Pollution Flashover Voltage of Transmission Line Insulators: Systematic Review of Experimental Works

Ali Ahmed Salem¹,*, Kwan Yiew Lau¹,*, Wan Rahimán²,*, Zulkurnain Abdul-Malek¹, Samir A. Al-Gailani², Nabil Mohammed⁴, R. Abd Rahman³ and Salem Alameri³

¹School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
²School of Electrical and Electronic Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
³Faculty of Electrical and Electronic Engineering, University Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia
⁴Department of Electrical and Computer Systems Engineering, Monash University, Clayton VIC 3800, Australia

Corresponding author: Ali Ahmed Salem (en.alisalem@gmail.com), Wan Rahimán (wanrahimán@usm.my), Kwan Yiew Lau (kwanyiew@utm.my).

“This work was supported by the Collaborative in Engineering, Science and Technology (CREST) under the Grant 304/PELECT/6050423/C121 from Universiti Sains Malaysia and the Post-Doctoral Fellowship Scheme under the Professional Development Research University Grant (05E68) from Universiti Teknologi Malaysia (UTM)”

ABSTRACT Over the past decades, extensive experimental-based research works have been carried out to investigate the flashover phenomenon on the performance of polluted transmission line insulators. The critical focus has been on developing methods that can determine the safety, reliability, and sustainability of the overall power transmission network based on experimental results obtained from polluted insulators' flashover voltage tests. In this paper, a systematic review of available scientific works, published as early as the 1990s, for the analysis of pollution flashover voltage, is undertaken. The review mainly focuses on factors influencing the efficiency of transmission line insulators under polluted conditions. Specifically, publication databases utilizing various synonyms and keywords associated with the terms “contaminated insulators” and “flashover voltage test” have been scrutinized. The search has resulted in 1364 articles, from which 97 articles have satisfied the review requirements and have been subsequently analyzed to determine the parameters associated with polluted insulators. Major factors that affect the performance of insulators, including electrical and environmental impacts, are discussed. Variations in factors affecting flashover test development and insulator efficiency are also considered. Overall, the current analysis provides an important insight toward successful evaluations of the health of transmission line insulators and research advancements of electric power transmission line insulators.

INDEX TERMS Flashover voltage test, polluted insulators, high voltage insulators, transmission line.

I. INTRODUCTION

With the rising demand for modern-day electricity, the topic of overhead power transmission lines has become important and prominent to ensure minimally interrupted electricity supply. A transmission line comprises several types of components with different functions, and one of the most important components is the insulator, as illustrated in Figure 1. Due to pollution and unstable weather in the outdoor environment, insulators may get damaged from time to time [1]. The damage or failure of insulators may arise from the flashover voltage, or in general, due to a combination of multiple damaged components, including fitting faults, which may result in power outage [2]. Once the flashover occurs in a power transmission line, it may lead to super regional blackouts and may even cause catastrophic accidents as suggested by [2]. Often, site engineers can provide actual insights into factors that influence the performance of insulators, as well as yielding guidance into the fitting characteristics of the transmission line insulators. It is therefore crucial to understand the flashover mechanisms of insulators based on the views and perspectives of engineers and researchers worldwide [3-5].
To date, various pollution flashover models, including static and dynamic models, have been pursued by many researchers in predicting the flashover voltage characteristics of polluted insulators [6-13]. For this, the collection of experimental data in identifying factors affecting the performance of polluted insulators are key elements to understanding the failure of polluted insulators. Moreover, in-depth exploration of experimental parameters in relation to the performance of polluted insulators is vital to gain an insight into problems faced by high voltage insulators. Furthermore, development of numerous models capable of predicting various characteristics related to the pollution flashover phenomenon. For example, the insulator shape, the pollution distribution layer and its resistivity, the heat exchange, and the presence of moisture have been correlated with pollution flashover to determine key factors affecting the pollution flashover phenomenon.

Significantly, the contamination of an insulator associated with the presence of moisture degrades the dielectric performance of the insulator [2]. The presence of moisture in addition to the pollution of insulator results in the dissolution of salt contaminants, leading to the formation of a conductive layer on the insulator [6]. The conductive layer, which is subjected to different values of voltages across the insulator, becomes an easy path for the leakage current to flow. This causes the conductive layer to heat up through the Joule effect, thus resulting in the formation of dry bands on the insulator. The potential difference, which initially appears between the line and the ground electrode of the insulator, will be at the limits with the presence of the dry band regions [12]. Due to high electric fields, a spark will occur, originating from the wet area where the voltage is high, above the dry bands, ionizing the surrounding air [8]. The spark will grow at high intensity and may propagate over the whole length of the polluted layer. This causes the passage of the current in the AC state and leads to the line short-circuit, changing the insulator to a conductor [15]. Of note, a flashover will take place whenever the electric field exceeds a threshold value, commonly known as the threshold voltage [15]. Figure 2 demonstrates the flashover process of a polluted insulator.

Figure 2. Pollution flashover process on an insulator.

A. BACKGROUND OF INSULATOR POLLUTION FLASHOVER

Failure of insulators occurs due to flashovers or discharges. The main cause of insulator flashovers or discharges is the environmental conditions [12]. These include contamination, aging, and moisture. These conditions are subjected to insulators during the insulators’ in-service lifetime, thus resulting in insulator failures and subsequent electrical grid outages [14]. To date, a significant amount of both theoretical and experimental works have been devoted to the study of flashover that occurs on polluted insulators. This huge amount of works resulted in the...
ii. What are the techniques, parameters, methods, conditions, and insulator samples used in pollution flashover tests?

iii. What are the crucial factors affecting the flashover voltage due to the pollution of high voltage insulators?

II. RESEARCH METHODOLOGY

The research methodology of this study consisted of four main stages as demonstrated in Figure 3. The first stage was meant for incorporating the right strategy for searching the literature and setting the criteria for the literature to be included in the current review. This was needed to complement extensive theoretical questions implemented on any existing research, which were proposed to include adequate search questions and answers from the related scientific literature. The second stage was intended for the selection of the literature, and it comprised data classification and data extrapolation. This information processing operation constituted of data collation accompanied by data definition. Then the extraction and evaluation of the data was carried out in the third stage by applying accurate estimation criteria. Finally, in the fourth stage, synthesis of data was carried out, in which a step-by-step analysis of data was performed to deliver a satisfactory conclusion of the selected study characteristics.

Figure 3. Processes and stages of the review.

A. PLANNING

1) INCLUSION AND EXCLUSION CRITERIA

A systematic review of all peer-reviewed and published papers relevant to the study of pollution flashover of polluted insulators were finalized for exploration. The articles that were written in the English language on the tested pollution flashover during the last four decades from 1980 to 2020 were reviewed. Accurate criteria for the addition were established to include relevant articles and exclude articles that were not related to the study of pollution flashover. Therefore, only peer-reviewed papers that concentrate essentially on pollution flashover studies were taken into consideration. For this, articles that presented the results from laboratory tests, field tests, static models, dynamic models, analytical studies, numerical models, mathematical models, statistical analysis, and prediction models on flashover of polluted insulators were included. Papers selected from references of relevant papers were also included. Finally, all papers were compiled. The inclusion and exclusion criteria are summarized and tabulated as in Table 1.

Inclusion Criteria
1. Studies that addressed the objectives of the flashover voltage on polluted insulators.
2. Studies of pollution flashover voltage on polluted insulators published between 1990 and 2021.
3. Studies related to flashover voltage factors affecting polluted insulators.
4. Studies related to flashover voltage experiments on polluted insulators.

Exclusion Criteria
1. Duplicated studies or redundant articles of the same authorship.
2. Articles that are irrelevant to this study.
3. Articles that could not reach their text using the specified search engines.
4. Studies in which the focus was not on the flashover on solid surfaces of high voltage polluted insulators, such as gas insulation, transformer bushings, and breakers.

2) SEARCH TERMS

The search terms used to conduct the review were devised to identify studies that introduced aspects of pollution flashover tests and models on high voltage insulators. To select search terms, pilot searches in an iterative way were performed. Terms that did not produce articles matched to the inclusion criteria were excluded. To ensure to include the synonyms of the essential terms, the synonyms of the specified terms were determined. Therefore, the "flashover" synonyms are “discharge”, “arc”, and “breakdown”. Keywords used to define the term "pollution" included “pollutions”, “polluted”, “contamination”, and “contaminated”. The "method of studies" term has the following synonyms: “study”, “investigate”, “test”, “experiment”, and “experimental". Finally, the “model” synonyms were “model” and “approach”. In the searching process, the Boolean operators "AND" and "OR" were employed to search for relevant scientific papers. The word ‘AND’ covers all selected keywords, ‘OR’ covers any of the selected keywords, and the wildcard asterisks provide the plurals and other suffixes. After many iterations, the keywords used in this search within title, abstract, full text, and keywords of the published papers were defined as (Flashover OR "arc discharge") AND (Test OR experiment OR investigate OR predict OR prediction OR analysis OR...
analytical) and (pollution* OR polluted OR contamination* OR contaminated) AND (insulator* OR dielectric*). Figure 4 shows the bibliometric analysis of 97 articles issued on the pollution flashover of insulators according to the Scopus database using particular keywords such as "pollution flashover" AND "insulators".

3) RESOURCES
Six research databases were used as sources for this systematic review, namely, Web of Science (WoS), Scopus, Science Direct, IEEE Xplore, Springer, and Google Scholar. Various existing papers were also searched for their title, abstract, and keywords and were employed to operate more search terms to locate published journals or papers, conference proceedings, workshops, symposiums, books chapters, and IEEE bulletins.

B. SELECTION
1) LITERATURE SEARCH PROCESS AND SCRUTINY
The search process steps advocated by Khan et al. [16] were adopted in this work to choose the relevant papers. Figure 5 shows the steps used to classify papers that are relevant to the pollution flashover topic. First, comprehensive searches of six research databases or publishers (as mentioned above), as well as a database that relates to systematic reviews, were administrated to select relevant articles.

Second, the journals that include papers relevant to studies on the flashover models and tests of polluted insulators were selected. Then, the reference lists of all the relevant papers that matched the conditions of inclusion were checked. Each list of references was searched for any additional citations that could point to new articles and collected. Finally, when the search process entered the saturation stage when searches did not add any extra studies, the filtering process began. The primary selected list of articles was filtered and examined to ensure relevance. The steps involved in this filtering have been summarized as follows: First, the titles were evaluated for pertinence, and the article's contents were scanned to ensure relevance to the subjects under examination. They were subjected to further assessment according to the following conditions: typed in English, journal rank, and conference indexing. Papers that discussed the same topic and the most recent were included.

C. EXTRACTION (ASSESSMENT OF DATA QUALITY)
The quality assessment was aimed to boost the reliability of the selected articles in this work and in ascertaining the eligibility and comprehensiveness of the results [17]. The papers selected were assessed based on quality by a scoring method to decide the reliability, significance, and relevance of the articles. The studies were judged using a set of 10 criteria as exhibited in Table 2. The obtained papers were of different types of studies. To evaluate their quality, the included articles were classified into four categories as suggested by [18]. The categories were:
1) Evaluation Research (ER) articles: These articles comprised the techniques that were developed and implemented, and a stringent evaluation was carried out on them.
2) Validation Research (VR) articles: These articles comprised studies that discussed the assessment of a technique or method by using some experiments, i.e., work conducted in laboratories. To our knowledge these studies were novel and were carried out in practice.
3) Solution Proposal (SP) articles: These papers provided the solution to new issues or an extension of studies concerning the techniques underused. The suitability and efficiency of the solution were illustrated by a descriptive scenario or case study or discourse.
4) Opinion Articles (OA): These articles reflected the points of view of the authors on the application of the case definition methodology, emphasizing their
advantages and disadvantages. These forms of research were not dependent on the relevant studies and the research methodology.

