Association between *Helicobacter pylori* and end-stage renal disease: A meta-analysis

Karn Wijarnpreecha, Charat Thongprayoon, Pitchaphon Nissaisorakarn, Natasorn Lekuthai, Veeravich Jaruvongvanich, Kiran Nakkala, Ridhmi Rajapakse, Wisit Cheungpasitporn

Karn Wijarnpreecha, Charat Thongprayoon, Ridhmi Rajapakse, Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY 13326, United States

Pitchaphon Nissaisorakarn, Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States

Natasorn Lekuthai, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Veeravich Jaruvongvanich, Department of Medicine, University of Hawaii, Honolulu, HI 96822, United States

Kiran Nakkala, Cape Fear Center for Digestive Diseases, P.A., Fayetteville, NC 28312, United States

Wisit Cheungpasitporn, Division of Nephrology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States

Author contributions: Cheungpasitporn W contributed to conception and design of the study, and critical revision; Wijarnpreecha K, Thongprayoon C, Nissaisorakarn P and Jaruvongvanich V contributed to acquisition of data, Wijarnpreecha K, Nissaisorakarn P, Lekuthai N, Jaruvongvanich V, Nakkala K and Rajapakse R interpreted the data; Wijarnpreecha K and Thongprayoon C drafted the article; Lekuthai N, Nakkala K and Rajapakse R revised the article; all authors approved the final version.

Conflict-of-interest statement: The authors deny any conflict of interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Wisit Cheungpasitporn, MD, Division of Nephrology, Department of Internal Medicine, Mayo Clinic, 200 First street SW, Rochester, MN 55905, United States. wcheungpasitporn@gmail.com

Telephone: +1-507-2848450

Fax: +1-507-2667891

Received: October 30, 2016

Peer-review started: November 6, 2016

First decision: December 2, 2016

Revised: December 9, 2016

Accepted: January 18, 2017

Article in press: January 18, 2017

Published online: February 28, 2017

Abstract

AIM

To investigate the prevalence and association of *Helicobacter pylori* (*H. pylori*) with end-stage renal disease (ESRD).

METHODS

A comprehensive literature search was completed from inception until October 2016. Studies that reported prevalence, relative risks, odd ratios, hazard ratios or standardized incidence ratio of *H. pylori* among ESRD patients were included. Participants without *H. pylori* were used as comparators to assess the association between *H. pylori* infection and ESRD. Pooled risk ratios and 95%CI was calculated using a random-effect model. Adjusted point estimates from each study were combined by the generic inverse variance method of DerSimonian and Laird.
RESULTS
Of 4546 relevant studies, thirty-seven observational studies met all inclusion criteria. Thirty-five cross-sectional studies were included in the analyses to assess the prevalence and association of H. pylori with ESRD. The estimated prevalence of H. pylori among ESRD patients was 44% (95%CI: 40%-49%). The pooled RR of H. pylori in patients with ESRD was 0.77 (95%CI: 0.59-1.00) when compared with the patients without ESRD. Subgroup analysis showed significantly reduced risk of H. pylori in adult ESRD patients with pooled RR of 0.71 (95%CI: 0.55-0.94). The data on the risk of ESRD in patients with H. pylori were limited. Two cohort studies were included to assess the risk of ESRD in patients with H. pylori. The pooled risk RR of ESRD in patients with H. pylori was 0.61 (95%CI: 0.03-12.20).

CONCLUSION
The estimated prevalence of H. pylori in ESRD patients is 44%. Our meta-analysis demonstrates a decreased risk of H. pylori in adult ESRD patients.

Key words: Helicobacter pylori; Kidney failure; Renal disease; Renal insufficiency; End stage kidney disease; Meta-analysis

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Helicobacter pylori (H. pylori) is the most common chronic bacterial infection in gastrointestinal tract of humans. The prevalence and association of H. pylori with end-stage renal disease (ESRD), however, are still unclear. To further investigate this potential relationship, we conducted this systematic review and meta-analysis of observational studies reporting the association between H. pylori infection and ESRD and prevalence in ESRD patients. We found an estimated prevalence of H. pylori in ESRD patients of 44%. In addition, our meta-analysis demonstrates a 0.71-fold decreased risk of H. pylori in adult ESRD patients.

