Remote Data Auditing in Multi-tenancy Cloud Storage by Using File Attribute Test Technique

Ranjith Kumar Marrikukala¹, Dr. P. Praveen², Bonthala Prabhanjan Yadav³, G Jhansi⁴, P. Venkata Ramana Rao⁵

¹,³,⁴Sumathi Reddy Institute of Technology for Women, Warangal, India.
²,⁵SR Engineering College, Warangal, India.

¹ranjith1220@gmail.com

Abstract: Most popular computation technique in recent days is cloud computing, where we utilizing the virtual computing resources like processing data, and storage. Virtual computing environment is leads the customer lose control on his/her data, to answer this problem cloud computing has auditing techniques by cloud service provider (CSP), Third party auditor (TPA) by remote auditing data (RDA) methods. Cloud storage architectures are single tenant or multi-tenant, where we compare the architectures, multi-tenancy cloud storages which contain the serious data privacy problem. To provide an efficient privacy solution for multi-tenancy cloud storage we apply RDA methods belongs to RDA taxonomy. In this paper we propose a technique to provide privacy on customer data on multi-tenant cloud storage with file attribute test.

1. Introduction
The idea of conveying cloud administrations by sharing virtualized equipment framework and application workers has existed for quite a long time. Inside these facilitated administrations, multi-occupancy usefulness has been a basic factor in isolating programming administrations for inhabitant clients while keeping costs at a level adequate for programming suppliers [1-4]. In any case, simultaneously, the sharing of assets to support many inhabitant clients can bring about the co-area of information by numerous possibly contending associations utilizing the administration inside a similar stockpiling arrangement. This circumstance presents a few dangers and information insurance worries that must be routed to guarantee a protected and satisfactory arrangement.

1.1 Multi-tenure and its significance in shared Cloud Services
Multi-tenancy distributed storage (fig.1) engineering comprises of a solitary and incorporated foundation framework reason worked to offer support arranged capacity for numerous clients or "inhabitants." All client information is put away in facilitated at this point shared workers, stockpiling, and data sets. The partition of different client information is obligatory to guarantee any information put away isn't open or visible by another inhabitant client [5-9].

For Service Providers in an "as-an administration" developing world, this implies dealing with various and conceivably contending customer associations and the organization's information from inside a solitary yet shared capacity arrangement. A specialist organization can share the equipment assets over all client inhabitant cases and afterward spread the foundation cost over the entirety of the overhauled clients, rather than making sure about every single one of the individual cases and fundamentally diminishing the complete expense of responsibility for the arrangement [10].
The utilization of virtualization and far off admittance to capacity is extending and making new assistance models for specialist co-op associations dependent on the utilization of multi-tenure. By utilizing a multi-inhabitant engineering and utilizing new distributed storage advances, for example, S3 object stockpiling and different help arrangements, specialist organizations can expand their customer base, while decreasing costs, which thusly results in much more prominent benefits. For their inhabitant clients, this conveys top tier object stockpiling administrations completely coordinated and offered through their favored cloud the executives stage.

Multi-tenancy oversaw administrations and distributed storage contributions by specialist co-ops proceed to advance and become dependent on the expanded utilization of cloud administrations by IT associations. Further, S3 and item stockpiling arrangements have changed the Service Provider industry, permitting customary specialist organizations to turn into a cloud specialist organization.

2. Difficulties with Multi-tenancy Storage
In spite of the various advantages, the utilization of multi-occupancy additionally presents numerous difficulties that regularly forestall the appropriation of distributed storage as a help offering, including security and protection, dependability and nature of administration, adaptability and the executives, and administration and consistence, as in Fig.2.
2.1 Security and Privacy
Security and information protection related with multi-occupant access are the essential reasons customers are not ready to receive distributed storage or use cloud supplier's administrations. Purchaser concerns are an after effect of the apparent loss of control due to the multi-occupant nature of the distributed storage. Multi-occupancy can make security worries around how to disconnect information stockpiling and admittance to the put away resources. Further, confirmation, approval before access are pivotal parts of episode reaction, inspecting, and examination exercises. Any multi-occupant stockpiling endpoints and information require isolation and detachment from different clients and inhabitant put away information to address these difficulties [3]. Guaranteeing total division and detachment can be dangerous in a multi-occupant condition, where different clients store information and items on a similar co-facilitated at this point same physical or virtual equipment. The engineering must be occupant mindful at all levels in the stack with satisfactory confirmation and access control security additionally actualized.

Each time there's another customer, the supplier includes another can endpoint and which is just available by that customer. The Cloudian HyperStore arrangement gives the capacity to design separate endpoint pails, where each is controlled utilizing a novel access key and mystery key accreditations. That capacity administration occurrence and can endpoint run autonomously of others, and each basin can be arranged to run distinctive capacity assurance plans and security approaches.

2.2 Dependability and Quality Controls
Impedance among occupants is another danger that gets presented by multi-tenure. The abuse or over-burdening of assets on a common or facilitated framework by one occupant client can affect the exhibition or client experience of other inhabitant clients. A solitary client running a considerable outstanding burden or stress test against a creation endpoint inside a multi-occupant condition may unconsciously or accidentally bring about an imbalanced utilization of assets that sway different clients overhauled on a similar stage – known as an "uproarious neighbor" circumstance. Along these lines, dependability and consistency are required for different clients to meet the administration level understanding (SLA).

To address impedance issues and meet SLA necessities, the utilization of improved checking, revealing, and burden adjusting advancements can assist with recognizing and make up for expanded interest [7]. In any case, the best methodology is to utilize Quality of Service (QoS) highlights like shares, reservations, and actualizing rate-restricting controls on demands on a for every inhabitant premise is the most ideal approach to dodge any single occupant from affecting and over-burdening different occupants.

