Introduction

The assembly of polymeric coordination cages, from a combination of metal ions and relatively simple bridging ligands, has fascinated coordination chemists more over the last two decades.1 These assemblies have elegantly demonstrated how the formation of architecturally complex systems is directed by the interplay between simple parameters such as the stereo-electronic preference of the metal ions and the disposition of the binding sites in the ligand. Establishment of design principles is a reliable starting point for the construction of complex metal–organic assemblies.2 Despite the recent development in strategies of self-assembly of polynuclear cage-structures, the basic question of the predictability of the architecture of self-organization products remains open.3 The main reason is the large number of factors that directly or indirectly affect the mechanism of self-assembly and this results in changes of the complex topology. Partly a question of predictability for complex structures has been settled for clusters on a rigid ligand basis. Polycarboxylate and polypyridyl ligands have appeared as very appealing tectons for the design of a great diversity of transition metal compounds with unusual topology and properties.4 A much more complicated and unpredictable situation develops when ligands with flexible spacers are used in the synthesis. Serendipity continues to play a major role in many examples of self-assembly for such systems. The systematic studies of self-assembled complexes based on flexible poly(pyridyl) ligands, by Lehn and co-workers5 and other groups6,7 allowed determining the strategy of synthesis of such compounds and stimulated much further research. Therefore, Ward and coworkers7 have reported an extensive series of high-nucleity cages based on the self-assembly of metal cations with edge-bridging (ditopic) or face-capping (tritopic) bridging ligands containing two or three pyrazolopyridine units. Except for relatively simple mononuclear complexes, an impressive number of polyhedral shapes of polynuclear complexes, e.g. M₄L₄ tetrahedra, M₄L₉ trigonal prisms, M₄L₁₂ cubes and ‘cuneane’, M₁₂L₁₈ truncated tetra-
hedra, and $M_{16L_{24}}$ tetra-capped truncated tetrahedra, have been described.7 In our previous studies, we described a new type of bis-bidentate bridging ligands on a pyridyl-triazole basis,8 which is structurally related to the abovementioned pyrazolyl ligands of Ward’s group. We have demonstrated several unusual complexes on a bistriazole basis with a monomethylene linker and in its absence thereof. The coordination chemistry of ligands in which triazolyl-pyridine chelating arms bind by a long chain is less studied. A few examples of 3d-metal complexes with a similar type of ligand indicate that the formation of mononuclear compounds is most probable.8,9

In order to continue our research in this paper we report on the crystal structure and magnetic properties of novel complexes $Fe(\text{II})$, $Co(\text{II})$ and $Ni(\text{II})$ containing $[5-(2$-$\text{pyridine-2-yl})$-$1,2,4$-$\text{triazole-3-yl}]$-alkane ligands (L_2 = $1,2$-$\text{bis}(5-(\text{pyridine-2-yl})$-$1,2,4$-$\text{triazol-3-yl})$-$\text{ethane}$, L_3 = $1,3$-$\text{bis}(5-(\text{pyridine-2-yl})$-$1,2,4$-$\text{triazol-3-yl})$-$\text{propane}$, L_4 = $1,4$-$\text{bis}(5-(\text{pyridine-2-yl})$-$1,2,4$-$\text{triazol-3-yl})$-$\text{butane}$, Scheme 1). We have prepared and characterized five series of mononuclear and binuclear complexes. Their magnetic properties were studied by SQUID magnetometry and analyzed using the spin Hamiltonian formalism. The analysis was supported by DFT calculations. Furthermore, it was revealed that some of the $Co(\text{II})$ and $Fe(\text{II})$ compounds exhibited solid-state luminescence.

Results and discussion

Synthesis and structure

Previous studies performed on coordination compounds with bis[5-$\text{pyridine-2-yl})$-$1,2,4$-$\text{triazol-3-yl}]$-alkane ligands demonstrated a strong impact of aliphatic chain lengths on the observed coordination modes and nuclearity of the prepared complexes. E.g., it was observed that if two bidentate (5-$\text{pyridine-2-yl})$-$1,2,4$-$\text{triazol-3-yl})$-alkane fragments are linked by monomethylene spacer high-nuclearity complexes with the structures of double helicates and tetra- and octanuclear molecular cages were prepared.8 This study reports on the reactions of $Ni(\text{II})$, $Co(\text{II})$ and $Fe(\text{II})$ salts with bis-$\text{pyridyl-triazolyl-alkanes}$ in which the chelating arms are linked by $-(\text{CH}_2)_n-$ chains (n = 2, 3, 4) (Scheme 1). It could be reasonably expected that an increase in the flexibility of a polymethylene spacer due to prolongation of the alkyl chain increases the likelihood of the mononuclear coordination mode. In fact, the reaction between L_2 and $Ni(\text{II})$, $Co(\text{II})$ and $Fe(\text{II})$ salts led to the preparation of mononuclear complexes, which were identified by ESI mass spectroscopy (observation of the main peaks corresponding to mononuclear species $[M(L_2)]^+$).

