Chapter 6

Phage Display: A Powerful Technology for the Generation of High-Specificity Affinity Reagents from Alternative Immune Sources

William J.J. Finlay, Laird Bloom, Joanne Grant, Edward Franklin, Deirdre Ní Shuílleabháin, and Orla Cunningham

Abstract

Antibodies are critical reagents in many fundamental biochemical methods such as affinity chromatography, enzyme-linked immunosorbent assays (ELISA), flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry techniques. As our understanding of the proteome becomes more complex, demand is rising for rapidly generated antibodies of higher specificity than ever before. It is therefore surprising that few investigators have moved beyond the classical methods of antibody production in their search for new reagents. Despite their long-standing efficacy, recombinant antibody generation technologies such as phage display are still largely the tools of biotechnology companies or research groups with a direct interest in protein engineering. In this chapter, we discuss the inherent limitations of classical polyclonal and monoclonal antibody generation and highlight an attractive alternative: generating high-specificity, high-affinity recombinant antibodies from alternative immune sources such as chickens, via phage display.

Key words Chicken, scFv, Phage display, Chromatography

1 Introduction

The rapid expansion of the genomics, proteomics, and biotechnology fields has led to a growing demand for affinity reagents that can specifically recognize proteins, peptides, carbohydrates, and haptens. Affinity reagents of high specificity are routinely required for diverse protein drug targets, members of newly discovered biochemical pathways, posttranslationally modified proteins, protein cleavage products, and even small molecules such as drugs of abuse and toxins. Individual biomedical researchers will often need to monitor, quantify, and purify proteins of interest via affinity chromatography, but there may not be any commercially available antibody reagents to allow them to do so [1]. Indeed, even in situations where there are commercially available antibodies, these reagents
are often expensive, poorly characterized, and/or simply not appropriate for demanding applications. Compounding this problem, the technical difficulty of monoclonal antibody generation by the untrained researcher and the high cost (~$15,000) of a commercial monoclonal antibody generation program leads many researchers to the default solution of producing polyclonal hyper-immune sera in hosts such as rabbits. The net result of this is that researchers often settle for reagents that lack the necessary specificity to perform the applications for which they were intended.

In this review, we will outline the limitations of classical antibody generation technologies and illustrate an attractive alternative: the use of phage display libraries of recombinant antibodies built on immunoglobulin repertoires from nonmammalian animals. In particular, we will highlight the advantages of libraries derived from the domestic chicken *Gallus gallus*, which offers a relatively inexpensive and technically accessible route to high-quality monoclonal reagents [2]. If, like many people, you have purchased (or paid to generate) a costly and “specific” antibody, but subsequently found that it is actually polyreactive and of dubious quality, phage display from immunized chickens may offer an attractive alternative.

Hyper-immune sera from rabbits, sheep, or other mammals may be produced in large quantities, but they do not offer the consistency of monoclonal antibodies and need to be regularly replenished and recharacterized. Serum antibodies are also polyclonal and frequently polyspecific, even when purified over an antigen column, rendering them suboptimal for the specific recognition of a single component in a complex matrix. One illuminating study has demonstrated that when used to probe a comprehensive yeast proteome chip, unpurified polyclonal antibody preparations could recognize up to 1770 different proteins, with some monoclonal antibodies and antigen column-purified polyclonal antibodies also recognizing multiple proteins (related and unrelated) [3].

The arrival of monoclonal antibody technology [4] was a major step forward in generating high-specificity reagents, but the reliance on the murine immunoglobulin system frequently leads to a number of practical difficulties: (1) Monoclonal antibodies are raised on the basis of an inefficient fusion of splenic B-cells to an immortalized mouse myeloma line, followed by limiting dilution of the cell population. Target-specific antibodies are randomly identified, often by a simple direct ELISA, where few preconditions can be set to determine which antibodies are identified and one must “take what one can get” during the screening process. (2) It is often desirable to have multiple monoclonal antibodies with specificity for different epitopes on the same target molecule, but the difficulty in sequencing monoclonals does not allow the rapid identification of unique clones early in the screening process. (3) Humans and rodents are relatively closely related phylogenetically. Many proteins of interest are highly

1.1 Historical Difficulties in Antibody Generation Technology

Hyper-immune sera from rabbits, sheep, or other mammals may be produced in large quantities, but they do not offer the consistency of monoclonal antibodies and need to be regularly replenished and recharacterized. Serum antibodies are also polyclonal and frequently polyspecific, even when purified over an antigen column, rendering them suboptimal for the specific recognition of a single component in a complex matrix. One illuminating study has demonstrated that when used to probe a comprehensive yeast proteome chip, unpurified polyclonal antibody preparations could recognize up to 1770 different proteins, with some monoclonal antibodies and antigen column-purified polyclonal antibodies also recognizing multiple proteins (related and unrelated) [3].

