Low-energy neutron-deuteron reactions with N^3LO chiral forces

J. Golak¹, R. Skibiński¹, K. Topolnicki¹, H. Witała¹−a, E. Epelbaum², H. Krebs², H. Kamada³, Ulf-G. Meißner⁴,⁵, V. Bernard⁶, P. Maris⁷, J. Vary⁷, S. Binder⁸, A. Calci⁸, K. Hebeler⁸,⁹, J. Langhammer⁸, R. Roth⁸, A. Nogga¹⁰, S. Liebig¹¹, and D. Minossi¹¹

¹ M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland
² Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
³ Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
⁴ Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
⁵ Institute for Advanced Simulation, Institut für Kernphysik, Jülich Center for Hadron Physics, JARA - High Performance Computing Forschszentrum Jülich, D-52425 Jülich, Germany
⁶ Institut de Physique Nucléaire, CNRS/Univ. Paris-Sud 11, (UMR 8608), F-91406 Orsay Cedex, France
⁷ Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
⁸ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
⁹ Extreme Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
¹⁰ Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
¹¹ Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany

Received: 3 October 2014
Published online: 27 November 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com
Communicated by B. Ananthanarayan

Abstract. We solve three-nucleon Faddeev equations with nucleon-nucleon and three-nucleon forces derived consistently in the framework of chiral perturbation theory at next-to-next-to-next-to-leading order in the chiral expansion. In this first investigation we include only matrix elements of the three-nucleon force for partial waves with the total two-nucleon (three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron elastic scattering and deuteron breakup reaction are studied. Emphasis is put on A_y puzzle in elastic scattering and cross sections in symmetric–space-star and neutron-neutron quasi–free-scattering breakup configurations, for which large discrepancies between data and theory have been reported.

1 Introduction

A special place among few-body systems is reserved for the three-nucleon (3N) system, for which a mathematically sound theoretical formulation in the form of Faddeev equations exists, both for bound and scattering states. Over the past few decades algorithms have been developed to solve numerically three-nucleon Faddeev equations for any dynamical input which, in addition to nucleon-nucleon (NN) interactions, also involves three-nucleon forces (3NFs) [1–3]. Using these algorithms and standard, (semi)phenomenological nucleon-nucleon interactions alone or supplemented by three-nucleon force model, numerous investigations of 3N bound states and reactions in the 3N continuum have been carried out. High-precision nucleon-nucleon potentials such as the AV18 [4], CD Bonn [5], Nijm I and II [6] NN forces, which provide a very good description of the nucleon-nucleon data up to about 350 MeV, have been used. They have also been combined with model 3N forces such as the 2π-exchange Tucson-Melbourne (TM99) 3NF [7] or the Urbana IX model [8].

When realistic NN forces are used to predict binding energies of three-nucleon systems they typically underestimate the experimental bindings of 3H and 3He by about 0.5–1 MeV [10,9]. This missing binding energy can be corrected for by introducing a three-nucleon force into the nuclear Hamiltonian [9]. Also the study of elastic nucleon-deuteron (Nd) scattering and nucleon induced deuteron breakup revealed a number of cases where the nonrelativistic description using only pairwise forces is insufficient to explain the data. The best studied case at low energies is the vector analyzing power in elastic Nd scattering for which a large discrepancy exists in the region of its max-
This text is too long to be transcribed accurately into a natural text representation.
sorables could not be removed with standard NN and 3NFs [39].

Our paper is organized as follows. In sect. 2 we describe our method to determine the nuclear Hamiltonian by fixing the two parameters c_D and c_E in the chiral N^3LO 3NF. This is achieved by first requiring reproduction of the 3H binding energy which leads to pairs of allowed (c_D, c_E) values. Using the experimental data for an additional 3N observable, which in our case is taken to be the doublet nd scattering length $^2a_{nd}$, fixes completely the nuclear Hamiltonian at N^3LO. Based on the resulting Hamiltonian, we discuss in sect. 3 some results for low-energy elastic nd scattering observables while in sect. 4 the results for selected low-energy nd breakup configurations are presented. We summarize and conclude in sect. 5.

