Protective Effect of Rifampicin against Acute Liver Injury Induced by Carbon Tetrachloride in Mice

Renbin Huang, Hiroyasu Okuno, Masashi Takasu, Yasuko Shiozaki and Kyoichi Inoue
Third Department of Internal Medicine, Kansai Medical University, Fumizono-cho 10-15, Moriguchi, Osaka 570, Japan

ABSTRACT—Rifampicin conferred significant protection against carbon tetrachloride (CCL4)-induced liver injury. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities were not markedly altered and only hepatocellular fatty degeneration was found in mice pretreated with rifampicin (200 mg/kg), whereas severe centrilobular necrosis was observed and serum ALT and AST activities were as high as 281 and 271 I.U./l, respectively, in the control group following administration of CCL4 (400 μl/kg). The contents and activities of microsomal drug-metabolizing enzymes in rifampicin-pretreated animals were also much higher than those of the controls. CCL4-mediated malondialdehyde (MDA) formation was increased in rifampicin-treated liver microsomes, demonstrating that rifampicin was capable of increasing the NADPH-dependent metabolism of CCL4 catalyzed by P-450 2E1 to produce free radicals. However, MDA formation was obviously depressed by rifampicin at varying concentrations from 2 to 32 x 10^-6 M in an in vitro cytochrome P-450 (P-450) enzyme system. On the other hand, NADPH oxidation in the metabolism of CCL4 and aniline hydroxylation were not suppressed in the presence of rifampicin in this systems, suggesting that rifampicin did not influence the biotransformation of CCL4 by P-450 2E1 in vitro. Therefore, the protective effect of rifampicin against CCL4 hepatotoxicity appeared to result from the direct inhibition of lipid peroxidation generated by CCL4-derived free radicals.

Keywords: Rifampicin, Carbon tetrachloride, Cytochrome P-450, Liver injury, Malondialdehyde

Rifampicin, an antituberculosis drug, is usually administered for a long period with other antituberculosis drugs or medication from other classes. It was recently reported that rifampicin significantly relieved pruritus in adult patients with primary biliary cirrhosis and children with cholestatic liver disease (1, 2). The potential for drug interaction often exists because rifampicin is a potent inducer of liver microsomal drug-metabolizing enzymes, as demonstrated by proliferation of smooth endoplasmic reticulum and an increase in cytochrome P-450 (P-450) in the liver (3). Clinically important drug interactions have been documented between rifampicin and numerous other drugs such as oral anticoagulants, oral contraceptives, several antiarrhythmics, cyclosporine and digitals (4). Rifampicin accelerates the biotransformation of various other compounds and decreases their plasma concentration, efficacy and half-life by induction of microsomal enzymes. In contrast, Adachi et al. (5) reported that liver bilirubin-conjugating enzymes were induced by rifampicin, but mixed-function oxidases, including P-450, cytochrome b5, aniline hydroxylase and aminopyrine N-de- methylase, were not induced in rats.

As reported previously, phenobarbital enhanced biotransformation of carbon tetrachloride (CCL4) to bioactive metabolites that cause liver injury by induction of hepatic mixed-function oxidase. It is not understood whether rifampicin, as an inducer of microsomal enzymes, can potentiate CCL4 hepatotoxicity. In this study, we investigated the effects and mechanism of rifampicin on liver damage induced by CCL4 and compared the differences between the effects of rifampicin and phenobarbital on CCL4 hepatotoxicity and hepatic microsomal enzymes in mice.

MATERIALS AND METHODS

Chemicals and reagents

Rifampicin and serum alanine transaminase (ALT) and aspartate transaminase (AST) kits were purchased from Wako Pure Chemical Industries Ltd., Osaka. Phenobarbital was obtained from Tokyo Kasei Kogyo Co., Tokyo. CCL4 was purchased from Nacalai Tesque, Inc., Kyoto.
NADPH and NADH were obtained from Kohjin Co., Ltd., Tokyo. Cytochrome c was purchased from Sigma Chemical Co. (St. Louis, MO, USA).

Animals and treatments
Male Crj:CD-1 (ICR) mice, 24–26 g (Charles River Japan, Yokohama), were used. Animals were housed in a temperature-controlled room and fed a standard diet. Rifampicin dissolved in 0.02 N HCl was administered orally to mice at doses of 50, 100 and 200 mg/kg for four days. Phenobarbital dissolved in distilled water was injected intraperitoneally at a dose of 80 mg/kg on four consecutive days. CC14 dissolved in olive oil with an injection volume of 5 ml/kg was given subcutaneously at a single dose of 50, 100, 200 or 400 μl/kg in different groups. The last dose of inducer and CC14 were given concurrently in the cotreatment groups. The animals were sacrificed 20 hr after treatment with CC14 or the last dose of rifampicin and phenobarbital.