Wijarnpreecha K, Thongprayoon C, Nissaisorakarn P, Lekuthai N, Jaruvongvanich V, Nakka K, Rajapakse R, Cheungpasitporn W. Association between Helicobacter pylori and end-stage renal disease: A meta-analysis. World J Gastroenterol 2017; 23(8): 1497-1506 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i8/1497.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i8.1497

INTRODUCTION
Helicobacter pylori (H. pylori) is the most common chronic bacterial infection in the gastrointestinal tract of humans[1]. It has been estimated that the prevalence of H. pylori infection is up to thirty percent in adult aged 18 to 30 years and to fifty percent in those older than 60 years old[2]. Many studies demonstrated that H. pylori infection is associated with a peptic and duodenal ulcer, chronic gastritis, and gastric cancer[3,4]. Recently, epidemiologic studies have demonstrated associations between H. pylori infection and extra-gastrointestinal organ involvements including coronary artery disease, dyslipidemia, insulin resistance, and hematologic disorders[5-7].

End-stage renal disease (ESRD) is a common and serious chronic disease worldwide that continues to increase in prevalence by approximately 21000 cases per year in the United States[8]. Although there is no visible evidence demonstrated that H. pylori infection is directly associated with renal disease, patients with ESRD usually have gastrointestinal problems such as gastritis, dyspeptic symptoms or ulcers[9-11]. Interestingly, recent investigations have demonstrated an association between H. pylori infection and ESRD[12-14]. In addition, an increase in renal resistance index due to systemic inflammation state H. pylori infection was also described[15-18]. However, many studies reported the conflict data regarding the association between H. pylori infection in ESRD and also the prevalence of H. pylori infection in ESRD patients[19-42]. Thus, we conducted the systematic review and meta-analysis that summarized all available evidence to determine the prevalence of H. pylori infection among ESRD patients and the association between H. pylori infection and ESRD.

MATERIALS AND METHODS

Literature search
Three investigators (Wijarnpreecha K, Thongprayoon C and Cheungpasitporn W) independently reviewed published studies indexed in MEDLINE and EMBASE database from their inception to October 2016 using the search strategy that included the terms for “Helicobacter”, “hemodialysis”, and “renal disease” as described in Item S1 in online Supplementary Data 1. A search for additional articles utilizing references from included studies was also performed. There was no confinement on language in the literature search.

We conducted this systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement.

Selection criteria
The inclusion criteria were: (1) observational studies appraising the association between H. pylori and ESRD and prevalence in hemodialysis; (2) prevalence, odds ratios, relative risks, or hazard ratios with 95%CI were presented; and (3) individuals without H. pylori were used as comparators in cohort studies while individuals without ESRD were used as comparators in the cross-sectional and case-control studies. Wijarnpreecha K, Thongprayoon C and Cheungpasitporn W individually examined the titles and abstracts of the studies. After
the first phase, the full text of the included studies was subsequently examined to ascertain if they met the inclusion criteria. Discrepancies were also settled by discussion with all investigators.

Data abstraction

A structured data collection form was utilized to obtain the data from included studies including title of the study, year of publication, country where the study was conducted, name of the first author, demographic of subjects, method used to diagnose H. pylori, prevalence of H. pylori, effect estimates (hazard ratios, odds ratios, relative risks) with 95%CI, and factors adjusted in the multivariate analysis. To ensure the certainty, this data extraction process was reviewed by all investigators.

The quality of each study was individually appraised by each investigator. We utilized the validated Newcastle-Ottawa quality assessment scale for cohort and case-control studies[43] and modified Newcastle-Ottawa scale[44] for the cross-sectional study. The prevalence of H. pylori among ESRD patients

Thirty-five cross-sectional studies were included in the analyses to assess the prevalence and association of H. pylori with ESRD. The estimated prevalence of H. pylori among ESRD patients was 44% (95%CI: 40%-49%, \(I^2 = 80\%\)), as demonstrated in Figure 2. Subgroup analysis was also performed on thirty-two studies\[12,13,16,19-23,25-28,30,42,49-51,53-56\] that provided prevalence on adult subjects and three studies\[24,29,52\] that provided prevalence on pediatric patients and showed estimated prevalences of H. pylori among adult ESRD patients of 44% (95%CI: 39%-49%, \(I^2\)
Table 1 Main characteristics of the cross-sectional studies included in this meta-analysis

