In this study, we investigated the associations between single-nucleotide polymorphisms in GAB2 (rs2373115), GSK3B (rs6438552) and SORL1 (rs641120) and Alzheimer’s disease (AD), both alone and in combination with the APOE*4 allele.

Izzo G, Forlenza OV, Santos B, Bertolucci PH, Ojopi EB, Gattaz WF, et al. Single-nucleotide polymorphisms of GSK3B, GAB2 and SORL1 in late-onset Alzheimer’s disease: interactions with the APOE genotype. Clinics. 2013;68(2):277-280.

E-mail: dskerr@gmail.com
Tel.: 55-11-2661-7283

INTRODUCTION

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder that is caused by the interaction of multiple genetic and environmental factors (1). In the early stages, Alzheimer’s disease is clinically characterized by short-term memory impairment, which evolves to widespread cognitive decline and dementia. There is unequivocal evidence that genetic factors contribute to the pathogenesis of Alzheimer’s disease, including the sporadic form (2). Currently, apolipoprotein E is the only well-established genetic risk factor for sporadic Alzheimer’s disease, and the APOE*4 allele has been consistently shown to be associated with an increased risk of Alzheimer’s disease (3,4). There is little doubt that other – most likely multiple – polymorphisms play an important role in the pathophysiology of Alzheimer’s disease, given that the presence of one or even two copies of APOE*4 is neither a necessary nor sufficient condition for developing the disease.

Several new single-nucleotide polymorphisms (SNPs) associated with Alzheimer’s disease have recently been identified in genome-wide association studies, namely PICALM, CLU, CRI and SORL1 (5-7). None of these SNPs can be regarded as etiological factors; rather, they serve as susceptibility modifiers, i.e., factors with independent or additive effects in the interactions among several genetic variants (mostly SNPs) at multiple genomic loci. These variants may not be deleterious per se, but they may modify disease outcomes as a result of direct and indirect interactions with other genetic and environmental factors (8,9).

Polymorphisms in the SORL1, GAB2 and GSK3B genes have been shown to be associated with Alzheimer’s disease in recent studies. Association studies have yielded conflicting data regarding the role of SORL1 rs641120 in Alzheimer’s disease (7,10,11-13). A recent study showed that there were age-dependent differences in SORL1 expression and promoter methylation in an AD cohort, with possible implications for the disease (14). Likewise, two studies suggested that there is an association between GAB2 polymorphisms and AD in Caucasians (15,16), but other studies failed to confirm this association in European (17) and Asiatic populations (18,19). Only one study to date has addressed the association between GSK3B polymorphisms and AD; the results of that study suggest that rs6438552 has a significant effect on disease risk (20). Therefore, the objective of the present study was to determine the effects of GAB2 (rs2373115), GSK3B (rs6438552) and SORL1 (rs641120) polymorphisms on the risk for AD and to investigate the interactions of these SNPs with APOE*4 in a sample of 201 older Brazilian adults.

MATERIALS AND METHODS

Subjects were recruited from two university-based memory clinics in Sao Paulo, Brazil. All participants underwent comprehensive clinical and neuropsychological evaluations. The diagnosis of probable AD (n = 130, mean age 77 ± 8.3, 66% females) was established according to the NINCDS-ADRDA criteria (21). The comparison group included healthy volunteers (n = 71, mean age 71.8 ± 6.7, 79% females) with no signs of cognitive or functional impairment. No
The OR for APOE was calculated by comparing APOE*4 carriers with non-carriers. The ORs for other genes compared the homozygous risk allele genotype with the remaining cohort (e.g., GG vs. GT + TT).

RESULTS AND DISCUSSION

Our results are consistent with the well-established role of the APOE*4 allele as a risk factor for sporadic AD (p<0.0001) (3, 5, 6, 23-25)(7). Data regarding the genetics of AD in the Brazilian population remain scarce (26, 27), underscoring the importance of our findings. We call attention to the positive association of all the studied SNPs, namely GAB2 rs2373115, GSK3B rs6438552 and SORL1 rs641120, with AD (Table 1). The association of the GG genotype of SORL1 with AD (p = 0.047, OR = 2.07, CI95% [1.17 - 3.68]) was independent of APOE, and the binomial logistic regression analysis showed no interaction effect between APOE*4 and any of the SORL1 genotypes (Table 2). We conclude that SORL1 has an independent role in AD, irrespective of the presence of the APOE*4 allele.

