Choledochal cysts: Similarities and differences between Asian and Western countries

George N Baison, Morgan M Bonds, William S Helton, Richard A Kozarek

Abstract
Choledochal cysts (CCs) are rare bile duct dilatations, intra-and/or extrahepatic, and have higher prevalence in the Asian population compared to Western populations. Most of the current literature on CC disease originates from Asia where these entities are most prevalent. They are thought to arise from an anomalous pancreaticobiliary junction, which are congenital anomalies between pancreatic and bile ducts. Some similarities in presentation between Eastern and Western patients exist such as female predominance, however, contemporary studies suggest that Asian patients may be more symptomatic on presentation. Even though CC disease presents with an increased malignant risk reported to be more than 10% after the second decade of life in Asian patients, this risk may be overstated in Western populations. Despite this difference in cancer risk, management guidelines for all patients with CC are based predominantly on observations reported from Asia where it is recommended that all CCs should be excised out of concern for the presence or development of biliary tract cancer.

Key words: Choledochal cyst; Cholangiocarcinoma; Asian populations; Western populations; Anomalous pancreaticobiliary junction

Core tip: Choledochal cysts (CCs) are rare, predominantly occurring in Asian populations. While current global guidelines for their management are based on studies on Asian populations, there may be relevant differences between Western and Asian populations. For example, the risk of malignancy in Western populations may be lower than that reported in Asian populations. Although studies on CC disease in Western populations have been conducted, further evidence is still needed to properly elucidate this disease in the West and design appropriate clinical guidelines. Continued efforts in this regard are paramount, especially with the evolving field of hepatobiliary surgery that
has recently seen the adoption of minimally invasive techniques.

INTRODUCTION

Choledochal cysts (CCs), congenital dilatations of the biliary tree that may be either extrahepatic and/or intrahepatic, are uncommon with an incidence that ranges from 1 in 100000-150000 live births in Western populations, to 1 in 1000 in some Asian populations[1-7]. Most of what is known about CCs comes from Asia[2,6,8-10], although there have been a few large Western cohorts reported[2,6,11-13]. Some clinicians postulate that CC disease in the West is different from CC disease in the East and different management strategies should be employed. Therefore, we present an overview of CC disease in the West and East noting the similarities and differences in presentation, diagnosis, and management.

ETIOLOGY AND PATHOPHYSIOLOGY

CCs are typically classified according to the Todani classification, modified from the Alonso-Lej classification[14-16]. This classification outlines five types of CCs: Type I, the most common, described as a solitary extrahepatic cyst; type II is an extrahepatic supraduodenal diverticulum; type III CC is an intraduodenal cyst, which is sometimes referred to as a choledochocele; type IV is comprised of both extrahepatic and intrahepatic cysts; and type V, comprised of multiple intrahepatic cysts, and often referred to as Caroli’s disease[5,16] (Figure 1A-E and Table 1). In both Eastern and Western populations, type I CCs have been noted to be most common, ranging from 65%-84% in Eastern cohorts and 67%-73% in Western cohorts. Type IV CCs are the next most common with 6%-30% in the East compared to 18%-19% in Western cohorts (Table 2).

The similar distribution in CC types between Eastern and Western cohorts is likely related to the similar etiology of CCs. Babbitt’s theory is the most commonly proposed theory and states that CCs result from an anomalous pancreaticobiliary junction (APBJ) where the pancreatic duct and the bile duct connect 1-2 cm proximal to the sphincter of Oddi[3,4,17-22]. The clinical entity of APBJ has become widely accepted to be etiologic in the pathogenesis of biliary carcinogenesis in patients with CC[8,11,23-25]. There are several proposed classifications for APBJ, but one common classification is the simplified Komi’s classification, so-called Association Française de Chirurgie classification that includes three subtypes: Type I (C–P type), type II (P–C type), and type III (complex type) with “anse-de-seau” (Figure 2A-C)[22].