Furthermore, recrystallisation of the solid products from methanol resulted in the isolation of single crystals, which were measured by single-crystal X-ray diffraction. The determined crystal structures revealed that complexes 1a and 1b are mononuclear. In the molecular structures of both complex cations the ligand L_2 is coordinated to the $Ni(\text{II})$ and $Co(\text{II})$ centers in a tetradentate chelate fashion with two other coordination sites (axial positions) occupied by aqua ligands (Fig. 1). The dihedral angle between the least-square planes of coordinated pyridyl-triazolyl moieties adopts significantly different values: 4.88° (1a) and 24.12° (1b). The M-L bonds involving triazolyl nitrogen (NTz) and aqua (H_2O) bond lengths are slightly longer in the $Co(\text{II})$ complex 1b, especially in the case of bonds involving pyridyl nitrogen atoms (NPy): $Co-N_{\text{Py}} = 2.221$ Å vs $Ni-N_{\text{Py}} = 2.157$ and 2.164 Å. The M-L bonds involving triazolyl nitrogen (NTz) and aqua (H_2O) bond lengths are slightly longer in the $Co(\text{II})$ complex 1b, especially in the case of bonds involving pyridyl nitrogen atoms (NPy): $Co-N_{\text{Py}} = 2.221$ Å vs $Ni-N_{\text{Py}} = 2.157$ and 2.164 Å. The M-L bonds involving triazolyl nitrogen (NTz) and aqua (H_2O) bond lengths are slightly longer in the $Co(\text{II})$ complex 1b, especially in the case of bonds involving pyridyl nitrogen atoms (NPy): $Co-N_{\text{Py}} = 2.221$ Å vs $Ni-N_{\text{Py}} = 2.157$ and 2.164 Å.

![Scheme 1](image-url) The schematic representation of formation of complexes.

![Fig. 1](image-url) Pictures of molecular structures of complex cations in 1a and 1b. Molecular structures presented as ADP ellipsoids at 50% probability (solvate and counter anions are omitted for clarity). Colour code: C (grey), N (blue), O (red), and Co or Ni (light blue).
increases the flexibility of the ligand and allows it to coordinate with the same metal ion. This contrasts with the related bis(pyridyl-triazolyl)-methane ligands (L1), which typically act as a bridging ligand.

We expected that a further increase in the number of methylene groups in the ligand’s spacer to three (L3 = 1,3-bis(5-(2-pyridine-2-yl)-1,2,4-triazole-3-yl)propane) and four (L4 = 1,4-bis(5-(2-pyridine-2-yl)-1,2,4-triazole-3-yl)butane) would also make the mononucleating coordination mode more preferable. The reaction of Ni(II), Co(II) and Fe(II) salts with L3 or L4 afforded two series of complexes 2a–c and 3a–c for which a simple formula [M(L3/4)(H2O)n]Xn−H2O (X indicates nitrate (M = Ni, Co) or tetrafluoroborate-anions (M = Fe)) can be derived based on the results of elemental analysis. However, the ESI-mass spectrometric data clearly suggested that M : L3/4 = 2 : 2 complexes had formed (see Fig. S1 in the ESI† as an example). Binuclear structures of complexes 2a–c and 3a–c were subsequently confirmed by single-crystal X-ray diffraction determination of their crystal structures. Single-crystals of complexes 2b, 3a and 3b were isolated by recrystallisation of the precipitate from propanol-2 or methanol. The structures of the complexes 2b and 3b are shown in Fig. 2.

Complex cations in 2b, 3a and 3b are dinuclear double-stranded helicates, in which two ligands wrap around two metal atoms, which make the molecules chiral. However, since the space groups are centrosymmetric (2b: P2₁/n, 3a: Pnaa, 3b: P2₁/c), the two enantiomers co-crystallize within the same crystal, and in 3a, both enantiomers are in the asymmetric unit of the crystal structure.

The molecular structures of complex cations in 2b, 3a and 3b consist of two M(u) atoms, which are hexacoordinated by four donor nitrogen atoms originating from two pyridyl-triazolyl chelating subunits from each of the two different ligands and the remaining coordination sites are occupied by two aqua ligands in the cis-position to give a pseudo-octahedral shape to the coordination polyhedra. The M–N₁₈ bond lengths are again longer than those of M–N₁₆ and also Co complexes 2b and 3b adopt slightly longer M–L bonds than the Ni complex 3a (in Å): d(M–N₁₆) = 2.14−2.19 in 2b, 2.11−2.16 in 3a, and 2.15–2.20 in 3b; d(M–N₁₈) = 2.13–2.17 in 2b, 2.11–2.13 in 3a, and 2.11–2.16 in 3b. The Co–O distances are very similar in all three compounds (in Å): d(M–O) = 2.07−2.14 in 2b, 2.07–2.12 in 3a and 2.06–2.10 in 3b. The M⋯M distances within a binuclear helicate are significantly shorter for 2b than those for 3a and 3b which agrees with the length of the alkyl spacer in 2b (L3) vs. 3a and 3b (L4), (in Å): d(M⋯M) = 7.2989(6) in 2b, 7.891 in 3a, and 8.720 and 8.532 in 3b.

Remarkably, the main difference between the molecular structures of complex cations with ligands L2 and L3 or L4, e.g. between 1a and 3a, 2b or 3b and 1b, is due to the different degrees of rotation of the pyridyl-triazolyl arms. Two chelating arms from each ligand in 2b, 3a and 3b are rotated relative to each other by the angles of 49.4–74.7° due to the spacer’s flexibility. Most likely, the larger conformational flexibility of the ligands L3 and L4 leads to the thermodynamically more stable binucleating coordination mode of these ligands, which is in contrast to compounds involving ligand L2.