Study	Country	Year	Study sample	H. pylori testing	H. pylori prevalence (%)	OR	Study quality
Offerhaus et al[36]	The Netherland	1989	Dialysis	Antibody	22/50 (44%)	0.96 (0.42-2.22)	S 3
							C 0
							O 2
Shousha et al[55]	United Kingdom	1990	Dialysis	Histology	12/50 (24%)	0.43 (0.20-0.90)	S 3
							C 0
							O 2
Loffeld et al[34]	The Netherland	1991	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Davenport et al[22]	United Kingdom	1991	HD	Antibody	27/76 (36%)	1.29 (0.75-2.22)	S 3
							C 1
							O 2
Ala-Kaila et al[16]	Finland	1991	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Gladziwa et al[27]	Germany	1993	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Giachino et al[25]	Italy	1994	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
De Vecchi et al[29]	Italy	1995	HD and PD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Jaspersen et al[31]	Germany	1995	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Seyrek et al[39]	Turkey	1996	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Krawczyk et al[33]	Poland	1996	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Orgür et al[32]	Turkey	1997	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Hruby et al[42]	Poland	1997	HD	Antibody, culture	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Yildiz et al[43]	Turkey	1999	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Fabrizi et al[44]	United States	1999	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Tamura et al[45]	Japan	1999	HD and PD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Güç et al[46]	Turkey	1999	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Araki et al[47]	Japan	1999	HD and PD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Karari et al[48]	Kenya	2000	CRF (HD - 36%)	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
Nakajima et al[49]	Japan	2002	HD	Antibody	13/30 (43%)	1.24 (0.58-2.64)	S 3
							C 1
							O 2
The association between \textit{H. pylori} and ESRD

We found a marginal but not significantly decreased risk of \textit{H. pylori} infection in overall ESRD subjects compared with non-ESRD subjects\cite{12,13,16,19-42,49-56} with pooled RR of 0.77 (95%CI: 0.59-1.00, \(I^2 = 79\%\)) (Figure 3). Subgroup analysis based on ageing as described above, we found a significant decreased risk of \textit{H. pylori} infection among adult ESRD patients\cite{12,13,16,19-23,25-28,30-42,49-51,53-56} with pooled RR of 0.71 (95%CI: 0.55-0.94, \(I^2 = 79\%\)) compared with non-ESRD patients (Supplementary Figure 3). Nevertheless, we did not find a significant association between \textit{H. pylori} infection and ESRD among ESRD children\cite{24,29,52}, pooled RR = 1.93 (95%CI: 0.55-6.82, \(I^2 = 77\%\)), (Supplementary Figure 4).

The data on the risk of ESRD in patients with \textit{H. pylori} were limited. Two cohort\cite{14,48} studies were included to assess the risk of ESRD in patients with \textit{H. pylori}. The pooled risk RR of ESRD in patients with \textit{H. pylori} was 0.61 (95%CI: 0.03-12.20).

Evaluation for publication bias

A funnel plot assessing publication bias for the association between \textit{H. pylori} infection in overall ESRD subjects was demonstrated in Figure 4. The funnel plot of the association between \textit{H. pylori} infection in overall ESRD subjects was symmetric and suggested no publication bias.

DISCUSSION

In this meta-analysis summarizing all presently

\begin{table}
\centering
\begin{tabular}{ |l|l|l|l|l|l|l|l|l|l|l|l|}
\hline
\textbf{Tsukada et al}\cite{41} & Japan & 2003 & HD & Histology & 9/36 (25\%) & 0.28 (0.02-3.82) & S 3 & C 2 & O 2 & S 3 & C 2 & O 2 \\
\textbf{Olmos et al}\cite{37} & Argentina & 2003 & HD & Antibody & 44/93 (47\%) & 0.62 (0.35-1.11) & S 3 & C 2 & O 2 & S 3 & C 2 & O 2 \\
\textbf{Nakajima et al}\cite{54} & Japan & 2004 & HD & Antibody & 51/138 (37\%) & 0.35 (0.22-0.58) & S 3 & C 1 & O 2 & S 3 & C 1 & O 2 \\
\textbf{Nardone et al}\cite{35} & Italy & 2005 & HD & Urease test, histology, urea breath test and stool antigen & 7/11 (64\%) & 3.04 (0.82-11.13) & S 3 & C 0 & O 2 & S 3 & C 0 & O 2 \\
\textbf{Blusievicz et al}\cite{35} & Poland & 2005 & HD & Urease, histology & 19/30 (63\%) & 0.71 (0.24-2.07) & S 3 & C 0 & O 2 & S 3 & C 0 & O 2 \\
\textbf{Khedmat et al}\cite{54} & Iran & 2007 & HD & Urease test & 46/73 (63\%) & 3.20 (1.88-5.44) & S 3 & C 0 & O 2 & S 3 & C 0 & O 2 \\
\textbf{Kazaee et al}\cite{41} & Iran & 2008 & HD - children & Urease test, and histology & 16/24 (67\%) & 8.00 (2.19-29.25) & S 3 & C 0 & O 2 & S 3 & C 0 & O 2 \\
\textbf{Gioè et al}\cite{26} & Italy & 2008 & HD & Urease test, and histology & 75/142 (53\%) & 1.39 (0.86-2.23) & S 3 & C 0 & O 2 & S 3 & C 0 & O 2 \\
\textbf{Abdulrahman et al}\cite{41} & Saudi Arabia & 2008 & ESRD & Histology & 16/40 (40\%) & 0.22 (0.09-0.56) & S 3 & C 1 & O 2 & S 3 & C 1 & O 2 \\
\textbf{Asl et al}\cite{41} & Iran & 2009 & HD & Histology & 23/40 (58\%) & 2.81 (1.13-6.99) & S 3 & C 1 & O 2 & S 3 & C 1 & O 2 \\
\textbf{Sugimoto et al}\cite{54} & Japan & 2009 & HD & Antibody & 262/539 (49\%) & 0.26 (0.19-0.35) & S 3 & C 0 & O 2 & S 3 & C 0 & O 2 \\
\textbf{Chang et al}\cite{21} & South Korea & 2010 & HD & Urease test and histology & 12/33 (36\%) & 0.30 (0.12-0.74) & S 3 & C 0 & O 2 & S 3 & C 0 & O 2 \\
\textbf{Hooman et al}\cite{29} & Iran & 2011 & HD - children & Histology & 19/68 (28\%) & 1.59 (0.65-3.92) & S 3 & C 0 & O 2 & S 3 & C 0 & O 2 \\
\textbf{Genc et al}\cite{24} & Turkey & 2013 & HD and PD - children & Antibody & 17/33 (52\%) & 0.69 (0.26-1.83) & S 3 & C 1 & O 2 & S 3 & C 1 & O 2 \\
\textbf{Chang et al}\cite{20} & Taiwan & 2014 & ESRD & Urease test and histology & 81/144 (56\%) & 0.54 (0.38-0.77) & S 4 & C 2 & O 3 & S 4 & C 2 & O 3 \\
\hline
\end{tabular}
\caption{H. \textit{pylori}: Helicobacter \textit{pylori}; HD: Hemodialysis; PD: Peritoneal dialysis.}
\end{table}
Table 2 Main characteristics of the cohort studies included in this meta-analysis