The arrival of monoclonal antibody technology [4] was a major step forward in generating high-specificity reagents, but the reliance on the murine immunoglobulin system frequently leads to a number of practical difficulties: (1) Monoclonal antibodies are raised on the basis of an inefficient fusion of splenic B-cells to an immortalized mouse myeloma line, followed by limiting dilution of the cell population. Target-specific antibodies are randomly identified, often by a simple direct ELISA, where few preconditions can be set to determine which antibodies are identified and one must “take what one can get” during the screening process. (2) It is often desirable to have multiple monoclonal antibodies with specificity for different epitopes on the same target molecule, but the difficulty in sequencing monoclonals does not allow the rapid identification of unique clones early in the screening process. (3) Humans and rodents are relatively closely related phylogenetically. Many proteins of interest are highly
conserved among mammals and this can frequently lead to thymic
tolerance, restricting the antibody response after immunization. (4)
When an immune response to a human protein is raised in mice, the
large regions of sequence similarity between murine and human pro-
teins may lead to a restricted number of immunogenic epitopes. (5)
To generate antibodies that cross-react with orthologues from mul-
tiple species of mammal is particularly tricky, as the common epitopes
among mammals are the very ones that are unlikely to provoke a
strong immunoglobulin response in the mouse. (6) Tolerance issues
can become even harder to circumvent when the protein of interest
is from a mouse or rat. Creating “knockout” mice, in which the
endogenous copy of the gene for the target protein has been dis-
abled, can often break tolerance, but this is a highly laborious and
time-consuming process that few laboratories have the resources to
undertake. These factors all hinder the generation of high-quality
antibody reagents and thereby limit one’s experimental options when
developing antibodies for purifying or tracking novel proteins.

2 Display Technologies as an Alternative Source of Specific Antibodies

To bypass the limitations in polyclonal and monoclonal antibody
generation, several groups have turned to in vitro display technolo-
gies such as phage display, ribosome display, or yeast display libraries
to generate recombinant antibodies. The more recent technologies
of yeast and ribosome display are becoming highly established, but
phage display is currently the most robust, well characterized, and
reliable of these methods. Antibodies derived from these technolo-
gies are cloned in microbial hosts and are therefore monoclonal
from the start, with their production being easily scaled up.
Critically, selection and screening efforts can be directed toward
specific epitopes or species cross-reactivity and away from polyspe-
cific binding. Phage display allows a researcher to do in a single tube
what would be unfathomable in traditional hybridoma work: inter-
rogate libraries of millions to tens of billions of antibodies on the
basis of their binding specifically to a target of interest.

All of this is possible due to the ingenious concept of “genotype-
to-phenotype linkage,” which is exemplified by phage display.
Phage display was originally described as a rapid method for cloning
gene fragments that encode a specific protein [5]. By cloning gene
fragments into the genome of a filamentous E. coli bacteriophage,
Smith et al. were able to generate libraries of gene fusions with the
key phage coat protein p3. After transformation into E. coli, the
viral replication system packaged the genome (and therefore the
cloned gene) into a highly stable complex carrying the gene prod-
uct on the tip of the phage particle, as a fusion protein with p3. By
subsequently selecting expressed virions on an immobilized anti-
body with specificity for a known protein that had been cloned in
the phage genome, they were able to show 1000-fold enrichment of the gene product. This set of experiments showed that “genotype-to-phenotype linkage” could be achieved and thereby defined the basis of all display technologies developed since.

The subsequent development of a method for the effective cloning of antibody V-gene sequences via PCR allowed the capture of antibody sequences in a recombinant form [6], removing the need to immortalize B-cells via hybridoma fusion as required in traditional monoclonal antibody generation. This discovery was combined with the phage display process to make an efficient method of isolating antibodies and their corresponding gene sequences simultaneously [7]. In the antibody phage display process, libraries of diverse V-gene sequences are cloned into an appropriate expression vector in E. coli, creating an in-frame fusion with the p3 protein or, as favored in most recently described libraries, a truncated form of p3.

The phage display of protein libraries was originally performed using “phage” vectors (i.e., built upon the phage genome itself), but due to practical difficulties in handling these libraries, more recent phage methods have mostly used so-called phagemid expression vectors. In this case, the DNA backbone is a stable, small plasmid such as pUC, and the p3 gene plus f1 phage packaging origin are the only phage-derived DNA sequences [8]. These phagemid libraries are more easily handled and more stable than phage libraries, as the plasmid is incapable of causing phage production by itself. The libraries can therefore be more simply cloned, expanded, and controlled than phage libraries.

