VEGAS: Software package for the atomistic simulation of magnetic materials

J.D. Alzate-Cardona,∗ D. Sabogal-Suárez, O.D. Arbeláez-Echeverri, and E. Restrepo-Parra
Departamento de Física y Química
Universidad Nacional de Colombia,
Sede Manizales, A.A. 127 Manizales, Colombia.

We present an open-source software package, VEGAS, for the atomistic simulation of magnetic materials. Using the classical Heisenberg model and the Monte Carlo Metropolis algorithm, VEGAS provides the required tools to simulate and analyze magnetic phenomena of a great variety of systems. VEGAS stores the history of the simulation, i.e. the magnetization and energy of the system at every time step, allowing to analyze static and dynamic magnetic phenomena from results obtained in a single simulation. Also, standardized input and output file formats are employed to facilitate the simulation process and the exchange and archiving of data. We include results from simulations performed using VEGAS, showing its applicability to study different magnetic phenomena.

Keywords: atomistic simulation, classical spin model, Monte Carlo method, magnetic phenomena

∗Corresponding author. Tel: +57 6 8879300 Ext. 55631. E-mail: jalzatec@unal.edu.co (Juan David Alzate-Cardona)
I. INTRODUCTION

Magnetic materials are widely used in a diverse range of applications in modern society. In recent years, magnetic nanostructures have attracted much attention because of their promising properties that are no observed in larger structures and the miniaturization demand of magnetic devices. Properties like exchange bias and superparamagnetic behavior at room temperature make magnetic nanostructures ideal for magnetic recording media [1] and biomedical applications [2], respectively.

Spin models have played an important role in understanding the magnetic behavior of magnetic materials. Specially, classical spin models bridge the gap between a full electronic description of a magnetic material and conventional micromagnetism [3]. Classical spins can be represented as n dimensional vectors, such as Ising ($n = 1$), XY ($n = 2$) and Heisenberg ($n = 3$) spins. Because of the difficulty to solve by analytical approaches the partition function of systems represented by classical spin models, numerical simulations employing the Monte Carlo method are usually used to estimate the thermodynamic quantities of the systems. Magnetic properties of different systems, such as thin films [4], simple and core-shell nanoparticles [5, 6], mixed spin systems [7], torus nanorings [8], nanotubes [9], bit-patterned media [10] and bulk materials [11, 12] have been studied by Monte Carlo simulations. These atomistic simulations allow to take into account changes in the magnetization that occur at atomic scale and the finite size effects which are considerable in magnetic nanomaterials [13].

Because of the complexity of the methods and algorithms used to perform atomistic simulation of magnetic materials, research in the area is usually restricted to experts with advanced knowledge in computer programming, where simulations are mostly based on codes developed by the researchers themselves. In view of that, different open source software packages, such as VAMPIRE [13] and ALPS [14], have been developed with the aim to make available these kind of simulations to the non-expert software developer. Furthermore, the development new software is important to take into account improvements made to the current methods and implementations. An increase in the efficiency of the simulation and analysis processes can be achieved by the implementation of novel algorithms and the enhancement of the structure employed to describe the simulation input and output data. Besides, just part of the data is usually collected during a simulation, requiring several simulations to study distinct magnetic behavior of a given system. Taking these aspects into account, we present an open source software package, VEGAS, for the static and dynamic atomistic simulation of magnetic materials.

II. VEGAS SOFTWARE PACKAGE

The aim of VEGAS is to provide the required tools to build, simulate and analyze a great variety of magnetic systems with structural and magnetic characteristics that can be set with high flexibility. The main features of VEGAS are the following:

- The history of the simulation is stored, i.e. the magnetization and energy of the system are stored at every Monte Carlo Step (MCS) per temperature and magnetic field step. This allows to study the dynamic behavior of the system in addition to its static behavior from results obtained in a single simulation. In this way, it is possible to estimate, among other things, equilibrium and non-equilibrium correlation times which can be used to enhance the quality of the statistics of the thermal averages.

- High flexibility is provided for the building and simulation of a great variety of magnetic systems. It is possible to simulate systems with different structures and magnetic phases, where the statistics of each magnetic phase can be tracked independently.

- Several spin update policies, including a highly-efficient adaptive policy, are implemented in VEGAS to simulate accurately the magnetic behavior of different magnetic systems. It is possible to simulate a material with various magnetic phases employing a different update policy for each magnetic phase, e.g. a core/shell nanoparticle where the core is updated using a random move and the shell is updated using a spin-flip move. Also, Ising and mixed spin Ising systems can be modeled using the spin-flip and qIsing update policies, respectively.

