1}, Y^{r,1}$ sets are specified for each graph — these sets are entirely unrelated to equipartition X, Y of H drawn on the right. Moreover two potential paths out of s are drawn: (i) the dotted (green) one corresponds to $PC(G_1) = 0, PC(G_2) = 1$ and so $PC(G_1 \oplus G_2) = PC(G_1) \oplus PC(G_2) = 1$ which is true as s reaches Y in H; (ii) the dashed (blue) one corresponds to $PC(G_1) = PC(G_2) = 1$ and so $PC(G_1 \oplus G_2) = PC(G_1) \oplus PC(G_2) = 0$ which is true as s reaches X in H.

This can be rewritten as $\exists a, b \in \mathbb{Z}$ such that

$$\alpha \oplus \beta = \gamma$$

where α, β, γ are integers. For example, $2 \oplus 3 = 1$ since $2 + 3 = 5$ in \mathbb{Z}.

The XOR operation can be extended to graphs as well. Let G_1, G_2 be two graphs, then their XOR product $G_1 \oplus G_2$ is defined as

$$G_1 \oplus G_2 = \{ (u, v) : u \in V(G_1) \land v \in V(G_2) \land (u, v) \notin E(G_1) \lor (u, v) \notin E(G_2) \}$$

where $E(G_1)$ and $E(G_2)$ are the edge sets of G_1 and G_2, respectively.

The XOR product of graphs is used in various applications, such as in the study of graph isomorphisms and graph coloring problems.

Proof: Consider the case where $G_1 = G_2$. Let s be a path in $G_1 \oplus G_2$. If s is a path in G_1 then it is also a path in G_2. Similarly, if s is a path in G_2 then it is also a path in G_1. Therefore, s is a path in both G_1 and G_2. Hence, s is an $X^{r,1}$-path in G_1 and an $Y^{r,1}$-path in G_2.

Now, consider the case where $G_1 \neq G_2$. Let s be a path in $G_1 \oplus G_2$. If s is a path in G_1 then it is not a path in G_2. Similarly, if s is a path in G_2 then it is not a path in G_1. Therefore, s is not a path in both G_1 and G_2. Hence, s is not an $X^{r,1}$-path in G_1 and not an $Y^{r,1}$-path in G_2.

This completes the proof.

5.3 Step Three: A Lower Bound for the Single-Copy Problem

The previous step allows us to instead of proving a lower bound for XOR of ℓ copies of the problem, prove a weaker lower bound for a single copy, which translates to a “standard” lower bound for pointer chasing. Our goal in this step is to prove this weaker lower bound. We state the following lemma in this section; the proof is included in the full version of the paper.
Lemma 5.6. Let \(A \) be a \(p \)-pass \(s \)-space streaming algorithm for \(\text{PC}_{\hat{m}, \hat{b}} \) over \(\mu_{PC} \) with probability of success at least \(\frac{1}{2} + \frac{1}{10m^{1/2}} \). Then, either \(p > \hat{b} - 1 \) or \(s = \Omega\left(\frac{1}{\hat{b}^4} \cdot \hat{m}^{1-4/\ell}\right) \).

The proof of this lemma is similar to the known communication complexity lower bounds for pointer chasing such as [31, 56, 59, 67]. Recall the intuition at the beginning of Section 2.3 behind any XOR lemma: taking XOR of independent bits dampens their biases exponentially and thus the algorithm for \(f^{\otimes \ell} \) that computes each \(f(\sigma_i) \) individually satisfies Result 3. In general however, we cannot expect the algorithm to approach these subproblems independently as it may instead try to correlate its success probabilities across different subproblems (say, with probability \(1/2 + \delta \) all subproblems are correct and with the remaining probability, all are wrong). This is the main barrier in proving any form of XOR Lemma and what need to overcome in proving Result 3.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let \(A \) be a \(p \)-pass \(s \)-space streaming algorithm for \(\text{NGC}_{n,k} \) with probability of success at least \(2/3 \) over the distribution \(\mu_{PC} \). Let us go over each of the three steps in our approach below.

