Noether-Lefschetz locus and a special case of the variational Hodge conjecture: Using elementary techniques

Ananyo Dan *

May 1, 2014

Abstract

Fix integers $n \geq 1$ and d such that $nd > 2n + 2$. The Noether-Lefschetz locus $\text{NL}_{d,n}$ parametrizes smooth projective hypersurfaces in \mathbb{P}^{2n+1} such that $H^{n,n}(X, \mathbb{C}) \cap H^{2n}(X, \mathbb{Q}) \neq \mathbb{Q}$. An irreducible component of the Noether-Lefschetz locus is locally a Hodge locus. One question is to ask under what choice of a Hodge class $\gamma \in H^{n,n}(X, \mathbb{C}) \cap H^{2n}(X, \mathbb{Q})$ does the variational Hodge conjecture hold true? In this article we use methods coming from commutative algebra and Hodge theory to give an affirmative answer in the case γ is the class of a complete intersection subscheme in X of codimension n. Another problem studied in this article is: In the case $n = 1$ when is an irreducible component of the Noether-Lefschetz locus nonreduced? Using the theory of infinitesimal variation of Hodge structures of hypersurfaces in \mathbb{P}^3, we determine all non-reduced components with codimension less than or equal to $3d$ for $d \gg 0$. Here again our primary tool is commutative algebra.

Notation 0.1. Throughout this article, X will denote a smooth hypersurface in \mathbb{P}^{2n+1}. Denote by $H^{n,n}(X, \mathbb{Q})$ the intersection $H^{n,n}(X, \mathbb{C}) \cap H^{2n}(X, \mathbb{Q})$ and H_X the very ample line bundle on X.

1 Introduction

It was first stated by M. Noether and later proved by S. Lefschetz that for a general smooth surface X in \mathbb{P}^3, the rank of the Néron-Severi group, denoted $\text{NS}(X)$ is of rank 1. We can then

*The author has been supported by the DFG under Grant KL-2244/2-1

Humboldt Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, Berlin 10099.
e-mail: dan@mathematik.hu-berlin.de
Mathematics Subject Classification: 14C30, 14D07
define the *Noether-Lefschetz locus*, denoted $\text{NL}_{d,1}$, to be the space of smooth degree d surfaces in \mathbb{P}^3 with Picard rank greater than 1. Using Lefschetz $(1,1)$-theorem, one can see that $\text{NL}_{d,1}$ is the space of smooth degree d surfaces X such that $H^{1,1}(X, \mathbb{Q}) \neq \mathbb{Q}$. Similarly, we can define *higher Noether-Lefschetz locus* as follows: Let $n > 1$ and d another integer such that $nd > 2n+2$. Denote by $\text{NL}_{d,n}$ the space of smooth degree d hypersurfaces X in \mathbb{P}^{2n+1} such that $H^{n,n}(X, \mathbb{Q}) \neq \mathbb{Q}$. The orbit of the action of the monodromy group on a rational class is finite (see [CDK95]). Consequently, $\text{NL}_{d,n}$ is an uncountable union of algebraic varieties (see [Voi03, §3.3] for more details).

Let L be an irreducible component of $\text{NL}_{d,n}$. Then L can be locally studied as the Hodge locus corresponding to a Hodge class. In particular, take $X \in L$, general and consider the space of all smooth degree d hypersurfaces in \mathbb{P}^{2n+1}, denoted $U_{d,n}$. For $X \in L$, general, there exists $\gamma \in H^{n,n}(X, \mathbb{Q})$ and an open (analytic) simply connected set U in $U_{d,n}$ containing X such that $L \cap U$ is the Hodge locus corresponding to γ, denoted $\text{NL}_{d,n}(\gamma)$ (see [Voi02, §5.3] for more details).