- The direction of every spin moment at the last MCS is stored per temperature and magnetic field step. Hence, it is possible to visualize the temperature/field evolution of the spin moments direction, which can contribute to a better understanding of the magnetic phenomena.

- An estimation of the simulation time is given during the simulation.
III. MODEL AND METHOD

A. Classical spin Hamiltonian

The magnetic systems simulated using VEGAS are described by the classical Heisenberg model. Interactions at the atomic scale between spin moments in a magnetic material are modeled by the Heisenberg spin Hamiltonian, which includes the exchange, anisotropy and applied field interactions. The Heisenberg spin Hamiltonian is given by

$$
\mathcal{H} = - \sum_{i \neq j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j - B \sum_i (\mathbf{S}_i \cdot \mathbf{n}_i) - \mathcal{H}_{\text{ani}}
$$

where J_{ij} is the exchange interaction constant between sites i and j, B and \mathbf{n}_i are the magnetic field intensity and direction of site i, respectively, \mathbf{S}_i and \mathbf{S}_j are the spin moment directions of sites i and j, respectively, and \mathcal{H}_{ani} is the anisotropy term. The anisotropy term can take the form of uniaxial anisotropy

$$
\mathcal{H}_{\text{ani}}^{\text{uni}} = \sum_i k_{i}^{\text{uni}} (\mathbf{S}_i \cdot \mathbf{e}_i)^2
$$

where k_{i}^{uni} and \mathbf{e}_i are the uniaxial anisotropy constant and direction of site i, respectively, or cubic anisotropy [15]

$$
\mathcal{H}_{\text{ani}}^{\text{cub}} = \sum_i k_{i}^{\text{cub}} (S_x^2 S_y^2 + S_y^2 S_z^2 + S_x^2 S_z^2)
$$

where k_{i}^{cub} is the cubic anisotropy constant, and S_x, S_y and S_z are the x, y and z components of the spin moment \mathbf{S}, respectively.

B. Monte Carlo Metropolis algorithm

The time evolution of a classical spin magnetic system can be given by the Monte Carlo Metropolis algorithm, where new configurations of a system are generated from a previous state using a transition probability. The algorithm is developed as follows: an initial state is chosen for the magnetic system. Then, one single spin moment is randomly chosen and its direction is changed to a new trial direction according to an update policy (trial move). The energy of the system before and after the trial move is then evaluated according to Eq. (1) and the energy change (ΔE) is calculated. Finally, the trial move is accepted with a probability given by

$$
p = \exp \left(- \frac{\Delta E}{k_B T} \right)
$$

where k_B is the Boltzmann constant and T is the absolute temperature of the system. Repeating this process once per spin moment is called a MCS. The update policy has influence on the efficiency of the algorithm and its physical interpretation [3]. Common update policies, including the spin-flip, random, small step and Gaussian moves [16], are implemented in VEGAS. Furthermore, an adaptive move which keeps the acceptance rate of the new states near 50%, enhancing the efficiency of the Monte Carlo Metropolis algorithm is implemented.

For a comprehensive review of the atomistic spin model and the integration methods employed in the atomistic simulation of magnetic materials see [13].

C. File Formats

In order to facilitate the exchange and archiving of data, VEGAS uses the standardized file formats, JSON and HDF5, for the input and output files of the simulations, respectively. JSON uses universal data structures through which the simulation parameters can be defined using a name/value pair structure. An example of a JSON input file is shown in Figure 1. In this file, the simulation parameters, including the temperature, magnetic field range and step, number of MCS and random number seed, for a hysteresis loop simulation are defined. Also, the material, anisotropy
and initial state (if required) files, and the results output file are given. The simulation parameters are normalized such that \(k_B = 1 \). However, if the user intends to use real units or other kind of normalization, it is necessary to use coherent units for the exchange interaction, anisotropy constant, magnetic field intensity and Boltzmann constant. On the other hand, HDF5 is a data model and file format for storing and managing extremely large data, which is useful for storing and analyzing the simulation results in VEGAS, specially the history of the simulation. Other input data, including the anisotropy and the material files, are given in plain text format. For these files, we designed simple data schemes to specify the anisotropy type and the magnetic and structural parameters of the material.

```
{
  "sample": "material.dat",
  "anisotropy": "anisotropy.anis",
  "field": {
    "start": 0.5,
    "final": -0.5,
    "cycle": true,
    "delta": -0.005
  },
  "initialstate": "initialstate.state",
  "seed": 69696969,
  "temperature": 0.001,
  "kb": 1.0,
  "mcs": 20000,
  "out": "results.h5"
}
```

Figure 1: Example of a JSON input file defining the simulation parameters.