Study	Country	Study design	Year	Study sample	H. pylori testing	ESRD definition	Adjusted HR	Confounder adjustment	Quality assessment (Newcastle-Ottawa scale)
Offerhaus et al	Hong Kong	Cohort study	2004	Type 2 diabetic patients with clinical proteinuria and renal insufficiency	Antibody	Doubling of baseline serum creatinine concentration or need for dialysis or serum creatinine ≥ 500 μmol/L	0.12 (0.03, 0.52)	Sex, H. pylori status, serum creatinine, hemoglobin, systolic blood pressure, ACE inhibitors, Hepatitis B surface antigen status	Selection: 3 Comorbid: 3 Outcome: 3
Shousha et al	Taiwan	Cohort study	2015	H. pylori-infected and non-infected patients without ESRD	Diagnosis of H. pylori infection (ICD-9 041.86) was used from inpatient database of The Taiwan National Health Insurance Research Database	ESRD was identified from Registry for Catastrophic Illness Patient Database	2.58 (2.33, 2.86)	Age, sex, comorbidity	Selection: 4 Comorbid: 3 Outcome: 3
Loffeld et al									
Davenport et al									
Ala-Kalia et al									
Gladziwa et al									
Giachino et al									
De Vecchi et al									
Jasperesen et al									
Seyrek et al									
Krawczyk et al									
Ozgur et al									
Yildiz et al									
Tamura et al									
Gur et al									
Fabrizi et al									
Araki et al									
Karai et al									
Nakajima et al (1)									
Tsukada et al									
Olmos et al									
Nakajima et al (2)									
Nardone et al									
Blusiewicz et al									
Khedmat et al									
Khazaee et al									
Goe et al									
Hosseini et al									
Sugimoto et al									
Chang et al (1)									
Hooman et al									
Genc et al									
Chang et al (2)									
Hruby et al									
Abdulrahman et al									

Overall Q = 174.36, P = 0.00, I² = 80%

Figure 2 Forest plot of overall prevalence of Helicobacter pylori infection among end-stage renal disease patients.

Wijarnpreecha K et al. H. pylori and end-stage renal disease

H. pylori: Helicobacter pylori; HD: Hemodialysis; PD: Peritoneal dialysis; ESRD: End-stage renal disease.
available data on the prevalence of *H. pylori* infection among ESRD patients and the association between *H. pylori* infection and ESRD, we demonstrated an estimated prevalence of *H. pylori* in ESRD patients of 44%. In addition, we found a 0.71-fold decreased risk of *H. pylori* in adult ESRD patients.

