THE TWO STATES OF STAR-FORMING CLOUDS

DAVID C. COLLINS1,2, ALEXEI G. KRITSUK1, PAOLO PADOAN3, HUI LI2, HAO XU2, SERGEY D. USTYUGOV4, AND MICHAEL L. NORMAN1

1 Center for Astrophysics & Space Sciences and Department of Physics, University of California at San Diego, La Jolla, CA, USA
2 Theoretical division, Los Alamos National Lab, Los Alamos, NM, USA
3 ICREA-ICC, University of Barcelona, Spain
4 Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Miusskaya Pl. 4, Moscow 125047, Russia

Received 2011 December 16; accepted 2012 February 21; published 2012 April 10

ABSTRACT

We examine the effects of self-gravity and magnetic fields on supersonic turbulence in isothermal molecular clouds with high-resolution simulations and adaptive mesh refinement. These simulations use large root grids (5123) to capture turbulence and four levels of refinement to follow the collapse to high densities, for an effective resolution of 81923. Three Mach 9 simulations are performed, two super-Alfvénic and one trans-Alfvénic. We find that gravity splits the clouds into two populations, one low-density turbulent state and one high-density collapsing state. The low-density state exhibits properties similar to non-self-gravitating in this regime, and we examine the effects of varied magnetic field strength on statistical properties: the density probability distribution function is approximately lognormal, the velocity power spectral slopes decrease with increasing mean field strength, the alignment between velocity and magnetic field increases with the field, and the magnetic field probability distribution can be fitted to a stretched exponential. The high-density state is well characterized by self-similar spheres: the density probability distribution is a power law, collapse rate decreases with increasing mean field, density power spectra have positive slopes, \(P(\rho, k) \propto k\), thermal-to-magnetic pressure ratios are larger than unity for all mean field strengths, dynamic-to-magnetic pressure ratios are larger than unity for all mean field strengths, the magnetic field distribution follows a power-law distribution. The high Alfvén Mach numbers in collapsing regions explain the recent observations of magnetic influence decreasing with density. We also find that the high-density state is typically found in filaments formed by converging flows, consistent with recent Herschel observations. Possible modifications to existing star formation theories are explored. The overall trans-Alfvénic nature of star-forming clouds is discussed.

Key words: magnetohydrodynamics (MHD) – stars: formation

Online-only material: color figures

1. INTRODUCTION

Star formation is one of the most important outstanding problems in astronomy and astrophysics. Over the last six decades, the theory of star formation has gone through a major paradigm shift. Early work (Mestel & Spitzer 1956; Mouschovias 1976) focused on the dominance of magnetic fields as the primary physical agent in star formation, suppressing collapse to support the perceived long lifetime of molecular clouds. Later work (Larson 1981; Elmegreen 1993; Padoan & Nordlund 2002, 2011; Krumholz & McKee 2005) shifted the focus from magnetically dominated collapse to turbulence dominated collapse. In a swing in the other direction, new observations (Li et al. 2009; Crutcher et al. 2010; Heyer & Brunt 2012; Targon et al. 2011) have indicated that at certain size and density scales, magnetic fields dominate, but at smaller scales the field importance is reduced.

This paradigm shift toward turbulence has been made possible in large part due to the ever increasing capability of computers and magnetohydrodynamic (MHD) algorithms, which allow increasingly accurate simulations of MHD turbulence (Kritsuk et al. 2011a). Recent algorithm progress has been made by including magnetic fields in high dynamic range codes, most notably adaptive mesh refinement (AMR; Balsara 2001; Fromang et al. 2006; Collins et al. 2011) and smoothed particle hydrodynamics (Price & Monaghan 2004; Dolag & Stasyszyn 2009; Gaburov & Nitadori 2011; Price 2012).

The three most important physical agents in star formation are gravity, turbulence, and magnetic fields. A considerable amount of work has gone into any pair of these, but relatively little study has combined all three with high-resolution methods. Mouschovias (1976), Scott & Black (1980), and Galli & Shu (1993) have studied the combined effects of magnetic fields and gravity. Goldreich & Sridhar (1995), Cho & Lazarian (2003), and Kritsuk et al. (2009a) have studied the effects of magnetic fields on turbulence, both compressible and incompressible. Self-gravitating turbulence has been studied by several authors, notably Klessen (2000) and Kritsuk et al. (2011b), finding enhanced high-density material relative to the pure turbulence results.

Combining all three physical mechanisms, Price & Bate (2008), Federrath et al. (2011b), and Collins et al. (2011) have done simulations of self-gravitating, magnetized turbulence with high dynamic range methods. The primary difference in setup between the first of those works (Price & Bate 2008; Federrath et al. 2011b) and the work presented here is the initial and boundary conditions; in those works, the initial conditions were isolated uniform density spheres with random velocity perturbations, but in the work presented here, we begin with fully developed turbulence in a periodic domain. Of course, both situations are idealized, with the full nature of star formation potentially dependent on the molecular cloud formation process as well.

In this work, we present three high-resolution, high dynamic range simulations of supersonic, super-Alfvénic, and trans-Alfvénic turbulence with self-gravity. We find that gravity breaks the cloud into two distinct states, one low-density turbulent state and one high-density collapsing state. We discuss
several of the dominant statistics used in describing supersonic turbulence, the impact that the newly formed self-gravitating state has on them, and the effect of magnetic fields. In Section 2, we discuss the numerical algorithms, initial conditions, and simulation parameters. In Section 3, we discuss the density probability distribution function (PDF), $V(r)$, followed by the density power spectra $P(\rho, k)$ in Section 4; the distribution of energy in Section 5, the magnetic PDF in Section 6, velocity and magnetic power spectra in Section 7, and finally the relative importance of compressible and solenoidal modes in Section 8. We discuss possible implications on star formation, and compare recent observations, in Section 9. We summarize our findings in Section 10.

2. NUMERICAL METHOD, SIMULATIONS, ANALYSIS

For the data presented in this paper, we solve the ideal MHD equations with self-gravity using the AMR code Enzo (Bryan et al. 1995; O’Shea et al. 2004), extended to MHD by Collins et al. (2010). This code uses the AMR algorithms developed by Berger & Colella (1989) and Balsara (2001), the hyperbolic solver of Li et al. (2008), the isothermal HLLD Riemann solver developed by Mignone (2007), and the CT method of Gardiner & Stone (2005).

We select the Mach number, \mathcal{M}, virial parameter, α_{vir}, and mean thermal-to-magnetic pressure ratio, β_0, as

$$\mathcal{M} = \frac{v_{\text{rms}}}{c_s} = 9$$

(1)

$$\alpha_{\text{vir}} = \frac{5v_{\text{rms}}^2}{3G\rho_0L_0} = 1$$

(2)

$$\beta_0 = \frac{8\pi c_s^2 \rho_0}{B_0^2} = 0.2, 2, 20,$$

(3)

where v_{rms} is the rms velocity fluctuation, c_s is the sound speed, ρ_0 is the mean density, L_0 is the size of the box, and B_0 is the mean magnetic field.

These can be scaled to physical clouds as

$$t_{\text{ff}} = 1.1n_{H,3}^{-1/2} \text{Myr}$$

(4)

$$L_0 = 4.6c_{s,2}n_{H,3}^{-1/2} \text{pc}$$

(5)

$$v_{\text{rms}} = 1.8c_{s,2} \text{km s}^{-1}$$

(6)

$$M = 5900c_{s,2}n_{H,3}^{-1/2} M_\odot$$

(7)

$$B_0 = (13, 4.4, 1.3)c_{s,2}n_{H,3}^{1/2} \mu G,$$

(8)

where $c_{s,2}$ is the sound speed and $n_{H,3}$ is the number density, respectively, and we have used a mean molecular weight of 2.3 amu per particle.

This definition of α_{vir} is exact for a uniform density sphere in isolation, and we have used it here for consistency with other works in the literature. In reality, the actual importance of gravity relative to kinetic energy is difficult to ascertain for a turbulent box with periodic boundaries due to the infinite nature of the box and the intermittent nature of dense structures. The value of α_{vir} used here is perhaps somewhat lower than the average value from observed molecular clouds (Heyer et al. 2009; Dobbs et al. 2011), but not outside the observed parameter range. Furthermore, the virial parameter is potentially scale dependent, with larger clouds being on average more gravitationally bound than smaller ones (Heyer et al. 2001; Goodman et al. 2009), so it is possible that these results apply better to a subset of large, gravitationally bound molecular clouds.

The initial conditions for this simulation were generated by a suite of unigrid simulations using the PPML code (Ustyugov et al. 2009) without self-gravity. Cubes with 10243 zones, with initially uniform density and magnetic fields, were driven using a solenoidal driving pattern. Power in the driving was between wavenumbers $k/k_{\min} = 1, 2$, and driven as in Mac Low (1999) to maintain our target Mach number. Driving continued for several dynamical times,

$$t_{\text{dyn}} = \frac{L_0}{2v_{\text{rms}}} = 1.2n_{H,3}^{-1/2} \text{Myr},$$

(9)

until a statistically relaxed state was reached. Results of the turbulent boxes were first presented in Kritsuk et al. (2009a), see A. G. Kritsuk et al. (2012, in preparation) for more details.

