Human TEF-5 Is Preferentially Expressed in Placenta and Binds to Multiple Functional Elements of the Human Chorionic Somatomammotropin-B Gene Enhancer

(Received for publication, October 22, 1996, and in revised form, January 30, 1997)

Patrick Jacquemin‡§¶, Joseph A. Martial§, and Irwin Davidson‡¶

From the §Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, B.P. 163-67404 Illkirch Cedex, France and the ¶Laboratoire de Biologie Moléculaire et de Génie Génétique, Institut de Chimie-B6, Université de Liege, B-4000 Sart-Tilman, Belgium

We report the cloning of a cDNA encoding the human transcription factor hTEF-5, containing the TEA/ATTS DNA binding domain and related to the TEF family of transcription factors. hTEF-5 is expressed in skeletal and cardiac muscle, but the strongest expression is observed in the placenta and in placenta-derived JEG-3 choriocarcinoma cells. In correlation with its placental expression, we show that hTEF-5 binds to several functional enhancers of the human chorionic somatomammotropin (hCS)-B gene enhancer. We define a novel functional element in this enhancer comprising tandemly repeated sites to which hTEF-5 binds cooperatively. In the corresponding region of the hCS-A enhancer, which is known to be inactive, this element is inactivated by a naturally occurring single base mutation that disrupts hTEF-5 binding. We further show that the binding of the previously described placental protein f/hchorionic somatomammotropin enhancer factor-1 to TEF-binding sites is disrupted by monoclonal antibodies directed against the TEA domain and that this factor is a proteolytic degradation product of the TEF factors. These results strongly suggest that hTEF-5 regulates the activity of the hCS-B gene enhancer.

Human transcriptional enhancer factor (hTEF)-1 is the prototype member of the family of transcription factors containing the TEA/ATTS (hereafter called TEA) DNA binding domain (DBD, Refs. 1–3). Transcription factors belonging to this family have been identified in several organisms, where they fulfill different tissue specificities (Refs. 1 and 11–18 and references therein, and see below). The activity of these sites was originally attributed to the binding of TEF-1, the first cloned mammalian TEF factor, identified by its binding to the GT-IIC and Sp1 enhancers of the simian virus 40 (SV40) enhancer, where it regulates transcription from the early and late promoters (1, 19–26). TEF-1 is expressed widely, but not ubiquitously, from early stages of murine embryonic development and in many established cell lines (Refs. 27–29 and references therein). TEF-1 expression is particularly pronounced in developing skeletal and cardiac muscle and in mitotic neuroblasts. Despite this wide pattern of expression, TEF-1 null mice show defects only in the heart, leading to embryonic lethality (28).

The vertebrate genome encodes at least four related TEF factors with the TEA DBD (TEF-1, -3, -4, and -5; Refs. 13, 28, and 30–35), all of which bind to the consensus site (5'-(A/T)(A/G)(A/G)(A/T)(C/T)(G/A)-3'), containing a conserved ATG core. The TEF-3 factor (28), also called chick RTEF-1 (35) or mouse TEFR1/Fr-19 (Refs. 31 and 32; summarized in Table I) is expressed in several cell lines, and its expression can be induced by mitogenic stimulation of quiescent fibroblasts or by in vitro differentiation of myoblasts to myotubes (28, 31, 32). In contrast to TEF-1, the expression of TEF-3 during mouse embryonic development is largely restricted to the skeletal muscle lineage, where it can be clearly seen at 10.5 days postcoitum, although at later times it is also expressed in the developing lung and liver (28). In adult mice and chicken, TEF-3 is expressed also in cardiac muscle (31–33, 35). In addition to TEF-1 and TEF-3, DTEF-1, whose expression is also enriched in cardiac muscle, has been described in chicken (Ref. 33; see Table I). The muscle-enriched expression of these TEFs correlates with the expression of known target genes, such as α- and β- myosin heavy chain, α-skeletal actin, and cardiac troponin C, whose enhancers contain the TEF-binding M-CAT motif (11–17, 36–41), pointing to a potential role for these TEFs in skeletal and cardiac muscle development.

TEF-4 was first described as a neuron-specific factor in the mouse as ETP (Ref. 34; see Table I); however, we have shown that it is strongly expressed throughout the embryo as early as 6.5 days postcoitum, while at later times its expression becomes more restricted to mitotic neuroblasts and to various mesenchymes (28). At later stages of embryogenesis, TEF-4 is
also expressed in a number of developing organs (e.g., in the nephrogenic region of the kidney). Thus, the TEF-4 expression pattern is distinct from that of TEF-3 but partially overlaps with that of TEF-1. Although no target genes for the TEF factors have been described in neural and mesenchymal tissues, these observations suggest that TEF-1 and TEF-4 may play a role in neurogenesis and in the development of several organs. Thus, considered together, the above results suggest that the TEFs may play partially redundant roles in several developmental processes.

In addition to muscle-specific enhancers, putative TEF-binding sites have been noted in the placenta-specific human chorionic somatomammotrophic (hCS; also called placental lactogen) B gene enhancer (42–45). The hCS-B enhancer is active in the cytotrophoblast-derived JEG-3 cell line and is progressively activated during the differentiation of primary cytotrophoblasts to syncytiotrophoblast in vitro (46). This enhancer can be divided into two functional elements, DF-3 and DF-4, each of which have been postulated to contain TEF-binding sites. Point mutations affecting the putative TEF-binding site within DF-4 inactivate this element (46–48). The TEF-binding site in DF-4 is recognized by placental protein f (PPF) or chorionic somatomammotrophic enhancer factor-1 (CSEF-1) (43, 46–48). This factor(s) has not yet been identified, but it is apparently unrelated to TEF-1 (48).

