A uniform treatment of the orbital effects due to a violation of the strong equivalence principle in the gravitational Stark-like limit

I. Iorio

Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR)-Istruzione, Italy
E-mail: lorenzo.iorio@libero.it

Received 30 July 2012, in final form 2 November 2012
Published 14 December 2012
Online at stacks.iop.org/CQG/30/025006

Abstract
We consider a binary system made of self-gravitating bodies embedded in a constant and uniform external field \(g \). We analytically work out several orbital effects induced by a putative violation of the Strong Equivalence Principle (SEP) due to \(g \). In our calculation, we do not assume \(e \sim 0 \), where \(e \) is the binary’s orbit eccentricity. Moreover, we do not \textit{a priori} choose any specific preferred spatial orientation for the fixed direction of \(g \). Our results do not depend on any particular SEP-violating theoretical scheme. They can be applied to general astronomical and astrophysical binary systems immersed in an external constant and uniform polarizing field.

PACS numbers: 04.80.−y, 04.80.Cc

1. Introduction

If bodies with non-negligible gravitational binding self-energies, like astronomical and astrophysical objects (planets and their natural satellites, main-sequence stars, white dwarfs, neutron stars), moved with different accelerations in a given external field, the so-called strong equivalence principle (SEP) would be violated. While the general theory of relativity assumes the validity of SEP, it is generally violated in alternative theories of gravity; see [1, 2] and references therein.

Potential SEP violations in the Earth–Moon system freely falling in the external gravitational field of the Sun, theoretically predicted by Nordtvedt long ago [3, 4], are currently searched for with the lunar laser ranging (LLR) technique [5–7] in the framework...
of the parametrized post–Newtonian (PPN) formalism. There are projects to test SEP with the Martian moon Phobos and the planetary laser ranging technique [8] as well.

As shown by Damour and Schäfer [9], the acceleration due to SEP violation occurring for a two-body system in an external gravitational field \(g \) like, e.g., the Galactic field at the location of a binary pulsar, is, to leading order,

\[
A_g = (\Delta_{p} - \Delta_{c})g, \tag{1}
\]

where \(p \) and \(c \) denote the pulsar and its less compact companion; for a generic body with non-negligible gravitational self-energy \(E_{\text{grav}} \), \(\Delta \) accounts for the SEP-violating difference between the inertial mass \(m_i \) and the gravitational mass \(m_g \); at first post–Newtonian level, it is

\[
\Delta \equiv \frac{mg}{m_i} - 1 = \eta_1 \varepsilon_{\text{grav}}, \quad \varepsilon_{\text{grav}} = \frac{E_{\text{grav}}}{m_i c^2}, \tag{2}
\]

where \(c \) is the speed of light in vacuum. The external field \(g \) in equation (1) is assumed here to be constant and uniform, so that it induces a gravitational analogue of the Stark effect [9]. To maximize the size of potential SEP violations, one should look at compact objects like neutron stars: indeed, it is

\[
|\varepsilon_{\text{grav}}^{\oplus}| \sim 1.9 \times 10^{-11}, \quad |\varepsilon_{\text{grav}}^{\odot}| \sim 4.2 \times 10^{-10}, \quad |\varepsilon_{\text{grav}}^{\odot}| \sim 1.3 \times 10^{-6}, \quad |\varepsilon_{\text{grav}}^{\text{NS}}| \sim 10^{-4}. \tag{3}
\]

The SEP-violating parameter \(\eta_1 \) can be expressed in various ways depending on the theoretical framework adopted; see [1, 2] for recent overviews. As far as the Earth–Moon system and the PPN framework is concerned, latest published bounds ([6] and [7], respectively) on the Nordtvedt parameter are

\[
\eta_1 \equiv \eta_N = (4.0 \pm 4.3) \times 10^{-4}, \tag{4}
\]

\[
\eta_1 \equiv \eta_N = (-0.6 \pm 5.2) \times 10^{-4}. \tag{5}
\]

Williams et al in a recent analysis [13] released

\[
\eta_1 \equiv \eta_N = (-1.8 \pm 2.9) \times 10^{-4}. \tag{6}
\]