We found a positive association between the GG genotype of GAB2 (rs2373115) and the diagnosis of AD (p = 0.021, OR = 1.8, CI95% [1.01-3.18]). This genotype was associated with a greater odds ratio (OR) for AD in the APOE*4 carriers (p = 0.006, OR = 5.08, CI95% [1.45-18.98]). We further used logistic regression to investigate the interaction between the APOE*4 and GAB2 polymorphisms (GG vs. non-GG genotypes, given the small proportion of individuals with the TT genotype in our sample), and we observed a robust increase in the effect as a result of the interaction between GAB2 GG and APOE*4 (p = 0.014, ORinteraction = 7.95, ORmain = 1.44) (Table 2).

With respect to the association between the GSK3B polymorphism (rs6438552) and AD diagnosis, we found that the GG genotype was approximately twice as common in the AD group (28.8%) than in the controls (13.8%) and that this genotype had a significant effect on the OR (p = 0.018, OR = 2.48, CI95% [1.19-5.20]). Interestingly, this effect was even more pronounced in the absence of APOE*4.

Table 1 - Polymorphisms associated with Alzheimer’s disease and sample stratification based on the presence or absence of the APOE*4 allele.

Gene	DbSNP rs ID	Risk Allele	Freq. Cases	Freq. Controls	OR (95% CI)	p-value
APOE	429358 7412	E4	0.29	0.11	3.33 (1.73-6.63)	0.0001
GAB2	2373115	G	0.83	0.78	1.79 (1.01-3.18)	0.021
GSK3B	6438552	G	0.46	0.44	2.48 (1.19-5.20)	0.018
SORL1	641120	G	0.72	0.60	2.07 (1.17-3.68)	0.047
		APOE*4			2.02 (0.58-7.31)	0.260
		APOE*4			2.01 (0.94-4.34)	0.054

The OR for APOE was calculated by comparing APOE*4 carriers with non-carriers. The ORs for other genes compared the homozygous risk allele genotype with the remaining cohort (e.g., GG vs. GT + TT).

Table 2 - Logistic regression analysis of the risk genotype for LOAD in APOE*4 individuals.

Gene	DbSNP rs ID	Interaction	OR interaction	OR main effects	p-value
GAB2	2373115	APOE*4:GG	7.95	1.44	0.014*
		APOE*4:TT		-	-
GSK3B	64384552	APOE*4:GG	1.61	0.65	0.211
		APOE*4:AA	1.10	0.19	0.024*
SORL1	641120	APOE*4:GG	1.64	0.49	0.140
		APOE*4:AA	5.39	31.03	0.989

* p<0.05. The OR interaction values were obtained by logistic regression evaluating the interaction between APOE*4 and the given genotype. ‡ Because there were very few individuals who were homozygous for the T allele, this interaction was discarded.
APOE*4 is involved in the abnormal cleavage of the amyloid-precursor protein (APP), leading to the accumulation of the amyloid-beta peptide, which in turn favors the hyperphosphorylation of Tau. These pathological changes ultimately disrupt axonal transport and neuronal viability (29, 30). GAB2 and GSK3B (rs6438552, AA genotype) have been shown to increase Tau phosphorylation (15, 28). The studied GSK3B and GAB2 polymorphisms are located in intrinsic regions of these genes and may thus have subtle effects on transcription, with biological consequences that are yet to be defined. It is also possible that these SNPs are in linkage disequilibrium with other polymorphisms that may contribute to the observed effects. GAB2 is a scaffolding protein with important roles in several growth and differentiation signaling pathways, including the phosphorylation of kinases that participate in core neurobiological pathways related to AD (15,16,31,32). GAB2 and presenilin 1 both activate PKB, leading to the activation of PKB and the further inactivation of GSK3B (33). Because the inactivation of GSK3B prevents Tau hyperphosphorylation in neurons (34), it is reasonable to assume that any decrease in GAB2 expression and/or function would increase Tau phosphorylation (15). Supporting this hypothesis, in vitro studies have shown that the inhibition of GAB2 expression using siRNA increases Tau phosphorylation (15).

