Nitrative and oxidative DNA damage in intrahepatic cholangiocarcinoma patients in relation to tumor invasion

Somchai Pinlaor, Banchob Sripa, Ning Ma, Yusuke Hiraku, Puangrat Yongvanit, Sopit Wongkhram, Chawalit Pairojkul, Vajarabhongs Bhudhisawasdi, Shinji Oikawa, Mariko Murata, Reiji Semba, Shosuke Kawanishi

HIF-1α co-localized in cancerous tissues. Notably, the formation of 8-oxodG was correlated significantly with lymphatic invasion ($r = 0.386$ and $P = 0.018$). Moreover, 8-nitroguanine and 8-oxodG in non-cancerous tissues were associated significantly with neural invasion ($P = 0.042$ and $P = 0.026$, respectively). These results suggest that reciprocal activation between HIF-1α and iNOS mediates persistent DNA damage, which induces tumor invasiveness via mutations, resulting in poor prognosis.

CONCLUSION: The formation of 8-nitroguanine and 8-oxodG plays an important role in multiple steps of genetic changes leading to tumor progression, including invasiveness.

© 2005 The WJGP Press and Elsevier Inc. All rights reserved.

Key words: 8-Nitroguanine; 8-Oxo-7,8-dihydro-2′-deoxyguanosine; Hypoxia-inducible factor-1α; Cholangiocarcinoma; Tumor invasion

INTRODUCTION

Intra-hepatic cholangiocarcinoma (ICC), an adenocarcinoma originating from intra-hepatic bile duct epithelium, presents in most cases with an extremely poor prognosis. The highest proportional incidence of ICC is observed in the north-east region of Thailand, in which Opisthorchis viverrini (OV) infection is endemic. Thus, molecular markers serving as predictive factors are needed to provide effective therapy as well as to understand the underlying mechanisms of ICC carcinogenesis.

Infections are well accounted for association with several types of cancer including ICC through chronic inflammation. Production of a large amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as nitric oxide (NO), is associated with an increased risk of human cancer. 8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a marker of DNA damage by ROS, is a mutagenic lesion frequently found in tumor relevant genes in a variety of cancers. NO generation by inducible nitric oxide synthase (iNOS) is triggered...
during infection and inflammation\cite{12}. Overproduction of NO leads to the generation of various ROS, causing nitrative DNA damage such as 8-nitroguanosine formation\cite{13}. 8-nitroguanine undergoes spontaneous depurination, which leads to apurinic sites in DNA\cite{13}. The resulting apurinic sites in DNA can also lead to G→T transversions\cite{14}. Recently, we have reported 8-nitroguanine formation in the liver of hamsters re-infected with OV\cite{15-17}. We have also demonstrated the accumulation of 8-nitroguanine in human gastric epithelium induced by Helicobacter pylori infection, which is associated with gastric cancer\cite{18}. Thus, we have proposed that 8-nitroguanine and 8-oxodG can be biomarkers of initiation and/or promotion in cases of carcinogenesis mediated by inflammation. However, the role of 8-nitroguanine and 8-oxodG in tumor progression in ICC has not been elucidated.

Tumor growth induces hypoxia, which is associated with poor prognosis\cite{19}. Tumor cells adapt to hypoxia by increasing the synthesis of hypoxia-inducible factor-1α (HIF-1α), which mediates transcription of various genes, including vascular endothelial growth factor, glucose transporter 1, and iNOS\cite{20}, in solid tumors. It remains to be clarified whether HIF-1α is associated with DNA base lesions and tumor invasion, resulting in poor prognosis with ICC patients.

To evaluate prognostic factors in ICC carcinogenesis, we investigated the formation of 8-nitroguanine and 8-oxodG, and the expression of iNOS and HIF-1α in the liver of ICC patients by immunohistochemistry. We raised a highly specific antibody against 8-nitroguanine without cross reaction by immunizing with an 8-nitroguanine-aldehyde-rabbit serum albumin conjugate. We investigated the association of DNA damage in the liver tissue with neural and lymphatic invasion in ICC patients.

MATERIALS AND METHODS

Subjects

This study was approved by the Ethics Group of the Human Research Committee, Khon Kaen University, Thailand. Patients undergoing surgical resection of hepatogastrointestinal cancer in 1998 and 1999 at the Department of Surgery, Faculty of Medicine, Khon Kaen University, Thailand, were asked to volunteer for this study. Informed consent was obtained from each subject. Gross appearance of 37 surgical specimens was classified as periductal-infiltrating (11 patients) or mass-forming (26 patients) types. In addition, nine healthy individuals of accidental cause of death were used as controls.