In this paper, we deal with the orbital effects due to equation (1) in a uniform way by obtaining explicit and transparent analytical expressions valid for the main observable quantities routinely used in empirical studies. In section 2, we work out the SEP-violating rates of change of the osculating Keplerian orbital elements, which are commonly used in solar system and binaries studies. The SEP-violating shift of the projection of the binary’s orbit onto the line of sight, which is the basic observable in pulsar timing, is treated in section 3. In section 4, we calculate the SEP-violating perturbation of the radial velocity, which is one of the standard observable in spectroscopic studies of binaries; in systems suitable for testing SEP, the pulsar’s companion is a white dwarf or a main sequence star for which radial velocity curves may be obtained as well. The primary-to-companion range and range-rate SEP-violating perturbations, potentially occurring in systems like the Earth–Moon one, are calculated in section 5. Section 6 is devoted to summarizing and discussing our results. We will not resort to \textit{a priori} simplifying assumptions about the binary’s orbital eccentricity. Moreover, we will not restrict ourselves to any specific spatial orientation for \(g \). Our results are, thus, quite general. They can be used for better understanding and interpreting present and future SEP experiments, hopefully helping in designing new tests as well. Finally, we remark that our calculations are model-independent in the sense that they do not depend on any specific theoretical mechanism yielding SEP violations.

\[3\] For a non-relativistic spherical body of uniform density, it can be cast [10, 11] \(E_{\text{grav}} = \frac{3M^2 G}{5R} \), where \(G \) is the Newtonian constant of gravitation, \(M \) is the body’s mass and \(R \) is its radius. For highly relativistic neutron stars, see, e.g., [12].
violations. Thus, they may be useful when different concurring SEP-violating scenarios are considered like, e.g., MOND and its external field effect [14, 15], Galileon-based theories with the Vainshtein mechanism [16, 17] and variations of fundamental coupling constants as well [18–20]. Moreover, there are also other effects, like Lorentz symmetry violations [21], which affect the same SEP-violating peculiar observables like the eccentricity [22]. For a seminal paper on Lorentz-violating orbital effects in binaries, see [23].

2. The long-term rates of change of the osculating Keplerian orbital elements

The SEP-violating acceleration of equation (1) is much smaller that the standard two-body Newtonian and post–Newtonian ones; thus, its orbital effects can be treated perturbatively. It can be thought as due to the following perturbing potential:

\[U_g = \Xi \cdot \mathbf{g} \cdot \mathbf{r} , \]

(7)

where

\[\Xi = \Delta_c - \Delta_p , \]

(8)

\(r \) is the relative position vector of the binary.

The Lagrange planetary equations [24] allow to work out all the orbital effects caused by equation (7) in an effective way which encompasses just one integration.

Damour and Schäfer [9] used a different formalism and an approach requiring six independent\(^4\) integrations. The work by Damour and Schäfer [9] is important also for the relevance for astrophysical tests found in the literature. Freire \textit{et al} [2] recently used the same formalism as Damour and Schäfer [9].

As a first step, the perturbing potential of equation (7) must be evaluated onto a reference trajectory assumed as unperturbed with respect to the effect we are interested in. To this aim, we will adopt the standard Keplerian ellipse, although it would be possible, in principle, to use a post–Newtonian orbit as well [25, 26]. We do not use such a relativistic unperturbed path as a reference trajectory. Indeed, in addition to the usual 1PN pericenter precession and the SEP-violating/0PN effects which will turn out to be \textit{per se} small, it would only yield additional SEP-violating/1PN mixed terms. It must be stressed that, strictly speaking, the previous considerations—and the consequent calculations that we will show below—hold only in the case of a SEP violation due to an external polarizing field \(g \). In fact, a SEP-violating gravity theory is expected to modify the 1PN pericenter precession rate even if such an external field is absent; it is accounted for by the multiplicative factor \(F \) put by Damour and Schäfer [9] in front of the standard Einsteinian 1PN pericenter precession, where \(F \) depends on the binary’s masses in alternative theories. Moving to our approach, an average of equation (7) over one full orbital period of the binary must be taken; by using the eccentric anomaly \(E \) as fast variable of integration, the result is

\[
\langle U_g \rangle = -\frac{3 \Xi a_e g}{2} \{ \cos \omega (\hat{g}_x \cos \Omega + \hat{g}_y \sin \Omega) + \sin \omega [\hat{g}_z \sin I + \cos I (\hat{g}_y \cos \Omega - \hat{g}_x \sin \Omega)] \},
\]

(9)

where \(g = |g|, \hat{g} = g/g, \) and \(a, e, I, \omega, \Omega \) are the semimajor axis, the eccentricity, the inclination, the argument of pericenter and the longitude of the ascending node of the binary orbit referred to a generic coordinate system. As far as binary pulsar systems are concerned, the reference \(\{X, Y\} \) plane is the plane of the sky tangent to the celestial sphere at the location

