OpenLogos Semantico-Syntactic Knowledge-Rich Bilingual Dictionaries

Anabela Barreiro1, Fernando Batista1,2, Ricardo Ribeiro1,2, Helena Moniz1,3, Isabel Trancoso1,4

1 L2F – INESC-ID, Rua Alves Redol 9, 1000-029, Lisboa, Portugal
2 ISCTE-IUL - Instituto Universitário de Lisboa, Portugal
3 FLUL/CLUL - Faculdade de Letras / Centro de Linguística - Universidade de Lisboa, Portugal
4 IST - Instituto Superior Técnico - Universidade de Lisboa, Portugal
anabela.barreiro@inesc-id.pt

Abstract

This paper presents 3 sets of OpenLogos resources, namely the English-German, the English-French, and the English-Italian bilingual dictionaries. In addition to the usual information on part-of-speech, gender, and number for nouns, offered by most dictionaries currently available, OpenLogos bilingual dictionaries have some distinctive features that make them unique: they contain cross-language morphological information (inflectional and derivational), semantico-syntactic knowledge, indication of the head word in multiword units, information about whether a source word corresponds to an homograph, information about verb auxiliaries, alternate words (i.e., predicate or process nouns), causatives, reflexivity, verb aspect, among others. The focal point of the paper will be the semantico-syntactic knowledge that is important for disambiguation and translation precision. The resources are publicly available at the METANET platform for free use by the research community.

Keywords: Language Resources, Bilingual Dictionaries, OpenLogos, Semantico-Syntactic Knowledge

1. Introduction

Bilingual dictionaries represent a very important resource in machine translation. Even if translation does not consist in simply mapping words or multiword units between two languages, dictionaries represent the foundation of a translation system, and the more knowledge-richer they are, the more they can contribute to quality translation. The bilingual dictionaries that will be described in this paper have some features that make them unique. Unlike other dictionaries available, they contain semantico-syntactic and ontological relations, which have been developed inductively, by trial and error, over a period of years by the Logos MT system development team and used successfully for several decades in the Logos commercial machine translation product, now available as open source software under the name OpenLogos. OpenLogos uses a Semantico-Syntactic Abstraction Language called SAL, which represents both meaning (semantics), and structure (syntax). SAL is an interfingua-style hierarchical taxonomy comprising over 1,000 elements embracing all parts of speech, and distributed in supersets, sets and subsets, which are embedded in each dictionary entry and in the translation system’s rules. This internal language was designed as an extensible system, so that developers would expand and add to its capabilities. It was initially developed for the English language, but many of its elements are universal and therefore applicable to other languages. Unlike other representation languages, SAL places semantics and syntax on a continuum, i.e., undissociated one from the other and represented in the same layer. SAL is eclectic in the categories included in the representation schema and it was designed to work in concert with other linguistic resources, namely lexical resources and a diverse set of linguistic rules, including the transfer (TRAN) and semantico-syntactic (SEMTAB) rules (Barreiro et al., 2011). We believe that these resources can be useful to enhance other machine translation systems, especially due to their semantico-syntactic knowledge richness. Furthermore, the abstraction echelon makes the ontology applicable at several levels and useful for natural language processing applications other than machine translation.

This paper is structured as follows: Section 2 describes the related work. Section 3 presents the most peculiar characteristics of the OpenLogos data. Section 4 highlights the semantico-syntactic knowledge embedded in the OpenLogos system. Section 5 shows the quantitative results. Finally, Section 6 presents the conclusions and future work.

2. Related Work

The effort on creating computerized bilingual lexicons goes back to the 1980s. Picchi et al., 1988 describe the development of a bilingual lexical database system pairing English and Italian. At the same time, one of earliest European attempts on machine translation was running: the EUROTRA project (A. Raw and Eynde, 1988). Since then, there were several large research projects aiming at the development of specifications that would facilitate the reuse of linguistic resources or the development of such harmonized resources. A few examples are Genelex (Antoni-Lay et al., 1994), PAROLE/SIMPLE (Lenci et al., 2000), or Wordnet (Miller, 1995; Fellbaum, 1998). Framenet (Baker et al., 1998) has also similar objectives focusing in semantic knowledge. Green et al. (Green et al., 2004) further develop this idea by creating a system for automatically inducing frame semantic verb classes from Wordnet and the Longman Dictionary of Contemporary English (Procter, 1978). After this stage, the research focused on the development of resources that defined inter-language relations (Villegas et al., 2000). The MILE (Multilingual ISLE Lexical Entry) was one of the efforts based on previous resources to implement such relations (Calzolari et al., 2002). The
focus on the promotion of the reuse of existing resources gained great attention, with LREC 2004 (http://www.lrec-conf.org/lrec2004/) featuring a dedicated workshop to the subject: “A Registry of Linguistic Data Categories within an Integrated Language Resources Repository Area”. Another interesting project focusing in creating inter-language links was EuroWordNet (Vossen, 1998).