The quality of evaluated questions was used for each category as given in Table 2 and is proposed by [19], [20], [21], as well as [17]. Each question was assessed based on three potential responses: "Yes" (score = 1), "Partially" (score = 0.5) or "No" (score = 0). This was done by the help of StArt (State of the Art through Systematic Reviews) software [20]. Subsequently, the sum of answers scores would determine the quality of the relevant study.

TABLE 2. Criteria for Research Quality Assessment

No.	Questions	ER	VR	SP	OA
1	Is there a clear description of the aims of the study? [21]	×	×	×	-
2	Is the research methodology being clear? [21]	×	×	×	-
3	Is there a satisfactory report of the context (equipment function descripts, experiment setting, products used, and so on) in which the work was carried out? [21]	×	×	-	-
4	Is the sample representative of the group to which the findings can be generalized? [19]	×	×	-	-
5	Was the analysis of the results adequately accurate?[18]	×	×	×	-
6	Is there a debate about the research outcomes?[21]	×	×	-	-
7	Are the limitations of this work explicitly addressed? [21]	×	×	-	-
8	Are the concepts learned exciting? [19]	×	×	-	-
	Is there enough analysis of relevant studies? [20]	×	×	-	-

III RESULTS

A. STUDIES SELECTION

The selection process of studies was conducted as in Figure 6. The articles were collected from electronics database with the help of the keywords that were mentioned in Section II (search term). These papers were carried out strictly according to the requirements for inclusion and exclusion. 1364 articles were obtained, and their abstracts were reviewed. As shown in Figure 7, the obtained papers consisted of 567 articles from Scopus, 423 articles from IEEE Explore, 147 articles from Science Direct, 136 articles from Web of Science, 51 articles from Springer, 16 articles from Institute of Physics, 7 articles from references lists, and 19 articles from other sources. Out of 423 IEEE articles, there were 159 journals papers, 247 conferences papers and 11 magazines. The collected studies (1364 articles) were inserted and arranged into the StArt software to start the selection process. Moreover, 5 papers were included manually. Out of 1364 articles, 376 appeared to be duplicated studies and were excluded. After reviewing the abstract for 988 articles, 747 papers were rejected based on the lack of relevance to the noted study. Therefore, the remaining 244 papers were eligible for full text review and 97 met all eligibility criteria and were included in this systematic review process. Figure 8 depicts the processing of selection and extraction for relevant studies using Start software. Out of 241 full text articles, 144 articles were excluded because the flashover on polluted insulators was not the main concern of the papers or included only secondarily study or as a case study in a larger study. Figure 8 illustrates the selection process using StArt tool software. Based on the eligibility criteria, rejected papers were classified as low and very low levels while accepted papers were classified as high and very high levels. Accepted papers that achieved three or four of inclusion criteria were classified as very high level while accepted papers with less than three of inclusion criteria were
classification as high level. Meanwhile, rejected papers that met all the exclusion criteria were classified as very low level; rejected papers that met less than four exclusion criteria were classified as low level. Figure 9 demonstrates the number of papers that met inclusion and exclusion criteria. As can be seen from Figure 9, most of the included papers were concerned with experimental studies for the pollution flashover of insulators. In addition, most papers were rejected because the objectives of those articles were improved in new articles under the same authorship members.

![Selection and extraction details using StArt software](image)

FIGURE 8. Selection and extraction details using StArt software.

FIGURE 9. Numbers of the accepted and rejected papers based on inclusion and exclusion criteria

B. ELIGIBLE STUDIES CHARACTERISTICS

Ninety-seven eligible studies were published between 1990 and 2021, comprising 103 journal articles and 18 conference papers. The keywords of the included studies were analysed and plotted in word-cloud software as shown in Figure 10. Table 4 demonstrates the number of conference papers and journal publications by year of publication. The number of publications has increased dramatically since 2010. Of note, the number of review papers about pollution flashover of outdoor insulators appeared little throughout the last decade. Although there have been many studies on pollution flashover, comprehensive reviews of insulator pollution flashover have not been done.

![Word-cloud of the included studies keywords](image)

FIGURE 10. Word-cloud of the included studies keywords.
Figure 11 shows the share of journals publishing papers on pollution flashover of high voltage insulators. From Figure 11, majority of the paper were published in IEEE Transactions on Dielectrics and Electrical Insulation (TDEI) (40 articles, 31.7%), Electric Power Systems Research (15 papers, 12%), International Journal of Electrical Power and Energy Systems (9 articles, 10.7%), and IEEE Transactions on Power Delivery (8 articles, 7%). The rest of the journals published less than 5 articles per journal.

The number of countries contributing to publishing papers on the flashover of polluted insulators were also taken into consideration. According to the affiliation of the first author on the noted papers, the published articles were classified as illustrated in Figure 12. Majority of the selected papers have been contributed by the researchers from China (32 papers, 32.9%), Algeria (14 papers, 14.4%), India (8 papers, 8.2%), and UK (6 papers, 6.1%). The papers published by other countries were less than 6 papers for each country. According to the classification suggested by [16] based on research type, the included publications were sorted as follows:

1) Evaluation Research (ER) (9/97 paper) [32]-[38], [142-155]
2) Validation Research (VR) (58/121 paper) [42]-[100]
3) Solution Proposal (SP) (30/121 paper) [101]-[129]

The majority of the research articles were Validation Research type with 59.7% (58 papers) followed by Solution Proposal with 30.9% (30 papers), and Evaluation Research with 9.2% (9 papers). None of the selected papers belong to opinion studies category of research types. To address the adopted methodology suggested in the selected studies on the flashover voltage on polluted insulators, 97 eligible studies were categorized into three new categories, namely, Experimental studies only (ES), Experimental studies supported by proposed model and ((ES)-(PMS)), and Experimental studies supported by prediction method ((ES)-(PS)). The new classification of selected studies was tabulated in Table 5. It is clear from Table 5 that most of the papers introduced experimental studies only. The above research questions are intended to present the techniques or approach utilized, the main parameters, and the contamination conditions for each experimental study, as well as the structure and type of the selected insulator. As seen from Table 5, the experimental study alone was used to test the contaminated insulators in 51 studies and to verify the model used in 36 studies. In addition, the experimental method was used to endorse prediction studies in 10 articles. The answer to the above question through the selected experimental studies was summarized in Table 6.
FIGURE 12. The share of countries on publishing papers based on the first author affiliation.

TABLE 5. Methodology classification of the selected studies.

Method of study	Studies	Count	%
Experimental studies (ES)	[24], [25], [31], [33], [36], [40], [42], [45-47], [49], [51], [53], [58], [59], [61], [62], [66], [68–72], [74], [76-79], [84–87], [90-92], [96], [98], [100], [116], [141-155]	51	52.5
Proposed Model and experimental studies ((PMS)-(ES))	[26], [29], [33], [37], [41], [44], [47], [54-56], [63], [65], [67], [73], [81], [82], [88], [89], [94], [95], [99], [101], [102], [118-130]	36	37.1
Prediction study and experimental studies ((PS)-(ES))	[27], [42], [60], [75], [97], [131-133]	10	10.3

TABLE 6. Purpose, techniques, parameters, conditions and insulators samples of flashover voltage tested.

Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators
[24]	To investigate the flashover voltage -current behaviors	Direct measurement using voltmeter between pin and 3mm electrode in the rib of insulator	AC	- Artificial pollution (ESDD) - Humidity / Test chamber in laboratory	uniform	- Single Porcelain (Cap-and-pin)
[28]	To collect data to predict risk of flashover on towers using ANN and FL	Optical and satellite sensors installed on transmission towers used to measure risk per day (wireless)	AC	- Normal conditions / Field real transmission towers (sugarcane fields)	uniform	- String Porcelain insulator (Cap-and-pin)
[25]	To analyze insulator performance under fog -salt treatments	Direct measurement using capacitor divider (10000:1)	DC	- Artificial pollution (ESDD) / Test chamber in laboratory	uniform	- Silicone rubber composite insulator FXBW-35/70 - Seven-disk porcelain insulators (XP-160) - Seven-disk glass insulators (LXY-160) String 3-units Glass insulator (LXP-70)
[29]	To assess the risk of non-uniform polluted insulator based on a new leakage current index measured experimentally	Monitoring system (Divider -DAQ-LabVIEW interface)	AC	- Artificial pollution (ESDD) - Wetting rate / Test chamber in laboratory	Uniform Non-uniform	- Single Porcelain (Cap-and-pin)
TABLE 6. Count.