\(^4\) Averages of the time derivatives of the orbital energy, the orbital angular momentum and the Laplace–Runge–Lenz vector were taken in [9]. The orbital angular momentum and the Laplace–Runge–Lenz vector are perpendicular.
of the system considered. The inclination \(I \) of the binary’s orbital plane refers just to the plane of the sky, so that the reference \(Z \) axis is directed from the solar system’s barycenter to the binary along the line-of-sight direction; the reference \(Y \) axis is usually directed toward the North Celestial Pole, and the reference \(X \) axis, from which the node \(\Omega \) is counted, is in the east direction. The unit vectors \(\mathbf{I}_0, \mathbf{J}_0, \mathbf{K}_0 \) of such a coordinate system can be expressed in terms of the celestial right ascension \(\alpha \) and declination \(\delta \) of the binary as \([27–29]\)

\[
\mathbf{I}_0 = \begin{cases}
-\sin \alpha, \\
\cos \alpha, \\
0,
\end{cases}
\]

\[(10) \]

\[
\mathbf{J}_0 = \begin{cases}
-\sin \delta \cos \alpha, \\
-\sin \delta \sin \alpha, \\
\cos \delta,
\end{cases}
\]

\[(11) \]

\[
\mathbf{K}_0 = \begin{cases}
\cos \delta \cos \alpha, \\
\cos \delta \sin \alpha, \\
\sin \delta.
\end{cases}
\]

\[(12) \]

Instead, in studies pertaining our solar system the reference \(\{X, Y\} \) plane is customarily chosen as coincident with the mean equator at J2000.0, so that the reference \(X \) axis is directed toward the Vernal Equinox \(\Upsilon \) at J2000.0 and the \(Z \) axis points toward the North Celestial Pole. In obtaining equation (9), we have reasonably assumed that \(g \) does not vary over a full orbital revolution; moreover, we did not make any \textit{a priori} simplifying assumption about the spatial orientation of \(g \) which, in general, will not be directed along any particular direction of the coordinate system adopted. Nonetheless, the SEP-violating field \(g \) can reasonably be assumed to be approximately directed toward the Galactic Center (GC), whose Celestial coordinates are \([30]\)

\[
\alpha_{GC} = 17^h45^m37^s.224 = 266.4051 \text{ deg},
\]

\[(13) \]

\[
\delta_{GC} = -28^\circ56'10''23 = -28.936175 \text{ deg}.
\]

\[(14) \]

Thus, for a Sun–planet pair in the Solar System it is

\[
\hat{g} \equiv \hat{g}_{SS} = \begin{cases}
\cos \delta_{GC} \cos \alpha_{GC}, \\
\cos \delta_{GC} \sin \alpha_{GC}, \\
\sin \delta_{GC},
\end{cases}
\]

\[(15) \]

The Lagrange planetary equations \([24]\) and equation (9) straightforwardly yield the following long-term rates of changes of the six standard osculating Keplerian orbital elements\(^5\), and of the longitude of the pericenter\(^6\) \(\varpi \) as well

\[
\frac{d\alpha}{d\tau} = 0,
\]

\[(16) \]

\[
\frac{de}{d\tau} = -\frac{3Gm_a}{2n_ba} \left[g_z \sin I \cos \omega + \cos I \cos \omega (\hat{g}_x \cos \Omega - \hat{g}_y \sin \Omega) - \sin \omega (\hat{g}_y \cos \Omega + \hat{g}_x \sin \Omega) \right],
\]

\[(17) \]

\(^5\)\(M = m_b (t - t_0) \) is the mean anomaly, where \(t_0 \) is the time of passage at pericenter and \(n_b = \sqrt{GM/a^3} \) is the Keplerian mean motion. In general, SEP-violating theories induce modifications of the (effective) gravitational coupling parameter \(G \) in the binary interactions (cf [9]); here we will neglect them.

\(^6\) It is a ‘dogleg’ angle defined as \(\varpi = \Omega + \omega \). It is used in some specific cases such as, e.g., analyses of planetary motions in our solar system.
We recall that, in obtaining the rate of the mean anomaly perturbatively, the mean motion n_b has to be considered constant; thus, equation (22) is proportional to the rate of the time of pericenter passage. About the pericenter precession, it must recalled that, in addition to the effect of equation (21) due to the external polarizing field g, a further SEP-violating rate of change is, in principle, present. It is formally equal to the usual 1PN relativistic rate of change of the eccentricity. Note that equations (16)–(22) and (23) are all proportional to $n_b^{-1}a^{-1} = a^{1/2}$, so that they are larger for detached binaries. For large eccentricities the node and the inclination variations can, in principle, be used as well as further observables. Interestingly, equations (18)–(19) show that their ratio is independent of both g and \hat{g}; moreover, it depends neither on a nor on e, nor on Ω amounting to

