Development specifies, diversifies and empowers root immunity

Sim Üstünér*, Patrick Schäfer & Ruth Eichmann*

Abstract

Roots are a highly organised plant tissue consisting of different cell types with distinct developmental functions defined by cell identity networks. Roots are the target of some of the most devastating diseases and possess a highly effective immune system. The recognition of microbe- or plant-derived molecules released in response to microbial attack is highly important in the activation of complex immunity gene networks. Development and immunity are intertwined, and immunity activation can result in growth inhibition. In turn, by connecting immunity and cell identity regulators, cell types are able to launch a cell type-specific immunity based on the developmental function of each cell type. By this strategy, fundamental developmental processes of each cell type contribute their most basic functions to drive cost-effective but highly diverse and, thus, efficient immune responses. This review highlights the interdependence of root development and immunity and how the developmental age of root cells contributes to positive and negative outcomes of development-immunity cross-talk.

Keywords: cell identity; pattern-triggered immunity; plant growth; root body plan; root development

Subject Categories: Development; Immunology; Plant Biology

DOI: 10.15252/embr.202255631 | Received 23 June 2022 | Revised 10 October 2022 | Accepted 13 October 2022 | Published online 4 November 2022

EMBO Reports (2022) 23: e55631

Introduction

Healthy and efficient below-ground root systems are crucial for plant development and productivity. Plant roots anchor the plant in the ground and provide it with water and nutrients. Adverse conditions, especially those exacerbated by climate change, including extreme temperatures, flooding, drought, high salinity or pathogen infection, can impair root development and overall plant growth (Rivero et al., 2022). Supported by new ways of automated and noninvasive root phenotyping, the optimisation of root system architecture is becoming more and more accessible as a breeding target for improved resilience of crop plants to biotic and abiotic stress factors (e.g. de Dorlodot et al., 2007; Khan et al., 2016; Atkinson et al., 2019; Tracy et al., 2020; Wasson et al., 2020; Amtmann et al., 2022; Lynch, 2022). Those studies reveal that the root’s unique multicellular organisation plays an essential role in plant stress resilience. Plant roots have a strict cell type-based organisation that determines the root body structure and allows the assignment of a specific task to each cell type. The multifunctionality of roots is thus the result of their multicellularity, where each cell type adds its specific function to the overall functionality of roots (Petricka et al., 2012). Moreover, it equips roots with functional plasticity that essentially allows roots to operate under (often rapidly) changing environments (Hodge, 2004; Morris et al., 2017; Walker et al., 2017; Motte & Beeckman, 2019; Karlova et al., 2021). In this context, it is astonishing to see how microbes can affect root functionality and development. Importantly, roots serve as an interface for communication with a diverse set of soil-borne microbes (Fitzpatrick et al., 2020; Eichmann et al., 2021). The impact these organisms can have on plant development ranges from detrimental (pathogens), via neutral (commensals) to growth-promoting (mutualists) (Raaijmakers et al., 2009; Yu et al., 2019; Thoms et al., 2021). Some plant-colonising microbes can uncover the potential of plants to cope with environmental stress. Beneficial microbes not only attenuate adverse conditions but have positive effects on root development to help plants to survive under environmental stress conditions (Lugtenberg & Kamilova, 2009; Vacheron et al., 2013; Verbon & Liberman, 2016; Yadav et al., 2017). In turn, plant immune responses, although generally protective against plant pathogens, can have adverse effects. The observation that (excessive) immune activation can lead to reduced growth of roots, leaves and shoots and even to yield reductions in the absence of pathogens suggests that some defence- and development-related signalling processes may be interconnected (Huot et al., 2014; Reitz et al., 2015). Importantly, immune responses can vary in quality and quantity in different root zones and even root cell types (Poncini et al., 2017; Chuberre et al., 2018; Rich-Griffin et al., 2020; Zhou et al., 2020; Fröschel et al., 2021). Considering the fact that the genetic identity of a cell type specifies its individual functions to ascertain overall root development, the response of a cell type to stress can only be understood in the context of its developmental function. As the demand for food is tremendously increasing with a growing world population, it is crucial to understand the interconnections and interdependencies of regulatory processes of root development and immunity. While current studies mostly focus on younger root cells and tissue to uncover mechanisms underlying the regulation of growth under immunity, we just start to understand the immunity-
Plant roots possess a highly effective immune system

Root diseases caused by soil-borne pathogens are highly devastating for plants (Raaijmakers et al., 2009; Bodah, 2017; Katan, 2017). Such pathogens are mostly fungi (e.g. Rhizoctonia, Fusarium and Verticillium spp.) or oomycetes (e.g. Phytophthora and Pythium spp.) that can persist in the soil as spores, hyphae or sclerotia (Lockwood, 1988; Raaijmakers et al., 2009). Only a few pathogenic bacteria (e.g.Ralstonia solanacearum, Agrobacterium tumefaciens, Rhizobium rhizogenes and Streptomyces spp.) can survive in bulk soil over longer periods before they infect plant roots mostly through wounds or natural openings (Raaijmakers et al., 2009; Mansfield et al., 2012). Due to their persistence, soil-borne pathogens are generally hard to control in the field. This is very critical as they often have a broad host range, a wide geographical distribution and a high destructive potential (Raaijmakers et al., 2009; Mansfield et al., 2012; Bodah, 2017; Katan, 2017). Most concerning, their abundance is expected to increase with global warming (Delgado-Baquerizo et al., 2020). This growing future challenge requires the development of crops with improved root resistance traits.

Pattern-triggered immunity (PTI) is a critical line of plant defence against microbes (Jones & Dangl, 2006; Cook et al., 2015) and relies on the recognition of damage-associated molecular patterns (DAMPs) or conserved microbes-associated molecular patterns (MAMPs). Among the known MAMPs are proteins/peptides such as flagellin (active epitope flg22), elongation factor thermo unstable (EF-Tu, active epitope elf18), enzymatic MAMP of Xanthomonas (eMax), necrosis and ethylene-inducing peptide 1-like proteins (NLPs) or polygalacturonases, as well as pep tidoglycan, chitin (active epitope chi7) or a medium-chain 3-hydroxy fatty acid metabolite (active epitope (R)-3-hydroxydecanoic acid), and there are likely many others (Gómez-Gómez & Boller, 2000; Kunze et al., 2004; Kaku et al., 2006; Gust et al., 2007; Yamaguchi et al., 2010; Bartels et al., 2013; Jehle et al., 2013; Albert et al., 2015; Kutschera et al., 2019; Lee et al., 2021). DAMPs such as plant elicitor peptide 1 (Pep1) from Arabidopsis thaliana are endogenous signals generated by plants in response to biotic and abiotic stress (Boller & Felix, 2009; Chuberre et al., 2018; Rzemieniewski & Stegmann, 2022). Any MAMP or DAMP is recognised by specific pattern recognition receptors (PRRs) at the plasma membrane, which are receptor-like kinases (RLKs) or receptor-like proteins (RLPs). As reported for leaves, the PRRs FLAGELLIN SENSING 2 (FLS2), and PEP1 RECEPTORS PEPR1 and PEPR2 are expressed in roots and recognise flg22 or Pep1, respectively (Robatzek et al., 2006; Millet et al., 2010; Yamaguchi et al., 2010; Jacobs et al., 2011; Bartels et al., 2013; Wu et al., 2016). Upon pattern recognition and independently of immune signals from the shoot, complex downstream signalling processes are activated in roots, including a reactive oxygen species (ROS) burst and MITOGEN-ACTIVATED PROTEIN KINASE (MAPK or MPK) phosphorylation, which initiate a diversity of immune pathways that synergistically or autonomously activate transcriptional regulators to prompt a broad range of immune responses (Boudsocq et al., 2010; Jeworutzki et al., 2010; Jacobs et al., 2011; Beck et al., 2014; Wyrsch et al., 2015; Birkenbihl et al., 2017; Poncini et al., 2017; Yu et al., 2017; Rich-Griffin et al., 2020; Zhou & Zhang, 2020). Wounding, as observed at lateral root initiation sites or upon pathogen attack, can further boost PTI to protect those root cells from pathogen colonisation (Zhou et al., 2020). In the process of microbe recognition, the root immune system equally responds to pathogenic and beneficial microbes and triggers immune responses that limit or prevent their colonisation success (Jacobs et al., 2011; Pel & Pieterse, 2013; Courion et al., 2015; Striglis et al., 2018; Fröschel et al., 2021). Importantly, recent studies indicated cell type-specificity of root PTI. The ability of each root cell to activate a PTI response that is specific for each cell type might add to the robustness and thus effectiveness of root immunity (Rich-Griffin et al., 2020). This concept of cell-type-specific PTI responses is based on a strict organisation of the root body plan that essentially determines the diversity of cell functions.

