SHORT COMMUNICATION

Allogeneic Haematopoietic Cell Transplantation for Epidermolysis Bullosa: the Dutch Experience

Katarzyna B. GOSTYŃSKA1, Vamsi K. YENAMANDRA1,2, Caroline LINDEMANS2,3, José DUIPMANS1, Antoni GOSTYŃSKI1, Marcel F. JONKMAN1 and Jaap-Jan BOELENS2,4,5

1Center for Blistering Diseases, Departments of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, 2Department of Immunology/Stem Cell Transplantation, University of Utrecht, University Medical Center Utrecht, Wilhelmina Children’s Hospital, 3Princess Maxima Center and University Medical Center Utrecht, Blood and Marrow Transplantation Program, Utrecht, The Netherlands, and 4Department of Stem Cell Transplant and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. E-mail: boelensj@mskcc.org

*These authors contributed equally to this study.

Accepted Nov 28, 2018; E-published Nov 28, 2018

Efforts to find a cure for the devastating inherited blistering disease, epidermolysis bullosa (EB), have received much attention in recent years. The extremely poor long-term prognosis of EB has motivated many patients and clinicians to pursue high-risk experimental therapies (1–6). One such therapeutic strategy is allogeneic haematopoietic cell transplantation (HCT) in recessive dystrophic epidermolysis bullosa, generalized severe, (RDEB-gen-sev) patients (1), who completely or partially lack type VII collagen (Col7) at the dermo-epidermal junction (DEJ).

Based on encouraging results in mice (7, 8) and humans (1), we designed a study in the Netherlands. We aimed to treat 11 RDEB-gen-sev patients using a previously described HCT protocol (9, 10) (Fig. S1).

Between May 2014 and October 2017, 2 RDEB-gen-sev patients were enrolled and treated following the study protocol. Unfortunately, both patients died due to transplantation-related complications after 50 and 283 days after cord blood transplantation (CBT), respectively. We wish to report detailed results of this trial which has now been prematurely closed.

CASE REPORTS

The first patient (#1; EB109-01) was a 13-year-old girl with an extensive RDEB-gen-sev phenotype due to homozygous mutation in intron 20 of COL7A1 gene (NM_000094.3); c.[2710+1G>A];[2710+1G>A] with no Col7 expression in immunofluorescence antigen mapping (IFM; monoclonal antibody -c.[2710+1G>A];[2710+1G>A] with no Col7 expression in immunofluorescence antigen mapping (IFM; monoclonal antibody -c.[2710+1G>A];[2710+1G>A] with no Col7 expression in immunofluorescence antigen mapping (IFM; monoclonal antibody -c.[2710+1G>A];[2710+1G>A] with no Col7 expression in immunofluorescence antigen mapping (IFM; monoclonal antibody -c.[2710+1G>A];[2710+1G>A] with no Col7 expression in immunofluorescence antigen mapping (IFM; monoclonal antibody -c.[2710+1G>A];[2710+1G>A] with no Col7 expression in immunofluorescence antigen mapping (IFM; monoclonal antibody -c.[2710+1G>A];[2710+1G>A] with no Col7 expression in immunofluorescence antigen mapping (IFM; monoclonal antibody

The first HCT trial in 2010, described treatment of 6 RDEB-gen-sev patients, with transplantation-related mortality in one patient and clinical improvement in the remaining 5 patients, including presence of donor cells in the injured skin and increased Col7 deposition at the DEJ.

DISCUSSION

The first HCT trial in 2010, described treatment of 6 RDEB-gen-sev patients, with transplantation-related mortality in one patient and clinical improvement in the remaining 5 patients, including presence of donor cells in the injured skin and increased Col7 deposition at the DEJ.

This is an open access article under the CC BY-NC license. www.medicaljournals.se/acta

Journal Compilation © 2019 Acta Dermato-Venereologica.

https://www.medicaljournals.se/acta/content/abstract/10.2340/00015555-3097

doi: 10.2340/00015555-3097

Acta Derm Venereol 2019; 99: 347–348
(1). Later, in another HCT trial, 2 RDEB-gen-sev patients survived the treatment, showed dermal chimerism and exhibited some short-lived clinical benefit; however, no Col7 was re-instituted after HCT (12). A report from an international EB meeting in 2017 stated that no individual has been cured after HCT, but mortality rates have improved and several patients showed a marked reduction in blister formation with major improvement in quality of life (13).

Although, we also observed some temporary beneficial effects from the treatment in both of our patients, their dramatic course of treatment did bring to light many issues. Firstly, could the clinical improvement observed after HCT, with or without Col7 expression or anchoring fibril formation (1, 12), be attributed to the wound-healing properties of immunosuppressive medications, particularly corticosteroids (14), used during HCT treatment protocols?

Secondly, it is important to understand whether haematopoietic stem cells (HSC) that migrated to the skin are capable of producing Col7 at the DEJ. It is well known that Col7 at the DEJ is contributed by both keratinocytes and fibroblasts. The differentiation capabilities of these migrated HSCs are not yet clearly understood, with some studies suggesting that HSCs might not be capable of trans-differentiation into keratinocytes, while others suggest that the HSCs might convert into dermal fibroblasts, particularly at wound sites where remodelling is occurring, contributing to the reported increase in Col7 expression (1, 4, 5, 7, 15, 16).