A notable feature of the molecular structures of the complexes 2a–3c is the formation of a metallacycle M–L₂–M allowing us to possibly encapsulate small guest molecules in its cavity. A rational design of host molecules that can selectively recognize guests is one of the main achievements of supramolecular chemistry; therefore the studies of such objects are of current interest in some research groups. Despite the appropriate M⋯M distances in the studied complexes, and a relatively large cavity, our attempts to bind different ligands such as pyrazine, azide and oxalate-anions inside of 2a–3c resulted in the isolation of the ‘empty’ host complexes or led to the precipitation of unidentified insoluble products. As an alternative approach, we explored whether a guest molecule can be trapped inside the host during self-assembly. We treated Ni(u), Co(u) and Fe(u) salts with L3 or L4 and potassium oxalate in a
The molecular structures of 4a and 4c (Fig. 3) shows that L3 acts as a bridging ligand between the two metal centers in a ‘face-to-face’ (non-helical) arrangement and they coordinate metal centers by two bidentate pyridyl-triazolyl chelating moieties (one from each ligand L3). The formation of a binuclear complex is further supported by the bridging oxalate ligand, indicating the formation of binuclear metallallocyclic structures in solution (Fig. S2 in the ESI†).

In 4a all M–L bond lengths lie in the range of 2.07–2.13 Å, whereas Ni–NPy has the longest (2.121 and 2.123 Å) and Ni–O the shortest (2.070 Å) bond lengths. Formation of the Ni[μ(ox)]2+ core leads to a rather short Ni···Ni separation of 5.392 Å.

The Fe–N bond lengths in 4c (2.15–2.21 Å) are indicative of a high-spin state of the Fe(n) atom of 4c, which is not surprising given the nature of the ligand donor set.10 The two Fe–O bonds are slightly shorter (2.11–2.12 Å). Again, the formation of the {Fe2(μ-ox)}2+ core leads to a rather short Fe···Fe distance of 5.515 Å. The mutual rotation of two bidentate triazolyl-pyridyl arms is different when compared to the previously discussed structures of complex cations (vide supra). The angle between the least-square planes of the triazolyl-pyridine moieties located on the same ligand adopt rather large values: 90.0° in 4a and 88.6° in 4c.

The crystal structure was determined also for compounds 5a–c and it was revealed that these compounds belong to an isostuctural series (space group P21/c). Increasing the length of the spacer from three methylene groups in L3 to four in L4 does not affect the type of the coordination mode. All complex cations within this series consist of two L4 ligands, one oxalate ligand bridging two metal atoms and thus forming binuclear [M2(L4)2(μ-ox)]2+ molecules, which are very similar to [M2(L3)2(μ-ox)]2+ cations from 4a–c. In the Fig. 4 the molecular structure of the [Ni2(L4)2(μ-ox)]2+ cation (5a) is shown as a typical example within the 5a–c series.

The metal atoms adopt the expected distorted octahedral coordination geometry in which they are coordinated by four nitrogen atoms (from two triazolyl-pyridine moieties of ligand L4) and two oxygen atoms from the oxalate-anion. The bond lengths around Co(n) and Fe(u) are consistent with those expected for the high-spin state and the average M–L bond lengths decrease in the order Fe (2.162 Å) > Co (2.131 Å) > Ni (2.089 Å). The intradimer M···M distances are rather short (in Å): 5.436 Å in 5a, 5.522 Å in 5b and 5.569 Å in 5c. Coordinated ligands L4 are arranged in a ‘butterfly-like’ shape arising from the face-to-face arrangement. The longer length of the spacer (when compared with L3) and the rigidity of the {M2(μ-ox)}2+ core led to the formation of this atypical conformation of the aliphatic chain (Fig. 5). The angles between the least-square planes of the triazolyl-pyridine moieties located on the same ligand L4 are very similar to those observed in the 4a–c series: 89.9° in 5a, 89.0° in 5b and 88.9° in 5c.

Luminescence properties

Luminescent complexes are attracting more and more attention due to their potential applications for producing new optic materials. Compared to the extensive research on magnetic properties, the luminescence properties of triazole compounds are relatively limitedly explored. It should also be noted that the coordination of paramagnetic ions usually leads to the quenching of the photoluminescence of organic fluorophores. To our surprise, the coordination compounds of...
iron(II) (1c, 2c and 3c) and cobalt(II) (1b, 2b, and 3b) exhibit fairly intense photoluminescence clearly observed with the naked eye. The solid state photoluminescence properties of the complexes 1b and 1c are shown in Fig. 5 as a typical example for this series. Intense fluorescence emissions are observed at 399–406 nm (λex = 250 nm), which can be probably assigned to the intraligand charge transition of Ln due to their similar emission peaks. In addition, the fluorescence intensity of Co(II) complexes are weaker than that of the corresponding Fe(II) complexes, which indicates that the quenching effect of iron ions is less pronounced. The quantum yield of luminescence measured at 0.5 T, which was transformed to an e−/e+ could be expected. The measured data (Fig. 6) show in the case of Co(II) complexes are fairly intense photoluminescence clearly observed with the naked eye. The solid state photoluminescence properties of the complexes 1b and 1c are shown as empty circles, and fitted data are shown as red lines.

Magnetic properties

Static magnetic properties of compounds 1a–5c were measured by SQUID magnetometry as the temperature dependence of the magnetic moment in a weak external magnetic field (B = 0.5 T), which was transformed to an effective magnetic moment (μeff/μB).

