Electronic Supplementary Information

An Efficient Enantioselective Approach to Multifunctionalized γ-Butyrolactone:
Concise Synthesis of (+)-Nephrosteranic Acid

Anju Gehlawat,^a Ranjana Prakash^a and Satyendra Kumar Pandey^a,b

^aSchool of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147 001, India, E-mail: skpandey@thapar.edu
^bDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi -221 005, India, Email: skpandey.chem@bhu.ac.in

Table of contents

1. General information and Experimental Section S2-S7
2. ℎ and ℇ spectra for compound 17 S8-S9
3. ℎ and ℇ spectra for compound 18 S10-S11
4. ℎ and ℇ spectra for compound 19 S12-S13
5. ℎ and ℇ spectra for compound 20 S14-S15
6. ℎ and ℇ spectra for anti-/syn-diastereomeric mixture of 21 S16-S17
7. ℎ and ℇ spectra for compound 21 S18-S19
8. ℎ and ℇ spectra for compound 22 S20-S21
9. ℎ and ℇ spectra for compound 23 S22-S23
10. ℎ and ℇ spectra for compound 1 S24-S25
11. ℎ and ℇ spectra for compound 1 (known in literature, ref. cited) S26
General methods

All reactions were carried out under argon or nitrogen in oven-dried glassware using standard glass syringes and septa. The solvents and chemicals were purchased from Merck and Sigma Aldrich chemical company. Solvents and reagents were purified and dried by standard methods prior to use. Progress of the reactions was monitored by TLC using precoated aluminium plates of Merck kieselgel 60 F254. Column chromatography was performed on silica gel (60-120 and 100-200 mesh) using a mixture of n-hexane and ethyl acetate. Optical rotations were measured on automatic polarimeter AA-65. IR spectra were recorded on Agilent resolution Pro 600 FT-IR spectrometer, fitted with a beam condensing ATR accessory. 1H and 13C NMR spectra were recorded in CDCl$_3$ (unless otherwise mentioned) on JEOL ECS operating at 400 and 100 MHz, respectively. Chemical shifts are reported in δ (ppm), referenced to TMS.

Experimental Section:

(R)-1-((4-methoxybenzyl)oxy)tridecan-2-ol, 17

A solution of decylmagnesium bromide freshly prepared from Mg turnings (0.493 g, 20.58 mmol) and decylbromide (3.40 g, 15.43 mmol) in dry THF, was added dropwise to a stirred solution of (R)-PMB-glycidyl ether 15a (2.0 g, 10.29 mmol) and CuI (195 mg, 1.029 mmol) in dry THF (20 mL) at -30 °C. The reaction mixture was stirred for 6 hours at the same temperature. After completion of reaction as monitored by TLC the reaction was quenched with saturated aq. NH$_4$Cl and extracted with ethyl acetate (3 x 20 mL), dried over anhydrous Na$_2$SO$_4$, concentrated in vacuo and purified by silica gel column chromatography to afford the (R)-alcohol derivative 17 (2.95 g, 85%) as white solid. R_f = 0.4 (hexane/EtOAc, 9.8:0.2, v/v); m.p. 186-187 °C; [α]$_{D}^{25}$ = - 2.78 (c = 1.0, CHCl$_3$); IR (CH$_2$Cl$_2$) ν: 3460, 2980, 1662, 1595, 1516, 1057, 937 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ: 7.26 (d, J = 8.72 Hz, 2H), 6.89 (d, J = 8.72 Hz, 2H), 4.47 (s, 2H), 3.80 (s, 3H), 3.75-3.81 (m, 1H), 3.47 (dd, J = 9.64, 3.24 Hz, 1H), 3.28 (dd, J = 9.60, 8.24 Hz, 1H), 2.41 (brs, 1H), 1.33-1.47 (m, 2H), 1.25-1.32 (m, 18H), 0.87 (t, J = 6.4 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 159.2, 130.0, 129.4, 113.8, 74.3, 72.9, 70.4, 55.2, 33.1, 31.9, 29.63, 29.59, 29.32, 25.5, 22.7, 14.1; HRMS (ESI), calcd for C$_{21}$H$_{36}$O$_3$ [M+H]$^+$: 337.2737, found 337.2741