2 Determination of nuclear Hamiltonian at N^3LO

Neutron-deuteron scattering with neutrons and proton interacting through a NN interaction v_{NN} and a 3NF $V_{123}=V^{(1)}(1+P)$, is described in terms of a breakup operator T satisfying the Faddeev-type integral equation [1-3]

$$T\phi = tP\phi + (1 + tG_0)V^{(1)}(1+P)\phi$$

$$+ tPG_0T\phi + (1 + tG_0)V^{(1)}(1+P)G_0T\phi.$$ \hspace{1cm} (1)

The two-nucleon t-matrix t is the solution of the Lippmann-Schwinger equation with the interaction v_{NN}. $V^{(1)}$ is the part of a 3NF which is symmetric under the interchange of nucleons 2 and 3. The permutation operator $P = P_{12}P_{23} + P_{13}P_{23}$ is given in terms of the transposition operators, P_{ij}, which interchange nucleons i and j. The incoming state $|\phi\rangle = |q_0\rangle|\phi_d\rangle$ describes the free nd motion with relative momentum q_0 and the deuteron state $|\phi_d\rangle$. Finally, G_0 is the resolvent of the three-body center-of-mass kinetic energy. The amplitude for elastic scattering leading to the corresponding two-body final state $|\phi\rangle$ is then given by [2,3]

$$\langle \phi|U|\phi\rangle = \langle \phi|PG_0^{-1}|\phi\rangle + \langle \phi|PT|\phi\rangle$$

$$+ \langle \phi|V^{(1)}(1+P)|\phi\rangle + \langle \phi|V^{(1)}(1+P)G_0T|\phi\rangle,$$ \hspace{1cm} (2)

while for the breakup reaction one has

$$\langle \phi_0|U_0|\phi\rangle = \langle \phi_0|(1+P)T|\phi\rangle,$$ \hspace{1cm} (3)

where $|\phi_0\rangle$ is the free three-body breakup channel state.

The nuclear Hamiltonian at N^3LO of the chiral expansion is fixed by specifying the values of LECs c_D and c_E which parametrize the strengths of the leading 1π-contact and the three-nucleon-contact terms. To determine them we follow the approach of ref. [21] and use the experimental triton binding energy $E(^3$H) and the nd doublet scattering length $^2a_{nd}$ as two observables from which c_D and c_E can be obtained. The procedure can be divided into two steps. First, the dependence of $E(^3$H) on c_E for a given value of c_D is determined. The requirement to reproduce the experimental value of the triton binding energy yields a set of pairs (c_D, c_E). This set is then used in the calculations of $^2a_{nd}$, which allows us to find the values of c_D and c_E describing both observables simultaneously. As already emphasized above, using the triton binding energy and the nd doublet scattering length is probably not the optimal way to fix the parameters in the 3NF due the strong correlation between these two observables. We will discuss this issue in the next two sections and present results obtained by relaxing the condition to reproduce $^2a_{nd}$.

We compute the 3H wave function using the method described in [9], where the full triton wave function $|\Psi\rangle = (1 + P)|\psi\rangle$ is given in terms of its Faddeev component ψ, which fulfills the Faddeev equation

$$|\psi\rangle = G_0t|\psi\rangle + (1 + G_0t)G_0V^{(1)}(1+P)|\psi\rangle.$$ \hspace{1cm} (4)

The doublet scattering length $^2a_{nd}$ is calculated using (c_D, c_E) pairs, which reproduce the correct value of $E(^3$H). To this end, we solve the Faddeev equation (1) for the auxiliary state $T|\phi\rangle$ at zero incoming energy [40]. We refer to [2,3,41] for a general overview of 3N scattering and for more details on the practical implementation of the Faddeev equations.

In this first study, where the full N^3LO 3NF is applied, we restrict ourselves to nd reactions at low energies, $E_{lab,n} < 20$ MeV. At such low energies it is sufficient to include NN force components with a total two-nucleon angular momenta $j \leq 3$ in 3N partial-wave states with the total 3N system angular momentum below $J \leq 5/2$. For the 3NF it is sufficient to incorporate its matrix elements with $j \leq 3$ and $J \leq 5/2$.