Although the precise explanation of reduced risk of *H. pylori* among adult ESRD patients is still unclear, there are several plausible explanations for this association. First, it has been postulated in previous studies that administering antibiotics and antacid more frequently in ESRD patients may contribute to lower the prevalence of *H. pylori* infection27,29. Previous study proposed that ESRD patients may have a lower risk of *H. pylori* infection from routinely used of antacids to prevent renal osteodystrophy by reducing intestinal phosphate absorption20. Second, patients with ESRD have higher levels of inflammatory cytokines including tumor necrotic factor, interleukin-6 and -8 from infiltrative inflammatory cells in gastric mucosa57 and chronic circulatory failure58,59 could lead to gastric mucosal damage and progress to gastric atrophy or atrophic gastritis, increased in gastric pH mucosa, and eventually eradication of *H. pylori* infection50-62.

Although the included studies in this meta-analysis are almost of good quality, there are several limitations to this study that need to be addressed. Firstly, there was a statistical heterogeneity in the completed analysis. Possible sources of this heterogeneity include differences in confounder-adjusted methods (e.g., age, gender, ethnicity and socioeconomic status), different test to detect *H. pylori* infection in each study, various grades of uremia. Secondly, our subgroup analysis revealed significantly decreased the risk of *H. pylori* infection among adult subjects with ESRD but not in children likely due to a limitation in some studies. Although the number of study assessing *H. pylori* infection in children was limited and the insignificant finding in ESRD children could be from the lack of power, further studies are required to determine the role of aging in the underlying pathogenesis of *H. pylori* infection.

Figure 3 Forest plot of the association between *Helicobacter pylori* infection and end-stage renal disease.

Table 3

Study or subgroup	log[relative risk]	SE	Weight	Risk ratio	Risk ratio	Year
Offenhaus et al	-0.04082	0.1020	1.65	0.99 (0.42, 2.21)	2000	
Shousha et al	-0.84397	0.1447	1.24	0.43 (0.20, 0.91)	1990	
Ala-Kalla et al	-0.38566	0.1020	1.65	0.68 (0.17, 2.68)	1991	
Davenport et al	0.254642	0.1020	1.65	1.29 (0.75, 2.22)	1991	
Loffeld et al	0.211111	0.1020	1.65	1.24 (0.58, 2.65)	1991	
Gladziwa et al	-0.82098	0.1020	1.65	0.44 (0.19, 1.01)	1993	
Giachino et al	-0.67334	0.1020	1.65	0.51 (0.20, 1.29)	1994	
De Vecchil et al	-0.94161	0.1020	1.65	0.39 (0.18, 0.83)	1995	
Jaspers et al	-0.82098	0.1020	1.65	0.44 (0.18, 1.08)	1995	
Seynek et al	-0.57682	0.1020	1.65	0.56 (0.21, 1.50)	1996	
Krawczyk et al	-0.07257	0.1020	1.65	0.93 (0.27, 3.20)	1996	
Hruby et al	-0.38566	0.1020	1.65	0.68 (0.19, 2.44)	1997	
Ozgur et al	-0.18633	0.1020	1.65	0.83 (0.41, 1.69)	1997	
Fabrizi et al	0.10436	0.1020	1.65	1.11 (0.74, 1.66)	1999	
Yildiz et al	-0.23572	0.1020	1.65	0.79 (0.34, 1.84)	1999	
Araki et al	-0.79851	0.1020	1.65	0.45 (0.22, 0.92)	1999	
Gur et al	0.039221	0.1020	1.65	1.04 (0.45, 2.40)	1999	
Tamura et al	-0.12783	0.1020	1.65	0.88 (0.40, 1.95)	1999	
Karari et al	0.322601	0.1020	1.65	1.38 (0.73, 2.60)	2000	
Nakajima et al	-1.20397	0.0906	1.08	0.30 (0.11, 0.81)	2002	
Olmos et al	-0.47804	0.0897	1.08	0.62 (0.35, 1.10)	2003	
Tsukada et al	-1.27297	0.0897	1.08	0.28 (0.02, 3.87)	2003	
Nakajima et al	-1.04982	0.0897	1.08	0.35 (0.22, 0.57)	2004	
Nardone et al	1.111858	0.0906	1.08	3.04 (0.83, 11.20)	2005	
Bluvsieczk et al	-0.34249	0.0897	1.08	0.71 (0.24, 2.09)	2006	
Kheda et al	1.163151	0.0906	1.08	3.20 (1.88, 5.44)	2007	
Khazaee et al	2.079442	0.0906	1.08	8.00 (2.19, 29.24)	2008	
Goe et al	0.329304	0.0906	1.08	1.39 (0.86, 2.24)	2008	
Abdulrahman et al	-1.51413	0.0897	1.08	0.22 (0.09, 0.55)	2008	
Hosseini et al	1.033184	0.0897	1.08	2.81 (1.23, 6.44)	2009	
Sugimoto et al	-1.34707	0.0897	1.08	0.26 (0.19, 0.35)	2009	
Chang et al	-1.20337	0.0897	1.08	0.30 (0.12, 0.74)	2010	
Hooman et al	0.463734	0.0897	1.08	1.59 (0.65, 3.90)	2011	
Genc et al	-0.37106	0.0897	1.08	0.69 (0.26, 1.83)	2012	
Chang et al	-0.61619	0.0897	1.08	0.54 (0.38, 0.77)	2014	