The resources we present in this paper were used in the Logos commercial machine translation system during 2-3 decades. They have been validated by the former development team of this company and by its clients. We believe that they have unique characteristics and can be used as a basis for new linguistic and natural language processing tools, especially for poor-resourced languages.

3. OpenLogos Data

OpenLogos is the open source derivative of the Logos Machine Translation System developed by Bernard Scott in the early seventies [Scott, 2003; Barreiro et al., 2011]. The strength of the Logos system resides in its lexical resources, the knowledge-rich bilingual dictionaries, which work in combination with distinct-purpose rulebases. OpenLogos dictionaries present several idiosyncrasies that distinguish them from other publicly available dictionaries. In addition to the most usual information on part-of-speech (POS), gender (GEN), and number (NUM) for nouns, OpenLogos bilingual dictionaries contain semantico-syntactic knowledge for all lexical entries. This information is represented at an abstract level by the SAL language (described in more detail in Section 4), which contains 3 levels of representation: superset (SUPER), set (SET), and subset (SUB), and is used to help with disambiguation. OpenLogos lexicon also contains morphological information for source and target words. Because all words have morphological paradigms (PAT) assigned to them, it is possible to map inflected forms across languages (source and target). Morphological information is useful in improving agreement in machine translation. Another interesting feature of the dictionaries is the information about whether a source word is an homograph (HOMO) or not. Homographs are a major source of translation errors and their identification is crucial to help resolve those errors. Multiword units (henceforth, multiwords) contain information about the head word (HEAD). This knowledge can be used in generation and to correct machine translation problems related to agreement within multiword structures or within larger units, such as the agreement between nominal multiwords and the verb or agreement within verbal multiwords, such as in support verb constructions. Information about the auxiliary (AUX) of a verb is also provided to improve precision in the translation, especially in those cases where auxiliary choice is subtle. In addition, there is information about the alternate word (ALT), i.e., nominalization or process noun, predicate adjective, among others. This information can be used for paraphrasing purposes, for example, when the verb present is translated as the support verb construction make a presentation (of). Other information, such as whether a verb is causative (CAUS) or reflexive (REFL) in the target language, and aspectual information (ASP) for each verb is also available.

4. Semantico-Syntactic Knowledge

The most interesting aspect of the OpenLogos system is its ontology-based internal representation language: the Semantico-Syntactic Abstraction language (SAL). This representation language allows words to be represented at a higher level of semantic abstraction (a second order), and in many instances it allows disambiguation to take place at the lexical level. SAL permits easy mapping from natural language to symbolic language, representing both meaning (semantics), and structure (syntax) in a continuum. SAL was motivated by the belief that the semantics of a word often affects the surrounding syntax. For example, all verbs that call for indirect objects (di-transitive verbs) would appear to be semantically related (send, communicate, convey, give, transmit, provide, supply, etc.). Thus one can relate the syntactic effect of di-transitive verbs to their semantics. SAL was designed to subcategorize words according to these property/effect relationships. Thus, SAL seeks to capture the semantic properties of words having syntactic effect. For example, the nouns resistance, relationship, marriage, accommodation, all share a common SAL code reflecting their governor of the preposition to (resistance to change). The adjectives easy, fun, simple in (1) have SAL codes different from the codes for eager, reluctant, determined in (2), to reflect the pronounced differences in the syntactic effect of these groups. The loose semantic kinship is shared by members of each adjectival group.

(1) John is easy/fun/simple to please.
(1’) Pleading John is ?easy/fun/simple.
(2) John is eager/reluctant/determined to please.
(2’) *Pleading John is eager/reluctant/determined.

