RESEARCH PAPER

Triacylglycerol is produced from starch and polar lipids in the green alga *Dunaliella tertiolecta*

Uri Pick1,* and Omri Avidan2

1 Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
2 Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany

* Correspondence: uri.pick@weizmann.ac.il

Received 4 April 2017; Editorial decision 19 June 2017; Accepted 20 June 2017

Editor: Christine Raines, University of Essex

Abstract

The halotolerant green alga *Dunaliella tertiolecta* accumulates starch and triacylglycerol (TAG) amounting to 70% and 10–15% of total cellular carbon, respectively, when exposed to nitrogen (N) deprivation. The purpose of this study was to clarify the inter-relationships between the biosynthesis of TAG, starch, and polar lipids (PLs) in this alga. Pulse labeling with [14C]bicarbonate was utilized to label starch and [14C]palmitic acid (PlA) to label lipids. Transfer of 14C into TAG was measured and used to calculate rates of synthesis. About two-thirds of the carbon in TAG originates from starch, and one-third is made *de novo* by direct CO2 assimilation. The level made from degradation of pre-formed PLs is estimated to be very small. Most of the *de novo* synthesis involves fatty acid transfer through PLs made during the first day of N deprivation. The results suggest that starch made by photosynthetic carbon assimilation at the early stages of N deprivation is utilized for synthesis of TAG. Trans-acylation from PLs is the second major contributor to TAG biosynthesis. The utilization of starch for TAG biosynthesis may have biotechnological applications to optimize TAG biosynthesis in algae.

Key words: Digalacosyldiacylglycerol, *Dunaliella tertiolecta*, fatty acids, pulse labeling, starch, triacylglycerol biosynthesis.

Introduction

Under stress conditions such as nitrogen (N) deprivation, green microalgae synthesize large amounts of starch and/or of triacylglycerol (TAG) (Razeghifard, 2013; Slocombe et al., 2015). The exact metabolic pathways leading to TAG biosynthesis are not clear. Lipid biosynthesis in higher plants can be divided into two stages: fatty acid (FA) biosynthesis, which takes place in the chloroplast, and assimilation of the acyl chains into the glycerol backbone to form TAG which takes place in the endoplasmic reticulum (ER) (Bates et al., 2009; Bates, 2016). Recent studies indicate that in eukaryotic algae the process may be more complicated and involve more diverse metabolic pathways. In some algae such as in *Chlamydomonas reinhardtii*, it was shown that TAG biosynthesis also takes place inside the chloroplast (Fan et al., 2011; Goodson et al., 2011). At least three different metabolic pathways may allocate carbon to FA biosynthesis in the chloroplast of green algae (Goncalves et al., 2016): (i) *de novo* synthesis directly from CO2 assimilation by the Calvin cycle, formation of acetyl-CoA by pyruvate dehydrogenase, and its assimilation via the fatty acid synthesis (FAS) cycle (pathway 1; Fig. 1); (ii) FA acyl transfer from pre-formed polar lipids (PLs), particularly of chloroplast galactoglycerolipids.
(pathway 2; Fig. 1); phytylester synthases (PESs) may be good candidates to catalyze this reaction (Lippold et al., 2012); and (iii) synthesis from degradation of pre-formed starch (pathway 3; Fig. 1). The subsequent incorporation of acyl groups into glycerol may take place either by three consecutive incorporations from acyl-CoA into glycerol-3-phosphate, known as the Kennedy pathway (pathway A; Fig. 1; Ohlrogge and Browse, 1995; Coleman and Lee, 2004), or via PLs, such as phosphatidylcholine (PC), followed by acyl transfer into TAG, also termed ‘acyl editing’ (pathway B; Fig. 1, Harwood, 1996; Bates et al., 2009, Bates, 2016). However, hardly any direct quantitative measurements have been made to test how much each pathway contributes to the overall TAG biosynthesis.

The inter-relationships between starch and TAG biosynthesis are not clear. In several algae species which accumulate both starch and TAG, and also in developing oilseed rape embryos, starch precedes TAG biosynthesis and in some species the level of starch decreases in parallel with TAG accumulation, suggesting that the latter may be synthesized from degradation of the former (Eastmond and Rawsthorne, 2000; Siaut et al., 2011; Longworth et al., 2012, 2016; Recht et al., 2012, 2014). Transcriptome and lipidome analyses performed in Dunaliella tertiolecta and in Nannochloropsis have shown that N deprivation induces degradation of carbohydrate that seems to be temporally co-ordinated with mass biosynthesis of neutral lipids. The authors suggested that these findings represent a carbon flow from the former to the latter (Rismani-Yazdi et al., 2011; Li et al., 2014). A recent study in Chlamydomonas reinhardtii shows that whereas most starch is made from assimilated CO₂, most FAs and TAG are produced from acetate (Juergens et al., 2016). These studies are consistent with two parallel biosynthetic mechanisms, one for starch and another for TAG.

Dunaliella tertiolecta is a promising organism for industrial utilization for production of biofuels for several reasons: it is a fast-growing species and one of the top biomass producers; it produces very high concentrations of starch amounting to >60% of its dry weight and also moderate levels of lipids (Tang et al., 2011; Slocombe et al., 2015); and it is a robust species that maintains high growth rates at extreme pH, temperature, and salt concentrations. In fact, it is model salt-tolerant organism, since it can adapt to an exceptionally wide range of NaCl concentrations from 50 mM up to saturated salt solutions (Katz et al., 2009). This enabled outdoor cultivation at high NaCl concentrations, which minimizes the danger of contamination, a major risk factor in cultivation of microalgae. A special feature of this species is that it enhances photosynthetic CO₂ fixation and starch accumulation at high salinity by up-regulation of the Calvin cycle enzymes, thus maintaining high biomass productivity also at high NaCl concentrations (Liska et al., 2004). Dunaliella tertiolecta, like other Dunaliella species, lacks a cell wall, enabling easy cell lysis, which lowers the cost of processing of this alga. Two major drawbacks for molecular studies in this species are that it has not yet been sequenced and that its transformation is not straightforward even though several successful reports of nuclear and chloroplast transformations have been reported (Georgianna et al., 2013; Zhang et al., 2015). Recently, several new studies were reported which provide advanced tools and databases for molecular analysis of D. tertiolecta: A preliminary annotation of D. tertiolecta genes, based on sequence similarity to other green
Algal strains and cultivation conditions

Dunaliella tertiolecta was obtained from the culture collection of Dr W.H. Thomas (La Jolla, CA, USA). Cells were cultured under continuous illumination (at a light intensity of 120–150 μmol m⁻² s⁻¹) on a shaker set at 100 rpm at 24 °C, as previously described (Ben-Amotz et al., 1989). The media were supplemented with 0.5 M NaCl and 50 mM sodium bicarbonate. To induce N limitation, mid-log phase cells (cultured for 48 h) were centrifuged for 5 min at 5000 g, washed once with growth medium lacking KNO₃ (−N medium), and suspended in −N medium. Cells were counted with the Cellometer automated cell counter (Nexcelom Bioscience LLC, Lawrence, MA, USA).