The simulations were then restarted using Enzo with self-gravity and AMR. A root grid of 5123 and four levels of refinement by a factor of two were used, with a refinement such that the local Jeans length $L_1 = \sqrt{\pi G \rho_0}$ is resolved by at least 16 zones. This gives an effective linear resolution of 8192. The simulations were run for 0.6t_{ff}. Figure 1 shows projections through the volume at $t = 0.0$ (left column) and $t = 0.6$t_{ff} (right column) for each β_0 (top to bottom, $\beta_0 = 0.2, 2, and 20$). In the left column, one can see the filamentary structures associated with supersonic turbulence. The right column shows the distribution of high-density collapsing cores superimposed on the turbulent state.

It should be noted, that the two solvers used for this simulation have different dissipation properties. The solver used for the initial conditions (PPML) employs a third-order spatial reconstruction, while the solver used in the self-gravitating portion was only second order spatially. This change in solver was due to the fact that AMR, as employed in Enzo, has not yet been extended to include the increased algorithmic complexities of the higher quality PPML algorithm. Details about the differences in numerical dissipation can be found in Kritsuk et al. (2011a). In that work, the solver used in these AMR runs is referred to as LL-MHD. The effects of this solver change can be seen most prominently as a minor loss of dynamic range in the velocity power spectra, but the statistical properties are otherwise the same between the two solvers.

In order to demonstrate the effects of gravity in the rest of the paper, we typically present the simulations at two fiducial times, $t = 0.1t_{\text{ff}}$ and 0.6t_{ff}. The first snapshot was taken at $t = 0.1t_{\text{ff}}$, which is sufficient to remove the effects of the solver transition, but it is early enough to not show any effects of gravity. Unless otherwise noted (e.g., velocity power spectra, Figure 15), the statistics at $t = 0.1t_{\text{ff}}$ are identical to those at $t = 0.0t_{\text{ff}}$, which corresponds to the moment at which gravity was turned on. Due to the short timescale relevant for the high-density gas, we average several snapshots around each of the two fiducial snapshots, in a range of ±0.05t_{ff}, to reduce statistical noise. This short-term time averaging is done in all plots unless otherwise noted.

The final time, $t_{\text{sim}} = 0.6t_{\text{ff}}$, corresponds to 0.5$t_{\text{dyn}}$. We can estimate the scale at which the turbulence can be considered
relaxed by using the structure function scaling, \(\delta v^p_\ell \propto \ell^{\zeta_p} \), and computing the scale at which the number of turnovers at the end of our simulation is greater than some number, \(N = t_{\text{sim}}/t_\ell \), where \(t_\ell = \ell/\delta v_\ell \) is the turnover time at length \(\ell \). One finds

\[
\ell_N = \left(\frac{V_0 t_{\text{sim}}}{N} \right)^{\frac{p-\xi_p}{\zeta_p}} L_0^{\frac{p-\xi_p}{\zeta_p}},
\]

where \(V_0 = 10 \) is the velocity at the outer scale, \(L_0 = 1 \) is the size of the box, and \(N \) is the number of crossings at a given scale. For the third-order structure function, \(p = 3 \), in a supersonic flow, Kritsuk et al. (2007) found that \(\zeta_3 = 1.3 \). For a single turnover time, \(N = 1 \), we find \(\ell_3 = 0.09 \), which corresponds to \(k/k_{\text{min}} = 11 \). The short time averaging window, \(\pm 0.05 t_{\text{ff}} \), corresponds to \(k/k_{\text{min}} = 875 \), which is resolved by all refined regions.
Power spectra in this simulation were computed using only the root grid data, at 5123. Due to the incomplete filling of k-space, power spectra that also include the refined regions would require data interpolation. Due to the fact that the volume filling fraction of refined regions is quite low (see Section 3), and the fact that power spectra are volume-weighted quantities, spectra using anything but the root grid data would be dominated by interpolated data that do not contain much useful information.

All analysis has been performed with the AMR analysis package yt (Turk et al. 2011).

3. DENSITY PDF

Figure 2 shows the density PDF, $V(\rho)$, for each simulation ($\beta_0 = 0.2$ in red, $\beta_0 = 2$ in green, and $\beta_0 = 20$ in blue) at $t = 0.1 t_{ff}$ (solid lines) and $t = 0.6 t_{ff}$ (dotted lines). This color scheme will be used throughout the paper. The figure additionally shows two gray lines that divide the gas into three sections: low-density turbulent state (left section), high-density collapsing state (center section), and very high density unresolved gas (right section).

(A color version of this figure is available in the online journal.)

$V(\rho)d\ln\rho = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(\ln\rho - \mu)^2}{2\sigma^2}\right) d\ln\rho, \quad (11)$

where $\mu = -\sigma^2/2$ is the mean of $\ln\rho$ (Blaisdell et al. 1993; Vazquez-Semadeni 1994). The variance and Mach number, M, are related by

$\sigma = \sqrt{\ln(1 + b^2 M^2)}. \quad (12)$

The parameter b has been numerically determined to lie between 0.3 and 0.4 (Padoan et al. 1997b; Federrath et al. 2008b, 2010; Kritsuk et al. 2007, 2009a, 2009b; Beetz et al. 2008). The value b has been shown to approach unity in simulations with compressive forcing (Federrath et al. 2008b, 2010).

The presence of the Lorentz terms in the momentum equation breaks the invariance of the equations relative to the mean density. Thus, the sequence of shocks that determine the density of a parcel of gas is no longer independent of multiplicative events, as they are in hydrodynamic turbulence. For this reason, there is no a priori expectation of a lognormal density distribution in a magnetized system. However, Ostriker et al. (2001) and Lemaster & Stone (2008) have shown that $V(\rho)$ is approximately lognormal, with properties weakly depending on mean field strength. For driven MHD turbulence, Lemaster & Stone (2008) find that, for densities within 10% of the peak density,

$\sigma_{LS08} = \sqrt{1 - 0.72 \ln(1 + 0.5 M^2) + 0.20}, \quad (13)$

and weakly decreases with field strength. A. G. Kritsuk et al. (2012, in preparation) performed high-resolution simulations of statistically stationary magnetized turbulence and showed that the presence of a magnetic field alters the low-density gas, making a lognormal description less appropriate. They did find that the high-density wing of the PDF is still well approximated by a lognormal for the two weak-field runs, $\beta_0 = 2$ and $\beta_0 = 20$.

Figure 2 shows the resemblance to a lognormal present in our simulations. In Table 1, we show μ and σ found from fits to the average PDF for three snapshots from each of our simulations. Fits were performed for $\rho \in [5 \times 10^{-3}, 10]$, a range chosen to exclude material above ρ_t. We find a weak sensitivity of μ and σ with both time and β_0, with μ decreasing.

In the following, we will identify the turbulent state as those features that belong to either low-density gas (below ρ_t) or gas that whose statistical properties are relatively unchanged over the course of our simulation. Collapsing gas is identified by high density (between ρ_t and ρ_c) and short time variation.

3.1. Density PDF in the Turbulent State

One of the most robust properties of isothermal supersonic turbulence is the lognormal distribution of densities (Blaisdell et al. 1993; Vazquez-Semadeni 1994; Padoan et al. 1997a, 1997b; Scalo et al. 1998; Passot & Vázquez-Semadeni 1998; Nordlund & Padoan 1999; Kritsuk et al. 2007; Federrath et al. 2008b; Price 2012). Several properties of star formation have been predicted using the lognormal distribution function, including the initial mass function (IMF) of stars (Padoan & Nordlund 2002; Padoan et al. 2007), the brown dwarf frequency (Padoan & Nordlund 2004), and the star formation rate (SFR; Krumholz & McKee 2005; Padoan & Nordlund 2011).

For compressible turbulence without gravity or magnetic fields, the density PDF, $V(\rho)$, can be shown to be a lognormal of the form

$V(\rho) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(\ln\rho - \mu)^2}{2\sigma^2}\right) d\ln\rho, \quad (11)$

where $\mu = -\sigma^2/2$ is the mean of $\ln\rho$ (Blaisdell et al. 1993; Vazquez-Semadeni 1994). The variance and Mach number, M, are related by

$\sigma = \sqrt{\ln(1 + b^2 M^2)}. \quad (12)$

The parameter b has been numerically determined to lie between 0.3 and 0.4 (Padoan et al. 1997b; Federrath et al. 2008b, 2010; Kritsuk et al. 2007, 2009a, 2009b; Beetz et al. 2008). The value b has been shown to approach unity in simulations with compressive forcing (Federrath et al. 2008b, 2010).