By analogy to myogenesis, where muscle-specific TEF factors and target genes have been identified, a TEF factor(s) contributing to the function of placenta-specific enhancers may also exist. Here we report the cloning of hTEF-5, which is homologous to the B isoform of chicken DTEF-1 (33) and is expressed mainly in skeletal muscle and placenta. In correlation with this restricted expression pattern, we show that hTEF-5 binds to the M-CAT motifs of several muscle genes and to the TEF-binding site in the hCS-B DF-4 element. Furthermore, we have characterized a novel functional enhancer within the hCS-B DF-3 element composed of tandemly repeated binding sites to which hTEF-5 binds cooperatively. In the DF-3 element of the hCS-A enhancer, which is inactive in JEG-3 cells and syncytiotrophoblast, this enhancer is mutated by a naturally occurring single base change, which disrupts one of the conserved ATG cores and consequently hTEF-5 binding. We further show that PPF/CSEF-1 is immunologically related to the TEF domain and most likely corresponds to a proteolytic product of the TEF factors. Consequently, all of the factors identified to date interacting with the TEF-binding sites in the hCS-B enhancer belong to the TEF domain family. Together, these observations suggest that hTEF-5 is an important regulatory factor in the human placenta.

MATERIALS AND METHODS

Polymerase Chain Reaction Amplification and Screening of the Placental cDNA Library—Two degenerate oligonucleotides 5'-CCCAAGC-3' and 5'-CCCCAACCTTCA/GC/GA/A/GC/GA/A/GC/GA/A/GC/GA/T/G/T/G/A/AA/T/G (33), corresponding to the TEF domain amino acid sequences GRNELIA and HHHQLV, were used as polymerase chain reaction (PCR) primers with a cDNA library of human placental tissue as template. 30 cycles (1 min at 94 °C, 1.5 min at 40 °C, and 1.5 min at 72 °C) of PCR were performed under standard conditions in a 100-μl reaction volume with 200 pmol of each degenerate oligonucleotide primer, DNA from >10^4 plaque-forming units of phage, and 2 units of AmpliTaq polymerase (PerkinElmer). Amplification products of the correct size were gel-purified and cloned into the TA cloning vector (Invitrogen). DNA sequencing was performed on an Applied Biosystems automated sequencer. Unique specific probes for screening the placental cDNA library were generated by PCR using the degenerate primers described above and the partial hTEF-5 or full-length hTEF-1, hTEF-3, and hTEF-4 cDNAs as templates in the presence of [α-32P]dCTP. The cDNA library was screened by hybridization at 42 °C in 6× SSC, 50% formamide. Filters were washed at 55 °C in 3× SSC. Positive clones were picked and purified, and the DNA was excised from λ ExoL (Novagen) by standard procedures. The DNA sequences of both strands of each clone were determined using internal primers. DNA and protein sequence analysis were performed using the GCG (Genetics Computer Group, University of Wisconsin) software package.

Construction of Expression Vectors and Reporter Plasmids—The 5′-region was amplified from a cloned plasmid encoding the translation initiation isoleucine codon with ATG. The primers contained EcoRI or XhoI restriction sites, and the PCR fragment was cloned between the corresponding sites in pXJ41 (1). The DNA sequence of the expression vector was verified by automated DNA sequencing. The expression vectors for the other human and mouse TEFs were as described previously (28). Human and mouse TEF-3A cDNA clones encoding the alternatively spliced isoforms were PCR-amplified with primers containing EcoRI/XhoI restriction sites as described above and cloned into pXJ41. The hCS-B DF-3 reporter constructs were constructed by PCR using oligonucleotides bearing the appropriate mutations. The resulting fragments were cloned upstream of the thyminidine kinase promoter as described previously (43).

Transfections, Preparation of Cell Extracts, and Chloramphenicol Acetyltransferase (CAT) Assays—For EMSA, COS cells were transected by the calcium phosphate coprecipitation technique as described previously (26, 28). 48 h after transfection, the cells were harvested (from 60-mm diameter dishes), and extracts prepared by three cycles of freeze-thaw in 100 μl of buffer A (50 mM triis-HCl, pH 7.9, 20% glycerol, 0.5 mM phenylmethylsulfonyl fluoride, 0.1% Nonidet P-40, and 1 mM diithiothreitol) containing 0.5 mM KCl and 2.5 μg/ml of leupeptin, pepstatin, aprotinin, antipain, and chymostatin as described (28, 49). Generally, between 1 and 5 μl of the extracts were then used in EMSA. For CAT assays, 2 μg of reporter constructs and 1 μg of the Rous sarcoma virus-luciferase vector as an internal standard were introduced into JEG-3 cells by lipofection. 48 h after transfection, cell extracts were prepared and luciferase values were determined. After correction for the luciferase values, CAT assays were performed and quantitated on a Fujix BAS 2000 apparatus as described (50). JEG-3 whole cell extracts were prepared as described previously (46, 47).

Electrophoretic Mobility Shift Assays—The oligonucleotides containing the wild-type or mutated GT-IIC enhancer and the tandemly repeated GT-IIC or Sph enhancers were as described previously (1, 26). The oligonucleotides were 32P-5′-end-labeled using polynucleotide kinase and separated from unincorporated [γ-32P]ATP by chromatography on G50-Sepharose. The hCS-A and hCS-B DF-3 and DF-4 fragments were generated by PCR using 32P-5′-end-labeled oligonucleotides 7 and 8 or 2 and 5, respectively, as described (Ref. 43, and see boundaries (arrows) in Fig. 6B) using the appropriate DNA templates. EMSA were performed essentially as described previously (1, 26, 28) on 5% polyacrylamide gels in 0.5× standard TBE buffer. After electrophoresis, the gel was dried, and autoradiography was performed for a further hour. The extract was then centrifuged, and aliquots of the supernatant were used for EMSA.