We conclude that interactions between the GAB2 and GSK3B polymorphisms and the well-established genetic factor APOE may modify the overall risk of AD. These effects are by no means linear or cumulative, given that the protective effect of a one studied polymorphism (e.g., the AA genotype of GSK3B) may increase the odds ratio for AD in the presence of APOE*4. Our results support the hypothesis that there is no single genetic cause for late-onset AD; instead, the development of AD depends on the interaction of several genes, environmental factors and age. Further evaluation of the interactions between distinct genes and of the respective implications on neuronal homeostasis may provide insight into the complex neurobiology of AD.

acknowledgments
We would like to thank CNPq, CAPES, FAPESP and ABADHS for financial support.

author contributions
All authors contributed to the present work and consent to the publication of the findings. Gattaz WF and Ojopi EB were responsible for the initial concept. The patients were recruited by Bertolucci HFF, Forlenza OV and Gattaz WF. The experimental analyses were performed by Izzo G and Kerr DS. The statistical analyses were performed by Santos B and Kerr DS. Izzo G wrote the first draft of the manuscript. The literature review was performed by Izzo G and Kerr DS. The manuscript was prepared and formatted and the tables were prepared by Kerr DS and Forlenza OV. All authors have reviewed and approved the final manuscript.

tables

[Table 1: Gene interaction in Alzheimer's disease]

Gene Interaction	Odds Ratio (95% CI)
APOE*4	4.45 (1.47-16.39)
GSK3B	0.19 (0.024-0.84)

1. Kennedy JL, Farrer LA, Andreassen NC, Mayeux R, St George-Hyslop P. The genetics of adult-onset neuropsychiatric disease: complexities and conundrum?. Science. 2003;302(5646):822-6, http://dx.doi.org/10.1126/science.1092132.
2. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Archives of general psychiatry. 2006;63(2):168-74, http://dx.doi.org/10.1001/archpsyc.63.2.168.
3. van der Vlies AE, Pijnburg YAL, Koene T, Klein M, Kok A, Scheltens P, et al. Cognitive impairment in Alzheimer’s disease is modified by APOE genotype. Dement Geriatr Cogn Disord. 2007;24(2):98-103, http://dx.doi.org/10.1159/000104467.
4. Almeida OP, Shimokomaki CM. Apolipoprotein E4 and Alzheimer’s disease in Sao Paulo, Brazil. Arquivos de neuro-psiquiatria. 1975;35(1):1-7, http://dx.doi.org/10.1590/S0004-282X1975000100001.
5. St George-Hyslop P, Abraham R, Hollenworth P, Sinsheimer J, Gerthsen R, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(8):1088-93, http://dx.doi.org/10.1038/ng.440.
6. Lambert J, Heath S, Even G, Campion D, Sleeegers K, Hilltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094-9, http://dx.doi.org/10.1038/ng.439.
7. Meng Y, Lee JH, Cheng R, St George-Hyslop P, Mayeux R, Farrer LA. Association between SORL1 and Alzheimer’s disease in a genome-wide study. Neuroreport. 2007;18(17):1761-4, http://dx.doi.org/10.1097/WNR.0b013e328213e7a.
8. Hunter DJ, Altshuler D, Rader DJ. From Darwin’s finches to canaries in the coal mine—mining the genome for new biology. N Engl J Med. 2008;358(26):2760-3.
9. Hyman SE. A glimmer of light for neuropsychiatric disorders. Nature. 2008;453(7195):893-9, http://dx.doi.org/10.1038/nature06943.
10. Bettens K, Brouwers N, Engelsborgs S, De Deyn PP, Van Broeckhoven C, Sleeegers K. SORL1 is genetically associated with increased risk for late-onset Alzheimer disease in the Belgian population. Hum Mutat. 2008;29(5):769-70, http://dx.doi.org/10.1002/humu.20725.
11. Minster RL, DeKosky ST, Kambh MI. No association of SORL1 SNPs with Alzheimer’s disease. Neurosci Lett. 2008;440(2):190-2, http://dx.doi.org/10.1016/j.neulet.2008.05.082.
12. Cappel I, Attardi LM, Cadoni S, Bagnati R, Drago D, Kretsinger R, et al. Implication of sex and SORL1 variants in Italian patients with Alzheimer disease. Arch Neurol. 2009;66(10):1260-6, http://dx.doi.org/10.1001/archneur.2009.107.
13. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet. 2007;39(2):168-77, http://dx.doi.org/10.1038/ng1943.
14. Furuya TK, da Silva PNO, Panyo SLM, Rasmussen ET, de Labro RW, Boulieu DPH et al. SORL1 and SIRT1 mRNA expression and promoter methylation levels in aging and Alzheimer’s Disease. Neurochem Int. 2012;61(7):973-5, http://dx.doi.org/10.1016/j.neuccineur.2012.07.014.
15. Reman EM, Webster JA, Myers AJ, Hardy J, Duncanley T, Zismann VL, et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron. 2007;54(5):713-25, http://dx.doi.org/10.1016/j.neuron.2007.05.022.
16. Sleeegers K, Bettens K, Brouwers N, Engelsborgs S, van Mieghem H, De Deyn PP, et al. Common variation in GRP-associated Binding Protein 2 (GAB2) and increased risk for Alzheimer dementia. Hum Mutat. 2009;30(2):E338-44, http://dx.doi.org/10.1002/humu.20909.
17. Chauvès J, Hannequin D, Pasquier F, Benthem P, Bruce A, Leber I, et al. Association study of the GAB2 gene with the risk of developing Alzheimer’s disease. Neurobiol Dis. 2008;30(1):103-6, http://dx.doi.org/10.1016/j.nbd.2007.12.006.
18. Lin K, Tang M, Han H, Guo Y, Lin Y, Ma C, GAB2 is not associated with late-onset Alzheimer’s disease in Chinese Han. Neurosci Lett. 2010;313(3):277-81, http://dx.doi.org/10.1016/j.silett.2009.0178-8.
19. Zhong X, Yu J, Hou G, Xing Y, Jiang H, Li Y, et al. Common variant in GAB2 is associated with late-onset Alzheimer’s disease in Han Chinese. Clin Chim Acta. 2011;414(5-6):446-9, http://dx.doi.org/10.1016/j.cca.2010.11.022.
20. Kwon JBJ, Loy CT, Hamilton G, Lau E, Hallupp M, Williams J, et al. Glycogen synthase kinase-3beta and tau genes interact in Alzheimer’s disease. Ann Neurol. 2008;64(4):446-54, http://dx.doi.org/10.1002/ana.21476.
21. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadian EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRD.
22. Forlenza OV, Diniz BS, Talib LL, Radianovic M, Yassuda MS, Ojopi EB, et al. Clinical and biological predictors of Alzheimer’s disease in patients with amnestic mild cognitive impairment. Rev Bras Psiquiatr. 2010;32(3):216-22. http://dx.doi.org/10.1590/S1516-446X2010000500002.

23. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467-72. http://dx.doi.org/10.1212/WNL.43.8.1467.

24. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Englund J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977-81. http://dx.doi.org/10.1073/pnas.90.5.1977.

25. Chen K, Reiman EM, Alexander GE, Caselli RJ, Gerkin R, Bandy D, et al. Correlations between apolipoprotein E epsilon4 gene dose and whole brain atrophy rates. Am J Psychiatry. 2007;164(6):916-21.

26. Souza DRS, de Godoy MR, Hotta J, Tajara EH, Brandão AC, Pinheiro Júnior S, et al. Association of apolipoprotein E polymorphism in late-onset Alzheimer’s disease and vascular dementia in Brazilians. Braz J Med Biol Res. 2003;36(7):919-23.

27. Bahia VS, Kok F, Marie SN, Shinjo SO, Caramelli P, Nitrini R. Polymorphisms of APOE and LRP genes in Brazilian individuals with Alzheimer disease. Alzheimer Dis Assoc Disord. 2008;22(1):61-5. http://dx.doi.org/10.1097/WAD.0b013e31815a9da7.

28. Kwok JBL, Hallupp M, Loy CT, Chan DKY, Woo J, Mellick GD, et al. GSK3B polymorphisms alter transcription and splicing in Parkinson’s disease. Ann Neurol. 2005;58(6):829-39. http://dx.doi.org/10.1002/ana.20691.

29. Terwel D, Dewachter I, Van Leuven F. Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. Neurochemical Med. 2002;2(2):151-65. http://dx.doi.org/10.1002/nm.2.151.

30. Nawrot B. Targeting BACE with small inhibitory nucleic acids - a future for Alzheimer’s disease therapy?. Acta Biochim Pol. 2004;51(2):431-44.

31. Russo C, Dolcini V, Salis S, Venezia V, Violani E, Carlo P, et al. Signal transduction through tyrosine-phosphorylated carboxy-terminal fragments of APP via an enhanced interaction with Shc/Grb2 adaptor proteins in reactive astrocytes of Alzheimer’s disease brain. Ann N Y Acad Sci. 2002;973:323-33. http://dx.doi.org/10.1111/j.1749-6632.2002.tb04660.x.

32. Nizzari M, Venezia V, Repetto E, Caorsi V, Magrassi R, Gagliani MC, et al. Amyloid precursor protein and Presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling. J Biol Chem. 2007;282(18):13833-44. http://dx.doi.org/10.1074/jbc.M610146200.

33. Baki L, Shux J, Wen P, Shao Z, Schwarzman A, Gama-Sosa M, et al. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J. 2004;23(13):2586-96. http://dx.doi.org/10.1038/sj.embj.7600251.

34. Hernández F, Gómez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J. GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol. 2010;223(2):322-5. http://dx.doi.org/10.1016/j.expneurol.2009.09.011.