Here and in what follows, we employ the N^3LO chiral NN potential of refs. [22,23]. From among five versions corresponding to different sets of cut-off parameters used to regularize the Lippmann-Schwinger equation and in spectral function regularization, namely (450,500) MeV, (450,700) MeV, (550,600) MeV, (600,500) MeV, and (600,700) MeV, we applied for the present study two N^3LO chiral NN potentials with cut-off sets (450,500) MeV and (450,700) MeV, denoted in the following by 201 and 204, respectively. Only for these two sets of cut-offs were we able to determine the LECs c_D and c_E using our procedure. In figs. 1.(a) and (b), the sets of (c_D, c_E) values which reproduce the experimental binding energy of 3H are shown, while in figs. 1.(c) and (d) the resulting values of the doublet nd scattering length $^2a_{nd}$ obtained with such combinations of (c_D, c_E) are visualized. In the case of the 201 N^3LO NN chiral potential a wide range of c_D values have been checked and the existence of a pole in the scattering length for $c_D \approx -8$ found (see fig. 1.(c)). That pole-like behavior reflects the emergence of an excited state for that particular 3N Hamiltonian. The requirement to reproduce, in addition to the binding energy of 3H, also the nd doublet scattering length leads to the values $(c_D = 13.78, c_E = 0.372)$ for 201 and $(c_D = 9.095, c_E = -0.0845)$ for 204 chiral N^3LO NN potential. In the following section we discuss the ambiguities.
of such a determination of \((c_D, c_E)\). The resulting \(c_D\) values are unnaturally large. The corresponding \(N^2\text{LO}\) values are natural and amount to \((c_D = -0.14, c_E = -0.319)\) and \((c_D = 2.43, c_E = 0.113)\) for \((450, 500)\) MeV and \((450, 700)\) MeV cut-off sets, respectively. It seems that such unnaturally large values of \(c_D\) are not restricted only to the two cut-off sets used in the present study. Namely in \cite{43} an application of \(N^3\text{LO}\) 3NF, however with relativistic \(1/m\) corrections and short-range \(2\pi\)-contact term omitted, also led to unnaturally large \(c_D\) values for all five cut-off combinations. We hope that new generations of chiral forces with other regularization schemes will cure this problem \cite{44}. We also plan to use other 3N observables, for example triton \(\beta\)-decay rate instead of \(2a_{\text{nd}}\), to fix values of LECs \(c_D\) and \(c_E\).

3 Low-energy elastic nd scattering

At low energies of the incoming neutron, the most interesting observable is the analyzing power \(A_y\) for nd elastic scattering with polarized neutrons. Theoretical predictions of standard high-precision NN potentials fail to explain the experimental data for \(A_y\). The data are underestimated by \(\sim 30\%\) in the region of the \(A_y\) maximum which occurs at c.m. angles \(\Theta_{\text{c.m.}} \sim 125^\circ\). Combining standard NN potentials with commonly used models of a 3NF, such as, e.g. the TM99 or Urbana IX models, removes approximately only half of the discrepancy with respect to the data (see fig. 2).

When instead of standard forces chiral NN interactions are used, the predictions for \(A_y\) vary with the order of chiral expansion \cite{22,23}. In particular, as reported in ref. \cite{21}, the NLO results overestimate the \(A_y\) data while \(N^2\text{LO}\) NN forces seem to provide quite a good description of them (see fig. 2). Only when \(N^3\text{LO}\) NN chiral forces are used, a clear discrepancy between theory and data emerge in the region of \(A_y\) maximum, which is similar to the one for standard forces. This is visualized in fig. 2, where bands of predictions for five versions of the Bochum NLO, \(N^2\text{LO}\) and \(N^3\text{LO}\) potentials with different cut-off parameters used for the Lippmann-Schwinger equation and the spectral function regularizations are shown \cite{23}. Such behaviour of \(A_y\) predictions at different orders in the chiral expansion can be traced back to a high sensitivity of \(A_y\) to \(3P_j\) NN force components and to the fact, that
only at N3LO of chiral expansion the experimental 3P_j phases [27,28], especially the 3P_2-3F_2 ones, are properly reproduced [43].