Northern Blot and Reverse Transcription-PCR (RT-PCR)—A Northern blot containing immobilized total RNA from human tissues (CLONTECH) was hybridized with a continuously labeled full-length hTEF-5 probe generated by PCR in the presence of [α-32P]dCTP. Hybridization was performed overnight at 42 °C in buffer containing 6× SSC and 50% formamide.
12930

FIG. 1. A, sequences of human TEA domains. The upper part shows the amino acid sequence of human TEF-1. The positions of the predicted α-helices are indicated above the sequences. The arrows indicate the positions of the predicted α-helices. The lower part shows the nucleotide and amino acid sequences of the PCR-amplified TEA domain subregions from hTEF-1, hTEF-3, hTEF-4, and hTEF-5. B, the complete nucleotide and amino acid sequence of hTEF-5 is shown. The amino acid coordinates are indicated by the numbers in parentheses. The location of the TEA domain is indicated.
formamide. The blot was washed with 0.3 × SSC at 50 °C and subjected to autoradiography. After exposure, the blot was stripped and hybridized to a probe for cytoskeletal β-actin to verify that each lane contained RNA. For RT-PCR, total cytoplasmic RNA was isolated from the human cell lines by lysis with buffer B (50 mM Tris-HCl, pH 7.9, 0.1 M KCl, 0.5 mM EDTA, and 0.2% Nonidet P-40) and subsequent phenol/chloroform extractions and ethanol precipitations. To test the integrity of the RNA preparations, RT-PCR was performed using primers in the hRBP17 subunit common to all three RNA polymerases, generating a 630-nucleotide fragment (Ref. 51 and data not shown). Reverse transcription was performed with 2.5 μg of RNA for 30 min at 40 °C with 5 units of Moloney murine leukemia virus reverse transcriptase using the TEF-specific antisense primers: hTEF-4, 5'-CTTGGACTG-GATTTCCCT-3'; and hTEF-5, 5'-ACCTGGTACTCCCGCACC-3'. The primer sequences were chosen in separate exons to distinguish the cDNA product from possible contaminating genomic DNA. RT-PCR generated a 255-nucleotide fragment for hTEF-4 and a 302-nucleotide fragment for hTEF-5. Control PCR reactions were performed using 10 pg of the appropriate expression vectors or no DNA template. 30 cycles of PCR were performed with 1 min at 94 °C, 1.5 min at 53 °C, and 1.5 min at 72 °C in a 60-μl volume. 15 μl of the reaction was then electrophoresed, transferred to nitrocellulose, and hybridized to the homologous 32P-5'-end-labeled TEF domain probes generated by PCR using the degenerate oligonucleotide primers shown in Fig. 1A.

RESULTS

Isolation of a cDNA Encoding hTEF-5, a Homologue of Chicken DTEF-1—To isolate TEF factors expressed in human 12931

Expression of the TEF-1 TEA Domain and Monoclonal Antibody Production—The region of TEF-1 encoding the TEA domain (amino acids 28–104) was PCR-amplified with primers containing BamHI and EcoRI restriction sites, and the PCR product was cloned into the vector pGEX2T. The plasmid was transformed into the *Escherichia coli* DH5α strain, and expression of the fusion protein was induced by the addition of isopropyl-1-thio-β-D-galactopyranoside for 2 h. The fusion protein was purified by chromatography on glutathione-Sepharose (Pharmacia Biotech Inc.), eluted with reduced glutathione, and analyzed by SDS-polyacrylamide gel electrophoresis. Immunizations and monoclonal antibody production were performed as described previously (52–54). Briefly, mice were injected intraperitoneally three times at 2-week intervals with the purified GST-TEA fusion protein. Spleen cells were fused with Sp2/O AG 14 myeloma cells, and culture supernatants at day 10 were tested on COS cells transfected with pXJ40-TEF-1 by immunofluorescence or by enzyme-linked immunosorbent assay. The antibodies were also characterized by Western blotting against the GST-TEA domain fusion protein and the 6-His-tagged TEA domain protein (28). After generation of ascites fluid, the antibodies were purified by caprylic acid and ammonium sulfate precipitation as described previously (52–56).

Isolation of a cDNA Encoding hTEF-5, a Homologue of Chicken DTEF-1—To isolate TEF factors expressed in human
placenta, degenerate oligonucleotides corresponding to the conserved amino acids GRNELIA and the complement of HIQVL in α-helices 2 and 3 of the TEA domain (see Fig. 1A). The positions of the molecular mass standards are indicated to the right, and the hTEF-5 mRNAs are indicated to the left. The lower part shows a rehybridization of the same filter with the β-actin probe. Expression of TEF-4 and hTEF-5 in human cell lines. RT-PCR was used to amplify fragments of the TEF-4 and hTEF-5 mRNAs. After electrophoresis on a 6% acrylamide gel, an aliquot of the PCR reactions was transferred to nitrocellulose and hybridized with the homologous TEA domain probe. Lanes 1, 2, 9, and 10 show the amplification product generated using 10 pg of the corresponding expression vectors as templates, and lane 8 shows the product generated with no added template. The source of the RNA used in the other reactions is indicated above each lane. HeLa cells are derived from a cervical carcinoma, HepG2 from a hepatocarcinoma, Molt4 from a T-cell leukemia, IMR32 from a neuroblastoma, OVCAR-3 from an ovary adenocarcinoma, JEG-3 from a chorionicarcinoma, and CaCo-2 from a colon adenocarcinoma. Intestine (In) 407 cells are from embryonic intestine, and 293 cells are transfected embryonal renal cells.

In placenta, degenerate oligonucleotides used as indicated below each lane were hybridized with a 32P-labeled hTEF-5 DNA probe. The positions of the molecular mass standards are indicated to the right, and the hTEF-5 mRNAs are indicated to the left. The lower part shows a rehybridization of the same filter with the β-actin probe. Expression of TEF-4 and hTEF-5 in human cell lines. RT-PCR was used to amplify fragments of the TEF-4 and hTEF-5 mRNAs. After electrophoresis on a 6% acrylamide gel, an aliquot of the PCR reactions was transferred to nitrocellulose and hybridized with the homologous TEA domain probe. Lanes 1, 2, 9, and 10 show the amplification product generated using 10 pg of the corresponding expression vectors as templates, and lane 8 shows the product generated with no added template. The source of the RNA used in the other reactions is indicated above each lane. HeLa cells are derived from a cervical carcinoma, HepG2 from a hepatocarcinoma, Molt4 from a T-cell leukemia, IMR32 from a neuroblastoma, OVCAR-3 from an ovary adenocarcinoma, JEG-3 from a chorionicarcinoma, and CaCo-2 from a colon adenocarcinoma. Intestine (In) 407 cells are from embryonic intestine, and 293 cells are transfected embryonal renal cells.