Specimen collection and storage

ICC cases were clarified by physicians using clinical finding and laboratory investigation such as tumor markers, including α-fetoprotein, carcinoembryonic antigen and carbohydrate antigen 19-9, X-ray and histological examination. Liver tissues in both cancerous and adjacent non-cancerous region were obtained from the same patients in all cases. Sections were immediately frozen in liquid nitrogen and stored at -80°C until analysis. The International Union against Cancer TNM classification and staging system were used for tumor assessment. Liver function test and complete blood count were performed by the hospital laboratory using standard protocols.

Reagents

Highly sensitive and specific anti-8-nitroguanine rabbit polyclonal antibody was raised as described previously\cite{20}. Mouse monoclonal anti-8-oxodG antibody was purchased from Japan Institute for the Control of Aging (Fukuroi, Japan). Rabbit polyclonal anti-iNOS antibody and mouse monoclonal anti-HIF-1α antibody were purchased from Calbiochem-Novabiochem Corporation (Darmstadt, Germany). Alexa 594-labeled antibody against rabbit IgG and Alexa 488-labeled antibody against mouse IgG were obtained from Molecular Probes Inc. (Eugene, OR, USA).

Immunohistological staining

Immunohistochemical staining was performed by using immunoperoxidase methods. Sections (thickness, 6 µm) were deparaffinized in xylene and rehydrated in descending gradations of ethanol. To enhance the immunostaining, sections were placed in citrate buffer (pH 6) and microwaved intermittently for up to 10 min for antigen unmasking. Endogenous peroxidase was quenched by immersion in 30 mL/L hydrogen peroxide (H2O2) for 30 min, and then blocked with 10 mg/L skimmed milk for 30 min. These sections were treated with the primary antibodies (2 µg/mL for 8-nitroguanine and 5 µg/mL for 8-oxodG) overnight at room temperature. The slides were then washed, and incubated for 3 h with goat anti-rabbit IgG antibody, followed by the treatment with peroxidase–anti-peroxidase complex (1:200) for 1 h for detection of 8-nitroguanine. To detect 8-oxodG, the slides were treated with HRP-conjugated goat anti-mouse IgG antibody (1:200). The immunostaining were developed by using 3,3-diaminobenzidine tetrahydrochloride as a chromogen for 15 min.

The expression of iNOS and HIF-1α was assessed by using double immunofluorescence technique as described previously\cite{21}. Briefly, the sections were treated with anti-iNOS antibody (1:300) and anti-HIF-1α antibody (1:500) and then treated with Alexa 594-labeled antibody against rabbit IgG and Alexa 488-labeled antibody against mouse IgG (1:400 each). The results were analyzed by using a laser scanning microscope.

The following scores were assigned to each specimen according to the degree of staining: 0, negative; +, less than 25% (minimal); ++, 25-50% (moderate); and ++++, more than 50% (strong) in the cells of tissue sections.

Histopathological study

Histopathological study was performed by hematoxylin and eosin staining in paraffin sections as described previously\cite{22}. Neural invasion and lymphatic invasion were assessed by standard method\cite{22}.

Examination of specific IgG antibody against OV antigen and OV eggs

OV-specific IgG antibody was determined by ELISA technique\cite{22}. Crude somatic antigen of OV was prepared from hamsters infected with 100 metacerariae after 4 mo as described previously\cite{23}. The OV egg count was determined from 1 g of feces using the formalin-ethyl acetate concentration technique\cite{22}.
Statistical analysis
Significant differences were analyzed by the χ^2-test. Spearman’s rank correlation coefficient served to analyze correlations for qualitative data, while Pearson’s correlation coefficient was used for quantitative data. P values less than 0.05 were considered to be statistically significant.

RESULTS

Clinical data of ICC patients

ICC samples, comprising 37 matched cancerous and adjacent noncancerous tissues and 9 healthy subjects who died from accidental cases, were collected at the time of surgery. ICC patients included 26 men and 11 women with the mean age 53±11 years. These subjects were verified by histopathological study and comprised of well (15 patients, including 2 patients of papillary), moderately (11 patients) and poorly (11 patients) differentiated adenocarcinoma. The gross appearance was periductal infiltrating (11 patients) and mass forming (26 patients). Tumor size was 3-6 cm (22 patients), 7-10 cm (4 patients) and >10 cm (4 patients). The average of hemoglobin and hematocrit of all patients was 11.7±2.3% and 34.7±6.5%, respectively. Most of the patients (22 out of 37, 59.5%) had total bilirubin less than 1 mg% without jaundice, and other patients had total bilirubin of 1-10 mg% (5 patients) and >14 mg% (10 patients). Sixty percent was positive for OV antibody and 30% was positive for OV egg, without adult worm in the liver. All patients had no history of infection with hepatitis virus and exposure to aflatoxin.