It is interesting to study whether the consistent chiral N3LO 3NF’s can explain the low-energy A_y-puzzle. In the present investigation, we, for the first time include all contributions to N3LO 3NF: long-range contributions comprising 2π exchange, $2\pi-1\pi$ exchange, ring components and relativistic $1/m$ corrections together with short range 1π-contact, three-nucleon-contact and 2π-contact terms. In fig. 3 we show by dash-dotted (blue) line the results for A_y based on the values of the c_E and c_D parameters which reproduce the triton binding energy and $^2\alpha_{nd}$ scattering length. It turns out that adding the full N3LO 3NF does not improve the description of A_y. On the contrary, adding the chiral N3LO 3NF lowers the maximum of A_y with respect to the chiral N3LO NN prediction, shown by the solid (red) line, thus, increasing the discrepancy between the theory and the data.

In order to check the restrictiveness of the requirement to reproduce, in addition to the ^3H binding energy, also the experimental value of $^2\alpha_{nd}$, we show in fig. 3 also a band of predictions for (c_E, c_D) pairs from fig. 1(a) and (b). Even after relaxing the requirement to reproduce $^2\alpha_{nd}$, the A_y-puzzle cannot be explained by the N3LO NN and 3NF.

It is interesting to see how different components of the N3LO 3NF contribute to A_y. Taking in addition to the NN N3LO chiral force only the 2π-exchange term with leading 1π-contact and three-nucleon-contact terms (these three topologies appear for the first time at N2LO) lowers the maximum of A_y (see fig. 4, solid (cyan) line). When, in addition, the short-range 2π-contact component is included, the value of A_y practically remains unchanged (dash-dotted (magenta) line in fig. 4). This shows that contributions of the 2π-contact term are negligible at those energies. The long-range $2\pi-1\pi$ exchange and ring terms lower significantly the maximum of A_y (in fig. 4 dotted (maroon) and dashed (green) lines, respectively).
Fig. 3. (Color online) The nd elastic scattering analyzing power A_y at $E_{\text{lab},n}=6.5\,\text{MeV}$ and $10\,\text{MeV}$. The solid (red) lines show predictions of the N3LO chiral NN potential. The dash-double-dotted (blue) lines result when the chiral NN potential is combined with the full N3LO 3NF with c_D and c_E values reproducing binding energy of ^3H and $^\text{2}a_{\text{nd}}$ scattering length. The (orange) vertically shaded band covers range of predictions for such a combination when pairs of (c_D, c_E) values from fig. 1(a) and (b), which reproduce only triton binding energy, are used. For the description of the data see fig. 2.

Finally, inclusion of the relativistic $1/m$ contribution leaves the maximum of A_y practically unchanged (dash-double-dotted (blue) line in fig. 4). It should be pointed out that when taking into account the $1/m$ corrections to the N3LO 3NF, one should also include the corresponding relativistic corrections in the NN force and, in addition, also relativistic corrections to the kinetic energy, which are formally of the same importance. This would considerably complicate the calculation. In our present work, we do not take into account such corrections and employ the standard nonrelativistic framework. This seems to be justified in view of the low energies considered in this paper and the very small effects caused by relativistic $1/m$ corrections to the 3NFs found in this study. Last but not least, we emphasize that the contributions of the individual 3NF topologies to the A_y puzzle are not observable and depend, in particular, on the regularization scheme and employed NN forces.

