Anisotropic optical properties of detwinned BaFe$_2$As$_2$

Christopher C. Homes,¹, ∗ Thomas Wolf,² and Christoph Meingast², †

¹ Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973, USA
² Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

(Dated: July 1, 2020, version 2.1)

The optical properties of a large, detwinned single crystal of BaFe$_2$As$_2$ have been examined over a wide frequency range above and below the structural and magnetic transition at $T_N \approx 138$ K. Above T_N the real part of the optical conductivity and the two infrared-active lattice modes are almost completely isotropic; only the lattice modes show a weak polarization dependence just above T_N. For $T < T_N$, the free-carrier response is anisotropic, being larger along the a axis than the b axis below ≈ 30 meV; above this energy the optical conductivity is dominated by the interband contributions, which appear to be isotropic. The splitting of the low-energy infrared-active mode below T_N is clearly observed, and the polarization modulation of the new modes may be used to estimate that the crystal is $\approx 80\%$ detwinned. The high-frequency mode, with the threefold increase in strength of the lower branch below T_N and nearly silent upper branch, remains enigmatic.

PACS numbers: 63.20.-e, 78.20.-e, 78.30.-j

I. INTRODUCTION

In the pantheon of iron-based superconductors, the AeFe$_2$As$_2$ (“122”) materials, where $Ae = Ca$, Sr, or Ba, are of particular importance because of the many ways in which superconductivity may be induced [1–15]. At room temperature they are paramagnetic metals, but as the temperature is reduced they undergo a structural transition from a tetragonal ($I4/mmm$) to an orthorhombic ($Fmnm$) unit cell, which is accompanied by a magnetic transition and the formation of spin-density-wave-like (SDW) order where the moments are aligned in the a-b planes; ferromagnetically (FM) along the b axis, and antiferromagnetically (AFM) along the a axis. In the case of BaFe$_2$As$_2$, this transition occurs at $T_N \approx 138$ K [16]. In the orthorhombic phase, the crystals are heavily twinned. Early optical studies of the in-plane optical properties of BaFe$_2$As$_2$ examined the average of both orientations in the SDW state [17–19]; however, the application of uniaxial stress along the (110) direction for the tetragonal unit cell results in a nearly twin-free sample [20, 21]. Transport [22, 23], as well as optical measurements [24, 25], of detwinned samples below T_N reveal an anisotropic response where the conductivity along the AFM direction is higher than that along the FM direction; it has been remarked that this is a counterintuitive result as one would normally expect the conductivity to be higher along the FM direction [24]. While the designs of the clamped cells used to mechanically detwin single crystals for optical studies are quite elegant [24, 25], this approach necessarily requires that the size of the imaging spot is smaller than the crystal, leading to a reduced signal and limiting the ability to track weak spectral features such as lattice modes.

In this work we examine the temperature dependence of the optical properties of a large single crystal of BaFe$_2$As$_2$ that has been detwinned through the application of a symmetry-breaking strain, based on differential thermal expansion [26]. While previous studies of detwinned BaFe$_2$As$_2$ have been performed [24, 25], the current study employs overfilling-technique [27] whereby the entire crystal face may be examined, allowing the optical conductivity and the infrared-active modes to be studied. The electronic properties are more or less isotropic for $T > T_N$. The relatively large size of the sample allows the two normally infrared-active modes above T_N to be identified; the lattice modes show a slight polarization dependence just above T_N in response to the applied strain. For $T < T_N$ the free-carrier response is anisotropic, being higher along the a direction, in agreement with previous work. Interestingly, the interband contributions are essentially isotropic. Below T_N the degeneracy of the infrared-active vibrations is lifted and they split into two new modes that are optically-active along either the a or b axis; by examining the polarization modulation of the low-frequency modes below T_N, it is possible to estimate that the sample is about 80% detwinned. The behavior of the high-frequency mode is very curious, with one branch increasing dramatically in strength, while the other remains largely silent. This technique for detwining crystals may be used to allow further detailed optical studies of, e.g., the Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ family of materials.