Materials and methods

Radioactive chemicals

[¹⁴C]Sodium bicarbonate (NEC086HOO, 53 mCi mmol⁻¹) and [¹⁴C]PJA (NEC075HO, 60 mCi mmol⁻¹) were purchased from PerkinElmer, Waltham, MA, USA.

[¹⁴C]PJA was performed during the first 24 h of N deprivation.

Lipid extraction and cell fractionation

Lipids were extracted essentially as described before (Avidan et al., 2015). Cell pellets were extracted in MeOH:CHCl₃:H₂O, 1:1:1, and separated into starch pellets, the water–methanol phase, and the chloroform lipid phase. The water–methanol phase was re-extracted once with chloroform to remove residual lipids and kept as the water-soluble fraction. The chloroform lipid phase was dried under reduced pressure and dissolved in 150 μl of CHCl₃ (total lipids fraction), and kept at −20 °C for lipid analysis by TLC.

Determination of starch

The pellets remaining after the extraction of lipids, which contain starch and proteins, were washed once in cold methanol to remove residual lipids and incubated in 1 ml of 0.2% Triton X-100, 20 mM Tris–HCl, pH 7.5 solution containing 10 μg of trypsin (sequencing grade modified porcine trypsin, Promega, Madison, WI, USA) for

Labeling with [¹⁴C]bicarbonate

Dunaliella tertiolecta cells were labeled with 50 mM [¹⁴C]bicarbonate (0.16 μCi ml⁻¹) in growth media containing 5 mM K-nitrate (+N) or no nitrate (−N). For photosynthetic CO₂ uptake activity, cells were incubated for 1 h in an illuminated shaker at 24 °C. This uptake activity is completely light dependent, and >98% of the [¹⁴C] taken up by the cells is assimilated (not releasable by acid treatment). Therefore, this uptake activity represents photosynthetic CO₂ assimilation. Washed cell pellets were dissolved in 0.2% Triton X-100 and 20% sodium hypochlorite (bleach) to quench pigments before radioactivity counting. For total carbon labeling that was used to calculate starch and TAG contents, cells were diluted to 3 × 10⁶ cells ml⁻¹ in complete growth medium containing 50 mM [¹⁴C]bicarbonate and incubated for 48 h in the light. At the end of the incubation, the cell concentration was 1.5–2.2 × 10⁷ cells ml⁻¹. The cells were washed once and diluted 2-fold into N-depleted medium containing the same concentration of [¹⁴C]bicarbonate and incubated under continuous illumination for 8 d. For pulse labeling, cells were incubated with [¹⁴C]bicarbonate for 24 h as indicated in each experiment. At the end of the incubations, cells were washed twice in fresh medium containing 50 mM bicarbonate to remove traces of [¹⁴C]bicarbonate and either frozen and kept at −20 °C for lipid extraction or suspended in fresh growth medium for continued culturing (pulse labeling). All samples were counted in a scintillation β-counter with 10 ml of scintillation cocktail (Ultima Gold, Perkin Elmer).

Pulse labeling with [¹⁴C]PJA

Pre-labeling membrane polar lipids in complete (+N) growth medium

Dunaliella tertiolecta cells cultured in complete growth medium (+N) were pulse-labeled for 2 h with [¹⁴C]PJA (1–2.5 μCi 100 ml⁻¹, 0.5 μM) in complete growth medium. Cells were then washed once in −N medium in the presence of 100 μM PJA, then incubated for 10–20 min in −N growth medium containing 1% defatted BSA to eliminate all traces of [¹⁴C]PJA, washed once again in −N growth medium, and finally suspended in fresh −N growth medium for continued incubation in the light. Samples were removed immediately and at daily intervals, pelleted by centrifugation, and stored at −20 °C.

Labeling during the first day of N deprivation

The growth conditions were as above, except that labeling with [¹⁴C]PJA was performed during the first 24 h of N deprivation.

Lipid de novo synthesis from [¹⁴C]PJA during N deprivation

This experiment was designed to estimate how much [¹⁴C]PJA is incorporated into PLs and into TAG during each day of N deprivation. Cell samples were labeled for 24 h with [¹⁴C]PJA during days 1–8 of N deprivation as described above.

Materials and methods

Radioactive chemicals

[¹⁴C]Sodium bicarbonate (NEC086HOO, 53 mCi mmol⁻¹) and [¹⁴C]PJA (NEC075HO, 60 mCi mmol⁻¹) were purchased from PerkinElmer, Waltham, MA, USA.
6 h at 25 °C to degrade proteins, followed by one wash in Triton X-100 buffer. ^14C-Labeled samples were counted in a scintillation β-counter with 10 ml of scintillation cocktail (Ultima Gold, Perkin Elmer). Starch was also determined independently by the iodine method as previously described (Avidan et al., 2015).

Separation of lipids on TLC plates
Lipid samples were separated on TLC Silica gel 60 aluminum sheets (Merck, Darmstadt, Germany). Neutral lipids were separated in n-hexane:dichloromethane:acetic acid (85:22:1). PLs were separated either in chloroform:methanol:acetic acid/water (90:20:12:4) or in chloroform:methanol:water (60:30:4). Lipid spots were detected by iodine staining and quantified by densitometric analysis with reference to triolein standards of 0.5–2 μg as previously described (Davidi et al., 2015). Identification of specific lipid bands was verified by comparison to lipid standards, by staining for phospholipids, galactoglycerolipids, or PC, and by MS. TAG, FAs, and diacylglycerol (DAG) were resolved as shown in Supplementary Fig. S1A at JXB online; monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), and sulfoquinovosyl diacylglycerol (SQDG) as in Supplementary Fig. S1C; and PC and phosphatidylglycerol (PG) as in Supplementary Fig. S1D. DAG, PC, PG, oleic acid, and a mixture of chloroplast membrane lipids (MGDG, DGDG, SQDG, and PG) were used as standards.