Total (95%CI): 100.0% (0.77 (0.59, 1.00))

Heterogeneity: $I^2 = 79%$

Test for overall effect: $Z = 1.95$ (P = 0.05)
among ESRD patients. Lastly, this study is a meta-analysis of observational studies. Thus, our study demonstrated an association, but could not establish causality as unknown confounders could play a role in the association between prevalence of H. pylori among hemodialysis and association between H. pylori and ESRD.

In conclusion, our meta-analysis demonstrated an estimated prevalence of H. pylori in ESRD patients of 44%. In addition, our meta-analysis demonstrates a decreased risk of H. pylori in adult ESRD patients. ESRD could be a potential protective factor for H. pylori infection.

REFERENCES

1. **Cave DR**. Transmission and epidemiology of Helicobacter pylori. *Am J Med* 1996; 100: 128S-17S; discussion 17S-18S [PMID: 8644777]
2. **Pounder RE**, Ng D. The prevalence of Helicobacter pylori infection in different countries. *Aliment Pharmacol Ther* 1995; 9 Suppl 2: 33-39 [PMID: 8547526]
3. **Parsonnet J**, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. *N Engl J Med* 1991; 325: 1127-1131 [PMID: 1891020 DOI: 10.1056/NEJM199101173251603]
4. **Rauws EA**, Tytgat GN. Cure of duodenal ulcer associated with eradication of Helicobacter pylori. *Lancet* 1990; 335: 1233-1235 [PMID: 1971318]
5. **Goni E**, Franceschi F. Helicobacter pylori and extragastric diseases. *Helicobacter* 2016; 21 Suppl 1: 45-48 [PMID: 27531539 DOI: 10.1111/hel.12340]
6. **Sun J**, Rangan P, Bhat SS, Liu L. A Meta-Analysis of the Association between Helicobacter pylori Infection and Risk of Coronary Heart Disease from Published Prospective Studies. *Helicobacter* 2016; 21: 11-23 [PMID: 25997465 DOI: 10.1111/hel.12234]
7. **Upal S**, Jaruvangwanich V, Riangiwat T, Jaruvangwanich S, Sanguankee A. Association between Helicobacter pylori infection and metabolic syndrome: a systematic review and meta-analysis. *J Dig Dis* 2016; 17: 433-440 [PMID: 27273478 DOI: 10.1111/jdi.12876]
8. **Onuigbo MA**. The CKD enigma with misleading statistics and myths about CKD, and conflicting ESRD and death rates in the literature: results of a 2008 U.S. population-based cross-sectional CKD outcomes analysis. *Ren Fail* 2013; 35: 338-343 [PMID: 23391263 DOI: 10.3109/0886022X.2013.764272]
9. **Ala-Kaila K**. Upper gastrointestinal findings in chronic renal failure. *Scand J Gastroenterol* 1987; 22: 372-376 [PMID: 3296137]
10. **Musola R**, Franzin G, Mora R, Manfrini C. Prevalence of gastroduodenal lesions in uremic patients undergoing dialysis and after renal transplantation. *Gastroenterol Endosc* 1984; 30: 343-346 [PMID: 6392003]
11. **Sotoudehmanesh R**, Ali Asgari A, Ansari R, Nouraie M. Endoscopic findings in end-stage renal disease. *Endoscopy* 2003; 35: 502-505 [PMID: 12783348 DOI: 10.1055/s-2003-39672]
12. **Asl MK**, Nasri H. Prevalence of Helicobacter pylori infection in maintenance hemodialysis patients with non-ulcer dyspepsia. *Saudi J Kidney Dis Transpl* 2009; 20: 223-226 [PMID: 19237808]
13. **Khedmat H**, Ahmadzad-Asl M, Amini M, Lessan-Pezeshki M, Einollahi B, Pourfarzianz V, Naseri MH, Davoudi F. Gastroduodenal lesions and Helicobacter pylori infection in uremic patients and renal transplant recipients. *Transplant Proc* 2007; 39: 1003-1007 [PMID: 17524875 DOI: 10.1016/j.transproceed.2007.0.034]
14. **Lin SY**, Lin CL, Liu JH, Yang YF, Huang CC, Kao CH. Association between Helicobacter pylori infection and the subsequent risk of end-stage renal disease: a nationwide population-based cohort study. *Int J Clin Pract* 2015; 69: 604-610 [PMID: 25644865 DOI: 10.1111/iucp.12602]
15. **Afsar B**, Oxzdemir FN, Elsurer R, Sezer S. Helicobacter pylori infection may increase renal resistive index. *Med Hypotheses* 2007; 69: 956-957 [PMID: 17368955 DOI: 10.1016/j.mehy.2007.01.061]
16. **Ala-Kaila K**, Vaajalainen P, Karvonnen AL, Kokki M. Gastric Helicobacter and upper gastrointestinal symptoms in chronic renal failure. *Am J Med* 1991; 93: 403-406 [PMID: 1930936]
17. **Hsu WY**, Lin CH, Lin CC, Sung FC, Hsu CP, Kao CH. The relationship between Helicobacter pylori and cancer risk. *Eur J Intern Med* 2014; 25: 235-240 [PMID: 24485950 DOI: 10.1016/j.ejim.2014.01.009]
18 **Lai CY**, Yang TY, Lin CL, Kao CH. Helicobacter pylori infection and the risk of acute coronary syndrome: a nationwide retrospective cohort study. *Eur J Clin Microbiol Infect Dis* 2015; 34: 69-74 [PMID: 25062740 DOI: 10.1007/s10096-014-2207-7]

