Adipocytes as a vehicle for ex vivo gene therapy: Novel replacement therapy for diabetes and other metabolic diseases

Masayuki Kuroda1*, Hideaki Bujo2*, Masayuki Aso3, Yasushi Saito4

ABSTRACT
Because of its availability and recent advances in cell biology, adipose tissue is now considered an ideal target site for the preparation of recipient cells and for the transplantation of gene-transduced cells for supplementation of therapeutic proteins. Inherited or acquired serum protein deficiencies are the ideal targets for gene therapy. However, to develop an effective ex vivo gene therapy-based protein replacement treatment, the requirements for the recipient cells are different from those for standard gene therapy that is intended to correct the function of the recipient cells themselves. To meet the requirements for such a therapeutic strategy, recent in vitro and animal model studies have developed new methods for the preparation, culture, expansion and manipulation of adipose cells using advanced gene transduction methods and transplantation scaffolds. In this short review, we introduce the progress made in novel adipose tissue-based therapeutic strategies for the treatment of protein deficiencies by our group and other investigators, and describe their future applications for diabetes and other metabolic diseases. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.00133.x, 2011)

KEY WORDS: Adipocyte, Gene therapy, Metabolic disease

INTRODUCTION
Since the first gene therapy trial against advanced melanoma using gene-transduced lymphocytes was published in 19901, numerous therapeutic clinical trials have been carried out, and inherited monogenic disorders represent approximately 8% of the diseases targeted by gene therapy applications (http://www.wiley.com/legacy/wileychi/genmed/clinical/). Recent studies on the biology of pluripotent stem or progenitor cells have suggested the sustained production of therapeutic proteins to be a potential treatment strategy for patients with a variety of genetic disorders2–5. The ability of cells to self-renew at a high proliferation rate has led to the expectations that these cells might be ideal targets for retroviral vector-mediated transgene delivery for permanent correction of the defect, not only for immunodeficiencies, but also for a variety of inherited or acquired metabolic diseases, including diabetes mellitus.

EX VIVO GENE THERAPY FOR IMMUNODEFICIENCIES
The most impressive outcomes of ex vivo gene therapy trials have been reported in subjects with immunodeficiencies as a result of monogenic disorders, including adenosine deaminase deficiency (ADA-SCID)6,7, γc chain deficiency (X-SCID)8,9 or X-linked chronic granulomatous disease (X-CGD)10,11, where the treatments were combined with the infusion of ex vivo gene-corrected hematopoietic cells. Among these trials, the treatment for X-SCID caused the oncogenesis of gene-transduced cells through the clonal expansion of the cells with the activation of cellular oncogenes as a result of insertion of the MLV LTR sequence into the promoter region of the LMO2 gene12. Clonal expansion was also reported in X-CGD gene therapy trials11 and myelodysplasia with monosomy 7 was caused by the insertional activation of ecotropic viral integration site 1 (EVI1)13.

To correct the immune disorder in these patients, it is necessary for the infused gene-corrected cells to grow, differentiate into multiple hematopoietic lineages and reconstruct the immune system. In the case of X-SCID, the introduced gene (γc) is essential for the maturation of T cells, hence, only the gene-transduced cells grow and mature into functional lymphocytes, causing in vivo selection of the gene-corrected cells14, although the precise mechanisms underlying the development of leukemia in such patients are not completely understood15.

EX VIVO GENE THERAPY FOR FAMILIAL HYPERCHOLESTEROLEMIA
The liver is one of the primary sites of metabolic activity, and is thus the target organ of the pathogenesis for many metabolic disorders. Hepatocytes are the major cell type in the liver and have the ability to proliferate after injury, making them seem
like an ideal target for \textit{ex vivo} gene therapy purposes. Using essentially the same technique, in which a partial hepatectomy followed by MoMLV-mediated gene transduction and reinfection of the cells was carried out, a total of five familial hypercholesterolemia patients were treated26,27. However, levels of serum cholesterol reduction in these patients were moderate, and metabolic responses after gene transfer varied substantially among the five recipients. Thus, the strategy has not been carried out again to date, as a result of the invasiveness of the procedure and ineffective cell engraftment in addition to difficulties in cell preparation steps28, and the development of the treatment has been shifted to more efficient \textit{in vivo} transduction methodologies19. The various gene therapy trials carried out for the treatment of various metabolic deficiencies are summarized in Table 1.

