Drag-induced dynamical formation of dark solitons in Bose mixture on a ring

Andrzej Syrwid,1 Emil Blomquist,1 and Egor Babaev1

1Department of Physics, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden

Solitons are ubiquitous objects appearing in various physical systems, including nonlinear optics, fluid dynamics [1–9] and ultracold atomic systems [10, 11]. Ultracold bosons form Bose–Einstein condensate (BEC) effectively described by the Gross–Pitaevskii equation (GPE) [10–12]. The nonlinearity present in GPE can balance dispersive effects, supporting nonuniform solutions (solitons) preserving shape in time. This, together with a great progress in cold atoms experimental techniques, makes ultracold bosonic systems an excellent platform for the studies on matter-wave solitons [13–27]. Solitons also occur in fermionic ultracold atomic systems [28–32].

A conventional superfluid is described by a complex field $\psi = \sqrt{n} e^{i\varphi}$. The phase gradient can be identified with the superfluid velocity $v = \frac{\hbar}{m} \nabla \varphi$, where m is the particle mass [10–12, 33]. In 1976 Andreev and Bashkin demonstrated that in a two-component interacting superfluid mixture the relation between superfluid velocities and superflows becomes very nontrivial due to existence of a dissipationless drag transport effect [34]. Indeed, the corresponding free-energy density takes the existence of a dissipationless drag transport effect [34]. Bashkin demonstrated that in certain asymmetrical lattices there also occur in fermionic ultracold atomic systems [28–32]. For the studies on matter-wave solitons [13–27]. Solitons are ubiquitous objects appearing in various physical systems, including nonlinear optics, fluid dynamics [1–9] and ultracold atomic systems [10, 11]. Ultracold bosons form Bose–Einstein condensate (BEC) effectively described by the Gross–Pitaevskii equation (GPE) [10–12]. The nonlinearity present in GPE can balance dispersive effects, supporting nonuniform solutions (solitons) preserving shape in time. This, together with a great progress in cold atoms experimental techniques, makes ultracold bosonic systems an excellent platform for the studies on matter-wave solitons [13–27]. Solitons also occur in fermionic ultracold atomic systems [28–32].

The AB effect strongly affects vortex lattices in superfluids [35, 36] and can change the nature of topological solitons [37, 81]. The corresponding particle–particle interaction [34, 43–47]. Especially interesting is the case of strongly correlated superfluids which parameters are precisely controllable in optical lattices [48, 49]. There the AB drag originates from the interplay between inter-component particle–particle interaction and lattice effects and can be, in relative terms, arbitrarily strong and ρ_d can be also negative [43–47, 50–59]. Interestingly, AB drag signatures have been found in quantum droplets collisions [60].

The AB effect can have various forms. Recently, it was demonstrated that in certain asymmetrical lattices there exists also a perpendicular entrainment referred to as vector drag [61].

In binary systems very interesting solitonic effects are driven by inter-component density-density interaction [62–80]. In this paper, we study the consequences of the AB effect (current-current interaction) on the solitonic dynamics. We consider a one-dimensional (1D) binary bosonic superfluid mixture modelled by the energy functional $\mathcal{E} = N \int (\varepsilon_0 + \varepsilon_d) dx$ with $\varepsilon_0 = \sum_\alpha [-(\hbar^2/2m) \partial_x^2 \psi_\alpha^2/2m + g_\alpha N |\psi_\alpha|^2/2]$ and $\varepsilon_d = g_d N \sum_\alpha J_\alpha^2/2 + g_d N J_\alpha J_\beta = g_d N (J_\alpha + J_\beta)^2/2$. Here ψ_α is the condensate field of component $\alpha \in \{a, b\}$ normalized to unity $|\langle \psi_\alpha | \psi_\alpha \rangle|^2 = 1$. The particles, which numbers are equal and conserved in both components, $N_\alpha = N$, possess equal masses $m_\alpha = m$ and are confined in a ring of circumference L, i.e., we assume periodic boundary conditions (PBC) $\psi_\alpha(x + L, t) = \psi_\alpha(x, t)$. The condensates are subjected to an intra-component contact interaction of strength governed by g_α and the AB inter-component drag incorporated by scalar product of $J_\alpha = \hbar \psi_\alpha^* \partial_x \psi_\alpha/(2mi) + c.c.$ with strength given by $g_d > 0$. The contributions $\propto J_\alpha^2$ in ε_d are required for \mathcal{E} to be bounded from below. Such a phenomenological effective model of the AB drag has previously been studied in other contexts [37, 81].

Our goal is to investigate the effects of current-current interaction. Hence, in this work we specifically set the well-studied inter-component density-density interaction to zero. However, the effect of the latter is discussed in Supplemental Material (SM) [82]. The corresponding system of dimensionless time-dependent GP-like equations reads $\alpha \in \{a, b\}, \gamma \neq \alpha$:

$$i \partial_t \psi_\alpha = -\frac{\partial^2 \psi_\alpha}{2} + [g_a |\psi_\alpha|^2 \psi_\alpha + g_d J_{\alpha\alpha} + g_d J_{\alpha\gamma}],$$

(1)

where the length scales are measured in units of the ring circumference L, time in units of $\frac{mL^2}{\hbar}$, energy in units of $\frac{\hbar^2}{mL^2}$, and we defined $g_a = \frac{mL^2 g_\alpha N}{\hbar}$, $g_d = \frac{N g_d}{mL^2 g_\alpha}$, and $J_{\alpha\beta} = [2(\partial_x \psi_\alpha) J_\beta + \psi_\alpha (\partial_x J_\beta)]/2$ with the dimensionless $J_\alpha = \psi_\alpha^* \partial_x \psi_\alpha/(2i) + c.c.$ In the absence of drag, i.e., for $g_d = 0$, Eqs. (1) become independent and support both
bright and dark soliton solutions that for PBC can be expressed analytically in terms of Jacobi functions [83–87]. A stationary bright soliton in ring geometry (PBC) forms spontaneously in the ground state when $g_\alpha < g_c = -\pi^2$. On the other hand, dark solitons are collective excitations characterized by density notches accompanied by phase slips in phase distribution φ and appear for any $g_\alpha > 0$ [87, 88]. For finite rings, i.e., $L < \infty$, a single dark soliton always propagates with some finite velocity because the phase cyclicity condition, $\varphi(L) - \varphi(0) = 2\pi W$ where the winding number $W \in \mathbb{Z}$, requires a nonzero phase gradient to be satisfied in the presence of a solitonic phase slip. In the limiting case of a totally dark, i.e., black, soliton the corresponding density vanishes in the dip where the phase reveals a single-point discontinuity by π. Therefore, to satisfy PBC the phase φ has to accumulate at least as $\pm \pi x / L$. Solitons with a shallower density notch accompanied by a smooth $\varphi(x)$ are often called gray solitons. Note that two gray solitons revealing identical densities may possess phase distributions characterized by different W and in consequence different average momenta $\langle p \rangle = -i \hbar \int dx \psi^* \partial_x \psi$. In Fig. 1 we show typical density and phase distributions of the lowest energy bright soliton and two types of dark solitons: black and gray.