Root body plan is driven by cell identity

Plant roots are structurally and functionally complex organs. We mainly refer to the roots of the model plant Arabidopsis, whose development and structure have been well described but may not always reflect the even higher complexity of the ones in other plant species. In longitudinal direction, the primary root is organised in root apical meristem (RAM), elongation zone (EZ) and differentiation zone (DZ) (Fig 1; Brady et al., 2007; Salvi et al., 2020). At the very tip of the root (apical meristem), the root cap facilitates soil penetration and guides the direction of growth through the perception of gravity. The root cap also functions as an environmental sensor and protects the meristematic stem cell niche from damage (Kumpf & Nowack, 2015). The stem cell niche, a group of undifferentiated mitotically active stem cells (or initials), which is arranged around rarely dividing quiescent centre (QC) cells at the base of the RAM, is the root organising centre from which all root tissues derive (Clowes, 1953; Dolan et al., 1993; van den Berg et al., 1997; Aichinger et al., 2012; de Luis Balaguer et al., 2017; Pardal & Heidstra, 2021). Cells that emerge from the stem cell niche subsequently divide in the RAM and then increase in length while passing through the EZ. Subsequently, cells differentiate and obtain specific genetically predefined functions. Emerging root hairs, for example, mark the beginning of the DZ (Datta et al., 2011; Topp & Benfey, 2012). The basis for the formation of lateral roots is also already being established when cells pass the RAM and EZ before they eventually emerge in the DZ (Laskowski & ten Tusscher, 2017; Banda et al., 2019). Based on their specific transcriptional signatures, 15 different cell types with presumably different biological functions can be distinguished in Arabidopsis roots (Birnbaum et al., 2003; Brady et al., 2007). Epidermis, cortex, endodermis and the pericycle around the vascular tissue (stele) are major cell types, which emerge from the stem cell niche and form cell files that appear as concentric rings in root cross-sections (Benfey & Scheres, 2000). Together with the root cap they form the core root body (Dolan et al., 1993; Birnbaum, 2016) (Fig 1). The stem cell niche determines this pattern of cell types as concentric files (Dolan et al., 1993; van den Berg...
et al., 1997; Pardal & Heidstra, 2021). In addition to root patterning, the stem cell niche functions in cell identity determination (Dinneny & Benfey, 2008). Stem cell divisions produce one cell with stem cell identity and a daughter cell that obtains cell type-specific identity depending on the position in the stem cell niche: Stem cells proximal to the QC found the stelle in the centre of the root, which consists of the primary vascular tissues, procambium and pericycle (Brady et al., 2007; Tomescu, 2021). The ground tissue initials next to the stelle initials generate two tissues, namely cortex and endodermis, following asymmetric cell divisions (Cruz-Ramirez et al., 2012; Pardal & Heidstra, 2021). Casparian strip cell wall impregnations and suberin depositions are hallmarks of apoplastic diffusion barrier formation during endodermis differentiation (Geldner, 2013; Barberon & Geldner, 2014). In Arabidopsis and other plant species, epidermis and lateral root cap cells also emerge from the same initials surrounding the QC through an asymmetric periclinal division followed by anticlinal divisions (Pardal & Heidstra, 2021). Lateral root cap cells differentiate into secretory cells (Arnaud et al., 2010; Kumpf & Nowack, 2015). The differentiated epidermis of Arabidopsis roots consists of alternating files of root hair and non-hair cells. This pattern of alternating cell types depends upon their position relative to the underlying cortex cells: Root hair-forming trichoblasts sit on the gap between two adjacent cortex cells, while non-hair-forming trichoblasts develop over a single cortical cell (Datta et al., 2011). Finally, columella cells derive from asymmetric anticlinal divisions of columella initials, which are located distally of the QC. Differentiating columella cells start to accumulate starch in amyloplasts immediately after the division of the columella stem cells and later undergo significant cytological changes when they transition into secretory cells (Arnaud et al., 2010; Kumpf & Nowack, 2015).

The formation, maintenance and consequently the specific function of each cell type are determined by cell identity regulators that, in general, are transcription factors (TFs) (Dolan et al., 1993; Moreno-Risueno et al., 2015; Shahan et al., 2021). Most of what is known about root patterning comes from studies in Arabidopsis. Recent comparative analyses of root cell type translatomes in tomato, rice and Arabidopsis have revealed functional conservation (especially in the root meristem) but also considerable divergence of transcriptional regulation in cell type-specific development, indicating limitations of translatable of single species analyses (Kajala et al., 2021). Cell identity TFs implement the root body plan that provides an organisational frame in which each root cell type fulfils a defined function, which is the basis for the multifunctionality and functional plasticity of roots. The root cap facilitates and guides gravitropic root growth into the soil. At the same time, it protects the stem cell niche and meristem from physical damage and infection by potentially pathogenic microbes (Iijima et al., 2008; Arnaud et al., 2010; Kumpf & Nowack, 2015; Kumar & Iyer-Pascuzzi, 2020; Driouich et al., 2021). Directional growth through the soil requires the perception and processing of various environmental cues such as gravity, physical obstacles, water and nutrient availability (Arnaud et al., 2010; Kumar & Iyer-Pascuzzi, 2020). Cells in the columella sense gravity with the help of sedimentation of starch-filled amyloplasts and then trigger an auxin-related growth response in the EZ (Su et al., 2017). The root cap may also sense touch stimulation and moisture gradients (Massa & Gilroy, 2003; Dietrich et al., 2017; Dietrich, 2018). Besides the epidermis, root cap cells take up a considerable amount of phosphate (Kanno et al., 2016). Soil penetration is facilitated by the production of polysaccharide-containing mucilage by secretory cells in the lateral root cap and the continuous shedding of border cells from the outermost layer of the root cap (Iijima et al., 2008; Arnaud et al., 2010; Kumar & Iyer-Pascuzzi, 2020; Driouich et al., 2021). Besides this, root cap exudates promote nutrient availability (Iijima et al., 2008). Epidermis and especially root hair cells provide an extended surface, which is crucial for water and selective nutrient uptake (Gilroy & Jones, 2000; Datta et al., 2011; Geldner, 2013; Barberon & Geldner, 2014; Salazar-Henao et al., 2016). Cortex cells participate in the symplastic transport of water and nutrients towards the vasculature (Geldner, 2013; Barberon & Geldner, 2014). A function of cortex cells in sensing water potential gradients in the soil has been proposed recently (Dietrich et al., 2017). Due to the presence of the primary wall-impregnating Casparian strip, the endodermis functions as an apoplastic diffusion barrier, which ensures selective nutrient uptake into the vasculature (Geldner, 2013; Robbins et al., 2014). Pericycle cells encompass the vascular tissue and can be subdivided into xylem pole and phloem pole pericycle cells. Some pericycle cells maintain mitotic competence for lateral root initiation. Pericycle cells also function in xylem loading and phloem unloading (Beeckman & De Smet, 2014; Tegeder & Hammes, 2018). The xylem functions in the root-to-shoot transport of water and nutrients but also of long-distance signalling molecules such as hormones, small peptides and proteins. By contrast, the phloem mediates the transport of photosynthates and nitrogen compounds (e.g. amino acids) from source to sink tissues (Notaguchi & Okamoto, 2015; Shabala et al., 2016; Augustin & Carlsbecker, 2018; Koenig & Hoffmann-Benning, 2020; Sakakibara, 2021). The strict organisation of the root is a prerequisite to accurately fulfill its multiple functions. However, root morphology displays a certain degree of plasticity based on the interference with cell identity TFs and networks.