In the OpenLogos system, SAL knowledge is embedded in the dictionary in the form of numeric codes. For the sake of understandability, we use SAL mnemonics. For example, the noun (N) table has two SAL representations: one with the SAL code (COsurf), which contains the properties concrete and surface, and another one with the SAL code (INdata), which stands for information, recorded data. There are more than 1,000 SAL categories, organized in a hierarchical taxonomy of supersets, sets, and subsets, distributed by all parts-of-speech (POS). The complete list of SAL categories can be viewed at http://www.l2f.inesc-id.pt/~abarreiro/openlogos-tutorial/new_A2menu.htm

The existing elements of the SAL ontology are also documented in the SAL tutorial of the LearnLogos application that comes with the OpenLogos system, downloadable from the DFKI website or from SourceForge. In the OpenLogos dictionaries, all POS categories are represented, contemplating variable and invariable words, multiwords and named entities. For example, the word alligator is classified as a noun (N) that inflects like the word book (PAT 16), where book is the word representing the morphological paradigm for regular nouns that take an –s to form the plural. Its SAL mnemonic (ANrept) stands for animate, reptiles. It designates cold-blooded, egg-laying vertebrates. The word enter is classified as a verb (V) that inflects like the verb walk (PAT 1), where
walk is the word representing the morphological paradigm for regular verbs like walk, walked, walking. Its SAL mnemonic (INMOIntoType) represents motional intransitive verbs (INMO), which comprise all verbs of motion, such as depart, go, fly, run, walk. This SAL group of verbs take kinetic-type prepositions such as into, onto, and up to denoting directed motion. The word approximate is classified as an adjective (A) that inflects like natural (PAT 34), where natural is the word representing the morphological paradigm for adjectives like natural, more natural, most natural. Its SAL mnemonic (AVquan) stands for adverbial adjectives of quantity/measure type. Quantity/measure type adjectives (i) denote notions of quantity or measure (slight, extensive); (ii) have an adverbial counterpart (slightly, extensively); (iii) may occur in the predicate adjective position (the effect was extensive); and (iv) do not govern prepositions. The word yesterday is classified as an adverb (ADV) that does not inflect. Its SAL mnemonic (TEMPpuncpast) stands for temporal adverbs that denote some aspect of time, answering the question when; punctual adverbs (punc) denote a point in time and (past) signifies past time (tense), answering as recently, previously, or a long time ago. The word several is classified as an invariable pronoun (PRO), impersonal (IMPERS), indefinite (INDEF). The word which is classified as a relative and interrogative pronoun (RELINT). The word or is classified as a conjunction (CONJ), conjoining (JOIN). The word along-side is classified as a preposition (PREP), defined as locative (LOC), uninflected. The word many is classified as an invariable determiner (DET), plural (PL). Finally, the multiword one third is classified as an arithmate (ARTHMT), numeric expression (NUM), fractional (FRAC). Sections 4.1, 4.2, and 4.3 describe SAL categories in detail for the 3 largest POS categories: verbs, nouns, and adjectives, respectively.

SAL id	Mnemonics	Description	Examples
8 46	MEabs	abstract measurable concepts	humidity, length
8 95	MEdis	discrete measurable concepts	sun, increment
8 61	MEunit	units of measure	See subsets
8 61 161	MEunitwt	units of weight	ounce, pound
8 61 162	MEunitvel	units of velocity	mph, megahertz
8 61 163	MEunitvol	units of volume measure	gallon, liter
8 61 164	MEunittemp	units of temperature	degrees celsius
8 61 165	MEunitener	units of energy/force	watt, horsepower
8 61 234	MEunitsys	measurement systems	fahrenheit, kelvin
8 61 166	MEunitdur	units of duration	hour, year
8 61 167	MEunitspec	specialized units of measure	oersted, ohm
8 61 168	MEunitvalue	units of money/value	dollar, euro
8 61 170	MEunitlin	units of linear/area measure	inch, mille
8 61 169	MEundif	undifferentiated measured	degree, share

Table 1: Noun Measure

4.2. Verbs

Verbs (word class 02) are subdivided in 3 main types: the intransitive, the weak transitive and the strong transitive. For example, the intransitive verbs have 3 distinct supersets: the motional (INMO), the existential (INEX), and the operational (INOP).