For determination of 14C contents, plates were dried, stained with iodine vapor, and the desired bands were cut out, placed in a scintillation vial, supplemented with scintillation cocktail, and extracted on a shaker for 4–12 h. The extracts were transferred to a clean scintillation vial, supplemented with scintillation cocktail, and counted in a scintillation β-counter.

Calculations
Total starch
The total carbon content in starch, in units of nmol C 10^6 cells−1, was calculated from the 14C counts in the isolated starch fraction and from the [14C]bicarbonate specific activity (14C dpm μmol−1 bicarbonate) that was used for labeling the cells in complete growth medium for 48 h (Fig. 1; Supplementary Table S1). The starch content, in units of μg starch 10^6 cells−1 (Supplementary Table S2), was calculated from the carbon content by assuming that carbon (14C) consists of 40% of the total weight of starch.

Total TAG
The total carbon content in TAG, in units of nmol C 10^6 cells−1, was calculated from the 14C counts in the isolated TAG and from the [14C]bicarbonate specific activity as for starch (Fig. 1; Supplementary Table S1). The TAG contents, in units of μg TAG 10^6 cells−1 (Supplementary Table S2), was calculated from these values by assuming that carbon (14C) consists of 80% of the total weight of TAG.

Results
Starch and TAG accumulation under N deprivation in D. tertiolecta
In order to obtain an accurate measure of the levels of TAG and of starch accumulated under N deprivation, we performed a complete labeling of cells with [14C]bicarbonate and followed the changes in the level of 14C incorporated into starch and into TAG during N deprivation (Fig. 2A; Supplementary Table S1). During the 48 h of pre-incubation with 50 mM [14C]bicarbonate in complete growth medium, >98% of the carbon in the cells was labeled with 14C. Therefore, the 14C counts in starch and in TAG can be used to calculate their levels in the cells. The level of starch increased during 8 d without N from 765 ± 85 nmol C 10^6 cells−1 to 1850 ± 110 nmol C 10^6 cells−1. Assuming that carbon constitutes 40% of the weight of starch, these values correspond to 23 μg starch 10^6 cells−1 and to 55.5 μg starch 10^6 cells−1 in complete and N-deficient media, respectively. These values are in good agreement with starch levels of 20 ± 6 μg starch 10^6 cells−1 and 70 ± 16 μg starch 10^6 cells−1 that were determined in parallel experiments in complete and N-deprived growth media, respectively, by the iodine method (Supplementary Table S2; Avidan et al., 2015). The major increase in starch takes place during the first 24 h without N. TAG levels increased during the same period from 4 ± 0.2 nmol C 10^6 cells−1 to 346 ± 12 nmol C 10^6 cells−1, which correspond to 0.08 μg TAG 10^6 cells−1 and 5.6 μg TAG 10^6 cells−1 for cells in complete and in N-deprived media, respectively. These values are in fairly good agreement with TAG levels determined in parallel experiments by GC analysis of FA contents of 0.3 ± 0.15 μg TAG 10^6 cells−1 and 9.4 ± 1.8 μg TAG 10^6 cells−1 (Supplementary Table S2). However, in contrast to starch, the production of TAG starts after a lag period of ~12 h, and accumulates mostly between days 2 and 5 of N deprivation, reaching a maximal level of ~12% of total cell carbon after 10 d without N.

To confirm that there is indeed a lag in the onset of TAG biosynthesis, we performed a complementary experiment aimed to measure TAG biosynthesis activity during the progress of N deprivation. For this, we chose to measure the incorporation of PlA, which is rapidly and specifically incorporated into all glycerolipids in Dunaliella (Davidi et al., 2014; Supplementary Fig. S2). The estimated internal concentration of PlA is ~1 μM (Supplementary Table S3 and additional information therein), which makes it very unlikely that internal pools of PlA delay its incorporation into lipids. Cultures were incubated for 24 h with [14C]PlA during each day of N deprivation, from day 1 to day 8, and the level of PlA incorporated into PLs and into TAG was determined. The incorporation of PlA into TAG during the first day without N is indeed slow, reaches a maximum during the second to fifth days, and thereafter decreases (Fig. 2B), consistent with the increase in the level of TAG. These results indicate that FA incorporation into TAG is indeed delayed for 12–24 h from the onset of N deprivation. PL biosynthesis during this period slightly decreases initially and then stabilizes at approximately half of the rate of TAG biosynthesis.

In order to assess the contribution of photosynthesis to starch and TAG accumulation, we followed the changes in photosynthetic CO2 assimilation activity during N deprivation. The cells continue to divide during the first 2 d, resulting in a 2- to 3-fold increase in cell concentration. Photosynthetic carbon assimilation activity drops precipitously by 50% in the first day and to <10% after 2 d of N deprivation (Fig. 2C), consistent with our previous results (Avidan and Pick, 2015). This suppression of photosynthesis is probably part of the N-sparing mechanism that has been described in Chlamydomonas (Schmollinger et al., 2014). The decrease in CO2 assimilation activity closely parallels the saturation in
Triacylglycerol biosynthesis originates from starch and polar lipids in *Dunaliella*.

Starch accumulation level, consistent with the idea that most assimilated CO₂ is channeled into starch biosynthesis. In contrast, the major accumulation of TAG takes place when the photosynthetic carbon assimilation rate is already very low, suggesting that the major carbon source for TAG biosynthesis should come from pre-formed carbon sources, the best candidates being PLs or starch.

Formation of TAG from starch

In order to test if starch carbon is utilized for biosynthesis of TAG, cell cultures were pulse-labeled for 24 h with [¹⁴C]bicarbonate during the first day of N deprivation, then the labeling medium was replaced, and the levels of [¹⁴C]in starch, in total lipids, and in TAG were measured every day, during 14 d of N deprivation. If indeed starch is degraded and converted into FAs that are next incorporated into TAG, then it is expected that assimilated [¹⁴C] levels will decrease in starch and appear in TAG.