Aim of experiment	Measurement Type	Condition / location	Style pollution	Insulators			
[29] To predict flashover performance on polluted insulator based on field experience and laboratory test and short historical of chemical components	Direct measurement using a shunt resistor.	DC - Artificial pollution (ESDD) / Test chamber in laboratory	Uniform - Long rod porcelain insulator - Cylindrical porcelain insulator - Flat glass insulator				
[31] To investigate the effect of SDD and fog-water conductivity on the AC contamination flashover voltage of insulators under cold foggy conditions	Capacitive voltage divider (SGB-200 A, with ratio 10000: 1)	AC - Artificial pollution (SDD) - Cold fog and Steam fog / Test chamber in laboratory	Uniform - SIR (FXBW4-35/70) - Porcelain (XP-160) - Glass (LXY4-160)				
[33] To develop the mathematical model of critical parameters on polluted insulators based on experimental findings.	Capacitor divider	AC - Artificial pollution (Salinity) - Humidity / Test chamber in lab	Uniform - 3 single different porcelain insulators - 3 different glass insulators				
[32] To test pollution flashover performance under low air pressure conditions and study the relationship between the results of artificial experiment and field experiment	Capacitor divider and resistance divider	AC - Artificial pollution (SDD) - Fog - Low Air pressure (P/P0) / Field experiment (height of altitude 4484 m and 2820 m) Multifunction artificial climate chamber	Uniform - 21 units string Porcelain - XP-160 - XWP-160 - 21 units string Glass - LXY-160 - LXHY-160 - SIR - FXBW-10/70 - FXBW-110/70 - FXBW-750/A - FXBW-750/B - Single glass LXY-70				
[36] To investigate the effects of contamination distribution, temperature, and dry band position on insulator flashover characteristics under different scenarios	Monitoring system (Divider (10000:1)-DAQ-LabVIEW interface)	DC - Artificial pollution (SDD) - Humidity / Test chamber in lab	Uniform pollution In 5 different scenarios distribution				
[37] To determine how insulator geometry affects the flashover voltage based on leakage current.	Shunt resistors, Rm, AC	Artificial pollution / Test chamber in lab	Uniform Non-uniform - 5 different porcelain insulators - 1 control cylindrical insulator - Flat glass insulator				
[39] To investigate the effect of the contamination configuration, the voltage polarity and the pollutant resistivity on the leakage current and the flashover voltage.	Shunt resistors Impulse	Artificial pollution - SDD - Pollution distribution / Test chamber in lab	Uniform Non-uniform - Flat glass insulator				
Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators	
-------	--	-----------------------	-------------	----------------------	----------------------------------	------------	
[40], [43]	To test AC flashover pollution for various types of insulator strings under fan-shipped non-uniform pollution.	Current sampling resistor r 1(Ω) - Capacitor divider	AC	Artificial pollution SDD - Pollution distribution - Aging pollution / Multifunction artificial climate chamber	Uniform Non-uniform Fan-shaped	3 different types of porcelain insulator string - 2 different types of glass insulator string - 4-type SIR composite insulators	
[41]	To investigate the performance of composite insulator under dry and rain conditions comparing with switching Impulse (SI) superimposed	Capacitor divider	DC	Conductivity - Switching impulse parameters - Wetting rate Insulator orientations / Test chamber in lab	Uniform	SIR composite insulator	
[42]	To test arc path for lightning protection composite insulator under different pollution	Capacitor divider	Impulse and AC	ESDD - NSDD / Test chamber in lab	Uniform	SIR Lightning protection composite insulator	
[44]	To quantify the effect of different types of water drops on flashover voltage	Capacitor divider	AC	Water drops	Water drops	Flat silicon rubber	
[45]	To test effect of longitudinal and fan-shaped non-uniform pollutions on flashover voltage of SIR composite insulators	Capacitor divider	AC	SDD	Non-uniform Longitudinal Fan-shaped non-uniform pollution	4-type SIR composite insulators	
[49]	To test effect of longitudinal and fan-shaped non-uniform pollutions on flashover voltage of SIR composite insulators	Capacitor divider	AC	Fog	Longitudinal Fan-shaped non-uniform pollution	Porcelain Glass	
[76]							
[141]							
[143]							
[144]							
[153]							
[46]	To test effect the insulator profiles and wetting rate on the mean flashover voltage	DAQ card	AC	SDD - wetting rate / Test chamber in lab	Uniform • conventional insulator • textured insulator	Cylindrical polyester composite	
[84]							
[85]							
[47]	To examine effect of desert conditions such as, fillers and ultra-violet on the flashover voltage of insulators	Capacitor divider	AC	Ultra violet - Mechanical stress - Thermal - Three types of filler - ATH - H3BO3 - Mg(OH)2 / Test chamber in lab	Uniform • conventional insulator • textured insulator	Cylindrical polyester composite	
Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators	
-------	-------------------	-----------------------	-------------	----------------------	-----------------	-----------	
[48]	To assess the reliability of insulator using Pollution Existence PFD, a Log-Normal Distribution function To test effect of pollution and humidity on SIR insulators in different aging times	Capacitor divider	AC	ESDD - Aging pollution - Humidity - Ultra violet	Uniform pollution	4type SIR composite insulators	
[50]	To predict the failure probability of the studied nano-RTV-coated, RTV-coated porcelain insulators in the presence of different levels of contamination.	Capacitor divider	AC	SDD - Nano-RTV coatings for RTV coating	Uniform pollution and coating	Single porcelain insulator	
[51]	To study the effect RTV coating on glass insulators under different natural pollution	Capacitor divider	AC	ESDD - RTV silicone-coated - Aging - Superhydrophobic nano-coated	Uniform pollution and coating	String 10-unit glass insulators	
[52]	To analyze leakage current and flashover voltage with different fog-haze parameters	Capacitor divider	AC	Fog conductivity - Fog-haze duration	Uniform pollution	2-unit polymer insulator	
[54]	To obtain the relationship between flashover voltage and electric field measured laboratory using fiber optic.	Leakage current sensor and DAQ - Capacitor divider - Fiber optic probe	AC	ESDD - Humidity	Uniform pollution	Composite Long Rod - Ceramic Pin Type - 3 different types of Ceramic line post	
[53]	To compare the experimental results of current and critical voltage with the results that obtained using mathematical model under different pollution conditions and humidity.	Capacitor divider (100, 25,000 pf)	AC	Salinity Sa - Different Humidity - Different applied voltage	Uniform pollution	Cap and pin - 3 types glass insulators - 3 types porcelain insulators	
[56]	To validate the dynamic model of flashover voltages under uneven pollution between windward and leeward sides on insulator	Capacitor divider	DC	SDD	Non-uniform -windward and leeward pollution - top and bottom	Long rod porcelain insulator	
[58]	To test flashover voltage gradient performance of insulator strings under eight kinds of soluble constituents	Capacitive voltage divider (10,000:1)	AC	ESDD with different salts: NaCl, NaNO3, KNO3, NH4NO3, Mg(NO3)2, Ca(NO3)2, MgSO4, CaSO4	Uniform pollution and	Strings: - Porcelain: XP4-160 - glass: LXY4-160 - SIR A: FXBW-35/100, FXBW-35/70	
Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators	
-------	------------------	-----------------------	-------------	---------------------	----------------	-----------	
[59]	To investigate the high voltage insulator performance under natural contamination deposit environment, and distributed from different pollution severity areas	Leakage current sensor CT	AC 110 kV 220 kV	ESDD NSDD / Test chamber in lab	Natural pollution - Uniform pollution - Non-Uniform pollution	Strings 3 units porcelain insulator	
[60]	To test flashover voltage and current characteristics of glass insulator covered by pollutant (sand)	Capacitive voltage divider for voltage Resistor for leakage current	AC 220 kV	Sand Quantity NSDD ESDD Applied voltage Dry band length and location / Test chamber in lab	Uniform and Non-uniform Pollution - with dry band - without dry band	A glass plan model	
[62]	To study effect of dry band and distribution of pollution on insulator performance under impulse voltage	Capacitive voltage divider for voltage and Resistor for leakage current	Impulse Resistivity positive and negative polarities Arc length Number of arcs / Test chamber in lab	Uniform pollution - with 2 dry band - with 3 dry band - without dry band	A plan model		
[63]	AC contamination flashover of 4 types insulator with ring-shaped non-uniform pollution were test	Direct measurement using capacitive voltage divider 10000:1 for voltage Resistor for leakage current	AC SDD / Test chamber in lab	Non-uniform Pollution - Ring-shaped pollution	Cap and pin - 3 different type porcelain insulators - 1 glass		
[64]	Seven kinds of nitrates were prepared as the soluble contamination, and the ac flashover performance of 4 types of insulators under various nitrates were investigated	Direct measurement using capacitive voltage divider 10000:1	AC 110 kV	ESDD NSDD ESDD x NSDD Different salts NaCl NaNO3 KNO3 NH4NO3 Mg(NO3)2 Ca(NO3)2 MgSO4 / Test chamber in lab	Uniform pollution and - SIR composite - 2 different insulators Cap and pin ▪ 1 glass insulator ▪ 1 porcelain		
[65]	To validate the critical current and voltage calculated using electro-thermal and dynamic models of flashover polluted insulators	Direct measurement using capacitive voltage divider	AC	Pollution resistance NSDD polarity 12 different electrolytes / Test chamber in lab	Uniform pollution	Plant model	
Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators	
-------	-------------------	-----------------------	-------------	----------------------	-----------------	------------	
[59]	To investigate the high voltage insulator performance under natural contamination deposit environment, and distributed from different pollution severity areas	Leakage current sensor CT	AC	- ESDD / NSDD	Natural pollution	- Strings 3 units - Porcelain insulator	
[60]	To test flashover voltage and current characteristics of glass insulator covered by pollutant (sand)	Capacitive voltage divider for voltage Resistor for leakage current	AC 220 kV	- Sand Quantity / NSDD / ESDD / Applied voltage / Dry band length and location	Uniform and Non-uniform pollution • with dry band • without dry band	- A glass plan model	
[60]	To study effect of dry band and distribution of pollution on insulator performance under impulse voltage	Capacitive voltage divider for voltage Resistor for leakage current	Impulse	- Resistivity / positive and negative polarities / Arc length / Number of arcs / Test chamber in lab	Uniform pollution • with 2 dry band • with 3 dry band • without dry band	A plan model	
[63]	AC contamination flashover of 4 types insulator with ring-shaped non-uniform pollution were test	Direct measurement using capacitive voltage divider 10000:1 for voltage Resistor for leakage current	AC	SDD / Test chamber in lab	Non-uniform pollution Ring-shaped	- Cap and pin • 3 different type porcelain insulators • 1 glass	
[64]	Seven kinds of nitrates were prepared as the soluble contamination, and the ac flashover performance of 4 types of insulators under various nitrates were investigated	Direct measurement using capacitive voltage divider 10000:1	AC 110 kV	- ESDD / NSDD / ESDD x NSDD / Different salts NaCl, NaNO3, KNO3, NH4NO3, Mg(NO3)2, Ca(NO3)2, MgSO4 / Test chamber in lab	Uniform pollution and	- SIR composite - 2 different insulators - Cap and pin • 1 glass insulator • 1 porcelain	
[65]	To validate the critical current and voltage calculated using electro-thermal and dynamic models of flashover polluted insulators	Direct measurement using capacitive voltage divider	AC	- Pollution resistance / NSDD / polarity / 12 different electrolytes / Test chamber in lab	Uniform pollution	Plant model	
Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators	
-------	-------------------	-----------------------	-------------	----------------------	-----------------	------------	
[66]	Flashover voltage and current were tested under additional salt deposit density (ADD) and water salt-fog for three different insulators.	The leakage current signals were captured by NI USB-6215 data acquisition card (NI) and voltage using capacity divider	AC 110 kV	- ESDD - ASDD - Clean and salt fog water / Test chamber in lab	Uniform pollution	- Porcelain XP-160 - Glass LXY4-160 - Composite	
[67]	The differences on the flashover voltage of contaminated SIR insulators using three wetting methods.	Direct measurement using capacitive voltage divider	AC	- SDD with - Wetting methods: • Brushing Method • Dipping Method • Spraying Method / Test chamber in lab	Uniform pollution	4 different configurations of polymer insulators SIR	
[67]	To test flashover performance on glass insulator under RTV and Nano-filler coating for cap and pin metal and insulator	Direct measurement using capacitive voltage divider	DC RTV coating cap and pin insulator / Nano-filler coating / Test chamber in lab	Uniform coating	Cap and pin glass insulator Plate		
[69]	To investigate the insulators performance under different Non-uniform pollution	Direct measurement using capacitive voltage divider for voltage and Resistor for leakage current	AC	- SDD • top and bottom • Fan-shaped • Ring-shaped / Multifunction artificial chamber in lab	Uniform pollution	String Porcelain insulator	
[70]	To test the flashover performance on a wet pollution layer by monitoring the flashover development using infrared image	FLIR A325 camera DAQ card Capacitive voltage divider	AC	- SDD - Fog - Dry band / Multifunction artificial chamber in lab	Uniform	Silicon rubber insulator 11 kV	
[71]	To investigate DC pollution flashover propagation under low air pressure	USB-6215 DAQ VI Logger Lite Capacitive voltage divider 100000:1	DC	- SDD - Low Pressure / Multifunction artificial chamber in lab	Uniform	String 7 unit XP-160 porcelain insulator	
[72]	To test characteristics of AC arc on the contaminated insulation surface using CCD spectrometer and temperature monitoring	Red Lake® ultra-high-speed camera Spectrometer Rogowski coil	AC	- SDD - Pressure - Temperature / Multifunction artificial chamber in lab	Non-Uniform pollution	Glass triangle plate sample	
[74]	To study the development parallel discharges of polluted insulator sample under different geometric for electrodes	Fast camera Capacitive voltage divider	AC	- Polarity - Shape electrodes / Lab	Non-Uniform pollution with dry band	- Rectangular plate of glass with different electrode geometric • Plane-plane • Rod-rod • Rod-plane • Multi rods-rod	
Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators	
---------	---	-----------------------	-------------	---------------------------------------	-----------------	---	
[75]	To monitor activity of discharges through arcing discharges pattern recognition using a combination of efficient image processing and classification algorithms	SONY DCR-SR video camera	AC 220kV	- Conductivity / Applied voltage / Test chamber in lab	Uniform	- Rectangular plate of glass	
[77]	To test polluted insulators performance under fog and dew condition	Capacitive voltage divider	AC 220 kV	- Surface conductivity / - fog and dew / - Time / - Dry band / Test chamber in lab	Uniform	Porcelain cap and pin. Open model for cap and pin glass insulator,	
[101]							
[102]							
[78]	To investigate the relationship between flashover voltage and string insulator strength under pollution condition	AC capacitive divider	AC	- SDD / - NSDD / - String length / Test chamber in laboratory	Uniform	String LXHY3-160 glass insulator	
[79]	To test the effect of the angles of V strings on flashover characteristics of polluted insulators	High-speed camera	DC	- ESDD / - V strings angle / Test chamber in laboratory	Uniform	Two types of string porcelain insulators	
[80]	To examine the performance of flashover for contaminated insulator string in natural fog.	High-speed camera Capacitive voltage divider	AC	- SDD / - NSDD / - Wind velocity / Natural fog / Test chamber in lab	Uniform	Cap and pin 3 units of glass insulator string	
[81]	To determine the arc constant for different insulator profile-To test effect of insulator shape on flashover voltage.	High-speed camera Capacitive voltage divider	AC	- SDD / - Insulator profile / Test chamber in lab	Uniform	Triangular glass plate, “IT” type glass model, Rectangular plate	
[82]	To study influence of pollution distribution and insulator shape on flashover parameters	Capacitive voltage divider	AC	- pmin / - pmax / - Insulator shape / - Arc length / Test chamber in lab	Uniform	Increase Decrease Practical	
[86]	To investigate wetting status effect on electrical performance for polluted insulators	Capacitive voltage divider for voltage Resistor for leakage current	AC	- Wetting rate / - Wetting time / - SDD / - Temperature / - Insulator type / Test chamber in lab	Uniform pollutio n / Uniform wetting	- 2 different type cap and pin porcelain insulators, - 2 different types Cap and pin glass insulators - SIR composite insulator, 5 different types 6.6 KV solid core insulators	
[87]	To examine the flashover characteristics of polluted insulators under different polarity	Capacitive voltage divider	Impulse	- Salt density / - Polarity / - Time / Test chamber in lab	Uniform pollution	- Cap and pin glass insulator, - Antifog porcelain insulator	
[87]	To test the stage boundaries of the leakage currents during the entire contamination flashover process	Capacitance voltage divider (SGB-200A) Current sensor and amplifier	AC	- ESDD / Test chamber in laboratory	Uniform pollution		
Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators	
-------	-------------------	-----------------------	-------------	----------------------	----------------	------------	
[90]	To study flashover characteristics on polluted insulator under natural pollution and fog-haze	Capacitive voltage divider	AC	- ESDD u/l - NSDD - Fog-haze - Natural pollution / Test chamber in lab	Uniform pollution	- Porcelain XWP2-70 ME160KN, - Glass U160T145W - Polymer FXBZ-220/300, - Porcelain • XP-160 • XWP2-160 • XWP4-160 - Glass • LXYS4-160 • LXYH3-160 - Polymer FXBW3-110/100 - single and a 3-unit glass insulator string - Glass plate of 500x250 mm	
[91]	To investigate effect of ESDD and NSDD on flashover voltage of insulators	Data acquisition (DAQ)	AC	- ESDD, NSDD - Insulator shape - Creepage Distances / Test chamber in lab	Uniform pollution	-	
[92]	To study flashover voltages across gaps on insulator top surfaces and gaps between sheds.	AC	AC		Uniform pollution	-	
[93]	To study of insulators performance under discontinuous pollution layers	AC	AC	- Layer conductivity - Applied voltage - Arc length - Pollution layer length - Transferred voltage / Test chamber in lab	Uniform Discontinuous pollution	-	
[94]	To investigate interfacial breakdown on electrolytic surfaces of insulator	Capacitive voltage divider	AC	- Pollution resistance - Electrolyte NaCl, CaCl2, Ca(NO3)2, MgSO4 - Arc length / Test chamber in lab	Uniform pollution	Plate insulator	
[94]	To investigate the effect of the insulator hydrophilic fraction on the pollution flashover performance.	Resistor and Capacitive voltage divider	AC	- Hydrophilic fraction - Saturated wetting time - SDD - NSDD / Test chamber in lab	Uniform and Non-uniform hydrophobicity	SIR FXBW-1000/210	
[97]	To obtain the relationship between flashover voltage, pollution level and hydrophobicity degree for insulators	Data-acquisition (DAQ) system Capacitive voltage divider	AC	- SDD - hydrophobicity / Test chamber in lab	Uniform pollution and hydrophobicity	SIR FXBW4-35/70	
[99]	To test the performance of 10-kV post insulator with concentric externally gapped line arrester (EGLA) under pollution condition	Capacitive voltage divider	AC	- ESDD / Test chamber in laboratory	Uniform pollution	- SIR 10-kV Post Insulator with concentric externally gapped line arrester (EGLA) - 11kV composite insulator	
TABLE 6. Count

Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators
[115]	To examine the influence of the electrolyte on the phase shift of dry-band discharges	- Monochromator	AC	- Two types of electrolytes (NaCl and MgCl2) / Test chamber in laboratory	Uniform	Ceramic plate
		- Photomultiplier				
[116]	A new measurement technique was proposed to classification leakage current under different pollution	- Remote sensor with antenna - Shunt resistance	AC	- Lab, Polluted-low salinity - Polluted- high salinity - Field Polluted - Voltage level - Insulator profile / Test chamber in laboratory	Uniform	- 3 SIR Composite insulators - Cap and pin 2 porcelains 1 glass
[119]	To describes the different physical criteria controlling arc propagation, over electrolytic surfaces under ac voltage application	Capacitive voltage divider	AC	- Resistance pollution - Multiple arcs - Discharge length / Lab	Uniform	Flat plate with electrolyte
[118]	To evaluate the influence of arc-levitating on the DC flashover voltage of contaminated insulators and to measure the insulators' DC flashover voltages with and without the air-gap arc influence.	- Capacitive voltage divider - Shunt resistance	DC	- SDD - Low air pressure - Surface arc - Gap arc / Lab	Uniform	Porcelain XZP-210 string insulator (5 units)
[121]	To test the proposed critical parameters of polluted insulator based on dynamic model.	- Current sensor - Capacitor divider	Impulse	- Resistance pollution - Thickness pollution layer / Lab	Non-uniform	Rectangular plate glass insulator
[122]	To test flashover performance in polluted insulator strings (Suspension And T-type)	- Capacitive voltage divider - Shunt resistance	AC	- pESDD / Lab	Uniform	Strings
						• Glass LXY4-160
						• 9 unit suspension (7+2) T-Type
						• 6 units suspension (3+3) T-Type
						• 11 kV polymer insulators
[123]	To measurement Partial Discharge (PD) signal for CNN training.	Coupling devices	AC	Pollution configurations / Lab	Non-uniform	Single cap-and-pin glass insulator
[124]	To validate model of the time to flashover of polluted insulators.	- Capacitive voltage divider - Shunt resistance	Impulse	- Pollution surface conductivities - Critical voltage	Uniform	
[126]	To explore the flashover characteristics of polymer insulator under Inorganic and Bio contaminants	Current Sensor module (M_sen) DAS	AC	Inorganic pollution - SDD - NSDD - Bio-contaminants algae - Radial growth ratios time / Lab	Discontinuou s uniform pollution Continuous uniform pollution	Triangular plate silicon rubber insulator
C. Description and Key Findings

In this section, the fundamental information and the key findings of pollution flashover voltage of high voltage insulators are discussed. The pollution flashover of contaminated insulators was investigated using several parameters. According to data in Table 6, majority of the selected studies investigated pollution flashover based on the factor of equivalent salt deposit density (SDD), followed by non-soluble salt deposit density (NSDD), pollution distribution, humidity, dry band, coating, pressure, aging, polarity, wetting rate, and insulator shape, respectively. The impact and results of these parameters are discussed in this section. Flashover voltage, as one of the most important indicators of polluted insulator tests, has been studied frequently in 94 papers. Most researchers performed their experimental studies only on the flashover voltage and validate their proposed models. Accordingly, a good model would result in less error in predicting the flashover voltage [24], [33], [47], [56], [88], [121], [124], [129], [130]. The flashover voltage has therefore been the main parameter used to determine factors affecting insulation flashover. Figure 13 shows factors affecting the flashover voltage of insulators and the number of published studies for each factor.

1) SDD IMPACT ON FLASHOVER VOLTAGE

Based on Figure 13, SDD is the most influential factor in affecting insulation flashover voltage. This is based on the review of 47 papers [24-29], [31], [33], [34], [36], [37], [39], [40], [42], [43], [45], [46], [48-51], [54-56], [58-60], [63], [64], [66], [67], [69-73], [78 – 81], [86], [89 – 92], [96], [97], [99], [100], [120], [122], [126], [128], [130], [131], [132], [142]. Of note, SDD has often been studied in combination with other factors such as NSDD, wetting rate, and pollution

Study	Aim of experiment	Measurement Technique	Source Type	Condition / location	Style pollution	Insulators
[127]	To extract the data from flashover videos taken on a plan glass insulator model of uniform contamination.	Capacitive divider A video camera (Full HD_20 Megapixels)	AC	- Five conductivities of Saline solution - 4 amounts of Sand and distilled water - Applied voltage / Lab	Uniform	Glass insulator plan model
[128]	To analyze the flashover properties of a two-unit glass suspension string under various conditions.	Capacitive divider Camera	AC Impulse	- ESDD - NSDD - Phase angle / Lab	Uniform	String 2 units LXY1-70 glass insulator
[129]	To validate of the proposed dynamic flashover model of string polluted insulators.	Capacitive divider Coaxial shunt	AC	- Salinity / Lab - Non-uniform in different Position of polluted discs	String 6 units cap and pin porcelain insulator	
[130]	To validate of the proposed arc root flashover model of different polluted insulators.	Capacitive divider 1 Ω non-inductive resistance	AC	- ESDD - NSDD - Insulator shape / Lab	Uniform	Glass flat plate single XP1-160 glass insulator
[131]	To forecast the occurrence and likelihood of flashover in SIR composite insulators using the leakage current harmonic components.	Capacitive voltage divider VBA macro	AC	- ESDD - NSDD - Insulator length - Humidity	Uniform	5 SIR composite insulators with different length
[132]	To represent characteristics of leakage current for tracking complex surface discharges to flashover on polymer insulator in serious fog-polluted conditions using self-normalizing multivariate (SNM) analysis approach.	10-Q shunt resistor in connection with an analog to digital (A/D) converter	AC	Relative humidity (RH) Conductance of surface	Uniform	single -shed silicone rubber insulators
distribution. Based on the experimental results for majority of the selected papers [41], [59], the relationship between the flashover voltage \(U_f \) and SDD follows a negative exponential function, expressed as:

\[
U_f = A \times (SDD)^{-\alpha}
\]
where \(A \) is a constant related to the insulator profile and materials and \(\alpha \) is the contamination characteristic index of the insulator.