Microbes alter fundamental root development processes for accommodation

The phenotypic and functional plasticity helps roots to adjust their morphology as part of the adaptation to changing environments (Hodge, 2004; de Jong & Leyser, 2012; Gifford et al., 2013; Gailllochet & Lohmann, 2015). This plasticity can further be exploited by microbes. Some members of the root microbiota can alter root morphology and/or function considerably, which may further impinge on root system architecture (Verbon & Liberman, 2016). Such morphological changes are based on microbial reprogramming of fundamental plant developmental pathways and indicate the potential for phenotypic plasticity even of older, differentiated root cells and tissue (e.g. see nodule organogenesis below). They are often associated with altered plant TF activities and involve cell cycle genes, suggesting that reprogramming of fundamental transcriptional networks is highly essential (Crespi & Frugier, 2008; Ichihashi et al., 2020; Kaw & Brady, 2022; Yang et al., 2022). However, with a few exceptions, underlying mechanisms are still poorly understood. Only recently, plant-associated microbes have been shown to be able to alter endodermal suberin depositions likely by repressing an abscisic acid (ABA)-dependent transcriptional network controlling root barrier functions (Sala-González et al., 2021). A well-studied system to show morphological changes in roots involves the
bacterial pathogen *Rhizobium rhizogenes* (formerly *Agrobacterium rhizogenes*). *R. rhizogenes* changes plant organ morphology (Veena & Taylor, 2007; Bourras *et al.*, 2015), known as hairy root disease, by integrating a part of a root-inducing plasmid containing so-called root oncogenic loci genes into the host cell genome. The expression of root oncogenic loci genes leads to the formation of new roots as a disease phenotype (Veena & Taylor, 2007; Hooykaas & Hooykaas, 2021), which involves induced expression of KNOTTED1-LIKE HOMEOBOX (KNOX) TFs and cell cycle regulator genes in the host plant (Stieger *et al.*, 2004). KNOX TFs are known to participate in meristem maintenance and organ patterning (Hake *et al.*, 2004). Hairy root formation may thus employ regulatory mechanisms of host cell dedifferentiation and propagation (Stieger *et al.*, 2004). Beneficial plant growth-promoting bacteria (e.g. *Bacillus* spp., *Pseudomonas* spp.) or fungi (e.g. *Trichoderma* spp.) can increase primary and/or lateral root length, or promote the formation of lateral roots or root hairs, thus rendering root systems more efficient and supporting shoot growth especially under unfavourable conditions (Lugtenberg & Kamilova, 2009; Glick, 2012; Vacheron *et al.*, 2013; Yadav *et al.*, 2017). In addition to rewiring transcriptional networks, altering root system architecture often involves changes in endogenous levels of growth-related plant hormones, microbial production of phytohormones or hormone mimic strategies (Sukumar *et al.*, 2013; Ludwig-Müller, 2020; Eichmann *et al.*, 2021). The cellular reprogramming during root nodule organogenesis in legumes by N-fixing rhizobia under nitrogen limitation involves host cell manipulation at different levels. Besides plant hormones (particularly cytokinins and auxin), the process employs
transcriptional networks and regulatory components of the plant’s endogenous developmental programme (Crespi & Frugier, 2008; de Zélicourt et al., 2012; Ichihashi et al., 2020; Lin et al., 2020; Yang et al., 2022). Upon bacterial attachment to the root and perception of bacteria-derived Nod factors through Nod factor receptors, colonised young root hairs curl, cortical cells start to divide to form a nodule primordium, and a plant-derived infection thread is established, which allows the bacteria to invade the developing nodule (Oldroyd et al., 2011). In certain legumes (e.g. Medicago truncatula), the growing primordia establish and retain an apical meristem that ensures indeterminate growth. Following division in the meristematic zone of such indeterminate nodules, cells redifferentiate and obtain new identities and functions to support bacterial accommodation and nitrogen fixation (Crespi & Frugier, 2008; de Zélicourt et al., 2012). Accumulating evidence suggests that nodule organogenesis shows some overlap with regulatory processes and transcriptional networks in (lateral) root formation (Bishop & Bennett, 2019; Ichihashi et al., 2020; Soyano et al., 2021; Yang et al., 2022). Interestingly, the TFs WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and PLETHORA (PLT) 1–4, which function as cell identity regulators and determine fundamental processes in root patterning (Aida et al., 2004; Sarkar et al., 2007; Burkart et al., 2022), are expressed in nodule primordia and/or meristems and are required for nodule meristem maintenance in M. truncatula (Franssen et al., 2015). In addition, the TF LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16), which promotes pericycle cell divisions during lateral root development, is also a key regulator of cortical cell divisions during nodule organogenesis (Schissl et al., 2019; Soyano et al., 2019). While LBD16 is usually expressed in lateral root primordia in the pericycle, the TF NODULE INCEPTION 1 (NIN1) cytokinin-dependently induces expression of LBD16 also in cortical nodule primordia, where it regulates cell divisions in collaboration with the NIN1 target NUCLEAR FACTOR-Y (NF-Y). Conversely, ectopic expression of the nodulation genes NIN1 or NF-Y can induce cell divisions in lateral root primordia in the pericycle (Soyano et al., 2013, 2019). In a similar way, NIN1 may control a SCARECROW (SCR)-SHORTROOT (SHR) module that, unlike the one in Arabidopsis (see below), is present in cortex cells of legume plants (Dong et al., 2021; Yang et al., 2022). In response to rhizobial signals, this SCR-SHR module can initiate cortical cell divisions during nodule primordia formation and is required for nodule organogenesis (Dong et al., 2021). These studies show that changes in spatial regulation of development-related transcriptional networks may be critical to initiate de novo organ development (Bishop & Bennett, 2019). This indicates the ability of microbes to rearrange fundamental processes of plant development as a prerequisite for successful plant colonisation. In addition, it visualises root developmental processes and morphological traits that support root resilience under unfavourable or even harmful environments.

Concept of cell identity in the regulation of immunity

While microbes are able to interfere with central root cell identity regulators, cell identity networks have been shown to be connected with stress-adaptive plant signalling (Dinneny et al., 2008; Iyer-Pascuzzi et al., 2011; Rich-Griffin et al., 2020). In terms of immunity, it is important to distinguish between preformed and inducible mechanisms. The former ranges from structural (e.g. cell walls) to metabolic mechanisms (e.g. phytoanticipins) and can greatly vary in different root cell types. The cell wall of the endodermis, for instance, is an unbreachable barrier for a number of pathogens because of its fortification with suberin and lignin (Robbins et al., 2014; Fröschel et al., 2021). Inducible mechanisms, in turn, encompass what is generally defined as PTI. For roots, it is worth noting that PTI perception and initial core immune signalling cascades are present and functional in different root cell types, and that the intensity of the cell type-specific immune responses does not depend on the level of PRR expression (Wyrsch et al., 2015; Poncini et al., 2017). However, the downstream transcriptionally regulated immunity gene networks significantly differ between cell types resulting in cell type-specific immunity (Rich-Griffin et al., 2020; Fröschel et al., 2021). This cell type-specificity of immunity enables each cell type to ultimately launch different immune responses. While fundamental developmental processes apparently take a key role in cell type-specific immunity, it remains unclear at which stage in the signalling cascade PTI diversifies between cell types and which regulatory principles determine cell type-specific immunity (Box 1).

Box 1. In need of answers

- Which regulatory principles determine cell type-specific immunity?
- To what extent do the developmental cell age and differentiation affect cell type-specific immunity signalling?
- Which cell identity transcription factors participate in cell type-specific immune responses?
- How conserved is the regulation of cell type-specific immune responses in different plant species?
- Does the type and/or composition of pattern recognition receptor complexes affect growth-immunity trade-offs?
- How does immune signalling interfere with the cell cycle or other fundamental growth regulatory processes?
- Can growth-immunity trade-offs be genetically uncoupled?
(type) identities throughout their life (Moreno-Risueno et al., 2015; Dr apek et al., 2018). This means that the stem cell-defined identity needs to be maintained to preserve the root body plan. For instance, the formation of cortex and endodermis cells requires the GRAS family TFs SCR and SHR in close interaction with the BIRD/INDE-TERMINATE DOMAIN (IDD) C2H2 TF family (Long et al., 2017). In cortex cells, SCR is the master regulator of gene networks that maintain identity, which is supported by its interaction with the BIRDS IDD4/IMPERIAL EAGLE (IME), IDD8/NUCTRACKER and IDD10/JACKDAW (Moreno-Risueno et al., 2015). SHR, in turn, activates SCR and the TF MYB DOMAIN PROTEIN 36 (MYB36) to maintain the identity of endodermis cells (Liberman et al., 2015; Dr apek et al., 2018). Consistently, ectopic expression of SHR in the Arabidopsis root epidermis results in an additional subependidermal cell layer with endodermis identity (Drapek et al., 2018). Atrichoblast differentiation is regulated by a complex consisting of the MYB TFs WERE-WOLF (WER) and MYB23, the basic helix-loop-helix (bHLH) TFs GLABRA3 (GL3), EGL3 and MYC1, and the WD40-repeat TF TRANSPARENT TESTA GLABRA 1 (TTG1). The WER-bHLH-TTG complex directly regulates the homeodomain-leucine zipper TF GL2 to suppress the bHLH TF ROOT HAIR DEFFECTIVE 6 (RHD6) and to induce MYB23, CAPRICE (CPC), TRYPHTICHON (TRY) and ENHANCER OF TRY AND CPC (ETC1). CPC, TRY and ETC1 move to trichoblasts to regulate their differentiation with RHD6 as key TF.