Preparation of liver microsomes
The livers were removed immediately, perfused with cold 0.15 M KCl and homogenized in 4 volumes of 0.15 M KCl solution containing 10 mM EDTA using a Potter-type Teflon glass homogenizer. The homogenate was centrifuged at 10,000 × g for 15 min in a refrigerated centrifuge (KR/20000; Kubota, Tokyo). The supernatant was then centrifuged at 105,000 × g for 60 min in a preparative ultracentrifuge (70P-1; Hitachi, Tokyo). The pellet of microsomes was suspended in the homogenization solution in homogenizer and centrifuged again as described above. The resulting pellet was suspended in 20 mM potassium phosphate buffer (pH 7.4) containing 15% glycerol. These procedures were performed at 0°C–4°C.

Biochemical liver function tests and microsomal enzyme assays
The activities of serum ALT and AST were measured by the UV Rate method and expressed as international units per liter. The contents of serum total protein and liver microsomal protein were determined by the method of Lowry et al. (6). The content of P-450 was measured by the method of Omura and Sato (7). The content of cytochrome b5 and the activity of NADPH-cytochrome c reductase were assayed as described by Omura and Takesue (8) using a spectrophotometer (DU-64; Beckman, Fullerton, CA, USA).

Substrate-metabolizing enzyme activities, aniline hydroxylation, aminopyrine N-demethylation, 7-ethoxycoumarin (7-EC) and 7-methoxycoumarin (7-MC) O-dealkylation, and benzo(a)pyrene (B(a)P) hydroxylation were measured as described by Imai et al. (9), Nash (10), Ullrich and Weber (11) and Nebert and Gelboin (12), respectively. Each substrate-metabolizing enzyme activity was assayed using NADPH as the sole electron source.

Measurement of malondialdehyde (MDA) formation
In vitro metabolism of CCl4 was determined by measuring CCl4-dependent lipid peroxidation in the monoxygenase system prepared from mouse livers according to the thiorbituric acid assay (13). Incubation was carried out with liver microsomes (1 mg/ml) in 100 mM potassium phosphate buffer (pH 7.4), containing 0.4 mM NADPH and 10 mM CCl4 (dissolved in methanol), in a final volume of 1 ml. Methanol was used in the reference tube. Inhibition of MDA production by rifampicin was assayed as described above. Rifampicin was added to the reaction mixtures at varying concentrations of 0.5, 2, 8 and 32 × 10⁻⁶ M. The comparative inhibitory effect of rifampicin and glutathione (GSH) on MDA formation was determined by the same method. The final concentrations of rifampicin and GSH in vitro were varied from 2.2 × 10⁻⁷ to 10⁻⁴ M and 4.6 × 10⁻⁶ to 10⁻³ M, respectively. The reaction was started by the addition of NADPH and CCl4 concurrently with vigorous shaking after preincubation at 37°C for 3 min, and it was stopped by 30% trichloroacetic acid after incubation for 6 min. Thiobarbituric acid reactive substance MDA was expressed as nmol/mg microsomal protein (MS Pr.)/min.

Determination of NADPH oxidation
NADPH oxidation during metabolism of CCl4 was assayed in an in vitro P-450 enzyme system. The incubation mixture consisted of 100 mM potassium phosphate buffer (pH 7.4), liver microsomes (1 mg/ml), 5 mM CCl4 dissolved in methanol and 0.1 mM NADPH. The reference mixture received vehicle alone. The effect of rifampicin on the oxidative metabolism of NADPH was assayed as described above in the presence of rifampicin at a concentration of 8 × 10⁻⁶ M. The reaction was started by adding CCl4 and NADPH concurrently after preincubation at 37°C for 3 min. NADPH disappearance was monitored fluorometrically for 3 min at 450 nm with an excitation wavelength of 365 nm (13) using a fluorescence spectrophotometer (Hitachi 650-60).

Effect of rifampicin on aniline hydroxylase activity in vitro
Aniline hydroxylase activity was assayed according to the method of Imai et al. (9). Incubation was carried out with liver microsomes (1 mg/ml) in 100 mM Tris-acetate buffer (pH 8.0), containing 3 mM MgCl2, 2 mM aniline and 1 mM NADPH, in a final volume of 0.5 ml. The effect of rifampicin on aniline hydroxylase activity was assayed as described above in the presence of rifampicin.
at a concentration of 8×10^{-6} M. The reaction was started by addition of NADPH with vigorous shaking after preincubation at 37°C for 3 min, and it was stopped by 20% trichloroacetic acid after incubation for 15 min.

Histopathology

Livers were fixed in neutral 10% formalin. Tissues were routinely processed and embedded in paraffin. Sections were stained with hematoxylin and eosin and then examined histopathologically by light microscopy.

Statistical analyses

All values are expressed as means ± S.D. Data were analyzed by Wilcoxon’s test for unpaired variables. Differences were considered statistically significant when P < 0.05.