As shown in Fig. 3A, the [¹⁴C] level in starch actually increases during the second day, even though [¹⁴C]bicarbonate has been chased out and replaced by 50 mM [¹²C]bicarbonate. In parallel to the increase in starch [¹⁴C], there is a steep decrease in the [¹⁴C] level in the water-soluble fraction, which contains mostly glycerol, sugar phosphates, and amino acids (Ben-Amotz and Avron, 1973). It appears, therefore, that the increase in [¹⁴C] level in starch results from conversion and assimilation of soluble carbohydrates and/or glycerol into starch.

Plotting the sum of [¹⁴C] in starch and the soluble fraction against time of N deprivation shows that there is indeed a decrease in the [¹⁴C] content in starch with a parallel increase in [¹⁴C] content in TAG, starting from the second day of N deprivation (Fig. 3B).
cells−1) amounts to 60% of the decrease in starch (300 nmol C 106 cells−1). Comparison of the changes in the total level of starch (Fig. 2A) with the level of starch formed during the first day of N deprivation (Fig. 3) shows that whereas the total starch level reaches a steady state after 48 h, the starch formed during the first day continuously decreases. This indicates that starch biosynthesis continues at a reduced rate during N deprivation in parallel with the conversion of part of the starch into TAG, keeping a fairly constant steady-state level of starch.

In order to estimate how much of the starch formed during each day of N deprivation is converted to TAG, we designed a similar experiment in which cells were pulse-labeled daily for 24 h with [14C]bicarbonate during 8 d of N deprivation. Then the [14C]bicarbonate was replaced by fresh medium and the fate of assimilated 14C in starch and in TAG was determined immediately after removal of the label and after different times during the continued N deprivation. The results of this experiment are summarized in Fig. 4.

Most of the TAG that is produced from starch is made from starch that has been synthesized during the first day of N deprivation. It amounts to close to 50% of the total TAG produced from starch during 8 d (Fig. 4A, B). The decrease in daily TAG production from starch is proportional to the relative level of starch produced each day (Fig. 4B). Most of the TAG is produced after a 24 h delay from the end of the pulse–chase.

De novo TAG biosynthesis

To measure how much TAG is produced de novo, by direct CO2 assimilation, we measured the incorporation of [14C]bicarbonate into PLs and into TAG during each day of N deprivation. As shown in Fig. 5A, a significant amount of PLs (135 nmol C 106 cells−1) is made de novo, most of it during the first day. The amounts of TAG produced de novo are much smaller (35 nmol C 106 cells−1).

In order to test if part of the PLs that are formed during N deprivation are utilized for production of TAG, we designed a pulse labeling experiment with [14C]PIA, in which cultures were incubated with [14C]PIA during the first day of N deprivation, the label was removed, and the cells continued to grow without N for 7 d. Cell samples were collected daily, and lipids were extracted, separated, and counted to evaluate the level of 14C in PL and in TAG.

As shown in Fig. 5B, over half of the [14C]PIA incorporated into the newly made PLs disappears during the following 2 d of N deprivation in parallel with an increase in 14C contents in TAG, suggesting that ~70% of the PIA in de novo formed PLs is channeled into TAG. Assuming that 70% of the total FAs in the PLs made during N deprivation are utilized for production of TAG enables calculation of how much TAG is produced from de novo made PLs. Multiplying the total PLs made during 8 d of N deprivation by 70% yields a value of 85.6 nmol C 106 cells−1, in comparison with a total of 35 nmol TAG C 106 cells−1 produced by direct de novo incorporation.
Triacylglycerol biosynthesis originates from starch and polar lipids in Dunaliella of bicarbonate (Fig. 6; Table 1). Comparing these values with the total level of TAG made from starch during 8 d of N deprivation (Fig. 6; Table 1), of 234 nmol C 10^6 cells^−1, suggests that about two-thirds of TAG is made from starch and about one-third is made de novo.

In order to check how these calculated values correlate with the total level of TAG in the cells, we performed a total labeling of carbon in the cells with [14C]bicarbonate, as described in Fig. 2, and calculated how much TAG is produced each day from the daily increase in 14C label in TAG. As shown in Fig. 6, the calculated sums of TAG made de novo and from starch each day are quite similar to the daily increase in total TAG level, except for the first day, in which the calculated sum is much lower than the total TAG. This difference results from the experimental design, which does not measure the TAG made from starch and from de novo made PLs during the first day of N deprivation. Pre-formed starch, made before the onset of N deprivation, may significantly contribute to the TAG produced during the first day and also during subsequent days. Also PLs that are produced during the first day of N deprivation. Dunaliella tertiolecta cells were labeled with [14C]PIA during the first 24 h of N deprivation. The cells were washed and transferred to fresh N-deprived medium. Each day samples were fractionated and analyzed. Results are expressed in pmol PIA incorporated per day per 10^6 cells (means ± SD of three independent experiments). (This figure is available in colour at JXB online.)
day may be rapidly converted into TAG already during the first day and contribute to the total TAG. Thus, both pre-formed starch and de novo made PLs can significantly contribute to TAG formation on the first day of N deprivation.

Inhibition of lipid de novo synthesis during N deprivation

The steep decrease in incorporation of bicarbonate into PLs during the progress of N deprivation (Fig. 5A) suggests strong inhibition of de novo synthesis of all PLs. In order to estimate the inhibition in synthesis of different lipids, we compared the level of de novo synthesis of different lipids in control cells, cultured in N-replete medium, and in cultures deprived of N for 3 d. The third day was chosen because at this time point photosynthesis reaches a low steady-state value, starch accumulation levels off (Fig. 2), and the cells enter a new metabolic phase. Cultures were labeled for 24 h with [14C]bicarbonate under identical conditions (except for the presence or absence of nitrate), lipids were extracted and separated, and the 14C content was determined.

The comparison shows a major decrease in incorporation of bicarbonate into all lipid components, except for TAG, under N deprivation compared with control cells (Fig. 7). The decrease in assimilation into FAs is most prominent compared with all other lipid components, amounting to almost 95%, whereas the highest relative incorporation was obtained in DGDG, indicating that there is hardly any de novo synthesis of FAs during N deprivation, whereas about 25% of the DGDG is synthesized de novo.