It is important to address the question of uniqueness of our approach to determine the constants c_D and c_E. To this aim, we checked how taking instead of $^2a_{\text{nd}}$ a different nd observable would influence determination of c_D and c_E. The low-energy elastic nd scattering cross section is an observable which seems to be reasonably well described by standard theory [47]. In fig. 5 we show (orange) bands of predictions for the nd elastic scattering cross section at $E_{\text{lab},n}=6.5\,\text{MeV}$ and $10\,\text{MeV}$ obtained with full N3LO chiral force with (c_D, c_E) values from figs. 1(a) and (b) which reproduce only the experimental binding energy of ^3H. These bands are relatively narrow for version 204 and angles $\Theta_{\text{c.m.}}>130^\circ$ and start to become broader at smaller angles. At forward angles the requirement that only the binding energy of ^4H is reproduced leads to a wide range of predictions for the cross section. The solid (red) lines in fig. 5 are predictions of the N3LO chiral NN potential and the dotted (maroon) lines show cross sec-
Fig. 4. (Color online) The nd elastic scattering analyzing power A_y at $E_{\text{lab}, n} = 6.5$ MeV and 10 MeV. The solid (red) line gives the prediction of the N3LO chiral NN potential. Other lines show the importance of different components of the chiral N3LO 3NF when combined with that NN interaction. The solid (cyan), dash-dotted (magenta), dotted (maroon), and dashed (green) lines result when that NN N3LO force is combined with $\pi\pi + D + E,$ $\pi\pi + 2\pi + D + E + 2\pi - \text{contact},$ and $\pi\pi + 2\pi + \text{ring} + D + E + 2\pi - \text{contact},$ respectively. The full N3LO result with the relativistic term included is shown by the dash-double-dotted (blue) line. For the description of the data see fig. 2.

4 Low-energy nd breakup

Among numerous kinematically complete configurations of the nd breakup reaction the SST and QFS configurations have attracted special attention. The cross sections for these geometries are very stable with respect to the underlying dynamics. Different potentials, alone or combined with standard 3NFs, lead to very similar results for the cross sections [39] which deviate significantly from available SST and neutron-neutron (nn) QFS data. At low energies, the cross sections in the SST and QFS configurations are dominated by the S-waves. For the SST configuration, the largest contribution to the cross section comes from the 3S_1 partial wave, while for the nn QFS the 1S_0 partial wave dominates. Neglecting rescattering, the QFS configuration resembles free NN scattering. For free, low-energy neutron-proton (np) scattering one expects contributions from 1S_0 np and 3S_1 force components. For free nn scattering, only the 1S_0 nn channel is allowed. This suggests that the nn QFS is a powerful tool to study the nn interaction. The measurement of np QFS cross sections have revealed good agreement between the data and theory [48], thus confirming the knowledge of the np force. For the nn QFS it was found that the
Fig. 5. (Color online) The nd elastic scattering angular distributions at $E_{\text{lab}}, n = 6.5$ MeV and 10 MeV. The solid (blue) lines show predictions of the CD Bonn potential. The solid (red) lines give predictions of the N3LO chiral NN potential. The dotted (maroon) lines result when the chiral N3LO NN potential is combined with full N3LO 3NF with c_D and c_E values reproducing both binding energy of 3H and $^2\alpha_{nd}$ scattering length. The (orange) vertically shaded band covers the range of predictions for such a combination when pairs of (c_D, c_E) values from fig. 1(a) and (b), which reproduce only triton binding energy, are used.

theory underestimates the data by $\sim 20\%$ [48]. The large stability of the QFS cross sections with respect to the underlying dynamics means that, assuming correctness of the nn QFS data, the present day 1S_0 nn interaction is probably incorrect [39,49,50].

Also the chiral N3LO forces with all components of the 3NF included are not an exception and cannot explain the discrepancy between the theory and data found for the SST configuration [51] (fig. 6). The solid (black) line shows the cross section when only NN chiral N3LO force is active. Adding the full N3LO 3NF with c_D and c_E pairs reproducing the experimental binding energy of 3H and nd doublet scattering length leads to dash-double-dotted (blue) line. At 13 MeV, it lies only slightly below the NN potential prediction indicating only small 3NF effects at this energy.