The long common channel associated with APBJ facilitates reflux of pancreatic juice into the biliary tree, causing increased pressure and possible proteolysis within the CBD culminating in ductal dilation[4,26]. High amylase levels have been noted in CC bile, adding evidence to this theory[27]. This reflux of pancreatic juices also leads to biliary tree inflammation, epithelial breakdown, mucosal dysplasia, and, potentially, malignancy[21,27]. Furthermore, it has been suggested that the inflammation and bile duct breakdown are exacerbated by high trypsinogen and phospholipase A2 levels in bile of patients with CCs[28]. However, some authors have questioned this theory because an APBJ is found in only 50%-80% cases of CCs, there is no pancreatic juice reflux in antenatally detected CCs, and neonatal acini do not secrete sufficient pancreatic enzymes[29]. Animal studies suggest that obstruction of the distal CBD may contribute to the development of CCs, particularly sphincter of Oddi dysfunction, which also causes pancreatic juice reflux into the biliary system[30]. Kusunoki et al[31] proposed a pure congenital theory in which fewer ganglion cells are seen in distal CBD in patients with CCs resulting in proximal dilation in the same manner as achalasia of the esophagus or Hirschsprung’s disease[32].
Table 1 Classification of choledochal cysts according to the Todani classification

Todani classification	Description
Type I	Solitary extrahepatic cyst
Type II	Extrahepatic supraduodenal diverticulum
Type III	Intraduodenal cyst
Type IV	Both extrahepatic and intrahepatic cysts
Type V	Multiple intrahepatic cysts

CLINICAL PRESENTATION AND DIAGNOSIS

The demographics and clinical presentation of CC are similar between Eastern and Western populations, especially the female to male preponderance, ranging from 4:1 to 3:1[1,2]. Most CCs are diagnosed in children, although about 25% are discovered in adults[6]. In adults, the presentation is usually nonspecific and vague, with non-specific abdominal pain being the most common symptom[4]. However, when the symptoms are more specific, they are typically acute biliary tract and/or pancreatic in nature[5]. While some patients present with the classic triad of symptoms, abdominal pain, palpable abdominal mass, and jaundice, it is observed in only 25% of adults, although 85% of children have at least two features of this classic triad[2,5]. Furthermore, recent literature suggests increased rates of CC disease in adults[2,22]. While the trend in common presentation symptoms may be similar between the East and West, the literature suggests that associated biliary conditions such as cholecystitis, cholangitis, and choledocholithiasis may be more prevalent in Eastern patients on presentation[24,25] (Table 2). Indeed, further investigation is necessary to delineate if this is a true difference between the two populations.

CC disease can be diagnosed using imaging modalities such as ultrasound, computed tomography (CT), magnetic resonance cholangiopancreatography (MRCP), and endoscopic ultrasonography, with MRCP and ERCP considered the diagnostic methods of choice[6]. MRCP has been reported to have a 90%-100% sensitivity for detecting CCs[33]. However, MRCP has a much lower sensitivity for delineating the pancreatic duct and common pancreaticobiliary channel of only 46%, which is lower when compared with CT cholangiopancreatography which has a reported sensitivity of 64%-95%. With recent advances in cross-sectional imaging, more asymptomatic cases are being discovered incidentally[6]. Though current practice on imaging and diagnosis is similar across continents, Asian patients are marginally more symptomatic on presentation; 88%-91% of Asian patients present with symptoms compared to 72%-85% of Western patients. Various reasons may account for this including potential difference in the use of imaging modalities in clinical practice between the East and West, such as difference in CC disease presentation or selection bias in various studies.

MALIGNANT RISK

CC disease is associated with various complications including obstructive jaundice, symptomatic choledocholithiasis, pancreatitis, cholangitis, spontaneous cyst rupture, secondary biliary cirrhosis, and cholangiocarcinoma[1]. Of particular concern is the increased risk of malignancy[1,16,34,35], which varies from 2.5% to 17.5%, with some reports as high as 21%[15,36-39]. Malignant risk in Western cohorts is likely overstated; the risk of malignancy may be higher in Eastern cohorts compared to Western cohorts, particularly in adults (Table 2). This high malignant risk in Asian cohorts has been the main driver for the current approach to CC disease management.