- **Step one:** By Lemma 5.1, existence of \(A \) implies a \(p \)-pass \(s \)-space streaming algorithm \(B \) for \(\text{PC}_{m,b} \) on \(\mu_{PC} \) for every \(m := \Theta(n/k) \) and \(b := \frac{1}{a^2} \) with probability of success at least \(\frac{1}{2} + \frac{1}{10m^{1/2}} \).

- **Step two:** Pick \(t := \frac{b}{2p+4} \). By Lemma 5.1, existence of \(B \) implies a \(p \)-pass \(s \)-space streaming algorithm \(C \) for \(\text{PC}_{m,b} \) on \(\mu_{PC} \) for \(m = \frac{a}{a'} \) and \(b = \frac{b}{2p+4} - 1 = p + 1 \) with probability of success at least \(\frac{1}{2} + \left(1 + \frac{1}{10m^{1/2}}\right) \).

 Note that \(m \) is even by the guarantee of previous part and \(b - 1 \) divides \(2t \) by the choice of \(t \) so we can indeed apply Lemma 5.1 in this step.

- **Step three:** By Lemma 5.6, considering \(C \) is a \(p \)-pass \(s \)-space streaming algorithm for \(\text{PC}_{\hat{m}, \hat{b}} \) with probability of success at least \(\frac{1}{2} + \frac{1}{10m^{1/2}} \) and \(\hat{b} - 1 \), we have that \(s = \Omega\left(\frac{1}{\hat{b}^4} \cdot \hat{m}^{1-4/\ell}\right) \).

We can now retrace these parameters to the original parameters \(n, k \) of \(\text{NGC}_{n,k} \). Firstly, \(m = \Theta(m) = \Theta(n/k) \) and \(\hat{b} = p + 1 \). Secondly, \(t = \frac{b - 1}{2p + 4} = \frac{k - 2}{2p + 4} = \frac{k - 4}{4p + 8} \).

As such, the lower bound on the space complexity of all algorithms \(A, B \) and \(C \) above translates to
\[
s = \Omega\left(\frac{1}{\hat{b}^4} \cdot \left(\frac{n}{k}\right)^{1 - \frac{4p}{4p + 8}}\right) = \Omega\left(\frac{1}{\hat{b}^4} \cdot \left(\frac{n}{k}\right)^{1 - \Omega(p/k)}\right).
\]

This proves Theorem 4.1 for infinitely many values of \(k \in \mathbb{N}^+ \), i.e., the ones where \(\frac{k - 4}{4p + 8} \) is an integer.

We can extend this lower bound to all values of \(k \) by replacing the identity perfect matching between the sets \(S_1 \) to \(S_3 \) and \(S_2 \) to \(S_4 \) by a longer path of appropriate length.

This finalizes the proof of Theorem 4.1. \(\square \)
uncorrelated, (c) limit the power of the game so that streaming lower bounds for \(f \) also imply lower bounds for computing each \(f(\sigma_i) \) in this game. We now formalize this in the rest of this section.

We set up the following game for proving this theorem (see also Figure 4):

1. There are a total of \(\ell \) players \(Q_1, \ldots, Q_\ell \) who receive input streams \(\sigma_1, \ldots, \sigma_\ell \), respectively.
2. The players communicate with each other in rounds via a blackboard. In each round, the players go in turn with \(Q_1 \) writing a message on the board, followed by \(Q_2 \), all the way to \(Q_\ell \); these messages are visible to everyone (and are not altered or erased after written).
3. For any player \(Q_i \) and round \(j \), we use \(M_i^j \) to denote the message written on the board by \(Q_i \) in \(j \)-th round. We additionally use \(B_i^j \) to denote the content of the board before the message \(M_i^j \) is written and \(B_i^{j-1} \) to denote the content of the board after \(j \)-th round.
4. Messages of each \(Q_i \) is generated by a deterministic multi-pass streaming algorithm \(A_i \) that runs on \(\sigma_i \) (with one inner player per element of the stream as in Definition 3.1). In each round \(j \), the player \(P_0 \) of \(A_i \) is additionally given the content of the board \(B_i^j \), then \(A_i \) makes its \(j \)-th pass over \(\sigma_i \), and then \(P_0 \) of \(A_i \) outputs \(M_i^j \) on the board.
5. The cost of a protocol is the maximum size of the memory of any algorithm \(A_i \).

