Research Article

Synthesis of Silver and Gold Nanoparticles: Chemical and Green Synthesis Method and Its Toxicity Evaluation against Pathogenic Bacteria Using the ToxTrak Test

Pankaj Kumar Tyagi, Cristina Quispe, Jesús Herrera-Bravo, Shruti Tyagi, D. Barbhai Mrunal, Manoj Kumar, Anas S. Dablool, Saad Alghamdi, Gaber El-Saber Batiha, Javad Sharifi-Rad, and Seema Ramniwas

1Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Affiliated to APJ Abdul Kalam Technical University Lucknow, UP, India
2Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
3Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
4Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
5Young Scientist of UPCST Scheme, Department of Biotechnology, Noida Institute of Engineering and Technology, greater Noida, India
6Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
7Department of Public Health, Health Sciences College at Al-Leith, Umm Al-Qura University, Makkah, Saudi Arabia
8Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
9Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
10Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
11University Center for Research and Development Chandigarh University Gharuan Mohali Punjab, India

Correspondence should be addressed to Shruti Tyagi; stgenetics@gmail.com and Javad Sharifi-Rad; javad.sharifirad@gmail.com

Received 11 October 2021; Accepted 30 November 2021; Published 30 December 2021

Academic Editor: H C Ananda Murthy

Copyright © 2021 Pankaj Kumar Tyagi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the current investigation, silver/gold nanoparticles (NPs) were synthesized using two methods: chemical and biological, and then characterized colloidal solutions of both NPs using UV-Vis, transmission electron microscopy (TEM) and zeta potential analyzers, X-ray powder diffraction (XRD), and energy dispersive X-ray (EDX) as well as the ToxTrak test for in vitro toxicity and antibacterial activity against Gram-positive bacteria (B. subtilis) and Gram-negative bacteria (E. coli). The plasmon peak of chemical synthesized silver NPs (CH-AgNPs) and gold NPs (CH-AuNPs) was observed at 414 and 530 nm, respectively, while the sharp plasmon peak of biological synthesized silver NPs (Bio-AgNPs) and gold NPs (Bio-AuNPs) was observed at 410 and 525 nm. Under transmission electron microscopy (TEM), the average sizes of CH-AgNPs and CH-AuNPs were 50.56 and 25.98 nm, respectively. Bio-AgNPs and Bio-AuNPs, on the other hand, had average sizes of 25.25 and 16.65 nm, respectively. The stability of NPs was also investigated using the zeta potential. The crystalline structure of AgNPs was confirmed through XRD, and EDX results confirm the element compositions. In the ToxTrak test, the toxic effect value/percentage inhibition (TEV/PI) was calculated. The results showed that CH-AgNPs have the highest TEV/PI value (85.45% for B. subtilis and 83.77% for E. coli) when compared to Bio-AgNPs (55.75% for B. subtilis and 54.42% for E. coli). CH-AuNPs, on the other hand, were 33.51% toxic to B. subtilis and 36.85% toxic to E. coli, compared to Bio-AuNPs, which were 23.36% toxic to B. subtilis and 24.46% toxic to E. coli. The antibacterial activity of Ag/Au NPs was tested and monitored; zone of inhibition (mm in diameter) against B. subtilis and E. coli, with the following pattern emerging: CH-AgNPs (24.80) had the highest antibacterial activity followed by Bio-AgNPs (22.80) < CH-AuNPs (10.60) < Bio-AuNPs (09.00), whereas the control sample (tetracycline antibiotic) revealed a 25.08 mm, zone of inhabitation. Overall, Bio-AgNPs and Bio-AuNPs are the most effective...
pathogen-killing materials with the lowest toxicity. Our suggestion is that such materials instead of chemical synthesized NPs can be used to coat antibiotic drugs and could be a game-changer for the pharmaceutical industry in terms of effectively controlling the pathogenic bacteria.