By infecting “helper” phage (based on M13) into a growing culture of E. coli harboring a phagemid library, the phage propagation machinery is provided, but due to a mutation introduced in the origin of replication on the helper phage genome, preferential packaging of the phagemid DNA and p3 fusion occurs during phage replication [8]. Phage production is thereby induced, genotype-to-phenotype linkage is created, and the expressed phage particles are interrogated for the presence of useful protein sequences via target binding. This selective step may be performed by simply immobilizing the target protein on, for example, a protein-binding plastic surface such as an ELISA plate, adding phage and allowing binding to occur via the antibody-p3 fusion proteins. Nonbinding phages are removed by washing the immobilized surface, and the remaining bound phages are eluted. The eluted phages are then reinfected back into a fresh culture of E. coli to retrieve the selected gene sequences. This process is not perfect, however, and two to four rounds of selection/re-expression/selection are normally performed iteratively to remove all unwanted clones and enrich the binding population from the background of the library. Nonetheless, this process can be spectacularly powerful, massively enriching specific antibodies in a single
selection round [9]. Furthermore, the use of multiple forms of the
target antigen in sequential selection rounds and the inclusion of
competitor proteins can drive the selected pool toward a highly
specific set of epitopes.

Much of the evolution and progression of phage display tech-
nology has been driven by the remarkable discovery that this
method can be used to mine large libraries of combinatorial human
antibody diversity, theoretically removing the need for animals in
antibody production [10]. By random recombination of VH and VL
sequences from human lymphocyte cDNA [10], or, by using
degenerate oligonucleotides to create diversity of DNA sequence in
the loops associated with target binding [11], several groups have
created very large libraries of antibody gene sequences for phage
display. These libraries are analogous to the naïve antibody reper-
toire in an animal, and selecting from them can result in the identi-
fication of antibody fragments that exhibit high specificity and
occasionally high affinity for the target protein. Several major stud-
ies have proven that with appropriate application of this technology,
specific antibodies can be raised to proteins, peptides, haptens and
even carbohydrates. In the most exemplary studies, antibodies have
been raised with equivalent affinities to those associated with a
strong humoral immune response [12–15]. Additionally, antibod-
ies with suboptimal affinities can provide useful starting molecules
for the construction of mutagenized libraries which can be further
screened for affinity matured variants [16–18].

In addition to the affinity maturation process, phage display
also provides a useful tool for the production of ultra-humanized
antibodies from nonhuman sources. It is widely accepted that
there are intrinsic difficulties associated with the humanization of
nonhuman antibodies using CDR grafting. Frequently, such
grafted antibodies suffer from immunogenicity associated with
high non-germ-line amino acid content, the propensity for
v-domain destabilization, and very often downstream expression
and formulation issues. In a recent study, ultra-humanized anti-
bodies from three nonhuman sources were generated via single-
step complementarity-determining region (CDR) germ-lining in
a process termed “Augmented Binary Substitution” (ABS) [19].
This process utilizes phage display for selection from germline tar-
geting combinatorial libraries which results in the identification of
CDR residues amenable to human germ-lining without compro-
mising on specificity and affinity. A further degree of complexity is
incorporated into the library through the random substitution of
CDR-H3 residues in tandem with the germ-lining process. This
simple single pass process generates significantly lower non-germ-
line sequence content, on CDR grafts from nonhuman hosts, ren-
dering them virtually indistinguishable from fully human
antibodies. This process opens up new possibilities for the affinity
maturation and humanization of antibodies from alternative
sources such as chickens.
2.1 Recombinant Antibody Formats Used in Phage Display

Recombinant antibodies are typically displayed and expressed in “fragment” forms. The simplest and most commonly used fragment is the single-chain fragment variable (scFv) where a flexible peptide sequence links the V-regions of antibodies between the C-terminus of one domain and the N-terminus of the other, thereby combining both V-domains into a single polypeptide [20]. The scFv may be assembled in V_L–V_H or V_H–V_L orientations, with V_H–V_L being the most heavily used format historically. The flexible linker helps to make the scFv simple to express, but must be sufficiently long and flexible to allow effective association of the V-regions to form a functional antigen-combining site. As long as this is true, the classical hydrophobic pairing of the V-regions will stabilize the structure. By far, the most common linkers are based on glycine–serine repeat structures such as GGGGS×3.

The second most commonly used recombinant antibody format is the Fab (fragment antigen binding) molecule. This structure is a complete binding “arm” of an antibody and is comprised of the full immunoglobulin light chain, expressed in conjunction with the V_H–C_H1 region from the heavy chain [21]. Fabs obligately form predominantly monomeric, monovalent fragments. They are the most “natural” of the recombinant antibody fragments and it has been shown that the presence of the constant regions can often help to stabilize antibody variable regions [22]. The Fab format is the less commonly used of the two main recombinant antibody formats, however, as its dual polypeptide structure is generally more difficult to express and display in E. coli than the scFv [22]. A recent engineered scFab platform however attempts to address some of the limitations associated with scFab expression [23].