From the many-body perspective, dark solitons are directly connected with a specific class of the so-called yrast states [89–106], i.e., lowest energy states for a given total momentum. Similar many-body excitations correspond to dark solitons also in the presence of open boundary conditions [107]. For an overview see [87]. Here, we study whether current-current drag interactions can lead to yrast excitations, inducing formation of dark solitons.

Let us assume that in our system one of the components, say the b-component, exhibits $J_b \neq 0$ while $J_\alpha = 0$. If the spatial translation symmetry is broken and $J_{\alpha \gamma} \neq 0$, then a dynamic drag-related current generation and a momentum transfer between the components can be expected. To study this problem, we consider the case in which component a is initially prepared in the uniform ground state ψ_{0a} for repulsive interaction $g_\alpha > 0$. At the same time b component is prepared in the ground state, ψ_{0b}, but for attractive interactions characterized by $g_\alpha < g_c$ that is associated with a stationary bright soliton. In such a case $\langle p_a \rangle = \langle p_b \rangle = 0$, $J_a = J_b = 0$ and the drag interactions have no impact on these states. To have $J_\alpha, J_{\alpha \gamma} \neq 0$ we additionally set the bright soliton in motion such that initially $\langle p_b \rangle, J_b \neq 0$.

Basing on the relationship between yrast states and dark solitons in a single component repulsive Bose gas with PBC, one can ask if the drag-related momentum transfer from component b to a can induce a dark soliton formation in the latter component. We argue that preparing component b in a well localized bright soliton state may reduce excitations of kinds other than the collective solitonic ones. That is, the bright soliton would slow down its propagation when transferring the momentum from b to a, while preserving approximately unchanged shape due to strong intra-component attraction. In such a case, there is a chance that most of the energy gained by component a would correspond to the collective motion characterized by the transferred momentum. Thus, excluding the drag interaction energy, the resulting excited state in a component would have energy close to the one possessed by the yrast state with $\langle p_a \rangle$. If so, then one may expect an emergence of dark soliton signatures (density notch and phase slip) in the a-component.

Given that the abovementioned scenario takes place, the induced dark soliton is expected to be different depending on the amount of momentum injected into component a—the latter is likely to change over time. One may ask whether or not it is possible for a specific dark soliton to form in component a that would coexist with the bright soliton in the other component for time-scales longer than the period of a single revolution of the anticipated dark soliton along the ring. We suppose that this can happen when both the target dark soliton and the bright soliton propagate with comparable velocities.

The well localized (narrow in comparison to L) bright soliton can be approximately described by the famous sech-shaped soliton wave function [11] which reveals its particle-like behavior. Note that $\langle p \rangle = \hbar \int dx |\psi|^2 \partial_x \varphi$ and $\varphi(x) = \varphi(0) + mx/h + S(x)$, where $S(x)$ encodes other phase features like phase slips. For well localized bright solitons $\partial_x S \approx 0$ in the vicinity of the soliton clump and thus such states propagate with the velocity $v \approx \langle p \rangle / m$. Generally, $\int dx |\psi|^2 \partial_x S$ is nonnegligible for dark solitons making the relationship between v and $\langle p \rangle$ more complicated. The special case is a black soliton (bs), for which $\partial_x S \neq 0$ only at the soliton dip where $|\psi_{bs}|^2 = 0$. Thus, for the black soliton $v_{bs} = (\langle p_{bs} \rangle / m, \langle p_{bs} \rangle / \hbar)$.

Let us operate with the dimensionless units and restrict our considerations to states ψ_{bs} possessing $0 \leq \langle p_{bs} \rangle \leq 2\pi$ measured in \hbar / L units. We are going to analyze the possibility of a drag-induced formation of the most distinct of dark solitons, namely, the black soliton. We suppose

![FIG. 1. Illustration of well localized solitons confined in a ring of circumference $L = 1$. Panel (a) shows a lowest energy bright soliton density while panel (b) presents densities of two types of dark solitons: black (solid line) and gray (dashed line). The corresponding phase distributions are depicted in the respective insets. While the stationary bright soliton in (a) has a uniform phase, a dark soliton notch is always accompanied by a phase slip that can be of two kinds: facing down or facing up. Upper and lower insets of (b) show phase distributions characterized by $W = 1$ and $W = 0$, respectively.](image-url)
that a long living coexistence of black and bright solitons may be possible when both objects propagate with comparable velocities. Therefore, at $t = 0$, we set the initial ground state bright soliton (b component) in motion with \(\langle p_b \rangle = 2 \langle p_{bs} \rangle = 2\pi \). This is done by multiplying \(\psi_{b0}(x) \) by \(e^{i2\pi x} \), i.e., \(\psi_b(x,t=0) = \psi_{b0}(x)e^{i2\pi x} \). Since \(\langle p_b \rangle + \langle p_a \rangle = 2\pi \) is a conserved quantity in our system, we expect that if the momentum is transferred from component b to a, the abovementioned coexistence may appear when \(\langle p_b \rangle - \langle p_a \rangle \approx 0 \). In such a case \(\langle p_b \rangle \approx \langle p_a \rangle \approx \pi \) and the corresponding solitons should propagate with comparable velocities.