$$\frac{\langle \Omega \rangle}{\langle I \rangle} = \csc I \tan \omega. \quad (24)$$
For systems exhibiting large inclinations, equation (24) may have relevant observational implications, provided that both the inclination and the node are accessible to observations. Also the ratio of equation (18) and equation (17) could be considered [2]; however, if on the one hand the ratio of the rates of the inclination and the eccentricity does not depend on g and a, on the other hand it depends on \hat{g} and on e, I, Ω, ω as well, contrary to equation (24) which is simpler.

Damour and Schäfer [9] define the following vector directed along the external field f

$$ f = \frac{3A}{2m_a}. $$

Then, they use the unit vector \hat{a} directed along the semimajor axis toward the pericenter, the unit vector \hat{k} directed along the orbital angular momentum and $\hat{b} = \hat{k} \times \hat{a}$. Their expression for the averaged rate of change of the eccentricity is [9]

$$ \langle \frac{de}{dt} \rangle = \sqrt{1 - e^2} (\hat{b} \cdot f). $$

A direct comparison of equation (26) with our equation (17) can actually be performed by expressing the unit vectors \hat{k} and \hat{a} in terms of the Keplerian orbital elements as

$$ \hat{k} = \begin{cases}
\sin I \sin \Omega, \\
-\sin I \cos \Omega, \\
\cos I,
\end{cases} $$

and

$$ \hat{a} = \begin{cases}
\cos \Omega \cos \omega - \cos I \sin \Omega \sin \omega, \\
\sin \Omega \cos \omega + \cos I \cos \Omega \sin \omega, \\
\sin I \sin \omega,
\end{cases} $$

By using equations (27)–(28), it turns out that equation (26) coincides with our equation (17).

As far as the inclination I is concerned, Freire et al [2], by adopting the same formalism of Damour and Schäfer [9], obtain

$$ \frac{d \cos I}{dt} = \frac{e}{\sqrt{1 - e^2}} (\hat{K}_0 \cdot \hat{b})(\hat{k} \cdot f), $$

where \hat{K}_0 is the unit vector of the line of sight. Also in this case, with the aid of equations (27)–(28) it can be shown that equation (29) agrees with our equation (18).

Neither Damour and Schäfer [9] nor Freire et al [2] explicitly considered the SEP-violating rates of change of the node (equation (19)), the pericenter (equations (20)–(21)) and the time of pericenter passage (equation (22)).

In binaries hosting a radiopulsar, the rate of change of the inclination can be expressed in terms of the rate of change of the pulsar’s projected semimajor axis $x_p \equiv a_p \sin I/c$, where c is the speed of light in vacuum, as $I = (x_p/x_0) \tan I$. About the measurability of the node Ω in wide binaries hosting a radiopulsar, it could be determined only if they are close enough to the Earth. Indeed, in this case the orbital motion of the Earth changes the apparent inclination angle I of the pulsar orbit on the sky, an effect known as the annual-orbital parallax [27]. It causes a periodic change of the projected semi-major axis. There is also a second contribution due to the transverse motion in the plane of the sky [28], yielding a secular variation of the projected semi-major axis. By including both these effects in the model of the pulse arrival times, Ω can be determined, as in the case of PSR J0437–4715 [29], located at only 140 pc from us. Interestingly, such an approach may also be used in optical spectral observations of binary stars possessing a sufficiently well-determined radial velocity curve [28]. As far as

Note that the quantity f has the physical dimensions of reciprocal time, i.e. $[f] = T^{-1}$. 6
exoplanets are concerned, spectroscopic variations of the hosting star during the transits can, in principle, be used to measure Ω \cite{31}. According to Fluri and Berdyugina \cite{32}, the analysis of the polarization of the light scattered by the planetary atmospheres may allow to determine, among other things, Ω as well.

The SEP-violating orbital rates of equations (16)–(23) can be defined as long-term effects since they were obtained by taking averages over one full orbital period P_b of the binary system. It must be noted that, strictly speaking, they cannot be considered as secular rates. Indeed, in calculating them, it was assumed that the external field g was constant over P_b. The extent to which such an approximation can be considered valid depends on the specific system considered. It is certainly true for binary pulsar systems, for which timing data span some decades at most, when g is due to the Galaxy: in this case, g can reasonably be considered as constant over any foreseeable data analysis based on existing (and future) pulsar timing records because of the extremely low variation of the Galactic field at the pulsar’s location during such time spans. If, instead, g is due to a remote third body with a small orbital frequency n_b' with respect to n_b, a relatively low modulation may be introduced by a slowly varying $g(t)$. A quite different situation occurs for systems like the Earth–Moon one whose external field g is due to a relatively close body like the Sun having an orbital frequency n_b comparable to n_b. In this case, g cannot be considered as constant, and a second integration has to be performed over the orbital period P_b' of the third body.

