INTRODUCTION

Magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments partially average anisotropic spin interactions in the magnetic resonance Hamiltonian through mechanical rotation of samples about the magic angle (54.7° with respect to the static magnetic field, \( B_0 \)). The spatial averaging extends relaxation times and improves the resolution of solid-state NMR spectroscopy \( 1, 2 \). Single resonances can often be assigned to chemically distinct nuclear spins to yield site-specific signatures encoding structural information and molecular dynamics \( 3-7 \). MAS NMR is, therefore, a powerful technique to characterize diverse molecular architectures including membrane proteins \( 8-15 \), amyloid fibrils \( 16-19 \), bacterial biofilms \( 20, 21 \), and materials and surfaces \( 22-25 \).

Mechanical sample rotation must be comparable to, or greater than, the frequency of the internal anisotropic spin interaction to produce significant averaging. Spinning frequencies less than 3 kHz and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby providing bearing gas to reduce friction, drive propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby converting the rotor body into a robust turbine with high torque. We demonstrate that 9.5-mm–outside diameter spherical rotors can be spun at frequencies up to 4.6 kHz with \( N_2(g) \) and 10.6 kHz with \( \text{He}(g) \). Angular stability of the spinning axis is demonstrated by observation of \( ^{79}\text{Br} \) rotational echoes out to 10 ms from \( \text{KBr} \) packed within spherical rotors. Spinning frequency stability of ±1 Hz is achieved with resistive heating feedback control. A sample size of 36 μl can be accommodated in 9.5-mm-diameter spheres with a cylindrical hole machined along the spinning axis. We further show that spheres can be more extensively hollowed out to accommodate 161 μl of the sample, which provides superior signal-to-noise ratio compared to traditional 3.2-mm-diameter cylindrical rotors.

MATERIALS AND METHODS

Commercial sources of relatively low-cost, high-precision spheres are available as industrial lubricants and ball bearings. We machined 36- or 161-μl sample chambers into yttria-stabilized zirconia (\( \text{ZrO}_2 \)) solid spheres with a diameter of 9.525 mm (Fig. 1, B and C). Twelve turbine grooves were cut into the spherical rotor longitudinally (O’Keefe Ceramics). Kel-F spacers and epoxy were used to seal the sample chambers (Fig. 1, B and C). Stators to house the spherical rotors were three-dimensionally (3D) printed from an acrylonitrile-butadiene-styrene material (Form 2 SLA printer, Clear V4 Resin, Formlabs).

All experiments were performed at a \( B_0 = 7.05 \) T corresponding to a \(^{79}\text{Br} \) Larmor frequency of 75.214 MHz. Spectra were recorded with a custom-built, two-channel, transmission line probe resonating a split solenoid sample coil. A Bloch decay with a pulse length of...
20 μs was used for spherical rotors, with a 1-s recycle delay. Spinning frequencies were measured on a testing apparatus outside the magnet with an LT-880 laser tachometer (Terahertz Technologies Inc.), as shown in fig. S2. Spinning frequencies during the NMR experiments were measured with fiber optics and a MAS control unit (Tecmag).

**RESULTS AND DISCUSSION**

**Spherical rotor design**

The spherical rotors contain cylindrical sample chambers and equatorial turbine grooves cut into the surface of the rotor. A large moment of inertia and improved spinning stability are achieved by ensuring that the mass distribution of high-density zirconia is distant from the spinning axis. The 36-μl sample chamber in spherical rotors matches the 3.2-mm cylindrical rotor (Fig. 1, A and B), and we further hollowed out the 9.5-mm-peripheral diameter rotors to accommodate 161 μl of the sample (Fig. 1C). Converting the zirconia rotor body into a turbine, rather than relying on turbine inserts, delivers a robust drive platform with high torque. The combination of cylindrical sample chambers and grooves establishes a preferred axis of rotation about a single axis (Fig. 1, B and C). This allows the spherical rotor to be inserted at arbitrary orientations within the stator (see movie S1). When spinning gas is applied, the sphere quickly samples different orientations until rotation about the preferred axis is established.