The risk of malignancy increases with age, reported to be lowest in the first decade of life at 0.7% and exceeding 10% after the second decade of life, suggesting that early diagnosis and treatment lead to a more favorable outcome[1,2,4,40]. Some studies have noted malignancy in up to 50% of patients with CC over the age of 60 years[16,23]. Not only is malignancy associated with age, but CC type. Todani et al[16] observed that of the patients who develop biliary malignancy, 68% occurred in type I, 5% in type II, 1.6% in type III, 21% in type IV, and 6% in type V CCs[16]. Additionally, the malignant risk due to the presence of an APBJ has been well established in both Western and Eastern patients. At our institution, we have observed a 4-fold increase in malignancy in patients with CC and an APBJ when compared to those with CC without an APBJ[16]. Imazu et al[16] showed that regurgitation and stasis of pancreatic fluid into the
Figure 1 Magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography demonstrating choledochal cyst types. A: Type I choledochal cyst (CC) on endoscopic retrograde cholangiopancreatography; B: Type II CC on magnetic resonance cholangiopancreatography (MRCP); C: Type III CC on MRCP; D: Type IV CC on MRCP; E: Type V CC on MRCP. CC: Choledochal cyst; MRCP: Magnetic resonance cholangiopancreatography.

Biliary system not only cause inflammation, but lead to carcinogenesis. Histologic findings by Katabi et al.[42] further corroborate Imazu et al.’s[29] findings that biliary cancer due to CC disease is a progression from inflammation, to dysplasia, metaplasia, and finally malignancy. A small subset of patients, from 0.7%-3%, develop cholangiocarcinoma after surgical resection, notably in patients with type I and IV cysts[11,15,24,41]. This indicates that the risk of malignancy does not return to baseline after CC resection in this group of patients[11,42]. The etiology behind these delayed malignancies remains unclear. Incomplete resection of the cyst or a field defect within the biliary epithelium leading to an increased inherent susceptibility have been suggested as possible etiologies for this persistent cancer risk[15,40]. Liu et al.[40] observed a 33.3% risk of malignancy in patients with incomplete cyst resection compared with 6% after complete cyst resection. Many studies, both Western and Eastern, do not have follow-up intervals long enough to detect this persistent risk since it can take more than 3 decades to manifest. Some have therefore suggested careful postoperative lifelong follow-up, especially in cases where there is a high suspicion for incomplete resection[24,43,44]. The utility of lifelong follow-up in Western patients where recurrence rates are reportedly as low as 0-3% has yet to be determined.

Malignancy in CC disease takes the form of both gallbladder and bile duct cancers. Lee et al.[24] reported biliary tract malignancies in 9.9% of CCs, of which 50% were cholangiocarcinoma and 44% gallbladder carcinoma. A large-scale survey of 2561 patients with CC in Japan showed that in those patients who had cancer, 62.3% had gallbladder cancer, 32.1% had bile duct cancer, and 4.7% had both, which is similar to other reports[29,46]. Of note, gallbladder carcinoma is found in 5% of CC disease patients with APBJ[49], usually in patients in their sixth or seventh decade of life, when adult cohorts are investigated[40]. Thus, it is perceived that the likelihood of the development of both bile duct cancer and gallbladder cancer increases in patients with CC and APBJ, whereas there is a significant predilection for gallbladder cancer in APBJ patients without CC[29,30,46-48].

MANAGEMENT

The demographics of the population being treated must be taken into consideration when managing CC disease. While Western populations present a mix of racial
Table 2: Summary data for the five largest Western studies compared to the five largest Eastern studies, specifically investigating the presentation and management of choledochal cyst disease in the last 20 years.

Western	Eastern	Aggregate
Moslim et al[1]	Edil et al[2]	Baison et al (unpublished data)
Soares et al[3]	Singham et al[4]	Shi et al[4]
Edil et al[2]	She et al[4]	Woon et al[2]
Moslim et al[6]	He et al[2]	Lee et al[2]
Baison et al (unpublished data)	Shi et al[4]	Woon et al[2]
Edil et al[2]	She et al[4]	He et al[2]
Moslim et al[6]		
	Shi et al[4]	
	Woon et al[2]	
	Lee et al[2]	
Single-center or multi-center	3- Single2-Multi	4- Single1-Multi
Total number	67	92
Adults	78%	79%
Study period	1984 - 2014	1976 - 2006
APBJ	-	8% (cancer patients only)
Female: Male ratio	4:01	9:01
Age (yr)	46 (55.6 - 34.3)	45 (15.2)
Symptomatic	72%	84.5%
Presentation	51%	91%
Abdominal pain only	-	19%
Pancreatitis (recurrent)	-	9%
Cholelithiasis	-	58%
Jaundice	15%	34%
Cholecystitis	-	19%
Cholangitis (recurrent)	-	39%
Choledocholithiasis	-	6%
Weight loss, Bloating	-	8%
Other	-	2%
Acute pancreatitis	13%	2%
Fever/ chills	-	26%
Nausea/vomiting	-	47%
Abdominal mass	-	63%
Classic triad	-	22%
CC type I	73%	67%

