Clinical value of serum CA19-9 levels in evaluating resectability of pancreatic carcinoma

Shun Zhang, Yi-Ming Wang, Chuan-Dong Sun, Yun Lu, Li-Qun Wu

AIM: To evaluate the clinical value of serum CA19-9 levels in predicting the resectability of pancreatic carcinoma according to receiver operating characteristic (ROC) curve analysis.

METHODS: Serum CA19-9 levels were measured in 104 patients with pancreatic cancer which were possible to be resected according to the imaging. ROC curve was plotted for the CA19-9 levels. The point closest to the upper left-hand corner of the graph were chosen as the cut-off point. The sensitivity, specificity, positive and negative predictive values of CA19-9 at this cut-off point were calculated.

RESULTS: Resectable pancreatic cancer was detected in 58 (55.77%) patients and unresectable pancreatic cancer was detected in 46 (44.23%) patients. The area under the ROC curve was 0.918 and 95% CI was 0.843-0.992. The CA19-9 level was 353.15 U/mL, and the sensitivity and specificity of CA19-9 at this cut-off point were 93.1% and 78.3%, respectively. The positive and negative predictive value was 84.38% and 90%, respectively.

CONCLUSION: Preoperative serum CA19-9 level is a useful marker for further evaluating the resectability of pancreatic cancer. Obviously increased serum levels of CA19-9 (> 353.15 U/mL) can be regarded as an ancillary parameter for unresectable pancreatic cancer.

© 2008 The WJG Press. All rights reserved.

Key words: Pancreatic carcinoma; Resection; Tumor markers; CA19-9; Receiver operating characteristic curve
including preoperative CA19-9 level in 104 patients with pancreatic cancer who underwent surgical resection at the Affiliated Hospital of Qingdao University Medical College from January 2001 to July 2007. Pancreatic adenocarcinoma was histologically confirmed. Resectability of pancreatic cancer was evaluated at least by preoperative bolus-contrast, triple-phase helical computer tomography (CT) scan.

Resectability was defined as a tumor limited to the pancreas with no invasion of the superior mesenteric artery and vein, portal vein and metastases (celiac lymph, peritoneum or liver).

Serum levels of CA19-9 and total serum bilirubin levels were measured before surgery (normal 0-39.0 U/mL for CA19-9, 3.4-17.1 μmol/L for total serum bilirubin).

The data were described using Q1, Q2, and Q3. Differences between groups were detected using the Wilcoxon 2-sample test. Serum CA19-9 levels were used to plot the ROC curve, and calculate the area under the curve (AUC). We chose the point closest to the upper left-hand corner of the graph as the cut-off point. The sensitivity, specificity, positive and negative predictive values of CA19-9 at this cut-off point were calculated.

RESULTS

Of the 104 patients, 72 were males and 32 were females with a mean age of 59 years (range 41-75 years). The pancreatic tumor was confined to the head, body and tail of the pancreas in 86, 8, and 10 patients, respectively. Forty-eight patients underwent pancreaticoduodenectomy, 46 patients distal pancreatectomy, and 46 only exploratory laparotomy and biopsy. The general characteristics of the patients are listed in Table 1.

The distribution of preoperative serum CA19-9 levels is shown in Figure 1. The Q2 (median) preoperative serum CA19-9 level in patients with unresectable tumor was 5-fold higher than that in patients with resectable tumor (Table 2). The difference between two groups was significant (P = 0.000). The mean total serum bilirubin level in patients with resectable and unresectable tumor was 28.6 μmol/L and 34.4 μmol/L, respectively (P > 0.05). Therefore, the CA19-9 levels were not adjusted.

Figure 2 shows the ROC curve. The AUC was 0.918 and 95% CI was 0.843-0.992, suggesting that changes in serum CA19-9 levels may have a direct relation to resectability. When the cut-off value of CA19-9 was 353.15 U/mL according to the point closest to the upper left corner of the graph, the sensitivity and specificity were 93.1% and 78.3%, respectively. The preoperative resectability according to the cut-off point was compared with the actual operation, and the positive and negative predictive value of CA19-9 was 84.38% and 90.00%, respectively (Table 3).

