SYNTHESIS, CRYSTAL STRUCTURE AND THERMAL STUDIES OF TRIPHENYLSILANOL-PIPERRAZINE ADDUCT

M. Dinesh¹, V. Kavitha², G. Prabusankar³, B. Babu⁴, B. Mohanbabu⁵, G. Donghui⁵ and P. Maadeswaran⁶,*

¹Research and Development Center, Bharathiar University, Coimbatore, Tamilnadu-641046, India
²Department of Chemistry, GITAM University, Rudraram, Patancheru, Hyderabad, Telangana-502329, India
³Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana-502285, India
⁴Department of Physics, National Chung Hsing University, Taichung City, 402, Taiwan
⁵Department of Electronic Engineering, School of Electronic Science and Technology, Xiamen University, Xiamen-361005, China
⁶Department of Energy Science, Periyar University, Periyar Palkalai Nagar, Salem, Tamilnadu-636 011, India
*E-mail: maadesphysics@gmail.com

ABSTRACT
The solid-state structure of triphenylsilanol-piperazine adduct was reported from optimized reaction conditions. The molecular composition was further supported by elemental analysis, FT-IR, multinuclear NMR (¹H and ¹³C) and TGA. In solid-state, the four triphenylsilanols are associated in tetrameric form with one piperazine molecule through intra and intermolecular hydrogen bonds that lead to the new type of hydrogen bonding. The molecule represents one of the rare examples of triphenylsilanol-amine derivatives with a new hydrogen-bonding pattern.

Keywords: Organosilicon, Triphenylsilanol, Piperazine, Hydrogen bond, Co-crystal, Crystal Structure.

INTRODUCTION
Stabilization of organosilanol in basic medium assumes importance, in presence of their use in the rational synthesis of metallosilicates.¹⁻⁵ Recently the organic amine stabilized organosilanolns have been used as potential catalysts in organic transformations.⁶,⁷ Among various structurally rich organo silanol-amine co-crystals,⁸⁻¹⁰ the sterically crowded triphenyl silanol has been extensively studied. However, the structural understanding of triphenyl silanol with dinitrogen donor ligand is one of the most challenging task.¹¹ For example, the reaction between triphenylsilanol and 4,4'-bipyridyl in methanol resulted in both 1:1 and 2:1 adducts.¹²,¹³ In both adducts, triphenyl silanol and 4,4'-bipyridyl are linked through intermolecular hydrogen bond.¹⁴,¹⁵ In 2:1 adduct the two silanol units are linked by an intramolecular hydrogen bond. Later the reactions between triphenylsilanol and different dinitrogen donor ligands such as 1,4-diazabicyclo[2.2.2]octane, 1,2-bis(4-pyridyl)ethene, N,N'-dimethylpiperazine, 1,2-bis(4'-bipyridyl)ethane and 4,4'-bipyridyl were investigated.¹⁶,¹⁷ Several attempts were made to obtain co-crystals¹⁸,¹⁹ of triphenylsilanol with piperazine.²⁰ However, the attempts to isolate the triphenylsilanol-piperazine adduct in dry methanol failed. We herein report the triphenylsilanol-piperazine adduct. The 4:1 adduct of triphenylsilanol and piperazine was isolated in quality yield from 1:1 mixture of 1,4-dioxane: methanol solvents.

EXPERIMENTAL
All manipulations were carried out under ambient conditions. The solvents were purchased from commercial sources and purified according to standard procedures.²¹ Unless otherwise stated, the
chemicals were purchased from commercial sources. FT-IR measurement was carried out on a Bruker Alpha-P Fourier transform spectrometer. Thermogravimetric analysis (TGA) was performed using a TA-SDT Q600, Tzero-press. Elemental analyses were performed by the Euro EA Elemental Analysis. The crystal structure of I was measured on an Oxford Xcalibur 2 diffractometer. Suitable single crystal for X-ray structural analysis of I was mounted at 298 K in inert oil under an argon atmosphere. The crystal was kept at 298 K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the olex2.refine refinement package using Gauss-Newton minimization. CCDC 1488282 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.