Formation of 8-oxodG and 8-nitroguanine

Immunohistochemical staining demonstrated that 8-oxodG and 8-nitroguanine formation was observed in inflammatory cells within the liver to a greater extent in cancer patients than in healthy subjects. 8-oxodG and 8-nitroguanine were formed to a much greater extent in cancerous tissues than in the adjacent non-cancerous tissues ($P<0.05$). HIF-1α could be detected in all cancerous tissues. HIF-1α expression was correlated with iNOS expression ($r = 0.369$ and $P = 0.025$) and 8-oxodG formation ($r = 0.398$ and $P = 0.015$) in cancerous tissues. Furthermore, iNOS expression was significantly correlated with the formation of 8-oxodG ($r = 0.584$ and $P = 0.0015$) and 8-nitroguanine ($r = 0.328$ and $P = 0.047$). 8-oxodG formation in cancerous tissues was also significantly correlated with increased lymphatic invasion ($r = 0.386$, $P = 0.018$). The formation of 8-nitroguanine and 8-oxodG in non-cancerous tissues was significantly associated with neural invasion ($P = 0.042$ and $P = 0.026$, respectively). Neural invasion was associated with poor survival by generalized Wilcoxon test ($P = 0.021$) using the Kaplan-Meier method (Figure 3). In addition, in cancerous tissues, formation of 8-oxodG and 8-nitroguanine was positively correlated with serum ALT, AST and alkaline phosphatase (ALP) ($r = 0.76$, 0.58, and 0.96 for 8-oxodG and $r = 0.63$, 0.58, and 0.86 for 8-nitroguanine, respectively). Moreover, iNOS expression was also associated with ALT, AST, ALP ($r = 0.71$, 0.97 and 0.82, respectively).

Expression of HIF-1α and iNOS

Double immunofluorescence staining revealed that HIF-1α and iNOS expression could be detected in all cancerous tissues and was found to a greater extent than in non-cancerous tissues. Expression of HIF-1α and iNOS was found in the tumor tissues especially bile duct epithelial cells (Figure 2). Slight immunoreactivity of iNOS was observed in inflammatory cells, especially Kupffer cells, in healthy subjects.

The correlation of 8-oxodG and 8-nitroguanine formation and iNOS expression with tumor invasion

Table 1 exhibits the relationship of DNA damage with lymphatic and neural invasion in ICC patients. Immunoreactivity for 8-oxodG and 8-nitroguanine was stronger in cancerous tissues than in the adjacent non-cancerous tissues ($P<0.05$). 8-oxodG formation was related with serum ALT, AST, and absorption test highly sensitive and specific by a dot immunobinding assay.

DISCUSSION

Our results showed that both 8-nitroguanine and 8-oxodG were formed in cancerous tissues to a much greater extent than the adjacent non-cancerous tissues. Moreover, the formation of these DNA lesions was correlated with neural and lymphatic invasion. 8-oxodG was formed in tumor cells and inflammatory cells, whereas 8-nitroguanine was observed mainly in inflammatory cells and weakly in tumor cells. These results are consistent with a model in which tumor cells encourage inflammatory cell infiltration in cancerous areas; inflammatory cells then induce 8-nitroguanine and 8-oxodG formation via NO and superoxide anion radical production.

The present study revealed that 8-nitroguanine and 8-oxodG formation was related with serum ALT, AST,
ALP activity. This result is supported by the report showing that the number of 8-oxodG-positive hepatocytes was correlated with ALT and AST in liver diseases [24]. These findings can be explained by assuming that increase in NO and ROS not only causes DNA damage, but also induces epithelial bile duct and hepatocyte injury, resulting in an increase in hepatobiliary enzyme activities.