Before we state the first main result in this article, we fix some notations. Given a Hilbert polynomial P, of a subscheme Z, in \mathbb{P}^{2n+1}, denote by H_P the corresponding Hilbert scheme. Denote by Q_d the Hilbert polynomial of a degree d hypersurface in \mathbb{P}^{2n+1}. The flag Hilbert scheme H_{P,Q_d} parametrizes all pairs (Z, X), where $Z \in H_P$, X is a smooth degree d hypersurface in \mathbb{P}^{2n+1} containing Z. For any $n \geq 1$ we prove the following theorem which is a special case of the variational Hodge conjecture:

Theorem 1.1. Let Z be a complete intersection subscheme in \mathbb{P}^{2n+1} of codimension $n + 1$. Assume that there exists a smooth hypersurface in \mathbb{P}^{2n+1}, say X, containing Z, of degree $d > \deg(Z)$. For the cohomology class $\gamma = a[Z] \in H^{n,n}(X, \mathbb{Q})$, $a \in \mathbb{Q}$, γ remains of type (n, n) if and only if γ remains an algebraic cycle. In particular, $\text{NL}_{d,n}(\gamma)$ (closure taken in $U_{d,n}$) is isomorphic to an irreducible component of $\text{pr}_2 H_{P,Q_d}$ which parametrizes all degree d hypersurfaces in \mathbb{P}^{2n+1} containing a complete intersection subcheme with Hilbert polynomial P, where P (resp. Q_d) is the Hilbert polynomial of Z (resp. X).

In [Otw03], Otwinowska proves this statement for $d \gg 0$. Furthermore, in the case $n = 1$, we prove:

Theorem 1.2. Let $d \geq 5$ and γ is a divisor in a smooth degree d surface of the form $\sum_{i=1}^r a_i[C_i]$
with C_i distinct integral curves for all $i = 1, \ldots, r$ and $d > \sum_{i=1}^r a_i \deg(C_i)+4$. Then the following are true:

(i) If $r = 1$ and $\deg(C_1) < 4$ then $\text{NL}_{d,1}(\gamma)$ (closure taken under Zariski topology on $U_{d,1}$) is reduced. In particular, $\text{NL}_{d,1}(\gamma)$ is an irreducible component of $\text{pr}_2(H_{P,Q,d})$, the space parametrizing all degree d surfaces containing a reduced curve with the same Hilbert polynomial as C_1, which we denote by P.

(ii) Suppose that $r > 1$. For $d \gg 0$, every irreducible component L of $\text{NL}_{d,1}$ of codimension at most $3d$ is locally of the form $\text{NL}_{d,1}(\gamma)$ with γ as above, $\deg(C_i) \leq 3$ and $\text{NL}_{d,1}(\gamma)_{\text{red}} = \bigcap_{i=1}^r \text{NL}_{d,1}([C_i])_{\text{red}}$. Moreover, $\text{NL}_{d,1}(\gamma)$ is non-reduced if and only if there exists a pair (i,j), $i \neq j$ such that $C_i.C_j \neq 0$.

2 Proof of Theorem 1.1

Notation 2.1. Denote by S^k_n the degree k-graded piece of $H^0(O_{\mathbb{P}^{2n+1}}(k))$. Define $S^n := \oplus_{k \geq 0} S^k_n$. Let X be a smooth degree d hypersurface in \mathbb{P}^{2n+1}, defined by an equation F. Denote by J_F, the Jacobian ideal of F generated as an S^n-module by the partial derivatives of F with respect to $\frac{\partial}{\partial X_i}$ for $i = 1, \ldots, 2n+1$, where X_i are the coordinates of \mathbb{P}^{2n+1}. Define, $R_F := S^n/J_F$. For $k \geq 0$, let J^k_F (resp. R^k_F) symbolize the degree k-graded piece of J_F (resp. R_F).

2.2. We now recall some standard facts about Hodge locus. Let X be a smooth projective hypersurface in \mathbb{P}^{2n+1} of degree d. Recall, there is a natural morphism from $H^{n,n}(X)$ to $H^{n,n}(X)_{\text{prim}}$, where $H^{n,n}(X)_{\text{prim}}$ denotes the primitive cohomology on $H^{n,n}(X)$ (see [Vo02, §6.2, 6.3] for more on this topic). Denote by γ_{prim} the image of γ under this morphism. Using the Lefschetz decomposition theorem, one can see that $\text{NL}_{d,n}(\gamma)$ coincides with $\text{NL}_{d,n}(\gamma_{\text{prim}})$ i.e., γ remians of type (n,n) if and only if so does γ_{prim}.