1. Introduction

Silver, gold, and titanium dioxide nanoparticles have long been used for their antibacterial properties. The famous historian Herodotus first wrote about the use of silver to keep water fresh in the 5th century BC, and Hippocrates was using silver for treating wounds and ulcers [1]. The prevalence of silver nanoparticles has increased significantly, but it is still unclear what antimicrobial properties with toxicity estimation make it attractive and attentive. Nowadays, biological substances such as plants, bacteria, yeast, actinomycetes, and viruses are commonly employed in the green synthesis of silver nanoparticles [2–4]. Nanosilver has been widely used to paints, dye degradation and clothing [5–8], children toys, cosmetics and medicinal products [2, 9], food storage and handling containers [10], bacterial contaminations [11–13], and other applications [14]. The interest in nanomaterial stems from their nanoscale properties that differ from their properties in bulk. For example, bulk gold has an unmistakable yellow hue. Gold nanoparticles, on the other hand, change in colour depending on their size; small NPs are red, medium NPs are purple, and giant NPs are blue, and the differences are not purely visual. In contrast to their bulk counterparts, the gold NPs are good catalysts, have a decreased melting temperature, are reactive in nature with magnetic properties, and change from metal to a semiconductor [15]. Toxicity is also impacted by size [16]. A harmless material in bulk can become toxic at the nanoscale. Another aspect of nanomaterial toxicity is their sensitivity to synthesis method, seemingly minor changes, batch-to-batch, can have drastic impacts of the resulting NP. These changes include size and shape changes, coatings, and charges [17, 18]. In an in vitro comparative study of silicon dioxide (SiO₂) and TiO₂, SiO₂ NPs exhibited significant proinflammatory activity for human monocyte, while TiO₂ had less activity [19]. Some studies were conducted in rat liver cells to assess nanosilver as an in vitro toxicity assay, and the results showed that low levels of silver NP exposure resulted in oxidative stress and impaired mitochondrial function [20]. Nowadays, green synthesis of NPs by using plant extracts is popularizing due to more safety features. The phenolic compounds and other secondary metabolites present in the plant extracts improve the specific bioactivity (for example, improvement in antimicrobial activity) of synthesized NPs. Gram’s positive and negative aspects B. subtilis and E. coli, both facultative anaerobic and rod-shaped bacteria, are commonly found in the human lower intestine and account for 0.1% of gut flora [13, 21]. These gut microbes known as probiotics and enhance immunity of the body and allowing the organism to tolerate extreme environmental conditions. The authors of the current study employed chemical and biological methods to synthesis silver and gold nanoparticles, which were then tested for toxicity and antibacterial activity against pathogenic bacteria including B. subtilis and E. coli.

2. Materials and Methods

2.1. Sample Preparation. Tetrachloroauric acid, silver nitrate, trisodium citrates, nutrient agar, and resazurin dye of AR grade were used and obtained from Sigma and Merck for chemical synthesis of Ag/Au NPs. Fresh plant leaves of Hibiscus Rosa sinensis (gurhal) were collected from the Institute campus for biological synthesis of Ag/Au NPs. For the study of toxicity and antibacterial activities, B. subtilis (Gram-positive) and E. coli (Gram-negative) cultures were collected from the microbiology laboratory of this Institute.

2.2. Extraction Preparation. To obtain the extract, the plant leaves were thoroughly washed three times with double distilled water and 10 g leaves were ground. The 10 mL extract was combined with 90 mL deionized water and boiled for 15 minutes at 90°C. The extracts were centrifuged for 10 minutes at 10000 rpm.

2.3. Chemical Synthesis of Silver/Gold Nanoparticles. 38 mM trisodium citrate dehydrate (Na₃C₆H₅O₇·2H₂O) and 0.75 mM silver nitrate used for synthesis CH-AgNPs. 50 mL AgNO₃ mixed with 10 mL trisodium citrate into dropwise method and heated up to 90°C and CH-AgNPs obtained with chemical degradation and gradually by the erosion and the transparent light color turned to brownish black indicating the presence of AgNPs. On the other hand, the chemical synthesis of AuNPs, the 1% trisodium citrate dehydrate solution, and 1.0 mM HAuCl₄ were used for CH-AuNPs. Continuous rolling boiled with magnetic stir bar 20 mL of chloroauric acid mixed with 1% trisodium citrate dihydrate solution of 2 mL. In this process, trisodium citrate reduces the gold solution and solution turned light reddish violet in color. The light reddish violet color indicates the formation of AuNPs.