RESULTS

Effects of rifampicin on biochemical liver functions

The effects of rifampicin on serum biochemical parameters in mice treated with and without CCl_4 are shown in Fig. 1, Table 1 and Table 2. Serum ALT and AST activities were not significantly altered in the rifampicin (RFP)- and phenobarbital-treated groups. In mice with liver injury induced by CCl_4, serum ALT and AST were markedly elevated by increasing the dose of CCl_4 to 281 and 272 I.U./l (CCl_4, 400 µl/kg), respectively, whereas these activities rose only to 70 and 47 I.U./l (RFP, 200 mg/kg) and 150 and 159 I.U./l (RFP, 100 mg/kg), respectively, at the same dose of CCl_4 in the rifampicin-pretreated group. The serum levels of ALT and AST in the other rifampicin-pretreated groups (200 mg/kg) were also much lower than those in the corresponding CCl_4-treated groups at the same dose of CCl_4. The activities of serum ALT and AST in the groups that received combination treatment with phenobarbital and CCl_4 were not significantly different from those of the controls at low doses of CCl_4 (50 and 100 µl/kg), but they were much higher than those in the controls on treatment with a high dose: serum ALT and AST were as high as 532 and 460 I.U./l, respectively, at the dose of 400 µl/kg.

Fig. 1. Effects of rifampicin on serum ALT and AST activities and content of P450 in mice treated with and without CCl_4. Rifampicin (RFP) and phenobarbital (PB) were given at doses of 200 and 80 mg/kg, respectively, for 4 days. Values represent means ± S.D., n = 5 animals. *P < 0.05, **P < 0.01: RFP- and PB-treated groups are compared with the untreated group; RFP + CCl_4 and PB + CCl_4-treated groups are compared with the corresponding same dose of CCl_4 alone-treated group. RFP- and RFP + CCl_4-treated groups (○), PB and PB + CCl_4 (●), untreated and CCl_4 alone (△).
The content of serum total protein was increased by 9% in the rifampicin-treated group (200 mg/kg), but this was not significantly different from that in untreated mice. There was no obvious change in the content of serum total protein in the groups cotreated with rifampicin or phenobarbital and CC14, which was similar to that in animals that received the hepatotoxin alone.

Group	Serum total protein (g/l)	Microsomal protein (mg/g liver)	Cytochrome b5 (nmol/mg MS Pr.)	NADPH-Cytochrome c reductase (nmol/mg MS Pr./min)
Untreated (n=5)	60.92±5.50	19.66±1.04	0.328±0.030	82.90±12.89
CCL4:50 (n=5)	62.39±3.63	21.76±1.71	0.261±0.018	64.06±13.61
CCL4:100 (n=5)	60.14±4.38	16.90±1.52	0.245±0.035	65.92±14.09
CCL4:200 (n=5)	59.90±2.24	16.74±1.37	0.197±0.043	58.92±5.56
CCL4:400 (n=5)	62.47±6.02	17.02±1.52	0.191±0.008	54.04±3.84
PB (n=5)	61.01±4.70	26.54±3.37**	0.433±0.032**	136.78±9.06**
PB + CCL4:50 (n=5)	63.76±5.86	22.26±2.80*	0.382±0.043**	122.66±17.96**
PB + CCL4:100 (n=5)	60.22±3.72	20.77±1.24*	0.376±0.064**	112.71±29.00*
PB + CCL4:200 (n=5)	60.37±6.31	17.98±2.10	0.307±0.049*	86.82±18.03*
PB + CCL4:400 (n=5)	62.70±4.36	16.93±1.24	0.210±0.031	70.82±8.52*
RFP (n=5)	66.43±6.25	22.69±3.12	0.457±0.069*	157.06±5.63**
RFP + CCL4:50 (n=5)	63.71±6.59	23.51±1.91**	0.397±0.056**	139.39±13.02**
RFP + CCL4:100 (n=4)	63.83±4.93	23.78±2.62**	0.426±0.055**	145.74±30.58**
RFP + CCL4:200 (n=4)	62.35±4.78	21.82±4.34*	0.423±0.066**	139.52±23.33**
RFP + CCL4:400 (n=5)	63.86±6.65	22.04±1.42*	0.410±0.039**	148.44±13.83**

The numbers following the colons are doses of CCl4 (μl/kg). Rifampicin (RFP) and phenobarbital (PB) were administered at doses of 200 and 80 mg/kg, respectively, for 4 days. Values represent means±S.D. *P<0.05, **P<0.01: PB- and RFP-treated groups are compared with the untreated group, and PB + CCL4 and RFP + CCL4 treated groups are compared with the corresponding same dose of CCl4 alone-treated groups.

Group	ALT (I.U./l)	AST (I.U./l)	P-450 (nmol/mg MS Pr.)
Untreated (n=5)	40.25±4.69**	21.65±4.17**	0.853±0.126**
CCl4 (n=5)	280.63±58.17	271.36±78.00	0.293±0.033
CCl4 + RFP:50 (n=5)	292.42±79.64	287.88±90.44	0.525±0.153**
CCl4 + RFP:100 (n=5)	150.14±58.18*	159.35±71.39*	0.979±0.128**
CCl4 + RFP:200 (n=5)	70.23±23.75**	46.57±24.49**	1.421±0.289**

Rifampicin (RFP) was administered for 4 days, and the numbers following the colons are doses of RFP (mg/kg). CCl4 was given at a single dose of 400 μl/kg. Values represent means±S.D. *P<0.05, **P<0.01: compared with the CCl4 alone-treated group.