CURRENT PROGRESS IN OTHER DISEASES

Genetic and acquired disorders causing secreted serum enzyme deficiencies have also been postulated to be ideal targets for gene therapy applications. In these diseases, the deficient protein functions systemically, and its defect causes severe complications in target organs. Therapeutic genes expressed by a viral vector are directly infused into the target tissues (\textit{in vivo} gene therapy), or therapeutic gene-transduced cells are transplanted (\textit{ex vivo} gene therapy) and, subsequently, functional proteins are produced systemically to improve the symptoms through protein replacement therapy.

In the former strategy, the gene transduction efficiency might vary depending on the tissue and cell types, and unexpected ectopic gene transduction is not completely prevented. Acute toxicity has been observed after the clinical use of an adenoviral vector29, leading to limited further use. The efficacy of the currently available AAV vectors was shown to be hampered by the pre-existing host immune system, resulting in limitations of their applications to a clinical trial for hemophilia B treatment25.

In the latter strategy, these side-effects can be minimized by preparing the recipient cells \textit{in vitro}, and gene transduction efficiency is controllable and checked before transplantation, although cell preparation steps are required. In addition, transplanted cells are required to reside and/or survive in the patient rather than replicate, in order to continue providing a therapeutic level of protein secretion. Hemophilia has been indicated to be one of the most obvious candidates for protein replacement therapy. Although considerable efforts have been expended to apply \textit{ex vivo} gene therapy to treat these patients, no obvious clinical benefits were observed22–24. However, transplantation of genetically-modified fibroblasts into the forebrain was shown to be effective in clinical gene therapy trials of Alzheimer’s disease26.

Another approach using encapsulated-cell delivery technology to provide nerve growth factor (NGF) release (the product name is NsG020) is currently being studied in a clinical trial. In this strategy, cells are enclosed by an immunoprotective, semi-permeable, hollow fiber membrane, enabling the influx of nutrients and outflow of NGF, and preventing the direct contact of the cells with the host tissue and immune system. Preliminary results have shown good safety and tolerability with no serious adverse events, and an increase in the expression of cortical nicotinic receptors, and three patients have shown cognitive improvement26. However, these strategies were designed for local supplementation of NGF. There is thus an absolute necessity for a novel approach to systemic delivery of therapeutic proteins. Therefore, long-lasting protein replacement therapy using gene-transduced cells is needed to provide a sufficient therapeutic strategy for systemic metabolic diseases.

ADIPOSE TISSUE AS A TARGET TISSUE FOR EX VIVO GENE THERAPY

To develop life-long protein replacement therapy through transplantation of gene-transduced cells, adipose tissue has been explored as a suitable target for several reasons. First, aspirated fat is a common source of autologous tissue transplantation for the correction of tissue defects in plastic and reconstructive surgery27–29. Adipose tissue is well-vascularized, and now is recognized as an important endocrine and secretory organ30–33, and thus could enable the systemic delivery of the therapeutic protein in cell-based gene therapy applications34–37. Fat cells have been shown to have a relatively long lifespan38. With regard to safety concerns, lipospiration or resection of adipose tissue and fat grafting are routinely carried out in the plastic and reconstructive surgery field with minimal risk. Adipocyte-based therapeutic strategy for enzyme replacement therapy is shown in Figure 1.

Recently, adipogenic potential has been shown to suppress the tumorigenic activity of \textit{ink4a} knockout mesenchymal stem cells39. Furthermore, if the gene-transduced cells show an abnormal phenotype, the transplanted cells residing in the transplantation space could be easily excised. In fact, it has already been shown that the transplanted cells can be excised on occurrence of unexpected or abnormal effects35. These findings should encourage researchers to develop an adipose tissue-based lifelong and risk-manageable treatment for patients with serum protein deficiencies.