2.2 Why Is Phage Display Not More Heavily Used?

Much of the under-use of phage display may be due to experiences with the early libraries derived from naïve or synthetic human antibody diversity, which were donated to academic laboratories that were not specifically invested in antibody engineering. Unfortunately, these forays into display technologies have often left investigators somewhat disappointed. Many people have accepted the viewpoints of recombinant antibody technology experts, that these libraries can yield useful high-affinity antibodies to any form of antigen. In general, (mostly to those highly skilled in the field), this is indeed true, but the average antibody generated from these libraries is often of disappointingly low affinity to those who are used to high-sensitivity antibodies from immunized sources. Human recombinant antibodies from naïve library sources can require technically challenging in vitro molecular evolution if they are to perform the demanding “real world” functions required of many reagent antibodies [9]. Molecular evolution is far from trivial to perform and is usually beyond both the scope and interest level of the average researcher. For such reasons, it is of little wonder then that most people either ignore, or at worst disparage, phage display technology itself.
Nevertheless, phage display can be a relatively simple technology to use and when employed to harness natural repertoires of antibodies from immunized animals, it can offer a rapid path to highly specific, high-affinity antibodies against problematic antigens. While the most successful naïve antibody libraries contain over 10^{10} members and are often the domain of biotechnology companies, typical immune libraries are in the 10^7–10^8 range and are easily assembled by a single investigator [24, 25]. When an immunized rabbit or sheep has raised a significant serum immunoglobulin titer, the common end-point to the experiment is to exsanguinate the animal and harvest the serum. However, harvesting B-cell rich lymphoid tissues from the animal, such as the spleen and bone marrow, allows the isolation of total RNA and the subsequent generation of cDNA [24]. This is a simple method with which many biomedical researchers are familiar, and commercial kits are available to simplify most steps of the process.

The immunoglobulin gene sequences of many animals are now known and the cDNA from immune tissues can subsequently be used for the RT–PCR amplification and cloning of the animal’s variable region sequence repertoire [24]. These cloned variable region sequences can then be assembled into a display library format such as scFv or chimeric Fab (using human C_H 1 and C_k/λ regions) [26]. These targeted immune libraries thereby offer a potentially huge advantage over monoclonal antibodies, as libraries of $>10^8$ variants may be built, allowing the effective sampling of a much broader range of antibodies than the hundreds (occasionally thousands) of clones usually examined in a monoclonal antibody screen.

The resulting library can be interrogated for specific binding proteins via phage display and the retrieved antibody fragments expressed very simply in bacteria [26]. This process has been used to successfully harness the antibody repertoires of a large number of immune host species, including mice [24], rabbits [25], sheep [27], camelids [28], and sharks [29]. Of greater interest to us, however, is to exploit this approach to harvest the novel immunoglobulin repertoires of the domestic chicken (Gallus gallus), which is as simple to use as mice and rabbits, but also highly phylogenetically distant from mammals.

3 Why Chickens (Gallus gallus)?

Avians can circumvent many of the common problems encountered with mammalian immunizations described above. As a fully domesticated small animal, chickens are an attractive host for immunization as they are highly accessible, very affordable, and easily housed in a generic animal house. Most importantly, however, the amino acid homology between the mammalian and avian orthologues of a given protein is typically lower than between the
mammals commonly used for antibody generation, and indeed, some mammalian proteins may not even exist in avians. The immunoglobulin response of chickens to highly conserved mammalian proteins is reliably robust, generally exhibits high avidity, and potentially targets a broad spectrum of epitopes on protein immunogens [30–32].

Chickens therefore have a potentially major advantage over other common immune hosts: they can produce a high-affinity cross-reactive antibody response targeting an epitope that is conserved across multiple orthologues of a mammalian protein. This can lead to significant savings in time and resources as, if a single, broadly applicable cloned reagent can be identified, it can then be used to generate a single affinity column for the capture of the target protein from multiple species. Chicken immunoglobulins have also shown beneficial biophysical properties: they exhibit high stability to changes in pH and temperatures up to 70 °C [33, 34], provide functional coating on latex microspheres [35], and demonstrate functional direct covalent coupling to a dextran layer for the detection of serum proteins by surface plasmon resonance [36]. Furthermore, as chickens are small animals, very little protein immunogen is required to raise a strong immunoglobulin response. Approximately 200 μg/bird of purified protein is sufficient to carry out a full immunization regime [37, 38].

These observations have led to the regular use of chickens as an immune host for production of the polyclonal antibody termed IgY (egg yolk antibody), in both research and commercial settings. Laying hens will export significant quantities of polyclonal IgY into the egg (~100 mg of IgY per yolk), in a process analogous to mammalian placental IgG transfer, which allows direct screening of their antibody response without the need for serum sampling [38]. Once a strong immune response has been raised, large quantities of polyclonal antibody are easily prepared from the yolk. These polyclonal antibodies have been successfully applied in research immunochemistry [39], diagnostics [40], and affinity column purification [41]. Indeed, immunodepletion resins based on chicken IgY can be used to remove high abundance proteins from serum and are now commercially available (Sigma-Aldrich Seppro® IgY14 spin columns).