FIG. 3. A, Northern blot analysis of hTEF-5 expression. A Northern blot (CLONTECH) containing human RNA from the tissues indicated above each lane was hybridized with a 32P-labeled hTEF-5 DNA probe. The positions of the molecular mass standards are indicated to the right, and the hTEF-5 mRNAs are indicated to the left. The lower part shows a rehybridization of the same filter with the β-actin probe. B, expression of TEF-4 and hTEF-5 in human cell lines. RT-PCR was used to amplify fragments of the TEF-4 and hTEF-5 mRNAs. After electrophoresis on a 6% acrylamide gel, an aliquot of the PCR reactions was transferred to nitrocellulose and hybridized with the homologous TEA domain probe. Lanes 1, 2, 9, and 10 show the amplification product generated using 10 pg of the corresponding expression vectors as templates, and lane 8 shows the product generated with no added template. The source of the RNA used in the other reactions is indicated above each lane. HeLa cells are derived from a cervical carcinoma, HepG2 from a hepatocarcinoma, Molt4 from a T-cell leukemia, IMR32 from a neuroblastoma, OVCAR-3 from an ovary adenocarcinoma, JEG-3 from a chorionicarcinoma, and CaCo-2 from a colon adenocarcinoma. Intestine (In) 407 cells are from embryonic intestine, and 293 cells are transfected embryonal renal cells.

FIG. 4. A, binding of TEF-1 and hTEF-5 to the GT-IIC enhancer from the SV40 enhancer. EMSA was performed with the 32P-labeled oligonucleotides used as indicated below each lane with extracts from COS cells transfected with the expression vectors for the TEF factors shown above each lane. WT, wild type; MT, mutant. x2 indicates that the sites are organized as a tandem repeat. The specific complexes A and B, in which one or both sites are occupied, are indicated along with the free probe (F). B, comparison of TEF binding to sites in muscle-specific promoters. The transfected TEFs used are shown above each lane. The sequences of the TEF binding sites in the oligonucleotide probes are shown at the bottom of each panel. Lanes 1–8, the GT-IIC enhancer of the SV40 enhancer; lanes 9–16, the β-myosin heavy chain (β-MHC) gene promoter proximal enhancer core element from −200 to −215 (37); lanes 17–24, the cardiac troponin T (cTNT) M-CAT1 motif from −83 to −101 (11). The specific B complex is indicated along with the analogous complex (‘‘B’’) generated with the TEF-3Δ isofoms. F, free probe.

TEF-5 Binds to TEF-binding Sites in the SV40 Enhancer and in Muscle Promoters—The hTEF-5 coding sequence was inserted into the pXJ41 (1) eukaryotic expression vector and transfected into COS cells. The transfected cell extracts were then used in EMSAs. Both TEF-1 and hTEF-5 bound specifi-
TEF-5 Binds to the hCS-B Enhancer

The relative binding efficiencies of hTEF-5 and the other TEF factors to sites present in several muscle-specific promoters were investigated. As described previously, hTEF-1, hTEF-3, hTEF-5, mTEF-3, and mTEF-4 all bind to the GT-IIC enhancer (Fig. 4B, lanes 2, 6, 7, 3, and 8, respectively). Similarly, binding of an alternatively spliced isoform of mouse and hTEF-5 lacking the exon after the TEA domain (TEF-3A; Refs. 31 and 32), was observed (Fig. 4B, lanes 4 and 5). Using the same amounts of transfected cell extracts that gave equivalent binding to the GT-IIC site, similar relative binding efficiencies to the M-CAT1 motif of the cardiac troponin T (cTNT) promoter were observed (Fig. 4B, lanes 17–24; Ref. 11). However, all of these factors bound with lower affinity to the proximal enhancer core motif of the rat β-myosin heavy chain (MHC) gene promoter (Fig. 4B, lanes 9–16; Ref. 37), whose sequence differs from the consensus (5′-ATG GC-3′; consensus 5′-ATG(C/T)(G/A)-3′). Quantitative PhosphorImager analysis indicated that the binding of hTEF-1 and mTEF-4 to this site was at least 2–3-fold weaker than that of mTEF-3, hTEF-3, and hTEF-5. These results show that all of the TEF factors bind to the TEF-binding sites in several muscle-specific promoters, albeit with slightly different affinities to the β-myosin heavy chain site.

hTEF-5 Binds to a Novel Functional Element of the hCS-B Enhancer—We next examined the binding of hTEF-5 to the enhancers of the placenta-specific hCS-B enhancer. Radiolabeled probes containing the DF-3 and DF-4 elements (Ref. 43; see Fig. 5B) were generated by PCR and used in EMSA. hTEF-5 bound specifically to the consensus TEF-binding site in the wild-type DF-4 (Refs. 42, 43, and 45; see Fig. 5A, lanes 1 and 2) but not to a DF-4 in which this site had been mutated (Fig. 5A, lanes 9 and 10). This same mutation inactivates the DF-4 element in JEG-3 cells and syncytiotrophoblast (46, 47).