**Stator for spherical rotor**

Prototyping stator geometries with 3D printing greatly accelerated the production of a successful stator design (fig. S1). We chose to use relatively large dimensions (9.5 mm diameter) to leverage rapid prototyping with resolution readily available for 3D printing. For instance, we have now printed and tested 232 stators to spin spherical rotors. We expect improved spinning performance as the fluid flow is further optimized within precision-fabricated stators.

Figure 2 shows a selection of four stator designs that demonstrate progression to the current implementation. Initially, the stator was enclosed, and multiple gas streams (Fig. 2A), comparable to bearings and drive cups within cylindrical MAS stators, were used. However, these designs lead to spinning instability due to poor fluid...
flow dynamics. Simplification of the design to a single gas stream resulted in spinning about a single axis. Spinning stability with the single-stream stator was greatly improved by adding a pathway to guide the exhausting gas (Fig. 2B). Positioning the gas inlet aperture within the hemispherical stator at the complement to the magic angle resulted in stable MAS (Fig. 2C). In addition, Fig. 2D shows a vertical extrusion of 2 mm that improves fluid flow, resulting in faster spinning. Blind holes for fiber optics pass sufficient light to enable spinning frequency detection without affecting fluid flow (Fig. 2D).

Our current stator design (Figs. 2D and 3) incorporates only a single gas stream, which simultaneously provides bearing gas to reduce friction, propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Introducing this gas stream under the sphere 35.3° off of $B_0$ suspends the sphere and generates rotation of the sample at the magic angle of 54.7° (Fig. 3A). A plane at the end of the gas inlet, which is tangent to the hemispherical drive cup, guides the spinning gas into the stator (Fig. 3B). The spinning gas then exits through the exhaust opposite of the gas inlet. The gas inlet and exhaust are designed in a common plane that is perpendicular to the spinning axis of the rotor. Figure 3 (C and D) shows the flow path of the spinning gas through the stator.

**NMR probes**

The transmit-receive coil is a four-turn split solenoid wrapped around the stator. This design allows vertical access to the sample, albeit with decreased NMR sensitivity due to a low filling factor. We designed stators that were compatible with our current NMR probes. The design interfaces to an adjustment apparatus for magic angle optimization and also improves microwave illumination for DNP (Fig. 4). Implementation of spherical rotors simplified sample exchange by allowing vertical access to the sample. This eliminated the need for rotation of either the rotor or the stator before sample exchange, as is necessary for cylindrical rotors (30). The sample exchange now mimics systems typically used in solution NMR instrumentation. A simple tube connected to a wet/dry vacuum (model 3VE20, Dayton Electric Mfg. Co.) was used to extract and insert the sphere. With minor adjustments, this new compact MAS NMR stator and rotor design could be implemented in a wide variety of NMR probes for both narrow and wide bore magnets.

**Results with KBr**

$^{79}$Br yields quadrupolar spinning sidebands that are used to optimize the magic angle (36). Rotational echoes were observed at 10 ms in the time domain (Fig. 5A). The Fourier transform of the signal showed sidebands separated by the spinning frequency of 4297 Hz (Fig. 5B). The central resonance had a width of 123 Hz at half height, while the first sideband had a width of 143 Hz at half height, indicating spinning closely matching to 54.7° off the $B_0$ magnetic field. Figure 5C shows peak height ratios of the center band and second sidebands versus deviation from the magic angle, similar to the description by Frye and Maciel (36). The relative height of the center band compared to the sidebands decreases as the angle of rotation approaches the magic angle. Figure 5C indicates the ability to optimize the magic angle in MAS NMR experiments. Figure 5 (D and E) shows the regulated and unregulated spinning frequency over 22 min. Regulation of spinning frequency used a 12-ohm nichrome wire
Fig. 3. Our current stator design with a single gas stream. (A) The gas introduced under the sphere 35.3° off of $B_0$ suspends the sphere and aligns its spinning axis with the magic angle. (B) A section view from (A) shows the gas inlet path and how the gas is directed into the drive cup by a tangent plane. (C and D) Overall flow path of the spinning gas from two separate isometric views.