We prepared the initial bright soliton state \(\psi_{b0}(x) \) by means of an imaginary time evolution of (1) with \(\alpha = b \), \(g_b = 0 \) and four different \(g_a = -20, -25, -30, -35 \), separately. These values of \(g_a \) are all substantially below the critical value \(g_a = -\pi^2 \) which guarantees that the resulting bright soliton density is well localized. This state is then set in motion with \(\langle p_b \rangle |_{t=0} = 2\pi \) by incorporating a phase factor as previously described. Component a is prepared in a similar way but with \(g_a \in \{20, 25, \ldots, 90\} \) resulting in the lowest energy state \(\psi_{a0} = \psi_a(x,t=0) = 1 \) (up to a global phase). After the states preparation we switch on the AB drag by setting \(g_a = 0.1 \) while keeping \(g_b \) fixed. We then numerically evolve Eqs. (1) in real time up to \(t = 10 \), a time more than 30 times longer than the characteristic period of the black soliton revolution around the ring \(T = 1/\pi \approx 0.32 \).

Our results indicate that the bright soliton in b component survives the evolution for all the considered parameters. For each \(g_b = -20, -25, -30, -35 \) we find a region in the \(g_a \) parameter where clear dark soliton signatures (density notch and phase slip) emerge in \(\psi_a(x,t) \). See SM [82] for snapshots of typical system dynamics. Fig. 2 shows the temporal behavior of the overlap \(|\langle \psi_a | \psi_{ba} \rangle|^2 \) and the momentum difference \((\langle p_a \rangle - \langle p_b \rangle)/\pi \) for different \(g_a \) and \(g_b = -20, -30 \). The overlaps \(|\langle \psi_a | \psi_{ba} \rangle|^2 \) are calculated with the analytical black soliton solution ψ_{bs} characterized by the corresponding g_a and located at a position of the phase slip recognized in $\psi_a(x,t)$. By choosing a specific color code in the overlap plots we discriminate the regions where \(|\langle \psi_a | \psi_{ba} \rangle|^2 > 0.9 \) (red intensity) from those where \(|\langle \psi_a | \psi_{ba} \rangle|^2 < 0.9 \) (gray intensity). Note that overlaps above 0.9 appear when the momenta \(\langle p_a \rangle \) and \(\langle p_b \rangle \) are similar and are maintained for time scales significantly longer than T. We observe that the critical g_a above which a dark soliton appears depends on the value of g_a. That is, for stronger attraction, i.e., narrower bright soliton in the b component, the regime of the (nearly) black soliton formation shifts to larger g_a corresponding to the narrower dark solitons. In SM [83] we also analyze how drag-induced states ψ_a would evolve if drag is quenched to zero (drag-free dynamics) at a time when \(|\langle \psi_a | \psi_{ba} \rangle|^2 \approx 1 \). It turns out that such generated states reveal a genuine dark soliton drag-free evolution.

To better understand the system dynamics, in Fig. 3 we closer study cases with \(g_b = -30 \) and \(g_a = 65, 70, 75 \). As before, we analyze the time dependence of the overlap \(|\langle \psi_a | \psi_{ba} \rangle|^2 \) and momentum \(\langle p_a \rangle /\pi \). Additionally, we monitor the minimum Euclidean distance Δ along the ring between the bright soliton and the drag-induced dark soliton. The minimum reached by an anticipated density notch $\min(|\psi_a(t)|^2)$, as well as the ratio of the bright soliton height to its initial value $\max(|\psi_b(t)|^2)/\max(|\psi_b(0)|^2)$. In all the cases an initial momentum transfer leads to the formation of a (nearly) black soliton. Indeed, the overlap \(|\langle \psi_a | \psi_{ba} \rangle|^2 \) increases together with \(\langle p_a \rangle \), and the density notch is simultaneously being carved as indicated by the decreasing value of $\min(|\psi_a(t)|^2)$. At the same time the distance Δ reveals an increasing separation between solitons in the two components reaching maximum, $\Delta \approx 0.5$, at a time in the middle of the plateau of \(|\langle \psi_a | \psi_{ba} \rangle|^2 \approx 1 \). The seemingly linear trend in Δ for $\Delta \gtrsim 0.1$ reveals a constant relative motion between the spatially separated solitons $|v_b - v_a| \approx 1$ three times slower than the single-component black soliton velocity $v_{bs} = \pi$. This behavior of Δ repeats multiple times during the evolution.

Due to different velocities and assumed ring system geometry, the solitons collide multiple times during the course of evolution. It turns out that the induced (nearly) black soliton state often is substantially disturbed or even completely destroyed when both solitons meet, i.e., when $\Delta \to 0$, which results in an abrupt drop of the overlap value \(|\langle \psi_a | \psi_{ba} \rangle|^2 \). The dark soliton re-localizes again when Δ increases. Such a mechanism is the origin of quasi-periodic patterns visible in Figs. 2 and 3. However, as indicated by the behavior of $\max(|\psi_b(t)|^2)/\max(|\psi_b(0)|^2)$, the bright soliton remains almost unaffected when passing through the dark one. On the other hand, as shown in Fig. 3(b) for $t > 7$ and
FIG. 3. Each set of plots (a), (b), and (c) shows from top to bottom the dynamics of: the overlap $|\langle \psi_a | \psi_b \rangle|^2$, the relative distance Δ along the ring between the bright soliton (b component) and the phase slip position in $\psi_a(x,t)$, the average momentum $\langle p_a \rangle / \pi$, as well as the values $\min(|\psi_a(t)|^2)$ and $\max(|\psi_b(t)|^2)/\max(|\psi_b(0)|^2)$. The results in (a), (b), and (c) correspond to $g_b = -30$ and $g_a = 65, 70, 75$, respectively. The drag-induced dark (nearly black) soliton often is significantly disturbed, or even completely destroyed, when passing through the bright soliton, i.e., when $\Delta \rightarrow 0$. In such a case the phase slip in $\psi_a(x,t)$ is rather tiny or even unrelated to any soliton structure. This is the origin of the narrow spikes observed in the Δ plots when $\Delta \rightarrow 0$ and $\min(|\psi_a(t)|^2) \approx 1$. Nevertheless, as shown in (b) for $t > 7$ and in (c) for $t > 3$, the (nearly) black soliton can survive encounter with the bright soliton.

Fig. 3(c) for $t > 3$, the drag-induced dark soliton can also survive an encounter with the bright soliton. Additionally, in Fig. 3(c) for $t \in (6.3, 7)$ and $t \in (8, 9)$, one can observe signatures of the existence of long living dark-bright soliton composites characterized by $\Delta \approx 0$. For more intuition, see snapshots of the system evolution in SM [82].