A comparison of the activities of the closely related hCS-A and hCS-B DF-3 elements has shown that the hCS-A element is inactive in JEG-3 cells and syncytiotrophoblast (46, 47). These DF-3 elements differ by two nucleotide changes (Fig. 5A). In EMSA, hTEF-5 binds to the hCS-B DF-3 fragment to generate two complexes, A′ and B′, which are not formed on the equivalent fragment from the hCS-A enhancer (Fig. 5A, lanes 3 and 4). This observation suggests that one or both of the nucleotide changes disrupt an hTEF-5 binding site(s). Several potential TEF binding sites have already been pointed out in this region (Ref. 45; Fig. 5, A and B, sites III and IV); however, our inspection of the DF-3 sequence revealed two additional potential TEF-binding sites containing an ATG core (Fig. 5, A and B, sites I and II) arranged as a tandem repeat analogous to the Sph motifs in the SV40 enhancer. One of the base changes in the hCS-A enhancer mutates the ATG core of site II (Fig. 5A). To investigate the binding of hTEF-5 to these sites, oligonucleotides containing wild-type or mutated versions of sites hCS-B enhancer. The boundaries of the DF-3 and DF-4 elements are indicated by arrows. The potential hTEF-5 binding sites I–IV in DF-3 and the binding site in DF-4 are boxed. C, functional analysis of the hCS-B DF-3 hTEF-5 binding sites. The graph shows a quantitative PhosphorImager analysis of CAT assays performed after lipofection of the constructs shown into placental JEG-3 cells. The activity of the wild-type DF-3 element has been taken as 100%. The sequences of the DF-3 hTEF-5 binding sites in each construct are shown below the graph. An alignment of the sequences of the hCS-B and GT-IIC sites is also shown below the graph.
I–IV were used in EMSA. The binding of hTEF-5 to the wild-type oligonucleotide generated two retarded complexes, A and B (Fig. 5A, lane 5), analogous to those formed with the Sph enhancers, where complex A, in which both binding sites are occupied, is preferentially formed. Formation of these complexes was unaffected by mutation of site III (occupied, is preferentially formed. Formation of these complexes was unaffected by mutation of site III (lanes 5 and 6). PPF indicates the complexes formed by the JEG-3 cell PPF factor; B shows the complex formed by the full-length hTEF-5, and B’ represents the complex formed by the proteolytic degradation product present in the transfected cell extracts. Supershift indicates the GAL-VDR(DE)-DNA complex supershifted by mAb 2GV3. B, the lane is as in A. In lanes 3 and 4 the mAbs were added to the EMSA reaction, whereas lanes 5 and 6 show the extracts immunodepleted with the mAbs indicated above each lane. C, lanes 1 and 3 show the JEG-3 cell extract alone and the hTEF-5-transfected COS cell extract alone incubated at 37 °C for 30 min prior to EMSA. In lane 2, the cell extracts were mixed together and incubated as described above. B shows the complex formed by the binding of full-length TEF-5, and B’ represents the complex formed by a proteolytic digestion product. D, freeze-thaw rather than whole cell extracts were prepared from JEG-3 cells transfected with the expression vectors shown above each lane. B and B’ are as indicated in C.

FIG. 6. A. PPF/CSEF-1 is immunologically related to the TEF factors. The oligonucleotides used are indicated at the bottom of the panel, and the cell extracts are shown at the top. GT-IIC WT and MT indicate the wild-type and mutated probes, respectively. 17m WT contains a single 17-mer GALA binding site. The presence of the mAbs added to the reactions is indicated above each lane. Lane 1 contains the same concentration of mAbs 5F6 and 4G4 as lanes 5 and 10. PPF indicates the complexes formed by the JEG-3 cell PPF factor; B shows the complex formed by the full-length hTEF-5, and B’ represents the complex formed by the proteolytic degradation product present in the transfected cell extracts. Supershift indicates the GAL-VDR(DE)-DNA complex supershifted by mAb 2GV3. B, the lane is as in A. In lanes 3 and 4 the mAbs were added to the EMSA reaction, whereas lanes 5 and 6 show the extracts immunodepleted with the mAbs indicated above each lane. C, lanes 1 and 3 show the JEG-3 cell extract alone and the hTEF-5-transfected COS cell extract alone incubated at 37 °C for 30 min prior to EMSA. In lane 2, the cell extracts were mixed together and incubated as described above. B shows the complex formed by the binding of full-length TEF-5, and B’ represents the complex formed by a proteolytic digestion product. D, freeze-thaw rather than whole cell extracts were prepared from JEG-3 cells transfected with the expression vectors shown above each lane. B and B’ are as indicated in C.

To address the functional importance of these sites, a wild-type DF-3 element or DF-3 elements mutated in sites I, II, and IV were inserted upstream of the thymidine kinase promoter. These reporter plasmids— driven expression of the bacterial CAT gene. These reporter constructs were transfected into JEG-3 cells, and the resulting CAT activity was quantified by PhosphorImager analysis. The wild-type DF-3 element strongly stimulated CAT activity compared with the native thymidine kinase promoter (Fig. 5C, bars 1 and 2). The mutations in sites I and II that disrupted hTEF-5 binding resulted in an almost complete loss of DF-3 activity (bars 3 and 4). Mutation of site IV also resulted in a significant loss of activity (bar 5), while simultaneous mutation of sites I and IV completely abolished activity (bar 6). These results indicate that the hTEF-5 binding sites I and II are critical for the activity of the DF-3 element. Although site IV does not bind hTEF-5, the factor(s) that binds to this site cooperates with the TEF-binding sites I and II to generate DF-3 activity.

PPF/CSEF-1 Is Immunologically Related to the TEF Factors—The above results indicate that hTEF-5 is expressed in placenta and binds to several functional enhansons in the hCS-B enhancer. However, it has previously been reported that the DF-4 TEF-binding site is recognized by the low molecular mass PPF/CSEF-1, which in EMSA generates a complex with a different electrophoretic mobility from that of hTEF-5 (43, 46–48; see Fig. 6A). PPF recognizes the same sequence as hTEF-5, suggesting that this protein is either a TEF isoform or degradation product or an unrelated protein with the same binding specificity. Although it has been reported that CSEF-1/PPF is not related to the TEFs (48), we reasoned that due to its reported low molecular mass it may comprise little more than the TEA domain and the immediately surrounding sequences. To test this possibility, we generated monoclonal antibodies to the TEA domain (mAbs 4G4 and 5F6; see “Materials and Methods”) and used these antibodies in EMSA.