Synthesis of 1

A solution of piperazine (500 mg, 5.80 mmol) in 1,4-dioxane/methanol (1:1, 2 ml) was added to a solution of Ph$_3$SiOH (140 mg, 0.51 mmol) in 1,4-dioxane/methanol (1:1, 2 mL) under stirring condition at room temperature. The clear reaction mixture was stirred for 20 minutes then stored at 25°C to isolate the colorless crystals of I. Yield: 93% (based on Ph$_3$SiOH). M.p.: 96-98 °C (dec.). Elemental analysis calcd. (%): C, 76.59; H, 6.26; N, 2.35; Found: C, 76.6; H, 6.2; N, 2.4. FT-IR (neat): $\tilde{\nu}$ = 3376(w), 3212(w), 1425(m), 1259(w), 1112(s), 1032(w), 997(w), 886(w), 855(m), 828(s), 741(m), 697(vs) cm$^{-1}$. 1H NMR (DMSO-d$_6$, 400 MHz): δ 7.50 (d) and 7.33-7.28 (m, 15H, Ar), 2.50 (s, 8H, CH) ppm; 1H NMR (CDCl$_3$, 400 MHz): δ 7.64 (d) and 7.44-7.36 (m, 15H, Ar), 2.53 (s, 8H, CH) ppm. 1C NMR (CDCl$_3$, 100.68 MHz): δ 136.1, 134.0, 129.1, 127.3 (Ar), 46.2 (CH$_2$) ppm; 1C NMR (CDCl$_3$, 100.68 MHz): δ 135.8, 135.7, 135.0, 129.9, 127.8, (Ar), 46.0, 45.9, 45.8 (CH$_2$) ppm.

RESULTS AND DISCUSSION

Synthesis and Structural Characterization

Until now the attempts to isolate triphenylsilanol and piperazine adduct under different reaction conditions were not successful. In this paper we report the 4:1 adduct of triphenylsilanols and piperazine co-crystal, 4Ph$_3$Si(OH):[HN(CH$_2$)$_2$]: (I) (Scheme-1). In contrast to the literature, we treated the triphenylsilanols with a large excess of piperazine. However, only 4:1 adduct of triphenylsilanols and piperazine was isolated. The Crystal structure of I was obviously or Experimentally determined by the single-crystal X-ray diffraction technique.

![Scheme-1: Synthesis of I](image)

The suitable single crystals of I for the X-ray analysis were obtained from the mixed solutions of 1,4-dioxane/methanol. I crystallized in the triclinic space group, P$ar{1}$ with three triphenylsilanol and one piperazine molecule. The asymmetric unit of I consists of 0.5 piperazine and two triphenylsilanols. The molecular structure of I is depicted in Fig.-1. The crystallographic data for I is provided in Table-1 and
the significant Geometric parameters are listed in Table-2. Molecule 1 represents one of the rare examples of triphenylsilanol-amine derivatives with a new hydrogen-bonding pattern (Fig.-1(II)). Molecule 1 consists of four triphenylsilanols and one piperazine molecules, in which two triphenylsilanol dimers are hydrogen-bonded through O-H····O hydrogen bond and two such dimers are hydrogen-bonded through N-H····O hydrogen bond. The O-H····O hydrogen bond (Si(2)-O(2)····H(1)-O(1), 2.373 Å) is much stronger than the N-H····O hydrogen bond (O(2)····H(1a)-N(1), 2.856 Å). The O(2)····H(1a)-N(1) bond angle (119.8°) is slightly wider than the Si(2)-O(2)····H(1) bond angle (109.9°). Thus, O(2) oxygen act as acceptor which results in two different types of hydrogen bonds, while O(1) oxygen and N(1) nitrogen act as a donor. As shown in molecular packing, the 4:1 triphenylsilanol and piperazine adduct is packed in a zig-zag manner thus providing nearly no space for additional piperazine to participate in the hydrogen bond. The existence of O····H-N and O····H-O hydrogen bonds in 1 are confirmed by the corresponding FT-IR (Fig.-2) stretching frequency observed at 3376 and 3212 cm⁻¹, respectively. As it is clearly shown in the ¹H and ¹³C NMR studies, the molecular association is sensitive to the solvents. The ¹H NMR (Fig.-3) chemical shift parameters of 1 in CDCl₃ is significantly different from that in DMSO-d₆. Similarly, the notable ¹³C NMR (Fig.-4) chemical shift changes were observed between CDCl₃ and DMSO-d₆. Thus, the dynamic nature of chemical shift values in different solvents indicate that kinetically stable nature of co-crystal 1.
Structural Comparison