WJG https://www.wjgnet.com July 14, 2019 Volume 25 Issue 26
diversity. Eastern cohorts are almost exclusive of Asian descent. The effect of race on the natural history of CC has not been fully explored. Our institution’s experience with CC disease suggests that presentation and malignant risk may be different between Asian and Caucasian patients, with malignant risk being higher in Asian patients\(^4\). Therefore, it is essential to further understand the risks posed by CC disease in Western patients in order to design appropriate management guidelines as it may represent a separate entity in the West compared to Eastern patients.

Currently, practice guidelines are based almost exclusively on data derived from the Asian literature. At present, there is no conclusive evidence to suggest that there is over-treatment of Western patients by using Asian guidelines, but the lower malignant risk in these patients necessitates further investigation into Western treatment outcomes. Current evidence suggests similar efficacy in treatment options between the East and West, however, this remains an area of limited data. This continues to evolve, especially as minimally invasive techniques are now being adopted for CC disease management\(^6\). More multi-institutional studies such as the one by Soares et al\(^11\) and ideally international registries are needed to further understand CC disease in the West and devise management protocols.

The current standard of care for most CCs is complete excision of the cyst, specifically, resection from the bifurcation of lobar hepatic ducts into the parenchyma of the pancreas near the junction of the pancreatic duct\(^4,6\), coupled with cholecystectomy. Biliary tract continuity can be restored either by means of Roux-en-Y hepaticojejunostomy (HJ), hepaticoduodenostomy (HD), or jejunal interposition HD\(^6\). However, this approach does not take into consideration various types of CC. Management should be tailored to the type of CC and the presence or absence of APBJ. Furthermore, advocating for resection in all patients may potentially be overly aggressive therapy, especially in Western patients where the risk of malignancy appears to be potentially overstated.

Surgical resection has been espoused to be the ideal strategy for type I CCs. There may, however, be a subset of patients in Western cohorts who are at low risk for developing cancer, in whom long term surveillance as opposed to surgical resection be considered. This includes patients who are asymptomatic, have undergone previous cholecystectomy, are older with medical comorbidity, and have no APBJ since their risk of malignancy appears to be quite low. However, there are no reports of patients managed by long term observation. Hence, long term risk of cancer and other biliary complications in such patients is currently unknown. Until such data become available, excision of all type I CC should be recommended to all Western as well as Eastern patients who can tolerate a major operation and are willing to do so.

Type II CCs are very rare and can be managed by simple excision. Usually these cysts are ligated at the neck and excised without the need for bile duct reconstruction\(^1\). However, occasionally extrahepatic bile duct excision is necessary. This is sometimes encountered in patients where associated inflammation causes intimate adhesion of the diverticulum to the extra- or intrahepatic biliary tree, depending on disease location, leading to technical challenges in liberating the

Prior cholecystectomy	II	1.5%	7%	5%	6%	3%	-	5%	6%	14%	0.9%	0.9%-6%	3%-7%
	III	-	4%	2%	2%	5%	0.9%	3%	-	0.5%	0.5%	0.5%-3%	2%-5%
	IV	13.4%	19%	18%	55%	18%	22%	19%	6%	25%	30%	6%-30%	18%-19%
	V	12%	2%	4.9%	4%	4%	5.60%	5%	3%	8%	0.7%	0.7%-8%	2%-12%
Surgery		100%	100%	98.9%	100%	70%	100%	90%	84%	92%	100%	84%-100%	70%-100%
Biliary Malignancy		7.5%	5.4%	3%	7.8%	7%	17%	0%	3%	5%	10%	0.17%-3.8%	
On presentation		1.5%	3.2%	3.30%	-	0%	10%	0%	0%	2.3%	3%	0.10%-0.3%	
Overall mortality		7.5%	7.6%	4.50%	0%	2%	9%	0%	0%	6%	4%	0.9%-0.8%	

SD: Standard deviation; CC: Choledochal cyst; APBJ: Anomalous pancreaticobiliary junction.
diverticulum from the bile duct\(^5\).