Incubation of oligonucleotides comprising the GT-IIC enhancer with JEG-3 whole cell extracts (WCE) generated specific PPF complexes (Fig. 6A and B, lanes 1 and 2). Preincubation of the JEG-3 WCE or transfected COS cell extracts with mAbs 5F6 and 4G4 inhibited binding of hTEF-5 (Fig. 6A, lanes 9 and 10) and the formation of the PPF complexes (Fig. 6A, lanes 4 and 5). In contrast, control mAbs against the TATA-binding protein (mAb 3G3 (52–54)) had no effect on the binding
of hTEF-5 or PPf (Fig. 6A, lanes 6 and 7 and lanes 11 and 12). Similarly, the anti-TEA domain antibodies did not inhibit the binding of a fusion protein containing the GAL4 DBD (in this case GAL-VDRE(DE)) (50)) to oligonucleotides containing a GAL4 binding site (Fig. 6A, lanes 13 and 14), while the GAL-VDRE(DE)-DNA complexes were supershifted by the anti-GAL4 DBD mAb 2GV3 (Ref. 56; Fig. 6A, lane 15).

In an alternative assay, the JEG-3 WCE was immunodepleted with mAbs 4G4 and 5F6 or with an mAb directed against human TATA-binding protein-associated factor 20 (mAb 22TA; Ref. 55), and aliquots of the immunodepleted extracts were used in EMSA. Using JEG-3 WCE immunodepleted with mAb 4G4 or 5F6, no PPf complexes were formed (Fig. 6B, lane 5), whereas these complexes were formed in extracts immunodepleted with the control mAb 22TA (Fig. 6B, lane 6). These results demonstrate that the PPf/CSEF-1 protein(s) are immunologically related to the TEA domain.

One explanation for the above results is that PPf is a proteolytic breakdown product of hTEF-5 or another TEF generated by a protease present in the JEG-3 WCE. To test this possibility, we incubated the transfected COS cell extracts either alone or with the JEG-3 WCE for 30 min at 37 °C prior to EMSA. When incubated alone, only minor proteolytic degradation was observed with the hTF5-transfected COS cell extract, and the resulting faster migrating complex (B') had an electrophoretic mobility different from that of the PPf complexes (Fig. 6C, lane 3). In contrast, when incubated with an aliquot of the JEG-3 WCE the amount of complex B generated by the binding of full-length hTF5 was significantly decreased with a concomitant increase in the PPf complexes (Fig. 6C, lanes 1 and 2). Thus, a protease present in JEG-3 WCE, but not in transfected COS cell extract, degrades hTF5, generating proteolytic fragments that form the PPf complexes.

We next determined whether the PPf breakdown products were the predominant TEF species present in JEG-3 cells or whether they were artefactually formed during the extraction procedure. To answer this question, extracts from JEG-3 cells transfected with pXJ41 or pXJ41-hTF5 were prepared, not by the WCE procedure, but by the simpler freeze-thaw protocol, and EMSA was performed. When extracts were prepared in this way from the hTF5-transfected cells, the predominant specific complex (B) was formed by the binding of full-length hTF5 (Fig. 6D, lanes 2 and 4). Strikingly, this complex was also the predominant specific complex formed in extracts from mock-transfected cells, while no PPf complexes were observed (lanes 1 and 3). Thus, the extracts made using the freeze thaw procedure, either from JEG-3 or COS cells, do not contain an active form of the protease that cleaves TF5 into the PPf product, although the B' product is still observed. These two proteolytic products are therefore likely to be generated by distinct proteases. These results further show that the TEF factors in JEG-3 cells are mainly full-length.

DISCUSSION

TEF-5 Is a Mammalian Homologue of Chicken DTEF-1—We report here the cloning of hTF5, related to the previously described human and murine TEF-1, -3, and -4 factors. Analysis of the amino acid sequence of hTF5 shows that, similar to TEF-1 and TEF-3 (1, 28), the protein initiates with a non-ATG codon, in this case ATA. The TEA domain of hTF5 contains only one amino acid substitution compared with that of TEF-1, and, as observed with the other TEFs, the C-terminal region is also highly conserved, but the N-terminal region and the region following the TEA domain are more divergent (28).

Comparison of the hTF5 amino acid sequence with other cloned TEFs indicated that hTF5 is most closely related to the B isoform of chicken DTEF-1 (84% identity). The TEA domain of the DTEF-1 B isoform contains the R100K amino acid substitution found in hTF5; however, none of the hTF5 clones analyzed contained the R87K and I94L substitutions found in the DTEF-1 A isoform (33). These results show that the vertebrate genome contains at least four highly related TEF genes conserved from chickens to humans.

The expression patterns of hTF5 and DTEF-1 may be somewhat different. In chickens, DTEF-1 is most strongly expressed in embryonic cardiac muscle, while very low levels are observed in skeletal muscle (33). On the other hand, in adults, hTF5 is expressed at approximately equivalent levels in both of these tissues. DTEF-1 is also expressed at moderate levels in the lung, whereas only trace levels of expression are detected for hTF5. Most strikingly, however, the predominant site of hTF5 expression is the placenta, a tissue that has no equivalent in chicken.