It is interesting to see how the SST cross section depends on the choice of parameters (c_D, c_E) which enter the N3LO nuclear Hamiltonian. In fig. 6, the SST cross sections at $E_{\text{lab}}, n = 13$ MeV are shown for a number of c_D and c_E pairs which reproduce only the experimental binding energy of 3H (taken from fig. 1(a) and (b)). For the 201 N3LO nuclear Hamiltonian (see fig. 6(a)) decreasing the value of c_D leads to big changes of the SST cross section. Starting from $c_D = 13.78$, which reproduce also $^2\alpha_{nd}$, and decreasing it to $c_D = 9$ leads to only small changes of the SST cross sections. Further lowering of c_D down to $c_D = -3$ reduces the cross section and the discrepancy to nd data at 13 MeV is drastically increased. If we continue to reduce the c_D value the SST cross section rises, however, it remains always below the pure NN prediction. For the 204 N3LO nuclear Hamiltonian the changes of the SST cross section are not so drastic and decrease of the c_D reduces the cross section (see fig. 6(b)). Thus, in spite of the strong sensitivity of the SST cross sections to values of c_D and c_E, it is not possible to describe the available experimental data for the SST nd cross sections at 13 MeV even allowing for pairs of (c_D, c_E) which do not reproduce $^2\alpha_{nd}$.

As shown in fig. 7 the behaviour of the QFS cross section is different from SST. This configuration also appears to be sensitive to changes of c_D and c_E values. Here, decreasing c_D for the 201 N3LO nuclear Hamiltonian leads first to the increase of the QFS cross section up to $c_D \sim -1.0$. Further lowering the value of c_D reduces the QFS cross section (see fig. 7(a)). For the 204 N3LO nuclear Hamiltonian decreasing c_D leads to the increase of the QFS cross section (see fig. 7(b)). The values of c_D and c_E which reproduce the 3H binding energy and $^2a_{nd}$ lead only to a slight increase of the QFS cross section with respect to the N3LO NN prediction and thus to small 3NF effects.
5 Summary and outlook

Recent efforts towards the derivation and implementation of the N^3LO 3NF allowed us, for the first time, to apply the full chiral N^3LO Hamiltonian to the low-energy nd elastic scattering and breakup reactions. The nuclear Hamiltonian at that order of the chiral expansion is unambiguously given after fixing the two constants c_D and c_F which determine the strengths of the 1π-contact and three-nucleon-contact components of the N^3LO chiral 3NF. We determined these low-energy constants by requiring reproduction of the binding energy of 3H and the doublet nd scattering length a_{nd}. We found indications that using low-energy nd elastic scattering cross section instead of a_{nd} would probably lead to similar values of these parameters.

It turns out that applying the full N^3LO 3NF with specific cut-off parameters used in this study cannot explain the low-energy A_{y}-puzzle. Contrary to the 3NF effects found for A_y with standard NN potentials combined with 3NF models such as TM99 or Urbana IX, where the inclusion of the 3NF decreased the discrepancy to data by about $\sim 50\%$, the chiral N^3LO 3NF combined with the NN potential of ref. [22] lowers the maximum of A_y increasing the discrepancy. It should, however, be emphasized that the low-energy $3N$ A_y is a fine-tuned observable which is very sensitive to changes in 3P_1 NN force components as well as to P-waves in the Nd system [55,56]. Thus, the disagreement with the data must be interpreted with considerable caution. Our result suggests the lack of some spin-isospin-momenta structures in the N^3LO 3NF. However, possible inaccuracies in low-energy 3P_1 NN phase-shifts cannot be excluded. The 3NF derived in the standard formulation of chiral perturbation theory based on pions and nucleons as the only explicit degrees of freedom is known to miss certain significant intermediate-range contributions of the $\Delta(1232)$ resonance at N^3LO, which, to some extent, are accounted for only at N^4LO and higher orders [57,58]. It would therefore be interesting, to apply the recently derived N^3LO 3NF [57,58] in calculations of nd reactions together with subleading contributions to the three-nucleon contact interactions [59]. The short-range $3N$ forces at N^4LO which contribute to Nd P-waves may solve the A_{y}-puzzle in a trivial way.

We found that cross sections in kinematically complete SST and QFS nd breakup calculations at low energies are quite sensitive to the values of c_D and c_F. For their values fixed by the experimental binding energy of 3H and a_{nd} only small 3NF effects were found in these configurations. Large discrepancies with the data remain in these configurations.