The presence of the Lorentz terms in the momentum equation breaks the invariance of the equations relative to the mean density. Thus, the sequence of shocks that determine the density of a parcel of gas is no longer independent of multiplicative events, as they are in hydrodynamic turbulence. For this reason, there is no a priori expectation of a lognormal density distribution in a magnetized system. However, Ostriker et al. (2001) and Lemaster & Stone (2008) have shown that $V(\rho)$ is approximately lognormal, with properties weakly depending on mean field strength. For driven MHD turbulence, Lemaster & Stone (2008) find that, for densities within 10% of the peak density,

$\sigma_{LS08} = \sqrt{1 - 0.72 \ln(1 + 0.5 M^2) + 0.20}, \quad (13)$

and weakly decreases with field strength. A. G. Kritsuk et al. (2012, in preparation) performed high-resolution simulations of statistically stationary magnetized turbulence and showed that the presence of a magnetic field alters the low-density gas, making a lognormal description less appropriate. They did find that the high-density wing of the PDF is still well approximated by a lognormal for the two weak-field runs, $\beta_0 = 2$ and $\beta_0 = 20$.

Figure 2 shows the resemblance to a lognormal present in our simulations. In Table 1, we show μ and σ found from fits to the average PDF for three snapshots from each of our simulations. Fits were performed for $\rho \in [5 \times 10^{-3}, 10]$, a range chosen to exclude material above ρ_t. We find a weak sensitivity of μ and σ with both time and β_0, with μ decreasing.
with time and increasing with β_0. Our short averaging time, relative to a dynamical time, means that these can be viewed only as snapshots in time, not as robust statistical averages.

3.2. $V(\rho)$ Collapsing State

The PDF of the collapsing material forms a power law, $V(\rho) \propto \rho^\beta$, for densities above ρ_0. This was first presented in hydrodynamic simulations by Klessen (2000), though the resolution of those simulations was too low to measure a significant power law. The first measurement of the slope was done by Slyz et al. (2005), who found $m = -1.5$. This slope was also seen by Federrath et al. (2008a) and Vázquez-Semadeni et al. (2008). Kritsuk et al. (2011b) used a very high resolution AMR simulation to measure a slope of -1.67 at intermediate to high densities, and -1.5 at high density. They also provided an explanation of this power law by comparing $V(\rho)$ to that of self-similar collapse, wherein $\rho \propto r^\beta$. The three solutions they discussed are the pressure free (PF) collapse (Penston 1969), Larson–Penston (LP) supersonic infall (Larson 1969; Penston 1969), and expansion wave (EW) from inside out collapse (Shu 1977). Values of n for various models, and the implied value of m, are shown in Table 2. This table summarizes all semi-analytic and numerical results in this paper. Collins et al. (2011) measured this exponent for super-Alfvénic MHD turbulence, and found a value of $m = -1.64$ for $\rho \in [10, 1000]$. For the simulations in this work, we find $m = -1.80$, -1.78, and -1.65 for $\beta_0 = 0.2$, 2, and 20, respectively. The $\beta_0 = 20$ case presented here is similar in both physical parameters and measured slope to that in Collins et al. (2011), and in the gas dynamic simulations of Kritsuk et al. (2011b), while the stronger field simulations show steeper values. The values found here are most consistent with the PF value of $m = -1.75$.

It is clear from Figure 2 that the slope is a function of time in these clouds. This was also discussed by Kritsuk et al. (2011b). Figure 3 shows the time evolution of the power-law exponent m for the last few snapshots, those that contributed to the average shown by the dashed curve in Figure 2. The two low field cases, $\beta_0 = 2$ and 20, seem to have converged, with a power-law index m in the $\beta_0 = 2$ case slightly lower than the $\beta_0 = 20$ simulation. The $\beta_0 = 0.2$ simulation has clearly not converged and is still increasing at the end of the simulation. Given the agreement of $m \approx -1.64$ between our $\beta_0 = 20$ simulation and previous simulations (Collins et al.; Kritsuk et al. 2011b) and observations, we feel confident that this is a robust result in the hydrodynamic limit.

As we will discuss in Sections 8 and 9, three-dimensional compressions are suppressed with increasing magnetic field strength, as the flow is forced along magnetic field lines. This

Table 1

Time	β_0	σ	μ
0.1	1.2	1.3	1.3
0.2	1.2	1.4	1.4
0.6	1.2	1.5	1.5

Table 2

Power-law Relationships, Predictions, and Measurements
Index

LP
PF
EW
Isotropic
$v \parallel \mathbf{B}$
$v \perp \mathbf{B}$
$\beta = 0.2$
$\beta = 2$
$\beta = 20$

Notes.

- a Measured values of n computed from measured m.
- b Semi-analytic prediction of p uses $q = 1/2$.
- c Values for early and late times, respectively. Late times contain information from both turbulent and collapsing states.
- d Values for turbulent state only.
- e Values for low and high densities, respectively.
reduction in compressibility is likely the reason for the reduced value of m in $\beta_0 = 2$ and delayed convergence in the $\beta_0 = 0.2$ run.

The cumulative mass fraction above some critical density ρ_c, defined as

$$M(\rho_c) = \int_{\rho_c}^{\infty} \rho V(\rho) d\rho,$$

has been used in a number of theories of star formation, as we will discuss in Section 9.1. In order to quantify the effects of the mean field, Figure 4 shows $M(\rho_c)$ for each run relative to the $\beta_0 = 0.2$ simulation. This shows an increase in the collapsed mass as a function of decreasing field strength. The behavior of this mass fraction with time, $M(\rho_c, t)$, can be used to explain the slower convergence of m with the more magnetized simulations. Figure 5 shows $M(\rho_c = 10, t)$, which shows that the rate at which material enters the high-density state is a decreasing function of β_0. This can be used as a proxy for star formation, as we will discuss in Section 9.1, and while the exact rate is a function of the critical density ρ_c, the increase of rate with β_0 is not.

4. DENSITY POWER SPECTRA

One of the more striking results from this study is the behavior of the density power spectrum, $P(\rho, k)$, under the effects of self-gravity. Here, we have defined $P(\rho, k)$ as

$$P(\rho, k) = \sum_{|\kappa| = k} \tilde{\rho}_{\kappa} \tilde{\rho}_{\kappa^*},$$

where $\tilde{\rho}$ is the Fourier transform of ρ and the star denotes its conjugate. Figure 6 shows the density power spectra, $P(\rho, k)$, for all three simulations ($\beta_0 = 0.2, 2, 20$ colored red, green, and blue) and two snapshots, $t = 0.1, 0.6$ (solid, dotted). The increasing nature in the later snapshot is expected for self-similar spheres. In Figure 7, we show the power spectra for $\ln \rho$ for three snapshots of the $\beta_0 = 0.2$ simulation. Figure 8 shows...
As discussed in Beresnyak et al. (2005), \(P(\rho, k) \) is strongly influenced by the rare, high-density peaks. In that work, the authors noticed that the power spectrum of the logarithm of density was significantly steeper than \(P(\rho, k) \), as the logarithm effectively filters out high-density, rare peaks. This is seen in our simulations as well. The behavior of \(P(\ln \rho, k) \) shows very little evolution with time, as the collapsing state is effectively filtered out, which allows us to recover the turbulent state through the entire simulation. This can be seen in Figure 7 for the \(\beta_0 = 0.2 \) simulation. Slopes get somewhat steeper with increasing mean field, with \(\beta_0 = 0.2 \) having a slope of \(-1.0\), and \(\beta_0 = 2 \) and \(20 \) having slopes of \(-1.4\) and \(-1.53\), respectively (neither shown here).

In order to make contact with observable quantities, we show the power spectra for column density \(\rho \). \(P(\Sigma, k) \propto k^{\zeta} \), in Figure 8. For the range \(k/k_{\min} \in [2, 30] \) at early times, we find that \(\lambda = -1.39, -1.61, \) and \(-1.53\) for \(\beta_0 = 0.2, 2, \) and \(20 \), respectively, roughly consistent with the addition of \(-1\) to \(\zeta \) from the integration. Padoan et al. (2004) measured \(P(\Sigma, k) \) for three star-forming clouds, Perseus, Taurus, and the Rosetta nebula. They found significantly steeper spectra than we do here, \(\approx -2.8 \) for all three clouds. They also performed synthetic observations through two simulations with \(M = 10 \), a super-Alfvénic simulation and an equipartition model, and found \(\lambda = -2.25 \) for the equipartition model and \(-2.7\) for the super-Alfvénic model. The difference in slope between the slopes they found and the slopes in our simulation is most likely due to the observations and radiative transfer models missing the high-density material due to the limited dynamic range, as \(^{13}\)CO freezes onto dust grains at densities above \(10^4\) cm\(^{-3}\) (Bacmann et al. 2002). As discussed in Beresnyak et al. (2005) and shown in Figure 7, the slope of the density power spectra are quite sensitive to the rare high-density material, so even a slight decrease in the dynamic range of the observations will cause a steepening in the spectra. To properly compare, we will need to perform similar synthetic observations of our simulations.

