Morphologic Variation for Fruit Characteristics in the USDA/ARS Capsicum baccatum L. Germplasm Collection

Robert L. Jarret
USDA/ARS, Plant Genetic Resources Unit, 1109 Experiment Street, Griffin, GA 30224

Additional index words: aji, Capsicum sp., fruit shape, fruit width, var. pendulum, var. baccatum

Abstract. Mature fruit of 295 accessions of Capsicum baccatum from the USDA/ARS Capsicum germplasm collection were characterized for fruit length, width, weight, and color. Mean fruit weight was determined to be 5.91 g with a range of 0.15 to 22.8 g. Mean fruit length was 6.01 cm with a range of 0.8 to 16.0 cm. Mean fruit width was 1.86 cm and a range of 0.5 to 4.75 cm. Distributions of all characteristics were positively skewed and failed the Kolmogorov-Smirnov test for normality. The distribution of fruit weight values was the most highly skewed, possibly reflecting a more intense human selection pressure for this characteristic. Distributions of fruit width, length, weight, and length:width were leptokurtic (long-tailed). Ninety-three percent of accessions were elongate. Mature fruit colors included red (73.6%), orange (19.7%), yellow (3%), green (0.3%), and mixed (3%). These data suggest that variability for mature fruit characteristics within this germplasm collection is considerable and that variability for fruit length, width, weight, and color is sufficient to provide the basis for the improvement of the aji crop.

Capsicum baccatum var. pendulum (Willd.) Eshbaugh, commonly referred to as “aji,” is one of the five cultivated species in this genus (Eshbaugh, 1968, 1970; Pickersgill, 1969). Archeological and other evidence suggests that the cultivated ajis (var. pendulum) were derived from the wild C. baccatum var. baccatum L. that are known as “arivivi” in Bolivia (Eshbaugh, 1976; McLeod et al., 1983). Domestication of C. baccatum var. baccatum is believed to have occurred in Peru approximately 2500 BC (DeWitt and Bosland, 1996; Pickersgill, 1969), and the crop subsequently improved by pre-Incan civilizations. That is, selection occurred then for both fruit size and persistence. Today, the domesticated ajis are quite diverse in the size, shape, and color of their fruits (DeWitt and Bosland, 1996), whereas those of the wild form are considered less so (Eshbaugh, 1970). The pods of the cultivated ajis have a distinctive fruity flavor and they are widely used in salsas, ceviches, and as dried powders (DeWitt and Bosland, 1996).

Although both the cultivated and the wild forms of C. baccatum are indigenous to South America, the distribution of C. baccatum var. baccatum has been reported as more restricted than that of its cultivated counterpart, being limited primarily to northern Argentina, Bolivia, southwestern Brazil, western Paraguay, and central Peru with a center of diversity/origin in Bolivia/Peru (Jarret et al., 1990).

Received for publication 20 Oct. 2006. Accepted for publication 25 Feb. 2007. E-mail bjarret@ars-grin.gov

HORTSCIENCE VOL. 42(5) AUGUST 2007 1303

HORTSCIENCE 42(5):1303–1305. 2007.

Materials and Methods

Seed of a total of 295 accessions of Capsicum baccatum were obtained from the USDA/ARS genebank in Griffin, Ga., and sown in the greenhouse in Mar. 2004. These materials represent the total of all accessions of this species currently in the USDA/ARS germplasm collection whose taxonomic identification has been verified. Individual accessions were acquired from a variety of countries, including Argentina (9), Bolivia (39), Brazil (72), Bulgaria (2), Chile (5), Colombia (5), Costa Rica (24), Ecuador (22), Guatemala (2), Guyana (1), Hungary (1), India (3), Mexico (4), Paraguay (21), Peru (65), Philippines (1), Russian Federation (2), the United States (12), Uruguay (4), and Venezuela (1). Twenty to 25 seedlings/genotype were transplanted to the field in May into rows ≈2 m apart (0.25 m between plants within rows). Plants received fertilization, irrigation, and weed and pest control measures as required.

Descriptive data were recorded using an in-house descriptor list. Information on individual descriptors and their states can be viewed at www.ars-grin.gov/cgi-bin/npgs/html/desclist.pl?116. One hundred fully mature fruit of each genotype were harvested at random from 20 plants/genotype (five fruit/plant), weighed, measured, L:W ratios calculated, and photographed. Values for each characteristic were averaged within accessions and these means further analyzed using SigmaStat (ver. 3.1). Digital images of the fruit of the accessions used in this study can be viewed at www.ars-grin.gov/npgs/ace/ace_queries.html.

