Involvement of the Liver in COVID-19: A Systematic Review

Jayani C. Kanyawasam,1 Umesh Jayarajah,2 Visula Abeysuriya,3 Rishda Riza,4 and Suranjith L. Seneviratne3*

1Faculty of Medicine, Sir John Kotelawala Defence University, Ratmalana, Sri Lanka; 2Postgraduate Institute of Medicine, University of Colombo, Colombo, Sri Lanka; 3Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals, Colombo, Sri Lanka; 4Colombo South Teaching Hospital, Colombo, Sri Lanka

Abstract. COVID-19, a respiratory viral infection, has affected 388 million individuals worldwide as of the February 4, 2022. In this review, we have outlined the important liver manifestations of COVID-19 and discussed the possible underlying pathophysiological mechanisms and their diagnosis and management. Factors that may contribute to hepatic involvement in COVID-19 include direct viral cytopathic effects, exaggerated immune responses/systemic inflammatory response syndrome, hypoxia-induced changes, vascular changes due to coagulopathy, endothelitis, cardiac congestion from right heart failure, and drug-induced liver injury. The majority of COVID-19-associated liver symptoms are mild and self-limiting. Thus management is generally supportive. Liver function tests and abdominal imaging are the primary investigations done in relation to liver involvement in COVID-19 patients. However, imaging findings are nonspecific. Severe acute respiratory syndrome coronavirus 2 RNA has been found in liver biopsies. However, there is limited place for liver biopsy in the clinical context, as it does not influence management. Although, the management is supportive in the majority of patients without previous liver disease, special emphasis is needed in those with nonalcoholic fatty liver disease, cirrhosis, hepatocellular carcinoma, hepatitis B and C infections, and alcoholic liver disease, and in liver transplant recipients.

INTRODUCTION

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and as of November 28, 2021, there have been more than 260 million cases worldwide and over 5 million deaths.1 Several vaccines have already been developed with a view to controlling this pandemic. There are two genera of human coronaviruses: alpha (human coronaviruses [HCoV]-229E and HCoV-NL63) and beta (HCoV-HKU1, HCoV-OC43, severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] and Middle East respiratory syndrome coronavirus [MERS-CoV]). The coronaviruses HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63 cause mild disease, whereas the SARS-CoV-1, MERS-CoV, and SARS-CoV-2 may potentially cause severe disease.2-3 Outbreaks of SARS-CoV-1 and MERS-CoV infections occurred in 2002 and 2012, respectively.4 Severe acute respiratory syndrome coronavirus 2 has 70% and 40% genetic sequence similarity with SARS-CoV-1 and MERS-CoV.5 Although fever and respiratory symptoms predominate in coronavirus infections, a range of liver manifestations is seen in SARS-CoV-1, MERS, and SARS-CoV-2 patients.6,7

Table 1 shows a summary of the liver findings in SAR-CoV-1, MERS, and SARS-CoV-2.6,8-17 Hepatic impairment was seen in up to 60% of patients with SARS-CoV-1. The main laboratory findings of SARS-CoV-1 were moderate to a marked elevation of alanine transaminase (ALT), decreased serum albumin, and increased serum bilirubin levels.11,16 Pathological findings included prominent mitosis, acidophilic bodies, and mild to moderate lobular inflammation. Severe acute respiratory syndrome coronavirus 1 induced liver injury was supported by the presence of viral RNA in liver tissue.16 Autopsies of SARS-CoV-1 patients found large numbers of viral particles in hepatocytes and hepatic vascular endothelial cells.18 Some patients with severe MERS-CoV had raised liver aminotransferase (ALT and aspartate transaminase [AST]) levels and hyperbilirubinemia.12,13 A low albumin level on the day of diagnosis was a predictor of disease severity.12 As with SARS-CoV-1, mild portal tract and lobular lymphocytic infiltration, moderate steatosis, and scattered calcification were observed in MERS-CoV infections.19 The incidence of liver injury in severe COVID-19 cases (74.4%) was higher than that of patients with mild disease (43%). The incidence of liver injury in COVID-19-associated deaths was 58%.8 In this review, we have outlined the important liver manifestations of COVID-19 and discussed the possible pathophysiological mechanisms and their diagnosis and management.

LITERATURE SEARCH

We searched PubMed, Google Scholar, and Google from January 2020 to November 28, 2021, for articles written in English that describe the liver effects of COVID-19, using the search terms "coronaviruses and liver," "COVID-19 and liver," "COVID-19, and liver symptoms," "COVID-19 and hepatic," "COVID-19 and liver function tests," "COVID-19 and liver inflammation," "SARS-CoV-2 and liver," and "transplantation during COVID-19." Reference lists of the articles were scanned to identify any additional studies. The article title and abstract were read for the initial selection and then the full-text article was read. Reference lists of the full-text articles were scanned to identify any additional studies. All types of research articles, including original research articles, reviews, case series, short communications, and case reports were considered. Of the 103 articles identified, 59 were analyzed further (Figure 1).

Liver-related outcomes associated with COVID-19. The current literature has several studies on liver-related outcomes in COVID-19. However, the definition of liver injury tends to vary among the different studies. Furthermore, specifying liver-related outcomes in COVID-19 patients is made difficult because of the studies describing different
etologies, different disease severities, small numbers of study participants from a single geographical location, and the lack of correlation of liver test results with preexisting liver conditions. Preexisting chronic liver disease (CLD) may predispose a person to adverse outcomes following COVID-19 because of immune dysregulation. Further, the mortality associated with cirrhosis was higher than among those with cirrhosis and bacterial infection. Another study by Marjot et al. found that autoimmune hepatitis patients found that autoimmune hepatitis (AIH) and immunosuppression were not significantly associated with death despite the use of medications that suppressed the immune system. This may be because of the low sample number (N = 77) of AIH patients.

PATHOPHYSIOLOGY OF LIVER INVOLVEMENT IN COVID-19

Factors that may contribute to liver involvement in COVID-19 include direct viral cytopathic effects, exaggerated immune responses/systemic inflammatory response syndrome (SIRS), hypoxia-induced changes, vascular changes due to coagulopathy, endothelitis, cardiac congestion from right heart failure, and drug-induced liver injury. These factors may also exacerbate any underlying liver disease. The pathophysiological
processes involved in liver impairment in COVID-19 are summarized in Figure 2.

Angiotensin-converting enzyme 2 receptors. Angiotensin-converting enzyme 2 (ACE2) receptors provide a gateway for viral entry, and its tissue distribution determines the pattern of viral tropism. There is high expression of ACE2 on cholangiocytes (epithelial cells of the bile duct) and low expression on hepatocytes, Kupffer cells (liver macrophages), and endothelial cells.9 Levels of expression on bile ducts are similar to type II alveolar cells.25 Cholangiocytes undergo syncytia formation following SARS-CoV-2 infection and similar observations have been noted when the virus infects adult human cholangiocyte organoids. The virus is able to replicate within the bile duct epithelium. Levels of ACE2 expression may be affected by many factors. Preexisting liver disease, hypoxia, drug-induced liver injury, and inflammation increase the levels of expression24 and may, in turn, enhance viral-induced cytotoxicity. In vitro studies found pretreatment of ACE2 receptors with trypsin increases the binding affinity of SARS-CoV-2 spike protein. Liver epithelial cells express trypsin, and this may facilitate viral entry despite low ACE2 expression levels. Furthermore, the spike protein of SARS-CoV-2 has a furin-like proteolytic site. As furin is predominantly expressed in the liver, it may support viral entry. Cell line studies have found viral entry to depend on the PIKfyve-TCP2 endocytotic pathway that is expressed in the liver and gall bladder, at comparable levels to the lung.