2. 3 Adaptability, Management, and Maintenance
A conventional scaling strategy, for example, powerfully turning up new virtual hosts to satisfy need, has restrictions and expands cost. Single-inhabitant situations where every client gets their own designated equipment essentially increment the expenses to the adjusted client base. Multi-inhabitant cloud structures can be scaled effectively to deal with tops sought after over the customer base [11-13]. That is on the grounds that the capacity examples are not single free frameworks but instead a bunch of container endpoints arranged on workers as hubs acting as one dispersed and scale-out item stockpiling design.

3. File Attribute Test
It is a famous testing technique to check the file properties, which include the following
- **File Type**: File type is specifies the category of file, that is either it is physical or logical file. Physical files are device files like character, byte device files. Logical file are two types either it is containing data or containing list of files, that is directory.
- **File Ownership**: Ownership describes the name or host of the file
• **File Size**: It shows the size of the data which contains

• **File Permissions for Owner, Group, and Others**: File permission contains three parts

 1. **Owner permission**: It contains read, write, and execute permission for the owner of the file
 2. **Group permission**: It contains read, write, and execute permission for the community/group of the file
 3. **Other permission**: It contains read, write, and execute permission for the other than owner and community users of the file

• **File Last Access Time**: It contains time stamp of the file, which accessed by a user

• **File Last Modified Time**: It contains time stamp of the file, which modified the file content by a user

• **File Last Changed Time**: It contains time stamp of the file, which changed the permission of file by owner of the file.

The above attribute test can execute by provider of the cloud storage, so there is a chance to tamper the owner data in multi-tenancy cloud storage.

4. File Attribute Test in Multi-tenancy Cloud Storage

When we need utilize virtual hardware storage by multi-tenancy cloud storage, customer loses the control over their data. Cloud service provider has control on the data of the owners. We are proposing here a file attribute testing technique to check the privacy on customer’s data especially in multi-tenancy cloud storage as in fig.3. When customer stores the file in cloud storage, we are storing file attribute in on-premises center or customer host as following pattern.

File Size	File Permission	Last Access Time	Last Modified Time	Last Changed Time
Fs1	Fp1	La1	Lm1	Lc1

In future customer access their file from cloud storage, our technique check the file attributes in cloud storage, and local host. If the test their file timestamps, and access permission is equal, then the file in multi-tenancy is safe otherwise it tried as file tamper by cloud provider.

![Figure 3: in Multi-tenancy Cloud Storage](image)

5. Conclusion

This technique is providing an efficient privacy on multi-tenancy cloud storage customer irrespective
of cloud provider or third party auditing. In future we can upgrade the technique, which utilize in dynamic remote data auditing by applying the taxonomy of remote data auditing. Customer’s data preserved in cloud storage in remote area, and file attributes are stored in customer local host or on-premises data centre.

6. References
[1] Glenn Haley “Multi-tenancy cloud storage” in https://cloudian.com
[2] Dr. S. S. Manikandasaran, S. Raju “Security Architecture for Multi-Tenant Cloud Migration”
[3] Man Yuan, Shuning Pang China, Qiang Gao, ”Design and development of data security automatic testing system on public cloud” IEEE International Conference on Software Engineering and Service Science (ICSESS) pp 992-995 2016
[4] K. El Makkaoui, A. Ezzati, A. Beni-Hssane and C. Motamed,”Cloud Security and Privacy Model for Providing Secure Cloud Services” IEEE International conference pp 81-86 2016
[5] S. K. Abd, R. T. Salih, S. A. R. Al-Haddad, F. Hashim, A. B. H. Abdullah and S. Yussof, ”Cloud Computing Security Risks with Authorization Access for Secure Multi-Tenancy Based on AAAS Protocol”, IEEE TENCON 2015 - 2015 Region 10 Conference pp 1-5 2015
[6] S. F. Lai, H. K. Su, W. H. Hsiao and K. J. Chen,”Design and Implementation of Cloud Security Defense System with Software Defined Networking Technologies”, IEEE International Conference on Information and Communication Technology Convergence (ICTC) pp 292-297 2016
[7] Tayyaba Zeb, Abdul Ghafoor, Awais Shibli and Muhammad Yousaf, ”A Secure Architecture for Inter-cloud Virtual Machine Migration”, Institute for Computer Sciences, Social Informatics and Telecommunications Engineering pp24-35 2014
[8] Dr. L. Arockiam and S. Monikandan, “Data Security and Privacy in Cloud Storage using Hybrid Symmetric Encryption Algorithm”, International Journal of Advanced Research in Computer and Communication Engineering Vol 2 Issue 8 pp 3064-3070 2013
[9] Sudarshan, E., Satyanarayana, C. and Bindu, C.S., 2017, September. A Parallel RLE Entropy Coding Technique for DICOM Images on GPGPU. In 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) (pp 963-966) IEEE
[10] Mounika, S. & Sampath Kumar, T. 2019, "Client –requirement fulfil QOS in multi server for max beneficial in cloud computing", International Journal of Advanced Science and Technology vol 28 no 7 pp 44-49
[11] Rajasri I, Gupta AVSSKS and Rao YVD 2014 Effect of Symmetry on Structures of Epicyclic Gear Trains International Journal of Engineering and Technology Innovation 4(2) 77-85
[12] Mahender K, Kumar TA and Ramesh KS 2017 Performance study of OFDM over multipath fading channels for next wireless communications International Journal of Applied Engineering Research 12(20) 10205-10210
[13] Sudarshan E, Naik K.S, Kumar P.P 2020 Parallel approach for backward coding of wavelet trees with CUDA. ARPN Journal of Engineering and Applied Sciences 15(9), pp.1094-1100