2.3. Now, $K_{\mathbb{P}^{2n+1}} = O_{\mathbb{P}^{2n+1}}(-2n-2)$, $H^0(K_{\mathbb{P}^{2n+1}}(2n+2)) = H^0(O_{\mathbb{P}^{2n+1}}) \cong \mathbb{C}$ generated by

$$\Omega := X_0 \cdots X_{2n+1} \sum_i (-1)^i \frac{dX_0}{X_0} \wedge \cdots \wedge \frac{dX_i}{X_i} \wedge \cdots \wedge \frac{dX_{2n+1}}{X_{2n+1}},$$

where the X_i are homogeneous coordinates on \mathbb{P}^{2n+1}. Recall, for the closed immersion $j :$
\(X \to \mathbb{P}^{2n+1} \), denote by \(H^{2n}(X, \mathbb{Q})_{\text{van}} \), the kernel of the Gysin morphism \(j_* \) from \(H^{2n}(X, \mathbb{Q}) \) to \(H^{2n}(\mathbb{P}^{2n+1}, \mathbb{Q}) \). Now, [Voi03] Theorem 6.5 tells us that there is a surjective map,

\[
\alpha_{n+1} : H^0(\mathbb{P}^{2n+1}, O_{\mathbb{P}^{2n+1}}((n+1)d - 2n - 2)) \to F^{n+1}H^{2n+1}(\mathbb{P}^{2n+1} \setminus X, \mathbb{C}) \cong F^nH^{2n}(X, \mathbb{C})_{\text{van}}
\]

which sends a polynomial \(P \) to the residue of the meromorphism form \(P\Omega/F^{n+1} \), where \(F \) is the defining equation of \(X \) (see [Voi03] §6.1 for more). Finally, [Voi03] Theorem 6.10] implies that \(\alpha_{n+1} \) induces an isomorphism between \(H^{(n+1)d-(2n+2)}_F \) and \(H^{n,n}(X)_{\text{prim}} \).

2.4. We now recall a theorem due to Macaulay which will be used throughout this article. A sequence of homogeneous polynomials \(G_i \in S^d_n, i = 0, \ldots, 2n+1 \) with \(d_i > 0 \) is said to be \textit{regular} if the \(G_i \) have no common zero. Denote by \(I_G \) the ideal in \(S_n \) generated by the polynomials \(P_i \) for \(i = 0, \ldots, 2n+1 \). Denote by \(H_G \) the quotient \(S_n/I_G \) and by \(H^i_G \) the degree \(i \) graded piece in \(H_G \).

Theorem 2.5 (Macaulay). Let \(N := \sum_{i=0}^{2n+1} d_i - 2n - 2 \). Then, the rank of \(H^N_G = 1 \) and for every integer \(k \), the pairing, \(H^k_G \times H^{N-k}_G \to H^N_G \) is perfect.

See [Voi03] Theorem 6.19] for the proof of the statement.

2.6. Denote by \(P \in S^{(n+1)d-(2n+2)}_n \) such that \(\alpha_{n+1}(P) = \gamma \). Using [Voi03] Theorem 6.17], we observe that \(T_X \NL_{d,n}(\gamma) \) is isomorphic to the preimage of \(\ker(\bar{P} : R^d_F \to R^{(n+1)d-(2n+2)}_F) \) under the natural quotient morphism from \(S^d_n \to S^d_n/J^d_F \).

2.7. It is easy to see that for any \(\gamma' \in H^{n,n}(X, \mathbb{Q}), \NL_{d,n}(\gamma') = \NL_{d,n}(a'\gamma') \) for any \(a' \in \mathbb{Q} \), non-zero. For the rest of this section, we assume \(\gamma = [Z] \), where \(Z \) is as in the statement of the theorem.