Type III CCs, sometimes referred to as choledochoceles, are discrete from other CC diseases and their origin has been long debated\(^6,53\). One hypothesis is that these cysts may originate from a rudimentary inferior embryonic bud of the ampulla of Vater, or an acquired anomaly as a result of sphincter of Oddi dysfunction or obstruction\(^6,53\); thus, choledochoceles may not represent a true form of CC. Most patients with type III CCs present to interventional gastroenterologists rather than surgeons. Type III CCs were historically treated via transduodenal excision and sphincteroplasty. Currently endoscopic sphincterotomy with cyst de-roofing is regarded as the treatment of choice for type III cysts\(^54,55\). Regardless, these patients should undergo periodic endoscopic surveillance since malignancy has occasionally been reported in choledochoceles\(^53\).

Management, especially the operative approach, in type IV CC remains controversial. Visser \textit{et al.}\(^13\) suggested excising the extrahepatic component of the cyst alone with concomitant HJ. However, hepatic resection in patients with unilobar disease\(^1\) and liver transplantation in patients with bilobar disease should be considered, especially in patients with extensive intrahepatic dilation associated with complications, such as stones, cholangitis, or biliary cirrhosis\(^13,56,57\). We have found that for most patients, extrahepatic resection has been sufficient, although we concur that hepatic resection and transplantation should remain as tools in the surgeon’s armamentarium when dealing with type IV CCs.

The management of type V CCs (Caroli’s disease) is complex and requires a multi-disciplinary approach that includes endoscopy, interventional radiology, and surgery. Surgical treatment options include segmental or lobar hepatic resection and liver transplantation depending on the extent of the disease and presence of impaired hepatic function\(^6\). When the intrahepatic CC disease is localized without congenital hepatic fibrosis, segmental hepatectomy should be considered\(^6\). Percutaneous or endoscopic drainage and stents are used for palliative therapy. For diffuse disease with life-threatening complications, liver transplantation is the most viable option\(^1\).

CONCLUSION

CC disease has a distinct presentation in the Eastern population yet shares some commonality with Western patients. However, some reported differences in presentation, malignancy risk, and patient demographics between Western and Eastern populations should spur further investigation into CC disease in Western patients to understand this disease and tailor management guidelines to Western populations. For now, the management of CC disease continues to be driven by the Asian literature. Large multi-institutional studies in the West with decades of follow-up are necessary to better understand the natural history of CC disease, and in particular the risk of biliary tract cancer, in Western patients.

REFERENCES

1. Bhavsar MS, Vora HB, Giriyappa VH. Choledochal cysts: A review of literature. Saudi J Gastroenterol
Biliopancreatic reflux via anomalous pancreaticobiliary junction.

Sugiyama M, Haradome H, Takahara T, Izumisato Y, Abe N, Masaki T, Mori T, Hachiya J, Atomi Y.

1992; 215: 819-826 [PMID: 25332269]

Ann Hepatol

choledochal cyst patients: An analysis of 214 cases.

He XD, Wang L, Liu W, Liu Q, Qu Q, Li BL, Hong T. The risk of carcinogenesis in congenital choledochal cyst: Is cholecystectomy alone sufficient?

2011; 146: 1178-1184 [PMID: 20208787 DOI: 10.1001/jama.2010.262]

Arch Cancer

anomalous connection between the choledochus and the pancreatic duct. Report of 10 cases and review of the literature in Japan.

Kinoshita H, Hasegawa K, Watanabe Y, Fujii M, Toki A, Uemara S, Koike Y, Inoue T. Carcinoma arising from the bile duct in choledochal cyst and anomalous arrangement of the pancreatobiliary ductal union (in Japanese).

2009; 150: 732-734 [PMID: 18119603 DOI: 10.3748/wjg.v7.i7.732]

J Hepatobiliary Pancreat Surg

Results of the Multicenter Study of the French Surgical Association (AFC).

Cherqui D, Azoulay D, Irtan S, Boudjema K, Pruvot FR, Gigot JF, Kianmanesh R; Working Group of the French Surgical Association.

J Hepatobiliary Pancreat Surg

9: 45-54 [PMID: 12021897 DOI: 10.1007/s00382-000-00006-6]

García Cao J, Godoy MA, Morillas Ardid J, Pérez García JJ. Pancreatobiliary maljunction. Not only an Eastern disease.