2.4. Biological Synthesis of Silver/Gold Nanoparticles. 95 mL plant leaf extract (supernatant) in conical flasks and added 5 mL of 0.75 mM AgNO₃ aqueous solution as a precursor for obtaining Bio-AgNPs. This solution was incubated in incubator shaking at 30°C of 150 rpm up to 72 h. Under incubation time, the extract of this solution act as a reducing and stabilizing agent and silver ions may be changes into colloidal silver solution. During this process the changes in color pale yellow to blackish brown indicates the synthesis of Bio-AgNPs. The same process applied for synthesis of gold NPs. 95 mL plant leaf extract (supernatant) in conical flasks and added 5 mL of an aqueous solution of tetrachlorouauric acid solution as a precursor for obtaining Bio-AuNPs. The 100 mL solution was incubated in incubator shaking of 150 rpm at 30°C for 72 h. In this process, change in color pale yellow to purple reddish indicates the synthesis of Bio-AuNPs.
2.5. Characterization Techniques of Ag/AuNPs. The CH-Ag/AuNPs and Bio-Ag/AuNPs in the form of colloidal solutions were primarily characterized with visible spectrophotometry, transmission electron microscopy (TEM), XRD, and zeta potential analyzers were also carried out. TEM was used to examine the size and morphology of the NPs. An accelerating voltage of 200 kV was used in the microscope. After diluting the silver samples (1:10) in distilled water, an aliquot (20 L) was applied to a carbon-coated grid. The solution was then left for 1 minute before being blotted with filter paper to remove any excess from the grid. Before imaging, the grids were placed in the grid box for two hours to dry. The zeta potential is a physical property determined by the net surface charge of NPs. A Coulomb explosion occurs between the charges of these particles when they repel each other in a solution, resulting in no tendency for the particles to agglomerate. When the zeta potential values ranged from higher than +30 mV to lower than -30 mV, the criteria for NP stability were measured [22]. The laser zeta meter was used to measure surface zeta potentials, and using NaCl as a suspending electrolyte solution, liquid samples of NPs (5 mL) were diluted with double distilled water (50 mL) (2 × 10^{-2} M NaCl). After that, the pH was adjusted to the desired level. For 30 minutes, the samples were shaken. The zeta potential of the metallic particles was measured, and the equilibrium pH was recorded after shaking. The surface potential of NPs was determined using a zeta potential. An average of three separate measurements was reported in each case. When the zeta potential values ranged from higher than +30 mV to lower than -30 mV, the criteria for NPs stability were measured [23]. The crystalline structure of AgNPs was confirmed through XRD analysis and EDX results confirm the element compositions.

2.6. Toxicity of Metal Nanoparticles through ToxTrak Test. Toxicity of CH-Ag/AgNPs and Bio-Ag/AuNPs was assessed using the ToxTrak test, and the toxic effect value/percentage inhibition (TEV/PI) was calculated after a minor modification to the previously published protocol [24]. 10 culture tubes of broth for 48 hours, each containing 25 g/mL solutions of B. subtilis and E. coli cultures, divided into two groups: k_1 for B. subtilis and k_2 for E. coli. The first test tube of the k_1 group was designated as a control sample for determining the toxicity of Ag/Au NPs against B. subtilis. The second and third culture tubes were labelled as chemically synthesized NPs, and 1 mL of CH-AgNPs and CH-AuNPs were added to each culture tube. The Bio-AgNPs and Bio-AuNPs were added to the 4th and 5th culture tubes, which were labelled as biologically synthesized NPs. The 6th culture tube of the k_1 group was designated as a control sample for determining the toxicity of Ag/Au NPs against E. coli. Chemically synthesized NPs were added to the 7th and 8th culture tubes, respectively, with 1 mL of CH-AgNPs and CH-AuNPs. The ninth and tenth culture tubes were labelled as biologically synthesized NPs, and 1 mL of Bio-AgNPs and Bio-AuNPs, respectively, were added to them. In both groups (k_1 and k_2), 40 μL resazurin dye was added to each culture tube, and the tubes were incubated for 0 to 4 h [25]. The absorption was measured in all culture tubes of the k_1 and k_2 groups immediately after adding the dye, from 0 to 4 h after 1 h intervals.

2.6.1. In Vitro Toxic Effect Value (TEV) Evaluation. The ToxTrak test was used to assess the toxicity of chemical and biologically synthesized Ag/AuNPs [24, 26]. At 603 nm wavelength, we calculated the percentage inhibition (PI/TEV) of B. subtilis (k_1) and E. coli (k_2) in this test [13, 24]. The final result of the PI reaction is known as the toxic effect value (TEV), and the PI is written as follows:

\[
\text{PI} = \left(\frac{\Delta A_{\text{sample}}}{\Delta A_{\text{control}}}\right) \times 100, \tag{1}
\]

where \(\Delta A\) = Initial absorbance value – final absorbance value in this equation.

The differences (decrease) in absorbance for the control samples and chemical and biologically synthesized Ag and AuNPs were used to calculate the PI/TEV value in percentage [27].