Formation of TAG from pre-formed PLs

Previous experiments including our own have indicated that during N deprivation considerable degradation of membrane lipids takes place, particularly of galactolipids in the chloroplast, and that part of the released FAs is incorporated into TAG (Li et al., 2012; Goncalves et al., 2013; Kim et al., 2013; Davidi et al., 2014). In fact, it is generally assumed that most polyunsaturated FAs (PUFAs) in TAG, such as 18:3 and 16:4, originate from FAs released during degradation of chloroplast membrane lipids, particularly of MGDG and DGDG.

In order to test if a significant amount of TAG is produced in *D. tertiolecta* from degradation of pre-formed PLs, we pre-labeled cell cultures with [14C]PIA before the onset of N deprivation and measured the transfer of 14C from PLs into TAG during the progress of N deprivation. After 2 h of labeling with [14C]PIA, which labels >90% of maximum PLs (Supplementary Fig. S2), cells were washed and transferred to N-deprived media for 8 d. Each day, samples were removed, lipids were extracted and separated, and the 14C content of each component was determined as described in the Materials and methods. (This figure is available in colour at JXB online.)

Analysis of the levels of 14C in PLs and in TAG shows a progressive decrease in 14C level in PLs and a parallel increase in level in TAG (Fig. 8). From the onset to the eighth day of N deprivation, the 14C contents in PLs decreased by 12 pmol 106 cells−1 whereas in TAG they increased by 9 pmol 106 cells−1, indicating a conversion of 75% of the PIA from pre-formed PLs into TAG. Most of the conversion took place during the third day of N deprivation. If we assume that the transfer of other FAs from PLs into TAG is similar to that of PIA, this would mean that 75% of the FAs in pre-formed PLs are converted into TAG.

Table 1. Daily production of TAG from starch by de novo synthesis and total TAG

Day	Starch	De novo direct	De novo via PLs	Total calculated	Total measured
1	0	8.0 ± 1	0	8.0 ± 1	38 ± 3
2	36.2 ± 3.1	7.5 ± 1	17.5 ± 2.0	61.2 ± 6.1	66 ± 3
3	46.6 ± 3.3	6.25 ± 0.8	20.2 ± 2.8	73.1 ± 6.9	74 ± 7
4	38.0 ± 3.9	3.75 ± 0.2	12.9 ± 1.5	54.7 ± 5.6	50 ± 5
5	37.2 ± 2.2	3.1 ± 0.3	11.0 ± 1.0	51.3 ± 3.5	44 ± 8
6	27.3 ± 5.1	2.5 ± 0.2	10.1 ± 0.8	39.9 ± 6.1	34 ± 4
7	24.0 ± 3.2	2.5 ± 0.3	10.0 ± 1.1	36.5 ± 4.6	28 ± 7
8	25.2 ± 3.0	1.25 ± 0.1	4.2 ± 0.5	30.6 ± 3.6	24 ± 6
Total	233.8	34.9	85.6	354.3	358

The values of TAG biosynthesis by different metabolic pathways are as described in Fig. 6. All values are expressed in nmol C 106 cells−1. Peak values are emphasized in bold.

In order to test if a significant amount of TAG is produced in *D. tertiolecta* from degradation of pre-formed PLs, we pre-labeled cell cultures with [14C]PIA before the onset of N deprivation and measured the transfer of 14C from PLs into TAG during the progress of N deprivation. After 2 h of labeling with [14C]PIA, which labels >90% of maximum PLs (Supplementary Fig. S2), cells were washed and transferred to N-deprived media for 8 d. Each day, samples were removed, lipids were extracted and separated, and the 14C content of each component was determined as described in the Materials and methods. (This figure is available in colour at JXB online.)

Analysis of the levels of 14C in PLs and in TAG shows a progressive decrease in 14C level in PLs and a parallel increase in level in TAG (Fig. 8). From the onset to the eighth day of N deprivation, the 14C contents in PLs decreased by 12 pmol 106 cells−1 whereas in TAG they increased by 9 pmol 106 cells−1, indicating a conversion of 75% of the PIA from pre-formed PLs into TAG. Most of the conversion took place during the third day of N deprivation. If we assume that the transfer of other FAs from PLs into TAG is similar to that of PIA, this would mean that 75% of the FAs in pre-formed PLs are converted into TAG.

Figure 7. A comparison of de novo synthesis of different lipids between control and N-deprived cells. Dunaliella tertiolecta cells pre-cultured in complete (+N) medium or in N-deprived medium for 2 d, were pulse-labeled for 24 h with [14C]bicarbonate. Cells were washed, lipids were extracted and separated, and the 14C content of each component was determined as described in the Materials and methods. (This figure is available in colour at JXB online.)
Triacylglycerol biosynthesis originates from starch and polar lipids in *Dunaliella*.

The 75% conversion of FAs in pre-formed PLs into TAG is surprisingly high. By assuming a homogenous labeling of all PLs in the cells during the 2 h incubation with PlA, this would imply conversion of 130 nmol C 10^6 cells$^{-1}$ (from a total PL level of 169 nmol C 10^6 cells$^{-1}$; Supplementary Table S1), which is not realistic because it is far higher than the total decrease in the level of PLs during N deprivation (55 nmol C 10^6 cells$^{-1}$; Supplementary Table S1). This discrepancy suggests that only a small fraction of the total PLs in the cells are turning over and are being labeled with $[^{14}\text{C}]$PIA during the 2 h incubation period, and that TAG is preferentially produced from this turning-over PL fraction.

Discussion

The results presented in this work suggest that *D. tertiolecta* responds to N deprivation in two distinct metabolic phases: on the first day, cells still continue to divide, albeit at a progressively slower rate, photosynthetic CO$_2$ assimilation activity drops, and the cells accumulate massive levels of starch in the chloroplast, accounting for over two-thirds of the total assimilated carbon. In the second phase, starting on the second day of N deprivation, cell division almost stops, photosynthesis drops further to 5% of that in control cells, the starch level reaches a steady state, and TAG is produced, mostly by recycling of starch carbon (Schemes 1 A, B).