II. EXPERIMENT

Large single crystals of BaFe$_2$As$_2$ were grown by a self-flux method [26]. The crystals have well-defined growth faces, allowing the a axis in the tetragonal phase to be

* homes@bnl.gov
† christoph.meingast@kit.edu
identified. A piece of thin glassfiber reinforced plastic (GFRP) was cut and shaped to match the crystal and attached using epoxy with the fibers oriented along the (110) direction in the tetragonal phase, shown in the inset of Fig. 1(a). It has been demonstrated that the difference of the thermal expansion parallel and perpendicular to the fiber direction of the GFRP substrate is comparable to the orthorhombic distortion in BaFe$_2$As$_2$ near T_N, resulting in a large symmetry breaking strain; this technique has been used successfully to measure the resistivity and susceptibility anisotropies in BaFe$_2$As$_2$ [26]. The entire arrangement was glued to the tip of an optically-black cone. The temperature dependence of the reflectivity has been measured above and below T_N over a wide frequency range (2 meV to over 3 eV) using an overfilling technique in combination with in situ evaporation [27]; the results are shown in the infrared region in Figs. 1(a) and 1(b) for light polarized along the a and b axes in the orthorhombic phase, respectively. Above T_N the reflectivity along the two polarizations is nearly identical; only the reflectivity at 150 K along the b axis appears to be slightly higher than its counterpart along the a axis. Below T_N the optical properties are strongly anisotropic. A plasma-like edge develops in the reflectivity for both polarizations. For $T \ll T_N$ the low frequency reflectivity approaches unity, while above ≈ 20 meV the reflectivity decreases rapidly before forming a plateau above ≈ 50 meV; however, the reflectivity levels and the width of the plasma-like edge are very different along the a and b directions, in agreement with previous optical studies of this material [24, 25, 28]. Additional structure is observed in the mid-infrared region before the reflectivity approaches the values for $T \gtrsim T_N$ above about 0.5 eV (the temperature dependence of the reflectivity is shown over a wide range in Fig. S1 of the Supplementary Material [29]). Superimposed on the reflectance are two sharp features attributed to the infrared-active lattice modes at ≈ 95 and 256 cm$^{-1}$ [30], which display an anisotropic response below T_N. While the reflectance is a useful quantity, it is a combination of the real and imaginary parts of the dielectric function, and as such, is not an intuitive quantity. The complex dielectric function, $\varepsilon(\omega) = \varepsilon_1 + i\varepsilon_2$, has been determined from a Kramers-Kronig analysis of the reflectivity. At low frequency, a metallic Hagen-Rubens extrapolation, $R(\omega) = 1 - A\sqrt{\omega}$ was employed, where A is chosen to match the value of the reflectance at the lowest measured frequency. Above the highest-measured frequency point the reflectance was assumed to be constant to 8×10^4 cm$^{-1}$, above which a free-electron approximation ($R \propto \omega^{-4}$) was assumed [31].

III. RESULTS AND DISCUSSION

The temperature-dependence of the real part of the optical conductivity is shown for light polarized along the a and b axis in Figs. 2(a) and 2(b), respectively. Above T_N the real part of the optical conductivity for the two polarizations are almost identical; however, below T_N, there is a remarkable anisotropy below ≈ 300 cm$^{-1}$ where the conductivity along the a direction is larger than along b, in agreement with other work [24, 25]. In addition to the broad features associated with the free-carrier response and the interband excitations, there are narrow lattice modes which also display an anisotropic response. The behavior of the electronic properties will be examined first, followed by the lattice modes.

A. Electronic response

The optical properties of this multiband material have been studied extensively in the twinned materials and are described by a Drude-Lorentz model where at least two different contributions to the free-carrier response are considered [32], resulting in the complex dielectric
function,
\[
\epsilon(\omega) = \epsilon_\infty - \sum_{j} \frac{\omega_{p,j}^2}{\omega^2 + i\omega/\tau_{D,j}} + \sum_{k} \frac{\Omega_k^2}{\omega_k^2 - \omega^2 - i\omega\gamma_k},
\]

where \(\epsilon_\infty\) is the real part of the dielectric function at high frequency, \(\omega_{p,j}^2 = 4\pi\epsilon_0 e^2/m^*\) and \(1/\tau_{D,j}\) are the plasma frequency and scattering rate for the delocalized (Drude) carriers for the \(j\)th band, respectively; \(\omega_k, \gamma_k\) and \(\Omega_k\) are the position, width, and oscillator strength of the \(k\)th vibration or bound excitation (the intensity is proportional to \(\Omega_k^2\)). The complex conductivity, \(\delta(\omega)\), is calculated from \(\epsilon(\omega)\). The complex dielectric function, \(\delta(\omega) = \sigma_1 + i\sigma_2 = -2\pi\epsilon(\epsilon(\omega) - \epsilon_\infty)/Z_0\), where \(Z_0 \approx 377 \, \Omega\) is the impedance of free space. The real and imaginary parts of the complex conductivity have been fit simultaneously to Eq. (1) using a non-linear least-squares technique.