2.6.2. Methods for Calculating Absorbance Differences (Decreases)

(i) \(\Delta A_{\text{control}}\) is used to present the control sample, and the control value is -2.7151 (k_1) and -2.6915 (k_2)

(ii) CH-AgNPs resembling with \(\Delta A_{\text{CH-AgNPs}}\) and absorbance values of -0.3952 (k_1) and -0.4368 (k_2)

(iii) CH-AuNPs interacting with \(\Delta A_{\text{CH-AuNPs}}\) and absorbance values of -1.8072 (k_1) and -1.3396 (k_2)

(iv) Bio-AgNPs resembling with \(\Delta A_{\text{Bio-AgNPs}}\) and absorbance values of -1.2026 (k_1) and -1.2249 (k_2)

(v) Bio-AuNPs representing with \(\Delta A_{\text{Bio-AuNPs}}\) and absorbance values of -2.0829 (k_1) and -2.0330 (k_2)

2.7. Antibacterial Potential of Ag/AuNPs. The antibacterial potential of CH-Ag/AgNPs and Bio-Ag/AuNPs was determined using the standard disc diffusion method against B. subtilis and E. coli [28]. The bacterial pathogens were taken from the microbiology lab of this Institute and kept on nutrient agar media. The colloidal solution of Ag/AuNPs synthesized by chemical and biological methods was prepared prior to use by dissolving Ag/AuNPs in 5% dimethyl sulfoxide (DMSO, 1000 g/mL) and sonicating the samples at 30°C for 15 minutes. The assay was performed using filter paper discs containing 50 g of Ag/AuNPs per disc. Tetracycline, a common antibiotic, was used as a positive control at 5 g/disk, while 5% DMSO was used as a negative control. For the assay, overnight grown cultures of tested bacteria were diluted to \(1 \times 10^{-7}\) colony-forming unit. After 24 h of incubation at 37°C, the diameter of zones of inhibition was measured to determine the antibacterial activity of the Ag/AuNPs.

2.8. Statistical Analysis. The data in this paper was analyzed using Statistica, release 7.0 StatSoft an advanced analytics software system.
3. Results

Silver/gold nanoparticles (NPs) were generated employing two ways in this study: chemical and biological. The chemical process of Ag/AuNPs can begin with AgNO₃ and AuCl₄⁻, respectively, and be followed by the use of trisodium citrate as a capping and chelating agent, which plays a critical role in chemical degradation and the production of Ag and Au ions. On the other hand, the presence of phytochemicals in the plant extract as capping agents initiates the biological process (green synthesis) of Ag/AuNPs, the leaf extract also plays a significant role as a reducing agent after being exposed to only the precursors of AgNO₃ and AuCl₄⁻ without using any intermediate chemicals. After being exposed to AgNO₃ and AuCl₄⁻ with the trisodium citrate dehydrate as a capping and chelating agent, which plays a respective, and be followed by the use of trisodium citrate without using any intermediate chemicals. After being exposed to AgNO₃ and AuCl₄⁻ with the trisodium citrate dehydrate, the amount of Ag and Au ions obtained with chemical degradation and gradually by the erosion the transparent color turned to brownish black, indicating the presence of CH-AgNPs (Figure 1(b)), and light reddish violet color in CH-AuNPs (Figure 2(b)). In the biological method of Ag/AuNPs, the amount of Ag and Au ions in the leaf extract is reduced via phytochemicals present in the plant extract after being exposed to precursor AgNO₃ and AuCl₄⁻ and the pale-yellow color of plant extract changed to blackish brown, indicating the Bio-AgNPs (Figure 3(b)) and purplereddish color in Bio-AuNPs (Figure 4(b)). The surface plasmon resonance phenomenon in Ag/AuNPs results in Bio-AuNPs (Figure 1(b)), and light reddish violet color gradually turning brownish black (B), indicating the presence of silver nanoparticles.

3.1. UV–Vis Spectroscopy. In the UV-Vis spectra of CH-AgNPs and CH-AuNPs, the plasmon peak was found at 414 nm with absorption of 0.77 and 530 nm with absorption of 1.20, respectively (Figures 1(a) and 2(a)). The surface plasmon peak in Bio-AgNPs and Bio-AuNPs was observed at 410 nm with absorption of 3.52 and at 525 nm with an absorption of 0.98, respectively (Figures 3(a) and 4(a)). In CH-AgNP, the broadening of the peak indicated that the particles are polydispersed. The formation of polydispersed large NPs due to slow reduction rates was indicated by broadening of the peak [40–44].