Molecule 1 consists of four triphenylsilanols and one piperazine molecule, in which two triphenylsilanol dimers are hydrogen-bonded through O-H····O hydrogen bond and two such dimers are hydrogen-bonded through N-H····O hydrogen bond (Fig. 1(II)). The O-H····O hydrogen bond (O(2)····H(1)-O(1), 2.373 Å) is much stronger than the N-H····O hydrogen bond (O(2)····H(1a)-N(1), 2.856 Å). The O(2)····H(1a)-N(1) bond angle (119.8°) is slightly wider than the Si(2)-O(2)····H(1) bond angle (109.9°). Thus, O(2) oxygen acts as acceptor which results in two different types of hydrogen bonds, while O(1) oxygen and N(1) nitrogen act as donors. As shown in molecular packing, the 4:1 triphenylsilanol and piperazine adduct is packed in a zig-zag manner thus providing nearly no space for additional piperazine to participate in the hydrogen bonding (Fig.-5). The hydrogen-bonding pattern of 1 is not comparable with that of triphenylsilanol and 1,4-diazabicyclo[2.2.2]octane or 1,2-bis(4-pyridyl)ethene (Scheme-2). The striking difference between piperazine vs 1,4-diazabicyclo[2.2.2]octane and 1,2-bis(4-pyridyl)ethene is C-H····π interaction. The C-H····π interaction is absent in 1. As a result, the packing pattern of 1 is new. Moreover, the D····A bond distance of O-H····O in 1 is considerably a strong interaction compared to triphenylsilanols and 1,4-diazabicyclo[2.2.2]octane (2.727, 2.729, 2.736 and 2.701 Å) or 1,2-bis(4-pyridyl)ethene (2.641 and 2.801 Å). Similarly, the O-H····N hydrogen bond interaction in 1 is much weaker than that of triphenylsilanols and 1,4-diazabicyclo[2.2.2]octane (2.642, 2.620 and 2.633 Å) or 1,2-bis(4-pyridyl)ethene (2.753 and 2.791 Å). The H-bond parameters: the H····A distances H(1a)····O(2) (2.374 Å) and O(2)····H(1) (2.857 Å) indicates that the bonds are weaker compared to that in triphenylsilanol-DABCO and triphenylsilanol-1,2-bis(4-pyridyl)ethene adducts; ∠D-H····A (donor-H····acceptor) bond angle ∠O(1)-H(1a)····O(2) is 109.78° and ∠H(2)-O(2)····H(1) is 78.47° clearly shows that the structure is not a favorable structure. This could also be a reason that 2:1 adduct is not formed unlike the diamine, N,N’-dimethylpiperazine.

The reactions between triphenylsilanol and different dinitrogen donor ligands such as 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,2-bis(4-pyridyl)-ethene, 1,2-bis(4-pyridyl)ethene, N,N’-dimethylpiperazine, 1,2-bis(4’-bipyridyl)ethene and 4,4’-bipyridyl were investigated (Bowes et al., 2003). In the cases of diamines DABCO and 1,2-bis(4-pyridyl)ethene, the reaction with triphenylsilanol uniformly yielded 1:4 adduct as the only crystalline product irrespective of the molar ratios (diamine:triphenylsilanol) 1:1, 1:2 or 1:4 in methanol. The reaction of triphenylsilanol with N,N’-dimethylpiperazine in methanol yielded 1:2 adduct as the only crystalline product irrespective of the molar ratios (diamine:triphenylsilanol) 1:1, 1:2 or 1:4 in methanol. The reaction of triphenylsilanol with N,N’-dimethylpiperazine in methanol yielded 1:4 adduct as the only crystalline product irrespective of the molar ratios (diamine:triphenylsilanol) 1:1, 1:2 or 1:4 in methanol. The reaction of triphenylsilanol with N,N’-dimethylpiperazine in methanol yielded hydrated 2:1 adduct. In this study we obtained 4:1 adduct of triphenylsilanol-piperazine using mixture of solvents 1,4-dioxane: methanol in the ratio 1:1. Thus, the structural comparison of triphenylsilanol-piperazine adduct with triphenylsilanol-DABCO and triphenylsilanol-1,2-bis(4-pyridyl)ethene adducts would be significant. The Si-O bond lengths (Table S1a) in all the three adducts are comparable. However, the torsion angles (Table S1b) differ considerably (Table-2). Hydrogen-bond parameters are given in Tables S1c. Hence the molecular packing of each system (triphenylsilanol-DABCO, triphenylsilanol-1,2-bis(4-pyridyl)ethene and 1) is unique.
TRIPHENYL SILANOL-PIPERAZINE ADDUCT