Our results showed that HIF-1α was associated with iNOS expression and 8-oxodG formation in cancerous tissues. This result is confirmed by immunohistochemistry showing that iNOS and HIF-1α co-localized in cancerous tissues. HIF-1α could be detected in all cancerous tissues, suggesting low oxygen consumption in tumor tissues. Tumor cells adapt to hypoxia by increasing the synthesis of HIF-1α, which mediates transcription of various genes, including iNOS [19]. iNOS expression was correlated with both 8-nitroguanine and 8-oxodG formation. Therefore, we hypothesize that tumor hypoxia induces HIF-1α expression, and then HIF-1α mediates iNOS expression, resulting in nitrative and oxidative DNA damage. On the other hand, an increase in NO production through iNOS expression not only causes DNA damage [25] but also induces the accumulation and activation of HIF-1α [26,27]. Therefore, these findings lead to an idea that reciprocal activation between HIF-1α and iNOS mediates persistent DNA damage. Hypoxia in tumor cells increases the generation of mitochondrial H\textsubscript{2}O\textsubscript{2} at complex III [28], which may lead to 8-oxodG formation. Interestingly, we found that 8-oxodG formation in cancerous

![Figure 2](image_url) Localization of iNOS and HIF-1α in cancerous liver tissues in an ICC patient with poorly-differentiated adenocarcinoma. The expression of iNOS and HIF-1α was assessed by using double immunofluorescence technique. Paraffin sections were treated with anti-iNOS and anti-HIF-1α antibodies. The original magnification is 400×.

Table I: Relationship of DNA damage with lymphatic and neural invasion in ICC patients

Immuno-histological grading	8-oxodG	8-Nitroguanine	HIF-1α	Number (%) of patients with lymphatic invasion (8-oxodG)	Number (%) of patients with lymphatic invasion (8-nitroguanine)	Number (%) of patients with neural invasion (8-oxodG)	Number (%) of patients with neural invasion (8-nitroguanine)
Cancerous							
Non-cancer							
Cancerous							
Non-cancer							
Healthy (9)							
Non-cancer							

P-values: 0.004, 0.007, 0.018, 0.05, 0.06, 0.008, 0.004, 0.006

Non-cancer = noncancerous tissues. 0 = no positive cell, + = positive in few areas or cells, ++ = moderately positive and +++ = predominately positive. ICC samples, comprising 37 matched cancerous and adjacent noncancerous tissues and 9 healthy subjects who died from accidental cases were collected at the time of surgery. ICC patients included 26 men and 11 women with the mean age 53±11 years. These subjects were verified by histopathological study and comprised well- (15 patients, including 2 patients of papillary), moderately- (11 patients) and poorly (11 patients) differentiated adenocarcinoma. The International Union Against Cancer TNM classification and staging system were used for tumor assessment.
instability and mutations, leading to tumor progression. Therefore, our results and these findings indicate that inflammation at the initiation and/or promotion step of carcinogenesis is a critical component of tumor progression. Recent data have expanded the concept that inflammation is not only a consequence of cancer development but also a causative factor in its progression, raising the idea that NO-mediated DNA damage plays a significant role in this process. DNA damage, in turn, can contribute to tumor progression by enhancing invasive, angiogenic, and migratory capacities of tumor cells, thereby promoting tumor growth and metastasis.

Inflammation is a critical component of tumor progression and has been shown to participate in tumor invasion, functioning in combination with DNA damage. The combination of previous data with the results of our study strongly supports our hypothesis. In conclusion, the formation of 8-nitroguanine and 8-oxodG is mediated by reactive oxygen species generated endogenously in the process of tumor hypoxia. These DNA lesions could contribute to multiple steps of carcinogenesis, leading to tumor progression, including invasiveness.

ACKNOWLEDGMENTS

The author also thanks all members of the Liver Fluke and Cholangiocarcinoma Research Centers’ staff at the Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, for their kind help in the collection of samples.