Compounds 1a and 1b are mononuclear compounds, which are not connected directly by strong non-covalent interactions between the coordinating atoms or aromatic rings of the ligands. The shortest M⋯M distances are rather long: d[Ni⋯Ni] = 7.6483(7) Å in 1a and d[Co⋯Co] = 7.338(2) Å in 1b. Therefore, no significant interactions between the spin carriers could be expected. The measured data (Fig. 6) show in the case of 1a behaviour close to that of an ideal paramagnet with a g value larger than that for an isolated electron (2.0023).11 At T = 293 K the μeff/μB adopts a value of 3.1 which corresponds in the case of non-interacting spin S = 1 to g = 2.2. The μeff/μB product remains constant with a decrease in temperature and only at T close to 2 K a tiny decrease is observed. The magnetic data were fitted with the spin Hamiltonian involving an axial magnetic anisotropy parameter D, molecular field correction zJ and a Zeeman term:

\[H = D(S_z^2 - S^2/3) + \mu_B g_S S_z - zJ(S_z)S_z + ZS_z \]

where Z defines the direction of the magnetic field, B = \(B \sin(\theta)\cos(\phi), \sin(\theta)\sin(\phi), \cos(\theta) \). The final molar magnetization was calculated as an integral average to properly simulate the powder sample signal.

\[M_{\text{mol}} = 1/4\pi \int_0^{2\pi} \int_0^\pi M_s \sin(\theta) d\theta d\phi \]

Obviously, the magnetic data for 1a can be fitted without using zJ and the tiny drop of μeff/μB at very low temperatures resulted in a negligibly small |D| value (0.002 cm−1).

Magnetic data for 1b (Fig. 6) show completely different behavior from 1a; when at room temperature the value of μeff/μB is 4.3 and this is larger than the spin only value (S = 3/2, \(\mu_B g_S S_z = 3.87 \)). The μeff/μB product is almost constant down to 100 K and then a large decrease of its value down to ca. 3.2 is observed. This behavior is typical of Co(II) complexes with very large magnetic anisotropy.12 Therefore, the spin Hamiltonian (eqn (1)) was used to model these data and fit resulted in a very large D (+53.6 cm−1) and g = 2.20. Thus, 1b exhibits easy-plane magnetic anisotropy.

Compounds 2a–2c and 3a–3c are binuclear complexes (Fig. 7) in which the magnetic centers are not interconnected by a short covalent pathway, but the central atoms are held together by bridging L3 or L4 ligands. This means that a possible super-exchange pathway involves also the alkyl chains and therefore, as in the case of 1a and 1b, no strong magnetic exchange interactions could be expected. In addition, there are intramolecular π–π interactions between triazole moieties observed in 2b and 3a, which can also contribute through the spin polarization mechanism to the superexchange interactions.12a In contrast, the magnetic intermolecular interactions via hydrogen bonding can be excluded, because hydrogen bonds in 2a–b and 3a–b are formed only between the aqua ligands and nitrate anions and direct hydrogen bonding between the aqua ligands coordinating metal centers (which could mediate magnetic exchange interactions of significant strength)12d is missing.

The magnetic data for 2a–2c are shown in Fig. 7a–c; the magnetic data for 3a–3c are analogous and therefore they are shown only in the ESI [Fig. S37]. At room temperature the value of μeff/μB is slightly larger than the spin-only value for two uncoupled spins (for g = 2.0 and S = 1, μeff/μB = 4.0; for g = 2.0 and S = 3/2, μeff/μB = 5.5; and for g = 2.0 and S = 2, μeff/μB = 6.9); μeff/μB = 4.4 for 2a and 3a, μeff/μB = 6.8 for 2b and 3b, and μeff/μB = 7.1–7.2 for 2c and 3c. The temperature dependence of

Fig. 5 Luminescence spectra of 1b (left) and 1c (right) at room temperature with excitation at different wavelengths.

Fig. 6 Magnetic data for 1a (left) and 1b (right) depicted as temperature dependence of the magnetic moment calculated from the molar magnetization measured at B = 0.5 T shown in the inset. Experimental data are shown as empty circles, and fitted data are shown as red lines.
μ_{eff}/μ_B is very similar for the Ni(II) and Fe(II) compounds. Upon lowering the temperature, a very small increase of the μ_{eff}/μ_B product is observed below ca. 50 K, which can be explained only as a very weak ferromagnetic interaction between the magnetic centers. The magnetic data were fitted using the following spin Hamiltonian involving the isotropic exchange interaction J, axial magnetic anisotropy and Zeeman terms:

\[H = -J(\vec{S}_1 \cdot \vec{S}_2) + \sum_{i=1}^{2} D_i(\vec{S}_i \cdot \vec{S}_i)^2 - \vec{S}_i^2/3 + \mu_B B g_i \vec{S}_i. \]

(3)

Satisfactory fits were obtained for Ni(II) compounds by assuming small positive D parameters (5.25 cm^{-1} in 2a and 5.22 cm^{-1} in 3a) and rather weak ferromagnetic exchange interactions (J = +2.27 cm^{-1} in 2a and +1.65 cm^{-1} in 3a), and the relatively large magnetic anisotropy calculated from the molar magnetization measured at B = 0.5 T is shown in the inset. Experimental data are shown as empty circles, and fitted data are shown as red lines.

Fig. 7 Magnetic data for 2a (a), 2b (b), 2c (c), 4a (d), 4b (e) and 4c (f) depicted as temperature dependence of the magnetic moment calculated from the molar magnetization measured at B = 0.5 T shown in the inset. Experimental data are shown as empty circles, and fitted data are shown as red lines.