(R)-tert-butyl((1-((4-methoxybenzyl)oxy)tridecan-2-yl)oxy)diphenylsilane, 18
To a stirred solution of alcohol derivative 17 (2.0 g, 5.94 mmol) in dry CH$_2$Cl$_2$ (30 mL) sequentially imidazole (606 mg, 8.91 mmol), tert-butylchlorodiphenylsilane (1.95 g, 7.12 mmol) and DMAP (108 mg, 0.89 mmole) were added at 0 °C and further the reaction mixture was continued to stirred at room temperature for 8 hours. After completion of reaction as monitored by TLC the reaction was quenched with saturated aq. ammonium chloride solution. The aqueous layer was extracted with CH$_2$Cl$_2$ (3 x 20 mL). The combined organic phase was washed with brine, dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure. Purification of crude product by silica gel column chromatography (EtOAc/hexane, 0.1:9.9) furnished the silyl ether derivative 18 (3.24 g) in 95% yield as colorless oil. R$_f$ = 0.5 (EtOAc/hexane 0.1:9.9); [α]$_D^{25}$ = +8.91 (c = 1.0, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) δ: 7.66 (tt, J = 5.96, 1.34 Hz, 4H), 7.31-7.41 (m, 6H), 7.08 (d, J = 8.72 Hz, 2H), 6.81 (d, J = 8.72 Hz, 2H), 4.25 (q, J = 18.80, 11.44 Hz, 2H), 3.82-3.86 (m, 1H), 3.79 (s, 3H), 3.30-3.37 (m, 2H), 1.11-1.50 (m, 2H), 1.19-1.31(m, 18H), 1.03 (s, 9H), 0.88 (t, J = 7.12 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 158.9, 136.0, 135.9, 134.6, 134.1, 130.5, 129.3, 129.2, 127.3, 127.2, 113.5, 73.6, 72.6, 72.2, 55.2, 34.3, 31.9, 29.7, 29.6, 29.5, 29.4, 27.0, 24.7, 22.7, 19.4, 14.1; HRMS (ESI), calcd for C$_{37}$H$_{54}$O$_3$Si [M+Na]$^+$: 597.3734, found 597.3737.

(R)-2-((tert-butyldiphenylsilyl)oxy)tridecan-1-ol, 19

To a stirred solution of 18 (2.50 g, 4.34 mmol) in acetonitrile: water (4:1, v/v, 30 mL) at 0 ºC CAN (5.76 g, 10.52 mmol) was added and the reaction mixture was stirred at room temperature for 2.0 hours. After completion of reaction as monitored by TLC, the reaction was quenched with brine (5 mL) solution and the aqueous layer was extracted with ethyl acetate (3 x 15 mL). The combined organic portion was dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/hexane 0.5:9.5) to afford the primary alcohol derivative 19 (1.79 g) in 91% yield as a white solid. R$_f$ = 0.5 (EtOAc/hexane 0.5:9.5); m.p. 147-148 °C; [α]$_D^{25}$ = -29.21 (c = 1.0, CHCl$_3$); IR (CH$_2$Cl$_2$) ν: 3329, 2755, 1660, 1589, 1581, 1509, 1161, 910 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ: 7.68 (dt, J = 8.04, 1.64 Hz, 4H), 7.38-7.45 (m, 6H), 3.73-3.79 (m, 1H), 3.45-3.57 (m, 2H), 1.84 (bri, 1H), 1.39-1.49 (m, 2H), 1.11-1.33 (m, 18H), 1.07 (s, 9H), 0.88 (t, J = 7.12 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 135.9, 135.7, 133.9, 133.8, 133.7, 139.8, 129.7, 127.7, 127.6, 74.1, 65.9, 33.5, 31.9, 29.6, 29.5, 29.4, 29.3, 27.0, 25.1, 22.7, 19.3, 14.1; HRMS (ESI), calcd for C$_{29}$H$_{46}$O$_2$Si [M+Na]$^+$: 477.3159, found: 477.3161.
ethyl \((R,E)-4-((\text{tert}-\text{butyldiphenylsilyl})\text{oxy})\text{pentadec-2-enoate}, 20\)

To a stirred solution of oxalyl chloride (628 mg, 0.427 mL, 4.95 mmol) in dry CH₂Cl₂ (2 mL) at -78 °C was added DMSO (798 mg, 0.725 mL, 10.24 mmol) in dry CH₂Cl₂ (2 mL) dropwise and stirred the reaction mixture for 30 min and then a solution of silyl protected alcohol derivative 19 (1.50 g, 1.52 mmol) in dry CH₂Cl₂ (10 mL) was added dropwise over 15 min at the same temperature. The reaction mixture was stirred for 30 min at -78 °C and 1 hours at -60 °C and then Et₃N (1.46 g, 2.02 mL, 14.54 mmol) was added dropwise at the same temperature and stirred for an additional 1 hour. The reaction mixture was allowed to warm to room temperature and diluted with water and CH₂Cl₂. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 15 mL) and the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to give the crude aldehyde, which was used in the next step after filter column purification.