REFERENCES

1. Gores GJ. Cholangiocarcinoma: current concepts and insights. Hepatology 2003; 37: 961-969
2. IARC Working Group. Infection with liver flukes (Opisthorchis viverrini, Opisthorchis felineus and Clonorchis sinensis) in: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans vol. 61. Lyon IARC Press 1994: 121-175
3. Sripa B. Pathobiology of opisthorchiasis: an update. Acta Trop 2003; 88: 209-220
4. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 410: 860-867
5. Hussain SP, Holseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer 2003; 3: 276-285
6. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 1996; 313 (Pt 1): 17-29
7. Hofseth LJ, Hussain SP, Wogan GN, Harris CC. Nitric oxide in cancer and chemoprevention. Free Rad Biol Med 2003; 34: 955-968
8. Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys 2004; 423: 12-22
9. Kasa H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A, Tannoaka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 1986; 7: 1849-1851
10. Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidized-damaged base 8-oxoG. Nature 1991; 349: 431-434
11. Bruner SD, Norman DP, Verdine GL. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000; 403: 859-866
12. Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 2003; 417: 3-11
13. Yermilov V, Rubio J, Ohshima H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett 1995; 376: 207-210
14. Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci USA 2003; 100: 776-781
15. Pinlaor S, Yongvanit P, Hiraku Y, Ma N, Semba R, Okawa S, Murata M, Sripa B, Sithihaworn P, Kawanishi S. 8-Nitroguanine formation in the liver of hamsters infected with Opisthorchis viverrini. Biochem Biophys Res Commun 2003; 309: 567-571
16. Pinlaor S, Ma N, Hiraku Y, Yongvanit P, Semba R, Okawa S, Murata M, Sripa B, Sithihaworn P, Kawanishi S. Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7, 8-dihydro-2′-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase. Carcinogenesis 2004; 25: 1535-1542
17. Pinlaor S, Hiraku Y, Ma N, Yongvanit P, Semba R, Okawa S, Murata M, Sripa B, Sithihaworn P, Kawanishi S. Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with Opisthorchis viverrini: A model of inflammation-mediated carcinogenesis. Nitric Oxide 2004; 11: 175-183
18. Ma N, Adachi Y, Hiraku Y, Horiki N, Horiki S, Imoto I, Pinlaor S, Murata M, Semba R, Kawanishi S. Accumulation...
of 8-nitroguanine in human gastric epithelium induced by Helicobacter pylori infection. Biochem Biophys Res Commun 2004; 319: 506-510

19 Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2: 38-47

20 Sripta B, Kaewkes S. Localisation of parasite antigens and inflammatory responses in experimental opisthorchiasis. Int J Parasitol 2000; 30: 735-740

21 Nakanuma Y, Hanada K, Ishikawa A, Zen Y, Sasaki M. Anatomic and molecular pathology of intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Surg 2003; 10: 265-281

22 Elkins DB, Sithithaworn P, Haswell-Elkins M, Kaewkes S, Awacharagan P, Wongratanacheewin S. Opisthorchis viverrini: relationships between egg counts, worms recovered and antibody levels within an endemic community in northeast Thailand. Parasitology 1991; 102(Pt 2): 283-288

23 Chazotte-Aubert L, Oikawa S, Gilibert I, Bianchini F, Kawanishi S, Ohshima H. Cytotoxicity and site-specific DNA damage induced by nitrosyl anion (NO) in the presence of hydrogen peroxide. Implications for various pathophysiological conditions. J Biol Chem 1999; 274: 20909-20915

24 Ichiba M, Maeta Y, Mukoyama T, Saeki T, Yasui S, Kanbe T, Okano J, Tanabe Y, Hirooka Y, Yamada S, Kurimasa A, Murawaki Y, Shiota G. Expression of 8-hydroxy-2'-deoxyguanosine in chronic liver disease and hepatocellular carcinoma. J Hepatobiliary Pancreat Surg 2003; 10: 265-281

25 Mateo J, Garcia-Lecea M, Cadenas S, Hernandez C, Moncada S. Regulation of hypoxia-inducible factor-1α by nitric oxide through mitochondria-dependent and -independent pathways. Biochem J 2003; 376: 537-544

27 Thomas DD, Espey MG, Ridoune LA, Hofseth LJ, Mancardi D, Harris CC, Wink DA. Hypoxic inducible factor 1α, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci USA 2004; 101: 8894-8899

28 Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275: 25130-25138

29 Olinski R, Gackowski D, Rozalski R, Foksinski M, Białkowski K. Oxidative DNA damage in cancer patients: a cause or a consequence of the disease development? Mutat Res 2003; 531: 177-190

30 Ekmekcioğlu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC, Grimm EA. Inducible nitric oxide synthase and nitrotirosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res 2000; 6: 4768-4775

31 Aaltoma SH, Lipponen PK, Kosma VM. Inducible nitric oxide synthase (iNOS) expression and its prognostic value in prostate cancer. Anticancer Res 2001; 21: 3101-3106

32 Jadeski LC, Chakraborty C, Lala PK. Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer 2003; 106: 496-504

33 Lala PK, Orucovec A. Role of nitric oxide in tumor progression: lessons from experimental tumors. Cancer Metastasis Rev 1998; 17: 91-106

34 Siegert A, Rosenberg C, Schmitt WD, Denkert C, Hauptmann S. Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. Br J Cancer 2002; 86: 1310-1315

35 Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 2000; 35: 71-103

36 Koukourakis MI, Giatromanolaki A, Brekken RA, Sivridis E, Gatter KC, Harris AL, Sage EH. Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/ acidity and with poor prognosis of patients. Cancer Res 2003; 63: 5376-5380

37 Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2001; 2: 149-156