For the SST geometry at 13 MeV, there is a serious discrepancy between theory and two independent nd data sets of refs. [51,53] as well as between theory and proton-deuteron (pd) data of ref. [54]. While the nd data lie $\sim 20\%$ above the theory, the pd data lie $\sim 10\%$ below theory and $\sim 30\%$ below nd data. Recent pd calculations with Coulomb force included show practically negligible effects of the proton-proton Coulomb force for this configuration [60]. The observed large splitting between the nd and pd data indicates either that there are large isospin-breaking effects or that the data are not consistent.

Higher-energy nd reactions, in which clear evidence of large 3NF effects was found, call for applications of the full N^3LO force. Studies of the cut-off dependence of N^3LO NN chiral interaction in higher-energy nd elastic scattering revealed preference for larger cut-off values [43]. The use of lower cut-offs would preclude applications of N^3LO chiral dynamics in that interesting region of energies. It is important to address the issue of reducing finite-cut-off artifacts and increasing the accuracy of chiral nuclear forces prior to applying the chiral N^3LO Hamiltonian at higher energies. In addition, one needs to explore different possibilities to determine the LECs entering the 3NF in view of the known strong correlations between, e.g. the 3H and 4He binding energies and the nd doublet scattering lengths, see [61] for a related discussion. Last but not least, more effort should be invested into providing a reliable estimation of the theoretical uncertainty at a given order in the chiral expansion. Work along these lines is in progress.

This study has been performed within Low Energy Nuclear Physics International Collaboration (LENPIC) project and was supported by the Polish National Science Center under Grant No. DEC-2013/10/M/ST2/00420. It was also supported in part by the European Community-Research Infrastructure Integrating Activity “Exciting Physics Of Strong Interactions” (acronym WP4 EPOS) under the Seventh Framework Programme of EU, the ERC project 259218 NUCLEAREFT, by the Foundation for Polish Science MPD program, cofinanced by the European Union within the Regional Development Fund, by the US Department of Energy under Grant Nos. DESC0008485 (SciDAC/NUCLEI) and DE-FG02-87ER40371, by the US National Science Foundation under Grant No. PHYS-0904782, and by the ERC Grant No. 307986 STRONGINT. This work was also supported partially through GAUSTEQ (Germany and U.S. Nuclear Theory Exchange Program for QCD Studies of Hadrons and Nuclei) under contract number DE-SC0006758. The numerical calculations have been performed on the supercomputer clusters of the JSC, Jülich, Germany, the Ohio Supercomputer Centre, USA (Project PAS0680) and the Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory (Resource Project: NucStructReact), where an award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the ALCF, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