In summary, we have studied the dynamics of a bosonic binary mixture confined in a 1D ring geometry with intra-component contact interactions and inter-component Andreev–Bashkin drag. Based on the relationship between dark solitons and yrast states characterized by the lowest energy for a given momentum, we formulated and verified the hypothesis concerning a drag-induced dark soliton formation process. By numerically computing the system dynamics we tested the scenario where a propagating bright soliton interacts with the other component, prepared in the repulsively interacting uniform ground state. We demonstrated that there exist parameter regimes for which the drag interaction leads to formation of a long living genuine, nearly black soliton state in the initially uniform component. While we focused on the most distinct black soliton case, the general idea provided here should also allow for generation of gray solitons. Our goal here was to study the effects of current-current interaction on soliton dynamics. An interesting question that warrants further studies is how these effects combine with inter-component density-density interactions. This question is beyond the scope of this paper, but in [82] we show that the drag phenomenon is crucial for the dynamical formation of long-living dark solitons, while density-density inter-component coupling does not support this effect in the considered setup. Additionally, we present that the effect at least survives inclusion of not too strong density-density interactions. The discussed phenomenon could guide experiments for a detection of the AB drag effect in binary superfluids. This can open avenue of studying the drag effect directly in a laboratory shedding light on the drag effect in other systems ranging from multicomponent superconductors to superfluids in neutron stars.

In conclusion, previously, soliton physics in binary systems were restricted to the role of density-density interaction. In this paper we report that new kind of soliton dynamics arises in binary system due to current-current coupling. The results indicate that the mixed gradient coupling plays an important role in soliton physics in multi-component systems which warrants further investigation. We expect that competition between the drag effect and density-density inter-component interactions leads to even richer dynamics of multicomponent systems.