Unfortunately, polyclonal IgY does still suffer from the same issues of ill-defined specificity that all polyclonal antibody preparations do. In addition, there have been several studies describing successful chicken hybridoma monoclonal antibody generation to antigens such as human peptides [42], sporozoite proteins [43], and prion protein [44], but the low antibody expression and instability associated with chicken myeloma cell lines [42, 45] led to the under-use of this species as a source of monoclonal antibodies. Today however, the progress in chicken antibody phage display has circumvented these problems and made recombinant chicken antibody reagents readily accessible, as we describe below.
The chicken immunoglobulin repertoire is almost ideally suited to antibody phage display, as chickens generate their immunoglobulin repertoire from a single set of V_H and V_L germ line sequences [46], with the majority of positions in the framework regions maintained as germline [2]. Diversity in the V-regions is created by both V–D–J recombination and somatic hypermutation, with the additional influence of “gene conversion,” where multiple upstream pseudogenes are recombined into the functional sequence. This germline V-gene system means that the entire chicken antibody repertoire can be captured using only four PCR primers [47], making chicken libraries highly representative of the induced immunoglobulin response. This is in direct contrast with immune hosts such as mice, which have diverse germline V-gene sequences and therefore require complex mixes of PCR primers [24]. Additionally, the two V-gene germline sequences found in chickens are highly homologous to the human V_{λ} and V_{H3} germline families [48], which are both associated with creating V-domains with high stability and solubility. Indeed, chicken scFvs can be stable in crude bacterial culture supernatants for up to 1 month at room temperature [49].

The initial work of Davies et al. [47] showed that a simple recombinant chicken antibody library could be displayed on phage. While this small library was nonimmune and derived from the bursa cells of a single young chicken, the group was able to select target-specific scFv sequences recognizing lysozyme, serum albumin and thyroglobulin. The potential of chicken recombinant antibodies was further highlighted by a study [50] which used an scFv library derived from the spleens of immunized chickens and successfully generated highly specific scFv antibodies that targeted both mouse and rat serum albumins, where tolerance issues limit the ability to generate murine monoclonal antibodies. In addition, an in-depth analysis of the avian immunoglobulin V_H repertoire demonstrated that naïve repertoire features were fully replicated in the resulting target-selected, phage display repertoire [2].

A major study [26] subsequently demonstrated that chickens could be a useful source of scFv and chimeric Fab antibodies with specificity for hapten molecules. However, none of these early studies characterized the antibodies for their affinity, or their function as practical reagents. More recent studies have shown that scFv antibodies derived from immunized chickens are highly effective reagents in diverse settings such as diagnostic ELISA for Infectious Bursal Disease Virus [51], the diagnosis of prion disease [52], immunodetection of haptenic shellfish toxins [53], immunostaining of SARS-infected cells [54], biosensing of cardiac biomarkers [55], and the measurement of ApoB protein in mouse and human sera [56]. Raats et al. [57] have also illustrated that antiidiotype scFvs from an immune chicken scFv library were of considerably higher sensitivity than those derived from a human...
antibody library in the same study. The generation of highly selective scFvs toward the PrP protein, which is highly conserved in mammals demonstrates the advantage of the chicken as an immune model, as isolated scFvs were shown to react with murine, ovine, and bovine orthologues of the protein [52].

The cloning of chicken antibodies via phage display has also allowed the precise dissection of the specificity and affinity of the chicken immunoglobulin response. High-throughput affinity measurements for panels of chicken scFvs to the inflammatory biomarker C-reactive protein have identified clones that preferentially recognize the multimeric and monomeric forms of the protein [50]. In the same study, clones with affinities as high as 350 pM were generated from an immune phage display library of only 3×10^7 total clones. In addition, chicken anti-PrP scFv have been reported to have affinities up to 15 pM, making them among the highest affinity scFvs reported to date [58].

What may be of particular practical interest to many researchers is that chickens can serve as a host for simultaneous immunization with multiple proteins of interest, with as many as eight proteins being used successfully in a single immunization scheme [37, 49, 59]. The target proteins of interest are mixed in a single adjuvant preparation and each immunized animal receives all multiplexed proteins simultaneously. Spleen and bone marrow tissues from the immunized animals are then used to generate relatively small phage display libraries and specific antibodies are derived via selection of the library separately on the individual proteins originally used for immunization [37]. The immunized chickens appear to react to the proteins fully independently, as the phage display libraries generate individual scFv antibody clones that are fully specific by western blot and ELISA, showing no reactivity to their co-immunogens [37, 59]. This approach has major benefits practically and ethically, as it allows the use of a single library to derive high-affinity antibodies to a group of proteins of interest. Multi-immunization methods also simultaneously minimize animal use and raise the likelihood of success in generating an immediately useful reagent [37, 59].