4.1. Density Power Spectra in the Turbulent State

The turbulent initial conditions can be seen in the early snapshot (solid line) in Figure 6. For weakly subsonic (but still compressible) isothermal turbulence, one expects the density to follow the pressure fluctuations, and the density power spectrum, \(P(\rho, k) \propto k^{\zeta} \), should scale as \(\zeta = -7/3 \) (Bayly et al. 1992; Kritsuk et al. 2007). It has been seen that this power spectrum flattens with increasing Mach number. For trans-sonic turbulence, Kim & Ryu (2005) measured \(\zeta = -1.7 \) at a Mach number of \(M = 1.2 \). For supersonic turbulence, with \(M = 6 \), Kritsuk et al. (2007) measure \(\zeta = -0.9 \) for a simulation with 512\(^3\) zones, and a somewhat steeper spectrum of \(\zeta = -1.07 \) for 1024\(^3\). For the early snapshot, we measure significantly more shallow spectra, \(\zeta = -0.42, -0.58, \) and \(-0.62\) for our \(\beta_0 = 0.2, 2, \) and 20 simulations, respectively. This fit was done for \(k/k_{\min} \in [2, 30] \). The flatter nature of these spectra, relative to the Kritsuk et al. (2007) work, is likely due to the higher Mach number employed in our simulations. For Burger’s equation with vanishing pressure term, which could be analogous to increasingly supersonic turbulence, Saichev & Woyczynski (1996) predict that \(\zeta = 0 \), a trend which is consistent with \(\zeta \) being shallower here than in Kritsuk et al. (2007). It should be noted that this comparison to Burger’s turbulence is not meant to imply that supersonic turbulence is similar to turbulence in Burger’s equation; the lack of vorticity and strong intermittency in Burger’s equation makes the two systems only superficially similar. A second potential cause of the change in slope is due to the fact that the solver employed here is more diffusive than that used in Kritsuk et al. (2007, 2011a), which used the piecewise parabolic method of Colella & Woodward (1984). The decrease in slope with increasing magnetic field strength is consistent with the decrease in slope in the velocity power spectrum, as will be discussed in Section 7.

4.2. Density Power Spectra in the Collapsing State

The most prominent effect of gravity is the increase in the slope of \(P(\rho, k) \) with time, as seen in Figure 6. For self-similar spheres with \(\rho \propto r^n \), one finds \(\zeta = -2(n + 1) \). Thus, positive slopes will be seen in \(P(\rho, k) \) for any \(n < -1 \). Expected values from different self-similar models are shown in Table 2. Our measured values of \(\zeta \) for \(k/k_{\min} \in [10, 200] \) are 0.86, 1.12, 1.2 for \(\beta_0 = 0.2, 2, 20 \), respectively, at \(t \approx 0.6 t_{ff} \). Direct comparison between the measured value of \(\zeta \) and those predicted from the self-similar collapse models should be handled carefully for two reasons, both stemming from the volume-weighted nature of power spectra: first, the measured value contains contributions from both the collapsing state and the turbulent state, which will tend to decrease \(\zeta \) from the values expected for pure self-similar spheres; second, the power spectrum contains contributions from unresolved gas at very high densities.

The effect of increasing the mean magnetic field on \(P(\rho, k) \) in the collapsing state is to decrease the amount of power at all scales, increase the wavenumber at which the slope becomes positive, and slightly decrease the slope. This is consistent with the increased compressibility and increased rate of collapse found in the more weakly magnetized simulations.

The column density power spectral slope, \(\lambda \), becomes nearly flat for the collapsing case, with \(\lambda = -0.11, 0.15, \) and 0.25 for \(\beta_0 = 0.2, 2, \) and 20, respectively. This differs greatly from what is observed, owing to the fact that the material causing the flat spectra has an extremely high density, with \(\rho > (10^8-10^{10})\rho_0 \approx \)}
(10^6–10^{10}) cm^{-3} (wherein typical observational tracers such as CO are frozen onto grains), and an extremely small volume filling fraction, requiring high-resolution observations. High-density tracers, such as NH$_3$ or deuterated species such as H$_2$D$^+$, will be necessary to observe this signal (Walmsley et al. 2004; di Francesco et al. 2007). Synthetic observations of our data, as well as high-resolution observations in a broad range of chemical tracers, will be required to further reconcile this discrepancy. Again, increased power with increased β_0 is consistent with increased compressibility of the gas.

5. ENERGY RATIOS

The balance of energies sheds important light on the physical processes at play in these clouds. Figure 9 shows the thermal-to-magnetic pressure ratio, $\beta_{th} = 8\pi c_s^2 \rho / B^2$, versus density ρ; and Figure 10 shows the dynamic-to-magnetic pressure ratio, $\beta_{dyn} = 8\pi \rho v^2 / B^2$. In both figures, the left column is taken at $t = 0.1t_{ff}$, the right from $t = 0.6t_{ff}$, and top to bottom show $\beta_0 = 0.2$, 2, and 20, respectively. Both figures are colored by mass fraction F_M.

5.1. Energy Ratios in the Turbulent State

In the turbulent state, β_{th} shows some interesting variation with the mean field. The scatter in β_{th} increases with increasing β_0, and the mean slopes in the $\beta_{th} \propto \rho^s$ decrease with increasing β_0; $s = 0.96$, 0.77, and 0.54 for $\beta_0 = 0.2$, 2, and 20, respectively, for $\rho \in [10^{-2}, 10]$. The average of β_{th} versus ρ can be seen in Figure 11. For perfectly spherical contractions, $B \propto \rho^{3/2}$, since $B \propto R^{-2}$ due to flux conservation and $\rho \propto R^{-3}$ due to mass conservation. For a flow perfectly aligned with the field, $B \propto \rho^0$, since no amplification of the field can take place, and for flow completely perpendicular to the field, $B \propto \rho^1$ (e.g., Kulsrud 2004). Since $\beta_{th} = c_s^2 \rho / B^2$, and for an isothermal...
equation of state where \(c_s \) is constant, one finds \(s = -1, -1/3, \) and 1 for perpendicular, isotropic, and parallel flow, respectively. This indicates that flow is preferentially aligned in all states, even in the weakest field simulation, but the alignment increases with mean field strength.

The degree to which the velocity and field are aligned is shown in Figure 12, which shows the mass-weighted average of the magnitude of the cosine of the angle between \(\mathbf{B} \) and \(\mathbf{v} \),

\[
\langle |\cos \theta| \rangle_{\rho_i} = \left(\frac{|\mathbf{B} \cdot \mathbf{v}|}{B v} \right)_{\rho_i},
\]

where the average is only done over material with density in bin \(\rho_i \) and normalized to the total mass in that bin, and where 512 bins were used. The gray line shows the expectation value of \(|\cos \theta| \) for uncorrelated vectors, \(3/\pi \approx 0.96 \). The solid red, green, and blue lines show \(\beta_0 = 0.2, 2, \) and 20, respectively, averaged for several snapshots around \(t = 0.6t_{ff} \). Light dotted lines show the constituent snapshots, which demonstrate the extremely short timescale on which \(\theta \) varies at high density. The \(\beta_0 = 0.2 \) simulation has \(\mathbf{B} \) and \(\mathbf{v} \) nearly aligned at low density, which is consistent with \(s = 0.96 \approx 1 \), while the other weaker field simulations show less alignment, even a slight tendency for \(\mathbf{B} \) and \(\mathbf{v} \) to be perpendicular, and correspondingly lower values and a larger variance in \(s \).

The left column of Figure 10 shows the ratio of dynamic-to-magnetic pressure for the early snapshot. It can be seen from this figure that the typical gas element in the low-density turbulent state in the \(\beta_0 = 0.2 \) run is trans-Alfvénic, as \(\beta_{\text{dyn}} = v^2 / v_A^2 \), and the gas is evenly distributed around \(\beta_{\text{dyn}} = 1 \), with a peak of the PDF at \(\beta_{\text{dyn}} = 0.54 \). The other two simulations are more super-Alfvénic, with peak \(\beta_{\text{dyn}} \) at 1.2 and 5.6.
5.2 Energy Ratios in the Collapsing State

For the high-density collapsing gas, β_{th} and β_{dyn} can be seen in the right columns of Figures 9 and 10. The transition between turbulent and collapsing states is seen quite clearly in Figure 11, which shows average β_{th} versus ρ. In this figure, at $\beta_{th} \approx 1$ the slope in mean β_{th} flattens to almost zero, showing that, on average, collapsing gas is in thermal-to-magnetic pressure balance. For $\rho \in [100, \rho_s]$, $s = 0.15, 0.19$, and 0.23 for $\beta_{th} = 0.2, 2$, and 20, respectively. A lower limit of $\rho = 100$ was used for these fits as this is approximately where the slope in the $\beta_{th} = 0.2$ simulation flattens dramatically. However, the density at which this transition in slope happens is found to decrease with increasing magnetic field, with $\rho \approx 10$ and 0.1 for $\beta_{th} = 2$ and 20, respectively. This indicates that density alone is not a sufficient variable to mark the transition from turbulent to collapsing gas.

