NEW CCD TIMES OF MINIMA
OF ECCENTRIC ECLIPSING BINARY SYSTEMS IN 2017-2019

JEONG, M.-J.¹; KIM, C.-H.¹ *; SONG, M.-H.¹; SUNG, E.-C.²; PARK, J.-H.²
HAN, K.-Y.¹,²; JEONG, T.-S.²; AND HAN, C.³

1) Department of Astronomy and Space Science, Chungbuk National University, Cheongju 28644, Republic of Korea, kimch@chungbuk.ac.kr
2) Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea
3) Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea

Abstract: We present 88 times of minima for 56 eccentric eclipsing binary systems determined from photometric observations at the Sobaeksan Optical Astronomical Observatory (SOAO) in Republic of Korea from February 2017 to December 2019.

1 Introduction

The observed period changes of eclipsing binary (EB) stars have been studied with their eclipse timing diagrams (ETDs, commonly referred to as $O-C$ diagrams) formed from observed times of minimum light (O), minus those calculated from an ephemeris (C), plotted against the number of revolutions. The period of an EB system with deep and well defined eclipses can be determined to an accuracy of one part in 10^{-9} d or less (Batten, 1973). The period change of the EB star with such favorable circumstances can be easily detected to several parts of 10^{-8} d in its ETD over a significantly long time baseline. The observed period change can be used as direct clues in understanding astrophysically interesting topics, such as: apsidal motion (AM) in eccentric EBs (EEB), light time effects (LITE) induced by a third body orbiting an EB pair, mass transfer from one component to the other, mass loss from one (or both) component(s), magnetic activities of the stars, and so on. In this respect, it is highly needed to constantly monitor times of minima of EB stars.

In recent years, Kim et al. (2018) compiled a comprehensive catalogue of galactic EEB stars based on ETD. The catalogue lists 623 EEB stars and the AM parameters of 170 EEB stars showing AM. While editing the catalogue, they published a lot of times of minima of EEB stars in the catalogue (Ogloza et al., 2017; Kim et al., 2017). This paper continues the publication of times of minima for several dozens of the EEB systems determined from new photometric observations. Information on the observations and the data processing are summarized in Section 2. The observed times of minima are listed in Section 3.

* corresponding author
2 Observation and Data Reduction

In order to systematically obtain times of minimum light for EEB systems in the catalogue of Kim et al. (2018), we first predicted the eclipse timings of each system in advance by using the AM parameters of each system given in the catalogue. Then, based on the predicted eclipse timing schedule of each system, photometric observations at the SOAO from February 2017 to December 2019 were performed. A 61-cm reflecting telescope was used with a FIL 4K CCD system and a standard BVR filter set. To increase the time resolution between observations, most observations were done only with the R filter. The CCD system, with a 15.2′ × 15.2′ field of view, was electronically cooled during the observations. By using the IRAF/CCDPROC package, all raw images were preprocessed and corrected with bias, dark, and flat-field images, and then aperture photometry in the IRAF/DAOPHOT package was performed for the postprocessing of the data. More details of the data reduction procedure were described in Kim et al. (2014).

Differential photometry was adopted to ensure high precision with our current equipment and techniques. Photometric information on the observed EEB stars and their comparison stars is listed in Tab. 1 where most of the V magnitude and B-V color index were extracted from the SIMBAD database, while the V magnitude and B-V color index of some systems marked with ‘*’ and ‘**’ in the first or the sixth columns were excerpted from the UCAC4 (Zacharias et al., 2012) and GSC2.3 (Lasker et al., 2008) catalogues, respectively. Individual differential measurements of each system are available as a machine-readable format. Fig. 7 shows a sample of the eclipse light curves. All eclipse light curves of the observed EEB stars are also available in the Appendix.

3 Observed Times of Minimum Light

As shown in the Appendix, a total of 88 eclipse light curves for 56 EEB systems were secured from our observations. To determine the times of minima from our observations, we basically used the method of Kwee & van Woerden (1956, KW). Before calculating the times of minima, first we scrutinized each of all eclipse light curves, and found that 33 eclipse light curves have a big difference in length between the descending and ascending branches of eclipse and two have a significant gap during eclipse. The timing determined by applying only the KW method to such data can be unrealistic. To avoid the risk, in addition to the KW method, we adopted two different methods of Fourier fit and sliding integration (Nelson, 2001) of which the computing programs are provided by Bob Nelson\(^a\). A time of minimum light for the data in question was calculated by each of the three methods, and then the average of them and its standard deviation were finally adopted as the time of minimum light and its error, respectively. We think that the average timing is less risky than a timing determined with only one method. For the rest 53 eclipse light curves, a single time of minimum light from each of them was determined by only the method of Kwee & van Woerden (1956). The epochs of minimum light determined separately from multi-bandpass observations were then averaged to yield a weighted mean