In equations (16)–(23) the Keplerian orbital elements I, Ω, ω determining the orientation of the binary orbit in space are present. They are fixed only in the two-body Keplerian problem for two pointlike masses. In any realistic situation, they are slowly varying with frequencies typically far smaller than n_b. It is true even if no other bodies are part of the system because of general relativity itself causing the well-known 1PN gravitoelectric and gravitomagnetic precessions.

Thus, even if g can be considered constant, in general it is not so for I, Ω, ω. Again, the peculiarities of the specific binaries at hand may greatly reduce the variability of them. For example, the more the system’s orbit is large, the weaker are the effects of general relativity.

Our results of equations (16)–(23) are quite general, and can be applied to any gravitationally bound two-body system immersed in a (weak) external field: they are valid for any orbital geometry of the binary system and for a quite generic spatial orientation of g in a given coordinate system.

3. The line-of-sight perturbation $\Delta \rho$

In timing of binary systems typically hosting radiopulsars, the basic observable quantity is the projection ρ of the pulsar’s barycentric orbit along the line of sight \cite{9} since its variations $\Delta \rho$ are straightforwardly related to the timing via $\Delta \tau = \Delta \rho/c$. In view of the fact that $\hat{\rho} = \hat{Z}$, one has to consider the Z component of the pulsar’s barycentric position vector r

$$Z = r \sin I \sin (\omega + \nu) ,$$

where ν is the true anomaly. The SEP-violating perturbation of ρ due to equation (1) can be straightforwardly obtained in the following way:

$$\langle \Delta \rho \rangle = \int_0^{R_b} \left(\frac{dZ}{dt} \right) dt = \int_0^{2\pi} \left[\frac{\partial Z}{\partial E} \frac{dE}{dt} + \frac{dM}{dt} \frac{\partial Z}{\partial \kappa} \right] \left(\frac{dr}{dE} \right) dE , \quad \kappa = a, e, I, \omega ,$$

where

$$r = a \left(1 - e \cos E \right) ,$$

$$7$$
\[
\cos \nu = \frac{\cos E - e}{1 - e \cos E},
\]
(33)
\[
\sin \nu = \frac{\sqrt{1 - e^2} \sin E}{1 - e \cos E},
\]
(34)
\[
\frac{dE}{d\mathcal{M}} = \frac{1}{1 - e \cos E},
\]
(35)
\[
\frac{dr}{dE} = \frac{1 - e \cos E}{n_b},
\]
(36)
and \(d\kappa/d\mathcal{M}\) are the instantaneous rates of change of the Keplerian orbital elements computed onto the unperturbed Keplerian orbital ellipse according to, e.g., the right-hand sides of the Gauss perturbative equations8 [24]. We have
\[
\langle \Delta \rho \rangle = -\frac{\pi g \sqrt{1 - e^2} \sin I}{2 e^2 n_b} \left[(4 - 6 e^2 + 3 e^4) \hat{g}_s \sin I \sin 2\omega
+ (4 - 6 e^2 + 3 e^4) \cos I \sin 2\omega (\hat{g}_s \cos \Omega - \hat{g}_z \sin \Omega)
+ [-e^4 + (4 - 6 e^2 + 3 e^4) \cos 2\omega] (\hat{g}_c \cos \Omega + \hat{g}_z \sin \Omega) \right].
\]
(37)
No approximations in \(\hat{g}, e, I\) were used in deriving equation (37). A purely formal singularity appears in equation (37) for \(e \to 0\): actually, it is unphysical since it is cured by using properly chosen non-singular orbital elements (see, e.g., [33]).

4. The radial velocity perturbation \(\Delta \dot{\rho}\)

A standard observable in spectroscopic studies of binaries is the radial velocity. Up to the velocity of the binary’s center of mass \(V_0\), it is, by definition, \(d\rho/dt\), i.e. the temporal rate of change of the line-of-sight projection \(r\) of the barycentric orbit of the binary’s component whose light curve is available.