3.2. TEM Analysis of Nanoparticles. The morphology, particle shape, size, and distribution profile of Ag/AuNPs was revealed by TEM images. Figure 5(a) depicts CH-AgNPs in cuboidal, hexagonal, and spherical shapes, with spherical shapes being the most common and average sizes of 50.56 nm at 100 nm scale and 200 kV accelerating voltage analysis. CH-AuNPs, on the other hand, had an average size of 25.98 nm at 100 nm scale with 200 kV accelerating voltage analysis and appeared to have a spherical morphology (Figure 5(b)). When sodium citrate was used as the reducing agent, spherical and ellipsoidal AgNPs with sizes ranging from 20 to 60 nm were obtained [45]. On the other hand, Bio-AgNPs and Bio-AuNPs with cubic, hexagonal, and spherical shapes with average sizes of 25.25 and 16.65 nm were obtained, respectively (Figure 6(a) and 6(b)). Biological synthesized AuNPs with size ranges of 15 to 55 nm with pseudospherical, triangular, and hexagonal [46–50]. All observed NPs are uniformly distributed in various sizes without significant agglomeration.

3.3. Zeta Potential Analysis. Surface zeta potentials were measured using a zeta analyzer in order to study the stability of NPs, which is critical for many applications. The pH of liquid NP samples (5 mL) was adjusted to the required value by diluting them with double distilled water (50 mL). For 30 minutes, the samples were shaken. The zeta potential of the metallic particles was measured after shaking. The surface potential of NPs was determined using a zeta potential. The CH-AgNPs and CH-AuNPs solutions had zeta potentials of -29.18 mV and -18.30 mV, respectively, with a single peak indicating the presence of repulsion among the synthesized NPs, which is critical for many applications. The zeta potential values are low (S. [51]). The zeta potentials of the Bio-AgNPs and Bio-AuNPs solutions was -23.19 mV and -23.90 mV, respectively (Figures 8(a) and 8(b)). When all of the particles in a suspension have a large negative or positive zeta potential, they repel one another and have no tendency to clump together. There will be no force to keep the particles from colliding and flocculating if their zeta potential values are low (S. [51]). The zeta potential of chemical and biosynthesized Ag/AuNPs was found to be negative, indicating that they repel each other and increasing the formulation’s stability.
3.4. XRD Analysis. The powder XRD of silver nanoparticles reveals their crystalline nature. The crystalline structure of silver nanoparticles in powder form was investigated using XRD, and the results are consistent with previous research that revealed plausible silver metal peaks in Figure 9(a) [52–54]. At 40°, 49°, 66°, 77°, and 83°, AgNPs display Bragg diffraction 2θ peaks, which correspond to 111, 200, 220, 311, and 222, respectively.

3.5. EDX Analysis. The elemental composition of AgNPs was shown in Figure 9(b). EDX investigation of silver nanoparticles at 3 keV detects the presence (10.01%), P (0.65%), S (0.45%), and Cl (0.46%). The studied sample also included the highest peak of C (88.43%). The Ag elemental peaks were identified at 1.00 and 3.00 keV.

3.6. Antibacterial Activity. Antibacterial activity was measured in zone of inhibition (mm in diameter), and the CH-AgNPs had high antibacterial activity of 24:80 ± 1:50 and 23:98 ± 0:89, whereas the CH-AuNPs had moderate antibacterial activity of 10.60 ± 0.82 and 12.80 ± 0.90 against B. subtilis (Figure 10(a)) and E. coli (Figure 10(b)), respectively. Bio-AgNPs, on the other hand, had also excellent antibacterial activity 22:80 ± 1:80 and 23:40 ± 1:20, whereas Bio-AuNPs had poor antibacterial activity 09:60 ± 1:91 and 10.70 ± 1.22 against B. subtilis (Figure 10(a)) and E. coli (Figure 10(b)), respectively. Similar results were also reported for photosynthesized silver and gold NPs [42, 49, 55–57]. Tetracycline, a positive control and standard antibiotics, at 5 μg/disk, has good inhibitory activity 18:45 ± 1.67 and 18.09 ± 0.50 against B. subtilis and E. coli pathogens (Table 1). Our findings suggest that Bio-Ag/Au NPs have good antibacterial activity with low toxicity and could be a good antibiotic replacement. Despite the fact that NPs are widely used as antimicrobials, their mechanism is still unknown. Interference with cell wall synthesis, inhibition of protein synthesis, interference with nucleic acid synthesis, and inhibition of a metabolic pathway are all possible antimicrobial mechanisms [58, 59]. Nanomaterials can increase cell membrane permeability, interfere with DNA replication, denature bacterial proteins, and release silver ions within the bacterial cell [60].