CCL4. The content of serum total protein was increased by 9% in the rifampicin-treated group (200 mg/kg), but this was not significantly different from that in untreated mice. There was no obvious change in the content of serum total protein in the groups cotreated with rifampicin or phenobarbital and CCL4, which was similar to that in animals that received the hepatotoxin alone.

Effect of rifampicin on the contents of P-450 and cytochrome b5 and the activity of NADPH-cytochrome c reductase

As shown in Fig. 1, rifampicin and phenobarbital increased the content of P-450 by 110% and 72%, respectively. After administration of CCL4, the content of P-450 was decreased obviously at varying doses from 50 to 400 μl/kg in the CCL4-treated groups. In mice pretreated with phenobarbital, although P-450 was markedly induced prior to use of CCL4, it was also dose-dependently reduced after CCL4, and was much lower than in the control at a dose of 400 μl/kg. The amount of P-450 was slightly affected in the groups pretreated with rifampicin (200 mg/kg), the decrease in which was much less than in other groups following treatment with CCL4. The contents of P-450 in the groups pretreated with rifampicin (200 mg/kg) and phenobarbital were 485% and 72% of the control level (CCL4, 400 μl/kg), respectively. As shown in
Table 2, the P-450 content was reduced to a certain extent in mice pretreated with rifampicin at doses of 50 and 100 mg/kg after dosing with CCl₄, but it remained much higher than in the group treated with CCl₄ alone.

The contents of microsomal protein and cytochrome b₅ and the activity of NADPH-cytochrome c reductase are shown in Table 1. Rifampicin and phenobarbital were capable of inducing increases in the contents of microsomal protein and cytochrome b₅ and the activity of NADPH-cytochrome c reductase, which were 135%, 132% and 165% of the control values in phenobarbital-treated mice, respectively, and 115%, 139% and 189% of the controls in rifampicin-treated mice, respectively. After administration of CCl₄, the contents of microsomal protein and cytochrome b₅ and the activity of NADPH-cytochrome c reductase were markedly reduced in the mice treated with CCl₄ alone and cotreated with phenobarbital and CCl₄, especially at high CCl₄ doses. In contrast, these values were not obviously reduced in the groups cotreated with rifampicin and CCl₄. The contents

![Fig. 2](https://example.com/image.png)

Fig. 2. Effects of rifampicin on the activities of drug-metabolizing enzymes in mice treated with and without CCl₄. Rifampicin (RFP) and phenobarbital (PB) were given at doses of 200 and 80 mg/kg, respectively, for 4 days. Each column represents a mean ± S.D. Columns A represent untreated (), PB ()- and RFP ()-treated groups; Columns B represent CCl₄ (50 µl/kg,), PB + CCl₄ (50 µl/kg,) and RFP + CCl₄ (50 µl/kg,); and Columns C represent CCl₄ (400 µl/kg, ,), PB + CCl₄ (400 µl/kg,) and RFP + CCl₄ (400 µl/kg,).
of microsomal protein and cytochrome b$_{5}$ and the activity of NADPH-cytochrome c reductase were 129%, 215% and 275% of the control levels, respectively, in animals that received combination treatment with rifampicin and CCl$_{4}$, and 99%, 110% and 131% of the controls in those that received combination treatment with phenobarbital and CCl$_{4}$ at a dose of 400 μl/kg CCl$_{4}$, respectively.

Effects of rifampicin on drug-metabolizing enzyme activities

Rifampicin is an inducer of the activities of aniline hydroxylase, aminopyrine N-demethylase, 7-EC and 7-MC O-dealkylases and B(a)P hydroxylase (Fig. 2). As compared with phenobarbital treatment, the effects of rifampicin on the activities of drug-metabolizing enzymes were less marked with the exception of aminopyrine N-demethylase, the activity of which was higher in rifampicin-treated mice than that in those treated with phenobarbital, and B(a)P hydroxylase which was the same in both groups. The activities of drug-metabolizing enzymes were markedly reduced in the groups treated with CCl$_{4}$ alone and cotreated with phenobarbital and CCl$_{4}$, but the degree of decline was greater in the former at the dose of 50 μl/kg of CCl$_{4}$. After treatment with CCl$_{4}$, although the activities of these enzymes in the animals cotreated with rifampicin and CCl$_{4}$ were also decreased to a certain extent, they remained much higher than control levels. At a dose of 400 μl/kg of CCl$_{4}$, the activities of aniline hydroxylase, aminopyrine N-demethylase, 7-EC and 7-MC O-dealkylases and B(a)P hydroxylase were 390%, 604%, 1260%, 1910% and 394% of controls, respectively, in the mice cotreated with rifampicin and CCl$_{4}$. In contrast, these values were only 72%, 67%, 106%, 31% and 54% of the controls, respectively, in the group with cotreatment with phenobarbital and CCl$_{4}$.