The unperturbed, Keplerian expression for \(\dot{\rho}\) can straightforwardly be obtained from equations (30) and (40) as
\[
\dot{\rho} = \frac{\partial Z}{\partial \nu} dv d\mathcal{M} n_b = n_b a \sin I \frac{[e \cos \omega + \cos (\omega + \nu)]}{\sqrt{1 - e^2}}.
\]
(38)

The SEP-violating perturbation \(\langle \dot{\rho}_{\text{SEP}} \rangle\) on \(\dot{\rho}\) can be worked out by replacing \(Z\) with equations (38) in (31). For computational purposes, it turns out more convenient to use the true anomaly \(\nu\) as fast variable of integration instead of the eccentric anomaly \(E\). By using
\[
r = a(1 - e^2) \frac{1}{1 + e \cos \nu},
\]
(39)
\[
\frac{dv}{d\mathcal{M}} = \left(\frac{a}{r}\right)^2 \sqrt{1 - e^2},
\]
(40)
\[
\frac{dr}{dv} = \frac{(1 - e^2)^{3/2}}{n_b (1 + e \cos \nu)^2},
\]
(41)
8 In principle, \(d\mathcal{M}/dt\) includes also \(m\), which yields the purely Keplerian part \(\langle \Delta \rho_{\text{Kep}} \rangle\) of the shift of the line-of-sight component of the orbit. It vanishes.
one finally obtains
\[
\langle \Delta \dot{\rho} \rangle = - \frac{9 \pi g \Xi \sqrt{1 - e^2} \sin I}{e^2 n_b} \left[\hat{g}_z \sin I \cos \Omega - \hat{g}_y \sin \Omega \right]
+ \cos I \sin 2\omega (\hat{g}_x \cos \Omega + \hat{g}_y \sin \Omega) - \sin 2\omega (\hat{g}_x \cos \Omega + \hat{g}_y \sin \Omega).
\]
(42)

Also in this case, the use of suitably defined non-singular orbital elements cures the formal singularity in equation (42) for \(e \to 0 \).

5. The range and range-rate perturbations \(\Delta r \) and \(\Delta \dot{r} \)

By proceeding as in the previous sections, it is possible to work out the SEP-violating range and range-rate perturbations \(\Delta r \) and \(\Delta \dot{r} \), respectively. More precisely, we used equation (31) in which we replaced \(Z \) with equation (39) for \(\Delta r \), and with \(\frac{dr}{dt} = n_bae \sin \nu \sqrt{1 - e^2} \) for \(\Delta \dot{r} \). Generally speaking, such observable quantities are routinely measured in, e.g., the Earth–Moon LLR experiment\(^9\) and in several spacecraft-based interplanetary missions. The following calculations refer to the vector \(r \) connecting the centers of mass of the two bodies constituting the binary system; thus, they are valid when the distances of the ranging devices (laser retroreflectors, transponders on probes, etc) from the centers of mass of the bodies are negligible with respect to \(r \).

We obtain
\[
\langle \Delta r \rangle = \frac{3 \pi \Xi \sqrt{1 - e^2}}{n_b^2} \left[\hat{g}_x \cos \omega \sin I + \cos I \cos \omega (\hat{g}_z \cos \Omega - \hat{g}_y \sin \Omega) \right]
- \sin \omega (\hat{g}_x \cos \Omega + \hat{g}_y \sin \Omega),
\]
(43)
\[
\langle \Delta \dot{r} \rangle = \frac{3 \pi \Xi [1 + e(2 - e)]}{(1 - e^2)n_b} \left[\cos \omega (\hat{g}_x \cos \Omega + \hat{g}_y \sin \Omega) + \sin \omega (\hat{g}_z \sin I + \cos I (\hat{g}_x \cos \Omega - \hat{g}_y \sin \Omega)) \right].
\]
(44)

No approximations in \(e \) were used in deriving equations (43) and (44).

6. Summary and conclusions

We worked out the first-time derivatives of some orbital effects induced by a Stark-like SEP violation in a binary system made of two self-gravitating bodies immersed in an external polarizing field \(g \), assumed constant and uniform with respect to the characteristic temporal and spatial scales of the binary.

We provided the reader with full analytical expressions for the SEP-violating rates of change of all the six osculating Keplerian orbital elements (section 2), for the projection of the binary’s orbit along the line of sight (section 3) and its time derivative (section 4) and for the range and range-rate (section 5). We did not make any \textit{a priori} assumption about the orientation of \(g \) in space. We did not make simplifying assumptions about the orbital geometry of the binary.