Above \(T_N\), the reflectivity and the optical conductivity show relatively little polarization dependence. Although the features are rather broad, just above \(T_N\) at 150 K, the fits to the optical conductivity yield a narrow Drude component (D1), \(\omega_{p,D_1} \approx 4100 \, \text{cm}^{-1}\) and \(1/\tau_{D_1} \approx 130 \, \text{cm}^{-1}\), and a broad Drude term (D2), \(\omega_{p,D_2} \approx 11900 \, \text{cm}^{-1}\) and \(1/\tau_{D_2} \approx 1300 \, \text{cm}^{-1}\) (Table I) in good agreement with the values from a previous study [33].

Below the structural and magnetic transition at \(T_N\), the optical conductivity undergoes significant changes, shown in Figs. 1 and 2, due to the reconstruction of the Fermi surface [34]. The fits for \(T \ll T_N\) at 5 K for the \(a\) and \(b\) polarizations are shown in Figs. 3(a) and 3(b), respectively, where they have been decomposed into the individual contributions from the various Drude and Lorentz components. The observed optical anisotropy of \(\sigma_{1,a}/\sigma_{1,b} \approx 2\) in the far-infrared region is in good agreement with another study that employed a mechanical apparatus to detwin the crystal [24]. As in the twinned materials, below \(T_N\) new features appear at \(\approx 350\) and 900 cm\(^{-1}\) [33]; interestingly, there appears to be little or no anisotropy in either these or other bound excitations associated with the interband transitions in this compound. Indeed, the oscillator parameters for the bound excitations in Figs. 3(a) and 3(b) are nearly identical for both polarizations and are similar to what is observed in the twinned material. The anisotropy in the far-infrared region of the optical conductivity arises purely from the behavior of the free carriers. As in the case of the twinned materials, for \(T \ll T_N\) the plasma frequency for the narrow Drude component undergoes only a small decrease, while the scattering rate drops precipitously: along the \(a\) axis, \(\omega_{p,D_1} \approx 3500 \, \text{cm}^{-1}\) and \(1/\tau_{D_1} \approx 3.6 \, \text{cm}^{-1}\); along the \(b\) axis, \(\omega_{p,D_1} \approx 3700 \, \text{cm}^{-1}\) and \(1/\tau_{D_1} \approx 2.1 \, \text{cm}^{-1}\). The uncertainties associated with the small scattering rates, and the similarity of the plasma frequencies, suggest that the narrow Drude component is fairly isotropic below \(T_N\). The plasma frequency for the broad Drude component decreases significantly, while the change in the scattering rate, while significant, is not as dramatic as it is for the narrow Drude component: along the \(a\) axis, \(\omega_{p,D_2} \approx 2900 \, \text{cm}^{-1}\) and \(1/\tau_{D_2} \approx 146 \, \text{cm}^{-1}\); along the \(b\) axis, \(\omega_{p,D_2} \approx 2100 \, \text{cm}^{-1}\) and \(1/\tau_{D_2} \approx 210 \, \text{cm}^{-1}\).
\(\sigma(\omega) (10^3 \Omega^{-1} \text{cm}^{-1}) \)

Data (5 K)
Fit

Figure 3. The results of the fits to the complex conductivity of BaFe\(_2\)As\(_2\) below \(T_N \) at 5 K compared to the real part of the conductivity in the far- and mid-infrared regions for light polarized along the: (a) \(a \) axis; (b) \(b \) axis. The anisotropic response is strongest below \(\simeq 30 \) meV. The fit is decomposed into the contributions from the narrow and broad Drude components, as well as several Lorentz oscillators (Table 1).

The large difference in the plasma frequencies arises from a smaller effective mass along the \(a \) axis where the electronic correlations [35, 36], as opposed to the \(b \) axis, or FM direction, where the larger effective mass significantly reduces the plasma frequency, and subsequent contribution to the optical conductivity in the far-infrared region.