Notation 2.8. Denote by \(N := (n+1)d - (2n+2) \). Since \(X \) is smooth, the corresponding Jacobian ideal \(J_F \) can be generated by a regular sequence of \(2n+2 \) polynomials \(G_i \) of degree \(d - 1 \). Using Theorem 2.5 we see that there exists a perfect pairing \(R^k_F \times R^{2N-k}_F \to R^{2N}_F \) for all \(k \leq 2N \) and \(R^{2N}_F \) is one dimensional complex vector space. Denote by \(T'_0 \), the subspace of \(R^{2N}_F \) which is the kernel under the multiplication map, \(.P : R^{2N}_F \to R^{2N}_F \). Denote by \(T_0 \) the preimage of \(T'_0 \) in \(S^n_n \) under the natural projection map from \(S^n_n \to R^{2N}_F \). Define \(T_1 \) the subspace
of S_n, a graded S_n-module such that for all $t \geq 0$, the t-graded piece of T_1, denoted $T_{1,t}$ is the largest subvector space of S_n^t such that $T_{1,t} \otimes S_n^{N-t}$ is contained in T_0 for $t < N$, $T_{1,N} = T_0$ and $T_{1,N+t} = T_0 \otimes S_n^t$ for $t > 0$.

2.9. It follows from the perfect pairing above that $\dim S_n^N / T_{1,N} = 1$. Using the definition of T_1, it follows,

$$S_n^k / T_{1,k} \times S_n^{N-k} / T_{1,N-k} \rightarrow S_n^N / T_{1,N}$$

is a perfect pairing. Hence, $\dim S_n^d / T_{1,d} = \dim S_n^{N-d} / T_{1,N-d}$.

Lemma 2.10. The tangent space $T_X(NL_{d,n}(\gamma))$ coincides with $T_{1,d}$.

Proof. Note that $H \in T_{1,d}$ if and only if $\bar{H} \otimes R_n^{N-d}$ is contained in T'_0 which by definition is equivalent to $\bar{H} \otimes R_n^{N-d}$ is contained in T'_0. Using the perfect pairing 2.8 we can conclude that $\bar{H} = 0$ in R_n^{N+d}. This is equivalent to $H \in T_X(NL_{d,n}(\gamma))$.

2.11. Suppose that Z is defined by $n+1$ polynomials $P_0, ..., P_n$. Since $Z \subset X$, we can assume that there exist polynomials $Q_0, ..., Q_n$ of degree $d - \deg P_i$, respectively such that X is defined by a polynomial of the form $P_0Q_0 + ... + P_nQ_n$. Let I be the ideal in S_n generated by $P_0, ..., P_n$ and $Q_0, ..., Q_n$.

Proposition 2.12. The k-graded pieces, $T_{1,k} = I_k$ for all $k \leq N$.

Proof. Denote by Z_1 the subschemes in \mathbb{P}^{2n+1}, defined by $Q_0 = P_1 = ... = P_n = 0$. Since $Z \cup Z_1$ is the intersection of X and $\{P_1 = ... = P_n = 0\}$, then $[Z] = -[Z_1]$ mod QH^n_X in the cohomology group $H^{n,n}(X, \mathbb{Q})$. So, $[Z]_{\text{prim}} = -[Z_1]_{\text{prim}}$. Denote by Z_2 the subvariety defined by $Q_0 = ... = Q_n = 0$. Proceeding similarly, we get $[Z]_{\text{prim}} = a[Z_2]_{\text{prim}}$ for some integer a. Using [GH83 4.a.4], we have $(P_0, ..., P_n, Q_0, ..., Q_n) \subset T_1$. Since X is smooth the sequence $\{P_0, ..., P_n, Q_0, ..., Q_n\}$ is a regular sequence. Using Theorem 2.5 we can conclude that $\dim S_n^N / I_N = 1$, where I_N denotes the degree N graded piece of I and

$$S / I_k \times S / I_{N-k} \rightarrow S / I_N$$
is perfect pairing. So, \(I \) is Gorenstein of socle degree \(N \) contained in \(T_1 \) which is Gorenstein of the same socle degree. So, \(T_{1,k} = I_k \) for all \(k \leq N \). \(\square \)