Direct viral cytotoxicity. The renin-angiotensin system (RAS) plays a major role in liver inflammation, tissue remodeling, and fibrosis. Angiotensin-converting enzyme 2 is a key negative regulator of the RAS and limits fibrosis through the degradation of Angiotensin II and the formation of Angiotensin (1–7). Upon binding of the SARS-CoV-2 virus, ACE2 is endocytosed and levels are reduced on the cell surface. Murine studies found reduced ACE2 levels to worsen liver fibrosis in chronic liver injury models.26 Direct viral cytotoxicity gives rise to steatohepatitis by interfering with lipogenesis and in turn, may worsen chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) and alcoholic hepatitis.24

Immune-mediated effects. An exaggerated inflammatory response in COVID-19 leads to lymphocyte activation, neutrophilia, and an increase in C-reactive protein (CRP) and inflammatory cytokines. Levels of serum interleukin (IL)-2, IL-6, IL-7, IL-10, tumor necrosis factor (TNF)-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-inducible-protein-10, monocyte chemotactic protein-1, and macrophage-inflammatory-protein-1 alpha are significantly higher in severe COVID-19.8,27 A CRP ≥ 20 mg/L and a lymphocyte count < 1.1 × 10^9/L are independent risk factors for liver injury. Lymphopenia is noted in 63–70.3% of COVID-19 patients. Postmortem liver histology shows microvesicular steatosis and T cell accumulation, pointing to the presence of immune-mediated damage.26 The systemic inflammatory response secondary to the infection causes systemic hypotension, cellular ischemia, abnormal coagulation, microthrombi, and endothelial dysfunction and may further exacerbate the liver damage caused by direct viral cytopathic effects. Thus liver damage should be suspected and treated promptly in a clinically deteriorating patient with systemic manifestations of COVID-19.
Hypoxia-related effects. Liver hypoxia (because of microvascular thrombosis and gas exchange defects secondary to lung injury) may cause hepatic damage. Ischemic injury to the gut with resulting intestinal endotoxemia, and activation of the sympathetic nervous and adrenocortical systems may further contribute to liver damage.9,29 Furthermore, COVID-19-induced myocardial dysfunction can potentially give rise to right heart failure, adding to the existing damage, and worsening ischemic liver injury. Elevated transaminases in the context of respiratory failure, shock, and heart failure in severe COVID-19 may be indicators of this pathophysiological mechanism.30

Drug-related cytotoxicity. As most COVID-19 patients have fever, antipyretics containing acetaminophen are frequently used. Higher doses of this medication are known to cause liver damage. Many antiviral drugs are administered (alone or in combination) and some of them may have adverse effects on the liver (Table 2).31–48 It should be noted that some of the medications are no longer in use for COVID-19 in current clinical practice. Lopinavir/ritonavir increases the odds of liver injury by fourfold. Thus close monitoring is needed in such patients especially when abnormal liver function tests (LFTs) have been observed at admission.49

Gut microbiota. Recent studies on gut microbiota have suggested an alteration in intestinal microbiota composition (i.e., dysbiosis) contributes to different immune-mediated inflammatory diseases.50 Similarly, in COVID-19, gut microbiota dysbiosis might play an important role in determining the clinical outcome of patients with underlying comorbid conditions such as diabetes, hypertension, and obesity.51 For instance, gut microbiota diversity is generally decreased in older individuals and COVID-19 is also more severe and fatal in this group of individuals raising a potential role of the gut microbiota in overall pathogenesis and outcomes.52 Furthermore, it has been suggested that COVID-19 patients are depleted of gut bacteria with known immunomodulatory potential.53 Additionally, inflammation induced by gut dysbiosis represents an important factor in cardiometabolic and diabetic pathogenesis and may contribute to increasing the severity of COVID-19 in the most vulnerable patients.54 As diet plays a critical role in modulating the gut microbiota, there has been increased interest in evaluating the health benefits and disease-preventing properties of diet and dietary habits and their association with favorable patient outcomes.55,56 The GI blood supply drains to the liver by the portal venous system. Thus disruption of the gut microbiota, with breach of the gut–mucosal barrier may lead to sepsis-induced hepatic dysfunction.

Mitochondrial damage. Preliminary observations suggest that SARS-CoV-2 affects mitochondrial activity.57 Furthermore, Wang et al. identified mitochondrial cristae abnormalities in liver specimens from COVID-19 patients. Interestingly, impaired mitochondrial activity has also been implicated in the pathogenesis of NAFLD/non-alcoholic steatohepatitis.58 Thus, SARS-CoV-2 infection might worsen the metabolic state and aggravate preexisting NAFLD by these mechanisms.

HEPATIC MANIFESTATIONS IN COVID-19

The COVID-19-associated liver injury is defined as liver damage occurring due to the virus or its treatment in those with or without preexisting liver damage.59 Several biochemical definitions for liver injury have been proposed. These
Class	Drug	Dosage	Administration	Liver side effects	References
Antivirals	Remdesivir (In phase 3 clinical trials)	Loading dose 200 mg over 30–120 minutes on day 1 followed by 100 mg once daily for remaining 4/9 days. Needs mechanical ventilation/ECMO: for 5 days.	Intravenous	1–10% — liver enzyme derangement, hyperbilirubinemia	31,32,33,34
	Paxlovid (PF-07321332 150 mg and ritonavir 100 mg)	300 mg PF-07321332 (two 150 mg tablets) with 100 mg ritonavir (one 100 mg tablet) all taken together orally every 12 hours for 5 days.	Oral	May cause liver damage because of ritonavir. No dosage adjustment is needed for patients with either mild (Child-Pugh Class A) or moderate (Child-Pugh Class B) hepatic impairment.	47
	Molnupiravir	800 mg (administered as four 200 mg capsules) taken orally every 12 hours with or without food for 5 days.	Oral	N/A	48
	Lopinavir/ ritonavir (LPV/r) (Kaletra)	400/100 mg twice daily or 800/200 mg once daily for 14 days.	Oral (administer with or without food)	1–10% — hepatic disorders, cholangitis, hyperbilirubinemia	35
	Ribavirin (In phase 2 clinical trials)	400 mg twice daily for 14 days (in clinical trials)—dosing not defined	Oral (administer with food)	0.1–1% — Hepatic disorders. Less than 0.1% — Cholangitis, hepatic failure.	36
	Darunavir	1 pill of DRV/c (a single-tablet regimen containing 800 mg of darunavir and 150 mg of cobicistat) per day for 5 days.	Oral	Moderate to severe elevations in serum aminotransferase levels (> 5 × ULN) in 3–10% of patients overall.	37
	Favipiravir	1,800 mg twice daily on day 1 followed by 800 mg twice daily on days 2 to a maximum of 14 days.	Oral	Liver enzyme derangement (2%)	38
Immunomodulatory drugs	Tocilizumab	4–8 mg/kg (maximum 800 mg) over 1 hour; or 400 mg once Consider an additional dose 8–12 hours later if continued clinical deterioration (maximum of 2 doses)	Intravenous	Frequency not known — Hepatic disorders	31
	Interferon α/β	INF-β-1b 0.25 mg alternated for 3 days (in clinical trial)—dosing not established	Subcutaneous injection	0.1–1% — Hepatic disorders, autoimmune hepatitis	31
	Baricitinib (completed clinical trial)	4 mg once daily Baricitinib + antiviral therapy administration for 2 weeks.	Oral	Frequency not known — Abnormal liver enzymes	39,40
	Imatinib	400 mg daily for 14 days.	Oral	Common elevations in serum aminotransferase levels mild elevations in serum bilirubin can occur. These abnormalities are usually mild, asymptomatic, and resolve despite continuing therapy. Linked to rare instances of clinically apparent acute liver injury with jaundice.	41,42
	Antiparasitic	Chloroquine 500 mg twice/day for 10 days.	Oral (administer with food)	Less than 0.1% — Hepatitis	03
	Hydroxychloroquine	Loading dose of 400 mg twice daily for 1 day, followed by 200 mg twice daily for 4 days.	Oral (administer with food)	Frequency not known — Acute hepatic failure	31,43
	Steroids	Dexamethasone 6 mg daily for 7–10 days.	Oral	Frequency not known — Acute hepatic failure	44,45
	Antibiotic	Azithromycin NA	NA	Low rate of acute, transient, and asymptomatic elevation in serum aminotransferases which occurs in 1-2% of patients treated for short periods, and a somewhat higher proportion of patients given azithromycin long term. Rarely cause clinically apparent liver injury.	46

ALT = alanine transaminase; ECMO = extracorporeal membrane oxygenation; INF-β = interferon-beta; LPV/r = lopinavir/ritonavir; NA = not applicable.
include, ALT or AST exceeding three times the upper limit of normal, and alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), or total bilirubin exceeding two times the upper limit of normal. The overall incidence of liver damage due to COVID-19 varies from 14.8% to 53%, and is more frequent in severe than in mild disease. The degree of liver injury is generally mild and predominantly hepatocellular rather than cholestatic. Those with GI symptoms were more prone to developing liver involvement. Li and Xiao classified liver involvement in COVID-19 into two types—specific and nonspecific. The specific type caused three or higher and two or higher fold elevations in ALT/AST and total bilirubin levels, respectively. The nonspecific type caused mild and transient LFT abnormalities, was due to general inflammation, and usually does not need any special treatment. Hepatic injury is commonly associated with decreased lymphocyte counts, raised neutrophil counts, and male gender. This reflects the role of innate immunity/inflammation in COVID-19-associated hepatic injury. More studies are needed to support the relationship between male gender and hepatic injury. The highest ALT, AST, APT, and GGT levels are significantly associated with high body temperatures during the illness. This suggests that changes in the body temperature may contribute to the pathophysiology of COVID-19-associated liver disease. The presence of hepatic injury has been associated with the development of acute respiratory distress syndrome (ARDS). Larger cohort studies should help to better understand this process. Acute liver injury is associated with high mortality. This fulminate hepatic failure may result from direct viral replication or increased inflammation. A summary of the liver-related investigations findings and the treatments used are shown in Table 3.