As shown in the right column of Figure 10, the collapsing gas is dominated by dynamic pressure for all three values of β_{th}. This is also true for the unresolved gas, and while one cannot quantitatively trust these results as they are contaminated by numerical resolution problems, the likelihood that increased resolution would decrease this ratio by two orders of magnitude is low. This suggests that the collapsing state is formed from gas that is initially super-Alfvénic, where magnetic energy support is insufficient to resist ram pressure from the gas, causing density peaks that can become gravitationally bound. As the mass fraction of gas that is super-Alfvénic decreases with β_{th}, this also has the effect of decreasing the amount of gas that can collapse to high densities, in turn decreasing the rate and efficiency of star formation. In non-self-gravitating turbulence results, the existence of super-Alfvénic high-density gas is seen even in subsonic, sub-Alfvén simulations (Burkhart et al. 2009), as well as in thermally unstable trans-Alfvén simulations (Kritsuk et al. 2011c). Gravity, however, has the effect of highly concentrating the high-density gas in the super-Alfvénic regime. This will be compared with observations in Section 9.

6. MAGNETIC FIELD PDF

Figure 13 shows PDF of the magnetic field for $t = 0.1t$ (left panel) and both $t = 0.1t$ and $t = 0.6t$ (right panel). The left plot is linear, and shows $V(b)$, where b is the fluctuating field, $b = |\mathbf{B} - \mathbf{B}_0|$. The right plot is logarithmic, and shows the PDF for the full magnetic field $V(B)$.

6.1 Magnetic Field PDF in the Turbulent State

A. G. Kritsuk et al. (2012, in preparation) have found that the high field wing of the PDF of the magnetic field in an isothermal turbulent gas can be well described by a stretched exponential of the form

$$V(b)db = c\left(b^{c-1}/b_0\right)\exp\left[-\left(b/b_0\right)^\alpha\right]db,$$

with a stretching exponent $c \approx 1/3$. A stretched exponential describes a sequence of multiplicative events, where $1/c$ is the depth of the hierarchy of events (Frisch & Sornette 1997; Laherrère & Sornette 1998). This is not unlike the sequence of multiplicative shocks that generates the density PDF $V(\rho)$. For $\beta_{th} = 0.2$, we find $b_0 = 3.1 \times 10^{-3}$ and $c = 0.33$ for $b \in [50, 80]$; for $\beta_{th} = 2$ we find $b_0 = 6.1 \times 10^{-3}$ and $c = 0.32$, for $b \in [50, 100]$; and for $\beta_{th} = 20$, we find $b_0 = 9.0 \times 10^{-3}$ and $c = 0.33$ for $b \in [50, 120]$. Fits to these lines can be seen in black along each curve in the left panel of Figure 13. To better demonstrate the fit, Figure 14 shows $V(b)$ against $b^{1/3}$, restricted to the interval of the fit. Thus, we find that the number of multiplicative events is the same for all three simulations, $1/c \approx 3$, but the characteristic scale, b_0, increases with β_{th} due to the greater ease of inducing fluctuations in a weaker mean field.

6.2 Magnetic Field PDF in the Collapsing State

The collapsing state exhibits a power law $V(B) \propto B^p$. As an example, for the mid-strength field, $\beta_{th} = 2$, we find $p = -4$ for $B \in [52, 530]$. This fit range was determined by the average magnetic field spanned by densities in the range $\rho \in [\rho_1, \rho_s]$. We compute the exponent q in $B \propto \rho^q$, and find $q = 0.43$
The Astrophysical Journal, 750:13 (18pp), 2012 May 1

Collins et al.

Figure 13. PDF of magnetic field strength. Left: PDF of fluctuating $b = |B - B_0|$, $V(b)$, for $t = 0.1t_H$. Fits to a stretched exponential are shown in black for each line. Note that this figure is linear in b. The smaller volume fractions achieved by the $\beta_0 = 20$ simulation are due to the more rapid collapse, and thus earlier refinement, of that simulation. Right: PDF of the full magnetic field strength, B, with lines colored the same as in Figure 2. Here, we see a power law developed at late times due to the collapsing gas. This figure illustrates how turbulence and gravity leave different signatures in the PDF of magnetic field strength; at high field strength, a stretched-exponential tail is generated by turbulence, while a power-law tail is generated by gravity.

(A color version of this figure is available in the online journal.)

Figure 14. Stretched-exponential section of $V(b)$ at $t = 0.1t_H$, restricted to the fit range $b \in [50, 100]$, and plotted against $b^{1/3}$.

(A color version of this figure is available in the online journal.)

for this simulation. Combining this with $m = -1.7$ found in Figure 3, we predict $p = -3.9$, in reasonable agreement with the measured value.

The slope of $V(B)$ increases with increasing mean field strength. For the $\beta_0 = 20$ case, we find a fit exponent of $p = -3.22$ for $B \in [27, 670]$, while for $\beta_0 = 0.2$ we find $p = -5.42$ for $B \in [36, 451]$. Using measured values of q and m, we predict slopes for $V(B) = -4.5$, -4.0, and -3.3 for $\beta_0 = 0.2, 2$, and 20, respectively. The predicted value of p for the $\beta_0 = 0.2$ run is somewhat lower than the measured value. This is likely due to the fact that the run had not yet fully developed the collapsing state.

7. VELOCITY AND ENERGY POWER SPECTRA

The velocity power spectrum, $P(v, k)$, is historically one of the most studied quantities in turbulence modeling. Figures 15 and 16 show the compensated velocity spectra. One curious feature is that the collapsing state does not show up in the velocity spectra, and only shows a mild feature in the kinetic energy spectra, $P(\rho^{1/2}v, k)$, and magnetic energy spectra, $P(B, k)$, as seen in Figure 17.

7.1. Velocity and Energy Power Spectra in the Turbulent State

Only the turbulent state is visible in the velocity power spectrum, $P(v, k)$. Figure 15 shows the compensated velocity power spectra, $k^{5/3}P(v, k)$, for all snapshots for the $\beta_0 = 20$ simulation (gray lines) and the average of all snapshots (black line). The only variation comes from the first $0.1t_H$, where the variation is due entirely to the change in the effective spectral bandwidth between PPML, the solver used for the initial conditions, and the solver in Enzo, which was used for the self-gravitating AMR simulations. The rest of the snapshots, nearly indistinguishable from the mean, show almost no evolution at all. The other two simulations (not shown) show even less variation in the initial phase.
Figure 16. Velocity power spectra $P(v, k)$ for all three simulations, averaged over all times. Slopes for $k/k_{\text{min}} \in [2, 30]$ are -1.46, -1.58, and -1.80 for $\beta_0 = 0.2, 2, 20$, respectively.

(A color version of this figure is available in the online journal.)

Figure 17. Energy power spectra, $P(\rho^{1/2}u, k)$ (upper curves in each panel, red, green, and blue) and $P(B, k)$ (lower curves in each panel, cyan, magenta, and yellow) for $\beta_0 = 0.2$ (top panel), $\beta_0 = 2$ (middle panel), and $\beta_0 = 20$ (bottom panel). Three different times are shown; $t = 0.1t_{\text{ff}}$ (solid line), $t = 0.3t_{\text{ff}}$ (dashed line), and $t = 0.6t_{\text{ff}}$ (dotted line).

(A color version of this figure is available in the online journal.)

Another illuminating feature of Figure 17 is the sub-equipartition nature of the magnetic field in these simulations at small scales at early times (solid curves). This lack of equipartition at small scales is somewhat surprising, as standard...
expectation of a small-scale dynamo in incompressible MHD is to first grow exponentially at small scales until equipartition is reached, then linearly at larger scales, with the equipartition wavenumber decreasing with time (Brandenburg & Subramanian 2005). However, as the turbulence in this simulation is dominated by shocks, one cannot apply the same physical arguments, since the shock jump conditions do not imply simple equipartition between kinetic and magnetic energy in the shock-compressed layer. The increased fraction of kinetic energy in compressive motions (see Section 8) generates less vorticity per unit of energy than subsonic turbulence, which in turn generates less magnetic energy. This has been explored in Federrath et al. (2011a), who demonstrated that as Mach number increases, the ratio of magnetic to kinetic energy transitions from near unity for \(M < 1 \) to a few percent for \(M > 1 \). This is consistent with our findings here, though predominantly at small scales. In our \(p_0 = 2 \) and \(\beta_0 = 0.2 \) simulations, the imposed large-scale field allows equipartition to be reached at intermediate scales.

7.2. Velocity and Energy Power Spectra in the Collapsing State

As seen through the time evolution of \(P(v, k) \) in Figure 15, the collapse state does not leave a signature on the velocity power spectrum. This is due to the volume-weighted nature of power spectra. The collapsing state occupies a very small volume fraction, as seen in Figure 2. Because of this, for a signal to appear in the power spectrum the values must be extremely large. The values of velocity reached by the gas do not vary to appear in the power spectrum the values must be extremely small. The values of velocity reached by the gas do not vary to appear in the power spectrum the values must be extremely small.