Table 3. Stimulation of lipid peroxidation by CCl$_{4}$ in the in vitro P-450 enzyme systems prepared from untreated and inducer-treated mice

Group	MDA (nmol/mg MS Pr./min)	% control
Untreated	1.036±0.248	100.0
Phenobarbital	1.921±0.423**	185.4
Rifampicin	1.502±0.063**	144.9
CCl$_{4}$	0.101±0.030**	9.7

Microsomes were prepared from untreated, phenobarbital (80 mg/kg for 4 days), rifampicin (200 mg/kg for 4 days)- and CCl$_{4}$ (400 μl/kg)-treated mice. Values represent means±S.D. **P<0.01; compared with the untreated group.

CCl$_{4}$-dependent MDA formation and inhibition of its formation by rifampicin in an in vitro monooxygenase system

As shown in Table 3, the stimulation of lipid peroxidation by CCl$_{4}$ was noticeably enhanced in the in vitro P-450 enzyme systems prepared from rifampicin- and phenobarbital-induced mice, especially from the latter, whereas it was almost suppressed in the system from CCl$_{4}$-intoxicated animals (CCl$_{4}$, 400 μl/kg). MDA production was 185%, 145% and 10% of control level in the phenobarbital-, rifampicin- and CCl$_{4}$ (400 μl/kg)-treated P-450 enzyme systems, respectively.

Rifampicin is a powerful inhibitor of CCl$_{4}$-dependent MDA formation. NADPH-linked lipid peroxidation was significantly depressed in the presence of rifampicin at varying concentrations of 2, 8 and 32×10^{-6} M in the in vitro P-450 enzyme systems prepared from untreated and inducer-treated mice. A similar inhibitory effect, which was markedly increased with elevation of concentration, was obtained in the three enzyme systems described above, with rifampicin treatment. Inhibitory rates of rifampicin at a concentration of 32×10^{-6} M on MDA production were 79%, 83% and 79% in untreated,
rifampicin- and phenobarbital-induced enzyme systems, respectively, as shown in Fig. 3. GSH showed a similar inhibitory effect on CC14-generated lipid peroxidation as rifampicin did. The 50% inhibitory concentration (IC50) of rifampicin and GSH on CC14-mediated MDA formation in phenobarbital-induced microsomes of mice was 6 x 10^-6 and 10^-4 M, respectively, the former being much lower than the latter (Fig. 4).

Effect of rifampicin on NADPH oxidation in the metabolism of CC14 and aniline hydroxylase activity in the in vitro monoxygenase system

The results are shown in Table 4, NADPH oxidation in the metabolism of CC14 and aniline hydroxylation were markedly increased in the in vitro P-450 enzyme systems prepared from rifampicin- and phenobarbital-induced mice, while they were obviously diminished in the system prepared from the CC14-treated group. In the presence of rifampicin at a concentration of 8 x 10^-6 M, which markedly suppressed CC14-dependent MDA formation in these systems, NADPH oxidation and aniline hydroxylase activity were not significantly different from the control values.

Histopathological findings

Histopathological examination revealed that cytoplasmic vacuoles were present in hepatocytes, indicating fatty degeneration in mice treated with rifampicin alone (200 mg/kg) and in those cotreated with rifampicin (200 mg/kg) and CC14 (400 µl/kg), but there was no significant difference between the two groups. Severe centrilobular necrosis of the liver was observed in mice treated with CC14 alone and in those cotreated with phenobarbital and CC14, and the necrosis was more severe in the latter at a dose of 400 µl/kg. Mice treated with phenobarbital alone had normal liver histology.

DISCUSSION

Rifampicin is a potent inducer of hepatic microsomal enzymes, and it has been shown to increase cytochrome (CYP, gene) 3A6 gene expression in rabbits (14) and elevate the CYP1A1 mRNA level and rate of transcription in cycloheximide-treated rabbit hepatocytes (15). The present study showed that rifampicin elevated the contents of P-450 and cytochrome b5, and the activities of NADPH-cytochrome c reductase and drug-metabolizing

Group	NADPH oxidation (nmol/mg MS Pr./min)	Aniline hydroxylase activity (nmol/mg MS Pr./min)		
	Absence of RFP	Presence of RFP	Absence of RFP	Presence of RFP
Untreated	1.544 ± 0.521	1.587 ± 0.561m	1.527 ± 0.115	1.491 ± 0.107m
Phenobarbital	1.924 ± 0.571	2.028 ± 0.600m	2.056 ± 0.195	1.955 ± 0.221m
Rifampicin	2.389 ± 0.908	2.559 ± 0.776m	1.928 ± 0.242	1.837 ± 0.258m
CCl4	0.389 ± 0.176	0.326 ± 0.147m	0.331 ± 0.056	0.321 ± 0.050m

Microsomes were prepared from untreated, phenobarbital (80 mg/kg for 4 days)-, rifampicin (RFP) (200 mg/kg for 4 days)- and CCl4 (400 µl/kg)-treated mice. The concentration of RFP was 8 x 10^-6 M. Values represent means ± S.D., n = 4–5 animals. "m" not significantly different from the corresponding control values without RFP in vitro.
enzymes to some extent in mice. These results are different from those of a previous study that showed that rifampicin did not induce the mixed-function oxidase in rats (5). Whether this discrepancy is due to the species difference in experimental animals used in the two studies is not clear at present.