Elevated bilirubin levels. Elevated bilirubin levels are observed in 20–40% of patients and 10% had very high levels. Bilirubin levels are significantly higher in those with severe disease and are associated with a poorer prognosis. Most of the studies do not indicate whether the hyperbilirubinemia is of the direct or indirect type. A study from Spain found a biphasic pattern of hyperbilirubinemia, initially hepatocellular and later cholestatic in type. This suggests that the elevation of bilirubin may be because of both direct hepatic injury and cholestasis. In addition to the increase in serum total bilirubin levels, raised conjugated bilirubin levels and conjugated to unconjugated bilirubin ratios were observed in COVID-19 patients. The high bilirubin levels may also be related to hemolysis. Further studies would delineate the predominant pathogenesis of elevated bilirubin levels in COVID-19.

Reduced synthetic function. Up to 4% of patients with severe COVID-19 had reduced albumin levels. Studies have found lower albumin levels to be associated with a poorer prognosis (severe pneumonia, longer hospital stays, and higher mortality). This may be due to a direct effect of the virus on the liver or due to systemic inflammation in severe COVID-19. The low albumin levels may be due to switching off of albumin production by the liver, increased catabolism or loss of protein through the GI tract during COVID-19. Thus, the low albumin level mentioned in the studies should not be considered a direct marker of reduced liver function. As histological data do not suggest severe hepatic injury, it would be unlikely that low albumin is mainly contributed by hepatic dysfunction. Prothrombin time (PT) has been suggested as a predictive factor for clinical outcomes in COVID-19 patients. The survival rate is significantly lower in patients with prolonged PT. Baranovskii et al. found significantly prolonged admission PT in ICU-transferred patients compared with stable COVID-19 patients. Such findings may be due to systemic inflammation–related coagulopathy rather than reduced hepatic function.

Raised gamma-GT levels. Elevations of serum GGT levels point to the presence of cholangiocyte injury and are observed in a sizeable proportion of those with severe COVID-19. Elevations of GGT in association with a rise in ALP would suggest cholestasis. The need for ICU care and reduced survival was observed in COVID-19 patients with a cholestatic pattern of hepatic injury.

Pathological changes on liver histology. The described pathological changes in liver histology are mainly ascertained from postmortem studies. Most of the studies do not indicate whether the patients had preexisting liver disease or the severity of the liver derangement, precluding useful interpretation of the pathological findings. The liver histology changes noted in COVID-19 include moderate microvascular and macrovascular steatosis and mild lobular portal inflammation. In autopsy studies, centrilobular steatosis was seen, with significant increases in mitotic cells, eosinophils, and balloon-like liver cells. Lagana et al. found lobular necroinflammation (50%), portal inflammatory infiltrates (50%), cholestasis (38%), lobular apoptosis (25%), and macrovesicular steatosis (75%). However, again the presence of preexisting liver disease or severity of the liver disease was not considered. A study by Wang et al. where the preexisting liver disease was excluded, found viral structures within hepatocytes by electron microscopy and raised the possibility of a direct cytopathic effect of the virus.
First author, year, and country	Article type	Total no of patients (had GI symptoms)	No of males n (%)	Average age (Years)	No of patients had livers abnormalities before or after COVID-19 (%)	Increase of aminotransferase levels, U/L, mean/median (n)	Increase of bilirubin mg/dL, n (%)	Decrease of albumin g/L	Alkaline phosphatase U/L, mean ± SD (n)	Gamma-glutamyl transferase U/L (%)
Beigmohammadi, 2020 (Iran)	RA	7	5 (71%)	67.85	1 (peptic ulcer disease)	NA	NA	NA	NA	NA
Cardoso, 2020 (Portugal)	RL	20	18 (90%)	67	18	0	NA	NA	NA	NA
Cai, 2020 (China)	RA	417	198 (47.5%)	47.1	21 (5.04%) (NAFLD, alcoholic liver disease, and chronic hepatitis B)	396 (65%)	NA	NA	NA	NA
Chen N, 2020 (China)	RA	99	67 (68%)	55.5	0	NA	NA	NA	NA	NA
Guan W-J, 2020 (China)	RA	1,099	601 (55%)	NA	23 (2.3%) Hep B (9.2%) hepatitis C and successful antiviral therapy or signs of NAFLD liver damage 69.9—no liver damage	NA	NA	NA	NA	NA
Effenberger, 2020 (Austria)	RA	32	NA	73.5—NA	No liver damage—31.3 U/L	Liver damage—76.3 U/L	NA	NA	NA	NA
Ji D, 2020 (China)	RA	140	82 (58.6)	41.9	54 (38.6%) had NAFLD 7 (9.9%) had positive HBeAg 6—chronaxis 6—CHB 13—NAFLD	22 (15.7%) had CLD CLD (G—non—CHB CLD (G—comprises 6—CHB 13—NAFLD)	NA	NA	NA	NA
Jin X, 2020 (China)	RA	651 (74%)	37 (50%)	46.14	8 (10.8%) Chronic liver disease	NA	NA	NA	NA	NA
Lin, 2020 (China)	RA	95 (58%)	45 (47%)	49.5	0	NA	NA	NA	NA	NA
Luo, 2020 (China)	RA	1,141 (183%)	102 (55.7%)	53.8	NA	NA	NA	NA	NA	NA
Mo, 2020 (China)	RA	155	86 (55.5%)	54	NA	NA	NA	NA	NA	NA
Pan, 2020 (China)	RA	204 (103)	107 (52.5%)	52.9	7 (3.4%) digestive disease	NA	NA	NA	NA	NA

(continued)
First author, year and country	RA or BC (n)	Total no of males (n)	Proportion of patients with abnormal liver tests	Proportion of patients with abnormal liver tests (n)	Proportion of patients with abnormal liver tests (%)	Average age (Years)	Proportion of patients with AST (n)	Proportion of patients with AST (%)	Proportion of patients with ALT (n)	Proportion of patients with ALT (%)
Abnormal liver tests										
AST										
No preexisting liver disease	N/A	Indicated only in suspicion of vascular or biliary disease^{96,97}	In moderate to severe liver injury lopinavir-ritonavir, tocilizumab are contraindicated¹⁰²	N/A	Baseline LFTs should be performed on admission to identify preexisting liver disease. Transient elevation in LFTs may be seen and needs monitoring at least twice weekly in patients receiving hepatotoxic medication.					
----------------------------	-----	---	---	-----	-------------------	---				
Preexisting liver disease (NAFLD, cirrhosis, HCC, chronic Hepatitis B, alcoholic liver disease)	LFTs on admission (baseline) and at least every other day during hospital stay¹⁰³	Indicated only in suspicion of vascular or biliary disease¹⁰¹	Concomitant administration of tenofovir derivatives with lopinavir-ritonavir increases tenofovir concentrations¹⁰⁴. Caution in use of Paxlovid (combination of Ritonavir + Nirmatrelvir) in preexisting liver disease, liver enzyme abnormality or liver inflammation¹¹⁰. Paxlovid may induce hepatic enzymes and breakdown of nirmatrelvir or ritonavir¹¹⁰. Paracetamol > 2 g per day to be avoided¹⁰⁴. NSAIDs used with caution¹⁰⁴. Corticosteroids used with caution in hepatitis B as they may increase the risk of hepatitis in chronic HBV¹⁰⁴. Continue treatment of HBV even during treatment of COVID-19, discontinuation of antiviral treatment of hepatitis B discouraged¹⁰² Anti-HBV drugs may be considered when patients are on immunosuppressive treatment with careful monitoring¹⁰⁵	Strict measures to minimize exposure to COVID-19 especially in HCC due to very high risk of hospital-acquired COVID-19⁹⁸. COVID-19 vaccines as early as possible¹⁰⁹. Treat HCC without delay⁹⁸. Pneumococcal and influenza vaccines irrespective of the age⁹⁹.						

(continued)
TABLE 4 Continued

Investigations	Liver transplant	Noninvasive, nonpharmacological management	Pharmacological management Nonpharmacological management Recommendations
No specific recommendations	No specific recommendations	Liver transplantation should not be postponed due to COVID-19.	Although challenging, LT should not be postponed due to COVID-19. Early COVID-19 should not be treated with third booster dose 1-2 months after second dose. Perform baseline LFT before starting antiviral therapy and monitor during therapy. Discontinue infusions if ALT and AST > 10 times U/L.
Liver transplant	Liver transplantation should not be postponed during pandemic	Increased levels with liver enzyme inducers are a risk factor of hepatotoxicity. Use with caution.	Remdesivir is not hepatotoxic. Increased levels with liver enzyme inducers are a risk factor of hepatotoxicity. Use with caution.
Test donor and recipient	Test donor and recipient	Remdesivir is not hepatotoxic. Increased levels with liver enzyme inducers are a risk factor of hepatotoxicity. Use with caution.	Remdesivir is not hepatotoxic. Increased levels with liver enzyme inducers are a risk factor of hepatotoxicity. Use with caution.
Paracetamol	Paracetamol	Paracetamol	Paracetamol
(doses > 2 g per day) to be avoided in patients with chronic liver disease	(doses > 2 g per day) to be avoided in patients with chronic liver disease	Paracetamol (doses > 2 g per day) to be avoided in patients with chronic liver disease	Paracetamol (doses > 2 g per day) to be avoided in patients with chronic liver disease

Laboratory and other biochemistry

- **Liver transplant**
 - Test donor and recipient
 - Paracetamol should be avoided in patients with chronic liver disease.