If we relate the power spectrum found here with the self-similar solutions discussed in Section 3.2, then we find that the PF collapse gives the velocity scaling exponent \(v = +5/7 \); the EW solution gives \(v = 0 \), which gives no visible signal to the velocity scaling; finally the LP solution, with constant velocity, gives no contribution to the velocity spectrum.

While the collapsing state leaves no signature in the velocity spectra, it does leave a signature at high \(k/k_{\text{min}} \) on the kinetic and magnetic energy spectra, \(P(\rho^{1/2}v, k) \) and \(P(B, k) \). In Figure 17, we show three snapshots for the energy spectrum, \(P(\rho^{1/2}v, k) \) (upper set of curves) and \(P(B, k) \) (lower set), for all three simulations (top to bottom, \(p_0 = 0.2, p_0 = 2, p_0 = 20 \)). Solid, dashed, and dotted lines show \(t = 0.1, 0.3, 0.6 \), respectively.

The kinetic spectrum shows an imprint of the collapse in the high \(k/k_{\text{min}} > 100 \) gas, due mostly to the density-weighted nature of this statistic, and the fact that, on small scales, the density increases by as much as five orders of magnitude. Strictly speaking, the magnetic spectrum is also a volume-weighted quantity, so the increase in magnetic energy seen is a product of additional field amplification from the collapse itself. However, as discussed in Section 5, \(B \propto \rho^q \), with \(q \approx 0.4 \), which is similar to the density dependence of kinetic energy, so \(P(B, k) \) can be considered to be implicitly density weighted. The initial (turbulent) field distribution is a product of the shock-dominated turbulence, as discussed in the previous section. After gravity is introduced, the field sees additional amplification due to the collapse itself. This field amplification is again consistent with increased compressibility due to increased \(p_0 \), as the increase in \(P(B) \) at high \(k/k_{\text{min}} \) is greater for the weaker field runs.

If one examines the energy scaling in the context of self-similar spheres, then one finds that \(P(\rho^{1/2}u) \) scales as \(k^{+1} \) for the LP and PF solutions, and \(k^{-3/7} \) for the EW solutions. These increasing solutions are not seen in Figure 17. Again, this is likely due to the fact that the superposition of the turbulent and collapsing spectra makes distinguishing between the two difficult.

8. HELMHOLTZ DECOMPOSITION

The formation of high-density material necessarily comes from compressive motions. A standard method of examining the compressional and solenoidal modes of the velocity field is the Helmholtz decomposition. We split the velocity field, \(v \), into two components

\[
\mathbf{v} = \mathbf{v}_c + \mathbf{v}_s, \quad (17)
\]

\[
\nabla \cdot \mathbf{v}_s = 0, \quad (18)
\]

\[
\nabla \times \mathbf{v}_c = 0, \quad (19)
\]

where we find \(\mathbf{v}_c \) and \(\mathbf{v}_s \) in Fourier space,

\[
\tilde{\mathbf{v}}_c = (\hat{k} \cdot \tilde{\mathbf{v}})\hat{k}, \quad (20)
\]

\[
\tilde{\mathbf{v}}_s = \tilde{\mathbf{v}} - \tilde{\mathbf{v}}_c, \quad (21)
\]

where \(\tilde{\mathbf{v}} \) is the Fourier component of \(\mathbf{v} \), and \(\hat{k} \) is the unit wave vector. We then examine the ratio of the power spectra \(\chi(k) = P(\mathbf{v}_c, k)/P(\mathbf{v}_s, k) \), which gives us a scalewise measure of the importance of compressibility of the gas.

8.1. Helmholtz Decomposition in the Turbulent State

The ratio of compressible to solenoidal power, \(\chi(k) \), is shown in Figure 18 for the same fiducial snapshots as in Figure 2. For \(p_0 = 20 \), we find \(\chi(k) \approx 0.4 \) in the range \(k/k_{\text{min}} \in [2, 30] \), which is less than 0.5 as expected from purely geometrical considerations: for a given wave vector \(\mathbf{k} \) there is only one longitudinal (compressional) component, while there are two transverse (rotational) components. This is consistent with the findings of Kritsuk et al. (2010), where the increase of the magnetic field strength decreases \(\chi(k) \). Again
we find the increased compressibility with increased β_0. At low $k/k_{\text{min}} < 50$ there is a monotonic increase in $\chi(k)$ with β_0. The $\beta_0 = 20$ simulation also shows a substantially low $k/k_{\text{min}} < 2$ compression at late times, seen to a lesser extent in the other two. The $\beta_0 = 2$ run shows a peak in $\chi(k)$ at $k/k_{\text{min}} \approx 10$, probably sharing a similar origin with the $k/k_{\text{min}} < 2$ increases, namely, a result of the large-scale forcing pattern. In all cases, there is a general trend of increasing compressibility at higher k/k_{min}. As discussed in Section 7, this increase in compressibility causes reduced amplification of the magnetic field at high k/k_{min}.

8.2. Helmholtz Decomposition in the Collapsing State

There is no substantial increase in compressive motions at high k/k_{min} as time progresses, indicating, similar to the velocity power spectrum, $P(v, k)$, that this statistic is not especially sensitive to gravity, due to its volume-weighted nature. It seems that the lower levels of magnetization in the $\beta_0 = 20$ simulation are enough for that run to have some increased compressional motion at high k/k_{min}. The stronger field runs show almost no evolution. At low k/k_{min}, all three simulations show an increase in power at $k/k_{\text{min}} < 2$. This is possibly due to the effects of gravity causing large-scale contraction of the gas.

9. DISCUSSION

The combined effects of gravity, turbulence, and magnetic fields have yet to be incorporated in star formation theory with their proper respective weights. Here, we discuss modifications to two recent star formation models (Section 9.1) and interpret several recent observations in this light (Section 9.2).

9.1. Implications on Theory

In the past decade, the lognormal density PDF of turbulence has been used to predict a number of properties of star formation, including the SFR. Here, we will discuss the implication on two works in particular, namely, the SFR models of Krumholz & McKee (2005), hereafter KM05, and Padoan & Nordlund (2011), hereafter PN11. In both of these works, the SFR per free-fall time, SFR_f, is predicted to be proportional to the mass fraction above some critical density, using a lognormal distribution. Thus,

$$\text{SFR}_f = \epsilon \int_{\rho_{\text{cr}}}^{\infty} \rho V(\rho)d\rho$$

$$= \epsilon \left(1 + \text{erf} \left[\frac{\sigma^2 - 2\ln \rho_{\text{cr}}}{2^{3/2}\sigma}\right]\right),$$

where we have used Equation (11) in the derivation of the second of these. This model presumes that the effects of gravity do not alter the structure of the star-forming cloud. However, if the effects of gravity are present during the formation of the cloud, then it is not unreasonable to suppose that a power-law density PDF might be present before the onset of turbulence. Here, we will explore what effects the distribution may have on the SFR.

KM05 and PN11 differ in two ways: in the nature of ϵ and the nature of ρ_{cr}. The parameter ϵ contains the timescale for collapse, as well as the fraction of collapsing gas reaching the protostar. The other difference is the nature of ρ_{cr}. In KM05, ρ_{cr} is the density at which velocity perturbations become subsonic and lose their turbulent support. In PN11, ρ_{cr} is the post-shock density which yields clumps that are larger than the sum of the Bonnor–Ebert and magnetic critical masses.

As we have shown in Section 7, the scaling of the turbulence depends on the mean magnetic field. This, in turn, has consequences for the expected critical density. The KM05 result predicts that

$$\rho_{\text{cr}} = \left(\frac{\phi \lambda_s}{L_0}\right)^2,$$

$$\lambda_s = L_0 (c_s/\sigma_0)^{1/q},$$

and thus

$$\rho_{\text{cr}} = \left(\frac{\phi \lambda_s}{L_0}\right)^2 M^{2/q},$$

where λ_s is the sonic length at which velocity perturbations become subsonic, L_0 is the cloud size, σ_0 is the velocity fluctuation at the outer scale, and ϕ is a numerical factor of order unity. In their work, they find $\phi = 1.12$. We can relate q to the velocity spectral index v by $q = -(v + 1)/2$. For $v = -2$, as expected for PF turbulence, $q = 1/2$, while for $v = -1.5$ as seen in our $\beta_0 = 0.2$ run, $q = 1/4$. If we take $M = 10$, we find an increase of several orders of magnitude in ρ_{cr} when using the spectral scaling of the $\beta_0 = 0.2$ simulation over the $\beta_0 = 20$ simulation, assuming everything else stays constant. In PN11, ρ_{cr} does not depend directly on v, but will likely impact the post-shock magnetic field distribution, similarly increasing ρ_{cr} for increasing mean field strength.