TRANSPARENT TESTA GLABRA 1 (TTG1) is involved in the accommodation of arbuscules and subsequent nutrient exchange in the mutualistic interaction with arbuscular mycorrhizal fungi (Lanfranco et al., 2018). The suberin-containing endodermis cell layer can physically prevent pathogens from entering into the vascular stele and even limit root colonisation by beneficial microbes (Geldner, 2013; Robbins et al., 2014; Fröschel et al., 2021; preprint: Verbon et al., 2022). Recent findings indicate the endodermis-specific synthesis of certain phenylpropanoid metabolites required for Casparian strip formation and suberin deposition in this cell type. This compartmentalised metabolite production might support fast adjustments to barrier formation when required (Andersen et al., 2021). It is conceivable that compartmentalised production of specific phenylpropanoid metabolites might support the generation of defence-related compounds as part of a cell type-specific immune responses as well. Interestingly, alterations in endodermal diffusion barrier functions affect plant microbiome compositions, and, vice versa, microbes can change Caspian strip and suberin depositions and thus plant mineral nutrient homeostasis. This renders the endodermis a potential regulatory hub for microbiome assembly in connection with the nutrient acquisition (Sals-González et al., 2021; preprint: Verbon et al., 2022). It has to be noted, that Casparian strip formation and suberin deposition in the endodermis occur in distinct developmental root zones (e.g. Andersen et al., 2021), adding spatiotemporal complexity to immunity regulation in this specific cell type, which has not yet been addressed experimentally, especially in the context of immunity. Pericycle cells can accumulate high levels of ROS, e.g. during lateral root development or salt stress (Jiang et al., 2012; Manzano et al., 2014). If ROS accumulation in the pericycle plays a role in root-microbe interactions remains to be shown. In xylem vessels, inducible structural and chemical barriers such as tyloses, or depositions of gels, lignins, suberins and calllose can prevent both, vertical and horizontal spread of vascular pathogens (Kashyap et al., 2021). The phloem mediates the transport of molecules for long-distance signalling during development or biotic and abiotic stress responses, e.g. hormones, lipids, peptides and nucleic acids (Notaguchi & Okamoto, 2015; Shabala et al., 2016; Augstein & Carlsbecker, 2018; Koenig & Hoffmann-Benning, 2020; Sakakibara, 2021).

By overexpressing the concerted regulation of cell type-specific gene networks, the functional concept of cell identity TFs is to form, maintain and differentiate cell types (Brady et al., 2007). This concept further supports the functional plasticity of roots. It enables roots to effectively adapt to changing environments, e.g. microbial challenge, and supports the functional plasticity of roots. It enables roots to launch PTI responses according to its functional identity (Fig 2B; Rich-Griffin et al., 2020; Kawa & Brady, 2022). Based on our recent findings, developmental/cell identity TFs and immunity-associated TFs form pairs to bind to promoters of immunity genes and to regulate them in a cell type-specific manner (Fig 3; Rich-Griffin et al., 2020). This cell identity-coupled regulatory system, which diversifies and invigorates overall root immunity, allows cell types to respond with high plasticity and to act jointly to adjust immune responses to attacking pathogens (Rich-Griffin et al., 2020; Fröschel et al., 2021). This might further explain why the intensity of PTI
responses is highly cell type-dependent (Wyrsch et al., 2015; Emonet et al., 2021). The importance of cell identity TFs in immunity was shown for IDD4/IME, which coordinates the formation of cortex and endodermis cells from stem cells (Long et al., 2015; Moreno-Risueno et al., 2015). Upon flg22 treatment, IDD4/IME phosphorylation by MPK6 results in transcriptional reprogramming of gene networks. The respective phosphosite is conserved among IDD proteins and found to be phosphorylated under different conditions (Völz et al., 2019). In addition, the shoot stem cell regulator WUSCHEL (WUS) activates immunity upon viral attack to protect stem and nascent daughter cells from viral infection (Wu et al., 2020). Importantly, WUS belongs to the WOX TF family, which strongly suggests that this immune strategy is conserved in roots. This indicates that cell identity TFs, and thus fundamental developmental networks, participate in and even sustain plant immunity against root diseases. Incorporating cell type-specific housekeeping functions via cell identity TFs would further represent a very cost-effective strategy to operate a highly diverse and robust immune system, where any given MAMP/DAMP activates divergent immune responses in different cell types. It would not be surprising that plants have evolved such a sophisticated (rather than static and uniform) immune system in roots, considering that the rhizosphere hosts many diverse beneficial microbes that roots depend on (e.g. for nutrient supply or defence priming), while roots are at the same time attractive sites for pathogen entry (Chuberre et al., 2018). It will be interesting to learn which (other) cell identity TFs participate in cell type-specific immune responses, and, given the potential species-specific divergence in cell type-specific transcriptional
regulation (Kajala et al., 2021), whether these findings can be translated to other plant species (Box 1). In addition, it is currently unclear whether the cell identity-immunity cross-talk takes place in cells of any developmental age or whether it is specific for differentiated cells (Box 1).

Effect of immunity on plant growth

As effective as it is to link development with immunity to stop pathogens, PTI itself can significantly impair plant growth, which can further influence reproductive processes and translate into crop

Figure 3. TFs connect cell identity and immunity gene networks to confer robust, cell type-specific immunity.

In the epidermis and other cell types, respective cell identity TFs pair up with immunity-associated TFs to regulate cell type-specific expression of immunity genes by binding to their promoters. This strategy allows the launch of cell type-specific immune responses according to the specific developmental functions of each cell type. The interconnection of development/cell identity with cell type-specific immunity gene networks diversifies the overall root immunity and may add to the robustness and adaptive plasticity of root responses to microbes under varying environments (compare Rich-Griffin et al., 2020).
yield decline (Huot et al., 2014; Ning et al., 2017). Growth-immunity trade-offs are best studied in Arabidopsis but occur in crops as well (Smedegaard-Petersen & Tolstrup, 1985). Since immunity and growth require a high amount of energy and other resources, it was hypothesised that growth-immunity trade-offs are the consequence of resource limitations and/or their imperfect reallocation. In such a model, plants would prioritise immunity over growth as cells and tissues may not be able to allocate sufficient resources to serve both processes at the same time (Herms & Mattson, 1992; Brown, 2003; Huot et al., 2014; Monson et al., 2022). Though resources might be limited under certain circumstances, the reallocation model might not be suitable to explain the phenomenon in general. While a range of MAMPs/DAMPs that are detected by RLK PRRs inhibit growth (e.g. flg22, elf18, Pep1), others such as chi7 or NLP (e.g. NLP20), which are ligands of RLP PRRs, do not (Böhm et al., 2014; Poncini et al., 2017; Pruitt et al., 2021). It will be interesting to see whether the type of PRR or rather the composition of receptor complexes are determinants of growth-immunity trade-offs (Box 1).

The interactions of immunity and growth pathways are manifold. Only recently, it has been shown that the pathogen-responsively regulated long noncoding RNA salicylic acid (SA) biogenesis controller 1 (SABC1) balances plant immunity and growth by modifying the expression of a single TF, NAC DOMAIN CONTAINING PROTEIN 3 (Liu et al., 2022). In addition, plant peptides with growth regulatory functions were shown to control immune responses. GOLVEN2, a member of a family of peptides also known as ROOT MERISTEM GROWTH FACTOR (RGFs) and, for example, perceived by the RGF1 INSENSITIVE 3 receptor, can increase PRR abundance and act as a positive regulator of PTI and antibacterial resistance in Arabidopsis leaves (Stegmann et al., 2022). In a similar way, FERONIA (FER) and its RAPID ALKALINIZATION FACTOR (RALF) ligands are known to regulate plant growth, development and immune signalling pathways (Haruta et al., 2014; Stegmann et al., 2017; Xiao et al., 2019; Zhang et al., 2020).