Imaging and biopsy

- **Liver transplant**
 - Test donor and recipient
 - Paracetamol should be avoided in patients with chronic liver disease.

COVID-19 IN PATIENTS WITH DIAGNOSED LIVER DISEASES

Those with preexisting liver diseases, the elderly, or individuals who consume high amounts of alcohol or are obese should be monitored closely. The AASLD recommends the consideration of causes unrelated to COVID-19 (e.g., HBV or HCV) and other causes (e.g., myositis, ischemia, and cytokine release syndrome) for any observed liver test abnormalities. Patients receiving immunosuppressive medications (liver transplant recipients or those with autoimmune hepatitis) should be managed as they were prior to the pandemic. Those with chronic HBV should continue their treatment and in HCV patients without decompensated cirrhosis treatment may be delayed. Hepatocellular carcinoma should be treated without delay.

Some preexisting liver diseases are risk factors for poorer prognosis in COVID-19. Preexisting liver disease increases ACE2 expression on hepatocytes (observed in murine and human studies) and may thus increase the hepatic tropism of SARS-CoV-2. Grasselli et al. found 3% of 1,591 COVID-19 patients admitted to ICUs had a history of chronic liver disease.

Nonalcoholic fatty liver disease

Patients with NAFLD have a higher risk of COVID-19 progression (6.6% versus 44.7%) and a higher likelihood of abnormal LFTs (70% versus 11.1%). It is a risk factor for hospitalization in COVID-19, and was suggested as a more significant factor than age, gender, obesity, or other comorbidities. Although the underlying mechanism is yet to be clarified, a possible reason could be impaired innate immune responses to the virus. Hepatic macrophages/Kupffer cells may be skewed from an inflammatory-promoting to inflammatory-suppressing type. Nonalcoholic fatty liver disease is associated with an increased risk of severe COVID-19, even after adjusting for obesity. Zheng et al. found a 6-fold higher risk of severe COVID-19 in patients with NAFLD. The severity of COVID-19 was much higher in obese than nonobese NAFLD patients. According to Prins et al., the liver contains the highest number of macrophages, and NAFLD patients often present with elevated cytokine levels. Nonalcoholic fatty liver disease progression could also be hastened by COVID-19.
Cirrhosis. These patients are more susceptible to SARS-CoV-2 infections, owing to their immunocompromised status. Increased disease severity and complications lead to higher mortality. A multicenter study of 50 cirrhosis patients with COVID-19 found a 30-day mortality rate of 34%. Higher severity of the underlying liver disease was associated with an increased risk of mortality in COVID-19. In a study of 152 COVID-19 patients with chronic liver disease (including 103 with cirrhosis), the mortality rate was 40%. The mortality rates in patients with Child-Pugh (CP) class A cirrhosis, CP class B cirrhosis, and CP class C cirrhosis were 24%, 43%, and 63% respectively. CP class B or C cirrhosis were independent predictors of mortality.117

Hepatocellular carcinoma. Patients with hepatocellular carcinoma (HCC) often need to visit a hospital for their treatment (chemotherapy and or immunotherapy) and thus need to be managed and monitored carefully. They have a higher risk of getting hospital-associated COVID-19, especially those who underwent surgery or received systemic treatment in the prior month. Post-epatectomy liver failure (PHLF) is a life-threatening situation following hepatectomy. Increased inflammation during COVID-19 may predispose the patient to PHLF. Secretion of IL-6 after hepatectomy and during PHLF, may further increase inflammation during COVID-19.118 In patients with HCC, COVID-19 may exacerbate existing chronic liver disease and complicate cancer management. Cancer patients have a higher risk of infection and worse outcomes, especially those who have recently undergone cancer treatment. Hepatocellular carcinoma was underrepresented in COVID-19 series. Mitigation measures should be implemented to minimize the exposure of such patients to the virus. A decision on the treatment of HCC should be balanced with the availability of medical resources and the level of risk of getting COVID-19.119

Hepatitis B infections. Globally, there are over 250 million people living with HBV infection.120 Thus, it is important to study the clinical characteristics of COVID-19 patients with preexisting HBV infection. These patients tend to have a more severe form of COVID-19.119,121 However, according to the COVID-HBV-Chinese Portal Hypertension Diagnosis and Monitoring Study Group study, patients with preexisting HBV infections had a lower incidence of ICU admission or death.8 Similar findings were noted with SARS-CoV-1 and HBV coinfection.122 In a systematic review done by Hossein Mirzaei et al., the mortality was 6% in COVID-19-HBV, coinfected persons. The low ICU admission and death rates in preexisting HBV patients maybe because of host immune responses that result from indirect interactions between HBV and SARS-CoV-2 virus.8 Furthermore, early COVID-19 vaccination in HBV-infected populations, additional precautionary measures, and early identification and treatment of COVID-19 infection may have contributed to better outcomes. During treatment, discontinuation of antiviral treatment of hepatitis B is discouraged, so as to prevent its reactivation. Anti-HBV drugs may be considered when patients are on immunosuppressive treatment and the patients should be monitored carefully.123

Alcoholic liver disease. Both alcohol-associated liver disease (ALD) and alcohol use disorders (AUD) have been affected during the COVID-19 pandemic. Economic and social stresses resulting from the pandemic increased alcohol consumption in some individuals and delays in care have led to increased mortality from alcohol-associated hepatitis.117

Liver transplant recipients. A meta-analysis comparing 1522 COVID-19-infected liver transplant (LT) patients and around 240,000 COVID-19-infected non-LT patients showed similar mortality rates.106 The LT patients had a cumulative mortality rate of 17.4%.106 The graft dysfunction rate was 2.3% (1.3–4.1%). However, 23% developed severe infections.106 A review by Kullar et al. showed that 80% of LT patients with COVID-19 required hospital admission and 17% required intensive care.124 Around 21% required mechanical ventilation and the overall mortality was 17%.124 Therefore, these patients would require close monitoring during the active stage of infection with observation for graft rejection. Vaccination as a preventive strategy is recommended. Postexposure prophylaxis should be considered in selected high-risk individuals. Due to lack of consensus, management strategies varied widely, including variations in immunosuppressive therapy and different investigational therapies to manage COVID-19 in transplant patients.125

Surgical aspects. Surgical services, especially routine surgeries for both benign and malignant conditions, have been affected worldwide during the COVID-19 pandemic.126–128 The effect of surgery and anesthesia has negative implications on COVID-19 patients. Furthermore, healthcare workers were also affected because of increased high-risk exposures and the lack of clinical exposure/training due to the postponement of routine surgeries.129–131 Surgical aspects. Surgical services, especially routine surgeries for both benign and malignant conditions, have been affected worldwide during the COVID-19 pandemic.126–128 The effect of surgery and anesthesia has negative implications on COVID-19 patients. Furthermore, healthcare workers were also affected because of increased high-risk exposures and the lack of clinical exposure/training due to the postponement of routine surgeries.129–131 Routine preoperative screening for SARS-CoV-2 is mandatory and COVID-19-free pathways have been shown to be beneficial.135,136 However, preoperative isolation is controversial.137 During periods of societal restriction, the resilience of elective surgery systems requires strengthening to prevent postponement of cancer surgeries.138,139 Liver transplantation has been affected due to COVID-19 infection worldwide.140 Individuals with a liver transplant need preoperative, surgical intervention, and postoperative care, which is challenging during this pandemic. The healthcare facilities are overwhelmed with the management of COVID-19 and the need for resources such as ICU beds and ventilators.136 In addition, to limited facilities, the exclusion of donors with COVID-19 is a major problem encountered in the transplantation programs. Furthermore, immunosuppressive therapy in transplanted individuals and drug interactions may make them more vulnerable for COVID-19 infection and hence optimal protective measures should be maintained. The European Association for the Study of the Liver (EASL) and AASLD have suggested that LT should not be postponed during the pandemic. Preliminary data has shown that despite immunosuppression in LT patients, no increased risk was found with post-LT patients.107 This may suggest that immunosuppression in LT patients was not associated with an increased risk of COVID-19 infection. However, further studies are needed prior to this becoming routine clinical practice.