Another impact of our results here is the result of replacing the turbulent PDF, $V(\rho)$, with one that transitions to a power law at some transition density ρ_t. Thus,

$$V(\rho)d\ln \rho = \begin{cases} N \frac{1}{\sqrt{2\pi \rho}} \exp \left[\frac{-(\ln \rho - \mu)^2}{2\sigma^2}\right] d\ln \rho, & \rho < \rho_t \\ N \rho_0^m d\ln \rho, & \rho > \rho_t, \end{cases}$$

rather than a plain lognormal. Here, the normalization N is determined by the normalization requirement, $\int_{-\infty}^{\infty} V(\rho)d\ln \rho = 1$, and is given by

$$N = 2 \left(1 + \text{erf} \left[\frac{2\ln \rho_t + \sigma^2}{2^{3/2}\sigma}\right] - \frac{2\rho_0\rho_t^m}{m}\right)^{-1}.$$

From here we are left to determine the critical density for star formation, ρ_{cr}, and the density at which the PDF transitions from lognormal to power law, ρ_t. These are not necessarily equal; the forces of rotation and magnetic fields will suppress the collapse of material once the gas is within the potential well of the self-similar sphere, whereby ρ_{cr} may be larger than ρ_t. If we assume that $V(\rho)$ is continuous and differentiable, then we can piece together an analytic estimate for ρ_t and ρ_{cr}. Differentiability is not necessarily the correct condition to take, but in the absence of a better condition for the transition density ρ_t, an assumption must be made. The PDF in Figure 2, as well as some observations, appear to be differentiable. Nevertheless, we can use this assumption to examine the sensitivity of SFR_f to ρ_t and ρ_0. These two conditions give us

$$\rho_t = \frac{1}{2}(2m - 1)\sigma^2$$

$$\rho_0 = e^{\sigma^2 m (m - 1)/2}.$$
Using the fit values from Table 1, we find values listed in Table 3. We also compute values for the LP sphere, with \(\rho \propto r^{-2} \) and \(\sigma = 1.5 \) as found for the majority of our simulations, and a PF collapse with \(\sigma \) taken from Equation (12) for \(b = 0.4 \) and \(M = 9 \).

The increase in predicted SFR is found by using this piecewise PDF instead of a lognormal in Equation (23). In Figure 19, we plot the piecewise cumulative mass fraction in Equation (27) relative to the purely lognormal mass fraction versus critical density \(\rho_{cr} \). We have used parameters from all three simulations, red, green, and blue lines for \(\beta_0 = 0.2, 2, \) and 20, respectively, the LP solution in black, and the PF solution in grey. We find that the increase in SFR can be quite large and is quite sensitive to the details of \(\rho_1 \) and \(m \). This clearly predicts the incorrect behavior in rate relative to \(\beta_0 \), as the \(\beta_0 = 0.2 \) model has a measured collapse rate lower than the other two (see Figure 5). This is due to the selection of \(\rho_1 \), which is significantly lower for \(\beta_0 = 0.2 \) than the other two, caused by the lower value of \(\sigma \). While this is an incorrect prediction, it demonstrates how sensitive this type of model is to the parameters of the fit. In reality, \(\rho_{cr} \) and \(\rho_1 \) will be functions of a stability criterion that fully incorporates magnetic fields and turbulence.

This result is consistent with the findings of Cho & Kim (2011), who used 512\(^3\) unigrid simulations to examine the collapse rate for various values of critical density. For the largest critical values, \(\rho_{cr} = 500/\rho_0 \), they find an increase of 2400 relative to the predicted value of KM05.

Future work will analyze bound clumps to determine proper values for \(\rho_{cr} \) and \(\rho_1 \), and further evaluate this prediction as well as those of KM05 and PN11.

One question that is not addressed by this work is when star formation begins in the lifetime of a cloud. That is, are the effects of self-gravity already present before the lognormal PDF is established, in which case a power law \(V(\rho) \) is the best picture to take, or is it a star-forming cloud turbulent first, and then transitions to self-gravitating through cooling? Kainulainen et al. (2009) observed two families of clouds, one with only lognormal PDFs and no star formation, and one family that includes power-law tails and high rates of star formation. However, it is presently unknown if the star formation begins before or after the power-law tail, or if the tail impacts the star formation itself.

9.2. Interpretation of Observations

The role of magnetic fields has been vigorously debated over the last few decades. Initially, magnetic fields were the dominant mechanism for regulating star formation (Mouschovias 1976; Shu et al. 1987), then they were relegated to an insignificant role as supersonic turbulence took hold (Mac Low & Klessen 2004; Krumholz & McKee 2005). Recent observations have given a mixed review of the role of magnetic fields, with some measurements indicating a strong field, and some indicating a weak field. Here, we will discuss the implications of our present model on recent observations.

Li et al. (2009) measured starlight polarization in a number of molecular clouds, and averaged said polarization over large (30 pc) scales of the cloud and small (0.3 pc) scales centered on high-density cloud cores. The resultant alignment of magnetic fields on large and small scales is interpreted to imply sub-Alfvénic magnetic fields, by way of comparison to a set of super-Alfvénic (\(M_A = 2 \)) and sub-Alfvénic (\(M_A = 0.7 \)) simulations. In sub-Alfvénic turbulence, the kinetic energy of the gas is unable to alter the alignment of the magnetic field at all scales, leading to alignment with the mean field at all scales and a correlation between direction at both large and small scales. In contrast, super-Alfvénic turbulence can greatly alter the magnetic field direction, reducing the correlation between large and small scales. This is consistent with the increase in mean alignment between \(V \) and \(B \) with decreasing \(\beta_0 \) (Figure 12), and as in our trans-Alfvénic simulation there is a trend toward alignment that is absent from the higher \(\beta_0 \) runs. In our trans-Alfvénic simulation, kinetic energy is insufficient to alter the direction of the field relative to the mean, and in turn, velocity and magnetic vectors are aligned. In the super-Alfvénic simulations on the other hand, kinetic motions dominate and the field direction can be altered by the velocity. Alternatively, recent measurements of the directions of outflow from T Tauri stars are uncorrelated with mean magnetic field (Ménard & Duchêne 2004; Targon et al. 2011), though there is a weak correlation for earlier Class 0 and Class 1 objects (Targon et al. 2011). Finally, two sets of observational papers show a transition in field strength with scale. Crutcher et al. (2010) find that the density is uncorrelated with the field strength for densities of \(n_H < 10^5 \) and correlated as \(B \propto n^{0.65} \) for higher densities, using Zeeman splitting. Heyer & Brunt (2012) use velocity anisotropy in the Taurus molecular cloud to show that the low column density gas, with more anisotropic flows, is likely trans-Alfvénic, while high column density gas, with a more isotropic flow, is likely super-Alfvénic.

This suite of measurements is consistent with what we have seen in this study, and can be understood by the combination of Figures 10, 12, and 17, focusing on the \(\beta_0 = 0.2 \) simulation.
structures, as seen in Arzoumanian et al. (2011). Further analysis with $\rho > \rho_0$ panel) and velocity vectors (left panel). High-density material, in Arzoumanian et al. (2011), filaments cluster tightly around is necessary to quantify the filament width distribution, and as found in Aquila is 1.13 (P. Andrée 2011, private communication), for the PF solution (see also Kritsuk & Norman 2011). The value magnetic fields is a function of scale. Low

through the action of supersonic turbulence, the effect of magnetic fields is a function of scale. Low k/k_{min} gas, where the turbulence is generated in the presence of an appreciable mean field, comes into equipartition. This allows low-density gas to exhibit the alignment seen in observations. However, in material at higher k/k_{min}, where the structures are generated by shocks, the field is unable to come into equipartition. This high-density gas is further selected to be super-Alfvénic in post-shock gas where the magnetic energy is too weak to resist compression.

We also find that our simulations are filled with filamentary structures, as seen by Men’shchikov et al. (2010) with Herschel in the Aquila and Polaris clouds, see Figures 1 and 20. Figure 20 shows a restricted region of the $t = 0.6t_{ff}$ snapshot of the $\beta_0 = 2$ simulation, overlaid with magnetic field vectors (right panel) and velocity vectors (left panel). High-density material, with $\rho > 10$, is nearly entirely concentrated in filamentary structures, as seen in Arzoumanian et al. (2011). Further analysis is necessary to quantify the filament width distribution, and as in Arzoumanian et al. (2011), filaments cluster tightly around 0.1 pc. Magnetic fields are weak and perpendicular to the structure with the cores, while in the lower density filamentary tail the field is parallel to the structure. This is expected due to the fact that all high-density material is super-Alfvénic: the filament aligned with the magnetic field will have maximally amplified the magnetic field, halting the collapse, while the material with B and \mathbf{v} more closely aligned has a lower supporting pressure due to the reduced field amplification, and can go on to form “stars.”