Let us emphasize that this game is not at all a standard communication complexity problem: in our game, the communication between the players is unbounded and the cost of the algorithm is instead governed by the memory of streaming algorithms run by each player as opposed to having computationally unbounded players.

We first show that if we can lower bound the cost of protocols in this game, we immediately get a lower bound for streaming algorithms of \(f^{\oplus \ell} \).

Lemma 6.1. Any \(p \)-pass \(s \)-space algorithm \(A \) (deterministic or randomized) for computing \(f^{\oplus \ell} \) implies a (deterministic) \(p \)-round protocol \(\pi \) with cost at most \(s \) and the same probability of success.

Proof. Without loss of generality, we can assume \(A \) is deterministic as by an averaging argument, there is a fixing of the randomness of the algorithm that gives the same success probability over \(\mu^\ell \).

To avoid confusion, let us denote the players of \(A \) as \(R_0, R_1, \ldots, R_\ell \). We can generate a protocol \(\pi \) from \(A \) as follows:

1. \(Q_1 \) runs \(A \) as \(A_1 \) on \(\sigma_1 \); \(P_0 \) (of \(A_1 \)) sends a message to \(P_1 \) and so on until \(P_n \) by running the first pass of \(A \) over their inputs by simulating \(R_0 \) to \(R_n \) (this incurs a cost of \(s \)).
2. At this point, \(P_n \) has the same input and message as player \(R_0 \) of \(A \). Thus, \(P_n \) can send the message of \(R_0 \) to \(R_{n+1} \) instead to \(P_0 \) which finishes the first pass of \(A_1 \) (again by a cost of only \(s \) as the message of \(R_0 \) to \(R_{n+1} \) has size \(s \)). \(P_0 \) of \(A_1 \) can post this received message on the blackboard as message \(M_1^0 \) of player \(Q_1 \).
3. Now it is \(Q_2 \)'s turn to run \(A \) as \(A_2 \) on \(\sigma_2 \); \(P_0 \) (of \(A_2 \)) reads the content of the board and pass it along to \(P_1 \); this way, \(P_1 \) to \(P_n \) can continue the first pass of \(A \) over their inputs by simulating \(R_{n+1} \) to \(R_{2n} \). Then, like step (ii), the message of \(R_{2n} \) to \(R_{2n+1} \) will be posted on the board via \(P_0 \) of \(A_2 \).
4. The players continue like this until they run every \(p \) passes of \(A \) in \(p \) rounds over their inputs and output the same answer.

As the cost of this protocol is \(s \) and it fully simulates \(A \), we obtain the result.

Fix a \(p \)-round communication protocol \(\pi \) with cost at most \(s \) in this game and suppose the inputs of players are sampled from the product distribution \(\mu^\ell \). For the rest of the proof, we bound the probability of success of \(\pi \) which will imply Result 3 by Lemma 6.1.

To continue we need the following definitions:

- For any \(i \in \{ \ell \} \) and any choice of the final board content \(B^p = B \), we define \(\text{bias}_\pi(i, B) \) as equal to
 \[
 2 \cdot \max_{\theta \in \{0,1\}} \Pr_{\sigma_1, \ldots, \sigma_\ell \sim \mu^\ell} \left(f(\sigma_i) = \theta \mid B^p = B \right) - 1;
 \]
 i.e., \(\text{bias}_\pi(i, B) \) equals \(\text{bias}(f(\sigma_i)) \) for \(\sigma_i \sim \mu^\ell \mid B^p = B \).
- For any choice of the final board content \(B^p = B \), we define \(\text{bias}_\pi(B) \) as equal to
 \[
 2 \cdot \max_{\theta \in \{0,1\}} \Pr_{\sigma_1, \ldots, \sigma_\ell \sim \mu^\ell} \left(f^{\oplus \ell}(\sigma_1, \ldots, \sigma_\ell) = \theta \mid B^p = B \right) - 1;
 \]
 i.e., \(\text{bias}_\pi(B) \) equals \(\text{bias}(f(\sigma_1) \oplus \cdots \oplus f(\sigma_\ell)) \) for \(\sigma_1, \ldots, \sigma_\ell \sim \mu^\ell \mid B^p = B \).