In Italy, though liver transplantation was carried out during COVID-19, a 25% reduction in procured organs was observed during the first 4 weeks of the outbreak.107 Both living and deceased donor LTs were performed and increased mortality...
was seen in patients who needed to remain on the waiting list. Saracco et al. found no significant difference in numbers of patients undergoing LT from deceased donors in 2020 compared with 2019. The rate of early graft dysfunction was 24% and 33% in 2020 and 2019. In 2020, the Median Model for End-stage Liver Disease (MELD) score was higher (17 versus 13) and there were no deaths in those on the waiting list. Thus careful testing of symptomatic patients and careful testing all transplant donors for SARS-CoV-2 RNA and team-work helps overcome the constraints in LT during the COVID-19 pandemic. Furthermore, a patient’s liver transplantation candidacy should not be affected by PCR test results alone, as the COVID-19 PCR may remain positive in absence of active COVID-19.

Drug interactions. Drug–drug interaction is a problem associated with LT during the COVID-19 era. Patients who underwent LT are usually poly-medicated mainly with immunosuppressive drugs. Since a number of drugs used in COVID-19 have only been recently authorized, monitoring for potential drug interactions is important. Remdesivir has been approved by US Food and Drug Administration (US FDA) for the treatment of hospitalized patients with COVID-19. It is potentially hepatotoxic and should be used with caution. Increased liver transaminase levels are a common adverse effect, and discontinuation of remdesivir infusions should be considered if elevations in ALT or AST above 10 times the upper limit of normal are noticed. Baseline LFTs should be done before initiation of therapy and these should be monitored closely during therapy. The concentration of remdesivir may be affected by enzyme inducers such as clarithromycin, rifampin, phenytoin, and phenobarbital. Favipiravir increases the concentration of pioglitazone, rosiglitazone, paracetamol, oseltamivir, and hormonal replacement therapy, but does not have significant interactions with immunosuppressive medications or steroids. Paxlovid, an oral antiviral agent contains the protease inhibitor nirmatrelvir and a low dose of ritonavir. Ritonavir may cause liver injury and thus caution needs to be exercised when Paxlovid is considered for patients with liver enzyme abnormalities, hepatic inflammation, or preexisting liver diseases. Tocilizumab has minor interactions with ciclosporin, tacrolimus, and sirolimus. It may also reduce the concentrations of calcineurin inhibitors and drug level monitoring should be performed. Its use with chloroquine and hydroxychloroquine may produce additive toxicity. Tocilizumab has a myelosuppressive effect and it may thus potentiate hematological toxicity of ribavirin and interferon-beta if used together. In the setting of LT, interferon-beta has no interactions with immunosuppressive drugs or steroids. However, as it induces myelosuppression, it should not be combined with tocilizumab. Also, potential interaction with chloroquine and hydroxychloroquine may increase its toxicity.

COVID-19 VACCINES IN LIVER DISORDERS

Patients with CLD (predominantly cirrhosis), hepatobiliary malignancies, candidates for liver transplantation, and immunosuppressed individuals after liver transplantation appear to be at increased risk of COVID-19 infection and increased mortality. This risk might occur through cirrhosis-associated immune dysfunction, acute hepatic decompensation, and a systemic inflammatory response. Therefore, COVID-19 vaccines should be administered as early as possible to patients with CLD. In general, vaccines are less effective in CLD and post-LT patients. The impaired immune response in such patients may result in an incomplete immediate and long-term immune protection following vaccination. The original vaccine trials included only small numbers of patients with mild to moderate liver disease and excluded those on immunosuppressive medications. Chronic liver disease patients represented less than 0.5% of those enrolled in phase II clinical trials. From these clinical trial results, it was difficult to speculate which COVID-19 vaccine type would be most effective in those with CLD. Liver transplant individuals usually have reduced rates of seroconversion and lower antibody titers in response to vaccination and this may be similar with the COVID-19 vaccines. In a recent US study, 63% of post-LT patients seroconverted after the second dose, whereas 100% of cirrhotic patients did so. Furthermore, 28% of LT patients did not develop humoral or T cell responses, pointing to the need for routine serological testing with third vaccine dose administration in such patients. Strauss et al. found that LT patients who received two doses of an mRNA vaccine to have a greater antibody response than other solid organ transplants (SOT). This may be due to milder induction immunosuppression given to LT patients when compared with other SOT patients such as heart and lung transplant patients. Early vaccination and avoiding the use of antimalarial medications (if this were at all possible) should be considered for obtaining better postvaccine immune outcomes in these patients. A third dose of the COVID-19 vaccine needs to be considered for LT recipients, at around 1 or 2 months after their second dose. In patients with CLD, vaccination may not result in a robust immune response due to immunosuppression. Hence, monoclonal antibody therapy may be beneficial in these patients. Vaccine-related adverse effects in LT recipients are similar to other individuals.

LIMITATIONS

A limitation of this review is that the majority of studies are observational and have small numbers of subjects making it difficult to provide more definitive conclusions. It is possible that subtle liver findings were not documented (and thus underestimated) during the early part of the pandemic. Well-conducted studies from different regions of the world would help expand the evidence base and provide better answers to the many questions at hand. Ours is a broad overview of the main reported hepatic manifestations in COVID-19 and their management. A more comprehensive and detailed profile of specific aspects should emerge as more data are published from different countries.

CONCLUSION

In conclusion, liver involvement is observed in COVID-19 patients and may influence disease prognosis and outcomes. The factors that may contribute to liver involvement in COVID-19 include direct viral cytopathic effects, exaggerated immune responses, hypoxia-induced changes, vascular changes due to coagulopathy, endothelitis, cardiac congestion from right heart failure, and drug-induced liver injury. Further clinical and laboratory studies should help ascertain more details on the potential mechanisms of SARS-CoV-2 infections.
and the liver. The COVID-19 vaccines should be administered as early as possible to patients with CLD and a third dose of the vaccine needs to be considered for LT recipients.

Received November 29, 2021. Accepted for publication January 16, 2022.

Acknowledgments: The American Society of Tropical Medicine and Hygiene has waived the Open Access fee for this article due to the ongoing COVID-19 pandemic and has assisted with publication expenses.

Authors’ addresses: Jayani C, Kariyawasam, Sri John Kotelawala Defence University, Ratmalana, Sri Lanka, E-mail: jayanicel@gmail.com. Umesh Jayarajah, Postgraduate Institute of Medicine, University of Colombo, Colombo, Sri Lanka, E-mail: umeshe.jaya@gmail.com. Visula Abeyasurya, and Suranjith L, Seneviratne, Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals, Colombo, Sri Lanka, E-mails: visulasrilanka@hotmail.com and suran200@yahoo.co.uk. Rishdha Riza, Colombo South Teaching Hospital, Colombo, Sri Lanka, E-mail: rishdha.92@gmail.com.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

1. World Health Organization. 2020. Country Reports. Available at: https://www.who.int/countries/. Accessed February 27, 2021.

2. Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y, 2020. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 21: 1–14.

3. Liu DX, Liang JQ, Fung TS, 2021. Human coronavirus-229E,-OC43,-NL63, and-HKU1 (Coronaviridae). Encyl Vol 2: 428–440.

4. Abdelghany T, Ganash M, Bakri MM, Ganash H, Al-Rajhi AM, Elhusieny NI, 2021. SARS-CoV-2, the other face to SARS-CoV and MERS-CoV: future predictions. Biomed J 44: 86–93.

5. Chu H, Chan JF-W, Wang Y, Yuen TT-T, Chai Y, Shuai H, Yang D, Hu B, Huang X, Zhang X, 2021. SARS-CoV-2 inducers a more robust innate immune response and replicates less efficiently than SARS-CoV in the human intestines: an ex vivo study with implications on pathogenesis of COVID-19. Cell Mol Gastroenterol Hepatol 11: 771–781.

6. Kukla M, Skonieczna-Zydecka K, Koftis K, Maciejewska D, Loniwiski I, Lara L, Pazar-Simon M, Stachowska E, Kaczmarczyk M, Koulouzidis A, 2020. COVID-19, MERS and concomitant liver injury—systematic review of the existing literature. J Clin Med 9: 1420.

7. Jaisakekar KO, Seneviratne SL, Jayasekara A, De Zoysa I, 2020. Atypical presentations of COVID-19. Adv Infect Dis 10: 136.

8. Johlini D, Venugopal R, Abedin MF, Kaliamoorthi I, Rela M, 2020. COVID-19 and the liver. J Hepatol 73: 1231–1240.

9. Li J, Fan J-G, 2020. Characteristics and mechanism of liver injury in 2019 coronavirus disease. J Clin Transl Hepa tol 8: 13.

10. Itou M, Kawaguchi T, Taniguchi E, Sata M, 2013. Dipeptidylpeptidase-4: a key player in chronic liver disease. World J Gastroenterol 19: 2298.