So the general carbon metabolism switched from photosynthetic carbon assimilation to starch degradation and the carbon reserves gradually change from all starch to progressively increasing TAG levels. A similar biphasic response to N deprivation with respect to starch and TAG biosynthesis has been recently demonstrated by several transcriptomic and metabolomic studies carried out in *Chlamydomonas* (Balby et al., 2013; Goodenough et al., 2014; Schmollinger et al., 2014; Park et al., 2015).

The surprising finding that most TAG produced during N deprivation is made from starch is novel and, to the best of our knowledge, these studies provide the first direct demonstration of carbon allocation from starch into TAG during N deprivation in algae. However, the idea that starch carbon is mobilized into TAG is consistent with reports in several recent studies.

For example, a recent transcriptomic analysis of metabolic changes during N deprivation in *D. tertiolecta* (Tan et al., 2016) demonstrated activation of several enzymes potentially involved in starch to TAG mobilization: starch phosphorylase and phosphofructokinase that are involved in starch degradation; the chloroplast envelope triose phosphate transporter and glycerol phosphate dehydrogenase involved in the supply of glycerol phosphate needed for TAG formation; and of pyruvate kinase and pyruvate dehydrogenase that are involved in formation of acetyl-CoA, the key precursor metabolite in FA biosynthesis. All these enzymes could potentially take part in the mobilization of chloroplastic starch carbon into TAG.
In contrast, most FA biosynthesis genes, such as acetyl-CoA carboxylase (ACCcase) and ketoacyl-ACP-synthase-I (KAS1), were found to be unaffected or down-regulated during N deprivation. Similar results have been previously described in transcriptomic analyses in *Nannochloropsis* sp. and in *Chlorella vulgaris* (Dong et al., 2013; Li et al., 2014; Fan et al., 2015), which accumulate higher levels of TAG than *D. tertiolecta*. The reason for these observations is not clear. One explanation that has been proposed is that under N deprivation most FAs are supplied from degradation of PLs, particularly the chloroplast membrane. This may be the case in *Nannochloropsis* and in *C. vulgaris* but, according to the present results, is not the case in *D. tertiolecta*. Another possibility would be that the steady-state activity of key FA biosynthetic enzymes is already high and thus not limiting under N-deficient conditions. In that case, FA synthesis would most probably be dependent on substrate availability, such as acetyl-CoA, as recently proposed (Avidan et al., 2015). The degradation of starch and the corresponding increase of TAG in *D. tertiolecta* is consistent with that idea. A third possibility may be that the biosynthesis of FA from starch involves activation of an alternative biosynthetic pathway that substitutes the chloroplast constitutive FAS pathway, which has not yet been identified.

The finding that *D. tertiolecta* utilizes starch as the major carbon source for TAG biosynthesis is also consistent with the finding that several starch-less mutants of *Chlamydomonas* do not exhibit an increase in TAG accumulation under N deprivation which has been previously observed in other starch-less mutants strains of *Chlamydomonas* and of *Chlorella* (Hirano et al., 1997; Ramazanov and Ramazanov, 2006; Wang et al., 2009; Work et al., 2010; Siaut et al., 2011). This finding is in line with the idea that starch serves as a major carbon source for production of TAG; hence, impairing starch accumulation may also impair the accumulation of TAG.

In fact, our calculated levels of TAG formation from starch may be underestimated because we did not measure the possible contribution of starch made before the onset of N deprivation that amounts to 40% of the total starch in the cells (Supplementary Table S1).

The contribution of other cellular components, such as proteins, whose levels decrease during N deprivation (Supplementary Table S1), for the formation of TAG during N deprivation, cannot be excluded. However, it seems to be negligible, first because during N deprivation there is also a significant biosynthesis of new proteins (Fan et al., 2011; Boyle et al., 2012; Balby et al., 2013; Dong et al., 2013; Li et al., 2014; Recht et al., 2014; Schmollinger et al., 2014; Park et al., 2015; Shin et al., 2015; Longworth et al., 2016), and it may be expected that amino acids released during protein degradation will be first utilized for biosynthesis of the newly induced proteins and also because the calculated sum of starch-derived and *de novo* made TAG closely fits the measured total TAG level (Fig. 6), leaving little room for additional major carbon sources.

The contribution of pre-formed PLs to the production of TAG is difficult to estimate because the exact internal concentration of PIA is not known and also because the labeling of different PLs with PIA is not homogenous, as discussed in the Results. An attempt to estimate internal PIA concentration roughly in the cells from isotope dilution (Table S3 and supplementary comments) yielded a value of ~1 μM internal PIA. Calculation of the level of TAG produced from pre-formed PLs by assuming an internal concentration of 1 μM PIA and homogenous labeling yields a value of <5 nmol C 10^6 cells^-1. This value is negligible in comparison with the levels of TAG produced from starch and *de novo*. Also the close correlation between the calculated levels of the starch made plus *de novo* made TAG with the total TAG (Fig. 6) leaves little room for TAG made from pre-formed PLs, and suggests that this may be a minor contributor to TAG production in *D. tertiolecta*.

The minor contribution of pre-formed PLs to TAG biosynthesis most probably results from degradation of the chloroplast galactoglycerolipids MGDG, DGDG, and SQDG, which in *Dunaliella* takes place during the first 2 d of N deprivation (Davidi et al., 2014). These results are in line with several recent studies showing that PLs in algae and in plants, in particular the chloroplast major galactoglycerolipids MGDG and DGDG, but also extra-chloroplast membrane lipids such as diacylglyceroltrimethylhomoserine (DGTS), serve as a source of FAs for synthesis of TAG during N deprivation (Joyard et al., 2010; Boyle et al., 2012; Li et al., 2012; Yoon et al., 2012; Goncalves et al., 2013; Kim et al., 2013; Sanjaya et al., 2013; Simionato et al., 2013; Li et al., 2014). The major candidates to perform this FA release and transacylation are PESs. These enzymes are up-regulated under N deprivation and catalyze the hydrolysis and transacylation of FAs from chloroplast membrane galactoglycerolipids into TAG (Lippold et al., 2012). PES-like proteins are also up-regulated under N deprivation in *Dunaliella* (Davidi et al., 2015).