To a solution of the above aldehyde in THF (10 mL) was added to a solution of (ethoxycarbonylmethylene)triphenylphosphorane (1.73 g, 4.95 mmol) in THF (20 mL). The reaction mixture was continuously stirred for 20 h at room temperature. After completion of reaction as monitored by TLC, it was then concentrated under reduced pressure and purified by silica gel column chromatography using EtOAc/hexane (1:9, v/v) as eluent to furnish the corresponding α, β- unsaturated ester derivative 20 (1.58 g, 92% over two steps) as a colorless thick syrupy liquid. Rₚ = 0.35 (EtOAc/hexane 1:9); [α]₂⁰ = +7.29 (c = 1.0, CHCl₃); IR (CH₂Cl₂) ν: 2952, 2861, 1728, 1655, 1356, 1187 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.68 (dd, J = 8.24, 1.36 Hz, 2H), 7.61 (dd, J = 7.80, 1.36 Hz, 2H), 7.35-7.45 (m, 6H), 6.86 (dd, J = 15.56, 5.04 Hz, 1H), 5.90 (dd, J = 15.56, 1.36 Hz, 1H), 4.34 (q, J = 6.44 Hz, 1H), 4.18 (dq, J = 14.20, 6.88, 2.33 Hz, 2H), 1.35-1.49 (m, 2H), 1.29 (t, J = 7.32, 3H), 1.11-1.29 (m, 18H), 1.08 (s, 9H), 0.88 (t, J = 6.88, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 166.7, 150.3, 135.8, 134.0, 133.5, 129.7, 129.6, 127.6, 120.0, 72.4, 60.3, 36.7, 31.9, 29.7, 29.6, 29.5, 29.4, 27.0, 26.9, 23.9, 22.7, 19.3, 14.2, 14.1; HRMS (ESI), calcd for C₃₃H₅₀O₅Si [M+H]⁺: 523.3602; found: 523.3599.

\((3R,4R)-4-((\text{tert}-\text{butyldiphenylsilyl})\text{oxy})-3-(\text{nitromethyl})\text{pentadecanoic acid}, 21\)
To a stirred solution of α, β-unsaturated ester derivative 20 (1.0 g, 1.92 mmol) in dry CH₂Cl₂ (15 mL) was added DIBAL-H (2.30 mL, 2.30 mmol, 1 M in hexane) under inert atmosphere at -78 °C. After stirring the reaction mixture for 1 hour at same temperature the reaction was quenched with saturated aqueous solution of sodium potassium tartrate and stirred for additional 30 min. The two phases were separated and aqueous phase was extracted with CH₂Cl₂ (3 x 15 mL). The combined organic layers extract was dried over anhydrous Na₂SO₄ and concentrated in vacuo to give α, β-unsaturated aldehyde which was used as such for the next step after filtration column using Celite.

To the above α, β-unsaturated aldehyde intermediate in dry methanol was added nitromethane (0.31 mL, 5.76 mmol), (S)-diphenyltrimethylsiloxymethylpyrrolidine (62 mg, 0.19 mmol) and benzoic acid (23 mg, 0.19 mmol) sequentially at room temperature. The reaction mixture was stirred for 16 h at room temperature. After completion of reaction as monitored by TLC the reaction was quenched with saturated aqueous NaHCO₃ solution. The organic layer was extracted with EtOAc (3 x 10 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo to furnish nitro-aldehyde intermediate which was used directly for the next step without further purification.