B. Lattice modes

In the high-temperature tetragonal phase, the irreducible vibrational representation for the infrared modes yields \(2A_{2u} + 2E_u \) vibrations [37], where the singly-degenerate \(A_{2u} \) modes are active along the \(c \) axis, and the doubly-degenerate \(E_u \) modes are active in the planes. Below the tetragonal to orthorhombic structural transition at \(T_N \), the degeneracy of the in-plane modes is lifted, \(E_u \to B_{2u} + B_{3u} \), where the \(B_{2u} \) and \(B_{3u} \) modes are active along the \(b \) and \(a \) axes, respectively. In the twinned samples the low-frequency \(E_u \) mode observed at \(\simeq 94 \) cm\(^{-1} \) above \(T_N \) involves the in-plane displacements of the Ba atom moving in opposition to the Fe and As atoms; below \(T_N \) this mode splits into two features at \(\simeq 93 \) and 96 cm\(^{-1} \) [38]. The high-frequency mode at \(\simeq 256 \) cm\(^{-1} \) does not appear to split below \(T_N \), instead displaying an anomalous increase in oscillator strength [18]; this mode involves only the in-plane displacements of Fe and As atoms which move in opposition to one and other [30, 39]. In the detwinned samples, the low-frequency mode has not been examined; the high-frequency mode displays the same anomalous increase in oscillator strength below \(T_N \), but it also does not appear to split and is active only along the \(b \) axis [24]. In this work, we are able to examine the splitting and the polarization dependence of the low-frequency \(E_u \) mode below \(T_N \), and as well as the details of the high-frequency mode.

The low-frequency \(E_u \) mode has been fit using the Lorentzian oscillator described in Eq. (1) superimposed on either a linear or a weak polynomial background. Above \(T_N \) at 295 K, this mode is almost completely isteric, with \(\omega_0 \simeq 93.7, \gamma_0 \simeq 2.5, \) and \(\Omega_0 \simeq 195 \) cm\(^{-1} \).

![Figure 4](image_url)

Figure 4. The real part of the optical conductivity of BaFe\(_2\)As\(_2\) in the region of the low-frequency \(B_{2u} \) and \(B_{3u} \) modes at 5 K for light polarized along the: (a) \(a \) axis; (b) \(b \) axis. For each polarization the vibrational structure has been fit to two Lorentz oscillators superimposed on a linear or weak polynomial background; the fitted oscillator parameters are listed in each panel. The fitted positions of the oscillators are indicated by the arrows.
(Asymmetric line shapes were also considered, but the asymmetry parameter was quite small, effectively resulting in a simple Lorentzian oscillator.) Interestingly, just above T_N at 150 K, there is a slight polarization dependence with $\omega_1 \approx 94 \text{ cm}^{-1}$ along along the a axis, and $\omega_2 \approx 95 \text{ cm}^{-1}$ along the b axis, while the width and strength show no such dependence. This indicates that GFRP is imparting some strain on the crystal and creating a slight asymmetry just above T_N. This is consistent with the observation of a significant anisotropy in the resistivity just above T_N, which was attributed to the magnetic transition rather than nematic fluctuations [26]. Similarly, the vibrational splitting just above the transition would suggest that the phonons are coupling to the magnetism. Below T_N this vibration clearly splits into two modes at ≈ 94 and 96 cm$^{-1}$ at low temperature, both of which display a strong polarization dependence.

The optical conductivity is shown in the region of the low-frequency B_{2u} and B_{3u} modes at 5 K for light polarized along the a and b axis, in Figs. 4(a) and 4(b), respectively; the different contributions are denoted in the legend, while the fitted oscillator parameters are shown in the panels of Fig. 4. While the two modes display a strong polarization dependence, the modulation is not perfect. The polarization modulation of the oscillators may be used to estimate the degree to which the crystal is detwinned in the following way,

$$\alpha_j = 1 - \frac{\Omega_j^2(\perp)}{\Omega_j^2(\parallel)},$$

where \perp and \parallel denote the polarizations perpendicular and parallel to the dipole moment of the jth vibration. In the case of a twinned crystal, there is no polarization dependence, $\Omega_j(\perp) = \Omega_j(\parallel)$, and $\alpha_j = 0$; if the crystal is completely detwinned, then $\Omega_j(\perp) = 0$ and $\alpha_j = 1$.

Using the parameters for the B_{2u} mode at 5 K yields $\alpha \approx 0.85$; the average for the two polarizations of $\alpha \approx 0.8$ indicates that the crystal is roughly 80% twin free, which is comparable to the estimates based on transport measurements [26].