Fig. 4. Implementation of rotating spheres into a transmission line probe previously used in cryogenic MAS-DNP. (A) The pivots of the 3D printed stator serve as the gas inlet and as the pivot point for the magic angle adjustment. The complete NMR probe head includes fiber optics for spinning frequency detection, magic angle adjustment via a threaded adjustment assembly, waveguide to transmit microwaves to the sample for DNP, tube for sample exchange, and a 3D printed post for connection of the stator to the gas supply. An isometric view (B) and a section view (C) show the path for the introduction of microwaves to the sample for DNP. RF, radio frequency.
heating element to regulate the gas temperature (fig. S2) (37). Figure 5F indicates that 98% of the frequencies measured fall within 4560 ± 1 Hz. This frequency regulation system, which improves spinning stability in the spheres, has yet to be implemented with NMR signal detection.

The first-order sidebands in $^{79}$Br spectra of KBr were used to compare NMR sensitivity of three MAS rotor geometries: a 3.2-mm cylindrical rotor, a 36-μl spherical rotor, and a 161-μl spherical rotor (Fig. 1, D to F). Each spectrum is an average of 256 transients. Although the filling factor of the spherical rotors in a split solenoid coil is not ideal, the 161-μl spherical rotor yields better signal-to-noise ratios than the 3.2-mm cylindrical rotor.

We also investigated mechanical advantages imparted by the spherical shape of the rotors through further increasing centrifugal forces from spinning. Helium gas at high pressure resulted in >10-kHz spinning of the 9.5-mm-diameter spherical rotors. Rotors within the stator design shown in Figs. 2D and 3 were spun to 10.6 kHz using 11-bar He(g) on a testing apparatus outside the magnet (fig. S3). The sphere maintained spinning stability above 10 kHz, similar to that demonstrated in Fig. 5D. This observation provides promise...
that, with further optimization of fluid flow and scaling to smaller sizes, spinning frequencies of >150 kHz can be achieved.

**CONCLUSION AND OUTLOOK**

MAS spheres have been demonstrated with practical advantages over their cylindrical counterparts. Future implementation of spherical rotors is expected to lead to higher spinning frequencies through the optimization of turbine and stator geometry. With the relatively straightforward design of the current spherical rotors and supporting stators, the implementation of MAS spheres described here should scale well to micrometer-sized rotors. Access to small rotors will better enable MAS at frequencies > 150 kHz (34), and we are currently designing spheres ≤ 2 mm for MAS DNP.

The single aperture in stators used to spin spherical rotors could facilitate adoption of cryogenic MAS DNP into narrow-bore magnets. Currently, vacuum-jacketed transfer lines are required to provide separate bearing, drive, and variable temperature gases. MAS spheres, as demonstrated herein, only require a single gas stream, decreasing the space required within high-field superconducting magnet bores.

NMR sensitivity of samples packed within spherical rotors will be improved through modifications of the transmit-receive coil and stators. For instance, coil geometries such as saddle coils will yield better filling factors and are still amenable to simplified vertical sample exchange. Such inductors will also permit more efficient microwave coupling to the sample for MAS DNP experiments while maintaining sample exchange ability.

Finally, spherical rotors for magnetic resonance could also have widespread application in switched angle spinning (SAS) (38–40) and double angle rotation (DOR) (41, 42). For instance, introducing a second gas inlet into the stator could establish spinning off of the magic angle. Spherical rotors are expected to play a prominent role in the future development of MAS NMR.