The expression of several TEFs is enriched in skeletal and cardiac muscle, and a variety of TEF target genes have been described in these tissues. This report together with previous results from our own and other laboratories (13, 17, 31–37, 57) show that all of the TEF factors can bind with similar relative affinities to sites present in the regulatory regions of several target genes. In adult skeletal muscle, TEF-1, TEF-3, and hTF5 are all expressed, suggesting that they may play redundant roles. In keeping with this idea, TEF-1 null mice show defects only in cardiogenesis, although this does not exclude the possibility that each TEF factor plays a specific role in skeletal muscle development and that additional functions of TEF-1 would have become evident only at stages subsequent to that at which the TEF-1 null embryos die. Moreover, we proposed (28) that the phenotype of the TEF-1 null mice reflected the fact that TEF-1 was the only TEF expressed in the developing myocardium. Since our present results show that hTF5 is expressed in adult cardiac muscle, further *in situ* hybridizations comparing the expression of TEF-1 and TEF-5 in the developing mouse embryo will be required to determine whether these two genes are coexpressed or are expressed at different stages of cardiogenesis.

A Potential Role for hTF5 in Placenta-specific Gene Expression—The predominant site of hTF5 expression is the placenta. This observation is consistent with the restricted expression of hTF5 in JEG-3 cells. We have previously reported that TEF-1, TEF-3, and TEF-4 were also expressed in JEG-3 cells (28); however, our present results suggest that this is not the case in the placenta. Low stringency screening of a placental cDNA library with probes for each TEF resulted in isolation of many independent hTF5 clones, two clones encoding truncated splice variants of hTF5, but no clones for hTF3 or hTF4. Although the splice variants of TEF-1 do not bind DNA, we cannot formally rule out the possibility that they perform some other function. Nevertheless, hTF5 is the predominant TEF expressed in the placenta.

To relate the placental expression of hTF5 to that of potential target genes, we show that hTF5 binds to multiple functional sites in the hCS-B enhancer. The DF-4 site, which is identical to the GF-IIC enhancer, binds hTF5, and mutations that inhibit hTF5 binding inactivate the DF-4 element. Other potential TEF binding sites have been pointed out in the DF-3 element. Several of these (see, for example, EM_6 in Ref. 45) are unlikely to be bona fide TEF-binding sites, since they lack the conserved ATG core sequence. However, two other sites identified in that study (see EM_4, designated sites III and IV in this study) contain an ATG core, but despite this homology, no binding of hTF5 (or TEF-1) was observed.
Nevertheless, adjacent to sites III and IV we identified two binding sites, organized as a tandem repeat reminiscent of the Sp1 enhansons, to which hTEF-5 binds cooperatively as previously proposed (44, 58), the hCS enhancer contains transcription products, raising the possibility that proteolysis of the TEF factors may be important for their function. However, this idea is not supported by the observation that, when an alternative extraction procedure is used, predominantly full-length TEF factors are detected, showing that an artefactual, but selective proteolysis occurs during extract preparation. In conclusion, our results demonstrate that all of the factors described to date that interact with the TEF-binding elements of the hCS-B enhancer belong to the TEF family of transcription factors, further highlighting the potential role of these factors in placental transcription.

Acknowledgments—We thank M. Vigneron, J. Acker, and K. Yamamoto for different materials used in this study; P. Chambon for support; R. Fraser for critical reading of the manuscript; L. Carré for technical assistance; Y. Lutz and the monoclonal antibody facility; J-M. Garnier and T. Lerouge for providing the cDNA library; S. Vicaire and P. Hamman for DNA sequencing; the oligonucleotide facility; the staff of the cell culture facility for providing the cell lines; and B. Boulay, J. M. Laflontaine, R. Buchert, S. Metz, and C. Wérole for figures.