21 **Blesliewicz R**, Rydzewska G, Rydzewski A. Gastric juice ammonia and urea concentrations and their relation to gastric mucosa injury in patients maintained on chronic hemodialysis. *Rocz Akad Med Bialystom* 2005; 50: 188-192 [PMID: 16358963]

20 **Chang SS**, Hu HY. Lower Helicobacter pylori infection rate in chronic kidney disease and end-stage renal disease patients with peptic ulcer disease. *J Chin Med Assoc* 2014; 77: 354-359 [PMID: 24907021 DOI: 10.1016/j.jcma.2014.04.004]

23 **Chang WC**, Jo YL, Park HS, Jegal J, Park JH, Lee JH, Jin CJ. Helicobacter pylori eradication with a 7-day low-dose triple therapy in hemodialysis patients. *Clin Exp Nephrol* 2010; 14: 469-473 [PMID: 20632062 DOI: 10.1007/s10157-010-0319-7]

24 **Davenport A**, Shellcross TM, Crabtree JE, Davison AM, Will EJ, Heatley RV. Prevalence of Helicobacter pylori in patients with end-stage renal disease and renal transplant recipients. *Nephron* 1991; 59: 597-601 [PMID: 1766499]

25 **Fabrizi F**, Pinto P, Dei V, Quan S, Bresina M, Abboy H, Gerosa S, Kaufman E, DiNello R, Polito A, Gritnick G. Epidemiology of Helicobacter pylori in chronic haemodialysis patients using the new RIBA H. pylori SIA. *Nephrol Dial Transplant* 1999; 14: 1929-1933 [PMID: 10462273]

26 **Genc G**, Caltepe G, Ozkaya O, Nalcagio glu H, Hokelek M, Kalayci AG. [Helicobacter pylori infection in children on dialysis because of chronic renal failure]. *Haseki Tip Bulenti* 2013; 51: 1-4

27 **Giachino G**, Salio-Bruno F, Chiappero F, Saltarelli M, Rosati C, Mazucco D, Pallante C, Forneris G, Suriani R. [Helicobacter pylori in patients undergoing periodic hemodialysis]. *Minerva Urol Nefrol* 1994; 46: 213-215 [PMID: 7701407]

28 **Gloie FP**, Cudia B, Romano G, Cocchiara G, Li Vecchi M, Gioè MA, Cali C, Lo Coco L, Li Vecchi M, Romano M. Role and clinical impact of Helicobacter pylori infection in hemodialysis patients. *G Chir* 2008; 29: 81-84 [PMID: 18366885]

29 **Giadziewa U**, Haase G, Hands T, Richl J, Wietholtz H, Dakshinamurti KV, Glöckner WM, Sieberth HG. Prevalence of Helicobacter pylori in patients with chronic renal failure. *Nephrol Dial Transplant* 1993; 8: 301-306 [PMID: 8390002]

30 **Gür G**, Boyacioglu S, Gıl C, Turan M, Gürsoy M, Baysal C, Boyacioğlu S, Gür C, Telatar H, Haberal M. [Helicobacter pylori infection in hemodialysis patients and renal transplant recipients]. *Clin Transplant* 1999; 13: 13-16 [PMID: 10081629]

31 **Stang A**. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *J Clin Epidemiol* 2010; 63: 603-605 [PMID: 20652370 DOI: 10.1016/j.ecth.2010.09.041]