ACKNOWLEDGEMENTS

The authors are grateful to Krzysztof Sacha for valuable discussions. E. Bl. and E. Ba. were supported by the Swedish Research Council Grants No. 2016-06122, 2018-03659, and Göran Gustafsson Foundation for Research in Natural Sciences. A. S. and E. Ba. acknowledge the support from Olle Engkvists stiftelse.
[1] Akira Hasegawa, *Optical Solitons in Fibers* (Springer-Verlag, Berlin, 1989).
[2] Thierry Dauxois and Michel Peyrard, *Physics of Solitons* (Cambridge University Press, UK, 2006).
[3] Yuri S. Kivshar and Govind P. Agrawal, *Optical solitons: from fibers to photonic crystals* (Academic Press, San Diego, Calif, 2003).
[4] R. H. J. Grimshaw, *Solitary Waves in Fluids* (WIT Press, Southampton, Boston, 2007).
[5] Akira Hasegawa, “Optical Solitons in Fibers for Communication Systems,” Opt. Photon. News 13, 33–37 (2002).
[6] K.L. Henderson, D.H. Peregrine, and J.W. Dold, “Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation,” Wave Motion 29, 341–361 (1999).
[7] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nature Physics 6, 790–795 (2010).
[8] H. Baitung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions,” Phys. Rev. Lett. 107, 255005 (2011).
[9] A. Chabchoub, T. Waseda, M. Klein, S. Trillo, and H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions,” Phys. Rev. Lett. 107, 255005 (2011).
[10] Lev Pitaevskii and Sandro Stringari, *Bose–Einstein Condensation and Superfluidity* (Cambridge University Press, 2008).
[11] C. J. Pethick and H. Smith, *Bose–Einstein Condensation in Dilute Gases*, 2nd ed. (Cambridge University Press, 2008).
[12] Boris V Svistunov, Egor S Babaev, and Nikolay V Prokof’ev, *Superfluid states of matter* (Crc Press, Boca Raton, 2015).
[13] J. Denschlag, J. E. Simsarian, D. L. Feder, Charles W. Clark, L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D. Phillips, “Generating Solitons by Phase Engineering of a Bose-Einstein Condensate,” Science 287, 97–101 (2000).
[14] Kevin E. Strecker, Guthrie B. Partridge, Andrew G. Truscott, and Randall G. Hulet, “Formation and propagation of matter-wave, soliton trains,” Nature 417, 150–153 (2002).
[15] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, “Formation of a Matter-Wave Bright Soliton,” Science 296, 1290–1293 (2002).
[16] Christoph Becker, Simon Stellmer, Parvís Soltan-Panahi, Sören Dörscher, Mathis Baurnert, Eva-Maria Richter, Jochen Kronjäger, Kai Bongs, and Klaus Sengstock, “Oscillations and interactions of dark and dark–bright solitons in Bose–Einstein condensates,” Nature Physics 4, 496–501 (2008).
[17] S. Stellmer, C. Becker, P. Soltan-Panahi, E.-M. Richter, S. Dörscher, M. Baurnert, J. Kronjäger, K. Bongs, and K. Sengstock, “Collisions of Dark Solitons in Elongated Bose–Einstein Condensates,” Phys. Rev. Lett. 101, 120406 (2008).
[18] A. Weller, J. P. Ronzheimer, C. Gross, J. Estève, M. K. Oberthaler, D. J. Frantzeskakis, G. Theochariska, and P. G. Kevrekidis, “Experimental Observation of Oscillating and Interacting Matter Wave Dark Solitons,” Phys. Rev. Lett. 101, 130401 (2008).
[19] G. Theochariska, A. Weller, J. P. Ronzheimer, C. Gross, M. K. Oberthaler, P. G. Kevrekidis, and D. J. Frantzeskakis, “Multiple atomic dark solitons in cigar-shaped Bose-Einstein condensates,” Phys. Rev. A 81, 063604 (2010).
[20] Krzysztof Gawryluk, Miroslaw Breveczyk, Mariusz Gajda, and Jan Mostowski, “Formation of soliton trains in Bose–Einstein condensates by temporal Talbot effect,” Journal of Physics B: Atomic, Molecular and Optical Physics 39, L1–L7 (2005).
[21] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark Solitons in Bose-Einstein Condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[22] L. D. Carr, J. Brand, S. Burger, and A. Sanpera, “Dark-soliton creation in Bose-Einstein condensates,” Phys. Rev. A 63, 051601 (2001).
[23] Dmitry K. Efimkin, Johannes Hofmann, and Victor Galitski, “Non-Markovian Quantum Friction of Bright Solitons in Superfluids,” Phys. Rev. Lett. 116, 225301 (2016).
[24] Jason H. V. Nguyen, Paul Dyke, De Luo, Boris A. Malomed, and Randall G. Hulet, “Collisions of matter-wave solitons,” Nature Physics 10, 918–922 (2014).
[25] Laurent M. Aycock, Hilary M. Hurst, Dmitry K. Efimkin, Dina Genkina, Hsin-I Lu, Victor M. Galitski, and I. B. Spielman, “Brownian motion of solitons in a Bose–Einstein condensate,” Proceedings of the National Academy of Sciences 114, 2503–2508 (2017).
[26] A. R. Fritsch, Mingwu Lu, G. H. Reid, and I. B. Spielman, “Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates,” Phys. Rev. A 101, 053629 (2020).
[27] Hilary M. Hurst, Dmitriy K. Efimkin, I. B. Spielman, and Victor Galitski, “Kinetic theory of dark solitons with tunable friction,” Phys. Rev. A 95, 053604 (2017).
[28] Tomasz Karpinski, Miroslaw Breveczyk, and Kazimierz Rzazewski, “Solitons and vortices in ultracold fermionic gases,” Journal of Physics B: Atomic, Molecular and Optical Physics 35, L135–L321 (2002).
[29] Jacek Dziarmaga and Krzysztof Sacha, “Soliton in BCS superfluid Fermi gas,” preprint arXiv:cond-mat/0407585 (2004).
[30] Mauro Antezza, Franco Dalfovo, Lev P. Pitaevskii, and Sandro Stringari, “Dark solitons in a superfluid Fermi gas,” Phys. Rev. A 76, 043610 (2007).
[31] Krzysztof Sacha and Dominique Delande, “Proper phase imprinting method for a dark soliton excitation in a superfluid Fermi mixture,” Phys. Rev. A 90, 021604(R) (2014).
[32] Dmitry K. Efimkin and Victor Galitski, “Moving solitons in a one-dimensional fermionic superfluid,” Phys. Rev. A 91, 023616 (2015).
[33] L. Onsager, “Statistical hydrodynamics,” Il Nuovo Cimento (1943-1954) 6, 279–287 (1949).
[34] A. F. Andreev and E. P. Bashkin, “Three-velocity hydrodynamics of superfluid solutions,” Soviet Physics JETP 42, 164–167 (1975).
[35] E. K. Dahl, E. Babaev, and A. Sudbø, “Hidden vortex lattices in a thermally paired superfluid,” Phys. Rev. B 78, 144510 (2008).
[36] E. K. Dahl, E. Babaev, and A. Sudbø, “Unusual States of Vortex Matter in Mixtures of Bose-Einstein Condensates on Rotating Optical Lattices,” Phys. Rev. Lett. 101, 255301 (2008).
[37] Filipp N. Rybakov, Julien Gaulard, and Egor Babaev, “Stable Hopf-Skyrme topological excitations in the superconducting state,” Phys. Rev. B 100, 094515 (2019).
[38] O. Sjöberg, “On the Landau effective mass in asymmetric nuclear matter,” Nuclear Physics A 265, 511 – 516 (1976).
[39] N. Chamel, “Two-fluid models of superfluid neutron star cores,” Monthly Notices of the Royal Astronomical Society 388, 737–752 (2008).
[40] MA Alpar, Stephen A Langer, and JA Sauls, “Rapid postglitch spin-up of the superfluid core in pulsars,” The Astrophysical Journal 282, 533–541 (1984).
[41] Mark G. Alford and Gerald Good, “Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid,” Phys. Rev. B 78, 024510 (2008).
[42] Egor Babaev, “Unconventional Rotational Responses of Hadronic Superfluids in a Neutron Star Caused by Strong Entainment and a Σ^- Hyperon Gap,” Phys. Rev. Lett. 103, 231101 (2009).
[43] D. V. Fil and S. I. Shevchenko, “Nondissipative drag of superflow in a two-component Bose gas,” Phys. Rev. A 72, 013616 (2005).
[44] Jacob Linder and Asle Sudbø, “Calculation of drag and superfluid velocity from the microscopic parameters and excitation energies of a two-component Bose-Einstein condensate in an optical lattice,” Phys. Rev. A 79, 063610 (2009).
[45] Patrick P. Hofer, C. Bruder, and Vladimir M. Stojanović, “Superfluid drag of two-species Bose-Einstein condensates in optical lattices,” Phys. Rev. A 86, 033627 (2012).
[46] Stian Hartman, Eirik Erlandsen, and Asle Sudbø, “Superfluid drag in multicomponent Bose-Einstein condensates on a square optical lattice,” Phys. Rev. B 98, 024512 (2018).
[47] VE Colussi, F Caleffi, C Menotti, and A Recati, “Quantum Gutzwiller approach for the two-component Bose-Hubbard model,” arXiv preprint arXiv:2101.13095 (2021).
[48] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39 – 44 (2002).
[49] Immanuel Bloch, “Ultracold quantum gases in optical lattices,” Nature physics 1, 23–30 (2005).
[50] A. B. Kuklov and B. V. Svistunov, “Counterflow Superfluidity of Two-Species Ultracold Atoms in a Commensurate Optical Lattice,” Phys. Rev. Lett. 90, 100401 (2003).
[51] Anatoly Kuklov, Nikolay Proko’ev, and Boris Svistunov, “Commensurate Two-Component Bosons in an Optical Lattice: Ground State Phase Diagram,” Phys. Rev. Lett. 92, 050402 (2004).
[52] Anatoly Kuklov, Nikolay Proko’ev, and Boris Svistunov, “Superfluid-Superfluid Phase Transitions in a Two-Component Bose-Einstein Condensate,” Phys. Rev. Lett. 92, 030403 (2004).