3.7. Calculation of Toxic Effect Value (TEV) in Percentage. By plugging absorbance values into equation-X (see Section 2.6.1.), TEV of chemical synthesized NPs was calculated in both the k_1 and k_2 groups.

$$\text{CH-AgNPs of } k_1: \text{PI} = [1 - (-0.3952/-2.7151)] \times 100 = \text{PI} = 85.45\% , (\text{TEV} = 85.45)$$

The CH-AgNPs of k_1 were the most effective against B. subtilis.
CH-AgNPs of k_1: $\text{PI} = \left[1 - \left(-0.4368/-2.6915\right)\right] \times 100 = 83.77\%$, ($\text{TEV} = 83.77$).

CH-AuNPs of k_1: $\text{PI} = \left[1 - \left(-1.8072/-2.7151\right)\right] \times 100 = 33.51\%$, ($\text{TEV} = 33.51$).

CH-AuNPs of k_2: $\text{PI} = \left[1 - \left(-1.3396/-2.6915\right)\right] \times 100 = 36.85\%$, ($\text{TEV} = 36.85$).

The data on toxicity clearly shows that CH-AgNPs are more toxic than CH-AuNPs.

By plugging absorbance values into equation-X (see Section 2.6.1.), TEV of biologically synthesized NPs were calculated in both the k_1 and k_2 groups.

Bio-AgNPs of k_1: $\text{PI} = \left[1 - \left(-1.2026/-2.7151\right)\right] \times 100 = 55.75\%$, ($\text{TEV} = 55.75$).

Bio-AgNPs of k_2: $\text{PI} = \left[1 - \left(-2.0829/-2.6915\right)\right] \times 100 = 24.46\%$, ($\text{TEV} = 24.46$).

Bio-AuNPs of k_1: $\text{PI} = \left[1 - \left(-2.0330/-2.6915\right)\right] \times 100 = 54.42\%$, ($\text{TEV} = 54.42$).

Bio-AuNPs of k_2: $\text{PI} = \left[1 - \left(-2.0330/-2.6915\right)\right] \times 100 = 24.46\%$, ($\text{TEV} = 24.46$).

CH-AgNPs had the highest TEV, with 85.45% and 83.77%, compared to Bio-AgNPs, which had 55.75% and 54.42% for both the k_1 and k_2 groups, respectively. In the...
k_1 and k_2 groups, CH-AuNPs have 33.51 and 36.85%, whereas Bio-AuNPs have 23.36% and 24.46%, respectively. A nonsignificant difference in TEV of CH-Ag/AuNP (Figure 11(a)) and Bio-Ag/AuNP (Figure 11(b)) solutions was found in both the k_1 and k_2 groups. The following is the pattern of the TEV of CH-Ag/AuNPs and Bio-Ag/AuNPs in decreasing order.

CH-AgNPs for the k_1 group > CH-AgNPs for k_2 group > Bio-AgNPs for k_1 group > Bio-AgNPs for k_2 group > CH-AuNPs for k_1 group > CH-AuNPs for k_2 group > Bio-AuNPs for k_2 group > Bio-AuNPs for k_1 group. When comparing silver NPs to gold NPs, as well as chemical vs. biological methods, biologically synthesized (Ag and Au) NPs have lower toxicity than chemically synthesized (Ag and Au) NPs Figures 11(a) and 11(b). On the other hand, the chemical vs. biological method, AgNPs vs. AuNPs, and bacterial species k_1 vs. k_2 group, finding results were depicted in Figures 12(a) and 12(b). When comparing AgNPs vs. AuNPs in both bacterial species k_1 and k_2, a significant TEV difference was observed in the chemical vs. biological method. The process of whole organisms’ uptake and accumulating NPs was less well understood. However, it is clear how whole organisms will react to NPs in their bodies, but how can a possibility of translocation within the body be left to fat droplets [61, 62]. NPs can enter cells by diffusing into the cell membrane via adhesion and endocytosis, according to some studies [63–65]. In higher organisms, such as marine invertebrates, where silver bioaccumulation is relatively quick compared to other trace metals, endocytosis appears to explain silver NP toxicity. Silver can be taken up by transporters in the ionic form because its properties are most similar to sodium and copper ions [66, 67]. The mechanism by which the gut community (gut microbiota) induces its effect is not through translocation, but rather dysbiosis. This process occurs naturally as a result of aging. Aerobic bacteria dominate the gut at birth and are altered in the first weeks to form an anaerobic dominated environment. By adolescences, the gut has the highest proportion of Bifidobacteria and Clostridia that it ever will and will then begin to stabilize throughout adulthood. In
Figure 10: A comparison of antibacterial potential between zone of inhibition (mm) and no. of replicates of CH-Ag/AuNPs, Bio-Ag/AuNPs, and a standard control tetracycline antibiotic against (a) B. subtilis and (b) E. coli.