With these definitions, we have,

\[
\Pr_{\sigma_1, \ldots, \sigma_\ell \sim \mu^\ell} (\pi \text{ is correct}) = \frac{B}{2} \cdot \Pr_{(\sigma_1, \ldots, \sigma_\ell) \sim \mu^\ell} (\pi \text{ is correct} \mid B^p = B) \leq \frac{B}{2} \cdot \max_{\theta \in \{0,1\}} \Pr_{(\sigma_1, \ldots, \sigma_\ell) \sim \mu^\ell} \left(f^{\oplus \ell}(\sigma_1, \ldots, \sigma_\ell) = \theta \mid B^p = B \right) \]

(conditioned on \(B^p = B \), the answer of \(\pi \) is fixed to some \(\theta \in \{0,1\} \))

\[
= \frac{1}{2} \cdot \left(1 + \text{bias}_\pi(B) \right) = \frac{1}{2} + \frac{1}{2} \cdot \frac{B}{2} \cdot \text{bias}_\pi(B). \quad (5)
\]
As such, $E_B[\text{bias}_\pi(B)]$ measures the advantage of π in outputting the answer over random guessing. Our goal in the remainder of this section is to bound this expectation. In order to do so, we first bound each $E_B[\text{bias}_\pi(i, B)]$ for $i \in [\ell]$, and then prove a crucial independence property between these variables that allows us to extend these bounds appropriately to $E_B[\text{bias}_\pi(B)]$ as well.

In the following, we prove that the protocol π is not able to change the bias of any single $f(\sigma_i)$ by more than 2δ, or alternatively, it cannot "solve" $f(\sigma_i)$ correctly with probability $> 1/2 + \delta$. Intuitively, this should be true as π is effectively running a p-pass s-space streaming algorithm \mathcal{A}_i on σ_i and so we can apply the assumption of Result 3. The catch is that π in general is stronger than a streaming algorithm (which is necessary to establish the other parts of the lower bound) and some additional care is needed to simulate π "projected" on σ_i via a streaming algorithm.

Lemma 6.2. For any $i \in [\ell]$, $E_B[\text{bias}_\pi(i, B)] \leq 2\delta$.

Proof. To prove this lemma, we only need to turn π into a p-pass s-space streaming algorithm A for computing $f(\sigma_i)$ on the stream $\sigma_i \sim \mu$ (and not the entire input); the rest follows directly from the assumption of Result 3 on the success probability of streaming algorithms on μ.

Suppose by way of contradiction that $E_B[\text{bias}_\pi(i, B)] > 2\delta$. Consider the estimator

$$g(B) := \arg \max_{\delta \in (0, 1)} \Pr_{\sigma \sim \mu}(f(\sigma) = \theta \mid B^p = B).$$

Then, by the definition of bias (i, B), we have $E_B[\Pr_{\sigma \sim \mu}(f(\sigma) = g(B) \mid B^p = B)] > 1/2 + \delta$. Define $\gamma_i = (\sigma_{i-1}, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{i+1})$.

By an averaging argument, and since $\sigma_1, \ldots, \sigma_\ell$ are independent, there is a fixing of σ_i to some σ_i^* which results in

$$\Pr_{\sigma \sim \mu}(f(\sigma) = g(B^*)) > \frac{1}{2} + \delta,$$

where $B^* = B^*(\sigma_i^*, \gamma_i)$ is a random variable for the final content of the board given (σ_i^*, γ_i) over the randomness of σ_i only. We now use this to design the streaming algorithm A with (σ_i^*, γ_i) "hard coded in the algorithm"; it might be helpful to consult Figure 4 when reading this part.