The high-frequency E_u mode is of considerable interest as one branch displays an anomalous increase in oscillator strength below T_N [18], with the other appears to be largely silent [24]. The high-frequency mode has been fit using a simple Lorentzian oscillator superimposed on a polynomial background; the resulting line shapes are shown with the background removed for light polarized along the a and b axes in Figs. 5(a) and 5(b), respectively. The line shape for this oscillator at 5 K along the b axis has an asymmetric line shape, suggesting electron-phonon coupling; while an asymmetric Fano line shape has been fit to this vibration, the asymmetry parameter is very small [30]. The results for the position, width, and strength of the oscillators along the a and b axes are shown in Figs. 5(c), 5(d), and 5(e), respectively, where they are compared with results from a twinned sample (E $\parallel ab$) [30]. Above 200 K there is no polarization dependence in the oscillator parameters for this mode; however, in a reversal of the behavior observed in the low-frequency E_u mode, just above T_N at 150 K the position of this mode for light polarized along what will become the a axis is slightly larger than it is along the b axis, again indicating that just above T_N the strain from the GFRP is a symmetry-breaking process and that the lattice modes are likely coupling to the magnetism. The frequency of this mode appears to decrease anomalously below T_N; this is understood as the splitting of the E_u mode where the lower B_{2u} branch is active and the upper B_{3u} branch is largely silent [30]. The fact that the positions of the modes along the a and b axes are identical [Fig. 5(c)] suggests that the activity of the mode
along the a axis is likely due to leakage from the b axis as a result of residual twins, and that the weak shoulder observed just above this mode at $\simeq 261\,\text{cm}^{-1}$ [Fig. 5(a)] is the B_{3u} mode [38]. The oscillator strength of the B_{2u} mode was observed to increase by a factor of two in the twinned material [18], but in the largely twin-free sample it has increased threefold, in agreement with a previous study [24]. The origin of this anomalous increase in the strength remains a topic of considerable debate. Given the value of $\alpha \simeq 0.8$ determined from the modulation of the low-frequency E_u mode, and the value of $\Omega_0(||) \simeq 340\,\text{cm}^{-1}$ for the b axis at 5 K, then the strength of the leakage should be $\Omega_0(\perp) \simeq 149\,\text{cm}^{-1}$; curiously, the observed value of $\Omega_0(\perp) \simeq 235\,\text{cm}^{-1}$ is considerably larger and suggests a lower value for the detwinning. However, the rather peculiar nature of this mode makes it a poor candidate for estimates of the degree of detwinning. The more predictable behavior of the low-frequency B_{2u} and B_{3u} modes suggests that the estimate of $\simeq 80\%$ detwinning is the more reliable one.

IV. CONCLUSIONS

The optical properties of a large, detwinned single crystal of BaFe$_2$As$_2$ have been determined above and below $T_N \simeq 138\,\text{K}$ over a wide frequency range. Above T_N the optical conductivity and the two infrared-active E_u modes are essentially isotropic; only the lattice modes display a weak polarization dependence just above T_N. Below T_N, the free-carrier response is strongly anisotropic; below $\simeq 30\,\text{meV}$, $\sigma_{1,a}/\sigma_{1,b} \sim 2$. The narrow Drude component has only a weak polarization dependence. The anisotropy in the low-energy optical conductivity is driven by the difference in the effective masses in the broad Drude component. The interband contributions to the optical conductivity above this energy appear to be isotropic. The relatively large sample size allows the behavior of the lattice modes to be studied in detail. The splitting of the low-energy E_u mode is clearly observed, and the polarization modulation of the resulting B_{2u} and B_{3u} modes are used to determine that the crystal is about 80% detwinned. The high-frequency mode remains enigmatic; the B_{2u} component undergoes a striking threefold increase in intensity, while the B_{3u} mode is nearly silent. This relatively simple method for detwining crystals may allow further detailed optical studies of the nematic and (or) superconducting behavior in this family of materials.

ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with Ana Akrap and Mingquan He. Work at Brookhaven National Laboratory was supported by the Office of Science, U.S. Department of Energy under Contract No. DE-SC0012704.

[1] Marianne Rotter, Marcus Tegel, and Dirk Johrendt, “Superconductivity at 38 K in the Iron Arsenide (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$,” Phys. Rev. Lett. 101, 107006 (2008).

[2] Athena S. Sefat, Rongying Jin, Michael A. McGuire, Brian C. Sales, David J. Singh, and David Mandrus, “Superconductivity at 22 K in Co-Doped BaFe$_2$As$_2$ Crystals,” Phys. Rev. Lett. 101, 117004 (2008).