32 **Hofman N**, Mehrzam M, Talachian E, Otukesh H, Nakhaii S, Talachian E, Otukesh H, Nakhaii S. [Helicobacter pylori infection in pediatric candidates for kidney transplantation]. *Iran J Kidney Dis* 2013; 5: 1-4

33 **Jaspersen D**, Fassbinder W, Henkele P, Kornheim S, Schorr W, Raschka C, Bremenstuhl M. Significantly lower prevalence of Helicobacter pylori in uremic patients than in patients with normal renal function. *J Gastroenterol* 1995; 30: 585-588 [PMID: 8574329]

34 **Karim E**, Lule GN, McIlvee SO, Amayo EO. Endoscopic findings and the prevalence of Helicobacter pylori in chronic renal failure patients with dyspepsia. *East Afr Med J* 2007; 74: 406-409 [PMID: 17848561]

35 **Krawczyk W**, Górna E, Suwala J, Różyć P, Pawłowski L, Krzywicka A, Wieczerza B, Król A. Frequency of Helicobacter pylori infection in uremic hemodialyzed patients with antral gastritis. *Nephron* 1996; 74: 621-622 [PMID: 8938694]

36 **Loffeld RJ**, Peltenburg HG, vd Oever H, Stobberingh E. Prevalence of Helicobacter pylori antibodies in patients with chronic intermittent haemodialysis. *Nephron* 1991; 59: 250-253 [PMID: 1956486]

37 **Loffeld RJ**, Peltenburg HG, vd Oever H, Stobberingh E. Prevalence of Helicobacter pylori antibodies in patients with chronic intermittent haemodialysis. *Nephron* 1991; 59: 250-253 [PMID: 1956486]
52 Khazaei MR, Imanieh MH, Hosseini Al-Hashemi G. Gastrointestinal evaluation in pediatric kidney transplantation candidates. Iran J Kidney Dis 2008; 2: 40-45 [PMID: 19367008]

53 Nakajima F, Sakaguchi M, Amemoto K, Oka H, Kubo M, Shibahara N, Ueda H, Katsuoka Y. Helicobacter pylori in patients receiving long-term dialysis. Am J Nephrol 2002; 22: 468-472 [PMID: 12381945]

54 Nakajima F, Sakaguchi M, Oka H, Kawase Y, Shibahara N, Inoue T, Ueda H, Katsuoka Y. Prevalence of Helicobacter pylori antibodies in long-term dialysis patients. Nephrology (Carlton) 2004; 9: 73-76 [PMID: 15056265 DOI: 10.1111/j.1440-1797.2004.00239.x]

55 Shousha S, Arnaout AH, Abbas SH, Parkins RA. Antral Helicobacter pylori in patients with chronic renal failure. J Clin Pathol 1990; 43: 397-399 [PMID: 2370308]

56 Sugimoto M, Sakai K, Kita M, Imanishi J, Yamaoka Y. Prevalence of Helicobacter pylori infection in long-term hemodialysis patients. Kidney Int 2009; 75: 96-103 [PMID: 18843261 DOI: 10.1038/ki.2008.508]

57 Hwang IR, Kodama T, Kikuchi S, Sakai K, Peterson LE, Graham DY, Yamaoka Y. Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in Helicobacter pylori infection. Gastroenterology 2002; 123: 1793-1803 [PMID: 12454835 DOI: 10.1053/gast.2002.37043]

58 Block GA, Raggi P, Bellasi A, Kooienga L, Spiegel DM. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int 2007; 71: 438-441 [PMID: 17200680 DOI: 10.1038/sj.ki.5002059]

59 Nakamura S, Sasaki O, Nakahama H, Inenaga T, Kawano Y. Clinical characteristics and survival in end-stage renal disease patients with arteriosclerosis obliterans. Am J Nephrol 2002; 22: 422-428 [PMID: 12381939]

60 Wedsorp RI, Falcao HA, Banks PB, Martino J, Fischer JE. Gastrin and gastric acid secretion in renal failure. Am J Surg 1981; 141: 334-338 [PMID: 7011077]

61 Tamadon MR, Saberi Far M, Soleimani A, Ghorbani R, Sehnani V, Malek F, Malek M. Evaluation of noninvasive tests for diagnosis of Helicobacter pylori infection in hemodialysis patients. J Nephropathol 2013; 2: 249-253 [PMID: 24475457 DOI: 10.12860/jnp.2013.39]

62 Jalalzadeh M, Ghadiani MH, Mousavinasab N. Association between helicobacter pylori infection and body mass index, before and after eradication of infection in hemodialysis patients. J Nephropathol 2012; 1: 170-176 [PMID: 24475411 DOI: 10.5812/nephropathol.8115]