REFERENCES

1. Xiao, J. H., Davidson, I., Matthes, H., Garnier, J. M., and Chambon, P. (1991) Mol. Cell. Biol. 11, 551–568
2. Andrianopoulos, A., and Timberlake, W. E. (1991) Plant Cell 3, 747–748
3. Burglin, T. R. (1991) Cell 66, 11–12
4. Laloux, I., Dubois, E., Dewerchin, M., and Jacobs, E. (1990) Mol. Cell. Biol. 10, 3541–3550
5. Laloux, I., Jacobs, E., and Dubois, E. (1994) Nucleic Acids Res. 22, 999–1005
6. Gavrias, V., Andrianopoulos, A., Gimeno, C. J., and Timberlake, W. E. (1996) Mol. Microbiol. 19, 1285–1293
7. Mirabito, P. M., Adams, H., and Timberlake, W. E. (1989) Cell 57, 859–868
8. Andrianopoulos, A., and Timberlake, W. E. (1994) Mol. Cell. Biol. 14, 2503–2515
9. Campbell, S., Inamdar, M., Rodrigues, V., Raghavan, V., Palazollo, M., and Chovnick, A. (1992) Genes & Dev. 6, 367–379
10. Inamdar, M., Vijayraghavan, K., and Rodrigues, V. (1993) J. Neurogenet. 9, 123–139
11. Mar, J. H., and Ordahl, C. P. (1990) Mol. Cell. Biol. 10, 4271–4283
12. Shimizu, N., Dixon, E., and Zak, R. (1992) Mol. Cell. Biol. 12, 619–630
13. Shimizu, N., Smith, G., and Izumo, S. (1993) Nucleic Acids Res. 21, 4153–4110
14. Fleck, I. L., Edwards, J. J. G., Balf, J. J., Liew, C. C., Sole, M., and Morkin, E. (1992) J. Biol. Chem. 267, 9917–9924
15. Molkentin, J. D., and Markham, B. E. (1994) Mol. Cell. Biol. 14, 5056–5065
16. Koots, S., Rindt, H., Neumann, J., and Robbins, J. (1994) J. Biol. Chem. 269, 31273–31282
17. Sun, S., Stoffel, E. S., Cogan, J. J., Strach, A. R., and Getz, M. J. (1995) Mol. Cell. Biol. 15, 2429–2438
18. Ishii, T., Lace, M. J., Parkkinnen, S., Anderson, R. D., Haugen, T. H., Cripe, T. F., Xiao, J. H., Davidson, I., Chambon, P., and Turek, L. P. (1992) EMBO J. 11, 2271–2281
19. Xiao, J. H., Davidson, I., Ferrandon, D., Rosales, R., Vigneron, M. Marchi, M., Ruffenach, F., and Chambon, P. (1987) EMBO J. 6, 3005–3013
20. Davidson, I., Xiao, J. H., Rosales, R., Staub, A., and Chambon, P. (1988) Cell 54, 931–942
21. Gruda, M. C., and Alwine, J. C. (1991) J. Virol. 65, 3535–3538
22. Casaz, P., Sundseth, R., and Hansen, U. (1991) J. Virol. 65, 6535–6543
23. Kelly, J. J., and Wildeman, A. (1991) Nucleic Acids Res. 19, 6799–6884
24. Gruda, M. C., Zabolotny, J. M., Xiao, J. H., Davidson, I., and Alwine, J. C. (1993) Mol. Cell. Biol. 13, 961–969
25. Berger, L. C., Smith, S. M., Davidson, I., Hwang, J. J., Fanning, E., and Wildeman, A. G. (1990) J. Virol. 70, 1203–1212
26. Hwang, J. J., Chambon, P., and Davidson, I. (1993) EMBO J. 12, 2337–2348
27. Chen, Z., Friedrich, G. A., and Soriano, P. (1994) Genes & Dev. 8, 2293–2301
28. Jaquemain, P., Hwang, J. J., Martantal, A. D., Doleli, P., and Davidson, I. (1996) J. Biol. Chem. 271, 31773–31778
29. Nothias, J. Y., Kaneko, K. J., and dePamphilis, M. L. (1995) J. Biol. Chem. 270, 22077–22080
30. Blatt, C. M., and dePamphilis, M. L. (1995) Nucleic Acids Res. 21, 747–748
31. Hsu, D. K., Wu, Y., Alberts, B., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Pei, K., and Winkles, J. A. (1996) J. Biol. Chem. 271, 13786–13795
32. Yockey, C. E., Smith, G., Izumo, S., and Shimizu, N. (1996) J. Biol. Chem. 271, 3727–3736
33. Azakie, A., Larkin, S. B., Farrance, I. K., Genningsho, G., and Ordahl, C. P. (1996) J. Biol. Chem. 271, 8260–8265
34. Yasunami, M., Suzuki, K., Houtani, T., Sugimoto, T., and Ohkubo, H. (1995) J. Biol. Chem. 270, 18649–18654
35. Stewart, A. F. R., Larkin, S. B., Farrance, I. K. G., Mar, J. H., Hall, D. E., and
36. Farrance, I. K. G., Mar, J. H., and Ordahl, C. P. (1992) J. Biol. Chem. 267, 17234–17240
37. Kariya, K., Karns, L. R., and Simpson, P. C. (1994) J. Biol. Chem. 269, 3775–3782
38. Gupta, M. P., Gupta, M., and Zak, R. (1994) J. Biol. Chem. 269, 29677–29687
39. MacLellan, W. R., Lee, T. C., Schwartz, and Schneider, M. D. (1994) J. Biol. Chem. 269, 16754–16760
40. Karns, L. R., Kariya, K., and Simpson, P. C. (1995) J. Biol. Chem. 270, 410–417
41. Larkin, S. B., Farrance, I. K. G., and Ordahl, C. P. (1996) Mol. Cell. Biol. 16, 3742–3755
42. Walker, W. H., Fitzpatrick, S. L., and Saunders, G. F. (1990) J. Biol. Chem. 265, 12940–12948
43. Jacquemin, P., Oury, C., Peers, B., Morin, A., Belayew, A., and Martial, J. A. (1994) Mol. Cell Biol. 14, 93–103
44. Lytras, A., and Cattini, P. A. (1994) Mol. Endocrinol. 8, 478–489
45. Jiang, S-W., and Eberhardt, N. L. (1994) J. Biol. Chem. 269, 10384–10392
46. Jacquemin, P., Alsat, E., Oury, C., Belayew, A., Muller, M., Evian-Brion, D., and Martial, J. A. (1996) DNA Cell Biol. 15, 845–854
47. Jacquemin, P., Oury, C., Belayew, A, Martial, J. A. (1994) DNA Cell Biol. 13, 1037–1045
48. Jiang, S-W., and Eberhardt, N. L. (1995) J. Biol. Chem. 270, 13906–13915
49. Mengus, G., May, M., Jacq, X., Staub, A., Tora, L., Chambon, P., and Davidson, I. (1995) EMBO J. 14, 1520–1531
50. May, M., Mengus, G., Lavigne, A. C., Chambon, P., and Davidson, I. (1996) EMBO J. 15, 3093–3104
51. Shpakovsky, G. G, Acker, J., Wintzerith, M., Lacroux, J. F., Thuriau, P., and Vigneron, M. (1995) Mol. Cell Biol. 15, 4702–4710
52. Brou, C., Chaudhary, S., Davidson, I., Lutz, Y., Wu, J., Egly, J. M., Tora, L., and Chambon, P. (1993) EMBO J. 12, 489–499
53. Chaudhary, S., Brou, C, Valentin, M. E., Burton, N., Tora, L., Chambon, P., and Davidson, I. (1994) Mol. Cell. Biol. 14, 5290–5299
54. Lesure, A., Lutz, Y., Eberhardt, D., Jacq, X., Krol, A., Grummt, I., Davidson, I., Chambon, P., and Tora, L. (1994) EMBO J. 13 1166–1175
55. Lavigne, A. C., Mengus, G., May, M., Dubrovskaya, V., Tora, L., Chambon, P., and Davidson, I. (1996) J. Biol. Chem. 271, 19774–19780
56. White, J. H., Brou, C, Wu, J., Lutz, Y., Moscellin, V., and Chambon, P. (1992) EMBO J. 13, 2229–2240
57. Farrance, I. G. K., and Ordahl, C. P. (1996) J. Biol. Chem. 271, 8266–8274
58. Lytras, A., Surabhi, R. M., Zhang, J. F., and Cattini, P. A. (1996) Mol. Cell. Endocrinol. 119, 1–10