Table 1: The fitted spin Hamiltonian parameters for 1a–5c

Compound	D (cm^{-1})	g	zJ or f (cm^{-1})
Ni(II)	0.0	2.19	—
Co(II)	67.6	2.27	zJ = -0.058
Ni(II)	5.3	2.18	f = +2.27
Co(II)	66.1	2.49	f = -0.082
Fe(II)	5.7	2.03	f = +0.84
Ni(II)	5.2	2.20	f = +1.65
Co(II)	61.5	2.48	f = -0.035
Fe(II)	5.9	2.06	f = +0.89
Ni(II)	14.0	2.35	f = -40.0
Co(II)	75.8	2.74	f = -9.4
Fe(II)	-5.1	2.37	f = -6.60
Ni(II)	15.6	2.28	f = -36.0
Co(II)	46.3	2.57	f = -10.8
Fe(II)	-70.2	2.09	f = -2.8

Table 1. In the case of Fe(II) compounds the fitting results also confirmed weak ferromagnetic exchange and small axial ZFS parameters (in cm^{-1}): D = 5.68, f = +0.84 in 2c and D = 5.93, f = +0.89 in 3c. In the case of Co(II) compounds 2b and 3b, there is an evident drop of the effective magnetic moment due to the large magnetic anisotropy. The fitting procedure revealed for 2b and 3b very large easy-plane anisotropy (in cm^{-1}, D = +66.1 for 2b and +61.5 for 3b) and only very weak antiferromagnetic exchange was needed to model the magnetic data satisfactorily (Table 1). However, due to the small value of |f| and very large ZFS dominating the low temperature data, the weak ferromagnetic interaction in 2b and 3b cannot be excluded.

Compounds 4a–c and 5a–c are binuclear compounds involving in their structure [M_{2}(μ-ox)]^{2+} cores, which are well known for the mediation of strong magnetic exchange interactions. The temperature dependence of molar magnetization for 4a–c (Fig. 7d–f; magnetic data for 5a–c are shown in the ESI, Fig. S4) clearly shows maxima of molar magnetization at low temperatures indicating strong antiferromagnetic interactions between the metal atoms.

The temperature values of μ_{eff}/μ_B for these compounds are again larger than the spin only values at room temperature thus indicating a significant orbital contribution: μ_{eff}/μ_B = 4.6 for 4a and 5a, 7.1 for 4b, 7.0 for 5b, 7.9 for 4c, and 7.0 for 5c. In compounds 4a–c and 5a–c, a steep decrease of μ_{eff}/μ_B starts at ca. 100 K and it can be extrapolated at μ_{eff}/μ_B = 0 at 0 K indicating thus the ground spin state S = 0 and rather strong antiferromagnetic coupling (Fig. 7). Therefore, the magnetic data of 4a–c and 5a–c were fitted using the spin Hamiltonian for a dimer (eqn (3)). The fitting procedure revealed negative isotropic exchange coupling constants and large magnetic anisotropy (in cm^{-1}): J = -40.0 for 4a, -36.0 for 5a, -9.4 for 4b, -10.8 for 5b, -6.60 for 4c, and -2.8 for 5c; D = +14.0 for 4a, +15.6 for 5a, +7.58 for 4b, +46.3 for 5b, -5.1 for 4c, and -70.2 for 5c (Table 1).

The rather large value of D for complex 5c can be rationalized by the fact that it possesses a more symmetric bond length within the [Fe_{2}O_{4}] chromophore than complex 4c; thus the splitting of the T_{2g} ground state of an idealized O_{h}
symmetry of the 3d\(^6\) electronic configuration is less pronounced leading to a larger contribution of the orbital angular momentum of the excited states to the zero-field splitting tensor.

In addition to DC magnetic measurement, the AC susceptibility measurements were performed for one of the weakly coupled Co(II) dimers 2b in order to explore the possibility of the slow relaxation of the magnetization (Fig. 8). First, the AC susceptibility was measured at \(T = 2\) K and the static magnetic field (\(B_{DC}\)) was varied between 0 and 0.25 T, which showed that a small non-zero \(B_{DC}\) is needed to suppress the quantum tunneling of the magnetization. Therefore, the temperature-dependent AC susceptibility data were acquired at \(B_{DC} = 0.1\) T, and the analysis based on one-component Debye’s model resulted in relaxation times (\(\tau\)). First, the Arrhenius law was used to fit the temperature-dependence of \(\tau\), which resulted in \(\tau_0 = 1.0 \times 10^{-5}\) s, \(U_{\text{eff}} = 6\) K (Fig. S5†). Moreover, the relaxation times were fitted to the combination of Orbach and direct terms providing \(A = 3624\) K\(^{-1}\) s\(^{-1}\), \(\tau_0 = 6.4 \times 10^{-6}\) s, \(U_{\text{eff}} = 11.4\) K (Fig. S5†). However, these \(U_{\text{eff}}\) values are rather small in comparison with the derived \(D\)-value, thus suggesting other relaxation processes taking the leading role.

Therefore, the data were analyzed with the Raman process using the following equation

\[
\frac{1}{\tau} = CT^n
\]

which resulted in \(C = 0.033\) K\(^{-n}\) s\(^{-1}\) and \(n = 1.61\) (Fig. 8 below).

The small values of \(n\) suggest that a direct term is also present; therefore the data were refitted with a combination of direct and Raman processes using

\[
\frac{1}{\tau} = AT + CT^n
\]

which resulted in \(A = 2743\) K\(^{-1}\) s\(^{-1}\), \(C = 397\) K\(^{-n}\) s\(^{-1}\) and \(n = 2.49\) (Fig. 8 below).

Theoretical calculations

To support the theoretical analysis of the magnetic properties of herein reported compounds we performed Broken-Symmetry Density Functional Calculations (BS-DFT) to estimate the magnetic coupling between the metal centers for systems with magnetic coupling (2b-c, 3a-c, 4a-c and 5a-c).

The DFT calculations were performed on molecular structures of particular complexes as determined by X-ray diffraction (the positions of hydrogen atoms were optimized – for details see the Experimental section). The ORCA computation package 4.1 was employed for all the calculations together with the B3LYP functional and def2-TZVP basis set. The energy of the high spin (HS) state was calculated and compared with the broken-symmetry (BS) spin state energy and by using Ruiz’s approach,

\[
J_{\text{Ruiz}} = 2\Delta/\langle S_1 + S_2 \rangle \langle S_1 + S_2 + 1 \rangle
\]

and the Yamaguchi approach

\[
J_{\text{Yam}} = 2\Delta/\langle S^2 \rangle_{\text{HS}} - \langle S^2 \rangle_{\text{BS}}
\]

and utilized in the calculation of the isotropic exchange constant \(J\), where \(\Delta\) is the energy difference between the BS and HS spin states, \(\Delta = \epsilon_{\text{HS}} - \epsilon_{\text{BS}}\).