**SUPPLEMENTARY MATERIALS**

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/4/9/eaaU1540/DC1

**REFERENCES AND NOTES**

1. J. J. Lowe, Free induction decays of rotating solids. *Phys. Rev. Lett.* 2, 285–287 (1959).
2. E. R. Andrew, A. Bradbury, R. G. Eades, Nuclear magnetic resonance spectra from a crystal rotated at high speed. *Nature* 182, 1659 (1958).
3. M. D. Tuttle, G. Cornell, A. J. Nieuwkoop, D. J. Covell, D. A. Berthold, K. D. Kloppel, J. M. Courtney, J. K. Kim, A. M. Barclay, A. Kendall, W. Wan, G. Stubs, C. D. Schwieters, V. M. Y. Lee, J. M. George, C. M. Rienstra, Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. *Nat. Struct. Mol. Biol.* 23, 1–9 (2016).
4. M. Kaplan, S. Narasimhan, C. de Heus, D. Mance, S. van Doorn, K. Houben, D. Popov–Čelekši, R. Dammam, E. A. Katrukha, P. Jain, W. J. J. Geerts, A. J. R. Heck, G. E. Folkers, L. C. Kapittein, S. Lemere, P. M. P. van Bergen en Bennekom, M. Baldus, EGFR dynamics change during activation in native membranes as revealed by NMR. *Cell* 167, 1241–1251.e11 (2016).
5. F. Castellanii, B. van Rossum, A. Diehl, M. Schubert, K. Rehbinder, H. Oschkinat, Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. *Nature* 420, 98–102 (2002).
6. S. G. Zech, A. J. Wand, A. E. McDermott, Protein structure determination by high-resolution solid-state NMR spectroscopy: Application to microcrystalline ubiquitin. *J. Am. Chem. Soc.* 127, 8618–8626 (2005).
7. B. G. Caulkins, R. P. Young, R. A. Kudla, C. Yang, T. J. Bittbauer, B. Bastin, E. Hilario, L. Fan, M. J. Marsella, M. F. Dunn, L. J. Mueller, NMR crystallography of a carboxanionic intermediate in tryptophan synthase: Chemical structure, tautomization, and reaction specificity. *J. Am. Chem. Soc.* 138, 15214–15226 (2016).
8. J. S. Retel, A. J. Nieuwkoop, M. Hiller, V. A. Higman, E. Barbet-Massin, J. Stanek, L. B. Andrews, W. T. Franks, B. J. van Rossum, K. R. Vinothkumar, L. Handel, G. D. de Palma, B. Bardiaux, G. Pivotaudca, L. Emsley, W. Kühbländt, H. Oschkinat, Structure of outer membrane protein G in lipid bilayers. *Nat. Commun.* 8, 2073 (2017).
9. M. T. Eddy, L. Andrews, O. Teijido, Y. Su, L. Clark, S. Y. Noskov, G. Wagner, T. K. Rostovtseva, R. G. Griffin, Magic angle spinning nuclear magnetic resonance characterization of voltage-dependent anion channel gating in two-dimensional lipid crystalline bilayers. *Biochemistry* 54, 994–1005 (2015).
10. Q. Z. Ni, T. V. Can, E. Daviso, M. Belenky, R. G. Griffin, J. Herzfeld, Primary transfer step in the light-driven ion pump bacteriorhodopsin: An irreversible U-turn revealed by dynamic nuclear polarization-enhanced magic angle spinning NMR. *J. Am. Chem. Soc.* 140, 4085–4091 (2018).
11. A. McDermott, Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. *Annu. Rev. Biophys.* 38, 385–403 (2009).
12. H. Yang, D. Staveness, S. M. Ryckbosch, A. D. Axtman, B. A. Løy, A. B. Barnes, V. S. Pande, J. Schaefer, P. A. Wender, I. Cegelski, REDOR NMR reveals multiple conformers for a protein kinase C ligand in a membrane environment. *ACS Cent. Sci.* 4, 89–96 (2018).
13. L. A. Baker, T. Sinnenge, P. Schellenberger, J. De Keyzer, C. A. Siebert, A. J. M. Driessen, M. Baldus, K. Grünewald, Combined ‘H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments. *Science* 26, 161–170.e3 (2018).
14. M. Renault, S. Pawsey, M. P. Bos, E. J. Koers, D. Nand, R. Tommassen–van Boxtel, M. Rosay, J. Tommassen, W. E. Maas, M. Baldus, Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. *Angew. Chem.* Int. Ed. Engl. 51, 2998–3001 (2012).
15. M. Kaplan, A. Cukkemane, G. C. P. van Zundert, S. Narasimhan, M. Daniels, D. Mance, G. Waksman, A. M. J. J. Bonvin, R. Fronzes, G. E. Folkers, M. Baldus, Probing a cell-embedded megadalton protein complex by DNP-supported solid-state NMR. *Nat. Methods* 12, 5–9 (2015).
16. A. B. Siemer, C. Ritter, M. Ernst, R. Riek, B. H. Meier, High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. *Angew. Chem.* Int. Ed. Engl. 44, 2441–2444 (2005).
17. C. L. Hoop, H.-K. Lin, K. Kar, G. Magyarfalvi, J. M. Lamley, J. C. Bozat, A. Mandal, J. R. Lewandowski, R. Wetzel, P. C. A. van der Wel, Huntingtin exon 1 fibrils feature an interdigitated β-hairpin–based polyglutamine core. *Proc. Natl. Acad. Sci. U.S.A.* 113, 1546–1551 (2016).
18. T. Thieng, P. S. Nadaud, A. Daucon, J. J. Helums, S. P. Pondaven, K. Sureuwic, W. K. Sureuwic, C. P. Jaroniec, Species-dependent structural polymorphism of Y145stop prion protein amyloid revealed by solid-state NMR spectroscopy. *Nat. Commun.* 8, 753 (2017).
19. A. T. Petkova, R. D. Leapman, Z. Guo, W.-M. Yao, M. P. Mattison, R. Tycko, Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. *Science* 307, 262–265 (2005).