Multi-target immunization regimes should be designed with one of two objectives in mind. Firstly, the simplest scenario combines multiple unrelated proteins, which leads to unrelated B-cell responses after immunization. To derive antibodies of greatest specificity during a multi-target immunization of this kind, it is important to ensure that each of the protein immunogens is highly purified and that no closely related proteins are co-immunized into a single animal. Secondly, to derive antibodies that are cross-reactive to orthologues of a conserved protein from multiple species, it is likely to be beneficial, but not necessarily essential, to include each orthologue in the mix of immunogens given to each animal. Iterative selection rounds that change orthologue each time can then be used to bias toward the isolation of cross-reactive antibodies.
The generation and selection of chicken recombinant antibodies is extremely reliable using the methods described in detail in the accompanying chapter. The subsequent identification and sequencing of antibodies displaying the characteristics desired can also be performed simply. In general, scFvs isolated from immunized chicken libraries exhibit high affinity and can be assayed via a direct ELISA, using crude periplasmic extracts from the protein expressing *E. coli* clones. The level of further downstream analysis carried out on positive hits identified during the binding ELISA depends on what the end user requires. Specific binding function may suffice for scFvs that are to be used simply as reagent antibodies for in vitro analysis of samples via ELISA or western blotting. For antibodies to be used in affinity chromatography, the antibody fragments must be purified and tested for their function after being coupled to a solid matrix and for their specificity during purification.

4 Toward Affinity Chromatography with Antibody Fragments

Few studies have been performed using antibody fragments in affinity chromatography, but several potential approaches have been described. For the antibody binding site(s) to be fully solvent-exposed and active, the antibody fragment must be directionally captured onto the solid matrix. Even for full-length IgG, nonspecific adsorption or covalent coupling onto solid supports can lead to denaturation, reducing or negating antigen-binding function [60]. Antibody fragments may be slightly more prone to chemical or physical denaturation than full-length immunoglobulins, but scFv and Fab have been used successfully in affinity chromatography, and in the creation of SPR sensing surfaces which can go through serial rounds of binding and regeneration [61].

McElhinney et al. [62] created a simple scFv-based affinity column for the concentration and cleanup of microcystin toxins from environmental samples, by transiently coupling the His-tagged scFv to a disposable nickel chelate column. The scFv was thereby coupled directionally, maximizing the functional antibody content on the column, and the analyte for purification was co-eluted with the scFv before quantification by reverse-phase HPLC. However, this method can only be used under a limited number of conditions, as the interaction of the His-tag with nickel is noncovalent and pH dependent. Other possibly useful low affinity expression tags include *E. coli* maltose binding protein and glutathione S-transferase, which have both been successful in protein purification [63, 64] (see also Chapter 8 for a discussion on protein tagging).

High affinity, highly stable linkage via affinity tagging may also be achieved by site-specific biotinylation of antibody fragments and their immobilization onto a matrix that has been passively or covalently coated with avidin. Bacterial expression vectors are now
available which introduce biotin into specific peptide tags (AviTag), which can be produced on the termini of recombinant proteins. A similar method was proven to be efficient in the production of Fabs that are specifically biotinylated in vivo during bacterial expression, via C-terminal fusion of the Fabs to the E. coli acetyl-CoA carboxylase [65]. Importantly, these biotinylated Fabs were successfully used to purify recombinant TNF-alpha from bacterial lysates, via a streptavidinated column. The peptide tagging method has also been used successfully to label both Fab and scFv antibodies for their oriented immobilization and use as capture antibodies in clinical diagnostic ELISAs [66, 67]. These studies suggest that biotin-streptavidin coupling is a simple and rapid method for the stable, directional capture of recombinant antibody fragments.

While the covalent coupling of recombinant antibody fragments via their reactive lysine side chains is likely to be disruptive to their function, some alternative covalent coupling methods have been identified. In the simplest example, the disulfide bonds linking the two constant regions of a Fab can be reduced using a mild agent to expose cysteine thiols. These thiol groups can then be used to covalently couple the fragment to a thiol-activated surface [68]. More elegant versions of this approach have expressed antibody fragments with a C-terminal cysteine group, then gently applied the same chemistry, to preferentially reduce the exposed disulphide groups [61]. The exposed terminal thiols are again an efficient reactive group for covalent attachment. It is also possible to express scFv fused to the constant regions of human IgG light chains as another source of usable cysteine residues external to the V-regions [69].

Whether any of the above attachment methods are appropriate for a given affinity purification application may be decided upon by the individual investigator. In cases where stable linkage has been achieved and the column is to be reused, it is prudent for the investigator to examine multiple clones for their stability under repeated cycles of elution and regeneration. While chicken scFvs are built upon naturally stable frameworks, the stability of different clones cannot be taken for granted. In cases where stability remains an issue, the appropriate chicken V-regions can be cloned into an Fc-fusion [70] or IgG [71] expression vector to produce full-length antibody in mammalian, yeast, and even plant culture systems [72].