Table 1: Antibacterial activity of CH-Ag/AuNPs and Bio-Ag/AuNPs against B. subtilis and E. coli.

S.no.	Name of the organism	Zone of inhibition (mm in diameter)	CH-AgNPs	CH-AuNPs	Bio-AgNPs	Bio-AuNPs	HLE-hibiscus (Aq.)	PC-1
1	B. subtilis	24.80 ± 1.50	10.60 ± 0.82	22.80 ± 1.80	09.00 ± 1.96	8.90 ± 1.50	25.00 ± 0.19	
2	E. coli	24.00 ± 1.32	12.80 ± 0.96	23.40 ± 1.20	10.80 ± 1.25	07.40 ± 1.20	25.90 ± 0.48	

CH-AgNPs: chemical synthesized silver nanoparticles; CH-AuNPs: chemical synthesized gold nanoparticles; Bio-AgNPs: biological synthesized silver nanoparticles; Bio-AuNPs: biological synthesized gold nanoparticles; HLE: hibiscus leaf extract (aqueous); PC-1: positive control (tetracycline).

Figure 11: A comparison of toxic effect values (TEV) using the ToxTrak test as an in vitro. (a) CH-Ag/AuNPs vs. both bacterial species B. subtilis and E. coli. (b) Bio-Ag/AuNPs vs. both bacterial species B. subtilis and E. coli.
old age, the gut community shows a decrease in Bifidobacteria (genus) and Bacteroidetes (phylum), an increase in Firmicutes (phylum), and overall shows an increase in the number of facultative anaerobes. The percentage inhibition of in vitro toxicity of chemical and biological synthesized Ag/Au NPs was investigated in this study, and it was discovered that biological synthesized both Ag/AuNPs are less toxic, more friendly and biocompatible to human gut microbiota and probiotics as compared to chemical synthesized Ag/AuNPs. Our findings corroborate previous research, which found that CH-AgNPs are more toxic than Bio-AgNPs from different plant species and algae [68–71]. Our findings suggest that, in comparison to chemically synthesized Ag/AuNPs, biologically synthesized Ag/AuNPs may be a good alternative for coating antibiotic drugs for pharma industries. The upper coatings of nanoparticles on the drugs may be more effective for killing pathogenic bacteria and safe for humans because biologically synthesized Ag/AuNPs are very less toxic and also less harmful to probiotics present in the human gut in the form of probiotic bacteria.

4. Conclusion

In this work, silver and gold nanoparticles were synthesized using two methods: chemical and biological. The nanoparticles were characterized by UV-Vis spectroscopy, TEM, XRD, EDX, and zeta potential analyzers. The ToxTrak test was applied as in vitro to measure the toxicity of synthesized nanoparticles as well as antibacterial activity against Gram-positive (*B. subtilis*) and Gram-negative (*E. coli*) bacteria after satisfactory characterization. The ToxTrak results show that CH-AgNPs are more hazardous than Bio-AgNPs, having a higher TEV/PI value. Similar patterns were seen with CH-AuNPs, which had somewhat higher TEV than Bio-AuNPs. When Ag/Au NPs were examined for antibacterial activity, the following pattern emerged: CH-AgNPs < Bio-AgNPs < CH-AuNPs < Bio-AuNPs, whereas the control sample (tetracycline antibiotic) revealed a highest zone of inhabitation. Overall, Bio-AgNPs and Bio-AuNPs are the most effective pathogen-killing materials with the lowest toxicity. Our findings show that biologically synthesized Ag/AuNPs might be a suitable alternative to chemically synthesized Ag/AuNPs for coating antimicrobial medicines in the pharmaceutical industry. Because biologically synthesized Ag/AuNPs are less toxic and also less destructive to probiotics present in the human gut in the form of probiotic bacteria, the upper coatings of nanoparticles on the drugs may be more effective for destroying pathogenic bacteria and safe for humans.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The author ST gratefully acknowledges Council of Science and Technology, U.P. (CST, Uttar Pradesh) (Grant no.: CST/8276 (Young Scientist Scheme)) for funds. The authors also acknowledge the constant support from the Director of this Institute.