Proteins long thought to have a principal function in immunity were later found to be important for growth and vice versa. Hence, the growth-immunity boundaries are fluent and an interdependency apparently exists, which is based on components shared by PTI and development-associated receptor complexes and signalling cascades. That growth penalties are dependent on the detection of specific MAMPs/DAMPs by PTI receptors, and the onset of respective PTI core signalling processes has been shown in Arabidopsis. For instance, flg22 or elf18-triggered growth inhibition in Arabidopsis was not detected in the PRR mutants fls2 and EF-Tu receptor (efr-1), respectively (Gómez-Gómez & Boller, 2000; Zipfel et al., 2006; Jacobs et al., 2011). BRASSINOSTEROID (BR) INSENSITIVE 1 (BR1)-ASSOCIATED RECEPTOR KINASE (BAK1)/SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 3 (SERK3) was among the first proteins shown to function as co-receptor of many PRRs, as well as of the growth-regulating BR receptor BR1I (Li et al., 2002; Chinchilla et al., 2007). Later, downstream signalling components such as SUPPRESSOR OF BAK1-INTERACTING RECEPTOR-LIKE KINASE 1 1 (SOBR1), RPM1-INDUCED PROTEIN KINASE (RIPK) or various MAPK family members were identified to contribute to growth-immunity trade-offs (Gao et al., 2009; Du et al., 2016; Li et al., 2021; Sun & Zhang, 2022). Interestingly, BR pathway members are some sort of bi-functional constants in the PTI-development cross-talk. Besides BAK1, a number of other BR signalling proteins, including BR-SIGNALLING KINASE 1 or BOTRYTIS-INDUCED KINASE 1, were found to be part of PTI signalling (Lin et al., 2013; Shi et al., 2013; Choi et al., 2021), indicating a major role of BR in the regulation of PTI and growth-immunity trade-offs (Belkhadir et al., 2012; Lozano-Durán & Zipfel, 2015; Ortiz-Morea et al., 2020). Consistent with this, the TF HOMOLOGUE OF BEE2 INTERACTING WITH IBH 1 (HBI1) and BRASSINAZOLE RESISTANT 1 (BZR1) are activated downstream in the BR pathway to induce growth-related genes and suppress PTI genes, while flg22 inhibits HBI1 transcription (Lozano-Durán et al., 2013; Fan et al., 2014). HBI1 is a direct target of BZR1, and overexpression of HBI1 or constitutively active BZR1 impairs various PTI responses and PTI-induced growth inhibition, revealing a role of the BZR1-HBI1 module in the mediation of growth-immunity trade-offs. HBI1 also controls ROS homeostasis by differentially regulating the expression of genes involved in ROS production and detoxification (Neuser et al., 2019). This and the observation that the ROS-responsive TF MYB30 regulates gene networks involved in both root growth and plant immunity (Mabuchi et al., 2018), supports the notion that ROS might be one of the links in the growth-immunity cross-talk (Camejo et al., 2016; Dwivedi et al., 2021; Mase & Tsukagoshi, 2021).

In addition to BR, various other plant hormones participate in the regulation of growth-immunity trade-offs. A number of excellent publications exist on this highly complex field (Kazan & Manners, 2009; Denancé et al., 2013; Huot et al., 2014; Lozano-Durán & Zipfel, 2015; Smakowska et al., 2016; Guo et al., 2018), and therefore, we address this topic only briefly here. In terms of growth-immunity trade-offs, hormone signalling might merge at some focal points. For instance, HBI1 regulation is further affected by gibberellic acid (GA) and auxin (Fan et al., 2014). If there is a pathogen threat, plant hormones might mediate a switch from a “growth mode” to a “defence mode” (Reitz et al., 2015) as reported for plants facing salt stress (Geng et al., 2013). For instance, the crucial defence hormone SA antagonises activities of the plant growth hormone auxin by suppressing auxin signalling genes (e.g. auxin receptors) and by interfering with auxin transporter protein activities in Arabidopsis (Wang et al., 2007; Kazan & Manners, 2009; Tan et al., 2020; Ke et al., 2021). A cross-talk between GA-mediated growth and JA-mediated defence signalling pathways is thought to participate in balancing growth-immunity trade-offs (Yang et al., 2012; Huot et al., 2014; Smakowska et al., 2016). DELLA proteins repress growth-related TFs unless they become degraded in the presence of growth-promoting GA. flg22 treatment suppresses GA-mediated DELLA degradation, which may cause the observed flg22-induced root growth inhibition (Navarro et al., 2008; Huot et al., 2014). Furthermore, infection with a bacterial pathogen can stabilise DELLA proteins in an SA-dependent manner. DELLA accumulation suppresses immune responses and a resulting negative feedback loop may fine-tune the growth-immunity balance (Li et al., 2019). While these studies have identified genes and pathways involved in the regulation of growth-immunity trade-offs, it remains unclear which growth regulatory processes and respective proteins are targeted by PTI and hormone signalling, and how.

Root growth is based on mitotic cell division and cell elongation regulated by the mitotic cell cycle and the endocycle, respectively (Breuer et al., 2014; Edgar et al., 2014; Sablowski & Carnier Dornelas, 2014; Sablowski & Gutierrez, 2022). Therefore, growth-immunity trade-offs are likely related to immunity effects on
meristematic and thus developmentally young and undifferentiated cells and tissues. As in all eukaryotes, the plant cell cycle is composed of specific phases: the DNA synthesis phase, in which DNA is duplicated, and the mitotic phase, where the mitosis takes place. These phases are separated by gap phases (Dewitte & Murray, 2003). In order to protect genome integrity and its transmission to the next generations during cell division, the transition between the phases is tightly controlled by cell cycle regulators such as CYCLIN-DEPENDENT KINASES (CDks) and CYCLINS (CYCs) (Blomme et al., 2014; Polyn et al., 2015). According to endogenous and exogenous changes, plants can regulate their cell cycle machinery (Rymen & Sugimoto, 2012; Pedroza-García et al., 2022). This allows them to survive nonfavourable conditions. CDks and CYCs are thought to play a role in regulating cell division rates in response to environmental stress (Carneiro et al., 2021). It is known that abiotic stress, for instance, may lead to growth inhibition in plants by direct or indirect interference with the cell cycle. Salt treatment leads to root growth inhibition in an ABA-dependent manner (Geng et al., 2013). Recently it was shown that salt stress reduces the accumulation of CDks (e.g. CYCB1;1) and some CYCs (e.g. CYCA2;1) in Arabidopsis roots (West et al., 2004; Qi & Zhang, 2020; Carneiro et al., 2021). In a similar way, biotic stress might affect cell cycle regulators and thus cell division. For instance, infection of Arabidopsis with geminiviruses changes the expression of cell cycle regulators, and overexpressing CYCD3;1 or the cell cycle-promoting E2F TRANSCRIPTION FACTOR 3 strongly increases plant resistance against geminivirus attack (Ascencio-Ibáñez et al., 2008). Little is known about biotic stress and cell cycle cross-talk. Hormones certainly take part directly or indirectly in underlying regulatory mechanisms. DELLA proteins, for instance, promote CDKA- and CDKB-inhibitors (Achard et al., 2009; Reitz et al., 2015), which may indicate a role of the defence hormone JA by its known function in growth inhibition based on its ability to downregulate CDKA1 and CYCB1;1 (Chen et al., 2011; Qi & Zhang, 2020). Taken together, while we have a better understanding about upstream processes involved in the growth-immunity cross-talk, further studies are needed to understand why or how immune signalling is connected to the mitotic cell cycle and/or endocycle as fundamental growth regulatory processes (Box 1).

Conclusions

The versatility of root immunity results in robustness that is greatly dependent on its interconnection with developmental networks and regulators. Cell identity regulators, as masterminds of the functional identity of each cell type, might play the most critical role here. Intriguingly, these cell identity regulators are TFs, and by teaming up with immunity TFs, they connect developmental and immunity gene networks to translate a rather uniform, since cell type-unspecific, PTI signalling into the activation of cell type-specific immunity gene networks (Rich-Griffin et al., 2020). As a result, each cell type contributes its specific immune responses based on its developmentally determined functional capability (Fig 1). In this way, roots might be able to fine-tune their versatile interactions with a highly complex rhizosphere microbiome. The high level of polymorphism in MAMPs observed in microbes may indicate evolutionary paths to evade or even manipulate PTI signalling to facilitate host susceptibility (Colaianni et al., 2021; Ma et al., 2021). Most importantly, the outcome of growth/development-immunity cross-talks differs depending on the developmental cell age. While the interconnection with development results in a highly versatile immunity in cell types of the root DZ, immunity most likely interferes with developmental signalling and inhibits growth in young cells of the RAM (Fig 2). In addition to MAMPs, a diversity of inducible DAMPs (also called phytoalexins) with a strong growth inhibitory activity have been identified in recent years (Hou et al., 2021; Rzemieniowski & Stegmann, 2022). Interestingly, not all MAMPs interfere with growth, raising the question of whether immunity-induced growth inhibition represents an evolutionary artefact or indicates cell cycle checkpoint activation as part of DNA damage control. It is, however, likely that immunity has to interfere with the cell cycle machinery as the principal regulator of root growth. With regard to breeding efforts towards highly resistant crop plants with unimpaired growth, it will be interesting to see, whether these growth-immunity trade-offs can eventually be uncoupled (Box 1).

Acknowledgement

This work was funded by the Justus Liebig Universität Gießen (Germany). Open Access funding enabled and organized by Projekt DEAL.