It is known that the inducers of microsomal drug-metabolizing enzymes can potentiate the hepatotoxicity of xenobiotics such as acetaminophen and CCl₄, which are biotransformed to active metabolites by the liver mixed-function oxidase system, as it has been reported that patients on treatment with acetaminophen experienced hepatotoxic reactions with rifampicin, isoniazid and other agents for active tuberculosis (16) and that phenobarbital increased CCl₄ hepatotoxicity (17). However, a significant protective effect of rifampicin against CCl₄-induced liver injury was found in this investigation. In mice treated with CCl₄ alone (50–400 μl/kg), serum ALT and AST activities were increased and reached 281 and 272 I.U./l, respectively, at 400 μl/kg of CCl₄, while cotreatment with phenobarbital raised them further to 532 and 460 I.U./l, respectively. In both groups of animals, severe centrilobular necrosis was histologically found; Marked reduction in the contents of cytochromes P-450 and b₅, and the activities of NADPH-cytochrome c reductase and drug-metabolizing enzymes with increasing doses of CCl₄ were observed. In contrast, in mice cotreated with rifampicin (200 mg/kg) and CCl₄, the activities of serum ALT and AST remained almost normal, and only hepatocellular fatty degeneration was observed; The decreases in the contents and the activities of liver microsomal enzymes induced by CCl₄ were much less than those in CCl₃- or phenobarbital plus CCl₄-treated groups. These results demonstrate a significant protection from CCl₄ hepatotoxicity by pretreatment with rifampicin.

It is known that hepatotoxicity of CCl₄ is caused by several of its active metabolites generated by P-450. The primary step in CCl₄ metabolism is reductive and consists of transfer of an electron to CCl₄ by the P-450 system yielding CCl₃⁺ (18). There is also evidence for a two-electron reduction yielding dichlorocarbene, but this step seems to be quantitatively minor (19). These reductive steps are carried out by P-450. CCl₃⁺ is a reactive species and yields a variety of secondary metabolites. Under certain conditions, CCl₃⁺ reacts largely with polysaturated fatty acids by H⁺ abstraction, forming CHCl₂ and lipid free radicals or by covalent binding at site of a double bond, forming an adduct that is also a free radical (20). In the presence of oxygen, oxygen reacts with free radicals, and lipid peroxidation occurs with destruction of lipids causing liver cell damage. When oxygen reacts with CCl₃⁺, it forms CCl₃OO⁺, which may promote the destruction of P-450 responsible for catalyzing CCl₄ metabolism and generation of CCl₃⁺. This limits CCl₄ metabolism in the liver (21).

CCl₃ hepatotoxicity is relieved by inhibition of hepatic microsomal enzymes. Lauriault et al. (22) reported that the thiol drug diethylidithiocarbamate and its two metabolites, disulfiram and carbon disulfide, could be used as inhibitors of P-450 to protect hepatocytes from damage induced by CCl₃. In contrast, CCl₃ hepatotoxicity is increased by induction of P-450. It was reported that CCl₃-evoked liver injury was enhanced in phenobarbital-induced animals (23). Noguchi et al. (24) further showed that the phenobarbital-inducible form of P-450 was capable of generating the trichloromethyl free radical in the reconstituted enzyme system. The present study also showed similar results in that phenobarbital considerably increased the amount of P-450 and the activities of drug-metabolizing enzymes, and it markedly increased liver degeneration and necrosis induced by a large dose of CCl₄. However, liver injury was not significantly different from that in the controls following treatment with low doses of CCl₄, and thus it seemed that the rate of biotransformation for a low plasma concentration of CCl₄ in normal mice was similar to that in phenobarbital-induced animals.

The isoform of P-450 that is responsible for the reductive activation of CCl₄ has not been identified conclusively. Recently, anti-(P-450 2E1)-Ig G experiments performed with microsomes showed that addition of anti-(P-450 2E1)-Ig G to the in vitro P-450 enzyme system was capable of inhibiting CCl₄-mediated microsomal lipid peroxidation by 70%, suggesting that P-450 2E1 is involved in metabolic activation of CCl₄ (25–27). Hepatocytes isolated from rats treated with pyrazole, which is an inducer of P-450, were found to be much more susceptible to CCl₄-induced cytotoxicity than those isolated from normal rats. Microsomal enzymes prepared from pyrazole-treated rats also underwent a CCl₄-catalyzed lipid peroxidation with NADPH much more rapidly than microsomal enzymes from controls. Secondly, microsomal enzymes prepared from rats treated with pyrazole also showed enhanced aniline hydroxylation, whereas the activities of ethoxyresorufin O-dealkylase, which is somewhat specific for P-450 1A1/1A2; pentoxysresorufin O-dealkylase, which is specific for P-450 2B1/2B2; and aminopyrine N-demethylase were not markedly altered. In addition, diethylidithiocarbamate, which is an inhibitor of microsomal enzymes, not only reduced lipid peroxidation and cytotoxicity of CCl₄, but also depressed aniline hydroxylase (22). These findings indicated that aniline hydroxylase is specific, at least to a certain extent, for P-450 2E1.