Dong et al. [26] presented the effect of SDD on the flashover voltage of three types of insulators under various fog water conductivities. According to the results, there was a nonlinear decrease of flashover voltage with increasing SDD and fog water conductivities. A reduction in the flashover voltage ranging from 2.6–18.9 kV for silicone rubber composite insulator, 2.3–21.5 kV for porcelain insulator, and 2.3–28.3 kV for glass insulator was recorded with an increase of fog water conductivity from 0 to 3 mS/cm under a specific value of SDD. By increasing both the SDD and fog water conductivity simultaneously, a significant decrease of the flashover voltage was observed.

Similarly, [31] studied the effect of SDD and fog-water conductivity on the contamination flashover voltage of three different types of insulators under non-uniform pollution. From the experiment data, the relationship between the flashover voltage, SDD, and fog water \(\gamma \) was established as [31]:

\[
U_f = f(SDD, \gamma) = A \times (SDD)^{-\alpha} \times e^{-b\gamma}
\]
where \(b \) is a factor implying the rate of fog water on the flashover voltage and \(e \) is a constant equals to 2.718.

In [66], an experiment was carried out on three separate insulators (porcelain, glass, and polymer) to investigate the effect of contamination variations under salt fog (additional salt deposit density ASDD) on the flashover voltage. From [66], the relationship between ASDD in fog water and the pollution level SDD was represented as:

\[
ASDD = k \times \gamma \times SDD
\]

where \(k \) denotes the coefficient describing the effect of SDD and fog water conductivity on ASDD, determined experimentally as 0.179, 0.191, and 0.230 for porcelain, glass, and composite insulators, respectively. Then, the flashover voltage was expressed as [66]:

\[
U_f = A \times (SDD + ASDD)^{-\alpha}
\]

The authors in [58] tested the characteristics of the flashover voltage of polluted polymeric insulators under three different polluting methods, namely, Brushing Method (BM), Dipping Method (DM), and Spraying Method (SM). The study reported some variations in contamination flashover parameters, and that their effects on the flashover voltage were different. The relationship between the flashover voltage and pollution severity under these three methods of polluting was calculated using equation (1). The different pollution methods was noticeable with changes in coefficient \(A \), but negligible in the characteristic exponent \(\alpha \). Meanwhile, [79] extracted the relationship between the flashover voltage and SDD with the changing numbers \(N \) of insulator units in an insulator string, as seen in Figure 14.

![Figure 13. Publication number on factors affecting pollution flashover voltage.](image)

![Figure 14. Relationship between the flashover voltage \(U_{av} \) and SDD for different numbers of insulators in a string.](image)
coefficient. Based on this correction factor, the authors of [49] calculated the relationship between the flashover voltage and SDD under fan-shaped (L/W), top to bottom (T/B), and longitudinal (H/M) non-uniform pollution conditions for composite polymer insulator as follows [49]:

\[
U_{50} = \begin{cases}
9.24(SDD)^{-0.351} [1 - 0.0995\log(L/W)], & k = 10\% \\
9.24(SDD)^{-0.351} [1 - 0.1127\log(L/W)], & k = 20\% \\
9.24(SDD)^{-0.351} [1 - 0.1218\log(L/W)], & k = 30\% \\
9.24(SDD)^{-0.351} [1 - 0.1506\log(T/B)] \\
9.24(SDD)^{-0.351} [1 - 0.1894\log(H/M)]
\end{cases}
(5)
\]

where \(k \) represents the ratio of polluted surface area to the total surface area.

The authors of [63] also extracted the relationship between the flashover voltage and SDD under ring-shaped non-uniform pollution for porcelain insulator as follows [63]:

\[
U_{50} = \begin{cases}
30.0(SDD)^{-0.350} [1 - 0.151\log(O/I)], & r : R = 0.5 \\
30.0(SDD)^{-0.350} [1 - 0.220\log(O/I)], & r : R = 0.7 \\
30.0(SDD)^{-0.350} [1 - 0.172\log(O/I)], & r : R = 0.9
\end{cases}
(6)
\]

where \(O \) and \(I \) are the outer and inner of the insulator surface area, respectively. Meanwhile, \(r:R \) represents the ratio of pollution diameter on the insulator surface to the whole insulator diameter.
When comparing fan-shaped non-uniform pollution with fan-shaped uniform pollution, the flashover voltage dropped with fan-shaped pollution. The increase of the degree of fan-shaped non-uniformity pollution (L/W) resulted in a decrease in the flashover voltage, as shown in Figure 16 (c). For ring-shaped non-uniform pollution, the flashover voltage increased References [45], [49], [143] and [154] reported that, compared to uniform contamination, the flashover voltage increased with longitudinal non-uniform contamination. Furthermore, the flashover voltage \(U_{50} \) increased as the longitudinal non-uniformity level (H/M or L/M) increased for all types of investigated insulators, as shown in Figure 16 (a). As shown in Figure 16 (b), with smaller mean value of the electrical conductivity of contamination on the insulator surface and higher surface of the insulator in (Top/bottom)-shaped, the flashover voltage as the level of I/O increased, and under some situations, it increased by approximately 36% compared to a uniform pollution condition, as shown in Figure 16 (d). Meanwhile, the flashover voltage would initially increase and subsequently decrease as the radius \(r \) of extremely contaminated areas increased [63], [142].

3) AIR PRESSURE DISTRIBUTION IMPACT ON FLASHOVER VOLTAGE

The effect of air pressure on the flashover voltage were investigated by the references [34], [72], [73], and [120]. The results in [34] showed that the AC flashover voltage on polluted insulators decreased with the reduction of air pressure under a specific value of SDD. For example, for the cap-and-pin type glass insulator with SDD of 0.03 mg/cm\(^2\), the flashover voltage decreased from 238.5 kV to 191.0 kV due to a decrease in air pressure from 98.6 kPa to 70.1 kPa. In addition, the results showed that the distinctive exponent \(n \) in equation (7) describing the effect of air pressure on contamination flashover voltage \(U_f \), which has an impact on the flashover voltage of contaminated insulators, is variable, and \(n \) value is related to the contamination degree and geometric structure of the insulator.

\[
U_f = U_0 (P/P_0)^n
\]
(7)

where \(U_0 \) is the flashover voltage at the normal air pressure \(P_0 \), \(P \) is the experimental air pressure, and \(n \) is the exponent describing the effect of air pressure on \(U_f \).

In the study of [72], the data of a polluted porcelain insulator string composed of 7 units of insulators indicated that the flashover voltage decreased remarkably reduced air pressure. As arc radius dropped from 89.9 kPa to 61.7 kPa, the flashover voltage decreased by 13.1%. In addition, the arc radius of flashover under the effect of air pressure was considered. The results indicated that the arc radius was 1.5 mm and 3.5 mm corresponding to air pressure of 89.9 kPa and 61.6 kPa, respectively [72]. The electron density \(n_e \) of the flashover arc channel at low pressure was also investigated experimentally by [73]. The results reported that, with increasing pressure, the electron density of the arc channel increased based on equation (8):

\[
n_e/n_0 = p^\alpha
\]
(8)

where \(\alpha \) is the index determined using the least-square method to be 0.58 and \(n_0 \) is electron density in atmospheric pressure. The effect of the flashover phenomenon of polluted porcelain insulators under low air pressure on arc levitation was also studied in [120]. According to the findings, higher contamination and lower air pressure resulted in more serious arc levitation.

4) DRY BAND IMPACT ON FLASHOVER VOLTAGE

The flashover voltage under the influence of dry band was discussed in references [36], [62], [70], [71], [74], [112], [132]. The flashover voltage of glass insulators under dry bands with five scenarios of pollution distribution were tested in [36]. The results showed that dry bands had a significant effect on the flashover voltage, in which the flashover voltage increased with a decrease in the dry band area [36]. Authors in [62] investigated the effect of the number of dry bands formed on the contaminated plate insulator surface on voltage distribution. It was discovered that increasing the number of dry bands resulted in less discontinuity in the voltage distribution along the insulator, which improved the voltage grading and had a significant impact on the insulator's withstand capability.

The propagation of flashover on polluted porcelain post insulators under dry bands was investigated in [70], where the findings indicated that the discharge characteristics was affected by the formation of dry bands. In addition, the study compared the flashover voltage values between rain and fog factors. It was reported that the flashover voltage in rain was obviously higher than that in fog. An increase in the number of dry bands on the insulator surface would lead to a reduction in flashover activities and, as a result, an increase in the flashover voltage [71]. As suggested by [74], the effectiveness of insulation of polluted insulators increased with increased dry band length. Meanwhile, the effect of the dry band position on the performance of plate insulators was investigated by the authors in [112] (Figure 17). From the results, the flashover voltage with the dry band placed in the middle of the insulator was the highest; the flashover voltage with the dry band placed near electrodes of the insulator was lower than that with the dry band placed in the middle of the insulator.

5) NSDD IMPACT ON FLASHOVER VOLTAGE

The influence of NSDD on the flashover voltage of polluted insulators was investigated in [59], [60], [64], [91]. The critical voltage (before flashover) of porcelain insulators that contained heavy NSDD had significant distortions as shown in Figure 18 [59]. Furthermore, the greater the NSDD and/or contamination width, the lower the flashover voltage, and the more extreme and long-lasting the discharges are [60].
The influence of NSDD on the flashover voltage gradient of three different insulators was studied in [64]. The flashover voltage gradient E_L recorded from the experiment can be fitted to is fitted to equation (9) to determine the characteristic exponent c that characterizes the effect of NSDD on the flashover voltage [64] [91].

$$E_L = \frac{U_{50}}{L} = A \times SDD^{-a} \times NSDD^{-c}$$

where L represents the insulator length in cm.

According to the fitting results, the characteristic exponent c value for NSDD between 0.078 and 0.103 mg/cm2 is within 0.12 - 0.14 for glass and porcelain insulators, and within 0.13 – 0.16 for composite insulators [64]. According to the results in [91], the flashover voltage subsided as NSDD and ESDD (also known as SDD) increased. The effects of NSDD and ESDD on the flashover voltage are independent of one another, as seen in Figure 19, which depicts the combined effect of NSDD and ESDD on glass and porcelain insulators.

6) HUMIDITY IMPACT ON FLASHOVER VOLTAGE

Humidity has a significant influence on the flashover voltage. The influence of humidity on the flashover voltage of glass insulators under different contamination profiles were tested and reported in [36], [150], [153]. The results showed that increased humidity led to a decrease in the flashover voltage. For a heavy pollution case, for example, under 0.25 mg/cm2 ESDD, increasing the humidity from 75% to 95% decreased the flashover voltage by 10 kV (32 % reduction) (Figure 20). [27], [84] tested the flashover voltages of contaminated composite silicone rubber insulators (conventional vs. textured) and glass insulator string (3 units) under variable wetting rates. The findings revealed that the flashover voltage of the conventional insulator decreased from 24.9 kV to 22.8 kV when the wetting rate increased from 3 l/h to 8 l/h, whereas the flashover voltage of the textured type insulator decreased 6.9 kV with the same increase in wetting rate [84]. According to [27], increasing the wetting rate of contaminated insulators caused a decrease in the flashover voltage gradient, jeopardizing the insulator's dielectric properties. For the glass insulator string, under medium contamination (0.12 mg/cm2), the flashover voltage gradient...
reduced by 31.5% and 47.69%, respectively, due to increased wetting rate from 2.5 l/h to 5 l/h and 7.5 l/h. This implies that greater wetting rates have a major impact on electrical insulator efficacy and flashover risk [27]. In [153], the flashover voltage under DC and AC fields were compared under the effect of humidity. The results indicated that the flashover was more obvious under AC field especially if the humidity exceeded 80%. Figure 21 shows the surface flashover under DC and AC fields.