Given the stream $\sigma \sim \mu$, A works as follows: P_0 of A will simulate running π on $\sigma_1^*, \ldots, \sigma_{i-1}$ to obtain B_i^1. This allows P_0 to start running \mathcal{A}_i on $\sigma_i \sim \mu$ and P_0, \ldots, P_ℓ can collectively run the first pass of \mathcal{A}_i on σ_i; at the end, P_0 knows the message M_i^{ℓ} of π and thus B_i^ℓ; this allows P_0 to simulate π on $\sigma_{i+1}^*, \ldots, \sigma_\ell^*$ on its own and obtain B_i^{ℓ}. This finishes one round of the protocol π over $(\sigma_1^*, \ldots, \sigma_{i-1}, \sigma_{i+1}^*, \ldots, \sigma_\ell^*)$, while the players of A only made one pass over σ and communicated s bits each (for running \mathcal{A}_i in space s – note that here P_0 is solely responsible for simulating the blackboard and thus require no further communication).

The players then continue this to simulate all p rounds of π in p passes over the input σ and space of s bits. At the end, P_0 knows the entire content of the entire board B and can output $g(B)$ as the answer to $f(\sigma)$. Over the randomness of $\sigma \sim \mu$, the distribution of $(\sigma_1^*, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_\ell^*)$ and B is the same as (σ_i^*, σ_i) and B_i^ℓ in Equation (6). This means that A, which is a p-pass s-space streaming algorithm, outputs the correct answer to $f(\sigma)$ with probability $> 1/2 + \delta$ contradicting the assumption of Result 3.

To extend the bounds in this lemma to $\text{bias}(B)$, we like to use the fact that XOR dampens the bias of independent bits. Thus, we need to establish that these $f(\sigma_i)$ bits are not correlated after conditioning on B, which is done in the following lemma. This can be seen as an analogue of the rectangle property of standard communication protocols on product distributions. We need the following standard facts from information theory for our proofs:

Fact 6.3. $I(A; B \mid C) \geq 0$. The equality holds iff A and B are independent conditioned on C.

Fact 6.4. For random variables A, B, C, if $A \perp D \mid C$, then $I(A; B \mid C) \leq I(A; B \mid D)$.

Fact 6.5. For random variables A, B, C, if $A \perp D \mid B, C$, then $I(A; B \mid C) \geq I(A; B \mid D)$.

Lemma 6.6. The input streams σ_is are independent even conditioned on $B^p = B$ i.e., for any B, $(\sigma_1, \ldots, \sigma_{\ell}) \sim \mu^\ell \mid B^p = B) = \times_{i=1}^{\ell} (\sigma_i \sim \mu^i \mid B^p = B)$.

Proof. The input streams are originally independent, so we need to show that the protocol π in this game cannot correlate them after we condition on B.

Define the following random variables: X_i for the input σ_i of player i, and M_i^1, B_i^1 and B_i^ℓ for M_i^1, B_i^1 and B_i^ℓ respectively. Our goal is to prove that X_1, \ldots, X_ℓ are independent conditioned on any choice of B^p. To do this, we show that for any $i \in [\ell]$,

$$I(X_i; X_{i-1} \mid B^p) = 0$$

(7)

where $X_{i-1} = (X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_\ell)$. By Fact 6.3, this implies that $X_i \perp X_{i-1} \mid B^p = B$ for any choice of B and $i \in [\ell]$, which in turn proves the lemma.

To this end, we peel off messages written on the board one by one from the conditioning of Equation (7) without ever increasing the mutual information term. Then, we end up with a case when there is no conditioning on any part of B and we can use the fact that X_i is independent to finalize the proof. Formally,

$$I(X_i; X_{i-1} \mid B_{i+1}^p, M_{i+1}^1, \ldots, M_{i}^\ell) \leq I(X_i; X_{i-1} \mid B_{i+1}^p),$$

which holds by Fact 6.5 because $X_i \perp M_{i+1}^1, \ldots, M_i^\ell \mid B_{i+1}^p, X_i$ so dropping the conditioning can only increase the information. This independence itself is because the messages sent by players after i in the last round are deterministic functions of their inputs and the content of the board after player i speaks, namely, B_i^ℓ, and thus in the above term, $(M_{i+1}^1, \ldots, M_i^\ell)$ is deterministically fixed after conditioning on B_{i+1}^p, X_i. We can further write,

$$I(X_i; X_{i-1} \mid B_{i+1}^p) = I(X_i; X_{i-1} \mid B_i^p, M_i^\ell) \leq I(X_i; X_{i-1} \mid B_i^p),$$