[53] Barbara Capogrosso-Sansone, Ş. G. Söyler, Nikolay Proko’ev, and Boris Svistunov, “Monte Carlo study of the two-dimensional Bose-Hubbard model,” Phys. Rev. A 77, 015602 (2008).
[54] E. K. Dahl, E. Babaev, S. Kragset, and A. Sudbø, “Preemptive vortex-loop proliferation in multicomponent interacting Bose-Einstein condensates,” Phys. Rev. B 77, 144519 (2008).
[55] Barbara Capogrosso-Sansone and AB Kuklov, “Superfluidity of flexible chains of polar molecules,” Journal of Low Temperature Physics 165, 213–226 (2011).
[56] Karl Sellin and Egor Babaev, “Superfluid drag in the two-component Bose-Hubbard model,” Phys. Rev. B 97, 094517 (2018).
[57] Emil Blomquist, Andrzej Syrwid, and Egor Babaev, “Borromean Supercounterfluidity,” Phys. Rev. Lett. 127, 255303 (2021).
[58] Daniele Contessi, Donato Romito, Matteo Rizzi, and Alessio Recati, “Collisionless drag for a one-dimensional two-component Bose-Hubbard model,” Phys. Rev. Research 3, 022017 (2021).
[59] Jacopo Nespolo, Grigori E Astrakharchik, and Alessio Recati, “Andreev–Bashkin effect in superfluid cold gas mixtures,” New Journal of Physics 19, 125005 (2017).
[60] Maciej Pyłak, Filip Gampał, Marcin Plodzień, and Mariusz Gajda, “Manifestation of relative phase in dynamics of two interacting Bose-Bose droplets,” Phys. Rev. Research 4, 013168 (2022).
[61] Andrzej Syrwid, Emil Blomquist, and Egor Babaev, “Dissipationless Vector Drag—Superfluid Spin Hall Effect,” Phys. Rev. Lett. 127, 100403 (2021).
[62] P. Öhberg and L. Santos, “Dark Solitons in a Two-Component Bose-Einstein Condensate,” Phys. Rev. Lett. 86, 2918–2921 (2001).
[63] Th. Busch and J. R. Anglin, “Dark-Bright Solitons in Inhomogeneous Bose-Einstein Condensates,” Phys. Rev. Lett. 87, 010401 (2001).
[64] T. Karpiuk, M. Breżewicz, S. Ospelkaus-Schwarz, K. Bongs, M. Gajda, and K. Rzążewski, “Soliton Trains in Bose-Fermi Mixtures,” Phys. Rev. Lett. 93, 100401 (2004).
[65] P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, B. A. Malomed, and R. Carretero-González, “Families of matter-waves in two-component Bose-Einstein condensates,” The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 28, 181–185 (2004).
[66] V. A. Brazhnyi and V. V. Konotop, “Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose-Einstein condensates,” Phys. Rev. E 72, 026616 (2005).
[67] A. Gubeskys, B. A. Malomed, and I. M. Muslih, “Two-component gap solitons in two- and one-dimensional Bose-Einstein condensates,” Phys. Rev. A 73, 023607 (2006).
[68] Tomasz Karpik, Mirosław Breżewicz, and Kazimierz Rzążewski, “Bright solitons in Bose-Fermi mixtures,” Phys. Rev. A 73, 053602 (2006).
[69] H. Susanto, P. G. Kevrekidis, R. Carretero-González, B. A. Malomed, D. J. Frantzeskakis, and A. R. Bishop,
“Čerenkov-like radiation in a binary superfluid flow past an obstacle,” Phys. Rev. A 75, 055601 (2007).
[70] Evgeny V. Doktorov, Jiandong Wang, and Jianke Yang, “Perturbation theory for bright spinor Bose-Einstein condensate solitons,” Phys. Rev. A 77, 043617 (2008).
[71] S Rajendran, P Muruganandam, and M Lakshmanan, “Interaction of dark–bright solitons in two-component Bose–Einstein condensates,” Journal of Physics B: Atomic, Molecular and Optical Physics 42, 145307 (2009).
[72] Armand Niederberger, Boris A. Malomed, and Maciej Lewenstein, “Generation of optical and matter-wave solitons in binary systems with a periodically modulated coupling,” Phys. Rev. A 82, 043622 (2010).
[73] M. A. Hoefer, J. J. Chang, C. Hamner, and P. Engels, “Dark-dark solitons and modulational instability in miscible two-component Bose–Einstein condensates,” Phys. Rev. A 84, 041605 (2011).
[74] Sheng-Chang Li and Fu-Quan Dou, “Matter-wave interactions in two-component Bose-Einstein condensates,” EPL (Europhysics Letters) 111, 30005 (2015).
[75] G. C. Katsimiga, J. Stockhofe, P. G. Kevrekidis, and P. Schmelcher, “Dark–bright soliton interactions beyond the integrable limit,” Phys. Rev. A 95, 013621 (2017).
[76] A. Farolfi, E. Piroggeorgos, C. Mordini, G. Ferrari, and G. C. Katsimiga, “Observation of Magnetic Solitons in Two-Component Bose-Einstein Condensates,” Phys. Rev. Lett. 125, 030401 (2020).
[77] Yongshan Cheng, Rongzhou Gong, and Hong Li, “Dynamics of two coupled Bose-Einstein Condensate solitons in an optical lattice,” Opt. Express 14, 3594–3601 (2006).
[78] Callum L. Grimshaw, Simon A. Gardiner, and Boris A. Malomed, “Splitting of two-component solitary waves from collisions with narrow potential barriers,” Phys. Rev. A 101, 043623 (2020).
[79] Maria Arazo, Montserrat Guilleumas, Ricardo Mayol, and Michele Modugno, “Dynamical generation of dark–bright solitons through the domain wall of two immiscible Bose-Einstein condensates,” Phys. Rev. A 104, 043312 (2021).
[80] André Cidrim, Luca Salasnich, and Tommaso Macrì, “Solitons in binary system with a periodically modulated coupling,” Phys. Rev. B 109, 205302 (2021).
[81] Julien Garaud, Karl A. H. Sellin, Juha Jäykkä, and Egor Babaev, “Skyrmions induced by dissipationless drag in U(1) × U(1) superconductors,” Phys. Rev. B 89, 104508 (2014).
[82] See Supplemental Material for: snapshots of the system dynamics, drag-free evolution of the drag-induced solitonic states, discussion on the inclusion of the standard density-density interaction and their impact on the long-living dynamically induced dark solitons.
[83] L. D. Carr, Charles W. Clark, and W. P. Reinhardt, “Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity,” Phys. Rev. A 62, 063610 (2000).
[84] L. D. Carr, Charles W. Clark, and W. P. Reinhardt, “Stationary solutions of the one-dimensional nonlinear Schrödinger equation. II. Case of attractive nonlinearity,” Phys. Rev. A 62, 063611 (2000).
[85] R. Kanamoto, L. D. Carr, and M. Ueda, “Metastable quantum phase transitions in a periodic one-dimensional Bose gas: Mean-field and Bogoliubov analyses,” Phys. Rev. A 79, 063616 (2009).
[86] Z. Wu and E. Zaremba, “Mean-field yrast spectrum of a two-component Bose gas in ring geometry: Persistent currents at higher angular momentum,” Phys. Rev. A 88, 063640 (2013).
[87] Andrzej Syrwid, “Quantum dark solitons in ultracold one-dimensional Bose and Fermi gases,” Journal of Physics B: Atomic, Molecular and Optical Physics 54, 103001 (2021).
[88] Rina Kanamoto, Hiroki Saito, and Masahito Ueda, “Quantum phase transition in one-dimensional Bose–Einstein condensates with attractive interactions,” Phys. Rev. A 67, 013608 (2003).
[89] P. P. Kulish, S. V. Manakov, and L. D. Faddeev, “Comparison of the exact quantum and quasiclassical results for a nonlinear Schrödinger equation,” Theoretical and Mathematical Physics 28, 615–620 (1976).
[90] Z. Wu and E. Zaremba, “Mean-field yrast spectrum of a two-component Bose gas in ring geometry: Persistent currents at higher angular momentum,” Phys. Rev. A 88, 063640 (2013).
[91] Rina Kanamoto, Lincoln D. Carr, and Masahito Ueda, “Topological Winding and Unwinding in Metastable Bose–Einstein Condensates,” Phys. Rev. Lett. 100, 060401 (2008).
[92] R. Kanamoto, L. D. Carr, and M. Ueda, “Stationary solutions of the one-dimensional Bose gas. II. Many-body theory,” Phys. Rev. A 81, 023625 (2010).
[93] S. Komineas and N. Papanicolaou, “Vortex Rings and Lieb Modes in a Cylindrical Bose-Einstein Condensate,” Phys. Rev. Lett. 89, 070402 (2002).
[94] A. D. Jackson and G. M. Kavoulakis, “Lieb Mode in a Quasi-One-Dimensional Bose-Einstein Condensate of Atoms,” Phys. Rev. Lett. 89, 070403 (2002).
[95] Jun Sato, Rina Kanamoto, Eriko Kaminishi, and Tetsuo Deguchi, “Exact Relaxation Dynamics of a Localized Many-Body State in the 1D Bose Gas,” Phys. Rev. Lett. 108, 110401 (2012).
[96] Tomasz Karpinski, Piotr Deuar, Przemysław Bienias, Emilia Witkowska, Krzysztof Pawłowski, Mariusz Gajda, Kazimierz Rzążewski, and Mirosław Brewczyk, “Correspondence between dark solitons and the type II excitations of the Lieb-Liniger model,” Phys. Rev. A 91, 013621 (2015).
[97] Andrzej Syrwid and Krzysztof Sacha, “Lieb-Liniger model: Emergence of dark solitons in the course of measurements of particle positions,” Phys. Rev. A 92, 032110 (2015).
[98] Tomasz Karpinski, Tomasz Sowiński, Mariusz Gajda, Kazimierz Rzążewski, and Mirosław Brewczyk, “Correspondence between dark solitons and the type II excitations of the Lieb-Liniger model,” Phys. Rev. A 91, 013621 (2015).
[99] Andrzej Syrwid and Krzysztof Sacha, “Lieb-Liniger model: Emergence of dark solitons in the course of measurements of particle positions,” Phys. Rev. A 92, 032110 (2015).
[102] R. Oldziejewski, W. Górecki, K. Pawłowski, and K. Rzążewski, “Many-body solitonlike states of the bosonic ideal gas,” Phys. Rev. A 97, 063617 (2018).