SCAFFOLD DEVELOPMENT FOR CELL TRANSPLANTATION

For the successful treatment of such cell transplantation-based therapies, it is important to select suitable scaffolds for the transplantedpreadipocytes, adapting the transplantation site to optimize their survival, differentiation and protein expression. These materials must fulfill several requirements, including mechanical support and the ability to guide tissue reconstruction, as well as biocompatibility, biodegradability and easy handling40,41. In this context, fibrin glue is capable of supporting the secretion of the exogenously transduced gene product from preadipocytes \textit{in vivo}42. Considering the previous reports showing the importance of various cytokines for the regulation of cell function and the surrounding matrix conditions43–50, these combinations with our fibrin gel condition could improve the outcomes of adipocyte-based gene therapies.
Table 1 | Clinical gene therapy trials for metabolic diseases

Diseases and transgene	Gene delivery	Vector	Administration route	Trial country	Phase	Number	References		
Alpha-1 antitrypsin deficiency	Alpha-1 antitrypsin	In vivo	Adeno-associated virus	Intramuscular	USA	Phase I	2	60–62	
Cystic fibrosis	Alpha-1 antitrypsin	In vivo	Naked DNA	Intranasal	USA	Phase I	1	63–66	
Cystic fibrosis transmembrane conductance regulator			Adeno-associated virus	Intrabronchial	USA	Phase I	2		
Familial hypercholesterolemia	Low-density lipoprotein receptor	Ex vivo	Retrovirus	Intrahepatic	USA	Phase I	1	16–18	
Gaucher's disease	Glucocerebrosidase	Ex vivo	(CD34 + PBC)	Retrovirus	USA	Phase I	1	67,68	
Huntington's disease	Ciliary neurotrophic factor (CNTF)	Ex vivo (BHK)	Naked DNA	Intracerebral	Switzerland	Phase I	1	69,70	
Lipoprotein lipase deficiency	Lipoprotein lipase	In vivo	Adeno-associated virus	Intramuscular	Netherlands	Phases I/II	1	19,71,72	
Mucopolysaccharidosis type I (Hurlers syndrome)	Alpha-L-iduronidase	Ex vivo (BMC)	Retrovirus	Bone marrow transplantation	USA	Phase I	1	73,74	
	Beta-glucuronidase	Ex vivo (CD34+PBC)	Lentivirus	Intravenous	France	Phase I	1		
Mucopolysaccharidosis type II (Hunter disease)	Iduronate-2-sulfatase	Ex vivo (PBC)	Retrovirus	Intravenous	USA	Phase I	1	75	
	Mucopolysaccharidosis type VII	Beta-glucuronidase	Ex vivo (CD34+PBC)	Lentivirus	Intravenous	USA	Phase I	1	76–78
	Ornithine transcarbamylase deficiency	Ornithine transcarbamylase	Adenoassociated virus	Intravenous	USA	Phase I	1	20,79	
Pompe disease	Acid-alpha glycosidase	Ex vivo	Adeno-associated virus	Intramuscular	USA	Phase I	1	80–82	
Familial lecithin-cholesterol acyltransferase deficiency	Lecithin-cholesterol acyltransferase	Ex vivo	Retrovirus	Subcutaneous	Japan	Phase I	1	42,55,59	

Summarized according to the Clinical Trials Database provided by the *Journal of Gene Medicine* (http://www.wiley.com/legacy/wileychi/genmed/clinical/). Protocol of clinical trial for lecithin-cholesterol acyltransferase deficiency by our group is now under review by Ministry of Health, Labour and Welfare. BHK, baby hamster kidney cells; BMC, bone marrow cells; PBC, peripheral blood cells.

© 2011 Asian Association for the Study of Diabetes and Blackwell Publishing Asia Pty Ltd
Preadipocytes with high adipogenic potential

Recently, adipose tissue has been demonstrated to be a source of proliferative cells for cell-based therapies, such as regenerative medicine and gene transfer applications. Two types of preparation have been reported to be sources of adipose tissue-derived proliferative cells. One is stromal vascular fractions (SVF), which can be obtained as a sediment by the centrifugation of collagenase-digested fat tissue and is the most commonly used technique. The adherent cells obtained from SVF are now recognized as adipose tissue-derived stem cells (ASC), which are pluripotent and can differentiate to yield various cell types, including cardiomyocytes, chondrocytes and osteoblasts, in addition to adipocytes, thus providing a relatively heterogeneous cell population appropriate for regenerative therapy. However, these data show that SVF are heterogeneous, and therefore imply that SVF might not result in a stable therapeutic gene vehicle for gene therapy purposes.