M. Dinesh et al.

RASĀYAN J. Chem.
Vol. 13 | No. 4 | 2294-2301 | October - December | 2020

Fig.-3: 1H NMR Spectra of 1 at 25 °C

Fig.-4: 13C NMR Spectra of 1 at 25 °C

Table-1: Structural Parameters of 1

Empirical Formula	$\text{C}_{19}\text{H}_{18.5}\text{N}_{0.5}\text{OSi}$
Formula weight	595.89
T (K)	298
Crystal system	Triclinic
Space group	$P1$
a/Å	9.252(4)
b/Å	12.065(5)
c/Å	15.058(9)
α°	85.945(4)
β°	79.275(5)
γ°	86.635(4)
V (Å3)	1645.72(15)
Z	2
ρ_{calc}/mg mm$^{-3}$	1.2024
μ (mm$^{-1}$)	1.235
$F(000)$	634.7
Data collected	6221
Unique data	393
R_{int}	0.0284

CDCl$_3$

DMSO-d$_3$
	\(GOF\) on \(F^2\)	1.072
\(R_1 \, (I>2\sigma(I))\)	0.0685	
\(wR_2 \, (I>2\sigma(I))\)	0.1850	
\(R_1\) values (all data)	0.0865	
\(wR_2\) values (all data)	0.2076	

Fig.-5: Molecular Packing of 1 View along (i) X-axis and (ii) Y-axis

Table-2: Selected Bond Lengths and Angles of 1.

Bond Lengths [Å]			
Si(1)-O(1)	1.638(2)	Si(2)-O(2)	1.637(2)
Si(1)-C(1)	1.863(3)	Si(2)-C(19)	1.870(3)
Si(1)-C(7)	1.868(3)	Si(2)-C(25)	1.864(3)
Si(1)-C(13)	1.870(3)	Si(2)-C(31)	1.866(3)

Bond Angles[°]			
C(7)-Si(1)-O(1)	109.59(13)	C(19)-Si(2)-O(2)	111.09(13)
C(1)-Si(1)-O(1)	110.63(12)	C(25)-Si(2)-O(2)	106.31(13)
C(13)-Si(1)-O(1)	110.63(12)	C(31)-Si(2)-O(2)	111.07(13)
C(1)-Si(1)-C(7)	109.61(13)	C(19)-Si(2)-C(25)	107.42(13)
C(13)-Si(1)-C(7)	110.24(13)	C(19)-Si(2)-C(31)	109.59(13)
C(13)-Si(1)-C(1)	109.03(14)	C(25)-Si(2)-C(31)	111.28(13)
TRIPHENYLSILANOL-PIPERAZINE ADDUCT

M. Dinesh Chatla Naga Babu for NMR and single-crystal X-ray studies.

VK thank DST-WOS-A (WOS-A/CS-65/2016) for fellowship. We gratefully acknowledge Dr. Chatla Naga Babu for NMR and single-crystal X-ray studies.

Scheme-2: The comparison of hydrogen bonding modes in co-crystals of (i) triphenylsilanols:piperazine, (ii) triphenylsilanols:1,4-diazabicyclo[2.2.2]octane and (iii) triphenylsilanols:1,2-bis(4-pyridyl)ethane.

TGA Analysis

To understand the thermal decomposition pathway of 1, thermogravimetric analysis (TGA) (10 °C min⁻¹, 30-1000 °C, under N₂ atmosphere) was carried out on 1 (Fig.-6).

Fig.-6: TGA Curve of 1 from 30 °C to 1000 °C with 10 °C min⁻¹ heating rate under N₂ atmosphere.

Compound 1 depicted a gradual decrease in weight loss to 500 °C with 94% weight loss. The gradual weight loss of the molecule can be attributed to the decomposition of organic moieties (decomposition of phenyl group of the silanol and amine group). The residual weight is around 6%.

CONCLUSION

The 4:1 adduct of triphenylsilanol and piperazine was isolated under new reaction conditions. The hydrogen bond patterns in 1 are completely different from that of triphenylsilanols and 1,4-diazabicyclo[2.2.2]octane or triphenylsilanols and 1,2-bis(4-pyridyl)ethane adducts. Adduct 1 is different in its molecular packing due to the absence of C-H····π interaction in the extended network. The adduct 1 is thermally stable and sensitive to solvents. Future studies on the application of 1 and related adducts toward organic transformations are undertaken in our laboratory.