Results and Discussion

The statistics for fruit width, length, weight, and L:W for the 295 accessions of C. baccatum examined are presented in Table 1. Fruit width averaged 1.86 cm and ranged from 0.5 cm (PI 238061, 439384, and 639129) to 4.75 cm (PI 441551). Fruit length averaged 6.01 cm with a range of 0.8 cm
Previous investigators (Eshbaugh, 1970; Pickersgill et al., 1979) examined the morphologic variation present in this species to assess the validity of its division into the two currently recognized varieties, var. *baccatum* and var. *pendulum*. Before 1961, *C. baccatum* var. *baccatum* and *C. baccatum* var. *pendulum* were recognized as *C. microcarpum* Cav. and *C. pendulum* Willd., respectively. Hunziker (1961) suggested uniting these into a single species, *C. baccatum*. Eshbaugh (1970) subsequently provided justification for their classification as varieties. Although defining the validity of the two varieties is tangential to the purposes of the present study, it is of interest to note that the bimodal distributions for mature fruit length and width that were reported and used by Eshbaugh (1970) to separate the species into two varieties were not observed (Figs. 1). It seems likely that the bimodal distributions previously reported may have been the result of the relatively small sample size used. However, the absence of bimodal distributions for these or other fruit characteristics neither supports nor disproves the validity of the current two-varietal classification system. Such a division should be based on a broader range of characteristics than those reported here (Pickersgill et al., 1979). More or less continuous distributions for the characters analyzed would appear to support the evolution of the large-fruited domesticated types from the smaller-fruited form.

As noted by Pickersgill et al. (1979), the distinction between wild peppers with small red deciduous erect fruits and domesticated peppers with large pendant nondeciduous fruit of various colors is not clearcut. Many of the characters initially used to define the two varieties do not appear to be unique to either. For example, although data on fruit persistency were not recorded, deciduous large-fruited accessions were observed as upright, persistent small-fruited forms. The occurrence of nondeciduous upright fruit in an accession of the nondomesticated *Capsicum cardenasi* Heiser & P.G. Sm. (PI 590507) has also been observed. Although fruit of *C. baccatum* var. *baccatum* are typically red (Eshbaugh, 1970), accessions of *C. baccatum* with orange or yellow fruit that were both small and upright and that otherwise shared many of the characteristics of var. *baccatum* have been reported (DeWitt and Bosland, 1996). Among the materials examined in the present study, pedicels of most accessions were erect, or nearly so, at anthesis. Pendant small-fruited accessions of *C. baccatum* were not observed. Large-fruited accessions with upright fruit were not observed and were not expected. As fruit size increased as the result of human selection, the relatively long pedicel characteristic of *C. baccatum* could no longer support the fruit in an upright position, and the fruit became pendant. Thus, pendant fruit are a manifestation of human selection for fruit...
size in the absence of selection for enhanced pedicel strength (or perhaps in the absence of genetic variability within *C. baccatum* for this characteristic) and not necessarily a reflection of any inherent difference in the initial orientation of the fruit. Numerous transitional forms with smallish to moderately sized semipendulous fruit were observed (for example, PI 188481, 215739, 260564, 281313, and 439409).

Efforts to use biochemical/molecular methods to differentiate var. *baccatum* from var. *pendulum* have met with limited success. For example, Ballard et al. (1970) noted that the flavonoid profiles of both varieties were identical. Jensen et al. (1979) reported that *C. baccatum* var. *pendulum* and *C. baccatum* var. *baccatum* could not be differentiated from each other based on isozymes (23 loci, 63 alleles), although *C. baccatum* var. *praetermissum* was distinct from both of these. Walsh and Hoot (2001) separated the two varieties from one another using sequence data obtained from *waxy* introns and *atpB-rbcL* noncoding spacer regions. However, because only a single accession of each variety was included in the study, the possibility that those differences reflected only intraspecific variability cannot be discounted. Additional or more recent studies either did not include both varieties or did not identify them as such (Buso et al., 2003; Prince et al., 1995; Rodriguez et al., 1999; Toquica et al., 2003) From a practical standpoint, the absence of a single defining characteristic that might be used to differentiate semidestincted forms from either the wild (var. *baccatum*) or domesticated (var. *pendulum*) forms precludes the unequivocal identification of these forms.

Crop germplasm collecting/acquisition frequently occurs as opportunity permits and not always in a systematic or comprehensive manner. A collector’s perception of what constitutes unique or potentially valuable material may be influenced (biased) by the extent of the collector’s previous exposure to the diversity already characterized within the taxa being collected. Hence, a thorough and random sampling of the gene pool of many crop plants and their wild relatives has not always been accomplished. The accessions evaluated in the present study, although substantially greater in number than in previous studies (DeWitt and Bosland 1996; Eshbaugh, 1970) represent only a portion of the phenotypic diversity present in the *C. baccatum* gene pool. For example, the orange- or yellow- fruit forms of *C. baccatum* var. *baccatum* described by DeWitt and Bosland (1996) and the chocolate-colored forms of var. *pendulum* noted by Eshbaugh (1970) were not observed. Several fruit shapes reported by DeWitt and Bosland (1996) were also not observed. The data presented suggest that variability for mature fruit characteristics within the USDA/ARS *C. baccatum* germplasm collection is somewhat representative of the diversity within this species, and that variability for fruit morphologic characteristics is likely sufficient to provide the basis for the improvement of the aji crop. Incongruities in the distributions for the fruit characteristics that were observed can almost certainly be attributed in part to inadequate sampling of the gene pool.