[103] Sophie S. Shamailov and Joachim Brand, “Quantum dark solitons in the one-dimensional Bose gas,” Phys. Rev. A 99, 043632 (2019).

[104] Weronika Golletz, Wojciech Górecki, Rafał Oldziejewski, and Krzysztof Pawłowski, “Dark solitons revealed in Lieb-Liniger eigenstates,” Phys. Rev. Research 2, 033368 (2020).

[105] Sophie S Shamailov and Joachim Brand, “Dark-soliton-like excitations in the Yang–Gaudin gas of attractively interacting fermions,” New Journal of Physics 18, 075004 (2016).

[106] Andrzej Syrwid, Dominique Delande, and Krzysztof Sacha, “Emergence of dark soliton signatures in a one-dimensional unpolarized attractive Fermi gas on a ring,” Phys. Rev. A 98, 023616 (2018).

[107] Andrzej Syrwid and Krzysztof Sacha, “Quantum dark solitons in a Bose gas confined in a hard-wall box,” Phys. Rev. A 96, 043602 (2017).
I. MONITORING THE SYSTEM DYNAMICS

In Fig. FS1 we present snapshots of representative system dynamics in the setup described in the main text. We show two examples where the dark soliton state is induced in component a due to the drag interactions with component b. That is, on the one hand in (a) the evolution of the system characterized by $g_a = 50$, $g_b = -20$ and $g_d = 0.1$ is monitored in the time frame from $t = 0.2$ to $t = 3.95$. On the other hand in (b) we track the dynamics for parameters $g_a = 70$, $g_b = -30$, $g_d = 0.1$ in time between $t = 6.2$ and 9.95. Note that the drag-induced dark soliton in component a for most of the time is very similar to the corresponding black soliton state indicated in the plots for comparison. Nevertheless, it can be significantly disturbed or even completely disappear when passing through the bright soliton in the other component.

II. DRAG-FREE DYNAMICS OF INDUCED STATES

Let us look closer at typical drag-induced dark (nearly black) solitons generated in the a component. The left panels of Fig. FS2 present two representative examples of $\psi_a(x,t)$ obtained for $g_a = 45$, $g_b = -20$ at $t = 1.0$ (a) and for $g_a = 75$, $g_b = -30$ at $t = 7.0$ (c), respectively. The results reveal density notches and phase distributions very similar to the corresponding black soliton solu-
FIG. FS2. Panel (a) presents the density (blue line) and phase distribution (inset; blue line) of \(\psi_a(x,t) \) after a time \(t = 1.0 \) of evolution for \(g_a = 45 \) and \(g_d = 0.1 \) with the bright soliton in component \(b \) characterized by \(g_b = -20 \). For comparison we show density and phase distribution of the corresponding black soliton state \(\psi_{bs} \) (gray lines). The state \(\psi_a(x,t = 1) \) is a representative example of states revealing a high overlap \(|\langle \psi_a | \psi_{bs} \rangle|^2 \). Panel (b) shows the drag-free \((g_d = 0) \) genuine dark soliton dynamics of the density (color code) of \(\psi_a \) presented in (a). In (c) and (d) we present similar results but obtained for \(t = 7.0, g_a = 75, g_b = -30, \) and \(g_d = 0.1 \).