It is important to have at disposal explicit expressions of the different relevant SEP-violating effects since each one has a peculiar temporal pattern which may be helpful in separating it from other possible competing signatures. For example, PSR B1620-26 [34, 35] is a pulsar-white dwarf binary in a relatively wide orbit (\(P_b = 16540653(6) \) s \(\sim 2 \times 10^7 \) d

\(^9\) If the polarizing external field is due to the Sun, our calculation are not strictly applicable to the Earth–Moon system since the temporal variations of \(g \) may not be neglected over the characteristic timescales of such a binary.
orbited by quite distant circumbinary planet-like companion $P_b \sim 3 \times 10^4$ d. For a discussion of the rate of change of the eccentricity in binaries hosting compact objects, see, e.g., [2].

Our results are important also to accurately assess the overall uncertainty which can be obtained when constraints on Δ are inferred by comparing them with the corresponding empirically determined quantities. Indeed, taking into account only the accuracy with which an observable like, say, $d\varepsilon/dt$ can be determined is, in principle, not enough; a propagation of the errors affecting all the parameters such as g [40–42], and its orientation \hat{g}, entering the corresponding theoretical prediction must be done as well to correctly infer the total, systematic uncertainty in Δ.

Our expressions are also useful in designing suitable SEP tests and in better interpreting present and future experiments, not necessarily limited to binary pulsars, especially when different competing theoretical mechanisms yielding SEP violations are considered. Indeed, we found that the ratio of the node and inclination SEP-violating precessions depend only on the inclination itself and on the pericenter.

Acknowledgments

I thank P Freire for useful correspondence and references. I am also grateful to an anonymous referee for her/his helpful comments.

References

[1] Damour T 2012 Theoretical aspects of the equivalence principle Class. Quantum Grav. 29 184001
[2] Freire P C C, Kramer M and Wex N 2012 Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars Class. Quantum Grav. 29 184007
[3] Nordtvedt K 1968 Equivalence principle for massive bodies: I. Phenomenology Phys. Rev. 169 1014–6
[4] Nordtvedt K 1968 Equivalence principle for massive bodies: II. Theory Phys. Rev. 169 1017–25
[5] Nordtvedt K 1968 Testing relativity with laser ranging to the Moon Phys. Rev. 170 1186–7
[6] Turyshhev S and Williams J 2007 Space-based tests of gravity with laser ranging Int. J. Mod. Phys. D 16 2165–79
[7] Hofmann F, Müller J and Biskupek L 2010 Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant Astron. Astrophys. 522 L5
[8] Turyshhev S, Farr W, Folkner W, Girerd A, Hemmati H, Murphy T, Williams J and Degnan J 2010 Advancing tests of relativistic gravity via laser ranging to Phobos Exp. Astron. 28 209–49
[9] Damour T and Schäfer G 1991 New tests of the strong equivalence principle using binary-pulsar data Phys. Rev. Lett. 66 2549–52
[10] Chandrasekhar S 1939 An Introduction to the Study of Stellar Structure (Chicago, IL: University of Chicago Press)
[11] Lang K 1980 Astrophysical Formulae (Berlin: Springer)
[12] Lattimer J and Prakash M 2001 Neutron star structure and the equation of state Astrophys. J. 550 426–42
[13] Williams J G, Turyshhev S G and Boggs D H 2012 Lunar laser ranging tests of the equivalence principle Class. Quantum Grav. 29 184004
[14] Milgrom M 2009 MOND effects in the inner Solar system Mon. Not. R. Astron. Soc. 399 474–86
[15] Blanchet L and Novak J 2011 External field effect of modified Newtonian dynamics in the Solar system Mon. Not. R. Astron. Soc. 412 2530–42
[16] Hui L and Nicolis A 2012 An observational test of the Vainshtein mechanism Phys. Rev. Lett. 109 051304
[17] Iorio L 2012 Constraints on Galileon-induced precessions from solar system orbital motions J. Cosmol. Astropart. Phys. JCAP12(2012)001
[18] Damour T and Donoghue J F 2011 Spatial variation of fundamental couplings and Lunar Laser Ranging Class. Quantum Grav. 28 162001
[19] Iorio L 2011 Orbital effects of spatial variations of fundamental coupling constants Mon. Not. R. Astron. Soc. 417 2392–400

10 For exoplanets, see [37–39].
[20] Iorio L 2011 Observational constraints on spatial anisotropy of \(G \) from orbital motions Class. Quantum Grav. 28 225027

[21] Bailey Q 2010 Lorentz-violating gravitoelectromagnetism Phys. Rev. D 82 065012

[22] Iorio L 2012 Orbital effects of Lorentz-violating Standard Model Extension gravitomagnetism around a static body; a sensitivity analysis Class. Quantum Grav. 29 175007