As compared to the effects of phenobarbital on liver
drug-metabolizing enzymes, rifampicin was less effective on aniline hydroxylase activity, which increased by 26% and 35% in rifampicin- and phenobarbital-treated animals, respectively, but was more effective on aminopyrine N-demethylase activity, which showed increases of 163% and 87% in rifampicin- and phenobarbital-induced mice, respectively. Furthermore, CCl₄-dependent MDA formation was moderately elevated in the in vitro P-450 enzyme system from rifampicin-induced mouse and was significantly enhanced in this system from phenobarbital-induced animals. These experiments indicated that both rifampicin and phenobarbital increased the activity of P-450 2E1 which catalyzed bioactivation of CCl₄ as well as other isomers of P-450. However, these results failed to explain why rifampicin did not increase but rather reduced liver injury caused by CCl₄. To elucidate the protective mechanisms of rifampicin against CCl₄-induced liver damage, the inhibitory effect of rifampicin on lipid peroxidation caused by CCl₄ was investigated in the in vitro mixed-function oxidase systems from untreated and inducer-treated mice. The lipid peroxidation generated by CCl₄ was noticeably suppressed in the presence of rifampicin at varying concentrations from 2 to 32 × 10⁻⁶ M in the three enzyme systems described above. Meanwhile, another investigation also demonstrated that NADPH oxidation during CCl₄ metabolism was markedly increased in the microsomal enzymes prepared from rifampicin- and phenobarbital-induced mice. However, NADPH oxidation was not inhibited by rifampicin at a concentration of 8 × 10⁻⁶ M in these enzyme systems. In addition, rifampicin was also incapable of inhibiting the activity of aniline hydroxylase in the in vitro microsomal enzyme systems. These suggested that in vitro rifampicin was unable to inhibit the bioactive metabolism of CCl₄ catalyzed by P-450 2E1 and to reduce free radical production.

Therefore, from the results of this study, the protective effect of rifampicin against liver injury induced by CCl₄ was suggested to be due to direct inhibition of lipid peroxidation in liver cells as a result of free radicals generated by metabolism of CCl₄. Although rifampicin accelerated the bioactivation of CCl₄ by induction of P-450 2E1, its direct inhibition of free radical-mediated lipid peroxidation appeared to play the most important role in its effect on the CCl₄ hepatotoxicity, i.e., antagonism of the effects of active metabolites of CCl₄. There have been no similar reports published previously concerning the effects of inducers on CCl₄ hepatotoxicity.

The antioxidant role of vitamin E has been well-reviewed. It has a similar protective effect against CCl₄ hepatotoxicity (28), which is thought to exert its action through scavenging free radicals (29). GSH was a potent antioxidant and could markedly inhibit lipid peroxidation generated by CCl₄-derived free radicals. As compared with the ability of GSH, the lipid peroxidation inhibitory effect of rifampicin was much more powerful than that of GSH. The IC₅₀ of rifampicin on CCl₄-mediated MDA formation in phenobarbital-induced microsomes of mice was 17 times lower than that of GSH. At present, it is not understood whether the lipid antioxidant activity of rifampicin is acting by direct scavenging of CCl₄-derived peroxy radicals or another mechanism. Our other study also revealed that rifampicin was able to reduce significantly liver injury and animal mortality caused by acetaminophen in mice (R. Huang et al., unpublished data), and studies on its protective mechanism are currently in progress in our laboratory.