Motional intransitive verbs comprise all verbs of motion and include the INMOinto-type and the INMOin-type sets. The INMOinto-type includes verbs like depart, go, and walk. The INMOin-type includes verbs like dance, and sail. INMOinto-type verbs can take kinetic-type prepositions, such as into, onto, and up to denoting directed motion. If the verbs of motion do not take these prepositions, they are classified as INMOin-type.

Existential intransitive verbs include the verb be and various be-substitute verbs that take predicate nominatives, such as become and remain, and predicate adjectives, such as grow and sound. Existential intransitives include the following 4 sets: INEXbe-type, INEXbecome-type, INEXgrow-type, and INEXseem-type. INEXbe-type includes verbs like be. INEXbecome-type includes verbs like become and remain. INEXgrow-type includes verbs like grow, look, and sound. INEXseem-type includes verbs like appear and seem. In general, pre-clausal adjectives, except for a small class of cases, such as appear, seem, and insist. Verbs like agree and think also have a non-pre-clausal intransitive function. OpenLogos parser selects between the transitive pre-clausal and the intransitive one.

Operational intransitive verbs denote all intransitive verbs that are not existential or verbs of motion. This includes intransitive verbs that take clausal and verbal complementation (except for appear and seem, which are existential intransitives). Operational intransitives include the following 5 sets: INOPmisc, INOPloc, INOPpcl, INOPprev, and INOPprenv. INOPmisc includes verbs like sing. INOPloc includes verbs like stand. INOPpcl includes verbs like com-
ment. INOPprev includes verbs like persist, and INOP-precv includes verbs like insist. INOPloc verbs strongly claim locative prepositions (He stayed at the office until midnight).

Because of the endless richness of verb argument structures, the SAL verb taxonomy captures only salient features. The Logos model depends upon use of the Semantic Table (SEMTAB) to capture argument structures not provided for in the taxonomy. Table 2 illustrates the different types of intransitive verbs. A full description of the transitive verbs (weak and strong) can be found in the SAL Tutorial.

4.3. Adjectives

Adjectives are classified in 2 types: descriptive and participial. For example, descriptive adjectives are organized as a single superset with 7 sets. Most of these sets contain subsets. As with most other POS in SAL, adjectives are subclassified according to the syntactic relationships that they have with other words. Table 2 summarizes the different types of intransitive verbs. A full description of the transitive verbs (weak and strong) can be found in the SAL Tutorial.

Table 2: Intransitive Verbs

SAL id	Mnemonic	Example Verb	Example Sentence
11 60	INEXbe-type	be	She is the valedictorian of her class.
			She was at the seashore all summer.
11 61	INEXbecome-type	become, remain	He became a doctor at a very young age.
			He remained a Democrat all his life.
			She remained at the seashore all summer.
11 64	INEXgrow-type	sound, grow, look	Their voices sounded cheerful.
			The day grew cooler.
11 76	INEXseem-type	seem, appear	He seemed happy with the results.
			It seems that the operation was successful.
12 29/31/97	INOPmisc	sing	She sings well.
12 68	INOPloc	stand	He stood in the rain.
12 69	INOPpcl	comment	I commented about the parking problems.
12 72	INOPprev	refrain, persist, consist, conspire, participate	They refrained from smoking.
			She persisted in pursuing her goals.
			The work consisted in checking papers.
			They conspired to defeat the candidate.
			He participated in solving the problem.
12 73	INOPprecv	insist	He insisted on joining them.
			They insisted that the answer was correct.
10 24	INMOinto-type	depart, walk, drive, go	They departed for Chicago this morning.
			They walked into the room.
			They drove to the library.
10 68	INMOin-type	dance, sail	They danced in the streets.
			They sailed around the lake all morning.

Mixed logical adjectives take either a normal NP subject or the logical it (She is certain that/to... or It is certain that/to..., with the syntactic pattern [It/NP is ADJ that/to]). Mixed logical subsets are: certain type (that/to), and good type (that/to). Non-logical adjectives take a normal NP subject, but cannot take the logical it (He is happy that/to... or She is hopeful that..., with the syntactic pattern [NP is ADJ that/to]). Non/logical subsets are: happy type (that/to) and aware type (that). For example, the good-type adjectives, when used as predicate adjectives, have the following characteristics: (i) they may take that clause complementation, (ii) they may have logical it subject for both that clause and verbal complements (It is good that...It is good to...), (iii) they may have normal NP subject only for verbal complements (John is good at V'ing), and (iv) they may take the subjunctive (It is good that he go). Table 4 illustrates the different syntactic patterns for the descriptive pre-clausal good-type adjectives.