D. VEGAS tools

Based on different PYTHON and C++ libraries, VEGAS provides tools to build, simulate and analyze magnetic systems. Tutorials and a detailed description of the use of VEGAS can be found at its web page https://pcm-ca.github.io/vegas/.

1. Material building

VEGAS has a PYTHON-based tool, VEGAS LATTICE, for building materials with different shapes, structures and magnetic properties. VEGAS LATTICE provides the essential routines to generate regular graph lattices in linear time, as well as some cuts of those lattices for nanoparticles and randomly depleted lattices. Detailed documentation of VEGAS LATTICE can be found at its GitHub repository [17].

It is also possible to build the material manually according to the material file format. The material file, which uses a plain text format, is essentially composed by four parts. The first part indicates the number of ions, links and ion types in the material. The second part is composed by identifiers for the different types of ions. The third part mainly corresponds to the geometric construction of the material, indicating the index, spatial coordinates, spin norm, spatial coordinates of the magnetic field axis, type and update policy of the ion. Finally, the fourth part indicates the exchange interactions between the ions.

2. Simulation

The simulation model and methods are implemented in VEGAS using C++ libraries. In order to initialize the simulation of a given magnetic material, VEGAS reads the system and simulation parameters from the JSON input file. Then, the simulation is carried out by routines implemented according to the classical Heisenberg model and
the Monte Carlo Metropolis algorithm, while the simulation results are stored in the HDF5 output file. During the simulation, an estimate of the simulation time is given.

3. Data analysis

VEGAS has implemented multiple analyzers for the analysis and visualization of different magnetic phenomena. All the analyzers are written in PYTHON using the H5PY library. The analyzers are developed based on the data structure of the simulation results, which are stored in HDF5 format. Different variables are employed to store the simulation result data, which include the temperature, magnetic field, ion positions, final states, energy and magnetization. Furthermore, the Boltzmann constant and the number of MCS are stored as attributes.

If the user requires a more specific or detailed analysis, it is possible to implement simple scripts to analyze the simulation results. Moreover, the HDF Group provides a visual tool, HDFView [18], to extract and analyze data from HDF5 files.

IV. APPLICATIONS

Static and dynamic magnetic properties, such as hysteresis loops, critical temperature, compensation behavior, reversal mechanisms, magnetic recording, critical exponents and correlation times, can be determined using VEGAS. In this Section, we present some examples of the applicability of VEGAS to study different materials and magnetic phenomena.

A. Materials with different shapes and structures

Materials with simple and complex shapes, such as core/shell nanoparticles, nanotubes, nanowires, nanorings, bit patterned media, thin films, multilayers and bulk systems, and crystal structures, such as simple, body-centered and face-centered cubic, can be simulated in VEGAS. Samples of some materials are shown in Figure 2.

![Figure 2: Samples of a (a) spherical core/shell nanoparticle, (b) core/shell nanowire and (c) multilayer.](image)

B. Thermal averages

Thermal averages can be easily extracted and visualized from the simulation results output file. Figure 3 shows the thermal dependence of the magnetization (M) and the susceptibility (χ), and a hysteresis loop of a bulk material simulated using the structure and magnetic parameters of iron, namely, $J = 44.01 \text{meV/link}$ and $k = 3.53 \times 10^{-3} \text{meV/atom}$ [13]. From these results, important magnetic properties of the material, such as the critical temperature (T_c) and the coercivity H_c, can be determined.
C. Dynamic behavior

Besides the static magnetic properties, the dynamic properties of a magnetic system can be extracted from a single simulation [19]. Figure 4 shows the equilibrium correlation times (τ) for a ferromagnetic bulk material with generic parameters. The correlation times were computed for some of the different spin update policies implemented in Vegas. Overall, the adaptive policy produces the lowest correlation times at all temperatures, indicating that it is a very efficient update policy for this kind of system.