\(^a\)https://www.variablestarssouth.org/software-by-bob-nelson/
Table 1: Information of the program stars

Star Name	V (mag)	H-V (mag)	V (Tmag)
2MASS J07505239+0048040	4.88	0.97	12.05
2MASS J07505822+0049588*	3.69	0.10	12.24
2MASS J07412319+0253210	4.59	0.27	11.93
2MASS J07410271+0254227	4.39	0.13	10.93
2MASS J05421802+2003391	4.68	0.04	11.38
2MASS J04370204+4205520	4.88	0.04	10.64
V578 Mon	2.41	0.09	8.55
V521 Mon	2.97	0.04	10.19
WW Cam	2.71	0.07	10.95
V785 Cyg	1.48	0.06	10.95
V961 Cep	7.04	0.47	10.16
V957 Cep	2.87	0.27	11.66
V919 Cep	1.85	0.45	10.89
V957 Cep	1.99	0.27	11.26
V961 Cep	7.32	0.47	10.16
V Cyg	2.99	0.09	7.32
V796 Cyg	1.45	0.06	10.95
V2647 Cyg	11.05	0.46	2.31
CM Dra	1.26	1.63	1.88
V425 Dra	9.33	0.57	10.59
OZ Hya*	5.95	0.30	0.05
RW Leo	10.81	0.42	0.05
CO Lac	1.42	0.04	1.02
GX Lac	6.55	0.17	0.18
MZ Lac	11.45	0.54	0.15
V401 Lac	8.01	0.62	0.01
CW Cep	13.58	0.54	0.05
V401 Mon	10.35	0.10	2.77
V521 Mon	9.70	0.04	2.07
V684 Mon	8.44	0.13	1.51
P Orri	9.29	0.03	1.39
IM Per	11.28	0.70	2.25
IQ Per	7.73	0.04	1.74
V781 Per	10.89	0.48	3.02
2MASS J03314931+3613523	3.64	0.59	11.37
2MASS J03520066+4003477**	4.56	0.69	13.69
2MASS J04370240+4205520	4.54	0.33	10.64
2MASS J04520084+2003391	4.15	0.33	10.64
2MASS J06014124+1057556	5.88	0.49	10.86
2MASS J07421913+0253210	8.59	0.47	11.21
2MASS J07504786+0843121	2.13	0.14	12.93
2MASS J18432600+0841321	3.14	0.13	10.83

DOI: 10.5817/OEJv2020-0205
ISSN 1801–5964

OPEN EUROPEAN JOURNAL ON VARIABLE STARS
http://oejv.physics.muni.cz

November 2020

3
Figure 1: 15 eclipse light curves of 6 EEB systems. The gray dots indicate the individual measurements, and the red dot lines refer to the minimum times determined from the measurements. An extended version of this sample figure is available in the Appendix.
time of minimum for each eclipse. Tab. 2 lists the observed times of minima. In Tab. 2, the second column contains the category classified by Kim et al. (2018); the fourth, the HJD time of minimum light in the UTC time scale; the sixth, the eclipse type: I= primary eclipse, II= secondary eclipse; the seventh, the method to determine each of timings: ‘KW’= the KW method, ‘Av’= average of timings determined by each of the methods of the KW, Fourier fit, and sliding integration; the eighth, the remark: ‘d’ denotes the duration time of the flat-bottom at primary or secondary eclipses in minutes. ‘C’ indicates that a visual companion is very close to the system. All the timings in Tab. 2 were archived into the database of TIDAK (TIming DAtabase at Krakow; Kreiner, 2004; see also the web page: http://www.as.up.krakow.pl/ephem).

The second ‘category’ column contains three categories (D, A, and A+III) based on the $O-C$ behaviours of the primary and secondary times of minima in each of the ETDs: ‘D’ systems showing just constantly displaced secondary minima relative to primary ones, ‘A’ systems displaying the AM effect alone, and ‘A+III’ systems exhibiting a combined form of AM and LITE due to a third body orbiting the system (For more details, refer to Kim et al. (2018)). In the categorisation, systems with less well established AMs or LITEs are indicated with ':'. Systems with ‘D’ or ‘:’ need a continuous monitoring of their times of minima to detect the AM effect or to determine more reliable AM and/or LITE parameters in a longer time base, respectively.