[3] N. Ni, M. E. Tillman, J.-Q. Yan, A. Kracher, S. T. Hannahs, S. L. Bud’ko, and P. C. Canfield, “Effects of Co substitution on thermodynamic and transport properties and anisotropic H_H in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals,” Phys. Rev. B 78, 214515 (2008).

[4] Kalyan Sasmal, Bing Lv, Bernd Lorenz, Arnold M. Guley, Feng Chen, Yu-Yi Xue, and Ching-Wu Chu, “Superconducting Fe-Based Compounds (A$_{1-x}$Sr$_x$)Fe$_2$As$_2$ with A = K and Cs with Transition Temperatures up to 37 K,” Phys. Rev. Lett. 101, 107007 (2008).

[5] Gen-Fu Chen, Zheng Li, Gang Li, Wan-Zheng Hu, Jing Dong, Xiao-Dong Zhang Jun Zhou, Ping Zheng, Nan-Lin Wang, and Jian-Lin Luo, “Superconductivity in Hole-Doped (Sr$_{1-x}$K$_x$)Fe$_2$As$_2$,” Chin. Phys. Lett. 25, 3403 (2008).

[6] Patricia L. Alireza, Y. T. Chris Ko, Jack Gillett, Chiara M. Petrone, Jacqueline M. Cole, Gilbert G. Lonzarich, and Suchitra E. Sebastian, “Superconductivity up to 29 K in SrFe$_2$As$_2$ and BaFe$_2$As$_2$ at high pressures,” J. Phys.: Cond. Matter 21, 012208 (2008).

[7] Jiun-Haw Chu, James G. Analytis, Chris Kucha rzyk, and Ian R. Fisher, “Determination of the phase diagram of the electron-doped superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$,” Phys. Rev. B 79, 014506 (2009).

[8] T. Goko, A. A. Aczel, E. Baggio-Saitovich, S. L. Bud’ko, P. C. Canfield, J. P. Carlo, G. F. Chen, Pengcheng Dai, A. C. Hamann, W. Z. Hu, H. Kageyama, G. M. Luke, J. L. Luo, B. Nachumi, N. Ni, D. Reznik, D. R. Sanchez-Candelafa, A. T. Savici, K. J. Sikes, N. L. Wang, C. R. Wiebe, T. J. Williams, T. Yamamoto, W. Yu, and Y. J. Uemura, “Superconducting state coexisting with a phase-separated static magnetic order in (Ba,K)Fe$_2$As$_2$, (Sr,Na)Fe$_2$As$_2$, and CaFe$_2$As$_2”$ Phys. Rev. B 80, 024508 (2009).

[9] S. R. Saha, N. P. Butch, K. Kirshenbaum, and John-pierre Paglione, “Evolution of bulk superconductivity in SrFe$_2$As$_2$ with Ni substitution,” Phys. Rev. B 79, 224519 (2009).

[10] Shuai Jiang, Hui Xing, Guofang Xuan, Cao Wang, Zhi Ren, Chunmu Feng, Jianhui Dai, Zhu’an Xu, and Guanghan Cao, “Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe$_2$(As$_{1-x}$P$_x$)$_2,”$ J. Phys. Chem. B 123, 382203 (2009).

[11] H. L. Shi, H. X. Yang, H. F. Tian, J. B. Lu, Z. W. Wang, Y. B. Qin, Y. J. Song, and J. Q. Li, “Structural properties and superconductivity of SrFe$_2$As$_2$-$P$$_x$ and (0.0 \leq x \leq 1.0$) and CaFe$_2As_2$-$P$$_y$ (0.0 \leq y \leq 0.3),” J.
Phys.: Condens. Matter 22, 125702 (2010).

[12] Raquel Cortes-Gil and Simon J. Clarke, “Structure, Magnetism, and Superconductivity of the Layered Iron Arsenides Sr$_{1-x}$Na$_x$Fe$_2$As$_2$,” Chem. Mater. 23, 1009-1016 (2011).

[13] Fumihiro Ishikawa, Naoya Eguchi, Michihiro Kodama, Koji Fujimaki, Mari Einaga, Ayako Ohmura, Atsuko Nakayama, Akihiro Mitsuda, and Yuh Yamada, “Zero resistance superconducting phase in BaFe$_2$As$_2$ under high pressure,” Phys. Rev. B 79, 172506 (2009).

[14] E. Colombier, S. L. Bud’ko, N. Ni, and P. C. Canfield, “Complete pressure-dependent phase diagrams for SrFe$_2$As$_2$ and BaFe$_2$As$_2$,” Phys. Rev. B 79, 224518 (2009).