To a stirred solution of above nitro-aldehyde intermediate in DMF (10 mL) solvent oxone (2.30 g, 7.68 mmol) was added and the reaction mixture was stirred at room temperature for 12 hours. After completion of reaction as monitored by TLC, the reaction mixture was diluted with water and extracted with EtOAc (3 x 15 mL). The combined organic extract was washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo to get the crude acid. Purification of crude product by silica gel column chromatography (EtOAc/hexane 2:8, v/v) furnished the nitro-acid derivative 21 (870 mg, 84%, over three steps) as colorless solid. Rf = 0.4 (EtOAc/hexane, 1:4); m.p. 161-162 °C; [α]D²⁵ = + 16.52 (c = 1.0, CHCl₃); IR (CH₂Cl₂) ν: 3152, 2831, 1728, 1527, 1362 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.65 (t, J = 1.36 Hz, 2H), 7.63 (t, J = 1.40 Hz, 2H), 7.46-7.36 (m, 6H), 4.62 (dd, J = 13.28, 7.32 Hz, 1H), 4.49 (dd, J = 12.84, 6.44 Hz, 1H), 3.72 (dt, J = 5.48, 2.28 Hz, 1H), 2.73-2.92 (m, 1H), 2.67 (dd, J = 16.96, 5.04 Hz, 1H), 2.47 (dd, J = 16.92, 8.24 Hz, 1H), 1.11-1.45 (m, 20H), 1.04 (s, 9H), 0.88 (t, J = 6.4, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 177.4, 135.8, 135.7, 134.8, 133.7, 132.4, 130.1, 129.7, 127.9, 127.7, 127.5, 76.4, 72.8, 38.1, 33.8, 31.9, 31.0, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 27.0, 25.3, 22.7, 19.4, 14.1; HRMS (ESI), calcd for C₃₂H₄₀NO₅Si [M+H]+: 556.3453, found: 556.3455.
(4\textit{R},5\textit{R})-4-(nitromethyl)-5-undecyldihydrofuran-2(3H)-one, 22

To a stirred solution of compound 21 (600 mg, 1.07 mmol) in dry THF (15 mL) TBAF (1.29 mL, 1.0 M in THF, 1.29 mmol) was added dropwise via syringe and the reaction mixture was stirred at room temperature for 2 hours. After completion of reaction as monitored by TLC the reaction was quenched with saturated aqueous NH\textsubscript{4}Cl solution and aqueous phase was extracted with ethyl acetate (3 x 10 mL). The combined organic fractions were dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and concentrated in vacuo to get the crude product. The residue was purified by silica gel column chromatography (EtOAc/hexane, 3:2 v/v) to afford the nitro \(\gamma\)-butyrolactone derivative 22 (315 mg, 95%) as a colorless solid. \(R_f = 0.4\) (EtOAc/hexane 1.5:8.5); m.p. 137-138 °C; \([\alpha]_D^{25} = +28.26\) (c = 1.0, CHCl\textsubscript{3}); IR (CH\textsubscript{2}Cl\textsubscript{2}) \(\nu\): 1768, 1534, 1514, 1056, 937 cm-1; \(\ce{^1H}\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.53 (dd, \(J = 13.28, 6.88\) Hz, 1H), 4.45 (dd, \(J = 13.28, 7.44\) Hz, 1H), 4.28 (q, \(J = 12.84, 5.96\) Hz, 1H), 2.90 (dd, \(J = 17.88, 9.16\) Hz, 2H), 2.43 (dd, \(J = 17.88, 6.44\) Hz, 1H), 1.72-1.66 (m, 2H), 1.26-1.45 (m, 18 H), 0.88 (t, \(J = 6.44\), 3H); \(\ce{^13C}\) NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 174.1, 82.1, 76.4, 38.7, 34.7, 32.5, 31.9, 29.6, 29.5, 29.3, 29.3, 29.2, 25.2, 22.7, 14.1; HRMS (ESI), calcd for C\textsubscript{16}H\textsubscript{29}NO\textsubscript{4}\ [M+H]+: 300.2169, found 300.2159

(2\textit{R},3\textit{S})-5-oxo-2-undecyltetrahydrofuran-3-carboxylic acid, 23

To a stirred solution of nitro \(\gamma\)-butyrolactone derivative 22 (150 mg, 0.40 mmol) in dimethyl sulfoxide (5 mL) sodium nitrite (83 mg, 1.20 mmol) and acetic acid (0.22 mL, 4.00 mmol) were added and the reaction mixture was stirred at room temperature for 24 hours. After completion of reaction as monitored by TLC the reaction mixture was diluted with water, acidified with 10% aqueous solution of HCl (2 mL), extracted with ether (3 x 10 mL), dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}, concentrated in vacuo, and purified by silica gel column chromatography (EtOAc/hexane, 1:1 v/v) as eluent to furnish the \(\gamma\)-butyrolactone acid derivative 23 (134 mg, 94%) as a white solid. \(R_f = 0.4\) (EtOAc/hexane 7:3); m.p. 117-118 °C; \([\alpha]_D^{25} = +45.11\) (c = 0.25, CHCl\textsubscript{3}); \([\alpha]_D^{25} = +44.8\) (c = 0.25, CHCl\textsubscript{3}); \(\ce{^1H}\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.60-4.65 (m, 1H), 3.06-3.13 (m, 1H), 2.94 (dd, \(J = 17.88, 8.24\) Hz, 1H), 2.82 (dd, \(J = 17.88, 9.64\) Hz, 1H), 1.69-1.89 (m, 2H), 1.18-1.59 (m, 18 H), 0.88 (t, \(J = 6.88\), 3H); \(\ce{^13C}\) NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 175.4, 174.4, 81.8, 45.4, 35.4, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 25.2, 22.7, 14.1; HRMS (ESI), calcd for C\textsubscript{16}H\textsubscript{28}O\textsubscript{4} [M+H]+: 285.2060, found 285.2064.
(+)-Nephrosteranic acid, 1