REFERENCES

1 Ghent CN and Carruthers SG: Treatment of pruritus in primary biliary cirrhosis with rifampicin. Gastroenterology 94, 488-493 (1988)
2 Cynamon HA, Andres JM and Iafraite RP: Rifampicin relieves pruritus in children with cholestatic liver disease. Gastroenterology 98, 1013-1016 (1990)
3 Venkatesan K: Pharmacokinetic drug interaction with rifampin. Clin Pharmacokinet 22, 47-65 (1992)
4 Borcherding SM, Baclewicz AM and Self TH: Update on rifampicin drug interactions. Arch Intern Med 152, 711-716 (1992)
5 Adachi Y, Nanno T, Yamashita M, Ushisha S and Yamamoto T: Induction of rat liver bilirubin-conjugating enzymes and glutathione S-transferase by rifampicin. Gastroenterol Jpn 20, 104-110 (1985)
6 Lowry OH, Rosebrough NJ, Farr AL and Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275 (1951)
7 Omura T and Sato R: The carbon monoxide binding pigment of liver microsomes. J Biol Chem 239, 2370-2385 (1964)
8 Omura T and Takesue S: A new method for simultaneous purification of cytochrome b₅ and NADPH-cytochrome c reductase from rat liver microsomes. J Biochem 67, 249-257 (1970)
9 Imai Y, Ito A and Sato R: Evidence for biochemically different types of vesicles in the hepatic microsomal fraction. J Biochem 60, 417-428 (1966)
10 Nash T: The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55, 416-421 (1953)
11 Ullrich V and Weber P: The O-dealkylation of 7-ethoxycoumalin by liver microsomes. Hoppe Seylers Z Physiol Chem 353, 1171-1177 (1972)
12 Nebert DW and Gelboin HV: Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. J Biol Chem 243, 6242-6249 (1968)
13 Ernster L and Nordenbrand K: Microsomal lipid peroxidation. Methods Enzymol 10, 574-580 (1967)
14 Pineau T, Daujat M, Fichard L, Girard F, Angevain J, Bonfils C and Maurel P: Developmental expression of rabbit cytochrome P450 CYP1A1, CYP1A2 and CYP3A6 genes. Effect of weaning and rifampicin. Eur J Biochem 197, 145-153 (1991)
15 Daujat M, Clair P, Astier C, Fabre I, Pineau T, Verle M, Gellin J and Maurel P: Induction, regulation and messenger half-life of cytochromes P450 1A1, 1A2 and 3A6 in primary cultures of rabbit hepatocytes. CYPIA1, 1A2 and 3A6 chromosome location in the rabbit and evidence that post-transcriptional control of gene 1A2 does not involve mRNA stabilization. Eur J Biochem 200, 501–510 (1991)

16 Nolan CM, Sandblom RE, Thummel KE, Slattery JT and Nelson SD: Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest 105, 408–411 (1994)

17 Suarez KA, Carlson GP, Fuller GC and Fausto N: Differential acute effects of phenobarbital and 3-methylcholanthrene pretreatment on CCl4-induced hepatotoxicity in rats. Toxicol Appl Pharmacol 23, 171–177 (1972)

18 Recknagel RO: Carbon tetrachloride hepatotoxicity: An example of lethal cleavage. CRC Crit Rev Toxicol 2, 263–279 (1973)

19 Ahr HJ, King LJ, Nastainczyk W and Ullrich V: The mechanism of chloroform and carbon monoxide from carbon tetrachloride by microsomal cytochrome P-450. Biochem Pharmacol 29, 2855–2861 (1980)

20 Trudell JR, Bosterling B and Trevor AJ: Reductive metabolism of carbon tetrachloride by human cytochromes P450 reconstituted in phospholipid vesicles: Mass spectral identification of trichloromethyl radical bound to dioleoyl phosphatidylcholine. Proc Natl Acad Sci USA 79, 2678–2682 (1982)

21 Williams AT and Burk RF: Carbon tetrachloride hepatotoxicity: an example of free radical-mediated injury. Semin Liver Dis 10, 279–284 (1990)

22 Lauriault VV, Khan S and O’Brien PJ: Hepatocyte cytotoxicity induced by various hepatotoxins mediated by cytochrome P-450 2E1: protection with diethylthiocarbamate. Chem Biol Interact 81, 271–289 (1992)

23 Pani P, Torrielli MW, Gabriel L and Gravela E: Further observation on the effects of 3-methylcholanthrene and phenobarbital on carbon tetrachloride hepatotoxicity. Exp Mol Pathol 19, 15–22 (1983)

24 Noguchi T, Fong KL, Lai EK, Alexander SS, King MM, Olson L, Poyer JL and Mccay PB: Specificity of phenobarbital-induced cytochrome P-450 for metabolism of carbon tetrachloride to the trichloromethyl radical. Biochem Pharmacol 31, 615–624 (1982)

25 Ekstrom G, Von Bahr C and Ingelman-Sundberg M: Human liver microsomal cytochrome P-450 2E1. Immunological evaluation of its contribution to microsomal ethanol oxidation, carbon tetrachloride reduction, and NADPH oxidase activity. Biochem Pharmacol 38, 689–690 (1989)

26 Johansson I, Ekstrom G, Scholte S, Puzychi D, Jornvall H and Ingelman-Sundberg M: Ethanol-, fasting- and acetone-inducible cytochrome P-450 in rat liver: regulation and characteristics of enzymes belonging to the 2B and 2E gene subfamilies. Biochemistry 27, 1925–1934 (1988)

27 Johansson I and Ingelman-Sundberg M: Carbon tetrachloride-induced lipid peroxidation dependent on an ethanol-inducible form of rabbit liver microsomal cytochrome P-450. FEBS Lett 183, 265–269 (1985)

28 Yoshikawa T, Furukawa Y and Murakami M: Effects of vitamin E on d-galactosamine-induced or carbon tetrachloride-induced hepatotoxicity. Digestion 25, 222–229 (1982)

29 Yurdakak M, Yurdakak K and Caglar M: Carbon tetrachloride poisoning. (Letter) Lancet 1, 1335–1336 (1985)