[15] K. Kitagawa, N. Katayama, H. Gotou, T. Yagi, K. Ohgushi, T. Matsumoto, Y. Uwatoko, and M. Takigawa, “Spontaneous Formation of a Superconducting and Anti-ferromagnetic Hybrid State in SrFe$_2$As$_2$ under High Pressure,” Phys. Rev. Lett. 103, 257002 (2009).

[16] Marianne Rotter, Marcus Tegel, Dirk Johrendt, Inga E. Colombier, S. L. Bud’ko, N. Ni, and P. C. Canfield, “Transport properties of SrFe$_2$As$_2$ and BaFe$_2$As$_2$,” Phys. Rev. B 80, 180502(R) (2009).

[17] F. Pfuner, J. G. Analytis, J.-H. Chu, I. R. Fisher, and I. R. Fisher, L. Degiorgi, and Z. X. Shen, “In-plane electronic anisotropy of underdoped 122’ Fe-arsenide superconductors revealed by measurements of detwinned single crystals,” Phys. Rev. B 80, 180502(R) (2009).

[18] A. Akrap, J. J. Tu, L. J. Li, G. H. Cao, Z. A. Xu, and C. C. Homes, “Infrared phonon anomaly in BaFe$_2$As$_2$,” Phys. Rev. B 80, 180502(R) (2009).

[19] W. Z. Hu, J. Dong, G. Li, Z. Li, P. Zheng, G. F. Chen, J. L. Luo, and N. L. Wang. “Origin of the Spin Density Wave Instability in AFe$_2$As$_2$ (A=Ca, Sr) as Revealed by Optical Spectroscopy,” Phys. Rev. Lett. 101, 257005 (2008).

[20] Y. M. Dai, Ana Akrap, S. L. Bud’ko, and P. C. Canfield, “Vibrational anomalies in AFe$_2$As$_2$ (A = Ca, Sr, and Ba) single crystals,” Phys. Rev. B 79, 180508 (2009).

[21] I. R. Fisher, L. Degiorgi, and Z. X. Shen, “In-plane electronic anisotropy of underdoped 122’ Fe-arsenide superconductors revealed by measurements of detwinned single crystals,” Rep. Prog. Phys. 74, 124506 (2011).

[22] Jiun-Haw Chu, James G. Analytis, Kristiaan De Greve, Peter L. McMahon, Zahirul Islam, Yoshihisa Yamamoto, and Ian R. Fisher, “In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor,” Science 329, 824-826 (2010).

[23] T. Kissikov, R. Sarkar, M. Lawson, B. T. Bush, E. I. Timmons, M. A. Tanatar, R. Prozorov, S. L. Bud’ko, P. C. Canfield, R. M. Friedman, and N. J. Curro, “Uniaxial strain control of spin-polarization in multicomponent nematic order of BaFe$_2$As$_2$,” Nature Commun. 9, 1058 (2018).

[24] M. Nakajima, T. Liang, S. Ishida, Y. Tomioka, K. Kihou, C. H. Lee, A. Iyo, H. Esaki, T. Kakeshita, T. Ito, and S. Uchida, “Unprecedented anisotropic metallic state in undoped iron arsenide BaFe$_2$As$_2$ revealed by optical spectroscopy,” PNAS 108, 12238-12242 (2011).

[25] A. Dusza, A. Lucarelli, A. Sanna, S. Massidda, J.-H. Chu, I. R. Fisher, and L. Degiorgi, “Anisotropic in-plane optical conductivity in detwinned Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$,” New J. Phys. 14, 023020 (2012).

[26] Mingquan He, Liran Wang, Felix Ahn, Frédéric Hardy, Thomas Wolf, Peter Adelmann, Jörg Schmalian, Ilya Eremin, and Christoph Meingast, “Dichotomy between in-plane magnetic susceptibility and resistivity anisotropies in extremely strained BaFe$_2$As$_2$,” Nat. Commun. 8, 504 (2017).

[27] Christopher C. Homes, M. Reedyk, D. A. Crandles, and T. Timusk, “Technique for measuring the reflectance of irregular, submillimeter-sized samples,” Appl. Opt. 32, 2976-2983 (1993).

[28] C. Mirri, A. Dusza, S. Bastelberger, M. Chinotti, L. Degiorgi, J.-H. Chu, H.-H. Kuo, and I. R. Fisher, “Origin of the Resistive Anisotropy in the Electronic Nematic Phase of BaFe$_2$As$_2$ Revealed by Optical Spectroscopy,” Phys. Rev. Lett. 115, 107001 (2015).