To a stirred solution of γ-butyrolactone acid derivative 23 (60 mg, 0.21 mmol) in dry THF (2 mL) was added NaHMDS (0.46 mL, 1.0 M solution in THF, 0.46 mmol) at -78 °C in drop wise fashion and stirred the reaction mixture for 1 hour. Further, MeI (281 mg, 0.13 mL, 2.00 mmol) was added and the reaction was allowed to stirred at -78 °C for additional 2 hours. After completion of reaction the reaction mixture as monitored by TLC the mixture was allowed to warm up to -20 °C. The HCl (2N, 1.0 mL) was added to the reaction mixture and extracted with EtOAc (3 x 5 mL). The combined organic phases were dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure. The residue obtained was purified by preparative TLC (EtOAc/hexane, 1:1 v/v) to furnish the (+)-nephrosteranic acid 1 (58 mg, 93%) as white solid. R$_f$ = 0.4 (EtOAc/hexane, 1:1); m.p. 96-97 °C; [\(\alpha\)]$_D$25 +27.18 (c 1.50, CHCl$_3$), \{lit. \$^1\ [\alpha]$D^{25} +27.2 (c 1.45, CHCl$_3$, lit. \$^2\ [\alpha]$D^{25} +26.9 (c 0.14, CHCl$_3$)}; 1H NMR (400 MHz, CDCl$_3$) \(\delta\): 4.48 (dt, J = 8.72, 3.68 Hz, 1H), 2.95-3.04 (m, 1H), 2.71 (dd, J = 11.48, 9.64 Hz, 1H), 1.66-1.87 (m, 2H), 1.37 (d J = 7.32 Hz, 3H), 1.02-1.61 (m, 18H), 0.88 (t, J = 6.40, 3H); 13C NMR (100 MHz, CDCl$_3$) \(\delta\): 176.7, 175.7, 79.4, 53.9, 39.8, 34.9, 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 25.3, 22.7, 14.5, 14.1; HRMS (ESI), calcd for C$_{17}$H$_{30}$O$_4$ [M+H]$^+$: 299.2217; found: 299.2219.

References:

1. M. T. Barros, C. D. Maycock and M. R. Venture, *Org. Lett.*, 2003, 5, 4097-4099.

2. J. L. Nallasivam, R. A. Fernandes, *Org. Biomol. Chem.*, 2017, 15, 708-716.
1H NMR (400 MHz, CDCl$_3$/TMS)
13C NMR (100 MHz, CDCl$_3$/TMS)
1H NMR (400 MHz, CDCl$_3$/TMS)
\(^{13}\)C NMR (100 MHz, CDCl\textsubscript{3}/TMS)
\(^1\)H NMR (400 MHz, CDCl\(_3\)/TMS

\[\text{Diagram of NMR spectrum with chemical shifts and peaks marked.} \]
13C NMR (100 MHz, CDCl$_3$/TMS)
1H NMR (400 MHz, CDCl$_3$/TMS)
13C NMR (100 MHz, CDCl$_3$/TMS)
1H NMR (400 MHz, CDCl$_3$/TMS)

anti-diastereomer syn-diastereomer

X : parts per Million : 1H
13C NMR (100 MHz, CDCl$_3$/TMS)

anti-diastereomer syn-diastereomer
1H NMR (400 MHz, CDCl$_3$/TMS)

anti-diastereomer
13C NMR (100 MHz, CDCl$_3$/TMS)
1H NMR (400 MHz, CDCl$_3$/TMS)
13C NMR (100 MHz, CDCl$_3$/TMS)
1H NMR (400 MHz, CDCl$_3$/TMS)

![NMR spectrum](image-url)
13C NMR (100 MHz, CDCl$_3$/TMS)
1H NMR (400 MHz, CDCl/TMS)

This work
13C NMR (100 MHz, CDCl$_3$/TMS)

This work

X : parts per Million : 13C

S25
1H NMR (400 MHz, CDCl$_3$) and 13C NMR (100 MHz, CDCl$_3$) of 1

Synthesis by Fernandes et al. Org. Biomol. Chem., 2017, 15, 708-716