Boudissa et al. [37] provided the results of the test that enabled the influence of porcelain insulators’ geometry on the flashover voltage to be quantified. Non-uniform contamination methods were used to quantify the effect of insulator shape on the flashover voltage, where non-uniform insulator surface contamination was reported to reduce the flashover voltage; greater non-uniformity resulted in lower flashover voltages. This voltage decrease was demonstrated by a change in the length of the insulator.

Li et al. [81] tested the flashover voltage of four different insulators with different structures, i.e., Π-type glass insulator, plate-type glass insulator, CA-590EZ porcelain insulator, and CA-878EY porcelain insulator. Based on the findings, a double-arc method for calculating contamination flashover was developed. The correlation analysis showed that calculating the flashover voltage based on different insulator types can be an effective method in determining insulation flashover.

8) POLARITY IMPACT ON FLASHOVER VOLTAGE

Some studies considered the effect of voltage polarities on the flashover voltage [39], [88], [98]. From these studies, it was concluded that the flashover voltage of plate insulator was different under positive and negative polarities. The average flashover voltage discrepancies for the single arc were obtained to be 21% and 28% for positive and negative polarities, respectively [39]. According to [88], the critical voltage was larger when the supply was in the positive polarity rather than the negative polarity.

9) WETTING RATE IMPACT ON FLASHOVER VOLTAGE

The effect of wetting rate on the flashover voltage was studied in [27], [36], [135]. In the work of [17], the authors determined the relationship between the flashover voltage gradient and the leakage current index R_{hi} extracted from experimental work. The results showed that the flashover voltage gradient decreased by 46.92% with increasing R_{hi} by 2.5 under a wetting rate of 2.5 ± 0.1 l/h for a glass insulator string with 3 units of glass insulators. For a porcelain insulator string with 3 units of porcelain insulators, the flashover voltage gradient decreased by 48.32% under the same change in R_{hi}. Meanwhile, the flashover voltage of the polymeric insulator under a high wetting rate is higher than that obtained under a low wetting rate [36]. The authors in [135] concluded that the relationship between the flashover voltage and wetting rate can be determined from equation (10):

$$U_f = W_r^{-\beta} \times C_p$$

where W_r is the wetting rate, C_p is a constant of pollution, and β accounts for the effect of the wetting rate on the flashover voltage at a constant SDD.

Figure 22 depicts the results from [135] in correlating the flashover voltage with the wetting rate of different insulators. For each insulator, the flashover voltage continued to decrease as the wetting rate increased, to the point where the flashover

VOLUME XX, 2017 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
voltage was three times lower in cases of high wetting rates compared to low wetting rates [145]. Regarding insulators type, the flashover voltage was the lowest for the porcelain insulator.

![Figure 22](image22)

Figure 22. Flashover voltage vs. wetting rate at SDD (0.3 mg/cm²) [145].

10) COATING IMPACT ON FLASHOVER VOLTAGE

The flashover voltage performance of insulators under different coatings was investigated in [50], [67] [146 -150]. In [50], the critical flashover voltage was measured to assess the reliability of room temperature vulcanizing (RTV)-coated porcelain insulators under different contamination levels. Figure 23 depicts the achieved flashover voltages for the porcelain specimens, without and with RTV coating, at various pollution levels. Compared to the uncoated specimen, the critical flashover voltage of the RTV-coated insulator increased noticeably. Moreover, the reduction in voltages was clearly proportional to the severity of contamination. It can be noted that the RTV-coated insulator had a better performance compared to the uncoated insulator at all levels of pollution, particularly under medium and light pollution levels [50]. Literature [146], [147] investigated the flashover voltage of a porcelain insulator with varied coating damages. As shown in Figure 24, the flashover voltage was the lowest for insulators with fan-shaped damage. When the damaged region gets bigger, the critical leakage current increased whereas the flashover voltage reduced.

Reference [150] also tested the influence of the dimension and location of the coating damage on the flashover voltage of RTV-coated insulators. Different shapes of coating damage on a plate insulator were investigated. Generally, the flashover voltage reduced as the area of damage increased, either longitudinally or laterally, as illustrated in the Figure 25. When there are many damages, the contamination flashover voltage can be calculated by the minimum “effective path” distance, defined as [150]:

\[U_f = 0.3744 \times l_1 + 0.2483(1.666 \times l_2) \]

\[L_{ep123} = l_1 + 1.666 \times l_2 \]

\[L_{ep14} = l_1 + 0.2483(1.666 \times l_4) \]

\[L_{mep} = \min(L_{ep123}, L_{ep14}) \]

where \(L_{ep123} \) and \(L_{ep14} \) is the “effective path” distances along 11-12-13 and 11-14 respectively while \(L_{mep} \) is the minimal “effective path” distance. According to the findings, the flashover voltage and the "effective path" distance had a linear relationship.

![Figure 23](image23)

Figure 23. Critical voltage (before flashover) of porcelain insulator: (a) Without RTV coating; (b) With RTV coating [50]. (Permission from Elsevier)

Figure 24. Flashover voltage of porcelain insulator under different coating distribution [146].

\[U_f = 0.3744 + 0.2483(l_1 + l_3 + 1.666 \times l_2) \]

\[L_{ep123} = l_1 + l_3 + 1.666 \times l_2 \]
and studied in [43], [48] and [152]. Flashover voltage tests were performed in 0, 2, 4, and 6 weeks of aging duration. As shown in Figure 26, increasing the aging duration of the composite insulators reduced the flashover voltage and weakened the insulator's performance. According to Figure 26(c), with SDD equal to 0.05 mg/cm², the flashover voltage of the insulators aged for 4 and 6 weeks decreased by around 3.56 kV (28%) and 12.15 kV (95%), respectively, as compared to the unaged insulator. This implies that the hydrophobicity of the polymer surface decreases with increasing aging duration. Aging therefore has a substantial negative impact on the resistance and flashover voltage of insulators.

IV. Remarks and recommendations

From the review, SDD is the main parameter used to determine the flashover voltage of insulators. The advantage of determining the flashover voltage based on SDD is that it enables the pollution severity to be mapped with appropriate insulator selection criteria. The use of SDD, when coupled with the measurement of conductivity, allows the quantification of the amount of pollution deposited on insulators, thus representing both contamination accumulation and wetness.

However, the determination of the flashover voltage from SDD measurements suffers from the drawback that the flashover voltage values do not always reflect precisely the insulation pollution condition. This is because the composition of soluble salts in natural pollution is complicated. For example, soluble salts in most polluted locations are dominated by calcium sulfate (CaSO₄), a particularly difficult compound to dissolve in water. Since a huge amount of water is used in the SDD measurement approach, CaSO₄ dissolves and adds to the solution's conductivity. In reality, however, the amount of water on the surface of in-service insulators is little, typically equaling just around 1% of the water utilized during an SDD test. Very little CaSO₄ can therefore be dissolved in such a little amount of water. The presence of CaSO₄ does not, in practice, contribute to solution conductivity and hence the pollution flashover voltage.

Since artificial contamination employs NaCl to imitate soluble salts, the pollution flashover voltage of a naturally contaminated insulator is frequently substantially greater than that of an artificially polluted test sample, even under the same SDD. Furthermore, because soluble salt contents vary greatly by area, the pollution flashover voltage testing of natural samples under the same SDD value might result in a wide range of findings. Of note, the most crucial criterion for determining the suitability of a parameter in indicating pollution severity is the ability of the parameter to correlate well with the pollution flashover voltage, and this is sadly lacking from the SDD correlation of the pollution flashover voltage.

To address some of the shortcomings in the SDD measurement approach, researchers examined the chemical
composision of soluble salts found in natural pollution deposits. The SDD value obtained using the conventional method was then normalized based on the percentage of monovalent and bivalent salts in the soluble layer. These adjusted SDD values, also known as 'effective SDD,' have a better correlation with the flashover voltage. Nevertheless, chemical examination of soluble salt compounds of insulator materials is expensive, time consuming, and energy intensive. Therefore, conducting chemical analysis for each SDD measurement is impractical.

From the review, the examination of pollution distribution can also provide a preliminary view of the behavior of insulators with regard to pollution deposition owing to wind and rain effects. This would assist in finding the distribution of pollution layers that further explains the natural state while analyzing the distribution of pollution experimentally. Of note, the humidity can be monitored during testing using sensors, and the humidity can be controlled to a desired level. Also, under the same test conditions, the influence of an insulator shape on flashover voltage may be determined by employing different insulators of the same material with varying diameters. Although the humidity and insulator shape parameters can also have an influence on the flashover voltage, their interpretation of the flashover voltage becomes meaningless in the absence of SDD data. Therefore, the use of the humidity and insulator shape parameters in addition to SDD would be preferable in obtaining better correlation of the parameters with the pollution flashover voltage.

While NSDD can have impact on the flashover voltage of insulators, most research employs kaolin as insoluble materials in determining NSSD. This may be one of the limitations in correlation the NSDD parameter with the flashover voltage, since majority of the non-soluble natural materials are sands and free carbon particles (soot). Therefore, the use of different compounds in NSDD formulation could lead to better correlations of NSDD with the flashover voltage. It should be noted that the rate of NSDD deposition is affected by various factors, including desert sandstorms.

Meanwhile, the investigation of the impact of coatings on insulators regardless of pollution level is one of the greatest studies that reflect the beneficial results of coatings in increasing insulator performance. This is due to the usage of the same coating material even in experimental research. However, these studies are not viable if the insulator's coating has been in place for more than 10 years, where exposure to sunlight and artificial lighting can have adverse effects on the useful life of insulator coatings.

V. Positive and negative factors influencing flashover voltage

Based on Figure 13, eleven parameters obtained from 94 papers were discussed in this review study. It was clear that five parameters (SDD, NSDD, aging, humidity, and insulator shape) had negative impacts on pollution flashover voltage while only two parameters (coating and pressure) have positive effects. Four other parameters (pollution distribution, dry band, polarity and wetting rate) can have positive or negative effects on the pollution flashover voltage depending on the condition of the insulator and the change of the parameter value. These parameters were extracted from eighty-one papers. The fact that some of the parameters have a negative impact on the flashover voltage indicates that increasing the value of the variables leads to a decrease in the flashover voltage on contaminated insulators [151]. On the contrary, with the value of parameters having positive impacts increases, the flashover voltage also increases. Figure 27 illustrates the type of influence for factors flashover voltage.