[29] See Supplemental Material at [URL will be inserted by publisher] for the experimental reflectivity and real part of the optical conductivity shown over a wide frequency range.

[30] C. C. Homes, Y. M. Dai, Ana Akrap, S. L. Bud’ko, and P. C. Canfield, “Vibrational anomalies in AFe$_2$As$_2$ (A = Ca, Sr, and Ba) single crystals,” Phys. Rev. B 98, 035103 (2018).

[31] F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972) pp. 244-250.

[32] D. Wu, N. Barisić, P. Kallina, A. Faridinan, B. Gorshunov, N. Drichko, L. J. Li, X. Lin, G. H. Cao, Z. A. Xu, N. L. Wang, and M. Dresel, “Optical investigations of the normal and superconducting states reveal two electronic subsystems in iron pnictides,” Phys. Rev. B 81, 100512 (2010).

[33] Y. M. Dai, Ana Akrap, S. L. Bud’ko, P. C. Canfield, and C. C. Homes, “Optical properties of AFe$_2$As$_2$ (A = Ca, Sr, and Ba) single crystals,” Phys. Rev. B 94, 195142 (2016).

[34] P. Richard, K. Nakayama, T. Sato, M. Neupane, Y.-M. Xu, J. H. Bowen, G. F. Chen, J. L. Luo, N. L. Wang, X. Dai, Z. Fang, H. Ding, and T. Takahashi, “Observation of Dirac Cone Electronic Dispersion in BaFe$_2$As$_2$,” Phys. Rev. Lett. 104, 137001 (2010).

[35] Z. P. Yin, K. Haule, and G. Kotliar, “Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides,” Nat. Mater. 10, 932 (2011).

[36] Y. M. Dai, A. Akrap, J. Schneeloch, R. D. Zhong, Sefat, D. Mandrus, and D. N. Basov, “Phonon splitting in iron pnictides and iron chalcogenides,” Nat. Phys., 93 (2013).

[37] A. P. Litvinchuk, V. G. Hadjiev, M. N. Iliev, Bing Lv, A. A. Schafgans, B. C. Pursley, A. D. LaForge, A. S. Sefat, D. Mandrus, and D. N. Basov, “Phonon splitting and anomalous enhancement of infrared-active modes in BaFe$_2$As$_2$,” Phys. Rev. B 84, 052501 (2011).

[38] M. Sandoghi, H. Khosroabadi, H. Almasi, and M. Akhavan, “Electronic and Phonon Structures of BaFe$_2$As$_2$ Superconductor by Ab-initio Density Functional Theory,” J. Supercond. Nov. Magn. 26, 93 (2013).
REFLECTIVITY

The temperature dependence of the reflectivity of a detwinned sample of BaFe$_2$As$_2$ ($T_N \simeq 138$ K) is shown over a wide frequency range for light polarized along the a and b axes in Figs. S1(a) and S1(b), respectively; the axes refer to the orthorhombic phase. The temperature dependent behavior of the reflectivity is restricted to energies below about 1 eV; above this energy there little temperature or polarization dependence. Overall, the spectra are qualitatively similar to those of Nakajima et al. [1].

Figure S1. The temperature dependence of the reflectivity versus the log of the frequency of a detwinned sample of BaFe$_2$As$_2$ for light polarized along the: (a) a axis; (b) b axis.
The temperature dependence of the real part of the optical conductivity determined from a Kramers-Kronig analysis of the reflectivity is shown over a wide range for light polarized along the a and b axes in Figs. S2(a) and S2(b), respectively.

![Graph of optical conductivity vs. frequency](image)

Figure S2. The temperature dependence of the real part of the optical conductivity versus frequency of a detwinned sample of BaFe$_2$As$_2$ for light polarized along the: (a) a axis; (b) b axis.

The differences in the optical conductivity in the mid-infrared region appear to be due to the anisotropic behavior of the free-carriers below T_N.

* homes@bnl.gov
† christoph.meingast@kit.edu

[1] M. Nakajima, T. Liang, S. Ishida, Y. Tomioka, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Kakeshita, T. Ito, and S. Uchida, “Unprecedented anisotropic metallic state in undoped iron arsenide BaFe$_2$As$_2$ revealed by optical spectroscopy,” PNAS 108, 12238–12242 (2011).