11. Wu K-L, Lu S-N, Changchien C-S, Chiu K-W, Kuo C-H, Chua S-K, Liu J-W, Lin M-C, Eng H-L, Chen S-S, 2004. Sequential changes of serum aminotransferase levels in patients with severe acute respiratory syndrome. Am J Trop Med Hyg 71: 125–128.

12. Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, Selim MA, Al Mutairin M, Al Nakhi D, Al Aidaaroos AY, 2014. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 29: 301–306.

13. Al-Hameed F, Wahla AS, Siddiqui S, Ghabashi A, Al-Shomrani M, Al-Thagafi A, Tashkandi Y, 2016. Characteristics and outcomes of Middle East respiratory syndrome coronavirus patients admitted to an intensive care unit in Jeddah, Saudi Arabia. J Intensive Care Med 31: 344–348.

14. Kumar-M P, Mishra S, Jha DK, Shukla J, Choudhury A, Mohindra R, Mandavathre HS, Dutta U, Sharma V, 2020. Coronavirus disease (COVID-19) and the liver: a comprehensive systematic review and meta-analysis. Hepatol Int 14: 711–722.

15. Hong K-H, Choi J-P, Hong S-H, Lee J, Kwon J-S, Kim S-M, Park SY, Rhee J-Y, Kim B-N, Choi HJ, 2018. Predictors of mortality in Middle East respiratory syndrome (MERS). Thorax 73: 286–289.

16. Chau TN, Lee KC, Yao H, Tsang TY, Chow TC, Yeung YC, Choi KW, Tso YK, Lau T, Lai ST, 2004. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology 39: 302–310.

17. Portincasa P, Krawczyk M, Machill M, Lammert F, Di Clasua A, 2020. Hepatic consequences of COVID-19 infection. Laparoscopy or biting? Eur J Intern Med 77: 18–24.

18. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z, 2004. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203: 622–630.

19. Ng DL, Al Hosani F, Keating MK, Gerber EI, Jones TL, Metcalfe MG, Tong S, Yao T, Alami NN, Haynes LM, 2016. Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol 186: 652–658.

20. Marjot T, Moon AM, Cook JA, Abd-Elsalam S, Aloman C, Armstrong MJ, Pose E, Brenner EJ, Cargill T, Catana M-A, 2021. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: an international registry study. J Hepatol 74: 567–577.

21. Iavarone M, D’Ambrosio R, Soria A, Triolo M, Pugliese N, Del Poggio P, Perricone G, Massironi S, Spinetti A, Buscareni E, 2020. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J Hepatol 73: 1063–1071.

22. Marjot T et al., 2021. SARS-CoV-2 infection in patients with autoimmune hepatitis. J Hepatol 74: 1335–1343.

23. Rahman A, Niloofa R, Tayari A, Almanc S, Aloman C, Armstrong MJ, Pose E, Brenner EJ, Cargill T, Catana M-A, 2021. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: an international registry study. J Hepatol 74: 567–577.

24. Nardo AD, Schneeweiss-Giezner M, Bakaï M, Dixon ED, Lax SF, Trauner M, 2021. Pathophysiologic mechanisms of liver injury in COVID-19. Liver Int 41: 20–32.

25. Wu J, Song S, Cao HC, Li LJ, 2020. Liver diseases in COVID-19: etiology, treatment and prognosis. World J Gastroenterol 26: 2286–2293.

26. Oesterreicher CH et al., 2009. Angiotensin-converting enzyme 2 inhibits liver fibrosis in mice. Hepatology 50: 929–938.

27. Abeyasurya V et al., 2021. Combination of cycle threshold time, absolute lymphocyte count and neutrophil: lymphocyte ratio is predictive of hypoxia in patients with SARS-CoV-2 infection. Trans R Soc Trop Med Hyg, https://doi.org/10.1093/trstmh/trab182.

28. Jin D, Qin E, Xu J, Zhang D, Cheng G, Wang Y, Lau G, 2020. Non-alcoholic fatty liver diseases in patients with COVID-19: a retrospective study. J Hepatol 73: 451–453.

29. Rahman A, Niloofa R, De Zoysa IM, Cooray AD, Kariyawasam J, Seneviratne SL, 2020. Neurological manifestations in COVID-19: a narrative review. SAGE Open Med 8: 2050312120972525.

30. Bertolini A et al., 2020. Abnormal liver function tests in patients with COVID-19: relevance and potential pathogenesis. Hepatology 72: 1864–1872.

31. Barlow A, Landolf KM, Barlow B, Yeung SYA, Heavner JJ, Claassen CW, Heavner MS, 2020. Review of emerging
pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy. J Hum Pharmacol Drug Ther 40: 416–437.

32. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong N, Xiao G, 2020. Remdesivir and hydroxychloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30: 269–271.

33. ClinicalTrials.gov [Internet], 2020. Severe 2019-nCoV Remdesivir RCT. Bethesda MN LoMUF-IN, Identifier NCT04257656. February 24, 2020 [cited July 29, 2020]. Available at: https://clinicaltrials.gov/ct2/show/NCT04257656.

34. ClinicalTrials.gov [Internet], 2020. Mild/Moderate 2019-nCoV. Bethesda MN LoMUF-IN, Identifier NCT04252664. February 24, 2020 [cited July 29, 2020]. Available at: https://clinicaltrials.gov/ct2/show/NCT04252664.

35. Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, Hong Z, Xia J, 2020. Arbidol combined with LPV/r versus LPV/r alone against coronavirus disease 2019: a retrospective cohort study. J Infect 81: e1–e5.

36. ClinicalTrials.gov [Internet], 2020. Lopinavir/Ritonavir, Ribavirin and IFN-Beta Combination for nCoV Treatment. Cg. Bethesda MN LoMUF-IN. February 28, 2020 [cited July 29, 2020]. [about 4 screens].

37. ClinicalTrials.gov, [Internet], 2012. Darunavir. LCaRiD-ILI, Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases. [Updated September 1, 2017].

38. Joshi S, Parker J, Ansari A, Vora A, Talwar D, Tiwaskar M, Patil S, Barkate H, 2020. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis 102: 501–508.

39. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Stebbing J, 2020. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 395: e30.

40. ClinicalTrials.gov [Internet], 2020. Baricitinib Therapy in COVID-19. Cg. Bethesda MN LoMUM-IN IN. Identifi NCT04358614. July 22, 2020 [cited July 29, 2020].

41. Emadi A, Chua JV, Talwani R, Bentzen SM, Badley J, 2020. Safety and efficacy of imatinib for hospitalized adults with COVID-19: a structured summary of a study protocol for a randomised controlled trial. Trials 21: 1–5.

42. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases. [Updated Apr 24, 2018]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK547959/. Accessed July 29, 2020.

43. ClinicalTrials.gov [Internet], 2012. Hydroxychloroquine. LCaRiD-ILI, Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases. [Updated March 25, 2018].

44. ClinicalTrials.gov [Internet], 2020. Efficacy of Dexamethasone Treatment for Patients with ARDS Caused by COVID-19 (Dexa-COVID19). Bethesda, MD: MN LoMUM-IN. [Updated September 2, 2020] [cited July 29, 2020].

45. Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences University of Oxford, 2020. Available at: https://www.phc.ox.ac.uk/research/oxford-centre-for-evidence-based-medicine. Accessed February 19, 2022.

46. ClinicalTrials.gov [Internet], 2020. Azithromycin in Hospitalized COVID-19 Patients (AIC). Cg. Bethesda MN LoMUM-IN. Identifier: NCT04359316. [Cited December 6, 2020].

47. Anonymous, 2021. Conditions for use, conditions for distribution and patients targeted and conditions for safety monitoring addressed to member states for unauthorized product PAXLOVID (PF-07321332 150 mg and ritonavir 100 mg). Available at: https://www.ema.europa.eu/en/documents/referral/paxlovid-epital321332-ritonavir-covid-19-article-53-procedure-conditions-use-conditions-distribution_en.pdf. Accessed December 24, 2021.

48. Anonymous, 2021. Merck and Ridgeback’s Investigational Oral Antiviral Molnupiravir Reduced the Risk of Hospitalization or Death by Approximately 50 Percent Compared to Placebo for Patients with Mild or Moderate COVID-19 in Positive Interim Analysis of Phase 3 Study. Available at: https://www.merck.com/news/merck-and-ridgebacks-investigational-oral-antiviral-molnupiravir-reduced-the-risk-of-hospitalization-or—death-by-approximately-50-percent-compared-to-placebo-for-patients-with-mild-or-moderate—covid-19—randomized-controlled-trial. Accessed December 20, 2020.

49. Cai J et al., 2020. COVID-19: abnormal liver function tests. J Hepatol 73: 566–574.

50. Forbes JD, Van Domselaar G, Bernstein CN, 2016. The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol 7: 1081.

51. Chattopadhyay A, Shankar EM, 2021. SARS-CoV-2-indigenous microbiota nexus: does gut microbiota contribute to inflammation and disease severity in COVID-19? Front Cell Infect Microbiol 11: 96.