2.13. The parameter space, say \(H \) of complete intersection subschemes in \(\mathbb{P}^{2n+1} \) of codimension \(n+1 \), defined by \(n+1 \) polynomials of degree \(\deg(P_i) \), respectively is irreducible. In particular, it is an open subscheme of

\[
\mathbb{P}(S_n^{\deg P_0}) \times \cdots \times \mathbb{P}(S_n^{\deg P_n})
\]

which is irreducible. Denote by \(R_0 \) the Hilbert polynomial of \(Z \) as a subscheme in \(\mathbb{P}^{2n+1} \). Consider the flag Hilbert scheme \(H_{R_0,Q_d} \) and the projection map \(\text{pr}_1 \) which is the projection onto the first component. Since the generic fiber of \(\text{pr}_1 \) is isomorphic to \(\mathbb{P}(I_d(Z)) \) for the generic subscheme \(Z \) on \(\text{pr}_1 H_{R_0,Q_d} \), it is irreducible, where \(I_d(Z) \) is the degree \(d \) graded piece of the ideal, \(I(Z) \), of \(Z \). So, there exists an unique irreducible component in \(H_{R_0,Q_d} \) such that the image under \(\text{pr}_1 \) of this component coincides with \(H \). For simplicity of notation, we denote by \(H_{R_0,Q_d} \) this irreducible component, since we are interested only in this scheme.

2.14 (Proof of Theorem 1.1). Using basic deformation theory and Hodge theory, we can conclude that \(\text{pr}_2(H_{R_0,Q_d}) \) is contained in \(\overline{\text{NL}_{d,n}(\gamma)} \). So,

\[
\text{codim } \text{pr}_2(H_{R_0,Q_d}) \geq \text{codim } \overline{\text{NL}_{d,n}(\gamma)} \geq \text{codim } T_X \overline{\text{NL}_{d,n}(\gamma)}.
\]

Now, there is a natural morphism, denoted \(p \) from \(T_{1,d} \) to \(H_{Q_d} \) which maps \(F_1 \) to the zero locus of \(F_1 \). Since every element of \(T_{1,d} \) defines a hypersurface containing a subscheme with Hilbert polynomial \(R_0 \), \(\text{pr}_2(H_{R_0,Q_d}) \) contains \(\overline{\text{Im } p} \). Since the zero locus of a polynomial is invariant under multiplication by a scalar,

\[
\dim T_{1,d} = \dim \overline{\text{Im } p} + 1.
\]

Finally,

\[
\text{codim } \text{pr}_2(H_{R_0,Q_d}) = \dim \mathbb{P}(H^0(\mathcal{O}_{\mathbb{P}^{2n+1}}(d))) - \dim \text{pr}_2(H_{R_0,Q_d}) \leq
\]

\[
\leq (h^0(\mathcal{O}_{\mathbb{P}^{2n+1}}(d)) - 1) - \dim \overline{\text{Im } p} \leq h^0(\mathcal{O}_{\mathbb{P}^{2n+1}}(d)) - \dim T_{1,d} = \text{codim } T_X \overline{\text{NL}_{d,n}(\gamma)}
\]
where the last equality follows from Lemma 2.10. This proves Theorem 1.1.

2.15. Furthermore, note that $NL_{d,1}(\gamma)$ is reduced and parametrizes all degree d surfaces in \mathbb{P}^3 containing a complete intersection curve with the Hilbert polynomial P. This is a part of Theorem 1.2(ii).

3 Proof of Theorem 1.2

3.1. If C_1 is a complete intersection curve then reducedness of $NL_{d,1}([C_1])$ follows from 2.15.

If C_1 is an integral curve, $\deg(C_1) < 4$ and C_1 not complete intersection then C_1 is a twisted cubic. Recall, the twisted cubic C_1 is generated by 3 polynomials of degree 2 each. Suppose P is a polynomial in T_1 such that P is not contained in $I(C_1)$. Since the zero locus of the ideal, say I' generated by $I(C_1)$ and P is non-empty, J_F (which is base point free) is not contained in I'. Since the Jacobian ideal, $J_F \subset T_1$, we can show that there is a regular sequence in T_1 consisting of 4 elements, two of which are the generators of $I(C_1)$, the third one is P and the forth is an element in J_F^{d-1}. Since, codim $T_{1,d-4} = 1$, Theorem 2.5 implies $2+2+\deg(P)+d-1-4 \geq 2d-4$. So, $\deg(P) \geq d - 3$. By Proposition 2.12

$$\text{codim } T_X(NL_{d,1}(\gamma)) = \text{codim } T_{1,d} = \text{codim } T_{1,d-4} = \text{codim } I_{d-4}(C_1) = 3(d - 4) + 1 = 3d - 11.$$