The other cell preparation is obtained from the floating mature fat cell fraction obtained after the centrifugation, followed by a ceiling culture. Because the cells are propagated using the buoyant properties of mature adipocytes in this preparation, the progeny cells are more homogeneous than ASC. Proliferative adipocytes were propagated by the ceiling culture technique from the mature adipocyte fraction, and the cells were designated as ceiling culture-derived proliferative adipocytes (ccdPA). The ccdPA are nearly homogeneous and show only a trace of mature adipocytes by analysis of surface antigen profiles. On stimulation to induce differentiation, the ccdPA showed increased lipid droplet accumulation accompanied with higher adipogenic marker gene expression compared with the ASC, even after in vitro passaging, suggesting the commitment of ccdPA to the mature adipocyte lineage.

Figure 1 | Therapeutic strategy for adipocyte-based enzyme replacement therapy by ex vivo gene transfer. Adipose tissue is obtained by liposuction from the patient. Ceiling culture-derived proliferative adipocytes (ccdPA) are propagated by ceiling culture. The therapeutic gene is transduced by the retroviral vector. ccdPA stably secreting the therapeutic protein are expanded and harvested. Harvested cells are subcutaneously transplanted with the appropriate scaffold.
GENE-TRANSDUCED ADIPOCYTES AS VEHICLE CELLS

MoMLV-mediated gene transduction in human ccdPA resulted in a high gene transduction efficiency. In search of optimal transplantation conditions, the 3-D long-term culture system using fibrin gel, a tissue sealant utilized in the clinic, was established. The gene-transduced ccdPA spontaneously accumulate lipid droplets without any artificial stimulation in 3-D culture using the fibrin glue (Aoyagi Y, Kuroda M, Asada S, Tanaka S, Konno S, Tanio M, Aso M, Okamoto Y, Nakayama T, Saito Y, Bujo H, unpublished observations, 2010). Interestingly, the fibrinogen concentration was shown to affect the lipid accumulation in the cells. The expression of the transduced gene was correlated with cell differentiation (Aoyagi Y, Kuroda M, Asada S, Tanaka S, Konno S, Tanio M, Aso M, Okamoto Y, Nakayama T, Saito Y, Bujo H, unpublished observations, 2011).

In one study, the insulin gene-transduced cells were propagated, and the efficacy of these cells was evaluated in a diabetic mouse model. The transplantation of the cells improved hyperglycemia and blood HbA1c concentrations in a manner that was dependent on the cell number, without causing hypoglycemia. The plasma insulin concentration was dependent on the implanted cell number, and the systemic effect of the circulating insulin was confirmed by a marked improvement in body weight reduction and liver glycogen content. Thus, the autotransplantation of gene-transduced ccdPA could serve as a novel clinical application for a variety of systemic metabolic disorders.

AN EX VIVO GENE THERAPY TRIAL USING EXOGENOUS GENE-TRANSDUCED ADIPOCYTES

Lecithin-cholesterol acyltransferase (LCAT) deficiency has been identified as a genetic metabolic disorder. Cholesteryl ester levels are markedly reduced in lipoproteins, and abnormal cholesterol deposition is observed in the tissues of these patients, who often require long-term therapeutic protein supplements. A good manufacturing practice production procedure has been established, and the gene-transduced cells can be expanded up to nearly 10^{12} cells from 1 g of fat tissue within 1 month after fat tissue preparation. To further expand the adipocyte-based therapeutic strategy for the supplementation of other proteins, it will be necessary to evaluate the characteristics of ccdPA from various kinds of fat diseases, such as those from subjects with metabolic syndrome, which might affect the secretion function of adipose tissues, and to develop an allogeneic transplantation method for patients with lethal conditions in childhood, as well as to establish the necessary transplantation procedure. After the careful consideration of the safety in combination of efficacy, the novel transplantation therapy developed using adipocytes might be applicable not only for genetic deficiencies, but also for lifestyle-related diseases, including diabetes mellitus.

CONCLUSION

There are high hopes that a successful gene therapy approach can be developed in the future to treat rare genetic defects. Numerous studies have been carried out to develop such treatment strategies, both on the basic level and in the clinic. Although hematopoietic cells are proven target cells for ex vivo gene therapies, especially for immune-related diseases in which those cell functions are primarily affected by the gene defects, they might not be suitable targets for the many metabolic diseases that result in impairment of multiple organs. The physiological functions and applicability of adipose tissue would enable researchers to develop a novel therapeutic strategy to deliver therapeutic proteins systematically.