52. Dhar D, Mohanty A, 2020. Gut microbiota and COVID-19: possible link and implications. Virus Res 285: 198018.

53. Yeoh YK et al., 2021. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70: 698–706.

54. Terruzzi I, Senesi P, 2020. Does intestinal dysbiosis contribute to an aberrant inflammatory response to SARS-CoV-2 in frail patients? Nutrition 79: 110996.

55. Yang Q, Liang Q, Balakrishnan B, Belobradic DP, Feng Q-J, Zhang W, 2020. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients 12: 381.

56. Rishi P, Thakur K, Vj S, Rishi L, Singh A, Kaur IP, Patel SK, Lee J-K, Kalia VC, 2020. Diet, gut microbiota and COVID-19. Indian J Microbiol 60: 420–429.

57. Miller B, Silverstein A, Flores M, Xiang W, Cao K, Kumagai H, Mehta HH, Yen K, Kim S-J, Cohen P, 2020. SARS-CoV-2 induces a unique mitochondrial transcriptome signature, https://doi.org/10.1203/0.000445.

58. Koliaki C et al., 2015. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab 21: 739–746.

59. Sun J, Aghemo A, Forner A, Valenti L, 2020. Liver injury in COVID-19 and liver disease. Liver Int 40: 1278–1281.

60. Ghoda A, Ghoda M, 2020. Liver injury in COVID-19 infection: a systematic review. Cureus 12: e9847.

61. Yang X-R, Zheng R-D, Fan J-G, 2020. Etiology and management of liver injury in COVID-19 patients. J World J Gastroenterol 26: 4753.

62. Kariyawasam JC, Jayaratne A, Riza R, Abeyasurya V, Seneviratne SL, 2021. Gastrointestinal manifestations in COVID-19. Trans R Soc Trop Med Hyg tab042.

63. Li Y, Xiao SY, 2020. Hepatic involvement in COVID-19 patients: pathology, pathogenesis, and clinical implications. J Med Virol 92: 1491–1494.

64. Lei J et al., 2020. Longitudinal association between markers of liver injury and mortality in COVID-19 in China. Hepatology 72: 389–388.

65. Abe K et al., 2020. Clinical features and liver injury in patients with COVID-19 in the Japanese population. Intern Med 59: 2353–2358.

66. Beigmohammadi MT, Jahanbin B, Safaei M, Amoozadeh L, Khezri M, Roshvand J, Ardestani A, 2021. Pathological findings of postmortem biopsies from lung, heart, and liver of 7 deceased COVID-19 patients. Int J Surg Pathol 29: 135–145.

67. Cardoso FS, Pereira R, Germano N, 2020. Liver injury in critically ill patients with COVID-19: a case series. Crit Care 24: 190.

68. Chen N et al., 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395: 507–513.

69. Guan WJ et al., 2020. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382: 1708–1720.

70. Effenberger M et al., 2020. Liver stiffness by transient elastography accompanies increased severity in COVID-19. BMJ Open Gastroenterol 7: e000445.

71. Jin X et al., 2020. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 69: 1002–1009.
72. Lin L et al., 2020. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 69: 997–1001.
73. Luo S, Zhang X, Xu H, 2020. Don’t overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clin Gastroenterol Hepatol 18: 1636–1637.
74. Mo P et al., 2020. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis 270.
75. Pan L et al., 2020. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol 115: 766–773.
76. Singh S, Khan A, 2020. Clinical characteristics and outcomes of coronavirus disease 2019 among patients with preexisting liver disease in the United States: a multicenter research network study. Gastroenterology 159: 768–771.e3.
77. Xu XW et al., 2020. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 369: m606.
78. Xu Y et al., 2020. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 26: 502–505.
79. Wang Y et al., 2020. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol 73: 807–816.
80. Zhou F et al., 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395: 1054–1062.
81. Zhang C, Shi L, Wang FS, 2020. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 5: 426–430.
82. Sun J, Aghemo A, Forner A, Valenti L, 2020. COVID-19 and liver disease. Lancet 395: 1651–1656.
83. Xie H, Zhao J, Lian N, Lin S, Xie Q, Zhuo H, 2020. Clinical characteristics of non-ICU hospitalized patients with coronavirus disease 2019 and liver injury: a retrospective study. Liver Int 40: 1321–1326.
84. Palogiannis P, Zinelu A, 2020. Bilirubin levels in patients with mild and severe COVID-19: a pooled analysis. Liver Int 40: 1787–1788.
85. Bernal-Monterde V et al., 2020. SARS-CoV-2 infection induces a dual response in liver function tests: association with mortality during hospitalization. Biomedicines 8: 328.
86. Liu Z et al., 2020. Bilirubin levels as potential indicators of disease severity in coronavirus disease patients: a retrospective cohort study. Front Med 7: 598870.
87. de la Rica R, Borges M, Aranda M, Del Castillo A, Socias A, Payeras A, Rialp G, Socias L, Masmiquel L, Gonzalez-Freire M, 2020. Low albumin levels are associated with poorer outcomes in a case series of COVID-19 patients in Spain: a retrospective cohort study. Microorganisms 8: 1106.
88. Wang L, He WB, Yu XM, Hu DL, Jiang H, 2020. Prolonged prothrombin time at admission predicts poor clinical outcome in COVID-19 patients. World J Clin Cases 8: 4370–4379.
89. Baranovskii DS, Klubakov ID, Krasilnikova OA, Nikogosov DA, Polekhina NV, Baranovskaya DR, Laberko LA, 2021. Prolonged prothrombin time as an early prognostic indicator of severe acute respiratory distress syndrome in patients with COVID-19 related pneumonia. Curr Med Res Opin 37: 21–25.
90. Shao T et al., 2020. Serum γ-Glutamyltransferase elevations are frequent in patients with COVID-19: a clinical epidemiologic study. Hepatol Commun 4: 1744–1750.
91. Roedl K et al., 2021. Severe liver dysfunction complicating course of COVID-19 in the critically ill: multifactorial cause or direct viral effect? Ann Intensive Care 11: 44.
92. Barton LM, Duval EJ, Strober E, Ghosh S, Mukhopadhyay S, 2020. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol 153: 725–733.
93. Lagana SM et al., 2020. Hepatic pathology in patients dying of COVID-19: a retrospective, descriptive, clinical, histologic, and virologic data. Mod Pathol 33: 2147–2155.
94. Borges do Nascimento JI et al., 2020. Clinical, laboratory and radiological characteristics and outcomes of novel coronavirus (SARS-CoV-2) infection in humans: a systematic review and meta-analyses. PLOS ONE 15: e0239235.
95. Borges do Nascimento J, Cacic N, Abdulaizeem HM, von Groote TC, Jayarajah U, Weerasekara I, Esfahani MA, Civile VT, Marusic A, Jeroncic A, 2020. Novel coronavirus infection (COVID-19) in humans: a scoping review and meta-analysis. J Clin Med 9: 941.
96. Inchingolo R, Acquafredda F, Tedeschi M, Laera L, Surico G, Surgo A, Fiorentino A, Spiliopoulos S, de Angelis N, Memee R, 2021. Worldwide management of hepatocellular carcinoma during the COVID-19 pandemic. World J Gastroenterol 27: 3780.
97. Im H, Ser J, Sim U, Cho H, 2021. Promising expectations for pneumococcal vaccination during COVID-19. Vaccines (Basel) 9: 1507.
98. Dong GL et al., 2020. Management of patients with liver derangement during the COVID-19 pandemic: an Asia-Pacific position statement. Lancet Gastroenterol Hepatol 5: 776–787.
99. Lei P, Zhang L, Han P, Zheng C, Tong Q, Shang H, Yang F, Hu Y, Li X, Song Y, 2020. Liver injury in patients with COVID-19: clinical profiles, CT findings, the correlation of the severity with liver injury. Hepatol Int 14: 733–742.
100. Chang JPE et al., 2020. Chapter of Gastroenterologists professional guidance for management of patients with liver disease in Singapore during the COVID-19 pandemic. Singapore Med J 61: 619–623.
101. Luo S, Zhang X, Xu H, 2020. Don’t overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clin Gastroenterol Hepatol 18: 1636–1637.
102. Da BL, Im GY, Schiano TD, 2020. Coronavirus disease 2019 hangover: a rising tide of alcohol use disorder and alcohol-associated liver disease. Hepatology 72: 1102–1108.
103. Grasselli G et al., 2020. Baseline characteristics and outcomes of 1581 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 323: 1574–1581.
104. Kulkarni AV, Tevethia HV, Premkumar M, Arab JP, Candia R, Kumar K, Kumar P, Sharma M, Rao PN, Reddy DN, 2021. Impact of COVID-19 on liver transplant recipients—a systematic review and meta-analysis. EClinicalMedicine 28: 101265.
105. Saracco M, Martini S, Tandoli F, Dell’Olio D, Ottobrelli A, Scarozzino A, Amoroso A, Fonio P, Balagna R, Romagnoli R, 2020. Carrying on with liver transplantation during the COVID-19 emergency: report from piedmont region. Clin Res Hepatol Gastroent 45: 101512.
106. Nickerson AM, Sobotka LA, Kelly SG, 2021. PRO: liver transplantation in the times of COVID-19: “to transplant or not to transplant.” Clin Liver Dis (Hoboken) 18: 230–232.
107. Seneviratne SL, Niloofa R, De Zoysa I, de Mel S, Abeyesuriya V, 2020. Remdesivir and COVID-19. Int J Adv Res 8: 565–567.
108. Seneviratne SL, Yasawandene P, Hettiarachchi D, Mathews MK, Wijeratne W, Samaraweera B, Mathew K, Abeyesuriya V, 2021. The Delta variant of SARS-CoV-2: the current global scourge. Sri Lankan Fam Phys 36: 17–25.
109. Wong GL-H et al., 2020. Management of patients with liver derangement during the COVID-19 pandemic: an Asia-Pacific position statement. Lancet Gastroenterol Hepatol 5: 776–787.
110. Bramante C, Tignanelli CJ, Dutta N, Jones E, Tamariz L, Clark JM, Usher M, Metlon-Meaux G, Ikrummudin S, 2020. Nonalcoholic fatty liver disease (NAFLD) and risk of hospitalization for COVID-19. medRxiv. https://doi.org/10.1101/2020.09.01.20185850.
114. Zheng KI et al., 2020. Letter to the editor: obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. *Metabolism* 108: 154244.