References

[1] J. W. Alexander, “History of the medical use of silver,” *Surgical Infections*, vol. 10, no. 3, pp. 289–292, 2009.

[2] T. Desalegn, C. R. Ravikumar, and H. C. A. Murthy, “Eco-friendly synthesis of silver nanostructures using medicinal plant Vernonia amygdalina Del. leaf extract for multifunctional applications,” *Applied Nanoscience*, vol. 11, no. 2, pp. 535–551, 2021.
[59] P. K. Tyagi, P. Upadhyay, P. Kaul, S. Chaudhary, and E. Mansi Mishra, "Detection of routes of interaction between silver nanoparticles and bacterial cell membrane," *International Journal of Basic and Applied Biology*, vol. 3, no. 2, pp. 111–114, 2016.

[60] M. Guzman, J. Dille, and S. Godet, "Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria," *Nanomedicine: Nanotechnology, Biology, and Medicine*, vol. 8, no. 1, pp. 37–45, 2012.

[61] S. J. Klaine, P. J. J. Alvarez, G. E. Batley et al., "Nanomaterials in the environment: Behavior, fate, bioavailability, and effects," *Environmental Toxicology and Chemistry*, vol. 27, no. 9, pp. 1825–1851, 2008.

[62] J. R. Lead, G. E. Batley, P. J. J. Alvarez et al., "Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review," *Environmental Toxicology and Chemistry*, vol. 37, no. 8, pp. 2029–2063, 2018.

[63] F. Oroojalian, M. Beygi, B. Baradaran, A. Mokhtarzadeh, and M. A. Shahbazi, "Immune cell Membrane-Coated biomimetic nanoparticles for targeted cancer therapy," *Small*, vol. 17, no. 12, article 2006484, 2021.

[64] V. Sheth, L. Wang, R. Bhattacharya, P. Mukherjee, and S. Wilhelm, "Strategies for delivering nanoparticles across tumor blood vessels," *Advanced Functional Materials*, vol. 31, no. 8, article 2007363, 2021.

[65] M. Sousa de Almeida, E. Susnik, B. Drasler, P. Taladriz-Blanco, A. Petri-Fink, and B. Rothen-Rutishauser, "Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine," *Chemical Society Reviews*, vol. 50, no. 9, pp. 5397–5434, 2021.

[66] W. J. Do Nascimento, R. Landers, M. Gurgel Carlos da Silva, and M. G. A. Vieira, "Equilibrium and desorption studies of the competitive binary biosorption of silver(I) and copper(II) ions on brown algae waste," *Journal of Environmental Chemical Engineering*, vol. 9, no. 1, article 104840, 2021.

[67] B. Keskin, B. Zeytuncu-Gökoğlu, and I. Kayuncu, "Polymer inclusion membrane applications for transport of metal ions: a critical review," *Chemosphere*, vol. 279, article 130604, 2021.

[68] F. Liaqat, U. Hanif, S. Bahadur et al., "Comparative evaluation of the toxicological effect of silver salt (AgNO3) and silver nanoparticles onCyprinus carpio synthesized by chemicals and marine algae using scanning electron microscopy," *Microscopy Research and Technique.*, vol. 84, no. 7, pp. 1531–1541, 2021.

[69] N. Saha and S. Dutta Gupta, "Low-dose toxicity of biogenic silver nanoparticles fabricated by _Swertia chirata_ on root tips and flower buds of _Allium cepa_," *Journal of Hazardous Materials*, vol. 330, pp. 18–28, 2017.

[70] S. S. Salem and A. Fouda, "Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview," *Biological Trace Element Research*, vol. 199, no. 1, pp. 344–370, 2021.

[71] A. Yaqub, N. Malkani, A. Shabbir et al., "Novel biosynthesis of copper nanoparticles using Zingiber and Allium sp. with synergic effect of doxycycline for anticancer and bactericidal activity," *Current Microbiology*, vol. 77, no. 9, pp. 2287–2299, 2020.