which again holds by Fact 6.5 because $X_i \perp M_i^\ell \mid B_i^p, X_i$ as M_i^ℓ is a deterministic function of B_i^p and X_i. Finally,

$$I(X_i; X_{i-1} \mid B_{i-1}^p, M_i^1, \ldots, M_{i-1}^\ell) \leq I(X_i; X_{i-1} \mid B_{i-1}^p).$$
by Fact 6.5, exactly as in the first part above because $X_i \perp M^o_i, \ldots, M^o_{i-1} \mid B^o_{i-1}, X_{i-1}$ as conditioning on B^o_{i-1}, X_{i-1} fixes the last messages sent by players 1 to $i-1$.

This way, we can shave off one entire round of communication from the conditioning in the LHS of Equation (7). Applying this argument for all p rounds, we have that

$$I(X_i; X_{i-1} \mid B^o_i) \leq I(X_i; X_{i-1} \mid B^o_{i-1}) \cdots \leq I(X_i; X_{i-1} \mid B^o_1)$$

where the last term is zero because $I(X_i; X_{i-1} \mid B^o_1) = I(X_i; X_{i-1})$ and $X_i \perp X_{i-1}$ in the distribution μ^f thus we can apply Fact 6.3. This proves Equation (7) and concludes the proof.

Finally, we use Lemmas 6.2 and 6.6 with Equation (5) to bound the success probability of protocol π.

Lemma 6.7. Protocol π succeeds with probability $\leq \frac{1}{2} \cdot (1 + (2\delta)^t)$.

Proof. We will prove that $E_B[bias(B)] \leq (2\delta)^t$ which implies the lemma by Equation (5). Fix any B and consider the random variables $f(\sigma_1), \ldots, f(\sigma_t)$ for $(\sigma_1, \ldots, \sigma_t) \sim \mu^f$ $| B^o = B$. By Lemma 6.6, even in the distribution $\mu^f \mid B^o = B$, σ_i’s are independent which implies that $f(\sigma_1), \ldots, f(\sigma_t)$ are also independent random variables conditioned on B. As such, for any B,

$$bias_\pi(B) = \sum_{i=1}^{t} bias(f(\sigma_i) \mid B^o = B) = \sum_{i=1}^{t} bias_\pi(i, B),$$

where the first and last equalities are by the definitions of $bias_\pi(B)$ and $bias_\pi(i, B)$, and the middle equality is by the independence of $f(\sigma_i)$’s conditioned on B, and the fact that XOR dampens the biases of independent random bits. Finally,

$$E_B[bias_\pi(B)] = \sum_{i=1}^{t} E_B[bias_\pi(i, B)] = \sum_{i=1}^{t} E_B[bias_\pi(B)] \leq (2\delta)^t,$$

where the last equality is by the independence of $bias_\pi(i, B)$ and the inequality by Lemma 6.2.

Result 3 now follows immediately from Lemmas 6.1 and 6.7.

7 OTHER STREAMING LOWER BOUNDS

We state the lower bounds we obtain via simple reductions from NGC using the lower bound in Theorem 4.1 in this section. Proofs in this section appear in the full version of the paper.

Minimum Spanning Tree. Given an undirected graph $G = (V, E)$, with edge-weights $w: E \rightarrow \{1, 2, \ldots, W\}$, the minimum spanning tree problem asks for an estimate to the weight of a spanning tree in G with the least weight, denoted by MST of G. We prove the following lower bound for this problem:

Theorem 7.1. For $\epsilon \in (0, 1)$ and $W \in \mathbb{N}^+$, any p-pass streaming algorithm for $(1 + \epsilon)$-approximation of weight of MST on n-vertex graphs of maximum weight W with probability at least 2/3 requires $\Omega \left(\frac{1}{p^e} \cdot (\epsilon \cdot n/W)^{1-O(\epsilon^c p)} \right)$ space. This lower bound continues to hold even on bounded-degree planar graphs and also implies that $\Omega(1/\epsilon)$ passes are needed for $n^{o(1)}$-space even for $W = O(1)$.