2007; 32: 230-236 [PMID: 17054547 DOI: 10.1111/j.1445-2197.2006.03915.x]

Ann Radiol (Paris)

Babibiti DP. Congenital choledochal cysts: New etiological concept based on anomalous relationships of the common bile duct and the pancreatic bulb.

2009; 67: 981-986 [PMID: 19459705 DOI: 10.1016/j.jamcollsurg.2009.07.071]

J Pediatr Surg

2004; 39: 2707-2711 [PMID: 15526053 DOI: 10.1001/jama.2005.00010108]

J Hepatobiliary Pancreat Surg

2009; 41: 538-545 [PMID: 19181010 DOI: 10.1007/s00534-009-0336-0]

J Gastrointest Surg

Singham J, Schaeffer D, Yoshida E, Scudamore C. Congenital choledochal cyst: Analysis of disease pattern and optimal treatment in adult and paediatric patients.

8: 383-387 [PMID: 18345323 DOI: 10.1080/13553305.2009.1056160]

Langenbecks Arch Surg

Visser BC, Suh I, Way LW, Kang SM. Congenital choledochal cysts in adults.

Arch Surg 2004; 139: 855-60; discussion 860-2 [PMID: 15382695 DOI: 10.1001/archsurg.139.8.855]

ALONSO-LEJ F, REVER WB, PESSAGNO DJ. Congenital choledochal cyst, with a report of 2, and an analysis of 94, cases.

Int Abstr Surg 1959; 108: 1-30 [PMID: 13625059]

Watanabe Y, Toki A, Todani T. Bile duct cancer developed after cyst excision for choledochal cyst.

J Hepatobiliary Pancreat Surg 1999; 6: 207-212 [PMID: 10526053 DOI: 10.1001/j Hepatobiliary Pancreat Surg.2009.07.071]

Ottolini C, Ciccone R, Ruggiero P, Fasano A, Falconi M, Nuzzo G, Demartines N, Mabrut JY, Gie JF, Paye F, Ayav A, Nuzzo G, Falconi M, Demartines N, Mabrut JY, Gigot JF; Working Group of the French Surgical Association.

2009; 28: 100-104 [PMID: 20551651 DOI: 10.1159/000286502]

Dig Surg

2007; 24: 2307-2311 [PMID: 20006015 DOI: 10.1016/j.jpedsurg.2009.07.071]

J Pediatr Surg

2007; 42: 383-387 [PMID: 18345323 DOI: 10.1080/13553305.2009.1056160]

Langenbecks Arch Surg

Woon CY, Tan YM, Oei CL, Chung AY, Chow PK, Ooi LL. Adult choledochal cysts: An audit of surgical management.

1992; 135: 1615-1618 [PMID: 18453230 DOI: 10.1080/13553305.2009.1056160]

Langenbecks Arch Surg

2004; 18: 2284764 [DOI: 10.1016/1319-3767.98425]

J Am Coll Surg 2008; 206: 1000-5; discussion 1005-8 [PMID: 18471743 DOI: 10.1016/j.jamcollsurg.2007.12.047]

Basion GN et al. Review of choledochal cysts
28 Okada A, Hasegawa T, Ouchi Y, Nakamura T. Recent advances in pathophysiology and surgical treatment of congenital dilatation of the bile duct. J Hepatobiliary Pancreat Surg 2002; 9: 342-351 [PMID: 12353145 DOI: 10.1097/0005402000018].

29 Imazu M, Iwai N, Tokiwa K, Shimotake T, Kimura O, Ono S. Factors of biliary carcinogenesis in choledochal cysts. Eur J Pediatr Surg 2001; 11: 24-27 [PMID: 11370978 DOI: 10.1055/s-2001-12190].

30 Ponce J, Garrigues V, Sala T, Pertejo V, Berenguer J. Endoscopic biliary manometry in patients with suspected sphincter of Oddi dysfunction and in patients with cystic dilatation of the bile ducts. Dig Dis Sci 1999; 44: 367-371 [PMID: 992062 DOI: 10.1023/A:100451562573].

31 Levy AD, Rohrmann CA, Murakata LA, Lonergan GJ. Caroli's disease: Radiologic spectrum with pathologic correlation. AJR Am J Roentgenol 2002; 179: 1053-1057 [PMID: 12239064 DOI: 10.2214/ajr.179.4.179053].