In conclusion, this chapter demonstrates that phage display is a powerful technology that can be used to generate highly specific reagents from immune sources. It is an attractive alternative to classical antibody generation technologies that can be employed in many fields for reliable antibody and antibody fragment generation.
References

1. Kusnezow W, Hoheisel JD (2002) Antibody microarrays: promises and problems. Biotechniques Suppl:14–23
2. Wu L et al (2012) Fundamental characteristics of the immunoglobulin VH repertoire of chickens in comparison with those of humans, mice, and camelds. J Immunol 188(1):322–333
3. Michaud GA et al (2003) Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol 21(12):1509–1512
4. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of pre-defined specificity. Nature 256(5517):495–497
5. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317
6. Orlandi R et al (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci U S A 86(10):3833–3837
7. McCafferty J et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554
8. Hoogenboom HR et al (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19(15):4133–4137
9. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23(9):1105–1116
10. Marks JD et al (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222(3):581–597
11. Barbas CF III et al (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci U S A 89(20):10164–10168
12. Vaughan TJ et al (1996) Human antibodies with sub-nanomolar affinities isolated from a single rabbit immunized with multiple hapten. Biochem Biophys Res Commun 228(4705):15354–15359
13. Krebber A et al (1997) Reliable cloning of functional antibody variable domains from hybridomas and splen cell repertoires employing a reengineered phage display system. J Mol Biol 268(2):398–404
14. Li Y et al (2000) High affinity ScFvs from a single rabbit immunized with multiple hapten. Biochem Biophys Res Commun 268(2):398–404
15. Hoet RM et al (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23(3):344–348
16. Hanes J et al (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18(12):1287–1292
17. Finlay WJ et al (2009) Affinity maturation of a humanized rat antibody for anti-RAGE therapy: comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions. J Mol Biol 388(3):541–558
18. Gram H et al (1992) In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc Natl Acad Sci U S A 89:3576–3580
19. Townsend S et al (2015) Augmented binary substitution: single-pass CDR germ-lining and stabilization of therapeutic antibodies. Proc Natl Acad Sci U S A 112(50):15354–15359
20. Huston JS et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85(16):5879–5883
21. Barbas CF III et al (1992) Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity. Proc Natl Acad Sci U S A 89(21):10164–10168
22. Rothlisberger D, Honegger A, Pluckthun A (2005) Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J Mol Biol 347(4):773–789
23. Koerber JT, Hornsby MJ, Wells JA (2015) An improved single-chain Fab platform for efficient display and recombinant expression. J Mol Biol 427(2):576–586
24. Andris-Widhopf J et al (2000) Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Methods 242(1–2):159–181
25. Knappik A et al (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296(1):57–86
26. Fellouse FA et al (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373(4):924–940
28. Arbabi Ghahroudi M et al (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3):521–526
29. Dooley H, Flajnik MF, Porter AJ (2003) Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display. Mol Immunol 40(1):25–33
30. Ikemori Y et al (1993) Research note: avidity of chicken yolk antibodies to enterotoxigenic Escherichia coli fimbriae. Poult Sci 72(12):2361–2365
31. Lemamy GJ et al (1999) High-affinity antibodies from hen’s-egg yolks against human mannose-6-phosphate/insulin-like growth-factor-II receptor (M6P/IGFII-R): characterization and potential use in clinical cancer studies. Int J Cancer 80(6):896–902
32. Stuart CA et al (1988) High-affinity antibody from hen’s eggs directed against the human insulin receptor and the human IGF-I receptor. Anal Biochem 173(1):142–150
33. Hatta H et al (1993) Productivity and some properties of egg yolk antibody (IgY) against human rotavirus compared with rabbit IgG. Biosci Biotechnol Biochem 57(3):450–454
34. Shimizu M et al (1992) Molecular stability of chicken and rabbit immunoglobulin G. Biosci Biotechnol Biochem 56(2):270–274
35. Davalos-Pantoja L et al (2001) Colloidal stability of IgG- and IgY-coated latex microspheres. Colloids Surf B Biointerfaces 20(2):165–175
36. Vikinge TP et al (1998) Immobilized chicken antibodies improve the detection of serum antigens with surface plasmon resonance (SPR). Biosens Bioelectron 13(12):1257–1262
37. Finlay WJ et al (2005) Exploiting the avian immunoglobulin system to simplify the generation of recombinant antibodies to allergenic proteins. Clin Exp Allergy 35(8):1040–1048
38. Gassmann M et al (1990) Efficient production of chicken egg yolk antibodies against a conserved mammalian protein. FASEB J 4(8):2528–2532
39. Larsson A, Karlsson-Parra A, Sjoquist J (1991) Use of chicken antibodies in enzyme immunoassays to avoid interference by rheumatoid factors. Clin Chem 37(3):411–414
40. Tsen YC et al (2003) Evaluation and validation of a duck IgY antibody-based immunoassay for high-sensitivity C-reactive protein: avian antibody application in clinical diagnostics. Clin Chem 49(5):810–813