Literature Cited

Ballard, R.E., J.W. McClure, W.H. Eshbaugh, and K.G. Wilson. 1970. A chemo systematic study of selected taxa of *Capsicum*. Amer. J. Bot. 57:225–233.

Buso, G.S.C., Z.P. de Sousa Amaral, L.de B. Bianchetti, F.R. Borges, and M.E. Ferreira. 2003. Genetic variability and phylogenetic analysis of Brazilian species of *Capsicum*, *Capsicum Eggplant Newsl.* 22:13–16.

D’Arcy, W.G. and W.H. Eshbaugh. 1974. New World peppers (*Capsicum–Solanaceae*) north of Colombia: A resume. *Baileya* 19:93–105.

DeWitt, D. and P.W. Bosland. 1996. Peppers of the world: An identification guide. Ten Speed Press, Berkeley, Calif.

Eshbaugh, W.H. 1968. A nomenclatural note on the genus *Capsicum*. *Taxon* 17:51–52.

Eshbaugh, W.H. 1970. A biosystematic and evolutionary study of *Capsicum baccatum* (*Solanaceae*). *Brittonia* 22:31–43.

Eshbaugh, W.H. 1976. XII. Genetic and biochemical systematic studies of chili peppers (*Capsicum–Solanaceae*). *Bul. Torrey Bot. Club* 102:396–403.

Eshbaugh, W.H. 1980. The taxonomy of the genus *Capsicum* (*Solanaceae*)—1980. *Phytologia* 6:153–166.

Hunziker, A.T. 1950. Estudios sobre Solanaceae. I. Sinopsis de las especies silvestres de *Capsicum* de Argentina y Paraguay. *Darwiniana* (Buenos Aires) 9:225–247.

Hunziker, A.T. 1961. Noticia sobre el cultivo de *Capsicum baccatum* L. (*Solanaceae*) en Argentina. *Kurtziana* (Cordoba) 1:303.

Hunziker, A.T. 1971. Estudios sobre Solanaceae. VII. Contribución al conocimiento de *Capsicum* genera afines (*Witheringia, Achninthus, Athenaee, etc.*). *Tercera Parte*. *Kurtziana* 6:241–259.

Jarret, R.L., M. Spinks, G. Lovell, and A.G. Gillaspie. 1990. The S-9 plant germplasm collection at Griffin, GA. *Diversity* 6:23–25.

Jensen, R.J., M.J. McLeod, W.H. Eshbaugh, and S.I. Guttman. 1979. Numerical taxonomic analyses of allozyme variation in *Capsicum* (*Solanaceae*). *Taxon* 28:315–327.

McLeod, M.J., S.I. Guttman, and W.H. Eshbaugh. 1982. Early evolution of chili peppers (*Capsicum*). *Econ. Bot.* 36:361–368.

McLeod, M.J., S.I. Guttman, W.H. Eshbaugh, and R.E. Rayle. 1983. An electrophoretic study of evolution in *Capsicum* (*Solanaceae*). *Evolution* 37:562–574.

Pickersgill, B. 1969. The archeological record of chile peppers (*Capsicum spp.*) and the sequence of plant domestication in Peru. *Am. Antiq.* 34:54–61.

Pickersgill, B. 1971. Relationships between weedy and cultivated forms in some species of chili peppers (genus *Capsicum*). *Evolution* 25:683–691.

Pickersgill, B., C.B. Heiser, and J. McNeil. 1979. Numerical taxonomic studies on variation and domestication in some species of *Capsicum*, p. 678–700. In: J.G. Hawkes, R.N. Lester, and A.D. Skelding (eds.). The biology and taxonomy of the *Solanaceae*. *Academic Press*, N.Y.

Prince, J.P., V.K. Lackney, C. Angeles, J.R. Blauth, and M.M. Kyle. 1995. A survey of DNA polymorphism within the genus *Capsicum* and the fingerprinting of pepper cultivars. *Genome* 38:224–231.

Rodriguez, J.M., T. Berke, L. Engle, and J. Nienhuis. 1999. Variation among and within *Capsicum* species revealed by RAPD markers. *Theor. Appl. Genet.* 99:147–156.

Smith, P. and C.B. Heiser, Jr. 1957. Taxonomy of *Capsicum sinense* Jacq. and the geographic distribution of the cultivated *Capsicum* species. *Bul. Torrey Bot. Club* 84:413–420.

Stuart, A. and J.K. Ord. 1987. Kendall’s advanced theory of statistics. Charles Griffin and Co., N.Y.

Toquica, S.P., M.C. Duque, J. Tohme, F. Rodriguez, and E. Martinez. 2003. Molecular characterization by AFLPs of *Capsicum* germplasm from the Amazon Department in Colombia. *Genet. Res. Crop Eval.* 50:639–647.

Walsh, B.M. and S.B. Hoot. 2001. Phylogenetic relationships of *Capsicum* (*Solanaceae*) using DNA sequences from two noncoding regions: The chloroplast ATPB-RBCL spacer region and nuclear *waxy* introns. *Int. J. Plant Sci.* 162:1409–1418.