ACKNOWLEDGEMENT

VK thank DST-WOS-A (WOS-A/CS-65/2016) for fellowship. We gratefully acknowledge Dr. Chatla Naga Babu for NMR and single-crystal X-ray studies.
REFERENCES

1. R. Pietschnig, and S. Spirk, *Coordination Chemistry Reviews*, 323, 87(2016), DOI:10.1016/j.ccr.2016.03.010
2. N.T. Tran, S.O. Wilson, and A.K. Franz, *Chemical Communications*, 50(28), 3738(2014), DOI:10.1039/c4cc00672k
3. Ó. Almarsson, and M.J. Zaworotko, *Chemical Communications*, 17, 1889(2004), DOI:10.1039/b402150a
4. S. Murugavel, C.S.J.P. Stephen, R. Subashini, H.R. Reddy, and D. Ananthakrishnan, *Journal of Molecular Structure*, 1122, 134(2016), DOI: 10.1016/j.molstruc.2016.05.095
5. D. Prabha, R. Karunathan, and V. Sathyanarayanaamoorthi, *Journal of Material Science: Materials in Electronics*, 28, 9675(2017), DOI: 10.1007/s10854-017-6718-8
6. V. Chandrasekhar, S. Nagendran, and R.J. Butcher, *Organometallics*, 18(22), 4488(1999), DOI: 10.1021/om990327c
7. E. Varga, L.T. Mika, A. Csámpai, T. Holczbauer, G. Kardos, and T. Soós, *RSC Advances*, 5(115), 95079(2015), DOI: 10.1039/c5ra19593d
8. V.H. Bhaskar, M. Kumar, B. Sangameswaran, and B.R. Balakrishnan, *Rasayan Journal of Chemistry*, 1(2), 218(2008).
9. M.F. Beegum, L.U. Kumari, B. Harikumar, H. T. V Varghese, and C.Y. Panicker, *Rasayan Journal of Chemistry*, 1(2), 258(2008).
10. L. Usha Kumari, M. F. Beegum, B. Harikumar, H.T. Varghese and C.Y. Panicker, *Rasayan Journal of Chemistry*, 1(2), 246(2008).
11. H. Ilkimen, C. Yenikaya, A. Gülbandilar, and M. Sari, *Journal of Molecular Structure*, 1120, 25(2016), DOI: 10.1016/j.molstruc.2016.04.068
12. S. Tothadi, *CrystEngComm*, 16(32), 7587(2014), DOI: 10.1039/c4ce00866a
13. Q. Zheng, S.L. Rood, D.K. Unruh, and K.M. Hutchins, *CrystEngComm*, 20(41), 6377 (2018), DOI:10.1039/c8ee01492b
14. N.N. Shejwal, M. Anis, S.S. Hussaini, and M.D. Shirsat, *Physica Scripta*, 89(12), 125804 (2014), DOI: 10.1088/0031-8949/89/12/125804
15. J. Chandrasekaran, P. Ilayabarathi, and P. Maadeswaran, *Rasayan Journal of Chemistry*, 4(2), 425(2011).
16. N. C. Khalib, K. Thanigaimani, S. Arshad, D.A. Zainuri, and I.A. Razak, *Journal of Physics: Conference Series*, 1083, 012048(2018), DOI:10.1088/1742-6596/1083/1/012048
17. J. Chandrasekaran, P. Ilayabarathi, and P. Maadeswaran, *Rasayan Journal of Chemistry*, 4(2), 320(2011).
18. E. Temel, C. Alaşalvar, H. Eserci, and E. Ağar, *Journal of Molecular Structure*, 1128, 5 (2017), DOI: 10.1016/j.molstruc.2016.08.038
19. J. Chandrasekaran, P. Ilayabarathi, and P. Maadeswaran, *Optics Communications*, 285(18), 3872(2012), DOI:10.1016/j.optcom.2012.05.009
20. V. André, D. Braga, F. Greponi, and M.T. Duarte, *Crystal Growth & Design*, 9(12), 5108(2009), DOI:10.1021/cg900495s
21. M. Vaddamanu, K. Velappan, and G. Prabusankar, *New Journal of Chemistry*, 44(9), 3574(2020), DOI:10.1039/C9NJ05818D
22. O. V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, and H. Puschmann, *Journal of Applied Crystallography*, 42, 339(2009), DOI: 10.1107/S0021889808042726
23. G.M. Sheldrick, *Acta Crystallographic Section A*, A64,112(2008), DOI: 10.1107/S0108767307043930 [RJC-5643/2020]