32 Lipsett PA, Pitt HA, Colombani PM, Boitnott JK, Cameron JL. Choledochal cyst disease. A changing pattern of presentation. Ann Surg 1994; 220: 644-652 [PMID: 7996102 DOI: 10.1097/00000658-199411000-00007].

33 Park DH, Kim MH, Lee SK, Lee SS, Choi JS, Lee YS, Seo DW, Won HJ, Kim MY. Can MRCP replace the diagnostic role of ERC/P for patients with choledochal cysts? Gastrointest Endosc 2005; 62: 360-366 [PMID: 16111952 DOI: 10.1016/j.gie.2005.04.026].

34 Mori H, Iida H, Maehira H, Kitamura N, Shimizu T, Tani M. Synchronous primary gallbladder and pancreatic cancer associated with congenital biliary dilatation and pancreaticobiliary maljunction. Surg Case Rep 2017; 3: 1-13 [PMID: 29094552 DOI: 10.1186/s40792-017-0388-x].

35 Rossi RL, Silverman ML, Brausch JW, Munson JL, ReMine SG. Carcinomas arising in cystic conditions of the bile ducts: A clinical and pathologic study. Ann Surg 1987; 205: 377-384 [PMID: 3566733 DOI: 10.1097/00000658-198704000-00006].

36 Bismuth H, Krissat J. Congenital cystic malignancies. Ann Oncol 1999; 10 Suppl 4: 94-98 [PMID: 10436795 DOI: 10.1093/annonc/4.s4.994].

37 Kumamoto T, Tanaka K, Takeda K, Nojiri K, Mori R, Taniguchi K, Matsuuya R, Ueda M, Sugiya M, Ichikawa Y, Nagashima Y, Endo I. Intrahepatic cholangiocarcinoma arising 28 years after excision of a type IV-A congenital choledochal cyst: Case of a report. Surg Today 2014; 44: 354-358 [PMID: 23090140 DOI: 10.1007/s00595-012-0387-2].

38 Zheng X, Gu W, Xia H, Huang X, Liang B, Yang T, Yang S, Zeng J, Dong J. Surgical treatment of type IV-A choledochal cyst in a single institution: Children vs adults. J Pediatr Surg 2013; 48: 2061-2066 [PMID: 24094558 DOI: 10.1016/j.jpedsurg.2013.05.022].

39 Morine Y, Shimada T, Takamatu H, Araiwa T, Endo I, Kubota M, Skoli A, Noda T, Matsumura T, Miyakawa S, Ishibashi H, Kamisawa T, Shimada H. Clinical features of pancreaticobiliary maljunction: Update analysis of 2nd Japan-nationwide survey. J Hepatobiliary Pancreat Sci 2013; 20: 472-480 [PMID: 23799709 DOI: 10.1007/s00534-013-0606-2].

40 Liu YB, Wang JW, Devkota KR, Ji ZL, Li JY, Wang XA, Ma XM, Cai WL, Song KB, Shin SH, Kwon JW, Lee YJ, Kim SC, Park KM. Robot resection of a choledochal cyst with Roux-en-y hepaticojejunostomy in adults: Initial experiences with 22 cases and a comparison with laparoscopic approaches. Ann Hepatobiliary Pancreat Surg 2018; 22: 347-347 [PMID: 22989043 DOI: 10.1111/1407-1462.2017.02760.x].

41 Takeshita N, Ota T, Yamamoto M. Forty-year experience with flow-diversion surgery for patients with congenital choledochal cysts with pancreaticobiliary maljunction at a single institution. Ann Surg 2011; 254: 1050-1053 [PMID: 21658852 DOI: 10.1097/SLA.0b013e3182243550].

42 Kobayashi S, Asano T, Yamasaki M, Kenmochi T, Nakagohri O, Ochii T. Risk of bile duct carcinogenesis after excision of extrahepatic bile ducts in pancreaticobiliary maljunction. Surgery 2000; 128: 492-494 [PMID: 10965326 DOI: 10.1067/mus.2000.106076].