D. Critical exponents

Phase transitions can be characterized by simulating the critical behavior of the magnetic systems. Using the finite size scaling method, it is possible to extract values for critical exponents by observing the variation of the thermal averages with the system size [19, 20]. Figure 5 shows log-log plots of the maxima of the susceptibility (χ_{max}), and the first (V_1^{max}) and second order (V_2^{max}) cumulants of the magnetization as a function of the system size (L) for a ferromagnetic 2D Ising system with generic parameters. The critical exponents γ and ν are obtained from the slope of the plots in Figures 5a and 5b, respectively.
E. Magnetization switching processes

Simulation of magnetization switching processes are of great importance for the development of recording devices based on magnetic nanoparticles. Figures 6a and 6b show cross-sectional views of magnetization states in a ferromagnetic torus nanoring. Two magnetization states, vortex (see Figure 6a) and reverse vortex (see Figure 6b) states, can be formed in the torus nanoring and conveniently employed to represent the bits 0 and 1. Figure 6c shows the temperature dependence of the magnetization in the \(\hat{\theta} \) direction \((M_{\hat{\theta}}) \) of two independent simulations where a torus nanoring with generic parameters was cooled down from a high temperature. During the cooling down process and in a short temperature range (shaded region), an external circular magnetic field was applied. In one of the simulations, the external magnetic field switches the magnetization of the torus nanoring producing a reverse vortex state (solid line), while in the other simulation, it does not switch the magnetization producing a vortex state (dashed line). This kind of behavior indicates that there is a switching probability which depends on the temperature range at which the external magnetic field is applied [8].

F. Histogram and multiple histogram methods

From results obtained using Vegas, it is also possible to apply data analysis techniques such as the single and multiple histogram method. These methods allow to take a single simulation performed at some temperature and extrapolate or interpolate results to give predictions of observable quantities at other temperatures [20]. Figure 7 show histograms of the energy per ion site \((E/N) \) obtained at different temperatures in a ferromagnetic 2D Ising system with generic parameters. Using the multiple histogram method, it is possible to interpolate observable quantities, such as the energy and magnetization, at other temperatures with high accuracy.

G. Identification of magnetization states

The feature of Vegas that allows to store the direction of every spin moment at the last MCS is very useful to identify different magnetization states, which is difficult from the thermal average quantities alone. Figure 8 shows a cross-sectional view of different magnetization states produced in a spherical ferromagnetic nanoparticle with core \((k_c) \) and Néel surface \((k_s) \) anisotropy. The magnetization state depends on the ratio \(k_s/k_c \). When \(k_s/k_c \to 0, 100, \infty \) and \(-100\), “collinear”, “throttled”, “hedgehog” and “artichoke” states are produced, respectively [6].

Figures 2, 6a, 6b, 8 and the inset in Figure 3a were generated using POV-Ray [21].
Figure 6: (a) Vortex and (b) reverse vortex magnetization states in a torus nanoring, and (c) temperature dependence of the magnetization in the $\hat{\theta}$ direction of a torus nanoring cooled down from a high temperature.

V. PERSPECTIVES

Vegas is a software package under active development. Important improvements are planned for the sample building and data analysis libraries, increasing the flexibility in the construction of complex magnetic systems and providing different tools for the analysis and visualization of all kind of simulation results. Addition of new Hamiltonian terms, such as the dipolar and Dzyaloshinskii-Moriya interactions, are expected to be included in the Hamiltonian. Parallelization techniques are also planned to be applied to the Monte Carlo Metropolis algorithm to reduce simulation times. Researchers are encouraged to contribute to the development of Vegas at its GitHub repository [22].

VI. ACKNOWLEDGMENTS

Simulations in this work were done using resources provided by the Open Science Grid [23], which is supported by the National Science Foundation and the U.S. Department of Energy’s Office of Science. We acknowledge support by COLCIENCIAS under the program Jóvenes Investigadores e Innovadores 2016 (Grant No. 761).

[1] P. Nordblad, “Tuning exchange bias,” Nature Materials, vol. 14, pp. 655–656, jul 2015.
[2] T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, and B. von Rechenberg, “Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system,” Journal of Magnetism and Magnetic Materials, vol. 293, pp. 483–496, may 2005.
Figure 7: Histograms of the energy per ion site obtained at different temperatures in a ferromagnetic 2D Ising system.