Pre-verbal adjectives (PV) introduce infinitive clauses (They were eager to go). Adjectives like instrumental, and capable introduce other types of verbal clauses (They were instrumental in solving...; They were capable of solving...). A full description of each type of pre-verbal adjectives can be found in the SAL Tutorial.

Adverbial adjectives (AV) (slight, real, minimal) are a broad adjectival class distinguished by important characteristics. One characteristic is that they denote adverbial concepts of manner, place, time, degree, etc. and always have adverb counterparts (slightly, really, minimally). This classification allows the system to transform phrases like rapid oscillation to oscillate rapidly, a transformation often called for in certain target languages. The adverbial adjective set is further broken down into adjective sub-
Table 3: Descriptive Adjectives

Pattern	Example Sentence
It is ADJ that	It is silly that...
It is ADJ for NP that	It is good for the employees that...
It is ADJ to VP	It is smart to exercise.
It is ADJ for NP to VP	It was silly for them to expect...
It is ADJ of NP to VP	It was optimistic of them to expect...
It is ADJ V'ing	It is smart doing the right thing.
NP is ADJ to VP	John is smart to exercise.

Sub-groups

Pattern	Example Sentence
It is ADJ to NP that	It was vital to him that...
NP is ADJ V'ing	He is smart doing the right thing.
NP is ADJ at V'ing	She is good at teaching.
NP is ADJ in V'ing	He was selfish in doing this.
NP is ADJ for V'ing	Salt is good for seasoning food.
It was an ADJ NP to VP	It was a great party to attend (i.e. It was great to attend that party)

Table 4: Good-type Syntactic Patterns

SAL id	Mnemonic	Example
13 86 432	PCurgent	urgent, essential, crucial, feasible, absurd, appropriate, compulsory
13 86 433	PClear	clear, apparent, arguable, evident, implicit, inevitable, ironic, obvious, pertinent
13 87 438	PCertain	certain, curious, fortunate, lucky, sure, unfortunate, unlikely, likely
13 87 439	PGood	good, excellent, horrible, nice, smart, great, odd, mad, prudent, vital, optimistic
13 88 442	PChappy	happy, afraid, anxious, desperate, proud, ashamed, proud, furious, glad, grateful
13 88 443	PCaware	aware, apologetic, hopeful, confident, angry, exuberant, insistent, joyful, unsure

sets with adverbial coloration, such as manner (intrepid), time (immediate), place (local), order (previous), and degree (utter). Adverbial adjectives may also govern a particular preposition (adjacent to, distant from, indifferent about). Either it is interchangeable with the adverb (back, above, lower) or it is convertible to an adverb (immense/immensely, formerly/formerly, lower/lower, utterlately). In addition, adverbial adjectives may (but not in all cases) function as predicate adjectives. Adverbial adjectives provide the translation system with information pertaining to stylistic transformations that may be required by the target language. For example, if an adverbial adjective is followed by the process noun swift movement, the NP can be transformed stylistically in the target language as move swiftly. Such transformations are made possible because the lexical entry for the adjective points to both a target adjectival transfer and a target adverbial transfer (called the alternate word class). On the other hand, NP’s like inner movement are not transformable and its adjective code would tell the system not to attempt such a transformation. There are 7 subsets under the adverbial adjective set: the prep governance type, the state/manner type, the time/order type, the locative type, the quantity/measure type, and the degree (intensifier type). A full description on each of these types of adverbial adjective can be found in the SAL Tutorial. Non-adverbial adjectives (NAV) do not have adverbial counterparts and, therefore, cannot be converted to adverbs (yellow) and do not govern prepositions. The non-adverbial adjective set is distributed over two subsets: (i) predicate adjectives (adjectives which can occur in the predicate adjective position), and fit the pattern [NP is ADJ] (The flower is yellow); (ii) non-predicate adjectives (adjectives which cannot normally occur in the predicate adjective position, function only attributively (Atlantic, bridial, naval), and fit the pattern [DET ADJ N]. Post-nominal (POST) adjectives can only occur in post-nominal positions (The lottery winner suddenly had money galore). Pure post-nominals, like galore, are rare in English. These adjectives occur in the pattern [NP ADJ], and usually stand for collapsed relative clauses (for example, the phrase The house ablaze with light can be parsed as a shortened form of The house that is ablaze with light). Frequently, a pure post-nominal may govern a particular
Table 5: Total of Entries by POS per Target Language