Maximum Matching Size and Matrix Rank. In the maximum matching size problem, our goal is to output an estimate to the size of the maximum matching of the input undirected graph $G(V, E)$, i.e. the largest set of vertex-disjoint edges in G. We prove the following lower bound for this problem:

Theorem 7.2. For any $\epsilon \in (0, 1)$, any p-pass streaming algorithm for $(1 + \epsilon)$-approximation of size of maximum matching on n-vertex graphs with probability at least 2/3 requires $\Omega \left(\frac{1}{p^e} \cdot (\epsilon \cdot n)^{1-O(\epsilon^c p)} \right)$ space. Moreover, this lower bound continues to hold even on bounded-degree planar graphs and also implies that $\Omega(1/\epsilon)$ passes are needed for any $n^{o(1)}$-space algorithm.

As a consequence of the standard equivalence between estimating matching size and computing the rank of the Tutte matrix [63] with entries chosen randomly established in [50],

Corollary 7.3. For any $\epsilon \in (0, 1)$, any p-pass streaming algorithm for $(1 + \epsilon)$-approximation of rank n-by-n matrices with probability at least 2/3 requires $\Omega \left(\frac{1}{p^e} \cdot (\epsilon \cdot n)^{1-O(\epsilon^c p)} \right)$ space. Moreover, this lower bound continues to hold even on matrices with $O(1)$ entries per row and column and also implies that $\Omega(1/\epsilon)$ passes are needed for any $n^{o(1)}$-space algorithm.

Maximum Cut. In the maximum cut problem, our goal is to estimate the largest value of a cut in an input graph $G(V, E)$ i.e. output an estimate of the size of a bi-partition of vertices maximizing the number of crossing edges. We prove the following lower bound for this problem:

Theorem 7.4. For any $\epsilon \in (0, 1)$, any p-pass streaming algorithm for $(1 + \epsilon)$-approximation of value of maximum cut on n-vertex graphs with probability at least 2/3 requires $\Omega \left(\frac{1}{p^e} \cdot (\epsilon \cdot n)^{1-O(\epsilon^c p)} \right)$ space. Moreover, this lower bound continues to hold even on bounded-degree planar graphs and also implies that $\Omega(1/\epsilon)$ passes are needed for any $n^{o(1)}$-space algorithm.

Maximum Acyclic Subgraph. Given a directed graph $G(V, E)$, the maximum acyclic subgraph problem asks for an estimate to the size of the largest acyclic subgraph in G measured in the number of edges. We prove the following lower bound for this problem:

Theorem 7.5. For any $\epsilon \in (0, 1)$, any p-pass streaming algorithm for $(1 + \epsilon)$-approximation of size of a largest acyclic subgraph on n-vertex directed graphs with probability at least 2/3 requires $\Omega \left(\frac{1}{p^e} \cdot (\epsilon \cdot n)^{1-O(\epsilon^c p)} \right)$ space. Moreover, this lower bound continues to hold even on bounded-degree planar graphs and also implies that $\Omega(1/\epsilon)$ passes are needed for any $n^{o(1)}$-space algorithm.

Property Testing: **Connectivity, Bipartiteness, and Cycle-freeness.** Given a graph property P and an $\epsilon \in (0, 1)$, an ϵ-property tester for P is an algorithm that decides whether an input G has the property P or is ϵ-far from having P. We consider the following properties:

- **Connectivity:** If at least $\epsilon \cdot n$ edges need to be inserted to G to make it connected, then G is said to be ϵ-far from being connected;
- **Bipartiteness:** If at least $\epsilon \cdot n$ edges need to be deleted from G to make it bipartite, then G is said to be ϵ-far from being bipartite;

As a consequence of the standard equivalence between estimating connectivity and the permanents of the Tutte matrix [65] with entries chosen randomly established in [50],

Corollary 7.6. For any $\epsilon \in (0, 1)$, any p-pass streaming algorithm for $(1 + \epsilon)$-approximation of connectivity of n-vertex graphs with probability at least 2/3 requires $\Omega \left(\frac{1}{p^e} \cdot (\epsilon \cdot n)^{1-O(\epsilon^c p)} \right)$ space. Moreover, this lower bound continues to hold even on bounded-degree planar graphs and also implies that $\Omega(1/\epsilon)$ passes are needed for any $n^{o(1)}$-space algorithm.
Cycle-freeness: If at least $\epsilon \cdot n$ edges need to be deleted from G to remove all its cycles, then G is said to be ϵ-far from being cycle-free.