Mature adipocytes have been explored as a source of target cells for ex vivo gene therapy. Propagated ccdPA would provide an excellent platform for a novel adipocyte-based protein replacement therapy for patients with serum protein deficiencies who require long-term therapeutic protein supplements. A good manufacturing practice production procedure has been established, and the gene-transduced cells can be expanded up to nearly 10^{12} cells from 1 g of fat tissue within 1 month after fat tissue preparation. To further expand the adipocyte-based therapeutic strategy for the supplementation of other proteins, it will be necessary to evaluate the characteristics of ccdPA from various kinds of fat diseases, such as those from subjects with metabolic syndrome, which might affect the secretion function of adipose tissues, and to develop an allogeneic transplantation method for patients with lethal conditions in childhood, as well as to establish the necessary transplantation procedure. After the careful consideration of the safety in combination of efficacy, the novel transplantation therapy developed using adipocytes might be applicable not only for genetic deficiencies, but also for lifestyle-related diseases, including diabetes mellitus.

ACKNOWLEDGMENTS

We thank Dr. Itsuko Ishii, Dr. Fumiaki Matsumoto, Dr. Masaharu Ichinose and Dr. Kaneshige Satoh for helpful and valuable suggestions for our research. We also thank Sakiyo Asada, Yasuyuki Aoyagi, Yoshitaka Fukaya, Shunichi Konno and Shigeki Tanaka for their assistance in preparing this manuscript. This study was supported in part by Health and Labour Sciences Research Grants for Translational Research, Japan (HB).

REFERENCES

1. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans–immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified...
by retroviral gene transduction. *N Engl J Med* 1990; 323: 570–578.

2. Kumar S, Chanda D, Ponnazhagan S. Therapeutic potential of genetically modified mesenchymal stem cells. *Gene Ther* 2008; 15: 711–715.

3. Nienuhuis AW. Development of gene therapy for blood disorders. *Blood* 2008; 111: 4431–4444.

4. Qasim W, Gaspar HB, Thrasher AJ. Progress and prospects: gene therapy for inherited immunodeficiencies. *Gene Ther* 2009; 16: 1285–1291.

5. Reiser J, Zhang XY, Hemenway CS, et al. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. *Expert Opin Biol Ther* 2005; 5: 1571–1584.

6. Aiuti A, Cattaneo F, Galimberti S, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. *N Engl J Med* 2009; 360: 447–458.

7. Onodera M, Ariga T, Kawamura N, et al. Successful peripheral T-lymphocyte-directed gene transfer for a patient with severe combined immune deficiency caused by adenosine deaminase deficiency. *Blood* 1998; 91: 30–36.

8. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. *Science* 2000; 288: 669–672.

9. Hacein-Bey-Abina S, Auber J, Lim A, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. *Nat Med* 2003; 9: 570–578.

10. Kang EM, Choi U, Theobald N, et al. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidative activity in peripheral blood neutrophils. *Blood* 2010; 115: 783–791.

11. Ott MG, Schmidt M, Schwarzwaelder K, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. *Nat Med* 2006; 12: 401–409.

12. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. *Science* 2003; 302: 415–419.

13. Stein S, Ott MG, Schultze-Strasser S, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. *Nat Med* 2010; 16: 198–204.

14. Cavazzana-Calvo M, Fischer A. Gene therapy for severe combined immunodeficiency: are we there yet? *J Clin Invest* 2007; 117: 1456–1465.

15. Pike-Overzet K, van der Burg M, Wagemaker G, et al. New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy. *Mol Ther* 2007; 15: 1910–1916.

16. Grossman M, Rader DJ, Muller DW, et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. *Nat Med* 1995; 1: 1148–1154.

17. Grossman M, Raper SE, Kozarsky K, et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. *Nat Genet* 1994; 6: 335–341.

18. Nguyen TH, Mainot S, Lainas P, et al. Ex vivo liver-directed gene therapy for the treatment of metabolic diseases: advances in hepatocyte transplantation and retroviral vectors. *Curr Gene Ther* 2009; 9: 136–149.

19. Vaessen SF, Twisk J, Kastelein JJ, et al. Gene therapy in disorders of lipoprotein metabolism. *Curr Gene Ther* 2007; 7: 35–47.