41. Qian WJ et al (2008) Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy. Mol Cell Proteomics 7(10):1963–1973
42. Michael N et al (1998) The antigen-binding characteristics of mAbs derived from in vivo priming of avian B cells. Proc Natl Acad Sci U S A 95(3):1166–1171
43. Sasai K et al (1996) Characterization of a chicken monoclonal antibody that recognizes the apical complex of Eimeria acervulina sporozoites and partially inhibits sporozoite invasion of CD8+ T lymphocytes in vitro. J Parasitol 82(1):82–87
44. Matsushita K et al (1998) Chicken monoclonal antibodies against synthetic bovine prion protein peptide. J Vet Med Sci 60(6):777–779
45. Nakamura N et al (2000) Construction of recombinant monoclonal antibodies from a chicken hybridoma line secreting specific antibody. Cytotechnology 32(3):191–198
46. McCormack WT, Tjoelker LW, Thompson CB (1993) Immunoglobulin gene diversification by gene conversion. Prog Nucleic Acid Res Mol Biol 45:27–45
47. Davies EL et al (1995) Selection of specific phage-display antibodies using libraries derived from chicken immunoglobulin genes. J Immunol Methods 186(1):125–135
48. Tsurushita N et al (2004) Humanization of a chicken anti-IL-12 monoclonal antibody. J Immunol Methods 295(1–2):9–19
49. Chiliza TE, Van Wyngaardt W, Du Plessis DH (2008) Single-chain antibody fragments from a display library derived from chickens immunized with a mixture of parasite and viral antigens. Hybridoma (Larchmt) 27(6):413–421
50. Yamanaka HI, Inoue T, Ikeda-Tanaka O (1996) Chicken monoclonal antibody isolated by a phage display system. J Immunol 157(3):1156–1162
51. Sapats S et al (2005) An ELISA for detection of infectious bursal disease virus and differentiation of very virulent strains based on single chain recombinant chicken antibodies. Avian Pathol 34(6):449–455
52. Nakamura N et al (2004) Establishment of a chicken monoclonal antibody panel against mammalian prion protein. J Vet Med Sci 66(7):807–814
53. Finlay WJ et al (2006) Generation of high-affinity chicken single-chain Fv antibody fragments for measurement of the Pseudonitzschia pungens toxin domoic acid. Appl Environ Microbiol 72(5):3343–3349
54. Lee YC et al (2007) A dominant antigenic epitope on SARS-CoV spike protein identified by an avian single-chain variable fragment (scFv)-expressing phage. Vet Immunol Immunopathol 117(1–2):75–85
55. Leonard P et al (2007) High throughput ranking of recombinant avian scFv antibody fragments from crude lysates using the Biacore A100. J Immunol Methods 323(2):172–179
56. Sato Y et al (2008) Determination of LOX-1-ligand activity in mouse plasma with a chicken monoclonal antibody for ApoB. Atherosclerosis 200(2):303–309
57. Raats J et al (2003) Generating recombinant anti-idiotypic antibodies for the detection of haptens in solution. J Immunoassay Immunochem 24(2):115–146
58. Nishibori N et al (2006) Humanization of chicken monoclonal antibody using phage-display system. Mol Immunol 43(6):634–642
59. Hof D, Hoeke MO, Raats JM (2008) Multiple-antigen immunization of chickens facilitates the generation of recombinant antibodies to autoantigens. Clin Exp Immunol 151(2):367–377
60. Nielsen UB et al (2003) Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci U S A 100(16):9330–9335
61. Torrance L et al (2006) Oriented immobilisation of engineered single-chain antibodies to develop biosensors for virus detection. J Virol Methods 134(1–2):164–170
62. McElhiney J et al (2002) Rapid isolation of a single-chain antibody against the cyanobacterial toxin microcystin-LR by phage display and its use in the immunoaffinity concentration of microcystins from water. Appl Environ Microbiol 68(11):5288–5295
63. Pavlickova P, Schneider EM, Hug H (2004) Advances in recombinant antibody microarrays. Clin Chim Acta 343(1–2):17–35
64. Lichty JJ et al (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41(1):98–105
65. Weiss E, Chatellier J, Orfanoudakis G (1994) In vivo biotinylated recombinant antibodies: construction, characterization, and application of a bifunctional Fab-BCCP fusion protein produced in Escherichia coli. Protein Expr Purif 5(5):509–517
66. Saviranta P et al (1998) In vitro enzymatic biotinylation of recombinant Fab fragments through a peptide acceptor tail. Bioconjug Chem 9(6):725–735
67. Warren DJ et al (2005) Use of an in vivo biotinylated single-chain antibody as capture reagent in an immunometric assay to decrease the incidence of interference from heterophilic antibodies. Clin Chem 51(5):830–838
68. Vikholm-Lundin I, Albers WM (2006) Site-directed immobilisation of antibody fragments for detection of C-reactive protein. Biosens Bioelectron 21(7):1141–1148
69. Raats JM, Hof D (2005) Recombinant antibody expression vectors enabling double and triple immunostaining of tissue culture cells using monoclonal antibodies. Eur J Cell Biol 84(4):517–521
70. Ono K et al (2003) Production of anti-prion scFv-Fc fusion proteins by recombinant animal cells. J Biosci Bioeng 95(3):231–238
71. Akamatsu Y et al (2007) Whole IgG surface display on mammalian cells: application to isolation of neutralizing chicken monoclonal anti-IL-12 antibodies. J Immunol Methods 327(1-2):40–52
72. Wieland WH et al (2006) Plant expression of chicken secretory antibodies derived from combinatorial libraries. J Biotechnol 122(3):382–391