115. Prins GH, Olinga P, 2020. Potential implications of COVID-19 in non-alcoholic fatty liver disease. *Liver Int* 40: 2568.

116. Iavarone M et al., 2020. High rates of 30-day mortality in patients with cirrhosis and COVID-19. *J Hepatol* 73: 1063–1071.

117. Moon AM et al., 2020. High mortality rates for SARS-CoV-2 infection in patients with pre-existing chronic liver disease and cirrhosis: preliminary results from an international registry. *J Hepatol* 73: 705–708.

118. Triki H, Jeddou H, Boudjema K, 2020. Surgical resection for liver cancer during the COVID-19 outbreak. *Updates Surg* 72: 305–307.

119. Chan SL, Kudo M, 2020. Impacts of COVID-19 on liver cancers: during and after the pandemic. *Liver Cancer* 9: 491–502.

120. Cooke GS et al., 2019. Accelerating the elimination of viral hepatitis: a Lancet Gastroenterology and Hepatology Commission. *Lancet Gastroenterol Hepatol* 4: 135–184.

121. Sarin SK, 2020. COVID-19 vaccine landscape. *Sri Lanka J Surg* 39: 53–55.

122. Chan HL, Kwan AC, To KF, Lai ST, Chan PK, Leung WK, Lee N, Wu A, Sung JJ, 2005. Clinical significance of hepatic derangement in severe acute respiratory syndrome. *World J Gastroenterol* 11: 2148–2153.

123. Yang RX, Zheng RD, Fan JG, 2020. Etiology and management of hepatic derangement in severe acute respiratory syndrome. *Br J Surg* 107: e601–e602.

124. Chan HL, Kwan AC, To KF, Lai ST, Chan PK, Leung WK, Lee N, Wu A, Sung JJ, 2005. Clinical significance of hepatic derangement in severe acute respiratory syndrome. *World J Gastroenterol* 11: 2148–2153.

125. NIH, 2021. Special considerations in solid organ transplant, hematopoietic stem cell transplant, and cellular immunotherapy candidates, donors, and recipients. Available at: https://www.covid19treatmentguidelines.nih.gov/special-considerations/. Accessed November 20, 2021.

126. Collaborative C, 2020. Delaying surgery for patients with a previous SARS-CoV-2 infection. *Br J Surg* 107: e601–e602.

127. Kullar R, Patel AP, Saab S, 2021. COVID-19 in liver transplant recipients. *J Clin Transl Hepatol* 9: 545–550.

128. NIH, 2021. Special considerations in solid organ transplant, hematopoietic stem cell transplant, and cellular immunotherapy candidates, donors, and recipients. Available at: https://www.covid19treatmentguidelines.nih.gov/special-considerations/transplant/. Accessed November 20, 2021.

129. Collaborative C, 2020. Delaying surgery for patients with a previous SARS-CoV-2 infection. *Br J Surg* 107: e601–e602.

130. COVIDSurg Collaborative, GlobalSurg Collaborative, 2021. Timing of surgery following SARS-CoV-2 infection: an international prospective cohort study. *Anesthesiology* 76: 748–738.

131. Basnayake O, Jayarajah U, Gunawardena K, Samarasekera DN, 2021. Impact of COVID-19 on postgraduate education and mental wellbeing of surgical trainees: a systematic review. *Sri Lanka Journal of Surgery* 39: 43–48.

132. COVIDSurg Collaborative C, GlobalSurg Collaborative, 2021. SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study. *Br J Surg* 108: 1056–1063.

133. COVIDSurg Collaborative, GlobalSurg Collaborative, 2021. SARS-CoV-2 infection and venous thromboembolism after surgery: an international prospective cohort study. *Anesthesiology* 77: 28–38.

134. COVIDSurg Collaborative, 2021. Death following pulmonary complications of surgery before and during the SARS-CoV-2 pandemic. *Br J Surg* 108: 1448–1464.

135. COVIDSurg Collaborative, GlobalSurg Collaborative, 2021. Preoperative nasopharyngeal swab testing and postoperative pulmonary complications in patients undergoing elective surgery during the SARS-CoV-2 pandemic. *Br J Surg* 108: 98–96.

136. Glasby JC et al., 2020. Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: an international, multicenter, comparative cohort study. *J Clin Oncol* 20: 01933.

137. COVIDSurg Collaborative, GlobalSurg Collaborative, 2021. Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study. *Anesthesiology* 76: 1454–1464.

138. Collaborative ISR, Group TARSW, 2021. Effect of COVID-19 pandemic lockdowns on planned cancer surgery for 15 tumour types in 61 countries: an international, prospective, cohort study. *Lancet Oncol* 22: 1507–1517.

139. BJS Commission Team, 2021. BJS commission on surgery and perioperative care post-COVID-19. *Br J Surg* 110: 1162–1180.

140. Fix OK et al., 2020. Clinical best practice advice for hepatology and liver transplant providers during the COVID-19 pandemic: AASLD expert panel consensus statement. *Hepatology* 72: 287–304.

141. El Kassas M et al., 2020. Liver transplantation in the era of COVID-19. *Arab J Gastroenterol* 21: 69–75.

142. Aleem A, Mahadevaiah G, Shariff N, Kohadha JP, 2021. Hepatic Manifestations of COVID-19 and Effect of Remdesivir on Liver Function in Patients with COVID-19 Illness. *Proceedings (Bayl Univ Med Cent)* 34: 473–477.

143. Seneviratne SL, Jayarajah U, Abeysuriya V, Rahman A, Waniyagama K, 2020. COVID-19 vaccine landscape. *Sri Lanka J Surg* 39: 53–55.

144. Seneviratne SL, Abeysuriya V, De Mel S, De Zoysa I, Niloofa R, 2020. Favipiravir in COVID-19. *Int J Prong Sci Technol* 19: 143–145.

145. Mahase E, 2021. COVID-19: Pfizer’s Paxlovid Is 89% Effective in Patients at Risk of Serious Illness, Company Report. *BMJ* 375: n2713.

146. Marjot T, Webb GJ, 2021. COVID-19 and Liver Disease: Mechanistic and Clinical Perspectives. 1–17.

147. Seneviratne SL, Jayarajah U, Abeysuriya V, Rahman A, Waniyagama K, 2020. COVID-19 vaccine landscape. *J Ceylon Coll Phys* 51: 120–131.

148. Cornberg M, Buti M, Eberhardt CS, Grossi PA, Shouval D, 2021. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. *J Hepatol* 74: 944–951.

149. Ruether DF et al., 2021. SARS-CoV-2-specific humoral and T-cell immune response after second vaccination in liver cirrhosis and transplant patients. *Clin Gastroenterol Hepatol* 20: 162–172.

150. Strauss AT et al., 2021. Antibody response to severe acute respiratory syndrome-coronavirus-2 messenger RNA vaccines in liver transplant recipients. *Liver Transpl* 27: 1852–1856.

151. Rabascall OX, Lou BX, Navetta-Modrov B, Hahn SS, 2021. Effective use of monoclonal antibodies for treatment of persistent COVID-19 infection in a patient on rituximab. *BMJ Case Reports* CP 14: e243468.

152. Mann R, Sekhon S, Sekhon S, 2021. Drug-induced liver injury after COVID-19 vaccine. *Cureus* 13: e16491.