20. O. A. McCrate, X. Zhou, C. Reichhardt, L. Cegelski, Sum of the parts: Composition and architecture of the bacterial extracellular matrix. *J. Mol. Biol.* 425, 4286–4294 (2013).
21. W. Thongsomboon, D. O. Serra, A. Possling, C. Hadjineophytou, R. Hengge, L. Cegelski, Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose. *J. Phys. Chem. B* 110, 6270–6273 (2006).
22. A. J. Rossini, A. Zagdoun, M. Lelli, J. Canivet, S. Aguado, O. Ouari, P. Tordo, M. Rosay, W. E. Maas, C. Copéret, D. Farrusseng, L. Emsley, A. Lesage, Dynamic nuclear polarization enhanced solid-state NMR spectroscopy of functionalized metal-organic frameworks. *Angew. Chem.* 124, 127–131 (2012).
23. Z. Wang, N. Opebeme, T. Kobayashi, N. C. Nelson, I. I. Slowing, M. Pruski, Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR. *Carbon* 131, 102–110 (2018).
24. A. Lesage, M. Lelli, D. Gajan, M. A. Caporini, V. Vitzthum, P. Mielew, J. Alauzun, A. Roussey, C. Thieuleux, A. Mehdii, G. Bodenhauen, C. Coperet, L. Emsley, Surface enhanced NMR
spectroscopy by dynamic nuclear polarization. J. Am. Chem. Soc. 132, 15459–15461 (2010).
26. L. B. Andreas, K. Jaudzems, J. Stanek, D. Lalli, A. Bertarella, T. Le Marchand, D. Cala-De Paepe, S. Kotelevtsova, I. Akopian, A. Knott, S. Wegner, F. Engelke, A. Lesage, L. Emsley, K. Tars, T. Herrmann, G. Pintacuda, Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc. Natl. Acad. Sci. U.S.A. 113, 9187–9192 (2016).
27. D. H. Zhou, D. T. Graesser, W. T. Franks, C. M. Rienstra, Sensitivity and resolution in proton solid-state NMR at intermediate deuteration levels: Quantitative linewidth characterization and applications to correlation spectroscopy. J. Magn. Reson. 178, 297–307 (2006).
28. N. P. Wickramasinghe, Y. Ishii, Sensitivity enhancement, assignment, and distance measurement in 13C solid-state NMR spectroscopy for paramagnetic systems under fast magic angle spinning. J. Magn. Reson. 181, 233–243 (2006).
29. V. Chevelkov, B. J. van Rossum, F. Castellani, K. Rehbein, A. Diehl, M. Hohwy, S. Steuernagel, F. Engelke, H. Oschkinat, B. Reif, 1H detection in MAS solid-state NMR spectroscopy of biomacromolecules employing pulsed field gradients for residual solvent suppression. J. Am. Chem. Soc. 125, 7788–7789 (2003).
30. A. B. Barnes, M. L. Mak-Junkauskas, Y. Matsuki, V. S. Bajaj, P. C. A. van der Wel, R. DeRocher, J. Bryant, J. R. Sirigiri, R. J. Ternkin, J. Lugtenburg, J. Herzfeld, R. G. Griffin, Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. J. Magn. Reson. 198, 261–270 (2009).
31. E. P. Saliba, E. L. Sesti, F. J. Scott, B. J. Albert, E. J. Choi, N. Alaniva, C. Gao, A. B. Barnes, Electron decoupling with dynamic nuclear polarization in rotating solids. J. Am. Chem. Soc. 139, 6310–6313 (2017).
32. D. E. M. Hoff, B. J. Albert, E. P. Saliba, F. J. Scott, E. J. Choi, M. Mardini, A. B. Barnes, Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization. Solid State Nucl. Magn. Reson. 72, 79–89 (2015).
33. T. V. Can, R. T. Weber, J. J. Walsh, T. M. Swager, R. G. Griffin, Frequency-swept integrated solid effect. Angew. Chem. Int. Ed. 56, 6744 (2017).
34. K. Xue, R. Sarkar, C. Motz, S. Asami, V. Decker, S. Wegner, Z. Tosner, B. Reif, Magic angle spinning frequencies beyond 300 kHz are necessary to yield maximum sensitivity in selectively methyl protonated protein samples in solid state NMR. J. Phys. Chem. C 122, 16437–16442 (2018).
35. M. Schuck, D. Steinert, T. Nussbaumer, J. W. Kolar, Ultrafast rotation of magnetically levitated macroscopic steel spheres. Sci. Adv. 4, e1701519 (2018).
36. J. S. Frye, G. E. Maciel, Setting the magic angle using a quadrupolar nuclide. J. Magn. Reson. 48, 125–131 (1982).
37. E. Mihaliuk, T. Guillou, Using heat to control the sample spinning speed in MAS NMR. J. Magn. Reson. 212, 249–253 (2011).
38. T. Terai, T. Fujii, T. Onodera, A. Saka, Switching-angle sample-spinning NMR spectroscopy for obtaining powder-pattern-resolved 2D spectra: Measurements of 13C chemical-shift anisotropies in powdered 3,4-dimethoxybenzaldehyde. Chem. Phys. Lett. 107, 145–148 (1984).
39. A. C. Kolbert, P. J. Grandinetti, M. Baldwin, S. B. Prusiner, A. Pines, Measurement of intermolecular distances by switched angle spinning. J. Phys. Chem. 98, 7936–7938 (1994).
40. I. M. Litvak, C. A. Espinosa, R. A. Shapiro, A. N. Oldham, V. V. Duong, R. W. Martin, Pneumatic switched angle spinning NMR probe with capacitively coupled double saddle coil. J. Magn. Reson. 206, 183–189 (2010).
41. B. F. Chmelka, K. T. Mueller, A. Pines, J. Stebbins, Y. Wu, J. W. Zwanziger, Oxygen-17 NMR in solids by dynamic-angle spinning and double rotation. Nature 339, 42–43 (1989).
42. A. Samoson, E. Lippmaa, A. Pines, High resolution solid-state N.M.R. Mol. Phys. 65, 1013–1018 (1988).