Author contributions

Ruth Eichmann: Conceptualization; visualization; writing — original draft; writing — review and editing. Sim Üstüner: Conceptualization; writing — original draft; writing — review and editing. Patrick Schäfer: Conceptualization; visualization; writing — original draft; writing — review and editing.

Disclosure and competing interests statement

The authors declare that they have no conflict of interest.

References

Achard P, Gusti A, Cheminant S, Alioua M, Dhournt S, Coppins F, Beemster GTS, Genschik P (2009) Gibberelin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19: 1188–1193
Achinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63: 615–636
Aida M, Beis D, Heidstra R, Willemsen V, Bilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119: 109–120
Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H et al (2015) An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nat Plants 1: 15140
Ammann A, Bennett MJ, Henry A (2022) Root phenotypes for the future. Plant Cell Environ 45: 595–601
Anderson TG, Molina D, Kilian J, Franke RB, Ragni I, Geldner N (2021) Tissue-autonomous phenylpropanoid production is essential for establishment of root barriers. Curr Biol 31: 965–977
Arnaud C, Bonnot C, Desnos T, Nussaume L (2010) The root cap at the forefront. C R Biol 333: 335–343
Ascencio-Ibáñez JF, Sossan R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148: 436–454
de Zéligncourt A, Diet A, Manon J, LaFont C, Ariel F, Moison M, Zahaf O, Crespi M, Gruber V, Frugier F (2012) Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. *Plant J.* 70: 220 – 230

Delgado-Bauquerizo M, Guerra CA, Cano-Díaz C, Egídio E, Wang JT, Eisenhauer N, Singh BK, Maestre FT (2020) The proportion of soil-borne pathogens increases with warming at the global scale. *Nat Clim Chang* 10: 550 – 554

Denancé N, Sánchez-Vallet A, Coffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. *Front Plant Sci* 4: 155

Dewitte W, Murray JAH (2003) The plant cell cycle. *Annu Rev Plant Biol* 54: 235 – 264

Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. *Cell* 86: 423 – 433

Dietrich D (2018) Hydrotopism: how roots search for water. *J Exp Bot* 69: 2797 – 2791

Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S, Fujii N et al (2017) Root hydrotopism is controlled via a cortex-specific growth mechanism. *Nat Plants* 3: 17057

Dinneny JR, Benfey PN (2008) Plant stem cell niches: standing the test of time. *Cell* 132: 553 – 557

Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady Du C, Li X, Chen J, Chen W, Li B, Li C, Wang L, Li J, Zhao X, Lin J, Dong W, Zhu Y, Chang H, Wang C, Yang J, Shi J, Gao J, Yang W, Lan L, Wang DW, Dwivedi SL, Reynolds MP, Ortiz R, Edgar BA, Zielke N, Gutierrez C, Eichmann R, Richards L, Schiefelbein J, Benfey PN (2016) The endodermis. *Annu Rev Plant Biol* 64: 531 – 558

Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1999) Cellular organization of the Arabidopsis thaliana root. *Development* 119: 71 – 84

Dong W, Zhu Y, Chang H, Wang C, Yang J, Shi J, Gao J, Yang W, Lan L, Wang Y et al (2021) An SHR-SCR module specifies legume cortical cell fate to enable nodulation. *Nature* 589: 586 – 590

Drapek C, Sparks EE, Benfey PN (2017) Uncovering gene regulatory networks controlling plant cell differentiation. *Trends Genet* 33: 529 – 539

Drapek C, Sparks EE, Marhavy P, Taylor I, Andersen TG, Hennacy JH, Geldner N, Benfey PN (2018) Minimum requirements for changing and maintaining endodermis cell identity in the Arabidopsis root. *Nat Plants* 4: 586 – 595

Driouch A, Gaudry A, Pawlak B, Moore J (2021) Root cap–derived cells and mucilage: a protective network at the root tip. *Prototaxia* 258: 1 – 7

Du C, Li X, Chen J, Chen W, Li B, Li C, Wang L, Li j, Zhao X, Lin J et al (2016) Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. *Proc Natl Acad Sci USA* 113: E8326 – E8334

Dwivedi SL, Reynolds MP, Ortiz R (2021) Mitigating tradeoffs in plant breeding. *iScience* 24: 102965

Edgar BA, Zielek N, Gutierrez C (2014) Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. *Nat Rev Mol Cell Biol* 15: 197 – 210

Eichmann R, Richards L, Schäfer P (2021) Hormones as go-betweens in plant developmental plasticity. *Trends Genet* 37: 142 – 154

Emonet A, Zhou F, Vacheron J, Heiman CM, Déhnenvauv Tendon V, Ma KW, Schulze-Lefert P, Keel C, Geldner N (2021) Spatially restricted immune responses are required for maintaining root monostematic activity upon detection of bacteria. *Curr Biol* 31: 1012 – 1028

Fan M, Bai MY, Kim JG, Wang T, Oh E, Chen L, Park CH, Son SH, Kim SK, Mudgett MB et al (2014) The DHLH transcription factor HB1 mediates the trade-off between growth and pathogen-associated molecular-pattern-triggered immunity in Arabidopsis. *Plant Cell* 26: 828 – 841

Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPl, Dangl JL (2020) The plant microbiome: from ecology to reductionism and beyond. *Annu Rev Microbiol* 74: 81 – 100

Fransen X, Tao X, Kulkova O, Wan X, Bisseling T, Scheres B, Heidstra R (2015) Root developmental programs shape the Medicago truncatula nodule meristem. *Development* 142: 2941 – 2950

Fröscher C, Komorek J, Attard A, Marsell A, Lopez-Arboleda WA, Le Berre J, Wolf E, Geldner N, Waller F, Korte A et al (2021) Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. *Cell Host Microbe* 29: 299 – 310

Gaillocchet C, Lohmann JU (2015) The never-ending story: from pluripotency to plant developmental plasticity. *Development* 142: 2237 – 2249

Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X et al (2009) Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. *Cell Host Microbe* 6: 34 – 44

Geldner N (2013) The endodermis. *Annu Rev Plant Biol* 64: 531 – 558

Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PMY, Tham C, Duan L, Dinneny JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. *Plant Cell* 25: 2132 – 2154

Gifford ML, Banta JA, Katari MS, Hulsmans J, Chen L, Ristova D, Tranchina D, Purugganan MD, Coruzzi GM, Bimbam KD (2013) Plasticity regulators modulate specific root traits in discrete nitrogen environments. *PLoS Genet* 9: e1003760

Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. *Trends Plant Sci* 5: 56 – 60

Glück B (2012) Plant growth-promoting bacteria: mechanisms and applications. *Scientifica* 2012: 963401

Gómez-Gómez L, Boller T (2000) FL52: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. *Mol Cell* 5: 1003 – 1011

Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium-legume symbioses: the crucial role of plant immunity. *Trends Plant Sci* 20: 186 – 194

Guo Q, Major IT, Howe GA (2018) Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. *Curr Opin Plant Biol* 44: 72 – 81

Gust AA, Biswas R, Lenz HD, Raufut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G et al (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. *J Biol Chem* 282: 32338 – 32348

Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. *Annu Rev Cell Dev Biol* 20: 125 – 151

Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. *Science* 343: 408 – 411

Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signaling: opportunities and challenges for improving plant-microbe interactions. *J Exp Bot* 63: 3429 – 3444

Hawes M, Allen C, Turgeon BG, Curiango-Rivera G, Minh Tran T, Huskey DA, Xiong Z (2016) Root border cells and their role in plant defense. *Annu Rev Phytopathol* 54: 143 – 161

Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. *Cell* 101: 555 – 567

Hermes DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. *Q Rev Biol* 67: 283 – 335

Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. *New Phytol* 162: 9 – 24
Jeworutzki E, Roelfsema MRG, Ansch
Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio
Kashyap A, Planas-Marqu
Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey
Jones JDG, Dangl JL (Kajala K, Gouran M, Shaar-Moshe L, Mason GA, Rodriguez-Medina J, Kawa D,
Ichihashi Y, Hakoyama T, Iwase A, Shirasu K, Sugimoto K, Hayashi M (Hou S, Liu D, He P (Iijima M, Morita S, Barlow PW (Iijima M, Morita S, Barlow PW (2022) Structure and function of the root cap. Plant Prod Sci 11: 17–27
iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey
PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell 21: 770 – 782
Jacobs S, Zeichmann B, Molitor A, Trujillo M, Petutschchnig E, Lipka V, Kogel KH, Schafer P (2011) Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol 156: 726 – 740
Jehle AK, Lipschis M, Albert M, Fallahzadeh-Maghami V, Forst U, Mueller K, Felix G (2013) The receptor-like protein RemAX of Arabidopsis detects the microbe-associated molecular pattern Emax from Xanthomonas. Plant Cell 25: 2330 – 2340
Jeworutzki E, Roelfsema MRC, Anschutz U, Krol E, Elzenega JTM, Felix G, Boller T, Hedrich R, Becker D (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. Plant J 62: 367 – 378
Jiang C, Belfield EJ, Mithani A, Visscher A, Ragoussis J, Mott R, Smith JA, Harberd NP (2012) ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J 31: 4359 – 4370
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444: 323 – 329
Kajala K, Couran M, Shaar-Moshe L, Mason GA, Rodriguez-Medina J, Kawa D, Pauluzzi G, Reynoso M, Canto-Pastor A, Manzano C et al (2021) Innovation, conservation, and repurposing of gene function in root cell type development. Cell 184: 3333 – 3348
Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Doehmae N, Takio K, Minami E, Shibuya N (2011) The receptor-like cytoplasmic kinase BIK1 regulates broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol 156: 726 – 740
Kebreab E, de Vrieze W, Pistorius S, Bredie WLP, Van der Flier WS (2009) The interplay of phyla and bacteria in the caecilian gut microbiota. Microb Ecol 57: 701 – 711
Ke M, Ma Z, Wang D, Sun Y, Wen C, Huang D, Chen Z, Yang L, Tan S, Li R et al (2021) Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropism growth via Remorin-dependent lipid nanodomain organisation in Arabidopsis thaliana. New Phytol 229: 963 – 978
Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front Plant Sci 7: 1584
Koenig A, Hoffmann-Benning S (2020) The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep 40: BS12039329
Kumar N, Iyer-Pascuzzi AS (2020) Shedding the last layer: mechanisms of root cap cell release. Plan Theory 9: 308
Kumpf RP, Nowack MK (2015) The root cap: a short story of life and death. J Exp Bot 66: 5651 – 5662
Kunze C, Zipfel C, Rotbezsek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16: 3496 – 3507
Kutscher A, Dawid C, Cisic N, Schmid C, Raasch L, Gerster T, Schaffer M, Smakowska-Luzan E, Belkhadir Y, Vlot AC et al (2019) Bacterial medium chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science 364: 178 – 181
Lanfranco I, Fiorilli V, Gustajhr C (2018) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol 220: 1031 – 1046
Laskowski M, ten Tusscher KH (2017) Periodic lateral root priming: what makes it tick? Plant Cell 29: 432 – 444
Lee DH, Lee HS, Belkhadir Y (2021) Coding of plant immune signals by surface receptors. Curr Opin Plant Biol 62: 102044
Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110: 213 – 222
Li Y, Yang Y, Hu Y, Liu H, He M, Yang Z, Kong F, Liu X, Hou X (2019) DELLA and EDS1 form a feedback regulatory module to fine-tune plant growth-defense tradeoff in Arabidopsis. Mol Plant 12: 1485 – 1498
Li P, Zhao L, Qi F, Htwe NMPS, Li Q, Zhang D, Lin F, Shang-Guan K, Liang Y (2021) The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system. Mol Plant 14: 1652 – 1667
Liberman LM, Sparks EE, Moreno-Risueno MA, Petricka JJ, Benfey PN (2015) MYB836 regulates the transition from proliferation to differentiation in the Arabidopsis root. Proc Natl Acad Sci USA 112: 12099 – 12104
Lin W, Lu D, Gao X, Jiang S, Ma X, Wang Z, Mengiste T, He P, Shan L (2013) Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BKI1. Proc Natl Acad Sci USA 110: 12114 – 12119
Lin J, Frank M, Reid B (2020) No home without hormones: how plant hormones control legume nodule organogenesis. Plant Commun 1: 100104
Liu N, Xu Y, Li Q, Cao Y, Yang D, Liu S, Wang X, Mi Y, Liu Y, Ding C et al (2022) A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host Microbe 30: 1124 – 1138
Lockwood JL (1988) Evolution of concepts associated with soilborne plant pathogens. Annu Rev Phytopathol 26: 93 – 121
Long Y, Smet W, Cruz-Ramirez A, Castelijns B, De Jonge W, Mahonon AP, Bouchez BP, Perez GS, Akhmanova A, Scheres B et al (2015) Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. Plant Cell 27: 1185 – 1199
Long Y, Stahl Y, Weidtkamp-Peters S, Postma M, Zhou W, Goedhart J, Sánchez-Pérez MI, Gadella TWJ, Simon R, Scheres B et al (2017) In vivo FRET-FIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature 548: 97 – 102
Lozano-Durán R, Zipfel C (2013) Trade-off between growth and immunity: role of brassinosteroids. Trends Plant Sci 20: 12 – 19

© 2022 The Authors
EMBO reports 23: e55631 | 2022 13 of 16
Lozano-Durán R, Macho AP, Bouttou F, Segonzac C, Somssich IE, Zipfel C (2013) The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. *Elife* 2: e00983

Ludwig-Müller J (2020) Synthesis and hydrolysis of auxins and their conjugates with different side-chain lengths: are all products active auxins? *Period Biol* 121–122: 81 – 96

Lugtenberg B, Kamiova F (2009) Plant-growth-promoting rhizobacteria. *Annu Rev Microbiol* 63: 541 – 556

Lynch JP (2022) Harnessing root architecture to address global challenges. *Plant* J 109: 415 – 431

Ma KW, Niu Y, Jia Y, Ordon J, Copeland C, Edemont A, Geldner N, Guan R, Stolze SC, Nakagami H et al (2021) Coordination of microbe-host homeostasis by crosstalk with plant innate immunity. *Nat Plants* 7: 814 – 825

Mabuchi K, Maki H, Itaya T, Suzuki T, Nomoto M, Sakaoka S, Morikami A, Higashiyama T, Tada Y, Busch W et al (2022) Shaping root cell elongation, and plant immune responses. *Proc Natl Acad Sci USA* 115: E4710 – E4719

Mansfield J, Genin S, Magoni S, Citovsky V, Srirayyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. *Mol Plant Pathol* 13: 614 – 629

Manzano C, Pailler-Bena M, Casimiro I, De Rybel B, Orman-Ligeza B, Van Isterdael G, Beeckman T, Draye X, Casero P, Del Pozo JC (2014) The emerging role of reactive oxygen species signaling during lateral root development. *Plant Physiol* 165: 1105 – 1119

Mase K, Tsukagoshi H (2021) Reactive oxygen species link gene regulatory networks during Arabidopsis root development. *Front Plant Sci* 12: 660274

Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of *Arabidopsis thaliana*. Plant J 33: 435 – 445

Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, VVerk-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. *Plant Cell* 22: 973 – 990

Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT (2022) Coordinated resource allocation to plant growth-defense tradeoffs. *New Phytol* 233: 1051 – 1066

Moreno-Risueno MA, Sozzani R, Yadimci GC, Petricka JJ, Vernoux T, Blilou I, Alonso J, Winter CM, Ohler U, Scheres B et al (2015) Transcriptional regulation of tissue formation throughout root development. Science 350: 426 – 430

Morris EC, Griffiths M, Golebiowska A, Mairhofer S, Burt-Dessey J, Goh T, von Wangenheim D, Atkinson B, Sturrock C, Lynch JP et al (2017) Shaping 3D root system architecture. *Curr Biol* 27: R919 – R930

Motte H, Beeckman T (2019) The evolution of root branching: increasing the level of plasticity. *J Exp Bot* 70: 785 – 793

Moussaief A, Rogachev I, Brodsky L, Malitsky S, Toal TW, Belcher H, Yativ M, Brady SM, Benfey PN, Aharoni A (2013) High-resolution metabolic mapping of cell types in plant roots. *Proc Natl Acad Sci USA* 110: E1232 – E1241

Navarro L, Barri R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. *Curr Biol* 18: 650 – 655

Neuser J, Metzen CC, Dreyer BH, Feulner C, van Dongen JT, Schmidt RR, Schippers JMH (2019) HBL1 mediates the trade-off between growth and immunity through its impact on apoplastic ROS homeostasis. *Cell Rep* 28: 1670 – 1678

Ning Y, Liu W, Wang C (2017) Balancing immunity and yield in crop plants. *Trends Plant Sci* 22: 1069 – 1079

Notaguchi M, Okamoto S (2015) Dynamics of long-distance signaling via plant vascular tissues. *Front Plant Sci* 6: 161

Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. *Annu Rev Genet* 45: 119 – 144

Ortiz-Moreira FA, He P, Shan L, Russinova E (2020) It takes two to tango - molecular links between plant immunity and brassinosteroid signalling. *J Cell Sci* 133: jcs246728