43 Ohashi T, Waki T, Kubomoto M, Matsuda Y, Arai Y, Ohyama T, Nakayama K, Okunoya N, Sakata J, Sriratana Y, Ajijoka Y. Risk of subsequent biliary malignancy in patients undergoing cyst excision for congenital choledochal cysts. J Gastroenterol Hepatol 2013; 28: 243-247 [PMID: 22989043 DOI: 10.1111/j.1440-1746.2012.07260.x].

44 Tashiro S, Okada A, Hasegawa T, Ouchi Y, Osada A, Toda T, Ohtani H, Takahara T, Shimada H. Malignant potential of the gallbladder in patients with anomalous pancreaticobiliary maljunction. Langenbecks Arch Surg 1994; 379: 10.1007/BF01536257.

45 Kimura H, Tanaka M, Aoki M, Shimada H, Ueda M, Sugiya M, Ichikawa Y, Nagashima Y. Intrahepatic cholangiocarcinoma arising 28 years after excision of a type IV-A congenital choledochal cyst: Case report. J Hepatobiliary Pancreat Sci 2013; 20: 1407-1407 [PMID: 100929330-200708020 DOI: 0.0005-12-0387-2].

46 Wang JW, Devkota KR, Ji ZL, Li JY, Wang XA, Ma XM, Cai WL, Song KB, Shin SH, Kwon JW, Lee YJ, Kim SC, Park KM. Robot resection of a choledochal cyst with Roux-en-y hepaticojejunostomy in adults: Initial experiences with 22 cases and a comparison with laparoscopic approaches. Ann Hepatobiliary Pancreat Sci 2018; 22: 359-366 [PMID: 3058557 DOI: 10.14701/ahbps.2018.22.4.359].

47 Lee H, Kwon W, Han Y, Kim JR, Kim SW, Jang JY. Comparison of surgical outcomes of intracorporeal hepaticojejunostomy in the excision of choledochal cysts using laparoscopic versus robotic techniques. Ann Surg Treat Res 2018; 94: 190-195 [PMID: 29629353 DOI: 10.4174/astt.2018.94.4.190].

48 Madadi-Sanjani O, Petersen C, Ure B. Minimally Invasive Hepatobiliary Surgery. Clin Perinatol 2017; 44: 805-818 [PMID: 29127962 DOI: 10.1016/j.clp.2017.08.004].

49 Talini C, DE-Carvalho BCN, Antunes LA, Schulz C, Sabugaba CC, Avelia SGA, Barbers JC, DE-Aguiar LRF, Téllez LG, DE-Almeida GC, Amado FAB, E-Silva EM. Choledochal cyst in the pediatric population: Experience of 13 laparoscopic procedures in two years at a single institution. Rev Col Bras Cir 2018; 45: 1854 [PMID: 29995153 DOI: 10.1590/2178-6991e20181854].

50 Law R, Topazian M. Diagnosis and treatment of choledochoceles. Clin Gastroenterol Hepatol 2014; 12: 196-203 [PMID: 23660418 DOI: 10.1016/j.cgh.2013.04.037].

51 Elton E, Hanson BL, Hilder BP, Howell DA. Dilated common channel syndrome: Endoscopic diagnosis,
treatment, and relationship to choledochocoele formation. *Gastrointest Endosc* 1998; 47: 471-478 [PMID: 9647371] DOI: 10.1016/S0016-5107(98)70247-0]

55 Samavedy R, Sherman S, Lehman GA. Endoscopic therapy in anomalous pancreatobiliary duct junction. *Gastrointest Endosc* 1999; 50: 623-627 [PMID: 10536316 DOI: 10.1016/S0016-5107(99)80099-1]

56 Xia HT, Dong JH, Yang T, Zeng JP, Liang B. Extrahepatic cyst excision and partial hepatectomy for Todani type IV-A cysts. *Dig Liver Dis* 2014; 46: 1025-1030 [PMID: 25190435 DOI: 10.1016/j.dld.2014.07.007]

57 Cerwenka H. Bile duct cyst in adults: Interventional treatment, resection, or transplantation? *World J Gastroenterol* 2013; 19: 5207-5211 [PMID: 23983423 DOI: 10.3748/wjg.v19.i32.5207]

58 Hussain SZ, Bloom DA, Tolia V. Caroli's disease diagnosed in a child by MRCP. *Clin Imaging* 2000; 24: 289-291 [PMID: 11331159 DOI: 10.1016/S0899-7071(00)00215-1]