DISCUSSION
Pancreatic cancer is one of the most common causes for
cancer was resectable only in 4 patients whose preoperative serum CA19-9 level was over 353.15 U/mL (Table 3 and Figure 1).

Kilic et al\cite{24} reported that the sensitivity, specificity, positive and negative predictive value are 82.4%, 92.3%, 91.4% and 83.9%, respectively, in 51 patients, and the cut-off value of CA19-9 is 256.4 U/mL. Their results are similar to our data, but the cut-off value was lower than that in our study (256.4 U/mL vs 353.15 U/mL). The discrepancy may be due the sample size, and the unadjusted CA19-9 level according to the bilirubin level.

In conclusion, a preoperative serum CA19-9 level is a useful marker for evaluating the resectability of pancreatic cancer. Increased serum levels of CA19-9 (> 353.15 U/mL) can be regarded as an ancillary parameter for unresectable pancreatic cancer.

COMMENTS

Background

At present, the best way of preoperative staging of pancreatic cancer is bolus-contrast and triple-phase helical computed tomography.\cite{17,18} However, approximately 25%-50% of patients with resectable disease on computed tomography are found to have unresectable lesions at laparotomy.\cite{17,18} Although magnetic resonance imaging is increasingly used in the evaluation of pancreatic tumor, it was reported that it offers no significant diagnostic advantage over computed tomography.\cite{18} Endoscopic retrograde cholangio pancreatography (ERCP) is more controversial for patients with a mass on CT\cite{21}. B-mode ultrasonography is operator-dependent and may be inaccurate due to factors such as large body habitus, presence of ascites, or overlying bowel gas. Therefore we should find other ways to further evaluate the resectability of pancreatic cancer.

CA19-9 is a tumor-associated antigen, initially described by Koprowski et al.\cite{22}. The sensitivity and specificity of CA19-9 for the diagnosis of pancreatic cancer are higher than those of CEA, CA50 and CA242. CA19-9 has become a predominant tumor marker for the resectability of pancreatic cancer. Increased serum level of CA19-9 is a useful marker for evaluating the resectability of pancreatic cancer. Preoperative serum CA19-9 level may be a useful marker for evaluating the resectability of pancreatic cancer. Increased serum level of CA19-9 (> 353.15 U/mL) may be regarded as an ancillary parameter for unresectable pancreatic cancer.

Terminology

CA19-9 is a tumor-associated antigen initially described by Koprowski et al and has been widely used as a serum marker of pancreatic cancer. ROC curve has been widely accepted as the standard method for describing and comparing the accuracy of medical diagnostic tests. ROC curve is an efficient way to display and assess the predictive value of cut-off points.

Peer review

This is a very interesting study. The authors used ROC analysis as an appropriate statistical method for defining the cut-off value of serum CA19-9 to discriminate between resectable and unresectable pancreatic cancer.

REFERENCES

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71-96
2. Wang L, Yang GH, Lu XH, Huang ZJ, Li H. Pancreatic cancer mortality in China (1991-2000). World J Gastroenterol 2003; 9: 1819-1823
3. Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med 1992; 326: 455-465
4. Tamm EP, Silverman PM, Charnsangavej C, Evans DB. Diagnosis, staging, and surveillance of pancreatic cancer. AJR Am J Roentgenol 2003; 180: 1311-1323
5. Vargas R, Nino-Murcia M, Trueblood W, Jeffrey RB Jr. MDCT in Pancreatic adenocarcinoma: prediction of vascular invasion and resectability using a multiphasic technique with curved planar reformations. AJR Am J Roentgenol 2004; 182: 419-425
Zhang S et al. CA19-9 in evaluating resectability of pancreatic carcinoma

6 Wakabayashi H, Nishiyama Y, Otani T, Sano T, Yachida S, Okano K, Izuishi K, Suzuki Y. Role of 18F-fluorodeoxyglucose positron emission tomography imaging in surgery for pancreatic cancer. World J Gastroenterol 2008; 14: 64-69

7 Pisters PW, Lee JE, Vauthney JN, Charnsangavej C, Evans DB. Laparoscopy in the staging of pancreatic cancer. Br J Surg 2001; 88: 325-337

8 Koopmann J, Rosenzweig CN, Zhang Z, Canto MI, Brown DA, Hunter M, Yeo C, Chan DW, Breit SN, Goggins M. Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9. Clin Cancer Res 2006; 12: 442-446