We can make further contact between the collapsing state and observations of prestellar cores seen in the Aquila star-forming cloud, as reported by Andrée et al. (2010). We can estimate the mass–size relation from a self-similar sphere as

$$M(R) = 4\pi \int_0^R \rho(r)r^2dr \propto R^{n+3},$$

which gives us $M(r) \propto r^{1}$ for the LP solution and $M(r) \propto r^{1.3}$ for the PF solution (see also Kritsuk & Norman 2011). The value found in Aquila is 1.13 (P. Andrée 2011, private communication), which is somewhat shallower than that for the LP solution. For completeness, the EW solution predicts $M(r) \propto r^{1.5}$, though this is less relevant due to the fact that the EW solution presupposes a central singularity, while the Andrée result focused on starless cores.

10. CONCLUSIONS

In this work, we use high-resolution AMR MHD simulations to examine the combined effects of self-gravity and magnetic fields on supersonic turbulence. We find that self-gravity bifurcates the cloud into two phases: a low-density, turbulent cloud, and high-density, self-gravitating cores. The two phases have substantially different statistical properties. The magnetic field serves to effectively decrease compressibility of the gas as the mean magnetic field is increased.

The simulations were performed using the AMR Enzo code (Bryan et al. 1995; O’Shea et al. 2004), extended to MHD by Collins et al. (2010). The three simulations use an rms Mach number $M = 9$, virial parameter $\alpha = 1$, and three values of the mean magnetic field, giving initial plasma beta $\beta_0 = 0.2, 2, 20$. The coarse level had 5123 zones, and four levels of refinement were used, refining to keep the Jeans length resolved by 16 zones. This gives an effective resolution of 81963.

The low-density turbulent state exhibits properties anticipated by earlier works in supersonic hydro and MHD turbulence. The effects of increasing mean magnetic field strength are to decrease both the compressibility and the ability of the gas flow to bend field lines. The properties of the turbulent state can be summarized as follows.

1. Density PDF, $V(\rho)$, can be roughly represented by a lognormal, given by Equation (11). The width of the lognormal increases somewhat with increasing mean thermal-to-magnetic pressure ratio, β_0.

2. The density power spectrum, $P(\rho, k) \propto k^\zeta$, tends to flatten with increasing Mach number. We find slopes that are flatter than other measurements of ζ in supersonic turbulent simulations, in proportion to the higher Mach number relative to earlier work. We find that ζ weakly

![Figure 20](https://example.com/figure20.png)
decreases with increasing β_0. For the early snapshot, $\zeta = -0.42, -0.58,$ and -0.62 for $\beta_0 = 0.2, 2,$ and 20, respectively.

3. The column density power spectrum, $P(\Sigma, k) \propto k^s$, is also flatter than observed. We find $\lambda = -1.39, -1.61,$ and -1.53 for $\beta_0 = 0.2, 2,$ and 20, respectively, while values of $\lambda < -2.25$ have been reported elsewhere. This discrepancy is likely due to the decreased density range in earlier measurements, in part due to the reduced dynamic range available to the single tracer molecules used for the observations.

4. The thermal-to-magnetic pressure ratio, β_{th}, shows a decreasing correlation between β_{th} and ρ with increasing β_0. The average slope also decreases with decreasing field. For $\beta_{th} \propto \rho^s$, $s = 0.97, 0.77,$ and 0.54 for $\beta_0 = 0.2, 2,$ and 20, respectively.

5. The dynamic-to-magnetic pressure ratio, β_{dyn}, shows only mild decrease in correlation between β_{dyn} and ρ, and the peak of the distribution decreases with increasing β_0.

6. The magnetic field and velocity are nearly aligned for mid-to low-density gas in the strong-field case, and decorrelated for the other two cases.

7. The PDF of the magnetic field, $V(b) \propto \exp[-(b/b_0)^2]$, shows a stretched exponential with a stretching exponent of $c \approx 1/3$, as given in Equation (16), for the high field strength gas. The slope decreases with β_0, with $b_0 = 0.15, 0.19,$ and 0.23 for $\beta_0 = 0.2, 2,$ and 20, respectively, and the peak decreases with increasing β_0.

8. The velocity power spectra, $P(v, k) \propto k^\lambda$, show an increasing slope as β_0 increases, with the weak-field case resembling supersonic hydrodynamic turbulence; we find that $\lambda = -1.46, -1.58,$ and -1.80 for $\beta_0 = 0.2, 2,$ and 20, respectively.

9. Equipartition between kinetic and magnetic energy is only seen at a large scale for the strongest field case, $\beta_0 = 2$, and a small range of intermediate wavenumbers for $\beta_0 = 2$: the magnetic energy is an order of magnitude or more for all high wavenumbers in all simulations, and all wavenumbers in the weak-field case, $\beta_0 = 20$.

10. The ratio of compressive-to-solenoidal motions, $\chi(k)$, increases with β_0, indicating increased compressibility with decreased magnetic field strength.

The high-density collapse phase exhibits properties consistent with spherically symmetric isothermal collapse solutions, with power-law density profiles $\rho \propto r^n$. Again, the effect of the magnetic field is to decrease the compressibility of the gas. The properties of the collapsing state can be summarized as follows.

1. The density PDF is well approximated by a power law, $V(\rho) \propto \rho^m$, where $m = 3/n$, and $m = -1.80, -1.78,$ and -1.65 for $\beta_0 = 0.2, 2,$ and 20, respectively. The mass flux rate, which can be seen as a proxy for SFR, is an increasing function of β_0. The slope in the strong-field case continues to increase at the end of the simulation, due to the slower collapse in this case.

2. The density power spectrum, $P(\rho, k) \propto k^\xi$, shows a positive slope, consistent with the expected behavior of a self-similar solution, $\zeta = -2(m + 1)$, though detailed comparison to theory is difficult due to the superposition of the turbulent state. We find that $\zeta = 0.86, 1.12,$ and 1.2 for $\beta_0 = 0.2, 2,$ and 20, respectively.

3. The column density spectrum, $P(\Sigma, k) \propto k^\lambda$, shows flat spectra, with $\lambda \approx 0$ for all simulations; this behavior is potentially observable, provided observational tracers with high enough dynamic range are used.

4. The thermal-to-magnetic pressure ratio, β_{th}, is near unity for all values of β_0.

5. The dynamic-to-magnetic pressure ratio, β_{dyn}, is larger than unity by at least two orders of magnitude for all values of β_{th}.

6. The high-density gas shows a decrease in the mean alignment between \mathbf{B} and \mathbf{v} with increasing density.

7. The magnetic field PDF shows a power-law behavior, $V(B) \propto B^p$, with $p = -5.42, -4,$ and -3.22 for $\beta_0 = 0.2, 2,$ and 20, respectively.

8. The velocity power spectra show no evidence of the collapsing state, due to the small volume fraction of the collapsing gas and the lack of severe increase in velocity, as seen in the density power spectrum.

9. The kinetic energy spectra, $P(v^{1/2}u, k)$ and $P(B, k)$, show increases in power at high k/k_{min}, consistent with the density-weighted nature of these two statistics.

10. The ratio of compressive-to-solenoidal power similarly shows almost no signature of the collapsing state.

We find that for certain values of the transition from lognormal to power-law density PDF, the feedback on the predicted SFR can be quite large. This has a sensitive dependence on the transition density, ρ_t, between lognormal to power law, and the critical density, ρ_{cr}, above which cores are considered to be gravitationally bound. Additionally, the flattening of the velocity power spectrum in the trans-Alfvénic simulation will cause high-density material to remain gravitationally bound to smaller scales, increasing ρ_{cr} from values expected from hydrodynamic scaling.

High-density collapsing gas is created very super-Alfvénic, with $M_A \approx 100$, even in the trans-Alfvénic simulation. In the trans-Alfvénic simulation, we find large-scale imprints of the magnetic field, and at small scales this imprint weakens. This is consistent with a number of recent observations of the properties of star-forming clouds. High-density cores seem to be found primarily in filaments, in regions where the magnetic field is aligned perpendicular to the filament. Filaments with longitudinal magnetic fields do not show high-density material, consistent with the super-Alfvénic nature of the collapsing state being a necessary condition for collapse.

This work was supported in part by the National Science Foundation under grants AST0808184 and AST0908740. D.C., H.L., and H.X. were supported in part by Los Alamos National Laboratory, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. A.K. was supported in part by the National Science Foundation grant AST-1109570. H.L. gratefully acknowledges the support of the U.S. Department of Energy through the LANL/LDRD program. M.L.N. was supported in part by NSF grant AST-0808184. Computer time was provided through NSF TRAC allocations TG-AST090110 and TG-MCA07S014. The computations were performed on Nautilus and Kraken at the National Institute for Computational Sciences (http://www.nics.tennessee.edu/).

REFERENCES

André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102

Arzoumanian, D., Andrés, P., Didelon, P., et al. 2011, A&A, 529, L6

Bacmann, A., Lefloch, B., Ceccarelli, C., et al. 2002, A&A, 389, L6