3.2. Using basic deformation theory and Hodge theory we can conclude that there exists an unique irreducible component H of H_{P,Q_d} whose generic element is (C,X), where C is a twisted cubic contained in X such that $\text{pr}_2(H)$ is contained in $NL_{d,1}(\gamma)$. It is easy to compute that codim$(\text{pr}_2(H)) = 3d - 11$. So,

$$3d - 11 \geq \text{codim } NL_{d,1}(\gamma) \geq \text{codim } T_X(NL_{d,1}(\gamma)) = 3d - 11.$$

So, $NL_{d,1}(\gamma)$ is reduced and parametrizes smooth degree d surfaces containing a twisted cubic. This finishes the proof of (i).

3.3. We now recall a result due to Otwinowska that will help us make the characterization of
the irreducible components of $NL_{d,1}$ as in Theorem [12](ii).

Theorem 3.4 ([OrfwH Theorem 1]). Let γ be a Hodge class on a smooth degree d surface. There exists $C \in \mathbb{R}^*_+$ depending only on r such that for $d \geq C(r-1)^8$ if $\text{codim } NL_{d,1}(\gamma) \leq (r-1)d$ then $\gamma_{\text{prim}} = \sum_{i=1}^{t} a_i[C_i]_{\text{prim}}$ where $a_i \in \mathbb{Q}^*$, C_i are integral curves and $\text{deg}(C_i) \leq (r-1)$ for $i = 1, \ldots, t$ for some positive integer t.

This implies the following:

Proposition 3.5. Let $d \gg 0$, γ be a Hodge class in a smooth degree d surface in \mathbb{P}^3 such that $\text{codim } NL_{d,1}(\gamma) \leq 3d$. Then there exists integral curves C_1, \ldots, C_t of degree at most 3 such that $\gamma = \sum_{i=1}^{t} a_i[C_i] + bH_X$ for some integers a_i, b and $\text{NL}(\gamma)_{\text{red}}$ is the same as $\bigcap_{i=1}^{t} \text{NL}([C_i])_{\text{red}}$.

Proof. Let $X \in NL_{d,1}(\gamma)$. There exists a maximal \mathbb{Q}-vector space $\Lambda \subset H^2(X, \mathbb{Q})$ such that Λ remains of type $(1,1)$ in $NL_{d,1}(\gamma)$ i.e., $\text{NL}_{d,1}(\gamma)_{\text{red}} = \bigcap_{\gamma_i \in \Lambda} \text{NL}_{d,1}(\gamma_i)_{\text{red}}$. There exists a surface $X' \in NL_{d,1}(\gamma)$ such that the Néron-Severi group $\text{NS}(X')$ is the translate (under deformation from X to X') of Λ in $H^2(X', \mathbb{Z})$ which we again denote by Λ for convenience. Then, Theorem [3.4] implies that any $\gamma \in \Lambda$ is of the form $\sum_{i} a_i[C_i] + bH_X$ with $\text{deg}(C_i) \leq 3$. So, Λ is generated by classes of curves of degree at most 3 and H_X. Note that the classes of these curves are also contained in Λ since Λ is the complete Néron-Severi group of X'. This proves the proposition, which is also the first part of Theorem [12](ii).