III. INCLUSION OF DENSITY-DENSITY INTERCOMPONENT INTERACTIONS

Here, we discuss the impact of density-density intercomponent interactions on the dynamical dark soliton formation effect. For this purpose we extend our model so that \(\varepsilon_0 + \varepsilon_d \rightarrow \varepsilon_0 + \varepsilon_d + \varepsilon_{d-d} \), where \(\varepsilon_{d-d} = g_{ab} N |\psi_a|^2 |\psi_b|^2 \). In consequence, the dimensionless GP-like equations (1) gain an additional term and read

\[
\begin{align*}
\imath \partial_t \psi_\alpha &= - \frac{\partial^2 \psi_\alpha}{2} + g_\alpha |\psi_\alpha|^2 \psi_\alpha + g_{ab} |\psi_\gamma|^2 \psi_\alpha + g_d \mathcal{J}_{\alpha \alpha} + g_d \mathcal{J}_{\alpha \gamma}.
\end{align*}
\]

(S1)

Let us first consider the case of exclusively density-density intercomponent interactions \(g_{ab} \neq 0 \) by setting \(g_\alpha = a \) and \(g_\gamma = \alpha \).

FIG. FS3. Dynamics with exclusively density-density intercomponent interactions \((g_d = 0, g_{ab} \neq 0) \). From top to bottom the time dependence of: the overlap \(|\langle \psi_a | \psi_{bs} \rangle|^2 \), the relative distance \(\Delta \) along the ring between the bright soliton in \(b \) and a phase slip position in \(a \) component, the average momentum \(\langle p_\alpha \rangle / \pi \), as well as the values \(\min |\psi_\alpha(t)|^2 \) and \(\max |\psi_\alpha(t)|^2 / \max |\psi_\alpha(0)|^2 \). The results in (a), (b), (c), and (d) correspond to \(g_b = -30, g_a = 75, g_d = 0, \) and \(g_{ab} = 3, 5, 7.5, 10 \), respectively. Note that even if the overlap \(|\langle \psi_a | \psi_{bs} \rangle|^2 \) reaches values close to 1, it is never maintained for a noticeable time.
While the density-density interactions can also lead to a momentum transfer between components, they turn out to be insufficient for formation of a long living dark soliton in the setup analyzed in the main text. In Fig. FS3 we present a few examples of the system dynamics for the parameters \(g_a = 75, g_b = -30, g_d = 0 \) and different \(g_{ab} \in \{3, 5, 7.5, 10\} \). The results are organized as in Fig. 3 in the main text. Note that while the momentum transfer from \(b \) to \(a \) component coincides with an increase (and decrease) of the overlap \(|\langle \psi_a | \psi_{bs} \rangle |^2\), the system evolution does not reveal any noticeable time frames where \(|\langle \psi_a | \psi_{bs} \rangle |^2, \langle p_a \rangle / \pi, \) and \(\min(|\psi_a(t)|^2) \) are at least relatively stable, i.e., maintain approximately constant values. Therefore, despite the fact that purely density-density intercomponent interactions can lead to a dynamical formation of a dark soliton in the \(a \) component, there is no stabilization mechanism and the soliton disappears very quickly, cf., very short periods of high overlaps \(|\langle \psi_a | \psi_{bs} \rangle |^2\) and small values of \(\min(|\psi_a(t)|^2) \) in panels (c) and (d) of Fig. FS3. Here, we would like to stress that the situation is even worse when dealing with intercomponent density-density attraction \((g_{ab} < 0) \). This is due to a tendency of \(a \)-component density accumulation around the bright soliton in \(b \) component, instead of carving a density notch. In conclusion, the standard density-density intercomponent interactions are insufficient for a dynamical formation of a long-living dark soliton in the considered setup.

As we have shown in the main text, the long-living dark soliton can be dynamically induced with the help of drag interactions. That is, while the density-density interactions tend to an abrupt and continuous transfer of momentum between the components which is an impediment for a long-living soliton structures formation, the drag interaction provides a stabilization mechanism supporting a long time existence of a drag-induced dark soliton. Here, we address the question if the effect can still exist when in addition to the drag interactions the density-density intercomponent interactions are present. In Fig. FS4 we show how the competition between the two types of intercomponent interactions affects the system dynamics for previously discussed parameters \(g_a = 75, g_b = -30, g_d = 0.1, \) cf., Fig. 3(c) in the main text for the results with exclusively drag interactions. Note that the clearly visible (deep) dark soliton can be still induced and survive for a relatively long time in the evolution even in the presence of not too strong density-density intercomponent interactions. Indeed, while for \(g_{ab} = 1 \) the system dynamics is almost unaffected by density-density intercomponent interactions, one can easily observe shortening the lifetimes of generated dark soliton when increasing \(g_{ab} \). Nevertheless, even for \(g_{ab} = 5 \) a quite deep dark soliton survives for time significantly longer than the period of a single revolution of a black soliton around the ring during its drag-free dynamics, i.e., \(T = 1/\pi \). Not surprisingly, the effect of a long-living dark soliton dynamical formation disappears for stronger density-density intercomponent interactions when they dominate in the system dynamics.

FIG. FS4. Competition between drag and density-density intercomponent interactions. From top to bottom the time dependence of: the overlap \(|\langle \psi_a | \psi_{bs} \rangle |^2\), the relative distance \(\Delta \) along the ring between the bright soliton in \(b \) component and a phase flip position in \(a \) component, the average momentum \(\langle p_a \rangle / \pi \), as well as the values \(\min(|\psi_a(t)|^2 \) and \(\max(|\psi_a(t)|^2)/\max(|\psi_{bs}(0)|^2 \). The results in (a), (b), (c), and (d) correspond to \(g_b = -30, g_a = 75, g_d = 0.1, \) and \(g_{ab} = 1, 2.5, 4.5, \) respectively.