[23] Damour T and Esposito-Farèse G 1992 Testing local Lorentz invariance of gravity with binary-pulsar data Phys. Rev. D 46 4128–32

[24] Bertotti B, Farinella P and Vokrouhlický D 2003 Physics of the Solar System (Dordrecht: Kluwer)

[25] Calura M, Fortini P and Montanari E 1997 Post-Newtonian Lagrangian planetary equations Phys. Rev. D 56 4782–8

[26] Calura M, Montanari E and Fortini P 1998 Lagrangian planetary equations in Schwarzschild spacetime Class. Quantum Grav. 15 3121–9

[27] Kopeikin S 1995 On possible implications of orbital parallaxes of wide orbit binary pulsars and their measurability Astrophys. J. 439 L3–8

[28] Kopeikin S 1996 Proper motion of binary pulsars as a source of secular variations of orbital parameters Astrophys. J. 467 L93–5

[29] van Straten W, Bailes M, Britton M, Kulkarni S R, Anderson S B, Manchester R N and Sarkissian J 2001 A test of general relativity from the three-dimensional orbital geometry of a binary pulsar Nature 412 158–60

[30] Reid M J and Brunthaler A 2004 The proper motion of Sagiittarius A*. II. The mass of Sagiittarius A* Astrophys. J. 616 872–84

[31] Queloz D, Eggenberger A, Mayor M, Perrier C, Beuzit J, Naef D, Sivan J and Udry S 2000 Detection of a spectroscopic transit by the planet orbiting the star HD209458 Astron. Astrophys. 359 L13–7

[32] Fluri D and Berdyugina S 2010 Orbital parameters of extrasolar planets derived from polarimetry Astron. Astrophys. 512 A59

[33] Broucke R and Cefola P 1972 On the equinoctial orbit elements Celest. Mech. Dyn. Astron. 5 303–10

[34] Sigurdsson S, Richer H, Hansen B, Stairs I and Thorsett S 2003 A young white dwarf companion to pulsar B1620-26: evidence for early planet formation Science 301 193–6

[35] Richer H B, Itaa R, Fahlan G G and Huber M 2003 The pulsar/white dwarf/planet system in messier 4: improved astrometry Astrophys. J. 597 L45–7

[36] Arzoumanian Z, Joshi K, Rasio F A and Thorsett S E 1996 Orbital parameters of the PSR B1620-26 triple system IAU Colloq 160: Pulsars: Problems and Progress (Astronomical Society of the Pacific Conference Series vol 105) ed S Johnston, M A Walker and M Bailes (San Francisco, CA: Astronomical Society of the Pacific) pp 525–530

[37] Wright J T et al 2011 The exoplanet orbit database Publ. Astron. Soc. Pac. 123 412–22

[38] Schneider J, Dedieu C, Le Sidaner P, Savalle R and Zolotukhin I 2011 Defining and cataloging exoplanets: the exoplanet.eu database Astron. Astrophys. 532 A79

[39] Perryman M 2011 The Exoplanet Handbook (Cambridge: Cambridge University Press)

[40] Kuijken K and Gilmore G 1989 The mass distribution in the galactic disc-part III-the local volume mass density Mon. Not. R. Astron. Soc. 239 651–64

[41] Paczyński B 1990 A test of the galactic origin of gamma-ray bursts Astrophys. J. 348 485–94

[42] Xue X X et al 2008 The milky way’s circular velocity curve to 60 kpc and an estimate of the dark matter halo mass from the kinematics of 2400 SDSS blue horizontal-branch stars Astrophys. J. 684 1143–58

[43] Wright J T et al 2011 The exoplanet orbit database Publ. Astron. Soc. Pac. 123 412–22

[44] Schneider J, Dedieu C, Le Sidaner P, Savalle R and Zolotukhin I 2011 Defining and cataloging exoplanets: the exoplanet.eu database Astron. Astrophys. 532 A79

[45] Perryman M 2011 The Exoplanet Handbook (Cambridge: Cambridge University Press)

[46] Kuijken K and Gilmore G 1989 The mass distribution in the galactic disc-part III-the local volume mass density Mon. Not. R. Astron. Soc. 239 651–64

[47] Paczyński B 1990 A test of the galactic origin of gamma-ray bursts Astrophys. J. 348 485–94

[48] Xue X X et al 2008 The milky way’s circular velocity curve to 60 kpc and an estimate of the dark matter halo mass from the kinematics of 2400 SDSS blue horizontal-branch stars Astrophys. J. 684 1143–58