We prove the following lower bound for these problems:

Theorem 7.6. For any $\epsilon \in (0, 1)$, any p-pass streaming algorithm which is a p-property tester for connectivity, bipartiteness, and cycle-freeness on n-vertex graphs with probability at least $2/3$ requires $\Omega \Bigl(\frac{n}{\epsilon^2} \cdot (n \cdot p)^{\Omega(1/\epsilon^2)} \Bigr)$ space. Moreover, this lower bound continues to hold even on bounded-degree planar graphs and also implies that $\Omega(1/\epsilon)$ passes are needed for any $p^{o(1)}$ space algorithm.

ACKNOWLEDGMENTS

Sepehr Assadi was supported in part by the NSF CAREER Grant CCF-2047061 and a gift from Google Research, and Vishvajeet N. Sepehr Assadi was supported in part by the NSF CAREER Grant CCF-1814409.

REFERENCES

[1] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Polynomial pass lower bounds for graph streaming algorithms. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. 265–276.

[2] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. On Estimating Maximum Matching Size in Graph Streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19. 1723–1742.

[3] Sepehr Assadi, Gillat Kol, Raghuveer R. Saxena, and Huacheng Yu. 2020. Multi-Pass Graph Streaming Lower Bounds for Cycle Counting, MAX-CUT, Matching Size, and Other Problems. CoRR abs/2009.03838. To appear in FOCS 2020 (2020).

[4] Mitali Bafna, Badih Ghazi, Noah Golowich, and Madhu Sudan. 2019. The Sparse Awakens: Streaming Algorithms for Matching Size Estimation in Sparse Graphs. In 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017. 29:1–29:15.

[5] Joshua Brody, Jae Tak Kim, Peem Lerdputtipongporn, and Hariharan Srinivasan. 2015. Sublinear Estimation of Weighted Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 17-19, 2015, Virtual Conference. 16:1–16:20.

[6] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. 2002. Reductions in streaming computation via pass elimination. In 34th International Colloquium on Automata, Languages and Programming, ICALP 2002, July 8-12, 2002, Prague, Czech Republic. 16:1–16:14.

[7] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. 2013. Direct Products in Communication Complexity. In 54th Annual IEEE Conference on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013. 746–755.

[8] Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, Yi Li, David P. Woodruff, and Lin F. Yang. 2018. Matrix Norms in Data Streams: Faster, Multi-Pass and Row-Order. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, July 10-15, 2018. 645–655.

[9] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. 2013. How Hard Is Counting Triangles in the Streaming Model?. In Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I. 244–254.

[10] Joshua Brody, Jae Tak Kim, Peem Lerdputtipongporn, and Harisharn Sinrivasulu. 2020. A Strong XOR Lemma for Randomized Query Complexity. In Proceedings of the 2007 IEEE Conference on Computational Complexity, CCC 2007, Kolo close, Slovakia, June 5–7, 2007. 1131–1142.

[11] Marc Bulychev, Vincent Frowe, Konstantin Kutzkov, and Rasmus Pagh. 2016. Triangle Counting in Dynamic Graph Streams. Algorithmica 76, 1 (2016). 259–278.

[12] Artur Czumaj, Hendrik Fichtenberger, Pan Peng, and Christian Sohler. 2020. Testable Properties in General Graphs and Random Order Streaming. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference. 16:1–16:20.

[13] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew McGregor, Mortaza Monemizadeh, and Soheir F. Mokhod. 2018. Kernelization via Sampling with Applications to Finding Matchings and Related Problems in Dynamic Graph Streams. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, January 10-12, 2016. 1326–1344.

[14] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. 2020. Optimal Streaming Approximations for all Boolean Max-2CSPs. CoRR abs/2004.11796. To appear in FOCS 2020 (2020).

[15] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. 2008. Robust lower bounds for communication and stream computation. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, May 17-20, 2008. 464–473.