Word Class	id	GE	FR	IT
Noun	1	28266	25910	23505
Verb	2	33855	33354	33021
Adverb (locative)	3	465	442	450
Adjective	4	21219	20749	20518
Pronoun	5	121	121	121
Adverb (manner, agency, degree)	6	2207	2167	2173
Preposition (non-locative)	11	140	140	139
Auxiliary and Modal	12	34	34	34
Preposition (locative)	13	148	148	148
Definite Article	14	194	194	189
Indefinite Article	15	66	66	65
Arithmet in Apposition	16	208	208	203
Negative	17	2	2	2
Relative and Interrogative Pronoun	18	23	23	20
Conjunction	19	160	160	160
Punctuation	20	30	30	30
Total	87138	83748	80778	

Prefix adjectives appear exclusively in pre-nominal position (anti-, pro-, omni-). The prefix re- has a word-specific subset code (PRere). Since these prefixes are used with hyphenation, in the OpenLogos system, they need to be in the lexicon as distinct entities.

5. Quantitative Results

Table 5 presents the number of entries per POS and per language. There are 12 POS in SAL, divided into open and closed word classes (a total of 20). Open word classes are: nouns, adjectives, adverbs and verbs. Closed word classes are: articles, prepositions, auxiliary verbs, pronouns, interrogatives, negative particles, conjunctions and punctuation. Verbs, nouns and adjectives are clearly the most represented word classes, as they reach more than 80,000 entries.

The dictionaries are stored in self-contained XML. The Extensible Markup Language (XML) files, with the purpose of being easily addressed by small programs. The information follows the DTD (Document Type Definition) presented in Figure 1. One of the reasons for adopting the XML format is that processing XML data is now extremely facilitated by the existing efficient XML APIs (Application Programming Interfaces) that can be found for almost any programming language, such as Python, Java, etc. It is now possible to arbitrarily process complex data structures, represented in XML format, with less than a few programming lines. Figures 2, 3, and 4 contain OpenLogos dictionary entries for English-French (verbs), English-German (nouns), and English-Italian (adjectives) in XML format. The first entry is a feminine singular noun that follows the inflectional paradigm (PAT 01) for verbs, represented by the word walk, and inflects like walk, walked, walking. The French verb quitter follows the inflectional paradigm (PAT 03), represented by the word parler, with the description regular ending in -er. The second entry (target=partir) is classified as INMOinto-type (SAL: 10 24 596) representing the motional intransitive superset. The French verb partir follows the inflectional paradigm (PAT 12) for irregular verbs ending in -ir, with shortened stem, and is classified with the neuter genitive (SAL: 68), with the description -s/-e. The third entry, corresponding to the source word Krokodil, extracted from the English-German dictionary. The first 2 entries (target=Ziehbank and target=Krokodil) are classified as COinvertebrate (SAL: 10 51 123), which stands for invertebrate, reptile. The source word crocodile follows the inflectional paradigm (PAT 16) for nouns, which is represented by the word book, a masculine singular noun that inflects in number by adding an -s to the lemma. The German transfer Ziehbank is a feminine singular noun that follows the inflectional paradigm (PAT 57) for nouns, which is represented by the word Hand, whose plural is Hände. Krokodil is classified with the neuter gender (gen_id=3) and singular number (num_id=1) in entries 2 and 3. The inflectional paradigm for Krokodil is represented by the word Ziel (PAT 68), with the description -s/-e like Ziel/Ziele.
Figure 2: Example for the entry *depart* extracted from the English-French dictionary

Figure 3: Example for the entry *crocodile* extracted from the English-German dictionary
Figure 4 illustrates the adjectival entry *happy* (word class 04), identified as `<Entry source="happy" target="felice">`, extracted from the English-Italian dictionary, whose target is the word *felice*.