9 Zou KH, O'Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 2007; 115: 654-657

10 Walter SD, Sinuff T. Studies reporting ROC curves of diagnostic and prediction data can be incorporated into meta-analyses using corresponding odds ratios. J Clin Epidemiol 2007; 60: 530-534

11 Altman DG, Bland JM. Diagnostic tests 2: Predictive values. BMJ 1994; 309: 102

12 Altman DG, Bland JM. Diagnostic tests 3: receiver operating characteristic plots. BMJ 1994; 309: 188

13 Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin 2003; 53: 5-26

14 Pappas S, Federle MP, Lokshin AE, Zeh HJ 3rd. Early detection and staging of adenocarcinoma of the pancreas. Gastroenterol Clin North Am 2007; 36: 415-429, x

15 Takhar AS, Palaniappan P, Dhingra R, Lobo DN. Recent developments in diagnosis of pancreatic cancer. BMJ 2004; 329: 668-673

16 Misek DE, Patwa TH, Lubman DM, Simeone DM. Early detection and biomarkers in pancreatic cancer. J Natl Compr Canc Netw 2007; 5: 1034-1041

17 Delbeke D, Pinson CW. Pancreatic tumors: role of imaging in the diagnosis, staging, and treatment. J Hepatobiliary Pancreat Surg 2004; 11: 4-10

18 Sahani DV, Shah ZK, Catalano OA, Boland GW, Bruggge WR. Radiology of pancreatic adenocarcinoma: current status of imaging. J Gastroenterol Hepatol 2008; 23: 23-33

19 Karmazanovksy G, Fedorov V, Kubyzhkin V, Kotchatkov A. Pancreatic head cancer: accuracy of CT in determination of resectability. Abdom Imaging 2005; 30: 488-500

20 Hanbidge AE. Cancer of the pancreas: the best image for early detection--CT, MRI, PET or US? Can J Gastroenterol 2002; 16: 101-105

21 Andersson R, Vagianos C, Williamson R. Preoperative staging and evaluation of resectability in pancreatic ductal adenocarcinoma. HPB (Oxford) 2004; 6: 5-12

22 Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D, Fuhrer P. Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet 1979; 5: 957-971

23 Wu X, Lu XH, Xu T, Qian JM, Zhao P, Guo XZ, Yang XO, Jiang WJ. [The diagnostic value of serum carcinoma markers, fecal K-ras and p53 gene mutation in pancreatic cancers] Zhonghua Neike Zazhi 2005; 44: 714-744

24 Okusaka T, Okada S, Sato T, Waksugi H, Saisho H, Furuse J, Ishikawa O, Matsuno S, Yokoyama S. Tumor markers in evaluating the response to radiotherapy in unresectable pancreatic cancer. Hepatogastroenterology 1998; 45: 867-872

25 Liao Q, Zhao YP, Yang YC, Li LJ, Long X, Han SM. Combined detection of serum tumor markers for differential diagnosis of solid lesions located at the pancreatic head. Hepatobiliary Pancreat Dis Int 2007; 6: 641-645

26 Kang CM, Kim JY, Choi GH, Kim KS, Choi JS, Lee WJ, Kim BR. The use of adjusted preoperative CA 19-9 to predict the recurrence of resectable pancreatic cancer. J Surg Res 2007; 140: 31-35

27 Zhao JZ, Wu BH. Clinical significance of CA19-9 in diagnosis of digestive tract tumors. China Nati J New Gastroenterol 1997; 3: 253-254

28 Schlieman MG, Ho HS, Bold RJ. Utility of tumor markers in determining resectability of pancreatic cancer. Arch Surg 2003; 138: 951-955; discussion 955-956

29 Zakowski M, Seibert C, VanEyk S. Evidence-based medicine: answering questions of diagnosis. Clin Med Res 2004; 2: 63-69

30 Kilic M, Gocmen E, Tez M, Ertan T, Keskek M, Koc M. Value of preoperative serum CA 19-9 levels in predicting resectability for pancreatic cancer. Can J Surg 2006; 49: 241-244

S-Editor Li DL L-Editor Wang XL E-Editor Liu Y