1. H. Witała, T. Cornelius, W. Glöckle, Few-Body Syst. 3, 123 (1988).
2. W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996).
3. D. Hüber, H. Kamada, H. Witała, W. Glöckle, Acta Phys. Pol. B 28, 1677 (1997).
4. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).
5. R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996).
6. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).
7. S.A. Coon, H.K. Han, Few-Body Syst. 30, 131 (2001).
8. B.S. Pucliner et al., Phys. Rev. C 56, 1720 (1997).
9. A. Nogga, D. Hüber, H. Kamada, W. Glöckle, Phys. Lett. B 409, 19 (1997).
10. J.L. Friar, G.L. Payne, V.G.J. Stoks, J.J. de Swart, Few-Body Syst. 3, 4 (1993).
11. H. Witała et al., Phys. Rev. C 63, 024007 (2001).
12. A. Kievsky, M. Viviani, S. Rosati, Phys. Rev. C 64, 024002 (2001).
13. H. Witała, W. Glöckle, D. Hüber, J. Golak, H. Kamada, Phys. Rev. Lett. 81, 1183 (1998).
14. K. Sekiguchi et al., Phys. Rev. C 65, 034003 (2002).
15. W.P. Abfalterer et al., Phys. Rev. Lett. 81, 57 (1998).
16. H. Witała et al., Phys. Rev. C 59, 3035 (1999).
17. H. Witała, J. Golak, W. Glöckle, H. Kamada, Phys. Rev. C 71, 054001 (2005).
18. H. Witała, J. Golak, R. Skibiński, W. Glöckle, W.N. Polyzou, H. Kamada, Phys. Rev. C 77, 034004 (2008).
19. H. Witała, J. Golak, R. Skibiński, W. Glöckle, H. Kamada, W.N. Polyzou, Phys. Rev. C 83, 044001 (2011).
20. H. Witała, J. Golak, R. Skibiński, W. Glöckle, H. Kamada, W.N. Polyzou, Phys. Rev. C 88, 069904(E) (2013).
21. E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002).
22. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 747, 362 (2005).
23. E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).
24. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).
25. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003).
26. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011).
27. J.R. Bergervoet et al., Phys. Rev. C 41, 1435 (1990).
28. V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, J.J. de Swart, Phys. Rev. C 48, 792 (1993).
29. V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 77, 064004 (2008).
30. V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 84, 054001 (2011).
31. S. Ishikawa, M. R. Robilotta, Phys. Rev. C 76, 014006 (2007).
32. A. Kievsky, M. Viviani, L. Girlanda, L.E. Marcucci, Phys. Rev. C 81, 044003 (2010).
33. P. Navrátil, Few-Body Syst. 41, 117 (2007).
34. P. Navrátil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand, A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).
35. L.E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, M. Viviani, Phys. Rev. Lett. 108, 052502 (2012).
36. J. Golak et al., Eur. Phys. J. A 43, 241 (2010).
37. R. Skibiński et al., Eur. Phys. J. A 47, 48 (2011).
38. R. Skibiński et al., Phys. Rev. C 84, 054005 (2011).
39. H. Witała, W. Glöckle, J. Phys: G: Nucl. Part. Phys. 37, 064003 (2010).
40. H. Witała, A. Nogga, H. Kamada, W. Glöckle, J. Golak, R. Skibiński, Phys. Rev. C 68, 034002 (2003).
41. W. Glöckle, The Quantum Mechanical Few-Body Problem (Springer-Verlag, 1983).
42. K. Schoen et al., Phys. Rev. C 67, 044005 (2003).
43. H. Witała, J. Golak, R. Skibiński, K. Topolnicki, J. Phys: G: Nucl. Part. Phys. 41, 094011 (2014).
44. E. Epelbaum, private communication.
45. W. Tornow et al., Phys. Lett. B 257, 273 (1991).
46. W. Tornow, C.R. Howell, R.C. Byrd, R.S. Pedroni, R.L. Walter, Phys. Rev. Lett. 49, 312 (1982).
47. C.R. Howell et al., Few-Body Syst. 16, 127 (1994).
48. A. Siepe et al., Phys. Rev. C 65, 034010 (2002).
49. H. Witała, W. Glöckle, Phys. Rev. C 83, 034004 (2011).
50. H. Witała, W. Glöckle, Phys. Rev. C 85, 064003 (2012).
51. H.R. Setze et al., Phys. Lett. B 388, 229 (1996).
52. J. Strate et al., J. Phys. G: Nucl. Phys. 14, L229 (1988).
53. J. Strate et al., Nucl. Phys. A 501, 51 (1989).
54. G. Rauprich et al., Nucl. Phys. A 535, 313 (1991).
55. D. Hüber, J. Golak, H. Witała, W. Glöckle, H. Kamada, Few-Body Syst. 19, 175 (1995).
56. W. Tornow, H. Witała, A. Kievsky, Phys. Rev. C 57, 555 (1998).
57. H. Krebs, A. Gasparian, E. Epelbaum, Phys. Rev. C 85, 054006 (2012).
58. H. Krebs, A. Gasparian, E. Epelbaum, Phys. Rev. C 87, 054007 (2013).
59. L. Girlanda, A. Kievsky, M. Viviani, Phys. Rev. C 84, 014001 (2011).
60. A. Deftu, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 72, 054004 (2005).
61. D. Gavit, S. Quaglioni, P. Navrátil, Phys. Rev. Lett. 103, 102502 (2009).