![Flashover voltage factors and their impact classification.](image)

VI. Future research directions related to flashover voltage of polluted insulators

Although the systematic review method as recommended by [152] has been used in the current work, there is a need for additional comprehensive research on the flashover voltage characteristics of insulators to enable researchers to further explore parameters affecting the flashover voltage issues of insulators. Future research directions linked to the flashover voltage might include, but are not limited to, the following work:

1. Research studies of flashover voltage and other characteristics related to polluted insulators.
2. Critical review of studies pertaining to materials characteristics that can aid in the improvement of the performance of insulators.
3. Critical review of artificial intelligence-based optimization techniques in predicting the flashover voltage.
4. Investigation of the degradation of insulator surfaces on the flashover voltage.
VII. CONCLUSION

The current work has examined peer-reviewed publications focusing on pollution flashover voltage tests on high voltage insulators using a systematic methodology. This has offered value-added knowledge about pollution flashover voltage studies carried out by different researchers around the world. Critical parameters that affect the pollution flashover voltage have been discussed by reviewing the literature published between 1990 and 2021. The impact of eleven parameters, i.e., SDD, NSDD, aging, humidity, and insulator shape, coating, pressure, pollution distribution, dry band, polarity, and wetting rate, on the flashover voltage has been mainly discussed. The emphasis has been placed on the importance of knowing the pollution flashover voltage of insulators as a critical component for the evaluation and detection of the condition of the insulator on transmission lines. Nevertheless, research challenges remain especially on how one can properly monitor insulator pollution and propose techniques for analyzing insulator conditions prior to catastrophic failures. While several prototype devices have been proposed to monitor the condition of insulators using various ways, including those with infrared thermal imaging technology, much work is needed to ensure reliable monitoring and analysis of insulator conditions.

REFERENCES

[1] Z. Qiu, J. Ruan, D. Huang, X. Li, and F. Wang, “Study on Glaze Electrical Erosion Characteristics of Porcelain Post Insulator by Using Inclined Plane and Graphite-Layer-Based Method,” IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 6, pp. 3385–3394, 2015.
[2] R. Wang, M. Zhang, Y. Jiang, and Y. Yang, “Prediction model of insulator contamination degree based on adaptive mutation particle swarm optimisation and general regression neural network,” J. Eng., vol. 2019, no. 16, pp. 1423–1428, 2019.
[3] M. T. Gençgözü and M. Cebeci, “The pollution flashover on high voltage insulators,” Electr. Power Syst. Res., vol. 78, no. 11, pp. 1914–1921.
[4] A. K. Chaou, A. Mekhaldi, and M. Teguar, “Recurrence Quantification Analysis as a Novel LC Feature Extraction Technique for the Classification of Pollution Severity on HV Insulator Model,” IEEE Trans. Dielectr. Electr. Insul., vol. 11, no. 6, pp. 3376–3384, 2015.
[5] S. Wang, X. Liang, and L. Huang, “Experimental study on the pollution flashover mechanism of polymer insulators,” IEEE Power Eng. Soc. Conf. Proc. 2000, vol. 4, pp. 2830–2833.
[6] L. Jin, Z. Tian, J. Ai, Y. Zhang, and K. Gao, ”Condition Evaluation of the Contaminated Insulators by Visible Light Images Assisted With Infrared Information,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 6, pp. 1349-1358, June 2018, doi: 10.1109/TIM.2018.2794938.
[7] G. Karady, “Insulator Flashover Probability Investigation Based on Numerical Electric Field Calculation and Random Walk Theory by Jiahong, Ph.D. dissertation, June 2016.
[8] F. Aouabed, A. Bayadi, and R. Boudissa, “Flashover voltage of silicone insulating surface covered by water droplets under AC voltage,” Electr. Power Syst. Res., vol. 143, pp. 66–72, 2017.
[9] M. Farzaneh and J. Zhang, “A multi-arc model for predicting AC critical flashover voltage of ice-covered insulators,” IEEE Trans. Dielectr. Electr. Insul., vol. 14, no. 6, pp. 1401–1409, Dec. 2007.
[10] X. Qiao, Z. Zhang, X. Jiang, R. Sundararajan, X. Ma, and X. Li, “AC failure voltage of iced and contaminated composite insulators in different natural environments,” Int. J. Electr. Power Energy Syst., vol. 120, no. February, p. 105993, 2020.
[11] A. A. Salem, R. Abd Rahman, and S. Al-Ameri, “Pollution Flashover Characteristics of High-Voltage Outdoor Insulators: Analytical Study,” Arab. J. Sci. Eng., Jun. 2021.
[12] C. Zhang, J. Hu, J. Li, D. Liu, L. Wang, M. Lu, “Experimental study on the contamination deposition characteristics of insulators in a fog-haze environment” IET Gener. Transm. Distrib., vol. 12, pp. 406–413, 2018.
[13] Y. Liao, Q. Wang, L. Yang, Z. Kuang, Y. Hao, C. Zhang, “Discharge behavior and morphological characteristics of suspended water-drop on shed edge during rain flashover of polluted large-diameter post insulator”, Energies, vol.14, 2021.
[14] Arshad, A. Nekahi, S. G. McMeekin, and M. Farzaneh, “Effect of pollution severity on electric field distribution along a polymeric insulator,” in Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 2015, vol. 2015-Octob, pp. 612–615.
[15] Y. Sabri, M. Farzaneh, and J. Zhang, “Application of identification methods for predicting the flashover voltage of contaminated insulators covered with ice,” IEEE Trans. Dielectr. Electr. Insul., vol. 17, no. 2, pp. 451–457, 2010.
[16] K. S. Khan, R. Kunz, J. Kleijnjen, and G. Antes, “Five steps to conducting a systematic review,” J. R. Soc. Med., vol. 96, no. 3, pp. 118–121, 2003.
[17] D. Dermeval et al., “Applications of ontologies in requirements engineering: a systematic review of the literature,” Requir. Eng., vol. 21, no. 4, pp. 405–457, 2016.
[18] T. Dyba and T. Dingssøyr, “Empirical studies of agile software development: A systematic review,” Inf. Softw. Technol., vol. 50, no. 9–10, pp. 833–859, 2008.
[19] S. Keele, “Guidelines for performing systematic literature reviews in software engineering,” Tech. report, Ver. 2.3 EBSE Tech. Report. EBSE, 2007.
[20] S. Tiwari and A. Gupta, “A systematic literature review of use case specifications research,” Inf. Softw. Technol., vol. 67, pp. 128–158, 2015.
[21] R. van Dinter, B. Tekinerdogan, and C. Catal, “Automation of systematic literature reviews: A systematic literature review,” Inf. Softw. Technol., vol. 136, no. October 2020, p. 106589, 2021.
[22] “LAPES, 2014. Start - state of the art through systematic review tool. Available in http://lapes.dc.ufscar.br/tools/start _ tool . Accessed in October, 2013.”
[23] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements engineering paper classification and evaluation criteria: A proposal and a discussion,” Requir. Eng., vol. 11, no. 1, pp. 102–107, 2006.
[24] P. Dixit, V. Krishnan, and G. R. Nāgabhushana, “A new mathematical model for flashover voltages of polluted porcelain insulators,” in 2010 International Conference on High Voltage Engineering and Application, Oct. 2010.
[25] H. O. De Lima, S. C. Oliveira, and E. Fontana, “Fuzzy inference system for risk classification on polluted insulator strings of high voltage transmission lines,” SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf. Proc., 2011, pp. 117–120.
[26] B. Dong, Z. Zhang, N. Xiang, H. Yang, S. Xu, and T. Cheng, “AC Flashover Voltage Model for Polluted Suspension Insulators and an Experimental Investigation in Salt Fog,” IEEE Access, vol. 8, pp. 187411–187418, 2020.
[27] A. A. Salem et al., “Risk Assessment of Polluted Glass Insulator Using Leakage Current Index Under Different Operating Conditions,” IEEE Access, vol. 8, pp. 175827-175839, Sep. 2020.
[28] P. S. Ghosh and N. Chatterjee, “Polluted insulator flashover model for ac voltage,” IEEE Trans. Dielectr. Electr. Insul., vol. 2, no. 1, pp. 128–136, 1995.
[29] Z. Sahli, A. Mekhaldi, R. Boudissa, and S. Boudrahem, “Prediction parameters of dimensioning of insulators under non-uniform contaminated conditions by multiple regression analysis,” Electr. Power Syst. Res., vol. 81, no. 4, pp. 821–829, Apr. 2011.
[30] S. A. Ahmad, P. S. Ghosh, S. S. Ahmed, and S. A. K. Aljunid, “Assessment of ESDD on high-voltage insulators using artificial neural network,” Electr. Power Syst. Res., vol. 72, no. 2, pp. 131–136, Dec. 2004.
[31] J. Xingliang, Z. Shihua, X. Yanbin, Z. Zhijin, and S. Lichen, “Study on fog flashover performance and fog-water conductivity

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3143534, IEEE Access
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3143534, IEEE Access
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
C. Badachi and P. Dixit, “Prediction of pollution flashover voltages of ceramic string insulators under uniform and non-uniform pollution conditions,” J. Electr. Syst. Inf. Technol., vol. 3, no. 2, pp. 270–281, 2016.

Y. Zhao et al., “Effect of surface roughness on flashover characteristics of silicone rubber,” J. Electrostat., vol. 99, no. May, pp. 41–48, 2019, doi: 10.1016/j.jelectstat.2019.04.004.

A. Abimouloud, S. Arif, D. Korichi, and S. M. Ale-Esmari, “Prediction of DC flashover voltage of cap-and-pin polluted insulator,” IET Sci. Meas. Technol., vol. 13, no. 2, pp. 279–286, Mar. 2019, doi: 10.1049/iet-smt.2018.5105.

N. B. Prakash, M. Parvathavarthini, and R. Madavan, “Mathematical modeling on AC pollution flashover performance of glass and composite insulator,” J. Electr. Eng. Technol., vol. 10, no. 4, pp. 1797–1804, 2015.

Y. Guo, X. Jiang, and R. Sundararajan, “A dynamic model of DC arc discharge on polluted porcelain insulators at high altitude,” Annu. Rep. - Conf. Electr. Insul. Dielectr. Phenomena, CIEIDP, vol. 2015-Decem, pp. 154–157.

R. T. Waters, A. Haddad, H. Griffiths, N. Harid, and P. Sarkar, “Partial-arc and spark models of the flashover of lightly polluted insulators,” IEEE Trans. Dielectr. Electr. Insul., vol. 17, no. 2, pp. 417–424, 2010.

A. Q. Rizk, F.A.M. Rezzazda, “Modeling of altitude effects on AC flashover of polluted high voltage insulators,” IEEE Trans. Power Deliv., vol. 12, no. 2, pp. 810–822, 1997.

Arshad, A. Nekahi, S. G. McMeekin, and M. Farzaneh, “Effect of pollution severity and dry band location on the flashover characteristics of silicone rubber surfaces,” Electr. Eng., vol. 99, no. 3, pp. 1053–1063, 2017.

Z. Aydogmus and M. Cebeci, “A new flashover dynamic model of polluted HV insulators,” IEEE Trans. Dielectr. Electr. Insul., vol. 11, no. 4, pp. 577–584, 2004.

F. Hadjrioua, D. Mahi, and M. E. A. Slama, “Analytical modelling of arc re-ignition conditions on polluted insulating surfaces,” ICHVE 2018 - 2018 IEEE Int. Conf. High Volt. Eng. Appl., no. 6, 2019, pp. 1–5.

T. Yamashita, T. Furusato, R. Konishi, T. Kurokawa, and K. Yaji, “Critical current for phase shift of dry-band discharge on wet polluted insulators,” J. Electrostat., vol. 97, no. October 2018, pp. 51–57, 2019.

A. H. A. D. Abeysekara, J. R. S. S. Kumara, M. A. R. M. Fernando, M. P. B. Eakanyake, G. M. R. I. Godaliyadda, and J. V. Wijayakulasooriya, “Remote leakage current detector for identification of insulators discharges,” IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 4, pp. 2449–2458, 2017.