In the case of weakly coupled systems 2a-c and 3a-c the calculations were performed for complexes 2b, 3a and 3b and in all three cases very weak ferromagnetic coupling was predicted (Table 2) using both Ruiz’s and Yamaguchi’s approaches and this conforms to the experimentally observed weak magnetic exchange.

In the case of oxalate bridged compounds (4a-c and 5a-c) the calculations were performed for complexes 4a, 4c and 5a-c.
and by using both Ruiz’s and Yamaguchi’s approaches strong antiferromagnetic coupling was predicted and from the obtained coupling constants (Table 2) it is clear that Ruiz’s approach agrees with the experiment fairly well. The spin density plots showing the BS spin states for [Co2(L3)2(H2O)4]4+ of 2b and for [Ni2(L4)2(ox)]2+ of 5a are presented in Fig. 9.

Conclusions

In this article we reported on the synthesis, crystal structures, luminescence and magnetic properties of five series of various compounds prepared by reactions between bis(pyridyl-triazolyl)-alkane ligands L2 (1,2-bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)ethane, mononuclear complexes 1a–c), L3 (1,2-bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane, binuclear complexes 2a–c), L4 (1,2-bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)butane, binuclear complexes 3a–c) and Ni(II), Co(II), and Fe(II) salts. In the case of series 4a–c and 5a–c the reactions between the L3 (4a–c) or L4 (5a–c) ligands and aforementioned metal salts, and also the oxalate bridging anions were used for the synthesis of binuclear compounds containing an [M2(μ-ox)]2+ core.

Interestingly, compounds 1b, 2b, and 3b and 1c, 2c and 3c exhibit luminescence, which was the most intense when they were excited by irradiation with λex = 250 nm.

The magnetic measurement and subsequent analysis of reported compounds revealed large magnetic anisotropy in both Co(II) monomeric and dimeric compounds. The L3 and L4 ligands seem to mediate weak ferromagnetic exchange between Ni(II) and Fe(II) ions despite a quite long super-exchange pathway. In contrast, the incorporation of second bridging ligand, oxalate, resulted in strong antiferromagnetic exchange between all metal ions. The theoretical calculations based on DFT theory and B3LYP functional corroborated these findings and Ruiz’s approach to the evaluation of the energy difference between BS and HS spin states seems to provide better numerical estimates of the isotropic exchange parameters. The dynamic magnetic measurements were performed for weakly coupled Co(II) dimer 2b and confirmed the field-induced slow relaxation of the magnetization typical of the single-molecule magnets, and the analysis of the relaxation times is in favour of direct and Raman relaxation processes.

Experimental

General

The reagents and solvents employed were commercially available and used as received without further purification. The C, H, and N microanalyses were carried out with a EuroVector ELEMENTA elemental analyzer. The FT-IR spectra were recorded with KBr pellets in the range 4000–400 cm⁻¹ on a Bruker spectrometer. Electrospray mass spectra of complexes were measured on a Finnigan TSQ 700 mass spectrometer in positive ion mode. Samples were prepared at a concentration of ~2 mg ml⁻¹ MeOH. Spectra were acquired over an m/z range of 50–2000; several scans were averaged to provide the final spectrum. Magnetic measurements of complexes 1a–c and 2a–c were carried out on a Quantum Design PPMS–SQUID magnetometer in the temperature range of 2–300 K. The magnetic data for 3a–c, 4a–c and 5a–c were measured with SQUID apparatus (MPMS-XL7, Quantum Design) using the RSO mode of detection with ca. 20 mg of the sample encapsulated in a gelatin-made sample holder. The data were corrected for the underlying diamagnetism and converted to the effective magnetic moment. The diamagnetic contributions of the samples were estimated from Pascal’s constants. The commercially available metal salts Ni(NO3)2·6H2O, Ni(ClO4)2·6H2O, Co(NO3)2·6H2O, Co(BF4)2·6H2O, and Fe(BF4)2·6H2O were used.
as reagents. The ligands L1–L3 were prepared from pyridine-2-carbonitrile and hydrazide of succinic (for L2), glutaric (L3) and adipic (L4) acids according to the previously described methods.\(^5\)

Synthetic procedures

Synthesis of complexes 1a–c, 2a–c and 3a–c. Each of the complexes 1a–c, 2a–c and 3a–c was prepared by a similar general method. The reaction between the metal nitrates (Ni(NO\(_3\))\(_2\)·6H\(_2\)O, Co(NO\(_3\))\(_2\)·6H\(_2\)O, or Fe(BF\(_4\))\(_2\)·6H\(_2\)O) and the calculated for [Co\(_2\)(L\(_3\))\(_2\)(NO\(_3\))\(_2\)]\(^{2+}\) 453.07. IR \(\nu\) 1562, 1473, 1391, 1283, 1067, 1016, 752.

For [Co\(_2\)(L\(_3\))\(_2\)(NO\(_3\))\(_2\)]\(^{2+}\): yield 65%. Anal. Found: C, 35.83; H, 4.16; N, 23.12. Required for Co\(_2\)Cl(CN)\(_2\): C, 35.95; H, 4.36; N, 23.29%. ESI-MS (m/z): calculated for [Co\(_2\)(L\(_3\))\(_2\)(NO\(_3\))\(_2\)]\(^{2+}\) 467.33. IR \(\nu\) max \((cm\(^{-1}\))\): 1609, 1564, 1473, 1394, 1282, 1067, 1016, 752.