[3] U. Nowak, “Classical Spin Models,” in *Handbook of Magnetism and Advanced Magnetic Materials*, vol. 100 of Lecture Notes in Physics, pp. 858–876, Chichester, UK: John Wiley & Sons, Ltd, 2007.
[4] D. Sabogal-Suárez, J. Alzate-Cardona, and E. Restrepo-Parra, “Static and dynamic critical behavior of thin magnetic Ising films,” *Physica A: Statistical Mechanics and its Applications*, vol. 434, pp. 60–67, 2015.
[5] R. F. L. Evans, D. Bate, R. W. Chantrell, R. Yanes, and O. Chubykalo-Fesenko, “Influence of interfacial roughness on exchange bias in core-shell nanoparticles,” *Physical Review B*, vol. 84, p. 092404, sep 2011.
[6] J. Alzate-Cardona, S. Ruta, R. Chantrell, O. Arbeláez-Echeverri, and E. Restrepo-Parra, “Surface anisotropy and particle size influence on hysteresis loops in La2/3Ca1/3MnO3 nanoparticles: A simulation approach,” *Journal of Magnetism and Magnetic Materials*, vol. 424, pp. 451–458, feb 2017.
[7] J. Alzate-Cardona, D. Sabogal-Suárez, and E. Restrepo-Parra, “Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer,” *Journal of Magnetism and Magnetic Materials*, vol. 429, pp. 34–39, may 2017.
[8] J. Alzate-Cardona, D. Sabogal-Suárez, and E. Restrepo-Parra, “Magnetization switching process in a torus nanoring with easy-plane surface anisotropy,” *Journal of Magnetism and Magnetic Materials*, vol. 442, pp. 231–235, nov 2017.
[9] C. Salazar-Enriquez, E. Restrepo-Parra, and J. Restrepo, “Magnetotransport properties in magnetic nanotubes studied using Monte Carlo simulations,” *Physica E: Low-dimensional Systems and Nanostructures*, vol. 52, pp. 86–91, aug 2013.
[10] O. Arbeláez-Echeverri, J. Agudelo-Giraldo, and E. Restrepo-Parra, “Atomistic simulation of static magnetic properties of bit patterned media,” *Physica E: Low-dimensional Systems and Nanostructures*, vol. 83, pp. 486–490, sep 2016.
[11] E. Restrepo-Parra, C. Salazar-Enriquez, J. Londoño-Navarro, J. Jurado, and J. Restrepo, “Magnetic phase diagram simulation of La1-xCaxMnO3 system by using Monte Carlo, Metropolis algorithm and Heisenberg model,” *Journal of Magnetism and Magnetic Materials*, vol. 323, pp. 1477–1483, jun 2011.
[12] J. Alzate-Cardona, D. Sabogal-Suárez, and E. Restrepo-Parra, “Correlation between vacancies and magnetoresistance changes in FM manganites using the Monte Carlo method,” *Journal of Magnetism and Magnetic Materials*, vol. 391, pp. 129–135, oct 2015.
[13] R. F. L. Evans, W. J. Fan, P. Chureemart, T. a. Ostler, M. O. a. Ellis, and R. W. Chantrell, “Atomistic spin model simulations of magnetic nanomaterials,” *Journal of Physics: Condensed Matter*, vol. 26, p. 103202, mar 2014.
[14] F. Alet, P. Dayal, A. Grzesik, and A. Honecker, “The ALPS project: open source software for strongly correlated systems,” *J. Phys. Soc. . . .*, p. 3, 2005.
[15] R. Skomski, *Simple Models of Magnetism*. New York, NY: Oxford University Press, 2008.
[16] D. Hinzke and U. Nowak, “Monte Carlo simulation of magnetization switching in a Heisenberg model for small ferromagnetic particles,” *Computer Physics Communications*, vol. 121-122, pp. 334–337, sep 1999.
[17] O. Arbeláez-Echeverri, “Vegas lattice,” 2018. doi:10.5281/zenodo.889714.
[18] The HDF Group, “HDFView.” 2017. Available at https://support.hdfgroup.org/products/java/hdfview/, release 3.0.0.
[19] D. P. Landau and K. Binder, *A guide to Monte-Carlo simulations in statistical physics*. New York, NY: Cambridge University Press, second ed., 2009.
[20] M. Newman and G. Barkema, *Monte Carlo Methods in Statistical Physics*. New York, NY: Oxford University Press, 1999.
[21] Persistence of Vision Pty. Ltd., “Persistence of Vision Raytracer,” 2013. Available at http://www.povray.org/download/, release 3.7.0.
[22] J. Alzate-Cardona, D. Sabogal-Suárez, O. Arbeláez-Echeverri, and E. Restrepo-Parra, “VEGAS,” 2018. doi:10.5281/zenodo.160228.
[23] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K. Blackburn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky, J. McGee, and R. Quick, “The open science grid,” *Journal of Physics: Conference Series*, vol. 78, p. 012057, jul 2007.
Figure 8: (a) “Collinear”, (b) “throttled”, (c) “hedgehog” and (d) “artichoke” magnetization states produced in a ferromagnetic spherical nanoparticle with core and Néel surface anisotropy.