The transfer of FAs from PLs formed during the first days of N deprivation into TAG (Fig. 5B) suggests that PLs function as intermediates in acyl transfer into TAG. This acyl transfer is spread over 5–7 d and amounts to 20–25% of the total PIA in TAG. The rates of acyl transfer into TAG may be much higher since it is likely that some of the FAs produced from starch degradation are also incorporated into TAG via this pathway.

The identity of these PLs is not clear, but we have several indications that they may be DGDG. The significant *de novo* synthesis of this galactoglycerolipid under N deprivation (Fig. 7) suggests enhanced turnover of this major chloroplast membrane galactoglycerolipid under N deprivation. In a subsequent work, we will report further evidence obtained from a time-course lipidome analysis that this particular galacto-glycerolipid undergoes remarkable turnover under N deprivation in green algae (O. Avidan et al., unpublished results). It is possible, therefore, that in *D. tertiolecta*, some of the FAs that are utilized for TAG biosynthesis under N deprivation are first incorporated into DGDG, similar to the role of PC acyl editing in N-containing medium. This finding is in line with previous pulse labeling experiments in *C. reinhardtii* (Li et al., 2012).

The preference to produce TAG from starch carbon in *Dunaliella* suggests that it has some metabolic advantage under N limitation. In most plants and green algae, starch is
accumulated during the day and consumed during the night in an almost linear manner (Stitt and Zeeman, 2012). Influenced and controlled by the circadian clock, starch synthesis and degradation cycles are also observed under constant light regimes in both plants and algae (Lu et al., 2005; Siaut et al., 2011; Avidan et al., 2015; Chen et al., 2015). However, when N becomes limiting, growth is almost immediately restricted while photoassimilates and reducing equivalents are accumulated and channeled towards not only starch, but TAG synthesis as well. Indeed, starch is a more flexible carbon reserve than TAG, and its conversion into metabolic building blocks such as sugar-phosphates and amino acids is faster and therefore affords an advantage for fast recovery from short stress periods. In contrast, TAG contains about twice the metabolic energy and carbon level as starch and is also a better sink for excess redox energy which poses a risk for survival, and therefore may be favored in long-term stress periods. Considering the fact that most algae accumulate both starch and TAG, the efficiency of starch synthesis and interconversion into TAG should be taken into account in future attempts to manipulate TAG levels in microalgae. It will be interesting to learn if other algae species, such as those that accumulate high levels of TAG and low levels of starch, also utilize starch as an intermediate carbon pool for biosynthesis of TAG.

In summary, our results suggest that around two-thirds of the total TAG produced during N deprivation in D. tertiolecta is made from starch, one-third is made de novo mostly by transfer via PLs, and a very small amount may be contributed by degradation of pre-formed PLs.

Supplementary data

Supplementary data are available at JXB online.

Fig. S1. The separation of neutral and polar lipids by TLC.

Fig. S2. The incorporation of [14C]palmitic acid into lipids and into solvent-insoluble cellular components in D. tertiolecta.

Table S1. The total 14C carbon fractionation into different cellular components during the progress of N deprivation.

Table S3. [14C]PIA incorporation levels into PLs and into TAG in cells cultured in control or in N-deprived media, and supplementary information about palmitic acid in D. tertiolecta.

Acknowledgments

We acknowledge the Charles and Louise Gartner fund and the Alternative Energy Research Initiative Center at The Weizmann Institute (to UP). We thank D. Lital Davidi and Professor Steven Karlish (Department of Biological Chemistry) and Dr Ron Milo and Dr Assaf Vardi (Department of Plant Sciences) at the Weizmann Institute for helpful suggestions and comments.

References

Avidan O, Brandis A, Rogachev I, Pick U. 2015. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata. Journal of Experimental Botany 66, 3725–3735.

Avidan O, Pick U. 2015. Acetyl-CoA synthetase is activated as part of the PFDH-bypass in the oleaginous green alga Chlorella desiccata. Journal of Experimental Botany 66, 7287–7298.

Babiy IK, Gloesener AG, Mettler T, et al. 2013. System-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. The Plant Cell 25, 4305–4322.

Bates PD. 2016. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochimica et Biophysica Acta 1861, 1214–1225.

Bates PD, Durrett TP, Ohrrogge JB, Pollard M. 2009. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiology 150, 55–72.

Ben-Amotz A, Avron M. 1973. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiology 51, 875–879.

Ben-Amotz A, Shaish A, Avron M. 1989. Mode of action of the massively accumulated beta-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiology 91, 1040–1043.

Boyle NR, Page MD, Liu B, et al. 2012. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. Journal of Biological Chemistry 287, 15811–15825.

Chen T, Liu J, Guo B, Ma X, Sun P, Liu B, Chen F. 2015. Light attenuates lipid accumulation while enhancing cell proliferation and starch synthesis in the glucose-fed oleaginous microalga Chlorella zollingeri. Scientific Reports 5, 14936.

Coleman RA, Lee PD. 2004. Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research 43, 134–176.

Davidi L, Levin Y, Ben-Dor S, Pick U. 2015. Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiology 167, 60–79.

Davidi L, Shimon E, Khozin-Goldberg I, Zamir A, Pick U. 2014. Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiology 164, 2139–2156.

Dong HP, Williams E, Wang DZ, Xie ZX, Hsia RC, Jenck A, Halden R, Li J, Chen F, Place AR. 2013. Responses of Nannochloropsis oceana IMET1 to long-term nitrogen starvation and recovery. Plant Physiology 162, 1110–1126.

Eastmond PJ, Rawsthorne S. 2000. Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiology 122, 767–774.

Fan J, Andre C, Xu C. 2011. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Letters 585, 1985–1991.

Fan J, Ning K, Zeng X, et al. 2015. Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp. Plant Physiology 169, 2444–2461.

Georgianna DR, Hannon MJ, Marcuschi M, Wu S, Botchk K, Lewis AJ, Hyun J, Mendez M, Mayfield SP. 2013. Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Research 2, 2–9.

Goncalves EC, Johnson JV, Rathinasabapathi B. 2014. The path to triacylglycerol obesity in the sta6 strain of Dunaliella bardawil. Journal of Biological Chemistry 289, 1592–1606.