Table 2: Observed Times of Minimum Light

Star Name	Category	Filter	Time of Min. (HJD 2400000+)	Error	Eclipse Type	Met.	Remark
V871 Aql	A	R	58628.16770	0.00016	II	KW	
AG Ari	A	V	58095.97976	0.00153	II	Av	
AG Ari	A	R	58403.29016	0.00082	I	KW	
AG Ari	A	R	58409.18026	0.00028	I	Av	
AL Ari	A+III:	R	58409.10572	0.00014	I	KW	
AL Ari	A+III:	R	58500.95543	0.00540	II	Av	$d \approx 68$
CG Aur	A+III:	R	58463.13318	0.00022	I	KW	
CG Aur	A+III:	R	58473.11903	0.00037	II	KW	
CG Aur	A+III:	R	58501.03693	0.00021	I	KW	
CG Aur	A+III:	R	58510.05928	0.00027	I	KW	
CG Aur	A+III:	R	58777.18583	0.00015	I	KW	
CG Aur	A+III:	R	58796.19734	0.00020	II	KW	
EQ Boo	D	R	58574.21798	0.00031	I	KW	
WW Cam	A	R	58093.12362	0.00032	II	KW	
WW Cam	A	R	58442.25205	0.00003	I	KW	
AS Cam	A+III:	V	58066.10799	0.00034	I	KW	
AS Cam	A+III:	BVR	58445.05799	0.00039	II	KW	$d \approx 57$
AS Cam	A+III:	R	58536.15611	0.00057	I	Av	$d \approx 56$
AS Cam	A+III:	R	58838.07740	0.00032	I	KW	$d \approx 56$
DT Cam	D	R	58832.23169	0.00013	I	KW	
V399 Cam	D	R	58569.01291	0.00081	I	KW	
V534 Cam	A	R	58451.05010	0.00072	I	KW	
LT CMa	A	R	58466.21641	0.00016	II	Av	
Star Name	Category	Filter	Time of Min. (HJD 2400000+)	Error	Eclipse Type	Met.	Remark
-----------------	----------	--------	-----------------------------	---------	--------------	------	--------
IT Cas A:	R		58412.02272	0.00008	I	KW	
IT Cas A:	R		58453.13821	0.00017	II	KW	
OX Cas A+III:	R		58451.15590	0.00013	I	KW	
OX Cas A+III:	R		58765.99633	0.00035	II	KW	
V381 Cas A	A	R	58745.16306	0.00046	II	Av	
V744 Cas D	D	R	58827.99422	0.00007	II	Av	
V785 Cas A	A	R	58438.12228	0.00087	II	Av	
V785 Cas A	A	R	58465.14890	0.00046	II	KW	
V785 Cas A	A	R	58475.96001	0.00073	II	Av	
V785 Cas A	A	V	58009.22964	0.00020	II	KW	
V799 Cas A	A	V	58099.01784	0.00037	I	KW	
V821 Cas A	A	R	58411.01913	0.00014	I	KW	
V1018 Cas A:	A	R	58063.28650	0.00084	II	KW	
V1018 Cas A:	A	R	58509.08876	0.00071	II	KW	
CW Cep A	A	R	58466.03636	0.00008	II	Av	
V397 Cep A	A	R	58403.21252	0.00018	I	KW	
V397 Cep A	A	R	58448.15179	0.00035	II	KW	
V839 Cep D	D	R	58657.25601	0.00035	II	Av	
V908 Cep A	A	R	58628.29182	0.00033	I	Av	
V919 Cep A	A	R	58462.94586	0.00038	I	Av	
V957 Cep A	A	R	58508.96911	0.00015	I	KW	
V961 Cep A	A	R	58453.06054	0.00014	I	Av	
V961 Cep A	A	R	58745.02735	0.00188	II	Av	
Y Cyg A	A	R	58412.12370	0.00062	I	KW	
V796 Cyg A	A	VR	58273.20397	0.00042	I	KW	
V796 Cyg A	A	R	58592.26261	0.00057	II	Av	
V2647 Cyg A	A	R	58777.07256	0.00028	I	KW	$d \approx 29$
CM Dra A	D	R	57888.20294	0.00003	II	KW	
V425 Dra A	D	R	58099.98610	0.00018	I	KW	
OZ Hya A	A	R	58508.23111	0.00030	II	Av	
RW Lac A+III:	R		58646.23542	0.00010	II	KW	$d \approx 36$
CO Lac A	A	R	58496.98312	0.00019	I	KW	
GX Lac A	A	R	58776.99320	0.00021	I	KW	
MZ Lac A	A	R	58446.04493	0.00013	I	KW	
MZ Lac A	A	R	58765.08619	0.00012	I	KW	
MZ Lac A	A	R	58776.15876	0.00054	II	KW	
V401 Lac A	A	V	58064.09678	0.00357	II	Av	$d \approx 76$
V401 Lac A	A	R	58463.00493	0.00071	I	Av	
CF Mon A	D	R	58532.08882	0.00006	I	Av	
V498 Mon A	A	R	58511.95770	0.00044	II	Av	
V521 Mon A+III:	R		58437.19593	0.00337	I	Av	$d \approx 69$
V578 Mon A	A	R	58496.10866	0.00133	I	Av	
V684 Mon A	A	R	57798.99754	0.00127	I	KW	
V684 Mon A	A	BVR	58445.14992	0.00347	I	Av	
FT Ori A	A	R	58449.15824	0.00002	I	KW	$d \approx 20$
FT Ori A	A	R	58808.30649	0.00003	I	KW	$d \approx 19$
IM Per A	A	R	58465.22602	0.00021	II	Av	
Table 2 – (Continued)