20. Raper SE, Chimule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. *Mal Genet Metab* 2003; 80: 148–158.

21. Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. *Nat Med* 2006; 12: 342–347.

22. Chuah MK, Collen D, Vandendriessche T. Preclinical and clinical gene therapy for haemophilia. *Haemophilia* 2004; 10(Suppl. 4): 119–125.

23. Murphy SL, High KA. Gene therapy for haemophilia. *Br J Haematol* 2008; 140: 479–487.

24. Petrus I, Chuah M, VandenDriessche T. Gene therapy strategies for hemophilia: benefits versus risks. *J Gene Med* 2010; 12: 797–809.

25. Tuszynski MH, Thal L, Pay M, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. *Nat Med* 2005; 11: 551–555.

26. Mangialasche F, Solomon A, Winblad B, et al. Alzheimer’s disease: clinical trials and drug development. *Lancet Neurol* 2010; 9: 702–716.

27. Billings E Jr, May JW Jr. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. *Plast Reconstr Surg* 1989; 83: 368–381.

28. Patrick CW Jr. Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. *Semin Surg Oncol* 2000; 19: 302–311.

29. Patrick CW Jr. Tissue engineering strategies for adipose tissue repair. *Anat Rec* 2001; 263: 361–366.

30. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. *J Clin Endocrinol Metab* 2004; 89: 2548–2556.

31. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. *Dig Dis Sci* 2001; 60: 329–339.

32. Traylor P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. *Proc Nutr Soc* 2001; 60: 329–339.

33. Wozniak SE, Gee LL, Wachtel MS, et al. Adipose tissue: a new endocrine organ? A review article. *Diag Dis Sci* 2009; 54: 1847–1856.

34. Casteilla L, Cousin B, Planat-Benard V, et al. Virus-based gene transfer approaches and adipose tissue biology. *Curr Gene Ther* 2008; 8: 79–87.
35. Ito M, Bujo H, Takahashi K, et al. Implantation of primary cultured adipocytes that secrete insulin modifies blood glucose levels in diabetic mice. Diabetologia 2005; 48: 1614–1620.

36. Kitagawa Y, Bujo H, Takahashi K, et al. Impaired glucose tolerance is accompanied by decreased insulin sensitivity in tissues of mice implanted with cells that overexpress resistin. Diabetologia 2004; 47: 1847–1853.

37. Kubota Y, Unoki H, Bujo H, et al. Low-dose GH supplementation reduces the TLR2 and TNF-alpha expressions in visceral fat. Biochem Biophys Res Commun 2008; 368: 81–87.

38. Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783–787.

39. Shimizu T, Ishikawa T, Sugihara E, et al. c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene 2010; 29: 5687–5699.

40. Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007; 59: 1413–1433.

41. Dawson E, Mapili G, Erickson K, et al. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 2008; 60: 215–228.

42. Aoyagi Y, Kuroda M, Asada S, et al. Ceiling culture-derived proliferative adipocytes are a possible delivery vehicle for enzyme replacement therapy in lecithincholesterol acyltransferase deficiency. Open Gene Ther J 2011; 4: 1–10.

43. Asada S, Kuroda M, Aoyagi Y, et al. Ceiling culture-derived proliferative adipocytes retain high adipogenic potential suitable for use as a vehicle for gene transduction therapy. Am J Physiol Cell Physiol 2011; (in press). doi: 10.1152/ajpcell.00080.2011.

44. Santamarina-Fojo S, Hoeg JM, Assman G, et al. Lecithin cholesterol acyltransferase deficiency and fish eye disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Volkan BF (eds). The Metabolic and Molecular Bases of Inherited Disease, 8th Edn. McGraw-Hill Inc, New York, 2001; 2817–2833.

45. The Human Gene Mutation Database. Institute of Medical Genetics in Cardiff (HGMD). http://www.hgmd.cf.ac.uk/ac/index.php.

46. Asada S, Kuroda M, Aoyagi Y, et al. Disturbed apolipoprotein A-I-containing lipoproteins in fish-eye disease are improved by the lecithincholesterol acyltransferase produced by gene-transduced adipocytes in vivo. Mol Genet Metab 2011; 102: 229–231.

47. Brigham KL, Lane KB, Meyrick B, et al. Transfection of nasal mucosa with a normal alpha1-antitrypsin gene in alpha1-antitrypsin-deficient subjects: comparison with protein therapy. Hum Gene Ther 2000; 11: 1023–1032.