3.6. We now come to the proof of the final part of the theorem. Suppose now that γ is as in the above proposition i.e., of the form $\sum_{i=1}^{t} a_i[C_i] + bH_X$ such that $\text{NL}(\gamma)_{\text{red}} = \bigcap_{i=1}^{t} \text{NL}([C_i])_{\text{red}}$. Denote by \tilde{P}_i the element in R_F^{2d-4} such that $\alpha_2(\tilde{P}_i) = [C_i]_{\text{prim}}$ for $i = 1, \ldots, t$. Since α_2 is a linear map, $\alpha_2(\sum_{i=1}^{t} a_i\tilde{P}_i) = \sum_{i} a_i[C_i]_{\text{prim}}$. Denote by $\tilde{P} := \sum_{i=1}^{t} a_i\tilde{P}_i$. So, $\alpha_2(\tilde{P}) = \gamma$.

Denote by $T_{1,d-4}^{[C_i]}$ the corresponding $T_{1,d-4}$ in [23] obtained by replacing P by \tilde{P}_i for $i = 1, \ldots, r$. Note that $\text{codim } T_X \text{NL}_{d,1}(\gamma) = \text{codim } T_{1,d} = \text{codim } T_{1,d-4}$, where the last equality is due to perfect pairing. Note that, $\bigcap_{i=1}^{t} T_{1,d-4}^{[C_i]} \subset T_{1,d-4}$ because $\tilde{P} = \sum_{i} a_i\tilde{P}_i$, so $\bigcap_{i=1}^{r} \ker \tilde{P}_i \subset \ker \tilde{P}$. Therefore, $\text{codim } T_X \text{NL}_{d,1}(\gamma) \leq \text{codim } I_{d-4}(\bigcup_{i=1}^{r} C_i)$.

Before we go to the last step of the proof we need the following computation:
Lemma 3.7. Let $d \geq 5$ and C be an effective divisor on a smooth degree d surface X of the form $\sum_i a_i C_i$, where C_i are integral curves with $\deg(C) + 4 \leq d$. Then, $\dim |C| = 0$, where $|C|$ is the linear system associated to C.

Proof. Let $C = \sum_i a_i C_i$ with C_i integral. Then,

$$\deg((\mathcal{O}_X(C)|_C \otimes \mathcal{O}_C)|_{C_i}) = a_i C_i^2 + \sum_{j \neq i} a_j C_i C_j.$$

Denote by $e_i := \deg(C_i)$. Using the adjunction formula and the fact that $K_X \cong \mathcal{O}_X(d - 4)$, we have that

$$\deg((\mathcal{O}_X(C)|_C \otimes \mathcal{O}_C)|_{C_i}) \leq a_i (e_i^2 - (d - 1)e_i) + \sum_{j \neq i} a_j C_i C_j$$

$$\leq a_i (e_i^2 - 3e_i - e_i \sum_j a_j e_j) + \sum_{j \neq i} a_j e_i e_j.$$

The first inequality follows from the bound on the genus of a curve in \mathbb{P}^3 in terms of its degree (see [Har77, Example 6.4.2]). The second inequality follows from the facts that $d \geq \deg(C) + 2$ and $C_i, C_j \leq e_i e_j$. It then follows directly that $\deg((\mathcal{O}_X(C)|_C \otimes \mathcal{O}_C)|_{C_i}) < 0$. This implies that $h^0(C_i, (\mathcal{O}_X(C)|_C \otimes \mathcal{O}_C)|_{C_i}) = 0$ for all i. This implies that $h^0(C, \mathcal{O}_X(C)|_C \otimes \mathcal{O}_C) = 0$. Since $h^1(\mathcal{O}_X) = 0$ (by Lefschetz hyperplane section Theorem) and $h^0(\mathcal{O}_X) = 1$, using the long exact sequence associated to the short exact sequence

$$0 \to \mathcal{O}_X \to \mathcal{O}_X(C) \to \mathcal{O}_X(C)|_C \otimes \mathcal{O}_C \to 0$$

we get that $h^0(\mathcal{O}_X(C)) = 1$. Since $|C| = \mathbb{P}(H^0(\mathcal{O}_X(C)))$, the lemma follows. \qed