The source word is classified as a descriptive pre-clausal (non-logical) happy-type adjective (SAL: 13 88 442), which is used as a predicate adjective, as described in Section 3.3. The inflectional paradigm of *happy* is (PAT 46) following the morphology of the adjective *early*. The comparative and superlative of *happy* are formed by the removal of the *-y* and the addition of the suffixes *-ier* and *-iest*. Its Italian transfer *felice* follows the inflectional paradigm (PAT 46) for adjectives ending in *-e* in the singular, and in *-i* in the plural, both for masculine and feminine forms. The superlative form ends in *-issimo* (*issima*, *issimos*, *issimas*).

6. Conclusions and Future Work

The main goal of this paper was to present 3 sets of resources for machine translation, which can be freely used for research purposes. These lexical resources contain semantico-syntactic knowledge concerning the conceptual formalization of things, ideas, relationships, dispositions, conditions, processes, etc., valuable for machine translation and other natural language processing applications. The resources are in XML format for easier processing. In the future, we will make available the bilingual dictionaries for English-Portuguese, English-Spanish and German-English.

Acknowledgements

Anabela Barreiro was funded by FCT (post-doctoral grant SFRH / BPD / 91446 / 2012). This research was also supported by FCT, under project PEst-EEI/UI0021/2013.

7. References

B. Vandecapelle A. Raw and F. Van Eynde. 1988. Eurotra: an overview. *Interface. Journal of Applied Linguistics*, 1(3):5–32.

M.-H. Antoni-Lay, G. Francopoulo, and L. Zaysser. 1994. A generic model for reusable lexicons: The GENELEX project. *Literary and Linguistic Computing*, 9(1):47–54.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley FrameNet project. In *Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics - Volume 1*, ACL ’98, pages 86–90, Stroudsburg, PA, USA. Association for Computational Linguistics.

Anabela Barreiro, Bernard Scott, Walter Kasper, and Bernd Kiefer. 2011. Openlogos rule-based machine translation: Philosophy, model, resources and customization. *Machine Translation*, 25(2):107–126.

Nicoletta Calzolari, Alessandro Lenci, Francesca Bertagna, and Antonio Zampolli. 2002. Broadening the scope of the eagles/isle lexical standardization initiative. In *Proceedings of the 3rd Workshop on Asian Language Resources and International Standardization - Volume 12*, COLING ’02, pages 1–8, Stroudsburg, PA, USA. Association for Computational Linguistics.

Christiane Fellbaum, editor. 1998. *WordNet: An Electronic Lexical Database*. MIT Press, Cambridge, MA.

Rebecca Green, Bonnie J. Dorr, and Philip Resnik. 2004. Inducing frame semantic verb classes from wordnet and Idoce. In *Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main Volume*, pages 375–382, Barcelona, Spain, July.

Alessandro Lenci, Núria Bel, Federica Busa, Nicoletta Calzolari, Elisabetta Gola, Monica Monachini, Antoine Ogonowski, Ivonne Peters, Wim Peters, Nilda Ruimy, Marta Villegas, and Antonio Zampolli. 2000. Simple: A general framework for the development of multilingual lexicons. *International Journal of Lexicography*, 13(4):249–263.

George A. Miller. 1995. Wordnet: A lexical database for english. *Communications of the ACM*, 38(11):39–41.

Eugenio Picchi, Carol Peters, and Nicoletta Calzolari. 1988. Implementing a Bilingual Lexical Database System. In T. Magay and J. Zigány, editors, *Proceedings of the 3rd EURALEX International Congress*, pages 317–329, Budapest, Hungary, seg. Akadémiai Kiadó.

Paul Procter, editor. 1978. *Longman Dictionary of Contemporary English*. Longman Group Ltd., Essex, UK.

Bernard (Bud) Scott. 2003. The logos model: An historical perspective. *Machine Translation*, 18(1):1–72.

Marta Villegas, Núria Bel, Alessandro Lenci, Nicoletta Calzolari, Nilda Ruimy, Antonio Zampolli, Teresa Sadurní, and Joan Soler. 2000. Multilingual linguistic resources: From monolingual lexicons to bilingual interrelated lexicons. In *LREC*, European Language Resources Association.

P. Vossen. 1998. *EuroWordNet: A Multilingual Database with Lexical Semantic Networks*. Kluwer Academic Publishers.