S. A. Bessedik and H. Hadi, “Effect of pollution flashover voltage of composite insulator string under HVAC stress,” IEEE Trans. Power Deliv., vol. 4, no. 2, pp. 97–104, 2019.

S. Yang, R. Wang, W. Sima, C. Jiang, X. Lan, and M. Zahn, “Electrical circuit flashover model of polluted insulators under ac voltage based on the arc root voltage gradient criterion,” Energies, vol. 5, no. 3, pp. 752–769, 2012, doi: 10.3390/en5030752.

H. H. Kordkheili, H. A. El-Zohri, H. Ziedan, and R. Procházka, “A new proposed dynamic arc model for flashover performance of a non-uniform polluted insulator string under HVAC stress,” Electr. Power Syst. Res., vol. 119, pp. 278–286, 2015.

Q. Yang, R. Wang, W. Sima, C. Jiang, X. Lan, and M. Zahn, “Flashover process and frequency analysis of the leakage current on insulator model under non-uniform pollution conditions,” IEEE Trans. Dielectr. Electr. Insul., vol. 17, no. 4, pp. 502–512, Apr. 2010.

M. A. Douar, A. Mekhladi, and M. C. Bouzidi, “Flashover process and frequency analysis of the leakage current on insulator model under non-uniform pollution conditions,” IEEE Trans. Dielectr. Electr. Insul., vol. 17, no. 4, pp. 1284–1297, 2010.

Liu, B. X. Du, and M. Farzaneh, “Self-normalizing multivariate analysis of polymer insulator leakage current under severe fog conditions,” IEEE Trans. Power Deliv., vol. 32, no. 3, pp. 1279–1286, 2017.

A. Mahdjoubi, B. Zegnini, M. Belkheiri, and T. Seghier, “Fixed least squares support vector machines for flashover modelling of outdoor insulators,” Electr. Power Syst. Res., vol. 173, no. January, pp. 29–37, 2019.

S. A. Bessedik and H. Hadi, “Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimisation,” Electr. Power Syst. Res., vol. 104, pp. 87–92, 2013.

M. T. Gençoğlu and M. Cebeci, “Investigation of pollution flashover on high voltage insulators using artificial neural network,” Expert Systems with Applications, vol. 36, no. 4, pp. 7338–7345, 2009.

V. T. Kontargyri, A. A. Gialketsi, G. J. Tsekouras, I. F. Gonos, and I. A. Stathopolous, “Design of an artificial neural network for the estimation of the flashover voltage on insulators,” Electr. Power Syst. Res., vol. 77, no. 12, pp. 1532–1540, Oct. 2007.

I. F. Gonos, F. V. Topalis, and I. A. Stathopolous, “Genetic algorithm approach to the modelling of polluted insulators,” IEEE Proc. - Gener. Transm. Distrib., vol. 149, no. 3, pp. 373, 2002.

M. E. A. Slama, A. Beroual, and H. Hadi, “The effect of discontinuous non uniform pollution on the flashover of polluted insulators under Lightning impulse voltage,” ICHVE 2012 - 2012 Int. Conf. High Volt. Eng. Appl., pp. 246–249, 2012.

EPRI. HVDC transmission line insulation performance. Report EL24618, EPRI, USA; 1986. p. 22–28.

Z. Zhang et al., “Study on the dc flashover performance of standard suspension insulator with ring-shaped non-uniform pollution,” High Volt., vol. 3, no. 2, pp. 133–139, 2018.
Kwan Yiew Lau received his B.Eng. degree in electrical engineering (First Class Honors) and M.Eng. degree in electrical power engineering from the Universiti Teknologi Malaysia in 2007 and 2010, respectively. Later in 2013, he received his Ph.D. degree in electronics and electrical engineering from the University of Southampton, UK. He is an associate professor at the Institute of High Voltage and High Current, Universiti Teknologi Malaysia. He is also a Chartered Engineer of the Engineering Council UK, a Professional Engineer of the Board of Engineers Malaysia, and the Past Chair of the IEEE DEIS Malaysia Chapter. His research interests include high voltage engineering, dielectric materials and renewable energy systems.

Wan RAHIMAN obtained his Bachelor’s Degree from Cardiff University, U.K., specializing in Manufacturing Engineering. Then, he became an engineer at Panasonic Manufacturing Ltd in Cardiff and Lotus Cars Ltd in Norwich for several years. After that, he pursued a Ph.D. at the Control System Centre, University of Manchester and received his doctorate in the field of Fault Detection and Isolation for Pipeline Systems in 2009. Currently, he is a senior lecturer with the School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM), Engineering Campus, Penang, Malaysia. At USM, he serves as Head of Cluster of Smart Port and Logistic Technology (COSPALT). His research interests lie in the area of modelling nonlinear systems on range of development research projects, particularly, in drone and autonomous vehicle technologies.

Zulkurnain Abdul-Malek received the B.E. degree in electrical and computer systems from Monash University, Melbourne, Australia, in 1989, the M.Sc. degree in electrical and electromagnetic engineering with industrial applications from the University of Wales Cardiff, Cardiff, U.K., in 1995, and the Ph.D. degree in high voltage engineering from Cardiff University, Cardiff, U.K., in 1999. He was with Universiti Teknologi Malaysia (UTM) for 30 years, and he is currently a Professor of High Voltage Engineering with the Department of Electrical and Electronic Engineering from the University of Technology (COSPALT). His research interests lie in the area of modelling nonlinear systems on a range of development research projects, particularly, in autonomous systems and autonomous vehicle technologies.

ALI AHMED SALEM (A. A. Salem) Received M.Eng. in Electrical Power Engineering from University Tun Hussein Onn Malaysia (UTHM) 2016. He received Ph.D. degree at High Voltage in Faculty of Electrical Engineering, also from UTHM 2021. Currently, he is with the Universiti Teknologi Malaysia (UTM) Grantee for a postdoctoral fellow. His research interest includes the dynamic arc modelling of pollution flashover on high voltage outdoor insulators. This author was IEEE member in 2017.

[143] Z. Zhang, X. Qiao, Y. Zhang, L. Tian, D. Zhang, and X. Jiang, “AC flashover performance of different shed configurations of composite insulators under fan-shaped non-uniform pollution,” High Volt., vol. 3, no. 3, pp. 199–206, 2018.

[144] A. Salem, R. Abd-Rahman, W. Ghanem, S. Al-Gailani, and S. Al-Ameri, “Prediction flashover voltage on polluted porcelain insulator using ANN,” Comput. Mater. Contin., vol. 68, no. 3, pp. 3755–3771, 2021.

[145] M. M. Hussain, S. Farokhi, S. G. McMeekin, and M. Farzaneh, “Mechanism of saline deposition and surface flashover on outdoor insulators near coastal areas part II: Impact of various environment stresses,” IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 2, pp. 1068–1076, 2017.

[146] M. Hongwei, G. Xiuyan, F. Xiangyun, Z. Chenglong, and W. Liming, “Influence of tower anticorrosion coating as contaminant on operation characteristics of composite insulator,” High Volt., vol. 3, no. 3, pp. 193–198, 2018, doi: 10.1049/hve.2017.0204.

[147] A. A. Salem, K. Y. Lau, W. Rahman, S. A. Al-Gailani, Z. Abdul-Malek, R. Abd Rahman, S. M. Al-Ameri, U. U. Sheikh, “Pollution Flashover Characteristics of Coated Insulators under Different Profiles of Coating Damage,” Coatings.; vol. 11, no.10, pp.1194, 2021.

[148] M. E. Ibrahim, N. A. Sabiba, and M. A. Izzularab, “Nano filled Nonlinear Coating Material for Improving Proactive Flashover Performance of High Voltage Insulators,” IEEE Trans. Dielectr. Electr. Insul. , pp. 2156–2163, 2014.

[149] Z. Zhang, X. Qiao, Y. Xiang, and X. Jiang, “Comparison of Surface Pollution Flashover Characteristics of RTV (Room Temperature Vulcanizing) Coated Insulators Under Different Coating Damage Modes,” IEEE Access, vol. 7, pp. 40904–40912, 2019.

[150] Z. Li, F. Yin, B. Cao, L. Wang, S. Shao, and M. Farzaneh, “Pollution flashover performance of RTV coatings with partial damage,” Int. J. Electr. Power Energy Syst., vol. 121, no. December 2019, p. 106102, 2020.

[151] A. A. Salem et al., “Pollution flashover under different contamination profiles on high voltage insulator: Numerical and experiment investigation,” IEEE Access, vol. 9, pp. 37800–37812, 2021.

[152] Barbara Kitchenam, S. Charters, Guidelines for performing Systematic Literature Reviews in Software Engineering, 2007.

[153] A. Ren, H. Liu, Wei J, Li Q, “Natural Contamination and Surface Flashover on Silicone Rubber Surface under Haze–Fog Environment”, Energies, vol. 10, no. 10, pp. 1580, 2017.

[154] J. D. Samakosh, M. Mirzaie, “Experimental-based models for predicting the flashover voltage of polluted sir insulators using leakage current characteristics”, IET Sci. Meas. Technol. Vol. 14, pp. 943–952, 2020.

[155] J. Nan, H. Li, X. Wan, F. Huo, F. Lin, “Pollution Flashover Characteristics of Composite Crossarm Insulator with a Large Diameter”, Energies, vol. 14, no. 20, 2021. https://doi.org/10.3390/en14206491

[156] S. Mohammadnabi, K. Rahmani, “Influence of humidity and contamination on the leakage current of 230 kV composite insulator”, Electr. Power Syst. Res. Vol. 194, pp. 107083, 2021.
Samir Ahmed Al-Gailani started his career as senior lecturer at Higher Technical Institute for applied B.Sc. degree Aden Yemen in 1992. He obtained his PhD in the field of optoelectronics from University Technology Malaysia (UTM) in 2014 with best student award and since then has been given various responsibilities including teaching, postdoctoral fellow, supervising laboratory sessions, supervising post-graduate students and undergraduate students, academic advisor, head of laboratory, head of research group, chairman and member of different committees, conducting short courses and training. He authored 20 ISI papers and has an H-Index of 7 and total citations of 212, presented more than 90 papers in reputed refereed conferences. He also successfully supervised 9 undergraduate students.

Nabil Mohammed is a postdoctoral research fellow at Monash University. His Ph.D. degree was in power electronics, Macquarie University, Sydney, Australia. In Summer 2019, he was a Visiting Researcher with the Department of Energy Technology, Aalborg University, Denmark. His research interests include power electronics converters, microgrids, smart grids, energy storage systems, adaptive control, system identification, and the PLC and SCADA applications to energy systems.

R. ABD RAHMAN was born in Kedah, Malaysia in 1984. He received the M.Eng. Degree in electrical and electronic engineering from Cardiff University, UK in 2008. After his graduation, he joined University Tun Hussein Onn Malaysia (UTHM) as an academic staff and research fellow. In 2008, he came back to Cardiff as a PhD candidate within the High Voltage and Energy Systems group and received his PhD in 2012. Currently, he is a lecturer at University of Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia.

Salem Mgammal Al-Ameri received B.Eng. in Mechatronics Engineering from Asia Pacific University (APU) in 2012. He received M.Eng. in Electrical from Universiti Tun Hussein Onn Malaysia (UTHM) in 2016. He received Ph.D. degree from The Universiti Tun Hussein Onn Malaysia in 2020. Currently, he is with the Universiti Tun Hussein Onn Malaysia Grantee for a postdoctoral position. His research interests include transformers Condition monitoring.