Goodenough U, Blaby I, Casero D, et al. 2012. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas reinhardtii starchless mutant. The Plant Cell 25, 4305–4322.

Goodenough U, Blaby I, Casero D, et al. 2014. The path to triacylglycerol obesity in the sta6 strain of Chlamydomonas reinhardtii. Eukaryotic Cell 13, 591–613.

Goodson C, Roth R, Wang ZT, Goodenough U. 2011. Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryotic Cell 10, 1592–1606.

Harwood JL. 1996. Recent advances in the biosynthesis of plant fatty acids. Biochimica et Biophysica Acta 1301, 7–56.

Triacylglycerol biosynthesis originates from starch and polar lipids in Dunaliella | 4949
Hirano A, Ueda R, Hirayama S, Ogushi Y. 1997. CO₂ fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22, 137–142.

Joylard L, Ferro M, Masselon C, et al. 2010. Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Progress in Lipid Research 49, 128–158.

Juergens MT, Disbrow B, Shachar-Hill Y. 2016. The relationship of triacylglycerol and starch accumulation to carbon and energy flows during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiology 171, 2445–2457.

Katz A, Paz Y, Pick U. 2009. Salinity tolerance and iron deprivation resistance mechanisms revealed by proteomic analyses in Dunaliella salina. In: Ben-Amotz A, Polle JEW, Rao DVS, eds. The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Enfield, NH: Science Publishers, 341–358.

Kim SH, Liu KH, Lee SY, Hong SJ, Cho BK, Lee H, Lee CG, Choi HK. 2013. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. PLoS One 8, e72415.

Li X, Moellering ER, Liu B, Johnny C, Fedewa M, Sears BB, Kuo MH, Benning C. 2012. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas. The Plant Cell 24, 4670–4686.

Li J, Han D, Wang D, et al. 2014. Choreography of transcriptomes and lipidomes of nannochloropsis reveals the mechanisms of oil synthesis in microalgae. The Plant Cell 26, 1645–1666.

Lippold F, vom Dorp K, Abraham M, et al. 2012. Fatty acid phytol ester synthesis in chloroplasts of Arabidopsis. The Plant Cell 24, 2001–2014.

Liska AJ, Shevchenko A, Pick U, Katz A. 2004. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiology 136, 2806–2817.

Longworth J, Noirel J, Pandhal J, Wright PC, Vaidyanathan S. 2012. HILIC- and SCX-based quantitative proteomics of Dunaliella tertiolecta with a high growth rate starchless mutant of Phaeodactylum tricornutum, during lipid accumulation. Journal of Proteome Research 11, 5959–5971.

Longworth J, Wu D, Huete-Ortega M, Wright PC, Vaidyanathan S. 2016. Proteome response of Phaeodactylum tricornum, during lipid accumulation induced by nitrogen depletion. Algal Research 18, 213–224.

Lu Y, Gehan JP, Sharkey TD. 2005. Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiology 138, 2280–2291.

Ohrogge J, Browse J. 1995. Lipid biosynthesis. The Plant Cell 7, 957–970.

Park JJ, Wang H, Gargouri M, Deshpande RR, Skeper JN, Holguin FO, Juergens MT, Shachar-Hill Y, Hicks LM, Gang DR. 2015. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. The Plant Journal 81, 611–624.

Ramazanov A, Ramazanov Z. 2006. Isolation and characterization of a starch less mutant of Chlorella pyrenoidosa STL-PI with a high growth rate and a high protein and polysaturated fatty acid content. Phycological Research 54, 255–259.

Razeghfard R. 2013. Algal biofuels. Photosynthesis Research 117, 207–219.

Recht L, Zarka A, Boussiba S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Applied Microbiology and Biotechnology 94, 1495–1503.

Recht L, Töpfner N, Batushansky A, Sikron N, Gibon Y, Fait A, Nikoloski Z, Boussiba S, Zarka A. 2014. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis. Journal of Biological Chemistry 289, 30387–30403.

Rismani-Yazdi H, Nazederagouli BZ, Bibby K, Peccia J. 2011. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12, 148.

Sanjaya MR, Durrett TP, Kosma DK, et al. 2013. Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following induction of an algal diacylglycerol acyltransferase 2. The Plant Cell 25, 677–693.

Schmollinger S, Mühnhaus T, Boyle NR, et al. 2014. Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. The Plant Cell 26, 1410–1435.

Shin H, Hong SJ, Kim H, Yoo C, Lee H, Choi HK, Lee CG, Cho BK. 2015. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresource Technology 194, 57–66.

Siaut M, Cuine S, Cagnon C, et al. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch levels. BMC Biotechnology 11, 7.

Simionato D, Block MA, La Rocca N, Jouhet J, Marechal É, Finazzi G, Morosinotto T. 2013. The response of Nannochloropsis gaudtiana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryotic Cell 12, 665–676.

Slocum SP, Zhang Q, Ross M, et al. 2015. Unlocking nature’s treasure-chest: screening for oleaginous algae. Scientific Reports 5, 9844.

Stitt M, Zeeman SC. 2012. Starch turnover: pathways, regulation and role in growth. Current Opinion in Plant Biology 15, 282–292.

Tan KWM, Lin H, Shen H, Lee YK. 2016. Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Nature 6, 37235.

Tang HY, Abunasser N, Garcia MED, Chen M, Simon NG KY, Salley SO. 2011. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Applied Energy 88, 3324–3330.

Wang ZT, Ulrich N, Joo S, Waffenschmidt S, Goodenough U. 2009. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell 8, 1856–1868.

Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC. 2010. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell 9, 1251–1261.

Yao L, Tan TW, Ng YK, Ban KH, Shen H, Lin H, Lee YK. 2015. RNA-Seq transcriptomic analysis with Bag2D software identifies key pathways enhancing lipid yield in a high lipid-producing mutant of the non-model green alga Dunaliella tertiolecta. Bioinformatics for Biofuels 8, 191.

Yoon K, Han D, Li Y, Sommerfeld M, Hu Q. 2012. Phosphotidic acid/acylcylerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. The Plant Cell 24, 3708–3724.

Zhang JY, Jeon H, Sim SJ, Lee Y, Jin E. 2015. Homologous sense and antisense expression of a gene in Dunaliella tertiolecta. Planta 242, 1051–1058.