For [Co\(_2\)(L\(_4\))\(_2\)(NO\(_3\))\(_2\)]\(^{4+}\): yield 31%. Anal. Found: C, 32.46; H, 4.13; N, 17.40. Required for Co\(_2\)Cl(CN)\(_2\): C, 33.37; H, 4.04; N, 17.29%. ESI-MS (m/z): calculated for [Co\(_2\)(L\(_4\))\(_2\)(NO\(_3\))\(_2\)]\(^{4+}\) 349.04. IR \(\nu\) max \((cm\(^{-1}\))\): 1611, 1548, 1474, 1054, 1015, 754.

Preparation of complexes 4a–c, 5a–c. 1,3-Bis-(5-pyridine-2-yl)-1,2,4-triazol-3-yl)ethane (L\(_3\), 365 mg, 1.1 mmol) was placed in an Erlenmeyer flask and suspended in 15 ml methanol. Ni(ClO\(_4\))\(_2\)·6H\(_2\)O (377 mg, 1 mmol) was added to the ligand suspension. The mixture was stirred with heating (50 °C) for one hour to obtain a clear yellow solution to which potassium oxalate (83 mg, 0.5 mmol) was added. After ca. 10 minutes a blue solid precipitated. The mixture was left undisturbed overnight and the target complex 4a was filtered off and washed twice with cold water and methanol and dried carefully in vacuo.

The same synthetic procedure was used for the preparation of complexes 4a–c and 5a–c. For the complexes 5a–c an acetone–water mixture \((2:1, v: v)\) was used as the solvent. In the case of the Co(II) and Fe(II) complexes the Co(BF\(_4\))\(_2\)·6H\(_2\)O and Fe(BF\(_4\))\(_2\)·6H\(_2\)O salts were used instead of perchlorates. The Fe(II) complexes were obtained under an inert atmosphere of argon by using Schlenk techniques.

For [Ni\(_2\)(L\(_3\))\(_2\)(ox)]\(^{4+}\)ClO\(_4\)\(_2\)·4MeOH (4a): yield 69%. Anal. Found: C, 40.03; H, 3.60; N, 18.94. Required for Co\(_4\)H\(_4\)Cl\(_2\)Ni\(_2\)O\(_4\)Ni\(_2\)Cl\(_2\): C, 40.25; H, 3.72; N, 18.77%. ESI-MS (m/z): calculated for [Ni\(_2\)(L\(_3\))\(_2\)(ox)]\(^{4+}\)ClO\(_4\)\(_2\) 969.10, calculated for [Ni\(_2\)(L\(_3\))\(_2\)(ox)]\(^{4+}\)ClO\(_4\)\(_2\) 434.67. IR \(\nu\) max \((cm\(^{-1}\))\): 1640, 1612, 1562, 1478, 1073, 632, 422.

For [Co\(_2\)(L\(_3\))\(_2\)(ox)]\(^2+\)ClO\(_4\)\(_2\)·4MeOH (4b): yield 72%. Anal. Found: C, 41.47; H, 3.95; N, 19.50. Required for Co\(_4\)H\(_4\)Cl\(_2\)Ni\(_2\)O\(_4\)Ni\(_2\)Cl\(_2\): C, 41.20; H, 4.14; N, 19.22%. ESI-MS (m/z): calculated for [Co\(_2\)(L\(_3\))\(_2\)(ox)]\(^2+\)ClO\(_4\)\(_2\) 969.12, calculated for [Co\(_2\)(L\(_3\))\(_2\)(ox)]\(^2+\)ClO\(_4\)\(_2\) 434.11. IR \(\nu\) max \((cm\(^{-1}\))\): 1642, 1611, 1562, 1478, 1083, 626.

For [Fe\(_2\)(L\(_3\))\(_2\)(ox)]\(^2+\)ClO\(_4\)\(_2\)·4MeOH (4c): yield 62%. Anal. Found: C, 40.08; H, 3.88; N, 19.64. Required for Co\(_4\)H\(_4\)Cl\(_2\)Ni\(_2\)O\(_4\)Fe\(_2\): C, 40.99; H, 4.13; N, 19.12%. ESI-MS (m/z): calculated for [Fe\(_2\)(L\(_3\))\(_2\)(ox)]\(^2+\)BF\(_4\)\(_2\) 950.22, calculated for [Fe\(_2\)(L\(_3\))\(_2\)(ox)]\(^2+\)BF\(_4\)\(_2\) 432.22. IR \(\nu\) max \((cm\(^{-1}\))\): 1642, 1612, 1562, 1478, 1055, 622.

For [Ni\(_2\)(L\(_4\))\(_2\)(ox)]\(^{4+}\)ClO\(_4\)·4H\(_2\)O·2C\(_3\)H\(_6\)O (5a): yield 69%. Anal. Found: C, 40.92; H, 4.31 3; N, 17.75. Required for Co\(_4\)H\(_4\)Cl\(_2\)Ni\(_2\)O\(_4\)Ni\(_2\)Cl\(_2\): C, 41.10; H, 4.39; N, 17.43%. ESI-MS (m/z): calculated for [Fe\(_2\)(L\(_3\))\(_2\)(ox)]\(^{2+}\)BF\(_4\)\(_2\) 475.00. IR \(\nu\) max \((cm\(^{-1}\))\): 1611, 1561, 1478, 1055, 1016, 754.
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors would like to acknowledge the financial support from the Russian foundation for basic research (project 16-03-00386), Russian science foundation (project 18-13-00024) and the Ministry of Education, Youth and Sports of the Czech Republic (LO1305). R. H. and I. N. acknowledge the financial support from institutional sources of the Department of Inorganic Chemistry, Palacky University Olomouc, Czech Republic. I. N. would like to acknowledge the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II. M. K. and I. E. are grateful for financial support from the State Assignment on Fundamental Research of the Kurnakov Institute of General and Inorganic Chemistry of RAS (IGIC RAS) and thank the User Facilities Centers of IGIC RAS for the facility to perform single crystal X-ray measurements.