Acknowledgments: We thank J. Korvink, P. Gor’kov, A. Goldbourt, and J. Barnes for helpful discussions. Funding: This research was supported by NIH Director’s New Innovator award number DP2GM119131 and NSF CAREER award number DBI-1553577. Author contributions: A.B.B. and B.J.A. wrote the paper. P.C., B.J.A., E.W.F., F.J.S., C.G., V.A.L., H.B., M.A.B., and B.J.A. designed experiments. P.C., B.J.A., E.W.F., F.J.S., C.G., V.A.L., H.B., M.A.B., and B.J.A. performed experiments and analyzed data. P.T.J. and A.B.B. are authors on provisional patents related to this work filed by Washington University in Saint Louis (62/703,278 filed on 25 July 2018 and 62/672,840 filed on 17 May 2018). The authors declare no other competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 14 May 2018
Accepted 10 August 2018
Published 21 September 2018
10.1126/sciadv.aau1540

Citation: P. Chen, B. J. Albert, C. Gao, N. Alaniva, L. E. Price, F. J. Scott, E. P. Saliba, E. L. Sesti, P. T. Judge, E. W. Fisher, A. B. Barnes, Magic angle spinning spheres. Sci. Adv. 4, eaau1540 (2018).
Magic angle spinning spheres
Pinhui Chen, Brice J. Albert, Chukun Gao, Nicholas Alaniva, Lauren E. Price, Faith J. Scott, Edward P. Saliba, Erika L. Sesti, Patrick T. Judge, Edward W. Fisher and Alexander B. Barnes

Sci Adv 4 (9), eaau1540.
DOI: 10.1126/sciadv.aau1540