48. Flotte TR, Zeitlin PL, Reynolds TC, et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults. Hum Gene Ther 2004; 15: 93–128.

49. Stenberg AA, Brigham KL. Gene therapy progress and prospects: alpha-1 antitrypsin. Gene Ther 2003; 10: 95–99.

50. Bellon G, Michel-Calemard L, Thouvenot D, et al. Aerosol administration of a recombinant adenovirus expressing CFTR to cystic fibrosis patients: a phase I clinical trial. Hum Gene Ther 1997; 8: 15–25.

51. Flotte TR, Zeitlin PL, Reynolds TC, et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2-CFTR) vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther 2003; 14: 1079–1088.
65. Moss RB, Milla C, Colombo J, et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. *Hum Gene Ther* 2007; 18: 726–732.

66. Wagner JA, Nepomuceno IB, Messner AH, et al. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. *Hum Gene Ther* 2002; 13: 1349–1359.

67. Dunbar C, Kohn D. Retroviral mediated transfer of the cDNA for human glucocerebrosidase into hematopoietic stem cells of patients with Gaucher disease. A phase I study. *Hum Gene Ther* 1996; 7: 231–253.

68. Dunbar CE, Kohn DB, Schifffmann R, et al. Retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with Gaucher disease: in vivo detection of transduced cells without myeloablation. *Hum Gene Ther* 1998; 9: 2629–2640.

69. Bachoud-Levi AC, Deglon N, Nguyen JP, et al. Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. *Hum Gene Ther* 2000; 11: 1723–1729.

70. Bloch J, Bachoud-Levi AC, Deglon N, et al. Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. *Hum Gene Ther* 2004; 15: 968–975.

71. Rip J, Nierman MC, Ross CJ, et al. Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation. *Arterioscler Thromb Vasc Biol* 2006; 26: 1236–1245.

72. Rip J, Nierman MC, Sierts JA, et al. Gene therapy for lipoprotein lipase deficiency: working toward clinical application. *Hum Gene Ther* 2005; 16: 1276–1286.

73. Baxter MA, Wynn RF, Deakin JA, et al. Retrovirally mediated correction of bone marrow-derived mesenchymal stem cells from patients with mucopolysaccharidosis type I. *Blood* 2002; 99: 1857–1859.

74. Fairbairn LJ, Lashford LS, Spooner E, et al. Long-term *in vivo* correction of alpha-L-iduronidase deficiency (Hurler syndrome) in human bone marrow. *Proc Natl Acad Sci USA* 1996; 93: 2025–2030.

75. Storacek DF, Hubel A, Shankar RA, et al. Retroviral transduction and expansion of peripheral blood lymphocytes for the treatment of mucopolysaccharidosis type II, Hunter’s syndrome. *Transfusion* 1999; 39: 343–350.

76. Hennig AK, Levy B, Ogilvie JM, et al. Intravitreal gene therapy reduces lysosomal storage in specific areas of the CNS in mucopolysaccharidosis VII mice. *J Neurosci* 2003; 23: 3302–3307.

77. Hofling AA, Devine S, Vogler C, et al. Human CD34+ hematopoietic progenitor cell-directed lentiviral-mediated gene therapy in a xenotransplantation model of lysosomal storage disease. *Mol Ther* 2004; 9: 856–865.

78. Hofling AA, Sands MS, Lublin DM, et al. Collection of a mobilized peripheral blood apheresis product from a patient with mucopolysaccharidosis type VII and subsequent CD34+ cell isolation. *Clin Apher* 2004; 19: 151–153.

79. Raper SE, Yudkoff M, Chirmule N, et al. A pilot study of *in vivo* liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. *Hum Gene Ther* 2002; 13: 163–175.

80. Fraites TJ Jr, Schleissing MR, Shanely RA, et al. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. *Mol Ther* 2002; 5: 571–578.

81. Mah C, Cressawn KO, Fraites TJ Jr, et al. Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors. *Gene Ther* 2003; 12: 1405–1409.

82. Mah C, Pacak CA, Cressawn KO, et al. Physiological correction of Pompe disease by systemic delivery of adeno-associated virus serotype 1 vectors. *Mol Ther* 2007; 15: 501–507.