Notes and references

1 (a) J.-M. Lehn, Science, 2002, 295, 2400; (b) J.-M. Lehn, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4763.
2 (a) S. O. Scott, E. L. Gavey, S. J. Lind, K. C. Gordon and J. D. Crowley, Dalton Trans., 2011, 40, 12117; (b) U. R. Pokharel, F. R. Ronczek and A. W. Maverick, Dalton Trans., 2013, 42, 14064; (c) R. A. S. Vasdev, D. Preston and J. D. Crowley, Dalton Trans., 2017, 46, 2402; (d) A. M. Castilla, W. J. Ramsay and J. R. Nitschke, Acc. Chem. Res., 2014, 47, 2063-2073; (e) N. J. Young and B. P. Hay, Chem. Commun., 2013, 49, 1354-1379; (f) M. M. J. Smulders, I. A. Riddell, C. Browne and J. R. Nitschke, Chem. Soc. Rev., 2013, 42, 1728-1754; (g) M. L. Saha, S. De, S. Pramanik and M. Schmittel, Chem. Soc. Rev., 2013, 42, 6860-6909.
3 (a) L. N. Dawe, K. V. Shuavaev and L. K. Thompson, Chem. Soc. Rev., 2009, 38, 2334; (b) M. Fujita, M. Tominaga, A. Hori and B. Therrien, Acc. Chem. Res., 2005, 38, 369; (c) D. Fiedler, D. H. Leung, R. G. Bergman and K. N. Raymond, Acc. Chem. Res., 2005, 38, 349; (d) T. D. Hamilton and L. R. MacGillivray, Cryst. Growth Des., 2004, 4, 419; (e) A. L. Garay, A. Pichon and S. L. James, Chem. Soc. Rev., 2007, 36, 846; (f) S. Alvarez, Dalton Trans., 2006, 2209.
4 (a) J. G. Hardy, Chem. Soc. Rev., 2013, 42, 7881; (b) Q. Yue and E.-Q. Gao, Coord. Chem. Rev., 2019, 382, 1; (c) N. Ahmad, A. H. Chughtai, H. A. Younusa and F. Verpoort, Coord. Chem. Rev., 2014, 280, 1.
5 (a) N. Fatin-Rouge, S. Blanc, A. Pfeil, A. Rigault, A. M. Albrecht-Gary and J.-M. Lehn, Helv. Chim. Acta, 2001,
Paper

Dalton Transactions

10 U. García-Couceiro, O. Castillo, J. Cepeda, A. Luque, S. Pérez-Yáñez and P. Román, *Inorg. Chim. Acta*, 2009, **362**, 4212.

11 R. Boča, *A Handbook of Magnetochemical Formulae*, Elsevier, Amsterdam, 2012.

12 (a) J.-W. Zhang, H.-S. Wang and Y. Song, *Inorg. Chem. Commun.*, 2011, **14**, 56–60; (b) I. Nemec, R. Herchel and Z. Trávníček, *Dalton Trans.*, 2018, **47**, 1614; (c) R. Herchel, L. Váhovská, I. Potočnák and Z. Trávníček, *Inorg. Chem.*, 2014, **53**, 5896; (d) I. Nemec, H. Liu, R. Herchel, X. Zhang and Z. Trávníček, *Synth. Met.*, 2016, **215**, 158.

13 G. M. Sheldrick, *Acta Crystallogr., Sect. A: Found. Crystallogr.*, 2008, **64**, 112.

14 L. J. Farrugia, *J. Appl. Crystallogr.*, 1999, **32**, 837.

15 (a) A. L. Speck, *PLATON*, a multipurpose crystallographic tool, Utrecht University, Utrecht, The Netherlands, 2001; (b) Y. Le Page, *J. Appl. Crystallogr.*, 1988, **21**, 983.

16 (a) F. Neese, *Wiley Interdiscip. Rev.: Comput. Mol. Sci.*, 2012, **2**, 73; (b) F. Neese, *Wiley Interdiscip. Rev.: Comput. Mol. Sci.*, 2018, **8**, e1327.

17 (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1988, **37**, 785; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623.

18 E. Ruiz, J. Cano, S. Alvarez and P. Alemany, *J. Comput. Chem.*, 1999, **20**, 1391.

19 (a) K. Yamaguchi, Y. Takahara and T. Fueno, in *Appl. Quantum Chem.*, ed. V. H. Smith, Reidel, Dordrecht, 1986, p. 155; (b) T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka and K. Yamaguchi, *Chem. Phys. Lett.*, 2000, **319**, 223.

20 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.

21 F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057.

22 (a) F. Neese, F. Wennmohs, A. Hansen and U. Becker, *Chem. Phys.*, 2009, **356**, 98; (b) R. Izsak and F. Neese, *J. Chem. Phys.*, 2011, **135**, 144105.

23 (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; (b) J. P. Perdew, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1986, **33**, 8822; (c) J. P. Perdew, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1986, **34**, 7406.

24 K. Momma and F. Izumi, *J. Appl. Crystallogr.*, 2011, **44**, 1272.