Pardal R, Heidstra R (2021) Root stem cell niche networks: it’s complexed! Insights from Arabidopsis. *J Exp Bot* 72: 6727 – 6738

Pedroza-García JA, Xiang Y, De Veylder L (2022) Cell cycle checkpoint control in response to DNA damage by environmental stresses. *Plant* J 109: 490 – 507

Pel MJ, Pieterse CMJ (2013) Microbial recognition and evasion of host immunity. *J Exp Bot* 64: 1237 – 1248

Petrik J, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. *Annu Rev Plant Biol* 63: 563 – 590

Polyn S, Willems A, De Veylder L (2015) Cell cycle entry, maintenance, and exit during plant development. *Curr Opin Plant Biol* 23: 1 – 7

Poncini L, Wyrsch I, Dénervaud Tendon V, Vorley T, Boller T, Geldner N, Métraux J-P, Lehmann S (2017) In roots of *Arabidopsis thaliana*, the damage-associated molecular pattern AtPEP1 is a stronger elicitor of immune signalling than fgl22 or the chitin hexamer. *PloS One* 12: e0185808

Pruitt RN, Locci F, Wanke F, Zhang L, Saie SC, Joe A, Karella D, Hua C, Fröhlich K, Wan WL et al (2021) The EDL1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. *Nature* 598: 495 – 499

Qi F, Zhang F (2020) Cell cycle regulation in the plant response to stress. *Front Plant Sci* 10: 1765

Raaijmakers J, Paulitz T, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. *Plant and Soil* 321: 341 – 361

Reitz MU, Gifford M, Schauer P (2015) Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition. *J Exp Bot* 66: 2187 – 2197

Rich-Griffin C, Eichmann R, Reitz MU, Hermann S, Woolley-Allen K, Brown PE, Oldroyd GED, Murray JD, Poole PS, Downie JA (2020) Regulation of cell type-specific immunity networks in Arabidopsis roots. *Plant Cell* 32: 2742 – 2762

Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022) Developing climate-resilient crops: improving plant tolerance to stress combination. *Plant* J 109: 375 – 389

Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. *Genes Dev* 20: 537 – 542

Robbins NE (2022) Interplay between cell growth and plant immune signalling than flg22 or the chitin heptamer. *Planta* 282: 1 – 10

Rymen B, Sugimoto K (2012) Tuning growth to the environmental demands. *Curr Opin Plant Biol* 15: 683 – 690

Rzemieniewski J, Stegmann M (2022) Regulation of pattern-triggered immunity and growth by phytohormones. *Curr Opin Plant Biol* 68: 102230

Sablowski R, Carrière Dornelas M (2014) Interplay between cell growth and cell cycle in plants. *J Exp Bot* 65: 2703 – 2714

Sablowski R, Gutierrez C (2022) Cycling in a crowd: coordination of plant cell division, growth, and cell fate. *Plant Cell* 34: 193 – 208

Sakakibara H (2021) Cytokinin biosynthesis and transport for systemic nitrogen signalling. *Plant* J 105: 421 – 430

Salas-González I, Rey G, Flis P, Custódio V, Gopaluchan D, Bakhroum N, Dew TP, Suresh K, Franke RB, Dangl JL et al (2021) Coordination between...
microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371: eabd0695

Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143: 1848–1858

Salvi E, Di Mambo R, Sabatini S (2020) Dissecting mechanisms in root growth from the transition zone perspective. J Exp Bot 71: 2390–2396

Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446: 811–814

Saslowsky D, Winkel-Shirley B (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27: 37–48

Schiefelbein J, Huang L, Zheng X (2014) Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops. Front Plant Sci 5: 47

Schissel K, Lilley JLS, Lee T, Tamvakis I, Kohlen W, Bailey PC, Thomas A, Shabala S, White RG, Djordjevic MA, Ruan YL, Mathesius U, Saslowsky D, Winkel-Shirley B (2022) SCOPING T-DNA gene of Agrobacterium rhizogenes confers meristematic competence to differentiated cells. Plant Physiol 135: 1798–1808

Stringlis IA, Proietti S, Hickman R, Van Verk MC, Zamioudis C, Pietere CMJ (2018) Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune effectors reveal signatures of adaptation to mutualists. Plant J 93: 166–180

Su SH, Gibbs NM, Jancewicz AL, Masson PH (2017) Molecular mechanisms of root gravitropism. Curr Biol 27: R964–R972

Sukumar P, Legué V, Vayssière A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ 36: 909–919

Sun T, Zhang Y (2022) MAP kinase cascades in plant development and immune signaling. EMBO Rep 23: e53817

Tan S, Abas M, Verstraeten I, Glanc M, Molnár G, Hajný J, Lasák P, Petrik I, Russinova E, Petrášek J et al (2020) Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Curr Biol 30: 381–395

Tegeder M, Hammes U (2018) The way out and in: phloem loading and unloading of amino acids. Curr Opin Plant Biol 43: 16–21

Thoms D, Liang Y, Haney CH (2021) Maintaining symbiotic homeostasis: how do plants engage with beneficial microorganisms while at the same time restricting pathogens? Mol Plant Microbe Interact 34: 462–469

Tomescu AMF (2021) The stele – a developmental perspective on the diversity and evolution of primary vascular architecture. Biol Rev Camb Philos Soc 96: 1263–1283

Topp CN, Beney PN (2012) Growth control of root architecture. In: Plant Biotechnology and Agriculture, Altman A, Hasegawa PM (eds), pp 373–382. London: Elsevier

Tracy SR, Nagel KA, Postma FA, Fassbender H, Wasson A, Watt M (2020) Crop improvement from phenotyping roots: highlights reveal expanding opportunities. Trends Plant Sci 25: 105–118

Vacheron J, Desbrosses C, Bouffaud ML, Touraine B, Moe¯ne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Frigerio-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4: 356

van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287–289

Veena V, Taylor C (2007) Agrobacterium rhizogenes: recent developments and promising applications. In: Vitro Cell Dev Biol Plant 43: 383–403

Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21: 218–229

Verbon EH, Liberman LM, Zhou J, Yin J, Pietere CMJ, Benfey PN, Stringis IA, de Jonge R (2022) Cell-type specific transcriptomics reveals roles for root hairs and endodermal barriers in interaction with beneficial rhizobacterium. bioRxiv https://doi.org/10.1101/2022.05.09.491085 [PREPRINT]

Vives-Peris V, de Olias C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39: 3–17

Völz R, Kim SK, Mi J, Rawat AA, Veluchamy A, Mariappan KG, Rayapuram N, Daviere JM, Achard P, Bilou I et al (2019) INDETERMINATE-DOMAIN 4 (ID4) coordinates immune responses with plant-growth in Arabidopsis thaliana. PloS Pathog 15: e1007499

Walker L, Boddington C, Jenkins D, Wang Y, Grunland JT, Huismans J, Kumar S, Patel D, Moore JD, Carter A et al (2017) Changes in gene expression in...
space and time orchestrate environmentally mediated shaping of root architecture. *Plant Cell* 29: 2393–2412

Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. *Curr Biol* 17: 1784–1790

Wasson AP, Nagel KA, Tracy S, Watt M (2020) Beyond digging: noninvasive root and rhizosphere phenotyping. *Trends Plant Sci* 25: 119–120

West G, Inz/C19e D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. *Plant Physiol* 135: 1050–1058

Wu Y, Xun Q, Guo Y, Zhang J, Li J et al (2016) Genome-wide expression pattern analyses of the Arabidopsis leucine-rich repeat receptor-like kinases. *Mol Plant* 9: 289–300

Wu H, Qu X, Dong Z, Luo L, Shao C, Forner J, Lohmann JU, Xu M, Liu X et al (2020) WUSCHEL triggers innate antiviral immunity in plant stem cells. *Plant Cell Environ* 42: 2860–2870

Yu Y, Jia T, Chen X (2017) The ‘how’ and ‘where’ of plant microRNAs. *New Phytol* 216: 1002–1017

Yu K, Pieterse CMJ, Bakker PAHM, Berendsen RL (2019) Beneficial microbes going underground of root immunity. *Plant Cell Environ* 42: 2860–2870

Zhang X, Yang Z, Wu D, Yu F (2020) RALF–FERONIA signaling: linking plant immune response with cell growth. *Plant Commun* 1: 100084

Zhou JM, Zhang Y (2020) Plant immunity: danger perception and signaling. *Cell* 181: 978–989

Zhou F, Emonet A, Dénervaud Tendon V, Marhavy P, Wu D, Lahaye T, Geldner N (2020) Co-incidence of damage and microbial patterns controls localized immune responses in roots. *Cell* 180: 440–453

Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts *Agrobacterium*-mediated transformation. *Cell* 125: 749–760

License: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.