Finally, the most important question that arises is what qualifies for success attributable to HCT in EB? Although, clinical improvement has been reported, it is difficult to speculate if such an effect is temporary, as the long-term benefit of haematological engraftment remains to be shown. If HCT promises mostly symptomatic alleviation with no or limited biological correction of disease, i.e. reconstitution of Col7 and/or anchoring fibrils, other safer therapeutic options should be considered. Taken together, our study team, in accordance with the safety monitoring board recommendation, suspended and subsequently closed the trial. HCT for severe forms of dystrophic EB remains a high-risk therapeutic option of undetermined clinical benefit.

ACKNOWLEDGMENTS

We thank the brave families of both of our patients for their trust and cooperation in this study. We thank Miranda Nijenhuis, Janny Zuiderveen, Connie Meijer, Gilles Diencks and Hendri Pas for their assistance in the dermatology laboratory of UMC Groningen. We also acknowledge the wonderful nursing staff of the Giraffe Unit in the Wilhelmina Children’s hospital, UMC Utrecht for their outstanding work. We thank Professors John McGrath (King’s College London, UK), Jakub Tolar (Masonic Children’s Hospital, University of Minnesota, USA), Christine Bodemer (Necker Hospital, Paris, France) and Dr Anna Martinez (Great Ormond Street Hospital, London, UK) for their role in the international expert advisory panel.

REFERENCES

1. Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordinsky M, Keene DR, Woodley DT, et al. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med 2010; 363: 629–639.
2. Hirsch T, Rothoefl T, Teig N, Bauer JW, Pellegrini G, De Rosa L, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 2017; 551: 327–332.
3. Hammersen J, Has C, Naumann-Bartesch N, Stachel D, Kiritsi D, Söder S, et al. Genotype, clinical course, and therapeutic decision-making in 76 infants with severe generalized junctional epidermolysis bullosa. J Invest Dermatol 2016; 136: 2150–2157.
4. Petrof G, Martinez-Queipo M, Mellerio JE, Kemp P and McGrath JA. Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial. Br J Dermatol 2013; 169: 1025–1033.
5. Petrof G, Lwin SM, Martinez-Queipo M, Abdul-Wahab A, Tso S, Mellerio JE, et al. Potential of systemic allogeneic mesenchymal stromal cell therapy for children with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2015; 135: 2319–2321.
6. Bremer J, Bornert O, Nyström A, Gostynski A, Jonkman MF, Aartsma-Rus A, et al. Antisense oligonucleotide-mediated exon skipping as a systemic therapeutic approach for recessive dystrophic epidermolysis bullosa. Mol Ther Nucleic Acids 2016; 5: e379.
7. Tolar J, Ishida-Yamamoto A, Riddle M, McMellum RT, Osborn M, Xia L, et al. Amelioration of Epidermolysis bullosa by transfer of wild-type bone marrow cells. Blood 2009; 113: 1167–1174.
8. Tamai K, Yamazaki T, Chino I, Ishii M, Otsuru S, Kikuchi Y, et al. PDGFRα-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc Natl Acad Sci U S A 2011; 108: 6609–6614.
9. Admiraal R, van Kesteren C, Jol-van der Zijde CM, van Tol MJ, Bartelink IH, Bredius RG, et al. Population pharmacokinetic modeling of Thymoglobulin(®) in children receiving allogeneic-hematopoietic cell transplantation: towards improved survival through individualized dosing. Clin Pharmacokinet 2015; 54: 435–446.
10. Admiraal R, Nierkens S, de Witte MA, Petersen EJ, Fleurke GJ, Verrest L, et al. Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haematopoietic cell transplantation: a multicentre, retrospective, pharmacodynamic cohort analysis. Lancet Haematol 2017; 4: e183–e191.
11. (https://www.youtube.com/results?search_query=min+sk in+r+ub+test+Jonkman ).
12. Geyer MB, Radhakrishnan K, Giller R, Umegaki N, Harel S, Kiuru M, et al. Reduced toxicity conditioning and allogenic hematopoietic progenitor cell transplantation for recessive dystrophic epidermolysis bullosa. J Pediatr 2015; 167: 765–769.
13. Utto J, Bruckner-Tuderman L, McGrath JA, Riedl R and Robinson C. EB2017-progression in epidermolysis bullosa research toward treatment and cure. J Invest Dermatol 2018; 138: 1010–1016.
14. Mabuchi E, Umegaki N, Murota H, Nakamura T, Tamai K and Katayama I. Oral steroid improves bullous pemphigoid-like clinical manifestations in non-Herlitz junctional epidermolysis bullosa with COL17A1 mutation. Br J Dermatol 2007; 157: 596–598.
15. Hunefeld C, Mezger M, Muller-Hermelink K, Schaller M, Muller I, Amagai M, et al. Bone marrow-derived stem cells migrate into intraepidermal skin defects of a desmoglein-3 knockout mouse model but preserve their mesodermal differentiation. J Invest Dermatol 2018; 138: 1157–1165.
16. Fujita Y, Abe R, Inokuma D, Sasaki M, Hoshina D, Natsuga K, et al. Bone marrow epidermal basement membrane protein expression and rescues epidermolysis bullosa model mice. Proc Natl Acad Sci U S A 2010; 107: 14345–14350.