3.8 (Proof of Theorem 1.2). Using Proposition 2.12 and 3.1, $\bigcap_{i=1}^t T_{1,d-4}^{[C_i]} = I_{d-4}(\bigcup_{i=1}^t C_i)$ is contained in $T_X \text{NL}_{d,1}(\gamma)$. Denote by P_i the Hilbert polynomial of C_i for $i = 1, \ldots, t$. By Theorem 1.2(i), there exists an irreducible component of H_{P_1, Q_d} such that its image under the natural projection morphism pr_2 (onto the second component) is isomorphic to $\text{NL}_{d,1}(\{C_i\})_{\text{red}}$. So, there exists an irreducible component, say H_γ of $H_{P_1, Q_d} \times H_{Q_d} \ldots \times H_{Q_d} H_{P_1, Q_d}$ such that
\[\text{pr}_2(H_\gamma)_{\text{red}} = \overline{\text{NL}(\gamma)_{\text{red}}}, \] where \(\text{pr}_2 \) is the natural morphism from \(H_\gamma \) to \(H_{Q_d} \). Denote by \(L_\gamma := \text{pr}(H_\gamma) \), where \(\text{pr} \) is the natural projection morphism to \(H_{P_1} \times \ldots \times H_{P_t} \). A generic \(t \)-tuple of curves \((C_1, \ldots, C_t) \in H_{P_1} \times \ldots \times H_{P_t} \) does not intersect each other. Since there exists \(i, j, i \neq j \) such that \(C_i \cap C_j \neq \emptyset \), we have \(\dim L_\gamma < \sum_{i=1}^t \dim H_{P_i} \). Lemma 3.7 implies that \(\dim |C_i| = 0 \) for \(i = 1, \ldots, t \). It is then easy to see that \(\text{codim NL}_{d,1}(\gamma) = \text{codim} I_d(\bigcup_{i=1}^t C_i) - \dim L_\gamma \). If \(\text{codim} I_{d-4}(\bigcup_{i=1}^t C_i) \leq \text{codim} I_d(\bigcup_{i=1}^t C_i) - \sum_{i=1}^t \dim H_{P_i} \) then
\[
\text{codim} T_X \text{NL}_{d,1}(\gamma) \leq \text{codim} I_{d-4}(\bigcup_{i=1}^t C_i) \leq \text{codim} I_d(\bigcup_{i=1}^t C_i) - \sum_{i=1}^t \dim H_{P_i} < \text{codim} I_d(\bigcup_{i=1}^t C_i) - \dim L_\gamma = \text{codim NL}_{d}(\gamma),
\]
where the first inequality follows from 3.6. Since \(d \gg 0 \), using the Hilbert polynomial of \(\bigcup C_i \), the inequality \(\dagger \) is equivalent to \(\sum_{i=1}^t \dim H_{P_i} = 4 \sum_{i=1}^t \deg(C_i) \). Since \(\deg(C_i) < 4 \) and \(C_i \) is integral, it is easy to compute that \(\dim H_{P_i} \) is in fact equal to \(4 \deg(C_i) \). This proves (ii). Hence, completes the proof of the theorem.

References

[CDK95] E. Cattani, P. Deligne, and A. Kaplan. On the locus of hodge classes. *Journal of the American Mathematical Society*, 8(2):483–506, 1995.

[GH83] P. Griffiths and J. Harris. Infinitesimal variations of hodge structure (ii): an infinitesimal invariant of hodge classes. *Composition Mathematica*, 50(2-3):207–265, 1983.

[Har77] R. Hartshorne. *Algebraic Geometry*. Graduate text in Mathematics-52. Springer-Verlag, 1977.

[Otw03] A. Otwinowska. Composantes de petite codimension du lieu de Noether-Lefschetz: un argument asymptotique en faveur de la conjecture de Hodge. *J. Alg. Geom.*, 12(2):307–320, 2003.

[Otw04] A. Otwinowska. Sur les varieites de Hodge des hypersurfaces. *arXiv:math/0401092v1 [math.AG]*, 2004.
[Voi02] C. Voisin. *Hodge Theory and Complex Algebraic Geometry-I*. Cambridge studies in advanced mathematics-76. Cambridge University press, 2002.

[Voi03] C. Voisin. *Hodge Theory and Complex Algebraic Geometry-II*. Cambridge studies in advanced mathematics-77. Cambridge University press, 2003.