Star Name	Category	Filter	Time of Min. (HJD 2400000+)	Error	Eclipse Type	Met.	Remark
IM Per A	R		58508.05241	0.00067	II Av		
IQ Per V			58066.28853	0.00012	I KW	d ≃ 72	
IQ Per A	R		58502.97702	0.00002	II Av	d ≃ 75	
IQ Per R	A		58828.22493	0.00013	I KW	d ≃ 72	
V871 Per A	R		58830.17518	0.00021	I KW	d ≃ 37	
V495 Vul A	R		58745.07741	0.00072	II Av		
V495 Vul A	R		58650.24254	0.00017	II Av		C

Acknowledgements: We sincerely appreciate the precious suggestions from the anonymous referee. We thank the SOAO staffs for supporting our observations. The SIMBAD and VizieR databases by the Centre de Donnees Astronomiques (Strasbourg) have been frequently used for our observations. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2018R1D1A1A09081827, 2020R1A4A2002885).

References

Batten, A. H. 1973, Binary and Multiple Systems of Stars (New York, Pergamon), p. 77, 1973bmss.book.....B

Kim, C. -H., Kim, H. -W., Park, J. -H., et al. 2017, *IBVS*, 6202, 1, 2017IBVS.6202....1K

Kim, C. -H., Kreiner, J. M., Zakrzewski, B., Ogloza, W., Kim, H. -W. & Jeong, M. -J. 2018, *ApJS*, 235, 41, 2018ApJS..235...41K

Kim, C. -H., Song, M. -H., Yoon, J. -N., Han, W. & Jeong, M. -J., 2014, *ApJ*, 788, 134, 2014ApJ...788..134K

Kreiner, J. M. 2004, *AcA*, 54, 207, 2004AcA....54..207K

Kwee, K. K., & van Woerden, H., 1956, *Bull. Astron. Inst. Neth.*, 12, 327, 1956BAN....12..327K
Lasker, B. M., Lattanzi, M. G., McLean, B. J., et. al., 2008, AJ, 136, 735, 2008AJ....136..735L

Nelson, R. H. 2001, IBVS, 5040, 1 2001IBVS.5040....1N

Ogloza, W., Drózd, M., Kreiner, J. M., et al. 2017, IBVS, 6193, 1, 2017IBVS.6193....1O

Zacharias, N., Finch, C. T., Girard, T. M., et al. 2012, VizieR Online Data Catalog, I/322A, 2012yCat.1322....0Z
Figure 2: 15 eclipse light curves of 6 EEB systems. The gray dots indicate the individual measurements, and the red dot lines refer to the minimum times determined from the measurements.
Figure 3: 15 eclipse light curves of 8 EEB systems. The gray dots indicate the individual measurements, and the red dot lines refer to the minimum times determined from the measurements.
Figure 4: 15 eclipse light curves of 8 EEB systems. The gray dots indicate the individual measurements, and the red dot lines refer to the minimum times determined from the measurements.
Figure 5: 15 eclipse light curves of 6 EEB systems. The gray dots indicate the individual measurements, and the red dot lines refer to the minimum times determined from the measurements.
Figure 6: 15 eclipse light curves of 12 EEB systems. The gray dots indicate the individual measurements, and the red dot lines refer to the minimum times determined from the measurements.
Figure 7: 15 eclipse light curves of 8 EEB systems. The gray dots indicate the individual measurements, and the red dot lines refer to the minimum times determined from the measurements.
Figure 8: 15 eclipse light curves of 9 EEB systems. The gray dots indicate the individual measurements, and the red dot lines refer to the minimum times determined from the measurements.
Figure 9: 3 eclipse light curves of 3 EEB systems. The gray dots indicate the individual measurements, and the red dot lines refer to the minimum times determined from the measurements.